
Chapter 2

Maxwell’s theory of electromagnetism

2.1 The postulate

In 1864, James Clerk Maxwell proposed one of the most successful theories in the
history of science. In a famous memoir to the Royal Society [125] he presented nine
equations summarizing all known laws on electricity and magnetism. This was more
than a mere cataloging of the laws of nature. By postulating the need for an additional
term to make the set of equations self-consistent, Maxwell was able to put forth what
is still considered a complete theory of macroscopic electromagnetism. The beauty of
Maxwell’s equations led Boltzmann to ask, “Was it a god who wrote these lines . . . ?”
[185].

Since that time authors have struggled to find the best way to present Maxwell’s
theory. Although it is possible to study electromagnetics from an “empirical–inductive”
viewpoint (roughly following the historical order of development beginning with static
fields), it is only by postulating the complete theory that we can do justice to Maxwell’s
vision. His concept of the existence of an electromagnetic “field” (as introduced by
Faraday) is fundamental to this theory, and has become one of the most significant
principles of modern science.

We find controversy even over the best way to present Maxwell’s equations. Maxwell
worked at a time before vector notation was completely in place, and thus chose to
use scalar variables and equations to represent the fields. Certainly the true beauty
of Maxwell’s equations emerges when they are written in vector form, and the use of
tensors reduces the equations to their underlying physical simplicity. We shall use vector
notation in this book because of its wide acceptance by engineers, but we still must
decide whether it is more appropriate to present the vector equations in integral or point
form.

On one side of this debate, the brilliant mathematician David Hilbert felt that the
fundamental natural laws should be posited as axioms, each best described in terms
of integral equations [154]. This idea has been championed by Truesdell and Toupin
[199]. On the other side, we may quote from the great physicist Arnold Sommerfeld:
“The general development of Maxwell’s theory must proceed from its differential form;
for special problems the integral form may, however, be more advantageous” ([185], p.
23). Special relativity flows naturally from the point forms, with fields easily converted
between moving reference frames. For stationary media, it seems to us that the only
difference between the two approaches arises in how we handle discontinuities in sources
and materials. If we choose to use the point forms of Maxwell’s equations, then we must
also postulate the boundary conditions at surfaces of discontinuity. This is pointed out



clearly by Tai [192], who also notes that if the integral forms are used, then their validity
across regions of discontinuity should be stated as part of the postulate.

We have decided to use the point form in this text. In doing so we follow a long
history begun by Hertz in 1890 [85] when he wrote down Maxwell’s differential equations
as a set of axioms, recognizing the equations as the launching point for the theory of
electromagnetism. Also, by postulating Maxwell’s equations in point form we can take
full advantage of modern developments in the theory of partial differential equations; in
particular, the idea of a “well-posed” theory determines what sort of information must
be specified to make the postulate useful.

We must also decide which form of Maxwell’s differential equations to use as the basis
of our postulate. There are several competing forms, each differing on the manner in
which materials are considered. The oldest and most widely used form was suggested
by Minkowski in 1908 [130]. In the Minkowski form the differential equations contain
no mention of the materials supporting the fields; all information about material media
is relegated to the constitutive relationships. This places simplicity of the differential
equations above intuitive understanding of the behavior of fields in materials. We choose
the Maxwell–Minkowski form as the basis of our postulate, primarily for ease of ma-
nipulation. But we also recognize the value of other versions of Maxwell’s equations.
We shall present the basic ideas behind the Boffi form, which places some information
about materials into the differential equations (although constitutive relationships are
still required). Missing, however, is any information regarding the velocity of a moving
medium. By using the polarization and magnetization vectors P and M rather than the
fields D and H, it is sometimes easier to visualize the meaning of the field vectors and
to understand (or predict) the nature of the constitutive relations.

The Chu and Amperian forms of Maxwell’s equations have been promoted as useful
alternatives to the Minkowski and Boffi forms. These include explicit information about
the velocity of a moving material, and differ somewhat from the Boffi form in the physical
interpretation of the electric and magnetic properties of matter. Although each of these
models matter in terms of charged particles immersed in free space, magnetization in the
Boffi and Amperian forms arises from electric current loops, while the Chu form employs
magnetic dipoles. In all three forms polarization is modeled using electric dipoles. For a
detailed discussion of the Chu and Amperian forms, the reader should consult the work
of Kong [101], Tai [193], Penfield and Haus [145], or Fano, Chu and Adler [70].

Importantly, all of these various forms of Maxwell’s equations produce the same values
of the physical fields (at least external to the material where the fields are measurable).

We must include several other constituents, besides the field equations, to make the
postulate complete. To form a complete field theory we need a source field, a mediating
field, and a set of field differential equations. This allows us to mathematically describe
the relationship between effect (the mediating field) and cause (the source field). In
a well-posed postulate we must also include a set of constitutive relationships and a
specification of some field relationship over a bounding surface and at an initial time. If
the electromagnetic field is to have physical meaning, we must link it to some observable
quantity such as force. Finally, to allow the solution of problems involving mathematical
discontinuities we must specify certain boundary, or “jump,” conditions.

2.1.1 The Maxwell–Minkowski equations

In Maxwell’s macroscopic theory of electromagnetics, the source field consists of the
vector field J(r, t) (the current density) and the scalar field ρ(r, t) (the charge density).



In Minkowski’s form of Maxwell’s equations, the mediating field is the electromagnetic
field consisting of the set of four vector fields E(r, t), D(r, t), B(r, t), and H(r, t). The field
equations are the four partial differential equations referred to as the Maxwell–Minkowski
equations

∇ × E(r, t) = − ∂

∂t
B(r, t), (2.1)

∇ × H(r, t) = J(r, t) + ∂

∂t
D(r, t), (2.2)

∇ · D(r, t) = ρ(r, t), (2.3)
∇ · B(r, t) = 0, (2.4)

along with the continuity equation

∇ · J(r, t) = − ∂

∂t
ρ(r, t). (2.5)

Here (2.1) is called Faraday’s law, (2.2) is called Ampere’s law, (2.3) is called Gauss’s
law, and (2.4) is called the magnetic Gauss’s law. For brevity we shall often leave the
dependence on r and t implicit, and refer to the Maxwell–Minkowski equations as simply
the “Maxwell equations,” or “Maxwell’s equations.”

Equations (2.1)–(2.5), the point forms of the field equations, describe the relation-
ships between the fields and their sources at each point in space where the fields are
continuously differentiable (i.e., the derivatives exist and are continuous). Such points
are called ordinary points. We shall not attempt to define the fields at other points,
but instead seek conditions relating the fields across surfaces containing these points.
Normally this is necessary on surfaces across which either sources or material parameters
are discontinuous.

The electromagnetic fields carry SI units as follows: E is measured in Volts per meter
(V/m), B is measured in Teslas (T), H is measured in Amperes per meter (A/m), and
D is measured in Coulombs per square meter (C/m2). In older texts we find the units of
B given as Webers per square meter (Wb/m2) to reflect the role of B as a flux vector; in
that case the Weber (Wb = T·m2) is regarded as a unit of magnetic flux.

The interdependence of Maxwell’s equations. It is often claimed that the diver-
gence equations (2.3) and (2.4) may be derived from the curl equations (2.1) and (2.2).
While this is true, it is not proper to say that only the two curl equations are required
to describe Maxwell’s theory. This is because an additional physical assumption, not
present in the two curl equations, is required to complete the derivation. Either the
divergence equations must be specified, or the values of certain constants that fix the
initial conditions on the fields must be specified. It is customary to specify the divergence
equations and include them with the curl equations to form the complete set we now call
“Maxwell’s equations.”

To identify the interdependence we take the divergence of (2.1) to get

∇ · (∇ × E) = ∇ ·
(

−∂B
∂t

)
,

hence

∂

∂t
(∇ · B) = 0



by (B.49). This requires that ∇ · B be constant with time, say ∇ · B(r, t) = CB(r).
The constant CB must be specified as part of the postulate of Maxwell’s theory, and
the choice we make is subject to experimental validation. We postulate that CB(r) = 0,
which leads us to (2.4). Note that if we can identify a time prior to which B(r, t) ≡ 0,
then CB(r) must vanish. For this reason, CB(r) = 0 and (2.4) are often called the “initial
conditions” for Faraday’s law [159]. Next we take the divergence of (2.2) to find that

∇ · (∇ × H) = ∇ · J + ∂

∂t
(∇ · D).

Using (2.5) and (B.49), we obtain

∂

∂t
(ρ − ∇ · D) = 0

and thus ρ − ∇ · D must be some temporal constant CD(r). Again, we must postulate
the value of CD as part of the Maxwell theory. We choose CD(r) = 0 and thus obtain
Gauss’s law (2.3). If we can identify a time prior to which both D and ρ are everywhere
equal to zero, then CD(r) must vanish. Hence CD(r) = 0 and (2.3) may be regarded
as “initial conditions” for Ampere’s law. Combining the two sets of initial conditions,
we find that the curl equations imply the divergence equations as long as we can find a
time prior to which all of the fields E, D, B, H and the sources J and ρ are equal to zero
(since all the fields are related through the curl equations, and the charge and current are
related through the continuity equation). Conversely, the empirical evidence supporting
the two divergence equations implies that such a time should exist.

Throughout this book we shall refer to the two curl equations as the “fundamental”
Maxwell equations, and to the two divergence equations as the “auxiliary” equations.
The fundamental equations describe the relationships between the fields while, as we
have seen, the auxiliary equations provide a sort of initial condition. This does not
imply that the auxiliary equations are of lesser importance; indeed, they are required
to establish uniqueness of the fields, to derive the wave equations for the fields, and to
properly describe static fields.

Field vector terminology. Various terms are used for the field vectors, sometimes
harkening back to the descriptions used by Maxwell himself, and often based on the
physical nature of the fields. We are attracted to Sommerfeld’s separation of the fields
into entities of intensity (E, B) and entities of quantity (D, H). In this system E is called
the electric field strength, B the magnetic field strength, D the electric excitation, and H
the magnetic excitation [185]. Maxwell separated the fields into a set (E, H) of vectors
that appear within line integrals to give work-related quantities, and a set (B, D) of
vectors that appear within surface integrals to give flux-related quantities; we shall see
this clearly when considering the integral forms of Maxwell’s equations. By this system,
authors such as Jones [97] and Ramo, Whinnery, and Van Duzer [153] call E the electric
intensity, H the magnetic intensity, B the magnetic flux density, and D the electric flux
density.

Maxwell himself designated names for each of the vector quantities. In his classic
paper “A Dynamical Theory of the Electromagnetic Field,” [178] Maxwell referred to
the quantity we now designate E as the electromotive force, the quantity D as the elec-
tric displacement (with a time rate of change given by his now famous “displacement
current”), the quantity H as the magnetic force, and the quantity B as the magnetic



induction (although he described B as a density of lines of magnetic force). Maxwell
also included a quantity designated electromagnetic momentum as an integral part of his
theory. We now know this as the vector potential A which is not generally included as a
part of the electromagnetics postulate.

Many authors follow the original terminology of Maxwell, with some slight modifica-
tions. For instance, Stratton [187] calls E the electric field intensity, H the magnetic
field intensity, D the electric displacement, and B the magnetic induction. Jackson [91]
calls E the electric field, H the magnetic field, D the displacement, and B the magnetic
induction.

Other authors choose freely among combinations of these terms. For instance, Kong
[101] calls E the electric field strength, H the magnetic field strength, B the magnetic flux
density, and D the electric displacement. We do not wish to inject further confusion into
the issue of nomenclature; still, we find it helpful to use as simple a naming system as
possible. We shall refer to E as the electric field, H as the magnetic field, D as the electric
flux density and B as the magnetic flux density. When we use the term electromagnetic
field we imply the entire set of field vectors (E, D, B, H) used in Maxwell’s theory.

Invariance of Maxwell’s equations. Maxwell’s differential equations are valid for
any system in uniform relative motion with respect to the laboratory frame of reference in
which we normally do our measurements. The field equations describe the relationships
between the source and mediating fields within that frame of reference. This property
was first proposed for moving material media by Minkowski in 1908 (using the term
covariance) [130]. For this reason, Maxwell’s equations expressed in the form (2.1)–(2.2)
are referred to as the Minkowski form.

2.1.2 Connection to mechanics

Our postulate must include a connection between the abstract quantities of charge and
field and a measurable physical quantity. A convenient means of linking electromagnetics
to other classical theories is through mechanics. We postulate that charges experience
mechanical forces given by the Lorentz force equation. If a small volume element dV
contains a total charge ρ dV , then the force experienced by that charge when moving at
velocity v in an electromagnetic field is

dF = ρ dV E + ρv dV × B. (2.6)

As with any postulate, we verify this equation through experiment. Note that we write
the Lorentz force in terms of charge ρ dV , rather than charge density ρ, since charge is
an invariant quantity under a Lorentz transformation.

The important links between the electromagnetic fields and energy and momentum
must also be postulated. We postulate that the quantity

Sem = E × H (2.7)

represents the transport density of electromagnetic power, and that the quantity

gem = D × B (2.8)

represents the transport density of electromagnetic momentum.



2.2 The well-posed nature of the postulate

It is important to investigate whether Maxwell’s equations, along with the point form
of the continuity equation, suffice as a useful theory of electromagnetics. Certainly we
must agree that a theory is “useful” as long as it is defined as such by the scientists and
engineers who employ it. In practice a theory is considered useful if it predicts accurately
the behavior of nature under given circumstances, and even a theory that often fails may
be useful if it is the best available. We choose here to take a more narrow view and
investigate whether the theory is “well-posed.”

A mathematical model for a physical problem is said to be well-posed , or correctly set,
if three conditions hold:

1. the model has at least one solution (existence);
2. the model has at most one solution (uniqueness);
3. the solution is continuously dependent on the data supplied.

The importance of the first condition is obvious: if the electromagnetic model has no
solution, it will be of little use to scientists and engineers. The importance of the second
condition is equally obvious: if we apply two different solution methods to the same
model and get two different answers, the model will not be very helpful in analysis or
design work. The third point is more subtle; it is often extended in a practical sense to
the following statement:

3′. Small changes in the data supplied produce equally small changes in the solution.

That is, the solution is not sensitive to errors in the data. To make sense of this we
must decide which quantity is specified (the independent quantity) and which remains
to be calculated (the dependent quantity). Commonly the source field (charge) is taken
as the independent quantity, and the mediating (electromagnetic) field is computed from
it; in such cases it can be shown that Maxwell’s equations are well-posed. Taking the
electromagnetic field to be the independent quantity, we can produce situations in which
the computed quantity (charge or current) changes wildly with small changes in the
specified fields. These situations (called inverse problems) are of great importance in
remote sensing, where the field is measured and the properties of the object probed are
thereby deduced.

At this point we shall concentrate on the “forward” problem of specifying the source
field (charge) and computing the mediating field (the electromagnetic field). In this case
we may question whether the first of the three conditions (existence) holds. We have
twelve unknown quantities (the scalar components of the four vector fields), but only
eight equations to describe them (from the scalar components of the two fundamental
Maxwell equations and the two scalar auxiliary equations). With fewer equations than
unknowns we cannot be sure that a solution exists, and we refer to Maxwell’s equations
as being indefinite. To overcome this problem we must specify more information in
the form of constitutive relations among the field quantities E, B, D, H, and J. When
these are properly formulated, the number of unknowns and the number of equations
are equal and Maxwell’s equations are in definite form. If we provide more equations
than unknowns, the solution may be non-unique. When we model the electromagnetic
properties of materials we must supply precisely the right amount of information in the
constitutive relations, or our postulate will not be well-posed.



Once Maxwell’s equations are in definite form, standard methods for partial differential
equations can be used to determine whether the electromagnetic model is well-posed. In
a nutshell, the system (2.1)–(2.2) of hyperbolic differential equations is well-posed if and
only if we specify E and H throughout a volume region V at some time instant and also
specify, at all subsequent times,

1. the tangential component of E over all of the boundary surface S, or
2. the tangential component of H over all of S, or
3. the tangential component of E over part of S, and the tangential component of H

over the remainder of S.

Proof of all three of the conditions of well-posedness is quite tedious, but a simplified
uniqueness proof is often given in textbooks on electromagnetics. The procedure used
by Stratton [187] is reproduced below. The interested reader should refer to Hansen [81]
for a discussion of the existence of solutions to Maxwell’s equations.

2.2.1 Uniqueness of solutions to Maxwell’sequations

Consider a simply connected region of space V bounded by a surface S, where both
V and S contain only ordinary points. The fields within V are associated with a current
distribution J, which may be internal to V (entirely or in part). By the initial conditions
that imply the auxiliary Maxwell’s equations, we know there is a time, say t = 0, prior
to which the current is zero for all time, and thus by causality the fields throughout V
are identically zero for all times t < 0. We next assume that the fields are specified
throughout V at some time t0 > 0, and seek conditions under which they are determined
uniquely for all t > t0.

Let the field set (E1, D1, B1, H1) be a solution to Maxwell’s equations (2.1)–(2.2)
associated with the current J (along with an appropriate set of constitutive relations),
and let (E2, D2, B2, H2) be a second solution associated with J. To determine the con-
ditions for uniqueness of the fields, we look for a situation that results in E1 = E2,
B1 = B2, and so on. The electromagnetic fields must obey

∇ × E1 = −∂B1

∂t
,

∇ × H1 = J + ∂D1

∂t
,

∇ × E2 = −∂B2

∂t
,

∇ × H2 = J + ∂D2

∂t
.

Subtracting, we have

∇ × (E1 − E2) = −∂(B1 − B2)

∂t
, (2.9)

∇ × (H1 − H2) = ∂(D1 − D2)

∂t
, (2.10)

hence defining E0 = E1 − E2, B0 = B1 − B2, and so on, we have

E0 · (∇ × H0) = E0 · ∂D0

∂t
, (2.11)

H0 · (∇ × E0) = −H0 · ∂B0

∂t
. (2.12)



Subtracting again, we have

E0 · (∇ × H0) − H0 · (∇ × E0) = H0 · ∂B0

∂t
+ E0 · ∂D0

∂t
,

hence

−∇ · (E0 × H0) = E0 · ∂D0

∂t
+ H0 · ∂B0

∂t

by (B.44). Integrating both sides throughout V and using the divergence theorem on the
left-hand side, we get

−
∮

S
(E0 × H0) · dS =

∫
V

(
E0 · ∂D0

∂t
+ H0 · ∂B0

∂t

)
dV .

Breaking S into two arbitrary portions and using (B.6), we obtain∫
S1

E0 · (n̂ × H0) d S −
∫

S2

H0 · (n̂ × E0) d S =
∫

V

(
E0 · ∂D0

∂t
+ H0 · ∂B0

∂t

)
dV .

Now if n̂ × E0 = 0 or n̂ × H0 = 0 over all of S, or some combination of these conditions
holds over all of S, then ∫

V

(
E0 · ∂D0

∂t
+ H0 · ∂B0

∂t

)
dV = 0. (2.13)

This expression implies a relationship between E0, D0, B0, and H0. Since V is arbitrary,
we see that one possibility is simply to have D0 and B0 constant with time. However,
since the fields are identically zero for t < 0, if they are constant for all time then those
constant values must be zero. Another possibility is to have one of each pair (E0, D0)

and (H0, B0) equal to zero. Then, by (2.9) and (2.10), E0 = 0 implies B0 = 0, and
D0 = 0 implies H0 = 0. Thus E1 = E2, B1 = B2, and so on, and the solution is unique
throughout V . However, we cannot in general rule out more complicated relationships.
The number of possibilities depends on the additional constraints on the relationship
between E0, D0, B0, and H0 that we must supply to describe the material supporting
the field — i.e., the constitutive relationships. For a simple medium described by the
time-constant permittivity ε and permeability µ, (13) becomes∫

V

(
E0 · ε

∂E0

∂t
+ H0 · µ

∂H0

∂t

)
dV = 0,

or

1

2

∂

∂t

∫
V
(εE0 · E0 + µH0 · H0) dV = 0.

Since the integrand is always positive or zero (and not constant with time, as mentioned
above), the only possible conclusion is that E0 and H0 must both be zero, and thus the
fields are unique.

When establishing more complicated constitutive relations, we must be careful to en-
sure that they lead to a unique solution, and that the condition for uniqueness is un-
derstood. In the case above, the assumption n̂ × E0

∣∣
S

= 0 implies that the tangential
components of E1 and E2 are identical over S — that is, we must give specific values of
these quantities on S to ensure uniqueness. A similar statement holds for the condition
n̂ × H0

∣∣
S

= 0. Requiring that constitutive relations lead to a unique solution is known



as just setting, and is one of several factors that must be considered, as discussed in the
next section.

Uniqueness implies that the electromagnetic state of an isolated region of space may
be determined without the knowledge of conditions outside the region. If we wish to
solve Maxwell’s equations for that region, we need know only the source density within
the region and the values of the tangential fields over the bounding surface. The effects
of a complicated external world are thus reduced to the specification of surface fields.
This concept has numerous applications to problems in antennas, diffraction, and guided
waves.

2.2.2 Constitutive relations

We now supply a set of constitutive relations to complete the conditions for well-
posedness. We generally split these relations into two sets. The first describes the
relationships between the electromagnetic field quantities, and the second describes me-
chanical interaction between the fields and resulting secondary sources. All of these
relations depend on the properties of the medium supporting the electromagnetic field.
Material phenomena are quite diverse, and it is remarkable that the Maxwell–Minkowski
equations hold for all phenomena yet discovered. All material effects, from nonlinearity
to chirality to temporal dispersion, are described by the constitutive relations.

The specification of constitutive relationships is required in many areas of physical
science to describe the behavior of “ideal materials”: mathematical models of actual
materials encountered in nature. For instance, in continuum mechanics the constitutive
equations describe the relationship between material motions and stress tensors [209].
Truesdell and Toupin [199] give an interesting set of “guiding principles” for the con-
cerned scientist to use when constructing constitutive relations. These include consider-
ation of consistency (with the basic conservation laws of nature), coordinate invariance
(independence of coordinate system), isotropy and aeolotropy (dependence on, or inde-
pendence of, orientation), just setting (constitutive parameters should lead to a unique
solution), dimensional invariance (similarity), material indifference (non-dependence on
the observer), and equipresence (inclusion of all relevant physical phenomena in all of
the constitutive relations across disciplines).

The constitutive relations generally involve a set of constitutive parameters and a set
of constitutive operators. The constitutive parameters may be as simple as constants
of proportionality between the fields or they may be components in a dyadic relation-
ship. The constitutive operators may be linear and integro-differential in nature, or may
imply some nonlinear operation on the fields. If the constitutive parameters are spa-
tially constant within a certain region, we term the medium homogeneous within that
region. If the constitutive parameters vary spatially, the medium is inhomogeneous. If
the constitutive parameters are constants with time, we term the medium stationary ;
if they are time-changing, the medium is nonstationary. If the constitutive operators
involve time derivatives or integrals, the medium is said to be temporally dispersive; if
space derivatives or integrals are involved, the medium is spatially dispersive. Examples
of all these effects can be found in common materials. It is important to note that the
constitutive parameters may depend on other physical properties of the material, such
as temperature, mechanical stress, and isomeric state, just as the mechanical constitu-
tive parameters of a material may depend on the electromagnetic properties (principle
of equipresence).

Many effects produced by linear constitutive operators, such as those associated with



temporal dispersion, have been studied primarily in the frequency domain. In this case
temporal derivative and integral operations produce complex constitutive parameters. It
is becoming equally important to characterize these effects directly in the time domain
for use with direct time-domain field solving techniques such as the finite-difference time-
domain (FDTD) method. We shall cover the very basic properties of dispersive media
in this section. A detailed description of frequency-domain fields (and a discussion of
complex constitutive parameters) is deferred until later in this book.

It is difficult to find a simple and consistent means for classifying materials by their
electromagnetic effects. One way is to separate linear and nonlinear materials, then cate-
gorize linear materials by the way in which the fields are coupled through the constitutive
relations:

1. Isotropic materials are those in which D is related to E, B is related to H, and
the secondary source current J is related to E, with the field direction in each pair
aligned.

2. In anisotropic materials the pairings are the same, but the fields in each pair are
generally not aligned.

3. In biisotropic materials (such as chiral media) the fields D and B depend on both
E and H, but with no realignment of E or H; for instance, D is given by the
addition of a scalar times E plus a second scalar times H. Thus the contributions
to D involve no changes to the directions of E and H.

4. Bianisotropic materials exhibit the most general behavior: D and H depend on both
E and B, with an arbitrary realignment of either or both of these fields.

In 1888, Roentgen showed experimentally that a material isotropic in its own station-
ary reference frame exhibits bianisotropic properties when observed from a moving frame.
Only recently have materials bianisotropic in their own rest frame been discovered. In
1894 Curie predicted that in a stationary material, based on symmetry, an electric field
might produce magnetic effects and a magnetic field might produce electric effects. These
effects, coined magnetoelectric by Landau and Lifshitz in 1957, were sought unsuccess-
fully by many experimentalists during the first half of the twentieth century. In 1959 the
Soviet scientist I.E. Dzyaloshinskii predicted that, theoretically, the antiferromagnetic
material chromium oxide (Cr2O3) should display magnetoelectric effects. The magneto-
electric effect was finally observed soon after by D.N. Astrov in a single crystal of Cr2O3

using a 10 kHz electric field. Since then the effect has been observed in many different
materials. Recently, highly exotic materials with useful electromagnetic properties have
been proposed and studied in depth, including chiroplasmas and chiroferrites [211]. As
the technology of materials synthesis advances, a host of new and intriguing media will
certainly be created.

The most general forms of the constitutive relations between the fields may be written
in symbolic form as

D = D[E, B], (2.14)
H = H[E, B]. (2.15)

That is, D and H have some mathematically descriptive relationship to E and B. The
specific forms of the relationships may be written in terms of dyadics as [102]

cD = P̄ · E + L̄ · (cB), (2.16)
H = M̄ · E + Q̄ · (cB), (2.17)



where each of the quantities P̄, L̄, M̄, Q̄ may be dyadics in the usual sense, or dyadic
operators containing space or time derivatives or integrals, or some nonlinear operations
on the fields. We may write these expressions as a single matrix equation[

cD
H

]
= [C̄]

[
E
cB

]
(2.18)

where the 6 × 6 matrix

[C̄] =
[

P̄ L̄
M̄ Q̄

]
.

This most general relationship between fields is the property of a bianisotropic material.
We may wonder why D is not related to (E, B, H), E to (D, B), etc. The reason is

that since the field pairs (E, B) and (D, H) convert identically under a Lorentz transfor-
mation, a constitutive relation that maps fields as in (2.18) is form invariant, as are the
Maxwell–Minkowski equations. That is, although the constitutive parameters may vary
numerically between observers moving at different velocities, the form of the relationship
given by (2.18) is maintained.

Many authors choose to relate (D, B) to (E, H), often because the expressions are
simpler and can be more easily applied to specific problems. For instance, in a linear,
isotropic material (as shown below) D is directly proportional to E and B is directly
proportional to H. To provide the appropriate expression for the constitutive relations,
we need only remap (2.18). This gives

D = ε̄ · E + ξ̄ · H, (2.19)
B = ζ̄ · E + µ̄ · H, (2.20)

or [
D
B

]
= [

C̄E H
] [

E
H

]
, (2.21)

where the new constitutive parameters ε̄, ξ̄, ζ̄, µ̄ can be easily found from the original
constitutive parameters P̄, L̄, M̄, Q̄. We do note, however, that in the form (2.19)–(2.20)
the Lorentz invariance of the constitutive equations is not obvious.

