
Chapter 3

The static electromagnetic field

3.1 Static fields and steady currents

Perhaps the most carefully studied area of electromagnetics is that in which the fields
are time-invariant. This area, known generally as statics, offers (1) the most direct op-
portunities for solution of the governing equations, and (2) the clearest physical pictures
of the electromagnetic field. We therefore devote the present chapter to a treatment
of static fields. We begin to seek and examine specific solutions to the field equations;
however, our selection of examples is shaped by a search for insight into the behavior of
the field itself, rather than a desire to catalog the solutions of numerous statics problems.

We note at the outset that a static field is physically sensible only as a limiting case
of a time-varying field as the latter approaches a time-invariant equilibrium, and then
only in local regions. The static field equations we shall study thus represent an idealized
model of the physical fields.

If we examine the Maxwell–Minkowski equations (2.1)–(2.4) and set the time deriva-
tives to zero, we obtain the static field Maxwell equations

∇ × E(r) = 0, (3.1)
∇ · D(r) = ρ(r), (3.2)

∇ × H(r) = J(r), (3.3)
∇ · B(r) = 0. (3.4)

We note that if the fields are to be everywhere time-invariant, then the sources J and
ρ must also be everywhere time-invariant. Under this condition the dynamic coupling
between the fields described by Maxwell’s equations disappears; any connection between
E, D, B, and H imposed by the time-varying nature of the field is gone. For static fields
we also require that any dynamic coupling between fields in the constitutive relations
vanish. In this static field limit we cannot derive the divergence equations from the curl
equations, since we can no longer use the initial condition argument that the fields were
identically zero prior to some time.

The static field equations are useful for approximating many physical situations in
which the fields rapidly settle to a local, macroscopically-static state. This may occur
so rapidly and so completely that, in a practical sense, the static equations describe the
fields within our ability to measure and to compute. Such is the case when a capacitor
is rapidly charged using a battery in series with a resistor; for example, a 1 pF capacitor
charging through a 1 � resistor reaches 99.99% of its total charge static limit within
10 ps.



3.1.1 Decoupling of the electric and magnetic fields

For the remainder of this chapter we shall assume that there is no coupling between
E and H or between D and B in the constitutive relations. Then the static equations
decouple into two independent sets of equations in terms of two independent sets of fields.
The static electric field set (E,D) is described by the equations

∇ × E(r) = 0, (3.5)
∇ · D(r) = ρ(r). (3.6)

Integrating these over a stationary contour and surface, respectively, we have the large-
scale forms ∮

�

E · dl = 0, (3.7)∮
S

D · dS =
∫

V
ρ dV . (3.8)

The static magnetic field set (B,H) is described by

∇ × H(r) = J(r), (3.9)
∇ · B(r) = 0, (3.10)

or, in large-scale form, ∮
�

H · dl =
∫

S
J · dS, (3.11)∮

S
B · dS = 0. (3.12)

We can also specialize the Maxwell–Boffi equations to static form. Assuming that the
fields, sources, and equivalent sources are time-invariant, the electrostatic field E(r) is
described by the point-form equations

∇ × E = 0, (3.13)

∇ · E = 1

ε0
(ρ − ∇ · P) , (3.14)

or the equivalent large-scale equations∮
�

E · dl = 0, (3.15)∮
S

E · dS = 1

ε0

∫
V

(ρ − ∇ · P) dV . (3.16)

Similarly, the magnetostatic field B is described by

∇ × B = µ0 (J + ∇ × M) , (3.17)
∇ · B = 0, (3.18)

or ∮
�

B · dl = µ0

∫
S
(J + ∇ × M) · dS, (3.19)∮

S
B · dS = 0. (3.20)



Figure 3.1: Positive point charge in the vicinity of an insulated, uncharged conductor.

It is important to note that any separation of the electromagnetic field into independent
static electric and magnetic portions is illusory. As we mentioned in § 2.3.2, the electric
and magnetic components of the EM field depend on the motion of the observer. An
observer stationary with respect to a single charge measures only a static electric field,
while an observer in uniform motion with respect to the charge measures both electric
and magnetic fields.

3.1.2 Static field equilibrium and conductors

Suppose we could arrange a group of electric charges into a static configuration in free
space. The charges would produce an electric field, resulting in a force on the distribution
via the Lorentz force law, and hence would begin to move. Regardless of how we arrange
the charges they cannot maintain their original static configuration without the help
of some mechanical force to counterbalance the electrical force. This is a statement of
Earnshaw’s theorem, discussed in detail in § 3.4.2.

The situation is similar for charges within and on electric conductors. A conductor
is a material having many charges free to move under external influences, both electric
and non-electric. In a metallic conductor, electrons move against a background lattice
of positive charges. An uncharged conductor is neutral: the amount of negative charge
carried by the electrons is equal to the positive charge in the background lattice. The
distribution of charges in an uncharged conductor is such that the macroscopic electric
field is zero inside and outside the conductor. When the conductor is exposed to an addi-
tional electric field, the electrons move under the influence of the Lorentz force, creating
a conduction current. Rather than accelerating indefinitely, conduction electrons experi-
ence collisions with the lattice, thereby giving up their kinetic energy. Macroscopically,
the charge motion can be described in terms of a time-average velocity, hence a macro-
scopic current density can be assigned to the density of moving charge. The relationship
between the applied, or “impressed,” field and the resulting current density is given by
Ohm’s law ; in a linear, isotropic, nondispersive material this is

J(r, t) = σ(r)E(r, t). (3.21)

The conductivity σ describes the impediment to charge motion through the lattice: the



Figure 3.2: Positive point charge near a grounded conductor.

higher the conductivity, the farther an electron may move on average before undergoing
a collision.

Let us examine how a state of equilibrium is established in a conductor. We shall con-
sider several important situations. First, suppose we bring a positively charged particle
into the vicinity of a neutral, insulated conductor (we say that a conductor is “insulated”
if no means exists for depositing excess charge onto the conductor). The Lorentz force
on the free electrons in the conductor results in their motion toward the particle (Figure
3.1). A reaction force F attracts the particle to the conductor. If the particle and the
conductor are both held rigidly in space by an external mechanical force, the electrons
within the conductor continue to move toward the surface. In a metal, when these elec-
trons reach the surface and try to continue further they experience a rapid reversal in the
direction of the Lorentz force, drawing them back toward the surface. A sufficiently large
force (described by the work function of the metal) will be able to draw these charges
from the surface, but anything less will permit the establishment of a stable equilibrium
at the surface. If σ is large then equilibrium is established quickly, and a nonuniform
static charge distribution appears on the conductor surface. The electric field within the
conductor must settle to zero at equilibrium, since a nonzero field would be associated
with a current J = σE. In addition, the component of the field tangential to the surface
must be zero or the charge would be forced to move along the surface. At equilibrium,
the field within and tangential to a conductor must be zero. Note also that equilibrium
cannot be established without external forces to hold the conductor and particle in place.

Next, suppose we bring a positively charged particle into the vicinity of a grounded
(rather than insulated) conductor as in Figure 3.2. Use of the term “grounded” means
that the conductor is attached via a filamentary conductor to a remote reservoir of charge
known as ground ; in practical applications the earth acts as this charge reservoir. Charges
are drawn from or returned to the reservoir, without requiring any work, in response to
the Lorentz force on the charge within the conducting body. As the particle approaches,
negative charge is drawn to the body and then along the surface until a static equilibrium
is re-established. Unlike the insulated body, the grounded conductor in equilibrium has
excess negative charge, the amount of which depends on the proximity of the particle.
Again, both particle and conductor must be held in place by external mechanical forces,
and the total field produced by both the static charge on the conductor and the particle
must be zero at points interior to the conductor.

Finally, consider the process whereby excess charge placed inside a conducting body
redistributes as equilibrium is established. We assume an isotropic, homogeneous con-
ducting body with permittivity ε and conductivity σ . An initially static charge with



density ρ0(r) is introduced at time t = 0. The charge density must obey the continuity
equation

∇ · J(r, t) = −∂ρ(r, t)

∂t
;

since J = σE, we have

σ∇ · E(r, t) = −∂ρ(r, t)

∂t
.

By Gauss’s law, ∇ · E can be eliminated:

σ

ε
ρ(r, t) = −∂ρ(r, t)

∂t
.

Solving this differential equation for the unknown ρ(r, t) we have

ρ(r, t) = ρ0(r)e−σ t/ε. (3.22)

The charge density within a homogeneous, isotropic conducting body decreases exponen-
tially with time, regardless of the original charge distribution and shape of the body. Of
course, the total charge must be constant, and thus charge within the body travels to
the surface where it distributes itself in such a way that the field internal to the body
approaches zero at equilibrium. The rate at which the volume charge dissipates is deter-
mined by the relaxation time ε/σ ; for copper (a good conductor) this is an astonishingly
small 10−19 s. Even distilled water, a relatively poor conductor, has ε/σ = 10−6 s. Thus
we see how rapidly static equilibrium can be approached.

3.1.3 Steady current

Since time-invariant fields must arise from time-invariant sources, we have from the
continuity equation

∇ · J(r) = 0. (3.23)

In large-scale form this is ∮
S

J · dS = 0. (3.24)

A current with the property (3.23) is said to be a steady current. By (3.24), a steady
current must be completely lineal (and infinite in extent) or must form closed loops.
However, if a current forms loops then the individual moving charges must undergo
acceleration (from the change in direction of velocity). Since a single accelerating particle
radiates energy in the form of an electromagnetic wave, we might expect a large steady
loop current to produce a great deal of radiation. In fact, if we superpose the fields
produced by the many particles comprising a steady current, we find that a steady current
produces no radiation [91]. Remarkably, to obtain this result we must consider the exact
relativistic fields, and thus our finding is precise within the limits of our macroscopic
assumptions.

If we try to create a steady current in free space, the flowing charges will tend to
disperse because of the Lorentz force from the field set up by the charges, and the
resulting current will not form closed loops. A beam of electrons or ions will produce
both an electric field (because of the nonzero net charge of the beam) and a magnetic field
(because of the current). At nonrelativistic particle speeds, the electric field produces
an outward force on the charges that is much greater than the inward (or pinch) force
produced by the magnetic field. Application of an additional, external force will allow



the creation of a collimated beam of charge, as occurs in an electron tube where a series
of permanent magnets can be used to create a beam of steady current.

More typically, steady currents are created using wire conductors to guide the moving
charge. When an external force, such as the electric field created by a battery, is applied
to an uncharged conductor, the free electrons will begin to move through the positive
lattice, forming a current. Each electron moves only a short distance before colliding with
the positive lattice, and if the wire is bent into a loop the resulting macroscopic current
will be steady in the sense that the temporally and spatially averaged microscopic current
will obey ∇ · J = 0. We note from the examples above that any charges attempting to
leave the surface of the wire are drawn back by the electrostatic force produced by the
resulting imbalance in electrical charge. For conductors, the “drift” velocity associated
with the moving electrons is proportional to the applied field:

ud = −µeE

where µe is the electron mobility. The mobility of copper (3.2 × 10−3m2/V · s) is such
that an applied field of 1 V/m results in a drift velocity of only a third of a centimeter
per second.

Integral properties of a steady current. Steady currents obey several useful inte-
gral properties. To develop these properties we need an integral identity. Let f (r) and
g(r) be scalar functions, continuous and with continuous derivatives in a volume region
V . Let J represent a steady current field of finite extent, completely contained within
V . We begin by using (B.42) to expand

∇ · ( f gJ) = f g(∇ · J) + J · ∇( f g).

Noting that ∇ · J = 0 and using (B.41), we get

∇ · ( f gJ) = ( f J) · ∇g + (gJ) · ∇ f.

Now let us integrate over V and employ the divergence theorem:∮
S
( f g)J · dS =

∫
V

[( f J) · ∇g + (gJ) · ∇ f ] dV .

Since J is contained entirely within S, we must have n̂ · J = 0 everywhere on S. Hence∫
V

[( f J) · ∇g + (gJ) · ∇ f ] dV = 0. (3.25)

We can obtain a useful relation by letting f = 1 and g = xi in (3.25), where (x, y, z) =
(x1, x2, x3). This gives ∫

V
Ji (r) dV = 0, (3.26)

where J1 = Jx and so on. Hence the volume integral of any rectangular component of J
is zero. Similarly, letting f = g = xi we find that∫

V
xi Ji (r) dV = 0. (3.27)

With f = xi and g = x j we obtain∫
V

[
xi J j (r) + x j Ji (r)

]
dV = 0. (3.28)



3.2 Electrostatics

3.2.1 The electrostatic potential and work

The equation ∮
�

E · dl = 0 (3.29)

satisfied by the electrostatic field E(r) is particularly interesting. A field with zero
circulation is said to be conservative. To see why, let us examine the work required to
move a particle of charge Q around a closed path in the presence of E(r). Since work is
the line integral of force and B = 0, the work expended by the external system moving
the charge against the Lorentz force is

W = −
∮

�

(QE + Qv × B) · dl = −Q
∮

�

E · dl = 0.

This property is analogous to the conservation property for a classical gravitational field:
any potential energy gained by raising a point mass is lost when the mass is lowered.

Direct experimental verification of the electrostatic conservative property is difficult,
aside from the fact that the motion of Q may alter E by interacting with the sources of
E. By moving Q with nonuniform velocity (i.e., with acceleration at the beginning of the
loop, direction changes in transit, and deceleration at the end) we observe a radiative
loss of energy, and this energy cannot be regained by the mechanical system providing
the motion. To avoid this problem we may assume that the charge is moved so slowly,
or in such small increments, that it does not radiate. We shall use this concept later to
determine the “assembly energy” in a charge distribution.

The electrostatic potential. By the point form of (3.29),

∇ × E(r) = 0,

we can introduce a scalar field � = �(r) such that

E(r) = −∇�(r). (3.30)

The function � carries units of volts and is known as the electrostatic potential. Let us
consider the work expended by an external agent in moving a charge between points P1

at r1 and P2 at r2:

W21 = −Q
∫ P2

P1

−∇�(r) · dl = Q
∫ P2

P1

d�(r) = Q [�(r2) − �(r1)] .

The work W21 is clearly independent of the path taken between P1 and P2; the quantity

V21 = W21

Q
= �(r2) − �(r1) = −

∫ P2

P1

E · dl, (3.31)

called the potential difference, has an obvious physical meaning as work per unit charge
required to move a particle against an electric field between two points.



Figure 3.3: Demonstration of path independence of the electric field line integral.

Of course, the large-scale form (3.29) also implies the path-independence of work in
the electrostatic field. Indeed, we may pass an arbitrary closed contour � through P1

and P2 and then split it into two pieces �1 and �2 as shown in Figure 3.3. Since

−Q
∮

�1−�2

E · dl = −Q
∫

�1

E · dl + Q
∫

�2

E · dl = 0,

we have

−Q
∫

�1

E · dl = −Q
∫

�2

E · dl

as desired.

We sometimes refer to �(r) as the absolute electrostatic potential. Choosing a suitable
reference point P0 at location r0 and writing the potential difference as

V21 = [�(r2) − �(r0)] − [�(r1) − �(r0)],

we can justify calling �(r) the absolute potential referred to P0. Note that P0 might
describe a locus of points, rather than a single point, since many points can be at the same
potential. Although we can choose any reference point without changing the resulting
value of E found from (3.30), for simplicity we often choose r0 such that �(r0) = 0.

Several properties of the electrostatic potential make it convenient for describing static
electric fields. We know that, at equilibrium, the electrostatic field within a conducting
body must vanish. By (3.30) the potential at all points within the body must therefore
have the same constant value. It follows that the surface of a conductor is an equipotential
surface: a surface for which �(r) is constant.

As an infinite reservoir of charge that can be tapped through a filamentary conductor,
the entity we call “ground” must also be an equipotential object. If we connect a con-
ductor to ground, we have seen that charge may flow freely onto the conductor. Since no
work is expended, “grounding” a conductor obviously places the conductor at the same
absolute potential as ground. For this reason, ground is often assigned the role as the
potential reference with an absolute potential of zero volts. Later we shall see that for
sources of finite extent ground must be located at infinity.



3.2.2 Boundary conditions

Boundary conditions for the electrostatic field. The boundary conditions found
for the dynamic electric field remain valid in the electrostatic case. Thus

n̂12 × (E1 − E2) = 0 (3.32)

and

n̂12 · (D1 − D2) = ρs . (3.33)

Here n̂12 points into region 1 from region 2. Because the static curl and divergence
equations are independent, so are the boundary conditions (3.32) and (3.33).

For a linear and isotropic dielectric where D = εE, equation (3.33) becomes

n̂12 · (ε1E1 − ε2E2) = ρs . (3.34)

Alternatively, using D = ε0E + P we can write (3.33) as

n̂12 · (E1 − E2) = 1

ε0
(ρs + ρPs1 + ρPs2) (3.35)

where

ρPs = n̂ · P

is the polarization surface charge with n̂ pointing outward from the material body.
We can also write the boundary conditions in terms of the electrostatic potential. With

E = −∇�, equation (3.32) becomes

�1(r) = �2(r) (3.36)

for all points r on the surface. Actually �1 and �2 may differ by a constant; because
this constant is eliminated when the gradient is taken to find E, it is generally ignored.
We can write (3.35) as

ε0

(
∂�1

∂n
− ∂�2

∂n

)
= −ρs − ρPs1 − ρPs2

where the normal derivative is taken in the n̂12 direction. For a linear, isotropic dielectric
(3.33) becomes

ε1
∂�1

∂n
− ε2

∂�2

∂n
= −ρs . (3.37)

Again, we note that (3.36) and (3.37) are independent.

Boundary conditions for steady electric current. The boundary condition on the
normal component of current found in § 2.8.2 remains valid in the steady current case.
Assume that the boundary exists between two linear, isotropic conducting regions having
constitutive parameters (ε1,σ1) and (ε2,σ2), respectively. By (2.198) we have

n̂12 · (J1 − J2) = −∇s · Js (3.38)

where n̂12 points into region 1 from region 2. A surface current will not appear on the
boundary between two regions having finite conductivity, although a surface charge may
accumulate there during the transient period when the currents are established [31]. If
charge is influenced to move from the surface, it will move into the adjacent regions,



Figure 3.4: Refraction of steady current at a material interface.

rather than along the surface, and a new charge will replace it, supplied by the current.
Thus, for finite conducting regions (3.38) becomes

n̂12 · (J1 − J2) = 0. (3.39)

A boundary condition on the tangential component of current can also be found.
Substituting E = J/σ into (3.32) we have

n̂12 ×
(

J1

σ1
− J2

σ2

)
= 0.

We can also write this as

J1t

σ1
= J2t

σ2
(3.40)

where

J1t = n̂12 × J1, J2t = n̂12 × J2.

We may combine the boundary conditions for the normal components of current and
electric field to better understand the behavior of current at a material boundary. Sub-
stituting E = J/σ into (3.34) we have

ε1

σ1
J1n − ε2

σ2
J2n = ρs (3.41)

where J1n = n̂12 · J1 and J2n = n̂12 · J2. Combining (3.41) with (3.39), we have

ρs = J1n

(
ε1

σ1
− ε2

σ2

)
= E1n

(
ε1 − σ1

σ2
ε2

)
= J2n

(
ε1

σ1
− ε2

σ2

)
= E2n

(
ε1

σ2

σ1
− ε2

)

where

E1n = n̂12 · E1, E2n = n̂12 · E2.

