
Appendix A

Mathematical appendix

A.1 The Fourier transform

The Fourier transform permits us to decompose a complicated field structure into
elemental components. This can simplify the computation of fields and provide physical
insight into their spatiotemporal behavior. In this section we review the properties of
the transform and demonstrate its usefulness in solving field equations.

One-dimensional case

Let f be a function of a single variable x . The Fourier transform of f (x) is the function
F(k) defined by the integral

F{ f (x)} = F(k) =
∫ ∞

−∞
f (x)e− jkx dx . (A.1)

Note that x and the corresponding transform variable k must have reciprocal units: if x
is time in seconds, then k is a temporal frequency in radians per second; if x is a length
in meters, then k is a spatial frequency in radians per meter. We sometimes refer to F(k)

as the frequency spectrum of f (x).
Not every function has a Fourier transform. The existence of (A.1) can be guaranteed

by a set of sufficient conditions such as the following:

1. f is absolutely integrable:
∫ ∞
−∞ | f (x)| dx < ∞;

2. f has no infinite discontinuities;
3. f has at most finitely many discontinuities and finitely many extrema in any finite

interval (a, b).

While such rigor is certainly of mathematical value, it may be of less ultimate use to
the engineer than the following heuristic observation offered by Bracewell [22]: a good
mathematical model of a physical process should be Fourier transformable. That is, if the
Fourier transform of a mathematical model does not exist, the model cannot precisely
describe a physical process.

The usefulness of the transform hinges on our ability to recover f through the inverse
transform:

F−1{F(k)} = f (x) = 1

2π

∫ ∞

−∞
F(k) e jkx dk. (A.2)



When this is possible we write

f (x) ↔ F(k)

and say that f (x) and F(k) form a Fourier transform pair. The Fourier integral theorem
states that

F F−1{ f (x)} = F−1 F{ f (x)} = f (x),

except at points of discontinuity of f . At a jump discontinuity the inversion formula
returns the average value of the one-sided limits f (x+) and f (x−) of f (x). At points of
continuity the forward and inverse transforms are unique.

Transform theorems and properties. We now review some basic facts pertaining
to the Fourier transform. Let f (x) ↔ F(k) = R(k) + j X (k), and g(x) ↔ G(k).

1. Linearity. α f (x) + βg(x) ↔ αF(k) + βG(k) if α and β are arbitrary constants.
This follows directly from the linearity of the transform integral, and makes the
transform useful for solving linear differential equations (e.g., Maxwell’s equations).

2. Symmetry. The property F(x) ↔ 2π f (−k) is helpful when interpreting transform
tables in which transforms are listed only in the forward direction.

3. Conjugate function. We have f ∗(x) ↔ F∗(−k).

4. Real function. If f is real, then F(−k) = F∗(k). Also,

R(k) =
∫ ∞

−∞
f (x) cos kx dx, X (k) = −

∫ ∞

−∞
f (x) sin kx dx,

and

f (x) = 1

π
Re

∫ ∞

0
F(k)e jkx dk.

A real function is completely determined by its positive frequency spectrum. It is
obviously advantageous to know this when planning to collect spectral data.

5. Real function with reflection symmetry. If f is real and even, then X (k) ≡ 0 and

R(k) = 2
∫ ∞

0
f (x) cos kx dx, f (x) = 1

π

∫ ∞

0
R(k) cos kx dk.

If f is real and odd, then R(k) ≡ 0 and

X (k) = −2
∫ ∞

0
f (x) sin kx dx, f (x) = − 1

π

∫ ∞

0
X (k) sin kx dk.

(Recall that f is even if f (−x) = f (x) for all x . Similarly f is odd if f (−x) = − f (x)

for all x .)
6. Causal function. Recall that f is causal if f (x) = 0 for x < 0.

(a) If f is real and causal, then

X (k) = − 2

π

∫ ∞

0

∫ ∞

0
R(k ′) cos k ′x sin kx dk ′ dx,

R(k) = − 2

π

∫ ∞

0

∫ ∞

0
X (k ′) sin k ′x cos kx dk ′ dx .



(b) If f is real and causal, and f (0) is finite, then R(k) and X (k) are related by
the Hilbert transforms

X (k) = − 1

π
P.V.

∫ ∞

−∞

R(k)

k − k ′ dk ′, R(k) = 1

π
P.V.

∫ ∞

−∞

X (k)

k − k ′ dk ′.

(c) If f is causal and has finite energy, it is not possible to have F(k) = 0 for
k1 < k < k2. That is, the transform of a causal function cannot vanish over
an interval.

A causal function is completely determined by the real or imaginary part of its
spectrum. As with item 4, this is helpful when performing calculations or mea-
surements in the frequency domain. If the function is not band-limited however,
truncation of integrals will give erroneous results.

7. Time-limited vs. band-limited functions. Assume t2 > t1. If f (t) = 0 for both t < t1
and t > t2, then it is not possible to have F(k) = 0 for both k < k1 and k > k2

where k2 > k1. That is, a time-limited signal cannot be band-limited. Similarly, a
band-limited signal cannot be time-limited.

8. Null function. If the forward or inverse transform of a function is identically zero,
then the function is identically zero. This important consequence of the Fourier
integral theorem is useful when solving homogeneous partial differential equations
in the frequency domain.

9. Space or time shift. For any fixed x0,

f (x − x0) ↔ F(k)e− jkx0 . (A.3)

A temporal or spatial shift affects only the phase of the transform, not the magni-
tude.

10. Frequency shift. For any fixed k0,

f (x)e jk0x ↔ F(k − k0).

Note that if f ↔ F where f is real, then frequency-shifting F causes f to be-
come complex — again, this is important if F has been obtained experimentally or
through computation in the frequency domain.

11. Similarity. We have

f (αx) ↔ 1

|α| F

(
k

α

)
,

where α is any real constant. “Reciprocal spreading” is exhibited by the Fourier
transform pair; dilation in space or time results in compression in frequency, and
vice versa.

12. Convolution. We have∫ ∞

−∞
f1(x ′) f2(x − x ′) dx ′ ↔ F1(k)F2(k)

and

f1(x) f2(x) ↔ 1

2π

∫ ∞

−∞
F1(k

′)F2(k − k ′) dk ′.



The first of these is particularly useful when a problem has been solved in the
frequency domain and the solution is found to be a product of two or more functions
of k.

13. Parseval’s identity. We have∫ ∞

−∞
| f (x)|2 dx = 1

2π

∫ ∞

−∞
|F(k)|2 dk.

Computations of energy in the time and frequency domains always give the same
result.

14. Differentiation. We have

dn f (x)

dxn
↔ ( jk)n F(k) and (− j x)n f (x) ↔ dn F(k)

dkn
.

The Fourier transform can convert a differential equation in the x domain into an
algebraic equation in the k domain, and vice versa.

15. Integration. We have ∫ x

−∞
f (u) du ↔ π F(k)δ(k) + F(k)

jk

where δ(k) is the Dirac delta or unit impulse.

Generalized Fourier transforms and distributions. It is worth noting that many
useful functions are not Fourier transformable in the sense given above. An example is
the signum function

sgn(x) =
{

−1, x < 0,

1, x > 0.

Although this function lacks a Fourier transform in the usual sense, for practical purposes
it may still be safely associated with what is known as a generalized Fourier transform. A
treatment of this notion would be out of place here; however, the reader should certainly
be prepared to encounter an entry such as

sgn(x) ↔ 2/jk

in a standard Fourier transform table. Other functions can be regarded as possessing
transforms when generalized functions are permitted into the discussion. An important
example of a generalized function is the Dirac delta δ(x), which has enormous value
in describing distributions that are very thin, such as the charge layers often found
on conductor surfaces. We shall not delve into the intricacies of distribution theory.
However, we can hardly avoid dealing with generalized functions; to see this we need
look no further than the simple function cos k0x with its transform pair

cos k0x ↔ π [δ(k + k0) + δ(k − k0)].

The reader of this book must therefore know the standard facts about δ(x): that it
acquires meaning only as part of an integrand, and that it satisfies the sifting property∫ ∞

−∞
δ(x − x0) f (x) dx = f (x0)



for any continuous function f . With f (x) = 1 we obtain the familiar relation∫ ∞

−∞
δ(x) dx = 1.

With f (x) = e− jkx we obtain ∫ ∞

−∞
δ(x)e− jkx dx = 1,

thus

δ(x) ↔ 1.

It follows that
1

2π

∫ ∞

−∞
e jkx dk = δ(x). (A.4)

Useful transform pairs. Some of the more common Fourier transforms that arise in
the study of electromagnetics are given in Appendix C. These often involve the simple
functions defined here:

1. Unit step function

U (x) =
{

1, x < 0,

0, x > 0.
(A.5)

2. Signum function

sgn(x) =
{

−1, x < 0,

1, x > 0.
(A.6)

3. Rectangular pulse function

rect(x) =
{

1, |x | < 1,

0, |x | > 1.
(A.7)

4. Triangular pulse function

(x) =
{

1 − |x |, |x | < 1,

0, |x | > 1.
(A.8)

5. Sinc function

sinc(x) = sin x

x
. (A.9)

Transforms of multi-variable functions

Fourier transformations can be performed over multiple variables by successive appli-
cations of (A.1). For example, the two-dimensional Fourier transform over x1 and x2 of
the function f (x1, x2, x3, . . . , xN ) is the quantity F(kx1 , kx2 , x3, . . . , xN ) given by∫ ∞

−∞

[∫ ∞

−∞
f (x1, x2, x3, . . . , xN ) e− jkx1 x1 dx1

]
e− jkx2 x2 dx2



=
∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3, . . . , xN ) e− jkx1 x1 e− jkx2 x2 dx1 dx2.

The two-dimensional inverse transform is computed by multiple application of (A.2),
recovering f (x1, x2, x3, . . . , xN ) through the operation

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
F(kx1 , kx2 , x3, . . . , xN ) e jkx1 x1 e jkx2 x2 dkx1 dkx2 .

Higher-dimensional transforms and inversions are done analogously.

Transforms of separable functions. If we are able to write

f (x1, x2, x3, . . . , xN ) = f1(x1, x3, . . . , xN ) f2(x2, x3, . . . , xN ),

then successive transforms on the variables x1 and x2 result in

f (x1, x2, x3, . . . , xN ) ↔ F1(kx1 , x3, . . . , xN )F2(kx2 , x3, . . . , xN ).

In this case a multi-variable transform can be obtained with the help of a table of one-
dimensional transforms. If, for instance,

f (x, y, z) = δ(x − x ′)δ(y − y′)δ(z − z′),

then we obtain

F(kx , ky, kz) = e− jkx x ′
e− jky y′

e− jkz z′

by three applications of (A.1).
A more compact notation for multi-dimensional functions and transforms makes use

of the vector notation k = x̂kx + ŷky + ẑkz and r = x̂x + ŷy + ẑz where r is the position
vector. In the example above, for instance, we could have written

δ(x − x ′)δ(y − y′)δ(z − z′) = δ(r − r′),

and

F(k) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(r − r′)e− jk·r dx dy dz = e− jk·r′

.

Fourier–Bessel transform. If x1 and x2 have the same dimensions, it may be con-
venient to recast the two-dimensional Fourier transform in polar coordinates. Let x1 =
ρ cos φ, kx1 = p cos θ , x2 = ρ sin φ, and kx2 = p sin θ, where p and ρ are defined on (0, ∞)

and φ and θ are defined on (−π, π). Then

F(p, θ, x3, . . . , xN ) =
∫ π

−π

∫ ∞

0
f (ρ, φ, x3, . . . , xN ) e− j pρ cos(φ−θ)ρ dρ dφ. (A.10)

If f is independent of φ (due to rotational symmetry about an axis transverse to x1 and
x2), then the φ integral can be computed using the identity

J0(x) = 1

2π

∫ π

−π

e− j x cos(φ−θ) dφ.

Thus (A.10) becomes

F(p, x3, . . . , xN ) = 2π

∫ ∞

0
f (ρ, x3, . . . , xN )J0(ρp) ρ dρ, (A.11)



showing that F is independent of the angular variable θ . Expression (A.11) is termed
the Fourier–Bessel transform of f . The reader can easily verify that f can be recovered
from F through

f (ρ, x3, . . . , xN ) =
∫ ∞

0
F(p, x3, . . . , xN )J0(ρp) p dp,

the inverse Fourier–Bessel transform.

A review of complex contour integration

Some powerful techniques for the evaluation of integrals rest on complex variable the-
ory. In particular, the computation of the Fourier inversion integral is often aided by
these techniques. We therefore provide a brief review of this material. For a fuller
discussion the reader may refer to one of many widely available textbooks on complex
analysis.

We shall denote by f (z) a complex valued function of a complex variable z. That is,

f (z) = u(x, y) + jv(x, y),

where the real and imaginary parts u(x, y) and v(x, y) of f are each functions of the real
and imaginary parts x and y of z:

z = x + j y = Re(z) + j Im(z).

Here j = √−1, as is mostly standard in the electrical engineering literature.

Limits, differentiation, and analyticity. Let w = f (z), and let z0 = x0 + j y0 and
w0 = u0 + jv0 be points in the complex z and w planes, respectively. We say that w0 is
the limit of f (z) as z approaches z0, and write

lim
z→z0

f (z) = w0,

if and only if both u(x, y) → u0 and v(x, y) → v0 as x → x0 and y → y0 independently.
The derivative of f (z) at a point z = z0 is defined by the limit

f ′(z0) = lim
z→z0

f (z) − f (z0)

z − z0
,

if it exists. Existence requires that the derivative be independent of direction of approach;
that is, f ′(z0) cannot depend on the manner in which z → z0 in the complex plane. (This
turns out to be a much stronger condition than simply requiring that the functions u and
v be differentiable with respect to the variables x and y.) We say that f (z) is analytic
at z0 if it is differentiable at z0 and at all points in some neighborhood of z0.

If f (z) is not analytic at z0 but every neighborhood of z0 contains a point at which
f (z) is analytic, then z0 is called a singular point of f (z).

Laurent expansions and residues. Although Taylor series can be used to expand
complex functions around points of analyticity, we must often expand functions around
points z0 at or near which the functions fail to be analytic. For this we use the Laurent



expansion, a generalization of the Taylor expansion involving both positive and negative
powers of z − z0:

f (z) =
∞∑

n=−∞
an(z − z0)

n =
∞∑

n=1

a−n

(z − z0)n
+

∞∑
n=0

an(z − z0)
n.

The numbers an are the coefficients of the Laurent expansion of f (z) at point z = z0.
The first series on the right is the principal part of the Laurent expansion, and the second
series is the regular part. The regular part is an ordinary power series, hence it converges
in some disk |z−z0| < R where R ≥ 0. Putting ζ = 1/(z−z0), the principal part becomes∑∞

n=1 a−nζ
n; this power series converges for |ζ | < ρ where ρ ≥ 0, hence the principal part

converges for |z − z0| > 1/ρ�r . When r < R, the Laurent expansion converges in the
annulus r < |z − z0| < R; when r > R, it diverges everywhere in the complex plane.

The function f (z) has an isolated singularity at point z0 if f (z) is not analytic at z0

but is analytic in the “punctured disk” 0 < |z − z0| < R for some R > 0. Isolated
singularities are classified by reference to the Laurent expansion. Three types can arise:

1. Removable singularity. The point z0 is a removable singularity of f (z) if the principal
part of the Laurent expansion of f (z) about z0 is identically zero (i.e., if an = 0
for n = −1, −2, −3, . . .).

2. Pole of order k. The point z0 is a pole of order k if the principal part of the Laurent
expansion about z0 contains only finitely many terms that form a polynomial of
degree k in (z − z0)

−1. A pole of order 1 is called a simple pole.
3. Essential singularity. The point z0 is an essential singularity of f (z) if the principal

part of the Laurent expansion of f (z) about z0 contains infinitely many terms (i.e.,
if a−n �= 0 for infinitely many n).

The coefficient a−1 in the Laurent expansion of f (z) about an isolated singular point z0

is the residue of f (z) at z0. It can be shown that

a−1 = 1

2π j

∮
�

f (z) dz (A.12)

where � is any simple closed curve oriented counterclockwise and containing in its interior
z0 and no other singularity of f (z). Particularly useful to us is the formula for evaluation
of residues at pole singularities. If f (z) has a pole of order k at z = z0, then the residue
of f (z) at z0 is given by

a−1 = 1

(k − 1)!
lim
z→z0

dk−1

dzk−1
[(z − z0)

k f (z)]. (A.13)

Cauchy–Goursat and residue theorems. It can be shown that if f (z) is analytic
at all points on and within a simple closed contour C , then∮

C
f (z) dz = 0.

This central result is known as the Cauchy–Goursat theorem. We shall not offer a proof,
but shall proceed instead to derive a useful consequence known as the residue theorem.



Figure A.1: Derivation of the residue theorem.

Figure A.1 depicts a simple closed curve C enclosing n isolated singularities of a function
f (z). We assume that f (z) is analytic on and elsewhere within C . Around each singular
point zk we have drawn a circle Ck so small that it encloses no singular point other than
zk ; taken together, the Ck (k = 1, . . . , n) and C form the boundary of a region in which
f (z) is everywhere analytic. By the Cauchy–Goursat theorem∫

C
f (z) dz +

n∑
k=1

∫
Ck

f (z) dz = 0.

Hence

1

2π j

∫
C

f (z) dz =
n∑

k=1

1

2π j

∫
Ck

f (z) dz,

where now the integrations are all performed in a counterclockwise sense. By (A.12)∫
C

f (z) dz = 2π j
n∑

k=1

rk (A.14)

where r1, . . . , rn are the residues of f (z) at the singularities within C .

Contour deformation. Suppose f is analytic in a region D and � is a simple closed
curve in D. If � can be continuously deformed to another simple closed curve �′ without
passing out of D, then ∫

�′
f (z) dz =

∫
�

f (z) dz. (A.15)

To see this, consider Figure A.2 where we have introduced another set of curves ±γ ;
these new curves are assumed parallel and infinitesimally close to each other. Let C be
the composite curve consisting of �, +γ , −�′, and −γ , in that order. Since f is analytic
on and within C , we have∫

C
f (z) dz =

∫
�

f (z) dz +
∫

+γ

f (z) dz +
∫

−�′
f (z) dz +

∫
−γ

f (z) dz = 0.

But
∫
−�′ f (z) dz = − ∫

�′ f (z) dz and
∫
−γ

f (z) dz = − ∫
+γ

f (z) dz, hence (A.15) follows.
The contour deformation principle often permits us to replace an integration contour by
one that is more convenient.



