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Preface to the Second Edition

Polymer science is today a vibrant field. Its technological relevance is vast, yet fundamental
scientific questions also abound. Polymeric materials exhibit a wealth of fascinating properties,
many of which are observable just by manipulating a piece in your hands. Yet, these phenomena
are all directly traceable to molecular behavior, and especially to the long chain nature of polymer
molecules. The central goal of this book is to develop a molecular level understanding of the
properties of polymers, beginning with the underlying chemical structures, and assuming no prior
knowledge beyond undergraduate organic and physical chemistry. Although such an understand-
ing should be firmly based in chemistry, polymer science is a highly interdisciplinary endeavor;
concepts from physics, biology, materials science, chemical engineering, and statistics are all
essential, and are introduced as needed.

The philosophy underlying the approach in this book is the same as that in the first edition, as
laid out in the previous preface. Namely, we endeavor to develop the fundamental principles,
rather than an encyclopedic knowledge of particular polymers and their applications; we seek to
build a molecular understanding of polymer synthesis, characterization, and properties; we
emphasize those phenomena (from the vast array of possibilities) that we judge to be the most
interesting. The text has been extensively reorganized and expanded, largely to reflect the
substantial advances that have occurred over the intervening years. For example, there is now
an entire chapter (Chapter 4) dedicated to the topic of controlled polymerization, an area that has
recently undergone a revolution. Another chapter (Chapter 11) delves into the viscoelastic
properties of polymers, a topic where theoretical advances have brought deeper understanding.
The book also serves as a bridge into the research literature. After working through the appropriate
chapters, the student should be able to make sense of a large fraction of the articles published today
in polymer science journals.

There is more than enough material in this book for a full-year graduate level course, but as with
the first edition, the level is (almost) always accessible to senior level undergraduates. After an
introductory chapter of broad scope, the bulk of the text may be grouped into three blocks of four
chapters each. Chapter 2 through Chapter 5 describe the many ways in which polymers can be
synthesized and how the synthetic route influences the resulting molecular structure. This material
could serve as the basis for a single quarter or semester chemistry course that focuses on polymer
synthesis. Chapter 6 through Chapter 9 emphasize the solution properties of polymers, including
their conformations, thermodynamics, hydrodynamics, and light scattering properties. Much of this
material is often found in a quarter or semester course introducing the physical chemistry of
polymers. Chapter 10 through Chapter 13 address the solid state and bulk properties of polymers:
rubber elasticity, viscoelasticity, the glass transition, and crystallization. These topics, while
presented here from a physical chemical point of view, could equally well serve as the cornerstone
of an introductory course in materials science or chemical engineering.

The style of the presentation, as with the previous edition, is chosen with the student in mind. To
this end, we may point out the following features:
° There are over 60 worked example problems sprinkled throughout the book.
° There are 15 or more problems at the end of every chapter, to reinforce and develop further

understanding; many of these are based on data from the literature.
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vi Preface to the 2nd Edition

° There are almost 200 figures, to illustrate concepts or to present experimental results from
the literature.

0 Studies chosen for the examples, problems, and figures range in vintage from very recent to
over 50 years old; this feature serves to give the reader some sense of the historical progression
of the field.

° Concise reviews of many topics (such as thermodynamics, kinetics, probability, and various
experimental techniques) are given when the subject is first raised.

° A conscious effort has been made to cross-reference extensively between chapters and sections
within chapters, in order to help tie the various tOpics together.

° Important equations and mathematical relations are almost always developed step by step. We
have avoided, wherever possible, the temptation to pull equations out of a hat. Occasionally
this leads to rather long stretches of algebra, which the reader is welcome to skip. However, at
some point the curious student will want to know where the result comes from, and then this
book should be a particularly valuable resource. Surprisingly, perhaps, the level of mathemat—
ical sophistication is only about the same as needed in undergraduate chemical thermodynam-
ics. As a further help in this regard, an Appendix reviews many of the important mathematical
tools and tricks.

An undertaking such as writing a textbook can never be completed without important contributions
from many individuals. Large sections of manuscript were carefully typed by Becky Matsch and
Lynne Johnsrud; Lynne also helped greatly with issues of copyright permissions and figure prepar-
ation. My colleagues past and present in the Polymer Group at Minnesota have been consistently
encouraging and have provided both useful feedback and insightful examples: Frank Bates, Shura
Grosberg, Marc Hillmyer, Chris Macosko, Wilmer Miller, David Morse, Steve Prager, and Matt
Tirrell. In large measure the style adopted in this second edition has been inspired by the example set
by my graduate instructors and mentors at the University of Wisconsin: R. Byron Bird, John Perry,
Arthur Lodge, John Schrag, and Hyuk Yu. In particular, it was in his graduate course Chemistry 664
that Hyuk Yu so ably demonstrated that no important equation need come out of thin air.

I would like extend a special thank you to all of the students enrolled in Chemistry/Chemical
Engineering/Materials Science 8211 over the period 2002—2005, who worked through various
drafts of Chapter 6 through Chapter 13, and provided many helpful suggestions: Sayeed Abbas,
David Ackerman, Sachin Agarwal, Saurabh Agarwal, Julie Alkatout, Pedro Arrechea, Carlos
Lopez-Barron, Soumendra Basu, Jeff Becker, Joel Bell, A.S. Bhalla, Michael Bluemle, Paul
Boswell, Bryan Boudouris, Adam Buckalew, Xiuyu Cai, Neha Chandra, Joon Chatterjee, Liang
Chen, Ying Chen, Juhee Cho, Seongho Choi, Jin-Hwa Chung, Kevin Davis, Michail Dolgovskij,
Jingshan Dong, Will Edmonds, Sandra Fritz, Carolyn Gamble, Piotr Grzywacz, Jeong-Myeong Ha,
Benjamin Hamilton, Amanda Haws, Nazish Hoda, Hao Hou, Deanna Huehn, Shengxiang Ji, Karan
Jindal, Young Kang, Aaron Khieu, Byeong-Su Kim, BongSoo Kim, Hyunwoo Kim, Jin-Hong
Kim, Seung Ha Kim, Chunze Lai, Castro Laicer, Qiang Lan, Sangwoo Lee, Zhibo Li, Elizabeth
Lugert, Nate Lynd, Sudeep Maheshwari, Huiming Mao, Adam Meuler, Yoichiro Mori, Randy
Mrozek, Siddharthya Mujumdar, Jaewook Nam, Dan O’Neal, Sahban Ozair, Matt Panzer, Alhad
Phatak, William Philip, Jian Qin, Benjamin Richter, Scott Roberts, Josh Scheffel, Jessica Schom-
mer, Kathleen Schreck, Peter Simone, Zach Thompson, Kristianto Tjiptowidjojo, Mehul Vora,
Jaye Warner, Tomy Widya, Maybelle Wu, Jianyan Xu, Dan Yu, Ilan Zeroni, Jianbin Zhang, Ling
Zhang, Yu Zhang, Ning Zhou, Zhengxi Zhu, and John Zupancich. Last but not least the
love, support, and tolerance of my family, Susanna, Hannah, and Sam, has been a constant source
of strength.

Tim Lodge



Preface to the First Edition

Physical chemistry has been defined as that branch of science that is fundamental, molecular,
and interesting. I have tried to write a polymer textbook that could be described this way also. To
the extent that one subscribes to the former definition and that I have succeeded in the latter
objective, then the approach of this book is physical chemical. As a textbook, it is intended for
students who have completed courses in physical and organic chemistry. These are the prerequi—
sites that define the level of the book; no special background in physics or mathematics beyond
what is required for physical chemistry is assumed. Since chemistry majors generally study
physical chemistry in the third year of the undergraduate curriculum, this book can serve as the
text for a senior—level undergraduate or a beginning graduate—level course. Although I use
chemistry courses and chemistry curricula to describe the level of this book, students majoring
in engineering, materials science, physics, and various specialties in the biological sciences will
also find numerous topics of interest contained herein.

Terms like “fundamental,” “molecular,” and “interesting” have different meanings for
different people. Let me explain how they apply to the presentation of polymer chemistry in this
text.

The words “basic concepts” in the title define what I mean by “fundamental.” This is the
primary emphasis in this presentation. Practical applications of polymers are cited frequently—
after all, it is these applications that make polymers such an important class of chemicals—but in
overall content, the stress is on fundamental principles. “Foundational” might be another way to
describe this. I have not attempted to cover all aspects of polymer science, but the topics that have
been discussed lay the foundation—built on the bedrock of organic and physical chemistry—from
which virtually all aspects of the subject are developed. There is an enormous literature in polymer
science; this book is intended to bridge the gap between the typical undergraduate background in
polymers—which frequently amounts to little more than occasional “relevant” examples in other
courses—and the professional literature on the subject. Accordingly, the book assumes essentially no
prior knowledge of polymers, and extends far enough to provide a usable level of understanding.

“Molecular” describes the perspective of the chemist, and it is this aspect of polymeric
materials that I try to keep in view throughout the book. An engineering text might emphasize
processing behavior; a physics text, continuum mechanics; a biochemistry text, physiological
function. All of these are perfectly valid points of view, but they are not the approach of this
book. It is polymer molecules—their structure, energetics, dynamics, and reactions—that are the
primary emphasis throughout most of the book. Statistics is the type of mathematics that is natural
to a discussion of molecules. Students are familiar with the statistical nature of, say, the kinetic
molecular theory of gases. Similar methods are applied to other assemblies of molecules, or in the
case of polymers, to the assembly of repeat units that comprise a single polymer molecule.
Although we frequently use statistical arguments, these are developed quite thoroughly and do
not assume any more background in this subject than is ordinarily found among students in a
physical chemistry course.
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viii Preface to the lst Edition

CThe most subjective of the words which (I hope) describe this book is ‘interesting.” The
fascinating behavior of polymers themselves, the clever experiments of laboratory researchers, and
the elegant work of the theoreticians add up to an interesting total. I have tried to tell about these
topics with clarity and enthusiasm, and in such a way as to make them intelligible to students. I can
only hope that the reader agrees with my assessment of what is interesting.

This book was written with the student in mind. Even though “student” encompasses persons
with a wide range of backgrounds, interests, and objectives; these are different than the corre—
sponding experiences and needs of researchers. The following features have been included to assist
the student:

1. Over 50 solved example problems are sprinkled throughout the book.
2. Exercises are included at the end of each chapter which are based on data from the original

literature.
3. Concise reviews of pertinent aspects of thermodynamics, kinetics, spectrophotometry, etc. are

presented prior to developing applications of these topics to polymers.
4. Theoretical models and mathematical derivations are developed in enough detail to be

comprehensible to the student reader. Only rarely do I “pull results out of a hat,” and I
scrupulously avoid saying “it is obvious that .. .”

5. Generous cross—referencing and a judicious amount of repetition have been included to help
unify a book which spans quite a wide range of topics.

6. SI units have been used fairly consistently throughout, and attention is paid to the matter of
units whenever these become more than routine in complexity.

The book is divided into three parts of three chapters each, after an introductory chapter which
contains information that is used throughout the book.

In principle, the three parts can be taken up in any order without too much interruption in
continuity. Within each of the parts there is more carryover from chapter to chapter, so rearranging
the sequence of topics within a given part is less convenient. The book contains more material than
can be covered in an ordinary course. Chapter 1 plus two of the three parts contain about the right
amount of material for one term. In classroom testing the material, I allowed the class to decide—
while we worked on Chapter l—which two of the other parts they wished to cover; this worked
very well.

Material from Chapter 1 is cited throughout the book, particularly the discussion of statistics. In
this connection, it might be noted that statistical arguments are developed in less detail further
along in the book as written. This is one of the drawbacks of rearranging the order in which the
topics are covered. Chapters 2 through 4 are concerned with the mechanical properties of bulk
polymers, properties which are primarily responsible for the great practical importance of poly-
mers. Engineering students are likely to have both a larger interest and a greater familiarity with
these topics. Chapers 5 through 7 are concerned with the preparation and properties of several
broad classes of polymers. These topics are closer to the interests of chemistry majors. Chapters 8
through 10 deal with the solution properties of polymers. Since many of the techniques described
have been applied to biopolymers, these chapters will have more appeal to students of biochem—
istry and molecular biology.

Let me conclude by acknowledging the contributions of those who helped me with the
preparation of this book. I wish to thank Marilyn Steinle for expertly typing the manuscript. My
appreciation also goes to Carol Truett who skillfully transformed my (very) rough sketches into
effective illustrations. Lastly, my thanks to Ron Manwill for preparing the index and helping me
with the proofreading. Finally, let me acknowledge that some errors and/or obscurities will surely
elude my efforts to eliminate them. I would appreciate reports about these from readers so that
these mistakes can eventually be eliminated.

Paul C. Hiemenz
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Introduction to Chain Molecules

1.1 Introduction

“I am inclined to think that the development of polymerization is perhaps the biggest thing
chemistry has done, where it has had the biggest impact on everyday life” [1]. This assessment
of the significance of polymer chemistry to modern society was offered 25 years ago by Lord Todd
(President of the Royal Society and 1957 Nobel Laureate in Chemistry), and subsequent deve10p-
ments have only reinforced this sentiment. There is hardly an area of modern life in which polymer
materials do not play an important role. Applications span the range from the mundane
(e.g., packaging, toys, fabrics, diapers, nonstick cookware, pressure-sensitive adhesives, etc.) to
demanding specialty uses (e.g., bulletproof vests, stealth aircraft, artificial hip joints, resorbable
sutures, etc.). In many instances polymers are the main ingredients, and the ingredients whose
characteristic properties are essential to the success of a particular technology: rubber tires, foam
cushions and insulation, high—performance athletic shoes, clothing, and equipment are good
examples. In other cases, polymers are used as additives at the level of a few percent by volume,
but which nevertheless play a crucial role in the properties of the final material; illustrations of this
can be found in asphalt (to suppress brittle fracture at low temperature and flow at high tempera-
ture), shampoo and other cosmetics (to impart “body”), automobile Windshields (to prevent
shattering), and motor oil (to reduce the dependence of viscosity on temperature, and to suppress
crystallization).

For those polymer scientists “of a certain age,” the 1967 movie “The Graduate” [2] provided
an indelible moment that still resonates today. At his college graduation party, the hero Benjamin
Braddock (played by Dustin Hoffman) is offered the following advice by Mr. McGuire (played by
Walter Brooke):

MR. MCGUIRE. I want to say one word to you. Just one word.
BENJAMIN. Yes, sir.
MR. MCGUIRE. Are you listening?
BENJAMIN. Yes I am.
MR. MCGUIRE. Plastics.

In that period, the term “plastic” was often accompanied by negative connotations, including
“artificial,” as opposed to “natural,” and “cheap,” as opposed to “valuable.” Today, in what we
might call the “post-graduate era,” the situation has changed. To the extent that the advice offered
to Benjamin was pointing him to a career in a particular segment of the chemical industry, it was
probably very sound advice. The volume of polymer materials produced annually has grown
rapidly over the intervening years, to the point where today several hundred pounds of polymer
materials are produced each year for each person in the United States. More interesting than sheer
volume, however, is the breadth of applications for polymers. Not only do they continue to
encroach into the domains of “classical” materials such as metal, wood, and glass (note the
inexorable transformation of polymers from minor to major components in automobiles), but they
also play a central role in many emerging technologies. Examples include “plastic electronics,”
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gene therapy, artificial prostheses, optical data storage, electric cars, and fuel cells. In short, a
reasonable appreciation of the properties of chain molecules, and how these result in the many
desirable attributes of polymer-containing materials, is a necessity for a well-trained chemist,
materials scientist, or chemical engineer today.

Science tends to be plagued by cliches, which make invidious comparison of its efforts; “they
can cure such and such a dreaded disease, but they cannot do anything about the common cold” or
“we know more about the surface of the moon than the bottom of the sea.” If such comparisons
were popular in the 19203, the saying might have been, “we know more about the structure of the
atom than about those messy, sticky substances called polymers.” Indeed, Millikan’s determin-
ation of the charge of an electron, Rutherford’s idea of the nuclear atom, and Bohr’s model of the
hydrogen atom were all well-known concepts before the notion of truly covalent macromolecules
was accepted. This was the case in spite of the great importance of polymers to human life and
activities. Our bodies, like all forms of life, depend on polymer molecules: carbohydrates, proteins,
nucleic acids, and so on. From the earliest times, polymeric materials have been employed to
satisfy human needs: wood and paper; hides; natural resins and gums; fibers such as cotton, wool,
and silk.

Attempts to characterize polymeric substances had been made, of course, and high molecular
weights were indicated, even if they were not too accurate. Early workers tended to be more
suspicious of the interpretation of the colligative properties of polymeric solutions than to accept
the possibility of high molecular weight compounds. Faraday had already arrived at C5H3 as the
empirical formula of “rubber” in 1826, and isoprene was identified as the product resulting from
the destructive distillation of rubber in 1860. The idea that a natural polymer such as rubber
somehow “contained” isoprene emerged, but the nature of its involvement was more elusive.

During the early years of the 20th century, organic chemists were enjoying success in deter-
mining the structures of ordinary-sized organic molecules, and this probably contributed to their
reluctance to look beyond structures of convenient size. Physical chemists were interested
in intermolecular forces during this period, and the idea that polymers were the result of some
sort of association between low molecular weight constituent molecules prevailed for a long while.
Staudinger is generally credited as being the father of modern polymer chemistry, although a
foreshadowing of his ideas can be traced through older literature. In 1920, Staudinger proposed
the chain formulas we accept today, maintaining that structures are held together by covalent
bonds, which are equivalent in every way to those in low molecular weight compounds. There was
a decade of controversy before this “macromolecular hypothesis” began to experience widespread
acceptance. Staudinger was awarded the Nobel Prize in 1953 for his work with polymers. By the
1930s, Carothers began synthesizing polymers using well-established reactions of organic
chemistry such as esterification and amidation. His products were not limited to single ester or
amide linkages, however, but contained many such groups: they were polyesters and polyamides.
Physical chemists also got in on the act. Kuhn, Guth, Mark, and others were soon applying
statistics and crystallography to describe the multitude of forms a long-chain molecule could
assume [3].

Our purpose in this introduction is not to trace the history of polymer chemistry beyond the
sketchy version above; interesting and extensive treatments are available [4,5]. Rather, the primary
objective is to introduce the concept of chain molecules, which stands as the cornerstone of all
polymer chemistry. In the next few sections we shall explore some of the categories of polymers,
some of the reactions that produce them, and some aspects of isomerism which multiply the
structural possibilities. A common feature of all synthetic polymerization reactions is the statistical
nature of the individual polymerization steps. This leads inevitably to a distribution of molecular
weights, which we would like to describe. As a consequence of these considerations, another
important part of this chapter is an introduction to some of the statistical concepts that also play a
central role in polymer chemistry.
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1.2 How Big ls Big?
The term polymer is derived from the Greek words poly and meros, meaning many parts. We noted
in the Section 1.1 that the existence of these parts was acknowledged before the nature of the
interaction which held them together was known. Today we realize that ordinary covalent bonds
are the intramolecular forces that keep the polymer molecule intact. In addition, the usual types of
intermolecular forces—hydrogen bonds, dipole—dipole interactions, London forces, etc.—hold
assemblies of these molecules together in the bulk state. The only thing that is remarkable about
these molecules is their size, but that feature is remarkable indeed. Another useful term is
macromolecule, which of course simply means “large (or long) molecule.” Some practitioners
draw a distinction between the two: all polymers are macromolecules, but not all macromolecules
are polymers. For example, a protein is not made by repeating one or two chemical units many
times, but involves a precise selection from among 20 different amino acids; thus it is a macro—
molecule, but not a polymer. In this text we will not be sticklers for formality, and will use the
terms rather interchangeably, but the reader should be aware of the distinction.

1.2.1 Molecular Weight

One of the first things we must consider is what we mean when we talk about the “size” of a
polymer molecule. There are two possibilities: one has to do with the number of repeat units and
the other to the spatial extent. In the former case, the standard term is molecular weight (although
again the reader must be aware that molar mass is often preferred). A closely related concept, the
degree of polymerization is also commonly used in this context. A variety of experimental
techniques are available for determining the molecular weight of a polymer. We shall discuss a
few such methods in Section 1.8 and postpone others until the appropriate chapters. The expression
molecular weight and molar mass should always be modified by the word average. This too is
something we shall take up presently. For now, we assume that a polymer molecule has a
molecular weight M, which can be anywhere in the range 103—107 or more. (We shall omit units
when we write molecular weights in this book, but the student is advised to attach the units g/mol
to these quantities when they appear in problem calculations.)

Since polymer molecules are made up of chains of repeat units, after the chain itself comes the
repeat unit as a structural element of importance. Many polymer molecules are produced by
covalently bonding together only one or two types of repeat units. These units are the parts from
which chains are generated; as a class of compounds they are called monomers. Throughout this
book, we shall designate the molecular weight of a repeat unit as M0.

The degree of polymerization of a polymer is simply the number of repeat units in a molecule.
The degree of polymerization N is given by the ratio of the molecular weight of the polymer to the
molecular weight of the repeat unit:

M
N —

M0
(1.2.1)

One type of polymerization reaction is the addition reaction in which successive repeat units add
on to the chain. No other product molecules are formed, so the molecular weight of the monomer
and that of the repeat unit are identical in this case. A second category of polymerization reaction is
the condensation reaction, in which one or two small molecules such as water or HCl are
eliminated for each chain linkage formed. In this case the molecular weight of the monomer and
the repeat unit are somewhat different. For example, suppose an acid (subscript A) reacts with an
alcohol (subscript B) to produce an ester linkage and a water molecule. The molecular weight of
the ester—the repeat unit if an entire chain is built up this way—differs from the combined weight
of the reactants by twice the molecular weight of the water; therefore,

M M
N:—:

M0 MA +MB — ZMHZO
(1.2.2)
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The end units in a polymer chain are inevitably different from the units that are attached on
both sides to other repeat units. We see this situation in the n-alkanes: each end of the chain is
a methyl group and the middle parts are methylene groups. Of course, the terminal group does
not have to be a hydrogen as in alkanes; indeed, it is often something else. Our interest in end
groups is concerned with the question of what effect they introduce into the evaluation of N
through Equation (1.2.2). The following example examines this through some numerical
calculations.

Example 1.1
As a polymer prototype consider an n-alkane molecule consisting of N—2 methylenes and 2 methyl
groups. How serious an error is made in M for different Ns if the difference in molecular weight
between methyl and methylene groups is ignored?

Solution
The effect of different end groups on M can be seen by comparing the true molecular weight with
an approximate molecular weight, calculated on the basis of a formula (CH2)N. These Ms and the
percentage difference between them are listed here for several values of N

N M Mapprox % Difference

3 44 42 4.5
7 100 98 2.0

12 170 168 1.2
52 730 728 0.3

102 1,430 1,428 0.14
502 7,030 7,028 0.028

1002 14,030 14,028 0.014

Although the difference is almost 5% for propane, it is closer to 0.1% for the case of N m 100,
which is about the threshold for polymers. The precise values of these numbers will be
different, depending on the specific repeat units and end groups present. For example, if
M0: 100 and Mend=80, the difference would be 0.39% in a calculation such as that above
for N g 100.

The example shows that the contribution of the ends becomes progressively less important
as the number of repeat units in a structure increases. By the time polymeric molecular
sizes are reached, the error associated with failure to distinguish between segments at the
end and those within the chain is generally less than experimental error. In Section 1.8.2 we
shall consider a method for polymer molecular weight determination based on chemical
analysis for the end groups in a polymer. A corollary of the present discussion is that the
method of end group analysis is applicable only in the case of relatively low molecular weight
polymers.

As suggested above, not all polymers are constructed by bonding together a single kind of
repeat unit. For example, although protein molecules are polyamides in which N amino acid repeat
units are bonded together, the degree of polymerization is a less useful concept, since an amino
acid unit might be any one of the 20—odd molecules that are found in proteins. in this case the
molecular weight itself, rather than the degree of polymerization, is generally used to describe the
molecule. When the actual content of individual amino acids is known, it is their sequence that is
of special interest to biochemists and molecular biologists.
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1.2.2 Spatial Extent

We began this section with an inquiry into how to define the size of a polymer molecule. In
addition to the molecular weight or the degree of polymerization, some linear dimension that
characterizes the molecule could also be used for this purpose. As an example, consider a
hydrocarbon molecule stretched out to its full length but without any bond distortion. There are
several features to note about this situation:

1. The tetrahedral geometry at the carbon atoms gives bond angles of 109.5°.
The equilibrium bond length of a carbon—carbon single bond is 0.154 nm or 1.54 A.

3. Because of the possibility of rotation around carbon—carbon bonds, a molecule possessing
many such bonds will undergo many twists and turns along the chain.

4. Fully extended molecular length is not representative of the spatial extension that a molecule
actually displays. The latter is sensitive to environmental factors, however, so the extended
length is convenient for our present purposes to provide an idea of the spatial size of polymer
molecules.

A fully extended hydrocarbon molecule will have the familiar all—trans zigzag profile in
which the hydrogens extend in front of and in back of the plane containing the carbons, with an
angle of 109.5° between successive carbon—carbon bonds. The chain may be pictured as a row
of triangles resting comer to comer. The length of the row equals the product of the number
of triangles and the length of the base of each. Although it takes three carbons to define one of
these triangles, one of these atoms is common to two triangles; therefore the number of
triangles is the same as the number of pairs of carbon atoms, except where this breaks down
at the ends of the molecule. If the chain is sufficiently long, this end effect is inconsequential.
The law of cosines can be used to calculate the length of the base of each of these triangles:
[2(0.154)2(1 — cos 109.5°)] ”2 = 0.252 nm. If the repeat unit of the molecule contributes two carbon
atoms to the backbone of the polymer—as is the case for vinyl polymers—the fully extended
chain length is given by N(0.252) nm. For a polymer with N = 104, this corresponds to 2.52 pm.
Objects which actually display linear dimensions of this magnitude can be seen in an ordinary
microscope, provided that they have suitable optical properties to contrast with their surroundings;
an example will be given in Figure 1.1a. Note that the distance between every other carbon atom
we have used here is also the distance between the substituents on these carbons for the fully
extended chains.

We shall see in Chapter 6 that, because of all the twists and turns a molecule undergoes,
the actual average end-to—end distance of the jumbled molecules increases as N”2. With the
same repeat distance calculated above, but the square root dependence on N, the actual end-to-
end distance of the coiled chain with N = 104 is closer to (104)”2 X 0.252 nm as 25 nm. If we
picture one end of this jumbled chain at the origin of a coordinate system,.the other end might be
anywhere on the surface of a sphere whose radius is given by this end-to-end distance. This
spherical geometry comes about because the random bends occurring along the chain length can
take the end of the chain anywhere in a spherical domain whose radius depends on NU2.

The above discussion points out the difficulty associated with using the linear dimensions of a
molecule as a measure of its size: it is not the molecule alone that determines its dimensions, but
also the shape or conformation in which it exists. Fully extended, linear arrangements of the sort
described above exist in polymer crystals, at least for some distance, although usually not over the
full length of the chain. We shall take up the structure of polymer crystals in Chapter 13. In the
solution and bulk states, many polymers exist in the coiled form we have also described. Still other
structures are important, notably the rod or semiflexible chain, which we shall discuss in Chapter 6.
The overall shape assumed by a polymer molecule can be greatly affected by the environment. The
shape of a molecule in solution plays a key role in determining many properties of polymer
solutions. From a study of these solutions, some conclusions can be drawn regarding the shape of
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Figure 1.1 (3) Individual molecules of DNA of various sizes, spread on a fluid positively charged surface,
imaged by fluorescence. The scale bar is 10 um. (Reproduced from Maier, B. and Radler, J .O. Macromolecules
33, 7185, 2000. With permission.) (b) Atomic force microscopy images of three-arm star polymers, where each
arm is a heavily branched Comb. The circles indicate linear molecules. (Reproduced from Matyjaszewski, K.,
Qin, S., Boyce, J.R., Shirvanyants, D., and Sheiko, S.S. Macromolecules 36, 1843, 2003. With permission.)

the molecule in the environment. Relevant aspects of polymer solutions are taken up in Chapter 6
through Chapter 9.

Figure 1.1a and Figure 1.1b are rather striking images of individual polymer molecules. Figure
1.1a shows single molecules of DNA that have been heavily labeled with fluorescent dyes; the dyes
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intercalate between the base pairs along the chain, without seriously altering the conformation of
the molecule. Under illumination the resulting fluorescence provides a good representation of the
molecules themselves. In this particular image, the DNA molecules are spread out in two
dimensions, on a cationically charged imitation lipid membrane. DNA, as it turns out, is an
excellent example of a semiflexible chain, which can actually be inferred from these images; the
molecules are not straight rods, but neither are they heavily coiled around themselves. The
scale bar corresponds to 10 um, indicating that these molecules are of very high molecular
weight indeed. In Figure 1.1b, the image is of a star-shaped polymer, but one in which each arm
of the star is a heavily branched comb or “bottlebrush.” The molecule is thus akin to a kind of
starfish, with very hairy arms. This picture was obtained by atomic force microscopy (AFM),
one of a series of surface-sensitive analysis techniques with exquisite Spatial resolution. The
molecules themselves were deposited from a Langmuir—Blodgett trough onto a mica substrate.
Both situations depicted in Figure 1.1a and Figure 1.1b raise the question of the relationship
between the conformation observed on the surface and that at equilibrium in solution. In
Chapter 6 through Chapter 9 we will encounter several ways in which the solution conformation
can be determined reliably, which can serve to confirm the impression derived from figures such
as these.

We conclude this section by questioning whether there is a minimum molecular weight or linear
dimension that must be met for a molecule to qualify as a polymer. Although a dimer is a molecule
for which N =2, no one would consider it a polymer. The term oligomer has been coined to
designate molecules for which N < 10. If they require a special name, apparently the latter are not
full-fledged polymers either. At least as a first approximation, we shall take the attitude that there
is ordinarily no discontinuity in behavior with respect to observed properties as we progress
through a homologous series of compounds with different N values. At one end of the series, we
may be dealing with a simple low molecular weight compound, and at the other end with a material
that is unquestionably polymeric. The molecular weight and chain length increase monotonically
through this series, and a variety of other properties vary smoothly also. This point of view
emphasizes continuity with familiar facts concerning the properties of low molecular weight
compounds. There are some properties, on the other hand, which follow so closely from the
chain structure of polymers that the property is simply not observed until a certain critical
molecular size has been reached. This critical size is often designated by a threshold molecular
weight. The elastic behavior of rubber and several other mechanical properties fall into this latter
category. In theoretical developments, large values of N are often assumed to justify neglecting end
effects, using certain statistical methods and other mathematical approximations. With these ideas
in mind, M = 1000 seems to be a convenient round number for designating a compound to be a
polymer, although it should be clear that this cutoff is arbitrary (and on the low side).

1.3 Linear and Branched Polymers, Homopolymers, and Copolymers
1.3.1 Branched Structures

Most of the preceding section was based on the implicit assumption that polymer chains are
linear (with the striking exception of Figure 1.1b). In evaluating both the degree of polymeriza-
tion and the extended chain length, we assumed that the chain had only two ends. While linear
polymers are important, they are not the only type of molecules possible: branched and cross-
linked molecules are also common. When we speak of a branched polymer, we refer to the
presence of additional polymeric chains issuing from the backbone of a linear molecule. (Small
substituent groups such as methyl or phenyl groups on the repeat units are generally not
considered branches, or, if they are, they should be specified as “short—chain branches”)
Branching can arise through several routes. One is to introduce into the polymerization reaction
some monomer with the capability of serving as a branch. Consider the formation of a polyester.
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The presence of difunctional acids and difunctional alcohols allows the polymer chain to
grow. These difunctional molecules are incorporated into the chain with ester linkages at both
ends of each. Trifunctional acids or alcohols, on the other hand, produce a linear molecule by
the reaction of two of their functional groups. If the third reacts and the resulting chain continues
to grow, a branch has been introduced into the original chain. A second route is through
adventitious branching, for example, as a result of an atom being abstracted from the original
linear molecule, with chain growth occurring from the resulting active site. This is quite a
common occurrence in the free-radical polymerization of ethylene, for example. A third route is
grafting, whereby pre-formed but still reactive polymer chains can be added to sites along an
existing backbone (so-called “grafting to”), or where multiple initiation sites along a chain
can be exposed to monomer (so-called “grafting from”).

The amount of branching introduced into a polymer is an additional variable that must be
specified for the molecule to be fully characterized. When only a slight degree of branching is
present, the concentration of junction points is sufficiently low that these may be simply related to
the number of chain ends. For example, two separate linear molecules have a total of four ends. If
the end of one of these linear molecules attaches itself to the middle of the other to form a T, the
resulting molecule has three ends. It is easy to generalize this result. If a molecule has 12 branches, it
has 12 + 2 chain ends if the branching is relatively low. Two limiting cases to consider, illustrated in
Figure 1.2, are combs and stars. In the former, a series of relatively uniform branches emanate
from along the length of a common backbone; in the latter, all branches radiate from a central
junction. Figure 1.1b gave an example of both of these features.

If the concentration of junction points is high enough, even branches will contain branches.
Eventually a point can be reached at which the amount of branching is so extensive that the
polymer molecule becomes a giant three-dimensional network. When this condition is achieved,
the molecule is said to be cross-linked. In this case, an entire macroscopic object may be
considered to consist of essentially one molecule. The forces that give cohesiveness to such a
body are covalent bonds, not intermolecular forces. Accordingly, the mechanical behavior of
cross-linked bodies is much different from those without cross-linking. This will be discussed at
length in Chapter 10. However, it is also possible to suppress cross-linking such that the highly
branChed molecules remain as discrete entities, known as hyperbranched polymers (see Figure 1.2).
Another important class of highly branched polymers illustrated in Figure 1.2 are dendrimers, or
treelike molecules. These are completely regular structures, with well-defined molecular weights,
that are made by the successive condensation of branched monomers. For example, begin with a

Linear

Hyperbranched

Cycle

Four-arm star

Comb Dendrimer

Figure 1.2 Illustration of various polymer architectures.
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trifunctional monomer “B3,” or “generation 0.” This is reacted with an excess of AB2 monomers,
leading to a generation 1 dendrimer with 6 B groups. A second reaction with AB2 leads to
generation 2 with 12 pendant B groups. Eventually, perhaps at generation 6 or 7, the surface of
the molecule becomes so congested that addition of further complete generations is impossible.
Note that the “B” part of the ABg monomer needs to be protected in some way so that only one
generation can be added at one time.

A final class of nonlinear polymers to consider are cycles or rings, whereby the two ends of the
molecule react to close the loop. Such polymers are currently more of academic interest than
commercial importance, as they are tricky to prepare, but they can shed light on various aspects of
polymer behavior. Interestingly, nature makes use of this architecture; the DNA of the Lambda
bacteriophage reversibly cyclizes and uncyclizes during gene expression.

1.3.2 Copolymers

Just as it is not necessary for polymer chains to be linear, it is also not necessary for all repeat units
to be the same. We have already mentioned proteins, where a wide variety of different repeat
units are present. Among synthetic polymers, those with a single kind of repeat unit are called
homopolymers, and those containing more than one kind of repeat unit are capolymers. Note that
these definitions are based on the repeat unit, not the monomer. An ordinary polyester is not really
a copolymer, even though two different monomers, acids and alcohols, are its monomers.
By contrast, copolymers result when different monomers bond together in the same way to produce
a chain in which each kind of monomer retains its respective substituents in the polymer molecule.
The unmodified term copolymer is generally used to designate the case where two different repeat
units are involved. Where three kinds of repeat units are present, the system is called a terpolymer;
where there are more than three, the system is called a multicomponent copolymer. The copoly-
mers we discuss in this book will be primarily two—component molecules. We shall explore aspects
of the synthesis and characterization of copolymers in both Chapter 4 and Chapter 5.

The moment we admit the possibility of having more than one kind of repeat unit, we require
additional variables to describe the polymer. First, we must know how many kinds of repeat units
are present and what they are. To describe the copolymer quantitatively, the relative amounts of the
different kinds of repeat units must be specified. Thus the empirical formula of a copolymer may
be written A,C By, where A and B signify the individual repeat units and x and y indicate the relative
number of each. From a knowledge of the molecular weight of the polymer, the molecular weights
of A and B, and the values of x and y, it is possible to calculate the number of each kind of
monomer unit in the copolymer. The sum of these values gives the degree of polymerization of the
copolymer. The following example illustrates some of the ways of describing a copolymer.

Example 1.2
A terpolymer is prepared from vinyl monomers A, B, and C; the molecular weights of the repeat
units are 104, 184, and 128, respectively. A particular polymerization procedure yields a product
with the empirical formula A355 32.20C1.00- The authors of this research state that the terpolymer
has “an average unit weight of 134” and “the average molecular weight per angstrom of 53.5.”
Verify these values.T

Solution

The empirical formula gives the relative amounts of A, B, and C in the terpolymer. The total
molecular weight of this empirical formula unit is given by adding the molecular weight contri-
butions of A, B, and C: 3.44(104) + 2.20(184)+ 1.00(128) = 902 g/mol per empirical formula unit.

TA. Ravve and IT Khamis, Addition and Condensation Polymerization Processes, Advances in Chemistry Series, Vol. 91,
American Chemical Society Publications, Washington, DC, 1969.
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The total amount of chain repeat units possessing this total weight is 3.55 + 2.20 + 1.00 = 6.75
repeat units per empirical formula unit. The ratio of the total molecular weight to the total number
of repeat units gives the average molecular weight per repeat unit:

902
5—75

= 134 g/mol per repeat unit

Since the monomers are specified to be vinyl monomers, each contributes two carbon atoms to the
polymer backbone, with the associated extended length of 0.252 mm per repeat unit. Therefore, the
total extended length of the empirical formula unit is

6.75(0.252 nm) = 1.79 nm : 17.0 A

The ratio of the total weight to the total extended length of the empirical formula unit gives the
average molecular weight per length of chain:

902 .— = 53 g/mol per A
17

Note that the average weight per repeat unit could be used to evaluate the overall degree of
polymerization of this terpolymer. For example, if the molecular weight were 43,000, the corre-
sponding degree of polymerization would be

43 ,000
134

= 321 repeat units per molecule

With copolymers, it is far from sufficient merely to describe the empirical formula to charac-
terize the molecule. Another question that must be asked concerns the location of the different
kinds of repeat units within the molecule. Starting from monomers A and B, the following
distribution patterns can be obtained in linear polymers:

1. Random (or statistical). The A—B sequence is governed strictly by chance, subject only to the
relative abundances of repeat units. For equal proportions of A and B, we might have
structures like

—AAABABAABBABBB—
Such a polymer could be called poly(A-stat-B) or poly(A-ran—B).

2. Alternating. A regular pattern of alternating repeat units in poly(A—alt—B):
——ABABABABABAB—

3. Block. Long, uninterrupted sequence of each monomer is the pattern:

—AAAAAAAAAAAAAABBBBBBBBBBBBBBBAAAAAAAAA—

The above structure has three blocks, and is called poly(A-block—B—block-A), or an ABA
triblock copolymer. If a copolymer is branched with different repeat units occurring in the
branches and the backbone, we can have the following:

4. Graft. This segregation is often accomplished by first homopolymerizing the backbone. This is
dissolved in the second monomer, with sites along the original chain becoming the origin of
the comonomer side-chain growth:

BBBBBBBBBB—
l

wAAAAAAAAAAAAAAAAA—
l l

—BBBBBBBBBB BBBBBBB—
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In a cross—linked polymer, the junction units are different kinds of monomers than the chain
repeat units, so these molecules might be considered to be still another comonomer. While the chemical
reactions that yield such cross-linked substances are technically copolymerizations, the products are
described as cross-linked rather than as copolymers. In this instance, the behavior due to cross-linking
takes precedence over the presence of an additional type of monomer in the structure.

It is apparent from items 1—-3 above that linear copolymers—even those with the same
proportions of different kinds of repeat units—can be very different in structure and properties.
In classifying a copolymer as random, alternating, or block, it should be realized that we are
describing the average character of the molecule; accidental variations from the basic patterns may
be present. Furthermore, in some circumstances, nominally “random” copolymers can have
substantial sequences of one monomer or the other. In Chapter 5, we shall see how an experimental
investigation of the sequence of repeat units in a copolymer is a valuable tool for understanding
copolymerization reactions.

1.4 Addition, Condensation, and Natural Polymers
In the last section, we examined some of the categories into which polymers can be classified.
Various aspects of molecular structure were used as the basis for classification in that section. Next
we shall consider the chemical reactions that produce the molecules as a basis for classification.
The objective of this discussion is simply to provide some orientation and to introduce some
typical polymers. For this purpose, many polymers may be classified as being either addition or
condensation polymers; both of these classes are discussed in detail in Chapter 2 and Chapter 3,
respectively. Even though these categories are based on the reactions which produce the polymers,
it should not be inferred that only two types of polymerization reactions exist. We have to start
somewhere, and these two important categories are the usual places to begin.

1.4.1 Addition and Condensation Polymers

These two categories of polymers can be developed along several lines. For example, in addition-
type polymers the following statements apply:

1. The repeat unit in the polymer and the monomer has the same composition, although, of
course, the bonding is different in each.

2. The mechanism of these reactions places addition polymerizations in the kinetic category of chain
reactions, with either free radicals or ionic groups responsible for propagating the chain reaction.

3. The product molecules often have an all-carbon chain backbone, with pendant substituent groups.

In contrast, for condensation polymers:

4. The polymer repeat unit arises from reacting together two different functional groups, which
usually originate on different monomers. In this case, the repeat unit is different from either of
the monomers. In addition, small molecules are often eliminated during the condensation
reaction. Note the words usual and often in the previous statements; exceptions to both
statements are easily found.

5. The mechanistic aspect of these reactions can be summarized by saying that the reactions
occur in steps. Thus, the formation of an ester linkage between two small molecules is not
essentially different from that between a polyester and a monomer.

6. The product molecules have the functional groups formed by the condensation reactions
interspersed regularly along the backbone of the polymer molecule:

—C—C—Y—C—C—Y—
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Next let us consider a few Specific examples of these classes of polymers. The addition
polymerization of a vinyl monomer CsCHX involves three distinctly different steps.
First, the reactive center must be initiated by a suitable reaction to produce a free radical,
anionic, or cationic reaction site. Next, this reactive entity adds consecutive monomer units to
propagate the polymer chain. Finally, the active site is capped off, terminating the polymer
formation. If one assumes that the polymer produced is truly a high molecular weight sub-
stance, the lack of uniformity at the two ends of the chain—arising in one case from the
initiation and in the other from the termination—can be neglected. Accordingly, the overall
reaction can be written

H H— #4" LAn H>—<x W ( )
X

Again, we emphasize that end effects are ignored in writing Reaction (LA). These effects as well
as the conditions of the reaction and other pertinent information will be discussed when these
reactions are considered in Chapter 3 and Chapter 4. Table 1.1 lists several important addition
polymers, showing each monomer and polymer structure in the manner of Reaction (1.A). Also
included in Table 1.1 are the molecular weights of the repeat units and the common names of
the polymers. The former will prove helpful in many of the problems in this book; the latter
will be discussed in the next section. Poly(ethy1ene oxide) and poly(a-caprolactam) have been
included in this list as examples of the hazards associated with classification schemes. They
resemble addition polymers because the molecular weight of the repeat unit and that of the
monomer are the same; they resemble condensation polymers because of the heteroatom chain
backbone. The reaction mechanism, which might serve as arbiter in this case, can be either of the
chain or the step type, depending on the reaction conditions. These last reactions are examples of
ring-opening polymerizations, yet another possible category of classification.

The requirements for formation of condensation polymers are twofold: the monomers must
possess functional groups capable of reacting to form the linkage, and they ordinarily require
more than one reactive group to generate a chain structure. The functional groups can be
distributed such that two difunctional monomers with different functional groups react or a single
monomer reacts, which is difunctional with one group of each kind. In the latter case especially,
but also with condensation polymerization in general, the tendency to form cyclic products from
intramolecular reactions may compete with the formation of polymers. Condensation polymeriza-
tions are especially sensitive to impurities. The presence of monofunctional reagents introduces
the possibility of a reaction product forming which would not be capable of further growth. If the
functionality is greater than 2, on the other hand, branching becomes possible. Both of these
modifications dramatically alter the product compared to a high molecular weight linear product.
When reagents of functionality less than or greater than 2 are added in carefully measured and
controlled amounts, the size and geometry of product molecules can be manipulated. When such
reactants enter as impurities, the undesired results can be disastrous. Marvel has remarked that
more money has been wasted in polymer research by the use of impure monomers than in any other
manner [6].

Table 1.2 lists several examples of condensation reactions and products. Since the reacting
monomers can contain different numbers of carbon atoms between functional groups, there are quite
a lot of variations possible among these basic reaction types. The inclusion of poly(dimethylsiloxane)
in Table 1.2 serves as a reminder that polymers need not be organic compounds. The physical
properties of inorganic polymers follow from the chain structure of these molecules, and the concepts
developed in this volume apply to them and to organic polymers equally well. We shall not examine
explicitly the classes and preparations of the various types of inorganic polymers in this text.
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Table 1.1 Reactions by Which Several Important Addition Polymers Can Be Produced

Monomer M(g/mol) Repeat unit Chemical name(s)

H H
>=< 28.0 N” Polyethylene

H H

H

H \ H n
104 Polystyrene

H H .
Poly(vmyl

H>'_<Cl 62'5 Ag)” chloride), “vinyl"

H) (H m Polyacrylonitrile

H

—

CN

53.0

ON”
‘Cacrylic”

H Cl . . .
>_< 97.0 W”

Poly(vrnylidene chloride)
H CI Cl Cl

Me Me Poly(methyl methacrylate),

H\‘2\n/O\M
100

(Tn M
P1exiglas®, Lucite®

e e
H o o o”

H Me
>=< 56.0 n Polyisobutylene

H Me Me Me

F F F F
E C 100

Poly(tetrafluoroethylene),
— n Teflon®F F F F

0 Poly(ethy1ene oxide),
\g 44'0 W 9‘ poly(ethylene glycol)

ll0
W

4 Poly(e—caprolactam),
N 1 13 50 " Nylon-6

\H

1.4.2 Natural Polymers

We conclude this section with a short discussion of naturally occurring polymers. Since these are
of biological origin, they are also called biopolymers. Although our attention in this volume is
primarily directed toward synthetic polymers, it should be recognized that biopolymers, like
inorganic polymers, have physical properties which follow directly from the chain structure of
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Table 1.2 Reactions by Which Several Important Condensation Polymers Can Be Produced

1. Polyester

HO O O O
n HO/\/OH + n

m
-—I-— of + 2n H20

0 OH O n

Poly(ethylene terephthalate), Terylene®,
Dacron®, Mylar®

Cts
0 Cts

n Ho)\(\/)/U\10 + n H20

Poly(12—hydroxystearic acid)

2. Polyamide

n H2N NH2 n M )- N N
M; + Cl

4 Cl *4; 4
+ 2n HCl

0 O n
Poly(hexamethylene adipamide), Nylon-6,6

3. Polyurethane

nocN\(\A,NCO+nH0’(”\i0H—*—t"'éJLJOLo’bio
Poly(tetramethylenehexamethylene urethane),
Spandex®, Perlon®

4. Polycarbonate

o “.49 re 9
n CIJLCI + n HOQcQ—QH ——»— {o—Qc @o—c} + 2n HCI

Me Me n
Poly(4,4-isopropylidenediphenylene carbonate)
bisphenol A polycarbonate, Lexan®

5. Inorganic

MeI |
n Me-SI'I—CI + :1 H20 ——1-— Sli—O} + 2n HCI

Cl n
Poly(dimethylsiloxane)

their molecules. For example, the denaturation of a protein involves an overall conformation
change from a “native” state, often a compact globule, to a random coil. As another example,
the elasticity and integrity of a cell membrane is often the result of an underlying network of
fibrillar proteins, with the origin of the elasticity residing in the same conformational entropy as in
a rubber band. Consequently, although we will not discuss the synthesis by, and contribution to the
function of, living organisms by such biopolymers, many of the principles we will develop in detail
apply equally well to natural polymers.

As examples of natural polymers, we consider polysaccharides, proteins, and nucleic acids.
Another important natural polymer, polyisoprene, will be considered in Section 1.6. Polysaccharides
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are macromolecules which make up a large part of the bulk of the vegetable kingdom. Cellulose
and starch are, respectively, the first and second most abundant organic compounds in plants. The
former is present in leaves and grasses; the latter in fruits, stems, and roots. Because of their
abundance in nature and because of contemporary interest in renewable resources, there is a great
deal of interest in these compounds. Both cellulose and starch are hydrolyzed by acids to D-glucose,
the repeat unit in both polymer chains. The configuration of the glucoside linkage is different in the
two, however. Structure (1.1) and Structure (1.11), respectively, illustrate that the linkage is a B-acetal—
hydrolyzable to an equatorial hydroxide—in cellulose and an a-acetal—hydrolyzable to an axial
hydroxide—in amylose, a starch:

H OH H OH

0 0 (1.1)
HO HO 0H OH H OH

H H H H

(1.11)

Amylopectin and glycogen are saccharides similar to amylose, except with branched chains.
The cellulose repeat unit contains three hydroxyl groups, which can react and leave the chain

backbone intact. These alcohol groups can be esterified with acetic anhydride to form cellulose
acetate; this polymer is spun into the fiber acetate rayon. Similarly, the alcohol groups in cellulose
react with CS2 in the presence of strong base to produce cellulose xanthates. When extruded into
fibers, this material is called viscose rayon, and when extruded into sheets, cellophane. In both the
acetate and xanthate formation, some chain degradation also occurs, so the resulting polymer
chains are shorter than those in the starting cellulose. The hydroxyl groups are also commonly
methylated, ethylated, and hydroxypropylated for a variety of aqueous applications, including food
products. A closely related polysaccharide is chitin, the second most abundant polysaccharide in
nature, which is found for example in the shells of crabs and beetles. Here one of the hydroxyls on
each repeat unit of cellulose is replaced with an —NHCO—CH3 amide group. This is converted to a
primary amine —NH2 in chitosan, a derivative of chitin finding increasing applications in a variety of
fields.

As noted above, proteins are polyamides in which a-amino acids make up the repeat units, as
shown by Structure (1.III):

H O

{/“Hfi (1.111)
R 11

These molecules are also called polypeptides, especially when M 3 10,000. The various amino
acids differ in their R groups. The nature of R, the name, and the abbreviation used to represent
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Table 1.3 Name, Abbreviations, and R Group for Common Amino Acids

HOOCYNHQName Abbreviation R Group R

Me
Alanine Ala J”

H NH
Arginine Arg p Y

NH2

0

Asparagine Asn fi NH2

0

Aspartic acid Asp KLOH

SH
Cysteine Cys NE

OH
Glutamic acid Glu m

NH2
Glutamine Gln m

H

Glycine Gly “1“,

NH
/ x)

Histidine His N

M e Me
Isoleucine Ile

Me

Leucine Leu fime

Lysine Lys VNHz
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Table 1.3 (continued)
.._——

Letter HOOC N H2

Name Abbreviation Code R Group \Fll/

Me/
Methionine Met M

f
S

Phenylalanine Phe F

J/Q

H

H
Proline Pro P

Serine Ser S

Tryptophan Trp W I
E

e

N

OH

Tyrosine Tyr Y AL/O/

Valine Val V

O

'?'
H

O

to”
O M

Threonine Thr T
I

\

Mel

Me

some of the more common amino acids are listed in Table 1.3. In proline (Pro) the nitrogen and the
o-carbon are part of a five-atom pyrrolidine ring. Since some of the amino acids carry substituent
carboxyl or amino groups, protein molecules are charged in aqueous solutions, and hence can
migrate in electric fields. This is the basis of electrOphoresis as a means of separating and
identifying proteins.

It is conventional to speak of three levels of structure in protein molecules:

1. Primary structure refers to the sequence of amino acids in the polyamide chain.
2. Secondary structure refers to the regions of the molecule that have particular spatial arrange-

ments. Examples in proteins include the o-helix and the B-sheet.
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3. Tertiary structure refers to the overall shape of the molecule, for example, a globule perhaps
stabilized by disulfide bridges formed by the oxidation of cysteine mercapto groups. By extension
the full tertiary structure implies knowledge of the relative spatial positions of all the residues.

Hydrogen bonding stabilizes some protein molecules in helical forms, and disulfide cross—links
stabilize some protein molecules in globular forms. Both secondary and tertiary levels of structure
are also influenced by the distribution of polar and nonpolar amino acid molecules relative to the
aqueous environment of the protein molecules. In some cases, individual proteins associate in
particular aggregates, which are referred to as quaternary structures.

Examples of the effects and modifications of the higher-order levels of structures in proteins are
found in the following systems:

1. Collagen is the protein of connective tissues and skin. In living organisms, the molecules are
wound around one another to form a three—stranded helix stabilized by hydrogen bonding.
When boiled in water, the collagen dissolves and forms gelatin, thereby establishing a new
hydrogen bond equilibrium with the solvent. This last solution sets up to form the familiar gel
when cooled, a result of shifting the hydrogen bond equilibrium.

2. Keratin is the protein of hair and wool. These proteins are insoluble because of the disulfide
cross-linking between cysteine units. Permanent waving of hair involves the rupture of these
bonds, reshaping of the hair fibers, and the reformation of cross-links, which hold the chains in
the new positions relative to each other. We shall see in Chapter 10 how such cross-linked
networks are restored to their original shape when subjected to distorting forces.

3. The globular proteins albumin in eggs andfibrinogen in blood are converted to insoluble forms
by modification of their higher-order structure. The process is called denaturation and occurs,
in the systems mentioned, with the cooking of eggs and the clotting of blood.

4. Actin is a fascinating protein that exists in two forms: G-actin (globular) and F—actin (fibrillar).
The globular form can polymerize (reversibly) into very long filaments under the influence of
various triggers. These filaments play a crucial role in the cytoskeleton, i.e., in allowing cells
to maintain their shape. In addition, the uniaxial sliding of actin filaments relative to filaments
of a related protein, myosin, is responsible for the working of muscles.

Ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) are polymers in which the repeat
units are substituted esters. The esters are formed between the hydrogens of phosphoric acid and
the hydroxyl groups of a sugar, D—ribose in the case of RNA and D—2-deoxyribose in the case of
DNA. The sugar rings in DNA carry four different kinds of substituents: adenine (A) and guanine
(G), which are purines, and thymine (T) and cytosine (C), which are pyramidines. The familiar
double-helix structure of the DNA molecule is stabilized by hydrogen bonding between pairs of
substituent base groups: G—C and A—T. In RNA, thymine is usually replaced by uracil (U). The
replication of these molecules, the template model of their functioning, and their role in protein
synthesis and the genetic code make the study of these polymers among the most exciting and
actively researched areas in science. As with the biological function of proteins, we will not discuss
these phenomena in this book. However, as indicated previously, DNA plays a very important role
as a prototypical semiflexible polymer, as it is now readily obtainable in pure molecular fractions
of varying lengths, and because it is readily dissolved in aqueous solution. It is also a charged
polymer, or polyelectrolyte, and thus serves as a model system in this arena as well.

1.5 Polymer Nomenclature
Considering that a simple compound like CZHSOH is variously known as ethanol, ethyl alcohol,
grain alcohol, or simply alcohol, it is not too surprising that the vastly more complicated polymer
molecules are also often known by a variety of different names. The International Union of Pure
and Applied Chemistry (IUPAC) has recommended a system of nomenclature based on the
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structure of the monomer or repeat unit [7]. A semisystematic set of trivial names is also in
widespread usage; these latter names seem even more resistant to replacement than is the case with
low molecular weight compounds. Synthetic polymers of commercial importance are often widely
known by trade names that have more to do with marketing considerations than with scientific
communication. Polymers of biological origin are often described in terms of some aspect of their
function, preparation, or characterization.

If a polymer is formed from a single monomer, as in addition and ring-opening polymerizations,
it is named by attaching the prefix poly to the name of the monomer. In the IUPAC system, the
monomer is named according to the IUPAC recommendations for organic chemistry, and the name
of the monomer is set off from the prefix by enclosing the former in parentheses. Variations of this
basic system often substitute a common name for the IUPAC name in designating the monomer.
Whether or not parentheses are used in the latter case is influenced by the complexity of the
monomer name; they become more important as the number of words in the monomer
name increases. Thus the polymer (CHg—CHCI)n is called poly(l-chloroethylene) according to
the IUPAC system; it is more commonly called poly(vinyl chloride) or polyvinyl chloride.
Acronyms are not particularly helpful but are an almost irresistible aSpect of polymer terminology,
as evidenced by the initials PVC, which are widely used to describe the polymer just named. The
trio of names poly(l-hydroxyethylene), poly(vinyl alcohol), and polyvinyl alcohol emphasizes that
the polymer need not actually be formed from the reaction of the monomer named; this polymer is
actually prepared by the hydrolysis of poly(l-acetoxyethylene), otherwise known as poly(vinyl
acetate). These same alternatives are used in naming polymers formed by ring-opening reactions;
for example, poly(6-aminohexanoic acid), poly(6-aminocapr0ic acid), and poly(s-caprolactam) are
all more or less acceptable names for the same polymer.

Those polymers which are the condensation products of two different monomers are named by
applying the preceding rules to the repeat unit. For example, the polyester formed by the condensation
of ethylene glycol and terephthalic acid is called poly(oxyethylene oxyterphthaloyl) according to the
IUPAC system, but is more commonly referred to as poly(ethylene terephthalate) or polyethylene
terephthalate. The polyamides poly(hexamethylene sebacamide) and poly(hexamethylene adipamide)
are also widely known as nylon-6,10 and nylon-6,6, respectively. The numbers following the word
nylon indicate the number of carbon atoms in the diamine and dicarboxylic acids, in that order. On the
basis of this system, poly(s—caprolactam) is also known as nylon-6.

Many of the polymers in Table 1.1 and Table 1.2 are listed with more than one name. Also listed
are some of the registered trade names by which these substances—or materials which are mostly
of the indicated structure~—are sold commercially. Some commercially important cross-linked
polymers go virtually without names. These are heavily and randomly cross-linked polymers
which are insoluble and infusible and therefore widely used in the manufacture of such molded
items as automobile and household appliance parts. These materials are called resins and, at best,
are named by specifying the monomers that go into their production. Often even this information is
sketchy. Examples of this situation are provided by phenol-formaldehyde and urea—formaldehyde
resins, for which typical structures are given by Structure (1.1V) and Structure (1.V), respectively:

0H

(LIV)

|\ (1.V)
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1.6 Structural Isomerism

In this section, we shall consider three types of isomerism that are encountered in polymers. These
are positional isomerism, stereo isomerism, and geometrical isomerism. We shall focus attention
on synthetic polymers and shall, for the most part, be concerned with these types of isomerism
occurring singly, rather than in combinations. Some synthetic and analytical aspects of stereo
isomerism will be considered in Chapter 5. Our present concern is merely to introduce the
possibilities of these isomers and some of the associated vocabulary.

1.6.1 Positional lsomerism

Positional isomerism is conveniently illustrated by considering the polymerization of a vinyl
monomer. In such a reaction, the adding monomer may become attached to the growing chain
end (designated by =k) in either of two orientations:

—
myX X' (1.VI)

H H X
L< + >=< .._._... (1.13)

X H H X

_ x H” (1.VII)

Structure (1.VI) and Structure (1.VII), respectively, are said to arise from head-to-tat'l or head-to-
head orientations. In this terminology, the substituted carbon is defined to be the head and the
methylene is the tail. Tail-to-tail linking is also possible.

For most vinyl polymers, head-to-tail addition is the dominant mode of addition. Variations
from this generalization become more common for polymerizations which are carried out at higher
temperatures. Head-to—head addition is also somewhat more abundant in the case of halogenated
monomers such as vinyl chloride. The preponderance of head-to—tail additions is understood to
arise from a combination of resonance and steric effects. In many cases, the ionic or free-radical
reaction center occurs at the substituted carbon due to the possibility of resonance stabilization or
electron delocalization through the substituent group. Head-to-tail attachment is also sterically
favored, since the substituent groups on successive repeat units are separated by a methylene
carbon. At higher polymerization temperatures, larger amounts of available thermal energy make
the less-favored states more accessible. In vinyl fluoride, no resonance stabilization is possible and
steric effects are minimal. This monomer adds primarily in the head—to-tail orientation at low
temperatures and tends toward a random combination of both at higher temperatures. The styrene
radical, by contrast, enjoys a large amount of resonance stabilization in the bulky phenyl group and
polymerizes almost exclusively in the head-to—tail mode. The following example illustrates how
chemical methods can be used to measure the relative amounts of the two positional isomers in a
polymer sample.

Example 1.3
1,2-Glycol bonds are cleaved by reaction with periodate; hence poly(vinyl alcohol) chains are
broken at the site of head—to-head links in the polymer. The fraction of head—to-head linkages
in poly(vinyl alcohol) may be determined by measuring the molecular weight before (subscript b)
and after (subscript a) cleavage with periodate according to the following formula:
Fraction =44(1/Ma—1/Mb). Derive this expression and calculate the value for the fraction in the
case of Mb: 105 and M3,: 103.
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Solution
Begin by recognizing that a molecule containing x of the head-to-head links will be cleaved into
x + 1 molecules upon reaction. Hence if n is the number of polymer molecules in a sample of mass
w, the following relations apply before and after cleavage: na=(x+1)nb or w/Ma=(x+ 1)
(w/Mb). Solving for x and dividing the latter by the total number of linkages in the original
polymer gives the desired ratio. The total number of links in the original polymer is Mb/Mo.
Therefore the ratio is xMO/Mb = M0(1/Ma—1/Mb). For poly(vinyl alcohol) M0 is 44, so the desired
formula has been obtained. For the specific data given, x/nb =44(10_3—-10_5) = 0.044, or about
4% 0f the additions are in the less favorable orientation. We shall see presently that the molecular
weight of a polymer is an average, which is different depending on the method used for its
determination. The present example used molecular weights as a means for counting the number
of molecules present. Hence the sort of average molecular weight used should also be one which is
based on counting.

1.6.2 Stereo Isomerism

The second type of isomerism we discuss in this section is stereo isomerism. Again we consider the
number of ways a singly substituted vinyl monomer can add to a growing polymer chain:

I" _ (l.VIII)
H H

.j“ + >=< —'* (l.C)
X a, H X

c c

(LIX)

Structure (1.VIII) and Structure (LIX) are not equivalent; they would not superimpose if the
extended chains were overlaid. The difference has to do with the stereochemical configuration at
the asymmetric carbon atoms. Note that the asymmetry is more accurately described as pseudoa-
symmetry, since two sections of chain are bonded to these centers. Except near chain ends, which
we ignore for high polymers, these chains provide local symmetry in the neighborhood of the
carbon under consideration. The designations of D and L or R and S are used to distinguish these
structures, even though true asymmetry is absent.

We use the word configuration to describe the way the two isomers produced by Reaction (1.C)
differ. It is only by breaking bonds, moving substituents, and reforming new bonds that the two
structures can be interconverted. This state of affairs is most readily seen when the molecules are
drawn as fully extended chains in one plane, and then examining the side of the chain on
which substituents lie. The configurations are not altered if rotation is allowed to occur around
the various bonds of the backbone to change the shape of the molecule to a jumbled coil. We shall
use the term conformation to describe the latter possibilities for different molecular shapes.
The configuration is not influenced by conformational changes, but the stability of different
conformations may be affected by differences in configuration. We shall return to these effects
in Chapter 6.

In the absence of any external influence, such as a catalyst that is biased in favor of one
configuration over the other, we might expect Structure (1.VIII) and Structure (LIX) to occur at
random with equal probability as if the configuration at each successive addition were determined
by the toss of a coin. Such indeed is the ordinary case. However, in the early 19503, stereospecific
catalysts were discovered; Ziegler and Natta received the Nobel Prize for this discovery in 1963.
Following the advent of these catalysts, polymers with a remarkable degree of stereoregularity
have been formed. These have such a striking impact on polymer science that a substantial part of
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Figure 1.3 Sections of “polyvinyl X” chains of differing tacticity: (a) isotactic, (b) syndiotactic, and
(c) atactic.
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Chapter 5 is devoted to a discussion of their preparation and characterization. For now, only the
terminology involved in their description concerns us. Three different situations can be distin-
guished along a chain containing pseudoasymmetric carbons:

1. Isotactic. All substituents lie on the same side of the extended chain. Alternatively, the
stereoconfiguration at the asymmetric centers is the same, say, —~DDDDDDDDD——.

2. Syndiotactic. Substituents on the fully extended chain lie on alternating sides of the backbone.
This alternation of configuration can be represented as —DLDLDLDLDLDL—~.

3. Atactic. Substituents are distributed at random along the chain, for example,
DDLDLLLDLDLL—.

Figure 1.3 shows sections of polymer chains of these three types; the substituent X equals
phenyl for polystyrene and methyl for polypropylene. The general term for this stereoregularity
is tacticity, a term derived from the Greek word meaning “to put in order.” Polymers of
different tacticity have quite different properties, especially in the solid state. As we will
see in Chapter 13, one of the requirements for polymer crystallinity is a high degree of
microstructural regularity to enable the chains to pack in an orderly manner. Thus atactic
polypropylene is a soft, tacky substance, whereas both isotactic and syndiotactic polypropylene
are highly crystalline.

1.6.3 Geometrical lsomerism

The final type of isomerism we take up in this section is nicely illustrated by the various possible
structures that result from the polymerization of 1,3-dienes. Three important monomers of this type
are 1,3-butadiene, 1,3-isoprene, and 1,3-chloroprene, Structure (1.X) through Structure (1.XII),
respectively:

HNH (LX)
H
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H (1 .X1)

H (1 .XII)

To illustrate the possible modes of polymerization of these compounds, consider the following
reactions of isoprene:

1. 1,2— and 3,4-Polymerizations. As far as the polymer chain backbone is concerned, these
compounds could just as well be mono—olefins, since the second double bond is relegated to
the status of a substituent group. Because of the reactivity of the latter, however, it might
become involved in cross-linking reactions. For isoprene, 1,2- and 3,4-polymerizations yield
different products:

Me
Me H n n

n HNH —+ \ H or
Me \ H (LD)

H H H
(1 .X111) (1.X1V)

These differences do not arise from 1,2— or 3,4—polymerization of butadiene. Structure (1.X111)
and Structure (1.XIV) can each exhibit the three different types of tacticity, so a total of six
structures can result from this monomer when only one of the olefin groups is involved in the
backbone formation.
1,4-Polymerization. This mode of polymerization gives a molecule with double bonds along
the backbone of the chain. Again using isoprene as the example,

(LE)E31i
As in all double-bond situations, the adjacent chain sections can be either cis or trans—
Structure (1.XV) and Structure (1.XV1), respectivelymwith respect to the double bond,
producing the following geometrical isomers:

Me H

m (1 .XV)
n

M
(1.XVI)

H
n

Figure 1.4 shows several repeat units of cis—l,4-polyisoprene and trans—1,4—polyisoprene.
Natural rubber is the cis isomer of 1,4—polyisoprene and gutta—percha is the trans isomer.
Polymers of Chloroprene (Structure (1.X11)) are called neoprene and copolymers of butadiene and
styrene are called SBR, an acronym for styrene—butadiene rubber. Both are used for many of the
same applications as natural rubber. Chloroprene displays the same assortment ofpossible isomers
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(a) (b)

Figure 1.4 1,4-Polyisoprene (a) all-cis isomer (natural rubber) and (b) all—trans isomer (gutta-percha).

as isoprene; the extra combinations afforded by copolymer composition and structure in SBR
offset the fact that Structure (1 .XHI) and Structure (LXIV) are identical for butadiene.

4. Although the conditions of the polymerization reactions may be chosen to optimize the
formation of one specific isomer, it is typical in these systems to have at least some
contribution of all possible isomers in the polymeric product, except in the case of polymers
of biological origin, like natural rubber and gutta-percha.

Example 1.4
Suppose you have just ordered a tank car of polybutadiene from your friendly rubber company. By
some miracle, all the polymers in the sample have M 254,000. The question we would like to
consider is this: what are the chances that any two molecules in this sample have exactly the same
chemical structure?

Solution
We will not attempt to provide a precise answer to such an artificial question; what we really want
to know is whether the probability is high (approximately 1), vanishing (approximately 0), or finite.

From the discussion above, we recognize three geometrical isomers: trans-1,4, cis-1,4, and 1,2.
We will ignore the stereochemical possibilities associated with the 1,2 linkages. Assuming all three
isomers occur with equal probability, the total number of possible structures is 3 X 3 x 3 x
. . - x 3 = 3N, where N is the degree of polymerization. (Recall that the combined probability of a
sequence of events is equal to the products of the individual probabilities.) In this case N = 54,000/
54: 1000, and thus there are about 31000 m 10500 possible structures. Now we need to count
how many molecules we have. Assuming for simplicity that the tank car is 3.3 m X 3.3 m x
10 m = 100 m3 = 108 cm3, and the density of the polymer is 1 g/cm3 (it is actually closer to 0.89
g/cm3), we have 108 g of polymer. As M = 54,000 g/mol, we have about 2000 moles, or 2000 X 6
x 1023 a 1027 molecules. Clearly, therefore, there is essentially no chance that any two molecules

have the identical structure, even without taking the molecular weight distribution into account.

This example, as simplistic as it is, actually underscores two important points. First, polymer
chemists have to get used to the idea that while all carbon atoms are identical, and all 1,3-butadiene
molecules are identical, polybutadiene actually refers to an effectively infinite number of distinct
chemical structures. Second, almost all synthetic polymers are heterogeneous in more than one
variable: molecular weight, certainly; isomer and tacticity distribution, probably; composition and
sequence distribution, for copolymers; and branching structure, when applicable.

1.7 Molecular Weights and Molecular Weight Averages
Almost every synthetic polymer sample contains molecules of various degrees of polymerization.
We describe this state of affairs by saying that the polymer shows polydispersity with respect to
molecular weight or degree of polymerization. To see how this comes about, we only need to think
of the reactions between monomers that lead to the formation of polymers in the first place.
Random encounters between reactive species are responsible for chain growth, so statistical
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descriptions are appropriate for the resulting product. The situation is reminiscent of the distribu-
tion of molecular velocities in a sample of gas. In that case, also, random collisions impart extra
energy to some molecules while reducing the energy of others. Therefore, when we talk about the
molecular weight of a polymer, we mean some characteristic average molecular weight. It turns out
there are several distinct averages that may be defined, and that may be measured experimentally; it
is therefore appropriate to spend some time on this topic. Furthermore, one might well encounter two
samples of a particular polymer that were equivalent in terms of one kind of average, but different in
terms of another; this, in turn, can lead to the situation where the two polymers behave identically
in terms of some important properties, but differently in terms of others.

In Chapter 2 through Chapter 4 we shall examine the expected distribution of molecular weights
for condensation and addition polymerizations in some detail. For the present, our only concern is
how such a distribution of molecular weights is described. We will define the most commonly
encountered averages, and how they relate to the distribution as a whole. We will also relate them
to the standard parameters used for characterizing a distribution: the mean and standard deviation.
Although these are well-known quantities, many students are familiar with them only as results
provided by a calculator, and so we will describe them in some detail.

1.7.1 Number-, Weight-. and z-Average Molecular Weights

Suppose we have a polymer sample containing many molecules with a variety of degrees of
polymerization. We will call a molecule with degree of polymerization i an “i-mer”, and the
associated molecular weight MiziMo, where M0 is the molecular weight of the repeat unit.
(Conversion between a discussion couched in terms of i or in terms of M,- is therefore straightfor—
ward, and we will switch back and forth when convenient.) The number of i-mers we will denote as
n,- (we could also refer to n,- as the number of moles of i-mer, but again this just involves a factor of
Avogadro’s number). The first question we ask is this: if we choose a molecule at random from our
sample, what is the probability of obtaining an i—mer? The answer is straightforward. The total
number of molecules is 2, m, and thus this probability is given by

x,- = (1.7.1)”1

Zr ”1'

The probability x, is the number fraction or mole fraction of i-mer. We can use this quantity to
define a particular average molecular weight, called the number-average molecular weight, Mn.
We do this by multiplying the probability of finding an i-mer with its associated molecular weight,
x,M,-, and adding all these up:

M —:x,-M- =Z—Z':—:I:4:MMO%—:“ (1.7.2)

The other expressions on the right-hand side of Equation 1.7.2 are equivalent, and will prove useful
subsequently. You should convince yourself that this particular average is the one you are familiar
with in everyday life: take the value of the property of interest, M,- in this case, add it up for all the
(m) objects that possess that value of the property, and divide by the total number of objects.

So far, so good. We return for a moment to our hypothetical sample, but instead of choosing
a molecule at random, we choose a repeat unit or monomer at random, and ask about the molecular
weight of the molecule to which it belongs. We will get a different answer, as a simple argument
illustrates. Suppose we had two molecules, one a 10-mer and another a 20—mer. If we choose
molecules at random, we would choose each one 50% of the time. However, if we choose mono-
mers at random, 2/3 of the monomers are in the 20-mer, so we would pick the larger molecule
twice as often as the smaller. The total number of monomers in a sample is 2,- in;, and the chance of
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picking a particular i—mer will be determined by the product 171,-. The resulting ratio is, in fact, the
weight fraction. or mass fraction of i-mer in the sample, w,—:

in,-

23-171;

Accordingly, we define the weight—average molecular weight of the sample, MW, by

(1.7.3)Wf=

ZZZ in, Z, ngM-z M02. in,-

Of course, mass—average would be the preferred descriptor, but it is not in common usage.
Qualitatively, we can say that Mn is the Characteristic average molecular weight of the sample
when the number of molecules is the crucial factor, whereas MW is the characteristic average
molecular weight when the size of each molecule is the important feature. Although knowledge of
MW and Mn is not sufficient to provide all the information about a polydisperse system, these two
averages are by far the most important and most commonly encountered, as we shall see
throughout the book.

Comparison of the last expressions in Equation 1.7.2 and Equation 1.7.4 suggests a trend; we
can define a new average by multiplying the summation terms in the numerator and denominator
by t'. The so-called z-average molecular weight, M2, is constructed in just such a way:

2

—Z_WiM 2,a Z ”‘M’ Mow:I "’ (1.7.4)

Z; 53”!“M2 = M0
2 {212,-

(1.7.5)

Although M2 is not directly related to a simple fraction like x, or w,, it does have some experimental
relevance. We could continue this process indefinitely, just by incrementing the power of i by one in
both numerator and denominator of Equation 1.7.5, but it will turn out that there is no real need to do
so. However, there is a direct relationship between this process and something well-known in
statistical probability, namely the moments of a distribution, as we will see in the next section.

1.7.2 Polydispersity Index and Standard Deviation

Although the values MW or MH tell us something useful about a polymer sample, individually they
do not provide information about the breadth of the distribution. However, the ratio of the two
turns out to be extremely useful in this regard, and it is given a special name, the polydispersity
index (PDI) or just the polydispersity:

Mw
Mn

PDI = (1.7.6)

The PDI is always greater than 1, unless the sample consists of exactly one value of M, in which case
the PDI : 1; such a sample is said to be monodisperse. We will see in Chapter 2 and Chapter 3 that
typical polymerization schemes are expected to give PDIs near 2, at least in the absence of various
side reactions; in industrial practice, such side reactions often lead to PDIs as large as 10 or more. In
Chapter 4, in contrast, so-ealled living polymerizations give rise to PDIs of 1.1 or smaller. Thus,
distributions for which the PDI < 1.5 are said to be “narrow,” whereas those for which PDI > 2 are
said to be “broad,” of course, such designations are highly subjective. As a very simple illustration,
the two—molecule example given in the previous section consisting of a lO-mer and a 20—mer has a
number-average degree of polymerization of 15 and a weight average of 16.7; thus its PDI = 1.11,
which in polymer terms would be considered “narrow.” This trivial example actually underscores
an important point to bear in mind: polymer samples with “narrow” distributions will still contain
molecules that are quite different in size (see Problem 1.8 for another instance).
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In most fields of science, distributions are generally characterized by a mean and a standard
deviation. We will now develop the relationships between these quantities and M“, and Mn, and in
so doing justify the assertion that the PDI is a useful measure of the breadth of a distribution. The
mean of any distribution of a variable 1', (i), is defined as

(i) = ZEN? =
2

ix,- 3 J: iP(i)di (1.7.7)

where both discrete (x,) and continuous (P(i)) versions are considered. From this definition, and
Equation 1.7.2, we can see that (i) is nothing more than the number-average degree of polymer-
ization, and thus Mn is just the mean molecular weight.

The standard deviation 0' quantifies the width of the distribution. It is defined as

1'— 1 2 ”2 ”2
a E

(Eingnf
»

)
:

(Xxx;
_

(0)2)
(1.7.8)

Note that a2 has the significance of being the mean value of the square of the deviations of
individual values from the mean. Accordingly, a is sometimes called the root mean square (rms)
deviation.

From a computational point of view, the standard deviation may be written in a more conveni-
ent form by carrying out the following operations. First both sides of Equation 1.7.8 are squared,
and then the difference i—(i) is squared to give

2 _ 2,71,? . Zinii .2

Recalling the definition of the mean, we recognize the first term on the right—hand side of Equation
1.7.9 to be the mean value of i2 and write

.72 = (i2) — 2(7)2 + (7)2 = (72) — (7)2 (1.7.10)

It is, of course, important to realize that (1'2) # (1)2. An alternative to Equation 1.7.8 as a definition
of standard deviation is, therefore,

a 2 ((1-2) _ (ml/2 (1.7.11)

Similarly, the standard deviation can be written

0' : [Zia-(M, — 114,02] W (1.7.12)

where in this case the standard deviation will have the units of molecular weight. If we expand
Equation 1.7.12 we find

1/2 1/2
:

[(Zxr‘M?)
a

Mg]
(1.7.13)

We can factor out Mn 2 Z,- x,M,- to obtain

' 2 1/2111M1] (1,-1.1...
(Zl‘xiMi)

a 2 [Z x,(M,.2 — 214,114,, + M3,)



28 Introduction to Chain Molecules

and, finally, by recognizing from Equation 1.7.4 that

. .2 . . .2

we reach

MW
1/2

=Mn _1 .7.1‘7 [Mn i (1 6)
This result shows that the square root of the amount by which the ratio MW/Mn exceeds unity equals
the standard deviation of the distribution relative to the number-average molecular weight. Thus if
a distribution is characterized by Mn 2 10,000 and (r = 3000, then MW/Mn = 1.09. Alternatively, if
MW/Mn = 1.50, then the standard deviation is 71% of the value of Mn. This shows that reporting the
mean and standard deviation of a distribution or the values of Mn and MW/Mn gives equivalent
information.

We can define the quantities known as moments of a distribution, again either in the discrete or
continuous forms. The k-th moment 11;, is given by

00

,1, =
2m“ 0110 1km) di (1.7.17)

In this definition both x,- and P(i) are normalized distributions, which mean that 2, x,- = 1 and
150130) di = 1. From Equation 1.7.17 we can also see that the mean is equivalent to the first moment.
From Equation 1.7.4 and Equation 1.7.5 it is apparent that MW and Mz are proportional to the ratio of
the second to the first moment and the third to the second, respectively. More generally, moments
can be referred to a particular value, such as the k—th moment about the mean, 121,:

m. = 2w — <i>>t (1.7.13)
From this expression we see that 02 is the second moment about the mean.

1.7.3 Examples of Distributions

First, consider the following numerical example in which we apply some of the equations of this
section to hypothetical data.

Example 1.5
The first and second columns of Table 1.4 give the number of moles of polymer in six different
molecular weight fractions. Calculate Mw/Mn for this polymer and evaluate 0- using both Equation
1.7.12 and Equation 1.7.16.

Table 1.4 Some Molecular Weight Data for a Hypothetical Polymer Used in Example 1.5

”1,114,. x 10‘5 (Mt—Mn)2 x 10-6 n,(M,-—Mn)2 x 10—4
24. (mol) M1 (g/mol) m.- (g) (gz/mol) (g‘Z/molz) (nmol)
0.003 10,000 30 3.0 25 7.50
0.008 12,000 96 1 1.5 9 7.20
0.011 14,000 154 21.6 1 1.10
0.017 16,000 272 43.5 1 1.70
0.009 18,000 162 29.2 9 8.10
0.001 20,000 20 4.0 25 2.50

2:0.049 2:734 2: 113 2:70 2:28.10
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Solution
Evaluate the product 11,-M,- = m, for each class; this is required for the calculation of both Mn and
MW. Values of this quantity are listed in the third column of Table 1.4. From 2,111,114,- and 2,11,,
Mn = 734/0049 = 15,000. (The matter of significant figures will not be strictly adhered to in this
example. As a general rule, one has to work pretty hard to obtain more than two significant figures
in an experimental determination of M.)

The products miM, are mass-weighted contributions and are listed in the fourth column of
Table 1.4. From 2.1%,. and 2,11,14,14,, = 113 x 105/734 = 15,400.

The ratio MW/Mn is found to be 15,400/15,000 = 1.026 for these data. Using Equation 1.7.16, we
have a/a (1.026 — 1)”2 = 0.162 or 0': 0.162(15,000) = 2430.

To evaluate 0' via Equation 1.7.12, differences between M,- and Mn must be considered. The fifth
and sixth columns in Table 1.4 list (M, — Mn)2 and 11,-(M, — Mn)2 for each class of data. From 2,11,-
and 2,n,(M, — Mn)2, 02 = 28.1 x 104/0049 = 5.73 x 106 and 0' = 2390.

The discrepancy between the two values of 0' is not meaningful in terms of significant figures;
the standard deviation is 2400.

As polymers go, this is a very narrow molecular weight distribution.

When we consider particular polymerization schemes in Chapter 2 through Chapter 4, we
will derive explicit expressions for the expected distributions x,- and 142,. For now, however, let us
consider a particular mathematical function known as the Schulz—Zimm distribution. It has the virtue
that by varying a single parameter, 2, it is possible to obtain reasonable descriptions for typical
narrow or moderately broad samples. We will use it to illustrate graphically how the distribution
might appear for a given polydispersity. The Schulz—Zimm distribution can be expressed as

P(M —— 22“ M‘H ZM” 1719

where Hz = 1) is the so—called gamma function (which is tabulated in many mathematical
references). For integer values ofz, F(z+ 1) = 2!, where z! (z factorial) = z X (z — 1) x (z e 2) x . . . x 1.
From Equation 1.7.2 and Equation 1.7.3 we can see that w,- = x,M,/Mn, and thus

zz+1 M? 2M.
1

: --—-—-—---—--——-—————
I

—
I

10702W F(z+ 1) Mg“ exP< Mn) ( O)

The utility of this distribution arises in part because of a very simple relationship between the
parameter 2 and the polydispersity:

Mw_z+1
Mn 2

(1.7.21)

The proof of Equation 1.7.21 is left to Problem 1.9 at the end of the chapter. Now we can
use Equation 1.7.19 and Equation 1.7.20 to generate distributions for specified values of Mn and
Mw/Mn.

Figure 1.5a shows the mole fraction and weight fraction as a function of M, with the particular
choice of Mn: 10,000, M0: 100, and 2: 1. Thus, according to Equation 1.7.21, the PDI=2
and Mw=20,000. Both MW and MD are indicated by vertical lines on the plot. There are
several remarkable features to point out. First, x, is a continuously decreasing function of
M (and therefore i). We shall see in Chapter 2 that this is to be expected in step-growth
polymerizations. It means, for example, that there are more unreacted monomers (i = 1) than
any other particular i-mer. The weight fraction, however, has a distinct but broad maximum.
Notice also how many different values of M are present in significant amounts. For example, there
is certainly a significant mass of the sample that is five times smaller than MW, or five times larger
than Mn.
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Figure 1.5b shows the analogous curves, but now with PDI =4 and 220.333. Although the
mole fraction looks superficially similar to the previous case, the mass distribution is exceedingly
broad, with a long tail on the high M side of Mn. (Note that the coincidence between Mn and the
peak in w,- is a feature of this distribution, but not a general result in polymers; see Problem 1.10.)
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Figure 1.5 Number and weight distributions for the Schulz—Zimm distribution with the indicated poly-
dispersities, and Mn 2 10,000.
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Figure 1.5 (continued)

Figure 1.5c shows the opposite extreme, or a narrow distribution with z : 10 and PDI : 1.11. Here
both x,- and w,- are much narrower, and have distinct maxima that are also close to Mlrl and MW,
respectively. (Note also that the ordinate scale has been truncated.) Even though this is a narrow
distribution by polymer standards, there are still significant numbers of molecules that are 50%
larger and 50% smaller than the mean.

1.8 Measurement of Molecular Weight
1.8.1 General Considerations

The measurement of molecular weight is clearly the most important step in characterizing a
polymer sample, although the previous sections have introduced many other aspects of polymer
structure necessary for a full analysis. A rich variety of experimental techniques have been
developed and employed for this purpose, and the major ones are listed in Table 1.5. As indicated
in the rightmost column, we will describe end group analysis and matrix-assisted laser desorption/
ionization (MALDI) mass spectrometry in this section, while deferring treatment of size exclu—
sion chromatography (SEC), osmotic pressure, light scattering, and intrinsic viscometry to
subsequent chapters. Other techniques, such as those involving sedimentation, we will omit
entirely. Before considering any technique in detail, some general comments about the entries in
Table 1.5 are in order.

The first two techniques listed, SEC and MALDI, can provide information on the entire
distribution of molecular weights. To the extent that either one can do this reliably, accurately,
and conveniently, there is a diminished need for any other approach. Over the past 30 years, SEC
has unquestionably emerged as the dominant method. Automated analysis of a few milligrams of
sample dissolved in a good solvent can be achieved in half an hour. It is hard to imagine any
serious polymer laboratory that does not have SEC capability. Nevertheless, as will be discussed in
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Table 1.5 Summary of the Molecular Weight Averages Most Widely Encountered in Polymer Chemistry

Information Definition Methods Sections

Full distribution x,, w,- Size exclusion chromatography 9.8
MALDI mass spectrometry 1.8

Zr :1e -Mn 081110t pressure 7.4
2”" Other colligative properties —

End group analysis 1.8

Z. "5114 ,2 . .MW ' Light scattering 8
a'M‘ Sedimentation velocity —

2.31504? . . . . .

Mz
2 M2

Sedimentation equilibrium ~—
.n; r

"I l+a 1/0

Mv (Li—9:7) Intrinsic viscosity 9.3

Chapter 9, SEC has some serious limitations; one of these is a lack of resolution. Resolution in this
context refers to the difference in M values that can be determined; SEC would struggle to help you
decide whether your sample was narrowly distributed with Mn 2 50,000, or was bimodal with peak
molecular weights at 40,000 and 60,000. In contrast, resolution is the real strength of MALDI, as
we will see below. MALDI is a relative newcomer among the techniques listed in Table 1.5, but it
will undoubtedly grow in importance as its scope expands.

The next group of techniques provides measurements of Mn. They do so by being sensitive to
the number of solute molecules in solution, as is inherent in the so-called colligative properties
(osmotic pressure, freezing point depression, boiling point elevation, etc.). Of these, osmotic
pressure is the most commonly employed. It has the virtue (shared with light scattering) of
being a technique based on equilibrium thermodynamics that can provide an absolute measurement
without resorting to calibration against other polymer samples. End group analysis, to be discussed
below, includes any of a number of analytical tools that can be used to quantify the presence of the
unique structure of the polymer chain ends. For a linear chain, with two and only two ends,
counting the number of ends is equivalent to counting the number of molecules.

Light scattering is sufficiently important that it merits a full chapter; determination of MW is
only one facet of the information that can be obtained. Sedimentation experiments will not be
discussed further in this text, although they play a crucial role for biOpolymer analysis in general,
and proteins in particular. Similarly, gel electrophoresis (not listed in Table 1.5 or discussed further
here) is an analytical method of central importance in biological sciences, and especially for the
separation and sequencing of DNA in the Human Genome Project.

The intrinsic viscosity approach holds a place of particular historical importance; in the
days before routine use of SEC (up to about 1970) it was by far the easiest way to obtain
molecular weight information. The viscosity average molecular weight defined in Table 1.5 is not
a simple moment of the distribution, but involves the Mark—Houwink exponent a, which needs to be
known based on other information. As 0.5 g a S 0.8 for most flexible polymers in solution, Mn 3 MV
5 MW. The relation between the viscosity of a dilute polymer solution and the molecular weight of the
polymer actually rests on some rather subtle hydrodynamics, as we will explore in Chapter 9.

1.8.2 End Group Analysis

As indicated previously, the end groups of polymers are inherently different in chemical structure
from the repeat units of the chain, and thus provide a possible means of counting the number of
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molecules in a sample. Any analytical technique that can reliably quantify the concentration of end
groups can potentially be used in this manner, and over the years many have been so employed.
It should be apparent from the discussion in the previous section that this approach will yield a
measure of the number-average molecular weight, Mn. The experiment will involve preparing
a known mass of sample, probably in solution, which given M0 corresponds to a certain number
of repeat units. The number of end groups is directly proportional to the number of polymers
and the ratio of the number of repeat units to the number of polymers is the number-average degree
of polymerization.

Several general principles apply to end group analysis:

1. The chemical structure of the end group must be sufficiently different from that of the repeat
unit for the chosen analytical technique to resolve the two clearly.

2. There must be a well-defined number of end groups per polymer, at least on average. For a linear
polymer, there will be two and only two end groups per molecule, which may or may not be
distinct from each other. For branched polymers, the relation of the number of end groups to the
number of polymers is ambiguous, unless the total number of branching points is also known.

3. The technique is limited to relatively low molecular weights, as the end groups become more
and more dilute as N increases. This is an obvious corollary of the fact that we can ignore end
groups in considering the structure of high molecular weight chains. How low is low in this
context? The answer will depend on the particular system and analytical technique, but as a
rule of thumb end groups present at the 1% level (corresponding to degrees of polymerization
of 100 for a single end group, 200 for both end groups) can be reliably determined; those at the
0.1% level cannot.

As an example, consider condensation polymers such as polyesters and polyamides. They are
especially well suited to this molecular weight determination, because they tend to have lower
molecular weights than addition polymers, and because they naturally have unreacted functional
groups at each end. Using polyamides as an example, we can readily account for the following
possibilities:

I. A linear molecule has a carboxyl group at one end and an amino group at the other, such as
poly(a-caprolactam):

O 0AmHO 5 ”Mn

In this case, there is one functional group of each kind per molecule and could be detected for
example by titration with a strong base (for —COOH) or strong acid (for —NH2).

2. If a polyamide is prepared in the presence of a large excess of diamine, the average chain will
be capped by an amino group at each end:

3. iiRI /Rl/ N Fl" N NHH2N {H H )1 2

In this case, only the amine can be titrated, and two ends are counted per molecule.
3. Similarly, if a polyamide is prepared in the presence of a large excess of dicarboxylic acid,

then the average chain will have a carboxyl group at each end:

H H
HO Fl" N, I.N Fl' OHv {fir R rd v

0 0 On 0
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In this case, the acid group can be titrated, and again two ends should be counted per molecule.
The preceding discussion illustrated how classical acid—base titration could be used for

molecular weight determination. In current practice, nuclear magnetic resonance (NNIR) spectroscopy
is probably the most commonly used analytical method for end group analysis, especially proton
(1H) NMR. An additional advantage of this approach is the possibility of obtaining further
information about the polymer structure from the same measurement, as illustrated in the following
example.

Example 1.6
The 1H NMR spectrum in Figure 1.6 corresponds to a sample of polyisoprene containing a sec-
butyl initiating group and a hydroxyl terminating end group. The relative peak integrations are (a)
26.9, (b) 5.22, (c) 2.00, and (d) 5.95. What is Mn for this polymer? What is the relative percentage
of 1,4 and 3,4 addition?

Solution
Peak (c) corresponds to the methylene protons adjacent to the hydroxyl end group; there are
two such protons per polymer. Peak (a) reflects the single olefinic proton per 1,4 repeat unit,
whereas peak (b) shows the two vinyl protons per 3,4 repeat unit. If we represent the integration of
peak i as 1,, then the degree of polymerization is pr0portional to (Iat + 113/2) 2 26.9 + 2.61 = 29.5.
The number of polymers is proportional to 1J2 = 1. Thus the number-average degree of poly-
merization is 29.5, which gives an Mn=29.5 x 68 =2,000. Peak ((1) indicates the six methyl
protons on the initiator fragment. The peak integration Id 2 5.95 should be 31., which is within
experimental error. For this particular molecular structure, therefore, either end group could be
used. An additional conclusion is that essentially 100% of the polymers were terminated with a
hydroxyl group.
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Figure 1.6 lH NMR spectrum of a polyisoprene sample, discussed in Example 1.6. (Data courtesy of
N. Lynd and MA. Hillmyer.)
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The percent 1,4 addition can be computed as follows:

26.9
%1,4= x100=91.2%.

[a + (lb/2)

This is a typical composition for polyisoprene prepared by anionic polymerization in a nonpolar
solvent (see Chapter 4).

1.8.3 MALDI Mass Spectrometry

Mass spectrometry offers unprecedented resolution in the analysis of gas phase ions, and is a
workhorse of chemical analysis. Its application to synthetic polymers has been limited until rather
recently, primarily due to the difficulty of transferring high molecular weight species into the gas
phase without degradation. However, progress in recent years has been quite rapid, with two
general approaches being particularly productive. In one, electrospray ionization, a polymer
solution is ejected through a small orifice into a vacuum environment; an electrode at the exit
deposits a charge onto each drop of solution. The solvent then evaporates, leaving behind a charged
macromolecule in the gas phase. In the other, the polymer sample is dispersed in a particular
matrix on a solid substrate. An intense laser pulse is absorbed by the matrix, and the resulting
energy transfer vaporizes both polymer and matrix. For uncharged synthetic polymers, the
necessary charge is usually complexed with the polymer in the gas phase, after a suitable salt
has been codissolved in the matrix. This technique, matrix-assisted laser desorption/ionization
mass spectrometry, or MALDI for short, is already a standard approach in the biopolymer arena,
and is making substantial inroads for synthetic polymers as well.

It is worth recalling the basic ingredients of a mass spectrometric experiment. A sample molecule
of mass m is first introduced into the gas phase in a high vacuum, and at some point in the process it
must acquire a net charge 2. The resulting ion is accelerated along a particular direction by suitably
placed electrodes, and ultimately collected and counted by a suitable analyzer. The ion acquires
kinetic energy in the applied field, which depends on the net charge 2 and the applied voltage. This
energy will result in a mass-dependent velocity v, as the kinetic energy = v/Z. This allows for the
discrimination of different masses, by a variety of possible schemes. For example, if the ions
experience an orthogonal magnetic field B, their trajectories will be curved to different extents, and
it is possible to tune the magnitude ofB to allow a particular mass to pass through an aperture before
the detector. For polymers it turns out to be more effective to use time-of-flight (TOF) analysis.
For a given applied field and flight path to the detector, larger masses will take longer to reach
the detector. As long as all the molecules are introduced into the gas phase at the same instant in
time, the time of arrival can be converted directly into a value of m/z.

The preceding discussion may give the misleading impression that MALDI is rather a straight-
forward technique. This is not, in fact, the case, especially for synthetic polymers. A great deal
remains to be learned about both the desorption and ionization processes, and standard practice
is to follow particular recipes (matrix and salt) that have been found to be successful for a
given polymer. For example, polystyrene samples are most often dispersed in dithranol (1,8,9-
anthracenetriol) with a silver salt such as silver trifluoroacetate. This mixture is co-dissolved in a
volatile common good solvent such as tetrahydrofuran, to ensure homogeneity; after depositing
a drop on a sample plate, the solvent is then allowed to evaporate. An intense pulse from a nitrogen
laser ()1 = 337 nm) desorbs some portion of the sample, and some fraction of the resulting gas-
phase polystyrene molecules are complexed with a single silver cation.

Two examples of MALDI spectra on narrow distribution of polystyrene samples are shown in
Figure 1.7a and Figure 1.7b. In the former, the average molecular weight is in the neighborhood
of 5000, and different i-mers are clearly resolved. Each peak is separated by 104 g/mol, which is
the repeat unit molecular weight. The absolute molecular weight of each peak should correspond
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to the following sum: (1041' + 108 + 1 -|— 57) : 1041' + 166, where 108, 1, and 57 are the contribu-
tions of the silver ion, terminal proton, and sec—butyl initiator fragment, respectively. Using the
formulas given in Equation 1.7.2 and Equation 1.7.4, Mn and MW can be calculated as 4620 and
4971, respectively, and the polydispersity is 1.076. This sample, which was prepared by living
anionic polymerization as described in Chapter 4, is thus quite narrow. Nevertheless, the plot
shows distinctly how many different i-mers are present, and in what relative proportion. The
assumption is made that the height of each peak is proportional to its number concentration in
the sample, and thus the yards corresponds to an unnormalized form of mole fraction x,. This
image, perhaps more than any other, underscores the point we have already made several times:
even the best of polymer samples is quite heterogeneous. Recalling Example 1.4 and the tank car
of polybutadiene, it is worth pointing out that each peak in Figure 1.7a corresponds to many
structurally different molecules, in terms of the stereochemical sequence along the backbone.

The MALDI spectrum in Figure 1.7b corresponds to a sample about 10 times higher in
molecular weight. At this point it is not possible to see any structure between different i-mers,
although the expanded version shows that there is still a hint of resolution of distinct molecular
weights. This serves to point out one limitation with MALDI, namely that its main attribute, high
resolution, is diminished as M increases. Not apparent from this plot, but even more troublesome,
is the fact that the absolute amplitude of the signal is greatly reduced compared to Figure 1.7a. It is
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Figure 1.7 MALDI spectra for anionically prepared polystyrenes with (a) MW 2 4,971, Mn 2 4,620,
PDI = 1.076, and (b) MW 2 49,306, Mn = 48,916, PDI = 1.008. Inset shows that even in (b) there is
some resolution of the different i-mers. (Data courtesy of K. Fagerquist, T. Chang, and T.P. Lodge.)
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simply much harder to get higher molecular weight molecules into the gas phase. Nevertheless, the
data in Figure 1.7b give M1, = 48,916, MW 2 49,306, and a polydispersity of 1.008. This turns out to
be nearly as narrow as the theoretical limit for this class of polymerizations (see Chapter 4), yet it is
still obviously quite heterogeneous.

We conclude this section with some further general observations about MALDI:

1. Generally, the more polar a polymer, the easier it is to analyze by MALDI. Thus poly(ethylene
oxide) is relatively easy; poly(methyl methacrylate) is easier than polystyrene; polyethylene is
almost impossible.

2. An important, unresolved issue is relating the amplitude of the signal of a particular peak to
the relative abundance of that molecule in the sample. For example, are all molecular weights
desorbed to the same extent within a given laser pulse (unlikely), and are all molecular
weights equally likely to be ionized once in the gas phase (no)? Consequently, it can be
dangerous to extract MW and M,1 as we did for the samples in Figure 1.7a and Figure 1.7b,
because the signals have an unknown sensitivity to molecular weight. (In this instance, this
problem is mitigated because the distributions are quite narrow.) In general, lower molecular
weights have a much higher yield.

3. Multiply charged ions can present a problem, because one cannot distinguish between a
molecule with a charge of l and a molecule of twice the molecular weight but with a charge
of 2. In fact, if the technique were called “mass-to-charge ratio spectrometry” it would be a
mouthful, but it would serve as a constant reminder of this important complication.

4. It is difficult to compare the amplitudes of peaks from one laser pulse to another, and from one
sample drop to another. This presumably reflects the microscopic details of the spot on the
sample that is actually at the focus of the laser beam. As a consequence any quantitative
interpretation should be restricted to a given spectrum.

1.9 Preview of Things to Come
The contents of this book may be considered to comprise three sections, each containing four
separate chapters. The first section, including Chapter 2 through Chapter 5, addresses the synthesis
of polymers, the various reaction mechanisms and kinetics, the resulting molecular weight
distributions, and some aspects of molecular characterization. In particular, Chapter 2 concerns
step-growth (condensation) polymerization and Chapter 3 chain—growth (free radical) polymeriza-
tion. Chapter 4 describes a family of particular polymerization schemes that permit a much higher
degree of control over molecular weight, molecular weight distribution, and molecular architecture
than those in the preceding two chapters. Chapter 5 addresses some of the factors that control the
structural details within polymers, especially copolymers and stereoregular polymers, and aspects
of their characterization.

The second section takes up the behavior of polymers dissolved in solution. The conformations
of polymers, and especially random coils, are treated in Chapter 6. Solution thermodynamics are
the subject of Chapter 7, including the concepts of solvent quality, osmotic pressure, and phase
behavior. The technique of light scattering, which provides direct information about molecular
weight, solvent quality, and chain conformations, is covered in detail in Chapter 8. Chapter 9
explores the various hydrodynamic properties of polymers in solution, and especially as they
impact viscosity, diffusivity, and SEC.

The concluding section addresses the properties of polymers in the bulk, with a particular
emphasis on the various solid states: rubber, glass, and crystal. Thus Chapter 10 considers polymer
networks and their characteristic and remarkable elasticity. Chapter 11 treats the unusual visco-
elastic behavior of polymer liquids, in a way that combines central concepts from both Chapter 9
and Chapter 10. Chapter 12 introduces the phenomenon of the glass transition, which is central to
all polymer materials yet relatively unimportant in most atomic or small molecule—based materials.
Finally, the rich crystallization properties of polymers are taken up in Chapter 13. The text
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concludes with an Appendix that reviews some of the mathematical manipulations encountered
throughout the book.

1.10 Chapter Summary
In this chapter, we have introduced the central concept of chain molecules, and identified various
ways in which polymers may be classified. The importance of molecular weight and its distribution
was emphasized, and associated averages defined. Examples were given of the many possible
structural variations that commonly occur in synthetic polymers:

1. The most important feature of a polymer is its degree of polymerization or molecular weight.
For example, even though polyethylene has the same chemical formula as the n-alkanes, it has
remarkably different physical properties from its small molecule analogs.

2. The statistical nature of polymerization schemes inevitably leads to a distribution of molecular
weights. These can be characterized via specific averages, such as the number-average and
weight-average molecular weights, or by the full distribution, which can be determined by
SEC or MALDI mass spectrometry.

3. Polymers can exhibit many different architectures, such as linear, randomly branched, or
regularly branched chains, and networks. Homopolymers contain only one type of repeat unit,
whereas copolymers contain two or more.

4. There are many possible variations in local structure along a polymer chain, which we have
classified as positional, stereochemical, or geometrical isomers. Given these possibilities, and
those identified in the previous point, it is unlikely that any two polymer molecules within a
particular sample have exactly the same chemical structure, even without considering differ-
ences in molecular weight.

5. Natural polymers such as polysaccharides, proteins, and nucleic acids share many of the
attributes of their synthetic analogs, and as such are an important part of the subject of this
book. On the other hand, the specific biological functions of these macromolecules, especially
proteins and nucleic acids, fall outside our scope.

Problems
To a significant extent the problems in this book are based on data from the original literature. In
many instances the values given have been estimated from graphs, transformed from other
functional representations, or changed in units. Therefore, these quantities do not necessarily
reflect the accuracy of the original work, nor is the given number of significant figures always
justified. Finally, the data may be usedfor purposes other than were intended in the original study.

1. RE. Cohen and AR. RamosJr describe phase equilibrium studies of block copolymers of
butadiene (B) and isoprene (1). One such polymer is described as having a 2:1 molar ratio of B
to I with the following microstructure:
B—45% cis-1,4; 45% trans—1,4; 10% vinyl.
I-—-over 92% cis—1,4.
Draw the structure of a portion of this polymer consisting of about 15 repeat units, and having
approximately the composition of this polymer.

2. Hydrogenation of polybutadiene converts both cis and trans isomers to the same linear
structure, and vinyl groups to ethyl branches. A polybutadiene sample of molecular weight
168,000 was found by infrared spectroscopy to contain double bonds consisting of 47.2% cis,

lR.E. Cohen and AR. Ramos Macromolecules, 12, 131 (1979).
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44.9% trans, and 7.9% vinyl.T After hydrogenation, what is the average number of backbone
carbon atoms between ethyl side chains?

3. Landel used a commercial material called Vulcollan 18/40 to study the rubber-to-glass
transition of a polyurethane}— This material is described as being “prepared from a low
molecular weight polyester which is extended and cross-linked by reacting it with naphtha-
lene—1,4,-diisocyanate and 1,4-butanediol. The polyester is prepared from adipic acid and a
mixture of ethylene and propylene glycols.” Draw the structural formula of a portion of the
cross—linked polymer which includes the various possible linkages that this description
includes. Remember that isocyanates react with active hydrogens; use this fact to account
for the cross-linking.

4. Some polymers are listed below using either IUPAC (1) names or acceptable trivial (T) names.
Draw structural formulas for the repeat units in these polymers, and propose an alternative
name in the system other than the one given:
Polymethylene (I)
Polyforrnaldehyde (T)
Poly(pheny1ene oxide) (T)
Poly[(2-propy1-1,3-dioxane-4,6-diyl)methylene] (I)
Poly(1-acetoxyethylene) (I)
Poly(methy1 acrylate) (T)

5. Star polymers are branched molecules with a controlled number of linear arms anchored to
one central molecular unit acting as a branch point. Schaefgen and Flory§ prepared poly
(a-caprolactam) four- and eight-arm stars using cyclohexanone tetrapropionic acid and
dicyclohexanone octapropionic acid as branch points. The authors present the following stoi-
chiometric definitions/relations to relate the molecular weight of the polymer to the concentration
of unreacted acid groups in the product. Provide the information required for each of the
following steps:
(a) The product has the formula R—{—CO[—NH(CH2)5CO——]y—OH }b. What is the significance

of R, y, and b?
(b) If Q is the number of equivalents of multifunctional reactant which react per mole of

monomer and L represents the number of equivalents of unreacted (end) groups per mole
of monomer, then <y> = (1—L)/(Q+L). Justify this relationship, assuming all functional
groups are equal in reactivity.

(c) If M0 is the molecular weight of the repeat unit and Mg, is the molecular weight of the
original branch molecule divided by b, then the number-average molecular weight of
the star polymer is

l—L
Mn=b M—+M{°Q+L b}
Justify this result and evaluate M0 and Mb for the b = 4 and b 2 8 stars.

((1) Evaluate MD for the following molecules:

o Q L
4 0.2169 0.0018
8 0.134 0.00093

TW.E. Rochefort, (10. Smith, H. Rachapudy, V.R. Raju, and W.W. Graessley, J. Polym. Sci, Polym. Phys, 17, 1197 (1979).
*R.F. Landel, J. Colloid Scan, 12, 308 (1957).
§ J.R. Schaefgen and RI. Flory, J. Am. Chem. Soc., 70, 2709 (1948).
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10.

11.

12.

Introduction to Chain Molecules

Batzer reported the following data for a fractionated polyester made from sebacic acid and
1,6-hexanediolff evaluate Mn, MW, and M2.

Fraction 1 2 3 4 5 6 7 8 9

Mass (g) 1.15 0.73 0.415 0.35 0.51 0.34 1.78 0.10 0.94
M X 10'4 1.25 2.05 2.40 3.20 3.90 4.50 6.35 4.10 9.40

The Mark—Houwink exponent a for poly(methyl methacrylate) at 25°C has the value 0.69
in acetone and 0.80 in chloroform. Calculate (retaining more significant figures than
strictly warranted) the value of MV that would be obtained for a sample with the following
molecular weight distribution if the sample were studied by viscometry in each of these
solvents.i Compare the values of MV with MH and MW.

n,x103(mol) 1.2 2.7 4.9 3.1 0.9

M,x10"5(g/mol) 2.0 4.0 6.0 8.0 10.0

Consider a set consisting of 4—8 family members, friends, neighbors, etc. Try to select a
variety of ages, genders, and other attributes. Take the mass of each individual (a rough
estimate is probably wiser than asking directly) and calculate the number- and weight—
average masses for this set. Does the resulting PDI indicate a rather “narrow” distribution?
If you picture this group in your mind, do you imagine them all to be roughly the same size,
as the PDI probably suggests?
Prove that the polydispersity of the Schulz-Zimm distribution is given by Equation 1.7.21.
You may want to look up the general solution for integrals of the type fxae’bxdx.
In Figure 1.5a through Figure 1.5c it appears that the maximum in w; corresponds closely to
M". Differentiate Equation 1.7.20 with respect to M,- to show why this is the case.
The MALDI spectrum in Figure 1.7b resembles a Gaussian or normal distribution. One
property of a Gaussian distribution is that the half—width at half-height of the peak is
approximately equal to 120‘. Use this relation to estimate 0' from the trace, and compare it
to the value you would get from Equation 1.7.16.
Give the overall chemical reactions involved in the polymerization of these monomers, the
resulting repeat unit structure, and an acceptable name for the polymer.

Me

(a)
H2CA\n/OH

O

(b)
O O

HQN‘E/ENH? + CIMCI
O

(c) HON/LLOH

(d) HsN

tH. Batzer, Makromol. Chem, 5, 5 (1950).
ISN. Chinai, J.D. Matlock, A.L. Resnick, and R.J. Samuels, J. Polym. sci, 17, 391 (1955).
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13.

14.

15.

16.

(e) Q "'
HOHOH

(f) H2N WOH

A MALDI-TOF analysis of a polystyrene sample exhibited a peak (one of many) at 1206.
The sample was prepared in dithranol, with silver nitrate as the salt. Assuming no head-to-
head defects, how many distinct chemical structures could this peak represent? Propose
structures for the end groups of the polymer as well.
Proton NMR is used to attempt to quantify the molecular weight of a poly(ethylene oxide)
molecule with methyoxy end groups at each terminus. If the integration of the methyl protons
relative to the methylene protons gave a ratio of 1:20, what can you say about the molecular
weight?
What would be Mw and Mn for a sample obtained by mixing 10 g of polystyrene
(MW 2 100,000, Mn = 70,000) with 20 g of another polystyrene (Mw = 60,000, Mn 2 20,000)?
What would MW and Mn be for an equimolar mixture of tetradecane and decane? (Ignore
isotope effects.)
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2
Step-Growth Polymerization

2.1 Introduction

In Section 1.4, we discussed the classification of polymers into the categories of addition or
condensation. At that time we noted that these classifications could be based on the following:

1. Stoichiometry of the polymerization reaction (small molecule eliminated?)
2. Composition of the backbone of the polymer (atoms other than carbon present?)
3. Mechanism of the polymerization (stepwise or chain reaction?)

It is the third of these criteria that offers the most powerful insight into the nature of the
polymerization process for this important class of materials. We shall sometimes use the terms
step-growth and condensation polymers as synonyms, although step-growth polymerization encom—
passes a wider range of reactions and products than either criteria (1) or (2) above would indicate.

The chapter is organized as follows. First, we examine how the degree of polymerization and its
distribution vary with the progress of the polymerization reaction, with the latter defined both in
terms of stoichiometry and time (Section 2.2 through Section 2.4). Initially we consider these
topics for simple reaction mixtures, that is, those in which the proportions of reactants agree
exactly with the stoichiometry of the reactions. After this, we consider two important classes of
condensation or step—growth polymers: polyesters and polyamides (Section 2.5 and Section 2.6).
Finally we consider nonstoichiometric proportions of reactants (Section 2.7). The important case of
multifunctional monomers, which can introduce branching and cross-linking into the products, is
deferred until Chapter 10.

2.2 Condensation Polymers: One Step at a Time
As the name implies, step-growth polymers are formed through a series of steps, and high
molecular weight materials result from a large number of steps. Although our interest lies in
high molecular weight, long-chain molecules, a crucial premise of this chapter is that these
molecules can be effectively discussed in terms of the individual steps that lead to the formation
of the polymer. Thus, polyesters and polyamides are substances that result from the occurrence of
many steps in which ester or amide linkages are formed between the reactants. Central to our
discussion is the idea that these steps may be treated in essentially the same way, whether they
occur between small molecules or polymeric species. We shall return to a discussion of the
implications and justification of this assumption of equal reactivity throughout this chapter.

2.2.1 Classes of Step-Growth Polymers

Here are examples of important classes of step-growth polymers:

1. Polyesters—successive reactions between diols and dicarboxylic acids:
0 0

RI

n Ho/HT'OH + n HOJLR'JLOH —"" {O‘H/Om/
fl

+ 2n H20 (2A)
0 nO
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2. Polyamides—successive reactions between diamines and dicarboxylic acids:

0 O H H
R N HI

n H2N/ \NH2
+ ”HOJLHIJ%H

_+<N\H/
Y
fl+

2”
H2O

(2.B)

00:1

3. General—successive reactions between difunctional monomer A—A and difunctional mono-
mer B—B:

n A—A + n B—B—hta\a/b\b/)n+ (2.0

Since the two reacting functional groups can be located in the same reactant molecule, we add
the following:

4. Poly(amino acid)

Fl F!

n H,N/'\c/°H —»— fN + n H20 (2D)
H H o nO

5. General

n A—B_yl(a\b/)H+ (2.13)

Of course, in Reaction (2.A) and Reaction (2B) the hydrocarbon sequences R and R’ can be the
same or different, contain any number of carbon atoms, be linear or cyclic, and so on. Likewise, the
general reactions, Reaction (2.C) and Reaction (2E), certainly involve hydrocarbon sequences
between the reactive groups A and B. The notation involved in these latter reactions is particularly
convenient, however, and we shall use it extensively in this chapter. It will become clear as we
proceed that the stoichiometric proportions of reactive groups—A and B in the above notation—
play an important role in determining the characteristics of the polymeric product. Accordingly, we
shall confine our discussion for the present to reactions of the type given by Reaction (2E), since
equimolar proportions of A and B are assured by the structure of the monomer.

2.2.2 First Look at the Distribution of Products

Table 2.] presents a hypothetical picture of how Reaction (2.E) might appear if we examined the
distribution of product molecules in detail. Row 1 of Table 2.1 shows the initial pool of monomers,

Table 2.1 Hypothetical Step—Growth Polymerization
of 10 AB Moleculesa

Row Molecular species present

1. AB AB AB AB AB AB AB AB AB AB
2. AbaB AbaB AbaB AbaB AB AB
3. AbababaB AbaB AbabaB AB
4. AbababaB AbabababaB AB
5. AbababaB AbababababaB
6, AbababababababababaB

aA and B represent two different functional groups and ab is the product
of their reaction with each other. Consult the text for a discussion of the
line-by—line development of the reaction.
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10 molecules in this example. Row 2 shows a possible composition after a certain amount of
reaction has occurred. We shall see in Section 2.4 that the particular condensations that account
for the differences between the first and second rows are not highly probable. Our objective here is
not to assess the probability of certain reactions, but rather to consider some possibilities.
Stoichiometrically, we can still account for the initial set of 10 A groups and 10 B groups; we
indicate those that have reacted with each other as ab groups. The same conservation of atom
groupings would be obtained if row 2 showed one trimer, two dimers, and three monomers instead
of the four dimers and two monomers indicated in Table 2.1. Other combinations could also
be assembled. These possibilities indicate one of the questions that we shall answer in this chapter:
How do the molecules distribute themselves among the different possible species as the reaction
proceeds?

Row 3 of Table 2.1 shows the mixture after two more reaction steps have occurred. Again,
the components we have elected to show are an arbitrary possibility. For the monomer system
we have chosen, the concentration of A and B groups in the initial monomer sample are equal
to each other and equal to the concentration of monomer. In this case, an assay of either A groups
or B groups in the mixture could be used to monitor the progress of the reaction. Choosing the
number of A groups for this purpose, we see that this quantity drops from 10 to 6 to 4, respectively,
as we proceed through rows 1, 2, and 3 of Table 2.1. What we wish to point out here is the fact that
the 10 initial monomers are now present in four molecules, so the number average degree of
polymerization is only 2.5, even though only 40% of the initial reactive groups remain. Another
question is thus raised: In general, how does the average molecular weight vary with the extent of
the reaction?

The reaction mixture in the fourth row of Table 2.1 is characterized by a number average degree
of polymerization Nn = 10/3 2 3.3, with only 30% of the functional groups remaining. This means
that 70% of the possible reactions have already occurred, even though we are still dealing with a
very low average degree of polymerization. Note that the average degree of polymerization would
be the same if the 70% reaction of functional groups led to the mixture AbababababababaB and
two AB’s. This is because the initial 10 monomers are present in three molecules in both instances,
and we are using number averages to talk about these possibilities. The weight average would be
different in the two cases. This poses still another question: How does the molecular weight
distribution vary with the extent of reaction?

By the fifth row, the reaction has reached 80% completion and the number average value of the
degree of polymerization Nn is 5. Although we have considered this slowly evolving polymer
in terms of the extent of reaction, another question starts to be worrisome: How long is this going
to take?

The sixth row represents the end of the reaction as far as linear polymer is concerned. Of the 10
initial A groups, 1 is still unreacted, but this situation raises the possibility that the decamer shown
in row 6—0r for that matter, some other i-mer, including monomer—might form a ring or cyclic
compound, thereby eliminating functional groups without advancing the polymerization. Through-
out this chapter we will assume that the extent of ring formation is negligible.

It is an easy matter to generalize the procedure we have been following and express the number
average degree of polymerization in terms of the extent of reaction, regardless of the initial sample
size. We have been dividing the initial number of monomers present by the total number of
molecules present after any extent of reaction. Each molecular species—whether monomer or
polymer of any length—contains just one A group. The total number of monomers is therefore
equal to the initial (superscript 0) number of A groups, 12%; the total number of molecules at any
extent of reaction (no superscript) is equal to the number of A groups, VA, present at that point. The
number average degree of polymerization is therefore given by

V0Nn : A (2.2.1)
VA
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It is convenient to define the fraction of reacted functional groups in a reaction mixture by a
parameter p, called the extent of reaction. Thus, p is the fraction of A groups that have reacted at
any stage of the process, and 1— p is the unreacted fraction:

1 — p = 3’3 (2.2.2)
VA

01‘

p = 1 _ L: (2.2.3)
”A

Comparison of Equation 2.2.1 and Equation 2.2.2 enables us to write very simply:

N11 2 ——1—— (2.2.4)
1 - p

This expression is consistent with the analysis of each of the rows in Table 2.1 as presented above
and provides a general answer to one of the questions posed there. It is often a relatively easy
matter to monitor the concentration of functional groups in a reaction mixture; Equation 2.2.4
represents a quantitative summary of an end group method for determining Nn. We reiterate that
Equation 2.2.4 assumes equal numbers of A and B grOUps, with none of either lost in nonpolymer
reactions.

From row 6 in Table 2.1, we see that Nn=10 when p=0.9. The fact that this is also the
maximum value for N is an artifact of the example. In a larger sample of monomers higher average
degrees of polymerization are attainable. Equation 2.2.4 enables us to calculate that Nn becomes
20, 100, and 200 for extents of reaction 0.950, 0.990, and 0.995, respectively. These results reveal
why condensation polymers are often of relatively modest molecular weight: it may be very
difficult to achieve the extents of reaction required for very high molecular weights. As p increases
the concentration of H20 (or other small molecule product) will increase, and the law of mass
action will Oppose further polymerization. Consequently, steps must be taken to remove the small
molecule as it is formed, if high molecular weights are desired.

2.2.3 A First Look at Reactivity and Reaction Rates

Most of the questions raised in the past few paragraphs will be answered during the course of this
chapter, some for systems considerably more involved than the one considered here. Before
proceeding further, we should reemphasize one premise that underlies the entire discussion of
Table 2.1: How do the chemical reactivities of A and B groups depend on the degree of
polymerization of the reaction mixture? In Table 2.1, successive entries were generated by simply
linking together at random those species present in the preceding row. We have thus assumed that,
as far as reactivity is concerned, an A reacts as an A and a B reacts as a B, regardless of the size of
the molecule to which the group is attached. If this assumption of equal reactivity is valid, it results
in a tremendous simplification; otherwise we shall have to characterize reactivity as a function of
degree of polymerization, extent of reaction, and so on.

One of the most sensitive tests of the dependence of chemical reactivity on the size of the
reacting molecules is the comparison of the rates of reaction for compounds that are members of a
homologous series with different chain lengths. Studies by Flory and others on the rates of
esterification and saponification of esters were the first investigations conducted to clarify the
dependence of reactivity on molecular size [1]. The rate constants for these reactions are observed
to converge quite rapidly to a constant value that is independent of molecular size, after an initial
dependence on molecular size for small molecules. In the esterification of carboxylic acids, for
example, the rate constants are different for acetic, propionic, and butyric acids, but constant for
carboxylic acids with 4—18 carbon atoms. This observation on nonpolymeric compounds has been
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Figure 2.1 The reaction of A and B groups at the ends of two different chains. Note that rotations around
only a few bonds will bring A and B into the same cage of neighboring groups, indicated by the dashed-line
enclosure.

generalized to polymerization reactions as well. The latter are subject to several complications that
are not involved in the study of simple model compounds, but when these complications are
properly considered, the independence of reactivity on molecular size has been repeatedly verified.

The foregoing conclusion does not mean that a constant rate of reaction persists throughout
Table 2.1. The rate of reaction depends on the concentrations of reactive groups, as well as on their
reactivities. Accordingly, the rate of the reaction decreases as the extent of reaction progresses.
When the rate law for the reaction is extracted from proper kinetic experiments, specific reactions
are found to be characterized by fixed rate constants over a range of M, values.

Among the further complications that can interfere with this conclusion is the possibility that
the polymer becomes insoluble beyond a critical molecular weight or that the low molecular
weight by-product molecules accumulate and thereby shift the equilibrium to favor reactants. It is
also possible that the transport of reactants will be affected by the increasing viscosity of the
polymerization medium, which is a very complicated issue.

Figure 2.] suggests that reactive end-groups may be brought into contact by rotation around
only a few bonds, an effect which is therefore independent of chain length. Once in close
proximity, the A and B groups may be thought of as being in the same “cage” defined by near
neighbors. It may take some time for the two reactive groups to diffuse together, but it will also
take some time for them to diffuse apart; this provides the opportunity to react. The rate at which
an A and a B group react to form an ab linkage therefore depends on the relative rates of three
processes: the rate to diffuse together, the rate at which they diffuse apart, and the rate at which
“trapped” A and B groups react. These considerations can be expressed more quantitatively by
writing the process in terms of the following mechanism:

—A + —B $11; (—A + B—) £5 —ab — (2F)
0

where the parentheses represent the caged pair, as in Figure 2.1, and the ks are the rate constants for
the individual steps: k, and k0 for diffusion into and out of the cage, respectively, and k, for the
reaction itself.

Since this is the first occasion we have had to examine the rates at which chemical reactions
occur, a few remarks about mechanistic steps and rate laws seem appropriate. The reader who feels
the need for additional information on this topic should consult any introductory physical chem-
istry text.

As a brief review we recall the following:

1. The rate of a process is expressed by the derivative of a concentration (square brackets) with
respect to time, d[A]/dt. If the concentration of reaction product is used, this quantity is
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positive; if a reactant is used, it is negative and a minus sign must be included. Also, each
derivative d[A]/dt should be divided by the coefficient of that component in the chemical
equation that describes the reaction, so that a single rate is described whichever component in
the reaction is used to monitor it.

2. A rate law describes the rate of reaction as the product of a constant k, called the rate constant,
and various concentrations, each raised to specific powers. The power of an individual
concentration term in a rate law is called the order with respect to that component, and the
sum of the exponents of all concentration terms gives the overall order of the reaction. Thus in
the rate law Rate : k[X]1[Y]2, the reaction is first order in X, second order in Y, and third
order overall.

3. A rate law is determined experimentally and the rate constant evaluated empirically. There
is no necessary connection between the stoichiometry of a reaction and the form of the
rate law.

4. A mechanism is a series of simple reaction steps that, when added together, account for the
overall reaction. The rate law for the individual steps of the mechanism may be written by
inspection of the mechanistic steps. The coefficients of the reactants in the chemical equation
describing the step become the exponents of these concentrations in the rate law for that step.

5. Frequently it is possible to write more than one mechanism that is compatible with an
observed rate law. Thus, the ability to account for an experimental rate law is a necessary
but not a sufficient criterion for the correctness of the mechanism.

These ideas are readily applied to the mechanism described by Reaction (2.F). To begin with, the
rate at which ab links are formed is first order with reSpect to the concentration of entrapped pairs.
In this sense, the latter behaves as a reaction intermediate or transition state according to this
mechanism. Therefore

Rate of ab formation : kr[(—A + B—)] (2.2.5)

These entrapped pairs, in turn, form at a rate given by the rate at which the two groups diffuse
together minus the rate at which they either diffuse apart or are lost by reaction:

d[(eA + B—)]
dt = kilAllB] a Icon—A + 3—)] — kin—A + 3—)] (2.2.6)

The concentration of entrapped pairs is assumed to exist at some stationary—state (subscript 5) level
in which the rates of formation and loss are equal. In this stationary state d[(FA + Bfl)]/dt = 0 and
Equation 2.2.6 becomes

k1[(—A + 3—)]5 =
k0 + 16: [A][B] (22-7)

where the subscript s reminds us that this is the stationary—state value. Substituting Equation 2.2.7
into Equation 2.2.5 gives

kik,
k0 + kr

Rate of ab formation : [A][B] (22.8)

We shall return to this type of kinetic analysis in Chapter 3 where we discuss chain-growth
polymerization.

According to the mechanism provided by Reaction (2F) and the analysis given by Equation
2.2.8, the rate of polymerization is dependent upon the following:

1. The concentrations of both A and B, hence the reaction slows down as the conversion to
polymer progresses.

2 The three constants associated with the rates of the individual steps in Reaction (2.F).
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3. If the rate of chemical reaction is very slow compared to the rate of group diffusion (kr << ki, k0),
then Equation 2.2.8 reduces to

kiRate of ab formation =
k—kr[A][B]

(2.2.9)

4. The two constants k, and k0 describe exactly the same kind of diffusional process, and differ
only in direction. Hence they should have the same dependence on molecular size, whatever
that might be, and that dependence therefore cancels out.

5. The mechanism in Reaction (2.F) is entirely comparable to the same reaction in low molecular
weight systems. Such reactions involve considerably larger activation energies than physical
processes like diffusion and, hence, do proceed slowly.

6. If k, >> ki, k0, then Equation 2.2.8 reduces to

Rate of ab formation 2 ki[A][B] (2.2.10)

Note that the rate law in this case depends only on k, and any size dependence for this constant
would not cancel out.

Both Equation 2.2.9 and Equation 2.2.10 predict rate laws that are first order with respect to the
concentration of each of the reactive groups; the proportionality constant has a different signifi-
cance in the two cases, however. The observed rate laws, which suggest a reactivity that is
independent of molecular size and the a priori expectation cited in item 5 above regarding
the magnitudes of different kinds of k values, lend credibility to the version presented in
Equation 2.2.9.

Our objective in the preceding argument has been to justify the attitude that each ab linkage
forms according to the same rate law, regardless of the extent of the reaction. While our attention is
focused on the rate laws, we might as well consider the question, raised above, about the actual
rates of these reactions. This is the topic of the next section.

2.3 Kinetics of Step-Growth Polymerization
In this section we consider the experimental side of condensation kinetics. The kinds of ab links
that have been most extensively studied are ester and amide groups, although numerous additional
systems could also be cited. In many of these systems the carbonyl group is present and believed to
play an important role in stabilizing the actual chemical transition state involved in the reactions.
The situation can be represented by the following schematic reaction:

0 o
_

0
RJLX + Y“ ——h- R—l—Y -—-——-)-

JL
+ x— (Z‘G)

x Fl Y

in which the intermediate is stabilized by coordination with protons, metal ions, or other Lewis
acids. The importance of this is to emphasize that the kinds of reactions we are considering are
often conducted in the presence of an acid catalyst, frequently something like a sulfonic acid or a
metal oxide. The purpose of a catalyst is to modify the rate of a reaction, so we must be attentive to
the situation with respect to catalysts. At present, we assume a constant concentration of catalyst
and attach a subscript c to the rate constant to remind us of the assumption. Accordingly, we write

— 99—] = kc[A][B] (2.3.1)
dt

which is consistent with both Equation 2.2.9 and Equation 2.2.10. We expect the constant kc to be
dependent on the concentration of the catalyst in some way which means that Equation 2.3.1 may
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be called a pseudo-second—order rate law. We shall presently consider these reactions in the
absence of external catalysts. For now it is easier to proceed with the catalyzed case.

2.3.1 Catalyzed Step-Growth Reactions

Equation 2.3.1 is the differential form of the rate law that describes the rate at which A groups are
used up. To test a proposed rate law and evaluate the rate constant it is preferable to work with the
integrated form of the rate law. The integration of Equation 2.3.1 yields different results, depend—
ing on whether the concentrations of A and B are the same or different:

1. We define [A] and [B] as the instantaneous concentrations of these groups at any time t during
the reaction, and [A]0 and [B]0 as the concentrations of these groups at I: 0.

2. If [A]0 = [B]0, the integration of Equation 2.3.1 yields

1 1”— _ — : k° 2.3.2[AllAb ’ ( )
3. If [Ale 75 [B]O, the integration yields

1 [AllBlol = kc 2.3.3
[No ‘ [Blo n([A]0[B])

I ( )

Both of these results are readily obtained; we examine the less obvious relationship in Equation
2.3.3 in the following example. The consequences of different A and B concentrations on the
molecular weight of the polymer will be discussed in Section 2.7.

Example 2.1
By differentiation, verify that Equation 2.3.3 is a solution to Equation 2.3.1 for the conditions
given.

Solution
Neither [A]0 nor [B]0 are functions of 1, although both [A] and [B] are. We write the latter two as
[A] : [A]0 — x and [B] = [B]0 — x. Substitute these results into Equation 2.3.3 and rearrange:

[A10 2 x + 1,12% = ([A]0 — [310) kcr1 _______

“[Bn—x [Ah
now differentiate with respect to t, noting that only x is a function of r:

([B]0

'—

I) (“([Blo

- x) + ([No — x) dx
) dz:

= ([Alo — [1310) kc[Ab-x awe—n?
that after cancellation and rearrangement gives

dx
d?

= kc([A]o — x)([B]o — X) = kclAllBl

Since d[A]/dt= Fdx/dt by the definition of x, this proves Equation 2.3.3 to be a solution to
Equation 2.3.1. Equation 2.3.3 is undefined in the event [A]0 = [B]0, but in this case the expression
is anyhow inapplicable. Since A and B react in a 1:1 proportion, their concentrations are identical
at all stages of reaction if they are equal initially. In this case, Equation 2.3.1 would reduce to a
simpler second-order rate law, which integrates to Equation 2.3.2.

We shall now proceed on the assumption that [A]0 and [B]0 are equal. As noted above, having
both reactive groups on the same molecule is one way of enforcing this condition. Accordingly, we
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rearrange Equation 2.3.2 to give the instantaneous concentrations of unreacted A groups as a
function of time:

[A] _ [A10—
————-—1+ kc[A]0t

(2.3.4)

At this point, it is convenient to recall the extent of reaction parameter, p, defined by Equation
2.2.3. If we combine Equation 2.2.2 and Equation 2.3.4, we obtain

“Fm (2'35)
01'

——1— : NIn = 1 + kC[A]Ot (2.3.6)
1 - p

where we incorporated Equation 2.2.4 into the present discussion. These last expressions provide
two very useful views of the progress of a condensation polymerization reaction with time.
Equation 2.3.4 describes how the concentration of A groups asymptotically approaches zero at
long times; Equation 2.3.6 describes how the number average degree of polymerization increases
linearly with time.

Equation 2.3.6 predicts a straight line when 1/(1—p) is plotted against 1‘. Figure 2.2 shows such
a plot for adipic acid reacted with 1,10-decamethylene glycol, catalyzed by p-toluene sulfonic
acid. The reaction had already been run to consume 82% of the reactive groups before this
experiment was conducted. Interpreting the slope of the line in terms of Equation 2.3.6 and in
the light of actual initial concentrations gives a value of kc20.097 kg eq—1 min‘l. Note that
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Figure 2.2 Plot of l/(l—p) versus time for the late stages of esterification of adipic acid with 1,10-
decamethylene glycol at 161°C, catalyzed by p-toluene sulfonic acid. The reaction time t = 0 corresponds
to a previous extent of reaction in which 82% of the COOH groups had been consumed. (Data from Hamann,
S.D., Solomon, DH, and Swift, J.D., J. Macromol. Sci. Chem, A2, 153, 1968.)



52 Step-Growth Polymerization

these units imply group concentrations expressed as equivalents per kilogram. Mass rather than
volume units are often used for concentration, as substantial volume changes may occur during
polymerization.

2.3.2 How Should Experimental Data Be Compared with Theoretical Rate Laws?

Although the results presented in Figure 2.2 appear to verify the predictions of Equation 2.3.6, this
verification is not free from controversy. This controversy arises because various workers in this
field employ different criteria in evaluating the success of the relationships we have presented in
fitting experimental polymerization data. One school of thought maintains that an adequate kinetic
description of a process must apply to the data over a large part of the time of the experiment.
A second point of view maintains that a rate law correctly describes a process when it applies over
a wide portion of the concentration change that occurs during a reaction. Each of these criteria
seeks to maximize the region of fit, but the former emphasizes maximizing the range of 1‘ while the
latter maximizes the range of p. Both standards tolerate deviations from their respective ideals at
the beginning or the end of the experiment. Deviations at the beginning of a process are
rationalized in terms of experimental uncertainties at the point of mixing or modelistic difficulties
on attainment of stationary-state conditions.

The existence of these two different standards for success would be only of academic interest if the
analysis we have discussed applied to experimental results over most of the time range and over most
extents of reactions as well. Unfortunately, this is not the case in all of the systems that have been
investigated. Ref. [2], for example, shows one particular set of data—adipic acid and diethylene
glycol at 166°C, similar reactants as the system in Figure 2.2—analyzed according to two different
rate laws. This system obeys one rate law between p = 0.50 and 0.85 that represents 15% of the
duration of the experiment, and another rate law between p = 0.80 and 0.93, which spans 45% of
the reaction time. These would be interpreted differently by the two standards above. This sort of
dilemma is not unique to the present problem, but arises in many situations where one variable
undergoes a large percentage of its total change while the other variable undergoes only a small
fraction of its change. In the present context one way out of the dilemma is to take the view that only
the latter stages of the reaction are significant, as it is only beyond, say,p = 0.80, that it makes sense to
consider the process as one of polymerization. Thus, it is only at large extents of reaction that
polymeric products are formed and, hence, the kinetics of polymerization should be based on a
description of this part of the process. This viewpoint intentionally focuses attention on a relatively
modest but definite range of p values. Since the reaction is necessarily slow as the number of
unreacted functional groups decreases, this position tends to maximize the time over which the
rate law fits the data. Calculation from the ordinate of Figure 2.2 shows that the data presented there
represent only about the last 20% of the range of p values. The zero of the timescale has thus been
shifted to pick up the analysis of the reaction at this point.

We commented above that the deviations at the beginning or the end of kinetic experiments can
be rationalized, although the different schools of thought would disagree as to what constitutes
“beginning” and “end.” Now that we have settled upon the polymer range, let us consider
specifically why deviations occur from a simple second-order kinetic analysis in the case of
catalyzed polymerizations. At the beginning of the experiment, say, up to p m 0.5, the concentra-
tions of A and B groups change dramatically, even though the number average degree of
polymerization has only changed from monomer to dimer. By ordinary polymeric standards, we
are still dealing with a low molecular weight system that might be regarded as the solvent medium
for the formation of polymer. During this transformation, however, 50% of the very—polar A groups
and 50% of the very-polar B groups have been converted to the less—polar ab groups. Thus, a
significant change in the polarity of the polymerization medium occurs during the first half of the
change in p, even though an insignificant amount of true polymer has formed. In view of the role of
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ionic intermediates as suggested by Reaction (2.G), the polarity of the reaction medium might very
well influence the rate law during this stage of the reaction.

At the other end of the reaction, deviations from idealized rate laws are attributed to secondary
reactions such as degradation of acids, alcohols, and amines through decarboxylation, dehydration,
and deamination, respectively. The step-growth polymers that have been most widely studied are
simple condensation products such as polyesters and polyamides. Although we shall take up these
classes of polymers—polyesters and polyamides—specifically in Section 2.5 and Section 2.6,
respectively, it is appropriate to mention here that these are typically equilibrium reactions.

amJLOH + HO/Rzmfi,. Rio/Hz + H20 (2H)

and

o o 2

In order to achieve large p’s and high molecular weights, it is essential that these equilibria be
shifted to the right by removing the by-product molecule, water in these reactions. This may be
accomplished by heating, imposing a partial vacuum, or purging with an inert gas, or some
combination of the three. These treatments also open up the possibility of reactant loss due to
volatility, which may accumulate to a significant source of error for reactions that are carried out to
large values of p.

2.3.3 Uncatalyzed Step-Growth Reactions

Until now we have been discussing the kinetics of catalyzed reactions. Losses due to volatility and
side reactions also raise questions as to the validity of assuming a constant concentration of
catalyst. Of course, one way of avoiding this issue is to omit an outside catalyst; reactions
involving carboxylic acids can be catalyzed by these compounds themselves. Experiments
conducted under these conditions are informative in their own right and not merely as a means
of eliminating errors in the catalyzed case. As noted in connection with the discussion of Reaction
(2G), the intermediate is stabilized by coordination with a proton from the catalyst. In the case of
autOprotolysis by the carboxylic intermediate,

4.OH
R1—l—OH _ j:

0...
R2

as this intermediate involves an additional equivalent of acid functional groups, the rate law for the
disappearance of A groups becomes

d A__[_] __k [A]2 [3] (2.3.7)dt
on the assumption that A represents carboxyl groups. In this case, ku is the rate constant for the
uncatalyzed reaction. This differential rate law is the equivalent of Equation 2.3.1 for the catalyzed
reaction. Equation 2.3.7 is readily integrated when [A]0 = [B]0, in which case it becomes

—[__A]3
d[A]— (2.3.8)
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Figure 2.3 Plot of 1/(1—19)2 (left ordinate) and p (right ordinate) versus time for an uncatalyzed esterifi—
cation. (Data from Hamann, S.D., Solomon, DH, and Swift, J.D., J. Macromol. Sci. Chem, A2, 153, 1968.)

This integrates to

1 1

Thus for the uncatalyzed reaction, we have the following:

1. The rate law is third order.
Since [A]/[A]O = lflp, Equation 2.3.9 may be rewritten as

1

(1 ~10)2
and this shows that a plot of (1—,1'))_2 increases linearly with t.

3. Since [A]/[A]O 2 UN“, Equation 2.3.10 becomes

= 1 + 2ku[A]022‘ (2.3.10)

Nfi = 1 + 2ku[A]021 (2.3.11)

which shows that Nn increases more gradually with t than in the catalyzed case, all other things
being equal.

Figure 2.3 shows data for the uncatalyzed polymerization of adipic acid and 1,10~decamethylene
glycol at 161°C plotted according to Equation 2.3.10. The various provisos of the catalyzed
case apply here also, so it continues to be appropriate to consider only the final stages of the
conversion to polymer. From these results, ku is about 4.3 x 10‘3 kg2 eq‘2 min‘1 at 161°C.

We conclude this section with a numerical example that serves to review and compare some of
the important relationships we have considered.

Example 2.2
Assuming that 117C210"1 kg eq‘l min—l, ku=10_3 kg2 eq‘l min"1, and [A]0:: 10 eq kg‘l,
calculate the time required for p to reach values 0.2, 0.4, 0.6, and so on, for both catalyzed and
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uncatalyzed polymerizations, assuming that Equation 2.3.2 and Equation 2.3.9, respectively, apply
to the entire reaction. Compare the results obtained in terms of both the degree of polymerization
and the fraction of unreacted A groups as a function of time.

Solution
Since we are asked to evaluate t, N“, and [A]/[A]0 for specific values of p, it is convenient to
summarize the following relationships:

1. Equation 2.2.4: Nn = 1/(1—p).
2. Equation 2.2.2: [A]/[A]0 = l—p.
3. Equation 2.3.6: r=(1v,,—1)/k,[A]0 = Nn—l if catalyzed, since 10“1(10) = 1.
4. Equation 2.3.11: 2‘: (Nn2—1)/2 ku[A]02 = (Nn2—1)(5) if uncatalyzed, since

2(10—3) (10)2= 0.2.
Using these relationships, the accompanying table is developed.

p [A]/[A]0 Nn Time (min) catalyzed Time (min) uncatalyzed

0.2 0.8 1.25 0.25 2.8
0.4 0.6 1.67 0.67 8.9
0.6 0.4 2.50 1.5 26
0.8 0.2 5.00 4.0 120
0.9 0.1 10.0 9.0 500
0.95 0.05 20.0 19 2.0 x 103
0.99 0.01 100 99 5.0 x 104
0.992 0.008 120 119 7.2 x 104
0.998 0.002 500 499 1.3 x 106

A graphical comparison of the trends appearing here is presented in Figure 2.4. The importance
of the catalyst is readily apparent in this hypothetical but not atypical system: To reach Nl1l = 5
requires 4 min in the catalyzed case and 120 min without any catalyst, assuming that the
appropriate rate law describes the entire reaction in each case.

The question posed in Section 2.2—how long will it take to reach a certain extent of reaction or
degree of polymerization?—is now answered. As is often the case, the answer begins, “It all
depends. . .

2.4 Distribution of Molecular Sizes

In this section we turn our attention to two other questions raised in Section 2.2, namely, how do
the molecules distribute themselves among the different possible species, and how does this
distribution vary with the extent of reaction? Since a range of species is present at each stage of
polymerization, it is apparent that a statistical answer is required for these questions. This time, our
answer begins, “On the average. . . .”

We shall continue basing our discussion on the step-growth polymerization of the hypothetical
monomer AB. In Section 2.7, we shall take a second look at this problem for the case of unequal
concentrations of A and B groups. For now, however, we assure this equality by considering a
monomer that contains one group of each type. In a previous discussion of the polymer formed
from this monomer, we noted that remnants of the original functional groups are still recognizable,
although modified, along the backbone of the polymer chain. This state of affairs is emphasized by
the notation Ababa. . . abaB in which the as and b’s of the ab linkages are groups of atoms carried
over the initial A and B reactive groups. In this type of polymer molecule, then, there are i—l a’s
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Figure 2.4 Comparison of catalyzed (solid lines) and uncatalyzed (dashed lines) polymerizations using
results calculated in Example 2.2. Here l—p (left ordinate) and Nn (right ordinate) are plotted versus time.

and 1 A if the degree of polymerization of the polymer is i. The a’s differ from the A’s precisely
in that the former have undergone reaction whereas the latter have not. At any point during the
polymerization reaction the fraction of the initial number of A groups that have reacted to become
a’s is given by p, and the fraction that remains as A’s is given by 1—1:). In these expressions p is
the same extent of reaction defined by Equation 2.2.3.

2.4.1 Mole Fractions of Species

We now turn to the question of evaluating the fraction of i—mers in a mixture as a function of
p. The fraction of molecules of a particular type in a population is just another way of describing
the probability of such a molecule. Hence our restated objective is to find the probability of an
i—mer in terms of p; we symbolize this quantity as the mole fraction x,(p). Since the i-mer consists
of i—l a’s and 1 A, its probability is the same as the probability of finding i—l a’s and 1 A in the
same molecule. Recalling from Chapter 1 how such probabilities are compounded, we write

x:(p) = film = pi"(1 — 1)) (2.4.1)
where pa and pA are the probabilities of individual a and A groups, respectively, and pa=p and
pA=1—p. Equation 2.4.1 is known as the most probable distribution, and it arises in several
circumstances in polymer science, in particular free radical polymerization (see Chapter 3). The
probability of an i-mer can be converted to the number of i-mer molecules in the reaction mixture,
m, by multiplying by the total number of molecules m in the mixture after the reaction has occurred
to the extent p:

n,- = m pi—‘(l —— p) (2.4.2)
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Note that n,/m gives the mole fraction of i-mers in a mixture at an extent of reaction p. As we have
seen before, m = (1 —p) [A]0, since each molecule in the mixture contains one unreacted A group.
Incorporating this result into Equation 2.4.2 yields

m = p“'(1 — P)2m0 (2.4.3)
where m0 is the total number of monomers present initially; m0: [A]0 for AB monomers. This
result may be used to evaluate the number of molecules of whatever degree of polymerization we
elect to consider, in terms of p and mo. As such, it provides the answer to one of the questions
posed earlier.

Figure 2.5 is a plot of the ratio fig/m versus 1' for several values of p. Several features are apparent
from Figure 2.5 concerning the number distribution of molecules among the various species
present:

1. On a number basis, the fraction of molecules always decreases with increasing 1', regardless of
the value of p. The distributions in Table 2.1 are unrealistic in this regard.

2. As p increases, the proportion of molecules with smaller 1' values decreases and the proportion
with larger i values increases.

3. The combination of effects described in item (2) tends to flatten the curves as p increases, but
not to the extent that the effect of item (1) disappears.

The number average degree of polymerization for these mixtures is easily obtained by recalling
the definition of this average from Section 1.7. It is given by the sum of all possible i values, with
each multiplied by its appropriate weighting factor provided by Equation 2.4.1:

mo 00 .
Nn = Z 3x10?) = Z arr—la — p) (2.4.4)

i=1 i=l

Note that the upper limit of the second summation has been shifted from rm, to 00 for mathematical
reasons, namely that the answer is simple and known (see Appendix). The change is of little
practical significance, since Equation 2.4.1 drops off for very large values of i. In particular, the
result derived in the Appendix is
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Figure 2.5 Mole fraction of i—mer as a function of i for several values of p.
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gm.— :(1—p)2

Simplification of the summation in Equation 2.4.4 thus yields

NI] 2 —— (2.4.5)

Of course, this is the same result that was obtained more simply in Equation 2.2.4. The earlier
result, however, was based on purely stoichiometric considerations and not on the detailed
distribution as is the present result.

2.4.2 Weight Fractions of Species

Next we turn our attention to the distribution of the molecules by weight among the various
species. This will lead directly to the determination of the weight average molecular weight and the
ratio MW/Mn.

We begin by recognizing that the weight fraction w; of i—mers in the polymer mixture at any
value of p equals the ratio of the mass of i-mer in the mixture divided by the mass of the total
mixture. The former is given by the product i rig-M0, where M0 is the molecular weight of the repeat
unit; the latter is given by mOMO. Therefore we write

w.- = 53 (2.4.6)
m0

into which Equation 2.4.3 may be substituted to give

w.- = ipirla — p)2 (2.4.7)

The weight fraction of i-mers is plotted as a function of i in Figure 2.6 for several large values of
p. Inspection of Figure 2.6 and comparison with Figure 2.5 reveals the following:
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Figure 2.6 Weight fraction of i-mer as a function of i for several values of p.
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1, At any p, very small and very large values of i contribute a lower weight fraction to the
mixture than do intermediate values of i. This arises because of the product in,- in Equation
2.4.6: n; is large for monomers, in which case i is low, and then n,- decreases as i increases.
At intermediate values of i, w,- goes through a maximum.

2, As p increases, the maximum in the curves shifts to larger i values and the tail of the curve
extends to higher values of i.

3. The effect in item (2) is not merely a matter of shifting curves toward higher i values as p
increases, but reflects a distinct broadening of the distribution of i values as p increases.

The weight average degree of polymerization is obtained by averaging the contributions of various
1' values using weight fractions as weighting factors in the averaging procedure:

mo 00

Ziw; 2310910 -19)2
_ £21{:1

Nw (2.4.8)00

in». Zipi—lu —p)2
121 i=1

where the upper limit on i has been extended to infinity as before. The new summation that we
need is also evaluated in the Appendix:

0°. ,-_ 1+1)
:12? I: 3(lvp)i=1

Using this in Equation 2.4.8 gives

_1+p
NW—

l—p
(2.4.9)

which is the desired result.
We saw in Chapter 1 that the ratio Mw/Mn, or polydispersity index, is widely used in polymer

chemistry as a measure of the width of a molecular weight distribution. If the effect of chain ends is
disregarded, this ratio is the same as the corresponding ratio of i values:

MW NW—— = — = 1 + 2.4.10M, Nn ‘0 ( )
where the ratio of Equation 2.4.9 to Equation 2.2.4 has been used. Table 2.2 lists values of NW, N“,
and NW/Nn for a range of high p values. Note that NW/Nn —> 2 as p —+ 1; this is a characteristic result

Table 2.2 Values of N“, NW, and NW/Nn for Various Large
Values of p

P Nn NW Nw/Nn
0.90 10.0 19.0 1.90
0.92 12.5 24.0 1.92
0.94 16.7 32.3 1.94
0.96 25.0 49.0 1.96
0.98 50.0 99.0 1.98
0.990 100 199 1 .990
0.992 125 249 1.992
0.994 167 332 1.994
0.996 250 499 1.996
0.998 500 999 1.998
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of the most probable distribution. In light of Equation 1.7.16, the standard deviation of the
molecular distribution is equal to Mn for the polymer sample produced by this polymerization.
In a manner of speaking, the molecular weight distribution is as wide as the average is high. The
broadening of the distribution with increasing p is dramatically shown by comparing the values
in Table 2.2 with the situation at a low p value, say p205. At p205, Nn=2, Nw=3, and
NW/Nn = 1.5.

Since Equation 2.3.5 and Equation 2.3.11 give p as a function of time for the catalyzed and
uncatalyzed polymerizations, respectively, the distributions discussed in the last few paragraphs
can also be expressed with time as the independent variable instead of p.

The results we have obtained on the basis of the hypothetical monomer AB are also applicable
to polymerizations between monomers of the AA and BB type, as long as the condition [A] = [B]
is maintained. In Section 2.7, we shall extend the arguments of this section to conditions in which
[A] 79 [B]. In the meanwhile, we interrupt this line of reasoning by considering a few particular
condensation polymers as examples of step-growth systems. The actual systems we discuss will
serve both to verify and reveal the limitations of the concepts we have been discussing. In addition,
they point out some of the topics that still need clarification. We anticipate some of the latter points
by noting the following:

1. When [A] 7é [B], both ends of the growing chain tend to be terminated by the group that is
present in excess. Subsequent reaction of such a molecule involves reaction with the limiting
group. The effect is a decrease in the maximum attainable degree of polymerization.

2. When a monofunctional reactant is present—-one containing a single A or B group—the effect
is also clearly a decrease in the average degree of polymerization. It is precisely because this
type of reactant can only react once that it is sometimes introduced into polymer formulations,
thereby eliminating the possibility of long-term combination of chain ends, and/or restricting
the average molecular weight.

Polyesters and polyamides are two of the most-studied step-growth polymers, as well as
substances of great commercial importance. We shall consider polyesters in Section 2.5 and
polyamides in Section 2.6.

2.5 Polyesters
The preceding discussions of the kinetics and molecular weight distributions in the step-growth
polymerizations of AB monomers are exemplified by esterification reactions between such
monomers as glycolic acid and w—hydroxydecanoic acid. Therefore one method of polyester
synthesis is the following:

1. Esterification of a hydroxycarboxylic acid
Several other chemical reactions are also widely used for the synthesis of these polymers. This

list enumerates some of the possibilities, and Table 2.3 illustrates these reactions by schematic
chemical equations.

Esterification of a diacid and a diol
Ester interchange with alcohol
Ester interchange with ester
Esterification of acid chlorides
Lactone polymerization9‘99?!”

We have not attempted to indicate the conditions of temperature, catalyst, solvent, and so on, for
these various reactions. For this type of information, references that deal specifically with synthetic
polymer chemistry should be consulted. In the next few paragraphs we shall comment on
the various routes to polyester formation in the order summarized above and followed in Table
2.3. The studies summarized in Figure 2.2 and Figure 2.3 are examples of Reaction 2 in Table 2.3.
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Table 2.3 Some Schematic Reactions for the Formation of Polyesters

1. Esterification of a hydroxycarboxylic acid:

0 O|

2. Esterification ot diacid and diol:

H o 0 H1 0 o
n HO/ 1\OH + n HOJLHQJLOH {0/ \D/ILHQ/K)” + 20 H20

3. Ester interchange with alcohol:

0 O
/U\R1 on2 + Fia—OH R1/L|\OR3 + R2_0H

4. Ester interchange with ester (“transesterification”):

O0 O

R1/U\OR2
+

R3/U\0Fi4 —_'" R1/U\0Fi4 Ra/LkOFiz

5. Esterification of acid chlorides (Schotten-Baumann reaction):0 ° 9 it 0
R1 1

n HO/ \OH + CIJLRELQ = {0/ \0 Hrs/“9n + 2n HCI

6. Lactone polymerization:

Ft 0

O n

While up to now we have emphasized bifunctional reactants, both monofunctional compounds and
monomers with functionality greater than 2 are present in some polymerization processes, either
intentionally or adventitiously. The effect of the monofunctional reactant is clearly to limit chain
growth. As noted above, a functionality greater than 2 results in branching. A type of polyester that
includes mono-, di-, and trifunctional monomers is the so-called alkyd resin. A typical example is
based on the polymerization of phthalic acid (or anhydride), glycerol, and an unsaturated mono-
carboxylic acid. The following suggests the structure of a portion of such a polyester:

OOH
0 oo0 ”’4.

Ho/Y\0H + H0 + H0 m —..
O 2.JOH I g/\O(\O m

( )0 fl
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The presence of the unsaturated substituent along this polyester backbone gives this polymer cross-
linking possibilities through a secondary reaction of the double bond. These polymers are used in
paints, varnishes, and lacquers, where the ultimate cross-linked product results from the oxidation of
the double bond as the coating cures. A cross-linked polyester could also result from Reaction (2.1)
without the unsaturated carboxylic acid, but the latter would produce a gel in which the entire
reaction mass solidified, and is therefore not as well suited to coating applications as a polymer that
cross-links upon “drying.”

Many of the reactions listed at the beginning of this section are acid catalyzed, although a number
of basic catalysts are also employed. Esterifications are equilibrium reactions, and often carried out
at elevated temperatures for favorable rate and equilibrium constants and to shift the equilibrium in
favor of the polymer by volatilization of the by-product molecules. An undesired feature of higher
polymerization temperatures is the increased possibility of side reactions, such as the dehydration of
the diol or the pyrolysis of the ester. Basic catalysts tend to produce fewer undesirable side reactions.

Ester exchange reactions are valuable, since, say, methyl esters of dicarboxylic acids are often
more soluble and easier to purify than the diacid itself. The methanol by-product is easily removed
by evaporation. Poly(ethylene terephthalate) is an example of a polymer prepared by double
application of Reaction 4 in Table 2.3. The first stage of the reaction is conducted at temperatures
below 200°C and involves the interchange of dimethyl terephthalate with ethylene glycol.

0 O O O
W + 2 HONOH —1- Hoxoy—Q—qofOH + 2 MeOH

Me—O O—Me

(2K)

The rate of this reaction is increased by using excess ethylene glycol, and removal of the methanol
is assured by the elevated temperature. Polymer is produced in the second stage after the
temperature is raised above the melting point of the polymer, about 260°C.

0 o o on HO_\_0>_©_<O_/_OH HQOXOW) + ” HONOH (2L)
n

The ethylene glycol liberated by Reaction (2L) is removed by lowering the pressure or purging
with an inert gas. Because the ethylene glycol produced by Reaction (2L) is removed, proper
stoichiometry is assured by proceeding via the intermediate bis(2—hydroxyethyl) terephthalate;
otherwise the excess glycol used initially would have a deleterious effect on the degree of
polymerization. Poly(ethylene terephthalate) is more familiar by some of its trade names: Mylar
as a film and Dacron, Kodel, or Terylene as fibers; it is also known by the acronym PET.

Ester interchange reactions like that shown in Reaction 4 in Table 2.3 (transesterification) can
be carried out on polyesters themselves to produce a scrambling between the two polymers.
Studies of this sort between high and low molecular weight prepolymers result in a single polymer
with the same molecular weight distribution as would have been obtained from a similarly
constituted diol—diacid mixture by direct polymerization. This is true when the time-catalyst
conditions allow the randomization to reach equilibrium. If the two prepolymers are polyesters
formed from different monomers, the product of the ester interchange reaction will be a copolymer
of some sort. If the reaction conditions favor esterification, the two chains will merely link together
and a block copolymer results. If the conditions favor the ester interchange reaction, then a
scrambled 00polymer molecule results. These possibilities underscore the idea that the derivations
of the preceding sections are based on complete equilibrium among all molecular species present
during the condensation reaction.

Example 2.3
It has been hypothesized that cross—linked polymers would have better mechanical properties if
interchain bridges were located at the ends rather than the center of chains. To test this, low
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molecular weight polyesters were synthesized from a diol and two different diacids: one saturated
and the other unsaturated. The synthetic procedure was such that the unsaturated acid units were
located at either the center (“centrene”) or the ends (“endene”) of the chains. Some pertinent
aspects of the overall experiment are listed below:

Endene Centrene
Step 1: 8 h at about 150°C—200°C

Maleic anhydride (mol) 0 2.0
Succinic anhydride (mol) 2.0 0
Diethylene glycol (mol) 3.0 3.0

Step 2: About 1/2 h at about 120°C—130°C
Maleic anhydride (mol) 2.0 0
Succinic anhydride (mol) 0 2.0
Catalyst 0 0

Step 3: 30% Styrene + catalyst
16 h at 55°C -l- 1 h at 110°C

Elastic modulus (Pa) 21,550 16,500

On the basis of these facts, do the following:
1.

2.
3.

Comment on the likelihood that the comonomers are segregated as the names of these
polymers suggest.
Sketch the structure of the average endene and centrene molecules.
Comment on the results in terms of the initial hypothesis.

Solution

1. Since the reaction conditions are mild in step 2 (only 6% as much time allowed as in step 1 at a
lower temperature) and no catalyst is present, it is unlikely that any significant amount of ester
scrambling occurs. Isomerization of maleate to fumarate is also known to be insignificant
under these conditions.
The idealized structures of these molecules are

0 O

HOMOVENONO

O
O O

O \
Howowom/ONONO

O O

Centrene
O O

0 O

O O
O O l\‘

HOJJWOwOA/ONo/VO

O O

Endene

A cross-linked product with unsaturation at the chain ends does, indeed, have a higher modulus.
This could be of commercial importance and indicates that industrial products might be formed
by a nonequilibrium process precisely for this sort of reason. A fuller discussion of the factors
that contribute to the modulus will be given in Chapter 10 and Chapter 12.

-—_—
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Acid chlorides are generally more reactive than the parent acids, so polyester fonnation via
Reaction 5 in Table 2.3 can be carried out in solution and at lower temperatures, in contrast with
the bulk reactions of the melt as described above. Again, the by-product molecules must be
eliminated either by distillation or precipitation. The method of interfacial condensation, described
in Section 2.6, can be applied to this type of reaction.

The formation of polyesters from the polymerization of lactones (Reaction 6 in Table 2.3) is a
ring—opening reaction that may follow either a step-growth or chain mechanism, depending on
conditions. For now our only concern is to note that the equilibrium representing this reaction in
Table 2.3 describes polymerization by the forward reaction and ring formation by the back reaction.
Rings clearly compete with polymers for monomer in all polymerizations. Throughout the chapter
we have assumed that all competing side reactions, including ring formation, could be neglected.

2.6 Polyamides
The discussion of polyamides parallels that of polyesters in many ways. To begin with, polyamides
may be fonned from an AB monomer, in this case amino acids:
1. Amidation of amino acids

Additional synthetic routes that closely resemble polyesters are also available. Several more of
these are listed below and are illustrated by schematic reactions in Table 2.4:

Table 2.4 Some Schematic Reactions for the Formation of Polyamides

1. Amidation of amino acids:

j: .. O
n

H2N._R OH
—'__‘_'—""- ‘(N‘R/Ugn 4..

”H20

2. Amidation of diamine and diacid:

O O O O

n H2N’R1“NH2 + n HOJ-LRZJkOH = {HERE/Lag“ 2” H20

3. Interchange reactions:

0 O O O

R1/LSHR2 + Plain/R4 min/R4 + F‘s/“\H’Fb

4. Amidation of acid chlorides:

O 0
j:

0
.Fi .n H2N 1"NH2 4' n CIJLRELCI —--'--...—— {NRLH Rfin+ 2n HCI

5. Lactam polymerization:
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Amidation of a diacid and a diamine
Interchange reactions
Amidation of acid chlorides
Lactam polymerizationP‘P‘E’JP

We only need to recall the trade name of synthetic polyamides, nylon, to recognize the importance
of these polymers and the reactions employed to prepare them. Recall the System for naming these
compounds (see Section 1.5): the first number after the name gives the number of carbon atoms in
the diamine, and the second, the number of carbons in the diacid.

The diacid—diamine amidation described in Reaction 2 in Table 2.4 has been widely studied in
the melt, solution, and the solid state. When equal amounts of two functional groups are present,
both the rate laws and the molecular weight distributions are given by the treatment of the
preceding sections. The stoichiometric balance between reactive groups is readily obtained
by precipitating the 1:1 ammonium salt from ethanol:

0 O O O
R

HQN/ 1\NH2 + HO/lLRQ/LkOH ——-——r- Hera/RKIQHC, + -0J\R{LL0— (2M)

This compound is sometimes called a nylon salt. The salt :3 polymer equilibrium is more
favorable to the production of polymer than in the case of polyesters, so this reaction is often
carried out in a sealed tube or autoclave at about 200°C until a fairly high extent of reaction is
reached; then the temperature is raised and the water driven off to attain high molecular weight
polymer. Also in contrast to polyesters, Reaction 1 and Reaction 2 in Table 2.4 can be conducted
rapidly without an acid catalyst.

The process represented by Reaction 2 in Table 2.4 actually entails a number of additional
equilibrium reactions. Some of the equilibria that have been considered include the following:

o o
H‘JLo' + Hal-5M “Aw—~— FJLNF + H2O (2N)

H
0 0

2.0
H‘JLOH +

H20
._..__.._a...._ rpi‘H\O-

+
H30+

( )

WNH2 + H20 #4. nHs , -0H (2.P)

2 H20 fl H30+ + ‘OH (2Q)
0 OH

(2R)

OH 0
r"JQOH + HZNM ~—.————-= ALNJ‘" + H30+ (Tl-S)

H

Reaction (2.N) describes the nylon salt $ nylon equilibrium. Reaction (2.0) and Reaction (2.P)
show proton transfer with water between carboxyl and amine groups. Since proton transfer
equilibria are involved, the self—ionization of water, Reaction (2.Q), must also be included.
Especially in the presence of acidic catalysts, Reaction (2R) and Reaction (2.8) are the equilibria
of the acid-catalyzed intermediate described in general in Reaction (2.G). The main point in
including all of these equilibria is to indicate that the precise concentration of A and B groups in
a diacid-diamine reaction mixture is a complicated function of the moisture content and the pH, as
well as the initial amounts of reactants introduced. Because of the high affinity for water of the
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various functional groups present, the complete removal of water is impossible: the equilibrium
moisture content of molten nylon-6,6 at 290°C under steam at 1 atm is 0.15%. Likewise, the
various ionic possibilities mean that at both high and low pH values the concentration of unionized
carboxyl or amine groups may be considerably different from the total concentration—without
regard to state of ionization—of these groups. As usual, upsetting the stoichiometric balance of the
reactive groups lowers the degree of polymerization attainable. The abundance of high-quality
nylon products is evidence that these complications have been overcome in practice.

Amide interchange reactions of the type represented by Reaction 3 in Table 2.4 are known to
occur more slowly than direct amidation; nevertheless, reactions between high and low molecular
weight polyamides result in a polymer of intermediate molecular weight. The polymer is initially a
block copolymer of the two starting materials, but randomization is eventually attained.

As with polyesters, the amidation reaction of acid chlorides may be carried out in solution because
of the enhanced reactivity of acid chlorides compared with carboxylic acids. A technique known as
interfacial polymerization has been employed for the formation of polyamides and other step-growth
polymers, including polyesters, polyurethanes, and polycarbonates. In this method, the polymeriza-
tion is carried out at the interface between two immiscible solutions, one of which contains one of the
dissolved reactants, while the second monomer is dissolved in the other. Figure 2.7 shows a
polyamide film forming at the interface between layers of an aqueous diamine solution and a solution
of diac id chloride in an organic solvent. In this form, interfacial polymerization is part of the standard
repertoire of chemical demonstrations. It is sometimes called the “nylon rope trick” because of the
filament of nylon that can be produced by withdrawing the collapsed film.

The amidation of the reactive groups in interfacial polymerization is governed by the rates at
which these groups can diffuse to the interface where the growing polymer is deposited. Accord-
ingly, new reactants add to existing chains rather than interacting to form new chains. This is

4-1“- Collapsed

at interface

Figure 2.7 Sketch of an interfacial polymerization with the collapsed polymer film being withdrawn from
the surface between the immiscible phases. (From Morgan, P.W. and Kwolek, S.L. J. Chem. Educ, 36, 182,
1959. With permission.)
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different than the bulk mechanism that we have discussed elsewhere in this chapter, and it
is evident that a higher molecular weight polymer should result from this difference. The HCl
by-product of the amidation reaction is neutralized by also dissolving an inorganic base in the
aqueous layer in interfacial polymerization. The choice of the organic solvent plays a role in
determining the properties of the polymer produced, probably because of the differences in solvent
quality for the resulting polymer. Since this reaction is carried out at low temperatures, the
complications associated with side reactions can be kept to a minimum. Polymer yield may be
increased by increasing the area of the interface between the two solutions by stirring.

Lactam polymerization represented by Reaction 5 in Table 2.4 is another example of a ring-
opening reaction, the reverse of which is a possible competitor with polymer for reactants. The
various mechanical properties of polyamides may be traced in many instances to the possibility of
intermolecular hydrogen bonding between the polymer molecules, and to the relatively stiff chains
these substances possess. The latter, in turn, may be understood by considering still another
equilibrium, this one among resonance structures along the chain backbone:

O 0—

MIL...» =2: .3}s (2T)
H H

The combination of strong intermolecular forces and high chain-stiffness accounts for the high
melting points of polyamides (see Chapter 13). The remarks of this section and Section 2.5
represent only a small fraction of what could be said about these important materials. We have
commented on aspects of the polymerization processes and of the polymers themselves that have a
direct bearing on the concepts discussed throughout this volume. This material provides an
excellent example of the symbiosis between theoretical and application-oriented viewpoints.
Each stimulates and reinforces the other with new challenges, although it must be conceded that
many industrial processes reach a fairly high degree of empirical refinement before the conceptual
basis is quantitatively deve10ped.

2.7 Stoichiometric Imbalance

We now turn to one of the problems we have sidestepped until now—the polymerization of
reactants in which a stoichiometric imbalance exists in the numbers of reactive groups A and B.
In earlier sections dealing with the quantitative aspects of step-growth polymerization, we focused
attention on monomers of the AB type to assure equality of reactive groups. The results obtained
above also apply to AA and BB polymerizations, provided that the numbers of reactive groups are
equal. There are obvious practical difficulties associated with the requirement of stoichiometric
balance. Rigorous purification of monomers is difficult and adds to the cost of the final product.
The effective loss of functional groups to side reactions imposes restrictions on the range of
experimental conditions at best and is unavoidable at worst. These latter considerations apply even
in the case of the AB monomer. We have already stated that the effect of the imbalance of A and
B groups is to lower the eventual degree of polymerization of the product. A quantitative
assessment of this limitation is what we now seek.