Unless ε1σ2 − σ1ε2 = 0, a surface charge will exist on the interface between dissimilar
current-carrying conductors.

We may also combine the vector components of current on each side of the boundary
to determine the effects of the boundary on current direction (Figure 3.4). Let θ1,2 denote
the angle between J1,2 and n̂12 so that

J1n = J1 cos θ1, J1t = J1 sin θ1

J2n = J2 cos θ2, J2t = J2 sin θ2.



Then J1 cos θ1 = J2 cos θ2 by (3.39), while σ2 J1 sin θ1 = σ1 J2 sin θ2 by (3.40). Hence

σ2 tan θ1 = σ1 tan θ2. (3.42)

It is interesting to consider the case of current incident from a conducting material onto
an insulating material. If region 2 is an insulator, then J2n = J2t = 0; by (3.39) we have
J1n = 0. But (3.40) does not require J1t = 0; with σ2 = 0 the right-hand side of (3.40)
is indeterminate and thus J1t may be nonzero. In other words, when current moving
through a conductor approaches an insulating surface, it bends and flows tangential to
the surface. This concept is useful in explaining how wires guide current.

Interestingly, (3.42) shows that when σ2 	 σ1 we have θ2 → 0; current passing from a
conducting region into a slightly-conducting region does so normally.

3.2.3 Uniqueness of the electrostatic field

In § 2.2.1 we found that the electromagnetic field is unique within a region V when
the tangential component of E is specified over the surrounding surface. Unfortunately,
this condition is not appropriate in the electrostatic case. We should remember that
an additional requirement for uniqueness of solution to Maxwell’s equations is that the
field be specified throughout V at some time t0. For a static field this would completely
determine E without need for the surface field!

Let us determine conditions for uniqueness beginning with the static field equations.
Consider a region V surrounded by a surface S. Static charge may be located entirely
or partially within V , or entirely outside V , and produces a field within V . The region
may also contain any arrangement of conductors or other materials. Suppose (D1, E1)

and (D2, E2) represent solutions to the static field equations within V with source ρ(r).
We wish to find conditions that guarantee both E1 = E2 and D1 = D2.

Since ∇ · D1 = ρ and ∇ · D2 = ρ, the difference field D0 = D2 − D1 obeys the
homogeneous equation

∇ · D0 = 0. (3.43)

Consider the quantity

∇ · (D0�0) = �0(∇ · D0) + D0 · (∇�0)

where E0 = E2 − E1 = −∇�0 = −∇(�2 − �1). We integrate over V and use the
divergence theorem and (3.43) to obtain∮

S
�0 [D0 · n̂] d S =

∫
V

D0 · (∇�0) dV = −
∫

V
D0 · E0 dV . (3.44)

Now suppose that �0 = 0 everywhere on S, or that n̂ · D0 = 0 everywhere on S, or that
�0 = 0 over part of S and n̂ · D0 = 0 elsewhere on S. Then∫

V
D0 · E0 dV = 0. (3.45)

Since V is arbitrary, either D0 = 0 or E0 = 0. Assuming E and D are linked by the
constitutive relations, we have E1 = E2 and D1 = D2.

Hence the fields within V are unique provided that either �, the normal component
of D, or some combination of the two, is specified over S. We often use a multiply-
connected surface to exclude conductors. By (3.33) we see that specification of the



normal component of D on a conductor is equivalent to specification of the surface
charge density. Thus we must specify the potential or surface charge density over all
conducting surfaces.

One other condition results in zero on the left-hand side of (3.44). If S recedes to
infinity and �0 and D0 decrease sufficiently fast, then (3.45) still holds and uniqueness
is guaranteed. If D, E ∼ 1/r2 as r → ∞, then � ∼ 1/r and the surface integral in (3.44)
tends to zero since the area of an expanding sphere increases only as r2. We shall find
later in this section that for sources of finite extent the fields do indeed vary inversely
with distance squared from the source, hence we may allow S to expand and encompass
all space.

For the case in which conducting bodies are immersed in an infinite homogeneous
medium and the static fields must be determined throughout all space, a multiply-
connected surface is used with one part receding to infinity and the remaining parts
surrounding the conductors. Here uniqueness is guaranteed by specifying the potentials
or charges on the surfaces of the conducting bodies.

3.2.4 Poisson’s and Laplace’s equations

For computational purposes it is often convenient to deal with the differential versions

∇ × E(r) = 0, (3.46)
∇ · D(r) = ρ(r), (3.47)

of the electrostatic field equations. We must supplement these with constitutive relations
between E and D; at this point we focus our attention on linear, isotropic materials for
which

D(r) = ε(r)E(r).

Using this in (3.47) along with E = −∇� (justified by (3.46)), we can write

∇ · [ε(r)∇�(r)] = −ρ(r). (3.48)

This is Poisson’s equation. The corresponding homogeneous equation

∇ · [ε(r)∇�(r)] = 0, (3.49)

holding at points r where ρ(r) = 0, is Laplace’s equation. Equations (3.48) and (3.49)
are valid for inhomogeneous media. By (B.42) we can write

∇�(r) · ∇ε(r) + ε(r)∇ · [∇�(r)] = −ρ(r).

For a homogeneous medium, ∇ε = 0; since ∇ · (∇�) ≡ ∇2�, we have

∇2�(r) = −ρ(r)/ε (3.50)

in such a medium. Correspondingly,

∇2�(r) = 0

at points where ρ(r) = 0.
Poisson’s and Laplace’s equations can be solved by separation of variables, Fourier

transformation, conformal mapping, and numerical techniques such as the finite difference
and moment methods. In Appendix A we consider the separation of variables solution



to Laplace’s equation in three major coordinate systems for a variety of problems. For
an introduction to numerical techniques the reader is referred to the books by Sadiku
[162], Harrington [82], and Peterson et al. [146]. Solution to Poisson’s equation is often
undertaken using the method of Green’s functions, which we shall address later in this
section. We shall also consider the solution to Laplace’s equation for bodies immersed in
an applied, or “impressed,” field.

Uniqueness of solution to Poisson’s equation. Before attempting any solutions,
we must ask two very important questions. How do we know that solving the second-order
differential equation produces the same values for E = −∇� as solving the first-order
equations directly for E? And, if these solutions are the same, what are the conditions
for uniqueness of solution to Poisson’s and Laplace’s equations? To answer the first
question, a sufficient condition is to have � twice differentiable. We shall not attempt to
prove this, but shall instead show that the condition for uniqueness of the second-order
equations is the same as that for the first-order equations.

Consider a region of space V surrounded by a surface S. Static charge may be located
entirely or partially within V , or entirely outside V , and produces a field within V . This
region may also contain any arrangement of conductors or other materials. Now, assume
that �1 and �2 represent solutions to the static field equations within V with source
ρ(r). We wish to find conditions under which �1 = �2.

Since we have

∇ · [ε(r)∇�1(r)] = −ρ(r), ∇ · [ε(r)∇�2(r)] = −ρ(r),

the difference field �0 = �2 − �1 obeys

∇ · [ε(r)∇�0(r)] = 0. (3.51)

That is, �0 obeys Laplace’s equation. Now consider the quantity

∇ · (ε�0∇�0) = ε|∇�0|2 + �0∇ · (ε∇�0).

Integration over V and use of the divergence theorem and (3.51) gives∮
S
�0(r) [ε(r)∇�0(r)] · dS =

∫
V

ε(r)|∇�0(r)|2 dV .

As with the first order equations, we see that specifying either �(r) or ε(r)∇�(r) · n̂ over
S results in �0(r) = 0 throughout V , hence �1 = �2. As before, specifying ε(r)∇�(r) · n̂
for a conducting surface is equivalent to specifying the surface charge on S.

Integral solution to Poisson’s equation: the static Green’s function. The
method of Green’s functions is one of the most useful techniques for solving Poisson’s
equation. We seek a solution for a single point source, then use Green’s second identity
to write the solution for an arbitrary charge distribution in terms of a superposition
integral.

We seek the solution to Poisson’s equation for a region of space V as shown in Figure
3.5. The region is assumed homogeneous with permittivity ε, and its surface is multiply-
connected, consisting of a bounding surface SB and any number of closed surfaces internal
to V . We denote by S the composite surface consisting of SB and the N internal surfaces
Sn, n = 1, . . . , N . The internal surfaces are used to exclude material bodies, such as the



Figure 3.5: Computation of potential from known sources and values on bounding sur-
faces.

plates of a capacitor, which may be charged and on which the potential is assumed
to be known. To solve for �(r) within V we must know the potential produced by a
point source. This potential, called the Green’s function, is denoted G(r|r′); it has two
arguments because it satisfies Poisson’s equation at r when the source is located at r′:

∇2G(r|r′) = −δ(r − r′). (3.52)

Later we shall demonstrate that in all cases of interest to us the Green’s function is
symmetric in its arguments:

G(r′|r) = G(r|r′). (3.53)

This property of G is known as reciprocity.
Our development rests on the mathematical result (B.30) known as Green’s second

identity. We can derive this by subtracting the identities

∇ · (φ∇ψ) = φ∇ · (∇ψ) + (∇φ) · (∇ψ),

∇ · (ψ∇φ) = ψ∇ · (∇φ) + (∇ψ) · (∇φ),

to obtain

∇ · (φ∇ψ − ψ∇φ) = φ∇2ψ − ψ∇2φ.

Integrating this over a volume region V with respect to the dummy variable r′ and using
the divergence theorem, we obtain∫

V
[φ(r′)∇′2ψ(r′) − ψ(r′)∇′2φ(r′)] dV ′ = −

∮
S
[φ(r′)∇′ψ(r′) − ψ(r′)∇′φ(r′)] · dS′.

The negative sign on the right-hand side occurs because n̂ is an inward normal to V .
Finally, since ∂ψ(r′)/∂n′ = n̂′ · ∇′ψ(r′), we have∫

V
[φ(r′)∇′2ψ(r′) − ψ(r′)∇′2φ(r′)] dV ′ = −

∮
S

[
φ(r′)

∂ψ(r′)
∂n′ − ψ(r′)

∂φ(r′)
∂n′

]
d S′



as desired.
To solve for � in V we shall make some seemingly unmotivated substitutions into this

identity. First note that by (3.52) and (3.53) we can write

∇′2G(r|r′) = −δ(r′ − r). (3.54)

We now set φ(r′) = �(r′) and ψ(r′) = G(r|r′) to obtain∫
V

[�(r′)∇′2G(r|r′) − G(r|r′)∇′2�(r′)] dV ′ =

−
∮

S

[
�(r′)

∂G(r|r′)
∂n′ − G(r|r′)

∂�(r′)
∂n′

]
d S′, (3.55)

hence∫
V

[
�(r′)δ(r′ − r) − G(r|r′)

ρ(r′)
ε

]
dV ′ =

∮
S

[
�(r′)

∂G(r|r′)
∂n′ − G(r|r′)

∂�(r′)
∂n′

]
d S′.

By the sifting property of the Dirac delta

�(r) =
∫

V
G(r|r′)

ρ(r′)
ε

dV ′ +
∮

SB

[
�(r′)

∂G(r|r′)
∂n′ − G(r|r′)

∂�(r′)
∂n′

]
d S′ +

+
N∑

n=1

∮
Sn

[
�(r′)

∂G(r|r′)
∂n′ − G(r|r′)

∂�(r′)
∂n′

]
d S′. (3.56)

With this we may compute the potential anywhere within V in terms of the charge
density within V and the values of the potential and its normal derivative over S. We
must simply determine G(r|r′) first.

Let us take a moment to specialize (3.56) to the case of unbounded space. Provided
that the sources are of finite extent, as SB → ∞ we shall find that

�(r) =
∫

V
G(r|r′)

ρ(r′)
ε

dV ′ +
N∑

n=1

∮
Sn

[
�(r′)

∂G(r|r′)
∂n′ − G(r|r′)

∂�(r′)
∂n′

]
d S′.

A useful derivative identity. Many differential operations on the displacement vector
R = r − r′ occur in the study of electromagnetics. The identities

∇ R = −∇′ R = R̂, ∇
(

1

R

)
= −∇′

(
1

R

)
= − R̂

R2
, (3.57)

for example, follow from direct differentiation of the rectangular coordinate representa-
tion

R = x̂(x − x ′) + ŷ(y − y′) + ẑ(z − z′).

The identity

∇2

(
1

R

)
= −4πδ(r − r′), (3.58)

crucial to potential theory, is more difficult to establish. We shall prove the equivalent
version

∇′2
(

1

R

)
= −4πδ(r′ − r)



Figure 3.6: Geometry for establishing the singular property of ∇2(1/R).

by showing that ∫
V

f (r′)∇′2
(

1

R

)
dV ′ =

{
−4π f (r), r ∈ V,

0, r /∈ V,
(3.59)

holds for any continuous function f (r). By direct differentiation we have

∇′2
(

1

R

)
= 0 for r′ �= r,

hence the second part of (3.59) is established. This also shows that if r ∈ V then the
domain of integration in (3.59) can be restricted to a sphere of arbitrarily small radius
ε centered at r (Figure 3.6). The result we seek is found in the limit as ε → 0. Thus we
are interested in computing∫

V
f (r′)∇′2

(
1

R

)
dV ′ = lim

ε→0

∫
Vε

f (r′)∇′2
(

1

R

)
dV ′.

Since f is continuous at r′ = r, we have by the mean value theorem∫
V

f (r′)∇′2
(

1

R

)
dV ′ = f (r) lim

ε→0

∫
Vε

∇′2
(

1

R

)
dV ′.

The integral over Vε can be computed using ∇′2(1/R) = ∇′ · ∇′(1/R) and the divergence
theorem: ∫

Vε

∇′2
(

1

R

)
dV ′ =

∫
Sε

n̂′ · ∇′
(

1

R

)
d S′,

where Sε bounds Vε. Noting that n̂′ = −R̂, using (57), and writing the integral in
spherical coordinates (ε, θ, φ) centered at the point r, we have

∫
V

f (r′)∇′2
(

1

R

)
dV ′ = f (r) lim

ε→0

∫ 2π

0

∫ π

0
−R̂ ·

(
R̂
ε2

)
ε2 sin θ dθ dφ = −4π f (r).

Hence the first part of (3.59) is also established.

The Green’s function for unbounded space. In view of (3.58), one solution to
(3.52) is

G(r|r′) = 1

4π |r − r′| . (3.60)



This simple Green’s function is generally used to find the potential produced by charge
in unbounded space. Here N = 0 (no internal surfaces) and SB → ∞. Thus

�(r) =
∫

V
G(r|r′)

ρ(r′)
ε

dV ′ + lim
SB→∞

∮
SB

[
�(r′)

∂G(r|r′)
∂n′ − G(r|r′)

∂�(r′)
∂n′

]
d S′.

We have seen that the Green’s function varies inversely with distance from the source,
and thus expect that, as a superposition of point-source potentials, �(r) will also vary
inversely with distance from a source of finite extent as that distance becomes large with
respect to the size of the source. The normal derivatives then vary inversely with distance
squared. Thus, each term in the surface integrand will vary inversely with distance cubed,
while the surface area itself varies with distance squared. The result is that the surface
integral vanishes as the surface recedes to infinity, giving

�(r) =
∫

V
G(r|r′)

ρ(r′)
ε

dV ′.

By (3.60) we then have

�(r) = 1

4πε

∫
V

ρ(r′)
|r − r′| dV ′ (3.61)

where the integration is performed over all of space. Since

lim
r→∞ �(r) = 0,

points at infinity are a convenient reference for the absolute potential.
Later we shall need to know the amount of work required to move a charge Q from

infinity to a point P located at r. If a potential field is produced by charge located in
unbounded space, moving an additional charge into position requires the work

W21 = −Q
∫ P

∞
E · dl = Q[�(r) − �(∞)] = Q�(r). (3.62)

Coulomb’s law. We can obtain E from (61) by direct differentiation. We have

E(r) = − 1

4πε
∇

∫
V

ρ(r′)
|r − r′| dV ′ = − 1

4πε

∫
V

ρ(r′)∇
(

1

|r − r′|
)

dV ′,

hence

E(r) = 1

4πε

∫
V

ρ(r′)
r − r′

|r − r′|3 dV ′ (3.63)

by (3.57). So Coulomb’s law follows from the two fundamental postulates of electrostatics
(3.5) and (3.6).

Green’s function for unbounded space: two dimensions. We define the two-
dimensional Green’s function as the potential at a point r = ρ + ẑz produced by a
z-directed line source of constant density located at r′ = ρ′. Perhaps the simplest way
to compute this is to first find E produced by a line source on the z-axis. By (3.63) we
have

E(r) = 1

4πε

∫
�

ρl(z
′)

r − r′

|r − r′|3 dl ′.



Then, since r = ẑz + ρ̂ρ, r′ = ẑz′, and dl ′ = dz′, we have

E(ρ) = ρl

4πε

∫ ∞

−∞

ρ̂ρ + ẑ(z − z′)[
ρ2 + (z − z′)2

]3/2 dz′.

Carrying out the integration we find that E has only a ρ-component which varies only
with ρ:

E(ρ) = ρ̂
ρl

2περ
. (3.64)

The absolute potential referred to a radius ρ0 can be found by computing the line integral
of E from ρ to ρ0:

�(ρ) = − ρl

2πε

∫ ρ

ρ0

dρ ′

ρ ′ = ρl

2πε
ln

(
ρ0

ρ

)
.

We may choose any reference point ρ0 except ρ0 = 0 or ρ0 = ∞. This choice is equivalent
to the addition of an arbitrary constant, hence we can also write

�(ρ) = ρl

2πε
ln

(
1

ρ

)
+ C. (3.65)

The potential for a general two-dimensional charge distribution in unbounded space is
by superposition

�(ρ) =
∫

ST

ρT (ρ′)
ε

G(ρ|ρ′) d S′, (3.66)

where the Green’s function is the potential of a unit line source located at ρ′:

G(ρ|ρ′) = 1

2π
ln

(
ρ0

|ρ − ρ′|
)

. (3.67)

Here ST denotes the transverse (xy) plane, and ρT denotes the two-dimensional charge
distribution (C/m2) within that plane.

We note that the potential field (3.66) of a two-dimensional source decreases logarith-
mically with distance. Only the potential produced by a source of finite extent decreases
inversely with distance.

Dirichlet and Neumann Green’s functions. The unbounded space Green’s func-
tion may be inconvenient for expressing the potential in a region having internal surfaces.
In fact, (3.56) shows that to use this function we would be forced to specify both � and its
normal derivative over all surfaces. This, of course, would exceed the actual requirements
for uniqueness.