In the following paragraphs we shall characterize some of the most common materials
according to these classifications. With this approach effects such as temporal or spatial
dispersion are not part of the classification process, but arise from the nature of the
constitutive parameters. Hence we shall not dwell on the particulars of the constitutive
parameters, but shall concentrate on the form of the constitutive relations.

Constitutive relations for fields in free space. In a vacuum the fields are related
by the simple constitutive equations

D = ε0E, (2.22)

H = 1

µ0
B. (2.23)

The quantities µ0 and ε0 are, respectively, the free-space permeability and permittivity
constants. It is convenient to use three numerical quantities to describe the electromag-
netic properties of free space — µ0, ε0, and the speed of light c — and interrelate them
through the equation

c = 1/(µ0ε0)
1/2.



Historically it has been the practice to define µ0, measure c, and compute ε0. In SI units

µ0 = 4π × 10−7 H/m,

c = 2.998 × 108 m/s,
ε0 = 8.854 × 10−12 F/m.

With the two constitutive equations we have enough information to put Maxwell’s
equations into definite form. Traditionally (2.22) and (2.23) are substituted into (2.1)–
(2.2) to give

∇ × E = −∂B
∂t

, (2.24)

∇ × B = µ0J + µ0ε0
∂E
∂t

. (2.25)

These are two vector equations in two vector unknowns (equivalently, six scalar equations
in six scalar unknowns).

In terms of the general constitutive relation (2.18), we find that free space is isotropic
with

P̄ = Q̄ = 1

η0
Ī, L̄ = M̄ = 0,

where η0 = (µ0/ε0)
1/2 is called the intrinsic impedance of free space. This emphasizes

the fact that free space has, along with c, only a single empirical constant associated
with it (i.e., ε0 or η0). Since no derivative or integral operators appear in the constitutive
relations, free space is nondispersive.

Constitutive relations in a linear isotropic material. In a linear isotropic mate-
rial there is proportionality between D and E and between B and H. The constants of
proportionality are the permittivity ε and the permeability µ. If the material is nondis-
persive, the constitutive relations take the form

D = εE, B = µH,

where ε and µ may depend on position for inhomogeneous materials. Often the permit-
tivity and permeability are referenced to the permittivity and permeability of free space
according to

ε = εrε0, µ = µrµ0.

Here the dimensionless quantities εr and µr are called, respectively, the relative permit-
tivity and relative permeability.

When dealing with the Maxwell–Boffi equations (§ 2.4) the difference between the
material and free space values of D and H becomes important. Thus for linear isotropic
materials we often write the constitutive relations as

D = ε0E + ε0χeE, (2.26)
B = µ0H + µ0χmH, (2.27)

where the dimensionless quantities χe = εr − 1 and χm = µr − 1 are called, respectively,
the electric and magnetic susceptibilities of the material. In terms of (2.18) we have

P̄ = εr

η0
Ī, Q̄ = 1

η0µr
Ī, L̄ = M̄ = 0.



Generally a material will have either its electric or magnetic properties dominant. If
µr = 1 and εr 
= 1 then the material is generally called a perfect dielectric or a perfect
insulator, and is said to be an electric material. If εr = 1 and µr 
= 1, the material is
said to be a magnetic material.

A linear isotropic material may also have conduction properties. In a conducting
material, a constitutive relation is generally used to describe the mechanical interaction
of field and charge by relating the electric field to a secondary electric current. For
a nondispersive isotropic material, the current is aligned with, and proportional to, the
electric field; there are no temporal operators in the constitutive relation, which is simply

J = σE. (2.28)

This is known as Ohm’s law. Here σ is the conductivity of the material.
If µr ≈ 1 and σ is very small, the material is generally called a good dielectric. If

σ is very large, the material is generally called a good conductor. The conditions by
which we say the conductivity is “small” or “large” are usually established using the
frequency response of the material. Materials that are good dielectrics over broad ranges
of frequency include various glasses and plastics such as fused quartz, polyethylene,
and teflon. Materials that are good conductors over broad ranges of frequency include
common metals such as gold, silver, and copper.

For dispersive linear isotropic materials, the constitutive parameters become nonsta-
tionary (time dependent), and the constitutive relations involve time operators. (Note
that the name dispersive describes the tendency for pulsed electromagnetic waves to
spread out, or disperse, in materials of this type.) If we assume that the relationships
given by (2.26), (2.27), and (2.28) retain their product form in the frequency domain,
then by the convolution theorem we have in the time domain the constitutive relations

D(r, t) = ε0

(
E(r, t) +

∫ t

−∞
χe(r, t − t ′)E(r, t ′) dt ′

)
, (2.29)

B(r, t) = µ0

(
H(r, t) +

∫ t

−∞
χm(r, t − t ′)H(r, t ′) dt ′

)
, (2.30)

J(r, t) =
∫ t

−∞
σ(r, t − t ′)E(r, t ′) dt ′. (2.31)

These expressions were first introduced by Volterra in 1912 [199]. We see that for a linear
dispersive material of this type the constitutive operators are time integrals, and that
the behavior of D(t) depends not only on the value of E at time t , but on its values at
all past times. Thus, in dispersive materials there is a “time lag” between the effect of
the applied field and the polarization or magnetization that results. In the frequency
domain, temporal dispersion is associated with complex values of the constitutive pa-
rameters, which, to describe a causal relationship, cannot be constant with frequency.
The nonzero imaginary component is identified with the dissipation of electromagnetic
energy as heat. Causality is implied by the upper limit being t in the convolution inte-
grals, which indicates that D(t) cannot depend on future values of E(t). This assumption
leads to a relationship between the real and imaginary parts of the frequency domain
constitutive parameters as described through the Kronig–Kramers equations.

Constitutive relations for fields in perfect conductors. In a perfect electric con-
ductor (PEC) or a perfect magnetic conductor (PMC) the fields are exactly specified as



the null field:

E = D = B = H = 0.

By Ampere’s and Faraday’s laws we must also have J = Jm = 0; hence, by the continuity
equation, ρ = ρm = 0.

In addition to the null field, we have the condition that the tangential electric field
on the surface of a PEC must be zero. Similarly, the tangential magnetic field on the
surface of a PMC must be zero. This implies (§ 2.8.3) that an electric surface current
may exist on the surface of a PEC but not on the surface of a PMC, while a magnetic
surface current may exist on the surface of a PMC but not on the surface of a PEC.

A PEC may be regarded as the limit of a conducting material as σ → ∞. In many
practical cases, good conductors such as gold and copper can be assumed to be perfect
electric conductors, which greatly simplifies the application of boundary conditions. No
physical material is known to behave as a PMC, but the concept is mathematically
useful for applying symmetry conditions (in which a PMC is sometimes referred to as a
“magnetic wall”) and for use in developing equivalence theorems.

Constitutive relations in a linear anisotropic material. In a linear anisotropic
material there are relationships between B and H and between D and E, but the field
vectors are not aligned as in the isotropic case. We can thus write

D = ε̄ · E, B = µ̄ · H, J = σ̄ · E,

where ε̄ is called the permittivity dyadic, µ̄ is the permeability dyadic, and σ̄ is the
conductivity dyadic. In terms of the general constitutive relation (2.18) we have

P̄ = cε̄, Q̄ = µ̄−1

c
, L̄ = M̄ = 0.

Many different types of materials demonstrate anisotropic behavior, including opti-
cal crystals, magnetized plasmas, and ferrites. Plasmas and ferrites are examples of
gyrotropic media. With the proper choice of coordinate system, the frequency-domain
permittivity or permeability can be written in matrix form as

[ ˜̄ε] =

 ε11 ε12 0

−ε12 ε11 0
0 0 ε33


 , [ ˜̄µ] =


 µ11 µ12 0

−µ12 µ11 0
0 0 µ33


 . (2.32)

Each of the matrix entries may be complex. For the special case of a lossless gyrotropic
material, the matrices become hermitian:

[ ˜̄ε] =

 ε − jδ 0

jδ ε 0
0 0 ε3


 , [ ˜̄µ] =


 µ − jκ 0

jκ µ 0
0 0 µ3


 , (2.33)

where ε, ε3, δ, µ, µ3, and κ are real numbers.
Crystals have received particular attention because of their birefringent properties. A

birefringent crystal can be characterized by a symmetric permittivity dyadic that has real
permittivity parameters in the frequency domain; equivalently, the constitutive relations
do not involve constitutive operators. A coordinate system called the principal system,
with axes called the principal axes, can always be found so that the permittivity dyadic
in that system is diagonal:

[ ˜̄ε] =

 εx 0 0

0 εy 0
0 0 εz


 .



The geometrical structure of a crystal determines the relationship between εx , εy , and
εz . If εx = εy < εz , then the crystal is positive uniaxial (e.g., quartz). If εx = εy > εz ,
the crystal is negative uniaxial (e.g., calcite). If εx 
= εy 
= εz , the crystal is biaxial (e.g.,
mica). In uniaxial crystals the z-axis is called the optical axis.

If the anisotropic material is dispersive, we can generalize the convolutional form of
the isotropic dispersive media to obtain the constitutive relations

D(r, t) = ε0

(
E(r, t) +

∫ t

−∞
χ̄e(r, t − t ′) · E(r, t ′) dt ′

)
, (2.34)

B(r, t) = µ0

(
H(r, t) +

∫ t

−∞
χ̄m(r, t − t ′) · H(r, t ′) dt ′

)
, (2.35)

J(r, t) =
∫ t

−∞
σ̄(r, t − t ′) · E(r, t ′) dt ′. (2.36)

Constitutive relations for biisotropic materials. A biisotropic material is an
isotropic magnetoelectric material. Here we have D related to E and B, and H related to
E and B, but with no realignment of the fields as in anisotropic (or bianisotropic) mate-
rials. Perhaps the simplest example is the Tellegen medium devised by B.D.H. Tellegen
in 1948 [196], having

D = εE + ξH, (2.37)
B = ξE + µH. (2.38)

Tellegen proposed that his hypothetical material be composed of small (but macroscopic)
ferromagnetic particles suspended in a liquid. This is an example of a synthetic mate-
rial, constructed from ordinary materials to have an exotic electromagnetic behavior.
Other examples include artificial dielectrics made from metallic particles imbedded in
lightweight foams [66], and chiral materials made from small metallic helices suspended
in resins [112].

Chiral materials are also biisotropic, and have the constitutive relations

D = εE − χ
∂H
∂t

, (2.39)

B = µH + χ
∂E
∂t

, (2.40)

where the constitutive parameter χ is called the chirality parameter. Note the presence
of temporal derivative operators. Alternatively,

D = ε(E + β∇ × E), (2.41)
B = µ(H + β∇ × H), (2.42)

by Faraday’s and Ampere’s laws. Chirality is a natural state of symmetry; many natural
substances are chiral materials, including DNA and many sugars. The time derivatives
in (2.39)–(2.40) produce rotation of the polarization of time harmonic electromagnetic
waves propagating in chiral media.

Constitutive relations in nonlinear media. Nonlinear electromagnetic effects have
been studied by scientists and engineers since the beginning of the era of electrical tech-
nology. Familiar examples include saturation and hysteresis in ferromagnetic materials



and the behavior of p-n junctions in solid-state rectifiers. The invention of the laser
extended interest in nonlinear effects to the realm of optics, where phenomena such as
parametric amplification and oscillation, harmonic generation, and magneto-optic inter-
actions have found applications in modern devices [174].

Provided that the external field applied to a nonlinear electric material is small com-
pared to the internal molecular fields, the relationship between E and D can be expanded
in a Taylor series of the electric field. For an anisotropic material exhibiting no hysteresis
effects, the constitutive relation is [131]

Di (r, t) = ε0 Ei (r, t) +
3∑

j=1

χ
(1)
i j E j (r, t) +

3∑
j,k=1

χ
(2)
i jk E j (r, t)Ek(r, t) +

+
3∑

j,k,l=1

χ
(3)
i jkl E j (r, t)Ek(r, t)El(r, t) + · · · (2.43)

where the index i = 1, 2, 3 refers to the three components of the fields D and E. The
first sum in (2.43) is identical to the constitutive relation for linear anisotropic materi-
als. Thus, χ

(1)
i j is identical to the susceptibility dyadic of a linear anisotropic medium

considered earlier. The quantity χ
(2)
i jk is called the second-order susceptibility, and is a

three-dimensional matrix (or third rank tensor) describing the nonlinear electric effects
quadratic in E. Similarly χ

(3)
i jkl is called the third-order susceptibility, and is a four-

dimensional matrix (or fourth rank tensor) describing the nonlinear electric effects cubic
in E. Numerical values of χ

(2)
i jk and χ

(3)
i jkl are given in Shen [174] for a variety of crystals.

When the material shows hysteresis effects, D at any point r and time t is due not only
to the value of E at that point and at that time, but to the values of E at all points and
times. That is, the material displays both temporal and spatial dispersion.

2.3 Maxwell’s equations in moving frames

The essence of special relativity is that the mathematical forms of Maxwell’s equa-
tions are identical in all inertial reference frames: frames moving with uniform velocities
relative to the laboratory frame of reference in which we perform our measurements.
This form invariance of Maxwell’s equations is a specific example of the general physical
principle of covariance. In the laboratory frame we write the differential equations of
Maxwell’s theory as

∇ × E(r, t) = −∂B(r, t)

∂t
,

∇ × H(r, t) = J(r, t) + ∂D(r, t)

∂t
,

∇ · D(r, t) = ρ(r, t),

∇ · B(r, t) = 0,

∇ · J(r, t) = −∂ρ(r, t)

∂t
.



Figure 2.1: Primed coordinate system moving with velocity v relative to laboratory
(unprimed) coordinate system.

Similarly, in an inertial frame having four-dimensional coordinates (r′, t ′) we have

∇′ × E′(r′, t ′) = −∂B′(r′, t ′)
∂t ′ ,

∇′ × H′(r′, t ′) = J′(r′, t ′) + ∂D′(r′, t ′)
∂t ′ ,

∇′ · D′(r′, t ′) = ρ ′(r′, t ′),
∇′ · B′(r′, t ′) = 0,

∇′ · J′(r′, t ′) = −∂ρ ′(r′, t ′)
∂t ′ .

The primed fields measured in the moving system do not have the same numerical values
as the unprimed fields measured in the laboratory. To convert between E and E′, B and
B′, and so on, we must find a way to convert between the coordinates (r, t) and (r′, t ′).

2.3.1 Field conversions under Galilean transformation

We shall assume that the primed coordinate system moves with constant velocity v
relative to the laboratory frame (Figure 2.1). Prior to the early part of the twentieth
century, converting between the primed and unprimed coordinate variables was intuitive
and obvious: it was thought that time must be measured identically in each coordinate
system, and that the relationship between the space variables can be determined simply
by the displacement of the moving system at time t = t ′. Under these assumptions, and
under the further assumption that the two systems coincide at time t = 0, we can write

t ′ = t, x ′ = x − vx t, y′ = y − vyt, z′ = z − vz t,

or simply

t ′ = t, r′ = r − vt.

This is called a Galilean transformation. We can use the chain rule to describe the
manner in which differential operations transform, i.e., to relate derivatives with respect
to the laboratory coordinates to derivatives with respect to the inertial coordinates. We
have, for instance,

∂

∂t
= ∂t ′

∂t

∂

∂t ′ + ∂x ′

∂t

∂

∂x ′ + ∂y′

∂t

∂

∂y′ + ∂z′

∂t

∂

∂z′



= ∂

∂t ′ − vx
∂

∂x ′ − vy
∂

∂y′ − vz
∂

∂z′

= ∂

∂t ′ − (v · ∇′). (2.44)

Similarly

∂

∂x
= ∂

∂x ′ ,
∂

∂y
= ∂

∂y′ ,
∂

∂z
= ∂

∂z′ ,

from which

∇ × A(r, t) = ∇′ × A(r, t), ∇ · A(r, t) = ∇′ · A(r, t), (2.45)

for each vector field A.
Newton was aware that the laws of mechanics are invariant with respect to Galilean

transformations. Do Maxwell’s equations also behave in this way? Let us use the Galilean
transformation to determine which relationship between the primed and unprimed fields
results in form invariance of Maxwell’s equations. We first examine ∇′×E, the spatial rate
of change of the laboratory field with respect to the inertial frame spatial coordinates:

∇′ × E = ∇ × E = −∂B
∂t

= −∂B
∂t ′ + (v · ∇′)B

by (2.45) and (2.44). Rewriting the last term by (B.45) we have

(v · ∇′)B = −∇′ × (v × B)

since v is constant and ∇′ · B = ∇ · B = 0, hence

∇′ × (E + v × B) = −∂B
∂t ′ . (2.46)

Similarly

∇′ × H = ∇ × H = J + ∂D
∂t

= J + ∂D
∂t ′ + ∇′ × (v × D) − v(∇′ · D)

where ∇′ · D = ∇ · D = ρ so that

∇′ × (H − v × D) = ∂D
∂t ′ − ρv + J. (2.47)

Also

∇′ · J = ∇ · J = −∂ρ

∂t
= − ∂ρ

∂t ′ + (v · ∇′)ρ

and we may use (B.42) to write

(v · ∇′)ρ = v · (∇′ρ) = ∇′ · (ρv),

obtaining

∇′ · (J − ρv) = − ∂ρ

∂t ′ . (2.48)



Equations (2.46), (2.47), and (2.48) show that the forms of Maxwell’s equations in the
inertial and laboratory frames are identical provided that

E′ = E + v × B, (2.49)
D′ = D, (2.50)
H′ = H − v × D, (2.51)
B′ = B, (2.52)
J′ = J − ρv, (2.53)
ρ ′ = ρ. (2.54)

That is, (2.49)–(2.54) result in form invariance of Faraday’s law, Ampere’s law, and the
continuity equation under a Galilean transformation. These equations express the fields
measured by a moving observer in terms of those measured in the laboratory frame. To
convert the opposite way, we need only use the principle of relativity. Neither observer
can tell whether he or she is stationary — only that the other observer is moving relative
to him or her. To obtain the fields in the laboratory frame we simply change the sign on
v and swap primed with unprimed fields in (2.49)–(2.54):

E = E′ − v × B′, (2.55)
D = D′, (2.56)
H = H′ + v × D′, (2.57)
B = B′, (2.58)
J = J′ + ρ ′v, (2.59)
ρ = ρ ′. (2.60)

According to (2.53), a moving observer interprets charge stationary in the laboratory
frame as an additional current moving opposite the direction of his or her motion. This
seems reasonable. However, while E depends on both E′ and B′, the field B is unchanged
under the transformation. Why should B have this special status? In fact, we may
uncover an inconsistency among the transformations by considering free space where
(2.22) and (2.23) hold: in this case (2.49) gives

D′/ε0 = D/ε0 + v × µ0H

or

D′ = D + v × H/c2

rather than (2.50). Similarly, from (2.51) we get

B′ = B − v × E/c2

instead of (2.52). Using these, the set of transformations becomes

E′ = E + v × B, (2.61)
D′ = D + v × H/c2, (2.62)
H′ = H − v × D, (2.63)
B′ = B − v × E/c2, (2.64)
J′ = J − ρv, (2.65)
ρ ′ = ρ. (2.66)



These can also be written using dyadic notation as

E′ = Ī · E + β̄ · (cB), (2.67)
cB′ = −β̄ · E + Ī · (cB), (2.68)

and

cD′ = Ī · (cD) + β̄ · H, (2.69)
H′ = −β̄ · (cD) + Ī · H, (2.70)

where

[β̄] =

 0 −βz βy

βz 0 −βx

−βy βx 0




with β = v/c. This set of equations is self-consistent among Maxwell’s equations. How-
ever, the equations are not consistent with the assumption of a Galilean transformation
of the coordinates, and thus Maxwell’s equations are not covariant under a Galilean
transformation. Maxwell’s equations are only covariant under a Lorentz transforma-
tion as described in the next section. Expressions (2.61)–(2.64) turn out to be accurate
to order v/c, hence are the results of a first-order Lorentz transformation. Only when
v is an appreciable fraction of c do the field conversions resulting from the first-order
Lorentz transformation differ markedly from those resulting from a Galilean transforma-
tion; those resulting from the true Lorentz transformation require even higher velocities
to differ markedly from the first-order expressions. Engineering accuracy is often accom-
plished using the Galilean transformation. This pragmatic observation leads to quite a
bit of confusion when considering the large-scale forms of Maxwell’s equations, as we
shall soon see.

2.3.2 Field conversions under Lorentz transformation

To find the proper transformation under which Maxwell’s equations are covariant,
we must discard our notion that time progresses the same in the primed and the un-
primed frames. The proper transformation of coordinates that guarantees covariance of
Maxwell’s equations is the Lorentz transformation

ct ′ = γ ct − γβ · r, (2.71)
r′ = ᾱ · r − γβct, (2.72)

where

γ = 1√
1 − β2

, ᾱ = Ī + (γ − 1)
ββ

β2
, β = |β|.

This is obviously more complicated than the Galilean transformation; only as β → 0 are
the Lorentz and Galilean transformations equivalent.

Not surprisingly, field conversions between inertial reference frames are more com-
plicated with the Lorentz transformation than with the Galilean transformation. For
simplicity we assume that the velocity of the moving frame has only an x-component:
v = x̂v. Later we can generalize this to any direction. Equations (2.71) and (2.72)
become

x ′ = x + (γ − 1)x − γ vt, (2.73)



y′ = y, (2.74)
z′ = z, (2.75)

ct ′ = γ ct − γ
v

c
x, (2.76)

and the chain rule gives
∂

∂x
= γ

∂

∂x ′ − γ
v

c2

∂

∂t ′ , (2.77)

∂

∂y
= ∂

∂y′ , (2.78)

∂

∂z
= ∂

∂z′ , (2.79)

∂

∂t
= −γ v

∂

∂x ′ + γ
∂

∂t ′ . (2.80)

We begin by examining Faraday’s law in the laboratory frame. In component form we
have

∂ Ez

∂y
− ∂ Ey

∂z
= −∂ Bx

∂t
, (2.81)

∂ Ex

∂z
− ∂ Ez

∂x
= −∂ By

∂t
, (2.82)

∂ Ey

∂x
− ∂ Ex

∂y
= −∂ Bz

∂t
. (2.83)

These become
∂ Ez

∂y′ − ∂ Ey

∂z′ = γ v
∂ Bx

∂x ′ − γ
∂ Bx

∂t ′ , (2.84)

∂ Ex

∂z′ − γ
∂ Ez

∂x ′ + γ
v

c2

∂ Ez

∂t ′ = γ v
∂ By

∂x ′ − γ
∂ By

∂t ′ , (2.85)

γ
∂ Ey

∂x ′ − γ
v

c2

∂ Ey

∂t ′ − ∂ Ex

∂y′ = γ v
∂ Bz

∂x ′ − γ
∂ Bz

∂t ′ , (2.86)

after we use (2.77)–(2.80) to convert the derivatives in the laboratory frame to derivatives
with respect to the moving frame coordinates. To simplify (2.84) we consider

∇ · B = ∂ Bx

∂x
+ ∂ By

∂y
+ ∂ Bz

∂z
= 0.

Converting the laboratory frame coordinates to the moving frame coordinates, we have

γ
∂ Bx

∂x ′ − γ
v

c2

∂ Bx

∂t ′ + ∂ By

∂y′ + ∂ Bz

∂z′ = 0

or

−γ v
∂ Bx

∂x ′ = −γ
v2

c2

∂ Bx

∂t ′ + v
∂ By

∂y′ + v
∂ Bz

∂z′ .

Substituting this into (2.84) and rearranging (2.85) and (2.86), we obtain

∂

∂y′ γ (Ez + vBy) − ∂

∂z′ γ (Ey − vBz) = −∂ Bx

∂t ′ ,

∂ Ex

∂z′ − ∂

∂x ′ γ (Ez + vBy) = − ∂

∂t ′ γ
(

By + v

c2
Ez

)
,

∂

∂x ′ γ (Ey − vBz) − ∂ Ex

∂y′ = − ∂

∂t ′ γ
(

Bz − v

c2
Ey

)
.



Comparison with (2.81)–(2.83) shows that form invariance of Faraday’s law under the
Lorentz transformation requires

E ′
x = Ex , E ′

y = γ (Ey − vBz), E ′
z = γ (Ez + vBy),

and

B ′
x = Bx , B ′

y = γ
(

By + v

c2
Ez

)
, B ′

z = γ
(

Bz − v

c2
Ey

)
.

To generalize v to any direction, we simply note that the components of the fields parallel
to the velocity direction are identical in the moving and laboratory frames, while the
components perpendicular to the velocity direction convert according to a simple cross
product rule. After similar analyses with Ampere’s and Gauss’s laws (see Problem 2.2),
we find that

E′
‖ = E‖, B′

‖ = B‖, D′
‖ = D‖, H′

‖ = H‖,

E′
⊥ = γ (E⊥ + β × cB⊥), (2.87)

cB′
⊥ = γ (cB⊥ − β × E⊥), (2.88)

cD′
⊥ = γ (cD⊥ + β × H⊥), (2.89)

H′
⊥ = γ (H⊥ − β × cD⊥), (2.90)

and

J′
‖ = γ (J‖ − ρv), (2.91)

J′
⊥ = J⊥, (2.92)

cρ ′ = γ (cρ − β · J), (2.93)

where the symbols ‖ and ⊥ designate the components of the field parallel and perpen-
dicular to v, respectively.

These conversions are self-consistent, and the Lorentz transformation is the transfor-
mation under which Maxwell’s equations are covariant. If v2 � c2, then γ ≈ 1 and to
first order (2.87)–(2.93) reduce to (2.61)–(2.66). If v/c � 1, then the first-order fields
reduce to the Galilean fields (2.49)–(2.54).

To convert in the opposite direction, we can swap primed and unprimed fields and
change the sign on v:

E⊥ = γ (E′
⊥ − β × cB′

⊥), (2.94)
cB⊥ = γ (cB′

⊥ + β × E′
⊥), (2.95)

cD⊥ = γ (cD′
⊥ − β × H′

⊥), (2.96)
H⊥ = γ (H′

⊥ + β × cD′
⊥), (2.97)

and

J‖ = γ (J′
‖ + ρ ′v), (2.98)

J⊥ = J′
⊥, (2.99)

cρ = γ (cρ ′ + β · J′). (2.100)

The conversion formulas can be written much more succinctly in dyadic notation:

E′ = γ ᾱ−1 · E + γ β̄ · (cB), (2.101)
cB′ = −γ β̄ · E + γ ᾱ−1 · (cB), (2.102)



cD′ = γ ᾱ−1 · (cD) + γ β̄ · H, (2.103)
H′ = −γ β̄ · (cD) + γ ᾱ−1 · H, (2.104)

and

cρ ′ = γ (cρ − β · J), (2.105)
J′ = ᾱ · J − γβcρ, (2.106)

where ᾱ−1 · ᾱ = Ī, and thus ᾱ−1 = ᾱ − γββ.
Maxwell’s equations are covariant under a Lorentz transformation but not under a

Galilean transformation; the laws of mechanics are invariant under a Galilean transfor-
mation but not under a Lorentz transformation. How then should we analyze interactions
between electromagnetic fields and particles or materials? Einstein realized that the laws
of mechanics needed revision to make them Lorentz covariant: in fact, under his theory of
special relativity all physical laws should demonstrate Lorentz covariance. Interestingly,
charge is then Lorentz invariant, whereas mass is not (recall that invariance refers to a
quantity, whereas covariance refers to the form of a natural law). We shall not attempt
to describe all the ramifications of special relativity, but instead refer the reader to any
of the excellent and readable texts on the subject, including those by Bohm [14], Einstein
[62], and Born [18], and to the nice historical account by Miller [130]. However, we shall
examine the importance of Lorentz invariants in electromagnetic theory.