We define the problem by assuming that the polymerization involves AA and BB monomers
and that the B groups are present in excess. We define 12A and V3 to be the numbers of A and B
functional groups, respectively. The number of either of these quantities in the initial reaction
mixture is indicated by a superscript o; the numbers at various stages of reaction have no
superscript. The stoichiometric imbalance is defined by the ratio r, where

O

r _=_ 3% (2.7.1)
”B

By definition of the problem, this ratio cannot exceed unity.
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As with other problems with stoichiometry, it is the less-abundant reactant that limits the
product. Accordingly, we define the extent of reaction p to be the fraction of A groups that have
reacted at any point. Since A and B groups react in a 1:1 proportion, the number of B groups that
have reacted when the extent of reaction has reached p equals p123, which in turn equals prv‘fi. The
product pr gives the fraction of B groups that have reacted at any point. With these definitions in
mind, the following relationships are readily obtained:

1. The number of unreacted functional groups after the reaction reaches extent p is

VA 2 (1 —p)v’°A (2.7.2)

and

VB 2 (1 _ mpg : (1 _ mu (2.7.3),.

2. The total number of chain ends is given by the sum of Equation 2.7.2 and Equation 2.7.3:

1 _
Vends : (I — p + pr) VOA (2.7.4)

r

3. The total number of chains is half the number of chain ends:

1 1 0Vchains =
E

1 +
;

“— 2p VA (2H75)

4. The total number of repeat units distributed among these chains is the number of monomer
molecules present initially:

I l l l
I"repeat units 2

'2‘ VOA + 5 V2, :3
'2‘

(I + ;) V: (2.76)

The number average degree of polymerization is given by dividing the number of repeat units by
the number of chains, or

1+1/r _ l+rNu: _
1+1/rh2p 1+r-—2pr (2.7.7)

As a check that we have done this correctly, note that Equation 2.7.7 reduces to the previously
established Equation 2.4.5 when r = 1.

One distinction that should be pointed out involves the comparison of Equation 2.2.1 and
Equation 2.7.7. In the former we considered explicitly the AB monomer, whereas the latter is based
on the polymerization of AA and BB monomers. In both instances Nn is obtained by dividing the
total number of monomer molecules initially present by the total number of chains after the
reaction has occurred to extent p. Following the same procedure for different reaction mixtures
results in a different definition of the repeat unit. In the case of the AB monomer, the repeat unit is
the ab entity, which differs from AB by the elimination of the by-product molecule. In the case
of the AA and BB monomers, the repeat unit in the polymer is the aabb unit, which differs from
AA + BB by two by—product molecules. Equation 2.2.1 counts the number of ab units in the
polymer directly. Equation 2.7.7 counts the number of aa + bb units. The number of an + bb units
is twice the number of aabb units. Rather than attempting to formalize this distinction by
introducing more complex notation, we simply point out that application of the formulas of this
chapter to Specific systems must be accompanied by a reflection on the precise meaning of the
calculated quantity for the system under consideration.



Stoichiometric Imbalance 59

The distinction pointed out in the last paragraph carries over to the evaluation of MD from N“.
We assume that the chain length of the polymer is great enough to render unnecessary any
correction for the uniqueness of chain ends. In such a case, the molecular weight of the polymer
is obtained from the degree of polymerization by multiplying the latter by the molecular weight of
the repeat unit. The following examples illustrate the distinction under consideration:

1. Polymerization of an AB monomer is illustrated by the polyester formed from glycolic acid.
The repeat unit in this polymer has the structure

(05.7
and M0 = 58. Neglecting end groups, we have Mn = 58 ND with Nn given by Equation 2.2.1.

2. Polymerization of AA and BB monomers is illustrated by butane-1,4-diol and adipic acid. The
aabb repeat unit in the polymer has an M0 value of 200. If Equation 2.2.4 is used to evaluate
Nn, it gives the number of aa + bb units; therefore Mn 2 (200 Nn)/2.

3. An equivalent way of looking at the conclusion of item (2) is to recall that. Equation 2.7.7 gives
the (number average) number of monomers of both kinds in the polymer; we should multiply
this quantity by the average molecular weight of the two kinds of units in the structure: (88 +
112)/2 = 100.

Equation 2.7.7 also applies to the case when some of the excess B groups present are in the form
of monofunctional reagents. In this latter situation the definition of r is modified somewhat
(and labeled with a prime) to allow for the fact that some of the B groups are in BB-type monomers
(unprimed) and some are in monofunctional (primed) molecules:

’ — ———V3 2 7 3_vg+2v%,’ (H)

The parameter r’ continues to measure the ratio of the number of A and B groups; the factor 2
enters since the monofunctional reagent has the same effect on the degree of polymerization as a
difunctional molecule with two B groups, hence, is doubly effective compared to the latter. With
this modification taken into account, Equation 2.7.7 enables us to evaluate quantitatively the effect
of stoichiometric imbalance or monofunctional reagents, whether these are intentionally intro-
duced to regulate Nn or whether they arise from impurities or side reactions.

The parameter r varies between 0 and 1; as such it has the same range as p. Although the
quantitative effect of r and p on Nn is different, the qualitative effect is similar for each: the closer
each of these fractions is to unity, higher degrees of polymerization are obtained. Table 2.5 shows
some values of NH calculated from Equation 2.7.7 for several combinations of (larger values of)
r and p. Inspection of Table 2.5 reveals the following:

Table 2.5 Some Values of NH Calculated by Equation 2.7.7
for Values of r and p Close to Unity

r p = 0.95 p = 0.97 p = 0.99 p = 1.00
0.95 13.5 13.2 23.3 39.0
0.97 15.5 22.3 39.9 65.7
0.99 13.3 23.7 66.3 199
1.00 20.0 33.3 100 00
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1. For any value of r, Nn is greater for larger values of p; this conclusion is the same whether the
prOportions of A and B are balanced or not.

2. The final 0.05 increase in p has a bigger effect on Nn at r values that are closer to unity than for
less-balanced mixtures.

3. For any value of p, Nn is greater for larger values of r; stoichiometric imbalance lowers the
average chain-length for the preparation.

4. An 0.05 increase in r produces a much bigger increase in NH at p = 1 than in mixtures that have
reacted to a lesser extent.

An interesting special case occurs when p = 1; Equation 2.7.7 then becomes

_1+r
Nn l—r

(2.7.9)

The following example illustrates some of the concepts developed in this section.

Example 2.4
It is desired to prepare a polyester with MH = 5000 by reacting 1 mol of butane—1,4—diol with 1 mol
of adipic acid.

1. Calculate the value of p at which the reaction should be stopped to obtain this polymer,
assuming perfect stoichiometric balance and neglecting end group effects on Mn.

2. Assuming that 0.5 mol% of the diol is lost to polymerization by dehydration to olefin, what
would be the value of Mn if the reaction were carried out to the same extent as in (1)?
How could the loss in (2) be offset so that the desired polymer is still obtained?

4. Suppose the total number of carboxyl groups in the original mixture is 2 mol, of which 1.0% is
present as acetic acid to render the resulting polymer inert to subsequent esterification. What
value of p would be required to produce the desired polymer in this case, assuming no other
stoichiometric imbalance?

5-”

Solution
The various expressions we have developed in this section relating p to the size of the polymer
are all based on N“. Accordingly, we note that the average reactant molecule in this mixture
has a molecular weight of 100 as calculated above. Therefore the desired polymer has a value of
NH = 50.

1. We use Equation 2.4.5 for the case of equal numbers of A and B groups and find that
p = 1— I/Nn = 0.980. Even though Equation 2.4.5 was derived for an AB monomer, it applies
to this case with the “average monomer” as the repeat unit.

2. Component AA is the diol in this case and v3, = 0.995 mol; therefore r: 0.995/ 1.00 = 0.995.
We use Equation 2.7.7 and solve for Nn with p = 0.980 and r= 0.995:

_ 1.995—
1.995 — 2 (0.995) (0.980)

and therefore Mn 2 44.5 x 100 = 4450 g mol“.
3. The effect of the lost hydroxyl groups can be offset by carrying out the polymerization to a

higher extent of reaction. We use Equation 2.7.7 and solve for p with Nn = 50 and r = 0.995:

1 1 + r 1 1.995= 1 -— _ = 1 — — — = . 2p ( N)( 2r ) ( 50) 1.990 098 5

4. The monofunctional reagent B’ is the acetic acid in this case and the number of monofunc—
tional carboxyl groups is 2(0.010) = 0.020 = 125. The number of B groups in BB monomers is

Nn = 44.5
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1.980: VB. We use Equation 2.7.8 to define r’ for this situation, assuming the number of
hydroxyl groups equals 2.00 mol:

_ 2.00_
1.980 + 2 (0.020)

I
r = 0.990

Equation 2.7.7 is now solved for p using Nn = 50 and r’ = 0.990:

1 1 + r’ 1 1.990
= 1—— = 1———— —=0.9849p ( NH) ( 2r’ ) ( 50) 1.980

Remember from Section 2.3 that a progressively longer period of time is required to shift the
reaction to larger values of p. In practice, therefore, the effects of side reactions and monofunc-
tional reactants are often not compensated by longer polymerization times, but are accepted in the
form of lower molecular weight polymers.

2.8 Chapter Summary
In this chapter we have considered step-growth or condensation polymerization, one of the two
main routes to synthetic polymers. Our emphasis has been on the description of the distribution of
polymer sizes as a function of the extent of reaction and the concentration of reactants, and on the
associated kinetics. In addition, we have given an introduction to the two major classes of
commercial condensation polymers, polyesters and polyamides, and the different ways they may
be produced. The principal results are as follows:

1. In the simplest case of stoichiometric balance, that is, equal numbers of A and B reactive
groups, the number average degree of polymerization N,1 is given by 1/(1—p), where p is the
extent of reaction, equal to the fraction of A (or B) groups reacted. In general, therefore,
the reaction must be driven far toward products (p—il) before appreciable molecular weights
can be attained.

2. The resulting distribution of molecular sizes is called the most probable distribution and the
associated polydispersity index approaches 2 as p—il. Two important features of this distri-
bution are that there are always more i-mers present than (i+l)-mers, for any value of i, but
there is an intermediate value of i for which the weight fraction w,- is maximum.

3. If the reaction is run in the presence of a catalyst (the usual situation), then N,1 should grow
linearly in time, whereas for the uncatalyzed case, N,1 will grow with the square root of time.

4. In reality N will almost always be lower than the theoretical value for a given p, due to a
combination of side reactions, including ring formation, contamination by monofunctional
reagents, and stoichiometric imbalance.

5. The analysis of these reactions builds on the principle of equal reactivity, the assumption that
the reactivity of a given functional group is independent of the molecular weight of the
polymer to which it is attached. This assumption is quite reliable in most cases of interest.

Problems

1. Howard describes a model system used to test the molecular weight distribution of a conden-
sation polymer.)r “The polymer sample was an acetic acid—stabilized equilibrium nylon-
6,6. Analysis showed it to have the following end group composition (in equivalents per
106 g): acetyl=28.9, amine=35.3, and carboxyl=96.5. The number average degree of

*GJ. Howard, J. Polym. sci, 37, 310 (1959).
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polymerization is, therefore, 110 and the conversion degree ( = extent of reaction) 2 0.9909.”
Verify the self-consistency of those numbers.

2. Haward et al. have reported some research in which a copolymer of styrene and hydro-
xyethylmethacrylate was cross-linked by hexamethylene di-isocyanate.’r Draw the structural
formula for a portion of this cross-linked polymer and indicate what part of the molecule is
the result of a condensation reaction and what part results from addition polymerization.
These authors indicate that the cross-linking reaction is carried out in sufficiently dilute
solutions of copolymer that the cross—linking is primarily intramolecular rather than intermo-
lecular. Explain the distinction between these two terms and why concentration affects the
relative amounts of each.

3. The polymerization of B-carboxymethyl caprolactam has been observed to consist of initial
isomerization via a second-order kinetic process followed by condensation of the isomer to
polymer:

NH NH2 0 O
O . . . .Isomenzatlon : O Polymerizatlonr:

3 N
HO

O O
O

The rates of polymerization are thus of first order in VNH2 and in V(c0),o or second order
overall. Since VNH2= V(C0)20, the rate=kc2, if catalyzed; third order is expected under
uncatalyzed conditions. The indirect evaluation of c was accomplished by measuring the
amount of monomer reacted, and the average degree of polymerization of the mixture was
determined by viscosity at different times. The following data were obtained at 270°C; the
early part of the experiment gives nonlinear results.1E Graphically test whether these data
indicate catalyzed or uncatalyzed conditions, and evaluate the rate of constant for polymer-
ization at 270°C. Propose a name for the polymer.

1' (min) 6 (Mole fraction) t (min) 6 (Mole fraction)

20 0.042 90 0.015
30 0.039 1 10 0.013
40 0.028 120 0.012
50 0.024 150 0.0096
60 0.021 180 0.0082
80 0.018

4. Examination of Figure 2.5 shows that N,/N is greater for i240 at p=0.97 than at either
p=0.95 or p=0.99. This is generally true: various i—mers go through a maximum in
numerical abundance as p increases. Show that the extent of reaction at which this maximum
occurs varies with i as follows: pmax =(i — 1)/z'. For a catalyzed AB reaction, extend this
expression to give a function for the time required for an i-mer to reach its maximum
numerical abundance. If k0 = 2.47 X 10‘"4 L mol‘1 3'1 at 160.5°C for the polymerization of
12-hydroxystearic acid,§ calculate the time at which 15-mers show their maximum abundance
if the initial concentration of monomer is 3.0 M.

*RN. Haward, B.M. Parker, and E.F.T. White, Adv. Chem... 91, 49s (1969).
111x. Reimschuessel, Adv. Chem, 91, 717 (1969).
9 C.E.H. Bawn and MB. Huglin, Poiymer, 3, 257 (1962).
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5. In the presence of pyridine—cuprous chloride catalyst, the following polymerization occurs:

Me Me

n OH +—g—og——+H OH+nH20
Me Me n

In an investigation to examine the mechanism of this reaction, the dimer (1' = 2)

Me Me

HQOQW
Me Me

was used as a starting material. The composition of the mixture was studied as the reaction
progressed and the accompanying results were obtained:1

, Weight percent composition in reaction mixture
Percent of theoretical
02 absorbed Monomer Dimer Trimer Tetramer

9 1 69 15 9
12 1 .5 68 24 9
2O 3 38 .5 23 9
35 6 26 21 1 1
60 l l 4 4 1
80 1 O 0 0

Plot a family of curves, each of different i, with composition as the y-axis and 02 absorbed
as the x—axis. Evaluate w,- by Equation 2.4.7 for 1'21, 2, 3, and 4 and 0.1 S p S 0.9 in
increments of 0.1. Plot these results (w,- on the y-axis) on a separate graph drawn to the same
scale as the experimental results. Compare your calculated curves with the experimental
curves with respect to each of the following points: (1) coordinates used, (2) general shape
of curves, and (3) labeling of curves.
The polymer described in the last problem is commercially called poly(phenylene oxide),
which is not a “proper” name for a molecule with this structure. Propose a more correct name.
Use the results of the last problem to criticize or defend the following proposition: The
experimental data for dimer polymerization can be understood if it is assumed that one
molecule of water and one molecule of monomer may split out in the condensation step.
Steps involving incorporation of the monomer itself (with only water split out) also occur.
Taylor carefully fractionated a sample of nylon-6,6 and determined the weight fraction of
different i—mers in the resulting mixtureft The results obtained are given below. Evaluate NW
from these data, then use Equation 2.4.9 to calculate the corresponding value of p. Calculate
the theoretical weight fraction of i-mers using this value of p and a suitable array of i values.
Plot your theoretical curve and the above data points on the same graph. Criticize or defend the

TGt). Cooper and A. Katchman, Adv. Chem, 91, 660 (1969).
1GB. Taylor, J. Am. Chem. 806., 69, 638 (1947).
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following proposition: although the fit of the data points is acceptable with this value of p, it
appears that a slightly smaller value of p would give an even better fit.

i w, x 10—4 r w, x 10—4

12 6.5 31 1 15.2
35 19.6 334 14.1
53 29.4 357 13.0
31 33.0 330 11.5

104 35.4 403 1 1.0
127 36.5 426 9.1
150 33.0 449 7.2
173 27.6 472 6.5
196 25.2 495 4.9
219 22.9 513 4.3
242 19.4 541 3.9
265 13.5 564 3.3
233 16.3

8. Paper chromatograms were developed for 50:50 blends of nylon-6,6 and nylon-6,10 after the
mixture had been heated to 290°C for various periods of time.’r The following observations
describe the chromatograms after the indicated times of heating:

0 h—two spots with Rf values of individual polymers.
1/4 h—two distinct spots, but closer together than those of 0 h.
1/2 h—spots are linked together.
3/4 h—one long, diffuse spot.
11/2 h—one compact spot, intermediate Rf value.

On the basis of these observations, criticize or defend the following prOposition: the fact that
the separate spots fuse into a single spot of intermediate Rf value proves that block copoly—
mers form between the two species within the blend upon heating.

9. Reimschuessel and Dege polymerized caprolactam in sealed tubes containing about 0.0205
mol H20 per mole caprolactam.1 In addition, acetic acid (V), sebacic acid (S), hexamethylene
diamine (H), and trimesic acid (T) were introduced as additives into separate runs. The
following table lists (all data per mole caprolactam) the amounts of additive present and the
analysis for end groups in various runs. Neglecting end group effects, calculate Mn for each of
these polymers from the end group data. Are the trends in molecular weight qualitatively what
would be expected in terms of the role of the additive in the reaction mixture? Explain briefly.

Additives Moles additive —-—COOH (mEq) ——NH2 (mEq)

None — 5.40 4.99
V 0.0205 19.8 2.3
S 0.0102 21.1 2.3
H 0.0102 1.4 19.7
T 0.0067 22.0 2.5

10. In the study described in the last problem, caprolactam was polymerized for 24 h at 225°C in
sealed tubes containing various amounts of water. Mn and MW were measured for the

l‘C.W. Ayers, J. Appl. Chem, 4, 444 (1954).
tH.L. Reimschuessel and OJ. Dege, J. Polym. sax. 14-1. 2343 (1971).
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resulting mixture by osmometry (see Chapter 7) and light scattering (see Chapter 8),
respectively, and the following results were obtained:

Moles H20 (x 103)/mole
Caprolactam Mn x 10'3 MD x 10"3

49.3 13.4 20.0
34.0 16.4 25.6
25.6 17.9 29.8
20.5 19.4 36.6

Use the molecular weight ratio to calculate the apparent extent of reaction of the caprolactam
in these systems. Is the variation in p qualitatively consistent with your expectations of the
effect of increased water content in the system? Plot p versus moisture content and estimate
by extrapolation the equilibrium moisture content of nylon-6 at 255°C. Does the apparent
equilibrium moisture content of this polymer seem consistent with the value given in Section
2.6 for nylon-6,6 at 290°C?

11. At 270°C adipic acid decomposes to the extent of 0.31 mol% after 1.5 h.Jr Suppose an initially
equimolar mixture of adipic acid and diol achieves a value of p = 0.990 after 1.5 h, compare
the expected and observed values of ND in this experiment. Criticize or defend the following
proposition: the difference between the observed and expected values would be even greater
than calculated above if, instead of the extent of reaction being measured analytically, the
value of p expected (neglecting decomposition) after 1.5 h was calculated by an appropriate
kinetic equation.

12. Show the reaction sequence and the structure of the resulting polymer from the polyconden-
sation of these two monomers; note that the reaction (a) has two distinct steps, and that (b) it
is base-catalyzed.

o o
A _

(a) o
|\%

o + NH2QO—QNH2

o o

R
13. A polyester is prepared under conditions of stoichiometric balance, but no attempt is made to

remove water. Eventually, the reaction comes to equilibrium with equilibrium constant K. If
[COOH]0 is the initial concentration of carboxylic acid groups, show that the equilibrium
water concentration is

[COOH]0[H20] = KNnavn — 1)
14. For the most probable distribution, it is clear that there is always more i-mer present than

(i+1)-mer, at any 0 < p < 1. However, the absolute amount of an i-mer should go through a
maximum with time, as the reaction progresses; there is zero to start, but at late enough stages
i-mer will have mostly reacted to contribute to all the larger species. Use the chain rule and any

WKV. Korshak and S.V. Vinogradova, Polyester-s, Pergamon, Oxford, 1965.
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suitable simplifications (k[A]0t >> 1‘?) to find the degrees of conversion at which the mole
fraction and the absolute concentration of i-mer have their maximum in time. Compare this to the
number average degree of polymerization at the same conversion; does the answer make sense?

15. For the polymerization of succinic acid and 1,4—butanediol under stoichiometric balance in
xylene:

(a) Draw the chemical structures of the reactants, products, and important intermediates for
both the strong acid—catalyzed and self—catalyzed case.

(b) Generate a quantitative plot of NI, versus time for the self—catalyzed case up to 28,000 s,
given k: 6 X 10”3 mol‘2 L2 s"2 and 3 mol L‘1 starting concentration of each
monomer. How many hours would it take to make a polymer with NI] 2 300‘?

(c) Do the same for the catalyzed case, with k z 6 x 10‘2 mol"1 L s“1 and the same starting
concentration. How many hours would it take to make a polymer with NI, 2 300‘?

(d) Qualitatively explain the origin of the different shapes of the curves in the two plots.

16. Hydrolysis of an aromatic polyamide with M,l = 24,116 gives 39.31% by weight m-amino-
aniline, 59.81% terephthalic acid, and 0.88% benzoic acid. Draw the repeat unit structure of
the polymer. Calculate the degree of polymerization and the extent of reaction. Calculate
what the degree of polymerization would have been if the amount of benzoic acid were
doubled.

17. Calculate the feed ratio of adipic acid and hexamethylene diamine necessary to achieve a
molecular weight of approximately 10,000 at 99.5% conversion. What would the identity of
the end groups be in the resulting polymer?
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Chain-Growth Polymerization

3.1 Introduction

In Chapter 1 we indicated that the category of addition polymers is best characterized by the
mechanism of the polymerization reaction rather than by the addition reaction itself. This is known
to be a chain mechanism, so in the case of addition polymers we have chain reactions producing chain
molecules. One thing to bear in mind is the two uses of the word chain in this discussion. The word
chain continues to offer the best description of large polymer molecules. A chain reaction, on the other
hand, describes a whole series of successive events triggered by some initial occurrence. We
sometimes encounter this description of highway accidents in which one traffic mishap on a fogbound
highway results in a pileup of colliding vehicles that can extend for miles. In nuclear reactors a
cascade of fission reactions occurs, which is initiated by the capture of the first neutron. In both of
these examples some initiating event is required. This is also true in chain-growth polymerization.

In the above examples the size of the chain can be measured by considering the number of
automobile collisions that result from the first accident, or the number of fission reactions that follow
from the first neutron capture. When we think about the number of monomers that react as a result of a
single initiation step, we are led directly to the degree of polymerization of the resulting molecule. In
this way the chain mechanism and the properties of the polymer chains are directly related.

Chain reactions do not go on forever. The fog may clear and the improved visibility ends the suc-
cession of accidents. Neutron-scavenging control rods may be inserted to shut down a nuclear reactor.
The chemical reactions that terminate polymer chain growth are also an important part of the poly-
merization mechanism. Killing off the reactive intermediate that keeps the chain going is the essence
of a termination reaction. Some interesting polymers can be formed when this termination process
is suppressed; these are called living polymers, and will be discussed extensively in Chapter 4.

The kind of reaction that produces a “dead” polymer from a growing chain depends on the
nature of the reactive intermediate. These intermediates may be free radicals, anions, or cations.
We shall devote the rest of this chapter to a discussion of the free-radical mechanism, as it readily
lends itself to a very general treatment. Furthermore, it is by far the most important chain-growth
mechanism from a commercial point of view; examples include polyethylene (specifically,
low-density polyethylene, LDPE), polystyrene, poly(vinyl chloride), and poly(acry1ates) and
poly(methacrylates). Anionic polymerization plays a central role in Chapter 4, where we discuss
the so-called living polymerizations. In this chapter we deal exclusively with homopolymers. The
important case of copolymers formed by chain-growth mechanisms is taken up in Chapter 4 and
Chapter 5; block copolymers in the former, statistical or random copolymers in the latter.

3.2 Chain-Growth and Step-Growth Polymerizations: Some Comparisons
Our primary focus in this section is to point out some of the similarities and differences between
step-growth and chain-growth polymerizations. In so doing we shall also have the opportunity to
indicate some of the different types of chain-growth polymerization systems.

In Chapter 2 we saw that step-growth polymerizations occur, one step at a time, through a series of
relatively simple organic reactions. By treating the reactivity of the functional groups as independent
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of the size of the molecule carrying the group, the entire course of the polymerization is described by
the conversion of these groups to their condensation products. Two consequences of this are that
both high yield and high molecular weight require the reaction to approach completion. In contrast,
chain-growth polymerization occurs by introducing an active growth center into a reservoir of
monomer, followed by the addition of many monomers to that center by a chain-type kinetic
mechanism. The active center is ultimately killed off by a termination step. The (average) degree
of polymerization that characterizes the system depends on the frequency of addition steps relative to
termination steps. Thus high-molecular—weight polymer can be produced almost immediately. The
only thing that is accomplished by allowing the reaction to proceed further is an increased yield of
polymer. The molecular weight of the product is relatively unaffected. (This simple argument tends
to break down at high extents of conversion. For this reason we shall focus attention in this chapter on
low to moderate conversions to polymer, except where noted.)

Step-growth polymerizations can be schematically represented by one of the individual reaction
steps A + B —> ab, with the realization that the species so connected can be any molecules
containing A and B groups. Chain-growth polymerization, by contrast, requires at least three
distinctly different kinds of reactions to describe the mechanism. These three types of reactions
will be discussed in the following sections in considerable detail; for now our purpose is just to
introduce some vocabulary. The principal steps in the chain-growth mechanism are the following:

1. Initiation. An active species 1* is formed by the decomposition of an initiator molecule I:

1—) 1* (3A)
2. Propagation. The initiator fragment reacts with a monomer M to begin the conversion to

polymer; the center of activity is retained in the adduct. Monomers continue to add in the same
way until polymers P,- are formed with the degree of polymerization i:

1* + M —> IM* J—> IMM* —)—»—> 19:" (3B)
If i is large enough, the initiator fragment—an endgroup—need not be written explicitly.

3. Termination. By some reaction, generally involving two polymers containing active centers,
the growth center is deactivated, resulting in dead polymer:

P?" + Pj“ —> PM (dead polymer) (3.C)

Elsewhere in this chapter we shall see that other reactions—notably, chain transfer and chain
inhibition—also need to be considered to give a more fully developed picture of chain-growth
polymerization, but we shall omit these for the time being. Most of this chapter examines the
kinetics of these three mechanistic steps. We shall describe the rates of the three general kinds of
reactions by the notation Ri, RP, and Rt for initiation, propagation, and termination, respectively.

In the last chapter we presented arguments supporting the idea that reactivity is independent of
molecular size. Although the chemical reactions are certainly different between this chapter and
the last, we shall also adopt this assumption of equal reactivity for addition polymerization. For
step-growth polymerization this assumption simplified the discussion tremendously and at the
same time needed careful qualification. We recall that the equal reactivity premise is valid only
after an initial size dependence for smaller molecules. The same variability applies to the
propagation step of addition polymerizations for short-chain oligomers, although things soon
level off and the assumption of equal reactivity holds. We are thus able to treat all propagation
steps by the single rate constant kp. Since the total polymer may be the product of hundreds or
even thousands of such steps, no serious error is made in neglecting the variation that occurs in the
first few steps.

In Section 2.3 we rationalized that, say, the first 50% of a step-growth reaction might be different
from the second 50% because the reaction causes dramatic changes in the polarity of the reaction
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mixture. We shall see that, under certain circumstances, the rate of addition polymerization
accelerates as the extent of conversion to polymer increases due to a composition-dependent effect
on termination. In spite of these deviations from the assumption of equal reactivity at all extents of
reaction, we continue to make this assumption because of the simplification it allows. We will then
seek to explain the deviations from this ideal or to find experimental conditions—low conversions to
polymer—under which the assumptions apply. This approach is common in chemistry; for example,
most discussions of gases begin with the ideal gas law and describe real gases as deviating from the
ideal at high pressures and approaching the ideal as pressure approaches zero.

In the last chapter we saw that two reactive groups per molecule are the norm for the formation
of linear step-growth polymers. A pair of monofunctional reactants might undergo essentially the
same reaction, but no polymer is produced because no additional functional groups remain to react.
On the other hand, if a molecule contains more than two reactive groups, then branched or cross-
linked products can result from step-growth polymerization. By comparison, a wide variety
of unsaturated monomers undergo chain-growth polymerization. A single kind of monomer
suffices—more than one yields a copolymer—and more than one double bond per monomer
may result in branching or cross-linking. For example, the 1,2-addition reaction of butadiene
results in a chain that has a substituent vinyl group capable of branch formation. Divinyl benzene is
an example of a bifunctional monomer, which is used as a cross-linking agent in chain-growth
polymerizations. We shall be primarily concerned with various alkenes or olefins as the monomers
of interest; however, the carbon—oxygen double bond in aldehydes and ketones can also serve as
the unsaturation required for addition polymerization. The polymerization of alkenes yields a
carbon atom backbone, whereas the carbonyl group introduces carbon and oxygen atoms into the
backbone, thereby illustrating the inadequacy of backbone composition as a basis for distinguish-
ing between addition and condensation polymers.

It might be noted that most (butnot all) alkenes are polymerizable by the chain mechanism involving
free-radical intermediates, whereas the carbonyl group is generally not polymerized by the free-
radical mechanism. Carbonyl groups and some carbon—carbon double bonds are polymerized by
ionic mechanisms. Monomers display far more specificity where the ionic mechanism is involved
than with the free-radical mechanism. For example, acrylamide will polymerize through an anionic
intermediate but not a cationic one, N—vinyl pyrrolidones by cationic but not anionic intermediates, and
halogenated olefins by neither ionic species. In all ofthese cases free-radical polymerization is possible.

The initiators used in addition polymerizations are sometimes called “catalysts,” although
strictly speaking this is a misnomer. A true catalyst is recoverable at the end of the reaction,
chemically unchanged. This is not true of the initiator molecules in most addition polymerizations.
Monomer and polymer are the initial and final states of the polymerization process, and these
govern the thermodynamics of the reaction; the nature and concentration of the intermediates in
the process, on the other hand, determine the rate. This makes initiator and catalyst synonyms
for the same material. The former term stresses the effect of the reagent on the intermediate, and
the latter its effect on the rate. The term catalyst is particularly common in the language of ionic
polymerizations, but this terminology should not obscure the importance of the initiation step in
the overall polymerization mechanism.

In the next three sections (Section 3.3 through Section 3.5) we consider initiation, termination,
and propagation steps in the free-radical mechanism for addition polymerization. As noted above
two additional steps, inhibition and chain transfer, are being ignored at this point. We shall take up
these latter topics in Section 3.8.

3.3 Initiation

In this section we shall discuss the initiation step of free-radical polymerization. This discussion is
centered around initiators and their decomposition behavior. The first requirement for an initiator
is that it be a source of free radicals. In addition, the radicals must be produced at an acceptable rate
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Table 3.1 Examples of Free—Radical Initiation Reactions

1. Organic peroxides or hydroperoxides

O/EO’O
(DE/O , 2 (Zia

Benzoyl peroxide

one?) cri-
Cumyl hydroperoxide

2. A20 compounds

Me Me Me

NC><N5N><Me —* 2Me+ + NEN
NC Me

2,2'-Azobisisobutyronitrile (AIBN)

3. Redox systems

H202 + Fez+ ——-— ‘OH + Fe3+ + -OH

3205‘ + F63" ——-r- so? + Fe3+ + so;-

4. Electromagnetic radiation

0:;0
H

O

.00

___V_,.

0).“

Benzoin

at convenient temperatures; have the required solubility behavior; transfer their activity to mono-
mers efficiently; be amenable to analysis, preparation, purification, and so on.

OI

3.3.1 Initiation Reactions

Some of the most widely used initiator systems are listed below, and Table 3.1 illustrates their
behavior by typical reactions:

1. Organic peroxides or hydroperoxides
2. A20 compounds
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3, Redox systems
4. Thermal or light energy

Peroxides and hydroperoxides are useful as initiators because of the low dissociation energy of
the 0—0 bond. This very property makes the range of possible compounds somewhat limited
because of the instability of these reagents. In the case of azo compounds the homolysis is driven
by the liberation of the very stable N2 molecule, despite the relatively high dissociation energy of
the CeN bond. The redox systems listed in Table 3.1 have the advantage of water solubility,
although redox systems that operate in organic solvents are also available. One advantage of redox
reactions as a source of free radicals is the fact that these reactions often proceed more rapidly and
at lower temperatures than the thermal homolysis of the peroxide and azo compounds.

The initiation reactions shown under the heading of electromagnetic radiation in Table 3.1
indicate two possibilities out of a large number of examples that might be cited. One mode of
photochemical initiation involves the direct excitation of the monomer with subsequent bond
rupture. The second example cited is the photolytic fragmentation of initiators such as alkyl
halides and ketones. Because of the specificity of light absorption, photochemical initiators include
a wider variety of compounds than those which decompose thermally. Photosensitizers can also be
used to absorb and transfer radiation energy to either monomer or initiator molecules. Finally, we
note that high-energy radiation such as x-rays and 'y-rays and particulate radiation such as or or [3
particles can also produce free radicals. These latter sources of radiant energy are nonselective and
produce a wider array of initiating species. Even though such high-energy radiations produce both
ionic and free-radical species, the polymerizations that are so initiated follow the free-radical
mechanism almost exclusively, except at very low temperatures, where ionic intermediates
become more stable. We shall not deal further with these higher energy sources of initiating
radicals, but we shall return to light as a photochemical initiator because of its utility in the
evaluation of kinetic rate constants.

3.3.2 Fate of Free Radicals

All of the reactions listed in Table 3.1 produce free radicals, so we are presented with a number of
alternatives for initiating a polymerization reaction. Our next concern is the fate of these radicals
or, stated in terms of our interest in polymers, the efficiency with which these radicals initiate
polymerization. Since these free radicals are relatively reactive species, there are a variety of
processes they can undergo as alternatives to adding to monomers to form polymer.

In discussing mechanisms in the last chapter (Reaction 2.F) we noted that the entrapment of two
reactive species in the same solvent cage may be considered a transition state in the reaction of
these species. Reactions such as the thermal homolysis of peroxides and azo compounds result in
the formation of two radicals already trapped together in a cage that promotes direct recombina-
tion, as with the 2-cyanopropy1 radicals from 2,2’-azobisisobutyronitrile (AIBN),

Me;
CN

Me

’l'.

CN
/ CqMe

2 Mefil - (3D)
Me \ Me

Mekc”
N

$111:
CN

Me

or the recombination of degradation products of the initial radicals, as with acetoxy radicals from
acetyl peroxide.
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0
JL ,Me + 002

o / Me 0
/IL (3B)

2 Me O

\ Me—Me + 2(302

In both of these examples, initiator is consumed, but no polymerization is started.
Once the radicals diffuse out of the solvent cage, reaction with monomer is the most

probable reaction in bulk polymerizations, since monomers are the species most likely to be encoun-
tered. Reaction with polymer radicals or initiator molecules cannot be ruled out, but these are less
important because of the lower concentration of the latter species. In the presence of solvent, reactions
between the initiator radical and the solvent may effectively compete with polymer initiation. This
depends very much on the specific chemicals involved. For example, carbon tetrachloride is quite
reactive toward radicals because of the resonance stabilization of the solvent radical produced:

(3| (3| (3| (3| (3| (3| (3| (3|‘
(3| (3| (3| (3|

[1]
While this reaction with solvent continues to provide free radicals, these may be less reactive
species than the original initiator fragments. We shall have more to say about the transfer of free—
radical functionality to solvent in Section 3.8.

The significant thing about these, and numerous other side reactions that could be described, is
the fact that they lower the efficiency of the initiator in promoting polymerization. To quantify this
concept we define the initiator efii‘ciencyf to be the following fraction:

_ Radicals incorporated into polymer
Radicals formed by initiator (33.1)

The initiator efficiency is not an exclusive property of the initiator, but depends on the conditions of
the polymerization experiment, including the solvent. In many experimental situations, f lies in the
range of 0.3—0.8. The efficiency should be regarded as an empirical parameter whose value is
determined experimentally. Several methods are used for the evaluation of initiator efficiency, the
best being the direct analysis for initiator fragments as endgroups compared to the amount of initiator
consumed, with proper allowances for stoichiometry. As an endgroup method, this procedure is
difficult in addition polymers, where molecular weights are higher than in condensation polymers.
Research with isotopically labeled initiators is particularly useful in this application. Since the quantity
is so dependent on the conditions of the experiment, it should be monitored for each system studied.

Scavengers such as diphenylpicrylhydrazyl radicals [II] react with other radicals and thus
provide an indirect method for analysis of the number of free radicals in a system:

N—N N02 4- R 0 adduct
(3 .F)

[H]
The diphenylpicrylhydrazyl radical itself is readily followed spectrophotometrically, as it loses an
intense purple color on reacting. Unfortunately, this reaction is not always quantitative.

3.3.3 Kinetics of Initiation

We recall some of the ideas of kinetics from the summary given in Section 2.2 and recognize that
the rates of initiator decomposition can be developed in terms of the reactions listed in Table 3.1.
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Using the change in initiator radical concentration d[I-]/dt to monitor the rates, we write the
following:

1. For peroxides and azo compounds

d[I-] _
’5" _ 2d (3.3.2)
where kd is the rate constant for the homolytic decomposition of the initiator and [I] is the
concentration of the initiator. The factor 2 appears because of the stoichiometry in these
particular reactions.

2. For redox systems

d—E? : k[0x][Red] (3.3.3)
where the bracketed terms describe the concentrations of oxidizing and reducing agents and k
is the rate constant for the particular reactants.

3. For photochemical initiation

9—371 : q’ abs (3.3.4)
where [abs is the intensity of the light absorbed and the constant (15’ is called the quantum yield. The
factor 2 is again included for reasons of stoichiometry.

Since (1/2) d[ I°]/dt : —d[I]/dt in the case of the azo initiators, Equation 3.3.2 can also be
written as —d[I]/dt= kd[l] or, by integration, 1n([I]/[I]0) = —kdt, where [Hg is the initiator concen—
tration at t = 0. Figure 3.1 shows a test of this relationship for AIBN in xylene at 77°C. Except for a
short induction period, the data points fall on a straight line. The evaluation of kd from these data is
presented in the following example.

Example 3.1
The decomposition of AIBN in xylene at 77°C was studied by measuring the volume of N2 evolved
as a function of time. The volumes obtained at time t and r: 00 are V, and V00, respectively. Show
that the manner of plotting used in Figure 3.1 is consistent with the integrated first—order rate law
and evaluate kd.

0.0 —

A
S" >3
J- -—0.4 —
v

D)
.9

_08 _.

J_ l _l l

0 80 160 240 320
Time (min)

Figure 3.1 Volume of nitrogen evolved from the decomposition of AIBN at 77°C plotted according to the
first—order rate law as discussed in Example 3.1. (Reprinted from Amett, L.M., J. Am. Chem. Soc, 74, 2027,
1952. With permission.)
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Solution
The ratio [I]/[I]0 gives the fraction of initiator remaining at time t. The volume of N2 evolved is:

1. V0 = 0 at t: 0, when no decomposition has occurred.
2. V00 at t: 00, when complete decomposition has occurred.
3. V, at time t, when some fraction of initiator has decomposed.

The fraction decomposed at t is given by (V,- V0)/(VOO— V0) and the fraction remaining
at t is l — (V,—V0)/(VOO—V0)= (VOO—V,)/(VOO—-VO). Since VO=0, this becomes (VOO—V,)/VOO or
[I]/[I]O = l — V,/VOO. Therefore a plot of ln(l —-V,/VOO) versus t is predicted to be linear with slope
—kd. (If logarithms to base 10 were used, the slope would equal -—kd/2.303.)

From Figure 3.1,

——0.4 — (—-0.8) _ ‘kd
81 =—_ —2.5 10‘3 ' ‘1 =0136 160 _ 320 X mm 2.303
kd = 5.8 x 10—3 min—1

Next we assume that only a fractionfof these initiator fragments actually reacts with monomer
to transfer the radical functionality to monomer:

I. + M L M (3.G)
As indicated in the last section, we regard the reactivity of the species IP; to be independent of

the value of 1'. Accordingly, all subsequent additions to IM3 in Reaction (3.G) are pr0pagation steps
and Reaction (3.G) represents the initiation of polymerization. Although it is premature at this
point, we disregard endgroups and represent the polymeric radicals of whatever size by the symbol
Po. Accordingly, we write the following for the initiation of polymer radicals:

1. By peroxide and azo compounds

d[P°]
T

= kdfl] (3.3.5)

2. By redox systems

5:? = flc[0x][Red] (3.3.6)

3. By photochemical initiation

@ : 2f‘ie’rlabs = 2(iif’labs (33°?)dt

where we have combined the factors off and qfr’ into a composite quantum yield qb, since both of
the separate factors are measures of efficiency.

Any one of these expressions gives the rate of initiation R, for the particular catalytic system
employed. We shall focus attention on the homolytic decomposition of a single initiator as the
mode of initiation throughout most of this chapter, since this reaction typifies the most widely used
free-radical initiators. Appropriate expressions for initiation that follow Equation 3.3.6 are readily
derived.

3.3.4 Photochemical Initiation

An important application of photochemical initiation is in the determination of the rate constants
that appear in the overall analysis of the chain-growth mechanism. Although we outline this
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method in Section 3.6, it is worthwhile to develop Equation 3.3.7 somewhat further at this point. It
is not feasible to give a detailed treatment of light absorption here. Instead, we summarize some
pertinent relationships and refer the reader who desires more information to standard textbooks of
analytical or physical chemistry.

1. Intensity of light transmitted (subscript t) through a sample It depends on the intensity of the
incident (subscript 0) light 10, the thickness of the sample b, and the concentration [c] of
the absorbing species

1, = 106—616“) (3.3.8)

where the proportionality constants is called the absorption coefficient (or molar absorptivity
if [c] is in moles/liter) and is a property of the absorber. The reader may recognize this
equation as a form of the famous Beer’s law.

2. Absorbance A as measured by spectrophotometers is defined as

10A = loglo (X) (3.3.9)

The variation in absorbance with wavelength reflects the wavelength dependence of .9.
3. Since lab, equals the difference 10 — It

labs = M1 — e‘elcl”) (3.3.10)
If the exponent in Equation 3.3.10 is small—which in practice means dilute solutions, since
most absorption experiments are done where .9 is large—then the exponential can be expanded
(see Appendix), e)r g 1 +x + - - o, with only the leading terms retained to give

labs = Io(8[clb) (3.3.11)

4. Substituting this result into Equation 3.3.7 gives

% = 2¢106[c]b (3.3.12)

where [c] is the concentration of monomer or initiator for the two reactions shown in Table 3.1.

3.3.5 Temperature Dependence of Initiation Rates

Note that although Equation 3.3.5 and Equation 3.3.12 are both first-order rate laws, the physical
significance of the proportionality factors is quite different in the two cases. The rate constants
shown in Equation 3.3.5 and Equation 3.3.6 show a temperature dependence described by the
Arrhenius equation:

k = Ae_E*/RT (3.3. 13)
where 13* is the activation energy, which is interpreted as the height of the energy barrier to a
reaction, and A is the prefactor. Activation energies are evaluated from experiments in which rate
constants are measured at different temperatures. Taking logarithms on both sides of Equation
3.3.13 gives In k = In A —E*/RT. Therefore 13* is obtained from the slope of a plot of In k against
1/T. As usual, T is in kelvin and R and E* are in (the same) energy units.

Since 8* is positive according to this picture, the form of the Arrhenius equation assures that
k gets larger as T increases. This means that a larger proportion of molecules have sufficient energy
to surmount the energy barrier at higher temperatures. This assumes, of course, that thermal
energy is the source of 13*, something that is not the case in photoinitiated reactions. The effective
first-order rate constants k and Io8b—fOI' thermal initiation and photoinitiation, respectively—do
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Table 3.2 Rate Constants (at the Indicated Temperature) and Activation Energies for Some Initiator
Decomposition Reactions

Initiator Solvent r (”(3) k, (3") 53 (kJ moi“)

2,2’-Azobisisobutyronitrile Benzene 70 3.17 x 10—5 123.4
ccn 40 2.15 x 10-7 128.4
Toluene 100 1.60 x 10-3 121.3

t-Buty] peroxide Benzene 100 8.8 x 10—7 146.9
Benzoyl peroxide Benzene 70 1.48 x 10—5 123.8

Cumene 60 1.45 x 10'6 120.5
t—Butyl hydroperoxide Benzene 169 2.0 x 10—5 170.7

Source: Data from Masson, J .C. in Polymer Handbook, 3rd ed., Brandrup, J. and Immergut, E.H. (Eds), Wiley, New York,
1989.

not show the same temperature dependence. The former follows the Arrhenius equation, whereas
the latter cluster of terms in Equation 3.3.12 is essentially independent of T.

The activation energies for the decomposition (subscript (1) reaction of several different
initiators in various solvents are shown in Table 3.2. Also listed are values of kd for these systems
at the temperature shown. The Arrhenius equation can be used in the form In (kd,1/kd,2)= —(E*/R)
(l/Tl — HR) to evaluate kd values for these systems at temperatures different from those given in
Table 3.2.

3.4 Termination

The formation of initiator radicals is not the only process that determines the concentration of free
radicals in a polymerization system. Polymer propagation itself does not change the radical
concentration; it merely converts one radical to another. Termination steps also occur, however,
and these remove radicals from the system. We shall discuss combination and disproportionation
reactions as the two principal modes of termination.

3.4.1 Combination and Disproportionation

Termination by combination results in the simultaneous destruction of two radicals by direct
coupling:

Pf. + 'Pj --> Pg+j (3.H)

The degrees of polymerization i and j in the two combining radicals can have any values, and the
molecular weight of the product molecule will be considerably higher on the average than the
radicals so terminated. The polymeric product molecule contains two initiator fragments per
molecule by this mode of termination. Note also that for a vinyl monomer, such as styrene or
methyl methacrylate, the combination reaction produces a single head-to-head linkage, with the
side groups attached to adjacent backbone carbons instead of every other carbon.

Termination by disproportionation comes about when an atom, usually hydrogen, is transferred
from one polymer radical to another:

X X X X
Pom + rpm ”—6" Pi—1/\/ + \fpjfi (3.1)

H H

This mode of termination produces a negligible effect on the molecular weight of the reacting
species, but it does produce a terminal unsaturation in one of the dead polymer molecules.
Each polymer molecule contains one initiator fragment when termination occurs by disproportionation.
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Kinetic analysis of the two modes of termination is quite straightforward, since each mode of
termination involves a bimolecular reaction between two radicals. Accordingly, we write the
following:

1. For general termination,

Rt = “(E5 = 2kt[P']2 (3.4.1)
dr

where RI and kt are the rate and rate constant for termination (subscript t) and the factor 2
enters (by convention) because two radicals are lost for each termination step.

2. The polymer radical concentration in Equation 3.4.1 represents the total concentration of all
such species, regardless of their degree of polymerization; that is,

[P] = Z [Pr] (3.4.2)
all i

3. For combination,

d P-R. = —Q = 24,413.12 (3.4.3)dz

where the subscript c specifically indicates termination by combination.
4. For disproportionation,

d P0Rt = —¥ = 2kt,d[P~]2 (3.4.4)dz

where the subscript d specifically indicates termination by disproportionation.
5. In the event that the two modes of termination are not distinguished, Equation 3.4.1 represents

the sum of Equation 3.4.3 and Equation 3.4.4, or

kt = kt,c + kt,d (3.4.5)

Combination and disproportionation are competitive processes and do not occur to the same
extent for all polymers, although in general combination is more prevalent. For poly(methyl
methacrylate), both reactions contribute to termination, with disproportionation favored. Both
rate constants for termination individually follow the Arrhenius equation, so the relative amounts
of termination by the two modes are given by

Termination by combination _ kt»: _ At,ce_Efa°/RT _ At,c —(E§':c— Eifd)
3 4 6Termination by disproportionation

_
km

—
At,de*5?,d/RT

—
And

CXP( RT ) ( . ° )

Since the disproportionation reaction requires bond breaking, which is not required for combin-
ation, Ei'fd is expected to be greater than Efifc. This causes the exponential to be large at low
temperatures, making combination the preferred mode of termination under these circumstances.
Note that at higher temperatures this bias in favor of one mode of termination over another
decreases as the difference in activation energies becomes smaller relative to the thermal energy
RT. Experimental results on modes of termination show that this qualitative argument must be
applied cautiously. The actual determination of the partitioning between the two modes of
termination is best accomplished by analysis of endgroups, using the difference in endgroup
distribution noted above.

Table 3.3 lists the activation energies for termination (these are overall values, not identified as
to mode) of several different radicals. The rate constants for termination at 60°C are also given. We
shall see in Section 3.6 how these constants are determined.
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Table 3.3 Rate Constants at 60°C and Activation Energies for Some
Termination Reactions

Monomer E; (kJ 1110]“) k, x 10“7 (L mor‘ s")
Acrylonitrile 1.5 78.2
Methyl acrylate 22.2 0.95
Methyl methacrylate 11.9 2.55
Styrene 8.0 6.0
Vinyl acetate 21.9 2.9
2-Vinyl pyridine 21.0 3.3

Source: Data from Korus, R. and O’Driscoll, K.F. in Polymer Handbook, 3rd ed.,
Brandrup, J. and Irnmergut, E.H. (Eds), Wiley, New York, 1989.

3.4.2 Effect of Termination on Conversion to Polymer

The assumption that k values are constant over the entire duration of the reaction breaks down
for termination reactions in bulk polymerizations. Here, as in Section 2.2, we can consider the
termination process———whether by combination or disproportionation—to depend on the rates at
which polymer molecules can diffuse into (characterized by ki) or out of (characterized by k0) the
same solvent cage and the rate at which chemical reaction between them (characterized by k,)
occurs in that cage. In Chapter 2, we saw that two limiting cases of Equation 2.2.8 could be readily
identified:

1. Rate of diffusion > rate of reaction (Equation 2.2.9):

kt = —kr (3.4.7)

2. This situation seems highly probable for step-growth polymerization because of the high
activation energy of many condensation reactions. The constants for the diffusion-dependent
steps, which might be functions of molecular size or the extent of the reaction, cancel out.

3. Rate of reaction > rate of diffusion (Equation 2.2.10):

lct = ki (3.4.8)

4. This situation is expected to apply to radical termination, especially by combination, because
of the high reactivity of the trapped radicals. Only one constant appears that depends on the
diffusion of the polymer radicals, so it cannot cancel out and may contribute to a dependence
of kt on the extent of reaction or the degree of polymerization.

Figure 3.2 shows how the percent conversion of methyl methacrylate to polymer varies with
time. These experiments were carried out in benzene at 50°C. The different curves correspond to
different concentrations of monomer. Up to about 40% monomer, the conversion varies smoothly
with time, gradually slowing down at higher conversions owing to the depletion of monomer. At
high concentrations, however, the polymerization starts to show an acceleration between 20% and
40% conversion. This behavior, known as the Trommsdorjf efi‘ect [2], is attributed to a decrease in
the rate of termination with increasing conversion. This, in turn, is due to the increase in viscosity
that has an adverse effect on kt through Equation 3.4.8. Considerations of this sort are important in
bulk polymerizations where high conversion is the objective, but this complication is something
we will avoid. Hence we shall be mainly concerned with solution polymerization and/or low
degrees of conversion where Itt may be justifiably treated as a true constant. We shall see in Section
3.8 that the introduction of solvent is accompanied by some complications of its own, but we shall
ignore this for now.
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Figure 3.2 Acceleration of the polymerization rate for methyl methacrylate at the concentrations shown in
benzene at 50°C. (Reprinted from Schulz, G.V. and Harborth, G., Makromol. Chem, 1, 106, 1948. With
permission.)

3.4.3 Stationary-State Radical Concentration

Polymer propagation steps do not change the total radical concentration, so we recognize that the
two opposing processes, initiation and termination, will eventually reach a point of balance. This
condition is called the stationary state and is characterized by a constant total concentration of free
radicals. Under stationary-state conditions (subscript s) the net rate of initiation must equal the net
rate of termination. Using Equation 3.3.5 for the rate of initiation (i.e., two radicals per initiator
molecule) and Equation 3.4.1 for termination, we write

2mm = 2mm: (3.4.9)
01'

flcd ”2
[13.15: (7;) [111/2 (3.4.10)

This important equation shows that the stationary-state free-radical concentration increases with
[I]”2 and varies directly with kit/2 and inversely with ktm. The concentration of free radicals
determines the rate at which polymer forms and the eventual molecular weight of the polymer,
since each radical is a growth site. We shall examine these aspects of Equation 3.4.10 in the next
section. We conclude this section with a numerical example illustrating the stationary-state radical
concentration for a typical system.

Example 3.2
For an initiator concentration that is constant at [I]0, the nonstationary-state radical concentration
varies with time according to the following expression:

[12.] = eXP[(4fkdkt[I]0)l/2 t] — 1
[P]. exp [(4flcdk,[l]0)'/2 t] + 1

Calculate [Po]S and the time required for the free-radical concentration to reach 99% of this value
using the following as typical values for constants and concentrations: kd = 1.0 X 10"4 s", kt:
3 x 107 L mol—l s“,f: 1/2, and [I]O = 10‘3 mol L“. Comment on the assumption [I] = [I]0 that
was made in deriving this nonstationary-state equation.
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Solution
Use Equation 3.4.10 to evaluate [Po]S for the system under consideration:

1/2 —4 —3 l/2
[P 1, — (@1110) —( 3 X107 ) _ (1.67 x 10 )

= 4.08 x 10—8 mol L-1

This low concentration is typical of free-radical polymerizations. Next we inquire how long it will
take the free-radical concentration to reach 0.99 [P°]s, or 4.04 x 10—8 mol L‘1 in this case. Let
a =(4fkdkt[l]0)1/2 and rearrange the expression given to solve for t when [P°]/[P°]s = 0.99: 0.99
(ear + 1) = e‘”— 1, or 1 + 0.99 = e‘”(1 — 0.99). Therefore the product at = ln(1.99/0.01) = In 199 = 5.29,
and a = [4(1/2)(1.0 x 10—4)(3 x 10500—511”: 2.45 3*. Hence t= 529/245 = 2.16 s.

This short period is also typical of the time required to reach the stationary state. The
assumption that [I] = [He may be assessed by examining the integrated form of Equation 3.3.2
for this system and calculating the ratio [I]/[I]0 after 2.16 s:

ln(fl) = —kdt = ~(1.0 >< 10—4)(2.16)= —2.16 X 10*4
[110

[I]—— = 0.9998
[Ila

Over the time required to reach the stationary state, the initiator concentration is essentially
unchanged. As a matter of fact, it would take about 100 s for [I] to reach 0.99 [HO and about 8.5
min to reach 0.95 me, so the assumption that [I] = [Hg is entirely justified over the short times
involved.

3.5 Propagation
The propagation of polymer chains is easy to consider under stationary-state conditions. As the
preceding example illustrates, the stationary state is reached very rapidly, so we lose only a brief
period at the start of the reaction by restricting ourselves to the stationary state. Of course, the
stationary-state approximation breaks down at the end of the reaction also, when the radical
concentration drops toward zero. We shall restrict our attention to relatively low conversion to
polymer, however, to avoid the complications of the Trommsdorff effect. Therefore deviations
from the stationary state at long times need not concern us.

It is worth taking a moment to examine the propagation step more explicitly in terms of the
reaction mechanism itself. As an example, consider the case of styrene as a representative vinyl
monomer. The polystyryl radical is stabilized on the terminal-substituted carbon by resonance
delocalization:sea~a>s
Consequently, the addition of the next monomer is virtually exclusively in a “head-to-tail” arrange-
ment, leading to an all-carbon backbone with substituents (X) on alternating backbone atoms:
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W' + AX —" WYW (3.1)
X X X X X X X

This should be contrasted with the single head-to-head linkage that results from termination by
recombination (recall Reaction (3.H)).

3.5.1 Rate Laws for Propagation

Consideration of Reaction (3.B) leads to

d Mfi._[_].:kp[M][p.] (3.5.1)dt

as the expression for the rate at which monomer is converted to polymer. In writing this expression,
we assume the following:

1. The radical concentration has the stationary—state value given by Equation 3.4.10.
2. kp is a constant independent of the size of the growing chain and the extent of conversion

to polymer.
3. The rate at which monomer is consumed is equal to the rate of polymer formation RP:

d[M] _ d[polymer] _
dt

T
dr

_ Rp (3.5.2)

Combining Equation 3.4.10 and Equation 3.5.1 yields

d
1/2

k—t) [111/2 = kapp[M][I]1/2 (3-5-3)RD 2 kp[M]<

in which the second form reminds us that an experimental study of the rate of polymerization
yields a single apparent rate constant (subscript app), which the mechanism reveals to be a
composite of three different rate constants. Equation 3.5.3 shows that the rate of polymerization
is first order in monomer and half order in initiator and depends on the rate constants for each of
the three types of steps—initiation, propagation, and termination—“that make up the chain mech-
anism. Since the concentrations change with time, it is important to realize that Equation 3.5.3
gives an instantaneous rate of polymerization at the concentrations considered. The equation can
be applied to the initial concentrations of monomer and initiator in a reaction mixture only to
describe the initial rate of polymerization. Unless stated otherwise, we shall assume the initial
conditions apply when we use this result.

The initial rate of polymerization is a measurable quantity. The amount of polymer formed after
various times in the early stages of the reaction can be determined directly by precipitating the
polymer and weighing. Alternatively, some property such as the volume of the system (or
the density, the refractive index, or the viscosity) can be measured. Using an analysis similar to
that followed in Example 3.1, we can relate the values of the property measured at r, r: 0 and
t: 00 to the fraction of monomer converted to polymer. If the rate of polymerization is measured
under known and essentially constant concentrations of monomer and initiator, then the cluster
of constants (fkgkd/ktX/Z can be evaluated from the experiment. As noted earlier, f is best
investigated by endgroup analysis. Even with the factor f excluded, experiments on the rate of
polymerization still leave us with three unknowns. Two other measurable relationships among
these unknowns must be found if the individual constants are to be resolved. In anticipation of this
deve10pment, we list values of kp and the corresponding activation energies for several common
monomers in Table 3.4.
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Table 3.4 Rate Constants at 60°C and Activation Energies for Some
Propagation Reactions

Monomer Eff (kl moi—l) k1, x 10‘3 (L mol‘l s‘l)

Acrylonitrile 16.2 1.96
Methyl acrylate 29.7 2.09
Methyl methacrylate 26.4 0.515
Styrene 26.0 0. 165
Vinyl acetate 18.0 2.30
2-Vinyl pyridine 33.0 0.186

Source: Data from Korus, R. and O’Driscoll, K.F. in Polymer Handbook, 3rd ed.,
Brandrup, J. and Immergut, E.H. (Eds), Wiley, New York, 1989.

Equation 3.5.3 is an imponant result, which can be expressed in several alternate forms:

1. The variation in monomer concentration may be taken into account by writing the equation in
the integrated form and treating the initiator concentration as constant at [I]0 over the interval
considered:

1/2
[M] _ flcgkd

111(m) — —(
kt

[HO t (3.54)

where [M] = [M]0 at t: 0.
2. Instead of using 2fl<d [I] for the rate of initiation, we can simply write this latter quantity as Ri,

in which case the stationary-state radical concentration is

R. 1/2
[Pr]. = (2—1;) (3.5.5)

and the rate of polymerization becomes

k3
1/2

1/2RP = (Z—kt) l'i’i [M] (3.5.6)

If the rate of initiation is investigated independently, the rate of polymerization measures a
combination of kp and kt.

3. Alternatively, Equation 3.3.6 and Equation 3.3.7 can be used as expressions for R1 in Equation
3.5.6 to describe redox or photoinitiated polymerization.

Figure 3.3 shows some data that constitute a test of Equation 3.5.3. In Figure 3.33, RP and [M] are
plotted on a log—log scale for a constant level of redox initiator. The slope of this line, which
indicates the order of the polymerization with respect to monomer, is unity, showing that the
polymerization of methyl methacrylate is first order in monomer. Figure 3.3b is a similar plot of
the initial rate of polymerization—which essentially maintains the monomer at constant concentra—
tion—versus initiator concentration for two different monomer—initiator combinations. Each of the
lines has a slope of 1/2, indicating a half-order dependence on [I] as predicted by Equation 3.5.3.

3.5.2 Temperature Dependence of Propagation Rates

The apparent rate constant in Equation 3.5.3 follows the Arrhenius equation and yields an apparent
activation energy:

1k —1A 5513‘” 357“app—“app“R—f (--)
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Figure 3.3 Log—log plots of RP versus concentration that confirm the kinetic order with reSpect to the
constituent varied. (a) Monomer (methyl methacrylate) concentration varied at constant initiator concentra—
tion. (Data from Sugirnura, T. and Minoura, Y., J. Polym. Sci, A-l, 2735, 1966.) (b) Initiator concentration
varied: AIBN in methyl methacrylate (data from Amett, L.M., J. Am. Chem. Soc., 74, 2027, 1952) and
benzoyl peroxide in styrene (data from Mayo, F.R., Gregg, R.A., and Matheson, M.S., J. Am. Chem. 806., 73,
1691, 1951).

The mechanistic analysis of the rate of polymerization and the fact that the separate constants
individually follow the Arrhenius equations means that

1 /2
ln km, = ln k, (73,9)

—1 fAd ”2 Eg‘+E,§“/2—E;"/2_ “AP _ _ RT

(3.5.8)

This enables us to identify the apparent activation energy in Equation 3.5.7 with the difference in
E* values for the various steps:

E3; 5*Egg, =E§+7—7‘ (3.5.9)

Equation 3.5.9 allows us to conveniently assess the effect of temperature variation on the rate of
polymerization. This effect is considered in the following example.

Example 3.3
Using typical activation energies from Table 3.2 through Table 3.4, estimate the percent change in
the rate of polymerization with a 1°C change in temperature at 50°C, for both thermally initiated
and photoinitiated polymerization.
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Solution
Write Equation 3.5.3 in the form

1
1n RP = 1n kapp + In [M] +

2
In [I]

Taking the derivative, treating [M] and [I] as constants with respect to T while k is a function of T:

dR(:11a =R—P= drnk...pp
P

Expand d In kapp by means of the Arrhenius equation via Equation 3.5.8:

dRp E? E:—=d1Aa ——d _P =__PPRp " PP (R75 RTZdT
Substitute Equation 3.5.9 for £31,131

dRp _ E; + Iii/2 —
133/sRp _ RT2

Finally, we recognize that a 1°C temperature variation can be approximated as (17' and that
(dRp/Rp) x 100 gives the approximate percent change in the rate of polymerization. Taking average
values of E* from the appropriate tables, we obtain E3; = 145, E? = 16.8, and E3 = 24.9 k] mol‘l.
For thermally initiated polymerization

dfl _ (24.9 + 145/2 — 16.8/2)(103)(1) = 0.103RP (8.314)(323)2

or 10.3% per °C.
For photoinitiation there is no activation energy for the initiator decomposition; hence

dRp _ (24.9 —— 16.8/2)(103)(1)
Rp _

(8.314)(323)2
= 1.90 x 10-2

or 1.90% per °C. Note that the initiator decomposition makes the largest contribution to E*;
therefore photoinitiated processes display a considerably lower temperature dependence for the
rate of polymerization.

3.5.3 Kinetic Chain Length

Suppose we consider the ratio

Rp/Ri = d[M]/dt
—d[I]/dt

under conditions where an initiator yields one radical, where f= 1, and where the final polymer
contains one initiator fragment per molecule. For this set of conditions the ratio gives the number
of monomers polymerized per chain initiated, which is the average degree of polymerization.
A more general development of this idea is based on a quantity called the kinetic chain length 17.
The kinetic chain length is defined as the ratio of the number of propagation steps to the number of
initiation steps, regardless of the mode of termination:

= _ (3.5.10)
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where the second form of this expression uses the stationary-state condition R, =Rt. The signifi-
cance of the kinetic chain length is seen in the following statements:

1, For termination by disproportionation

17 = Nn (3.5.11)

where N" is the number average degree of polymerization.
2. For termination by combination

Nnv =
3

(3.5.12)

3. 17 is an average quantity—indicated by the overbar—since not all kinetic chains are identical
any more than all molecular chains are.

Using Equation 3.5.3 and Equation 3.4.4 for RP and Rt, respectively, we write

kp[P°][M] _ kp[M]— = _ 3.5.13V 2k. [Po 12 2mm ( )
This may be combined with Equation 3.4.10 to give the stationary-state value for 17:

k M k M
17 : p[ ] p[ ] (3.5.14)mums/M”

Z
awash”:

As with the rate of polymerization, we see from Equation 3.5.14 that the kinetic chain length
depends on the monomer and initiator concentrations and on the constants for the three different
kinds of kinetic processes that constitute the mechanism. When the initial monomer and initiator
concentrations are used, Equation 3.5.14 describes the initial polymer formed. The initial degree of
polymerization is a measurable quantity, so Equation 3.5.14 provides a second functional rela-
tionship, distinct from Equation 3.5 .3, among experimentally available quantities—ND, [M], [I]—
and theoretically important parameters—-—kp, kt, and kd. Note that the mode of termination, which
establishes the connection between 17 and Nn, and the value off are both accessible through
endgroup characterization. Thus we have a second equation with three unknowns; one more
independent equation and the evaluation of the individual kinetic constants from experimental
results will be feasible.

There are several additional points about Equation 3.5.14 that are worthy of comment. First it
must be recalled that we have intentionally ignored any kinetic factors other than initiation,
propagation, and termination. We shall see in Section 3.8 that another process, chain transfer,
has significant effects on the molecular weight of a polymer. The result we have obtained,
therefore, is properly designated as the kinetic chain length without transfer. A second observation
is that 1'» depends not only on the nature and concentration of the monomer, but also on the nature
and concentration of the initiator. The latter determines the number of different sites competing for
the addition of monomer, so it is not surprising that L7 is decreased by increases in either kd or [I].
Finally, we observe that both kp and kt are properties of a particular monomer. The relative
molecular weight that a specific monomer tends toward—all other things being equal—is charac—
terized by the ratio ftp/kt”2 for a monomer. Using the values in Table 3.3 and Table 3.4, we see that
kp/kt”2 equals 0.678 for methyl acrylate and 0.0213 for styrene at 60°C. The kinetic chain length for
poly(methyl acrylate) is thus expected to be about 32 times greater than for polystyrene if the two
are prepared with the same initiator (kd) and the same concentrations [M] and [1]. Extension of this
type of comparison to the degree of polymerization requires that the two polymers compared show
the same proportion of the modes of termination. Thus for vinyl acetate (subscript V) relative to
acrylonitrile (subscript A) at 60°C, with the same provisos as above, {xv/17A = 6 while
v/NHA = 3 because of the differences in the mode of termination for the two.
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The proviso “all other things being equal” in discussing the last point clearly applies to
temperature as well, since the kinetic constants can be highly sensitive to temperature. To evaluate
the effect of temperature variation on the molecular weight of an addition polymer, we follow the
same sort of logic as was used in Example 3.3:

1. Take logarithms of Equation 3.5.14:

1n :7 = 1n kp(ktkd)_1/2 + 1n(%) (3.5.15)

2. Differentiate with respect to T, assuming the temperature dependence of the concentrations is
negligible compared to that of the rate constants:

9; = dln k, .— 1 /2d 1h (ktkd) (3.5.16)

3. By the Arrhenius equation (1 ln k = —d(E*/RT) = (E*/ R72) dT; therefore

cw __ 13;; — Eat/2 — Eat/2d],
I7

T
RT2 (3.5.17)

It is interesting to compare the application of this result to thermally initiated and photoinitiated
polymerizations as we did in Example 3.3. Again using the average values of the constants from
Table 3.2 through Table 3.4 and taking T= 50°C, we calculate that 17 decreases by about 6.5% per
°C for thermal initiation and increases by about 2% per °C for photoinitiation. It is clearly the large
activation energy for initiator dissociation that makes the difference. This term is omitted in the
case of photoinitiation, where the temperature increase produces a bigger effect on propagation
than on termination. On the other hand, for thermal initiation an increase in temperature produces a
large increase in the number of growth centers, with the attendant reduction of the average kinetic
chain length.

Photoinitiation is not as important as thermal initiation in the overall picture of free-radical
chain-growth polymerization. The foregoing discussion reveals, however, that the contrast
between the two modes of initiation does provide insight into, and confirmation of, various aspects
of addition polymerization. The most important application of photoinitiated polymerization is in
providing a third experimental relationship among the kinetic parameters of the chain mechanism.
We shall consider this in the next section.

3.6 Radical Lifetime

In the preceding section we observed that both the rate of polymerization and the degree of
polymerization under stationary-state conditions can be interpreted to yield some cluster of the
constants kp, k,, and kd. The situation is summarized diagrammatically in Figure 3.4. The circles at
the two bottom corners of the triangle indicate the particular grouping of constants obtainable from
the measurement of RF, or N“, as shown. By combining these two sources of data in the manner
suggested in the boxes situated along the lines connecting these circles kd can be evaluated, as well
as the ratio lag/kt. Using this stationary—state data, however, it is not possible to further resolve the
propagation and termination constants. Another relationship is needed to do this. A quantity called
the radical lifiztime 1" supplies the additional relationship and enables us to move off the base of
Figure 3.4.

To arrive at an expression for the radical lifetime, we return to Equation 3.5.1, which may be
interpreted as follows:

1. —d[M]/dt gives the rate at which monomers enter polymer molecules. This, in turn, is given by
the product of number of growth sites, [Po], and the rate at which monomers add to each
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Figure 3.4 Schematic relationship among the various experimental quantities (RP, NH, and 1") and the rate
constants kd, kp, and kt derived therefrom.

growth site. On the basis of Equation 3.5.1, the rate at which monomers add to a radical is
given by kP[M].
If kp[M] gives the number of monomers added per unit time, then 1/kp[M] equals the time
elapsed per monomer addition.
If we multiply the time elapsed per monomer added to a radical by the number of monomers in
the average chain, then we obtain the time during which the radical exists. This is the
definition of the radical lifetime. The number of monomers in a polymer chain is, of course,
the degree of polymerization. Therefore we write

Nn
kp [M]

(3.6.1)7—:

The degree of polymerization in Equation 3.6.1 can be replaced with the kinetic chain length,
and the resulting expression simplified. To proceed, however, we must choose between the
possibilities described in Equation 3.5.11 and Equation 3.5.12. Assuming termination by
disproportionation, we replace N,n by 17, using Equation 3.5.14:

kpiM] 1 _
1

2(1‘7ctt’alll)”2 kp[M]
_

2(flctkduD1/2 (3.6.2)Ir:

The radical lifetime is an average quantity, as indicated by the overbar.
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We shall see presently that the lifetime of a radical can be measured. When such an experiment is
conducted with a known concentration of initiator, then the cluster of constants (ktkd)_u2 can be
evaluated. This is indicated at the apex of the triangle in Figure 3.4.

There are several things about Figure 3.4 that should be pointed out:

1. In going from the experimental quantities RP, N“, and f to the associated clusters of kinetic
constants, it has been assumed that the monomer and initiator concentrations are known and
essentially constant. In addition, the efficiency factorf has been left out, the assumption being
that still another type of experiment has established its value.

2. By following the lines connecting two sources of circled information, the boxed result in the
perimeter of the triangle may be established. Thus kl, is evaluated from f and N“.

3. Here kp can be combined with one of the various kP/kt ratios to permit the evaluation of k,.

We can use the constants tabulated elsewhere in the chapter to get an idea of a typical
radical lifetime. Choosing 10“3 mol L‘1 AIBN as the initiator (kd=0.85 x 10—5 s“ at 60°C)
and vinyl acetate as the monomer (terminates entirely by disproportionation, k,=2.9 x 107 L
mol’l s‘1 at 60°C), and taking f=1 for the purpose of calculation, we find
1" = 0.5[(1.0)(2.9 x 107)(0.85 x 10‘5)(10’3)]‘1/2 = 1.01s. This figure contrasts sharply with the
time required to obtain high-molecular-weight molecules in step-growth polymerizations.

Since the radical lifetime provides the final piece of information needed to independently
evaluate the three primary kinetic constants—remember, we are still neglecting chain transfer—
the next order of business is a consideration of the measurement of f. A widely used technique for
measuring radical lifetime is based on photoinitiated polymerization using a light source,
which blinks on and off at regular intervals. In practice, a rotating opaque disk with a wedge
sliced out of it is interposed between the light and the reaction vessel. Thus the system is in
darkness when the solid part of the disk is in the light path and is illuminated when the notch
passes. With this device, called a rotating sector or chopper, the relative lengths of light and dark
periods can be controlled by the area of the notch, and the frequency of the flickering by the
velocity of rotation of the disk. We will not describe the rotating sector experiments in detail. It is
sufficient to note that, with this method, the rate of photoinitiated polymerization is studied as a
function of the time of illumination with the rapidly blinking light. The results show the rate of
polymerization dropping from one plateau value at slow blink rates (“long” bursts of illumination)
to a lower plateau at fast blink rates (“short” periods of illumination). A plot of the rate of
polymerization versus the duration of an illuminated interval resembles an acid—base titration
curve with a step between the two plateau regions. Just as the “step” marks the end point of a
titration, the “step” in rotating sector data identifies the transition between relatively long and
short periods of illumination. Here is the payoff: “long” and “short” times are defined relative to
the average radical lifetime. Thus f may be read from the time axis at the midpoint of the transition
between the two plateaus.

This qualitative description enables us to see that the radical lifetime described by Equation
3.6.2 is an experimentally accessible quantity. More precise values of i may be obtained by curve
fitting since the nonstationary-state kinetics of the transition between plateaus have been analyzed
in detail. To gain some additional familiarity with the concept of radical lifetime and to see how
this quantity can be used to determine the absolute value of a kinetic constant, consider the
following example:

Example 3.4
The polymerization of ethylene at 130°C and 1500 atm was studied using different concentrations
of the initiator, 1-t-butylazo-1-phenoxycyclohexane. The rate of initiation was measured directly
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and radical lifetimes were determined using the rotating sector method. The following results were. 1‘obtained.1
Run 1"(s) R,x109(molL—ls—1)

5 0.73 2.35
6 0.93 1.59
8 0.32 12.75

12 0.50 5.00
13 0.29 14.95

Demonstrate that the variations in the rate of initiation and F? are consistent with free-radical
kinetics, and evaluate kt.

Solution
Since the rate of initiation is measured, we can substitute R, for the terms (kdm)
3.6.2 to give

1’2 in Equation

’ — 1
or k — 1T — (zany/2 ‘ — 2am,

If the data follow the kinetic scheme presented here, the values of kt calculated for the different
runs should be constant:

Run 1ct X 10—3 (L mol—1 3'1)

5 3.99
6 3.64
8 3.83

12 4.00
13 3.98
Average 3.89

Even though the rates of initiation span almost a 10-fold range, the values of kt show a standard
deviation of only 4%. which is excellent in view of the inevitable experimental errors. Note that the
rotating sector method can be used in high-pressure experiments and other unusual situations, a
highly desirable characteristic it shares with many optical methods in chemistry.

3.7 Distribution of Molecular Weights
Until this point in the chapter we have intentionally avoided making any differentiation among
radicals on the basis of the degree of polymerization of the radical. Now we seek a description of
the molecular weight distribution of addition polymer molecules. Toward this end it becomes
necessary to consider radicals with different i values.

3.7.1 Distribution of i-mers: Termination by Disproportionation

We begin by writing a kinetic expression for the concentration of radicals of the degree of
polymerization i, which we designate [Pp]. This rate law will be the sum of three contributions:

tData from T. Takahashi and P. Ehrlich, Polym. Prepr. Am. Chem. Soc. Polym. Chem. Div., 22, 203 (1981).
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1. An increase that occurs by addition of monomer to the radical P,-_1-
2. A decrease that occurs by addition of a monomer to the radical P).
3. A decrease that occurs by the termination of P,» with any other radical P-
The change in [P3] under stationary—state conditions equals zero for all values of 1'; hence we
can write

d[P.-'l
‘21? : kp[Ml[Pi—1'l — k.[M][P.—-] — 2k.[P.--][P-1 = 0 (311)

which can be rearranged to

[Pi-1 _ kp[M]
[Pi—1"]

h
mm + 2kt[P-] (3.7.2)

Dividing the numerator and denominator of Equation 3.7.2 by 2kt [Po] and recalling the definition
of 17 provided by Equation 3.5.13 enables us to express this result more succinctly as

[Pr] I7: 3.7.3
[Par] 1 + 17 ( )

Next let us consider the following sequence of multiplications:

Pi' Pi—' Pi—' Pi—i— ° Pr'[ ll 1][ 2]_”[ (2)]_[ l (314)[Pi—1'] [Pi—2'] [Pi—3°] [Pi—(i—l)'] _[P1']

This shows that the number of i-mer radicals relative to the number of the smallest radicals is given
by multiplying the ratio [P,~]/ [P,-_1°] by i — 2 analogous ratios. Since each of the individual ratios
is given by 17/ (1 + 17), we can rewrite Equation 3.7.4 as

_ i—2

[[151]] Z [15:] (1:12) (3.7.5)

or

17 0—0—1
[Pg—1'] = [P1-](m) (3.7.6)

Since it is more convenient to focus attention on i-mers than (i—1)—mers, the corresponding
expression for the i—mer is written by analogy:

_ i—l

[Pr] = [Pi-1 (fig) (3.7.7)

Dividing both sides of Equation 3.7.7 by [P-], the total radical concentration, gives the number
(or mole) fraction of i-rner radicals in the total radical population. This ratio is the same as the
number of i-mers n,- in the sample containing a total of n (no subscript) polymer molecules:

Mn.-_[P.--1_[P1-1 :7 “1
x‘ ‘Z" [13-] _ [P-] (1+ :7) (3'7‘8)

The ratio [P1-]/[P-] in Equation 3.7.8 can be eliminated by applying Equation 3.7.1 explicitly to the
P1 radical:

1. Write Equation 3.7.1 for Pp, remembering in this case that the leading term describes initiation:

93;? = Ri — kp[M][P1-] — 2kt[P1-][P-] : 0 (3.7.9)
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2, Rearrange under stationary—state conditions:

R1[Pl'] 2 kptM1+ 2k11P-1 (3.7.10)

The total radical concentration under stationary-state conditions can be similarly obtained.
3, Write Equation 3.4.9 using the same notation for initiation as in Equation 3.7.9:

Egj=Ri —2kt[P-]2:0 (3.7.11)

4, Rearrange under stationary—state conditions:

R1' = 3.7.12[P 1 M1,] ( )
5. Take the ratio of Equation 3.7.10 to Equation 3.7.12:

P - 2k P- 1——[1 ]— ‘[ 1 (3.7.13)[P-1
“

kp1M1+ 2kt1P-1 Z 1 + 17
Combining Equation 3.7.13 with Equation 3.7.8 gives

n,- 1 r» H 1 :7 "
;=—= _ =— .zx n 1+5<1+v> a<1+v> (3 14)

This expression gives the number fraction or mole fraction, x,, of i-mers in the polymer and is thus
equivalent to Equation 2.4.2 for step-growth polymerization.

The kinetic chain length 13 may also be viewed as merely a cluster of kinetic constants and
concentrations, which was introduced into Equation 3.7.13 to simplify the notation. As an
alternative, suppose we define for the purposes of this chapter a fraction p such that

:7 _ kp[M]
1+ :7

_
kp1M1+ 2k11P-1p 2 (3.7.15)

It follows from this definition that 1/(1 + 17) = 1 -— [9, so Equation 3.7.14 can be rewritten as

”i r—rx,-
2;:

(1 —p)p (3.7.16)

This change of notation now expresses Equation 3.7.14 in exactly the same form as its equivalent
in Section 2.4. In other words, the distribution of chain lengths is the most probable distribution,
just as was the case for step-growth polymerization! Several similarities and differences should be
noted in order to take full advantage of the parallel between this result and the corresponding
material for condensation polymers in Chapter 2:

1. In Chapter 2, p was defined as the fraction (or probability) of functional groups that had
reacted at a certain point in the polymerization. According to the current definition provided
by Equation 3.7.15, p is the fraction (or probability) of propagation steps among the com-
bined total of propagation and termination steps. The quantity 1 — p is therefore the fraction
(or probability) of termination steps. An addition polymer with the degree of polymerization
i has undergone i — 1 propagation steps and one termination step. Therefore it makes sense to
describe its probability in the form of Equation 3.7.16.

2. It is apparent from Equation 3.7.15 that p —9 1 as 17 —> oo; hence those same conditions
that favor the formation of a high-molecular-weight polymer also indicate p values close
to unlty.
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3. In Chapter 2 all molecules—whether monomer or i-mers of any i—carry functional groups;
hence the fraction described by Equation 2.4.] applies to the entire reaction mixture. Equation
3.7.16, by contrast, applies only to the radical population. Since the radicals eventually end up
as polymers, the equation also describes the polymer produced. Unreacted monomers are
specifically excluded, however.

4. Only one additional stipulation needs to be made before adapting the results that follow from
Equation 2.4.1 to addition polymers. The mode of termination must be specified to occur by
disproportionation to use the results of Section 2.4 in this chapter, since termination by
combination obviously changes the molecular weight distribution. We shall return to the
case of termination by combination presently.

5. For termination by disproportionation (subscript d), we note thatp = kp[M]/(kP[M] + 2k d[ P D,
and therefore by analogy with Equation 2.4.5, Equation 2.4.9, and Equation 2.4.10,

1
(Nn)d -

to
(3.7.17)

1
(Nw)d = _1__'_"_P (3.7.18)

‘P

Nw(—)=1+p—>2 as p—>1 (3.7.19)
Nn d

By virtue of Equation 3.7.15, (Nn)a can also be written as 1 + 17 “=-’ i! for large 17, which is
the result already obtained in Equation 3.5.11. Figure 2.5 and Figure 2.6 also describe the
distribution by number and weight of addition polymers, if the provisos enumerated above
are applied.

3.7.2 Distribution of i-mers: Termination by Combination

To deal with the case of termination by combination, it is convenient to write some reactions by
which an i-mer might be formed. Table 3.5 lists several specific chemical reactions and the
corresponding rate expressions as well as the general form for the combination of an (i — j)-mer
and a j-mer. On the assumption that all km, values are the same, we can write the total rate of
change of [Pi]:

d P,- i“(El—t1) = kt, Z; [Pr—1"][PJ‘] (3720)
[0! j:

The fraction of i-mers formed by combination may be evaluated by dividing
d[P,-]/dt by Z, d[P,-]/dt. Assuming that termination occurs exclusively by combination, then

(1 P,-
[dt]

= kt,c[P°]2 (3.7.21)
1'

and the number or mole fraction of i—mers formed by combination (subscript c) is

(3.7.22)(iii):
d[P;]/dt zktacz,;:[Pt-j'][Prl

c Edna-yd: kart»?l1

Equation 3.7.16 can be used to relate [Pi—1'] and [Pl-o] to the total radical concentration:

[Pr—f] = (1 —p)p"“”-‘[Po] (3.7.23)
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Table 3.5 Some Free-Radical Combination Reactions
Which Yield i-mers and Their Rate Laws

Reaction Rate law

, . o —> . Cl PfPM +131 1:" %=k.,c[P.-_1.][Pr-i
d P,

P;_2° + Pz‘ —* Pr % = kt,c[Pi—2°][P2°]

d P,-
P,-_3° + P3° —* Pr % = kt,c[Pi—3°][P3°]

: d P:
:

P54 + P,» —> P.- % = kr,c[P.-_j°][Py]

and

[Pj'] = (1 — p)p0‘”[P'1 (3.7.24)

Therefore
i—l -_-_ ._

(m)
k... 2:1 (1 — mp‘ , 1[P°](1 — mp! l[Pu

n c
—

1c.,.,[i?«]2
f—l (3.7.25)

= Z (1 — mid—2
j=1

The index j drops out of the last summation; we compensate for this by multiplying the final result
by i—l in recognition of the fact that the summation adds up i—l identical terms. Accordingly, the
desired result is obtained:

(3) = x,- = (r —— 1)(1 — 10)?” (3.7.26)
n c

This expression is plotted in Figure 3.5 for several values ofp near unity. Although it shows the
number distribution of polymers terminated by combination, the distribution looks quite different
from Figure 2.5, which describes the number distribution for termination by disproportionation. In
the latter x,- decreases monotonically with increasing 1'. With combination, however, the curves go
through a maximum, which reflects the fact that the combination of two very small or two very
large radicals is a less probable event than a more random combination.

Expressions for the various averages are readily derived from Equation 3.7.26 by procedures
identical to those used in Section 2.4 (see Problem 6). We only quote the final results for the case
where termination occurs exclusively by combination:

2
(Nn)c =

If
(3.7.27)

2
(Nw)c = 1—H (3.7.28)— P

Nw _ 2 + p
(N—nl—

2
(3.7.29)

These various expressions differ from their analogs in the case of termination by disproportiona-
tion by the appearance of occasional 2’s. These terms arise precisely because two chains are
combined in this mode of termination. Again using Equation 3.7.15, we note that
(Nu)c = 2(1 —|— 17) 9—: 217 for large 17, a result that was already given as Equation 3.5.12.
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Figure 3.5 Mole fraction of i-mers as a function of i for termination by combination, according to Equation
3.7.26, for various values of p.

One rather different result that arises from the case of termination by combination is seen by
examining the limit of Equation 3.7.29 for large values of p:

N“. 2+1
_)_....—

Nn 2
21.5 as p—>l (3.7.30)

This contrasts with a limiting ratio of 2 for the case of termination by disproportionation. Since Mn
and MW can be measured, the difference is potentially a method for determining the mode of
termination in a polymer system. In most instances, however, termination occurs by some
proportion of both modes. Furthermore, other factors in the polymerization such as transfer,
autoacceleration, etc., will also contribute to the experimental molecular weight distribution, so
in general it is risky to draw too many conclusions about mechanisms from the measured
distributions. Also, we have used p and 17 to describe the distribution of molecular weights, but
it must be remembered that these quantities are defined in terms of various concentrations and
therefore change as the reactions proceed. Accordingly, the results presented here are most simply
applied at the start of the polymerization reaction when the initial concentrations of monomer and
initiator can be used to evaluate p or 17.

3.8 Chain Transfer

The three-step mechanism for free-radical polymerization represented by Reaction (3.A) through
Reaction (3.C) does not tell the whole story. Another type of free—radical reaction, called chain
transfer, may also occur. This is unfortunate in the sense that it further complicates the picture
presented so far. On the other hand, this additional reaction can be turned into an asset in
actual polymer practice. One consequence of chain transfer reactions is a lowering of the kinetic
chain length and hence the molecular weight of the polymer, without necessarily affecting the
rate of polymerization. A certain minimum average molecular weight is often needed to achieve
a desired physical property, but further increases in chain length simply make processing
more difficult.
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3.8.1 Chain Transfer Reactions

Chain transfer arises when hydrogen or some other atom X is transferred from a molecule in the
system to the polymer radical. This terminates the growth of the original radical but replaces it with
a new one: the fragment of the species from which X was extracted. These latter molecules will be
designated by attaching the letter X to their symbol in this discussion. Thus if chain transfer
involves an initiator molecule, we represent the latter as IX. Chain transfer can occur with any
molecule in the system. The following reactions specifically describe transfer to initiator, mono-
mer, solvent, and polymer molecules, respectively:

1. Transfer to initiator, IX:

Pi- + IX —> PIX + I- (3.K)

2. Transfer to monomer, MX:

P; + MX —> Pix —|— M- (3L)

3. Transfer to solvent, SX:

P;- + SX —> PgX —|— 8- (3M)

4. Transfer to polymer, PJ-X:

P,- + PjX —> PIX + Pj' (3N)

5. General transfer to RX:

Pr + RX —> Pix + R- (3.0)
It is apparent from these reactions how chain transfer lowers the molecular weight of a chain-

growth polymer. The effect of chain transfer on the rate of polymerization depends on the rate at
which the new radicals reinitiate polymerization:

kPR- + M 3 RM- —+—>—> RP,-- (3.P)
If the rate constant is comparable to kp, the substitution of a polymer radical with a new radical
has little or no effect on the rate of polymerization. If kR << kp, the rate of polymerization will be
decreased, or even effectively suppressed by chain transfer.

The kinetic chain length acquires a slightly different definition in the presence of chain transfer.
Instead of being simply the ratio Rp/Rt, it is redefined to be the rate of propagation relative to the
rates of all other steps that compete with propagation; specifically, termination and transfer
(subscript tr):

RP‘
r 2 3.8.1Vt

Rt + RH
( )

The transfer reactions follow second—order kinetics, the general rate law being

Ru 2 kH[P-][RX] (3.8.2)

where ktr is the rate constant for chain transfer to a specific compound RX. Since chain transfer can
occur with several different molecules in the reaction mixture, Equation 3.8.1 becomes

a. = kplP'HMl/l 2am? + ktr,1[P-][IX] + ku,M[P°][MX] + ku,s[P'][SX] + km. [Para-X1}
2 arm

2d-1 + Z kmalRX]
(3.8.3)
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where the summation is over all pertinent RX species. It is instructive to examine the reciprocal of
this quantity:

. k, RX_i=2kI[P]+Z ,R[ ] (3.8.4)Vtr kl] kl]

Since the first term on the right-hand side is the reciprocal of the kinetic chain length in the absence
of transfer, this becomes

1 _1+Zktr,R[RXI (3 3 5)17,, a kp[M] ' ‘

This notation is simplified still further by defining the ratio of constants

klt_,R: CRx (3.8.6)
k1:

which is called the chain transfer constant for the monomer in question to molecule RX:

1 1 [RX]— = — C —~—— 3.8.7a. r» + Z RX [M] ( )
all RX

It is apparent from this expression that the larger the sum of chain transfer terms becomes, the
smaller will be it”.

The magnitude of the individual terms in the summation depends on both the specific chain
transfer constants and the concentrations of the reactants under consideration. The former are
characteristics of the system and hence quantities over which we have little control; the latter can
often be adjusted to study a particular effect. For example, chain transfer constants are generally
obtained under conditions of low conversion to polymer where the concentration of polymer is low
enough to ignore the transfer to polymer. We shall return below to the case of high conversions
where this is not true.

3.8.2 Evaluation of Chain Transfer Constants

If an experimental system is investigated in which only one molecule is significantly involved in
transfer, then the chain transfer constant to that material is particularly straightforward to obtain. If
we assume that species SX is the only molecule to which transfer occurs, Equation 3.8.7 becomes

1 1 [SX]
17“ f) + Csx

[M]
(3.8.8)

This suggests that polymerizations should be conducted at different ratios of [SX]/[M] and the
resulting molecular weight measured for each. Equation 3.8.8 indicates that a plot of 1 fly, versus
[SX]/[M] should be a straight line with s10pe CSX. Figure 3.6 shows this type of plot for the
polymerization of styrene at 100°C in the presence of four different solvents. The fact that all show
a common intercept as required by Equation 3.8.8 shows that the rate of initiation is unaffected by
the nature of the solvent. The following example examines chain transfer constants evaluated in
this situation.

Example 3.5
Estimate the chain transfer constants for styrene to isopropylbenzene, ethylbenzene, toluene, and
benzene from the data presented in Figure 3.6. Comment on the relative magnitude of these
constants in terms of the structure of the solvent molecules.
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Figure 3.6 Effect of chain transfer to solvent according to Equation 3.8.8 for polystyrene at 100°C.
Solvents used were ethylbenzene (O), isopropylbenzene (O), toluene (A), and benzene (D). (Data from
Gregg, R.A. and Mayo, F.R., Discuss. Faraday Soc., 2, 328, 1947. With permission).

Solution

The chain transfer constants are given by Equation 3.8.8 as the slopes of the lines in Figure 3.6.
These are estimated to be as follows (note that X : H in this case):

SX l"(:31'I'KCsHs) C2H5(C6Hs) CH3(C6H5) H(C6Hs)

cSX x 104 2.08 1.38 0.55 0.16

The relative magnitudes of these constants are consistent with the general rule that benzylic
hydrogens are more readily abstracted than those attached directly to the ring. The reactivity of
the benzylic hydrogens themselves follows the order tertiary > secondary > primary, which is a
well—established order in organic chemistry. The benzylic radical resulting from hydrogen abstrac-
tion is resonance stabilized. For toluene, as an example,

H H H H H H H H

In certain commercial processes it is essential to regulate the molecular weight of the polymer either
for ease of processing or because low molecular weight products are desirable for particular applica-
tions such as lubricants or plasticizers. In such cases the solvent or chain transfer agent is chosen and its
concentration selected to produce the desired value of fin. Certain mercaptans have particularly large
chain transfer constants for many common monomers and are especially useful for molecular weight
regulation. For example, styrene has a chain transfer constant for n-butyl mercaptan equal to 21 at 60°C.
This is about 107 times larger than the chain transfer constant to benzene at the same temperature.

Chain transfer to initiator or monomer cannot always be ignored. It may be possible, however,
to evaluate these transfer constants by conducting a similar analysis on polymerizations without
added solvent or in the presence of a solvent for which Csx is known to be negligibly small. Fairly
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extensive tables of chain transfer constants have been assembled on the basis of investigations of
this sort. For example, the values of CM}; for acrylamide at 60°C is 6 X 10‘s, and that for vinyl
chloride at 30°C is 6.3 X 1041. Likewise, for methyl methacrylate at 60°C, CD; is 0.02 to benzoyl
peroxide and 1.27 to t-butyl hydroperoxide.

3.8.3 Chain Transfer to Polymer

As noted above, chain transfer to polymer does not interfere with the determination of other transfer
constants, since the latter are evaluated at low conversions. In polymer synthesis, however, high
conversions are desirable and extensive chain transfer can have a dramatic effect on the properties of
the product. This comes about since chain transfer to polymer introduces branching into the product:

N+P.-—+W+PX—-+—M—F——+

YY x (3Q)YPJ-
A moment’s reflection reveals that the effect on 17 of transfer to polymer is different from the
effects discussed above inasmuch as the overall degree of polymerization is not decreased by such
transfers. Investigation of chain transfer to polymer is best handled by examining the extent of
branching in the product. We shall not pursue the matter of evaluating the transfer constants, but
shall consider describing two important specific examples of transfer to polymer.

Remember from Section 1.3 that graft copolymers have polymeric side chains that differ in the
nature of the repeat unit from the backbone. These can be prepared by introducing a prepolymer-
ized sample of the backbone polymer into a reactive mixture—i.e., one containing a source of free
radicals—of the side-chain monomer. As an example, consider introducing 1,4-polybutadiene into
a reactive mixture of styrene:

+
.

__;... + M __... .Sfl’fine—fi (3.R)

/n

This procedure is used commercially to produce rubber-modified or high impact polystyrene (HIPS).
The polybutadiene begins to segregate from the styrene as it polymerizes (see Chapter 7 to learn
why), but is prevented from undergoing macroscopic phase separation due to the covalent linkages to
polystyrene chains. Consequently, small (micron—sized) domains of polybutadiene rubber are
distributed throughout the glassy polystyrene matrix. These “rubber balls” are able to dissipate
energy effectively (see Chapter 10 and Chapter 12), and counteract the brittleness of polystyrene.

A second example of chain transfer to polymer is provided by the case of polyethylene. In this
case the polymer product contains mainly ethyl and butyl side chains. At high conversions such
side chains may occur as often as once every 15 backbone repeat units on the average. These short
side chains are thought to arise from transfer reactions with methylene hydrogens along the same
polymer chain. This process is called backbiting and reminds us of the stability of rings of certain
sizes and the freedom of rotation around unsubstituted bonds:

""w H ° H ”I“ Me

U
———)-- + H20: CH2———-I-

l
nHQC= CH2

n
Me

O

1
etc.

(3.8)



Chain Transfer 109

However, transfer to polymer can also produce long-chain branches. The commercial product
known as low density polyethylene is formed by a free—radical mechanism in a process conducted
at high pressure. The presence of long—chain branches inhibits crystallization (see Chapter 13), and
therefore results in a lower density product. These branches also have a profound effect on the flow
properties of the material (see Chapter 11).

3.8.4 Suppressing Polymerization

We conclude this section by noting an extreme case of chain transfer, a reaction that produces
radicals of such low reactivity that polymerization is effectively suppressed. Reagents that
accomplish this are added to commercial monomers to prevent their premature polymerization
during storage. These substances are called either retarders or inhibitors, depending on the degree
of protection they afford. Such chemicals must be removed from monomers before use, and failure
to achieve complete purification can considerably affect the polymerization reaction. Inhibitors
and retarders differ in the extent to which they interfere with polymerization, but not in their
essential activity. An inhibitor is defined as a substance that blocks polymerization completely
until it is either removed or consumed. Thus failure to totally eliminate an inhibitor from purified
monomer will result in an induction period in which an inhibitor is first converted to an inert
form before polymerization can begin. A retarder is less efficient and merely slows down the
polymerization process by competing for radicals.

Benzoquinone [III] is widely used as an inhibitor:

. . —.—.— O O - —> Inert products 0-“+ .4o
O

0

nm

The resulting radical is stabilized by electron delocalization and eventually reacts with either
another inhibitor radical by combination (dimerization) or disproportionation or with an inhibitor
or other radical. Another commonly used inhibitor is 2,6-di-tert—butyl—4-methylphenol (butylated
hydroxytoluene, or BHT):

Me
Me OH

MeMe
Me Me

Me

which is also known as an antioxidant. Such free-radical scavengers often act as antioxidants, in
that the first stage of oxidative attack generates a free radical.

Molecular oxygen contains two unpaired electrons and has the distinction of being capable of
both initiating and inhibiting polymerization. Molecular oxygen functions in the latter capacity by
forming the relatively unreactive peroxy radical:

(h+M~+M—O—O- 8U)
Inhibitors are characterized by inhibition constants, which are defined as the ratio of the rate

constant for transfer to inhibitor to the propagation constants for the monomer, by analogy
with Equation 3.8.6 for chain transfer constants. For styrene at 50°C the inhibition constant of
p—benzoquinone is 518, and that for 02 is 1.5 x 104. The Polymer Handbook [1] is an excellent
source for these and most other rate constants discussed in this chapter.
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3.9 Chapter Summary
In this chapter we have explored chain growth or addition polymerization, as exemplified by the
free-radical mechanism. This particular polymerization route is the most prevalent from a commer-
cial perspective, and is broadly applicable to a wide range of monomers, especially those containing
carbon—carbon double bonds. The main points of the discussion may be summarized as follows:

1. In comparison with step-growth polymerization, free-radical polymerization can lead to much
higher molecular weights and in much shorter times, although the resulting distributions of
molecular weight are comparably broad.

2. There are three essential reaction steps in a chain-growth polymerization: initiation, propagation,
and termination. A wide variety of free-radical initiators are available; the most common act by
thermally induced cleavage of a peroxide or azo linkage. Propagation occurs by head-to-tail
addition of a monomer to a growing polymer radical, and is typically very rapid. Termination
occurs by reaction between two radicals, either by direct combination or by disproportionation.

3. A fourth class of reactions, termed transfer reactions, is almost always important in practice.
The primary effect of transfer of a radical from a growing chain to another molecule is to
reduce the average degree of polymerization of the resulting polymer chains, but in some cases
it can also lead to interesting architectural consequences in the final polymer.

4. Kinetic analysis of the distribution of chain lengths is made tractable by three key assump-
tions. The steady-state approximation requires that the net rates of initiation and termination
be equal; thus the total concentration of radicals is constant. The same approximation extends
to the concentration of each radical species individually. The principle of equal reactivity
asserts that a single rate constant describes each propagation step and each termination step,
independent of the degree of polymerization of the radicals involved. Thirdly, transfer
reactions are assumed to be absent.

5. The aforementioned assumptions are most successful in describing the early stages of poly-
merization, before a host of competing factors become significant, such as depletion of
reactants, loss of mobility of chain radicals, etc. Under these assumptions explicit expressions
for the number and weight distribution of polymer chains can be developed. In the case that
termination occurs exclusively by disproportionation, the result is a most probable distribution
of molecular weights, just as with step-growth polymerization. Termination by recombination,
on the other hand, leads to a somewhat narrower distribution, with MW/Mn m 1.5 rather than 2.

Problems

1. The efficiency of AIBN in initiating polymerization at 60°C was determinedr by the following
strategy. They measured Rp and I7 and calculated R1 = RP/17. The constant kd was measured
directly in the system, and from this quantity and the measured ratio RP/ 17 the fractionfcould
be determined. The following results were obtained for different concentrations of initiator:

[I] (g L“) rep/:7 x 108 (mol L“ s“)
0.0556 0.377
0.250 1.57
0.250 1.72
1.00 6.77
1.50 10.9
2.50 17.1

Using kd = 0.0388 h‘l, evaluate ffl‘om these data.

I‘J.C. Bevington, J.I-l. Bradbury, and GM. Burnett, J. Polym. Sal, 12, 469 (1954).



problems 111

2, AIBN was synthesized using 14C—labeled reagents and the tagged compound was used to
initiate polymerization to methyl methacrylate and styrene. Samples of initiator and
polymers containing initiator fragments were burned to C02. The radioactivity of uniform
(in sample size and treatment) C02 samples was measured in counts per minute (cpm) by a
suitable Geiger counter. A general formula for poly(methy1 methacrylate) with its initiator
fragments is (C5H802),,(C4H6N)m, where n is the degree of polymerization for the polymer
and m is either 1 or 2, depending on the mode of termination. The specific activity measured
in the C02, resulting from combustion of the polymer relative to that produced by the
initiator is

Activity of C in polymer _ 4m N 4m
Activity of C in initiator

_
5n + 4m

—
5n.

From the ratio of activities and measured values of n, the average number of initiator
fragments per polymer can be determined.

Carry out a similar argument for the ratio of activities for polystyrene and evaluate the
average number of initiator fragments per molecule for each polymer from the following data.Jr
For both sets of data, the radioactivity from the labeled initiator gives 96,500 cpm when
converted to C02.

Methyl methacrylate Styrene
Mn Counts per minute Mn Counts per minute

444,000 20.6 383,000 25.5
312,000 30.1 117,000 86.5
298,000 29.0 114,000 89.5
147,000 60.5 104,000 96.4
124,000 76.5 101,000 113.5
91,300 103.4
89,400 104.6

3. In the research described in Example 3.4, the authors measured the following rates of
polymerization:

Run number 1‘?p X 104 (H101 1:1 3—1)
5 3.40
6 2.24
8 6.50

12 5.48
13 7.59

They also reported a kp value of 1.2 x 104 L mol_l sfll, but the concentrations of monomer in
each run were not given. Use these values of RP and kp and the values of 17 and k, given in
Example 3.4 to evaluate [M] for each run. As a double check, evaluate [M] from these values
of RI, (and kp) and the values of R, and k, given in the example.

1to. Bevington, H.w. Melville, and RP. Taylor, J. Polym. 5a., 12, 449 (1954).
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4. ArnettJr initiated the polymerization of methyl methacrylate in benzene at 77°C with AIBN and
measured the initial rates of polymerization for the concentrations listed:

[M] (mol L“) [I]0 x 104 (mol L“) RP x 103 (mol L-1 min—l)
9.04 2.35 1 1.61
8.63 2.06 10.20
7.19 2.55 9.92
6.13 2.28 7.75
4.96 3.13 7.31
4.75 1.92 5.62
4.22 2.30 5.20
4.17 5.81 7.81
3.26 2.45 4.29
2.07 2.1 l 2.49

Use these data to evaluate the cluster of constants (fkd/kt)”2kp at this temperature. Evaluate
ftp/kt”2 using Arnett’s finding thatf2 1.0 and assuming the kd value determined in Example 3.1
for AIBN at 77°C in xylene also applies in benzene.

5. The lifetime of polystyrene radicals at 50°C was measuredI as a function of the extent of
conversion to polymer. The following results were obtained:

Percent conversion 1“- (s)

0 2.29
32.7 1.80
36.3 9.1
39.5 13.1
43.8 18.8

Propose an explanation for the variation observed.
6. Derive Equation 3.7.27 and Equation 3.7.28.
7. The equations derived in Section 3.7 are based on the assumption that termination occurs

exclusively by either disproportionation or combination. This is usually not the case; some
pr0portion of each is more common. If as equals the fraction of chains for which termination
occurs by disproportionation, it can be shown that

1— 2 2*—
a+(

a)_ a
N: _n l—p l—p l—p

and

Nw_4—3a—ap+2p
N11 (2 — a?
From measurements of NJ“ and NW/Ml it is possible in principle to evaluate a and p. May
and Smith)k have done this for a number of polystyrene samples. A selection of their data for
which this approach seems feasible is presented below. Since p is very close to unity, it is

1‘ M. Amett, J. Am. Chem. 306., 74, 2027 (1952).
1MS. Matheson, E.E. Auer, E.B. Bevilacqua, and J.E. Hart, J. Am. Chem. 306., 73, 1700 (1951).“‘ M. May Jr. and WE. Smith, J. Phys. Chem, 72, 216 (1968).
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10.

11.

adequate to assume this value and evaluate a from NW/Nn and then use the value of at so
obtained to evaluate a better value of p from N“.

Na Nw/Nn

1 129 1.60
924 1.67
674 1.73
609 1 .74

. Derive the two equations given in the previous problem. It may be helpful to recognize that
for any distribution taken as a whole, w. = ixi/Nn.

. In the research described in Problem 7, the authors determined the following distribution of
molecular weights by a chromatographic procedure (w,- is the weight fraction of i-mer):

i w. x 104 s w; x 104

100 3.25 800 6.88
200 5.50 900 6.10
300 6.80 1200 4.20
400 7.45 1500 2.90
500 7.91 2000 1.20
600 7.82 2500 0.50
700 7.18 3000 0.20

They asserted that the points are described by the expression

w,- = ai(1 — p)2pi_1 + 0.5(1 — a)i(i — 1)(1 — p)3p*'*2

with a = 0.65 and p = 0.99754. Calculate some representative points for this function and
plot the theoretical and experimental points on the same graph. From the expression given
extract the weight fraction i-mer resulting from termination by combination.
In fact, the expression in the previous problem is slightly incorrect. Derive the correct
expression, and see if the implied values of a and p are significantly different. The solution
to Problem 8 provides part of the answer.
Palit and Das’r measured 17“ at 60°C for different values of the ratio [SX]/[M] and evaluated
Csx and 17 for vinyl acetate undergoing chain transfer with various solvents. Some of their
measured and derived results are tabulated below (the same concentrations of AIBN and
monomer were used in each run). Assuming that no other transfer reactions occur, calculate
the values missing from the table. Criticize or defend the following proposition: The 17 values
obtained from the limit [SX]/[M] —> 0 show that the AIBN initiates polymerization identi-
cally in all solvents.

Solvent :7 17.. [SX]/[M] CSX x 104
t-Butyl alcohol 6580 3709 —— 0.46
Methyl isobutyl ketone 6670 510 0.492 ——
Diethyl ketone 6670 — 0.583 114.4
Chloroform — 93 0.772 125.2

1S.R. Palit and S.K. Das, Proc. Roy. Soc. London, 226A, 82 (1954).
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12. Gregg and Mayor studied the chain transfer between styrene and carbon tetrachloride at 60°C
and 100°C. A sample of their data is given below for each of the temperatures.

At 60°C At 100°C

[CC14]/[Styrene] 17;] x 105 [CCI4]/[Styrene] 17;! X 105

0.00614 16.1 0.00582 36.3
0.0267 35.9 0.0222 68.4
0.0393 49.8 0.0416 109
0.0704 74.8 0.0496 124
0.1000 106 0.0892 217
0.1643 156
0.2595 242
0.3045 289

Evaluate the chain transfer constant (assuming that no other transfer reactions occur) at each
temperature. By means of an Arrhenius analysis, estimate Et"; — Eff for this reaction. Are the
values of T2 in the limit of no transfer in the order expected for thermal polymerization?
Explain.

13. Many olefins can be readily polymerized by a free-radical route. On the other hand,
isobutylene is usually polymerized by a cationic mechanism. Explain.

14. Draw the mechanisms for the following processes in the radical polymerization of styrene in
toluene: (a) initiation by cumyl peroxide; (b) propagation; (c) termination by disproportiona-
tion; and (d) transfer to solvent.

15. Show the mechanisms of addition of a butadiene monomer to a poly(butadienyl) radical, to
give each of the three possible geometric isomers.

16. Consider the polymerization of styrene in toluene at 60°C initiated by di-t—butylperoxide for
a solution containing 0.04 mol of initiator and 2 mol of monomer per liter. The initial rates of
initiation, Ri, and propagation, RP, are found to be 1.6 x 10'10 M s‘1 and 6.4 x 10‘7 M 3‘1,
respectively, at 60°C.

(a) Calculate fkd and kp/ktm.
(b) Assuming no chain transfer, calculate the initial kinetic chain length.
(c) Assuming only disproportionation and under the conditions stated, the transfer constant

of styrene, CM, is 0.85 x 104. How much does this transfer affect the molecular weight
of the polymer?

((1) The molecular weight of this polymer is too high. The desired molecular weight of this
polymer is 40,000 g mol”. How much CCl4 (in g L‘I) should be added to the reaction
medium to attain the desired molecular weight? CT of CC14 is 9 x 10—3.

(e) Under the conditions stated, the polymerization is too slow. What is the initial rate of
polymerization if the temperature is raised to 100°C?

(f) Calculate the conversion attained after the reaction has gone for 5 h at 100°C. Assume
volume expansion does not change concentration significantly and that the initiator
concentration is constant throughout the entire reaction.

References
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4
Controlled Polymerization

4.1 Introduction

In the preceding chapters we have examined the two main classes of polymerization, namely step—
growth and chain—growth polymerizations, with the latter exemplified by the free-radical mech-
anism. These are the workhorses of the polymer industry, permitting rapid and facile production of
large quantities of useful materials. One common feature that emerged from the discussion of these
mechanisms is the statistical nature of the polymerization process, which led directly to rather broad
distributions of molecular weight. In particular, even in the simplest case (assuming the principle of
equal reactivity, no transfer steps or side reactions, etc.), the product polymers of either a poly-
condensation or of a free—radical polymerization with termination by disproportionation would
follow the most probable distribution, which has a polydispersity index (MW/Mn) approaching 2.
In commercial practice, the inevitable violation of most of the simplifying assumptions leads to even
broader distributions, with polydispersity indices often falling between 2 and 10. In many cases the
polymers have further degrees of heterogeneity, such as distributions of composition (e.g., copoly-
mers), branching, tacticity, or microstructure (e.g., cis 1,4—, trans 1,4—, and 1,2-configurations in
polybutadiene).

This state of affairs is rather unsatisfying, especially from the chemist’s point of view. Chemists
are used to the idea that every molecule of, say, ascorbic acid (vitamin C) is the same as every
other one. Now we are confronted with the fact that a tank car full of the material called
polybutadiene is unlikely to contain any two molecules with exactly the same chemical structure
(recall Example 1.4). As polymers have found such widespread applications, we have obviously
learned to live with this situation. However, if we could exert more control over the distribution of
products, perhaps many more applications would be realized. In this chapter we describe several
approaches designed to exert more control over the products of a polymerization. The major one is
termed living polymerization, and can lead to much narrower molecular weight distributions.
Furthermore, in addition to molecular weight control, living polymerization also enables the
large-scale production of block copolymers, branched polymers of controlled architecture, and
end-functionalized polymers.

A comparison between synthetic and biological macromolecules may be helpful at this stage. If
condensation and free-radical polymerization represent the nadir of structural control, proteins and
DNA represent the zenith. Proteins are “copolymers” that draw on 20 different amino acid
monomers, yet each particular protein is synthesized within a cell with the identical degree of
polymerization, composition, sequence, and stereochemistry. Similarly, DNAs with degrees
of polymerization far in excess of those realized in commercial polymers can be faithfully
replicated, with precise sequences of the four monomer units. One long-standing goal of polymer
chemistry is to imitate nature’s ability to exert complete control over polymerization. There are
two ways to approach this. One is to begin with nature, and try to adapt its machinery to our
purpose. This is exemplified by “training” cells into growing polymers that we want, for example,
via recombinant DNA technology. The other approach, and the one described in this chapter, is to
start with the polymerizations we already have, and try to improve them. Both approaches have
merit, and we select the latter because it is currently much more established, and plays a central
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role in much of polymer research. It is worth noting that nature also makes use of many other
macromolecular materials that are not so well—controlled as proteins and DNA; examples include
polysaccharides such as cellulose, chitin, and starch. So in nature, as with commercial polymers,
useful properties can still result from materials that are very heterogeneous at the molecular level.

The lack of control over molecular weight in polymerization arises directly from the random
character of each step in the reaction. In a polycondensation, any molecule can react with any other
at any time; the number of molecules is steadily decreasing, but the mole fraction of monomer is
always larger than the mole fraction of any other species. In a free-radical polymerization, chains
may be initiated at any time. Growing chains may also add monomer, or undergo a transfer or
termination reaction at any time. The first requirement in controlling molecular weight is to fix the
total number of polymers. This cannot be done in an unconstrained step-growth process, but it can
be done in a chain-growth mechanism, through the concentration of initiators. The number of
initiators will be equal to the number of polymers, assuming 100% initiation efficiency and
assuming no transfer reactions that lead to new polymers. The second requirement is to distribute
the total number of monomers as uniformly as possible among the fixed number of growing chains.
If the polymerization then proceeds to completion, we could predict Nn precisely: it would simply
be the ratio of the number of monomers to the number of initiators. To allow the reaction to
proceed to completion, we would need to prevent termination steps, or at least defer them until we
were ready. Now, suppose further that the reaction proceeds statistically, meaning that any
monomer is equally likely to add to any growing chain at any time. If N,1| was reasonably large,
we could expect a rather narrow distribution of the number of monomers in each chain, just by
probability. (This argument also assumes no transfer reactions, so that growing polymers are not
terminated prematurely.) As an illustration, imagine placing an array of empty cups out in a steady
rain; an empty cup is an “initiator” and a raindrop is a “monomer.” As time goes on, the raindrops
are distributed statistically among the cups, but after a lot of drops have fallen, the water level will
be pretty much equal among the various cups. If a cup fell over, or a leaf fell and covered its top,
that “polymer” would be “terminated,” and its volume of water would not keep up with the others.
Similarly, if you placed a cup outside a few minutes after the others, the delayed initiation would mean
that it would never catch up with its neighbors. What we have just described is, in fact, the essence of a
controlled polymerization: start with a fixed number of initiators, choose chemistry and conditions to
eliminate transfer and termination reactions, and let the reaction start at a certain time and then go to
completion. In order to control the local structural details, such as microstructure and stereochemistry,
we have to influence the relative rates of various propagation steps. This can be achieved to some
extent by manipulating the conditions at the active site at the growing end of the chain.

The remainder of this chapter is organized as follows. First we demonstrate how the kinetics of
an ideal living polymerization leads to a narrow, Poisson distribution of chain lengths. Then, we
consider chain—growth polymerization via an anionic propagating center; this has historically
been the most commonly used controlled polymerization mechanism, and it can be conducted in
such a way as to approach the ideal case very closely. In Section 4.4 we explore how the anionic
mechanism can be extended to the preparation of block copolymers, end-functional polymers, and
regular branched polymers of various architectures. We then turn our attention to other mechan-
isms that are capable of controlled polymerization, including cationic (Section 4.5), ring-opening
(Section 4.8), and, especially, controlled radical polymerizations (Section 4.6). The concluding
sections also address the concept of equilibrium polymerization, and a special class of controlled
polymers called dendrimers.

4.2 Poisson Distribution for an Ideal Living Polymerization
In this section we lay out the kinetic scheme that describes a living polymerization, and thereby
derive the resulting distribution of chain lengths. This scenario is most closely approached in the
anionic case, but because it is not limited to anionic polymerizations, we will designate an active
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polymer of degree of polymerization i by P?‘, and its concentration by [Pf], where * represents the
reactive end. A living polymerization is defined as a chain-growth process for which there are no
irreversible termination or transfer reactions. There has been some controversy in the literature
about the precise criteria for “livingness” [1], and whether they can ever be met in practice, but we
will not dwell on this.

4.2.1 Kinetic Scheme

The concentration of unreacted monomer at time t will be denoted [M]. The initial concentrations
of monomer and initiator are [M]0 and [I]0, respectively. The reaction steps can be represented as
follows:

Initiation: I+M ii Pi" (42.1)
k

Propagation: Pi“ + M —"> 193‘
kPf-“+ M —"i P511 (4.22)

Note that in using a single propagation rate constant, kp, we are once again invoking the principle
of equal reactivity.

We will now assume that initiation is effectively instantaneous relative to propagation (ki >> kp),
so that at time t= 0, [Pf] = [I]0, and we will not worry about Equation 4.2.1 any further. Note that
this criterion is not necessary to have a living polymerization, but it is necessary to achieve a
narrow distribution of molecular weights. The concentration of unreacted monomer, [M], will
decrease in time as propagation takes over. The overall rate of polymerization, RP, is the sum of the
rates of consumption of monomer by all growing chains Pf. However, we know that, in the absence
of termination or transfer reactions, the total concentration of P? is always [I]0: we have fixed the
number of polymers. Therefore we can write

(1 MRp = ——[d7—] = MM] 2 [Pi] = kl][ I 10 (4.2.3)
This is a linear, first-order differential equation for [M], which has the solution

[M] = [Mloe‘kpllb‘ (4.2.4)

Therefore the concentration of monomer decreases exponentially to zero as time progresses. (Note
that we are also assuming that propagation is irreversible, that is, there is no “back arrow” in
Equation 4.2.2. The possibility of depolymerization reaction steps will be taken up in Section 4.7.)

At this stage it is very helpful to introduce a kinetic chain length, a, analogous to the one we
defined in Equation 3.5.10, as the ratio of the number of monomers incorporated into polymers to
the number of polymers. The former is given by [M]0 — [M], and the latter by [I]0, so we write

[M10 - [M]_ = ———-—-— 4.2.5V
[Ho ( )

When the reaction has gone to completion, [M] will be 0, and the kinetic chain length will be
the number average degree of polymerization of the resulting polymer. It will also be helpful in the
following development to differentiate Equation 4.2.5 with respect to time, and then incorporate
Equation 4.2.3:

9?- 1 d[M]
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In order to obtain the distribution of chain lengths, we need to do a bit more work. We begin by
writing an explicit equation for the rate of consumption of [PT]:

d [PT]
dt

2 kp [133‘] [M] (4.2.7)

We could insert Equation 4.2.4 into Equation 4.2.7 to replace [M], and thereby obtain an equation
that can be solved. However, a simpler approach turns out to be to invoke the chain rule, as
follows:

d[131*‘] : d[P3‘] (1'17 __ d[P1"]
dt dv E- d}? kp[M] (4.2.8)

If we now compare Equation 4.2.7 and Equation 4.2.8 we can see that

d P* *_ _%__fill : [131] (4.2.9)

and this equation is readily solved:

[133‘] = [13‘1"]04rE = [nae—5 (4.2.10)

Now we repeat this process for [PER], beginning with the rate law. This is slightly more compli-
cated, because [Pfrf] grows by the reaction of Pi" with monomer, but decreases by the reaction of Pi"
with monomer:

(1 [P3]
dt : kp [133‘] [M] — kp [P3] [M]

d?=41M1<1Pfl—1P41>=~a;<1311311341) (4.2.11)
By invoking the chain rule once more

d[133‘] d[133‘] an
dr

:
d? d;

(4.2.12)

and comparing with Equation 4.2.11 we obtain

d 13* _[1;] + [133‘] = [133‘] = [Hoe—V (4.2.13)

This equation has the solution

[133‘] : E[I]0e”'_’ (4.2.14)

We can go through this sequence of steps once more, considering the concentration of trimer [133‘]:

d P*{.31 = 41341114 — 4 1341 [M]
d?: p[M]([P§] _ [Path = 51112:] _ [13311) (42.15)

leading to

d 13* _L114. [133‘] : [Pg‘] : fluoe-V (4.2.16)
dii
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which has the solution (check it yourself)
1 _

[Pi] = gazilloe‘” (4.2.17)
This pattern continues, and the result for the population of i-mer is

1 . _
:1: _ -—1-1 —V[P,-] _

(F1)!
:2 [Hoe (4.2.18)

From this result we can obtain the desired distribution, namely the mole fraction of i—mer among all
polymers, x,, by dividing Equation 4.2.18 by the total number of polymers, [I]0:

vine—a
x, L

(i _ 1)!
(4.2.19)

This particular function, Equation 4.2.19, is called the Poisson distribution. Although we have
obtained it from considering a specific kinetic scheme, in fact it will describe the situation
whenever a larger number of objects (raindrops, or monomers) are distributed randomly among
a small number of boxes (cups, or polymers). Once the polymerization reaction has gone to
completion, and the polymers terminated by introduction of some appropriate reagent, the resulting
molecular weight distribution should obey Equation 4.2.19, with i equal to [M]0/[I]0.

The following example illustrates some aspects of the kinetics of a living polymerization.

Example 4.1
The following data were reported for the living anionic polymerization of styrene:f The initial
monomer concentration was 0.29 mol LTI, and the initiator concentration was 0.00048 mol L‘l.
The reactor was sampled at the indicated times, and the resulting polymer was terminated and
analyzed for molecular weight and polydispersity. Use these data and Equation 4.2.4 and Equation
4.2.5 to answer the following questions: Does conversion of monomer to polymer follow the
expected time dependence? What is the propagation rate constant under these conditions?

t (s) Mn (g/mol) Nn PDI l—p

238 3,770 36.3 1.06 0.940
888 20,600 198 1.02 0.672

1,626 33,700 324 1.02 0.463
2,296 43,000 413 1.01 0.316
3,098 49,800 479 1.008 0.207
4,220 54,900 528 1.006 0.127

14,345 61,700 593 1.005 0.018

Solution

We can equate the conversion of monomer to polymer with the familiar extent of reaction, p, as in
Chapter 2 and Chapter 3:

:[Mlo—[M] ____1_ [M1
[M10 [M10

Using Equation 4.2.4 we see how p should evolve in time:

p
Z 1 __ e—kpflh}!

Therefore a plot of 1n(1 —p) versus t should give a straight line with slope equal to —kp[I]0. The data
provided do not include [M] explicitly, but we can infer [M] and p from Mn. From Equation 4.2.5,

TW. Lee, H. Lee, 1. Cha, T. Chang, K]. Hanley, and T.P. Lodge, Macromolecules, 33, 5111 (2000).
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the kinetic chain length is equal to p[I]0/[M]O, and it is also equal to NH (2 Mil/MO); thus (1_p) in
the table was obtained as

1_ #1_ [I]0 N h1_(0.00048molL"1)p “ [M]0 “— (0.29 molL“) “

The suggested plot is shown below and the resulting slope from linear regression implies that
kl, a: 1 mol L‘1 5‘1. (This is actually a rather low value, and in fact only an apparent value, due to
a phenomenon to be described in Section 4.3 [also see Problem 3]. Also note that the last data point
has been omitted from the fit, as it corresponds to essentially complete conversion, and thus is
independent of t once the reaction is finished.)

O I I r' I I I I I_l—I I l—l—W I—l—I ITI I l—

—0.5 — Slope = —0.00051 3‘1 -

I

‘l—I'

lIfi—IIfi—Ilj—I

lrr

__2-5_I_II_I_III_III_I_IIIIIIII| Ill—

0 1 000 2000 3000 4000 5000

{,5

4.2.2 Breadth of the Poisson Distribution

Figure 4.1 illustrates the Poisson distribution for values of ? equal to 100, 500, and 1000. For
polystyrene with M0 :- 104, these would correspond to polymers with number average molecular
weights of about 104, 5 x 104, and 105, respectively, which are moderate. The width of the distribu-
tions, although narrow, increases with r, but as we shall see in a moment, the relative width (i.e., the
width divided by 17) decreases steadily. It should be clear that these distributions are very narrow
compared to the step-growth or free—radical polymerizations shown in Figure 2.5 and Figure 3.5,
respectively. To underscore this, Figure 4.2 compares the theoretical distributions for free-radical
polymerization with termination by combination (Equation 3.7.26) and for living polymerization, both
with E 2 100. The difference is dramatic, and is made even more so when we recall that termination by
combination leads to a relatively narrow distribution with Mw/Mn approaching 1.5 rather than 2.

For the Poisson distribution, the polydispersity index, Mw/Mn, in fact approaches unity as 3
increases indefinitely. The explicit relation for the Poisson distribution is

MW NW
1

E__:_____ ____~1 4.2.20Mn N. +(1+r)2 ( )
Elli-d

where the approximation applies for large ?. For 17: 1000 Equation 4.2.20 indicates that the
polydispersity index will be 1.001, which is a far cry from 2.
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Figure 4.1 Mole fraction of i—mer for the Poisson distribution with the indicated kinetic chain lengths.

The derivation of Equation 4.2.20 is not too complicated, but it involves a couple of useful
nicks, as we will show now. From Equation 1.7.2, we recall the definition of N“, and insert
Equation 4.2.19 to obtain

0'0 i—i— le

Nn:;ixi=:L(1— 1)! (4.2.21)

0,04
L'I_l_

I I
I T I I I ; I l I I I I I I I I I I I I

I
I I I I

"l_l
I I

IT
I I I l

t 0 ° 1

g ' ’ Ideal living polymerization, v = 100 :
0.03 i: . ° 1

i - j i
s;- 0.02 i - J_

i . ° _;
0.01 E : Z . _ ' :

'
_ . Ideal free-radical polymerization, :

E , . termination by recombination, -
__ . '_ i7 = 100 .I

0
:

l 1 I 1’1 l _I_Ll \4 i I I I I I I I I I I I I l I I I I I l I I I I

-

0 100 200 300 400

Figure 4.2 Comparison of Poisson distribution and distribution for free-radical polymerization with
tennination by combination.
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To progress further with this, it is helpful to recall the infinite series expansion of ex (see the
Appendix if this is unfamiliar):

00
x‘

00

=
ex; T!

=
g)“(i _ 1)!

(4.222)

We will use this expansion to get rid of the factorials. Returning to Equation 4.2.21, we perform a
series of manipulations, recognizing that e‘” does not depend on i and can be factored out of the
sum, and that 1'74 can be written as d(v')/dv:

ivl‘
1
6—D _ 00 1311

N :: ———-———-————-: FVn IElla—1)! e ;(_i——l)!

_ e_,
0° d v" _e_,—,d

°° i7"”
i=1 m-n!‘ dam (xx—1)!

_;d
00

_ 31—1 —17 d __
00

fih-l --l_/ d _ 3_ e
E;V(i—1)!_e

3-;{1/
1);???

——-—-—)—1!}—e d—?{ve} (4.2.23)

This differentiation is straightforward, recalling the rule for differentiating the product of two
functions, and that d(e")/dx—- ex:

’Vd—fi—{ve }—— e ”{e + ve"——} 1 +1) (4.2.24)

This relationship establishes that Nn = 1 + 3. (You may be wondering where the “1” came from.
A glance at Equation 4.2.5 reveals the answer: before the reaction begins, when [M] = [M]0, then
3 = 0 when the degree of polymerization is actually 1. Of course, for any reasonable value of NH,
the difference between Nn and M, + 1 is inconsequential.)

The development to obtain an expression for NW follows a similar approach, beginning with the
definition from Equation 1.7.4:

00

00 2 fix,
N, = Ziw, = '3 (4.2.25)
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We already know that the denominator on the right-hand side of Equation 4.2.25 is equal to 1 + a,
so we just need to sort out the numerator

oo 00 -i-— 1 00 —i
2 2” e _ —? .2 Vx’= 2’ (5—1)!‘e 1230—1)!i=1 i=1

— e‘F—d—vfl— i 1,:- — e—fiififl— {reB‘
dv cw . (i .— 1)!

_
dfi dr (4.2.26)-

which leaves us with some more derivatives to take:
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= 1 + 33 + v? (4.2.27)
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Finally, we can insert Equation 4.2.27 into Equation 4.2.25 to obtain NW:

1 + 3? + 32NW _
_1—+§—

(4.2.28)

It is now straightforward to obtain the result for the polydispersity index given in Equation 4.2.20,
using Equation 4.2.24 and Equation 4.2.28:

_N_.,,_:1_—I—3>Z;I—TT»2=_(1—I—P—)i-l2—3: +L_2 (4.2.29)
N“ (1 +12) (1+V) (1 +12)

The polydispersity data provided in Example 4.1 are compared with the Poisson distribution result
(Equation 4.2.29) in Figure 4.3a. The experimental results are consistently larger than the predic-
tion, but actually not by much. And, as the molecular weight increases, the experimental results
seem to be approaching the Poisson result; the implications of this observation are considered in
Problem 2. It is an interesting fact that this experimental test of Equation 4.2.29 was made possible
only recently by advances in analytical techniques. To measure a polydispersity index below 1.01
would require an accuracy much better than 1% in the determination of Mw and Mn, and this is not
yet possible using the standard techniques discussed in Chapter 1, Chapter 7, Chapter 8, and
Chapter 9. In Figure 4.3b, the distribution for one particular sample obtained by matrix-assisted
laser desorption/ionization (MALDI) mass spectrometry (and shown in Figure 1.7b) is compared
with the Poisson distribution with the same mean; the agreement is excellent, with the experimen—
tal distribution being only slightly broader than the theoretical one.

We conclude this section with a summary of the requirements to achieve a narrow molecular
weight distribution, and thereby draw an important distinction between “livingness” and the
Poisson distribution. To recall the basic definition, a living polymerization is one that proceeds
in the absence of transfer and termination reactions. Satisfying these two criteria is not sufficient to
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Figure 4.3 (a) Experimental polydispersities versus molecular weight for anionically polymerized polysty-
renes, from the data in Example 4.1. (b) The distribution obtained by MALDI mass spectrometry for one
particular sample. The smooth curves represent the results for the Poisson distribution, Equation 4.2.29 in (a)
and Equation 4.2.19 in (b).
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guarantee a narrow distribution, however. The additional requirements for approaching the Poisson
distribution are:

1. All active chain ends must be equally likely to react with a monomer throughout the
polymerization. This requires both the principle of equal reactivity, and good mixing of
reagents at all times.

2. All active chain ends must be introduced at the same time. In practice, this means that the rate
of initiation needs to be much more rapid than the rate of propagation, if all the monomer is
added to the reaction mixture at the outset.

3. Propagation must be essentially irreversible, that is, the reverse “depolymerization” reaction
does not occur to a significant extent. There are, in fact, cases where the propagation step is
reversible, leading to the concept of an equilibrium polymerization, which we will take up in
Section 4.8.

4.3 Anionic Polymerization
Anionic polymerization has been the most important mechanism for living polymerization, since
its first realization in the 1950s [2]. Both modes of ionic polymerization (i.e., anionic and cationic)
are described by the same vocabulary as the corresponding steps in the free—radical mechanism for
chain-growth polymerization. However, initiation, propagation, transfer, and termination are quite
different in ionic polymerization than in the free-radical case and, in fact, different in many ways
between anionic and cationic mechanisms. In particular, termination by recombination is clearly
not an option in ionic polymerization, a simple fact that underpins the development of living
polymerization. In this section we will discuss some of the factors that contribute to a successful
living anionic polymerization, and in the following section we will illustrate the extension of these
techniques to block copolymers and controlled architecture branched polymers.

Monomers that are amenable to anionic polymerization include those with double bonds (vinyl,
diene, and carbonyl functionality), and heterocyclic rings (see also Table 4.3). In the case of vinyl
monomers CH2 2 CHX, the X group needs to have some electron withdrawing character, in order
to stabilize the resulting carbanion. Examples include styrenes and substituted styrenes, vinyl
aromatics, vinyl pyridines, alkyl methacrylates and acrylates, and conjugated dienes. The relative
stabilities of these carbanions can be assessed by considering the pKa of the corresponding
conjugate acid. For example, the polystyryl carbanion is roughly equivalent to the conjugate
base of toluene. The smaller the pKa of the corresponding acid, the more stable the resulting
carbanion. The more stable the carbanion, the more reactive the monomer in anionic polymeriza-
tion. In the case of anionic ring-opening polymerization (ROP), the ring must be amenable to
nucleophilic attack, as well as present a stable anion. Examples include epoxides, cyclic siloxanes,
lactones, and carbonates. At the same time, there are many functionalities that will interfere with
an anionic mechanism, especially those with an acidic proton (e. g., —OH, —NH3, —COOH) or an
electrophilic functional group (e.g., 02, —C(O)—, C02). Anionic polymerization of monomers that
include such functionalities can generally only be achieved if the functional group can be
protected. As a corollary, the polymerization medium must be rigorously free of protic impurities
such as water, as well as oxygen and carbon dioxide.

A wide variety of initiating systems have been developed for anionic polymerization. The first
consideration is to choose an initiator that has a comparable or slightly higher reactivity than the
intended carbanion. If the initiator is less reactive, the reaction will not proceed. If, on the other
hand, it is too reactive, unwanted side reactions may result. As the pKas of the conjugate acids for
the many possible monomers span a wide range, so too must the pKas of the conjugate acids of the
initiators. Second, the initiator must be soluble in the same solvent as the monomer and resulting
polymer. Common classes of initiators include radical anions, alkali metals, and especially
alkyllithium compounds. We will illustrate two particular initiator systems: sodium naphthalenide,
as an example of a radical anion, for the polymerization of styrene, and sec—butyllithium, as an
alkyllithium, in the polymerization of isoprene.
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The first living polymer studied in detail was polystyrene initiated with sodium naphthalenide in
tetrahydrofuran (THF) at low temperatures:

1.

3.

4.

The precursor to the initiator is prepared by the reaction of sodium metal with naphthalene and
results in the formation of a radical ion:

Na+HNa*+[i_ (4A)

Of course the structure of the radical anion shown is just one of the several possible resonance
forms.
These green radical ions react with styrene to produce the red styryl radical ion:

H CH2 H..c.:H2 '

i” +6 ”J” (4.3)

The latter undergoes radical combination to form the dianion, which subsequently initiates the
polymerization:

H .. o
(4.C)

In this case, the degree of polymerization is 2? because the initiator is difunctional; further-
more, there will be a single tail-to—tail linkage somewhere near the middle of each chain.
The propagation step at either end of the chain can be written as follows:

1,44 _H_ H CH

The carbanion attacks the more electropositive and less sterically hindered carbon to regen—
erate the more stable benzylic carbanion. Thus, the addition is essentially all head—to-tail in
this case. Note also that the sodium counterions have not been written explicitly in Reactions
(4.B)fl(4.D), although of course they are present. As we will see below, the counterion can
actually play a crucial role in the polymerization itself.

(4D)

Now we consider the polymerization of isoprene by sec—butyllithium, in benzene at room
temperature. In the first step, one monomer is added, but immediately there are many possibilities,
as indicated:

Me
Me 1 4 Me / Me /0\

Me+LiMe 1 2 3 4 Me +Li

+LI

1,2 Me ‘Me 3,4“" JAE Mel/I:Me \CHQ Me Me (413)
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Which happens, and why? What happens when the next monomer adds? Is it the same configuration,
or not? What does it all depend on? There is no simple answer to these questions, but we can gain a
little insight into how to control the microstructure of a polydiene by looking at some data.

Table 4.1 gives the results of chemical analysis of the microstructure of polyisoprene after
polymerization under the stated conditions. In the first two cases, there is a strong preference for
3,4 addition, with significant amounts of 1,2; relatively little 1,4 addition is found. The key feature
here turns out to be the solvent polarity, as will be discussed below. When switching to heptane, a
nonpolar solvent, the situation is reversed; now 1,4 cis is heavily favored. Interestingly, decreasing
the initiator concentration by a factor of a thousand exerts a significant influence on the 1,4 cis/
trans ratio. At first glance this seems strange; the details of an addition step should not depend on
the number of initiators. However, the answer lies in kinetics, as the propagation step is not as
simple as one might naively expect. Finally, the last three entries show isoprene polymerized in
bulk, which also corresponds to a nonpolar medium. In this case, we see that changing the
counterion has a huge effect. Simply replacing lithium with sodium switches the product from
almost all cis 1,4 to a mixture of trans 1,4 and 3,4.

The key factor that comes into play in nonpolar solvents is ion pairing or clustering of the living
ends. Ionic species tend to be sparingly soluble in hydrocarbons, as the dielectric constant of the
medium is too low. Consequently, the counterion is rather tightly associated with the carbanion,
forming a dipole; these dipoles have a strong tendency to associate into a small cluster, with
perhaps it = 2, 4, or 6 chains effectively connected as a star molecule. This equilibrium is
illustrated in the cartoon below for the case n = 4:

air- 41—4
Addition steps occur primarily when the living chain end is not associated. This leads to an
interesting dependence of the rate of polymerization, RP, on the living chain concentration, as can
readily be understood as follows (recall Equation 4.2.3):

Table 4.1 Polymerization of Polyisoprene under Various Conditions,
and the Resulting Microstructure in %

Solvent Counterion T, °C 1,4 cis 1,4 trans 1,2 3,4

THF Li 30 12 combined 29 59
Dioxane Li 15 3 1 1 18 68
Heptanea Li —— 10 74 18 — 8
Heptaneb Li —10 97 — — —-
None Li 25 94 — — 6
None Na 25 — 45 7 48
None Cs 25 4 51 8 37

aInitiator concentration 6 x 10’3 M.
bInitiator concentration 8 x 10"6 M.

Source: From Hsieh, H.L. and Quirk, R.P., Anionic Polymerization, Principles and Practical Applications, Marcel Dekker,
Inc., New York, NY, 1996.
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d[Ml ,p =
_T

: kpiMHP ]free (431)

where [P’l‘]fr63 is the concentration of unassociated living chains. This concentration is set by the
equilibrium between associated and free chains (see Reaction 4F):

([P*]free)4
K is = _._____ 4.3.2d upon ( )

Inserting Equation 4.3.2 into Equation 4.3.1 gives

R, : kp<KdisV4iMit<PnnV4 = kappiMiipnl/t (43-3)
where we recognize that [(P*)4] m (1/4)[P*], as most of the chains are in aggregates, and that the
apparent rate constant kappzkp(KdiS/4)U4. The rate of polymerization is therefore first order in
monomer concentration, as one should expect, but has a (l/n) fractional dependence on initiator
concentration, where n is the average aggregate size. Accurate experimental determination of n is
tricky, but a large body of data exists. It should also be noted that there is in all likelihood a
distribution of states of association or ion clustering, so that the actual situation is considerably
more complicated than implied by Reaction (4F).

Increasing the size of the counterion increases the separation between charges at the end of the
growing chain, thereby facilitating the insertion of the next monomer. The concentration of
initiator can also influence :2, presumably by the law of mass action. The dependence of the cis
isomer concentration in heptane indicated in Table 4.1 is actually thought to be the result of a more
subtle effect than this, however. It is generally accepted that the cis configuration is preferred
immediately after addition of a monomer, but that isomerization to trans is possible, within an
aggregate, given time. The rate of isomerization is proportional to the concentration of chains in
aggregates and therefore proportional to [P*], whereas the rate of addition is proportional to a
fractional power of [P*]. Increasing the initiator concentration increases both rates, but favors
isomerization relative to propagation.

Termination of an anionic polymerization is a relatively straightforward process; introduction of
a suitable acidic proton source, such as methanol, will cap the growing chain and produce the
corresponding salt, for example, Li +OCH3— . Care must be taken that the termination is conducted
under the same conditions of purity as the reaction itself, however. For example, introduction of
oxygen along with the terminating agent can induce coupling of two living chains. However, in
many cases it is desirable to introduce a particular chemical functionality at the end of the growing
Chain. One prime example is to switch to a second monomer, which is capable of continued
polymerization to form a block copolymer. The second example is to use particular multifunctional
terminating agents to prepare star—branched polymers. These cases, and other uses of end—functional
chains, are the next subject we take up.

4.4 Block Copolymers, End-Functional Polymers, and Branched
Polymers by Anionic Polymerization

The central importance of living anionic polymerization to current understanding of polymer
behavior cannot be overstated. For example, throughout Chapter 6 through Chapter 13 we will
derive a host of relationships between observable physical properties of polymers and their
molecular weight. These relationships have been largely confirmed or established experimentally
by measurements on narrow molecular weight distribution polymers, which were prepared by
living anionic methods. However, it can be argued that even more important and interesting
applications of living polymerization arise in the production of elaborate, controlled architectures;
this section touches on some of these possibilities.

4.4.1 Block Copolymers

Before addressing the preparation of block copolymers by anionic polymerization, it is appropriate to
consider some of the reasons why block copolymers are such an interesting class of macromolecules.
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The importance of block copolymers begins with the fact that a single molecule contains two (or more)
different polymers, and therefore may in some sense exhibit the characteristics of both compon-
ents. This offers the possibility of tuning properties, or combinations of properties, between the
extremes of the pure components. However, a random or statistical copolymer could also do that,
without the effort required to prepare the block architecture. The important difference is that, for
reasons that will be explored in Chapter 7, two different polymers will not usually mix; they tend
to phase separate into almost pure components. The architecture of a block copolymer defeats
this macroscopic phase separation, because of the covalent linkages between the different blocks.
The consequence is that block copolymers undergo what is often called microphase separation; the
blocks of one type segregate into domains that have dimensions on the lengthscale of the blocks
themselves, i.e., 5—50 nm. In the current jargon, these polymers undergo self-assembly to produce
particular nanostructures.

There are at least four broad arenas in which the self-assembly of block copolymers is useful, as
illustrated in Figure 4.4:

1. Micelles. In a solvent that dissolves one block but not the other, copolymers will aggregate
into micelles. A typical micelle is roughly spherical, about 20 nm in size, and contains 50—200
molecules. However, under appropriate conditions the micelles can be long, worm-like
structures, or even flat bilayers that can curve around to form closed “bags” called vesicles.
This behavior is analogous to that of small molecule surfactants or biological lipids. Micelles
can be used to sequester, extract, or transport insoluble molecules through a solvent.

2. Macromolecular surfactants. Extending the analogy to small molecule surfactants, where the
amphiphilic character of the molecule can stabilize dispersions of oil droplets in water
(emulsions) or water in oil, an AB block copolymer could stabilize a dispersion of polymer A
in a matrix of polymer B. This strategy is used to control the tendency of different polymers to
phase separate on a macroscopic scale, and allows preparation of compatibilized polymer
blends, with dispersed droplets on the micron scale.

Figure 4.4 Examples of block copolymer self-assembly: (a) as spherical, cylindrical, and bilayer micelles in a
selective solvent for one block; (b) as surfactants in a dispersion of one polymer in an immiscible matrix polymer;
(c) on surfaces, following adsorption of one block; (d) as bulk, nanostructured materials. Body-centered spherical
micelles (S), hexagonally packed cylindrical micelles (C), bicontinuous double gyroid (G), lamellae (L).
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3. Tailored surfaces and thin films. In a selective solvent, block copolymers can adsorb on a
surface with the insoluble block forming a dense film, and the soluble block extending out into
the solvent, forming a brush. Such brushes can impart colloidal stability to dispersed particles,
or prevent protein adsorption in biomedical devices. Or, a thin film of copolymer can be
allowed to self-assemble on a surface, forming nanoscale patterns such as stripes and spheres
that are under consideration for lithographic applications.

4. Nanostructared materials. In the bulk state, or in concentrated solution, the self-assembly
process can lead to structures with well-defined long-range order or symmetry. As illustrated
in Figure 4.4, an AB diblock tends to adopt one of seven particular ordered phases, depending
primarily on the relative lengths of the two blocks. For example, when the A fraction of the
chain is small, perhaps 10%—20%, the A blocks collect in spherical domains, just like micelles
in solution, and the micelles pack onto a body-centered cubic lattice. As the fraction of A is
increased, the chains form cylindrical micelles on a hexagonal lattice, and then when the
amounts of A and B are roughly equal, flat sheets or lamellae are formed. As A becomes
the majority component, the same structures are seen, but now with the B blocks inside the
cylinders and spheres. This sequence of interfacial curvature mirrors exactly that seen in
solution micelles. However, one new feature is the presence of a bicontinuous cubic structure,
the double gyroid, which intervenes between cylinders and lamellae.

In current commercial practice the most important block copolymer is the ABA triblock, where
the A block is usually polystyrene and the B block is an elastomer such as isoprene, butadiene, or
their saturated (i.e., hydrogenated) equivalents. Such polymers are known as thermoplastic elasto-
mers, because at ambient temperatures they self-assemble in such a way that the small styrene
domains, which are glassy, act as cross-links to form an extended, elastomeric network of the
bridging B blocks. (We will discuss network elasticity in detail in Chapter 10 and the nature of
the glass transition in Chapter 12.) At elevated temperatures (i.e., above 100°C), the polystyrene
blocks can flow, and the network can be reformed into a new shape. These anionically prepared
materials find use in such diverse applications as pressure-sensitive adhesives, hot melt adhesives,
asphalt modifiers, sports footwear, and drug-releasing stents.

Block copolymers are usually prepared by sequential living anionic polymerization. This means
that one block is polymerized to completion, but not terminated; the second monomer is then
added to the reaction mixture. The living chains act as macroim’tt'ators for the polymerization of
the second block. After the second block is complete, a terminating agent can be introduced, or the
monomer for a third block, and so on. The key requirements for this strategy to be successful
include the following:

1. The most important criterion is that the carbanion of the first block be capable of initiating
polymerization of the second block. Returning to the discussion in the previous section, this
implies that the stability of the second block carbanion is greater than or equal to that of the
first block, or equivalently that the pKa of the conjugate acid is smaller. As an example, if it is
desired to prepare polystyrene-block-poly(methyl methacylate), the polystyrene block must be
prepared first. On the other hand, polystyryl, polybutadienyl, and polyisoprenyl anions can
initiate one another, so in principle arbitrary sequences of these blocks are accessible.

2. The solvent system chosen must be suitable for all blocks, or it must be modified for the
polymerization of the second block. For example, it is possible to prepare block copolymers of
1,4-polyisoprene and 1,2-polybutadiene, by adding a “polar modifier” in midstream. The first
block microstructure calls for a nonpolar solvent, whereas the second requires a polar environ-
ment. Rather than switching solvents entirely, a polar modifier associates with the carbanion active
site and directs the regiochemistry of addition in a similar fashion to a polar solvent. Examples of
modifiers include Lewis bases such as triethylamine, N, N, N’ ,N’-tetramethylethylenediamine
(TMEDA), and 2,2’-bis(4,4,6-t1imethyl-1,3-dioxane).

3. The counterion must also be suitable for polymerization of both the blocks.
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These requirements, and especially the first, might appear to be rather limiting. For example,
how could either poly(methyl methacrylate)—block—polystyrene-block-poly(methyl methacrylate)
or polystyrene-block—poly(methyl methacrylate)-block-polystyrene triblocks be prepared? The
answer in both cases is actually rather straightforward. In the first case, a difunctional initiating
system such as sodium naphthalenide could be used; then the triblock would be grown from the
middle out. In the second case, a coupling agent can be used, which would link two equivalent
living polystyrene-block—poly(methyl methacrylate) diblocks together. The coupling agent is
usually a difunctional molecule, in which each functional group is equally capable of termin-
ating an anionic polymerization. This is illustrated by 0t,a’-dibromo—p—xylene in the following
reaction:

— Br
2 n m + fiBr--—-* (styrene)n-———(methyl methacrylate)2m—(styrene)n

O O O O
| |

9 Me
+ 2 LiBr

M

(4.G)

Note that the resulting methyl methacrylate midblock will have one phenyl linkage in the middle. This
coupling strategy has several potential advantages over sequential monomer addition. In addition to
achieving otherwise inaccessible block sequences, the total polymerization time is roughly cut in half.
Furthermore, the second “crossover” step is avoided, which is desirable in that each addition of
monomer brings with it the possibility of contamination or less than complete initiation of the
subsequent blocks. The primary limitation of coupling is the inevitability of incomplete conversion
of diblock to triblock. If Reaction (4.G) is run with either excess living chain or coupling agent, there
will be some remaining diblock. If run under stoichiometric conditions, incomplete coupling is still
probable. Any excess diblock can be removed by fractionation, if necessary.

There are still many block copolymers, even diblocks, that simply cannot be prepared by sequential
monomer addition: the conditions required for the polymerization of one block are not compatible with
the other. In this case, one general strategy is to prepare batches of the two homopolymers, each
functionalized at one end with a reactive group that can couple to the other. This potentially enables
preparation of any conceivable diblock, and each block could be prepared by any suitable living
polymerization scheme, not just the anionic one. However, this approach is usually the last resort,
because polymer—polymer coupling reactions are notoriously inefficient, even assuming a common
solvent can be found. Coupling reactions are practical in the anionic triblock case because the two
reacting chains are already present in the reactor, and the carbanions are highly reactive; this might not
be the case with, say, a hydroxyl-terminated polymer A and a carboxylic acid—terminated polymer B.
A more efficient strategy is to terminate the polymerization of the first block in such a way as to leave a
functional group that can subsequently be used to initiate living polymerization of the second
monomer; this is the macroinitiator approach, but where the reaction conditions are completely
changed in midstream. As an example, polystyrene and poly(ethylene oxide) are both amenable to
living anionic polymerization, but often not under the same conditions. If ethylene oxide monomer is
introduced to the polystyryl anion with a lithium counterion, it turns out that one monomer adds but no
propagation occurs. Termination with a proton therefore generates a polystyrene molecule with a
terminal hydroxyl group. This can then act as a macroinitiator; titration of the endgroup with the strong
base potassium naphthanelide produces the terminal alkoxide with a potassium counterion, which can
initiate ethylene oxide polymerization.

+

H OH
' _ + OH+ n+1 [.1

K
3] Swo-n “+Oj——F—)- n+1

(4.H)
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4.4.2 End-Functional Polymers

The previous illustration of the macroinitiator approach is an excellent example of the utility of an
end—functional polymer, by which we mean a polymer with a well-defined, reactive chemical
functionality at one end, or at both ends. Such polymers are also referred to as telechelic. It should
be apparent that most condensation polymers have reactive groups at each end, and thus fall in
this class. However, we are concerned here with polymers that have narrow molecular weight
distributions as a result of a living polymerization. In essence, an end-functional polymer is a
macromolecular reagent. It can be carefully characterized and then stored on the shelf until needed
for a particular application. The following is a list of a few of the many examples of possible uses
for end-functional polymers:

1. Macroinitiators. As illustrated in the previous section, a macroinitiator is an end-functional
polymer in which the functional group can be used to initiate polymerization of a second
monomer. In this way, block copolymers can be prepared that are not readily accessible by
sequential monomer addition. Indeed, the second block could be polymerized by an entirely
different mechanism than the first; other living polymerization schemes will be discussed in
subsequent sections.

2. Labeled polymers. It is sometimes desired to attach a “label” to a particular polymer, such as a
fluorescent dye or radioactive group, which will permit subsequent tracking of the location of
the polymer in some process. By attaching the label to the end of the chain, the number of
labels is well-defined, and labeled chains can be dispersed in otherwise equivalent unlabeled
chains in any desired proportion.

3. Chain coupling. Both block copolymers and regular branched architectures can be accessed by
coupling reactions between complementary functionalities on different chains.

4. Macromonomers. If the terminal functional group is actually polymerizable, such as a carbon—
carbon double bond, polymerization through the double bond can produce densely branched
comb or “bottlebrush” copolymers.

5. Grafting to surfaces. As mentioned in the context of copolymer adsorption to a surface, a densely
packed layer of polymer chains emanating from a surface forms a brush. Such brushes can also
be prepared by the grafting of end-functional chains, where the functionality is tailored to react with
the surface. High grafting densities are hard to achieve by this strategy, however, due to steric
crowding; the first chains anchored to the surface make it progressively harder for further chain
ends to react.

6. Controlled-branched and cyclic architectures. Examples of branched structures will be given
in the following section. Cyclic polymers can be prepared by intramolecular reaction of an
“or,m-heterotelechelic” linear precursor, where the two distinct end groups can react. Such
ring-closing reactions have to be run at extreme dilution, to suppress interchain end linking.

7. Network precursors. Telechelic polymers can serve as precursors to network formation, when
combined with suitable multifunctional linkers or catalysts. For example, some silicone
adhesives contain poly(dimethylsiloxane) chains with vinyl groups at each end. In the
unreacted form, these polymers form a low-viscosity fluid that can easily be mixed with
catalyst and spread on the surfaces to be joined; the subsequent reaction produces an adhesive,
three-dimensional network in situ.

8. Reactive compatibilization. As noted previously, block copolymers can act as macromolecular
surfactants to stabilize dispersions of immiscible homopolymers. However, direct mixing of
block copolymers during polymer processing is not always successful, as the copolymers have
a tendency to aggregate into micelles and never reach the interface between the two polymers.
One effective way to overcome this is to form the block copolymer at the targeted interface, by
in situ reaction of suitable functional chains. Note that in this case it is not absolutely
necessary that the reactive groups be at the chain ends.
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There are two general routes to end-functional chains: use a functional initiator or use a
functional terminating group. The use of a functional terminating agent proves to be the more
flexible strategy for a rather straightforward reason. Any functional group present in the initiator
must be inert to the polymerization, which can be problematic in the case of anionic polymeriza-
tion. Thus, the functional group in the initiator must be protected in some way. In contrast, for the
terminating agent all that is required are two functionalities: the desired one and another electro-
philic one to terminate the polymerization. However, the functionality that is designed to terminate
polymerization must be substantially more reactive to carbanions than the other functionality, or
more than one chain end structure will result. Consequently, in most cases a protection strategy is
also employed for the terminating agent. Nevertheless, in the termination case the demands on the
protecting group are much reduced relative to initiation; in the former, the protecting group only
needs to be significantly less reactive than the electrophile, whereas in the latter the protecting
group must be substantially less reactive than the monomer.

For the living anionic polymerization of styrene, butadiene, and isoprene, an effective termin-
ating strategy is to use alkanes that have bromo functionality at one end and the protecting group at
the other. The halide is very reactive to the carbanion, readily eliminating the LiBr salt as the chain
is terminated. Of course, the protecting group must then be removed in a separate step. Examples
of protecting groups and the desired functionalities are given in Table 4.2. Some of the same
protecting groups illustrated in Table 4.2 can also be used in functional initiators. For example, the
tert-butyl dimethylsilyl moiety used to protect the thiol group can also be used to protect a
hydroxyl group in the initiator, as in (3-(tert-buty1 dimethylsilyloxy-l-propyllithium)).

Another powerful strategy for preparing end-functional polymers by anionic polymerization
was implicitly suggested in the previous section, where addition of a nominally polymerizable
monomer (ethylene oxide in that instance) to a growing polystyryl anion resulted in the addition of
only one new monomer. It turns out that 1,1-dipheny1ethylene and derivatives thereof will only
react with organolithium salts to form the associated relatively stable carbanion; no further
propagation occurs:

Table 4.2 Examples of Protection Strategies for Preparing End—Functional
Polymers by Living Anionic Polymerization of Styrenes and Dienes

Functional Group Protected functionality

._ OOH / \Si(CH3)3

Si(CH3)3
-NH2 [:1/ \Si(CH3)3

Sr((CH3)2t-Bu)

-COOH /C(OCH3)3

"CECH —CEC"Si(CH3)3

Termination by short alkanes with a halide at one end and the protected functionality at the other.
Source: From Hirao, A. and Hoyashi, M., Acta Polymerica, 50, 219, 1999.
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R! R”

,. H O O
" +Li + H0 —+ — +- (4.1)2 LI

R! R.”

In this structure R’ and R” could be any of a variety of protected or even unprotected functional-
ities. Even more interesting is the fact that this carbanion can be used to initiate anionic polymer—
ization of a new monomer (such as methyl methacrylate, dienes, etc.) or even to reinitiate the
polymerization of styrene. In this way, diphenylethylene derivatives can be used to place particular
functional groups at desired locations along a homopolymer or copolymer, not just at the terminus.

4.4.3 Regular Branched Architectures

The kinds of synthetic methodology suggested in the previous section have been adapted to the
preparation of a wide range of polymer structures with controlled branching [4]. The first
architecture to consider is that of the regular star, in which a predetermined number of equal
length arms are connected to a central core. There are two general strategies to prepare such a
polymer by living anionic polymerization: use a multifunctional initiator, and grow the arms
outwards simultaneously, or use a multifunctional terminating agent to link together premade
arms. The first route is an example of an approach known as grafting from, whereas the second is
termed grafting r0. Or, in anticipation of the discussion of dendrimers in Section 4.9, grafting from
and grafting to are analogous to divergent and convergent synthetic strategies. Although both have
been used extensively, grafting to is more generally applicable to anionic polymerization due to the
difficulty in preparing and dissolving small molecules with multiple alkyllithium functionalities.
Furthermore, in order to achieve uniform arm lengths, it is essential that each initiation site be
equally reactive and equally accessible to monomers in the reaction medium. If it is desired to
terminate each star arm with a functional group, however, then grafting from may be preferred.
Should the anionic polymerization be initiated by a potassium alkoxide group, as for example with
the polymerization of ethylene oxide suggested in the context of Reaction (4.H), then preparation of
initiators with multiple hydroxyl groups is quite feasible (see Reaction 4.EE for a specific example).
Similarly, if other living polymerization routes are employed, such as controlled radical polymer-
ization to be discussed in Section 4.6, then grafting from is more convenient than in the anionic case.

The preparation of an eight-arm polystyrene star by grafting to is illustrated in the following
scheme. The most popular terminating functionality in this context is a chlorosilane, which reacts
rapidly and cleanly with many polymeric carbanions, and which can be prepared with function-
alities up to at least 32 without extraordinary effort. An octafunctional chlorosilane can be prepared
starting with tetravinylsilane and dichloromethylsilane, using platinum as a catalyst:

Me Cl\ /Cl—Si
l/ 2 9'

~—\-—/S‘7
+ CH3SIC|2H ——-—

CIWSIA’SK CI (4.1)
/ M9 CI 8

Si-Cl
/ \

CI Me

This multifunctional terminating agent is then introduced directly into the reaction vessel
containing the living polystyryl chains. The chains should be in stoichiometric excess to minimize



136 Controlled Polymerization

the formation of a mixture of stars with different numbers of arms. This will necessitate separation
of the unattached arms from the reaction mixture, but this is feasible. Moreover, an additional
advantage of the grafting to approach is thus exposed: the unattached arms can be characterized
(for molecular weight, polydispersity, etc.) independently of the stars themselves, a desirable step
that is not possible when grafting from.

The scheme just outlined is not quite as straightforward as it might appear. The key issue is to make
all eight terminating sites accessible to the polystyryl chains. As the number of attached arms grows, it
becomes harder and harder for new chain ends to find their way into the reactive core. In order to
reduce these steric effects, more methylene groups can be inserted into the terminating agent to spread
out the chlorosilanes. In some cases, polystyryl chains have been capped with a few butadienyl units to
reduce the steric bulk of the chain end. Clearly, all of these issues grow in importance as the number of
arms increases. Note, however, that it is not necessary that all the chlorosilanes be equally reactive in
order to preserve a narrow molecular weight distribution; it is only necessary that the attachment of the
narrowly distributed arms be driven to completion (which may take some time).

As the desired number of arms increases, it is practical to surrender some control over the exact
number of arms in favor of a simpler method for termination. A scheme that has been refined to a
considerable extent is to introduce a difunctional monomer, such as divinylbenzene, as a poly-
merizable linking agent. The idea is illustrated in the following reaction:

H Hx \
2

H n _
+ CH2 {1 l (4K)

0 O / H— n

One divinylbenzene molecule can thus couple two polystyryl chains and leave two anions for
further reaction. Each anion might add one more divinylbenzene, each of which could then add one
more polystyryl chain. At that point, the growing star molecule would have four arms, emanating
from a core containing three divinylbenzene moieties and four anions. This process can continue
until the divinylbenzene is consumed and the anions terminated. Clearly, there is potential for
a great deal of variation in the resulting structures, both in the size of the core and in the number
of arms. However, by carefully controlling the reaction conditions, and especially the ratio of
divinylbenzene to living chains, reasonably narrow distributions of functionality can be obtained,
with average numbers of arms even exceeding 100.

The preceding strategy can actually be classified as grafting through, a third approach that is
particularly useful for the preparation of comb polymers. A comb polymer consists of a backbone to
which a number of polymeric arms are attached; combs can be prepared by grafting from, grafting to,
and grafting through. In the first case, the backbone must contain reactive sites that can used to initiate
polymerization. The backbone can be characterized independently of the arms, but the arms them-
selves cannot. In grafting to, the backbone must contain reactive sites such as chlorosilanes that can
act to terminate the polymerization of the arms. Clearly in this case, as with stars, the arms and the
backbone can be characterized independently. The grafting through strategy takes advantage of what
we previously termed macromonomers: the arms are polymers terminated with a polymerizable group.
These groups can be copolymerized with the analogous monomers to generate the backbone. By
varying the ratio of macromonomer to comonomer, the spacing of the “teeth” of the comb can be
tuned. Note that this process is not necessarily straightforward. In Chapter 5 we will consider
copolymerization in great detail, but a key concept is that of reactivity ratio. This refers to the relative
probability of adding one monomer to a growing chain, depending on the identity of the previous
monomer that attached. It is generally the case that there are significant preferences (i.e., the
reactivity ratios of the two monomers are not unity), which means that the two monomers will not
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add completely randomly. These factors need to be understood before regular comb molecules with
variable branching density can be prepared by grafting through.

The grafting through approach can be illustrated through the following sequence [5]. Polystyryl
chains can be capped with one ethylene oxide unit (Reaction 4.H) followed by termination with
methacryloyl chloride:

CH20

H . a—m . W‘ (WCH2 0 '

This macromonomer can then be copolymerized with methyl methacrylate, to produce a comb or
graft copolymer, with a poly(methyl methacrylate) backbone and polystyrene arms:

CH2 0
CH _ _

H n omiMe
+

Mew/“\O/
3 —>— PMMA 9 PS

(4 M)0 CH2 ‘

This last example reminds us that the variety of possible controlled branched architectures is
greatly enhanced when different chemistries are used for different parts of the molecule. If we
confine ourselves to the case of stars, a molecule in which any two arms differ in a deliberate and
significant way has been termed a miktoarm star, from the Greek word for mixed [4]. A whole host of
different structures have been prepared in this manner. For example, an AZB miktoarm star contains
two equal length arms of polymer A and one arm of polymer B. Among the structures that have been
reported are AZB, A3B, A2B2, A4B4, and a variety of ABC miktoarm terpolymers. It is even possible
to produce asymmetric stars, in which the arms consist of the same polymer but differ in length.

4.5 Cationic Polymerization
Just as anionic polymerization is a chain-growth mechanism that shares important parallels with the
free-radical route, so too cationic polymerizations can be discussed within the same framework:
initiation, propagation, termination, and transfer. However, there are important differences between
anionic and cationic polymerizations that have direct impact on the suitability of the latter for living
polymerization. The principal differences between the two ionic routes are the following:

1. A single initiator species is often not sufficient in cationic polymerizations; frequently a
second ingredient (or cocatalyst) is required.

2. Total dissociation of the cationic initiator is rather rare, which has implications for the ability
to start all the chains growing at the same time.

3. Although both ionic mechanisms clearly eliminate termination by direct recombination of
growing chains, cationic species are much more prone to transfer reactions than their anionic
counterparts. Consequently, living cationic polymerization is much less prevalent than living
anionic polymerization.

4. Most monomers that can be readily polymerized by anionic mechanisms are also amenable to
free-radical polymerization. Thus, in commercial practice the rather more demanding anionic
route is only employed when a higher degree of control is required, for example, in the
preparation of styrene—diene block copolymers.

5. In contrast, although most monomers that can be polymerized by cationic mechanisms are also
amenable to free-radical polymerization, there are important exceptions. The most significant
from a total production point of view is polyisobutylene (butyl rubber), which is produced
commercially by (both living and nonliving) cationic polymerization.
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Table 4.3 General Summary of Polymerizability of Various Monomer Types by
the Indicated Chain-Growth Modes

Monomer Radical Anionic Cationic

Ethylene \/ (\/) ><
a-Olefins >< \/ (\/)
1,1-Dialkyl alkenes x x \/
Halogenated alkenes \/ x x
1,3-Dienes \/ \/ \/
Styrenes \/ \/ \/
Acrylates, methacrylates \/ \/ ><
Acrylonitrile \/ \/ ><
Acrylamide, methacrylamide \/ \/ ><
Vinyl esters \/ >< \/
Vinyl ethers x x \/
Aldehydes, ketones >< \/ \/

Note: Parentheses indicate not readily polymerized by this route.
Source: Adapted from Odian, G., Principles of Polymerization, 4th ed, Wiley-Interscience,
Hoboken, NJ, 2004.

A brief summary of the applicability of the three chain—growth mechanisms—radical, anionic,
cationic—to various monomer classes is presented in Table 4.3. In the remainder of this section we
describe general aspects of cationic polymerization and introduce some of the transfer reactions
that inhibit living polymerization. Then, we conclude by discussing the strategies that have been
used to approach a living cationic polymerization.

4.5.1 Aspects of Cationic Polymerization

In cationic polymerization, the active species is the ion formed by the addition of a proton
from the initiator system to a monomer (partly for this reason the initiator species is often called a
catalyst, because it is not incorporated into the chain). For vinyl monomers the substituents which
promote this type of polymerization are electron donating, to stabilize the propagating carboca-
tion; examples include alkyl, 1,1-dialky1, aryl, and alkoxy. Isobutylene, a-methylstyrene, and vinyl
alkyl ethers are examples of monomers commonly polymerized via cationic intermediates.

The initiator systems are generally Lewis acids, such as BF3, AlCl3, and TiCl4, or protonic
acids, such as H2804, HClO4, and HI. In the case of the Lewis acids, 3 proton-donating coinitiator
(often called a cocatalyst) such as water or methanol is typically used:

H20 + BF3 = H+ + FsBOH'

H20 + A'C'a —‘-—.— H+ + CI3AIOH‘ (4.N)

CH30H + TiCI4 —-— H+ + C|4TiOCHg

With insufficient cocatalyst these equilibria lie too far to the left, while excess cocatalyst can terminate
the chain or destroy the catalyst. Thus, the optimum proportion of catalyst and cocatalyst varies with
the specific monomer and polymerization solvent. In the case of protonic acids, the concentration of
protons depends on the position of the standard acid—base equilibria, but in the chosen organic solvent:

H2804 —__=‘—-_ H+ + H804"

Helo4 _..__ H+ + CIO4‘ (4.0)
H| H+ + l—
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If we write the general formula for the initiator system as H+B_, then the initiation and
propagation steps for a vinyl monomer CH2 =CHR can be written as follows. The proton adds
to the more electronegative carbon atom in the olefin to initiate chain growth:

R + _ R
H20:( + H B ——> Me—(+ B- (4.13)

H H

The electron—donating character of the R group helps to stabilize this cation. As with anionic
polymerization, the separation of the ions and the possibility of ion pairing play important roles in
the ease of subsequent monomer insertion. The pr0pagation proceeds in a head-to-tail manner:

R R R RMe—<+B‘ +H2CZ< —»Me>t/\r+ - (4Q)
H H H H '3

Aldehydes can also be polymerized in this fashion, with the corresponding reactions for formal-
dehyde being

H

O=<
+ H H H H+ (4R)‘ ———+ H + - H -H B +0=<H 0—<H B —+ lo/‘tp/btt B

One of the side reactions that can complicate cationic polymerization is the possibility of the ionic
repeat unit undergoing rearrangement during the polymerization. The following example illus—
trates this situation.

Example 4.2
It has been observed that poly(1,1—dimethyl propane) is the product when 3-methylbutene-1
(CH2 : CH—CH(CH3)2) is polymerized with Al in ethyl chloride at —130°C.T Draw structural
formulas for the expected and observed repeat units, and propose an explanation.