Many functions can satisfy (3.52). For instance,

G(r|r′) = A

|r − r′| + B

|r − ri | (3.68)

satisfies (3.52) if ri /∈ V . Evaluation of (3.55) with the Green’s function (3.68) repro-
duces the general formulation (3.56) since the Laplacian of the second term in (3.68) is
identically zero in V . In fact, we can add any function to the free-space Green’s function,
provided that the additional term obeys Laplace’s equation within V :

G(r|r′) = A

|r − r′| + F(r|r′), ∇′2 F(r|r′) = 0. (3.69)



A good choice for G(r|r′) will minimize the effort required to evaluate �(r). Examining
(3.56) we notice two possibilities. If we demand that

G(r|r′) = 0 for all r′ ∈ S (3.70)

then the surface integral terms in (3.56) involving ∂�/∂n′ will vanish. The Green’s
function satisfying (3.70) is known as the Dirichlet Green’s function. Let us designate it
by G D and use reciprocity to write (3.70) as

G D(r|r′) = 0 for all r ∈ S.

The resulting specialization of (3.56),

�(r) =
∫

V
G D(r|r′)

ρ(r′)
ε

dV ′ +
∮

SB

�(r′)
∂G D(r|r′)

∂n′ d S′ +

+
N∑

n=1

∮
Sn

�(r′)
∂G D(r|r′)

∂n′ d S′, (3.71)

requires the specification of � (but not its normal derivative) over the boundary surfaces.
In case SB and Sn surround and are adjacent to perfect conductors, the Dirichlet bound-
ary condition has an important physical meaning. The corresponding Green’s function is
the potential at point r produced by a point source at r′ in the presence of the conductors
when the conductors are grounded — i.e., held at zero potential. Then we must specify
the actual constant potentials on the conductors to determine � everywhere within V
using (3.71). The additional term F(r|r′) in (3.69) accounts for the potential produced
by surface charges on the grounded conductors.

By analogy with (3.70) it is tempting to try to define another electrostatic Green’s
function according to

∂G(r|r′)
∂n′ = 0 for all r′ ∈ S. (3.72)

But this choice is not permissible if V is a finite-sized region. Let us integrate (3.54) over
V and employ the divergence theorem and the sifting property to get∮

S

∂G(r|r′)
∂n′ d S′ = −1; (3.73)

in conjunction with this, equation (3.72) would imply the false statement 0 = −1. Sup-
pose instead that we introduce a Green’s function according to

∂G(r|r′)
∂n′ = − 1

A
for all r′ ∈ S. (3.74)

where A is the total area of S. This choice avoids a contradiction in (3.73); it does not
nullify any terms in (3.56), but does reduce the surface integral terms involving � to
constants. Taken together, these terms all comprise a single additive constant on the
right-hand side; although the corresponding potential �(r) is thereby determined only
to within this additive constant, the value of E(r) = −∇�(r) will be unaffected. By
reciprocity we can rewrite (3.74) as

∂G N (r|r′)
∂n

= − 1

A
for all r ∈ S. (3.75)



The Green’s function G N so defined is known as the Neumann Green’s function. Observe
that if V is not finite-sized then A → ∞ and according to (3.74) the choice (3.72) becomes
allowable.

Finding the Green’s function that obeys one of the boundary conditions for a given
geometry is often a difficult task. Nevertheless, certain canonical geometries make the
Green’s function approach straightforward and simple. Such is the case in image theory,
when a charge is located near a simple conducting body such as a ground screen or
a sphere. In these cases the function F(r|r′) consists of a single correction term as in
(3.68). We shall consider these simple cases in examples to follow.

Reciprocity of the static Green’s function. It remains to show that

G(r|r′) = G(r′|r)
for any of the Green’s functions introduced above. The unbounded-space Green’s function
is reciprocal by inspection; |r − r′| is unaffected by interchanging r and r′. However, we
can give a more general treatment covering this case as well as the Dirichlet and Neumann
cases. We begin with

∇2G(r|r′) = −δ(r − r′).

In Green’s second identity let

φ(r) = G(r|ra), ψ(r) = G(r|rb),

where ra and rb are arbitrary points, and integrate over the unprimed coordinates. We
have ∫

V
[G(r|ra)∇2G(r|rb) − G(r|rb)∇2G(r|ra)] dV =

−
∮

S

[
G(r|ra)

∂G(r|rb)

∂n
− G(r|rb)

∂G(r|ra)

∂n

]
d S.

If G is the unbounded-space Green’s function, the surface integral must vanish since
SB → ∞. It must also vanish under Dirichlet or Neumann boundary conditions. Since

∇2G(r|ra) = −δ(r − ra), ∇2G(r|rb) = −δ(r − rb),

we have ∫
V

[G(r|ra)δ(r − rb) − G(r|rb)δ(r − ra)] dV = 0,

hence

G(rb|ra) = G(ra|rb)

by the sifting property. By the arbitrariness of ra and rb, reciprocity is established.

Electrostatic shielding. The Dirichlet Green’s function can be used to explain elec-
trostatic shielding. We consider a closed, grounded, conducting shell with charge outside
but not inside (Figure 3.7). By (3.71) the potential at points inside the shell is

�(r) =
∮

SB

�(r′)
∂G D(r|r′)

∂n′ d S′,



Figure 3.7: Electrostatic shielding by a conducting shell.

where SB is tangential to the inner surface of the shell and we have used ρ = 0 within
the shell. Because �(r′) = 0 for all r′ on SB , we have

�(r) = 0

everywhere in the region enclosed by the shell. This result is independent of the charge
outside the shell, and the interior region is “shielded” from the effects of that charge.

Conversely, consider a grounded conducting shell with charge contained inside. If we
surround the outside of the shell by a surface S1 and let SB recede to infinity, then (3.71)
becomes

�(r) = lim
SB→∞

∮
SB

�(r′)
∂G D(r|r′)

∂n′ d S′ +
∮

S1

�(r′)
∂G D(r|r′)

∂n′ d S′.

Again there is no charge in V (since the charge lies completely inside the shell). The
contribution from SB vanishes. Since S1 lies adjacent to the outer surface of the shell,
�(r′) ≡ 0 on S1. Thus �(r) = 0 for all points outside the conducting shell.

Example solution to Poisson’s equation: planar layered media. For simple
geometries Poisson’s equation may be solved as part of a boundary value problem (§ A.4).
Occasionally such a solution has an appealing interpretation as the superposition of
potentials produced by the physical charge and its “images.” We shall consider here the
case of planar media and subsequently use the results to predict the potential produced
by charge near a conducting sphere.

Consider a layered dielectric medium where various regions of space are separated by
planes at constant values of z. Material region i occupies volume region Vi and has
permittivity εi ; it may or may not contain source charge. The solution to Poisson’s
equation is given by (3.56). The contribution

�p(r) =
∫

V
G(r|r′)

ρ(r′)
ε

dV ′

produced by sources within V is known as the primary potential. The term

�s(r) =
∮

S

[
�(r′)

∂G(r|r′)
∂n′ − G(r|r′)

∂�(r′)
∂n′

]
d S′,



on the other hand, involves an integral over the surface fields and is known as the sec-
ondary potential . This term is linked to effects outside V . Since the “sources” of �s

(i.e., the surface fields) lie on the boundary of V , �s satisfies Laplace’s equation within
V . We may therefore use other, more convenient, representations of �s provided they
satisfy Laplace’s equation. However, as solutions to a homogeneous equation they are of
indefinite form until linked to appropriate boundary values.

Since the geometry is invariant in the x and y directions, we represent each potential
function in terms of a 2-D Fourier transform over these variables. We leave the z depen-
dence intact so that we may apply boundary conditions directly in the spatial domain.
The transform representations of the Green’s functions for the primary and secondary
potentials are derived in Appendix A. From (A.55) we see that the primary potential
within region Vi can be written as

�
p
i (r) =

∫
Vi

G p(r|r′)
ρ(r′)
εi

dV ′ (3.76)

where

G p(r|r′) = 1

4π |r − r′| = 1

(2π)2

∫ ∞

−∞

e−kρ |z−z′|

2kρ

e jkρ ·(r−r′) d2kρ (3.77)

is the primary Green’s function with kρ = x̂kx + ŷky , kρ = |kρ |, and d2kρ = dkx dky .
We also find in (A.56) that a solution of Laplace’s equation can be written as

�s(r) = 1

(2π)2

∫ ∞

−∞

[
A(kρ)e

kρ z + B(kρ)e
−kρ z

]
e jkρ ·r d2kρ (3.78)

where A(kρ) and B(kρ) must be found by the application of appropriate boundary con-
ditions.

As a simple example, consider a charge distribution ρ(r) in free space above a grounded
conducting plane located at z = 0. We wish to find the potential in the region z > 0
using the Fourier transform representation of the potentials. The total potential is a sum
of primary and secondary terms:

�(x, y, z) =
∫

V

[
1

(2π)2

∫ ∞

−∞

e−kρ |z−z′|

2kρ

e jkρ ·(r−r′) d2kρ

]
ρ(r′)
ε0

dV ′ +

+ 1

(2π)2

∫ ∞

−∞

[
B(kρ)e

−kρ z
]

e jkρ ·r d2kρ,

where the integral is over the region z > 0. Here we have set A(kρ) = 0 because ekρ z

grows with increasing z. Since the plane is grounded we must have �(x, y, 0) = 0.
Because z < z′ when we apply this condition, we have |z − z′| = z′ − z and thus

�(x, y, 0) = 1

(2π)2

∫ ∞

−∞

[∫
V

ρ(r′)
ε0

e−kρ z′

2kρ

e− jkρ ·r′
dV ′ + B(kρ)

]
e jkρ ·r d2kρ = 0.

Invoking the Fourier integral theorem we find

B(kρ) = −
∫

V

ρ(r′)
ε0

e−kρ z′

2kρ

e− jkρ ·r′
dV ′,



Figure 3.8: Construction of electrostatic Green’s function for a ground plane.

hence the total potential is

�(x, y, z) =
∫

V

[
1

(2π)2

∫ ∞

−∞

e−kρ |z−z′| − e−kρ(z+z′)

2kρ

e jkρ ·(r−r′) d2kρ

]
ρ(r′)
ε0

dV ′

=
∫

V
G(r|r′)

ρ(r′)
ε0

dV ′

where G(r|r′) is the Green’s function for the region above a grounded planar conductor.
We can interpret this Green’s function as a sum of the primary Green’s function (3.77)
and a secondary Green’s function

Gs(r|r′) = − 1

(2π)2

∫ ∞

−∞

e−kρ(z+z′)

2kρ

e jkρ ·(r−r′) d2kρ. (3.79)

For z > 0 the term z + z′ can be replaced by |z + z′|. Then, comparing (3.79) with (3.77),
we see that

Gs(r | x ′, y′, z′) = −G p(r | x ′, y′, −z′) = − 1

4π |r − r′
i |

(3.80)

where r′
i = x̂x ′ + ŷy′ − ẑz′. Because the Green’s function is the potential of a point charge,

we may interpret the secondary Green’s function as produced by a negative unit charge
placed in a position −z ′ immediately beneath the positive unit charge that produces G p

(Figure 3.8). This secondary charge is the “image” of the primary charge. That two such
charges would produce a null potential on the ground plane is easily verified.

As a more involved example, consider a charge distribution ρ(r) above a planar in-
terface separating two homogeneous dielectric media. Region 1 occupies z > 0 and has
permittivity ε1, while region 2 occupies z < 0 and has permittivity ε2. In region 1 we
can write the total potential as a sum of primary and secondary components, discarding
the term that grows with z:

�1(x, y, z) =
∫

V

[
1

(2π)2

∫ ∞

−∞

e−kρ |z−z′|

2kρ

e jkρ ·(r−r′) d2kρ

]
ρ(r′)
ε1

dV ′ +

+ 1

(2π)2

∫ ∞

−∞

[
B(kρ)e

−kρ z
]

e jkρ ·r d2kρ. (3.81)

With no source in region 2, the potential there must obey Laplace’s equation and there-
fore consists of only a secondary component:

�2(r) = 1

(2π)2

∫ ∞

−∞

[
A(kρ)e

kρ z
]

e jkρ ·r d2kρ. (3.82)



To determine A and B we impose (3.36) and (3.37). By (3.36) we have

1

(2π)2

∫ ∞

−∞

[∫
V

ρ(r′)
ε1

e−kρ z′

2kρ

e− jkρ ·r′
dV ′ + B(kρ) − A(kρ)

]
e jkρ ·r d2kρ = 0,

hence ∫
V

ρ(r′)
ε1

e−kρ z′

2kρ

e− jkρ ·r′
dV ′ + B(kρ) − A(kρ) = 0

by the Fourier integral theorem. Applying (3.37) at z = 0 with n̂12 = ẑ, and noting that
there is no excess surface charge, we find∫

V
ρ(r′)

e−kρ z′

2kρ

e− jkρ ·r′
dV ′ − ε1 B(kρ) − ε2 A(kρ) = 0.

The solutions

A(kρ) = 2ε1

ε1 + ε2

∫
V

ρ(r′)
ε1

e−kρ z′

2kρ

e− jkρ ·r′
dV ′,

B(kρ) = ε1 − ε2

ε1 + ε2

∫
V

ρ(r′)
ε1

e−kρ z′

2kρ

e− jkρ ·r′
dV ′,

are then substituted into (3.81) and (3.82) to give

�1(r) =
∫

V

[
1

(2π)2

∫ ∞

−∞

e−kρ |z−z′| + ε1−ε2
ε1+ε2

e−kρ(z+z′)

2kρ

e jkρ ·(r−r′) d2kρ

]
ρ(r′)
ε1

dV ′

=
∫

V
G1(r|r′)

ρ(r′)
ε1

dV ′,

�2(r) =
∫

V

[
1

(2π)2

∫ ∞

−∞

2ε2

ε1 + ε2

e−kρ(z′−z)

2kρ

e jkρ ·(r−r′) d2kρ

]
ρ(r′)
ε2

dV ′

=
∫

V
G2(r|r′)

ρ(r′)
ε2

dV ′.

Since z′ > z for all points in region 2, we can replace z′ − z by |z − z′| in the formula for
�2.

As with the previous example, let us compare the result to the form of the primary
Green’s function (3.77). We see that

G1(r|r′) = 1

4π |r − r′| + ε1 − ε2

ε1 + ε2

1

4π |r − r′
1|

,

G2(r|r′) = 2ε2

ε1 + ε2

1

4π |r − r′
2|

,

where r′
1 = x̂x ′ + ŷy′ − ẑz′ and r′

2 = x̂x ′ + ŷy′ + ẑz′. So we can also write

�1(r) = 1

4π

∫
V

[
1

|r − r′| + ε1 − ε2

ε1 + ε2

1

|r − r′
1|

]
ρ(r′)
ε1

dV ′,

�2(r) = 1

4π

∫
V

[
2ε2

ε1 + ε2

1

|r − r′
2|

]
ρ(r′)
ε2

dV ′.



Figure 3.9: Green’s function for a grounded conducting sphere.

Note that �2 → �1 as ε2 → ε1.
There is an image interpretation for the secondary Green’s functions. The secondary

Green’s function for region 1 appears as a potential produced by an image of the primary
charge located at −z′ in an infinite medium of permittivity ε1, and with an amplitude of
(ε1 −ε2)/(ε1 +ε2) times the primary charge. The Green’s function in region 2 is produced
by an image charge located at z′ (i.e., at the location of the primary charge) in an infinite
medium of permittivity ε2 with an amplitude of 2ε2/(ε1 + ε2) times the primary charge.

Example solution to Poisson’s equation: conducting sphere. As an example
involving a nonplanar geometry, consider the potential produced by a source near a
grounded conducting sphere in free space (Figure 3.9). Based on our experience with
planar layered media, we hypothesize that the secondary potential will be produced by
an image charge; hence we try the simple Green’s function

Gs(r|r′) = A(r′)
4π |r − r′

i |
where the amplitude A and location r′

i of the image are to be determined. We further
assume, based on our experience with planar problems, that the image charge will reside
inside the sphere along a line joining the origin to the primary charge. Since r = ar̂ for
all points on the sphere, the total Green’s function must obey the Dirichlet condition

G(r|r′)|r=a = 1

4π |r − r′|
∣∣∣∣
r=a

+ A(r′)
4π |r − r′

i |
∣∣∣∣
r=a

= 1

4π |ar̂ − r ′r̂′| + A(r′)
4π |ar̂ − r ′

i r̂′| = 0

in order to have the potential, given by (3.56), vanish on the sphere surface. Factoring a
from the first denominator and r ′

i from the second we obtain

1

4πa|r̂ − r ′
a r̂′| + A(r′)

4πr ′
i | a

r ′
i
r̂ − r̂′| = 0.

Now |kr̂ − k ′r̂′| = k2 + k ′2 − 2kk ′ cos γ where γ is the angle between r̂ and r̂′ and k, k ′

are constants; this means that |kr̂ − r̂′| = |r̂ − kr̂′|. Hence as long as we choose

r ′

a
= a

r ′
i

,
A

r ′
i

= −1

a
,

the total Green’s function vanishes everywhere on the surface of the sphere. The image
charge is therefore located within the sphere at r′

i = a2r′/r ′2 and has amplitude A =



−a/r ′. (Note that both the location and amplitude of the image depend on the location
of the primary charge.) With this Green’s function and (3.71), the potential of an
arbitrary source placed near a grounded conducting sphere is

�(r) =
∫

V

ρ(r′)
ε

1

4π

[
1

|r − r′| − a/r ′

|r − a2

r ′2 r′|

]
dV ′.

The Green’s function may be used to compute the surface charge density induced on
the sphere by a unit point charge: it is merely necessary to find the normal component of
electric field from the gradient of �(r). We leave this as an exercise for the reader, who
may then integrate the surface charge and thereby show that the total charge induced
on the sphere is equal to the image charge. So the total charge induced on a grounded
sphere by a point charge q at a point r = r ′ is Q = −qa/r ′.

It is possible to find the total charge induced on the sphere without finding the image
charge first. This is an application of Green’s reciprocation theorem (§ 3.4.4). According
to (3.211), if we can find the potential VP at a point r produced by the sphere when it is
isolated and carrying a total charge Q0, then the total charge Q induced on the grounded
sphere in the vicinity of a point charge q placed at r is given by

Q = −qVP/V1

where V1 is the potential of the isolated sphere. We can apply this formula by noting that
an isolated sphere carrying charge Q0 produces a field E(r) = r̂Q0/4πεr2. Integration
from a radius r to infinity gives the potential referred to infinity: �(r) = Q0/4πεr. So
the potential of the isolated sphere is V1 = Q0/4πεa, while the potential at radius r ′ is
VP = Q0/4πεr ′. Substitution gives Q = −qa/r ′ as before.

3.2.5 Force and energy

Maxwell’s stress tensor. The electrostatic version of Maxwell’s stress tensor can be
obtained from (2.288) by setting B = H = 0:

T̄e = 1

2
(D · E)Ī − DE. (3.83)

The total electric force on the charges in a region V bounded by the surface S is given
by the relation

Fe = −
∮

S
T̄e · dS =

∫
V

fe dV

where fe = ρE is the electric force volume density.
In particular, suppose that S is adjacent to a solid conducting body embedded in a

dielectric having permittivity ε(r). Since all the charge is at the surface of the conductor,
the force within V acts directly on the surface. Thus, −T̄e · n̂ is the surface force density
(traction) t. Using D = εE, and remembering that the fields are normal to the conductor,
we find that

T̄e · n̂ = 1

2
εE2

n n̂ − εEE · n̂ = −1

2
εE2

n n̂ = −1

2
ρsE.