Lorentz invariants. Although the electromagnetic fields are not Lorentz invariant
(e.g., the numerical value of E measured by one observer differs from that measured by
another observer in uniform relative motion), several quantities do give identical values
regardless of the velocity of motion. Most fundamental are the speed of light and the
quantity of electric charge which, unlike mass, is the same in all frames of reference.
Other important Lorentz invariants include E · B, H · D, and the quantities

B · B − E · E/c2,

H · H − c2D · D,

B · H − E · D,

cB · D + E · H/c.

(See Problem 2.3.) To see the importance of these quantities, consider the special case
of fields in empty space. If E ·B = 0 in one reference frame, then it is zero in all reference
frames. Then if B · B − E · E/c2 = 0 in any reference frame, the ratio of E to B is
always c2 regardless of the reference frame in which the fields are measured. This is the
characteristic of a plane wave in free space.

If E · B = 0 and c2 B2 > E2, then we can find a reference frame using the conversion
formulas (2.101)–(2.106) (see Problem 2.5) in which the electric field is zero but the
magnetic field is nonzero. In this case we call the fields purely magnetic in any reference
frame, even if both E and B are nonzero. Similarly, if E · B = 0 and c2 B2 < E2 then
we can find a reference frame in which the magnetic field is zero but the electric field is
nonzero. We call fields of this type purely electric.

The Lorentz force is not Lorentz invariant. Consider a point charge at rest in the
laboratory frame. While we measure only an electric field in the laboratory frame, an
inertial observer measures both electric and magnetic fields. A test charge Q in the



laboratory frame experiences the Lorentz force F = QE; in an inertial frame the same
charge experiences F′ = QE′ + Qv × B′ (see Problem 2.6). The conversion formulas show
that F and F′ are not identical.

We see that both E and B are integral components of the electromagnetic field: the
separation of the field into electric and magnetic components depends on the motion
of the reference frame in which measurements are made. This has obvious implications
when considering static electric and magnetic fields.

Derivation of Maxwell’s equations from Coulomb’s law. Consider a point charge
at rest in the laboratory frame. If the magnetic component of force on this charge arises
naturally through motion of an inertial reference frame, and if this force can be expressed
in terms of Coulomb’s law in the laboratory frame, then perhaps the magnetic field can be
derived directly from Coulomb’s and the Lorentz transformation. Perhaps it is possible
to derive all of Maxwell’s theory with Coulomb’s law and Lorentz invariance as the only
postulates.

Several authors, notably Purcell [152] and Elliott [65], have used this approach. How-
ever, Jackson [91] has pointed out that many additional assumptions are required to
deduce Maxwell’s equations beginning with Coulomb’s law. Feynman [73] is critical of
the approach, pointing out that we must introduce a vector potential which adds to the
scalar potential from electrostatics in order to produce an entity that transforms accord-
ing to the laws of special relativity. In addition, the assumption of Lorentz invariance
seems to involve circular reasoning since the Lorentz transformation was originally in-
troduced to make Maxwell’s equations covariant. But Lucas and Hodgson [117] point
out that the Lorentz transformation can be deduced from other fundamental principles
(such as causality and the isotropy of space), and that the postulate of a vector potential
is reasonable. Schwartz [170] gives a detailed derivation of Maxwell’s equations from
Coulomb’s law, outlining the necessary assumptions.

Transformation of constitutive relations. Minkowski’s interest in the covariance of
Maxwell’s equations was aimed not merely at the relationship between fields in different
moving frames of reference, but at an understanding of the electrodynamics of moving
media. He wished to ascertain the effect of a moving material body on the electromagnetic
fields in some region of space. By proposing the covariance of Maxwell’s equations in
materials as well as in free space, he extended Maxwell’s theory to moving material
bodies.

We have seen in (2.101)–(2.104) that (E, cB) and (cD, H) convert identically under a
Lorentz transformation. Since the most general form of the constitutive relations relate
cD and H to the field pair (E, cB) (see § 2.2.2) as[

cD
H

]
= [

C̄
] [

E
cB

]
,

this form of the constitutive relations must be Lorentz covariant. That is, in the reference
frame of a moving material we have[

cD′

H′

]
= [

C̄′] [
E′

cB′

]
,

and should be able to convert [C̄′] to [C̄]. We should be able to find the constitutive
matrix describing the relationships among the fields observed in the laboratory frame.



It is somewhat laborious to obtain the constitutive matrix [C̄] for an arbitrary moving
medium. Detailed expressions for isotropic, bianisotropic, gyrotropic, and uniaxial media
are given by Kong [101]. The rather complicated expressions can be written in a more
compact form if we consider the expressions for B and D in terms of the pair (E, H).
For a linear isotropic material such that D′ = ε′E′ and B′ = µ′H′ in the moving frame,
the relationships in the laboratory frame are [101]

B = µ′Ā · H − Ω × E, (2.107)
D = ε′Ā · E + Ω × H, (2.108)

where

Ā = 1 − β2

1 − n2β2

[
Ī − n2 − 1

1 − β2
ββ

]
, (2.109)

Ω = n2 − 1

1 − n2β2

β

c
, (2.110)

and where n = c(µ′ε′)1/2 is the optical index of the medium. A moving material that
is isotropic in its own moving reference frame is bianisotropic in the laboratory frame.
If, for instance, we tried to measure the relationship between the fields of a moving
isotropic fluid, but used instruments that were stationary in our laboratory (e.g., attached
to our measurement bench) we would find that D depends not only on E but also on
H, and that D aligns with neither E nor H. That a moving material isotropic in its
own frame of reference is bianisotropic in the laboratory frame was known long ago.
Roentgen showed experimentally in 1888 that a dielectric moving through an electric
field becomes magnetically polarized, while H.A. Wilson showed in 1905 that a dielectric
moving through a magnetic field becomes electrically polarized [139].

If v2/c2 � 1, we can consider the form of the constitutive equations for a first-order
Lorentz transformation. Ignoring terms to order v2/c2 in (2.109) and (2.110), we obtain
Ā = Ī and Ω = v(n2 − 1)/c2. Then, by (2.107) and (2.108),

B = µ′H − (n2 − 1)
v × E

c2
, (2.111)

D = ε′E + (n2 − 1)
v × H

c2
. (2.112)

We can also derive these from the first-order field conversion equations (2.61)–(2.64).
From (2.61) and (2.62) we have

D′ = D + v × H/c2 = ε′E′ = ε′(E + v × B).

Eliminating B via (2.64), we have

D + v × H/c2 = ε′E + ε′v × (v × E/c2) + ε′v × B′ = ε′E + ε′v × B′

where we have neglected terms of order v2/c2. Since B′ = µ′H′ = µ′(H − v × D), we
have

D + v × H/c2 = ε′E + ε′µ′v × H − ε′µ′v × v × D.

Using n2 = c2µ′ε′ and neglecting the last term since it is of order v2/c2, we obtain

D = ε′E + (n2 − 1)
v × H

c2
,



which is identical to the expression (2.112) obtained by approximating the exact result
to first order. Similar steps produce (2.111). In a Galilean frame where v/c � 1, the
expressions reduce to D = ε′E and B = µ′H, and the isotropy of the fields is preserved.

For a conducting medium having

J′ = σ ′E′

in a moving reference frame, Cullwick [48] shows that in the laboratory frame

J = σ ′γ [Ī − ββ] · E + σ ′γ cβ × B.

For v � c we can set γ ≈ 1 and see that

J = σ ′(E + v × B)

to first order.

Constitutive relations in deforming or rotating media. The transformations
discussed in the previous paragraphs hold for media in uniform relative motion. When
a material body undergoes deformation or rotation, the concepts of special relativity are
not directly applicable. However, authors such as Pauli [144] and Sommerfeld [185] have
maintained that Minkowski’s theory is approximately valid for deforming or rotating
media if v is taken to be the instantaneous velocity at each point within the body.
The reasoning is that at any instant in time each point within the body has a velocity
v that may be associated with some inertial reference frame (generally different for
each point). Thus the constitutive relations for the material at that point, within some
small time interval taken about the observation time, may be assumed to be those of
a stationary material, and the relations measured by an observer within the laboratory
frame may be computed using the inertial frame for that point. This instantaneous rest-
frame theory is most accurate at small accelerations dv/dt . Van Bladel [201] outlines
its shortcomings. See also Anderson [3] and Mo [132] for detailed discussions of the
electromagnetic properties of material media in accelerating frames of reference.

2.4 The Maxwell–Boffi equations

In any version of Maxwell’s theory, the mediating field is the electromagnetic field
described by four field vectors. In Minkowski’s form of Maxwell’s equations we use E,
D, B, and H. As an alternative consider the electromagnetic field as represented by the
vector fields E, B, P, and M, and described by

∇ × E = −∂B
∂t

, (2.113)

∇ × (B/µ0 − M) = J + ∂

∂t
(ε0E + P), (2.114)

∇ · (ε0E + P) = ρ, (2.115)
∇ · B = 0. (2.116)

These Maxwell–Boffi equations are named after L. Boffi, who formalized them for moving
media [13]. The quantity P is the polarization vector , and M is the magnetization vector .



The use of P and M in place of D and H is sometimes called an application of the principle
of Ampere and Lorentz [199].

Let us examine the ramification of using (2.113)–(2.116) as the basis for a postulate
of electromagnetics. These equations are similar to the Maxwell–Minkowski equations
used earlier; must we rebuild all the underpinning of a new postulate, or can we use
our original arguments based on the Minkowski form? For instance, how do we invoke
uniqueness if we no longer have the field H? What represents the flux of energy, formerly
found using E×H? And, importantly, are (2.113)–(2.114) form invariant under a Lorentz
transformation?

It turns out that the set of vector fields (E, B, P, M) is merely a linear mapping of
the set (E, D, B, H). As pointed out by Tai [193], any linear mapping of the four field
vectors from Minkowski’s form onto any other set of four field vectors will preserve the
covariance of Maxwell’s equations. Boffi chose to keep E and B intact and to introduce
only two new fields; he could have kept H and D instead, or used a mapping that
introduced four completely new fields (as did Chu). Many authors retain E and H.
This is somewhat more cumbersome since these vectors do not convert as a pair under
a Lorentz transformation. A discussion of the idea of field vector “pairing” appears in
§ 2.6.

The usefulness of the Boffi form lies in the specific mapping chosen. Comparison of
(2.113)–(2.116) to (2.1)–(2.4) quickly reveals that

P = D − ε0E, (2.117)
M = B/µ0 − H. (2.118)

We see that P is the difference between D in a material and D in free space, while M is
the difference between H in free space and H in a material. In free space, P = M = 0.

Equivalent polarization and magnetization sources. The Boffi formulation pro-
vides a new way to regard E and B. Maxwell grouped (E, H) as a pair of “force vectors” to
be associated with line integrals (or curl operations in the point forms of his equations),
and (D, B) as a pair of “flux vectors” associated with surface integrals (or divergence
operations). That is, E is interpreted as belonging to the computation of “emf” as a line
integral, while B is interpreted as a density of magnetic “flux” passing through a surface.
Similarly, H yields the “mmf” about some closed path and D the electric flux through
a surface. The introduction of P and M allows us to also regard E as a flux vector and
B as a force vector — in essence, allowing the two fields E and B to take on the duties
that required four fields in Minkowski’s form. To see this, we rewrite the Maxwell–Boffi
equations as

∇ × E = −∂B
∂t

,

∇ × B
µ0

=
(

J + ∇ × M + ∂P
∂t

)
+ ∂ε0E

∂t
,

∇ · (ε0E) = (ρ − ∇ · P),

∇ · B = 0,

and compare them to the Maxwell–Minkowski equations for sources in free space:

∇ × E = −∂B
∂t

,



∇ × B
µ0

= J + ∂ε0E
∂t

,

∇ · (ε0E) = ρ,

∇ · B = 0.

The forms are preserved if we identify ∂P/∂t and ∇ × M as new types of current density,
and ∇ · P as a new type of charge density. We define

JP = ∂P
∂t

(2.119)

as an equivalent polarization current density, and

JM = ∇ × M

as an equivalent magnetization current density (sometimes called the equivalent Amperian
currents of magnetized matter [199]). We define

ρP = −∇ · P

as an equivalent polarization charge density (sometimes called the Poisson–Kelvin equiv-
alent charge distribution [199]). Then the Maxwell–Boffi equations become simply

∇ × E = −∂B
∂t

, (2.120)

∇ × B
µ0

= (J + JM + JP) + ∂ε0E
∂t

, (2.121)

∇ · (ε0E) = (ρ + ρP), (2.122)
∇ · B = 0. (2.123)

Here is the new view. A material can be viewed as composed of charged particles of
matter immersed in free space. When these charges are properly considered as “equiv-
alent” polarization and magnetization charges, all field effects (describable through flux
and force vectors) can be handled by the two fields E and B. Whereas in Minkowski’s
form D diverges from ρ, in Boffi’s form E diverges from a total charge density consisting
of ρ and ρP . Whereas in the Minkowski form H curls around J, in the Boffi form B curls
around the total current density consisting of J, JM , and JP .

This view was pioneered by Lorentz, who by 1892 considered matter as consisting of
bulk molecules in a vacuum that would respond to an applied electromagnetic field [130].
The resulting motion of the charged particles of matter then became another source
term for the “fundamental” fields E and B. Using this reasoning he was able to reduce
the fundamental Maxwell equations to two equations in two unknowns, demonstrating a
simplicity appealing to many (including Einstein). Of course, to apply this concept we
must be able to describe how the charged particles respond to an applied field. Simple
microscopic models of the constituents of matter are generally used: some combination
of electric and magnetic dipoles, or of loops of electric and magnetic current.

The Boffi equations are mathematically appealing since they now specify both the curl
and divergence of the two field quantities E and B. By the Helmholtz theorem we know
that a field vector is uniquely specified when both its curl and divergence are given. But
this assumes that the equivalent sources produced by P and M are true source fields in
the same sense as J. We have precluded this by insisting in Chapter 1 that the source
field must be independent of the mediating field it sources. If we view P and M as



merely a mapping from the original vector fields of Minkowski’s form, we still have four
vector fields with which to contend. And with these must also be a mapping of the
constitutive relationships, which now link the fields E, B, P, and M. Rather than argue
the actual physical existence of the equivalent sources, we note that a real benefit of
the new view is that under certain circumstances the equivalent source quantities can be
determined through physical reasoning, hence we can create physical models of P and M
and deduce their links to E and B. We may then find it easier to understand and deduce
the constitutive relationships. However we do not in general consider E and B to be in
any way more “fundamental” than D and H.

Covariance of the Boffi form. Because of the linear relationships (2.117) and (2.118),
covariance of the Maxwell–Minkowski equations carries over to the Maxwell–Boffi equa-
tions. However, the conversion between fields in different moving reference frames will
now involve P and M. Since Faraday’s law is unchanged in the Boffi form, we still have

E′
‖ = E‖, (2.124)

B′
‖ = B‖, (2.125)

E′
⊥ = γ (E⊥ + β × cB⊥), (2.126)

cB′
⊥ = γ (cB⊥ − β × E⊥). (2.127)

To see how P and M convert, we note that in the laboratory frame D = ε0E + P and
H = B/µ0 − M, while in the moving frame D′ = ε0E′ + P′ and H′ = B′/µ0 − M′. Thus

P′
‖ = D′

‖ − ε0E′
‖ = D‖ − ε0E‖ = P‖

and

M′
‖ = B′

‖/µ0 − H′
‖ = B‖/µ0 − H‖ = M‖.

For the perpendicular components

D′
⊥ = γ (D⊥ + β × H⊥/c) = ε0E′

⊥ + P′
⊥ = ε0 [γ (E⊥ + β × cB⊥)] + P′

⊥;
substitution of H⊥ = B⊥/µ0 − M⊥ then gives

P′
⊥ = γ (D⊥ − ε0E⊥) − γ ε0β × cB⊥ + γβ × B⊥/(cµ0) − γβ × M⊥/c

or

cP′
⊥ = γ (cP⊥ − β × M⊥).

Similarly,

M′
⊥ = γ (M⊥ + β × cP⊥).

Hence

E′
‖ = E‖, B′

‖ = B‖, P′
‖ = P‖, M′

‖ = M‖, J′
⊥ = J⊥, (2.128)

and

E′
⊥ = γ (E⊥ + β × cB⊥), (2.129)

cB′
⊥ = γ (cB⊥ − β × E⊥), (2.130)

cP′
⊥ = γ (cP⊥ − β × M⊥), (2.131)

M′
⊥ = γ (M⊥ + β × cP⊥), (2.132)

J′
‖ = γ (J‖ − ρv). (2.133)



In the case of the first-order Lorentz transformation we can set γ ≈ 1 to obtain

E′ = E + v × B, (2.134)

B′ = B − v × E
c2

, (2.135)

P′ = P − v × M
c2

, (2.136)

M′ = M + v × P, (2.137)
J′ = J − ρv. (2.138)

To convert from the moving frame to the laboratory frame we simply swap primed with
unprimed fields and let v → −v.

As a simple example, consider a linear isotropic medium having

D′ = ε0ε
′
r E′, B′ = µ0µ

′
r H′,

in a moving reference frame. From (117) we have

P′ = ε0ε
′
r E′ − ε0E′ = ε0χ

′
eE′

where χ ′
e = ε′

r − 1 is the electric susceptibility of the moving material. Similarly (2.118)
yields

M′ = B′

µ0
− B′

µ0µ′
r

= B′χ ′
m

µ0µ′
r

where χ ′
m = µ′

r − 1 is the magnetic susceptibility of the moving material. How are P and
M related to E and B in the laboratory frame? For simplicity, we consider the first-order
expressions. From (2.136) we have

P = P′ + v × M′

c2
= ε0χ

′
eE′ + v × B′χ ′

m

µ0µ′
r c2

.

Substituting for E′ and B′ from (2.134) and (2.135), and using µ0c2 = 1/ε0, we have

P = ε0χ
′
e(E + v × B) + ε0

χ ′
m

µ′
r

v ×
(

B − v × E
c2

)
.

Neglecting the last term since it varies as v2/c2, we get

P = ε0χ
′
eE + ε0

(
χ ′

e + χ ′
m

µ′
r

)
v × B. (2.139)

Similarly,

M = χ ′
m

µ0µ′
r

B − ε0

(
χ ′

e + χ ′
m

µ′
r

)
v × E. (2.140)

2.5 Large-scale form of Maxwell’s equations

We can write Maxwell’s equations in a form that incorporates the spatial variation of
the field in a certain region of space. To do this, we integrate the point form of Maxwell’s



Figure 2.2: Open surface having velocity v relative to laboratory (unprimed) coordinate
system. Surface is non-deforming.

equations over a region of space, then perform some succession of manipulations until
we arrive at a form that provides us some benefit in our work with electromagnetic
fields. The results are particularly useful for understanding the properties of electric and
magnetic circuits, and for predicting the behavior of electrical machinery.

We shall consider two important situations: a mathematical surface that moves with
constant velocity v and with constant shape, and a surface that moves and deforms
arbitrarily.

2.5.1 Surface moving with constant velocity

Consider an open surface S moving with constant velocity v relative to the laboratory
frame (Figure 2.2). Assume every point on the surface is an ordinary point. At any
instant t we can express the relationship between the fields at points on S in either
frame. In the laboratory frame we have

∇ × E = −∂B
∂t

, ∇ × H = ∂D
∂t

+ J,

while in the moving frame

∇′ × E′ = −∂B′

∂t ′ , ∇′ × H′ = ∂D′

∂t ′ + J′.

If we integrate over S and use Stokes’s theorem, we get for the laboratory frame∮
�

E · dl = −
∫

S

∂B
∂t

· dS, (2.141)∮
�

H · dl =
∫

S

∂D
∂t

· dS +
∫

S
J · dS, (2.142)



and for the moving frame∮
�′

E′ · dl′ = −
∫

S′

∂B′

∂t ′ · dS′, (2.143)∮
�′

H′ · dl′ =
∫

S′

∂D′

∂t ′ · dS′ +
∫

S′
J′ · dS′. (2.144)

Here boundary contour � has sense determined by the right-hand rule. We use the
notation �′, S′, etc., to indicate that all integrations for the moving frame are computed
using space and time variables in that frame. Equation (2.141) is the integral form of
Faraday’s law , while (2.142) is the integral form of Ampere’s law.

Faraday’s law states that the net circulation of E about a contour � (sometimes called
the electromotive force or emf ) is determined by the flux of the time-rate of change of the
flux vector B passing through the surface bounded by �. Ampere’s law states that the
circulation of H (sometimes called the magnetomotive force or mmf ) is determined by
the flux of the current J plus the flux of the time-rate of change of the flux vector D. It is
the term containing ∂D/∂t that Maxwell recognized as necessary to make his equations
consistent; since it has units of current, it is often referred to as the displacement current
term.

Equations (2.141)–(2.142) are the large-scale or integral forms of Maxwell’s equations.
They are the integral-form equivalents of the point forms, and are form invariant under
Lorentz transformation. If we express the fields in terms of the moving reference frame,
we can write ∮

�′
E′ · dl′ = − d

dt

∫
S′

B′ · dS′, (2.145)∮
�′

H′ · dl′ = d

dt

∫
S′

D′ · dS′ +
∫

S′
J′ · dS′. (2.146)

These hold for a stationary surface, since the surface would be stationary to an observer
who moves with it. We are therefore justified in removing the partial derivative from the
integral. Although the surfaces and contours considered here are purely mathematical,
they often coincide with actual physical boundaries. The surface may surround a moving
material medium, for instance, or the contour may conform to a wire moving in an
electrical machine.

We can also convert the auxiliary equations to large-scale form. Consider a volume
region V surrounded by a surface S that moves with velocity v relative to the laboratory
frame (Figure 2.3). Integrating the point form of Gauss’s law over V we have∫

V
∇ · D dV =

∫
V

ρ dV .

Using the divergence theorem and recognizing that the integral of charge density is total
charge, we obtain ∮

S
D · dS =

∫
V

ρ dV = Q(t) (2.147)

where Q(t) is the total charge contained within V at time t . This large-scale form of
Gauss’s law states that the total flux of D passing through a closed surface is identical
to the electric charge Q contained within. Similarly,∮

S
B · dS = 0 (2.148)



Figure 2.3: Non-deforming volume region having velocity v relative to laboratory (un-
primed) coordinate system.

is the large-scale magnetic field Gauss’s law. It states that the total flux of B passing
through a closed surface is zero, since there are no magnetic charges contained within
(i.e., magnetic charge does not exist).

Since charge is an invariant quantity, the large-scale forms of the auxiliary equations
take the same form in a moving reference frame:∮

S′
D′ · dS′ =

∫
V ′

ρ ′ dV ′ = Q(t) (2.149)

and ∮
S′

B′ · dS′ = 0. (2.150)

The large-scale forms of the auxiliary equations may be derived from the large-scale
forms of Faraday’s and Ampere’s laws. To obtain Gauss’s law, we let the open surface
in Ampere’s law become a closed surface. Then

∮
H · dl vanishes, and application of

the large-scale form of the continuity equation (1.10) produces (2.147). The magnetic
Gauss’s law (2.148) is found from Faraday’s law (2.141) by a similar transition from an
open surface to a closed surface.

The values obtained from the expressions (2.141)–(2.142) will not match those ob-
tained from (2.143)–(2.144), and we can use the Lorentz transformation field conversions
to study how they differ. That is, we can write either side of the laboratory equations in
terms of the moving reference frame fields, or vice versa. For most engineering applica-
tions where v/c � 1 this is not done via the Lorentz transformation field relations, but
rather via the Galilean approximations to these relations (see Tai [194] for details on us-
ing the Lorentz transformation field relations). We consider the most common situation
in the next section.

Kinematic form of the large-scale Maxwell equations. Confusion can result from
the fact that the large-scale forms of Maxwell’s equations can be written in a number of



Figure 2.4: Non-deforming closed contour moving with velocity v through a magnetic
field B given in the laboratory (unprimed) coordinate system.

ways. A popular formulation of Faraday’s law, the emf formulation, revolves around the
concept of electromotive force. Unfortunately, various authors offer different definitions
of emf in a moving circuit.

Consider a non-deforming contour in space, moving with constant velocity v relative
to the laboratory frame (Figure 2.4). In terms of the laboratory fields we have the large-
scale form of Faraday’s law (2.141). The flux term on the right-hand side of this equation
can be written differently by employing the Helmholtz transport theorem (A.63). If a
non-deforming surface S moves with uniform velocity v relative to the laboratory frame,
and a vector field A(r, t) is expressed in the stationary frame, then the time derivative
of the flux of A through S is

d

dt

∫
S

A · dS =
∫

S

[
∂A
∂t

+ v(∇ · A) − ∇ × (v × A)

]
· dS. (2.151)

Using this with (2.141) we have∮
�

E · dl = − d

dt

∫
S

B · dS +
∫

S
v(∇ · B) · dS −

∫
S
∇ × (v × B) · dS.

Remembering that ∇ · B = 0 and using Stokes’s theorem on the last term, we obtain∮
�

(E + v × B) · dl = − d

dt

∫
S

B · dS = −d�(t)

dt
(2.152)

where the magnetic flux ∫
S

B · dS = �(t)

represents the flux of B through S. Following Sommerfeld [185], we may set

E∗ = E + v × B

to obtain the kinematic form of Faraday’s law∮
�

E∗ · dl = − d

dt

∫
S

B · dS = −d�(t)

dt
. (2.153)



(The asterisk should not be confused with the notation for complex conjugate.)
Much confusion arises from the similarity between (2.153) and (2.145). In fact, these

expressions are different and give different results. This is because B′ in (2.145) is
measured in the frame of the moving circuit, while B in (2.153) is measured in the frame
of the laboratory. Further confusion arises from various definitions of emf. Many authors
(e.g., Hermann Weyl [213]) define emf to be the circulation of E∗. In that case the emf
is equal to the negative time rate of change of the flux of the laboratory frame magnetic
field B through S. Since the Lorentz force experienced by a charge q moving with the
contour is given by qE∗ = q(E + v × B), this emf is the circulation of Lorentz force
per unit charge along the contour. If the contour is aligned with a conducting circuit,
then in some cases this emf can be given physical interpretation as the work required
to move a charge around the entire circuit through the conductor against the Lorentz
force. Unfortunately the usefulness of this definition of emf is lost if the time or space
rate of change of the fields is so large that no true loop current can be established
(hence Kirchoff’s law cannot be employed). Such a problem must be treated as an
electromagnetic “scattering” problem with consideration given to retardation effects.
Detailed discussions of the physical interpretation of E∗ in the definition of emf are given
by Scanlon [165] and Cullwick [48].

Other authors choose to define emf as the circulation of the electric field in the frame
of the moving contour. In this case the circulation of E′ in (2.145) is the emf, and is
related to the flux of the magnetic field in the frame of the moving circuit. As pointed
out above, the result differs from that based on the Lorentz force. If we wish, we can
also write this emf in terms of the fields expressed in the laboratory frame. To do this we
must convert ∂B′/∂t ′ to the laboratory fields using the rules for a Lorentz transformation.
The result, given by Tai [194], is quite complicated and involves both the magnetic and
electric laboratory-frame fields.

The moving-frame emf as computed from the Lorentz transformation is rarely used as
a working definition of emf, mostly because circuits moving at relativistic velocities are
seldom used by engineers. Unfortunately, more confusion arises for the case v � c, since
for a Galilean frame the Lorentz-force and moving-frame emfs become identical. This
is apparent if we use (2.52) to replace B′ with the laboratory frame field B, and (2.49)
to replace E′ with the combination of laboratory frame fields E + v × B. Then (2.145)
becomes ∮

�

E′ · dl =
∮

�

(E + v × B) · dl = − d

dt

∫
S

B · dS,

which is identical to (2.153). For circuits moving with low velocity then, the circulation
of E′ can be interpreted as work per unit charge. As an added bit of confusion, the term∮

�

(v × B) · dl =
∫

S
∇ × (v × B) · dS

is sometimes called motional emf, since it is the component of the circulation of E∗ that
is directly attributable to the motion of the circuit.

