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1	 Introduction 
to Rheology

On December 9th of 1929, a little over a month after the Wall Street crash, and 
seven years after he published his book Fluidity and Plasticity [1], Eugene Bingham 
(Fig. 1.1), a chemistry professor at Lafayette College in Easton, Pennsylvania, and 
a group of chemists, engineers, and physicists met for the first time in Washington 
D.C.; they called themselves the Society of Rheology. Hence, for the first time the 
word rheology, coined by Markus Reiner and Eugene Bingham in 1920, was offi-
cially used1.

Figure 1.1  
Professor Eugene Bingham, in 1945 shortly 
before his death (Courtesy of Special 
Collections & College Archives, Skillman 
Library, Lafayette College)

1	 The roots of the word rheology are the Greek “reo” (flow) and “logos” (study).



2 1 Introduction to Rheology

However, the history of the field of rheology goes back centuries prior to Bingham 
and Reiner. A historical review is not complete until the more important events and 
discoveries through time, and the people who made those events and discoveries 
possible, have been identified. In Table 1.1 we list these events, discoveries, and 
important publications. If we inadvertently left out some, we apologize.

Table 1.1 �Historical overview of the field of rheology

When Who What Ref
1663 B. Pascal Published works on inviscid fluids  [2]

1678 R. Hooke Published work on elastic springs  [3]

1687 I. S. Newton Published work on viscous fluids  [4]

1705 Bernoulli brothers Publish the Bernoulli equation  [5]

1807 T. Young Proposes the elastic (Young’s) modulus  [6]

1820 C. Navier Describes behavior of Newtonian fluids which eventually 
becomes the Navier-Stokes equation

 [7]

1822 A. Cauchy Describes stress and strain and formulates the Cauchy 
deformation tensor

 [7]

1829 S. Poisson Describes Poisson’s ratio,   [8]

1839 G. Hagen Builds the first capillary viscometer  [9]

1840 J. L. M. Poiseuille Studies the rheology of blood and builds a capillary viscometer [10]

1845 G. G. Stokes Formulates a three dimensional Newtonian fluid model [11]

1849 G. G. Stokes Studies the parabolic velocity distribution in a capillary  [5]

1851 G. G. Stokes Sphere fall experiments [12]

1859 A. V. Lourenço Observes viscosity increase with an increase in molecular weight [13]

1861 A. Lipowitz Builds a penetrometer to measure the hardness of a gel with a 
sinking weight

[14]

1861 T. Graham Coins the word “Colloid” [15]

1867 J. C. Maxwell Formulates the viscoelastic Maxwell model [16]

1873 J. D. Van der Waals Publishes work on intramolecular forces [17]

1874 L. Boltzmann Publishes the superposition principle [18]

1876 L. Boltzmann Publishes work on the memory function [19]

1881 M. Margules Derives equations that describe the viscosity in the shear flow 
between two concentric cylinders

[20]

1886 M. M. Couette Derives equations that describe the viscosity in the shear flow 
between two concentric cylinders

[21]

1888 M. M. Couette Builds the first concentric cylinder system to measure viscosity; 
the drag flow viscometer or the Couette device

[22]

1890 W. Thomson-Kelvin Describes a “solid viscosity”, meaning a viscoelastic solid, 
known today as the Kelvin model

 [5]

1890 W. Voigt Publishes experiments on viscoelastic solids [23]

1891 W. Ostwald Builds a capillary viscometer, Ostwald viscosimeter [14]
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When Who What Ref
1894 J. Finger Formulates the Finger-Strain Tensor for shear and elongational 

deformation test specimens
[24]

1905 F. T. Trouton Derives the equation E = 3 mS, which describes the relation 
between elongational and shear viscosities, known today as 
the Trouton viscosity

[25]

1906 A. Einstein Derives the equation ( )  = +0 1 2.5 , which defines the 
viscosity of a suspension as a function of the volume fraction 
of solid particles

[26]

1916 E. Bingham Describes fluids with a yield stress; the Bingham fluid [27]

1920 H. Staudinger Describes polymers as rigid rods that he calls macromolecules [28]

1922 E. Bingham Publishes his book “Fluidity and Plasticity” [29]

1923 A. de Waele Derives a power relation between viscosity and rate of 
deformation; the power-law model.

[30]

1925 W. Ostwald Two years after de Waele, derives the power relation between 
viscosity and rate of deformation; the power-law model or the 
Ostwald-de Waele model

[31]

1927 S. B. Ellis Publishes work on flow behavior  [5]

1928 E. Hatschek Publishes his book “The Viscosity of Liquids” [32]

1929 E. Bingham Founds the Society of Rheology [33]

1929 R. Eisenschitz, 
B. Rabinowitsch 
and K. Weissenberg

Propose the rheological energy triangle [34]

1929 B. Rabinowitsch Derives a correction factor for the shear rate of non-Newtonian 
fluids in capillary viscometers

[35]

1929 H. Jeffreys Publishes his book “The Earth”, in which he describes 
“elastoviscous” (viscoelastic fluids) materials

[36]

1930 C. W. Brabender Builds a dough kneader; Farinograph or Extensograph [14]

1931 A. Nadai Publishes his book “Plasticity” [37]

1934 M. Mooney Proposes a “shearing disc viscometer” or parallel disc viscometer [38]

1934 M. Mooney and 
R. H. Ewart

For the first time use a cone-and-plate rheometer [39]

1935 H. Freundlich Coins the word “Thixotropy” to describe changes in fluid 
behavior caused by movement

[40]

1935 J. M. Burgers Develops a viscoelastic model by combining the Maxwell and 
the Kelvin-Voigt models

[41]

1936 E. Guth and 
R. Simha

Modify Einstein’s 1906 equation to ( )2
0 1 2.5 14.1     = + +  

for the viscosity of a suspension
[42]

1938 G. W. S. Blair Publishes his book “An Introduction to Industrial Rheology”, for 
the first time using the word “rheology” in the title of a book

[43]

1940 M. Mooney Publishes work on rubber elasticity [44]

1945 M. Reiner Proposes that the theories of fluid viscosity also apply to 
polymer melts

[45]

1 Introduction to Rheology

Table 1.1 �(continued) �Historical overview of the field of rheology
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When Who What Ref
1945 Brookfield 

Company
First Brookfield rotational viscometer is marketed in Stoughton, 
Massachusetts

[46]

1946 M. S. Green and 
A. V. Tobolsky

Propose the Transient Network Model for uncross-linked polymers [47]

1946 R. J. Russell Measures normal stresses using parallel disc and cone-and-plate 
rheometers

[48]

1947 K. Weissenberg Discovers the rod climbing effect, today known as the 
Weissenberg Effect

[49]

1948 R. S. Rivlin Applies theories of fluid viscosity to polymer melts [50]

1948 G. W. S. Blair First International Congress on Rheology [51]

1953 P. E. J. Rouse Proposes a bead-spring model for cross-linked polymers; 
known as the Rouse model

[52]

1955 M. L. Williams, 
R. F. Landel and 
J. D. Ferry

Propose the time-temperature superposition principle [53]

1955 Haake Company Rotational viscometer is marketed in Berlin and Karlsruhe, 
Germany

[46]

1956 B. H. Zimm Includes hydrodynamic interactions in the Rouse model for 
dilute polymeric suspensions: Rouse-Zimm model.

[54]

1956 A. Lodge Expands the Transient Network Model by Green and Tobolsky [55]

1956 F. R. Eyrich Publishes his book “Rheology – Theory and Applications” [56]

1957 E. B. Bagley Derives the entrance pressure corrections for capillary 
viscometers, known today as Bagley end correction factor

[57]

1958 W. P. Cox and 
E. H. Merz

Propose a relation between frequency in the oscillatory 
test and rate of deformation in the rotational viscometer 
(Cox‑Mertz relation)

[58]

1960 R. B. Bird, 
W. E. Stewart and 
E. Lightfoot

Publish their book “Transport Phenomena”, nicknamed “BSL” [59]

1960 A. S. Lodge Publishes his book “Elastic Liquids” [60]

1960 M. Reiner Publishes his book” Deformation, Strain and Flow” [61]

1962 A. Kaye Develops the integral viscoelastic model that later became 
known as the K-BKZ model

[62]

1963 B. Bernstein, 
E. Kearsley and 
L. Zapas

Develop the integral viscoelastic model that Kaye published 
2 years earlier. The model became known as the K-BKZ model

[63]

1965 M. M. Cross Proposes the Cross model for shear-thinning fluids with a small 
shear rate Newtonian plateau

[64]

1966 H. Giesekus Develops the differential viscoelastic model that became 
known as the Giesekus model

[65]

1967 S. F. Edwards Proposes Entanglement Theory for polymers [66]

1968 P. J. Carreau Proposes a viscosity model with a small and large shear rate 
Newtonian plateau; Bird-Carreau Model

[67]

Table 1.1 �(continued) �Historical overview of the field of rheology
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When Who What Ref
1969 J. Meissner Designs the uniaxial elongational rheometer [68]

1971 P. G. DeGennes Proposes the Reptation Model for polymer molecules [69]

1977 R. B. Bird, 
R. C. Armstrong 
and O. Hassager

Publish their book “Dynamics of Polymeric Liquids” [70]

1977 R. B. Bird, 
O. Hassager, 
R. C. Armstrong 
and C. F. Curtis

Publish their book “Kinetic Theory” [71]

1982 J. M. Dealy Publishes his book “Rheometers for Molten Plastics” [72]

1985 R. B. Bird and 
H. Giesekus

Develop model for non-linear deformation behavior [46]

1986 M. Doi and 
S. F. Edwards

Further develop the Reptation model [73]

1990 J. M. Dealy and 
K. F. Wissbrun

Publish their book “Melt Rheology and Its Role in Plastics 
Processing”

[74]

1994 C. W. Macosko Publishes his book “Rheology: Principles, Measurements and 
Applications”

[75]

1997 P. J. Carreau, 
D. C. R. DeKee and 
R. P. Chhabra

Publish their book “Rheology of Polymeric Systems – Principles 
and Applications”

[76]

■■ 1.1 �The Field of Rheology

While the motto of the Society of Rheology has always been the quote by Simplicius 
and Heraclitus “Πάντα ῥεῖ” (Panta rei) [77–81] or “everything flows,” the field of 
rheology covers the behavior of perfectly viscous liquid (Newtonian fluid) materials 
and perfectly elastic solid (Hookean solid) materials, as depicted in the diagram in 
Fig. 1.2. From the outside, rheology is framed by the rigid solid, or Euclidean solid, 
and the ideal inviscid fluid, or Pascalian fluid. The Euclidean solid and Pascalian fluid 
are both mathematical idealizations. In the case of the Euclidean solid we assume 
that the body does not deform, and when it moves, it does so by pure translation 
and rotation. On the other hand, the assumption for the Pascalian fluid is that the 
stresses acting on the fluid are only a result of pressure, or hydrostatic stresses, 
and not the result of deformation during flow. From a material behavior point of 
view, a Euclidean solid has an infinite modulus, while a Pascalian fluid exhibits zero 
viscosity, two unrealistic extremes.

Table 1.1 �(continued) �Historical overview of the field of rheology
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Solid

Rigid solid
(Euclidean solid)

Deformable solid

Elastic solid
(Hookean solid)

Non-linear solid

Fluid

Rheology

Ideal fluid
(Pascalian fluid)

Viscous fluid

Classic fluid
(Newtonian fluid)

Non-Newtonian
fluid

Figure 1.2 �The field of rheology in perspective

While the field of rheology encompasses materials with a finite modulus and a mea-
surable viscosity, most materials are neither perfectly viscous liquids nor perfectly 
elastic solids, but viscoelastic materials that can be described from a fluids or a solids 
point of view by a rheologist or a solid mechanician, respectively. Either way, when 
deforming complex materials such as polymers, there will always be a viscous and 
an elastic force component. To simplify our lives and make calculations and predic-
tions possible, particularly when the flow geometry is complex, such as plastic flow 
during injection molding, we often drop the elastic response of plastics during flow.

In 1929, Eisenschitz, Rabinowitsch, and Weissenberg [7] proposed a triangular 
coordinate system (Fig. 1.3) to clarify the boundaries of the field of rheology. It 
represents the work or energy in all rheological phenomena in the form of kinetic 
energy, elastic or stored energy, and dissipated or lost energy. It is a simple and 
descriptive way to illustrate the interconnection between these energies or work. In 
most cases, the state of a body or system is represented by a point in the interior of 
the triangle, where the distance a is the fraction of the total energy represented by 
kinetic energy, b is the fraction representing elastic or stored energy, and c is the 
fraction representing dissipated or lost energy, such that

+ + =1a b c 	 (1.1)

Eisenschitz, Rabinowitsch and Weissenberg called the line AB “Elasticity,” which 
represents a Hookean solid or perfectly elastic solid. Vertex A represents a pure 
Euclidean solid (or Pascalian liquid when on line AC) where all the external work 
is converted to kinetic energy, as would be the case for an infinitely stiff body. Fur-
thermore, they called line AC “Viscosity,” which represents a Newtonian fluid or 
perfectly viscous liquid where all external work is dissipated or lost. On that line, 
vertex A represents an infinite Reynolds number in fluid mechanics. Line BC, which 
they called “Relaxation,” represents creeping viscoelastic flows, and is the domain 
where we typically see the field of rheology of highly viscous materials such as 
polymers. Vertex C represents a creeping flow or Stokes flow where the Reynolds 
number is very low. In such flows inertial effects are negligible when compared to 
the forces caused by viscous friction.
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Figure 1.3 �Rheological energy in triangular coordinates

■■ 1.2 �Viscous Liquids or the Newtonian Fluid

Sir Isaac Newton (Fig. 1.4) was the first person to formulate a hypothesis that 
described the resistance to motion experienced by deforming fluids. In 1686 he 
published this work in Philosophiæ Naturalis Principia Mathematica [4] in a chapter 
titled “On the Circular Motion of Liquids”. His hypothesis clearly states what we 
know today as a characterictic of a Newtonian fluid2:

That the resistance which arises from the lack of slipperiness of the parts of the fluid, 
other things being equal, is proportional to the velocity with which the parts of the 
liquid are separated from one another.
The phenomenon, described by Newton as “defectu lubricitatis,” or “lack of slipperi-
ness” between two fluid particles, was attributed to “attritus,” meaning internal 
friction, or viscous friction. Since that time, the term “internal friction” and “viscous 
friction” have been used interchangeably. Although Newton’s original work contains 
a mistake, corrected by Sir George Stokes [3] 150 years later, his main conclusion 
is still correct; it basically states that the force F required to maintain the motion 
between two fluid planes located at two arbitrary positions, say C and D in Newton’s 
diagram (Fig. 1.5), is proportional to the difference between the velocity, u, of the 

2	 The authors are using Emil Hatschek’s translation from the Latin [2].
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two planes, and inversely proportional to the distance, r, between those two surfaces, 
the viscosity, , and the area of the surfaces that separates them, A,3


−

=
−

d c

D C

u u
F A

r r
	 (1.2)

3	 Newton used upper case A, B, C, D, etc. to describe the position of the surfaces, and lower case a, b, c, d, etc. 
to describe the velocity of those surfaces.

Figure 1.4  
Sir Isaac Newton (1643–1727), 
painted in 1689 by Sir Godfrey Kneller

Figure 1.5  
Diagram from Newton’s 1686 publication [2]
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Figure 1.6 �Simple shear flow with Cartesian coordinates

As shown in Newton’s diagram, his analysis pertained to a rotating cylinder immersed 
in an infinitely large fluid body. For a more simplified system, such as the simple 
shear flow generated between two parallel plates presented in Fig. 1.6, Equation 1.2 
can be expressed in terms of shear stress, and written as

= uF A
h

	 (1.3)

or

t  g= xy xy 	 (1.4)

where txy is the shear stress in the x direction on a plane with its normal direction 
pointing in the y direction, and g xy  is the corresponding rate of shear, or rate of 
deformation. The stress (here txy) that leads to the deformation of the fluid contained 
within the system is also often referred to as the deviatoric stress4.

The Newtonian model, or the viscous component of a material, is often also repre-
sented using a dashpot, shown in Fig. 1.7. 

η
η

t

h

t+∆t

τxy

τxy

∆x

Figure 1.7 �The dashpot – a schematic representation of a Newtonian fluid

4	 As will be shown in Chapter 2, which covers flow, the total stress, , is divided into the deviatoric stress compo-
nent, , which causes deformation, and the hydrostatic stress component, which results from pressure, p.
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While the schematic representation in Fig. 1.7 reflects an elongational deforma-
tion along the x-axis, the dashpot can also be used for shear deformation, which is 
written as

g
D=xy

x
h

	 (1.5)

Figure 1.7 also shows that the deformation is time dependent and, in the case of a 
Newtonian fluid, the dependence between deformation and time is linear. In terms 
of shear strain rate, we can write

g g D= xy xy t 	 (1.6)

In Fig. 1.8, the strain within a Newtonian fluid, labeled as viscous strain, is presented 
for the case where a constant stress is applied during a time period from 0 to Dt. 
Once the load is released at time Dt, the material element remains deformed. This 
reflects point “C” in the Eisenschitz, Rabinowitsch and Weissenberg triangle, at 
which all energy is dissipated or lost and the deformation can no longer be recovered.

S
tr

ai
n 

 (γ
xy

)

Time

Elastic strain
(Hookean solid)

Viscous strain
(Newtonian fluid)

τxy/G

τxy∆t/η

∆t

τxy/η

Figure 1.8 �Strain response of a Newtonian fluid and a Hookean solid

■■ 1.3 �Linear Elasticity or the Hookean Spring

Robert Hooke is a relatively unknown English scientist and engineer of the 17th 
century, who was completely overshadowed by his contemporary, Isaac Newton. In 
fact, an animosity between the two existed after Hooke claimed that Newton’s work 
on gravitation was based on work he had done. As a result, Newton’s obsession was 
to make sure that Hooke be forgotten; something he almost accomplished. Two years 
after Hooke’s death in 1703, Newton became president of the Royal Society, and in 
that function made sure that every memory of Hooke was erased from the society, 
including his portrait and laboratory equipment, which mysteriously disappeared 
when the Royal Society moved to a new location after 1705.
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Figure 1.9 �Diagram from Hooke’s 1678 paper

However, while Hooke is certainly not part of popular culture in the way Newton 
has become, today his name remains well known among engineers who deal with 
solid mechanics, thanks to his theory of linear elasticity. Robert Hooke was the first 
person to find a relation between force and deflection in linear elastic solids, and 
published that work in his 1678’s “Lectures de Potentia Restitutiva,” or, “Of Spring”. 
The basic theory behind what we today refer to as the Hookean spring (Fig. 1.9) is 
summarized in Latin by Hooke’s words “Ut tension sic vis” or “As the extension, so 
the force.” More simply stated, we can say that the force, F, is directly proportional 
to the deflection, Dx. This can be written using

D=F k x 	 (1.7)

where k is the constant of proportionality or the spring constant, also called the 
stiffness. Hooke’s concept was modified in 1727 by Leonhard Euler, who represented 
the force in terms of stress, F A, and the displacement in terms of strain, Dx h, 
where h represents the original length. The units in the constant of proportionality 
can be adjusted by using a modulus of elasticity or stiffness, E, or for a system that 
is deformed in shear, such as the one depicted in Fig. 1.10, a modulus of rigidity, G,

( )D=F A G x h 	 (1.8)

In terms of stress and strain the above equation can be written as

t g=xy xyG 	 (1.9)

where txy is the shear stress and gxy the corresponding shear strain.
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Figure 1.10 �Perfectly Hookean solid deformed in shear
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Figure 1.11 �The spring – a schematic representation of a Hookean solid

Just like Hooke’s approach in 1678, today the elastic component of a material is often 
represented using a spring, as shown in Fig. 1.11. The spring reflects a stretching 
body; however, it can also be used to represent shear. In Fig. 1.11 we can see how 
the spring deforms as soon as the load is applied and remains constant as long 
as the load remains the same. Once the load is released at time Dt, the material 
element will almost instantly return to its initial shape. This reflects point “B” in 
the Eisenschitz, Rabinowitsch and Weissenberg triangle, where the energy is stored 
and fully recovered.

In his publication, Robert Hooke boldly concluded that the elastic behavior is not 
only observed in springs, “but in all other springy bodies whatsoever, whether 
Metal, Wood, Stones, baked Earths, Hair, Horns, Silk, Bones, Sinews, Glass, and 
the like.” His statement may be true for metal, stone, baked earths, and perhaps 
glass; however, all the other materials have a viscous force component, introducing 
time dependency when they are deformed, and should therefore be considered as 
viscoelastic materials.
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■■ 1.4 �Viscoelasticity and the Maxwell Model

After Newton and Hooke proposed their fluid and solid models, the world would have 
to wait almost two centuries before someone would attempt to model the behavior of 
a body that has both a viscous and an elastic force component during deformation. 
In 1867, James Clerk Maxwell (Fig. 1.12) published his paper “On the Dynamical 
Theory of Gases” [16], in which he presented a model for a system that combines 
elastic and viscous effects. His model and the resulting linear differential equations 
that relate stress and strain represent today’s Maxwell model, which is graphically 
depicted by an instantaneous change of the spring and a time-dependent reaction, 
t + Dt, of the dash-pot in series, as depicted in Fig. 1.13.

In principle, the model is based on the fact that when a stress txy is applied to the 
system, this stress is the same in both fluid and solid elements, and the total strain 
is the sum of the elastic strain, gG

xy , and the viscous strain, g xy , such that

t t t= = G
xy xy xy 	 (1.10)

and
g g g= +G

xy xy xy 	 (1.11)

which can also be differentiated in time to give a function for total rate of deforma-
tion, or rate of strain

g g g= +  

G
xy xy xy 	 (1.12)

Figure 1.12  
James Clerk Maxwell
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Figure 1.13 �Schematic representation of the viscoelastic Maxwell model

Combining Eqs. 1.10–1.12 with the constitutive laws for the dash-pot (Eq. 1.4) and 
the spring (Eq. 1.9), results in Maxwell’s linear differential equation given by

t g t


= −

d d

d d
xy xy xyG
t t

	 (1.13)

where  = G , which Maxwell called “time of relaxation”, and which is now com-
monly referred to as relaxation time.

In the case of constant stress, Maxwell’s linear differential equation is solved for 
strain

t t
g


= +xy xy

xy t
G

	 (1.14)

which is schematically shown in Fig. 1.14 for the case where the constant stress txy is 
applied from t = 0 to t = Dt. The figure shows how the material element experiences 
an instant deflection, caused by its elastic component, and continues to deform at 
a constant rate, caused by its viscous component. The continuous flow experienced 
by the material under constant load is commonly referred to as creep or retarda-
tion. Once the load is released, the stored elastic deformation is recovered, and the 
viscous deformation remains.
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Figure 1.14 �Creep in a Maxwell model

In the case of constant strain applied to the Maxwell material model, the linear 
differential equation is solved for stress

t g
−

= e
t

xy xyG 	 (1.15)

which is schematically depicted in Fig. 1.15 for a case where G = 100 MPa,  = 1 s and 
the imposed strain gxy = 1. Here, we see a gradual reduction in stress, a phenomenon 
commonly referred to as stress relaxation, which is represented by the line BC on 
the Eisenschitz, Rabinowitsch and Weissenberg triangle (see Fig. 1.3). At point B 
in their triangle, the relaxation time  is infinite, reflecting a Hookean solid, while 
at position C it is zero, which reflects a Newtonian fluid.
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Figure 1.15 �Stress relaxation in a Maxwell model



16 1 Introduction to Rheology

■■ 1.5 �Time Scale and the Deborah Number

As Maxwell’s model easily demonstrates, relaxation time is a property characteristic 
of a specific material, and the relaxation time limits of zero and infinite frame the 
field of rheology, ranging from a solid to a liquid. However, when studying a material 
we need to consider not only its relaxation time, but also the time scale of the process 
to which the material is subjected under specific circumstances. For example, how 
fast or how slowly is the material being deformed, or the length of the residence 
time of a polymer inside an extrusion die.

Returning to Maxwell’s model, we can also deform the system at a constant rate of 
deformation g xy . For this specific case, Maxwell’s model can be solved for stress

t g
− 

= − 
 

 1 e
t

xy xyG 	 (1.16)

Figure 1.16 presents the stress as a function of strain for three different rates of 
deformation, with G = 100 MPa and  = 1 s. Each curve is associated with its own time 
scale. For example, for g −=

110 sxy , it takes 0.1 s to reach gxy = 1.0, therefore having 
a time scale tp = 0.1 s. For such a small time scale, the material behaves almost like 
a solid, because there is not sufficient time for the material to relax the stress that 
built up during deformation. On the other hand, for the material deforming at a much 
slower rate of 0.1 s–1, the time scale is tp = 10 s, and there is sufficient time for the 
stress to relax so that the material behaves more like a fluid. Therefore, while the 
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Figure 1.16 �Stress as a function of strain for a Maxwell model at various rates of deformation
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spring-dashpot system represented in Fig. 1.13, and its response shown in Fig. 1.16, 
have a fixed relaxation time of 1 s and clearly represent a viscoelastic material, the 
material’s behavior is bound between an elastic solid (straight diagonal line in the 
diagram), when the process time is zero, and a viscous liquid (horizontal line that 
represents the strain axis), when the process time is infinite.

While Maxwell explained the viscoelastic behavior of materials using conceptual 
spring and dashpot elements, it wasn’t until polymers became of age for further 
understanding of viscoelastic behavior of materials to become of extreme impor-
tance. Of course, today it is well known that because of their molecular structure, 
polymers represent the quintessential viscoelastic material. However, it took until 
1955 for the concept of stress relaxation and relaxation time, and their relation 
to molecular structure, to be explained by John Ferry and his coworkers Malcolm 
Williams and Robert Landel. Williams, Landel, and Ferry directly related stress 
relaxation time of polymers to the materials’ temperature. In their classic paper 
“The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers 
and Other Glass-forming Liquids” [53], Ferry and his coworkers explained how, in 
order to relax stresses, polymer molecules slide past each other when subjected to a 
stress. In addition, they demonstrated how a temperature increase accelerates stress 
relaxation. This effect can be explained by the increase in free volume between the 
molecules, allowing these molecules to move with more ease, and consequently 
reducing the relaxation time. Hence, Ferry presented a basic relation between 
relaxation time and temperature, which today is referred to as time-temperature 
superposition principle, or often abbreviated as the WLF equation. We shall take a 
look at Ferry’s work in more detail in Chapter 2 of this book.

But lets go back again to the question of whether a material, and particularly a 
polymeric material, should be considered a solid, a liquid, or a viscoelastic material. 
Here, we must consider the material’s behavior in the context of its specific situation 
or process. This dilemma was solved in 1964 by Marcus Reiner, of the Technion in 
Haifa, who introduced the Deborah number (De), a dimensionless number that best 
captures the effect of process time scale on a material’s deformational behavior [5]. 
He chose the name after the Song of Deborah, Judges 5 : 5, which states “The moun-
tains flowed before the Lord.” (Fig. 1.17), which he interpreted to mean that even 
mountains can appear to flow given a sufficiently large time scale.

The Deborah number is defined by

=
p

De
t

	 (1.17)

A Deborah number of zero represents a viscous fluid and a Deborah number of ∞ 
an elastic solid. For the cases presented in Fig. 1.16, the Deborah number varies 
between 0.1, for the low rate of deformation, and 10, for the high deformation rate.



18 1 Introduction to Rheology

Figure 1.17 �“The mountains flowed before the Lord.” Coyote Buttes North 1 Second Wave, 
Arizona. Courtesy of Wolfgang Cohnen (© 1998)

■■ 1.6 �Deformation, Rate of Deformation, 
and the Deviatoric Stress Tensors

Rheology is concerned with the behavior of fluids undergoing deformation. This 
deformation can be shear, elongation, or a combination of deformations such as 
those occuring in the complex flow field within a mixer. If the upper plate in the 
simple shear flow experiment shown in Fig. 1.6 had a constant speed u0, it would 
move a distance Dx in a small time interval Dt. Hence, the shear deformation, which 
in the xy-plane is defined by

g
∂∂

= +
∂ ∂

yx
xy

DD
y x

	 (1.18)

becomes g =xy xD h  or g D= 0xy u t h .

In the stretching process depicted in Fig. 1.18, assuming a linear increase in velocity 
from ux = u0 at x = 0, to ux = DR u0 at x = L, the deformation the material undergoes 
between those two points is ( )g D= −R 0 0xx D u u t L, where DR is referred to as the 
draw-down ratio. In addition, the material is also deforming in the y-direction by the 
amount gyy = –gxx. Similar to the flow depicted in Fig. 1.18, in polymer processing 
and rheometry the deformation is a combination of shear and stretching similar to 
that at the entrance of the capillary in a capillary rheometer. Thus, a more general 
representation of the deformation is given in tensor form, written as



191.6 Deformation, Rate of Deformation, and the Deviatoric Stress Tensors

A

Fluidx
y

u0

DRu0

L

Figure 1.18 �Schematic of stretching flow
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The rate of deformation tensor can be computed by taking the time derivative of the 
deformation tensor as

g g g
g
g g g g

g g g

 
∂  

= =  ∂  
 

  

   

  

xx xy xz

yx yy yz

zx zy zz

t
	 (1.20)

which can also be written as

g = ∇ + ∇

Tu u 	 (1.21)

where the velocity gradient ∇u  is represented by

∂ ∂ ∂ 
 ∂ ∂ ∂ 
∂ ∂ ∂ 

∇ =  ∂ ∂ ∂ 
 ∂ ∂ ∂
 ∂ ∂ ∂ 

x x x

y y y

z z z

u u u
x y z

u u u
u

x y z
u u u
x y z

	 (1.22)

Similar to the definition of the deviatoric shear stress component of Eq. 1.4, we can 
define the deviatoric stress tensor using

t  g=  	 (1.23)
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where t  is written as

t t t

t t t t t

t t t
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 
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 
 

xx xy xz
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	 (1.24)

■■ 1.7 �Guide to the Book

The content of this book can be fitted into an Eisenschitz, Rabinowitsch and Weissen
berg triangle. Because plastics are extremely viscous, with a viscosity one million 
times higher than that of water, the first simplification we can make is to eliminate 
the effects of inertia. That leaves us with only the behavior represented by line BC 
in Fig. 1.19. While the fundamentals of polymer flow during processing (Chapter 2), 
their modeling (Chapter 4), and their measurement (Chapter 6) are more related to 
the molten, liquid-like behavior around vertex C, the behavior of the material during 
rapid deformation and solidification (Chapter 5) is related to its structure (Chapter 2) 
and will therefore be discussed in terms of viscoelasticity.
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Relaxation

Hookean solid,
De = ∞

Newtonian fluid,
De = 0

Chapter 2 (Structure)

Chapter 5 (Viscoelasticity)

Chapter 4 (Transport Phenomena)
Chapter 6 (Rheometry)

Chapter 3 (GNF)

Figure 1.19 �The Eisenschitz, Rabinowitsch and Weissenberg triangle and its significance for 
this book
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■■ �Problems

1.1	 Please retrieve Rabinowitsch’s 1929 paper on the capillary viscometer correction 
factor and write a short essay and presentation summarizing the paper.

1.2	 Please retrieve the Bernstein, Kearsley and Zapas paper on the non-linear inte-
gral viscoelastic model and write a short essay and presentation summarizing 
the paper.

1.3	 Compare the Cross and Carreau models from their 1965 and 1968 publications.

1.4	 Compare the 1923 de Waele model to Ostwald’s 1925 model.

1.5	 Please retrieve Einstein’s 1905 paper on filled fluids and compare the model 
with Guth and Simha’s model from their 1936 paper.

1.6	 Please retrieve Williams, Landel and Ferry’s 1955 paper on the time-temperature 
superposition principle and write a short essay and presentation summarizing 
the paper.

1.7	 Choose a paper from the references and write a short essay and presentation 
summarizing the paper.
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2 Structure and 
Properties of 
Deforming Polymers

Because of their molecular structure, polymers are by far the most complex fluids 
engineers will encounter. Therefore, what seems trivial when dealing with Newtonian 
fluids, is a complex experimental and mathematical exercise for a rheologist dealing 
with polymeric melts. An important aspect of any rheologist’s work is to find rela-
tions between deformation and stresses for various well defined conditions, such as 
transient shear flows, step strain, creep, and oscillatory shear flow, to name a few. 
These relations, also called material functions, are determined using different types 
of rheometric techniques. This chapter will introduce the reader to the causes of the 
various phenomena only observed with plastics and the relation of these effects to 
the molecular architecture of polymer melts.

 ■ 2.1  Molecular Structure of Polymers

Polymers are macromolecular structures that are typically generated synthetically 
but sometimes also through natural processes. These macromolecules start as 
monomers, such as ethylene, schematically represented in Fig. 2.1. Once these mono-

Figure 2.1  Schematic representation of an ethylene monomer
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mers are polymerized, they take the form of long polymer chains with thousands 
of repeating units. The ethylene of Fig. 2.1 becomes polyethylene, as schematically 
depicted in Fig. 2.2. Polymer molecules may also be represented symbolically or by 
using a cartoon as depicted in Fig. 2.3.