The surface force density is perpendicular to the surface.
As a simple but interesting example, consider the force acting on a rigid conducting

sphere of radius a carrying total charge Q in a homogeneous medium. At equilibrium



the charge is distributed uniformly with surface density ρs = Q/4πa2, producing a field
E = r̂Q/4πεr2 external to the sphere. Hence a force density

t = 1

2
r̂

Q2

ε(4πa2)2

acts at each point on the surface. This would cause the sphere to expand outward if the
structural integrity of the material were to fail. Integration over the entire sphere yields

F = 1

2

Q2

ε(4πa2)2

∫
S

r̂ d S = 0.

However, integration of t over the upper hemisphere yields

F = 1

2

Q2

ε(4πa2)2

∫ 2π

0

∫ π/2

0
r̂a2 sin θ dθ dφ.

Substitution of r̂ = x̂ sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ leads immediately to Fx = Fy = 0,
but the z-component is

Fz = 1

2

Q2

ε(4πa2)2

∫ 2π

0

∫ π/2

0
a2 cos θ sin θ dθ dφ = Q2

32επa2
.

This result can also be obtained by integrating −T̄e · n̂ over the entire xy-plane with
n̂ = −ẑ. Since −T̄e · (−ẑ) = ẑ ε

2 E · E we have

F = ẑ
1

2

Q2

(4πε)2

∫ 2π

0

∫ ∞

a

r dr dφ

r4
= ẑ

Q2

32επa2
.

As a more challenging example, consider two identical line charges parallel to the z-
axis and located at x = ±d/2, y = 0 in free space. We can find the force on one line
charge due to the other by integrating Maxwell’s stress tensor over the yz-plane. From
(3.64) we find that the total electric field on the yz-plane is

E(y, z) = y

y2 + (d/2)2

ρl

πε0
ŷ

where ρl is the line charge density. The force density for either line charge is −T̄e · n̂,
where we use n̂ = ±x̂ to obtain the force on the charge at x = ∓d/2. The force density
for the charge at x = −d/2 is

T̄e · n̂ = 1

2
(D · E)Ī · x̂ − DE · x̂ = ε0

2

[
y

y2 + (d/2)2

ρl

πε0

]2

x̂

and the total force is

F− = −
∫ ∞

−∞

∫ ∞

−∞

ρ2
l

2π2ε0

y2[
y2 + (d/2)2

]2 x̂ dy dz.

On a per unit length basis the force is

F−
l

= −x̂
ρ2

l

2π2ε0

∫ ∞

−∞

y2

[y2 + (d/2)2]2
dy = −x̂

ρ2
l

2πdε0
.

Note that the force is repulsive as expected.



Figure 3.10: Computation of electrostatic stored energy via the assembly energy of a
charge distribution.

Electrostatic stored energy. In § 2.9.5 we considered the energy relations for the
electromagnetic field. Those relations remain valid in the static case. Since our interpre-
tation of the dynamic relations was guided in part by our knowledge of the energy stored
in a static field, we must, for completeness, carry out a study of that effect here.

The energy of a static configuration is taken to be the work required to assemble the
configuration from a chosen starting point. For a configuration of static charges, the
stored electric energy is the energy required to assemble the configuration, starting with
all charges removed to infinite distance (the assumed zero potential reference). If the
assembled charges are not held in place by an external mechanical force they will move,
thereby converting stored electric energy into other forms of energy (e.g., kinetic energy
and radiation).

By (3.62), the work required to move a point charge q from a reservoir at infinity to
a point P at r in a potential field � is

W = q�(r).

If instead we have a continuous charge density ρ present, and wish to increase this to
ρ + δρ by bringing in a small quantity of charge δρ, a total work

δW =
∫

V∞
δρ(r)�(r) dV (3.84)

is required, and the potential field is increased to � + δ�. Here V∞ denotes all of space.
(We could restrict the integral to the region containing the charge, but we shall find it
helpful to extend the domain of integration to all of space.)

Now consider the situation shown in Figure 3.10. Here we have charge in the form of
both volume densities and surface densities on conducting bodies. Also present may be
linear material bodies. We can think of assembling the charge in two distinctly different



ways. We could, for instance, bring small portions of charge (or point charges) together
to form the distribution ρ. Or, we could slowly build up ρ by adding infinitesimal, but
spatially identical, distributions. That is, we can create the distribution ρ from a zero
initial state by repeatedly adding a charge distribution

δρ(r) = ρ(r)/N ,

where N is a large number. Whenever we add δρ we must perform the work given by
(3.84), but we also increase the potential proportionately (remembering that all materials
are assumed linear). At each step, more work is required. The total work is

W =
N∑

n=1

∫
V∞

δρ(r)[(n − 1)δ�(r)] dV =
[

N∑
n=1

(n − 1)

] ∫
V∞

ρ(r)
N

�(r)
N

dV . (3.85)

We must use an infinite number of steps so that no energy is lost to radiation at any step
(since the charge we add each time is infinitesimally small). Using

N∑
n=1

(n − 1) = N (N − 1)/2,

(3.85) becomes

W = 1

2

∫
V∞

ρ(r)�(r) dV (3.86)

as N → ∞. Finally, since some assembled charge will be in the form of a volume density
and some in the form of the surface density on conductors, we can generalize (3.86) to

W = 1

2

∫
V ′

ρ(r)�(r) dV + 1

2

I∑
i=1

Qi Vi . (3.87)

Here V ′ is the region outside the conductors, Qi is the total charge on the ith conductor
(i = 1, . . . , I ), and Vi is the absolute potential (referred to infinity) of the ith conductor.

An intriguing property of electrostatic energy is that the charges on the conductors
will arrange themselves, while seeking static equilibrium, into a minimum-energy config-
uration (Thomson’s theorem).

In keeping with our field-centered view of electromagnetics, we now wish to write the
energy (3.86) entirely in terms of the field vectors E and D. Since ρ = ∇ · D we have

W = 1

2

∫
V∞

[∇ · D(r)]�(r) dV .

Then, by (B.42),

W = 1

2

∫
V∞

∇ · [�(r)D(r)] dV − 1

2

∫
V∞

D(r) · [∇�(r)] dV .

Use of the divergence theorem and (3.30) leads to

W = 1

2

∮
S∞

�(r)D(r) · dS + 1

2

∫
V∞

D(r) · E(r) dV



Figure 3.11: Multipole expansion.

where S∞ is the bounding surface that recedes toward infinity to encompass all of space.
Because � ∼ 1/r and D ∼ 1/r2 as r → ∞, the integral over S∞ tends to zero and

W = 1

2

∫
V∞

D(r) · E(r) dV . (3.88)

Hence we may compute the assembly energy in terms of the fields supported by the
charge ρ.

It is significant that the assembly energy W is identical to the term within the time
derivative in Poynting’s theorem (2.299). Hence our earlier interpretation, that this term
represents the time-rate of change of energy “stored” in the electric field, has a firm basis.
Of course, the assembly energy is a static concept, and our generalization to dynamic
fields is purely intuitive. We also face similar questions regarding the meaning of energy
density, and whether energy can be “localized” in space. The discussions in § 2.9.5 still
apply.

3.2.6 Multipole expansion

Consider an arbitrary but spatially localized charge distribution of total charge Q
in an unbounded homogeneous medium (Figure 3.11). We have already obtained the
potential (3.61) of the source; as we move the observation point away, � should decrease
in a manner roughly proportional to 1/r . The actual variation depends on the nature
of the charge distribution and can be complicated. Often this dependence is dominated
by a specific inverse power of distance for observation points far from the source, and we
can investigate it by expanding the potential in powers of 1/r . Although such multipole
expansions of the potential are rarely used to perform actual computations, they can
provide insight into both the behavior of static fields and the physical meaning of the
polarization vector P.

Let us place our origin of coordinates somewhere within the charge distribution, as
shown in Figure 3.11, and expand the Green’s function spatial dependence in a three-
dimensional Taylor series about the origin:

1

R
=

∞∑
n=0

1

n!
(r′ · ∇′)n 1

R

∣∣∣∣
r′=0

= 1

r
+ (r′ · ∇′)

1

R

∣∣∣∣
r′=0

+ 1

2
(r′ · ∇′)2 1

R

∣∣∣∣
r′=0

+ · · · , (3.89)

where R = |r − r′|. Convergence occurs if |r| > |r′|. In the notation (r′ · ∇′)n we interpret
a power on a derivative operator as the order of the derivative. Substituting (3.89) into



(3.61) and writing the derivatives in Cartesian coordinates we obtain

�(r) = 1

4πε

∫
V

ρ(r′)
[

1

R

∣∣∣∣
r′=0

+ (r′ · ∇′)
1

R

∣∣∣∣
r′=0

+ 1

2
(r′ · ∇′)2 1

R

∣∣∣∣
r′=0

+ · · ·
]

dV ′. (3.90)

For the second term we can use (3.57) to write

(r′ · ∇′)
1

R

∣∣∣∣
r′=0

= r′ ·
(

∇′ 1

R

) ∣∣∣∣
r′=0

= r′ ·
(

R̂
R2

) ∣∣∣∣
r′=0

= r′ · r̂
r2

. (3.91)

The third term is complicated. Let us denote (x, y, z) by (x1, x2, x3) and perform an
expansion in rectangular coordinates:

(r′ · ∇′)2 1

R

∣∣∣∣
r′=0

=
3∑

i=1

3∑
j=1

x ′
i x

′
j

∂2

∂x ′
i∂x ′

j

1

R

∣∣∣∣
r′=0

.

It turns out [172] that this can be written as

(r′ · ∇′)2 1

R

∣∣∣∣
r′=0

= 1

r3
r̂ · (3r′r′ − r ′2Ī) · r̂.

Substitution into (3.90) gives

�(r) = Q

4πεr
+ r̂ · p

4πεr2
+ 1

2

r̂ · Q̄ · r̂
4πεr3

+ · · · , (3.92)

which is the multipole expansion for �(r). It converges for all r > rm where rm is the
radius of the smallest sphere completely containing the charge centered at r′ = 0 (Figure
3.11). In (3.92) the terms Q, p, Q̄, and so on are called the multipole moments of ρ(r).
The first moment is merely the total charge

Q =
∫

V
ρ(r′) dV ′.

The second moment is the electric dipole moment vector

p =
∫

V
r′ρ(r′) dV ′.

The third moment is the electric quadrupole moment dyadic

Q̄ =
∫

V
(3r′r′ − r ′2Ī)ρ(r′) dV ′.

The expansion (3.92) allows us to identify the dominant power of r for r � rm .
The first nonzero term in (3.92) dominates the potential at points far from the source.
Interestingly, the first nonvanishing moment is independent of the location of the origin
of r′, while all subsequent higher moments depend on the location of the origin [91]. We
can see this most easily through a few simple examples.

For a single point charge q located at r0 we can write ρ(r) = qδ(r − r0). The first
moment of ρ is

Q =
∫

V
qδ(r′ − r0) dV ′ = q.



Figure 3.12: A dipole distribution.

Note that this is independent of r0. The second moment

p =
∫

V
r′qδ(r′ − r0) dV ′ = qr0

depends on r0, as does the third moment

Q̄ =
∫

V
(3r′r′ − r ′2Ī)qδ(r′ − r0) dV ′ = q(3r0r0 − r2

0 Ī).

If r0 = 0 then only the first moment is nonzero; that this must be the case is obvious
from (3.61).

For the dipole of Figure 3.12 we can write

ρ(r) = −qδ(r − r0 + d/2) + qδ(r − r0 − d/2).

In this case

Q = −q + q = 0, p = qd, Q̄ = q[3(r0d + dr0) − 2(r0 · d)Ī].

Only the first nonzero moment, in this case p, is independent of r0. For r0 = 0 the only
nonzero multipole moment would be the dipole moment p. If the dipole is aligned along
the z-axis with d = d ẑ and r0 = 0, then the exact potential is

�(r) = 1

4πε

p cos θ

r2
.

By (3.30) we have

E(r) = 1

4πε

p

r3
(r̂2 cos θ + θ̂ sin θ), (3.93)

which is the classic result for the electric field of a dipole.
Finally, consider the quadrupole shown in Figure 3.13. The charge density is

ρ(r) = −qδ(r − r0) + qδ(r − r0 − d1) + qδ(r − r0 − d2) − qδ(r − r0 − d1 − d2).



Figure 3.13: A quadrupole distribution.

Carrying through the details, we find that the first two moments of ρ vanish, while the
third is given by

Q̄ = q[−3(d1d2 + d2d1) + 2(d1 · d2)Ī].

As expected, it is independent of r0.
It is tedious to carry (3.92) beyond the quadrupole term using the Taylor expansion.

Another approach is to expand 1/R in spherical harmonics. Referring to Appendix E.3
we find that

1

|r − r′| = 4π

∞∑
n=0

n∑
m=−n

1

2n + 1

r ′n

rn+1
Y ∗

nm(θ ′, φ′)Ynm(θ, φ)

(see Jackson [91] or Arfken [5] for a detailed derivation). This expansion converges for
|r| > |rm |. Substitution into (3.61) gives

�(r) = 1

ε

∞∑
n=0

1

rn+1

[
1

2n + 1

n∑
m=−n

qnmYnm(θ, φ)

]
(3.94)

where

qnm =
∫

V
ρ(r′)r ′nY ∗

nm(θ ′, φ′) dV ′.

We can now identify any inverse power of r in the multipole expansion, but at the price
of dealing with a double summation. For a charge distribution with axial symmetry (no
φ-variation), only the coefficient qn0 is nonzero. The relation

Yn0(θ, φ) =
√

2n + 1

4π
Pn(cos θ)

allows us to simplify (3.94) and obtain

�(r) = 1

4πε

∞∑
n=0

1

rn+1
qn Pn(cos θ) (3.95)



where

qn = 2π

∫
r ′

∫
θ ′

ρ(r ′, θ ′)r ′n Pn(cos θ ′)r ′2 sin θ ′ dθ ′ dr ′.

As a simple example consider a spherical distribution of charge given by

ρ(r) = 3Q

πa3
cos θ, r ≤ a.

This can be viewed as two adjacent hemispheres carrying total charges ±Q. Since cos θ =
P1(cos θ), we compute

qn = 2π

∫ a

0

∫ π

0

3Q

πa3
P1(cos θ ′)r ′n Pn(cos θ ′)r ′2 sin θ ′ dθ ′ dr ′

= 2π
3Q

πa3

an+3

n + 3

∫ π

0
P1(cos θ)Pn(cos θ ′) sin θ ′ dθ ′.

Using the orthogonality relation (E.123) we find

qn = 2π
3Q

πa3

an+3

n + 3
δ1n

2

2n + 1
.

Hence the only nonzero coefficient is q1 = Qa and

�(r) = 1

4πε

1

r2
Qa P1(cos θ) = Qa

4πεr2
cos θ.

This is the potential of a dipole having moment p = ẑQa. Thus we could replace the
sphere with point charges ∓Q at z = ∓a/2 without changing the field for r > a.

Physical interpretation of the polarization vector in a dielectric. We have
used the Maxwell–Minkowski equations to determine the electrostatic potential of a
charge distribution in the presence of a dielectric medium. Alternatively, we can use
the Maxwell–Boffi equations

∇ × E = 0, (3.96)

∇ · E = 1

ε0
(ρ − ∇ · P). (3.97)

Equation (3.96) allows us to define a scalar potential through (3.30). Substitution into
(3.97) gives

∇2�(r) = − 1

ε0
[ρ(r) + ρP(r)] (3.98)

where ρP = −∇ · P. This has the form of Poisson’s equation (3.50), but with charge
density term ρ(r) + ρP(r). Hence the solution is

�(r) = 1

4πε0

∫
V

ρ(r′) − ∇′ · P(r′)
|r − r′| dV ′.

To this we must add any potential produced by surface sources such as ρs . If there is a
discontinuity in the dielectric region, there is also a surface polarization source ρPs = n̂ ·P



according to (3.35). Separating the volume into regions with bounding surfaces Si across
which the permittivity is discontinuous, we may write

�(r) = 1

4πε0

∫
V

ρ(r′)
|r − r′| dV ′ + 1

4πε0

∫
S

ρs(r′)
|r − r′| d S′ +

+
∑

i

[
1

4πε0

∫
Vi

−∇′ · P(r′)
|r − r′| dV ′ + 1

4πε0

∮
Si

n̂′ · P(r′)
|r − r′| d S′

]
, (3.99)

where n̂ points outward from region i . Using the divergence theorem on the fourth term
and employing (B.42), we obtain

�(r) = 1

4πε0

∫
V

ρ(r′)
|r − r′| dV ′ + 1

4πε0

∫
S

ρs(r′)
|r − r′| d S′ +

+
∑

i

[
1

4πε0

∫
Vi

P(r′) · ∇′
(

1

|r − r′|
)

dV ′
]

.

Since ∇′(1/R) = R̂/R2, the third term is a sum of integrals of the form

1

4πε

∫
Vi

P(r′) · R̂
R2

dV .

Comparing this to the second term of (3.92), we see that this integral represents a volume
superposition of dipole terms where P is a volume density of dipole moments.

Thus, a dielectric with permittivity ε is equivalent to a volume distribution of dipoles
in free space. No higher-order moments are required, and no zero-order moments are
needed since any net charge is included in ρ. Note that we have arrived at this conclusion
based only on Maxwell’s equations and the assumption of a linear, isotropic relationship
between D and E. Assuming our macroscopic theory is correct, we are tempted to make
assumptions about the behavior of matter on a microscopic level (e.g., atoms exposed to
fields are polarized and their electron clouds are displaced from their positively charged
nuclei), but this area of science is better studied from the viewpoints of particle physics
and quantum mechanics.

Potential of an azimuthally-symmetric charged spherical surface. In several
of our example problems we shall be interested in evaluating the potential of a charged
spherical surface. When the charge is azimuthally-symmetric, the potential is particularly
simple.

We will need the value of the integral

F(r) = 1

4π

∫
S

f (θ ′)
|r − r′| d S′ (3.100)

where r = r r̂ describes an arbitrary observation point and r′ = ar̂′ identifies the source
point on the surface of the sphere of radius a. The integral is most easily done using the
expansion (E.200) for |r − r′|−1 in spherical harmonics. We have

F(r) = a2
∞∑

n=0

n∑
m=−n

Ynm(θ, φ)

2n + 1

rn
<

rn+1
>

∫ π

−π

∫ π

0
f (θ ′)Y ∗

nm(θ ′, φ′) sin θ ′ dθ ′ dφ′



where r< = min{r, a} and r> = max{r, a}. Using orthogonality of the exponentials we
find that only the m = 0 terms contribute:

F(r) = 2πa2
∞∑

n=0

Yn0(θ, φ)

2n + 1

rn
<

rn+1
>

∫ π

0
f (θ ′)Y ∗

n0(θ
′, φ′) sin θ ′ dθ ′.