Figure A.2: Derivation of the contour deformation principle.

Principal value integrals. We must occasionally carry out integrations of the form

I =
∫ ∞

−∞
f (x) dx

where f (x) has a finite number of singularities xk (k = 1, . . . , n) along the real axis. Such
singularities in the integrand force us to interpret I as an improper integral. With just
one singularity present at point x1, for instance, we define

∫ ∞

−∞
f (x) dx = lim

ε→0

∫ x1−ε

−∞
f (x) dx + lim

η→0

∫ ∞

x1+η

f (x) dx

provided that both limits exist. When both limits do not exist, we may still be able to
obtain a well-defined result by computing

lim
ε→0

(∫ x1−ε

−∞
f (x) dx +

∫ ∞

x1+ε

f (x) dx

)

(i.e., by taking η = ε so that the limits are “symmetric”). This quantity is called the
Cauchy principal value of I and is denoted

P.V.

∫ ∞

−∞
f (x) dx .

More generally, we have

P.V.

∫ ∞

−∞
f (x) dx = lim

ε→0

(∫ x1−ε

−∞
f (x) dx +

∫ x2−ε

x1+ε

f (x) dx +

+ · · · +
∫ xn−ε

xn−1+ε

f (x) dx +
∫ ∞

xn+ε

f (x) dx

)

for n singularities x1 < · · · < xn.

In a large class of problems f (z) (i.e., f (x) with x replaced by the complex variable
z) is analytic everywhere except for the presence of finitely many simple poles. Some
of these may lie on the real axis (at points x1 < · · · < xn, say), and some may not.
Consider now the integration contour C shown in Figure A.3. We choose R so large and
ε so small that C encloses all the poles of f that lie in the upper half of the complex



Figure A.3: Complex plane technique for evaluating a principal value integral.

plane. In many problems of interest the integral of f around the large semicircle tends
to zero as R → ∞ and the integrals around the small semicircles are well-behaved as
ε → 0. It may then be shown that

P.V.

∫ ∞

−∞
f (x) dx = π j

n∑
k=1

rk + 2π j
∑

UHP
rk

where rk is the residue at the kth simple pole. The first sum on the right accounts for
the contributions of those poles that lie on the real axis; note that it is associated with
a factor π j instead of 2π j , since these terms arose from integrals over semicircles rather
than over full circles. The second sum, of course, is extended only over those poles that
reside in the upper half-plane.

Fourier transform solution of the 1-D wave equation

Successive applications of the Fourier transform can reduce a partial differential equa-
tion to an ordinary differential equation, and finally to an algebraic equation. After
the algebraic equation is solved by standard techniques, Fourier inversion can yield a
solution to the original partial differential equation. We illustrate this by solving the
one-dimensional inhomogeneous wave equation(

∂2

∂z2
− 1

c2

∂2

∂t2

)
ψ(x, y, z, t) = S(x, y, z, t), (A.16)

where the field ψ is the desired unknown and S is the known source term. For uniqueness
of solution we must specify ψ and ∂ψ/∂z over some z = constant plane. Assume that

ψ(x, y, z, t)
∣∣∣
z=0

= f (x, y, t), (A.17)

∂

∂z
ψ(x, y, z, t)

∣∣∣
z=0

= g(x, y, t). (A.18)

We begin by positing inverse temporal Fourier transform relationships for ψ and S:

ψ(x, y, z, t) = 1

2π

∫ ∞

−∞
ψ̃(x, y, z, ω)e jωt dω,



S(x, y, z, t) = 1

2π

∫ ∞

−∞
S̃(x, y, z, ω)e jωt dω.

Substituting into (A.16), passing the derivatives through the integral, calculating the
derivatives, and combining the inverse transforms, we obtain

1

2π

∫ ∞

−∞

[(
∂2

∂z2
+ k2

)
ψ̃(x, y, z, ω) − S̃(x, y, z, ω)

]
e jωt dω = 0

where k = ω/c. By the Fourier integral theorem(
∂2

∂z2
+ k2

)
ψ̃(x, y, z, ω) − S̃(x, y, z, ω) = 0. (A.19)

We have thus converted a partial differential equation into an ordinary differential equa-
tion. A spatial transform on z will now convert the ordinary differential equation into
an algebraic equation. We write

ψ̃(x, y, z, ω) = 1

2π

∫ ∞

−∞
ψ̃ z(x, y, kz, ω)e jkz z dkz,

S̃(x, y, z, ω) = 1

2π

∫ ∞

−∞
S̃z(x, y, kz, ω)e jkz z dkz,

in (A.19), pass the derivatives through the integral sign, compute the derivatives, and
set the integrand to zero to get

(k2 − k2
z )ψ̃

z(x, y, kz, ω) − S̃z(x, y, kz, ω) = 0;

hence

ψ̃ z(x, y, kz, ω) = − S̃z(x, y, kz, ω)

(kz − k)(kz + k)
. (A.20)

The price we pay for such an easy solution is that we must now perform a two-
dimensional Fourier inversion to obtain ψ(x, y, z, t) from ψ̃ z(x, y, kz, ω). It turns out to
be easiest to perform the spatial inverse transform first, so let us examine

ψ̃(x, y, z, ω) = 1

2π

∫ ∞

−∞
ψ̃ z(x, y, kz, ω)e jkz z dkz .

By (A.20) we have

ψ̃(x, y, z, ω) = 1

2π

∫ ∞

−∞
[S̃z(x, y, kz, ω)]

[ −1

(kz − k)(kz + k)

]
e jkz z dkz,

where the integrand involves a product of two functions. With

g̃z(kz, ω) = −1

(kz − k)(kz + k)
,

the convolution theorem gives

ψ̃(x, y, z, ω) =
∫ ∞

−∞
S̃(x, y, ζ, ω)g̃(z − ζ, ω) dζ (A.21)



Figure A.4: Contour used to compute inverse transform in solution of the 1-D wave
equation.

where

g̃(z, ω) = 1

2π

∫ ∞

−∞
g̃z(kz, ω)e jkz z dkz = 1

2π

∫ ∞

−∞

−1

(kz − k)(kz + k)
e jkz z dkz .

To compute this integral we use complex plane techniques. The domain of integration
extends along the real kz-axis in the complex kz-plane; because of the poles at kz = ±k,
we must treat the integral as a principal value integral. Denoting

I (kz) = −e jkz z

2π(kz − k)(kz + k)
,

we have∫ ∞

−∞
I (kz) dkz = lim

∫
�r

I (kz) dkz

= lim
∫ −k−δ

−�

I (kz) dkz + lim
∫ k−δ

−k+δ

I (kz) dkz + lim
∫ �

k+δ

I (kz) dkz

where the limits take δ → 0 and � → ∞. Our kz-plane contour takes detours around the
poles using semicircles of radius δ, and is closed using a semicircle of radius � (Figure
A.4). Note that if z > 0, we must close the contour in the upper half-plane.

By Cauchy’s integral theorem∫
�r

I (kz) dkz +
∫

�1

I (kz) dkz +
∫

�2

I (kz) dkz +
∫

��

I (kz) dkz = 0.

Thus ∫ ∞

−∞
I (kz) dkz = − lim

δ→0

∫
�1

I (kz) dkz − lim
δ→0

∫
�2

I (kz) dkz − lim
�→∞

∫
��

I (kz) dkz .

The contribution from the semicircle of radius � can be computed by writing kz in polar
coordinates as kz = �e jθ :

lim
�→∞

∫
��

I (kz) dkz = 1

2π
lim

�→∞

∫ π

0

−e jz�e jθ

(�e jθ − k)(�e jθ + k)
j�e jθ dθ.



Using Euler’s identity we can write

lim
�→∞

∫
��

I (kz) dkz = 1

2π
lim

�→∞

∫ π

0

−e−�z sin θe j�z cos θ

�2e2 jθ
j�e jθ dθ.

Thus, as long as z > 0 the integrand will decay exponentially as � → ∞, and

lim
�→∞

∫
��

I (kz) dkz → 0.

Similarly,
∫
��

I (kz) dkz → 0 when z < 0 if we close the semicircle in the lower half-plane.
Thus, ∫ ∞

−∞
I (kz) dkz = − lim

δ→0

∫
�1

I (kz) dkz − lim
δ→0

∫
�2

I (kz) dkz . (A.22)

The integrals around the poles can also be computed by writing kz in polar coordinates.
Writing kz = −k + δe jθ we find

lim
δ→0

∫
�1

I (kz) dkz = 1

2π
lim
δ→0

∫ 0

π

−e jz(−k+δe jθ
) jδe jθ

(−k + δe jθ − k)(−k + δe jθ + k)
dθ

= 1

2π

∫ π

0

e− jkz

−2k
j dθ = − j

4k
e− jkz .

Similarly, using kz = k + δe jθ , we obtain

lim
δ→0

∫
�2

I (kz) dkz = j

4k
e jkz .

Substituting these into (A.22) we have

g̃(z, ω) = j

4k
e− jkz − j

4k
e jkz = 1

2k
sin kz, (A.23)

valid for z > 0. For z < 0, we close in the lower half-plane instead and get

g̃(z, ω) = − 1

2k
sin kz. (A.24)

Substituting (A.23) and (A.24) into (A.21) we obtain

ψ̃(x, y, z, ω) =
∫ z

−∞
S̃(x, y, ζ, ω)

sin k(z − ζ )

2k
dζ − 1

2k

∫ ∞

z
S̃(x, y, ζ, ω)

sin k(z − ζ )

2k
dζ

where we have been careful to separate the two cases considered above. To make things
a bit easier when we apply the boundary conditions, let us rewrite the above expression.
Splitting the domain of integration we write

ψ̃(x, y, z, ω) =
∫ 0

−∞
S̃(x, y, ζ, ω)

sin k(z − ζ )

2k
dζ +

∫ z

0
S̃(x, y, ζ, ω)

sin k(z − ζ )

k
dζ −

−
∫ ∞

0
S̃(x, y, ζ, ω)

sin k(z − ζ )

2k
dζ.



Expansion of the trigonometric functions then gives

ψ̃(x, y, z, ω) =
∫ z

0
S̃(x, y, ζ, ω)

sin k(z − ζ )

k
dζ +

+ sin kz

2k

∫ 0

−∞
S̃(x, y, ζ, ω) cos kζ dζ − cos kz

2k

∫ 0

−∞
S̃(x, y, ζ, ω) sin kζ dζ −

− sin kz

2k

∫ ∞

0
S̃(x, y, ζ, ω) cos kζ dζ + cos kz

2k

∫ ∞

0
S̃(x, y, ζ, ω) sin kζ dζ.

The last four integrals are independent of z, so we can represent them with functions
constant in z. Finally, rewriting the trigonometric functions as exponentials we have

ψ̃(x, y, z, ω) =
∫ z

0
S̃(x, y, ζ, ω)

sin k(z − ζ )

k
dζ + Ã(x, y, ω)e− jkz + B̃(x, y, ω)e jkz .

(A.25)

This formula for ψ̃ was found as a solution to the inhomogeneous ordinary differential
equation (A.19). Hence, to obtain the complete solution we should add any possible
solutions of the homogeneous differential equation. Since these are exponentials, (A.25)
in fact represents the complete solution, where Ã and B̃ are considered unknown and
can be found using the boundary conditions.

If we are interested in the frequency-domain solution to the wave equation, then we
are done. However, since our boundary conditions (A.17) and (A.18) pertain to the time
domain, we must temporally inverse transform before we can apply them. Writing the
sine function in (A.25) in terms of exponentials, we can express the time-domain solution
as

ψ̃(x, y, z, t) =
∫ z

0
F−1

{
c

2

S̃(x, y, ζ, ω)

jω
e j ω

c (z−ζ ) − c

2

S̃(x, y, ζ, ω)

jω
e− j ω

c (z−ζ )

}
dζ +

+ F−1
{

Ã(x, y, ω)e− j ω
c z

} + F−1
{

B̃(x, y, ω)e j ω
c z

}
. (A.26)

A combination of the Fourier integration and time-shifting theorems gives the general
identity

F−1

{
S̃(x, y, ζ, ω)

jω
e− jωt0

}
=

∫ t−t0

−∞
S(x, y, ζ, τ ) dτ, (A.27)

where we have assumed that S̃(x, y, ζ, 0) = 0. Using this in (A.26) along with the time-
shifting theorem we obtain

ψ(x, y, z, t) = c

2

∫ z

0

{∫ t− ζ−z
c

−∞
S(x, y, ζ, τ ) dτ −

∫ t− z−ζ

c

−∞
S(x, y, ζ, τ ) dτ

}
dζ +

+ a
(

x, y, t − z

c

)
+ b

(
x, y, t + z

c

)
,

or

ψ(x, y, z, t) = c

2

∫ z

0

∫ t+ z−ζ

c

t− z−ζ

c

S(x, y, ζ, τ ) dτ dζ + a
(

x, y, t − z

c

)
+ b

(
x, y, t + z

c

)
(A.28)

where

a(x, y, t) = F−1[ Ã(x, y, ω)], b(x, y, t) = F−1[B̃(x, y, ω)].



To calculate a(x, y, t) and b(x, y, t), we must use the boundary conditions (A.17) and
(A.18). To apply (A.17), we put z = 0 into (A.28) to give

a(x, y, t) + b(x, y, t) = f (x, y, t). (A.29)

Using (A.18) is a bit more complicated since we must compute ∂ψ/∂z, and z is a pa-
rameter in the limits of the integral describing ψ . To compute the derivative we apply
Leibnitz’ rule for differentiation:

d

dα

∫ θ(α)

φ(α)

f (x, α) dx =
(

dθ

dα

)
f (θ(α), α) −

(
dφ

dα

)
f (φ(α), α) +

∫ θ(α)

φ(α)

∂ f

∂α
dx . (A.30)

Using this on the integral term in (A.28) we have

∂

∂z

[
c

2

∫ z

0

(∫ t+ z−ζ

c

t− z−ζ

c

S(x, y, ζ, τ ) dτ

)
dζ

]
= c

2

∫ z

0

∂

∂z

(∫ t+ z−ζ

c

t− z−ζ

c

S(x, y, ζ, τ ) dτ

)
dζ,

which is zero at z = 0. Thus
∂ψ

∂z

∣∣∣
z=0

= g(x, y, t) = −1

c
a′(x, y, t) + 1

c
b′(x, y, t)

where a′ = ∂a/∂t and b′ = ∂b/∂t . Integration gives

− a(x, y, t) + b(x, y, t) = c
∫ t

−∞
g(x, y, τ ) dτ. (A.31)

Equations (A.29) and (A.31) represent two algebraic equations in the two unknown
functions a and b. The solutions are

2a(x, y, t) = f (x, y, t) − c
∫ t

−∞
g(x, y, τ ) dτ,

2b(x, y, t) = f (x, y, t) + c
∫ t

−∞
g(x, y, τ ) dτ.

Finally, substitution of these into (A.28) gives us the solution to the inhomogeneous wave
equation

ψ(x, y, z, t) = c

2

∫ z

0

∫ t+ z−ζ

c

t− z−ζ

c

S(x, y, ζ, τ ) dτ dζ + 1

2

[
f
(

x, y, t − z

c

)
+ f

(
x, y, t + z

c

)]
+

+ c

2

∫ t+ z
c

t− z
c

g(x, y, τ ) dτ. (A.32)

This is known as the D’Alembert solution. The terms f (x, y, t ∓ z/c) contribute to ψ

as waves propagating away from the plane z = 0 in the ±z-directions, respectively. The
integral over the forcing term S is seen to accumulate values of S over a time interval
determined by z − ζ .

The boundary conditions could have been applied while still in the temporal frequency
domain (but not the spatial frequency domain, since the spatial position z is lost). But to
do this, we would need the boundary conditions to be in the temporal frequency domain.
This is easily accomplished by transforming them to give

ψ̃(x, y, z, ω)

∣∣∣
z=0

= f̃ (x, y, ω),

∂

∂z
ψ̃(x, y, z, ω)

∣∣∣
z=0

= g̃(x, y, ω).



Applying these to (A.25) (and again using Leibnitz’ rule) we have

Ã(x, y, ω) + B̃(x, y, ω) = f̃ (x, y, ω),

− jk Ã(x, y, ω) + jk B̃(x, y, ω) = g̃(x, y, ω),

hence

2 Ã(x, y, ω) = f̃ (x, y, ω) − c
g̃(x, y, ω)

jω
,

2B̃(x, y, ω) = f̃ (x, y, ω) + c
g̃(x, y, ω)

jω
.

Finally, substituting these back into (A.25) and expanding the sine function we obtain
the frequency-domain solution that obeys the given boundary conditions:

ψ̃(x, y, z, ω) = c

2

∫ z

0

[
S̃(x, y, ζ, ω)e j ω

c (z−ζ )

jω
− S̃(x, y, ζ, ω)e− j ω

c (z−ζ )

jω

]
dζ +

+ 1

2

[
f̃ (x, y, ω)e j ω

c z + f̃ (x, y, ω)e− j ω
c z

] +

+ c

2

[
g̃(x, y, ω)e j ω

c z

jω
− g̃(x, y, ω)e− j ω

c z

jω

]
.

This is easily inverted using (A.27) to give (A.32).

Fourier transform solution of the 1-D homogeneous wave equation for
dissipative media

Wave propagation in dissipative media can be studied using the one-dimensional wave
equation (

∂2

∂z2
− 2�

v2

∂

∂t
− 1

v2

∂2

∂t2

)
ψ(x, y, z, t) = S(x, y, z, t). (A.33)

This equation is nearly identical to the wave equation for lossless media studied in the
previous section, except for the addition of the ∂ψ/∂t term. This extra term will lead to
important physical consequences regarding the behavior of the wave solutions.

We shall solve (A.33) using the Fourier transform approach of the previous section,
but to keep the solution simple we shall only consider the homogeneous problem. We
begin by writing ψ in terms of its inverse temporal Fourier transform:

ψ(x, y, z, t) = 1

2π

∫ ∞

−∞
ψ̃(x, y, z, ω)e jωt dω.

Substituting this into the homogeneous version of (A.33) and taking the time derivatives,
we obtain

1

2π

∫ ∞

−∞

[
( jω)2 + 2�( jω) − v2 ∂2

∂z2

]
ψ̃(x, y, z, ω)e jωt dω = 0.

The Fourier integral theorem leads to

∂2ψ̃(x, y, z, ω)

∂z2
− κ2ψ̃(x, y, z, ω) = 0 (A.34)



where

κ = 1

v

√
p2 + 2�p

with p = jω.
We can solve the homogeneous ordinary differential equation (A.34) by inspection:

ψ̃(x, y, z, ω) = Ã(x, y, ω)e−κz + B̃(x, y, ω)eκz . (A.35)

Here Ã and B̃ are frequency-domain coefficients to be determined. We can either specify
these coefficients directly, or solve for them by applying specific boundary conditions.
We examine each possibility below.