Several forces hold a polymeric material together on the molecular level. The 
most basic acting forces are covalent bonds that hold together the backbone of a 
polymer molecule, such as the C–C bond. The energy holding together two carbon 
atoms amounts to approx. 350 kJ/mol, which is equivalent to a polymer component 
strength between 14 and 19 GPa and a stiffness of up to 300 GPa. However, because 
the long polymer chains are typically not aligned, the strength of polymers ranges 
only between 10 and 100 MPa and their stiffness is approx. 1 GPa.

The comparatively low strength found in polymer components indicates that the 
forces holding a polymer component together do not originate from the C–C bonds 
but are intermolecular forces, or so-called Van-der-Waals forces. The energy that 
generates the intermolecular attraction between two polymeric molecules increases 
with decreasing distance of the molecules as described by Eq. 2.1

6
1

~
r

 (2.1)

where  < 10 kJ/mol and r is the distance between the molecules. Thus, it becomes 
clear that as a polymer sample is heated, and the distance between the molecules 
increases with increasing vibration amplitude of the molecules, the intramolecular 
forces diminish. This increase in free volume allows the molecules to move more 
freely, enabling the material to flow at the macroscopic level. An increase in free 

Figure 2.2  Schematic representation of a polyethylene molecule

Figure 2.3  Symbolic representation and cartoon of a polyethylene molecule
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volume, and consequently more ease of movement, can also be achieved by introduc-
ing solvents or plasticizers between the molecules. As these low molecular weight 
plasticizers wedge themselves between the molecules, they generate free volume, 
just as an increase in temperature would.

The properties of polymeric materials are strongly linked to the number of repeat 
units, n, in the molecular chain, or the molecular weight of the polymer, as shown 
schematically in Fig. 2.4. A polymer, such as polystyrene, is stiff and brittle at room 
temperature with a degree of polymerization of 1000, or n = 1000. At a degree of 
polymerization of 10, polystyrene is sticky and soft at room temperature. While the 
stiffness properties reach an asymptotic maximum, the viscosity increases steadily 
with molecular weight.

Some thermoplastics, such as some polyamide 11 resins, increase in molecular 
weight during processing. This leads to a rise in viscosity and may reduce sag once 
the polymer emerges from the extrusion die. The same is true for thermosets as 
they cure, or cross-link, during processing. As the curing progresses, the molecular 
weight increases, causing the viscosity to increase until the gel point is reached, at 
which point the material is considered a solid. The field studying these effects is 
referred to as chemorheology, and is covered in more detail in Chapter 3.

Figure 2.5 shows the relationships between molecular weight, temperature, and 
properties of a typical polymeric material. The glass transition temperature region 
increases with molecular weight. Therefore, the temperature range at which the 
polymer can flow (processing temperature), which for most polymers is 45 to 100 K 
above the glass transition, also increases with molecular weight. On the other hand, 
the degradation temperature steadily decreases with increasing molecular weight. 
Hence, it is necessary to find the molecular weight that renders ideal material prop-
erties for the finished polymer product, while providing flow properties that make it 
easy to shape the material during the manufacturing process. It is important to note 
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Figure 2.4  Influence of molecular weight on rheological and mechanical properties
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that the temperature scale in Fig. 2.5 corresponds to a specific time scale, e.g., time 
required for a polymer molecule to flow through an extrusion die. If the time scale 
is reduced (e.g., by increasing the extruder throughput), the molecules do not have 
enough time to relax, or get used to the shape of the die. Now a somewhat higher 
temperature is required to assure flow. In fact, at a specific temperature, a polymer 
melt may behave like a solid when the time scale is reduced sufficiently. Hence, 
for this new time scale the stiffness properties and flow temperature curves must 
be shifted upward on the temperature scale. A limiting factor is the fact that the 
thermal degradation curve remains fixed, forcing processing conditions to remain 
above certain time scales.

With the exception of some naturally occurring polymers, most polymers exhibit a 
molecular weight distribution, in other words, they are composed of molecules of 
different length, as shown in Fig. 2.6. There are various ways to compute an average 
molecular weight for such a molecular weight distribution. The number average, 

nM , simply adds all the molecular weights of all the molecules and divides it by the 
total number of molecules. This is written as

i i i
n

i i

m n M
M

n n
 (2.2)

Figure 2.5  Diagram representing the relation between molecular weight, temperature, and 
properties of a typical thermoplastic
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Figure 2.6 Molecular weight distribution of a typical thermoplastic

where mi is the weight, Mi the molecular weight, and ni the number of molecules with i 
repeat units. This gives the short chains, that contribute little to the total performance 
and weight of the material, equal importance as the long chains. To avoid this, one 
can take a weighted average, where before adding up all the molecules, the number 
of molecules with a specific molecular weight is multiplied by the molecular weight 
of those chains, and instead of dividing this sum by the total number of chains, the 
total molecular weight of the sample is used. This is represented as

2
i i i i

W
i i i

m M n M
M

m n M
 (2.3)

Another form of molecular weight average is the viscosity average, Mv, which is 
calculated using

vk M  (2.4)

where [ ] is the intrinsic viscosity and,  and k are material-dependent parameters. 
This relation is sometimes referred to as the Mark-Houwink relation. Figure 2.7 [1] 
schematically presents the viscosity of a typical polymer as a function of molecular 
weight. The figure shows how the viscosity changes from a linear (  = 1) to a power 
dependence (  = 3.4) at some critical molecular weight. The linear relationship is 
sometimes referred to as Staudinger’s rule [2] and applies to a perfectly mono-
dispersed polymer of relatively low molecular weight1. This linear relationship is a 

1 A monodispersed polymer is composed of a single molecular weight species.
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result of the intramolecular friction, which increases proportionally to the length 
of the molecules. As the molecular weight increases with increasing length of the 
molecules, the molecules tend to entangle, causing a power relation between molec-
ular weight and viscosity, or  = 3.4.

The broadness of a molecular weigth distribution is related to the polydispersity of 
the molecular chains. A monodispersed polymer is described by

w n vM M M  (2.5)

while in a polydispersed polymer

w v nM M M  (2.6)

Hence, a measure of the broadness of a polymer’s molecular weight distribution is 
the polydispersity index defined by

w

n

M
PI

M
 (2.7)

Figure 2.7  Schematic of zero shear rate viscosity for polymers as a function of weight average 
molecular weight
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Figure 2.8  Influence of molecular weight number average and weight average on properties of 
thermoplastic polymers

Here, PI = 1 represents a polymer, in which all molecules have the same chain length. 
However, PI varies with the type of polymerization and the polymer itself. For step 
growth polymerized plastics, such as polyamides, polycarbonates and epoxies, to 
name a few, the polydispersity index PI  2. For chain polymerized plastics, such as 
polyolefines, polystyrenes, polyacetal, etc., PI = 1.01 … 50, where branched polymers 
exhibit a polydispersity index ranging between 20 and 50.

Figure 2.8 is a graphical representation of the relationship between number average 
and weight average and its influence on the properties of polymers. The arrows in 
the diagram indicate an increase in a specific property.

Branching of the polymer chains also influences the final structure, crystallinity, and 
properties of the polymeric material. Figure 2.9 shows the molecular architecture 
of high density (PE-HD), low density (PE-LD), and linear low density polyethylenes 
(PE-LLD).

The PE-HD has between 5 and 10 short branches for every 1000 carbon atoms. The 
PE-LD has the same number of branches as PE-LD; however, they are much longer and 
are themselves usually branched. The PE-LLD has between 10 and 35 short chains 
for every 1000 carbon atoms. Polymer chains with fewer and shorter branches can 
crystallize with more ease, resulting in higher density.



32 2 Structure and Properties of Deforming Polymers

Figure 2.9  Schematic of the molecular structure of different polyethylenes

 ■ 2.2  Stress Relaxation Behavior

The most basic phenomenon in polymer melts and solids is stress relaxation. 
Because polymers are composed of macromolecules, and these large molecules 
have the ability to slide past each other, hindered only by intramolecular forces and 
molecular entanglements, they tend to relax stresses that arise when subjected to 
a deformation. Hence, as a mass of polymer is subjected to a stress, the molecules 
tend to move in an effort to relax those stresses. If these stresses are caused by a 
constant strain, the initial stress caused by this deformation relaxes in a given time 
interval, sometimes referred to as relaxation time, .

In a stress relaxation test, a polymer test specimen undergoes a fixed deformation, 
0, and the stress required to hold this amount of deformation is recorded over time. 

This test is very cumbersome to perform, so design engineers and material scientists 
tend to ignore it. In fact, the standard relaxation test ASTM D2991 was dropped from 
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the standards in 1990. However, rheologists have been consistently using the stress 
relaxation test to interpret the viscoelastic behavior of polymers.

Figure 2.10 [3] presents the stress relaxation modulus of polyisobutylene2 measured 
at various temperatures. Here, the stress relaxation modulus is defined by

r
0

t
E t  (2.8)

where 0 is the applied strain and t  is the stress being measured. From the 
test results it is clear that stress relaxation is time and temperature dependent, 
especially around the glass transition temperature, where the slope of the curve 
reaches a maximum. In the case of the polyisobutylene shown in Fig. 2.10, the 
glass transition temperature is about −70 °C. The measurements were completed 
in an experimental time window between a few seconds and one day. The tests 
performed at lower temperatures were used to record the initial relaxation, while 
the tests performed at higher temperatures only captured the end of relaxation of 
the rapidly decaying stresses.
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Figure 2.10  Relaxation modulus curves for polyisobutylene at various temperatures and 
corresponding master curve at 25 °C

2 Better known as chewing gum.
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u2

Figure 2.11  Schematic of stress relaxation on a molecular level at low (top) and high (bottom) 
temperatures

It is well known that high temperatures lead to short molecular relaxation times3 
and low temperatures lead to long relaxation times. This is caused by the fact that 
at low temperatures the free volume between the molecules is small, restricting or 
slowing down their movement, as schematically shown in Fig. 2.11. At high tempera-
tures, the free volume is larger and the molecules can move with more ease. When 
changing temperature, the shape of creep4 or relaxation test results remains the 
same, except that they are horizontally shifted to the left or right, which represents 
lower or higher response times, respectively.

The same behavior observed for varying temperatures can be seen when the pres-
sure is varied. As the pressure is increased, the free volume between the molecules 
is reduced, slowing down molecular movement. Here, an increase in pressure is 
equivalent to a decrease in temperature. Hence, it is clear that in the melt state, the 
viscosity of a polymer increases with pressure. Figure 2.12 [4] illustrates the effect 
of pressure on stress relaxation.

The time-temperature equivalence seen in stress relaxation test results can be used 
to reduce data at various temperatures to one general master curve for a reference 
temperature, T0. To generate a master curve at the reference temperature, the curves 
shown on the left of Fig. 2.10 must be shifted horizontally, maintaining the reference 
curve stationary. Density changes are usually small and can be neglected, eliminating 
the need to perform tedious corrections. The master curve for the data in Fig. 2.10 
is shown on the right side of the figure. Each curve was shifted horizontally until 

3 Relaxation time usually refers to the time it takes for applied stresses to relax within a material.
4 In a creep test the polymer specimen is loaded to a constant stress, and the strain response is recorded in time.



352.2 Stress Relaxation Behavior

the ends of all the curves became superimposed. The amount by which each curve 
was shifted can be plotted with respect to the temperature difference taken from 
the reference temperature, T0. For the data in Fig. 2.10 the shift factor is shown in 
the plot in Fig. 2.13. The amounts by which the curves where shifted, log aT, are 
represented by

0log log log log T
o

TT T a
T

 (2.9)

where T is the temperature of the measurement and T0 the reference temperature. 
This shift will be explained in more detail in Chapter 3.

Although the results in Figure 2.13 where shifted to a reference temperature of 298 K 
(25 °C), Williams, Landel and Ferry (WLF) [5] chose T0 = 243 K, or 45 K above the 
glass transition temperature. This temperature is often chosen because for most 
amorphous polymers it coincides with a typical processing temperature, where the 
measureable elastic effects are smaller than the viscous effects during deformation. 
The shift, or time-temperature superposition, is given in general form by

1 0

02
log T

C T T
a

C T T
 (2.10)
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Figure 2.12  Shear relaxation modulus for a chlorosulfonated polyethylene at various pressures
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Figure 2.13  Plot of the shift factor as a function of temperature used to generate the master 
curve plotted in Figure 2.10

where C1 and C2 are material dependent constants. Equation 2.10 is often referred to 
as WLF-equation. Master curves of stress relaxation tests are important because the 
polymer’s behavior can be traced over much longer periods of time than can be deter-
mined experimentally. The WLF equation and its use is covered in detail in Chapter 3.

Example 2.1 Relaxation Time Measurement

Using a blow molding grade high density poly ethylene, determine the relaxation 
time for standard processing temperatures.
A sliding plate rheometer can be used to measure relaxation time. In a sliding plate 
rheometer, two parallel plates separated by a small gap move parallel to one another. 
The advantage of using a sliding plate rheometer is that a constant stress and strain 
field is generated between the gap, as the material deforms in simple shear5. For a 
relaxation time measurement, a step strain is imposed by rapidly moving one of the 
plates a certain distance. This causes the shear to rapidly increase to its maximum 
value max. Because the systems remains stationary after applying the step strain, 
the stress decreases over time. Typically, the relaxation time, , is the time it takes 
for the maximum stress to decrease to 1% of its initial value. Figure 2.14 presents the 
stress as a function of time for a blow molding grade PE-HD6 (MFI = 1.2 g/10 min) 
tested at 190 °C. The imposed strain was  = 20, applied to a 2 mm thick sample 
using rate of shear of 2 s−1. The instant the plates stopped moving, the shear stress 
reached 90 kPa. The plot presented in Figure 2.14 shows that it took about 1.2 s for 
this stress to relax to 1% of its initial value.

5 The sliding plate rheometer is discussed in detail in Chapter 6.
6 NOVA Chemicals Sclair® 19G Homopolymer HDPE Film Resin.
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Figure 2.14  Stress as a function of time after imposing a step strain, measured using a sliding 
plate rheometer and a blow molding grade PE-HD.

 ■ 2.3  Shear Thinning Behavior

To illustrate shear thinning behavior, picture the randomly oriented entangled 
macromolecules depicted in Fig. 2.15. At low rates of deformation, the entan-
gled molecules have a hard time sliding past each other, resulting in a relatively 
high viscosity. Polymer melts exhibit this behavior over a range of small rates of 
deformation. This constant high viscosity is referred to as a Newtonian plateau, 
depicted in Fig. 2.16. However, as the rate of deformation increases, the corre-
sponding increased shear stress is sufficiently high to disentangle and unravel the 
molecules. The disentangled molecules can slide past their neighbors with more 
ease, resulting in an overall lower melt viscosity. This phenomenon is referred to 
as shear thinning behavior, pseudoplasticity, or structural viscosity. Eventually, 
the molecules can no longer stretch out any further. This point is seen in a second 
Newtonian plateau at higher rates of deformation, reflecting the lowest possible 
viscosity.

Figure 2.15  Molecular structure with increasing shear
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Figure 2.16  Shear thinning behavior or pseudoplasticity

The same effect depicted for shear in Fig. 2.15 occurs in elongation flows as well as in 
combined deformation flows of various levels of shear and elongation. Therefore, the 
viscosity of a polymer is a function of the magnitude of the rate of deformation tensor

( )t  g g=  ,xy xyT  (2.11)

Because the free volume between the molecules increases with temperature, the 
intra-molecular friction decreases, resulting in an overall lower viscosity as shown 
in Fig. 2.16 for various polymers. Figure 2.17 also presents the range of rate of defor-
mation experienced by polymer melts when using various processing techniques.

Figure 2.18 shows the effect of molecular weight variations on the shear thinning 
behavior of thermoplastics. The shear rate independent plateau is shifted to higher 
viscosity values with increasing molecular weight as the friction between chains 
increases. Side branching leads to lower viscosity (shear thinning) caused by the 
lubrication effect of the side group chains. With increasing width of the molecular 
weight distribution, shear thinning sets in at higher shear rates, which can be 
attributed to the smaller shear thinning effect of short chains.
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Figure 2.19  Viscosity as a function of rate of deformation for two different temperatures, 
measured using a sliding plate rheometer and a blow molding grade PE-HD.

Example 2.2 Shear Thinning Behavior Measurement

Using the same extrusion blow molding grade high density polyethylene as in 
Example 2.1, measure the viscosity as function of rate of deformation for two pro-
cessing temperatures.

The same sliding plate rheometer used in the stress relaxation experiment of 
Example 2.1 was used to measure the viscosity of the molding grade polyethylene 
for rates of deformation between 0.1 and 10 s−1. The measurements were done for 
test temperatures of 170 °C and 190 °C. Figure 2.19 presents the results. The figure 
clearly reveals fairly high viscosities at relatively low rates of deformation. From 
the results it is obvious that this material is not appropriate for injection molding 
applications. Furthermore, because during the test high shear stresses are generated, 
tests at higher rates of deformation resulted in surface slip conditions between resin 
and rheometer surface.

 ■ 2.4  Normal Stresses in Shear Flow

The tendency of polymer molecules to “curl-up” while they are being stretched in 
shear flow results in normal stresses in the fluid. For example, in a shear flow that 
exhibits a deviatoric stress defined by Eq. 1.4 or 2.11, a measurable reaction from 
the molecular structure is perceived in the form of normal stresses and defined as 
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normal stress differences, N1 = xx − yy and N2 = yy − zz. This effect is schematically 
depicted in Fig. 2.20, where stress differences, referred to as the first and second 
normal stress differences, are shown. An experimental set-up illustrating normal 
stress difference effects is the so-called rod-climbing experiment, or the Weissenberg 
effect, shown in Fig. 2.21. In this experiment, a rotating shaft causes the polymeric 
solution to move towards the shaft and not away from it as seen with Newtonian 
fluids. As a result, the polymer starts to move up the rotating shaft. Figure 2.22 is 
a schematic explanation of this effect. As the polymer molecules are stretched by 
the Couette devices’s shear stresses, normal stresses arise. Because the stretched 
molecules are aligned along the curvilinear streamline, they tend to migrate toward 
the rotating shaft, leading to the rod-climbing phenomenon.

Figure 2.20  Schematic diagram of melt at rest and normal stress reactions during shear flow

Figure 2.21  The rod-climbing or Weissenberg effect
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Figure 2.22  Schematic representation of normal stresses in a Couette flow

Just like viscosity, the first and second normal stress differences are material depen-
dent and are defined by

2
1 1 ,xx yy xyN T  (2.12)

2
2 2 ,yy zz xyN T  (2.13)

where 1 and 2 are material functions called the primary and secondary normal 
stress coefficients. These material properties are also functions of the strain rate 
tensor magnitude and the temperature. Also, similar to viscosity, the first and 
second normal stress differences do not change in sign when the direction of the 
strain rate changes, clearly reflected in Eqs. 2.12 and 2.13. Figure 2.23 [7] presents 
the first normal stress difference coefficient for the low density polyethylene melt 
shown in Fig. 3.2 in Chapter 3 at a reference temperature of 150 °C. Second normal 
stress differences are more difficult to measure and therefore the data are often 
approximated by

2 10.1  (2.14)



432.4 Normal Stresses in Shear Flow

Reduced shear rate (s-1),
log (aT* 0)

R
ed

uc
ed

 fi
rs

t n
or

m
al

 s
tr

es
s 

di
ffe

re
nc

e 
co

ef
fic

ie
nt

 (P
a 

•  
s2)

,
lo

g 
(

1/
a T2 )

1/s

6

Figure 2.23  Reduced first normal stress difference coefficient for a low density polyethylene 
melt at a reference temperature of 150 °C

Example 2.3 Normal Stress Measurements

Using the same extrusion blow molding grade high density polyethylene as in 
Example 2.1, measure the first normal stress difference coefficient as a function of 
rate of deformation for two processing temperatures.
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Figure 2.24  First normal stress difference of blow molding grade PE-HD as a function of shear 
rate and temperature
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The first normal stress difference, N1, was measured for test temperatures of 170 °C 
and 190 °C, using the same sliding plate rheometer employed in Examples 2.1 and 
2.2. As expected, a clear increase in normal stress but a reduction in growth was 
observed with increased rate of deformation (Fig. 2.24). Furthermore, a reduction 
in normal stress difference was seen with increase in temperature.

 ■ 2.5  Stress Overshoot during Start-up Flow

When a polymer sample that is initially at rest is suddenly subjected to a deformation 
rate, its stress response presents a slight stress overshoot, to a maximum value of 

max, before decreasing and reaching a steady state value. Figure 2.25 schematically 
depicts this phenomenon. It has been suggested by many researchers [8] that the 
cause for this stress overshoot is the polymer melt’s initial higher resistance to 
deformation resulting from molecular entanglements. Once the polymer deformation 
exceeds a certain value, the molecules begin to disentangle, reducing the resistance 
to deformation, causing the stresses to relax to a steady state value in a time typically 
shorter than the relaxation time of the melt.

When the flow is restarted after a short rest time, the maximum overshoot stress will 
be lower than the one experienced during the first start-up. However, if the rest time 
is sufficiently long, the maximum stress reached during overshoot will approach the 
value reached during the first start-up, max. The rest time that the polymer needs to 
recover to its original state is based on the time it takes for molecular reentanglement. 
This time is longer than the characteristic stress relaxation time, .
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Figure 2.25  Schematic of stress overshoot during start-up flow
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Example 2.4 Stress Overshoot Measurement

Using the same extrusion blow molding grade high density polyethylene as in 
Example 2.1, introduce a constant shear and assess the stress overshoot effect.

To capture the stress overshoot using the same sliding plate rheometer and blow 
molding grade PE-HD used in the previous three examples, a 2 mm sample was 
subjected to a constant shear rate of 2 s−1. As can be seen, the shear stress first 
jumped to a value above 80 kPa, and eventually settled at a stress about half that 
value (Fig. 2.26). The material was tested at 190 °C.
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Figure 2.26  Measured stress overshoot at a constant shear rate of 2 s−1

 ■ 2.6  Melt Strength or Melt Fracture

When a polymer is forced to deform and move at speeds that result in processing 
times shorter than the relaxation time of the polymer, the stresses will build up until 
they exceed the melt strength, leading to so called melt fracture. Depending on the 
process, this phenomenon will present itself in different forms. For example, waves 
in the extrudate may appear as a result of high speeds during extrusion, where the 
polymer is not allowed to relax within the extrusion die. This phenomenon is gener-
ally referred to as shark skin shown in Fig. 2.27 a [9] for a high density polyethylene.

It is possible to extrude at such high speeds that an intermittent separation of melt 
and inner die walls is caused, as shown in Fig. 2.27 b.
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(a) 
 
 
 
 
 
 
(b) 
 
 
 
 
 
(c) 
 
 
 
 
 
(d)

Figure 2.27  Melt fracture during extrusion of a polymer strand

This phenomenon is often referred to as the stick-slip effect or spurt flow and is 
attributed to high shear stresses between the polymer and the die wall. It occurs when 
the shear stress is near a critical value of 0.1 MPa [10–12]. However, it is influenced 
by the molecular weight of the polymer, as schematically shown in Figure 2.28. 
As the figure shows, a high molecular weight polymer molecule has more contact 
points with the surface of the mold or the rheometer. Hence, a higher molecular 
weight polymer exhibits better resistance to melt fracture than a lower molecular 
weight polymer. It was reported that the critical shear stress of 0.1 MPa is inversely 
proportional to the weight average molecular weight [11, 13]. However, Vinogradov 
et al. [10] presented results indicating that the critical stress was independent of 
molecular weight, except for low molecular weights. The interested reader is referred 
to the extensive overview of Koopmans et al. [14].

Mold surface

Low molecular weight polymer molecule

Contact points

High molecular weight polymer molecule

Figure 2.28  Influence of molecular weight on the slip between polymer and tool surface
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If the speed is further increased, a helical geometry is extruded, as shown for a 
polypropylene extrudate in Fig. 2.27 c. Eventually, the speeds are so high that a 
chaotic pattern develops, such as the one shown in Fig. 2.27 d. This well known 
phenomenon is called melt fracture. The shark skin effect is frequently absent and 
spurt flow seems to occur only with linear polymers.

Another form of melt fracture may occur during elongational deformation, for 
example during fiber spinning. Here, when the drawing speed is too high, the stresses 
build up before having a chance to relax, until the thread rips, or fractures. We can 
observe the same effect when stretching silly putty at high speeds.

Although the molecular weight is lower in injection molding grades, these flow 
instabilities can also occur during mold filling, e.g., with polyacetal or high density 
polyethylene. These instabilities result in surface defects on the finished part that 
may take the form of matte surfaces, regular helices, or irregularly spaced ripples.

Production guidelines often recommend a reduction of injection velocity or extrusion 
speed, an increase of mold and melt temperature, or an increase of the gate diameter 
to eliminate melt fracture.

 ■ 2.7  Dynamic Response

In an oscillatory test, a sample is excited with a low frequency stress or strain input 
which is recorded along with the strain or stress response. Figure 2.29 presents 
schematic diagrams of a shear strain input, xy, and shear stress response, xy, for 
a perfectly elastic solid, an ideal viscous fluid, and a viscoelastic fluid with a linear 
viscoelastic response.

If the sample in an oscillatory test is perfectly elastic, or a Hookean solid, the strain 
input and stress response can be described as follows:

0 sin  xy t t  (2.15)

0 sinxy t t  (2.16)

where t is time and  = 2   f with f being the frequency of strain oscillation. As 
expected, the stress response is in phase with the strain input. Hence, when com-
puting the shear modulus, the transient effects cancel out, and an elastic modulus, 
G, results as

0 0

0 0

sin
sin

t
G

t
 (2.17)
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Figure 2.29  Oscillatory shear experiments for an elastic solid, a viscous fluid, and a 
viscoelastic fluid

On the other hand, if an ideal viscous fluid is subjected to an oscillatory strain, the 
stress response is proportional to the strain rate, 0   cos   t, which can also be 
interpreted as a lag of 2  radians behind the strain input:

0 sinxy t t  (2.18)

0 cosxy t t  (2.19)
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0 0cos sin
2xy t t t  (2.20)

where 0 0 . Using the above equations we can compute the viscosity using 
the definition of a Newtonian fluid as

0 0

0 0

cos
cos

t
t

 (2.21)

We can see that here, too, the transient effects cancel each other out, resulting in 
a constant viscosity.

However, viscoelastic materials, such as polymers, behave somewhere in between 
the perfectly elastic and the perfectly viscous materials, depending on the time 
scale. Their response can be described by

0 sinxy t t    and (2.22)

0 sinxy t t  (2.23)

showing that the stress response lags  radians behind the strain input, see Fig. 2.29. 
The shear modulus, computed using the ratio of stress to strain, takes a complex 
form with real and imaginary terms

0 0

0 0
* cos sin

i
xy

xy

t e
G i G iG

t
 (2.24)

which is graphically represented in Fig. 2.30, and referred to as complex modulus. 
The length of each vector represents the absolute value of the parameter. Therefore, 
G* is the resulting vectorial sum. G  is usually referred to as storage modulus and 
is represented by

0

0
cosG  (2.25)

It is a measure for the stored energy, e.g., during a shearing process. Upon release 
this energy can be used completely for the recovery of the deformation, which makes 
it reversible. G  is referred to as loss modulus and can be computed using

0

0
sinG  (2.26)
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It is a measure for the lost energy dissipated, e.g., as heat or used for structural 
changes of the material. Thus, ideal viscous materials are changed by deformation, 
which makes the process irreversible. The ratio of loss modulus to storage modulus 
is referred to as loss factor or loss tangent:

tan
G
G

 (2.27)

In an elastic solid,  = 0 or tan   = 0 as G  dominates G  completely. However, in a 
viscous fluid,  = 90° or tan   =  as G  dominates G  completely. In viscoelastic 
materials, 0  tan    , depending on the time scale and temperature. When the 
viscous and the elastic behavior are equal to  = 45° or tan   = 1, the material is 
making a transition from liquid to solid or vice versa. For example, this occurs 
during curing of thermosets when the system reaches its gel point. In the liquid 
state, tan   > 1 as G  > G , and after gelation, tan   < 1 as G  > G . As can be seen 
in Fig. 2.30, the loss factor can be calculated using the dimensions of the resulting 
right angled triangle.
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Figure 2.30  Vector representation of the complex shear modulus

Similarly, when the test is regarded from a rheological point of view, a complex 
viscosity can be computed using the ratio of stress to rate of deformation.

* xy

xy

t
t

 (2.28)

where  is the viscous component of the complex viscosity, also referred to as the 
dynamic viscosity, and  is the elastic component, also referred to as the out-of-phase 
component of the complex viscosity. The relation between the complex modulus and 
complex viscosity components can be described by
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G
 (2.29)

G
 (2.30)

with  representing the elastic and  the viscous behavior. This complex modulus 
representation is often used in industrial testing.

In 1958, Cox and Merz [15] observed that there is an equivalence between viscosity 
measured during oscillatory tests at low frequencies and the viscosity measured 
using a steady shear device at low rates of deformation. The equivalence can be 
expressed as

0 0
 (2.31)

In 1992, Al-Hadithi, Barnes, and Walters [16] defined a similar rule to Cox and 
Merz’s rule, where they related the storage modulus measured by oscillatory tests 
to the first normal stress difference measured by a steady shear rheometer. Using

1
2 2

0 02

G N
 (2.32)

and trial-and-error, Al-Hadithi et al. established the following relationship

1 2
0

1 22 1
2

G
N G  (2.33)

where 0 is the zero shear rate viscosity. However, in most cases the simple Cox-
Merz rule (Eq. 2.31) can be used as long as the test is performed within the linear 
viscoelastic range, also referred to as small amplitude oscillatory shear (SAOS) test. 
The linear viscoelastic domain is valid for most polymers when the deformation 
stays below 10% strain.

Recalling the definition of the Deborah number from Chapter 1, pDe t , we 
recognize that in an oscillatory test the characteristic time can be defined by 1 , 
resulting in De =   . However, deformation, 0, in conjunction with the Deborah 
number results in a Weissenberg number, We = 0    , which is a dimensionless 
number similar to the Deborah number that includes deformation in addition to 
time scale and relaxation time. Hence, a small Weissenberg number represents a 
process in the linear viscoelastic domain.
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Figure 2.31  Schematic diagram of strain magnitude sweep at a constant test frequency, 
with visible linear (SAOS) and non-linear (LAOS) viscoelastic responses and their 
corresponding stress responses.

Once the deformations are large, e.g., We > 1, such as those polymer melts are sub-
jected to during processing, the stress response starts exhibiting a non-sinusoidal 
response, where higher harmonics become evident (Fig. 2.31) [17]. In these cases, 
the stress reponse can be represented using

1 1 3 3 5 5sin sin 3 sin 5xy t t tt  (2.34)

A fast Fourier transform of the stress response can be used to determine the con-
tribution of each frequency on the compound stress response. Often, the first two 
terms, the first and third harmonic, are sufficient to represent the stress wave.
At large deformations, material properties such as storage and loss shear modulus 
start to exhibit a deformation-dependent behavior caused by molecular dis entangle-
ment and molecular orientation. Oscillatory shear tests are referred to as large ampli-
tude oscillatory shear (LAOS). Large deformations are more realistic when analyzing 
polymer melts because strains that are felt by the material during processing flows 
can be of several 100%. Figure 2.31 shows a schematic of polymer responses under 
oscillatory shear caused by small to large deformations.

Example 2.5  Storage and Loss Modulus Measurements Using Oscillatory 

Shear Tests

Using the same extrusion blow molding grade high density polyethylene as in 
Example 2.1, measure the storage and loss moduli as functions of frequency and 
temperature.
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Figure 2.32  Storage and loss moduli for a blow molding grade PE-HD as functions of 
frequency and temperature.

The storage and loss moduli were measured using a parallel plate rheometer (see 
Chapter 6) in the linear strain domain, with an applied strain amplitude of 2%. A fre-
quency scan from 0.1 to 70 Hz was performed at 170 °C and 190 °C. The disc size was 
25 mm with a distance between the plates of 2 mm. Figure 2.32 shows the results.

Example 2.6 Small and Large Amplitude Oscillatory Shear Tests

Using the same extrusion blow molding grade high density polyethylene as in 
Example 2.1, measure the stress response when imposing an oscillatory strain input. 
Repeat the experiment for various shear rates and strain amplitudes.

The same samples used in the previous examples within this chapter where used to 
impose an oscillatory shear strain for small to large amplitudes, covering the linear 
and non-linear viscoelastic regimes. Figure 2.33 presents the stress response for a 
frequency of 7.5 rad/s and a strain amplitude of 0.5. The graph reflects a sinusoidal 
response, representing a linear behavior. When plotting the stress response as a 
function of strain input, an elliptical Lissajous curve is generated (Fig. 2.34). The 
elliptical shape also reflects a linear behavior. It should be noted that the area inside 
the closed loop represents the volume-specific energy dissipated during one cycle. 
On the other hand, Fig. 2.35 presents the stress response at a frequency of 10 rad/s 
and a large strain amplitude of 10. The figure clearly shows a stress response that is 
not sinusoidal, revealing higher harmonics, as described in Eq. 2.34. Furthermore, 
the Lissajous loop shown in Fig. 2.36 is no longer elliptical, also reflecting the non-
linear behavior at larger strain amplitudes. A full Pipkin diagram (see Chapter 5) is 
presented in Fig. 2.37, where the linear and nonlinear responses are visible.
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Figure 2.33  Stress response for small amplitude (0.5 strain) deformations and a frequency of 
7.5 rad/s of a blow molding grade PE-HD.
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Figure 2.34  Lissajous loop for small amplitude (0.5 strain) deformation and a frequency of 
7.5 rad/s of a blow molding grade PE-HD.
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Figure 2.35  Stress response for large amplitude (10 strain) deformations and a frequency of 
10 rad/s of a blow molding grade PE-HD.
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Figure 2.36  Lissajous loop for large amplitude (10 strain) deformations and a frequency of 
10 rad/s of a blow molding grade PE-HD.
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0

(rad/s)

Figure 2.37  Pipkin space for a blow molding grade PE-HD.