Solution
The structures expected and found are sketched here:

Fl

Me Me

Expected

n

Me Me

Found

The conversion of the cationic intermediate of the monomer to the cation of the product occurs by
a hydride shift between adjacent carbons:

.
Me

”P. Kennedy and RM. Thomas, Makromol. Chem, 53, 28 (1962).
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This is a well-known reaction that is favored by the greater stability of the tertiary compared to the
secondary carbocation.

The preceding example illustrates one of the potential complications encountered in cationic
polymerization, but it is not in itself an impediment to living polymerization. There are several
other potential transfer reactions, however, that collectively do impede a living cationic polymeri-
zation. Four of these are the following:

1. B—Proton transfer. This is exemplified by the case of polyisobutylene. Protons on carbons
adjacent (B) to the carbocation are electropositive, due to a phenomenon known as hypercon-
jagation; we can view this as partial electron delocalization through 0 bonds, in contrast
to resonance, which is delocalization through 17 bonds. Consequently there is a tendency for
B-protons to react with any base present, such as a vinyl monomer:

Me Me Me Me Me”\fl 3— + H20=< —+ H30—<+ B— +”\n’ + ”Y (4.8)
Me Me Me CH2 Me

The activated monomer can now participate in propagation reactions, whereas the previous
chain is terminated. Note that in isobutylene there are two distinct B—protons, and thus two
possible structures for the terminal unsaturation of the chain. There is also a possibility that
these double bonds can react subsequently.

2. Hydride transfer from monomer. In this case, the transfer proceeds in the opposite direc-
tion, but has the same detrimental net effect from the point of view of achieving a living
polymerization:

+
Wyn/i9

Me
(4.T)

Me Me Me
N’J\]/+ B— + HZC=< —-—+ HZC=<

In the particular case of isobutylene the resulting primary carbocation is less stable than the
tertiary one on the chain, so Reaction (4.T) is less of an issue than Reaction (4.8).

3. Intermolecular hydride transfer. This is an example of transfer to polymer, and can be written
generally as

R Fl

4. Spontaneous termination. This process, also known as chain transfer to counterion, is essen-
tially a reversal of the initiation step, as a B-proton is transferred back to the anion (e.g., as in
Reaction 4.P, but with a growing chain rather than the first monomer).

4.5.2 Living Cationic Polymerization

The preceding discussion provides some insight into the obstacles to achieve a living cationic
polymerization. Nevertheless, living cationic polymerization is by now a relatively common tool,
and many of the controlled architectures (block copolymers, end—functional chains, regular branched
molecules) that we discussed in the context of anionic polymerization have been accessed [7]. In this
section, we briefly describe the general strategy behind living cationic polymerization; recall that the
essential elements are the absence of termination or transfer reactions:

1. Clearly, the reaction must be conducted in the absence of nucleophilic species that are capable
of irreversible termination of the growing chain.

2. Similarly, the reaction should be conducted in the absence of bases that can participate in
B—proton transfer. As discussed above, the monomer itself is such as base, and therefore
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cationic polymerization always has a “built-in” transfer reaction. The key step, therefore, is to
choose reaction conditions to maximize the rate of propagation relative to transfer, given that
transfer probably cannot be completely eliminated.

3. Generally, both propagation and transfer are very rapid reactions, with transfer having the
higher activation energy. Lower temperatures therefore favor propagation relative to transfer,
as well as have the advantage of bringing both reactions under better control.

4. Cationic polymerization, like most chain-growth polymerization, is often highly exothermic.
With the additional feature of very rapid reaction, it becomes important to reduce the rate of
polymerization in order to remove the excess heat. Low temperature is the first option in this
respect, followed by lower concentrations of growing chains.

5. Another way to view control in this context is to aim to extend the lifetime ofthe growing chain. As
a point ofreference, a living polystyryl carbanion can persist for years in a sealed reaction vessel; a
polyisobutyl carbocation will probably not last for an hour under equivalently pristine conditions.
While low temperature certainly aids in increasing the lifetime, another useful strategy is to make
the growing center inactive or dormant for a significant fraction of the elapsed reaction time. This is
done via the process of reversible termination, as illustrated by the sequence in Reaction (4.V):

HCI + Till; I: TiCl5' + H+
H++ M é P14-

Pi++ M é Pi+1+

Pi++TiCI5' :: PiCI +TiC|4

(4.V)

In this sequence, the first reaction generates the initiating proton, and the second and third reactions
correspond to standard irreversible initiation and propagation steps involving monomer M. The fourth
reaction is the key. The growing cationic i-mer P? is converted to a dormant, covalent species BC] by a
reversible reaction. While the growing chain is in this form, it does not undergo transfer or propagation
reactions, thereby extending its lifetime. The reversible activation/deactivation reaction must be
sufficiently rapid to allow each chain to have many opportunities to add monomer during the
polymerization, and the relative length of time spent in the active and dormant states can be controlled
by the position of the associated equilibrium. This, in turn, offers many opportunities to tune a particular
chemical system. For example, decreasing the polarity of the solvent or adding an inert salt that contains
a common ion (chloride in this case) both push the equilibrium toward the dormant state.

We will revisit this idea of a dormant reactive species in the next section on controlled radical
polymerization, where it plays the central role. We conclude this section with a specific example of
a successful living cationic polymerization scheme. Isobutyl vinyl ether (and other vinyl ethers)
can be polymerized by a combination of HI and az [8]. The hydrogen iodide “initiator” adds
across the double bond, but forms an essentially unreactive species:

on onl+ HI 4.W
c=<H

—* MeXH ( )

The carbon—iodide bond is then activated by the relatively weak Lewis acid az to allow insertion
of the next monomer. The transition state for pr0pagation may be represented schematically as

.01 to
I;

|--Zn|2 —-——h- reznlz

\[2’
OF! OR

(4.X)

Experimentally, the system exhibits many of the characteristics associated with a living polymeri-
zation: polydispersities consistently below 1.1; Mn increasing linearly with conversion; the ability
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Figure 4.5 Living cationic polymerization of isobutyl vinyl ether in methylene chloride at —40°C. The
calculated curve indicates the expected molecular weight assuming 100% initiator (HI) efficiency. After 100%
conversion a new charge of monomer was added, demonstrating the ability of the chain ends to resume
pr0pagati0n. (Reproduced from Sawamoto, M., Okamoto, C., and Higashimura, T., Macromolecules, 20,
2693, 1987. With permission.)

to resume polymerization after addition of a new charge of monomer. These aspects are illustrated
in Figure 4.5. The mechanism implied by Reaction (4.W) and Reaction (4.X) is consistent with the
experimental observation that Mn is inversely proportional to the concentration of HI, but inde-
pendent of the concentration of ZnIz. On the other hand, the polymerization rate increases with
added 21112. az is apparently a sufficiently mild activator that the polymerization is still living at
room temperature when conducted in toluene, whereas in the more polar solvent methylene
chloride lower temperatures are required.

4.6 Controlled Radical Polymerization
In this section we take up the topic of controlled radical polymerization, which represents one of
the most active fields in polymer synthesis in recent years. The combination of the general
advantages of radical polymerization (a wide range of suitable monomers, tolerance to many
functional groups, characteristically rapid reactions, relatively relaxed polymerization conditions)
with the unique features of a living polymerization (narrow molecular weight distributions,
controlled molecular weights, end functionality, block copolymers, and other complex architec-
tures) has tremendous appeal in many different areas of polymer science. In this section we outline
first in general terms how this combination is achieved, and then give some specific examples of
the mechanistic details. We choose the term “controlled” rather than “living” in this section,
because irreversible termination reactions cannot be rigorously excluded.

4.6.1 General Principles of Controlled Radical Polymerization

The first task is to resolve the apparent paradox: given that radicals can always combine to undergo
termination reactions, how do we approximate a living polymerization? To develop the answer, it
is helpful to start by summarizing once again the essence of a chain-growth polymerization in
terms of initiation, propagation, and termination rates:
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R. = kit] (4.6.1)
R, = kprPoitM] (45-2)
Rt _—_ kt[P°][P-] (4.6.3)

where as before [I] is the concentration of initiating species, [M] is the concentration of unreacted
monomer, and [19.] is the total concentration of radicals of any length. The key to a living
polymerization is that Rt —+ 0, or equivalently in practice, that Rp >> Rt. From Table 3.3 and
Table 3.4, we can see that typical values of kt are about four orders of magnitude larger than kp.
Therefore, if we want Rp to be, say, 104 times larger than l‘i’t we will need [M] to be 108 times larger
than [Po]. Given that [M] could be on the order of 1—10 mol L"1 (i.e., in bulk or concentrated
solution), which means the concentration of radicals, and therefore growing chains, will have to be
104— 10—8 mol L4. This is quite small, but from the calculations in Section 3.4.3 we know that it
is quite feasible.

We can do even better than this, however, by a nifty trick already suggested in the context of
living cationic polymerization. Suppose that the absolute concentration of radical forming species
is not that small, but that each molecule spends the vast majority of its time in an unreactive,
dormant form. This is illustrated schematically below:

PX = P- + X (4.Y)

where PX is the dormant species and X is a group (atom or molecular fragment) that can leave and
reattach to the radical rapidly. (Note that radical species are apparently not conserved in the way
Reaction (4.Y) is expressed, but as we will see subsequently this is not actually the case. Usually X
is also a radical species, but one that is not capable of propagating.) If the equilibrium constant for
the activation process, Kw, is small, then the instantaneous [P-] will be small even if [PX] is
reasonably large:

[PX][P ] Kact
[X]

(4.6.4)

The process of controlled radical polymerization can now be seen to take place as follows. The
dormant species PX spontaneously dissociates into the active radical and the inert partner X.
The exposed radical may then undergo propagation steps, or simply recombine with X so that no net
reaction takes place. If each radical spends most of its time in the dormant state, the instantaneous
concentration of radicals is small, and termination is very unlikely (but never impossible). During
an average active period a given radical may add many new monomers, about one new monomer,
or essentially no new monomers. It is actually the last situation that is most desirable, because it
means that over time all radicals are equally likely to propagate, one monomer at a time. We can
understand this concept in the following way. After the polymerization has proceeded for a
reasonable time, so that each chain on average has experienced many active periods, the number
of active periods per chain will follow the Poisson distribution (Equation 4.2.19). That is because
we are randomly distributing a large number of items (active periods) into a smaller number of
boxes (growing chains). In the limit where the likelihood of adding a monomer per active period is
small, the average number of monomers added per chain will be directly proportional to the
number of active periods, and thus follow the Poisson distribution as well. Of course, we are
neglecting any termination and transfer reactions.

In contrast, if radicals tend to add monomers in a burst during each active period, the molecular
weight distribution will not be as narrow unless the total degree of polymerization involves many
such bursts. In fact, the length distribution of the “bursts” will be the most probable distribution,
which (recall Equation 2.4.10 and Equation 3.7.19) has a polydispersity approaching 2. We can
actually rationalize an approximate expression for the polydispersity of the resulting polymers,
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based on what we already know. Suppose the mean number of monomers added per active period
is q 2 1. The distribution of active periods from chain to chain still follows the Poisson distribution,
so it is almost as though we were adding one q-length block per active period. Thus, the
polydispersity index becomes that for the Poisson distribution (recall Equation 4.2.20) with a
new “effective monomer” of molecular weight qMO:

MW 61M0m1+
Mn Mn

(4.6.5)

Equation 4.6.5 suggests that even if q is 10, a polydispersity of 1.1 is achievable if the total degree
of polymerization exceeds 100. A more detailed analysis yields equations similar to Equation
4.6.5, when the average degree of polymerization is sufficiently large [9]. It is worth noting that
there are several complications to this analysis, such as the fact that the value of q will actually
change during the polymerization, as [M] decreases.

It should be evident from the preceding discussion that termination processes are not rigor-
ously excluded in controlled radical polymerization, only significantly suppressed. Nevertheless,
polydispersities MW/Mn < 1.1—1.2 are routinely obtained by this methodology. It should also be
evident that the higher the average chain length, the more likely termination steps become. This
can be seen directly from Equation 4.6.2 and Equation 4.6.3; as time progresses, l’i’t remains
essentially constant, whereas Rp decreases because [M] decreases with time. Consequently, the
relative likelihood of a termination event increases steadily as the reaction progresses. In fact,
there is really a three-way competition in designing a controlled radical polymerization scheme,
among average molecular weight, polydispersity, and “efficiency,” where we use efficiency to
denote a combination of practical issues. For example, the higher the desired molecular weight,
the broader the distribution will become, due to termination reactions. This could be mitigated
to some extent by running at even higher dilution, but this costs time and generates large volumes
of solvent waste. Or, the reaction vessel could be replenished with monomer, to keep [M]
high even as the reaction progresses, but this wastes monomer, or at least necessitates a
recovery process.

4.6.2 Particular Realizations of Controlled Radical Polymerization

A rich variety of systems that fall under the umbrella of Reaction (4.Y) have been reported. Three
general schemes have so far emerged as the most prevalent, although there is no a priori reason
why others may not become more pOpular in the years ahead. Each has particular advantages and
disadvantages relative to the others, but for the purposes of this discussion we are really only
interested in their evident success. All three have been the subject of extensive review articles; see
for example Refs. [10,11,12].

4.6.2.1 Atom Transfer Radical Polymerization (ATRP)

In this approach the leaving group X in Reaction (4.Y) is a halide, such as a chloride or bromide,
and it is extracted by a suitable metal, such as copper, nickel, iron, or ruthenium. The metal is
chelated by ligands such as bipyridines, amines, and trialklyphosphines that can stabilize the metal
in different oxidation states. A particular example of the activation/deactivation equilibrium using
copper bromide/2,2’-bipyridine (bipy) can thus be written:

PgBI’ + CuBr(bipy)2 = B0 + CuBr2(bipy)2 (4.2)

where the copper atom is oxidized from Cu(I)Br to Cu(II)Br2. Reaction (4.2) suggests that the
polymerization could be initiated by the appropriate halide of the monomer in question, such as
l-phenylethyl bromide when styrene is the monomer. Alternatively, a standard free-radical
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initiator such as AIBN could be employed (recall Section 3.3). A particularly appealing aspect of
ATRP is the wide variety of monomers that are amenable to this approach: styrene and substituted
styrenes, acrylates and methacrylates, and other vinyl monomers. Dienes and amine or carboxylic
acid—containing monomers are more challenging.

The following example illustrates some of the quantitative aspects of ATRP of styrene.

Example 4.3
From a linear plot of In ([M]0/[M]) versus time, it has been reported that apparent propagation rate
constant for the ATRP of styrene in bulk is on the order of 10—4 s", where the apparent
rate constant kgpp is defined by RP = lcl‘l‘,"”"'”’[M].Jr What is the order of magnitude of the concentration
of active radicals at any time?

Solution
From Equation 4.6.2, we can see that kgpp thus defined is actually equal to kp [Po ]. From Table 3.4 in
Chapter 3 we know that a typical value for kp for free-radical polymerization is 102—103 L mol‘l s- l,
and on this basis direct substitution tells us that [Po] is about 104 3—1/102'3 L 11101“ s—1 = 10"5—10—7
mol L’ '. This is in line with the estimate given in the previous section, of the target concentration of
active radicals needed to make the rate of termination small with respect to the rate of propagation.

4.6.2.2 Stable Free-Radical Polymerization (SFRP)

In this variant, the leaving group X in Reaction (4.Y) is a free-radical, but a sufficiently stable one
that it does not initiate polymerization. The prime example of this class is the nitroxide radical,
usually embedded in the (2,2,6,6—tetramethylpiperidinyloxy) “TEMPO” group [13]. When
attached to a monomer analog or a growing polymer chain terminus through the alkoxyamine
C—ON bond, homolytic cleavage of the C—0 bond produces the stable TEMPO radical and an
active radical species. This reaction is illustrated below for the case of styrene:

Me OH.‘ Me
.

O‘M.
N ' N_._ + (4AA)

Me Me
Me Me

The adduct of styrene and TEMPO on the left-hand side of Reaction (4AA) can be prepared rather
readily, purified, and stored indefinitely. In contrast to other controlled radical polymerization
schemes, this approach is based on a single initiating species; no cocatalyst or transfer agent is needed.
Even in the presence of a large excess of styrene monomer, it is not until the system is brought to an
elevated temperature such as 125°C that polymerization proceeds directly. The reaction can be run
under nitrogen, and the rigorous purification necessary for living ionic polymerizations is not required.
Molecular weights well in excess of 105, with polydispersities in the range of 1.1—1.2, have been
achieved. The range of accessible monomers is so far more restricted than with ATRP or reversible
addition-fragmentation transfer (RAFT), with styrene, acrylate, and methacrylate derivatives being the
monomers of choice. However, the polymerization is relatively tolerant of functional groups, and
many functionalized initiators with TEMPO adducts have been designed. This makes SFRP an
appealing alternative to living ionic polymerization for the production of end-functional polymers
(recall Section 4.4), and by extension block copolymers and branched architectures, once the initiator
is available.

lK. Matyjaszewski, T.E. Patten, and J. Xia, J. Am. Chem. 306., 119, 674 (1997).
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Example 4.4
An interesting question arises upon examination of Reaction (4.AA): does each TEMPO radical
remain associated with the same chain during the polymerization, or does it migrate freely through
the reaction medium? In the case of anionic polymerization in a nonpolar solvent, the counterion is
certainly closely associated with the chain end, due to the requirement of electrical neutrality. In
the case, of conventional free-radical polymerization, we considered the “caging effect” that can
severely limit the efficiency of an initiator (see Section 3.3). In this case, the relatively high
temperature should enhance both the mobility of the individual species and the ability to escape
from whatever attractive interaction would hold the two radical species in proximity. How could
one test this intuition experimentally?

Solution
The unimolecular nature of the TEMPO-based initiator, plus its susceptibility to functionalization,
offers a convenient solution, as has been demonstrated.)r These authors prepared the styrene—-
TEMPO adduct shown in Reaction (4.AA), plus a dihydroxy-functionalized variant:

Me Me

OKNHO

Me
Me

OH

A 1:] mixture of the two initiators was added to styrene monomer and heated to the polymer-
ization temperature. At various times, the reaction mixture could be cooled, and analyzed. If the
exchange of TEMPO groups was rapid, then one would expect four distinct chain populations,
with roughly equal proportions: one with no hydroxyls, one with a hydroxyl at each end, one
with a hydroxyl at the terminus, and one with a hydroxyl at the initial monomer. On the other
hand, if there was little exchange, there should be just two populations: one with no hydroxyls
and one with two. Liquid chromatographic analysis gave results that were fully consistent with
the former scenario.

4.6.2.3 Reversible Addition-Fragmentation Transfer (RAFT) Polymerization

The principal distinction between RAFT polymerization on the one hand and ATRP or SFRP on
the other is that RAFT polymerization involves a reversible chain transfer, whereas the other two
involve reversible chain termination. The key player in the RAFT process is the chain transfer
agent itself; the radicals are generally provided by conventional free-radical initiators such as
AIBN. Dithioesters (RCSSR’) such as cumyl dithiobenzoate are often used; in this instance R is a
phenyl ring and R’r is a cumyl group. The growing radical chain P,» reacts with the transfer agent,
and the cumyl group departs with the radical:

SP,- SP,-
. _.._ . 4.BB13R.__R.. x < )s

P" + RASH' = 3Fl Fl

A different growing radical PJ-o can also react in the analogous manner:

.. —-— ° .. 4.CCP! + HAS HASP, P' ”Ha/“\sp, ( )

1‘CJ. Hawker, G.G. Barclay, and J. Dao, J. Am. Chem. Soc, 118, 11467 (1996).
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In this way, the dithioester end group is transferred from chain to chain. An important feature of
this reaction scheme, which is important for achieving narrow molecular weight distributions, is
that the ease of transfer of the dithioester is essentially independent of the length of the associated
chain, or between chains and the R’ group.

There is an important feature of this scheme that is different from the other two controlled
radical approaches. Namely, the number of chains is not determined by the number of
initiators, but by the combination of conventional initiators (e.g., AIBN) and those from the
RAFT agent, e.g., cumyl radicals (R’° in Reaction 4.BB). In fact, given that the decomposi-
tion of AIBN cannot be controlled, it is advantageous to use an excess of the RAFT agent,
thereby dictating the number of chains initiated via R“, which in turn is proportional to the
concentration of RCSSR’. This process is facilitated by the fact that such dithioesters have
very large chain transfer constants (recall Section 3.8), and thus a chain initiated by AIBN
or by R" is rapidly transformed into a dormant form, before achieving a significant degree
of polymerization. The RAFT approach has been successful with a very wide variety of
different monomers.

4.7 Polymerization Equilibrium
Up to this point we have tended to write chain-growth propagation steps as one-way reactions, with
a single arrow pointing to the product:

It
Pik+M—p>P?c+l

In fact, as a chemical reaction, there must be a reverse depropagation or depolymert'zation step, and
the possibility of chemical equilibrium:

Kpolr
Pik‘l'Mpl-l

This equilibrium constant for polymerization, Kpoly, can be written as the ratio of the forward and
reverse rate constants, and as the appropriate ratio of species concentrations at equilibrium:

K : _k_p_ = [PEI-(+1] g
1W” k... [Pr][M1 [M].q (4.7.1)

The last term indicates that the equilibrium constant is the inverse of the equilibrium monomer
concentration, because the concentrations of i-mer and (i + l)-mer must be nearly equal (recall
Equation 3.7.3). The reason we have not emphasized the possibility of equilibrium so far is that
almost all polymerization reactions are run under conditions where the equilibrium lies far to the
right, in favor of products; the residual monomer concentration is very small. This is not always the
case, however, as we shall now discuss.

The state of equilibrium is directly related to the Gibbs free energy of polymerization:

now], = A0301), + RT 1n QM (4.7.2)

where the reaction quotient, (21,015,, is the same ratio of product and reactant concentrations as K,
but not necessarily at equilibrium. The free energy of polymerization is the difference between the
free energies of the products and the reactants, in kJ/mol, where for polymeric species we consider
moles of repeat units. The superscript 0 indicates the standard quantity, where all species are at
some specified standard state (e.g., pure monomer and repeat unit, or perhaps at 1 mol L—1
in solution). For the polymerization reaction to proceed spontaneously, AGpoly <0. When the
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reaction is allowed to come to equilibrium, Q1301), = poly and AGW;y = 0. Thus, we have the well-
known relation

AGO RTln K1301), (4.7.3)poly:

The free energy change per repeat unit upon polymerization may be further resolved into enthalpic
(H) and entropic (S) contributions:

AGO = M301, — T453013, (4.7.4)Poly

From Equation 47.3, we can see that the statement that Kpoly is large, favoring products, is
equivalent to saying that AGpoly18 large and negative. From Equation 47.4, we can see that facile
polymerization requires that either A1130”13 large and negative, thatIS, the reaction is exothermic,
or that ASpol), is large and positive. In fact, A5130]y is usually negative, the monomers lose
translational entropy when bonded together1n a polymer. However, poly is exothermic, because
the extra energy of a carbon—carbon double bond relative to a single bond is released. In fact, we
should have anticipated this conclusion from the outset: polymers could not be made inexpensively
in large quantities if we had to put in energy for each propagation step.

Table 4.4 provides examples of the standard enthalpy and entropy of polymerization for a few
common vinyl monomers. In all cases both the enthalpy and the entropy changes are negative, as
expected; furthermore, AGED”, is negative at room temperature (300 K). Starting with ethylene as
the reference, the relative enthalpies of polymerization can be understood in terms of two general
effects. The first is the possibility of resonance stabilization of the double bond in the monomer
that is lost upon polymerization. This results in lower exothermicity for butadiene, isoprene,
styrene, and a-methylstyrene, for example. The second is steric hindrance in the resulting polymer.
For example, disubstituted carbons in the polymer can lead to significant interactions between
substituents on every other carbon, which therefore destabilize the polymer, as in the case of
isobutylene, or-methylstyrene, and methyl methacrylate. Tetrafluoroethylene, with its unusually
large exothennicity, is included in this short table in part to remind us that there are examples
where we may not have a simple explanation. Further discussion of these issues is provided in
Section 5.4.

Equation 4.7.4 indicates that as the polymerization temperature increases, the relative import-
ance of entropy increases as well. As AS favors depolymerization, it is possible to reach a

Table 4.4 Values of the Standard Enthalpy and Entropy of Polymerization, as Reported in
Odian [6]

Monomer AHgoly (kJ mol-l) A5130;y (J KHmol‘ ) AGpoly at 300 K (kJ mol")

Ethylene ——93 — 155 —47
Propylene —84 —1 16 —49
Isobutylene —48 —121 —12
1,3-Butadiene —73 —89 —46
Isoprene —75 —1 01 —45
Styrene —73 —104 —42
a-Methylstyrene —35 —1 10 —2
Tetrafluoroethylene -—163 —1 12 —130
Vinyl acetate —88 -—1 10 —55
Methyl methacrylate —56 —1 17 —21

Note: The enthalpy corresponds to the conversion of liquid monomer (gas1n the case of ethylene) to amorphous
(or slightly crystalline) polymer. The entropy corresponds to conversion of a 1 mol L‘I solution of monomer to
polymer.
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temperature above which polymerization will not be spontaneous under standard conditions. This
special temperature is referred to as the ceiling temperature, TC. From Equation 4.7.4, we have

AGO :0=AH°poly poly _ TCASO (4-7-5)Poly

and combining this relation with Equation 4.7.1 through Equation 4.7.3 we find

AHOpoly, = 4.7.6T A8301),+1’i‘ln[M],,,l ( )

Using this relation, the data in Table 4.4, and assuming [M] = 1 mol L‘l, the ceiling temperature is
45°C for poly(0t-methylstyrene) and 206°C for poly(methyl methacrylate). Note the important fact
that according to Equation 4.7.6, TC will depend on the monomer concentration and will therefore
be different for a polymerization in dilute solution compared to one in bulk monomer.

Figure 4.6 illustrates the application of Equation 4.7.6 to poly(a—methylstyrene). The equilib-
rium monomer concentration is plotted against temperature according to Equation 4.7.6 and
the indicated values of AH0 and A30. The smooth curve corresponds to the ceiling temperature
and the horizontal line indicates a 1 mol L‘1 solution. Any solution of monomer that falls to the
right of, or below, the curve (i.e., any combination of [M] and T) will simply not polymerize. Any
solution to the left of, or above, the curve can polymerize, but only until the equilibrium monomer
concentration is reached. For example, a 1 mol L—1 solution at 0°C could polymerize, but as
the equilibrium monomer concentration is about 0.1 mol LT], the maximum conversion would
only be 90%.

Interestingly, there are a few instances in which polymerization is driven by an increase in
entropy, and where the enthalpy gain is almost negligible. Examples include the polymerization of
cyclic oligomers of dimethylsiloxane, such as the cyclic trimer and tetramer, which we will discuss
in the next section. In this case, the bonds that are broken and reformed are essentially the same,

M[ ]
0.1- -:

_a—methylstyrene

AH” = —35,000 J mol"1

001: A802—110Jmol_1K_1 2

0.001 ............+.....+
-50 0 50 100 150

T,°C

Figure 4.6 Illustration of the relation between equilibrium monomer concentration and ceiling temperature
for poly(a-methylstyrene).
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hence M301), :3 0. On the other hand, possibly because of the greater conformational freedom in
the linear polymer versus the small cycles, A5301), is positive. In such a case when M301), is slightly
positive, it is possible in principle to have afloor temperature, below which polymerization cannot
occur at equilibrium. Furthermore, for. the living polymerization of “D3,” the cyclic trimer of
dimethylsiloxane, for example using an anionic initiator, 111G130]y is never particularly favorable
compared to the typical vinyl monomer case. Consequently, one has to be aware of the law of mass
action, just as in a polycondensation. In other words, the reaction cannot be allowed to go to
completion, because rather than achieving essentially 100% conversion to polymer, the reaction
mixture stabilizes at the equilibrium monomer concentration. Then, random propagation and
depropagation steps will degrade the narrow molecular weight distribution that was initially
sought. This problem can be circumvented by adding more monomer than is necessary to achieve
the target molecular weight, and using trial and error to determine the time (and fractional
conversion) at which the desired average molecular weight has been achieved.

4.8 Ring-Opening Polymerization (ROP)
4.8.1 General Aspects

Cyclic molecules, in which the ring contains a modest number of atoms, say 3—8, can often be
polymerized by a ring-opening reaction, in which a particular bond in the cycle is ruptured, and
then reformed between two different monomers in a linear sequence. This process is illustrated in
the following schematic reaction:

MB*+pl:||3———p—
MB—A 3* (4.DD)

In this instance the ring contains four atoms, and the A—B bond is the one that is preferentially
cleaved. The propagating chain is shown with B containing the active center; it is often the case
that ROP proceeds by an ionic mechanism. Comparison of monomer and repeat unit structures in
Reaction (4.DD) reveals that the bonding sequence is the same in both cases, in marked contrast to
either a chain-growth polymerization through, for example, a carbon—carbon double bond or a
step-growth polymerization through, for example, condensation of acid and alcohol groups. In
light of the previous section, where we considered the thermodynamics of polymerization, a basic
question immediately arises: if the bonding is the same in monomer and polymer, what is the
primary driving force for polymerization? The answer is ring strain. The linkage of the atoms into
a ring generally enforces distortion of the preferred bond angles and even bond lengths, effects that
are grouped together under the title ring strain. The amount of ring strain is a strong function of the
number of atoms in the ring, r. For example, ethylene oxide, with r = 3, is quite a explosive gas at
room temperature. On the other hand, cyclohexane, with r=6, is almost inert. In fact, r=6
represents a special case, at least for all carbon rings, as the natural sp3 bond angles and lengths
can be almost perfectly matched. The following example illustrates the effect of r on the
thermodynamics of polymerization, for cyclic alkanes.

Example 4.5
The following values of We and A58; per methylene unit have been estimated at room tempera-
ture (as reported in Ref. [10]) for the process

—(CH2), — (liquid ring) 41> ——(CH2),, — (crystalline linear polymer)

The subscript “1c” denotes the liquid-to—crystal aspect of the process; as we will see in Chapter 13,
high molecular weight linear polyethylene, the product of the hypothetical polymerization
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reaction, is crystalline at equilibrium at room temperature. Evaluate AGPC and K for this process
and interpret the results:

_._._———

r A119, (kJ mol“) ASE, (J nior1 K“)

3 —1 13 —69.1
4 4105 —55.3
5 —21.2 —42.7
6 + 2.9 —10.5
7 —21.8 —15.9
g “34.8 —3.3

Solution
We use the relationships AG°=AH°—TASO (Equation 4.7.4) and AGO: —RT In K (Equation
4.7.3), with T: 298 K and R = 8.314 J moi—1 K‘l, to obtain the following table:

r not: (H moi—1) K

3 —92 2 x 1016
4 —89 3 x 1015
5 —8.5 30
6 + 6.0 0.09
7 —17 103
8 —34 8 x 105

The results indicate that for all but r: 6, polymerization is favored, consistent with the known
stability of six—membered carbon rings. From the point of view of polymerization, the driving
force should be ranked according to r:3, 4 >r= 8 >r=5, 7. These are general trends, and
different substituents or heteroatoms within the ring can change the numerical values signifi-
cantly. Finally, while AHO shows a distinct maximum at r = 6, A50 decreases monotonically with
7‘, while remaining consistently negative. However, we need to recognize that these values
incorporate the relief of the ring strain, the incorporation of monomer into polymer, and the
changes associated with crystallization of the liquid polymer. The opening of the ring affords
more degrees of freedom to the molecule, increasing the entropy, but both subsequent polymer-
ization and crystallization reduce it. Consequently, it is dangerous to overinterpret particular
values of A80.

The preceding example nicely illustrates the importance of ring strain, but the fact is that the
primary utility of ROP is not to produce polyethylene from cyclic alkanes. Rather, it is to produce
interesting polymer structures from readily accessible cyclic monomers, structures that cannot be
prepared more conveniently by classical step—growth or chain-growth polymerization. Examples of
seven different classes of cyclic monomers and the resulting polymer structures are given in Table
4.5. In all cases the ring contains one or more heteroatoms, such as O, N, and Si. These participate
in the bond-breaking process that is essential to ROP; in contrast, it is actually rather difficult in
practice to polymerize cyclic alkanes, even when free energy considerations favor it. In Chapter 1
we suggested that the presence of a heteroatom in the backbone was often characteristic of a step—
growth polymerization. One of the beauties of ROP is that it is a chain-growth mechanism,
enabling the ready preparation of high molecular weight materials. For example, Entry 5 (a
polyamide, poly(s—caprolactam)) and Entry 6 (a polyester, polylactide) are polymers that could
be prepared by condensation of the appropriate AB monomer. However, by using the cyclic
monomer, the condensation step has already taken place, and the small molecule byproduct is
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Table 4.5 Examples of Monomers Amenable
to Ring-Opening Polymerization

Monomer class Example Repeat unit

W0»)[:01. Epoxides

2. Cyclic ethers [:0 M04

/\. 0 03. Cyclic acetals OMS (/O\/ p?

. . . T7 H4. Immes (cyclic amines) N N
H W \l

5. Lactams (cyclic amides)
GH

(‘95
E4

0 o o
0

6. Lactones (cyclic esters)
‘z

(x w
0

0 Me

/ /,O-Sk Me Me
7. Siloxanes :Si 0 ()Si: ,)b—Si: 0

removed. Thus, the law of mass action that typically limits the molecular weight of a step-growth
polymerization is overcome. (This is not to say that polymerization equilibrium will not be an
issue. In fact, Entry 6 and Entry 7 both indicate six-membered rings, and the correspondingly lower
ring-strain does bring equilibration into play.)

From the perspective of this chapter the main point of ROP is not just its chain-growth
character, but the fact that in many cases living ROP systems have been designed. As indicated
above, most ROPs proceed via an ionic mechanism, which certainly invites attempts to achieve a
living polymerization. We will briefly present specific examples of such systems, for three
disparate but rather interesting and important polymers in Table 4.5: poly(ethy1ene oxide) (Entry
1), polylactide (Entry 6), and poly(dimethylsiloxane) (Entry 7). We will also consider a class of
ROP that can produce all carbon backbones, via olefin metathesis.

4.8.2 Specific Examples of Living Ring-Opening Polymerizations

4.8.2.1 P01y(ethy1ene oxide)

P01y(ethy1ene oxide) represents one of the most versatile polymer structures for both fundamental
studies and in commercial applications. It is readily prepared by living anionic polymerization,
with molecular weights ranging all the way up to several millions. It is water soluble, a highly
desirable yet relatively unusual characteristic of nonionic, controlled molecular weight polymers.
Furthermore, it appears to be more or less benign in humans, thereby allowing its use in many
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consumer products, biomedical formulations, etc. In fact, a grafted layer of short chain poly(ethyl-
ene oxide)s (see Section 4.4) can confer long-term stability against protein adsorption or deposition
of other biomacromolecules. In the biochemical arena short chain poly(ethylene oxide)s (with
hydroxyl groups at both ends) are more commonly referred to as poly(ethylene glycol)s or PEGs.
The grafting of PEG molecules onto a biomacromolecule or other substrate has become such a
useful procedure that it has earned a special name: PEGylation. Poly(ethylene oxide) crystallizes
rather readily, with a typical melting temperature near 65°C, which has led to its use in many
fundamental studies of polymer crystallization (see Chapter 13). The first block copolymers
to become commercially available were the so-called polyoxamers, diblocks and triblocks of
poly(ethylene oxide) and poly(propylene oxide). Historically, it was the polymerization of ethyl-
ene oxide that Flory used as an example in proposing the Poisson distribution for chain-growth
polymers prepared from a fixed number of initiators with rapid propagation [14].

In practice, the living anionic polymerization of ethylene oxide has been achieved by a variety
of initiator systems, following the general principles laid out in Section 4.3. Examples include
metal hydroxides, alkoxides, alkyls, and aryls. In contrast to styrenes and dienes, however, lithium
is not an effective counter ion in this case. (As noted in the context of Reaction 4.H, this feature is
actually convenient when it is desired to use ethylene oxide to end-functionalize such polymers.)
The following scheme represents an example of a three-arm star prepared by grafting from; the
initiator is trimethylol propane, which has three equivalent primary alcohols that can be activated
by diphenylmethyl potassium. The addition of ethylene oxide monomer is straightforward, and the
resulting polymer is terminated with acidic methanol to yield a terminal hydroxyl-functionality on
each arm.

K+O K+ 01 MeOHH0 K+ _
—

Me/q(\OH

+ 3 —p-
Me O—

—- -—-—-————-i-- Fl((CH2CH20)nH)3

OH O-
K+

(4.EE)

An interesting feature of this reaction is that it can be carried out in THF, which like ethylene oxide
is a cyclic ether. This again illustrates the importance of ring-strain in facilitating, or, in this case
suppressing, polymerization. In fact, cyclic ethers including THF are usually polymerized only by
a cationic ring-opening mechanism; the high ring-strain of ethylene oxide makes it the exception to
this rule.

4.8.2.2 Polylactide

Polylactide is biodegradable and can be derived from biorenewable feedstocks such as corn. The
former feature enables a long-standing application as resorbable sutures; after a period of days to
weeks, the suture degrades and is metabolized by the body. The latter property underscores recent
interest in the large-scale commercial production of polylactide for a wide variety of thermoplastic
applications.

The structure of lactic acid is

Me
H

HO
O

0

Clearly, as it contains both a hydroxyl and a carboxylic acid, it could be polymerized directly to the
corresponding polyester via condensation. However, if the starting material is lactide, the cyclic
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dimer of the corresponding ester, then ROP produces the same polymer structure but by a Chain-
growth process:

Me 0 o 0 Me

I f .. 0%0 (4.1212)
0 0 Me Me 0 n

Note that the central carbon in lactic acid is chiral, and therefore the corresponding two carbons in
both lactide and the polylactide repeat unit are stereocenters. Consequently, there are three possi-
bilities for the lactide monomer, according to the absolute configuration of these carbons: R, R; S, S;
and R,S. Polymerization of either of the first two leads to the corresponding stereochemically pure
PDLA and PLLA, which are crystallizable; the meso dyad leads to an atactic polymer. In this case,
therefore, the responsibility of producing a particular tacticity is largely transferred from the catalyst
(see Chapter 5) to the purification of the starting material. Of course, the catalyst has to guide the
polymerization in such a way that the stereochemistry is not scrambled or epimerized.

From the point of view of designing a living polymerization of polylactide, there are two general
issues to confront. First, as polylactide is a polyester, it is susceptible to transesterification reactions.
This constraint favors lower reaction temperatures, conditions that are neither too basic nor acidic,
and acts against the normal desire to make the catalyst more “active.” Ironically, the advantageous
degradability of polylactide through the hydrolysis of the ester linkage is thus a disadvantage from
the point of view of molecular weight control. The second problem is equilibration. Recall from
Example 4.5 that for cyclic alkanes, the six-membered ring has no ring~strain to speak of, and is
therefore not polymerizable. Although lactide is a six-membered ring, it does possess sufficient ring-
strain, but not a lot. Consequently, narrow molecular weight distributions are usually obtained only
by terminating well before the reaction has approached completion.

A typical catalyst is based on a metal alkoxide, such as LMOR’, where L is a “spectator” ligand
and R’ is a small alkyl group. The initiation step can be written as

I'_M
Me O 0 Me

OMI I +LMOR' l e
o (4-GG)

o 0 Me 0 OJY
on'

where the lactide ring is cleaved at the bond between the oxygen and the carbonyl carbon. The
subsequent propagation steps involve the same bond cleavage, with addition of the new monomer
into the oxygen—metal bond at the growing chain end. In fact, this kind of polymerization has been
classified as “anionic coordination,” in distinction to anionic polymerization, as the crucial step is
coordination of the metal with the carbonyl oxygen, followed by insertion of the alkoxide into the
polarized C—O bond. The most commonly employed catalyst for polylactide is tin ethylhexanoate,
but more success in terms of achieving living conditions has been realized with aluminum
alkoxides. Interestingly, these aluminum species have a tendency to aggregate in solution, with
the result that the reaction kinetics can become rather complicated; different aggregation states can
exhibit very different pr0pagation rates. This situation is reminiscent of the aggregation of
carbanions in anionic polymerization in nonpolar solvents discussed in Section 4.3.

4.8.2.3 Poly(dimethylsiloxane)

Poly(dimethylsiloxane) has one of the lowest glass transition temperatures (Tg, see Chapter 12) of
all common polymers. This is due in part to the great flexibility of the backbone structure (see
Chapter 6), which reflects the longer Si—O bond compared to the C—C bond, the larger bond angle, and
the absence of substituents on every other backbone atom. It is also chemically quite robust. It is used if.
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any number of lubrication and adhesive applications (“silicones”), as well as a variety of rubber
materials. Living anionic polymerization of the cyclic trimer hexamethylcyclotrisiloxane, D3, has been
achieved by a number of routes. Given that this monomer is a six—membered ring, we can anticipate that
the polymerization is not strongly favored by thermodynamics. Consequently, narrow molecular weight
distributions are achieved by terminating the reaction well before the consumption of all the monomer.

An example of a successful protocol is the following. A modest amount of cyclic trimer is
initiated with potassium alkoxide, in cyclohexane solution. Under these conditions initiation is rather
slow, but propagation is almost nonexistent, thereby allowing for complete initiation. Presumably,
the lack of propagation is due to ion clustering as discussed in Section 4.3. The addition of THF, as a
polar modifier, plus more monomer allows propagation to proceed for an empirically determined
time interval. Termination is achieved with trimethylchlorosilane (TMSCl):

/
O—Si O O O—CHX +:SI/ \O+FlOK—I-— Ro/>Si<s\ i/ \Si/ K

\O— Si/ /8 |\ / \
I

THF D3 TMSCI O

\ n [

4.8.2.4 Ring-Opening Metathesis Polymerization (ROMP)

Reactions in this class of ROP are distinct from those previously considered, both in the fact that
the mechanism does not involve ionic intermediates and in the creation of all carbon backbones
(albeit ones that contain double bonds). An olefin metathesis reaction is one in which two carbon-
carbon double bonds are removed and two new ones are created. Generically, this can be
represented by the following scheme, whereby RIHC = CHR2 reacts with R3HC = CHR4 to
produce, for example, RIHC : CHR3 and RQHC = CHR4.

H H
R1
AzL R2

--.—— (4.11)
F‘3 72TH4 a,

H H

Although Reaction (4.11) illustrates the net outcome, it says nothing about the mechanism.
Metathesis reactions are catalyzed by transition metal centers, with the associated ligand package
providing tunability of reaction characteristics such as rate, selectivity, and stereochemistry of
addition. In the case of ROMP, the metal forms a double bond with a carbon at one end of the
chain; thus in Reaction (4.11) the RICH group would be replaced by the metal and its ligands
(MLn). For a propagation step, R2 would denote a previously polymerized chain, P,. In the
monomer to be inserted into the chain, between the metal and the end of the previously polymer-
ized chain, R3 and R4 are covalently linked to form a ring. Thus, the ring plays two key roles:
the ring-strain provides the driving force for polymerization, and the ring structure provides the
permanent connectivity between the two carbon atoms whose double bond is broken. The ROMP
analog to Reaction (4.11) can thus be described schematically as

L M
+ _P,-_... Film” (4.JJ)
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In this case, the monomer is cyclooctene. After the monomer insertion or propagation step, an
active metal carbene remains at the chain terminus, and one carbon—carbon double bond remains in
the backbone for each repeat unit.

There is a large literature on metathesis catalysts and associated mechanisms, many of
which incorporate multiple components beyond the active metal. However, for the purposes of
controlled ROMP, there are currently two families of single species catalysts that are highly
successful. One, based on tungsten or molybdenum, is known as a Schrock catalyst [I], and the
other, based on ruthenium, is a Grubbs catalyst [II]. These investigators were corecipients of the
2005 Nobel Prize in chemistry (with Y. Chauvin) for their work on the metathesis reaction.
The structures of representative examples are given below, where the symbol Cy denotes a
cyclohexyl ring:

N\ 0email
Ins _ [II]

CI" I?”
PCY3

Grubbs catalyst

Note that the substituent on the metal—carbon double bond will become attached to the nonpropa-
gating terminus of the chain. Collectively, catalysts in these two families have proven capable of
achieving controlled polymerization of a wide variety of cyclic olefins, including those containing
functional groups. In particular, while the Schrock catalysts tend to be more active, the Grubbs
catalysts are more tolerant of functional groups, oxygen, and protic solvents. Reaction conditions
are often mild, that is, near room temperature, and in some cases the polymerization can be
conducted in water. Overall control is often quite good, and many block copolymers have
been prepared by ROMP. Some ROMP systems have even been commercialized, including the
polymerization of norbornene:

—...
W

(4.KK)

4.9 Dendrimers

Dendrimers are an interesting, unique class of polymers with controlled structures. For example,
they can have precisely defined molecular weights, even though the elementary addition steps are
usually of the condensation variety. From an application point of view it is the structure of the
dendrimer, rather than its molecular weight per se that is the source of its appeal. A cartoon
example of a dendrimer is provided in Figure 1.2. The term comes from the Greek word dendron,
or tree, and indeed a dendrimer is a highly branched polymer molecule. In particular, a dendrimer
is usually an approximately spherical molecule with a radius of a few nanometers. Thus, a
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dendrimer is both a covalently assembled molecule and also a well-defined nanoparticle. The outer
surface of the dendrimer is covered with a high density of functional groups that govern the
interactions between the dendrimer and its environment. These exterior groups have the advan-
tages of being numerous, and readily accessible for chemical transformation. The interior of the
dendrimer can incorporate a distinct functionality that can endow the molecule with desirable
properties. For example, the dendrimer might incorporate a highly absorbing group, for “light
harvesting,” or a fluor0phore, for efficient emission. Other possibilities include catalytic centers or
electrochemically active groups. By being housed within the dendrimer, this functional unit can be
protected from unwanted interactions with the environment. The functional unit may be covalently
bound within the dendrimer, or it may simply be encapsulated. The possibility of controlling
uptake and release of specific agents by the dendrimer core also makes them appealing as possible
delivery vehicles for pharmaceuticals or other therapeutic agents. As nanoparticles, dendrimers
share certain attributes with other objects of similar size, such as globular proteins, surfactant and
block copolymer micelles, hyperbranched polymers, and colloidal nanoparticles. Although beyond
the scope of this chapter, it is interesting to speculate on the possible advantages and disadvantages
of these various structures (see Problem 16).

There are two distinct, primary synthetic routes to prepare a dendrimer, termed divergent and
convergent. In a divergent approach, the dendrimer is built-up by successive additions of mono-
mers to a central, branched core unit, whereas in the convergent approach branched structures
called dendrons are built-up separately, and then ultimately linked together to form the dendrimer
in a final step. The divergent approach was conceived first, and is the more easily visualized. The
process is illustrated schematically in Figure 4.7. The core molecule in this case has three
functional groups denoted by the open circles. These are reacted with three equivalents of another
three-functional monomer, but in this case two of the functional groups are protected (filled
circles). After this reaction is complete, the growing molecule has six functional groups that are

A. + 3 J/ —~

Deprotect
\

J, Deprotect

G2 +12

\kfi%\<

Figure 4.7 Schematic illustration of the divergent synthesis of a third-generation dendrimer from a
trifunctional core. The open circles denote reactive groups and the filled circles protected groups.
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then deprotected. At this stage the molecule is termed a first generation (G1) dendrimer. Another
addition reaction is then performed, but now six equivalents of the protected monomer are required
to complete the next generation. After deprotection the resulting G2 dendrimer has 12 functional
groups. It is straightforward to see that the number of functional groups on the surface grows
geometrically with the number of generations, 3:

Number of functional groups = 3 X 23 (4.9.1)

Thus, a perfect G5, G6, and G7 dendrimer would have 96, 192, and 384 functional groups,
respectively. Note that Equation 4.9.1 would need to be modified in the case of, for example, a
tetrafunctional core. We have introduced the term “perfect” here to emphasize that it is certainly
possible for a dendrimer molecule to have defects, or missing functional groups, which will
propagate through all subsequent generations. For the first few generations it is usually not too
difficult to approach perfection, but for G5 and above, the functional groups become rather
congested, which makes complete addition of the next generation difficult. It also becomes harder
to separate out defective structures. It is typically not practical to go beyond G8.

Further consideration of the divergent approach in Figure 4.7 reveals that, compared with most
polymerization reactions, it is rather labor intensive. For example, the addition of each generation
requires both an addition step and a deprotection step. The addition will typically be conducted
in the presence of a substantial excess of protected monomer, to drive the completion of the
new layer. The resulting products will need to be separated, in order to isolate the perfect
dendrimer structure from all other reaction products and reagents. Similarly, the deprotection
step needs to be driven to completion, and the pure product isolated. Thus, in the end there are two
reaction steps and two purification steps required for each generation. This requires a significant
amount of time, and it is challenging to prepare commercial-scale quantities of perfect, high
generation products.

As a specific example of a divergent synthesis, we will consider the formation of the poly-
amidoamine (PAMAM) system. In this case, there are two monomers to be added sequentially in
each generation, rather than one addition and one deprotection step. The core molecule and one of
the monomers is typically ethylene diamine and the other monomer is methyl acrylate. The first
step is addition of four methyl acrylate molecules to ethylene diamine in a solvent such
as methanol. The Michael addition—type mechanism involves nucleophilic attack of the electron
pair on the nitrogen to the double bond of the acrylate, which is activated by the
electron withdrawing character of the ester group:

O

(DE/Q1219
Me\

0J1

f 1Y0
(4.LL)

O\0 Me
9

O

‘i
M

The next second step involves amidation of each ester group by nucleophilic attack of the nitrogen
on the electropositive carbonyl carbon, with release of methanol:

H
O N

H2N /\/ NH2 +
fl”\n/ \Me ——————1--

Ir”\”/ \/\NH2 + MeOH (4.MM)
O O
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The structure of the resulting Gl PAMAM dendrimer is therefore the following:

NH2 HKEHE

1
O

N/\/N

f
\kfo NH2

HN 0 HM)
K/NH 2

An alternative general strategy for preparing dendrimers and dendritic fragments, or dendrons,
is the so-called convergent approach. This is illustrated schematically in Figure 4.8. As the name
implies, these molecules are made “from the outside in,” that is, the eventual surface group,
denoted by “x” in Figure 4.8, is present in the initial reactants. The first reaction produces a
molecule with two surface groups and one protected reactive group. The second step, after
deprotection, doubles the number of surface groups, and so on. At any stage, a suitable multifunc-
tional core molecule can be used, to stitch the appropriate number of dendrons (usually 3 or 4)
together. Each growing wedge-shaped dendron possesses only one reactive group, which pre-
sents a significant advantage in terms of purification. At each growth step, a dendron either
reacts or it does not, but the product and reactant are significantly different in molecular weight.
By contrast, in the divergent approach, the surface of the dendrimer has many reactive groups,
and it may not be easy to separate a G3 dendrimer with 24 newly added monomers from one with
only 23 monomers. Furthermore, because there are so many more reactive groups on the
dendrimer than on the added monomers, the monomers must be present in huge molar excess
to drive each reaction to completion. In the convergent approach shown, there are only twice as
many dendrons as new coupling molecules at stoichiometric equivalence, so a large excess of
dendrons is not necessary.

X—O
2 X—-O + P ——-—>- >—.

X—o

)(——-—-«o
X—o

2 >—0 + P—p—x
X—o X—o

X

X——o

x—o2

:>—c

+
P

—"
X—o

X——O

f? 1111
Figure 4.8 Illustration of the convergent approach to dendrimer synthesis. Each dendron is built-up by
successive 2:1 reactions, before the final coupling step.
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The initial demonstration of this approach was based on the following scheme [15]. The
building blocks were 3,5-dihydroxybenzyl alcohol and a benzylic bromide. The first reaction,
conducted in acetone, coupled two of the bromides with one alcohol. The surviving benzylic
alcohol was then transformed back to a bromide functionality with carbon tetrabromide in the
presence of triphenyl phosphine. Introduction of more 3,5-dihydroxybenzyl alcohol began the
formation of the next generation dendron, and the process continued.

(4.NN)

4.10 Chapter Summary
In this chapter, we have considered a wide variety of synthetic strategies to exert greater control
over the products of a polymerization, compared to the standard step-growth and chain-growth
approaches. Although access to much narrower molecular weight distributions has been the
primary focus, production of block copolymers, end-functional polymers, and controlled-branched
architectures has also been explored. The central concept of the chapter is that of a living
polymerization, defined as a chain-growth process that proceeds in the absence of irreversible
chain termination or chain transfer:

1. When a living polymerization is conducted such that the rate of initiation is effectively
instantaneous compared to propagation, it is possible to approach a Poisson distribution of
molecular weights, where the polydispersity is l +(1/Nn).

2. Anionic polymerization is the most established method for approaching the ideal living
polymerization, and effective protocols for a variety of monomers have been established.

3. Cationic polymerization can also be living, although it is generally harder to do so than for the
anionic case, in large part due to the prevalence of transfer reactions, including transfer to
monomer.

4. Using the concept of a reversibly dormant or inactive species, free-radical polymerizations
have also been brought under much greater control. Three general flavors of controlled
radical polymerization, known as ATRP, SFRP, and RAFT, are currently undergoing rapid
development.

5. Living polymerization in general, and anionic polymerization in particular, can be used to
produce block copolymers, end-functional polymers, and well-defined star and graft polymers,
for a variety of possible uses.

6. Through basic thermodynamic considerations the concepts of equilibrium polymerization,
ceiling temperature, and floor temperature have been explored.

7. The utility of ROPs has been established, where the thermodynamic driving force for chain
growth relies on ring-strain. Specific systems of nearly living ring-opening polymerizations
have been introduced, including important metal-catalyzed routes such as ROMP.



Problems 161

8. A particular class of highly branched, precisely controlled polymers called dendrimers can be
prepared by either of two step-growth routes, referred to as convergent and divergent,
respectively.

Problems

1. Experimental data cited in Example 4.1 for the anionic polymerization of styrene do not really
test the relationship between conversion, p and time; why not? What additional experimental
information should have been obtained if that were the object?
Although the polydispersities described in Example 4.1 are very low, they consistently exceed
the theoretical Poisson limit. List four assumptions that are necessary for the Poisson distri-
bution to apply, and then identify which one is most likely not satisfied. Justify your answer,
based on the data provided.
For the living anionic polymerization of styrene discussed in Example 4.1, the solvent used
was cyclohexane, and the kinetics are known to be 0.5 order with respect to initiator. What is
the predominant species in terms of ion pairing, and what is the approximate dissociation
constant for this cluster if kp is actually 1000 mol L‘1 s‘l?
One often-cited criterion for judging whether a polymerization is living is that 114,, should
increase linearly with conversion. Why is this not, in fact, a robust criterion?
A living polymerization of 2—vinyl pyridine was conducted using benzyl picolyl magnesium as
the initiator.)r Values of Mn were determined for polymers prepared with different initiator
concentrations and different initial concentrations of monomer, as shown below. Calculate the
expected Mn assuming complete conversion and 100% initiator efficiency; how well do the
theoretical and experimental values agree?

[I](mmolL_1) [M]0(mmolL"l) Mn (kg 11101—1)

0.48 82 20
0.37 85 25
0.17 71 46
0.48 71 17
0.58 73 14
0.15 150 115

The following table shows values of AH0 at 298 K for the gas phase reactions X(g) + H+(g)
—> HX+ (g), where X is an olefin: Use these data to comment quantitatively on each of the
following points:
1. The cation is stabilized by electron-donating alkyl substituents.
2. The carbonium ion rearrangement of n-propyl ions to i-propyl ions is energetically

favored.
3. With the supplementary information that AH? of l—butene and cis-Z-butene are +1.6 and

—5 .8 k] mol_l, respectively, evaluate the AH for the rearrangement n—butyl to sec-butyl
ions and compare with the corresponding isomerization for the propyl cation.

4. Of the monomers shown, only isobutene undergoes cationic polymerization to any
significant extent. Criticize or defend the following proposition: the data explain this
fact by showing that this is the only monomer listed that combines a sufficiently negative
AH for protonation, with the freedom from interfering isomerization reactions.

TA. Soum and M. Fontanille, in Anionic Polymerization, J.E. McGrath, Ed., ACS Symposium Series, Vol 166, 1981.
inn. Plesch, Ed, Cationic Polymerization, Macmillan, New York, 1963.
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10.

11.

12.

13.

14.

Controlled Polymerization

X HX+ AHO at 298 K (kJ mol“)

CH2 = CH2 CH3CH; —640

CHgCH = CH2 CH3CH2CH2+ —69O
CH3CH = CH2 CH3C+HCH3 —757
CH3CH2CH = CH2 CH3CH2CH2CH2+ —682

CH3CH = CHCH3 CH3CH2C+HCH3 —782
(CH3)2C = CH2 (CH3)2CHCH2+ —695

In the study discussed in Example 4.3, a solution ATRP of styrene gave an apparent
propagation rate constant of 3.9 x 10—5 s‘]. Given that the initial monomer concentration
was 4.3 mol L‘ 1, and that the initial concentrations of initiator and CuBr were 0.045 mol L”,
estimate the equilibrium constant K for activation of the chain end radical.
For the solution polymerization of lactide with [M] =1 mol L”, Duda and Penczek
determined AHO = —22.9 kJ mol‘1 and A50: 411 J mol" K‘”. What is the associated
ceiling temperature for an equilibrium monomer concentration of 1 mol L‘l? Does the
value you obtain suggest that equilibration is an issue in controlled polymerization of
lactide? Compare these thermodynamic quantities with those for the cyclic alkanes
in Table 4.4; how do you account for the differences between the six-membered alkane
and lactide?
For the polymerization system in Problem 8, calculate the equilibrium monomer con-
centration that would actually be obtained, and the conversion to polymer, at 80°C
and 120°C.
A typical propagation rate constant, kp, for the anionic ROP of hexamethylcyclotrisiloxane
(D3) is 0.1 L mol‘1 5". Design a polymerization system (initial monomer and initiator
concentrations) to obtain a narrow distribution poly(dimethylsiloxane) with Mn=50,000,
assuming that the reaction will be terminated at 50% conversion. At what time should the
polymerization be terminated?
Given that ROP is often conducted under conditions in which reverse reactions are
possible, do we need to worry about cyclization of the entire growing polymer? Why or
why not?
Suggest a scheme to test the hypothesis that in lactide polymerization it is the acyl carbon—
oxygen bond that is cleaved, rather than the alkyl carbon—oxygen bond.
Both ethyleneimine and ethylene sulfide are amenable to ROP. The former proceeds in the
presence of acid, whereas the latter can follow either anionic or cationic routes. Propose
structures for the three propagating chain ends and the resulting polymers.

H
N 8

AA A

Draw repeat unit structures for polymers made by ROMP of the following three monomers:

Me

MW
OH

Me

1‘A. Duda and S. Penczek Macromolecules, 23, 1636 (1990).
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15.

16.

17.

18.

Suggest monomer structures that will lead to the following repeat unit structures following
ROMP:

/

N W ONO
I

Me

Compare and contrast dendrimers with block copolymer micelles, globular proteins, inor-
ganic nanoparticles in terms of attributes and likely utility in the following applications: (a)
drug delivery; (b) homogenous catalysis; and (c) solubilization.
In an ideal living polymerization, how should Mn and MW/Mn vary with conversion
of monomer to polymer? How should Mn of the formed polymer vary with time?
Compare these to a radical polymerization with termination by disproportionation, and no
transfer.
The following criteria have all been suggested and/or utilized as diagnostics for whether a
polymerization is living or not. For each one, explain why it might be useful, and then decide
whether or not it is a robust criterion, that is, can you think of a situation in which the
criterion is satisfied but the polymerization is not living? (See also Problem 4.)
l. Polymerization proceeds until all monomer is consumed. Polymerization continues if

more monomer is then added.
2. The number of polymer molecules is constant, and independent of conversion.
3. Narrow molecular weight distributions are produced.
4. The concentration of monomer decreases to zero, exponentially with time.
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5
Copolymers, Microstructure,

and Stereoregularity

5.1 Introduction

All polymer molecules have unique features of one sort or another at the level of the individual
repeat units. Occasional head-to-head or tail-to-tail orientations, random branching, and the
distinctiveness of chain ends are all examples of such details. In this chapter, we shall focus
attention on two other situations that introduce structural variation at the level of the repeat unit:
the presence of two different monomers, and the regulation of configuration of successive repeat
units. In the former case copolymers are produced, and in the latter case polymers with differences
in tacticity. In the discussion of these combined topics, we use statistics extensively because the
description of microstructure requires this kind of approach. This is the basis for merging a
discussion of copolymers and stereoregular polymers into a single chapter. In other respects
these two classes of materials and the processes that produce them are very different, and their
description leads us into some rather diverse areas. Copolymerization offers a facile means to tune
material properties, as the average composition of the resulting polymers can often be varied across
the complete composition range. Similarly, control of stereoregularity plays an essential role in
dictating the crystallinity of the resulting material, which in turn can exert a profound influence on
the resulting physical properties.

The formation of copolymers involves the reaction of (at least) two kinds of monomers. This
means that each must be capable of undergoing the same propagation reaction, but it is apparent
that quite a range of reactivities are compatible with this broad requirement. We shall examine
such things as the polarity of monomers, the degree of resonance stabilization they possess, and the
steric hindrance they experience in an attempt to understand these differences in reactivity. There
are few types of reactions for which chemists are successful in explaining all examples with
general concepts such as these, and polymerization reactions are no exception. Even for the
specific case of free—radical copolymerization, we shall see that reactivity involves the interplay
of all these considerations.

To achieve any sort of pattern in configuration among successive repeat units in a polymer
chain, the tendency toward random addition must be overcome. Although temperature effects are
pertinent here—remember that high temperature is the great randomizer—real success in regulat-
ing the pattern of successive addition involves the use of catalysts that “pin down” both the
monomer and the growing chain so that their reaction is biased in favor of one mode of addition or
another. We shall discuss the Ziegler—Natta catalysts that accomplish this, and shall discover these
to be complicated systems for which no single mechanism is entirely satisfactory. We shall also
compare these to the more recently developed “single—site” catalysts, which offer great potential
for controlling multiple aspects of polymer structure.

For both copolymers and stereoregular polymers, experimental methods for characterizing the
products often involve spectroscopy. We shall see that nuclear magnetic resonance (NMR)
spectroscopy is particularly well suited for the study of tacticity. This method is also used for
the analysis of copolymers.
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In spite of the assortment of things discussed in this chapter, there are also related topics that
could be included but which are not owing to space limitations. We do not discuss copolymers
formed by the step—growth mechanism, for example, or the use of Ziegler—Natta catalysts to
regulate geometrical isomerism in, say, butadiene polymerization. Some other important omissions
are noted in passing in the body of the chapter.

5.2 C0polymer Composition
We begin our discussion of copolymers by considering the free-radical polymerization of a mixture
of two monomers, M1 and M2. This is already a narrow view of the entire field of copolymers, since
more than two repeat units can be present in copolymers and, in addition, mechanisms other than free-
radical chain growth can be responsible for copolymer formation. The essential features of the problem
are introduced by this simpler special case, and so we shall restrict our attention to this system.

5.2.1 Rate Laws

The polymerization mechanism continues to include initiation, termination, and propagation steps,
and we ignore transfer reactions for simplicity. This time, however, there are four distinctly
different propagation reactions:

—M1- + M1 L —M1Mlo (5A)
_M,. + M2 A. —M1M2- (5.3)
—M2. + M1 L) —M2M1o (5.C)
—M2° + M2L —-M2M2o (5.D)

Each of these reactions is characterized by a propagation constant, which is labeled by a two-digit
subscript: the first number identifies the terminal repeat unit in the growing radical and the second
identifies the added monomer. The rate laws governing these four reactions are:

Ran = klliMl‘HMI] (5-2-1)
Rp.12 = k12[M1°][M2] (5.2.2)

R1321 = k21iM2°liM1l (52.3)
12,2, = knmzonmz] (5.2.4)

In writing Equation 5.2.1 through Equation 5.2.4 we make the customary assumption that the
kinetic constants are independent of the size of the radical, and we indicate the concentration of all
radicals ending with the M1 repeat unit, whatever their chain length, by the notation [M10]. This
formalism therefore assumes that only the nature of the radical chain end influences the rate
constant for propagation. We refer to this as the terminal control mechanism. If we wished to
consider the effect of the next-to-last repeat unit in the radical, each of these reactions and the
associated rate laws would be replaced by two alternatives. Thus Reaction (5.A) becomes

km
*MlMl’ + M] -—-—-—> —M1M1M1° (5.13)

—M2M1- + M1 Jfl—v —M2M1M1- (5F)
and Equation 5.2.1 becomes

Rp,111 = kllliMlMl‘HMll (5.2.5)
Rp.211 = k211[M2M1°][M1] (5.2.6)
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where the effect of the next-to-last, or penultimate, unit is considered. For now we shall restrict
ourselves to the simpler case where only the terminal unit determines behavior, although systems
in which the penultimate effect is important are well known.

The magnitudes of the various k values in Equation 5.2.1 through Equation 5.2.4 describe the
intrinsic differences between the various modes of addition, and the ks plus the concentrations of
the different species determine the rates at which the four kinds of additions occur. It is the
proportion of different steps that determines the composition of the copolymer produced.

Monomer M1 is converted to polymer by Reaction (5A) and Reaction (5C); therefore the rate
at which this occurs is the sum of Rl and R1921:

—i:’:l—] = k11[M1°][M1]+ k21[M2°][M1] (5.2.7)

Likewise, Reaction (5B) and Reaction (5.D) convert M2 to polymer, and the rate at which this
occurs is the sum of RP,” and R922:

(1 [M2]—
dt

= k12[M1'][M2] + k22[M2°][M2] (5.2.8)

The ratio of Equation 5.2.7 and Equation 5.2.8 gives the relative rates of the two monomer
additions and, hence, the ratio of the two kinds of repeat units in the copolymer:

diMli/dl‘ _ k11[M1°][M1]+ k21[M2°][M1]
d[M2]/d[

—
k12[M1°][M2] + k22[M2°][M2]

(5.2.9)

We saw in Chapter 3 that the stationary-state approximation is applicable to free-radical
homOpolymerizations, and the same is true of copolymerizations. Of course, it takes a brief time
for the stationary-state radical concentration to be reached, but this period is insignificant com-
pared to the total duration of a polymerization reaction. If the total concentration of radicals is
constant, this means that the rate of crossover between the different types of terminal units is also
equal, or that Rp.l2 =Rp.213

k12[M1°][M2] = k21[M2'][M1] (5.2.10)

or

[My] _ kzliMll__ 5.2.11[My] klziMz] ( )
Combining Equation 5.2.9 and Equation 5.2.11 yields one form of the important copolymer

composition equation or copolymerization equation:

d[M1]/dr_ [M1] (kll/k12)[M1] + [M2]
dil/df

_
[M2] (kzz/k21)[M2] + [M1] (5.2.12)

Although there are a total of four different rate constants for propagation, Equation 5.2.12 shows
that the relationship between the relative amounts of the two monomers incorporated into the
polymer and the composition of the monomer feedstock involves only two ratios of different pairs
of these constants. Accordingly, we simplify the notation by defining reactivity ratios:

r1 = ki (5.2.13)
klz

and

r, = $23 (5.2.14)
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With these substitutions, Equation 5.2.12 becomes

d[M]]/dt = [M1] “[111] + [M2] = 1+ r([M1]/[M2] (5 2 15)d[M2]/dl‘ [M2] r2[M2] + [M1] I + r2[M2]/[M1]
‘ .

The ratio (d[M1]/dt)/(d[M2]/dt) is the same as the ratio of the numbers of each kind of repeat
unit in the polymer formed from the solution containing M1 and M2 at concentrations [M1] and
[M2], respectively. Since the composition of the monomer solution changes as the reaction
progresses, Equation 5.2.15 applies to the feedstock as prepared only during the initial stages of
the polymerization. Subsequently, the instantaneous concentrations in the prevailing mixture apply
unless monomer is added continuously to replace that which has reacted and maintain the original
composition of the feedstock. We shall assume that it is the initial product formed that we describe
when we use Equation 5.2.15 so as to remove uncertainty as to the monomer concentrations.

5.2.2 Composition versus Feedstock

As an alternative to Equation 5.2.15, it is convenient to describe the composition of both
the polymer and the feedstock in terms of the mole fraction of each monomer. Defining F,- as the
mole fraction of the ith component in the polymer and f,- as the mole fraction of component i in
the monomer solution, we observe that

_ _ (“Md/(IfF‘ — 1— F2 — d[M1]/dt+d[M2]/dt (5.2.16)

and

[M1]f1 = 1 —f2 =
—_[M1]+[M2]

(5.2.17)

Combining Equation 5.2.15 and Equation 5.2.16 into Equation 5.2.17 yields another form of the
copolymer composition equation

1:
r1f12 +f1f2

I'1f12'l'2f1f2+r2f22

This equation relates the composition of the copolymer formed to the instantaneous composition of
the feedstock and to the reactivity ratios r1 and r2 that characterize the specific system.

Figure 5.1 shows a plot of F1 versus f1——the mole fractions of monomer 1 in the copolymer and
in the mixture, respectively—for several values of the reactivity ratios. Inspection of Figure 5.1
brings out the following points:

(5.2.18)

1. If r1 = r2 = 1, the copolymer and the feed mixture have the same composition at all times. In
this case Equation 5.2.18 becomes

F1 =M=fl (5.2.19)
(f1 +12)2

2. If r1 = r2, the copolymer and the feed mixture have the same composition at f1 = 0.5. In this
case Equation 5.2.18 becomes F1 : (r + 1)/2(r + 1) = 0.5.

3. If r1 =r2, with both values less than unity, the copolymer is richer in component 1 than the
feed mixture for f1 < 0.5, and richer in component 2 than the feed mixture for f1 > 0.5.

4. If r1 = r2, with both values greater than unity, an S-shaped curve passing through the point
(0.5, 0.5) would also result, but in this case reflected across the 45° line compared to item (3).

5. If r1 74 r2, with both values less than unity, the copolymer starts out richer in monomer 1 than
the feed mixture and then crosses the 45° line, and is richer in component 2 beyond this
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Figure 5.1 Mole fraction of component 1 in the copolymer as a function of feedstock composition for
various reactivity ratios.

crossover point. At the crossover point the copolymer and feed mixture have the same
composition. The monomer ratio at this point is conveniently solved by Equation 5.2.15:

[M1] _ 1 — r2
(W)cross_ 1 _

r1
(5.2.20)

For the case of r1 = 0.33 and r2 = 0.67 shown in Figure 5.1, [Md/[M2] equals 0.5 and
f1 = 0.33. This mathematical analysis shows that a comparable result is possible with both r1
and r2 greater than unity, but is not possible for r1 > 1 and r2 < 1.
When r1: l/rz, the copolymer composition curve will be either convex or concave when
viewed from the F1 axis, depending on whether r1 is greater or less than unity. The further
removed from unity r1 is, the farther the composition curve will be displaced from the 45° line.
This situation where rlrz : l is called an idea! copolymerizarion. The example below explores
the origin of this terminology.

There is a parallel between the composition of a copolymer produced from a certain feed and
the composition of a vapor in equilibrium with a two-component liquid mixture. The following
example illustrates this parallel when the liquid mixture is an ideal solution and the vapor is an
ideal gas.

Example 5.1
An ideal gas obeys Dalton’s law; that is, the total pressure is the sum of the partial pressures of the
components. An ideal solution obeys Raoult’s law; that is, the partial pressure of the ith component
above a solution is equal to the mole fraction of that component in the solution times the vapor
pressure of pure component 1'. Use these relationships to relate the mole fraction of component 1 in
the equilibrium vapor to its mole fraction in a two—component solution and relate the result to the
ideal case of the copolymer composition equation.



170 Capolymers, Microstructure, and Stereoregularity

Solution
We define F1 to be the mole fraction of component 1 in the vapor phase and f1 to be its mole
fraction in the liquid solution. Here p1 and p2 are the vapor pressures of components 1 and 2 in
equilibrium with an ideal solution, and p? and p3 are the vapor pressures of the two pure liquids. By
Dalton’s law, Ptot=P1+P2 and F1 =p1/pt0t, since these are ideal gases and p is proportional to
the number of moles. By Raoult’s law, p1 =f1p‘1), p2 = fn, and pm, =f1p? +fn. Combining the
two gives

F 2 fir)? : fn(P?/p3)1
flPti'l'fZPg f1(P?/Pg)+f2

Now examine Equation 5.2.18 for the case of r1 = 1/r2:

= we +1315 =r1f1(r1f1+f2): ma
r1f12+2flf2+(l/rl)f22 (r1f1+f22) r1f1+f2

This is identical to the ideal liquid—vapor equilibrium if r1 is identified with p?/pg.
The vapor pressure ratio measures the intrinsic tendency of component 1 to enter the vapor phase

relative to component 2. Likewise r1 measures the tendency of M1 to add to M10 relative to M1
adding to My. In this sense there is a certain parallel, but it is based on My as a reference radical and
hence appears to be less general than the vapor pressure ratio. Note, however, that n 2 Hr; means
k1 1/1612 = kzl/kgg. In this case the ratio of rate constants for monomer 1 relative to monomer 2 is the
same regardless of the reference radical examined. This shows the parallelism to be exact.

F1

Because of the analogy with liquid—vapor equilibrium, copolymers for which n = 1/5 are said
to be ideal. For those nonideal cases in which the copolymer and feedstock happen to have the
same composition, the reaction is called an azeotropic polymerization. Just as in the case of
azeotropic distillation, the composition of the reaction mixture does not change as copolymer is
formed if the composition corresponds to the azeotrope. The proportion of the two monomers at
this point is given by Equation 5.2.20.

In this section we have seen that the copolymer composition depends to a large extent on the
four propagation constants, although it is sufficient to consider these in terms of the two
reactivity ratios 1', and r2. In the next section we shall examine these ratios in somewhat
greater detail.

5.3 Reactivity Ratios
The parameters r1 and r2 are the vehicles by which the nature of the reactants enter the copolymer
composition equation. We shall call these radical reactivity ratios simply reactivity ratios, although
similarly defined ratios also describe copolymerizations that involve ionic intermediates. There are
several important things to note about reactivity ratios:

1. The single subscript used to label r is the index of the radical.
2. r1 is the ratio of two propagation constants involving radical 1: The ratio always compares the

propagation constant for the same monomer adding to the radical relative to the propagation
constant for the addition of the other monomer. Thus, if r1 > 1, My adds M1 in preference to
M2; if r1 < 1, M10 adds M2 in preference to M1.

3. Although r1 is descriptive of radical Mr, it also depends on the identity of monomer 2; the
pair of parameters r, and r2 are both required to characterize a particular system, and the
product rlrz is used to quantify this by a single parameter.

4. The reciprocal of a radical reactivity ratio can be used to quantify the reactivity of monomer
M2 by comparing its rate of addition to radical M10 relative to the rate of M1 adding M10.
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5. As the ratio of two rate constants, a radical reactivity ratio follows the Arrhenius equation with
an apparent activation energy equal to the difference in the activation energies for the
individual constants. Thus for r1, Efpp 2 E1351 — El”; 12. Since the activation energies for pI‘Opa-
gation are not large to begin with, their difference is even smaller. Accordingly, the tempera-
ture dependence of r is relatively small.

5.3.1 Effects of r Values

The reactivity ratios of a copolymerization system are the fundamental parameters in terms of
which the system is described. Since the copolymer composition equation relates the compositions
of the product and the feedstock, it is clear that values of r can be evaluated from experimental data
in which the corresponding compositions are measured. We shall consider this evaluation procedure
in Section 5.6, where it will be found that this approach is not as free of ambiguity as might be
desired. For now we shall simply assume that we know the desired r values for a system; in fact,
extensive tabulations of such values exist. An especially convenient source of this information is
the Polymer Handbook [1]. Table 5.] lists some typical r values at 60°C.

Although Table 5.1 is rather arbitrarily assembled, note that it contains no system for which r]
and r2 are both greater than unity. Indeed, such systems are very rare. We can understand this by
recognizing that, at least in the extreme case of very large r’s, these monomers would tend to
simultaneously homopolymerize. Because of this preference toward homopolymerization, any
copolymer that does form in systems with r1 and r2 both greater than unity will be a block-type
polymer with very long sequences of a single repeat unit. Since such systems are only infrequently
encountered, we shall not consider them further.

Table 5.1 also lists the product rlrg for the systems included. These products typically lie in the
range between zero and unity, and it is instructive to consider the character of the copolymer
produced toward each of these extremes.

In the extreme case where r1r2:0 because both r1 and r2 equal zero, the copolymer adds
monomers with perfect alternation. This is apparent from the definition of r, which compares the
addition of the same monomer to the other monomer for a particular radical. If both r’s are zero,
there is no tendency for a radical to add a monomer of the same kind as the growing end,

Table 5.1 Values of Reactivity Ratios r1 and r2 and the Product rlrz for a Few Copolymers at 60°C

Rd] Dd; r1 r2 rlrz

Acrylonitrile Methyl vinyl ketone 0.61 1.78 1.09
Methyl methacrylate 0.13 1.16 0.15
or-Methyl styrene 0.04 0.20 0.008
Vinyl acetate 4.05 0.061 0.25

Methyl methacrylate Styrene 0.46 0.52 0.24
Methacrylic acid 1.18 0.63 0.74
Vinyl acetate 20 0.015 0.30
Vinylidene chloride 2.53 0.24 0.61

Styrene Vinyl acetate 55 0.01 0.55
Vinyl chloride 17 0.02 0.34
Vinylidene chloride 1.85 0.085 0.16
2-Vinyl pyridine 0.55 1.14 0.63

Vinyl acetate l-Butene 2.0 0.34 0.68
Isobutylene 2.15 0.31 0.67
Vinyl chloride 0.23 1.68 0.39
Vinylidene chloride 0.05 6.7 0.34

Source: Data from Young, L]. in Polymer Handbook, 3rd ed., Brandrup, J. and Immergut, E.H. (Eds), Wiley, New York,
1989.
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whichever species is the terminal unit. When only one of the r’s is zero, say r1, then alternation
occurs whenever the radical ends with an M1. unit. There is thus a tendency toward alternation in
this case, although it is less pronounced than in the case where both r’s are zero. Accordingly, we
find increasing tendency toward alternation as r1 —> 0 and r2 —> 0, or, more succinctly, as the
product rlrz —> 0.

On the other end of the commonly encountered range we find the product rlrz —> 1. As noted
above, this limit corresponds to ideal copolymerization and means the two monomers have the
same relative tendency to add to both radicals. Thus if r1 —> 10, monomer 1 is 10 times more likely
to add to M10 than monomer 2. At the same time r2 = 0.1, which also means that monomer 1 is 10
times more likely to add to My. In this case the radicals exert the same influence, so the monomers
add at random in the proportion governed by the specific values of the r’s.

Recognition of these differences in behavior points out an important limitation on the copolymer
composition equation. The equation describes the overall composition of the copolymer, but gives
no information whatsoever about the distribution of the different kinds of repeat units within the
polymer. While the overall composition is an important property of the copolymer, the detailed
microstructural arrangement is also a significant feature of the molecule. It is possible for
copolymers with the same overall composition to have very different properties because of the
differences in microstructure. Reviewing the three categories presented in Chapter 1, we see
the following:

1. Alternating structures are promoted by r; ——> O and r2 —> 0:

M1MZMIMZMIMZMIMZMIMZMIMZMIMZMIMZMIMQMIMZ

2. Random structures are promoted by rlrz ——> 1:

MlMgMgMlMlMnM1M2M1M2M1M2M1M2M2M1M1M2

3. “Blocky” structures are promoted by rlrz > 1:

M1MiMiMiMiMiMIMlMlM1M2M2M2M2M2M2M2M2M2M2
Each of these polymers has a 50:50 proportion of the two components, but the products
probably differ in properties. As examples of such differences, we note the following:

4. Alternating copolymers, while relatively rare, are characterized by combining the properties of
the two monomers along with structural regularity. We will see in Chapter 13 that a very high
degree of regularity—extending all the way to stereoregularity in the configuration of the
repeat units—is required for crystallinity to develop in polymers.

5. Random copolymers tend to average the properties of the constituent monomers in proportion
to the relative abundance of the two comonomers.

6. Block copolymers are closer to blends of homopolymers in properties, but without the latter’s
tendency to undergo phase separation. Diblock copolymers can be used as surfactants to bind
immiscible homopolymer blends together and thus improve their mechanical properties. Block
copolymers are generally prepared by sequential addition of monomers to living polymers,
rather than by depending on the improbable rlrg > 1 criterion in monomers, as was discussed
in Chapter 4.

Returning to the data of Table 5.1, it is apparent that there is a good deal of variability among
the r values displayed by various systems. We have already seen the effect this produces on the overall
copolymer composition; we shall return to this matter ofmicrostructures in Section 5 .5. First, however,
let us consider the obvious question. What factors in the molecular structure of the two monomers
govern the kinetics of the different addition steps? This question is considered in the following
sections; for now we look for a way to systematize the data as the first step toward an answer.
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5.3.2 Relation of Reactivity Ratios to Chemical Structure

We noted above that the product rlrz can be used to locate a copolymer along an axis between
alternating and random structures. It is by means of this product that some values from Table 5.1,
supplemented by other results for additional systems, have been organized in Figure 5.2. Figure 5.2
has been constructed according to the following general principles:

1, Various monomers are listed along the base of the triangle.
The triangle is subdivided into an array of diamonds by lines drawn parallel to the two sides of
the triangle.

3. The spacing of the lines is such that each monomer along the base serves as a label for a row of
diamonds.

4. Each diamond marks the intersection of two such rows and therefore corresponds to two
comonomers.

5. The rlrz product for the various systems is the number entered in each diamond.
6. Individual monomers have been arranged in such a way as to achieve to the greatest extent

possible the values of rlrz that approach zero toward the apex of the triangle and values of rlrz
that approach unity toward the base of the triangle.
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Figure 5.2 The product r1r2 for copolymers whose components define the intersection where the numbers
appear. The value marked* is determined in Example 5.4; other values are from Ref. [1].
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Before proceeding with a discussion of this display, it is important to acknowledge that the
criteria for monomer placement can be met only in part. For one thing, there are combinations for
which data are not readily available. Incidentally, not all of the rlrz values in Figure 5.2 were
measured at the same temperature, but, as noted above, temperature effects are expected to be
relatively unimportant. Also, there are outright exceptions to the pattern sought: Generalizations
about chemical reactions always seem to be plagued by these. In spite of some reversals of ranking,
the predominant trend moving upward from the base along any row of diamonds is a decrease in
rlrz values.

From the geometry of this triangular display, it follows immediately—if one overlooks
the exceptions—that the more widely separated a pair of comonomers are in Figure 5.2, the
greater is their tendency toward randomness. We recognize a parallel here to the notion
that widely separated elements in the periodic table will produce more polar bonds than those
which are closer together, and vice versa. This is a purely empirical and qualitative trend. The next
order of business is to seek an explanation for its origin in terms of molecular structure. If we focus
attention on the electron-withdrawing or electron-donating attributes of the substituents on the
double bond, we find that the substituents of monomers that are located toward the right-hand
corner of the triangle in Figure 5.2 are recognized as electron donors. Likewise, the substituents
in monomers located toward the left-hand corner of the triangle are electron acceptors. The
demarcation between the two regions of behavior is indicated in Figure 5.2 by reversing the direction
of the lettering at this point. Pushing this point of view somewhat further, we conclude that the
sequence acetoxy < phenyl < vinyl is the order of increase in electron-donating tendency. Chlor-
o < carbonyl < nitrile is the order of increase in electron-withdrawing tendency. The positions of
diethyl fumarate and vinylidene chloride relative to their monosubstituted analogs indicates
that “more is better” with respect to these substituent effects. The location of methyl methacrylate
relative to methyl acrylate also indicates additivity, this time with partial compensation of
opposing effects.

The reactivity ratios are kinetic in origin, and therefore reflect the mechanism or, more
specifically, the transition state of a reaction. The transition state for the addition of a vinyl
monomer to a growing radical involves the formation of a partial bond between the two species,
with a corresponding reduction of the double-bond character of the vinyl group in the monomer:

1

”N.
+ ///\Y —..

WE

—-- Product (5G)
x ' YX

If substituent X is an electron donor and Y an electron acceptor, then the partial bond in the
transition state is stabilized by a resonance form (5.1), which attributes a certain polarity to the
emerging bond:

5‘ 3" i i

as ”MS
x v x x

[5.I] [5-H]

The contribution of this polar structure to the bonding lowers the energy of the transition state. This
may be viewed as a lower activation energy for the addition step and thus a factor that promotes
this particular reaction. The effect is clearly larger the greater the difference in the donor—acceptor
properties of X and Y. The transition state for the successive addition of the same monomer
(whether X or Y substituted) is Structure (5.11). This involves a more uniform distribution of
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charge because of the identical substituents and thus lacks the stabilizing effect of the polar
resonance form. The activation energy for this mode of addition is greater than that for alternation,
at least when X and Y are sufficiently different.

Although we use the term resonance in describing the effect of polarity in stabilizing the
transition state in alternating copolymers, the emphasis of the foregoing is definitely on polarity
rather than resonance per se. It turns out, however, that resonance plays an important role in free-
radical polymerization, even when polarity effects are ignored. In Section 5.4 we examine some
evidence for this and consider the origin of this behavior.

5.4 Resonance and Reactivity
The tendency toward alternation is not the only pattern in terms of which copolymerization can be
discussed. The reactivities of radicals and monomers may also be examined as a source of insight
into copolymer formation. The reactivity of radical 1 copolymerizing with monomer 2 is measured
by the rate constant km. The absolute value of this constant can be determined from copolymer-
ization data (r1) and studies yielding absolute homopolymerization constants (kn):

k12 :fl (5.4.1)
r1

Table 5.2 lists a few cross-propagation constants calculated by Equation 5.4.1. Far more extensive
tabulations than this have been prepared by correlating copolymerization and homopolymerization
data for additional systems.

Examination of Table 5 .2 shows that the general order of increasing radical activity is
styrene < acrylonitrile < methyl acrylate < vinyl acetate. An additional observation is that any
one of these species shows the reverse order of reactivity for the corresponding monomers. As
monomers, the order of reactivity in Table 5.2 is styrene > acrylonitrile > methyl acrylate > vinyl
acetate. These and similar rankings based on more extensive comparisons are summarized in terms
of substituents in Table 5.3.

An important pattern to recognize among the substituents listed in Table 5.3 is this: Those that
have a double bond conjugated with the double bond in the olefin are the species that are more
stable as radicals and more reactive as monomers. The inverse relationship between the stability of
monomers and radicals arises precisely because monomers gain (or lose) stability by converting to
the radical: The greater the gain (or loss), the greater (or less) the incentive for the monomer
to react. It is important to realize that the ability to form conjugated structures is associated with
a substituent, whether it is in a monomer or a radical. Conjugation allows greater electron
delocalization, which, in turn, lowers the energy of the system that possesses this feature.

Comparison of the range of km along rows and columns in Table 5.2 suggests that resonance
stabilization produces a bigger effect in the radical than in the monomer. After all, the right- and
left—hand columns in Table 5.2 (various radicals) differ by factors of 100—1000, whereas the top

Table 5.2 Values of the Cross-Propagation Constants kn (L mol'1 3*) for Four Monomer—Radical
Combinations

Radical

Monomer Styrene Acrylonitrile Methyl acrylate Vinyl acetate

Styrene 145 49,000 14,000 230,000
Acrylonitrile 435 1,960 2,510 46,000
Methyl acrylate 203 1,310 2,090 23,000
Vinyl acetate 2.9 230 230 2,300
Source: From Brandrup, J. and Immergut, EH. (Eds), Polymer Handbook, 3rd ed., Wiley, New York, 1989.
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Table 5.3 List of Substituents Ranked in Terms of Their Effects on
Monomer and Radical Reactivity
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and bottom rows (various monomers) differ only by the factors of 50-100. In order to examine this
effect in more detail, consider the addition reaction of monomer M to a reactant radical R0 to form
a product radical Po. What distinguishes these species is the presence or absence of resonance
stabilization (subscript rs). If the latter is operative, we must also consider which species benefit
from its presence. There are four possibilities:

I. Unstabilized monomer converts stabilized radical to unstabilized radical:

Rrs- + M —> P. (S.H)

There is an overall loss of resonance stabilization in this reaction. Since it is a radical which
suffers the loss, the effect is larger than in the reaction in which. . ..
Stabilized monomer converts stabilized radical to another stabilized radical:

Rrs' + Mrs —’ Prs‘ (SI)

Here too there is an overall loss of resonance stabilization, but it is monomer stabilization
which is lost, and this is energetically less costly than Reaction (5.H).
Unstabilized monomer converts unstabilized radical to another unstabilized radical:

R+MeR an
This reaction suffers none of the reduction in resonance stabilization that is present in Reaction
(SH) and Reaction (5.1). It is energetically more favored than both of these, but not as much as
the reaction in which. . ..
Stabilized monomer converts unstabilized radical to stabilized radical:

R° + Mrs —’ Prs' (5K)
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This reaction converts the less effective resonance stabilization of a monomer to a more effective
form of radical stabilization. This is the most favorable of the four reaction possibilities.

In summary, we can rank these reactions in terms of their propagation constants as follows:
Rrso +M< Rrso +Mrs < R- +M< Ro +Mrs

Systems from Table 5.2 which correspond to these situations are the following:

Radical Styrene Styrene Vinyl acetate Vinyl acetate

+ < + < + < +
Monomer Vinyl acetate Styrene Vinyl acetate Styrene

Note that this inquiry into copolymer propagation rates also increases our understanding of the
differences in free-radical homopolymerization rates. Recall that in Chapter 3 a discussion of this
aspect of homopolymerization was deferred until copolymerization was introduced. The trends
under consideration enable us to make some sense out of the rate constants for propagation in free-
radical homopolymerization as well. For example, in Table 3.4 we see that kp values at 60°C for
vinyl acetate and styrene are 2300 and 165 L mol'1 3—], respectively. The relative magnitude of
these constants can be understood in terms of the sequence above.

Resonance stabilization energies are generally assessed from thermodynamic data. If we define
31 to be the resonance stabilization energy of species 1', then the heat of formation of that species
will be less by an amount 31 than for an otherwise equivalent molecule without resonance.
Likewise, the change in enthalpy AH for a reaction that is influenced by resonance effects is
less by an amount As (A is the usual difference: products minus reactants) that the AH for a
reaction which is otherwise identical except for resonance effects:

AHrs = AHnO ,8 — A3 (5.4.2)

Thus if we consider the homopolymerization of ethylene (no resonance possibilities),

—CH2—CH2° + CH2=CH2 -+ “CH2CH2CH2CH2‘ (5.L)

AHno ,, = ——88.7 kJ mol-1
as a reference reaction, and compare it with the homopolymerization of styrene (resonance effects
present),

.H + \ —+ .H

AH,, = —69.9 kJ mol”1

we find a value of A3 = — 19 kJ mol‘l, according to Equation 5.4.2. Reaction (5.M) is a specific
example of the general Reaction (5.1), and the negative value of A3 in this example indicates the
overall loss of resonance stabilization, which is characteristic of Reaction (5.1).

Although it is not universally true that the activation energies of reactions parallel their heats of
reaction, this is approximately true for the kind of addition reaction we are discussing. Accord-
ingly, we can estimate E* = aAH, with a an appropriate proportionality constant. If we consider
the difference between two activation energies by combining this idea with Equation 5.4.2, the
contribution of the nonstabilized reference reaction drops out of Equation 5.4.2 and we obtain

Eii— Biz = a[—A311 — 0236312)]
= ‘(SPF — 8R1. _ SMI) + (8P2. _ BRI. — 8M2) (5.4.3)
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In writing the second version of this relation, the proportionality constant has been set equal to
unity as a simplification. Note that the resonance stabilization energy of the reference radical Rlo
also cancels out of this expression.

The temperature dependence of the reactivity ratio r1 also involves the E’fi— E’f‘z difference
through the Arrhenius equation; hence

6P: -
3,4,)

—(8P2‘ * 3M2) 5 4 4r1 oc exp(—————RT exp(
RT

) ( . . )

An analogous expression can be written for r2:

M) :.(_8PI' _‘8W 5 4 5r2 oc exp(
RT

exp(
RT

) ( . . )

According to this formalism, the following applies:

1. The reactivity ratios are proportional to the product of two exponentials.
2. Each exponential involves the difference between the resonance stabilization energy of the

radical and monomer of a particular species.
3. A positive exponent is associated with the same species as identifies the r (i.e., for

11, M1 —-> Pp), whereas the negative exponent is associated with the other species (for
r], M2 —-> 132' ).

We might be hard-pressed to estimate the individual resonance stabilization energies in
Equation 5.4.4 and Equation 5.4.5, but the quantitative application of these ideas is not difficult.
Consider once again the styrene-vinyl acetate system:

1. Define styrene to be monomer 1 and vinyl acetate to be monomer 2.
The difference in resonance stabilization energy 3p; —— 3M. >1, since styrene is resonance
stabilized and the effect is larger for the radical than the monomer.

3. The difference 8132‘ — 3M2 § 0, since neither the radical nor the monomer of vinyl acetate
shows appreciable stabilization.

4. Therefore, according to Equation 5.4.4 and Equation 5.4.5, n > 1 while r2 < 1.
5. Experimental values for this system are r1 = 55 and r2: 0.01.

Although this approach does correctly rank the parameters r1 and r2 for the styrene—vinyl acetate
system, this conclusion was already reached qualitatively above using the same concepts and
without any mathematical manipulations. One point that the quantitative derivation makes clear is
that explanations of copolymer behavior based exclusively on resonance concepts fail to describe
the full picture. All that we need to do is examine the product rlrg as given by Equation 5.4.4 and
Equation 5.4.5, and the shortcoming becomes apparent. According to these relationships, the
product rlrz always equals unity, yet we saw in the last section that experimental rlrg values
generally lie between zero and unity. We also saw that polarity effects could be invoked to
rationalize the rlrz product.

The situation may be summarized as follows:

1. If resonance effects alone are considered, it is possible to make some sense of the ranking of
various propagation constants.

2. In this case only random microstructure is predicted.
3. If polarity effects alone are considered, it is possible to make some sense out of the tendency

toward alternation.
4. In this case homOpolymerization is unexplained.
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The way out of this apparent dilemma is easily stated, although not easily acted upon. It is not
adequate to consider any one of these approaches for the explanation of something as complicated
as these reactions. Polarity effects and resonance are both operative, and, if these still fall short of
explaining all observations, there is another old standby to fall back on: steric effects. Resonance,
polarity, and steric considerations are all believed to play an important role in copolymerization
chemistry just as in the other areas of organic chemistry. Things are obviously simplified if only
one of these is considered, but it must be remembered that doing this necessarily reveals only one
facet of the problem. Nevertheless, there are times, particularly before launching an experimental
investigation of a new system, when some guidelines are very useful. The following example
illustrates this point.

Example 5.2
It is proposed to polymerize the vinyl group of the hemin molecule with other vinyl comonomers to
prepare model compounds to be used in hemoglobin research. Considering hemin and styrene to be
species 1 and 2, respectively, use the resonance concept to rank the reactivity ratios of r, and r2.

Solution
Hemin is the complex between protoporphyrin and iron in the +3 oxidation state. Iron is in the +2
state in the heme of hemoglobin. The molecule has the following structure:

CH2

OH

It is apparent from the size of the conjugated system here that numerous resonance possibilities
exist in this species in both the radical and the molecular form. Styrene also has resonance
structures in both forms. On the principle that these effects are larger for radicals than monomers,
we conclude that the difference 8}” — 8M > 0 for both hemin and styrene. On the principle that
greater resonance effects result from greater delocalization, we expect the difference to be larger
for hemin than for styrene. According to Equation 5.4.4, r1 oc el‘t‘rg"‘”e‘3"“£lller > 1. According to
Equation 5.4.5, r2 oc esm‘i‘lh‘ire—l‘t‘rgcr < 1. Experimentally, the values for these parameters turn out to
be r1: 65 and r2 = 0.18.

5.5 A Closer Look at Microstructure

In Section 5.3 we noted that variations in the product rlrg led to differences in the polymer
microstructure, even when the overall compositions of two systems are the same. In this section we
shall take a closer look at this variation, using the approach best suited for this kind of detail,
statistics.
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5.5.1 Sequence Distributions

Suppose we define as p,3,- the probability that a unit of type i is followed in the polymer by a unit of
type j, where both i and j can be either 1 or 2. Since an 1' unit must be followed by either an i or a j,
the fraction of ij sequences (pairs) out of all possible sequences (pairs) defines pg:

Number of if sequences
i“ = .. .. 5.5.1p 1 Number of 1] sequences + Number of :1 sequences ( )

This equation can also be written in terms of the propagation rates of the different types of addition
steps which generate the sequences:

Ra“ _ ke‘li'l [Mr]1.. : _ (5.5.2p} Rij + RH kili'] [M1] + kiz‘lMi'HMil )

For the various possible combinations in a copolymer, Equation 5.5.2 becomes

k M ' M MP11=k ”[ 1H 1] = “l 1] (5.5.3)
11[M1'][M1] + k12[M1'][M2] r1[M1] + [M2]

[M2]: —-———-—-—~————+-* (5.5.4“2 r1 [M1] + [M2] )
k M ' M Mp22 2 k

22[ 2 H 2] 2 rd 2] (5.5.5)
22[M2'][M2] + k21iM2'HM1] VziMzi -|- [M1]

M[)2] [ '1 (5.5.6): r2[M2] + [M1]
Note that p11 + p12 2 p22 —|— p21 = 1. In writing these expressions we make the assumption that only
the terminal unit of the radical influences the addition of the next monomer. This same assumption
was made in deriving the copolymer composition equation. We shall have more to say below about
this particular assumption.

Next let us consider the probability of finding a sequence of repeat units in a copolymer, which
is exactly 12 units of M1 in length. This may be represented as M2(M1),,M2. Working from left to
right in this sequence, we note the following:

1. If the addition of monomer M1 to a radical ending with M2 occurs L times in a sample, then
there will be a total of L sequences, of unspecified length, of M1 units in the sample.

2. If v — 1 consecutive M1 monomers add to radicals capped by M1 units, the total number of
such sequences is expressed in terms of p11 to be Lp'ff‘.

3. If the sequence contains exactly 12 units of type M], then the next step must be the addition of
an M2 unit. The probability of such an addition is given by p12, and the number of sequences is
Lpiilplz-

Since L equals the total number of M1 sequences of any length, the fraction of sequences of length
I), (by, is given by

9b,, = pi’flpnz (5.5.7)
The similarity of this derivation to those in Section 2.4 and Section 3.7 should be apparent.
Substitution of the probabilities given by Equation 5.5.3 and Equation 5.5.4 leads to

“b" 2 ( [MriihiliMziifl (fills/IT) (5'58)
A similar result can be written for d)“, where n denotes the length of a sequence of M2 units. These
expressions give the fraction of sequences of specified length in terms of the reactivity ratios of the
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copolymer system and the composition of the feedstock. Figure 5.3 illustrates by means of a bar
graph how (1),, varies with v for two polymer systems prepared from equimolar solutions of
monomers. The shaded bars in Figure 5.3 describe the system for which r1r2=0.03 and the
unshaded bars describe rlrg = 0.30.

Table 5.4 shows the effect of variations in the composition of the feedstock for the system
rlrz : 1. The following observations can be made concerning Figure 5.3 and Table 5.4:

1. In all situations, the fraction (by decreases with increasing :2.
2. Figure 5.3 shows that for rlrg = 0.03, about 85% of the M1 units are sandwiched between two

Mg’s. We have already concluded that low values of the rlrz product indicate a tendency
toward alternation.

3. Figure 5.3 also shows that the proportion of alternating M1 units decreases, and the fraction of
longer sequences increases, as rlrg increases. The 50 mol% entry in Table 5.4 shows that the
distribution of sequence lengths gets flatter and broader for 7'e = 1, the ideal case.

4. Table 5.4 also shows that increasing the percentage of M 1 in the monomer solution flattens
and broadens the distribution of sequence lengths. Similar results are observed for lower
values of rlrg, but the broadening is less pronounced when the tendency toward alternation
is high.

Next we consider the average value of a sequence length of M1, 17. Combining Equation 1.7.7
and Equation 5.5.7 gives

2:1 12(1),, : 2:, I”Pill—[[712

2:195” 2:1Pif1l’12

Simplifying this result involves the same infinite series that we examined in connection with
Equation 2.4.5; therefore we can write immediately

17: (5.5.9)

100 ‘I I I I I I I I I I I I I I I I I I l l I

" D ['11'2 : 0.30 "

80 e _
.. I r1r2 : 0.03

60 — ..
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40 — J

20 — —
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_

I 1 1 1 I l W I I

1 2 3 4 5

V1

Figure 5.3 Fraction of sequences of the indicated length for copolymers prepared from equimolar
feedstocks with r1r2:0.03 (shaded) and r1r2:0.30 (unshaded). (Data from Tosi, C., Adv. Polym. Sci, 5,
451, 1968.)
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Table 5.4 Percentage of Sequences of Length v for Copolymers Prepared from Different Feedstocks f1
with rlrz = 1

14f, 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.3 0.9
1 90 30 70 60 50 40 30 20 10
2 9 16 21 24 25 24 21 16 9
3 0.9 3.2 6.3 9.6 12.5 14.4 14.7 12.3 3.1
4 0.09 0.64 1.39 3.34 6.25 3.64 10.3 10.2 7.29
5 0.13 0.57 1.54 3.13 5.13 7.20 3.19 6.56
6 0.17 0.62 1.56 3.11 5.04 6.55 5.90
7 0.05 0.25 0.73 1.37 3.53 5.24 5.31
3 0.10 0.39 1.12 2.47 4.19 4.73
9 0.04 0.20 0.67 1.73 3.36 4.30
10 0.10 0.40 1.21 2.63 3.37
11 0.05 0.24 0.35 2.15 3.59
12 0.14 0.59 1.72 3.23

,—, = 1 = _1_ (5.5.10)
1 — P11 P12

By combining Equation 5.5.4 and Equation 5.5.10, we obtain

17=1+r1-——-—— (5.5.11)

A value of 11 is obtained by similar operations:

it =1+r2% (5.5.12)

The following example demonstrates the use of some of these relationships pertaining to
microstructure.

Example 5.3
The hemoglobin molecule contains four heme units. It is proposed to synthesize a hemin (molecule
1)—styrene (molecule 2) copolymer such that 17 = 4 in an attempt to test some theory concerning
hemoglobin. As noted in Example 5.2, r1: 65 and r2 = 0.18 for this system. What should be the
proportion of monomers to obtain this average hemin sequence length? What is the average styrene
sequence length at this composition? Does this system seem like a suitable model if the four hemin
clusters are to be treated as isolated from one another in the theory being tested? Also evaluate (1),.
for several v bracketing 17 to get an idea of the distribution of these values.

Solution
Use Equation 5.5.11 to evaluate [Md/[M2] for r1 = 65 and 17 = 4:

[M1] 17 — 1 4 — 1 [M2]= = = 0.046 d — = 21.7
[Mg] r1 65

an
[M1]
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Use this ratio of concentration in Equation 5.5.12 to evaluate i1:

_ [M2l=1+r—=1+0.1821.7 =49

The number of styrene units in an average sequence is a little larger than the length of the average
hemin sequence. It is not unreasonable to describe the hemin clusters as isolated, on the average, in
this molecule. The product rlrz = 11.7 in this system, which also indicates a tendency toward block
formation. Use Equation 5.5.8 with [Md/[M2] = 0.046 and the r1 and r2 values to evaluate (by:

= (%)V—1 <fi) : (0.0749)”"1(0.251)

Solving for several values of V, we conclude that the distribution of sequence length is quite broad:

:2 1 2 3 4 5 6

(1),, 0.251 0.188 0.140 0.105 0.079 0.059

For the systems represented in Figure 5.3 and the equimolar case in Table 5.4, the average
lengths are 17 = 1.173 for r1r2= 0.03, 17 = 1.548 for rlrg : 0.30, and 17 2 2.000 for rlrg = 1.0.

Equation 5.5.1 1 and Equation 5.5.12 suggest a second method for the experimental determination
of reactivity ratios, in addition to the copolymer composition equation. If the average sequence
length can be determined for a feedstock of known composition, then r1 and r2 can be evaluated. We
shall return to this possibility in the next section. In anticipation of applying this idea, let us review
the assumptions and limitation to which Equation 5.5.11 and Equation 5.5.12 are subject:

1. The instantaneous monomer concentration must be used. Except at the azeotrope, this changes
as the conversion of monomers to polymer progresses. As in Section 5.2, we assume that either
the initial conditions apply (little change has taken place) or that monomers are continuously
being added (replacement of reacted monomer).

2. The kinetic analysis described by Equation 5.5.3 and Equation 5.5.4 assumes that no repeat
unit in the radical other than the terminal unit influences the addition. The penultimate unit in
the radical as well as those still further from the growing end are assumed to have no effect.

3. Item (2) requires that each event in the addition process be independent of all others. We have
consistently assumed this throughout this chapter, beginning with the copolymer composition
equation. Until now we have said nothing about testing this assumption. Consideration of
copolymer sequence length offers this possibility.

5.5.2 Terminal and Penultimate Models

We have suggested earlier that both the copolymer composition equation and the average sequence
length offer possibilities for experimental evaluation of the reactivity ratios. Note that in so doing
we are finding parameters which fit experimental results to the predictions of a model. Nothing
about this tests the model itself. It could be argued that obtaining the same values of r1 and r2 from
the fitting of composition and microstructure data would validate the model. It is not likely,
however, that both types of data would be available and of sufficient quality to make this
unambiguous. We shall examine the experimental side of this in the next section.

Statistical considerations make it possible to test the assumption of independent additions. Let
us approach this topic by considering an easier problem: coin tossing. Under conditions where two
events are purely random—as in tossing a fair coin—the probability of a specific sequence of
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outcomes is given by the product of the probabilities of the individual events. The probability of
tossing a head followed by a head~indicated HH—is given by

PHH = PHPH (5.5.13)

If the events are not independent, provision must be made for this, so we define a quantity called
the conditional probability. For the probability of a head given the prior event of a head, this is
written pH/H, where the first quantity in the subscript is the event under consideration and that
following the slash mark is the prior condition. Thus pry/H is the probability of a tail following a
head. If the events are independent, ppm, :pH; if not, then pm; must be evaluated as a separate
quantity. If the coin being tossed were biased, that is, if successive events are not independent,
Equation 5.5.13 would become

PHH : PH/HPH (55-14)

We recall that the fraction of times a particular outcome occurs is used to estimate probabilities.
Therefore we could evaluate pm; by counting the number of times NH the first toss yielded a head
and the number of times NHH two tosses yielded a head followed by a head and write

_PHH _NHH
PH/H — _ * W

W NH (55.15)

This procedure is readily extended to three tosses. For a fair coin the probability of three heads is
the cube of the probability of tossing a single head:

PHHH = PHPHPH (5.5.16)

If the coin is biased, conditional probabilities must be introduced:

PHHH = PH/HHpH/HPH (5.5.17)

Using Equation 5.5.15 to eliminate mm from the last result gives

PHH
PHHH = PH/HH (p—H)PH (5.5.18)

01'

PHHH _ NHHH
PH/HH 2 (5.5.19)

PHH NHH
If we were testing whether a coin were biased or not, we would use ideas like these as the basis

for a test. We could count, for example, HHH and HH sequences and divide them according to
Equation 5.5.19. If pmHH 75 pH, we would be suspicious.

A similar logic can be applied to copolymers. The story is a bit more complicated to tell, so we
only outline the method. If penultimate effects operate, then the probabilities p11, p12, etc., defined
in Equation 5.5.3 through Equation 5.5.6 should be replaced by conditional probabilities. As a
matter of fact, the kind of conditional probabilities needed must be based on the two preceding
events. Thus Reaction (5.E) and Reaction (5.E) are two of the appropriate reactions, and the
corresponding probabilities are p1,” and plm. Rather than work out all of the probabilities in
detail, we summarize the penultimate model as follows:

1. A total of eight different reactions are involved, since each reaction like Reaction (5A) is
replaced by a pair of reactions like Reaction (5.E) and Reaction (5.E).

2. There are eight different rate laws and rate constants associated with these reactions. Equation
5.2.1, for example, is replaced by Equation 5.2.5 and Equation 5.2.6.
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3. Eight rate constants are clustered in four ratios, which define new reactivity ratios. Thus r1 as
defined in Equation 5.2.13 is replaced by rf = (cm/km and rf’ = firm/((212 whereas r; is
replaced by r5 2 k222/k221 and rfi’ 2 km/km.

4. The probability p11 as given by Equation 5.5.3 is replaced by the conditional probability pl ,1 1,
which is defined as

= k111[M1M1'][M1] _ rflMll/[Mg]pV 1‘ knitMe-HMI] + k112[M1M1o][M2]_1+ r{[M1]/[M2] (5.5.20)

There are eight of these conditional probabilities, each associated with the reaction described
in item (1).

5. The probability p11 can be written as the ratio NMIMl/NMI using Equation 5.5.15. This is
replaced by pm], which is given by the ratio NMM]Ml/NM,Ml according to Equation 5.5.19.

6. Equation 5.5.4 shows that p11 is constant for a particular copolymer if the terminal model
applies; therefore the ratio NM.M./NM. also equals this constant. Equation 5.5.20 shows
that P1111 is constant for a particular copolymer if the penultimate model applies; therefore
the ratio NM]M|M|/NM1M1 also equals this constant, but the ratio NMIMI /NM. does not have the
same value.

These observations suggest how the terminal mechanism can be proved to apply to a copoly-
merization reaction if experiments exist which permit the number of sequences of a particular
length to be determined. If this is possible, we should count the number of Ml’s (this is given by
the copolymer composition) and the number of MIMI and MIMIMI sequences. Specified se-
quences, of any definite composition, of two units are called dyads; those of three units, triads;
those of four units, tetrads; those of five units, pentads; and so on. Next we examine the ratio
NMIM/NMl and NMIMIMI /NM1M1. If these are the same, then the mechanism is Shown to have
terminal control; if not, it may be penultimate control. To prove the penultimate model it would
also be necessary to count the number of M1 tetrads. If the tetrad—triad ratio were the same as the
triad—dyad ratio, the penultimate model is established.

This situation can be generalized. If the ratios do not become constant until the ratio of pentads
to tetrads is considered, then the unit before the next to last—called the antepenultimate unit—
plays a role in the addition. This situation has been observed, for example, for propylene oxide—
maleic anhydride copolymers. The foregoing discussion has been conducted in terms of M]
sequences. Additional relationships of the sort we have been considering also exist for dyads,
triads, and so forth, of different types of specific composition. Thus an ability to investigate
microstructure experimentally allows some rather subtle mechanistic effects to be studied. In the
next section we shall see how such information is obtained.

5.6 Copolymer Composition and Microstructure: Experimental Aspects

As we have already seen, the reactivity ratios of a particular copolymer system determine both the
composition and microstructure of the polymer. Thus it is important to have reliable values for
these parameters. At the same time it suggests that experimental studies of composition and
microstructure can be used to evaluate the various r’s.

5.6.1 Evaluating Reactivity Ratios from Composition Data

Evaluation of reactivity ratios from the copolymer composition equation requires only composition
data—~that is, relatively straightforward analytical chemistry—and has been the method most widely
used to evaluate r1 and r2. As noted in the last section, this method assumes terminal control and
seeks the best fit of the data to that model. It offers no means for testing the model, and as we shall see,
is subject to enough uncertainty to make even self-consistency difficult to achieve. Microstructure
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studies, by contrast, offer both a means to evaluate the reactivity ratios and also to test the
model. The capability to investigate this level of structural detail was virtually nonexistent
until the advent of modem instrumentation, and even now is limited to sequences of rather
modest length.

In this section we shall use the evaluation of reactivity ratios as the unifying theme;
the experimental methods constitute the new material introduced. The copolymer composition
Equation 5.2.18 relates the r’s to the mole fractions of the monomers in the feedstock and in
the copolymer. To use the equation to evaluate r1 and r2, the composition of a copolymer
resulting from a feedstock of known composition must be measured. The composition of the
feedstock itself must also be known, but we assume this poses no problems. The copolymer
specimen must be obtained by pr0per sampling procedures and purified of extraneous materials.
Remember that monomers, initiators, and possibly solvents and soluble catalysts are involved
in these reactions also, even though we have been focusing attention on the copolymer alone.
The proportions of the two kinds of repeat unit in the copolymer are then determined by
either chemical or physical methods. Elemental analysis is a widely used chemical method, but
spectroscopic analysis (UV—visible, IR, NMR, and mass spectrometry) for functional groups is
commonly employed.

Since the copolymer equation involves both r1 and r; as unknowns, at least two polymers
prepared from different feedstocks must be analyzed. It is preferable to use more than this
minimum number of observations, and it is helpful to rearrange the copolymer composition
equation into a linear form so that simple graphical methods can be employed to evaluate the
r’s. Several ways to linearize the equation exist:

1. Rearrange Equation 5.2.18 to give

f1(1-2F1)_ fflFl — 1)l—fi)_r%;u1—fif)+¢2 (56”

This is the equation of a straight line, so r1 and r; can be evaluated from the slope and intercept
of an appropriate plot.

2. In terms of ratios rather than fractions, Equation 5.6.1 may be written as

W(fl_1)=rlw_r, (5.6.2)
ill/”2 ”2 ”1/712

where n1 refers to the number of repeat units in the polymer. This expression is also of
the form y=mx+b if x=<tM11/tM21)2/(nl/n2) and y:([M11/[M21)/(n1/n2)/(n1/n2—1), so
the slope and intercept yield r1 and r2, respectively. This type of analysis is known as a
Finemann—Ross plot.

3. This last expression can be rearranged in several additional ways, which yield linear plots:

1)_’ 2 —r2— _|_ r1 (5.6.3)
x x

1x:_y+2 Geo
r1 r1

1 1

y rz)’ V1

Each of these forms weigh the errors in various data points differently, so some may be more
suitable than others, depending on the precision of the data. Ideally all should yield the same
values of the reactivity ratios. The following example illustrates the use of Equation 5.6.1 to
evaluate r1 and r2.
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Table 5.5 Values of F1 as a Function for f1 for the Methyl Acrylate (MO—Vinyl
Chloride (M2) System

f1 F1 f1 F1

0.075 0.441 0.421 0.864
0.154 0.699 0.521 0.900
0.237 0.753 0.744 0.968
0.326 0.828 0.867 0.983

Note: These data are also plotted in Figure 5.4.

Source: Data from Chapin, E.L., Ham, G., and Fordyce, R., J. Am. Chem. Soc, 70, 538, 1948.

Example 5.4
The data in Table 5.5 list the mole fraction of methyl acrylate in the feedstock and in the
copolymer for the methyl acrylate (MO—vinyl chloride (M2) system. Use Equation 5.6.1 as the
basis for the graphical determination of the reactivity ratios, which describe this system.

Solution

We calculate the variables to be used as ordinate and abscissa for the data in Table 5.5 using
Equation 5.6.1:

f1(1—2F1)/F1(1-f1) 0.0217 —0.1036 —0.2087 —0.3832 —0.6127 —0.9668 —2.8102 46.4061
ff(F1——1)/F1(1—f1)2 —0.0083 20.0143 —0.0316 —0.0486 —0.0832 —0.1315 —0.2792 —0.7349

Least-square analysis of these values gives a slope r1 2 8.929 and an intercept r22 0.053.
Figure 5.4b shows these data plotted according to Equation 5.6.1. The line is drawn with the
least—squares slope and intercept. The last point on the left in Figure 5.4b, which this line passes
through, corresponds to F1 2 0.983 andf1 2 0.867. Because the functional form plotted involves the
small differences F 1 — l and l — f1, this point is also subject to the largest error. This illustrates
the value of having alternate methods for analyzing the data. The authors of this research carried
out several different analyses of the same data; the values they obtained for r1 and r2 averaged over
the various methods were r1 2 9.616 i 0.603 and r2 2 0.0853 i 0.0239. The standard deviations
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Figure 5.4 (a) Mole fraction of methyl acrylate in copolymers with vinyl chloride as a function of feedstock
composition, and (b) Finemann—Ross plot to extract reactivity ratios, as described in Example 5.4.
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of about 6% and 28% in r1 and r2 analyzedfrom the same data indicate the hazards of this method
for determining r values.

5.6.2 Spectroscopic Techniques

In spite of the compounding of errors to which it is subject, the foregoing method was the
best procedure for measuring reactivity ratios until the analysis of microstructure became feasible.
Let us now consider this development. Most of the experimental information concerning
copolymer microstructure has been obtained by modern instrumental methods. Techniques such
as UV-visible, IR, NMR, and mass spectroscopy have all been used to good advantage in
this type of research. Advances in instrumentation have made these physical methods particularly
suitable to answer the question we pose: With what frequency do particular sequences of repeat
units occur in a c0polymer? The choice of the best method for answering this question is governed
by the specific nature of the system under investigation. Few general principles exist beyond
the importance of analyzing a representative sample of suitable purity. Our approach is to consider
some specific examples. In view of the diversity of physical methods available and the
number of copolymer combinations which exist, a few samples barely touch the subject. They
will suffice to illustrate the concepts involved, however. The simpler question—What is the mole
fraction of each repeat unit in the polymer sample?—can usually be answered via the same
instrumental techniques.

Spectroscopic techniques based on the absorption of UV, visible, or IR radiation depend
on the excitation from one quantum state to another. References in physical or analytical chemistry
should be consulted for additional details, but a brief summary will be sufficient for our purposes:

1. The excitation energy AE reflects the separation between the final (subscript f) and initial
(subscript i) quantum states:

AEzfl—Ei 65$
The difference is positive for absorbed energy.

2. The energy absorbed is proportional to the frequency of the radiation via Planck’s constant
(h=6c3x1044te:

AE=hp=h§ Gan
In the second version of this equation c is the speed of light and )t the wavelength of the radiation.

3. The more widely separated two states are in energy, the shorter the wavelength of the radiation
absorbed. Transitions between electronic states have higher energies, and correspond to UV—
visible wavelengths, whereas vibrational quantum states are more closely spaced and are
induced by IR radiation.

4. Different light-absorbing groups, called chromophores, absorb characteristic wavelengths,
opening the possibility of qualitative analysis based on the location of an absorption peak.

5. If there is no band overlap in a spectrum, the absorbance at a characteristic wave—
length is proportional to the concentration of chromophores present. This is the basis of
quantitative analysis using spectra. With band overlap, things are more complicated but
still possible.

6. The proportionality between the concentration of chromophores and the measured absorbance
is given by Beer’s law (recall the discussion in Section 3.3.4):

A=wc 658
where A is the (dimensionless) absorbance, b is the sample thickness, 0 is the chromophore
concentration, and e is the absorptivity. Usually quantitative measurements are facilitated by
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calibration with standards of known concentrations, so that a, b, and various other instrumental
parameters need not be determined individually.

7 , For copolymers, or any other mixture of chromophores, the measured absorbance is given by
the sum of individual Beer’s law terms:

A = 81bC1+ 82bC2 -|- 831563 -|- - -- (5.69)

Recalling that .9 depends on the chromophore and on the wavelength, measurements at
different wavelengths can be used to extract the concentrations of each component. For a
copolymer with two monomers, at least two wavelengths would be needed, and ideally they
should be chosen to such that if .91 is large at M, then 82 is large at A2.

14011) = 81011l1+ 82(A1)b02
140.2) 2 810.2)i + 820.2)2902 (5.610)

These relations amount to a system of two equations with two unknowns, c1 and C2, which can
be solved in a straightforward manner.

NMR spectroscopy is especially useful for microstructure studies, because of the sensitivity to
the chemical environment of a particular nucleus. We shall consider its application to copolymers
now, and to questions of stereoregularity in Section 5.7. NMR has become such an important
technique (actually a family of techniques) in organic chemistry that contemporary textbooks in
the subject discuss its principles quite thoroughly, as do texts in physical and analytical chemistry,
so here also we note only a few pertinent highlights:

1. Nuclei with an odd number of protons plus neutrons—especially 1H and 13C—possess magnetic
moments and show two quantum states (spin up and spin down) in a strong magnetic field.

2. If energy of the proper frequency is supplied, a transition between these quantum states occurs
with the absorption of an amount of energy equal to the separation of the states, just as in UV—-
visible and IR absorption. For NMR the frequency of the absorbed radiation lies in the radio
frequency range and depends on the local magnetic field at the atom in question.

3. Electrons in a molecule also have magnetic moments and set up secondary magnetic fields,
which partly screen each atom from the applied field. Thus atoms in different chemical
environments display resonance at slightly different magnetic fields.

4. The displacement 5 of individual resonances from that of a standard is small, and is measured
in parts per million (ppm) relative to the applied field. These so-called chemical shifts are
characteristic of a proton or carbon in a specific environment.

5. The interaction between nuclei splits resonances into multiple peaks, the number and relative
intensity of which also assist in qualitative identification of the proton responsible for the
absorption. Proton splitting is most commonly caused by the interaction of protons on adjacent
carbons with the proton of interest. If there are m equivalent hydrogens on an adjacent carbon,
the proton of interest produces 771 + 1 peaks by this coupling.

6. More distant coupling is revealed in high magnetic fields. Unresolved fine structures in a field
of one strength may be resolved at higher field where more subtle long-range influences can be
probed. The use of NMR spectroscopy to characterize copolymer microstructure takes advan-
tage of this last ability to discern environmental effects that extend over the length of several
repeat units. This capability is extremely valuable in analyzing the stereoregularity of a
polymer, and we shall have more to say about it in that context in Section 5.7.

7. In NMR spectroscopy the “ absorptivities ” are, in essence, all the same, so that the integrated area
under a peak is directly proportional to the number of nuclei of that type in the sample. Thus if
different repeat units have identifiably different peaks, as is almost always the case, the
relative abundance of each type can be extracted by peak integration without any additional
calibration.
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5.6.3 Sequence Distribution: Experimental Determination

As suggested in the foregoing, the analysis for overall composition in a copolymer sample is by now a
relatively straightforward affair. The analysis for sequence distribution, however, is not. The primary
difficulty is that the energy of a particular transition, be it electronic, vibrational, or nuclear, is
determined primarily by the immediate chromophore of interest, and only weakly influenced by
chemically bonded neighbors. NMR offers the most promise in this respect, especially with the advent
of higher magnetic fields; this feature can provide sufficient resolution to detect the influence of repeat
units up to about five monomers down the chain. Nevertheless, there are cases where UV—visible
spectroscopy can help. An elegant example is the copolymer of styrene (molecule 1) and 1-chloro-1,3-
butadiene (molecule 2). These molecules quantitatively degrade with the loss of HCl upon heating in
base solution. This restores 1,3 -unsaturation to the butadiene repeat unit:

CI
/ —nHC|

\ \
n m n m (5.N)

It is these conjugated double bonds that are the chromophores of interest in this system. What
makes this particularly useful is the fact that the absorption maximum for this chromophore is
displaced to longer wavelengths the more conjugated bonds there are in a sequence. Qualita-
tively, this can be understood in terms of a one-dimensional particle in a box model for which the
energy level Spacing is inversely proportional to the square of the length of the box. In this case
the latter increases with the length of the conjugated polyene system. This in turn depends on the
number of consecutive butadiene repeat units in the copolymer. For an isolated butadiene
molecule dehalogenation produces one pair of conjugated double bonds; two adjacent butadienes,
four conjugated double bonds; three adjacent butadienes, six conjugated double bonds; and so on.
Sequences of these increasing lengths are expected to absorb at progressively longer wave-
lengths.

Figure 5.5 shows the appropriate portion of the spectrum for a copolymer prepared from a
feedstock for which f1 = 0.153. It turns out that each polyene produces a set of three bands: the

3 .—
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8
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Figure 5.5 Ultraviolet—visible spectrum of dehydrohalogenated copolymers of styrene—l-chloro-1,3-buta—
diene. (Redrawn from Winston, A. and Wichacheewa, P., Macromolecules, 6, 200, 1973. With permission.)
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dyad is identified with the peaks at )1 = 298, 312, and 327 nm; the triad with the peaks at )t = 347,
367, and 388 nm; and the tetrad with the peaks at )1 = 412 and 437 nm. Apparently one of the tetrad
bands overlaps that of the triad and is not resolved. Likewise, only one band (at 473 nm) is
observed for the pentad. The identification of these features can be confirmed with model
compounds and the location and relative intensities of the peaks have been shown to be indepen-
dent of copolymer composition. Once these features have been identified, the spectra can be
interpreted in terms of the numbers of dyads, triads, tetrads, and maybe pentads of the butadiene
units and compared with predicted sequences of various lengths. Further consideration of this
system is left for Problem 3 through Problem 5 at the end of the chapter.

We now illustrate the application of NMR to gather 00polymer sequence information. Suppose
we consider the various triads of repeat units. There are six possibilities: MlMlMl, MIMIMQ,
MQMIMZ, MQMZMQ, MzMl, and MIMZMI. These can be divided into two groups of three,
depending on the identity of the central unit. Thus the center of a triad can be bracketed by two
monomers identical to itself, different from itself, or by one of each. In each of these cases the
central repeat unit is in a different environment, and a characteristic proton in that repeat unit is in a
different location, depending on the effect of that environment. As a specific example, consider the
methoxy group in poly(methyl methacrylate). The hydrogens in the group are magnetically
equivalent and hence produce a single resonance at 8 = 3.74 ppm. Now suppose we look for the
same resonance feature in the copolymer of methyl methacrylate (M1) and acrylonitrile (M2).
Figure 5.6 shows that 60 MHz spectrum of several of these copolymers in the neighborhood of the
methoxy resonance. Three resonance peaks rather than one are observed. Figure 5.6 also lists the
methyl methacrylate content of each of these polymers. As the methyl methacrylate content
decreases, the peak on the right decreases and the left increases. We therefore identify the peak
on the right-hand peak with the MIMIMI sequence, the left-hand peak with MlMz, and the
peak in the center with MIMIMQ. The MIMIM, peak occurs at the same location as in the methyl
methacrylate homopolymer.

The areas under the three peaks give the relative proportions of three sequences. In the
following example we consider some results on dyad sequences determined by comparable
procedures in vinylidene chloride—isobutylene copolymers.

Example 5.5
The mole fractions of various dyads in the vinylidine chloride (M1)——isobutylene (M2) system
were determined,r by NMR spectroscopy. A selection of the values obtained are listed below, as
well as the compositions of the feedstocks from which the copolymers were prepared; assuming
terminal control, evaluate r1 from each of the first three sets of data, and r2 from each of the last
three.

Mole fraction of dyads

f1 1 1 12 22

0.584 0.68 0.29 —
0.505 0.61 0.36 -——
0.471 0.59 0.38 ——
0.130 — 0.67 0.08
0.121 — 0.66 0.10
0.083 — 0.64 0.17

tJ.B. Kinsinger, T. Fischer, and CW. Wilson, Polym. Lett., 5, 285 (1967).
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M1M1M2
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Figure 5.6 Chemical shift (from hexamethyldisiloxane) for acrylonitrile—methyl methacrylate copolymers
of the indicated methyl methacrylate (M1) content. Methoxyl resonances are labeled as to the triad source.
(From Chujo, R., Ubara, H., and Nishioka, A., Polym. J., 3, 670, 1972. With permission.)

Solution
Equation 5.5.3 and Equation 5.5.5 provide the method for evaluating the r’s from the data given.
We recognize that a 12 dyad can come about from 1 adding to 2 as well as from 2 adding to 1;
therefore we use half the number of 12 dyads as a measure of the number of additions of monomer
2 to chain end 1. Accordingly, by Equation 5.5.1,

N11 2N 11 21s2= z and 2——
N11+(1/2)N12 2N11+N12 p22 2N22 +N12P11

Since [M1]/[M2] :f1/(1_f1)a Equation 5.5.2 can be written

2 rilfl/(l—fill and p = r2l(1“f1)/f1l
1+r1[f1/(1—f1)] 2’2 1+r2l(1*~f1)/f:lP11
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From From

2N1} = F|[f1/(1—f1)] 2s = r2[(1—f1)/fl]
2N11+N12 1+?1lf1/(1-f1)] 2N22+N12 1+r2[(1-fI)/f11
f1 r1 fl ’2

0.584 3.33 0.130 0.036
0.505 3.32 0.121 0.042
0.471 3.48 0.083 0.048
Average 3.38 Average 0.042

Particularly when r values are close to zero, this method for evaluating small r’s is superior to the
graphical analysis of composition data (compare Example 5.4 and Figure 5.4).

By making measurements at higher magnetic fields, it is possible to resolve spectral features
arising from still longer sequences. As a matter of fact, the authors of the research described in the
last example were able to measure the fractions of tetrads of different composition in the same
vinylidene chloride—isobutylene copolymer. Based on the longer sequences, they concluded that
the penultimate model describes this system better than the terminal model, although the short—
comings of the latter are not evident in the example. Problem 6 and Problem 7 at the end of the
chapter also refer to this system.

5.7 Characterizing Stereoregularity

We introduced the concept of Stereoregularity in Section 1.6. Figure 1.3 illustrates isotactic,
syndiotactic, and atactic structures of a vinyl polymer in which successive repeat units along the
fully extended chain lie, respectively, on the same side, alternating sides, or at random with respect
to the backbone. It is important to appreciate the fact that these different structures—different
configurations—have their origin in the bonding of the polymer, and no amount of rotation around
bonds-whanges in conformation-dwill convert one structure into another.

Our discussion of stereoregularity in this chapter is primarily concerned with polymers of
monosubstituted ethylene repeat units. We shall represent these by

+flxv

Monosubstituted ethylene

In this representation the X indicates the substituent; other bonds involve only hydrogens. This
formalism also applies to 1,1-disubstituted ethylenes in which the substituents are different. With
these symbols, the isotactic, syndiotactic, and atactic structures shown in Figure 1.3 are represented
by Structure (5.111) through Structure (5V), reSpectively:

X X X
l I (5.111)
1 l

X X
| | (5.1V)
I X |
X X

l I
i

l I (5V)
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The carbon atoms carrying the substituents are not truly asymmetric, since the two chain
sections—while generally of different length—are locally the same on either side of any carbon
atom, except near the ends of the chain. As usual, we ignore any uniqueness associated with
chain ends.

There are several topics pertaining to stereoregularity that we shall not cover to simplify the
presentation:

1. Stereoregular copolymers. We shall restrict our discussion to stereoregular homopolymers.
Complications arising from other types of isomerism. Positional and geometrical isomerism,
also described in Section 1.6, will be excluded for simplicity. In actual polymers these are not
always so easily ignored.

3. Polymerization of 1,2-disubstituted ethylenes. Since these introduce two different
“asymmetric” carbons into the polymer backbone (second substituent Y), they have the
potential to display ditacticity. Our attention to these is limited to the illustration of some
terminology, which is derived from carbohydrate nomenclature (Structure (5.VI) through
Structure (5.IX)).

Y X Y X Y X Y X
I | | I l l I | (5 v1I I I I | I l l ° )

Erythro-di-isotactic

Y X Y XI I I I I I I I
I | I I | | | | (5.VII)

Y X Y X
Erythro-di-syndiotactic

X X Xl I I I l I | I
| | I I I | I | (5.VIII)
Y Y Y Y

Threo-di-isotactic

Y X Y XJ I I I I | I 1xI I n I I I I 6- >
Th reo-di-syndiotactic

The successive repeat units in Structure (5.III) through Structure (5.V) are of two different
kinds. If they were labeled M1 and M2, we would find that, as far as microstructure is concerned,
isotactic polymers are formally the same as homopolymers, syndiotactic polymers are formally the
same as alternating copolymers, and atactic polymers are formally the same as random copoly-
mers. The analog of block copolymers, stereoblock polymers, also exist. Instead of using M1 and
M2 to differentiate between the two kinds of repeat units, we shall use the letters D and L as we did
in Chapter 1.

The statistical nature of polymers and polymerization reactions has been illustrated at many
points throughout this volume. It continues to be important in the discussion of stereoregularity.
Thus it is generally more accurate to describe a polymer as, say, predominantly isotactic rather
than perfectly isotactic. More quantitatively, we need to be able to describe a polymer in terms of
the percentage of isotactic, syndiotactic, and atactic sequences.

Certain bulk properties of polymers also reflect differences in stereoregularity. We will see in
Chapter 13 that crystallinity is virtually impossible unless a high degree of stereoregularity is
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present in a polymer. Since crystallinity plays such an important part in determining the mecha-
nical properties of polymers, Stereoregularity manifests itself in these other behaviors also. These
gross, bulk properties provide qualitative evidence for differences in stereoregularity, but, as with
copolymers, it is the microstructural detail that quantitatively characterizes the tacticity of a
polymer. We shall examine the statistics of this situation in the next section, and the application
of NMR in Section 5.9.

The analogy between stereoregular polymers and copolymers can be extended still further. We
can write chemical equations for propagation reactions leading to products that differ in config-
uration along with the associated rate laws. We do this without specifying anything—"at least for
now—about the mechanism. There are several things that need to be defined to do this:

1. These are addition polymerizations in which chain growth is propagated through an active
center. The latter could be a free radical or an ion; we shall see that a coordinated intermediate
is the more usual case.

2. The active—center chain end is open to front or rear attack in general; hence the configuration
of a repeat unit is not fixed until the next unit attaches to the growing chain.

3. The reactivity of a growing chain is, as usual, assumed to be independent of chain length. In
representing this schematically, as either DM* or LM*, the M* indicates the terminal active
center, and the D or L, the penultimate units of fixed configuration. From a kinetic point of
View, we ignore what lies further back along the chain.

4. As in Chapter 3 and Chapter 4, the monomer is represented by M.

With these definitions in mind, we can write

DDM* LLM*
——DM* + M/ or —LM* + M” (5.0)

DLM* \ LDMi"

What is significant about these reactions is that only two possibilities exist: addition with the
same configuration (D —> DD or L 6 LL) or addition with the opposite configuration (D ~e> DL or
L —> LD). We shall designate these isotactic (subscript i) or syndiotactic (subscript s) additions,
respectively, and shall define the rate constants for the two steps k, and k5. Therefore the rates of
isotactic and syndiotactic propagation become

Rai 2 k, [M*] [M] (5.7.1)

and

RP. = ks[M*l[Ml (5.7.2)
and, since the concentration dependences are identical, the relative rate of the two processes is
given by the ratio of the rate constants. This same ratio also gives the relative number of dyads
having the same or different configurations:

RN _ k, _ Number dyads with same configuration
(5 7 3)RP,S

_
kS

_
Number dyads with different configurations

' '

The Arrhenius equation enables us to expand on this still further:

ISO dyads a flewwf—Efl/RT (5.7.4)Syndio dyads
F

AS

The main conclusion we wish to draw from this line of development is that the difference between
Ei* and E3‘ could vary widely, depending on the nature of the active center. If the active center in a
polymerization is a free radical unencumbered by interaction with any surrounding species, we
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would expect Ef" — E;k to be small. Experiment confirms this expectation; for vinyl chloride it is on
the order of 1.3 kJ mol". Thus at the temperatures usually encountered in free-radical polymer-
izations (ca. 60°C), the exponential in Equation 5.7.4 is small and the proportions of isotactic
and syndiotactic dyads are roughly equal. This is the case for poly(vinyl chloride), for which
ki/k,s = 0.63 at 60°C. The preference for syndiotactic addition is greater than this (i.e., Ef‘ — E3 is
larger) in some systems, apparently because there is less repulsion between substituents when they
are staggered in the transition state. In all cases, whatever difference in activation energies exists
manifests itself in product composition to a greater extent at low temperatures. At high temper-
atures small differences in E* value are leveled out by the high average thermal energy available.

The foregoing remarks refer explicitly to free-radical polymerizations. If the active center is
some kind of associated species—an ion pair or a coordination complex—then predictions based
on unencumbered intermediates are irrelevant. It turns out that the Ziegler—Natta catalysts—which
won their discoverers the Nobel Prize—apparently operate in this way. The active center of the
chain coordinates with the catalyst in such a way as to block one mode of addition. High levels of
stereoregularity are achieved in this case. Although these substances also initiate the polymeriza-
tion, the term catalyst is especially appropriate in the present context, since the activation energy
for one mode of addition is dramatically altered relative to the other by these materials. We shall
discuss the chemical makeup of Ziegler—Natta catalysts and some ideas about how they work in
Section 5.10. For now it is sufficient to recognize that these catalysts introduce a real bias into
Equation 5.7.4 and thereby favor one pattern of addition.

In the next section we take up the statistical description of various possible sequences.

5.8 A Statistical Description of Stereoregularity
Since it is unlikely that a polymer will possess perfect stereoregularity, it is desirable to assess
this pr0perty quantitatively, both to describe the polymer and to evaluate the effectiveness of
various catalysts in this regard. In discussing tacticity in terms of microstructure, it has
become conventional to designate a dyad as meso if the repeat units have the same configuration,
and as racemic if the configuration is reversed. The terminology is derived from the stereochem—
istry of small molecules; its basis is seen by focusing attention on the methylene group in the
backbone of the vinyl polymer. This methylene lies in a plane of symmetry in the isotactic
molecule [5.X],

X III X

+9+
(5.X)

H

and thereby defines a meso (subscript m) structure as far as the dyad is concerned. Considering
only the dyad, we see that these two methylene protons are in different environments. Therefore
each will show a different chemical shift in an NMR spectrum. In addition, each proton splits the
resonance of the other into a doublet, so a quartet of peaks appears in the spectrum. Still
considering only the dyad, we see that the methylene in a syndiotactic grouping [5.XI] contains
two protons in identical environments:X i
+0~|~ (5.XI).L x

These protons show a single chemical shift in the NMR spectrum. This is called a racemic
(subscript r) structure, since it contains equal amounts of D and L character. In the next section
we shall discuss the NMR spectra of stereoregular polymers in more detail.
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If we define pm and pr as the probability of addition occurring in the meso and racemic
modes, respectively, then pm + pr : 1, since there are only two possibilities. The probability pm is
the analog of pi,- for copolyrners; hence, by analogy with Equation 5.5.1, this equals the fraction of
isotactic dyads among all dyads. In terms of the kinetic approach of the last section, pm is equal to
the rate of an iso addition divided by the combined rates of iso and syndio additions:

Pm I
ki +ks

(5.8.1)

This expression is the equivalent of Equation 5.5.2 for copolymers.
The system of notation we have defined can readily be extended to sequences of greater length.

Table 5.6 illustrates how either In or r dyads can be bracketed by two additional repeat units to
form a tetrad. Each of the outer units is either m or r with respect to the unit it is attached to, so the
meso dyad generates three tetrads. Note that the tetrads mmr and rmm are equivalent and are not
distinguished. A similar set of tetrads is generated from the r dyad.

The same system of notation can be extended further by focusing attention on the backbone
substituents rather than on the methylenes. Consider bracketing a center substituent with a pair of
monomers in which the substituents have either the same or opposite configurations as the central
substituent. Thus the probabilities of the resulting triads are obtained from the probabilities of the
respective m or r additions. The following possibilities exist:

Table 5.6 The Splitting of M680 and Racemic Dyads into Six Tetrads

3

I A
3..— 3——

X
XX

lrlmlrlX x
XX

r lililll
|m|r|m|

XX

X XX X

r lmlrlr'
X x

X X
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1. An isotactic triad (5.XII) is generated by two successive meso additions:

X
J

X
1

X

i l i | 1
(5.xn)

m m

The probability of the isotactic triad is

p, = p3,, (5.3.2)

2. A syndiotactic triad (5.XIII) is generated by two successive racemic additions:

X
I l | I I (5.x1n)

The probability of the syndiotactic triad is given by pf, which becomes

[’3 =(1_pm)2 (5.8.3)

3. A heterotactic triad (5.XIV) is generated by mr and rm sequences of additions:

(5 .XIV)

The probability of a heterotactic (subscript h) triad is

Ph = 2pm(1—pm) (5.8.4)

The factor 2 arises because this particular sequence can be generated in two different orders.

These triads can also be bracketed by two more units to generate 10 different pentads following
the pattem established in Table 5.6. It is left for the reader to verify this number by generating the
various structures.

The probabilities of the various dyad, triad, and other sequences that we have examined have all
been described by a single probability parameter pm. When we used the same kind of statistics for
copolymers, we called the situation one of terminal control. We are considering similar statistics
here, but the idea that the stereochemistry is controlled by the terminal unit is inappropriate. The
active center of the chain end governs the chemistry of the addition, but not the stereochemistry.
Equation 5.7.1 and Equation 5.7.2 merely state that an addition must be of one kind or another, but
that the rates are not necessarily identical.

A mechanism in which the stereochemistry of the growing chain does exert an influence on the
addition might exist, but at least two repeat units in the chain are required to define any such
stereochemistry. Therefore this possibility is equivalent to the penultimate mechanism in copoly-
mers. In this case the addition would be described in terms of conditional probabilities, just as
Equation 5.5.20 does for copolymers. Thus the probability of an isotactic triad controlled by the
stereochemistry of the growing chain would be represented by the reaction.

X X
XIXIXq_l_t.MH 'I'I' (5.1:)

m Imlml
and described by the probability

Pcontrol = Pu/m (So-85)
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where the conditional probability pm/m, is the probability of an m addition, given the fact of a prior
m addition. As with copolymers, triads must be considered in order to test whether the simple
statistics apply. Still longer sequences need to be examined to test whether stereochemical control
is exerted by the chain. Although such situations are known, we shall limit our discussion to the
simple case where the single probability pm is sufficient to describe the various additions. The
latter, incidentally, may be called zero-order Markov (or Bernoulli) statistics to avoid the vocabu-
lary of terminal control. The case where the addition is influenced by whether the last linkage in
the chain is m or r is said to follow a first-order Markov process.

The number of m or r linkages in an “rt-ad” is n—~l. Thus dyads are characterized by a single
linkage (either In or r), triads by two linkages (either mm, mr, or rr), and so forth. The m and r
notation thus reduces by l the order of the description from what is obtained when the repeat units
themselves are described. For this reason the terminal control mechanism for copolymers is a first-
order Markov process and the penultimate model is a second—order Markov process. Note that
the compound probabilities which describe the probability of an n-ad in terms of pm are also of
order n—l. In the following example we calculate the probability of various triads on the basis
of zero—order Markov statistics.

Example 5.6
Use zero-order Markov statistics to evaluate the probability of isotactic, syndiotactic, and
heterotactic triads for the series of pm values spaced at intervals of 0.1. Plot and comment on
the results.

Solution

Evaluate Equation 5.8.2 through Equation 5.8.4 for pm between zero and unity; these results are
plotted in Figure 5.7.

1 I I I I I I l I I I l I I I I I
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Figure 5.7 Fractions of iso, syndio, and hetero triads as a function of pm, calculated assuming zero—order
Markov statistics in Example 5.6.
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pm pi] “—m 2pm(1_pm)

0 0 0 0
0.1 0.01 0.81 0.18
0.2 0.04 0.64 0.32
0.3 0.09 0.49 0.42
0.4 0.16 0.36 0.48
0.5 0.25 0.25 0.50
0.6 0.36 0.16 0.48
0.7 0.49 0.09 0.42
0.8 0.64 0.04 0.32
0.9 0.81 0.01 0.18
1.0 1.0 0 0

The following observations can be made from these calculations:

1. The probabilities give the fractions of the three different types of triads in the polymer.
2. If the fractions of triads could be measured, they either would or would not lie on a single

vertical line in Figure 5.7. If they did occur at a single value ofpm, this would not only give the
value of pm (which could be obtained from the fraction of one kind of triad), but would also
prove the statistics assumed. If the fractions were not consistent with a single pm value, higher-
order Markov statistics are indicated.

3. The fraction of isotactic sequences increases as pm increases, as required by the definition of
these quantities.

4. The fraction of syndiotactic sequences increases as Pm -—> 0, which corresponds to pr -—> 1.
5. The fraction of heterotactic triads is a maximum at Pm = Pr = 0.5 and drops to zero at either

extreme.
6. For an atactic polymer the proportions of isotactic, syndiotactic, and heterotactic triads are

0.25 20.251050.

To investigate the triads by NMR, the resonances associated with the chain substituent are
examined, since Structure (5.XII) through Structure (5.XIV) show that it is these that experience
different environments in the various triads. If dyad information is sufficient, the resonances of the
methylenes in the chain backbone are measured. Structure (5X) and Structure (5.XI) show that
these serve as probes of the environment in dyads. In the next section we shall examine in more
detail how this type of NMR data is interpreted.

5.9 Assessing Stereoregularity by Nuclear Magnetic Resonance
It is not the purpose of this book to discuss in detail the contributions of NMR spectroscopy to
the determination of molecular structure. This is a specialized field in itself and a great deal
has been written on the subject. In this section we shall consider only the application of NMR
to the elucidation of stereoregularity in polymers. Numerous other applications of this powerful
technique have also been made in polymer chemistry, including the study of positional and
geometrical isomerism (Section 1.6) and copolymers (Section 5.7). We shall also make no
attempt to compare the NMR spectra of various different polymers; instead, we shall examine
primarily the NMR spectra of different poly(methyl methacrylate) preparations to illustrate the
capabilities of the method using the first system that was investigated by this technique as
the example.

Figure 5.8 shows the 60 MHz spectra of poly(methy1 methacrylate) prepared with different
catalysts so that predominantly isotactic, syndiotactic, and atactic products are formed. The three
spectra in Figure 5.8 are identified in terms of this predominant character. It is apparent that the
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Figure 5.8 Nuclear magnetic resonance spectra of three poly(methyl methacrylate) samples. Curves are
labeled according to the predominant tacticity of samples. (From McCall, D.W. and Slichter, W.P., in Newer
Methods of Polymer Characterization, Ke, B. (Ed), Interscience, New York, 1964. With permission.)

spectra are quite different, especially in the range of 5 values between 1 and 2 ppm. Since the
atactic polymer has the least regular structure, we concentrate on the other two to make the
assignment of the spectral features to the various protons.

Several observations from the last section provide the basis of interpreting these spectra:

1. Hydrogens of the methylene group in the backbone of the poly(methy1 methacrylate) produce
a single peak in a racemic dyad, as illustrated by Structure (5.XIII).

2. The same group of hydrogens in a meso dyad (5.X) produces a quartet of peaks: two different
chemical shifts, each split into two by the two hydrogens in the methylene.

3. The peaks centered at 5 = 1.84 ppm—a singlet in the syndiotactic and a quartet in the isotactic
polymers—are thus identified with these protons. This provides an unambiguous identification
of the predominant stereoregularity of these samples.

4. The features that occur near 5 = 1.0 ppm are associated with the protons of the (rt-methyl
group. The location of this peak depends on the configurations of the nearest neighbors.

5. Working from the methylene assignments, we see that the peak at 5 = 1.22 ppm in the isotactic
polymer arises from the methyl in the center of an isotactic triad, the peak at 5 = 0.87 ppm
from a syndiotactic triad, and the peak at 5 = 1.02 ppm from a homotactic triad.

6. The peak at 5 = 3.5 ppm is due to the methoxy group.

Once these assignments are made, the areas under the various peaks can be measured to
determine the various fractions:

1. The area under the methylene peaks is proportional to the dyad concentration: The singlet
gives the racemic dyads and the quartet gives the meso dyads.
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2. The area under one of the methyl peaks is proportional to the concentration of the correspond-
ing triad.

3. It is apparent that it is not particularly easy to determine the exact areas of these features when
the various contributions occur together to any significant extent. This is clear from the atactic
spectrum, in which slight shoulders on both the methylene and methyl peaks are the only
evidence of meso methylenes and iso methyls.

The spectra shown in Figure 5.8 were early attempts at this kind of experiment, and the
measurement of peak areas in this case was a rather subjective affair. We shall continue with an
analysis of these spectra, even though improved instrumentation has resulted in greatly enhanced
spectra. One development that has produced better resolution is the use of higher magnetic fields.
As the magnetic field increases, the chemical shifts for the various features are displaced propor-
tionately. The splitting caused by spin—spin coupling, on the other hand, is unaffected. This can
produce a considerable sharpening of the NMR spectrum. Other procedures such as spin decoup-
ling, isotopic substitution, computerized stripping of superimposed spectra, and 13C-NMR also
offer methods for identifying and quantifying NMR spectra.

Table 5.7 lists the estimated fractions of dyads of types m and r and the fractions of triads of
types i, s, and h from Figure 5.8. These fractions represent the area under a specific peak (or four
peaks in the case of the meso dyads) divided by the total area under all of the peaks in either the
dyad or triad category. As expected for the sample labeled isotactic, 89% of the triads are of type i
and 87% of the dyads are of type m. Likewise, in the sample labeled syndiotactic, 68% of the triads
are s and 83% of the dyads are r.

The sample labeled atactic in Figure 5.8 was prepared by a free—radical mechanism and is
expected to follow zero-order Markov statistics. As a test for this, we examine Figure 5.7 to see
whether the values of 19,, p3, and ph, which are given by the fractions in Table 5.7, agree with a
single set of Pm values. When this is done, it is apparent that these proportions are consistent with
this type of statistics within experimental error and that pm “=V 0.25 for poly(methyl methacrylate).
Under the conditions of this polymerization, the free-radical mechanism is biased in favor of
syndiotactic additions over isotactic additions by about 3:1, according to Equation 5.8.1. Presum-
ably this is due to steric effects involving the two substituents on the oc-carbon.

With this kind of information it is not difficult to evaluate the average lengths of isotactic
and syndiotactic sequences in a polymer. As a step toward this objective, we define the
following:

1. The number of isotactic sequences containing ni iso repeat units is Nni.
2. The number of syndiotactic sequences containing as syndio repeat units is films.
3. Since isotactic and syndiotactic sequences must alternate, it follows that:

EN!“ = :a (5.9.1)

Table 5.7 The Fractions of Meso and Racemic Dyads and Iso, Syndio, and Hetero Triads
for the Data in Figure 5.8

Dyads Triads

Sample Meso Racemic Iso Syndio Hetero

Atactic 0.22 0.78 0.07 0.55 0.38
Syndiotactic 0.17 0.83 0.04 0.68 0.28
Isotactic 0.87 0. 13 0.89 0.04 0.07

Source: Data from McCall, D.W. and Slichter, WP. in Newer Methods of Potymer Characterization, Ke, B. (Ed),
Interscience, New York, 1964.
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4, The number of iso triads in a sequence of n, iso repeat units is ni— l, and the number of syndio
triads in a sequence of ns syndio repeat units is rig—1. We can verify these relationships by
examining a specific chain segment:

—DDLDLDLDLD*DDDDDDDDL-

In this example both the iso and syndio sequences consist of eight repeat units, with seven
triads in each. The repeat unit marked * is counted as part of each type of triad, but is itself the
center of a hetero triad.

5. The number of racemic dyads in a sequence is the same as the number of syndiotactic units (is.
The number of meso dyads in a sequence is the same as the number of iso units In. These can
also be verified from structure above.

With these definitions in mind, we can immediately write expressions for the ratio of the
total number of iso triads, vi, to the total number of syndio triads, vs:

2 _ Emmi-1) * ZNM’“) ‘ :Nm (5 9 2)
Vs—Za(ns_1)mZN”5(nS)—ZNHS

. I

In this equation the summations are over all values of n of the specified type. Also remember
that the V’s and n’s in this discussion (with subscript i or s) are defined differently from the 12’s
and n’s defined earlier in the chapter for 00polymers. Using Equation 5.9.1 and remembering
the definition of an average provided by Equation 1.7.7, we see that Equation 5.9.2 becomes

5 = ”i ‘1 (5.9.3)
VS fisfll

where the overbar indicates the average length of the indicated sequence.

A similar result can be written for the ratio of the total number (12) of dyads of the two types
(m and I), using item (5) above:

pm 2mm # fir (5.9.4):7. — 22mm.)
“ (is

Equation 5.9.3 and Equation 5.9.4 can be solved simultaneously for E, and rig in terms of the
total number of dyads and triads:

_ _ 1 — Vi/Vs
Hi —

1—(Vi/Vs)(Vr/Vm)

(59.5)

and

a, = 1 _ Vi/VS (5.9.6)
(Vim/VI) _ (Vi/Vs)

Use of these relationships is illustrated in the following example.

Example 5.7
Use the dyad and triad fractions in Table 5.7 to calculate the average lengths of isotactic and
syndiotactic sequences for the polymers of Figure 5.8. Comment on the results.
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Solution
Since the total numbers of dyads and triads always occur as ratios in Equation 5.9.3 and Equation
5.9.4, both the numerators and denominators of these ratios can be divided by the total number of
dyads or triads to convert these total numbers into fractions, i.e.,

Vi/Vs = (Vi/Vtot)/(Vs/Vtot) = Pi/Ps

Thus the fractions in Table 5.7 can be substituted for the 12’s in Equation 5.9.3 and Equation 5.9.4.
The values of fii and fl, so calculated for the three polymers are:

”i ”s

Atactic 1 .59 5.64
Syndiotactic 1.32 6.45
Isotactic 9.14 1.37

This analysis adds nothing new to the picture already presented by the dyad and triad probabilities.
It is somewhat easier to visualize an average sequence, however, although it must be remembered
that the latter implies nothing about the distribution of sequence lengths.

We conclude this section via Figure 5.9, which introduces the use of l3C-NMR obtained at 100
MHz for the analysis of stereoregularity in polypropylene. This spectrum shows the carbons
on the pendant methyl groups for an atactic polymer. Individual peaks are resolved for all the
possible pentad sequences. Polypropylene also serves as an excellent starting point for the next
section, in which we examine some of the catalysts that are able to control stereoregularity in
such polymers.
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Figure 5.9 13C-NMR assignments for polypropylene. (From Bruce, MD. and Waymouth, R.M., Macro-
molecules, 31, 2707, 1998. With permission.)



Ziegler-Natta Catalysts 205

5.10 Ziegler—Natta Catalysts
In this discussion we consider Ziegler—Natta catalysts and their role in achieving stereoregularity.
This is a somewhat restrictive view of the situation, since there are other catalysts—such as phenyl
magnesium bromide, a Grignard reagent—which can produce stereoregularity; the Ziegler—Natta
catalysts are also used to produce polymers—unbranched polyethylene to name one—which lack
stereoregularity. However, Ziegler—Natta catalysts are historically the most widely used and best—
understood stereoregulating systems, so the loss of generality in this approach is not of great
consequence.

The fundamental Ziegler—Natta recipe consists of two components: a halide or other compound
of a transition metal from among the group IVB to VIIIB elements, and an organometallic
compound of a representative metal from groups IA to IIIA. Some of the transition metal
compounds studied include TiCl4, TiCl3, VC14, VC13, ZrCl4, Cl'Cl3, MoCls, and CuCl. Represen-
tative organometallics include (C2H5)3A1, (C2H5)2Mg, C4H9Li, and (C2H5)22n. These are only a
few of the possible compounds, so the number of combinations is very large.

The individual components of the Zieglerm-Natta system can separately account for the initiation
of some forms of polymerization reactions, but not for the fact of stereoregularity. For example,
butyl lithium can initiate anionic polymerization (see Section 4.3) and TiCl4 can initiate cationic
polymerization (see Section 4.5). In combination, still another mechanism for polymerization,
coordination polymerization, is indicated. When the two components of the Ziegler—Natta system
are present together, complicated exchange reactions are possible. Often the catalyst must “age” to
attain maximum effectiveness; presumably this allows these exchange reactions to occur. Some
possible exchange equilibria are

2A1<C2H5)3 e A12(C2H5>6 e [A1(C2H5>2]+[A1(C2H5>4]‘
TiCl4 + [A1(C2H5)2]+ 4:) C2H5TiC13 + [A1(C2H5)Cl]+ (5.Q)

The organotitanium halide can then be reduced to TiCl3:

C2H5TiC13 —> TiCl3 + Cs' (5.R)

Among other possibilities in these reactions, these free radicals can initiate ordinary free-radical
polymerization. The Ziegler—Natta systems are thus seen to encompass several mechanisms for the
initiation of polymerization. Neither ionic nor free-radical mechanisms account for stereoregular-
ity, however, so we must look further for the mechanism whereby the Ziegler—Natta systems
produce this interesting effect.

The stereoregulating capability of Ziegler—Natta catalysts is believed to depend on a coordin-
ation mechanism in which both the growing polymer chain and the monomer coordinate with the
catalyst. The addition then occurs by insertion of the monomer between the growing chain and the
catalysts by a concerted mechanism (5.XV):

H
H X_(:3_\/*‘/\<CH2 (5.XV)
X Cat

Since the coordination almost certainly involves the transition metal atom, there is a resemblance
here to anionic polymerization. The coordination is an important aspect of the present picture,
since it is this feature that allows the catalyst to serve as a template for stereoregulation.

The assortment of combinations of components is not the only variable to consider in describing
Ziegler—Natta catalysts. Some other variables include the following:
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1. Catalyst solubility. Polymerization systems may consist of one or two phases. Titanium-based
catalysts are the most common of the heterogeneous systems; vanadium-based catalysts are
the most common homogeneous systems. Since the catalyst functions as a template for the
formation of a stereoregular product, it follows that the more extreme orienting effect of
solid surface (i.e., heterogeneous catalysts) is required for those monomers that interact
only weakly with the catalyst. The latter are nonpolar monomers. Polar monomers interact
more strongly with catalysts, and dissolved catalysts are able to exert sufficient control for
Stereoregularity.

2. Crystal structure of solids. The a-crystal form of TiCl3 is an excellent catalyst and has been
investigated extensively. In this particular crystal form of TiCl3, the titanium ions are located
in an octahedral environment of chloride ions. It is believed that the stereoactive titanium ions
in this crystal are located at the edges of the crystal, where chloride ion vacancies in the
coordination sphere allow coordination with the monomer molecules.

3. Tacticity of products. Most solid catalysts produce isotactic products. This is probably because
of the highly orienting effect of the solid surface, as noted in item (1). The preferred isotactic
configuration produced at these surfaces is largely governed by steric and electrostatic
interactions between the monomer and the ligands of the transition metal. Syndiotacticity is
mostly produced by soluble catalysts. Syndiotactic polymerizations are carried out at low
temperatures, and even the catalyst must be prepared at low temperatures; otherwise specifi—
city is lost. With polar monomers syndiotacticity is also promoted by polar reaction media.
Apparently the polar solvent molecules compete with monomer for coordination sites, and
thus indicate more loosely coordinated reactive species.

4. Rate of polymerization. The rate of polymerization for homogeneous systems closely resem-
bles anionic polymerization. For heterogeneous systems the concentration of alkylated tran-
sition metal sites on the surface appears in the rate law. The latter depends on the particle size
of the solid catalyst and may be complicated by sites of various degrees of activity. There is
sometimes an inverse relationship between the degree of Stereoregularity produced by a
catalyst and the rate at which polymerization occurs.

The catalysts under consideration both initiate the polymerization and regulate the polymer
formed. There is general agreement that the mechanism by which these materials exert their
regulatory role involves coordination of monomer with the transition metal atom, but proposed
details beyond this are almost as numerous and specific as the catalysts themselves. We shall return
to a description of two specific mechanisms below. The general picture postulates an interaction
between monomer and catalyst such that a complex is formed between the qr electrons of the olefin
and the d orbitals of the transition metal. Figure 5.10 shows that the overlap between the filled
orbitals of the monomer can overlap with vacant dx2_y2 orbitals of the metal. Alternatively, hybrid
orbitals may be involved on the metal. There is a precedent for such bonding in simple model
compounds. It is known, for example, that Pt2+ complexes with ethylene by forming a dsp2
hybridnqr sigma bond and a dp hybrid~rr* pi bond. A crucial consideration in the coordination is
maximizing the overlap of the orbitals involved. Titanium(III) ions seem ideally suited for this
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Figure 5.10 Possible orbital overlaps between a transition metal and an olefin.
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Figure 5.11 Monometallic mechanism. The square indicates a vacant ligand site.

function; higher effective nuclear charge on the metal results in less spatial extension of d orbitals
and diminished overlap.

Many mechanisms have been proposed that elaborate on this picture. These are often so specific
that they cannot be generalized beyond the systems for which they are proposed. Two schemes that
do allow some generalization are presented here. Although they share certain common features,
these mechanisms are distinguished by the fact that one—the monometallic model—does not
include any participation by the representative metal in the mechanism. The second—the bimetallic
model—does assume the involvement of both metals in the mechanism.

The monometallic mechanism is illustrated by Figure 5.11. It involves the monomer coordin-
ating with an alkylated titanium atom. The insertion of the monomer into the titanium—carbon bond
propagates the chain. As shown in Figure 5.11 this shifts the vacancy—represented by the
square—in the coordination sphere of the titanium to a different site. Syndiotactic regulation
occurs if the next addition takes place via this newly created vacancy. In this case the monomer and
the growing chain occupy alternating coordination sites in successive steps. For the more common
isotactic growth the polymer chain must migrate back to its original position.

The bimetallic mechanism is illustrated in Figure 5.12; the bimetallic active center is the
distinguishing feature of this mechanism. The precise distribution of halides and alkyls is not
spelled out because of the exchanges described by Reaction (5Q). An alkyl bridge is assumed
based on observations of other organometallic compounds. The 11' coordination of the olefin with
the titanium is followed by insertion of the monomer into the bridge to propagate the reaction.

At present it is not possible to determine which of these mechanisms or their variations most
accurately represents the behavior of Ziegler—Natta catalysts. In view of the number of variables in
these catalyzed polymerizations, both mechanisms may be valid, each for different specific systems.
In the following example the termination step of coordination polymerizations is considered.

Example 5.8
Polypropylene polymerized with triethyl aluminum and titanium trichloride has been found to
contain various kinds of chain ends. Both terminal vinylidene unsaturation and aluminum-bound
chain ends have been identified. Propose two termination reactions to account for these observa-
tions. Do the termination reactions allow any discrimination between the monometallic and
bimetallic propagation mechanisms?

HTMe g H+ Me H Me
Mew/gI ’,.C"'2 3515+ H202 H2C/ EC" 9

/Ti:~ :‘AI/ ——1-» /Ti\ :Al/ i/ ———I-— \ ., x I“-
I ”“- ,’ \ I ‘ , ’ \ Tl“ ’Al /TI«. :AIR R /

“Fl’ \ TR”

Figure 5.12 The bimetallic mechanism.
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Solution
A reaction analogous to the alkylation step of Reaction (4.Q) can account for the association of an
aluminum species with chain ends:

HMe+
IVMe —:-- flAK/AIVMe + TiAMe

+

Ti/W‘J
+ MeVAIVMe ————)- Me\./

H Me :W
MeH

-->+ (5.8a)

The transfer of a tertiary hydrogen between the polymer chain and a monomer can account for the
vinylidene group in the polymer:

Me./\/Me (5.81»)
Me T' + ACHQ

These reactions appear equally feasible for titanium in either the monometallic or bimetallic
intermediate. Thus they account for the different types of end groups in the polymer, but do not
differentiate between propagation intermediates. In the commercial process for the production of
polypropylene by Ziegler—Natta catalysts, hydrogen is added to terminate the reaction, so neither
of these reactions is pertinent in this case.

5.11 Single-Site Catalysts
The discussion in the preceding section indicates that Ziegler—Natta catalysts represent a rather
complicated subject. This complexity is often reflected in the structure of the polymers produced.
For example, the different ways that the two metal centers may or may not interact during an
addition step suggest that there are, in fact, multiple catalytic sites active in a given polymerization.
This can lead to sites with greatly different propagation rates, different stereoselectivity, and
different propensities to incorporate any comonomers present. The net result is that polymer
materials produced by Ziegler—Natta catalysts, eSpecially under commercial conditions, tend to
be highly heterogeneous at the molecular level. A broad strategy to overcome this limitation is
based on the concept of a single-site catalyst, i.e., one that has a single, well-defined catalytic
geometry that can control the desired aspect of prOpagation. In this section, we briefly consider
some examples of such catalysts for stereochemical control in the polymerization of a-olefins. We
begin with a little more consideration of catalysis in general.

The majority of catalysts in commercial use are heterogeneous. In this usage, the term
heterogeneous means that the phase of the catalyst (e.g., solid) is distinct from that of the reagents
and products (usually gases and liquids). When the catalyst is a relatively small molecule, it is
retained in the solid phase by immobilization on some kind of inert, robust support. The reaction of
interest therefore takes place at the solid—liquid or solid—gas interface. The fact of immobilization
can itself contribute to the multiple site nature of heterogeneous catalysts, for example by exposing
different faces of the catalytically active metal center, by restricting accessibility of reagents to
catalyst particles deep within a porous support, and by presenting a distribution of different cluster
sizes of catalytic particles. Given these disadvantages, one might ask why heterogeneous catalysis
is the norm. The answer is simple: It is much easier to separate (and possibly regenerate)
heterogeneous catalysts from products and unreacted reagents. Note that if the activity of a catalyst
is sufficiently high (in terms of grams polymer produced per gram catalyst employed), then
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separation and recovery of the catalyst may not be necessary. In contrast, single-site polymeriza-
tion catalysts are usually homogeneous: they are molecularly dispersed within the reaction
medium. This situation leads to better defined products, and is much more amenable to detailed
studies of mechanism. Furthermore, strategies for immobilizing such catalysts are available,
making them also of potential commercial interest.

Most single-site catalysts have the general formula [LnMP], where L,., represents a set of
ligands, M is the active metal center, and P is the growing polymer. Furthermore, a common
motif is for two of the ligands to contain cyclopentadienyl (Cp) rings, which may themselves be
covalently linked or bridged. The example shown below (5.XVI) was one of the first such
metallocene systems and produces highly isotactic polypropylene.

(5.xv1)

However, this representation is not complete. Just as Ziegler—Natta catalysts always involve a
mixture of at least two active ingredients, single—site catalysts involve another component. The
most common is a partially hydrolyzed trimethyl aluminum species—methylaluminoxane (MAO).
The active center is more properly denoted [LnMP]+[X]_, where the metal site is cationic by virtue
of being coordinatively unsaturated, and the counterion contains MAO and a displaced ligand, such
as chloride.

The choice of metal, ligands, and design of the overall constraining geometry provide a rich
palette from which catalysts may be designed. In general, the stereoregulation of monomer
addition can be achieved through one of two modes. Under chain—end control, the addition of a
monomer is influenced mostly by the configuration of the previous repeat unit, which is reminis-
cent of the terminal model of copolymerization. To appreciate how this can happen, it is important
to realize that the growing polymer remains bound to the metal center during the addition step.
Alternatively, under Site control the ligand set may be chosen to provide a chiral confining
environment, which exerts a dominant influence on the stereochemistry of addition. The symmetry
of the catalyst is often strongly correlated with the mode and effect of stereocontrol. This is
summarized in Figure 5.13. Catalysts with a plane of symmetry, or CS, tend to produce syndiotactic
polymers under site control, but either iso— or syndiotactic polymers under chain-end control.
When the symmetry is C2, i.e., identical after rotation by 180D about a single axis, the addition is

Cp CD Cp Cp Cp Cp

C
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Figure 5.13 Role of catalyst symmetry in stereocontrol. The open square represents the unsaturated site for
monomer addition, and the Cp rings are represented by the pendant lines. A catalyst of type (a) is isospecific
and (b) is syndiospecific, when under site control; (c) and (d) can be either 130- or syndiospecific, under chain-
end control. (From Coates, G.W., Chem. Rev., 100, 1223, 2000.)
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Figure 5.14 Proposed mechanism of iSOSpecific polymerization of polypropylene. (From Coates, G.W.,
Chem. Rev, 100, 1223, 2000.)

iSOSpecific under site control. When a further mirror plane exists, in C2,, symmetry, chain-end
control leads to either iso- or syndiospecific addition.