Finally, since

Yn0 =
√

2n + 1

4π
Pn(cos θ)

we have

F(r) = 1

2
a2

∞∑
n=0

Pn(cos θ)
rn
<

rn+1
>

∫ π

0
f (θ ′)Pn(cos θ ′) sin θ ′ dθ ′. (3.101)

As an example, suppose f (θ) = cos θ = P1(cos θ). Then

F(r) = 1

2
a2

∞∑
n=0

Pn(cos θ)
rn
<

rn+1
>

∫ π

0
P1(cos θ ′)Pn(cos θ ′) sin θ ′ dθ ′.

The orthogonality of the Legendre polynomials can be used to show that∫ π

0
P1(cos θ ′)Pn(cos θ ′) sin θ ′ dθ ′ = 2

3
δ1n,

hence

F(r) = a2

3
cos θ

r<

r2
>

. (3.102)

3.2.7 Field produced by a permanently polarized body

Certain materials, called electrets, exhibit polarization in the absence of an external
electric field. A permanently polarized material produces an electric field both internal
and external to the material, hence there must be a charge distribution to support the
fields. We can interpret this charge as being caused by the permanent separation of
atomic charge within the material, but if we are only interested in the macroscopic field
then we need not worry about the microscopic implications of such materials. Instead, we
can use the Maxwell–Boffi equations and find the potential produced by the material by
using (3.99). Thus, the field of an electret with known polarization P occupying volume
region V in free space is dipolar in nature and is given by

�(r) = 1

4πε0

∫
V

−∇′ · P(r′)
|r − r′| dV ′ + 1

4πε0

∮
S

n̂′ · P(r′)
|r − r′| d S′

where n̂ points out of the volume region V .
As an example, consider a material sphere of radius a, permanently polarized along

its axis with uniform polarization P(r) = ẑP0. We have the equivalent source densities

ρp = −∇ · P = 0, ρPs = n̂ · P = r̂ · ẑP0 = P0 cos θ.

Then

�(r) = 1

4πε0

∮
S

ρPs(r′)
|r − r′| d S′ = 1

4πε0

∮
S

P0 cos θ ′

|r − r′| d S′.



The integral takes the form (3.100), hence by (3.102) the solution is

�(r) = P0
a2

3ε0
cos θ

r<

r2
>

. (3.103)

If we are interested only in the potential for r > a, we can use the multipole expansion
(3.95) to obtain

�(r) = 1

4πε0

∞∑
n=0

1

rn+1
qn Pn(cos θ), r > a

where

qn = 2π

∫ π

0
ρPs(θ

′)an Pn(cos θ ′)a2 sin θ ′ dθ ′.

Substituting for ρPs and remembering that cos θ = P1(cos θ), we have

qn = 2πan+2 P0

∫ π

0
P1(cos θ ′)Pn(cos θ ′) sin θ ′ dθ ′.

Using the orthogonality relation (E.123) we find

qn = 2πan+2 P0δ1n
2

2n + 1
.

Therefore the only nonzero coefficient is

q1 = 4πa3 P0

3

and

�(r) = 1

4πε0

1

r2

4πa3 P0

3
P1(cos θ) = P0a3

3ε0r2
cos θ, r > a.

This is a dipole field, and matches (3.103) as expected.

3.2.8 Potential of a dipole layer

Surface charge layers sometimes occur in bipolar form, such as in the membrane sur-
rounding an animal cell. These can be modeled as a dipole layer consisting of parallel
surface charges of opposite sign.

Consider a surface S located in free space. Parallel to this surface, and a distance �/2
below, is located a surface charge layer of density ρs(r) = Ps(r). Also parallel to S, but
a distance �/2 above, is a surface charge layer of density ρs(r) = −Ps(r). We define the
surface dipole moment density Ds as

Ds(r) = � Ps(r). (3.104)

Letting the position vector r′
0 point to the surface S we can write the potential (3.61)

produced by the two charge layers as

�(r) = 1

4πε0

∫
S+

Ps(r′)
1

|r − r′
0 − n̂′ �

2 | d S′ − 1

4πε0

∫
S−

Ps(r′)
1

|r − r′
0 + n̂′ �

2 | d S′.



Figure 3.14: A dipole layer.

We are interested in the case in which the two charge layers collapse onto the surface S,
and wish to compute the potential produced by a given dipole moment density. When
� → 0 we have r′

0 → r′ and may write

�(r) = lim
�→0

1

4πε0

∫
S

Ds(r′)
�

[
1

|R − n̂′ �
2 | − 1

|R + n̂′ �
2 |

]
d S′,

where R = r − r′. By the binomial theorem, the limit of the term in brackets can be
written as

lim
�→0


[

R2 +
(

�

2

)2

− 2R · n̂′ �
2

]− 1
2

−
[

R2 +
(

�

2

)2

+ 2R · n̂′ �
2

]− 1
2




= lim
�→0

(
R−1

[
1 + R̂ · n̂′

R

�

2

]
− R−1

[
1 − R̂ · n̂′

R

�

2

])
= �n̂′ · R

R3
.

Thus

�(r) = 1

4πε0

∫
S

Ds(r′) · R
R3

d S′ (3.105)

where Ds = n̂Ds is the surface vector dipole moment density. The potential of a dipole
layer decreases more rapidly (∼ 1/r2) than that of a unipolar charge layer. We saw
similar behavior in the dipole term of the multipole expansion (3.92) for a general charge
distribution.

We can use (3.105) to study the behavior of the potential across a dipole layer. As
we approach the layer from above, the greatest contribution to � comes from the charge
region immediately beneath the observation point. Assuming that the surface dipole
moment density is continuous beneath the point, we can compute the difference in the
fields across the layer at point r by replacing the arbitrary surface layer by a disk of
constant surface dipole moment density D0 = Ds(r). For simplicity we center the disk
at z = 0 in the xy-plane as shown in Figure 3.15 and compute the potential difference
�V across the layer; i.e., �V = �(h) − �(−h) on the disk axis as h → 0. Using (3.105)
along with r′ = ±hẑ − ρ ′ρ̂′, we obtain

�V = lim
h→0

[
1

4πε0

∫ 2π

0

∫ a

0
[ẑD0] · ẑh − ρ̂′ρ ′(

h2 + ρ ′2)3/2 ρ ′ dρ ′ dφ′−

− 1

4πε0

∫ 2π

0

∫ a

0
[ẑD0] · −ẑh − ρ̂′ρ ′(

h2 + ρ ′2)3/2 ρ ′ dρ ′ dφ′
]



Figure 3.15: Auxiliary disk for studying the potential distribution across a dipole layer.

where a is the disk radius. Integration yields

�V = D0

2ε0
lim
h→0


 −2√

1 + (
a
h

)2
+ 2


 = D0

ε0
,

independent of a. Generalizing this to an arbitrary surface dipole moment density, we
find that the boundary condition on the potential is given by

�2(r) − �1(r) = Ds(r)
ε0

(3.106)

where “1” denotes the positive side of the dipole moments and “2” the negative side.
Physically, the potential difference in (3.106) is produced by the line integral of E “in-
ternal” to the dipole layer. Since there is no field internal to a unipolar surface layer, V
is continuous across a surface containing charge ρs but having Ds = 0.

3.2.9 Behavior of electric charge density near a conducting edge

Sharp corners are often encountered in the application of electrostatics to practical ge-
ometries. The behavior of the charge distribution near these corners must be understood
in order to develop numerical techniques for solving more complicated problems. We can
use a simple model of a corner if we restrict our interest to the region near the edge.
Consider the intersection of two planes as shown in Figure 3.16. The region near the in-
tersection represents the corner we wish to study. We assume that the planes are held at
zero potential and that the charge on the surface is induced by a two-dimensional charge
distribution ρ(r), or by a potential difference between the edge and another conductor
far removed from the edge.

We can find the potential in the region near the edge by solving Laplace’s equation in
cylindrical coordinates. This problem is studied in Appendix A where the separation of
variables solution is found to be either (A.127) or (A.128). Using (A.128) and enforcing
� = 0 at both φ = 0 and φ = β, we obtain the null solution. Hence the solution must
take the form (A.127):

�(ρ, φ) = [Aφ sin(kφφ) + Bφ cos(kφφ)][aρρ
−kφ + bρρ

kφ ]. (3.107)



Figure 3.16: A conducting edge.

Since the origin is included we cannot have negative powers of ρ and must put aρ = 0.
The boundary condition �(ρ, 0) = 0 requires Bφ = 0. The condition �(ρ, β) = 0 then
requires sin(kφβ) = 0, which holds only if kφ = nπ/β, n = 1, 2, . . .. The general solution
for the potential near the edge is therefore

�(ρ, φ) =
N∑

n=1

An sin

(
nπ

β
φ

)
ρnπ/β (3.108)

where the constants An depend on the excitation source or system of conductors. (Note
that if the corner is held at potential V0 �= 0, we must merely add V0 to the solution.)
The charge on the conducting surfaces can be computed from the boundary condition
on normal D. Using (3.30) we have

Eφ = − 1

ρ

∂

∂φ

N∑
n=1

An sin

(
nπ

β
φ

)
ρnπ/β = −

N∑
n=1

An
nπ

β
cos

(
nπ

β
φ

)
ρ(nπ/β)−1,

hence

ρs(x) = −ε

N∑
n=1

An
nπ

β
x (nπ/β)−1

on the surface at φ = 0. Near the edge, at small values of x , the variation of ρs is dom-
inated by the lowest power of x . (Here we ignore those special excitation arrangements
that produce A1 = 0.) Thus

ρs(x) ∼ x (π/β)−1.

The behavior of the charge clearly depends on the wedge angle β. For a sharp edge
(half plane) we put β = 2π and find that the field varies as x−1/2. This square-root edge
singularity is very common on thin plates, fins, etc., and means that charge tends to
accumulate near the edge of a flat conducting surface. For a right-angle corner where
β = 3π/2, there is the somewhat weaker singularity x−1/3. When β = π , the two
surfaces fold out into an infinite plane and the charge, not surprisingly, is invariant with
x to lowest order near the folding line. When β < π the corner becomes interior and we
find that the charge density varies with a positive power of distance from the edge. For
very sharp interior angles the power is large, meaning that little charge accumulates on
the inner surfaces near an interior corner.



3.2.10 Solution to Laplace’s equation for bodies immersed in an im-
pressed field

An important class of problems is based on the idea of placing a body into an existing
electric field, assuming that the field arises from sources so remote that the introduction
of the body does not alter the original field. The pre-existing field is often referred to as
the applied or impressed field, and the solution external to the body is usually formulated
as the sum of the applied field and a secondary or scattered field that satisfies Laplace’s
equation. This total field differs from the applied field, and must satisfy the appropriate
boundary condition on the body. If the body is a conductor then the total potential must
be constant everywhere on the boundary surface. If the body is a solid homogeneous
dielectric then the total potential field must be continuous across the boundary.

As an example, consider a dielectric sphere of permittivity ε and radius a, centered at
the origin and immersed in a constant electric field E0(r) = E0ẑ. By (3.30) the applied
potential field is �0(r) = −E0z = −E0r cos θ (to within a constant). Outside the sphere
(r > a) we write the total potential field as

�2(r) = �0(r) + �s(r)

where �s(r) is the secondary or scattered potential. Since �s must satisfy Laplace’s
equation, we can write it as a separation of variables solution (§ A.4). By azimuthal
symmetry the potential has an r -dependence as in (A.146), and a θ -dependence as in
(A.142) with Bθ = 0 and m = 0. Thus �s has a representation identical to (A.147),
except that we cannot use terms that are unbounded as r → ∞. We therefore use

�s(r, θ) =
∞∑

n=0

Bnr−(n+1) Pn(cos θ). (3.109)

The potential inside the sphere also obeys Laplace’s equation, so we can use the same
form (A.147) while discarding terms unbounded at the origin. Thus

�1(r, θ) =
∞∑

n=0

Anrn Pn(cos θ) (3.110)

for r < a. To find the constants An and Bn we apply (3.36) and (3.37) to the total field.
Application of (3.36) at r = a gives

−E0a cos θ +
∞∑

n=0

Bna−(n+1) Pn(cos θ) =
∞∑

n=0

Anan Pn(cos θ).

Multiplying through by Pm(cos θ) sin θ , integrating from θ = 0 to θ = π , and using the
orthogonality relationship (E.123), we obtain

−E0a + a−2 B1 = A1a, (3.111)
Bna−(n+1) = Anan, n �= 1, (3.112)

where we have used P1(cos θ) = cos θ . Next, since ρs = 0, equation (3.37) requires that

ε1
∂�1(r)

∂r
= ε2

∂�2(r)
∂r



at r = a. This gives

−ε0 E0 cos θ + ε0

∞∑
n=0

[−(n + 1)Bn]a−n−2 Pn(cos θ) = ε

∞∑
n=0

[n An]an−1 Pn(cos θ).

By orthogonality of the Legendre functions we have

−ε0 E0 − 2ε0 B1a−3 = ε A1, (3.113)
−ε0(n + 1)Bna−n−2 = εn Anan−1, n �= 1. (3.114)

Equations (3.112) and (3.114) cannot hold simultaneously unless An = Bn = 0 for n �= 1.
Solving (3.111) and (3.113) we have

A1 = −E0
3ε0

ε + 2ε0
, B1 = E0a3 ε − ε0

ε + 2ε0
.

Hence

�1(r) = −E0
3ε0

ε + 2ε0
r cos θ = −E0z

3ε0

ε + 2ε0
, (3.115)

�2(r) = −E0r cos θ + E0
a3

r2

ε − ε0

ε + 2ε0
cos θ. (3.116)

Interestingly, the electric field

E1(r) = −∇�1(r) = ẑE0
3ε0

ε + 2ε0

inside the sphere is constant with position and is aligned with the applied external field.
However, it is weaker than the applied field since ε > ε0. To explain this, we compute
the polarization charge within and on the sphere. Using D = εE = ε0E + P we have

P1 = ẑ(ε − ε0)E0
3ε0

ε + 2ε0
. (3.117)

The volume polarization charge density −∇ · P is zero, while the polarization surface
charge density is

ρPs = r̂ · P = (ε − ε0)E0
3ε0

ε + 2ε0
cos θ.

Hence the secondary electric field can be attributed to an induced surface polarization
charge, and is in a direction opposing the applied field. According to the Maxwell–Boffi
viewpoint we should be able to replace the sphere by the surface polarization charge
immersed in free space, and use the formula (3.61) to reproduce (3.115) and (3.116).
This is left as an exercise for the reader.

3.3 Magnetostatics

The large-scale forms of the magnetostatic field equations are∮
�

H · dl =
∫

S
J · dS, (3.118)∮

S
B · dS = 0, (3.119)



while the point forms are

∇ × H(r) = J(r), (3.120)
∇ · B(r) = 0. (3.121)

Note the interesting dichotomy between the electrostatic field equations and the magne-
tostatic field equations. Whereas the electrostatic field exhibits zero curl and a divergence
proportional to the source (charge), the magnetostatic field has zero divergence and a
curl proportional to the source (current). Because the vector relationship between the
magnetostatic field and its source is of a more complicated nature than the scalar rela-
tionship between the electrostatic field and its source, more effort is required to develop a
strong understanding of magnetic phenomena. Also, it must always be remembered that
although the equations describing the electrostatic and magnetostatic field sets decou-
ple, the phenomena themselves remain linked. Since current is moving charge, electrical
phenomena are associated with the establishment of the current that supports a magne-
tostatic field. We know, for example, that in order to have current in a wire an electric
field must be present to drive electrons through the wire.

The magnetic scalar potential. Under certain conditions the equations of magne-
tostatics have the same form as those of electrostatics. If J = 0 in a region V , the
magnetostatic equations are

∇ × H(r) = 0, (3.122)
∇ · B(r) = 0; (3.123)

compare with (3.5)–(3.6) when ρ = 0. Using (3.122) we can define a magnetic scalar
potential �m :

H = −∇�m . (3.124)

The negative sign is chosen for consistency with (3.30). We can then define a magnetic
potential difference between two points as

Vm21 = −
∫ P2

P1

H · dl = −
∫ P2

P1

−∇�m(r) · dl =
∫ P2

P1

d�m(r) = �m(r2) − �m(r1).

Unlike the electrostatic potential difference, Vm21 is not unique. Consider Figure 3.17,
which shows a plane passing through the cross-section of a wire carrying total current I .
Although there is no current within the region V (external to the wire), equation (3.118)
still gives ∫

�2

H · dl −
∫

�3

H · dl = I.

Thus ∫
�2

H · dl =
∫

�3

H · dl + I,

and the integral
∫
�

H · dl is not path-independent. However,∫
�1

H · dl =
∫

�2

H · dl

since no current passes through the surface bounded by �1 − �2. So we can artificially
impose uniqueness by demanding that no path cross a cut such as that indicated by the
line L in the figure.



Figure 3.17: Magnetic potential.

Because Vm21 is not unique, the field H is nonconservative. In point form this is
shown by the fact that ∇ × H is not identically zero. We are not too concerned about
energy-related implications of the nonconservative nature of H; the electric point charge
has no magnetic analogue that might fail to conserve potential energy if moved around
in a magnetic field.

Assuming a linear, isotropic region where B(r) = µ(r)H(r), we can substitute (3.124)
into (3.123) and expand to obtain

∇µ(r) · ∇�m(r) + µ(r)∇2�m(r) = 0.

For a homogeneous medium this reduces to Laplace’s equation

∇2�m = 0.

We can also obtain an analogue to Poisson’s equation of electrostatics if we use

B = µ0(H + M) = −µ0∇�m + µ0M

in (3.123); we have

∇2�m = −ρM (3.125)

where

ρM = −∇ · M

is called the equivalent magnetization charge density. This form can be used to describe
fields of permanent magnets in the absence of J. Comparison with (3.98) shows that ρM

is analogous to the polarization charge ρP .
Since �m obeys Poisson’s equation, the details regarding uniqueness and the construc-

tion of solutions follow from those of the electrostatic case. If we include the possibility of
a surface density of magnetization charge, then the integral solution for �m in unbounded
space is

�m(r) = 1

4π

∫
V

ρM(r′)
|r − r′| dV ′ + 1

4π

∫
S

ρMs(r′)
|r − r′| d S′. (3.126)

Here ρMs , the surface density of magnetization charge, is identified as n̂ · M in the
boundary condition (3.152).



3.3.1 The magnetic vector potential

Although the magnetic scalar potential is useful for describing fields of permanent
magnets and for solving certain boundary value problems, it does not include the effects of
source current. A second type of potential function, called the magnetic vector potential,
can be used with complete generality to describe the magnetostatic field. Because ∇ ·B =
0, we can write by (B.49)

B(r) = ∇ × A(r) (3.127)

where A is the vector potential. Now A is not determined by (3.127) alone, since the
gradient of any scalar field can be added to A without changing the value of ∇ × A.
Such “gauge transformations” are discussed in Chapter 5, where we find that ∇ · A must
also be specified for uniqueness of A.