 ■  Problems

2.1 Compare the Maxwell model presented in Chapter 1 to the experimental data 
from the step strain step test presented in Example 2.1. How does the Maxwell 
model’s relaxation time, , compare to the measured 99% decay value?

2.2 Generate a plot of the first normal stress difference coefficient, 1, for the 
graphs given in Example 2.2.

2.3 Generate a plot of the first normal stress difference coefficient, 1, using 
the information given in Figure 10 of the following paper: Baird, D. G., 
J. Non-Newtonian Fluid Mech., 148, 13–23, (2008).

2.4 Compare the results of the stress relaxation test of Example 2.1 and the stress 
overshoot test of Example 2.4.

2.5 Find a function of the form presented in Eq. 2.34 to fit the nonlinear stress 
response of Example 2.5. Use the first two terms of the equation.
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2.6 A sliding plate rheometer was used to perform a stress overshoot and relaxation 
test on a 4 MFI polypropylene copolymer at 190 °C (Fig. 2.38). The relative 
speed between the two plates was 4.15 mm/s and the separation between the 
plates was 2.3 mm. At what shear rate was the test performed? What is the 
viscosity at the given rate of deformation? Compare the time it took to reach 
a steady state shear stress and the relaxation time after the plates stopped 
moving. What can you conclude?
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Figure 2.38  Sliding plate rheometer test of a PP copolymer.

2.7 Compare the loss modulus measured in Example 2.5 to the viscosity measured 
in Example 2.2. Use Eq. 2.30 for your comparison.

2.8 Use the storage and loss moduli graphs presented in Example 2.5 to discuss the 
significance of the point where the two graphs cross. How does temperature 
affect this cross-over point?
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3 Generalized 
Newtonian Fluid 
(GNF) Models

As discussed in Chapter 2, most polymers exhibit shear thinning, temperature and 
pressure dependent viscosities. The shear thinning effect is defined as the reduction 
in viscosity at high rates of deformation. This phenomenon is explained by the fact 
that the molecular chains are disentangled and stretched out at high rates of defor-
mation and can therefore slide past each other with more ease, which in turn lowers 
the bulk viscosity of the melt. Figure 3.1 clearly shows the shear thinning behavior 
and temperature dependence of the viscosity of a general purpose polystyrene.

To take these non-Newtonian effects into consideration while neglecting the visco-
elastic effects1, it is common to define the viscosity  as a function of the strain rate 
and temperature. To calculate the deviatoric stress tensor in the momentum balance 
(see Chapter 4), we can then write

,T  (3.1)
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Figure 3.1  Viscosity curves for a polystyrene

1 The Deborah number, Eq. 1.16, defined as the product De =   , reflects the degree of viscoelasticity. Newtonian 
behavior is characterized by low De values.
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This equation is often referred to as the Generalized Newtonian Fluid model. Here, 
 is the strain rate or rate of deformation tensor defined by

tu u  (3.2)

where u  represents the velocity gradient tensor, defined in Chapter 1.

Constitutive equations based on generalized Newtonian fluid models differ in their 
shear thinning expression, but they all require that the non-Newtonian viscosity 

 is a function of the three scalar invariants of the strain rate tensor. Because of 
the incompressibility of polymer melts, the first invariant, defined by the sum of the 
diagonal terms of the tensor, equals zero (I = 0), and assuming steady shear flow, the 
third invariant, defined by the determinant of the tensor, also equals zero (III = 0). 
Therefore,  is only a function of the second invariant, II. This is expressed by 
the magnitude of  and can be written as

1
II

2
 (3.3)

where  is the magnitude of the strain rate tensor in Eq. 3.1. The second invariant 
of the strain rate tensor is defined as

II ij ji
i j

 (3.4)

The strain rate tensor components in Eq. 3.4 are defined by

ji
ij

j i

uu
x x

 (3.5)

Numerous models describe the shear thinning, temperature and pressure depen-
dence of polymer viscosity. Most are similar and based on the same assumptions; 
however, the different nomenclatures used make it difficult to distinguish between 
them. To add to the confusion, different names or combination of names are used. In 
this chapter, the most common models are presented and the connections to other 
models are highlighted. The temperature dependence is typically modeled in two dif-
ferent ways and these two approaches are explained in a general form in the following 
section. Due to the recent need for high pressure injection molding of thin products, 
a relatively new research area in the field of rheology is the pressure dependence 
of the viscosity. This topic will be addressed separately after the introduction of the 
viscous flow models. The description of the modeling of filled (Section 3.4) as well 
as cross-linking polymers (Section 3.5) will be expanded separately at the end of 
the chapter with more general comments that pertain to these systems.
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 ■ 3.1  Temperature Dependence of Viscosity

In addition to the strain rate dependence, the temperature dependence of the vis-
cosity is expressed as a function separate from the rate of deformation dependence. 
This can be written as

,T f T  (3.6)

where for small variations in temperature, f T  is often approximated using an 
exponential function such as

0expf T a T T  (3.7)

In the above equation, a is the temperature sensitivity of the viscosity, T is the 
temperature at which the viscosity is sought, and T0 is a reference temperature, at 
which the viscosity is known. However, as mentioned in Chapter 2, a variation in 
temperature corresponds to a shift in the time scale when determining characteristic 
relaxation times within the polymer melt. There are two additional models that can 
be used, depending on the specific material processed and the desired temperature 
range: the Arrhenius shift and the WLF shift. The Arrhenius shift [1], which applies 
to semi-crystalline polymers, is written as

0 0

00 0

1 1
expT

T E
a T

R T TT
 (3.8)

where E0 is the activation energy, T0 a reference temperature, and R the gas constant. 
Using this shift, the viscosity curves measured at different temperatures can be 
used to generate a master curve at a specific temperature. Figure 3.2 [2] shows the 
viscosity of a low density polyethylene, for which the measured values were shifted 
to a reference temperature of 150 °C. For the shift in Figure 3.2, an activation energy 
of E0 = 54 kJ/mol was used.

For amorphous thermoplastics, the Arrhenius shift is valid for temperatures 
T > Tg + 100 K. Below this temperature, free volume effects dominate the behavior. 
Hence, for lower temperatures, the temperature dependence of the viscosity of 
amorphous thermoplastics is best described by the Williams-Landel-Ferry (WLF) 
equation [3, 4]. This equation describes the viscosity  of the polymer at any given 
temperature, T, in relation to a reference viscosity at a reference temperature, Ts

1 s0

2 s0 s
log logT

C T TT
a T

C T TT
 (3.9)
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Figure 3.2  Reduced viscosity curve for a low density polyethylene (LDPE) at a reference 
temperature of 150 °C.

For polymers, this equation holds true only in the zero shear viscosity region. 
Because Tg is a widely used temperature, it is often chosen as the reference tempera-
ture Ts with C1 = 17.44 and C2 = 51.6 K. Tg is much lower than typical processing 
temperatures, therefore, van Krevelen [5] proposed a better alternative for Ts using 
Ts = Tg + 43 K, resulting in C1 = 8.86 and C2 = 101.6 K. Usually, the viscosity is 
not known at the reference temperature Ts, but at a temperature in the processing 
temperature range T*, so that a second shift between measurement or processing 
temperature T* and the reference temperature Ts is required. Equation 3.10 presents 
the relation between viscosity at T* and at the actual temperature T

s s0

0 s s

8.86 * 8.86
log

* 101.6 * 101.6
T T T TT

T T T T T
 (3.10)

where the first term represents the shift between the measurement temperature T* 
and the reference temperature Ts, and the second term represents the shift described 
above in Eq. 3.9, between the desired temperature T and the reference temperature Ts.

Table 3.1 gives an overview of the temperature differences between the glass transi-
tion or melting temperature and the processing temperatures Tprocess of amorphous 
and semi-crystalline thermoplastics, respectively.
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Table 3.1  Difference between Common Reference Temperatures and Processing Temperatures 
for Common Thermoplastics

Polymer Tg / Tm (°C) Tprocess (°C) T (K)
Polystyrene   90–100 200–240 100–150
High density polyethylene 125–135 180–250   45–125
Low density polyethylene 100–110 150–310   40–210
Polypropylene 160–165 200–250   35–90
Polyamide 66 255–265 295–310   30–55
Polycarbonate 140–150 280–320 130–170
Polyvinyl chloride −70–80 165–200   85–270

Example 3.1 WLF Shift

Compute the temperature shift factors for the given polycarbonate data using the 
WLF equation.

The shear dependent viscosity data are given for four different temperatures in the 
processing temperature range: 260, 280, 300 and 320 °C. In Figure 3.3 the logarith-
mic viscosity is plotted over the logarithmic shear rate. Calculate the temperature 
shift factors aT for every single curve using Ts = 320 °C.
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Figure 3.3  Viscosity curves for a polycarbonate

Table 3.2  Logarithmic Zero Shear (0 s−1) and Shear Dependent (2, 3.5 s−1) Viscosity for 
Different Temperatures

Log shear rate (s−1) log   (260 °C) log   (280 °C) log   (300 °C) log   (320 °C)
0 3.371 2.988 2.666 2.392
2 3.252 2.929 2.634 2.374
3.5 2.495 2.387 2.259 2.116
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The shift factors are calculated with the zero shear viscosity data of Table 3.2 using 
Eq. 3.9. The results are given in Table 3.3:

Table 3.3  Shift Factors and T

T (°C) T = T − Ts = (T − 320 °C) log aT (@ 1 s−1) [−(T − Ts)] / log aT

260 −60 1.409 42.583

280 −40 1.249 32.026

300 −20 1.115 17.937

320 0 1 0

Now plot the WLF diagram using these shift factors with s log TT T a  as the 
y-axis and sT T  as the x-axis.

The determined linear equation Y = −0.709 T + 1.861 can be used to calculate the 
viscosity at any temperature above Tg.

In order to calculate the viscosity at a processing temperature of, e.g., T = 272 °C, 
the temperature difference T = 272 °C − 320 °C = −48 °C is needed. Therefore, 
solving the equation yields a Y-value

0.709 48 1.861 35.893Y

Together with the temperature difference T, the shift factor can be calculated using

0 48
log 1.337

35.893T
T T

a
Y
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Figure 3.4  WLF diagram for linear regression to determine the constants C1 and C2
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Now the log   at 272 °C can be obtained by adding the log   at the reference tem-
perature, 320 °C,

log 272 °C log log 320 °C 1.337 2.392 3.729Ta

The viscosity is calculated as

3.729272 °C 10 5357 Pa s

 ■ 3.2  Viscous Flow Models

Several models that comply with the Generalized Newtonian Fluid assumptions have 
been proposed in the literature. They vary in their form and in the number of para-
meters required to fit them to experimental results. These models have two general 
purposes: to obtain analytical solutions for different flow scenarios encountered in 
polymer processing, and to allow storage of the measured data with a minimum 
number of parameters [6]. The flow behavior of different fluids requires usage of 
different models; some fluids may be shear thinning, others may be fluids that 
experience a yield stress, and exhibit both behaviors (Fig. 3.5).

A rheologist’s task is to find the model, represented in Eq. 3.1, that best fits the mea-
sured viscosity data, and at the same time is appropriate for the specific application 
(process) and type of flow. Complex models that better represent the rheological 
behavior of the polymer can add significant difficulty to the analysis of a flow field. 
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Figure 3.5  Stress curves (left) and viscosity curves (right) for different fluids;  
(1) Newtonian fluid, (2) shear thinning fluid, (3) Newtonian fluid with yield stress 0, 
(4) shear thinning fluid with yield stress 0
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However, such models also increase the accuracy of the results and will require 
numerical solutions. Some of the models used on a day-to-day basis to represent the 
viscosity of industrial polymers are presented in the following sections.

3.2.1  The Power Law Model

The Power Law model proposed by Ostwald [7] and de Waele [8] is a simple model 
that accurately represents the shear thinning region in the viscosity versus shear 
rate curve, but neglects the Newtonian plateau observed at small strain rates, see 
Fig. 3.6. The Power Law model can be written as:

1nm T  (3.11)

where m is often referred to as the consistency index and n as the Power Law or flow 
index. The Power Law index represents the shear thinning behavior of the polymer 
melt for n < 1. The consistency index may include the temperature dependence of 
the viscosity such as represented in Eq. 3.7. The temperature dependence of the 
consistency index can be represented using the relations given in Section 3.1. For 
example, one can use

0 0expm T m a T T  (3.12)

where a is the temperature dependence or sensitivity parameter.

Figure 3.7 presents normalized velocity distributions inside a tube for fluids with 
various Power Law indices calculated using the Power Law model. It can be seen 
that a Power Law index of n = 1 represents Newtonian behavior and n = 0 represents 
plug flow.
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Figure 3.6  Viscosity curve (solid line) and approximation by the Power Law model (dashed line) 
in Eq. 3.11
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Figure 3.7  Pressure flow velocity distributions inside a tube for fluids with various Power Law 
indices

Table 3.4  Power Law n, Consistency Indices m, and Temperature Dependence Constants a for 
Common Thermoplastics

Polymer m (Pa ⋅ sn) n a (°C−1) T (°C)
Polystyrene 2.80  104 0.28 0.025 170

High density polyethylene 2.00  104 0.41 0.002 180

Low density polyethylene 6.00  103 0.39 0.013 160

Polypropylene 7.50  103 0.38 0.004 200

Polyamide 66 6.00  102 0.66 0.016 290

Polycarbonate 6.00  102 0.98 0.015 300

Polyvinyl chloride 1.70  104 0.26 0.019 180

Table 3.4 presents a list of typical Power Law and consistency indices as well as 
temperature dependence parameters for common thermoplastics. These parameters 
will vary significantly from grade to grade of the same type of polymer because 
of the variations in molecular weight, side groups, as well as flowing agents and 
other processing additives, to name a few. Therefore, the coefficients presented here 
should be used only as a guideline, and are not recommended for design purposes.

The Power Law model has the following limits:

0 as and
as 0

The infinite viscosity at zero strain rate  leads to an erroneous result when a region 
of zero shear rate is encountered, e.g., for flow in a tube or slit. Here, the shear rate 
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is high at the walls, but low near the center and zero at the center itself. Neglecting 
the zero shear viscosity values in the center would result in an over-prediction of 
the viscosity in this area. Therefore, the predicted velocity distribution would be 
flatter at the center than the experimental profile.

Another example is the filling of a cavity at high flow rates in the beginning of the 
filling process and at a low flow rate towards the end of filling. Here, the viscosity 
at the end of filling would be too high, leading to over-predicted injection molding 
pressure requirements.

Computer simulation of polymer flows overcome this problem by using a truncated 
model, such as

1
00 for andnm T  (3.13)

0 0form T  (3.14)

where m0 represents a zero shear rate viscosity and 0  the shear rate where the 
Newtonian plateau ends and shear thinning starts to manifest itself.

3.2.2  The Bird-Carreau-Yasuda Model

Bird, Carreau [9] and Yasuda [10] developed a model that accounts for the observed 
Newtonian plateaus and fits a wide range of strain rates; it contains five parameters:

1

0
1

n
a a  (3.15)

where 0 is the zero shear rate viscosity,  is an infinite shear rate viscosity of the 
second Newtonian plateau,  is a time constant, and n is the Power Law index, which 
accounts for the shear thinning behavior, see Fig. 3.8. The parameter a accounts for 
the width of the transition region between the zero shear viscosity and the Power 
Law region, which in the original Bird-Carreau model equaled 2. In the literature this 
model is referred to by different combinations of the collaborators’ names, although 
Carreau model and Bird-Carreau model are commonly used.

In many cases, the infinite shear rate viscosity is negligible, reducing Eq. 3.15 to a 
three-parameter model:

0
1

1
n

a a

 (3.16)



693.2 Viscous Flow Models

Log shear rate, log  

 

0

Lo
g 

vi
sc

os
ity

, l
og

 
 

∞

Curvature 
determined by a

Transition
determined by 

n-1

Figure 3.8  Viscosity approximation using the Bird-Carreau-Yasuda model in Eq. 3.15

Equation 3.16 was modified by Menges, Wortberg, and Michaeli [11] to include a 
temperature dependence using a WLF relation. The modified model, which is often 
used in commercial polymer data bases, is written as

3

1

21
T

k
T

k a

k a
 (3.17)

where the shift factor aT applies well for amorphous thermoplastics and is written as

4 5 5

4 5 5

8.86  8.86  
log

101.6 101.6T
k k T k

a
k k T k

 (3.18)

The above equation is comparable to Eq. 3.10 and for semi-crystalline thermoplastics 
with the Arrhenius shift given in Eq. 3.8.

Table 3.5 presents constants for the Carreau-WLF (amorphous) and Carreau-Arrhe-
nius models (semi-crystalline) for various common thermoplastics.

Table 3.5  Constants for Carreau-WLF (Amorphous) and Carreau-Arrhenius (Semi-Crystalline) 
Models for Various Common Thermoplastics

Polymer k1 (Pa s) k2 (s) k3 k4 (°C) k5  (°C) T0  (°C) E0 (J/mol)
Polystyrene  1777 0.064 0.73 200 123 – –

High density polyethylene 24198 1.38 0.60 – – 200  22272

Low density polyethylene   317 0.015 0.61 – – 189  43694

Polypropylene  1386 0.091 0.68 – – 220 427198

Polyamide 66    44 0.00059 0.40 – – 300 123058

Polycarbonate   305 0.00046 0.48 320 153 – –

Polyvinyl chloride  1786 0.054 0.73 185  88 – –
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3.2.3  The Cross-WLF Model

This 6-parameter model considers the effects of shear rate and temperature on the 
viscosity. Similar to the Bird-Carreau model, this model describes both Newtonian 
and shear thinning behavior. The shear thinning part is modeled by the general Cross 
equation [12], which is a popular and earlier alternative to the Bird-Carreau-Yasuda 
model:

1
0

1

1 nK
 (3.19)

where 0 is the zero shear rate viscosity,  is an infinite shear rate viscosity, K is a 
time constant such as k2 in Table 3.5, and n is the Power Law index, which accounts 
for the shear thinning behavior. For 0  and , the Cross model reduces 
to the Power Law model. If the infinite shear rate viscosity is negligible, the well-
known form of the Cross model can be written as

0
1

01
*

n  (3.20)

Here, * is the critical shear stress at the transition from the Newtonian plateau, 
with 0 *K , and n is the Power Law index, see Fig. 3.9. If the model is used to 
fit the data prior to making the Weissenberg-Rabinowitsch correction (see Eq. 6.19 
in Chapter 6), the apparent shear stress can be shifted [13] by setting

1* 4
 

3 1

n
nn

n
 (3.21)

In this case, the remaining model parameters remain unchanged.

The zero shear viscosity is modeled with the WLF equation

1 2
0 1

2 2
exp

A T D
T D

A T D
 (3.22)

where D1 is the viscosity at a reference temperature D2 and A1 and A2 describe 
the temperature dependency, which is comparable to the temperature shift factor 
described in Eq. 3.9.

The Cross-WLF model is the most common model used by injection molding simu-
lation software, because it offers the best fit to most viscosity data [14]. Table 3.6 
presents constants for various common thermoplastics.
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Figure 3.9  Viscosity approximation with the Cross-WLF model in Eq. 3.20 and Eq. 3.22

Table 3.6  Constants for the Cross-WLF Model for Various Common Thermoplastics [15, 16]

Polymer  (Pa) n D1 (Pa s) D2 (K) A1 A2 (K)

Polystyrene 31,200 0.243 1223 503 6.5 158.2

High density polyethylene 75,700 0.342 7   1012 153 26.3 51.6

Low density polyethylene 34,515 0.315 3.1   1014 233 34.6 51.6

Polypropylene 32,477 0.251 564 493 2803.3 165,097.1

Polyamide 66 151,905 0.347 144 573 256,999.6 11,235,949

Polycarbonate 8,437,056 0.116 462 573 8.4 246.8

Polyvinyl chloride 46,070 0.399 3.2   1016 353 42.9 51.6

3.2.4  The Bingham Model

The Bingham model is an empirical two-parameter model that represents the 
rheological behavior of materials that exhibit yield stresses 0, below which the 
material does not flow. Typical examples of Bingham fluids are polymer emulsions 
and slurries. In the flow range, above the yield stress, a Bingham fluid behaves like 
a Newtonian liquid and can therefore be represented as

0or 0 for  (3.23)

0
0 0for  (3.24)

Here,  is the magnitude of the deviatoric stress tensor and 0 is the Newtonian 
viscosity for vanishing yield stress. The model shows that a critical level of stress 
must be attained in order to initiate flow.
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3.2.5  The Herschel-Bulkley Model

The Herschel-Bulkley model is widely used to represent the behavior of fluids that 
have a yield stress, such as the Bingham fluid, but that otherwise exhibit shear 
thinning behavior. The model is represented as

0
nm  (3.25)

10
0fornm  (3.26)

where 0 is the yield stress, m the consistency index, and n the Power Law or flow 
index. As with the Bingham model, this model also requires that a critical level of 
stress must be attained to initiate flow. Below this critical stress 0, the material 
behaves like a solid, allowing it to sustain stress without flow, but above the critical 
stress, the material flows like a Power Law fluid. Similar to the Power Law model, 
n < 1 represents shear thinning, n > 1 shear thickening, and n = 1 reduces the model 
to the Bingham model and represents Newtonian flow above the critical yield stress.

Table 3.7 shows that all models discussed so far can be derived from one base equa-
tion. While the Power Law model is the simplest model that can be used when the 
shear rate is high, the Cross-WLF model is the most common model in numerical 
simulations because it fits the viscosity data of a wide range of materials. In terms 
of practical applications, it is closely followed by the Bird-Carreau-Yasuda model.

Table 3.7  Overview of Viscous Flow Models

Power Law Bird-Carreau-Yasuda Cross-WLF Bingham

Base equation (1 )
0

1

1
n

a aK

Assumptions

0 ,
,

0,
1,a

K m

0,
K 0

0,
1,

*

a

K

0

0 ,
,

,
0

YK
n

Model 1nm
0

(1 )

1
n

a a

0
1

01
*

n
0

Y
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3.2.6  Accounting for Pressure Dependence in Viscous Flow Models

Although the effect of pressure on viscosity is well known, few research groups have 
focused on this topic. However, using some experimental values in conjunction with 
theoretical considerations, pressure effects have been incorporated into existing 
models. These are discussed in the following sections.

3.2.6.1  Power Law

The Power Law model, Eq. 3.11, may also include a dimensionless temperature 
sensitivity factor, a or , Eq. 3.7, as well as a dimensionless pressure sensitivity 
factor, b or , proposed by Barus [17], respectively,

1
0 00

, , exp exp nT p m a T T b p p  (3.27)

The opposing signs of the sensitivity factors a and b reflect their effect on viscosity, 
due to the fact that viscosity increases with decreasing temperature and increasing 
pressure. The terms in the above equation can be expressed in terms of a tempera-
ture shift factor

0
0

0 0
expT

T
a T a T T

T
 (3.28)

and a pressure shift factor

0
0

0 0
expp

p
a p b p p

p
 (3.29)

This model neglects the Newtonian plateau, or shear independent behavior, observed 
with polymers at low shear rates. However, the exponential form of the viscosity 
shifts make it easy to represent the sensitivity to temperature and pressure during 
measurements and processing.

3.2.6.2  Carreau-WLF

Cogswell [18] related a viscosity change to a change in density, because a tempera-
ture reduction and an increase in pressure will increase both density and viscosity. 
Based on this assumption, Menges et al. [11] introduced the pressure shift in the 
WLF-temperature shift, Eq. 3.10, in combination with the Bird-Carreau-Yasuda 
model, Eq. 3.17. For their shift sT p  they used the glass transition temperature 
Tg from pressure-volume-temperature (pvT) measurements [19, 20] at 1 bar, and a 
correction that included the pressure dependence of Tg
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s g g (1 bar) 143 K 43 KT p T T P p  (3.30)

with P1 being the pressure dependence of the glass transition and p the absolute 
pressure. P1 ranges from 0.02 to 0.03 K/bar, depending on the polymer. Introducing 
Eq. 3.30 into Eq. 3.18 results in

s s 1
0

s s 1

8.86 * 8.86 
log , log

101.6 * 101.6
T T T T P p

T p
T T T T P p

 (3.31)

In the above equation, the first term represents a shift between the measured 
temperature T* and the reference temperature Ts. The second term represents the 
temperature and pressure shifts between the actual temperature and the reference 
temperature, as well as between 1 bar and the actual pressure. Hence, in the above 
model a rise in pressure is equivalent to a drop in temperature. Menges et al. [11] 
proposed that P1 = 0.02 K/bar, which provides a good approximation in case pvT-
data are not available.

3.2.6.3  Cross-WLF

Incorporating the pressure dependence in the Cross-WLF equation leaves the shear 
thinning part unchanged. It is modeled by the general Cross equation

0
1

01
*

n  (3.20)

where * is the critical shear stress at the transition from the Newtonian plateau, 
0, to the Power Law regime, and n denotes the Power Law index.

The zero shear viscosity is modeled with the WLF equation

1 c
0 1

2 c
, exp

A T T
T p D

A T T
 (3.32)

with c 2 3T D D p  and 2 2 3A A D p . In addition to the parameters in Eq. 3.25, 
D3 denotes the pressure dependency, while p is the pressure acting on the melt. 
Because of the added parameters, the model is sometimes referred to as the 7-para-
meter model. D1 reflects the initial level of viscosity at reference conditions, D2 is 
typically taken as the glass transition temperature Tg, and A1 and 2A  are tempera-
ture dependent factors. Other than P1 in Eq. 3.31, D3 also corrects the reference 
temperature D2. If pressure dependent viscosity data are not available, pvT-data are 
used to account for the pressure dependence of the glass transition temperature. 
Equation 3.32 is often written as
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1 2 3
0 1

2 2
, exp

A T D D p
T p D

A T D
 (3.33)

Typical values for the pressure sensitivity for different polymers are listed in 
Table 3.8.

Table 3.8  Pressure Shift Factors of Viscosity for Various Common Polymers

Polymer b or  (bar−1)
Power Law

Reference D3 (K bar−1)
Cross-WLF

Reference

Polystyrene 0.004345
0.00568, 0.0029

21,
22, 23

0.1 24

High density polyethylene 0.001036
0.0015, 0.001
0.001

21,
22, 23
25

0.012 26

Low density polyethylene 0.00183
0.00147
0.00165, 0.0016

21, 23, 25

Polypropylene 0.002091,
0.00282, 0.0022
0.0023

21, 22, 23, 25 0.0205, 0.014 24, 27

Polycarbonate 0.003112 21 0.03, 0.018 26, 27

Polymethyl methacrylate 0.004357
0.0024

21, 23 0.023 14

The differences between the shift factors for one material reported by different 
research groups underline the difficulty of the measurement. Therefore, different 
measurement methods for the pressure influence on viscosity are described in more 
detail in Chapter 6.

3.2.6.4  Universal Temperature and Pressure Invariant Viscosity Function

Because the viscosity behavior of a specific thermoplastic is very similar from grade 
to grade one can predict its full behavior based on one single function. This allows the 
use of single point data, such as measured with an MFI, to predict the viscosity of a 
given material as a function of pressure and temperature. This “universal” behavior 
was recognized in the early polymer research days and is reflected in the WLF shift. 
Different research groups have investigated this temperature and pressure invariant 
representation of viscosity [28, 29, 30, 31, 32, 33]. Reference viscosity curves, such 
as the one presented for polycarbonate in Fig. 3.10, can then be used as a reference, 
if no multipoint data are available. To generate such a curve, the shear dependent 
viscosity is divided by the shear independent viscosity, 0, for each given temperature 
and pressure. This is followed by multiplying the shear rate by 0. By doing this, 
the “universal” curve approaches a slope of −1, or a 45° angle in a log-log scale.
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Figure 3.10  Master curve for polycarbonate (Makrolon 2805) as obtained as a function of zero 
shear viscosity
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Vinogradov and Malkin [34] discovered that the viscosity curves for several struc-
turally different materials, such as polyethylene, polypropylene, polystyrene, and 
unvulcanized natural rubber, could be reduced to a narrow band of viscosity curves 
if plotted as 0 0log f  as shown in Fig. 3.12.

Figure 3.11 shows schematically how the master curve is generated from shear 
dependent viscosity data.

Dividing the viscosity by the zero shear viscosity gives a dimensionless number, 
0log , which becomes zero when the viscosity approaches the shear independent 

viscosity at the Newtonian plateau, and is negative in the shear thinning region, 
see Fig. 3.12.

The centerline in Fig. 3.12 represents the universal, temperature invariant viscosity 
function or master curve. The band width shows how close the master curves align 
for the investigated materials [34]. As the pressure dependence can be converted 
into a temperature dependence, this master curve can also be used for a pressure 
and temperature independent presentation [35]. The master curve can be described 
by a general viscosity function in the form

12
0 1 0 2 0, , 1T p A A  (3.34)

where 0 is the zero shear viscosity as a function of temperature and pressure as well 
as shear rate . A1, A2 and  are constants with A1 = 6.12 ⋅ 10−3, A2 = 2.85 ⋅ 10−4, and 

 = 0.355 [34]. Rewriting the constants 1
1 1A  and 1 2

2 2A  and assuming 
 = n − 1, a function very similar to the Cross model, Eq. 3.20, is obtained

0
2

0 0

1 2

, ,

1

T p  (3.35)

where 1 = 1,715,943 Pa and 2 = 98,441 Pa. Menges et al. [35] showed that this 
universal viscosity function allows the use of single-point viscosity data to predict 
rate dependent flow behavior. Of course, the use of multi-point data is always 
re commended. However, in case only single-point data such as MFI is available, this 
approach can be used to estimate the shear rate dependent behavior. An example 
for this estimation is given in the following.

Example 3.2 Vinogradov’s Universal Viscosity Approach

For injection molding experiments with HDPE, the following single-point material 
properties are known from the material datasheet:
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 MFI: 20 g/10 min measured at 190 °C and 2.16 kg weight

 Density at room temperature 
0T : 0.948 g/cm3

 Linear thermal expansion coefficient : 6.9 ⋅ 10−4 K−1

In order to obtain shear dependent viscosity data, the single-point MFI value can 
be used. For this approach the testing conditions and geometry of the die must also 
be known. For MFI data, the geometry of the ASTM standard D1234 [36] can be 
used; the standard utilizes a capillary with 2.095 mm diameter (R = 1.0475 mm) 
and 8 mm length.

The melt flow index (MFI) is converted into the melt volume flow rate (MVR) Q by

3 320 g cmMFI cm
MVR 28.39

* 0.704 g 10 min 10 min
Q

T

where the density  at the measurement temperature T* of 190 °C is calculated by

0 3 4 1
0

3

1 g 1
0.948

1 * cm 1 3 6.9 10 K 190°C 23°C

g
0.704

cm

TT
T T

where T0 is room temperature, and  is the linear thermal expansion coefficient, 
which has to be multiplied by 3 to obtain the required volume expansion coefficient.

Because the flow within the capillary can be represented by the Hagen-Poiseuille 
equation (Chapter 4), the shear rate at the wall of the capillary can be easily cal-
culated. Using Schümmer’s assumption [37], which is explained in more detail in 
Section 6.4.2, that the intersection of the velocity distribution of the Newtonian and 
the shear thinning fluid coincides at the same position for all polymers, the true 
shear rate w  (Eq. 6.28) and shear stress w  (Eq. 6.29) at the wall can be computed 
for the melt flow indexer measurement using

3
1

w 3 3

28.39 cm
41.17 s

0.10475 cm 600 s

Q
R

and

w
0.0010475 m 768.12 MPa 

0.32 MPa
8 8 m

R p z

where p z  is the pressure gradient along the capillary over the length L, given by

2 2

21.18 N MPa
768.12  

m0.0010475 m 0.008 m

Fp z
R L
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where F is the piston load of the MFI (2.16 kg ⋅ 9.81 m/s2) and L is the die length. 
The radius of the piston should be used for the pressure calculation; however, for 
simplification the radius of the die R is used here.

The viscosity under MFI measurement conditions is then

w
w 1

w

0.32 MPa
, *, * 7675.15 Pa s

41.17 s
T p

Because the shear rate experienced by the material inside the melt flow indexer 
is very small (< 100 s−1), the resulting viscosity value of 7,675.15 Pa s can be 
considered as the zero shear viscosity 0 *, *T p . To assure that this assumption 
is correct, the MFI should be measured using small loads, allowing the presented 
calculation of w  and w.