We now illustrate these phenomena with two particular catalysts and a cartoon sketch of
the mechanism of monomer insertion. The monomer in question is polypropylene, the commer-
cially most important stereogenic polyolefin and the most studied model system. However, it
should be noted that the flexibility of design for single-site catalysts offers the possibility of
more tolerance toward monomer polarity or functionality than in the Ziegler—Natta analogs,
thereby enabling stereocontrol of many different monomers or comonomers. The catalyst
(5.XVI) has C2 symmetry and is isospecific under site control. The mechanism is illustrated in
Figure 5.14, where for simplicity the Cp-containing ligands are represented by horizontal lines.
The polymer chain is bound to the metal through the unsubstituted backbone carbon and the
orientation of the incoming monomer is influenced by the location of the Cp ligand. In the
transition state the unsubstituted carbon of the new monomer coordinates with the metal and will
become the new terminal carbon of the growing chain. A key role is thought to be played by a
so-called “a-agostic” interaction between the metal and the hydrogen on the terminal carbon of
the polymer chain, which stabilizes the particular geometry of the transition state. After the
incorporation of the monomer, the polymer chain (or a last few repeat units thereof) has
“flipped” to the other side of the metal center, in a process which is often compared to the
action of a windshield wiper.

In contrast, the following zirconocene (5.XVII) is syndiospecific, consistent with its C,
symmetry. The mechanism is analogous to that illustrated in Figure 5.14, except that the inversion
of the position of the bulky ligand inverts the preferred orientation of the incoming monomer.

(5.xvn)

The range of possibilities afforded by this class of catalysts is vast. As one last example,
consider the following zirconocene (5.XVIII), developed by Coates and Waymouth [2]:

m=6”ZrCI2 ZrCI2 (5.XVIII)

As indicated by the double arrows, the catalyst actually oscillates between two isomeric structures.
The structure on the left is chiral with C2 symmetry, and gives isotactic polypropylene (note that
the chloride ligands are not in the plane of the page). The structure on the right, however, is achiral,
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and actually leads to random stereochemistry, i.e., atactic polypropylene. Now, consider the
interesting situation where the rate of monomer insertion is more rapid than the rate of exchange
between the two structures, say by a factor of 20. In such a case the resulting polymer would be a
“stereoblock copolymer,” with alternating sequences of isotactic and atactic polypropylene, where
the average sequence length would be about 20. Such a polymer has some very appealing
properties. The isotactic blocks can crystallize, as will be discussed in detail in Chapter 13,
whereas the atactic blocks cannot. The result is that for temperatures above the glass transition
of the atactic block (about —10°C, see Chapter 12) but below the melting temperature of the
stereoregular block (about 140°C) the material acts as a crosslinked elastomer (see Chapter 10).
The crystallites tie the different molecules together, imparting mechanical strength, but the atactic
blocks can be stretched appreciably without breaking, like a rubbery material. The mechanical
response is sensitive to the relative lengths of the two blocks, which can be tuned through
monomer concentration and polymerization temperature. The result is an appealing situation in
which an inexpensive monomer can be used to produce a variety of different products by
straightforward modification to the reaction conditions.

5.12 Chapter Summary
This chapter has covered a broad range of issues relating to the structure of polymer chains at the
level of a few repeat units. The two main topics have been copolymerization and stereoregularity.
These topics share many features in common, including (i) the importance of the relative reactivity
of a growing chain end to addition of a particular monomer, or a monomer in a particular
configuration; (ii) the use of statistics in describing composition, average sequence lengths, and
sequence length distribution; (iii) the central role of spectroscopic methods, and especially NMR,
in characterizing structural details.

1. The key parameters in copolymerization are the reactivity ratios, which influence the relative
rates at which a given radical will add the same monomer versus a comonomer. Thus a given
reactivity ratio is specific to a particular pair of monomers, and copolymerization of two
monomer system requires specification of two reactivity ratios.

2. The copolymerization equation relates the mole fraction of monomers in polymer to the
composition of the feedstock via the reactivity ratios. Different classes of behavior may be
assigned based on the product of the reactivity ratios, including an “ideal” copolymerization
when the two reactivity ratios are reciprocals of one another.

3. The relative magnitudes of reactivity ratios can be understood, at least qualitatively, by
considering the contributions of resonance stabilization, polarity differences, and possible
steric effects.

4. Statistical considerations give predictions for the average sequence length and sequence length
distributions in a copolymer on the basis of reactivity ratios and feedstock composition.
However, the probability of adding a given monomer to a growing chain end may be determined
by the last, the last plus next-to-last, or even the last, next-to-last and second-to—last mono-
mers added. These mechanisms are referred to as terminal, penultimate, and antepenultimate
control, respectively.

5. Stereoregularity may be viewed as a subset of copolymerization, in which addition of a
monomer with an asymmetric center may follow the same stereochemistry as the previous
repeat unit, thereby forming a meso dyad, or by the opposite stereochemistry, forming a
racemic dyad. Isotactic, syndiotactic, and atactic polymers thus correspond to predominantly
meso dyads, predominantly racemic dyads, or random mixtures of the two, respectively.

6. Copolymer sequence lengths (dyads, triads, tetrads, etc.) can be determined by NMR methods.
These in turn may be used to discriminate among terminal, penultimate, and antepenultimate
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control mechanisms. Similarly NMR gives access to stereochemical information, being
sensitive to sequences of meso dyads, racemic dyads, and even longer sequences.

7. Stereoregularity is obtained by coordination polymerization in the presence of particular
catalysts. The most commonly used systems for the polymerization of a-olefins are referred
to as Ziegler—Natta catalysts, a class which actually spans a large variety of particular
compounds. The mechanisms of action of these catalysts are typically rather complicated.
More recently there have been rapid advances in the development of single—site catalysts,
which are usually based on metallocenes: a metal center coordinated to one or more
cyclopentadienyl ligands. The terminology refers to the presence of a well-defined catalytic
site throughout the polymerization medium, leading to more homogeneous products. These
systems are capable of being fine-tuned to regulate a variety of structural features, including
stereochemistry and comonomer addition.

Problems

1. Write structural formulas for maleic anhydride (M1) and stilbene (M2). Neither of these
monomers homopolymerize to any significant extent, presumably owing to steric effects.
These monomers form a copolymer, however, with r1=r2=0.03.Jf Criticize or defend the
following proposition: The strong tendency toward alternation in this copolymer suggests that
polarity effects offset the steric hindrance and permit copolymerization of these monomers.

2. Styrene and methyl methacrylate have been used as comonomers in many investigations of
copolymerization. Use the following list of n values for each of these copolymerizing with the
monomers listed below to rank the latter with respect to reactivity. To the extent that the data
allow, suggest where these substituents might be positioned in Table 5.3.

M2 Styrene as M1 Methyl methacrylate as M1

Acrylonitrile 0.41 1.35
Ally] acetate 90 23
1 ,2-Dichloropropene-2 5 5.5
Methacrylonitrile 0.30 0.67
Vinyl chloride 17 12.5
Vinylidene chloride 1.85 2.53
2-Vinyl pyridine 0.55 0.395

3. As part of the research described in Figure 5.5, Winston and Wichacheewa measured
the weight percentages of carbon and chlorine in copolymers of styrene (molecule 1) and
1-chloro-1,3-butadiene (molecule 2) prepared from various feedstocks. A portion of their data
is given below. Use these data to calculate F 1 , the mole fraction of styrene in these copolymers.

f1 Percent C Percent Cl

0.892 81.80 10.88
0.649 71.34 20.14
0.324 64.95 27.92
0.153 58.69 34.79

4. Additional data from the research of the last problem yield the following pairs off], F 1 values
(remember that styrene is component 1 in the styrene—1-chloro—1,3-butadiene system). Use the

TRM. Lewis and ER. Mayo, J. Am. Chem. 506., 70, 1533 (1943).
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form suggested by Equation 5.6.1 to prepare a graph based on these data and evaluate r1
and r2.

f1 F1 f1 F1
0.947 0.829 0.448 0.362
0.861 0.688 0.247 0.207
0.698 0.515 0.221 0.200
0.602 0.452

5. The reactivity ratios for the styrene (M1)—1-chloro—1,3-butadiene (M2) system were found to
be r, = 0.26 and r2 : 1.02 by the authors of the research described in the last two problems,
using the results of all their measurements. Use these r values and the feed compositions listed
below to calculate the fraction expected in the copolymer of 1-chlorobutadiene sequences of
lengths v: 2, 3, or 4. From these calculated results, evaluate the ratios Nag/N22 and N2222/
N222. Copolymers prepared from these feedstocks were dehydrohalogenated to yield the
polyenes like that whose spectrum is shown in Figure 5.5. The absorbance at the indicated
wavelengths was measured for 1% solutions of the products after HCl elimination.

Absorbance

f1 A=312nm A2367 nm A=412nm

0.829 74 13 —
0.734 71 19 —
0.551 154 77 20
0.490 151 78 42

As noted in Section 5.6, these different wavelengths correspond to absorbance by sequences of
different lengths. Compare the appropriate absorbance ratios with the theoretical sequence
length ratios calculated above and comment briefly on the results.

6. Use the values determined in Example 5.5 for the vinylidene chloride (M1)—isobutylene (M2)
system to calculate F 1, for various values off1, according to the terminal mechanism. Prepare a
plot of the results. On the same graph, plot the following experimentally measured values off1
and F1. Comment on the quality of the fit.

f1 F1 f1 F1

0.548 0.83 0.225 0.66
0.471 0.79 0.206 0.64
0.391 0.74 0.159 0.61
0.318 0.71 0.126 0.58
0.288 0.70 0.083 0.52

7. Some additional dyad fractions from the research cited in the last problem are reported at
intermediate feedstock concentrations (M1 :vinylidene chloride; Mzzisobutylenefr Still
assuming terminal control, evaluate r, and r2 from these data. Criticize or defend the following
proposition: The copolymer composition equation does not provide a very sensitive test for

TJ.B. Kinsinger, T. Fischer, and CW. Wilson, Polym. Left, 5, 285 (1967).
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the terminal control mechanism. Dyad fractions are more sensitive, but must be examined
over a wide range of compositions to provide a valid test.

Mole fraction of dyads

f, 11 12 22
0.418 0.55 0.43 0.03
0.353 0.48 0.49 0.04
0.317 0.44 0.52 0.04
0.247 0.38 0.58 0.04
0.213 0.34 0.62 0.04
0. 198 0.32 0.64 0.05

8. Fox and Schnecko carried out the free-radical polymerization of methyl methacrylate
between —40°C and 250°C. By analysis of the a—methyl peaks in the NMR spectra of the
products, they determined the following values of B, the probability of an isotactic placement
in the products prepared at different temperatures.

T (°C) 250 150 100 95 60 30 0 —20 —40
B 0.36 0.33 0.27 0.27 0.24 0.22 0.20 0.18 0.14

Evaluate Ei“ -— 15;" by means of an Arrhenius plot of these data using B/(l — B) as a measure of
ki/ks. Briefly justify this last relationship.

9. A hetero triad occurs at each interface between iso and syndio triads. The total number of
hetero triads, therefore, equals the total number of sequences of all other types:

1"h = :Nni ‘1':a

Use this relationship and Equation 5.9.1 to derive the expression

_
Ill-1

_ 2

p“ vh+vi+vffzi+fis
Criticize or defend the following proposition: The sequence DL— is already two thirds of the
way to becoming a hetero triad, whereas the sequence DD— is two thirds of the way toward an
iso triad. This means that the fraction of heterotactic triads is larger when the average length
of syndio sequences is greater than the average length of iso sequences.

10. Randall,r used 13C-NMR to study the methylene spectrum of polystyrene. In 1,2,4-trichlor-
obenzene at 120°C, nine resonances were observed. These were assumed to arise from a
combination of tetrads and hexads. Using m and r notation, extend Table 5.6 to include all 20
possible hexads. Criticize or defend the following proposition: Assuming that none of the
resonances are obscured by overlap, there is only one way that nine methylene resonances
can be produced, namely, by one of the tetrads being split into hexads whereas the remaining
tetrads remain unsplit.

11. In the research described in the preceding problem, Randall was able to assign the five peaks
associated with tetrads in the 13C—NMR spectrum on the basis of their relative intensities,
assuming zero-order Markov statistics with pm 2: 0.575. The five tetrad intensities and their
chemical shifts from TMS are as follows:

1‘J.C. Randall, J. Polym. Sci, Polym. Phys. Ed, 13, 889 (1975).
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l3C STMS (ppm) Relative area under peak

45.38 0.10
44.94 0.28
44.25 0.13
43.77 0.19
42.84 0.09

The remaining 21% of the peak area is distributed among the remaining hexad features. Use
the value of Pm given to calculate the probabilities of the unSplit tetrads (see Problem 10) and
on this basis assign the features listed above to the appropriate tetrads. Which of the tetrads
appears to be split into hexads?

12. The fraction of sequences of the length indicated below have been measured for a copolymer
system at different feed ratios.)r From appropriate ratios of these sequence lengths, what
conclusions can be drawn concerning terminal versus penultimate control of addition?

[Mll/[l P(M1) P(M1M1) P(M1M1M1)

3 0.168 0.0643 0.0149
4 0.189 0.0563 0.0161
9 0.388 0.225 0.107

19 0.592 0.425 0.278

13. The following are experimental tacticity fractions of polymers prepared from different
monomers and with various catalysts. On the basis of Figure 5.7, decide whether these
preparations are adequately described by a single parameter pm or whether some other type
of statistical description is required (remember to make some allowance for experimental
error). On the basis of these observations, criticize or defend the following proposition:
Regardless of the monomer used, zero-order Markov statistics apply to all free-radical,
anionic, and cationic polymerizations, but not to Ziegler—Natta catalyzed systems.

Fraction of polymer

Catalyst Solvent T (°C) 130 Hetero Syndio

Methyl methacrylatea
Thermal Toluene 60 8 33 59
n-Butyl lithium Toluene ——78 78 16 6
n-Butyl lithium Methyl isobutyrate —78 21 31 48
(Jr-Methyl styreneb
TiCl4 Toluene —78 — 19 8 1
Et3Al/TiCl4 Benzene 25 3 35 62
n—Butyl lithium Cyclohexane 4 —— 31 69

aMethyl methacrylate data from K. Hatada, K. Ota, and H. Yuki, Polym. Left, 5, 225 (1967).
l’ut-Methyl styrene data from S. Brownstein, S. Bywater, and OJ. Worsfold, Makromol. Chem,
48, 127 (1961).

14. Replacing one of the alkyl groups in R3Al with a halogen increases the stereospecificity of the
Ziegler—Natta catalyst in the order I > Br > C1 > R. Replacement of a second alkyl by halogen
decreases specificity. Criticize or defend the following pr0position on the basis of these
observations: The observed result of halogen substitution is consistent with the effect on the

1K. Ito and Y. Yamashita, J. Polym. sci. 3A, 2165 (1965).
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ease of alkylation produced by substituents of different electronegativity. This evidence thus
adds credence to the monometallic mechanism, even though the observation involves the
organometallic.

The weight percent propylene in ethylene—propylene copolymers for different Ziegler—Natta
catalysts was measured for the initial polymer produced from identical feedstocksfr The
following results were obtained. Interpret these results in terms of the relative influence of the
two components of the catalyst on the product found.

Catalyst Weight percent Catalyst Weight percent
components propylene components propylene

VCl4, plus Al(i-Bu)3, plus
Al(i-Bu)3 4.5 HfCl4 0.7
CH3TiCl3 4.5 ZrCl4 0.8
21](Cs)2 4.5 VOC13 2.4

Zn(n-Bu)2 4.5

Imagine a given single-site catalyst for polypropylene introduced a stereodefect on average
once every 10 monomer additions. Furthermore, assume the catalyst was supposed to be
highly isospecific. Explain how measurements of triad populations (e.g., mmm, mmr, etc.)
could be used to distinguish between chain-end control and site control. (Hint: consider the
sequences of D and L in the two cases.)
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6
Polymer Conformations

6.1 Conformations, Bond Rotation, and Polymer Size
The remarkable properties of polymers derive from their size. As pointed out in Chapter 1, it is not
the high molecular weight per se that gives polymers mechanical strength, flexibility, elasticity,
etc., but rather their large spatial extent. In this chapter, we will learn how to describe the three-
dimensional shape of polymers in an average sense, and how the average size of the object in space
will depend on molecular weight. We will also explore the equilibrium distribution of sizes.

To gain an appreciation of the possibilities, consider a polyethylene molecule with M = 280,000
g/mol (this is a reasonable value for a randomly selected molecule in some commercial grades of
polyethylene). As the monomer (—CHz—CH2—) molecular weight is 28 g/mol, the degree
of polymerization, N, is 10,000, and there are 20,000 C—C backbone bonds. Assuming a perfectly
linear structure (actually not likely for a commercial polyethylene), the contour length L of this
molecule would be roughly 20,000 X 1.5 A = 30,000 A or about 3 pm, because 1.5 A is approximately
the average length of a C—C bond. This is simply huge. If stretched out to its full extent, L would be
half the size of a red blood cell, and possibly visible under a high-power optical microscope. Some
commercial polymers are 10 times bigger than this one, and some DNA molecules have molecular
weights in excess of 109 g/mol. However, as we will see, it is very rare indeed for a chain to be so
extended, and the contour length is not usually the most useful measure of size. Now consider the
opposite extreme, where the same polyethylene molecule collapses into a dense ball or glabule. The
density of bulk polyethylene is about 0.9 g/mL. The volume occupied by this 280,000 g/mol molecule
would be (280,000/0.9)/(6 x 1023) mL = 520,000 A3, and if we assume it is a sphere, the radius would
be ((3/411)volume)1/3 as 50 A. The range from 50 A at the smallest to 3 pm at the largest covers three
orders of magnitude; it is a remarkable fact that such a mundane molecule could adopt conformations
with sizes varying over that range. If the dense sphere were a tennis ball, the chain contour would be the
length of a football field.

Polyethylene, and most carbon chain polymers, is not likely to adopt either of these extreme
conformations. The reason is easy to see. Select a C—C bond anywhere along the chain; we can
represent the structure as R’CHr—CHZR”. There is rotation about this bond, with three energet-
ically preferred relative orientations of R’ and R” called trans (t), gauche plus (g+), and gauche
minus (g') (see Figure 6.1a). For the chain of 20,000 bonds, there are three possible conformations
for each bond, and therefore 320’000 m 1010’000 possible conformations. This number is effectively
infinite. If our molecule were in a high temperature liquid state, and if we assume it takes 1 ps to
change one bond conformation, then the molecule would not even approach sampling all possible
conformations over the history of the universe. Similarly, it would be highly improbable for it to
even visit any given conformation twice. We can now see why the chance of being fully extended,
in the all—trans state, is unlikely to say the least; the probability is about 1 in 1010’000. The dense
sphere state might be marginally more probable, as there are many sequences of t, g+, and g‘ that
might produce something close to that, but it is still essentially impossible without the action of
some external force. What the polymer does instead is form what is called a random coil (Figure
6.2). The different sequences of t, g+, and g‘ cause the chain to wander about haphazardly in
space, with a typical size intermediate between the dense sphere and the extended chain. With so
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Figure 6.1 Backbone bond conformations for polyethylene. (a) Illustration of trans and gauche arrange-
ments of the backbone bonds. (b) Schematic plot of the potential energy as a function of rotation angle about a
single backbone bond.

Figure 6.2 Illustration of a random walk in three dimensions. The walk has 4000 steps, and the walk
touches each face of the box. (From Lodge, A.S., An Introduction to Elastomer Molecular Network Theory,
Bannatek Press, Madison, 1999. With permission.)
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many possibilities, we obviously cannot predict any instantaneous conformation or size, but we
will be able to say a great deal about the average size.

The preceding argument, although fundamentally sound, neglects a very important aspect of
chain conformations. The energies of the t, g+, and g” states are not equal; for polyethylene t is
energetically favorable relative to g+ or g‘ by about AB = 3 kJ/mol (or 0.7 kcal/mol). Therefore, at
equilibrium, the p0pulation of t states will exceed that of g+ or g‘ by the appropriate Boltzmann
factor, exp(—AE/RT), which in this case is about 2 at T: 500 K (RT x42 kJ/mol or 1 kcal/mol).
(We have injected some statistical mechanics here. For a large collection or ensemble of molecules at
equilibrium, the relative pOpulations of any two possible states are given by this Boltzmann factor.)
This bias is still not enough to put much of a dent into the vast number of possible conformations, but
it does matter when computing the detailed conformational statistics for a given polymer chain.
There is a further issue of importance, namely, how high are the energy barriers among the t, g+,
and g" states? If these are too high, conformational rearrangements will not occur rapidly. Figure
6.1b shows a schematic plot of the potential energy as a function of rotation about the C—C bond in
polyethylene. The barrier heights are on the order of 10 kJ/mol (2.5 kcal/mol), which corresponds to
about 2.5 times RT, the available thermal energy per mole at 500 K. Thus rotation should be
relatively facile for polyethylene. (To put this energy barrier on a Chemist’s scale, it is compar-
able to the energy of a weak hydrogen bond.) However, for polymers with larger side-groups or
with more complicated backbone structures, these barriers can become substantial. For example,
in poly(n-hexyl isocyanate) (—N(C6H13)—C(O)—) the n-hexyl side chain forces the backbone to
favor a helical conformation, and the molecule becomes relatively extended.

At this point it might look like a very daunting task to calculate the probable conformation of a
given polymer, and it will require some detailed information about bond rotational potentials, etc.,
for each structure. However, it turns out that we can go a long way without any such knowledge.
What we will calculate first is the average distance between the ends of a chain, as a function of
the number of steps in a chain. We will show that this is given by a simple formula, and that all the
details about chemical structures, bond potentials, etc., can be grouped into a single parameter.
We will also consider the distribution of possible values of this end—to-end distance. The average
could, in principle, be taken in two different ways. One would be to follow a single chain as it
samples many different conformations—a time average. Another would be to look at a large
collection of structurally identical chains at a given instant in time—an ensemble average. In this
example, these two averages should be the same; when this occurs, we say the system is ergodic. In
a real polymer sample, a measurement will also average over a distlibution of chain lengths or
molecular weights; that is a different average, which we will have to reckon with when we consider
particular experimental techniques.

6.2 Average End—to-End Distance for Model Chains
In this section, we calculate the root-mean-square (n'ns) end-to-end distance 022)“2 for an
imaginary chain, made up of n rigid links, each with length 6'. The model is sketched in
Figure 6.3. At this stage there is no need to worry about whether the link is meant to represent a
real C—C bond or not; we will make the correspondence to real polymers later. If we arbitrarily
select one end as the starting point, each link can be represented by a vector, 13,-, with
i = 1,2,3, . . . n. The instantaneous end—to—end vector, 5, is simply the sum of the link vectors:

”2 :15} (6.2.1)
i=1

If we have a chain that wiggles around over time, or if we look at an ensemble of similar chains,
there13 no reason for h to point in any one direction more than any other, and the average ()1): 0;
we say the sample18 isotropic. What we really care about13 the average end-to—end distance, which
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Figure 6.3 Model chain consisting of .12 links of length 6. Each link is represented by a vector, E, and the
end-to—end vector it extends from the start of the first link to the end of the last one.

we can calculate remembering that the length of a vector is obtained by taking the dot product of
the vector with itself:

1/2
(112)1/2: (h- I?)”2—_<:6o :E> (6.2.2)

The double sum can be broken into two parts, remembering also that the summations can be taken
outside the average as follows:

h2>=<2eza>=22<M>I: j: r: j=

=2??? E>+ZZ<€W>i=1j9é1

: M + Z 2 <5- - (5) (6.2.3)
i=1 #i

where the first term, 1262, accounts for the “self-terms,” i.e., each of the n link vectors dotted into
itself, and the second term accounts for the “cross terms,” i.e., each link vector dotted into the n——1
other link vectors.

We now develop explicit results for (I22) 1’2 ,with three different rules for how the orientation of
a given link, 19,-,IS constrained by the orientation of its predecessor, €,_ 1.

Case 6.2.1 The Freely Jointed Chain

In this simplest possible case, the orientation of link 1' is unaffected by link i—l, and is equally
likely to point in any direction. It can even lie on top of link i—l by pointing in the opposite
direction. (Remember we are dealing with imaginary links, not real chemical bonds, so this is
permissible.) Mathematically we represent this approximation using the relation

6", - 2;, z :22 cos 6 (6.2.4)
where 6 is the angle between E; and £311. For the freely jointed chain, 6 ranges freely from 0° to
180°. Thus on average

<12} - EH) 2 62(6639) = 0 (6.2.5)
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When the orientations of two links are uncorrelated, then (cos 6) = 0, because cos 6 ranges from
—1 to +1, with + or — values equally probable. If we consider the relative orientations of any two
different links along the freely jointed chain, they must all be uncorrelated, so that

<17; . 17,-) = 0 (6.2.6)
whenever 1' ;£ j. In other words if the orientation of a given link is unaffected by its nearest
neighbor, it must also be unaffected by more distant neighbors. From Equation 6.2.3 we now
obtain the simple but tremendously important result

(16:11:32 or (av/am (6.2.7)
because all the cross terms vanish. This is the classic result for the so-called random walk (or
randomflight): the root-mean—square excursion is given by the step length times the square root of
the number of steps. We will invoke this result repeatedly in subsequent chapters.

At this point you may be thinking “Fine, but even if the link is not a C———C bond, a real polymer
chain cannot reverse its direction 180° at a joint, so how can this result be relevant?” Good
question. Be patient for a bit.

Case 6.2.2 The Freely Rotating Chain

Now we make the model a bit more realistic. We will constrain the angle between adjacent links to
be a fixed value, 6, but still allow free rotation of the link around the cone defined by 6 (see Figure
6.4). What happens? Now, 6,0 61-1 — 62cos6 does not average to zero because 6 is fixed. For
simplicity, we will define 01—— cos 6 just to avoid writing cos 6 over and over. Returning to Equation
62. 3, what we need to calculateIS the double sum over all possible (6,- 6),i.e., the cross

terrnzs
as

well as the self-terms. We now know (6, 6-)—- 6201 when |1'—1|— 1, but what about |1' —1|
etc.? This1s a little sneaky: 6,- has a component parallel to 6,-_1, with length 601, but it also hzas3a
component perpendicular to 62-1 (with length 6 sin 6). However, because of the free rotation, over
time the perpendicular part will average to zero (see Figure 6.4). So from the point of view of bond
6,-2, 011 average 6, looks just like a bond of length 601 pointing in the same direction as 6,-_1, and thus
(6,-2 6-,-—)_ 62012. The same argument can be extended to any pair of bonds 1', j:

<6,- . 6,) = tzali—fl (6.2.8)

Now we define a new summation index k = li—j] and write

i i <1- - 1-) 2 2": DWi=1 #1 i=1 #1
11-1 11—1 11—1

2 Z tzatm _ k) = 21112 Z a" — 2112 Z ka"

C

/

60036

\9

(6.2.9)

Figure 6.4 Definition of the angles 6 and (15 for the freely rotating and hindered rotation chains; the
correspondence to a polyethylene molecule is suggested by the locations of the carbons.
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The factor of 2 comes about because there are two ways to get each value of k (one with i > j and
one with i < j). The term (n — k) arises because there are n — 1 nearest neighbors (I: = 1), n — 2 next
nearest neighbors (k = 2), etc. Note also that careful attention has to be paid to the limits
of the sums.

The relevant summations have algebraic answers that are derived in the Appendix, namely:

"—1
k 1 — Gin—I a

a = a % (6.2.10a)
k=l 1—0: 1—0:

forn —> oo, assuming |a| < 1 (i.e., 6 79 90°), and

Zkak
: a

1— (In
N

C!

= (1 — a)2 (1 — a)2 (6.2.10b)
where again we let n—> 00 to reach the last expression. Now we insert Equation 6.2.10a and
Equation 6.2.10b into Equation 6.2.9, and we recall Equation 6.2.3 to obtain

2 _ 2 2 a _ 2 0f(h)——n€ +2121? (1_) 26(1_a)2
“,2 m3; W92 Li“.

1—0: It (1—092 1—0:
l+cos6__ 2_ ”E {1—0036} (6.2.11)

where again we assume n is large in the penultimate step. (We also reinserted cos 6 for a.) We can
learn three important things from this result.

1. (112) is larger than the freely jointed chain result if 6 < 90° (cos 6 > 0). This is very reasonable;
if each link has some preference for heading in the same direction as the previous link, the
chain will double back on itself less often. As an example, for C—C single bonds, 6 is close to
705° (the complement to the tetrahedral angle) and for this value (112) x 21262.

2. (/22) is still proportional to n62; the proportionality factor is just a number that depends on the
details of the local constraints placed on link orientation. In particular, therefore, (122) 1/2 is still
proportional to (/13.

3. The previous statement applies strictly only in the large n limit, i.e., when the term propor-
tional to 1/11 in Equation 6.2.11 is negligible and when of” vanishes. This is a commonly
encountered caveat in polymer science: we can derive relatively simple expressions, but they
will often be valid only in the large n limit. The answer to “How large is large enough?” will
depend on the particular property, but when the correction is proportional to 1/12, as it is in
Equation 6.2.11, it will drop to the order of 1% when n m 100, which is not a particularly large
number of backbone bonds.

Case 6.2.3 Hindered Rotation Chain

In a real polyethylene chain, the rotation about the cone is not free; there are three preferred
conformations (t, g+, g‘) as discussed in Section 6.1. Furthermore, all values of the rotation angle
4!) are possible to some extent (see Figure 6.1b). The derivation of (122) is more complicated for this
case, as you might expect, but it is similar in spirit to that for the freely rotating chain; it may be
found in Flory’s second book [1]. The large :1 result is

2 _ 2 l+cos6 1+(cosqb)
(h) —n€{1—cos6}{l—(cosqb)} (6.2.12)
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where (cos (I5) is the average of cos (:5 over the appropriate potential energy curve (Figure 6.1b).
However, the important message is that (hz) is still proportional to n32; all that has changed is a
numerical prefactor that depends on specific local constraints. This point, in fact, can be stated as
a theorem:

If we take the limit n~>oo, and if we consider “phantom” chains that can double back on
themselves, then (hz) : C1162, where C is a numerical constant that depends only on local
constraints and not on n.

The physical content of this theorem can be summarized as follows. If we have a chain of links
with any degree of conformational freedom, no matter how limited that freedom may be, and if we
track the conformation over enough links, the orientation of the last link will have lost all memory
of the orientation of the first. At this point we could replace that entire subset of links with one new
link, and it would be freely jointed with respect to the next set and the previous set. In other words,
for any chain of n links whose relative orientations are constrained, we can always generate an
equivalent chain with a new (bigger) link that is freely jointed, so that the original chain and the
new chain have the same (h2). We will illustrate this concept in the next section.

The issue of how large it needs to be for this theorem to be useful was mentioned before; it of a
hundred or so is usually more than adequate. The fact that real polymers occupy real volume means
that polymer chains cannot double back on themselves, or have two or more links at the same point
in space. This so-called “excluded volume” problem is actually very serious, and makes an exact
solution for (hz) of a real polymer much more complicated. However, it turns out that there are two
practical situations in which we can make this problem essentially go away; one is in a molten
polymer, and the other is in a particular kind of solvent, called a theta solvent. Under these
circumstances, a polymer is said to exhibit “unperturbed” dimensions. Thus this theorem is of
tremendous practical importance. Further discussion of the excluded volume effect will be deferred
to Section 6.8, and then it will be revisited in more detail in Chapter 7.7.

6.3 Characteristic Ratio and Statistical Segment Length
We can define a quantity Cn, called the characteristic ratio, which for any polymer structure
describes the effect of local constraints on the chain dimensions:

(hzloCn r1132
(6.3.1)

In this equation, (h2)0 is the actual mean-square end-to-end distance of the polymer chain,
and the subscript O reminds us that we are referring to unperturbed dimensions. In Equation
6.3.1, n denotes the number of chemical bonds along the polymer backbone, and l? is the actual
length of a backbone bond, e.g., 1.5 A for C—C. (For polymers containing different kinds
of backbone bonds, such as polyisoprene or poly(ethylene oxide), it is appropriate simply to
add n16? + ngl’g —l— « - 4 where n,- and E, are the number and length of bonds of type i, respectively.)
C,, is a measure of chain flexibility: the larger the value of C,,, the more the local constraints have
caused the chain to extend in one direction. As defined in Equation 6.3.1, C” depends on n, but
it approaches a constant value at large n; this is often denoted C00. For the freely rotating chain, C00 is
(1 + cos 6)/(1 — cos 6) from Equation 6.2.11. The dependence of C,, on n is shown in Figure 6.5 for
several theoretical chains. The values of C00 for several common polymers are listed in Table 6.1.
For polymers that have primarily C—C or C—O single bonds along the backbone, C00 ranges from
about 4 to about 12. Using these values, or those provided in reference books, it is straightforward to
estimate (h2)0 for any polymer of known structure and molecular weight.

Although calculating (h2)0 for a given polymer is thus a solved problem, this approach using C00
is not always the most convenient. For example, it requires remembering particular bond lengths
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Figure 6.5 Characteristic ratio as a function of the number of bonds for three model chains. The dotted
curve represents the freely rotating chain with 6:68°. The long dashed curve corresponds to a parti-
cular hindered rotation chain with the preferred values of (b 120° apart, but in which values of qb for
neighboring bonds are independent. The smooth curve applies to an interdependence among values
of (b on neighboring bonds. (Reproduced from Flory, P.J., Statistical Mechanics of Chain Molecules,
Wiley-Interscience, New York, 1969. With permission.)

and the number of bonds per repeat unit. A more popular approach was suggested in the previous
section. We could rewrite Equation 6.3.1 in the following way:

(11% = Cam/32 = 2262.. = s (6.3.2)
where Eeff = fix/E is a new effective bond length with the following meaning: the real chain with
local constraints has an end—to—end distance, which is the same as that of a freely jointed chain with
the same number of links rt, but with a different (larger) step length Eeff. Continuing in this vein, we
can replace the number of bonds, n, with the number of monomers or repeat units, N, and subsume
the proportionality factor between rt and N into a new effective step length, b. The quantity b,
defined by Equation 6.3.2, is called the statistical segment length. The calculation of (h2)0 through

Table 6.1 Representative Values of the Characteristic Ratio, Statistical Segment Length, and Persistence
Length for Various Flexible Polymers, Calculated from the Experimental Quantities, (h2)0/M (A2 mol/g),
via Equation 6.3.2 and Equation 6.4.5b

Polymer Co, b (ti) 3,, (ti) (h2)0/M (.38 mol/g) T (°C)
Poly(ethylene oxide) 5.6 6.0 4.1 0.805 140
1,4-Polybutadiene 5 .3 6.9 4.0 0.876 140
1,4—Polyisoprene 4.8 6.5 3.5 0.625 140
Poly(dimethylsiloxane) 6.6 5.8 5.3 0.457 140
Polyethylene 7.4 5.9 5.7 1.25 140
PolyprOpylene 5.9 5.3 4.6 0.67 140
Polyisobutylene 6.7 5.6 5.2 0.57 140
Poly(methyl methacrylate) 9.0 6.5 6.9 0.425 140
Poly(vinyl acetate) 8.9 6.5 6.8 0.49 25
Polystyrene 9.5 6.7 7.3 0.434 140

The experimental chain dimensions were obtained by small-angle neutron scattering, as compiled in Fetters, L.J., Lohse,
D.J., Witten, T.A., and Zirkel, A., Macromolecules, 27, 4639, 1994. The uncertainties in (h2)0 and M are typically a few
percent. The temperature of the measurement is indicated, because the distribution of chain conformations depends on
temperature.
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N and b treats the real chain as though it were a freely jointed chain with N links of length I). This
proves to be a useful computational scheme, but it is important to realize that b has no simple
correspondence with the physical chain; it is not a measure of the real size of a real monomer.
Furthermore, it contains no new information beyond that embodied in C00. Values of b are also
given in Table 6.1. Note that although b varies monotonically with C00, it is not as simple a measure
of flexibility. For example, b for polystyrene (6.7 A) and polyisoprene (6.5 A) differ by only a few
percent, whereas polyiSOprene is considered to be a relatively flexible polymer, and polystyrene a
relatively stiff one. The resolution of this apparent paradox is left to Problem 6.2. Values of C00 and
b may be determined experimentally in various ways, but the most direct route is by scattering
measurements of the chain dimensions; this method will be described in detail in Chapter 8.

The approach taken above, and indeed for the remainder of the book, is that C0‘, or b are
structure—specific parameters that we can look up as needed; the dependence of (h2)0 on molecular
weight is universal and therefore more important to understand. However, it is of considerable
interest to ask whether the techniques of computational statistical mechanics can be used to
calculate CDO from first principles, i.e., from knowledge of bond angles, rotational potentials,
etc. A highly successful scheme for doing so, called the rotational isomeric state approach, was
developed by Flory [1]. It is beyond the scope of this book to describe it, but it is worth mentioning
that even today it is not a trivial matter to execute such calculations, and that controversy exists
about the correct values of C00 for some relatively simple chemical structures. These controversies
are also not easily resolved by experiment; combined uncertainties in measured molecular weights
and chain dimensions often exceed 10%.

Example 6.1
It is an interesting fact that bulk polyethylene has a positive coefficient of thermal expansion (about
2.5 x 10—4 per °C at room temperature), whereas the individual chain dimensions have a negative
coefficient (d In (h2)0/dT: $1.2 >< 10—3deg“1). In other words, when a piece of polyethylene is
heated, the volume increases while the individual chain dimensions shrink. How does this
come about?

Solution

Thermal expansion corresponds to a decrease in the density of the material, which reflects
primarily an increase in the average distance between molecules; the radii of the individual
atoms and the bond lengths also tend to increase, but to a much smaller extent. In contrast, the
reduction in (h2)0 is primarily of intramolecular origin. From Equation 6.3.1, we can see that as n is
independent of T and E, if anything, increases with T, then there must be a decrease in the
characteristic ratio, C00. The origin of this effect can be seen from Figure 6.1. As temperature
increases, the Boltzmann factors that dictate the relative equilibrium populations of trans and
gauche conformations change, and the gauche states become relatively more populated. As the
trans conformations favor larger (h2)0, the net result is a reduction in C00. Note that this simple
relation between C00 and the relative populations of trans and gauche states does not necessarily
extend to more complicated backbone structures. For example, d In (h2)0/dT is positive for 100%
cis-l,4—polybutadiene, but negative for the all-trans versions (see Problem 65). This observation is
not easy to anticipate based on the molecular structure.

6.4 Semiflexible Chains and the Persistence Length
For many macromolecules, the backbone does not consist of a string of single bonds with facile
rotations, but rather some combination of bonds that tend to make the backbone continue in one
direction. Such chains are called semiflexible, and examples (see Figure 6.6) include polymers
with mostly aromatic rings along the backbone, such as poly(p—phenylene); polymers with large
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Figure 6.6 Examples of polymer structures that are semiflexible or stiff chains.

side—groups that for steric reasons induce the backbone to adopt a helical conformation, such as
poly(n-hexyl isocyanate) and poly('y—benzyl-L—glutamate); biopolymers such as DNA and
collagen that involve intertwined double or triple helices. Short versions of these molecules
are essentially “rigid rods,” but very long versions will wander about enough to be random coils.
The description of chain dimensions in terms of either COO or b turns out not to be as useful for
this class of macromolecules. Therefore it is desirable to have a method to calculate the
dimensions of such molecules, and particularly to understand the crossover from rod-like to
coil—like behavior. Such a scheme is provided by the so—called worm-like chain of Kratky and
Porod [2]; the fundamental concept is that of the persistence length, 6p, which is a measure of
how far along the backbone one has to go before the orientation changes appreciably. A garden
hose provides a good everyday analogy to a semiflexible polymer, with a persistence length on
the order of 1 ft. A 2 in. section of hose is relatively stiff or rigid, whereas the full 50 ft hose can
be wrapped around and tangled with itself many times like a random coil. We will first define 3p
for flexible chains and see how it is simply related to C00. Then we will develop in terms of 6,, an
expression for (/12) that can be used to describe flexible, semiflexible, and rigid chains.

The persistence length represents the tendency of the chain to continue to point in a
particular direction as one moves along the backbone. It can be calculated by taking the projection
of the end-to-end vector on the direction of the first bond (’57: /€ is a unit vector in the direction
Of 61):

2. .
=§{<:-1>+<H>+...+<a.a>} (64-12

For the freely jointed chain, as discussed above, all the terms in the expansion in Equation 6.4.1 are
zero except the first, and thus El, 2 E. For chains with more and more conformational constraints
that encourage the backbone to straighten out, more and more terms in the expansion wili
contribute positively, and 6p increases. In the limit that every bond points in the same direction
the persistence length tends to infinity. When Ep > L, where L 2 n3 is the contour length of the
chain, such a molecule is called a rigid rod.
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6.4.1 Persistence Length of Flexible Chains

We now seek a relation between 6,, and COO for long, flexible chains. We can rewrite Equation
6.4.1 as

gp:%i<g’,.g>=%:<g.g> (6.4.2)
1:1 J=x

where x is any arbitrary bond in the chain. We can make this substitution because for a flexible
chain, only a few terms j with small | j — x| will contribute. Now we change the limits of the sum
over j to extend over the complete chain; in other words we look in both directions from bond 16.
This amounts to a double counting, so we multiply 6,, by 2:

2.6, : %
12-1:

<4; - 4}) + 6 (6.4.3)

Where did the extra E on the right hand side of Equation 6.4.3 come from? Well, the double
counting was not quite complete; there were two terms with |x —j | = 1, two with |x —j| : 2, etc.,
but only one with x:j. We need this contribution of E in order to obtain 26p, and therefore the
missing “self” term is appended to Equation 6.4.3.

In order to remove the arbitrary choice of bond )6, we sum over all possible choices of x, and
assume that we get the same answer for each it; this approximation neglects the effects of chain
ends, so it is valid only in the limit of large n.

1 ” " 4 4 (2
epzm;;<£,-€j>+§

(6.4.4)

Here we divided by n in front of the double sum because we added 72 identical terms through the
sum over x. All of these manipulations finally pay off: we recognize this double sum as exactly
([12) from Equation 6.2.2, and hence

I E 1 E__ 2 _:_____
_2n!3’< >+2 2m.”

E(7,0662 + E : ((3,, + 1) — (6.4.5a)13p 2

In some derivations of this relation, the joint limit it —> 00 and E —> 0 is taken (see following
section). In this case, the extra 6 on the right hand side of Equation 6.4.3 would vanish, and
Equation 6.4.5a would become

1 1 EE :_ I22 = ——C 42 = (300— 6.4.5bP 2n}?< > 2m? 00” 2 ( )

The difference between Equation 6.4.5a and Equation 6.4.5b is not particularly important, espe-
cially for stiffer chains where CDO>>1; we will use the latter form below, because it is simpler.

A related quantity in common use is the Kuhn length [3], 6k, which is defined as twice the
persistence length:

(2,. 2 2:2,, : C006 (6.4.6)
We thus have three different, but fully equivalent expressions for the mean-square unperturbed
end-to—end distance of a flexible chain:

09),, : (3,0622 : N62 = Lfk (6.4.7)

All three are useful and frequently employed, so they are worth remembering. Estimates of the
persistence lengths of flexible polymers are also listed in Table 6.1.
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Returning to Equation 6.4.1, we can actually extract a very appealing physical meaning for El,
and Bk. The terms in the expansion become progressively smaller as the average orientation of
bond 1' becomes less correlated with that of the first bond. In fact, when bond 1' is on average
perpendicular to the first bond (i.e., is uncorrelated), (£143) a: 0. All higher-order terms will also
vanish. Thus the persistence length measures how far we have to travel along the chain before it
will, on average, bend 90°. Similarly, the Kuhn length tells us how far we have to go along the
chain contour before it will, on average, reverse direction completely. Equation 6.4.6 also provides
a simple interpretation for COO: it is the number of backbone bonds needed for the chain to easily
bend 180°.

6.4.2 Worm-Like Chains

So far, all that the persistence length has given us is a new way to express (h2)0 for flexible chains.
To obtain a useful result for semiflexible and stiff chains, we will return to the freely rotating chain
of Section 6.2 and transform it into a continuous worm-like chain. This we do by taking a special
limit alluded to earlier; we will let the number of bonds, n, go to infinity, but the length of each
bond, 6, will go to zero, while maintaining the contour length L = n6 constant. We begin by
relating E], to a = cos 6 of the freely rotating chain, starting from Equation 6.4.1:

mm.a>+<aoa>+~-+<a-a>}
1= EM +€2a+€2a2 +~-+€2a”_1}

1_ n
=€{1+a+a2+~-+a”*l}=€( a):

6
(6.4.8)

1—0: 1—0:

The last transformation utilized the summation results in Equation 6.2.10a, and the large n limit.
Thus we can write

6
a21—exp(—€/€p)

for €—>0 (6.4.9)
p

where we invoke the series expansion (see the Appendix):

ex=1+x+£2+m2!

Now we recall Equation 6.2.11 for the freely rotating chain, but retaining the term in a”:

2 __ 21+a_ 2(1—a”)(h ) —n£’ —————1—oz 213
(10 —o:)2

_ 2
2—_€/€p)

_ 2 _ 1— exp[—L/€p]
—n€ (

3/3p
26 (1 E/Ep)

(3/592
= L€p(2 — E/Ep) — 263(1 — E/é’p)(1 — exp[—L/€p]) (6.4.10)

and thus

(1?) = 26,11, — 2e§(1 — exp[—L/£p]) as e —+ 0 (6.4.11)

This expression is the result for the worm-like chain obtained by Kratky and Porod [2]. (Note that
we took (12 — 1).? 9: n6 = L in Equation 6.4.10.) It is left as an exercise (Problem 6.6) to show
that in the coil limit (L >> 61,) this expression reverts to Equation 6.4.7 and that in the rod limit
(L < €13), ([12) =L2, as it should. Examples of experimental persistence lengths for semiflexible
polymers are given in Table 6.2.
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Table 6.2 Representative Values of Persistence Lengths for Semiflexible Polymers.
Note That Values May Depend Either Weakly or Strongly on the Choice of Solventa
_,__—

Polymer Solvent 1?], (231)

Hydroxypropyl cellulose Dimethylacetamide 65
Poly(p-phenylene)b Toluene 130
Poly(p-phenylene terephthalamide) Methane sulfonic acid0 100

96% Sulfuric acid 180
Poly(n-hexyl isocyanate) Hexane‘:l 420

Dichloromethane 210
DNA (double helix) 0.2 M NaCl 600
Xanthan (double helix) 0.1 M NaCl 1200
Poly(y-benzyl-L-glutamate) Dimethylformamide 1500
Schizophyllan Water 2000

8‘Data are summarized in Sato, T. and Teramoto, A., Adv. Polym. Sci, 126, 85, 1996, except for I”\l’anhee,
S., Rulkens, R., Lehmann, U., Rosenauer, C., Schulze, M., Koehler, W., and Wegner, G., Macromolecules,
29, 5136, 1996; cChu, S.G., Venkatraman, 8., Berry, G.C., and Einaga, Y., Macromolecules, 14, 939, 1981;
and dMuralucami, H., Norisuye, T., and Fujita, H., Macromolecules, 13, 345, 1980.

Figure 6.7 shows a plot of a dimensionless form of Equation 6.4.11, obtained by dividing
through by 6% and plotting against L/é’p. This independent variable is the number of persistence
lengths in the chain, i.e., an effective degree of polymerization. The curve illustrates the smooth
crossover from the rod-like behavior at small L/6p, with (h2)0~M2, to the coil—like behavior at
large L/Q, with (h2)0 ~ M. Thus the worm-like chain model is able to describe both flexible and
semiflexible chains with one expression. The double logarithmic format of Figure 6.7 is often
employed in polymer science, when both the independent variable (such as M) and the dependent
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Figure 6.7 The mean-square end-to-end distance, normalized by the squared persistence length, as a
function of the number of persistence lengths per chain (given by the ratio of contour and persistence lengths),
according to the Kratky—Porod worm-like chain. The asymptotic slopes of 2 (rod limit) and 1 (coil limit) are
also shown, as is the location of a chain with length equal to one persistence length.



230 Polymer Conformations

variable can range over several orders of magnitude. If the functional relation is a power law, then
in this format the plot will be a straight line and the slope gives the power law exponent.

6.5 Radius of Gyration
So far we have considered chain dimensions solely in terms of the average end-to-end distance.
However, there are two severe limitations to this approach. First, the end-to-end distance is
generally very difficult to measure experimentally. Second, for many interesting polymer struc-
tures (e.g., stars, rings, combs, dendrimers, etc.) it cannot even be defined unambiguously. The
end-to-end distance assigns particular significance to the first and last monomers, but all mono-
mers are of importance. A useful way to incorporate this fact is to calculate the average distance of
all monomers from the center of mass. We denote the instantaneous vector from the center of mass
to monomer i as 5}, as shown in Figure 6.8. The center of mass at any instant in time for any
polymer structure is the point in space such that

N

Ems;- = 0 (6.5.1)
i=1

where m,- is the mass of monomer 5. Note that the center of mass does not need to be actually on
the chain (in fact, it is unlikely to be). The root-mean-square, mass-weighted average distance of
monomers from the center of mass is called the radius ofgyration, Rg, or (52) 1/2, and is determined by

N 1/2
E .- J; 1/2

Rg: (52>l/2 E iii-25:2 = fif—XN:<S?> (6.52)

Here, just as with the end-to-end vector, it is useful to take (5?) = (5} ° 5}) in order to obtain
an average distance rather than an average vector (which would zero by isotropy). In the second
transformation we have assumed equal masses, i.e., a homopolymer, and m,-=m cancels out.
(Note that the summations run up to N, the number of monomers, and not 11, the number of
backbone bonds.) It is worth mentioning that the term radius of gyration is unfortunate, in that it
invites confusion with the radius of gyration in mechanics; the latter refers to the mass-weighted,
root-mean-square distance from an axis of rotation, not from a single point. However, the term
radius of gyration in reference to Equation 6.5.2 appears to be firmly entrenched in polymer

Figure 6.8 Illustration of the vectors from the center of mass to monomers i and j, E} and 5}, respectively,
and the vector from monomer 1' to monomer j, Ff}.
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science. A more correct description will emerge in Section 6.7, namely that (52) is the “second
moment of the monomer distribution about the center of mass,” but this terminology is rather
unwieldy for daily use.

It is clear that Rg can be defined for any polymer structure, and thus avoids the second objection
to ([12) listed above. It can be measured directly by light scattering techniques, as will be described
in Chapter 8, and indirectly through various solution dynamics properties, as explained in Chapter
9, thereby avoiding the first objection. However, we went to some trouble to calculate (h2)0 for
various chains, and to establish the utility of C00, b, and 6p. Is that all out the window? No, it is not.
We will now show that is, in fact, very simply related to (h2)0 for an unperturbed linear chain,
namely

g = = — = — (6.5.3)

Consider the dot product of the vectors from the center of mass to any two monomers i and j. By
the law of cosines

1 [3,? +512 —r-2] (6.5.4)fi'é‘IrZIE'z-llilwsé: .2 J

where d) is the angle between E,- and 5}, and r?!- is the square distance between monomers i and j
(see Figure 6.8). Now we take the average of each term in Equation 6.5.4, and then double sum
over i and j:

N N
1

N
1

N
1

N N

2245'?»25233536226372Z<ri>=0 (65-5)
This expression equals zero because

ii@ '51) <25? :5i—><0° >=0 (656)
£21

from Equation 6.5.1 (assuming all masses are equal). Returning to the second part of Equation
6.5.5, and utilizing Equation 6.5.2, we obtain

<53>25::<SJ >2N—RE (6.5.7)

which can be rearranged to

:fl
EN;

EN; (r5) (6.5.8)
I: j:

N

121 j=l

This equation turns out to be a useful alternative definition of Rg. It expresses Rg in terms of the
average distances between all pairs of monomers in the molecule; the location of the center of mass
is not needed. Furthermore, Equation 6.5.8 is valid for any structure; it need not be a linear chain,
and it need not have unperturbed dimensions.

Now we can derive the specific result Equation 6.5.3 for the freely jointed chain by realizing that

(r3) : |i —j|b2 (6.5.9)
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or, in other words, (’3) represents the end-to-end mean—square distance between any pair of
monomers 1' and j separated by k = Ii —j | links. We can thus write

2 N-l

Rg= ZNb—622Ii—JH—ffizs-o (6.5.10)
k=1i=lj=

which comes from the fact that there are 2(N—1) terms where |1' —-j| = 1; 2(N — 2) terms where
Ii —j| = 2; 2(N —- 3) terms where 11' —j| = 3; etc. (If this seems mysterious, draw an N x N matrix,
where the rows are numbers 1': 1 . . .N and the columns are j = 1 ... N. For each matrix element,
enter If —j|. There will be N 0’s along the main diagonal, N — 1 1’3 immediately adjacent to [and
on both sides of] the main diagonal, N—2 2’s in the next place over, etc.). Therefore

N2(N-—1) N(N—1)(2N—1):=;_:{N;1_;kz}=;_:{ 2 6 }
_ b_2

{3N2(N
— 1) — (N —1)(2N2

—N)}
(6.5.11)

N2 6
_N62 b2 N62
“YT—671’”?

where once again the last formula applies in the high N limit.

Example 6.2
A useful rule of thumb for polymers15 that Rg is about 100 A when M—— 105 g./mol This number
can be used to estimate R3 for any other M by recalling the pr0portionality of R3 to M112.Use the
data in Table 6.1 to assess the reliability of this rule of thumb.

Solution
We can take the values for ghz)O/M directly from the fifth column and multiply each one by 105.
The largest will be 125,000 A2 for polyethylene, and the smallest will be 42,500 A2 for poly(methyl
methacrylate). Then we need to divide by 6 and take the square root to obtain R.

For polyethylene 11g_—(125,—_—000/6)‘/2 144 A
For poly(methyl methacrylate), Rg = (42,500/6)”2 = 84 A

All of the other polymers in Table 6.1 will give values between these two. We may conclude that the
rule of thumb is reliable to at least one significant figure, and is better than that for many polymers.

Example 6.3
Use the experimental data for Rg for polystyrenes dissolved in cyclohexane in Figure 6.9 to
estimate Coo, 6p, and b. Note that these data are for remarkably large molecular weights.

Solution
The straight line fit to the data gives Rg =0.25 M051.To make things convenient, we can choose
N—— 105, for which M—— 104 x 105—-— 104 X 107 g/mol. From the fitting equation we obtain
Rg =948 A. The number of backbone bonds :1 =2 x 105, and we use a more precise estimate
of the bond length of 1 5.3 A. From Equation 6.3.2 and Equation 6.5.3, then

fl_ 6 x (948)_ = 11.5462 2 x 105(153)2COO:
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Figure 6.9 Radius of gyration for very high molecular weight polystyrene in cyclohexane at the theta
temperature. (Data from Miyake, Y., Einaga, Y., and Fujita, M., Macromolecules, 11, 1180, 1978.)

Also from Equation 6.3.2 and Equation 6.5.3,

zfiR =———‘/3
x/N g \/1><105

Finally, from Equation 6.4.5b we have

6 1053 o

b x948=7.3.&

These values are systematically larger than those given in Table 6.1. Part of this difference may be
attributed to experimental uncertainty, but most of the difference stems from the fact that the
polystyrene data in Table 6.1were obtained from molten polystyrenes, whereas the data in Figure
6.9 are for dilute solutions. Although the chain dimensions in a dilute theta solution and in the bulk
both increase as M 1/2, the prefactor (e.g., C0c,) can be slightly different. In fact, the dimensions of a
given polymer may differ by as much as 10% between two different theta solvents.

The worm-like chain of Section 6.4.2 also has an expression for R2, which is

g —
5 p —— p + E—z—(exp[——L/€p]

— 1) +7
(6.5.12)

This result can be derived from the expression for (I12), Equation 6.4.11, by way of the relation
6.5.8 and a transformation of sums to integrals; this is left as Problem 6.8. An example of the
application of the worm-like chain model is shown in Figure 6.10. The material is poly(n-hexyl
isocyanate) (see Figure 6.6) dissolved in hexane and the coil dimensions were measured by light
scattering (see Chapter 8). The smooth curve corresponds to Equation 6.5.12 with a persistence
length of 42 mn, and the contour length determined as L (nm) =M (g/mol)/715 (g/mol/nm). The
factor of 715 therefore reflects the molar mass per nanometer of contour length. The correspond—
ence between the data and the model is extremely good, except for the two very highest M samples.



234 Polymer Conformations

1
I I I

I
I I I

_
.

_
Poiy(n-hexy| isocyanate) in hexane

1C)5 .— —_

“E 104 _— 15 _ _
cum " '

0: I Z

- J

3 _1° : Worm-like chain with 6,, = 42 nm 3
-

I I I I I I I I I I I I I 1 .I I I I I I I I

-

105 1o6 107
M (g/mol)

Figure 6.10 Radius of gyration versus molecular weight for poly(n-hexyl isocyanate) in hexane. The curve
corresponds to the worm-like chain model with a persistence length of 42 nm. (Data from Murakami, H.,
Norisuye, T., and Fujita, H., Macromolecules, 13, 345, 1980.)

This deviation may be attributed to the onset of excluded volume effects, whereby the coil
conformations are larger than anticipated by the freely jointed chain (Gaussian) limit.

6.6 Spheres, Rods, and Coils
We have derived results for (h2)0 for coils, rods, and everything in between. The conformation is
assumed to be determined by the steric constraints induced by connecting the monomers chem-
ically. But we could also think about the molecule more abstractly, as a series of freely jointed
effective subunits. Now suppose we have the ability to “dial in” a through-space interaction
between these subunits, an interaction that might be either attractive or repulsive. The former
could arise naturally through dispersion forces, for example; all molecules attract one another in
this way, and if we put our chain in a vacuum, those forces might dominate. If the attractive
interaction were sufficiently strong, the chain could collapse into a dense, roughly spherical ball or
globule. Repulsion could arise if each subunit bore a charge of the same sign, a so-called
polyelectrolyte. This is commonly encountered in biological macromolecules, DNA for example.
If the repulsive interaction were sufficiently strong, the chain could extend out to be a rod. It is
instructive to think of the globule, coil, and rod as the three archetypical possible conformations of
a macromolecule, and for many systems coil <—> globule and coil <—> rod transitions are experi-
mentally accessible. For example, proteins in their native state are often globular, but upon
denaturing the attractive interactions that cause them to fold are released, and the molecule
becomes more coil-like. Similarly, a synthetic, neutral polymer dispersed in a bad solvent will
collapse into a globule when it precipitates out of solution. A relatively short DNA double helix is
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reasonably rod-like (Epw600 A), but if the double helix is denatured or “melted,” the two
separated strands can become coils. A poly(carboxylic acid) such as poly(methacrylic acid) in
water will have a different density of charges along the chain as the pH is varied. At high pH,
virtually every monomer will bear a negative charge and although the chain will not straighten out
into a completely rigid, all—trans—backbone chain, it will show a size that scales almost linearly
with M rather than as \//1_/I. In short, polymers can adopt conformations varying from dense spheres
through flexible coils to rigid rods.

The scaling of the size with molecular weight is quite different in each case. We can encompass the
various possibilities by writing a proportionality between the size and the degree of polymerization:

R, N N” (6.6.1)
For the globule or dense object, V : 1/3. The volume occupied by the molecule is proportional to N
and thus the radius goes as (volume)”3. For the unperturbed coil V: 1/2, as we have seen.
However, we will find out in Chapter 7 that in a good solvent V as 3/5 due to the excluded volume
effect. For a rod, clearly I» : 1. Equation 6.6.1 is an example of a scaling relation; it expresses the
most important aspect of chain dimensions, namely how the size varies with the degree of
polymerization, but provides no numerical prefactors. The value of the exponent is universal, in
the sense that any particular value of 12 (1/3, 1/2, 3/5, or 1) will apply to all molecules in the
same class.

As illustrated at the very beginning of this chapter, the size of these various structures (globule,
coil, and rod) would be very different for a given polymer. Then we considered a polyethylene
molecule, which in the liquid state will always be a coil. Now consider a representative DNA from
bacteriophage T2. It has a contour length of 60 um or almost 0.1 mm. As a coil, it should have

# (Lk/6)1/2 N 1 mm or 10,000 A. With MNN 108 and assuming a density of 1 g/mL, it would
form a dense sphere with a radius of 340 A. It15 an amazing fact that the bacteriophage actually
packages the DNA molecule to almost this extent. As shownin Figure 6.11, upon experiencing an
osmotic shock the bacteriophage releases the DNA, which had been tightly wound up inside its
head. The mechanism by which the DNA is packed so tightly remains incompletely understood. It
is particularly remarkable, given that DNA carries negative charges all along its contour, which
should create a strong repulsion between two portions of helix. This example also underscores
another important point about chain dimensions: they can be very sensitive to the environment of
the molecule, and not only to the intramolecular bonding constraints.

6.7 Distributions for End-to-End Distance and Segment Density
So far in this chapter we have only considered the average size and conformation of a polymer.
Now we will figure out how to describe the distribution of sizes or conformations for a particular
chain. We seek an expression for the probability P(N, h) dh that a random walk of N steps of length
I) will have an end-to—end vector, h, lying between h and h + dh, as illustratedin Figure 6.12a. In
other words, if the start of the chain defines the origin, we want the probability that the other end
falls in an infinitesimal box with coordinates between .1: and x + dx, y and y + dy, and z and z + dz.
From such a function, we will be able to obtain related functions for the probability P(N, h) dh that
the same walk has an end-to—end distance, /1 = [/1], lying between 11 and h + dh, and the probability
p(N, r) dr that a monomer will be found between a distance r and r + dr from the center of mass. It
turns out that all of these distributions are approximately Gaussian functions, just like the familiar
normal distribution for error analysis. In particular, the answer for P(N, It)IS

_ 3W
2N!)2

(6.7.1)
# 3/2

P(N,h) = [ZaZ] ex

a result that we will now derive.
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Figure 6.11 The DNA within a single T2 bacteriOphage is released by “osmotic shock.” (Reproduced from

Kleinschmidt, A.K., et a1., Biochim. Biophys. Acta, 61, 857, 1962. With permission.)

6.7.1 Distribution of the End-to-End Vector

We begin with a one-dimensional random walk with N steps of length I). In other words, at each

step we go a distance 19 in either the +x or the —x direction, with the probability of + or — each

m\

(b)

Figure 6.12 A flexible coil with one end at the origin and the other in (a) a volume element dx dy dz and (b)

a spherical shell of volume 4nh2 dh.
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being 1/2. At the end of the N steps, let p be the total number of + steps and q be the total number
of — steps. Clearly N 2 p + q and the net distance traveled will be x = b( p — q). The probability of
any given outcome for this kind of process is given by the binomial theorem:

1 P 1 q N!
P(N,x)= (2) (5) pl—q!

(6.7.2)

This expression arises as follows. The probability of a sequence of events that are independent is
equal to the product of the probabilities of each event; this gives the factors of (1/2)” and (1/2)?
However, this would underestimate what we want, namely a net displacement of x. This is because
(1/2)p(1/2)q assumes we have all p+ steps in succession, followed by (3— steps, whereas in fact the
order of the individual steps does not matter, only the total p and q. There are N possible choices
for the first step, then N _ l for the next and so on, which increases the total probability by a factor
of N!. This, however, now overestimates the answer, because all of the p+ steps are indistinguish-
able, as are all of the q— steps. There are p! possible permutations of the+ steps, all of which
would give the same answer, and similarly q! permutations of the — steps; both of these factors are
counted in N!, so we have to divide by them out. Thus we arrive at Equation 6.7.2.

Now we make the simple substitutions

Film! Far!)
to obtain

r 1
N 2! 2!P(N,x) _ (2) N!

(ME)! (N _ g)!
(67.4)

The expression is simplified by means of Stirling’s large N approximation, namely

In N! e N In N — N (6.7.5)
which gets rid of the nasty factorials. (It is worth noting that Stirling’s approximation is excellent
when N is on the order of Avogadro’s number, but it is not quantitatively accurate for N m 100;
nevertheless these errors largely cancel in deriving the Gaussian distribution.) Utilizing this,
Equation 6.7.4 can be expanded:

1nP(N,x) = —% (N + 2) 1%! + 3%) — g (1 — biN) 1%! ~ {9%) (6.7.6)
after some algebra. Now we recall the expansion of ln(1 +x) when x << 1, namely

1 lln(l+x):x—§x2+§x3~- (6.7.7)

and realize that (x/bN) —> 0 as N gets very big. Thus ln(l +x) sex applies

lnP(N,x) : -%(N+g) (7%) £073) (Nib)
_x2 (6.7.8)

I 2s
or

P N "x2 6 7 9( ,X) N exp
W

( - - )

We insert a proportional sign here to allow for the appropriate normalization (see below). Now
to convert to a three-dimensional N-step random walk, we take N/3 steps along x, N/3 along y, and
NB along 2', and recognize that the probabilities along the three directions are independent.
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Therefore

a N N Nh :P _ P — P — mPW, ) (3,26) (3.y) (3.2) ext)

where we have inserted |h|2 : x2 + y2 + 22. The final step is the normalization, which accounts for
the fact that if we look over all space for the end of our walk, we must find it exactly once. This is
expressed by

‘3lh12
2s (6.7.10)

000000

J J JP(N,1?)dx,dy,dz=1 (6.7.11)
—00 —oo —00

You can find in a table of integrals that
00

J exp(—kx2) dx =fl
r-OO

and thus from the triple integral of Equation 6.7.11 we find that the result is [3/21TNb2]_3/2.
Therefore we need to multiply our exponential factor by [3/2'rrN1'32]3”2 to satisfy Equation 6.7.11
and arrive at the result given in Equation 6.7.1.

This Gaussian distribution function for I; is plotted against IE] in Figure 6.13a. Although it is a
distribution function for a vector quantity, it only depends on the length of h; this is a natural
consequence of assuming that x, y, and 2 steps are equally probable. It is peaked at the origin,
which means that the single most probable outcome is I; = 0, Le, the walk returns to the origin.
However, because of the prefactor, the probability of this particular outcome shrinks as N"3’2, even
though it is more likely than any other single outcome. Finally, this expression for P(N, I?) was
obtained by assuming large N (no surprise here). How large does N have to be for the Gaussian
function to be useful? It turns out that even for N a: 10, the real distribution for a random walk
looks reasonably Gaussian. Already for very small N it is symmetric and peaked at the origin, but it

1.2)(10—5 l l l r l _l— I l

0.03L
1><1O‘5 - N=1000 7

#
b=l _

a><10r6 — a4::
113‘ £0.02— -l
g .5 _ If?
D. 6X10

g L _.1
EL

*5 _.4X10 0.01 k ‘

2x10”6 _ __ _
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(a) (b)

Figure 6.13 Gaussian probability distributions for a chain of N steps of length I), plotted as (a) the
probability of an end—to-end vector k versus lit] and (b) the probability of an end-to-end distance 11.
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will be “bumpy” because 19 has a discrete value. As N gets larger, the fact that b is discrete
becomes less and less important, although the fact that we are representing a discrete function by a
continuous one never goes away for finite N. Indeed, we can assert that even though the Gaussian
distribution may provide numerical answers that are very accurate, it can never be exactly
correct for a real chain. That is because a real chain has a finite contour length that Hi] can never
exceed, whereas Equation 6.7.1 provides a finite probability for any value of Iii] all the way out
to infinity.

6.7.2 Distribution of the End-to-End Distance

We now turn to obtaining P(N, h) for the distance h. The transformation is illustrated in Figure
6.12b. We consider a spherical shell at a distance 11 from the origin. It has a surface area 4'rrh2 and a
thickness dh, so its volume is 41't dh. Any walk whose end—to—end vector 1; lies in this shell will
have the same length h, so the answer we seek is just

P(N, h) dh : 4171121007, 7?) dh

3/2 4‘}?
] CXP 2s

2
‘ (6.7.12)

dh:4 I22 ——Tr [211's

This function is already normalized correctly. It should satisfy the one-dimensional integral

JP(N,h) dh : 1 (6.7.13)
0

and you can show that it does, armed with the knowledge that
00

1 1Tsexp(—kx2) dx =
If I

0

Note that the normalization integral goes from 0 to 00, as It cannot be negative.
This distribution function is plotted in Figure 6.13b and is rather different from P(N,}i). In

particular, it vanishes at the origin and has a peak at a finite value of h before decaying to zero as
N —> 00. The fact that it vanishes at the origin is due to multiplying the exponential decay by hz.
There is thus a big difference between finding the most probable vector position (which is the
origin) and finding the most probable distance (the position of the peak in P(N,h), see Problem
6.10). You have probably encountered this contrast before, for example, in the radial distribution
function for the s electrons of a hydrogen—like atom, or for the Maxwell distribution of molecular
velocities in a gas. In the former, the most probable position of the electron is at the nucleus, but
the most probable distance is a finite quantity, the Bohr radius. In the latter, the most probable
velocity in the gas is zero, but the most probable speed is finite.

As a simple application of this distribution function, we can ask what is the mean square
value of h?

(722) = Jh2P(N,h)dh
0

00 a 2 (6.7.14)
2 2 3 3/2 —3 h

0
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where now we need to know

00
3 it

Jx4 exp(—kx2) dx =
w E

Applying this in Equation 6.7.14 we obtain

3 3/23 3 ‘2 2s 1/2
2 2= _. = .7.(h) 4w[2w2] 8(2Nb2) fi< 3 ) Nb (6 15)

as expected. The quantity (/12) is also called the second moment of the distribution P(N, h). (You
may recall the discussion of moments in the context of molecular weights in Chapter 1.7.)

6.7.3 Distribution about the Center of Mass

The last thing we consider in this section is the related distribution p(N, r) dr, the probability that a
monomer is between r and r+dr from the center of mass. It turns out that there is no simple
analytical expression for this distribution, even for a Gaussian chain [4], but the resulting
distribution is well approximated by a Gaussian:

N, : N4 — ——- 6.7.166 r) “r i2w<s2>i ”p i2<s2>i ( )
where we use the second moment (52) :Nb2/6 explicitly in the expression (compare Equation
6.7.1, wheres could have been replaced by 012)). One important point is the factor of N in front.
This is simply a new normalization so that

Jp(N, r) dr 2 N (6.7.17)

0

which reflects the fact that when we look for monomers over all space, we must find all N of them.
The segment density distribution can also be used for a solid object, where there is no need to

identify N separate subunits. In such a case p(r) can be used to find Rg = (32)”2, from

T r2p(r) dr 3? 41174p(F') dr

<52) : 000
2

30 (6.7.18)

I p(r) dr I 411731007) dr
0 0

The integral in the denominator provides the necessary normalization. As an example, consider
a solid sphere with radius R0 and uniform density p0. The distribution function for p(f’) is just a
constant, p0, for OErSRO, and O for r>R0. (Note that this simple function is p07), not p(r)
because the latter must increase as r2 for r SR0; there are more monomers near the surface of the
sphere than at the center.) Substituting p07) into Equation 6.7.18 we obtain

R0
I 904117”4 dr

R5 5 3
(32) : 20 = R2/3 = 5R3 (6.7.19)

I p04'rrr2 dr 0/
0

Thus for a solid sphere
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Table 6.3 Formulae for the Radii of Gyration for Various Shapes

Structure R: Parameters

_ . N62 , ,Gauss1an c011
.? Degree of polymerization N

3f _ 2 N b2 Statistical segment length b
Gaussian star

T—
J”;— Arm degree of polymerization Narm

Number of arms f

Nbg Statistical segment length b
Gaussian ring

—12—
Degree of polymerization N

3 Statistical segment length b
Solid sphere 3R2 Sphere radius R

Solid ellipsoid Ellipsoid principal radii R1, R2, R3

Thin rod 1—71? Rod length L

1 1
Cylinder 5L2 +

—2—
2 Cylinder radius r, length L

1Thin disk Er? Disk radius r
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3R, : \n0 (6.7.20)

This result serves to emphasize an important point that Rg reflects an average of the monomer
distribution and not the total Spatial extent of the object. There are always monomers further than
Rg from the center of mass as well as monomers closer than R3 to the center of mass. Expressions
for Rg for other shapes are listed in Table 6.3.

6.8 Self-Avoiding Chains: A First Look
We mentioned at the end of Section 6.2 that there is a further important issue in chain conforma-
tions, that of excluded volume. The simple fact is that a real polymer occupies real Space and no
two monomers in the chain can share the same location concurrently. This means that the statistics
of the conformation are no longer those of a random walk, but rather a self-avoiding walk. This
difference might appear subtle, which it is, but the consequences are profound.

Most importantly, we can no longer write down an analytical expression for any of the desired
distribution functions such as P(N,h). Nor can we calculate in any simple yet rigorous way the
dependence of Rg on N. The mathematical reason for this difficulty is the way the problem
becomes more complicated as N increases. In the case of the random walk, the orientation of
any link or step is dictated by random chance and its position in space is determined only by where
the previous link is. For the self—avoiding walk, in contrast, we would need to ask where every
previous link is in order to establish whether a particular orientation would be allowed for the link
in question. It would not be allowed if it intersected any previous link. Consequently, the
calculation becomes more and more complicated as N increases. Some very sophisticated mathe-
matics has been employed on this problem, but we will not discuss this at all. We can draw an
important qualitative conclusion, however: the excluded volume effect will tend to make the
average coil size larger, as the chain seeks conformations without self—intersections. From the
most sophisticated analysis, nNO'SBQ instead of NW; in other words the exponent 12 from
Equation 6.6.1 is 0.589 (although most people use 0.6 as a reasonable approximation).



242 Polymer Conformations

As also mentioned in Section 6.2, there are two experimental situations in which this compli-
cation goes away, and v = 0.5 again. One case is a molten polymer. Here a chain still cannot have
two monomers occupying the same place, but there is no benefit to expanding the coil. The reason
is that space is full of monomers, and a monomer on one chain cannot tell if its immediate neighbor
in space belongs to a different chain, or is attached by many bonds to the same chain. Conse-
quently, it does not gain anything by expanding beyond the Gaussian distribution. The second case
is for a chain dissolved in a particular kind of solvent called a theta solvent. A theta solvent is
actually a not-very-good solvent, in the sense that for energetic reasons monomers would much
prefer to be next to other monomers than next to solvent molecules. This has a tendency to shrink
the chain, and a theta solvent refers to a particular solvent at a particular temperature where the
expansion due to the self-avoiding nature of the chain is exactly canceled by shrinking due to
unfavorable polymer—solvent interactions. We will explore this in more detail in the next chapter,
where we consider the thermodynamics of polymer solutions.

6.9 Chapter Summary
In this chapter, we have examined the spatial extent of polymer chains as a function of molecular
weight and chemical structure. The principal results are the following:

1. A single chain can adopt an almost infinite number of possible conformations; we must settle
for describing the average size.

2. For any chain with some degree of conformational freedom the average size will grow as the
square root of the degree of polymerization: this is the classic result for a random walk.
Furthermore, the distribution of chain sizes is approximately Gaussian.

3. The prefactor that relates size to molecular weight is a measure of local flexibility; three
interchangeable schemes for quantifying the prefactors are the characteristic ratio, the statis-
tical segment length, and the persistence length.

4. Chemical structures for which the chain orientation can reverse direction in about 20 backbone
bonds or less are called “flexible”; much stiffer polymers are termed “semiflexible.” This
latter class is best considered through the worm-like chain model using the persistence length
as the key measure of local flexibility.

5. The radius of gyration is the most commonly employed measure of size; it can be defined for
any chemical structure and it is directly measurable.

6. Because of excluded volume, real chains dissolved in a good solvent are not random walks, but
self-avoiding walks. The corresponding size grows with a slightly larger power of molecular
weight. In theta solvents or in the melt, the excluded volume effect is canceled out and the
random walk result applies.

Problems

1. Experimental chain dimensions for poly(ethylene terephthalate) (PET) at 275°C are given by
(h2)0/M @090 2&2 mol/g. Calculate Coo, the statistical segment length, and the persistence
length for this polymer. Based on these numbers, is PET a flexible polymer, or not? What
would you expect based on the molecular structure?

2. Resolve the paradox noted in Section 6.3: polystyrene is considered to be relatively stiff,
and polyisOprene relatively flexible, yet their statistical segment lengths are almost
identical.

3. For freely jointed copolymers with nA steps of length EA and nB steps of length EB find (I12)
(large n limit) for strictly alternating, random, and diblock architectures. Are the answers the
same or different? Why?
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4. Assume a freely rotating, strictly alternating copolymer chain, with alternating bond angles 6A
and 63 and step lengths EA and EB; find (222).

5. The unperturbed dimensions of polymer chains depend weakly on temperature. Interestingly,
the sign of the temperature coefficient can be either positive or negative. For example,
for 100% cis-polybutadiene, d(ln (h2))/dTr—e 0.0004 deg‘l, whereas for 100% trans-
polybutadiene, the same quantity is —0.0006 deg—1. Provide an explanation for the observa-
tion that this quantity can, in general, be either positive or negative, and speculate how your
explanation might apply in this particular case. Note that it would require a very careful
calculation to actually show why these two coefficients have different signs.

6. Show that the expression for the mean-square end-to-end distance of the worm-like chain
given in Equation 6.4.11 reduces to the expected answers for a random coil and a rigid rod,
when the limits L >> 6p and 6p > L are taken, respectively.

7. From the following data of KirsteT estimate the persistence length of calf thymus DNA and the
mass per persistence length Mp:

M, Rg (.41) M... R4251)
3.5 x 105 450 3.45 x 106 1700
4.6 x 105 480 4.6 x 106 2000
6.9 x 105 650 6.3 x 106 2300
1.15 x 106 900 6.9 x 106 2500
1.6 x 106 1100 9.2 x 106 3000
2.3 x 106 1390 1.35 x 107 3600
2.8 x 106 1550

Equation 6.5.12 is a good place to start. One approach is graphical, i.e., to compare the data
(plotted logarithmically) against a theoretical plot of the dimensional quantities Rg/Ep versus
M/Mp. Alternatively, the data can be fit to Equation 6.5.12 using a nonlinear regression
routine. However, some care must be taken in weighting the data in the fit. Is there a reason
why the highest molecular weight data should be accorded less significance?

8. Derive the expression for the mean square radius of gyration of the worm—like chain, Equation
6.5.12, from the corresponding expression for the mean-square end-to-end distance, Equation
6.4.11. First show that this relation is equivalent to Equation 6.5.8.

1
n j— 1

2 _ 24r6224>j=2 i=1

Then make the correspondences L = 1212, x = if, and y = fl? when using Equation 6.4.1 1 for (£25.).
The final step is to equate the double sum above with the following integrals and carry out the
integration:

1
y

—de y I
0

9. Miyaki, Einaga, and Fujita3F reported measurements of R3 for very high M polystyrenes in
benzene at 25°C (a good solvent) and cyclohexane at 345°C (theta conditions). Find the
relation between Rg and MW in the case of benzene (the cyclohexane data were analyzed in
Example 6.3). How does the exponent compare with expectations? If you extrapolate to lower

dx
ml:—

tRo. Kirste, Disc. Farad. Soc. 49, 51 (1970).
1Y. Miyaki, Y. Einaga, and H. Fujita, Macromolecules 11, 1180 (1978).
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10.

11.

12.

13.

14.

15.

16.

Polymer Conformations

M, by what degree of polymerization would excluded volume increase Rg (i) by only 10%?
(ii) by a factor of 2?

MW x 10’6 R3 (nrn), Benzene Rg (nm), Cyclohexane

56.2 i 1 506 _-_|; 10 228 i 5
39.5 i 1
32.0 i 0.6
23.5 i 0.5
15.1 _-|; 0.5
8.77 i 0.3

392i8
353i7
297_-|;9
227i7
164i4

183:4
167i4
145i?)
116i2
87.9;l—_2

For the Gaussian distribution function for the end-to-end distance, calculate the most
probable distance, the mean distance, and the root—mean-square distance. Generate a good
plot of this distribution function for some value of N and indicate where these three
characteristic distances fall on the plot.
Find the mean square radius of gyration for an infinitely thin rod of length L, with mass
density (per unit length) p in the center L/2 section and mass density (per unit length) 2p for
the U4 sections at each end.
Find the radius of gyration of a sphere with an outer shell of different density, where the inner
spherical core has a radius of R1 and a density of p, and the outer shell (the “corona”) extends
to a radius of R2=2R1 and has a density equal to 2p. (This geometry is a reasonable
representation of a spherical micelle, which can be formed in a solution of block copolymers
when one block is relatively insoluble; see Chapter 4.4.)
Consider the coil dimensions of an A—B diblock copolymer, with total degree of polyme-
rization N and the fraction of A monomers given by f. Assuming that the mass of each A and
B monomers is the same, show that

<R§> =f<R§>A+ (1 — f)<R§)B+f(1 —f)<ZZ>AB
where (RE), is the mean square radius of gyration for block i and (22)AB is the mean square
separation of block centers-of—mass.
Consider a statistical A—B 00polymer, with total degree of polymerization N and the fraction
of A monomers given by f. Derive a simple expression for (/12) in terms of N,f, bA, and b3,
assuming Gaussian statistics. This equation will probably not be exactly correct, in practice,
even for large N. One reason is that thermodynamic interactions between A and B monomers
(usually effectively repulsive) will tend to expand the chain. However, there is another
reason, connected to the nature of the statistical length; what is it?
A distinguished polymer scientist is reputed to have remarked “an infinite steel girder would
be a random coil.” Explain the important point that this striking comment is intended to
illustrate.
How does the average polymer concentration inside an individual coil vary with M in good
and theta solvents? Estimate this concentration in g/cm3 for polystyrene with M = 106 under
both conditions, using Miyake et al.’s data given in Problem 9. Explain why this concentra-
tion is often referred to as the coil overlap concentration, c*.
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7
Thermodynamics of Polymer Solutions

7.1 Review of Thermodynamic and Statistical Thermodynamic Concepts
In this chapter we shall consider some thermodynamic properties of solutions in which a polymer
is the solute and some low-molecular—weight species is the solvent. Our special interest is in the
application of solution thermodynamics to problems of phase equilibrium.

An important fact to remember about the field of thermodynamics is that it is blind to details
concerning the structure of matter. Thermodynamics is concerned with observable quantities and
the relationships among them, although there is a danger of losing sight of this fact in the
somewhat abstract mathematical formalism of the subject. For example, we will take the position
that entropy is often more intelligible from a statistical, atomistic point of view than from purely
phenomenological perspective. It is the latter that is pure thermodynamics; the former is the
approach of statistical thermodynamics. In this chapter we shall make extensive use of the
statistical point of view to understand the molecular origin of certain phenomena. The treatment
of heat capacity in physical chemistry provides an excellent example of the relationship between
pure and statistical thermodynamics. Heat capacity is defined experimentally as the heat required
to change the temperature of a sample in, say, a constant-pressure experiment. Various equations
relate the heat capacity to other thermodynamic quantities such as enthalpy, H and entropy, S. The
alternative approach to heat capacity would be to account for the storage of energy in molecules in
terms of the various translational, rotational, and vibrational degrees of freedom. Doing thermo-
dynamics does not even require knowledge that molecules exist, much less how they store energy,
whereas understanding thermodynamics benefits considerably from the molecular point of view.

One drawback of the statistical approach is that it depends on models, and models are bound to
oversimplify. Nevertheless, we can learn a great deal from the attempt to evaluate thermodynamic
properties from molecular models, even if the effort falls short of quantitative success.

There is probably no area of science that is as rich in mathematical relationships as thermo-
dynamics. This makes thermodynamics very powerful, but such an abundance of riches can also be
intimidating. In this chapter we assume that the reader is familiar with basic chemical and
statistical thermodynamics at the level that these topics are treated in undergraduate physical
chemistry textbooks. This premise notwithstanding, a brief review of some pertinent relationships
will be a useful way to get started.

Notation frequently poses problems in science and this chapter is an example of such a situation.
Our problem at present is that we have too many things to count: they cannot all be designated n. In
thermodynamics n is widely used to designate the number of moles and so we will adhere to this
convention. Since we deal with (at least) two-component systems in this chapter, any count of the
number of moles will always carry a subscript to indicate the component under consideration. We
shall use the subscript 1 to designate the solvent and 2 to designate the solute. We have consistently
used N to designate the degree of polymerization and shall continue with this notation, although the
definition of “monomer” will be modified slightly.

To describe the state of a two-component system at equilibrium, we must specify the number of
moles n1 and n2 of each component, as well as the pressure p and the absolute temperature T. It is
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the Gibbs free energy, G, that provides the most familiar access to a discussion of equilibrium. The
increment of G associated with increments in the independent variables mentioned above is given
by the equation

dG=Vdp-—SdT+Zp.,-dm (7.1.1)
i=1,2

where V is the volume, 5 is the entropy, and p.) is the chemical potential of component 1'. An
important aspect of thermodynamics is the fact that the state variables (in the present context,
especially H, G, and the internal energy U) can be expanded as partial derivatives of the
fundamental variables. Hence we can also write

3G 3G (9G 36
dG = <——) dp + <—) dT —|— (—) dnl + (—) dag (7.1.2)

ap T,n1,n2 6T p,m,r12 anl p,T,nz an; p,T,n1

Comparing Equation 7.1.1 and Equation 7.1.2 gives

1/ z
(‘10.) (7.1.3)

ap T,m,n2

3GS = _ _ 7.1.4
(3T) p,nl ,Hz

( )

and

3G

ant. piranjafi

The chemical potential is an example of a partial molar quantity: p.) is the partial molar Gibbs free
energy with respect to component 1'. Other partial molar quantities exist and share the following
features:

1. We may define, say, partial molar volume, enthalpy, or entropy by analogy with Equation 7.1.5:

Y.- = (21:) (7.1.6)
am play-5E,-

where Y = V, H, or 5, respectively. Except for the partial molar Gibbs free energy, we shall use
the notation 7; to signify a partial molar quantity, where Y stands for the symbol of the
appropriate variable.

2. Partial molar quantities have per mole units, and for Y, this is understood to mean per mole
of component i. The value of this coefficient depends on the overall composition of the
mixture. Thus VH20 is not the same for a water—alcohol mixture that is 10% water as for
one that is 90% water.

3. For a pure component the partial molar quantity is identical to the molar (superscript A) value
of the pure substance. Thus for pure component i

A

4. A useful feature of the partial molar properties is that the property of a mixture (subscript m)
can be written as the sum of the mole-weighted contributions of the partial molar properties of
the components:

Ym = 111.71 -|- H2372 (1.18)
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In this expression n, and n; are the numbers of moles of components 1 and 2 in the mixture
under consideration.

5. To express the value of property Ym on a per mole basis, it is necessary to divide Equation
7.1.8 by the total number of moles, n1 + 11;. The mole fraction x,- of component i is written

n,-
xi = (7.1.9)

25:12 "i

therefore

Ym _ _
=x1Y1+x2Y2 (7.1.10)

111 + n;

6. Relationships that exist among ordinary thermodynamic variables also apply to the corre-
sponding partial molar quantities. Two such relationships are

p,=fi,——T§, (7.1.11)
and

_ 6 .
V1: (—1“)

(7.1.12)
3p Tan-#1

As noted above, all of the partial molar quantities are, in general, concentration-dependent.

It is convenient to define a thermodynamic concentration called the activity a, in terms of
which the chemical potential is given by the relationship

rt, =u?+RTlna, (7.1.13)

The quantity 11.? is called the standard state (superscript 0) value of #4; it is the value of 11.,- when
a; = 1. Neither 11.,- nor G can be measured absolutely; we deal with differences in the quantities and
the standard state value disappears when differences are taken. Although the standard state is
defined differently in various situations, we shall generally take the pure component as the
standard state and 11.? = Gf’.

7.2 Regular Solution Theory
Regular solution theory illustrates how a relatively simple statistical model can provide a useful
expression for the free energy of mixing for a binary solution of two components. Furthermore, the
Flory—Huggins theory, which we will develop in the next section and which is the starting point for
discussions of both polymer solutions and polymer blends, is really nothing more than regular
solution theory extended to polymers. We will derive these results using a lattice approach because
the physical picture is particularly clear, but it should be realized that the expression for AG,1n that
results could be obtained without such a seemingly artificial assumption.

We will designate the number of molecules of the two species ml and m2 and the number of
moles 121 and 122. We assume that the two molecules have equal volumes and also that their partial
molar volumes are equal (and concentration-independent): V1 2 V2. The cell size of the lattice is
chosen to equal the molecular volume, and the lattice has a coordination number 2. The total number
of molecules m = m1 + m2 is also the total number of lattice sites. A section of a two-dimensional
square lattice is illustrated in Figure 7.1.

7.2.1 Regular Solution Theory: Entropy of Mixing

The entropy of mixing is obtained from the Boltzmann definition of entropy:

521(a (7.2.1)
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Figure 7.1 Section of a two—dimensional square lattice with each site occupied by either of two species.

where Q is the total number of possible configurations that the system can adopt. For placing m1
objects of type 1 and m; objects of type 2 on a lattice of m sites the total number of configurations is

I
Q _ m- (7.2.2)

mllmgl

where the terms in the denominator take account of the fact that the m1 molecules of type 1 are
indistinguishable from one another, as are the m2 molecules of type 2 (compare this with Equation
6.7.2). Stirling’s approximation (In NI azN ln N—N for large N) is used to get rid of the factorials,
just as in Section 6.7:

Sm : k{lnm!~——lnm1!—lnm2!}
= k{mlnm — m — mllnm1+ m1— m2 lnmg + m2}
2 k{(m1+ m2)ln(m1+ m2) —~ m1 ln m1 —~ m2 ln m2}
= ~—k{m1(ln m1 — ln m) + 1722(1a — In 172)}
= —k{m11nx1 + 1722111162} (723)

Now the configurational entropy for each pure component (and we are assuming that configur-
ational entropy is the only source of entropy) is zero:

I
51 21min] :klnT—E: 0

m1.
(7.2.4)

I
52 = kind2 =k1nm—2;= 0

m2.
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so Equation 7.2.3 is actually the change in entropy with mixing

ASm = Sm # Sl —- 52 = —k(m11nx1 + m2 lnxg) (7.2.5a)

This expression applies to the entire mixture, and could also be written

ASm 2: —R{n1 lnxl + nglnxg} (7.2.5b)

where we have factored out Nav. It is often useful to have an intensive expression, i.e., the entropy
of mixing per lattice site (and therefore per molecule)

ASm = 46051111151 +x2 111362) (7.2.5c)

or per mole of lattice sites (and therefore, in this case, per mole of molecules)

ASm = -—R{x11nx1 +x2 111.152} (725d)

It is important to recognize that Equation 7.2.5a through Equation 7.2.5d are all the same in
physical content, but different in units, and one must be careful to use the apprOpriate form of AS“,
in calculations.

There are three important features to this expression for A3,“.

1. As x1 and x2 are always between 0 and 1 in a mixture, the natural logarithm terms are always
negative and the overall AS“, > 0. Therefore, configurational entropy always favors spontan-
eous mixing.

2. The expression is symmetric with respect to exchange of 1 and 2, which is a consequence of
the assumption of equal molecular sizes. In real mixtures this condition will be hard to satisfy.

3. This calculation of the entropy assumed that all configurations on the lattice were equally
probable, i.e., there was no energetic benefit or price for having 1 next to 1 and 2 next to 2,
versus having 1 next to 2. If there were such an energy term, each configuration ought to be
further weighted by the appropriate Boltzmann factor exp[—E/RT], where E is the total energy
of that configuration.

7.2.2 Regular Solution Theory: Enthalpy of Mixing

We now compute the enthalpy of mixing for this model, Mn“, and will assume that the resulting
energy term is sufficiently small that it does not matter in A5,“. First, we assume that AH“, = AUm,
in other words no p — V terms contribute to H; this is consistent with the lattice approach and
emphasizes that we assume there is no volume change on mixing. We introduce the interaction
energies in the pure state, w“ and W22, which act between two molecules of type 1 and between
two molecules of type 2, respectively; this is shown schematically in Figure 7.2a. All molecules
attract one another by dispersion forces, so w” and W22 are negative. Under these assumptions the
enthalpy in the pure state is given by

H1 =
Emlzwn

(7.2.6)
H2 =

”imzZs

which means each molecule has 2 neighbors and therefore 2 interactions, but we divide by 2
because there is only w” worth of interaction energy per pair of molecules. We are also assuming
that molecules only interact with their nearest neighbors.

In the mixture we assume that the placement of 1 and 2 is completely random, as in the
calculation of A5,“. Thus the probability that a neighboring site is occupied by a molecule of type
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Figure 7.2 Illustration of pairwise nearest—neighbor interaction energies, WU, in (a) the pure components and
(b) a mixture.

1 or 2 is given by x1 or x2, respectively. If we call the interaction energy between molecules
1 and 2 Wu (wlz is also negative), then (see Figure 7.2b)

1
Hnn =

Em1(zx1w“
+ zx2w12)+

§m2(zx1w12
+ zx2w22) (7.2.7)

and thus

AHm =Hm —H1—H2

1
:

§z{w12(m1x2
+ ”1211) ‘i— W11(m1X1 ‘— ”10+ W22(m2x2 "“ m2)}

1

{ (21711”?2)

mlmz mlfl’Q
=—Z W12 ‘W11( )‘W22( )2 m m m

: 2(w12 _K1_l_323) : mlmg zAw (7.2.8)
m. 2 2 m

We define an exchange energy Aw : (wlrwl 1/2 — w22/2), which represents the difference between
the attractive cross-interaction of l and 2 and the average self-interaction of 1 with 1 and 2 with 2.
For dispersion forces, and for the regular solution theory, Aw 2 0, as we will discuss in Section 7.6;
this is a manifestation of “like prefers like,” indicating that the self-interactions are more attractive
than cross-interactions. For now, however, we can just take it as an energy parameter that is
probably positive.

We make a further definition, that of the interaction parameter, x:

__ zAw2— .2.9X kT (7 )

which is the exchange energy per molecule, normalized by the thermal energy Id". In other words,
X is the fraction of H" you must pay in order to lift one molecule of type 1 out of its beaker, one
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molecule of type 2 out of its beaker, and exchange them. Note that although X is dimensionless,
its value does depend on the chosen size of the lattice site, through Aw. Using this definition we
can write

AHm = m1X2XkT = nixsT (7.2.10a)

for the whole system, or

AH,“ = xlk (7.2.10b)

per lattice site or molecule, and

AHm = xlxsT (7.2.10c)

per mole. When X is positive AH", is positive, and therefore Opposes Spontaneous mixing. We can
now express the free energy of mixing, AGm : AHm—TASm as

AGm
F

= (r11 lnxl + n; lnX2 + HIJQX) (72-113)

for the system as a whole, or

AGm _
77—,—

= (x1 lnx1 + xz lnxz + x1x2x) (7-2-11b)

per site. The first two terms represent the entropy, and, as noted above, they favor mixing, whereas
the last enthalpic term is assumed to be positive and therefore opposes mixing. The second form of
A6,“, Equation 7.2.11b, is probably the easier one to remember because of its obvious symmetry.
However, when we subsequently compute chemical potentials, we will need to take partial
derivatives with respect to 121 and 112, and the form in Equation 7.2.11a will be more appropriate.
The implications of regular solution theory, particularly in terms of the predictions for the phase
behavior, will be discussed in Section 7.5.

Example 7.1
Assuming that w“, W12, and W22 are approximately —1.17 x 10’20, — 1.08 x 10—20, and
— 1.01 x 10—20 J for toluene and cyclohexane, respectively, estimate the free energy of mixing
for 1 mol of toluene with 1 mol of cyclohexane at room temperature. (We will see in Section 7.6
how these interaction energies can be estimated from experimental measurements.)

Solution
We will first calculate a value for X, and then substitute into Equation 7.2.11a. We need to assume
a value of the coordination number, 2; it is typically about 10 for small molecule liquids (recall that
in a close—packed lattice of spheres there are 12 nearest neighbors).

ZAW 10 1.17 +1.01 _,0:_g —1.08 “ 10 20.24X H (1.4 x 10-23)(298){ + l X

We have r11: r12: 1, and x1 =x2=O.5, so

AGm

F = ln(0.5) + ln(0.5) + (0.5 x 0.24) = 4.3
For the mixture of 2 mol the total free energy of mixing is therefore (— 1.3 x 2 X 8.3 x 298) m -6.5
kJ. Although we should not take the exact numbers too seriously, the overall negative sign confirms
our expectation that toluene and cyclohexane should be quite happy to mix, even though X is
positive.
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Before proceeding to polymer solutions, one further comment about this derivation of AG", is in
order. In computing AHm we assumed completely random mixing, as in Equation 7.2.7. But, if X is
nonzero, there will presumably be some finite preference for “clustering,” e.g., 1 with 1 and 2 with
2 if x> 0. Thus the probability that a lattice site immediately adjacent to a type 1 molecule is
occupied by another 1 may actually be larger than x1 and the same for component 2. This
possibility is simply not accommodated in the model and represents a fundamental limitation.
A theory that assumes that the local interactions are determined solely by the bulk average
composition, i.e., x1 and x2 in this case, is called a “mean—field” theory. We will encounter
other examples of mean—field theories in this book. They are popular, as one might expect, because
they are relatively tractable; it also tums out that in many polymer problems, especially in
undiluted polymers, they are remarkably reliable.

7.3 Flory—Huggins Theory
Flory and Huggins independently considered AG", for polymer solutions, and the essence of their
model is developed here [1,2]. As noted in the previous section, the Flory—Huggins theory is a
natural extension of regular solution theory to the case where at least one of the components is
polymeric. To proceed, we will adopt the same lattice model as before, with one important
difference. We choose the lattice site to have the volume of one solvent molecule (subscript 1)
and each polymer (subscript 2) occupies N lattice sites. This is illustrated in Figure 7.3. Thus N is
proportional to the degree of polymerization, but the monomer unit is now defined to have the
same volume as the solvent. (Equivalently, N is the ratio of the molar volume of the polymer to that
of the solvent.) We will refer to this subunit of the polymer as a “segment.” We will also switch
from mole fractions to volume fractions, qbl and (152, in describing composition. We do this because
in order to use moles accurately with polymers, one needs to know the molecular weight precisely,
and one also has to know the full molecular weight distribution, whereas the volume fraction is
easily obtained from the measured mass and known densities. (However, we will need to be a little
careful in some thermodynamic manipulations in subsequent sections, where for example the
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Figure 7.3 Section of a two-dimensional square lattice with each site occupied either by a solvent molecule
or a polymer segment.
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chemical potential should be calculated by taking partial derivatives with respect to the number of
moles.) Accordingly, the volume fractions are defined as

a _ m‘
1—m1+Nm2

731

2—m1+Nm2

where the total number of lattice sites m is now given by m, +Nm2.
There are at least two ways to obtain the Flory—Huggins entropy of mixing; one is rather

informal, but is very simple, whereas the other is more careful in the application of the model, but
algebraically tedious. We shall go through both, but you may wish to skip the longer version on the
first pass.

7.3.1 Flory—Huggins Theory: EntrOpy of Mixing by a Quick Route

The polymer molecule has many internal degrees of freedom, as described in Chapter 6. However,
we can assume that the number of conformational degrees of freedom is the same in the solution as
in the pure polymer; in other words, the polymer is the same random coil with the same segment
distribution function in the bulk as in solution. Thus the only configurational entropy of mixing
comes from the increased possibilities for placing the center of mass. The polymers occupy n
sites in the bulk polymer, and the number of possible locations for the center of mass is thus
proportional to Nmz. On the other hand, in the mixture the number of locations is proportional to
m1 + Nmz. Thus for one polymer molecule (recall Equation 7.2.1)

ASm; N kln(m1 + Nmz) — klnNmz = ——klnd>2 (7.3.2)

where the unspecified proportionality factor drops out in the ratio. A similar argument holds for
each solvent molecule, and therefore

as“,l = ——klnd>1 (7.3.3)
To obtain AS", for the entire system, we multiply the respective terms by the number of molecules
of each type, and sum:

ASH-l = _k(m1 111$] + m2 lnéz) : ——R(n1 1nd” + n21n¢2) (7.3.43)

If we compare this expression with Equation 7.2.5 for regular solution theory, the only change is the
switch to volume fractions. Furthermore, if we let N = 1, then (:51 =xl and qbz=x2, and regular
solution theory can be recovered as a special case of the Flory—Huggins model. To obtain the
expression for AS", per site, we divide by m 2 m1 + Nmz:

as... = —k(£;1—lln<;bl N;- lnaz) = —k (a, ma, +% 111(1),) (7.3.4b)

This expression has the same physical content as Equation 7.3.4a, but it brings out the importance
of N. Because N is usually a large number, the contribution to the entropy of mixing from the
polymer is very small, often almost negligible. Thus immediately we can predict that for systems
with X > 0, where spontaneous mixing is driven only by A5,“, it will be harder to mix a solvent with
a polymer than with another small molecule.

7.3.2 Flory—Huggins Theory: Entropy of Mixing by a Longer Route

Herewith a more detailed derivation is presented. Let us suppose we have added 5 polymers onto
the lattice and we inquire about the number of possibilities for placing the (i + 1)th chain. At this
moment, the probability that a lattice site does not contain a monomer is f, = 1 —— (iN/m), where m is
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again the total number of sites. Now we add the next polymer segment by segment (and assume f,- is
constant throughout the process). The first segment has 771 —— iN choices, the second has zf,, and the
third and all subsequent segments have (2 — l)f,— choices. The number of configurations available to
the (i + 1)th chain, 0,, is thus

“(+1 = (m -- iN)(z)(f,—)(z _ 1)N—2(fi)N—2

m __ iN
N—l

% (m _ WXZ —
DIV—1(7) (73.5)

where we neglect the difference between 2 and z—l in one term. The total number of configur-
ations for adding m2 polymers in succession is therefore

1
(Hg—1

1
3712—1

m __ iN
N-1

0 = ——, 0m = —, H (m —— 7N)(z —— 1)N"‘(————)
”12. i=0 7712. £20 772

1 Z _1
Mg(N—I) 012—1

. N= 7<
m ) H (m — 7N) (7.3.6)' i=0

where the factor of l/mgl takes care of the fact that the polymers are indistinguishable. Now we
need to play a trick to deal with the term inside the product. Consider the following ratio of
factorials:

(maiN)! __(m—iN)(m—iN-—1)---(m——iN—N)!
(m—-(i+1)N)!

_
(m— iN—N)!

=(m—iN)(m—iN—1)---(m——iN—N+ 1)::s(m——iN)N (7.3.7)

where the last transformation invokes a dilute solution approximation: iN < m always, and W > N
for all but a few values of i. This now allows us to replace the product of powers in the last version
of Equation 7.3.6 with a ratio of factorials:

1 2-1 m2(""”’"2“1 (m—iN)! 1 2—1 WW”)
m_2!( m ) 1;! (m—iN—N)!:?nj( m )

{m!(m—N)!-~(m—(m2
—1)N)!

}(m —N)!(m — 2N)! - - - (m — mzN)!
1 z—l "MN—l) m! m' z—l m2(N—l)

#777;( m ) (m—mzN)!fl—m1!m2!(m )
(7.3.8)

where the last step recognizes that m1 2 m — mgN. Now we are ready for help from Mr. Stirling:

—1
lnflmt=1nm!—lnm1!—lnm2!+m2(N — l)ln(z )

m
= mlnm —# m — mllnm1+m1— mzlnmz +m2 +m2(N —1)ln(z — 1) ~— m2(N ~1)lnm

:(m1+m2)ln(m1+Nm2)H m1 lnml — m2 11'l — m2(N -—1)(1—ln(z — 1))

(7.3.9)

where the last line took a little algebra. Anyway, this now gives us .3m 2 k In 0,0,. To obtain S for
the pure polymer and pure solvent, we can set either ml or m; = 0 in Equation 7.3.9, respectively:

lnfll :mllnml —m11nm1=0
(7310)11102 = mzlnmzN _ m2 1a , mgav —1)(1—ln(z — 1)) ' ’
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Finally, then

ASm 7— k{(m1 + m2) ln(m1 + mzN) — m1 ln m1 — m2 ln(m2N)}
N N: k{m1

Wm)
+ m, 1,,(ml+_mz) }m1 m2N

= ——k{m1 lnqbl + m2 lnqbz}
= —R{n1 ms, + n; 111%} (7.3.11)

which is exactly the result obtained in the previous section. Next time, you will probably just settle
for the simple argument!

7.3.3 Flory—Huggins Theory: Enthalpy of Mixing

The expression for the enthalpy of mixing in Flory—Huggins theory is exactly that for regular
solution theory, once the substitutions of (p1 and (152 for x1 and x2 have been made. This can be seen
because the enthalpy was computed on a lattice site basis with only local interactions and the
calculation would not be changed by linking the monomers together. (This is not strictly true,
because now for each monomer there are only 2—2 neighboring sites that could be occupied by
either monomer or solvent; two sites are required to be other monomers by covalent attachment.
However, as 2 and Aw do not appear independently in the final expression for A0,“, but are
subsumed into the parameter x, and we do not know Aw exactly anyway, we ignore this
complication.) Thus we can write

AH,“ = ”11%k = mafia/RT (7.3.12a)

for the system, and

AH,“ = cplqfizk (7.3.12b)

per site. Combining the expressions for AS"1 and AH"1 we arrive at the final result:

AG,1n
F:

m lncpl +112 lnqfi2+n1q§2X (7.3.133)

for the system, and

AG,1n (b
H =q3llnq51 +W21n¢2+¢1¢2x (7.3.13b)

per site.
The main features of Equation 7.3.13a and Equation 7.3.13b are that the entropy terms always

favor mixing, the enthalpy opposes mixing when x>0, and the big difference from regular
solution theory is the factor of N reducing the polymer contribution to the entropy of mixing.
These expressions are very powerful, as they can be used to calculate many thermodynamic
quantities of interest. For example, in the next two sections we will develop the explicit predictions
of the model for two experimentally important quantities, the osmotic pressure and the phase
diagram, respectively.

One further point to bring out now, however, is how problematic the mean-field assumption can
be for dilute polymer solutions. This is illustrated schematically in Figure 7.4, where a dilute
solution is pictured, along with a trajectory through the solution that happens to pass through
two coils. Also shown is the “local” monomer concentration along that trajectory. It has two
regions where the trajectory passes through the coils, and the local concentration of monomers is
significantly higher than the solution average, (:52. However, there are also substantial regions
between coils where the actual monomer concentration is zero. In other words, chain connectivity
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Figure 7.4 Illustration of the failure of the mean-field assumption in dilute solutions: The local concentra-
tion along some arbitrary trajectory fluctuates between higher than average, inside a polymer coil, and lower
than average, outside a coil.

guarantees that monomers are clustered in space, whereas the model assumes that the local
concentration is uniformly c152 throughout the sample. This turns out to be a major limitation to
the quantitative application of Flory—Huggins theory to dilute solutions; however, it also suggests
that the theory should get progressively better when the concentration is increased, and the coils
begin to interpenetrate. This turns out to be the case.

7.3.4 Flory—Huggins Theory: Summary of Assumptions

At this point it is worthwhile to summarize the main assumptions employed in order to arrive at the
expression for the free energy of mixing, Equation 7.3.13.

1. There is no volume change on mixing, and VI = 171, V; = 172 are independent of concen-
tration.
AS", is entirely the ideal combinatorial entropy of mixing.
AH", is entirely the internal energy of mixing.
Both AS"1 and AH", are computed assuming entirely random mixing.
The interactions are short-ranged (nearest neighbors only), isotropic, and pairwise additive.
The local concentration is always given by the bulk average composition (the mean—field
assumption).

99:359.“

7.4 Osmotic Pressure

In this section we consider the osmotic pressure, H, of a dilute, uncharged polymer solution. First,
we will develop the virial expansion for I], which is based on general thermodynamic principles
and therefore completely model-independent. We will learn how measurements of H can be used
to determine the number—average molecular weight of a polymer, and how the so-called second
virial coefficient, B, is a diagnostic of the quality of a solvent for a given polymer. Then we will
return to the Flory—Huggins theory, and see what it predicts for H and B. This will lead us to our
first working definition of a theta solvent, a very important concept in polymer solutions. Finally.
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the concept of osmotic pressure will turn out later to be central to understanding scattering
experiments (see Chapter 8). In short, this is a very important section.

7.4.1 Osmotic Pressure: General Case

The experiment is illustrated schematically in Figure 7.5. A thermostated chamber at pressure p0
and temperature T is divided into two compartments by a semipermeable membrane; the
membrane passes solvent easily, but is impermeable to polymers (e.g., because of their size).
There is a thin tube emerging from the top of each compartment and the height of the fluid in each
tube reflects the pressure in that compartment. The compartment on the left is full of pure solvent,
which therefore has its standard state chemical potential it? (T, p0). The compartment on the right
has a dilute polymer solution of known concentration, c (in g/mL), and therefore at the instant the
solution is introduced into its compartment, the solvent component has a different chemical
potential, ul. To reach equilibrium, so that the solvent chemical potential is equal on both sides
of the membrane, there must be a net flow of solvent from the left compartment to the right. This
can be easily seen, in that the simplest way to equalize the two chemical potentials would be to
have equal polymer concentrations on each side. As the polymer cannot move from right to left,
some solvent must move from left to right. However, because the solution in the right is contained,
the influx of solvent increases the column of solvent in the tube, i.e., the pressure goes up. This
increase in pressure defines the osmotic pressure, H, and ultimately U will oppose further solvent
transfer. At equilibrium, then,

P0+H 8M1mm) = m (m + H) = MAT-.100) +l (7,M (7.4.1)
Po p T

From Equation 7.1.12 we recall that the integrand in Equation 7.4.1 is just the partial molar volume
of the solvent, V1. We can assume this is constant over the relatively small pressure change, H,
and thus

MilTaPO) = m (Tape) + UV: (7.4.2)
Rearranging, we obtain

1i1 = [1,? — 1.1.1 = ——RT 1n a1 = —RTln71x1 e —RTlnx1 (7.4.3)

Pure solvent
#i (T. P0)

Solution
#1 (T, P0 ‘l' H)

Semipermeable membrane

Figure 7.5 Schematic diagram of the osmotic pressure experiment, and the operational definition of the
osmotic pressure, H.
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where we have recalled the definition of the solvent activity, al, from Equation 7.1.13, and
recognized that 71, the activity coefficient, will approach 1 in sufficiently dilute solution.
Converting to the polymer concentration, x2 = 1 —- x1, gives

H 1 x2
—:—:'ln1—x 95:- 7..44RT V1 ( 2) V1

( )

recalling again that ln(1 ——x) x —x for small x. In order to allow for the effects of finite solute
concentration, it is customary to expand the right-hand side of Equation 7.4.4 in powers of x2, a
virial expansion:

H x2 2 3
fi:—V‘I+BX2+B3X2+

"' (7.4.5)

To replace x2 with “practical” polymer units, such as c, we recall that c = nzM/V where M is the
molecular weight and V is the solution volume. Thus

n2 cV/M N V16
2 : __ 7.4.

n1+n2 (V/v,)+(cV/M) M ( 6)352

The last simplification in Equation 7.4.6 is equivalent to ignoring n2 relative to n1 in the
denominator. For a solution with c = 0.01 g/mL, M = 100,000 g/mol, and V in mL, n2/V will be
104, whereas nl/V will be about 10‘2 (if the solvent density n 1 g/mL and molecular weight
a 100 g/mol), so this is a very reasonable approximation. Substituting Equation 7.4.6 into Equation
7.4.5 leads to

%=KZ—+BV§(fi)2+o--=fi+3c2+33c3+m (7.4.7a)

where B is called the second virial coefficient: it has units of cm3 mol/gz. The quantity B3, the third
virial coefficient, reflects ternary or three-body interactions, and is important when (3 is large
enough and when B is small enough; we will not consider it further here. Equation 7.4.7a is the
central result of this section. The quantity on the left—hand side is measurable; of the quantities on
the right, c is determined by solution preparation, and M and B are determined by examining the c
dependence of H. In Figure 7.6a H/RT is plotted against c for three different values of B: B > 0,

I—l—t—II—l—I—II—I—rIUIIuu'nlllluv—I—r """"'l""""'I""""'
I'
I.
l- .r
..

I‘l/FIT
I‘l/cFlT

(a) 0.9/ml- (b) c,g/mL

Figure 7.6 Generic plots of osmotic pressure versus concentration for dilute polymer solutions: (a) [NET
versus 6 and (b) H/CRT versus 0, for the indicated values of B. Note the curvature at high c clue to three-body
interactions (the 63 term in Equation 7.4.7a).
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B = O, and B < O. In Figure 7.6b we choose a second format, obtained by dividing Equation 7.4.7a
through by c:

H 1__ = _ B . . . 7.4.7bcRT M + C + ( )

This format is often employed in practice and reveals clearly that the molecular weight is determined
from the y-intercept of the plot and the sign of B corresponds to the sign of the initial slope.

So, the experimental approach is clear enough: Measure H for a series of solutions of known c,
with c sufficiently low that higher order terms in the virial expansion are not too important. But,
what does Equation 7.4.7a mean physically?

l. The first term in Equation 7.4.7a, c/M, is the number of molecules per unit volume (in
mol/cm3). Thus, in the very dilute limit, the osmotic pressure is determined only by the
number of solute molecules, whatever they may be. This is characteristic of all colligative
properties, including H, freezing point depression, and boiling point elevation. However, as c
increases, there will be binary solute—solute interactions. The second term, proportional to c2,
accounts for these. Now there are three possibilities:

2. If the polymers are in a good solvent, monomers on different chains are happy enough to be
surrounded by solvent; when two coils approach one another, there is steric repulsion (i.e.,
excluded volume) and the chains separate. Therefore, the coil—coil interaction is effectively
repulsive. This corresponds to B > 0; it means there is an even greater drive for solvent to flow
into the right compartment and dilute the solution.

3. Conversely, if the solvent is poor, such that the polymer is barely able to stay dissolved in
solution, monomers find it energetically favorable to be close to other monomers. Thus when
two coils approach one another, there is a tendency to cluster. In this case, B <0 and the
effectively attractive solute—solute interactions resist the uptake of further solvent.

4. There is a special intermediate case where B =0. This corresponds to a “not-very—good‘”
solvent where the excluded volume and relatively unfavorable solvent—solute interactions
cancel one another in the net H. This case is given a special name; following Flory, it is
called a theta solvent [3]. We will explore the significance of a theta solvent in more detail
subsequently.

5. It is worth pointing out that there is an analogy with the van der Waals equation of state for 1
mol of an imperfect gas:

aV2) (V — ,3) 2 RT (7.4.8)(P +
in which B accounts for the excluded volume and a the intermolecular interactions. When this
equation is expanded in a virial series in the density (UV)

1 — a RTP _ + E_L_ 5,2_ 2 + __ + . . . 7.4.9
RT V V2 V3 ( )

the second virial coefficient is B—(oz/RT). This virial coefficient vanishes at a special
temperature, known as the Boyle point, when the excluded volume (B) and interaction (a/
RT) terms exactly cancel one another. Similarly, the theta temperature for a particular poly-
mer—solvent system is the temperature at which B vanishes due to a cancelation of effects from
excluded volume and net polymer—polymer interactions. It is important to realize, however,
that it is not the excluded volume itself that vanishes, but just its effect on the osmotic pressure.

7.4.1.1 Number-Average Molecular Weight

We noted previously that moles were a troublesome unit for polymers, in part because of the
inevitable molecular weight distribution. Now we can address the important issue of what average
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M will the osmotic pressure experiment measure for a polydisperse sample? The answer is
appealingly simple and rigorous; as a colligative property, H at infinite dilution depends only
on the number of solute molecules per unit volume, and therefore should determine the number-
average molecular weight, Mn. To see that this is indeed so, we can write for very dilute
solutions:

RTC c,-: __ : __ 7.4.H M RT: M1 ( 10)

for a distribution of molecular weights, M,-. Next we form the ratio

mm H
-

Eel/M.- _ ZniMdl/MWV
C-—’0 CRT

-
E: C;

E
Z n;M,-/V

_ Z 72,- __ l—
ZniM,

T
Mn (7.4.11)

where we recall the definition of Mn from Chapter 1. Thus a properly conducted osmotic pressure
measurement can determine the absolute value of Mn.

Example 7.2
To illustrate the typical magnitude of the osmotic pressure and the extraction of values of Mn and
B, consider the following data for IT (in atm) for a polystyrene sample in cyclohexane at three
temperatures. The data are also plotted in Figure 7.7a.

c (g/mL) 20.0°C 34.5°C 50.0°C

0.005 0.0061 0.0063 0.0067
0.010 0.0114 0.0124 0.0136
0.015 0.0173 0.0187 0.0203
0.020 0.0215 0.0255 0.0276
0.025 0.0276 0.0316 0.0354
0.030 0.0332 0.0381 0.0421
0.040 0.0405 0.0502 0.0580

Solution
For each data set, divide H by CRT, where R = 82.1 cm3 atm/K mol and T is in kelvin. The results are
plotted in Figure 7.7b. Then fit each data set to a straight line by linear regression (a hand calculator
is sufficient). The results are

200°C: Slope = B = —2.0 x 10“4 cm3 mol/g2
1/intercept : Mn 2 1.97 x 104 g/mol

345°C: Slope 2 B = 1.7 X 10—5 cm3 mol/g2

1/intercept 2- Mn 2 2.02 x 104 g/mol
50.0°C: 316pe = B : 1.2 X 10—4 cm3 mol/g2

1 /intercept 2 Mn = 2.00 x 104 g/mol

The three values of Mn are very comparable, as they should be. The values of B are consistent with
the notion that cyclohexane is a theta solvent for polystyrene at 345°C. The experimental value of
B is essentially zero at this temperature, considering the experimental uncertainty. Note also how
the plotting format of Figure 7.7b accentuates the scatter in the data.

____.-—
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Figure 7.7 Osmotic pressure for polystyrene in cyclohexane plotted as (a) H versus 0 and (b) H/CRT versus c,
at the indicated temperatures. The straight lines are linear regression fits. The data are provided in Example 7.2.

7.4.2 Osmotic Pressure: Flory—Huggins Theory

To conclude this section, we return to the Flory—Huggins expression for the free energy of mixing
for a polymer solution, Equation 7.3.13, and see what it predicts for H. From Equation 7.1.5 we can
write

— 6
“Hi/1 2 [.Ll #* M? = (“32; AGm) (7.412)

PI”:

so we need to take the derivative with respect to m of Equation 7.3.13, Le,

a
5%:{RT(n11n¢1—l—

712111s + 721(352X)}
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To find the answer, we recall qbl = 111/(111 +Nr12), and so

grazml-l—Nnfl—mIL
3’11 (111 + Nn2)2 (”I + NH2)

2 91 = (12¢.
N112 n1 (7.4.133)

similarly,

a a 1 — a — 2 —-
fl=———#((’51): —i= 952: QM" (7.4.13b)
8111 6711 8111 N712 I11 '

Proceeding with the differentiation of AG“, we have

11171
{

m am 122
(—15%) }———= — 1nd) +— +-—— —— + —

RT
1

Cb] ”1 $2 a
($2 ¢1¢2)X

1:— In 1—1;!) +¢ (144)+ (1)2}{ ( 2) 2 N X 2 (7.4.14)
where we choose to write everything in terms of the polymer concentration. The expansion of
ln(1 — (152) = —q§2 — chi/2 ~— - - - is used to get rid of the logarithm (we keep the dig/2 term here
because of the virial expansion to second order), and we take 17] over to the other side:

H 1 (162 1 1 2_ z :— __ _ __ _ _ + . . .RT v1 N v1 (X 2) $2 (7'4“)
Finally, we convert from (152 to c:

_ ig _ CNVl
2 —

M
—

M
(7.4.16)

and Obtain

H C
+

1 V N2 2 +_ 2 _ _ _ _..__C . . .

RT M 2 X 1W
(7.4.17)

and thus for the Flory—Huggins model,

1 _ N2 1 "172 1
(2 M2 2 v1 M2 ( )

This equation has two important features. First, when X: 1/2, then B =0 and we have a theta
solvent. Thus x: 1/2 represents a second operational definition of the theta point. For X > 1/2,
B < 0, and the solvent is poor, whereas for X < 1/2, the solvent is good. Figure 7.8 shows data for
3(7) for several polystyrenes in cyclohexane and the theta temperature is determined to be 345°C.
Second, 8 is predicted to be independent of molecular weight (note that N mM in Equation 7.4.17
and thus the M dependence cancels out). It turns out experimentally that this is not quite true; for
example B varies approximately as M ‘0'2 in good solvents. This incorrect prediction is a direct
consequence of the mean—field assumption that we discussed in the previous section.

7.5 Phase Behavior of Polymer Solutions
In this section we examine the phase behavior of a polymer solution, or, more precisely, we
consider the temperature-composition plane at fixed pressure and locate the regions where a
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Figure 7.8 Second virial coefficient for three polystyrenes in cyclohexane as a function of temperature.
The theta temperature based on these data alone lies between 34°C and 35°C. (From Yamakawa, H., Abe, F.,
and Einaga, Y., Macromolecules, 27, 5704, 1994.)

one—phase solution is stable, and where the mixture will undergo liquid-liquid phase separation
into two phases. We will do this first for regular solution theory, as a means to illustrate the
various concepts and steps in the procedure. Then we will return to Flory—Huggins theory and
see the consequences of having one component substantially larger in molecular weight than
the other.

7.5.1 Overview of the Phase Diagram

The phase diagram for a regular solution is shown schematically in Figure 7.9. It has the following
important features, which we will see how to calculate:

1. A critical point (Tc, x.) such that for T > Tc 3 one-phase solution is formed for all compositions.
2. A coexistence curve, or binodal, which describes the compositions of the two phases xi’ and xi"

that coexist at equilibrium, after liquid—liquid separation at some fixed T< TC. Any solution
prepared such that (T,x1) lies under the binodal will be out of equilibrium until it has
undergone phase separation.

3. A stability limit, or spinodal, which divides the two-phase region into a metastable window,
between the binodal and the spinodal, and an unstable region, below the spinodal. The
significance of the terms metastable and unstable will be explained subsequently. Note that
the binodal and spinodal curves meet at the critical point.

Qualitatively, of course, we should expect one-phase behavior at high T because AS,1n > 0, and
therefore -—TASm contributes an increasingly negative term to A6,“. However, although AGm < 0
is the criterion for spontaneous mixing, it by no means guarantees a single mixed phase, as we shall
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One-phase

(To: Xe)
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0 x1 1

Figure 7.9 Phase diagram (temperature versus mole fraction of component 1) for regular solution theory.
The binodal (coexistence curve) separates the one-phase region at high temperature from the two-phase region
at low temperature. The spinodal curve (stability limit) separates the unstable and metastable windows within
the two-phase region. The binodal and spinodal curves meet at a critical point.

see. To begin the analysis, we resolve the two contributions to AGm/RT from regular solution
theory (Equation 7.2.1 1):

AS
_Tm = xllnx1+ x2 11l

(7.5.1)

RT

and recall from its definition (Equation 7.2.9) that )(N l/T. These two functions are plotted in
Figure 7.10a and Figure 7.10b, respectively. Note that both are symmetric about x1 = 1/2, and that
in this format the entropy term is independent of T, whereas the enthalpy term is not (due to x).
Furthermore, we take X > 0, as expected by the theory. In Figure 7.10c we combine the two terms,
at two generic temperatures, one “high” and one “low.” At the higher T, X is so small that AG“.1
looks much like the AS", term; it is always concave up. However, at the lower T, the larger X in the
enthalpy term produces a “bump,” or local maximum in the free energy. This will turn out to have
profound consequences. Note that even at the lower T, AG,n < 0 for all compositions considered in
this example.

Phase separation will occur whenever the system can lower its total free energy by dividing into
two phases. If we prepare a solution with overall composition (x1), and then ask will it prefer to
separate into phases with compositions x; and xi" , we can find the answer simply by drawing a line
connecting the corresponding points on the AG,n curve (i.e., AGm(xf) to AGm(xf’)), as shown in
Figure 7.11a. Because AG“, is an extensive property, this line represents the hypothetical free
energy of a combination of two phases, xf and xi", for any overall composition On) that lies in
between. (Note that the relative proportions of the two phases with compositions x{ and x{’ are
determined once (x1) is selected, by the so-called lever rule.)

What we now realize is that, so long as AG,“ is concave up, this straight line will lie above AG,1n
at (x1) for any choice of xf and x1” , and therefore phase separation would increase the free energy.
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Figure 7.10 Predictions of regular solution theory for (a) entropy of mixing, plotted as —ASm/R; (b)
enthalpy of mixing, plotted as AHm/RT, for two temperatures; (c) free energy of mixing obtained by
combining panels (a) and (b), plotted as AGm/RT.

Thus “concave up” gives us the criterion for stability of the one—phase solution; the mathematical
expression of concave up is

2A
(a Gm) >0 (7.5.2)

TIP3x?

where the second derivative can be taken with respect to the mole fraction of any component. The
meaning of stability is this: In any mixture at a finite temperature, there will be spontaneous, small
local fluctuations in concentration 8x, such that there are small regions that have x1 bigger than the
average, and some regions where it is smaller. Now, by the argument given above, any such
fluctuation will actually increase the free energy; the straight line connecting (x1) — 8x1 and
(x1) + 8.151 will fall above AGm(x1). Consequently all these fluctuations will relax back to (11).
The importance of these spontaneous fluctuations will be taken up again in Chapter 8, where we
will show how they are the origin of light scattering.



268 Thermodynamics of Polymer Solutions

AGm AGm

A7120(1')

(a) i, x,» (b) X‘

AG”,
M109?

'
371109”)

3511209!) ”//
A(120(1") _

0 x1I X1" 1
(C)

Figure 7.11 Generic free energy of mixing versus composition curves. (a) If a solution with overall
composition between xf and x1” were to separate into two phases with compositions x{ and xi”, the resulting
free energy (the dashed line) would lie above the one-phase case (smooth curve). (b) Tangent construction
showing how the chemical potentials of the two components may be obtained for a given composition x{.
(c) Tangent construction finds the compositions of the two phases xf and xi" that would coexist at equilibrium,
for a system with overall composition between xl’ and x1” . Points a and [9 denote the inflection points of AGm,
which separate the metastable (x{ < x1 < (1,!) < x1 < xi") and unstable regions (a < x1 < 3)).

7.5.2 Finding the Binodal

Now consider the lower T curve in Figure 7.100, where AGm shows the bump. Here we can see that
if we prepared a solution with (x1) somewhere near the local maximum of A0,“, we could find an
x{ and am” such that the straight line between them would fall below the AG", curve for our (x1),
and phase separation should occur. In fact, there are many such pairs x1’ and x1" that would lower
AGm, so which pair is chosen? We recall the criteria for phase equilibria: T and p must be identical
in the two phases, and

mm) = mm”), #2060 = “20“”) (7.5.3)
The chemical potential of component 1 is the same in both phases and the chemical potential of
component 2 is equal in both phases. (Be careful with this; both relations must be satisfied
simultaneously, but it is not an equality between #1 and #2.) It turns out that there will be only
one solution (xl’,x1”) for both of these relations at a particular T, which we can identify by the
common tangent construction. We can write the free energy as the mole—weighted sum of the
chemical potentials (which are the partial molar free energies, Equation 7.1.5):

AGm = mApLI + ngAptz
or (7.5.4)

AG.“ = xlAP‘q + (1 —x1)A#2 = Aflz "I‘xlmiui — Ape)
where we have divided by the total number of moles to get to mole fractions, and where
Air,- 2 it, -— pf. Now imagine we draw a straight line that is tangent to AG", at some composition,
x’], as shown in Figure 7.11b. This line can be written generically as
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y : M + b (7.55)
Where it is the slope and b is the x1 = 0 intercept. But we chose )1 = AGm for x1 2 xi, so inserting
Equation 7.5.4 into Equation 7.5.5 we find

kx’, + b = Ange) + x’l[A,u.1(x'1) — Att2(x’1)] (7.5.6)

But this relation holds whatever x"1 we choose, so we can match the intercepts and slopes to obtain

5’ : Aflzlxl)
k = Au1(x’1) _. Ayala)

In other words, if we follow the tangent to the x1: 0 intercept, we obtain b = Au2(x’1), and if we
follow it to the x1 = 1 intercept, k + b = Anibal).

The argument so far applies for any AGm curve. Now if we have a AGm curve with a bump as
in Figure 7.11c, we can draw one straight line that is tangent to AGm at two particular points,
call them x1’ and x1”. From the argument above, the x1:0 intercept gives us both Att2(xf)
and Auz(x{’), so these two chemical potentials must be equal. By the same reasoning the other
intercept gives Aufixf) = Auloq"), and therefore we have shown that x1’ and x1” defined by the
common tangent are indeed the compositions of the two coexisting phases. (Warning: for regular
solution theory, where the AGm curve is symmetric, xf and x1” coincide with the local minima in the
AG,” curve, but this is not generally true.) So, in summary, one can locate the coexistence
concentrations by geometrical construction on a plot of AGm versus composition, or one could
do it from the analytical expressions for the two chemical potentials. However, the latter is
algebraically a little tricky, particularly because of the natural logarithm terms (see, for example,
Equation 7.4.14).

(7.5.7)

7.5.3 Finding the Spinodal

The next issue to address is the location of the spinodal, or stability limit. We have already
indicated the condition for stability, namely Equation 7.5.2. The stability limit, then, is found
where the second derivative of AGm changes sign, which defines an inflection point:

(62—13(33) = 0 on the spinodal (7.5.8)
8x,- Ta)

Returning to Figure 7.11c, we see that there are two inflection points, marked a and b, on each side
of the bump. Between these two compositions, the free energy is concave down, and we say the
solution for that (x1,7)-is unstable. What does this mean? For any small local fluctuation in
concentration 8x1, the straight line connecting x1 — 8x1 and x1 + 8x1 will fall below AGm(x1). These
fluctuations will therefore grow in amplitude and spatial extent; the mixture will spontaneously
phase separate into two phases with compositions x’l and x’l’ . Thus in a region where the AGm curve
is concave down, the solution is unstable with respect to any fluctuation in concentration. The
mechanism by which this phase separation occurs is called Spinoa’al decomposition, and it is quite
interesting in its own right. However, in this chapter we are concerned with thermodynamics, not
kinetics, so we will not pursue this here.

You may have noticed that there are two regions on the curve in Figure 7.11c, between x"1 and a,
and between b and x’l’ , where the curve is locally concave up, indicating stability, yet we already
know that the equilibrium state in these intervals should be liquid—liquid coexistence with
concentrations x’l and x’l’. What does this mean? These regions fall between the binodal and
spinodal, and are termed metastable. They are stable against small, spontaneous fluctuations, but
not globally stable against phase separation. Consequently, a system in the metastable region may
remain there indefinitely; it requires nucleation of a region of the new phase before separation
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Figure 7.12 Schematic illustration of the difference between stable, unstable, and metastable states.

proceeds. Nucleation, and the ensuing process of domain growth, is another interesting kinetic
process that we will not discuss here. However, metastability can be a wonderful thing; diamond is
metastable with respect to graphite, the equilibrium phase of carbon at room T and p, but no one
worries about diamonds transforming to graphite in their lifetime. A mechanical analogy is helpful
in distinguishing among stable, metastable, and unstable systems, as shown in Figure 7.12. The ball
in panel (a) may rattle around near the bottom of the bowl, but it will never come out; the system is
stable. The ball in panel (b) is precariously perched on top of the inverted bowl, and the slightest
breeze or vibration will knock it off; the system is unstable. The ball in panel (c) can rattle around
in the small depression, and may appear to be stable for long periods of time, but with a sufficiently
large impulse it will roll over the banier and downhill to a lower energy state; the system is
metastable. Only state (a) is an equilibrium state, but state (c) might not change in our lifetime.

7.5.4 Finding the Critical Point

The final feature to locate in the phase diagram is the critical point. We know it lies on the
spinodal, so it must satisfy Equation 7.5.8. But, we need another condition to make it a single,
special point. The easiest way to visualize this is to return to Figure 7.10c and the plots of AGm at
different temperatures. Phase separation occurs only when we have the bump in AGm, so the
critical point marks the temperature where the bump first appears. This also corresponds to the
temperature where the two inflection points merge into one and this is determined by

63%“,
3x?

) = O at the critical point (7-5.9)
’11P

We can understand this by realizing that as T approaches TC from below, one inflection point
moves to the right, and one to the left. The rate of change of the inflection point,
3/3xg(82AGm/3x,2), vanishes when the two meet.

Algebraic expressions for the spinodal and the critical point of regular solution theory can be
directly obtained as follows. The chemical potential for component 1 (and of course, by symmetry,
we could equally well use component 2) comes from differentiating AGm:
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3
1% :a—nl.{mlnx1+n21n(1—x1)+”1(1_xl)X}

121 6x1 ”2 (9)61 6x1
l“(1+)” 3m 1—x1 3n1+( xl)X n1

(.3a (7'5'10)
Now

6): n + n H n x x 2
4: 1 2

21:
12:12 (7.5.11)

3111 (HI + n2) )7] 722

so

i :lnx1+(1—x1)—(1*X1)+X(1*xl)2
RT

=lnx1+ )((1-351)2 (7'5'12)

The stability limit can now be obtained by taking the derivative with respect to x1:

3 M1 1
3x1 (RT) x1 XS( 161) (7 5 13)

where the subscript s denotes the value of X on the spinodal. (You should convince yourself that if
we followed the prescription for the stability limit given by Equation 7.5.8, and took the second
derivative of AGm/kT from Equation 7.2.1 lb with respect to x1 instead of first obtaining [L1, we
would get the same relation.) This equation is a quadratic in x1:

1x? —x1+—=0 (7.5.l4a)
2X5

Note that this relation can be rewritten in the appealingly symmetric form

1 1
X1 IQ

The critical point requires that we differentiate Equation 7.5.13 once more:

1a (——2X(1 —x1)) = —§,+2Xc:0 (75.15)
6.17] 1C] 1

Equation 7.5.14a and Equation 7.5.15 constitute two simultaneous equations that can be solved to
obtain the critical point (see Problem 9): The result is x1 1,, : 1/2 (which we could have guessed from
the outset, due to symmetry) and Xe : 2. This means that unless it costs at least 2kT to exchange one
molecule of type 1 with one molecule of type 2, there will be no phase separation. To obtain the
critical temperature for a particular system, Tc, we need to know the value of X (i.e., zAw):

__ zAw _ zAw_ _ ___. 7.5.161% 2k ( )C

Generically, however, we can see that the larger Aw, the larger TC will be, and therefore the larger
the two-phase window. If, perhaps due to some specific interactions, Aw happens to be negative,
there will be no critical point according to regular solution theory; the system will be completely
miscible at all temperatures and in all proportions.

7.5.5 Phase Diagram from Flory—Huggins Theory

Now we can repeat this entire procedure for the Flory—Huggins theory. The main difference will be
that the value of N breaks the symmetry of the AS“, expression and will produce an asymmetric
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phase diagram. We already found the expression for AMI/RT, in Equation 7.4.14, so we can start
from there. We should take derivatives with respect to x1, but in fact we can get away with the
much easier task of differentiating with respect to ($2. This is because 3/811); 2 (8x2/6¢2)6/3x2 and
as we will be setting the expressions equal to zero, 8x2/8gb2 will divide out. Also, 8/6qb2=

—— 8/8q51, so we can work with 1.1.1. Thus the spinodal curve can be found from

63 A1121 _ __a_ _ _i 2

Eb; (F)
_

6962
{1171(1 $2) + 9152 (1 N) +X¢2}

——l 1 l=.___+1_s_+2 =—'+—"‘2Xs=0 (7.5.17)1— an N m cm M
The critical point comes from

82
(Am)

~l
345% RT (1 *— 952,192 X ( )

or
1 l

Xe :__—_—_— (7.5.19)
2 (1 —

962,92

We can now substitute this relation into Equation 7.5.17

_1 1 (i520+ 1--)
+___,_=0 (7.5.20)

1 — €523 ( N (1 — <52,c)2
which is again a quadratic:

1 2d) 12 2c

a _—2/N+\/%+%(1—fv)_\/N—1§ m1
1° 2(1—,i,,) N—l (x/N—1)(\/N+1)

l 12 g _ 7.5.221 + m m ‘ )
Thus the critical polymer concentration depends inversely on x/N. For larger and larger N, qbc will
become lower and lower, approaching 0 as N—roo. Now to complete the analysis, we return to
Equation 7.5.19 and find Xci

1 1
_1(1+x/N)2_1(r+_2_+1)N x/NWm (m2 ‘5

So, as N increases, Xe approaches 1/2. Recall from regular solution theory (which we can obtain
from Flory—Huggins theory by setting N = 1) that Xe = 2 and gbc = 1/2. Thus, as we increase N, the
critical concentration moves more and more toward solutions dilute in polymer, and Xe becomes
smaller. For a given zAw, therefore, TC increases as N increases, meaning that polymers become
less likely to form a homogeneous solution at a given T as N increases. This is illustrated in Figure
7.13 for various values of N.

Recall an important result from the previous section: At the theta temperature B = 0 and X = 1/2.
Now we have a third definition of the theta temperature; it is the critical temperature for a given
polymer—solvent system in the limit of infinite molecular weight. A polymer will be completely
miscible with a solvent above the theta temperature, but anywhere below the theta temperature, there

(7.5.23)
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Figure 7.13 Phase diagrams for a polymer-solvent system with a theta temperature of 400 K, and N
values of 102, 3 X 102 and 103. Smooth curves are binodals, dashed curves are spinodals. (Reproduced from
Munk, P. and Aminabhavi, TM. in Introduction to Macromolecular Science, 2nd ed., Wiley, New York, 2002.
With permission.)

is a danger of phase separation. Furthermore, as a polydisperse solution is cooled below the theta
point, the higher molecular weight chains will tend to phase separate first, a feature which can be
used to advantage in fractionation.

Examples of the phase behavior of polymer solutions are presented in Figure 7.14. The classic
results of Shultz and Flory for polystyrene in cyclohexane and polyisobutylene in diisobutyl ketone
are reproduced in Figure 7.14a and Figure 7.14b, respectively. The data are experimental estimates
of the coexistence concentrations (binodal), with smooth curves drawn to guide the eye. The
dashed lines correspond to the predictions of the Flory—Huggins theory. It is clear from these
figures that the theory indeed captures the main features of the data, namely a critical concentration
that is small and decreases with increasing M, and a critical temperature that increases with
increasing M. Neither the shape of the binodal nor the exact concentration dependence of the
critical composition is correct, however. The critical temperatures for these two systems are plotted
as a function of M in Figure 7140, in a format suggested by Equation 7.5.23. The plots are linear,
and permit reliable determination of the theta temperatures, with values that are in good agreement
with those determined by locating B(T) = 0 (see Figure 7.8).

A third system, polystyrene in acetone, is illustrated in Figure 7.15. Here we see phenomena that are
not described by the theory at all, namely phase separation upon heating for certain values of M. For
example, forM = 10,300 there appear to be two critical temperatures, one just below 0°C and the other
just above 140°C. The solution would be two-phase for temperatures below the former and above the
latter and one-phase at intermediate temperatures. For M = 19,800, there is no temperature at which a
solution with 0.1 < qbz < 0.15 would be one-phase. What are we to make of this? First, there is nothing
in thermodynamics that forbids this kind of behavior. The Flory—Huggins theory, however, cannot
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Figure 7.14 Experimental coexistence curves compared to the Flory—Huggins theory (dashed curves) for
(a) polystyrene in cyclohexane and (b) polyisobutylene in diisobutylketone. (c) Resulting critical temperatures
versus degree of polymerization, plotted as suggested by Equation 7.5.23. (From Shultz, AR. and Flory, P.J.,
J. Am. Chem. Soc, 74, 4760, 1952. With permission.)

describe it (at least with )(> 0, see the next section) and thus this system illustrates some of the
qualitative limitations of the theory. The critical point on a phase boundary that separates a two~phase
region at low temperature from a one-phase region at high temperature is called an upper critical
solution temperature (UCST), whereas a critical point on a phase boundary that separates a two—phase
region at high temperature from a one-phase region at low temperature is called a lower critical
solution temperature (LCST). Thus for polystyrene in acetone with M : 10,300, both a UCST and an
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Figure 7.15 Experimental phase diagrams for polystyrene in acetone. (From Siow, K.S., Delmas, G., and
Patterson, D., Macromolecules, 5, 29, 1972. With permission.)

LCST are observed; the Flory—Huggins theory is only capable of predicting UCST behavior. (Note a
possible source of confusion: the lower critical temperature lies above the upper critical temperature.)

7.6 What's in X?
As we have seen, the phase behavior of a polymer solution is determined largely by the interaction
parameter X and by N. In this section we inspect some of the various ways to look at X- This will
give us some insight into how intermolecular interactions determine phase behavior. Furthermore,
it turns out that X is used in the research literature in a range of different specific ways and it is
important to see how that comes about.

7.6.1 X from Regular Solution Theory

We begin by returning to regular solution theory, and the initial definition of X in terms of zAw in
Equation 7.2.9. If we know something about the intermolecular interactions, we ought to be able to
say something more specific about wij rather than just leaving it as a parameter. For London
(dispersion) interactions, which are caused by spontaneous dipolar fluctuations on one molecule
inducing a dipole on another, the interaction energy is

Olga);

6.0
(7.6.1)WI.

. N —-

J
I“
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where a,- is the polarizability of molecule i, and n,— is the distance between molecules i and j.
Because wg falls off with distance so rapidly, we are justified in considering only nearest-neighbor
interactions (as in regular solution or Flory—Huggins theory). All atoms and molecules experience
this attractive (and fundamentally quantum mechanical) interaction, and for many molecules
without strong dipole moments or hydrogen bonds, it is the only interaction that matters. For
example, simple alkanes and inert gases form condensed phases primarily because of London
forces. Now if we have a lattice where we have imposed r,-,- = r},- = n, by design, then

W12 = “2% = “—3371- %Z = —1/W11W22 (7.6.2)
’12 r 11 r22

This particular “mixing rule” for w,—,- is called the Berthelot rule, and is certainly a plausible starting
point. Under this assumption, we have

2A ——z w 1w
1

w— ———~ ——12 2 11 zwzz

= .3 (4m+
[(m)2+(m)z])

(7.6.3)

Now we can see that because Aw can be written as a perfect square, it must be greater than or equal
to zero, which is why X2 0 in regular solution
theory and the Flory—Huggins theory. A

We can go further with this approach. The molar heat of vaporization for a pure substance, Uvap,
should be directly related to w, i.e.,

aiyap : "' avzfl 7..42 (6)

meaning that zw,,/2 is the interaction energy lost by removing one i molecule from the pure
substance The cohesive energy density (CED)1s defined by dividing U,- m, by the molar volume,
V,—, which1n regular solution theory13 just Avogadro’ 3 number times the lattice site volume:

CED—._ UMP = — s—ii _=_ 5? (7.6.5)I

i 1'

Here we have introduced the solubility parameter, 5, defined as \/ CED. The CED is usually given in
units ofcal/cm3, and thus 5 has the unusual units of (cal/cm?) ”2. Now we can rewrite Equation 7.6.3 as

x= Lo] 52? (7.6.6)RT

This is a very simple expression for X that is directly related to fundamental physical quantities (fivap,
CED, or 5). Note that1n the Flory—Huggins theory we have assumed no volume change on mixing, so
V1217] and the lattice size is defined by the solvent size. By examining a table of solubility
parameters (see examples in Table 7.1), an estimate of X can be quickly obtained. To obtain a
good solvent for a polymer, one could begin by seeking solvents with similar solubility parameters. ..
For small molecules the heat of vaporization can be measured precisely, but for polymers this is not
the case; thus solubility parameter values are obtained indirectly, and can be quite uncertain.

7.6.2 X from Experiment

It turns out that the solubility parameter approach to X does not work well as a predictive method
for polymer solutions. As a first example, consider polystyrene in cyclohexane, which is a theta
solvent at 345°C (see Figure 7.7 and Figure 7.8). We can calculate X by Equation 7.6.6, using
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Table 7.1 Solubility Values for Common Polymers and Solvents (Values for Polymers Are
Representative Only)

Polymer 6 (cal/cm3)”2 Solvent 6 (cal/cm3)”2

Poly(tetrafluoroethylene) 6.2 n-Hexane 7.3
Poly(dimethylsiloxane) 7.4 Cyclohexane 8.2
Polyisobutylene 7.9 Carbon tetrachloride 8.6
Polyethylene 7.9 Toluene 8.9
Polyisoprene 8.1 Ethyl acetate 9.1
1 ,4-Polybutadiene 8.3 Tetrahydrofuran 9.1
Polystyrene 9.1 Chloroform 9.3
Atactic polypropylene 9.2 Carbon disulfide 10.0
Poly(methyl methacrylate) 9.2 Dioxane 10.0
Poly(vinyl acetate) 9.4 Ethanol 12.7
Poly(vinyl chloride) 9.7 Methanol 14.5
Poly(ethylene oxide) 9.9 Water 23.4

Source: EA. Grulke in Polymer Handbook, Brandrup, J. and Immergut, E.H. (Eds), 3rd ed., Wiley, New York, 1989.

V1 m M/p = (84 g/mol)/(0.78 g/cm3) = 108 cm3/mol and R = 1.987 cal/K mol; the result is
X m 0.14. But, we know that X = 0.50 at the theta temperature, so we are off by almost a factor of
4! To see that this is not an isolated case, consider the following example.

Example 7.3
Three other reported theta systems are polyisoprene in dioxane at 34°C, poly(methyl methacrylate)
in carbon tetrachloride at 27°C, and poly(vinyl acetate) in ethanol at 19°C. Estimate X for each of
these cases, using Equation 7.6.6 and Table 7.1.

Solution
We will also need molecular weights and densities for the three solvents; they are approximately
88 g/mol and 1.03 g/cm3 for dioxane; 154 g/mol and 1.59 g/cm3 for carbon tetrachloride; 46 g/mol
and 0.79 g/cm3 for ethanol:

(88/ 1.03)_ 0—8. 2: .1(1.987x307)(1 1) 05Polyisoprene/dioxane: X m

(154/159)
(1.987 x 300)

(12.7 — 9.4)2= 1.1

Poly(methyl methacrylate)—carbon tetrachloride: X m (8.6 — 9.2)22 0.06

(46/079)Polyvinyl acetate-693““ X 7 mg?)
According to the theory, all three X values should be 0.5. In fact, one value is spot on, one is much
too small, and one is much too big.

What should we conclude from these calculations? First, the solubility parameter approach is
not quantitatively reliable for polymer solutions; the predicted value of X can be greater than, less
than, or very close to an experimental value. For at least one of the examples above, poly(vinyl
acetate) in ethanol, the possibility of hydrogen bonding invalidates the basic assumptions of the
theory, so we should not be too surprised by this result. For poly(methyl methacrylate) in carbon
tetrachloride, the predicted X is much too small. Based on comparisons of experiments with many
polymers and solvents, the following empirical equation is found to be a much more reliable route
to estimate X when the predicted value is less than about 0.3:

Avx = 0.34 + R—T‘ (81 — 82)2 (7.6.7)
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In the poly(methyl methacrylate)—-carbon tetrachloride and polystyrene—cyclohexane cases Equa-
tion 7.6.7 does a much better job, albeit still not perfect. From Equation 7.6.7 there appears to be a
nearly constant (and substantial) temperature-independent contribution to X in polymer—solvent
systems, which is not anticipated by the regular solution theory approach. The fact that the 0.34
term does not have an explicit temperature dependence suggests that it reflects an additional
entropy of mixing contribution, rather than the purely enthalpic X anticipated by the model.

This is but one example of the limitations of this theory; another was provided by the
polystyrene—acetone phase diagrams in Figure 7.15, where the observed LCST behavior cannot
be explained by an interaction parameter that follows Equation 7.6.6. Still other problems are
apparent from the solubility parameter values in Table 7.1. For example, poly(ethylene oxide) is
actually water-soluble, even though the difference between the two solubility parameters is huge.
This particular case involves hydrogen bonding and the rather unusual properties of water. In fact,
the assumptions of the theory are not consistent with any kind of strong or directional interaction,
such as those involving permanent dipoles or hydrogen bonds. The packing of dipoles can
influence the entropy of mixing through the various orientational degrees of freedom, which are
not included in the purely combinatorial entropy of the lattice model. Similarly, the energy of
interaction between two dipoles is very sensitive to the relative orientation, and the orientation of
one dipole will be sensitive to the positions and orientations of all neighbors. In short, there are
many ways in which the basic theory fails to incorporate important features of real systems,
especially when the interactions are strong and directional.

7.6.3 Further Approaches to X

Two questions should immediately come to mind. First, have we wasted our time examining the
Flory—Huggins theory in such detail, given that it fails to describe the thermodynamic properties of
polymer solutions quantitatively, and, in many cases, even qualitatively? Second, can we do
anything to rectify the situation? The answer to the first question is simple: no, we have not
wasted our time. All of the developments that we went through (finding expressions for IT, #4: and
mapping out the phase diagram, etc.) were model—independent thermodynamics. The model really
only entered through the explicit expression for AGm that we used (i.e., Equation 7.3.13), and all
differences between experiment and model predictions are directly attributable to inadequacies of
Equation 7.3.13. The answer to the second question is not so clear-cut. There are three general
strategies employed in the polymer community. One is to try and improve the model, for example
by identifying further interaction terms, additional sources of entropy, etc. This approach has been
pursued for many years. It has the virtue that it is possible to keep track of both the intended
meaning and quantitative effect of any added term in the expression for AGm. It has the drawback
that it is not yet generally successful if we try to restrict ourselves to only a small number of new
terms. A second strategy is known as the “equation of state” approach. In this case, the AGm
expression is recast in a general form, with a finite number of parameters. In many cases the
behavior of mixtures can be well predicted based on knowledge of the parameters of the pure
components, so it can be a very practical strategy. One disadvantage is that it is difficult to gain
much physical insight into the underlying molecular processes from the parameter values. The
third approach is the one most favored by experimentalists in polymer science, and so we will
examine this one a little more carefully. In essence it amounts to using X as a fitting function, not a
number, so that X takes on whatever attributes are necessary to describe the data.

In general the free energy of mixing can be divided into two parts, an ideal part (superscript id)
and an excess part (superscript ex):

A0“, = AGE + A0: = Mfg — rasig + AH: — ms: (7.6.8)
Furthermore, an ideal solution is defined as one for which

ASE = ——k(x1 1a + x2 lnxg), M3 = 0 (7.6.9)
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In other words, the entropy of mixing of an ideal solution is the purely combinatorial entropy of
mixing, and there is no enthalpy of mixing (i.e., it is an athermal solution). Now we can view
regular solution theory, or the Flory—Huggins theory, as making specific predictions for the excess
quantities, namely

lfl§:O,AH§:xmmU" 061m
The approach that is often adOpted is to define an effective interaction parameter Xeff in terms of
the experimentally accessible excess free energy of mixing (i.e., the experimentally measured AGm
less the ideal part from Equation 7.6.9):

AGE;i
E —— (7.6.11)Xeff

¢1¢2kT

This Xeff will therefore include all the ingredients that pertain to the system under study, but it is an
experimental result not a model prediction. The scientific literature is often very confusing on this
point. For example, relatively few authors will actually mention Equation 7.6.11, even though that
is what they are doing when they fit the data. Furthermore, quite a few will refer to this Xeff as the
“Flory—Huggins interaction parameter,” which it is not; the Flory—Huggins X is correctly given by
Equation 7.2.9.

Empirically, the Xeff function obtained by fitting data usually follows the form
a

nfi=f+6=n+xs nan)

where Xeff is sometimes resolved into two components, the “enthalpic part” Xh and the “entropic
part” Xs- Interestingly, the parameters a and B may each be positive or negative. A negative at
implies some kind of specific attractive interaction between the components, such as might occur if
one component was a hydrogen bond donor and the other an acceptor. The sign of B is harder to
interpret, but presumably reflects details of molecular packing. (Recall that in the lattice model we
assume that each molecule has the same shape, and fits neatly into the lattice site, so there is no
entropy associated with how the molecule is oriented within a site. For real molecules anisotropy
of shape is almost inevitable, but it is not necessarily obvious whether there will be more or less
packing possibilities per unit volume in the mixture compared to in the pure components, and
hence the sign of the excess entropy can be hard to predict.) These various possibilities for the
signs of a and B give some insight into the various kinds of phase diagram that arise; for example,
an LCST system would be the natural consequence of having oi < 0 and B > 0.

One final point about this experimental Xeff parameter: it very often exhibits a concentration
dependence, which is equivalent to saying that the excess free energy of mixing is not entirely
quadratic and symmetric with respect to components 1 and 2 (i.e., not AGE? 0-: (blag). This should
not be too surprising, given the great disparity in size and shape between a polymer and a solvent
molecule. This feature does have an important practical consequence, however. We can write the
free energy of mixing as

Afii ¢
k—T

= 9‘51 111q + F2 111952 + Xeff§b1<b2 (7.6.l3a)

and if we actually measure AGm in an experiment, we can extract Xeff directly. However, it is not
easy to measure AGm; more often we make a measurement that is really sensing a chemical
potential, such as the osmotic pressure. In this case, if we take Equation 7.4.14 and substitute Xeff
for x, we would have

H_V1__ 1
RT _ {1n(1—<p2)+<;b2(1——)+cfqbg} (7.6.13b)N
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The resulting Xeff would be different from that obtained from Equation 7.6.13a. The reason is that
in obtaining Equation 7.6.13b from Equation 7.6.13a we took a derivative with respect to a
concentration variable, but under the assumption that X was not a function of concentration.
When X is a function of concentration, the derivative will yield an additional term involving
6Xeff/8qb. As we will see in Chapter 8, a scattering experiment actually measures the second
derivative of AGm, and thus the answer includes both first and second derivatives of Xeff.
Consequently, one must be very careful in comparing the values of Xeff obtained by different
experiments. This issue is explored further in Problem 7.10.

7.7 Excluded Volume and Chains in a Good Solvent

We now return to this rather tricky problem, armed with enough information to say something
useful. In Chapter 6 we examined in detail the mean-square radius of gyration, and the segment
distribution function, for flexible chains. As pointed out then, we left out one very important
physical feature, namely that a real polymer chain cannot intersect itself. We modeled the chain as
a random walk, whereas in reality it is a self-avoiding walk. The current best estimate of the exact
result for a self-avoiding walk is Rg ~N 0589, but we follow common practice and approximate this
relation as Rg ~N0'6. The problem of a polymer in solution has another aspect we did not consider
in Chapter 6, namely that there will generally be some interaction energy between a polymer
segment and a solvent molecule. In an athermal solvent (AI-1m = 0), X = 0, and there is no energetic
price to pay for having a solvent molecule next to a polymer segment. In such a case the full self-
avoiding walk statistics apply, and the chain is larger than its unperturbed dimensions described by
Equation 6.5.3. Often this coil is said to be “swollen,” and the degree of swelling or “coil
expansion” is quantified by the expansion factor, a:

R
a E i (7.7.1)

Rgp

where the subscript “0” denotes the unperturbed dimensions, as in Chapter 6. However, as X
increases, there is an increasing penalty for having solvent next to polymer and this will begin to
favor monomer—monomer contacts. Consequently, the coil starts to become more compact. If X
continues to increase, the coils eventually give up, collapse, and precipitate out of solution. It turns
out that there is a special value of X for which the unfavorable segment—solvent interactions
counteract the self-avoiding nature of the chain, and the random-walk conformation is recovered.
This value, as you may have guessed, is X = 1/2: a theta solvent. Thus theta solvents are of particular
value because they provide an environment in which we have a very full description of the
conformational statistics. In Section 7.4 we saw how the second virial coefficient, B, vanished in a
theta solvent, and this was attributed to the canceling of excluded volume effects between coils by
the unfavorable polymer—solvent interactions. In the discussion here we have been talking about
excluded volume interactions within a single coil, but unless one examines the theoretical issues
very deeply, this is a subtle distinction that can be ignored.

The preceding discussion gives an overview of the problem, but the fact that the exponent v
(defined by Rg NN” in Equation 6.6.1) takes on the approximate value 3/5 was just stated, as was
the fact that intramolecular excluded volume effects are canceled out at the theta temperature. In
the remainder of this section we will give a derivation of these results which, though far from
rigorous or detailed, at least provides some rationale.

Imagine a single polymer coil in a very good solvent, confined within a hypothetical spherical
semipermeable membrane which allows solvent in or out, but not polymer segments. Thus we are
imagining a “single solute molecule” osmotic pressure experiment, as shown in Figure 7.16. The
question is, as we increase N, how much does the radius of this spherical membrane, R, increase?
Solvent can flow in to swell (i.e., dilute) the segments, but the chain will be distorted away from
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Figure 7.16 Schematic illustration of the swelling of a coil in a good solvent as a “single chain osmotic
pressure” experiment.

random-walk statistics, and the larger the chain dimensions, the fewer the possible conformations.
Thus entropy resists unlimited coil expansion. The balance between the osmotic drive to swell and
the entropic drive to stay coiled up sets the ultimate dimensions. We estimate the “free energy” per
unit volume of this chain by a scaling argument, as follows [4]. (A scaling argument means that we
leave out unimportant numerical factors, and emphasize the dependence of R on the main variable,
in this case N. Also, we assume R will have the same dependence on N as does Rg.) The osmotic
part is driven by the segment—segment interactions, which we can write as V(T)(32 per unit volume:

F05 2— w v T 6 7.7.2kT ( ) ( )
where c is the number of segments per unit volume, and v(T) is the strength of the excluded
volume interaction between any two segments. (In particular, v w B, and the c2 dependence is just a
reflection of the probability of two segments coming into contact. Basically Equation 7.7.2 is the
second term of the virial expansion, Equation 7.4.7a; the first term does not matter because we can
let N become very large.) Now 0 w N/R3 and when we integrate F05 over the volume of the coil (we
assume FOS is the same everywhere, i.e., a mean-field approximation within the coil), we gain
another factor of R3:

N2 N2 N2

Jeoil
V(T)

Fd(V01ume)
: V(T)

EER3
:

1411)?
(713)

5.515 N
H"

Now we turn to the resistance to swelling, often referred to as an elastic or stretching penalty.
We will consider the elastic force that resists deforming a flexible chain in detail in Chapter 10; it
is the reason why rubber bands work. However, we can extract the main relation that we need now.
The elastic energy, Fe1: is proportional to —TS, where S is the entropy lost on stretching. If we
assume that we begin with a Gaussian chain, we can write

17,, ~ —TS :— —lnP(N,R)
-—3R2 3 it2

Thus the scaling argument says
Fe] R2—— m —_ 7.7.5
kT N ( )

and combining Equation 7.7.3 and Equation 7.7.5 we have
F N2 R2kt; ~ v(T) E + TV' (7.7.6)
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To find the desired relation between R and N, we minimize Fto, with respect to R:

d F N2 2R
HE (73:?) m our)??? + F 2 0 (7.7.7)

and so

R ~ v(T)1/5N3/5 ~ B(T)1/5N3/5 (7.7.8)

We can also recast this equation in terms of the expansion factor, a, by dividing each side by
R34) NNW, and then raising each side to the fifth power:

a5 m v(T)N1/2 (7.7.9)

The preceding argument is not quite right, but it actually succeeds by a partial cancelation of
errors. The osmotic term reflects a mean—field argument-——the probability of segment—segment
contact is taken to be uniformly 02 across the coil—which overestimates its importance. On the
other hand, the elastic part presupposes a Gaussian chain, which is also not quite correct.
Nevertheless, the argument is reasonably simple and it captures the essence of the problem:
a balance between excluded volume and coil distortion.

Flory and Krigbaum worked out a much more detailed version of this calculation [5], with
the result

a5 — a3 = 2CM G — @7117: (7.7.10)

where the prefactor CM is given by

C = 2 ,. 0 7.7.11M (7m) (M2N,.v.)( M i ( )
The quantities I72 and V, are the molar volumes of the polymer and solvent, reSpectively (which
are equal to the partial molar quantities in the Flory—Huggins theory). The differences between
Equation 7.7.9 and Equation 7.7.10 are the term in (13, which arises from an additional entropy
change for the chain due to the increased volume accessible to it, and the explicit expression for the
prefactor. The factor of (1/2 — x) in Equation 7.7.10 is proportional to B (recall Equation 7.4.18),
just as was v(T) in Equation 7.7.9.

Now we can briefly examine the implications of Equation 7.7.10.

1. In a theta solvent, X = 1/2, and so a = 1; there is no swelling. Thus in a theta solvent the chain
behaves as a random walk for all N large enough to be random walks.

2. In a good solvent, x<1/2, the chain swells (0: >1). In the limit of a very good solvent,
0:5 >> a3, and thus a5 N NU2 (Equation 7.7.9). Therefore,

R 5 N” 5
5 = g 1/2’1 (Ran) 0C (NI/2) “N

NV

N1/2
0C Nl/IO

Nu oc N5/10N1/10 = N3/5 (7.7.12)

This result, that v=3/5, is the classic result for the excluded volume (self—avoiding
walk) exponent that we cited before. The high N behavior in good and theta solvents is
illustrated in Figure 7.17, for polystyrene in benzene (a good solvent), cyclohexane (theta),
and trans-decalin (theta).
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Figure 7.17 Experimental radii of gyration for polystyrenes in benzene, a good solvent, and cyclohexane
and tmns-decalin, both theta solvents. Data obtained by light scattering by several authors. (From Miyake, A.,
Einaga, Y., and Fujita, H., Macromolecules, 11, 1180, 1978. With permission.)

The crossover from theta-like behavior (a z 1) to fully developed excluded volume, a >> 1, is
very broad. It depends on both N and X (and therefore T). For example, for a given N the chain
will swell progressively as T is increased above T: G), and for a given T> G), a larger N
chain will swell more than a shorter one. Because of this broad crossover, it is very common
in experiments to find apparent values of the exponent v falling between 1/2 and 3/5. This
will become important particularly in the context of the intrinsic viscosity, as we shall see in
Chapter 9.
Although designed for polymer solutions, Equation 7.7.10 actually hints at a very important
result for molten polymers. Suppose the solvent were a chain of the same monomer, but with a
different degree of polymerization, P. Presumably x~ 0, so the chain should swell. However,
V1 N P, so if P exceeds \/_N1n length there should be little or no swelling. In other words,
chains1n their own melt should be Gaussian. Flory made this very important prediction1n the
19503, but it was not until the advent of small—angle neutron scattering in the early 19703 that
this fundamental result could be confirmed.

7.8 Chapter Summary
In this chapter we have covered a great deal of material concerning the thermodynamic prOperties
of polymer solutions. We have interwoven results that are strictly thermodynamic with those that
depend on a particular model, the Flory—Huggins theory. The main points are as follows:

1. Using thermodynamics alone we were able to show how osmotic pressure measurements on
dilute solutions can be used to determine Mn and the second virial coefficient, B. The latter
gives direct information about the solvent quality: B > 0 corresponds to a good solvent, and
B < 0 to a poor solvent.
Thermodynamic arguments were also sufficient to show how the complete phase diagram
(T, (p) for a binary system could be constructed from an expression for the free energy of
mixing. The key features of the phase diagram are the critical point, the coexistence curve
(binodal), and the stability limit (spinodal).
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3. We developed an expression for the free energy of mixing based on the Flory—Huggins theory.
This is a mean—field theory and reduces to the standard regular solution theory when the degree
of polymerization of the polymer component is set equal to 1. The numerous assumptions of
the model were identified.

4. The Flory—Huggins model was explored in detail, in terms of its predictions for B and for the
phase diagram. Comparison with experiments reveals that in some systems the Flory—Huggins
theory captures the phenomenology in a qualitative manner, but in others it does not. It does
not provide a quantitative description for any dilute polymer solution.

5. The concept of a theta solvent emerges as a central feature of polymer solutions. It has four
equivalent Operational definitions: (a) the temperature where B = 0, (b) the temperature where
the interaction parameter X = 1/2, (c) the limit of the critical temperature, Tc, as M—+00, and (d) a
solvent in which Rg NMW. Physically, a theta solvent is one in which the polymer—solvent
interactions are rather unfavorable, so that the chain shrinks to its random~wa1k dimensions.
This contraction cancels the effect of the excluded volume interactions, which otherwise swell
the chain to self-avoiding conformations: Rg N M35.

6. The Flory—Huggins parameter X can be related to thermodynamic quantities such as the heat of
vaporization and the cohesive energy density. Only for systems with very weak intermolecular
interactions can one h0pe to estimate X reliably based on tabulated thermodynamic quantities, and
even then there needs to be a substantial, empirical correction term for polymer solutions. This
motivates the use of an effective interaction function that can be used to fit experimental data; the
resulting Xeff has become a commonly used scheme to describe the excess free energy of mixing.

Problems

1. In the derivation of Equation 7.3.12 it is assumed that each polymer segment is surrounded by
2 sites which are occupied at random by either solvent molecules or polymer segments.
Actually, this is true of only (2 — 2) of the sites in the coordination sphere—(z —~ 1) for chain
ends—since two of the sites are occupied by polymer segments which are covalently bound to
other polymer segments. Criticize or defend the following proposition concerning this effect:
The kinds of physical interactions that we identify as London or spontaneous dipole—dipole
attractions can also operate between segments which are covalently bonded together, so the
W22 contribution continues to be valid. A slight error in counting is made—to allow for
simplification of the resulting function—*but this is a tolerable approximation in concentrated
solutions. In dilute solutions the approximation introduces more error, but the model is in
trouble in such solutions anyhow, so another approximation makes little difference.

2. Show that

To = (2/12) 171 (61 — 62?
where TC is the critical temperature for phase separation. For polystyrene with M ’“=‘-' 3x106,
Shultz and Flory observed TC values of 68°C and 84°C, respectively, for cyclohexanone and
cyclohexanol. Values of Vl for these solvents are about 108 and 106 cm3/m01, and 81 values
are 9.9 and 11.4 (cal/cm3)1/2, respectively. Use each of these Tc values to form separate
estimates of 82 for polystyrene and compare the calculated values with each other and with
the value of 82 from Table 7.1. Comment on the agreement or lack thereof for the calculated
and accepted 6’s in terms of the assumptions inherent in this method. If Equation 7.6.7 was
used instead of Equation 7.6.6, does the agreement among the 82 values improve?

3. The term (1/2 -— X) that appears, for example, in the Flory—Huggins expression for B (Equation
7.4.18) is sometimes replaced by

;_.=.(._%
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where G) is the theta temperature (K) and d; is a new parameter. This substitution has the effect
of replacing one parameter (x) with two ((1; and 6)). Why might one do this? How do 11/ and 6)
fit into the discussion of effective X parameters in Section 7.6.3?

4. The osmotic pressure of polystyrene fractions in toluene and methyl ethyl ketone was
measured by Bawn et al.’r at 25°C, and the following results were obtained. Make plots of
11/0 versus 0, and evaluate Mn for the three fractions in an appropriate way. Do the results
make sense? (Hint: If they do not, perhaps a more sophisticated analysis would help.) What
can you say about the quality of these solvents?

Fraction Toluene c Toluene II MEK c MEK II

I 4.27 0.22 2.67 0.04
6.97 0.58 6.12 0.14
9.00 1.00 8.91 0.31

10.96 1.53

II 1.55 0.16 3.93 0.40
2.56 0.28 8.08 0.95
2.93 0.32 10.13 1.30
3.80 0.47
5.38 0.77
7.80 1.36
8.68 1.60

III 1.75 0.31 1.41 0.23
2.85 0.53 2.90 0.48
4.35 0.88 6.24 1.11
6.50 1.49 8.57 1.63
8.85 2.36

The units of c are mg/mL, and II is in g/cmz. (This unit of g/cm2 is a bit old fashioned; to
convert H to dyn/cmz, multiply by the acceleration due to gravity, g = 980 cm/sz.)