Although less commonly done, we can also rewrite Ampere’s law (2.142) using (2.151).
This gives∮

�

H · dl =
∫

S
J · dS + d

dt

∫
S

D · dS −
∫

S
(v∇ · D) · dS +

∫
S
∇ × (v × D) · dS.

Using ∇ · D = ρ and using Stokes’s theorem on the last term, we obtain∮
�

(H − v × D) · dl = d

dt

∫
S

D · dS +
∫

S
(J − ρv) · dS.



Finally, letting H∗ = H − v × D and J∗ = J − ρv we can write the kinematic form of
Ampere’s law : ∮

�

H∗ · dl = d

dt

∫
S

D · dS +
∫

S
J∗ · dS. (2.154)

In a Galilean frame where we use (2.49)–(2.54), we see that (2.154) is identical to∮
�

H′ · dl = d

dt

∫
S

D′ · dS +
∫

S
J′ · dS (2.155)

where the primed fields are measured in the frame of the moving contour. This equiv-
alence does not hold when the Lorentz transformation is used to represent the primed
fields.

Alternative form of the large-scale Maxwell equations. We can write Maxwell’s
equations in an alternative large-scale form involving only surface and volume integrals.
This will be useful later for establishing the field jump conditions across a material or
source discontinuity. Again we begin with Maxwell’s equations in point form, but instead
of integrating them over an open surface we integrate over a volume region V moving
with velocity v (Figure 2.3). In the laboratory frame this gives∫

V
(∇ × E) dV = −

∫
V

∂B
∂t

dV,∫
V
(∇ × H) dV =

∫
V

(
∂D
∂t

+ J
)

dV .

An application of curl theorem (B.24) then gives∮
S
(n̂ × E) d S = −

∫
V

∂B
∂t

dV, (2.156)∮
S
(n̂ × H) d S =

∫
V

(
∂D
∂t

+ J
)

dV . (2.157)

Similar results are obtained for the fields in the moving frame:∮
S′
(n̂′ × E′) d S′ = −

∫
V ′

∂B′

∂t ′ dV ′,∮
S′
(n̂′ × H′) d S′ =

∫
V ′

(
∂D′

∂t ′ + J′
)

dV ′.

These large-scale forms are an alternative to (2.141)–(2.144). They are also form-
invariant under a Lorentz transformation.

An alternative to the kinematic formulation of (2.153) and (2.154) can be achieved
by applying a kinematic identity for a moving volume region. If V is surrounded by a
surface S that moves with velocity v relative to the laboratory frame, and if a vector field
A is measured in the laboratory frame, then the vector form of the general transport
theorem (A.68) states that

d

dt

∫
V

A dV =
∫

V

∂A
∂t

dV +
∮

S
A(v · n̂) d S. (2.158)



Applying this to (2.156) and (2.157) we have∮
S

[n̂ × E − (v · n̂)B] d S = − d

dt

∫
V

B dV, (2.159)∮
S

[n̂ × H + (v · n̂)D] d S =
∫

V
J dV + d

dt

∫
V

D dV . (2.160)

We can also apply (2.158) to the large-scale form of the continuity equation (2.10) and
obtain the expression for a volume region moving with velocity v:∮

S
(J − ρv) · dS = − d

dt

∫
V

ρ dV .

2.5.2 Moving, deforming surfaces

Because (2.151) holds for arbitrarily moving surfaces, the kinematic versions (2.153)
and (2.154) hold when v is interpreted as an instantaneous velocity. However, if the
surface and contour lie within a material body that moves relative to the laboratory
frame, the constitutive equations relating E, D, B, H, and J in the laboratory frame
differ from those relating the fields in the stationary frame of the body (if the body is
not accelerating), and thus the concepts of § 2.3.2 must be employed. This is important
when boundary conditions at a moving surface are needed. Particular care must be taken
when the body accelerates, since the constitutive relations are then only approximate.

The representation (2.145)–(2.146) is also generally valid, provided we define the
primed fields as those converted from laboratory fields using the Lorentz transforma-
tion with instantaneous velocity v. Here we should use a different inertial frame for each
point in the integration, and align the frame with the velocity vector v at the instant
t . We certainly may do this since we can choose to integrate any function we wish.
However, this representation may not find wide application.

We thus choose the following expressions, valid for arbitrarily moving surfaces con-
taining only regular points, as our general forms of the large-scale Maxwell equations:∮

�(t)
E∗ · dl = − d

dt

∫
S(t)

B · dS = −d�(t)

dt
,∮

�(t)
H∗ · dl = d

dt

∫
S(t)

D · dS +
∫

S(t)
J∗ · dS,

where

E∗ = E + v × B,

H∗ = H − v × D,

J∗ = J − ρv,

and where all fields are taken to be measured in the laboratory frame with v the in-
stantaneous velocity of points on the surface and contour relative to that frame. The
constitutive parameters must be considered carefully if the contours and surfaces lie in
a moving material medium.

Kinematic identity (2.158) is also valid for arbitrarily moving surfaces. Thus we have
the following, valid for arbitrarily moving surfaces and volumes containing only regular



points: ∮
S(t)

[n̂ × E − (v · n̂)B] d S = − d

dt

∫
V (t)

B dV,∮
S(t)

[n̂ × H + (v · n̂)D] d S =
∫

V (t)
J dV + d

dt

∫
V (t)

D dV .

We also find that the two Gauss’s law expressions,∮
S(t)

D · dS =
∫

V (t)
ρ dV,∮

S(t)
B · dS = 0,

remain valid.

2.5.3 Large-scale form of the Boffi equations

The Maxwell–Boffi equations can be written in large-scale form using the same ap-
proach as with the Maxwell–Minkowski equations. Integrating (2.120) and (2.121) over
an open surface S and applying Stokes’s theorem, we have∮

�

E · dl = −
∫

S

∂B
∂t

· dS, (2.161)∮
�

B · dl = µ0

∫
S

(
J + JM + JP + ∂ε0E

∂t

)
· dS, (2.162)

for fields in the laboratory frame, and∮
�′

E′ · dl′ = −
∫

S′

∂B′

∂t ′ · dS′,∮
�′

B′ · dl′ = µ0

∫
S′

(
J′ + J′

M + J′
P + ∂ε0E′

∂t ′

)
· dS′,

for fields in a moving frame. We see that Faraday’s law is unmodified by the introduction
of polarization and magnetization, hence our prior discussion of emf for moving contours
remains valid. However, Ampere’s law must be interpreted somewhat differently. The
flux vector B also acts as a force vector, and its circulation is proportional to the out-
flux of total current, consisting of J plus the equivalent magnetization and polarization
currents plus the displacement current in free space, through the surface bounded by the
circulation contour.

The large-scale forms of the auxiliary equations can be found by integrating (2.122)
and (2.123) over a volume region and applying the divergence theorem. This gives∮

S
E · dS = 1

ε0

∫
V
(ρ + ρP) dV,∮

S
B · dS = 0,

for the laboratory frame fields, and∮
S′

E′ · dS′ = 1

ε0

∫
V ′

(ρ ′ + ρ ′
P) dV ′,∮

S′
B′ · dS′ = 0,



for the moving frame fields. Here we find the force vector E also acting as a flux vector,
with the outflux of E over a closed surface proportional to the sum of the electric and
polarization charges enclosed by the surface.

To provide the alternative representation, we integrate the point forms over V and use
the curl theorem to obtain∮

S
(n̂ × E) d S = −

∫
V

∂B
∂t

dV, (2.163)∮
S
(n̂ × B) d S = µ0

∫
V

(
J + JM + JP + ∂ε0E

∂t

)
dV, (2.164)

for the laboratory frame fields, and∮
S′
(n̂′ × E′) d S′ = −

∫
V ′

∂B′

∂t ′ dV ′,∮
S′
(n̂′ × B′) d S′ = µ0

∫
V ′

(
J′ + J′

M + J′
P + ∂ε0E′

∂t ′

)
dV ′,

for the moving frame fields.

The large-scale forms of the Boffi equations can also be put into kinematic form using
either (2.151) or (2.158). Using (2.151) on (2.161) and (2.162) we have∮

�(t)
E∗ · dl = − d

dt

∫
S(t)

B · dS, (2.165)∮
�(t)

B† · dl =
∫

S(t)
µ0J† · dS + 1

c2

d

dt

∫
S(t)

E · dS, (2.166)

where

E∗ = E + v × B,

B† = B − 1

c2
v × E,

J† = J + JM + JP − (ρ + ρP)v.

Here B† is equivalent to the first-order Lorentz transformation representation of the field
in the moving frame (2.64). (The dagger † should not be confused with the symbol for
the hermitian operation.) Using (2.158) on (2.163) and (2.164) we have∮

S(t)
[n̂ × E − (v · n̂)B] d S = − d

dt

∫
V (t)

B dV, (2.167)

and ∮
S(t)

[
n̂ × B + 1

c2
(v · n̂)E

]
d S = µ0

∫
V (t)

(J + JM + JP) dV + 1

c2

d

dt

∫
V (t)

E dV .

(2.168)

In each case the fields are measured in the laboratory frame, and v is measured with
respect to the laboratory frame and may vary arbitrarily over the surface or contour.



2.6 The nature of the four field quantities

Since the very inception of Maxwell’s theory, its students have been distressed by the
fact that while there are four electromagnetic fields (E, D, B, H), there are only two funda-
mental equations (the curl equations) to describe their interrelationship. The relegation
of additional required information to constitutive equations that vary widely between
classes of materials seems to lessen the elegance of the theory. While some may find
elegant the separation of equations into a set expressing the basic wave nature of electro-
magnetism and a set describing how the fields interact with materials, the history of the
discipline is one of categorizing and pairing fields as “fundamental” and “supplemental”
in hopes of reducing the model to two equations in two unknowns.

Lorentz led the way in this area. With his electrical theory of matter, all material ef-
fects could be interpreted in terms of atomic charge and current immersed in free space.
We have seen how the Maxwell–Boffi equations seem to eliminate the need for D and H,
and indeed for simple media where there is a linear relation between the remaining “fun-
damental” fields and the induced polarization and magnetization, it appears that only
E and B are required. However, for more complicated materials that display nonlinear
and bianisotropic effects we are only able to supplant D and H with two other fields P
and M, along with (possibly complicated) constitutive relations relating them to E and
B.

Even those authors who do not wish to eliminate two of the fields tend to categorize
the fields into pairs based on physical arguments, implying that one or the other pair
is in some way “more fundamental.” Maxwell himself separated the fields into the pair
(E, H) that appears within line integrals to give work and the pair (B, D) that appears
within surface integrals to give flux. In what other ways might we pair the four vectors?

Most prevalent is the splitting of the fields into electric and magnetic pairs: (E, D) and
(B, H). In Poynting’s theorem E · D describes one component of stored energy (called
“electric energy”) and B · H describes another component (called “magnetic energy”).
These pairs also occur in Maxwell’s stress tensor. In statics, the fields decouple into
electric and magnetic sets. But biisotropic and bianisotropic materials demonstrate how
separation into electric and magnetic effects can become problematic.

In the study of electromagnetic waves, the ratio of E to H appears to be an important
quantity, called the “intrinsic impedance.” The pair (E, H) also determines the Poynting
flux of power, and is required to establish the uniqueness of the electromagnetic field.
In addition, constitutive relations for simple materials usually express (D, B) in terms
of (E, H). Models for these materials are often conceived by viewing the fields (E, H)

as interacting with the atomic structure in such a way as to produce secondary effects
describable by (D, B). These considerations, along with Maxwell’s categorization into
a pair of work vectors and a pair of flux vectors, lead many authors to formulate elec-
tromagnetics with E and H as the “fundamental” quantities. But the pair (B, D) gives
rise to electromagnetic momentum and is also perpendicular to the direction of wave
propagation in an anisotropic material; in these senses, we might argue that these fields
must be equally “fundamental.”

Perhaps the best motivation for grouping fields comes from relativistic considerations.
We have found that (E, B) transform together under a Lorentz transformation, as do
(D, H). In each of these pairs we have one polar vector (E or D) and one axial vector (B
or H). A polar vector retains its meaning under a change in handedness of the coordinate
system, while an axial vector does not. The Lorentz force involves one polar vector (E)



and one axial vector (B) that we also call “electric” and “magnetic.” If we follow the
lead of some authors and choose to define E and B through measurements of the Lorentz
force, then we recognize that B must be axial since it is not measured directly, but as
part of the cross product v × B that changes its meaning if we switch from a right-hand
to a left-hand coordinate system. The other polar vector (D) and axial vector (H) arise
through the “secondary” constitutive relations. Following this reasoning we might claim
that E and B are “fundamental.”

Sommerfeld also associates E with B and D with H. The vectors E and B are
called entities of intensity, describing “how strong,” while D and H are called entities
of quantity, describing “how much.” This is in direct analogy with stress (intensity) and
strain (quantity) in materials. We might also say that the entities of intensity describe
a “cause” while the entities of quantity describe an “effect.” In this view E “induces”
(causes) a polarization P, and the field D = ε0E + P is the result. Similarly B creates
M, and H = B/µ0 − M is the result. Interestingly, each of the terms describing energy
and momentum in the electromagnetic field (D · E, B · H, E × H, D × B) involves the
interaction of an entity of intensity with an entity of quantity.

Although there is a natural tendency to group things together based on conceptual
similarity, there appears to be little reason to believe that any of the four field vectors are
more “fundamental” than the rest. Perhaps we are fortunate that we can apply Maxwell’s
theory without worrying too much about such questions of underlying philosophy.

2.7 Maxwell’s equations with magnetic sources

Researchers have yet to discover the “magnetic monopole”: a magnetic source from
which magnetic field would diverge. This has not stopped speculation on the form that
Maxwell’s equations might take if such a discovery were made. Arguments based on
fundamental principles of physics (such as symmetry and conservation laws) indicate
that in the presence of magnetic sources Maxwell’s equations would assume the forms

∇ × E = −Jm − ∂B
∂t

, (2.169)

∇ × H = J + ∂D
∂t

, (2.170)

∇ · B = ρm, (2.171)
∇ · D = ρ, (2.172)

where Jm is a volume magnetic current density describing the flow of magnetic charge in
exactly the same manner as J describes the flow of electric charge. The density of this
magnetic charge is given by ρm and should, by analogy with electric charge density, obey
a conservation law

∇ · Jm + ∂ρm

∂t
= 0.

This is the magnetic source continuity equation.
It is interesting to inquire as to the units of Jm and ρm . From (2.169) we see that if B

has units of Wb/m2, then Jm has units of (Wb/s)/m2. Similarly, (2.171) shows that ρm

must have units of Wb/m3. Hence magnetic charge is measured in Wb, magnetic current
in Wb/s. This gives a nice symmetry with electric sources where charge is measured in



C and current in C/s.3 The physical symmetry is equally appealing: magnetic flux lines
diverge from magnetic charge, and the total flux passing through a surface is given by the
total magnetic charge contained within the surface. This is best seen by considering the
large-scale forms of Maxwell’s equations for stationary surfaces. We need only modify
(2.145) to include the magnetic current term; this gives∮

�

E · dl = −
∫

S
Jm · dS − d

dt

∫
S

B · dS, (2.173)∮
�

H · dl =
∫

S
J · dS + d

dt

∫
S

D · dS. (2.174)

If we modify (2.148) to include magnetic charge, we get the auxiliary equations∮
S

D · dS =
∫

V
ρ dV,∮

S
B · dS =

∫
V

ρm dV .

Any of the large-scale forms of Maxwell’s equations can be similarly modified to include
magnetic current and charge. For arbitrarily moving surfaces we have∮

�(t)
E∗ · dl = − d

dt

∫
S(t)

B · dS −
∫

S(t)
J∗

m · dS,∮
�(t)

H∗ · dl = d

dt

∫
S(t)

D · dS +
∫

S(t)
J∗ · dS,

where

E∗ = E + v × B,

H∗ = H − v × D,

J∗ = J − ρv,

J∗
m = Jm − ρmv,

and all fields are taken to be measured in the laboratory frame with v the instantaneous
velocity of points on the surface and contour relative to the laboratory frame. We also
have the alternative forms∮

S
(n̂ × E) d S =

∫
V

(
−∂B

∂t
− Jm

)
dV, (2.175)∮

S
(n̂ × H) d S =

∫
V

(
∂D
∂t

+ J
)

dV, (2.176)

and ∮
S(t)

[n̂ × E − (v · n̂)B] d S = −
∫

V (t)
Jm dV − d

dt

∫
V (t)

B dV, (2.177)∮
S(t)

[n̂ × H + (v · n̂)D] d S =
∫

V (t)
J dV + d

dt

∫
V (t)

D dV, (2.178)

3We note that if the modern unit of T is used to describe B, then ρm is described using the more
cumbersome units of T/m, while Jm is given in terms of T/s. Thus, magnetic charge is measured in Tm2

and magnetic current in (Tm2)/s.



and the two Gauss’s law expressions∮
S(t)

D · n̂ d S =
∫

V (t)
ρ dV,∮

S(t)
B · n̂ d S =

∫
V (t)

ρm dV .

Magnetic sources also allow us to develop equivalence theorems in which difficult prob-
lems involving boundaries are replaced by simpler problems involving magnetic sources.
Although these sources may not physically exist, the mathematical solutions are com-
pletely valid.

2.8 Boundary (jump) conditions

If we restrict ourselves to regions of space without spatial (jump) discontinuities in
either the sources or the constitutive relations, we can find meaningful solutions to the
Maxwell differential equations. We also know that for given sources, if the fields are
specified on a closed boundary and at an initial time the solutions are unique. The
standard approach to treating regions that do contain spatial discontinuities is to isolate
the discontinuities on surfaces. That is, we introduce surfaces that serve to separate space
into regions in which the differential equations are solvable and the fields are well defined.
To make the solutions in adjoining regions unique, we must specify the tangential fields
on each side of the adjoining surface. If we can relate the fields across the boundary, we
can propagate the solution from one region to the next; in this way, information about
the source in one region is effectively passed on to the solution in an adjacent region. For
uniqueness, only relations between the tangential components need be specified.

We shall determine the appropriate boundary conditions (BC’s) via two distinct ap-
proaches. We first model a thin source layer and consider a discontinuous surface source
layer as a limiting case of the continuous thin layer. With no true discontinuity, Maxwell’s
differential equations hold everywhere. We then consider a true spatial discontinuity be-
tween material surfaces (with possible surface sources lying along the discontinuity). We
must then isolate the region containing the discontinuity and postulate a field relationship
that is both physically meaningful and experimentally verifiable.

We shall also consider both stationary and moving boundary surfaces, and surfaces
containing magnetic as well as electric sources.

2.8.1 Boundary conditions across a stationary, thin source layer

In § 1.3.3 we discussed how in the macroscopic sense a surface source is actually a
volume distribution concentrated near a surface S. We write the charge and current in
terms of the point r on the surface and the normal distance x from the surface at r as

ρ(r, x, t) = ρs(r, t) f (x, �), (2.179)
J(r, x, t) = Js(r, t) f (x, �), (2.180)

where f (x, �) is the source density function obeying∫ ∞

−∞
f (x, �) dx = 1. (2.181)



Figure 2.5: Derivation of the electromagnetic boundary conditions across a thin contin-
uous source layer.

The parameter � describes the “width” of the source layer normal to the reference
surface.

We use (2.156)–(2.157) to study field behavior across the source layer. Consider a
volume region V that intersects the source layer as shown in Figure 2.5. Let the top and
bottom surfaces be parallel to the reference surface, and label the fields on the top and
bottom surfaces with subscripts 1 and 2, respectively. Since points on and within V are
all regular, (2.157) yields

∫
S1

n̂1 × H1 d S +
∫

S2

n̂2 × H2 d S +
∫

S3

n̂3 × H d S =
∫

V

(
J + ∂D

∂t

)
dV .

We now choose δ = k� (k > 1) so that most of the source lies within V . As � → 0
the thin source layer recedes to a surface layer, and the volume integral of displacement
current and the integral of tangential H over S3 both approach zero by continuity of
the fields. By symmetry S1 = S2 and n̂1 = −n̂2 = n̂12, where n̂12 is the surface normal
directed into region 1 from region 2. Thus∫

S1

n̂12 × (H1 − H2) d S =
∫

V
J dV . (2.182)

Note that ∫
V

J dV =
∫

S1

∫ δ/2

−δ/2
J d S dx =

∫ δ/2

−δ/2
f (x, �) dx

∫
S1

Js(r, t) d S.

Since we assume that the majority of the source current lies within V , the integral can
be evaluated using (2.181) to give∫

S1

[n̂12 × (H1 − H2) − Js] d S = 0,

hence

n̂12 × (H1 − H2) = Js .



The tangential magnetic field across a thin source distribution is discontinuous by an
amount equal to the surface current density.

Similar steps with Faraday’s law give

n̂12 × (E1 − E2) = 0.

The tangential electric field is continuous across a thin source.
We can also derive conditions on the normal components of the fields, although these

are not required for uniqueness. Gauss’s law (2.147) applied to the volume V in Figure
2.5 gives ∫

S1

D1 · n̂1 d S +
∫

S2

D2 · n̂2 d S +
∫

S3

D · n̂3 d S =
∫

V
ρ dV .

As � → 0, the thin source layer recedes to a surface layer. The integral of normal D over
S3 tends to zero by continuity of the fields. By symmetry S1 = S2 and n̂1 = −n̂2 = n̂12.
Thus ∫

S1

(D1 − D2) · n̂12 d S =
∫

V
ρ dV . (2.183)

The volume integral is∫
V

ρ dV =
∫

S1

∫ δ/2

−δ/2
ρ d S dx =

∫ δ/2

−δ/2
f (x, �) dx

∫
S1

ρs(r, t) d S.

Since δ = k� has been chosen so that most of the source charge lies within V , (2.181)
gives ∫

S1

[(D1 − D2) · n̂12 − ρs] d S = 0,

hence

(D1 − D2) · n̂12 = ρs .

The normal component of D is discontinuous across a thin source distribution by an
amount equal to the surface charge density. Similar steps with the magnetic Gauss’s law
yield

(B1 − B2) · n̂12 = 0.

The normal component of B is continuous across a thin source layer.
We can follow similar steps when a thin magnetic source layer is present. When

evaluating Faraday’s law we must include magnetic surface current and when evaluating
the magnetic Gauss’s law we must include magnetic charge. However, since such sources
are not physical we postpone their consideration until the next section, where appropriate
boundary conditions are postulated rather than derived.

2.8.2 Boundary conditions across a stationary layer of field disconti-
nuity

Provided that we model a surface source as a limiting case of a very thin but continuous
volume source, we can derive boundary conditions across a surface layer. We might ask
whether we can extend this idea to surfaces of materials where the constitutive parameters
change from one region to another. Indeed, if we take Lorentz’ viewpoint and visualize a
material as a conglomerate of atomic charge, we should be able to apply this same idea.
After all, a material should demonstrate a continuous transition (in the macroscopic



Figure 2.6: Derivation of the electromagnetic boundary conditions across a discontinuous
source layer.

sense) across its boundary, and we can employ the Maxwell–Boffi equations to describe
the relationship between the “equivalent” sources and the electromagnetic fields.

We should note, however, that the limiting concept is not without its critics. Stokes
suggested as early as 1848 that jump conditions should never be derived from smooth
solutions [199]. Let us therefore pursue the boundary conditions for a surface of true
field discontinuity. This will also allow us to treat a material modeled as having a true
discontinuity in its material parameters (which we can always take as a mathematical
model of a more gradual transition) before we have studied in a deeper sense the physical
properties of materials. This approach, taken by many textbooks, must be done carefully.

There is a logical difficulty with this approach, lying in the application of the large-
scale forms of Maxwell’s equations. Many authors postulate Maxwell’s equations in point
form, integrate to obtain the large-scale forms, then apply the large-scale forms to regions
of discontinuity. Unfortunately, the large-scale forms thus obtained are only valid in the
same regions where their point form antecedents were valid — discontinuities must be
excluded. Schelkunoff [167] has criticized this approach, calling it a “swindle” rather
than a proof, and has suggested that the proper way to handle true discontinuities
is to postulate the large-scale forms of Maxwell’s equations, and to include as part
of the postulate the assumption that the large-scale forms are valid at points of field
discontinuity. Does this mean we must reject our postulate of the point form Maxwell
equations and reformulate everything in terms of the large-scale forms? Fortunately, no.
Tai [192] has pointed out that it is still possible to postulate the point forms, as long
as we also postulate appropriate boundary conditions that make the large-scale forms,
as derived from the point forms, valid at surfaces of discontinuity. In essence, both
approaches require an additional postulate for surfaces of discontinuity: the large scale
forms require a postulate of applicability to discontinuous surfaces, and from there the
boundary conditions can be derived; the point forms require a postulate of the boundary
conditions that result in the large-scale forms being valid on surfaces of discontinuity.
Let us examine how the latter approach works.

Consider a surface across which the constitutive relations are discontinuous, containing
electric and magnetic surface currents and charges Js , ρs , Jms , and ρms (Figure 2.6).
We locate a volume region V1 above the surface of discontinuity; this volume is bounded
by a surface S1 and another surface S10 which is parallel to, and a small distance δ/2
above, the surface of discontinuity. A second volume region V2 is similarly situated below
the surface of discontinuity. Because these regions exclude the surface of discontinuity



we can use (2.176) to get∫
S1

n̂ × H d S +
∫

S10

n̂ × H d S =
∫

V1

(
J + ∂D

∂t

)
dV,∫

S2

n̂ × H d S +
∫

S20

n̂ × H d S =
∫

V2

(
J + ∂D

∂t

)
dV .

Adding these we obtain∫
S1+S2

n̂ × H d S −
∫

V1+V2

(
J + ∂D

∂t

)
dV −

−
∫

S10

n̂10 × H1 d S −
∫

S20

n̂20 × H2 d S = 0, (2.184)

where we have used subscripts to delineate the fields on each side of the discontinuity
surface.

If δ is very small (but nonzero), then n̂10 = −n̂20 = n̂12 and S10 = S20. Letting
S1 + S2 = S and V1 + V2 = V , we can write (184) as∫

S
(n̂ × H) d S −

∫
V

(
J + ∂D

∂t

)
dV =

∫
S10

n̂12 × (H1 − H2) d S. (2.185)

Now suppose we use the same volume region V , but let it intersect the surface of
discontinuity (Figure 2.6), and suppose that the large-scale form of Ampere’s law holds
even if V contains points of field discontinuity. We must include the surface current in
the computation. Since

∫
V J dV becomes

∫
S Js d S on the surface, we have∫

S
(n̂ × H) d S −

∫
V

(
J + ∂D

∂t

)
dV =

∫
S10

Js d S. (2.186)

We wish to have this give the same value for the integrals over V and S as (2.185), which
included in its derivation no points of discontinuity. This is true provided that

n̂12 × (H1 − H2) = Js . (2.187)

Thus, under the condition (2.187) we may interpret the large-scale form of Ampere’s law
(as derived from the point form) as being valid for regions containing discontinuities.
Note that this condition is not “derived,” but must be regarded as a postulate that
results in the large-scale form holding for surfaces of discontinuous field.