In order to obtain the zero shear viscosity at a given temperature and pressure, first 
the pressure at the entrance of the MFI measurement die, p*, has to be calculated 
using

768.12 MPa 0.008 m
* 3.07 MPa 30.72 bar

2 2 m
p z L

p

Now the viscosity under typical processing conditions of HDPE, e.g., 210 °C at 1 bar 
and at 1000 bar, should be measured. Therefore, the temperature and pressure shifts 
of the modified Carreau-WLF model, Eq. 3.31, have to be used

s s 1

s s 1

8.86  * 8.86 
101.6 * 101.6

0 0, *, * 10
T T T T P p
T T T T P pT p T p

where T* = 190 °C, p* = 30.72 bar, and P1 = 0.02 K/bar. For T = 210 °C, p = 1 bar 
and Ts = −150 °C + 43 °C = −107 °C. The zero shear viscosity is

8.86  190 °C 107 °C 8.86 210 °C 107 °C 0.61°C
101.6 °C 190 °C 107 °C 101.6 °C 210 °C 107 °C 0.61°C

0 0
0.111029

, *, * 10

7675.15 Pa s 10 5943.72 Pa s

T p T p

For T = 210 °C, p = 1000 bar and Ts = −150 °C + 43 °C = −107 °C, the zero shear 
viscosity is

8.86  210 °C 107 °C 8.86  210 °C 107 °C 20 °C
101.6 °C 210 °C 107 °C 101.6 °C 210 °C 107 °C 20 °C

0 0
0.1079000

, ,1000 bar 10   

5943.72 Pa 10 7620.05 Pa s

T p T

s
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In addition, the shear rate dependent viscosity can now be calculated with the uni-
versal Eq. 3.34 for T = 210 °C, p1 = 1 bar, and p2 = 1000 bar so that the following 
Table 3.9 can be generated.

Table 3.9  Shear Rate Dependent Viscosity Data of HDPE at 210 °C and 1 and 1000 bar 
Using the Vinogradov Approach (Eq. 3.34)

Shear rate (s−1) 1 40 80 200 400 1000 3000 5000
1 bar 4680 1770 1270 768 507 284 137  97

1000 bar 5820 2260 1620 984 650 364 176 124

 ■ 3.3  Elongational Viscosity

In polymer processes such as fiber spinning, blow molding, thermoforming, foaming, 
certain extrusion die flows, and compression molding with specific processing 
conditions, the major mode of deformation is elongational.

To illustrate elongational flows, consider the fiber spinning process shown in 
Figure 3.13.

F

Figure 3.13  Schematic diagram of a fiber spinning process

As the filament is stretched, a simple elongational flow develops with the following 
components of the rate of deformation:

11  (3.36)

22  (3.37)

33 2  (3.38)

where  is the elongation rate, and the non-diagonal terms of ij  are all zero. The 
diagonal terms of the total stress tensor can be written as
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11 p  (3.39)

22 p  (3.40)

33 2p  (3.41)

Because the only outside forces acting on the fiber are in the axial or 3-direction, 
for the Newtonian case, 11 and 12 must be zero. Hence,

p  (3.42)

33 3  (3.43)

which is known as elongational viscosity or Trouton viscosity [38]. This is analogous 
to elasticity with the following relation between elastic modulus, E, and shear 
modulus, G:

2 1
E
G

 (3.44)

where  is Poisson’s ratio. For the incompressibility case, where  = 0.5, Eq. 3.44 
reduces to

3
E
G

 (3.45)

Figure 3.14 [39] shows shear and elongational viscosities of polystyrene. In the 
region of the Newtonian plateau, the limit of 3, shown in Eq. 3.43, is quite clear. 
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Figure 3.14  Shear and elongational viscosity curves of polystyrene
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Figure 3.15 [40] shows plots of elongational viscosities at common processing con-
ditions as functions of stress for various thermoplastics. Measuring elongational or 
extensional viscosity is an extremely difficult task, because maintaining a constant 
strain rate is challenging. For example, the specimen must be deformed uniformly 
exponentially. Different common measurement techniques are explained in more 
detail in Chapter 6 and additional examples are provided.

 ■ 3.4  Suspension Rheology

Particles suspended in a material, such as in reinforced or filled polymers, have a 
direct effect on the properties of the final component and on the viscosity during 
processing. Today, polymer materials are seldom used in their pure form. Instead 
various filler particles are used to enhance mechanical properties, increase the 
resistance to wear, improve thermal or electrical conductivity, add magnetic prop-
erties, and much more. In addition, the use of polymers as binders during ceramic 
processing is another growing market. The shape of those particles can vary from 
rod-like particles in fiber suspensions to spherical particles or flakes. The viscosity 
of a fluid filled with particles is higher than that of the neat polymer. The viscosity 
of the filled system depends on the volume fraction of the particles, the particle 
shape, the average particle size and the size distribution, the shear rate, and the 
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Figure 3.15  Elongational viscosity curves as functions of tensile stress for several thermoplastics
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interaction between particles as well as between particles and the polymer matrix 
[41]. A volume fraction between 20 to 40% is considered low filler loading range, 
whereas 40 to 60% is referred to as high filler loading range. The higher the volume 
fraction and the larger the aspect ratio (fiber > platelet > sphere) of the particle, the 
higher the viscosity increase compared to the neat polymer.

Depending on whether the matrix system is a thermoplastic or a thermoset, the flow 
is shear thinning or Newtonian, respectively [42]. However, during flow particles 
may agglomerate. The shape of these clusters is dependent on the shear rate and 
directly related to a change in viscosity [43, 44]. Another effect that accompanies 
agglomeration or filler size in general is thixotropy [43]. During shearing, the initial 
formation of the particles begins to change until a final structure has formed [45]. 
This change is accompanied by an initial decrease in viscosity until a steady-state 
Newtonian plateau is reached. Both effects are directly proportional to the volume 
fraction and size of the filler.

However, viscosity measurements of filled polymers are more difficult than those of 
neat polymers, because the no-slip condition at the wall cannot be readily assumed. 
Furthermore, shearing occurs not only at the wall but also between the particles. For 
measurements in capillary rheometers, problems occur at the inlet of the die. First, 
the inlet pressure drop is larger and sometimes instable. Second, phase separation 
can occur with filled polymers and therefore impede the development of steady flow.

For example, magnetic particles, such as strontium ferrite, distributed in a polymer 
matrix are used to manufacture permanent magnets. These particles tend to agglom-
erate, as seen in Fig. 3.16. An extensive study on single-point viscosity values, such 
as the melt volume rate (MVR) and shear rate and temperature dependent viscosity 
data, revealed the influence of particle content on flow behavior [46].

Figure 3.16  SEM of strontium ferrite particles
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Figure 3.17  Dependence of melt volume rate (MVR) on volume fraction of strontium ferrite in 
a PA 6 matrix

The influence of different volume fractions of strontium ferrite on the MVR is shown 
in Fig. 3.17.

Figures 3.18 and 3.19 present the effect of increasing filler volume fraction on the 
shear rate and temperature dependence, respectively.

The viscosity shifted to higher values with increasing filler content. In the shear rate 
range from 103 − 104 s−1 the viscosity shifted from 102 to 5 ⋅ 102 Pa s for neat PA, 
and to 5 ⋅ 103 to 104 Pa s for 60 vol.-% filler. Referring to Fig. 3.17, we can see that 
because of the higher apparent viscosity during the measurements using higher filler 

101

102

103

104

105

101 102 103 104 105

10-1

100

101

101 102 103 104 105

Shear rate,  
.

Vi
sc

os
ity

, 
 

S
he

ar
 s

tr
es

s,
 

 

s-1

Pa.s
N/mm2

s-1

Shear rate,  
.

60 % 60 %
50 % 50 %
40 % 40 %
30 % 30 %
20 % 20 %
10 % 10 %

0 % 0 %
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content, lower shear rates were achieved. A conversion of the shear rate dependent 
viscosity and the corresponding shear stress shows a linear dependence of the shear 
stress on the shear rate when plotted on a logarithmic scale. Therefore, only the 
viscosity level, but not the shear rate dependence is affected by the filler content.

The temperature dependence of the zero shear viscosity is measured in a parallel 
plate rheometer. The drop once the crystallization temperature is reached decreases 
with increasing filler content and almost vanishes for 65 vol.-% filler content. 
Therefore, the influence of filler content is strong in the melt and weaker in the 
solid material.

Numerous models have been proposed to predict the viscosity of filled liquids [47, 
48, 49, 50, 51], and most take the form of a power series of the volume fraction :

2 3f
1 2 3

0
1  a a a  (3.46)

The linear term in Eq. 3.46 represents the reduction of the flow passage caused by 
the fillers that are dragged by the fluid and are not deformed, as shown in Fig. 3.20.
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Figure 3.20  Schematic diagram of strain rate increase in a filled system
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Figure 3.21  Viscosity approximation using the Geisbüsch Model in Eq. 3.49

For instance, Einstein’s model for viscosity of a filled liquid only includes the linear 
term with a1 = 2.5. He derived his equation based on a viscous dissipation balance. 
The quadratic term in the equation represents the effects related to the interaction 
between the filler particles. For small volume fractions (< 10 vol.-%), Eq. 3.46 can 
be simplified to

2f

0
1  (3.47)

Geisbüsch suggested a model that included a yield stress, and in which the strain 
rate of the melt increases by a factor  as

0
f 0  (3.48)

where f is the viscosity of the filled polymer, 0 is the yield stress,  is the shear 
rate, and 0 is the viscosity of the neat polymer, see Fig. 3.21. For high deformation 
stresses, as typically found in polymer processing, the yield stress in the filled 
polymer melt can be neglected, resulting in the following, simplified expression

f 0  (3.49)

Figure 3.22 compares Geisbüsch’s experimental data to the results from Eq. 3.46 
using the coefficients a1 = 2.5 and a2 = 14.1 as derived by Guth [49]. The data and 
Guth’s model seem to agree well. A comprehensive survey of particulate suspensions 
was given by Gupta [52], and on short-fiber suspensions by Milliken and Powell [53].
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Figure 3.22  Viscosity increase as a function of volume fraction of filler for polystyrene and low 
density polyethylene containing spherical glass particles with diameters ranging 
from 36 μm to 99.8 μm

 ■ 3.5  Chemo-Rheology

Chemo-rheology is used to describe the rheological behavior of cross-linking poly-
mers during chemical reactions such as curing or vulcanization. The changes in 
flow behavior of cross-linking polymers is captured using rheological measurement 
during the curing reaction and can be used for material evaluation, process design, 
and process simulation. The rheological measurements also provide the most direct 
form of monitoring cure and capturing the gel point. Thermosets or cross-linked 
polymers are widely used in composites together with fiber reinforcement. They 
are used to manufacture structural parts in aerospace and automotive applications. 
Knowledge about the flow behavior of the resin within the heated mold through 
the fiber bed until the gel point is reached is crucial for the design and production 
of such parts. Thermoset rubbers such as liquid silicone rubbers (LSR) are used 
increasingly in the medical, automotive, and consumer markets. Part and process 
design require knowledge of the curing and related flow.
Figure 3.23 shows the viscosity change during curing at room temperature, the 
so-called cold curing. This process is used for large parts that cannot be accommo-
dated by curing ovens. As soon as the two components are mixed, the curing process 
begins. The formation of chemical bonds releases heat which causes an increase in 
temperature. This, in turn, causes a decrease in viscosity, which eases processing 
of the resin, allows the exhaustion of air bubbles, and improves wetting of fillers.
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Figure 3.23  Temperature and viscosity change during cold curing [54]

As curing progresses, the viscosity increases due to the increase in molecular weight 
of the reacting polymers. The effect of curing eventually counteracts the decrease 
in viscosity caused by temperature rise, leading to a rapid rise in viscosity. As soon 
as the gel point is reached, the resin loses its ability to flow. On the time scale this 
point is often referred to as the pot life of the resin. The gel point is reached when 
the molecules are interconnected, or an infinite network is formed. After the gel 
point is reached, the curing reaction continues as the temperature rises until a fully 
cured state is reached. The chemical conversion at which the gel point is reached 
varies according to the molecular structure of the resin.

As an illustration of curing rates as a function of temperature, the isothermal curing 
history of a vinyl ester is presented in Fig. 3.24. At lower temperatures the curing 
starts later compared to the higher temperatures and the curing rate is slower (slope). 
Additionally, a lower final degree of cure is reached. The viscosity shows a comparable 
behavior, with a lower final viscosity value at lower temperatures, see Fig. 3.25 [55].

Rotational rheometers (see Chapter 6) have proven to be the most useful devices for 
investigating curing reactions of thermosetting materials, because they can capture 
the transitions from liquid to solid. Among these, the cone-plate and the parallel-plate 
systems are the most common ones, simply because they are more easily cleaned. 
However, some modifications are necessary to accommodate the large variations in 
viscosity. Just before solidification it is cumbersome to distinguish between perma-
nent viscous deformations and recoverable contributions [56]. Therefore, it is helpful 
to obtain calorimetric measurements such as differential scanning calorimetry, 
under the same conditions.

The gel point is commonly determined by isothermal dynamic tests according to 
ASTM D4473 [57]. The storage (G ) and loss modulus (G ) are measured at a fixed low 
frequency and fixed strain over a period of time. The crossover of G  and G  is defined 
as the gel point as the elastic response starts to govern the viscous behavior. This 
point is equivalent to the point where the loss tangent reaches unity, tan 1G G .
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Figure 3.27  Complex viscosity and loss tangent as a function of time for different heating rates 
[57]

The time to reach the gel point is called the gel time, and the time at which the 
storage modulus levels out to a constant value is called the cure time, see Fig. 3.26. 
The influence of heating rate on the loss tangent and therefore the gel point as well 
as the complex viscosity can be seen in Fig. 3.27. At higher heating rates the gel 
point is reached faster.

For neat resins, the temperature corresponding to a complex viscosity * value of 
100 Pa s after the initial heating, flowing, and onset of cure, has been suggested as 
the dynamic gel temperature [57].

In the first stage of injection or transfer molding processes, the effect of shear rate 
on viscosity is of interest. Therefore, it is often measured on the uncured resin. 
The strain rate dependence is dependent on the resin type. While EP and PF show 
shear thinning behavior, UP and PU exhibit Newtonian, strain rate independent flow 
behavior [59, 60]. Some measurements, especially those done without initiators, 
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are performed with capillary rheometers. However, as already mentioned, the most 
common rheometers for curing resins are rotational rheometers.

Investigations regarding the effects of fillers on the viscosity of thermosets are still 
in their infancy. The viscosity of the unfilled resin, the fiber content, fiber length 
and orientation, as well as the coupling agents influence the viscosity of the whole 
system [61].

A complete model for viscosity of a reacting polymer must contain the effects of tem-
perature, T, pressure, p, strain rate, , degree of cure, c, and filler properties, F [62]:

, , , ,T p c F  (3.50)

There are no generalized models that include all these variables for thermosetting 
polymers. The different models focus either on one or two effects or on a specific 
material system [56]. The most common shear rate model for thermosets is the Power 
Law model, although the Cross model and the Newtonian models have also been used.

The effect of temperature and time are often included in form of models for cure 
kinetics. Extensive work has been done on the viscosity of polyurethanes [63, 64]. An 
empirical relation that models the viscosity of these mixing-activated polymers as a 
function of temperature and degree of cure, the Castro-Macosko-model, is written as

1 2
g

0
g

exp
c c c

cE
RT c c

 (3.51)

where E is the activation energy of the polymer, R is the ideal gas constant, T is the 
temperature, cg is the conversion at the gel point, c the conversion, and c1 and c2 
are constants that fit the experimental data. The most salient feature of the right 
term of the equation is that the viscosity increases rapidly as curing proceeds, and 
becomes unbound as the extent of cure approaches the extent of cure at gelation. The 
diffusion controlled regime after gelation is not incorporated. The fitting constants 
c1 and c2 are determined by experiments in which the viscosity is measured as a 
function of extent of cure at constant temperature and decreasing strain rate. Thereby, 
the first term on the right hand side of the equation represents the temperature 
dependence of the viscosity using an Arrhenius relation. In order to incorporate the 
shear thinning behavior of the curing polymer, a model such as the Cross model, 
Eq. 3.20, could be incorporated; this can be represented as

1 2
g0

1
g0

*1

c c c

n

cT
c cT

 (3.52)
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where * is the critical shear stress at the transition from the Newtonian plateau 0 
to the Power Law regime, 0 T  the temperature dependent zero shear viscosity, 
and n the Power Law index.

Figure 3.28 shows the viscosity as a function of time and temperature for a polyure-
thane. At lower temperatures, the viscosity is initially higher, but increases more 
slowly because of the slower reaction rate. In the early stages of the reaction the 
viscosity is mainly affected by temperature.

Figure 3.29 shows the viscosity as a function of degree of cure. The Castro- Macosko 
model is a good fit for the described material system. It can be seen that the predicted 
viscosity approaches a finite value at the gel point.
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Figure 3.28  
Viscosity as a function of time for a 
polyurethane at various isothermal cure 
temperatures

Example 3.3 Castro-Macosko Viscosity Model

In reaction injection molding processes (RIM), polymeric parts are made directly 
from low viscosity (less than 10 Pa s) reactants, which cure and solidify inside the 
mold. For polyurethanes, the polymerization is initiated by mixing the two highly 
reactive components, isocyanate and polyol, inside the mold. Because the mono-
mers are highly reactive during RIM, the mold cavity walls are maintained at low 
temperatures. To simulate mold filling, the rheological properties have to be known. 
Experiments provided the following constants [64]:
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Figure 3.29  
Reduced viscosity as a function of 
degree of cure for a polyurethane at 
various isothermal cure temperatures
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 0: 10.3 ⋅ 10−8 Pa s

 E: 41.3 J/mol

 R (ideal gas constant): 8.3144621 J/mol K

 cg: 0.65

 c1: 1.5

 c2: 1.0

In order to obtain the viscosity at 50 °C as a function of the degree of cure, the 
following calculation (Eq. 3.51) has to be performed for different conversion rates 
c, ranging from 0 to cg = 0.65, which is shown here for a conversion of 0.1

1.5 1.0 0.1
8

8

41.3 J/mol 0.65
10.3 10 Pa s exp

8.314 J/mol K 323 K 0.65 0.1

2.97 1 aP0 s

Calculating for all degrees of cure provides the result shown left in Figure 3.30:

0.2

10-3

0.6

 v
is

co
si

ty
, 

Degree of cure, c
1.0

Pa • s

10-5

10-6

10-7

10-8

10-9

0.2

106

0.6

 re
du

ce
d 

vi
sc

os
ity

, 
/(

0*
eE

/R
T )

Degree of cure, c
1.0

105

104

103

102

101

100

Figure 3.30  Calculated viscosity (right) and reduced viscosity (left) as functions of degree of 
cure for a polyurethane

Above the gel point, which here occurs at 65% cure, the right term in Eq. 3.51 cannot 
be solved because the base becomes negative and the exponent is not a natural 
number. Often, the reduced viscosity is given as a function of the degree of cure, 
right in Fig. 3.30, which is calculated using
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1 2
g

g
0 exp

c c c
c

c cE
RT

 (3.53)

Example 3.4 Castro-Macosko Viscosity Model (Shear rate dependent)

For the production of flip chip packages, the so called moldable underfill (MUF) 
technique is used to electrically connect the die to the package carrier. The 
package carrier then provides the connection from the die to the exterior of the 
package. MUF are normally 1-component epoxies, which have to flow through a 
very narrow gap of 0.1 mm. In the transfer molding process, flow and heat trans-
fer are dynamically coupled with the curing reaction. The kinetics of the curing 
reaction not only affect the degree of conversion of the molding compound, but 
also control the stresses on the overmolded structures during flow, as the viscosity 
increases due to the progression in degree of cure. Viscosity is influenced primar-
ily by temperature and shear rate. Therefore, the rheo logical behavior of the used 
resins is of fundamental importance for the molding process. In order to obtain vis-
cosity values at specific shear rates, temperatures, and conversion, the following 
data are needed to solve Eq. 3.52 [65]:

 n: 9.683 ⋅ 10−3

 *: 200 Pa

 B: 6.263 ⋅ 10−44 Pa s

 Tb: 4.937 ⋅ 104 K

 cg: 0.25

 c1: 1.818

 c2: −5.521

The temperature dependence of the viscosity is commonly calculated by

b
0 exp

T
T B

T
 (3.54)

44 7
0

49370 K
6.263 10 Pa s exp 3.05 10 a s

423 K
PT

where B and Tb are constants. For example, the zero shear viscosity at 160 °C and 
a conversion of 0.1 and at a shear rate of 100 s−1 can be calculated as
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1.818 5.5210.17

17 1

3.05 10 Pa s 0.25
18.945 Pa s

0.25 0.13.05 10 Pa s 100 s
1

200 Pa

n

Calculating the viscosity for conversions of 0.05, 0.1, and 0.2 and for temperatures of 
100, 150 and 200 °C as a function of shear rate gives the following results, Fig. 3.31:
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Figure 3.31  Calculated viscosity at different temperatures and degrees of cure as a function 
of shear rate for an epoxy (MUF)

■  Problems

3.1 Use the Power Law model and an exponential viscosity dependence to best fit 
the viscosity measurement data presented in Example 2.2.

3.2 Use the Bird-Carreau model and an Arrhenius temperature dependence to best 
fit the viscosity measurement data presented in Example 2.2.

3.3 Use the Cross-WLF model to best fit the viscosity measurement data presented 
in Example 2.2.
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3.4 Use the Power Law model with a pressure shift factor b = 0.003 (see Table 3.8) 
to calculate the pressure dependent viscosity of PC for all given temperatures 
and shear rates at pressures of 100, 200, 500 and 1000 bar. What can be con-
cluded for low shear rates?

3.5 Use the Carreau-WLF model and the parameters for PS in Table 3.5 to plot the 
viscosity at temperatures of 180, 200 and 220 °C and shear rates from 1 to 
1,000 s−1. Extend the temperature dependence with the pressure dependence 
using P1 = 0.02 K/bar and a glass transition temperature Tg = 80 °C. Calculate 
the viscosity for pressures of 200, 400, 800 and 1200 bar.

3.6 Use Eq. 3.46 and the shear rate dependent viscosity shown in Fig. 3.18 to 
calculate constants a1 and a2. Then, using Eq. 3.48, calculate  from the right 
hand side of Fig. 3.18 at a stress of 1 N/mm2 and plot it as a function of filler 
volume fraction. Finally, calculate the viscosity as a function of shear rate for 
various volume fractions of filler and compare the calculated values with the 
measured values on the left hand side of Fig. 3.18. Which model works best 
for the shear rate dependence?

3.7 Use the parameters given in Example 3.3 to calculate the viscosity as well as 
the reduced viscosity as a function of degree of cure for temperatures of 30 
and 90 °C and plot them in two separate diagrams. In case of multiple reac-
tions taking place at once, the conversion will occur at a faster rate. For such a 
case a second order polynomial is necessary to represent the higher degree of 
conversion. Rewrite the right term of Eq. 3.51 to incorporate the faster degree 
of conversion. Using the additional constant c3 = 2, recalculate the viscosity 
for temperatures of 30, 50 and 90 °C. How does the second order polynomial 
affect the resulting graphs compared to the previously used linear form?

3.8 Use a first order reaction model given by

d
e 1

d

E
RTc a c

t

 to approximate the reaction presented in Fig. 3.24. How would you improve the 
model?

3.9 Using the Castro-Macosko viscosity model and a first order reaction given by

d
e 1

d

E
RTc a c

t

 fit the viscosity data presented in Fig. 3.25.
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4	 Transport 
Phenomena

The field of transport phenomena provides the basis for modeling in plastics rhe-
ology and processing. Modeling of a system, whether it is a rheometer or an actual 
process, often begins with a dimensional analysis of the system, which provides 
insight into the meaningful parameters that govern the system or process. The 
resulting dimensionless groups or numbers, in conjunction with experiments and 
models, can help the engineer determine significant conditions or effects, such as 
inertia, viscous heating, and if dealing with a process, scale a pilot or model of the 
process to industrial dimensions. While the dimensionless numbers give insight 
into a system, modeling of the system requires that mass, force, and energy flux 
within the system are balanced, using the appropriate material models or constitutive 
equations. This chapter presents the most important dimensionless groups relevant 
in plastics rheology and processing. This is followed by the derivation of the balance 
equations, in combination with simple constitutive and rheological models that allow 
the modeling of rheometric flows and polymer processes. The chapter also presents 
ways to simplify the complex equations in order to model basic systems, such as 
flow in a tube (Hagen-Poiseuille flow), pressure flow between parallel plates, flow 
between two rotating concentric cylinders (Couette flow), and many more. These 
simple systems, or their combinations, can be used to model and analyze rheometers, 
and of course, processes in order to optimize them.
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■■ 4.1 �Dimensionless Groups

Dimensional analysis and dimensionless groups or numbers are used by engineers 
to gain insight into a problem by presenting theoretical and experimental results in 
a compact manner. This is done by reducing the number of variables in a system, 
by lumping them into meaningful dimensionless numbers. For example, if a flow 
system is dominated by the fluid’s inertia as well as by the viscous effects, it may be 
best to present the pressure requirements in terms of the Reynolds number, which is 
the ratio of both effects. When checking the order of these dimensionless numbers 
and comparing them to one another, it is possible to distinguish the most important 
parameters, such as process conditions and material properties. Many researchers 
also use dimensional analysis in theoretical studies, which in combination with 
experiments often reveal fundamental relations governing a process.

The classic techniques to determine dimensionless numbers are the so-called 
Buckingham Pi-Theorem and Pawlowski’s matrix transformation technique [1]. 
For detailed information about these widely used methods in polymer rheology and 
processing the reader is encouraged to consult the literature [2–7]. Table 4.1 lists 
some dimensionless numbers, useful in plastics rheology and processing.

Example 4.1 Flow in a tube

Consider the classical problem of pressure drop during flow in a smooth straight pipe, 
ignoring the inlet effects. In such a system, the relevant parameters are pressure 
drop Dp, tube diameter D, tube length L, viscosity of the fluid , density of the fluid 
, and average fluid velocity u. Such a system is governed by three dimensionless 
numbers:

2 (Euler number)

Tube aspect ratio

(Reynolds number)

pEu
u

L
D

Du
Re







D=

=

=

	 (4.1)

which can be put in relationship by the following function

, , 0
Lf Eu Re
D

  =  
	 (4.2)
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Table 4.1 �Dimensionless Groups in Plastics Rheology and Polymer Processing

Name Symbol Definition Meaning

Biot Bi hL
k

Convection from surface
Conduction through body

Brinkman Br 

D

2u
k T

Viscous heating
Conduction

Capillary Ca
t

s

R Deviatoric stresses
Surface tension stresses

Damköhler Da


D r

p 0

c H
C T

Reaction energy
Internal energy

Deborah De 
or

t
Relaxation time
Process time

Fourier Fo


2
t

L
Process time

Thermal diffusion time

Giacomin Gn ( )+De i We Measure of non-Newtonianness

Graetz Gz


 
  

u L d
L

Lengthwise convection
Transverse conduction

Manas-Zloczower Mz
g

g +




= −
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Water d=0.7125 cm
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Air      d=0.7125 cm
Air      d=0.361 cm
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Theoretical solution for 
laminar flow
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Figure 4.1 �Pressure drop characteristic of a straight smooth tube

Although this does not explain the nature of the relation, the form of the function f 
can be generated experimentally. Figure 4.1 presents results from such experiments 
performed by Stanton and Pannell [8], where they plotted 2Eu D L =  as a function 
of Re. This figure clearly demonstrates the usefulness of dimensionless numbers. In 
the figure, note the line that denotes laminar flow, which is represented by pressure 
flow in a tube, derived in this chapter.

Example 4.2 Significance of viscous dissipation in a sliding plate rheometer

A sliding plate rheometer is used to perform large oscillatory shear experiments at 
230 °C with a 1 mm thick low density polyethylene sample with a strain defined by

( ) 0 sinxy t tg g = 	 (4.3)

where the maximum strain g0 = 1.00 and the frequency  = 2 π rad/s. The quickest 
way to assess the significance of viscous dissipation is to compute the Brinkman 
number

2u
Br

k T


D
= 	 (4.4)

The given frequency of 1 Hz means that a whole oscillation cycle is completed in 
1 second. Hence, since we know that a 1 mm thick sample must travel 1 mm in the 
positive and negative direction to achieve a maximum strain of 1.00, a characteristic 
velocity u and rate of deformation can be computed as
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Figure 4.2 �Viscosity curve for a PE-LD

10.002 m 0.004 m/s
0.004 m/s and  4 s

0.5 s 0.001m
u g −= = = = 	 (4.5)

Using the viscosity curve for a PE-LD given in Fig. 4.2, the viscosity at the given 
temperature and rate of deformation can be estimated to be 8000 Pa s. If we assume 
that a 1 K temperature rise affects the viscosity measurements, we can use DT = 1 K 
and with thermal conductivity for PE-LD of 0.33 W/m K [9], we can compute the 
Brinkman number as

( )
( )

28000 Pa s 0.004 m/s
0.39

W0.33 1K
m K

Br
⋅

= =
 
  

	 (4.6)

This means that here viscous dissipation does not play a significant role because the 
heat generated at these low speeds is conducted out faster than it is generated by a 
factor of almost 3. While the Brinkman number only provides a general estimate of 
the effects of viscous heating, the actual temperature in this widely accepted rheo
meter has not been measured to this date. Recently, Giacomin et al. [10] presented 
an analytical model that predicts viscous heating in large amplitude oscillatory shear 
tests using a viscoelastic corotational Maxwell model. They showed various boundary 
conditions, representing different scenarios, and determined for insulated walls 
(adiabatic case) that the temperature rise is not limited. For such a case, the effect of 
viscous heating is significant and will affect the measurements as time progresses.
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■■ 4.2 �Balance Equations

When solving flow and heat transfer problems in polymer processing, we must satisfy 
conservation of mass, forces or momentum, and energy. Momentum and energy 
balances, in combination with material properties through constitutive relations, 
sometimes result in governing equations that are highly non-linear. This chapter 
presents the balance equations, utilizing the constitutive relations presented in 
Chapter 3 of this book.

4.2.1 �The Mass Balance or Continuity Equation

The most basic aspect of modeling polymer processing is to satisfy the conservation 
of mass. When modeling the flow of polymers we can assume incompressibility1, 
making a volume balance equivalent to a mass balance. The resulting equation is 
referred to as the continuity equation. In order to derive the continuity equation, we 
place an imaginary wire frame of dimensions Dx × Dy × Dz inside a flowing system, 
as schematically depicted in Fig. 4.3.

ux

uy

uz

uy + ∆uy

ux + ∆ux

uz + ∆uz

x

z

y

∆x

∆y

∆z

Figure 4.3 �Differential frame immersed in a flow and fixed in space

1	 From the pvT behavior of a polymer melt we know that, in principle, a polymer is not an incompressible fluid. 
However, the changes of volume with respect to pressure variations within a process are not significant enough 
to affect the flow field.
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Using the notation introduced in Fig. 4.3 we can perform a volumetric balance, in 
and out of the differential element, in a volume-specific form by dividing the balance 
by the element’s volume Dx × Dy × Dz,

0y xz u uu
z y x

D DD
D D D

+ + = 	 (4.7)

Letting the size of the differential element go to zero results in

0y x iz

i

u u uu
z y x x

∂ ∂ ∂∂
+ + = =

∂ ∂ ∂ ∂
	 (4.8)

which states that the divergence of the velocity vector must equal zero when the 
mass or the volume is conserved. We can also write this equation as

0u∇ ⋅ = 	 (4.9)

When the flow is compressible, variable density has to be taken into account and 
the continuity equation must be written as

( ) 0u∇ ⋅ = 	 (4.10)

Table 4.2 presents the continuity equation in Cartesian and cylindrical coordinate 
systems. Note that in most cases the density  is constant and can be dropped from 
the equation.

Table 4.2 �Continuity Equation

Cartesian Coordinates (x, y, z):

( ) ( ) ( )  
∂ ∂ ∂

+ + =
∂ ∂ ∂

0x y zu u u
x y z

Cylindrical Coordinates (r, , z):

( ) ( ) ( )  


∂ ∂ ∂
+ + =

∂ ∂ ∂
1 1

0r zr u u u
r r r z

4.2.2 �The Material or Substantial Derivative

It is possible to describe a flowing system from a fixed or moving observation point. 
A fixed observer, such as described in Fig. 4.4, feels the transient effects; changes 
in the variables during the time before the system reached steady state.
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ux

u0(t)

uy

Fixed
observer

Figure 4.4 �Flow system with a fixed observer

In a non-isothermal flow, a fixed observer feels

, , , , etc.y xz u uu T
t t t t

∂ ∂∂ ∂
∂ ∂ ∂ ∂

	 (4.11)

Once the system reaches steady state, the fixed observer feels a constant velocity, 
temperature, and other field variables.

On the other hand, a moving observer, such as the one shown in Fig. 4.5, not only feels 
the transient effects, but also the changes that the variables undergo as the material 
element travels through a gradient of velocity, temperature, concentration, etc.

ux

u0(t)

uy

Moving
observer

Figure 4.5 �Flow system with an observer moving with a fluid particle on a given streamline
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The moving observer, described by a fluid particle, feels

x x x x i i
x y z j

j

u u u u u u
u u u u

t x y z t x
∂ ∂ ∂ ∂ ∂ ∂

+ + + = +
∂ ∂ ∂ ∂ ∂ ∂

	 (4.12)

as the change of ux. Equation 4.12 is often written in short form as D Dxu t  and is 
referred to as the material derivative or the substantial derivative.

