
Chapter 1

Introductory concepts

1.1 Notation, conventions, and symbology

Any book that covers a broad range of topics will likely harbor some problems with
notation and symbology. This results from having the same symbol used in different areas
to represent different quantities, and also from having too many quantities to represent.
Rather than invent new symbols, we choose to stay close to the standards and warn the
reader about any symbol used to represent more than one distinct quantity.

The basic nature of a physical quantity is indicated by typeface or by the use of a
diacritical mark. Scalars are shown in ordinary typeface: q, �, for example. Vectors
are shown in boldface: E,Π. Dyadics are shown in boldface with an overbar: ε̄, Ā.
Frequency dependent quantities are indicated by a tilde, whereas time dependent quan-
tities are written without additional indication; thus we write Ẽ(r, ω) and E(r, t). (Some
quantities, such as impedance, are used in the frequency domain to interrelate Fourier
spectra; although these quantities are frequency dependent they are seldom written in
the time domain, and hence we do not attach tildes to their symbols.) We often combine
diacritical marks: for example, ˜̄ε denotes a frequency domain dyadic. We distinguish
carefully between phasor and frequency domain quantities. The variable ω is used for
the frequency variable of the Fourier spectrum, while ω̌ is used to indicate the constant
frequency of a time harmonic signal. We thus further separate the notion of a phasor
field from a frequency domain field by using a check to indicate a phasor field: Ě(r).
However, there is often a simple relationship between the two, such as Ě = Ẽ(ω̌).

We designate the field and source point position vectors by r and r′, respectively, and
the corresponding relative displacement or distance vector by R:

R = r − r′.

A hat designates a vector as a unit vector (e.g., x̂). The sets of coordinate variables in
rectangular, cylindrical, and spherical coordinates are denoted by

(x, y, z), (ρ, φ, z), (r, θ, φ),

respectively. (In the spherical system φ is the azimuthal angle and θ is the polar angle.)
We freely use the “del” operator notation ∇ for gradient, curl, divergence, Laplacian,
and so on.

The SI (MKS) system of units is employed throughout the book.



1.2 The field concept of electromagnetics

Introductory treatments of electromagnetics often stress the role of the field in force
transmission: the individual fields E and B are defined via the mechanical force on a
small test charge. This is certainly acceptable, but does not tell the whole story. We
might, for example, be left with the impression that the EM field always arises from
an interaction between charged objects. Often coupled with this is the notion that the
field concept is meant merely as an aid to the calculation of force, a kind of notational
convenience not placed on the same physical footing as force itself. In fact, fields are
more than useful — they are fundamental. Before discussing electromagnetic fields in
more detail, let us attempt to gain a better perspective on the field concept and its role
in modern physical theory. Fields play a central role in any attempt to describe physical
reality. They are as real as the physical substances we ascribe to everyday experience.
In the words of Einstein [63],

“It seems impossible to give an obvious qualitative criterion for distinguishing between
matter and field or charge and field.”

We must therefore put fields and particles of matter on the same footing: both carry
energy and momentum, and both interact with the observable world.

1.2.1 Historical perspective

Early nineteenth century physical thought was dominated by the action at a distance
concept, formulated by Newton more than 100 years earlier in his immensely successful
theory of gravitation. In this view the influence of individual bodies extends across space,
instantaneously affects other bodies, and remains completely unaffected by the presence
of an intervening medium. Such an idea was revolutionary; until then action by contact, in
which objects are thought to affect each other through physical contact or by contact with
the intervening medium, seemed the obvious and only means for mechanical interaction.
Priestly’s experiments in 1766 and Coulomb’s torsion-bar experiments in 1785 seemed to
indicate that the force between two electrically charged objects behaves in strict analogy
with gravitation: both forces obey inverse square laws and act along a line joining the
objects. Oersted, Ampere, Biot, and Savart soon showed that the magnetic force on
segments of current-carrying wires also obeys an inverse square law.

The experiments of Faraday in the 1830s placed doubt on whether action at a distance
really describes electric and magnetic phenomena. When a material (such as a dielec-
tric) is placed between two charged objects, the force of interaction decreases; thus, the
intervening medium does play a role in conveying the force from one object to the other.
To explain this, Faraday visualized “lines of force” extending from one charged object to
another. The manner in which these lines were thought to interact with materials they
intercepted along their path was crucial in understanding the forces on the objects. This
also held for magnetic effects. Of particular importance was the number of lines passing
through a certain area (the flux ), which was thought to determine the amplitude of the
effect observed in Faraday’s experiments on electromagnetic induction.

Faraday’s ideas presented a new world view: electromagnetic phenomena occur in the
region surrounding charged bodies, and can be described in terms of the laws governing
the “field” of his lines of force. Analogies were made to the stresses and strains in material
objects, and it appeared that Faraday’s force lines created equivalent electromagnetic



stresses and strains in media surrounding charged objects. His law of induction was
formulated not in terms of positions of bodies, but in terms of lines of magnetic force.
Inspired by Faraday’s ideas, Gauss restated Coulomb’s law in terms of flux lines, and
Maxwell extended the idea to time changing fields through his concept of displacement
current.