Similar reasoning can be used to determine the appropriate boundary condition on
tangential E from Faraday’s law. Corresponding to (2.185) we obtain∫

S
(n̂ × E) d S −

∫
V

(
−Jm − ∂B

∂t

)
dV =

∫
S10

n̂12 × (E1 − E2) d S. (2.188)

Employing (2.175) over the region containing the field discontinuity surface we get∫
S
(n̂ × E) d S −

∫
V

(
−Jm − ∂B

∂t

)
dV = −

∫
S10

Jms d S. (2.189)

To have (2.188) and (2.189) produce identical results, we postulate

n̂12 × (E1 − E2) = −Jms (2.190)



as the boundary condition appropriate to a surface of field discontinuity containing a
magnetic surface current.

We can also postulate boundary conditions on the normal fields to make Gauss’s laws
valid for surfaces of discontinuous fields. Integrating (2.147) over the regions V1 and V2

and adding, we obtain∫
S1+S2

D · n̂ d S −
∫

S10

D1 · n̂10 d S −
∫

S20

D2 · n̂20 d S =
∫

V1+V2

ρ dV .

As δ → 0 this becomes∫
S

D · n̂ d S −
∫

V
ρ dV =

∫
S10

(D1 − D2) · n̂12 d S. (2.191)

If we integrate Gauss’s law over the entire region V , including the surface of discontinuity,
we get ∮

S
D · n̂ d S =

∫
V

ρ dV +
∫

S10

ρs d S. (2.192)

In order to get identical answers from (2.191) and (2.192), we must have

(D1 − D2) · n̂12 = ρs

as the boundary condition appropriate to a surface of field discontinuity containing an
electric surface charge. Similarly, we must postulate

(B1 − B2) · n̂12 = ρms

as the condition appropriate to a surface of field discontinuity containing a magnetic
surface charge.

We can determine an appropriate boundary condition on current by using the large-
scale form of the continuity equation. Applying (2.10) over each of the volume regions
of Figure 2.6 and adding the results, we have∫

S1+S2

J · n̂ d S −
∫

S10

J1 · n̂10 d S −
∫

S20

J2 · n̂20 d S = −
∫

V1+V2

∂ρ

∂t
dV .

As δ → 0 we have ∫
S

J · n̂ d S −
∫

S10

(J1 − J2) · n̂12 d S = −
∫

V

∂ρ

∂t
dV . (2.193)

Applying the continuity equation over the entire region V and allowing it to intersect
the discontinuity surface, we get∫

S
J · n̂ d S +

∫
�

Js · m̂ dl = −
∫

V

∂ρ

∂t
dV −

∫
S10

∂ρs

∂t
d S.

By the two-dimensional divergence theorem (B.20) we can write this as∫
S

J · n̂ d S +
∫

S10

∇s · Js d S = −
∫

V

∂ρ

∂t
dV −

∫
S10

∂ρs

∂t
d S.

In order for this expression to produce the same values of the integrals over S and V as
in (2.193) we require

∇s · Js = −n̂12 · (J1 − J2) − ∂ρs

∂t
,



which we take as our postulate of the boundary condition on current across a surface
containing discontinuities. A similar set of steps carried out using the continuity equation
for magnetic sources yields

∇s · Jms = −n̂12 · (Jm1 − Jm2) − ∂ρms

∂t
.

In summary, we have the following boundary conditions for fields across a surface
containing discontinuities:

n̂12 × (H1 − H2) = Js, (2.194)
n̂12 × (E1 − E2) = −Jms, (2.195)
n̂12 · (D1 − D2) = ρs, (2.196)
n̂12 · (B1 − B2) = ρms, (2.197)

and

n̂12 · (J1 − J2) = −∇s · Js − ∂ρs

∂t
, (2.198)

n̂12 · (Jm1 − Jm2) = −∇s · Jms − ∂ρms

∂t
, (2.199)

where n̂12 points into region 1 from region 2.

2.8.3 Boundary conditions at the surface of a perfect conductor

We can easily specialize the results of the previous section to the case of perfect electric
or magnetic conductors. In § 2.2.2 we saw that the constitutive relations for perfect
conductors requires the null field within the material. In addition, a PEC requires zero
tangential electric field, while a PMC requires zero tangential magnetic field. Using
(2.194)–(2.199), we find that the boundary conditions for a perfect electric conductor
are

n̂ × H = Js, (2.200)
n̂ × E = 0, (2.201)
n̂ · D = ρs, (2.202)
n̂ · B = 0, (2.203)

and

n̂ · J = −∇s · Js − ∂ρs

∂t
, n̂ · Jm = 0. (2.204)

For a PMC the conditions are

n̂ × H = 0, (2.205)
n̂ × E = −Jms, (2.206)
n̂ · D = 0, (2.207)
n̂ · B = ρms, (2.208)

and

n̂ · Jm = −∇s · Jms − ∂ρms

∂t
, n̂ · J = 0. (2.209)

We note that the normal vector n̂ points out of the conductor and into the adjacent
region of nonzero fields.



2.8.4 Boundary conditions across a stationary layer of field disconti-
nuity using equivalent sources

So far we have avoided using the physical interpretation of the equivalent sources in the
Maxwell–Boffi equations so that we might investigate the behavior of fields across true
discontinuities. Now that we have the appropriate boundary conditions, it is interesting
to interpret them in terms of the equivalent sources.

If we put H = B/µ0 − M into (2.194) and rearrange, we get

n̂12 × (B1 − B2) = µ0(Js + n̂12 × M1 − n̂12 × M2). (2.210)

The terms on the right involving n̂12 × M have the units of surface current and are called
equivalent magnetization surface currents. Defining

JMs = −n̂ × M (2.211)

where n̂ is directed normally outward from the material region of interest, we can rewrite
(2.210) as

n̂12 × (B1 − B2) = µ0(Js + JMs1 + JMs2). (2.212)

We note that JMs replaces atomic charge moving along the surface of a material with an
equivalent surface current in free space.

If we substitute D = ε0E + P into (2.196) and rearrange, we get

n̂12 · (E1 − E2) = 1

ε0
(ρs − n̂12 · P1 + n̂12 · P2). (2.213)

The terms on the right involving n̂12 · P have the units of surface charge and are called
equivalent polarization surface charges. Defining

ρPs = n̂ · P, (2.214)

we can rewrite (2.213) as

n̂12 · (E1 − E2) = 1

ε0
(ρs + ρPs1 + ρPs2). (2.215)

We note that ρPs replaces atomic charge adjacent to a surface of a material with an
equivalent surface charge in free space.

In summary, the boundary conditions at a stationary surface of discontinuity written
in terms of equivalent sources are

n̂12 × (B1 − B2) = µ0(Js + JMs1 + JMs2), (2.216)
n̂12 × (E1 − E2) = −Jms, (2.217)

n̂12 · (E1 − E2) = 1

ε0
(ρs + ρPs1 + ρPs2), (2.218)

n̂12 · (B1 − B2) = ρms . (2.219)

2.8.5 Boundary conditions across a moving layer of field discontinuity

With a moving material body it is often necessary to apply boundary conditions de-
scribing the behavior of the fields across the surface of the body. If a surface of discon-
tinuity moves with constant velocity v, the boundary conditions (2.194)–(2.199) hold as



long as all fields are expressed in the frame of the moving surface. We can also derive
boundary conditions for a deforming surface moving with arbitrary velocity by using
equations (2.177)–(2.178). In this case all fields are expressed in the laboratory frame.
Proceeding through the same set of steps that gave us (2.194)–(2.197), we find

n̂12 × (H1 − H2) + (n̂12 · v)(D1 − D2) = Js, (2.220)
n̂12 × (E1 − E2) − (n̂12 · v)(B1 − B2) = −Jms, (2.221)

n̂12 · (D1 − D2) = ρs, (2.222)
n̂12 · (B1 − B2) = ρms . (2.223)

Note that when n̂12 · v = 0 these boundary conditions reduce to those for a stationary
surface. This occurs not only when v = 0 but also when the velocity is parallel to the
surface.

The reader must be wary when employing (2.220)–(2.223). Since the fields are mea-
sured in the laboratory frame, if the constitutive relations are substituted into the bound-
ary conditions they must also be represented in the laboratory frame. It is probable that
the material parameters would be known in the rest frame of the material, in which case
a conversion to the laboratory frame would be necessary.

2.9 Fundamental theorems

In this section we shall consider some of the important theorems of electromagnetics
that pertain directly to Maxwell’s equations. They may be derived without reference to
the solutions of Maxwell’s equations, and are not connected with any specialization of
the equations or any specific application or geometrical configuration. In this sense these
theorems are fundamental to the study of electromagnetics.

2.9.1 Linearity

Recall that a mathematical operator L is linear if

L(α1 f1 + α2 f2) = α1L( f1) + α2L( f2)

holds for any two functions f1,2 in the domain of L and any two scalar constants α1,2. A
standard observation regarding the equation

L( f ) = s, (2.224)

where L is a linear operator and s is a given forcing function, is that if f1 and f2 are
solutions to

L( f1) = s1, L( f2) = s2, (2.225)

respectively, and

s = s1 + s2, (2.226)

then

f = f1 + f2 (2.227)



is a solution to (2.224). This is the principle of superposition; if convenient, we can
decompose s in equation (2.224) as a sum (2.226) and solve the two resulting equations
(2.225) independently. The solution to (2.224) is then (2.227), “by superposition.” Of
course, we are free to split the right side of (2.224) into more than two terms — the
method extends directly to any finite number of terms.

Because the operators ∇·, ∇×, and ∂/∂t are all linear, Maxwell’s equations can be
treated by this method. If, for instance,

∇ × E1 = −∂B1

∂t
, ∇ × E2 = −∂B2

∂t
,

then

∇ × E = −∂B
∂t

where E = E1 + E2 and B = B1 + B2. The motivation for decomposing terms in a
particular way is often based on physical considerations; we give one example here and
defer others to later sections of the book. We saw earlier that Maxwell’s equations can
be written in terms of both electric and (fictitious) magnetic sources as in equations
(2.169)–(2.172). Let E = Ee + Em where Ee is produced by electric-type sources and Em

is produced by magnetic-type sources, and decompose the other fields similarly. Then

∇ × Ee = −∂Be

∂t
, ∇ × He = J + ∂De

∂t
, ∇ · De = ρ, ∇ · Be = 0,

with a similar equation set for the magnetic sources. We may, if desired, solve these
two equation sets independently for Ee, De, Be, He and Em , Dm , Em , Hm , and then use
superposition to obtain the total fields E, D, B, H.

2.9.2 Duality

The intriguing symmetry of Maxwell’s equations leads us to an observation that can
reduce the effort required to compute solutions. Consider a closed surface S enclosing a
region of space that includes an electric source current J and a magnetic source current
Jm . The fields (E1,D1,B1,H1) within the region (which may also contain arbitrary
media) are described by

∇ × E1 = −Jm − ∂B1

∂t
, (2.228)

∇ × H1 = J + ∂D1

∂t
, (2.229)

∇ · D1 = ρ, (2.230)
∇ · B1 = ρm . (2.231)

Suppose we have been given a mathematical description of the sources (J, Jm) and have
solved for the field vectors (E1, D1, B1, H1). Of course, we must also have been supplied
with a set of boundary values and constitutive relations in order to make the solution
unique. We note that if we replace the formula for J with the formula for Jm in (2.229)
(and ρ with ρm in (2.230)) and also replace Jm with −J in (2.228) (and ρm with −ρ

in (2.231)) we get a new problem to solve, with a different solution. However, the
symmetry of the equations allows us to specify the solution immediately. The new set of



curl equations requires

∇ × E2 = J − ∂B2

∂t
, (2.232)

∇ × H2 = Jm + ∂D2

∂t
. (2.233)

As long as we can resolve the question of how the constitutive parameters must be altered
to reflect these replacements, we can conclude by comparing (2.232) with (2.229) and
(2.233) with (2.228) that the solution to these equations is merely

E2 = H1,

B2 = −D1,

D2 = B1,

H2 = −E1.

That is, if we have solved the original problem, we can use those solutions to find the
new ones. This is an application of the general principle of duality .

Unfortunately, this approach is a little awkward since the units of the sources and
fields in the two problems are different. We can make the procedure more convenient by
multiplying Ampere’s law by η0 = (µ0/ε0)

1/2. Then we have

∇ × E = −Jm − ∂B
∂t

, (2.234)

∇ × (η0H) = (η0J) + ∂(η0D)

∂t
. (2.235)

Thus if the original problem has solution (E1, η0D1, B1, η0H1), then the dual problem
with J replaced by Jm/η0 and Jm replaced by −η0J has solution

E2 = η0H1, (2.236)
B2 = −η0D1, (2.237)

η0D2 = B1, (2.238)
η0H2 = −E1. (2.239)

The units on the quantities in the two problems are now identical.
Of course, the constitutive parameters for the dual problem must be altered from

those of the original problem to reflect the change in field quantities. From (2.19) and
(2.20) we know that the most general forms of the constitutive relations (those for linear,
bianisotropic media) are

D1 = ξ̄1 · H1 + ε̄1 · E1, (2.240)
B1 = µ̄1 · H1 + ζ̄1 · E1, (2.241)

for the original problem, and

D2 = ξ̄2 · H2 + ε̄2 · E2, (2.242)
B2 = µ̄2 · H2 + ζ̄2 · E2, (2.243)

for the dual problem. Substitution of (2.236)–(2.239) into (2.240) and (2.241) gives

D2 = (−ζ̄1) · H2 +
(
µ̄1

η2
0

)
· E2, (2.244)

B2 = (
η2

0ε̄1
) · H2 + (−ξ̄1) · E2. (2.245)



Comparing (2.244) with (2.242) and (2.245) with (2.243), we conclude that

ζ̄2 = −ξ̄1, ξ̄2 = −ζ̄1, µ̄2 = η2
0ε̄1, ε̄2 = µ̄1

η2
0

.

As an important special case, we see that for a linear, isotropic medium specified by a
permittivity ε and permeability µ, the dual problem is obtained by replacing εr with µr

and µr with εr . The solution to the dual problem is then given by

E2 = η0H1, η0H2 = −E1,

as before. We thus see that the medium in the dual problem must have electric properties
numerically equal to the magnetic properties of the medium in the original problem, and
magnetic properties numerically equal to the electric properties of the medium in the
original problem. This is rather inconvenient for most applications. Alternatively, we
may divide Ampere’s law by η = (µ/ε)1/2 instead of η0. Then the dual problem has
J replaced by Jm/η, and Jm replaced by −ηJ, and the solution to the dual problem is
given by

E2 = ηH1, ηH2 = −E1.

In this case there is no need to swap εr and µr , since information about these parameters
is incorporated into the replacement sources.

We must also remember that to obtain a unique solution we need to specify the bound-
ary values of the fields. In a true dual problem, the boundary values of the fields used
in the original problem are used on the swapped fields in the dual problem. A typical
example of this is when the condition of zero tangential electric field on a perfect electric
conductor is replaced by the condition of zero tangential magnetic field on the surface of
a perfect magnetic conductor. However, duality can also be used to obtain the mathe-
matical form of the field expressions, often in a homogeneous (source-free) situation, and
boundary values can be applied later to specify the solution appropriate to the problem
geometry. This approach is often used to compute waveguide modal fields and the elec-
tromagnetic fields scattered from objects. In these cases a TE/TM field decomposition
is employed, and duality is used to find one part of the decomposition once the other is
known.

Duality of electric and magnetic point source fields. By duality, we can some-
times use the known solution to one problem to solve a related problem by merely sub-
stituting different variables into the known mathematical expression. An example of this
is the case in which we have solved for the fields produced by a certain distribution of
electric sources and wish to determine the fields when the same distribution is used to
describe magnetic sources.

Let us consider the case when the source distribution is that of a point current, or
Hertzian dipole, immersed in free space. As we shall see in Chapter 5, the fields for a
general source may be found by using the fields produced by these point sources. We
begin by finding the fields produced by an electric dipole source at the origin aligned
along the z-axis,

J = ẑI0δ(r),

then use duality to find the fields produced by a magnetic current source Jm = ẑIm0δ(r).
The fields produced by the electric source must obey

∇ × Ee = − ∂

∂t
µ0He, (2.246)



∇ × He = ẑI0δ(r) + ∂

∂t
ε0Ee, (2.247)

∇ · ε0Ee = ρ, (2.248)
∇ · He = 0, (2.249)

while those produced by the magnetic source must obey

∇ × Em = −ẑIm0δ(r) − ∂

∂t
µ0Hm, (2.250)

∇ × Hm = ∂

∂t
ε0Em, (2.251)

∇ · Em = 0, (2.252)
∇ · µ0Hm = ρm . (2.253)

We see immediately that the second set of equations is the dual of the first, as long
as we scale the sources appropriately. Multiplying (2.250) by −I0/Im0 and (2.251) by
I0η

2
0/Im0, we have the curl equations

∇ ×
(

− I0

Im0
Em

)
= ẑI0δ(r) + ∂

∂t

(
µ0

I0

Im0
Hm

)
, (2.254)

∇ ×
(

I0η
2
0

Im0
Hm

)
= − ∂

∂t

(
−ε0

I0η
2
0

Im0
Em

)
. (2.255)

Comparing (2.255) with (2.246) and (2.254) with (2.247) we see that

Em = − Im0

I0
He, Hm = Im0

I0

Ee

η2
0

.

We note that it is impossible to have a point current source without accompanying
point charge sources terminating each end of the dipole current. The point charges are
required to satisfy the continuity equation, and vary in time as the moving charge that
establishes the current accumulates at the ends of the dipole. From (2.247) we see that
the magnetic field curls around the combination of the electric field and electric current
source, while from (2.246) the electric field curls around the magnetic field, and from
(2.248) diverges from the charges located at the ends of the dipole. From (2.250) we
see that the electric field must curl around the combination of the magnetic field and
magnetic current source, while (2.251) and (2.253) show that the magnetic field curls
around the electric field and diverges from the magnetic charge.

Duality in a source-free region. Consider a closed surface S enclosing a source-free
region of space. For simplicity, assume that the medium within S is linear, isotropic, and
homogeneous. The fields within S are described by Maxwell’s equations

∇ × E1 = − ∂

∂t
µH1, (2.256)

∇ × ηH1 = ∂

∂t
εηE1, (2.257)

∇ · εE1 = 0, (2.258)
∇ · µH1 = 0. (2.259)

Under these conditions the concept of duality takes on a different face. The symmetry
of the equations is such that the mathematical form of the solution for E is the same as



that for ηH. That is, the fields

E2 = ηH1, (2.260)
H2 = −E1/η, (2.261)

are also a solution to Maxwell’s equations, and thus the dual problem merely involves
replacing E by ηH and H by −E/η. However, the final forms of E and H will not be
identical after appropriate boundary values are imposed.

This form of duality is very important for the solution of fields within waveguides or
the fields scattered by objects where the sources are located outside the region where the
fields are evaluated.

2.9.3 Reciprocity

The reciprocity theorem, also called the Lorentz reciprocity theorem, describes a spe-
cific and often useful relationship between sources and the electromagnetic fields they
produce. Under certain special circumstances we find that an interaction between inde-
pendent source and mediating fields called “reaction” is a spatially symmetric quantity.
The reciprocity theorem is used in the study of guided waves to establish the orthogonal-
ity of guided wave modes, in microwave network theory to obtain relationships between
terminal characteristics, and in antenna theory to demonstrate the equivalence of trans-
mission and reception patterns.

Consider a closed surface S enclosing a volume V . Assume that the fields within and
on S are produced by two independent source fields. The source (Ja, Jma) produces the
field (Ea, Da, Ba, Ha) as described by Maxwell’s equations

∇ × Ea = −Jma − ∂Ba

∂t
, (2.262)

∇ × Ha = Ja + ∂Da

∂t
, (2.263)

while the source field (Jb, Jmb) produces the field (Eb, Db, Bb, Hb) as described by

∇ × Eb = −Jmb − ∂Bb

∂t
, (2.264)

∇ × Hb = Jb + ∂Db

∂t
. (2.265)

The sources may be distributed in any way relative to S: they may lie completely inside,
completely outside, or partially inside and partially outside. Material media may lie
within S, and their properties may depend on position.

Let us examine the quantity

R ≡ ∇ · (Ea × Hb − Eb × Ha).

By (B.44) we have

R = Hb · ∇ × Ea − Ea · ∇ × Hb − Ha · ∇ × Eb + Eb · ∇ × Ha

so that by Maxwell’s curl equations

R =
[

Ha · ∂Bb

∂t
− Hb · ∂Ba

∂t

]
−

[
Ea · ∂Db

∂t
− Eb · ∂Da

∂t

]
+

+ [Ja · Eb − Jb · Ea − Jma · Hb + Jmb · Ha] .



The useful relationships we seek occur when the first two bracketed quantities on the
right-hand side of the above expression are zero. Whether this is true depends not only
on the behavior of the fields, but on the properties of the medium at the point in question.
Though we have assumed that the sources of the field sets are independent, it is apparent
that they must share a similar time dependence in order for the terms within each of the
bracketed quantities to cancel. Of special interest is the case where the two sources are
both sinusoidal in time with identical frequencies, but with differing spatial distributions.
We shall consider this case in detail in § 4.10.2 after we have discussed the properties of
the time harmonic field. Importantly, we will find that only certain characteristics of the
constitutive parameters allow cancellation of the bracketed terms; materials with these
characteristics are called reciprocal, and the fields they support are said to display the
property of reciprocity. To see what this property entails, we set the bracketed terms to
zero and integrate over a volume V to obtain∮

S
(Ea × Hb − Eb × Ha) · dS =

∫
V
(Ja · Eb − Jb · Ea − Jma · Hb + Jmb · Ha) dV,

which is the time-domain version of the Lorentz reciprocity theorem.
Two special cases of this theorem are important to us. If all sources lie outside S, we

have Lorentz’s lemma ∮
S
(Ea × Hb − Eb × Ha) · dS = 0.

This remarkable expression shows that a relationship exists between the fields produced
by completely independent sources, and is useful for establishing waveguide mode or-
thogonality for time harmonic fields. If sources reside within S but the surface integral
is equal to zero, we have∫

V
(Ja · Eb − Jb · Ea − Jma · Hb + Jmb · Ha) dV = 0.

This occurs when the surface is bounded by a special material (such as an impedance
sheet or a perfect conductor), or when the surface recedes to infinity; the expression is
useful for establishing the reciprocity conditions for networks and antennas. We shall
interpret it for time harmonic fields in § 4.10.2.

2.9.4 Similitude

A common approach in physical science involves the introduction of normalized vari-
ables to provide for scaling of problems along with a chance to identify certain physically
significant parameters. Similarity as a general principle can be traced back to the earliest
attempts to describe physical effects with mathematical equations, with serious study un-
dertaken by Galileo. Helmholtz introduced the first systematic investigation in 1873, and
the concept was rigorized by Reynolds ten years later [216]. Similitude is now considered
a fundamental guiding principle in the modeling of materials [199].

The process often begins with a consideration of the fundamental differential equations.
In electromagnetics we may introduce a set of dimensionless field and source variables

E, D, B, H, J, ρ, (2.266)

by setting

E = EkE , B = BkB, D = DkD,

H = HkH , J = JkJ , ρ = ρkρ. (2.267)



Here we regard the quantities kE , kB, . . . as base units for the discussion, while the
dimensionless quantities (2.266) serve to express the actual fields E, B, . . . in terms of
these base units. Of course, the time and space variables can also be scaled: we can write

t = tkt , l = lkl , (2.268)

if l is any length of interest. Again, the quantities t and l are dimensionless measure
numbers used to express the actual quantities t and l relative to the chosen base amounts
kt and kl . With (2.267) and (2.268), Maxwell’s curl equations become

∇ × E = −kB

kE

kl

kt

∂B
∂t

, ∇ × H = kJ kl

kH
J + kD

kH

kl

kt

∂D
∂t

(2.269)

while the continuity equation becomes

∇ · J = − kρ

kJ

kl

kt

∂ρ

∂t
, (2.270)

where ∇ has been normalized by kl . These are examples of field equations cast into
dimensionless form — it is easily verified that the similarity parameters

kB

kE

kl

kt
,

kJ kl

kH
,

kD

kH

kl

kt
,

kρ

kJ

kl

kt
, (2.271)

are dimensionless. The idea behind electromagnetic similitude is that a given set of
normalized values E, B, . . . can satisfy equations (2.269) and (2.270) for many different
physical situations, provided that the numerical values of the coefficients (2.271) are all
fixed across those situations. Indeed, the differential equations would be identical.

To make this discussion a bit more concrete, let us assume a conducting linear medium
where

D = εE, B = µH, J = σE,

and use

ε = εkε, µ = µkµ, σ = σkσ ,

to express the material parameters in terms of dimensionless values ε, µ, and σ . Then

D = kεkE

kD
εE, B = kµkH

kB
µH, J = kσ kE

kJ
σE,

and equations (2.269) become

∇ × E = −
(

kµkl

kt

kH

kE

)
µ

∂H
∂t

,

∇ × H =
(

kσ kl
kE

kH

)
σE +

(
kεkl

kt

kE

kH

)
ε
∂E
∂t

.

Defining

α = kµkl

kt

kH

kE
, γ = kσ kl

kE

kH
, β = kεkl

kt

kE

kH
,

we see that under the current assumptions similarity holds between two electromagnetics
problems only if αµ, γ σ , and βε are numerically the same in both problems. A necessary
condition for similitude, then, is that the products

(αµ)(βε) = kµkε

(
kl

kt

)2

µε, (αµ)(γ σ) = kµkσ

k2
l

kt
µσ,



(which do not involve kE or kH ) stay constant between problems. We see, for example,
that we may compensate for a halving of the length scale kl by (a) a quadrupling of the
permeability µ, or (b) a simultaneous halving of the time scale kt and doubling of the
conductivity σ . A much less subtle special case is that for which σ = 0, kε = ε0, kµ = µ0,
and ε = µ = 1; we then have free space and must simply maintain

kl/kt = constant

so that the time and length scales stay proportional. In the sinusoidal steady state, for
instance, the frequency would be made to vary inversely with the length scale.

2.9.5 Conservation theorems

The misconception that Poynting’s theorem can be “derived” from Maxwell’s equations
is widespread and ingrained. We must, in fact, postulate the idea that the electromagnetic
field can be associated with an energy flux propagating at the speed of light. Since
the form of the postulate is patterned after the well-understood laws of mechanics, we
begin by developing the basic equations of momentum and energy balance in mechanical
systems. Then we shall see whether it is sensible to ascribe these principles to the
electromagnetic field.

Maxwell’s theory allows us to describe, using Maxwell’s equations, the behavior of
the electromagnetic fields within a (possibly) finite region V of space. The presence of
any sources or material objects outside V are made known through the specification of
tangential fields over the boundary of V , as required for uniqueness. Thus, the influence
of external effects can always be viewed as being transported across the boundary. This
is true of mechanical as well as electromagnetic effects. A charged material body can
be acted on by physical contact with another body, by gravitational forces, and by the
Lorentz force, each effect resulting in momentum exchange across the boundary of the
object. These effects must all be taken into consideration if we are to invoke momentum
conservation, resulting in a very complicated situation. This suggests that we try to
decompose the problem into simpler “systems” based on physical effects.

The system concept in the physical sciences. The idea of decomposing a com-
plicated system into simpler, self-contained systems is quite common in the physical
sciences. Penfield and Haus [145] invoke this concept by introducing an electromagnetic
system where the effects of the Lorentz force equation are considered to accompany a
mechanical system where effects of pressure, stress, and strain are considered, and a
thermodynamic system where the effects of heat exchange are considered. These systems
can all be interrelated in a variety of ways. For instance, as a material heats up it can
expand, and the resulting mechanical forces can alter the electrical properties of the
material. We will follow Penfield and Haus by considering separate electromagnetic and
mechanical subsystems; other systems may be added analogously.