4.2.3 �The Momentum Balance or Equation of Motion

For a momentum balance, we take the same flow system as presented in Fig. 4.3 
but instead of submerging an imaginary frame into the melt, we take an actual fluid 
element of dimensions Dx × Dy × Dz (Fig. 4.6) and perform a force balance with the 
forces acting on its surfaces.

The force balance can be written as

f m=∑ a 	 (4.13)

where the terms in the equation define force, f, mass, m, and acceleration, a, respec-
tively. For simplicity, here we will only show the balance of forces in the x-direction. 
The balance in the y- and z-directions are left to the reader as a short exercise. The 
forces acting in the x-direction on a small fluid element are described in Fig. 4.6. 

σxy

σxx

σxz

σxz + ∆σxz

σxy + ∆σxy

σxx + ∆σxx

x

z

y

∆x

∆y

∆z
u

g

Figure 4.6 �Differential fluid element traveling along its streamline x-direction and forces that 
act on its surfaces
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Because the element in Fig. 4.6 is a fluid particle that moves with the flow, the 
change of its velocity components is described by the material derivative. Hence, 
the force balance in the x-direction is given by

D
D

xm
t

f
u

=∑ 	 (4.14)

where m =  Dx × Dy × Dz.

After adding the forces, dividing by the element’s volume, and letting the volume 
go to zero, the force balance in the x-direction results in

D
D

yxx xx zx
x

u
g

t x y z
 

 
∂∂ ∂

= + + +
∂ ∂ ∂

	 (4.15)

which for all three directions can be written as

D
D

D
D

iji
i

j

u
g

t x

t


 

 

∂
= +
∂

= ∇ ⋅ +u gσ

	 (4.16)

In fluid flow, however, it is necessary to split the total stress, sij, into a deviatoric 
stress, tij, and a hydrostatic stress, H. The deviatoric stress causes deformation 
(Fig. 4.7) and the hydrostatic stress is described by pressure (Fig. 4.8).

x

z

y

t

t + ∆t

Figure 4.7 �Effect of deviatoric stresses as the fluid element travels along its streamline
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σH

σH

σH

σH

σH

σH

x

z

y

Figure 4.8 �Hydrostatic stresses acting on a differential element

We can write

Hij ij ij   t= + 	 (4.17)

where δij is the Kronecker delta. As the above equation reveals, the hydrostatic 
stress can only act in the normal direction of a surface and it is equal in all three 
directions. Hence, we can write

H p = − 	 (4.18)

where p defines the pressure. The negative pressure reflects the fact that a positive 
pressure causes a compressive stress. The total stress can be written as

ij ij ijp  t= − + 	 (4.19)

Using the definition of total stress given above, the momentum balance can now 
be written as

D
D

D
D

iji
i

i j

u p g
t x x

p
t

t
 

 

∂∂= − + +
∂ ∂

= −∇ + ∇ ⋅ +u gτ

	 (4.20)

Table 4.3 presents the momentum balance in terms of deviatoric stress in Cartesian 
and cylindrical coordinate systems.
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Table 4.3 �Momentum Equations in Terms of τ

Cartesian Coordinates (x, y, z):

tt t
 

 ∂ ∂ ∂ ∂ ∂ ∂ ∂∂
+ + + = − + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

yxx x x x xx zx
x y z x

u u u u p
u u u g

t x y z x x y z

t t t
 
   ∂ ∂ ∂ ∂ ∂ ∂ ∂∂

+ + + = − + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
y y y y xy yy zy

x y z y

u u u u p
u u u g

t x y z y x y z

tt t
 

 ∂ ∂ ∂ ∂ ∂ ∂ ∂∂
+ + + = − + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

yzz z z z xz zz
x y z z

u u u u p
u u u g

t x y z z x y z

Cylindrical Coordinates (r, , z):

( )   t t t
 t 

 

   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂
+ + − + = − + + − + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

2 1 1r r r r r rz
r z rr r

u u u u u u p
u u r g

t r r r z r r r r r z

( )       
 

t t
 t 

  

   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂
+ + + + = − + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

2
2

1 1 1r z
r z r

u u u u u u u p
u u r g

t r r r z r r r zr

( ) t t
 t 

 

   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂
+ + + = − + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

1 1z z z z z zz
r z rz z

u u u u u p
u u r g

t r r z z r r r z

These forms of the equation of motion are commonly called the Cauchy momentum 
equations. For generalized Newtonian fluids we can define the terms of the deviatoric 
stress tensor as a function of a generalized Newtonian viscosity, , and the com-
ponents of the rate of deformation tensor, as described in Chapter 1 and Table 4.4.

In fluid mechanics, one common description of the deviatoric stress tensor is the 
Newtonian model given by

ij ijt g=  	 (4.21)

which reduces the Cauchy momentum equations to

2

2

D
D

D
D

i i
i

i j j

u up g
t x x x

p
t

  

  

∂∂= − + +
∂ ∂ ∂

= −∇ + ∇ +u u g

	 (4.22)
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Table 4.4 �Stress Tensor Definition for a Generalized Newtonian Fluid

Cartesian Coordinates (x, y, z):

t 
∂

=
∂

2 x
xx

u
x

	
t 

 ∂∂
= + ∂ ∂ 

yx
xy

uu
y x

t 
 ∂ ∂

= + ∂ ∂ 
x z

xz
u u
z x

t  t
 ∂ ∂

= + = ∂ ∂ 
y x

yx xy

u u
x y

	
t 

∂
=

∂
2 y

yy

u

y

t 
 ∂ ∂

= + ∂ ∂ 
y z

yz

u u
z y

t  t
 ∂ ∂

= + = ∂ ∂ 
z x

zx xz
u u
x z

	
t  t

 ∂∂
= + = ∂ ∂ 

yz
zy yz

uu
y z

	
t 

∂
=

∂
2 z

zz
u
z

Cylindrical Coordinates (r, , z):

t 
∂

=
∂

2 r
rr

u
r

	


t 



   ∂∂
= +  ∂ ∂   

1 r
r

u u
r

r r r

t 
 ∂ ∂

= + ∂ ∂ 
r z

rz
u u
z r


 t  t



  ∂ ∂
= + =  ∂ ∂    

1 r
r r

u u
r

r r r
	


t 



 ∂
= + ∂ 

1
2 ru u

r r


t 



 ∂ ∂
= + ∂ ∂ 

1 z
z

u u
r z

t  t
 ∂ ∂

= + = ∂ ∂ 
z r

zr rz
u u
r z 	


 t  t



 ∂ ∂
= + = ∂ ∂ 

1 z
z z

u u
z r 	

t 
∂

=
∂

2 z
zz

u
z

These equations are often referred to as the Navier-Stokes equations. Table 4.5 pres-
ents the full form of the Navier-Stokes equations.

With a few exceptions one can say that a flowing polymer melt does not follow the 
model presented in Eq. 4.22. To properly model the flow of a polymer we must take 
into account the effects of rate of deformation, temperature, and often time, making 
the partial differential equations that govern a system non-linear.
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Table 4.5 �Navier-Stokes Equations

Cartesian Coordinates (x, y, z):

  
  ∂ ∂ ∂ ∂ ∂ ∂ ∂∂

+ + + = − + + + +  ∂ ∂ ∂ ∂ ∂  ∂ ∂ ∂ 

2 2 2

2 2 2
x x x x x x x

x y z x
u u u u u u up

u u u g
t x y z x x y z

  
  ∂ ∂ ∂ ∂ ∂ ∂ ∂∂

+ + + = − + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

2 2 2

2 2 2
y y y y y y y

x y z y

u u u u u u up
u u u g

t x y z y x y z

  
  ∂ ∂ ∂ ∂ ∂ ∂ ∂∂

+ + + = − + + + +  ∂ ∂ ∂ ∂ ∂  ∂ ∂ ∂ 

2 2 2

2 2 2
z z z z z z z

x y z z
u u u u u u up

u u u g
t x y z z x y z

Cylindrical Coordinates (r, , z):

( )

 






 


 ∂ ∂ ∂ ∂
+ + + − ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ = − + + + − +  ∂ ∂ ∂ ∂∂ ∂   

2

2 2

2 2 2 2
1 1 2

r r r r
r z

r r
r r

u u u u u u
u u

t r r z r

u u up
r u g

r r r r r z r

( )

     

 
 




 
 

 ∂ ∂ ∂ ∂
+ + + + ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ = − + + + − +  ∂ ∂ ∂ ∂∂ ∂   

2 2

2 2 2 2
1 1 1 2

r
r z

r

u u u u u u u
u u

t r r r z

u u up
r u g

r r r r r z r

( )  
 

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + = − + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂  ∂ ∂   

2 2

2 2 2
1 1z z z z z z

r z z z
u u u u u u up

u u r u g
t r r z z r r r r z

4.2.4 �The Energy Balance or Equation of Energy

Using Fourier’s law for heat conduction

i i
i

Tq k
x
∂= −
∂

	 (4.23)

and assuming an isotropic material, kx = ky = kz = k, an energy balance around a 
moving fluid element, as shown in Fig. 4.9, can be written as

2 2 2

viscous eating2 2 2
D
Dp

T T T TC k Q Q
t x y z


 ∂ ∂ ∂= + + + + ∂ ∂ ∂ 

  	 (4.24)

where an arbitrary heat source Q , and viscous dissipation viscous heatingQ  terms were 
included.
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Figure 4.9 �Heat flux across a differential fluid element during flow
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hµPolymerx
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u0

Figure 4.10 �Schematic of a simple shear flow system used to illustrate viscous dissipation 
terms in the energy balance

As an illustration, we will derive the viscous dissipation terms in the energy balance 
using a simple shear flow system, such as the one shown in Fig. 4.10.

Here, the stresses within the system can be calculated using

x
yx

u
y

t 
∂

=
∂

	 (4.25)

which in terms of the parameters depicted in Fig. 4.10, such as force, F, area, A, gap 
height, h, and plate speed, u0, can be written as

0uF
A h

= 	 (4.26)
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Table 4.6 �Energy Equation for a Newtonian Fluid

Cartesian Coordinates (x, y, z):

 



    ∂   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  + + + = + + + + +         ∂ ∂ ∂ ∂ ∂ ∂ ∂   ∂ ∂ ∂    
    ∂ ∂ ∂ ∂ ∂ ∂ + + + + + + +     ∂ ∂ ∂ ∂ ∂ ∂     



22 22 2 2

2 2 2

2 22

2 yx z
p x y z

y yx x z z

uu uT T T T T T T
C u u u k

t x y z x y zx y z

u uu u u u
Q
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Cylindrical Coordinates (r, , z):





 


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



 

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = + +     ∂ ∂ ∂ ∂ ∂ ∂  ∂ ∂  

      ∂ ∂ ∂ + + + +      ∂ ∂ ∂       

     ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + +     ∂ ∂ ∂ ∂ ∂ ∂     

2 2

2 2 2

2 2 2

2 2

1 1

1
2

1 1

p r z

r r z

z z r r

uT T T T T T T
C u u k r

t r r z r r r r z

u u u u
r r r z

u u u u u u
r

z r r z r r r

  + 
  



2

Q

In the system, the rate of energy input is given by

0
0 0

u
Fu Au

h
= 	 (4.27)

and by dividing the above equation by the volume of the polymer, Ah, the rate of 
energy input per unit volume is represented by

0 0 0Fu u u
Ah h h


   

=       
	 (4.28)

or

viscous heating
x xu u

Q
y y


∂ ∂   

=    ∂ ∂   
 	 (4.29)

From the above equation, we can deduce that for a Newtonian fluid, the general 
term for viscous dissipation is given by ( ): g g  , where

3 3

1 1
: ij ji

i j
g g g g

= =
= ∑∑    	 (4.30)

and for a non-Newtonian material, the viscous heating is written as :t g . Hence, 
the energy balance becomes
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p p j ij ji
j j j

T T TC C u k Q
t x x x

  t g
∂ ∂ ∂ ∂+ = + +
∂ ∂ ∂ ∂



 	 (4.31)

:p p
TC C T k T Q
t

  t g
∂ + ⋅∇ = ∇ ⋅ ∇ + +
∂

u 



Table 4.6 presents the energy equation in Cartesian and cylindrical coordinate 
systems for a Newtonian fluid.

■■ 4.3 �Model Simplification

In order to obtain analytical solutions we must first simplify the balance equations. 
Although the balance equations are fundamental and rigorous, they are nonlinear, 
non-unique, complex, and difficult to solve. In other words, they do not have a general 
solution and so far, only particular solutions for special problems have been found.

Therefore, the balance equations must be simplified sufficiently in order to arrive 
at an analytical solution of the problem under consideration. The simplifications 
of a system are typically based on the scale of the variables, an estimate of its 
maximum order of magnitude. As discussed in the previous section, scaling is the 
process of identifying the correct order of magnitude of the various unknowns. 
These magnitudes are often referred to as characteristic values, i.e., characteris-
tic times, characteristic length, etc. When a variable is scaled with respect to its 
characteristic magnitude (scale), the new dimensionless variable will be of order 1, 
i.e., ( ( )1O ). For example, if we scale the x-velocity field, ux, within a system, with 
respect to a characteristic velocity, U0, we can generate a dimensionless velocity, or 
scaled velocity, given by

0

ˆ x
x

u
u

U
= 	 (4.32)

Using the above relation, the original variable can be expressed in terms of the 
dimensionless variable and its characteristic value as

0 ˆx xu U u= 	 (4.33)

By substituting the new variables into the original equations we will acquire 
information that allows the simplification of a specific model. Length and time 
scales, for example, can lead to geometrical simplifications, such as a reduction in 
dimensionality.
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Example 4.3 Object submerged in a fluid

Consider an object with a characteristic length L and a thermal conductivity k that 
is submerged in a fluid of constant temperature T∞ and convection coefficient h (see 
Fig. 4.11). If a heat balance is made on the surface of the object, it must be equivalent 
to the heat by conduction:

( )S
S

Tk h T T
n ∞
∂− = −
∂

	 (4.34)

Tc

h

Ts

T∞
L

Figure 4.11 �Schematic of a body submerged in a fluid

The maximum value possible for the temperature gradient must be the difference 
between the central temperature, Tc, and the surface temperature, TS,

c S~T T TD − 	 (4.35)

which provides a characteristic temperature difference2. Here, the length variable is 
the normal distance Dn and has a characteristic length L. We can now approach the 
scaling in two ways. The first and quickest is to simply substitute the variables into 
the original equations, often referred to an order of magnitude analysis. The second 
is to express the original equations in terms of dimensionless variables. The order 
of magnitude analysis results in a scaled conduction given by

c S

S
~

T TTk k
n L

−∂
∂

	 (4.36)

2	 Characteristic temperatures are always given in terms of temperature differences. For example, the character-
istic temperature of the melt of an amorphous polymer in an extrusion operation is ( )D = −h gT T T , which is the 
difference between the heater temperature and the glass transition temperature of the polymer.
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reducing the problem to

( )c S
S~

T T
k h T T

L ∞
−

− 	 (4.37)

or in a more convenient way

c S

S
~

T Th L
Bi

k T T∞

−
=

−
	 (4.38)

where Bi is the Biot number.
When Bi  1, the solid can be considered isothermal, which means that we reduced 
the dimensionality of the problem from (x, y, z), to a zero dimensional or lumped model 
[11]. On the other hand, if Bi  1, the fluid can be considered non-isothermal and 
TS = T∞, which changes the convection boundary condition to a thermal equilibrium 
condition.

The same can be deduced when we scale the problem by expressing the governing 
equations in dimensionless form. Again, we choose the same characteristic values for 
normal distance and temperature, allowing us to generate dimensionless variables as

c S

ˆ ˆ,
T nT n

T T L
= =

−
	 (4.39)

which can be solved to give

( )c S ,̂ ˆT T T T n Ln= − = 	 (4.40)

Substituting these into the original equations results in

S

c S

ˆ

ˆ
T Tk T

Lh n T T
∞−∂− =

∂ −
	 (4.41)

or
ˆ

ˆ
TBi
n
∂ =
∂

Θ 	 (4.42)

Again, because ˆ ˆT n∂ ∂  is of order one, the same analysis done above applies here.

4.3.1 �Reduction in Dimensionality

The number of special coordinates, or the dimensionality of a problem, can be 
reduced using three basic strategies: symmetry, aspect ratio, and series resistances.



120 4 Transport Phenomena

Symmetry is the easiest strategy to apply. It is based on the correct selection of the 
coordinate system for a given problem. For example, a temperature field with circu-
lar symmetry can be described using just the coordinates (r, z), instead of (x, y, z). 
In addition, symmetry can help to get rid of special variables that are not required 
by the conservation equations and interfacial conditions. For example, the velocity 
field in a tube, according to the Navier-Stokes and continuity equations, can have 
the functional form ( )zu r .

The ratio of two linear dimensions of an object is called the aspect ratio. There are 
a number of possible simplifications when the aspect ratio of an object or region is 
large (or small). For example, for the classical fin approximation, the thickness of the 
fin is small compared with the length, therefore the temperature will be assumed 
to change in the direction of the length only.

For example in problems where Bi  1, convection controls the cooling process and 
conduction is so fast that the solid is considered isothermal, reducing the dimen-
sionality from (x, y, z) to a zero dimensional problem or lumped mass method.

Characteristic times are a key factor in formulating conduction or diffusion models, 
because they determine how fast a system can respond to changes imposed at a bound-
ary. In other words, if the temperature or concentration is perturbed at some location, 
it is important to estimate the finite time required for the temperature or concentra-
tion changes to be noticed at a given distance from the original perturbation. The time 
involved in a stagnant medium is the characteristic time for conduction or diffusion, 
therefore this is the most widely used characteristic time in transport models [11, 12].

Example 4.4 Temperature development in a simple shear flow

In this example, we illustrate the reduction in dimensionality of the energy equation 
to find an equation that would reveal the change in temperature of a polymer melt 
confined between two solid surfaces, set at different temperatures, T1 and T2, that 
are sliding past one another, as schematically depicted in Fig. 4.12. The lower plate 
is fixed and the upper one is moving at a velocity u2 x. To simplify the problem, we 
assume constant properties and a Newtonian viscosity.

y

x

h

T2 u2x

T1

Melt

Figure 4.12 �Schematic diagram of the non-isothermal simple shear flow set-up
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The thickness of the melt is small compared to the dimensions of the plates, which 
indicates that a reduction in dimensionality can be performed. Here, it can be 
assumed that the velocity field is unidirectional, i.e., ( )xu y . The energy equation 
is then reduced to

22 2

2 2
x

p x
uT T TC u k

t ydx y
 

  ∂ ∂ ∂ ∂= + +   ∂ ∂ ∂ 
	 (4.43)

By choosing characteristic variables for temperatures, velocities, and lengths we 
can reduce the dimensionality even further. The temperature is scaled based on the 
temperature difference T2 − T1, the length with the gap thickness, h, and plate size, 
L, and the velocity with the velocity of the moving surface, u2 x,

1

2 1

2
 x

x

T T y
T T h

ux u
L u

 



−
= =

−

= =
	 (4.44)

Using these dimensionless variables, the energy equation becomes,

( )
2 22 2 2 2
2

2 2 2 2
2 1

x
p x

uh h uC u u
L k T TL

  


  

 ∂ ∂ ∂ ∂= + +  ∂  ∂ −∂ ∂
	 (4.45)

which indicates that for small aspect ratios, h L , two extra terms can be neglected: 
the conduction and convection in the x-direction,

( )
2 22
2

2
2 1

0xu u
k T T





 ∂ ∂+ =  ∂ −∂
	 (4.46)

The last step is to compare the two remaining terms: conduction and viscous dissi-
pation. The two derivatives, according to the scaling parameter, are of order 1. The 
remaining term, ( )2

2 2 1xBr u k T T= − , is the Brinkman number, which indicates 
whether the viscous dissipation is important or not. For Br  1, the conduction is 
dominant, while for Br > 1, the viscous dissipation has to be included, which is the 
case for many rheometers and is true in most polymer processing operations.

When the viscous dissipation term is negligible, the temperature distribution between 
the plates is linear

21or = =Θ Θ Θ 	 (4.47)

where 21 2 1T T= −Θ  and 1T T= −Θ .
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For this problem, the equation of motion reduces to

0 xy

y
t∂

=
∂

	 (4.48)

which after integration gives

1xy Ct = 	 (4.49)

To include the temperature dependence of the polymer, a commonly used model is

0 e a  −= Θ 	 (4.50)

combining the constitutive equation and the above equation for shear stress, we 
can write

1 0 1 0
d d

e or e
d d

a ax x
xy

u u
C C

y y
t  −= = =Θ Θ 	 (4.51)

which after integration results in

21

212
1 e
1 e

x xu u
 −=  

− 

Θ

Θ
	 (4.52)

which is represented in Fig. 4.13 for various thermal imbalances between the plates.
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Figure 4.13 �Velocity distribution in shear flow for various thermal imbalances
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4.3.2 �Lubrication Approximation

Liquid flows in long, narrow channels or thin films often are nearly unidirectional 
and dominated by viscous stresses. This means, flows in which a second component 
and the inertial effects are nearly zero.

The steady, two-dimensional flow in a thin channel or a narrow gap between solid 
objects is schematically represented in Fig. 4.14. The channel height or gap width 
varies with the position, and there may be a relative motion between the solid sur-
faces. This type of flow is very common for the oil between bearings. The original 
solution came from the field of tribology and is therefore often referred to as the 
lubrication approximation.

U

h(x)

Lx

Lx

pLp0

y

x

Figure 4.14 �Schematic diagram of the lubrication problem

For this type of flow, the momentum equations (for a Newtonian fluid) are reduced 
to the steady Navier-Stokes equations, i.e.,

0yx uu
x y

∂∂
+ =

∂ ∂
	 (4.53)

2 2

2 2
x x x x

x y
u u u upu u
x y x x y

 
 ∂ ∂ ∂ ∂  ∂+ = − + +  ∂ ∂ ∂  ∂ ∂ 

	 (4.54)

2 2

2 2
y y y y

x y
u u u upu u
x y y x y

 
 ∂ ∂ ∂ ∂  ∂+ = − + +    ∂ ∂ ∂ ∂ ∂   

	 (4.55)

The lubrication approximation depends on two basic conditions, one geometric and 
one dynamic. The geometric requirement is revealed by the continuity equation. 
If Lx and Ly represent the length scales for the velocity variations in the x- and 
y-directions, respectively, and let U and V be the respective scales for uz and uy. From 
the continuity equation we obtain
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~ y

x

LV
U L

	 (4.56)

In order to neglect pressure variation in the y-direction, all the terms in the 
y‑momentum equation must be small, in other words 1V U  . The continuity scale 
analysis reveals that the geometric requirement is

1y

x

L
L
 	 (4.57)

which holds for thin films and channels. The consequences of this geometric con-
strain are reflected in the Navier-Stokes equations as

2 2

2 2and x xu up p
y x x y

∂ ∂∂ ∂
∂ ∂ ∂ ∂
  	 (4.58)

In addition, the continuity equation also tells us that the two inertia terms in the 
x-momentum equation are of similar magnitude, i.e.,

2
~ ~ ~x x

y x
y x

u uV U Uu u
y L L x

∂ ∂
∂ ∂

	 (4.59)

These inertia effects can be neglected, i.e.,

2 2

2 2andx x x x
x y

u u u u
u u

x xy y
   

∂ ∂ ∂ ∂
∂ ∂∂ ∂

  	 (4.60)

only if 2 2
x yU L U L   or

1y y y

x x

U L L L
Re

L L




     
=          

 	 (4.61)

which is the dynamic requirement for the lubrication approximation. The x-momen-
tum (Navier-Stokes) equation is then reduced to

2

2
1 d

d
xu p

xy 

∂
=

∂
	 (4.62)

for ( )p p x=  only.
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■■ 4.4 �Viscometric Flows

There are only a few exact or analytical solutions of the momentum balance equa-
tions, and most of them are for situations in which the flow is unidirectional; that 
is, the flow has only one non-zero velocity component. Some of these are illustrated 
in the following.

4.4.1 �Pressure Driven Flow of a Newtonian Fluid through a Slit

One of the most common flows in polymer processing is the pressure driven flow 
between two parallel plates. This is also very important for slit rheometers or inline 
measurements inside cavities. When deriving the equations that govern slit flow, 
we use the notation presented in Fig. 4.15 and consider a steady, fully developed 
flow, i.e., a flow where the entrance effects are ignored.

This flow is unidirectional, which means there is only one non-zero velocity com-
ponent. The continuity for an incompressible flow is reduced to

0zu
z

∂
=

∂
	 (4.63)

The z-momentum equation for a Newtonian, incompressible flow (Navier-Stokes 
equations) is

2

2 0zup
z y

∂∂− + =

∂ ∂
	 (4.64)

and the x- and y-components of the equations of motion are reduced to

0
p p
x y
∂ ∂− = − =
∂ ∂

	 (4.65)

h

L
pLp0

y

z

Figure 4.15 �Schematic diagram of pressure flow through a slit
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This relation indicates that for this fully developed flow, the total pressure is a func-
tion of z alone. Additionally, because u does not vary with z, the pressure gradient, 

p z∂ ∂ , must be a constant. Therefore,

0
p p
z L

D∂ = =
∂

	 (4.66)

where Dp = pL − p0. The momentum equation can now be written as

2

2
1 zup
u L y
D ∂

=
∂

	 (4.67)

As boundary conditions, two no-slip conditions given by ( )2 0zu h± =  are used in 
this problem. Integrating twice and evaluating the two integration constants with 
the boundary conditions gives

( )
2 22 22 2d

1 1
8 d 8z

y yh p h pu y
z h L h 

D         = − = −            
	 (4.68)

Also note that the same profile will result, if one of the non-slip boundary conditions 
is replaced by a symmetry condition at y = 0, namely d d 0zu y = . The mean velocity 
in the channel is obtained integrating the above equation

( )
2

0

1 d
d

12 d

h

z z
h pu u y y

h z
= =∫ 	 (4.69)

and the volumetric flow rate is

3

12z
W h pQ hW u

L

D= = 	 (4.70)

where W is the width of the channel.

4.4.2 �Flow of a Power Law Fluid in a Straight Circular Tube 
(Hagen‑Poiseuille Equation)

Tube flow is encountered in several polymer processes, such as in extrusion dies 
and sprue and runner systems inside injection molds, as well as in capillary rheo
meters. When deriving the equations for pressure driven flow in tubes, also known 
as Hagen-Poiseuille flow, we assume that the flow is steady, fully developed, with 
no entrance effects, and axis-symmetric (see Fig. 4.16).
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R

L
pLp0

r

z

Figure 4.16 �Schematic diagram of pressure flow through a tube

Thus, we have ( )z zu u r= , 0ru u= =  and ( )p p z= . With this type of velocity field, 
the only non-vanishing component of the rate-of-deformation tensor is the zr-com-
ponent. It follows that for the generalized Newtonian flow, tzr is the only non-zero 
component of the viscous stress and that ( )zr zr tt t= . The z-momentum equation 
is then reduced to

( )1 d d
d dzr

pr
r r z

t = 	 (4.71)

However, because ( )p p z=  and ( )zr zr rt t= , the above equation is satisfied only if 
both sides are constant and can be integrated to obtain

2

1
d
d 2zr
p rr c
z

t = + 	 (4.72)

At this point, a symmetry argument at r = 0 leads to the conclusion that tzr = 0 
because the stress must be finite. Hence, we must satisfy c1 = 0. For a Power Law 
fluid (Section 3.2.1) it is found that

d
d

n
z

zr
u

m
r

t = − 	 (4.73)

The minus sign in this equation is required because the pressure flow is in the direc-
tion of the flow (d d 0p z < ), indicating that tzr ≤ 0. Combining the above equations 
and solving for the velocity gradient gives

1
1d 1 d

d 2 d

n
nzu p r

r m z
 

= − −  
	 (4.74)

Integrating this equation and using the no-slip condition, at r = R, to evaluate the 
integration constant, the velocity as a function of r is obtained
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( )
( )13 1

1
1

n n

z z
n ru r u

n R

+ +    = −      +   
	 (4.75)

where the mean velocity, 0zu = , is defined as

11

2
0

2 d
d

3 1 2 d

nR n

z z
n R pu u r r

n m zR

+  
= = −  +    

∫ 	 (4.76)

Finally, the volumetric flow rate is given by

1 13 1 3 1
2 d

3 1 2 d 3 1 2

n nn n

z
n nR p R pQ R u
n m z n m L
p p D

p
+ +      

= = − = −      + +         
	 (4.77)

Example 4.5 Velocity distribution in a tube for shear thinning fluids

In this example, we illustrate the effect of the Power Law index on the velocity dis-
tribution of a shear thinning polymer in a 100 mm long, 2 mm diameter tube. Using 
Eq. 4.75, the velocity distribution for a Power Law fluid with a consistency index m of 
100 Pa s and Power Law indices n of 1, 0.75, 0.5 and 0.25 were computed. Figure 4.17 
presents the four velocity distributions, each normalized to their maximum velocity 
at the center of the tube.

In addition, Eq. 4.77 was used to plot the volumetric throughput in the tube as a 
function of pressure for the four different Power Law indices.
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Figure 4.17 �Velocity distribution within a tube for various power-law indices using a Power Law 
model
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Figure 4.18 �Volumetric throughput through a tube for various Power Law indices computed 
using a Power Law model

4.4.3 �Volumetric Flow Rate of a Power Law Fluid in Axial Annular Flow

Annular flow is encountered in pipe extrusion dies, wire coating dies, and film 
blowing dies. In the problem under consideration, a Power Law fluid is flowing 
through an annular gap between two coaxial cylinders of radius k R and R, with 
 < 1, as schematically depicted in Fig. 4.19. The maximum in the velocity profile 
is located at r = b R, where  is a constant to be determined. Considering the geo-
metrical characteristics and ignoring entrance effects, the flow is unidirectional, 
i.e., ( ) ( )( ), , 0,0,r z z ru u u u= =u .

κRβRR

L
pLp0

r

z

uz(r)

Figure 4.19 �Schematic diagram of pressure flow through an annulus
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The z-momentum equation is then reduced to

( )1 d d
d dzr

pr
r r z

t = 	 (4.78)

Integrating this equation we obtain

2

1
d
d 2zr
p rr c
z

t = + 	 (4.79)

The constant c1 cannot be set to zero, because k R ≤ r ≤ R. However,  can be used 
rather than c1,

2

2zr
p R r Rr
L R r

t 
D  = −  

	 (4.80)

which makes  the new integration constant. The Power Law expression for the 
shear stress is given by

d
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d
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u
m R r R
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u
m R r R
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t  

t 

 
= − ≤ ≤  

 
= − ≤ ≤  

	 (4.81)

Substitution of these expressions into the momentum equation leads to differential 
equations for the velocity distribution in the two regions. Integrating these equations 
with boundary conditions, uz = 0 at r = k R and at r = R, leads to
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    




   



D

D

  
= − ≤ ≤′ ′   ′  

  
= − ≤ ≤′ ′   ′  

∫

∫
	 (4.82)

where r R = . In order to find the parameter , the above equations must match 
at the location of the maximum velocity,

1 112 2
d d

n n

 

 
   

 

   
− = −′ ′ ′   ′   ∫ ∫ 	 (4.83)

This equation is a relation between , the geometrical parameter , and the Power 
Law exponent n. The volumetric flow rate in the annulus becomes
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4.4.4 �Circular Annular Couette Flow of a Power Law Fluid

Circular annular Couette flow is a drag-induced flow between two concentric cylin-
ders with one cylinder rotating relative to the other. Couette flow or circular annular 
Couette flow, as schematically depicted in Fig. 4.20, is commonly encountered in 
rheometry and polymer processing [1]. This is a two-dimensional analysis that 
is most easily solved using cylindrical coordinates (r, , z) as shown in Fig. 4.20. 
When solving this problem, an isothermal flow with negligible viscous dissipation 
is assumed.

In a laminar flow, with perfect, concentric cylinders, it is intuitive to assume that 
ur = 0. In addition, it can safely be assumed that there is no flow in the axial or 
z-direction, uz = 0. The only velocity component left is u, which only varies in the 
radial direction, r. Hence, the velocity field can be represented using

( )( )0, ,0,0 ,0u u r= 	 (4.85)

r

ω

θ

Ri

R0

Figure 4.20 �Schematic diagram of circular annular Couette flow
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With the above flow field the continuity equation for an incompressible flow reduces 
to

0
u


∂
=

∂
	 (4.86)

This supports the initial assumption by showing that u is not a function of .