In the 1860s Maxwell created what Einstein called “the most important invention
since Newton’s time”— a set of equations describing an entirely field-based theory of
electromagnetism. These equations do not model the forces acting between bodies, as do
Newton’s law of gravitation and Coulomb’s law, but rather describe only the dynamic,
time-evolving structure of the electromagnetic field. Thus bodies are not seen to inter-
act with each other, but rather with the (very real) electromagnetic field they create,
an interaction described by a supplementary equation (the Lorentz force law). To bet-
ter understand the interactions in terms of mechanical concepts, Maxwell also assigned
properties of stress and energy to the field.

Using constructs that we now call the electric and magnetic fields and potentials,
Maxwell synthesized all known electromagnetic laws and presented them as a system of
differential and algebraic equations. By the end of the nineteenth century, Hertz had
devised equations involving only the electric and magnetic fields, and had derived the
laws of circuit theory (Ohm’s law and Kirchoff’s laws) from the field expressions. His
experiments with high-frequency fields verified Maxwell’s predictions of the existence of
electromagnetic waves propagating at finite velocity, and helped solidify the link between
electromagnetism and optics. But one problem remained: if the electromagnetic fields
propagated by stresses and strains on a medium, how could they propagate through a
vacuum? A substance called the luminiferous aether, long thought to support the trans-
verse waves of light, was put to the task of carrying the vibrations of the electromagnetic
field as well. However, the pivotal experiments of Michelson and Morely showed that the
aether was fictitious, and the physical existence of the field was firmly established.

The essence of the field concept can be conveyed through a simple thought experiment.
Consider two stationary charged particles in free space. Since the charges are stationary,
we know that (1) another force is present to balance the Coulomb force between the
charges, and (2) the momentum and kinetic energy of the system are zero. Now suppose
one charge is quickly moved and returned to rest at its original position. Action at a
distance would require the second charge to react immediately (Newton’s third law),
but by Hertz’s experiments it does not. There appears to be no change in energy of
the system: both particles are again at rest in their original positions. However, after a
time (given by the distance between the charges divided by the speed of light) we find
that the second charge does experience a change in electrical force and begins to move
away from its state of equilibrium. But by doing so it has gained net kinetic energy
and momentum, and the energy and momentum of the system seem larger than at the
start. This can only be reconciled through field theory. If we regard the field as a
physical entity, then the nonzero work required to initiate the motion of the first charge
and return it to its initial state can be seen as increasing the energy of the field. A
disturbance propagates at finite speed and, upon reaching the second charge, transfers
energy into kinetic energy of the charge. Upon its acceleration this charge also sends out
a wave of field disturbance, carrying energy with it, eventually reaching the first charge
and creating a second reaction. At any given time, the net energy and momentum of the
system, composed of both the bodies and the field, remain constant. We thus come to
regard the electromagnetic field as a true physical entity: an entity capable of carrying
energy and momentum.



1.2.2 Formalization of field theory

Before we can invoke physical laws, we must find a way to describe the state of the
system we intend to study. We generally begin by identifying a set of state variables
that can depict the physical nature of the system. In a mechanical theory such as
Newton’s law of gravitation, the state of a system of point masses is expressed in terms
of the instantaneous positions and momenta of the individual particles. Hence 6N state
variables are needed to describe the state of a system of N particles, each particle having
three position coordinates and three momentum components. The time evolution of
the system state is determined by a supplementary force function (e.g., gravitational
attraction), the initial state (initial conditions), and Newton’s second law F = dP/dt.

Descriptions using finite sets of state variables are appropriate for action-at-a-distance
interpretations of physical laws such as Newton’s law of gravitation or the interaction
of charged particles. If Coulomb’s law were taken as the force law in a mechanical
description of electromagnetics, the state of a system of particles could be described
completely in terms of their positions, momenta, and charges. Of course, charged particle
interaction is not this simple. An attempt to augment Coulomb’s force law with Ampere’s
force law would not account for kinetic energy loss via radiation. Hence we abandon1

the mechanical viewpoint in favor of the field viewpoint, selecting a different set of
state variables. The essence of field theory is to regard electromagnetic phenomena as
affecting all of space. We shall find that we can describe the field in terms of the four
vector quantities E, D, B, and H. Because these fields exist by definition at each point
in space and each time t , a finite set of state variables cannot describe the system.

Here then is an important distinction between field theories and mechanical theories:
the state of a field at any instant can only be described by an infinite number of state
variables. Mathematically we describe fields in terms of functions of continuous variables;
however, we must be careful not to confuse all quantities described as “fields” with those
fields innate to a scientific field theory. For instance, we may refer to a temperature
“field” in the sense that we can describe temperature as a function of space and time.
However, we do not mean by this that temperature obeys a set of physical laws analogous
to those obeyed by the electromagnetic field.