The vector potential can be used to develop a simple formula for the magnetic flux
passing through an open surface S:

�m =
∫

S
B · dS =

∫
S
(∇ × A) · dS =

∮
�

A · dl, (3.128)

where � is the contour bounding S.
In the linear isotropic case where B = µH we can find a partial differential equation

for A by substituting (3.127) into (3.120). Using (B.43) we have

∇ ×
[

1

µ(r)
∇ × A(r)

]
= J(r),

hence
1

µ(r)
∇ × [∇ × A(r)] − [∇ × A(r)] × ∇

(
1

µ(r)

)
= J(r).

In a homogeneous region we have

∇ × (∇ × A) = µJ (3.129)

or

∇(∇ · A) − ∇2A = µJ (3.130)

by (B.47). As mentioned above we must eventually specify ∇ · A. Although the choice is
arbitrary, certain selections make the computation of A both mathematically tractable
and physically meaningful. The “Coulomb gauge condition” ∇ · A = 0 reduces (3.130)
to

∇2A = −µJ. (3.131)

The vector potential concept can also be applied to the Maxwell–Boffi magnetostatic
equations

∇ × B = µ0(J + ∇ × M), (3.132)
∇ · B = 0. (3.133)

By (3.133) we may still define A through (3.127). Substituting this into (3.132) we have,
under the Coulomb gauge,

∇2A = −µ0[J + JM ] (3.134)

where JM = ∇ × M is the magnetization current density.



Figure 3.18: Circular loop of wire.

The differential equations (3.131) and (3.134) are vector versions of Poisson’s equation,
and may be solved quite easily for unbounded space by decomposing the vector source
into rectangular components. For instance, dotting (3.131) with x̂ we find that

∇2 Ax = −µJx .

This scalar version of Poisson’s equation has solution

Ax (r) = µ

4π

∫
V

Jx (r′)
|r − r′| dV ′

in unbounded space. Repeating this for each component and assembling the results, we
obtain the solution for the vector potential in an unbounded homogeneous medium:

A(r) = µ

4π

∫
V

J(r′)
|r − r′| dV ′. (3.135)

Any surface sources can be easily included through a surface integral:

A(r) = µ

4π

∫
V

J(r′)
|r − r′| dV ′ + µ

4π

∫
S

Js(r′)
|r − r′| d S′. (3.136)

In unbounded free space containing materials represented by M, we have

A(r) = µ0

4π

∫
V

J(r′) + JM(r′)
|r − r′| dV ′ + µ0

4π

∫
S

Js(r′) + JMs(r′)
|r − r′| dV ′ (3.137)

where JMs = −n̂ × M is the surface density of magnetization current as described in
(3.153). It may be verified directly from (3.137) that ∇ · A = 0.

Field of a circular loop. Consider a circular loop of line current of radius a in
unbounded space (Figure 3.18). Using J(r′) = I φ̂′δ(z ′)δ(ρ ′ − a ) and noting that r =
ρρ̂ + zẑ and r′ = aρ̂′, we can write (3.136) as

A(r) = µI

4π

∫ 2π

0
φ̂′ a dφ′[

ρ2 + a2 + z2 − 2aρ cos(φ − φ′)
]1/2 .



Because φ̂′ = −x̂ cos φ′ + ŷ sin φ′ we find that

A(r) = µI a

4π
φ̂

∫ 2π

0

cos φ′[
ρ2 + a2 + z2 − 2aρ cos φ′]1/2 dφ′.

We put the integral into standard form by setting φ′ = π − 2x :

A(r) = −µI a

4π
φ̂

∫ π/2

−π/2

1 − 2 sin2 x[
ρ2 + a2 + z2 + 2aρ(1 − 2 sin2 x)

]1/2 2 dx .

Letting

k2 = 4aρ

(a + ρ)2 + z2
, F2 = (a + ρ)2 + z2,

we have

A(r) = −µI a

4π
φ̂

4

F

∫ π/2

0

1 − 2 sin2 x

[1 − k2 sin2 x]1/2
dx .

Then, since

1 − 2 sin2 x

[1 − k2 sin2 x]1/2
= k2 − 2

k2
[1 − k2 sin2 x]−1/2 + 2

k2
[1 − k2 sin2 x]1/2,

we have

A(r) = φ̂
µI

πk

√
a

ρ

[(
1 − 1

2
k2

)
K (k2) − E(k2)

]
. (3.138)

Here

K (k2) =
∫ π/2

0

du

[1 − k2 sin2 u]1/2
, E(k2) =

∫ π/2

0
[1 − k2 sin2 u]1/2 du,

are complete elliptic integrals of the first and second kinds, respectively.
We have k2 	 1 when the observation point is far from the loop (r2 = ρ2 + z2 � a2).

Using the expansions [47]

K (k2) = π

2

[
1 + 1

4
k2 + 9

64
k4 + · · ·

]
, E(k2) = π

2

[
1 − 1

4
k2 − 3

64
k4 − · · ·

]
,

in (3.138) and keeping the first nonzero term, we find that

A(r) ≈ φ̂
µI

4πr2
(πa2) sin θ. (3.139)

Defining the magnetic dipole moment of the loop as

m = ẑIπa2,

we can write (3.139) as

A(r) = µ

4π

m × r̂
r2

. (3.140)

Generalization to an arbitrarily-oriented circular loop with center located at r0 is accom-
plished by writing m = n̂I A where A is the loop area and n̂ is normal to the loop in the
right-hand sense. Then

A(r) = µ

4π
m × r − r0

|r − r0|3 .



We shall find, upon investigating the general multipole expansion of A below, that this
holds for any planar loop.

The magnetic field of the loop can be found by direct application of (3.127). For the
case r2 � a2 we take the curl of (3.139) and find that

B(r) = µ

4π

m

r3
(r̂ 2 cos θ + θ̂ sin θ). (3.141)

Comparison with (3.93) shows why we often refer to a small loop as a magnetic dipole.
But (3.141) is approximate, and since there are no magnetic monopoles we cannot con-
struct an exact magnetic analogue to the electric dipole. On the other hand, we shall
find below that the multipole expansion of a finite-extent steady current begins with the
dipole term (since the current must form closed loops). We may regard small loops as
the elemental units of steady current from which all other currents may be constructed.

3.3.2 Multipole expansion

It is possible to derive a general multipole expansion for A analogous to (3.94). But
the vector nature of A requires that we use vector spherical harmonics, hence the result
is far more complicated than (3.94). A simpler approach yields the first few terms and
requires only the Taylor expansion of 1/R. Consider a steady current localized near the
origin and contained within a sphere of radius rm . We substitute the expansion (3.89)
into (3.135) to obtain

A(r) = µ

4π

∫
V

J(r′)
[

1

R

∣∣∣∣
r′=0

+ (r′ · ∇′)
1

R

∣∣∣∣
r′=0

+ 1

2
(r′ · ∇′)2 1

R

∣∣∣∣
r′=0

+ · · ·
]

dV ′, (3.142)

which we view as

A(r) = A(0)(r) + A(1)(r) + A(2)(r) + · · · .
The first term is merely

A(0)(r) = µ

4πr

∫
V

J(r′) dV ′ = µ

4πr

3∑
i=1

x̂i

∫
V

Ji (r′) dV ′

where (x, y, z) = (x1, x2, x3). However, by (3.26) each of the integrals is zero and we have

A(0)(r) = 0;
the leading term in the multipole expansion of A for a general steady current distribution
vanishes.

Using (3.91) we can write the second term as

A(1)(r) = µ

4πr3

∫
V

J(r′)
3∑

i=1

xi x
′
i dV ′ = µ

4πr3

3∑
j=1

x̂ j

3∑
i=1

xi

∫
V

x ′
i J j (r′) dV ′. (3.143)

By adding the null relation (3.28) we can write∫
V

x ′
i J j dV ′ =

∫
V

x ′
i J j dV ′ +

∫
V

[x ′
i J j + x ′

j Ji ] dV ′ = 2
∫

V
x ′

i J j dV ′ +
∫

V
x ′

j Ji dV ′

or ∫
V

x ′
i J j dV ′ = 1

2

∫
V

[x ′
i J j − x ′

j Ji ] dV ′. (3.144)



Figure 3.19: A planar wire loop.

By this and (3.143) the second term in the multipole expansion is

A(1)(r) = µ

4πr3

1

2

∫
V

3∑
j=1

x̂ j

3∑
i=1

xi [x
′
i J j − x ′

j Ji ] dV ′ = − µ

4πr3

1

2

∫
V

r × [r′ × J(r′)] dV ′.

Defining the dipole moment vector

m = 1

2

∫
V

r × J(r) dV (3.145)

we have

A(1)(r) = µ

4π
m ×

(
r̂
r2

)
= − µ

4π
m × ∇ 1

r
. (3.146)

This is the dipole moment potential for the steady current J. Since steady currents of
finite extent consist of loops, the dipole component is generally the first nonzero term
in the expansion of A. Higher-order components may be calculated, but extension of
(3.142) beyond the dipole term is quite tedious and will not be attempted.

As an example let us compute the dipole moment of the planar but otherwise arbitrary
loop shown in Figure 3.19. Specializing (3.145) for a line current we have

m = I

2

∮
�

r × dl.

Examining Figure 3.19, we see that

1

2
r × dl = n̂ d S

where d S is the area of the sector swept out by r as it moves along dl, and n̂ is the
normal to the loop in the right-hand sense. Thus

m = n̂I A (3.147)

where A is the area of the loop.



Physical interpretation of M in a magnetic material. In (3.137) we presented
an expression for the vector potential produced by a magnetized material in terms of
equivalent magnetization surface and volume currents. Suppose a magnetized medium
is separated into volume regions with bounding surfaces across which the permeability
is discontinuous. With JM = ∇ × M and JMs = −n̂ × M we obtain

A(r) = µ0

4π

∫
V

J(r′)
|r − r′| dV ′ + µ0

4π

∫
S

Js(r′)
|r − r′| d S′ +

+
∑

i

µ0

4π

[∫
Vi

∇′ × M(r′)
|r − r′| dV ′ +

∫
Si

−n̂′ × M(r′)
|r − r′| d S′

]
. (3.148)

Here n̂ points outward from region Vi . Using the curl theorem on the fourth term and
employing the vector identity (B.43), we have

A(r) = µ0

4π

∫
V

J(r′)
|r − r′| dV ′ + µ0

4π

∫
S

Js(r′)
|r − r′| d S′ +

+
∑

i

[
µ0

4π

∫
Vi

M(r′) × ∇′
(

1

|r − r′|
)

dV ′
]

. (3.149)

But ∇′(1/R) = R̂/R2, hence the third term is a sum of integrals of the form

µ0

4π

∫
Vi

M(r′) × R̂
R2

dV ′.

Comparison with (3.146) shows that this integral represents a volume superposition of
dipole moments where M is a volume density of magnetic dipole moments. Hence a
magnetic material with permeability µ is equivalent to a volume distribution of magnetic
dipoles in free space. As with our interpretation of the polarization vector in a dielectric,
we base this conclusion only on Maxwell’s equations and the assumption of a linear,
isotropic relationship between B and H.

3.3.3 Boundary conditions for the magnetostatic field

The boundary conditions found for the dynamic magnetic field remain valid in the
magnetostatic case. Hence

n̂12 × (H1 − H2) = Js (3.150)

and

n̂12 · (B1 − B2) = 0, (3.151)

where n̂12 points into region 1 from region 2. Since the magnetostatic curl and divergence
equations are independent, so are the boundary conditions (3.150) and (3.151). We can
also write (3.151) in terms of equivalent sources by (3.118):

n̂12 · (H1 − H2) = ρMs1 + ρMs2, (3.152)

where ρMs = n̂ · M is called the equivalent magnetization surface charge density. Here n̂
points outward from the material body.

For a linear, isotropic material described by B = µH, equation (3.150) becomes

n̂12 ×
(

B1

µ1
− B2

µ2

)
= Js .



With (3.118) we can also write (3.150) as

n̂12 × (B1 − B2) = µ0 (Js + JMs1 + JMs2) (3.153)

where JMs = −n̂ × M is the equivalent magnetization surface current density.
We may also write the boundary conditions in terms of the scalar or vector potential.

Using H = −∇�m , we can write (3.150) as

�m1(r) = �m2(r) (3.154)

provided that the surface current Js = 0. As was the case with (3.36), the possibility of
an additive constant here is generally ignored. To write (3.151) in terms of �m we first
note that B/µ0 − M = −∇�m ; substitution into (3.151) gives

∂�m1

∂n
− ∂�m2

∂n
= −ρMs1 − ρMs2 (3.155)

where the normal derivative is taken in the direction of n̂12. For a linear isotropic material
where B = µH we have

µ1
∂�m1

∂n
= µ2

∂�m2

∂n
. (3.156)

Note that (3.154) and (3.156) are independent.
Boundary conditions on A may be derived using the approach of § 2.8.2. Consider

Figure 2.6. Here the surface may carry either an electric surface current Js or an equiv-
alent magnetization current JMs , and thus may be a surface of discontinuity between
differing magnetic media. If we integrate ∇ × A over the volume regions V1 and V2 and
add the results we find that∫

V1

∇ × A dV +
∫

V2

∇ × A dV =
∫

V1+V2

B dV .

By the curl theorem∫
S1+S2

n̂ × A d S +
∫

S10

−n̂10 × A1 d S +
∫

S20

−n̂20 × A2 d S =
∫

V1+V2

B dV

where A1 is the field on the surface S10 and A2 is the field on S20. As δ → 0 the surfaces S1

and S2 combine to give S. Also S10 and S20 coincide, as do the normals n̂10 = −n̂20 = n̂12.
Thus ∫

S
(n̂ × A) d S −

∫
V

B dV =
∫

S10

n̂12 × (A1 − A2) d S. (3.157)

Now let us integrate over the entire volume region V including the surface of discontinuity.
This gives ∫

S
(n̂ × A) d S −

∫
V

B dV = 0,

and for agreement with (3.157) we must have

n̂12 × (A1 − A2) = 0. (3.158)

A similar development shows that

n̂12 · (A1 − A2) = 0. (3.159)

Therefore A is continuous across a surface carrying electric or magnetization current.



3.3.4 Uniqueness of the magnetostatic field

Because the uniqueness conditions established for the dynamic field do not apply to
magnetostatics, we begin with the magnetostatic field equations. Consider a region of
space V bounded by a surface S. There may be source currents and magnetic materials
both inside and outside V . Assume (B1, H1) and (B2, H2) are solutions to the magne-
tostatic field equations with source J. We seek conditions under which B1 = B2 and
H1 = H2.

The difference field H0 = H2 − H1 obeys ∇ × H0 = 0. Using (B.44) we examine the
quantity

∇ · (A0 × H0) = H0 · (∇ × A0) − A0 · (∇ × H0) = H0 · (∇ × A0)

where A0 is defined by B0 = B2 − B1 = ∇ × A0 = ∇ × (A2 − A1). Integrating over V
we obtain ∮

S
(A0 × H0) · dS =

∫
V

H0 · (∇ × A0) dV =
∫

V
H0 · B0 dV .

Then, since (A0 × H0) · n̂ = −A0 · (n̂ × H0), we have

−
∮

S
A0 · (n̂ × H0)d S =

∫
V

H0 · B0 dV . (3.160)

If A0 = 0 or n̂ × H0 = 0 everywhere on S, or A0 = 0 on part of S and n̂ × H0 = 0 on the
remainder, then ∫

V
H0 · B0 d S = 0. (3.161)

So H0 = 0 or B0 = 0 by arbitrariness of V . Assuming H and B are linked by the
constitutive relations, we have H1 = H2 and B1 = B2. The fields within V are unique
provided that A, the tangential component of H, or some combination of the two, is
specified over the bounding surface S.

One other condition will cause the left-hand side of (3.160) to vanish. If S recedes to
infinity then, provided that the potential functions vanish sufficiently fast, the condition
(3.161) still holds and uniqueness is guaranteed. Equation (3.135) shows that A ∼ 1/r
as r → ∞, hence B, H ∼ 1/r2. So uniqueness is ensured by the specification of J in
unbounded space.

3.3.5 Integral solution for the vector potential

We have used the scalar Green’s theorem to find a solution for the electrostatic poten-
tial within a region V in terms of the source charge in V and the values of the potential
and its normal derivative on the boundary surface S. Analogously, we may find A within
V in terms of the source current in V and the values of A and its derivatives on S. The
vector relationship between B and A complicates the derivation somewhat, requiring
Green’s second identity for vector fields.

Let P and Q be continuous with continuous first and second derivatives throughout
V and on S. The divergence theorem shows that∫

V
∇ · [P × (∇ × Q)] dV =

∫
S
[P × (∇ × Q)] · dS.



By virtue of (B.44) we have∫
V

[(∇ × Q) · (∇ × P) − P · (∇ × {∇ × Q})] dV =
∫

S
[P × (∇ × Q)] · dS.

We now interchange P and Q and subtract the result from the above, obtaining∫
V

[Q · (∇ × {∇ × P}) − P · (∇ × {∇ × Q})] dV =∫
S
[P × (∇ × Q) − Q × (∇ × P)] · dS. (3.162)

Note that n̂ points outward from V . This is Green’s second identity for vector fields.
Now assume that V contains a magnetic material of uniform permeability µ and set

P = A(r′), Q = c
R

,

in (3.162) written in terms of primed coordinates. Here c is a constant vector, nonzero
but otherwise arbitrary. We first examine the volume integral terms. Note that

∇′ × (∇′ × Q) = ∇′ ×
(
∇′ × c

R

)
= −∇′2

( c
R

)
+ ∇′

[
∇′ ·

( c
R

)]
.

By (B.162) and (3.58) we have

∇′2
( c

R

)
= 1

R
∇′2c + c∇′2

(
1

R

)
+ 2

(
∇′ 1

R
· ∇′

)
c = c∇′2

(
1

R

)
= −c4πδ(r − r′),

hence

P · [∇′ × (∇′ × Q)] = 4πc · Aδ(r − r′) + A · ∇′
[
∇′ ·

( c
R

)]
.

Since ∇ · A = 0 the second term on the right-hand side can be rewritten using (B.42):

∇′ · (ψA) = A · (∇′ψ) + ψ∇′ · A = A · (∇′ψ).

Thus

P · [∇′ × (∇′ × Q)] = 4πc · Aδ(r − r′) + ∇′ ·
[

A
{

c · ∇′
(

1

R

)}]
,

where we have again used (B.42). The other volume integral term can be found by
substituting from (3.129):

Q · [∇′ × (∇′ × P)] = µ
1

R
c · J(r′).

Next we investigate the surface integral terms. Consider

n̂′ · [
P × (∇′ × Q)

] = n̂′ ·
{

A ×
[
∇′ ×

( c
R

)]}
= n̂′ ·

{
A ×

[
1

R
∇′ × c − c × ∇′

(
1

R

)]}

= −n̂′ ·
{

A ×
[

c × ∇′
(

1

R

)]}
.



This can be put in slightly different form by the use of (B.8). Note that

(A × B) · (C × D) = A · [B × (C × D)]

= (C × D) · (A × B)

= C · [D × (A × B)],

hence

n̂′ · [
P × (∇′ × Q)

] = −c ·
[
∇′

(
1

R

)
× (n̂′ × A)

]
.