If we separate the various systems by physical effect, we will need to know how to
“reassemble the information.” Two conservation theorems are very helpful in this re-
gard: conservation of energy, and conservation of momentum. Engineers often employ
these theorems to make tacit use of the system idea. For instance, when studying elec-
tromagnetic waves propagating in a waveguide, it is common practice to compute wave
attenuation by calculating the Poynting flux of power into the walls of the guide. The
power lost from the wave is said to “heat up the waveguide walls,” which indeed it does.
This is an admission that the electromagnetic system is not “closed”: it requires the



inclusion of a thermodynamic system in order that energy be conserved. Of course, the
detailed workings of the thermodynamic system are often ignored, indicating that any
thermodynamic “feedback” mechanism is weak. In the waveguide example, for instance,
the heating of the metallic walls does not alter their electromagnetic properties enough
to couple back into an effect on the fields in the walls or in the guide. If such effects were
important, they would have to be included in the conservation theorem via the bound-
ary fields; it is therefore reasonable to associate with these fields a “flow” of energy or
momentum into V . Thus, we wish to develop conservation laws that include not only the
Lorentz force effects within V , but a flow of external effects into V through its boundary
surface.

To understand how external influences may effect the electromagnetic subsystem, we
look to the behavior of the mechanical subsystem as an analogue. In the electromagnetic
system, effects are felt both internally to a region (because of the Lorentz force effect) and
through the system boundary (by the dependence of the internal fields on the boundary
fields). In the mechanical and thermodynamic systems, a region of mass is affected both
internally (through transfer of heat and gravitational forces) and through interactions
occurring across its surface (through transfers of energy and momentum, by pressure
and stress). One beauty of electromagnetic theory is that we can find a mathematical
symmetry between electromagnetic and mechanical effects which parallels the above con-
ceptual symmetry. This makes applying conservation of energy and momentum to the
total system (electromagnetic, thermodynamic, and mechanical) very convenient.

Conservation of momentum and energy in mechanical systems. We begin by
reviewing the interactions of material bodies in a mechanical system. For simplicity we
concentrate on fluids (analogous to charge in space); the extension of these concepts to
solid bodies is straightforward.

Consider a fluid with mass density ρm . The momentum of a small subvolume of the
fluid is given by ρmv dV , where v is the velocity of the subvolume. So the momentum
density is ρmv. Newton’s second law states that a force acting throughout the subvolume
results in a change in its momentum given by

D

Dt
(ρmv dV ) = f dV, (2.272)

where f is the volume force density and the D/Dt notation shows that we are interested
in the rate of change of the momentum as observed by the moving fluid element (see
§ A.2). Here f could be the weight force, for instance. Addition of the results for all
elements of the fluid body gives

D

Dt

∫
V

ρmv dV =
∫

V
f dV (2.273)

as the change in momentum for the entire body. If on the other hand the force exerted
on the body is through contact with its surface, the change in momentum is

D

Dt

∫
V

ρmv dV =
∮

S
t d S (2.274)

where t is the “surface traction.”
We can write the time-rate of change of momentum in a more useful form by applying

the Reynolds transport theorem (A.66):

D

Dt

∫
V

ρmv dV =
∫

V

∂

∂t
(ρmv) dV +

∮
S
(ρmv)v · dS. (2.275)



Superposing (2.273) and (2.274) and substituting into (2.275) we have∫
V

∂

∂t
(ρmv) dV +

∮
S
(ρmv)v · dS =

∫
V

f dV +
∮

S
t d S. (2.276)

If we define the dyadic quantity

T̄k = ρmvv

then (2.276) can be written as∫
V

∂

∂t
(ρmv) dV +

∮
S

n̂ · T̄k d S =
∫

V
f dV +

∮
S

t d S. (2.277)

This principle of linear momentum [214] can be interpreted as a large-scale form of
conservation of kinetic linear momentum. Here n̂ · T̄k represents the flow of kinetic mo-
mentum across S, and the sum of this momentum transfer and the change of momentum
within V stands equal to the forces acting internal to V and upon S.

The surface traction may be related to the surface normal n̂ through a dyadic quantity
T̄m called the mechanical stress tensor :

t = n̂ · T̄m .

With this we may write (2.277) as∫
V

∂

∂t
(ρmv) dV +

∮
S

n̂ · T̄k d S =
∫

V
f dV +

∮
S

n̂ · T̄m d S

and apply the dyadic form of the divergence theorem (B.19) to get∫
V

∂

∂t
(ρmv) dV +

∫
V

∇ · (ρmvv) dV =
∫

V
f dV +

∫
V

∇ · T̄m dV . (2.278)

Combining the volume integrals and setting the integrand to zero we have

∂

∂t
(ρmv) + ∇ · (ρmvv) = f + ∇ · T̄m,

which is the point-form equivalent of (2.277). Note that the second term on the right-
hand side is nonzero only for points residing on the surface of the body. Finally, letting
g denote momentum density we obtain the simple expression

∇ · T̄k + ∂gk

∂t
= fk, (2.279)

where

gk = ρmv

is the density of kinetic momentum and

fk = f + ∇ · T̄m (2.280)

is the total force density.
Equation (2.279) is somewhat analogous to the electric charge continuity equation

(1.11). For each point of the body, the total outflux of kinetic momentum plus the time
rate of change of kinetic momentum equals the total force. The resemblance to (1.11)
is strong, except for the nonzero term on the right-hand side. The charge continuity



equation represents a closed system: charge cannot spontaneously appear and add an
extra term to the right-hand side of (1.11). On the other hand, the change in total
momentum at a point can exceed that given by the momentum flowing out of the point
if there is another “source” (e.g., gravity for an internal point, or pressure on a boundary
point).

To obtain a momentum conservation expression that resembles the continuity equa-
tion, we must consider a “subsystem” with terms that exactly counterbalance the extra
expressions on the right-hand side of (2.279). For a fluid acted on only by external
pressure the sole effect enters through the traction term, and [145]

∇ · T̄m = −∇ p (2.281)

where p is the pressure exerted on the fluid body. Now, using (B.63), we can write

− ∇ p = −∇ · T̄p (2.282)

where

T̄p = pĪ

and Ī is the unit dyad. Finally, using (2.282), (2.281), and (2.280) in (2.279), we obtain

∇ · (T̄k + T̄p) + ∂

∂t
gk = 0

and we have an expression for a closed system including all possible effects. Now, note
that we can form the above expression as(

∇ · T̄k + ∂

∂t
gk

)
+

(
∇ · T̄p + ∂

∂t
gp

)
= 0 (2.283)

where gp = 0 since there are no volume effects associated with pressure. This can be
viewed as the sum of two closed subsystems

∇ · T̄k + ∂

∂t
gk = 0, (2.284)

∇ · T̄p + ∂

∂t
gp = 0.

We now have the desired viewpoint. The conservation formula for the complete closed
system can be viewed as a sum of formulas for open subsystems, each having the form
of a conservation law for a closed system. In case we must include the effects of gravity,
for instance, we need only determine T̄g and gg such that

∇ · T̄g + ∂

∂t
gg = 0

and add this new conservation equation to (2.283). If we can find a conservation ex-
pression of form similar to (2.284) for an “electromagnetic subsystem,” we can include
its effects along with the mechanical effects by merely adding together the conservation
laws. We shall find just such an expression later in this section.

We stated in § 1.3 that there are four fundamental conservation principles. We have
now discussed linear momentum; the principle of angular momentum follows similarly.
Our next goal is to find an expression similar to (2.283) for conservation of energy. We
may expect the conservation of energy expression to obey a similar law of superposition.



We begin with the fundamental definition of work: for a particle moving with velocity v
under the influence of a force fk the work is given by fk · v. Dot multiplying (2.272) by v
and replacing f by fk (to represent both volume and surface forces), we get

v · D

Dt
(ρmv) dV = v · fk dV

or equivalently

D

Dt

(
1

2
ρmv · v

)
dV = v · fk dV .

Integration over a volume and application of the Reynolds transport theorem (A.66) then
gives ∫

V

∂

∂t

(
1

2
ρmv2

)
dV +

∮
S

n̂ ·
(

v
1

2
ρmv2

)
d S =

∫
V

fk · v dV .

Hence the sum of the time rate of change in energy internal to the body and the flow
of kinetic energy across the boundary must equal the work done by internal and surface
forces acting on the body. In point form,

∇ · Sk + ∂

∂t
Wk = fk · v (2.285)

where

Sk = v
1

2
ρmv2

is the density of the flow of kinetic energy and

Wk = 1

2
ρmv2

is the kinetic energy density. Again, the system is not closed (the right-hand side of
(2.285) is not zero) because the balancing forces are not included. As was done with the
momentum equation, the effect of the work done by the pressure forces can be described
in a closed-system-type equation

∇ · Sp + ∂

∂t
Wp = 0. (2.286)

Combining (2.285) and (2.286) we have

∇ · (Sk + Sp) + ∂

∂t
(Wk + Wp) = 0,

the energy conservation equation for the closed system.

Conservation in the electromagnetic subsystem. We would now like to achieve
closed-system conservation theorems for the electromagnetic subsystem so that we can
add in the effects of electromagnetism. For the momentum equation, we can proceed
exactly as we did with the mechanical system. We begin with

fem = ρE + J × B.

This force term should appear on one side of the point form of the momentum conserva-
tion equation. The term on the other side must involve the electromagnetic fields, since



they are the mechanism for exerting force on the charge distribution. Substituting for J
from (2.2) and for ρ from (2.3) we have

fem = E(∇ · D) − B × (∇ × H) + B × ∂D
∂t

.

Using

B × ∂D
∂t

= − ∂

∂t
(D × B) + D × ∂B

∂t

and substituting from Faraday’s law for ∂B/∂t we have

− [E(∇ · D) − D × (∇ × E) + H(∇ · B) − B × (∇ × H)] + ∂

∂t
(D × B) = −fem . (2.287)

Here we have also added the null term H(∇ · B).
The forms of (2.287) and (2.279) would be identical if the bracketed term could be

written as the divergence of a dyadic function T̄em . This is indeed possible for linear,
homogeneous, bianisotropic media, provided that the constitutive matrix [C̄E H ] in (2.21)
is symmetric [101]. In that case

T̄em = 1

2
(D · E + B · H)Ī − DE − BH, (2.288)

which is called the Maxwell stress tensor. Let us demonstrate this equivalence for a
linear, isotropic, homogeneous material. Putting D = εE and H = B/µ into (2.287) we
obtain

∇ · Tem = −εE(∇ · E) + 1

µ
B × (∇ × B) + εE × (∇ × E) − 1

µ
B(∇ · B). (2.289)

Now (B.46) gives

∇(A · A) = 2A × (∇ × A) + 2(A · ∇)A

so that

E(∇ · E) − E × (∇ × E) = E(∇ · E) + (E · ∇)E − 1

2
∇(E2).

Finally, (B.55) and (B.63) give

E(∇ · E) − E × (∇ × E) = ∇ ·
(

EE − 1

2
ĪE · E

)
.

Substituting this expression and a similar one for B into (2.289) we have

∇ · T̄em = ∇ ·
[

1

2
(D · E + B · H) Ī − DE − BH

]
,

which matches (2.288).
Replacing the term in brackets in (2.287) by ∇ · T̄em , we get

∇ · T̄em + ∂gem

∂t
= −fem (2.290)

where

gem = D × B.



Equation (2.290) is the point form of the electromagnetic conservation of momentum
theorem. It is mathematically identical in form to the mechanical theorem (2.279).
Integration over a volume gives the large-scale form∮

S
T̄em · dS +

∫
V

∂gem

∂t
dV = −

∫
V

fem dV . (2.291)

If we interpret this as we interpreted the conservation theorems from mechanics, the first
term on the left-hand side represents the flow of electromagnetic momentum across the
boundary of V , while the second term represents the change in momentum within V . The
sum of these two quantities is exactly compensated by the total Lorentz force acting on
the charges within V . Thus we identify gem as the transport density of electromagnetic
momentum.

Because (2.290) is not zero on the right-hand side, it does not represent a closed system.
If the Lorentz force is the only force acting on the charges within V , then the mechanical
reaction to the Lorentz force should be described by Newton’s third law. Thus we have
the kinematic momentum conservation formula

∇ · T̄k + ∂gk

∂t
= fk = −fem .

Subtracting this expression from (2.290) we obtain

∇ · (T̄em − T̄k) + ∂

∂t
(gem − gk) = 0, (2.292)

which describes momentum conservation for the closed system.
It is also possible to derive a conservation theorem for electromagnetic energy that

resembles the corresponding theorem for mechanical energy. Earlier we noted that v · f
represents the volume density of work produced by moving an object at velocity v under
the action of a force f. For the electromagnetic subsystem the work is produced by
charges moving against the Lorentz force. So the volume density of work delivered to
the currents is

wem = v · fem = v · (ρE + J × B) = (ρv) · E + ρv · (v × B). (2.293)

Using (B.6) on the second term in (2.293) we get

wem = (ρv) · E + ρB · (v × v).

The second term vanishes by definition of the cross product. This is the familiar property
that the magnetic field does no work on moving charge. Hence

wem = J · E. (2.294)

This important relation says that charge moving in an electric field experiences a force
which results in energy transfer to (or from) the charge. We wish to write this energy
transfer in terms of an energy flux vector, as we did with the mechanical subsystem.

As with our derivation of the conservation of electromagnetic momentum, we wish to
relate the energy transfer to the electromagnetic fields. Substitution of J from (2.2) into
(2.294) gives

wem = (∇ × H) · E − ∂D
∂t

· E,



hence

wem = −∇ · (E × H) + H · (∇ × E) − ∂D
∂t

· E

by (B.44). Substituting for ∇ × E from (2.1) we have

wem = −∇ · (E × H) −
[

E · ∂D
∂t

+ H · ∂B
∂t

]
.

This is not quite of the form (2.285) since a single term representing the time rate of
change of energy density is not present. However, for a linear isotropic medium in which
ε and µ do not depend on time (i.e., a nondispersive medium) we have

E · ∂D
∂t

= εE · ∂E
∂t

= 1

2
ε

∂

∂t
(E · E) = 1

2

∂

∂t
(D · E), (2.295)

H · ∂B
∂t

= µH · ∂H
∂t

= 1

2
µ

∂

∂t
(H · H) = 1

2

∂

∂t
(H · B). (2.296)

Using this we obtain

∇ · Sem + ∂

∂t
Wem = −fem · v = −J · E (2.297)

where

Wem = 1

2
(D · E + B · H)

and

Sem = E × H. (2.298)

Equation (2.297) is the point form of the energy conservation theorem, also called Poynt-
ing’s theorem after J.H. Poynting who first proposed it. The quantity Sem given in
(2.298) is known as the Poynting vector. Integrating (2.297) over a volume and using the
divergence theorem, we obtain the large-scale form

−
∫

V
J · E dV =

∫
V

1

2

∂

∂t
(D · E + B · H) dV +

∮
S
(E × H) · dS. (2.299)

This also holds for a nondispersive, linear, bianisotropic medium with a symmetric con-
stitutive matrix [101, 185].

We see that the electromagnetic energy conservation theorem (2.297) is identical in
form to the mechanical energy conservation theorem (2.285). Thus, if the system is com-
posed of just the kinetic and electromagnetic subsystems, the mechanical force exactly
balances the Lorentz force, and (2.297) and (2.285) add to give

∇ · (Sem + Sk) + ∂

∂t
(Wem + Wk) = 0, (2.300)

showing that energy is conserved for the entire system.
As in the mechanical system, we identify Wem as the volume electromagnetic energy

density in V , and Sem as the density of electromagnetic energy flowing across the bound-
ary of V . This interpretation is somewhat controversial, as discussed below.



Interpretation of the energy and momentum conservation theorems. There
has been some controversy regarding Poynting’s theorem (and, equally, the momentum
conservation theorem). While there is no question that Poynting’s theorem is mathe-
matically correct, we may wonder whether we are justified in associating Wem with Wk

and Sem with Sk merely because of the similarities in their mathematical expressions.
Certainly there is some justification for associating Wk , the kinetic energy of particles,
with Wem , since we shall show that for static fields the term 1

2 (D · E + B · H) represents
the energy required to assemble the charges and currents into a certain configuration.
However, the term Sem is more problematic. In a mechanical system, Sk represents the
flow of kinetic energy associated with moving particles — does that imply that Sem rep-
resents the flow of electromagnetic energy? That is the position generally taken, and it is
widely supported by experimental evidence. However, the interpretation is not clear-cut.

If we associate Sem with the flow of electromagnetic energy at a point in space, then
we must define what a flow of electromagnetic energy is. We naturally associate the
flow of kinetic energy with moving particles; with what do we associate the flow of
electromagnetic energy? Maxwell felt that electromagnetic energy must flow through
space as a result of the mechanical stresses and strains associated with an unobserved
substance called the “aether.” A more modern interpretation is that the electromagnetic
fields propagate as a wave through space at finite velocity; when those fields encounter a
charged particle a force is exerted, work is done, and energy is “transferred” from the field
to the particle. Hence the energy flow is associated with the “flow” of the electromagnetic
wave.

Unfortunately, it is uncertain whether E × H is the appropriate quantity to associate
with this flow, since only its divergence appears in Poynting’s theorem. We could add
any other term S′ that satisfies ∇ ·S′ = 0 to Sem in (2.297), and the conservation theorem
would be unchanged. (Equivalently, we could add to (2.299) any term that integrates to
zero over S.) There is no such ambiguity in the mechanical case because kinetic energy
is rigorously defined. We are left, then, to postulate that E × H represents the density
of energy flow associated with an electromagnetic wave (based on the symmetry with
mechanics), and to look to experimental evidence as justification. In fact, experimental
evidence does point to the correctness of this hypothesis, and the quantity E×H is widely
and accurately used to compute the energy radiated by antennas, carried by waveguides,
etc.

Confusion also arises regarding the interpretation of Wem . Since this term is so con-
veniently paired with the mechanical volume kinetic energy density in (2.300) it would
seem that we should interpret it as an electromagnetic energy density. As such, we can
think of this energy as “localized” in certain regions of space. This viewpoint has been
criticized [187, 145, 69] since the large-scale form of energy conservation for a space re-
gion only requires that the total energy in the region be specified, and the integrand
(energy density) giving this energy is not unique. It is also felt that energy should be
associated with a “configuration” of objects (such as charged particles) and not with an
arbitrary point in space. However, we retain the concept of localized energy because it
is convenient and produces results consistent with experiment.

The validity of extending the static field interpretation of

1

2
(D · E + B · H)

as the energy “stored” by a charge and a current arrangement to the time-varying case
has also been questioned. If we do extend this view to the time-varying case, Poynting’s
theorem suggests that every point in space somehow has an energy density associated



with it, and the flow of energy from that point (via Sem) must be accompanied by a
change in the stored energy at that point. This again gives a very useful and intuitively
satisfying point of view. Since we can associate the flow of energy with the propagation
of the electromagnetic fields, we can view the fields in any region of space as having the
potential to do work on charged particles in that region. If there are charged particles in
that region then work is done, accompanied by a transfer of energy to the particles and
a reduction in the amplitudes of the fields.

We must also remember that the association of stored electromagnetic energy density
Wem with the mechanical energy density Wk is only possible if the medium is nondisper-
sive. If we cannot make the assumptions that justify (2.295) and (2.296), then Poynting’s
theorem must take the form

−
∫

V
J · E dV =

∫
V

[
E · ∂D

∂t
+ H · ∂B

∂t

]
dV +

∮
S
(E × H) · dS. (2.301)

For dispersive media, the volume term on the right-hand side describes not only the stored
electromagnetic energy, but also the energy dissipated within the material produced by
a time lag between the field applied to the medium and the resulting polarization or
magnetization of the atoms. This is clearly seen in (2.29), which shows that D(t) depends
on the value of E at time t and at all past times. The stored energy and dissipative terms
are hard to separate, but we can see that there must always be a stored energy term by
substituting D = ε0E + P and H = B/µ0 − M into (2.301) to obtain

−
∫

V
[(J + JP) · E + JH · H] dV =

1

2

∂

∂t

∫
V
(ε0E · E + µ0H · H) dV +

∮
S
(E × H) · dS. (2.302)

Here JP is the equivalent polarization current (2.119) and JH is an analogous magnetic
polarization current given by

JH = µ0
∂M
∂t

.

In this form we easily identify the quantity

1

2
(ε0E · E + µ0H · H)

as the electromagnetic energy density for the fields E and H in free space. Any dissipa-
tion produced by polarization and magnetization lag is now handled by the interaction
between the fields and equivalent current, just as J · E describes the interaction of the
electric current (source and secondary) with the electric field. Unfortunately, the equiv-
alent current interaction terms also include the additional stored energy that results
from polarizing and magnetizing the material atoms, and again the effects are hard to
separate.

Finally, let us consider the case of static fields. Setting the time derivative to zero in
(2.299), we have

−
∫

V
J · E dV =

∮
S
(E × H) · dS.

This shows that energy flux is required to maintain steady current flow. For instance,
we need both an electromagnetic and a thermodynamic subsystem to account for energy
conservation in the case of steady current flow through a resistor. The Poynting flux



describes the electromagnetic energy entering the resistor and the thermodynamic flux
describes the heat dissipation. For the sum of the two subsystems conservation of energy
requires

∇ · (Sem + Sth) = −J · E + Pth = 0.

To compute the heat dissipation we can use

Pth = J · E = −∇ · Sem

and thus either use the boundary fields or the fields and current internal to the resistor
to find the dissipated heat.

Boundary conditions on the Poynting vector. The large-scale form of Poynting’s
theorem may be used to determine the behavior of the Poynting vector on either side
of a boundary surface. We proceed exactly as in § 2.8.2. Consider a surface S across
which the electromagnetic sources and constitutive parameters are discontinuous (Figure
2.6). As before, let n̂12 be the unit normal directed into region 1. We now simplify the
notation and write S instead of Sem . If we apply Poynting’s theorem∫

V

(
J · E + E · ∂D

∂t
+ H · ∂B

∂t

)
dV +

∮
S

S · n d S = 0

to the two separate surfaces shown in Figure 2.6, we obtain∫
V

(
J · E + E · ∂D

∂t
+ H · ∂B

∂t

)
dV +

∫
S

S · n d S =
∫

S10

n̂12 · (S1 − S2) d S. (2.303)

If on the other hand we apply Poynting’s theorem to the entire volume region including
the surface of discontinuity and include the contribution produced by surface current, we
get ∫

V

(
J · E + E · ∂D

∂t
+ H · ∂B

∂t

)
dV +

∫
S

S · n d S = −
∫

S10

Js · E d S. (2.304)

Since we are uncertain whether to use E1 or E2 in the surface term on the right-hand side,
if we wish to have the integrals over V and S in (2.303) and (2.304) produce identical
results we must postulate the two conditions

n̂12 × (E1 − E2) = 0

and

n̂12 · (S1 − S2) = −Js · E. (2.305)

The first condition is merely the continuity of tangential electric field as originally postu-
lated in § 2.8.2; it allows us to be nonspecific as to which value of E we use in the second
condition, which is the desired boundary condition on S.

It is interesting to note that (2.305) may also be derived directly from the two pos-
tulated boundary conditions on tangential E and H. Here we write with the help of
(B.6)

n̂12 · (S1 − S2) = n̂12 · (E1 × H1 − E2 × H2) = H1 · (n̂12 × E1) − H2 · (n̂12 × E2).

Since n̂12 × E1 = n̂12 × E2 = n̂12 × E, we have

n̂12 · (S1 − S2) = (H1 − H2) · (n̂12 × E) = [−n̂12 × (H1 − H2)] · E.



Finally, using n̂12 × (H1 − H2) = Js we arrive at (2.305).
The arguments above suggest an interesting way to look at the boundary conditions.

Once we identify S with the flow of electromagnetic energy, we may consider the condition
on normal S as a fundamental statement of the conservation of energy. This statement
implies continuity of tangential E in order to have an unambiguous interpretation for the
meaning of the term Js · E. Then, with continuity of tangential E established, we can
derive the condition on tangential H directly.

An alternative formulation of the conservation theorems. As we saw in the
paragraphs above, our derivation of the conservation theorems lacks strong motivation.
We manipulated Maxwell’s equations until we found expressions that resembled those
for mechanical momentum and energy, but in the process found that the validity of the
expressions is somewhat limiting. For instance, we needed to assume a linear, homoge-
neous, bianisotropic medium in order to identify the Maxwell stress tensor (2.288) and
the energy densities in Poynting’s theorem (2.299). In the end, we were reduced to pos-
tulating the meaning of the individual terms in the conservation theorems in order for
the whole to have meaning.

An alternative approach is popular in physics. It involves postulating a single La-
grangian density function for the electromagnetic field, and then applying the stationary
property of the action integral. The results are precisely the same conservation expres-
sions for linear momentum and energy as obtained from manipulating Maxwell’s equa-
tions (plus the equation for conservation of angular momentum), obtained with fewer
restrictions regarding the constitutive relations. This process also separates the stored
energy, Maxwell stress tensor, momentum density, and Poynting vector as natural com-
ponents of a tensor equation, allowing a better motivated interpretation of the meaning
of these components. Since this approach is also a powerful tool in mechanics, its ap-
plication is more strongly motivated than merely manipulating Maxwell’s equations. Of
course, some knowledge of the structure of the electromagnetic field is required to provide
an appropriate postulate of the Lagrangian density. Interested readers should consult
Kong [101], Jackson [91], Doughty [57], or Tolstoy [198].

2.10 The wave nature of the electromagnetic field

Throughout this chapter our goal has been a fundamental understanding of Maxwell’s
theory of electromagnetics. We have concentrated on developing and understanding the
equations relating the field quantities, but have done little to understand the nature of
the field itself. We would now like to investigate, in a very general way, the behavior
of the field. We shall not attempt to solve a vast array of esoteric problems, but shall
instead concentrate on a few illuminating examples.

The electromagnetic field can take on a wide variety of characteristics. Static fields
differ qualitatively from those which undergo rapid time variations. Time-varying fields
exhibit wave behavior and carry energy away from their sources. In the case of slow
time variation this wave nature may often be neglected in favor of the nearby coupling
of sources we know as the inductance effect, hence circuit theory may suffice to describe
the field-source interaction. In the case of extremely rapid oscillations, particle concepts
may be needed to describe the field.



The dynamic coupling between the various field vectors in Maxwell’s equations provides
a means of characterizing the field. Static fields are characterized by decoupling of the
electric and magnetic fields. Quasistatic fields exhibit some coupling, but the wave
characteristic of the field is ignored. Tightly coupled fields are dominated by the wave
effect, but may still show a static-like spatial distribution near the source. Any such
“near-zone” effects are generally ignored for fields at light-wave frequencies, and the
particle nature of light must often be considered.

2.10.1 Electromagnetic waves

An early result of Maxwell’s theory was the prediction and later verification by Heinrich
Hertz of the existence of electromagnetic waves. We now know that nearly any time-
varying source produces waves, and that these waves have certain important properties.
An electromagnetic wave is a propagating electromagnetic field that travels with finite
velocity as a disturbance through a medium. The field itself is the disturbance, rather
than merely representing a physical displacement or other effect on the medium. This fact
is fundamental for understanding how electromagnetic waves can travel through a true
vacuum. Many specific characteristics of the wave, such as velocity and polarization,
depend on the properties of the medium through which it propagates. The evolution
of the disturbance also depends on these properties: we say that a material exhibits
“dispersion” if the disturbance undergoes a change in its temporal behavior as the wave
progresses. As waves travel they carry energy and momentum away from their source.
This energy may be later returned to the source or delivered to some distant location.
Waves are also capable of transferring energy to, or withdrawing energy from, the medium
through which they propagate. When energy is carried outward from the source never
to return, we refer to the process as “electromagnetic radiation.” The effects of radiated
fields can be far-reaching; indeed, radio astronomers observe waves that originated at the
very edges of the universe.