What special character, then, can we ascribe to the electromagnetic field that has
meaning beyond that given by its mathematical implications? In this book, E, D, B,
and H are integral parts of a field-theory description of electromagnetics. In any field
theory we need two types of fields: a mediating field generated by a source, and a field
describing the source itself. In free-space electromagnetics the mediating field consists
of E and B, while the source field is the distribution of charge or current. An important
consideration is that the source field must be independent of the mediating field that
it “sources.” Additionally, fields are generally regarded as unobservable: they can only
be measured indirectly through interactions with observable quantities. We need a link
to mechanics to observe E and B: we might measure the change in kinetic energy of
a particle as it interacts with the field through the Lorentz force. The Lorentz force
becomes the force function in the mechanical interaction that uniquely determines the
(observable) mechanical state of the particle.

A field is associated with a set of field equations and a set of constitutive relations. The
field equations describe, through partial derivative operations, both the spatial distribu-
tion and temporal evolution of the field. The constitutive relations describe the effect

1Attempts have been made to formulate electromagnetic theory purely in action-at-a-distance terms,
but this viewpoint has not been generally adopted [69].



of the supporting medium on the fields and are dependent upon the physical state of
the medium. The state may include macroscopic effects, such as mechanical stress and
thermodynamic temperature, as well as the microscopic, quantum-mechanical properties
of matter.

The value of the field at any position and time in a bounded region V is then determined
uniquely by specifying the sources within V , the initial state of the fields within V , and
the value of the field or finitely many of its derivatives on the surface bounding V . If
the boundary surface also defines a surface of discontinuity between adjacent regions of
differing physical characteristics, or across discontinuous sources, then jump conditions
may be used to relate the fields on either side of the surface.

The variety of forms of field equations is restricted by many physical principles in-
cluding reference-frame invariance, conservation, causality, symmetry, and simplicity.
Causality prevents the field at time t = 0 from being influenced by events occurring at
subsequent times t > 0. Of course, we prefer that a field equation be mathematically
robust and well-posed to permit solutions that are unique and stable.

Many of these ideas are well illustrated by a consideration of electrostatics. We can
describe the electrostatic field through a mediating scalar field �(x, y, z) known as the
electrostatic potential. The spatial distribution of the field is governed by Poisson’s
equation

∂2�

∂x2
+ ∂2�

∂y2
+ ∂2�

∂z2
= − ρ

ε0
,θ

where ρ = ρ(x, y, z) is the source charge density. No temporal derivatives appear, and the
spatial derivatives determine the spatial behavior of the field. The function ρ represents
the spatially-averaged distribution of charge that acts as the source term for the field �.
Note that ρ incorporates no information about �. To uniquely specify the field at any
point, we must still specify its behavior over a boundary surface. We could, for instance,
specify � on five of the six faces of a cube and the normal derivative ∂�/∂n on the
remaining face. Finally, we cannot directly observe the static potential field, but we can
observe its interaction with a particle. We relate the static potential field theory to the
realm of mechanics via the electrostatic force F = qE acting on a particle of charge q.

In future chapters we shall present a classical field theory for macroscopic electromag-
netics. In that case the mediating field quantities are E, D, B, and H, and the source
field is the current density J.

1.3 The sources of the electromagnetic field

Electric charge is an intriguing natural entity. Human awareness of charge and its
effects dates back to at least 600 BC, when the Greek philosopher Thales of Miletus
observed that rubbing a piece of amber could enable the amber to attract bits of straw.
Although charging by friction is probably still the most common and familiar manifes-
tation of electric charge, systematic experimentation has revealed much more about the
behavior of charge and its role in the physical universe. There are two kinds of charge, to
which Benjamin Franklin assigned the respective names positive and negative. Franklin
observed that charges of opposite kind attract and charges of the same kind repel. He
also found that an increase in one kind of charge is accompanied by an increase in the



other, and so first described the principle of charge conservation. Twentieth century
physics has added dramatically to the understanding of charge:

1. Electric charge is a fundamental property of matter, as is mass or dimension.
2. Charge is quantized : there exists a smallest quantity (quantum) of charge that

can be associated with matter. No smaller amount has been observed, and larger
amounts always occur in integral multiples of this quantity.

3. The charge quantum is associated with the smallest subatomic particles, and these
particles interact through electrical forces. In fact, matter is organized and arranged
through electrical interactions; for example, our perception of physical contact is
merely the macroscopic manifestation of countless charges in our fingertips pushing
against charges in the things we touch.

4. Electric charge is an invariant : the value of charge on a particle does not depend on
the speed of the particle. In contrast, the mass of a particle increases with speed.

5. Charge acts as the source of an electromagnetic field; the field is an entity that can
carry energy and momentum away from the charge via propagating waves.

We begin our investigation of the properties of the electromagnetic field with a detailed
examination of its source.

1.3.1 Macroscopic electromagnetics

We are interested primarily in those electromagnetic effects that can be predicted by
classical techniques using continuous sources (charge and current densities). Although
macroscopic electromagnetics is limited in scope, it is useful in many situations en-
countered by engineers. These include, for example, the determination of currents and
voltages in lumped circuits, torques exerted by electrical machines, and fields radiated by
antennas. Macroscopic predictions can fall short in cases where quantum effects are im-
portant: e.g., with devices such as tunnel diodes. Even so, quantum mechanics can often
be coupled with classical electromagnetics to determine the macroscopic electromagnetic
properties of important materials.