The other surface term is given by

n̂′ · [Q × (∇′ × P)] = n̂′ ·
[ c

R
× (∇′ × A)

]
= n̂′ ·

( c
R

× B
)

= − c
R

· (n̂′ × B).

We can now substitute each of the terms into (3.162) and obtain

µc ·
∫

V

J(r′)
R

dV ′ − 4πc ·
∫

V
A(r′)δ(r − r′) dV ′ − c ·

∮
S
[n̂′ · A(r′)]∇′

(
1

R

)
d S′

= −c ·
∮

S
∇′

(
1

R

)
× [n̂′ × A(r′)] d S′ + c ·

∮
S

1

R
n̂′ × B(r′) d S′.

Since c is arbitrary we can remove the dot products to obtain a vector equation. Then

A(r) = µ

4π

∫
V

J(r′)
R

dV ′ − 1

4π

∮
S

{
[n̂′ × A(r′)] × ∇′

(
1

R

)
+

+ 1

R
n̂′ × B(r′) + [n̂′ · A(r′)]∇′

(
1

R

)}
d S′. (3.163)

We have expressed A in a closed region in terms of the sources within the region and
the values of A and B on the surface. While uniqueness requires specification of either
A or n̂ × B on S, the expression (3.163) includes both quantities. This is similar to (3.56)
for electrostatic fields, which required both the scalar potential and its normal derivative.

The reader may be troubled by the fact that we require P and Q to be somewhat well
behaved, then proceed to involve the singular function c/R and integrate over the singu-
larity. We choose this approach to simplify the presentation; a more rigorous approach
which excludes the singular point with a small sphere also gives (3.163). This approach
was used in § 3.2.4 to establish (3.58). The interested reader should see Stratton [187]
for details on the application of this technique to obtain (3.163).

It is interesting to note that as S → ∞ the surface integral vanishes since A ∼ 1/r
and B ∼ 1/r2, and we recover (3.135). Moreover, (3.163) returns the null result when
evaluated at points outside S (see Stratton [187]). We shall see this again when studying
the integral solutions for electrodynamic fields in § 6.1.3.

Finally, with

Q = ∇′
(

1

R

)
× c

we can find an integral expression for B within an enclosed region, representing a gen-
eralization of the Biot–Savart law (Problem 3.20). However, this case will be covered in
the more general development of § 6.1.1.



The Biot–Savart law. We can obtain an expression for B in unbounded space by
performing the curl operation directly on the vector potential:

B(r) = ∇ × µ

4π

∫
V

J(r′)
|r − r′| dV ′ = µ

4π

∫
V

∇ × J(r′)
|r − r′| dV ′.

Using (B.43) and ∇ × J(r′) = 0, we have

B(r) = − µ

4π

∫
V

J × ∇ 1

|r − r′| dV ′.

The Biot–Savart law

B(r) = µ

4π

∫
V

J(r′) × R̂
R2

dV ′ (3.164)

follows from (3.57).
For the case of a line current we can replace J dV ′ by I dl′ and obtain

B(r) = I
µ

4π

∫
�

dl′ × R̂
R2

. (3.165)

For an infinitely long line current on the z-axis we have

B(r) = I
µ

4π

∞∫
−∞

ẑ × ẑ(z − z′) + ρ̂ρ

[(z − z′)2 + ρ2]3/2
dz′ = φ̂

µI

2πρ
. (3.166)

This same result follows from taking ∇ × A after direct computation of A, or from direct
application of the large-scale form of Ampere’s law.

3.3.6 Force and energy

Ampere force on a system of currents. If a steady current J(r) occupying a region
V is exposed to a magnetic field, the force on the moving charge is given by the Lorentz
force law

dF(r) = J(r) × B(r). (3.167)

This can be integrated to give the total force on the current distribution:

F =
∫

V
J(r) × B(r) dV . (3.168)

It is apparent that the charge flow comprising a steady current must be constrained in
some way, or the Lorentz force will accelerate the charge and destroy the steady nature
of the current. This constraint is often provided by a conducting wire.

As an example, consider an infinitely long wire of circular cross-section centered on
the z-axis in free space. If the wire carries a total current I uniformly distributed over
the cross-section, then within the wire J = ẑI/(πa2) where a is the wire radius. The
resulting field can be found through direct integration using (3.164), or by the use of
symmetry and either (3.118) or (3.120). Since B(r) = φ̂Bφ(ρ), equation (3.118) shows
that ∫ 2π

0
Bφ(ρ)ρ dφ =

{
µ0 I
a2 ρ2, ρ ≤ a

µ0 I, ρ ≥ a.



Thus

B(r) =
{
φ̂µ0 Iρ/2πa2, ρ ≤ a,

φ̂µ0 I/2πρ, ρ ≥ a.
(3.169)

The force density within the wire,

dF = J × B = −ρ̂
µ0 I 2ρ

2π2a4
,

is directed inward and tends to compress the wire. Integration over the wire volume gives
F = 0 because ∫ 2π

0
ρ̂ dφ = 0;

however, a section of the wire may experience a net force. For instance, we can compute
the force on one half of the wire split down its axis by using ρ̂ = x̂ cos φ + ŷ sin φ to
obtain Fx = 0 and

Fy = − µ0 I 2

2π2a4

∫
dz

∫ a

0
ρ2 dρ

∫ π

0
sin φ dφ = − µ0 I 2

3π2a

∫
dz.

The force per unit length

F
l

= −ŷ
µ0 I 2

3π2a
(3.170)

is directed toward the other half as expected.
If the wire takes the form of a loop carrying current I , then (3.167) becomes

dF(r) = I dl(r) × B(r) (3.171)

and the total force acting is

F = I
∮

�

dl(r) × B(r).

We can write the force on J in terms of the current producing B. Assuming this latter
current J′ occupies region V ′, the Biot–Savart law (3.164) yields

F = µ

4π

∫
V

J(r) ×
∫

V ′
J(r′) × r − r′

|r − r′|3 dV ′ dV . (3.172)

This can be specialized to describe the force between line currents. Assume current 1,
following a path �1 along the direction dl, carries current I1, while current 2, following
path �2 along the direction dl′, carries current I2. Then the force on current 1 is

F1 = I1 I2
µ

4π

∮
�1

∮
�2

dl ×
(

dl′ × r − r′

|r − r′|3
)

.

This equation, known as Ampere’s force law, can be written in a better form for compu-
tational purposes. We use (B.7) and ∇(1/R) from (3.57):

F1 = I1 I2
µ

4π

∮
�2

dl′
∮

�1

dl · ∇′
(

1

|r − r′|
)

− I1 I2
µ

4π

∮
�1

∮
�2

(dl · dl′)
r − r′

|r − r′|3 . (3.173)

The first term involves an integral of a perfect differential about a closed path, producing
a null result. Thus

F1 = −I1 I2
µ

4π

∮
�1

∮
�2

(dl · dl′)
r − r′

|r − r′|3 . (3.174)



Figure 3.20: Parallel, current carrying wires.

As a simple example, consider parallel wires separated by a distance d (Figure 3.20).
In this case

F1 = −I1 I2
µ

4π

∫ [∫ ∞

−∞

−dx̂ + (z − z′)ẑ
[d2 + (z − z′)2]3/2

dz′
]

dz = I1 I2
µ

2πd
x̂

∫
dz

so the force per unit length is

F1

l
= x̂I1 I2

µ

2πd
. (3.175)

The force is attractive if I1 I2 ≥ 0 (i.e., if the currents flow in the same direction).

Maxwell’s stress tensor. The magnetostatic version of the stress tensor can be ob-
tained from (2.288) by setting E = D = 0:

T̄m = 1

2
(B · H)Ī − BH. (3.176)

The total magnetic force on the current in a region V surrounded by surface S is given
by

Fm = −
∮

S
T̄m · dS =

∫
V

fm dV

where fm = J × B is the magnetic force volume density.
Let us compute the force between two parallel wires carrying identical currents in free

space (let I1 = I2 = I in Figure 3.20) and compare the result with (3.175). The force
on the wire at x = −d/2 can be computed by integrating T̄m · n̂ over the yz-plane with
n̂ = x̂. Using (3.166) we see that in this plane the total magnetic field is

B = −x̂µ0
I

π

y

y2 + d2/4
.

Therefore

T̄m · n̂ = 1

2
Bx

Bx

µ0
x̂ − x̂Bx

Bx

µ0
= −µ0

I 2

2π2

y2

[y2 + d2/4]2
x̂



and by integration

F1 = µ0
I 2

2π2
x̂

∫
dz

∫ ∞

−∞

y2

[y2 + d2/4]2
dy = I 2 µ0

2πd
x̂

∫
dz.

The resulting force per unit length agrees with (3.175) when I1 = I2 = I .

Torque in a magnetostatic field. The torque exerted on a current-carrying conduc-
tor immersed in a magnetic field plays an important role in many engineering applica-
tions. If a rigid body is exposed to a force field of volume density dF(r), the torque on
that body about a certain origin is given by

T =
∫

V
r × dF dV (3.177)

where integration is performed over the body and r extends from the origin of torque.
If the force arises from the interaction of a current with a magnetostatic field, then
dF = J × B and

T =
∫

V
r × (J × B) dV . (3.178)

For a line current we can replace J dV with I dl to obtain

T = I
∫

�

r × (dl × B).

If B is uniform then by (B.7) we have

T =
∫

V
[J(r · B) − B(r · J)] dV .

The second term can be written as∫
V

B(r · J) dV = B
3∑

i=1

∫
V

xi Ji dV = 0

where (x1, x2, x3) = (x, y, z), and where we have employed (3.27). Thus

T =
∫

V
J(r · B) dV =

3∑
j=1

x̂ j

∫
V

J j

3∑
i=1

xi Bi dV =
3∑

i=1

Bi

3∑
j=1

x̂ j

∫
V

J j xi dV .

We can replace the integral using (3.144) to get

T = 1

2

∫
V

3∑
j=1

x̂ j

3∑
i=1

Bi [xi J j − x j Ji ] dV = −1

2

∫
V

B × (r × J) dV .

Since B is uniform we have, by (3.145),

T = m × B (3.179)

where m is the dipole moment. For a planar loop we can use (3.147) to obtain

T = I An̂ × B.



Joule’s law. In § 2.9.5 we showed that when a moving charge interacts with an electric
field in a volume region V , energy is transferred between the field and the charge. If the
source of that energy is outside V , the energy is carried into V as an energy flux over the
boundary surface S. The energy balance described by Poynting’s theorem (3.299) also
holds for static fields supported by steady currents: we must simply recognize that we
have no time-rate of change of stored energy. Thus

−
∫

V
J · E dV =

∮
S
(E × H) · dS. (3.180)

The term

P = −
∫

V
J · E dV (3.181)

describes the rate at which energy is supplied to the fields by the current within V ; we
have P > 0 if there are sources within V that result in energy transferred to the fields,
and P < 0 if there is energy transferred to the currents. The latter case occurs when
there are conducting materials in V . Within these conductors

P = −
∫

V
σE · E dV . (3.182)

Here P < 0; energy is transferred from the fields to the currents, and from the currents
into heat (i.e., into lattice vibrations via collisions). Equation (3.182) is called Joule’s
law, and the transfer of energy from the fields into heat is Joule heating. Joule’s law is
the power relationship for a conducting material.

An important example involves a straight section of conducting wire having circular
cross-section. Assume a total current I is uniformly distributed over the cross-section
of the wire, and that the wire is centered on the z-axis and extends between the planes
z = 0, L. Let the potential difference between the ends be V . Using (3.169) we see that
at the surface of the wire

H = φ̂
I

2πa
, E = ẑ

V

L
.

The corresponding Poynting flux E × H is −ρ̂-directed, implying that energy flows into
wire volume through the curved side surface. We can verify (3.180):

−
∫

V
J · E dV =

∫ L

0

∫ 2π

0

∫ a

0
ẑ

I

πa2
· ẑ

V

L
ρ dρ dφ dz = −I V,∮

S
(E × H) · dS =

∫ 2π

0

∫ L

0

(
−ρ̂

I V

2πaL

)
· ρ̂a dφ dz = −I V .

Stored magnetic energy. We have shown that the energy stored in a static charge
distribution may be regarded as the “assembly energy” required to bring charges from
infinity against the Coulomb force. By proceeding very slowly with this assembly, we are
able to avoid any complications resulting from the motion of the charges.

Similarly, we may equate the energy stored in a steady current distribution to the en-
ergy required for its assembly from current filaments6 brought in from infinity. However,
the calculation of assembly energy is more complicated in this case: moving a current

6Recall that a flux tube of a vector field is bounded by streamlines of the field. A current filament is a
flux tube of current having vanishingly small, but nonzero, cross-section.



Figure 3.21: Calculation of work to move a filamentary loop in an applied magnetic field.

filament into the vicinity of existing filaments changes the total magnetic flux passing
through the existing loops, regardless of how slowly we assemble the filaments. As de-
scribed by Faraday’s law, this change in flux must be associated with an induced emf,
which will tend to change the current flowing in the filament (and any existing filaments)
unless energy is expended to keep the current constant (by the application of a battery
emf in the opposite direction). We therefore regard the assembly energy as consisting
of two parts: (1) the energy required to bring a filament with constant current from
infinity against the Ampere force, and (2) the energy required to keep the current in this
filament, and any existing filaments, constant. We ignore the energy required to keep
the steady current flowing through an isolated loop (i.e., the energy needed to overcome
Joule losses).

We begin by computing the amount of energy required to bring a filament with current
I from infinity to a given position within an applied magnetostatic field B(r). In this
first step we assume that the field is supported by localized sources, hence vanishes at
infinity, and that it will not be altered by the motion of the filament. The force on each
small segment of the filament is given by Ampere’s force law (3.171), and the total force
is found by integration. Suppose an external agent displaces the filament incrementally
from a starting position 1 to an ending position 2 along a vector δr as shown in Figure
3.21. The work required is

δW = −(I dl × B) · δr = (I dl × δr) · B

for each segment of the wire. Figure 3.21 shows that dl × δr describes a small patch of
surface area between the starting and ending positions of the filament, hence −(dl×δr)·B
is the outward flux of B through the patch. Integrating over all segments comprising the
filament, we obtain

�W = I
∮

�

(dl × δr) · B = −I
∫

S0

B · dS

for the total work required to displace the entire filament through δr; here the surface S0

is described by the superposition of all patches. If S1 and S2 are the surfaces bounded
by the filament in its initial and final positions, respectively, then S1, S2, and S0 taken



together form a closed surface. The outward flux of B through this surface is∮
S0+S1+S2

B · dS = 0

so that

�W = −I
∫
S0

B · dS = I
∫

S1+S2

B · dS

where n̂ is outward from the closed surface. Finally, let �1,2 be the flux of B through S1,2

in the direction determined by dl and the right-hand rule. Then

�W = −I (�2 − �1) = −I��. (3.183)

Now suppose that the initial position of the filament is at infinity. We bring the filament
into a final position within the field B through a succession of small displacements,
each requiring work (3.183). By superposition over all displacements, the total work is
W = −I (� − �∞) where �∞ and � are the fluxes through the filament in its initial and
final positions, respectively. However, since the source of the field is localized, we know
that B is zero at infinity. Therefore �∞ = 0 and

W = −I� = −I
∫

S
B · n̂ d S (3.184)

where n̂ is determined from dl in the right-hand sense.
Now let us find the work required to position two current filaments in a field-free region

of space, starting with both filaments at infinity. Assume filament 1 carries current I1

and filament 2 carries current I2, and that we hold these currents constant as we move
the filaments into position. We can think of assembling these filaments in two ways: by
placing filament 1 first, or by placing filament 2 first. In either case, placing the first
filament requires no work since (3.184) is zero. The work required to place the second
filament is W1 = −I1�1 if filament 2 is placed first, where �1 is the flux passing through
filament 1 in its final position, caused by the presence of filament 2. If filament 1 is
placed first, the work required is W2 = −I2�2. Since the work cannot depend on which
loop is placed first, we have W1 = W2 = W where we can use either W = −I1�1 or
W = −I2�2. It is even more convenient, as we shall see, to average these values and use

W = −1

2
(I1�1 + I2�2) . (3.185)

We must determine the energy required to keep the currents constant as we move the
filaments into position. When moving the first filament into place there is no induced
emf, since no applied field is yet present. However, when moving the second filament
into place we will change the flux linked by both the first and second loops. This change
of flux will induce an emf in each of the loops, and this will change the current. To keep
the current constant we must supply an opposing emf. Let dWemf/dt be the rate of work
required to keep the current constant. Then by (3.153) and (3.181) we have

dWemf
dt

= −
∫

V
J · E dV = −I

∫
E · dl = −I

d�

dt
.

Integrating, we find the total work �W required to keep the current constant in either
loop as the flux through the loop is changed by an amount ��:

�Wem f = I��.



So the total work required to keep I1 constant as the loops are moved from infinity (where
the flux is zero) to their final positions is I1�1. Similarly, a total work I2�2 is required
to keep I2 constant during the same process. Adding these to (3.185), the work required
to position the loops, we obtain the complete assembly energy

W = 1

2
(I1�1 + I2�2)

for two filaments. The extension to N filaments is

Wm = 1

2

N∑
n=1

In�n. (3.186)

Consequently, the energy of a single current filament is

Wm = 1

2
I�. (3.187)

We may interpret this as the “assembly energy” required to bring the single loop into
existence by bringing vanishingly small loops (magnetic dipoles) in from infinity. We
may also interpret it as the energy required to establish the current in this single filament
against the back emf. That is, if we establish I by slowly increasing the current from
zero in N small steps �I = I/N , an energy �n�I will be required at each step. Since
�n increases proportionally to I , we have

Wm =
N∑

n=1

I

N

[
(n − 1)

�

N

]

where � is the flux when the current is fully established. Since
∑N

n=1(n−1) = N (N −1)/2
we obtain

Wm = 1

2
I� (3.188)

as N → ∞.
A volume current J can be treated as though it were composed of N current filaments.

Equations (3.128) and (3.186) give

Wm = 1

2

N∑
n=1

In

∮
�n

A · dl.

Since the total current is

I =
∫

C S
J · dS =

N∑
n=1

In

where C S denotes the cross-section of the steady current, we have as N → ∞

Wm = 1

2

∫
V

A · J dV . (3.189)

Alternatively, using (3.135), we may write

Wm = 1

2

∫
V

∫
V

J(r) · J(r′)
|r − r′| dV dV ′.



Note the similarity between (3.189) and (3.86). We now manipulate (3.189) into a
form involving only the electromagnetic fields. By Ampere’s law

Wm = 1

2

∫
V

A · (∇ × H) dV .

Using (B.44) and the divergence theorem we can write

Wm = 1

2

∮
S
(H × A) · dS + 1

2

∫
V

H · (∇ × A) dV .

We now let S expand to infinity. This does not change the value of Wm since we do not
enclose any more current; however, since A ∼ 1/r and H ∼ 1/r2, the surface integral
vanishes. Thus, remembering that ∇ × A = B, we have

Wm = 1

2

∫
V∞

H · B dV (3.190)

where V∞ denotes all of space.
Although we do not provide a derivation, (3.190) is also valid within linear materials.