5. Write down by inspection the Flory—Huggins theory prediction for the free energy of mixing
of a ternary solution (polymer A, polymer B, and solvent).

6. The osmotic pressure of solutions of polystyrene in cyclohexane was measured at several
different temperatures, and the following results were obtained:I

T = 24°C

Fraction 6 (g/cm3) l'I/RTcx10° (mol/g)

II 0.0976 8.0
0.182 6.0
0.259 8.7

T = 34°C

Fraction 6 (g/cm3) II/RTC ><10‘5 (mol/g)

II 0.0081 13.3
0.0201 14.2
0.0964 14.2
0.180 18.7
0.257 26.2

1‘C. Bawn, R. Freeman, and A. Kamaliddin, Trans. Faraday Soc, 46, 862 (1950).
IWR. Krigbaum and DD. Geymer, J. Am. Chem. Soc, 81, 1859 (1959).
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III 0.0156 2.46
0.0482 2.24
0.0911 3.42
0.126 4.96
0.139 6.05

T = 44°C

Fraction c (g/cm3) H/RTC ><106 (mol/g)

II 0.0959 18.6
0.178 28.1
0.255 40.0

III 0.0478 5.50
0. 125 1 1.0
0.138 13.2

Plot all of these data on a single graph as H/RTC versus 0, connecting the points so as to
present as coherent a display of the results as possible. Evaluate the molecular weights of the
two polystyrene fractions. Criticize or defend the following proposition: These data show that
the (9 temperature for this system is about 34°C. As expected, the range of concentrations
which are adequately described by the first two terms of the virial equation is less for sample
III than for sample II. Above this range other contributions to nonideality contribute positive
deviations from the two-term osmotic pressure equation. It would be interesting to see how
this last effect appears for sample III at 24°C, but this measurement was probably impossible
to carry out owing to phase separation.
By combining Equation 7.5.23 and Problem 3, the following relationship can be obtained
between the critical temperature T0 for phase separation and the degree of polymerization:

1-1+; _1_+_1_
T,_® or; f 2N

Derive this relationship and explain the graphical method it suggests for evaluating (9 and if}.
The critical temperatures for precipitation for the data shown in Figure 7. 14b are the following:

M (g/mol) 22,700 285,000 6,000,000

Tc (°C) 18.2 45.9 56.2

Use the graphical method outlined above to evaluate (9, 1,11, and X for polyisobutylene in
diisobutylketone.
Assume X for a polymer—solvent system followed Equation 7.6.12. There are four
possible cases according to whether the parameters a: and B were positive or negative.
What possible phase diagrams could be observed in each case, i.e., UCST only, LCST
only, both, neither, etc.
Fill in the steps omitted in the text to derive the relations for the critical mole fraction and the
critical X for regular solution theory (see Equation 7.5.15).
Find the Flory—Huggins expression for AM2(¢1), and then find the range of X for which there
can be two physically meaningful values of (is, for which Aug is the same. (Hint: Take the
large N limit, but at the correct moment.) What is the significance of this range of X?
A polymer—solvent mixture has a critical temperature of 300 K. The polymer is monodisperse
and has a molar volume equal to three times that of the solvent. If the solvent were replaced
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12.

13.

14.

15.

16.

17.

18.
19.

20.

by its dimer, what does Flory—Huggins theory predict for the new critical temperature?
(Hints: It is a good idea to figure out which way TC should change before you do the details.
Also, remember that although X is dimensionless, it does depend on the chosen site volume.)
Suppose you have just developed a synthesis method for a new, flexible polymer, capable of
producing high-molecular-weight samples. Provide a step-by-step outline of how you would
go about finding a theta solvent for this polymer, and then locating the theta temperature
precisely. Note that although there are many ways to proceed, some will be much more labor-
intensive than others. Try to minimize the amount of effort required.
The Flory—Huggins theory may be extended to a binary mixture of different polymers, i.e., an
A/B blend. The resulting free energy of mixing can be written

AGm = ”5% lnq +£§ In 4313 +X¢A¢B}

where NA and NB are the respective degrees of polymerization. Find the critical point (Xe and
qbc) in terms of NA and NB. Show that your results reduce to the solution case when NB —> 1.
Compare the solution and symmetric blend (i.e., NA=NB) results in the limit of infinite
molecular weight; what is the crucial difference?
The results from Problem 13 imply that the critical temperature for a symmetric polymer
blend should increase linearly with N. Confirm this result. What would the N dependence be
for the critical temperature if in fact X followed Equation 7.6.12?
Prove that for a polymer solution in the athermal limit (AI-1m = 0), no phase separation can
occur in the Flory—Huggins model. (Hint: The sign of AGm is not enough.)
Consider the Flory—Huggins theory as applied to an AB statistical copolymer dissolved in
solution. It is possible to apply the same expression for the free energy of mixing as for a
homopolymer, if a new effective X parameter is employed. Develop a simple relation for Xeff
in terms offA, XA, X3, and XAB, where fA is the volume fraction of A units in the copolymer,
and the three X’s refer to polymer A—solvent, polymer B—solvent, and polymer A—polymer B
interactions, respectively. Use mean-field approximations in the same spirit as in the original
theory. The important feature is that there are unfavorable A—B interactions in the pure
statistical copolymer that are diminished in dilute solution. If your result is correct, you can
use it to show that, in principle, it should be possible to find a solvent that dissolves the
statistical copolymer but neither of the constituent homopolymers, at constant M.
Extend the derivation for the excluded volume exponent (v: 0.6) given in Section 7.7 to a
chain in a space of dimensionality d. What is v in two dimensions; why is it different from
0.6? What does the result for four dimensions tell you?
Repeat Problem 8 for a polymer—polymer blend at high molecular weight.
For a polydisperse sample, what average degree of polymerization would apply in the
corresponding Flory—Huggins expression for the spinodal? Prove your answer; one way to
do this is to find the spinodal for a binary mixture of two degrees of polymerization.
Recast Equation 7.7.10 in terms of the second virial coefficient, B(T).
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8
light Scattering by Polymer Solutions

8.1 Introduction: Light Waves
In this chapter we will explore the phenomenon of light scattering from dilute polymer solutions.
Light scattering is an important experimental technique for polymers for several reasons. First, it
provides a direct, absolute measurement of the weight average molecular weight, MW. Second, it
gives information about polymer—polymer and polymer—solvent interactions, through the second
virial coefficient, B (introduced in Chapter 7). Third, under many circumstances light scattering
can be used to determine the radius of gyration, Rg (described in Chapter 6) without any prior
knowledge about the shape of the molecule (e.g., coil, rod, globule). Fourth, the description of
the scattering process that we will develop in this chapter may be readily adapted to x-ray and
neutron scattering, two other techniques in common use in polymer science. In short, the wealth of
information that may be obtained from light scattering more than justifies the effort we will need to
expend in this chapter to understand how it works. As a final introductory comment, the fact that
light scattering can determine MW and B tells us that it is a thermodynamic measurement. The fact
that it can measure Rg tells us that it is a structural tool as well.

A light beam may be described as a traveling electromagnetic wave. For our purposes (i.e.,
polymers and solvents containing mostly C, H, O, and N atoms), the magnetic component of the
wave is of no consequence, and so we can represent the wave as

Ezfocos(wt—£°F) (8.1.1)

where 50 is the amplitude of the electric field, a) is thefrequency in rad/s, t is time, F is the position,
and k is the wavevector. This is illustrated in Figure 8.1. Several comments about Equation 8.1.1
are appropriate.

1. The amplitude EC, is itself a vector. If we take the wave to be travelling along the x direction,
El, lies in the 32—2 plane. If E}, lies exclusively along one axis, say 2, then the beam is said to be
z-polarized or vertically polarized; on the other hand, if 50 is uniformly distributed in the y—z
plane, then the wave is unpolarized.

2. The frequency can also be written

_ 2176
:2 _—(1) 77V

A0
(8.1.2)

where v is the frequency in cycles per second (Hz), 0 is the speed of light in vacuum, and A0 is
the wavelength in vacuum.

3. In the photon picture of light, the energy carried by each photon E 2 hr», where h is Planck’s
constant (6.63 x 10'34 Is).
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Figure 8.1 Schematic of the electric field component of a z-polarized light wave propagating in the
x direction.

4. The phase factor, I: . F, is the projection of the wavevector k onto the particular position
vector of interest. The wavevector points in the direction of propagation, x in this instance, and
has amplitude 277M. Thus, our wave could be rewritten as

EOE, t) 2 Ed )2, z) c0s(wt —— kx) = E; cos (271' [pt —— 3) (8.1.3)

The essence of the traveling wave is that if we consider a particular instant in time (out fixed), then
the wave oscillates in space with wavelength A; and if we consider a particular point in space (kx
fixed) the wave oscillates in time with frequency a). It will turn out that it is the spatial dependence,
I; F or kx, that will play the crucial role in scattering experiments.

For visible light )to R: 3500-7000 A, and consequently v = c/AO as 1015 Hz (recall 0 = 3.0x 108 m/s).
This means that the oscillations in the electric field amplitude are much too rapid for detectors to
follow: photomultiplier tubes, photodiodes, and other photodetectors typically have time constants
on the order of nanoseconds. Instead, the detector actually integrates in time the incident intensity,
I (energy/area/time), which is proportional to IE - EI = If12; such detectors are called square-law
detectors. We will not worry about the proportionality factors between intensity and electric
field squared, because in scattering experiments we will always use the ratio of the scattered
intensity to the incident intensity, thereby canceling out these prefactors. (Even if we did not do
that, the detectors actually generate an electrical current proportional to the incident intensity, and
it is rare that anyone goes through the trouble of converting this signal into the actual incident
intensity. Rather, we can calibrate the electrical signal with a reference intensity, as will be
described in Section 8.7.)

We could continue to use the cosine representation of the light wave as in Equation 8.1.3, but it
turns out the arithmetic is much more convenient if we use complex notation. If you do not recall
how complex numbers work, they are reviewed in the Appendix. The advantages stem primarily
from the fact that complex numbers allow us to factor out the temporal and spatial dependences of
the wave amplitude, and that squaring the amplitude becomes much easier. Accordingly, the wave
can be written as

E = Re{l§‘0 exp [i(wt —— i: . PM } = Re{§o exp[iwt] exp [—ii: . F] } (8.1.4)

where Rel. . .} means the real part of the complex argument. The intensity is proportional to
_p _9

L50, E"0{eiwre—iwre—if.Feifof'}|
: I o . Eel (3,1,5)[Nig*°§l:

where 5* is the complex conjugate of E, obtained by replacing i ( : \/—~—1) with ~i. The use of the
complex conjugate guarantees that I is a real number, because exp(ix) exp(——ix) = 1. Generally, we
forget about saying the wave is the real part of the complex form, and just remember that at the end
of a calculation we convert to intensities by Equation 8.1.5.
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Table 8.1 Refractive Indices of Common Polymers and Solvents

Polymer n Solvent r1

Poly(tetrafluoroethylene) 1 .4 1 Methanol 1 .326
Poly(dimethylsiloxane) 1 .43 Water 1 .333
Poly(ethylene oxide) 1.46 Ethanol 1.359
Atactic polypropylene 1.47 Ethyl acetate 1.370
Amorphous polyethylene 1.49 rt-Hexane 1.372
Poly(vinyl acetate) 1.49 Tetrahydrofuran 1.404
Poly(methyl methacrylate) 1 .49 Cyclohexane 1 .424
1,4-Polyisoprene 1 .50 Chloroform 1 .444
Polyisobutylene l .5 l Toluene l .494
1 ,4-Polybutadiene l .52 Bromobenzene 1 .557
Polystyrene 1.59 Carbon disulfide 1.628

Refractive indices for A, = 5393 A, at 20°C or 25°C.
Source: From Brandrup, J. and Immergut, E.H. (Eds.), Polymer Handbook, 3rd ed., Wiley, New York, 1989.

Equation 8.1.1 represents a solution to Maxwell’s equations in a homogeneous medium. The
frequency of the wave (and also the energy of the equivalent photon, hp) is independent of the
medium, but the wavelength is not. The wavelength in the material, A, relative to the wavelength in
vacuum, A0, is determined by a material property called the refractive index n:

n = A—0 = 3 (8.1.6)
)1 v

where v is the speed of light in the material. Thus the amplitude of the wavevector, k = Mil, is often
written as 27m/A0. The refractive index is determined, in turn, by the polarizability of the
constituent molecules or and their spatial arrangement (density and orientation). Qualitatively,
the polarizability reflects the ability of the incident electric field to distort the electronic distribu-
tion within a molecule, and this distortion, in turn, reduces c to v. Consequently, more polarizable
chemical moieties, such as aromatic rings, generally lead to higher refractive indices than less
polarizable groups, such as —CH3 or ~CH2~. In the liquid state, all orientations of the individual
molecules are equally probable, and we say the liquid is isotropic. (In this case we need not worry
about the fact that most molecules are actually anisotropic: the polarizability is different along
different molecular axes). The magnitude of n ranges from about 1.3 to 1.6 for common polymers
and aqueous or organic solvents as can be seen from the representative values in Table 8.1. The
relevant equation that relates the material property, n, to the molecular property, oz, is a version of
the Lorentz—Lorenz equation for an ideal gas (also known as the Clausius—Mosotti equation):

2 2tt—nS
477

‘If (8.1.7)(If-3

where n is the refractive index of the solution, it, is the refractive index of the pure solvent, and 1/‘1’
is the number of solute particles per unit volume.

8.2 Basic Concepts of Scattering
Scattering is the reradiation of a traveling wave due to a change in the character of the medium in
which the wave is propagating. The mathematical description of scattering could be largely
developed without specifying whether we are talking about light waves, sound waves, electrical
signals, or waves on a lake, as there is a great deal of commonality to all these phenomena. For
light, scattering will be caused by local changes in refractive index or polarizability, due to, for
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example, a dust particle in the air or to a polymer in the solvent. We will only consider
nonabsorbing media here, so the incident light intensity will either be transmitted or scattered,
but not absorbed. In general, the scattered wave propagates in all directions, i.e., it is a spherical
wave in three dimensions or a circular wave in two. If the incident and scattered frequencies are
the same, i.e., no energy is exchanged between the medium and the wave, the scattering process
is classified as elastic. We will only consider elastic scattering in this chapter. (There is also
quasielastic scattering, in which very small differences in energy are detected; this is the basis
of the powerful technique of dynamic light scattering, which will be described briefly in
Chapter 9. Raman and Brillouin scattering are examples of inelastic processes, where the
light exchanges vibrational or rotational quanta with the molecules in the former, and exchanges
energy with traveling density waves or phonons in the latter.) Lastly, scattering is termed
incoherent if the intensity is independent of the scattering angle, and coherent if it depends
on the scattering angle. The origin of this terminology will become apparent in the following
discussion, but generically coherence implies that there exists some particular phase relationship
among different waves.

8.2.1 Scattering from Randomly Placed Objects

Imagine that we have scattering from randomly placed, noninteracting objects; we should get a
total scattered intensity, [3, proportional to the number of scattering objects:

15 ~ (number of scatterers) >< (scattering power of each object) (8.2.1)

for the case of molecules in solution. We anticipate that bigger molecules will scatter propor—
tionally more than smaller ones. On the other hand, suppose we scatter light from objects that are
connected to one another, e.g., monomers within one polymer. Now the phases of the waves scattered
from different monomers should be related, because the distance rjk between any two monomersj and
It has some preferred value or range of values. This will lead to some interference between
these waves and a net loss of scattered intensity. Recall that interference between two waves is
constructive only if the difference in distance that the two waves travel to the detector is some integral
number of wavelengths, m; in other words, when krzmh. The interference will be completely
destructive if the path difference is an integral number plus one half of A: kr = (m + 1/2)/\. We can
expect, therefore, that in order to see significant destructive interference we need the distance
between scatterers to be a significant fraction of A, say a few percent. This will turn out to be
the case. For visible light with A0 re 5000 A, only for polymers that are larger than at least 100 A do
we have to worry about this kind of interference. You might recall from Example 6.2 that this size
typically corresponds to molecular weights in excess of 105 g/mol.

8.2.2 Scattering from a Perfect Crystal

Imagine we have an absolutely perfect, regular array of scatterers (atoms, if you like) placed every
1 A apart, and we shine A = 5000 A light on them (Figure 8.2a). What will the scattering look like?
Each atom will radiate a scattered wave with the same amplitude and wavelength, but the net
scattered intensity will be zero. Why? If we select any particular scatterer and particular detection
angle, we can always find another scatterer that is exactly M2 further away from the detector. The
two waves from these scatterers will cancel each other. We can do this because the array is
perfectly regular, and because the array is essentially a continuum (1<<5000 A). The only
direction where this argument does not apply is forward, i.e., the scattering angle 6:00. Here
the phase shift of the scattered waves between two atoms is exactly canceled by the phase shift
between the incident waves arriving at the two atoms. Thus the light beam propagates happily
straight through the material. The important lesson is this: there is no scattering from a perfectly
homogeneous material.
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Figure 8.2 (a) A light wave propagating through a perfectly regular array of scatterers will not be scattered
if the distance between neighbors is much less than )t. (b) Random fluctuations in the perfect array lead to
incoherent scattering.

8.2.3 Origins of Incoherent and Coherent Scattering

There are two ways by which we could generate scattering from our hypothetical array. One would
be to remove a few scatterers at random (Figure 8.2b). Then the “pairing—off” argument fails
because each atom we remove used to cancel a scattered wave from some other atom, but now it
cannot. Thus we conclude that random fluctuations in an otherwise homogeneous medium give
rise to scattering. This scattering is incoherent: because the fluctuations are random by construc-
tion, on average there can be no phase relation between them.

The second way of obtaining scattering from our hypothetical array would be to make A close to
the distance between the scatterers. For our example, if we use x—rays, where )t : 1.54 A is a
typical value, then the pairing-off argument fails again. There will be particular angles in which
planes of atoms are separated by integral multiples of )t and the scattering from different atoms will
be in phase, i.e., coherent. This process is called Bragg dzfi‘ractz’on, as illustrated in Figure 8.3 and
described below. The point we want to emphasize now is that there will be coherent scattering
whenever there is a spatial correlation between scattering objects on a distance scale comparable to )t.
Bragg diffraction from atomic crystals gives sharp scattering peaks because the spatial coherence
is very high; the crystal structure is regular over large distances (see Chapter 13). In scattering
from polymers, we will find that the Spatial coherence is lower, but not vanishing; for example,
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Figure 8.3 Illustration of Bragg’s law. (a) The incident light wave and the diffracted light wave each makes
an angle 6/2 with each plane in the crystal. The planes are separated by a distance D, and the direction of the
scattering vector c? is indicated. (b) The bold line segments correspond to the extra distance the wave travels in
being scattered from the second plane. All four indicated angles are equal to 6/2, and thus each of the bold line
segments has length D sin(6/2).

within a coil, the likelihood of two monomers being separated by a certain distance might be given
by the Gaussian distribution (Equation 6.7.12). This lower degree of spatial coherence will lead to
scattering that is a smooth function of the scattering angle, rather than sharp peaks, but the
underlying phenomenon is the same.

The main relationship we will derive in this chapter, known as the Zimm equation (Equation
8.5.18), reflects these two sources of scattering. A polymer solution would be a homogeneous
medium, except for two things. There are random fluctuations in concentration that give rise to
incoherent scattering, with intensity proportional to the product of concentration and molecular
weight (Equation 8.4.24b). Then, large polymers have monomers with partially correlated spatial
separations that are a significant fraction of A. This correlation leads to interference and coherent
scattering, which can be used to determine Rg (Equation 8.5.18). The development will proceed in
three stages. First we will consider scattering from a single isolated atom or molecule, a result
generally attributed to Lord Rayleigh. In the second stage we will apply this result to a dilute
solution of small polymers, to obtain an expression for the incoherent scattering. Finally, we will
consider larger molecules and the resulting coherent contribution. To conclude this overview
section, we develop Bragg’s equation and define the scattering vector é’.

8.2.4 Bragg's Law and the Scattering Vector

Consider a wave incident on a series of equally spaced, parallel planes of scatterers (which could
be atoms, but need not be). The planes are separated by a distance D, and the angle between the
incident wave direction and the scattering planes is 6/2, as shown in Figure 8.3a. What is the
relation among D, )t, and 6 for there to be scattering (or diffraction, as it is called in this context) in
the direction an angle 6 away from the incident direction? The distance the light travels from the
source to the detector is the same for all atoms in a given plane j, so there is no problem there. What
is essential is that the distance traveled by waves scattered from the next further plane j + 1 be m
larger, where m is an integer. Then the waves scattered from one plane will be in phase with the
waves scattered from the next, and there will be constructive interference at the detector. By
extension, waves from plane j + 2 will travel 2m/‘t further than from plane j, and therefore will still
be in phase, and so will waves from all the planes in the array. This condition is the basis of
Bragg’s law. To state this as an equation, consider the enlarged diagram in Figure 8.3b. By
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constructing the indicated perpendiculars, it is possible to see that there are two extra segments that
the wave must travel when it is scattered off plane j + 1. The length of each of these segments is D
sin(9/2). Thus Bragg’s law can be written as

m)t 2: 2D sin (3) (8.2.2)

A central quantity in any scattering process is the scattering vector, defined by the difference
between the incident and scattered wave vectors:

528—8 man
This is illustrated in Figure 8.4, where again 6 is the angle between the scattered and incident
waves. For elastic scattering, both incident and scattered wave vectors have magnitude
27r/)t -—- 27m/)t0, and thus the magnitude of c? can be obtained (see Figure 8.4):

_, 2 , 6 4 , 6|q| E q = 2 (77:) sm (2) 2 7?.— srn (2) (8.2.4)

What is the significance of (.7? There are three aspects worth bringing out now:

I. It is also known as the momentum transfer vector. Although no energy is exchanged in elastic
scattering, photons carry momentum and there must be a change in momentum when the
propagation direction changes. The law of conservation tells us that momentum is transferred
into the medium along the direction of §. In fact, at sufficiently high intensity the resulting
“radiation pressure” can cause particles to move.

2. The direction of a’, shown in Figure 8.3a, corresponds to the normal to the planes of scatterers.
A vector pointing in this direction with amplitude 27r/D is called a reciprocal lattice vector
(reciprocal because D is in the denominator), and when the magnitudes of these two vectors
coincide

271' 471' , 6
‘5 _ T 81n(§) (825)
we can see that Bragg’s law (Equation 8.2.2) is automatically satisfied. In other words, the
criterion for Bragg diffraction is that the scattering vector (determined by the apparatus)
coincides with a reciprocal lattice vector (determined by the material).

3. The magnitude q has dimensions of inverse length. As will become clearer in Section 8.5 and
Section 8.6, the scattering will be sensitive to structure in the solution on the length scale l/q,
so the choice of q (which is fixed by choice of )t and 6) ultimately determines what kind of
structural information a given scattering experiment can provide.

(2am) sin(9/2)

Figure 8.4 The length of the scattering vector is calculated in terms of the scattering angle 6 and the
magnitude of the incident and scattered wavevectors, 27r/A.



296 Light Scattering by Polymer Solutions

In the next two sections we will be concerned with incoherent scattering, and will not need to be
concerned with the role of q, but then in Section 8.5 and Section 8.6 it will be of central
importance.

8.3 Scattering by an Isolated Small Molecule
We begin with the fact that an incident light wave Ei will induce a dipole moment 11’ in an atom or
molecule, where

[12 = a]; = aE’, exp[i(wt — 15' . F)] (8.3.1)
The induced dipole moment oscillates at the same frequency w as the field. An oscillating dipole
involves an accelerating charge, and will therefore radiate an oscillating electric field that we will
call the scattered wave ES. The magnitude of this wave depends on the direction of observation
(through an angle ()6 defined below), the speed of light, the distance from the dipole (r), the electron
charge (6), and the acceleration of the charge in the dipole (51'):

|§,| = :3}; sins!) (8.3.2)

The derivation of this equation comes from basic electromagnetism, but it involves some rather
hairy vector calculus, so we omit it; it can be found in many introductory physics texts. However,
we can understand the important inverse-dependence on 1. The total energy of the scattered wave
should be

conserved
From Equation 83.2, we see that the intensity will be proportional to

|E: 0E3 | N r 2.The total energy will be proportional to the intensity integrated qverjhesurface
of a sphere of radius r. As we go further away from the dipole and integrate [ES ° ESI over the
surface of the sphere, the area will1ncrease as r2 ,and thus the total energy will be independent of r.

Note that (11' /6) has the dimensions of length, since the induced dipole is essentially the product
of a charge and the distance of charge separation. Therefore we can write the magnitude of the
acceleration as

d2 *

dt 6

The ratio of the scattered intensity, 1,, to the incident intensity, 10, is given by

ad s
:d—,25i= — lEil (8.3.3)

[S___ Eg‘ogs _62|a|2
Siab

[0 E"? ° ii_ m2 lEi*l.Ei I

_ 6,
(8:21:04)

|E§“°Ei| sin (b
e2 #1585)

_16ar4a_
”T4

sin (8 (8.3.4)

where we have used to = 277v: Zia-€010, and as before the dot product is required in taking the
square of the electric field vector.

If the incident wave travels along x, and is polarized along 2, then d) is the angle of detection
relative to the z-axis (see Figure 8.5a). There is no angular dependence in the x —y plane since sin
qb = l, and there is no scattered wave in the vertical direction 2 (sin qb = 0). If we use vertically
polarized light and detect scattering in the horizontal plane (currently the most commonly
employed geometry), then sin qb = 1 and life is easy. The scattered intensity, normalized to the
incident vertically polarized intensity, is given by
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Figure 8.5 Illustration of the effect of incident beam polarization for a light wave propagating along x, and
with scattering being detected in the x—y plane. (a) Vertically (z) polarized beam; q!) is the angle of scattering
with respect to z, and sin qb : 1 for all 6 in the x—y plane. (b) Horizontally (y) polarized beam; gb is the angle
of scattering with respect to y, and therefore sin ch = sin(7r/2 — 6) = cos 6 in the x—y plane. The dependence
of the magnitude of sin qb on 6 is also illustrated for both cases.

Suppose, however, that we are dealing with unpolarized incident light, which is sometimes the
case. This we can View as equal parts of vertically and horizontally polarized light. Now we define
the scattering angle, 6, between the direction of the transmitted (unscattered) wave (x in this case)
and the scattered wave to the detector in the x—y plane. For the vertically polarized component of
the incident beam, the scattered wave is the same for all 6. For the horizontally polarized part,
which is y-polarized, there will be no scattering along y. Figure 8.5b shows that the sin d) factor
becomes sin(7r/2 —— 6) = cos 6 in our nomenclature. Thus the scattered field from the horizontal part
varies as cos 6, and the scattered intensity as cos2 6, whereas for the vertical part it is constant. The
incident intensity was 50% of each, so the net intensity varies as (1 + cos2 6)/2, and we insert this in
Equation 8.3.4 to obtain

1, _ 8774a2(1 + c032 6)
Io,u

—
r2166

(8.3.6)
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where the subscript u denotes unpolarized incident light. This equation is associated with the name
of Lord Rayleigh, and such scattering from independent polarizable objects is called Rayleigh
scattering [2]. One interesting feature of Equation 8.3.5 and Equation 8.3.6 is the dependence on
A54. This strong dependence means that shorter wavelength, higher frequency, or higher energy
waves are scattered considerably more. In the atmosphere, molecules and particles scatter blue
light down to the earth preferentially over red light, and the sky overhead appears blue. On the
other hand, when the sun is low in the sky, the blue light is scattered away from the observer and
the remaining, transmitted light has a reddish hue.

We will use Equation 8.3.5 throughout the rest of this chapter, but it is important to remember
that we are assuming vertically polarized incident light, and that the scattering is detected in the
horizontal plane.

Example 8.1
Can we measure the light scattering from a single water molecule in empty space?

Solution
We begin by applying Rayleigh’s result, Equation 8.3.5, assuming polarized light for
simplicity. We need to know the distance to the detector, r, the wavelength of light, A0, and the
polarizability of water, a. Let us assume we place our detector 1 m from the molecule, and that we
are using a 1 W argon laser with A0 2488 nm. The average polarizability of water is given as
1.65 ><10_24 cm3 [3]. However, it is also instructive to estimate it via Equation 8.1.7, the Lorentz—
Lorenz equation. The refractive index of water is about 1.333 (see Table 8.1), its molecular weight
is 18 g/mol, and its density is about 1.0 g/cm3, so Equation 8.1.7 gives

a (1.333)2 — 12 X 18.—
4><3.14 1.0x6x1023

which is pretty close to the tabulated value. Using the tabulated value in Equation 8.3.5 we have

5 g 16 x
(31:04

x (1.65 x
10:4)2 : 7.5 X 10_,,

lo (100) x (488 x 10—7)

after taking care to put all the lengths in centimeters. This is a very small number, which does not
look promising. But, even though it is a very small fraction, how much light is going in? Here it is
easiest to adopt the photon picture. A 1 W laser emits 1 J/s; how many photons is that? Here we
recall the discussion following Equation 8.1.2, and find that 1 photon at this wavelength gives

hc 6.63 x 10‘34 x 3 x 108 _19
5—)?0_ 488x10‘9

_4.1>< 10 J/photon

Taking 1 Us + (4.1 x 10— 19) J/photon = 2.5 ><1018 photons/s. This is a lot of photons, when we bear
in mind that sensitive photodetectors can count just a few photons per second; but it clearly is not
enough: 2.5><1018><7.5><10_32 g 2><10—13 is still a very small number. Furthermore, the calcula—
tion gives the total scattered intensity over the surface of a sphere of radius 1 m, whereas our
detector would only collect some small fraction of that. On the other hand, it is worth remembering
that if our laser beam encountered a mole of water molecules, the story would be quite different.
And, in particular, sunlight traverses great distances through the atmosphere and encounters many
moles of gas phase species, so atmospheric scattering is far from negligible.

2 1.86 x 10'24 cm3

8.4 Scattering from a Dilute Polymer Solution
In this section we adapt the Rayleigh scattering equation for an isolated object of polarizability a,
Equation 8.3.5, to the case of a dilute, nonabsorbing polymer solution. Our vertically polarized
incident light beam will illuminate some region of the sample solution, and the detection optics
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will be arranged to collect light from some portion of the illuminated region; we call this portion
the scattering volume. Now we divide the scattering volume into a large number of imaginary
“cells” of volume ‘1’, with the following criteria:

1. \l’m’ <</\, so that each cell is effectively a point scatterer.
. Each cell contains many monomers, with a concentration c subject to statistical fluctuations.

3. The cells are statistically independent, i.e., the fluctuations in any one cell are uncorrelated
with those in any other.

These assumptions are not too restrictive, except that they collectively imply that Rg (and therefore
the molecular weight) of the polymer is not too big. We will deal with the large molecule case in
the subsequent sections. Now each cell will have an instantaneous polarizability, which can be
expressed as the sum of an average value, (0:), plus a fluctuation, 8a:

a Z (a) + 50: (8.4.1)

The average could be either the time average for one cell, or the ensemble average for the scattering
volume, as these two should be equivalent (recall from Chapter 6 that such a system is said to be
ergodic). In the actual measurement, we will record the signal for a finite amount of time, therefore
performing a time average, and we will record scattering from all the cells in the scattering volume,
therefore performing an ensemble average as well. From Equation 8.3.5, we know that the average
scattering from any cell will depend on the average of the squared polarizability:

(a2) = <((a) + 5002)

: <(a)2> + 2(a)(5a) + <(5a)2> (8.4.2)
There are three terms on the right hand side of Equation 8.4.2. The first will not contribute to the
net scattering from the solution, because it is the same for every cell. By the argument given in
Section 8.2, a completely uniform material does not scatter. The second term is identically zero,
because by definition (50:) : 0; the fluctuations are equally likely to be positive or negative.
Consequently, we reach the very important conclusion that the scattering is determined entirely by
the mean—square fluctuations in polarizability, (80:)2 .

Now we need to relate 5a to fluctuations in t e thermodynamic variables p, T, and c:

8a 80: 6o:
5 = —— — 5T — 8.4.a

(ap)T,c6p
+

(8T)p,c
+

(6C)T,p66
( 3)

and we simplify this through a very important assumption, that the scattering from fluctuations in
pressure (6p) and temperature (57) is the same in the neat solvent as in the dilute solution.
Consequently, when we consider the excess scattered intensity, [ex 2 130mm“ — ISOIVCm, only the
concentration fluctuations matter. With these developments Equation 8.3.5 can be transformed into

1,, 16774 2 1 16774
(Barf

2 1
[0 r2/\,3

<( )
‘1;

72/),3 (9C
Tip

( )
‘1,

(

where 1/‘1’ is the number of cells per unit volume. At this stage we need to work on two terms, (acr/
8c)" and ((802). The former is transformed using the Lorentz—Lorenz equation (Equation 8.1.7):

:22 — 113
471'

Therefore the concentration derivative is

as J}: 92) (8.6,(9c 1p“ 277 66 Tip
' '

or = x1! (8.4.5)
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The key part of this relation is the so-called refractive index increment, art/ac (where we drop the
reminder about constant T and p from now on), which can either be measured precisely using a
differential refractometer, or looked up in tables, as will be discussed in Section 8.7.

Now we return to the concentration fluctuation term, ((502). We can say that
00

I(5€)2P(5C) (156
((56)2 = 7‘” ,0 (8.4.7)

IP(56) dSC

where P(SC) is the probability of a given fluctuation Sc. As positive and negative fluctuations are
equally probable, P must be symmetric about zero (just like the Gaussian distribution for the end-
to-end vector in Equation 6.7.1). The size of a fluctuation is related to the associated fluctuation in
free energy, 5G, through the Boltzmann factor:

—5GP(6(:) = A exp [77,—] (8.4.8)

and we can expand 5G as a Taylor series (see Appendix):

66 1 62G 2so _ (Elma + 5—! (filmed +- -- (8.4.9)

Note that the first term in Equation 8.4.9 is not symmetric about 5r: = 0, and therefore does not
contribute. If we insert the remaining 620/862 term into the exponential and perform the integrals
in Equation 8.4.7 using the formula cited in Section 6.7, we arrive at the very simple relation
(see also Problem 3)

2 _ H
((50) >

—W
(8.4.10)

which relates the concentration fluctuations to the associated free—energy penalty. The larger the
cost in free energy, the smaller the average fluctuations will be. (Recall from Section 7.5 that for a
system at equilibrium, i.e., one that is stable, 32G/862 must be positive.) However, if the solution
approaches a stability limit or spinodal, the denominator tends to zero and the fluctuations, and
therefore the scattering, can get very big indeed. The numerator of Equation 8.4.10 just acknow-
ledges the fact that the more thermal energy is available, the larger the fluctuations will tend to be.

We can now recast Equation 8.4.4 as

2 2 2

E1=W(QE)
__£Z__ (8.4.11)[0 rZAO 36 (azG/acz)“,

by incorporating Equation 8.4.6 and Equation 8.4.10. The last transformation we need is to relate
BZG/c'fic2 to a virial expansion appropriate for dilute solutions (see Section 7.4). A slight compli—
cation arises because we have been working with C as the concentration variable, and we need to
return to numbers of moles, Hg, in order to handle the chemical potential. The solution volume, V,
can be written in terms of the partial molar volumes (see Equation 7.1.8):

V 2 ”H71 ‘l' HQVQ (8.4.123)

and because we need not worry about fluctuations in volume, dV= 0, and therefore

Vcm, = —~ :3a (8.4.12b)
V1
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Since

nzM
6—1——V

then

dnz _ V

FIE—M
At constant T and p (recall Equation 7.1.1)

V2d6 = #:1a + 11.2a = (M2 —— 71—111)a

Inserting 8.4.13b into 8.4.14 we find

66 V; v
#2 M2‘TM1 '—
66 V] M

and

§2_G_ %_Y2% X
86'2— 30 V1 86 M

The Gibbs—Duhem relation n1 dul + n; dug : 0 at fixed T and p gives

%=_fl%
60 112 8C

30

32_G__Z 3+2 %__Z ”1171+”2V'2 %
862

—
M V1 60

—
M r2217] 8C

_:K %
“CV1 8c

From Equation 7.4.2 for the osmotic pressure,

n = (M)
V1

wehave

3,11,] _3l'I _ 1
—=—V—=-—VRT—— 2B8c 13c 1 (M+ 6+ )

where we have used Equation 7.4.7, the virial expansion for H/RT. To conclude,

kT —kT ckT
(am/3.22) 2

(VN716) (%)

= VRT(l/M + 23.: + . . -)

c 1
‘VNa. (1/M+ZBc+-~)
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(8.4.13a)

(8.4.13b)

(8.4.14)

(8.4.15a)

(8.4.15b)

(8.4.16)

(8.4.17)

(8.4.18)

(8.4.19)
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and as we have been working with the fluctuations in a cell of volume ‘1’, we set V = ‘1’ in Equation
8.4.11. The final result is therefore

ex 4 2 2 2

I— = w " (§”/3C) 1
C (8.4.20)1., rZAONa, (M + 236 + - - .)

where the volume of the fictional cell, ‘1’, has happily disappeared.
We now regroup some terms:

[ex
2

1r E R9 (8.4.21)

where R9 is the so—called Rayleigh ratio. It is the normalized excess scattered intensity per unit
volume, with the purely geometrical quantity r factored out; therefore R9 should depend only on
the solution and A0, and not the instrument used to measure it. Note that R9 has units of cm‘l,
because 1.,x is the scattered intensity per unit volume, whereas I0 is just the incident intensity.
Similarly, the purely optical factors can be grouped

4 2 2 2
K E 77 ” (an/ac) (3.4.22)

AONW

to reach the result

K
R9 = T—C—— (8.4.23)

__ 23 . . .
M + c +

This expression is usually rearranged in either of two ways, as follows:

KC 1._=._ 23 8.4.24
R9 M

+ c + ( a)

or

R9 = KcM{l — 230M - ' } (8.4.24b)

where the second version is obtained by recalling that 1/(1 +x) = 1 —x+x2+ ' - -. The former
version is more often used when plotting data, because the right hand side should be linear in 6,
whereas the latter is more transparent in terms of the physical content. These equations tell us
several important things.

1. In the limit of low concentration Equation 8.4.24b reduces to Ie,~(number of scatter-
ers)><(size of scatterer)~cM, just as advertised for incoherent scattering in Section 8.2.
Note that Equation 8.4.24a, somewhat perversely, has the experimental signal-the scattered
intensity—in the denominator, so this result is not so obvious.

2. In the limit of infinite dilution, light scattering measures M, as does the osmotic pressure.
These two experiments are intimately related, because the light scattering is determined by
concentration fluctuations, and their amplitude is related to the associated osmotic cost. In
other words, one could imagine a semipermeable membrane around each of our fictional cells.
Any extra polymer in a particular cell will drive up II, whereas a lower-than-average
concentration would necessarily cause II to increase in some other cells. Thermal energy
drives random fluctuations, but the osmotic compressibility resists them.

3. The virial coefficient is obtained from the concentration dependence of the scattering, just as
in the osmotic pressure experiment. Equation 8.4.24b shows directly that in a good solvent,
when B > 0, the intensity will first increase linearly with c, but the rate of increase will drop
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Figure 8.6 The excess scattered intensity as a function of concentration for different values of the second
virial coefficient, B.

when the B term contributes appreciably. On the other hand, in a poor solvent, with B m 0 or
even negative, the intensity will increase more rapidly with further increase in c. This is
illustrated schematically in Figure 8.6.

4. We reiterate that Equation 8.4.24a and Equation 8.4.24b are valid for “small” polymers only;
we will explore this restriction more quantitatively in the following section.

5. Although we have stressed the intimate connection between light scattering and osmotic
pressure, there is one important difference. For a dilute but polydisperse sample, we can
see that

° = = - ,- .421133129 KcM [(20,114 (8 5)

and so

715M;KC KEG; —27 —1—— (8.4.26)1‘ _:_________=
61—13(1) R9 [(26n 2%: Mw

Thus light scattering measures the absolute weight average molecular weight, whereas the osmotic
pressure experiment gives the number average (recall Equation 7.4.11). The reason for this
difference is that the intensity scattered from an individual polymer is proportional to M, so that
although the fluctuations are determined by the number of molecules per unit volume, the
scattering signal is weighted by an additional factor of M.

Example 8.2
The following light scattering data were obtained on solutions of polystyrene in toluene at 25°C.
A polarized Helium—Neon laser was used (AD: 633 nm); 871/80 was found to be 0.108 mL/g, and
71: 1.494. Calculate the weight average molecular weight and the second virial coefficient.

_—

c (g/mL) 0.0011 0.0026 0.0039 0.0052 0.0067 0.0089
1'1.,><105 (cm—l) 1.87 3.75 5.09 6.06 7.02 8.04
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Figure 8.7 Plot of data for Example 8.2 according to Equation 8.42a.

Solution
First we need to calculate K by Equation 8.4.22:

_ 4 x «2 x (1.49402 x (0.108)2 ._.. —7 2 2_ (6.33 x 10—5)4 x 6.02 x 1023 T 1’06 x 10 cm mOI/g
Then we plot KC/Rg versus 0, as shown in Figure 8.7. Linear regression gives an intercept of
5.46x10‘6 mol/g and a slope of 7.00><10"4 mL moi/g2. Thus we obtain

M... = 1/(5.46 x 10—6) = 183,000 g/mol
B = 7.00 x 10-4/2 = 3.5 x 10—4 mL moi/g2

8.5 The Form Factor and the Zimm Equation
We now take into account the finite size of a polymer. Unfortunately, the mathematics is a little
tedious, but there is no shortcut. On the other hand, the main result will turn out to be relatively
simple. We will restrict ourselves to the limit of a very dilute solution, i.e., we only consider one
polymer at a time. The basic idea was outlined at the beginning of the chapter, namely that if the
distance, rjk, between two monomers j and k on a chain is a significant fraction of the radiation
wavelength, it, then the waves scattered from each monomer will have a phase difference at the
detector. This leads to some destructive interference and a net reduction in the scattered intensity.
This phase difference will depend on the scattering angle, 9, and therefore the intensity will also
depend on 9; thus we are dealing with coherent scattering. Operationally, we can define a form
factor for a single polymer, P(9), as

Actual 16,49)P 0 = .5.1( ) Rayleigh I...(0) (8 )

where the Rayleigh scattering is given by Equation 8.4.24. From this relation we can see that
0§P(9) _<__ 1. In general, we should worry about interference between waves scattered from
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different polymers as well as different monomers on one polymer, and then Equation 8.5.1 would
become the operational definition of what is called the solution structure factor, S(9). However,
because we are restricting ourselves to very dilute solutions, there should be no correlation between
the positions of different polymers and the intermolecular interference terms do not contribute.

8.5.1 Mathematical Expression for the Form Factor

To develop a mathematically precise definition of P09) we consider each monomer to be a
Rayleigh scatterer. The electric field scattered by the molecule, Ema, is given by the superposition
of the fields scattered by each monomer:

M2 M2OSexp[1[i(wt+5-)
_.
056“”:65’ (8.5.2)

j=l j=l

where 50,, is the amplitude of the field scattered from each monomer and 5}- is the phase of the
wave from monomerj. The summation runs over the N monomers of the chain. (We choose to use
sums over j and k to avoid confusion with i = \/——1.) In Equation 8.5.2 we have assumed that each
monomer is identical in scattering power (i.e., a homopolymer). The scattered intensity requires
the squaring of the total field:

N N_' T "' —iwt -i8- _' iwt i5
Is ”V IEsftot ° s.totl N (53?t E 6 J ° (Ems e E e 1‘

j=1
N N_. 2 .

= IEo.si E E 61(8r6
j=l k=l

(8.5.3)

For Rayleigh scattering we assumed that each polymer was very small compared to A, and
therefore the phase is the same for each monomer along the chain: 5,- = 8k. With this simplification
we can write

1
‘ z 1%

ii
<ei(61—61)> (8.5.4)

We have also taken the average (el1(51—5))because thatrs the experimentally important quantity.
Equation 8.5.4 is an alternative definition of P(6), and again we emphasize that it is the single
chain form factor; the double summation is over the N monomers of one chain. For the general
case, we would just extend the double summation over all pairs of monomers in the scattering
volume, and then Equation 8.5.4 would define the structure factor.

The next step is to develop an expression for 5k — 5}, the phase difference between the waves
scattered from any pair of monomers k and j. Here the scattering vector comes to the rescue,
because this phase difference is very simply expressed as the dot product of § with the vector
separating monomers j and k:

5k — 5} = I? ‘ FIk (8.55)

If we recall the derivation of Bragg’s law in Section 8.2, two particles in a given lattice plane
automatically scatter waves in phase with one another. In this case é’ ° I}, = 0, because 5 is
perpendicular to the lattice planes. In other words, the phase difference is determined solely by
the component of rj—k that is parallel to the scattering vector.
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Now we insert this result into Equation 8.5.4:

1 N _. ..P(6)=: -

——]—V-—2—
:kN (exp[iq ° Uri) (8.5.6)

This equation represents the standard definition of the form factor. It may appear rather compli-
cated, because it involves a complex number and two vectors. However, remember that the
complex numbers are just a convenience and they will disappear when we calculate anything
observable. Furthermore, the dot product of two vectors is a scalar, so we should be able to get rid
of the vectors as well. The average in Equation 8.5.6 is

<exp[ic'f - ad) 2 JP(F}k)exp[ic§' . i]df}k (8.5.7)

where P073) is the probability of monomers j and It being separated by a vector i}. For the case of a
chain in a theta solvent (recall Chapter 6 and Chapter 7), we already know this probability
function: it is a Gaussian function (Equation 6.7.1).

8.5.2 Form Factor for Isotropic Solutions

Now, if we restrict our attention to isotropic samples, such that in spherical coordinates (r,6,(;b) P(FJ}k)
has no 6 or d) dependence, then we can get rid of the vectors altogether. First, we recognize that

dfj-k =2 ax), am dz), : rj, sin 6 d6 dqb drjk (8.5.8)

using the transformation to spherical coordinates (if this is unfamiliar, see the Appendix). Then we
eliminate the dot product:

exp[iq‘ - Fir] = exp[iqrjk cos 9] (8.5.9)

in which q = (47ml) sin(6/2) from Equation 8.2.4. If we expand the exponential as a power series
this becomes

H .. ' izqzrf‘k cos2 6
exp[1q - rjk] : 1 +1qrjkcos6 +

2'

Then we can write

273' ’6'

(alpha . 8.1) = mam; dry]. Jdd) d6 sm6 + iqrj, cosg + . . .)
0

-222 2 -
1 r- cos 6s1n6+-«-q 1"

2 )d6

0

P(rJ,-k)rj2k eqrJ:(sin 6 + iqrjk cos 6 sin 6 +

$62 q4fiz
2!3 4!5ll

ll

rah—.58

(ah—,8

0=—-—-—,8

P(rjk)2wr-k drjk (8.5.10)

where we have looked up the integrals for sin 6 cosk 6. The resulting series in square brackets is, in
fact, nothing more than

(67302 (67004 sin qr k2 1— + + _—2———1 (8.5.11)
3! 5! qr};c
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so in the end,

__, _, sin r- sin r1
<exp(1q - 23%)) : P(rjk) q Jk drjk = ___C]_)£ (8.5.12)

qrjk qty-k0

where P(rjk) z 4771'; Pfik).
This assumption of isotropy is not at all restrictive for a dilute polymer solution at rest. Note that

it is not an assumption that the shape of the molecule is spherical, only that on average the
intrarnolecular bond vectors point equally in all directions. Thus, even a solution of rod—like
particles can be isotropic in this sense. We can use Equation 8.5.12 whenever we have information
about P(rjk). However, it turns out we can also extract something very useful even if we do not
know anything particular about this distribution.

8.5.3 Form Factor as n —> 0

The power series in qr 1,given in Equation 8.5.11, combined with Equation 85.6, gives for P(q):

P(q)= A1—,ZZ{1 <13? >+%<rfik>...} (8.5.13)‘1_
1= 1 k: 1 6

N N
But, the average 2 Z <rfic> is directly related to (82>(2 R2) for any shape, as shown in
Equat10n6.5.8: 1:11:21

1 N N
2z W ZZ <51) (8.5.14)

)‘=1 k=1

and therefore we have the important result that
2

P(q)=1—%R§+-~ (8.5.15)
independent of the shape of the particle. Thus if the experiment is designed such that qE < 1, the
higher order terms in the expansion Equation 8.5.15 can be neglected, and Rg can be determined
without any prior knowledge of the average conformation. It turns out that for flexible and semi—
flexible polymers this condition is quite often satisfied (see Example 8.4 and Problem 6).

8.5.4 Zimm Equation

We now return to the end of the previous section, and insert P(q)=P(9) into the scattering
equation (Equation 8.4.24a):

KC 1 l_ z — —— 28 8.5.16
R9 MW 19(0)

+ c +- ( )

in the limit of c ——> 0. Now it is traditional to manipulate 1/P(9) as follows:

1 1 12 :1 _ 2R2 8.5.17
13(9) qz 2

+ 3 q g + ( )
1 ——

313g
+ - --

because 1/(1 — x) = 1 + x + x2 + - - -.We now use this result to obtain the Zimm equation:

Kc 1 t]2 2__:__ —~—~R 2 8.5.18
R9

Mw(1+3 g+ )+Bc+ ( )

This is the fundamental result for light scattering from dilute polymer solutions [4].
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If we recast this relation from Equation 8.4.24b, we obtain

R9 = KcMwP(6){1 — ZBcMwP(6) . . .}
2 2 (8.5.19)_ q 2 q 2

—KCMw(1—‘3—Rg"'){l_ZBCMw(1_§'Rgv--)

...}

You should confirm that if you start from Equation 8.5.18, and transform it appropriately you will
recover Equation 8.5.19. It is important to point out a subtlety here. You might well ask, if c is high
enough that polymer—polymer terms contribute to the concentration fluctuations (i.e., through B),
why don’t we have to worry about interference effects between monomers on nearby chains? The
answer is that actually we do, and that is the source of the second P(6) term multiplying B in Equation
8.5.19. In the simplest approach (which is not simple), the single contact approximation introduced
by Zimm [4] (Equation 8.5.19) is the result. We should also point out that several texts write the right
hand side of Equation 8.5.18 incorrectly, as (l/MW + 23c + - - -) (1 + q2/3Ré + - - - ).

8.5.5 Zimm Plot

Equation 8.5.18 provides the basis for a particular method to analyze light-scattering data, the so-
called Zimm plot. We need to perform two extrapolations, to zero scattering angle (6 = 0° or q = 0)
and to zero concentration (23c=0), and the result will be 1 /Mw. Furthermore, the slopes of the
angle extrapolation and the concentration extrapolation, respectively, will provide values of Rg and
B, assuming that the range of the independent variable is such that only the first term of the
relevant expansion is important. Accordingly, we would plot KC/Rg versus sin2(6/2) + 7c, where -y
is an arbitrary constant; the sin2(6/2) term is proportional to ([2. The value of -y is chosen to spread
the data out. An example is shown in Figure 8.8 for a solution of methylcellulose in water. One
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Figure 8.8 Zimm plot for a sample of methylcellulose in water. (Reproduced from Kobayashi, K., Huang,
C.—I., and Lodge, T.P., Macromolecules, 32, 7070, 1999. With permission.)
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choice of 'y is approximately l/Ac, where Ac is the difference between successive concentrations.
In this case because sin2(6/2) g 1, all of the angle data for a given concentration lie to the left of all
of the angle data for the next higher concentration. In any event, the choice of y is essentially
cosmetic. The next step is to perform linear regression on each set of data, as follows. For each
shifted concentration yc, Kc/R9 should be fit to a straight line against sin2(6/2), and the 6 =0°
intercept recorded (and plotted, see the filled circles in Figure 8.8). Similarly, for each scattering
angle 6, Kc/Re should be fit to a straight line against 0, and the c=0 intercept recorded (and
plotted). Then, the 6 = 0° intercepts should be fit to a straight line against 0, and the c = 0 intercepts
to a straight line against sin2(6/2). Both of these lines should meet on the KC/Rg axis, and the
resulting value is l/Mw. The slopes of these lines are proportional to R: and B, respectively, with
the proportionality depending on exactly how the data were treated. This process may be under-
stood in detail by working through Problem 10, or the following example.

Example 8.3
The scattering data for the methylcellulose sample presented in Figure 8.8 are given in the following
table. The data were taken at 20°C, with an argon ion laser operating at 488 nm. Under these
conditions, 72 for water is 1.33, and Biz/ac was determined to be 0.137 mL/g. Calculate MW, Rg, and B.

Solution
The horizontal axis of the Zimm plot requires a choice of the shift factor 7. As the different
concentrations are separated by Ac 9:: 0.1 or 0.2 mg/mL, a reasonable choice for 37 would be in the
range l/Ac % 5000—10,000; in fact, a value of 3000 was selected for Figure 8.8. The next step is to
perform the first extrapolation to zero angle for each concentration. This may be done directly from
the data in the table, using sin2(6/2) as the x axis, by linear regression (“least squares”). The
resulting 6=0° data are listed below in the second table, and these extrapolations are shown
in Figure 8.9a, with the 620° data highlighted as solid circles. Note that to plot the data in
Figure 8.9a, each value of sin2(6/2) has to be added to the appropriate value of 7c.

6 (°). 311120372) Kc/R9x10°
0.21 mg/mL 0.30 mg/mL 0.50 mg/mL 0.59 mg/mL

30 0.0670 3.61 3.87 4.21 4.29
40 0.117 3.86 4.16 4.57 4.71
50 0.179 4.25 4.43 4.89 5.07
60 0.250 4.71 4.95 5.38 5.48
70 0.329 5.14 5.34 5.76 5.84
80 0.413 5.60 5.78 6.20 6.29
90 0.500 6.01 6.08 6.59 6.72

100 0.587 6.37 6.43 7.02 7.14
110 0.671 6.83 6.89 7.35 7.59
120 0.750 6.96 7.23 7.66 7.88
130 0.821 7.49 7.66 8.14 8.25
140 0.883 7.66 8.00 8.42 8.57
150 0.933 7.92 8.20 8.65 8.82

6 (mg/mL) 0.21 0.30 0.50 0.59
Kc/R9x10°,6=0° 3.42 3.62 4.03 4.13

The second extrapolation is to c=0 for each angle. The resulting linear regression curves and
intercepts are shown in Figure 8%, and the c = 0 values are listed in the following table.
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Figure 8.9 Construction of the Zimm plot of Figure 8.8 as developed in Example 8.3. (a) The extrapolation
to 9 = O for each concentration. (b) The extrapolation to c = 0 for each angle.

(continued)

Finally, these two sets of data should be extrapolated to 6 =0 and 6=O°, respectively. The
results are shown in Figure 8.90. From these two straight lines, the desired information can be
extracted as follows:
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Figure 8.9 (continued) (c) The extrapolations of the 0 = 0 data to 6 =0, and the 6 =0 data to 0 =0.

sin2(9/2) 0.0670 0.117 0.179 0.250 0.329 0.413 0.500
Kc/Rgx 106 6‘ =0 3.28 3.45 3.79 4.31 4.76 5.22 5.54
sin2(6/2) 0.587 0.671 0.750 0.821 0.883 0.933
KC/R9X106 I: = 0 5.85 6.33 6.48 7.04 7.23 7.47

Both fits give a common c=0, 620° intercept of 3.03x10‘6. Thus MW is obtained as
1/(3.03 x10'6)= 3.3 ><105 g/mol.

The concentration extrapolation is

K 1_C 2 _+ 236 = 3.03 x 10-6 + 0.64 x 10-6 (3000c)

therefore

B = (1/2) x 3000 x 0.64 x 10-6 = 9.6 x 10-4 mo] cnII3/g2
The angle extrapolation is

Kc 1 1 1 1 166-2712
R9 Mw( +3q 3) MW< +3 33 3111(9/ ) g

= 3.03 x 10-6 + 4.82 x 10-6 sin2(6/2)
Consequently,

4.82 x 10-6 488 2
11’2 = ————-—-—— 3 = 0 28 3.03 x 10-6 X X (4 x 3.14 x 1.33) 4 73 “m

and Rg = 64 nm.
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8.6 Scattering Regimes and Particular Form Factors
We continue this chapter with some further discussion of form factors. We return to the expansion
of Equation 8.5.13, where P(q) is a power series in even powers of gig-k. We can delineate four
general regimes of behavior, depending on the approximate magnitude of n.

1. Ifn <<1, which means either small molecules or very small scattering angles, then P(q) 2:: 1,
Thus the molecules may be considered as point scatterers, and there is no information on chain
dimensions. In other words, we may call this the Rayleigh regime, and Equation 8.4.24a and
Equation 8.4.24b apply.

2. Ifn < 1, then only the next term in the power series matters: P(q)~W 1 -— (q2/3)R2. In this
regime one can obtain the value of Rg without any knowledge about the shape of the
molecule. A plot of 1/1ex versus 4]2 should be linear, with slope R2/3 Note that the intensity
need not be calibrated to obtain Rg; the units of the intercept cancel out when determining
the slope. Alternatively, P(q)~~ exp(—- q2/3R2), and a plot of ln Iex versus i]2 should be linear
with slope -—R2/3 This latter format1s termed a Guinier plot, and this regime the Guinier
regime [5].

3. If 1 gn _<_ 10, more terms in the power series expansion of P(q) become important, and these
depend on the specific shape of the molecule. Accordingly, in this regime the mathematical
form of P(q) is helpful in distinguishing different molecular shapes. We will identify some
specific functional forms below.

4. Ifn >> 1, the scattering is dominated by the internal structure of the molecule, and one can
extract no information about Rg.

A more physical appreciation of these four regimes can be gained from the following viewpoint.
Recalling the discussion in Section 8.2, the scattering vector has dimensions of inverse length, and
qr—I is essentially a “ruler” in the sample. The choice of q dictates that the scattering experiment
will explore fluctuations on the length scale cfl. In Bragg diffraction, intensity is found at a
particular angle when the relation m}t = 20 sin 6/2 is satisfied (Equation 8.2.2), where D is the
spacing between planes of atoms in the crystal and m is an integer. The Bragg equation just
accounts for the fact that the phase shift is an integral number of wavelengths when moving from
one lattice plane to the next, and thus the interference is constructive. The Bragg equation for first
order (m = 1) can be rewritten D‘1 = (2/)1) sin(6/2) = q/2ar. In other words, scattering is exactly the
same process as Bragg diffraction. The only difference is that in scattering, we look for spontan-
eous fluctuations that just happen to have the right orientation and spacing (2dr/q) to scatter to the
detector, whereas in diffraction there are particular lattice planes. Now we can reinterpret the four
regimes above in terms of the relationship between the spacing of the lines and the size of the
molecule. This is illustrated in Figure 8.10, where a set of lines spaced at 277/q is shown with four
different polymers, illustrating the four size regimes.

Example 8.4
Estimate which of the four regimes would be accessed by light scattering on solutions of
polystyrene in cyclohexane at the theta temperature (345°C). Assume M values of 104, 105, and
106 g/rnol, and that the angular range of the instrument is 25°—150°.

Solution
We need to calculate Rg for each polymer, and the minimum and maximum q values of the
instrument. In Example 6.2, we calculated the unperturbed Rg for polystyrene with M—— 105 to be
8.5 nm. As Rg varies with \/_Mwe can estimate R3 for 104 to be \/_Otirnes smaller, i.e., 2.7 nm, and
Rg for 10‘5 to3 be \/_Otimes bigger, or 27 nm. For cyclohexane, n: 1.424 from Table 8.1 (at a
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Figure 8.10 Illustration of four regimes of scattering behavior, depending on the ratio of the polymer size,
R3, to the scattering length scale, I/q.

slightly different wavelength and temperature, but we are only estimating here). Assuming we have
an argon laser (A0 = 488 nm), then

4 . . 24 2X 3 14 X 1 4
sin (—5) = 0.0079 nm‘1qmi“ : 488 2

4 x 3.14 x 1.424 . 150 _,
Qmax —

488
3111(7) — 0.035 nm

Therefore for M = 104, n ranges from 0.0079x2.7=0.021 to 0.035x2.7=0.095. This falls
entirely into the Rayleigh regime, and we would not be able to determine R3. For M = 105, n
ranges from 0.067 to 0.30. This extends into the Guinier regime, and with precise measurements Rg
could be determined. Finally, for M = 106, n ranges from 0.21 to 0.95. Although this appears to
be in the Guinier regime, in fact the next term in the expansion of P(q) may contribute at larger
angles, so the lower angle data should be emphasized in the determination of R3.

There are two important conclusions to draw from these numbers. First, one can only change
q by a factor of about 5 in a typical instrument. Second, for flexible polymers and typical molecular
weights it is hard to get much beyond the Guinier regime. To access structural details at smaller
length scales, it is necessary to increase q substantially. This is done by utilizing x-ray or neutron
scattering, where the wavelength is only a few angstroms; recall q ~ 1/)\.

The form factors associated with particular distribution functions, P(rjk). have been derived for
a variety of shapes. We will just state the results for three particularly important ones: the Gaussian
coil, the rigid rod, and the hard sphere.

1. For the Gaussian coil, the form factor is known as the Debye function after it was first
developed by Debye [6]. It may be written as

2P(q) = Foe-x
— 1 +x), x a q: (8.6.1)

This function applies to chains in a theta solvent, and in the melt. It is important to realize that
it no longer applies when q‘l becomes comparable to the persistence length or statistical
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segment length; in that regime the chain conformation no longer follows the Gaussian
distribution.

2. For a rigid rod of length L and zero width, the form factor is [7]

1 srnz sinx 2 qL
P(q) = — J— dz — (—> , x E —— (8.62)

x x 2

where the definite integral is tabulated in most mathematical handbooks.
3. For a hard sphere of radius R the result (also due to Lord Rayleigh [8]) is

3 2 , 2
P(q) = —3 (smx — xcosx) , x E qR (8.6.3)

x

All three P(q) expressions are plotted in Figure 8.11a as a function of (n)2. In Figure 8.11b,
1 /P(q) is plotted versus qfi, i.e., in the form anticipated by the Zirnm plot. In this format all three
have the same small q limiting slopes, as they must, but they diverge beyond n a: 1. Note that
R g : L/m for the rod, and x / 3 /5R for the sphere (see Table 6.3), so the different definitions of
x in Equation 8.6.1 through Equation 8.6.3 need to be handled carefully. In Figure 8.11c, P(q) is
plotted on a logarithmic axis against n; note the oscillations in P(q) for a sphere. It is clear that
all three P(q) look similar forn < 1, as expected; this corresponds to regions 1 (“Rayleigh”) and
2 (“Guinier”) above. Beyond that they begin to diverge, corresponding to regimes 3 and 4.

8.7 Experimental Aspects of Light Scattering
The technique of light scattering was first applied to polymer solutions in the 1940s. Early
instruments were homemade, and limited by the quality of the available components, such as
photodetectors. Two early commercial instruments, the Bryce-Phoenix and the Sofica, remained in
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Figure 8.11 Form factors P(q) for Gaussian coils, hard spheres, and very thin rods (3) as a function
of (mg)?
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Figure 8.11 (continued) (b) Inverse form factors as in (a), showing the convergence to a common slope
of 1/3 in the small n limit. (c) Form factors plotted on a logarithmic scale, showing the oscillations for the
hard sphere.

service in some laboratories for decades. Even with the advent of lasers, high-quality photomulti-
pliers, and sensitive photodiodes, light scattering was largely conducted on custom instrumentation,
which limited its applicability. Two trends in the last two decades have reinvigorated the field,
however. One was the emergence of dynamic light scattering (DLS, see Section 9.5) as an important
characterization technique for polymer, biopolymer, and colloidal solutions. A DLS instrument can
be used to measure [(q) as well, and therefore commercial DLS apparatuses now often serve a dual
role. The second trend was the emergence of light scattering as an absolute molecular weight
detector for size-exclusion chromatography (SEC, see Section 9.7). In this context light scattering
is finally approaching the status of a “routine” characterization tool for polymer solutions.
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8.7.1 Instrumentation

The basic components of a light scattering instrument are illustrated in Figure 8.12. The typical
light source is a laser, although the unique features of a laser source (e.g., temporal and spatial
coherence, collimation, high monochromaticity) are not required. The most desirable feature of
the source is stability. The source may be vertically polarized or unpolarized, as discussed in
Section 8.3, but it is important to establish that you have one or the other, and not a partially
polarized beam. The beam should be collimated before traversing the sample cell. The solution
is usually contained in a glass cell, and the glass should be carefully selected for clarity and lack
of imperfections. All other things being equal, the larger the diameter of the sample cell, the
better. The reason is that at each air—glass interface a significant portion of the incident light
will be reflected, rather than transmitted. This reflected light may find its way to the detector as
stray light, or back into the scattering volume at a different angle, leading to erroneous
scattering signals. The reflected fraction of the intensity, R, for near—normal incidence is
given roughly by

mM (8.7.1)
(”glass + ”air)

where nglass is typically about 1.5 and nah = 1.0. This gives a reflectivity of about 4% per air—glass
interface. The larger the diameter of the sample cell, the further this source of stray light will be
from the scattering volume, and therefore the easier it is to eliminate. Empirically, for a 1 cm
sample cell it is very difficult to get to scattering angles below about 25° because of this problem.
Note that there will also be two glass—sample solution interfaces, where for some solutions
(aqueous ones, for example) there will also be substantial reflection.

The reflection problem is often mitigated, but not completely eliminated, by use of an index—
matching fluid. In this case the sample cell is suspended in a much larger container filled with a
fluid of refractive index near that of the glass (silicon oil and toluene are two common examples).
By this expedient the main air-glass interfaces can be moved several centimeters from the
scattering volume. Furthermore, the index-matching bath can provide an excellent heat-transfer
medium for controlling the sample temperature. Good temperature stability is important for precise
measurements.

The scattered light is collected by some combination of lenses and apertures, and directed onto
the active surface of the detector. In routine applications it is usually assumed that the scattered
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Figure 8.12 Schematic diagram of a light scattering photometer.
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light is entirely polarized vertically (for vertically polarized incident light), and a polarizer is not
used in front of the detector. This is a good assumption for most flexible polymers. However, in
some situations, such as when examining rod-like particles, significant depolarization of the
scattered light may occur, and a polarizer in front of the detector becomes a necessity. Three
general detection schemes can be envisioned. The simplest is to have a single detector at some
fixed scattering angle 9. This is of limited utility, especially in terms of gaining size or shape
information, but it can be useful as an SEC detector or for monitoring the course of a chemical
process whereby the scattering changes in time. The next option is to have a single detector that
can rotate about a vertical axis, which runs through the center of the sample cell. This provides a
continuously variable 9, which is very desirable. In recent years, it has become popular to use a
movable Optical fiber to collect the light, and keep the actual detector fixed in space. In this
configuration, the detector is usually a photomultiplier, which can be extremely sensitive (capable
of counting single photons, if need be) and which has a wide linear range (output current
proportional to incident intensity over many orders of magnitude). The third approach is to arrange
multiple detectors at fixed angles, which allows for simultaneous detection with the attendant
increase in overall signal-to-noise (the “multiplex advantage”). This technique has only recently
become practical with improvements in photodiode detectors, such that small, inexpensive units
are sufficiently sensitive and linear. The multiangle light scattering technique is now the basis of a
popular SEC detector, which can give real-time information about M and Rg for each slice of the
chromatogram (see Section 9.7).

The final instrumental issue is the use of an incident intensity monitor, to follow fluctuations
and drift in the source output. Often a small portion of the incident beam is split off, for example
by inserting a piece of glass in the incident beam at 45° to the prOpagation direction, and directed
to a separate detector. This permits the scattered signal to be normalized to the incident intensity
in real time, which ultimately leads to a much more reliable R9. For example, when measuring a
dilute polymer solution the scattered intensity may be less than twice that of the solvent alone.
The solvent and solution would be measured at different times, so small but uncontrolled
variations in source intensity can severely compromise the reliability of the excess intensity. It
is also desirable to place a detector to monitor the transmitted beam. This could serve as an
incident intensity monitor, but by having detectors both prior to and after the sample it is possible
to detect changes in the total sample scattering, and thereby to assess whether absorption or
multiple scattering is a problem.

8.7.2 Calibration

Referring back to Equation 8.4.22, we see that in order to extract a value of MW, we will need to
know the refractive index of the solvent, art/60, 0, A0, and r. All of these are straightforward to
determine, except r. In addition, and most importantly, the Rayleigh ratio involves the ratio of
the scattered intensity per unit volume to the incident intensity, and as we noted in the beginning
of the chapter, we rarely determine a true intensity. Furthermore, we would not know the active
area of the photodetector, or its quantum efficiency (the fraction of incident photons actually
detected).

The resolution of these difficulties is actually rather simple. We assume that the detector
produces an output signal S (current, voltage, or “counts”) proportional to the incident intensity:

SS = BSIS (8.12)

where the proportionality factor B is independent of the magnitude of S over the relevant range
(i.e., linear response), and the subscripts denotes “scattering.” As long as we maintain the detector at
a fixed distance r from the scattering volume as the scattering angle is varied, then the detector
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should collect light over the same range of solid angle fraction at each 6. A similar equation
describes the response of the incident intensity monitor:

So = 3010 (8.13)

We are now in a position to obtain the Rayleigh ratio (units of cm”) as follows:

rZUSsolution __ Igolvent)

Io
— rZBS(S:olution

_
Siolvent)

3050
: 7(Sgolution

__
Siolvent) (874)

So

R9:

where there is a single unknown proportionality factor 7. This we obtain by measuring a pure
solvent for which the absolute Rayleigh ratio has been measured (by someone who took a lot of
care) at the same wavelength and temperature. A second calibration step is required for instruments
with multiple detectors, as each detector will have its own value of B (and also a different r and
collection solid angle). This is best accomplished by using a solution with relatively high scattering,
but one for which the scattering is entirely incoherent. A solution of a moderate molecular weight
polymer can serve this purpose. Then the signal from each detector can be normalized to a single
reference detector (usually chosen at 6 = 90°) by a multiplicative factor. It should be noted that
Equation 8.7.2 and Equation 8.7.3 assume that there is no background signal (i.e., a finite 5 when
the source is turned off) or stray light (i.e., contributions to S not from sample scattering at angle 6).
In fact, all photodetectors have some dark current (output in the absence of input), but this is very
small. (If it is a significant fraction of the scattering signal, then your experiment is in trouble.)
Other sources of background (e.g., room light) and stray light can be minimized by appropriate
instrumental design. However, the simple fact is that the detector is indiscriminate; all photons that
reach it will be counted as scattering, no matter what their origins, and so great care must be taken to
eliminate background and stray light.

There is an additional correction step that must be performed when using a single detector that
rotates to various 9. Refen‘ing to Figure 8.13, the scattering volume is determined by the
intersection of the incident beam and the collected beam (the latter being set by the geometry of
the detection system). Assuming that both are square in cross section, and that the latter is
comparable in diameter to the former, we can see that as 6 deviates from 90° the volume of

Vol ~ d3/sin a
d

‘4 4

Figure 8.13 Illustration of the change in scattering volume with scattering angle, 6, for incident and
scattered beams with width d.
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intersection increases by a factor of l/sin 6. Thus, the signal at any angle should be multiplied by a
factor of sin 6 in order to account for this variation in scattering volume. A very good indication of
a functioning instrument is to plot 53(6) sin 6 versus 9 for an incoherent scattering solution. This
product should be independent of 6. Ultimately, at high and low 9 the data will deviate from the
constant value due to reflections at the various interfaces discussed above. This measurement will
therefore provide a guide as to the reliable range of 6 for the instrument.

8.7.3 Samples and Solutions

There are two main issues here. First is the choice of solvent, and second is the preparation of
“dust—free” samples. One may not have the freedom to choose the solvent, but all other things
being equal it is desirable to have |8nl6c| as large as possible, as the intensity is proportional to
(an/36f. It may also be helpful to choose a solvent with a relatively small R9 of its own, so that the
polymer contribution to the excess scattering is larger. (You might be wondering “Why does the
pure solvent scatter at all, given that we emphasized that homogeneous materials do not scatter?”
The answer is density fluctuations, and the scattered intensity is determined by the isothermal
compressibility of the solvent, K, in parallel to Equation 8.4.11, the intensity is proportional to
kTK). Finally, some solvents are easier to make dust-free than others; for example, more polar
solvents such as water and THF are often trickier to clean than toluene or cyclohexane. The
preparation of dust-free samples takes some care and experience. It is essential to remove dust, as
stray particles that are significantly larger than the polymer molecules will scatter strongly. The
two standard options are filtration and centrifugation, and the fonner is usually preferred. Both are
less than ideal, in that they may change the concentration of the solution. The use of light scattering
as an SEC detector has a particular advantage here in that the column acts as an excellent filter, and
a refractive index detector serves as a direct concentration monitor. There are two standard
diagnostics for the presence of dust in the sample. The first is to examine the temporal fluctuations
in 53. These should be random, and have a root—mean—square amplitude close to x/ (55). If some
dust is present, the signal is likely to increase suddenly and then decrease suddenly some seconds
later, as dust particles drift in and out of the scattering volume. The scattering volume can also be
examined visually; the tell-tale bright flashes of dust are often easily seen. The second diagnostic is
to examine 1/109) versus sin2(6/2) (or qz). According to the Zimm equation this should produce a
straight line. Dust will increase 1(6) selectively at low 6, resulting in a characteristic downturn in
the plot. (Note that this test should only involve the range of 6 deemed to be free of reflections.)

8.7.4 Refractive Index Increment

As is evident from the preceding discussion, (Tin/8c“ plays a central role in the magnitude of the
scattered intensity. It may be defined as follows:

9:”:
BC

where n is the refractive index of the solution, it, the refractive index of the pure solvent, and c is
the concentration in g/mL. The initial slope of n(c) versus 6 gives Bit/ac, but is better obtained as

an. , n — n5 __ _ An,
E ‘ 3313“ c ) ‘l11.%(7) (8.7.6)

Usually one is interested in concentrations on the order of 10‘2 — 10—4 g/mL, and arr/ac is of
order 0.1, so it is not simply a matter of measuring n directly, because the change in n will only
appear in the third or fourth place after the decimal. Rather, a dififerenrial refractometer should be
used. A variety of designs are available, either commercially or by relatively simple assembly in
the laboratory, but the principle behind the simplest version is illustrated in Figure 8.14. The light

nzns+ c+acz+~~ (8.7.5)
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Figure 8.14 Illustration of a refractometer based on a split cell prism.

beam is incident on a divided cell that contains the solvent in one compartment and the solution in
the other (or solutions of two different concentrations). The dividing glass surface is angled, so that
the beam direction in compartment 2 depends on the refractive index of the fluid in compartment 2,
by Snell’s law. The beam is then reflected back through both compartments, with a final direction
that depends on An. For small An it can be shown that the displacement of the reflected beam, d, is
proportional to An.

The value of an/ac depends on T and )t, so it should be measured under the same conditions as the
light scattering itself. It is independent of molecular weight for large M, but will develop a significant
M dependence at low M, so this may need to be taken into account in, for example, SEC detection (see
Section 9.7). The main source of the M dependence of an/ac lies in the M dependence of the polymer
refractive index np, which in tum depends directly on density. The M dependence of the density reflects
primarily the concentration ofchain ends, and art/ac is therefore usually linear in 1/M,,. It is tempting to
try and relate {in/36 to n], — n, in some simple way, but this is risky. There is no general, rigorous
expression for n(c) that depends only on n3, np, and c, and in fact n need not even vary monotonically
with 6. However, it is usually the case that art/ac will increase with the magnitude of up — n3, so this
becomes a reasonable starting point when choosing a solvent to maximize an/ac. Note that an/ac can
be positive, negative, or zero; as it appears squared in the scattered intensity, the sign does not matter. If
one chooses an isorefractive solvent, such that (an/ac z 0, that polymer will be invisible in the
scattering experiment. This can be used to advantage in examining polymer mixtures and copolymers,
in order to highlight the behavior of one particular component.

8.8 Chapter Summary
In this chapter we have developed in some detail the equations governing the scattering of light
from dilute polymer solutions. Light scattering is a very powerful experimental tool, providing
both thermodynamic and structural information. Recent developments in commercial instrumen-
tation have accelerated the use of light scattering in routine characterization. The main concepts in
the development are the following:

1. Completely uniform materials do not scatter. Scattering in polymer solutions arises from
random fluctuations in concentration. This scattering is incoherent, which means that the
intensity is independent of scattering angle.

2. The incoherent intensity is determined by the mean-square concentration fluctuations, which
in turn are set by the ratio of the thermal driving force, H", to the free energy penalty for a
given fluctuation, (326/862. It is through this relationship that the scattering experiment
provides a measurement of Mw and B.
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3. For polymers that are large enough, a significant phase difference can arise between portions
of the incident wave that are scattered from different monomers on the same chain. This leads
to angle-dependent, or coherent, scattering. The underlying process is very similar to Bragg
diffraction from crystals, with the key difference being that in polymer solutions there are only
average correlations in the positions of the various monomers, rather than a permanent lattice.

4. The description of coherent scattering is built around the scattering wavevector, (f. The
magnitude of this vector depends on wavelength and scattering angle, and has units of inverse
length. Depending on the magnitude of the dimensionless product n, the coherent scattering
can give information about the internal structure or the overall size of the polymer. It is often
possible to use light scattering to measure Rg in a completely model-independent way.

Problems
1. Explain in your own words (i) why the permeation of solvent through a membrane into a

polymer-rich phase and the amount of light scattered by a polymer solution are related, (ii)
why even though they are closely related, the osmotic pressure and light scattering experi—
ments measure different moments of the molecular weight distribution, and (iii) why the
osmotic pressure measurement becomes increasingly difficult for degrees of polymerization
>103 while light scattering becomes harder for degrees of polymerization £103.

2. Estimate the largest and smallest molecular weight polystyrenes for which one could reason—
ably expect to measure Rg reliably in THF, using an Argon laser at 488 nm, and a usable
angular range of 30° < 6 < 150°; THF is a good solvent for polystyrene.

3. Carry though the integration of Equation 8.4.7 to obtain Equation 8.4.10.
4. An estimate of R E can be obtained rather simply from the so-called dissymmetry ratio, defined

as Iex(6=450)/Iex(6= 135°). Explain how this works. Zimm has reported the intensity of
scattered light ()1 = 364 nm) at various angles of observation for polystyrene in toluene at a
concentration of 2><10_4 g/mLT. The following results were obtained (values marked * were
estimated and not measured):

9 (o) IS (a.u.)

0 4.29”“
25.8 3.49
36.9 2.89
53.0 2.18
66.4 1.74
90.0 1.22

113.6 0.952
143.1 0.763
180 0.70*

Draw a plot in polar coordinates of the scattering envelope in the x — y plane. How would the
envelope of a Rayleigh scatterer compare with this plot? By interpolation, evaluate the
dissymmetry ratio and Rg. What are some practical and theoretical objections to this procedure
for estimating Rg?

5. The effect of adenosine triphosphate (ATP) on the muscle protein myosin was studied by light
scattering in an attempt to resolve conflicting interpretations of viscosity and ultracentrifuge
data. The controversy hinged on whether the myosin dissociated or changed molecular shape
by interaction with ATP. Blum and MoralesI reported the following values of (Kc/R6)C:0
versus sin2(9/2) for myosin in 0.6 M Kc1 at pH 7.0. Which of the two models for the mode of

*B.H. Zimm J. Chem. Phys. 16, 1093, 1099 (1943).
I1.]. Blum and M.F. Morales Arch. Biochem. Biophys. 43, 208 (1953).
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ATP interaction with myosin do these data support? Explain your answer by quantitative
interpretation of the light—scattering data.

sin2(6/2) 0.15 0.21 0.29 0.37 0.50 0.85
Kc/Rgx 107 (Before ATP) 0.9 1.1 1.5 1.8 2.2 2.7
Kc/R9x107 (With ATP) 1.9 2.8 3.7 4.6 6.0 6.8

For poly(n-hexyl isocyanate) and poly(methyl methacrylate), estimate the range of molecular
weights for which the Guinier regime (n < 1) can be accessed. The data in Figure 6.10 and
Table 6.1 may be useful.
Aggregation of fibrinogen molecules is involved in the clotting of blood. To learn something
about the mechanism of this process, Steiner and LakiJr used light scattering to evaluate M and
the length of these rod—shaped molecules as a function of time after a change from stable
conditions. The stable molecule has a molecular weight of 540,000 g mol

" 1 and a length of
840 151. The accompanying table shows the average molecular weight and average length at
several times for two different conditions of pH and ionic strength 11. Criticize or defend the
following proposition: The apparent degree of aggregation x at various times can be obtained in
terms of either the molecular weight or length. The ratio of the value of x based on M to that
based on length equals unity exclusively for end-to-end aggregation and increases from unity as
the proportion of edge—to—edge aggregation increases. In the higher pH—lower p. experiment
there is considerably less end—to—end aggregation in the early stages of the process than in the
lower pH—higher p. experiment.

pH = 8.40 and p. 2 0.35 M pH = 6.35 and p. = 0.48 M

1(3) Mx 10 r 6 (g mol — 1) Length (A) r (s) Mx 10 — 6 (g mol — 1) Length (A)
650 1.10 1300 900 1.10 1100

1 150 1.63 1600 1000 2.0 1200
1670 2.20 1900
2350 3.30 2200

Zimm plots at 546 nm were prepared for a particular polystyrene at two temperatures and in
three solvents. The following summarizes the various slopes and intercepts obtainedi:

T: 22°C

Solvent

Slope
Intercept 6:0

Slope
Intercept 9:0

Methyl ethyl ketone 0.608 260
Dichloroethane 1. 16 900
Toluene 1. 14 1060

T = 67°C

Slope Slope
Solvent Intercept 6:0 Intercept 9:0
Methyl ethyl ketone 0.551 230
Dichloroethane 1 .05 870
Toluene 1.09 800

IRE. Steiner and K. Laki, Arch. Biochem. Bt'ophys. 34, 24 (1951).
1P. Outer, C.I. Carr, and 13.11. Zimm, J. Chem. Phys. 18, 839 (1950).
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10.

11.

12.

13.

14.

The slope—intercept ratios have units of cubic centimeters per gram, and the intercepts are
c/n, where the subscript v indicates vertically polarized light. The following values of n
and 3n/3c can be used to evaluate K:

T = 20°C T = 67°C

72 an/ac n an/ac

Methyl ethyl ketone 1.378 0.221 1.359 0.230
Dichloroethane 1 .444 0.158 1 .423 0. 167
Toluene 1.496 0. 108 1.472 0. 1 18

Evaluate MW, Rg, and B from each piece of pertinent data and comment on (a) the agreement
between MW values and (b) the correlation of Rg and B with solvent quality.
Plot the light scattered intensity (arbitrary units) versus scattering angle that you would
expect to see for a very dilute solution of polystyrene with M = 4,000,000 in cyclohexane at
35°C. Assume the instrument has an angular range of 20°—150°. On the same axes show the
angular dependence of the intensity if the scattering object were a hard sphere with the same Rg.
For polystyrene in butanone at 67°C the following values of Kc/Rgx 10° were measured at the
indicated concentrations and angles. Construct a Zimm plot from the data below using
7: 100 mL/g for the graphing constant. Evaluate M, B, and R3 from the results. In this
experiment A0 = 546 nm and n = 1.359 for butanone.

c (g/mL)
0 (°) 1.9x 10'3 3.8x 10'4

25.8 — 1.48
36.9 1.84 1.50
53.0 1.93 1.58
66.4 1.98 1.62
90.0 2.10 1.74

113.6 2.23 1.87
143.1 2.34 1.98

Draw a sketch of a complete Zimm plot for a high molecular weight polymer in a theta
solvent, assuming data were acquired at eight angles and at four concentrations. In a different
color pen, indicate the effect on the data if a small amount of dust were present in the
solution. Similarly, in a different color indicate the effect on the data of raising the solution
temperature substantially. State any assumptions you make.
When a dilute solution of block copolymers undergoes micellization, i.e., some numbers of
chains aggregate into a (usually spherical) assembly to shield one block from the solvent it
does not like, the light scattering intensity increases. In fact, if micellization is induced by
changing temperature at a fixed concentration, the ratio of the intensity after micellization to
that before micellization is a good estimate of the average aggregation number of the
micelles. Explain this observation.
Show that the form factors for the Gaussian coil and the hard sphere do indeed reduce to the
expected 1 — qfi/3 at low q, using the appropriate series expansions.
Imagine that you perform light scattering measurements on a diblock copolymer, and you
generate a Zimm plot in the standard way. However, one of the blocks is isorefractive with
the solvent (an/ac = 0), so it does not contribute directly to the scattering signal. Comment
on how the apparent values of MW, Rg, and B (i.e., those obtained by assuming you are
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15.

16.

17.

18.

19.
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looking at a homopolymer) might relate to the values associated with the copolymer as a
whole, or those of the two blocks.
Imagine dissolving dilute quantities of two different polymers, A and B, in a solvent and
making light scattering measurements. What is the appropriate equation to describe the
results, analogous to the Zimm equation? You may assume that the chains are sufficiently
small that P(q) = 1 for both A and B. You will need to consider two concentrations, CA and CB,
two molecular weights MA and MB, two values of one important optical parameter, and more
than one second virial coefficient. You do not need to do a complicated derivation to get the
answer, but it is necessary to consider how the light scattering signal responds to concentra-
tion fluctuations, and how many different “kinds” of concentration fluctuations there are in a
three-component mixture.
Suppose you had a new polymer, in which you knew the monomer structure but not the shape
of the polymer in solution (e.g., rod, coil, spherical globule, etc.). A good light scattering
measurement would give you MW, Rg, and B. However, from this information alone, you
could also infer the shape; explain how, perhaps with numerical estimates of the relevant
parameters. Note that fitting to the form factor is not the answer; all form factors are the same
in the small n limit.
Imagine making light scattering measurements on a statistical copolymer of styrene and
methyl methacrylate, in a very dilute solution, and at angles such that n << 1. The sample
has a mean styrene composition of f (0 <f< 1). The refractive index increment of the
sample in the particular solvent in question is measured, and found to be (an/8c); as
expected (an/6c) =f(5n/8c)ps+(l —f)(8n/8c)pMMA. Give an expression for the excess
scattered intensity, for a solution of total concentration c, in terms of M,, c,—, (an/80,,
(where the subscript i allows for polydispersity in M), and the usual optical constants. In
reality, the measured intensity may well be larger than this value; the reason lies in the fact
that each chain will have a composition that may differ from f. Making reasonable
assumptions about the M and f dependences of (an/86),, the refractive index increment of
chain i, develop an expression for the observed intensity, in terms of averages involving 8f,-,
where 5f, 2f, —f, the difference in composition between chain 1' and the sample average.
Your result should show the interesting (and correct) prediction that there can be excess
scattered intensity from a statistical copolymer solution, even when a solvent is chosen
such that (an/8c) = 0.
An analytical expression for the form factor of a Kratky-Porod worm—like chain (WLC,
Chapter 6.4.2) is not available (although numerical approximations valid in various regimes
have been developed). Nevertheless, with a little thought you should be able to make a
reliable sketch of what P(q) must look like. Take a WLC with L = 100 nm and 6p 2 10 nm.
Using a reasonable plotting program, generate a plot of q2P(q) versus q (a so—called “Kratky”
plot) for a Gaussian coil with the same Rg as this WLC. Run the q axis from 0 out to 0.5
aI. Do the same thing for a rigid rid with L = 100 nm, and plot it on the same axes. Finally,
by considering the low and high q asymptotic behavior of the various structures, draw by
hand a smooth curve representing the WLC.
There are often differences in practice between various analysis schemes that are otherwise
equivalent in principle. For example, use a computer to generate P(q) “data” for a high
molecular weight Gaussian coil from n= 0 out ton= 2. Add “noise” to the data with a
reasonable amplitude using a random number generator. Then, fit the data to a straight line
according to the Zimm approach (1/P(q) versus (n)2) and to the Guinier approach (1n
P(q) versus (n)2. Vary the n range of the data included in the fit at the high n end
(why is this appropriate?) Which fitting approach is more robust, in terms of returning the
correct Rg value?
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9
Dynamics of Dilute Polymer Solutions

9.1 Introduction: Friction and Viscosity

This chapter contains one of the more diverse assortments of topics of any chapter in this volume.
In this chapter we discuss the viscosity of polymer solutions, the diffusion of polymer molecules,
the technique of dynamic light scattering, the phenomenon of hydrodynamic interaction, and the
separation and analysis of polymers by size exclusion chromatography (SEC). At first glance these
seem to be rather unrelated topics, but all are important to molecular weight determination in
solution. Furthermore, all share a crucial dependence on the spatial extent of the molecules. In
Chapter 8 we considered in detail how light scattering can provide a direct measurement of the
radius of gyration. In this chapter the measure of size turns out to be roughly proportional to, but
not numerically equal to, the radius of gyration. As the chapter heading suggests, we now consider
for the first time in the book the time-dependent properties of polymers and particularly the rate at
which polymer molecules move through a solvent. By emphasizing dilute solutions, the properties
of individual polymer molecules are highlighted; in Chapter 11 we will consider the dynamic
properties of more concentrated solutions and melts.

A parameter that plays an important role in unifying the concepts of viscosity and diffusion is the
friction factor. We will initially define the moiecular friction factor, f, by a thought experiment.
Imagine a polymer molecule dissolved in a solvent. Further imagine that we have a way of pulling
this molecule gently, but persistently, in one direction. After an initial start-up period, or transient
response, we would find that if we apply a constant force I? the molecule would move with a constant
velocity ‘7 in the direction of the force. The proportionality factor between the applied force and the
resulting velocity isf = |13|/|v’| The units offare therefore (g cm/s2)/(cm/s) = g/s in the cgs system
(the SI unit is kg/s), and a typical value for a polymer dissolved in water might fall between 10‘7 and
10“5 g/s. The next few sections are concerned with two general questions: how can we gain
experimental access to f, and what can f tell us about the polymers themselves? Our starting point
will be to consider a single hard sphere. Although this idealization might appear at first to resemble
the ideal gas or the ideal solution in thermodynamics—a simple model to use in learning the r0pes,
but of limited practical relevancewit is not so. For a rather profound reason, which we shall explore
in Section 9.6, even floppy random coils have friction factors very similar to those of hard spheres of
comparable size. However, we will get to that in due course; let us start at the beginning. Before
discussing hard spheres, we need to introduce the viscosity of a fluid in more concrete terms.

As a place to begin, we visualize the fluid as a set of infinitesimally thin layers moving parallel
to each other, each with a characteristic velocity. In addition, we stipulate that those fluid
layers that are adjacent to nonflowing surfaces have the same velocity as the rigid surface. This
is another way of stating that there is no slip at the interface between the stationary and flowing
phases, which is a good approximation for the slow flows of immediate interest. Now suppose we
consider a sample of fluid that is maintained at constant temperature, sandwiched between two
rigid parallel plates of area A as shown in Figure 9.1. If a force F in the x—direction is applied to the
top plate that plate and the layer of fluid adjacent to it will accelerate until a steady x—velocity is
reached (although force and velocity are vectors, we will drop the arrows for the remainder of
this chapter). As long as the deforming force continues to be applied, this velocity is unchanged.

327



328 Dynamics of Dilute Polymer Solutions

IA xH—+ F
—v__-}J I;

l
’1’

I

*‘W’ X

1—»!

Figure 9.1 The relationship between the applied force F per unit area A and the velocity v used in the
definition of viscosity.

This time—independent behavior is called steady flow and will be our primary concern. During the
acceleration that precedes the stationary state, the velocity is a function of time. For our purposes,
we shall simply wait until the stationary state is reached and not even question how long it will
take. Force per unit area is called stress, and in shear flow is given the symbol 0'.

In the experiment described in Figure 9.1, the bottom plate remains in place and the nonslip
condition stipulated above requires that the layer of fluid adjacent to the bottom plate also has zero
velocity. This situation clearly requires that the velocity of the fluid varies from layer to layer
across the gap between the two rigid plates. To formulate this mathematically, we write that the top
and bottom of these imaginary fluid layers are separated by a distance Ay and differ from each
other in velocity by Av. The ratio Av/Ay has units of reciprocal time and is called either the
velocity gradient or the rate of shear. The former name is self-explanatory and the latter may be
understood by considering the actual deformation the sample undergoes under the shearing force.
During a short time interval At, the top layer moves a distance Ax relative to the bottom layer.
Accordingly, Av may be written as Av :Ax/At and the velocity gradient may be expressed as
Av/Ay = (Ax/At)/Ay = (Ax/Ay)/At. The shear displacement Ax divided by the distance over which
it vanishes to zero, in this case Ay, is called the shear strain, which we represent by 7/. These
relationships show that the ratio Av/Ay also describes the rate at which the shear strain develops,
or, more simply, the rate of shear A'y/At, or 7'1. In summary,

éi_.__Ax/Ay
Ay_yu At

(9.1.1)

Now let us invoke our experience with liquids of different viscosities, say, water and molasses, and
imagine the magnitude of the shearing force that would be required to induce the same velocity
gradient in separate experiments involving these two liquids. Our experience suggests that more
force is required for the more viscous fluid. Since the area of the solid plates in this liquid sandwich
is also involved, we can summarize this argument by writing a proportionality relation between the
shear force per unit area, a, and the velocity gradient

F Av ,

yA

where 7] is called the coefficient of viscosity of the fluid or, more simply, the viscosity. Equation
9.1.2 implies that the velocity gradient is exactly the same throughout the liquid. As this may not
be the case over macroscopic distances, our best assurance of generality is to consider the limiting
case, in which Ay and therefore Av approach zero. In the limit of these infinitesimal increments Av
and Ay become dv and dy, respectively, so Equation 9.1.2 becomes

dv

02nd—yzn'jr
(9.1.3)
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Equation 9.1.3 is called Newton’s law of viscosity, and those fluids that follow it (with 7?
independent of the magnitude of the shear rate) are said to be Newtonian.

Equation 9.1.3 describes a straight line with zero intercept if 0‘ is plotted versus the velocity
gradient; such a plot is shown in Figure 9.2. Since the coefficient of viscosity is the slope of this
line, this quantity has a single value for Newtonian liquids. Liquids of low molecular weight
compounds and their solutions are generally Newtonian, but quite a few different variations from
this behavior are also observed. We shall not attempt to catalog all of these variations, but shall
only mention the other pattern of behavior shown in Figure 9.2. This example of non—Newtonian
behavior is described as shear thinning, and is often observed when the material under study is a
polymer solution or melt. Since Equation 9.1.3 defines the coefficient of viscosity as the slope of a
plot of 0‘ versus velocity gradient, it is clear from Figure 9.2 that shear—thinning substances are not
characterized by a single viscosity. The viscosity at a particular velocity gradient is given by the
ratio a/(dv/dy); inspection of Figure 9.2 reveals that shear-thinning materials appear less viscous at
high rates of shear than at low rates. For the purposes of this chapter and the next, we are only
concerned with Newtonian response. For shear-thinning fluids, Newtonian response can be
achieved by reducing the shear rate sufficiently to access the linear portion near the origin in
Figure 9.2. This may be formalized by defining the zero shear viscosity, 7103

770
Ell/1:161)

(9.1.4)

In most viscometers it is possible to vary '5! in such a way as to ascertain whether 17 is constant. For
the remainder of this book, the symbol 7? refers to the zero shear viscosity, unless explicitly stated
otherwise.

To see another interpretation of viscosity, we multiply both sides of Equation 9.1.2 by Av/Ay:

Av FAv s_=__: _— -1-“A, My "(A33 (9 5)
To appreciate this result, we remember that Av as introduced in Figure 9.1 is actually Ax/Ar. Thus
the product F(Av/Ay) can be written as F(Ax/At)/Ay, and F(Av/Ay)/A becomes FAx/AAyAt. The
product of a force and the distance through which it Operates equals an energy AE and the product
of A and Ay equals the volume element of AV, upon which the shearing force described in

Newtonian (high 17)

Zero shear limit

PM = or /

, Shear thinning

Newtonian (low 17)

dv/dy = 7"

Figure 9.2 Comparison of shear stress versus shear rate for Newtonian and shear—thinning behavior.
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Figure 9.1 operates. Therefore FAx/AAyAt is the same as AE/AVAI. Defining the increment in
shear energy dissipated per unit volume by the symbol AW, we obtain

AW Av 2

37:
71(5) (9.1.6)

As in the parallel case of going from Equation 9.1.2 to Equation 9.1.3, we take the limit of
infinitesimal increments and write

dW dv 2
dt

_ n (dy) (9.1.7)

The deforming forces that induce flow in fluids are not recovered when these forces are removed.
These forces impart kinetic energy to the molecules, which is dissipated within the fluid as heat.
Equation 9.1.7 implies that at sufficiently high shear rates the amount of heat generated could lead
to measurable temperature increases; this phenomenon of viscous heating is indeed a concern in
high shear-rate measurements and applications.

We conclude this section with a consideration of the units required for r] by Equation 9.1.3. To
do this, we rewrite these equations in terms of the units of all quantities except 1). The units of 7’1
must make the expressions dimensionally correct. Force has units of mass times acceleration, or
g cm/s2 in cgs units. Since the viscosity gradient has the units 3‘1 and area is cmz, the dimensional
statement of Equation 9.1.3 is

g cm s‘z/cm2 = (n) 5*1

In order to satisfy this equation, 11 must have units g/cm/s, which is defined to be 1 poise (1 P). In
the SI system the units are kg/m/s, or pascal seconds (Pa 3). At room temperature, water has a
viscosity of about 0.01 P or 0.001 Pa 5 and other low molecular weight liquids have comparable
viscosities. The viscosity of a polymer liquid depends very much on the concentration and
molecular weight of the polymer, as we shall see in Section 9.3 and in Chapter 11, and it can be
many orders of magnitude larger than 0.01 P.

9.2 Stokes’ Law and Einstein's Law

The shearing force F that is part of the definition of viscosity can also be analyzed in terms of
Newton’s second law and written as

dvF: = _ 9.2.1ma mdr ( )

When the force is divided by the area of a shearing plane, A, to obtain a stress, we would also write

F mdv dv_=__: ._ .22A A dt ndy (9 )

If it were complete, Equation 9.2.2 would be a differential equation whose solution would give v, the
velocity of the flowing liquid, as a function of time and position within the sample. Equation 9.2.2
does not tell the whole story, however. Other forces are also operative: external forces of, say,
gravitational or mechanical origin are responsible for the motion in the first place, and pressure forces
are associated with the velocity gradient. In general, things are not limited to one direction in space,
but the forces, gradients, and velocities have x, y, and 2 components. It is possible to bring these
considerations together in a very general form by adding together all of the forces acting on a volume
element of liquid, including viscous forces, and using the net force and the mass of the
volume element in Equation 9.2.2. The resulting expression is called the equation ofmotion and is
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the cornerstone of fluid mechanics. The equation of motion is generally written in terms of vector
operators and takes on a variety of forms, depending on the system of coordinates and the vector
identities that have been employed. If the equation of motion is complicated even in writing, things
are even worse in the solving. Accordingly, we will not reproduce a full treatment here, but rather
outline the essential points.

As with any differential equation, an important part of solving the equation of motion is
defining the boundary conditions. An important boundary condition was introduced above, namely
that no slip occurs at the boundary between a moving fluid and a rigid wall. The “no slip” or
“stick” condition means that the fluid layer immediately adjacent to a stationary wall has a
velocity of zero, with successive layers away from the wall possessing larger increments of
velocity. At a sufficiently large distance from the wall, a net velocity is attained, which is
unperturbed by the presence of the surface. In Section 9.4 we shall apply this idea to the flow of
a liquid through a capillary tube. For now we consider two classic problems involving the effect of
rigid spheres on the flow behavior of a liquid.

9.2.1 Viscous Forces on Rigid Spheres

The first of these problems involves relative motion between a rigid sphere and a liquid, as
analyzed by Stokes around 1850 [1]. The results apply equally to liquid flowing past a stationary
sphere with a steady-state (subscript “0”) velocity v0, or to a sphere moving through a
stationary liquid with a velocity —v0; the relative motion is the same in both cases. If the relative
motion is in the vertical direction, we may visualize the slices of liquid described above as
consisting of a bundle of layers, some of which are shown schematically in Figure 9.3.

In the horizontal plane containing the center of the sphere a limiting velocity v0 is reached as the
distance r from the center of the sphere becomes large. This would be the observable settling
velocity of such a spherical particle, for example. In an infinitesimally thin layer adjacent to the
surface, the tangential component of velocity would be that of the solid sphere. This is the no slip
condition as it applies to this problem. This means that a velocity gradient exists that is described in
terms of the distance from the center of the sphere and the component of velocity perpendicular to
r. The velocity gradient dv/dr should certainly be proportional to v0 and then we need a quantity
with units of length to be dimensionally correct. The only relevant length we have is R, the radius

.. Iv.

Figure 9.3 Distortion of flow streamlines around a Spherical particle of radius R. The relative velocity in
the plane containing the center of the sphere equals v0 as r —> oo.
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of the sphere, and thus we anticipate that dv/dr is proportional to vo/R. Formal analysis of the
problem via the equation of motion verifies this argument from dimensional analysis and provides
the necessary proportionality factors as well.

From Equation 9.2.2 we see that the total viscous force associated with this motion equals
7) x (dv/dr) >< (area), where the pertinent area is proportional to the surface of the sphere and
therefore varies as R2. This qualitative argument suggests that the viscous force opposing the
relative motion of the liquid and the sphere is proportional to [n(vo/R)] (R2). The complete solution
to this problem reveals that this is correct; both pressure and shear forces arising from the motion
are proportional to nRvO, and the total force of viscous resistance is given by

Fvis = 67rnRv0 =fv0 (9.2.3)

This famous equation is Stokes’ law for rigid spheres. We emphasize that the viscosity in Equation
9.2.3 is that of the medium surrounding the sphere by labeling it with the subscript “s” for solvent,
and thus

f : 67mg}? (9.2.4)
for Spherical particles of radius R.

9.2.2 Suspension of Spheres

The second classic problem arises in describing the viscosity of a suspension of spherical particles.
This problem was analyzed by Einstein in 1906, with some corrections appearing in 1911 [2]. As
with Stokes’ law, we shall only present qualitative arguments to give plausibility to the final form.
The fact that it took Einstein five years to work out the “bugs” in this theory is an indication of the
complexity of the formal analysis. Derivations of both the Stokes and Einstein equations that do
not require vector calculus have been presented by Lauffer [3]; the latter derivations are at about
the same level of difficulty as most of the mathematics in this book, but are lengthy.

We return to Figure 9.1 with the stipulation that the volume of fluid sandwiched between the
two plates is a unit of volume. This unit is defined by a unit of contact area with the walls and a unit
of separation between the two walls. Next we consider a shearing force acting on this cube of fluid
to induce a unit velocity gradient. According to Equation 9.1.7, the rate of energy dissipation per
unit volume from viscous forces dW/dt is proportional to the square of the velocity gradient, with
n, the factor of proportionality. Thus, to maintain a unit gradient, a volume rate of energy
dissipation equal to n, is required.

Next we consider replacing the sandwiched fluid with the same liquid, but in which solid
spheres are suspended at a volume fraction qb. Since we are examining a unit volume of liquid—-—a
suspension of spheres in this case—the total volume of the spheres is also qb. We begin by
considering the velocity gradient if the velocity of the t0p surface is to have the same value as
in the case of the pure liquid. Being rigid objects, the suspended spheres contribute nothing to the
velocity gradient. As far as the gradient is concerned, the Spheres might as well be allowed to settle
to the bottom and then be fused to the lower, stationary wall. The equivalency of the suspended
spheres and a uniform layer of the same volume are illustrated schematically in Figure 9.4a and
Figure 9.4b, respectively. Since the unit volume has a unit cross-sectional area, a volume qb fused
to the base will raise the stationary surface by a distance qS and leave a liquid of thickness 1 -— d) to
develop the gradient. These dimensions are also shown in Figure 9.4b. If the velocity of the top
layer is required to be the same in this case as for the pure solvent, then the gradient in the liquid
need only be the fraction 1/(1 -— (b) of that for the pure liquid. Of course, since (p is less than unity,
this “fraction” is greater than unity.

Now we return to consider the energy that must be dissipated in a unit volume of suspension to
produce a unit gradient, as we did above with the pure solvent. The same fraction applied to the
shearing force will produce the unit gradient and the same fraction also describes the volume rate
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Figure 9.4 (a) Schematic representation of a unit cube containing a suspension of spherical particles at
volume fraction d). (b) The volume equivalent to the spheres in (a) is fused to the base, leaving 1 — d) as the
thickness of the liquid layer.

of energy dissipation compared to the situation described above for pure solvent. Since the latter
was 77, we write for the suspension, in the case of dv/dy = 1,

dW 1
— Z Z _—

9.2.5

Again, since qS < 1, 17 > 773.
This is only one of the contributions to the total volume rate of energy dissipation; a second

term that arises from explicit consideration of the individual spheres must also be included. This
second effect can be shown to equal 1.5 (fins/(1 — q5)2; therefore the full theory gives a value for 7),
the viscosity of the suspension:

1.5 1 .5its aims _ +0 (i5 (92.6)n=1_¢+(1_¢)z—m(l_¢)2
One additional assumption that underlies the derivation of the second term in Equation 9.2.6 is that
d) is small. This being the case, 1/(1—9‘5)2 can be replaced by the leading terms of the series
expansion (1+ (,5 + (p2 + - - -)2 to give

7,: n,(1+%¢)(1+¢+~)2: n.(1+2.5¢+4¢2+~) (9-2-7)
This is Einstein’s famous viscosity equation; the following observations are pertinent:

1. 1) is the viscosity of the suspension as a whole; 17, is the viscosity of the solvent; and (pi) is the
volume fraction occupied by the spheres.

2. The validity of the derivation is limited to small values of qt», 30 Equation 9.2.7 is generally
truncated after the first two terms on the right—hand side.

3. The viscosity does not depend on the radius of the spheres, only on their total volume fraction.
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4. By describing the concentration dependence of an observable pr0perty as a power series,
Equation 9.2.7 plays a comparable role for viscosity as Equation 7.4.7 does for osmotic pressure.

5. The volume fraction emerges from the Einstein derivation as the natural concentration unit to
describe viscosity. This parallels the way volume fraction arises as a natural thermodynamic
concentration unit in the Flory—Huggins theory, as seen in Section 7.3.

Both the Stokes and Einstein equations have certain features in common, which arise from the
hydrodynamic origins they share:

1. The liquid medium is assumed to be continuous. This makes the results suspect when applied
to spheres, which are so small that the molecular nature of the solvent cannot be ignored.

2. Both relationships have been repeatedly verified for a variety of systems and for spheres with a
wide range of diameters. Despite item (1), both Equation 9.2.4 and Equation 9.2.7 have often
been applied to individual molecules, for which they often work surprisingly well.

3. The spherical geometry assumed in the Stokes and Einstein derivations gives the highly
symmetrical boundary conditions favored by theoreticians. For ellipsoids of revolution having
axial ratio a/b, friction factors have been derived by Perrin [4] and the coefficient of the first-
order term in Equation 9.2.7 has been derived by Simha [5]. In both cases, the calculated
quantities increase as the axial ratio increases above unity. For spheres, of course, a/b : 1.

4. In the derivation of both Equation 9.2.4 and Equation 9.2.7, the disturbance of the flow
streamlines is assumed to be produced by a single particle. This is the origin of the limitation
to dilute solutions in the Einstein theory, where the net effect of an array of spheres is treated
as the sum of the individual nonoverlapping disturbances. When more than one sphere is
involved, the same limitation also applies to Stokes’ law. In both cases, contributions from the
walls of the container are also assumed to be absent.

We shall make further use of the Stokes equation later in this chapter; for the present, viscosity is
our primary concern, and the Einstein equation is our point of departure.

9.3 Intrinsic Viscosity
9.3.1 General Considerations

The intrinsic viscosity [1)], a quantity that will be defined formally below, is a measure of the
ability of added polymer to increase the viscosity of the solution over that of the solvent. It turns
out that [n] is directly related to the size of the polymer in solution, and before SEC (to be
discussed in Section 9.8) it was the most commonly employed method for determining molecular
weight. It is still useful in this regard, but it will also provide us with a basis for understanding
much about the behavior of polymers in solution. We begin by proposing that the dilute solution
viscosity can be written as a power series in concentration, by analogy with the osmotic pressure
(Equation 7.4.7) and the Einstein relation (Equation 9.2.7):

n=ns+ac+b62m (9.3.1)
where a and b are unspecified coefficients and 773 is the solvent viscosity. We can rearrange
Equation 9.3.1 by factoring out 17,:

n = 173(1 +a'c+b'62~-)
= 773(1 + Cln] + kh €2[fl12°°) (9,3,2)

where we have introduced the intrinsic viscosity, [1)], in place of a’. Note that by dimensional
analysis we can see that [17] must have units of inverse concentration, typically mL/g. Conse-
quently it is not actually a viscosity; rather, it is a coefficient that quantifies the rate at which the
solution viscosity increases per g/mL of added solute, when 6 is small. As 6 increases further, the
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next term, proportional to c2, begins to contribute. Just as in the osmotic pressure virial expansion,
the term in c2 reflects the pairwise interactions between solute molecules; kh is a kind of second
virial coefficient for viscosity and is known as the Huggins coefficient. We can rearrange Equation
9.3.2 to obtain a formal definition of [77]:

[771211111 (77—1173) (9.3.3)
CTO C773

In the literature one encounters a variety of different ways of presenting the solution viscosity, and
these are collected in Table 9.1 for reference purposes.

Having defined [7}], now we proceed to see what it can tell us about the polymer solute. Equation
9.3.2, which was just pr0posed on general principles, is analogous to Einstein’s equation (Equation
9.2.7), which was derived using hydrodynamics. To compare these equations directly, we need to
convert the concentration c into a volume fraction, qb. This can be done as follows:

Solute volume c= = — V 1 . .4<1" Solution volume M( o ume of a mole of solute) (9 3 )

where we have left the solute volume rather vaguely defined. For a rigid sphere, as envisioned by
Einstein, this volume is simply Avogadro’s number x (417/3)R3. For other shapes, however, or for
flexible coils, it is not so clear what volume is appropriate. The molar volume is a thermodynamic
quantity, but the viscosity measurement is hydrodynamic, not thermodynamic. Accordingly, we
finesse this issue by defining a hydrodynamic volume for the molecule, Vh:

a : fiNavl/h (9.3.5)

and we insert Equation 9.3.5 into Equation 9.2.7:

5 c
77: 775(1+§—M-Navvh+”') (9.3.6)

which, by comparison with Equation 9.3.2 relates the intrinsic viscosity to the hydrodynamic volume:

[77] = 51:3" g (9.37)
Now we make a bold step. We propose that the hydrodynamic volume is proportional to the radius
of gyration cubed:

V1, ~ —R3 (9.3.8)

Table 9.1 Summary of Names and Definitions of the Various Functions of 17, ns, and c
in Which Solution Viscosities Are Frequently Discussed

Symbol Definition Common name IUPAC name

”n1. 1 Relative viscosity Viscosity ratio
7’3

mp I'— — 1 Specific viscosity —
773

nred (1 (—n— — 1) Reduced viscosity Viscosity number
773

. n—m .. . . ... . .
[7}]

11m) —En—
Intrmsrc v13cosrty Limiting Viscosrty number

c—r 5

mm, % ln (1) Inherent viscosity Logarithmic viscosity number



336 Dynamics of Dilute Polymer Solutions

In other words, the volume that matters in the viscosity experiment is not the volume actually
occupied by the polymer segments (which would be the degree of polymerization times the volume
of the monomer), but the volume pervaded by the entire molecule. For a random coil this means
that we assume that the molecule behaves hydrodynamically like a rigid sphere of radius Rg. This
might seem rather far fetched at first glance, but in fact, it is basically correct.

9.3.2 Mark-Houwink Equation

We know from Chapter 6, and Equation 6.6.1 in particular, that RgrvM”, where the exponent u
takes on various characteristic values (1/3 for a solid sphere, 1/2 for a flexible coil in a theta solvent
or in the melt, 3/5 for a flexible chain in a good solvent, and 1 for a rigid rod). If we insert this
relation into Equation 9.3.8, and the result into Equation 9.3.7, we have

R3 M31;

[77] ~ _, ~ — ~ M3"—1 (939)

This gives what we were looking for: a direct relation between the intrinsic viscosity and the
molecular weight. Using the values of V cited above, we can see that [77] should be independent of
M for a rigid sphere, increase as MV2 or MA"5 for a flexible chain in a theta solvent or good solvent,
respectively, and increase as M2 for a rod. These various possibilities are encompassed by the
general relation

[77] : kM“ (9.3.10)
This relationship with a 2 1 was first proposed by Staudinger [6], but in this more general form it is
known as the Mark—Houwiuk equation [7]. The constants k and a are called the Mark—Houwink
parameters for a system. The numerical values of k and a depend on both the nature of the polymer
and the nature of the solvent, as well as the temperature; extensive tabulations are available [8,9]
and Table 9.2 gives a few examples. (Note, however, that the values can vary for a given system
among different investigators, and that attention must be paid to details such as microstructure,

Table 9.2 Values for the Mark—Houwink Parameters for a Selection of Polymer—Solvent Systems
at the Temperatures Noted

Polymer Solvent T (°C) ks x 103 (mL/g)El a

Poly(ethylene oxide) Toluene 35 14.5 0.70
Poly(ethyleneterephthalate) m-Cresol 25 0.77 0.95
1,4-Polybutadiene Cyclohexane 20 36 0.70
1,4—Polyisoprene Dioxane (0) 34 135 0.50
Poly(hexamethy1ene adipamide) m—Cresol 25 240 0.61
Poly(dimethy1siloxane) Toluene 25 21.5 0.65
Polyethylene p—Xylene 75 135 0.63
PolyprOpylene Cyclohexane 30 20.9 0.76
Polyisobutylene Benzene 40 43 0.60
Poly(methyl methacrylate) Chloroform 25 4.8 0.80
Poly(vinyl chloride) Chlorobenzene 30 71.2 0.59
Poly(viny1 acetate) Ethanol (0) 56.9 90 0.50
Poly(viny1 alcohol) Water 25 20 0.76
Polystyrene Toluene 25 17 0.69
Polystyrene Cyclohexane (0) 35 80 0.50
Polyacrylonitrile dimethyl formamide 50 30 0.752
Poly(8-caprolactam) m-Cresol 25 320 0.62
a The units for k itself depend on the value of a; the indicated value gives [1]] in mL/g.
Source: From Kurata, M. and Tsunashima, Y., in Polymer Handbook, 3rd ed., Brandrup, J. and Immergut, E.H. (Eds),
Wiley, New York, 1989.



Intrinsic Viscosity 337

molecular weight range, and polydispersity of the samples.) Since viscometer drainage times
(see Section 9.4) are typically on the order of a few hundred seconds, intrinsic viscosity experiments
provide a rapid method for evaluating the molecular weight of a polymer. A possible drawback to
the method is that the Mark—Houwink coefficients must be established for the particular system
under consideration by calibration with samples of known molecular weight, but given the
extensive tabulations this is often not a significant limitation.

The values of the exponent a in Table 9.2 range between 0.5 and about 1. Although in practice
a m 0.5 in all theta systems, in good solvents the values vary quite a bit. Part of this is a
consequence of the slow crossover to good solvent limiting behavior anticipated by the Flory—
Krigbaum theory (Equation 7.7.10). In other words, even though a solvent might be “better-
than-theta” for a given polymer, the experimental temperature might not be sufficiently far above
T = 0, or the molecular weight range might not extend to sufficiently high values, to obtain :2 = 3/5
and thus a = 0.8. In some cases a > 0.8, which can be attributed to a semiflexible structure (recall
that the simple argument above predicts a =2 for a rod). There is another, more complicated
reason why the exponents can take on a range of values, the phenomenon of hydrodynamic
interactions, and this will be explored in Section 9.7.

Even fractionated polymer samples are generally polydisperse, which means that the molecular
weight determined from intrinsic viscosity experiments is an average value. The average obtained
is called the viscosity average molecular weight, MV, which can be derived as follows:

1. The experimental intrinsic viscosity is proportional to some average value, My, raised to the
power a, according to Equation 9.3.10,

[1;] = kf (9.3.11)
2. The dilute solution viscosity for the polydisperse system can be expressed as

n = n.(1+ Ze.[n1.—+-~) (9.3.12)

where the index 2' refers to different molecular weights.
3. We can now obtain [77] as

_. 77—773 __. ZQI’UL‘“'1 "" 3936 (T) — is (Tl
_ Z (n;M,-/V)k _ k 2 nix/.13”H

ZniMi/V
_

Era-M,-
where n,- is the number of molecules with molecular weight M,- and we assume all species 1'
have the same k and a.

4. Combining Equation 9.3.11 and Equation 9.3.13 we obtain

(9.3.13)

l/a

EJliMI-FaMVE —’-—‘— 9.3.14
( $5"e

( )

For flexible polymers in general, Mn < M,r (MW, and Mv 2MW if a = 1. On the basis of this
last observation, it can be argued that the Mark—Houwink coefficients should be evaluated
using weight average rather than number average molecular weights as calibration standards.
We saw in Chapter 8 how MW values can be obtained from light scattering experiments.

Table 9.3 lists the intrinsic viscosity for a number of polystyrene samples of different molecular
weights. The M values are weight averages based on light scattering experiments. The values of [n]
were measured in cyclohexane at the theta temperature of 35°C. In the following example we
consider the evaluation of Mark—Houwink coefficients from these data.
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Table 9.3 Intrinsic Viscosity as a Function of Molecular Weight for Samples
of Polystyrene

(a) M... [77] (mL/g) (b) M... [n] (mL/g)
266 1.49 19800 11.9
370 1.92 44000 18.0
474 2.47 50500 19.2
578 2.74 55000 20.0
680 2.93 76000 24.5
904 3.26 96200 26.0
1,480 3.70 1.25 x 105 29.0
1,780 4.08 1.60 x 105 34.0
2,270 4.50 1.80 x 105 35.4
3,480 5.43 2.47 x 105 42.0
5,380 6.59 3.94 x 105 54.5
10,100 9.00 4.06 x 105 55.0
20,500 12.3 5.07 x 105 60.0
40,000 17.2 6.22 x 105 66.0
97,300 27.3 8.62 x 105 78.0
1.91 x 105 38.0 1.05 x 10‘5 86.0
3.59 x105 51.2 1.56 x106 106
7.32 x 105 73.4
1.32 X 106 98.1
Source: From (a) Yamakawa, H., Abe, F., and Einaga, Y., Macromolecules, 26, 1891, 1993;
(b) Berry, G., J. Chem. Phys, 46, 1338, 1967.

Example 9.1
Evaluate the Mark—Houwink coefficients for polystyrene in cyclohexane at 35°C from the data in
Table 9.3. How well do the two data sets agree? What is the appropriate set of Mark—Houwink
parameters for high molecular weight PS in this solvent? Does the exponent agree with expect-
ation? At what molecular weight does this relation break down?

Solution
The two data sets are plotted in Figure 9.5 in a log—log format. This particular choice is helpful
because adherence to a power law relationship, such as the Mark—Houwink relation, will result in
the data falling on a straight line with the exponent as the slope. From Equation 9.3.10

log [77] = logk + alogM

Visually it is clear that the two data sets agree extremely well over the common molecular weight
range. Furthermore, for M greater than about 10,000 the data fall on a straight line. A combined
least squares fit of the two sets of data in this range gives

log [77] = —l.06 + 0.49710gM

that corresponds to k=0.088 and (1 =0.497. The exponent agrees with expectation for a theta
solvent; the uncertainty in a is at least i0.003. Below M = 10,000 the relationship between [17] and
M becomes more complicated. A full explanation of this dependence is not yet available, but
among the contributing factors are non-Gaussian conformations for short chains, chain stiffness,
chain end effects, and modification of the solvent dynamics in the vicinity of the chain.

For flexible coils the value of the Mark—Houwink exponent tells us something about the solvent
quality, independent of the polymer or solvent. Is there anything similarly general to be extracted
from the proportionality factor k? The answer is yes. In a theta solvent, particularly, it provides
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Figure 9.5 Plot of log [7)] versus logM for the data in Table 9.3. An analysis of the Mark—Houwink
parameters from these data is presented in Example 9.1.

information about the coil dimensions, as the following argument shows. For a theta solvent, we
know that R: = s/6 (recall Equation 6.5.3). Combining this with Equation 9.3.7 and Equation
9.3.8 gives

5N... N 5Na, 477 3 _ 207mg, 113/2173: —-—-V N __ __ _ . .15[7’] 2M “ 2M 3 8 6 M63/2 (9 3 )
We can replace N by M/Mo, where MO is the monomer molecular weight, to obtain

2077A?av b3 1 2

or

207m, b3 b39 g—_—=4.3 x 1023 (9.3.17)
65/2 1143/2

Mg/Z

Here we have used the subscript 6 to remind us that we are dealing with a theta solvent. Equation
9.3.17 makes explicit the part of k that depends on the particular polymer in question. For
polystyrene, M0: 104 g/mol and b: 6.7 x 10"8 cm (see Table 6.1), and inserting these values
into Equation 9.3.17 would predict that k9 $0.12 (for [n] in g/mL). From Example 9.1 above, in
experiments k3 = 0.088, which is only about 30% different from the result utilizing the naive “a
coil is pretty much a hard sphere with R =Rg” argument.

Equation 9.3.17 can be recast in another form, whereby the polymer-specific part is presented as
(h2)O/M (refer to Table 6.1):

b3 (’12)
3/2

k0~4.3><10
Man—4.3x

10 <
M

)

.._. “if/2 (9.3.18)¢,( M
Here we have inserted CDC, in place of the numerical prefactor of Equation 9.3.17. More detailed
theories give (130 as 2.8 x 1023 as a universal value for all flexible chains in a theta solvent, which is
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close to the polystyrene result in Example 9.1. The difference in the numerical value of the
prefactor arises because in our simple model we assumed that a coil behaves as a hard sphere
with R:Rg, whereas in fact it behaves as a hard sphere with R o: Rg and the proportionality
constant is a little less than 1. Thus measurements of intrinsic viscosity in a theta solvent gives
access to the coil dimensions (i.e., COO, b, or Ep) via Equation 9.3.18.

Example 9.2
Using the arguments given above, predict the dependence of [n] on generation number for
dendrimer molecules. Recall from Chapter 1 and Chapter 4 that dendrimers have a tree—like
structure, with each generation adding a new layer of material in a completely regular way.

Solution
The crucial relation we will invoke is Equation 9.3.9, that is,

R3
[n] N

M
and so the key step is to see how M and R grow with generation number n. The two—dimensional
pictures of a dendrimer given in Figure 1.2 and Figure 4.7 suggest a roughly spherical structure,
with each generation adding an approximately equal increment to R. Furthermore, as the later
generations have larger numbers of units, one might suspect that they become densely packed. If
this were the case, then R would grow as M1/3, and we would recover the Einstein result for hard
spheres: [17] would be independent of M and therefore 11. In fact, as the data in Figure 9.6
demonstrate, this is not true. Remarkably, [1;] goes through a maximum with increasing :1, near
n r: 3; how does this arise?

The origin of this unusual behavior is rather easily understood. It turns out that, although R does
increase roughly linearly with :1, meaning that each generation adds a roughly constant increment
to the total R, the mass added in each generation grows much more rapidly. Let us consider a
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Figure 9.6 Intrinsic viscosity versus generation number for polyether dendrimers. The dashed curved
represents the simple calculation described in Example 9.2, scaled by a factor of 5. (Data from Mourey,
T.H., Turner, S.R., Rubinstein, M., Fréchet, J.M.J., Hawker, C.J., and Wooley, K.L., Macromolecules, 25,
2401, 1992.)
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simple example. Assume a trifunctional reactive unit with M = 100 g/mol and assume that each
generation adds 10 A to the radius. We can compute a table of M, R, and R3/M as a function of n.
For n = 0, M = 100, and R = 10 by assumption. (Note that by convention, the initial dendrimer
“core” is labeled generation 0.) For n = 1, M: 100 + 3(100) 2400, and R : 10 + 10 = 20. For
n. : 2, M : 400 + 6(100) 2 1000, and R = 20 + 10 :2 30. The multiplier 6 in the calculation of M
arises because the previous generation added 3 units, each of which has two functional groups left
to react further. The results through it = 5 computed in this way are listed in the table below:

n 0 1 2 3 4 5

R 10 20 30 40 50 60
M 100 400 1000 2200 4600 9400
R3/M 10 20 27 29 27 23

From this simple calculation, we see that R3/M goes through a maximum for n : 3, in excellent
agreement with the experiments. The origin of the maximum lies in the fact that M grows
geometrically with 22 rather than as a power law. Consequently, M in the denominator eventually
increases more rapidly than R3 in the numerator. In other words, the dendrimer density is
increasing steadily, as opposed to a hard sphere, for which the density is constant with R. This
density increase cannot persist indefinitely, and in fact dendrimers can typically only be grown out
to n = 6—8 before there is no more room on the surface to complete another generation.

9.4 Measurement of Viscosity
In this section we consider two standard techniques for measuring viscosity. The first concerns the
use of capillary viscometers for low—viscosity fluids, such as the dilute polymer solutions of
relevance to [n]. The second describes the Couette or concentric cylinder geometry, which is
more elaborate but is capable of covering a much wider range of n and “5/.

9.4.1 Poiseuille Equation and Capillary Viscometers

We defined the equation of motion as a general expression of Newton’s second law applied to a
volume element of fluid subject to forces arising from pressure, viscosity, and external sources.
Although we shall not attempt to use this result in its most general sense, it is informative to
consider the equation of motion as it applies to a specific problem: the flow of liquid through a
capillary. This consideration not only provides a better appreciation of the equation of motion, but
also serves as the basis for an important technique for measuring solution viscosity. We shall
examine the derivation first and then discuss its application to experiment.

Figure 9.7a shows a portion of a cylindrical capillary of radius R and length L. We measure the
general distance from the center axis of the liquid in the capillary in terms of the variable r and
consider specifically the cylindrical shell of thickness dr designated by the broken line in Figure
9.7a. In general, gravitational, pressure, and viscous forces act on such a volume element, with the
viscous forces depending on the velocity gradient in the liquid. Our first task then is to examine
how the velocity of flow in a cylindrical shell such as this varies with the radius of the shell.

The net viscous force acting on this volume element is given by the difference between the
frictional forces acting on the outer and inner surfaces of the shell:

Fvis,net : (Fvis)0uter _
(FViS)inner

dv dv= _ — 2 L -— 9.4.12770‘ + dr) L27 (ml-m;- 77'!” n (m), ( )
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Figure 9.7 (a) Portion of a cylinder of radius R and length L showing (by broken lines) section of thickness
dr. (b) Profile of flow velocity in the cylinder. (From Hiemenz, P.C., Principles of Colloid and Surface
Chemistry, Marcel Dekker, New York, 1977.)

where the length times the circumference of the surface describes the apprOpriate area in Equation
9.1.2. The relationship between the velocity gradient at the two locations is given by

dv dv dzv
(5?)...— (aids-Jr ‘9'“)

provided that dr is small. Combining Equation 9.4.1 and Equation 9.4.2 and retaining only those
terms that are first order in dr give

d2v dv d dv
F(as, net = 27711L[r(d7)dr + (5) Cir] :

217171;;
(r3) (9.4.3)

Under stationary-state conditions of flow, that is, when no further acceleration occurs, this force
is balanced by gravitational and pressure forces. For simplicity, we assume that the capillary
is oriented vertically so that gravity operates downward and, for generality, we assume that
an additional mechanical pressure Ap is imposed between the two ends of the capillary.
Under these conditions, the net gravitational and mechanical forces acting on the volume
element equal

Fgrammcch, net = (2e dr)pg + (2771' dr)Ap (9.4.4)

where 217Lr dr is the volume of the element, 2m dr is its cross-sectional area, p is the density of
the fluid, and g is the acceleration due to gravity. Under the stationary-state conditions we seek to
describe, Equation 9.4.4 and Equation 9.4.3 are equal, and the following relationship applies to the
volume element:

(1 dv Ap_ _ = _ .4.5
ndr (r (Ir) (pg + L )r dr (9 )

Integration in the radial direction (along r) converts Equation 9.4.5 to

dv l Ap 2
—

:
— _—

04.6nrdr 2033+ L} (9 )
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where the fact that r(dv/dr) : 0 at r = O is used to eliminate the integration constant. Note that the
velocity gradient is directly proportional to the radial position in the fluid: it is zero at the axis and
has a maximum value at rzR.

Equation 9.4.6 can be integrated again to give v as a function of r:

J dv :wJ r dr (9.4.7)

Because of the nonslip condition at the wall, v = 0 when r :R, and the constant of integration can
be evaluated to give

Vzma)
4"?

(9.4.8)

This result describes a parabolic velocity profile, as sketched in Figure 9.7b.
Equation 9.4.8 describes the velocity with which a cylindrical shell of liquid moves through a

capillary under stationary—state conditions. This velocity times the cross-sectional area of the shell
gives the incremental volume of liquid dV, which is delivered from the capillary in an interval of
time At. The total volume delivered in this interval, AV, is obtained by integrating this product over
all values of r:

RV L
1%! 2

277(9342410/
)

J (R2 _ ,2), d,
0

4
,__,, (n + MW}? (949)

8171.

This result is called the Poiseuille equation, after the researcher who discovered in 1844 this
fourth—power dependence of flow rate on radius [10]; the unit of viscosity, poise, is also named
after him. The following example illustrates the use of the Poiseuille equation in the area where it
was first applied.

Example 9.3
Poiseuille was a physician—physiologist interested in the flow of blood through blood vessels in the
body. Estimate the viscosity of blood from the fact that blood passes through the aorta of a healthy
adult at rest at a rate of about 84 cm3 s—l, with a pressure drop of about 0.98 mmHg m‘l. Use 9 mm
as the radius of the aorta for a typical human.

Solution
The pumping action of the heart rather than gravity is responsible for blood flow; hence the term
n can be set equal to zero in Equation 9.4.9 and the result solved for n:

AprrR47’ : SLAV/At
The units must be expressed in a common system, with the pressure gradient requiring the most
modification:

A_p _ 0.98 mmHg X 133.3Nm—2
L

#
m 1 mmHg

= 131 kg m—2 s—2
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Therefore

_ (131 kgm‘zs_2)7r(9 x 10-3 m)4_
8(84 x10-6 m3s-1)

: 4,0 x 10*3 kg111_15_I (or 0.04 P)

At 370C, the viscosity of pure water is about 0.69 x 10—3 kg m—1 s‘l; the difference between this
figure and the viscosity of blood is due to the dissolved solutes in the serum and the suspended red
cells in the blood. The latter are roughly oblate ellipsoids in shape.

The Poiseuille equation provides a method for measuring 1) by observing the time required for a
liquid to flow through a capillary. The apparatus shown in Figure 9.8 is an example of one of many
different instruments designed to use this relationship. In such an experiment, the time required for
the meniscus to drop the distance between the lines etched at opposite ends of the top bulb is
measured. This corresponds to the drainage of a fixed volume of liquid through a capillary of
constant R and L. The weight of the liquid is the driving force for the flow in this case, so the Ap
term in Equation 9.4.9 is zero and the observed flow time equals

VA: : (:31); (9.4.10)

01'

r) =Ap At (9.4.11)

where A represents a cluster of factors that are constant for a particular apparatus. The constant A
need not be evaluated in terms of the geometry of the apparatus, but can be eliminated from

D f?
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Figure 9.8 A typical capillary viscometer. (From Hiemenz, P.C., Principles of Colloid and Surface
Chemisty, Marcel Dekker, New York, 1977.)
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Equation 9.4.11 by measuring both a known (subscript 2) and an unknown (subscript 1) liquid in
the same instrument:

_ 91 All
”'71 —

B; Kt: 712 (9-4-12)

Note that the time interval depends on both the density and the viscosity of the fluid, and the ratio
n/p is sometimes referred to as the kinematic viscosity.

In more precise work an additional term, which corrects for effects arising at the ends of the tube, is
added to Equation 9.4. 1 1. This correction—which is often negligible—can be incorporated by writing

p:A At—B—1) 9 Ar (9.4.13)

where B = AV/Sqr. As above, both A and B can be treated as instrument constants and evaluated by
measuring two liquids, which are known with respect to “n and p and then solving a pair of simultaneous
equations for A and B. A better strategy might be to choose a capillary sufficiently narrow so that
A: is long enough to eliminate the second term on the right—hand side of Equation 9.4.13.

One limitation of this method is the fact that the velocity gradient is not constant in this type of
instrument, but varies with r, as noted in connection with Equation 9.4.6. This would be a concern
if the viscosity were shear—rate dependent over the relevant range. For dilute solutions, and the
slow flows appropriate to determine the intrinsic viscosity, this usually does not matter.

9.4.2 Concentric Cylinder Viscometers

The second standard geometry for solution viscometry is based on concentric cylinders. The illustration
that enabled us to define the coefficient of viscosity also suggests a modification that would be
experimentally useful. Suppose the two rigid parallel plates in Figure 9.1 and the intervening layers
of fluid were wrapped around the z—axis to form two concentric cylinders, with the fluid under
consideration in the gap between them. The required velocity gradient is then established by causing
one of these cylinders to rotate while the other remains stationary. The velocity is now in the direction
described by the angle 6 in Figure 9.9a, and its gradient is in the radial direction r. Thus the velocity
gradient in this arrangement may be written dvg/dr.

Some of the reasons for our interest in this type of viscometer are the following:

1. The basic design is a direct extension of the discussion of viscosity in Section 9.1 and Section 9.2.
2. The range of applicability is very wide, extending at least from 7; m 0.01——1010 P.
3. The design permits different velocity gradients to be considered, so that non-Newtonian

behavior (e.g., shear thinning) can be investigated, if desired.
4. The number of technically important viscosity-measuring devices may be thought of as

variants of this basic apparatus.

As a practical matter, the outer cylinder is part of a cup that holds the fluid, while the inner cylinder
is a coaxial bob suspended within the outer cup. Suppose the cup is centered on a turntable that
rotates with an angular velocity to, measured in radians per second. The viscous fluid now
transmits a force, which can be measured in terms of the torque on a torsion wire to the suspended
bob. This arrangement is sketched in Figure 9.9b. In this representation, the outer cylinder has a
radius R and the inner cylinder has a radius fR, wheref is some fraction. The closer this fraction is
to unity, the narrower will be the gap between the cylinders and the more closely the apparatus will
approximate the parallel plate model in terms of which 77 is defined.

A formal mathematical analysis of the flow in the concentric cylinder viscometer yields the
following relationship between the experimental variables and the viscosity:

f
1—f2torque 2 force >< radius : 47mLR2w (9.4.14)
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7Q _/",.,,—\H
J

Figure 9.9 Definition of variables for concentric cylinder viscometers; (a) the rotating cylinder and (b) the
coaxial cylinders.

This equation can be cast into a more recognizable form by assuming thatf is very close to unity. In
that case we have the following:

1. The radius R applies to the entire fluid sample. Since torque equals the product of force and R,
canceling out one power of R leaves the shearn force acting on the fluid on the left-hand side
of Equation 9.4.14.

2. The remaining factor R times to on the right-hand side of Equation 9.4.14 can be replaced by
the linear velocity v9.

3. The factor 1 —f2 can be replaced by 2(1 —f), since 1 —f2=(1 + f)(1 —f) and (1 —l— f)—>2
as f—> 1.

4. The area of contact A between the cylinders and the fluid is 27TRL; therefore 477LR/

2R(1—f)=A/(1*f)R-
5. The product (1 — f )R is the width of the gap, 5.

Introducing these substitutions in Equation 9.4.14 gives

_ = = _ .4.15A 0 nf5 (9 )

Since v9 is the difference in velocity between the inner and outer cylinders and 5 is the difference
in the radial location of the two rigid surfaces, Equation 9.4.15 becomes

d
Uzngs cam)

in the limit as f—> 1. This is identical to Equation 9.1.3 and is the result we anticipated in rolling
Figure 9.1 into a cylinder. Equation 9.4.14 is more general than Equation 9.4.16, since its
applicability is not limited to vanishingly small gaps.

9.5 Diffusion Coefficient and Friction Factor

We now turn our attention to the phenomenon of diffusion. This turns out to be directly related to
the viscosity through the friction factor, f. Most of us have a sense of diffusion as a randomization
process: place a drop of food coloring into a glass of water, and before long the entire glass will be
uniformly colored even without stirring. The time it takes for the color to spread depends on two
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things: how rapidly the dye molecules move, and the size of the glass. The former is quantified by a
dzfi‘usz’on coefi‘i’cienz, D, which depends directly on the molecular friction factor. Diffusion is an
important process to understand and control in many polymer applications (e.g., how long will
soda in a plastic bottle hold its fizz? How long does it take a drug in a skin patch to pass through the
skin?), and the diffusion coefficient itself is also a useful means of molecular characterization. In
this section we will emphasize the diffusion of polymers in dilute solution, but the development
has a much broader range of applicability. We begin the discussion by distinguishing two related,
but conceptually distinct, diffusion coefficients, which we shall call the tracer diffusion coefficient,
D,, and the mutual diffusion coefficient Dm. Failure to distinguish clearly between these two
quantities can be a major source of confusion.

9.5.1 Tracer Diffusion and Hydrodynamic Radius

Returning to our glass of water, imagine a single dye molecule somewhere in the glass and further
imagine that we could actually follow its motion directly in time and space. (This is not too far
fetched, in fact, with recent developments in single-molecule spectroscopy and microscopy).
What would we see? The molecule is constantly buffeted by solvent molecules, and consequently
executes Brownian motion: it moves tiny distances between collisions, with the instantaneous
direction of motion fluctuating randomly. If we watch for a relatively long time interval, how far is
the dye molecule likely to move? We already have developed all the mathematics needed to
answer this question, when we considered random walks in Chapter 6. Namely, if the molecule
executes a total of N random steps of average length b, the mean square displacement (r2) will be
s. We can formalize this as follows:

2 2
lim (_r_) = g E 6D, (9.5.1)
I—roo Z l‘

The units of the diffusion coefficient are (length)2/time, or cmz/s in the cgs system. We take the
limit of long times just to remove all memory of past collisions and directions. We may consider
the factor of 6 in front of Dt to be a historical convention. The average denoted by (- - -) is
necessary because by definition we cannot make any predictions about a single random walk.
Rather, if we watch a particular particle for many time intervals or watch many independent but
otherwise identical particles over a given time interval, we can generate the average mean square
displacement. In fact, based on our work with random walks in Chapter 6, we even know the
distribution function that should describe the results of many equivalent experiments: it should be a
Gaussian. Just as we did in Chapter 6, we can ask the following question: if we define the location
of a particle at time t: O as the origin, what is the probability of finding it a distance r away after
time t? This probability is known by a special name, the “van Hove space—time self-correlation
function,” but it is mathematically equivalent to Equation 6.7.12:

2 1 3/2 1'2P z = 4 — — . .(r’ ) w r (477 DJ) exP< 4Dtt) (9 5 2)

Equation 6.7.12 can be recovered by substituting 6D,! =n2 into Equation 9.5.2. Also, recall that
the prefactor of 41a emerges because we are interested in the distance from the origin, independ-
ent of direction. Unlike the case of polymer chains, which are self—avoiding walks, a Brownian
particle really does execute a random walk.

The tracer diffusion coefficient is a property of an individual molecule or particle undergoing
Brownian motion. Its value, however, will generally depend on the size of the molecule and on the
medium in which it is diffusing. Einstein showed that there is a beautifully simple relationship
between the friction factor and DI:

kT
DI:—

f

(9.5.3)
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From the definition of the friction factor, we can see that the thermal energy, H", is playing the role
of a generalized “force,” and Dt is the resulting “velocity.” As T increases, solvent molecules
move more rapidly and are more effective at jostling the tracer molecule, so Dt should increase. At
the same time, if the solvent viscosity increases, or if the particle increases in size, then f should
increase and Dt will be smaller. If we now consider our tracer molecule to be a hard sphere and the
solvent to be a continuum, then we can incorporate Stokes’ law forf (Equation 9.2.4) to arrive at
the Stokes—Einstein relation

D _ kT
t_6*n"nSR

(9.5.4)

This simple relation provides a direct connection between the tracer diffusion coefficient, the
particle size, and the viscosity of the solvent. We can go an important step further, however. If our
particle is not a hard sphere, we can use Equation 9.5.4 to define an equivalent radius in terms of a
measured diffusivity, called the hydrodynamic radius, Rh:

kT
6771?, Dt

In other words, Rh for any polymer is the radius of a hard sphere that would have the same friction
factor or diffusivity. In Section 9.3 we saw that flexible molecules behaved hydrodynamically
rather like hard spheres with radius proportional to Rg. Does this hold for diffusion as well? Yes,
indeed. Consequently Rh is directly proportional to Rg, with the proportionality factor depending
on the particular polymer shape. Thus, Rh depends on molecular weight with the same power law
exponent as does Rg, and Dt exhibits the inverse of that dependence. For flexible chains, therefore,
Dv‘m~ in a theta solvent and Dv‘y5 in a very good solvent. Examples are shown in
Figure 9.10 for polystyrene in cyclohexane at the theta temperature, and in toluene, a good solvent.
There are several experimental techniques by which diffusion may be measured, and examples will
be given following the next section.

9.5.2 Mutual Diffusion and Fick's Laws

Now we turn to the mutual diffusion coefficient, Dm, which describes how a collection of
Brownian particles will distribute themselves in space. In the context of the food coloring analogy,
Dt tells us how rapidly any individual dye molecule explores space, but Dm describes how quickly
the entire droplet of food coloring disperses itself. Experience tells us that after a reasonable time
interval, the glass of water will be uniformly colored. The underlying reason is that mutual
diffusion acts to eliminate any gradients in concentration. Although the individual dye molecules
are happily diffusing about, largely oblivious of one another, collectively they tend to spread
themselves out evenly.

Fick first recognized that mass diffusion was analogous to thermal diffusion and he proposed an
adaptation of Fourier’s law of heat conduction for the transport of material [1 1]. Specifically, the
flux J (in units of mass per unit area per unit time) across a plane is assumed to be proportional to
the gradient in concentration (mass/volume) along the direction perpendicular to the plane. We
will restrict ourselves to one-dimensional diffusion along the x-direction, and therefore

dc
J — Dlm

dx
(9.5.6)

In this expression, called Fick’s first law, the proportionality constant is Dm and it follows that Dm
also has units of length2/time. The minus sign in Equation 9.5.6 recognizes the fact that the
direction of the flow is that of decreasing concentration.

We now consider a volume element and the flux of solute in and out of that element. Figure 9.1 1
schematically represents three regions of an apparatus containing a concentration gradient. The end
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Figure 9.10 Molecular weight dependence of DI for polystyrene in (a) a theta solvent, cyclohexane at 35°C,
and (b) a good solvent, toluene. The curve in (a) has a slope of —~0.50, and the curve in (b) approaches a slope
of —0.60 at large M. (Reproduced from Schaefer, D.W. and Han, C.C., Dynamic Light Scattering, R. Pecora
(Ed), Plenum, New York, 1985. With permission.)

compartments contain the solute at two different concentrations (:1 and (:2, with C2 > CI. The center
region is a volume of cross—sectional area A and thickness (13:, along which the gradient exists. The
arrows in Figure 9.11 represent the flux of solute from the more concentrated solutions to the less
concentrated one. The incremental change in the total amount of solute dQ in the center volume
element per time increment (it can be developed in two different ways. In terms of the fluxes,

dQ
E; = (J, -— 10mm (9.5.7)

whereas in terms of a concentration change dc in the element of volume A dx,

dQ = dc(A dx) (9.5.8)
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Figure 9.11 Schematic of diffusion with respect to a volume element of thickness dx located at x = 0
between regions with concentration cl and c; > cl.

By combining these two relations, and substituting Fick’s first law for J, we obtain

E (A dx) = (J(x) — Jo + dx))A
dt

dc dc= “DmKal‘ (5)....1/4 (9.5.9)
The areas cancel and the term in square brackets can be recognized as

2Ia «akax+dx x

that leads us directly to Fick’s second law (in one dimension):

dc dzc
dt

—Dm
dxz

(9.5.11)

This differential equation can be solved (sometimes easily, sometimes not) when one specifies the
appropriate initial or boundary conditions (see Example 9.4 and Example 9.5).

Fick’s second law is very useful, but it leaves us with two unresolved issues. First, how is Dm
related to Dt and f? Second, what is the role of thermodynamics in this process? These questions
can be answered together. In general, a single phase will be at equilibrium when the temperature,
pressure, and chemical potential of each species are everywhere the same. In other words, diffusion
actually acts to remove gradients in p. rather than gradients in c. The thermodynamic “driving
force” can be written (recall that the gradient of a potential is a force) as

1 dflvz
Nav dx

(9.5.12)Fdiff = —

We divide Equation 9.5.12 by Avogadro’s number to convert the partial molar Gibbs free energy,
u, to a molecular quantity and the minus sign enters as in Fick’s first law because the force and the
gradient are in opposing directions. Recalling the definition of chemical potential from Equation
7.1.13 we write #2 2 p3 +RTlnag = p33 +RTln 720, where (.12 and y; are the activity and
activity coefficient, respectively, of the solute (note that when 6 is in g/mL, 'yz is defined
accordingly). Substituting into Equation 9.5.12 we obtain

1 duz dc RT 1 d In 72 dcF i = _ _ _ = _ _ _____ — 5.13d H Na, ( dc ) (dx) Na, (0 + dc dx (9 )
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Under stationary-state flow conditions, Fdiff equals the force of viscous resistance experienced by
the particle. The latter, in turn, equals the friction factor times the stationary velocity v0; therefore

la?" (1 ln 3/2 dc_ __ 1 ._ = . .c< +c
dc

)(dx) fvo (9514)

The product cvo defines the flux J, and therefore Equation 9.5.14 becomes

H" d In 3/2 dc
J = —-—— l + — . .1

f
< 6

dc
)dx (9 5 5)

Comparing Equation 9.5.6 and Equation 9.5.15 gives the desired result

Id" (1 ln 3/2 (1 ln 'yz
Dm = — l = D l — . .

f ( +5 dc ) t.o( +6 dc (9516)

In the limit of low concentration of solute, c ——> 0, we see that Dm —+ Dm, where the subscript “0”
refers to this “infinite dilution” limit. This is a completely general result for any two-component
mixture: the mutual diffusivity approaches the tracer diffusivity of the minor component as its
concentration tends to zero. At finite concentrations, however, things are not so simple. Clearly we
can define tracer diffusion coefficients for both polymer and solvent and these may be very
different. On the other hand, there is only one mutual diffusion coefficient, but it need not bear
any simple relation to the tracer diffusivities. In Equation 9.5.16 we should also consider the
possibility that the solute friction factor, f, will depend on concentration. If we propose a series
expansion, that is,

f(c)=fo{l +k+"'} (9.5.17)

and insert this into Equation 9.5.16, we would obtain

kT d In ‘yz d In ‘yz
Dm=—— 1+ -—-D 1 —k 9.5.18

fo(l + k) (
C

dc ) [‘°(
+

C{ dc f ( )

Experimentally, a variety of tools can be used to determine either Dt or Dm. Probably the most
commonly employed technique for dilute polymer solutions is dynamic light scattering, also
known as quasielastic light scattering, which we will briefly describe in Section 9.6. Another
common technique for solutions, which we will not discuss, is pulsed-field gradient NMR. It
measures the random motions of particular nuclear spins without regard to any gradients in
concentration, and thus determines Dt. A more generic approach, often applied to less fluid
samples, is to prepare adjacent layers of two different compositions, and watch them interdiffuse
by some depth-profiling technique. This is illustrated in the following example.

Example 9.4
In many experiments to study polymer diffusion, some fixed, small amount of the polymer is placed
in contact with the medium into which it will diffuse. This medium, or matrix, could be a solvent,
another polymer, or a solution. Solve Fick’s second law (Equation 9.5.11) for the one-dimensional
case where an extremely thin layer of polymer is placed in an “infinite” beaker of solvent.

Solution
In fact, we have already almost solved this problem in Equation 9.5.2. That case concerned three-
dimensional diffusion from the origin, whereas now we have one-dimensional diffusion from a
plane. Nevertheless, the solution is still a Gaussian function, just as in Section 6.7, where we
showed that the end-to-end distance of a random walk was a Gaussian function in x, y, or z.
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For Fick’s second law in this case

80(x,t)_fi
D

620050
at

_ m 83:2

and the solution is

60:, I) 2 co
1 x2

),/——4womz p 40...:
In order to show that this is a solution, we can follow through with the differentiation:

(96 1
ex x2 1 [—1 +

x
[—2— :

C0
-——— — —— -— -— ——

a: #4m! p 40“,: 2 40,,

which must be equal to Dm(3zc/8x2). Now take the derivative twice with respect to x:

D
36

D
1

ex
x2 2x

m
H— : mCO

-———— _-_ —— _

6x «4m: p 40m: 40m:

and

82C 1 x2 2 2x 2x
m—ZDmCo—exp _— '_ +(9x2 x/47'rDmt 4Dmt 4Dmr 40m: 4Dmr

which is the same as the expression for 60/8: above.
The character of this solution is shown in Figure 9.12a. The polymer concentration begins as a

spike at x 2 O, and then as time progresses, it spreads out symmetrically to positive and negative
values of x. The constant 00 is the total amount of polymer in the initial spike, as can be seen from
the following argument. If we integrate 60:, I) over all x at any time, we must get the total amount
of polymer:

D

00 DO

J dx ( r) 1 J dx x2
ex, :0 ———— ex —° 4770,“: p 40m:

-00 —oo
1

:c —~——-——\/471'Dmt=c0 47mm: °

where we use the expression for the solution to the integral of a Gaussian given in Section 6.7.
In real experiments, it is more common to have a layer of finite thickness of material in contact

with the effectively infinite matrix. For simplicity, we center this layer at x = 0 and it extends from
x = —1/2 to x = +l/2, as illustrated in Figure 9.12b. This new initial condition changes the solution
to Fick’s law. The approach to the solution is to view the layer of thickness h as a series of
infinitesimal layers and then to calculate the amount of material at each point x as a sum of the
material that came from each of the infinitesimal layers. We already have the solution for one
infinitesimal layer, and the result for the finite layer is

1 x+h x—h0“" 0 Z flail—m) + Edi/fill
where erf denotes the error function

erf(z) : J du exp (— 142)
0§|~
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Figure 9.12 Time evolution of concentration profiles for (a) an infinitesimal layer of material at x = 0,
£20, and (b) a layer of thickness 12 centered on x = 0 at t = 0. The corresponding mathematical forms for
60:, t) are discussed in Example 9.4.

The error function is tabulated in many standard mathematical references. The solution for C(x, t)
is also shown in Figure 9.12b and to a first approximation it looks rather like the result for a
single layer.

In an actual diffusion experiment, the geometry is usually slightly different, namely a single thin
layer of material is placed on one thick layer of matrix. However, with a little thought it should be
apparent that the answer is the same as above, by symmetry. The sum of error functions is
symmetric with respect to x>0 and x<0 (note that erf(z)=erf(—z)), and we could imagine
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placing an impenetrable barrier at x=0. In this case no material starting between x: —h/2 and
x = 0 would appear at x > 0, but an equal amount that started between x = 0 and x = 12/2 would not
be “lost” to x < 0. The value of DU, would be obtained by allowing diffusion to occur for some
apprOpriate time interval, and then using some kind of depth profiling experiment capable of
measuring C(x). The resulting concentration profile could be fit to the solution given above, to
extract Dm.

9.6 Dynamic Light Scattering
We recall from the discussion in Section 8.2 and Section 8.4 that light scattering in a dilute
polymer solution arises from fluctuations in concentration (e.g., see Equation 8.4.4). However,
each fluctuation must appear and disappear over some time interval and this time interval is
determined by Dm. As a consequence, the total scattered intensity also fluctuates in time and these
fluctuations may be analyzed to extract a characteristic relaxation time, 1'. The magnitude of the
scattering vector, q (defined in Equation 8.2.4), sets the relevant length scale in solution to be l/q
(see Section 8.6) and the relaxation time 1' turns out to be equal to 1/(qm).

From Section 8.2 and Section 8.6 we remember that the only fluctuations that will contribute to
the scattered intensity IS are the fluctuations that happen to have period 277/q and that are oriented
along the scattering vector, in other words the spontaneous fluctuations that satisfy the Bragg
condition. Suppose that such a fluctuation occurs at some time we designate :2 O; we could write it
as 600‘: 0) 2A cos(qx), where A is its amplitude and x is the appropriate direction. This
fluctuation would now relax according to Fick’s second law (Equation 9.5.11):

3(56) 82(56)
at

: m 7;?— (9.6.1)

for which the solution is (check it yourself):

5cm : 5c(0) e‘qZD‘“ = A cos(qx) e‘qm’ (9.6.2)
From this relation it appears that, if we could measure the time decay of concentration fluctuations,
we could measure Dm.

The complication arises because there is no special time t: 0; fluctuations rise and decay all the
time. However, the necessary information is there in the light scattering signal, if we measure the
temporal fluctuations in [5, rather than the time average value as we did in Chapter 8. A schematic
example of [5(1‘) is shown in Figure 9.13a. The instantaneous value of IS bounces around the average
value, as the scattering molecules move in solution and thereby alter the exact phase relations
among the waves scattered from different polymers. Although 15(t) looks like noise, it actually has
in it a typical time constant, which corresponds to the correlation time over which the signal loses
memory of whether it was, say, larger than average or smaller than average. (In a sense, this
correlation time plays the same role as the persistence length of a random walk discussed in detail
in Chapter 6.) T0 extract this time constant, the scattered intensity is analyzed via a time
autocorrelation function, C(I), defined as follows:

T

C(t) E Tlim %J I,(z’)1,(r’+r) dt’ (9.6.3)20.. 0
This function involves taking the intensity at some time t’, multiplying it by the intensity an
interval I later, and adding the results up over some long interval T. By then dividing by T, the
length of time of the experiment is taken out of the answer. To obtain the full C(I), this process
needs to be repeated for many different values of the interval t. In the actual experiment, the
scattered intensity is digitized and stored as a string of numbers, which are then manipulated by a
special computer called a correlator, to generate the digital version of C(t).
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(a) t' (b) t

Figure 9.13 (a) Scattered intensity as a function of time, with data digitized every interval t. (b) Intensity
autocorrelation function C(t) as a function of I.

What does C(2‘) look like? The instantaneous 13(t) can always be written as the sum of its average
and a fluctuation: 13(1‘) 2 (13) + 5130‘) (recall how we used the same strategy in treating the
polarizability in Chapter 8). The integrand of C(t) can be written as

(1,)2 + 51,000,) + 51,(z’+z)(1,) + 51,(z’)51,(z’ + r)

The first term is a constant and the next two terms integrate to zero because the fluctuations are
equally likely to be positive or negative. So, once again, it is the square of the fluctuations that
contain all the interesting information. Now consider the two limits, of the time interval 1: very small
and very large, compared to the timescale for molecular motion (1 /q2Dm). When 2‘ is very small, the
molecules do not move between t’ and t’ + r, so IS will not change. Thus 51(1’) % 513(t’ + t) and thus
the integrand is (513(t’))2. This is always positive and therefore C(t) has its maximum (2 ((Is(t))2))
when r= 0. On the other hand, when r is very large, the molecules have completely randomized their
positions and so 513(1’) and 5130’ + t) have no correlation. Consequently, their product is equally
likely to be positive or negative and the integral will be zero. Thus in this limit C(z‘) reduces to the
constant (If. The functional form of C(r) in the intervening region turns out to be an exponential,
just like the solution to Fick’s law above, as shown in Figure 9.13b:

C(r) = (<13) — <13>2)e‘2q20m’+ <1.)2 (9.6.4)
The additional factor of 2 in the exponential of Equation 9.6.4 arises because the motion of the
molecules results in the loss of correlation of the scattered electric field, E, and the intensity is
proportional to the square of the field.

In the actual experiment, the range of t can be adjusted to match the system under study over a
very wide interval (about 100 ns to 100 s) (see Example 9.5). A measurement of C(t) at any
scattering angle is sufficient to extract a value of Drn by Equation 9.6.4, but the result will be more
reliable if measurements are taken at several angles and the experimental time constants r are
plotted as 1/7- versus qz. The data should follow a straight line, with zero intercept and slope equal
to Dr“. The values of D",1 for solutions of low concentration can be extrapolated to zero concen-
tration and thereby the tracer diffusion coefficient Dt can be obtained (Equation 9.5.16). The data
in Figure 9.10 were obtained by this method. Finally, use of the Stokes—Einstein relation (Equation
9.5.5) gives access to Rh. This is the basis of the common use of dynamic light scattering for
particle sizing. It is also worth noting that this method can be used for quite small values of Rh,
approximately 1 nm, in contrast to light scattering, which can only determine Rg when Rg is greater
than about 10 nm.
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Example 9.5
Estimate the range of time constants, 7, which would be extracted from dynamic light scattering
measurements of dilute aqueous suspensions of latex particles ranging in size from 10 nm to 1 pm.

Solution
The time constants are determined by the product of q2 and Dr“, so we need to estimate both. For q,
let us assume the light source is an argon ion laser operating at 488 nm and that the instrument can
access scattering angles, q, from 30° to 150°. The refractive index of water is about 1.33 (see Table
8.1). From Equation 8.2.4

47m
sin

6 4 x 3.14 x 1.33
sin

30
to s'n

150
= — 2 — 1 —-—q A0 2 488 2 2
= 0.0089 to 0.033 nm‘1

We have emphasized both here and in Section 8.6 that 1 /q is a length, and by taking the reciprocal
of these numbers we can see that the typical values for light scattering fall in the range 30—120 nm.

The values of Drn can be estimated by assuming that the latex particles are sufficiently dilute so
that Drn % DD and using the Stokes—Einstein relation (Equation 9.5.4). For a hard sphere, remember
that Rh = R.

_ kT __ 1.4 ><10‘l6 x 300— 67rnSRh _ 6 x 3.14 x 0.01 x (10-6 to 10-4)
2 2.2 X 10"7 to 2.2 X 10'9 cmZ/s

D:

In this calculation we have used cgs units, with the viscosity of water estimated to be 0.01 P. In the
final calculation of 7 we will need to convert these numbers to as, which brings in a factor of
101‘4 (a/cmz). The results are

1
2.2 x 10-9 x 1014 x (0.0089)2

1= 2.2 x 10-7 x 1014 x (0.033)2

@6X10—2sTmax :

w4><10_5 s7min

These values are well within the range of commercial correlators.

We conclude this section on dynamic light scattering by emphasizing one further point about
diffusion. Compare the three solutions to the same equation, Fick’s second law, in Example 9.4
and in Equation 9.6.2. In the former example, c(x,t) has in one instance a very complicated
dependence on time and a Gaussian form in space, and in the other, a rather obscure answer
involving error functions. In contrast, from Equation 9.6.2 c(x,t) decays exponentially in time
and follows an oscillatory function in space. How can the same process, diffusion, and the same
equation, Fick’s second law, give such different results? The answer is that the solution depends
critically on the initial conditions and the boundary conditions. In Equation 9.6.2 the initial
condition was a cosine wave and that particular function is preserved by Fick’s law; in other
words the x dependence of C(x, t) is unchanged and only the amplitude of the wave decays with
time. The initial conditions in Example 9.4 were different and so were the results. In fact, there
are numerous practical situations with a variety of different constraints and many different
functional forms for c(x,t) can result. An excellent discussion of many of these cases can be
found in the text by Crank [12].
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9.7 Hydrodynamic Interactions and Draining
In this section we address a question that has played an important role in interpreting the intrinsic
viscosity and the diffusivity: why does treating a flexible coil as a hard sphere with R 2&1n
reproduce the experimental results for f (and therefore [77] and 0,)? Before providing the qualita-
tive answer, it is worth taking a moment to emphasize why this result is surprising. A detailed
model for the dynamics of a flexible chain, called the bead—spring or R0use——Zimm model, will be
discussed in Chapter 11. Its essence is to replace the real polymer with a freely jointed sequence of
N beads connected by elastic springs of average length b, where a particular bead—spring unit can
be thought of as representing a persistence length or two (see Figure 9.14). The springs resist
deformation of the chain and act to restore random coil conformations perturbed by the flow, but
are otherwise “invisible.” Each bead encounters frictional resistance as it moves relative to the
solvent. The bead friction factor, g, is a parameter of the model but it should correspond to the net
friction of a few real monomer units. In particular, the number of beads N is proportional to the
degree of polymerization of the real chain; for example if N :M/SMO, or five monomers per bead—
Spring unit, then 4“ should correspond to the friction of five monomers. This model is extremely
successful in many respects, as we shall see in the next chapter, but for now let us focus on the
chain friction factor, f. As the chain moves through the solvent, the total friction should just be the
sum of the friction experienced by each bead:

f:N§ (9.7.1)

This simple argument leads to the conclusion that fN M, and therefore Dtrv l/M, whereas the
experiments clearly show fw Ii"g NM”, andt l/M" (see Figure 9.10). What is wrong with this
argument? The answer is that it neglects the phenomenon known as intramolecular hydrodynamic
interactions (HI for short).

The underlying idea is illustrated schematically in Figure 9.14. When any bead moves through
the solvent, it sends out a ripple, or wave, that is felt by every other bead. The amplitude of this
wave dies off only as l/rij, the distance between beads i and j, which makes it a rather long-ranged
interaction. (Recall from Chapter 8 that the electric field around a point charge and the amplitude
of the scattered electric field from a single polarizable object both fall off as l/r as well, whereas
the short-ranged van der Waals attractions discussed in Section 7.6 fall off as 1/r6.) Furthermore HI
is very complicated to handle mathematically because to compute the effect on each bead at any
instant, we need to sum the contributions from every other bead on the chain and therefore we need

Figure 9.14 Schematic of a bead—spring chain with hydrodynamic interactions.
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to know the distance and direction between every pair of beads. Clearly substantial simplifications
are required.

The first thorough treatment of H1 in polymers was developed by Kirkwood and Riseman in
1948 [13]. The crucial step in the development is to “preaverage” the HI, which means to replace
the instantaneous positions of the beads with their average positions, in particular as given by the
Gaussian distribution. This average can be evaluated for the separation of any pair of beads using
the Gaussian distribution (Equation 6.7.12) because we recognize r5] as the end-to-end distance of a
chain from bead z' to bead j, that is, with li—jl steps of length 19:

1 1 3 3/2 3 r3;-_ = _4 .2._____ dry<33) 3r..- Withdraw) exP< ZIP-31152
6 1/2

2 (”It _jlb2) (9.7.2)

where we omit the details of how to evaluate this integral. The hydrodynamic radius, defined in
Equation 9.5.5, is obtained from the average of Equation 9.7.2 over all pairs of beads on the chain,
and thus

1
N N

1
N N

Trii;<r.>=*r;§lz—‘l
12812/ 1 3.69
377 NI/Zb :NW; (973)

where again we omit the details of the evaluation of the double sum. The Kirkwood—Riseman
prediction for the hydrodynamic radius of a Gaussian chain (i.e., in a theta solvent) is finally
obtained by inverting Equation 9.7.3:

Rh 2 0.271N1/2b = 0.66Rg (9.7.4)

where the relation to Rg is also included. The key result is that by including HI in this way, the
chain friction factor, f, is found to be given by 67mSRh, and not by N;.

The preceding paragraphs only hint at the rather elaborate mathematical machinery required,
and the extension of the Kirkwood—Riseman theory to an expression for the intrinsic viscosity is
even more involved. Consequently, it can be helpful to view these results in a more qualitative,
physical way by invoking the concept of draining. This is illustrated in Figure 9.15a and Figure
9.15b. In both panels, a flexible chain is shown, with the streamlines of the surrounding solvent
following some imposed flow. We switch back to the perspective of the flowing solvent and the
frictional resistance that the chain presents, rather than the friction experienced by the chain, but
of course these must be equivalent, as in the discussion of Stokes’ law in Section 9.2. In panel
(a), the solvent streamlines pass right through the coil, a limiting behavior termed freely
draining. In this case the total friction offered by the chain will be NC and thus fm M. In panel
(b), the streamlines are totally diverted around the periphery of the coil, just as in the hard sphere
case (see Figure 9.3). This extreme of behavior is called nondraining, and the friction varies as
fw Rh w M”. We can now see that the effect of HI is to make the coil essentially nondraining. The
beads on the upstream edge of the coil, which the solvent encounters first, shield the other beads
from the solvent and thus the net friction is reduced. If we revert to the frame of reference of the
polymer, when one bead moves in a certain direction, the cumulative effect of HI is to “nudge”



Hydrodynamic Interactions and Draining 359

--------------------------------- > (”fly -_---~"-V

>
’I’ ’ ------ xxx

..

-”,"” I,’ xxx.-
._____~>

-------------- i _____‘,’ ~~..____y
----------------------------- p

________________ >

---------- > -‘~\\ ’r”fl--->

_________________________________ > ‘H‘N’nfi \\~_ fl,” -"'"'->

\‘k‘.

-._ _____
”/

--------------------------------- >
‘x‘fi

‘-__.__-”

(a) (b)

............................ y

............................ *

A """"""""""""""""" *O O O O O O O O O

9.6_Q__o_,o o o o o o
o o 0 0 O 09-49 0 O O o o O

V o 0 O o o o o o o
O O O O O O O O

O O O O O O O O

(C)

Figure 9.15 Illustration of (a) a freely draining coil, (b) a nondraining coil, and (c) the argument for the
importance of (b) given in the text.

all the other beads in the same direction so that there is a concerted element to the chain motion.
This cooperation among segments contributes to a reduction in f, relative to Ng.

Although the limits of freely draining and nondraining coils are easy to visualize, it may not be
obvious why a random coil should tend to approximate the nondraining limit. A rather straight-
forward argument shows why. The cartoon in Figure 9.15c depicts a layer of pure solvent flowing
with velocity v past an infinite field of beads; the beads have a number density of n/V. Although the
flow may penetrate into the field of beads by some finite distance, if we are far enough from the
surface the flow velocity must tend to zero. Without worrying about the exact functional form of
the decay, we will just assert that there is a characteristic penetration distance L, over which
the velocity vanishes. Now we will estimate the force F required to maintain the solvent flow over
an area of surface A by two separate routes; numerical prefactors will be omitted. In the first
route, we add up the friction of each bead (i.e., as if the beads were freely draining within the
layer of thickness L). The number of beads is given by (n/V) times the volume LA and thus the
force would be

rI % (%)LA§V (9.7.5)

In the second route, we recognize that the force will be proportional to 775, A, and the velocity
gradient (recall the discussion accompanying Figure 9.1). In this case the velocity gradient should
be proportional to v/L, that is, the velocity falls from v to 0 over the distance L. Therefore the force
can be written as

F, % (am. (9.7.6)
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We now equate these two forces, and solve for L:

(9.7.7)

The key question is how does this penetration distance compare to the typical coil size? If L >> Rg,
then we expect freely draining behavior, but if L << Rg, nondraining will be a better description.
Note that for a coil, the number of beads per unit volume n/V will be proportional to N/R3 or
N14", so from Equation 9.7.7 we can see that L depends on N raised to the power of (312— 1)/2, or
1/4 for a Gaussian coil. But, we know that Rg grows as N”2, so that for big polymers Rg > L and
therefore the coil will be nondraining.