Electric charge is not of a continuous nature. The quantization of atomic charge —
±e for electrons and protons, ±e/3 and ±2e/3 for quarks — is one of the most precisely
established principles in physics (verified to 1 part in 1021). The value of e itself is known
to great accuracy:

e = 1.60217733 × 10−19 Coulombs (C).

However, the discrete nature of charge is not easily incorporated into everyday engineer-
ing concerns. The strange world of the individual charge — characterized by particle
spin, molecular moments, and thermal vibrations — is well described only by quantum
theory. There is little hope that we can learn to describe electrical machines using such
concepts. Must we therefore retreat to the macroscopic idea and ignore the discretization
of charge completely? A viable alternative is to use atomic theories of matter to estimate
the useful scope of macroscopic electromagnetics.

Remember, we are completely free to postulate a theory of nature whose scope may
be limited. Like continuum mechanics, which treats distributions of matter as if they
were continuous, macroscopic electromagnetics is regarded as valid because it is verified
by experiment over a certain range of conditions. This applicability range generally
corresponds to dimensions on a laboratory scale, implying a very wide range of validity
for engineers.



Macroscopic effects as averaged microscopic effects. Macroscopic electromag-
netics can hold in a world of discrete charges because applications usually occur over
physical scales that include vast numbers of charges. Common devices, generally much
larger than individual particles, “average” the rapidly varying fields that exist in the
spaces between charges, and this allows us to view a source as a continuous “smear” of
charge. To determine the range of scales over which the macroscopic viewpoint is valid,
we must compare averaged values of microscopic fields to the macroscopic fields we mea-
sure in the lab. But if the effects of the individual charges are describable only in terms
of quantum notions, this task will be daunting at best. A simple compromise, which
produces useful results, is to extend the macroscopic theory right down to the micro-
scopic level and regard discrete charges as “point” entities that produce electromagnetic
fields according to Maxwell’s equations. Then, in terms of scales much larger than the
classical radius of an electron (≈ 10−14 m), the expected rapid fluctuations of the fields
in the spaces between charges is predicted. Finally, we ask: over what spatial scale must
we average the effects of the fields and the sources in order to obtain agreement with the
macroscopic equations?

In the spatial averaging approach a convenient weighting function f (r) is chosen, and
is normalized so that

∫
f (r) dV = 1.

An example is the Gaussian distribution

f (r) = (πa2)−3/2e−r2/a2
,

where a is the approximate radial extent of averaging. The spatial average of a micro-
scopic quantity F(r, t) is given by

〈F(r, t)〉 =
∫

F(r − r′, t) f (r′) dV ′. (1.1)

The scale of validity of the macroscopic model can be found by determining the averaging
radius a that produces good agreement between the averaged microscopic fields and the
macroscopic fields.

The macroscopic volume charge density. At this point we do not distinguish
between the “free” charge that is unattached to a molecular structure and the charge
found near the surface of a conductor. Nor do we consider the dipole nature of polarizable
materials or the microscopic motion associated with molecular magnetic moment or the
magnetic moment of free charge. For the consideration of free-space electromagnetics,
we assume charge exhibits either three degrees of freedom (volume charge), two degrees
of freedom (surface charge), or one degree of freedom (line charge).

In typical matter, the microscopic fields vary spatially over dimensions of 10−10 m
or less, and temporally over periods (determined by atomic motion) of 10−13 s or less.
At the surface of a material such as a good conductor where charge often concentrates,
averaging with a radius on the order of 10−10 m may be required to resolve the rapid
variation in the distribution of individual charged particles. However, within a solid or
liquid material, or within a free-charge distribution characteristic of a dense gas or an
electron beam, a radius of 10−8 m proves useful, containing typically 106 particles. A
diffuse gas, on the other hand, may have a particle density so low that the averaging
radius takes on laboratory dimensions, and in such a case the microscopic theory must
be employed even at macroscopic dimensions.

Once the averaging radius has been determined, the value of the charge density may
be found via (1.1). The volume density of charge for an assortment of point sources can



be written in terms of the three-dimensional Dirac delta as

ρo(r, t) =
∑

i

qiδ(r − ri (t)),

where ri (t) is the position of the charge qi at time t . Substitution into (1.1) gives

ρ(r, t) = 〈ρo(r, t)〉 =
∑

i

qi f (r − ri (t)) (1.2)

as the averaged charge density appropriate for use in a macroscopic field theory. Because
the oscillations of the atomic particles are statistically uncorrelated over the distances
used in spatial averaging, the time variations of microscopic fields are not present in the
macroscopic fields and temporal averaging is unnecessary. In (1.2) the time dependence
of the spatially-averaged charge density is due entirely to bulk motion of the charge
aggregate (macroscopic charge motion).

With the definition of macroscopic charge density given by (1.2), we can determine
the total charge Q(t) in any macroscopic volume region V using

Q(t) =
∫

V
ρ(r, t) dV . (1.3)

We have

Q(t) =
∑

i

qi

∫
V

f (r − ri (t)) dV =
∑

ri (t)∈V

qi .