Solution to wave equation by direct application of boundary conditions. The
solution to the wave equation (A.33) will be unique if we specify functions f (x, y, t) and
g(x, y, t) such that

ψ(x, y, z, t)
∣∣∣
z=0

= f (x, y, t),

∂

∂z
ψ(x, y, z, t)

∣∣∣
z=0

= g(x, y, t). (A.36)

Assuming the Fourier transform pairs f (x, y, t) ↔ f̃ (x, y, ω) and g(x, y, t) ↔ g̃(x, y, ω),
we can apply the boundary conditions (A.36) in the frequency domain:

ψ̃(x, y, z, ω)

∣∣∣
z=0

= f̃ (x, y, ω),

∂

∂z
ψ̃(x, y, z, ω)

∣∣∣
z=0

= g̃(x, y, ω).

From these we find

Ã + B̃ = f̃ , −κ Ã + κ B̃ = g̃, v

or

Ã = 1

2

[
f̃ − g̃

κ

]
, B̃ = 1

2

[
f̃ + g̃

κ

]
.

Substitution into (A.35) gives

ψ̃(x, y, z, ω) = f̃ (x, y, ω) cosh κz + g̃(x, y, ω)
sinh κz

κ

= f̃ (x, y, ω)
∂

∂z
Q̃(x, y, z, ω) + g̃(x, y, ω)Q̃(x, y, z, ω)

= ψ̃1(x, y, z, ω) + ψ̃2(x, y, z, ω)

where Q̃ = sinh κz/κ. Assuming that Q(x, y, z, t) ↔ Q̃(x, y, z, ω), we can employ the
convolution theorem to immediately write down ψ(x, y, z, t):

ψ(x, y, z, t) = f (x, y, t) ∗ ∂

∂z
Q(x, y, z, t) + g(x, y, z, t) ∗ Q(x, y, z, t)

= ψ1(x, y, z, t) + ψ2(x, y, z, t). (A.37)

To find ψ we must first compute the inverse transform of Q̃. Here we resort to a
tabulated result [26]:

sinh
[
a
√

p + λ
√

p + µ
]

√
p + λ

√
p + µ

↔ 1

2
e− 1

2 (µ+λ)t J0

(
1

2
(λ − µ)

√
a2 − t2

)
, −a < t < a.



Here a is a positive, finite real quantity, and λ and µ are finite complex quantities.
Outside the range |t | < a the time-domain function is zero.

Letting a = z/v, µ = 0, and λ = 2� in the above expression, we find

Q(x, y, z, t) = v

2
e−�t J0

(
�

v

√
z2 − v2t2

)
[U (t + z/v) − U (t − z/v)] (A.38)

where U (x) is the unit step function (A.5). From (A.37) we see that

ψ2(x, y, z, t) =
∫ ∞

−∞
g(x, y, t − τ)Q(x, y, z, τ ) dτ =

∫ z/v

−z/v
g(x, y, t − τ)Q(x, y, z, τ ) dτ.

Using the change of variables u = t − τ and substituting (A.38), we then have

ψ2(x, y, z, t) = v

2
e−�t

∫ t+ z
v

t− z
v

g(x, y, u)e�u J0

(
�

v

√
z2 − (t − u)2v2

)
du. (A.39)

To find ψ1 we must compute ∂ Q/∂z. Using the product rule we have

∂ Q(x, y, z, t)

∂z
= v

2
e−�t J0

(
�

v

√
z2 − v2t2

)
∂

∂z
[U (t + z/v) − U (t − z/v)] +

+ v

2
e−�t [U (t + z/v) − U (t − z/v)]

∂

∂z
J0

(
�

v

√
z2 − v2t2

)
.

Next, using dU (x)/dx = δ(x) and remembering that J ′
0(x) = −J1(x) and J0(0) = 1, we

can write
∂ Q(x, y, z, t)

∂z
= 1

2
e−�t [δ(t + z/v) + δ(t − z/v)] −

− z�2

2v
e−�t

J1

(
�
v

√
z2 − v2t2

)
�
v

√
z2 − v2t2

[U (t + z/v) − U (t − z/v)].

Convolving this expression with f (x, y, t) we obtain

ψ1(x, y, z, t) = 1

2
e− �

v
z f

(
x, y, t − z

v

)
+ 1

2
e

�
v

z f
(

x, y, t + z

v

)
−

− z�2

2v
e−�t

∫ t+ z
v

t− z
v

f (x, y, u)e�u
J1

(
�
v

√
z2 − (t − u)2v2

)
�
v

√
z2 − (t − u)2v2

du. (A.40)

Finally, adding (A.40) and (A.39), we obtain

ψ(x, y, z, t) = 1

2
e− �

v
z f

(
x, y, t − z

v

)
+ 1

2
e

�
v

z f
(

x, y, t + z

v

)
−

− z�2

2v
e−�t

∫ t+ z
v

t− z
v

f (x, y, u)e�u
J1

(
�
v

√
z2 − (t − u)2v2

)
�
v

√
z2 − (t − u)2v2

du +

+ v

2
e−�t

∫ t+ z
v

t− z
v

g(x, y, u)e�u J0

(
�

v

√
z2 − (t − u)2v2

)
du. (A.41)

Note that when � = 0 this reduces to

ψ(x, y, z, t) = 1

2
f
(

x, y, t − z

v

)
+ 1

2
f
(

x, y, t + z

v

)
+ v

2

∫ t+ z
v

t− z
v

g(x, y, u) du,

which matches (A.32) for the homogeneous case where S = 0.



Solution to wave equation by specification of wave amplitudes. An alternative
to direct specification of boundary conditions is specification of the amplitude functions
Ã(x, y, ω) and B̃(x, y, ω) or their inverse transforms A(x, y, t) and B(x, y, t). If we specify
the time-domain functions we can write ψ(x, y, z, t) as the inverse transform of (A.35).
For example, a wave traveling in the +z-direction behaves as

ψ(x, y, z, t) = A(x, y, t) ∗ F+(x, y, z, t) (A.42)

where

F+(x, y, z, t) ↔ e−κz = e− z
v

√
p2+2�p.

We can find F+ using the following Fourier transform pair [26]):

e− x
v

√
(p+ρ)2−σ 2 ↔ e− ρ

v
xδ(t − x/v) + σ x

v
e−ρt

I1

(
σ
√

t2 − (x/v)2
)

√
t2 − (x/v)2

,
x

v
< t. (A.43)

Here x is real and positive and I1(x) is the modified Bessel function of the first kind and
order 1. Outside the range x/v < t the time-domain function is zero. Letting ρ = � and
σ = � we find

F+(x, y, z, t) = �2z

v
e−�t I1(�

√
t2 − (z/v)2)

�
√

t2 − (z/v)2
U (t − z/v) + e− �

v
zδ(t − z/v). (A.44)

Note that F+ is a real functions of time, as expected.
Substituting (A.44) into (A.42) and writing the convolution in integral form we have

ψ(x, y, z, t) =
∫ ∞

z/v
A(x, y, t − τ)

[
�2z

v
e−�τ I1(�

√
τ 2 − (z/v)2)

�
√

τ 2 − (z/v)2

]
dτ +

+ e− �
v

z A
(

x, y, t − z

v

)
, z > 0. (A.45)

The 3-D Green’s function for waves in dissipative media

To understand the fields produced by bounded sources within a dissipative medium we
may wish to investigate solutions to the wave equation in three dimensions. The Green’s
function approach requires the solution to(

∇2 − 2�

v2

∂

∂t
− 1

v2

∂2

∂t2

)
G(r|r′; t) = −δ(t)δ(r − r′)

= −δ(t)δ(x − x ′)δ(y − y′)δ(z − z′).

That is, we are interested in the impulse response of a point source located at r = r′.
We begin by substituting the inverse temporal Fourier transform relations

G(r|r′; t) = 1

2π

∫ ∞

−∞
G̃(r|r′; ω)e jωt dω,

δ(t) = 1

2π

∫ ∞

−∞
e jωt dω,

obtaining

1

2π

∫ ∞

−∞

[(
∇2 − jω

2�

v2
− 1

v2
( jω)2

)
G̃(r|r′; ω) + δ(r − r′)

]
e jωt dω = 0.



By the Fourier integral theorem we have

(∇2 + k2)G̃(r|r′; ω) = −δ(r − r′). (A.46)

This is known as the Helmholtz equation. Here

k = 1

v

√
ω2 − j2ω� (A.47)

is called the wavenumber.
To solve the Helmholtz equation we write G̃ in terms of a 3-dimensional inverse Fourier

transform. Substitution of

G̃(r|r′; ω) = 1

(2π)3

∫ ∞

−∞
G̃r (k|r′; ω)e jk·r d3k,

δ(r − r′) = 1

(2π)3

∫ ∞

−∞
e jk·(r−r′) d3k,

into (A.46) gives

1

(2π)3

∫ ∞

−∞

[
∇2

(
G̃r (k|r′; ω)e jk·r) + k2G̃r (k|r′; ω)e jk·r + e jk·(r−r′)

]
d3k = 0.

Here

k = x̂kx + ŷky + ẑkz

with |k|2 = k2
x + k2

y + k2
z = K 2. Carrying out the derivatives and invoking the Fourier

integral theorem we have

(K 2 − k2)G̃r (k|r′; ω) = e− jk·r′
.

Solving for G̃ and substituting it into the inverse transform relation we have

G̃(r|r′; ω) = 1

(2π)3

∫ ∞

−∞

e jk·(r−r′)

(K − k)(K + k)
d3k. (A.48)

To compute the inverse transform integral in (A.48) we write the 3-D transform variable
in spherical coordinates:

k · (r − r′) = K R cos θ, d3k = K 2 sin θ d K dθ dφ,

where R = |r − r′| and θ is the angle between k and r − r′. Hence (A.48) becomes

G̃(r|r′; ω) = 1

(2π)3

∫ ∞

0

K 2 d K

(K − k)(K + k)

∫ 2π

0
dφ

∫ π

0
e j K R cos θ sin θ dθ

= 2

(2π)2 R

∫ ∞

0

K sin(K R)

(K − k)(K + k)
d K ,

or, equivalently,

G̃(r|r′; ω) = 1

2 j R(2π)2

∫ ∞

−∞

e j K R

(K − k)(K + k)
K d K −

− 1

2 j R(2π)2

∫ ∞

−∞

e− jk R

(K − k)(K + k)
K d K .



We can compute the integrals over K using the complex plane technique. We consider K
to be a complex variable, and note that for dissipative media we have k = kr + jki , where
kr > 0 and ki < 0. Thus the integrand has poles at K = ±k. For the integral involving
e+ j K R we close the contour in the upper half-plane using a semicircle of radius � and
use Cauchy’s residue theorem. Then at all points on the semicircle the integrand decays
exponentially as � → ∞, and there is no contribution to the integral from this part of
the contour. The real-line integral is thus equal to 2π j times the residue at K = −k:∫ ∞

−∞

e j K R

(K − k)(K + k)
K d K = 2π j

e− jk R

−2k
(−k).

For the term involving e− j K R we close in the lower half-plane and again the contribution
from the infinite semicircle vanishes. In this case our contour is clockwise and so the real
line integral is −2π j times the residue at K = k:∫ ∞

−∞

e− j K R

(K − k)(K + k)
K d K = −2π j

e− jk R

2k
k.

Thus

G̃(r|r′; ω) = e− jk R

4π R
. (A.49)

Note that if � = 0 then this reduces to

G̃(r|r′; ω) = e− jωR/v

4π R
. (A.50)

Our last step is to find the temporal Green’s function. Let p = jω. Then we can write

G̃(r|r′; ω) = eκ R

4π R

where

κ = − jk = 1

v

√
p2 + 2�p.

We may find the inverse transform using (A.43). Letting x = R, ρ = �, and σ = � we
find

G(r|r′; t) = e− �
v

R δ(t − R/v)

4π R
+ �2

4πv
e−�t

I1

(
�

√
t2 − (R/v)2

)
�

√
t2 − (R/v)2

U

(
t − R

v

)
.

We note that in the case of no dissipation where � = 0 this reduces to

G(r|r′; t) = δ(t − R/v)

4π R

which is the inverse transform of (A.50).

Fourier transform representation of the static Green’s function

In the study of static fields, we shall be interested in the solution to the partial differ-
ential equation

∇2G(r|r′) = −δ(r − r′) = −δ(x − x ′)δ(y − y′)δ(z − z′). (A.51)



Here G(r|r′), called the “static Green’s function,” represents the potential at point r
produced by a unit point source at point r′.

In Chapter 3 we find that G(r|r′) = 1/4π |r − r′|. In a variety of problems it is also
useful to have G written in terms of an inverse Fourier transform over the variables x
and y. Letting Gr form a three-dimensional Fourier transform pair with G, we can write

G(r|r′) = 1

(2π)3

∫ ∞

−∞
Gr (kx , ky, kz|r′)e jkx x e jky ye jkz z dkx dky dkz .

Substitution into (A.51) along with the inverse transformation representation for the
delta function (A.4) gives

1

(2π)3
∇2

∫ ∞

−∞
Gr (kx , ky, kz|r′)e jkx x e jky ye jkz z dkx dky dkz

= − 1

(2π)3

∫ ∞

−∞
e jkx (x−x ′)e jky(y−y′)e jkz(z−z′) dkx dky dkz .

We then combine the integrands and move the Laplacian operator through the integral
to obtain

1

(2π)3

∫ ∞

−∞

[
∇2

(
Gr (k|r′)e jk·r) + e jk·(r−r′)

]
d3k = 0,

where k = x̂kx + ŷky + ẑkz . Carrying out the derivatives,

1

(2π)3

∫ ∞

−∞

[(−k2
x − k2

y − k2
z

)
Gr (k|r′) + e− jk·r′]

e jk·r d3k = 0.

Letting k2
x + k2

y = k2
ρ and invoking the Fourier integral theorem we get the algebraic

equation (−k2
ρ − k2

z

)
Gr (k|r′) + e− jk·r′ = 0,

which we can easily solve for Gr :

Gr (k|r′) = e− jk·r′

k2
ρ + k2

z

. (A.52)

Equation (A.52) gives us a 3-D transform representation for the Green’s function.
Since we desire the 2-D representation, we shall have to perform the inverse transform
over kz . Writing

Gxy(kx , ky, z|r′) = 1

2π

∫ ∞

−∞
Gr (kx , ky, kz|r′)e jkz z dkz

we have

Gxy(kx , ky, z|r′) = 1

2π

∫ ∞

−∞

e− jkx x ′
e− jky y′

e jkz(z−z′)

k2
ρ + k2

z

dkz . (A.53)

To compute this integral, we let kz be a complex variable and consider a closed contour in
the complex plane, consisting of a semicircle and the real axis. As previously discussed,
we compute the principal value integral as the semicircle radius � → ∞, and find that
the contribution along the semicircle reduces to zero. Hence we can use Cauchy’s residue
theorem (A.14) to obtain the real-line integral:

Gxy(kx , ky, z|r′) = 2π j res

{
1

2π

e− jkx x ′
e− jky y′

e jkz(z−z′)

k2
ρ + k2

z

}
.



Here res{ f (kz)} denotes the residues of the function f (kz). The integrand in (A.53) has
poles of order 1 at kz = ± jkρ , kρ ≥ 0. If z − z′ > 0 we close in the upper half-plane and
enclose only the pole at kz = jkρ . Computing the residue using (A.13), we obtain

Gxy(kx , ky, z|r′) = j
e− jkx x ′

e− jky y′
e−kρ(z−z′)

2 jkρ

, z > z′.

Since z > z′ this function decays for increasing z, as expected physically. For z−z′ < 0 we
close in the lower half-plane, enclosing the pole at kz = − jkρ and incurring an additional
negative sign since our contour is now clockwise. Evaluating the residue we have

Gxy(kx , ky, z|r′) = − j
e− jkx x ′

e− jky y′
ekρ(z−z′)

−2 jkρ

, z < z′.

We can combine both cases z > z′ and z < z′ by using the absolute value function:

Gxy(kx , ky, z|r′) = e− jkx x ′
e− jky y′

e−kρ |z−z′|

2kρ

. (A.54)

Finally, we substitute (A.54) into the inverse transform formula. This gives the Green’s
function representation

G(r|r′) = 1

4π |r − r′| = 1

(2π)2

∫ ∞

−∞

e−kρ |z−z′|

2kρ

e jkρ ·(r−r′) d2kρ, (A.55)

where kρ = x̂kx + ŷky , kρ = |kρ |, and d2kρ = dkx dky .

On occasion we may wish to represent the solution of the homogeneous (Laplace)
equation

∇2ψ(r) = 0

in terms of a 2-D Fourier transform. In this case we represent ψ as a 2-D inverse transform
and substitute to obtain

1

(2π)2

∫ ∞

−∞
∇2

(
ψ xy(kx , ky, z)e jkx x e jky y

)
dkx dky = 0.

Carrying out the derivatives and invoking the Fourier integral theorem we find that

(
∂2

∂z2
− k2

ρ

)
ψ xy(kx , ky, z) = 0.

Hence

ψ xy(kx , ky, z) = Aekρ z + Be−kρ z

where A and B are constants with respect to z. Inverse transformation gives

ψ(r) = 1

(2π)2

∫ ∞

−∞

[
A(kρ)e

kρ z + B(kρ)e
−kρ z

]
e jkρ ·r d2kρ. (A.56)



A.2 Vector transport theorems

We are often interested in the time rate of change of some field integrated over a
moving volume or surface. Such a derivative may be used to describe the transport of a
physical quantity (e.g., charge, momentum, energy) through space. Many of the relevant
theorems are derived in this section. The results find application in the development of
the large-scale forms of Maxwell equations, the continuity equation, and the Poynting
theorem.

Partial, total, and material derivatives

The key to understanding transport theorems lies in the difference between the various
means of time-differentiating a field. Consider a scalar field T (r, t) (which could represent
one component of a vector or dyadic field). If we fix our position within the field and
examine how the field varies with time, we describe the partial derivative of T . However,
this may not be the most useful means of measuring the time rate of change of a field.
For instance, in mechanics we might be interested in the rate at which water cools as
it sinks to the bottom of a container. In this case, T could represent temperature. We
could create a “depth profile” at any given time (i.e., measure T (r, t0) for some fixed t0)
by taking simultaneous data from a series of temperature probes at varying depths. We
could also create a temporal profile at any given depth (i.e., measure T (r0, t) for some
fixed r0) by taking continuous data from a probe fixed at that depth. But neither of
these would describe how an individual sinking water particle “experiences” a change in
temperature over time.