Light is an electromagnetic phenomenon, and many of the familiar characteristics of
light that we recognize from our everyday experience may be applied to all electromag-
netic waves. For instance, radio waves bend (or “refract”) in the ionosphere much as
light waves bend while passing through a prism. Microwaves reflect from conducting sur-
faces in the same way that light waves reflect from a mirror; detecting these reflections
forms the basis of radar. Electromagnetic waves may also be “confined” by reflecting
boundaries to form waves standing in one or more directions. With this concept we can
use waveguides or transmission lines to guide electromagnetic energy from spot to spot,
or to concentrate it in the cavity of a microwave oven.

The manifestations of electromagnetic waves are so diverse that no one book can
possibly describe the entire range of phenomena or application. In this section we shall
merely introduce the reader to some of the most fundamental concepts of electromagnetic
wave behavior. In the process we shall also introduce the three most often studied types
of traveling electromagnetic waves: plane waves, spherical waves, and cylindrical waves.
In later sections we shall study some of the complicated interactions of these waves with
objects and boundaries, in the form of guided waves and scattering problems.

Mathematically, electromagnetic waves arise as a subset of solutions to Maxwell’s equa-
tions. These solutions obey the electromagnetic “wave equation,” which may be derived
from Maxwell’s equations under certain circumstances. Not all electromagnetic fields
satisfy the wave equation. Obviously, time-invariant fields cannot represent evolving
wave disturbances, and must obey the static field equations. Time-varying fields in cer-



tain metals may obey the diffusion equation rather than the wave equation, and must
thereby exhibit different behavior. In the study of quasistatic fields we often ignore the
displacement current term in Maxwell’s equations, producing solutions that are most
important near the sources of the fields and having little associated radiation. When the
displacement term is significant we produce solutions with the properties of waves.

2.10.2 Wave equation for bianisotropic materials

In deriving electromagnetic wave equations we transform the first-order coupled par-
tial differential equations we know as Maxwell’s equations into uncoupled second-order
equations. That is, we perform a set of operations (and make appropriate assumptions)
to reduce the set of four differential equations in the four unknown fields E, D, B, and
H, into a set of differential equations each involving a single unknown (usually E or
H). It is possible to derive wave equations for E and H even for the most general cases
of inhomogeneous, bianisotropic media, as long as the constitutive parameters µ̄ and
ξ̄ are constant with time. Substituting the constitutive relations (2.19)–(2.20) into the
Maxwell–Minkowski curl equations (2.169)–(2.170) we get

∇ × E = − ∂

∂t
(ζ̄ · E + µ̄ · H) − Jm, (2.306)

∇ × H = ∂

∂t
(ε̄ · E + ξ̄ · H) + J. (2.307)

Separate equations for E and H are facilitated by introducing a new dyadic operator ∇̄,
which when dotted with a vector field V gives the curl:

∇̄ · V = ∇ × V. (2.308)

It is easy to verify that in rectangular coordinates ∇̄ is

[∇̄] =

 0 −∂/∂z ∂/∂y

∂/∂z 0 −∂/∂x
−∂/∂y ∂/∂x 0


 .

With this notation, Maxwell’s curl equations (2.306)–(2.307) become simply(
∇̄ + ∂

∂t
ζ̄

)
· E = − ∂

∂t
µ̄ · H − Jm, (2.309)(

∇̄ − ∂

∂t
ξ̄

)
· H = ∂

∂t
ε̄ · E + J. (2.310)

Obtaining separate equations for E and H is straightforward. Defining the inverse
dyadic µ̄−1 through

µ̄ · µ̄−1 = µ̄−1 · µ̄ = Ī,

we can write (2.309) as

∂

∂t
H = −µ̄−1 ·

(
∇̄ + ∂

∂t
ζ̄

)
· E − µ̄−1 · Jm (2.311)

where we have assumed that µ̄ is independent of time. Assuming that ξ̄ is also indepen-
dent of time, we can differentiate (2.310) with respect to time to obtain(

∇̄ − ∂

∂t
ξ̄

)
· ∂H

∂t
= ∂2

∂t2
(ε̄ · E) + ∂J

∂t
.



Substituting ∂H/∂t from (2.311) and rearranging, we get[(
∇̄ − ∂

∂t
ξ̄

)
· µ̄−1 ·

(
∇̄ + ∂

∂t
ζ̄

)
+ ∂2

∂t2
ε̄

]
· E = −

(
∇̄ − ∂

∂t
ξ̄

)
· µ̄−1 · Jm − ∂J

∂t
.

(2.312)

This is the general wave equation for E. Using an analogous set of steps, and assuming
ε̄ and ζ̄ are independent of time, we can find[(

∇̄ + ∂

∂t
ζ̄

)
· ε̄−1 ·

(
∇̄ − ∂

∂t
ξ̄

)
+ ∂2

∂t2
µ̄

]
· H =

(
∇̄ + ∂

∂t
ζ̄

)
· ε̄−1 · J − ∂Jm

∂t
.

(2.313)

This is the wave equation for H. The case in which the constitutive parameters are
time-dependent will be handled using frequency domain techniques in later chapters.

Wave equations for anisotropic, isotropic, and homogeneous media are easily obtained
from (2.312) and (2.313) as special cases. For example, the wave equations for a homo-
geneous, isotropic medium can be found by setting ζ̄ = ξ̄ = 0, µ̄ = µĪ, and ε̄ = εĪ:

1

µ
∇̄ · (∇̄ · E) + ε

∂2E
∂t2

= − 1

µ
∇̄ · Jm − ∂J

∂t
,

1

ε
∇̄ · (∇̄ · H) + µ

∂2H
∂t2

= 1

ε
∇̄ · J − ∂Jm

∂t
.

Returning to standard curl notation we find that these become

∇ × (∇ × E) + µε
∂2E
∂t2

= −∇ × Jm − µ
∂J
∂t

, (2.314)

∇ × (∇ × H) + µε
∂2H
∂t2

= ∇ × J − ε
∂Jm

∂t
. (2.315)

In each of the wave equations it appears that operations on the electromagnetic fields
have been separated from operations on the source terms. However, we have not yet
invoked any coupling between the fields and sources associated with secondary interac-
tions. That is, we need to separate the impressed sources, which are independent of
the fields they source, with secondary sources resulting from interactions between the
sourced fields and the medium in which the fields exist. The simple case of an isotropic
conducting medium will be discussed below.

Wave equation using equivalent sources. An alternative approach for studying
wave behavior in general media is to use the Maxwell–Boffi form of the field equations

∇ × E = −∂B
∂t

, (2.316)

∇ × B
µ0

= (J + JM + JP) + ∂ε0E
∂t

, (2.317)

∇ · (ε0E) = (ρ + ρP), (2.318)
∇ · B = 0. (2.319)

Taking the curl of (2.316) we have

∇ × (∇ × E) = − ∂

∂t
∇ × B.



Substituting for ∇ × B from (2.317) we then obtain

∇ × (∇ × E) + µ0ε0
∂2E
∂t2

= −µ0
∂

∂t
(J + JM + JP), (2.320)

which is the wave equation for E. Taking the curl of (2.317) and substituting from (2.316)
we obtain the wave equation

∇ × (∇ × B) + µ0ε0
∂2B
∂t2

= µ0∇ × (J + JM + JP) (2.321)

for B. Solution of the wave equations is often facilitated by writing the curl-curl operation
in terms of the vector Laplacian. Using (B.47), and substituting for the divergence from
(2.318) and (2.319), we can write the wave equations as

∇2E − µ0ε0
∂2E
∂t2

= 1

ε0
∇(ρ + ρP) + µ0

∂

∂t
(J + JM + JP), (2.322)

∇2B − µ0ε0
∂2B
∂t2

= −µ0∇ × (J + JM + JP). (2.323)

The simplicity of these equations relative to (2.312) and (2.313) is misleading. We have
not considered the constitutive equations relating the polarization P and magnetization
M to the fields, nor have we considered interactions leading to secondary sources.

2.10.3 Wave equation in a conducting medium

As an example of the type of wave equation that arises when secondary sources are
included, consider a homogeneous isotropic conducting medium described by permittivity
ε, permeability µ, and conductivity σ . In a conducting medium we must separate the
source field into a causative impressed term Ji that is independent of the fields it sources,
and a secondary term Js that is an effect of the sourced fields. In an isotropic conducting
medium the effect is described by Ohm’s law Js = σE. Writing the total current as
J = Ji + Js , and assuming that Jm = 0, we write the wave equation (2.314) as

∇ × (∇ × E) + µε
∂2E
∂t2

= −µ
∂(Ji + σE)

∂t
. (2.324)

Using (B.47) and substituting ∇ · E = ρ/ε, we can write the wave equation for E as

∇2E − µσ
∂E
∂t

− µε
∂2E
∂t2

= µ
∂Ji

∂t
+ 1

ε
∇ρ. (2.325)

Substituting J = Ji + σE into (2.315) and using (B.47), we obtain

∇(∇ · H) − ∇2H + µε
∂2H
∂t2

= ∇ × Ji + σ∇ × E.

Since ∇ × E = −∂B/∂t and ∇ · H = ∇ · B/µ = 0, we have

∇2H − µσ
∂H
∂t

− µε
∂2H
∂t2

= −∇ × Ji . (2.326)

This is the wave equation for H.



2.10.4 Scalar wave equation for a conducting medium

In many applications, particularly those involving planar boundary surfaces, it is
convenient to decompose the vector wave equation into cartesian components. Using
∇2V = x̂∇2Vx + ŷ∇2Vy + ẑ∇2Vz in (2.325) and in (2.326), we find that the rectangular
components of E and H must obey the scalar wave equation

∇2ψ(r, t) − µσ
∂ψ(r, t)

∂t
− µε

∂2ψ(r, t)

∂t2
= s(r, t). (2.327)

For the electric field wave equation we have

ψ = Eα, s = µ
∂ J i

α

∂t
+ 1

ε
α̂ · ∇ρ,

where α = x, y, z. For the magnetic field wave equations we have

ψ = Hα, s = α̂ · (−∇ × Ji ).

2.10.5 Fields determined by Maxwell’s equations vs. fields deter-
mined by the wave equation

Although we derive the wave equations directly from Maxwell’s equations, we may
wonder whether the solutions to second-order differential equations such as (2.314)–
(2.315) are necessarily the same as the solutions to the first-order Maxwell equations.
Hansen and Yaghjian [81] show that if all information about the fields is supplied by the
sources J(r, t) and ρ(r, t), rather than by specification of field values on boundaries, the
solutions to Maxwell’s equations and the wave equations are equivalent as long as the
second derivatives of the quantities

∇ · E(r, t) − ρ(r, t)/ε, ∇ · H(r, t),

are continuous functions of r and t . If boundary values are supplied in an attempt to
guarantee uniqueness, then solutions to the wave equation and to Maxwell’s equations
may differ. This is particularly important when comparing numerical solutions obtained
directly from Maxwell’s equations (using the FDTD method, say) to solutions obtained
from the wave equation. “Spurious” solutions having no physical significance are a con-
tinual plague for engineers who employ numerical techniques. The interested reader
should see Jiang [94].

We note that these conclusions do not hold for static fields. The conditions for equiv-
alence of the first-order and second-order static field equations are considered in § 3.2.4.

2.10.6 Transient uniform plane waves in a conducting medium

We can learn a great deal about the wave nature of the electromagnetic field by solving
the wave equation (2.325) under simple circumstances. In Chapter 5 we shall solve for
the field produced by an arbitrary distribution of impressed sources, but here we seek a
simple solution to the homogeneous form of the equation. This allows us to study the
phenomenology of wave propagation without worrying about the consequences of specific
source functions. We shall also assume a high degree of symmetry so that we are not
bogged down in details about the vector directions of the field components.

We seek a solution of the wave equation in which the fields are invariant over a chosen
planar surface. The resulting fields are said to comprise a uniform plane wave. Although



we can envision a uniform plane wave as being created by a uniform surface source of
doubly-infinite extent, plane waves are also useful as models for spherical waves over
localized regions of the wavefront.

We choose the plane of field invariance to be the xy-plane and later generalize the
resulting solution to any planar surface by a simple rotation of the coordinate axes. Since
the fields vary with z only we choose to write the wave equation (2.325) in rectangular
coordinates, giving for a source-free region of space4

x̂
∂2 Ex (z, t)

∂z2
+ ŷ

∂2 Ey(z, t)

∂z2
+ ẑ

∂2 Ez(z, t)

∂z2
− µσ

∂E(z, t)

∂t
− µε

∂2E(z, t)

∂t2
= 0. (2.328)

If we return to Maxwell’s equations, we soon find that not all components of E are
present in the plane-wave solution. Faraday’s law states that

∇ × E(z, t) = −x̂
∂ Ey(z, t)

∂z
+ ŷ

∂ Ex (z, t)

∂z
= ẑ × ∂E(z, t)

∂z
= −µ

∂H(z, t)

∂t
. (2.329)

We see that ∂ Hz/∂t = 0, hence Hz must be constant with respect to time. Because
a nonzero constant field component would not exhibit wave-like behavior, we can only
have Hz = 0 in our wave solution. Similarly, Ampere’s law in a homogeneous conducting
region free from impressed sources states that

∇ × H(z, t) = J + ∂D(z, t)

∂t
= σE(z, t) + ε

∂E(z, t)

∂t
or

− x̂
∂ Hy(z, t)

∂z
+ ŷ

∂ Hx (z, t)

∂z
= ẑ × ∂H(z, t)

∂z
= σE(z, t) + ε

∂E(z, t)

∂t
. (2.330)

This implies that

σ Ez(z, t) + ε
∂ Ez(z, t)

∂t
= 0,

which is a differential equation for Ez with solution

Ez(z, t) = E0(z) e− σ
ε

t .

Since we are interested only in wave-type solutions, we choose Ez = 0.
Hence Ez = Hz = 0, and thus both E and H are perpendicular to the z-direction.

Using (2.329) and (2.330), we also see that

∂

∂t
(E · H) = E · ∂H

∂t
+ H · ∂E

∂t

= − 1

µ
E ·

(
ẑ × ∂E

∂z

)
− H ·

(σ

ε
E

)
+ 1

ε
H ·

(
ẑ × ∂H

∂z

)
or (

∂

∂t
+ σ

ε

)
(E · H) = 1

µ
ẑ ·

(
E × ∂E

∂z

)
− 1

ε
ẑ ·

(
H × ∂H

∂z

)
.

We seek solutions of the type E(z, t) = p̂E(z, t) and H(z, t) = q̂H(z, t), where p̂ and q̂ are
constant unit vectors. Under this condition we have E × ∂E/∂z = 0 and H × ∂H/∂z = 0,
giving (

∂

∂t
+ σ

ε

)
(E · H) = 0.

4The term “source free” applied to a conducting region implies that the region is devoid of impressed
sources and, because of the relaxation effect, has no free charge. See the discussion in Jones [97].



Thus we also have E · H = 0, and find that E must be perpendicular to H. So E, H,
and ẑ comprise a mutually orthogonal triplet of vectors. A wave having this property is
said to be TEM to the z-direction or simply TEMz . Here “TEM” stands for transverse
electromagnetic, indicating the orthogonal relationship between the field vectors and the
z-direction. Note that

p̂ × q̂ = ±ẑ.

The constant direction described by p̂ is called the polarization of the plane wave.
We are now ready to solve the source-free wave equation (2.328). If we dot both sides

of the homogeneous expression by p̂ we obtain

p̂ · x̂
∂2 Ex

∂z2
+ p̂ · ŷ

∂2 Ey

∂z2
− µσ

∂(p̂ · E)

∂t
− µε

∂2(p̂ · E)

∂t2
= 0.

Noting that

p̂ · x̂
∂2 Ex

∂z2
+ p̂ · ŷ

∂2 Ey

∂z2
= ∂2

∂z2
(p̂ · x̂Ex + p̂ · ŷEy) = ∂2

∂z2
(p̂ · E),

we have the wave equation

∂2 E(z, t)

∂z2
− µσ

∂ E(z, t)

∂t
− µε

∂2 E(z, t)

∂t2
= 0. (2.331)

Similarly, dotting both sides of (2.326) with q̂ and setting Ji = 0 we obtain

∂2 H(z, t)

∂z2
− µσ

∂ H(z, t)

∂t
− µε

∂2 H(z, t)

∂t2
= 0. (2.332)

In a source-free homogeneous conducting region E and H satisfy identical wave equations.
Solutions are considered in § A.1. There we solve for the total field for all z, t given

the value of the field and its derivative over the z = 0 plane. This solution can be
directly applied to find the total field of a plane wave reflected by a perfect conductor.
Let us begin by considering the lossless case where σ = 0, and assuming the region z < 0
contains a perfect electric conductor. The conditions on the field in the z = 0 plane are
determined by the required boundary condition on a perfect conductor: the tangential
electric field must vanish. From (2.330) we see that since E ⊥ ẑ, requiring

∂ H(z, t)

∂z

∣∣∣∣
z=0

= 0 (2.333)

gives E(0, t) = 0 and thus satisfies the boundary condition. Writing

H(0, t) = H0 f (t),
∂ H(z, t)

∂z

∣∣∣∣
z=0

= H0g(t) = 0, (2.334)

and setting � = 0 in (A.41) we obtain the solution to (2.332):

H(z, t) = H0

2
f
(

t − z

v

)
+ H0

2
f
(

t + z

v

)
, (2.335)

where v = 1/(µε)1/2. Since we designate the vector direction of H as q̂, the vector field
is

H(z, t) = q̂
H0

2
f
(

t − z

v

)
+ q̂

H0

2
f
(

t + z

v

)
. (2.336)



Figure 2.7: Propagation of a transient plane wave in a lossless medium.

From (2.329) we also have the solution for E(z, t):

E(z, t) = p̂
vµH0

2
f
(

t − z

v

)
− p̂

vµH0

2
f
(

t + z

v

)
, (2.337)

where

p̂ × q̂ = ẑ.

The boundary conditions E(0, t) = 0 and H(0, t) = H0 f (t) are easily verified by substi-
tution.

This solution displays the quintessential behavior of electromagnetic waves. We may
interpret the term f (t + z/v) as a wave field disturbance, propagating at velocity v in the
−z-direction, incident from z > 0 upon the conductor. The term f (t − z/v) represents
a wave field disturbance propagating in the +z-direction with velocity v, reflected from
the conductor. By “propagating” we mean that if we increment time, the disturbance
will occupy a spatial position determined by incrementing z by vt . For free space where
v = 1/(µ0ε0)

1/2, the velocity of propagation is the speed of light c.
A specific example should serve to clarify our interpretation of the wave solution.

Taking µ = µ0 and ε = 81ε0, representing typical constitutive values for fresh water, we
can plot (2.335) as a function of position for fixed values of time. The result is shown in
Figure 2.7, where we have chosen

f (t) = rect(t/τ) (2.338)

with τ = 1 µs. We see that the disturbance is spatially distributed as a rectangular
pulse of extent L = 2vτ = 66.6 m, where v = 3.33 × 107 m/s is the wave velocity,



and where 2τ is the temporal duration of the pulse. At t = −8 µs the leading edge of
the pulse is at z = 233 m, while at −4 µs the pulse has traveled a distance z = vt =
(3.33 × 107) × (4 × 10−6) = 133 m in the −z-direction, and the leading edge is thus at
100 m. At t = −1 µs the leading edge strikes the conductor and begins to induce a
current in the conductor surface. This current sets up the reflected wave, which begins
to travel in the opposite (+z) direction. At t = −0.5 µs a portion of the wave has begun
to travel in the +z-direction while the trailing portion of the disturbance continues to
travel in the −z-direction. At t = 1 µs the wave has been completely reflected from
the surface, and thus consists only of the component traveling in the +z-direction. Note
that if we plot the total field in the z = 0 plane, the sum of the forward and backward
traveling waves produces the pulse waveform (2.338) as expected.

Using the expressions for E and H we can determine many interesting characteristics
of the wave. We see that the terms f (t ± z/v) represent the components of the waves
traveling in the ∓z-directions, respectively. If we were to isolate these waves from each
other (by, for instance, measuring them as functions of time at a position where they do
not overlap) we would find from (2.336) and (2.337) that the ratio of E to H for a wave
traveling in either direction is ∣∣∣∣ E(z, t)

H(z, t)

∣∣∣∣ = vµ = (µ/ε)1/2,

independent of the time and position of the measurement. This ratio, denoted by η and
carrying units of ohms, is called the intrinsic impedance of the medium through which
the wave propagates. Thus, if we let E0 = ηH0 we can write

E(z, t) = p̂
E0

2
f
(

t − z

v

)
− p̂

E0

2
f
(

t + z

v

)
. (2.339)

We can easily determine the current induced in the conductor by applying the boundary
condition (2.200):

Js = n̂ × H|z=0 = ẑ × [H0q̂ f (t)] = −p̂H0 f (t). (2.340)

We can also determine the pressure exerted on the conductor due to the Lorentz force
interaction between the fields and the induced current. The total force on the conductor
can be computed by integrating the Maxwell stress tensor (2.288) over the xy-plane5:

Fem = −
∫

S
T̄em · dS.

The surface traction is

t = T̄em · n̂ =
[

1

2
(D · E + B · H)Ī − DE − BH

]
· ẑ.

Since E and H are both normal to ẑ, the last two terms in this expression are zero. Also,
the boundary condition on E implies that it vanishes in the xy-plane. Thus

t = 1

2
(B · H)ẑ = ẑ

µ

2
H 2(t).

5We may neglect the momentum term in (2.291), which is small compared to the stress tensor term. See
Problem 2.20.



With H0 = E0/η we have

t = ẑ
E2

0

2η2
µ f 2(t). (2.341)

As a numerical example, consider a high-altitude nuclear electromagnetic pulse (HEMP)
generated by the explosion of a large nuclear weapon in the upper atmosphere. Such
an explosion could generate a transient electromagnetic wave of short (sub-microsecond)
duration with an electric field amplitude of 50, 000 V/m in air [200]. Using (2.341),
we find that the wave would exert a peak pressure of P = |t| = .011 Pa = 1.6 × 10−6

lb/in2 if reflected from a perfect conductor at normal incidence. Obviously, even for this
extreme field level the pressure produced by a transient electromagnetic wave is quite
small. However, from (2.340) we find that the current induced in the conductor would
have a peak value of 133 A/m. Even a small portion of this current could destroy a
sensitive electronic circuit if it were to leak through an opening in the conductor. This is
an important concern for engineers designing circuitry to be used in high-field environ-
ments, and demonstrates why the concepts of current and voltage can often supersede
the concept of force in terms of importance.

Finally, let us see how the terms in the Poynting power balance theorem relate. Con-
sider a cubic region V bounded by the planes z = z1 and z = z2, z2 > z1. We choose
the field waveform f (t) and locate the planes so that we can isolate either the forward
or backward traveling wave. Since there is no current in V , Poynting’s theorem (2.299)
becomes

1

2

∂

∂t

∫
V
(εE · E + µH · H) dV = −

∮
S
(E × H) · dS.

Consider the wave traveling in the −z-direction. Substitution from (2.336) and (2.337)
gives the time-rate of change of stored energy as

Scube(t) = 1

2

∂

∂t

∫
V

[
εE2(z, t) + µH 2(z, t)

]
dV

= 1

2

∂

∂t

∫
x

∫
y

dx dy
∫ z2

z1

[
ε
(vµ)2 H 2

0

4
f 2

(
t + z

v

)
+ µ

H 2
0

4
f 2

(
t + z

v

)]
dz

= 1

2

∂

∂t
µ

H 2
0

2

∫
x

∫
y

dx dy
∫ z2

z1

f 2
(

t + z

v

)
dz.

Integration over x and y gives the area A of the cube face. Putting u = t + z/v we see
that

S = Aµ
H 2

0

4

∂

∂t

∫ t+z2/v

t+z1/v

f 2(u)v du.

Leibnitz’ rule for differentiation (A.30) then gives

Scube(t) = A
µvH 2

0

4

[
f 2

(
t + z2

v

)
− f 2

(
t + z1

v

)]
. (2.342)

Again substituting for E(t + z/v) and H(t + z/v) we can write

Scube(t) = −
∮

S
(E × H) · dS

= −
∫

x

∫
y

vµH 2
0

4
f 2

(
t + z1

v

)
(−p̂ × q̂) · (−ẑ) dx dy −

−
∫

x

∫
y

vµH 2
0

4
f 2

(
t + z2

v

)
(−p̂ × q̂) · (ẑ) dx dy.



Figure 2.8: Propagation of a transient plane wave in a dissipative medium.

The second term represents the energy change in V produced by the backward traveling
wave entering the cube by passing through the plane at z = z2, while the first term
represents the energy change in V produced by the wave exiting the cube by passing
through the plane z = z1. Contributions from the sides, top, and bottom are zero since
E × H is perpendicular to n̂ over those surfaces. Since p̂ × q̂ = ẑ, we get

Scube(t) = A
µvH 2

0

4

[
f 2

(
t + z2

v

)
− f 2

(
t + z1

v

)]
,

which matches (2.342) and thus verifies Poynting’s theorem. We may interpret this result
as follows. The propagating electromagnetic disturbance carries energy through space.
The energy within any region is associated with the field in that region, and can change
with time as the propagating wave carries a flux of energy across the boundary of the
region. The energy continues to propagate even if the source is changed or is extinguished
altogether. That is, the behavior of the leading edge of the disturbance is determined
by causality — it is affected by obstacles it encounters, but not by changes in the source
that occur after the leading edge has been established.

When propagating through a dissipative region a plane wave takes on a somewhat
different character. Again applying the conditions (2.333) and (2.334), we obtain from
(2.991) the solution to the wave equation (2.332):

H(z, t) = H0

2
e− �

v
z f

(
t − z

v

)
+ H0

2
e

�
v

z f
(

t + z

v

)
−



− z�2 H0

2v
e−�t

∫ t+ z
v

t− z
v

f (u)e�u
J1

(
�
v

√
z2 − (t − u)2v2

)
�
v

√
z2 − (t − u)2v2

du (2.343)

where � = σ/2ε. The first two terms resemble those for the lossless case, modified
by an exponential damping factor. This accounts for the loss in amplitude that must
accompany the transfer of energy from the propagating wave to joule loss (heat) within
the conducting medium. The remaining term appears only when the medium is lossy, and
results in an extension of the disturbance through the medium because of the currents
induced by the passing wavefront. This “wake” follows the leading edge of the disturbance
as is shown clearly in Figure 2.8. Here we have repeated the calculation of Figure 2.7,
but with σ = 2 × 10−4, approximating the conductivity of fresh water. As the wave
travels to the left it attenuates and leaves a trailing remnant behind. Upon reaching
the conductor it reflects much as in the lossless case, resulting in a time dependence at
z = 0 given by the finite-duration rectangular pulse (2.338). In order for the pulse to
be of finite duration, the wake left by the reflected pulse must exactly cancel the wake
associated with the incident pulse that continues to arrive after the reflection. As the
reflected pulse sweeps forward, the wake is obliterated everywhere behind.

If we were to verify the Poynting theorem for a dissipative medium (which we shall
not attempt because of the complexity of the computation), we would need to include
the E ·J term. Here J is the induced conduction current and the integral of E ·J accounts
for the joule loss within a region V balanced by the difference in Poynting energy flux
carried into and out of V .

Once we have the fields for a wave propagating along the z-direction, it is a simple
matter to generalize these results to any propagation direction. Assume that û is normal
to the surface of a plane over which the fields are invariant. Then u = û · r describes the
distance from the origin along the direction û. We need only replace z by û · r in any
of the expressions obtained above to determine the fields of a plane wave propagating in
the u-direction. We must also replace the orthogonality condition p̂ × q̂ = ẑ with

p̂ × q̂ = û.