Here we ignore the small discrepancy produced by charges lying within distance a of
the boundary of V . It is common to employ a box B having volume �V :

{
f (r) = 1/�V, r ∈ B,

0, r /∈ B.

In this case

ρ(r, t) = 1

�V

∑
r−ri (t)∈B

qi .

The size of B is chosen with the same considerations as to atomic scale as was the
averaging radius a. Discontinuities at the edges of the box introduce some difficulties
concerning charges that move in and out of the box because of molecular motion.

The macroscopic volume current density. Electric charge in motion is referred
to as electric current. Charge motion can be associated with external forces and with
microscopic fluctuations in position. Assuming charge qi has velocity vi (t) = dri (t)/dt ,
the charge aggregate has volume current density

Jo(r, t) =
∑

i

qi vi (t) δ(r − ri (t)).

Spatial averaging gives the macroscopic volume current density

J(r, t) = 〈Jo(r, t)〉 =
∑

i

qi vi (t) f (r − ri (t)). (1.4)



Figure 1.1: Intersection of the averaging function of a point charge with a surface S, as
the charge crosses S with velocity v: (a) at some time t = t1, and (b) at t = t2 > t1. The
averaging function is represented by a sphere of radius a.

Spatial averaging at time t eliminates currents associated with microscopic motions that
are uncorrelated at the scale of the averaging radius (again, we do not consider the
magnetic moments of particles). The assumption of a sufficiently large averaging radius
leads to

J(r, t) = ρ(r, t) v(r, t). (1.5)

The total flux I (t) of current through a surface S is given by

I (t) =
∫

S
J(r, t) · n̂ d S

where n̂ is the unit normal to S. Hence, using (4), we have

I (t) =
∑

i

qi
d

dt
(ri (t) · n̂)

∫
S

f (r − ri (t)) d S

if n̂ stays approximately constant over the extent of the averaging function and S is not in
motion. We see that the integral effectively intersects S with the averaging function sur-
rounding each moving point charge  (Figure 1.1). The time derivative of r i · n̂ represents
the velocity at which the averaging function is “carried across” the surface.

Electric current takes a variety of forms, each described by the relation J = ρv. Isolated
charged particles (positive and negative) and charged insulated bodies moving through
space comprise convection currents. Negatively-charged electrons moving through the
positive background lattice within a conductor comprise a conduction current. Empirical
evidence suggests that conduction currents are also described by the relation J = σE
known as Ohm’s law. A third type of current, called electrolytic current, results from the
flow of positive or negative ions through a fluid.

1.3.2 Impressed vs. secondary sources

In addition to the simple classification given above we may classify currents as primary
or secondary, depending on the action that sets the charge in motion.



It is helpful to separate primary or “impressed” sources, which are independent of the
fields they source, from secondary sources which result from interactions between the
sourced fields and the medium in which the fields exist. Most familiar is the conduc-
tion current set up in a conducting medium by an externally applied electric field. The
impressed source concept is particularly important in circuit theory, where independent
voltage sources are modeled as providing primary voltage excitations that are indepen-
dent of applied load. In this way they differ from the secondary or “dependent” sources
that react to the effect produced by the application of primary sources.

In applied electromagnetics the primary source may be so distant that return effects
resulting from local interaction of its impressed fields can be ignored. Other examples of
primary sources include the applied voltage at the input of an antenna, the current on a
probe inserted into a waveguide, and the currents producing a power-line field in which
a biological body is immersed.

1.3.3 Surface and line source densities

Because they are spatially averaged effects, macroscopic sources and the fields they
source cannot have true spatial discontinuities. However, it is often convenient to work
with sources in one or two dimensions. Surface and line source densities are idealizations
of actual, continuous macroscopic densities.

The entity we describe as a surface charge is a continuous volume charge distributed
in a thin layer across some surface S. If the thickness of the layer is small compared to
laboratory dimensions, it is useful to assign to each point r on the surface a quantity
describing the amount of charge contained within a cylinder oriented normal to the
surface and having infinitesimal cross section d S. We call this quantity the surface
charge density ρs(r, t), and write the volume charge density as

ρ(r, w, t) = ρs(r, t) f (w, �),

where w is distance from S in the normal direction and � in some way parameterizes the
“thickness” of the charge layer at r. The continuous density function f (x, �) satisfies

∫ ∞

−∞
f (x, �) dx = 1

and

lim
�→0

f (x, �) = δ(x).

For instance, we might have

f (x, �) = e−x2/�2

�
√

π
. (1.6)

With this definition the total charge contained in a cylinder normal to the surface at r
and having cross-sectional area d S is

d Q(t) =
∫ ∞

−∞
[ρs(r, t) d S] f (w, �) dw = ρs(r, t) d S,

and the total charge contained within any cylinder oriented normal to S is

Q(t) =
∫

S
ρs(r, t) d S. (1.7)



We may describe a line charge as a thin “tube” of volume charge distributed along
some contour �. The amount of charge contained between two planes normal to the
contour and separated by a distance dl is described by the line charge density ρl(r, t).
The volume charge density associated with the contour is then

ρ(r, ρ, t) = ρl(r, t) fs(ρ, �),

where ρ is the radial distance from the contour in the plane normal to � and fs(ρ, �) is
a density function with the properties∫ ∞

0
fs(ρ, �)2πρ dρ = 1

and

lim
�→0

fs(ρ, �) = δ(ρ)

2πρ
.