Instead, we could use a probe that descends along with a particular water packet (i.e.,
volume element), measuring the time rate of temperature change of that element. This
rate of change is called the convective or material derivative, since it corresponds to a
situation in which a physical material quantity is followed as the derivative is calculated.
We anticipate that this quantity will depend on (1) the time rate of change of T at each
fixed point that the particle passes, and (2) the spatial rate of change of T as well as
the rapidity with which the packet of interest is swept through that space gradient. The
faster the packet descends, or the faster the temperature cools with depth, the larger the
material derivative should be.

To compute the material derivative we describe the position of a water packet by the
vector

r(t) = x̂x(t) + ŷy(t) + ẑz(t).

Because no two packets can occupy the same place at the same time, the specification of
r(0) = r0 uniquely describes (or “tags”) a particular packet. The time rate of change of r
with r0 held constant (the material derivative of the position vector) is thus the velocity
field u(r, t) of the fluid: (

dr
dt

)
r0

= Dr
Dt

= u. (A.57)

Here we use the “big D” notation to denote the material derivative, thereby avoiding
confusion with the partial and total derivatives described below.

To describe the time rate of change of the temperature of a particular water packet, we
only need to hold r0 constant while we examine the change. If we write the temperature



as

T (r, t) = T (r(r0, t), t) = T [x(r0, t), y(r0, t), z(r0, t), t],

then we can use the chain rule to find the time rate of change of T with r0 held constant:

DT

Dt
=

(
dT

dt

)
r0

=
(

∂T

∂x

) (
dx

dt

)
r0

+
(

∂T

∂y

) (
dy

dt

)
r0

+
(

∂T

∂z

) (
dz

dt

)
r0

+ ∂T

∂t
.

We recognize the partial derivatives of the coordinates as the components of the material
velocity (A.57), and thus can write

DT

Dt
= ∂T

∂t
+ ux

∂T

∂x
+ uy

∂T

∂y
+ uz

∂T

∂z
= ∂T

∂t
+ u · ∇T .

As expected, the material derivative depends on both the local time rate of change and
the spatial rate of change of temperature.

Suppose next that our probe is motorized and can travel about in the sinking water.
If the probe sinks faster than the surrounding water, the time rate of change (measured
by the probe) should exceed the material derivative. Let the probe position and velocity
be

r(t) = x̂x(t) + ŷy(t) + ẑz(t), v(r, t) = x̂
dx(t)

dt
+ ŷ

dy(t)

dt
+ ẑ

dz(t)

dt
.

We can use the chain rule to determine the time rate of change of the temperature
observed by the probe, but in this case we do not constrain the velocity components to
represent the moving fluid. Thus, we merely obtain

dT

dt
= ∂T

∂x

dx

dt
+ ∂T

∂y

dy

dt
+ ∂T

∂z

dz

dt
+ ∂T

∂t

= ∂T

∂t
+ v · ∇T .

This is called the total derivative of the temperature field.
In summary, the time rate of change of a scalar field T seen by an observer moving

with arbitrary velocity v is given by the total derivative

dT

dt
= ∂T

∂t
+ v · ∇T . (A.58)

If the velocity of the observer happens to match the velocity u of a moving substance,
the time rate of change is the material derivative

DT

Dt
= ∂T

∂t
+ u · ∇T . (A.59)

We can obtain the material derivative of a vector field F by component-wise application
of (A.59):

DF
Dt

= D

Dt

[
x̂Fx + ŷFy + ẑFz

]
= x̂

∂ Fx

∂t
+ ŷ

∂ Fy

∂t
+ ẑ

∂ Fz

∂t
+ x̂ [u · (∇Fx )] + ŷ

[
u · (∇Fy)

] + ẑ [u · (∇Fz)] .



Figure A.5: Derivation of the Helmholtz transport theorem.

Using the notation

u · ∇ = ux
∂

∂x
+ uy

∂

∂y
+ uz

∂

∂z

we can write

DF
Dt

= ∂F
∂t

+ (u · ∇)F. (A.60)

This is the material derivative of a vector field F when u describes the motion of a
physical material. Similarly, the total derivative of a vector field is

dF
dt

= ∂F
∂t

+ (v · ∇)F

where v is arbitrary.

The Helmholtz and Reynolds transport theorems

We choose the intuitive approach taken by Tai [190] and Whitaker [214]. Consider
an open surface S(t) moving through space and possibly deforming as it moves. The
velocity of the points comprising the surface is given by the vector field v(r, t). We are
interested in computing the time derivative of the flux of a vector field F(r, t) through
S(t):

ψ(t) = d

dt

∫
S(t)

F(r, t) · dS

= lim
�t→0

∫
S(t+�t) F(r, t + �t) · dS − ∫

S(t) F(r, t) · dS

�t
. (A.61)

Here S(t +�t) = S2 is found by extending each point on S(t) = S1 through a displacement
v�t , as shown in Figure A.5. Substituting the Taylor expansion

F(r, t + �t) = F(r, t) + ∂F(r, t)

∂t
�t + · · ·



into (A.61), we find that only the first two terms give non-zero contributions to the
integral and

ψ(t) =
∫

S(t)

∂F(r, t)

∂t
· dS + lim

�t→0

∫
S2

F(r, t) · dS − ∫
S1

F(r, t) · dS

�t
. (A.62)

The second term on the right can be evaluated with the help of Figure A.5. As the surface
moves through a displacement v�t it sweeps out a volume region �V that is bounded
on the back by S1, on the front by S2, and on the side by a surface S3 = �S. We can
thus compute the two surface integrals in (A.62) as the difference between contributions
from the surface enclosing �V and the side surface �S (remembering that the normal
to S1 in (A.62) points into �V ). Thus

ψ(t) =
∫

S(t)

∂F(r, t)

∂t
· dS + lim

�t→0

∮
S1+S2+�S F(r, t) · dS − ∫

�S F(r, t) · dS3

�t

=
∫

S(t)

∂F(r, t)

∂t
· dS + lim

�t→0

∫
�V ∇ · F(r, t) dV3 − ∫

�S F(r, t) · dS3

�t

by the divergence theorem. To compute the integrals over �S and �V we note from
Figure A.5 that the incremental surface and volume elements are just

dS3 = dl × (v�t), dV3 = (v�t) · dS.

Then, since F · [dl × (v�t)] = �t (v × F) · dl, we have

ψ(t) =
∫

S(t)

∂F(r, t)

∂t
· dS + lim

�t→0

�t
∫

S(t) [v∇ · F(r, t)] · dS

�t
− lim

�t→0

�t
∮
�

[v × F(r, t)] · dl

�t
.

Taking the limit and using Stokes’s theorem on the last integral we have finally

d

dt

∫
S(t)

F · dS =
∫

S(t)

[
∂F
∂t

+ v∇ · F − ∇ × (v × F)

]
· dS, (A.63)

which is the Helmholtz transport theorem [190, 43].
In case the surface corresponds to a moving physical material, we may wish to write

the Helmholtz transport theorem in terms of the material derivative. We can set v = u
and use

∇ × (u × F) = u(∇ · F) − F(∇ · u) + (F · ∇)u − (u · ∇)F

and (A.60) to obtain

d

dt

∫
S(t)

F · dS =
∫

S(t)

[
DF
Dt

+ F(∇ · u) − (F · ∇)u
]

· dS.

If S(t) in (A.63) is closed, enclosing a volume region V (t), then∮
S(t)

[∇ × (v × F)] · dS =
∫

V (t)
∇ · [∇ × (v × F)] dV = 0

by the divergence theorem and (B.49). In this case the Helmholtz transport theorem
becomes

d

dt

∮
S(t)

F · dS =
∮

S(t)

[
∂F
∂t

+ v∇ · F
]

· dS. (A.64)



We now come to an essential tool that we employ throughout the book. Using the
divergence theorem we can rewrite (A.64) as

d

dt

∫
V (t)

∇ · F dV =
∫

V (t)
∇ · ∂F

∂t
dV +

∮
S(t)

(∇ · F)v · dS.

Replacing ∇ · F by the scalar field ρ we have

d

dt

∫
V (t)

ρ dV =
∫

V (t)

∂ρ

∂t
dV +

∮
S(t)

ρv · dS. (A.65)

In this general form of the transport theorem v is an arbitrary velocity. In most appli-
cations v = u describes the motion of a material substance; then

D

Dt

∫
V (t)

ρ dV =
∫

V (t)

∂ρ

∂t
dV +

∮
S(t)

ρu · dS, (A.66)

which is the Reynolds transport theorem [214]. The D/Dt notation implies that V (t)
retains exactly the same material elements as it moves and deforms to follow the material
substance.

We may rewrite the Reynolds transport theorem in various forms. By the divergence
theorem we have

d

dt

∫
V (t)

ρ dV =
∫

V (t)

[
∂ρ

∂t
+ ∇ · (ρv)

]
dV .

Setting v = u, using (B.42), and using (A.59) for the material derivative of ρ, we obtain

D

Dt

∫
V (t)

ρ dV =
∫

V (t)

[
Dρ

Dt
+ ρ∇ · u

]
dV . (A.67)

We may also generate a vector form of the general transport theorem by taking ρ in
(A.65) to be a component of a vector. Assembling all of the components we have

d

dt

∫
V (t)

A dV =
∫

V (t)

∂A
∂t

dV +
∮

S(t)
A(v · n̂) d S. (A.68)

A.3 Dyadic analysis

Dyadic analysis was introduced in the late nineteenth century by Gibbs to generalize
vector analysis to problems in which the components of vectors are related in a linear
manner. It has now been widely supplanted by tensor theory, but maintains a foothold in
engineering where the transformation properties of tensors are not paramount (except,
of course, in considerations such as those involving special relativity). Terms such as
“tensor permittivity” and “dyadic permittivity” are often used interchangeably.

Component form representation. We wish to write one vector field A(r, t) as a
linear function of another vector field B(r, t):

A = f (B).



By this we mean that each component of A is a linear combination of the components of
B:

A1(r, t) = a11′ B1′(r, t) + a12′ B2′(r, t) + a13′ B3′(r, t),

A2(r, t) = a21′ B1′(r, t) + a22′ B2′(r, t) + a23′ B3′(r, t),

A3(r, t) = a31′ B1′(r, t) + a32′ B2′(r, t) + a33′ B3′(r, t).

Here the ai j ′ may depend on space and time (or frequency). The prime on the second
index indicates that A and B may be expressed in distinct coordinate frames (î1, î2, î3)
and (î1′ , î2′ , î3′), respectively. We have

A1 = (
a11′ î1′ + a12′ î2′ + a13′ î3′

) · (
î1′ B1′ + î2′ B2′ + î3′ B3′

)
,

A2 = (
a21′ î1′ + a22′ î2′ + a23′ î3′

) · (
î1′ B1′ + î2′ B2′ + î3′ B3′

)
,

A3 = (
a31′ î1′ + a32′ î2′ + a33′ î3′

) · (
î1′ B1′ + î2′ B2′ + î3′ B3′

)
,

and since B = î1′ B1′ + î2′ B2′ + î3′ B3′ we can write

A = î1(a′
1 · B) + î2(a′

2 · B) + î3(a′
3 · B)

where

a′
1 = a11′ î1′ + a12′ î2′ + a13′ î3′ ,

a′
2 = a21′ î1′ + a22′ î2′ + a23′ î3′ ,

a′
3 = a31′ î1′ + a32′ î2′ + a33′ î3′ .

In shorthand notation

A = ā · B (A.69)

where

ā = î1a′
1 + î2a′

2 + î3a′
3. (A.70)

Written out, the quantity ā looks like

ā = a11′(î1 î1′) + a12′(î1 î2′) + a13′(î1 î3′) +
+ a21′(î2 î1′) + a22′(î2 î2′) + a23′(î2 î3′) +
+ a31′(î3 î1′) + a32′(î3 î2′) + a33′(î3 î3′).

Terms such as î1 î1′ are called dyads, while sums of dyads such as ā are called dyadics.
The components ai j ′ of ā may be conveniently placed into an array:

[ā] =

 a11′ a12′ a13′

a21′ a22′ a23′

a31′ a32′ a33′


 .

Writing

[A] =

 A1

A2

A3


 , [B] =


 B1′

B2′

B3′


 ,



we see that A = ā · B can be written as

[A] = [ā] [B] =

 a11′ a12′ a13′

a21′ a22′ a23′

a31′ a32′ a33′





 B1′

B2′

B3′


 .

Note carefully that in (A.69) ā operates on B from the left. A reorganization of the
components of ā allows us to write

ā = a1 î1′ + a2 î2′ + a3 î3′ (A.71)

where

a1 = a11′ î1 + a21′ î2 + a31′ î3,

a2 = a12′ î1 + a22′ î2 + a32′ î3,

a3 = a13′ î1 + a23′ î2 + a33′ î3.

We may now consider using ā to operate on a vector C = î1C1 + î2C2 + î3C3 from the
right:

C · ā = (C · a1)î1′ + (C · a2)î2′ + (C · a3)î3′ .

In matrix form C · ā is

[ā]T [C] =

 a11′ a21′ a31′

a12′ a22′ a32′

a13′ a23′ a33′





 C1

C2

C3




where the superscript “T ” denotes the matrix transpose operation. That is,

C · ā = āT · C

where āT is the transpose of ā.
If the primed and unprimed frames coincide, then

ā = a11(î1 î1) + a12(î1 î2) + a13(î1 î3) +
+ a21(î2 î1) + a22(î2 î2) + a23(î2 î3) +
+ a31(î3 î1) + a32(î3 î2) + a33(î3 î3).

In this case we may compare the results of ā · B and B · ā for a given vector B =
î1 B1 + î2 B2 + î3 B3. We leave it to the reader to verify that in general

B · ā �= ā · B.

Vector form representation. We can express dyadics in coordinate-free fashion if we
expand the concept of a dyad to permit entities such as AB. Here A and B are called
the antecedent and consequent, respectively. The operation rules

(AB) · C = A(B · C), C · (AB) = (C · A)B,

define the anterior and posterior products of AB with a vector C, and give results
consistent with our prior component notation. Sums of dyads such as AB + CD are
called dyadic polynomials, or dyadics. The simple dyadic

AB = (A1 î1 + A2 î2 + A3 î3)(B1′ î1′ + B2′ î2′ + B3′ î3′)



can be represented in component form using

AB = î1a′
1 + î2a′

2 + î3a′
3

where

a′
1 = A1 B1′ î1′ + A1 B2′ î2′ + A1 B3′ î3′ ,

a′
2 = A2 B1′ î1′ + A2 B2′ î2′ + A2 B3′ î3′ ,

a′
3 = A3 B1′ î1′ + A3 B2′ î2′ + A3 B3′ î3′ ,

or using

AB = a1 î1′ + a2 î2′ + a3 î3′

where

a1 = î1 A1 B1′ + î2 A2 B1′ + î3 A3 B1′ ,

a2 = î1 A1 B2′ + î2 A2 B2′ + î3 A3 B2′ ,

a3 = î1 A1 B3′ + î2 A2 B3′ + î3 A3 B3′ .

Note that if we write ā = AB then ai j = Ai B j ′ .
A simple dyad AB by itself cannot represent a general dyadic ā; only six independent

quantities are available in AB (the three components of A and the three components
of B), while an arbitrary dyadic has nine independent components. However, it can be
shown that any dyadic can be written as a sum of three dyads:

ā = AB + CD + EF.

This is called a vector representation of ā. If V is a vector, the distributive laws

ā · V = (AB + CD + EF) · V = A(B · V) + C(D · V) + E(F · V),

V · ā = V · (AB + CD + EF) = (V · A)B + (V · C)D + (V · E)F,

apply.

Dyadic algebra and calculus. The cross product of a vector with a dyadic produces
another dyadic. If ā = AB + CD + EF then by definition

ā × V = A(B × V) + C(D × V) + E(F × V),

V × ā = (V × A)B + (V × C)D + (V × E)F.

The corresponding component forms are

ā × V = î1(a′
1 × V) + î2(a′

2 × V) + î3(a′
3 × V),

V × ā = (V × a1)î1′ + (V × a2)î2′ + (V × a3)î3′ ,

where we have used (A.70) and (A.71), respectively. Interactions between dyads or
dyadics may also be defined. The dot product of two dyads AB and CD is a dyad given
by

(AB) · (CD) = A(B · C)D = (B · C)(AD).

The dot product of two dyadics can be found by applying the distributive property.



If α is a scalar, then the product αā is a dyadic with components equal to α times
the components of ā. Dyadic addition may be accomplished by adding individual dyadic
components as long as the dyadics are expressed in the same coordinate system. Sub-
traction is accomplished by adding the negative of a dyadic, which is defined through
scalar multiplication by −1.

Some useful dyadic identities appear in Appendix B. Many more can be found in Van
Bladel [202].

The various vector derivatives may also be extended to dyadics. Computations are
easiest in rectangular coordinates, since î1 = x̂, î2 = ŷ, and î3 = ẑ are constant with
position. The dyadic

ā = ax x̂ + ay ŷ + az ẑ

has divergence

∇ · ā = (∇ · ax )x̂ + (∇ · ay)ŷ + (∇ · az)ẑ,

and curl

∇ × ā = (∇ × ax )x̂ + (∇ × ay)ŷ + (∇ × az)ẑ.

Note that the divergence of a dyadic is a vector while the curl of a dyadic is a dyadic.
The gradient of a vector a = ax x̂ + ay ŷ + az ẑ is

∇a = (∇ax )x̂ + (∇ay)ŷ + (∇az)ẑ,

a dyadic quantity.
The dyadic derivatives may be expressed in coordinate-free notation by using the vector

representation. The dyadic AB has divergence

∇ · (AB) = (∇ · A)B + A · (∇B)

and curl

∇ × (AB) = (∇ × A)B − A × (∇B).

The Laplacian of a dyadic is a dyadic given by

∇2ā = ∇(∇ · ā) − ∇ × (∇ × ā).

The divergence theorem for dyadics is∫
V

∇ · ā dV =
∮

S
n̂ · ā d S.

Some of the other common differential and integral identities for dyadics can be found
in Van Bladel [202] and Tai [192].