In real polymer solutions, the situation is more complicated and tends to fall between these
two extremes, albeit closer to the nondraining limit. For example, as the solvent quality is
improved beyond a theta solvent, the chain expands and thus the average distance between
beads increases. Hydrodynamic interactions are therefore diminished. For chains in good solv-
ents, part of the variation in the MarkflHouwink exponent, a, can be attributed to variable degrees
of draining. The effect also depends on molecular weight. For shorter chains the degree of
draining increases simply because there are not enough monomers to shield the inside of the coil
from the solvent flow. In summary, the main qualitative effect of H1 is to make the chain friction
factor close to that of a hard sphere with radius Rh, but a full mathematical treatment is extremely
complicated.

9.8 Size Exclusion Chromatography (SEC)

SEC is one of several modes of liquid chromatography in which a mixture of solutes is separated
by passing a solution through an appropriate column. As the solution (mobile phase) passes
through the column, different solutes are retained to various degrees according to their interaction
with the column packing (stationary phase). Surface adsorption and ion exchange are examples
of interactions that serve as the basis for other types of liquid chromatography. In SEC, the
columns are filled with porous particles and the separation occurs because molecules of different
sizes penetrate the pores of the stationary phase to varying degrees. The method is akin to a
“reverse sieving” at the molecular level. The largest molecules are excluded from the pores to
the greatest extent and, hence, are the first to emerge (elute) from the column. Progressively
smaller molecules permeate the porous stationary phase to increasing extents and are eluted
sequentially. The eluting liquid is monitored for the presence of solute by a suitable detector and
an instrumental trace of the detector output (chromatogram) provides distinct peaks for well-
resolved mixtures and broad peaks for a continuous distribution of molecular sizes. With suitable
calibration or multiple detection schemes, this information can be translated into a quantitative
characterization of the sample in terms of molecular weight, molecular weight distribution,
chemical composition, and even architecture. Owing to this wealth of potential information,
the relatively rapid sample throughput (typically ~30 min per solution), and the ease of automa—
tion, SEC is currently the single most important characterization tool in the polymer industry. In
our discussion, we will first describe the basic separation process and identify associated
strengths and weaknesses. Then we will explore two general strategies for column calibration,
that is, how the measured quantity (the elution time or elution volume) can be related to the
solute molecular weight. We conclude with a description of various detection schemes that are
cun‘ently employed, and in particular how they can be used to overcome some of the difficulties
in calibration.

To avoid confusion, it is helpful to realize that what is essentially the same method is known by
several different names—and their acronymsfl—by workers in different fields. Some other terminO-
logies are noted below:
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1. Gel permeation chromatography (GPC) is a very common name for this method of separation;
it is a less desirable term than SEC in that it emphasizes the column packing material (the gel)
rather than the supposed mechanism for the separation (size exclusion).

2. Gel filtration chromatography (GFC) is a name often used in the biochemical literature to
describe this method of separation. Under this heading, the method is primarily applied to
aqueous solutions of solutes of biological origin.

3. All three of these names (SEC, GPC. and GFC) are also modified by the term high perform-
ance. or its acronym, to give HPSEC, HPGPC, and HPGFC. The additional feature implied by
this terminology is the increased speed of efficient separations due to rapid flow through the
column under the influence of relatively high applied pressures. At the time of writing. this
prefix is generally omitted because “low performance” instruments are little used.

9.8.1 Basic Separation Process

A cartoon of an SEC experiment is shown in Figure 9.16. The column is packed with porous
particles with some characteristic pore size, which should correspond roughly to the typical sizes
of the polymers to be analyzed. The first rule of SEC is that the separation is based on size and not
on molecular weight; as we shall see the relevant size parameter is the hydrodynamic volume, Vh,
which1s roughly proportional to R3 (recall Equation 9.3.8) From the radius of gyration data for
polystyrenes in Figure 7.17, we can see that a typical range of pore sizes might be 10—104 A. In
high--resolution applications, it is often desirable to have a sequence of two to four columns with
different average porosities, so that a broader range of sizes can be resolved; the price to be paid is
that more time is required for each polymer to elute. The packing material can be made from a
variety of substances. but the chosen substance must be compatible with the solvent. polymer, and
temperature to be employed. For example, Styragel columns are made from styrene/divinylbenzene
copolymers, in the form of cross—linked beads. Such columns are suitable for relatively nonpolar
polymers that dissolve in good solvents for polystyrene such as toluene, THF, or chloroform.

Figure 9.16 Schematic illustration of an SEC column, packed with spherical porous particles, and indi-
vidual molecules either inside or outside the pores.
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Figure 9.17 Calibration curve for SEC as log M versus the retention volume VR, showing how the location
of the detector signal can be used to evaluate M. Also shown are the void volume Vv and the internal volume
V, in relation to VR and KVi as a fraction of V,.

(Consider what would happen to a Styragel column if the mobile phase were a nonsolvent for
polystyrene.) A great deal of clever engineering has gone into the development of packing materials
of controlled pore size that can withstand large pressure drops and remain stable for weeks of constant
use. The solvent is pumped through the column at a slow but steady rate, typically on the order of 1
mL/min. The pump itself plays an important role in the experiment, in maintaining a constant
pressure drop across the column; a good one is expensive. The solvent must also be good for the
polymer to be analyzed so that the individual molecules are swollen and have no tendency to either
precipitate or adsorb on the column. A small volume of dilute polymer solution is injected through a
special port upstream of the column. The detector (or series of detectors) responds to various
pr0perties of the eluting solution. Concentration detectors, such as those based on refractive index
or uv—vis absorption, have been the most commonly used, but these are now often supplemented by
light scattering and/or viscometric detectors. The resulting chromatogram is a plot of detector signal
versus time; the time axis is typically converted to volume by multiplying by the known flow rate.

To use SEC for molecular weight determination, we must relate the volume of solvent that
passes through the column before a polymer of a particular M is eluted, to M. This quantity is
called the retention volume VR. Figure 9.17 shows schematically the relationship between M and
VR; it is an experimental fact that such calibration curves are approximately linear over about two
orders of magnitude in M when plotted as log M versus VR. In practice, the column is calibrated by
constructing such a curve with standards of known molecular weight, as we will discuss later.
However, for the present purposes, we will assume that this curve is known. There are three
regimes of response. For all M above a certain value, the curve is vertical. This means that all these
polymers elute together; there is no separation. This happens for all polymers whose size is larger
than the largest pore; they are excluded from all the pores and thus travel entirely with the imposed
flow through the interstices or voids between packing particles. Similarly, at low M there is a
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region with no separation, when all polymers that are small enough to enter all the pores will elute
with the solvent. The intermediate range of M is the useful regime: a peak at a particular VR can be
related to a particular M, as shown in Figure 9.17. Note the curious fact that it is a common practice
to plot the measured quantity, or dependent variable, VR along the horizontal axis, and the
independent variable, log M, along the vertical axis.

Polydisperse polymers do not yield sharp peaks in the detector output, in contrast to the one
illustrated in Figure 9.17. Instead, broad bands are produced that reflect the polydispersity of
synthetic polymers. Assuming that suitable calibration data are available, we can construct
approximate molecular weight distributions from this kind of experimental data. An indication
of how this is done is provided in the following example.

Example 9.6
A broad chromatogram, shown in Figure 9.18, is subdivided into 20 slices, each 1 mL wide, and
these are indexed from 1': 1—20. The height h of the curve above a horizontal base line is carefully
measured for each slice. The molecular weight of the ith slice is assigned from independent
calibration via the retention volume. Columns 2—4 in Table 9.4 list hi, VR,,-, and M,- values,
respectively, for a particular chromatogram. Explain the significance and use of the remaining
columns in Table 9.4 for the determination of a molecular weight distribution from these data.

Solution
The basic premise of this method is that the magnitude of the detector output, as measured by h,- for
a particular fraction, is pr0portiona1 to the weight fraction of that component in the sample. (This is
a reasonable premise for a detector, such as an R1 detector, that has a response proportional to
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Figure 9.18 Discrete version of the SEC chromatogram for the data in Example 9.6. The inset shows the
weight fraction versus molecular weight.
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Table 9.4 Data for the Analysis of the Size Exclusion Chromatogram of a Polydisperse Polymer
Used in Example 9.6

(1) (2) (3) (4) (5) (6) (7) (8) (9)
i h, v,” mL M, ><10_6 g/mol 2.11, 12,7114, x 106 11,114, x 10—6 A,- 4,714,,t

21 0.0 20 4.709 545.0 0.0 0.0 545.0 1.0
20 0.0 21 3.302 545.0 0.0 0.0 545.0 1.0
19 0.8 22 2.327 545.0 0.34 1.86 544.6 0.999
18 3.5 23 1.640 544.2 2.13 5.74 542.5 0.995
17 16.8 24 1.1555 540.7 14.54 19.40 532.3 0.977
16 42.4 25 0.8142 523.9 52.08 34.52 502.7 0.922
15 67.9 26 0.5738 481.5 118.2 38.90 447.6 0.821
14 81.5 27 0.4003 413.7 203.6 32.62 373.0 0.684
13 81.4 28 0.2821 322.2 288.6 22.96 291.5 0.535
12 71.0 29 0.1988 250.8 357.1 14.12 215.3 0.395
11 57.0 30 0.1401 179.8 406.8 7.98 151.3 0.278
10 43.0 31 0.09872 122.8 435.6 4.24 101.0 0.186
9 30.0 32 0.06887 79.8 435.6 2.07 64.8 0.1 19
8 19.0 33 0.04853 49.8 391.5 0.92 40.3 0.074
7 12.1 34 0.03420 30.8 356.7 0.42 24.7 0.045
6 9.0 35 0.02410 18.6 373.4 0.22 14.1 0.026
5 4.0 36 0.01698 9.6 235.6 0.07 7.6 0.014
4 2.6 37 0.01197 5.6 217.2 0.03 4.3 0.008
3 2.0 38 0.00843 3.0 237.1 0.02 2.0 0.004
2 1.0 39 0.00588 1.0 170.0 0.01 0.5 0.001
1 0.0 40 0.00414 0.0 0.0 0.0 0.0 0.0

Source: From Yau, W.W., Kirkland, 1.1., and Bly, D.D., in Modern Size Exclusion Chromatography, Wiley, New York, 1979.

the concentration of the solute. However, the proportionality constant, related to dn/dc in this
instance, must itself be independent of M. Furthermore, it assumes that all of the polymer elutes
from the column, or, failing that, that any adsorption or other loss of material on the column is
independent of M.) In this sense, the chromatogram itself presents a kind of picture of the
molecular weight distribution. The following column entries provide additional quantifications
of this distribution:

Column 5. 2h, is proportional to the cumulative weight of all polymers in all categories up to
the nth.

Column 6. The ratio hg/Mg is proportional to the weight of materials in the ith slice, 142,-, divided by
M,-, that is, to the number of moles in that class 12,. Therefore Mn can be evaluated as follows:

_ ZiniMi __ Z; (hi/Mi)(Mi) _ 2,11: 545_
Dm-

"
Z,(hi/M1)

" Z, (h./M,) = 4.29 x 10-3
= 127,000 g mol—1

Mn

Column 7. The product hiM, is proportional to ni, and Mw is evaluated as follows:

Column 8. A,- = 2:1 [hi + 1/2(l7,-+1— h,-)]. Adding (1/2)(h,+1—h,-) gives h, the height of the
midpoint of each slice, and since each slice is 1 unit wide, the summation gives the area under
the curve up to the nth class.

MW
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Column 9. Aj/Atot gives that fraction of the area under the entire curve that has accumulated up to
the nth class. Since the curve is a weight distribution, this is equal to the weight fraction of
material in the sample having M <M,-.

A plot of the last entry versus M gives the integrated form of the distribution function. The more
familiar distribution function in terms of weight fraction versus M is given as the inset to Figure 9.18.
__._—

9.8.2 Separation Mechanism

A more thorough examination of the correlation between VR and M can be found in [14]. We shall
only outline the problem, with particular emphasis on those aspects that overlap other topics in this
book. To consider the origin of VR(M), begin by picturing a narrow band of polymer solution being
introduced at the top of a solvent—filled column. The volume of this solvent can be subdivided into
two categories: the stagnant solvent in the pores (subscript i for internal) and the interstitial liquid
in the voids (subscript v) between the packing particles:

Vsolvent : Vv + Vi (9.8.1)

The entire interstitial volume moves through the column at the imposed flow rate and must pass
through the column before any polymer emerges. Then the first polymer that does appear is the one
with the highest molecular weight. This solute has spent all its time in the voids—not the pores—of
the packing and passes through the column with the velocity of the solvent. Progressively smaller
molecules have access to successively larger fractions of the internal volume. Therefore, as V,
emerges, consecutive fractions of the polymer come with it. Thus we can write the retention
volume for a particular molecular weight fraction as

where K is called the distribution coefficient. K is a function of both the pore size and the
molecular size and indicates what fraction of the internal volume is accessible to the particular
solute. The relationships among VR, Vv, Vi, and KV, are also indicated in Figure 9.17. When K = 0,
the solute is totally excluded from the pores; when K = 1, it totally penetrates the pores.

It is instructive to consider a simple model for the significance of the constant K in Equation
9.8.2. For simplicity, assume a spherical solute molecule of radius R and a cylindrical pore of
radius a and length L. As seen in Figure 9.19a, an excluded volume effect prevents the center of the

(a)

Figure 9.19 Schematic illustration of size exclusion in a cylindrical pore: (a) for spherical particles of
radius R and (b) for a flexible chain, showing allowed (solid) and forbidden (dotted) conformations.
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spherical solute molecule from approaching any closer than a distance R from the walls of the pore.
This effectively decreases the volume accessible to the solute to a smaller cylinder of radius
(a —R). In this accessible cylinder, the concentration of the solute is the same as in the nearby
voids, but the excluded volume near the walls of the pore is devoid of solute. Hence the average
concentration of solute in the pore as a whole is less than that outside the pore. The fraction of the
external concentration found in the pore is given by the ratio of the accessible volume to the actual
volume of the cylindrical pore: 7r(a —R)2L/7T612L. This fraction gives K for the case of spherical
solute molecules in cylindrical cavities. If we assume that the pore is long enough to neglect end
effects, we have

2 2

[hm—TEL: (1—5) (9.8.3)
(1

Note that the fraction is zero when R : a and unity when R = 0.
This simple model illustrates how the fraction K and, therefore, VR are influenced by the

dimensions of both the solute molecules and the pores. For solute particles of other shapes in
pores of different geometry, theoretical expressions for K are quantitatively different, but typically
involve some ratio of solute size to pore dimensions. The extension of these ideas to random coils
can proceed along two lines. In one approach the coil domain is visualized as a hard Sphere, as in
the case above, with Rg or Rh taking the place of R; this is similar in spirit to the application of
Stokes’ and Einstein’s laws to hydrodynamics earlier in this chapter. Alternatively, statistical
methods can be employed to consider those conformations of a random chain, which are excluded
for a coil confined to a pore. This latter situation is illustrated in Figure 9.1%, in which solid and
broken lines represent two conformations of the same chain, with the filled-in repeat unit being
held in a fixed position. If the molecule were in bulk solution, both conformations would be
possible. In a pore, represented by the enclosing circle in Figure 9.1%, the broken line conform—
ation is impossible. This is equivalent to a decrease in conformational entropy for the coil in the
pore and the effect can be translated into an equilibrium constant between the solute in the pore and
in the bulk solution. The factor K in Equation 9.8.2 is just such a constant—the distribution
coefficient—and can be evaluated by this approach for pores of different shapes.

Figure 9.20 shows the theoretical predictions for K versus Rg/ (a) compared with experimental
findings. The solid line is drawn according to the statistical theory. The experimental points
correspond to the same porous beads used as the stationary phase with their pore size analyzed
by two different experimental procedures: mercury penetration (circles in Figure 9.20, (a) = 21 nrn)
and gas adsorption (squares in Figure 9.20, (a) 2 41 nm). We can draw several conclusions from
an examination of Figure 9.20:

1. Characterization of the stationary phase is also a source of discrepancy: The polymers are not
the only sources of difficulty.

2. Despite item (1), the fact that one set of experimental points agrees reasonably well with the
theory supports the basic soundness of this approach.

3. Since K represents the fraction of Vi, at which a particular molecular weight emerges from the
column, and since 1n M w 1n Rg, we see that this model correctly accounts for the form of the
calibration curve shown in Figure 9.16.

Despite the evident promise of this line of attack, quantitative predictions for VR(M) in SEC are
not generally at hand. There are at least two general reasons for this. One is the complexity of the
full problem. For example, the real pores are not cylindrical, but have a distribution of shapes and
sizes. The analysis assumes complete equilibrium between pores and voids, but this may be
hindered by diffusional limitations. Further, the separation mechanism is assumed to be entirely
entropic in nature, which means that there are no interactions between polymers and pore walls
other than the excluded volume. For example, any slight attraction between a monomer unit and
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Figure 9.20 Comparison of theory with experiment for Rg/(a) versus K. The solid line is drawn according
to the theory for flexible chains in a cylindrical pore. Experimental points show some data, with pore
dimensions determined by mercury penetration (circles, (a) =21 nm) and gas adsorption (squares, (a) = 41
nm). (From Yau, W.W. and Malone, C.P., Polymer Preprints (Am. Chem. 506., Div. Polym. Chem), 12, 797,
1971. With permission.)

the packing material can drastically increase VR. Furthermore, this contribution causes VR to
increase with M, in opposition to size exclusion, because the net attraction will increase with the
number of monomers. In short, a quantitative theory would be very complicated. The second
reason is more practical. Calibration techniques, to be described in the next section, are perfectly
adequate for many applications, and modern detectors, which can even circumvent the need for
column calibration, satisfy most requirements. Consequently, the need for a full theory is reduced.

9.8.3 Two Calibration Strategies

The simplest calibration strategy was alluded to above: take a series of polymers of known M,
referred to as calibration standards, run them through the column, and generate an empirical plot of
log M versus VR. Some kind of polynomial function (it need not be linear) can be used to obtain a
smooth function, which can be stored in a computer. That function can be used to assign a molecular
weight to each value of VR and the computer can easily calculate the molecular weight averages and -
other details of the distribution for each sample along the lines illustrated in Example 9.6 above.

This approach is in common practice and it is appealingly simple. The calibration should be
repeated at regular intervals because column performance will drift with time, but as only
minuscule amounts of the standards are required for each run, this is not particularly expensive.
What are the limitations of this approach? There are several to consider, any of which may or may
not be important for a particular application.

9.8.3.1 Limitations of Calibration by Standards
1. Separation is based on the hydrodynamic volume, V1,, and not on M directly. Consequently,

accuracy in M requires the use of standards of the same polymer as the analyte. Although
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controlled polymerization, especially anionic polymerization as discussed in Chapter 4, is used
to produce standards of a variety of polymers (polystyrene, poly(methyl methacrylate), poly-
butadiene, polyisoprene, poly(ethylene oxide). . . ), there are, of course, a much larger number
of polymer structures for which standards are simply not available. One expedient often
encountered in the literature is to quote “an apparent M, based on polystyrene standards,”
which gives some very approximate idea of the real M.

2. The absolute M of a given stand may not be known to an accuracy better than 5%——10%,
which ultimately limits the accuracy achievable with this mode of SEC.

3. If one injected an absolutely monodisperse standard, an ideal instrument would give a very
sharp spike at the particular value of VR. In reality, for such a sample the instrument would
show a narrow peak with a finite width. This width characterizes the instrument response
function, which quantifies the deviation of the instrument from ideality. In typical SEC, a
monodisperse sample would show a peak width corresponding to a polydispersity of about
1.01—1.05. The reason for this is the phenomenon of band broadening. One significant and
easily visualized contribution to band broadening is termed axial dificusion. As molecules of
identical M pass through the column, even if they were injected at precisely the same time,
they will all diffuse randomly. Some will show a net displacement relative to the average that
places them further down the column and others will lag behind. Indeed, based on the
arguments in Section 9.5, we might anticipate a Gaussian distribution of concentration versus
VR. This has important consequences. For example, it means that no matter how narrow a
“slice” of the chromatogram we select, the material eluting at that particular VR is never a
single M; each slice i has its own MW and MN. Furthermore, for a given column, a particular
VR does not always correspond to one particular MW},- or Mm; the average M of the material at a
particular VR will depend on the sample.

4. In most cases calibration standards have very narrow molecular weight distributions (Mw/
Mn 3 1.1). However, the true polydispersity of such materials is often not known. For example,
if MW is obtained by light scattering and MH by osmotic pressure, the combined uncertainties
of, say, 5% in each number means that one cannot distinguish among polydispersities of 1.03,
1.01 , or 1.001. Recall from Chapter 4 that standards prepared by living anionic polymerization
should ideally follow the Poison distribution; a polystyrene with Mn : 100,000 would have a
theoretical ideal polydispersity of 1.001. It is therefore quite probable that most calibration
standards are narrower than can be determined by SEC. Recent progress in mass spectrometric
methods (see Chapter 1) offers the possibility that such materials may be characterized more
precisely.

5. Many polymers have nonlinear or branched architectures (recall the examples in Chapter 1).
Two polymers of identical M but different amounts of branching will have different Rg and
therefore different VR. For example, in the free radical polymerization of ethylene, the product
called “low density” polyethylene has a substantial degree of long—chain branching. It is a
notoriously difficult problem to characterize the resulting molecular structures. In particular, it
is impossible to learn anything about the degree of branching from SEC when only this simple
method of calibration is employed.

6. It is often the case that polymer samples are heterogeneous not just in molecular weight or
architecture, but also in composition (e.g., copolymers), microstructure (e.g., polydienes), and
tacticity. All of these factors may contribute in some way to VR and each slice of the
chromatogram will also be heterogeneous in these variables.

9.8.3.2 Universal Calibration

The second mode of calibration in routine use is known by the optimistic name of universal
calibration. The hypothesis is that in SEC, VR depends solely on the hydrodynamic volume, Vh,
which itself will be proportional to R2. Now recall the discussion of intrinsic viscosity leading up to
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Equation 9.3.8, where the essence of the argument is that, no matter the detailed molecular
structure or shape,

[17] ~-— %" (9.8.4)

The hydrodynamic volume, therefore, should be proportional to the product [n]M. In universal
calibration, we assume that the proportionality factor between the hydrodynamic volume and [n]M
is independent of structure. Let us further suppose that [n] for our sample follows the Mark—
Houwink relation (Equation 9.3.10), with known values of k and a. We compare our sample with
the standard, say polystyrene, that elutes at the same time:

(MIMI: krM}+“‘ = ([nlM),~—— ksM§+as (9.8.5)
where the subscripts “r” and “5” refer to the reference (calibrant) and sample polymers, respect*
ively. Equation 9.8.5 can be rearranged to solve for M of the unknown at any particular VR:

(ke+ar)

l/l-l-as

MS 2 (+) (9.8.6)
3

In short, if we know the appropriate Mark—Houwink parameters (and a great many have been
tabulated, as noted in Section 9.3) then we can extract the absolute molecular weight of one polymer
based on column calibration with another. This approach is therefore often used to overcome the first
limitation listed above. The success of the underlying assumption behind universal calibration is
nicely illustrated in Figure 9.21. In the first panel, plots of log M versus VR are shown for a variety of
different polymers, including some branched structures; clearly the different species are all over the
map. In the second panel, the same data are shown, but with the vertical axis being log([n]M). In this
case, there is a very satisfying collapse of the data onto one universal calibration curve.

9.8.4 Size Exclusion Chromatography Detectors

To conclude this discussion of SEC we offer a brief discussion on the four classes of detectors in
common use: the refractive index (RI), absorption (uv—vis), light scattering (LS), and viscometer
(V) detectors. It is increasingly common practice to utilize two or more of these in series, for
reasons that should become apparent. There are different implementations of these various
detectors by different companies and we shall try to present the general principles without
reference to particular instrument configurations.

9.8.4. 1 RI Detector

This is the most commonly employed. In Section 8.7 we discussed the central role that the
refractive index increment, arr/ac, plays in light scattering. For a dilute polymer solution (which
is almost always the case in SEC), the refractive index of the eluent may be written

n(c) = ns —|— (@) C —l— - -- (9.8.7)
86

where c is the concentration in g/mL of the eluting polymer and n3 is the refractive index of the
solvent. The refractometer is typically set up such that a transmitted light beam is deflected by an
amount proportional to n—ns and thus to c. The response of the detector (e.g., in volts) can then be
assumed proportional to c and the proportionality factor determined by injection of known
quantities of material (assuming no adsorption on the column and that 371/60 is known). However,
in routine cases the proportionality factor is not necessary; the value of any M depends only on VR,
not on the height of the peak (i.e., h,~), and in the calculation of polydispersities the proportionality
constant would cancel out (see Example 9.6).
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Figure 9.21 The success of universal calibration. The data in (a) as molecular weight versus retention
volume collapse to a single curve when plotted in (b) as the product of molecular weight and intrinsic
viscosity. (Data from Grubisic, P., Rempp, H., and Benoit, J., J. Polym. Sci, BS, 753 1967.)

9.8.4.2 UV—Vr's Detector

This approach takes advantage of Beer’s law, whereby the transmittance of the solution (ratio of
transmitted light intensity to incident light intensity, U10) is related to the concentration of the
absorbing species by

Isbc : A = log}?— (9.8.8)
t



Size Exclusion Chromatography (SEC) 371

where A is the absorbance, b is the path length through the capillary, and 8 is the absorptivity of the
solute at the wavelength of interest. Thus, as with the RI detector, the signal is arranged to be
proportional to c. The uv—vis detector is less general than the RI detector because many polymers
do not absorb at sufficiently long wavelengths to avoid solvent absorption. On the other hand, when
dealing with mixtures, for example copolymers, it may be possible to choose a wavelength in the uv—
vis detector that favors only one component, whereas the RI detector is likely to respond to both. In this
case both detectors in series can be used to establish the average composition of the sample at each VR.

9.8.4.3 Light Scattering Detector

The crucial advantage of the LS detector is the possibility of obtaining an absolute MW, of each slice
of the chromatogram without any column calibration. This makes use of the theoretical machinery
developed in Chapter 8. If M is sufficiently low that the form factor, P(q), is effectively 1, then a
single angle detector is adequate. On the other hand, for larger polymers multiple angle detectors are
desirable. Some commercial models have more than 10 photodiodes surrounding the sample
volume, and both RgJ- and MW can be determined for each slice. An illustration is provided in
Figure 9.22 and discussed in the following example.
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Figure 9.22 Multiangle light scattering detector signal from SEC of a polystyrene solution, as discussed
in Example 9.7. (a) Intensity versus time traces for the individual detectors and (b) a plot of KC/Rg versus
sin2(6/2) for a particular slice of the chromatogram near the peak in intensity.
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Example 9.7
Explain how to extract MW and Rg from each slice of a chromatogram.

Solution
Recalling Equation 8.5.19, the scattered intensity in slice 1', 15,5, can be written as

I - 1
Ii:-

= KCn,g(I — EQZREJ- ' ° )

where we have dropped the term containing the second virial coefficient B. (This assumption is
usually safe because the concentrations coming off the column are small, but it can always be
checked by reinjecting a different concentration of sample and seeing if the answer changes.) The
value of q is determined by the scattering angle for each detector. The constant K contains many
factors (see Equation 8.4.22), including (3n/3c)2, so it must be known accurately. This can be
accomplished by calibrating the detector with a modest M sample of known MW and 311/36. The
intensity for each slice should be plotted against q2 (or sin2(6/2)) to obtain Rg, as illustrated in
Figure 9.22b using the “Zimm format” (Equation 8.5.18). Finally, to obtain M for each slice
requires dividing by C5, obtained from either the RI or uv—vis detector. In this case, it is necessary
that the concentration detector be accurately calibrated as well. It should also be noted that because
the two detectors are arrayed in series, there is a time delay between the arrival of slice 1' at each
detector. This must also be determined accurately.

9.8.4.4 Viscometer

This detector takes advantage of the direct relation between the hydrodynamic volume, which
determines VR and [n]: Vh~M[n]. Consequently by estimating [n],- at each slice, M can be
calculated. The detector itself is a kind of “Wheatstone bridge,” or null detector, for viscosity.
The eluting solution passes across one face of a sensitive pressure transducer. Pure solvent is
circulated against the other face. If both liquids are flowing at the same rate, any difference in
viscosity between them will be transformed into a differential shear force and thus a pressure on
the transducer. This could be measured, but a more effective approach is to increase the pure
solvent flow rate to null out the pressure dr0p. The amount the flow rate needs to be increased is
directly proportional to n — 775. The intrinsic viscosity is then estimated by

77 — 7?[77L = —5 (989)
7730i

where again we assume the concentration is small enough that extrapolation to infinite dilution is
not necessary. Note that in Equation 9.8.9 an accurate measurement of concentration and the
interdetector delay time is also essential.

The preceding discussion gives some insight into the rather sephisticated detection schemes
now in use. It is perhaps appr0priate to close the discussion of SEC with the major limitation of the
technique, namely that no matter how elaborate or sensitive the detector, the separation itself has
rather low resolution. Furthermore, for samples containing distributions of composition, micro-
structure, and architecture, in addition to molecular weight, it is necessary to employ other
separation schemes in tandem that can discriminate among these various characteristics. In normal
SEC, all of these various distributions are likely to be present to some extent in each slice, and the
information the detectors can provide will be limited.

9.9 Chapter Summary
In this chapter we have examined some dynamic properties of polymers in dilute solution, with a
particular emphasis on the viscosity. The underlying concept is that of the molecular friction
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factor, f, which depends on both polymer shape (rod, coil, sphere...) and molecular weight. The
main points are the following:

1. The friction factor is proportional to the product of the solvent viscosity and a hydrodynamic
radius, Rh, where Rh varies with M just as Rg does. This corresponds to an extension of Stokes’
law for rigid spheres to polymers of any shape. The friction factor is experimentally accessible
through either the intrinsic viscosity or the tracer diffusion coefficient.
The hydrodynamic volume, Vh, can also be defined, and is proportional to R1: and R; The
Einstein equation for the viscosity of a suspension of hard spheres can be extended to polymers
of any shape, with the result that the intrinsic viscosity is proportional to the ratio of Vh/M.
The relation between intrinsic viscosity and molecular weight can be expressed by the Mark—
Houwink equation [1)] =kM", where the parameters k and a have been tabulated for many
polymer and solvent combinations. As [7)] is relatively easy to measure, this offers a simple
route to molecular weight characterization.
Tracer and mutual diffusion coefficients were defined and distinguished. Diffusion coeffi-
cients offer another route to molecular characterization and play a key role in many applica-
tions of polymers.
The technique of SEC is the most commonly applied technique for polymer characterization,
as it can determine both average molecular weights and the molecular weight distribution. The
separation is based on V1, and is of relatively low resolution. Application of various detection
schemes can obviate the need for column calibration.
The reason that Stokes’ law and Einstein’s viscosity equation can be applied to polymers of
any shape is rather subtle. It is due to the phenomenon of hydrodynamic interactions, whereby
the motion of any monomer in the polymer is transmitted through the solvent to all other
monomers. The net effect is that monomers tend to move collectively, like a hard sphere with
radius close to Rg, rather than as N independent objects.

Problems

1. A fluid of viscosity 1; is confined within the gap between two concentric cylinders as shown in
Figure 9.9b. Consider a cylindrical shell of radius r, length L, and thickness dr located within
the gap.

a. What is the torque acting on the shell if torque is the product of force and the distance from
the axis and F/A = nr dw/dr?

b. Under stationary-state conditions, the torques at r and at r + dr must be equal, otherwise the
shell would accelerate. This means that the torque must be independent of r. Show that this
implies the following variation of a) with r: w = —B/2r2 + C, where B and C are constants.

c. Evaluate the constant B by noting that w :wex, the experimental velocity, at r=R and
w = 0 at r =fR.

d. Combine the results of a, b, and c to obtain Equation 9.4.14.

A slightly different but useful way of defining the viscosity average molecular weight is the
following:

ZfiMiM?
Ma : ————’v ZfiMi

where fiM,- is the weighting factor used to average 114?. A satisfactory way of treating many
polymer distributions is to define

1 —M-/M
i Z __ e l nf Mn
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Then

,lfnHa dMi
M(1 = ———————°

,lfiMidMi
0

Combine the last two expressions and integrate to express Mv in terms of Mn and a. The
integrals are standard forms and are listed in integral tables as gamma functions.

3. A sphere of density p2 and radius R falling through a medium of density p1 and viscosity
7} experiences three kinds of forces: gravitational, buoyant, and frictional. The first is
determined by the mass of the ball (and the acceleration due to gravity, g), the second by
the mass of the displaced fluid and g, and the last is given by Equation 9.2.3 and Equation
9.2.4. During most of the fall (excluding the very beginning and the very end of the
path), these forces balance. Use this condition to derive an equation showing how this
stationary-state velocity of fall is related to R, p1, p2, and n. This is the basis for the so-called
falling-ball viscometer.

4. Plazek, Dannhauser, and FerryJr measured the viscosities of a poly(dimethylsiloxane) sample
of MW =4.1><105 over a range of temperatures using the falling-ball method. Stainless steel
(p2 = 7.81 g/cm3) balls of two different diameters, 0.1590 and 0.0966 cm, were used at 25°C,
where p1 = 0.974 g/cm3 and n: 8.64x104 P. Use the result derived in the last problem to
calculate the ratio of the stationary—state settling velocities for the two different balls. How
long would it take the smaller ball to fall a distance of 15 cm under these conditions?

5. The intrinsic viscosity of poly(y-benzyl-L-glutamate) (M02210) shows such a strong mo—
lecular weight dependence in dimethyl formamide that the polymer was suspected to exist as a
helix, which approximates a prolate ellipsoid of revolution in its hydrodynamic behavior.

Mx10—3(g/moi) 21.4 66.5 130 208 347
[n](dL/g) 0.107 0.451 1.32 3.27 7.20

Using 1.32 g/cm3 as the density of the polymer, estimate the axial ratio for these molecules,
using Simha’s equation (for large p E a/b):

h _ P2 102 p
a — 15[1n(2p)—3/2]+5[1n(2p)—1/2]+E g 175 (5—0)

'

For an (it-helix, the length per residue is about 1.5 131. Use this figure with the molecular weight
to estimate the length 2a of the particle. Use the estimated 61/!) ratios to calculate the diameter
2b of the helix, which should be approximately constant if this interpretation is correct.
Comment on the results.

6. Fox and Floryi used experimental molecular weights, intrinsic viscosities, and ms end-to—end
distances from light scattering to evaluate the constant (130 in Equation 9.3.18. For polystyrene
in the solvents and at the temperatures noted, the following results were assembled (M in kg
mol‘l, [n] in dL/g):

tDJ. Plazek, w. Dannhauser, and JD. Ferry, J. Colloid Sci, 16, 1010 (1961).
1TC: Fox Jr. and PJ. Flory, J. Am. Chem. 506., 73, 1915 (1951).
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Solvent 7* M [111 km, (A)
Methyl ethyl ketone 22 1760 1.65 1070

22 1 620 1 .61 1 01 5
67 1620 1.50 980
22 1320 1.40 900
25 980 1.21 840
22 940 1.17 750
22 520 0.77 545
25 318 0.60 475
22 230 0.53 400

Dichloroethane 22 1780 2.60 1410
22 1620 2.78 1335
67 1620 2.83 1295
22 562 1.42 760
22 520 1.38 680

Toluene 22 1620 3.45 1290
67 1620 3.42 1280

Evaluate (Do for each set of data and compare the average with the value given in the text. Does
the fact that these data are not from theta solvents matter? Why, or why not?

7. Precise determination of the intrinsic viscosity, [7]], and the Huggins coefficient, (CH, is not
as straightforward as one might expect, even when the instrument provides accurate and
precise measurements of 11,61 (211/115). The primary issue becomes how many terms to
include in the concentration expansion of 11(0), and what range of c is appropriate? The
usual interval is 1.1 <71re1<2§ smaller values have too much uncertainty, and larger
values require too many terms. The usual strategy is to perform two linear extrapolations,
and compare the results; if they do not agree, more data or more terms are required. The
first extrapolation is due to Huggins; plot nsp/c versus (3, where 715p 2 11,31 — 1, and fit to a
straight line:

fizai+filc...

C

where a’ and B’ are the fit parameters. The second extrapolation is due to Kraemer: plot (1n
meg/c versus 6, and fit to a straight line:

In The] 2 an +BHC' . .

where a” and B” are the fit parameters.

a. Derive the relationships between (i) a’ and or”, (ii) 8’ and B”, and (iii) express 03’ and B’ in
terms of [n] and k“. It may help to recall that ln(l +x) :3: — (1/2)x2 + (1/3)x3- - -

b. One test of the validity of determination of [n] and kH is to compare the results from these
two plots. The data below are for polystyrene (M : 20,000) in a theta solvent. Prepare the
two plots, do the linear regression, and answer these questions:

i. How well do the two fits satisfy the criteria you derived above?
ii. What are the implied values of [n] and (CH?
iii. What would you estimate the uncertainties to be?
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11.
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C (g/mL) ”Sp/C (1D nrelyc

0.005 12.25 11.890
0.011 12.7 11.888
0.015 13.3 12.127
0.028 14.4 12.098
0.034 15.7 12.581

Another method of extrapolation to obtain the intrinsic viscosity is due to Schulze and
Blasehke:

nip
: am + fining!)

. . .

Evaluate the data in the previous problem using this approach, and relate the new parameters
to [n] and kH. What approximation is necessary to make the Huggins extrapolation and the
Schulze—Blaschke extrapolation equivalent? It is claimed in the literature that the Schulze—
Blaschke extrapolation is valid over a wider range of concentration; justify or refute this
claim.
The intrinsic viscosity of polystyrene in benzene at 25°C was measured for polymers with the
following molecular weights:

M (g/mol) [’0] (dL/g) M (g/mol) [17] (dL/g)
6,970,000 1 1.75 277,000 1.07
4,240,000 8.15 63,000 0.358
2,530,000 5.54 63,100 0.356
838,000 2.43 43,200 0.268
784,000 2.32 16,050 0.136
676,000 2.07 10,430 0.106
335,000 1.23 8,370 0.0932

3,990 0.0608

Estimate Rg for these polymers from these data. Use the data in Table 6.1 to compute Rgp and
thus evaluate the coil expansion ratio as for each fraction. How does or vary with M, and how
does this compare with the Flory—Krigbaum prediction (Equation 7.7.10 and Equation
7.7.12)?
Diblock copolymers can readily form spherical micelles in a solvent that does not dissolve
one block. A typical aggregation number for such a micelle might be 100 individual
polymers, with the inner “core” formed of the 100 insoluble blocks and little or no solvent.
Imagine a solution of a block copolymer with M = 100,000 and a concentration of 0.01 g/mL,
which forms micelles upon cooling below some critical micelle temperature. Estimate the
ratio of viscosity of the solution before and after micellization and also the ratio of the
hydrodynamic radius before and after micellization. Assume that both blocks are made of
polymers with flexibilities similar to polystyrene.
When the mutual diffusion coefficient is measured for dilute polymer solutions, for example
by dynamic light scattering, it is found that the concentration dependence of Dm is linear with
c, but the slope can be either positive or negative. Furthermore, in a good solvent the slope is
usually positive, but in a theta solvent it is negative. This behavior is consistent with Equation
9.5.18, but the dependence on solvent quality is not transparent. Show that, in fact,

dln 72
c

2 23M — :72
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where B is the second virial coefficient and 172 is the partial specific volume of the polymer
(which we can take to be given by V2 /M). To do this, start with Equation 9.5.13, and work to
replace (duz/dc) with arr/ac, following the discussion surrounding Equation 8.4.16 and
Equation 8.4.17.

12. The ratio of the radius of gyration, R3 (measured by light scattering as described in
Chapter 8) to the hydrodynamic radius, Rh (measured by dynamic light scattering) can be
a sensitive indicator of molecular conformation. Compare the value of this ratio for a
high molecular weight linear chain in a theta solvent to that of a hard sphere. Now
consider a sixth-generation dendrimer and a regular four-arm star polymer with long arms;
where would they rank relative to each other, and to the other two shapes? Explain your
reasoning.

13. Dynamic light scattering measurements were made on a very dilute aqueous suspension
of latex particles at a scattering angle of 45°; the measured decay rate implied a hydro-
dynamic radius of 240 nm. When measurements were taken at a scattering angle of 90° to
confirm this result, there was no significant scattering signal. Why? What can be inferred
about the particles based on this information? (Hint: some material in Section 8.6 may be
helpful.)

14. The overlap concentration (3*, which separates the dilute solution regime from the so-called
semidilute regime, can be estimated by space-filling arguments, as the concentration where
the individual coil-volumes begin to fill space. Derive the expression for c* in terms of R3
and M and indicate how 6* scales with M in good and theta solvents. Alternatively, 6* can be
estimated from the dilute solution viscosity expansion, such that 6* ~ 1/[17]. Use the Flory——
Fox relation to relate these two definitions, that is, find the proportionality constant between
6* and 1/[17] that makes the two definitions equivalent.

15. Use the model for the size exclusion of a spherical solute molecule in a cylindrical capillary
to calculate KGPC for a selection of R/a values, which are compatible with Figure 9.20.
Plot your values on a photocopy or tracing of Figure 9.20. On the basis of the comparison
between these calculated points and the line in Figure 9.20 drawn on the basis of a statistical
consideration of chain exclusion, criticize or defend the following proposition: There is
not much difference between the K values calculated by the equivalent sphere and
statistical models. The discrepancy between various experimental methods of evaluating
(a) is much greater than the differences arising from different models. Even for
random coil molecules, the simple equivalent sphere model is acceptable for qualitative
discussions of VR.

16. SEC measurements are now often made with both an RI and an LS detector. The former
responds to the change in solution RI, n, as polymer elutes; It may be taken to be linear in
concentration at these dilute concentrations and independent of M. The latter either measures
IS at a series of scattering angles simultaneously, or at one very low angle. For each slice, 1', of
the chromatogram, one now has two pieces of data: ni and 13... Show how to compute MW and
Mn from these data (1' might easily run from 1 to 1000). What do you need to know in order to
get absolute M averages (i.e., without calibrating the columns)? Can you suggest a way to get
(an/ac without making any additional measurements?

17. Both preparative and analytical GPC were employed to analyze a standard (NBS 706)
polystyrene samplet. Fractions were collected from the preparative column, the solvent
was evaporated away, and the weight of each polymer fraction was obtained. The molecular
weight of each fraction was obtained using an analytical gel permeation chromatograph. The
following data were obtained (mass in milligrams and M x 10"4 g/mol):

1‘Y. Kato, T. Kametani, K. Furukawa, and T. Hashimoto, J. Polym. Sci. Polym. Phys. Ed. 13, 1695 (1975).
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Fraction Mass Mn Mw Fraction Mass Mn MW

6 2 109 111 19 42 9.14 9.35
7 8 90.8 92.5 20 30 7.52 7.68
8 20 76.7 78.0 21 28 6.16 6.28
9 42 62.3 63.5 22 18 5.12 5.22
10 64 51.5 52.5 23 12 4.09 4.18
11 84 41.7 42.5 24 8 3.33 3.40
12 102 34.7 35.4 25 6 2.63 2.69
13 110 28.7 29.3 26 5 2.01 2.06
14 110 23.3 23.8 27 4 1.52 1.56
15 96 18.9 19.4 28 3 1.13 1.16
16 86 15.9 16.3 29 2 0.83 0.85
17 68 13.0 13.3 30 1 0.59 0.61
18 54 11.0 11.2

Calculate MW and M,1 and the ratio Mw/Mn for the original polymer. Also evaluate the ratio
MW/Mn for the individual fractions. Comment on the significance of MW/M,1 for both the
fractionated and unfractionated polymer.

18. A polystyrene sample was prepared by living anionic polymerization (recall Chapter 4), with
MW = 34,500. The polydispersity was measured by four different techniques. Matrix—assisted
laser desorption/ionization (MALDI) mass spectrometry (Chapter 1) gave 1.016. Tempera—
ture gradient interaction chromatography (TGIC, a higher resolution technique than SEC)
gave 1.020. Standard SEC with an R1 detector and calibration with PS standards gave 1.05.
However, SEC on the same instrument but using an LS detector to obtain MW of each slice
gave a value of 1.005. The Poisson distribution (see Chapter 4) predicts a polydispersity of
1.003 for an ideal living polymerization, so the small value obtained by LS detection is at
least conceivable. However, there is good reason to believe that both MALDI and TGIC are
more accurate. Explain why using SEC with R1 detection gives a polydispersity that is too
large, and why the LS detection gives a value that is too small.
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10
Networks, Gels, and Rubber Elasticity

10.1 Formation of Networks by Random Cross-Linking
In this chapter we consider one of the three general classes of polymers in the solid state: infinite
networks. The other two categories, glassy polymers and semicrystalline polymers, will be taken
up in Chapter 12 and Chapter 13, respectively. We will shortly define the term network more
precisely, but we have in mind a material in which covalent bonds (or other strong associations)
link different chain molecules together to produce a single molecule of effectively infinite
molecular weight. These linkages prevent flow and thus the material is a solid. There are two
important subclasses of network materials: elastomers and thermosets. An etastomer is a cross-
linked polymer that undergoes the glass transition well below room temperature; consequently,
the solid is quite soft and deformable. The quintessential everyday example is a rubber band. Such
materials are usually made by cross-linking after polymerization. A thermoset is a polymer in
which multifunctional monomers are polymerized or copolymerized to form a relatively rigid
solid; an epoxy adhesive is a common example. In this chapter we will consider both elastomers
and thermosets, but with an emphasis on the former. The reasons for this emphasis are that the
phenomenon of rubber elasticity is unique to polymers and that it is an essential ingredient in
understanding both the viscoelasticity of polymer liquids (see Chapter 11) and the swelling of
single chains in a good solvent (see Chapter 7). In the first two sections we examine the two
general routes to chemical formation of networks: cross-linking of preformed chains and poly-
merization with multifunctional monomers. In Section 10.3 through Section 10.6 we describe
successively elastic deformations, thermodynamics of elasticity, the “ideal” molecular description
of rubber elasticity, and then extensions to the idealized theory. In Section 10.7, we consider the
swelling of polymer networks with solvent.

10.1.1 Definitions

Figure 10.1 provides a pictorial representation of a network polymer. In panel (a), there is a
schematic representation of a collection of polymer chains, which could be either in solution or in
the melt. In panel (b), a certain number of chemical linkages have been introduced between
monomers on different chains (or on the same chain). If enough such cross-[inks are created, it
becomes possible to start at one surface of the material and trace a course to the far side of the
material by passing only along the covalent bonds of chain backbones or cross-links. In such a
case an infinite network is formed, and we can say that the covalent structure percotates through
the material. The network consists of the following elements, as illustrated in Figure 10.2:

1. Strand. A strand is a section of polymer chain that begins at one junction and ends at another
without any intervening junctions.

2. Junction. A junction is a cross-link from which three or more strands emanate. The function-
ah’ty of the junction is the number of strands that are connected; in the case of the random
cross-linking pictured in Figure 10.1 the functionality is usually four. Note that a cross-link
might simply connect two chains, but it would not be a junction until it becomes part of an
infinite network.

381
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(b)

Figure 10.1 Schematic illustration of (a) an uncross—linked melt or concentrated solution of flexible chains
and (b) the same material after cross-links are introduced.

Junction Strand

/

\R
\
Loop

Figure 10.2 Schematic illustration of network elements defined in the text.

‘34?
Dangling end
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3. Dangling end. The section of the original polymer chain that begins at one chain terminus and
continues to the first junction forms a dangling end. Because it is free to relax its conformation
over time, it does not contribute to the equilibrium elasticity of the network, and as such it can
be viewed as a defect in the structure.

4. Loop. Another defect is a loop, a section of chain that begins and ends at the same cross—link,
with no intervening junctions. A loop might be formed by an intramolecular cross-linking
reaction. Again, as with the dangling end, the loop can relax its conformation (at least in part)
and is thus not fully elastically active.

5. Sol fraction. It is not necessary that every original polymer chain be linked into the network; a
given chain may have no cross-links or it may be linked to a finite number of other chains to
form a cluster. In either case, if the material were placed in a large reservoir of a good solvent
the sol fraction could dissolve, whereas the network or gel fraction could not. Thus the sol
fraction contains all the extractable material, including any solvent present.

The apparently synonymous terms network, infinite network, and gel have all appeared so far and
it is time to say how we will use these terms from now on. We have used network and infinite
network interchangeably; the modifier infinite just serves to emphasize that the structure percolates
throughout a macroscopic sample and from now on we will omit it. The term gel is somewhat more
problematic, as it is used by different workers in rather disparate ways. We will henceforth use it to
refer to a material that contains a network, whereas the term network refers to the topology of the
underlying molecular structure. Often, an elastomeric material containing little or no sol fraction is
called a rubber, whereas a material containing an equivalent network structure plus a significant
amount of solvent or low—molecular—weight diluent would be called a gel.

10.1.2 Gel Point

We now consider the following question: given a collection of polymer chains, how many random
cross—links need to be introduced before a network will be formed? For simplicity, assume that all
chains have the same degree of polymerization N, and that all monomers are equally likely to react.
We will give examples of cross—linking chemistry in a moment, but for now we assume we can
measure the extent of reaction, p, defined as the fraction of monomers that participate in cross-
links. Suppose we start on a chain selected at random and find a cross—link; we now use it to cross
over to the next chain. What is the probability that, as we move along the second chain, we will
find a second cross—link? It is simply given by (N — 1)p eeNp. The probability of being able to hop
from chain to chain x times in succession is therefore (Np)? (Recall that the probability of a series
of independent events is given by the product of the individual probabilities.) For a network to be
formed, we need this probability to be 21 as x ——> 00, and therefore we need Np 2 1. Conversely, if
Np < 1, (Np)x —> 0 as x —> 00. Consequently, the critical extent of reaction, pc, at which an infinite
network first appears, the gel point, is given by

1 l
pcfiN—INN (10.1.1)

This beautifully simple result indicates how effective polymers can be at forming networks; a polymer
withN m 1000 only needs an average of 0.1% of the monomers to react to reach the gel point. Note that
Equation 10.1.1 probably underestimates the true gel point because some fraction of cross-linking
reactions will result in the formation of loops, which will not contribute to network formation.

Any real polymer will be polydisperse, so we should consider how this affects Equation 10.1.1.
Let us return to our first chain, find the cross—link, and then ask, what is the average length of the
next chain? As the cross—linking reaction was assumed to be random, then the chance that the next
chain has degree of polymerization N,- is given by the weight fraction of Ni-mers, w,—. In other
words, the probability that the neighboring monomer that forms the cross—link belongs to a chain of
length N,- is proportional to N,—. (To see this argument, consider a trivial example: the sample
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contains 1 mole of chains of length 100 and 1 mole of chains of length 200. Any monomer selected
at random has a probability of 2/3 to be in a chain of length 200, and 1/3 to be in chain of length
100; 2/3 and 1/3 correspond to the weight fractions.) The critical probability therefore becomes

1C: 00 g 001 :_1_ (10.1.2)
Xmas-fl 1) Zw.-N.-
£21 121

NW

and thus the critical extent of reaction is determined by the weight-average degree of polymer—
ization, NW.

Examples of postpolymerization cross—linking reactions are many. Free-radical initiators such
as peroxides (see Chapter 3) can be used to cross—link polymers with saturated structures (i.e., no
carbon—carbon double bonds), such as polyethylene or poly(dimethylsiloxane). Alternatively,
high-energy radiation can be utilized for the same purpose. A prime example occurs in integrated
circuit fabrication, where electron beam or UV radiation can be used to cross—link a particular
polymer (called a negative resist) in desired spatial patterns. The uncross-linked polymer is then
washed away, exposing the underlying substrate for etching or deposition. (In contrast, some
polymers such as poly(methyl methacrylate) degrade rapidly on exposure to high-energy radiation,
thereby forming a positive resist.) Of course, the classic example of cross—linking is that of
polydienes cross-linked in the presence of sulfur. The use of sulfur dates back to 1839 and the
work of Goodyear in the United States [1] and Macintosh and Hancock in the UK. The polymer of
choice was natural rubber, a material extracted from the sap of rubber trees; the major ingredient is
CiS-1,4 polyisoprene. This basic process remains the primary commercial route to rubber materials,
especially in the production of tires, and the cross-linking of polydienes is generically referred to as
vulcanization. Remarkably, perhaps, the detailed chemical mechanism of the process remains
elusive. For some time a free-radical mechanism was suspected, but current thinking favors an
ionic route, as shown in Figure 10.3. The process is thought to proceed through formation of a
sulfonium ion, whereby the naturally occurring eight—membered sulfur ring, 83., becomes polarized
or opened (Reaction A). The next stage is abstraction of an allylic hydrogen from a neighboring
chain to generate a carbocation (Reaction B), which subsequently can react with sulfur and cross—
link to another chain (Reaction C). A carbocation is regenerated, allowing propagation of the cross—
linking process (Reaction D). Termination presumably involves sulfur anions. In practice, the rate
of vulcanization is greatly enhanced by a combination of additives, called accelerators and
activators. Again, the mechanisms at play are far from fully understood, although the technology
for producing an array of rubber materials with tunable properties is highly developed.

P

Example 10.1
A sample of polyisoprene with MW: 150,000 is vulcanized until 0.3% of the double bonds are
consumed, as determined by spectroscopy. Do you expect this sample to have formed a network,
and what is the probability of finding a polyisoprene chain that is untouched by the reaction?

Solution

The nominal monomer molecular weight for polyisoprene is 68 g/mol, so for this sample the
critical extent of reaction estimated by Equation 10.1.2 is

1 68
c ”7-6 —- = __ = 0.00045‘0 N, 150,000

This is a factor of 6.7 less than the stated value of p = 0.003, so we may be reasonably confident
that the sample has passed the gel point.

For an individual chain to be untouched, every monomer must be unreacted. The
probability for each monomer to be unreacted is 1 — p = 0.997 and for a chain of N monomers
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38

3+ 5*s,------s, or s; + 3,:

Figure 10.3 Possible mechanism for vulcanization of 1,4-polybutadiene with sulfur, following Odian.
(From Odian, G., Principles of Polymerization, 2nd ed., Wiley, New York, 1981.)

we must raise 0.997 to the Nth power. For simplicity, we assume all chains to have the same
N=150,000/68:2200; then (0.997)2200e0.0013 or there is about 0.1% chance that a chain
is untouched.
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10.2 Polymerization with Multifunctional Monomers
In this section we consider the other general approach to network formation or gelation, using
polymerization of multifunctional monomers. Multifunctional, as noted in Chapter 2, means
functionality greater than 2. We will build on the material in that chapter by considering step-
growth or condensation polymerization of monomers containing A and B reactive groups. The
resulting thermosets are widely used as engineering materials because their mechanical properties
are largely unaffected by temperature variation.

For simplicity, we assume that the reaction mixture contains only A and B as reactive groups,
but that either one (or both) of these is present (either totally or in part) in a molecule that contains
more than two of the reactive groups. We use f to represent the number of reactive groups in a
molecule when this quantity exceeds 2 and represent a multifunctional molecule as Af or Bf. For
example, if A were a hydroxyl group, a triol would correspond tof= 3. Several reaction possibil-
ities (all written forf= 3) come to mind in the presence of multifunctional reactants, as shown in
Figure 10.4. The lower case “a” and “b” refer to the corresponding groups that have reacted.

The third reaction is interesting inasmuch as either the AA or BB monomer must be present to
produce cross-linking. Polymerization of AB with only Af (or only Bf) introduces a single branch
point, but no more, since all chain ends are unsuited for further incorporation of branch points.
Including the AA or BB molecule reverses this. The bb unit that accomplishes this is underlined.

What we seek next is a quantitative relationship among the extent of the polymerization reaction,
the composition of the monomer mixture, and the gel point. We shall base our discussion on the
system described by the first reaction in Figure 10.4; other cases are derived by similar methods (see

1. AA and BB plus either Aror Bf:

abbaabbvw
AA + BB + As ——a- Aabbaabba—< abbw.

abbaabba
abbaaww

2. AA and Bfor BB and Ar:

baavw
baab-<

baavw
AA + B3 -——* Aab

baavw
baab—< baavw

baa
baavw

3. AB with either AA and Bfor BB and Ar:

ababaww
AB + BB + A3 —I- Abababa avw

ababa_b_9ababa —<
awv

4. A, and Bf:

avw abvw
A3 + a3 ——-- A—< ba—< bwv

ab—< ab—<
bvw bvw

Figure 10.4 Possible reaction schemes for monomer mixtures containing A and B functional groups that
can lead to network formation.
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Problem 3). To further specify the system, we assume that A groups limit the reaction and that B
groups are present in excess. Two parameters are necessary to characterize the reaction mixture:

1. The ratio of the initial number of A to B groups, 123/123,, defines the factor r, as in Equation
2.7.1. The total number of A groups from both AA and Af is included in this application of r.

2. The fraction of A groups present in mulifunctional molecules is defined by the ratio

__ vA(from Af)#
VA([O[31)

(10.2.1)

There are two additional useful parameters that characterize the reaction itself:

1. The extent of reaction p is based on the group present in limiting amount. For the system under
consideration, p is therefore the fraction of A groups that have reacted. (Note that this p is
slightly different from p in Section 10.1.)

2. The probability that a chain segment is capped at both ends by a branch unit is described by the
branching coeflicient or. The branching coefficient is central to the discussion of network
formation, as the occurrence or nonoccurrence of gelation depends on what happens after
capping a section of chain with a potential branch point.

10.2.1 Calculation of the Branching Coefficient

The methods we consider were initially developed by Stockmayer [2] and Flory [3] and have been
applied to a wide variety of polymer systems and phenomena. Our approach proceeds through two
stages: first we consider the probability that AA and BB polymerize until all chain segments are
capped by an Af monomer, and then we consider the probability that these are connected together
to form a network. The actual molecular processes occur at random and not in this sequence, but
mathematical analysis is more feasible if we consider the process in stages. As long as the same
sort of structure results from both the random and the subdivided processes, this analysis is valid.

The arguments we employ are statistical, so we recall that the probability of a functional group
reacting is given by the fraction of groups that have reacted at any point and that the probability of
a sequence of events is the product of their individual probabilities (as used in developing Equation
10.1.1). As in Chapter 2 and Chapter 3, we continue to invoke the principle of equal reactivity, that
is, that functional group activity is independent of the size of the molecule to which the group is
attached. One additional facet of this assumption that enters when multifunctional monomers are
considered is that all A groups in Af are of equal reactivity.

Now let us consider the probability that a section of polymer chain is capped at both ends by
potential branch points:

1. The first step is the condensation of a BB monomer with one of the A groups of an Af molecule:
Since all A groups have the same reactivity by hypothesis, the probability of this occurrence is
simply p.

2. The terminal B group reacts with an A group from AA rather than Af:

Af_1abB + AA -> Af_1abbaA

The fraction of unreacted B groups is rp, so this gives the probability of reaction for B. Since p
is the fraction of A groups on multifunctional monomers, rp must be multiplied by 1 — p to
give the probability of B reacting with an AA monomer. The total probability for the chain
shown is the product of the probabilities until now: p[rp(l — p)].

3. The terminal A groups react with another BB:

Af_1abbaA + BB —> Af_1abbaabB

The probability of this step is again p, and the total probability is p[rp(1 —- p)p].
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4. Additional AA and BB molecules condense into the chain to give a sequence of i bbaa units

Af_1abbaabB + AA + BB —>—>—> Af_1a(bbaa),obB

We have just evaluated the probability of one such unit; the probability for a series of 1' units is
just the product of the individual probabilities: p[rp(1 — p)p]’.

5. The terminal B groups react with an A group from a multifunctional monomer:

Af_]a(bbaa),-bB + Af —> Afn1a(bbaa)ibbaAf_1

The probability of B reacting is rp and the fraction of these reactions that involve Af molecules
is rpp. The probability of the entire sequence is therefore p[rp(1 — p)p]‘rpp.

6. In the general expression above, i can have any value from 0 to 00, so the probability for all
possibilities is the sum of the individual probabilities. Note that a different procedure is used
for compounding probabilities here: the sum instead of the product. This time we are interested
in either i =0 or i = 1 or i =2, and so forth, whereas previously we required the first A—B
reaction and the second A—B reaction and the third A—B reaction, etc.

As the branching coefficient gives the probability of a chain segment being capped by potential
branch points, the above development describes this situation:

a = Z rpzpppm — mi" (10.2.2)
i:0

The summation applies only to the quantity in brackets, since it alone involves i. Representing the
bracketed quantity by Q, we note that 2:0 Q = 1 /(1 — Q) (see Appendix) and therefore

r10290, 2 1 _ rpm _ p) (10.2.3)

10.2.2 Gel Point

We have now completed the first (and harder) stage of the problem we set out to consider: we
know the probability that a chain is capped at both ends by potential branch points. The second
stage of the derivation considers the reaction between these chain ends via the remaining f—1
reactive A groups. (By hypothesis, the mixture contains an excess of B groups, so there are still
unreacted BB monomers or other polymer chain segments with terminal B groups that can react
with the Afn 1 groups we have been considering.) By analogy with the discussion of the gel point in
Section 10.1, we ask the question: if we choose an Af group at random, and follow this chain to
another Af group, what is the probability that we can continue in this fashion forever? If this
probability exceeds 1, we have a network, and the gel point corresponds to when it equals 1. The
probability of there being a strand, that is, a chain segment between two junctions, is a. When
we arrive at the next Af, there are f— 1 chances to connect to a new strand and the probability of
there being a strand from any particular one of the f—1 groups is again 0:. Thus the total
probability of keeping going from each Af is just (f— l)cr. If we want to connect x strands in
sequence, the probability that we can is [(f— 1)a]x. Just as in the argument preceding Equation
10.1.1, therefore, the critical extent of reaction is simply given by

a, =fl (10.2.4)

which can be compared directly with Equation 10.1.1. Whenever the extent of reaction, p, is such
that a > are, gelation is predicted to occur. Combining Equation 10.2.3 and Equation 10.2.4 and
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rearranging gives the critical extent of reaction for gelation, pC as a function of the properties of the
monomer mixture r, p, and f:

1
Po _

x/r+rp(f—2)

Corresponding equations for any of the reaction schemes depicted in Figure 10.4 can be derived in
a similar fashion (see Problem 3 for an example).

Equation 10.2.5 is of considerable practical utility in view of the commercial importance of
three-dimensional polymer networks. Some reactions of this sort are carried out on a very large
scale: imagine the consequences of having a polymer preparation solidify in a large and expensive
reaction vessel because the polymerization reaction went a little too far. Considering this kind of
application, we might actually be relieved to know that Equation 10.2.5 errs in the direction of
underestimating the extent of reaction at gelation. This comes about because some reactions of the
multifunctional branch points result in intramolecular loops, which are wasted as far as network
formation is concerned; the same comment applies to Equation 10.1.1. It is also not uncommon
that the reactivity of the functional groups within one multifunctional monomer decreases with
increasing p, which tends to favor the formation of linear structures over the branched ones.

As an example of the quantitative testing of Equation 10.2.5, consider the polymerization of
diethylene glycol (BB) with adipic acid (AA) in the presence of 1,2,3-propane tricarboxylic acid
(A3). The critical value of the branching coefficient is 0.50 for this system by Equation 10.2.4. For
an experiment in which r = 0.800 and p = 0.375, )9C 2 0.953 by Equation 10.2.5. The critical extent
of reaction was found experimentally to be 0.9907, determined in the polymerizing mixture as the
point where bubbles fail to rise through it. Calculating back from Equation 10.2.3, the experimental
value of pC is consistent with the value ac = 0.578, instead of the theoretical value of 0.50.

(10.2.5)

10.2.3 Molecular-Weight Averages

It is apparent that numerous other special systems or effects could be considered to either broaden
the range or improve the applicability of the derivation presented. Our interest, however, is in
illustrating concepts rather than exhaustively exploring all possible cases, so we shall not pursue
the matter of the gel point further here. Instead, we conclude this section with a brief examination
of the molecular-weight averages in the system generated from AA, BB, and Af. For simplicity, we
restrict our attention to the case of 12% : 12%. It is useful to define the average functionality of a
monomer (f) as

Znsfs
(f) E

Zn.-

where n, and f,- are the number of molecules and the functionality of the ith component in the
reaction mixture, respectively. The summations are over all monomers. If n is the total number of
molecules present at the extent of reaction )9 and no is the total number of molecules present
initially, then 2(n0 — n) is the number of functional groups that have reacted and (f)no is the total
number of groups initially present. Two conclusions immediately follow from these concepts:

(10.2.6)

Nn = @ (10.2.7)
11

where ND is the number-average degree of polymerization, and

2 _
p 2 (”0 ’1) (10.2.8)

(f>110
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Elimination of n between these expressions gives
2N” 2 -—p(f)

(10.2.9)

This result is known as the Carothers equation [4]. It is apparent that this expression reduces to
Equation 2.2.4 for the case of (f) = 2, that is, the result for the most probable distribution in
polycondensation reactions considered in Chapter 2. Furthermore, when (f) exceeds 2, as in the
AA/BB/Af mixture under consideration, then Nn is increased over the value obtained at the same
p for (f) :2 2. A numerical example will help clarify these relationships.

Example 10.2
An AA, BB, and A3 polymerization mixture is prepared in which v51 : 12% z: 3.00 mol, with 10%
of the A groups contributed by A3. Use Equation 10.2.9 to calculate Nn for p =0.970 and p for
Nn=200. In each case, compare the results with what would be obtained if no multifunctional
A were present.

Solution
Determine the average functionality of the mixture. The total number of functional groups is 6.00
mol, but the total number of molecules initially present must be determined. Using
3nAAA +2nAA 23.00 and 3nAAA/3 : 0.100, We ld that ”AA=1°350 and ”AAA=0°1000° Since

nBB = 1.500 the total number of moles initially present is no 2 1.350+ 0.100+ 1.500 = 2.950:

_ 3(0. 100) + 2(1.350) + 2(1.500)
(f)

2.950
=2.034

Solving Equation 10.2.9 with p = 0.970 and (f) = 2.034:

Nn
2

73.8: 2 — 0.970.034) :

For comparison, solve Equation 10.2.9 with p = 0.970 and (f) = 2:

‘1—p"1—0.97"Nn 33.3

Solve Equation 10.2.9 with ND 2 200 and (f) = 2.034:

_ 2(1 — 1 /N.,) _ 2(0.995)"
(f)

“‘
2.034

= 0.978

Solve Equation 10.2.9 with Nn = 200 and (f) = 2:

1 1P ( N.) ( zoo)
These results demonstrate how for a fixed extent of reaction, the presence of multifunctional
monomers in an equimolar mixture of reactive groups increases the degree of polymerization.
Conversely, for the same mixture a lesser extent of reaction is needed to reach a specific Nlrl with
multifunctional reactants than without them. Remember that this entire approach is developed for
the case of stoichiometric balance. If the numbers of functional groups are unequal, this effect
works in opposition to the multifunctional groups.

The Carothers approach, as described above, is limited to the number-average degree of
polymerization and gives no information concerning the breadth of the distribution. A statistical
approach to the degree of polymerization yields expressions for both NW and N“. Ref. [4] contains a
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derivation of these quantities for the self—polymerization of Af monomers. Although this specific
system might appear to be very different from the one we have considered, the essential aspects of
the two different averaging procedures are applicable to the system we have considered as well.
The results obtained for the Af case are

2
Nn —

2 _ af
(10.2.10)

and

1+ (.1:
NW : —._——_—__.. . .

l-—~a(f—l)
(10211)

from which it follows that

NW 1 + 1 _ 2—- :(
a)( af/ ) (10.2.12)Nn 1—a(f——1)

The value of a to be used in these expressions is given by Equation 10.2.3 for the specific mixture
under consideration. At the gel point ac=1/( f— 1) according to Equation 10.2.4, and thus
Equation 10.2.11 predicts that NW becomes infinite, whereas N” remains finite. This is a very
important point. It emphasizes that in addition to the network molecule, or gel fraction, of
essentially infinite molecular weight, there are still many other molecules present at the gel
point, the sol fraction. The ratio Nw/Nn also indicates a divergence of the polydispersity as
a —>ac. Expressions have also been developed to describe the distribution of molecules in the
sol fraction beyond the gel point. We conclude this discussion with an example that illustrates
application of some of these concepts to a common household product.

Example 10.3
The chemistry underlying an epoxy adhesive is illustrated in Figure 10.5. An excess of epichloro—
hydrin is reacted with a diol to form a linear prepolymer, terminated at each end with epoxide

OH oO
O , __

n k0! + (n — 1)HO/R‘OH —O-H-+ MO‘R’DNEHH’IOf + n HCl
Prepolymer

Prepolymer m N
+ OH OH___)...

N_Rn_N

H”
OH OH

HEN/ \NHZ

Fl’ = O O Bisphenol A

R”: 4,4'-Methylene dianiline

Figure 10.5 Illustration of an epoxy formulation. A prepolymer, formed by base-catalyzed Condensation
of an excess of epichlorohydrin with bisphenol A, is cured by cross-linking with 4,4’-methylene dianiline.
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rings. For the example in Figure 10.5, the diol is based on bisphenol A. The prepolymer is then
reacted (cured) with a multifunctional anhydride or amine (methyl dianiline in the figure) to form a
highly cross-linked material. Adapt the analysis in the preceding section to find the gel point for
this system, assuming that the two compounds are mixed in the weight ratio 1:10 diamine to
prepolymer and that the prepolymer has n = 4 (see Figure 10.5). Then interpret the statement found
in the instructions for a typical “two—part” epoxy that “the bond will set in 5 minutes, but that full
strength will not be achieved until 6 hours.”

Solution
Following the reaction scheme in Figure 10.5, the prepolymer has functionality 2 whereas the
diamine has functionality f: 4, so we will call the epoxide group “B” and the diamine A4. We
now need to find out which group is in excess, that is, to calculate the ratio r. The molecular weight
of the diamine is 198 g/mol and that of the prepolymer is 914 g/mol. If we mix 1 g of the diamine
with 10 g of the prepolymer we have a molar ratio of (1/198):(10/914) or 000505200109. As there
are four A groups per diamine and two B groups per prepolymer, the final ratio of A:B groups is
0.0101:0.0109 or 0.93:1. Thus the A group is limiting the reaction, albeit only just.

From Equation 10.2.1 we can see that p = l, as all the A group are in A4 units. This also makes
the development of the branching coefficient quite simple, as every chain between two A4 groups
contains one and only one prepolymer (BB) unit. The addition of the first BB to an A4 group takes
place with probability p, and the addition of the subsequent A4 has probability rp. Thus a = rpz,
which we could also obtain from Equation 10.2.3 after inserting p: l. The critical extent of
reaction corresponds to are : 1/3 from Equation 10.2.4, and from Equation 10.2.5 we have

— 1 N 0 6PC
x/3—r

N -

We can interpret the time for the bond to set as a time when the gel point is consistently exceeded,
perhaps p m 0.7, so that the adhesive has solidified. The time to develop full mechanical strength
reflects the time required for p to approach 1.

10.3 Elastic Deformation

For the remainder of this chapter we will emphasize elastomers rather than thermosets, and our
primary focus will be the elasticity of such network materials. The various elastic phenomena we
discuss in this chapter will be developed in stages. We begin with the simplest case: a sample that
displays a purely elastic response when deformed by simple elongation. On the basis of Hooke’s
law, we expect that the force of defonnation—related to the stress—and the distortion that
results—related to the strain—will be directly proportional, at least for small deformations. In
addition, the energy spent to produce the deformation is recoverable: the material snaps back when
the force is released. We are interested in the molecular origin of this property for polymeric
materials but, before we can get to that, we need to define the variables more precisely. One
cautionary note is appropriate here. A full description of the elastic response of materials requires
tensors, but we will avoid this complication by emphasizing one kind of deformation—uniaxial
extension—and touching on another, shear.

A quantitative formulation of Hooke’s law is facilitated by considering the rectangular sample
shown in Figure 10.6a. If a force f is applied to the face of area A, the original length of the block
L0 will be increased by AL. Now consider the following variations:

1. Imagine subdividing the block into two portions perpendicular to the direction of the force, as
shown in Figure 10.6b. Each slice experiences the same force as before, and the same net
deformation results. A deformation AL/2 is associated with a slice of length L0/2. The same
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Figure 10.6 (a) A forcef applied to area A extends the length of the sample from L0 by an amount AL. Parts
(b) and (0) illustrate the argument that f/A N AL/LO.

argument could be applied for any number of slices; hence it is the quantity AL/Lo that is
proportional to the force.
Imagine subdividing the face of the block into two portions of area A/2. A force only half as
large would be required for each face to produce the same net distortion. The same argument
could be applied for any degree of subdivision; hence it is the quantity f/A that is proportional
to AL/LO.
The force per unit area along the axis of the deformation is called the uniaxial tension or stress.
We shall use the symbol 0‘ as a shorthand replacement for f/A and attach the subscript t to
signify tension; we will use 0' for the shear stress, as in Chapter 9 and Chapter 11. The
elongation expressed as a fraction of the original length, AL/LO, is called the strain. We shall
use a as the symbol for the resulting extensional strain to distinguish it from the shear strain (7)
also discussed in Chapter 9 and Chapter 11.

With these considerations in mind, we write

AL0, 2E8 25(3) (10.3.1)
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where the proportionally constant E is called the tensile modulus or Young’s modulus. Remember,
it will be different for different substances and for a given substance at different temperatures,
Since 8 is dimensionless, E has the same units as f/A, namely, force/lengthz, or N/m2(Pa) in the SI
system. Note that for Equation 103.1 to be useful as a definition of E, the strain must be
sufficiently small so that the stress remains proportional to the strain.

There is another aspect of tensile deformation to be considered. The application of a distorting
force not only stretches a sample, but also causes the sample to contract at right angles to the
stretch. If d and I: represent the width and height of area A in Figure 10.6, both contract by the same
fraction, a fraction that is related to the strain in the following way:

__=__..=,,_=pg (10.3.2)

where the minus signs indicate that Ad and Ah are negative when AL is positive. The constant p is
an important property of a material called Poisson’s ratio; it may also be written as

l 1 dV

where V is the volume of the sample (see Problem 9). Thus, if the volume does not change on
elongation, the factional contraction in each of the perpendicular directions is half the fractional
increase in length and V: 0.5. In general two parameters, for example E and v, are required to
describe the response of a sample to tensile force. Poisson’s ratio also provides a means to relate E
to the shear modulus, G, and the compressional modulus, K:

02(1 + v) = E (10.3.4a)
K3(1 — 2v) = E (10.3.4b)

For isotrOpic materials such as those we are considering in this chapter, the small strain elastic
response can therefore be described by any two of the parameters of E, G, K, and v. For elastomers,
where the volume change on deformation tends to be very small, v z 0.5 and E m 30. For example,
polyisoprene has v = 0.4999, so this approximation is excellent; in contrast, for metals, 1) typically
lies between 0.25 and 0.35.

10.4 Thermodynamics of Elasticity
It is not particularly difficult to introduce thermodynamic concepts into a discussion of elasticity.
We shall not explore all of the implications of this development, but shall proceed only to the point
of establishing the connection between elasticity and entr0py. Then in the next section we shall go
from macrosc0pic thermodynamics to statistical thermodynamics, in pursuit of a molecular model
to describe the elastic response of cross—linked networks.

10.4.1 Equation of State

We begin by remembering the mechanical definition of work and apply that definition to the
stretching process of Figure 10.6. Using the notation of Figure 10.6, we can write the increment of
elastic work associated with an increment in elongation dL as

dw =d (10.4.1)
It is necessary to establish some conventions conceming signs before proceeding further. When the
applied force is a tensile force and the distortion is one of stretching, f, dL and dw are all defined to
be positive quantities. Thus dw is positive when elastic work is done on the system. The work done
by the sample when the elastomer snaps back to its original size is a negative quantity.
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The first law of thermodynamics defines the change dU in the internal energy of a system as the
sum of the heat absorbed by the system, dq, plus the work done on the system, dw:

dU=dq+mv 0043
The element of work is generally written —p dV, where p is the external pressure, but with the
possibility of an elastic contribution, it is —p dV —l— fdL. With this substitution, Equation 10.4.2
becomes

fl7=dqmpdV+d 0043
A consistent sign convention has been applied to the pressurewvolume work term: a positive dV
corresponds to an expanded system, and work is done by the system to push back the surrounding
atmosphere.

The second law of thermodynamics gives the change in entrOpy associated with the isothermal,
reversible absorption of an element of heat dq as

M24- 144dS T (0 )

This relationship can be used to replace dq by TdS in Equation 10.4.3, since the infinitesimal
increments implied by the differentials mean that the system is only slightly disturbed from
equilibrium and the process is therefore reversible:

dUzTfi—pflWffl. (was
We now turn to the Gibbs free energy G (recall the treatment of mixtures in Chapter 7)
defined as

G = H — TS (10.4.6)

where the enthalpy

H = U +pV (10.4.7)

Combining the last two results and taking the derivative gives

dG=dU+pdV+Vdp—TdS—SdT (10.4.8)

Comparing Equation 10.4.8 with Equation 10.4.5 enables us to replace several of these terms
by f dL

dG=V®—Sfl%ffl; (mam
thus establishing the desired connection between the stretching experiment and thermodynamics.

Since G is a state variable and forms exact differentials, an alternative expression for dG is

8G 66 8Gd6 = (—) dp + (——) dT + (——) dL (10.4.10)
6p T,L 6T p,L 8L [3,1,

Comparing Equation 10.4.10 and Equation 10.4.9 enables us to write

86f = (_.) (10.4.11)
6L p,T

Note this is the same derivation that yields the important results V 2 (80/6187 and S = _. (80/87)},
when no elastic work is considered; these will arise in the discussion of the glass transition in
Chapter 12.
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We differentiate Equation 10.4.6 with respect to L, keeping p and T constant:

6G) (8H) (83)
__ : __ ——T _ (10.4.12)

(3L p,T 3L p,T 8L ptT

The left-hand side of this equation gives f according to Equation 10.4.11; therefore

8H 63f _.—_ (_) —- T(——) (10.4.13)
8L PtT 6L p,T

This expression is sometimes called the equation of state for an elastomer, by analogy to

3U 83_ = _ _ :r __ 10.4.” (at/L (at/l ( 14)
the thermodynamic equation of state for a fluid. Note the parallel roles played by length and
volume in these two expressions.

10.4.2 Ideal Elastomers

Equation 10.4.12 shows that the force required to stretch a sample can be broken into two
contributions: one that measures how the enthalpy of the sample changes with elongation and
one that measures the same effect on entropy. The pressure of a system also reflects two parallel
contributions, except that the coefficients are associated with volume changes. It will help to
pursue the analogy with a gas a bit further. For an ideal gas, the molecules are noninteracting and
so it makes no difference how far apart they are. Therefore, for an ideal gas («BU/3107: 0 and the
thermodynamic equation of state becomes

as_p _ _T
(5)7 (10.4.15)

By analogy, an ideal elastomer is defined as one for which («WI/amp}: 0; in this case Equation
10.4.13 reduces to

(93
f 2

—T(—)
(10.4.16)

3L p,T

Although defined by analogy to an ideal gas, the justification for setting (are/amp; = 0 cannot
be the same for an elastomer as for an ideal gas. All molecules attract one another and this
attraction is not negligible in condensed phases (recall the cohesive energy density in Chapter 7).
What the ideality condition requires in an elastomer is that there is no change in the enthalpy of the
sample as a result of the stretching process. This has two implications. On the one hand, the
average energy of interaction between different molecules cannot change. For a given material this
intermolecular contribution is determined primarily by the density, and therefore for a deformation
that does not change the volume it may be a good approximation. The intramolecular contribution
arises from the conformational energy of each chain, which is determined by the relative popula—
tion of trans and gauche conformers (recall Chapter 6). In fact, moderate changes in the end-to-end
distance of a chain can be accomplished with the expenditure of relatively little energy. For large
deformations, or for networks with strong interactions—say, hydrogen bonds instead of dispersion
forces—the approximation of an ideal elastomer may be very poor. There is certainly an enthalpy
change associated with crystallization (see Chapter 13), so (are/amp; would not vanish if
stretching induced crystal formation (which can occur, e.g., in natural rubber).

We have presented this development of the ideal elastomer in terms of the Gibbs free energy,
which is generally the most appropriate for processes of importance in chemistry: p and T (and
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number of moles) are the natural independent variables. However, in the majority of texts the
Helmholtz free energy, A: U —— TS is employed, so it is worthwhile to take a moment and
compare the answers. For an experiment at constant temperature, we can write

d4 = dU — TdS (10.4.17)
which may then be compared to Equation 10.4.5 to yield

dA =d—pdV (10.4.18)
L

At both constant temperature and constant volume, therefore,

3A 6U BS
f #

(Elm/E (”é—Elm
—

T(i)r,v
(104.19)

and the criterion for an ideal elastomer becomes (8U/8L)T,V=0. Because the volume changes on
elastomer deformation are typically so small, a deformation carried out at constant T and p is very
close to one done at constant T and V.

10.4.3 Some Experiments on Real Rubbers

Before proceeding to the statistical theory of rubber elasticity, it is instructive to examine some of
the classical experiments conducted on rubbers. An example is shown in Figure 10.7, where the
tensile stress (proportional tof) was measured as a function of temperature at the indicated constant
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Figure 10.7 Stress at a constant length for natural rubber, at the indicated elongations, as a function of
temperature. Thermoelastic inversion occurs below about 10% elongation. (Data from Anthony, R.L., Caston,
R.H., and Guth, E., J. Phys. Chem, 46, 826, 1942. With permission.)
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length. These data show an interesting feature, known as thermoelastic inversion, whereby at
elongations below about 10%, the stress decreases with temperature, in contrast to the larger strain
behavior. As we are anticipating that the elasticity is primarily due to entropy, we expect the force
to increase with temperature. The reason for the behavior at small elongation is actually quite
simple; it is due to thermal expansion. The unstrained length increases with temperature due to
expansion and thus the actual strain at fixed length decreases with increased temperature and
consequently the force decreases. Thus the thermoelastic inversion can be eliminated by comparing
the data at constant strain.

This kind of thermoelastic data can be further analyzed in terms of the thermodynamic
contributions. From Equation 10.4.19 we can write

3
8f _ as

(0—2");
_

(0—1.), (10.4.20)

and

6U .2 6f
(67); f

_
4671 (10.4.21)

These expressions are useful because they permit extraction of information about S and U from
the measured behavior off. Figure 10.8a shows data forf versus elongation and the decomposition
into an entropic and an internal energy contribution, following Equation 10.4.20 and Equation
10.4.21. Clearly at large elongation, the entropic part of the force dominates, but at low elongations
the internal energy contribution is larger. Again, however, this effect is largely eliminated by
plotting the data at constant strain, as shown in Figure 10.8b. These results and many others
confirm, to a good approximation, that there is only a modest internal energy contribution to the
force for a deformation at constant volume.

One further example of a “model—free” thermodynamic interpretation of rubber elasticity is
given by the temperature increase observed in adiabatic extension of a rubber band. This underlies
the standard classroom demonstration of the entropic origin of rubber elasticity, whereby a rubber
band is rapidly extended and placed in contact with a (highly temperature-sensitive) upper lip. This
kind of experiment goes back at least as far as Gough [5] and Joule [6], and some of Joule’s data
are shown in Figure 10.9 along with some from James and Guth [7]. At low extensions,
the temperature actually decreases slightly, but then increases steadily. The interpretation of the
experiment is as follows. In the adiabatic extension of an ideal elastomer, the work done on
the sample is retained entirely as heat; there is a loss of entropy but no change of internal energy
and dc]: ~dw. The work is given by Equation 10.4.1 and the heat by Equation 10.4.4; therefore
the temperature change is

L
1 T asAT 2

a: dL = Fir—J (a) dL (10.4.22)

where CL is the appropriate heat capacity at constant length. As in the previous examples, the
negative change in temperature at small extensions is due to the positive entrOpy of deformation,
that is, it corresponds to the thermoelastic inversion.

10.5 Statistical Mechanical Theory of Rubber Elasticity: Ideal Case
We now proceed to use a molecular model to derive predictions for the stress—strain behavior of an
ideal elastomer. In the subsequent section, we will consider various nonidealities that could occur
in a real material, but even granted the existence of some or all of these nonidealities, the
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Figure 10.8 Stress versus elongation for natural rubber, resolved into internal energy and entropic contri—
butions, at (a) constant temperature and (b) constant strain. (Data from Anthony, R.L., Caston, RH, and
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Figure 10.9 Temperature change during adiabatic extension of natural rubber. (Data from Joule, J.P., Phil.
Trans. R. 506., 149, 91, 1859; James HM. and Guth, E., J. Chem Phys, 11, 455, 1943; 15, 669, 1947.) (From
Treloar, L.R.G., The Physics ofRubber Elasticity, 3rd ed., Clarendon Press, Oxford, 1975. With permission.)

qualitative success of the ideal model is really a remarkable triumph of statistical mechanics. We
have already considered the most famous equation of state, that of the ideal gas. That simple result
is illuminating, but only describes the behavior of very dilute gases with any reliability and dilute
gases are of limited significance from the point of view of materials science. In contrast, the ideal
elastomer equations will provide a reasonable description of a practically important, but extremely
complex, amorphous condensed phase, even though the derivation is not appreciably more
elaborate than that for the ideal gas. We will begin by considering the force required to extend a
single Gaussian chain, an example that already arose in the context of chain swelling in Section 7.7
and that will resurface in the bead—spring model of viscoelasticity in Section 11.4. Then we will
apply this result to an entire ensemble of cross-linked chains.

10.5.1 Force to Extend a Gaussian Chain

Since entr0py plays the determining role in the elasticity of an ideal elastomer, let us review some
ideas about this important thermodynamic variable. We used a probabilistic interpretation of
entr0py extensively in Chapter 7 to formulate the entropy of mixing. The starting point was the
Boltzmann relation:

S=kln0 (10.5.1)

where k is Boltzmann’s constant and 0. is the number of possible states. As then, the difference in
entropy between two states of different thermodynamic probability is

as = s; — s, = kln (93) (10.5.2)
01

so that AS is positive when 02 > 01 and negative when 02 < 0.1.
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In the previous section, we identified the force of extension with the associated change in free
energy (Equation 10.4.11 or Equation 10.4.19). Then, if the change in free energy is entirely due to
the entropy, the material is an ideal elastomer. Figure 10.8 provides an example of how reasonable
this assumption is for a material; now we apply it to one chain. Consider extending a single
Gaussian chain of N units, with statistical segment length b (recall Section 6.3). The chain has one
end fixed at the origin (0,0,0) and the other is held in the infinitesimal cube between (x0, yo, 20)
and (x0+dx0, y0+ dyo, 20+ dzo), as shown in Figure 10.10. The imposed end—to-end distance
is ho: (x0 —I- yo + 20)] (2, which may be compared to the equilibrium mean square end-toend
distance (112): N192. The number of ways that this chain can satisfy the imposed constraint is given
by the Gaussian distribution (recall Equation 6.7.1):

3
3/2

3’13<>war—1
= B3/ZeXP[-w{3h8] (10.5.3)

where we define the normalization factor, 6 as

3 _ 3
277012)

_
271'sB E (10.5.4)

‘6' ’9and the subscriptr on P denotes the “initial” state. We then extend the chain to a new end-to—
end distance, 11, with coordinates between (x, y, z) and (x + dx, y + dy, z + dz). The corre3ponding
“final” state distribution function Pf is

Pfav, Z) = [33/2 exp [43112] (10.55)
We now associate the number of possible conformations with the entropy defined by Equation
10.5.1, that is, we take .QzAP, with A as some unspecified proportionality constant. Then we
can say

i

PAscham : klnAPf— klnAP—_ kln (Pf)
: —kw[3(h2 — 213) (10.5.6)
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Figure 10.10 Extension of a single Gaussian chain from initial end—to-end distance ho to final end-to—end
distance 11.



402 Networks, Gels, and Rubber Elasticity

where we use the subscript “chain” to emphasize that this is a single chain calculation. The unknown
constant A cancels out when we calculate the change in entropy. The force to extend the chain to h is
given by

_ aASchain _Ef__ _ (T) s
(’12)): (10.5.7)

This is a fundamental result, and one we will use extensively in modeling the viscoelastic
prOperties of polymer liquids in Chapter 11. Equation 10.5.7 indicates that a single Gaussian
chain behaves like a Hooke’s law spring, with force constant 3kT/ (112) and zero rest-length. Note
the interesting result that this spring will stiffen as T increases, in contrast to intuitive expectation
for a metal spring; this is a direct result of its entropic basis. Equation 10.5.7 contains most of the
physical concepts that are required to describe rubber elasticity from a molecular viewpoint.

10.5.2 Network of Gaussian Strands

We now consider an ideal network made up of Gaussian strands. If the cross-links were introduced to
a melt of Gaussian chains, for example, by vulcanization, it is plausible that the strands will be more
or less Gaussian as well. For simplicity, we will assume that all strands contain an identical number
of statistical segment lengths, NI; this simplification will subsequently be removed. We now impose
a macroscopic deformation on the network; for example, we might stretch it in the x direction.
However, to be more general, we describe the deformation by three extension ratios Ax, )1 y, and A,,
given by [ox/LO, Ly/LO, and Lz/LO, respectively. If we begin with a cube of material of length L0 on each
side, that cube will be deformed to a three-dimensional volume element with sides LI, Ly, and L2, as
shown in Figure 10.11. We assume that there is no volume change on deformation, and thus

V = LxLyLz 2 V0 : L8; AxAyAz : 1 (10"58)
This is a reasonable approximation for bulk elastomers, where Poisson’s ratio is nearly 0.5, but is
not appropriate, for example, when the network is swollen with solvent. The removal of this
assumption will be discussed in Section 10.7.

We now make a final, very important assumption, the so—called afline junction assumption:
each junction point moves in proportion to the macroscopic deformation. Consequently, the
end—to—end vector of each strand is deformed so that the coordinates of one end transform
x0 —>x=)txx0, yo —> y :Ayyo, 20 —:- z = A220, when we take the other end as the origin. We already
know the entropy change per strand associated with this process: it is simply the result for a single
chain, see Equation 10.5.6, applied to a single strand. Writing it out in more detail, we have

P
ASslrand : klnAPf — [CID/1P; = kln

(Ff)
: 477508 + y2 + 22) _ (4773018 + yci + 28))

wk 2N b2 (n1} — 1) + )3013 — 1) + 23,013 — 1)) (10.5.9)

A ,1
L0 LX L
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Figure 10.11 Deformation of a cube of material subjected to uniaxial elongation along x.
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We now note that on average x8 = Nxb2 /3, and the same for yo and 20, so that
k(Mama) 2 — 5(213 + A; + A: —- 3) (105.10)

In this rather simple result, N, does not appear, so the assumption of constant N,C was actually
not necessary. To obtain the total entrOpy change for the material, we simply need the number
of strands per unit volume. For our ideal network this is given by pNav M,, where M, is the
(number average) molecular weight between cross-links, but in anticipation of defects such as
dangling ends and loops in real networks, we will just define the total number of elastically
efifective strands, ve. The number of strands per unit volume is thus ve/V and the total entropy
change becomes

kas: —%(A§+A§+A§~3) (10.5.11)
This equation represents the principal result of this molecular network theory. We will now
consider a specific deformation to obtain expressions for the modulus, but the necessary manipu-
lations are all results of continuum elasticity theory and require no further assumptions about what
the molecules are doing.

10.5.3 Modulus of the Gaussian Network

We begin with a uniaxial extension, say along x, by a stretch ratio )1. Thus Ax =21, and by volume
conservation (see Equation 10.5.8) A), = )1, = 1 / x/X. Furthermore, 8 : A — 1. In this case, then

vk 2as: —i 212 —-—-3 105.12
2 ( +)t ) ( )

and the force is given by

6A5 T 6A5 elcT 1
fzm zit. _ 2” ,1__2 (10.5.13)

3L L0 8A L0 )1

Note that the force changes sign, as it should, when )1 = 1. If we now divide both sides by the cross—
section area normal to the stretching direction, LyLz = lag/A, we obtain the tensile stress:

at .fi _.f__ _ "f a HE
(12 -9 (105.14)“— area L5 ._ V

Alternatively, it is often experimentally more convenient to divide by the initial cross-sectional
area, Lg, which leads to the following result:

1a, = kTFVE (A — P) (105.15)

The stress given by Equation 10.5.14 is sometimes called the true stress to distinguish it from
the quantity given Equation 10.5.15, which is known as the engineering stress or the nominal
stress.

We can now obtain an expression for Young’s modulus, E, recalling Equation 10.3.1 (and that
(121 2 d8):

, act V6

E :l ———— = kT— 10.5.16
Al—I—Ti 6A

3
V

( )

Note that the same result is obtained if we use either the true stress or the engineering stress
because they coincide in the small strain limit.
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We finally obtain an expression for the shear modulus, G, using the approximate relation G : E/3
(Equation 10.3.4a):

p RTG : ”$3 ___ M (10.5.17)

where in the last step we have substituted the ideal value for ve/V in terms of the molecular weight
between cross-links, Mx. From these equations (Equation 10.5.14 through Equation 10.5.17) we
can extract some important conclusions:

1. The modulus increases with temperature, just as with the spring constant of a single chain, due
to its entropic origin.

2. The modulus increases as a function of cross-link density, because M, decreases; a “tighter”
network is “stiffer.”
The modulus is independent of the functionality of the cross-links.

4. The extensional stress is not a linear function of the strain, even though the individual network
strands are supposed to be Hookean. (In contrast, the shear stress turns out to be linear in the
strain, but we will not take the time to derive this relation.)

5. Assuming a density of 1 g/cm3 at room temperature, and M, = 10,000 g/mol, Equation 10.5.17
gives a modulus of 2.5 x 106 dyn/cmz, or 0.25 MPa. Typical values for elastomers fall within
an order of magnitude of this number.
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Figure 10.12 Stress for cross-linked natural rubber in compression and extension. (Data from Treloar,
L.R.G., Trans. Faraday 506., 40, 59, 1944. With permission.)
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An example of a test of the theory, and Equation 10.5.14 in particular, is shown in Figure 10.12.
Both extensional and compressive stresses were determined as a function of )1 for a piece of
vulcanized rubber. The agreement between experiment and theory is impressive, particularly in
compression. The same sample was subsequently extended up to its breaking point, near )1 $7.5,
and the results are shown in Figure 10.13. The data at low extension ratios were fit to the theory to
obtain the modulus of 0.39 MPa. The theory and the data are not in perfect agreement in this case;
the main difference is the sharp increase in experimental stress at high )1. This is primarily due to
the failure of the Gaussian assumption for large extensions; when the end-to-end distance becomes
an appreciable fraction of the contour length, the Gaussian distribution no longer applies. This
point will be considered again in the next section.
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Figure 10.13 Same sample as in Figure 10.12, but now subjected to simple extension and much larger
extension ratios (A). (Data from Treloar, L.R.G., Trans. Faraday Soc, 40, 59, 1944. With permission.)
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10.6 Further Developments in Rubber Elasticity
The deve10pment of a statistical thermodynamic approach to rubber elasticity in the previous
section involved a series of assumptions that could be questioned. In this section we touch briefly
on some of these and give an indication of how they might be addressed. To begin with, we recall
the central result of the theory (see Equation 10.5.11):

AS=—%’E()t§+)tj+)tf—3) (10.6.1)
from which the stress and modulus can be computed for any deformation. The main assumptions
invoked in the development and application of this equation are summarized below:

1. There is no change in internal energy, U, upon deformation at constant T and p.
. There is no change in volume, V, upon deformation at constant T and p.

3. The number of conformations available to the strands both before and after deformation is
given by a Gaussian distribution.

4. The number of conformations available to the strands before deformation is the same as for
equivalent chains in the uncross—linked state.

5. The junction points deform affinely with the macroscopic deformation.
6. The number of elastically effective strands per unit volume, ve/V, is given by pNav/Mx for a

perfect network.
'

It turns out that refinement or relaxation of almost any of these assumptions has generated
significant amounts of controversy over the years, and to address these issues thoroughly would
require an entire book. Accordingly, we will have to be content with a few examples.

10.6.1 Non-Gaussian Force Law

The approximate validity of the first two assumptions was suggested in the previous section and
the effects of deviations from these assumptions should be reasonably transparent. Accordingly,
except for the issue of solvent swelling, which will be taken up in the following section, we will not
consider these further. The third assumption is more interesting from a molecular point of view.
One violation of this assumption can be readily imagined: upon large extensions, say beyond 100%
(recall Figure 10.13), a strand may no longer be Gaussian. Clearly as we approach the limit of full
extension, when the end-to-end distance becomes a significant fraction of the contour length, the
Gaussian force law (Equation 10.5.7) will not apply. This problem has been addressed theoretically
and a reasonable solution is known. Specifically, Kuhn and Griin [8] showed that when a freely
jointed chain of N, links of length b is extended to an end-to-end distance 11, the distribution
function is not the familiar Gaussian, but rather

h BP Nx, 12 ——NJ. 1 , 10.6.2( )“exp( [Wm “(smhfim ( )
where the quantity B is the so-called inverse Langevin function, L _1(x):

B = L_1(h/Nxb) (10.6.3)
This formulation is not particularly transparent, but it turns out that the exponential in Equation
10.6.2 can be expanded as a power series in (h/Nxb) as follows:

3 h 2 9 h 4 99 h 6— — — — — 10.6.42 (Mb) +20 (Mb) +350 (N, > D ( )P(Nx, h) oc exp (—N,C
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Figure 10.14 Force versus extension for a Gaussian chain (first-term approximation) and for the full
inverse Langevin function.

from which we can see that the Gaussian result is just the first term in a series. When the argument
(h/Nxb) is small, the Gaussian function is adequate, but at large extensions Equation 10.6.4 is more
accurate. This result can be carried through the analysis of the previous section (see Equation
10.5.6 and Equation 10.5.7) to obtain the corresponding force law and the result is illustrated in
Figure 10.14. The main new feature is that for extensions such that (h/Nxb) > 0.4, the force
increases rather sharply. This is in excellent qualitative agreement with the data in Figure 10.13.
In fact, recent experiments have been able to measure the force of extension of single DNA
molecules and the inverse Langevin function provides a good account of the results (see Problem
12), so although this approach is mathematically unwieldy, it is successful.

A second difficulty with the Gaussian assumption arises from the inevitable distribution of
strand lengths. In the development leading up to Equation 10.5.10, we argued that because the
quantity N, cancels out of the final expression for AS, the assumption of monodisperse strands was
benign. In reality the cross-linking process, however it is carried out, will leave some distribution
of Nx. Consequently, the non-Gaussian character of the distribution function will become apparent
at different values of the macroscopic extension; shorter strands will sooner become more fully
stretched than longer ones. For example, an average strand begins with an unperturbed
11/!) = \/N_x, which is then stretched to Am. The smaller the Nx, the smaller the value of A
required for Am to approach Nx. This problem is much more difficult to deal with, not least
because of the difficulty in characterizing the distribution of Nx.

10.6.2 Front Factor

The fourth assumption above represents a reasonable simplification, but it need not hold, even for
rubbers lightly cross-linked in the melt state. Under some circumstances, such as cross-links
introduced while the material is under stress, it certainly would not apply. The first step in lifting
this assumption is to assume that in the undeformed state the elastomer is isotropic and the mean
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(6'?!
1 denotes initial. If we return to Equation 10.5.9,

,2, and the expression for the strand entropy
square strand length is (hi2), where the subscript
we would replace x3 = 3% = 28 with xi2 = y? = 2
(Equation 10.5.10) would be replaced by

k h-2
(Asstrand> = —

5
L12 (hi + A3 + A? —3) (10.65)< 3)

The ratio of mean square end-to-end distances in the undeformed network relative to that in a melt
of the same strands is known as the front factor. As it is a constant, it carries through the
subsequent development and therefore appears in the expressions for the stress and the modulus.

Alternatives to Assumption 5—that the junction points deform affinely with the macroscopic
strain—have also been pr0posed. In the most common approach only the junctions on the edges of
the material are so constrained; those in the bulk of the network are free to fluctuate about their
mean positions [7]. This model is sometimes referred to as the phantom network. This modification
cannot be applied to the entropy of a single strand, as in Equation 10.6.5, but must be applied to the
network as a whole. The result is a reduction in the net stress, which is determined by the number
of junctions, 12,; Equation 10.5.11 so modified becomes

2
as = —(u, — In); é—Z-gg (A3 +213, + 213- 3) (10.6.6)

Again, this new front factor is a constant and would carry through to the expressions for the stress
and the modulus. For the particular case of a regular network in which f strands emerge from
each junction, then 12,, = f/Z, and (12e — 12,) 2 ve(f— 2)/f. For a network made by vulcanization,
therefore, f=4 and this term is equal to 126/2.

10.6.3 Network Defects

Any real network will contain defects in the structure, as suggested at the beginning of the chapter.
These include loops, dangling ends, and the sol fraction. We have finessed this issue, in part, by
using the concept of elastically effective strands, 123, which suggests that the contribution from such
defects has been removed. However, it is not a straightforward matter to account for these in
practice. Consider two general approaches. By NMR spectroscopy, for example, we might monitor
the conversion of double bonds in a polydiene. From this information we could estimate M, and
thus 12,, by Assumption 6. But the NMR experiment could not tell us about loops or distinguish sol
fraction from gel fraction (and, in fact, for modest degrees of cross-linking it is hard to even
quantify that reliably). The next option is to measure the modulus itself and fit the results to the
model. But, because all of these various effects contribute proportionally to the modulus, there is
no easy way to resolve them from measurements on a single sample. In general, these three
particular kinds of defects are treated in the following way: (a) loops are ignored, (b) dangling ends
are corrected for, and (c) the conversion is high enough that the sol fraction is negligible, or it is
extracted before measurement. Under (b), the number of dangling ends can be estimated from M,,
because each prenetwork chain had two ends. Therefore each prenetwork chain will contribute two
dangling ends to the network, and the average length of these dangling ends will be M,.
Accordingly, the fraction of these dangling ends will be 2Mx/M, where M is the molecular weight
of the prenetwork chain and the number of effective strands may be estimated as

Ve pNav 2Mx—= — .6.7V M. (1 M j (.0 )
Another contribution to the modulus, the so-called trapped entanglement, although not strictly a

topological defect has been considered extensively. We will see in Section 11.6 that the visco—
elastic properties of high-molecular-weight polymers are dominated by the phenomenon of
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entanglement, which results from the intertwining of different chains. These entanglements act like
temporary cross-links, imparting a rubber-like modulus to the liquid at intermediate times, before
eventual relaxation and flow. By exploiting the expression for the shear modulus of an ideal
elastomer, Equation 10.5.17, a molecular weight between entanglements can be defined, Me. Now
imagine we have a high-molecular-weight melt, with M >> Me, and we cross-link it enough to
produce a network. (Recall from Equation 10.1.1 that we only need a few cross—links, eel/N, to
pass the gel point.) At this stage the modulus must be about the same, or perhaps slightly higher
than it was before cross—linking, but Mx >> Me. In other words, we expect a modulus of about pRT/Me,
but the theory of rubber elasticity says it should be only pRT/Mx. Therefore these entanglements
contribute to the modulus, but they are trapped; full stress relaxation, or flow, is eliminated by
the cross-linking. Thus at low degrees of cross-linking, trapped entanglements should make
the experimental modulus larger than expected by ideal elastomer theory. As the degree of
cross-linking goes up, so that M, <Me, then this contribution should become progressively less
important. A variety of approaches have been taken to this issue, all of which have the general
effect just described; for example, the modulus could be expressed as

G : Gnetwork ‘i— XGentangIements : pRT (‘1— + Xi) (106-8)
MA? MB

where x is just a parameter between 0 and 1, depending on the degree to which the entanglements are
effective as cross-links. However, it is likely that the importance of this effect varies with extension as
well. For example, imagine that the cross-linking process has created a “loose knot”: two different
strands are irreversibly intertwined, but not influencing each other very much. At low degrees of
extension, this constraint on the strand conformations plays no particular role, but as the deformation
increases, the “knot” might be pulled tight. This would have the effect of increasing the number of
cross-links with deformation, and therefore act in the same direction as the non-Gaussian force law.

10.6.4 Mooney—Rivlin Equation

The preceding discussion of modifications to the ideal elastomer theory has emphasized additional
molecular contributions and particularly ones that modify the prefactor. Following Equation
10.5.15, we may represent the tensile stress from these models as

1at : 2C1 (A
_

X5) (10.6.9)
where the prefactor, now labeled “2C 1,” is given by

f~ 202,2)
pRT<1_ 2M.)

2C1 : ——
M (10.6.10)f (’13) M1

where we have incorporated the modifications discussed above. Before the development of the
statistical theory, however, Mooney and Rivlin [9] used continuum arguments to propose that

1 1 2c2 1at = 2010 — F) + 2C2<1— F) 2 (”1+7”) (A — 21—2) 00-6-10

where C1 and C2 are unknown parameters of the material, but not functions of the deformation.
The first term in this Mooney—Rivlin equation, therefore, has exactly the form of the statistical
theory, and the second term can be viewed as a correction. The second form of Equation 10.6.11
suggests plotting the following quantity versus 1//\:

“I : 2c1+Q (10.6.12)

m
)1
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Figure 10.15 A “Mooney plot” for various rubbers in simple extension. (Data from Gumbrell, S.M.,
Mullins, L., and Rivlin, R.S., Trans. Faraday 506., 49, 1495, 1953. With permission.)

which should give a straight line with intercept 2C 1 and slope 2C2. Adherence to the ideal theory
should give a horizontal line. Examples from a variety of rubbers are shown in Figure 10.15;
clearly Equation 10.6.12 gives a good description of the data, with nonzero values of C2. There are
other cases, however, such as swollen rubbers or networks prepared by cross—linking in solution,
where C2 :50. A convincing and generally applicable molecular explanation for C2 has proven
elusive. Furthermore, for some materials the values of C2 are even found to depend on the kind of
experimental deformation employed, which suggests that Equation 10.6.11 is not the universally
correct functional form.

10.7 Swelling of Gels
One of the distinguishing features of a lightly cross-linked polymer material is its ability to imbibe
and retain a large volume of solvent. Examples include:

1. Hot melt adhesives. In this family of adhesives, the glue is applied as a liquid at high
temperature and solidifies upon cooling. A typical formulation could include about 30% of
a “thermoplastic elastomer,” a styrene—isoprene—styrene triblock copolymer. At low temper-
atures, the styrene segments segregate from the isoprene blocks to form roughly spherical
styrene aggregates that act as cross-links. At high temperatures, however, the segregation
is disrupted and the polymer flows. The remaining 70% of the material consists of low-
molecular-weight species, largely to dilute the isoprene segments and make the resulting gel
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softer, but also in part to plasticize the styrene domains and lower their glass transition
temperature (see Section 12.6).

2. Soft contact lenses. Soft contact lenses are an example of a hydrogel—a network in which the
polymer is either water soluble or at least water compatible. The original soft contact lenses
were made largely from cross-linked poly(hydroxyethyl methacrylate), and were developed in
the late 19603.

3. Diapers. Clearly, the major function of a diaper material is to imbibe and retain a large
quantity of aqueous solution, without dissolving. Diaper materials can absorb up to several
hundred times their own weight. A typical ingredient is poly(acrylic acid) or (sodium poly-
acrylate). In this instance the network strands bear charged groups, which have the effect of
greatly increasing the osmotic drive for water to enter the polymer and swell it.

4. Biological tissue. Much of biological tissue is essentially network material, although of course
very complex. For example, in the “extra cellular matrix” collagen molecules intertwine in
triple helices, which in turn aggregate to form fibrils, which in turn cross—link with the
assistance of certain proteins to form three-dimensional gels.

Clearly, swollen networks are of fundamental importance in many areas of materials and
biological science. In this section we will briefly address two aspects of the swelling phenomenon.
First, we consider how the expression for the modulus of an ideal elastomer changes when solvent
is incorporated. Then we consider swelling equilibrium; how much solvent can a network take up?

10.7.1 Modulus of a Swollen Rubber

We begin with a network formed at volume V0 and then swollen with solvent to a new volume V.
The volume fraction of polymer in the resulting gel is 9152—— VO/V (assuming additivity of volumes).
We assume that the swelling1s isotrOpic, so that the x, y, and 2 components of the end-to-end vector
of each strand are increased by a factor of (V/V0)l/3 =qb-l/3. We will reference the deformation of
the already

2swollen
network to the isotrOpically swollen dimensions so that the reference state

terms (to, yo, and 20) in Equation 10.5.9 should each be multiplied by a factor of qb;2/./3 Thus
Equation 10.5.11 describing the entrOpy of deformation becomes

AS Ice—”3()12 +21; +213 — 3) (10.7.1)
(The same result could be obtained by taking the front factor of Equation 10.6.5, (h2) / (ho2 ), and
realizing that (h2')13 increased by the same factor of Q5;23/ .) Now let us apply an elongation along
the x direction, so )1 =)1, and )1y ——)1 ——,1/\/X and compute the force as in Equation 10.5.13:

3A5 T 3A5 VekT _2/3 1= —T — — = )1 — — 10.7.2f ( )3L:L, ( a1 ) L, 2 )1? ( )

where now LS refers to the swollen but unstrained network. To compute the stress, again referenced
to the swollen but otherwise undeformed network, we divide by LE, recognizing that L3 = V,
110'; V0.

_f_ —2/3 1

_—kT—”291.1:(1 —/§) (10.7.3)I
Comparing this result with Equation 10.5.

115,
the main result of swelling is that the stress in the

swollen network18 reduced by a factor of d12/300mpared to the original network, and the modulus
is reduced by the same factor when computed for constant cross-sectional area.
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10.7.2 Swelling Equilibrium

Now we address the question of how much solvent a network can take up. Imagine we have a piece of
lightly cross-linked polymer and we immerse it in a beaker of solvent. We have actually considered a
very similar situation before. In Section 7.7 we treated a single polymer coil as an osmotic pressure
experiment and saw how the good solvent exponent, 12: 3/5, could be obtained from balancing the
osmotic swelling of the coil (the solvent wants to dilute the monomers) and elastic resistance to swelling
(loss ofconformational entropy as the chain stretches out). Essentially the same balance will occur here.
The chemical potential gradient will drive solvent into the piece of network, but the elasticity of the
network will resist unlimited deformation. A state of swelling equilibrium will be reached, from which
it is possible to determine both X and the average molecular weight between cross—links.

The earliest theory of swelling equilibrium was that of Flory and Rehner [10], and we will now
rederive their main result. We begin by considering the free energy of the swollen network to be
composed of two parts, one due to the mixing of solvent and polymer and the other due to
distortion of the network:

AG : AGm + 06,, (10.7.4)
The former part can be represented by the Flory—~Huggins theory expression (Equation 7.3.13), but
with the network contributing no entropy of mixing (N —> oo):

AGm : RT{n11nqb1 + mag} (10.7.5)
In this case X represents a combination of interaction energies between solvent and monomer and
between solvent and cross—linking unit, but for low cross—link densities and/or systems such as
styrene/divinylbenzene where the monomer and the cross-linker are chemically very similar, this
complication is not important. The elastic part of AG is assumed to be purely entropic
(AGel = — TASBI) and we simply invoke the rubber elasticity result (Equation 10.5.11):

—kve05,1: {213. +213 +213 — 3} (10.7.6)
where 12,, is the number of effective strands. However, it is time to address a complication. By a
different analysis than that used in this chapter, Flory [4] obtained an expression for the entropy
that contains an additional logarithmic term not present in Equation 10.7.6:

—lcr/,a
ASel :

2
{213, + 213+ 213* 3 w1n(}tx}ty}tz)} (10.7.7)

A simple and very qualitative way to understand the origin of such a term is that there is an
additional entropy gain for the placement of the end of each strand in space, as the volume of the
network plus solvent increases. In this way the new term (which could be written as —+ln 0.52) is
equivalent to an ideal entropy of mixing contribution as derived in Section 7.3.1. Flory’s analysis
included a more explicit calculation of the entropy change associated with the cross-linking
process, but in fact the appropriateness of the new logarithmic term in Equation 10.7.7 has not
been without controversy [11]. Because the product of the three extension ratios is unity for a
constant volume deformation, this term drops out in the unswollen network, so we have not missed
anything by omitting it in the previous sections. We retain it now to be consistent with the Flory—
Rehner result and we note that the factor of 0:3 in Equation 7.7.10 from the Flory—Krigbaum theory
for excluded volume also originates from inclusion of this term.

As in the consideration of the swollen network modulus above, we call the volume of the initial
piece of polymer V0 and the swollen volume V, but now the extension ratios are

V 1/3
A, = A, = A, = A = (170) (10.7.8)
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Thus

—kve
ASel :

2
{3212 — 3 — In 213} (10.7.9)

At the point of swelling equilibrium, the chemical potential of the solvent inside the swollen
network will equal that in the surrounding pure solvent, and so we have

6AG
m - it? = Am = (0—)n1 Tap

_
(BAGm) +(8AG,1)(Q_)

_
8m Tm 021 am up

(10.7.10)

If we assume no volume change on mixing as before, then the volume fraction of polymer in the
swollen gel, (02, is simply given by

1 V
A3

(V0 + n] V] )
_. = — = = -----—-—-—-—-—-

1 - .

(02 V0 V0
( 0 7 11)

where l?) is the molar volume of the solvent. If we differentiate this expression with respect to m
we obtain

021 1?2 ---—-— 2—1321 (am)
V0 (10.7.12)

The other two derivatives on the right-hand side of Equation 10.7.10 are also straightforward. The
first is the solvent chemical potential of the Flory—Huggins theory (Equation 7.4.14) in the infinite
molecular weight limit:

aAGm
6’11

) = RT{1n(1— (02) + 492 + Xfibg} (10.7.13)
Tm

The second is just

673GB] _RTVe 3( 021 )m— N... (321 i) (10.7.14)

where we have multiplied and divided by Avogadro’s number to put this term on a molar basis. By
combining Equation 10.7.10 and Equation 10.7.12 through Equation 10.7.14 we obtain

Au] _. 0 _. RT{ln(1— cbz) + a, + x0, + N... 70 (X — 53)} (10.715)

or, using Equation 10.7.8 to eliminate )t, we obtain

I’e V11n(1— <1>.)+ a, +270: - —— (“be — «bi/3) (10.7.16)_
Na, V0 '2—

where (0,, = (02 is used to emphasize that we have swelling equilibrium. The prefactor on the right-
hand side includes the number of strands per unit volume in the original network, Ve/VO, and from
Equation 10.6.7 this can be written as

VB pNav 2Mx_ — 1_
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where Mx is the average molecular weight between cross-links. Thus if X is known, Equation
10.7.16 and Equation 10.7.17 can be solved for M, using the measured value of V (although in
practice it is more common to actually weigh the dry and swollen polymer, and convert to volume,
through the known densities of polymer and solvent). The following numerical example gives an
idea of the magnitude of the swelling.

Example 10.4
Calculate the predicted volumetric swelling for the polyisoprene network of Example 10.1, when
exposed to a reservoir of cyclohexane at room temperature.

Solution
The polyisoprene chains had M = 150,000 with the extent of vulcanization = 0.003. The monomer
molecular weight is 68 g/mol, so the average number of cross-links per chain is (150,000 X 0.003)/
68 = 6.6, and thus M, as 150,000/(66) = 23,000. Utilizing Equation 10.7.17 and a density of
0.91 g/cm3 for polyisoprene gives

V 0.91 46 000C : — _,___ : 2.7 1
—5

l d
3

Nav v0 23,000 ( 150,000) x 0 mo stran s/cm

The last ingredient we need in order to apply the Flory—Rehner expression is a value for X. Back in
Section 7.6.2 we considered ways to estimate X using solubility parameters, and the necessary
values were given in Table 7.1. Using Equation 7.6.6 we have

108
2 x 300

-12
_RTX (51 — 52? m (8.2 — 8.1)2 a: 0.002

where 108 cm3 is the molar volume of cyclohexane.
Returning to the Flory—Rehner expression, that is, Equation 10.7.16, we have values for all the

quantities except the desired (1),, but the equation does not reduce to a simple algebraic expression.
To proceed we anticipate that (1)., << 1, and then the left-hand side can be simplified to ( X — 0.5) (1)5
using the expansion ln(l — (be) 3 —q_')e —— (122/2. Similarly, on the right-hand side we can expect
01/3 >> 0.3/2. This gives

108 x 2.7 x 10-55/3 3 = .
(be 0.5 — 0.002 0 0058

or (126%0046. This gives a volumetric expansion of 1/0.046 =22 times. This value also justifies
the small (1),, approximation that we have used to simplify the algebra. However, see Problem 15 for
a numerically more realistic version of this calculation.

A test of the Flory—Rehner theory (Equation 10.7.16) is provided by the data in Figure 10.16.
A variety of butyl rubbers with differing degrees of cross-linking were swollen to equilibrium and
then extended to )t =4. The results show a power law dependence of force on (he‘s/3. This is
consistent with Equation 10.7.16 in the limit of (be —+ 0, as can be seen by taking this limit on both
sides of the equation as in the preceding example. (Note that force w G N l/Mx.)

10.8 Chapter Summary
In this chapter we have considered two routes to network formation, cross-linking of preformed
chains and direct polymerization including multifunctional monomers. The former is the preferred
route to elastomers, or lightly cross-linked, low Tg materials, and the latter is commonly employed
to produce thermosets for high-temperature applications. We then developed the theory of rubber
elasticity in some detail, covering general thermodynamic aspects, the statistical theory in the ideal
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Figure 10.16 Force at constant extension (A24) versus equilibrium swelling for butyl rubbers with
different degrees of cross-linking, showing the predicted dependence on (pg/3. (Data from Flory, P.l., Ind.
Enghg. Chem, 38, 417, American Chemical Society, 1948. Reproduced from Treloar, L.R.G., The Physics of
Rubber Elasticity, 3rd ed., Clarendon Press, Oxford, 1975. With permission.)

case, some modifications to account for nonideal features of the response of real materials, and the
case of networks swollen with solvent. The main points may be summarized as follows:

1. When cross—linking preformed chains with weight-average degree of polymerization NW, the
“gel point” is predicted to occur when the fraction of monomers participating in cross—links is
equal to l/Nw. In practice, this tends to underestimate the necessary extent of reaction.
For multifunctional monomers, explicit predictions for the gel point can be developed using
the principle of equal reactivity and probability arguments appropriate to the particular
polymerization mechanism and combination of monomers. In practice, these expressions
also tend to underestimate the extent of reaction needed to reach the gel point.
Analysis of rubber elasticity via macroscopic thermodynamics is relatively straightforward,
the main new ingredient being the incorporation of the work of deformation into the free
energy. An ideal elastomer is defined as one for which the force resisting deformation is
entirely entropic, which is a reasonable approximation for many rubbery materials.
The molecular basis of rubber elasticity rests in the reduction of conformational degrees of
freedom when a single Gaussian chain is extended. A single Gaussian chain acts as a Hooke’s
law spring, with a stiffness that is proportional to absolute temperature.
Straightforward expressions for the force required to deform an ideal elastomer are obtained
by modeling the network as a collection of Gaussian strands and by making an assumption as
to how the macroscopic deformation is transmitted to each strand. The resulting shear and
extensional moduli are proportional to the number of strands per unit volume.
Networks or gels are often capable of absorbing more than 100 times their own weight in
solvent, a phenomenon that is central to many applications, and that can be understood as a
simple balance between the osmotic drive to dilute the polymer and the entropic resistance to
strand extension.
Although the statistical theory of rubber elasticity captures the main features of a wide variety
of experimental phenomenology, attempts to bring the theory into quantitative agreement with
experiment have met with rather mixed success.
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Problems

1. A constant force is applied to an ideal elastomer, assumed to be a perfect network. At an initial
temperature Ti the length of the sample is Li. The temperature is raised to Tf and the final
length is Lf. Which is larger: L, or Lf (remember F is a constant and Tf > Ti)? Suppose a wheel
were constructed with spokes of this same elastomer. From the viewpoint of an observer, the
spokes are heated near the 3 o’clock positionwsay, by exposure to sunlight—while other
spokes are shaded. Assuming the torque produced can overcome any friction at the axle, would
the observer see the wheel turn clockwise or counterclockwise? How would this experiment
contrast, in magnitude and direction, with an experiment using metal spokes?

2. An important application of Equation 10.5.15 is the evaluation of M,; R]. Flory, N. Rabjohn,
and M.C. Shaffer measured the tensile force required for 100% elongation of synthetic rubber
with variable cross-linking at 250C.)r The molecular weight of the uncross-linked polymer was
225,000, its density was 0.92 g/cm3, and the average molecular weight of a repeat unit was 68.
Use Equation 10.5.15 to estimate M, for each of the following samples and compare the
calculated value with that obtained from the known fraction of repeat units cross-linked:

Fraction cross-linked 0.005 0.010 0.015 0.020 0.025
F/A(lb-force/in.2) 61.4 83.2 121.8 148.0 160.0

How important for this system is the end group correction introduced in Equation 10.6.7?
3. Develop the equivalent to Equation 10.2.3 and Equation 10.2.5 for the third system in Figure

10.4, that is, AB + BB + A3.
4. The Carothers equation (Equation 10.2.9) can also be used as the basis of an estimate of the

extent of reaction at gelation. Consider the value implied for each of the parameters in the
Carothers equation at the threshold of gelation, and derive a relationship between pc and f on
the basis of this consideration. Compare the predictions of the equation you have derived with
those of Equation 10.2.5 for a mixture containing 2 mol A3, 7 mol AA, and 10 mol BB.
Criticize or defend the following proposition: the Carothers equation gives higher value for pC
than Equation 10.2.5 because the former is based on the fraction of reactive groups that have
reacted and hence considers wasted loops that the latter disregards.

5. Categorize the following mixtures as to whether they can form linear, branched, or network
Structures:
(3) A2 + B2 + AB ('3) A132 + A2
(0) AB + AB2 (d) A3 + 32 + A2
(e) AB + 33 (D A232 + A2 + 32

6. Suppose you have a balloon made of an ideal elastomer that is inflated to a reasonable size with
an ideal gas at room temperature. If the temperature of the balloon plus gas system is then
increased to 100°C, will the balloon expand, contract, or stay the same size? Justify your answer.

7. Find the relation between the (true) stress 0 and the strain A for a piece of ideal rubber in
biaxial extension. Assume the rubber has initial area A0 and thickness do, and let the final area
be A = A2240.

8. Use the result from the previous problem to calculate the relation between the pressure of an
ideal gas, p, inside a balloon made from an ideal elastomer, expanded to a radius R =AR0,
where Rois the initial radius. Use a version of the Young—Laplace equation to relate the excess
pressure (inside the balloon minus outside) to the stress in the rubber, p = 2do/R, where d is
the thickness of the balloon skin. Empirically, it often seems harder to “get started” blowing
up a balloon, than to blow it up further beyond a certain point. Explain this observation based
on your result for p versus )1.

TPJ. Flory, N. Rabjohn, and M.C. Shaffer, J. Polym. Sci., 4, 225 (1949).
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9. Show that Equation 10.3.2 and Equation 10.3.3 are equivalent definitions of Poisson’s ratio.
10. Use Equation 10.4.22 and the data in Figure 10.8a to assess whether or not the heat capacity

11.

12.

13.

14.

15.

16.

at constant length, CL, is comparable to typical values of C], for rubber of 2 J/g/K. Be careful
with the stated units of stress (kg/cmz) in Figure 10.8a.
Estimate the temperature increase in a rubber band when extended to A = 8 at room
temperature. Assume CL is 2 J/g/K and p: 1 g/cc.
The following data represent force ( f, in picoNewtons) versus extension ()1, in microns) for a
single A—DNA molecule, measured at room temperature in salt solutions.)r These data
therefore represent an opportunity to test basic assumptions of the theory of rubber elasticity.
Try to fit these data in three ways. First, use the Gaussian expression; restrict the fit to the low
extension part of the curve. Second, try the inverse Langevin function, approximated in
Equation 10.6.4. Third, try the following formula derived for the worm-like chain (recall
Chapter 6) in C. Bustamante et al.I

h (um) f(PN) 11mm) f(PN) h (um) f(PN)
10.1 0.0338 25.0 0.367 30.3 3.03
10.8 0.0335 25.6 0.364 31.2 5.57
17.6 0.102 26.4 0.486 31.3 6.82
18.2 0.102 27.1 0.604 31.7 11.9
22.4 0.218 28.5 1.08 32.0 12.2
23.0 0.217 29.0 1.53 32.1 18.3
24.3 0.382 30.3 3.39 32.2 17.0

f—k_T(—_1 _l+.,.1_)‘61, 4(1—21/1.)2 4 L
Comment on the success or failure of the various expressions and provide values for the
contour length, L, and the persistence length.
A rubber band, made of a styrene—butadiene random copolymer, is swollen to equilibrium in
toluene; the volume increases by a factor of 5. Taking X z 0.4, estimate the number of strands
per unit volume, and therefore the extent of cross-linking. Estimate Young’s modulus for
both the dry and swollen rubber bands.
According to the Flory—Rehner theory, what value of X would be required to get absolutely
no uptake of solvent for a typical rubber? What value of X would restrict the uptake to less
than 5% by volume?
In Example 10.4, the estimated value of X was 0.002, which is not realistic. Revisit
the discussion in Section 7.6, and use a more realistic estimate for X. How much does the
rubber swell at equilibrium in this case“? Is it significantly different from the answer in
Example 10.4?
On the following plot of a normalized equilibrium shear modulus (G/pRT) versus an inverse
“effective” molecular weight between cross-links (l/Mx) are two curves. The first is a
straight dashed line with unit slope to “guide the eye” (and the brain). The second represents
the modulus of a real polymer as it undergoes progressive cross-linking (the arrow represents the
course of the modulus with extent of reaction). Why does the modulus shoot up
at l/sa3 x 10‘5 mol/g? Why does the modulus exceed the unit slope line, just after
l/sa 3 x 10

— 5 mol/g? Estimate Me for this polymer. (Note that the last two questions will
be easier to answer after reading Section 11.6.)

1‘S.B. Smith, L. Finzi, and C. Bustamante, Science, 258, 1122 (1992).
1C. Bustamante, J. Marko, E. Siggia, and s. Smith, Science, 265, 1599 (1994).
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11
Linear Viscoelasticity

11.1 Basic Concepts

In this chapter we extend the study of the dynamic properties of polymer liquids in two new
directions. In Chapter 9 we considered only dilute solutions, but here we will consider also very
concentrated solutions and molten polymers. In Chapter 9 we also focused on the steady—flow
viscosity, or the diffusion over long time intervals; now we will examine the time— or frequency—
dependent response of polymer liquids to an imposed deformation or force. This response can be
characterized by a variety of material functions, such as the viscosity, the modulus, and the
compliance. In general, we will find that polymer liquids are viscoelastic, i.e., their behavior is
intermediate between (elastic) solids and (viscous) liquids. The phenomenon of viscoelasticity is
familiar to anyone who has played with Silly Putty. If you roll some into a ball, and leave it for a
few hours, it flows to adopt the shape of its container. This behavior is that of a liquid; it just takes
a long time because the viscosity is very high. On the other hand, if you stretch a sample very
rapidly, and immediately release one end, the sample will partially recover toward its original
dimensions. This recovery is an elastic response, and is more typical of solids than liquids. The
previous chapter concerned the elasticity of polymer networks, and important results from that
discussion will be directly incorporated into our treatment of viscoelasticity.

Viscoelasticity is one of the most distinctive features of polymers. As virtually all polymer
materials are processed in the liquid state, viscoelasticity plays a central role in the optimization
and control of processing. On the other hand, we will see in Chapter 12 and Chapter 13 that the
concepts developed here will also have broad application to the mechanical properties of solid
polymers. Furthermore, the viscoelastic properties can be readily measured and therefore provide
an additional route to molecular characterization, particularly for polymers that are difficult to
dissolve in convenient solvents. Finally, measurement of the viscoelastic response of a polymeric
material provides direct and detailed information about how long it will take for that material to
respond to any kind of perturbation.

To gain a glimpse at what lies ahead, Figure 11.1 shows the steady flow viscosity, 1), of five
samples of poly(0t—methylstyrene) in the molten state as a function of molecular weight, M, at
186°C. The viscosities are very large; they are about 1010—10l4 times larger than the viscosity of
liquid water (about 0.01 P). Furthermore, the viscosity is a very strong function of molecular
weight. The plot is in a double logarithmic format and the indicated straight line has a slope of
3.24. Thus, 72 ~M3-24, which means that doubling the molecular weight is sufficient to increase 72
by about a factor of 10. In this chapter we will provide a molecular picture for the origin of this
response and see that this behavior is typical of all flexible polymers. Of course, a central objective
of molecular models of polymer behavior is to understand the molecular weight dependence of any
experimental quantity.

Figure 11.2 shows a quantity called the stress relaxation modulus (which we will define a little
later) as a function of time for the same five polymers. This quantity is also plotted in a double—
logarithmic format. For now, we can just compare these modulus values with those (time—
independent) values typical of other materials, including the cross—linked rubber discussed in the
previous chapter. At very short times in Figure 11.2, the modulus approaches 109 Pa (1 GPa,

419



420 Linear Viscoelasticity

1012 : | | I | I I I [I l l | I | | l j

E E

1011
E—

n=24x10—7M3.24
E.

3 iE J

g 10 L _

E i

109 l’ J:

108 | l l l l I I ll 1 l l L] l l

104 105 106
MW

Figure 11.1 Viscosity versus molecular weight for molten poly(0t-methyl styrene) at 186°C. (Data taken
from Fujimoto, T., Ozaki, N., and Nagasawa, M., J. Polym. Sci. Part A-2, 6, 129, 1968.)

10+ l
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Figure 11.2 Stress relaxation modulus, G(t), versus time for molten poly(or-methyl styrene) at 186°C;
samples A—l through A—S correspond to the five samples in Figure 11.1. The arrow locates the longest
relaxation time for sample A-S, as discussed in Example 11.1. (Data taken from Fujimoto, T., Ozaki, N., and
Nagasawa, M., J. Polym. Sci. Part A-Z, 6, 129, 1968. With permission.)
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or 1010 dyn/cmz); this can be compared with steel (80 GPa), silica (20 GPa), and granite (10 GPa).
On the other hand, at intermediate times, say l—lOO s, the modulus has dropped to a value close to
that of a typical rubber, approximately 1 MPa. Finally, at even longer times, the modulus tends to
zero. Another interesting observation from Figure 11.2 is that in the early time, high modulus state,
the modulus is independent of M, but at long times, the time decay of the modulus depends very
much on M. In this chapter we will explain all of these features and even show how the viscosity
values in Figure 11.1 were actually calculated from the data in Figure 11.2, rather than measured
directly.

In the first three sections, we will define the basic terms and concepts, examine simple models
that reveal important features of viscoelastic response, and show how the different material
functions can be related to one another in a model-independent way. The subsequent four sections
will examine molecular models that, collectively, are remarkably successful in capturing the
viscoelastic response of polymers all the way from dilute solution to the melt. The final section
covers some aspects of experimental rheology, the science of flow and deformation of matter.

11.1.1 Stress and Strain

In a typical experiment, a sample confined in a particular geometry is subjected to a displacement,
and the resulting force is measured. An example is shown in Figure 11.3, for the deformation
called simple shear. This is exactly the geometry used to discuss viscosity in Chapter 9.1. The
material is confined between two parallel plates dy apart, and if one surface is moved a distance dx,
we say that the sample has been subjected to a strain, 7/, :dx/dy; “y is thus dimensionless. The
velocity of the plate vx = dx/dt, and d(dx/dy)/dt : 7'» is called the strain rate or shear rate. It takes
the application of a force to accomplish the deformation; alternatively, we can think of the material
exerting a force on the moving plate. The total force will depend on the area of the plate in contact
with the material and thus we consider the force per unit area, or stress, 0'. There are several
different kinds of deformation geometries, such as uniaxial elongation, biaxial elongation, simple
shear, etc. In all cases it is possible to define a stress, strain, and strain rate in an analogous fashion.
In the most general case, the stress and the deformation in the material should be represented as
tensor quantities. In this chapter we will restrict our attention to the simplest case of shear flow and
shear stress only. This avoids the need to employ tensor algebra; the mathematics will be
invigorating enough as it is. We will use the symbols 0', y, and “j! to denote shear stress, shear
strain, and shear rate, respectively, just as in Chapter 9.

11.1.2 Viscosity, Modulus, and Compliance

In general, a viscosity is defined as the ratio of a stress to a strain rate, and in shear we begin with
Newton’s relation (Equation 9.1.3)

0':n (11.1.1)

Figure 11.3 Illustration of simple shear flow between two parallel plates.
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where n is the viscosity. Recall also from Section 9.1 that if n is independent of the magnitude of
y, the fluid is said to be Newtonian. Many polymer fluids are non-Newtonian, but in general
Newtonian behavior is recovered in the limit that 'j/ —> 0. Similarly, in the mechanics of solid
bodies a modulus is defined as the ratio of a stress to a strain, and in shear we have

o=Gy (HID
where G is the (shear) modulus (recall Equation 10.5.17). Note that this relation is essentially
Hooke’s law for an ideal elastic spring, F = — lot; the modulus is a generalized spring constant, and
the sign has changed because we consider the force acting on the material. When G is independent
of the magnitude of y, we say that the response is linear. This is generally true as y —> 0, but in
experiments we always need a finite strain to generate a measurable stress, and whether the
response falls in the so-called linear viscoelastic limit is something that needs to be checked.
For the remainder of this chapter we will assume linear response, for simplicity; treatment of the
nonlinear response is substantially more complicated. However, we should note that in commercial
polymer systems the nonlinear response is interesting and very important, especially for processing
operations where strains and strain rates are typically high. One further useful concept is that of a
compliance, J, which can be defined as the ratio of a strain to a stress. Therefore the compliance is
the inverse of the modulus, but it will turn out that when the time dependence is involved, J(t) is
not simply equal to l/G(t).

11.1.3 Viscous and Elastic Responses

Two crucial limiting cases in this chapter are viscous response and elastic response. Viscosity
reflects the relative motion of molecules, in which energy is dissipated by friction. It is a primary
characteristic of a liquid. A liquid will always flow until the stress has gone away and it will
dissipate energy as it does so. In contrast, elasticity reflects the storage of energy; when a spring is
stretched, the energy can be recovered by releasing the deformation. A solid subjected to a small
strain is primarily elastic, in that it will remain deformed as long as the force is still applied. In
flexible polymers, the elasticity arises from the many conformational degrees of freedom of each
molecule and from the intertwining of different chains; it will turn out to be primarily entropic in
origin, just as in Chapter 10. When the material is subject to a deformation, the individual
molecules respond by adopting a nonequilibrium distribution of conformations. For example, the
chains on average may be stretched and/or oriented in the direction of flow; in so doing they lose
entropy. Left to themselves, the molecules will relax back to an isotropic, equilibrium distribution
of conformations, just like a spring. As they relax, the relative motion of the molecules through the
surrounding fluid dissipates the stored elastic energy. It is this interplay of viscous dissipation
during elastic recovery that underlies the viscoelastic prOpeIties of polymer liquids. (If you are at
all familiar with elementary electronic circuits, these concepts of energy dissipation and storage
are well known; a resistor (resistance R) is the dissipative element, and the capacitor (capacitance
C) is the storage element. Voltage (V) plays the role of force, current (1) the role of velocity, and
charge (Q) the role of displacement. Thus Ohm’s law (Vl) is the analog of Newton’s law
(Equation 11.1.1), and for a capacitor V: CQ in analogy to Equation 11.1.2. Furthermore, the
mathematical results we will derive in the next section for simple mechanical models will be
analogous to the results for V and I in simple RC circuits.)

In experimental measurements of the viscoelastic response, several different time histories are
routinely employed. In a transient experiment, at some specific time a strain (or stress) is suddenly
applied and held; the resulting stress (or strain) is then monitored as a function of time. The former
mode is called stress relaxation and the associated modulus the stress relaxation modulus,
G(t) = G(t)/y. The latter mode (in parentheses) is called creep and the associated compliance the
creep compliance, J(t)=y(t)/o-. In a steady flow experiment, the strain rate is constant; the
resulting steady stress gives the steady flow viscosity. Finally, in what is arguably the most
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important mode, the sample is subjected to a sinusoidally time-varying strain at frequency cu. The
resulting dynamic modulus, G*(w), is resolved into two dynamic moduli: one in-phase with
the strain, called 6’, reflecting the elastic component of the total response and one in—phase
with the strain rate, called G”, reflecting the viscous response.

11.2 Response of the Maxwell and Voigt Elements
We can learn a great deal about viscoelastic response through consideration of two simplified
models, the so-called Maxwell [1] and Voigt [2] elements. We will examine the stress relaxation
modulus, creep compliance, and dynamic moduli of the Maxwell element, which illustrates a
viscoelastic liquid. We will also derive the creep compliance of the Voigt element, which
exemplifies a viscoelastic solid. Each element will turn out to have a characteristic time, 1',
which determines the timescale of its response.

11.2.1 Transient Response: Stress Relaxation

The Maxwell element consists of an ideal, Hookean spring with spring constant C? connected in
series with an ideal, Newtonian dashpot with viscosity if, as shown in Figure 11.4a. Thus the stress
in the two components is given by

0‘ = 5y (11.2.1a)
for the spring, and

0. : fir), (11.2.11))

for the dashpot. At time (:0 we apply an instantaneous strain of magnitude yo, and hold it
indefinitely; if we follow the stress as a function of time, it is a stress relaxation experiment.
Qualitatively we can anticipate what the response should be. At very short times, the dashpot will
not want to move; that is the whole point of a dashpot (i.e., a shock absorber). The spring, on the
other hand, only cares about how much it is stretched, not how rapidly. Thus the initial deformation
will be entirely taken up by the spring. However, the stretched spring will then exert a force on the

:>

fiQQfilfll/‘t'

(a) (b)

Figure 11.4 Illustration of (a) the Maxwell element and (b) the Voigt element.
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Figure 11.5 Illustration of the stress response 00‘) after a step strain of magnitude yo was applied at t: 0,
for the Maxwell element.

dashpot, which will slowly flow in response. Ultimately, the spring will relax back to its rest length
and there will be no more stress; the long time-response is that of a liquid.

To make this argument quantitative, we see that the total applied strain is distributed between
the elements,

70 : yspring + ydashpot (1122)

and because the strain is constant for t> 0,

C170 . . d 00‘) 0(1)
E

2 0 = yspring + ydashpot : "d: _GT
+
?

(11.2.3)

This is a linear, first-order, homogeneous differential equation for 0'0):

1
6+;0'=0

(11.2.4)

where the dot denotes the time derivative. We have defined the relaxation time 7 E i776, and from
Equation 11.2.] it is clear that this ratio has units of time (fi/G = (U/y)/(cr/y) = (7/7) = t). The
concept of relaxation time is central to the material in this chapter. In essence, the relaxation time is
a measure of the time required for a system to return to equilibrium after any kind of disturbance.

The solution to Equation 11.2.4 is an exponential decay

0(1) 2 0'0 exp(—t/'r) (11.2.5)

as shown in Figure 11.5. The initial stress, 00, is obtainedas suggested above: at the earliest times
the deformation is all in the spring, and therefore 00 = 070. (Note that an instantaneous deform-
ation would make 7 infinite and thus the stress in the dashpot would be infinite if it moved, so it
does not.) The stress relaxation modulus is obtained as

E = 5exp(—t/7) (11.2.6)
70

GO) =

as shown in Figure 11.6, in both linear and logarithmic formats. The Maxwell model captures the
main feature of the stress—relaxation response of any liquid; the material supports the stress for
1 << 1', but flows until the stress has vanished fort >> 7. Thus the magnitude of the relaxation time
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Figure 11.6 Normalized stress relaxation modulus G(t)/G(O) versus reduced time t/r for the Maxwell
element, plotted in (a) linear and (b) double logarithmic formats.

is vital in determining the properties we experience. For example, a molten high M polymer not far
above its glass transition temperature may not flow over a timescale of hours (see Figure 11.2 and
Example 11.1); in contrast, the stress relaxation time for water is measured in picoseconds. We
shall also see that polymers, with their many degrees of internal conformational freedom, show
multiple relaxation times spread over many orders of magnitude, as also illustrated in Figure 11.2.
However, before we get to that, we will pursue these simple models further.

Example 11.1
Use the simple Maxwell model analysis of stress relaxation to estimate the longest relaxation time
for the highest molecular weight sample in Figure 11.1 and Figure 11.2.

Solution
The relaxation time is given by the ratio of a viscosity to a modulus. The highest M sample in
Figure 11.1 (M =4.6 X 105 g/mol) has a viscosity of 5.5 x 10” P(= g/cm 8). It is not so obvious
what value to take for the modulus in Figure 11.2, however, because G is a function of t. In Figure
11.6b, the Maxwell model prediction for G(t) in a log—log format looks like the long time-response
in Figure 11.2, where G(t) falls from an apparent plateau value of about 3 x 106 dyn/cm2 to zero.
In the Maxwell model the plateau value is G. Using this result, then, we have

11
rzgm%l—C%—m2x 105 s=2.3 days

This value is marked as the arrow in Figure 11.2. It has a very simple physical interpretation: if we
place a chunk of this polymer on a desktop at 186°C (do not try this at home!) it will take 2—3 days
before we will see it flow down into a puddle of liquid.

11.2.2 Transient Response: Creep

In a creep experiment, a sample is subjected to a constant force and the resulting deformation is
monitored as a function of time. The term creep implies that the deformation will be very slow,
which in turn suggests that the sample should have a rather high viscosity; think of a glacier
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moving under the influence of gravity. Now let us subject the Maxwell element to creep: we apply
0'0 at time £20 and watch y(t) evolve (using Equation 11.2.2):

1‘

0'0 1
70) : yspring + 7dashpot =

E"
+

g
0

‘70

=Q+Qi
G 77 (1 1.2.7)

Here the strain in the dashpot is obtained by integrating the strain rate 7, where 5/ = (To/ii is a
constant. Thus the compliance is given by

W)lJ(t)=—= +ét=Jeo+;1—J (11.2.8)
00 G 7i 7?

Figure 11.7a illustrates this behavior. At long times there is a steady-state response, with the strain
increasing linearly in time; the slope is the reciprocal of the viscosity. At short times there is a
transient response, reflecting the initial deformation of the spring; in this model, it is instantaneous.
Consequently, if the long time linear portion is extrapolated back to t: 0, there is a finite intercept,
J3, called the steady-state compliance. If the stress is suddenly removed at some instant after
steady flow has been achieved, then the spring will retract but the dashpot will stop moving.
Consequently there will be an elastic recovery of the fluid; this is also indicated in Figure 11.7a.
The amount of this recovery is called the recoverable compliance and if the flow achieves steady
state, the recoverable compliance should be equal to J2.

The Voigt element places the two components in parallel, thereby enforcing equality of strain
between the spring and the dashpot (Figure 11.4b). This combination serves to illustrate the
response of a viscoelastic solid. In a creep experiment, in which a constant stress 00 is applied
at I: 0 and held indefinitely, the strain will grow slowly, as the dashpot resists rapid deformation.
As the strain continues to grow, the resistance of the spring will take over, until at long times the
strain will saturate. From the definitions in Equation 11.2.1a and Equation 11.2.1b, we can write

00 = or + 515/ (112.9)
which we can rearrange into a linear, first-order differential equation for 7(1‘):

1y+—y=22 012m)
’7 7?

The solution to this equation is also an exponential decay, but with a twist:

7(1‘): 5g- [1 — exp(—t/1')] (11.2.11)

Now the strain starts from zero and increases exponentially to its infinite time value of 00/6, as
shown in Figure 11.7b. The compliance, J(t), can be written as

J(t) = 3%? 2%[1— exp(—t/r)] = Je[1— exp(—t/1')] (11.2.12)

where 1,, has replaced 1/6; 1,, is called the equilibrium compliance.

11.2.3 Dynamic Response: Loss and Storage Moduli

Although the step strain and step stress experiments are both useful in characterizing the visco—
elastic response of a material, the most common experimental approach is to apply a sinusoidally
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Figure 11.7 Creep compliance J(t) for (a) a viscoelastic liquid (the Maxwell model) and (b) a viscoelastic
solid (the Voigt model). A stress 00 is applied at time t = 0 and in (a) the stress is removed at some later time t’.

time-varying strain (or stress), e.g., y(t)= yo sin wt and measure the sinusoidally time-varying
stress (or strain). One advantage of this approach, as we shall see, is that both the viscous and
elastic character of the response can be resolved concurrently. Other advantages are technical; for
example, small sinusoidal signals can be extracted reliably through lock-in amplifier detection
schemes. Also, because the magnitude of the modulus can vary by several orders of magnitude (see
Figure 11.2), in a stress relaxation experiment the signal will become smaller and smaller as time
evolves. In contrast, in the dynamic experiment at each new driving frequency w the strain
amplitude 70 can be adjusted to bring the stress signal into the conveniently measurable range
(of course, taking care to remain in the linear viscoelastic regime).

To see how the Maxwell element responds to a strain of 70 sin wt, we adapt Equation 11.2.3:

d d .3:“ = yea; Sln wt 2 yew cos wt

_ , + , _ 1 .+1—' 7e] 7vis _'
60-

fig- (11.2.13)

Now the first-order, linear differential equation has a driving term proportional to cos wt:

1 x.
c'r+—0=G'y0wcoswt (11.2.14)

7

One of the beautiful features of a linear system is that the response to a sinusoidal input is always a
sinusoidal output at the same frequency; the amplitude and phase will generally differ between
input and output, however. (We have already encountered this linearity in Chapter 8; in light
scattering, the scattered electric field had a different amplitude and phase from the incident wave,
but the frequency was the same.) It is also helpful to remember that sin wt and cos wt are the same
wave, just phase-shifted by 90° (or 17/2 rad): cos wt 2 sin(wt + 17/2). Thus the strain rate in this
experiment, 77, is 90° out-of—phase with the strain. We can say that the stress in the elastic element
is in-phase with the strain, and the stress in the viscous element is in-phase with the strain rate and
90° out—of—phase with the strain. This is a general result: in the linear response regime, the stress
can always be resolved into two components, one in-phase with the strain and one 90° out-of-phase
with the strain. For a purely elastic solid the latter component would vanish, whereas for a purely
viscous liquid the former component would be zero. A viscoelastic material is one for which both
components are significant.

Returning now to the solution to Equation 11.2.14, the answer must be a wave with frequency
w. The most general solution is

0(t) = A sin wt + B cos wt = A0 sin(wt + (p) (11.2.15)
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where we note that any wave with frequency to can be written as a linear combination of a sine
wave and a cosine wave, with two adjustable amplitudes A and B, or as a single sine wave, with
adjustable amplitude A0 and phase qb. Let us insert the former version into the differential Equation
11.2.14, and work it through:

1 , 1 A
Aw cos cot — Bw sin out + —A srn wt +

;B
cos wt = 67000 cos wt (11.2.16)

7

recalling that d(sin wt)/dt 2 co cos (or and d(cos wt)/dt = —w sin cut. The sine and cosine compon-
ents are independent of each other, so we can solve for the coefficients separately. For the sine part
(recall that this represents the stress component in-phase with the strain)

1—Bw+—A=0
T

A=ww (Han)
and for the cosine part (stress 90° out-of—phase with the strain)

1 A

=we+lB (11.2.18a)
7.

A (or
B = —070 l + (0272

and thus

A (027.2
A = — 11.2.

670 1 + (0272 ( 18b)

These expressions for the coefficients A and B can be substituted into the expression for the
modulus:

2 2t A . A
w = Gila—2 smwt+ Giza—3 coswt
yo l+wr l+wr

= 0’ sin cot + G” cos wt (11.2.19)

This last relation defines the elastic or storage modulus, G’, and the viscous or loss modulus, G”:
22A (or A

G=G———A w=G————
1+c02r2 1+w2r2

(UT
(11.2.20)

The former measures the component of the stress response that is in-phase with the strain and the
latter the component in-phase with the strain rate. The relationships among the applied strain, the
stress response, and the two components are illustrated in Figure 11.8. We can say that a material is
viscoelastic if both G’ and G” are significant and we can anticipate that when 6’ > G”, the material
is solid like, and when G” > G’, the material is liquid like.

The normalized dynamic moduli G’ /G and G”/G for the Maxwell element are plotted versus
reduced frequency car in Figure 11.9a in a double logarithmic format. These functions display the
following features. At low frequencies, arr<< 1, both G’ and G” increase with w. The former
increases as (02 and the latter as co and G” > G’ . This scaling with frequency is characteristic of all
liquids when the frequency of deformation is much lower than the inverse of the longest relaxation
time of the material. Therefore, this is what one would expect to see for all polymer liquids once to
is low enough. At high frequencies, (or >> 1, G’ > G”, and G’ is independent of frequency whereas
G” falls as a)“. This response is characteristic of a solid: the stress is independent of frequency (or
time), and in-phase with the strain. The two functions are equal, G’ = G", and G” shows a
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Figure 11.8 Strain y, strain rate 7, net Stress or, and stress components in-phase with the strain 0" and
in-phase with the strain rate 0'” for a sinusoidally time-varying strain. The phase angle between the stress
and the strain is 5.

maximum when (or: 1. In other words, when the frequency of deformation is exactly the
reciprocal of the relaxation time, the material is equally liquid-like and solid—like. All of these
features of G’ and G" will be evident when we consider detailed molecular models for the
viscoelastic response of polymer liquids.

11.2.4 Dynamic Response: Complex Modulus and Complex Viscosity

It is common to use complex notation to describe the dynamic modulus, just as we did with light
waves in Chapter 8; complex numbers are reviewed in the Appendix. Thus, if we apply a
sinusodial strain, 7* 2 yo eXp(iwr), the re8ponse can be written as

*

G*(w) = 31? = 6’ +10” 2 Gm exp(i5) (11.2.21)

where G* is the complex dynamic modulus and 0* is the complex stress (= 0'0 exp[i(wt + 5)]). The
storage modulus G’ is the “real” part of G* because it is in-phase with the applied strain and G” is
the “imaginary” part because it is 90° out-of—phase with the applied strain. The complex notation
is simply a way to keep track of relative phases; there is nothing imaginary about the viscosity or
the modulus. One can choose to represent the modulus via its two components, G’ and G”, or in
terms of the magnitude, Gm, and the phase angle, 5. These are interrelated by

(:-m = {(G’)2+(G”)2}1/2
and

H

tan5 =
a (11.222)
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Figure 11.9 (a) Normalized dynamic moduli G76 and C375, and (b) phase angle 8 and loss tangent tan 8,
versus reduced frequency arr for the Maxwell element.

The phase angle, 5, is often discussed in terms of the so—called loss tangent, tan 5, because it is the
direct ratio of the viscous and elastic parts. In other words, when the material is behaving like a
liquid, tan 5 >> 1, and when it is a solid, tan 5 << 1; the crossover occurs at tan 5 as 1. In
Figure 11.9b both tan 5 and the phase angle 5 itself are plotted for the Maxwell element.

Sometimes the viscoelastic response is presented in terms of a dynamic viscosity, 17*, rather than
the dynamic modulus:

3* _ 0* _ I - H __
.“n —

F
— “n -In — ‘nm GXPW) (11.2.23)

Note that 7* : dy*/dt = iw'yi‘, so that the components of G* and 11* are related by a factor of a):

G* = iw‘n’k, G’ = am”, G" = (011’ (11.2.24)

Note also that there is a new phase angle, lb, in Equation 11.2.23; the relation between {i and 5 is
left to Problem 6. However, there is no new information content in 11* relative to 6*, or even in G*
relative to just discussing G’ and G”. Consequently the choice of format (i.e., G’ and G”; Gm and 5;
n’ and n”) is mostly a matter of convenience or convention.

11.3 Boltzmann Superposition Principle

The last issue we will take up before proceeding to detailed molecular models is that of the
interrelationships among 6’, G”, G(t), J2, and the steady—flow viscosity, 1). We begin with
the Boltzmann superposition principle of linear viscoelasticity, which asserts that the stress in the
material is the sum of the stress contributions from all strains applied in past times [3]. The
linearity of this principle lies in the fact that we can simply add up all the contributions because
the response of the material to any particular strain is linear and independent of whatever went on
before or after. From the Maxwell model, we saw that G(t) was an exponentially decaying function
of time. The strain was applied at one instant and the effect of the strain was evident in the stress at
all subsequent times, but with an exponentially decaying amplitude. The more detailed models we
will consider subsequently all predict that G(t) is sum of such exponentials, with a sequence of
different relaxation times. In fact, the modulus is really a function of the time interval, G(t — t’),
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rather than the absolute time, t; in the previous analysis we had simply chosen t’ = 0. Now we can
express the Boltzmann superposition principle as follows. We first relate the increment in stress,
do, to an increment in strain, (17:

dazGdyzG-(gdtsdt (11.3.1)

and thus

1'

0(t) = Jda = J C(t — t’)'i/(t')dt’ (11.3.2)

Therefore the stress now (time t) is obtained by adding the stress increments from past strain
history (’j/(t’), with t’ ranging from —— 00 to now). The stress increments are less and less important
for times further and further into the past because for a liquid G(t a I") always decays; we can say
that the material has a memory that fades with time. Equation 1 1.3.2 can be further transformed by
a simple change of variable: 3 = t +- t’, ds = —dt’, and therefore

0(t) 2 J G(s)j1(t — 5) ds (11.3.3)
0

This equation is an example of a constitutive equation, an equation that allows calculation of the
stress in a material based on knowledge of all past deformations and of the relevant material
response function. In the general case, 77(t — 5), (3(5), and 0(t) will all be tensor quantities, but as
noted at the outset, we are restricting ourselves to simple shear and have tacitly chosen the relevant
tensor elements.

From Equation 11.3.2 we can develop some very useful interrelations as follows:

1. Assume we apply an instantaneous step strain at time t’ =0, so that y = 7080"). The Dirac
delta function 5(t’) is infinite at t’ = 0, zero everywhere else, and integrates to 1 over all time,
so that Equation 11.3.2 becomes 0(t) =G(t)yo. In this way we recover the stress relaxation
modulus as defined in Equation 11.2.6.

2. In steady flow we apply a constant shear rate, 70 — s) = 'j/ and by substituting in Equation
11.3.3 we obtain:

G(t) dt (11.3.4)

Thus the steady-flow viscosity is just the integral over the entire stress relaxation modulus.
The viscosity represents the superposition of all modes of relaxation in the sample (i.e., all the
exponential terms in G(t)), but because the integral is taken over all time, it is the slowest
decaying modes that will dominate the long time, steady-flow response. Equation 11.3.4 was
used to obtain the viscosity values in Figure 11.1 from the G(t) data in Figure 11.2.

3. To obtain the dynamic moduli, we apply a strain 7’: yo sin wt, and recognize that

70‘ — s) =2 you) cos (0(t — s)
= you) cos wtcos ms + you) sin wt sin cos (11-3-5)
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Inserting this result into Equation 11.3.3, the stress can be written as the sum of two terms:
00 00

0(2‘) = 70a) cos (at J G(5) cos 00s + you) sin cot J G(5) sin (o5d5 (11.3.6)
0 0

Comparing with Equation 11.2.20, we can express G’ and G” in terms of the sine and cosine
Fourier transforms of G(t), respectively:

G’(w) = 0:) 0(5) sin (.05 d5

G"(w) = a) G(5) cos (05 d5 (11.3.7)
can—58

can—58

4. The steady-state recoverable compliance must also be related to G0), although it takes a few
lines of manipulation to show that this is the case. Consequently we will just provide the result
here:

?5G(5)d5
1

00
12 = ‘27—“? = 7 5G(5)d5 (11.3.8)

[I G(5) d5] 71 0
0

These various relations underscore the fact that if you have access to 60‘), you can calculate all
the other linear viscoelastic functions.

11.4 Bead—Spring Model
The Maxwell and Voigt models provide useful insight into the nature of viscoelastic response, but
are severely lacking in terms of providing a satisfying description of real polymer liquids. First, we
would like to have a molecular model in which the microscopic origins of viscosity and elasticity
are more apparent. Second, a key feature of polymer viscoelasticity, whether in dilute solution or in
concentrated solutions and melts, is the wide range of relaxation processes that contribute to the
modulus. On an isolated polymer in a solvent, for example, the individual C—C bonds along
the backbone can reorient in fractions of a nanosecond, whereas the entire end-to-end vector might
take microseconds or even milliseconds to undergo substantial reorientation. In a molten polymer,
the difference between the timescale for monomer motion and the timescale for the entire chain
motion can be much greater than in dilute solution. Consequently, it is essential that a useful
molecular model be able to capture this effect. In the next two sections we will examine the bead—
spring model (BSM) of Rouse [4] and Zimm [5]. The BSM is over 50 years old, but it still serves
as the starting point for describing the viscoelastic character of all flexible polymers. First we
will describe the BSM itself, and then make some physical arguments for the character of the
main predictions. A fully detailed solution to the model is beyond the scope of this book.

11.4.1 Ingredients of the Bead—Spring Model

The BSM model represents the chain as a linear string of N Hookean springs, or harmonic
oscillators, connecting N + 1 beads or mass points, as shown in Figure 11.10. (Recall that this
model was introduced briefly in Section 9.6, in the context of hydrodynamic interactions in dilute
solution. The difference between the Rouse and Zimm versions of the BSM is that the latter
incorporates the hydrodynamic interactions, whereas the former does not.) The assembly is
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N+1

Figure 11.10 The bead—spring model of Rouse [4] and Zimm [5].

suspended in a viscous continuum, or solvent, with viscosity 7),. The actual mass of the polymer is
distributed uniformly among the beads. Each bead has a friction coefficient, g, when it moves
through its surroundings. We could imagine using Stokes’ Law (Equation 9.2.4) for this friction,
i.e., g : 67rnsa, where a is the radius of the bead, but in fact it is conventional to retain g as a
parameter of the model rather than a. The springs have an rrns end-to-end length 1) and the entire
chain is freely jointed at each bead—spring unit. A single bead—spring unit is meant to represent a
Gaussian subchain of the real polymer, that is, enough real backbone bonds or monomers that the
end-to-end length of the subchain follows the Gaussian distribution (Equation 6.7.12). Thus this
subchain corresponds to a small number of persistence lengths.

We already have enough information to make some comments about this model:

1. The viscous response in the BSM arises from the relative motion of the beads and solvent,
whereas the elastic response will come from the tendency of the Gaussian subchains to resist
deformation. We already discussed the entropic resistance to stretching a Gaussian chain in the
context of chain swelling (see Section 7.7), and developed it in more detail in Chapter 10 (see
Equation 10.5.7). The force, F, to stretch the subchain will be determined (in one dimension) from

dG d dF=_:n_._ =—T—k1Pdx (has) dx ”
_ d t t 3 2 #BkT__

dx_ consan—i—gix —~b—2*x (11.4.1)

where in this expression G is the free energy, S is the entropy, and P is the Gaussian probability
distribution applied to one subchain. The entropy S N k In P, where the proportionality factor is
incorporated into a constant that does not matter after we take the derivative with respect to x.
The last term in Equation 11.4.1 can be interpreted to mean that the subchain behaves as a
Hookean spring with a spring constant of 3kT/b2.

2. The freely jointed nature of the chain tells us that the radius of gyration will be Nb2/6 (see
Equation 6.5.3) and therefore the model is designed for a theta solvent. (In principle one could
insert excluded volume interactions into the detailed solution of the model, but this can only be
done approximately, and at the price of great numerical complexity.)

3. The details of the actual chemical structure of the chain are subsumed into b and 4:. Thus, the
BSM should make universal predictions for the character of the chain dynamics of flexible
molecules, but it cannot be used to say anything about particular local motions, bond rotations,
etc. of any actual polymer, which involve sections of the polymer less than a few persistence
lengths.

4. The model has three parameters N, b, and J. N is proportional to the chain length, and therefore
to M. In fact, this is a minimal set of parameters; we need to know how long the chain is, we
need to know some length scale characteristic of the polymer, and we need to know the
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timescale for motions on this length scale. This latter time, which we can call 733g, turns out to
be proportional to bit/k7".

5. It is worth pointing out that there are N springs but N + 1 beads and, depending on the property
in question, a literal solution of the model will involve either N or N + 1. However, we expect
the model to be most realistic when N is a large number, so this distinction will not matter; the
important point is that N w M.

11.4.2 Predictions of the Bead-Spring Model

Now that we have defined the model, we can anticipate some of its predictions. We have a system
of N coupled, identical harmonic oscillators, and by analogy with the analysis of molecular
vibrations and rotations used in infrared spectroscopy, we could think in terms of degrees of
freedom and normal coordinates. We have N +1 beads, so we need 3(N + 1) coordinates to
completely specify the instantaneous conformation of the chain. (It turns out that we do not need
to worry about the 3(N + 1) velocity or momentum values, however, because these equilibrate very
rapidly due to the very high frequency of collisions between actual solvent molecules and
monomers.) We need three coordinates to specify the center of mass position and the remaining
3N to describe the coordinates relative to the center of mass. That is, the translational diffusion of
the whole chain will involve the first three coordinates and the internal motions or conformational
relaxations the other 3N. Finally, we recognize a threefold degeneracy, namely that the x, y, and 2
positions of any bead are uncorrelated; a force exerted on a particular spring in the x direction will
not influence the y or z coordinates of a connected bead. Thus, there are really only N distinct
internal degrees of freedom. If we choose the right coordinate system, the so-called normal
coordinates, we will find N normal modes, or characteristic relaxations, each with its own natural
frequency (or inverse relaxation time). Thus the main predictions of the BSM are the values of the
N relaxation times and the character of the associated modes. The term normal here has the sense
of orthogonal or linearly independent. Any particular motion of the chain in the laboratory
coordinate system can be decomposed into a linear combination of the N normal modes and the
excitation of any normal mode by some applied force will be dissipated by that mode only. (For
those readers with experience in quantum chemistry, there is a strong analogy between these
normal modes and the eigenvectors of the Hamiltonian in the Schrodinger equation; the frequen-
cies of the BSM correspond to the allowed energy levels or eigenvalues of a quantum mechanical
system, and the normal modes to the stationary states.)

We can illustrate the normal mode concept in Figure 11.11. We can draw a vector connecting
any two beads separated by N/p springs where p is an integer between 1 and N (Figure 11.11a). We
can define the relaxation time for this vector in the following way. We take all the vectors
connecting the ends of (N/p)-long sections of the chain and do this for many chains. These vectors
would have a Gaussian distribution in terms of their length, with an rms value of b\/N/p (see
Equation 6.3.2), and all orientations would be equally likely. Now we apply a step strain. The
distribution of orientations would be distorted in some way (Figure 11.11b), as would the distri-
bution of lengths (Figure 11.11c). The overall distribution would relax back to equilibrium
exponentially, with a characteristic time constant 7p. Thus the pth relaxation time, 7p, is the average
time it takes a section of chain containing N/p springs to recover from a disturbance. There are N
such relaxation times, varying from the first, 71, for the relaxation of the end-to-end vector of the
entire chain, down to the Nth, m, for the relaxation of a single bead—spring unit. Clearly
1'1 > 1'2 > 1'3 > - - . > m. We have already identified m as being proportional to 730g above. Note
that the roles played by 7N and 756g are essentially equivalent, but m is associated with a specific
model, whereas 756g is a more general concept that can be discussed without reference to a particular
model. The next issue is to find out how 1",, depends on p, and in particular how 71 depends on N.

We can obtain these dependences from a rather simple argument in the case of the Rouse model
where we neglect hydrodynamic interactions. Suppose for the sake of simplicity that the chain is
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(a) Vectors connecting
5—spring units of the model chain

(b) Distribution of vector orientations in two
dimensions immediately after deformation
(dashed) and at equilibrium (SOIId)

(0) Distribution of vector lengths
immediately after deformation (dashed)
and at equilibrium (solid)

P(
N,
h)

Figure 11.11 Illustration of the relaxation process for the “end—to-end” vector of a section of chain

containing N/p springs, where 13 pg N; in (a) p25. The distribution of orientations in (b) and the

distribution of lengths in (c) relax together to their equilibrium states in a time rp.

lying along the x-axis, with all springs at the rest length of b. SUppose, W6 DOW tweak 0116 Of the
beads, thereby causing a disturbance. The two neighboring springs would be distorted, thereby

exerting forces on the next beads and so on down the chain. How long does it take for this

disturbance to propagate down N/p springs? (Note that a bead—Spring unit is not exactly a Maxwell

element, because in this case no spring can be deformed without moving a bead; thUS this
deformation is not transmitted instantaneously along the chain.) Because this is a small disturbance

and because in fact the beads are constantly undergoing Brownian motion due to COlliSiOhS With the
solvent, we can actually think of the disturbance diffusing down the chain, i.e., due to solvent

motions, etc. it might just as well reverse direction. But we know about diffusion processes from

Section 9.5. This “internal” diffusion constant, Dim, will be given by

(b2) : 2Dint'Tseg
(11.4.2)

the associated elementary time for the diffusion ofwhere b represents the elementary step and 753g
dimensional diffusion problem. Thereforethe disturbance. The factor of 2 reflects that this is a one-

the average time to travel N/p springs, 7p, will be

2 2
«r, = (if b) 1 =

(5’) Reg (11.4.3)
19 2Dim p
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From Equation 1.1.4.3 we can see that the longest relaxation time, 7'], will just be Nzrseg, and the
pth relaxation time will be 71/192. As the local segmental time must be independent of total
molecular weight (because a few monomers can rearrange themselves without disturbing the entire
chain), Tseg does not depend on N. Therefore the Rouse version of the BSM model predicts that the
longest relaxation time of the chain will be proportional to M2. Furthermore, the viscoelastic
response will be governed by N different relaxation modes, with relaxation times spaced as 1:1/4:1/
9: . . . :1/N2.

This last result, which we obtained by a rather qualitative argument, is not the exact solution to
this model. The correct result is

gbl 1 gal N2
T : —-—-— g —— —‘0 6kT 4 sin2 ( par/2N) 6kT 11's (11.4.4)

The last term in Equation 11.4.4 employs the fact that sin x as x for small x. Thus the simple
scaling of 7}, with (N/p)2 in Equation 11.4.3 is a very good approximation for small p, i.e., for the
modes that involve big sections of the chain. It is these modes that we hope to describe well by the
BSM; the modes for very short pieces of a real chain should depend more on local structural details
and are therefore less likely to be captured by this approach. Comparing Equation 11.4.4 and
Equation 11.4.3 we can see that the numerical prefactor for Tseg can be specified:

()2;
736g 2 6772” (1145)

Again, however, it should be emphasized that the BSM is expected to describe the longer range
motions of the chain, not the local details, so the numerical prefactor in rseg should not be taken too
seriously. It is also worthwhile to confirm that the collection of quantities on the right-hand side of
Equation 11.4.5 gives units of time. The cgs units for g are g/s (recall the beginning of Chapter 9)
and b is in cm, while kT has units of energy, or g cm2/s2. The net result is therefore (g/s)(cm2)/
(g cmz/sz) = s.