For example, we might have

fs(ρ, �) = e−ρ2/�2

π�2
. (1.8)

Then the total charge contained between planes separated by a distance dl is

d Q(t) =
∫ ∞

0
[ρl(r, t) dl] fs(ρ, �)2πρ dρ = ρl(r, t) dl

and the total charge contained between planes placed at the ends of a contour � is

Q(t) =
∫

�

ρl(r, t) dl. (1.9)

We may define surface and line currents similarly. A surface current is merely a
volume current confined to the vicinity of a surface S. The volume current density may
be represented using a surface current density function Js(r, t), defined at each point r
on the surface so that

J(r, w, t) = Js(r, t) f (w, �).

Here f (w, �) is some appropriate density function such as (1.6), and the surface current
vector obeys n̂ · Js = 0 where n̂ is normal to S. The total current flowing through a strip
of width dl arranged perpendicular to S at r is

d I (t) =
∫ ∞

−∞
[Js(r, t) · n̂l(r) dl] f (w, �) dw = Js(r, t) · n̂l(r) dl

where n̂l is normal to the strip at r (and thus also tangential to S at r). The total current
passing through a strip intersecting with S along a contour � is thus

I (t) =
∫

�

Js(r, t) · n̂l(r) dl.

We may describe a line current as a thin “tube” of volume current distributed about
some contour � and flowing parallel to it. The amount of current passing through a
plane normal to the contour is described by the line current density Jl(r, t). The volume
current density associated with the contour may be written as

J(r, ρ, t) = û(r)Jl(r, t) fs(ρ, �),



where û is a unit vector along �, ρ is the radial distance from the contour in the plane
normal to �, and fs(ρ, �) is a density function such as (1.8). The total current passing
through any plane normal to � at r is

I (t) =
∫ ∞

0
[Jl(r, t)û(r) · û(r)] fs(ρ, �)2πρ dρ = Jl(r, t).

It is often convenient to employ singular models for continuous source densities. For
instance, it is mathematically simpler to regard a surface charge as residing only in the
surface S than to regard it as being distributed about the surface. Of course, the source
is then discontinuous since it is zero everywhere outside the surface. We may obtain a
representation of such a charge distribution by letting the thickness parameter � in the
density functions recede to zero, thus concentrating the source into a plane or a line. We
describe the limit of the density function in terms of the δ-function. For instance, the
volume charge distribution for a surface charge located about the xy-plane is

ρ(x, y, z, t) = ρs(x, y, t) f (z, �).

As � → 0 we have

ρ(x, y, z, t) = ρs(x, y, t) lim
�→0

f (z, �) = ρs(x, y, t)δ(z).

It is a simple matter to represent singular source densities in this way as long as the
surface or line is easily parameterized in terms of constant values of coordinate variables.
However, care must be taken to represent the δ-function properly. For instance, the
density of charge on the surface of a cone at θ = θ0 may be described using the distance
normal to this surface, which is given by rθ − rθ0:

ρ(r, θ, φ, t) = ρs(r, φ, t)δ (r [θ − θ0]) .

Using the property δ(ax) = δ(x)/a, we can also write this as

ρ(r, θ, φ, t) = ρs(r, φ, t)
δ(θ − θ0)

r
.

1.3.4 Charge conservation

There are four fundamental conservation laws in physics: conservation of energy, mo-
mentum, angular momentum, and charge. These laws are said to be absolute; they have
never been observed to fail. In that sense they are true empirical laws of physics.

However, in modern physics the fundamental conservation laws have come to represent
more than just observed facts. Each law is now associated with a fundamental symme-
try of the universe; conversely, each known symmetry is associated with a conservation
principle. For example, energy conservation can be shown to arise from the observation
that the universe is symmetric with respect to time; the laws of physics do not depend
on choice of time origin t = 0. Similarly, momentum conservation arises from the obser-
vation that the laws of physics are invariant under translation, while angular momentum
conservation arises from invariance under rotation.

The law of conservation of charge also arises from a symmetry principle. But instead
of being spatial or temporal in character, it is related to the invariance of electrostatic
potential. Experiments show that there is no absolute potential, only potential difference.
The laws of nature are invariant with respect to what we choose as the “reference”



potential. This in turn is related to the invariance of Maxwell’s equations under gauge
transforms; the values of the electric and magnetic fields do not depend on which gauge
transformation we use to relate the scalar potential � to the vector potential A.

We may state the conservation of charge as follows:

The net charge in any closed system remains constant with time.

This does not mean that individual charges cannot be created or destroyed, only that
the total charge in any isolated system must remain constant. Thus it is possible for a
positron with charge e to annihilate an electron with charge −e without changing the
net charge of the system. Only if a system is not closed can its net charge be altered;
since moving charge constitutes current, we can say that the total charge within a system
depends on the current passing through the surface enclosing the system. This is the
essence of the continuity equation. To derive this important result we consider a closed
system within which the charge remains constant, and apply the Reynolds transport
theorem (see § A.2).