Special dyadics. We say that ā is symmetric if

B · ā = ā · B

for any vector B. This requires āT = ā, i.e., ai j ′ = a ji ′ . We say that ā is antisymmetric
if

B · ā = −ā · B

for any B. In this case āT = −ā. That is, ai j ′ = −a ji ′ and aii ′ = 0. A symmetric dyadic
has only six independent components while an antisymmetric dyadic has only three. The



reader can verify that any dyadic can be decomposed into symmetric and antisymmetric
parts as

ā = 1

2

(
ā + āT

) + 1

2

(
ā − āT

)
.

A simple example of a symmetric dyadic is the unit dyadic Ī defined by

Ī = î1 î1 + î2 î2 + î3 î3.

This quantity often arises in the manipulation of dyadic equations, and satisfies

A · Ī = Ī · A = A

for any vector A. In matrix form Ī is the identity matrix:

[Ī] =

 1 0 0

0 1 0
0 0 1


 .

The components of a dyadic may be complex. We say that ā is hermitian if

B · ā = ā∗ · B (A.72)

holds for any B. This requires that ā∗ = āT . Taking the transpose we can write

ā = (ā∗)T = ā†

where “†” stands for the conjugate-transpose operation. We say that ā is anti-hermitian
if

B · ā = −ā∗ · B (A.73)

for arbitrary B. In this case ā∗ = −āT . Any complex dyadic can be decomposed into
hermitian and anti-hermitian parts:

ā = 1

2

(
āH + āA

)
(A.74)

where

āH = ā + ā†, āA = ā − ā†. (A.75)

A dyadic identity important in the study of material parameters is

B · ā∗ · B∗ = B∗ · ā† · B. (A.76)

We show this by decomposing ā according to (A.74), giving

B · ā∗ · B∗ = 1

2

([
B∗ · āH

]∗ + [
B∗ · āA

]∗) · B∗

where we have used (B · ā)∗ = (B∗ · ā∗). Applying (A.72) and (A.73) we obtain

B · ā∗ · B∗ = 1

2

([
āH∗ · B∗]∗ − [

āA∗ · B∗]∗) · B∗

= B∗ · 1

2

([
āH · B

] − [
āA · B

])
= B∗ ·

(
1

2

[
āH − āA

] · B
)

.

Since the term in brackets is āH − āA = 2ā† by (A.75), the identity is proved.



A.4 Boundary value problems

Many physical phenomena may be described mathematically as the solutions to bound-
ary value problems. The desired physical quantity (usually called a “field”) in a certain
region of space is found by solving one or more partial differential equations subject to
certain conditions over the boundary surface. The boundary conditions may specify the
values of the field, some manipulated version of the field (such as the normal derivative),
or a relationship between fields in adjoining regions. If the field varies with time as well
as space, initial or final values of the field must also be specified. Particularly important
is whether a boundary value problem is well-posed and therefore has a unique solution
which depends continuously on the data supplied. This depends on the forms of the dif-
ferential equation and boundary conditions. The well-posedness of Maxwell’s equations
is discussed in § 2.2.

The importance of boundary value problems has led to an array of techniques, both
analytical and numerical, for solving them. Many problems (such as boundary value
problems involving Laplace’s equation) may be solved in several different ways. Unique-
ness permits an engineer to focus attention on which technique will yield the most efficient
solution. In this section we concentrate on the separation of variables technique, which is
widely applied in the solution of Maxwell’s equations. We first discuss eigenvalue prob-
lems and then give an overview of separation of variables. Finally we consider a number
of example problems in each of the three common coordinate systems.

Sturm–Liouville problems and eigenvalues

The partial differential equations of electromagnetics can often be reduced to ordinary
differential equations. In some cases symmetry permits us to reduce the number of
dimensions by inspection; in other cases, we may employ an integral transform (e.g.,
the Fourier transform) or separation of variables. The resulting ordinary differential
equations may be viewed as particular cases of the Sturm–Liouville differential equation

d

dx

[
p(x)

dψ(x)

dx

]
+ q(x)ψ(x) + λσ(x)ψ(x) = 0, x ∈ [a, b]. (A.77)

In linear operator notation

L [ψ(x)] = −λσ(x)ψ(x), (A.78)

where L is the linear Sturm–Liouville operator

L =
(

d

dx

[
p(x)

d

dx

]
+ q(x)

)
.

Obviously ψ(x) = 0 satisfies (A.78). However, for certain values of λ dependent on p,
q, σ , and the boundary conditions we impose, (A.78) has non-trivial solutions. Each λ

that satisfies (A.78) is an eigenvalue of L, and any non-trivial solution associated with
that eigenvalue is an eigenfunction. Taken together, the eigenvalues of an operator form
its eigenvalue spectrum.

We shall restrict ourselves to the case in which L is self-adjoint. Assume p, q, and σ

are real and continuous on [a, b]. It is straightforward to show that for any two functions
u(x) and v(x) Lagrange’s identity

u L[v] − vL[u] = d

dx

[
p

(
u

dv

dx
− v

du

dx

)]
(A.79)



holds. Integration gives Green’s formula∫ b

a
(u L[v] − vL[u]) dx = p

(
u

dv

dx
− v

du

dx

) ∣∣∣b

a
.

The operator L is self-adjoint if its associated boundary conditions are such that

p

(
u

dv

dx
− v

du

dx

) ∣∣∣b

a
= 0. (A.80)

Possible sets of conditions include the homogeneous boundary conditions

α1ψ(a) + β1ψ
′(a) = 0, α2ψ(b) + β2ψ

′(b) = 0, (A.81)

and the periodic boundary conditions

ψ(a) = ψ(b), p(a)ψ ′(a) = p(b)ψ ′(b). (A.82)

By imposing one of these sets on (A.78) we obtain a Sturm–Liouville problem.
The self-adjoint Sturm–Liouville operator has some nice properties. Each eigenvalue is

real, and the eigenvalues form a denumerable set with no cluster point. Moreover, eigen-
functions corresponding to distinct eigenvalues are orthogonal, and the eigenfunctions
form a complete set. Hence we can expand any sufficiently smooth function in terms of
the eigenfunctions of a problem. We discuss this further below.

A regular Sturm–Liouville problem involves a self-adjoint operator L with p(x) > 0
and σ(x) > 0 everywhere, and the homogeneous boundary conditions (A.81). If p or σ

vanishes at an endpoint of [a, b], or an endpoint is at infinity, the problem is singular.
The harmonic differential equation can form the basis of regular problems, while prob-
lems involving Bessel’s and Legendre’s equations are singular. Regular Sturm–Liouville
problems have additional properties. There are infinitely many eigenvalues. There is
a smallest eigenvalue but no largest eigenvalue, and the eigenvalues can be ordered as
λ0 < λ1 < · · · < λn · · ·. Associated with each λn is a unique (to an arbitrary multiplicative
constant) eigenfunction ψn that has exactly n zeros in (a, b).

If a problem is singular because p = 0 at an endpoint, we can also satisfy (A.80) by
demanding that ψ be bounded at that endpoint (a singularity condition) and that any
regular Sturm–Liouville boundary condition hold at the other endpoint. This is the case
for Bessel’s and Legendre’s equations discussed below.

Orthogonality of the eigenfunctions. Let L be self-adjoint, and let ψm and ψn be
eigenfunctions associated with λm and λn, respectively. Then by (A.80) we have∫ b

a
(ψm(x)L[ψn(x)] − ψn(x)L[ψm(x)]) dx = 0.

But L[ψn(x)] = −λnσ(x)ψn(x) and L[ψm(x)] = −λmσ(x)ψm(x). Hence

(λm − λn)

∫ b

a
ψm(x)ψn(x)σ (x) dx = 0,

and λm �= λn implies that ∫ b

a
ψm(x)ψn(x)σ (x) dx = 0. (A.83)

We say that ψm and ψn are orthogonal with respect to the weight function σ(x).



Eigenfunction expansion of an arbitrary function. If L is self-adjoint, then its
eigenfunctions form a complete set. This means that any piecewise smooth function may
be represented as a weighted series of eigenfunctions. Specifically, if f and f ′ are piece-
wise continuous on [a, b], then f may be represented as the generalized Fourier series

f (x) =
∞∑

n=0

cnψn(x). (A.84)

Convergence of the series is uniform and gives, at any point of (a, b), the average value
[ f (x+)+ f (x−)]/2 of the one-sided limits f (x+) and f (x−) of f (x). The cn can be found
using orthogonality condition (A.83): multiply (A.84) by ψmσ and integrate to obtain∫ b

a
f (x)ψm(x)σ (x) dx =

∞∑
n=0

cn

∫ b

a
ψn(x)ψm(x)σ (x) dx,

hence

cn =
∫ b

a f (x)ψn(x)σ (x) dx∫ b
a ψ2

n (x)σ (x) dx
. (A.85)

These coefficients ensure that the series converges in mean to f ; i.e., the mean-square
error ∫ b

a

∣∣∣∣∣ f (x) −
∞∑

n=0

cnψn(x)

∣∣∣∣∣
2

σ(x) dx

is minimized. Truncation to finitely-many terms generally results in oscillations (Gibb’s
phenomena) near points of discontinuity of f . The cn are easier to compute if the ψn

are orthonormal with ∫ b

a
ψ2

n (x)σ (x) dx = 1

for each n.

Uniqueness of the eigenfunctions. If both ψ1 and ψ2 are associated with the same
eigenvalue λ, then

L[ψ1(x)] + λσ(x)ψ1(x) = 0, L[ψ2(x)] + λσ(x)ψ2(x) = 0,

hence

ψ1(x)L[ψ2(x)] − ψ2(x)L[ψ1(x)] = 0.

By (A.79) we have

d

dx

[
p(x)

(
ψ1(x)

dψ2(x)

dx
− ψ2(x)

dψ1(x)

dx

)]
= 0

or

p(x)

(
ψ1(x)

dψ2(x)

dx
− ψ2(x)

dψ1(x)

dx

)
= C

where C is constant. Either of (A.81) implies C = 0, hence

d

dx

(
ψ2(x)

ψ1(x)

)
= 0



so that ψ1(x) = Kψ2(x) for some constant K . So under homogeneous boundary condi-
tions, every eigenvalue is associated with a unique eigenfunction.

This is false for the periodic boundary conditions (A.82). Eigenfunction expansion then
becomes difficult, as we can no longer assume eigenfunction orthogonality. However, the
Gram–Schmidt algorithm may be used to construct orthogonal eigenfunctions. We refer
the interested reader to Haberman [79].

The harmonic differential equation. The ordinary differential equation

d2ψ(x)

dx2
= −k2ψ(x) (A.86)

is Sturm–Liouville with p ≡ 1, q ≡ 0, σ ≡ 1, and λ = k2. Suppose we take [a, b] = [0, L]
and adopt the homogeneous boundary conditions

ψ(0) = 0 and ψ(L) = 0. (A.87)

Since p(x) > 0 and σ(x) > 0 on [0, L], equations (A.86) and (A.87) form a regular Sturm–
Liouville problem. Thus we should have an infinite number of discrete eigenvalues. A
power series technique yields the two independent solutions

ψa(x) = Aa sin kx, ψb(x) = Ab cos kx,

to (A.86); hence by linearity the most general solution is

ψ(x) = Aa sin kx + Ab cos kx . (A.88)

The condition at x = 0 gives Aa sin 0 + Ab cos 0 = 0, hence Ab = 0. The other condition
then requires

Aa sin kL = 0. (A.89)

Since Aa = 0 would give ψ ≡ 0, we satisfy (A.89) by choosing k = kn = nπ/L for
n = 1, 2, . . . . Because λ = k2, the eigenvalues are

λn = (nπ/L)2

with corresponding eigenfunctions

ψn(x) = sin kn x .

Note that λ = 0 is not an eigenvalue; eigenfunctions are nontrivial by definition, and
sin(0πx/L) ≡ 0. Likewise, the differential equation associated with λ = 0 can be solved
easily, but only its trivial solution can fit homogeneous boundary conditions: with k = 0,
(A.86) becomes d2ψ(x)/dx2 = 0, giving ψ(x) = ax + b; this can satisfy (A.87) only with
a = b = 0.

These “eigensolutions” obey the properties outlined earlier. In particular the ψn are
orthogonal, ∫ L

0
sin

(nπx

L

)
sin

(mπx

L

)
dx = L

2
δmn,

and the eigenfunction expansion of a piecewise continuous function f is given by

f (x) =
∞∑

n=1

cn sin
(nπx

L

)



where, with σ(x) = 1 in (A.85), we have

cn =
∫ L

0 f (x) sin
(

nπx
L

)
dx∫ L

0 sin2
(

nπx
L

)
dx

= 2

L

∫ L

0
f (x) sin

(nπx

L

)
dx .

Hence we recover the standard Fourier sine series for f (x).
With little extra effort we can examine the eigenfunctions resulting from enforcement

of the periodic boundary conditions

ψ(0) = ψ(L) and ψ ′(0) = ψ ′(L).

The general solution (A.88) still holds, so we have the choices ψ(x) = sin kx and ψ(x) =
cos kx . Evidently both

ψ(x) = sin

(
2nπx

L

)
and ψ(x) = cos

(
2nπx

L

)

satisfy the boundary conditions for n = 1, 2, . . .. Thus each eigenvalue (2nπ/L)2 is
associated with two eigenfunctions.

Bessel’s differential equation. Bessel’s equation

d

dx

(
x

dψ(x)

dx

)
+

(
k2x − ν2

x

)
ψ(x) = 0 (A.90)

occurs when problems are solved in circular-cylindrical coordinates. Comparison with
(A.77) shows that λ = k2, p(x) = x , q(x) = −ν2/x , and σ(x) = x . We take [a, b] = [0, L]
along with the boundary conditions

ψ(L) = 0 and |ψ(0)| < ∞. (A.91)

Although the resulting Sturm–Liouville problem is singular, the specified conditions
(A.91) maintain satisfaction of (A.80). The eigenfunctions are orthogonal because (A.80)
is satisfied by having ψ(L) = 0 and p(x) dψ(x)/dx → 0 as x → 0.

As a second-order ordinary differential equation, (A.90) has two solutions denoted by

Jν(kx) and Nν(kx),

and termed Bessel functions. Their properties are summarized in Appendix E.1. The
function Jν(x), the Bessel function of the first kind and order ν, is well-behaved in [0, L].
The function Nν(x), the Bessel function of the second kind and order ν, is unbounded
at x = 0; hence it is excluded as an eigenfunction of the Sturm–Liouville problem.

The condition at x = L shows that the eigenvalues are defined by

Jν(kL) = 0.

We denote the mth root of Jν(x) = 0 by pνm . Then

kνm =
√

λνm = pνm/L .

The infinitely many eigenvalues are ordered as λν1 < λν2 < . . .. Associated with eigen-
value λνm is a single eigenfunction Jν(

√
λνm x). The orthogonality relation is∫ L

0
Jν

( pνm

L
x
)

Jν

( pνn

L
x
)

x dx = 0, m �= n.



Since the eigenfunctions are also complete, we can expand any piecewise continuous
function f in a Fourier–Bessel series

f (x) =
∞∑

m=1

cm Jν

(
pνm

x

L

)
, 0 ≤ x ≤ L , ν > −1.

By (A.85) and (E.22) we have

cm = 2

L2 J 2
ν+1(pνm)

∫ L

0
f (x)Jν

(
pνm

x

L

)
x dx .

The associated Legendre equation. Legendre’s equation occurs when problems are
solved in spherical coordinates. It is often written in one of two forms. Letting θ be the
polar angle of spherical coordinates (0 ≤ θ ≤ π), the equation is

d

dθ

(
sin θ

dψ(θ)

dθ

)
+

(
λ sin θ − m2

sin θ

)
ψ(θ) = 0.

This is Sturm–Liouville with p(θ) = sin θ , σ(θ) = sin θ , and q(θ) = −m2/ sin θ . The
boundary conditions

|ψ(0)| < ∞ and |ψ(π)| < ∞
define a singular problem: the conditions are not homogeneous, p(θ) = 0 at both end-
points, and q(θ) < 0. Despite this, the Legendre problem does share properties of a
regular Sturm–Liouville problem — including eigenfunction orthogonality and complete-
ness.

Using x = cos θ , we can put Legendre’s equation into its other common form

d

dx

(
[1 − x2]

dψ(x)

dx

)
+

(
λ − m2

1 − x2

)
ψ(x) = 0, (A.92)

where −1 ≤ x ≤ 1. It is found that ψ is bounded at x = ±1 only if

λ = n(n + 1)

where n ≥ m is an integer. These λ are the eigenvalues of the Sturm–Liouville problem,
and the corresponding ψn(x) are the eigenfunctions.

As a second-order partial differential equation, (A.92) has two solutions known as
associated Legendre functions. The solution bounded at both x = ±1 is the associated
Legendre function of the first kind, denoted Pm

n (x). The second solution, unbounded at
x = ±1, is the associated Legendre function of the second kind Qm

n (x). Appendix E.2
tabulates some properties of these functions.

For fixed m, each λmn is associated with a single eigenfunction Pm
n (x). Since Pm

n (x) is
bounded at x = ±1, and since p(±1) = 0, the eigenfunctions obey Lagrange’s identity
(A.79), hence are orthogonal on [−1, 1] with respect to the weight function σ(x) = 1.
Evaluation of the orthogonality integral leads to∫ 1

−1
Pm

l (x)Pm
n (x) dx = δln

2

2n + 1

(n + m)!

(n − m)!
(A.93)

or equivalently ∫ π

0
Pm

l (cos θ)Pm
n (cos θ) sin θ dθ = δln

2

2n + 1

(n + m)!

(n − m)!
.



For m = 0, Pm
n (x) is a polynomial of degree n. Each such Legendre polynomial, denoted

Pn(x), is given by

Pn(x) = 1

2nn!

dn(x2 − 1)n

dxn
.

It turns out that

Pm
n (x) = (−1)m(1 − x2)m/2 dm Pn(x)

dxm
,

giving Pm
n (x) = 0 for m > n.

Because the Legendre polynomials form a complete set in the interval [−1, 1], we may
expand any sufficiently smooth function in a Fourier–Legendre series

f (x) =
∞∑

n=0

cn Pn(x).

Convergence in mean is guaranteed if

cn = 2n + 1

2

∫ 1

−1
f (x)Pn(x) dx,

found using (A.85) along with (A.93).
In practice, the associated Legendre functions appear along with exponential functions

in the solutions to spherical boundary value problems. The combined functions are known
as spherical harmonics, and form solutions to two-dimensional Sturm–Liouville problems.
We consider these next.