Creeping flow, characteristic in polymeric melts, was considered, with the under-
standing that inertia effects are negligible in comparison to the viscous effects 
(Reynolds number, Re  1). Gravity forces are also much smaller than viscous forces 
(Poiseuille number Ps  1), and are therefore neglected. For a polymeric melt, the 
pressure gradient does not play a role, because gravity forces and inertial forces 
are insignificant (for the Newtonian case, the pressure gradient is a function of the 
centrifugal force and the gravity force, ( ),p r z ) [2]. The velocity field is generated 
by the drag flow caused by rotation of the inner boundary. No pressure is imposed 
on the system. The  component of the equations of motion gives insight into the 
velocity field, and the r component provides information on the pressure gradient. 
For a 2D approach, only the  component is used,

-component 0
pr
r
∂= −
∂

	 (4.87)

( )2
2
1

-component 0 rr
rr  t
∂ =  ∂ 

	 (4.88)

The rate of deformation tensor components are derived using the assumptions about 
the velocity, Eq. 4.85 and Eq. 4.86,

 r r
u

r
r r


 g g g

 ∂= = =   ∂
   	 (4.89)

A constitutive equation that couples the  component of the equations of motion, 
Eq. 4.88, and the r  component of the rate of deformation tensor, Eq. 4.89, is needed. 
The Power Law model is used as the constitutive model for the non-Newtonian 
behavior of the polymer melt

t  g=  	 (4.90)

( )1nm g −=  	 (4.91)

The fact that the only component left of the rate of deformation tensor is the r  
component (Eq. 4.89) assures that the tr  term is the only component left in the 
-component of the equations of motion (Eq. 4.88). After integrating this term with 
respect to r, the equation of motions is reduced to
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2r
A
rt = 	 (4.92)

where A is a constant of integration.

Substituting the r  component of the rate of deformation tensor,  r g  (Eq. 4.89), into 
the Power Law model (Eq. 4.91), the shear stress tensor becomes

d
 

d

n

r
u

m r
r r


t

  
= −    

	 (4.93)

The partial derivatives were changed to regular derivatives because the unknown 
parameters are only a function of r. Equating Eqs. 4.92 and 4.93 and solving for the 
velocity field by integrating the equation one time results in

( )
2

2
n

u nB r C
r
 −= + 	 (4.94)

where ( )1 nB A m= . In order to fully account for the velocity field, the constants 
A and B must be solved by using the given boundary conditions for the inner and 
outer cylinders,

o0 ifu r R = = 	 (4.95)

i iifu R r R = = 	 (4.96)

It is possible now to solve the system with two unknowns, A and C, and two equa-
tions. Substituting the boundary conditions, Eq. 4.95 and Eq. 4.96, into Eq. 4.94, 
the velocity field, u, is obtained
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R

u rr

R
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 

−

−

 
  −      =

 
  −      

	 (4.97)

Example 4.6 �Velocity distribution within a Couette device containing shear 
thinning fluids

In this example, we illustrate the effect of the Power Law index on the velocity dis-
tribution of a shear thinning polymer within a Couette device. For a Couette device 
with an inner radius Ri = 3 cm and outer radius Ro = 6 cm, and in conjunction with 
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Eq. 4.75, the velocity profile was computed using Power Law indices n of 1, 0.75, 
0.5 and 0.25.

4.4.5 �Squeezing Flow of a Newtonian Fluid between Two Parallel 
Circular Discs

Squeezing flow between two parallel discs results when two parallel surfaces 
approach each other, displacing the fluid out from between the plates. This is a 
two-dimensional analysis that is most easily solved using cylindrical coordinates 
(r, , z) [13] as shown in the Fig. 4.22.

Melt flow front

Chargeh
z = h

z = 0

Mold cavity

Rf

F

-h
•

R0

Figure 4.22 �Schematic diagram of squeezing flow between two parallel discs
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Figure 4.21 �Velocity distribution within a Couette device for Power Law indices computed 
using a Power Law model
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The first assumption one can make is that there is no velocity component in the 
-direction because the plates do not rotate. In addition, because the z-dimension 
(h) is reduced over time by d dh h t= , the two remaining velocity components, ur 
and uz, are functions of space and time. The radial velocity component, ur, changes 
along the radius and across the distance between the plates, or in the z-direction. 
Additionally, uz changes in the z-direction but is not a function of r.

( ) ( ),0, , ,0, 0,0, ,r zu r z t u z t =  u 	 (4.98)

For an incompressible fluid, the continuity equation reduces to

( )1
0z

r
u

r u
r r z

∂∂ + =
∂ ∂

	 (4.99)

Assuming a quasi-steady condition and negligible inertia effects, the left hand side of 
the equation of motion is neglected. This assumption implies that the radial profile of 
the flow can be assumed to be in a hydrodynamic steady-state. Additionally, because 
inertial effects are negligible, the body force terms can be dropped. With Ro  h, 
two assumptions can be made

 nd  a r r
z r

u u
u u

r z
∂ ∂
∂ ∂

  	 (4.100)

which reduces the equations of motion for a Newtonian fluid to

2

2-component 0 rupr
r z

∂∂= − +

∂ ∂
	 (4.101)

-component 0
pz
z
∂= −
∂

	 (4.102)

An analysis of the components of the rate of deformation tensor leads to

r
rr

u
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g
∂

=
∂

 	 (4.103)
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rg = 	 (4.105)
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=
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The continuity equation and the equation of motion now form a system of 3 equations 
and 3 unknowns, ur, u and DP. Before proceeding to solve this system of equations, 
they can be simplified using known relationships. In order to fulfill the continuity 
equation (Eq. 4.99) ur must have a particular shape, namely,

( ) ,ru r f z t= 	 (4.107)

The z-component of the equation of motion, Eq. 4.102, shows that p is not a function of 
z but r. By substituting ur into the r-component of the equation of motion, p becomes

2
o 2p p p r= + 	 (4.108)

Using these three relationships, the continuity equation and the equation of motion 
can now be written as

2 0zu
f

z
∂

+ =
∂

	 (4.109)

2

2 2 2 0
fp

z

∂− + =
∂

	 (4.110)

which is a system of 2 equations and 2 unknowns. To solve the above system of 
equations, the following boundary conditions are used

0 at 0
f z
z
∂ = =
∂

	 (4.111)

0 at 2f z h= = 	 (4.112)

0 at 0zu z= = 	 (4.113)

2 at 2zu h z h= = 	 (4.114)

a 0atp p r R= = 	 (4.115)

With these conditions we can solve Eq. 4.109 and 4.110 as

2
3 ( )

1
4 2r

h zu r f r
h h

  −  = = −     
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	 (4.116)
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3 1
4 2 3 2z

z zu h
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     = −        

 	 (4.117)
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With the resulting pressure distribution and the knowledge that tzz = 0 on the discs, 
the force on a disc surface can be determined using

( )
02

a
0 0

d d
R

zz z h
F p p r rt 

p

=
= − +∫ ∫ 	 (4.119)
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4.4.6 �Flow of a Power Law Fluid between Two Parallel Circular Discs

The flow between two rotating parallel circular discs results when one disc is fixed 
and the other rotates at a rotational speed  [14]. This is the case in the parallel 
plate rheometer. The necessary two-dimensional analysis is most easily solved using 
cylindrical coordinates (r, , z) as shown in Fig. 4.23. The geometric restrictions of 
circular discs set-up reduces the velocity to

( )( )0, ,0, ,0u u r z= 	 (4.122)

T

ω

h
z = h

z = 0

Mold cavity

R0

r

Outer edge at R0

u(R,z) = ωR(z/h)

u(r,h) = ωr

Figure 4.23 �Schematic diagram of the flow between two parallel discs
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As expected, the continuity equation reveals that u is not a function of .

0
u


∂
=

∂
	 (4.123)

Assuming that simple shear flow takes place with a velocity component in the 
-direction and a gradient in the z-direction, we can write

( ) ( )u A r z B r = + 	 (4.124)

The respective boundary conditions are:

0 at 0u z = = 	 (4.125)

atu r z h = = 	 (4.126)

These boundary conditions allow to solve for ( )A r  and ( )B r , where ( ) 0B r =  and 
( )A r r z h= . This leads to a velocity profile

zu r
h = 	 (4.127)

also depicted in Fig. 4.23. Using Eq. 4.122, an evaluation of the components of the 
rate of deformation tensor leads to

z z
u
z


 g g
∂

= =
∂

  	 (4.128)

r r
u

r
r r


 g g

 ∂= =   ∂
  	 (4.129)

Substituting the velocity field, Eq. 4.127, the components in the rate of deformation 
tensor are

z z
r
h 


g g= =  	 (4.130)

0r r g g= =  	 (4.131)

Defining the strain rate as

0
0

r
r

R
g g=  	 (4.132)

with the strain rate at the outer edge of the discs given by
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0
0

r
R

h


g = 	 (4.133)

With the additional assumption that the pressure stays constant in the -direction, 
the analysis of the -component of the equation of motion gives us

( ),
0 z z r

z
t∂= −
∂

	 (4.134)

which after integration results in

( )z C rt = 	 (4.135)

In order to determine the shear stress, we must measure and find the viscosity at 
specific radii. Hence, it is more practical to measure the torque, T, required to turn 
the upper disk. The torque on the top disk is given by

( ) ( ) ( )
0

0

2 d
R

z z h rT r rt p== −∫ 	 (4.136)

The viscosity at any position r is given by

( ) ( )
( )
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	 (4.137)

Substituting Eq. 4.137 into Eq. 4.136 gives

( )
0

2

0

2 d
R

T r r rgp= ∫  	 (4.138)

Using the strain rate defined in Eq. 4.132, it is possible to replace r by g
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	 (4.139)

and after differentiating both sides of Eq. 4.139 using the Leibnitz rule, we can solve 
for a viscosity function defined by
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■ �Problems

4.1	 Rearrange the Lissajous loops in Fig. 2.37 of Example 2.6 in Chapter 2 with 
We instead of g0 on the vertical axis. Draw the line where Gn = 1. What is the 
significance of this graph?

4.2	 Please retrieve and read the paper by A. J. Giacomin et al., [15]. Write a short 
essay on the significance of Gn.

4.3	 Explain and prove the three different forms presented for the Weissenberg 
number in Table 4.1.

4.4	 Explain and prove the two different forms presented for the Deborah number 
in Table 4.1.

4.5	 The 7 mm diameter piston in a capillary rheometer moves at a speed of 20 mm/s, 
forcing a blow molding grade PE-HD melt of the examples in Chapter 2 through 
the 2 mm diameter capillary. The test temperature is190 °C and the thermal 
conductivity k is 0.2 W/m K. Is viscous dissipation important?

4.6	 Derive the equation that describes the pressure flow between parallel plates 
with a temperature difference between the upper and the lower plates. Follow 
the same procedure used in Example 4.2.

4.7	 Derive the equations that describe the pressure flow through a slit using a 
Power Law viscosity model. Plot the velocity distribution for various Power Law 
indices.

4.8	 Plot the velocity distribution within a capillary using the Hagen-Poiseuille 
equation with a Power Law viscosity model, such as used in Example 4.5. What 
is the smallest Power Law index n you can use?

4.9	 Derive the governing equation for a squeeze flow between two parallel plates 
using a Power Law viscosity model.

4.10	Using the squeeze flow equations between two parallel discs derived for a 
Newtonian fluid, plot the force F necessary to close the disc as the gap changes 
from 10 mm to 1 mm at a closing speed of 1 mm/s. The disc diameter is 100 mm 
and the polymer viscosity 100 Pa s.

4.11	Is viscous heating important in the squeeze flow of Problem 4.10?
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5 Viscoelasticity

Although polymers have their distinct transitions and may be considered liquid 
when above the glass transition or melting temperatures, or solid when below those 
temperatures, in reality they are neither liquid nor solid, but viscoelastic. In fact, at 
any temperature, a polymer can be either a liquid or a solid, depending on the time 
scale or the speed at which its molecules are being deformed.

We can use the Deborah number, De =   , first discussed in Chapter 1, and the defor-
mation, 0, to summarize how the system can be most accurately modeled. Figure 5.1 
helps visualize the relation between time scale, deformation, and applicable material 
behavior. At small Deborah numbers, the polymer can be modeled as a Newtonian 
fluid, and at very high Deborah numbers, the material can be modeled as a Hookean 
solid. Both cases are well understood; the first is extensively covered in Chapters 3 and 
4, and the latter within the field of solids mechanics, outside the scope of this book. 
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Figure 5.1  Schematic of Newtonian, elastic, linear, and non-linear viscoelastic regimes as 
a function of deformation and relaxation time during deformation of polymeric 
materials
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The cases that fall between these two situations are covered within this chapter. 
Here, the viscoelastic region is divided in two: the linear viscoelastic region for 
small deformations, and the non-linear viscoelastic region for large deformations.

Experimentally, simple laboratory tests are desirable in order to obtain information 
relevant to actual processing conditions. Experiments that apply small deformations 
are used to study linear viscoelasticity, revealing information about the molecular 
structure. Here, the material functions and models are useful for predicting general 
tendencies and for quality control in production. A comprehensive guide to under-
standing linear viscoelasticity is given by Ferry [1]. For actual processing-relevant 
information, however, the more complex, viscoelastic behavior under large deforma-
tions must be studied, typically using large amplitude oscillatory shear (LAOS) tests.

The collected data can be displayed in the form of Lissajous loops or they can be pre-
sented on a so-called Pipkin diagram, where instead of deformation, the Weissenberg 
number, We = 0    , is on the vertical axis

 ■ 5.1  Linear Viscoelasticity

The well-established field of linear viscoelasticity applies to materials undergoing 
small deformations, such as the short term deformation of polymer components. 
The most common, linear viscoelastic model is the Maxwell model presented in 
Chapter 1. The governing equation for the Maxwell model is given by

0

d

d xy
xy

xy t
 (5.1)

Experimentally, linear viscoelasticity is maintained during a dynamic mechanical 
test (DMA) or oscillatory sliding plate rheometry, where the small deformations 
leave the molecular structure almost unaffected and the same response is observed 
in each cycle during testing. The non-linearities arise as soon as the deformation 
is large enough to alter the structure of the polymer chains. This, of course, is the 
topic for non-linear viscoelasticity discussed later in this chapter.

5.1.1  Relaxation Modulus

As discussed in Chapter 2, the most basic principle that governs the mechanical 
and rheological behavior of polymers is the stress relaxation behavior. When a 
sudden strain is applied at t = 0, such as a small amount of shear 0, the resulting 
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stress can be measured as a function of time, t . For non-linear materials, such 
as polymers, the decaying stress results in a shear modulus that is also a function 
of strain 0 ,G t , where

0 0 0, ,xyG t t  (5.2)

Similar to the stress relaxation modulus presented for elongational deformations 
in Chapter 2, we can assume that for small instantaneous deformations the shear 
modulus is proportional to strain and is therefore only a function of time

0xyG t t  (5.3)

This linear relation is the basic principle behind linear viscoelasticity.

5.1.2  The Boltzmann Superposition Principle

In addition to the time-temperature superposition principle (WLF), the Boltzmann 
superposition principle is of extreme importance in the theory of linear viscoelastic-
ity. The Boltzmann superposition principle states that the deformation of a polymer 
component is the sum or superposition of all strains that result from various loads 
acting on the part at different times. This means that the response of a material 
to a specific load is independent of already existing loads or strains. That is, if at a 
particular time ti a sudden strain it  is applied, the resulting stress from this 
strain can be expressed as

i ixy i xy it G t t t  (5.4)

Hence, we can compute the stress within a polymer specimen that is exposed to 
several strains at different points in time (such as presented in Fig. 5.2) by simply 
adding all stress responses:

1 2 31 1 2 2 3 3xy xy xy xyt G t t t G t t t G t t t  (5.5)

or

1
i

n

xy i xy i
i

t G t t t  (5.6)

where t > tn. For very small strain intervals that lead to a continuous strain function 
we can write the above sum in integral form

d
t

xy xyt G t t t  (5.7)
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which can be written in terms of strain rate as

d
t

xyt G t t t t  (5.8)

which in turn can be written in terms of compliance

d
t

xy xyt J t t t t  (5.9)

In the case that the polymer component is stress-free at t = 0, we can write

0

d
t

xy xyt G t t t t  (5.10)

Which, for systems with complex three-dimensional stress and strain fields, can be 
written in tensor form as

0

d
t

t G t t t t  (5.11)
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Figure 5.2  Schematic demonstration of Boltzmann’s superposition principle
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5.1.3  The Maxwell Model – Relaxation

A stress relaxation test consists of monitoring the time-dependent shear stress, 
xy, resulting from a constant shear strain, xy. The model to describe the stress 

relaxation of polymers is the Maxwell model already described in Chapter 1. The 
spring should be visualized as representing the elastic or energy storage component 
of the response, while the dashpot represents the conformational, loss or entropic 
component. Using this model, schematically depicted in Fig. 5.3, only the spring 
deforms initially, something that in the model happens instantaneously. This is 
followed by the time-dependent response of the dash-pot, which deforms under 
the same constant strain. The deformation within the spring is transferred to the 
dashpot as the stress relaxes to zero; the deformation of the dash-pot is irreversible 
and leads to a loss of energy.

For a constant strain, the stress is represented by

e e
t t

xy xy xy xyG G G t  (5.12)

which in turn can be represented in integral form, using the Boltzmann superpo-
sition principle

0

e d
t tt

xy xyt G t t  (5.13)

G

xy

Figure 5.3  Schematic diagram of the Maxwell model
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5.1.4  Kelvin Model

Depending on the time scale, the Maxwell model can emulate solids (short time 
scales) as well as liquids (long time scales), while the Kelvin model can only be used 
to model viscoelastic solids. The Kelvin model, sometimes also called the Kelvin-Voigt 
model, is shown in Fig. 5.4. It is the simplest model that can be used to represent 
the behavior of a solid polymer component at the beginning of loading.

21 G

xy

Figure 5.4  Schematic diagram of the Kelvin model

The momentum balance for the Kelvin model is stated as

1 2xy xy xy  (5.14)

and the continuity equation is represented by

1 2xy xy xy  (5.15)

Using Eq. 5.15 with the constitutive relations 
1xy xyG  for the spring, and 

2xy xy , for the dashpot, the governing equation, Eq. 5.14, can be rewritten as

xy xy xyG  (5.16)

Using Eq. 5.16, in the Kelvin model, and replacing the ratio ( )G  by , the strain 
in a creep test with constant load 0 can be determined by

0 1 e t
xy t

G
 (5.17)

where  is the relaxation time. The creep modulus is therefore

c
1 e t

GG t  (5.18)
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Figure 5.5  Creep, relaxation, and recovery response in the Kelvin model

The creep response of the Kelvin model is shown in Fig. 5.5. Eventually, a maximum 
strain max

xy  is reached. However, if a constant strain 0 is maintained in a Kelvin 
model, the stress does not relax and remains constant at

0xy G  (5.19)

In Fig. 5.5, the creep test is stopped at 0 before reaching max
xy , which causes the 

stress to drop somewhat.

Because the stresses do not relax in a Kelvin model, the full shape of the original 
component or specimen can be recovered. The strain recovery response can be 
written as

0 e t
xy t  (5.20)

and is shown in Fig. 5.5.

We can also consider the response of a Kelvin model subjected to a sinusoidal strain 
given by

0 sinxy t t  (5.21)

where 0 is the strain amplitude and  is the frequency. Differentiating Eq. 5.21 
and substituting into Eq. 5.16 results in

0 0sin cosxy t G t t  (5.22)
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Dividing Eq. 5.22 by the strain amplitude results in the complex modulus. For the 
Kelvin model, the two components of the complex modulus are

G G  (5.23)

which represents the storage modulus and

G  (5.24)

which represents the loss modulus. Tests with a sinusoidal strain input, also referred 
to as the dynamic tests, will be discussed in more detail in Section 5.1.8.

5.1.5  Jeffrey’s Model

As shown in Fig. 5.6, the Jeffrey model is a Kelvin model with a dashpot. This extra 
feature ensures that the missing long-term creep behavior is represented in the 
Kelvin model.

The momentum balance of the Jeffrey model is represented by two equations as

3xy xy    and (5.25)

1 2xy xy xy  (5.26)

12

3

G2 1

3

xy

Figure 5.6  Schematic diagram of the Jeffrey model
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as is the continuity equation by

1 2xy xy    and (5.27)

2 3xy xy xy  (5.28)

Combining Eq. 5.25 with 5.28 and applying the constitutive equations gives

1 3 3 1
3

2 2
xy xy xy xyG G

 (5.29)

which is sometimes written as

1 0 2xy xy xy xy  (5.30)

Using Eq. 5.30, the strain in a creep test in the Jeffrey model can be solved for as

20 0

0
1 e t

xy t t
G

 (5.31)

which is depicted in Fig. 5.7. The creep modulus of the Jeffrey model is written as

2
1

c
3

1 e t
tG t

G
 (5.32)
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Figure 5.7  Creep, relaxation, and recovery response in the Jeffrey model
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The stress relaxation of the Jeffrey model is derived from the governing equation, 
Eq. 5.30 as

1
0 e t

xy  (5.33)

and is also represented in Fig. 5.7.

The unrelaxed stress is recovered in the same way as in the Kelvin model

0 e t
xy t  (5.34)

5.1.6  Standard Linear Solid Model

The standard linear solid model, shown in Fig. 5.8, is a commonly used model to 
simulate the short-term behavior of solid polymer components. The momentum 
balance of the standard linear solid model is expressed with two equations as

1 2xy xy xy  (5.35)

and

1 3xy xy  (5.36)

2

1

3 3

G1

G2

xy

Figure 5.8  Schematic diagram of the standard linear solid model
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Continuity and deformation are represented by

1 3xy xy xy  (5.37)

and

2xy xy  (5.38)

When we combine Eqs. 5.35 to 5.38 and use the constitutive equations for the spring 
and dashpot elements, we get the governing equation for the standard linear solid 
model:

1 1 2 1 2xy xy xy xyG G G G G  (5.39)

Using Eq. 5.39, the strain in a creep test in the standard linear solid model can be 
solved for as

1 2 1 20 0 0

2 1 2 2
e G G G G t

xy G G G G
 (5.40)

which is plotted in Fig. 5.9.

The stress relaxation in the standard linear solid model can be derived by integrating 
Eq. 5.39 and is represented by

1
0 2 1 e G t

xy G G  (5.41)
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Figure 5.9  Creep, relaxation, and recovery response in the standard linear solid model
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5.1.7  The Generalized Maxwell Model

The generalized Maxwell model, also known as the Maxwell-Wiechert model, shown 
in Fig. 5.10, is a generalized model that consists of an arbitrary number of Maxwell 
models connected in parallel, allowing to simulate more accurately to fit experimen-
tally generated mechanical behavior.

The momentum balance in the ith Maxwell element of the Maxwell-Wiechert model 
is expressed as

1 1 2i ixy xy xy  (5.42)

and the full momentum balance for a model with n elements is written as

1
i

n

xy xy
i

 (5.43)

Continuity or deformation for the ith Maxwell element is expressed as

1 2i i ixy xy xy  (5.44)

and for the full model

1 2 ixy xy xy xy  (5.45)

1
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n

Gn

Figure 5.10  Schematic diagram of the Maxwell-Wiechert model
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Figure 5.11  Comparison of the experimental stress relaxation for polyisobutylene with a two-
component Maxwell-Wiechert model response

The governing equation for the Maxwell-Wiechert model is written as

i ixy xy
xy

i iG
 (5.46)

The stress relaxation of the Maxwell-Wiechert model can be derived by integrating 
Eq. 5.46 and substituting the resulting stress into Eq. 5.43. Dividing by the applied 
strain 0 results in an expression for the relaxation model that is written as

1

1
e i

n
t

i
i

G t G  (5.47)

It represents a model with n relaxation times and where i i iG .

As an example, we can approximate the relaxation behavior of polyisobutylene by 
using a Maxwell-Wiechert model having two Maxwell elements with 1 = 10−8 h and 

2 = 100 h, and G1 = 3   109 Pa and G2 = 106 Pa. Figure 5.11 compares the experi-
mental relaxation modulus with the model. It shows that although there are big 
differences between the two curves, the model with its two relaxation times does, 
at least qualitatively, represent the experimental values.

For a better fit with experimental data1 it is common to use several spring-dash pot 
models in parallel, such as shown in Fig. 5.12 [2]. The curve shown in the figure 
fits a four-parameter model with experimental relaxation and retardation data for a 
common polystyrene with a molecular weight of 260,000 g/mole. For this specific 

1 Note that the experiments are extensional, that is,  instead of xy.
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material, the relaxation behavior of the injected melt into a hot cavity, at a reference 
temperature of 113 °C, is described by

8.75 1.0 0.28 0.0583

a
0.25 e e e et t t t  (5.48)

where a is the strain after relaxation defined by

a 0 0
a

0 01
l l S

l S
 (5.49)

Here, la and l0 represent the length of the stretched and relaxed sample, respectively, 
and S0 represents the total shrinkage.

The terms , , ,
8.75 0.28 0.0583

 in Eq. 5.48 represent four individual relaxation 

times for this specific polystyrene, modeled using the four-parameter model. The 
relaxation time, , correlates with the time it takes for the initial strain to reduce, 
by relaxation, to one-half of its initial value. This relaxation time is also tempera-
ture dependent, as shown for various polymers in Fig. 5.13. Figure 5.13 shows how 
the shapes of the curves are all similar, but shifted by a certain temperature. It is 
important to note that the relaxation and retardation behavior of all amorphous 
thermoplastics is similar.

Wübken [2] performed similar tests with different amorphous thermoplastics, and 
he found that, indeed, in all cases the measurements showed a correlation between 
time and temperature such as described by the WLF equation [3]. The data fit by the 
four-parameter model was generated via two different experiments: a relaxation test 
inside an injection mold between 100 and 180 °C, and a retardation test outside of 
the mold between 72 and 100 °C. The measured data are shown in Figs. 5.14 and 
5.15 for the relaxation and retardation tests, respectively. The curves shown in both 
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Figure 5.12  Relaxation response of a Maxwell model and a four-parameter Maxwell model
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graphs were shifted horizontally to generate one master curve as shown in Fig. 5.16. 
The solid line in the figure is the four-parameter fit represented by Eq. 5.48.

Hence, appropriate Tref and  values must be found. However, the reference tempera-
ture is not quite independent of the relaxation behavior of the polymer, but rather 
related to the material properties. For the polystyrene A in Fig. 5.17, Tref = 113 °C, or 
about 48 °C above Tg. For example, for the polystyrene A of Fig. 5.17, the relaxation 
time, , can be computed by
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Figure 5.13  Relaxation time as a function of temperature for various thermoplastics
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Figure 5.14  Relaxation response, inside an injection mold, of a polystyrene specimen at 
various temperatures
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s

s

8.86
Relaxation: log log 27

101.6
T T

T T
 (5.50)

s

s

8.86
Creep: log log 0.0018

101.6
T T

T T
 (5.51)

where the constants 27 and 0.0018 are the relaxation times, , in minutes, at the 
reference temperature of 113 °C.

As discussed in Chapter 2, similar to the temperature induced shift, there is also a 
shift caused by pressure. Figure 5.18 shows the influence of pressure on Tg, and we 
can see that this effect can easily be incorporated into the WLF equation, i.e., there 
is approximately a 2 °C shift in the glass transition temperature of polystyrene for 
every 100 bar of pressure increase [4].
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Figure 5.15  Recovery or retardation response after injection molding of a polystyrene 
specimen at various temperatures
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Figure 5.16  Master curve for the relaxation response, inside an injection mold, of a 
polystyrene specimen at various temperatures
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5.1.8  Dynamic Tests

Stress relaxation and creep or stress retardation tests are convenient to study mate-
rial responses to long-term loads (minutes to days), but less accurate for short-term 
loads (seconds and less). Dynamic tests, in which the stress (or strain) resulting 
from a sinusoidal strain (or stress) is measured are better tools to investigate the 
short time range of the polymer response. The most common test is in oscillation, 
which will be described in more detail here.

If the test specimen in a sinusoidal oscillatory test is perfectly elastic, the strain 
input and stress response would be as follows:

0 sinxy t t  (5.52)

0 sinxy t t  (5.53)

Taking the ratio of stress and strain gives the elastic shear modulus

0 0

0 0

sin
sin

t
G

t
 (5.54)

For an ideally viscous test specimen, the stress response would lag 2  radians 
behind the stress input:

0 sinxy t t  (5.55)

0 cosxy t t  (5.56)

0 sin
2xy t t  (5.57)

Taking the ratio of stress and rate of deformation results in the viscosity

0 0

0 0

cos
cos

t
t

 (5.58)

On the other hand, polymers behave somewhere between the perfectly elastic and 
the perfectly viscous materials. When they are subjected to a sinusoidal varying 
stress, a steady state will eventually be reached in which the resulting strain is also 
sinusoidal, having the same angular frequency but retarded in phase by an angle ; 
this is analogous to the delayed strain observed in creep experiments. The stress 
lags the strain by the phase angle, and this is true even if the stress rather than the 
strain is the controlled variable. This relation is described by
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0 sinxy t t  (5.59)

0 sinxy t t  (5.60)

The shear modulus takes a complex form of

0 0

0 0

e
* cos sin

i
xy

xy

t
G i G iG

t
 (5.61)

which is graphically represented in Fig. 5.19. G  is usually referred to as storage 
modulus and G  as loss modulus. The ratio of loss modulus to storage modulus is 
referred to as loss tangent:

tan
G
G

 (5.62)
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Figure 5.19  Vector representation of the complex shear modulus

Linear viscoelastic models, such as the Maxwell model, can also be used to model 
the dynamic response of polymers. Using the above oscillatory test in conjunction 
with the Maxwell model we obtain

0
2 sin cos

1
xy

G
t t  (5.63)

for a steady state response. Dividing Eq. 5.63 by the amplitude of the strain input 
results in a complex modulus, which is formed by an elastic component that is 
in-phase with the strain input and a viscous component. The elastic term is the 
storage modulus and is defined by
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Figure 5.20  Storage modulus and loss modulus of a Maxwell model as a function of frequency

2

21

G
G  (5.64)

and the viscous term is the loss modulus, and is given by

21

G
G  (5.65)

Figure 5.20 presents the storage and loss moduli as a function of frequency for the 
special case where  = 1 s and G = 1 GPa, both typical values for polymer melts and 
solids, respectively. As the graph shows, at low frequencies, representing large time 
scales, the material responds like a perfect viscous fluid. However, at high frequencies, 
representing small time scales, the material responds like a perfect Hookean solid. 
Between these extremes, the material behaves like a viscoelastic material. The point 
where the loss modulus reaches a maximum represents the frequency at which the 
test temperature corresponds to the glass transition temperature of the polymer. The 
point where the loss modulus and the storage modulus cross each other (which for 
the Maxwell model is the same as the glass transition temperature) is where the test 
temperature corresponds to the softening temperature of the polymer. At frequencies 
below this crossing point, the material is a viscoelastic liquid. Above these frequencies 
the material is a viscoelastic solid. For actual material responses, the frequency at 
which the material undergoes softening is below the frequency at which the material 
experiences its glass transition, as shown for polyisobutylene in Fig. 5.21 [5].
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Figure 5.21  Storage modulus and loss modulus for polyisobutylene as a function of frequency

We can also consider the response of a Maxwell-Wiechert model subjected to a 
sinusoidal strain given by Eq. 5.59. In a similar analysis to that presented for the 
Kelvin and the Maxwell model, the storage modulus is given by

2

2
1 1

n
i i i

i i i

G
G  (5.66)

and the viscous term or the loss modulus, is given by

2
1 1

n
i i i

i i i

G
G  (5.67)

A common way to present the results of dynamic tests is to plot the stress response 
as a function of strain input. Such diagrams are referred to as Lissajous curves. 
Figure 5.22 presents normalized Lissajous curves at various frequencies of a 
Maxwell model. Here, a perfect circle represents a Newtonian fluid and a straight 
line a perfect Hookean solid.
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Figure 5.22  Normalized Lissajous curves of a Maxwell model for various frequencies with 
G = 1 GPa and  = 1 s.



164 5 Viscoelasticity

 ■ 5.2  Non-Linear Viscoelasticity

As mentioned earlier, a non-linear viscoelastic response in a polymer occurs when the 
deformation or the rate of deformation is large. In the course of polymer processing 
operations, large deformations are always imposed on the material, requiring the 
use of non-linear viscoelastic models.

5.2.1  Objectivity

Before we begin to present non-linear viscoelastic models, we must first introduce the 
term “objectivity”. A system of equations or a constitutive model is called objective 
when it does not depend on the coordinate system’s movement and orientation. For 
example, the force exerted on an elastic spring depends on the amount of stretching 
and its stiffness, but not on the orientation of the spring’s principal axis, such as 
illustrated in Fig. 5.23.

y‘ x‘

k

F = k

x

y

y

x

Figure 5.23  Objective spring system

In order to illustrate a non-objective rheological model, let us consider the tensor 
form of Maxwell’s linear viscoelastic model presented in Chapter 1

0t
 (5.68)

and the experimental set-up depicted in Fig. 5.24. The experiment is composed of a 
simple shear flow set-up mounted on a rotating disc. The simple shear flow domain 
has its own coordinate system x  y  that rotates with the disc at an angular speed . 
Within the x  y  coordinate system we can represent the flow field using
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Figure 5.24  Simple shear flow on a rotating disc

0u
u y y

h
 (5.69)

and the velocity that results from rotation as

U r  (5.70)

Assuming that at t = 0 the orientation of the x  y  coordinate system is aligned with the 
x y coordinate system, we can relate the local x  y  and the global x y coordinates using

0

0

cos sin
sin cos

x xx t t
y yy t t

 (5.71)

Hence, an observer sitting on the global coordinate system will see a flow field 
represented by the velocity components

20
0 0 0

20
0 0 0

sin cos cos

sin cos sin

x

y

u
u t t x x t y y y y

h
u

u t x x t t y y x x
h

 (5.72)

Using this velocity field, the rate of deformation tensor becomes

0
sin2 cos2 0

cos2 sin2 0
0 0 0

t t
u

t t
h

 (5.73)
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This shows that our rate of deformation tensor depends on the rotational speed of 
the frame of reference, and is therefore not objective.