Now that we have a good representation of the relaxation times of the model, we need to see
how they affect G(t), and therefore G*(co) and 17. First, we expect that each mode will contribute an
exponential decay to G(t), rather like the single mode of the Maxwell model. Because we are
dealing with normal modes, they are independent of one another, so we just sum them:

N
G(t) = Z GP exp(—t/'rp) (11.4.6)

p=1

We have inserted a front factor, GP, which gives the amplitude of each mode; Gp must have the
units of a modulus. We now invoke the equipartition theorem of statistical mechanics: each degree
of freedom, or normal mode, acquires kT of thermal energy. Furthermore, we can assume that the
modulus will increase linearly with the number of chains per unit volume because each chain can
store the same amount of elastic energy under deformation. The number of chains per unit volume
is cNav/M, where c is the concentration in g/mL. Therefore we can equate Gp with (cNav/M)
H" = CRT/M:

, N
G(t) = % exp(—t/Tp) (11.4.7)

p=l

You should check that CRT/M does have the units of modulus and compare this quantity to the
modulus of the ideal elastomer, pRT/Mx, from Equation 10.5.17. Equation 1 1.4.7 is, in fact, the result
that is obtained by a full solution of the model, but that would require a great deal more legwork.
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Figure 11.12 Stress relaxation modulus G(t) for the Rouse model with N 2 10 beads. The contributions of
the nine individual modes as a function of reduced time {/71 are indicated by dashed lines.

We plot this modulus in Figure 11.12, as MG(I)/CRT versus [/7]. Recalling that rp/rl = 1/p2,
we have

M N 2
gig—7:00) 2 Zexp(—i—t) (11.4.8)

p=l 1

This function may be compared to G(t) for the Maxwell element shown in Figure 11.6. There are
now three regimes of behavior: short times, t < TN, where little relaxation occurs; t> r], where the
stress completely relaxes; TN < t < 71, where each mode contributes. It is this intermediate regime
that is new and which is a direct consequence of the multiple relaxation times. Because 71 2: NQTN,
the width of this regime on the time axis should grow as M2. Consequently we have succeeded in
achieving the two goals identified at the start of this section: we have a microscopic model that
exhibits a broad range of relaxation processes.

The dynamic shear moduli can be obtained from G(t) via Equation 1 1.3.7 (after looking up the
integrals of the form [cos (03 exp (—s/rp) ds):

_cRT N (mTp)2
M 17:] 1+(p)2

RT N
G” : (0715 +C_ 2

COT}?

M p=l 1 + (wrp)2

GI

(11.4.9)

where we note that the loss modulus includes an additive contribution from a purely viscous
solvent. We could plot these functions as they stand, once values for N and 756g (or b and g) are
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specified. However, we can also form intrinsic functions (by analogy to the intrinsic viscosity in
Section 9.3) as follows:

(1 1.4.10)n _[0”] :1im (G M“)
c—rO C

and then reduced functions as

M N (an )2
C}! C}!

__ p[ L?

ERMH

]

G;1+(m—P)2
(11.4.11)N

[Gflin*
_

]"Zfl_—_1+(:J%

Finally, we can normalize the frequency axis by the longest relaxation time, recalling that
(rp/71)=1/p2. Thus we arrive at a functional form that depends only on the dimensionless
variables N and (071:

[G!]R=i
(w71)2(Tp/T1)2

2%
(£0702

p=1 1+(071)2(7p/71)2 p=1 P4 +0011)2
(11.4.12)

N N 2
_ (wTi)(7p/Tl) __ (6071)}?—— Z, Z‘|‘(w’71)2(’Tp/’T1)2

—
P4 +0071)2p21 p=1

These functions are plotted in Figure 11.13 and the results can be compared to those for the
Maxwell model in Figure 11.9a. At low frequencies, am < 1, the liquid-like response is the same:
G’ ~ (02, G” N w, and G" > G’. At very high frequencies, (O’TN > 1, the material is a solid and again

101 I 1 III“! I i IIHIq I IIIIIHL‘afl I IllHL

N=10 I

_. ------- Gr

0_2
I llllllll l I lllllll l llllllll l I LIIIIl

10-1 1o0 101 102 103
m€1

Figure 11.13 Reduced intrinsic dynamic moduli [G’]R and [G”]R versus reduced frequency am for the
Rouse model for the same lO—bead chain as in Figure 11.12. The limiting slopes are also indicated.
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the response is the same: G’ N coo, G” ~ (0‘ 1, and G’ > G”. As with G(t), it is in the intermediate
region that the results differ. Now we have N relaxations rather than the single mode of the
Maxwell element and so G’ and G" evolve slowly with a) for 1/1'1 < w < ”TN; 6’ and G" both
increase approximately as (01/2 (although this is not evident here as N is small).

The Rouse model also makes an explicit prediction for the intrinsic viscosity, [7}] (see
Section 9.3). We need to take the solution loss modulus, G” (Equation 11.4.9), use the relation
between G” and 1) (Equation 11.2.24), and take the dual limits of w—> 0 and c—> 0.

G__’:
+c_RT +cRT

N 7,,

The last transformation was taken because

:31: 210122
$3. a, N _. 00 (11.4.14)

1'1 6

where we have inserted the known result for this infinite sum. Thus

1) — n5 RT’TI’JTZ_ 1 __ 2 11.4.1[n] 6133 ( 11.6 ) M11156 ( 5)

As we demonstrated above, 1'1 ~ M2, so the Rouse model predicts that [n] N M. We saw in Section
9.3 that this is not experimentally correct. This is, in fact, the clear evidence that the Rouse model
is missing an important ingredient in solution dynamics, namely the hydrodynamic interactions
described in Section 9.7. As a final note, we can state that the tracer diffusion coefficient of the
Rouse model is given by

[J
D = ————— 11.4.16‘ (N + 1); ( )

which is what we termed thefreely draining result in Section 9.7. This expression has N + 1 in place
of N because there are N + 1 beads, but this is of no real consequence as pointed out previously.

11.5 Zimm Model for Dilute Solutions, Rouse Model
for Unentangled Melts

As we have just seen, the Rouse version of the BSM predicts that [7}] NM and Dt ~ l/M, whereas
we saw in Chapter 9 that experimentally [n] w M3"—1 and DI N M ’V, with v = 0.5 in a theta solvent
and 0.6 in a good solvent. The principal reason for this discrepancy is the phenomenon of
hydrodynamic interactions. In the context of the BSM, this means that the motion of any one
bead through the solvent perturbs the fluid flow at the position of every other bead. This effect was
incorporated into the Rouse model by Zimm, utilizing the approach of Kirkwood and Riseman
introduced in Section 9.7. As described there, two simplifying assumptions were necessary to make
the solution tractable. First, the description of the hydrodynamic interaction was truncated at the
leading term (the so-called Oseen tensor), where the effect of bead j on bead k falls off as l/rjk.
Second, the instantaneous 1/rflc was replaced by its equilibrium average, (1/wk)using the Gaussian
distribution; this is called the pre-averaging approximation. After these assumptions it proves
possible to transform to a set of normal coordinates, just as in the Rouse model, and extract a set of
N relaxation times, 7p, and associated normal modes. In contrast to the Rouse model, there is no
analytical solution for the normal modes and the relaxation times; the exact solution can only be
obtained numerically. (However, efficient algorithms have been developed to do this [6].)

The predictions of the Zimm model are identical to those of the Rouse model in terms of the
form of the equations (e.g., Equation 11.4.7 and Equation 11.4.9 for G(t), G’, and G”), but differ



440 Linear Viscoelasticity

only in the relative values of the relaxation times. Qualitatively, the hydrodynamic interaction
accelerates the relaxation of the chain because each bead communicates with every other directly
through the solvent, rather than just by the springs. To put it another way, the relaxation times
become more closely Spaced than 1/p2. We saw in Chapter 9 that the diffusion constant of a single
chain and the intrinsic viscosity were well described by picturing the coil as a sphere with a radius
proportional to Rg; the same approach is successful here. A relation that plays the same role for
rotational friction as Stokes’ law does for translational friction (Equation 9.2.4) is called the
Stokes—Einstein—Debye equation. It gives the rotational time for a sphere of radius R as

87TR3 n5
Trot :

kT
(11.51)

We present this result without derivation, but we can observe that it has the same structure as 736g
in the BSM (Equation 11.4.5), if we recognize that f N bm. On this basis we may propose that

3
Rgns M31)";

71
rv -—— N ————

kT kT (11.5.2)

Thus, in a theta solvent, the longest relaxation time should scale as M"5
, which turns out to be

exactly the prediction of the Zimm model. We also can see that the longest relaxation time (NRE)
and the intrinsic viscosity (“IRE/M) are again intimately related:

1711Mm71 N
RT

(11.5.3)

which was also a prediction for the Rouse model (Equation 11.4.15).
We need to be a little careful about something here. The M dependences of [1)], D,, and now 1'1

are all based on the M dependence of R g because hydrodynamic interactions are sufficiently strong
to make the dynamic behavior of the entire chain equivalent to that of a hard sphere. The effect of
solvent quality is accounted for through the appropriate value of V and thus this argument works
equally well for theta solvents and good solvents. However, the Zimm model for the full
viscoelastic spectrum is only strictly valid for theta chains because (a) the model is freely jointed
and has no self—avoidance terms and (b) the hydrodynamic interaction is incorporated via pre-
averaging over a Gaussian distribution. This may seem a little disappointing in the sense that we
have simple physical arguments that give the correct M dependences of the global chain dynamics
in any solvent ([17], D,, and 7'1), but the model for the internal chain dynamics (G’, G”, and 7,, for
p > 1) can only be applied to theta solvents. However, it turns out that there are various approxi-
mate ways that the effects of varying solvent quality can be incorporated into the Zimm model and
several are sufficiently accurate to describe experimental data very well. We will briefly describe
the most physically transparent approach known as dynamic scaling; it is in the spirit of the “a coil
behaves hydrodynamically like a hard sphere” argument.

The algebra is very simple. Returning to Equation 11.5.2, we have

Ran-9 N N31) {93$

[CT [CT
~ N3”¢,,g (11.5.4)Tlm

where again we invoke g“ N bns. By analogy with Equation 11.4.3, we expect that the relaxation
time for a subsection of the chain containing N/p units should scale as (N/p)3", and thus we assert
that any relaxation time can be written

N
311

7 N _ 786 (11.5.5)p (p) g
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:3 = p’3" (11.5.6)

This can be substituted directly into the expressions for the reduced intrinsic dynamic moduli,
Equation 11.4.12, and thus

N 2 —3V 2

[01]}? Z
((071)09 )

[GUJR

p=1 1+(w71)2(P 3”)2
N

Z W
Fl 1+(w71)2(p4»)?

(11.5.7)

These expressions are straightforward to evaluate and give predictions for the moduli that are
essentially indistinguishable from the full numerical evaluation of the Zimm model.

Comparisons of the Zimm model to the viscoelastic properties of flexible chains are presented
in Figure 11.14. In these experiments, five high molecular weight 1,4-polybutadiene chains were
dissolved in diethylhexyl phthalate, which is a theta solvent at 18.0°C. Measurements were made at
a series of dilute concentrations, and extrapolated to infinite dilution to obtain the intrinsic moduli.
(The actual measurements were made on a flow birefringence apparatus, which determines an
optical anisotrOpy that is directly proportional to the stress; the Optical experiment is considerably
more sensitive than most rheometers, which is important for very dilute solutions where the signals
are small.) The data are plotted as reduced intrinsic moduli versus reduced frequency, am, and
thus theory is compared with the data with no adjustable parameters. In Figure 11.14a, the
temperature corresponds to the theta point and the fit is to the dynamic scaling result with
v=0.50, or to the full numerical solution to the Zimm theory; the two curves are identical. In
Figure 11.14b, the temperature has increased to 30°C and now there is some degree of excluded
volume. The data for G” for the highest M polymer are well described by dynamic scaling with
v m 0.52-0.53, and furthermore the longest relaxation times used to collapse the data, shown in
Figure 11.15, have the expected dependence on M3 ”. Based on many results such as these, we may
conclude that the Zimm model, modified for the effects of excluded volume as needed, provides a
quantitative description of the dynamics of isolated, long, flexible chains.

From the success of the Zimm model, one might be led to conclude that the Rouse model serves
only as a conceptual foundation on which to build more elaborate descriptions of solution
viscoelasticity and that it is not so useful in terms of actual data. However, it turns out that the
Rouse model is very successful in describing the dynamics of low molecular weight polymer melts
or concentrated solutions. The reason is twofold. First, at very high concentrations, the
hydrodynamic interactions are effectively screened. Any motion of one monomer is transmitted
by many other monomers before it reaches another monomer on the same chain and thus it imparts
no through-space coherence to the chain motion. Second, the chains are very nearly Gaussian in the
melt, as discussed in Section 7.7, so the freely jointed assumption is appropriate. In the melt there
is no solvent, so the effect of frictional resistance to motion on the segmental level is subsumed
into the friction factor, 5. The Rouse model predicts that nNM, 1'1 ~M2, and DNM

_
1, all of

which are at least approximately true for low molecular weight polymers in the melt. (They are not
exactly true in most cases, because the subchain friction factor ; develops an M dependence at low
M, due primarily to the M dependence of the glass transition temperature. This effect will be
discussed in Chapter 12, but it can be corrected for, and then the Rouse predictions hold rather
well.) We have been careful to emphasize low molecular weight melts here because for higher
molecular weights a new effect comes into play and the Rouse model is again inadequate. The new
effect is called entanglement and we describe it in the next section. To conclude this section, we
summarize in Table 11.1 the main predictions for the M dependence of chain dynamics from the
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Figure 11.14 Experimentally obtained reduced intrinsic moduli for five polybutadiene samples in dioctyl
phthalate, compared to the predictions of the Zimm model. (a) At the theta temperature, 18°C, with v : 0.50.
(b) The data for G” for the highest molecular weight sample only, slightly above the theta temperature, at
30°C. The curves represent the Zimm theory with three different scaling exponents, v, and the Rouse theory.
The data have been shifted vertically by a factor a, but it is clear that the experimental slope agrees with
expectation for modest excluded volume (v > 0.50). (Data obtained from Sahouani, H. and Lodge, T.P.,
Macromolecules, 25, 5632, 1992. With permission.)
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Figure 1 1.1 5 Infinite dilution longest relaxation time versus molecular weight at the theta temperature
(18°C) and at 30°C., for the same solutions as in Figure 11.14. The exponents are obtained from the fitted slopes
(= 31”). (Data obtained from Sahouani, H., and Lodge, T.P., Macromolecules, 25, 5632, 1992. With permission.)

two forms of the BSM (and also the related predictions of the reptation model to be presented in
Section 11.7), and give an example of the application of the BSM.

Example 11.2
Use the BSM to estimate the longest relaxation time and the segmental relaxation time for polystyrene
with M = 106 g/mol in cyclohexane at the theta temperature (35°C). Recall that values of Dt and [n]
were given as a function of M for this system in Figure 9.10a and Figure 9.5, respectively.

Solution
There are several different ways to proceed. For example, from Figure 9.10a we find that
Dt m 10— 7 cmZ/s, and therefore we can calculate the hydrodynamic radius by the Stokes—Einstein
equation (Equation 9.5.5) (the viscosity of cyclohexane is about 0.8 cP at 35°C):

1.4 X 10'16 x 308
6x3.14><0.008><10—7 3X 0 cm 30nmRh

Table 1 1.1 Predictions of Three Models for the Molecular Weight Dependence
of Various Chain Dynamics Quantities

Pr0perty Rouse Zimm Reptation

_ H N —1 __ k?“ N _,, __ENN —2
DI Dt —-

m
M D[ —

61Tfl5Rh
M Dt —

N;
fi M

3
71 T1 N Nseg N M2 T] N NBPTSQg N MBV T1 N §ETseg N M3

RT RT _in] [MAJ-miLNM [n]~m”j}~M3”1 —
n — —- n=§TIGN~M3
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We can now insert this value as R in Equation 11.5.1 to obtain the longest relaxation time:

8 x 3.14 x (3 x 10%3 x 0.008
m 10—41.4 x 10-16 x 308 STl 9‘5 Trot :

Alternatively, we can use the value of [n] m 84 mL/g from Figure 9.5 in Equation 11.5.3:

84 x 106 x 0.008
m w 10—56x1023x1.4x10"16><308 3X 371

These two values are in reasonable agreement. (Compare them to the value of the longest
relaxation time for molten poly(a-methylstyrene) in Figure 11.2 and Example 11.1: chains relax
a lot more rapidly in dilute solution than in the melt.)

To estimate Tsega we can take Equation 11.5.4 with v = 0.5 (appr0priate for a theta solvent) and
N =M/M0 = 106/104 4 104;

10-4 _,0 S1' m ~--—-— g
53g

(104)1.5

This suggests that motions on the length scale of a styrene monomer take place in 100 ps, which is
reasonable. It might be more in the spirit of the model to take the segment as a few persistence
lengths. From Table 6.1 and the discussion in Section 6.4, about 10 styrene monomers correspond
to four persistence lengths and the newly computed N2106/(10 x 104) a: 1000. This gives a
correspondingly larger value for 7333 of about 3 x 10 ‘9 s.

11.6 Phenomenology of Entanglement
In the previous two sections we have emphasized mechanical models for the viscoelastic response
of polymer chains and we have seen how well the BSM in the Zimm form is able to describe the
behavior in very dilute solutions. In large measure, these models were formulated before extensive
experimental tests had been performed. When we turn our attention to highly concentrated
solutions and melts, however, the situation is reversed. The basic experimental phenomenology
has been well known since the 19503 and 19605, but only in the 1970s did a successful, detailed
molecular model emerge. This model was initially developed by Doi and Edwards [7], based on the
reptation hypothesis of de Gennes [8]. We will follow this historical chronology by focusing in this
section on the experimental phenomena and then in the next section on the reptation model itself.

11.6.1 Rubbery Plateau

The Rouse and Zimm models for G’ and G” of isolated chains have three distinct regimes of
behavior. At low frequencies, our] < 1, the response is that of a liquid, with G’ wwz, G" Na), and
G” > G’. This terminal regime is common to all liquids and is therefore common to all models, as
noted in Section 11.2. At very high frequencies, (or-N > 1 where TN is the shortest relaxation time,
the response is solid-like: G’ N (00, G” N 00—1, and G‘r >> G” . It is the third, intermediate zone that is
characteristic of the BSM; the response depends on the detailed nature of the spectrum of
relaxation times, i.e., the internal degrees of freedom of the chain.

When we turn to a molten polymer, we find that there are now four distinct regions of behavior.
This is illustrated in Figure 11.16a for G’ and G”, and in Figure 11.16b for (30?). The latter figure
may be compared to Figure 11.2; the results are qualitatively very similar. The long time (or low
frequency) terminal regime is just as before (albeit with a considerably different value of 71 and n)
and the short time (high frequency) regime is solid-like, with a modulus typical of a glass
(109_1010 Pa). Thus, it is in the internal dynamics that a new feature has emerged. In particular,
there is a new regime of solid-like behavior, with G’ wwo % 105—106 Pa. This modulus is
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Figure 11.16 Illustration of the viscoelastic response of highly entangled polymer melts. (a) G’ and G”
versus reduced frequency for poly(vinyl methyl ether). (Data from Kannan, RM. and Lodge, T.P., Macro-
molecules, 30, 3694, 1997. With permission.) (b) G(t) versus reduced time for polyisobutylene. (Data from
Catsiff, E. and Tobolsky, A.V., J. Colloid. Sal, 10, 375, 1955. With permission.) The significance of the shift
factor or will be discussed in Chapter 12.

characteristic of a lightly cross-linked rubber, as we saw in Chapter 10. Qualitatively, if we follow
G(t) in Figure 11.16b starting from short times, the initial modulus is that of a glass. Rapidly,
however, the stress begins to relax, in what is called the transition zone. This character is similar to
what is seen when a glass is heated through the glass transition temperature (see Chapter 12), hence
the terminology. The remarkable new feature is that at some characteristic time, Te in
Figure 11.16b, the stress stops relaxing before it has decayed to zero. In other words, the material
thinks it is a solid again, albeit with a much reduced modulus compared to the glassy state. This
so-called rubbery plateau can persist for some decades in time before finally giving way to flow in
the terminal regime. Correspondingly, in G" we see two peaks, one in the transition zone and one
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at the onset of the terminal regime. The former corresponds to motions of a few monomers at a
time and represents the transition out of the glassy state. The second corresponds to motions of
entire molecules, or large subsections, and represents the final transition to liquid-like behavior.
The rubbery plateau in G’ and G(t) then arises because of an increased separation on frequency or
time between local relaxations and chain relaxations. A plateau in G’ signifies a gap in the
spectrum of relaxation times, which might arise for any number of reasons. In the particular
case of a molten flexible polymer, the gap in the relaxation time spectrum arises for a purely
topological reason, referred to as intermolecular entanglements.

For high molecular weight polymers, the individual chains become intertwined with one
another. The full relaxation of one chain is thus highly dependent on its surroundings, as one
chain cannot pass through another. Consequently, the longer relaxation times of the chain are
severely increased by this effect, whereas relaxations of a few monomers can still proceed rapidly;
this gives rise to the gap in the relaxation time spectrum. The modulus in the plateau region (either
in G0) or in G’) is called GN and has a magnitude very similar to the solid modulus of the same
polymer if it were lightly cross-linked like a rubber band. Thus the interchain entanglements can be
thought of as temporary cross-links; for times shorter than the lifetime of an entanglement, the
material behaves as a solid, but then at longer times the material flows. In the next section we will
explore the reptotz'on model, which explains how chains escape from their entanglements, but here
we need to examine the nature of the entanglements themselves. As we saw in Chapter 10, to a first
approximation, the modulus of a lightly cross-linked rubber is given by G = pRT/Mx where p is the
density and M, is the molecular weight between cross-links. As with the prefactor for G in the
BSM (see Equation 11.4.7 and associated discussion), this modulus is an example of the equipar-
tition theorem: it is the number of network strands per unit volume, ,oN,W MI, multiplied by the
thermal energy, kT. We now use this equation to define a molecular weight between entangle-
ments, Me:

..—__ (11.6.1)

In other words, Me is the average molecular weight between temporary cross-links. The parameter
Me has been tabulated for many flexible polymers; it typically corresponds to about 50—200
monomers. Examples are given in Table 11.2. We can now see that the relaxation of the polymer
in the transition zone corresponds to relaxations of chain segments less than M, long, whereas in the
terminal zone we have relaxations of chains containing many (i.e., M/Me) entanglement lengths.

Although Me provides a convenient parameterization of entanglements, it is not a fully
satisfying explanation of the effect. For example, in a real cross-linked rubber, the cross-links

Table 11.2 Plateau Modulus, Molecular Weight between Entanglements,
Packing Length, and Entanglement Spacing for Some Common Polymers
at 140°C

Polymer GN (MPa) M, (g/mol) p*(A) d (A)

Polyethylene 2.6 840 1 .69 33
Poly(ethylene oxide) 1.8 1,600 1.94 37.5
1,4-Polybutadiene 1 .2 1,800 2.29 44
1 ,4-Polyisoprene 0.42 5,400 3.20 62
Polyisobutylene 0.32 7,300 3.43 66
Poly(methyl methacrylate) 0.31 10,000 3.46 67
Polystyrene 0.20 13,000 3.95 76.5
Poly(dimethylsiloxane) 0.20 12,000 4.06 79

Source: From Fetters, L.J., Lohse, D.J., Richter, D., Witten, TA, and Zirkel, A.,
Macromolecules, 27, 4639, 1994.
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are identifiable chemical entities, different from ordinary monomers on the chain. In the
entangled melt, we probably should not think of one monomer in an Me-long section of chain
as being stuck to its surroundings, while all the other ones move happily. Rather, the entangle—
ment phenomenon represents the cumulative effect of many interactions between monomers on
different chains, with no single monomer behaving differently on average from any other. Thus,
the picture of a temporary network with particular points of entanglement, although physically
appealing, is potentially misleading. An interesting question then arises: can we predict what Mc
should be for a given polymer, based on things we already know about the chemical structure?
The answer turns out to be yes, and we summarize the explanation given by Fetters and
coworkers [9].

11.6.2 Dependence of Me on Molecular Structure

From Table 11.2 we can discern a qualitative correlation between Me and the bulkiness of the
sidegroups. For example, polystyrene, poly(methyl methacrylate), and poly(dimethylsiloxane)
have relatively large values of Me and relatively large sidegroups whereas polyethylene,
poly(ethylene oxide), and polybutadiene have much smaller Me. In general, “thin” chains entangle
more easily (have lower values of Me) than “fat” chains. If we suppose that entanglement effects
are due to the uncrossability and mutual intertwining of different chains, then a crucial parameter
should be the amount of chain contour per unit volume. If we may be permitted a culinary analogy,
a bowl of cooked cappellini has many more entanglements than the same volume of fettuccini. To
be more quantitative, we introduce the packing length,p*, which is the ratio of the volume occupied by
a chain (M/pNav) to its mean square end-to—end distance; values are also listed in Table 1 1.2.

M l _ Mb

PNav (h2>0
—

1‘3'Navcoof2
(11.6.2)p*

Here Mb is the molecular weight per backbone bond, C00 is the characteristic ratio (recall Equation
6.3.1), and E is the average backbone bond length. Therefore thinner chains will tend to have a
smaller packing length because they have a smaller Mb. Note, however, that more flexible chains
will have a smaller COO, which tends to increase p*.

Now consider the volume of space pervaded by a chain, Vp = ARE, where A is a constant of
order unity. The pervaded volume is considerably larger than the occupied volume for a long chain.
The number of different chains, 11, that pack into a volume Vp is given by

NV’1v ap M (11.6.3)

Note that because Vp increases as R: w M3/2, It increases with M U2. Now we introduce a
hypothesis: the onset of entanglement effects occurs when n :3 2, i.e., when M is just big enough
that a test chain and one other intertwine to pack a volume VP. Certainly we would not expect
entanglement effects if n were less than 2 and maybe the onset really occurs for some larger value,
but that would just affect the proportionality constant in the following analysis.

We rewrite the radius of gyration as

COOME
R :

W

1 1.694g ,Amn, ( )

and thus

n:2:A——-—99————\/Lfimvav (men
(61%)
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Figure 11.17 Dependence of the plateau modulus, GN (and thus the molecular weight between entangle-
ments, Me) on the packing length, p*, for various polymers. (From Fetters, L.J., Lohse, D.J., Richter, D.,
Witten, T.A., and Zirkel, A., Macromolecules, 27, 4639, 1994. With permission.)

We now equate M6 with the value of M for which n = 2:

4M363 pNaM = b _*3 .zizcgofifipzNgv (A!)303*)3 (11.6.6)

where A’ is a new constant 2 A/ (12%). Using the empirical definition of Me (Equation 11.6.1),
we can express the plateau modulus as

2 kT

(19*)3
This relation is compared to an extensive compilation of experimental data in Figure 11.17.
The dependence on (19*)"3 is very clear and the resulting value of the unknown constant A is about
1.7. Thus we can assert that entanglement is a universal property of flexible chains and that the spacing
of entanglements for a given polymer is determined entirely by the density (p) and the flexibility (C00).

(11.6.7)GN = (A’)

Example 11.3
A well-known rule of thumb in adhesion science is the Dahlquist criterion, which states that in
order for a pressure sensitive adhesive (PSA) to have good tack, it should have a plateau modulus
below 3 x 105 Pa. Tack describes the ability of an adhesive to form a bond of measurable strength,
quickly, under a light load (e. g., Post-it Notes). Give a qualitative explanation for this rule, and
comment on whether the polymers in Table 11.2 might be useful as PSAs.

Solution
There are two aspects to tack: forming a bond quickly and developing mechanical strength.
The former requires molecular motion to be rapid; higher GN means smaller Me (or M, in the
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cross-linked case) and thus more restricted chain motions. A typical PSA is soft and squishy to the
touch and distinctly softer than a rubber band (GN :3 106 Pa or more). At the molecular level, this
means that the molecules are able to flow and conform to the surfaces to be adhered. The
mechanical strength part of the problem is a little more subtle. It turns out that the strength of an
adhesive is much more than the sum of the attractive forces between the glue and the substrate;
most of it comes from energy dissipation in deforming the adhesive. This dissipation is achieved
by molecular motion, so softer materials are favored for this reason too. However, this argument
does not mean that the modulus should be made as small as possible; then there would be no
strength at all. All adhesives are polymers because the many modes of viscoelastic relaxation
provide many modes of dissipation, and thus good adhesive strength.

From Table 11.2 we can see that the last five polymers might be candidates for PSAs (poly-
isoprene, polyisobutylene, poly(methyl methacrylate), polystyrene, and poly(dimethylsiloxane)),
although their plateau moduli are very close to the limit of 3 x 105 Pa. In order to reduce the
modulus of a PSA, it is common to add a lower molecular weight diluent or oil, known as a
tackz'fier. Experimentally, GN decreases at least as c2, so adding 50% of a tackifier should drop the
modulus by at least a factor of (1/2)2 = 1/4. With this additional degree of freedom, we could make
a PSA out of almost any polymer, except for one crucial factor: the bond also needs to form
quickly. How quick is quick enough? Well, common experience tells us that we do not want to
hold Scotch tape in place for 10 3 while it sets, so quickly means within 1 s or less. This brings into
play the time dependence of the modulus: at very short times, the material will behave as a glass,
with G as 109 Pa or more. So, we need to make sure that timescales of say 0.1—1 3 fall within the
rubbery plateau of response. Figure 11.2 tells us that poly(a-methylstyrene) would not work;
the rubbery plateau does not begin until 1—10 3 (and then only at 186°C). Figure 11.16a, on the
other hand, suggests that polyisobutylene would be a good candidate at room temperature. In fact,
out of our list of five polymers from Table 11.2, polystyrene and poly(methyl methacrylate) can
be eliminated; at room temperature for timescales of 1 3, they behave as hard, glassy solids
(e.g., Plexiglas). This demarcation depends on a crucial parameter—the glass transition temperature—
whjch is the subject of the next chapter. In addition to smaller values of GN, PSAs tend to have
glass transition temperatures below room temperature.

Before proceeding to the reptation model, two more phenomenological effects of entanglement
deserve comment. The first is the molecular weight dependence of the viscosity. Recall from
Equation 11.3.4 that the viscosity is the integral over G(t). Thus, when entanglement effects set in,
the rubbery plateau grows in extent and the area under G(t) increases markedly. The viscosity
itself, plotted for several polymers in Figure 11.18, shows a very strong but universal dependence
on M, namely a3‘4i0‘2, when M > Me. This was illustrated earlier, in Figure 11.1, for one
particular polymer. For shorter polymers, M S Me, the dependence is much weaker because there is
no entanglement and is more consistent with the Rouse model (17 ~ M). The molecular weight for
which the dependence changes is called MC and generally MC 2: 2—3 Me. The exponent of 3.4 is
something that any successful theory of polymer melt dynamics must explain. From the practical
point of view, it means that the processing of molten polymers will be very dependent on the
average molecular weight; as noted in the context of Figure 11.1, an increase by a factor of two in
M results in an increase by a factor of 10 in 17.

The second important phenomenological effect is that of large-scale elastic recovery. This is a
nonlinear response and therefore not something we will cover in detail, but it serves to illustrate a
crucial point. The most remarkable feature of a rubber band is that not only can it be deformed by
500% or more without breaking, but that it recovers its original shape upon letting go. The same is
true of a molten polymer liquid. If a very large strain is applied quickly and then released before
the stress has had a chance to relax much, the liquid will also snap back to its original shape.
(How quickly is quickly? From Figure 11.16b we can see that the polymer will behave as a rubbery
solid for times significantly less than 71.) It is this ability to show large scale elastic recovery that
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Figure 11.18 Dependence of the melt viscosity on molecular weight for a variety of polymers c and k are
arbitrary constants to shift the data. (Compiled by Berry, G.C. and Fox, T.G, Adv. Polym. Sci, 5, 261, 1968.
With permission.)

truly is the hallmark of entanglements in polymer liquids. Many systems can show a plateau in
G’ or G(t) that has nothing to do with entanglements; examples include dense colloidal suSpensions
near their glass transition, and densely packed, roughly spherical polymer objects (e.g., block
copolymer micelles, hyperbranched chains, dendrimers, and microgels). One might be tempted to
argue on this basis that the viscoelastic response of flexible polymers has nothing much to do with
entanglements, because other nonentangling systems also show a plateau in G’ with a similar
magnitude to ON. This argument is fallacious, however. A plateau in G’, as noted above, only
requires a wide separation between relaxation processes. Large—scale elastic recovery in a liquid, in
contrast, demands some kind of interchain entanglement. Materials comprising roughly spherical
objects such as those noted above can usually not be extended by even 5% or 10% without falling
apart, let alone the 500% that flexible polymer liquids can sustain.

11.7 Reptation Model
The reptation model was originally developed by de Gennes for a single, flexible chain trapped in a
pennanent network (reptation was coined from the Latin reptare, to creep) [8]. It was then
extended to a theory for linear and nonlinear rheological response of polymer liquids by Doi and
Edwards [7]. Here, as throughout the chapter, we will emphasize the linear response, but it is worth
notn in passing that the success of the reptation model in capturing nonlinear phenomena is at
least as impressive as its description of linear viscoelasticity. We will begin with a simple
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Figure 11.19 A single chain trapped in an array of obstacles, spaced an average distance d apart. By
snaking backward and forward through the obstacles, i.e., by reptating, the chain eventually escapes from its
original set of obstacles.

argument for the molecular weight dependence of the longest relaxation time and the diffusion
coefficient, before proceeding to the stress relaxation modulus.

11.7.1 Reptation Model: Longest Relaxation Time and Diffusivity

Imagine a chain trapped in a field of obstacles, as in the two-dimensional representation in
Figure 11.19. The obstacles have an average spacing d, which we will subsequently associate
with the average distance between entanglements (see Table 11.2). Therefore d % bx/NQ, where N6
is the number of monomers in M3; d is typically 30—80 A, i.e., longer than the persistence length
but less than Rg. How do the obstacles affect the relaxation and diffusion of the chain? There are
three regimes of behavior. On short times, such that individual monomers on average do not move
as far as d, the obstacles have no effect. We may associate this regime of behavior with the
transition zone of viscoelastic response, 2‘ < 76; segments of the chain up to N6 units long can relax
readily. On very long times, such that the chain has completely lost contact with the obstacles it
was surrounded by at time t: 0, it has fully relaxed; this is the terminal regime t> 1-1 as far as our
test chain is concerned. The intermediate regime, 11, < r g 1-1, is the one we must concentrate on,
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when the chain feels the confining effects of the obstacles. In particular we want to find the longest
relaxation time, which defines when the chain has fully escaped from its initial surroundings.

The reptation hypothesis is that the chain ultimately escapes from the obstacles by snaking
along its own contour. Under the influence of Brownian motion, one end of the chain comes out of
the obstacles and explores space at random, while the other end penetrates further into the
obstacles. However, this is a random process, so the chain is just as likely to move back in the
opposite direction; the snake has two heads. The key point is that when the chain moves back, it is
under no obligation to retrace its previous path through the obstacles; it will follow a random
course. In this way it will escape the first set of obstacles, as illustrated in Figure 11.19. Now, as
time goes on, random motion will drive the ends of the chain further and further into the initial set
of obstacles and then subsequent reverse motion will erase the memory of where the chain used to
be. The longest relaxation time will correspond to the moment when the middle segments of the
chain finally escape from the confines of the initial set of obstacles.

We can describe this process in the following way. The set of fixed obstacles with spacing d will
be replaced by a confining tube of diameter d, as in Figure 11.20. This tube is defined by the
conformation of the test chain at time t: 0', it is itself a random walk in three dimensions. The real
polymer segments will move freely within the tube due to the rapid segmental motions, but the
whole chain will only escape the tube by reptating out of the ends. We replace the real chain
(N monomers, statistical segment length b, R: = s/6) with an average chain that has N/Ne
entanglement lengths (with d2 =Neb2) trapped in the tube. When one end of this coarse-grained
chain diffuses out of the end of the tube and the other end moves a distance d into the tube, that
portion of the tube is erased (see Figure 11.20). The entire tube will be erased when the chain
center-of-mass has diffused a distance proportional to the length of the tube, L. We can define a
diffusion coefficient for the motion within the tube, Dmbe, by

(L2) = 2r),ut,.;rrep (11.7.1)
where Trap is the reptation time, the time needed to completely erase the tube. This diffusion
process is postulated to have a Rouseelike dependence on chain length, i.e., the friction of the chain

Figure 11.20 The obstacles in Figure 11.19 can be replaced by a tube with diameter d; the process of
reptation gradually erases the tube from the ends inward.



Reptation Model 453

moving in its tube is proportional to the number of tube segments, N/Ne, and the friction factor of
each tube segment, £6. The latter quantity is just the number of monomers in the segment, Ne, times
the monomeric friction factor, £0. (The monomeric friction factor is similar to the friction factor of
a bead in the Rouse model, but is calculated to correspond to the friction per repeat unit.) Using this
argument we find

friction (N/NBMe (N/Ne)(Neg’0) Ng’o

Of course, the contour length of the tube is directly related to the length of the chain, namely
N N

L=Ed=EJMb
(11.7.3)

so that we can solve Equation 11.7.1 for Twp

Z .1: z 1: 211. z mm,
ZDtube Ne 2kT ZkTNe

(11.7.2)

(11.7.4)

This equation can be recast in terms of molecular weight by recognizing that N = M[M0, where M0
is the monomer molecular weight, N/Ne = M/Me, and rseg N bzgo/kT:

M3
Trep

gm'rseg
(11.15)

The crucial feature of this result is that the longest relaxation time of the chain is predicted to vary
with M3. This dependence is much stronger than the Zimm (r, ~M3’2) or Rouse (1'1 ~M2) results
and arises because of the fact that the chain conformation (or stress) is relaxed only by the motion
of the chain ends, rather than by the concurrent relaxation of all segments of the chain. As noted at
the beginning of the chapter, describing the molecular weight dependences of the various dynamic
properties is the first goal of molecular models.

In addition, we can consider the long-time translational diffusion of the chain. At the instant the
chain finally escapes the initial tube, one of its ends must just be touching the initial tube at some
point. The initial tube and the new tube are uncorrelated random walks, except that they touch in
this manner. Therefore in the time Twp the center of mass of the chain moves a mean-square
distance of approximately (hz), and therefore we can write

(112) = W = 60.71,,
1 N, H" (11.7.6)

Wanna;
Thus Dt decreases as M‘2, which is also a much stronger dependence than the Zimm (Dt ~ M"U2)
and Rouse (Dtr-vM"1) models. This particular prediction of the reptation model inspired a great
deal of experimental activity, including the development and application of several new ap-
proaches to measuring 0,. The results overall are in reasonable agreement with Equation 11.7.6,
except that the M exponent (about —2.3) is slightly stronger than anticipated. An example is
shown in Figure 11.21 for hydrogenated 1,4-polybutadiene (essentially polyethylene) measured by
different researchers using several different techniques. Two possible reasons for the difference
between the experimental and theoretical M dependences will be discussed in Section 11.7.3.

11.7.2 Reptation Model: Viscoelastic Properties

Now that we have the reptation prediction for the longest relaxation time, we can also develop
predictions for G(t) and therefore G’, G", and 17. At short times (in the transition zone, I < 11,) the
chain sections between entanglements relax in a Rouse-like fashion before the relaxation effect-
ively ceases with G(t > re) = ON. The reptation model does not really address this regime.
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Figure 11.21 Experimental data for the diffusion of hydrogenated (or deuterated) polybutadienes from
various sources. (Compiled by Lodge, T.P., Phys. Rev. Lett., 83, 3218, 1999. With permission.)

At longer times, in the rubbery plateau and in the terminal regime, the escape from the tube also
involves a spectrum of Rouse-like modes, except that the chain is confined to the tube. The
argument above only addressed the longest relaxation time, but to avoid a good deal more
mathematics we will just state the result:

8 1 z s 1 p2:G(t)zGN Z EECXPC—E) =GNZ 7536x136 ) (11.7.7)
odd P odd p Trep

The time constants for the modes have a p2 dependence, which echoes the Rouse model, but the
amplitude of each mode is further attenuated by a factor of I/pz. Furthermore, only odd numbered
modes contribute due to the symmetry of the reptation process; the center of mass does not move
for even numbered modes. Consequently, Equation 11.7.7 is not much different from a single
exponential decay, dominated by the longest relaxation time. The dynamic moduli, G’ and G", can
be obtained from Equation 11.7.7 through the sine and cosine Fourier transforms (Equation
1 1.3.7):

8 1 2
G, = GN"—2 Z 7 “((0719)2

7T Odd
P

p 1 + ((0713)

8 1 (org” : GN'— _ _____B___
772 «1;; P2 1 + (p)2

(11.7.8)

These predictions are compared with experimental data for a hydrogenated polybutadiene in
Figure 11.22. The main discrepancy occurs in G”(w) for frequencies in the plateau zone where
experimentally the decrease in G” with a) is rather less rapid than predicted. It will turn out that this
difference can be accounted for in much the same way as the difference in M exponents for D,
identified above, but again we will defer this discussion to the next section.
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Figure 11.22 Comparison of the basic reptation theory with experiment for the dynamic moduli of
hydrogenated polybutadiene melts. The main discrepancy is in the slope of G” at higher frequencies. (Data
from Tao, H., Huang, C.-I., and Lodge, T.P., Macromolecules, 32, 1212, 1999.)

Lastly we turn to the steady flow viscosity. This can be obtained by integrating over the
modulus (Equation 11.3.4):

7T2

11 : E,repGN (11.7.9)

Note that in performing this integration we ignore the modulus for times shorter than re, or in other
words, I: 0 for the stress relaxation process corresponds to the onset of the rubbery plateau. This
approximation is fine, because the time ranges are so different that the early time portion
contributes essentially nothing to the integral for a high M chain. The main result of Equation
11.7.9, and arguably the main result of the basic reptation model, is that the viscosity is predicted
to scale as M3. This should be compared with the universal experimental result of M“, illustrated
in Figure 11.1 and Figure 11.18. On the one hand, the fact that such a simple idea can get a
nontrivial answer (1; ~M3), which is not too different from reality, is very encouraging. On the
other hand, the difference is significant. Accordingly, after the following example we briefly
consider two omissions of the reptation model that are thought to account for the discrepancies
with the experimental results for DL, G", and n. The main predictions of reptation were also
summarized in Table 1 1.1.

Example 11.4
Consider the following polymer processing problem. Imagine you are making a plastic hoop by
injecting molten polymer into a mold. The molten polymer travels in two directions from the
injection point and meets on the opposite side of the hoop. How long do you need to wait for
the two liquid streams to merge after they first meet and develop full mechanical strength at the
junction? Assume the polymer is polystyrene, with M >> M, and a viscosity of 105 P at the
processing temperature, and use the reptation model. (The answer is of practical importance, in
the sense that the faster the part sets, the faster it can be ejected from the mold and the more parts
can be made per unit time. And, although the proposed geometry is rather artificial, the issue of
healing a polymer—polymer interface is a very general one.)
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Solution
The mechanical strength of a polymer part will depend on achieving full interpenetration or
entanglement of the various molecules. Assume that we start with two flat polymer surfaces that
are brought into contact at time t: 0. To achieve full interpenetration, we need to wait until the
average chain has diffused a distance of about R3. We have not been given direct information about
M for our polymer, so estimating Rg and Dt (from 77) could be tedious. However, in the reptation
model Twp is nothing more than the time to diffuse Rg, and Twp itself is simply related to n and the
plateau modulus, GN, through Equation 11.7.9. We can take the value of GN from Table 11.2; it is
about 2 x 105 Pa. This gives

5
Trepg

10 P
lPaSmOOS s

2 x 105 Pa 10 P
where we ignore the numerical prefactor of 772/12 in this estimate, and are careful to make the units
of viscosity and modulus match.

The answer suggests that interfacial healing will not be a problem in this processing operation,
as it will presumably take several seconds to fill the mold, and several more to cool the part
sufficiently to remove it from the mold. Note also that the form of this solution is exactly the same
as in Example 11.1, where we estimated the flow time from the modulus and the viscosity using the
Maxwell model. As a last comment, the issue of interfacial healing is much richer than this
analysis reveals. For example, significant mechanical strength at an interface will actually deve10p
after the chains have interpenetrated a distance of only about the tube diameter or entanglement
spacing and then it will continue to grow slowly as the chains become completely intermixed.
A full description of the evolution of interfacial strength with time therefore requires the complete
spectrum of relaxation times.

11.7.3 Reptation Model: Additional Relaxation Processes

The experimental scaling laws (D,~M_2'3, a3'4) have stronger M dependences than pre-
dicted by the reptation model. Numerically, the experimental results indicate more rapid chain
motion than by reptation alone. This is illustrated in Figure 11.23 for the viscosity. For chains
containing only a few Me the viscosity is significantly lower than expected by the model. However,
as M increases, the steeper experimental dependence suggests that the experiments might converge
on the reptation prediction at very high M. One obvious candidate for this more rapid relaxation is
the fact that the reptation model was developed for a chain moving in an array of fixed obstacles. In
reality, of course, the obstacles are a way of accounting for the entanglements with other chains,
and because all chains are moving, some entanglements should disappear while a test chain is
trying to reptate. In the tube language, we could imagine that the tube develops occasional leaks,
thereby allowing the chain to escape through the leaks rather than the ends (see Figure 11.24a).
This process is known as constraint release, and because it accelerates the chain relaxation, it
could explain why 77 is lower and D[ is higher compared to pure reptation. However, a quantitative
development of constraint release is complicated, and it is not yet clear how much of the
discrepancy between experiment and theory can be accounted for in this manner.

A second correction, termed contour length fluctuations, can actually reproduce the experi-
mental M dependences of n and 0,, plus the frequency dependence of G”(w), rather well. This
process applies even to a chain in an array of fixed obstacles. In the discussion preceding Equation
11.7.8, we argued that relaxation modes for which the center of mass does not move down the tube
do not contribute to G(t). In fact, this is not quite true. Imagine that we pin the center of the chain,
but let the ends wiggle around. There are “accordion” modes, in which the two ends of the chain
penetrate into (and out of) the average tube by a certain amount. If they do so, they can select a
different path on their way out, and thus they accelerate the relaxation of the chain ends. This is
illustrated in Figure 11.24b. (Of course, the ends must also occasionally fluctuate out of the tube,
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Figure 11.23 Discrepancy between experimental results and the reptation prediction for the viscosity. The
data are for hydrogenated polybutadiene at 140°C. (Reported in Tao, H., Lodge, T.P., and von Meerwall, E.D..
Macromolecules, 33, 1747, 2000. With permission.)

Figure 11.24 Illustration of additional relaxation processes that can bring reptation predictions into closer
agreement with experiment. (a) The two entangling chains indicated by solid circles diffuse away, allowing
the test chain to move sideways by the process of constraint release. (b) The ends of the chain can move some
distance into the tube by Brownian motion, without moving the center of mass, and therefore relax some stress
without reptation; these movements are called contour length fluctuations.
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but that has no effect on the escape from the tube if we consider the center to be pinned.) As this
process is a random fluctuation, we expect that the characteristic distance the ends can penetrate
should be roughly the square root of the total, i.e., a distance of about (dN/N6)U2. This is a
negligible fraction of the tube for very long chains, but turns out to be significant for most
experimentally accessible chain lengths.

11.8 Aspects of Experimental Rheometry
In Chapter 9 we described two flow geometries in common use for the measurement of the
viscosity in steady flow, namely the capillary (Poiseuille flow) and the concentric cylinder
(Couette flow). Although both of these can serve for transient and dynamic measurements, at
least two other geometries are also commonly employed, and particularly for the higher viscosities
associated with molten polymers. These are represented by the parallel plate (shear sandwich)
rheometer for dynamic measurements and the cone-and—plate rheometer capable of dynamic,
transient, and steady shear measurements. Both of these will be described briefly below and then
we conclude by identifying several important general issues that arise in rheometry.

11.8.1 Shear Sandwich and Cone and Plate Rheometers

The shear sandwich geometry is illustrated in Figure 11.25a. A central flat plate is driven up and
down between two fixed, parallel plates and the sample is contained within the two narrow gaps on
each side of the moving plate. This arrangement is nothing more than an experimental realization
of the parallel surface configuration used in Figure 9.1 and Figure 11.1. It is made possible by the
use of an oscillatory strain; clearly, steady flow cannot be achieved with this design. As drawn in
Figure 11.25a, the plates have an area A =Lh, and the total volume of sample contained in the two
gaps is 2dLh. If the moving plate has a displacement along the x axis of x0 sin out, its velocity v,[
will be xow cos wt. Furthermore, the fluid velocity at each fixed plate will be zero (under the no-
slip assumption). If the velocity profile across each gap is linear, as is the case for sufficient small
gap widths (1, then the velocity at any point across the gap is (vx/d)y, where y is the distance from
the fixed surface. Recalling the discussion in Section 9.1 and Section 11.1, the shear rate in the gap
is therefore given by

d dvx v,
yzdit’: dy

:E:?m°3wt (11.8.1)

So in this case, both the shear rate and the shear strain are oscillatory functions of time. The shear rate
is not, however, a function of position in the gap, and therefore by Equation 9.1.3 or Equation ll.l.l
the stress is the same everywhere in the sample. This geometry is less useful for lower viscosity
fluids because they tend to leak out of the gap.

The primary limitation of the shear sandwich is the exclusion of steady flow experiments.
To overcome this, rotational rheometers are the common solution. The Couette geometry
described in Section 9.4.2 is one approach; another is the cone and plate, illustrated in Figure
11.25b. In this apparatus, the sample is confined in the narrow gap between a flat, fixed plate,
and a conical piece, which makes a small angle 6 (typically 10—30) with the flat plate. The cone
rotates around the vertical axis with rotation rate .Q (rad/s), sweeping out an angle (35 with time.
The key feature of this design is that the shear rate is homogeneous throughout the sample. To
see how this comes about, consider the strain rate at any radial distance r. The width of the gap
d increases linearly with r, namely d = r tan 6 m r sin 6 % r6 for small 6 (also in radians). The
instantaneous linear velocity of the moving cone in the tangential direction, vg, also increases
linearly with r: v¢,: r0. The net result is that for any value of r the instantaneous shear rate
is vd,/d : (2/9.
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Figure 11.25 Illustration of the (a) shear sandwich and (b) cone and plate geometries.

11.8.2 Further Comments about Rheometry

There exist several texts in the field of rheometry that interested readers may consult for much
fuller treatments of this important topic. There are also several commercial ventures that specialize
in rheological equipment, so that a wide variety of instruments are readily accessible. We conclude
this section with a brief listing of some of the important issues that can arise in choosing and using
a rheometer:

1. All rheometers measure a force (or torque) related to the stress and a displacement
(or velocity) related to the strain (or strain rate). Some rheometers are strain—controlled,
meaning that the Operator inputs a desired strain amplitude and the instrument measures
the stress required to achieve that strain; others are stress—controlled and impose a stress
and monitor the strain. Strain control is necessary to measure the stress relaxation



460 Linear Viscoelasticity

modulus, whereas stress control is required for a creep experiment. In the linear viscoelastic
regime, either approach should be suitable, given the interrelationships among the various
viscoelastic functions outlined in Section 11.3. However, in many cases it is the nonlinear
properties that are of interest and then the choice of control mode becomes more important.

2. In the measurement of force and displacement, transducers are required to convert the
measured quantity into an electrical current or voltage. The force transducer is particularly
important, in terms of sensitivity, range, speed of response, linearity, and reproducibility. The
data in Figure 11.1, Figure 11.2, Figure 11.16, and Figure 11.18, for example, illustrate how
the modulus and viscosity can vary over many orders of magnitude and no single transducer
can cover this entire range. The measured force for a low viscosity fluid can be increased
somewhat by increasing the area of the moving surface and by increasing the strain rate
(and vice versa for a force that is too high to measure reliably); but in the end, a range of
transducers or even a range of instruments are required to cover the full spectrum of materials
from dilute solutions to highly entangled melts.

3. In the dynamic mode, the accessible frequency range is also important. Most commercial
instruments can manage approximately 0.001—10 Hz, and some custom instrumentation can
achieve kHz or even MHz frequencies. However, the data in Figure 11.14 extend over 10—15
orders of magnitude along the time or frequency axis, well beyond the capability of any single
instrument. How are such measurements accomplished? The answer will be given in the next
chapter, but it involves the use of variable temperature, and the principle of time—temperature
superposition.

4. We have not discussed the temperature dependence of the viscoelastic properties in this
chapter; that subject, too, is deferred to Chapter 12. However, the temperature dependence
is generally very strong, and so accurate rheometry requires good temperature control.
Unfortunately, this is not so easy to attain in many cases, particularly far above or far below
room temperature. Part of the difficulty arises from having the sample and moving parts
surrounded by air or inert gas, neither of which have good heat transfer characteristics.
A related problem is viscous heating, which arises from the substantial dissipation of energy
at high viscosities or high flow rates (see Equation 9.1.7).

5. Rheometric experiments integrate the response over the entire sample, in the sense that only a
single measurement of force is used to determine the stress. For example, if the strain field is
inhomogeneous for any reason, the stress will be different at different locations in the sample,
but the measurement will not take that into account. The inhomogeneity might arise from
temperature gradients, sample nonuniformity, or secondary flows induced at high flow rates,
but in addition it is always present under the category of edge effects. In every geometry there
is a sample surface that is not in contact with either the fixed or moving surfaces of the
apparatus, and the flow profile in the vicinity of this extra surface must differ from that
assumed in the calculation of the stress. Schemes have been developed for partially correcting
edge effects in all of the common rheometer geometries.

11.9 Chapter Summary
In this chapter we have examined the linear viscoelastic properties of flexible polymers, both in
dilute solution and in the molten state. We have defined the basic concepts and experimental
approaches, emphasizing shear flow. Molecular models have been presented for both dilute
solutions and melts and they are quite successful in describing the experimental phenomena.
The main points are as follows:

1. Polymer liquids generally show viscoelastic behavior, i.e., a response to an imposed deformation
that is intermediate between the viscous flow of liquids and the elastic deformation of solids. This
response can be characterized by a variety of material functions, such as the steady flow viscosity,
stress relaxation modulus, creep compliance, and dynamic modulus or dynamic viscosity.
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The basic character of viscoelastic response is revealed by the simple Maxwell and Voigt
mechanical models. In general, a polymer liquid behaves more like an elastic solid at short
times or high frequencies and more like a viscous liquid at long times or low frequencies. The
demarcation between these limits is determined by the relaxation times of the material.
In the limit of linear response, i.e., sufficiently small strain amplitudes and strain rates such
that the material functions do not depend on the strain amplitude or rate, the Boltzmann
superposition principle provides a direct route to calculate the viscosity, dynamic moduli, and
recoverable compliance from the stress relaxation modulus.
The BSM of Rouse and Zimm provides a molecular explanation for the viscoelastic
response of polymers. The Zimm version, which includes intramolecular hydrodynamic
interactions, is very successful in dilute theta solutions, and variable solvent quality can be
incorporated by a simple dynamic scaling argument. The Rouse version, without hydro-
dynamic interactions, applies very well to low molecular weight molten polymers.
For high molecular weight polymers in concentrated solutions or melts, the phenomenon of
entanglement dominates the viscoelastic properties. The moduli exhibit four regimes of
behavior denoted glassy, transition zone, rubbery plateau, and terminal, as a function of
increasing time or decreasing frequency. In the rubbery plateau the liquid behaves as a soft
solid, with a modulus similar to a lightly cross-linked rubber (Chapter 10). A characteristic
molecular weight between entanglements is inferred, and may be predicted based solely on
knowledge of the chain flexibility and density.
The reptation model provides a physically appealing description of chain motion and stress
relaxation in entangled polymers. The theoretical predictions for diffusion and viscosity do not
quite match the experimental results, but good agreement can be obtained when the additional
processes of constraint release and contour length fluctuations are included.

Problems

1. The following are approximate 0' (in dyn/cmz) versus 4/ data for three different samples of
polyisoprene in tetradecane solutions of approximately the same concentration?[

M... (g/mol) 1.61 x 106 1.95 x 106 1.45 x 106
Linear Four-armed star Six-armed star

6 (g/cm3) 0.0742 0.0773 0.0078
ids—1) 0'><10_3 0'><10_3 O'XIO_3

0.6 0.7 — —
0.8 0.9 — ——
1 1 0.3 —
2 2 0.6 —
4 4 1 0.15
8 5 2 0.3
10 6 3 0.4
20 7 4 0.8
60 7 2
100 8 4

From plots of these data, estimate the Newtonian viscosity of each of the solutions and the
approximate rate of shear at which non-Newtonian behavior sets in. Are these two quantities
better correlated with the molecular weight of the polymer or the molecular weight of the arms?

I‘W.W. Graessley, T. Masuda, J.E.L. Roovers, and N. Hadjichristidis, Macromolecules, 9, 127 (1976).
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2. Newtonian viscosities of polystyrene samples of different molecular weights were determined
at 200°C by Spencer and Dillon.’r Use these data to determine the exponent of M in the
relationship between 7; and M.

M x 10"3 n (P)

86 3.50 x 103
162 4.00 x 104
196 6.25 X 104
360 4.81 x 105
490 1.89 x 106
508 1.00 X 106
510 1.64 x 106
560 3.33 x 106
710 6.58 x 106

3. In a dynamic experiment with y(t) = yo sin(cot) the power loss per cycle of oscillation is given
by
wt=21r

J 0' d7
(of: 0

(a) Evaluate the power loss per cycle if the material is a Hookean solid: 0' = Gy.
(b) Evaluate the power loss per cycle if the material is a Newtonian liquid: 0 = n (d'y/dt).
(c) Briefly comment on the significance of these results.

4. Using complex notation, derive the Maxwell model predictions for the dynamic shear modu-
lus, G*(w), and the dynamic viscosity, n*(w), and the relations between the elastic and viscous
components of each; assume a dynamic strain, 31* 2 yo exp(iwt).

5. For polystyrene (M = 600,000) at 100°C, the following values describe the creep compliance,
J(t), at long timeszi

logJ(t)(m2/N) —1.8 —1.4 —1.0 —0.6 —0.2 +0.1
log1‘(S) 12.6 13.0 13.4 13.8 14.2 14.6

Use Equation 11.2.8 to evaluate the viscosity of the polymer at this temperature. Then use
Equation 11.7.5 and Equation 11.7.9 and Table 11.2 to estimate the segmental relaxation time
for polystyrene at this temperature.

6. Find the relation between the phase angles 5 and 11: given in Equation 11.2.21 and Equation
11.2.23.

7. Estimate the high molecular weight values of the dimensionless group 071 /RE for dilute
flexible chains in a theta solvent, and for the same polymer in the melt, using appropriate
theoretical models.

8. Sketch a careful log—log plot of the Zimm theory prediction for [n’]R and [1)”]R versus MN,
where TN is the shortest relaxation time of the model. Mark the decades on the axes to make the
curves realistic. Perform two pairs of curves on the same axes, one for a large N, i.e., a high
molecular weight polymer and one for a small N polymer to indicate the effects of molecular
weight on the response.

1R.S. Spencer and RE. Dillon, J. Colloid Sci, 4, 241 (1949).
tD.J. Plazek and V.M. O’Rourke, reported in JD. Ferry, Viscoelastic Properties ofPolymers, 3rd ed., Wiley, New York, 1980.
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9. Propose two possible reasons why the Zimm model fails to exhibit shear-thinning behavior at
high shear rates.

10. Estimate the longest relaxation time, 1'1, for polystyrenes with M = 105 and 10°, in cyclo—
hexane at 35°C and toluene at 25°C. There is no single correct way to do this, so be sure to
identify any assumptions you make.

11. Pearson, et al.Jr reported measurements of the viscosity and diffusivity of narrow distribution
polyethylenes at 175°C. The data are given below. Prepare log—log plots of 71 versus M and D
versus M and compare with expectations based on the Rouse and reptation models. How well
do the data agree with these theories? What do you propose for the origin of any discrepan—
cies? What is MC for PE? Prepare a plot of the product D17 versus M. Does this agree better
with theory in the putative Rouse regime? Why is this the case?

M (g/mol) 10° D (c/s) n (P)

506 6.6 0.0185
590 5.4 0.0232
618 4.8 0.0248
695 3.5 0.035
1,280 1.4 0.092
2,390 0.35 0.338
3,310 0.15 0.873
4,100 0.093 1.63
13,600 0.012 37.7
32,100 0.0020 1,100
1 19,600 0.00013 125,000

12. Consider the tracer diffusion coefficient of polystyrenes in the melt, at 176°C. At this
temperature, Me: 13,000 g/mol, M0: 104 g/mol, and lcT/{210‘9 cmz/s. What is Dt for
M = 13,000 under these conditions? What is Dt for M = 65,000 dissolved as a tracer in a melt
with M = 13,000? Suppose the M = 13,000 matrix polymer was end-functionalized at both
ends, so that it could be cross-linked. Suppose that a small amount of bifunctional agent was
added and reacted to completion; the M = 13,000 polymers were therefore all end-linked to
form very long linear chains. What would Dt be for the M = 65,000 tracer then? Suppose that
the cross—linking agent was tetrafunctional, so that a complete network was formed. What
would Dt be for the M = 65,000 tracer in this case?

13. Imagine you have a narrow distribution sample of 1,4-polybutadiene with Mw=54,000
g/mol. On one set of logarithmic axes, sketch the shape of the stress relaxation modulus
G(t) versus time that you would expect to see for this polymer in the melt. Extend your curve
to cover the full range of viscoelastic response, and estimate any numerical values that you
can. (For polybutadiene, p=0.9 g/mL, b 26.9 151, Me: 1800 g/mol.) Then add two more
curves, corresponding to the expected response after cross-linking: (i) 0.05% of the mono-
mers and (ii) 1% of the monomers. Indicate clearly which curve is which, and briefly explain
why the three curves differ from each other (if they do), and why in some respects they are
the same. (It may be helpful to recall Section 10.1.)

14. Use the correlation of plateau modulus and packing length developed in Section 11.6.2 to
predict the molecular weight between entanglements, Me, for poly(viny1 acetate). Table 6.1
provides useful data for the chain dimensions, and the density is approximately 1.08 g/cm3.
How does your value compare with the experimentally reported value of 7000 g/mol?

1‘D.S. Pearson, et al., Macromolecules, 20, 1133 (1987).



464 Linear ViscoeIasticity

15. Use the reptation model to estimate the longest relaxation time for the linear polyisoprene in
Problem 1. How does the inverse relaxation time compare with the onset of non—Newtonian
response? Explain.
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12
Glass Transition

12.1 Introduction

Here we resume a sequence of three chapters that treat polymers in the solid state. In Chapter 10
we examined the formation of polymer networks and rubber elasticity. In Chapter 13 we will
consider crystallinity in polymers and the associated crystallization transition from the high
temperature, liquid state. In this chapter we take up the subject of the glass transition, whereby a
polymer liquid is cooled in such a way as to solidify without adopting a crystalline packing.
Among the three classes of polymer solid——network, crystal, and glass—the glassy state is the
most universal; relatively few polymers are used to form networks; a significant fraction can never
crystallize, but all can form glasses. Furthermore, all three topics are central to understanding the
utility of polymer materials. In Chapter 9 and Chapter 11 we covered some properties of polymer
liquids, especially those pertaining to flow. In almost all cases, polymers are synthesized, charac-
terized, and processed in the liquid state, and consequently the material in Chapter 9 and Chapter
11 represents a foundation for many diverse areas of polymer science. However, most polymer
applications rely on the properties in the solid state; consequently, Chapter 10, Chapter 12, and
Chapter 13 provide the background for understanding how polymers are chosen or developed for
one application or another.

12.1.1 Definition of a Glass

To begin, we need a working definition of a glass. A reasonable one may be simply stated: a glass
is an amorphous solid. By amorphous, we mean that there is no long-range order or symmetry in
the packing of the molecules. In this sense, the structure of a glass looks very much like the
structure of a liquid. However, a glass is a solid: it does not flow over relevant timescales.
Although the preceding statement is apparently innocent, the phrase “relevant timescales” hints
at a fundamental complexity: if we are talking about an equilibrium state, time should play no role.
What we will see is that glasses are generally nonequilibrium states, metastable in a sense, and
kinetic issues will be of central importance. When a polymer liquid is cooled, the density increases
and the molecular relaxation times increase. Over some range of temperature, the molecular
motion will become so slow that an equilibrium packing of the molecules cannot be attained
during the experiment. When this happens we say that the sample has undergone the glass
transition, or has vitrified, and we associate with each polymer a glass transition temperature,
Tg. The value of Tg is the single most important characteristic in choosing a polymer for a given
application. It must lie significantly above any temperature at which we intend to use the polymer
as a solid, but below any temperature at which we intend to process the polymer as a liquid. As we
will see, in practice Tg is not a thermodynamic property of the polymer, and it can adopt a range of
values for a given polymer, but nevertheless it is an extremely useful parameter.

Although we will cover crystallization in polymers in the next chapter, a few pertinent points
are appropriate here. Upon cooling from the liquid state, a polymer might either crystallize or turn
into a glass; thus these two transitions are, in a sense, in competition. Polymers with irregular
microstructure, such as atactic vinyl polymers or mixed-microstructure polydienes, cannot crys—
tallize, because the lack of a regular structure at the monomer length scale prevents the formation
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of a unit cell. Therefore crystallization is not an option for many polymers. For polymers that do
crystallize, the kinetics associated with finding the correct packing are sufficiently slow that only a
fraction of the molecules succeed; consequently the material is termed semicrystalline. The
remaining fraction is amorphous, and can undergo a glass transition. Thus the glass transition
temperature plays an important role even for crystallizable polymers.

The remainder of the chapter is organized as follows. We conclude this introductory section
with a more detailed comparison of the glass—liquid and crystal—liquid transitions, focussing on the
temperature dependence of the specific volume (or density). In the second section, we consider the
glass transition from a thermodynamic point of view, especially emphasizing the fundamental
question of whether there is actually a thermodynamic transition hidden beneath the kinetically
dominated Tg. The third section describes the most common experimental routes to characterizing
Tg, which leads into the fourth section concerning kinetic models of the transition. The most
popular of these, the free volume model, provides a simple basis for understanding one of the
most dramatic consequences of the glass transition, namely the very strong temperature
dependence of molecular relaxation above Tg. This temperature dependence underlies the utility
of the principle of time—temperature superposition, which is of central importance to the
experimental characterization of viscoelasticity. This topic is covered in Section 12.5. The chapter
concludes with a discussion of how Tg can be modified (Section 12.6), and an introduction to
the properties of glassy polymers (Section 12.7).

12.1.2 Glass and Melting Transitions

In the preceding chapter, time (or frequency) was the primary independent variable under consid-
eration. We saw that at short times of observation, polymers exhibit high values of the modulus,
roughly three or four orders of magnitude higher than those shown in the rubbery state of these
materials. The transition between the two values of the modulus occurs over a range of time at
fixed temperature in the so-called transition zone of viscoelasticity. It turns out that temperature
variation at fixed time can produce changes in mechanical properties that parallel those resulting
from shifts of timescale. This change in mechanical behavior signals the glass transition, and when
monitored during temperature variation it occurs near the glass transition temperature. We shall
return to an examination of the equivalency of time and temperature with respect to effects on
mechanical properties later in this chapter. For now, however, it is desirable to consider some other
properties of matter that change near Tg; although a variety of observables are available, we shall
emphasize volume.

Figure 12.1 illustrates schematically the range of possibilities for the variation in specific
volume, Vsp, with temperature. Remember that V3], is the reciprocal of the density; Vsp, rather
than density, is chosen to describe these changes in anticipation of the “free volume” interpret-
ation to be presented in Section 12.4. Path ABDG in Figure 12.1 shows how V5,, changes upon
freezing a low molecular weight compound. (A few substances—water is the best known
example—occupy a larger volume per unit mass in the solid state than in the liquid, and for
these the transition at the melting point Tm would correspond to a jump rather than a drop in
volume.) What is significant is that this transition occurs at a single temperature, the melting point
Tm. The slopes of AB and DG reflect the coefficients of thermal expansion of the liquid, 0:1, and the
crystalline solid, ac, respectively. These coefficients are approximately independent of tempera-
ture (i.e., AB and DG are nearly straight lines) but the main point is that VSp is different for solids
and liquids; it shows a discontinuity at the melting point.

An entirely different pattern of behavior is shown along lines ABHI. In this case there is no
discontinuity at Tm. The line AB, which characterizes the liquid, changes slope at Tg to become HI.
Actually, the change in slope occurs over a range of temperatures (about 200C), as suggested by
Figure 12.1, but extrapolation of the two linear portions permits a single Tg to be defined. The
region HI characterizes the glassy state, and the threshold for its appearance is the glass transition
temperature. In the region BH, the liquid is said to be supercooled.
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Figure 12.1 Schematic illustration of possible changes in the specific volume of a polymer with tempera-
ture. See text for a description of the significance of the various lettered features.

Each of the two paths we have discussed could describe the behavior of either high or low
molecular weight compounds. This is not to say, however, that each is equally probable for the two
classes of compounds. For most low molecular weight materials, special effort must be made to
suppress crystallization and achieve glass formation. With polymers, on the other hand, the glassy
state is always obtained, whether a particular polymer is crystallizable or not. The mere fact that
molecular structure allows the possibility of crystal formation does not mean that the latter occurs
rapidly or completely. The line ABCEFG in Figure 12.1 describes the situation of a partly
crystalline, partly amorphous polymer. At Tm crystallization begins and the characteristic discon-
tinuity in specific volume occurs. The sharpness of Tm is not as pronounced for polymers as for low
molecular weight compounds, as evidenced by the trailing off between C and E. In the region EF
the volume contraction reflects the supercooling of the amorphous portion of the polymer. The
change in slope between EF and FG occurs at T , just as it would in the absence of crystallization.
If partial crystallization occurs, the amount of amorphous material is decreased and the change in
slope at Tg may be harder to detect in this case.

The line ABJK in Figure 12.1 is a displaced variation of ABHI in which AB is a liquid, BI is a
supercooled liquid, and JK is a glass. The experimental variable that causes region JK to be offset
from H1 is the cooling rate, ABJK being the route for the more rapidly cooled polymer. Since Tg is
identified from the change in slope, it is apparent that Tg is also displaced, appearing at a higher
temperature (T; in the figure) for higher rates of cooling. The change in slope that defines Tg may
also be viewed as the first departure from the behavior extrapolated from the liquid state. In other
words, although the supercooled liquid is not at thermodynamic equilibrium, its specific volume
follows the same T dependence as the equilibrium liquid. Thus the glass transition on cooling
represents the first obvious departure from equilibrium, and it is intuitively reasonable that the
higher the rate of cooling, the sooner this departure will become apparent.

To summarize some basic observations for polymers:

1. Above Tm the material is liquid. The zero-shear viscosity depends strongly on the molecular
weight of the polymer (see Chapter 11) and temperature (see Section 12.4) but it would be
considered high by all standards.

2. Between Tm and Tg, depending on the regularity of the polymer and on the experimental
conditions, this domain may be anything from almost 100% crystalline to 100% amorphous.
The amorphous fraction, whatever its abundance, behaves like a supercooled liquid in this region.
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Table 12.1 Representative Values of the Glass Transition Temperature and the
Melting Temperature (for Stereoregular Forms, where Applicable) for Some
Common Polymers

Polymer Tg (°C) Tm (°C)

Poly(dimethylsiloxane) — 123 — 40
Polyethylene —— 120 135
1,4-Polybutadiene (cis) ——1 12 12
Polyisobutylene —75 44
1,4-Polyisoprene (655) -—70 28
Poly(ethylene oxide) —70 65
Polypropylene — 10 188
Poly(vinyl acetate) 30 —
Poly(hexamethylene adipamide) 50 265
Poly(ethylene terephthalate) 70 265
Poly(vinyl alcohol) 90 240
Poly(vinyl chloride) 90 270
Polystyrene 100 240
Poly(methyl methacrylate) 110 183
Poly(tetrafluoroethylene) 130 330
Polycarbonate of bisphenol A 150 330
Poly(oxy-2,6-dimethyl-1,4-pheny1ene) 210 3 10
Poly(p-phenylene terephthalamide) 240 325

3. Below Tg the material is hard and rigid with a coefficient of thermal expansion equal to
roughly half that of the liquid. With respect to mechanical properties, the glass is closer in
behavior to a crystalline solid than to a liquid. In terms of molecular order, however, the glass
more closely resembles the liquid. In this temperature region, the noncrystalline fraction
acquires the same glassy properties it would have if the crystallization had been suppressed
completely.

4. The location of Tg depends on the rate of cooling. In principle the location of TIm is not subject
to this variability, but in fact, the degree of crystallinity does depend on the conditions of the
experiment, as well as on the nature of the polymer. For example, if the rate of cooling exceeds
the rate of crystallization, there may be no observable change at Tm, even for a crystallizable
polymer (see Chapter 13).

The foregoing description introduces the phenomena with which we shall be dealing in this
chapter. As noted above, both high and low molecular weight compounds are capable of displaying
these effects, but the chain structure of the polymer molecules is responsible for the reversed
probabilities. The specific identity of the polymer anchors these transitions to some particular
region of the temperature scale; a list of representative values of Tg and Tlm is provided in
Table 12.1. The regularity of the microstructure of the polymer molecule, along with experimental
conditions, determines the extent of crystallization. The glassy state is thus seen as a lowest
common denominator shared by all polymers, because 100% crystallinity is virtually impossible.
This promotes Tg to the position of importance assumed by Tm for low molecular weight
compounds. The fact that the mechanical properties undergo such profound change at Tg also
contributes to the significance of this parameter.

12.2 Thermodynamic Aspects of the Glass Transition
The kinetic nature of the experimental glass transition was noted in the previous section, but it is
nevertheless instructive to consider the possibility of a thermodynamic description of the transition
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that occurs near T3. Most phase equilibria in common experience, such as boiling and melting, are
examples of what are called first-order transitions. There are other, less familiar but also well-
known transitions in nature that are not first order. The disappearance of ferromagnetism at a
particular temperature (called the Curie point) is an example of such a transition. Rather than the
discontinuities in S, V, and H characteristic of first—order transitions, these variables merely exhibit
a change in slope with increasing temperature. Since this is similar to the behavior near T , it is
important to consider whether the glass transition is actually a second-order phase transition, or,
perhaps, whether the kinetically affected experimental transition actually masks an underlying
thermodynamic transition.

12.2.1 First-Order and Second-Order Phase Transitions

There is no discontinuity in volume at the Curie point, but there is a change in the temperature
coefficient of V, as evidenced by a change in slope. To understand why this is called a second-order
transition, we begin by recalling the definition of some relevant physical quantities:

1. The coefficient of thermal expansion 0::

_ 1 3V
or =

17(5Tl
(12.2.1)

2. The isothermal compressibility K2

1 8V
E — — — 12.2.2K

V (‘19P)
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Since V experiences a change of slope at the second-order transition, i.e., (EN/6’7"», and (8V/3p)7
have different values on each side of the transition, it is a and K that show the discontinuities at the
second-order transition rather than V itself. The term second order comes about because the
quantities may be written as second derivatives of the free energy, G, as follows. Recalling
Equation 7.1.3 and Equation 7.1.4, here applied to a one-component system

36 36v- (a) S__(3_T)p (12.2.3,
we can expand Equation 12.2.1 and Equation 12.2.2 to obtain
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Figure 12.2a and Figure 12.2b describe a second—order transition schematically, in terms of V, S, a,
and K. By extension, an nth-order phase transition is associated with discontinuities in nth-order
derivatives of the free energy.

Another useful quantity in this context is the heat capacity at constant pressure, Cp:

8H 85 826C, .— (ET); TCa—f); —T(W)p (12.2.6)

where the last form exploits Equation 12.2.3. From this relation it is apparent that the heat capacity
should also be discontinuous at a second-order transition, whereas the enthalpy (H) should behave
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Figure 12.2 Schematic illustration of the behavior of V, S, and H at a (a) first—order and (b) second-order
phase transition, and of (c) a, K, and Cp at a second—order transition.

like V and S and show only a change in slope. In the following section the importance of the heat
capacity in the calorimetr‘ic determination of Tg will become apparent. The entropy term in
Equation 12.2.6 can be inverted to provide another useful relation that shows how measurements
of heat capacity versus temperature can be used to determine the entropy:

T2 T2

S(T2) — 5m) : [97-51 dT : JCP d lnT (12.2.7)
TI T1

The behavior of these various thermodynamic functions at first—order and second-order transitions
is compared schematically in Figure 12.2.

The Clapeyron equation is a well—known thermodynamic relation that applies to first—order
transitions:

dp AS— : ——~— 1 .2.
(dT)lst (Av)lst

(2 8)

This expression relates the variation of the pressure—temperature coordinates of a first-order
transition (i.e., the phase boundary) in terms of the changes in S and V that occur there. The
Clapeyron equation cannot be applied to a second—order transition because AS and AV would be
zero and their ratio undefined. However, we may apply L’Hépital’s rule to both the numerator and
denominator of the right—hand side of Equation 12.2.8 to establish a limiting value of dp/dT. In this
procedure we may differentiate either with respect to p,

(d2)
: (3AS/8P)T,2nd :
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to generate some additional useful expressions. All of the A’s in these equations refer to the
difference in the value of the variable from one side (prime) of the transition temperature to
the other (double prime):

A0: = or" — or”; AK 2 K’ — K"; ACp '2 ;,- Cg (122-11)

The following example illustrates how results like these can be applied.

Example 12.1
On the assumption that the glass transition is a second—order thermodynamic transition, estimate
the pressure dependence dTg/dp of

T5
using the following data for poly(vinyl chloride): Tg : 347

K, v,, = 0.75 cms/g, Aa : 3.1 X 10 — K—1 and AC,, = 0.068 cal/ K/g.T

Solution

Invert Equation 12.2.10 and substitute. The ratio of gas constants is convenient for unit conver—
sions:

dTg _ TgVAar _ (347 K)(0.75 cm3 g—1)(3.1 x 10-4 K”) X 1.99 cal
dp

_
ACp

_ (0.068 cal g—1 K—1) 82 atm cm3 = 0.029 K atm—l

This quantity has been measured directly to be 0.016 K/atm. Note that a pressure change of about
60 atm is required to change Tg by 1 K. Note also that the stated value of Tg is somewhat different
from that given in Table 12.1, underscoring the variability from sample to sample or from
technique to technique.

Despite these useful thermodynamic relationships, it is clear that the glass transition in practice
is not truly a second-order phase transition. A moment’s reflection reveals that the source of this
reservation is the doubt about the state of equilibrium for the glass transition. Implicit throughout
the thermodynamic arguments above has been the notion that the phases on either side of a
transition are in thermodynamic equilibrium. This enters the mathematical formalism from the
start: Equation 12.2.3 assumes that the free energy of a phase is described by only two variables, in
this case p and T. Although the glass transition is certainly affected by p and T, it is also dependent
on the time of observation, as indicated in Figure 12.1. Because of this time dependence, the
experimental glass transition must involve more than a simple second—order transition. In terms of
stability (recall Section 7.5) the equilibrium liquid (above Tm) and the crystalline state (below Tm)
are stable, meaning that the free energy is at a minimum. The glassy state is unstable, i.e., the
system is constantly evolving into a state of lower free energy (although this evolution may
proceed at a glacial pace). The supercooled liquid can be viewed as metastable, because the free
energy is in a local minimum but not the global minimum (i.e., the crystal); but for a noncrystalliz-
able polymer, the supercooled state is effectively at equilibrium.

12.2.2 Kauzmann Temperature

The preceding discussion indicates what should be expected for a true thermodynamic second—
order transition, and therefore underlines how the glass transition both resembles and is distinct
from such a transition. One way to reconcile these characteristics of TE is to invoke an underlying
thermodynamic transition that in practice is masked by kinetic effects. For example, if we were to
perform a cooling experiment at progressively slower rates, would the obtained values of Tg
continue to decrease steadily, or would they converge to a limiting value? In the latter case, we

TData from J.M. O’Reilly, J. P01ym.Sci., 57,429 (1962).
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Figure 12.3 Illustration of the “Kauzmann paradox”: the specific entropy of the glass (dashed line) would
be less than that of the crystal (solid line) below the Kauzmann temperature, TK.

would have located an apparently thermodynamic transition. It turns out that experimentally it has
not proven possible to answer this question definitively, but an argument can be made that some
kind of a transition must intervene even for infinitely slow cooling. This argument was originally
made by Kauzmann [l], and has since become known as the “Kauzmann paradox” or the “entropy
crisis.” Kauzmann showed that if the entropy of the supercooled liquid were to continue to follow
the temperature dependence seen just above Tg, then eventually the entropy of the glass would be
less than the entropy of the crystal. This in itself violates no laws of thermodynamics, but does
seem highly counterintuitive. However, if this state of affairs persisted, the entropy of the glass
would go to zero at a temperature above 0 K, which would violate the third law of thermodynam-
ics. On the other hand, if a transition intervened, at which the heat capacity dropped sufficiently,
then neither of these difficulties would arise.

Kauzmann’s argument can be seen from the schematic diagram in Figure 12.3. The specific
entropy (entropy per gram of material) drops with decreasing T in the liquid state, down to Tm.
Along the crystal branch, there is a discontinuous drop in entropy at the first-order transition.
Below Tm the entropy goes smoothly to zero at 0 K (by the third law of thermodynamics), and may
be computed from the experimental heat capacity by Equation 12.2.7. Along the supercooled liquid
branch, the heat capacity is larger than in the crystal, and thus the entropy drOps more rapidly with
decreasing T than for the crystal. By extrapolation, therefore, the supercooled liquid entropy will
equal the crystal entropy at a finite temperature, the Kauzmann temperature, TK. Experimentally,
such extrapolations give values of TK that are about 50° below the measured Tg. On the other hand,
if a thermodynamic transition intervenes, then the heat capacity of the glass would be lower than
that of the supercooled liquid, perhaps very close to that of the crystal, and the problem would be
averted. Note, however, that a smooth reduction in heat capacity with decreasing temperature
could also avoid the Kauzmann paradox without the necessity for an intervening phase transition.

12.2.3 Theory of Gibbs and DiMarzio [2]

We will not develop this theory in detail, but its physical content and basic conclusions can be
readily appreciated. The treatment begins with a lattice, similar in spirit to that employed in the
Flory—Huggins theory of mixing in Chapter 7. In this case, however, the solvent is replaced by
voids, or vacancies on the lattice, which will play a role qualitatively similar to that of the “free
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volume” to be discussed in Section 12.4. There is an energy associated with the voids, because a
polymer segment adjacent to a void will have lost the interaction energy that it might have had with
another segment. In the notation of Section 7.2 and Section 7.3, the total energy associated with the
voids Ev will be given as

ZW22tam |2| ”11‘352 (12.2.12)

where z is the number of nearest neighbors on the lattice, wzz is the energy of interaction between
two polymer segments (species 2), m1 is the total number of voids (species 1), and (152 is the
polymer volume fraction. This result may be compared to Equation 7.3.l2a for the enthalpy of
mixing in the Flory—Huggins theory, as z|w22]/2 plays the role of Add". A key feature of m1 is that it
can vary with temperature; as T decreases, the energy penalty for having empty space plays an
increasingly important role, and so the material will contract. As m1 decreases, so will the entropy
of placement of the chains on the shrinking lattice.

The second, crucial modification to the Flory—Huggins approach is to assign different energies
to various nearest neighbor conformations of the chain on the lattice. In the simplest case, an
energy 31 is assigned to one, lowest energy conformation, and 82 is assigned to other possibilities.
This is analogous to having one energy for a trans conformer, and a higher energy for either gauche
plus or gauche minus states in polyethylene, as discussed in Chapter 6. As temperature decreases,
the chains will tend to adOpt more and more 81 conformations, which also serve to reduce the
entropy of placement of the chains on the lattice.

The main calculation in this theory involves enumerating the number of ways the chains may
occupy the lattice. This is similar in spirit to calculation of the entropy of the Flory—Huggins theory
in Section 7.3.2, but is complicated by including the different energies of each state (via both E,
and A8 = 81 — 82) and by a more accurate accounting of the effects of chain ends. The inclusion of
the energy terms means that the result (called the partition function in statistical mechanics) can be
used to find the free energy, and not just the entropy. The central consequence is the emergence of
a temperature, T2, at which the number of possible states shrinks to l, and thus where the entropy
vanishes. The value of T2 depends only on N, E,, and A8. The calculation shows the free energy,
entropy, and volume to all be continuous at T2, whereas the thermal expansivity and heat capacity
are discontinuous, so this represents a second-order transition.

The results of this calculation exhibit several features that are in general agreement with the
characteristics of the experimental glass transition (the corresponding experimental dependences
will be discussed in Section 12.6):

1. T2 increases with Ev, just as the experimental Tg tends to increase with cohesive energy density
(recall Equation 7.6.5 to relate the cohesive energy density to W22).
T2 increases with A3, just as Tg tends to increase with chain stiffness.
T2 increases with N at low N, but approaches a limiting value as N —> 00.
T2 depends on the number average molecular weight for polydisperse samples.
T2 decreases with added solvent.
T2 increases with degree of crosslinking.9‘54"???)

Given all of these characteristics, it is tempting to interpret T2 as corresponding to the Tg that would
be obtained in the limit of infinitely slow cooling. In so doing, the Kauzmann paradox would also
be resolved.

Despite these successes, it is probably fair to say that the Gibbs—DiMarzio theory has not been
widely adopted as a general description of the glass transition. One reason for this lies in the fact
that many different classes of materials can exhibit a glass transition, such as inorganic networks
(e.g., —Si02—~, our everyday “glass”), ionic liquids, small organic molecules (e.g., glycerol,
0-terphenyl), and even colloidal particles. Consequently, a description based on chain flexibility
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is unlikely to provide a universal description of the glass transition. However, a successful,
universal description of the glass transition has not yet been achieved even 40 years after the
Gibbs—DiMarzio theory, so the successes of this theory should not be taken lightly.

12.3 Locating the Glass Transition Temperature
In this section we briefly describe three approaches to characterizing the glass transition in polymers.
There are, in fact, many other possible experimental probes, but these three represent the most
commonly employed and also serve to illustrate several of the important aSpects of the glass
transition. The first is to measure the density or volume directly as a function of temperature, by
dilatometiy; this ties directly to the introduction to the glass transition in Section 12.1. The second is to
use difi‘erential scanning calorimetry (DSC) to determine the heat capacity versus temperature. This
is probably the most commonly employed method, as it combines speed, ease of use, and potentially
quantitative thermodynamic information. The third method is mechanical analysis, which is nothing
more than a particular application of the viscoelastic properties described in Chapter 11.

12.3.1 Dilatometry

This is about as unglamorous an experiment as one can imagine. As a prOperty of matter, we take
density very much for granted. The fact that it is conceptually simple, readily accessible in
handbooks for many materials, and relatively monotonous in its variations all contribute to this
attitude. Yet the phenomena represented schematically in Figure 12.1 require careful experimen—
tation on well—defined samples to yield reproducible results. The device that is used to follow
volume changes with temperature is called a dilatometer; an example is shown in Figure 12.4. The

0
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i i

Figure 12.4 Schematic illustration of a dilatometer. The polymer is in bulb A, the height of the polymer plus
Hg is determined in capillary B, and C contains extra Hg. The cell can be sealed at D and E. G is a calibration
capillary sealed at F. (Reproduced from Sperling, L.H., Physical Polymer Science, Wiley, New York, 1986.
With permission.)
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sample is placed in a bulb that is then filled with an inert liquid, generally mercury. Mercury is
suitable because it has negligible solubility in most polymers, and because it does not undergo any
transitions of its own over the relevant temperature range. The bulb is connected to a capillary
so that changes in volume register as variations in the height of the mercury column, just as in a
thermometer. For a constant temperature experiment, say, monitoring crystallization at Tm, the
volume changes in the capillary correspond identically to changes occurring in the sample. When
temperature variation is involved, the expansion of the mercury due to the temperature change is
superimposed on the expansion of the specimen and must be taken into account. To obtain
meaningful results it is necessary to standardize the rate at which temperature changes are made
and, of course, to have an accurately measured and uniform temperature in the bath surrounding
the dilatometer. The sample must be degassed to prevent entrapment of air; a gas bubble can really
raise havoc in this kind of experiment. This experimental protocol favors slow rates of heating and
cooling, to allow for temperature stabilization throughout the bath. For this reason, measurements
during cooling are relatively straightforward to make. This turns out not to be the usual case in
other common methods where measurements during heating are the norm. Measurements on
cooling have one fundamental advantage, namely, the sample is initially at equilibrium, and Tg
represents the first observable departure from equilibrium. Experiments conducted during heating
begin with a nonequilibrium sample, and therefore the results generally depend on sample history.

An example of dilatometric data is provided in Figure 12.5, taken from the classic study of
Kovacs [3]. Two sets of specific volume versus temperature data for poly(vinyl acetate) are shown.
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Figure 12.5 Specific volume versus temperature for poly(vinyl acetate), measured at 0.2 and 100 h after
cooling rapidly from well above the glass transition temperature. (Reproduced from Kovacs, A.J., J. Polym.
Sal, 30, 131, 1958. With permission.)
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In each case the measurements were taken after a direct temperature quench from an initial T >> Tg,
The upper curve corresponds to measurements taken 0.02 h after the quench, and the second set
100 h later. The two traces closely resemble the schematic diagram in Figure 12.1 and in particular
the longer time data lead to a lower value of Tg, as expected. However, there is an important
distinction to be noted. The 100 h data were acquired not upon cooling more slowly, but rather
after waiting for a longer time after cooling below Tg. The process of isothermal volumetric
contraction with time after cooling below Tg is called aging. It can play an important role in the
longtime stability of the mechanical properties of glassy polymers, because densification can lead
to undesirable changes in dimensions, increases in brittleness, and even failure.

12.3.2 Calorimetry

Differential Scanning Calorimetry (DSC) is a common example of a thermal analysis method.
A small quantity of the sample is confined within an aluminum pan and subjected to controlled
temperature variation. A reference material is placed in an equivalent pan and the two pans are
heated simultaneously. The temperatures of the two pans are monitored continuously and the rate
of heat flowing to the sample is adjusted to keep the temperatures of the two pans equal. The heat
flow is proportional to an electrical current in a resistive heating element, so it is straightforward
both to control and to monitor. Whenever the sample undergoes a thermal transition, so that there
is a change in heat capacity, the DSC registers both the amount and the direction of the additional
heat flow. A schematic example is shown in Figure 12.6. The first feature upon heating is the
increase in heat flow required by the increase in heat capacity at Tg. This would be a step function
for a genuine second-order transition examined at very slow rates of heating. The second feature
indicated is an exothermic peak, indicating that some of the material has crystallized on heating, at
a crystallization temperature To. This often occurs in crystallizable polymers because insufficient
time was allowed on cooling for extensive crystallization; but once the glass transition is traversed,
chain segments acquire enough mobility to crystallize. As will be discussed in Chapter 13, the area
under this peak is prOportional to the amount of crystallized material if the enthalpy of fusion is
known and the DSC has been calibrated with a standard. The final feature in the DSC trace is an
endothermic peak, corresponding to the melting of all crystalline material in the sample near the
melting temperature, Tm.

Figure 12.7 shows an experimental DSC trace for a polystyrene sample with molecular weight
13,000. In this case there are no peaks associated with crystallization, because the polymer is
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Figure 12.6 Schematic illustration of heat flow into the material versus temperature, showing the glass
transition, crystallization, and melting.
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Figure 12.7 Calorimetric determination of Tg for a polystyrene with M = 13,000 at a heating rate of 10°C/
min. (Data described in Milhaupt, J.M., Lodge, T.P., Smith, S.D., and Hamersky, M.W., Macromolecules, 34,
5561, 2001.)

atactic. There is a peak associated with T3, which, however, is often observed. It is sometimes
called an “enthalpy overshoot,” and is attributed to a “superheating” of the glassy state, i.e., as
temperature increases and the enthalpy increases along the glassy branch, it crosses the equilibrium
line at Tg but does not recover immediately. Consequently there is an extra increment of enthalpy
required, beyond that dictated by Tg; this leads to a more rapid change with time in the enthalpy,
and thus an overshoot in the DSC trace. Another notable feature of the curve in Figure 12.7 is that
the transition itself extends over an interval of 15°C—20°C, which is quite typical. There are various
conventions for extracting a single value of Tg from such a trace, but the most common is to take
the midpoint, as indicated in the figure.

As alluded to above, the DSC measurement is generally made on heating, and therefore the
sample begins in a nonequilibrium state. If we return for a moment to Figure 12.1, and suppose
that the sample has just been cooled along path ABJK. If immediately reheated, this path would
be retraced, giving T; as the result. Suppose, however, the sample sat overnight at the temperature
corresponding to point K. The volume would actually contract towards the extrapolation of the
equilibrium curve AB, as illustrated by the volumetric data in Figure 12.5. We can see that if
the sample had contracted as far as point I in Figure 12.1, then on reheating it would follow the
path IHBA, and give a different (lower) value of Tg. In general, then, the observed value of Tg in a
heating experiment will depend not only on the heating rate, but also on how long the sample was
held below Tg, and also at what temperature it was held. In this way one could obtain many
different values of Tg from a single sample, even without varying the heating rate. To avoid this
complication, the standard measurement protocol is as follows. The sample is loaded, usually at
room temperature, and is then heated above any suspected transition. A few minutes at elevated
temperature are sufficient to anneal the sample, i.e., erase all memory of past thermal history
and stress. The sample is then rapidly cooled or quenched to the beginning temperature, and a
second heating scan begun immediately. This second scan is taken as the measurement; a typical
heating rate is 10°C/min. Examination of Figure 12.1 and Figure 12.5 suggests that this protocol
will tend to give relatively high values of Tg because of the rapid cooling, but often the more
important issue is to make the result reproducible.
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12.3.3 Dynamic Mechanical Analysis

As a polymer sample is cooled through Tg, the motions of individual segments undergo a dramatic
slowing down. Consequently, any experimental measurement of such local relaxation times should
be sensitive to Tg. As commercial rheometers are widely available, measurements of G’ and G”
versus temperature are commonly employed to locate Tg. An example of the dynamic moduli
measured versus temperature at a fixed frequency of 1 Hz is shown in Figure 12.8. Note the
similarity in shape between this G’ curve and those in Figure 11.2 and Figure 11.16b for G(t).
The former reflects the modulus at fixed frequency (or time) as a function of temperature, whereas
the latter shows the variation with time at fixed temperature. The origin of this time—temperature
equivalence will be explored in Section 12.5, but for now we can consider it intuitively. Below T ,
all relaxation modes are frozen, so the material behaves as a solid with a very high modulus. Upon
heating, all relaxation processes accelerate, and when a process can occur in 1 s or less, it will show
up as a relaxation if the modulus measurement is made at about 1 Hz. The first processes to
become fast enough upon heating a glass correspond to motions of small pieces of chain, in what
we called the transition zone of viscoelastic response in Chapter 11. Gradually, on further heating
we enter the rubbery plateau, and, eventually, at temperatures far above Tg the molecules can fully
relax and the material can flow within 1 s, and the moduli enter the terminal regime. During the
transition zone G” exhibits a peak at a particular temperature (as does the loss tangent, tan 5, given
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Figure 12.8 The dynamic moduli G’ and G” at 1 Hz, measured as a function of increasing temperature, for a
poly(styrene-ran—butadiene) copolymer. (Reproduced from Nielsen, L.E., Mechanical Properties of Poly—
mers, Reinhold, New York, 1962. With permission.)
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Figure 12.9 Determination of T3 for polystyrene with M = 13,000 from the maximum in G" obtained at
1 rad/s and 2°C/min. (Data described in Milhaupt, J.M., Lodge, T.P., Smith, S.D., and Hamersky, M.W.,
Macromolecules, 34, 5561, 2001.)

by G”/G’). By analogy with the Maxwell model in Section 11.2, this means that the frequency
equals an inverse relaxation time, so the location of this peak corresponds to the temperature at
which segmental motion occurs in 1 s. This can be taken as an alternative, empirical definition of
Tg. Figure 12.9 shows an example for the same polystyrene sample as in Figure 12.6, with the data
obtained while heating at 2°C/min. The values of Tg obtained by the two methods are quite
comparable (although there is no fundamental reason why they should agree to better than
about 10°C).

12.4 Free Volume Description of the Glass Transition
In this section we set aside the issue of thermodynamic equilibrium and simply consider why
the viscosity, or other dynamic and mechanical properties of polymers, should undergo a dramatic
change over a relatively narrow range of temperatures, even though the structure of the material
remains liquid—like. The essence of the argument is based on the concept of fi'ee volume, which
is intuitively very appealing although difficult to pin down precisely. The actual volume of a
sample can be written as the sum of the volume “occupied” by the molecules (subscript occ)
and the free volume (subscript f). Acknowledging that each of these is a function of temperature,
we write

V(T) = Vocc(T) + Via") (12-4-1)
The variation in VOCC with T arises from changes in the amplitude of molecular vibrations with
changing T, a variation that affects the excluded volume of the molecules. The free volume, on the
other hand, may be viewed as the “elbow room” between molecules, and is required for molecules
to undergo rotation and translational motion. As the average kinetic energy increases with
increasing temperature, so the associated free volume is also expected to increase with T. Free
volume plays a similar role to the “voids” in the Gibbs—DiMarzio theory.
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12.4.1 Temperature Dependence of the Free Volume

These concepts may be represented schematically as shown in Figure 12.10 where V is plotted
against T. The solid line represents the actual volume, which shows a change in slope at T,. The
dashed line indicates the increase in VOCC with T. In all cases the lines are straight, i.e., a linear
dependence of V on T, which is a very reasonable approximation for our purposes. The shaded area
represents the free volume, Vf. The key feature of Vf is that it decreases upon cooling from the
liquid state, until at Tg it reaches some critical, small value. Physically the idea is that once Vf
becomes too small, molecular rearrangements are effectively frozen out and the system can no
longer continue contracting. Below T,, V and V0,, have approximately the same T dependence and
so Vf becomes roughly independent of T.

On the basis of these ideas, we can write the following expression for the volume of the sample:

1. Below T,

dvoccV(T < T,) = V0,,(T = 0) 4 W0“ = 0) + —dT_ T (12.4.2)
8

2. At T,

dVoccV(T,) :— V,.,, (T = 0) + Vf(T = 0) + (H T, (124.3)
g

3. Above T,
d V, vV(T > T,) = V(T,) + (34:?) (T — T,) (12.4.4)

1

The subscripts g and 1 on the coefficient of volume variation with T indicate that these are
determined for the glass and liquid states, respectively. Each of the differences used to describe
the second-order phase transition as given by Equation 12.2.9 or Equation 12.2.10 can be
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Figure 12.10 Schematic representation of the actual volume (solid line) and occupied volume (dashed line)
versus temperature. The hatched area represents the free volume.



Free Volume Description of the Glass Transition 481

qualitatively traced to the sort of change implied by Figure 12.10. Around Tg, for example, the
coefficients of expansion of the liquid and glassy states are, respectively,

# 1 d(Vocc + V,)
on —

Vg
(

(1T 1
(12.4.5)

_ 1 cit/0,,
03g _

Vg
(

(17‘ 1
(12.4.6)

and therefore A0: = a! — org is a measure of the “opening up” of V1: at Tg. The additional volume
above Tg also accounts for the increase in compressibility AK, and the emergence of the associated
modes of energy storage. i.e., additional degrees of motional freedom, accounts for ACP.

The preceding introduction to the free volume interpretation of the glass transition provides a
qualitative picture, but is not immediately of much utility because, as discussed in the preceding
section, volume is not the generally measured quantity. Furthermore, even if it were we would be
faced with the tricky problem of resolving the measured V into the contributions from Vf and VOCC.
Instead, we shall tum our attention to the steady flow viscosity, 1), which will serve many purposes.
First, it will illustrate the dramatic effect approaching Tg can have on the flow properties. Second, it
will show how powerful the free-volume concept can be in describing experiments. Third, it will lead
us naturally to the principle of time—temperature superposition, which forms the topic of Section 12.5.

12.4.2 Free Volume Changes Inferred from the Viscosity

We begin with some experimental results. Figure 12.1 1a and Figure 12.1 lb show the viscosity of an
oligomeric polystyrene as a function of temperature, from about 180°C down to 375°C (the nominal
Tg for this sample). The most remarkable feature of the data is the smooth, 12 orders of magnitude
variation in 11 over an otherwise unremarkable temperature interval. This behavior is actually
typical of all polymers as Tg is approached from above, although 7) is rarely measured over such a
wide range. For most small molecule fluids we would expect an Arrhenius temperature dependence:

n(T) = A exp (1%,) (12.4.7)

where A is a prefactor with units of viscosity, and E, is the activation energy. In this view, the
limiting process to flow is the energetic barrier to molecules sliding past one another. For toluene at
room temperature, for example, E, is approximately 9 kJ/mol. (This may be compared with the
energy of a hydrogen bond, approximately 15—20 kJ/mol, or a carbon—carbon bond in polyethylene,
about 350 kJ/mol. These numbers indicate that there is little energetic resistance to flow in a small
molecule fluid.) If the viscosity of polystyrene followed Equation 12.4.7, then the data would fall on
a straight line when plotted as log 7; versus l/T, as in Figure 12.1 lb; clearly they do not. One can take
the slope of a small portion of the curve, and extract an apparent 15,. This gives a value almost 10
times greater than toluene in the high temperature range, and 60 times higher near Tg (see Problem
12.8). The local energy of interaction between styrene monomers cannot be too different from that
between toluene molecules, so this factor of 60 must have a different origin. It is not a simple result of
molecular weight, because the T dependence of n is found to be more or less independent of chain
length (see Section 12.5). The reason is that flow in glass-forming liquids is impeded primarily by a
lack of free volume, rather than by an energy barrier (although such barriers should still contribute).

Doolittle [4] studied the viscosity of n—alkanes in detail and found that the following equation
was able to describe the data:

B’V1? = A’exp( m) (12.4.8)
Vr
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where A’ and B’ are empirical constants. Although they relate 77 to different variables, both the
Doolittle and Arrhenius equations have the same functional form. Just as the activation energy 1'3,l
represents the height of a barrier relative to thermal energy, RT, the Doolittle equation compares
the space needed for a molecule, VOCC, to the space available, Vf. In a sense Equation 12.4.8 implies
that the primary impediment to molecular motion is entropic in nature (is there space available to
move?) rather than energetic as in Equation 12.4.7 (is there enough thermal energy to overcome
the activation barrier?). As we shall see shortly, the Doolittle equation describes the remarkable T
dependence of 17 shown in Figure 12.11 very well.

To proceed, we define the fractional free volume, f: Vf/V, and then Equation 12.4.8 can be
written as

1
n = A'exp[B’ (IT — 1)] (12.4.9)

We can simplify this expression as follows:

B’ B’
77 =A’exp(}——B’) =Aexp(}~) (12.4.10)

simply by incorporating a factor of exp(—B’) into A. To proceed further, we need to insert an
expression forf, particularly in terms of its T dependence. On the basis of Figure 12.10, we propose
a linear dependence for f(T), for temperatures at and above Tg:

fg+af(T_Tg) (12.4.11)
In this expression (If is the coefficient of expansion of the free volume only, but it should be close
to Aar. Equation 12.4.11 can be inserted into Equation 12.4.10 as follows:

Bferratum—Ts)
Bf/Otf B

exP<fg/af + T — Tg) exP<T — To)
where the new parameters are B :B’/af and To : Tg —fg/a:f. The last form of Equation 12.4.12 is
often known as the Vogel—Fulcher—Tammann—Hesse (VFTH) equation and the parameter To is
referred to as the Vogel temperature [5]. By comparison with Equation 12.4.7, we can see that the
VFTH equation reduces to the Arrhenius equation when To = 0 K. However, experimentally one
finds that To > 0, and therefore the viscosity is predicted to become infinite at T0, or some fg/af
degrees below Tg.

The data in Figure 12.1 1 have been fit to the VFTH equation, resulting in the smooth curve shown
in Figure 12.11b. Clearly the data follow this form very well. The resulting parameter values are
A : 5.1 x 10

‘ 5 P, B : 1743 K, and To = 265 K. Thus in this case To is 450 below Tg, which turns out to
be quite typical. This is intriguing, because the Vogel temperature is therefore rather close to the
Kauzmann temperature discussed in Section 12.2; To, based purely on a semiempirical fit to a
dynamic property, lends some support to the concept of TK, a quantity anticipated on thermodynamic
grounds. Furthermore, recalling the derivation above, we can equate 45° with the ratio fg/af. Given
that af should be close to Ace, and that this quantity is on the order of 5 x 10 _ 4 DC _ l, the implication is
thatfg % 0.023. It is sometimes suggested that the glass transition corresponds to a particular value of
the fractional free volume. We will consider this issue further later in this section.

(12.4.12)

12.4.3 Williams-Landel-Ferry Equation

The VFTH equation is capable of describing rather well the temperature dependence of n or, in
fact, of any relaxation time of a polymer chain, based on three parameters. It is often the case that
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one has measurements over a range of temperatures, and it is convenient to choose some tempera—
ture as a reference. The value of the measured quantity at the reference temperature, T,, can then be
used to eliminate the front factor A from the VFTH equation, thereby reducing the number of
parameters to two. This can be seen by taking the ratio of two values of r) with two different values
off (subscript r denotes the property at T.) from Equation 12.4.10, remembering that B’ is a constant:

11 1 1 1_.._ 2 B _ _ a 12.4.
nr expi: (f fr):i

( 13)

ln (”3) = B’ (11; —%) (12.4.14)

Now we reintroduce the linear temperature dependence off as in Equation 12.4.11, except that we
choose Tr as the reference instead of Tg: f:fr+ of (T# Tr). This is legitimate as long as T, > Tg,

IL _ ; 1 _l
ln(nr)_B(fr+af(T‘—Tr) fr)

:H(r4#«mr—nqzh£(:n#mr—n))fr2 +fraf(T _ Tr) (fr/05f) + (T _ Tr)

OI'

(12.4.15)
We now convert to base 10 logarithms, and collect the various constants and rename them:

n_“_QU—E)10g ("7) —
C2 + (T F Tr)

(12.4.16)

This relation is known as the Williams—Landel—Ferry (WLF) equation [6], where the two new
parameters are C1 = B"/2.303fr and C2 :fi/ozf. The utility of the WLF equation will become
apparent in the next section, but for now it is important to realize that it has the same physical
content as the VFTH equation. The two main assumptions required to derive both relations were
that the viscosity followed the Doolittle equation, with an exponential dependence on l/f, and that
f has a linear dependence on T above Tg. The WLF equation tends to be more familiar to polymer
scientists, whereas the VFTH equation is used more by scientists studying the glass transition in
low molecular weight materials.

As noted above, one approach to the glass transition is to assign it to a certain, critical value of
fractional free volume. This is an appealingly simple picture, but it is not quantitatively reliable.
One difficulty is that there are several different ways to estimate f, but no direct and unambiguous
way to measure it. Table 12.2 provides values of the various free volume parameters for common

Table 12.2 Representative Values of VFTH/WLF Equation Parameters for Various Polymers

Polymer Tg (°C) a? 01; f3 Ci” CE (°C)

Poly(dimethylsiloxane) — 130 8.5 4.5 0.071 6.1 69
1,4—Polybutadiene — 95 7.8 2.0 0.039 11.2 60.5
Polyisobutylene — 75 6.2 1.5 0.026 16.6 104
1,4—Polyisoprene —- 70 6.2 2.1 0.021 10.8 51.1
Poly(viny1 acetate) 30 6.0 2.1 0.028 15.6 46.8
Polystyrene 100 5.5 1.8 0.032 13.7 50
Poly(methy1 methacrylate) 110 4.6 2.2 0.013 34 80
a in units of 10*4 °C' 1.
Source: Data collected in Ferry, J .D., Viscoelosric Properties of Polymers, 3rd ed., Wiley, New York, 1980; Sperling, L.H-,
Physical Polymer Science, Wiley, New York, 1986.
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polymers, and the WLF coefficients C1 and C2 when Tg is taken as the reference temperature. The
extracted value of fg varies significantly, and the sensitivity of the VFTH and WLF equations to
the choice of parameters is rather strong. Conversely, when fitting experimental data to extract
these parameters, the exact location of Tg plays an important role. And, although a, and org can be
measured, the expansion of free volume af is not necessarily exactly equal to al — ag, and one is
still left with B as an adjustable parameter in extracting a value for fg. Some further observations
about the free volume approach are listed below:

1. Although Equation 12.4.12 or Equation 12.4.16 describes the variation of viscosity over a wide
range of conditions quite well, they tend to break down both very far above Tg, where free
volume is not so important, and very close to Tg. In the latter range some workers advocate a
power law relationship in (T — To), where To is an adjustable critical temperature analogous to
the Vogel temperature; such power laws are the rule for the divergence of experimental
quantities approaching a phase transition. This idea will be explored further in Problem 12.11.

2. Although it is easy to discuss free volume, it is necessary to come up with a numerical value
for this quantity in order to test these concepts. There is considerable disagreement as to which
of several different methods of computation gives the best value for Vf and Vocc, and its
extraction from experimental data requires assuming a particular model.

3. It is possible to derive an expression equivalent to Equation 12.4.12 or Equation 12.4.16
starting from entropy rather than free—volume concepts. We have emphasized the latter
approach, since it is easier to visualize and hence to use for qualitative predictions about T3.

4. Completely aside from the theories that attempt to explain it, the empirical usefulness of the
VFTH and WLF equations is beyond doubt. We shall examine this in detail in the next section.

Example 12.2
A process for molding transparent plastic cups from polystyrene has been optimized to run at
150°C. When the supplier of the raw material introduces a new resin with a 20% higher Mw, the
increased viscosity slows the process down. At what temperature should the process be run in order
to recover the viscosity of the original raw material?

Solution
From Chapter 11 we recall that n~M°‘4, so a 20% increase in MW increases 77 by about
(1.2)3'42 1.86. We can write two WLF equations (Equation 12.4.16) for the two temperatures
T; = 150°C and T2, the unknown, using the parameters from Table 12.2:

log a z _ Ci(T1- Tg) = _ 13.7 x 50 = _6.85
77s C5 + (T1 — Tg) 100

10g 771 z _ Ci(T2 - Tg) = __13.7(T2 — 100)
186% C5 + (T2 " Tg) T2 -— 50

where the factor of 1.86 is inserted in the second equation in order to find the temperature T; at
which the viscosity has been lowered by that amount. We now take the difference between these
two equations to obtain

13.7(T2 — 100). = .2 = —6.log(186) 0 69 85 +
T2 _ 50

which can be solved to give T2 = 154°C. This calculation illustrates the remarkable influence of the
glass transition on dynamics. In this instance, although the experimental temperature is about 50°
above Tg, only a 4° increase in temperature is sufficient to cut the viscosity almost in half.
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12.5 Time—Temperature Superposition
One of the main points of the previous section was that the viscosity of a polymer can change by many
orders of magnitude over only a few tens of degrees in temperature. This feature is routinely exploited
to extend the range of measurement in any viscoelastic experiment. As an example, consider Figure
11.16b, where the stress relaxation modulus of polyisobutylene at 25°C was plotted against time.
Note that the time axis was actually day, where the significance of the factor aT will emerge shortly.
The range of the time axis extended from a few picoseconds to megaseconds—nearly 18 orders of
magnitude. There are no rheometers capable of measuring the picosecond response of materials, or
even the nanosecond response. Some custom instrumentation has been developed that can extend
down to microseconds, but that was not the case for these measurements. Similarly, at the long time
end, the measurements extend to almost two weeks—hardly experimentally convenient. What was
done in fact was to make measurements over a range of temperatures, and to reduce these to one
master curve using the time—temperature superposition (TTS) shift factor, aT. The underlying
principle is one of corresponding states; a measurement at a certain temperature and time (or
frequency) is equivalent to a measurement at a lower temperature and longer time.

This correspondence can be understood quite simply. We begin with a generic expression for
the stress relaxation modulus, 00,7), which also happens to be consistent with the Rouse, Zimm,
and reptation models (see Chapter 11):

p(T)RT
(

t
G(t,T) : ex —M 2 p 7pm

where we have explicitly indicated the quantities that depend on temperature: density, p, and the
relaxation times, 7p. Of these, the dependence of p is rather weak; recall that the thermal expansion
factor is usually less than one tenth of 1% per degree. The relaxation times, however, follow the
VFTH or WLF dependence derived in the previous section, and might change by an order of
magnitude over a few degrees (see Figure 12.11). Now we define the TTS shift factor, dry, as the
ratio of any relaxation time at one temperature to its value at the chosen reference temperature, T,

a = 7.0) Z W)T "7pm ncr.)
The crucial assumption here is that all relaxation times have the same temperature dependence and
thus that one value of (IT applies to any dynamic property including the viscosity. Now we insert
this definition into Equation 12.5.1 and rearrange:

__ p(T)RT t __ p(T)RT _ t
G(t,T) —

M
Zexp(— Tp(T)) —-

M
Zexp< amTqrD

= p(T)T
p(Tr)Tr

The significance of Equation 12.5.3 is this: a measurement of G at a particular combination of (t,T)
is exactly equivalent to a measurement at a new time, t/aT, and new temperature, Tr. (The front
factor involving p and T contributes a small correction that is often ignored in practice; note that p
decreases as T increases, so the net effect is even smaller than that due to p alone.)

Now we can see how TTS is used in practice. The actual measurements of Catsiff and Tobolsky
[7] are shown in Figure 12.12. They employed an instrument for which they could resolve
measurements from a few seconds up to a few hours, and they varied the temperature from
—80.8°C to 50°C. At the lowest temperatures the modulus is very high, characteristic of a
glass. As temperature increases, the modulus decreases at fixed time. Near ——20°C the modulus
seems to be independent of time and the value is characteristic of a lightly crosslinked rubber.
Finally, by 50°C the material flows on the measurement timescale. The data may be shifted

) (12.5.1)

(12.5.2)

G(t/aT,T,) (12.5.3)
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Figure 12.12 Stress relaxation modulus for polyisobutylene at the indicated temperatures. Data are actually
Young’s modulus, which is approximately equal to 3G(t) (see Section 10.3). (Reproduced from Catsiff, E. and
Tobolsky, A.V., J. Colioid Sci, 10, 375, 1955. With permission.)

horizontally by an arbitrary shift factor, until they overlap to produce a master curve; a reference
temperature of 25°C was selected. (A small vertical shift corresponding to the pa?" front factor was
also applied.) The result is shown in Figure 12.13 (and previously as Figure 11.16b). This
empirical generation of a master curve produces a set of shift factors, aT, and we can ask how
(21- depends on T. The answer should come as no surprise: it follows the WLF equation, as in
Equation 12.4.16:

C1(T _ Tr)

_m
(12.5.4)log arr =

The shift factors are used to generate the master curve in Figure 12.13 and plotted against
temperature in Figure 12.14, along with a fit to Equation 12.5.4. They follow the WLF equation
very well except for the lowest temperatures. The reason for this discrepancy is simple; some of the
data were obtained below Tgsa— 680C. The WLF equation relies on a linear variation of free
volume with temperature, which should not hold when traversing Tg, as Figure 12.10 indicates.

The principle of TTS applies to any dynamic property, a generality that can be understood from
the discussion in Section 11.3, where we showed that any linear viscoelastic function is derivable
from G(t). In particular, TTS is often used in dynamic experiments, and G’ and G" may be
superposed to form master curves versus reduced frequency maT. This approach was used, for
example, to produce the dynamic moduli for poly(viny1 methyl ether) shown in Figure ll.l6a. In
this case the superposed data extend over almost 10 orders of magnitude in reduced frequency,
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even though the rheometer employed could only be used from about 0.001—10 Hz. Another
illustration of how TTS is applied in practice is provided by the following example.

Example 12.3
The dynamic moduli for a polyisoprene sample (M : 80,000) were measured at five temperatures:

~— 40°C, — 20°C, 0°C, 20°C, and 50°C.Jr The unshifted data (0' and G” versus co) are shown in
Figure 12.15a and Figure 12.15b, respectively. Generate the master curve of G’ and G” versus (00'1",
using 20°C as the reference temperature.

Solution

To obtain the shift factors, one can simply play with the values of aT in a spreadsheet until the
data superpose nicely, or each set of data can be plotted on separate sheets of paper (keeping the
axes scales the same) and superposed in front of a bright light. However, because small vertical
shifts may be permitted due to the pT term in the front factor, a more rigorous approach to
determine 01- is actually to shift tan 5 (recall Equation 11.2.22). As tan 5 involves the ratio of G"
and G’, the front factor cancels, and the data can be shifted exclusively along the horizontal axis
to obtain the best superposition. Finally, small vertical shifts can be applied based on knowledge
of p(T). Figure 12.150 shows the unshifted values of tan 8, and Figure 12.15d the shifted values,
using 20°C as the reference temperature and values of aT of 12000, 130, 7, and 0.11 for — 40°C,
— 20°C, 0°C and 50°C, respectively. The final master curves for G’ and G” are shown in Figure
12.15e and the superposition can be seen to be excellent. Vertical shifts have not been applied in
this instance.

The preceding discussion illustrates how TTS can be used to expand the accessible range of
time (or frequency) scales dramatically. Furthermore, once the temperature dependence of a; has
been determined for a particular property and a particular polymer, it should apply to all dynamic
properties and all reasonably high molecular weights of the same polymer. In general, this is the
case, but we still have one complication if we hope to just look up the WLF parameters C1 and C2
for a given polymer in some handbook. The problem is that the values of C1 and C2 depend on
the choice of reference temperature and there are obviously many possible choices of T,. Suppose,
however, we make the particular selection Tr: Tg. We may find it experimentally inconvenient
to make the measurement at Tg, but that does not matter; we can extrapolate our data using
the WLF function. When this choice of reference is made, the corresponding parameters are
designated C? and Cg, as in Example 12.2. It turns out that the values of these parameters
are very approximately universal, as illustrated in Table 12.2. For many systems C? is about
10—15 and CE is about 50°C—60°C, for example. This approximate universality permits
reasonable estimation of the T dependence for any polymer, once Tg is known. Also, if we compare
the VFTH and WLF parameters directly (Equation 12.4.12 and Equation 12.4.16), we see that
Cg 2 TE ~— TO, i.e., Cg correSponds to the interval between the glass transition temperature and the
Vogel temperature.

We conclude this section with a brief discussion of when TTS is not, or may not, be applicable.
The single, crucial assumption is that all the relevant relaxation times have the same temperature
dependence over the measured temperature range. Note that adherence to the WLF dependence is
not a requirement; the remarkably strong T dependence as Tg is approached is what makes TTS

TData from J.C. Haley, Ph.D. Thesis, University of Minnesota, 2005.
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useful, but it is not necessary for its validity. One way to violate the necessary assumption is for the
sample to undergo some kind of transition with temperature, such as crystallization (Chapter 13) or
crosslinking (Chapter 10). A second situation arises in polymer mixtures or blends, where it is
sometimes observed that the temperature dependences of the relaxation times of the two compon-
ents differ. A more subtle failure can arise at high effective frequencies, or short effective times, in
the transition zone of viscoelastic response. The origin of the problem can be understood as
follows. In the bead—spring formulation of polymer dynamics (see Section 10.4 through Section
10.6), all of the relaxation times are proportional to an underlying segmental relaxation time,
756g ~ fibz/kT, where g is the bead friction factor. It is this friction factor (divided by T) that follows
the WLF form, and therefore all the relaxation times do too. However, this model does not describe
the relaxation of very short pieces of chain, on the scale of a few monomers and below. On this
very local scale, it is reasonable to anticipate that some relaxations may have a different T
dependence. For example, the rotation of a particular functional group might be limited by a
particular conformational barrier rather than free volume, and therefore have an approximately
Arrhenius dependence. Consequently, it is to be expected, and some careful measurements have
shown, that somewhere in the transition zone of viscoelastic response TTS will break down.

12.6 Factors That Affect the Glass Transition Temperature
In this section we consider the major factors that affect the value of Tg in a given polymer material,
independent of the role of kinetics and measurement technique. These experimental observations
should also be compared with expectations based on the Gibbs—DiMarzio theory outlined in
Section 12.2.3.

12.6.1 Dependence on Chemical Structure

The primary factor, of course, is monomer structure. A list of representative Tg values for common
polymers was provided in Table 12.1. They range from —130°C for poly(dimethylsiloxane) to
240°C for poly(p-phenylene terephthalimide) (Kevlar®). As indicated at the beginning of the
chapter, the value of Tg is the single most important parameter in selecting a polymer for a
given application. Those polymers with Tg below room temperature are sometimes called elasto-
mers; when crosslinked into a permanent network structure (see Chapter 10) they exhibit tremen-
dous elasticity, as in rubber bands, o-rings, gaskets, and tires. Polymers with Tgs near or above
100°C are called thermoplastics; they are processed above Tg, but then are solidified into plastic
parts by cooling. Polymers with particularly high Tgs, approaching or above 200°C, are termed
engineering thermoplastics. They are in high demand for more strenuous applications and as such
tend to be rather expensive. Polymers with Tgs between room temperature and 100°C that do not
crystallize are rather less widely applicable as bulk materials, but are useful as adhesives.

It is natural to seek a general correlation between the value of 1'"g and some other, familiar
property of the polymer, but in fact no robust correlation exists. Some broad generalizations may
be made, however.

1. Backbone flexibility increases as Tg decreases, in general. This may be simply understood
from a conformational barrier argument. Flexible polymers tend to have smaller potential
barriers between conformations and thus at a given temperature conformational rearrange-
ments should be more rapid (see Section 6.1). The correlation with Tg follows because the
glass transition corresponds to the freezing out of long-range backbone rearrangements.
However, the correlation is not strict, as can be seen by comparing the Tg values in Table
12.1 with the persistence lengths listed in Table 6.1. Based on flexibility alone, poly(ethylene
oxide) has an anomalously high and poly(dimethylsiloxane) an anomalously low Tg.

2. The larger the rigid sidegroup, the larger the Tg. This correlation follows the previous one, in that
bulky sidegroups impede backbone rearrangements. Exceptions here include polyisobutylene,
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which has a significantly lower Tg than polypropylene, even though it has double the number of
sidegroups. Also, adding flexible side chains to relatively stiff backbones will have the effect of
lowering Tg.

3. Polymers that have weak interactions, such as the purely dispersive interactions of the
polyolefins, have lower Tgs than more strongly interacting materials, such as the more polar
poly(vinyl chloride) or poly(vinyl alcohol). This arises from the retarding effect of stronger
intermolecular constraints on chain relaxation.

4. To obtain the highest Tgs, high backbone stiffness is essential, which is most easily conferred by
incorporating aromatic groups within the backbone. Poly(tetrafluoroethylene) (Teflon®) is
another example in this class; the bulky fluorine atoms render the all-carbon backbone
rather stiff.

12.6.2 Dependence on Molecular Weight

Once a polymer has been selected, how may its Tg be modified? There are two simple routes; one is
to vary molecular weight and the other is to add some amount of a low molecular weight diluent,
called a plasticizer. The molecular weight dependence follows from the molecular weight depend-
ence of density, and is thus easily understood via the free-volume concept. For a homologous series
of compounds, such as the linear alkanes CnH2n + 2, the density increases with n. This arises
because of the chain ends; they are less dense essentially because covalent bonds are shorter than
intermolecular nearest neighbor distances. Therefore the lower the n, the higher the fraction of the
material that is made up of chain ends, and the lower the density. The chain ends may be viewed as
a kind of impurity, and as with colligative properties such as boiling point elevation, freezing point
depression, or osmotic pressure (see Section 7.4), the change in transition temperature should be
linear in the mole fraction of impurity. In this case, the concentration of chain ends varies as 11M",
and therefore we anticipate:

Tg(M,,) = Tg(M ——> oo) — MA— (12.6.1)
H

where A is an empirical parameter. This expression turns out to be a very reasonable description
for many polymers. For example, for polystyrenes shown in Figure 12.16, the value of A is about
105 g/mol, which implies that Tg becomes effectively independent of M when M exceeds that
value. A 10° depression of Tg below the high molecular weight limit would be seen for a polymer
with M = 10,000. (Recall that the polystyrene in Figure 12.11 with M = 1,100 had a Tg of 375°C,
which is not in good agreement with this relation; Equation 12.6.1 is more reliable for larger values
of M.) Problem 12.12 provides another example of the M dependence of Tg. This M dependence of
Tg is important to appreciate, but it is not a particularly useful design parameter because the range
over which Tg may be varied while retaining other desirable properties, such as mechanical
strength, turns out to be rather small.

12.6.3 Dependence on Composition

A general expression for the glass transition temperature of a mixture of two components was
developed by Couchman [8], beginning with a thermodynamic relation for the transition similar in
spirit to those discussed in Section 12.2. Furthermore, the same relation can be applied to a
polymer mixed with a low molecular weight compound, a blend of two polymers, or a statistical
copolymer. We begin by equating the (specific) entropies of the mixture in the glass (superscript g)
and liquid (superscript 1) states at the “second-order transition” temperature, Tg:

53(Tg) = slag) (12.6.2)
For each phase, we construct the entropy of the mixture as follows:

5 = wlSl + W252 + AS,1n (12.6.3)
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Figure 12.16 Dependence of the glass transition temperature on molecular weight for polystyrene. The
inset shows a plot of TB versus l/M,, and a linear regression fit. (Data from Fox, T.G and Flory, P.J., J . Polym.
Sci. 14, 315, 1954; Santangelo, P.G. and Roland, C.M., Macromolecules, 31, 4581, 1998.)

where WI and W2 are the weight fractions of components 1 and 2, respectively (the appropriate
composition variable because we are dealing with specific entropies), S 1 and SQ are the component
entropies, and ASm is the entropy of mixing. This last quantity might be given by the Flory—
Huggins theory discussed in Chapter 7, for example, but if we assume that it is independent of state
at a given temperature, it will cancel out from both sides of Equation 12.6.2. The component
entropies can be constructed via Equation 12.2.7 using the pure component Tg as the lower bound
and the mixture Tg as the upper bound:

T8

J Cm] d In T

T,,.
TE

82(Tg) : 82(T ,2) —I— J Cpfl dlnT

Tg,2

51(Tg)=SI(T,I)+

(12.6.4)

In these expressions the only quantities that depend on the state of the mixture are the heat
capacities (specific heats); from Equation 12.6.2 we can see that the reference state entropy of
each component in the liquid and glassy states is the same at the pure component Tg. Armed
with this information we can insert Equation 12.6.4 and Equation 12.6.3 into Equation 12.6.2
to obtain



494 Glass Transition

T3 T3 T3 T8

w, [ C§91dlnT+w2 [ CizdlnTzwl [ 6‘},,,c11nT+w2 [ CdlnT (12.6.5)
T1»: Tia T14 T892

which can be rewritten

Ts Ts

w, [ ACp,1dlnT = —w2 [ AsdlnT (12.6.6)
711,1 733,2

Assuming that the heat capacities do not change with temperature, the integration gives

T TWIACP,1 111(fg1) + WQACpQ 1n (T35) = 0 (12.6.7)
9 39

This expression can be rearranged to give the general expression

__ WIACPJ 1n Tg,1 + sCp,21nTg,2

WlACpJ + WZACP,2
ln Tg (12.6.8)

Simpler versions of this expression can be obtained with additional assumptions. For example, if
the condition ACpJTg,‘ zACpng holds, and the Tgs are not too different, Equation 12.6.8
reduces to the more commonly applied Fox equation:

1_=_"KL+12_ (12.6.9)
Ts TgJ Tgfl

These relations are compared with data for polymer blends and statistical copolymers in Figure
12.17 and Figure 12.18, respectively. The agreement is generally very good. The use of a
plasticizer is illustrated in Example 12.4 below.

Example 12.4
Di-n-ethylhexyl phthalate (DEHP) and related compounds are commonly used to plasticize
poly(vinyl chloride) (PVC) to produce the pliable material generically referred to as “vinyl.”
A good plasticizer is miscible with the polymer in question, does not crystallize itself, and has a
very low vapor pressure. What fraction of DEHP should be added to PVC to bring Tg down below
room temperature, given that Tg for DEHP is about —86°C?

Solution
This is a straightforward application of the Fox equation. If we take 300 K as our target T3, and 360
K as the T3 of pure PVC (see Table 12.1):

l w! 1 — WI 1 1
__ = _ =

w]
.___. __ .___. +_

300 187 360 187 360 360

then we need a weight fraction of DEHP wl = 0.22. Of course, in an actual application the desired
Tg would be confirmed by measurements on compositions in the neighborhood of the estimated
value.
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Figure 12.17 Glass transition temperature versus composition for miscible polystyrene/poly(oxy-2,6—
dimethy1—1,4—phenylene) (PPO) blends, with fits to Equation 12.6.8 (solid curve) and Equation 12.6.9 (dashed
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12.7 Mechanical Properties of Glassy Polymers
Although all polymers can exhibit a glass transition, we are concerned here with thermoplastics:
materials that may be processed into desired shapes or forms above Tg, and then cooled below Tg
for use. For semicrystalline polymers to be discussed in Chapter 13, Tm will play the same role as
Tg in setting the boundary between liquid state processing and solid state application. As most
common applications occur in the vicinity of room temperature, say from — 25°C to 50°C,
themroplastics must have Tg well above that. Three prevalent thermoplastics are polystyrene
(Tg m 100°C), poly(methyl methacrylate) (Tg m 110°C), and polycarbonate (Tgw 150°C), and this
subset will be sufficient to illustrate the main aspects of mechanical response.

Clearly, there are many different physical attributes beyond the value of Tg (or Tm) that could
either favor or disfavor a particular polymer for a given application, and we will make no attempt to
treat these comprehensively. We will emphasize mechanical strength in this section, but even in that
context we will only be able to cover a few aspects of a very rich subject. In general semicrystalline
polymers have superior mechanical strength compared to amorphous polymers, but in many cases the
latter class is perfectly satisfactory. Amorphous polymers do offer some processing advantages,
because vitrification is essentially instantaneous upon cooling, whereas the kinetics of crystallization
can be highly dependent on the polymer, the flow profile, and the presence of additives. On the other
hand, processing is usually carried out tens of degrees above Tg, because of the strong temperature
dependence of the viscosity (recall Sections 12.4 and 12.5), whereas semicrystalline polymers can be
processed just a few degrees above Tm. One further attribute of amorphous polymers that makes them
the materials of choice in numerous applications is optical clarity. As the molecular packing in the
glassy state is that of a liquid, the refractive index is spatially homogeneous and isotropic; as
discussed at length in Section 8.2, this minimizes the scattering of visible light. Accordingly, the
three polymers identified above are familiar in everyday use: polystyrene in clear plastic cups;
poly(methyl methacrylate) as Plexiglas®; polycarbonate in compact discs. In contrast, semicrystal-
line polymers contain more dense crystalline regions within an amorphous matrix; the resulting
fluctuations in refractive index often render the material opaque, or at best, hazy.

12.7.1 Basic Concepts

The mechanical properties of polymer solids represent an extremely rich but complicated field of
study, and we must necessarily limit our focus. For those students with a background in materials
science and engineering, the topic of this section should be familiar, but for those trained in the
chemical sciences an introduction may be necessary. It could also be helpful to review some of the
material in Section 10.3 and Section 10.5 on elastic deformation, elastic modulus, and the stress—
strain behavior of elastomers. We begin with the following observations.

1. Every day adjectives such as strong, hard, and tough, which might be considered to be roughly
synonymous, now acquire specific and distinct meanings. Table 12.3 provides a glossary of
pertinent terminology.

2. Throughout our consideration of viscoelasticity in Chapter 11, we emphasized the limit of
small strains and strain rates: the material response was linear. Now we are concerned with
large strain, nonlinear response, and in particular we ask the question, how will a given
material break?

3. There are actually many questions that one might ask about the nonlinear response of a
material, such as: how large a strain (or stress) can the material withstand before failure?
How large a strain (or stress) is required to achieve a nonlinear response? How large a strain
(or stress) is required to undergo a nonrecoverable (plastic) deformation? How many times can
a material undergo a relatively small deformation without deteriorating? The answers to these
questions provide “figures of merit,” but they need not be simply related to one another for a
given material, and a different figure of merit may be most crucial for a particular application.
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Table 12.3 Terminology Relevant to the Mechanical Strength of Materials

Term Significance

Brittle fracture
Craze
Ductility
Elastic deformation
Engineering stress
Hardness
Plastic deformation
Strain hardening
Modulus
Tensile strength
Tensile stress
Toughness

True stress
Yield point
Yield strength

Failure by rapid crack propagation without much deformation
Localized yielding consisting of microvoids interspersed with fibrils
Ability to undergo substantial plastic deformation before failure
Completely recoverable deformation (note: not synonymous with Hookean)
Force divided by initial cross—sectional area
Ability to withstand surface abrasion or indentation
Nonrecoverable deformation
Stress increasing with strain during plastic deformation
Stress divided by strain during small elastic deformation
Tensile stress at point of fracture
Maximum engineering stress without fracture
Amount of energy absorbed during fracture

(pr0portional to the area under the stress—strain curve)
Force divided by instantaneous cross—sectional area
Onset of plastic deformation
Magnitude of stress at the yield point

Source: Adapted from Callister, W.D., Materials Science and Engineering: An Introduction, 5th ed., Wiley,
New York, 2000.

4. Just as there are many questions to ask, there are also many different testing protocols. We will
emphasize tensile testing (i.e., uniaxial extension as in Section 10.3 and Section 10.5), but
response to torsion, compression, shear, bending, and sudden impact are other common
modes. Molecular level information about the origins of strength and mechanisms of fracture
is often obtained from controlled crack prOpagation experiments. The re5ponse of a given
material may vary significantly from one mode of deformation to another.

Figure 12.19 illustrates three schematic stress—strain curves for polymers in uniaxial extension.
Curves A and B represent glassy materials, whereas curve C is a rubber such as that discussed in
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Figure 12.19 Schematic illustration of the stress—strain curves for polymers in uniaxial extension, drawn
approximately to scale. Curve A: brittle, curve B: ductile (plastic), curve C: elastomeric.
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Table 12.4 Representative Values of Mechanical Properties for Common Thermoplastics
at Room Temperature

Tensile strength Yield strength Elongation at
Polymer E (GPa) (MPa) (MPa) break (%)

Polycarbonate 2.4 60—70 62 1 10—150
Poly(methyl methacrylate) 2.2—3.2 48—72 54—73 2-6
Polystyrene 2.3-6.3 36-52 ———- 1.2—2.5

Source: Data compiled in Callister, W.D., Materials Science and Engineering: An Introduction, 5th ed., Wiley,

Chapter 10 (see Figure 10.14 for an example). Curve A illustrates a material that undergoes brittle
fracture. The modulus E, which corresponds to the slope of the curve in the small strain limit, is
relatively high, and there is not much deviation from linearity in response up to the point of failure.
Failure typically occurs at strains of less than 10%. Curve B illustrates a much richer response,
with the stress first rising steeply, then exhibiting a maximum followed by a decrease, which
evolves into a broad interval of nearly constant or slightly increasing values before fracture
ultimately intervenes. The stress maximum corresponds to the yield point, the strain at which the
material begins to undergo plastic deformation. The ensuing large range of strains, during which
the material may exhibit some degree of both strain softening and strain hardening, is characteristic
of a ductile material. The strain at break may correspond to extensions of up to a factor of 100%.
As indicated in Table 12.3, the toughness of the material is given by the area under the stress-strain
curve, so materials that undergo ductile deformation can be extremely tough. At room temperature,
polystyrene and poly(methyl methacrylate) show behavior closer to curve A, whereas polycarbon-
ate follows curve B. These differences may be attributed to differences in chain stiffness and
entanglement density, as will be discussed in Section 12.7.3. Representative values of modulus,
tensile strength, yield strength, and elongation at break are given in Table 12.4. Curve C for the
rubber is markedly different. First, the modulus is lower by 2——3 orders of magnitude; for most
polymer glasses E is in the range 2—4 GPa, whereas for rubbers the values have a wider range
(depending on crosslink density), but 0.1—1 MPa is typical. Second, there is no yielding; the
deformation is largely recoverable throughout the deformation. Third, the stress increases mono-
tonically up to the point of failure. Fourth, the strain at break may correspond to extensions
approaching 1000%, and generally exceeds 500%.

12.7.2 Crazing, Yielding, and the Brittle-to-Ductile Transition

Figure 12.20 shows stress—strain curves for poly(methyl methacrylate) at various temperatures
below Tg (approximately 110°C). The most notable feature of these curves is the brittle-to—ductile
transition that occurs between 40°C and 50°C. For lower temperatures the behavior follows Curve
A of Figure 12.19. The stress rises almost linearly with strain up to a maximum strain of a few
percent, at which point the specimen breaks. In contrast, for temperatures between 50°C and T3 the
response follows Curve B of Figure 12.19. The yield point corresponds to a strain amplitude
similar to that at the point of brittle fracture at slightly lower temperatures. As temperature
increases within the ductile regime, the strain—to-break increases substantially. This transition
from brittle failure to a ductile response as the glass transition is approached from below is
common, but the temperature interval over which the (usually more desirable) ductile behavior
is seen depends on the polymer. The phenomenon of increasing brittleness with decreasing
temperature is a familiar one; plastic toys, automobile parts, etc. are often noticeably more brittle,
or at least stiffer, when left outside on a cold winter day. Similarly most of us have seen a
demonstration of brittle fracture for a rubber ball, flower, or similar soft material after immersion
in liquid nitrogen. Macroscopic failure of a polymeric material corresponds to rupture of covalent
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Figure 12.20 Stress—strain reSponse for poly(methy1 methacrylate) at various temperatures, showing the
brittle—to—ductile transition. (Reproduced from Young, R.J., and Lovell, P.A., Introduction to Polymers, 2nd
ed., Chapman & Hall, London, 1991. With permission.)

bonds at the molecular level. Brittle fracture implies that there is little deformation of the material
prior to bond rupture and as reduced temperature leads to reduced molecular mobility, it is
reasonable that the material undergoes less deformation before fracture at lower temperatures. In
contrast, ductility requires substantial molecular mobility, and is thus favored at higher temperat-
ures. In a qualitative sense the process of yielding is analogous to melting; the material is able to
“flow” under the externally imposed deformation. In support of this notion is the fact that the
brittle—to—ductile transition occurs at progressively higher temperatures as the rate of deformation is
increased. At higher rates there is less time for molecular rearrangements to relieve the stress, and
thus bond rupture is more likely.

Brittle fracture in polymers occurs by the formation of cracks, as in other materials such as
metals and ceramics. However, there are major differences between the way cracks propagate in
glassy polymers as compared to ceramics. In the latter, cracks tend to follow grain boundaries and
other defects, which often leads to significant variation in performance depending on the grain
size, defect density, etc. of the material. In glassy polymers the lack of structural regularity,
combined with the substantial spatial extent and interpenetration of the covalently bonded chains,
makes the mechanical response more uniform. Cracks in polymers, therefore, are usually initiated
by defects on the surface, such as scratches. In polymers, the mode of crack propagation after
initiation is also qualitatively different than in metals and ceramics; the new phenomenon is called
crazing. A craze is formed by a localized cavitation process, in which microvoids are created in the
polymer to accommodate the applied strain. The microvoids are surrounded by a fibrillar structure
where the fibrils contain extended polymer chains. An electron micrograph of a craze in polystyr-
ene is shown in Figure 12.21, along with a cartoon version of the craze structure. The thickness of a
typical craze is on the order of 100 nm and the fibrils are typically about 10—20 mm thick. As the
macroscopic strain is increased, the crazes propagate roughly perpendicular to the strain direction
and then give way to cracks when the individual fibrils break. The formation of crazes has two
major implications for the fracture process. First, a significant amount of energy is dissipated in the
drawing of polymer chains into fibrils; mechanical energy expended in this manner is no longer
available for bond rupture, so the ability to craze greatly enhances the mechanical strength of the
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Figure 12.21 (a) Transmission electron micrograph of a craze in polystyrene. (Reproduced from Donald,
A.M., The Physics of Glassy Polymers, Haward, R.N., and Young, R]. (Eds), 2nd ed., Chapter 6, Chapman &
Hall, London, 1997. With permission.) (b) Cartoon of a craze, illustrating voids, fibrils, and the deformation zone.

material. Second, the significant deformation that takes place during crazing means that typically
the strain at break is several percent. This should be contrasted with ceramic materials, such as
everyday silicon dioxide—based glasses, where brittle fracture occurs at strains well below one
tenth of 1%.

Yielding occurs when the material is able to undergo significant deformation without crazing.
The crucial difference between crazing and yielding is that the former is a highly localized
deformation, whereas the latter involves macroscopic deformation. Crazing leads to brittle failure
because the imposed strain must be accommodated locally, whereas yielding allows the strain to be
distributed over larger volumes of material. In such a case, there is less chance of a localized stress
buildup that is sufficiently large to break bonds. It is often the case that the macroscopic sample
under tension displays a shape transformation just after yielding known as necking (see Figure
12.22), whereby the specimen becomes visibly thinner at some point along its length. In this region
the individual molecules have been extended to some significant degree. By analogy to rubber
elasticity (Chapter 10) we know that the force to extend a sample increases with extension.
Therefore it is easier to stretch the unnecked portion than to continue to extend the necked region.
The consequence of this is that once necking has occurred in one location, the size of the necked
region tends to grow while the original neck thickness is more or less preserved. During this region
the engineering stress will remain roughly constant, as individual portions of the sample deform.
Eventually the neck encompasses the entire specimen, and further extension leads to a more
uniform deformation along the sample, often accompanied by some strain hardening. Detailed
analysis of the material response throughout the postyield regime is complicated, especially
because the strain is not homogeneous throughout the material; the distinctions between the
engineering stress (strain) and the true stress (strain) (see Table 12.2) become very important.

In contrast with polystyrene and poly(methyl methacrylate), which tend to craze at any
temperature 50° or more below T , polycarbonate shows yielding behavior over 200° below T ,
as shown in Figure 12.23. Clearly there must be some important aspects of the molecular structure
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Figure 12.22 Schematic illustration of necking in a ductile polymer undergoing uniaxial extension.

that accounts for this difference. The dependence of the mechanical response of glassy polymers
on molecular variables will be taken up in the next section.

12.7.3 Role of Chain Stiffness and Entanglements

The molecular mechanisms of plastic deformation and failure in glassy polymers are far from
completely understood, but some important basic principles have been elucidated. A crucial
parameter turns out to be the molecular weight between entanglements, Me (recall Section 11.6)
or equivalently the number of entanglement strands per unit volume, pe:
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Figure 12.23 Stress—strain behavior of polycarbonate in uniaxial extension at various temperatures.
(Reproduced from G’Sell, C., Hiver, J.M., Dahoun, A., and Souahi, A., J. Mater. Sci., 27, 5031, 1992.
With permission.)
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where p is the mass density. In Chapter 11 we discussed at some length how entanglements play a
central role in the dynamic properties of a polymer melt, such as the viscosity and the stress
relaxation modulus. This analysis, in turn, was developed by analogy to rubber elasticity, where the
fundamental parameter was the density of elastically active strands. It was argued that the
entanglement strand in a melt acts like an elastically active strand in a network until the reptation
process finally allowed each chain to escape its entanglements and pennit flow. The value of Me
was also shown to be well correlated with the chain stiffness (i.e., the characteristic ratio, C00) and
the average thickness of the chain, through the packing length. Now we are asserting that the same
concepts have relevance to deformation below the glass transition. This might seem surprising at
first because after all, in both melts and rubbers local relaxations (i.e., on a length scale smaller
than Me) are facile, whereas the main consequence of undergoing the glass transition is to freeze
out such motions. However, we are now dealing with large imposed strains and as a consequence
the molecules must do something; one possibility is that chain segments less than M, long can slip
past one another.

What are the possible responses of a polymer glass to increasing strain? Here are some to
consider:

1. Bond rupture: The material could fracture by scission of enough backbone bonds, where
“enough” means all the bonds traversing some fracture surface. In the case of an “ideal”
chain of links under tension, the tension is equal in all links, and they would all fracture
simultaneously when the tension in each link reached a critical value. Of course, the tension
will not be uniformly distributed at the level of individual carbon—carbon bonds in a real
polymer material, so some would fracture first, thereby relieving the tension on the others.
A simple calculation to estimate the stress required to fracture all the bonds in a polymer
(Problem 12.15) shows that this value is significantly larger than both the yield and tensile
strengths (see Table 12.4).

2. Molecular separation: In this limit the molecules would simply move apart without bond
rupture. The energy required to do this would be related to the intermolecular interactions,
quantified by the cohesive energy density (see Section 7.6). The dispersive interactions that
hold nonpolar molecules together in liquid or solid phases are orders of magnitude weaker
than covalent bonds, so simple estimates of the required stresses are much lower than observed
values (see Problem 12.16).

3. Long chain pullout: It should be apparent that as high molecular weight polymers are
thoroughly intertwined with one another, and because mobility is very low below T , the
simple molecular separation mode is not feasible. Another possibility is that under tension the
individual molecules disentangle by a kind of forced reptation, and are pulled apart without
bond rupture. The friction associated with disentanglement would certainly dissipate energy,
giving rise to a larger tensile strength than case 2. However, as we saw in Chapter 11, it takes
many orders of magnitude longer for chains to disentangle than to undergo local rearrange-
ments; and as the local rearrangements themselves are already very slow, such a process seems
unlikely.

4. End strand or short chain pullout: Chain end segments that are shorter than Me, or chains with
M < Me, could pull out from one another without the need for forced reptation.

5. Chain extension: Perhaps polymers that are sufficiently flexible can be induced to undergo
local conformation rearrangements (such as trans to gauche for a carbon—carbon bond), and
thereby the material can extend without either rupture or pullout. In essence, this response
would be equivalent to the extensional flow of an entangled melt, but of course, requiring
substantially higher stresses to bring it about.

This set of possibilities is not exhaustive, and none of these possibilities are mutually exclusive.
At a superficial level, however, we can match these possibilities to the observed phenomena. First
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of all, responses 2 and 3 are not important to polymers. The fact that response 3 is not relevant is
indicated by the molecular weight independence of tensile strength and yield strength for high
molecular weight materials. Fracture ultimately involves some degree of response 1. Yielding and
ductility are largely encompassed by response 5. The fact that ductility involves substantial chain
extension is demonstrated by the fact that once the plastically deformed specimen is heated above
Tg, it undergoes large scale elastic recovery just as a deformed rubber or entangled melt would.
Crazing involves a combination of responses 1, 4, and 5, but the chain extension part is restricted
both in extent and localized in Space.

If we consider first the propagation of a craze, the material responds both by forming extended
fibrils and by cavitation. The latter process requires the formation of free surface and therefore
costs an amount of energy proportional to the product of the void surface area and the surface
tension of the material. The formation of fibrils requires local extension of the polymer chains. The
telling feature of these fibrils is that the local extension ratio A (recall Section 10.5) within the fibril
remains constant, even as the craze widens. Thus the fibrils grow in length by drawing in
more material, not by thinning the existing fiber. Furthermore, the extension ratio varies with
the material, but is well approximated by the ratio of the contour length of an entanglement strand
to the root mean square end-to-end distance of the same strand. In other words, the material within
the fibrils corresponds to nearly fully extended entanglement strands. The material ultimately fails
when chemical bonds within the fibrils undergo rupture, presumably when fresh material cannot be
drawn into the fibrils at the necessary rate.

The preceding discussion indicates that an entanglement network is a necessary precondition for
crazing to occur. This is also nicely illustrated in Figure 12.24, where the elongation at break is
plotted as a function of total molecular weight for polystyrene. For high molecular weights the
value is constant, but at low molecular weights it tends to vanish. The curve extrapolates to a value
of about 35,000, indicating that there is essentially no tensile strength for chains shorter than this.
Recalling from Table 11.2 that Me for polystyrene is about 13,000, we can see that 2—3
entanglement strands per chain are necessary to develop appreciable tensile strength and beyond
about 10 strands per chain the strength becomes constant. These values are easily appreciated.
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Figure 12.24 Elongation at break in polystyrene as a function of weight average molecular weight. (Data
reported in McCormick, H.W., Brower, F.M., and Kim, L., J. Polym. Sci, 39, 87, 1959.)
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Imagine a plane through the material along which we wish to drive a crack. For any chain that is
shorter than 2—3 Me long that traverses this plane, at least one end will be less than Me long and will
therefore be able to pull out readily (case 4 above). On the other hand, for chains longer than about
10 Me, almost all chains that traverse the plane will be well anchored by several entanglement
strands on each side of the interface.

We now turn to one last question, namely, which molecular characteristics determine whether
the material responds by crazing, leading to brittle fracture, or by yielding? The accumulated
evidence indicates that increasing chain flexibility (i.e., smaller C00) and higher entanglement
densities, pe, favor yielding [10]. For example, polystyrene tends to craze (C00 2 9.5,
pc = 4.8><1019 cm _ 3), poly(methy1 methacrylate) tends to craze but yields at higher temperature
(COO = 9.0, pe = 6.8x1019 cm — 3), whereas polycarbonate yields (COO = 2.4 [10], p6 = 5 x1020
cm—B). Of course, external variables such as temperature, deformation type, and deformation
rate can affect the answer in a particular case, but all other things being equal, this demarcation is
generally correct. The question can be reformulated slightly when we recognize that for any material
there must be critical stress values for both crazing and yielding to occur and the observed response
will correspond to the process with the lower critical stress value. Smaller values of C00 are generally
associated with chain structures that have smaller energy differences between trans and gauche
conformers and thus chain extension should be more facile in such cases; this would lower the
critical yield stress. On the other hand, crazing requires cavitation. In addition to the surface energy
penalty noted above, the formation of a cavity requires either chain scission or pullout across
the interface where the cavity forms. The higher the entanglement density, the shorter will be the
dangling entanglement strands at the ends of chains and the smaller the extension ratio of one
entanglement strand. Both factors increase the critical stress for crazing and thus more highly
entangled chains favor yielding. Simply put, a higher entanglement density corresponds to a material
that is more tightly stitched together, and therefore more resistant to localized yielding (i.e., crazing).

12.8 Chapter Summary
In this chapter, we have examined the transition between the liquid state and the glassy state, which
takes place over a range of temperatures near a characteristic glass transition temperature, Tg. The
principal points are the following:

1. The glass transition is a kinetic transition, but it approximates a second-order thermodynamic
transition. A completely satisfactory theory of the glass transition is not yet available.

2. The glass transition temperature may be located in a variety of ways, but the most common
tools are DSC and rheology.

3. The glass transition temperature is the single most important parameter in determining whether
a given polymer may be suitable for a certain application. There is no simple way to correlate Tg
with a particular chemical structure, although some general rules of thumb exist.

4. The value of Tg may be modified by changing molecular weight or by blending; the molecular
weight and composition dependences of Tg are generally straightforward.

5. The concept of free volume is a particularly useful and physically intuitive way to understand
the glass transition, and the profound effect that proximity to Tg has on the temperature
dependence of any viscoelastic or transport property. The free volume approach provides a
natural explanation for the widely used Vogel—Fulcher—Tammann and Williams—Landel—Ferry
equations, which describe the temperature dependence of viscoelastic pr0perties above T3.

6. The principle of time—temperature superposition is an essential ingredient in the study of
polymer viscoelasticity because small changes in temperature produce large changes in the
polymer relaxation times. Consequently measurements over a finite range of time or frequency
at one temperature can be superposed with measurements at other temperatures to generate
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master curves of dynamic response, which can extend over as many as 20 orders of magnitude
in reduced time or frequency.
Noncrystallizable thermoplastics are in common use, for their ease of processing, optical
clarity, and mechanical strength. Glassy polymers under large deformation may undergo either
brittle failure, through a distinctive localized yielding process known as crazing, or yield
macroscopically, leading to very large elongations before failure. Both processes involve
extension of individual chains; the Operative response mode is strongly influenced by the
flexibility and entanglement density of the material.

Problems

1. Hirai and EyringT assembled the following data from diverse sources (scarcely any two pieces
of data were measured in the same laboratory, much less on the same sample):

Vsp (cm3/g) ACP (erg/K/g) A0: (K’ 1) AK (cmz/dyn)

Rubber 1.1 5><106 4.0><10‘4 1>-<10‘11
Polystyrene 1.0 7.7><10° 1.75x10—4 3x10“12
Polyisobutylene 1.1 4.0><10° 4.5x10—4 3x10“”

Use these data to evaluate Tg, assuming that the latter is a true second-order transition.
Compare your results with the values in Table 12.1 and comment on the agreement or lack
thereof.
Time—temperature superposition was applied to the maximum in dielectric loss factors meas-
ured on poly(viny1 acetate).i Data collected at different temperatures were shifted to match at
Tg = 28°C. The shift factors for the frequency (in hertz) at the maximum were found to obey
the WLF equation in the following form: log (0+ 6.9 = [19.6(T— 28)]/[42 + (T— 28)]. Esti-
mate the fractional free volume at Tg and a: for the free volume from these data. Recalling
from Chapter 11 that the loss factor for the mechanical properties occurs at cur = 1, estimate
the relaxation time for poly(vinyl acetate) at 40°C and 285°C.
Imagine a high molecular weight polymer that is a cycle. How would its Tg differ from a linear
polymer of the same molecular weight? Make an argument based on the spirit of the Gibbse
DiMarzio theory, and one based on free volume ideas. Do they make the same qualitative
prediction? Incidentally, the experimental evidence suggests that at infinite molecular weight
linear and cyclic polymers have the same Tg, but as the chains get shorter, Tg for cycles
actually increases.
A polystyrene sample is split into two, and the Tg for each sample is measured by DSC in two
different laborataries. The reported results are 98°C and 106°C. Propose three possible simple
explanations for this difference.
Suppose now that the two technicians in the previous problem consult one another on their
measurement techniques. After repeating the measurements, the two laboratories agree as to
the value of Tg. However, in one lab the increase in heat flow associated with the transition is
about 30% larger than in the other. What could cause this discrepancy?
The figure illustrates plots of heat capacity for a particular polymer sample.§ The scans were
obtained at a constant heating rate of 5.4°C/min, but different cooling rates were used to bring
the sample down to the starting temperature (350 K). Explain why the shape of the curve

1N. Hirai and H. Eyring, J. Polym. Sci. 37, 51 (1959).
is. Matsuoka, G.E. Johnson, H.E. Bair, and E.W. Anderson, Polym. Prepr. 22(2), 280 (1981).
§13.. Wunderlich, D.M. Bodily, and MH. Kaplam, J. Appi. Phys. 35, 95 (1964).
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depends on the prior cooling rate, and identify which curve corresponds to the smallest
cooling rate. Speculate on the identity of the polymer.

1

op

(Arb. units)

350 360 370 380 390 400
Temperature (%)

7. Williams and Ferry)r measured the dynamic compliance of poly(methy1 acrylate) at a number
of temperatures. Curves measured at various temperatures were shifted to construct a master
curve at 25°C, and the following shift factors were obtained. Assess whether these data obey
the WLF equation; if so, evaluate the constants C1 and C2, and also C? and C5. Note that To 79
Tg = 3°C for these data.

T (°C) log aT T (‘C) log aT

25.00 0 54.90 — 3.88
29.75 — 0.98 59.95 — 4.26
34.85 — 1.80 64.70 — 4.58
39.70 —- 2.42 69.50 — 4.88
44.90 — 3.00 80.35 — 5.42
49.95 — 3.47 89.15 — 5.72

1‘ML. Williams and JD. Ferry, J. Colloid Sci. 10, 474 (1955).
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8. Plazek and O’Rourker measured the viscosity of polystyrene (M: 3400) as a function of
temperature. Plot these data in the Arrhenius format (ln 7; versus 1/7) and find apparent
activation energies for the lowest and highest temperatures measured. Compare these
values to those obtained from the data in Figure 12.11b, and comment on their physical
significance.

T (‘0 10g 7? T (°C) 10g 77
70.0 12.967 94.3 6.888
75.0 11.152 100.6 5.995
79.8 9.749 109.4 5.047
84.3 8.619 130.3 3.418
89.9 7.609 144.6 2.627

9. A certain extruder has optimum performance when 11 = 2 x104 P. The polymer of choice had
this viscosity at 150°C, and its MW was 80,000. Its Tg was about 75°C. An error in
polymerization control led to a batch of the same polymer with MW=60,000. At what
temperature should the extruder be run?

10. In small molecule glass formers, a common empirical definition of Tg is the temperature
for which the viscosity equals 1013 P. At first glance, this definition seems wholly inappro—
priate for polymers, because the viscosity at fixed temperature varies so strongly with M
(i.e., a3‘4), while Tg varies weakly with M. To assess the worth of this definition,
consider polystyrene with M = 105 and M = 10°. What would be the difference in the two
Tgs based on 7]: 101°, and how does this compare with what you would expect from
calorimetry?

11. It is sometimes suggested that the temperature dependence of the viscosity should follow
a power law, with an exponent v and a divergence (viscosity becomes infinite) at some
To < Tgi

71 N (T — To)”

Such a dependence is common for many experimental quantities in the vicinity of a true
phase transition (so-called critical phenomena). Assess whether the following aT data for
polyisoprene (in part from Example 12.3) can be modeled in this way, and compare the
quality of the fit to that with the WLF or VFTH function. How do the values of the Vogel
temperature and the putative critical temperature compare?

T (°C) —40 —30 —20 — 10 0 10 20 30 50
aT 12,000 950 130 28 7 2.5 1 0.43 0.11

12. The following dependence of Tg on M for poly(dimethylsiloxane) was determined by
DSC.i Prepare a plot to compare with Figure 12.16, and determine whether the functional
relationship of Equation 12.6.1 is followed in this case. Then select some measure of the
crossover to the high molecular weight asymptotic value of Tg (e.g., perhaps M where Tg is 5°
less than the infinite M limit), and compare these values of M for poly(dimethylsiloxane) and
polystyrene. Criticize or defend the proposition that this crossover corresponds to a certain
number of persistence lengths (see Table 6.1) independent of chain structure.

TDJ. Plazek and ma. O’Rourke, J. Polym. Sci. Part A-2, 9, 209 (1971).
I3.]. Clarson, K. Dodgson and J.A. Semlyen, Polymer, 26, 930 (1985).
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M, T, (K) M, T, (K) M, T, (K)
240 123.4 1630 146.1 7,720 149.5
310 129.1 2260 147.5 10,060 149.5
530 137.4 2460 148.0 12,290 149.4
630 139.4 2920 148.3 14,750 149.7
810 141.2 4030 149.2 18,250 149.8
990 143.3 4880 148.8 21,390 149.8

1290 144.8 6330 149.3 25,460 149.7

13. Sketch what you would expect to see for the dynamic modulus, G’, measured at 1 rad/s as a
function of temperature, for polyisoprene (M 250,000), polystyrene (M = 100,000), and
polystyrene (M = 1,000). Make the vertical axis logarithmic, and recall that the low tem-
perature modulus for all three polymers will be roughly 1010 dyn/cmz.

14. Show that the Fox equation, Equation 12.6.9, can be obtained from the Couchman equation,
Equation 12.6.8. Hint: use the proximity of the component Tgs to eliminate the logarithms.

15. Estimate the tensile strength of polystyrene by assuming that the required stress corresponds
to breaking backbone carbon—carbon bonds. The bond energy is about 80 kcal/mol, and the
density of polystyrene is about 1.05 g/cm3. How does this compare to the values in Table 12.4
(be careful to match units)? How do you account for the difference?

16. It is known that in fracturing polystyrene, by driving a crack through the material, the fracture
energy released is on the order of 1 kJ/m2. From Chapter 7 we recall that the solubility
parameter of polystyrene is 9.1 (cal/cm3)”2. Use this value to estimate the surface energy of
polystyrene, for example by estimating the “lost” monomer—monomer interactions per unit
area by creating the new surface. How do these two values compare? What is the main origin
of the difference?
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13
Crystalline Polymers

13.1 Introduction and Overview

In this chapter we consider several important aspects of crystallinity in polymers. It is a remarkably
rich field, and our coverage necessarily limited, but we will raise most of the central issues and
show how many of them have been addressed. In the previous chapter we examined the glass
transition, and introduced it by contrast to crystallization and melting. The first section of Chapter
12, therefore, serves as part of the introduction to the current topic as well. To continue this
introduction, we pose a series of basic questions, and the answers form the outline for the rest of
the chapter.

Why is crystallization in polymers important?
The world’s most popular synthetic polymer, in terms of volume produced per year, is polyethyl-

ene; polyethylene can crystallize. Other high-volume polymers such as isotactic polypropylene,
poly(hexamethylene adipamide) (Nylon 6,6), and poly(ethylene terephthalate) crystallize, as
do many specialty materials, such as poly(tetrafluoroethylene) (Teflon) and poly(p-phenylene
terephthalamide) (Kevlar). In general, crystallinity conveys enhanced mechanical strength, greater
resistance to degradation, and better barrier properties.

Which polymers crystallize and which do not?
The simple answer is: stereoregular polymers (polyethylene, isotactic or syndiotactic polypro-

pylene, poly(ethylene oxide), etc.) crystallize, stereoirregular polymers (atactic polystyrene and
poly(methyl methacrylate)) or polymers of mixed microstructure (mixed cis and trans polydienes)
do not. In order to crystallize, it is necessary for a few monomers to pack into a regular unit cell,
which can then be stacked on a lattice to fill space. It is almost impossible for an atactic polymer
such as polystyrene to form a regular unit cell, because the side groups are placed on one side of the
backbone or the other at random. However, even this rule is not always obeyed. For example, a vinyl
polymer with the formula —(CH2-C(AB)),,—, in which the groups A and B have similar sizes, may
be able to pack into a regular array. Or, an atactic polymer in which the side chain is strongly polar
may sometimes crystallize; poly(vinyl alcohol) and poly(vinyl fluoride) are examples.

What is the structure of a polymer crystal and how do we characterize it experimentally?
Polymers crystallize with three levels of structure, as illustrated in Figure 13.1. On the first

level, individual chain backbones form helices (of which an all-trans conformation is a Special
case), and pack with neighboring chains to form unit cells. The typical unit cell contains only a few
monomers, and has dimensions of 2—20 A on a side. The structure of unit cells will be considered
in Section 13.2. On the second level, unit cells pack into thin sheets, called lamellae, which are
typically 100—500 A thick and several microns wide in the other two dimensions. The chain
backbones lie at some fixed angle relative to the thin direction, and often fold by 180° at the
lamella surface in order to reenter the crystal. Chain—folded lamellae, illustrated in Figure 13.1, are
a unique morphological feature of polymers. These structural details are explored primarily
through x-ray diffraction and electron microscopy, as will be discussed in Section 13.4. In
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Figure 13.1 Three levels of structure in a crystalline polymer. The packing of individual helical chains
gives unit cells with dimensions of a few angstroms. The unit cells are packed into chain—folded lamellae, with
characteristic thicknesses on the order of 10 nm. The lamellae splay, bend, and branch to form spherulites,
which can exceed millimeters in size. The space between the individual lamellae is filled with amorphous
material.

favorable cases, polymer single crystals can be grown from solution, which greatly facilitates
detailed structural analysis of the unit cell and the lamellae. Finally, in a bulk sample the lamellae
grow to fill space, often producing a three-dimensional structure called a spheralite, which can be
tens or hundreds of microns across. These can be observed in an optical microscope. The structure
of spherulites, and some other bulk morphologies, will be taken up in Section 13.6.

Compared to the glass transition, crystallization and melting are thermodynamic transitions;
does this mean that a thermodynamic analysis will be more successful?

Would that it were so, but it is not. The process of crystallization is dominated by kinetics. The
underlying reason is simple. A molten polymer is a random jumble of intertwined chains, whereas
the crystal has long sections of chains fully extended and closely packed in parallel with one
another. Once crystallization starts, different sections of one chain may be in several different
crystallites, which prevents the full extension of the chain. This is illustrated schematically in
Figure 13.2. Consequently, and recalling the characteristically sluggish dynamics of polymers (see
Chapter 11), it is not at all surprising that crystallization of bulk polymers may never achieve the
state of minimum free energy. Furthermore, for the same kinetic reasons it is never possible to
achieve 100% crystallinity in a bulk polymer, and thus there is always a nonequilibrium mixture of
amorphous and crystalline regions within the material. Such polymers are more correctly termed
semicrystalline. Nevertheless, thermodynamics still provides a good deal of insight, particularly
when the process of melting is considered; in Section 13.3 and Section 13.4 in particular we will
pursue a thermodynamic analysis.

How can we understand the kinetics of crystallization in general?
Crystallization is a first-order phase transition (recall Section 12.2), and it proceeds by the

process of nucleation and growth, that is, stable nuclei of the new (crystal) phase appear, and then
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Figure 13.2 Illustration of a semicrystalline polymer melt. Individual crystal lamellae are indicated by
dashed lines.

grow in size by incorporation of more chains or chain segments from the amorphous (liquid) phase.
We will examine growth kinetics on two different levels, that of individual crystals in Section 13.5,
and that of the crystalline fraction of the material in Section 13.7.

13.2 Structure and Characterization of Unit Cells

In this section we shall examine the smallest level of structure displayed by polymer crystals, the
unit cell. These unit cells typically have dimensions between 2 and 20 A, which lie in the same
range as atomic and small-molecule crystals. Accordingly, the same experimental technique is
employed to determine the spacings and the symmetries of the unit cell, namely x-ray diffraction
(XRD), or, as it is more commonly known in polymer science, wide-angle x-ray scattering
(WAXS). We will not describe WAXS in detail, but the basic process can be understood through
comparison with the determination of molecular structure and size by light scattering, which was
covered in Chapter 8. Similarly, we will only review the basics of crystallography; more details are
available in a number of monographs and texts.

13.2.1 Classes of Crystals

The unit cell contains the smallest number of atoms, in the appropriate spatial relationships,
necessary to enable prediction of the full structure of a macroscopic single crystal by repetitive
close stacking of unit cells. A schematic unit cell is illustrated in Figure 13.3a. The lengths of the
three sides are designated a, b, and c, and the correSponding angles are a, B, and 'y. A single crystal
can thus be generated by filling space with unit cells, so that the structure repeats exactly every a A
as one moves along the a direction, etc. However, the precise location of the various atoms within
the unit cell requires further information than is contained in the three lengths and three angles.
There are seven crystal classes (cubic, trigonal, hexagonal, tetragonal, orthorhombic, monoclinic,
and triclinic), which are defined by different constraints on the values (a, b, c) and (a, [3, 7). These
are given in Table 13.1. Within these classes there are further subdivisions, for example a cubic
unit cell could be face-centered, body-centered, 0r primitive. When these possibilities are included
it turns out that there are 14 distinct structures, called Bravais lattices, within these seven classes.
Finally, within a certain Bravais lattice there can be many different ways in which the atoms are
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Figure 13.3 Schematic of a unit cell, showing (a) axes a, b, and c, and associated angles a, B, and 'y and (b)
the (110) plane (shaded) and the [111] direction (arrow).

arranged in detail. These arrangements are described by sets of symmetry operations that leave the
structure unchanged, such as rotation about an axis by an angle of 60°, 90°, or 180°, or reflection
through a plane, etc. The set of symmetry operations that applies to a particular crystal specifies a
space group; in total there are 230 different space groups. The determination of the space group
and the full unit cell structure of a polymer crystal including bond angles, bond lengths, and
interchain distances is the first goal of polymer crystallography.

Polymers are extended one-dimensional objects in the crystalline state, and the overall direction
of the backbone corresponds to one axis of the unit cell. For reasons that will become apparent this
axis is termed thefiber axis. By convention, it is assigned to the c axis in the unit cell (except for
monoclinic crystals, where it is b). All of the seven crystal classes in Table 13.1 are found in
polymers, except one: cubic. This exclusion can be easily understood. In a cubic unit cell all three
axes must be equivalent, but because of the covalent backbone it is virtually impossible for
monomers to pack equivalently in three orthogonal directions.