Higher-dimensional SL problems: Helmholtz’s equation. Replacing d/dx by ∇,
we generalize the Sturm–Liouville equation to higher dimensions:

∇ · [p(r)∇ψ(r)] + q(r)ψ(r) + λσ(r)ψ(r) = 0,

where q, p, σ , ψ are real functions. Of particular interest is the case q(r) = 0, p(r) =
σ(r) = 1, giving the Helmholtz equation

∇2ψ(r) + λψ(r) = 0. (A.94)

In most boundary value problems, ψ or its normal derivative is specified on the surface
of a bounded region. We obtain a three-dimensional analogue to the regular Sturm–
Liouville problem by assuming the homogeneous boundary conditions

αψ(r) + βn̂ · ∇ψ(r) = 0 (A.95)

on the closed surface, where n̂ is the outward unit normal.
The problem consisting of (A.94) and (A.95) has properties analogous to those of the

regular one-dimensional Sturm–Liouville problem. All eigenvalues are real. There are
infinitely many eigenvalues. There is a smallest eigenvalue but no largest eigenvalue.
However, associated with an eigenvalue there may be many eigenfunctions ψλ(r). The
eigenfunctions are orthogonal with∫

V
ψλ1(r)ψλ2(r) dV = 0, λ1 �= λ2.



They are also complete and can be used to represent any piecewise smooth function f (r)
according to

f (r) =
∑

λ

aλψλ(r),

which converges in mean when

aλm =
∫

V f (r)ψλm (r) dV∫
V ψ2

λm
(r) dV

.

These properties are shared by the two-dimensional eigenvalue problem involving an open
surface S with boundary contour �.

Spherical harmonics. We now inspect solutions to the two-dimensional eigenvalue
problem

∇2Y (θ, φ) + λ

a2
Y (θ, φ) = 0

over the surface of a sphere of radius a. Since the sphere has no boundary contour, we
demand that Y (θ, φ) be bounded in θ and periodic in φ. In the next section we shall
apply separation of variables and show that

Ynm(θ, φ) =
√

2n + 1

4π

(n − m)!

(n + m)!
Pm

n (cos θ)e jmφ

where λ = n(n +1). Note that Qm
n does not appear as it is not bounded at θ = 0, π . The

functions Ynm are called spherical harmonics (sometimes zonal or tesseral harmonics,
depending on the values of n and m). As expressed above they are in orthonormal
form, because the orthogonality relationships for the exponential and associated Legendre
functions yield ∫ π

−π

∫ π

0
Y ∗

n′m ′(θ, φ)Ynm(θ, φ) sin θ dθ dφ = δn′nδm ′m . (A.96)

As solutions to the Sturm–Liouville problem, these functions form a complete set on the
surface of a sphere. Hence they can be used to represent any piecewise smooth function
f (θ, φ) as

f (θ, φ) =
∞∑

n=0

n∑
m=−n

anmYnm(θ, φ),

where

anm =
∫ π

−π

∫ π

0
f (θ, φ)Y ∗

nm(θ, φ) sin θ dθ dφ

by (A.96). The summation index m ranges from −n to n because Pm
n = 0 for m > n. For

negative index we can use

Yn,−m(θ, φ) = (−1)mY ∗
nm(θ, φ).

Some properties of the spherical harmonics are tabulated in Appendix E.3.



Separation of variables

We now consider a technique that finds widespread application in solving boundary
value problems, applying as it does to many important partial differential equations such
as Laplace’s equation, the diffusion equation, and the scalar and vector wave equations.
These equations are related to the scalar Helmholtz equation

∇2ψ(r) + k2ψ(r) = 0 (A.97)

where k is a complex constant. If k is real and we supply the appropriate boundary
conditions, we have the higher-dimensional Sturm–Liouville problem with λ = k2. We
shall not pursue the extension of Sturm–Liouville theory to complex values of k.

Laplace’s equation is Helmholtz’s equation with k = 0. With λ = k2 = 0 it might
appear that Laplace’s equation does not involve eigenvalues; however, separation of vari-
ables does lead us to lower-dimensional eigenvalue problems to which our previous meth-
ods apply. Solutions to the scalar or vector wave equations usually begin with Fourier
transformation on the time variable, or with an initial separation of the time variable to
reach a Helmholtz form.

The separation of variables idea is simple. We seek a solution to (A.97) in the form
of a product of functions each of a single variable. If ψ depends on all three spatial
dimensions, then we seek a solution of the type

ψ(u, v, w) = U (u)V (v)W (w),

where u, v, and w are the coordinate variables used to describe the problem. If ψ

depends on only two coordinates, we may seek a product solution involving two functions
each dependent on a single coordinate; alternatively, may use the three-variable solution
and choose constants so that the result shows no variation with one coordinate. The
Helmholtz equation is considered separable if it can be reduced to a set of independent
ordinary differential equations, each involving a single coordinate variable. The ordinary
differential equations, generally of second order, can be solved by conventional techniques
resulting in solutions of the form

U (u) = AuUA(u, ku, kv, kw) + BuUB(u, ku, kv, kw),

V (v) = AvVA(v, ku, kv, kw) + BvVB(v, ku, kv, kw),

W (w) = AwWA(w, ku, kv, kw) + BwWB(w, ku, kv, kw).

The constants ku, kv, kw are called separation constants and are found, along with the am-
plitude constants A, B, by applying boundary conditions appropriate for a given problem.
At least one separation constant depends on (or equals) k, so only two are independent.
In many cases ku , kv, and kw become the discrete eigenvalues of the respective differ-
ential equations, and correspond to eigenfunctions U (u, ku, kv, kw), V (v, ku, kv, kw), and
W (w, ku, kv, kw). In other cases the separation constants form a continuous spectrum of
values, often when a Fourier transform solution is employed.

The Helmholtz equation can be separated in eleven different orthogonal coordinate
systems [134]. Undoubtedly the most important of these are the rectangular, circular-
cylindrical, and spherical systems, and we shall consider each in detail. We do note,
however, that separability in a certain coordinate system does not imply that all prob-
lems expressed in that coordinate system can be easily handled using the resulting solu-
tions. Only when the geometry and boundary conditions are simple do the solutions lend
themselves to easy application; often other solution techniques are more appropriate.

Although rigorous conditions can be set forth to guarantee solvability by separation of
variables [119], we prefer the following, more heuristic list:



1. Use a coordinate system that allows the given partial differential equation to sep-
arate into ordinary differential equations.

2. The problem’s boundaries must be such that those boundaries not at infinity co-
incide with a single level surface of the coordinate system.

3. Use superposition to reduce the problem to one involving a single nonhomogeneous
boundary condition. Then:
(a) Solve the resulting Sturm–Liouville problem in one or two dimensions, with

homogeneous boundary conditions on all boundaries. Then use a discrete
eigenvalue expansion (Fourier series) and eigenfunction orthogonality to sat-
isfy the remaining nonhomogeneous condition.

(b) If a Sturm–Liouville problem cannot be formulated with the homogeneous
boundary conditions (because, for instance, one boundary is at infinity), use
a Fourier integral (continuous expansion) to satisfy the remaining nonhomo-
geneous condition.

If a Sturm–Liouville problem cannot be formulated, discovering the form of the integral
transform to use can be difficult. In these cases other approaches, such as conformal
mapping, may prove easier.

Solutions in rectangular coordinates. In rectangular coordinates the Helmholtz
equation is

∂2ψ(x, y, z)

∂x2
+ ∂2ψ(x, y, z)

∂y2
+ ∂2ψ(x, y, z)

∂z2
+ k2ψ(x, y, z) = 0. (A.98)

We seek a solution of the form ψ(x, y, z) = X (x)Y (y)Z(z); substitution into (A.98)
followed by division through by X (x)Y (y)Z(z) gives

1

X (x)

d2 X (x)

dx2
+ 1

Y (y)

d2Y (y)

dy2
+ 1

Z(z)

d2 Z(z)

dz2
= −k2. (A.99)

At this point we require the separation argument. The left-hand side of (A.99) is a sum
of three functions, each involving a single independent variable, whereas the right-hand
side is constant. But the only functions of independent variables that always sum to
a constant are themselves constants. Thus we may equate each term on the left to a
different constant:

1

X (x)

d2 X (x)

dx2
= −k2

x ,

1

Y (y)

d2Y (y)

dy2
= −k2

y, (A.100)

1

Z(z)

d2 Z(z)

dz2
= −k2

z ,

provided that

k2
x + k2

y + k2
z = k2.

The negative signs in (A.100) have been introduced for convenience.



Let us discuss the general solutions of equations (A.100). If kx = 0, the two indepen-
dent solutions for X (x) are

X (x) = ax x and X (x) = bx

where ax and bx are constants. If kx �= 0, solutions may be chosen from the list of
functions

e− jkx x , e jkx x , sin kx x, cos kx x,

any two of which are independent. Because

sin x = (e jx − e− j x )/2 j and cos x = (e jx + e− j x )/2, (A.101)

the six possible solutions for kx �= 0 are

X (x) =




Ax e jkx x + Bx e− jkx x ,

Ax sin kx x + Bx cos kx x,

Ax sin kx x + Bx e− jkx x ,

Ax e jkx x + Bx sin kx x,

Ax e jkx x + Bx cos kx x,

Ax e− jkx x + Bx cos kx x .

(A.102)

We may base our choice on convenience (e.g., the boundary conditions may be amenable
to one particular form) or on the desired behavior of the solution (e.g., standing waves
vs. traveling waves). If k is complex, then so may be kx , ky , or kz ; observe that with
imaginary arguments the complex exponentials are actually real exponentials, and the
trigonometric functions are actually hyperbolic functions.

The solutions for Y (y) and Z(z) are identical to those for X (x). We can write, for
instance,

X (x) =
{

Ax e jkx x + Bx e− jkx x , kx �= 0,

ax x + bx , kx = 0,
(A.103)

Y (y) =
{

Aye jky y + Bye− jky y, ky �= 0,

ay y + by, ky = 0,
(A.104)

Z(z) =
{

Aze jkz z + Bze− jkz z, kz �= 0,

azz + bz, kz = 0.
(A.105)

Examples. Let us begin by solving the simple equation

∇2V (x) = 0.

Since V depends only on x we can use (A.103)–(A.105) with ky = kz = 0 and ay = az = 0.
Moreover kx = 0 because k2

x +k2
y+k2

z = k2 = 0 for Laplace’s equation. The general solution
is therefore

V (x) = ax x + bx .

Boundary conditions must be specified to determine ax and bx ; for instance, the condi-
tions V (0) = 0 and V (L) = V0 yield V (x) = V0x/L.

Next let us solve

∇2ψ(x, y) = 0.



We produce a lack of z-dependence in ψ by letting kz = 0 and choosing az = 0. Moreover,
k2

x = −k2
y since Laplace’s equation requires k = 0. This leads to three possibilities. If

kx = ky = 0, we have the product solution

ψ(x, y) = (ax x + bx )(ay y + by). (A.106)

If ky is real and nonzero, then

ψ(x, y) = (Ax e−ky x + Bx eky x )(Aye jky y + Bye− jky y). (A.107)

Using the relations

sinh u = (eu − e−u)/2 and cosh u = (eu + e−u)/2 (A.108)

along with (A.101), we can rewrite (A.107) as

ψ(x, y) = (Ax sinh ky x + Bx cosh ky x)(Ay sin ky y + By cos ky y). (A.109)

(We can reuse the constant names Ax , Bx , Ay, By , since the constants are unknown at
this point.) If kx is real and nonzero we have

ψ(x, y) = (Ax sin kx x + Bx cos kx x)(Ay sinh kx y + By cosh kx y). (A.110)

Consider the problem consisting of Laplace’s equation

∇2V (x, y) = 0 (A.111)

holding in the region 0 < x < L1, 0 < y < L2, −∞ < z < ∞, together with the boundary
conditions

V (0, y) = V1, V (L1, y) = V2, V (x, 0) = V3, V (x, L2) = V4.

The solution V (x, y) represents the potential within a conducting tube with each wall
held at a different potential. Superposition applies: since Laplace’s equation is linear
we can write the solution as the sum of solutions to four different sub-problems. Each
sub-problem has homogeneous boundary conditions on one independent variable and
inhomogeneous conditions on the other, giving a Sturm–Liouville problem in one of the
variables. For instance, let us examine the solutions found above in relation to the sub-
problem consisting of Laplace’s equation (A.111) in the region 0 < x < L1, 0 < y < L2,
−∞ < z < ∞, subject to the conditions

V (0, y) = V (L1, y) = V (x, 0) = 0, V (x, L2) = V4 �= 0.

First we try (A.106). The boundary condition at x = 0 gives

V (0, y) = (ax (0) + bx )(ay y + by) = 0,

which holds for all y ∈ (0, L2) only if bx = 0. The condition at x = L1,

V (L1, y) = ax L1(ay y + by) = 0,

then requires ax = 0. But ax = bx = 0 gives V (x, y) = 0, and the condition at y = L2

cannot be satisfied; clearly (A.106) was inappropriate. Next we examine (A.109). The
condition at x = 0 gives

V (0, y) = (Ax sinh 0 + Bx cosh 0)(Ay sin ky y + By cos ky y) = 0,



hence Bx = 0. The condition at x = L1 implies

V (L1, y) = [Ax sinh(ky L1)](Ay sin ky y + By cos ky y) = 0.

This can hold if either Ax = 0 or ky = 0, but the case ky = 0 (= kx ) was already
considered. Thus Ax = 0 and the trivial solution reappears. Our last candidate is
(A.110). The condition at x = 0 requires

V (0, y) = (Ax sin 0 + Bx cos 0)(Ay sinh kx y + By cosh kx y) = 0,

which implies Bx = 0. Next we have

V (L1, y) = [Ax sin(kx L1)](Ay sinh ky y + By cosh ky y) = 0.

We avoid Ax = 0 by setting sin(kx L1) = 0 so that kxn = nπ/L1 for n = 1, 2, . . . . (Here
n = 0 is omitted because it would produce a trivial solution.) These are eigenvalues
corresponding to the eigenfunctions Xn(x) = sin(kxn x), and were found in § A.4 for the
harmonic equation. At this point we have a family of solutions

Vn(x, y) = sin(kxn x)[Ayn sinh(kxn y) + Byn cosh(kxn y)], n = 1, 2, . . . .

The subscript n on the left identifies Vn as the eigensolution associated with eigenvalue
kxn . It remains to satisfy boundary conditions at y = 0, L2. At y = 0 we have

Vn(x, 0) = sin(kxn x)[Ayn sinh 0 + Byn cosh 0] = 0,

hence Byn = 0 and

Vn(x, y) = Ayn sin(kxn x) sinh(kxn y), n = 1, 2, . . . . (A.112)

It is clear that no single eigensolution (A.112) can satisfy the one remaining boundary
condition. However, we are guaranteed that a series of solutions can represent the con-
stant potential on y = L2; recall that as a solution to a regular Sturm–Liouville problem,
the trigonometric functions are complete (hence they could represent any well-behaved
function on the interval 0 ≤ x ≤ L1). In fact, the resulting series is a Fourier sine series
for the constant potential at y = L2. So let

V (x, y) =
∞∑

n=1

Vn(x, y) =
∞∑

n=1

Ayn sin(kxn x) sinh(kxn y).

The remaining boundary condition requires

V (x, L2) =
∞∑

n=1

Ayn sin(kxn x) sinh(kxn L2) = V4.

The constants Ayn can be found using orthogonality; multiplying through by sin(kxm x)

and integrating, we have
∞∑

n=1

Ayn sinh(kxn L2)

∫ L1

0
sin

(
mπx

L1

)
sin

(
nπx

L1

)
dx = V4

∫ L1

0
sin

(
mπx

L1

)
dx .

The integral on the left equals δmn L1/2 where δmn is the Kronecker delta given by

δmn =
{

1, m = n,

0, n �= m.



After evaluating the integral on the right we obtain
∞∑

n=1

Ayn δmn sinh(kxn L2) = 2V4(1 − cos mπ)

mπ
,

hence

Aym = 2V4(1 − cos mπ)

mπ sinh(kxm L2)
.

The final solution for this sub-problem is therefore

V (x, y) =
∞∑

n=1

2V4(1 − cos nπ)

nπ sinh
(

nπ L2
L1

) sin

(
nπx

L1

)
sinh

(
nπy

L1

)
.

The remaining three sub-problems are left for the reader.
Let us again consider (A.111), this time for

0 ≤ x ≤ L1, 0 ≤ y < ∞, −∞ < z < ∞,

and subject to

V (0, y) = V (L1, y) = 0, V (x, 0) = V0.

Let us try the solution form that worked in the previous example:

V (x, y) = [Ax sin(kx x) + Bx cos(kx x)][Ay sinh(kx y) + By cosh(kx y)].

The boundary conditions at x = 0, L1 are the same as before so we have

Vn(x, y) = sin(kxn x)[Ayn sinh(kxn y) + Byn cosh(kxn y)], n = 1, 2, . . . .

To find Ayn and Byn we note that V cannot grow without bound as y → ∞. Individually
the hyperbolic functions grow exponentially. However, using (A.108) we see that Byn =
−Ayn gives

Vn(x, y) = Ayn sin(kxn x)e−kxn y

where Ayn is a new unknown constant. (Of course, we could have chosen this exponential
dependence at the beginning.) Lastly, we can impose the boundary condition at y = 0
on the infinite series of eigenfunctions

V (x, y) =
∞∑

n=1

Ayn sin(kxn x)e−kxn y

to find Ayn . The result is

V (x, y) =
∞∑

n=1

2V0

πn
(1 − cos nπ) sin(kxn x)e−kxn y .

As in the previous example, the solution is a discrete superposition of eigenfunctions.
The problem consisting of (A.111) holding for

0 ≤ x ≤ L1, 0 ≤ y < ∞, −∞ < z < ∞,

along with

V (0, y) = 0, V (L1, y) = V0e−ay, V (x, 0) = 0,



requires a continuous superposition of eigenfunctions to satisfy the boundary conditions.
Let us try

V (x, y) = [Ax sinh ky x + Bx cosh ky x][Ay sin ky y + By cos ky y].

The conditions at x = 0 and y = 0 require that Bx = By = 0. Thus

Vky (x, y) = A sinh ky x sin ky y.

A single function of this form cannot satisfy the remaining condition at x = L1. So we
form a continuous superposition

V (x, y) =
∫ ∞

0
A(ky) sinh ky x sin ky y dky . (A.113)

By the condition at x = L1∫ ∞

0
A(ky) sinh(ky L1) sin ky y dky = V0e−ay . (A.114)

We can find the amplitude function A(ky) by using the orthogonality property

δ(y − y′) = 2

π

∫ ∞

0
sin xy sin xy′ dx . (A.115)

Multiplying both sides of (A.114) by sin k ′
y y and integrating, we have∫ ∞

0
A(ky) sinh(ky L1)

[∫ ∞

0
sin ky y sin k ′

y y dy

]
dky =

∫ ∞

0
V0e−ay sin k ′

y y dy.