The continuity equation. Consider a region of space occupied by a distribution of
charge whose velocity is given by the vector field v. We surround a portion of charge
by a surface S and let S deform as necessary to “follow” the charge as it moves. Since
S always contains precisely the same charged particles, we have an isolated system for
which the time rate of change of total charge must vanish. An expression for the time
rate of change is given by the Reynolds transport theorem (A.66); we have2

DQ

Dt
= D

Dt

∫
V (t)

ρ dV =
∫

V (t)

∂ρ

∂t
dV +

∮
S(t)

ρv · dS = 0.

The “D/Dt” notation indicates that the volume region V (t) moves with its enclosed
particles. Since ρv represents current density, we can write

∫
V (t)

∂ρ(r, t)

∂t
dV +

∮
S(t)

J(r, t) · dS = 0. (1.10)

In this large-scale form of the continuity equation, the partial derivative term describes
the time rate of change of the charge density for a fixed spatial position r. At any time t ,
the time rate of change of charge density integrated over a volume is exactly compensated
by the total current exiting through the surrounding surface.

We can obtain the continuity equation in point form by applying the divergence the-
orem to the second term of (1.10) to get

∫
V (t)

[
∂ρ(r, t)

∂t
+ ∇ · J(r, t)

]
dV = 0.

Since V (t) is arbitrary we can set the integrand to zero to obtain

∂ρ(r, t)

∂t
+ ∇ · J(r, t) = 0. (1.11)

2Note that in Appendix A we use the symbol u to represent the velocity of a material and v to represent
the velocity of an artificial surface.



This expression involves the time derivative of ρ with r fixed. We can also find an
expression in terms of the material derivative by using the transport equation (A.67).
Enforcing conservation of charge by setting that expression to zero, we have

Dρ(r, t)

Dt
+ ρ(r, t) ∇ · v(r, t) = 0. (1.12)

Here Dρ/Dt is the time rate of change of the charge density experienced by an observer
moving with the current.

We can state the large-scale form of the continuity equation in terms of a stationary
volume. Integrating (1.11) over a stationary volume region V and using the divergence
theorem, we find that ∫

V

∂ρ(r, t)

∂t
dV = −

∮
S

J(r, t) · dS.

Since V is not changing with time we have
d Q(t)

dt
= d

dt

∫
V

ρ(r, t) dV = −
∮

S
J(r, t) · dS. (1.13)

Hence any increase of total charge within V must be produced by current entering V
through S.

Use of the continuity equation. As an example, suppose that in a bounded region
of space we have

ρ(r, t) = ρ0re−βt .

We wish to find J and v, and to verify both versions of the continuity equation in point
form. The spherical symmetry of ρ requires that J = r̂Jr . Application of (1.13) over a
sphere of radius a gives

4π
d

dt

∫ a

0
ρ0re−βt r2 dr = −4π Jr (a)a2.

Hence

J = r̂βρ0
r2

4
e−βt

and therefore

∇ · J = 1

r2

∂

∂r
(r2 Jr ) = βρ0re−βt .

The velocity is

v = J
ρ

= r̂β
r

4
,

and we have ∇ · v = 3β/4. To verify the continuity equations, we compute the time
derivatives

∂ρ

∂t
= −βρ0re−βt ,

Dρ

Dt
= ∂ρ

∂t
+ v · ∇ρ

= −βρ0re−βt +
(

r̂β
r

4

)
· (

r̂ρ0e−βt
)

= −3

4
βρ0re−βt .



Note that the charge density decreases with time less rapidly for a moving observer than
for a stationary one (3/4 as fast): the moving observer is following the charge outward,
and ρ ∝ r . Now we can check the continuity equations. First we see

Dρ

Dt
+ ρ∇ · v = −3

4
βρ0re−βt + (ρ0re−βt )

(
3

4
β

)
= 0,

as required for a moving observer; second we see

∂ρ

∂t
+ ∇ · J = −βρ0re−βt + βρ0e−βt = 0,

as required for a stationary observer.

The continuity equation in fewer dimensions. The continuity equation can also
be used to relate current and charge on a surface or along a line. By conservation of
charge we can write

d

dt

∫
S
ρs(r, t) d S = −

∮
�

Js(r, t) · m̂ dl (1.14)

where m̂ is the vector normal to the curve � and tangential to the surface S. By the
surface divergence theorem (B.20), the corresponding point form is

∂ρs(r, t)

∂t
+ ∇s · Js(r, t) = 0. (1.15)

Here ∇s · Js is the surface divergence of the vector field Js . For instance, in rectangular
coordinates in the z = 0 plane we have

∇s · Js = ∂ Jsx

∂x
+ ∂ Jsy

∂y
.

In cylindrical coordinates on the cylinder ρ = a, we would have

∇s · Js = 1

a

∂ Jsφ

∂φ
+ ∂ Jsz

∂z
.

A detailed description of vector operations on a surface may be found in Tai [190], while
many identities may be found in Van Bladel [202].