Particular crystallographic planes or directions are commonly labeled with the assistance of
Miller indices hkl. One vertex of the unit cell is chosen as the origin. The plane of interest
intersects the three unit cell axes at particular coordinates x, y, and z. The Miller indices are
obtained as h = a/x, k = b/y, and 1: 6/2. By choosing an equivalent plane so that it intersects all
three axes within a single unit cell, the Miller indices are always integers. Note that if a plane is
parallel to a particular axis the intersection occurs at infinity, and so the corresponding Miller
index is 0. The rules for specifying directions are analogous. In the case of a negative Miller index,
the value is indicated with an overbar. By convention, a particular plane is referred to by the
Miller indices in parentheses, that is (hid), the family of equivalent planes by {t }, a particular
direction as [hkl], and the family of equivalent directions by (hkl). By these conventions, the ab
face of the unit cell is (001), and the c axis is [001]; the (110) plane and [111] axis are illustrated
in Figure 13.3b.

Table 13.1 Constraints on Unit Cells

Crystal class Unit-cell sides Unit-cell angles

CUbic a=b=c a=B=y—90°
Trigonal a=b=c 05:13:“)! 90°
Hexagonal a=b7é c 0: =6 =90°, y=120°
Tetragonal a = b # c a = B = 'y = 90°
Orthorhombic a 75 b # c a: = B = 'y = 90°
Monoclinic a 75 b 75 c a: = y=90°, B # 90°
Triclinic (175 b 75 c aaéfiaé “y
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13.2.2 X-Ray Diffraction

As noted above, XRD or WAXS is the standard tool for crystal structure determination. In Section
8.2 we derived Bragg’s law, and noted that the criterion for observing a diffraction peak is that the
scattering vector, q, match a reciprocal lattice vector of the crystal (see Figure 8.3). Bragg’s law
may be written as

6
mA 2 2D sin<—2—) (13.2.1)

where A is the wavelength, D is the spacing between lattice planes, 9 is the angle between the
incident and diffracted radiation, and m is a positive integer. Recall that a reciprocal lattice vector
points in the direction normal to a series of lattice planes, with a magnitude given by 27r/D. The
magnitude of the scattering vector is defined as

41? _ 9
q :2

7
Sin (2) (13.2.2)

and is illustrated schematically in Figure 8.4. Each of the 230 space groups has its own set
of “allowed reflections,” namely a set of values of q (or 6) that will satisfy Bragg’s law. In
principle, therefore, an experimental scattering pattern could determine the space group uniquely.
In practice there is a lot more to it, first because many space groups have several reflections in
common, and second because whether or not particular reflections are actually seen will depend
on a host of factors, most important of which is the orientation of the incident x-ray beam relative
to the crystal.

In an x-ray diffraction experiment, a collimated beam of monochromatic x-rays is directed on to
the sample and the diffracted radiation is monitored as a function of 9. The detector itself can be
one-dimensional or two-dimensional, with the latter becoming increasingly common. The condi-
tion of the specimen itself plays a crucial role in the experiment; the limiting cases are those of a
single crystal and a polycrystalline sample. In a single crystal, the entire portion of the specimen
that is illuminated by the x-rays has the same orientations of a, b, and c in the laboratory coordinate
system, and thus the beam is incident along a single direction through the unit cell. The result is
that Bragg’s law is satisfied not only for particular values of 6] but also for particular directions
in space and the scattering pattern on an area detector will be a series of particular spots. This is
illustrated in Figure 13.4a for the particular cases of a layered sample and a hexagonal crystal of
rods. The pattern that is observed will depend critically on the particular angle between the incident
beam and the unit cell. This is illustrated in Figure 13.4b for the same two crystals, now rotated by
90° relative to Figure 13.4a. In the case of the layered sample, the beam is now incident normal to

(a)

Figure 13.4 Diffraction patterns on an area detector for (a) a set of parallel sheets viewed edge—on, and a
hexagonal array of rods viewed end-on.

(continued)
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(C)

Figure 13.4 (continued) (b) the sheets viewed through and the rods viewed edge—on; and (c) a polycrys—
talline sample.

the layers, and no diffraction is seen, whereas when viewed side-0n, the hexagonal sample appears
to be layers. This cartoon is overly simplified, in that we have tacitly assumed that the layers and
rods are smooth and structureless. The arrangement of atoms within the layers could give rise to
additional reflections beyond those indicated. The important conclusion, however, is that for a full
crystallographic analysis of a single crystal sample, the sample must be rotated systematically
relative to the incident beam, and the resulting scattering patterns collected and interpreted as a
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whole. Furthermore, depending on the sample and the size of the detector, it may be necessary to
move the detector in space to collect a different angular range.

A polycrystalline sample comprises many little crystals perhaps microns in size, with approxi-
mately random relative orientations. Consequently, the incident beam simultaneously samples
almost all possible incident angles relative to the unit cell. The result is a so-called powder pattern,
concentric rings of scattered intensity at radial positions on the detector corresponding to particular
values of q, as illustrated in Figure 1340. Such a pattern may be sufficient to narrow down the
possible crystal structure to a few candidates, but it is unlikely to determine a space group
uniquely. Consequently, single crystals are greatly preferred when determination of the unit cell
structure is the goal. However, production of a macroscopic single crystal in polymers is no easy
feat. It was first shown in the 19503 that single polymer crystals could be grown by careful
crystallization from solution, but this strategy is not always convenient or practical. A more
common approach is to draw a fiber of the polymer during or prior to crystallization, by applying
a uniaxial extensional deformation (see Section 10.5). In this case the individual chains can
become highly extended along the draw direction, and the crystals develop with a strong prefer—
ence for the c axis to lie along this direction (hence the term fiber axis). Although the resulting
morphology is not exactly a single crystal (see Section 13.6), it is much more highly organized than
a polycrystalline material, and the analysis correspondingly more definitive.

We will not explore this analysis in any further detail, but conclude this overview with some
additional comments, especially in comparison to light scattering discussed in Chapter 8:

l. Diffraction is the same phenomenon as coherent scattering; it is merely a convention to use the
term dt‘firaction when discussing crystalline samples, and scattering when amorphous mater—
ials are studied. The former gives rise to sharp peaks at particular angles, whereas the latter
leads to more smoothly varying intensity versus angle curves.

2. The x-ray diffraction community often employs slightly different terminology, such as k or s
in place of q, and 9 may be defined as one half of the 6 we have employed.

3. The scattering of x-rays is caused by differences in electron density from atom to atom,
whereas light scattering arises from fluctuations in refractive index (i.e., polarizability). The
atoms of primary interest in polymers, C, H, O, and N, are not particularly strong scatterers of
x-rays, but this limitation is overcome by the long-range order in the sample. (Recall that in
light scattering from solutions, we have to wait for a spontaneous concentration fluctuation to
have the correct spacing and orientation to satisfy the Bragg condition; in a crystalline sample,
these “fluctuations” are much larger, and locked in place.)

4. The main difference between light and x-rays as a structural tool lies in the value of A. We saw
in Chapter 8 that Rg needed to be at least 100 A or larger in order to be determined by light
scattering (A m 4000—7000 A). In contrast, a common x—ray source involves an inner electronic
transition in copper, which gives off a photon at 1.542 A. For a 10 A unit cell size (i.e., D : 10
A) inserted into Bragg’s law (Equation 13.6.1), we would need a diffraction angle of 8.80, a
very reasonable value.

5. XRD or WAXS measurements can readily be made on laboratory—scale instruments, but the
advantages of utilizing synchrotron radiation (e.g., at a National Laboratory such as Argonne
or Brookhaven) should be noted. Synchrotron sources provide an incident flux of x-rays that is
several orders of magnitude larger than a laboratory source. Furthermore it can be much better
collimated, and the wavelength may be tuned to a convenient value. These features combine to
provide scattering patterns with much better resolution in much shorter time intervals.

6. Electron diffraction measurements can also be very useful in determining the unit cell
structure. The experimental concept is identical to XRD, except that the incident beam consists
of electrons. Electrons have a de Brogliewavelength of~0.03 A, and so are well suited to
structures on the 1—10 A scale. The measurement can be made on an electron microscope, to
be discussed in Section 13.4.4.
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13.2.3 Examples of Unit Cells

What determines the unit cell that a particular polymer will adopt? This is sometimes difficult to
predict a priori, but can usually be rationalized after the fact. From a thermodynamic point ofview, the
crystal is a low temperature state and is therefore dominated by enthalpic considerations. In particular,
the monomers want to maximize their favorable energetic interactions, which generally means to
pack as closely as possible; remember from Chapter 7 that the van der Waals energy of attraction
between molecules falls off approximately as 1/(distance)6. (Note that certain interactions such as
hydrogen bonding have a preferred distance.) However, there are both intramolecular and intermo—
lecular interactions to consider. In most instances, polyethylene for example, each chain first adopts
its lowest energy conformation (all-trans in this case), and then packs as closely as it can to its
neighbors. This prioritization corresponds to the first two of Natta and Corradiui’s Rules [1] for
polymer crystallization. On the other hand, there may be situations for which the chain conformation
in the crystal is not the lowest energy conformation of the isolated chain. Furthermore, the optimum
packing of chains is often quite subtle, as we shall see when we consider some examples. In general,
polymers adopt one conformational motif for the backbone: a helix. The helix is described by three
numbers, such as 2* 1/1 for polyethylene. This terminology means 2 backbone atoms constitute a basic
repeat unit, and there is 1 repeat unit in each full turn of the helix. In fact, such a 1/1 helix is identical to
the all-trans conformation. As indicated in Table 13.2, many more interesting helices are found.

Figure 13.5 shows the arrangement of molecules in the polyethylene unit cell. X—ray measure—
ments show that the dimensions are a : 7.4 A, b = 4.9 A, and c 2 2.5 A, and that it is orthorhombic.
In regard to this unit cell, we observe the following:

1. The c-axis corresponds to both the short axis of the unit cell and the axis along the molecular
chain. The observed repeat distance in the c direction is what would be expected between
successive substituents on a fully extended hydrocarbon chain with normal bond lengths and
angles (see Section 6.1).

2. The distances between all hydrogen atoms are approximately the same in this structure, so
there is no problem with overcrowding.

3. While not overcrowded, the polyethylene structure uses space with admirable efficiency, the
atoms filling the available space to about 73%. For comparison, recall that close-packed
spheres fill space with 74% efficiency, so polyethylene does about as well as is possible.

Table 13.2 Unit Cell Parameters for Several Polymers

Macromolecule Crystal class Helix a, b, c (A) a, B, y (0) # of units

Polyethylene I Orthorhombic 1*2/1 7.42, 4.95, 255* 90, 90, 90 4
Polyethylene II Monoclinic 1*2/1 8.09, 253*, 4.79 90, 107.9, 90 4
Poly(tetrafluoroethylene) I Triclinic 1*13/6 5.59, 5.59, 1688* 90, 90, 119.3 13
Poly(tetraflu0roethylene) II Trigonal 1*15/7 5.66, 5.66, 1950* 90, 90, 120 15
Polypropylene (iso) Monoclinic 2*3/1 66.6, 20.78, 6495* 90, 99.62, 90 12
Polypropylene (syndio) Orthorhombic 4*2/1 14.50, 5.60, 7.40* 90, 90, 90 8
Polystyrene (iso) Trigonal 2*3/1 21.9, 21.9, 6.65* 90, 90, 120 18
Poly(vinyl alcohol) (atac) Monoclinic 2*1/1 7.81, 251*, 5.51 90, 91.7, 90 2
Poly(vinyl fluoride) (atac) Orthorhombic 2*1/1 8.57, 4.95, 252* 90, 90, 90 2
1,4—Polyisoprene (cis) Orthorhombic 8*1/1 13.46, 8.86, 8.1* 90, 90, 90 8
1,4—Polyisoprene (trans) Orthorhombic 4*1/1 7.83, 11.87, 4.75* 90, 90, 90 4
Poly(ethylene oxide) Monoclinic 3*7/2 8.02, 13.1, 19.3 90, 126, 90 28
Poly(hexamethylene adipamide), a Triclinic 14*1/1 4.9, 5.4, 17.2 48.5, 77, 63.5 1
Poly(hexamethylene adipamide), B Triclinic 14*1/1 4.9, 8.0, 17.2 90, 77, 67 2

Note: Asterisks in column 4 denote the chain axis.

Source: From Wunderlich, B., in Macromolecular Physics, Vol. 1: Crystal Structure, Morphology, Defects, Academic Press,
New York, 1973.
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Figure 13.5 Crystal structure of polyethylene: (a) unit cell shown in relationship to chains and (b) view of
unit cell perpendicular to the chain axis. (Reprinted from Bunn, C.W., Ffibers from Synthetic Polymers, R. Hill
(Ed.), Elsevier, Amsterdam, 1953. With permission.)

One of the things that can be done with a knowledge of the unit-cell dimensions is to calculate
the crystal density. This is examined in the following example.

Example 13.1
Use the unit cell dimensions cited above to determine the crystal density of polyethylene. Examine
Figure 13.5 to determine the number of repeat units per unit cell.

Solution
Figure 13.5 shows that the equivalent of two ethylene units are present in each unit cell.
Accordingly, the mass per unit cell is

2 repeat units 1 mol repeat units 28.0 g = 9.30 x 1043 g (unit cell)_1unit cell 6.02 x 1023 repeat units 1 mol repeat units

Since all angles in the cells are 90°, the volume of the unit cells is

7.4Ax4.9Ax2.5AX(1cm

3
)= 9.07 x 10—23 cm3 (unit cell)—1

103 Aunit cell

The density of the crystal is obtained from the ratio of these two quantities:

_ 9.30 x 10-23..—= 1.02 '3p 9.07 x 10-23 5 g cm

(In fact, x-ray diffraction can usually determine unit-cell dimensions to three or even four
significant figures, but we have rounded off in this calculation to avoid specifying more sample
information or experimental conditions.) This density may be compared with a typical value of
0.94 g cm‘3 for polyethylene in the molten state.

Table 13.2 provides a list of representative unit cell parameters. Several interesting observations
may be made on the basis of these data:

1. Polyethylene, along with poly(tetrafluoroethylene) (Teflon) and poly(hexamethylene adipa—
mide) (Nylon 6,6) exhibits two different crystal forms. This polymorphism is not uncommon,
and it indicates that there is a subtle balance of terms in the free energy, so that each structure
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has a temperature range where it is in the equilibrium state. These issues are often challenging
to sort out experimentally, because of the preponderance of kinetic influences. For instance,
the observed form may simply be the one that crystallizes more rapidly, rather than the state of
lowest free energy.

2. Although poly(tetrafluoroethylene) is structurally very similar to polyethylene, the increase in
size and interactions in going from H to F causes a significant change in the conformation.
Both polymorphs are almost all—trans, but not quite; form I (which is reported to be stable
below 19°C) takes 13 backbone bonds to undergo six turns of the helix, and form 11 takes 15
bonds to make seven turns.

3. Poly(viny1 alcohol) and poly(vinyl fluoride) provide two examples of atactic polymers that can
crystallize, both in the all-trans conformation.

4. The structure of poly(hexamethylene adipamide) provides an excellent illustration of how
specific, strong interactions can dictate the structure. In this instance it is hydrogen bonding
between the carbonyl group and the amide hydrogens that determine the packing. Figure 13.6a
provides a schematic illustration of the hydrogen bonding pattern in sheets, and Figure 13.6b
shows the difference between the oz and B forms in terms of the registry of the hydrogen bonds.

5. Isotactic polypropylene forms a 3/1 helix, which corresponds to a trans—gauche plus—trans—
gauche plus. . .sequence of backbone bond conformations. The chain packing forms a mono-
clinic unit cell, as shown in Figure 13.7.
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Figure 13.6 The or and [3 crystal forms of poly(hexamethylene adipamide) (Nylon 6,6), showing (a) the
hydrogen bonding pattern and (b) the molecular registry in the two forms. (Reprinted from Young, RJ. and
Lovell, P.A., Introduction to Polymers, 2nd ed., Chapman and Hall, London, 1991. With permission.)
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Figure 13.7 (a) Illustration of four possible 3/1 helices for an isotactic Vinyl polymer such as polypropyl-
ene. A and D are right-handed, B and C are left-handed, A and D are equivalent if inverted, as are B and C.
(Reprinted from Wunderlich, B., Macromolecular Physics, Vol. 1: Crystal Structure, Morphology, Defects,
Academic Press, New York, 1973. With permission.) (b) The polyprOpylene unit cell looking down the chain
axis. Each apex of a triangle indicates a methyl group. The thick line segments suggest the projection of the
bond to the methyl group; there are three left-handed and three right—handed helices shown.

13.3 Thermodynamics of Crystallization: Relation of Melting Temperature
to Molecular Structure

In dealing with experimental thermodynamics, one of the criteria for a true equilibrium to have
been established is to achieve the state of interest from opposite directions. Accordingly, we are in
the habit of thinking of the equilibrium melting point of a crystal, or the equilibrium freezing point
of the corresponding liquid, as occurring at the same temperature. In dealing with polymer crystals,
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we are not so fortunate as to observe this simple behavior. The transition from liquid —> crystal is
so overshadowed by kinetic factors that some even question the value of any thermodynamic
discussion of the transition in this direction. Furthermore, because of the kinetic complications
occurring during the formation of the crystal, the resulting transition from crystal —-> liquid also
becomes more involved.

If polymers had infinite molecular weight and formed infinitely large crystals, the thermo-
dynamics of the transition would be simpler, although the kinetics might very well be worse.
Assuming, temporarily, that any kinetic complications can be overlooked, we will define the
temperature of equilibrium (subscript e) between crystal and liquid for a polymer meeting the
infinity criteria (superscript 00) stated above as T30. Subsequently, we will use the superscript 00 to
indicate either infinite crystal dimension, infinite molecular weight, or both; it will be clear from
the context which is meant. In such a case, the melting point of the crystal would be T30 and the
freezing point of the liquid would also be T30. The facts that actual molecular weights are less than
infinite and that crystals have finite dimensions both tend to drive the equilibrium transition
temperature below Tgo. The fact that kinetic complications also interfere means, in addition, that
the experimental temperature of crystallization TC does not equal the temperature of melting Tm,
and that neither equals T§°.

Figure 13.8 illustrates some of these points for cis 1,4-polyisoprene. The temperature at which
the crystals are formed is shown along the abscissa, and the temperature at which they melt, along
the ordinate. Note the following observations:

1. The lower the crystallization temperature, the lower the melting point. This correlation will be
understood in the next section through consideration of crystal dimensions, and particularly
the lamellar thickness, 6.

2. Melting occurs over a range of temperatures, as shown previously in Figure 12.1. The range
narrows as the crystallization temperature increases. This is probably due to a wider range of
crystal dimensions, and less perfect crystals, for lower temperatures of formation.

3. There is a suggestion of convergence of these lines in the upper right—hand portion of Figure
13.8. For this polymer T310 is estimated to be 28°C~——not an unreasonable point of convergence
in the lines in Figure 13.8.

4. The value of T310 is often estimated by extrapolation of the experimental Tm versus TC curve
until it intersects the Tm 2 TC line, as illustrated for poly(p-phenylene sulfide) in Figure 13.9.

40 I I I I I I I I I 'I I

CrystallizationTemperature

(°C)

Melting starts '
I l l l l l l

—20 —t 0 0 10
Temperature of crystallization (°C)

Figure 13.8 Melting temperature of crystals versus temperature of crystallization for cis 1,4-polyisoprene.
Note the temperature range over which melting occurs. (Reprinted from Wood, LA. and Bekkedahl, N., J. Appl.
Phys, 17, 362, 1946. With permission.)
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Figure 13.9 Hoffmann—Weeks plot for low molecular weight (LMW) and medium molecular weight
(MMW) poly(p-pheny1ene sulfide). (Reproduced from Lovinger, Al, Davis, DD, and Padden, F.J. Jr.,
Polymer, 26, 1595, 1985. With permission.)

Such an extrapolation is known as a Hofimann—Weeks plot. However, note that the data
presented here, and many other data sets, suggest that a linear extrapolation may not be
completely accurate.

We shall take up the kinetics of crystallization in more detail in Section 13.5 and Section 13.7.
For the present, our only interest is in examining what role kinetic factors play in complicating
the crystal—liquid transition. The main issue is that the lamellar thickness, 6, depends on the
crystallization temperature, as a result of kinetic considerations. Accordingly, I? is related to Tc,
but may not have much to do with T50. The melting point Tm of the resulting crystal is less than it
would be if the crystal had infinite dimensions (7'33). This latter temperature approaches T30 as
M—>oo. In the end, Tm gives a better approximation to a valid equilibrium parameter, although it
will still be less than T310 owing to the finite dimensions of the crystal and the finite molecular
weight of the polymer. We shall deal with these considerations in the next section. For now we
assume that a value of T30 has been obtained and consider the thermodynamics of this phase
transition.

We begin our application of thermodynamics to polymer phase transitions by considering the
fusion (subscript f) process: crystal —> liquid. Figure 13.10 shows schematically how the Gibbs free
energy of liquid (subscript 1) and crystalline (subscript c) samples of the same material vary with
temperature. For constant temperature—constant pressure processes the criterion for spontaneity is
a negative value for AG (just as in our consideration of phase equilibria in Chapter 7), where the A
signifies the difference between the final and initial states for the property under consideration.
Applying this criterion to Figure 13.10, we conclude immediately that above T310, AGf = G1 — GC is
negative and melting is Spontaneous, whereas below T30, AGf> 0 and it is fusion that is spontan-
eous. At T310 both phases have the same value of G; at that temperature, therefore, AG: 0 and a
condition of equilibrium exists between the phases.
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Figure 13.10 Behavior of Gibbs free energy near T3? for an idealized crystal to liquid phase transition.

At T1210, AGf : 0, but ASf, AVf, and AHf have nonzero values. Figure 12.2a showed how V, S, and
H (as first derivatives of G) undergo a discontinuous change at a first—order transition, such as
fusion. For any constant-temperature process,

AG 2 AH — TAS (13.3.1)

and therefore at equilibrium

TOO—AHf__ __ 13.3.2m ASf ( )

This fundamental relationship points out that the temperature at which crystal and liquid are in
equilibrium is determined by the balancing of entropy and enthalpy effects. Remember, it is the
dzfierence between the crystal and liquid free energies that is pertinent; sometimes these differ-
ences are not what we might expect.

Table 13.3 lists representative values of Tm, as well as AHf and ASf per mole of repeat units, for
several polymers. A variety of experiments and methods of analysis have been used to evaluate
these data, and because of an assortment of experimental and theoretical limitations the values
should be regarded as approximate. We assume Tm g T310. In general, both AHf and ASf may be
broken into contributions of H0 and SO, which are independent of molecular weight, and increments
AHm and AS” for each repeat unit in the chain. Therefore, AHsO + NAHm, where N is the
degree of polymerization. In the limit of large N, AHf’éNAHfll and AsNASt-J, so
T3? = AHm /ASf‘]. Some observations concerning these data sets are listed here:

Table 13.3 Values of Tm, ML], and ASH for Several Polymers

Polymer r... (”C) AH“ (J mol‘l) A5,, (J K”1 moi—1)

Polyethylene 137.5 8,220 19.8
cis 1,4—Polyisoprene 28 8,700 28.9
Poly(ethylene oxide) 66 8,700 25.1
Poly(decamethylene sebacate) 80 50,200 142.3
Poly(decamethylene azelate) 69 41,840 121.3
Poly(decamethylene sebacamide) 216 34,700 71.1
P01y(decamethylene azelamide) 214 36,800 75.3

Source: From Mandelkern, L, in Crystallization of Polymers, McGraw-Hill, New York, 1964.
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l. Polyethylene. The crystal structure of this polymer is essentially the same as those of linear
alkanes containing 20—40 carbon atoms, and the values of Tnn and AH” are what would be
expected on the basis of an extrapolation from data on the alkanes. Since there are no chain
substituents or intermolecular forces other than dispersion (London) forces in polyethylene,
we shall compare other polymers to it as a reference substance.

2. cis 1,4-Polyisoprene. Although AHfJ is slightly higher than that of polyethylene (on a per
repeat unit basis, not per gram), it is still completely reasonable for a hydrocarbon. The
lower Tm is the result of the value of AS“, which is 50% higher than that of polyethylene.
The low melting point of this polymer makes natural rubber a useful elastomer at ordinary
temperatures.

3. Poly(ethylene oxide). Although AH” is similar to that of polyethylene, the effect is offset
by an increase in ASH similar to polyisoprene. The latter may be due to increased chain
flexibility in the liquid caused by the regular insertion of ether oxygens along the
chain backbone.

4. Polyesters. The next two polyesters have AH” values significantly higher than polyethylene.
Our first thought might be to attribute this to a strong interaction between the polar ester
groups. The repeat units of these compounds are considerably larger than in the reference
compound, so the AHm values should be compared on a per gram basis. When this is done,
AH“ is actually less than for polyethylene. This suggests that the large value for AH“ is the
result of a greater number of methylene groups contributing London attraction for the
polyesters, with the dipole—dipole interaction of ester groups about the same in both liquid
and crystal and therefore contributing little to AHm. When compared on the basis of the
number of bonds along the backbone, AS“ is not exceptional either. Accordingly, Tm is less
for these esters than for polyethylene.

5. Polyamides. The next two compounds are the amide counterparts of the esters listed under
item (4). Although the values of AH“ are less for the amides than for the esters, the values of
Tm are considerably higher. This is a consequence of the very much lower values of AS” for
the amides. These, in turn, are attributed to the low entropies of the amide in the liquid state,
owing to the combined effects of hydrogen bonding and chain stiffness from the contribution
of the following resonance form: ”(HN+=CO_)———.

These examples show that it is often easier to rationalize an observation or trend with respect to
Tm than to predict it a priori. This state of affairs is not unique to polymers, however. The following
example provides another illustration of this type of reasoning.

Example 13.2
The melting points of a series of poly(ot-olefin) crystals were studied. All of the polymers were
isotactic and had chain substituents of different bulkiness. Table 13.4 lists some results. Use
Equation 13.3.2 as the basis for interpreting the trends in these data.

Table 13.4 Values of TH, for Poly(a-olefin) Crystals in Which the
Polymer Has the Indicated Substituent

Substituent Tm (°C)

—CH3 165
—CH2CH3 125
—CH2CH2CH3 75
—CH2CH2CH2CH3 —55
——CH2CH(CH3)CH2CH3 196
——CH2C(CH3)2CH2CH3 350

Source: From Billmeyer, F.W., in Textbook ofPolymer Science, 2nd ed., Wiley-
Interscience, New York, 1971.
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Solution

The bulkiness of the substituent groups increases moving down Table 13.4. Also moving down the
table, the melting points decrease, pass through a minimum, and then increase again. As is often
the case with reversals of trends such as this, there are (at least) two different effects working in
opposition in these data:

1. As the bulkiness of the substituents increases, the chains are prevented from coming into
intimate contact in the crystal. The intermolecular forces that hold these crystals together are
all London forces, and these become weaker as the crystals loosen up owing to substituent
bulkiness. Accordingly, the value for the heat of fusion decreases moving down Table 13.4.

2. As the bulkiness of the chain substituents increases, the energy barriers to rotation along the
chain backbone increase. As seen in Chapter 6, this decreases chain flexibility in the liquid
state. It is this flexibility that permits the molecules to experience a large number of con-
formations and therefore have high entropies. If the flexibility is reduced, the entropy change
on melting is less than it would otherwise be. Accordingly, the entropy of fusion decreases
moving down the table.

3. Since Tm z AHf/ASf, the observed behavior of this series of polymers may be understood as a
competition between these effects. For the smaller substituents, the effect on AHf dominates
and Tm decreases with bulk. For larger substituents, the effect on A5} dominates and Tm
increases with bulk.

All the polymers compared have similar crystal structures, but are different from polyethylene,
which excludes the possibility for also including the latter in this series. Also note that the isotactic
structure of these molecules permits crystallinity in the first place. With less regular microstruc-
ture, crystallization would not occur at all.

In the discussion of Table 13.3, we acknowledged that there might be some uncertainty in the
values of the quantities tabulated, but we sidestepped the origin of the uncertainty. In the next
section we shall consider the most important of these areas: the effect of crystal dimensions on the
value of Tm.

13.4 Structure and Melting of Lamellae
13.4.1 Surface Contributions to Phase Transitions

Whenever a phase is characterized by at least one linear dimension that is small (a few microns or
less), the properties of the surface begin to make significant contributions to the observed behavior.
In contrast, most thermodynamic analyses are conducted on the assumption of bulk (i.e., effect-
ively infinite) phases. As illustrated in Figure 13.1, lamellae tend to have thicknesses on the order
of 100 A, and thus surface effects can be substantial. The following summary of generalizations
about these crystals will be helpful:

1. The dimensions of the lamellae perpendicular to the smallest dimension depend on the
conditions of the crystallization, but are many times larger than the thickness of a well-
developed crystal.

2. The chain direction within the crystal tends to be along the short dimension of the crystal,
indicating that the molecule folds back and forth, fire-hose fashion, with successive layers of
folded molecules accounting for the lateral growth of the platelets. The section of chain that
traverses a lamella once is called a stem.

3. A crystal lamella does not consist of a single molecule, nor does a molecule need to reside
exclusively in a single lamella.

4. The loop formed by the chain as it emerges from the crystal, turns around, and reenters the
crystal may be regarded approximately as amorphous polymer, but is insufficient to account
for the total amorphous content of most crystalline polymers.
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5. Polymer chain ends disrupt the orderly fold pattern of the crystal, and tend to be excluded from
the crystal and relegated to the amorphous portion of the sample. The same is true of
stereochemical or microstructural defects, or comonomers.

As noted above, since the polymer crystal habit is characterized by plates whose thickness
is small, surface phenomena are important. During the early development of the crystal, the
lateral dimensions are also small and this effect is even more pronounced. The key to understand-
ing this fact lies in the realization that all phase boundaries possess surface tension, and that
this surface tension reflects the Gibbs free energy stored per unit area of the phase boundary. As
a qualitative illustration, consider cutting a piece of polymer into two along a selected
plane. Before cleavage, there were cohesive (attractive) interactions across the plane, which are
now lost. This energy per unit area becomes the surface energy of the newly exposed material.
Now place two different materials in contact across a plane; unless their surface energies happen to
be identical, there would be an interfacial energy, or surface tension, y. Now suppose we consider a
spherical phase of radius r, density p, and surface tension y. The total surface free energy
associated with such a particle is given by the product of y and the area of the sphere, or
y(4qrr2). The total mass of material in the sphere is given by the product of the density and the
volume of the sphere, or p(47rr3/3). The ratio of the former to the latter gives the Gibbs free
energy arising from surface considerations, expressed per unit mass; that is, the surface Gibbs
free energy per unit mass is 3y/pr. Since 7 is small compared to most other chemical and physical
contributions to the free energy, surface effects are not generally considered when, say, the AG”
of formation is quoted for a substance. The above argument shows that this becomes progressively
harder to justify as the particle size decreases. The emergence of a new phase implies
starting from an r value of zero in the argument above, and the surface contribution to the
energy becomes important indeed. (Since two phases with their separating surface must already
exist for y to have any meaning, we are spared the embarrassment of the surface
freeenergy becoming infinite at r: 0.) Nevertheless, it is apparent that the effect of the surface
free-energy contribution is to increase the total G. Inspection of Figure 13.10 shows that an
increase in the G value for the crystalline phase arising from its small particle size has the
effect of shifting Tm to lower temperatures. The smaller the particle size, the bigger the effect.
This is the origin of all superheating, supercooling, and supersaturation phenomena: an equilibrium
transition is sometimes overshot because of the kinetic difficulty associated with the initiation
(nucleation) of a new phase. Likewise, all nucleation practices—cloud seeding, bubble chambers,
and the use of boiling chips—are based on providing a site on which the emerging phase can
grow readily.

13.4.2 Dependence of Tm on Lamellar Thickness

To develop a more quantitative relationship between particle size and Tm, suppose we consider the
melting behavior of the cylindrical crystal sketched in Figure 13.11. Of particular interest in this
model is the role played by surface effects. The illustration is used to define a model and should not
be taken too literally, especially with respect to the following points:

1. The geometry of the cylinder is a matter of convenience. Except for numerical coefficients, the
results we shall obtain will apply to plates of any cross—sectional shape.

2. The thickness of the plate, although small, is greater than the few repeat units shown.
3. The specific nature of the reentry loops is not the point of this illustration. The sketch shows

both hairpin turns and longer loops. Problem 6 at the end of the chapter examines the actual
nature of the reentry loop.

To develop this model into a quantitative relationship between Tm and the thickness of the
crystal, we begin by realizing that for the transition crystal—>1iquid, AGf is the sum of two
contributions. One of these is AGOO, which applies to the case of a crystal of infinite size
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Figure 13.11 Idealized representation of a polymer crystal as a cylinder of radius r and thickness E.

(superscript 00); the other, AG, arises specifically from surface effects (superscript s), which
reflect the finite size of the crystal:

AGf : AG°° + AGS (13.4.1)
Now each of these can be developed independently.

As in the qualitative discussion above, let y be the Gibbs free energy per unit area of the
interface between the crystal and the surrounding liquid. This is undoubtedly different for the
edges of the plate than for its faces, but we shall not worry about this distinction. The area of each
of the circular faces of the cylinder is 7W2, and the area of the edge is 27rr€, where r is the radius of
the face and E is the length of the side as shown Figure 13.11. Since surface is destroyed by the
melting process, the net contribution to AGf is

AG5 2 — [2777'2 + 2771*617/ 2 —27rr2y(1 + g) (13.4.2)

For the bulk effect, we proceed on the basis of a unit volume (subscript V) and immediately write

AGOO = mzeacif (13.4.3)
and

A02; : AH? — TASS? (13.4.4)
When this infinite phase is in equilibrium with the melt, AG?)O —> 0 and T —> T3,“. Accordingly,
we can solve Equation 13.4.4 for A500 = All-11$;j HT;0 and substitute this back into Equation
13.4.4:

rAG? : AH$(1"TTO) (13.4.5)
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This gives the value of AG; at any temperature in terms of the two parameters AHS? and T33.
Combining Equation 13.4.1 through Equation 13.4.3 and Equation 13.4.5 enables us to write

TOO
I'I'l

AGf = (nr2€)AH{'? (1 — L) — 27rr2y(1 + 9 (13.4.6)

When the value of this AG is zero, we have the actual melting point of the crystal of finite
dimension Tm. That is,

Too _ m g

or

2 7 t?
___ TOO _Tm :_ .2 T00 . .AT m 6: $0049)”, (1348)

Note that this equation is dimensionally correct, as 7 has units of energy area—1 and AHfi}O has units
energy volume—1. Therefore the units of EAHQE and y cancel, as do the units of E and r, leaving
only temperature units on both sides of the equation. All of the quantities on the right-hand side of
the equation are positive (A1130 is the heat of fusion), which means that T3,? > Tm, as anticipated.
The difference AT between a thermodynamic boundary and the temperature of interest is often
referred to as the undercooling; as derived in Equation 13.4.8 it reflects the melting point
depression due to particle size. Several limiting cases of this equation are of note:

1. If y: 0, AT: 0, regardless of particle size. This is not likely to apply, however, since chains
emerging from a crystal face either make a highly constrained about-face and reenter the
crystal or meander off into the liquid from a highly constrained attachment to the solid. In
either case, a surface free-energy contribution is inescapable.

2. As r a 0, AT6 00, showing that the lateral dimensions of the plate are critical for very small
crystals. This makes the crystal nucleation event especially crucial.

3. As 1‘ —> 00, which describes well—developed crystals, Equation 13.4.8 becomes

3/ 1
A1":2TDO —-m AHQE3 E

(13.4.9)

which shows that an undercooling is still important because of the platelike crystal habit of
polymers with limited crystal dimensions along the chain direction. Equation 13.4.9 is often
referred to as the Thompson—Gibbs equation.

Equation 13.4.9 shows that a direct proportionality relationship should exist between crystal
thickness 1? and the ratio YES/AT; a plot of E versus T310 /AT should result in a straight line of zero
intercept with a slope proportional to y/AHSF. Figure 13.12 shows such a plot for polyethylene in
which T? was taken to be 137.5°C and the E values were determined by x-ray scattering. While
there is considerable and systematic divergence from the predicted form at large undercoolings, the
data show a linear relationship for the higher—temperature region. In the following example we
analyze the linear portion of Figure 13.12 in terms of Equation 13.4.9.

Example 13.3
Use Equation 13.4.9, the results in Figure 13.12, and the data in Table 13.3 to estimate a value for 'y
for polyethylene. Figure 13.5 shows the unit cell of polyethylene; the equivalent to two chains
emerges from an area 0.740 by 0.493 nm2. On the basis of the calculated value of y and the
characteristics of the unit cell, estimate the free energy of the fold surface per mole of repeat units.
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Figure 13.12 Crystal thickness versus Tm/AT for polyethylene. (Reprinted from Mandelkem, L., Crystal-
lization of Polymers, McGraw—Hill, New York, 1964. With permission.)

Solution
Equation 13.4.9 predicts a straight line of zero intercept and slope of 27/AH8? when E is plotted
versus Trof/AT. The solid line in Figure 13.12 has a slope of 650 194/51: 13.7 .4. Therefore
2y/AH8? : 13.7 X 10‘10 m. The value of AH” given in Table 13.3 is used for AHfi’,O after the
following change of units:

22J 1 1 1 16 3M3028 0 "we g O—CT22.8x108Jm’3
mole)< 28g XEEFX 1m

Therefore y = 1/2(13.7 x 10"10 m) (2.8 x 108 J m—3) = 0.192 J m‘z. From the data on the unit cell

0.192 J x
(0.074

X 0.493 nm2 1 m2
>

1 unit cell
m2 unit cell

X
1013 nm2

X
2 molecules

.02 1023 l lx 6 x mo ecu es = 2.1 kJ/molmol

Although it applies to a totally different kind of interface, the value of y calculated in the example
is on the same order of magnitude as the y value for the surface between air and liquids of low
molecular weight.

13.4.3 Dependence of Tm on Molecular Weight

Before concluding this section, there is one additional thermodynamic factor to be mentioned,
which also has the effect of lowering Tm. The specific effect we consider is that of chain ends (and
therefore the number-average molecular weight), but the role they play is that of an “impurity”
from the viewpoint of crystallization. As such the treatment is similar to the effect of a solute on
any colligative property, such as the osmotic pressure considered in Section 7.4. Furthermore,

‘6‘other impurities” such as comonomers or low molecular-weight species can be treated in a
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similar fashion. In this context the repeat units in a polymer may be divided into two classes: those
at the ends of the chain (subscript e) and the others, which we view as being in the middle
(subscript m) of the chain. The mole fraction of each category in a sample is xe and xm,
respectively. Since all segments are of one type or the other,

xm :1— La (13.4.10)

The proportion of chain ends increases with decreasing molecular weight, and hence for a linear
chain (two ends) x(3 2- ZMO/Mn, where M0 is the molecular weight of the repeat unit. Now we take
the molar Gibbs free energy of a finite chain crystal compared to that of an infinite chain crystal
(xmz 1):

G(xm) — GO:m = 1) = —RTln am : —RT 1n xm
: —RTln(1—xe)mRTxe (13.4.11)

This equation follows from the definition of the “activity” of middle segments, am (see Equation
7.1.13) and the approximation of ideality (a1,, = xm) as the impurity concentration vanishes (xe << 1).
Equation 13.4.11 is the analog of Equation 7.4.4 for the osmotic pressure. We can now insert this
expression into Equation 13.4.5, but now applied to melting a crystal of chains of molecular weight
M at temperature Tm compared to a crystal of infinite chains:

Tm
AHf(1—“j:;> :Rme (13.412)

m

or, after some rearranging,

film? 00 2M0

where Tm is the melting point of the polymer under consideration. Equation 13.4.13 indicates that a
freezing point depression is to be expected from an increased concentration of chain ends.
Qualitatively, at least, the presence of other types of defects is also expected to lower Tm.
Remember that in the present discussion TI? is the melting point of a polymer of infinite molecular
weight without regard to the crystal size, whereas in Equation 13.4.8 it was the melting point for a
crystal of infinite dimension without regard to molecular weight. The two effects are therefore
complementary, and both are Operative if both particle dimension and molecular weight are small
enough to lower the freezing point appreciably.

Throughout this section we have focused attention on thermodynamic melting points. The
same thermodynamic arguments can be applied to the raising and sharpening of this transition
temperature through annealing. When a crystal is maintained at a temperature between the
crystallization temperature and the equilibrium melting point, an increase in Tm is observed.
This may be understood in terms of the melting of smaller, less perfect crystals and the redisposi—
tion of the polymers into larger, more stable crystals. This is analogous to the procedure of
digesting a precipitate before filtration. There is more to the story than this, however. The digestion
analogy would suggest that those crystals that are enlarged simply add more folded chains around
their perimeter. In fact, x-ray diffraction studies reveal progressive thickening of lamellae with
annealing, that is, as T1,, increases. This requires large-scale molecular reorganization throughout
the crystal. Such rearrangements apparently require the molecule to snake along the chain axis,
with segments being reeled in and out across the crystal surface. The process of annealing,
therefore, not only involves crystal thickening, but also provides the opportunity to work out
kinks and defects.
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13.4.4 Experimental Characterization of Lamellar Structure

Current understanding of the structure of chain-folded lamellae has been greatly facilitated by
study of solution-grown single crystals. There are many parameters of a single crystal that are
of interest, in addition to the structure of the unit cell itself and the lamella thickness. These include
the shape and size of the crystal in the other two dimensions, the orientation of the unit cell relative
to the thickness direction, and the nature of the fold surface. Valuable information about all of
these features has been obtained with electron microscopy (EM) techniques, and so we will
provide a brief introduction to this important characterization tool.

The electron microscope uses the de Broglie waves associated with accelerated electrons to
produce an image in much the same way as visible light produces an image in an optical microscope.
Electromagnets and imposed electrical fields function as lenses for the electron beam and the image
is formed on a phosphorescent screen, photographic plate, or charge-coupled device (CCD) camera.
The wavelength of an electron under typical operating conditions in an electron microscope is on the
order of A as 0.03 A; it depends primarily on the energy of the electrons, which in turn is dictated by
the accelerating voltage. In all types of microscopy it is the resolving power rather than the
magnification per se, which is the limiting factor. Waves are diffracted from the edges of illuminated
bodies and this diffraction blurs their boundaries. The resolving power measures the minimum
separation between objects that will produce discernibly different images in a microscope. In a well-
designed instrument this separation is on the order of the wavelength of the illuminating radiation.
Therefore, the resolving power of an electron microscope is potentially smaller by some five orders
of magnitude than that achieved by optical microscopes. In reality, imperfections in electron optics
limit the actual resolution to something closer to 100 A, but nevertheless this resolution matches
atomic dimensions, and so EM is extremely useful.

Although the concepts of wave optics apply equally well to visible light, x-rays, and electrons,
there are important differences that affect the information that can be obtained, and the
experimental design. First, the incident electrons carry charge, and so interact relatively strongly
with matter. Consequently, the scattering cross-section is high, which means that an electron does
not have to go very far through a material before being scattered. The primary consequence of this
fact is that samples must be very thin (perhaps 100 nm) in order for much of the electron beam to
be transmitted. Second, in one way or another the image obtained is based on the ability of
the material to scatter or diffract the electron beam. In Chapter 8 we discussed how a perfectly
uniform material would not scatter light. However, in that case a typical wavelength is 5000 A, and
a small—molecule liquid or glass could be almost completely transparent; in contrast, the electron
wavelength is so small that no material made up of nuclei and electrons can appear transparent.
Third, the short wavelength of electrons is determined by their high energy. One consequence is
that the electron beam is likely to damage the sample. Part of the art of EM is to limit the sample
exposure while maintaining sufficient flux to obtain a good image.

In microscopy, one obtains some kind of direct picture of the structure in question, a real-space
image. This should be contrasted with scattering or diffraction, in which the structural information
is contained in the angle-dependent intensity, providing a so-called reciprocal-space image.
Diffraction experiments suffer from the inversion problem, namely that there is no unique way
to take the diffraction pattern and invert it into the actual structure. This problem becomes more
acute as the structure under examination becomes more complicated. All other things being equal,
therefore, a real-space image is preferable. Of course, all other things are often not equal. There are
several potential limitations to BM in its application to polymers. Among these are:

l. The need for very thin samples, with its attendant challenges in sample preparation.
2. The generally low contrast between different monomers (in a mixture or copolymers) or

different structures in a single polymer. This arises because the chemical compositions
(C, H, 0, maybe N...) and material densities (typically 0.9—1.1 g cc“) of most organic
polymers are similar.



Structure and Melting of Lamellae 533

3. The need for selective staining techniques (using heavy atoms such as Os and Ru) to generate
contrast.

4. The inability to view the samples directly under different conditions of interest, such as
temperature, pressure, or flow.

5. The need for sample fixation to prevent changes in structure occurring between the original
sample and the sample that is imaged in the microsc0pe.

6. The likelihood of electron—beam damage.
7. An EM image represents a projection completely through the sample, so care must be taken in

interpreting features that may represent objects that are separated along the beam direction.
8. A tightly focussed electron beam will only interrogate a small portion of the sample (less than

1 um3), so care must be taken to establish how representative a given image is.

Fortunately, most of these issues are of less importance when examining polymer single crystals
collected from a solution crystallization process; the crystals are inherently thin, fixed in structure,
and small in lateral dimensions.

There are a variety of different ways in which an image can be generated in EM, and we briefly
identify some of the terminology that is encountered. Two procedures of electron microscopy
find particular applicability in the study of polymer crystals: shadow casting and dark-field
operation. Shadow casting is used to improve the contrast between a sample and its background
and between various details of the sample surface. Because polymer crystals are so thin and mostly
consist of atoms of low atomic number, some sort of contrast enhancement is important. In the
shadowing method the sample is placed in an evacuated chamber and a heavy metal is allowed to
evaporate in the same chamber. The position of the metal source is such that the metal vapor strikes
the sample at an oblique angle and condenses on the cool surface. The thin metal film thus formed
literally casts shadows, which enhance the image of the sample. If the angle of incidence of the
heavy metal beam is known, the thickness of a crystal or the height of surface protuberances can be
determined from the length of the shadow by simple trigonometry.

In dark-field electron microscopy it is not the transmitted beam that is used to construct an
image but, rather, a beam diffracted from one facet of the object under investigation. One method
for doing this is to shift the aperture of the microscope so that most of the beam is blocked and only
those electrons scattered into the chosen portion of the diffraction pattern contribute to the image.
This decreases the intensity of the illumination used to produce the dark-field image and therefore
requires longer exposure times, with the attendant modification or even degradation of the
polymer. Nevertheless, dark-field operation distinguishes between portions of the sample with
different orientations, as the diffracted beams will appear in different directions, and therefore
produces a more three-dimensional representation of the sample. Bright-field operation, on the
other hand, utilizes the transmitted main beam to form the image.

Figure 13.13a through Figure 13.13c provide examples of shadow-contrast, bright-field, and
dark-field transmission electron micrographs of solution-grown polyethylene crystals, respect-
ively. The effect of shadowing is evident in Figure 13.13a, where those edges of the crystal that
cast the shadows display sharper contrast. The roughly diamond shape of the crystal lamella is also
clearly evident. The cracks evident in the larger crystals result from the fact that in solution the
crystals actually form hollow pyramids, whereas they are flattened onto a viewing grid for the EM.
There is also evidence of multilamellar growth in the lower-right comer of the image. Figure 13.3b
shows the clear outlines of a “truncated” diamond, and the same kind of crack as in Figure 13.3a.
The dark-field image of the same crystal in Figure 13.3c is particularly revealing, because now the
single crystal is clearly shown to be made up of four sectors, two of which are dark because the
unit-cell orientation is such as to diffract the electrons away from the detection aperture. This
sectorization and the hollow pyramid form are illustrated schematically in Figure 13.14.

The electron micrographs of Figure 13.13 are more than mere examples of EM technique. They
are the first occasion we have had to actually look at single crystals of polymers. Although there is
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Figure 13.13 Electron micrographs of polyethylene single crystals, illustrating the use of (a), shadow
casting. (Reprinted from Reneker, DH. and Geil, P.H., J. Appl. Phys., 31, 1916, 1960. With permission.)
(b) Bright-field imaging. (Reprinted from Niegisch, W.D. and Swan, P.R., J. Appl. Phys., 31, 1906, 1960.

With permission.) (c) Dark-field imaging. (Reprinted from Niegisch, W.D. and Swan, P.R., J. Appl. Phys., 31,

1906, 1960. With permission.)

Figure 13.14 Schematic side and t0p views of a hollow pyramid crystal, with four sectors distinguished by

different fold directions.
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a great deal to be learned from studies of single crystals by EM, we shall limit ourselves to just a
few observations:

1. Single crystals such as those shown in Figure 13.13 are not observed in crystallization from the
bulk. Crystallization from dilute solutions is required to produce single crystals with this kind
of macroscopic perfection. Polymers are not intrinsically different from low molecular-weight
compounds in this regard.

2. Crystallization conditions such as temperature, solvent, and concentration can influence
crystal form. One such modification is the truncation of the points at either end of the long
diagonal of the diamond-shaped crystals seen in Figure 13.13b and Figure 13. 13c. The facets
of the diamond-shaped crystal correspond to { 110} planes of the polyethylene unit cell (see
Figure 13.5), whereas the truncated sections in Figure 13.13b and Figure 13.13c are {100}
planes. If the rate of crystallization onto { 100} planes is much greater than onto { 110] planes,
then the { 100] facets will disappear and a diamond will result. Twinning and dendritic growth
are other examples of such changes of habit, and these features can usually be attributed to the
relative growth rates for different crystallographic faces.

3. Hollow pyramids are thoroughly documented and fairly well understood. The underlying
factor is the nature of the fold as a chain exits and reenters the lamella. If we consider two
stems plus one fold to form a “U,” defining a fold plane, it turns out that the fold does
not remain in this plane, but is tilted. This can be understood from Figure 13.5. The fold
plane is a (110) plane, and consequently the all-trans orientation for each adjacent stem is
rotated by 90°. Each successive fold plane is displaced vertically by one CH2 unit, which leads
to the pyramidal form; the chain axis is perpendicular to the base of the pyramid, not to the
fold surface.

4. The nature of the chain folding at the fold surface has been a subject of great interest (and no
little controversy). The implication of the cartoon in Figure 13.14 is that the folding is very
regular, and immediate in the sense that an emerging chain folds back directly into the crystal
as the adjacent stem in the fold plane. This limiting behavior is known as adjacent reentry, and
may be contrasted with the opposite extreme of random reentry, or the switchboard model, as
shown in Figure 13.15. For solution-grown single crystals adjacent reentry is certainly
prevalent. However, for crystals grown from the melt, the evidence favors a much more
random folding process; in particular, the radius of gyration of a single chain in the melt
(measured by neutron scattering) changes little on crystallization, which suggests that it enters
and departs from several lamellae (see Figure 13.2).

The foregoing is by no means a comprehensive list of the remarkable structures formed by the
crystallization of polymers from solution. The primary objective of this brief summary is the

Figure 13.15 Schematic illustration of adjacent reentry (left side of crystal) and random reentry (right side).
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verification that single crystals can be formed, and characterized in detail, not only by x-ray
diffraction, but also by electron microscopy.

13.5 Kinetics of Nucleation and Growth

In this section our objective is to introduce the basic factors that govern the rate of growth of
polymer crystals, once a sample has been cooled to a temperature below T310. Some of these factors
pertain to many phase transitions, whereas others are particular to polymer crystallization. We will
emphasize the rate of growth of individual lamellae, whether in bulk or in solution, as the
fundamental process of importance. In Section 13.7 we will return to crystallization kinetics, but
from a broader perspective; there we will consider the rate at which a macroscopic sample
becomes (semi)crystalline.

Before we begin a more systematic treatment, consider the following illustrative example. If we
take a polymer sample that has been allowed to crystallize at some temperature TC, we will find a
predominant average lamellar thickness. What determines this thickness? The answer is a com—
bination of thermodynamics and kinetics, but mostly the latter. Thermodynamics tells us that only
lamellae that have a lower free energy than the liquid state can grow spontaneously. In the previous
section, we saw that the melting temperature of lamellae increased with thickness, so we may
conclude that as TC decreases below T310, we will progressively increase the range of smaller
lamellar thicknesses that may grow. The role of kinetics is to dictate which of the thermodynam-
ically allowed values of E is observed, namely, the one that grows most rapidly. As a rule, thinner
lamellae tend to grow more rapidly, so as TC is decreased, the observed I? will decrease. The
resulting lamellae must therefore be viewed as metastable, because a crystal with larger 1? should
have a lower free energy.

This general principle is beautifully illustrated by the isothermal crystallization data for modest
molecular-weight poly(ethylene oxide) shown in Figure 13.16. These single crystals were grown in
solution, and the dominant morphology is indicated on the plot. As TC decreases, the rate of
crystallization increases, but with abrupt jumps. Each jump in rate is associated with a discrete
change in E, from straight—chain lamellae to once-folded, then from once-folded lamellae to twice-
folded, etc. The particular temperatures at which the jumps in crystallization rate occur can be
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Figure 13.16 Crystal growth rate for low molecular—weight poly(ethylene oxide) crystallized from solution.
(Reproduced from Strobl, G., The Physics of Polymers, Springer, Berlin, 1996. With permission.)
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easily interpreted based on the foregoing discussion. Thus 635°C is the temperature below which
straight-chain lamellar crystals have a lower free energy than the liquid, and so they grow. Then
595°C is the point at which once—folded lamellae become possible, and they grow much more
rapidly than the straightmchain lamellae. Similarly, below about 565°C twice-folded lamellae
become possible, and because they grow significantly more rapidly than straight—chain or once-
folded lamellae, they become the predominant form.

13.5.1 Primary Nucleation

Crystallization, like many other first—order phase transitions, proceeds by the process known as
nucleation and growth. Nucleation refers to the appearance of domains of the new phase that are
sufficiently large to become stable; recalling the discussion in Section 13.4.1, this amounts to the
domains becoming large enough for the bulk energy gain of the new phase to outweigh the
unfavorable surface energy. In many transitions, nucleation is the rate—limiting step. The subsequent
growth of the particles will be considered in the following section. Nucleation is commonly
classified as either heterogeneous or homogeneous. The former denotes the situation where a foreign
particle, impurity, or surface provides a site for facile nucleation, whereas the latter indicates the
spontaneous formation of nuclei by random fluctuations. In practical situations heterogeneous
nucleation is almost always more important, and often dominant; indeed, in many polymer processes
nucleating agents such as talc powder are added to accelerate crystallization. However, in the
laboratory the homogenous case is also important and furthermore a simple treatment of homogen-
ous nucleation will allow us to understand a good deal about the subsequent growth processes as well.

We begin by adapting our treatment of surface effects in Section 13.4.2 to nucleation. The free
energy of a spherical droplet with radius R of the new phase, AG, can be written as the sum of a
surface term and a volume term (see Equation 13.4.1):

4AG(R) = 477R27+§R3AGV (13.5.1)
where y is the surface energy and AGV is the free energy change per unit volume; note that when
T < Tm, AGV is negative. Figure 13.17 illustrates the functional form of Equation 13.5 .1, with the

AG

Critical nucleus, Ff"

F?

Figure 13.17 Dependence of free energy on drop size according to Equation 13.5 .1, illustrating the radius
of the critical nucleus.
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essential feature that there is a special size, R*, where AG has a positive maximum. For the new
phase to form, droplets must somehow grow larger than R*, so a droplet of this size is called a
critical nucleus. Once a drop exceeds this size, addition of further molecules will only decrease
AG, and therefore growth is spontaneous. In contrast, it is thermodynamically “uphill” for a
droplet smaller than R* to grow. By differentiating Equation 13.5 .1 with respect to R, and setting
the result equal to zero, we arrive at an expression for R*:

27R* = ———— 13.5.2AGV ( )

This, in turn, can be substituted into Equation 13.5.1 to find the free-energy barrier associated with
achieving the critical nucleus:

4AG* = 477R*2y + %R*3AGV = ____ (13.5.3)

We can also use Equation 13.4.5 to replace AGV with a term involving the enthalpy of fusion and
the undercooling:

6 3 16 3 T00 2AG,,=1_v 72 ____7T r2
(

rn)23 AGV 3 AHV (AT)
(13.5.4)

It is difficult to predict with certainty the rate at which critical nuclei form, but the two most
important factors can be identified. The probability of a critical nucleus should be proportional to a
Boltzmann factor, exp(—AG*/kT), which would determine the “equilibrium” concentration of
such nuclei. Secondly, the rate of formation will be proportional to the rate of arrival of new
molecules at the droplet surface, or, in the case of polymers in the bulk, the rate of segmental
rearrangements at the surface in order to fit into the lattice. In either case we know from the
discussion in Section 12.4, and Equation 12.412 in particular, that the temperature dependence of
polymer transport follows the Vogel—Fulcher or Williams—Landel—Ferry form:

Polymer or segment mobility ~ A exp(— ) (13.5.5)
T — To

where A, B, and T0 are parameters that can be related to free volume. (However, in practice the
values of A, B, and T0 will be different for crystallization rate than for, say, the macroscopic
viscosity.) Combining Equation 13.5.4 and Equation 13.5.5, we can extract the temperature
dependence of the nucleation rate:

3 AG*
ln(rate) oc 1n exp

_T——T0
exp —

k7"
+ constant

B
= -— — + constantT — To rmrf (13.5.6)

where K denotes a collection of temperature-insensitive quantities. The temperature dependence is
complicated in detail, but the qualitative consequences of the two terms are clear. The transport
term indicates that at low temperatures (T——>T0) the rate will go to zero, as nothing can move.
However, we recall from Chapter 12 that the glass—transition temperature is usually significantly
below the melting temperature, so this effect can be avoided. The barrier term indicates that as
temperature decreases, the rate will increase, because TQM")2 will increase. This is a simple
consequence of an increased thermodynamic driving force to crystallize as the undercooling
increases. From Equation 13.5.2 we can see that the critical nucleus shrinks as the crystallization
temperature decreases, so nuclei are easier to form.
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We now take a closer look at the nucleation of a polymer crystal. Experimental evidence, much
of it indirect, suggests that the critical nucleus size is on the order of 10 nm. Furthermore, even in
the early stages the nuclei can be faceted to reflect the underlying unit cell. The important new
issue is: what sets the thickness of the crystal nucleus, E? We already know that lamellae tend to
grow with a (nearly) single value of E that depends primary on AT, so presumably the critical
nucleus has to set the stage for this choice of E. A straightforward extension of the critical nucleus
analysis can give some insight into how this might come about. Assume a cylindrical nucleus just
as in Figure 13.11, with height E and radius r. Assume the nucleus contains p stems (which might
come from several chains, but not necessarily p different chains), and that each stem occupies a
cross-sectional area d2. The volume of this nucleus can be written as arrzE, or as pdzE, so
r : di/p/rr. We can now write the analogous expression to Equation 13.5.1, Equation 13.4.2,
and Equation 13.4.3 for the free energy of the nucleus, but now in terms of p and E:

AG( p, 2) = pdzEAGV + 2pd2‘y + 2dE'y. /—7Tp (13.5.7)

Note that we are making the simplifying assumption that both top and side faces have the same
surface energy. The critical nucleus size in terms of the number of stems can be found as before, by
differentiating Equation 13.5.7 with respect to p and setting the result equal to zero. The answer is
(see Problem 8)

_ WEZ')!27
d2(EAGv + 2302

19* (13.5.8)

The next step is to repeat this process, but differentiating Equation 13.5.7 (with p set equal to 19*)
with respect to E and setting the result equal to zero. This process locates that value of E, E*, which
minimizes the nucleation barrier AG*( p*, E). In other words, AG( p, E) is a surface with respect to
p and E; we have found the curve that represents the maximum with respect to p ( p = p*), and now
we seek the minimum along that curve in terms of E (E = E*). The resulting point is called a saddle
point; just as a hiker seeks a low altitude pass through a mountain range, the crystallization process
will seek the easiest route across the nucleation barrier. When this is done (after some algebra,
Problem 8), the resulting value of the critical stern length E* turns out to be simply

4?E* 2 ——
AGV

Substituting Equation 13.5.9 and Equation 13.5.8 back into Equation 13.5.7 gives the critical
barrier height:

(13.5.9)

877' 73
AG?)

This relation has exactly the same form as Equation 13.5.4; all that has changed is the numerical
prefactor. In particular, the nucleation barrier height still depends on the inverse square of the
undercooling, and so nucleation should be more facile at lower temperatures. What is new from
this analysis is the existence of a preferred lamellar thickness for nucleation, E*. It depends linearly
on the inverse undercooling, so we expect thicker nuclei (and crystals) as TC is lowered; The
dependence of AG from Equation 13.5.7 on p and E is illustrated in Figure 13.18, for a!2 : 20 A2 per
chain, and E* = 100 A. For each value of E, AG shows a maximum in p, and the lowest value of
this maximum occurs for E* : 100 A and p* =400. These curves can be used to estimate the
relative rates of nucleation of different sized nuclei, as illustrated in Problem 9.

AG(p*, E*) = (13.5.10)

13.5.2 Crystal Growth

Although the processes of lamellar growth are still far from fully understood on the molecular
scale, a reasonable understanding of the principal factors can be extracted by extension of the
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Figure 13.18 The free energy of forming a nucleus, divided by the surface energy, as a function of the
number of stems, p, for different values of the lamella thickness, according to Equation 13.5.7.

concepts developed in the previous section. It is well established that under conditions of
isothermal crystallization the growth velocity v of a lamellar face is a constant, and that the
lamellar thickness also remains constant. The temperature dependence of v can be quite interest-
ing, however, as we shall see.

We begin by assuming we have a perfect crystal face of height 6 and width W, as shown in
Figure 13.19. To start a new layer of chains (whether folded immediately or not), a single stern
must attach to the crystal. There is a barrier to this process, because the new stern has increased the
surface area of the crystal. Indeed, this process is termed secondary nucleation, because it
nucleates the growth of a single new layer, in contrast to the primary nucleation process considered

Figure 13.19 Schematic of the secondary nucleation process, whereby a single complete new stem adds to
a perfectly flat crystal face.
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in the previous section. For simplicity we assume that the stern has a square cross-section with side
d. The barrier to the addition of a single stem, AGS, contains three terms just as in Equation 13.5.7.
There is a favorable contribution from the increase of the crystal bulk, given by EdzAGv (recall
that AGV is negative). There are two unfavorable terms for the added surface, one from the top and
bottom of the lamella, and the other from the new faces of the stem. The former is given by 2d2'yf
and the latter by 2d€yg, where we distinguish the two surface energies with subscripts f for “fold
surface” and g for “growth surface,” respectively. Thus the free-energy change associated with
secondary nucleation can be written as

AG, = dQEAGV + My, + 2cm, (13.5.11)

The overall rate of secondary nucleation per unit width of the growth surface, which we will call rs,
should be proportional to the product of a dynamics term and the apprOpriate Boltzmann factor,
just as in Equation 13.5.6:

B AG*
rs OC EXP (— T _ To) exp (-— HS) (13.5.12)

where AG;k is the barrier to secondary nucleation. Once again the relevant process is governed by
the competition between the gain in bulk free energy, proportional to AGV, and the surface energy
penalty, involving yf and yg. Note that we cannot differentiate Equation 13.5.11 to find a “critical”
nucleus, because we have already assumed that it is a single stem of length 1?. A much more
detailed treatment, due to Hoffmann and Lauritzen [2], gives AG;k m —d'yfyg/AGV, and therefore
ln r5 will be proportional to a term in 1/TAT (see Equation 13.5.6).

Once the secondary nucleus is in place, the rest of the layer could fill in by adding adjacent
stems. Each new stem increases the crystal volume by the same amount, d326, but also increases the
fold surface area by 2d2; it does not increase the exposed growth-surface area. Thus for the growth
process we can write

AGg : dQEAGV + My, (13.5.13)
The rate of growth of a single face, g, should follow an expression analogous to Equation 13.5.12:

B A
g oc exp (—

T _ To) exp <— %) (13.5.14)

However, under normal conditions we expect AGg to be negative, or crystallization is not really
going to proceed at all, and so there is no barrier and therefore g does not depend on the
undercooling, AT.

In the above scenario, it is not unreasonable to expect that the rate of growth, g, will exceed the
rate of secondary nucleation, r,, so much so that each new layer will fill in completely before the
next layer starts. If true, the overall growth velocity (units of length time—l) will simply be given
by the product of the layer thickness, d, the width, W and r5 (units of length‘1 time—1):

v =dWr, (13.5.15)

and the temperature dependence of v, once corrected for the transport term, will be linear in l/TAT.
In fact this is often observed; an example from the solution crystallization of polyethylene is shown
in Figure 13.20a (where the transport term is not so important).

A strong indication that the real process is much more complicated than the above description
can be seen in Figure 13.20b. Here, logarithmic growth velocities, corrected for the transport term,
are plotted as a function of 1/TAT, for four different polyethylenes. Each curve exhibits two
different linear portions, separated by rather sharp changes; for each curve the higher-temperature
regime has the larger slope. Several polymers display this general behavior, whereas in others the
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Figure 13.20 Crystallization rates for polyethylenes. (a) Single crystals grown from solution. (Reprinted
from Toda, A. and Kiho, H., J. Polym. Sci, Polym. Phys. Ed., 27, 53, 1989. With permission.) (b) Spherulites
grown from the melt. (Reprinted from Lambert, W.S. and Phillips, P.J., Macromolecules, 27, 3537, 1994.
With permission.)
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lower-temperature regime has the larger slope. Still other polymers show three or even four
regimes, but in most cases the slopes differ by factors of about 2 (or 1/2). These abrupt changes
suggest that the growth mechanism is changing in some distinct way. A good possibility to
consider is that the assumption g > rS may not always apply. In particular, the Boltzmann factor
for r, depends on l/TAT, whereas for g it depends only on 1/2". A small change in T will have no
appreciable effect on g, but it can have a profound effect on rs. Consequently as the undercooling is
increased, perhaps rS and g become competitive, or even rS >> g.

These possibilities are also considered in the theory of Hoffmann and Lauritzen. The main
conclusion of interest to us can be anticipated in a rather straightforward way. Suppose that the
undercooling has increased to the point where rS and g are similar. In that case a new layer will fill
in by both random attachment and adjacent attachment of stems. The growth velocity v will depend
on both rs and g. As r5 has units of length‘1 time“, and g has units of length time—1, dimensional
analysis suggests that

v oc ark/rsg (13.5.16)

If this assumption is correct, the dependence of v on temperature will still come largely from rs, as
noted above. Because of the square root, the argument of the Boltzmann factor will now be
multiplied by 1/2, and thus the slope will decrease by a factor of 2, as in Figure 13.20b. In the
context of the Hoffmann and Lauritzen theory, this transition in mechanism corresponds to passage
from so-called Regime I crystallization, where rs << g, to Regime H, where r8 2:. g. With still deeper
undercooling, the system can undergo another transition into Regime HI, where rS >> g. In this case,
v m rs again because there is essentially no lateral growth of a crystal layer; as a consequence the
slope of In v versus l/TAT will increase by a factor of 2 from that in Regime II.

We have deliberately avoided any more detailed examination of the secondary nucleation and
layer growth processes, in part because a full molecular level description would be very compli-
cated, and in part because these issues are far from fully resolved. Details we have not considered
include the following: Does a secondary nucleus have a stem of length 6, where E is the thickness of
the primary nucleus, or is it different? Does growth proceed by one chain at a time folding
regularly, like a fire hose (as the Hoffmann—Lauritzen theory proposes), or do new stems from
other chains participate? Does a new layer immediately grow with thickness 6, or does it armeal to
full thickness after first attaching to the surface? Does a new stem begin by one repeat unit sticking
to the face of a unit cell, or do longer helical sections form first? Is the melt in the immediate
vicinity of the growth surface completely disordered, or is there some intermediate level of order
that precedes attachment of new stems? Is the lamella growth surface actually flat, or is it rough,
thereby removing the need for secondary nucleation?

These considerations aside, there is one other general feature of the growth process outlined
above that should be brought out. In Regime I, the thermodynamic drive to grow is relatively
small, and the system can be thought of as being close to a local equilibrium between stems
attaching and detaching. In other words, a new stem might be formed and then melt off the surface
several times before actually being locked in place. Under such quasi-equilibrium growth condi-
tions, very smooth and regular crystals can be grown. This is consistent with the familiar
experience of growing small-molecule crystals, where modest undercoolings and long times are
necessary to obtain large single crystals. In contrast, for deeper undercoolings in Regime III, stems
can be envisioned as sticking virtually irreversibly on the first attempt. This kind of a disorganized
process leads to rapid growth, but more defect-laden, irregular structures.

One final issue to consider: what is the role of molecular weight in all of this? We have so far
completely ignored the dependence of nucleation or growth on this most important polymer
variable. Two figures serve to illustrate the main points. Figure 13.2] shows the temperature
dependence of crystal growth for various molecular weights of poly(tetramethyl-p-phenylene
siloxane). There is a strong peak in growth velocity near 65°C, with the rate tending to zero
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Figure 13.21 Growth rates of poly(tetramethyl-p-phenylene siloxane) crystals as a function of temperature,
for the indicated molecular weights. (Reprinted from Magill, J.H., J. Appl. Phys, 35, 3249, 1964. With
permission.)

near 120°C and 0°C. This feature is exactly what we would anticipate based on the discussion
above, namely that at relatively small undercoolings the rate increases with lower temperatures,
but eventually the transport term takes over and the rate goes to zero. For comparison purposes, the
glass—transition temperature for this polymer is about —20°C, and so the rate becomes negligible a
few degrees above Tg. The important new information in this figure is that the peak position is
independent of molecular weight, but the peak growth velocity decreases significantly with
increasing molecular weight. The peak position is controlled by a balance between the thermo—
dynamics associated with adding stems (whether by secondary nucleation or by layer growth), and
the dynamics of molecular rearrangements. Neither AGV nor the various surface energies depend
appreciably on molecular weight, and neither do the Vogel—Fulcher or WLF temperature depend—
ence of chain dynamics (at least for reasonably long chains, see Section 12.4); thus the position of
the peak is also insensitive to chain length.

The molecular weight dependence of the growth velocity can be better seen when plotted
directly against inverse molecular weight, as shown in Figure 13.22. At high molecular weights,
when the chains are well entangled (see Chapter 11) the rate is lowest, but independent of
molecular weight. At lower molecular weights the rate increases as the chains become shorter.
The molecular weight independence for long chains argues for a rate~detennining step that
involves rearrangements of a portion of the chain, perhaps a few times the length of a stern, rather
than diffusion of the whole polymer. Lower molecular weight chains can accommodate the
necessary conformational rearrangements more rapidly, as entire molecules.



Morphology of Semicrystalline Polymers 545

100

_ 60°
c o
'E 80

E
(5 o10 40

100°

2.. 20°

lllllllll |II|||l||
OJ 1.0 100

1 03/MW

Figure 13.22 Same data as in Figure 13.21, now plotted versus inverse molecular weight at the indicated
temperatures.

13.6 Morphology of Semicrystalline Polymers
At this point we have a good picture of the organization of polymer molecules at the unit cell level
(~1 nm) and within a lamella (~10 nm). To complete the picture we need to consider how the
lamellae and the intervening regions of amorphous material arrange themselves to fill up the bulk
of the material. By far the most commonly observed morphology is that of the spherulite, to be
considered first, but other structures such as hedrites, dendrites, and shish kebabs are also found
under certain crystallization conditions.

13.6.1 Spherulites

Suppose a bulk-crystallized polymer sample is observed in a polarizing optical microscope, with
the sample placed between two polarizers oriented at right angles to each other. In the absence of
any sample, no light would be transmitted owing to the 90° angle between the vectors describing
the light transmitted by the two polarizers (see Section 8.1 for a discussion of polarized light). With
a crystalline sample of polymer in place, however, an image such as that shown in Figure 13.23 is
generally observed. The field of view becomes at least partially filled with domains called
spherulites, which grow in time, impinge upon one another, and eventually fill space. They
generally exhibit the following features:

1. They possess spherical symmetry around a single center of nucleation. This symmetry projects
a perfectly circular cross-section if the development of the spherulite is not stopped by contact
with another expanding spherulite. The spherical structure indicates a single growth rate in
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Figure 13.23 Spherulites of poly(L-lactide) growing from the melt. Courtesy of R. Taribagil.

three dimensions, which we will need to reconcile with the one— or two—dimensional growth
mode of individual lamellae.

2. Each spherulite is revealed by the characteristic Maltese cross optical pattern under crossed
polarizers, although the Maltese cross is truncated in the event of impinging spherulites.

3. Superimposed on the Maltese cross may be such additional optical features as banding,
illustrated in Figure 13.26.

4. A system of mutually impinging spherulites ultimately develop into an array of irregular
polyhedra, the dimensions of which can be as large as a millimeter or more. The size of the
domains will obviously increase as the number of nuclei decreases, and so information about
nucleation density may be inferred even after crystallization is complete.

5. A larger number of smaller spherulites are produced at larger undercoolings, as the barrier to
nucleation is reduced. Various details of the Maltese cross pattern, such as the presence or
absence of banding, may also depend on the temperature of crystallization.

6. Spherulites have been commonly observed in organic and inorganic systems of synthetic,
biological, and geological origin, including moon rocks, and are therefore not unique to
polymers.

On the basis of a variety of experimental observations, including an analysis of the ubiquitous
Maltese cross, a number of aspects of the structure of spherulites have been elucidated. The
spherulites are aggregates of lamellar crystals radiating from a single nucleation site. The latter
can be either a spontaneously formed single crystal or a foreign body. The spherical symmetry is not
present at the outset, but develops with time. Fibrous or lathlike lamellar crystals grow away from
the nucleus, and begin branching and fanning out. As the lamellae spread out radially and three
dimensionally, branching of the crystallites continues to sustain the spherical morphology. Figure
13.24 represents schematically the leading edge of some of these fibrils, one of which has just split.

The molecular alignment within these radiating fibers is tangential, that is, perpendicular to
the radius of the individual spherulite. The individual lamellae are similar in organization to single
crystals: they consist of ribbons on the order of 10—100 nm in thickness, built up from successive
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Figure 13.24 Schematic illustration of the leading edge of a lathlike crystal within a spherulite.

layers of folded chains. Growth is accomplished primarily by the addition of successive layers of
chains to the ends of the radiating laths. This feature is also indicated schematically in Figure
13.24. Portions of an individual long polymer chain can be incorporated into different lamellae,
and thus link them in a three-dimensional network. These interlamellar links are not possible in
spherulites of low molecular-weight compounds, which show much poorer mechanical strength as
a consequence.

The molecular chain folding is the origin of the Maltese cross. The Maltese cross pattern arises
from a spherical array of birefringent particles through the following considerations (see also
Figure 13.25):

1. The ordered polymer chains, that is the stems, are consistently oriented perpendicular to the
radius of the spherulite.

2. The index of refraction of all polymers differs for light polarized parallel to the chain axis
versus normal to it. Recalling the discussion in Section 8.1, the refractive index of a material
reflects the polarizability of the constituent molecules. Individual polymer molecules have a
polarizability anisotropy, which leads to anisotropy in refractive index when the molecules are
aligned. Substances showing this anisotropy of refractive index are said to be birefringent.

3. Items (1) and (2) indicate that the refractive index in the tangential direction of the spherulite
differs from that along the radius. It actually does not matter in this context which refractive
index is greater; for polyethylene and poly(ethylene oxide), it is greater along the chain
backbone, but for polystyrene and poly(vinyl chloride) it is greater normal to it.

4. The electric vector of the polarized light emerging from the first polarizer (let us say the beam
is traveling along lab direction 2 and is polarized along )2) may be resolved into components
along the radial and tangential directions of the spherulite. These two components propagate
at different speeds (recall Equation 8.1.6), and thus will not recombine to recover perfectly
y-polarized light. The resulting x—component of light is transmitted by the second polarizer,
leading to a bright image.

5. As we proceed around the spherulite, at 90° intervals the polarization axis of the light will
coincide with either the radial or tangential direction in the crystal. At that point, the electric
vector has no component along the orthogonal axis, and so there is no component to sense the
different refractive index. Consequently the light emerges with polarization preserved, and is
extinguished by the second polarizer. Thus there are four dark sectors in the image, producing
the Maltese cross.
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Figure 13.25 y-Polarized light is incident on a spherulite. The small rectangles and arrows illustrate the
local orientation of the refractive indices of the crystal. Light is transmitted through an x—polarizer only when
the local orientation is not parallel to x or y.

5. You should convince yourself that if the polarizers are held fixed and the sample rotated
between them, the Maltese cross remains fixed because of the symmetry of the spherulite.

In many cases, the microscope image reveals another feature, namely banded spherulites, as
illustrated in Figure 13.26. In addition to the Maltese cross, there are concentric dark rings at
regular intervals moving out from the center. This is due to twisting of the individual lamellar
ribbons along the radial direction; from the spacing of the bands, the period of the twist can be
calculated and is found to depend on crystallization conditions. The fact that the dark rings are
more or less continuous around a circle implies that the material within the ring is optically
isotropic, rather than oriented with its optical axes parallel to the polarizers. As an individual
lamella twists, the fold plane containing the chain stems rotates about the radial direction. The
refractive index is also different parallel and perpendicular to the stem within the fold plane, and so
the value of the mean refractive index along the tangential direction varies continuously between
these limits with the twist angle. At certain twist angles, this projected tangential value of
refractive index can be identical to the radial value, leading to optical isotropy and light extinction.
The band spacing reflects the distance over which a lamella completes a helical twist; the origin of
the twist is thought to lie in the particular chain conformations of the fold surface.

13.6.2 Nonspherulitic Morphologies

Spherulitic growth is the natural consequence of a crystallization process that proceeds steadily
from a single nucleus, with a constant growth rate (although that is not strictly required), and is
allowed to proceed with equal probability in three dimensions. A more subtle consideration is that
the growth rate has to be sufficiently slow so that the relevant lamellar facets extend outward with
no significant change in structure. Such a growth process is a natural consequence of a situation
where secondary nucleation is the rate-limiting step, as for example in the theory of Hoffmann and
Lauritzen described in Section 13.5.2. In this process, it takes a while for a growth face to add the
first stern of the next layer, but once it does, the layer fills in completely and relatively rapidly.
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Figure 13.26 Spherulites of poly(1—pr0py1ene oxide) observed through crossed polarizers by optical
microscopy. (Reproduced from MaGill, J.H., Treatise on Materials Science and Technology, Vol. 10A,
Schultz, J.M. (Ed), Academic, New York, 1977. With permission.)

In this manner the structure of the lamellae is preserved. In another limit, addition of a new stem
to a smooth facet could be more rapid than filling out the new layer. This is reminiscent of a
general growth process known as diffusion limited aggregation, in which new particles stick to
the first part of a growing cluster that they encounter. Under these conditions, a crystal or
aggregate would grow much more haphazardly, leading to dendritic structures (which are often
akin to the form of a fir tree). An example of dendritic growth of polyethylene crystals in
solution is shown in Figure 13.27. This growth mode was accessed by the simple expedient of a
deeper undercooling; the increased thermodynamic drive to form crystals reduces the barrier to
secondary nucleation.

Hedrites, 0r axialites as they are sometimes termed, represent an alternative morphology that is
sometimes encountered. A hedrite may be defined as a crystallite that looks like a polygon when
viewed from at least one direction [3]; an example is shown in Figure 13.28a. A cartoon version of
one possible hedrite structure is shown in Figure 13.28b. In this case several lamellae are stacked
on top of one another, but then splay out when growing further from the center. This is somewhat
analogous to splaying the pages in a book or sheets in a stack of paper. Qualitatively, one can
imagine such a structure emerging when the individual lamellae grow at comparable rates in two
dimensions; this growth mode inhibits structures with spherical symmetry. In contrast, the spher-
ulite results from primarily one—dimensional growth of individual lamellae, that fan out in three
dimensions over time.

We conclude this section on crystal morph010gy by briefly describing crystallization under
applied stress. This is a fascinating topic in its own right, and of great importance in processing of
some semicrystalline polymers. We noted this possibility in Chapter 10 when discussing deviations
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Figure 13.27 Polyethylene dendrite grown from dilute toluene solution and observed by interference
(optical) microscopy; the long dimension is approximately 100 um. (Reproduced from Wunderlich, B. and
Sullivan, P., J. Polym. Sal, 61, 195, 1962. With permission.)

from the simple model for rubber elasticity under large deformations. Stress-induced crystallinity
is important in film and fiber technology. For example, when dilute solutions of polymers are
stirred rapidly, or when fibers are spun from relatively dilute solutions, characteristic structures
deve10p, which are described as having a shim—kebab morphology. A beautiful example is shown
in Figure 13.2%, and a cartoon of the underlying structure is provided in Figure 13.2%.

§——’C/f:—~d—j

(b)

Figure 13.28 (a) A polyethylene hedrite. (b) Cartoon of a hedrite viewed end—on. (Reproduced from
Bassett, D.C., Keller, A., and Mitsuhashi, S., J. Polym. Sci, 1A, 763, 1963. With permission.)
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Figure 13.29 Transmission electron micrograph of polyethylene shish kebabs crystallized from xylene
solution during flow (a), and (b) schematic of the underlying chain structure. (Reproduced from Pennings,
A.J., van der Mark, J.M.A.A., and Kiel, A.M., Kolloia’ Z.Z. Polym, 237, 336, 1970. With permission.)

These consist of chunks of folded chain crystals (kebabs) strung out along a fibrous central column
(shish). In both portions the polymer chain axes are parallel to the overall axis of the structure.
The essence of this process is to extend the individual chains to a substantial degree, before
crystallization. In this way the extended chain shish provides nucleation sites for the chain-folded
kebabs. Relatively dilute solutions are favored, because in a highly entangled state it is very difficult
to extend individual chains before crystallization. Similarly, relatively high molecular weight chains
are favored because it is difficult to apply enough stress in solution to extend a short chain.
Extremely strong fibers can be fabricated from such shish kebabs, as the high degree of crystallinity
combined with the uniform orientation of the chain axis imparts remarkable tensile strength. An
example of such a material is gel-spun polyethylene, which is prepared in two stages. In the first
stage, a hot solution is extruded to partly align the chains and cooled into a gel (crystallinity provides
the cross-link sites). In the second stage, the material is drawn into fibers while the remaining solvent
is removed. The resulting fibers have far superior mechanical properties to standard fibers, and are
used in demanding specialty applications such as bullet-resistant garments and in racing yachts.

13.7 Kinetics of Bulk Crystallization
In the previous sections we have discussed the thermodynamic factors that influence crystalliza-
tion, and we have considered the role of kinetics in the growth of individual crystals or lamellae.
In the preceding section we have examined the diverse morphologies that can result from polymer
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crystallization under various situations. In this section we turn our attention back to kinetics, and in
particular we consider the following questions: How long will it take a macroscopic sample to
crystallize? If we have information about the crystalline fraction as a function of time, what, if
anything, can we infer about the crystal growth mechanism?

13.7.1 Avrami Equation

The following derivation will illustrate how the rates of nucleation and growth combine to give the
net rate of crystallization [4,5]. The theory we shall develop at first assumes a specific picture of
the crystallization process, but then we can generalize the result. The assumptions of the model and
some comments on their applicability follow:

1. The crystals are initially assumed to be circular disks. This geometry is consistent with
previous thermodynamic derivations. It has the advantage of easy mathematical description.

2. The disks are assumed to lie in the same plane. Although this picture is implausible for bulk
crystallization, it makes sense for crystals grown in ultrathin films, adjacent to surfaces, and in
stretched samples. A similar mathematical formalism will be deve10ped for spherical growth
and the disk can be regarded as a cross-section of this.

3. Nucleation is assumed to begin simultaneously from centers positioned at random throughout
the liquid. This is more descriptive of heterogeneous nucleation by foreign bodies introduced
at a given moment than of random nucleation. We shall subsequently disPense with the
requirement of simultaneity.

4. Growth in the radial direction is assumed to occur at a constant velocity. There is ample
experimental justification for this in the case of three—dimensional spherical growth.

Figure 13.30a represents the top view of an array of these disks after the crystals have been
allowed to grow for a time t after nucleation. The three disks on the left are separated widely
enough to still have room for further growth; the three disks on the right have impinged upon one
another and can grow no more. We saw in the previous section that this latter situation can be
observed microscopically.

Suppose we define the rate of radial growth of the crystalline disks as f. Then disks originating
from all nuclei within a distance ft of an arbitrary point, say, point x in Figure 13.30a, will reach
that point in an elapsed time r. If the average concentration of nuclei in the plane is N (per unit
area), then the average number of fronts [—7, which converge on x in this time interval is

T? = 77(ft)2N (13.7.1)
If a second growth front were to impinge on a point like this, its growth would terminate at x.
Suppose we imagine point x to be “charmed” in some way such that any number of growth fronts

(a) (b)

Figure 13.30 The growth of disk-shaped crystals. (3) All crystals have been nucleated simultaneously.
All crystals have the same radius 1‘: after an elapsed time t. (b) Nucleation is Sporadic. Crystal A has
had enough time to reach point x, while B has not, although both originate in the same ring a distance r
from x.
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can pass through it without interference. If we were to monitor the number of (noninterfering)
fronts that cross x in a series of observations, we would expect a distribution of values because of
the random placement of the nuclei. Furthermore, the distribution of F values is expected to pass
through a maximum. Fronts arising from nuclei very close to x can easily cross x in the allotted
time, but the area of melt under consideration in this case is small, so the number of fronts is small.
As the area around the charmed point x is enlarged, a larger number of nuclei will be encompassed
so the number of fronts crossing x will increase. This increase ‘is offset by the fact that fronts
originating from more distant nuclei will require more time to reach x. Therefore the number of
fronts that cross x (remember that these are free from interference by hypothesis) will increase,
pass through a maximum, and decrease as we allow them to originate from all parts of the sample.
This distribution of values of F is our next interest.

We propose to describe the distribution of the number of fronts crossing x by the Poisson
distribution function, discussed in the context of living polymerization in Chapter 4. This prob-
ability distribution function describes the random partitioning of a set of objects into a fixed
number of boxes. In this case, the probability P(F) describes the likelihood of a specific number of
fronts, F, arriving per unit time in terms of F and the average number F, as follows (see Equation
4.2.19):

—F_F_F

P(F) = 6
Fl (13.7.2)

Next we apply this distribution to the case where F = 0, that is, to the case where no fronts have
crossed point x. There are several aspects to note about this situation:

1. Since F0 = 1 and 0! = 1, Equation 13.7.2 becomes

P(0) = e—F (13.7.3)

for F = O.
2. The condition of no fronts crossing x is automatically a condition of noninterference, so the

special magic previously postulated for point x poses no problem.
3. Since point x is nonspecific, Equation 13.7.3 describes the fraction of observations in which no

fronts cross any arbitrary point, or the fraction of the area in any one experiment that is crossed
by no fronts.

4. This last interpretation makes P(0) the same as the fraction of a sample in the amorphous state.
It is conventional to focus on the fraction crystallized, (be; therefore the amorphous fraction is
1 — (be and

1— e, = P(0) = e'F (13.7.4)
5. Inverting and taking the logarithm of both sides of Equation 13.7.4, we obtain

1 _
ln(l __ (be) 2 F (13.7.5)

Equation 13.7.1 and Equation 13.7.5 both describe the same situation, and can be equated to give

1 _ .2111(1 _ 75¢) _ arr NR (13.7.6)

or
4),, = 1 — exp(—7Tf2Nt2) (13.7.7)
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Remember the units involved here: for r' they are length time—1; for N, length—2; and for r,
time. Therefore the exponent is dimensionless, as required. The form of Equation 13.7.7 is such
that at small times the exponential equals unity and c=0; at long times the exponential
approaches zero and (150 = 1. In between, an S-shaped curve is predicted for the development of
crystallinity with time. Experimentally, curves of this shape are indeed observed. However, we
shall see presently that this shape is also consistent with other mechanisms in addition to the
one considered so far.

Equation 13.7.7 may be written in the following general form, known as the Avrami equation

(35¢ = 1 — exp(—Kt’") (13.7.8)

where in the previous case the so-called Avrami exponent m = 2, and the associated rate constant,
K, is w2. Suppose rather than growing in two dimensions, the crystal fronts grew uniformly in
three dimensions. An analysis similar to the one we just conducted would give m = 3 and
K = (4/3)71-Nf3 in Equation 13.7.8. In this case N would be the number of nuclei per unit volume
at t=0, and the volume swept out per nucleus in time I would be (4/3)7r(ft)3. Similarly, if the
crystals tends to grow in one dimension, as in a growing rod or fibril, we would find m = 1.

In terms of spontaneous crystallization, the assumption that N nuclei begin to grow simultan-
eously at r: 0 is unrealistic. It corresponds most closely to the case of heterogeneous nucleation,
where a fixed number of nucleation sites are in place at t: 0, but that by itself does not guarantee
simultaneous onset of growth. We can modify the model to allow for random, spontaneous
nucleation, a description more appropriate for homogenous nucleation, by the following argument.
We draw a set of concentric rings in the plane of the disks around point x as shown in Figure
13.30b. If the radii are r and r + dr for the rings, then the area enclosed between them is 211-rdr. We
postulate that spontaneous random nucleation occurs with a frequency of N, having units area-1
time'l. The rate of formation of nuclei within the ring is therefore N211? dr.

We continue to assume that the crystals so nucleated display a constant rate of radial growth 1‘.
This means that it takes a crystal originating in a ring of radius r around point x a time given by 17?
to cross x. The crystal labeled A in Figure 13.30b has had just enough growth time to reach x. On
the other hand, a crystal nucleated in this ring after t — :7? will not have had time to grow to x. The
crystal labeled B in Figure 13.30b is an example of the latter case. It is only nucleation events that
occur up to t— 179, which have time to grow from the ring of radius r and cross point x by their
growth front. The increment in this number of fronts for the ring of radial thickness dr is

(IF = (N27rr dr) (1‘ — E) (13.7.9)

The average number of fronts crossing point x at a time of observation I is the sum of
contributions from all rings, which are within reach of x in time t. The most distant ring included
by this criterion is a distance it from x. The average number of fronts, therefore, is given by
integrating Equation 13.7.9 for all rings between r 2: 0 and r 2 ft:

r":

F = 217A? Jr<t — E) dr (13.7.10)
0

As far as this integration is concerned, 1‘ and r are constants, so Equation 13.7.10 is readily
evaluated to give

__ 1 .F = 377ml? (13.7.11)

As before, this quantity in relation to the degree of crystallinity is given by Equation 13.7.5, so
equating the latter to Equation 13.7.11 gives
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1 .111(1 _¢) =Z3ZN1‘2t3 (13.7.12)

01‘

956 = 1— 941%- ;Nr‘gtz’) (13.7.13)

Equation 13.7.7 and Equation 13.7.13 are analogous, except that the former assumes instantaneous
nucleation at N sites per unit area while the latter assumes a nucleation rate of N per unit area per
unit time. It is the presence of this latter rate that requires the power of t to be increased from 2 to 3
in this case. Again, Equation 13.7.13 is a particular case of the Avrami equation, Equation 13.7.8;
the effect of switching from instantaneous nucleation to a constant nucleation rate is to increase the
value of the Avrami exponent, m, by 1. For instantaneous nucleation, m: 1, 2, or 3, and for a
constant nucleation rate, m = 2, 3, or 4, depending on the dimensionality of the growth process.

To acquire some numerical familiarity with the Avrami function, consider the following
example.

Example 13.4
Three different crystallization systems show m values of 2, 3, or 4. Calculate the value required for
K in each of these systems so that all will show 650 = 0.5 after 103 s. Use these m and K values to
compare the development of crystallinity with time for these three systems.

t in seconds

m=2 m=3 m=4
6, (K=6.93 x 10—7) (K=6.93 x 10—10) (K=6.93 x 10—13)

0.1 3.89 x 102 5.33 x 102 6.24 x 102
0.2 5.67 x 102 6.85 x 102 7.53 x 102
0.3 7.18 x 102 8.02 x 102 8.47 x 102
0.4 8.59 x 102 9.03 x 102 927—102
0.5 1—103 1—103 1 x 103
0.6 1.15 x 103 1.10 x 103 1.07 x 103
0.7 1.32 x 103 1.20 x 103 1.15 x 103
0.8 1.52 X 103 1.32 x 103 1.23 x 103
0.9 1.82 x 103 1.49 x 103 1.35 x 10-"

Solution
Solve Equation 13.7.8 for K and evaluate at t: 103 s for each of the m values: K = [—ln(1 — ¢C)]/
t’". For m = 2, K = (1n 0.5)/(103)2 = 6.93 X 10—7 s—Z; for m = 3, K = 6.93 x 10— ‘0 3—3; for m .—.. 4,
K = 6.93 x 10— ‘3 3—4. Note that the units of K depend on the value of m. Solve Equation 13.7.8 for
t and evaluate at different 6150’s for the m and K values involved.

These three systems describe a set of crystallization curves that cross at 650 = 0.5 and t: 103 s,
as shown in Figure 13.31. For the case where m = 2, the time interval over which the change occurs
is widest (1430 s from 65, = 0.1—0.9) and the maximum slope is smallest (7.8 x 10—4 s—1 between
(15,, = 0.4 and 0.6). For m =4, the range is narrowest (726 s) and the maximum slope is steepest
(1.4 x 10—3).

A further extension to the Avrami equation concerns the rate-determining step of the crystal-
lization process. Equation 13.7.1 and those following it imply that contact between the growing
disk and the surrounding melt for time t is sufficient for crystallization. Another possibility is
that allowance must be made for the diffusion of crystallizable molecules to (or noncrystallizable
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Figure 13.31 Crystallized fraction versus time for the indicated Avrami parameters, as discussed in
Example 13.4.

molecules away from) the growth site. For example, it may be that amorphous molecules
must diffuse out of the crystal domain to allow space for the crystallizing molecules. For a
crystal of radius r, the time required for molecules to diffuse out of this domain can be
determined from Equation 9.5.1 as r: (6Dt)”2. In Equation 13.7.1 this radius is written r = fl.
Thus, if the growth rate is diffusion controlled, these two expressions for r can be equated and
solved for r:

1": (7) (13.7.14)

If this result is substituted into the previous expressions containing r, the effect is to replace f with
(6D)”2 and to multiply those t’s that accompany r by Fm.

This rather complex array of possibilities is summarized in Table 13.5. Table 13.5 lists the
predicted values for the Avrami exponent for the following cases:

1. Growth geometry: 1D (e.g., fibrillar rod), 2D (e.g., disk or sheet), and 3D (e.g., sphere)
2. Nucleation mode: simultaneous (heterogeneous) and sporadic (homogeneous)
3. Rate determination: contact and diffusion

While there are several instances of redundancy among the Avrami exponents arising from
different pictures of the crystallization process, there is also enough variety to make the experi-
mental value of this exponent a valuable way of characterizing the crystallization process. In the
next section we shall examine the experimental side of crystallization kinetics.

13.7.2 Kinetics of Crystallization: Experimental Aspects

In order to carry out an experimental study of the kinetics of crystallization, it is first necessary to
be able to measure the fraction of polymer crystallized, (1%- While this is necessary, it is not
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Table 13.5 Summary of Exponents in the Avrami Equation (Equation 13.7.8) for Different
Crystallization Mechanisms

Avrami exponent Crystal geometry Nucleation mode Rate determination

0.5 Rod Simultaneous Diffusion
1 Rod Simultaneous Contact
1 Disk Simultaneous Diffusion
1.5 Sphere Simultaneous Diffusion
l .5 Rod Sporadic Diffusion
2 Disk Simultaneous Contact
2 Disk Sporadic Diffusion
2 Rod Sporadic Contact
2.5 Sphere Sporadic Diffusion
3 Sphere Simultaneous Contact
3 Disk Sporadic Contact
4 Sphere Sporadic Contact

sufficient; we must also be able to follow changes in the fraction of crystallinity with time. So far
in this chapter we have said nothing about the experimental aspects of determining (be. We shall
now briefly rectify this situation by citing some of the methods for determining (be. It must be
remembered that not all of these techniques will be suitable for kinetic studies.

Since the fractions of crystalline (subscript c) and amorphous (subscript a) polymer account for
the entire sample, it follows that we may measure whichever of the two is easiest to determine, and
obtain the other by difference. Generally, it is some property PC of the crystalline phase that we are
able to monitor. If this property can be measured for a sample that is 100% crystalline (superscript °),
we can compare the value of PC measured on an actual sample (no superscript) to evaluate gbc:

PC= __ 13.7.15

This relationship is sketched in Figure 13.32a, which emphasizes that Pc must vary linearly with
(be, and that Pf; must be available, at least by extrapolation. The heat of fusion is an example of a
property of the crystalline phase that could be used this way. However, it might be difficult to show
that the value of AH? is constant per unit mass at all percentages of crystallinity, and to obtain a
value for AH? for a crystal free from defects. Therefore, while conceptually simple, the actual
utilization of Equation 13.7.15 in precise work may not be straightforward.

Figure 13.32b shows a variation in which a property of the sample (no subscript) is found to
vary linearly with qbc, having a value Pa when (35., = 0 and a value PC when (1)., = 1. The slope of this
line is simply PC —Pa, since the difference of 9150 values is unity for this difference in P. The
equation for the line in Figure 13.32b is

P 2 Pa + ¢C(pc _ pa) (13.7.16)

which can easily be solved for (be as a function of P, Pa, and PC:

P —- Pa= _E 13.7.17a. P. _ P. ( >
Specific volume (or density) is an example of a property that has been extensively used in this way
to evaluate the. If the amorphous component contributes nothing to the measured property (as with
the heat of fusion), then Equation 13.7.17 reduces to Equation 13.7.15.

Figure 13.320 illustrates how x—ray diffraction techniques can be applied to the problem
of evaluating (be. If the intensity of scattered x-rays is monitored as a function of the angle of
diffraction, a result like that shown in Figure 13.320 is obtained. The sharp peak is associated with
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Figure 13.32 Various representations of the properties of mixture of crystalline and amorphous polymer.
(a) The monitored property is characteristic of the crystal and varies linearly with (be. (b) The monitored
property is characteristic of the mixture and varies linearly with (be between Pa and PC. (c) X-ray intensity is
measured with the sharp and broad peaks being PC and Pa, respectively.

the crystalline diffraction, and the broad peak with the amorphous contribution. If the area A under
each of the peaks is measured, then

Ac(be 2—— 13.7.
Ac+Aa ( 18)

An obvious difficulty here arises in deciding the location of the broken-line portions of the peaks in
the region of overlap. Some features of the infrared absorption spectrum may also be analyzed by
the same procedure to yield values for (350.

As noted above, not all techniques that provide information regarding crystallinity are useful to
follow the rate of crystallization. In addition to possessing sufficient sensitivity to monitor small
changes, the method must be rapid and suitable for isothermal regulation, quite possibly over a
range of different temperatures. The Spectrosc0pic techniques of infrared absorption, Raman
scattering, and NMR have all been used successfully for this purpose, as has WAXS with a
synchrotron source. Specific volume measurements are also convenient, and we shall continue
this discussion using specific volume as the experimental method.

Although the extent of crystallinity is the desired quantity, time is the experimental variable.
Accordingly, what is done is to identify the specific volume of a sample at t = 0 (subscript 0) with Va,
the volume at r = 00 (subscript 00) with VC, and the volume at any intermediate time (subscript r)
with the composite volume. On this basis, Equation 13.7.17 becomes

Vt —' V0: __ 13.7.19

and the amorphous fraction becomes
V00 — V,

1 ~ : -—— 13.7.20

Figure 13.33a shows how this quantity varies with time for polyethylene crystallized at a series of
different temperatures. Several aspects of these curves are typical of all polymer crystallizations
and deserve comment:

1. The decrease in amorphous content follows an S-shaped curve. The corresponding curve for
the growth of crystallinity would show a complementary but increasing plot. This aspect of the
Avrami equation was noted in connection with the discussion of Equation 13.7.8.

2. The greater the undercooling, the more rapidly the polymer crystallizes, as discussed in
Section 13.5. Although the data in Figure 13.33 are not extensive enough to show it, this
trend does not continue without limit. As the crystallization temperature is lowered still
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further, the rate of crystallization passes through a maximum and then drops off as Tg is
approached, as illustrated in Figure 13.21.

3. Because bulk samples never become 100% crystalline, there is a potential ambiguity to
quantities like V00; does it refer to 100% crystallinity, a state that is not achievable, or to the
final value that is actually attained? Clearly the value of qbc determined via Equation 13.7.19
will depend on the meaning employed. Depending on circumstances, either interpretation can
be useful, but it is important to be clear as to which one is being used.

4. Replotting the data on a logarithmic timescale has an interesting effect: Figure 13.33b shows
that this modification produces a far more uniform set of S curves. As a matter of fact, if the
various curves are shifted along the horizontal axis, they may be superimposed to produce a
reasonable master curve. By comparing the times corresponding to 50% crystallinity at 120°C
and 130°C, there is a shift of over a factor of 1000. In other words, increasing the undercooling
by 10 degrees increases the rate of crystallization by more than three orders of magnitude.

The preceding example of superpositioning is an illustration of the principle of time—temperature
equivalence, as was discussed extensively in Section 12.5 in connection with the viscoelastic
behavior of polymer samples. The current application differs in that the reason for the strong change
in rate with temperature is the thermodynamic driving force, as well as partly to the reduction in
free volume as Tg is approached, but the basic idea of time—temperature equivalence is the same.

Now let us examine an experimental test of the Avrami equation and the assortment
of predictions from its various forms as summarized in Table 13.5. Figure 13.34 is a plot of
In [ln(1 — (350)—1] versus lnt for poly(ethylene terephthalate) at three different temperatures. This
format is suggested by rearranging Equation 13.7.8, and then taking the natural logarithm twice:

1— (be 2 exp( — Ktm)
ln(1 — qbc) = —Kt’"

1
ln[ln( )] = mlnt+ a (13.7.21)

1— qbc
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Figure 13.33 Fractions of amorphous polyethylene as a function of time for crystallization at the indicated
temperatures, plotted on a (a) linear scale
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Figure 13.33 (continued) (b) logarithmic scale. (Reprinted from Mandelkern, L., Growth and Perfection
0fCrystals, Doremus, R.H., Roberts, B.W., and Tumbull, D. (Eds.), Wiley, New York, 1958. With permission.)

According to Equation 13.7.21, this representation should yield a straight line, the slope of which
corresponds to the Avrami exponent m.

The data in Figure 13.34 show that linearity is indeed obtained and that the slope equals 2 when
the crystallization is carried out at 110°C and changes to 4 at higher temperatures. The melting
point of poly(ethy1ene terephthalate) is 267°C, so that when the undercooling is about 25°C, three-
dimensional growth with sporadic nucleation is suggested. With an undercooling of 150°C, the
mechanism of crystallization is clearly different, although it is not possible to identify the specific
combination of factors responsible for the exponent 2. The values of K in Equation 13.7.21 are best
obtained analytically, once the exponent has been determined graphically. The two K values for the
case where m=4 in Figure 13.34 are 2.94 x 10"7 min"4 at 236°C and 3.13 X 10‘3 min‘4 at
240°C. The mechanism is apparently the same in these two cases, but the rate is more than nine
times faster when the temperature is lowered by only 4°C. Note that it is not possible to resolve K,
which is a cluster of nucleation and growth parameters, into its constituent factors, even when the
value of the exponent identifies the mechanism unambiguously. At both 110°C and 120°C (not
shown), H122 and the values of K are 7.93 x 10"4 and 7.45 x 10"3 min—2, respectively. In this
region the rate is about 10 times slower when the temperature is lowered by 10°C. Thus, both the
value of m and the effect on K of changing temperature are different for these two regimes of
behavior.

The testing of the Avrami equation reveals several additional considerations of note:

1. The multiple use of logarithms in the analysis presented by Figure 13.34 can obscure much of
the deviation between theory and experiment. More stringent tests can be performed by other
numerical methods.

2. Deviations from the Avrami equation are frequently encountered in the long time limit of
the data.
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Figure 13.34 Log—log plot of ln(1-q§c)_1 versus time for poly(ethy1ene terephthalate) at three different
temperatures. (Reprinted from Morgan, L.B., Philos. Trans. R. Soc. London, 247A, 13, 1954. With permission.)

3. Exponents other than integral multiples of one—half are observed. In fact, a method for
determining the Avrami exponent, which is based on graphical differentiation rather than
logarithmic analysis yields instantaneous m values at particular values of (be rather than a
single value averaged over the entire transition. When this method is used, it is found that m
increases initially, before eventually leveling off.

4. These unpredicted Avrami exponents may be indications that multiple mechanisms are
operative or that f or N is itself a function of gbc.

5. In general, one must exercise caution in inferring too much about the crystallization process
from the Avrami analysis alone. This situation is analogous to that touched on in considering
polymerization kinetics in Chapter 2 through Chapter 4, namely that it is dangerous to infer
a polymerization mechanism from the resulting molecular weight distribution alone. Among
the difficulties to bear in mind are the following: different mechanisms can lead to the same
exponent; the nucleation may be due to a combination of heterogeneous and homogenous
processes; each spherulite contains both crystalline and amorphous material; and the relative
proportion may change with time.

13.8 Chapter Summary
In this chapter we have examined many aspects of the fascinating field of polymer crystallization.
The main topics emphasized were the complex structural features of crystalline polymers, the
interplay of thermodynamic and kinetic factors that dictate the structural details, and an introduction
to techniques for the experimental characterization of both structure and crystallization kinetics:

1. At the smallest structural length scale, the unit cell, individual chains form helices to minimize
intramolecular energetic constraints, and the helices pack together to maximize intermolecular
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interactions. Polymer unit cells represent many of the 230 possible space groups, except those
with cubic symmetry, and it is not unusual for a given polymer to exhibit two or more different
polymorphs under different conditions.

2. On intermediate length scales the unit cells are organized into chain-folded lamellae, such that
portions of the individual chain backbones, or stems, lie parallel to each other and approxi-
mately parallel to the thin axis of the lamella. Within an isothermally crystallized sample, the
lamellae are of roughly constant thickness, but the thickness varies from a few tens to a few
hundreds of angstroms, depending on crystallization conditions. Upon exiting the lamellar
surface, a particular chain may execute a tight fold back into the crystal to become an adjacent
stem, or it may wander off to reenter the same crystal at a different site, or even a different
lamella. The prevalence of adjacent reentry is much greater in solution-grown single crystals
than in melt-crystallized materials, and in crystals grown at smaller undercoolings.

3. 0n larger length scales the lamellae grow into spherulites, which may be viewed and
characterized with a polarizing optical microscope. Other morphologies such as dendrites,
hedrites, and shish kebabs can also be observed under particular conditions. A bulk sample
never becomes 100% crystalline, and the lamellae are interspersed with amorphous regions
that can often comprise the majority of the material.

4. Polymer crystals emerge by a process of nucleation and growth. The nucleation may
be heterogeneous, homogeneous, or a combination of both. The barrier to homogeneous
nucleation is dependent on the competition between bulk and surface contributions to the
free energy; in general nucleation is more rapid, and the critical nuclei size smaller, the greater
the undercooling. The growth process at the level of an individual lamella is still not fully
understood, but in many cases the temperature dependence of the growth rate can be inter-
preted via the competition between the rate of addition of a single stem to a growth face and
the rate of adding stems at neighboring sites.

5. The overall evolution of crystallinity often follows the Avrami equation, in which the type of
nucleation, the spatial dimensionality of growth, and the presence or absence of diffusion
limitations interact to yield a particular Avrami exponent. At relatively small undercoolings
the rate of crystallization increases as temperature decreases, but eventually the rate decreases
and vanishes as the approach to the glass transition inhibits any kind of chain or segmental
motion. The overall rate of crystallization is typically independent of molecular weight
for high molecular-weight polymers, but increases with decreasing molecular weight for
shorter chains.

6. A wide variety of experimental tools are useful in the study of polymer crystallization. We
have highlighted the use of electron microscopy to visualize single crystals in exquisite detail,
and the use of x-ray and electron diffraction methods to characterize the unit cell structure.

Problems

1. Illers and Hendus measured the melting points of polyethylene crystals whose thickness was
varied by controlling the conditions of crystallization, and which was measured by x-ray
diffraction. The following results were obtained:T

Tmo(°C) 139.4 137.5 136.0 134.9 131.9 127.9 117.9
E (A) 1750 758 481 392 258 177 100

Prepare a plot of Tm versus 1?", and from the slope and intercept, respectively, evaluate T3?
and y from these data. Compare the values obtained with quantities given in Table 13.3 and
Example 13.3.

"KH. Illers and H. Hendus, Makromot. Chem, 113, 1 (1968).
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There is a general correlation between the nature of the helix and the symmetry of the unit

cell. For example, 3/1 and 6/1 helices often lead to hexagonal or trigonal unit cells. Why is
this? What would you predict for 4/1 helices?
The polymers listed below are all known to form unit cells in whiCh
Use this fact plus the data given to complete the following table:

Number of repeat Density

all of the angles are 90°.

Polymer MD a b C M

Polystyrene 104.1 — — 6.63 18 1.126

Polyisobutene 56,1 6.94 11.96 _ 16 0,937

Poly(vinyl chloride) 62.5 10.11 5.27 5.12 4 —

Nylon 8 — 4.9 4.9 22 2 1-033
Poly(methy1 100.1 21.08 12.17 10.55 —— 1-23

methacrylate)

For polyethylene, make an estimate of how much the molecular weight would need to change

to bring about a 1° change in Tm, all other things being equal. .
For n-alkanes, there is little doubt that the lowest free energy form 0f the OTB/3131 IS the
straight-chain lamella. For high molecular—weight polyethylenes, one could make the same
argument, if the sample were perfectly monodisperse. Criticize or defend the followmg

proposition: for a typical polydisperse sample of linear polyethylene, a chain-folded crystal

could have a lower free energy than a straight-chain crystal, due to the greater entropy 'of
chain end placement and to the avoidance of the need for the lamella thickness to vary w1th

degree of polymerization. . .
Chemical evidence for chain folding in polyethylene crystals is obtained by etching

polymer crystals with fuming nitric acid, which cleaves the chain at the fold
surface.

The resulting chain fragments are separated chromatograhically and their
molecular

weights determined by osmometry. The folded chain is pictured as crossmg through the

crystal, emerging and folding back, then reentering and recrossing the crystal, and 30 011-
According to this picture, the shortest chain showing up in the chromatogrems should
equal the crystal thickness in length. The second shortest chain exceeds tWice this value by

some amount, which measures the length of the loop made by the chain out31de. the crystal.

Molecular weights for the two shortest chains observed in an experiment 0f 11113 3011 were
1260 and 2530. Since the cleaved chains end in nitro and carboxyl groups, 60.5hOUIf1 be
subtracted from each of these molecular weights to give the polyethylene chain weight.

Calculate the degree of polymerization of each molecule and the chain length (use the length

of the unit cell along the chain axis, 2.53 131, as the distance per repeat unit)- Compare the
latter with the crystal thickness determined by x—ray diffraction, 105 A. What does the who

of chain lengths for the first and second peaks suggest about the tightness of folding?

In discussing Figure 13.8 and Figure 13.9, the issue was raised about the accuracy of a linear
Hoffmann—Weeks extrapolation. What conditions should be met for a linear extrapolation to

be valid, and why might they not apply? _
Follow through the analysis of Equation 13.5.7 to obtain Equation 13.5.8 and Equation

13.5.9.
In the context of Figure 13.18 and associated discussion,
nucleation rate would change for 20% change in E away from 3*. . .
Isotactic polypropylene crystallizes in 3/1 helices in a monoclinic unit cell as illustrated 111
Figure 13.7. Individual helices can either be right—handed 0r left—handed; they are ener-

getically degenerate. In this particular polymorph, the helices are paired off. The same

polymer can also be induced to crystallize in a hexagonal unit cell. In this case, how do

estimate by how much the
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13.

14.
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the helices pack? Some possibilities to consider are (a) Three right-handed and three left-
handed helices occupy particular relative positions within the unit cell. (b) The crystalline
packing does not care; right and left are mixed randomly. (c) Only right-handed or left-
handed forms crystallize together; each lamella is pure right or left. Explain your
reasoning.
Consider a polymer that tends to crystallize in needle-shaped crystals, rather than in lamellae.
Assuming the needles have length L and radius R, with R/L << 1, derive the dependence of the
melting temperature Tm on R. Why is the answer the same/different from the dependence of
Tm on the lamella thickness?
The crystallization of poly(ethylene terephthalate) at different temperatures after prior fusion
at 294°C had been observed to follow the Avrami equation with the following parameters
applying at the indicated temperatures?r

T (°C) m K (min)

110 2 3.49 x 10—4
180 3 1.35
240 4 5.05 x 10*8

Calculate the time required for (,bc to reach values of 0.1, 0.2, ..., 0.9 for each of these
situations. Graph qbc versus I using the results calculated at 110°C and 240°C, plotting both in
the same figure. Because of the much larger K at 180°C, the crystallization occurs much more
rapidly at this temperature than at either 110°C or 240°C. Multiply each of the times
calculated at 180°C by the arbitrary constant 60 and plot the data thus shifted on the same
coordinates as the other curves. What generalization appears concerning the relative slopes at
(pa = 0.5?
Poly(ethy1ene terephthalate) was crystallized at 110°C and the densities were measured after
the indicated time of crystallization.i Using density as the property measured to determine
crystallinity, evaluate (1'), as a function of time for these data. By an appropriate graphical
analysis, determine the Avrami exponent (in doing this, ignore values of (150 < 0.15, since
errors get out of hand in this region). Calculate (rather than graphically evaluate) the value of
K consistent with your analysis.

t (min) p (g cm_°) t (min) p (g cm“°)

0 1.3395 35 1.3578
5 1.3400 40 1.3608
10 1.3428 45 1.3625
15 1.3438 50 1.3655
20 1.3443 60 1.3675
25 1.3489 70 1.3685
30 1.3548 80 1.3693

The crystallization rate of isotactic polypropylene (MW 2 181,000, Tm = 172°C) was studied
under various patterns of temperature change.§ Solids were melted at Tf, held at Tf for 1 h,
and then crystallized at TC. The following Avrami exponents were observed:

1LED. Hartley, F.W. Lord, and LB. Morgan, Phil. Trans. R. Soc. London, 247A, 23 (1954).
1A. Keller, G.R. Lester, and LB. Morgan, Phil. Trans. R. Soc. London, 247A, 1 (1954).
§P. Parrini and G. Corrieri, Makromol. Chem, 62, 83 (1963).
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15.

16.

17.

Avrami exponent
Tr (‘0 TC : 150°C T, = 155°C r, = 160°C
190 — 3.1 3.5
210 2.9 3.3 4.1
220 3.1 3.8 —
230 3.1 4.0 —

On the basis of these observations, criticize or defend the following propositions:
1. When both T1: and TC were low, the Avrami exponents are consistent with three-

dimensional growth on contact with sporadic nucleation.
2. The change in m can be interpreted as arising from a change in either the growth

geometry or nucleation situation. That is, the change in m for [Tf and TC low]—> [Tf and
Tc high] could arise from either the change spherical ~+ disk geometry or the change
sporadic —> simultaneous nucleation.

3. Changes in m are consistent with the idea that under some conditions, nuclei from the
original solid survive the period in the melt and nucleate the recrystallization.

Suppose a polymer spherulite grew by wrapping each chain tightly around and around the
surface like a ball of string. What would you expect to see in a polarizing microscope? What
would you expect to see if the chains stretched straight out along the radial direction from the
center?
In understanding the mechanical properties of metals and alloys, crystal defects such as
dislocations play a key role. Although polymer crystals certainly exhibit many analogous
structural defects, such defects play almost no role in discussions of the mechanical proper-
ties of polymer materials. Why is this?
For a crystal that grows in an n—dimensional space, with dimensions R1, ..., Rn along its
various facets, show that the melting temperature Tm always varies as l/Rj, where R}- is the
smallest dimension.
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Appendix

A.1 Series Expansions
Many common functions (such as sin 1:, cos x, ex, 1n (1 + x) - - -) can be represented by power series,
i.e., a sum of terms with increasing powers of the relevant argument x. Such series are useful in
allowing the function itself to be replaced by an algebraically simple approximation appropriate in
some limit (e.g., x—> 0, x—a 1, x—> 00). These series approximations can be looked up in many
handbooks, but they can also often be derived from the McLaurin series. A function f(x) is said to
be analytic if all derivatives (first, second, third,...) exist over the relevant range of x. The
McLaurin series representation of an analytic function f(x) is given by

f(X)=:.—,1(dDg0xi (A11)

where the ith derivative of f(x) is to be evaluated at i: 0, and where 2' factorial is
ilzix (i—1)><(i—-2) >< --->< 1.Bydefinition,0!=1.

As an example, consider ex, and recall that d(e“)/dx = ex. Therefore from Equation A.l.1

1 1 1
ex_

0_! H(0)0_|_1_
“(0)1737?

ex(0)2+_.

1 'x3 + (A.1.2)1
:l+x+ 7x2 +3—2

Series expansions for trigonometric functions can also be readily obtained, recalling that
d(sin x)/dx : cos x, d(cos x)/dx = — sin x, sin 0 2 0, and cos 0 = 1:

1 1 1 , 2sinx——
a

sin(0)x0 +
E

cos (0)x1 —
2!

3111(0)); + . .

1:x__x3+_,5+... (A.1.3)

1 1 1
cosx—

6
COS(0)JCO —

1—
sin(0)x1—

El
cos (0)}:2 +

1 1

The natural logarithm of (1 +x) where |x| < 1 also arises often. Recall that d(ln x)/dx= 1/15, and
that d(x_ ‘)/dx = —— ix — 0 + 1):

1 l 1 1 l
l

16—!1
l 0 — x1 —————2n( +x)= n( +))cO

+1!(1+0)x 2!(1+0)2x
+

__ 12 13

—-X——-2-X +§X
+M(A.15)

Then, when f(x) = (1 +x)" we have

567
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(1+x)" = &(l +0)"c0 +%n(l + OYHJCl +%n(n —1)(1—l—0)"‘21r2 + ' ~

=1+nx+%n(n—l)x2+%n(nw1)(ne2)x3+--- (AM)

These results can be readily extended to related functions, for example by replacing x with —x, ax,
or a complex number 2.

A2 Summation Formulae

These arise in several contexts, especially molecular weight distributions. For example, let x, be the
mole fraction of i-mer in a polycondensation that follows the most probable distribution (Equation
2.4.1),

x.- z (1 —p)p"“ (A.2.1)
where p is the probability that a monomer has reacted. Are we sure that this distribution is
normalized, that is does

00

Zx.=1=(1—p)§jp“‘ ?
i=1i=1

Comparison with the distribution expression therefore requires that

Zpl : —— (A.2.2)
.20 1 —p

(Note an important but subtle point: the mole fraction of i-mer only makes sense for i 2 1, but the
summation above runs from i = O. This is because the sum ofp"-1 starting from i: 1 is the same as
the sum ofpi starting from i: 0, and the solution is easier to obtain in the latter case.) To show that
this is, in fact, correct, consider a slightly different, finite sum:

51=ZP‘=1+p+p2+p3+---+p" (A23)
i=0

If we multiply S] by p and subtract it from S 1, we have a term—by-term cancellation:

51-1951=(1+p+p2+'--+p”)-(p+p2+p3 +-~+p"+‘)
n+1= 1 — P (A.2.4)

and therefore

1 _ n+1

Si : __p_#
1 — p
1:

1—:5
as )2 —> co (and assuming p < 1) (AZ-5)

Of course, for the polymerization case p will always be <1.
To obtain the number average degree of polymerization, we require the related summation

(Equation 2.4.4)

82 : 2 ip"“ (A.2.6)
i=1
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The trick here is to recognize ip'.‘l as the derivative of pi with respect to p, and that the derivative
with respect to p can be taken outside the summation:

52 = Ziéfili") =% ((23,) ‘ 1)
d d 1 1= am ‘ 1) = a (1—4;) =W (”7)

Similarly, on the way to obtaining the weight average degree of polymerization we encountered the
following sum:

53 2 Z izpi—l (A.2.8)

and this can be evaluated using the same “derivative trick”:

-2 t—l - 1 - t—1l P = — I10 = — P 1P
i=1

d
S) d(

p
)=(l—p)2+2(1—P)P:E 2 ‘E (1—1»? (lap):

1+p= (A.2.9)
(1%?)3

A3 Transformation to Spherical Coordinates
In situations where we need to integrate something over all space, and there is no preferred
direction, a transformation to spherical coordinates can be extremely useful. A prime example
occurred in Chapter 6, where we convert the Gaussian distribution function for the end-to—end
vector into the distribution function for the end—to—end distance. Another instance arose in Chapter
8, in considering the form factor for an arbitrary particle.

Suppose we wish to find the integral over all space of some function off(x,y,z):

J00 J00 J00 f(x,y,z)d.xdydz

There are two steps required to transform this integral into spherical coordinates: transform
f(x,y,z) itself, and transform the volume element dx dy dz. These steps are facilitated by the coordinate
axes below.

2 Z rsin¢d9

Figure A.1 Illustration of the transformation from Cartesian to spherical coordinates.
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An arbitrary point (x, y, z) is represented by a distance from the origin, r, an angle away from the
x-axis in the x — y plane, 6, and an angle away from the z-axis, qb: (r, 6,qb). From the figure it can be
seen that

x=rsinqbcos¢9, y=rsia>sin6, z=rcosqb (A.3.1)

These expressions can be substituted directly into f(x, y, z) to obtain f(r, 6, qb). Note also that

x2 + y2 + 22 = r2 (sin2 (M cos2 6 + sin2 9] + 0052 <1?)
2 r2(sin2qb + COS2 (I?) = r2 (A.3.2)

Thus, in the case where f(x, y, 2) can be written asflat2 + y2 + 22), as with the Gaussian distribution,
then f(r, 6, qb) becomes simply f(r).

The volume element dx dy dz is now replaced by a volume element with sides dr, r dqb, and r sin
(,1!) d6, as shown in the figure. For a function such as the Gaussian which is only a function of r, the
integral over all space can be reduced to a single integral:

CO 00 00 00 27f 7r

J J J f(x’y’z)dxdd=J J Jf(r)r23in¢drd6d¢
—oo —oo —o-o 0 O 0

0.0 211' 7r 0'0
=J my? e J singbdd dqb = J for)"2 dr(21r(— coscfllii)

0 0 0 0

2: 411'J f(r)r2 dr (A-3-3)0

A.4 Some Integrals of Gaussian Functions
A common class of integrals that arose for example in Chapter 6 are these:

00

1,, =J x” exp(—ax2) dx (A.4.1)
0

where n is an integer and a is a positive number. The results are quite simple, and can of course
be looked up in any table of integrals, but it is actually instructive to work out the answers. In
so doing, we will utilize the transformation to spherical coordinates just described, as well as
use the two most common methods for simplifying integrals: change of variable and integration
by parts.

The hardest one to do is actually the first, namely 10. All of the higher powers can be reduced
back to this one, as we shall see. We begin by taking [3, and recognizing it can be written as the
product of the same integrals along x, y, and z:

oo 3 00 oo 00
I3 = (L exp(—ax2) dx) 2 (J0 exp(—ax2) dx) (J0 exp(—ay2) (1y) (J0 exp(—azz) dz)

(X) 00 00

= J J J exp(—a[)c2 + y2 + 22]) dxdy dz (Pt-4.2)
0 0 0

=1 J00 J00 J00 exp(——a[12 + y2 + 22]) dxdydz
—OO —00 —00

The last step was allowed because the argument of IO (and 1,, for all even values of n) is an even
function, that is one for whichf(x) =f(—x). The integral of an even function from 0 to 00 is just half
the integral from —00 to 00. Now the integrals extend over all of space, and we make the
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transformation to spherical coordinates r, 6, 9b. This is particularly simple in this case, because the
argument of the integral only depends on r2 =x2 + y2 + 22:

1
0'0 00 00

1
0'0

— J J J exp(—a[x2 + y2 + 22])dx dy dz = §477J r2 exp(——ar2) dr 2 £12 (A.4.3)
08 -00 —oo ——00

So far, this is not looking promising; we only have a simple relation between [a and 12. However,
let us attack 10 directly by integration by parts:

b
Judv=uv

a a

b b_
J v (1,, (A.4.4)

a

where we make the substitutions at = exp(—ax2), v =x, so du : —2ax exp(—ax2) dx and dv : dx:

— J00 (— 2a)x2 exp (— 0x2) dxIO = J exp (— axz) dx = exp(—— (13:32)):
0 00 (A45)

2 0 + 2012

Thus there is another simple relation between 10 and I2. Combining these, we see

77 7713=_1 2&1 A.4.60
2

2
4a

0 ( )

01'

_[”:. __ x/TT
I0_2\/E, 12—4afi

(A.4.7)

Continuing along this simple line, we apply integration by parts to 12, with u = exp(—- 0x2) again

00 X3
12 = J A:2 expo—(11:2) dx = exp(—ax2) ——

but now v=x3/3 (so dv:x2dx):

DO 00 2‘1 4 2— —— x ex (—ax )dx
0 3 0 J0 ( 3)

P

2= 0 + £14
(A.4.8)

In this way, one can arrive at the general formula for even n:

_(n—1)(n—3)~-(1) 77#
2(2a)”/2 3,

even 11 (A.4.9)n

The situation for odd n can be approached by a change of variable, e.g., u 2x2, du := 2x dx:

OO
1

00

11 = J x exp(—ax2)dx = — J exp(—au) du
0 2 o

1 —1 O, 1
=

E
(j) exp(—au)[0 :

i
(AA-10)

and so forth. The general result for odd 1: becomes:

1
Nr—I
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A.5 Complex Numbers
A complex number 2 can always be written as the sum of two parts, referred to as the real part, a,
and the imaginary part, ib:

z:a+w (AiD
where a and b are real numbers and i: \/-1. The rules for addition and subtraction of two
complex numbers are straightforward:

21 :l: 22 = (611 +1b1):l:((12 +1332) = (611 :l: 612) + i(b1 :l: b2) (A52)

Multiplication also follows directly, recalling that i2 = —1:

2122 =(611 + 1190012 + ibz) = ((11612) + i(blaz) + i(611592) * (blbz)
= (61102 — 191192) + i(611192 + blaz) (A-5-3)

Division is a little more complicated, and is helped by introduction of the complex conjugate of a
complex number, 2*, which is obtained by replacing i with ——i:

Z : a1+ib1, 2* = 611 —- ibl (A.5.4)

The product of a complex number and its complex conjugate is always purely real:

22* = 611611 + blbl (A55)

To divide by a complex number, it is helpful to multiply numerator and denominator by the
complex conjugate of the denominator, thereby restricting complex numbers to the numerator
alone:

21 __a1+ib1 _a1+ib1 612—i

22 —ag+ib2 w_Clg +ib2 612—i

_ 01612 + b1b2 + i(b102 — 01b2)# (1102 + b1b2 , blag -— £1l
1 A.5.6

afi+b§ 0134—193 a§+bg ( )

As a complex number is represented by a pair of numbers ((1,1)) it can also be mapped uniquely
onto a point on a Cartesian coordinate system, with horizontal axis reflecting the real part and
the vertical axis representing the imaginary part. Similarly, as the following figure illustrates,
a complex number can be viewed as a vector from the origin, with a length given by A and a
direction specified by the angle 6:

Imaginary axis

b ————————— 4r

‘6

m

___._..._____._.

Real axis

Figure A.2 Illustration of the mapping of complex numbers onto a Cartesian axis system.
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A = 612 + 102
b

tan 6 2
;

(A.5.7)

The standard trigonometric relations apply, such that

a = A cos 6

b = A sin 6 (A.5.8)

and therefore any complex number can be written as

z=Acost9+iAsin6 (A.5.9)

Recall the series expansions of ex, cos x, and sin at given above, and consider the complex
number e”:

ix__ - 1- 2 1- 3e _1+u+i(1x) +3-iax) +...

21—51-31 +4—1x
~~+1(x—ix

+53:
= cosx + isinx (A.5.10)

Thus any complex number can also be written 2 =Aei9. This particular form is extremely useful in
various mathematical operations, for example taking powers and roots:

2” = (Ac-2w)": A” cine (A.5.11)
The product of z and its complex conjugate 2* is easily seen to be A2

22* = (x169) (Ac—i9) = A2 die—i") = A2 (A.5.12)
In this way the product of a complex number and its conjugate is analogous to taking the dot
product of a vector with itself; the result is a real number (scalar), equal to the length squared.
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in chain—growth polymerization, 105—109
constants, 106—108
evaluation of chain transfer constants, 106—108
polymer and, 108—109
reactions, 105—106
suppressing polymerization, 109

Characteristic ratio, in polymer conformations,
223—225

Chemical shifts, 188—189, 192

Index

1,3-Chloroprene, 22
Chromophores, 188—189
Clausius—Mosotti equation, 291
Coexistence curve, in phase behavior of polymer

solutions, 265
Coherent scattering, 292—294
Cohesive energy density (CED), 276
Collagen, 18
Collapsed polymer film, interfacial polymerization

with, 66
Colligative properties, 32
Combination termination, 86—88, 102—104
Comb polymers, 8
Complex modulus, in linear viscoelasticity, 429—430
Complex viscosity, in linear viscoelasticity, 429—430
Compliance concept, in linear viscoelasticity,

421—422, 460
Concentric cylinder viscometers, 345—346
Condensation polymers, 11—14

distribution of product molecules in, 44—46
reactivity and reaction rates, 46—49
step-growth polymers, 43—44

Conditional probability, 184
Cone and plate rheometers, 458—459
Controlled polymerization, 118

anionic polymerization, 126—137
block copolymers, 129—132
branched polymers, 135—137
control radical polymerization, 142—147
dendrimers, 156—160
end-functional polymers, 133—135
Poisson distribution for ideal living

polymerization, 118—122
polymerization equilibrium, 147—150
regular branched architecture, 135—137
ring-Opening polymerization, 150—156, 160

Control radical polymerization, 142-147
atom transfer radical polymerization, 144—145
particular realization of, 144—147
principles of, 142—144
reversible addition-fragmentation transfer

polymerization, 146—147
stable free-radical polymerization, 145

Copolymerization equation, 167, 172
Copolymers, 9

alternating copolymers, 172
block copolymers, 172
composition, 166—170, 185-193
effects of r values, 171—172
effects of variations on sequence distributions,

181—182
equafion,167,l72
feedstock and, 168—169
microstructure of, 179—193
penultimate models, 183—185
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random copolymers, 172
rate laws, 166—168
reactivity ratios, 1704175, 185—186
relation of reactivity ratios to chemical structure,

173—175
resonance and reactivity, 175—179
sequence distributions, 180—183, 1904193
single-site catalysts, 208—211
spectroscopic techniques, 188—190
stereoregularity in, 193—205
terminal models, 183—185
Ziegler—Natta catalysts, 205—207

Coupling agent, 132
Craze in polystyrene, transmission electron

micrograph of, 500
Crazing, in glassy polymers, 498—501
Creep compliance, 425—426
Critical point, in phase behavior of polymer

solutions, 265, 270—271
Crystal classes, 513—514
Crystalline and amorphous polymer mixture,

properties of, 558
Crystalline polymer

behavior of Gibbs free energy, 523—524
bulk crystallization, 551—562
crystal classes in, 513—514
kinetics of, 536—545, 551—562
lamellae, 526—536, 562
levels of structure in, 512
melting temperature to molecular structure

relation, 521—526
morphology, 545—551
nucleation and growth, 536—545, 562
semicrystalline polymers, 545—551
structure and characterization of unit cells in,

513—521
structure and melting of lamellae,

526—536, 562
x-ray diffraction, 515—517

Crystallization
behavior of Gibbs free energy, 523—524
kinetics of, 512—513
thermodynamics of, 512, 521—526

Cycle polymers, 8
Cysteine, 16

Dacron, 14
Debye function, 313
Dehydrohalogenated copolymers, ultraviolet-visible

spectrum of, 1904191
Dendrimers, 8, 156—160
Density fluctuations, 319
Deoxyribonucleic acid (DNA), 18

molecules, 6—7
in T2 bacteriophage, 236
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Diacid and diol esterification, 61—62
1,1—Dialkyl alkenes, 138
Diapers, 411
1,3-Dienes, 138
Diethyl fumarate, 173
Differential refractometer, 320
Differential scanning calorimetry (DSC), 474, 476
Diffusion coefficient, for dilute polymer solutions,

346—354
Dilatometer, 474
Dilatometry, of glass transition temperature,

474—476
Dilute polymer solutions

diffusion coefficient, 346—354
draining, 357—360, 373
dynamic light scattering, 354—357
dynamics of, 327—372
Einstein’s law, 330—334
Fick’s laws, 348—354
friction, 327—330, 373
friction factor, 346—354
hydrodynamic interactions, 357—360, 373
hydrodynamic radius, 347—348
intrinsic viscosity, 334—340
mutual diffusion, 348—354
relaxation time versus molecular

weight in, 443
shear thinning, 329
size exclusion chromatography, 360—372
Stokes’ law, 330—334
tracer diffusion, 347—348
viscosity, 327—330, 341—346, 373
viscosity measurement, 3414346
Zimm model for, 439—444, 461

Disk-shaped crystals, growth of, 552
Disproportionation termination, 86—88, 99—102
2,6-di-tert-butyl—4-methylphenol (butylated

hydroxytoluene), 109
as inhibitor, 109

Ductile material, 498
Ductile polymer, necking in, 501
Dynamic light scattering, 292

in dilute polymer solutions, 354—357
Dynamic mechanical analysis, of glass transition

temperature, 478—479
Dynamic response

in linear viscoelasticity, 426—430
Dynamic scaling, 440

Einstein’s law
and dilute polymer solutions, 330—334
suspension of spheres, 332—334
viscous forces on rigid spheres, 331—332

Elastically effective strands, 403, 408
Elastic deformation, 392—394
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Elasticity
equation of state, 394—396
experiments on real rubber, 397—398
ideal elastomers, 396—397
thermodynamics of, 394—398

Elastic scattering process, 292
Elastomers, 381

equation of state for, 396
ideal elastomers, 396—397

Electromagnetic radiation initiator, 80—81
End strand pullout, in glassy polymers, 502
Engineering stress, 403
Engineering thermoplastics, 491
Entanglement phenomenology

dependence of Me on molecular structure,
447—450

effect, 441
in linear viscoelasticity, 444—450
rubbery plateau, 444—447
spacing, 446
viscoelastic response of polymer melts, 445

Entanglements, role in glassy polymers, 501—504
Enthalpy, 248

Flory—Huggins theory, 257—258
of mixing, 251—254, 257—258
regular solution theory, 251—254

EntrOpy, 248
Boltzmann definition of, 249
longer route mixing, 255—257
of mixing, 249—251, 255—257
quick route mixing, 255
regular solution theory, 249—251

Epoxy formulation, 391
Equation of motion, 330
Equilibrium compliance, 426
Equipartition theorem, of statistical

mechanics, 436
Esterification of

acid chlorides, 61
diacid and diol, 61—62
hydroxycarboxylic acid, 60—62, 64

Ester interchange with alcohol and ester, 61
Ethylene, 138, 148

homopolymerization of, 177
Exchange energy, 252
Extent of reaction (p), 45—47, 51, 55—57, 65, 68

F-actin (fibrillar), 18
Feedstock and copolymers composition, 168—169
Fibrinogen, 18
Picks laws, 348—354
Finemann—Ross plot, 186
First-order order phase transition, 469—471
Flory—Huggins theory, 254—258, 263—264, 284, 334,

412, 414, 472

Index

assumptions, 258
enthalpy of mixing, 257—258
entrOpy of mixing, 255—257
interaction parameter()() and, 276
longer route entropy of mixing, 255—257
osmotic pressure, 263—264
quick route entropy of mixing, 255

Form factor in scattering, 304—3 11
definition, 304
for isotropic solutions, 306—307
mathematical expression, 305—306
as n—rO, 307
scattering regimes and, 312—315

Four-arm star polymers, 8
Fox equation, 494
Free energy of mixing, 258, 268
Freely jointed chain, in polymer conformations,

220—221
Freely rotating chain

angles 0 and (I) for, 221
in polymer conformations, 221—222

Free-radical
combination reactions yielding i-mers and rate

laws, 103
fate during initiation, 81—82
homopolymerization rates, 177
initiation reactions, 80—82
polymerization, 110 (see also Chain-growth

polymerization)
Free volume

changes inferred from viscosity, 481—483
description of glass transition, 479—485
fractional free volume, 483
temperature dependence, 480—481
Williams—Landel—Ferry equation, 483—485

Friction factor, in dilute polymer solutions, 327—330,
346—354, 373

G-actin (globular), 18
Gaussian chain, force to extend in rubber,

400—402
Gaussian network, modulus of rubber elasticity,

403—405
Gaussian strands, network of rubber elasticity,

402—403
Gelation, see Network formation of polymers
Gel filtration chromatography (GFC), 361
Gel fraction, 383
Gel permeation chromatography (GPC), 361
Gel point, 383—385, 388—389, 415
Gel-spun polyethylene, 551
Gels swelling, 410—415

biological tissues, 411
diapers, 411
hot melt adhesives, 410—411
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modulus of swollen rubber, 411
soft contact lenses, 411
swelling equilibrium, 412—414

Geometrical isomerism, 22—24
Gibbs and DiMarzio theory, 472—474
Gibbs free energy, 248
Glass; see also Glass transition; Glassy polymers

definition, 465—466
and melting transitions, 466—468

Glass transition
first—order order phase transition, 469—471
free volume description of, 479—485
Gibbs and DiMarzio theory, 472—474
Kauzmann temperature, 471—472
second—order order phase transition, 469—471
temperature (see Glass transition temperature)
thermodynamic aspects of, 468—477, 504
time-temperature superposition, 486—491

Glass transition temperature, 465
by calorimetry, 476—477
dependence on chemical structure, 491—492
dependence on composition, 492—495
dependence on molecular weight, 492—493
by dilatometry, 474—476
factors affecting, value of, 491—495
measurements, 474—479, 504
and melting temperature, 468
by thermal analysis method, 476

Glassy polymers
basic properties of, 496—498
bond rupture, 502
brittle—to—ductile transition, 498—501
chain extension, 502
chain stiffness role, 501—504
crazing, 498—501
end strand pullout, 502
entanglements role, 501—504
long chain pullout, 502
mechanical properties of, 496—504
mechanical strength of materials,

496—504
molecular separation, 502
responses to increasing strain, 502
short chain pullout, 502
yielding, 498—501

Glutamic acid, 16
Glutamine, 16
Glycine, l6
Glycogen, 15
Glycolic acid polymer, 69
Good solvent

excluded volume and chains in, 280—283
swelling of coil in, 281

Graft distribution patterns, 10
Grafting, 8
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Gyration radii
in polymer conformations, 230—234, 241
for polystyrenes in benzene, 283

Hedrites, 549
Hindered rotation chain, in polymer conformations,

222—223
Histidine, l6
Hoffmann and Lauritzen theory, 543
Hoffmann—Weeks plot, 523
Homopolymerization

of ethylene, 177
of styrene, 177

Homopolymers, 7—11
Hot melt adhesives, 410—411
Hydrogenated (or deuterated) polybutadienes,

diffusion of, 454
Hydroxycarboxylic acid esterification,

60—62, 64
Hyperbranched polymers, 8

Ideal copolymerization, 169
Ideal elastomers, 396—397
Incoherent scattering, 292—294
Inelastic scattering process, 292
Infinite network polymers, 383
Inflection point, in phase behavior of polymer

solutions, 269
Inherent viscosity, 335
Inhibitors, 109
Initiation reactions, 80—81

kinetics of, 82—84
photochemical initiation, 84—85
temperature dependence rates of, 85—86

Initiator decomposition reaction, activation energies
for, 86

Initiator efficiency, definition, 82
Instrument response function, 368
Interaction parameter (x), 252, 275—280

approaches to, 278—280
from experiment, 276—278
Flory—Huggins theory and, 276
from regular solution theory,

275—276, 284
Intrinsic viscosity

of dilute polymer solutions, 334—340
as function of molecular weight, 338
and generation number for polyether

dendrimers, 340
Mark-Houwink equation, 336—340, 373

Isobutylene, 148, 171
Isoleucine, l6
Isoprene, 148
1,3—130prene, 22
IsOprene, polymerization of, 127
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Isotactic
chain, 22
polypropylene, 511

Isotropic liquid, 291

Kauzmann paradox, 472
Kauzmann temperature, 471—472
Keratin, 18
Kevlar, 511
Kinematics viscosity, 345
Kinetic analysis of

chain lengths distribution of, 110
termination, 87

Kinetic chain length, 119, 122
for propagation, 94—96
in propagation, 94—96

Lactone polymerization, 61, 64—65, 67
Lamellae, 511

bright—field operation, 532
crystal growth, 539—545
dark-field operation, 532
dependence of T,n on molecular weight,

530—531
dependence of Tm on thickness, 527—530
experimental characterization of, 532—536
inversion problem, 532
kinetics of nucleation and growth, 536—545, 562
real—space image, 532
reciprocal—space image, 532
shadow casting, 532
structure, 532—536
structure and melting of, 526—536, 562
surface contributions to phase transitions,

526—527
Leucine, l6
Lexan, 14
Light scattering; see also Scattering

calibration, 317—319
detector, 371
experimental aspects, 314—320
instrumentation, 316—317
light waves, 289—291
photometer, 316
by polymer solutions, 289—320
preparation of samples and solutions to study, 319
refractive index increment, 319—320
technique for polymers, 289

Light waves, 2894291
electric field component, 290
incident beam polarization effect for, 297

Linear polymers, 7—11
Linear viscoelasticity, 419—459

additional relaxation processes repetation model,
456—458

Index

basic concepts, 419—423
bead—spring model, 432—439, 461
Boltzmann superposition principle, 430—432
compliance, 421—422, 460
diffusivity reptation model, 451—453
dynamic response, 426—430
entanglement phenomenology, 444—450
experimental rheometry, 458—460
longest relaxation time, 451—45 3
Maxwell and Voigt elements response, 423—430
modulus, 421—422, 460
reduced intrinsic moduli, 442
reptation model, 450—458
Rouse and Zimm versions of, 432—433
Rouse model for unentangled melts,

439—444, 461
stress and strain, 421, 429
transient response, 423—426
viscoelastic properties reptation model, 453—456
viscosity, 421—422, 460
viscous and elastic responses, 422—423
Zimm model for dilute solutions, 439—444, 46]

Linear viscoelastic limit, 422
Living cationic polymerization, 140—142
Living polymerization, 117

definition, 119
kinetic scheme, 119—122
Poisson distribution for, 118—126

London (dispersion) interactions, 275
London forces, 276
Long chain pullout, in glassy polymers, 502
L00p, in network polymers, 383
Loss and storage moduli, 426—429
Lucite, see Poly(methyl methacrylate)
Lysine, 16

Macromolecular surfactants, 130
Maleic anhydride, 173
Maltese cross optical pattern, 546
Mark—Houwink parameters, for polymer-solvent

systems, 336, 338—339
Matrix-assisted laser desorption/ionization (MALDI)

mass spectrometry, 31, 35—38
Maxwell and Voigt elements, linear viscoelasticity of

complex modulus, 429—430
complex viscosity, 429—430
creep compliance, 425—426
dynamic response, 426—430
loss and storage moduli, 426—429
stress relaxation, 423—425
transient response, 423—426

Mean-square fluctuations in polarizability, 299
Mechanical strength of materials, 497
Melting temperature and glass transition

temperature, 468
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Melt viscosity, dependence on molecular weight, 450
Methacrylic acid, 171
Methionine, 17
Methyl acrylate, 88, 173, 175
Methyl acrylate-vinyl chloride system, 187
Methyl methacrylate, 88, 148, 171, 173

acceleration of polymerization rate for, 89
or-Methyl styrene, 148, 171
Methyl vinyl ketone, 17], 173
Micelles, 130
Miktoarm star, 137
Mixing versus composition curves, free

energy of, 268
Molecular separation, in glassy polymers, 502
Molecular size distribution of, in step-growth

polymerization, 55—60
Molecular weight between entanglements, 446, 448
Molecular weight distribution of

addition polymer molecules, 99—104
distribution of i-mers termination by

combination, 102—104
distribution of i-mers termination by

disproportionation, 99—102
Mole fraction, 25

in step-growth polymerization, 56—58
Molten poly(or-methyl styrene)

stress relaxation modulus, 420
viscosity versus molecular weight for, 420

Moments of distribution, 28
Momentum transfer vector, 295
Monodisperse, 26
Monomer-radical combinations

cross-propagation constants values for, 175
substituents effects on reactivity, 176

Monosubstituted ethylene, stereoregularity, 193—205
Mooney—Rivlin equation, 409—4 10
Multifunctional monomers, branching coefficient,

387—388
Mutual diffusion, dilute polymer solutions, 348—354
Mylar, 14

Natural polymers, 13—18
Natural rubber

stress at constant length for, 397
stress for cross-linked, 404
stress versus elongation for, 399
temperature change during adiabatic

extension of, 400
Neoprene, 23
Network formation of polymers

dangling end, 383
definition, 381—383
elements, 381—383
gel fraction, 383
juncuon,381
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loop, 383
by multifunctional monomers, 386-392, 415
by random cross-linking, 381—385
sol fraction, 383

Network materials of polymers, 381
Newtonian fluids, 329, 422
Newton’s law of viscosity, 329
Non-Gaussian force law, 406—407
Non-Newtonian fluid, 422
Nucleation and growth in crystalline polymer

critical nucleus, 538
crystal growth, 539—545
heterogeneous nucleation, 537
homogeneous nucleation, 537
kinetics of, 536-545, 562
primary nucleation, 537—539
saddle point, 539
secondary nucleation process, 540

Number-average molecular weight, 25
Nylon-6, see Poly(a-caprolactam)
Nylon-6,6, 14, 19, 511, 519
Nylon-6,10, 19
Nylon salt f"— nylon equilibrium, 65

Olefin and transition metal, orbital overlaps
between, 206

or-Olefins, 138
Oligomeric polystyrene, viscosity of, 482
Organic peroxides or hydroperoxides initiator, 80—81
Osmotic pressure, 3]

effect of concentration polymer solutions on,
260—261

experimental approach, 259—261
Flory—Huggins theory, 263—264
number average molecular weight, 261—263
operational definition, 259—260
for polystyrene in cyclohexane, 263

Packing length, 446
Partial molar volume, 248
Penultimate models of copolymers, 183—185
Perlon, l4
Persistence length

of flexible chains, 227—228
and semiflexible chains in polymers, 225—230

Phantom network, 408
Phase behavior of polymer solutions, 264—275

binodal curve, 265, 268—269
coexistence curve, 265
critical point, 265, 270—271
inflection point, 269
phase diagram, 265—268
spinodal curve, 265, 269—270
stability limit (see Spinodal curve)
stable, unstable, and metastable states, 269—270
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Phase diagram
finding binodal curve, 265, 268—269
finding critical point, 265, 2704271
finding spinodal curve, 265, 269—270
from Flory—Huggins Theory, 271—275
lower critical solution temperature, 274
for polymer solutions, 265—268
for polymer-solvent system, 273
for polystyrene in acetone, 275
upper critical solution temperature, 274

Phenylalanine, 17
Photochemical initiation, 84—85
Phthalic acid polymerization, 61
Plastic deformation, 498
Plateau modulus, 446, 448
Plate rheometers, 458—459
Plexiglass, see Poly(methyl methacrylate)
Poiseuille equation, 341—345
Poisson distribution for ideal living polymerization,

1184126
requirements for, 126

Poisson’s ratio, 394
Poly( 1 —acetoxyethy1ene), 19
Polyacrylonitrile, 13, 336
Polyactide polymerization, 153—154
Polyamides, 14, 44, 64—67

interchange reactions, 64—65
lactam polymerization, 64—65, 67
reactions for formulation of, 64—65
stoichiometric balance between reactive

groups, 65
Polyamides poly(hexamethy1ene

sebacamide), 19
Poly(amino acid), 44
Poly(6-aminocaproic acid), 19
Poly(y—benzyl-L-glutamate), 226, 229
1,4—Polybutadiene, 224, 277, 291, 336, 446, 468, 484

mechanism for vulcanization with sulfur, 385
Poly(e—caprolactam), 13, 33, 336
Polycarbonate, 14

of bisphenol, 468
stress-strain behavior of, 501

Poly( 1 —chloroethylene), 19
Poly(decamethylene azelamide), 524
Poly(decamethylene azelate), 524
Poly(decamethylene sebacamide), 524
Poly(decamethylene sebacate), 524
Polydienes, cross-linking of, 384
Poly(dimethylsiloxane), 14, 154—155, 224, 277, 291,

336, 446, 468, 484
Polydispersity index (PDI), 26—28
Polyesters, 14, 43

reactions for formulation, 61
step-growth polymerization, 6%
synthesis, 60—62, 64

Index

Polyethylene, 13, 224, 277, 336, 446, 468, 511,
518—519, 524—525, 530, 547

backbone bond conformations for, 218
crystallization rates for, 542
crystals electron micrographs of, 534—536
crystal structure of, 519
dendrite, 550
hedrite, 550
shish kebabs transmission electron micrograph of,

551
trans and gauche arrangements of backbone

bonds, 217—218
Poly(ethylene glycol), 13
Poly(ethylene oxide), 13, 224, 277, 291, 336, 446,

468, 511, 518, 524—525, 547
crystal growth rate for low molecular-weight, 536
polymerization, 152—153

Poly(ethylene terephthalate), 14, 19, 62, 336, 468,
511, 559, 561

Poly(hexamethylene adipamide), 14, 19, 336, 468,
511, 518—520

Poly( 1 —hydroxyethy1ene), 19
Poly(12-hydroxystearic acid), 14
Polyisobutylene, 13, 224, 277, 291, 336,

446, 468, 484
stress relaxation modulus for, 487

Polyis0prene, 128, 277
1,4-PolyiSOprene, 24, 224, 291, 336, 446, 468, 484,

518, 522, 524—525
Poly(4,4—isopropy]idenediphenylene carbonate)

bisphenol, 14
Poly(L-lactide), spherulites of, 546
Polymer conformations

bond rotation, 217—219
characteristic ratio, 223—225
coils, 234—235
conformations, 217—219
distribution about center of mass, 240—241
end-to-end distance and segment density

distributions for, 235—241
end-to-end distance distribution for, 239—240
end—to—end distance for model chains in, 219—223
end-to—end vector distribution for, 236—239
freely jointed chain, 220—221
freely rotating chain, 221—222
hindered rotation chain, 222—223
model chains in, 219—223
radius of gyration, 230—234, 241
random coil, 217—218
rods, 234—235
segment density distributions for, 235—241
self-avoiding chains, 241—242
semiflexible chains and persistence length,

225—230
size, 217—219
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spheres, 234—235
statistical segment length, 223—225
trans and gauche arrangements of backbone

bonds, 217—218
worm—like chain, 226, 228—230

Polymer glass, see Glassy polymers
Polymer radicals, initiation of, 83—84
Polymer solutions

draining, 357—360, 373
hydrodynamic interactions, 357—360, 373
hydrodynamic radius, 347—348
hydrodynamic volume, 335

Polymerization
chain—growth, 105—109
free-radical, 110
macroinitiators for, 131
preparation, 131
suppressing of, 109

1,2—Polymerizations, 23
1,4—Polymerizations, 23
3,4—Polymerizations, 23
Polymerization with multifunctional monomers,

386—392, 415
branching coefficient calculation, 387—388
gel point, 388—389
molecular-weight averages, 389—392
reaction schemes for monomer mixtures,

386—387
Polymers

addition, 11—14
alternating distribution patterns, 10
architectures, 8
block distribution patterns, 10, 129—135
branched, 7—9, 129—135
chain-growth, 77—1 10
chain transfer to, 108—109
changes in specific volume with temperature, 467
characteristic ratio, 224
classes of crystals, 513—514
comb, 8
condensation, 11—14, 43—46
copolymers, 9, 165—211
crystal, representation of, 528
crystalline, 511—561
crystal structure, 511, 513—5 14
cycle, 8
degree of polymerization, 3—4
dendrimers, 8, 155—156
end group analysis, 32—34
four-arm star polymers, 8
geometrical isomerism, 22—24
graft distribution patterns, 10
grafting, 8
homopolymers, 7—11
hyperbranched, 8
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linear, 7—11
molecular weight, 3—4
molecular weight measurement, 31—37
molecular weights and molecular weight

averages, 24—31
natural, 13—18
nomenclature, 18—19
number weight z—average molecular weights,

25—26
positional isomerism, 20
radicals initiation of, 83—84, 142—147
random distribution patterns, 10
refractive indices of, 291
semiflexible chains and persistence length

in, 225—230
significance, 1—2
spatial extent, 5—7
statistical distribution patterns, 10
step—growth, 43—71
stereo isomerism, 21—22
stress-strain curves for, 497
structural isomerism, 20—24
structure and characterization of unit cells,

513—521
synthetic, 19
terpolymer, 9
unit cells, 511, 513—521
weight, 25—26
worm-like chain, 226, 228—230
z—average molecular weights, 25—26

Polymer solutions
enthalpy of mixing, 251—254, 257—258
entropy of mixing, 249—251, 255—257
excluded volume and chains in good solvent,

280—283
Flory—Huggins theory, 254—258, 263—264, 284
interaction parameter (x), 252, 275—280
light scattering (see Light scattering)
osmotic pressure, 258—264
phase behavior of, 264—275
phase diagram, 265—268
regular solution theory, 249—254
thermodynamics, 247—249, 283

Polymer-solvent systems, Mark—Houwink
parameters for, 336

Polymers viscoelasticity, see Linear viscoelasticity
Poly(methy1 methacrylate), 13, 224, 277, 291, 336,

446, 468, 484, 511
stress-strain response for, 499

Polymorphism, 519
Poly(n—hexyl isocyanate), 226, 229

radius of gyration versus molecular weight
for, 234

Poly(oxy—2,6-dimethyl- l ,4—phenylene), 468
Poly(oxyethylene oxyterphthaloyl), 19
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Polypeptides, 15
Poly(p-phenylene), 225—226, 229
Poly(p-phenylene terephthalamide), 226, 229, 468,

511, 523
Polypropylene, 224, 336, 468, 511, 518, 521

l3C-NMR assignments for, 204
isospecific polymerization mechanism of, 210

Polystyrene, 13, 127, 224, 277, 291, 336, 446,
468, 484

Poly(tetrafluoroethylene), 13, 277, 291, 468, 511,
518—520

Poly(tetramethylenehexamethylene urethane), 14
Poly(tetramethyl-p-phenylene siloxane), crystals

growth rates of, 544
Polyurethane, 14
Poly(vinyl acetate), 19, 224, 277 , 291, 336, 468, 484
Poly(vinyl alcohol), 19, 336, 468, 511, 518, 520
Poly(vinyl chloride), 13, 19, 277, 336, 468, 547
Poly(vinyl fluoride), 511, 518, 520
Positional isomerism, 20
Principle of time-temperature superposition, in

rheometry, 460
Proline, 17
Propagation

activation energies for, 92
in chain-growth polymerization, 78, 90—96
kinetic chain length, 94—96
rate laws for, 91-92
temperature dependence of rates of, 92—93

Propylene, 148
Protein molecules, structure in, 17—18

Quasielastic scattering process, 292

Radiation pressure, 295
Radical lifetime, in chain-growth polymerization,

96—98
Radius of gyration, in polymer conformations,

230—234, 241
Raman scattering, 292
Random coil, in polymer conformations, 217—218
Random copolymers, 172
Random cross—linking, network formation by,

381—385
Random fluctuations, 293
Rate constant, 46
Rate laws for

c0polymers, 166—168
propagation, 91—92

Rayleigh ratio, 302
Reactivity and reaction rates, in condensation

polymers, 46—49
Reactivity ratios

for copolymers, 170—175, 185—186
effects of r values, 171—172

Index

evaluation from composition data, 185—186
relation to chemical structure, 173—175

Real rubber, elasticity experiments on, 397—398
Reciprocal lattice vector, 295
Recoverable compliance, 426
Redox initiator systems, 80—81
Reduced viscosity, 335
Refractive index increment, 300

in light scattering, 319—320
Refractive indices, of polymers and solvents, 291
Regular solution theory, 249—254

enthalpy of mixing, 251—254
entropy of mixing, 249—251
interaction parameter (x), 275—276, 284
phase diagram, 266
predictions of, 267

Relative viscosity, 335
Relaxation processes reptation model in linear

viscoelasticity, 456—458
constraint release process in, 456
contour length fluctuations in, 456

Reptation model in linear viscoelasticity, 450—458
additional relaxation processes, 456—458
longest relaxation time and diffusivity, 451—453
viscoelastic properties, 453—456

Resonance
and reactivity in copolymers, 175—179
stabilization energies, 177

Retarders, 109
Reversible addition-fragmentation transfer

polymerization, 146—147
Rheometry

cone and plate rheometers, 458—459
experimental aspects, 458—460
plate rheometers, 458—459
principle of time-temperature superposition, 460
shear sandwich rheometers, 458—459

Ribonucleic acid (RNA), 18
RI detector, 369—370
Rigid spheres, viscous forces on, 331—332
Ring-opening metathesis polymerization, 155—156
Ring-opening polymerization, 12

controlled polymerization, 150—156, 160
polyactide polymerization, 153—154
poly(dimethylsiloxane) polymerization, 154—155
poly(ethyleneoxide) polymerization, 152—153
ring-opening metathesis polymerization, 155—156

Rouse model for unentangled melts, 439—444, 46]
Rubber, 383
Rubber elasticity

deveIOpments in, 406—410
experiments on, 397—398
force to extend Gaussian chain, 400—402
front factor, 407—408
modulus of Gaussian network, 403—405
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Mooney plot for, 410
Mooney-Rivlin equation, 409—410
network defects, 408—409
network of Gaussian strands, 402—403
non—Gaussian force law, 406—407
statistical mechanical theory, 398—405, 415

Rubbery plateau, 444—447

Scattering; see also Light scattering
basic concepts of, 291—296, 320
Bragg’s Law and, 29-3.1294
coherent scattering, 293—294
from dilute polymer solution, 298—303
form factor, 304—311
incoherent scattering, 293—294
by isolated small molecule, 296—298
from perfect crystal, 292—293
from perfectly homogeneous material, 292
from randomly placed objects, 292
regimes and particular form factors, 312—315
structure factor, 305
vector, 294—296
vector length, 295
volume, 299, 318
Zimm equation, 304, 307—308
Zimm plot, 308—311

Schizophyllan, 229
Schotten—Baumann reaction, 61
Schulz—Zimm distribution, 30—31
Second—order order phase transition, 469—471
Segment density distributions, for polymer

conformations, 235—241
Self-avoiding chains, in polymer conformations,

241—242
Semicrystalline polymers

dendritic structures, 549
diffusion limited aggregation, 549
Maltese cross pattern, 546—547
melt, 513
morphology of, 545—551
nonspherulitic morphologies, 548—551
spherulites, 545—548

Semiflexible chains and persistence length
in polymers, 225—230
worm—like chain, 226, 228—230

Semiflexible polymers, persistence lengths values
for, 229

Sequence distributions
in 00polymers, 180—183, 190—191
experimental determination, 190—193

Serine, 17
Shear rate, 421
Shear sandwich rheometers, 458—459
Shear thinning, in dilute polymer solutions, 329
Short chain pullout, in glassy polymers, 502
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Simple shear, 421
Single-site catalysts, 208—211

metallocene systems, 209
Size exclusion chromatography (SEC), 31

basic separation process, 361—365, 373
calibration curve for, 362
chromatogram, 363—364
detectors, 369—372
in dilute polymer solutions, 360—372
light scattering detector, 371
limitations of calibration by standards, 367—368
for molecular weight determination, 362
RI detector, 369—370
separation mechanism, 365—367
two calibration strategies, 367—369
universal calibration, 368—369
UV-vis detector, 370—371
viscometer, 372

Soft contact lenses, 411
Solubility parameter (8), 276

for common polymers and solvents, 277
Solubility value, for common polymers

and solvents, 277
Solvents, refractive indices of, 291
Space group, 514
Spandex,l4
Specific viscosity, 335
Spheres, suspension of, 332—334
Spherulites, 545—548

leading edge of lathlike crystal within, 547
of poly(L-lactide), 546
of poly(l—propylene oxide), 549
y-polarized light incident on, 548

Spinodal curve, in phase behavior of polymer
solutions, 265, 269—270

Spinodal decomposition, 269
Split cell prism based refractometer, 320
Square-law detectors, 290
Stable free-radical polymerization, 145
Stationary—state radical concentration termination, 89
Statistical mechanical theory, of rubber elasticity,

398—405, 415
Statistical mechanics, equipartition theorem of, 436
Statistical segment length, in polymer

conformations, 223—225
Statistical thermodynamic concepts, 247—249, 283
Steady—state compliance, 426
Step-growth polymerization, 44

catalyzed step—growth reactions, 50—52, 56
and chain—growth polymerization, 77—79, 110
condensation polymers, 43—49
distribution of molecular sizes, 55—60
experimental vs. theoritical data, 52—53
kinetics of, 49—55
mole fractions, 56—58
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polyamides, 64—67
polyesters, 60—64
stoichiometric imbalance, 67—70
uncatalyzed step-growth reactions, 53—56
weight fractions of species, 58—60

Step—growth polymers, classes of, 43—44
Stereoblock copolymer, 211
Stereocontrol, role of catalyst symmetry in, 209
Stereo isomerism, 21-22
Stereoregular homopolymers, 194
Stereoregularity

assessment by NMR, 200—205
characteristics, 193—196
in copolymers, 193—205
splitting of meso and racemic dyads, 197—198
statistical description of, 196—200
system of notation, 196—197

Stokes—Einstein—Debye equation, 440
Stokes—Einstein relation, 348
Stokes’ law

and dilute polymer solutions, 330—334
suspension of spheres, 332-334
viscous forces on rigid spheres, 331—332

Strain, 421, 429
Strain rate, 421, 429
Strand, in network polymers, 381
Stress, 421, 429

relaxation, 423—425
relaxation modulus, 419—420

Structural isomerism, 20—24
Styrene, 88, 138, 148, 171, 173, 175, 177

butadiene rubber (SBR), 23
homopolymerization of, 177
vinyl acetate system, 178

Suspension of spheres, 332—334
Swelling equilibrium, 412—414
Swelling of gels, 410—415

modulus of swollen rubber, 411
swelling equilibrium, 412—414

Swollen rubber, modulus of, 411
Syndiotactic chain, 22
Syndiotactic polypropylene, 511
Synthetic polymers, 19

Teflon, 511, 519; see also Poly(tetrafluoroethylene)
Telechelic polymers, 133
Temperature dependence of rates, of propagation,

92—93
Terminal control mechanism, 166
Terminal models for copolymers, 183—185
Termination

activation energies for, 88
in chain-growth polymerization, 78, 86—90
by combination, 86—88, 102—104
by disproportionation, 86—88, 99—102

Index

effect on conversion to polymer, 88—89
kinetic analysis of, 87
stationary—state radical concentration, 89

Terpolymer, 9
Terylene, l4
Tetrafluoroethylene, 148
Thermal analysis, of glass transition

temperature, 476
Thermodynamic concepts, 247—249, 283
Thermodynamic of glass transition, 468—477, 504

first-order order phase transition, 469—471
Gibbs and DiMarzio theory, 472—474
Kauzmann temperature, 471—472
second-order order phase transition, 469—471

Thermodynamics
of crystallization, 521—526
of elasticity, 394—398

Thermoplastics, 491
elastomers, 131
mechanical properties for, 498

Thermosets, 381
Thompson—Gibbs equation, 529
Three-arm star polymers, atomic force microscopy

images of, 6—7
Threonine, 17
Time-temperature superposition (TTS)

of dynamic moduli for polyisoprene, 490
for glass transition, 486—491
shift factor, 486

Tracer diffusion, 347—348
Transition metal and olefin, orbital overlaps

between, 206
Trapped entanglement, 408
Trommsdorff effect, 88, 90
True stress, 403
Tryptophan, 17
Tyrosine, 17

Uncatalyzed step—growth reactions, 53—-56
Unentangled melts, Rouse model for, 439—444, 461
Unit cells

constraints on, 514
parameters, 518
in polymers, 511, 513—521
space group, 514
structure and characterization of, 513—521
x—ray diffraction, 515—517

UV-vis detector, 370—371

Valine, 17
Vinyl, see Poly(vinyl chloride)
Vinyl acetate, 88, 148, 171, 173, 177
Vinyl chloride, 171, 173, 175
Vinylidene chloride, 171, 173
Vinyl monomer (CH2 2 CHX), polymerization of, 12
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2-Vinyl pyridine, 88, 171
Viscoelastic liquids, 419
Viscoelastic properties reptation model, in linear

viscoelasticity, 453—456
Viscoelastic solid, 426
Viscometer, 372
Viscosity

average molecular weight, 337
definition, 421—422, 460
in dilute polymer solutions, 327—330, 373
measurement, 341—346
and molecular weight for molten poly(0t-methyl

styrene), 420
Viscosity measurement

capillary viscometers, 341—345
concentric cylinder viscometers, 345—346
of dilute polymer solutions, 341—346
Poiseuille equation, 341—345

Viscous forces on rigid spheres, 331—332
Viscous heating, 330
Vogel—Fulcher—Tammann—Hesse (VFTH) equation,

483—484
representative values of parameters for, 484

Vogel temperature, 483
Vulcanization, 384—385

mechanism for, 385

Weight—average molecular weight, 26
Weight fraction, 25
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Weight fractions of species, in step-growth
polymerization, 58—60

Williams—Landel—Ferry (WLF) equation, 483—485
representative values of parameters for, 484

Xanthan, 229
X-ray diffraction

structure of unit cells, 515—517
diffraction patterns on area detector,

5 15—5 16

Yielding, in glassy polymers, 498—501
Yield point, 498
Young’s modulus, 394

z-average molecular weights, 25—26
Zero-order Bernoulli statistics, 199
Zero-order Markov statistics, 199
Zero shear viscosity, 329
Ziegler—Natta catalysts, 205—207

bimetallic mechanism, 207
catalyst solubility, 206
crystal structure of solids, 206
monometallic mechanism, 207
rate of polymerization, 206
tacticity of products, 206

Zimm equation, for scattering, 304, 307—308
Zimm model for dilute solutions, 439—444, 461
Zimm plot, for scattering, 308—311
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Chemistry

Written by well-established professors in the field, Polymer Chemistry,
Second Edition provides a well—rounded and articulate examination of
polymer properties at the molecular level. it focuses on fundamental
principles based on underlying chemical structures, polymer synthesis,
characterization, and properties.

Consistent with the previous edition, the authors emphasize the logical
progression of concepts, rather than presenting just a catalog of facts.
The book covers topics that appear prominently in current polymer
science journals. It also provides mathematical tools as needed and
fully derived problems for advanced calculations. This new edition
integrates ’new theories and experiments made possible by advances in
instrumentation. It adds new chapters on controlled polymerization and
chain conformations, while expanding and updating material on topics
such as catalysis and synthesis, viscoelasticity, rubber elasticity, glass
transition, crystallization, solution properties, thermodynamics, and light
scattering.

Features:
t Covers topics closest to what the authors use in their own courses
- Builds upon principles taught in undergraduate chemistry courses,

particularly organic and physical chemistry
- Integrates concepts from physics, biology, materials science,

chemical engineering, and statistics as needed
0 Incorporates new theories and experiments using the latest tools

and instrumentation
0 Contains mathematical tools and step-by-step derivations for

example problems

Polymer Chemistry, Second Edition offers a logical presentation of
topics that can be scaled to meet the needs of introductory as well as
more advanced courses in chemistry, materials science, and chemical
engineering.
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