We can evaluate the term in brackets using (A.115) to obtain∫ ∞

0
A(ky) sinh(ky L1)

π

2
δ(ky − k ′

y) dky =
∫ ∞

0
V0e−ay sin k ′

y y dy,

hence

π

2
A(k ′

y) sinh(k ′
y L1) = V0

∫ ∞

0
e−ay sin k ′

y y dy.

We then evaluate the integral on the right, solve for A(ky), and substitute into (A.113)
to obtain

V (x, y) = 2V0

π

∫ ∞

0

ky

a2 + k2
y

sinh(ky x)

sinh(ky L1)
sin ky y dky .

Note that our application of the orthogonality property is merely a calculation of the
inverse Fourier sine transform. Thus we could have found the amplitude coefficient by
reference to a table of transforms.

We can use the Fourier transform solution even when the domain is infinite in more
than one dimension. Suppose we solve (A.111) in the region

0 ≤ x < ∞, 0 ≤ y < ∞, −∞ < z < ∞,

subject to

V (0, y) = V0e−ay, V (x, 0) = 0.



Because of the condition at y = 0 let us use

V (x, y) = (Ax e−ky x + Bx eky x )(Ay sin ky y + By cos ky y).

The solution form

Vky (x, y) = B(ky)e
−ky x sin ky y

satisfies the finiteness condition and the homogeneous condition at y = 0. The remaining
condition can be satisfied by a continuous superposition of solutions:

V (x, y) =
∫ ∞

0
B(ky)e

−ky x sin ky y dky .

We must have

V0e−ay =
∫ ∞

0
B(ky) sin ky y dky .

Use of the orthogonality relationship (A.115) yields the amplitude spectrum B(ky), and
we find that

V (x, y) = 2

π

∫ ∞

0
e−ky x ky

a2 + k2
y

sin ky y dky . (A.116)

As a final example in rectangular coordinates let us consider a problem in which ψ

depends on all three variables:

∇2ψ(x, y, z) + k2ψ(x, y, z) = 0

for

0 ≤ x ≤ L1, 0 ≤ y ≤ L2, 0 ≤ z ≤ L3,

subject to

ψ(0, y, z) = ψ(L1, y, z) = 0,

ψ(x, 0, z) = ψ(x, L2, z) = 0,

ψ(x, y, 0) = ψ(x, y, L3) = 0.

Here k �= 0 is a constant. This is a three-dimensional eigenvalue problem as described
in § A.4, where λ = k2 are the eigenvalues and the closed surface is a rectangular
box. Physically, the wave function ψ represents the so-called eigenvalue or normal mode
solutions for the “TM modes” of a rectangular cavity. Since k2

x + k2
y + k2

z = k2, we
might have one or two separation constants equal to zero, but not all three. We find,
however, that the only solution with a zero separation constant that can fit the boundary
conditions is the trivial solution. In light of the boundary conditions and because we
expect standing waves in the box, we take

ψ(x, y, z) = [Ax sin(kx x) + Bx cos(kx x)] ·
· [Ay sin(ky y) + By cos(ky y)] ·
· [Az sin(kzz) + Bz cos(kzz)].

The conditions ψ(0, y, z) = ψ(x, 0, z) = ψ(x, y, 0) = 0 give Bx = By = Bz = 0. The
conditions at x = L1, y = L2, and z = L3 require the separation constants to assume
the discrete values kx = kxm = mπ/L1, ky = kyn = nπ/L2, and kz = kz p = pπ/L3,
where k2

xm
+ k2

yn
+ k2

z p
= k2

mnp and m, n, p = 1, 2, . . .. Associated with each of these



eigenvalues is an eigenfunction of a one-dimensional Sturm–Liouville problem. For the
three-dimensional problem, an eigenfunction

ψmnp(x, y, z) = Amnp sin(kxm x) sin(kyn y) sin(kz p z)

is associated with each three-dimensional eigenvalue kmnp. Each choice of m, n, p pro-
duces a discrete cavity resonance frequency at which the boundary conditions can be
satisfied. Depending on the values of L1,2,3, we may have more than one eigenfunction
associated with an eigenvalue. For example, if L1 = L2 = L3 = L then k121 = k211 =
k112 = √

6π/L. However, the eigenfunctions associated with this single eigenvalue are all
different:

ψ121 = sin(kx1 x) sin(ky2 y) sin(kz1 z),

ψ211 = sin(kx2 x) sin(ky1 y) sin(kz1 z),

ψ112 = sin(kx1 x) sin(ky1 y) sin(kz2 z).

When more than one cavity mode corresponds to a given resonant frequency, we call the
modes degenerate. By completeness, we can represent any well-behaved function as

f (x, y, z) =
∑

m,n,p

Amnp sin(kxm x) sin(kyn y) sin(kz p z).

The Amnp are found using orthogonality. When such expansions are used to solve prob-
lems involving objects (such as excitation probes) inside the cavity, they are termed
normal mode expansions of the cavity field.

Solutions in cylindrical coordinates. In cylindrical coordinates the Helmholtz equa-
tion is

1

ρ

∂

∂ρ

(
ρ

∂ψ(ρ, φ, z)

∂ρ

)
+ 1

ρ2

∂2ψ(ρ, φ, z)

∂φ2
+ ∂2ψ(ρ, φ, z)

∂z2
+ k2ψ(ρ, φ, z) = 0. (A.117)

With ψ(ρ, φ, z) = P(ρ)#(φ)Z(z) we obtain

1

ρ

∂

∂ρ

(
ρ

∂(P#Z)

∂ρ

)
+ 1

ρ2

∂2(P#Z)

∂φ2
+ ∂2(P#Z)

∂z2
+ k2(P#Z) = 0;

carrying out the ρ derivatives and dividing through by P#Z we have

− 1

Z

d2 Z

dz2
= k2 + 1

ρ2#

d2#

dφ2
+ 1

ρ P

d P

dρ
+ 1

P

d2 P

dρ2
.

The left side depends on z while the right side depends on ρ and φ, hence both must
equal the same constant k2

z :

− 1

Z

d2 Z

dz2
= k2

z , (A.118)

k2 + 1

ρ2#

d2#

dφ2
+ 1

ρ P

d P

dρ
+ 1

P

d2 P

dρ2
= k2

z . (A.119)

We have separated the z-dependence from the dependence on the other variables. For
the harmonic equation (A.118),

Z(z) =
{

Az sin kzz + Bz cos kzz, kz �= 0,

azz + bz, kz = 0.
(A.120)



Of course we could use exponentials or a combination of exponentials and trigonometric
functions instead. Rearranging (A.119) and multiplying through by ρ2, we obtain

− 1

#

d2#

dφ2
= (

k2 − k2
z

)
ρ2 + ρ

P

d P

dρ
+ ρ2

P

d2 P

dρ2
.

The left and right sides depend only on φ and ρ, respectively; both must equal some
constant k2

φ :

− 1

#

d2#

dφ2
= k2

φ, (A.121)

(
k2 − k2

z

)
ρ2 + ρ

P

d P

dρ
+ ρ2

P

d2 P

dρ2
= k2

φ. (A.122)

The variables ρ and φ are thus separated, and harmonic equation (A.121) has solutions

#(φ) =
{

Aφ sin kφφ + Bφ cos kφφ, kφ �= 0,

aφφ + bφ, kφ = 0.
(A.123)

Equation (A.122) is a bit more involved. In rearranged form it is

d2 P

dρ2
+ 1

ρ

d P

dρ
+

(
k2

c − k2
φ

ρ2

)
P = 0 (A.124)

where

k2
c = k2 − k2

z .

The solution depends on whether any of kz , kφ , or kc are zero. If kc = kφ = 0, then

d2 P

dρ2
+ 1

ρ

d P

dρ
= 0

so that

P(ρ) = aρ ln ρ + bρ.

If kc = 0 but kφ �= 0, we have

d2 P

dρ2
+ 1

ρ

d P

dρ
− k2

φ

ρ2
P = 0

so that

P(ρ) = aρρ
−kφ + bρρ

kφ . (A.125)

This includes the case k = kz = 0 (Laplace’s equation). If kc �= 0 then (A.124) is Bessel’s
differential equation. For noninteger kφ the two independent solutions are denoted Jkφ

(z)
and J−kφ

(z), where Jν(z) is the ordinary Bessel function of the first kind of order ν. For
kφ an integer n, Jn(z) and J−n(z) are not independent and a second independent solution
denoted Nn(z) must be introduced. This is the ordinary Bessel function of the second
kind, order n. As it is also independent when the order is noninteger, Jν(z) and Nν(z)
are often chosen as solutions whether ν is integer or not. Linear combinations of these
independent solutions may be used to produce new independent solutions. The functions



H (1)
ν (z) and H (2)

ν (z) are the Hankel functions of the first and second kind of order ν, and
are related to the Bessel functions by

H (1)
ν (z) = Jν(z) + j Nν(z),

H (2)
ν (z) = Jν(z) − j Nν(z).

The argument z can be complex (as can ν, but this shall not concern us). When z is
imaginary we introduce two new functions Iν(z) and Kν(z), defined for integer order by

In(z) = j−n Jn( j z),

Kn(z) = π

2
j n+1 H (1)

n ( j z).

Expressions for noninteger order are given in Appendix E.1.
Bessel functions cannot be expressed in terms of simple, standard functions. However,

a series solution to (A.124) produces many useful relationships between Bessel functions
of differing order and argument. The recursion relations for Bessel functions serve to
connect functions of various orders and their derivatives. See Appendix E.1.

Of the six possible solutions to (A.124),

R(ρ) =




Aρ Jν(kcρ) + Bρ Nν(kcρ),

Aρ Jν(kcρ) + Bρ H (1)
ν (kcρ),

Aρ Jν(kcρ) + Bρ H (2)
ν (kcρ),

Aρ Nν(kcρ) + Bρ H (1)
ν (kcρ),

Aρ Nν(kcρ) + Bρ H (2)
ν (kcρ),

Aρ H (1)
ν (kcρ) + Bρ H (2)

ν (kcρ),

which do we choose? Again, we are motivated by convenience and the physical nature
of the problem. If the argument is real or imaginary, we often consider large or small
argument behavior. For x real and large,

Jν(x) →
√

2

πx
cos

(
x − π

4
− ν

π

2

)
,

Nν(x) →
√

2

πx
sin

(
x − π

4
− ν

π

2

)
,

H (1)
ν (x) →

√
2

πx
e j(x− π

4 −ν π
2 ),

H (2)
ν (x) →

√
2

πx
e− j(x− π

4 −ν π
2 ),

Iν(x) →
√

1

2πx
ex ,

Kν(x) →
√

π

2x
e−x ,

while for x real and small,

J0(x) → 1,

N0(x) → 2

π
(ln x + 0.5772157 − ln 2) ,



Jν(x) → 1

ν!

( x

2

)ν

,

Nν(x) → − (ν − 1)!

π

(
2

x

)ν

.

Because Jν(x) and Nν(x) oscillate for large argument, they can represent standing waves
along the radial direction. However, Nν(x) is unbounded for small x and is inappropriate
for regions containing the origin. The Hankel functions become complex exponentials for
large argument, hence represent traveling waves. Finally, Kν(x) is unbounded for small x
and cannot be used for regions containing the origin, while Iν(x) increases exponentially
for large x and cannot be used for unbounded regions.

Examples. Consider the boundary value problem for Laplace’s equation

∇2V (ρ, φ) = 0 (A.126)

in the region

0 ≤ ρ ≤ ∞, 0 ≤ φ ≤ φ0, −∞ < z < ∞,

where the boundary conditions are

V (ρ, 0) = 0, V (ρ, φ0) = V0.

Since there is no z-dependence we let kz = 0 in (A.120) and choose az = 0. Then
k2

c = k2 − k2
z = 0 since k = 0. There are two possible solutions, depending on whether

kφ is zero. First let us try kφ �= 0. Using (A.123) and (A.125) we have

V (ρ, φ) = [Aφ sin(kφφ) + Bφ cos(kφφ)][aρρ
−kφ + bρρ

kφ ]. (A.127)

Assuming kφ > 0 we must have bρ = 0 to keep the solution finite. The condition
V (ρ, 0) = 0 requires Bφ = 0. Thus

V (ρ, φ) = Aφ sin(kφφ)ρ−kφ .

Our final boundary condition requires

V (ρ, φ0) = V0 = Aφ sin(kφφ0)ρ
−kφ .

Because this cannot hold for all ρ, we must resort to kφ = 0 and

V (ρ, φ) = (aφφ + bφ)(aρ ln ρ + bρ). (A.128)

Proper behavior as ρ → ∞ dictates that aρ = 0. V (ρ, 0) = 0 requires bφ = 0. Thus
V (ρ, φ) = V (φ) = bφφ. The constant bφ is found from the remaining boundary condition:
V (φ0) = V0 = bφφ0 so that bφ = V0/φ0. The final solution is

V (φ) = V0φ/φ0.

It is worthwhile to specialize this to φ0 = π/2 and compare with the solution to the same
problem found earlier using rectangular coordinates. With a = 0 in (A.116) we have

V (x, y) = 2

π

∫ ∞

0
e−ky x sin ky y

ky
dky .



Despite its much more complicated form, this must be the same solution by uniqueness.
Next let us solve (A.126) subject to the “split cylinder” conditions

V (a, φ) =
{

V0, 0 < φ < π,

0, −π < φ < 0.

Because there is no z-dependence we choose kz = az = 0 and have k2
c = k2 −k2

z = 0. Since
kφ = 0 would violate the boundary conditions at ρ = a, we use

V (ρ, φ) = (aρρ
−kφ + bρρ

kφ )(Aφ sin kφφ + Bφ cos kφφ).

The potential must be single-valued in φ: V (ρ, φ +2nπ) = V (ρ, φ). This is only possible
if kφ is an integer, say kφ = m. Then

Vm(ρ, φ) =
{

(Am sin mφ + Bm cos mφ)ρm, ρ < a,

(Cm sin mφ + Dm cos mφ)ρ−m, ρ > a.

On physical grounds we have discarded ρ−m for ρ < a and ρm for ρ > a. To satisfy
the boundary conditions at ρ = a we must use an infinite series of the complete set of
eigensolutions. For ρ < a the boundary condition requires

B0 +
∞∑

m=1

(Am sin mφ + Bm cos mφ)am =
{

V0, 0 < φ < π,

0, −π < φ < 0.

Application of the orthogonality relations∫ π

−π

cos mφ cos nφ dφ = 2π

εn
δmn, m, n = 0, 1, 2, . . . , (A.129)∫ π

−π

sin mφ sin nφ dφ = πδmn, m, n = 1, 2, . . . , (A.130)∫ π

−π

cos mφ sin nφ dφ = 0, m, n = 0, 1, 2, . . . , (A.131)

where

εn =
{

1, n = 0,

2, n > 0,
(A.132)

is Neumann’s number, produces appropriate values for the constants Am and Bm . The
full solution is

V (ρ, φ) =




V0

2
+ V0

π

∞∑
n=1

[1 − (−1)n]

n

(ρ

a

)n
sin nφ, ρ < a,

V0

2
+ V0

π

∞∑
n=1

[1 − (−1)n]

n

(
a

ρ

)n

sin nφ, ρ > a.

The boundary value problem

∇2V (ρ, φ, z) = 0, 0 ≤ ρ ≤ a, −π ≤ φ ≤ π, 0 ≤ z ≤ h,

V (ρ, φ, 0) = 0, 0 ≤ ρ ≤ a, −π ≤ φ ≤ π,

V (a, φ, z) = 0, −π ≤ φ ≤ π, 0 ≤ z ≤ h,

V (ρ, φ, h) = V0, 0 ≤ ρ ≤ a, −π ≤ φ ≤ π,



describes the potential within a grounded “canister” with top at potential V0. Symmetry
precludes φ-dependence, hence kφ = aφ = 0. Since k = 0 (Laplace’s equation) we also
have k2

c = k2 − k2
z = −k2

z . Thus we have either kz real and kc = jkz , or kc real and
kz = jkc. With kz real we have

V (ρ, z) = [Az sin kzz + Bz cos kzz][Aρ K0(kzρ) + Bρ I0(kzρ)]; (A.133)

with kc real we have

V (ρ, z) = [Az sinh kcz + Bz cosh kcz][Aρ J0(kcρ) + Bρ N0(kcρ)]. (A.134)

The functions K0 and I0 are inappropriate for use in this problem, and we proceed to
(A.134). Since N0 is unbounded for small argument, we need Bρ = 0. The condition
V (ρ, 0) = 0 gives Bz = 0, thus

V (ρ, z) = Az sinh(kcz)J0(kcρ).

The oscillatory nature of J0 means that we can satisfy the condition at ρ = a:

V (a, z) = Az sinh(kcz)J0(kca) = 0 for 0 ≤ z < h

if J0(kca) = 0. Letting p0m denote the mth root of J0(x) = 0 for m = 1, 2, . . ., we have
kcm = p0m/a. Because we cannot satisfy the boundary condition at z = h with a single
eigensolution, we use the superposition

V (ρ, z) =
∞∑

m=1

Am sinh
( p0m z

a

)
J0

( p0mρ

a

)
.

We require

V (ρ, h) =
∞∑

m=1

Am sinh

(
p0mh

a

)
J0

( p0mρ

a

)
= V0, (A.135)

where the Am can be evaluated by orthogonality of the functions J0(p0mρ/a). If pνm is
the mth root of Jν(x) = 0, then∫ a

0
Jν

( pνmρ

a

)
Jν

( pνnρ

a

)
ρ dρ = δmn

a2

2
J ′2
ν (pνn) = δmn

a2

2
J 2
ν+1(pνn) (A.136)

where J ′
ν(x) = d Jν(x)/dx . Multiplying (A.135) by ρ J0(p0nρ/a) and integrating, we have

An sinh

(
p0nh

a

)
a2

2
J ′2

0 (p0na) =
∫ a

0
V0 J0

( p0nρ

a

)
ρ dρ.

Use of (E.105), ∫
xn+1 Jn(x) dx = xn+1 Jn+1(x) + C,

allows us to evaluate ∫ a

0
J0

( p0nρ

a

)
ρ dρ = a2

p0n
J1(p0n).