Using the above rate of deformation tensor with a general form of the Maxwell model 
in integral form, we have

0

0

sin2 cos2 0
cos2 sin2 0 d

0 0 0

t t t t t
u

t G t t t t t t t
h

 (5.74)

and, because at t = 0 the x  y  coordinate system is aligned with the x y coordinates, 
we get

0 0

0

cos2 d
t

xy
u u

G t t t
h h

 (5.75)

which means that the viscosity is represented by

0

cos2 d
t

G t t t  (5.76)

Hence, according to the above equation, the viscosity depends on the rotational 
speed  of the coordinate system x  y , which we know cannot be true. Therefore, 
we find that the linear viscoelastic Maxwell model is not objective. In the following 
section, we introduce the corotational derivative that eliminates the above effect, 
making the models objective.

5.2.2  Differential Viscoelastic Models

There are two types of general, non-linear, viscoelastic flow models: the differential 
type and the integral type. In this chapter we will concentrate primarily on the 
differential models; however, the integral models will be introduced at the end.

Differential models have traditionally been the tool of choice to describe the viscoelas-
tic behavior of polymers when simulating complex flow systems. Many differential 
viscoelastic models can be described in the general form

0 1 2 30 1

0 4 50 1

Y

 (5.77)
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where 
0

 is the corotational or Jaumann derivative of the stress tensor defined by

0

D 1
2Dt t

 (5.78)

and D Dt  is the substantial derivative and  is the vorticity tensor given by

†u u  (5.79)

where u  is the velocity gradient

yx z

yx z

yx z

uu u
x x x

uu u
u

y y y
uu u

z z z

 (5.80)

and †u  is the transpose of the velocity gradient. 1  is the first contravariant 
convected time derivative of the deviatoric stress tensor and represents rates of change 
with respect to a convected coordinate system that moves and deforms with the fluid. 
The convected derivative of the deviatoric stress tensor is defined as

†
1

D
D

u u
t

 (5.81)

and similarly, 
0

 is the Jaumann derivative of the rate of deformation tensor and 

1
 is the first contravariant convected time derivative of the rate of deformation tensor.

The constants in Eq. 5.77 are defined in Table 5.1 for various viscoelastic models 
commonly used to simulate polymer flows. A review by Bird and Wiest [6] provides 
a more complete list of existing viscoelastic models.

The upper convective model and the White-Metzner model are very similar with 
the exception that the White-Metzner model incorporates the strain rate effects of 
the relaxation time and the viscosity. Both models provide a first order approxima-
tion to flows in which shear rate dependence and memory effects are important. 
However, both models predict zero second normal stress coefficients. The Giesekus 
model is molecular-based, non-linear in nature and describes the Power Law region 
for viscosity and both normal stress coefficients. The Phan-Thien-Tanner models 
are based on network theory and give non-linear stresses. Both the Giesekus and 
Phan-Thien-Tanner models have been successfully used to model complex flows.
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Table 5.1  Definition of Constants in Eq. 5.77

Constitutive Models Y 0 1 2 3 4 5

Generalized Newtonian 1 0 0 0 0 0 0

Upper convected Model 1 0 1 0 0 0 0

Corotational Maxwell 1 0 0 0 0 0 0

Convected Jeffrey’s 1 0 1 0 0 0 5

Corotational Jeffrey’s 1 0 0 0 0 4 0

White-Metzner 1 0 1 0 0 0 0

Phan-Thien-Tanner-1 0e t r 0
2

0 0 0

Phan-Thien-Tanner-2 01 t r 0
2

0 0 0

Giesekus 1 0 1 0 0 1 0 0

RFM solution FEM solution
RFM solutionExperimental results

Figure 5.25  Polystyrene strand profile progression in a square die

An overview of numerical simulations of viscoelastic flow systems and an extensive 
literature review on the subject was given by Keunings [7], and details on numerical 
implementation of viscoelastic models are given by Crochet et al. [8] and Debbaut 
et al. [9]. As an example of the application of differential models to predict flow of 
polymeric liquids, it is worth mentioning work by Dietsche and Dooley [10], who 
evaluated the White-Metzner, the Phan-Thien-Tanner-1, and the Giesekus models by 
comparing finite element2 and experimental results of the flow inside multi-layered 
coextrusion dies. Figure 5.25 [11] presents the progression of a matrix of colored 

2 For their simulation they used the commercially available code POLYFLOW.
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circular polystyrene strands flowing in an identical polystyrene matrix down a 
channel with a square cross section of 0.95  0.95 cm. The cuts in the figure are 
shown at intervals of 7.6 cm.

The circulation pattern caused by the secondary normal stress differences inside 
non-circular dies were captured well by the Phan-Thien-Tanner and Giesekus models 
but, as expected, not by the White-Metzner model. Figure 5.26 presents flow patterns 
predicted by the Phan-Thien-Tanner model along with the experimental re arrange-
ment of 165 initially horizontal layers of polystyrene in square, rectangular, and 
tear-drop shaped dies3. In all three cases, the shapes of the circulation patterns 
were predicted accurately. The flow simulation of the square die predicted a velocity 
on the order of 10 to 5 m/s along the diagonal of the cross section, which was in 
agreement with the experimental results. Also worth mentioning is work recently 
done by Baaijens [12], who evaluated the Phan-Thien-Tanner models 1 and 2, and 
the Giesekus model. He compared finite element results to measured isochromatic 
birefringence patterns using complex experiments with polymer melts and solutions. 
His simulation results predicted the general shape of the measured birefringence 
patterns. He found that at high Deborah numbers, the Phan-Thien-Tanner models 
converged much more easily than the Giesekus model.

Figure 5.26  Comparison between experimental and predicted flow patterns of polystyrene 
in square, rectangular, and tear-drop shaped dies

Example 5.1 Corotational Maxwell Model (Simple Shear Flow)

Examine a simple shear flow using the corotational Maxwell model.

The corotational Maxwell model, extensively discussed by Bird et al. [13] and by 
Giacomin et al. [14], is obtained from the Maxwell model of linear viscoelasticity by 
replacing the partial time derivative ( )t  by the corotational or Jaumann derivative 
( )t . This substitution ensures that the model is independent of the instantaneous 
orientation of the fluid element as it moves through space. The model is written as

3 These geometries are typical for distribution manifolds used in sheeting dies.
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0 0t
 (5.82)

To model simple shear flow using the corotational Maxwell model, the velocity 
gradient of the velocity vector can be defined using

0 0 0
1 0 0
0 0 0

u u h  (5.83)

and the vorticity tensor using

0 1 0
1 0 0
0 0 0

u h  (5.84)

For simple shear flows the stress tensor is represented by

0

0

0 0

xx yx

yx yy

zz

 (5.85)

Using Eqs. 5.84 and 5.85 we can write

2 0
1 1

2 0
2 2

0 0 0

yx xx yy

xx yy yx u h  (5.86)

For a symmetric stress tensor  we can write

D
D

u
t t

 (5.87)

the corotational derivative of  can be written as

0 0

0 0

0 0 0 0

2 0
1

2 0
2

0 0 0

xx yx xx yx

yx yy x y z yx yy

zz zz

yx xx yy

xx yy yx

u u u
t t x y dz

u h  (5.88)



1715.2 Non-Linear Viscoelasticity

In shear flow the velocity field is represented using

0

0

x

y

z

u u h y
u

u

 (5.89)

and

0 0

0 0

0 0 0 0

2 0
1

2 0
2

0 0 0

xx yx xx yx

yx yy yx yy

zz zz

yx xx yy

xx yy yx

u h y
t t x

u h  (5.90)

Since for simple shear flows the continuity equation reduces to d d 0xu x , we 
can write

d
0

dx
 (5.91)

and the rate of deformation is defined by

0 1 0
1 0 0
0 0 0

u h  (5.92)

we write

0

0 0

0 0

0 0

0 0 0 0

0 0 1 0
1 1

0 1 0 0
2 2

0 0 00 0 0

xx yx xx yx

yx yy yx yy

zz zz

xy yx yy xx

xx yy yx xy

t

u h u h  (5.93)

Substituting u h  by , the corotational Maxwell model for steady-state simple 
shear flow becomes

0 0
1
2yx xx yy  (5.94)
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0 0xx yx  (5.95)

0 0yy yx  (5.96)

0zz  (5.97)

Using Eqs. 5.95 and 5.96 to substitute the normal stresses in Eq. 5.94, we get

0
2 2
01yx  (5.98)

0
2 2
01

yx  (5.99)

Subtracting Eq. 5.96 from Eq. 5.95 results in

1 02 yxN  (5.100)

and substituting Eq. 5.102 into Eq. 5.105 we get

2
0 0

1 2 2
0

2

1
N  (5.101)

or

0 0
1 02 2

0

2
2

1
 (5.102)

From the above equations we can also say that

2 10.5  (5.103)

Hence, we can say that the corotational Maxwell model predicts a shear thinning 
viscosity with a Newtonian plateau. In addition, the model also exhibits a first and 
second normal stress difference. The second normal stress difference is about 5 times 
larger than what we encounter with polymer melts. Figures 5.27 and 5.28 present 
sample viscosity and first normal stress difference coefficient curves.
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Figure 5.27  Viscosity as a function of rate of deformation for a corotational Maxwell model
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Figure 5.28  First normal stress coefficient as a function of rate of deformation for a corotational 
Maxwell model
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Example 5.2 Corotational Maxwell Model (Elongational Flow)

Examine an elongational flow described in Fig. 3.13 using the corotational Maxwell 
model.

A typical elongational flow, or stretching flow, is encountered in fiber spinning 
processes. Other stretching flows exist in film blowing, blow molding, and thermo-
forming. These types of flows are also referred to as shear-free flows. The velocity 
gradient for an elongational flow, where stretching occurs in the z-direction, is

1
0 0

2
1

0 0
2

0 0 1

u t  (5.104)

For an elongational flow, the vorticity tensor is

† 0u u  (5.105)

Therefore, the Jaumann derivative reduces to the substantial or material derivative

D
D

u
t t

 (5.106)

In Eq. 5.106 the stress tensor is given by

0 0
0 0

0 0

xx

yy

zz

 (5.107)

Thus, the substantial derivative is expanded as

0 0 0 0
D

0 0 0 0
D

0 0 0 0

xx xx

yy x y z yy

zz zz

u u u
t t x y dz

 (5.108)

The kinematics of shear-free flows is defined by

1
2
1
2

x

y

z

u t x

u t y

u t z

 (5.109)
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In a homogeneous flow field, the spatial derivatives of the stress tensor are all 
negligible because every fluid element is being subjected the same deformation

0

0

0

xx

yy

zz

x

y

z

 (5.110)

With the rate of deformation tensor defined by

1 0 0
0 1 0
0 0 2

t  (5.111)

the corotational Maxwell model for a steady state elongational flow field is written as

0xx  (5.112)

0yy  (5.113)

02zz  (5.114)

When describing the two normal stress differences, one can define two independent 
viscosity functions. With the corotational Maxwell model, these functions are

1zz xx  (5.115)

1
xx zz  (5.116)

and

2yy xx  (5.117)

2
xx yy  (5.118)

Because xx = yy, we can write

1 03  (5.119)
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and

2 0  (5.120)

Equation 5.120 shows how the corotational Maxwell model predicts extensional 
viscosity or “Trouton viscosity” of 3  0 [15].

Example 5.3  Corotational Maxwell Model 

(Small and large amplitude oscillatory shear)4

Develop normalized Lissajous curves for a corotational Maxwell model for various 
frequencies and deformations with G = 1 GPa and  = 1 s using the corotational 
Maxwell model with a shear strain input of 0 cosxy t
Using a rate of deformation tensor represented by

0
0 1 0

 1 0 0 cos
0 0 0

t  (5.121)

and implementing it into the corotational Maxwell model, we can write

0 0
0

1
cos  cos

2yx yx xx yyt t
t

 (5.122)

0 cos  0xx xx yx t
t

 (5.123)

0 cos  0yy yy yx t
t

 (5.124)

 0zz  (5.125)

Equation 5.122 can be rewritten as

0 0
1 0

1
cos cos

2yx yx N t t
t

 (5.126)

Because all partial derivatives are with respect to time, we can rewrite the equation 
in dimensionless form as

4 A full derivation is given in [14].
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00
0

10 0 0 0
0 0 0 0

1
cos cos

2
yx

yx N
t

 (5.127)

which can be written as

1
1

cos cos
2

De Wi
t

 (5.128)

where the dimensionless terms are defined in Table 5.2. Similarly, subtracting 
Eq. 5.123 from Eq. 5.122 and writing in dimensionless form gives

0
1

10 0 0
0 0 0

2
cos 0yx

yx
N

N
t

 (5.129)

1 1 2 cos 0De We
t

 (5.130)

which can be solved for shear stress  as

1 1
1 d

 
2 cos d

De
We

 (5.131)

Table 5.2  Dimensionless Variables and Groups

First Normal Stress Difference 1
1

f
0

e

0

d N t

Second Normal Stress Difference 2
2

f
0

e

0

d N t

Shear rate amplitude 0

Shear strain amplitude def0 0

Shear Stress
0

f
0

de yx t

Time def t

Weissenberg number def 0We

Deborah number defDe
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We can now substitute Eq. 5.131 into Eq. 5.128 to robtain

2 2 2
1 1

2
2 2

12

d
1 tan cos tan 2

d
d

2 cos  0
d

De We De De

De We  (5.132)

The above equation does not have an analytical solution. In fact, the special case for 
a vanishing Weissenberg number, We  0, written as

2
2 2

1 1 12
d d

1 tan tan 2  0
d d

De De De De  (5.133)

also does not have an analytical solution. However, we can solve Eq. 5.133 numer-
ically for 1, then solve for  using Eq. 5.131. Figure 5.29 presents the Lissajous 
curves developed using the corotational Maxwell model for various frequencies and 
deformations. The Pipkin plot presented in Fig. 5.29 clearly shows linear viscoelas-
ticity, corresponding to small amplitude oscillatory shear in the bottom row, while 
everything above reflects non-linear behavior, corresponding to large amplitude 
oscillatory shear.

10.0

5.0

2.5

0.5

0.75 1.5 3.0 7.5 15.0

0

 (rad/s)

Figure 5.29  Normalized Lissajous curves of a corotational Maxwell model for small and large 
amplitude oscillatory shear tests.
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5.2.3  Integral Viscoelastic Models

Integral models with a memory function have been widely used to describe the 
viscoelastic behavior of polymers and to interpret their rheological measurements 
[16–18]. In general, the single integral model can be written as

d
t

M t t S t t  (5.134)

where M t t  is a memory function, and a deformation-dependent tensor is 
defined by

0
1 1 2 2 1 20

, ,S t I I I I  (5.135)

where I1 and I2 are the first invariant of the Cauchy and Finger strain tensors, 
respectively.

Table 5.3 [19–23] defines the constants 1 and 2 for various models. In Eq. 5.135, 

0
 and 0  are the finite strain tensors given by

0

t    and (5.136)

0 tE E  (5.137)

Table 5.3  Definition of Constants in Eq. 5.135

Constitutive model 1 2

Lodge rubber-like liquid 1 0

K-BKZ*
1

W
I 2

W
I

Wagner** 1 2exp 1 3I I 0

Papanastasiou-Scriven-Macosko***
1 23 1I I 0

* 1 2,W I I  represents a potential function that can be derived from empiricisms or molecular theory.
** Wagner’s model is a special form of the K-BKZ model
*** The Papanastasiou-Scriven-Macosko model is also a special form of the K-BKZ model.

The Lodge rubber-like liquid presented in Table 5.3 is a version of the Maxwell model 
in integral form. The terms ij and Eij are displacement gradient tensors5 defined by

5 Another combination of displacement gradient tensors often used are the Cauchy strain tensor and the Finger 
strain tensor defined by 1 tB  and tB E E , respectively.
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, ,
      i

ij
j

x x t t
x

   and (5.138)

, ,i
ij

j

x x t t
E

x
 (5.139)

where the components ij measure the displacement of a particle at past time t  
relative to its position at present time t, and the terms Eij measure the material 
displacements at time t relative to the positions at time t .

A memory function M t t  is often applied and leads to commonly used consti-
tutive equations written as

21
exp

n
k

kk k

t tM t t  (5.140)

where k and k are relaxation times and viscosity coefficients at the reference 
temperature Tref, respectively.

Once a memory function has been specified, several material functions can be 
calculated using [24]

1 2
0

dM s s s  (5.141)

2
1 1 2

0

dM s s s    and (5.142)

2
2 2

0

dM s s s  (5.143)

For example, Figs. 5.30 and 5.31 present the measured [25] viscosity and first normal 
stress difference data, respectively, for three blow molding grade, high density 
polyethylenes along with a fit obtained from the Papanastasiou-Scriven-Macosko 
[23] form of the K-BKZ equation. A memory function with a relaxation spectrum of 
8 relaxation times was used. The coefficients used to fit the data are summarized 
in Table 5.4 [17]. The viscosity and first normal stress coefficient data presented 
in Figs. 5.30 and 5.31 where fitted with the Wagner model [22] form of the K-BKZ 
equation [20,21]. Luo and Mitsoulis used the K-BKZ model with the data in Table 5.4 
to simulate the flow of HDPE through annular dies. Figure 5.32 [17] shows simulation 
results for a converging, a straight, and a diverging die geometry. The results shown 
in Fig. 5.32 were in good agreement with experimental results6.

6 The quality of the agreement between experiment and simulation varied between the resins.
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Figure 5.30  Measured and predicted shear viscosity for various high density poly-ethylene 
resins at 170 °C
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Figure 5.31  Measured and predicted first normal stress difference for various high density 
polyethylene resins at 170 °C



182 5 Viscoelasticity

Table 5.4  Material Parameter Values in Eq. 5.127 for Fitting Data of High Density Polyethylene 
Melts at 170 °C

k k (s) k (Pa s)

1 0.0001 52

2 0.001 148

3 0.01 916

4 0.1 4210

5 1.0 8800

6 10.0 21,200

7 100.0 21,000

8 1000.0 600

Figure 5.32  Predicted extrudate geometry for:  
(a) converging, (b) straight, and (c) diverging annular dies
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Example 5.4 Lodge rubber-like liquid

Evaluate the Lodge rubber-liquid in steady, simple, shear flow.

For this problem we consider the flow field

0

0

x

y

z

u u h y

u

u

Here, we start with the integral form of the stress tensor

d
t

M t t S t t  (5.144)

which for the Lodge rubber-like liquid reduces to

0
d

t

M t t t t  (5.145)

For a simple shear flow, 
0

 is expressed as

2

0

0

0 0

0 0 0

yx yx

yx  (5.146)

and the components of the stress tensor are reduced to

, d
t

yx yxt M t t t t t  (5.147)

2 , d
t

xx yy yxt t M t t t t t  (5.148)

0yy zzt t  (5.149)

where the strain from t to t  is given by

, d
t

yx yx
t

t t t t  (5.150)
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For steady state, simple shear flow we can re-write the above equations as

d
t

yx yxt M t t t  (5.151)

2d
t

xx yy yxt t M t t t  (5.152)

0yy zzt t  (5.153)

and the material functions reduce to

n

k
k

 (5.154)

1 2
n

k k
k

 (5.155)

2 0  (5.156)
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6	 Rheometry

The measurement of rheological properties and the evaluation of fluid models require 
specific devices that can be summarized as rheometers. These devices are needed to 
achieve different objectives. Research needs them for complex measurements such 
as the investigation of viscosity and normal stress differences as well as deriving 
and evaluating flow models. In industry they are needed to design machines and 
fixtures such as mixers, extruders, injection molding machines, and molds. They 
are needed in product and process design for the selection of materials and for 
processing simulation, but also for the development of completely new materials. In 
addition, quality control during production becomes more and more important and 
requires simple analyses to check material consistency. Rheometers are also used 
to understand complex behavior of polymers in the large and relatively unexplored 
field of non-linear viscoelasticity.

Recent improvements in sensor temperature stability and reaction time allow for both 
inline measurements of the material flow properties and active control of the process.

Quality control (online/ inline)Characterization (offline)

Rotational rheometer: 
Cone-plate (6.2), 
Parallel-plate (6.3), Couette

   Rheometry

Sliding plate rheometer (6.1)

Capillary Rheometer (6.4)

Extensional Rheometer (6.6)

Single-point test (MFI) (6.5)

Mold rheometer

Integrated mold sensors 
for active process control (6.8)

Figure 6.1 �Classification of rheometry devices



188 6 Rheometry

11
10

-8

10
8

10
-6

R
at

e 
of

 D
ef

or
m

at
io

n 
(1

/s
 o

r 
ra

d/
s)

10
-4

0.
01

10
0

10
4

10
4

0.
01

10
0

10
-4

10
-6

10
6

10
6

10
-8

10
8

Ti
m

e 
S

ca
le

 (s
)

y
d

m
in

s
m

s
µs

M
ol

ec
ul

ar
 S

eg
m

en
t M

ot
io

n

B
lo

w
 M

ol
di

ng

Lo
ca

l M
ol

ec
ul

ar
 M

ot
io

n
E

nt
an

gl
em

en
ts

Fa
tig

ue

P
hy

si
ca

l A
gi

ng

Lo
ng

 T
er

m
 C

re
ep

Th
er

m
of

or
m

in
g E

xt
ru

si
on In

je
ct

io
n 

M
ol

di
ng

P
er

fo
rm

an
ce

Im
pa

ct

Phenomena /  Process / MoleculesInstruments / Test Methods
C

ap
ill

ar
y 

R
he

om
et

er

S
lid

in
g 

P
la

te
 R

he
om

et
er

R
ot

at
io

na
l R

he
om

et
er

E
xt

en
si

on
al

 R
he

om
et

er

M
el

t F
lo

w
 In

de
xe

r

Fi
gu

re
 6

.2
 �R

el
at

io
n 

be
tw

ee
n 

ra
te

 o
f d

ef
or

m
at

io
n,

 te
st

 m
et

ho
ds

, a
nd

 p
ro

ce
ss

in
g
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Depending on their application in research and development or in production, 
rheometers can be classified as offline and online/inline measurement techniques, 
respectively, see Figure 6.1.

The different test methods will be explained in the subsections identified in Fig. 6.1, 
except for the Couette device, which is not commonly used in polymer rheology, 
and mold rheometers, which have been outperformed by integrated mold sensors 
and are therefore rarely used. However, it is important to know that the choice of 
rheometer also depends on the phenomenon of interest or the processing technology 
the data are needed for.

Figure 6.2 shows the rate of deformation achievable with the different measurement 
techniques. In addition, it explains how the rate of deformation corresponds to the 
time scale of molecular movement. The diagram also relates the phenomena or 
properties under investigation and common polymer processes to the different test 
methods. Slow deformations (on the left) only affect local molecular movement such 
as rotations, while fast deformations disentangle the molecular chains and allow for 
changes of location of whole molecular segments. The different time scales are also 
related to mechanical and failure behavior, such as creep and impact.

Different manufacturing processes expose the material to varying shear rates [1, 2]. 
While thermoforming and extrusion subject the material to lower rates of deforma-
tion, the injection molding process exposes the polymer melt to rates of deformation 
as high as 105 s−1, e.g., in thin wall applications.

This chapter will describe the most common techniques, but will also cover new 
developments in the area of rheometry to give the reader a comprehensive overview 
of the state of the art in current measuring techniques.

■■ 6.1 �The Sliding Plate Rheometer

The simplest form of shear between two parallel plates can be measured with a sliding 
plate rheometer [3]. This type of rheometer consists of two flat plates, where the 
lower plate is fixed and the upper plate moves back and forth at a constant velocity. 
This setup generates a rectilinear flow with a velocity profile between the upper and 
lower plate. All streamlines are straight and parallel to one another.

The shear rate is given by

u
h

g = 	 (6.1)

where h is the gap and u the relative velocity between the plates.

6 Rheometry
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Using the shear stress  measured by the sensor, the viscosity is computed using

t

g

=


	 (6.2)

This type of geometry not only avoids the non-uniform flow fields of capillary rheom-
eters and flow irregularities associated with rotational rheometers, but can also be 
used to investigate orientation effects in filled systems (e.g., fiber reinforced plastics). 
However, there are downsides to be considered with this setup. First, maintaining the 
gap between the plates is a difficult task. Because of the positive first normal stress 
difference in most molten polymers, the shearing deformation translates to a force 
perpendicular to the moving direction. In order to keep the plates from separating, 
an opposing force must be employed without introducing mechanical friction, which 
would interfere with the test measurements when determining the viscosity. More 
importantly, the second normal stress differences can cause secondary flow in the 
planar directions, which pushes melt out along the side edges. Thirdly, the movement 
of the upper plate away from the fixed plate decreases the effective shearing area.

Combining a sliding plate rheometer with a specially designed shear stress trans-
ducer allows the measurement of shear stress directly on a small area of one of 
the plates. This not only eliminates the error sources of conventional sliding plate 
rheometers, but also allows the measurement of linear and nonlinear viscoelastic 
properties over a wide range of shear rates. The transducer also facilitates the 
generation of large, uniform, transient deformations involving high strain rates. 

Stationary
plate

Moving
plate

Linear 
bearing table 

Shear-stress
transducer

Actuator
rod

Polymer Cantilever
beam

Spacer
shims

Figure 6.3 Schematic of sliding plate rheometer with shear stress transducer
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Therefore, a broad spectrum of nonlinear viscoelastic properties, such as the non-
linear relaxation modulus and the shear stress growth coefficient, can be measured. 
It also allows for large amplitude oscillatory shear (LAOS) tests, which cannot be 
generated using rotational and capillary melt rheometers. The sliding plate rheometer 
is suitable for molten plastics, concentrated polymer solutions, raw elastomers, and 
other viscoelastic or thixotropic materials, because it can generate steady shear rates 
from 0.05 to 500 s−1. A schematic of a sliding plate rheometer is shown in Figure 6.3.

■■ 6.2 �The Cone-Plate Rheometer

The cone-plate rheometer is often used to measure the viscosity and the primary 
and secondary normal stress coefficient functions as functions of shear rate and 
temperature. It is the only rheometer that can perform a wide variety of rheological 
tests, such as stress, creep, relaxation, oscillation, and ramp tests [4, 5]. The geometry 
of a cone-plate rheometer and the correct filling is shown in Figure 6.4. It is advised 
to place an excess amount of melt between the cone and the plate to assure that the 
gap is completely filled, and to compensate the resin inflow due to the Weissenberg 
effect. The residual gap between cone and plate is the shear gap for the polymer. 
The geometry is determined by the radius R and the cone angle q0.

The experimentally measured quantities are the angular velocity of the cone, Ω, the 
resulting torque, T, needed to turn the cone, the total force normal to the fixed plate, 
F, and in some cases the pressure distribution on the fixed plate as a function of R. 

Pressure transducers

Force F

Ω

φ θ

θ0

Torque T

R

Fixed plate

Figure 6.4 �Schematic diagram of a cone-plate rheometer
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Because the angle q0 is chosen to be very small, typically between 1°≤ q0 < 4°, the 
shear rate can be considered constant (for q0 < 3° [6]) and is given by

0
 g 

= Ω 	 (6.3)

The shear stress can also be considered to be constant and can be related to the 
measured torque, assuming that the torque acting on the cone is equal to the torque 
acting on the plate,

3

3
2

T
R t p

= 	 (6.4)

The viscosity function can now be obtained from

( ) 0
3

3
2

T
R

 
 

 

t 
 g

g p
= = ⋅

Ω




	 (6.5)

The primary normal stress coefficient function, y1, can be calculated from the 
primary normal stress difference N1 by measuring the force, F, normal to the fixed 
plate that is required to maintain the cone in place. Hence, y1 can be computed using

1
1 2 2 2

2 1N F
R   

y
g gp

= = ⋅
 

	 (6.6)

The radial stress components within the melt increase towards the center, which 
results in an increase in pressure. Although it is possible to determine the second-
ary stress coefficient function y2 from the normal stress or pressure distribution 
across the plate, see Fig. 6.4, it is very difficult to obtain accurate data. However, 
the following rule of thumb can be used for an estimate

2 10.1y y= ⋅ 	 (6.7)

Most cone-plate rheometers have a truncated cone point. Therefore, the distance to 
the plate must be adjusted so that the imaginary tip of the cone touches the plate in 
the center. As a result, the truncated or rounded tip of the cone is a distance a away 
from the plate. For q0 = 1° and 2°, the distance a = 50 µm. Although the precise 
setting of this distance complicates the measurement preparation, it has benefits, 
such as the prevention of wear of the cone point, which would change the measure-
ment geometry over time. The second is the elimination of friction between cone 
and plate that could incorrectly increase the measured torque. Another advantage is 
the possibility to measure filled systems. According to a rule of thumb, the particle 
size dpart or size of agglomerates should be
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part 5
ad ≤ 	 (6.8)

Larger particle agglomerates would be in contact with the shear surfaces and the 
increased friction would falsify the measurements [6].

Example 6.1 Cone-plate system

Determine the restrictions of a cone-plate system based on geometrical boundary 
conditions with the following specifications:

Minimum Maximum
Torque T 2 ⋅ 10−2 N cm 20 N cm

Rotational speed n 10−2 min−1 103 min−1

Plate radius R 12.5 mm 25 mm

Cone angle  3° 6°

First, the viscosity and shear rate limits should be determined for the maximum 
plate radius R2 = 25 mm and cone angle q2 = 6°.

The rotational speed n gives the angular velocity of the plate Ω = 2 p n. The minimum 
and maximum shear rate for the cone-plate geometry can be determined using 
Eq. 6.3.

2 n
g



p
=

2 1
2 1min

min
2

2 2 10 min 180
10 s

6
n

g


p − −
− −⋅ °

= = =
°

⋅


3 1max
max

2

2
10 s

n
g



p −= =

Equation 6.5 gives the viscosity

3

3
2

T
R


gp

=


( )
2

min
min min 3 3 3 1

min

3 3 2 10 N cm
, 611 Pa s

2 2 2.5 cm 0.01s

T
T

R
 g

gp p

−

−
⋅ ⋅

= =
⋅

=
⋅





( ) 5
min max, 6.11 10 Pa sT g = ⋅
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( ) 3
max min, 6.11 10 aP sT g −= ⋅

( )max max, 6.11Pa sT g =

Now we can evaluate how the viscosity measurement is affected if the cone angle 
remains constant but the radius is reduced to R1 = 12.5 mm.

Reducing the radius by half to R1 = 12.5 mm means shifting the viscosity to higher 
values according to

( )
( )

3
2 1

1 2

,
,
T R
T R

 g

 g

 
=   





The shear rate range stays constant because it is unaffected by the radius.

Finally, we can evaluate how the viscosity measurement is affected when the radius 
remains constant, but the cone angle is reduced to q1 = 3°.

Reducing the cone angle to q1 = 3° means shifting the viscosity range to lower values 
and the shear rate to higher values according to

2 2

1 1

 

 
=

and

2 1

1 2

g 

g 
=





■■ 6.3 �The Parallel-Plate Rheometer

The parallel-plate rheometer, sometimes also referred to as a plate-plate rheometer, 
consists of two parallel, even plates. Similar to the cone-plate system, the lower plate 
is typically stationary, while the upper plate rotates (Searle type). The geometry of 
a parallel-plate rheometer is shown in Figure 6.5.

The gap or distance between the plates, H, should be much smaller than the radius 
of the plates, R, to assure homogeneous flow in the entire gap. The disadvantage in 
comparison to the cone-plate system is that the shear rate increases with the distance 
from the rotational axis (0 ≤ r ≤ R). In the center (r = 0) the shear rate is 0g =  and 
at the edge (r = R) it reaches its maximum. For the analysis of the measurements, 
the maximum shear rate at the edge is used. The gap height H also affects the shear 
rate, as given by
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Force F

Ω

φ θ

Torque T

R

Fixed plate

H

Figure 6.5 �Schematic diagram of a parallel-plate rheometer

r
r

H
g

⋅= Ω
 	 (6.9)

The maximum shear rate at the edge of the plate is given by

R
R

H
g

⋅= Ω
 	 (6.10)

Equations 6.9 and 6.10 illustrate the importance of the gap height. With equal 
rotational speed, an increase in the gap results in a smaller shear rate. Therefore, a 
wide range of shear rates can be accomodated with this device.

With increasing gap the inhomogeneity of the shearing also increases. Therefore, 
the gap H should be ≤ 1 mm [6]. This system is suitable to measure filled systems; 
however, considering the particle size dpart, or the size of agglomerates respectively, 
the minimum gap height Hmin should be

min part5H d= ⋅ 	 (6.11)

When comparing the parallel-plate rheometer and the cone-plate rheometer, the 
latter is preferred for a wide range of applications, however, the parallel-plate system 
has some advantages over the cone-plate system, which are presented in Table 6.1.