The equation of continuity for a line is easily established by reference to Figure 1.2.
Here the net charge exiting the surface during time �t is given by

�t[I (u2, t) − I (u1, t)].

Thus, the rate of net increase of charge within the system is

d Q(t)

dt
= d

dt

∫
ρl(r, t) dl = −[I (u2, t) − I (u1, t)]. (1.16)

The corresponding point form is found by letting the length of the curve approach zero:

∂ I (l, t)

∂l
+ ∂ρl(l, t)

∂t
= 0, (1.17)

where l is arc length along the curve. As an example, suppose the line current on a
circular loop antenna is approximately

I (φ, t) = I0 cos
(ωa

c
φ
)

cos ωt,



Figure 1.2: Linear form of the continuityequation.

where a is the radius of the loop, ω is the frequency of operation, and c is the speed of
light. We wish to find the line charge density on the loop. Since l = aφ, we can write

I (l, t) = I0 cos

(
ωl

c

)
cos ωt.

Thus

∂ I (l, t)

∂l
= −I0

ω

c
sin

(
ωl

c

)
cos ωt = −∂ρl(l, t)

∂t
.

Integrating with respect to time and ignoring any constant (static) charge, we have

ρ(l, t) = I0

c
sin

(
ωl

c

)
sin ωt

or

ρ(φ, t) = I0

c
sin

(ωa

c
φ
)

sin ωt.

Note that we could have used the chain rule

∂ I (φ, t)

∂l
= ∂ I (φ, t)

∂φ

∂φ

∂l
and

∂φ

∂l
=

[
∂l

∂φ

]−1

= 1

a

to calculate the spatial derivative.
We can apply the volume density continuity equation (1.11) directly to surface and

line distributions written in singular notation. For the loop of the previous example, we
write the volume current density corresponding to the line current as

J(r, t) = φ̂ δ(ρ − a)δ(z)I (φ, t).

Substitution into (1.11) then gives

∇ · [φ̂δ(ρ − a)δ(z)I (φ, t)] = −∂ρ(r, t)

∂t
.

The divergence formula for cylindrical coordinates gives

δ(ρ − a)δ(z)
∂ I (φ, t)

ρ ∂φ
= −∂ρ(r, t)

∂t
.



Next we substitute for I (φ, t) to get

− I0

ρ

ωa

c
sin

(ωa

c
φ
)

δ(ρ − a)δ(z) cos ωt = −∂ρ(r, t)

∂t
.

Finally, integrating with respect to time and ignoring any constant term, we have

ρ(r, t) = I0

c
δ(ρ − a)δ(z) sin

(ωa

c
φ
)

sin ωt,

where we have set ρ = a because of the presence of the factor δ(ρ − a).

1.3.5 Magnetic charge

We take for granted that electric fields are produced by electric charges, whether
stationary or in motion. The smallest element of electric charge is the electric monopole:
a single discretely charged particle from which the electric field diverges. In contrast,
experiments show that magnetic fields are created only by currents or by time changing
electric fields; hence, magnetic fields have moving electric charge as their source. The
elemental source of magnetic field is the magnetic dipole, representing a tiny loop of
electric current (or a spinning electric particle). The observation made in 1269 by Pierre
De Maricourt, that even the smallest magnet has two poles, still holds today.

In a world filled with symmetry at the fundamental level, we find it hard to understand
why there should not be a source from which the magnetic field diverges. We would call
such a source magnetic charge, and the most fundamental quantity of magnetic charge
would be exhibited by a magnetic monopole. In 1931 Paul Dirac invigorated the search for
magnetic monopoles by making the first strong theoretical argument for their existence.
Dirac showed that the existence of magnetic monopoles would imply the quantization
of electric charge, and would thus provide an explanation for one of the great puzzles
of science. Since that time magnetic monopoles have become important players in the
“Grand Unified Theories” of modern physics, and in cosmological theories of the origin
of the universe.

If magnetic monopoles are ever found to exist, there will be both positive and negatively
charged particles whose motions will constitute currents. We can define a macroscopic
magnetic charge density ρm and current density Jm exactly as we did with electric charge,
and use conservation of magnetic charge to provide a continuity equation:

∇ · Jm(r, t) + ∂ρm(r, t)

∂t
= 0. (1.18)

With these new sources Maxwell’s equations become appealingly symmetric. Despite
uncertainties about the existence and physical nature of magnetic monopoles, magnetic
charge and current have become an integral part of electromagnetic theory. We often use
the concept of fictitious magnetic sources to make Maxwell’s equations symmetric, and
then derive various equivalence theorems for use in the solution of important problems.
Thus we can put the idea of magnetic sources to use regardless of whether these sources
actually exist.



1.4 Problems

1.1 Write the volume charge density for a singular surface charge located on the sphere
r = r0, entirely in terms of spherical coordinates. Find the total charge on the sphere.

1.2 Repeat Problem 1.1 for a charged half plane φ = φ0.

1.3 Write the volume charge density for a singular surface charge located on the cylin-
der ρ = ρ0, entirely in terms of cylindrical coordinates. Find the total charge on the
cylinder.

1.4 Repeat Problem 1.3 for a charged half plane φ = φ0.
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