With this we finish calculating Am and have

V (ρ, z) = 2V0

∞∑
m=1

sinh(
p0m

a z)J0(
p0m

a ρ)

p0m sinh(
p0m

a h)J1(p0m)



as the desired solution.
Finally, let us assume that k > 0 and solve

∇2ψ(ρ, φ, z) + k2ψ(ρ, φ, z) = 0

where 0 ≤ ρ ≤ a, −π ≤ φ ≤ π , and −∞ < z < ∞, subject to the condition

n̂ · ∇ψ(ρ, φ, z)
∣∣∣
ρ=a

= ∂ψ(ρ, φ, z)

∂ρ

∣∣∣
ρ=a

= 0

for −π ≤ φ ≤ π and −∞ < z < ∞. The solution to this problem leads to the transverse-
electric (TEz) fields in a lossless circular waveguide, where ψ represents the z-component
of the magnetic field. Although there is symmetry with respect to φ, we seek φ-dependent
solutions; the resulting complete eigenmode solution will permit us to expand any well-
behaved function within the waveguide in terms of a normal mode (eigenfunction) series.
In this problem none of the constants k, kz , or kφ equal zero, except as a special case.
However, the field must be single-valued in φ and thus kφ must be an integer m. We
consider our possible choices for P(ρ), Z(z), and #(φ). Since k2

c = k2 − k2
z and k2 > 0 is

arbitrary, we must consider various possibilities for the signs of k2
c and k2

z . We can rule
out k2

c < 0 based on consideration of the behavior of the functions Im and Km . We also
need not consider kc < 0, since this gives the same solution as kc > 0. We are then left
with two possible cases. Writing k2

z = k2 − k2
c , we see that either k > kc and k2

z > 0, or
k < kc and k2

z < 0. For k2
z > 0 we write

ψ(ρ, φ, z) = [Aze
− jkz z + Bze

jkz z][Aφ sin mφ + Bφ cos mφ]Jm(kcρ).

Here the terms involving e∓ jkz z represent waves propagating in the ±z directions. The
boundary condition at ρ = a requires

J ′
m(kca) = 0

where J ′
m(x) = d Jm(x)/dx . Denoting the nth zero of J ′

m(x) by p′
mn we have kc = kcm =

p′
mn/a. This gives the eigensolutions

ψm = [Azme− jkz z + Bzme jkz z][Aφm sin mφ + Bφm cos mφ]kc Jm

(
p′

mnρ

a

)
.

The undetermined constants Azm, Bzm, Aρm, Bρm could be evaluated when the individual
eigensolutions are used to represent a function in terms of a modal expansion. For
the case k2

z < 0 we again choose complex exponentials in z; however, kz = − jα gives
e∓ jkz z = e∓αz and attenuation along z. The reader can verify that the eigensolutions
are

ψm = [Azme−αz + Bzmeαz][Aφm sin mφ + Bφm cos mφ]kc Jm

(
p′

mnρ

a

)

where now k2
c = k2 + α2.

We have used Bessel function completeness in the examples above. This property is a
consequence of the Sturm–Liouville problem first studied in § A.4. We often use Fourier–
Bessel series to express functions over finite intervals. Over infinite intervals we use the
Fourier–Bessel transform.

The Fourier–Bessel series can be generalized to Bessel functions of noninteger order,
and to the derivatives of Bessel functions. Let f (ρ) be well-behaved over the interval
[0, a]. Then the series

f (ρ) =
∞∑

m=1

Cm Jν

(
pνm

ρ

a

)
, 0 ≤ ρ ≤ a, ν > −1



converges, and the constants are

Cm = 2

a2 J 2
ν+1(pνm)

∫ a

0
f (ρ)Jν

(
pνm

ρ

a

)
ρ dρ

by (A.136). Here pνm is the mth root of Jν(x). An alternative form of the series uses
p′

νm , the roots of J ′
ν(x), and is given by

f (ρ) =
∞∑

m=1

Dm Jν

(
p′

νm

ρ

a

)
, 0 ≤ ρ ≤ a, ν > −1.

In this case the expansion coefficients are found using the orthogonality relationship∫ a

0
Jν

(
p′

νm

a
ρ

)
Jν

(
p′

νn

a
ρ

)
ρ dρ = δmn

a2

2

(
1 − ν2

p′2
νm

)
J 2
ν (p′

νm),

and are

Dm = 2

a2
(

1 − ν2

p′2
νm

J 2
ν (p′

νm)
) ∫ a

0
f (ρ)Jν

(
p′

νm

a
ρ

)
ρ dρ.

Solutions in spherical coordinates. If into Helmholtz’s equation

1

r2

∂

∂r

(
r2 ∂ψ(r, θ, φ)

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ(r, θ, φ)

∂θ

)
+

+ 1

r2 sin2 θ

∂2ψ(r, θ, φ)

∂φ2
+ k2ψ(r, θ, φ) = 0

we put ψ(r, θ, φ) = R(r)%(θ)#(φ) and multiply through by r2 sin2 θ/ψ(r, θ, φ), we obtain

sin2 θ

R(r)

d

dr

(
r2 d R(r)

dr

)
+ sin θ

%(θ)

d

dθ

(
sin θ

d%(θ)

dθ

)
+ k2r2 sin2 θ = − 1

#(φ)

d2#(φ)

dφ2
.

Since the right side depends only on φ while the left side depends only on r and θ , both
sides must equal some constant µ2:

sin2 θ

R(r)

d

dr

(
r2 d R(r)

dr

)
+ sin θ

%(θ)

d

dθ

(
sin θ

d%(θ)

dθ

)
+ k2r2 sin2 θ = µ2, (A.137)

d2#(φ)

dφ2
+ µ2#(φ) = 0. (A.138)

We have thus separated off the φ-dependence. Harmonic ordinary differential equation
(A.138) has solutions

#(φ) =
{

Aφ sin µφ + Bφ cos µφ, µ �= 0,

aφφ + bφ, µ = 0.

(We could have used complex exponentials to describe #(φ), or some combination of
exponentials and trigonometric functions, but it is conventional to use only trigonometric
functions.) Rearranging (A.137) and dividing through by sin2 θ we have

1

R(r)

d

dr

(
r2 d R(r)

dr

)
+ k2r2 = − 1

sin θ%(θ)

d

dθ

(
sin θ

d%(θ)

dθ

)
+ µ2

sin2 θ
.



We introduce a new constant k2
θ to separate r from θ :

1

R(r)

d

dr

(
r2 d R(r)

dr

)
+ k2r2 = k2

θ , (A.139)

− 1

sin θ%(θ)

d

dθ

(
sin θ

d%(θ)

dθ

)
+ µ2

sin2 θ
= k2

θ . (A.140)

Equation (A.140),

1

sin θ

d

dθ

(
sin θ

d%(θ)

dθ

)
+

(
k2
θ − µ2

sin2 θ

)
%(θ) = 0,

can be put into a standard form by letting

η = cos θ (A.141)

and k2
θ = ν(ν + 1) where ν is a parameter:

(1 − η2)
d2%(η)

dη2
− 2η

d%(η)

dη
+

[
ν(ν + 1) − µ2

1 − η2

]
%(η) = 0, −1 ≤ η ≤ 1.

This is the associated Legendre equation. It has two independent solutions called as-
sociated Legendre functions of the first and second kinds, denoted Pµ

ν (η) and Qµ
ν (η),

respectively. In these functions, all three quantities µ, ν, η may be arbitrary complex
constants as long as ν + µ �= −1, −2, . . .. But (A.141) shows that η is real in our discus-
sion; µ will generally be real also, and will be an integer whenever #(φ) is single-valued.
The choice of ν is somewhat more complicated. The function Pµ

ν (η) diverges at η = ±1
unless ν is an integer, while Qµ

ν (η) diverges at η = ±1 regardless of whether ν is an inte-
ger. In § A.4 we required that Pµ

ν (η) be bounded on [−1, 1] to have a Sturm–Liouville
problem with suitable orthogonality properties. By (A.141) we must exclude Qµ

ν (η) for
problems containing the z-axis, and restrict ν to be an integer n in Pµ

ν (η) for such prob-
lems. In case the z-axis is excluded, we choose ν = n whenever possible, because the finite
sums Pm

n (η) and Qm
n (η) are much easier to manipulate than Pµ

ν (η) and Qµ
ν (η). In many

problems we must count on completeness of the Legendre polynomials Pn(η) = P0
n (η) or

spherical harmonics Ymn(θ, φ) in order to satisfy the boundary conditions. In this book
we shall consider only those boundary value problems that can be solved using integer
values of ν and µ, hence choose

%(θ) = Aθ Pm
n (cos θ) + Bθ Qm

n (cos θ). (A.142)

Single-valuedness in #(φ) is a consequence of having µ = m, and φ = constant boundary
surfaces are thereby disallowed.

The associated Legendre functions have many important properties. For instance,

Pm
n (η) =




0, m > n,

(−1)m (1 − η2)m/2

2nn!
dn+m(η2 − 1)n

dηn+m , m ≤ n.
(A.143)

The case m = 0 receives particular attention because it corresponds to azimuthal invari-
ance (φ-independence). We define P0

n (η) = Pn(η) where Pn(η) is the Legendre polynomial



of order n. From (A.143), we see that4

Pn(η) = 1

2nn!

dn(η2 − 1)n

dηn

is a polynomial of degree n, and that

Pm
n (η) = (−1)m(1 − η2)m/2 dm

dηm
Pn(η).

Both the associated Legendre functions and the Legendre polynomials obey orthogonality
relations and many recursion formulas.

In problems where the z-axis is included, the product %(θ)#(φ) is sometimes defined
as the spherical harmonic

Ynm(θ, φ) =
√

2n + 1

4π

(n − m)!

(n + m)!
Pm

n (cos θ)e jmθ .

These functions, which are complete over the surface of a sphere, were treated earlier in
this section.

Remembering that k2
r = ν(ν + 1), the r -dependent equation (A.139) becomes

1

r2

d

dr

(
r2 d R(r)

dr

)
+

(
k2 + n(n + 1)

r2

)
R(r) = 0. (A.144)

When k = 0 we have
d2 R(r)

dr2
+ 2

r

d R(r)

dr
− n(n + 1)

r2
R(r) = 0

so that

R(r) = Arrn + Brr−(n+1).

When k �= 0, the substitution R̄(r) = √
kr R(r) puts (A.144) into the form

r2 d2 R̄(r)

dr2
+ r

d R̄(r)

dr
+

[
k2r2 −

(
n + 1

2

)2
]

R̄(r) = 0,

which we recognize as Bessel’s equation of half-integer order. Thus

R(r) = R̄(r)√
kr

=
Zn+ 1

2
(kr)

√
kr

.

For convenience we define the spherical Bessel functions

jn(z) =
√

π

2z
Jn+ 1

2
(z),

nn(z) =
√

π

2z
Nn+ 1

2
(z) = (−1)n+1

√
π

2z
J−(n+ 1

2 )(z),

h(1)
n (z) =

√
π

2z
H (1)

n+ 1
2
(z) = jn(z) + jnn(z),

h(2)
n (z) =

√
π

2z
H (2)

n+ 1
2
(z) = jn(z) − jnn(z).

4Care must be taken when consulting tables of Legendre functions and their properties. In particular,
one must be on the lookout for possible disparities regarding the factor (−1)m (cf., [76, 1, 109, 8] vs.
[5, 187]). Similar care is needed with Qm

n (x).



These can be written as finite sums involving trigonometric functions and inverse powers
of z. We have, for instance,

j0(z) = sin z

z
,

n0(z) = −cos z

z
,

j1(z) = sin z

z2
− cos z

z
,

n1(z) = −cos z

z2
− sin z

z
.

We can now write R(r) as a linear combination of any two of the spherical Bessel
functions jn, nn, h(1)

n , h(2)
n :

R(r) =




Ar jn(kr) + Br nn(kr),

Ar jn(kr) + Br h(1)
n (kr),

Ar jn(kr) + Br h(2)
n (kr),

Ar nn(kr) + Br h(1)
n (kr),

Ar nn(kr) + Br h(2)
n (kr),

Ar h(1)
n (kr) + Br h(2)

n (kr).

(A.145)

Imaginary arguments produce modified spherical Bessel functions; the interested reader
is referred to Gradsteyn [76] or Abramowitz [1].

Examples. The problem

∇2V (r, θ, φ) = 0, θ0 ≤ θ ≤ π/2, 0 ≤ r < ∞, −π ≤ φ ≤ π,

V (r, θ0, φ) = V0, −π ≤ φ ≤ π, 0 ≤ r < ∞,

V (r, π/2, φ) = 0, −π ≤ φ ≤ π, 0 ≤ r < ∞,

gives the potential field between a cone and the z = 0 plane. Azimuthal symmetry
prompts us to choose µ = aφ = 0. Since k = 0 we have

R(r) = Arrn + Brr−(n+1). (A.146)

Noting that positive and negative powers of r are unbounded for large and small r ,
respectively, we take n = Br = 0. Hence the solution depends only on θ :

V (r, θ, φ) = V (θ) = Aθ P0
0 (cos θ) + Bθ Q0

0(cos θ).

We must retain Q0
0 since the solution region does not contain the z-axis. Using

P0
0 (cos θ) = 1 and Q0

0(cos θ) = ln cot(θ/2)

(cf., Appendix E.2), we have

V (θ) = Aθ + Bθ ln cot(θ/2).

A straightforward application of the boundary conditions gives Aθ = 0 and Bθ =
V0/ ln cot(θ0/2), hence

V (θ) = V0
ln cot(θ/2)

ln cot(θ0/2)
.



Next we solve the boundary value problem

∇2V (r, θ, φ) = 0,

V (a, θ, φ) = −V0, π/2 ≤ θ < π, −π ≤ φ ≤ π,

V (a, θ, φ) = +V0, 0 < θ ≤ π/2, −π ≤ φ ≤ π,

for both r > a and r < a. This yields the potential field of a conducting sphere split
into top and bottom hemispheres and held at a potential difference of 2V0. Azimuthal
symmetry gives µ = 0. The two possible solutions for %(θ) are

%(θ) =
{

Aθ + Bθ ln cot(θ/2), n = 0,

Aθ Pn(cos θ), n �= 0,

where we have discarded Q0
0(cos θ) because the region of interest contains the z-axis. The

n = 0 solution cannot match the boundary conditions; neither can a single term of the
type Aθ Pn(cos θ), but a series of these latter terms can. We use

V (r, θ) =
∞∑

n=0

Vn(r, θ) =
∞∑

n=0

[Arrn + Brr−(n+1)]Pn(cos θ). (A.147)

The terms r−(n+1) and rn are not allowed, respectively, for r < a and r > a. For r < a
then,

V (r, θ) =
∞∑

n=0

Anrn Pn(cos θ).

Letting V0(θ) be the potential on the surface of the split sphere, we impose the boundary
condition:

V (a, θ) = V0(θ) =
∞∑

n=0

Anan Pn(cos θ), 0 ≤ θ ≤ π.

This is a Fourier–Legendre expansion of V0(θ). The An are evaluated by orthogonality.
Multiplying by Pm(cos θ) sin θ and integrating from θ = 0 to π , we obtain

∞∑
n=0

Anan
∫ π

0
Pn(cos θ)Pm(cos θ) sin θ dθ =

∫ π

0
V0(θ)Pm(cos θ) sin θ dθ.

Using orthogonality relationship (A.93) and the given V0(θ) we have

Amam 2

2m + 1
= V0

∫ π/2

0
Pm(cos θ) sin θ dθ − V0

∫ π

π/2
Pm(cos θ) sin θ dθ.

The substitution η = cos θ gives

Amam 2

2m + 1
= V0

∫ 1

0
Pm(η) dη − V0

∫ 0

−1
Pm(η) dη

= V0

∫ 1

0
Pm(η) dη − V0

∫ 1

0
Pm(−η) dη;

then Pm(−η) = (−1)m Pm(η) gives

Am = a−m 2m + 1

2
V0[1 − (−1)m]

∫ 1

0
Pm(η) dη.



Because Am = 0 for m even, we can put m = 2n + 1 (n = 0, 1, 2, . . .) and have

A2n+1 = (4n + 3)V0

a2n+1

∫ 1

0
P2n+1(η) dη = V0(−1)n

a2n+1

4n + 3

2n + 2

(2n!)

(2nn!)2

by (E.176). Hence

V (r, θ) =
∞∑

n=0

V0(−1)n 4n + 3

2n + 2

(2n!)

(2nn!)2

( r

a

)2n+1
P2n+1(cos θ)

for r < a. The case r > a is left to the reader.
Finally, consider

∇2ψ(x, y, z) + k2ψ(x, y, z) = 0, 0 ≤ r ≤ a, 0 ≤ θ ≤ π, −π ≤ φ ≤ π,

ψ(a, θ, φ) = 0, 0 ≤ θ ≤ π, −π ≤ φ ≤ π,

where k �= 0 is constant. This is a three-dimensional eigenvalue problem. Wave function
ψ represents the solutions for the electromagnetic field within a spherical cavity for modes
TE to r . Despite the prevailing symmetry, we choose solutions that vary with both θ

and φ. We are motivated by a desire to solve problems involving cavity excitation, and
eigenmode completeness will enable us to represent any piecewise continuous function
within the cavity. We employ spherical harmonics because the boundary surface is a
sphere. These exclude Qn

m(cos θ), which is appropriate since our problem contains the
z-axis. Since k �= 0 we must choose a radial dependence from (A.145). Small-argument
behavior rules out nn, h(1)

n , and h(2)
n , leaving us with

ψ(r, θ, φ) = Amn jn(kr)Ynm(θ, φ)

or, equivalently,

ψ(r, θ, φ) = Amn jn(kr)Pm
n (cos θ)e jmφ.

The eigenvalues λ = k2 are found by applying the condition at r = a:

ψ(a, θ, φ) = Amn jn(ka)Ynm(θ, φ) = 0,

requiring jn(ka) = 0. Denoting the qth root of jn(x) = 0 by αnq , we have knq = αnq/a
and corresponding eigenfunctions

ψmnq(r, θ, φ) = Amnq jn(knqr)Ynm(θ, φ).

The eigenvalues are proportional to the resonant frequencies of the cavity and the eigen-
functions can be used to find the modal field distributions. Since the eigenvalues are
independent of m, we may have several eigenfunctions ψmnq associated with each kmnq .
The only limitation is that we must keep m ≤ n to have Pn

m(cos θ) nonzero. This is
another instance of mode degeneracy. There are 2n degenerate modes associated with
each resonant frequency (one for each of e± jnφ). By completeness we can expand any
piecewise continuous function within or on the sphere as a series

f (r, θ, φ) =
∑

m,n,q

Amnq jn(knqr)Ynm(θ, φ).
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