Despite the many advantages offered by the parallel-plate system, the fact that the 
cone-plate system provides a constant shear rate in the conical gap makes it the 
system of choice [6].
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Table 6.1 �Comparison between Cone-Plate and Parallel-Plate Rheometer

Property/setting Cone-Plate Parallel-Plate
Shear rate Constant shear rate in the conical 

gap
Shear rate gradient from edge of plate 
to rotational axis; can be varied by 
adjusting the gap height H

Tests All basic rheological tests such as 
tension, creep, relaxation, oscillation 
and ramp tests; variation of shear 
rate by adjustment of angular velocity 
Ω and cone angle 

Simple variation of shear rate by 
adjustment of the angular velocity Ω 
and the gap height H

Normal stresses Yes Inaccurate

Materials/ 
suspensions

Measurement of polymer melts, but 
particle size is limited (≤ 10 µm), 
no solids

Measurement of materials with big 
particles as well as materials with 
3D-structures; soft solids (special case: 
plastic melts at the transition to the 
solid), curing materials, filled polymer 
melts, elastomers, powders, and gels

Preload Smaller preload requires shorter equilibration times

Temperature 
range

The effect of thermal expansion or shrinkage is dependent on the gap height

e.g., ∆H = 5 µm, for H = 50 µm the 
change in viscosity measurement is 
10%

e.g., ∆H = 5 µm, for H = 1 mm the 
change in viscosity measurement is 
only 0.5%

■■ 6.4 �The Capillary Rheometer

The most common and simplest device for measuring shear rate viscosity in the 
processing range is the capillary rheometer. Its main component is a straight tube 
or capillary, and it was first used to measure the viscosity of water by Hagen [7] 
and Poiseuille [8]. A capillary rheometer has a pressure driven flow for which the 
velocity gradient or strain rate, and also the shear rate, will be maximum at the wall 
and zero at the center of the capillary, making the flow non-homogeneous.

Because pressure driven rheometers employ non-homogeneous flows, they can only 
measure steady shear functions, such as viscosity, ( ) g . However, they are widely 
used because they are relatively inexpensive to build and simple to operate. Despite 
their simplicity, long capillary rheometers provide the most accurate and process 
relevant viscosity data available. Another major advantage is that capillary rheo
meters have no free surfaces in the test region, unlike other types of rheometers such 
as the cone-plate rheometers. When measuring the strain rate dependent viscosity 
of polymer melts, capillary rheometers may offer the only satisfactory method of 
obtaining such data at shear rates > 100 s−1. This is important for processes with 
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higher rates of deformation, such as mixing, extrusion, and injection molding. 
Because their design is basic and they only need a pressure head at the entrance, 
capillary rheometers can easily be attached to the end of a screw- or ram-type 
extruder for online measurements. This makes the capillary rheometer an efficient 
tool for industry. The shear rate range is limited to shear rates above 1 s−1, because 
below this rate the effects of surface tension, gravity, and friction between piston 
and reservoir are noticeable and must be included in the analysis. Measurements 
in this region lead to an overprediction of viscosity [9]. The upper shear rate limit is 
approx. 107 s−1, or as soon as melt fracture occurs. Furthermore, viscous dissipation 
may become significant at those high shear rates.

The basic features of capillary rheometers are shown in Figure 6.6. A capillary tube 
of radius R and length L is connected to the bottom of a reservoir. The pressure drop 
and flow rate through this tube are measured at constant temperatures to determine 
the viscosity.

Standard ISO 11443 [10] defines two possible methods: either measuring the volume 
flow rate Q or the test pressure p, while keeping the other parameter constant. It 
is recommended to use capillaries with a length l of either 16 mm or 20 mm and a 
diameter of 1 mm. For highly filled materials, the diameter may be changed within 
certain specifications.

Pressure
transducer

L

InsulationHeater

Extrudate
R

Polymer
sample

Figure 6.6 �Schematic diagram of a capillary viscometer
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To derive the viscosity relation, the following assumptions are made:

�� no velocity in the radial, r, and the angular, , directions of the capillary,

�� the polymer is incompressible, and

�� flow is fully developed, steady, isothermal, and laminar.

The capillary rheometer can be modeled using the z-component of the equation of 
motion in terms of stress, , as

( )d 1 d
0

d d rz
p r
z r r

t= + 	 (6.12)

where

0 Ld
d

p pp
z L

−
= 	 (6.13)

Integrating for the shear stress term gives:

( )0 1

2
L

rz
p p r C

L r
t

−
= + 	 (6.14)

The constant C1 is assumed to be zero because the stress cannot be infinite at the 
tube axis.

6.4.1 �Computing Viscosity Using the Bagley 
and Weissenberg‑Rabinowitsch Equations

When computing viscosity from data measured using a capillary rheometer, the shear 
stress at the wall of the capillary must be corrected as proposed by Bagley because 
of entrance effects [11]. Furthermore, because the shape of the velocity profile is 
affected by the shear thinning behavior of the polymer, the shear rate at the wall is 
computed using the Weissenberg-Rabinowitsch correction [12].

At the wall the apparent shear stress is given by

( )0 L
aw 2 2r R

p pR R p
L L

t t
D

=
−

= = = 	 (6.15)

Equation 6.15 requires that the capillary be sufficiently long to assure fully devel-
oped flow that renders entrance effects insignificant. At the same time, capillaries 
should be short so that viscous dissipation does not have to be considered. Due to 
end effects, the actual pressure profile along the length of the capillary exhibits a 
curvature, which is a source of error that must be corrected. This is shown sche-
matically in Figure 6.7 [6].
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Figure 6.7 �Entrance effects in a typical capillary rheometer
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Figure 6.8 �Bagley plots for two shear rates

For the correction, measurements with capillary dies of the same diameter and at 
least two different length-to-diameter ratios L/D must be performed. The correction 
factor e at a specific shear rate can be found by plotting the pressure drop for various 
capillary L/D ratios as shown in Figure 6.8 [6].

The true shear stress at the wall can now be calculated using the end correction e as,

( )
( )

0
w

1
2

Lp p
L D e

t
−

=
+

	 (6.16)

The equation for shear stress can now be written as

wrz
r
R

t t= 	 (6.17)
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The apparent or Newtonian shear rate awg  at the wall is

aw 3

4Q
R

g
p

= 	 (6.18)

To obtain the true shear rate at the wall, d dzu r , the Weissenberg-Rabinowitsch 
equation [12] can be used

( )
( )w aw

d lnd 1
3

d 4 d ln
z Qu

r
g g

t
− = =

 
 + 
  

  	 (6.19)

In slit dies the apparent and true shear stress are calculated using

( )aw 2
H W p
H W L

t
D⋅=

+
	 (6.20)

and

( )
( )0 L

w 2
p pH W

H W L e
t

−⋅=
+ +

	 (6.21)

and the apparent and true shear rates are calculated by

aw 2

6Q
W H

g =
⋅

 	 (6.22)

( )
( )w aw

d ln1
2

3 d ln
Q

g g
t

 
 


= +


  	 (6.23)

The viscosity for both capillary and slit dies can now be calculated using

w

w

t

g

=


	 (6.24)

Slit dies with flush mounted pressure transducers allow the direct measurement of 
the pressure drop along the flow length. Then the true shear stress is obtained by

( )2
H W p
H W L

t
D
D

⋅=
+

	 (6.25)

where H is the thickness and W the width of the slit, and p LD D  is the longitudinal 
pressure gradient. Although entrance and exit effects can be neglected, for aspect 
ratios H/W > 0.1, corrections for corner effects need to be made.
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6.4.2 �Viscosity Approximation Using the 
Representative Viscosity Method

A simplified method to compute viscosity, developed by Schümmer and Worthoff 
[13], takes advantage of the fact that Newtonian and shear thinning materials have 
a streamline or radial position at which the strain rate is the same. This is sche-
matically represented in Figure 6.9, where the common streamline is located at rs.

γNewtonian

γNon-Newtonian rs R

Q

Figure 6.9 �Strain rate distribution in Newtonian and non-Newtonian fluids flowing through a 
capillary

The position of that streamline is related to the power law index

1

s
2 1

3

n
nn

r R
n

− +
=   

	 (6.26)

and varies between 0.7715 R and 0.8298 R for power law indices between 1.4 and 
0.25. A close approximation is calculated using1

s 0.07854
4

r R Rp≈ = 	 (6.27)

and the strain rate at that point is

s4 3
4 Q Qr

R R
g

p
= ≈ 	 (6.28)

The shear stress at the location rs is given by

0 L s 0 L

2 8
p p r p p

R
L L

t
p− −   

= ≈      
	 (6.29)

1	 The value π/4 was not mathematically derived but offers a significant simplification to the equations with a final 
error in viscosity of less than 5%.
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■■ 6.5 �The Melt Flow Indexer

Because rheological properties of polymers are sensitive to even small molecular 
weight deviations (see Table 6.2), melt flow indexers are often used in industry 
as a simple and quick means of quality control. Furthermore, melt flow indexers 
are typically used to detect degradation during processing or to verify consistent 
material properties between different batches or in mixtures of virgin and regrind 
material. A single-point measurement is taken, using standard testing conditions 
specific to each polymer class on a ram-type extruder or extrusion plastometer, as 
shown in Figure 6.10.

The standard procedure for testing the flow rate of thermoplastics using an extrusion 
plastometer is described in ASTM D1238 [14]. During the test, pellets are heated 
in the barrel to form a melt, which is then extruded from a short cylindrical die 
using a piston actuated by a weight. The extruded strand is cut after 10 minutes. 
The weight of the polymer in grams extruded during the 10-minute test is the melt 
flow index (MFI) of the polymer. Sometimes the melt volume rate (MVR) is given 

Thermometer

Capillary

Polymer

Weight

Figure 6.10 �Schematic diagram of an extrusion plastometer used to measure the melt flow index
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instead of the MFI. The MVR is measured in the same way as the MFI, but using the 
density of the material the weight of the extruded strand is converted to the volume 
in cm3. The MVR is given as the volume extruded in 10 minutes. Because testing 
conditions are specific to each polymer class, MFI data cannot be compared across 
polymer classes, but only from grade to grade within the same class.

Table 6.2 shows both MVR and molecular weight results for different polycarbonates. 
It can be seen that the increase in molecular weight (from left to right) corresponds 
to a decrease in MVR values, indicating that less material can be extruded in the 
same amount of time.

■■ 6.6 �Extensional Rheometry

Elongational deformation rather than shear describe polymer processes, such as 
film blowing, blow molding, thermoforming, fiber spinning, and foam production. 
Flow in converging or diverging regions of dies and molds and at the flow front 
during mold filling has large extensional components. Regions of extensional flow 
strongly influence the properties of the final part because of their high molecular 
orientation or the orientation of fillers with a large aspect ratios. The equipment 
described in the previous sections for the measurement of shear behavior of poly-
mers cannot be used to deduce the extensional behavior of polymer melts. Although 
processors are confronted with extensional flow in almost every manufacturing 
process, extensional rheometry is the least understood field of rheology. Until the 
1970s, the measurement techniques were so cumbersome, especially at processing 
temperatures that come with low melt viscosities, that this field did not gain much 
attention [16]. The most common modes of deformation that generate extensional 
flows are shown in Figure 6.11.

Table 6.2 �Relation between MVR and Molecular Weight [15]

Polycarbonate Makrolon
Property Testing conditions Units CD2005 2205 2405 2805

MVR 300 °C,
1.2 kg

cm3/
10 min

61 36 19 9.5

Number average 
molecular weight Mn

g/mol 9,000 9,300 11,000 13,600

Weight average 
molecular weight Mw

g/mol 17,000 20,000 24,200 30,500

Molecular weight 
distribution Mw/Mn

1.89 2.15 2.20 2.24



204 6 Rheometry

r

x

x
r

x

y z

a) b) c)

Figure 6.11 �Purely extensional flow geometries;  
a: simple extension, b: squeezing, c: sheet stretching

The simplest way to measure extensional viscosities is to stretch a polymer rod at 
elevated temperatures, Figure 6.11 (a). The stretch rate must continuously increase in 
order to maintain a constant strain rate because of the cross-sectional area reduction 
of the rod. This uniaxial deformation is dependent on the material’s macromolecular 
structure and important for processes such as fiber spinning and those involving 
converging flows. The viscosity is easily computed as the ratio of instantaneous axial 
stress to elongational strain rate. The biggest problem with this measurement is 
grabbing the rod at its ends as it is pulled apart. The most common way to grab the 
specimen is with a toothed rotary clamp system that maintains a constant distance 
between the toothed clamps, and therefore maintains a constant specimen length 
[17]. However, this test can only be used for solids or highly viscous rubbery liquids. 
A schematic of Meissner’s extensional rheometer using this geometry and rotary 
clamps is shown in Figure 6.12 [17].

The length L0 is maintained constant throughout the test, therefore the velocity at 
the end will be constant and proportional to the angular velocity, Ω, and radius of 
the rotary clamps, R. Thus the strain rate is

0

R
L


⋅= Ω 	 (6.29)

Scissors cut the strand in small samples, LA, to measure the recovery length, LR, and 
calculate the strain, eR. An oil bath, also called buoyancy bath, is used to measure 

Drive motor

Spring

εr = In LA/ LR

LR

LA

Ω Ω

RR

Lo

Displacement
sensor

Sample

Figure 6.12 �Schematic diagram of an extensional rheometer
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melts with lower viscosities. The liquid of the bath has to have a higher density 
than the tested material.

It is not possible to achieve steady state conditions with elongational rheometry tests, 
because the cross-sectional area of the test specimen constantly diminishes. There-
fore, time has to be incorporated into the calculation of the cross-sectional area, A,

( ) 2
0 e tA t R p −= ⋅ ⋅  	 (6.30)

where R0 is the radius of the polymer strand,   the strain rate, and t is time. Using 
this relation, the stress can be calculated with

2
0

e tF F
A R



t
p

⋅= =
⋅



	 (6.31)

where F is the force acting at the end of the rod, measured by the spring and dis-
placement sensor shown in Fig. 6.12. With stress and strain rate, the extensional 
viscosity, , for simple, uniaxial extension can be calculated using

3
t




=


	 (6.32)

This agrees well with Trouton’s rule, that the ratio of elongational to shear viscosity 
is approximately 3 in the Newtonian plateau. Figure 6.13 [18] examplifies this effect 
by comparing shear and elongational rheometry data of low density polyethylene. 
Pure elongational flow shows little thinning at high elongational rates; sometimes 
even thickening or so called strain hardening is observed [19].
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Figure 6.13 �Development of elongational and shear viscosities during deformation of 
polyethylene samples
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Figure 6.14 �Schematic diagram of a squeezing flow

Another method to measure extensional properties that avoids clamping problems 
and does not generate orientation during measurements is the lubricated squeez-
ing flow [16], which generates an equibiaxial deformation, Fig. 6.11 (b). This kind 
of deformation causes less orientation and is less sensitive to molecular structure. 
This mode of deformation applies to processes where equibiaxial deformation are 
exhibited by the material, such as sheet forming, compression molding, injection 
compression molding, but also foaming processes. Figure 6.14 shows how squeezing 
flow is generated. Without lubrication, the no slip conditions at the upper and lower 
plates significantly contribute to shear deformation of the sample. Therefore, the 
apparatus can either be immersed in a lubricating bath or the plates can just be 
coated with a lubricant of lower viscosity. The initial sample has a smaller radius than 
the plates. Upon compression, the sample becomes thinner as the material expands 
in the radial direction and is eventually squeezed out from within the plates. The 
varying sample radius can be calculated using the instantaneous sample thickness.

The biaxial extensional viscosity, , is defined as

6
t




=


	 (6.33)

In contrast to the behavior in uniaxial elongation, a polymer material under biaxial 
deformation exhibits shear thinning behavior. However, to observe the shear thinning 
behavior, higher stress or rate of deformation levels are needed when compared to 
shear dominated tests [16].

Modeled after blow molding and thermoforming processes that are based on sheet 
stretching, Fig. 6.11 (c), equibiaxial tests are carried out by blowing a bubble and 
measuring the pressure required and the size of the bubble during the test, see 
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Fig. 6.15. This test was successfully used to measure extensional properties of 
polymer membranes for thermoforming and also blow molding applications. A sheet 
is clamped between two plates with circular holes and a pressure differential is 
introduced to deform it. The pressure applied and the deformation of the sheet are 
monitored over time and related to extensional properties of the material. Assum-
ing an incompressible material, the instantaneous thickness, t, of the sheet can be 
computed using:

2

0 8
Dt t
R h

 
=   

	 (6.34)

The instantaneous radius of curvature of the sheet is related to the bubble height by

2

8 2
D hR

h
= + 	 (6.35)

The biaxial strain can be computed using

B
2

ln
R

D



 =   

	 (6.36)

and the biaxial stress can be calculated using

B 2
R P

t


D
= 	 (6.37)

By far the easiest technique used to measure extensional properties of polymers is 
using entrance pressure drop measurements. Data can be readily obtained with a 
high-pressure capillary rheometer over a wide range of viscosities and rates. As the 
fluid flows from the large cross section reservoir into a smaller tube, the streamlines 
converge as seen in Fig. 6.16. With increasing flow rate, circulation zones start to 
form near the exit, Fig. 6.16 (c), which become increasingly larger, Fig. 6.16 (d).

h

R
α

Figure 6.15 �Schematic diagram of sheet inflation
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Figure 6.16 �Flow fields of a Boger fluid at various flow rates in an axisymmetric 
contraction with a contraction ratio of 14.375: (a) Throughput Q = 0.08 ml/s, 
(b) Q = 0.18 ml/s, (c) Q = 0.5 ml/s, and (d) Q = 0.76 ml/s [20]

As the material moves from the large to the small cross-section, the fluid dissipates 
extra energy, which is reflected in an entrance pressure drop. The converging stream-
lines indicate the existence of the extensional flow [16]. However, the presence of 
the walls along the contraction area adds a shear component to the flow. Sedlacek et 
al. [21] employed a capillary rheometer with two different capillaries (an orifice die 
with L/D = 0.12 and a long die with L/D = 20) to measure the uniaxial elongational 
viscosity and steady shear of polymer melts at processing temperatures. Figure 6.17 
shows a comparison of different semi-crystalline and amorphous materials.
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Figure 6.17 �Shear (solid) and elongational (dashed) viscosity vs. strain rate curves.  
Lines represent data fitting [21].  
Left: semi-crystalline HDPE at 210 °C, LLDPE at 170 °C, LDPE at 170 °C, and PP 
at 210 °C. Right: amorphous PC at 280 °C, PS at 190 °C, PMMA at 230 °C
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These results agree well with Trouton’s rule for the Newtonian plateau. However, 
with increasing strain rate, the difference between shear and elongational flow does 
not increase, because the capillary measurements are not solely extensional but also 
influenced by shear. The analysis of these data is more complex than other methods 
[22]. However, the advantage of fast measurements at low viscosities and high defor-
mation rates makes it a quick alternative to more complex measuring techniques.

■■ 6.7 �High Pressure Rheometers

Pressure has the same influence on viscosity as temperature: while increasing 
pressure or decreasing temperature raises the viscosity, lowering the pressure or 
increasing the temperature decreases it. This phenomenon was first investigated 
by Maxwell and Jung in 1957 [23]. They observed that by increasing pressure to 
1680 bar, the apparent viscosity of a polyethylene (PE) melt increased 14 times com-
pared to its viscosity at atmospheric pressure. This effect was even more pronounced 
for polystyrene (PS). Since the 1960s, different research groups have investigated 
the influence of pressure on viscosity. Hellwege et al. [24] and Herrmann et al. [25] 
used a Couette-type device designed by Semjonow [26]. They performed frequency 
sweeps up to 6 ⋅ 102 s−1 at elevated pressure for PS and PMMA and found master 
curves for the time-temperature and time-pressure superposition. Christmann and 
Knappe [27, 28] and Christmann and Weber [29] used the same device to measure 
the zero shear viscosity of PMMA and LDPE with different molecular weights. They 
found that the shear viscosity is not only pressure and temperature invariant, but 
also invariant of the molecular weight as long as the structure itself is not changed. 
Devices that employ a pressurized capillary were developed by Westover [30] and 
Karl [31]. With a maximum pressure of 5000 bar, they were able to break the high 
pressure record of all rheometers thus far. Lord [32] was the first to present data for 
polycarbonate (PC) from a modified injection molding die concept. Since the early 
measurements, many devices have been built based on different principles. Goubert 
et al. [33] summarized and evaluated the different achievements and categorized 
them into four groups, as shown in Fig. 6.18. The simplest measurement requires 
no special equipment. It is based on the non-linearity of the pressure drop occurring 
in the Bagley-plots, Fig. 6.8, obtained with capillary flow or on the pressure profile 
generated during flow in a slit, Fig. 6.18 (a). However, the entrance effects as well 
as the simultaneous effects of temperature, pressure, and wall slip make it difficult 
to analyze the results obtained using this technique.
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a) Non-linear pressure profile [32, 34–36]	 b) Enhanced exit pressure device [33, 37]
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c) Pressurized capillaries or slit dies [23, 30, 31, 38, 39]

d) Pressurized drag flow devices [24–29, 40]

Figure 6.18 �Schematic representation of different methods to determine the effect of pressure 
on viscosity (after [33])
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The direct methods, Fig. 6.18 (b to d), require special devices to measure viscosity 
under elevated pressure. A simple design is the enhanced exit pressure technique, 
which uses a pressure chamber at the exit of a capillary rheometer to generate a back 
pressure, Fig. 6.18 (b). Another option is pressurizing the melt flowing in a slit or 
capillary by stationary or moving pistons, Fig. 6.18 (c). Figure 6.19 shows viscosity 
data of PS measured in a pressurized slit built by Kadijk and van den Brule [38]. 
Increased pressure and temperature shift the viscosity curve to higher or lower 
values, respectively. It is also clear that the shear thinning effect, represented by 
the Power Law index n, is pressure and temperature invariant [41].
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Figure 6.19 �Shear rate dependent viscosity at elevated pressures of polystyrene (PS) [38]

All the previously mentioned designs are based on pressure driven flow. They have 
the disadvantage of creating a non-uniform flow field. In contrast, drag flow devices 
with uniform pressure, shear rate, and shear stress overcome the difficulties of com-
plicated data analysis. They are useful for the investigation of the behavior at low 
shear rates or in transient flows. This may be Couette-type devices (as mentioned 
earlier) or the high pressure sliding plate rheometer (HPSPR), developed by Koran 
and Dealy [40], Fig. 6.20. Pressures ranging from atmospheric to 700 bar and shear 
rates between 0.3 and 300 s−1 can be explored with this device. This sliding plate 
rheometer is surrounded by a sealed pressure chamber, containing an inert oil that 
transmits the pressure onto the specimen.

With these measurements the pressure coefficient , which is needed for simula-
tions, can be calculated

T

d ln
dp



 =   

	 (6.39)
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Figure 6.20 �Schematic of the high pressure sliding plate rheometer

A comparison of the resulting pressure coefficients measured with devices described 
in Fig. 6.18 (b to d) showed that the three measuring options produce accurate data, 
as seen in the results presented in Fig. 6.21. However, the experimental effort varies 
significantly from lowest for the enhanced exit pressure device, Fig. 6.18 (b), to 
highest for the pressurized drag flow devices, Fig. 6.18 (d).

pr
es

su
re

 c
oe

ffi
ci

en
t, 
β

Apparent shear rate, γ

LLDPE

0.1 1 10 100 1000

1

10

Sliding plate rheometer
Enhanced exit pressure device
Pressurized slit die
Curve fit

s-1

10-9 Pa-1

.

Figure 6.21 �Comparison of pressure coefficients  obtained by different methods 
(Figure 6.18 (b–d)) [33]



2136.7 High Pressure Rheometers

Although significant research efforts have been made to measure the pressure depen-
dent viscosity, or the pressure coefficient , some questions about pressure depen-
dence remain, because different research groups have reported contradicting effects, 
and the data base is still too small to be able to come to any definitive conclusions.

It is still unclear whether  is shear-rate dependent [35, 40, 42, 43] or shear-rate 
independent [38, 44]. Furthermore, there is no agreement on the temperature and 
pressure dependence of : (1) Some researchers conclude that  decreases with 
increasing temperature [43, 45, 46]; (2) some say that  is temperature invariant 
[20, 47, 48]; (3) another group concluded that  increases with temperature [49]. In 
addition, a pressure dependence of  was observed [31, 38] in contrast to pressure 
independence [33–35, 42, 43, 50, 51]. Finally, there is not even an agreement as to 
the effect of molecular weight on . While Westover [30] found that  increases with 
molecular weight, Penwell [50] observed a decrease. Clearly, much work needs to 
be done in this area in order to completely understand pressure effects on viscosity.

Sedlacek et al. [21] measured the shear viscosity of common amorphous and 
semi-crystalline thermoplastics with an enhanced exit pressure device, Fig. 6.18 (b). 
Regarding the complexity of their structure, the semi-crystalline materials can be 
listed in the following order: HDPE → LLDPE → LDPE → PP, where linear HDPE has 
the simplest possible structure for a polymer, which is very similar to the structure 
of LLDPE; LDPE is characterized by long chain branching. PP has a methyl group 
attached to the otherwise same backbone chain. Amorphous polymers, however, have 
large side groups that not only make them more rigid and hinder their crystallization, 
but also affect their flow behavior. The investigated materials can be ordered from 
PC → PS → PMMA, with increasing size of the side groups.

Measurements show that materials with higher temperature sensitivity parameters, 
, also exhibit an elevated pressure sensitivity parameter, , and vice versa. The 
values of both pressure and temperature coefficients order the materials as follows 
(from low to high sensitivity): HDPE → LLDPE → LDPE → PP → PC → PS → PMMA, 
which resembles their structural order. Although the measurements were carried 
out in the equilibrium state, at which the polymer chains are flexible, take the shape 
of random coils, and create entanglements, the movements of the coils are affected 
not only by the structure of the main chain, but by pendant groups attached to the 
backbone. Strong interactions or bulky side groups increase the stiffness and lower 
the flexibility of the polymer chain. This makes the structures highly susceptible 
to increased levels of molecular interaction during flow. Therefore, they are very 
sensitive to the rise in intermolecular friction caused by an increase in pressure or 
decrease in temperature that in turn create a reduction in free volume [21, 50]. By 
comparing shear and elongational viscosities of these polymers it was shown that 
the pressure coefficients were the same for both types of viscosities. Table 3.8 in 
Chapter 3 gives a comparison of different values found in the literature.
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■■ 6.8 �Integrated Mold Sensors 
for Quality Control

There are two basic types of online rheometers: those who are located within the 
mold and therefore can take measurements directly during processing and those that 
pull a side stream off the process for analysis. With both approaches, a pressure drop 
and flow rate over a flow channel of constant cross section must be measured. This 
is easier to achieve in a by-pass than in the mold or during processing in general. 
A suitable channel is either part of the product geometry or an appropriate channel 
must be added, e.g., at the inlet of the cavity. In addition, this section needs to be 
longer when the pressure gradient in the process is small, as is the case for thicker 
parts. In the past, different designs were employed [16], among which capillary or 
slit die rheometer-like devices were the most common.
A recent development following the same principle allows measuring the viscosity 
inside the cavity for injection molded parts with homogeneous cross section [52]. 
Here, a pressure and a temperature sensor are consecutively positioned along the 
flow path, Fig. 6.22.
A common configuration is placing the pressure sensor at the beginning of the cavity 
and the temperature sensor after 90% of the part length to allow measurements up 
to the end of filling. Using wall thickness, the distance between the sensors and the 
flow time, Dt = t2 − t1, between the sensors, the volume flow rate can be calculated, 
Fig. 6.23.
The pressure difference, Dp, is determined using the pressure at the transducer 
when the melt reaches the temperature sensor that lies downstream the pressure 
transducer. The pressure and melt speed allow calculation of the shear stress and 
shear rate necessary to compute the viscosity. Figure 6.24 shows the result of the 
measured viscosity at three different temperatures in a capillary rheometer in 
comparison to this system at known mold temperatures. It can be seen that there 
is good agreement between the two different measurement techniques.
For fast injection speeds and small distances between the sensors, the reaction 
time must be in the range of milliseconds. Based on the viscosity measurement, 
initial adjustments or optimization based on finite element analysis is performed to 
determine the machine settings. Later on an automated process control system can 
adjust the machine settings to reach desired molding conditions and molding quality.
Variations in the rheological behavior between cycles can affect the crystalline 
structure on the surface of semi-crystalline parts, the formation of weld lines, 
varying surface structures, and also intermittent short shots. The continuous 
monitoring of the viscosity and adjustment of the machine settings can therefore 
significantly improve the part quality, while minimizing the production of scrap. 
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Figure 6.22 �Positions of the sensors along the cavity
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Figure 6.23 �Measurement principle of the in-mold-viscosity measurement [53]

1,000
Shear rate, γ 

Vi
sc

os
ity

, η

Pa.s

s-1

.
100 10,000

100

1,000

10

T = 190ºC
= 200ºC
= 210ºC, 

POM Hostaform C9021

T = 190ºC, Tmold = 80ºC
T = 200ºC, Tmold = 80ºC
T = 210ºC, Tmold = 80ºC

Capillary Inline

Figure 6.24 �Shear rate dependent viscosity of a POM measured with a capillary rheometer 
and the Priamus BlueLine system [53]



216 6 Rheometry

It also enables the manufacturer to switch production between machines because the 
viscosity control adapts the machine settings for every cycle or machine based on 
the rheological behavior [53, 54]. In case this system is used in molds with complex 
geometries and wall thickness variations, adjustments in the viscosity calculations 
must be made.

Example 6.2 Bagley and Weissenberg-Rabinowitsch Corrections

Apply the corrections to data measured in a capillary rheometer.

The viscosity of a HDPE was measured using a capillary rheometer. Table 6.4 gives 
the steady state pressure in MPa for various L/D ratios and apparent shear rates 
calculated using Eq. 6.18.

In order to correct for the entrance effects, the pressure must be plotted as a function 
of L/D ratios for each shear rate as seen in Fig. 6.8 (Bagley plot). Linear fits to the 
apparent shear rate curves provide the entrance pressure drops, which are equal 
to the intercept with the y-axis, as well as the shear stresses, which numerically 
represent half of the slope values. The results are given in Table 6.5.

Table 6.3 �Measured steady state pressures as a function of L/D ratios for a HDPE

HD-PE L/D = 1 L/D = 2 L/D = 5 L/D = 10 L/D = 15
Apparent shear rate g aw  (s−1) Pressure drop p0 (MPa)

250 1.68 2.47 3.77 5.61 8.35

120 1.32 1.63 2.53 4.33 5.80

  90 1.09 1.43 2.19 3.42 4.94

  60 0.97 1.18 1.83 2.99 4.10

Table 6.4 �True shear stress tw and obtained from linear regression of Bagley plot curves

Apparent shear rate γaw  
(s−1)

Pressure drop pL 
(MPa)

Slope (MPa) True shear stress 
tw (MPa)

250 1.40 0.45 0.23

120 1.01 0.32 0.16

  90 0.82 0.27 0.14

  60 0.76 0.22 0.11

Now the true shear rate at the wall can be calculated with the Weissenberg-Rabino
witsch Eq. 6.19. Alternatively, the apparent shear stress can be plotted in a double 
logarithmic graph as a function of the true shear stress. Preferably, the unit of the 
true shear stress is changed from MPa to Pa for this plot. The Weissenberg-Rabino
witsch correction factor is the slope of the linear fit Y = 1.9516 x + 18.59.
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Hence, the correction factor is

( )
( )

aw

w

d ln
1.9516

d ln
g

t
=



The true shear rate is calculated using

( )
( )

( )
( )

aw aw
w aw3

w w

d ln d ln4 1 1
3 3

4 4d ln d ln
Q
R

g g
g g

t tp

   
= + = +   

  

  
 
     

 

 

The viscosity can be obtained from Eq. 6.24. The results are summarized in Table 6.6.

Table 6.5 �True shear rate gw  viscosity obtained by Weissenberg-Rabinowitsch correction

awlnγ  (s−1) ln tw (Pa) True shear rate γw  (s−1) Viscosity  (Pas)
5.52 12.35 309   743
4.79 11.98 149 1077
4.50 11.85 111 1257
4.09 11.61   74 1481

■ �Problems

6.1	 Calculate the shear rate within a parallel-plate rheometer (R = 25 mm) at the 
outer edge and at half the radius. Use the maximal settings in Example 6.1 and 
a gap height H = 1 mm. Calculate the viscosity at the two positions using the 
maximal torque.

6.2	 Use the data from Example 6.2 to generate the Bagley plot and the correction 
factor e. Calculate the true shear stress and compare the value with the results 
from Example 6.2.

6.3	 In a capillary rheometer with a capillary radius R = 1 mm and a cone length 
L = 30 mm the following volume flow Q was measured for various pressure 
drops Dp:

Table 6.6 �Measured volume flow and pressure drop data

Dp (MPa)   5   10   15   20   25   30     35

Q (mm3/s) 57 121 188 276 522 873 1267

	 Use the data to calculate the apparent shear rate and shear stress. Assuming 
Dp to be steady-state pressure, apply the representative viscosity method to 
obtain the true shear rate and shear stress at the wall.
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