For instance, the fields associated with a wave propagating through a lossless medium in
the positive u-direction are, from (2.336)–(2.337),

H(r, t) = q̂
H0

2
f

(
t − û · r

v

)
, E(r, t) = p̂

vµH0

2
f

(
t − û · r

v

)
.

2.10.7 Propagation of cylindrical waves in a lossless medium

Much as we envisioned a uniform plane wave arising from a uniform planar source, we
can imagine a uniform cylindrical wave arising from a uniform line source. Although this
line source must be infinite in extent, uniform cylindrical waves (unlike plane waves) dis-
play the physical behavior of diverging from their source while carrying energy outwards
to infinity.

A uniform cylindrical wave has fields that are invariant over a cylindrical surface:
E(r, t) = E(ρ, t), H(r, t) = H(ρ, t). For simplicity, we shall assume that waves propagate
in a homogeneous, isotropic, linear, and lossless medium described by permittivity ε

and permeability µ. From Maxwell’s equations we find that requiring the fields to be
independent of φ and z puts restrictions on the remaining vector components. Faraday’s



law states

∇ × E(ρ, t) = −φ̂
∂ Ez(ρ, t)

∂ρ
+ ẑ

1

ρ

∂

∂ρ
[ρEφ(ρ, t)] = −µ

∂H(ρ, t)

∂t
. (2.344)

Equating components we see that ∂ Hρ/∂t = 0, and because our interest lies in wave
solutions we take Hρ = 0. Ampere’s law in a homogeneous lossless region free from
impressed sources states in a similar manner

∇ × H(ρ, t) = −φ̂
∂ Hz(ρ, t)

∂ρ
+ ẑ

1

ρ

∂

∂ρ
[ρHφ(ρ, t)] = ε

∂E(ρ, t)

∂t
. (2.345)

Equating components we find that Eρ = 0. Since Eρ = Hρ = 0, both E and H are
perpendicular to the ρ-direction. Note that if there is only a z-component of E then
there is only a φ-component of H. This case, termed electric polarization, results in

∂ Ez(ρ, t)

∂ρ
= µ

∂ Hφ(ρ, t)

∂t
.

Similarly, if there is only a z-component of H then there is only a φ-component of E.
This case, termed magnetic polarization, results in

−∂ Hz(ρ, t)

∂ρ
= ε

∂ Eφ(ρ, t)

∂t
.

Since E = φ̂Eφ + ẑEz and H = φ̂Hφ + ẑHz , we can always decompose a cylindrical
electromagnetic wave into cases of electric and magnetic polarization. In each case the
resulting field is TEMρ since the vectors E, H, ρ̂ are mutually orthogonal.

Wave equations for Ez in the electric polarization case and for Hz in the magnetic
polarization case can be found in the usual manner. Taking the curl of (2.344) and
substituting from (2.345) we find

∇ × (∇ × E) = −ẑ
1

ρ

∂

∂ρ

(
ρ

∂ Ez

∂ρ

)
− φ̂

∂

∂ρ

(
1

ρ

∂

∂ρ
[ρEφ]

)

= − 1

v2

∂2E
∂t2

= − 1

v2

[
ẑ
∂2 Ez

∂t2
+ φ̂

∂2 Eφ

∂t2

]

where v = 1/(µε)1/2. Noting that Eφ = 0 for the electric polarization case we obtain the
wave equation for Ez . A similar set of steps beginning with the curl of (2.345) gives an
identical equation for Hz . Thus

1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

[
Ez

Hz

])
− 1

v2

∂2

∂t2

[
Ez

Hz

]
= 0. (2.346)

We can obtain a solution for (2.346) in much the same way as we do for the wave
equations in § A.1. We begin by substituting for Ez(ρ, t) in terms of its temporal Fourier
representation

Ez(ρ, t) = 1

2π

∫ ∞

−∞
Ẽz(ρ, ω)e jωt dω

to obtain

1

2π

∫ ∞

−∞

[
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ
Ẽz(ρ, ω)

)
+ ω2

v2
Ẽz(ρ, ω)

]
e jωt dω = 0.



The Fourier integral theorem implies that the integrand is zero. Then, expanding out
the ρ derivatives, we find that Ẽz(ρ, ω) obeys the ordinary differential equation

d2 Ẽz

dρ2
+ 1

ρ

d Ẽz

dρ
+ k2 Ẽz = 0

where k = ω/v. This is merely Bessel’s differential equation (A.124). It is a second-order
equation with two independent solutions chosen from the list

J0(kρ), Y0(kρ), H (1)
0 (kρ), H (2)

0 (kρ).

We find that J0(kρ) and Y0(kρ) are useful for describing standing waves between bound-
aries while H (1)

0 (kρ) and H (2)
0 (kρ) are useful for describing waves propagating in the

ρ-direction. Of these, H (1)
0 (kρ) represents waves traveling inward while H (2)

0 (kρ) repre-
sents waves traveling outward. Concentrating on the outward traveling wave we find
that

Ẽz(ρ, ω) = Ã(ω)
[
− j

π

2
H (2)

0 (kρ)
]

= Ã(ω)g̃(ρ, ω).

Here A(t) ↔ Ã(ω) is the disturbance waveform, assumed to be a real, causal function.
To make Ez(ρ, t) real we require that the inverse transform of g̃(ρ, ω) be real. This
requires the inclusion of the − jπ/2 factor in g̃(ρ, ω). Inverting we have

Ez(ρ, t) = A(t) ∗ g(ρ, t) (2.347)

where g(ρ, t) ↔ (− jπ/2)H (2)
0 (kρ).

The inverse transform needed to obtain g(ρ, t) may be found in Campbell [26]:

g(ρ, t) = F−1
{
− j

π

2
H (2)

0

(
ω

ρ

v

)}
= U

(
t − ρ

v

)
√

t2 − ρ2

v2

,

where U (t) is the unit step function defined in (A.5). Substituting this into (2.347) and
writing the convolution in integral form we have

Ez(ρ, t) =
∫ ∞

−∞
A(t − t ′)

U (t ′ − ρ/v)√
t ′2 − ρ2/v2

dt ′.

The change of variable x = t ′ − ρ/v then gives

Ez(ρ, t) =
∫ ∞

0

A(t − x − ρ/v)√
x2 + 2xρ/v

dx . (2.348)

Those interested in the details of the inverse transform should see Chew [33].
As an example, consider a lossless medium with µr = 1, εr = 81, and a waveform

A(t) = E0[U (t) − U (t − τ)]

where τ = 2 µs. This situation is the same as that in the plane wave example above,
except that the pulse waveform begins at t = 0. Substituting for A(t) into (2.348) and
using the integral ∫

dx√
x
√

x + a
= 2 ln

[√
x + √

x + a
]



Figure 2.9: Propagation of a transient cylindrical wave in a lossless medium.

we can write the electric field in closed form as

Ez(ρ, t) = 2E0 ln

[√
x2 + √

x2 + 2ρ/v√
x1 + √

x1 + 2ρ/v

]
, (2.349)

where x2 = max[0, t − ρ/v] and x1 = max[0, t − ρ/v − τ ]. The field is plotted in Figure
2.9 for various values of time. Note that the leading edge of the disturbance propagates
outward at a velocity v and a wake trails behind the disturbance. This wake is similar to
that for a plane wave in a dissipative medium, but it exists in this case even though the
medium is lossless. We can think of the wave as being created by a line source of infinite
extent, pulsed by the disturbance waveform. Although current changes simultaneously
everywhere along the line, it takes the disturbance longer to propagate to an observation
point in the z = 0 plane from source points z 
= 0 than from the source point at z = 0.
Thus, the field at an arbitrary observation point ρ arrives from different source points at
different times. If we look at Figure 2.9 we note that there is always a nonzero field near
ρ = 0 (or any value of ρ < vt) regardless of the time, since at any given t the disturbance
is arriving from some point along the line source.

We also see in Figure 2.9 that as ρ becomes large the peak value of the propagating
disturbance approaches a certain value. This value occurs at tm = ρ/v+τ or, equivalently,
ρm = v(t − τ). If we substitute this value into (2.349) we find that

Ez(ρ, tm) = 2E0 ln

[√
τ

2ρ/v
+

√
1 + τ

2ρ/v

]
.



For large values of ρ/v,

Ez(ρ, tm) ≈ 2E0 ln

[
1 +

√
τ

2ρ/v

]
.

Using ln(1 + x) ≈ x when x � 1, we find that

Ez(ρ, tm) ≈ E0

√
2τv

ρ
.

Thus, as ρ → ∞ we have E×H ∼ 1/ρ and the flux of energy passing through a cylindrical
surface of area ρ dφ dz is independent of ρ. This result is similar to that seen for spherical
waves where E × H ∼ 1/r2.

2.10.8 Propagation of spherical waves in a lossless medium

In the previous section we found solutions that describe uniform cylindrical waves
dependent only on the radial variable ρ. It turns out that similar solutions are not
possible in spherical coordinates; fields that only depend on r cannot satisfy Maxwell’s
equations since, as shown in § 2.10.9, a source having the appropriate symmetry for the
production of uniform spherical waves in fact produces no field at all external to the region
it occupies. As we shall see in Chapter 5, the fields produced by localized sources are in
general quite complex. However, certain solutions that are only slightly nonuniform may
be found, and these allow us to investigate the most important properties of spherical
waves. We shall find that spherical waves diverge from a localized point source and
expand outward with finite velocity, carrying energy away from the source.

Consider a homogeneous, lossless, source-free region of space characterized by permit-
tivity ε and permeability µ. We seek solutions to the wave equation that are TEMr in
spherical coordinates (Hr = Er = 0), and independent of the azimuthal angle φ. Thus
we may write

E(r, t) = θ̂Eθ (r, θ, t) + φ̂Eφ(r, θ, t),

H(r, t) = θ̂Hθ (r, θ, t) + φ̂Hφ(r, θ, t).

Maxwell’s equations show that not all of these vector components are required. Faraday’s
law states that

∇ × E(r, θ, t) = r̂
1

r sin θ

∂

∂θ
[sin θ Eφ(r, θ, t)] − θ̂

1

r

∂

∂r
[r Eφ(r, θ, t)] + φ̂

1

r

∂

∂r
[r Eθ (r, θ, t)]

= −µ
∂H(r, θ, t)

∂t
. (2.350)

Since we require Hr = 0 we must have

∂

∂θ
[sin θ Eφ(r, θ, t)] = 0.

This implies that either Eφ ∼ 1/ sin θ or Eφ = 0. We shall choose Eφ = 0 and investigate
whether the resulting fields satisfy the remaining Maxwell equations.

In a source-free region of space we have ∇ · D = ε∇ · E = 0. Since we now have only a
θ -component of the electric field, this requires

1

r

∂

∂θ
Eθ (r, θ, t) + cot θ

r
Eθ (r, θ, t) = 0.



From this we see that when Eφ = 0 the component Eθ must obey

Eθ (r, θ, t) = fE (r, t)

sin θ
.

By (2.350) there is only a φ-component of magnetic field, and it must obey Hφ(r, θ, t) =
fH (r, t)/ sin θ where

− µ
∂

∂t
fH (r, t) = 1

r

∂

∂r
[r fE (r, t)]. (2.351)

Thus the spherical wave has the property E ⊥ H ⊥ r, and is TEM to the r -direction.
We can obtain a wave equation for Eθ by taking the curl of (2.350) and substituting

from Ampere’s law:

∇ × (∇ × E) = −θ̂
1

r

∂2

∂r2
[r Eθ ] = ∇ ×

[
−µ

∂

∂t
H

]
= −µ

∂

∂t

[
σE + ε

∂

∂t
E

]
.

This gives

∂2

∂r2
[r fE (r, t)] − µσ

∂

∂t
[r fE (r, t)] − µε

∂2

∂t2
[r fE (r, t)] = 0, (2.352)

which is the desired wave equation for E. Proceeding similarly we find that Hφ obeys

∂2

∂r2
[r fH (r, t)] − µσ

∂

∂t
[r fH (r, t)] − µε

∂2

∂t2
[r fH (r, t)] = 0. (2.353)

We see that the wave equation for r fE is identical to that for the plane wave field Ez

(2.331). Thus, we can use the solution obtained in § A.1, as we did with the plane wave,
with a few subtle differences. First, we cannot have r < 0. Second, we do not anticipate
a solution representing a wave traveling in the −r -direction — i.e., a wave converging
toward the origin. (In other situations we might need such a solution in order to form a
standing wave between two spherical boundary surfaces, but here we are only interested
in the basic propagating behavior of spherical waves.) Thus, we choose as our solution
the term (A.45) and find for a lossless medium where � = 0

Eθ (r, θ, t) = 1

r sin θ
A

(
t − r

v

)
. (2.354)

From (2.351) we see that

Hφ = 1

µv

1

r sin θ
A

(
t − r

v

)
. (2.355)

Since µv = (µ/ε)1/2 = η, we can also write this as

H = r̂ × E
η

.

We note that our solution is not appropriate for unbounded space since the fields have
a singularity at θ = 0. Thus we must exclude the z-axis. This can be accomplished
by using PEC cones of angles θ1 and θ2, θ2 > θ1. Because the electric field E = θ̂Eθ is
normal to these cones, the boundary condition that tangential E vanishes is satisfied.

It is informative to see how the terms in the Poynting power balance theorem relate for
a spherical wave. Consider the region between the spherical surfaces r = r1 and r = r2,
r2 > r1. Since there is no current within the volume region, Poynting’s theorem (2.299)
becomes

1

2

∂

∂t

∫
V
(εE · E + µH · H) dV = −

∮
S
(E × H) · dS. (2.356)



From (2.354) and (2.355), the time-rate of change of stored energy is

Psphere(t) = 1

2

∂

∂t

∫
V

[εE2(r, θ, t) + µH 2(r, θ, t)] dV

= 1

2

∂

∂t

∫ 2π

0
dφ

∫ θ2

θ1

dθ

sin θ

∫ r2

r1

[
ε

1

r2
A2

(
t − r

v

)
+ µ

1

r2

1

(vµ)2
A2

(
t − r

v

)]
r2 dr

= 2πεF
∂

∂t

∫ r2

r1

A2
(

t − r

v

)
dr

where

F = ln

[
tan(θ2/2)

tan(θ1/2)

]
.

Putting u = t − r/v we see that

Psphere(t) = −2πεF
∂

∂t

∫ t−r2/v

t−r1/v

A2(u)v du.

An application of Leibnitz’ rule for differentiation (A.30) gives

Psphere(t) = −2π

η
F

[
A2

(
t − r2

v

)
− A2

(
t − r1

v

)]
. (2.357)

Next we find the Poynting flux term:

Psphere(t) = −
∮

S
(E × H) · dS

= −
∫ 2π

0
dφ

∫ θ2

θ1

[
1

r1
A

(
t − r1

v

)
θ̂

]
×

[
1

r1

1

µv
A

(
t − r1

v

)
φ̂

]
· (−r̂)r2

1
dθ

sin θ
−

−
∫ 2π

0
dφ

∫ θ2

θ1

[
1

r2
A

(
t − r2

v

)
θ̂

]
×

[
1

r2

1

µv
A

(
t − r2

v

)
φ̂

]
· r̂r2

2
dθ

sin θ
.

The first term represents the power carried by the traveling wave into the volume region
by passing through the spherical surface at r = r1, while the second term represents
the power carried by the wave out of the region by passing through the surface r = r2.
Integration gives

Psphere(t) = −2π

η
F

[
A2

(
t − r2

v

)
− A2

(
t − r1

v

)]
, (2.358)

which matches (2.357), thus verifying Poynting’s theorem.
It is also interesting to compute the total energy passing through a surface of radius

r0. From (2.358) we see that the flux of energy (power density) passing outward through
the surface r = r0 is

Psphere(t) = 2π

η
F A2

(
t − r0

v

)
.

The total energy associated with this flux can be computed by integrating over all time:
we have

E = 2π

η
F

∫ ∞

−∞
A2

(
t − r0

v

)
dt = 2π

η
F

∫ ∞

−∞
A2(u) du

after making the substitution u = t − r0/v. The total energy passing through a spherical
surface is independent of the radius of the sphere. This is an important property of
spherical waves. The 1/r dependence of the electric and magnetic fields produces a
power density that decays with distance in precisely the right proportion to compensate
for the r2-type increase in the surface area through which the power flux passes.



2.10.9 Nonradiating sources

Not all time-dependent sources produce electromagnetic waves. In fact, certain local-
ized source distributions produce no fields external to the region containing the sources.
Such distributions are said to be nonradiating, and the fields they produce (within their
source regions) lack wave characteristics.

Let us consider a specific example involving two concentric spheres. The inner sphere,
carrying a uniformly distributed total charge −Q, is rigid and has a fixed radius a; the
outer sphere, carrying uniform charge +Q, is a flexible balloon that can be stretched to
any radius b = b(t). The two surfaces are initially stationary, some external force being
required to hold them in place. Now suppose we apply a time-varying force that results
in b(t) changing from b(t1) = b1 to b(t2) = b2 > b1. This creates a radially directed
time-varying current r̂Jr (r, t). By symmetry Jr depends only on r and produces a field
E that depends only on r and is directed radially. An application of Gauss’s law over a
sphere of radius r0 > b2, which contains zero total charge, gives

4πr2
0 Er (r0, t) = 0,

hence E(r, t) = 0 for r > r0 and all time t . So E = 0 external to the current distribution
and no outward traveling wave is produced. Gauss’s law also shows that E = 0 inside
the rigid sphere, while between the spheres

E(r, t) = −r̂
Q

4πε0r2
.

Now work is certainly required to stretch the balloon and overcome the Lorentz force
between the two charged surfaces. But an application of Poynting’s theorem over a
surface enclosing both spheres shows that no energy is carried away by an electromagnetic
wave. Where does the expended energy go? The presence of only two nonzero terms in
Poynting’s theorem clearly indicates that the power term

∫
V E · J dV corresponding to

the external work must be balanced exactly by a change in stored energy. As the radius
of the balloon increases, so does the region of nonzero field as well as the stored energy.

In free space any current source expressible in the form

J(r, t) = ∇
(

∂ψ(r, t)

∂t

)
(2.359)

and localized to a volume region V , such as the current in the example above, is nonra-
diating. Indeed, Ampere’s law states that

∇ × H = ε0
∂E
∂t

+ ∇
(

∂ψ(r, t)

∂t

)
(2.360)

for r ∈ V ; taking the curl we have

∇ × (∇ × H) = ε0
∂∇ × E

∂t
+ ∇ × ∇

(
∂ψ(r, t)

∂t

)
.

But the second term on the right is zero, so

∇ × (∇ × H) = ε0
∂∇ × E

∂t

and this equation holds for all r. By Faraday’s law we can rewrite it as(
(∇ × ∇×) + 1

c2

∂2

∂t2

)
H(r, t) = 0.



So H obeys the homogeneous wave equation everywhere, and H = 0 follows from causality.
The laws of Ampere and Faraday may also be combined with (2.359) to show that(

(∇ × ∇×) + 1

c2

∂2

∂t2

) [
E(r, t) + 1

ε0
∇ψ(r, t)

]
= 0

for all r. By causality

E(r, t) = − 1

ε0
∇ψ(r, t) (2.361)

everywhere. But since ψ(r, t) = 0 external to V , we must also have E = 0 there.
Note that E = −∇ψ/ε0 is consistent with Ampere’s law (2.360) provided that H = 0
everywhere.

We see that sources having spherical symmetry such that

J(r, t) = r̂Jr (r, t) = ∇
(

∂ψ(r, t)

∂t

)
= r̂

∂2ψ(r, t)

∂r∂t

obey (2.359) and are therefore nonradiating. Hence the fields associated with any outward
traveling spherical wave must possess some angular variation. This holds, for example,
for the fields far removed from a time-varying source of finite extent.

As pointed out by Lindell [113], nonradiating sources are not merely hypothetical.
The outflowing currents produced by a highly symmetric nuclear explosion in outer
space or in a homogeneous atmosphere would produce no electromagnetic field outside
the source region. The large electromagnetic-pulse effects discussed in § 2.10.6 are due
to inhomogeneities in the earth’s atmosphere. We also note that the fields produced
by a radiating source Jr (r, t) do not change external to the source if we superpose a
nonradiating component Jnr (r, t) to create a new source J = Jnr + Jr . We say that the
two sources J and Jr are equivalent for the region V external to the sources. This presents
difficulties in remote sensing where investigators are often interested in reconstructing an
unknown source by probing the fields external to (and usually far away from) the source
region. Unique reconstruction is possible only if the fields within the source region are
also measured.

For the time harmonic case, Devaney and Wolf [54] provide the most general possible
form for a nonradiating source. See § 4.11.9 for details.

2.11 Problems

2.1 Consider the constitutive equations (2.16)–(2.17) relating E, D, B, and H in a
bianisotropic medium. Using the definition for P and M, show that the constitutive
equations relating E, B, P, and M are

P =
(

1

c
P̄ − ε0Ī

)
· E + L̄ · B,

M = −M̄ · E −
(

cQ̄ − 1

µ0
Ī
)

· B.

Also find the constitutive equations relating E, H, P, and M.



2.2 Consider Ampere’s law and Gauss’s law written in terms of rectangular compo-
nents in the laboratory frame of reference. Assume that an inertial frame moves with
velocity v = x̂v with respect to the laboratory frame. Using the Lorentz transformation
given by (2.73)–(2.76), show that

cD′
⊥ = γ (cD⊥ + β × H⊥),

H′
⊥ = γ (H⊥ − β × cD⊥),

J′
‖ = γ (J‖ − ρv),

J′
⊥ = J⊥,

cρ ′ = γ (cρ − β · J),

where “⊥” means perpendicular to the direction of the velocity and “‖” means parallel
to the direction of the velocity.

2.3 Show that the following quantities are invariant under Lorentz transformation:

(a) E · B,
(b) H · D,
(c) B · B − E · E/c2,
(d) H · H − c2D · D,
(e) B · H − E · D,
(f) cB · D + E · H/c.

2.4 Show that if c2 B2 > E2 holds in one reference frame, then it holds in all other
reference frames. Repeat for the inequality c2 B2 < E2.

2.5 Show that if E ·B = 0 and c2 B2 > E2 holds in one reference frame, then a reference
frame may be found such that E = 0. Show that if E · B = 0 and c2 B2 < E2 holds in one
reference frame, then a reference frame may be found such that B = 0.

2.6 A test charge Q at rest in the laboratory frame experiences a force F = QE as
measured by an observer in the laboratory frame. An observer in an inertial frame
measures a force on the charge given by F′ = QE′ + Qv × B′. Show that F 
= F′ and find
the formula for converting between F and F′.

2.7 Consider a material moving with velocity v with respect to the laboratory frame of
reference. When the fields are measured in the moving frame, the material is found to be
isotropic with D′ = ε′E′ and B′ = µ′H′. Show that the fields measured in the laboratory
frame are given by (2.107) and (2.108), indicating that the material is bianisotropic when
measured in the laboratory frame.

2.8 Show that by assuming v2/c2 � 1 in (2.61)–(2.64) we may obtain (2.111).

2.9 Derive the following expressions that allow us to convert the value of the magneti-
zation measured in the laboratory frame of reference to the value measured in a moving
frame:

M′
⊥ = γ (M⊥ + β × cP⊥), M′

‖ = M‖.



2.10 Beginning with the expressions (2.61)–(2.64) for the field conversions under a
first-order Lorentz transformation, show that

P′ = P − v × M
c2

, M′ = M + v × P.

2.11 Consider a simple isotropic material moving through space with velocity v relative
to the laboratory frame. The relative permittivity and permeability of the material
measured in the moving frame are ε′

r and µ′
r , respectively. Show that the magnetization

as measured in the laboratory frame is related to the laboratory frame electric field and
magnetic flux density as

M = χ ′
m

µ0µ′
r

B − ε0

(
χ ′

e + χ ′
m

µ′
r

)
v × E

when a first-order Lorentz transformation is used. Here χ ′
e = ε′

r − 1 and χ ′
m = µ′

r − 1.

2.12 Consider a simple isotropic material moving through space with velocity v relative
to the laboratory frame. The relative permittivity and permeability of the material
measured in the moving frame are ε′

r and µ′
r , respectively. Derive the formulas for the

magnetization and polarization in the laboratory frame in terms of E and B measured in
the laboratory frame by using the Lorentz transformations (2.128) and (2.129)–(2.132).
Show that these expressions reduce to (2.139) and (2.140) under the assumption of a
first-order Lorentz transformation (v2/c2 � 1).

2.13 Derive the kinematic form of the large-scale Maxwell–Boffi equations (2.165) and
(2.166). Derive the alternative form of the large-scale Maxwell–Boffi equations (2.167)
and (2.168).

2.14 Modify the kinematic form of the Maxwell–Boffi equations (2.165)–(2.166) to
account for the presence of magnetic sources. Repeat for the alternative forms (2.167)–
(2.168).

2.15 Consider a thin magnetic source distribution concentrated near a surface S. The
magnetic charge and current densities are given by

ρm(r, x, t) = ρms(r, t) f (x, �), Jm(r, x, t) = Jms(r, t) f (x, �),

where f (x, �) satisfies ∫ ∞

−∞
f (x, �) dx = 1.

Let � → 0 and derive the boundary conditions on (E, D, B, H) across S.

2.16 Beginning with the kinematic forms of Maxwell’s equations (2.177)–(2.178), de-
rive the boundary conditions for a moving surface

n̂12 × (H1 − H2) + (n̂12 · v)(D1 − D2) = Js,

n̂12 × (E1 − E2) − (n̂12 · v)(B1 − B2) = −Jms .

2.17 Beginning with Maxwell’s equations and the constitutive relationships for a bian-
isotropic medium (2.19)–(2.20), derive the wave equation for H (2.313). Specialize the
result for the case of an anisotropic medium.



2.18 Consider an isotropic but inhomogeneous material, so that

D(r, t) = ε(r)E(r, t), B(r, t) = µ(r)H(r, t).

Show that the wave equations for the fields within this material may be written as

∇2E − µε
∂2E
∂t2

+ ∇
[

E ·
(∇ε

ε

)]
− (∇ × E) ×

(∇µ

µ

)
= µ

∂J
∂t

+ ∇
(ρ

ε

)
,

∇2H − µε
∂2H
∂t2

+ ∇
[

H ·
(∇µ

µ

)]
− (∇ × H) ×

(∇ε

ε

)
= −∇ × J − J ×

(∇ε

ε

)
.

2.19 Consider a homogeneous, isotropic material in which D = εE and B = µH. Using
the definitions of the equivalent sources, show that the wave equations (2.322)–(2.323)
are equivalent to (2.314)–(2.315).

2.20 When we calculate the force on a conductor produced by an incident plane wave,
we often neglect the momentum term

∂

∂t
(D × B).

Compute this term for the plane wave field (2.336) in free space at the surface of the
conductor and compare to the term obtained from the Maxwell stress tensor (2.341).
What is the relative difference in amplitude?

2.21 When a material is only slightly conducting, and thus � is very small, we often
neglect the third term in the plane wave solution (2.343). Reproduce the plot of Figure
2.8 with this term omitted and compare. Discuss how the omitted term affects the shape
of the propagating waveform.

2.22 A total charge Q is evenly distributed over a spherical surface. The surface
expands outward at constant velocity so that the radius of the surface is b = vt at time
t . (a) Use Gauss’s law to find E everywhere as a function of time. (b) Show that E may
be found from a potential function

ψ(r, t) = Q

4πr
(r − vt)U (r − vt)

according to (2.361). Here U (t) is the unit step function. (c) Write down the form of
J for the expanding sphere and show that since it may be found from (2.359) it is a
nonradiating source.
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