For nonlinear materials, the total energy required to build up a magnetic field from B1

to B2 is

Wm = 1

2

∫
V∞

[∫ B2

B1

H · dB
]

dV . (3.191)

This accounts for the work required to drive a ferromagnetic material through its hystere-
sis loop. Readers interested in a complete derivation of (3.191) should consult Stratton
[187].

As an example, consider two thin-walled, coaxial, current-carrying cylinders having
radii a, b (b > a). The intervening region is a linear magnetic material having perme-
ability µ. Assume that the inner and outer conductors carry total currents I in the ±z
directions, respectively. From the large-scale form of Ampere’s law we find that

H =




0, ρ ≤ a,

φ̂ I/2πρ, a ≤ ρ ≤ b,

0, ρ > b,

(3.192)

hence by (3.190)

Wm = 1

2

∫
dz

∫ 2π

0

∫ b

a

µI 2

(2πρ)2
ρ dρ dφ,

and the stored energy is

Wm

l
= µ

I 2

4π
ln

(
b

a

)
(3.193)

per unit length.
Suppose instead that the inner cylinder is solid and that current is spread uniformly

throughout. Then the field between the cylinders is still given by (3.192) but within the
inner conductor we have

H = φ̂
Iρ

2πa2

by (3.169). Thus, to (3.193) we must add the energy

Wm,inside
l

= 1

2

∫ 2π

0

∫ a

0

µ0 I 2ρ2

(2πa2)2
ρ dρ dφ = µ0 I 2

16π



stored within the solid wire. The result is

Wm

l
= µ0 I 2

4π

[
µr ln

(
b

a

)
+ 1

4

]
.

3.3.7 Magnetic field of a permanently magnetized body

We now have the tools necessary to compute the magnetic field produced by a perma-
nent magnet (a body with permanent magnetization M). As an example, we shall find
the field due to a uniformly magnetized sphere in three different ways: by computing the
vector potential integral and taking the curl, by computing the scalar potential integral
and taking the gradient, and by finding the scalar potential using separation of variables
and applying the boundary condition across the surface of the sphere.

Consider a magnetized sphere of radius a, residing in free space and having permanent
magnetization

M(r) = M0ẑ.

The equivalent magnetization current and charge densities are given by

JM = ∇ × M = 0, (3.194)
JMs = −n̂ × M = −r̂ × M0ẑ = M0φ̂ sin θ, (3.195)

and

ρM = −∇ · M = 0, (3.196)
ρMs = n̂ · M = r̂ · M0ẑ = M0 cos θ. (3.197)

The vector potential is produced by the equivalent magnetization surface current.
Using (3.137) we find that

A(r) = µ0

4π

∫
S

JMs

|r − r′| d S′ = µ0

4π

∫ π

−π

∫ π

0

M0φ̂
′ sin θ ′

|r − r′| sin θ ′ dθ ′ dφ′.

Since φ̂′ = −x̂ sin φ′ + ŷ cos φ′, the rectangular components of A are

{−Ax

Ay

}
= µ0

4π

∫ π

−π

∫ π

0

M0
sin φ′

cos φ′ sin θ ′

|r − r′| a2 sin θ ′ dθ ′ dφ′. (3.198)

The integrals are most easily computed via the spherical harmonic expansion (E.200) for
the inverse distance |r − r′|−1:{−Ax

Ay

}
= µ0 M0a2

∞∑
n=0

n∑
m=−n

Ynm(θ, φ)

2n + 1

rn
<

rn+1
>

∫ π

−π

∫ π

0

sin φ′

cos φ′ sin2 θ ′Y ∗
nm(θ ′, φ′) dθ ′ dφ′.

Because the φ′ variation is sin φ′ or cos φ′, all terms in the sum vanish except n = 1,
m = ±1. Since

Y1,−1(θ, φ) =
√

3

8π
sin θe− jφ, Y1,1(θ, φ) = −

√
3

8π
sin θe jφ,



we have {−Ax

Ay

}
= µ0 M0

a2

3

r<

r2
>

3

8π
sin θ

∫ π

0
sin3 θ ′ dθ ′ ·

·
[

e− jφ
∫ π

−π

sin φ′

cos φ′ e jφ′
dφ′ + e jφ

∫ π

−π

sin φ′

cos φ′ e− jφ′
dφ′

]
.

Carrying out the integrals we find that{−Ax

Ay

}
= µ0 M0

a2

3

r<

r2
>

sin θ

{
sin φ

cos φ

}

or

A = µ0 M0
a2

3

r<

r2
>

sin θφ̂.

Finally, B = ∇ × A gives

B =
{

2µ0 M0

3 ẑ, r < a,

µ0 M0a3

3r3

(
r̂ 2 cos θ + θ̂ sin θ

)
, r > a.

(3.199)

Hence B within the sphere is uniform and in the same direction as M, while B outside
the sphere has the form of the magnetic dipole field with moment

m =
(

4

3
πa3

)
M0.

We can also compute B by first finding the scalar potential through direct computation
of the integral (3.126). Substituting for ρMs from (3.197), we have

�m(r) = 1

4π

∫
S

ρMs(r′)
|r − r′| d S′ = 1

4π

∫ π

−π

∫ π

0

M0 cos θ ′

|r − r′| sin θ ′ dθ ′ dφ′.

This integral has the form of (3.100) with f (θ) = M0 cos θ . Thus, from (3.102),

�m(r) = M0
a2

3
cos θ

r<

r2
>

. (3.200)

The magnetic field H is then

H = −∇�m =
{− M0

3 ẑ, r < a,

M0a3

3r3

(
r̂ 2 cos θ + θ̂ sin θ

)
, r > a.

.

Inside the sphere B is given by B = µ0(H + M), while outside the sphere it is merely
B = µ0H. These observations lead us again to (3.199).

Since the scalar potential obeys Laplace’s equation both inside and outside the sphere,
as a last approach to the problem we shall write �m in terms of the separation of variables
solution discussed in § A.4. We can repeat our earlier arguments for the dielectric sphere
in an impressed electric field (§ 3.2.10). Copying equations (3.109) and (3.110), we can
write for r ≤ a

�m1(r, θ) =
∞∑

n=0

Anrn Pn(cos θ), (3.201)



and for r ≥ a

�m2(r, θ) =
∞∑

n=0

Bnr−(n+1) Pn(cos θ). (3.202)

The boundary condition (3.154) at r = a requires that

∞∑
n=0

Anan Pn(cos θ) =
∞∑

n=0

Bna−(n+1) Pn(cos θ);

upon application of the orthogonality of the Legendre functions, this becomes

Anan = Bna−(n+1). (3.203)

We can write (3.155) as

−∂�m1

∂r
+ ∂�m2

∂r
= −ρMs

so that at r = a

−
∞∑

n=0

Annan−1 Pn(cos θ) −
∞∑

n=0

Bn(n + 1)a−(n+2) Pn(cos θ) = −M0 cos θ.

After application of orthogonality this becomes

A1 + 2B1a−3 = M0, (3.204)
nan−1 An = −(n + 1)Bna−(n+2), n �= 1. (3.205)

Solving (3.203) and (3.204) simultaneously for n = 1 we find that

A1 = M0

3
, B1 = M0

3
a3.

We also see that (3.203) and (3.205) are inconsistent unless An = Bn = 0, n �= 1.
Substituting these results into (3.201) and (3.202), we have

�m =
{

M0
3 r cos θ, r ≤ a,

M0
3

a3

r2 cos θ, r ≥ a,

which is (3.200).

3.3.8 Bodies immersed in an impressed magnetic field: magnetostatic
shielding

A highly permeable enclosure can provide partial shielding from external magnetostatic
fields. Consider a spherical shell of highly permeable material (Figure 3.22); assume it
is immersed in a uniform impressed field H0 = H0ẑ. We wish to determine the internal
field and the factor by which it is reduced from the external applied field. Because there
are no sources (the applied field is assumed to be created by sources far removed), we
may use magnetic scalar potentials to represent the fields everywhere. We may represent
the scalar potentials using a separation of variables solution to Laplace’s equation, with
a contribution only from the n = 1 term in the series. In region 1 we have both scattered



Figure 3.22: Spherical shell of magnetic material.

and applied potentials, where the applied potential is just �0 = −H0z = −H0r cos θ ,
since H0 = −∇�0 = H0ẑ. We have

�1(r) = A1r−2 cos θ − H0r cos θ, (3.206)
�2(r) = (B1r−2 + C1r) cos θ, (3.207)
�3(r) = D1r cos θ. (3.208)

We choose (3.109) for the scattered potential in region 1 so that it decays as r → ∞,
and (3.110) for the scattered potential in region 3 so that it remains finite at r = 0. In
region 2 we have no restrictions and therefore include both contributions. The coefficients
A1, B1, C1, D1 are found by applying the appropriate boundary conditions at r = a and
r = b. By continuity of the scalar potential across each boundary we have

A1b−2 − H0b = B1b−2 + C1b,

B1a−2 + C1a = D1a.

By (3.156), the quantity µ∂�/∂r is also continuous at r = a and r = b; this gives two
more equations:

µ0(−2A1b−3 − H0) = µ(−2B1b−3 + C1),

µ(−2B1a−3 + C1) = µ0 D1.

Simultaneous solution yields

D1 = −9µr

K
H0

where

K = (2 + µr )(1 + 2µr ) − 2(a/b)3(µr − 1)2.

Substituting this into (3.208) and using H = −∇�m , we find that

H = κ H0ẑ

within the enclosure, where κ = 9µr/K . This field is uniform and, since κ < 1 for µr > 1,
it is weaker than the applied field. For µr � 1 we have K ≈ 2µ2

r [1 − (a/b)3]. Denoting



the shell thickness by � = b − a, we find that K ≈ 6µ2
r �/a when �/a 	 1. Thus

κ = 3

2

1

µr
�
a

describes the coefficient of shielding for a highly permeable spherical enclosure, valid
when µr � 1 and �/a 	 1. A shell for which µr = 10, 000 and a/b = 0.99 can reduce
the enclosure field to 0.15% of the applied field.

3.4 Static field theorems

3.4.1 Mean value theorem of electrostatics

The average value of the electrostatic potential over a sphere is equal to the potential
at the center of the sphere, provided that the sphere encloses no electric charge. To see
this, write

�(r) = 1

4πε

∫
V

ρ(r′)
R

dV ′ + 1

4π

∮
S

[
−�(r′)

R̂
R2

+ ∇′�(r′)
R

]
· dS′;

put ρ ≡ 0 in V , and use the obvious facts that if S is a sphere centered at point r then
(1) R is constant on S and (2) n̂′ = −R̂:

�(r) = 1

4π R2

∮
S
�(r′) d S′ − 1

4π R

∮
S

E(r′) · dS′.

The last term vanishes by Gauss’s law, giving the desired result.

3.4.2 Earnshaw’s theorem

It is impossible for a charge to rest in stable equilibrium under the influence of elec-
trostatic forces alone. This is an easy consequence of the mean value theorem of electro-
statics, which precludes the existence of a point where � can assume a maximum or a
minimum.

3.4.3 Thomson’s theorem

Static charge on a system of perfect conductors distributes itself so that the electric
stored energy is a minimum. Figure 3.23 shows a system of n conducting bodies held at
potentials �1, . . . , �n. Suppose the potential field associated with the actual distribution
of charge on these bodies is �, giving

We = ε

2

∫
V

E · E dV = ε

2

∫
V

∇� · ∇� dV

for the actual stored energy. Now assume a slightly different charge distribution, resulting
in a new potential �′ = �+ δ� that satisfies the same boundary conditions (i.e., assume
δ� = 0 on each conducting body). The stored energy associated with this hypothetical
situation is

W ′
e = We + δWe = ε

2

∫
V

∇(� + δ�) · ∇(� + δ�) dV



Figure 3.23: System of conductors used to derive Thomson’s theorem.

so that

δWe = ε

∫
V

∇� · ∇(δ�) dV + ε

2

∫
V

|∇(δ�)|2 dV ;

Thomson’s theorem will be proved if we can show that∫
V

∇� · ∇(δ�) dV = 0, (3.209)

because then we shall have

δWe = ε

2

∫
V

|∇(δ�)|2 dV ≥ 0.

To establish (3.209), we use Green’s first identity∫
V
(∇u · ∇v + u∇2v) dV =

∮
S

u∇v · dS

with u = δ� and v = �: ∫
V

∇� · ∇(δ�) dV =
∮

S
δ� ∇� · dS.

Here S is composed of (1) the exterior surfaces Sk (k = 1, . . . , n) of the n bodies, (2)
the surfaces Sc of the “cuts” that are introduced in order to keep V a simply-connected
region (a condition for the validity of Green’s identity), and (3) the sphere S∞ of very
large radius r . Thus∫

V
∇� · ∇(δ�) dV =

n∑
k=1

∫
Sk

δ� ∇� · dS +
∫

Sc

δ� ∇� · dS +
∫

S∞
δ� ∇� · dS.

The first term on the right vanishes because δ� = 0 on each Sk . The second term
vanishes because the contributions from opposite sides of each cut cancel (note that n̂
occurs in pairs that are oppositely directed). The third term vanishes because � ∼ 1/r ,
∇� ∼ 1/r2, and d S ∼ r2 where r → ∞ for points on S∞.



Figure 3.24: System of conductors used to derive Green’s reciprocation theorem.

3.4.4 Green’s reciprocation theorem

Consider a system of n conducting bodies as in Figure 3.24. An associated mathemat-
ical surface St consists of the exterior surfaces S1, . . . , Sn of the n bodies, taken together
with a surface S that enclosed all of the bodies. Suppose � and �′ are electrostatic
potentials produced by two distinct distributions of stationary charge over the set of
conductors. Then ∇2� = 0 = ∇2�′ and Green’s second identity gives∮

St

(
�

∂�′

∂n
− �′ ∂�

∂n

)
d S = 0

or
n∑

k=1

∫
Sk

�
∂�′

∂n
d S +

∫
S
�

∂�′

∂n
d S =

n∑
k=1

∫
Sk

�′ ∂�

∂n
d S +

∫
S
�′ ∂�

∂n
d S.

Now let S be a sphere of very large radius R so that at points on S we have

�, �′ ∼ 1

R
,

∂�

∂n
,
∂�′

∂n
∼ 1

R2
, d S ∼ R2;

as R → ∞ then,

n∑
k=1

∫
Sk

�
∂�′

∂n
d S =

n∑
k=1

∫
Sk

�′ ∂�

∂n
d S.

Furthermore, the conductors are equipotentials so that

n∑
k=1

�k

∫
Sk

∂�′

∂n
d S =

n∑
k=1

�′
k

∫
Sk

∂�

∂n
d S

and we therefore have
n∑

k=1

q ′
k�k =

n∑
k=1

qk�
′
k (3.210)

where the kth conductor (k = 1, . . . , n) has potential �k when it carries charge qk ,
and has potential �′

k when it carries charge q ′
k . This is Green’s reciprocation theorem.

A classic application is to determine the charge induced on a grounded conductor by



Figure 3.25: Application of Green’s reciprocation theorem. (a) The “unprimed situation”
permits us to determine the potential VP at point P produced by a charge q placed on
body 1. Here V1 is the potential of body 1. (b) In the “primed situation” we ground
body 1 and induce a charge q ′ by bringing a point charge q ′

P into proximity.

a nearby point charge. This is accomplished as follows. Let the conducting body of
interest be designated as body 1, and model the nearby point charge qP as a very small
conducting body designated as body 2 and located at point P in space. Take

q1 = q, q2 = 0, �1 = V1, �2 = VP ,

and

q ′
1 = q ′, q ′

2 = q ′
P , �′

1 = 0, �′
2 = V ′

P ,

giving the two situations shown in Figure 3.25. Substitution into Green’s reciprocation
theorem

q ′
1�1 + q ′

2�2 = q1�
′
1 + q2�

′
2

gives q ′V1 + q ′
P VP = 0 so that

q ′ = −q ′
P VP/V1. (3.211)

3.5 Problems

3.1 The z-axis carries a line charge of nonuniform density ρl(z). Show that the electric
field in the plane z = 0 is given by

E(ρ, φ) = 1

4πε

[
ρ̂ρ

∫ ∞

−∞

ρl(z′) dz′

(ρ2 + z′2)3/2
− ẑ

∫ ∞

−∞

ρl(z′)z′ dz′

(ρ2 + z′2)3/2

]
.

Compute E when ρl = ρ0 sgn(z), where sgn(z) is the signum function (A.6).

3.2 The ring ρ = a, z = 0, carries a line charge of nonuniform density ρl(φ). Show that
the electric field at an arbitrary point on the z-axis is given by

E(z) = −a2

4πε(a2 + z2)3/2

[
x̂

∫ 2π

0
ρl(φ

′) cos φ′ dφ′ + ŷ
∫ 2π

0
ρl(φ

′) sin φ′ dφ′
]

+

+ ẑ
az

4πε(a2 + z2)3/2

∫ 2π

0
ρl(φ

′) dφ′.



Figure 3.26: Geometry for computing Green’s function for parallel plates.

Compute E when ρl(φ) = ρ0 sin φ. Repeat for ρl(φ) = ρ0 cos2 φ.

3.3 The plane z = 0 carries a surface charge of nonuniform density ρs(ρ, φ). Show that
at an arbitrary point on the z-axis the rectangular components of E are given by

Ex (z) = − 1

4πε

∫ ∞

0

∫ 2π

0

ρs(ρ
′, φ′) ρ ′2 cos φ′ dφ′ dρ ′

(ρ ′2 + z2)3/2
,

Ey(z) = − 1

4πε

∫ ∞

0

∫ 2π

0

ρs(ρ
′, φ′) ρ ′2 sin φ′ dφ′ dρ ′

(ρ ′2 + z2)3/2
,

Ez(z) = z

4πε

∫ ∞

0

∫ 2π

0

ρs(ρ
′, φ′) ρ ′ dφ′ dρ ′

(ρ ′2 + z2)3/2
.

Compute E when ρs(ρ, φ) = ρ0U (ρ − a) where U (ρ) is the unit step function (A.5).
Repeat for ρs(ρ, φ) = ρ0[1 − U (ρ − a)].

3.4 The sphere r = a carries a surface charge of nonuniform density ρs(θ). Show that
the electric intensity at an arbitrary point on the z-axis is given by

E(z) = ẑ
a2

2ε

∫ π

0

ρs(θ
′)(z − a cos θ ′) sin θ ′ dθ ′

(a2 + z2 − 2az cos θ ′)3/2
.

Compute E(z) when ρs(θ) = ρ0, a constant. Repeat for ρs(θ) = ρ0 cos2 θ .

3.5 Beginning with the postulates for the electrostatic field

∇ × E = 0, ∇ · D = ρ,

use the technique of § 2.8.2 to derive the boundary conditions (3.32)–(3.33).

3.6 A material half space of permittivity ε1 occupies the region z > 0, while a second
material half space of permittivity ε2 occupies z < 0. Find the polarization surface charge
densities and compute the total induced polarization charge for a point charge Q located
at z = h.

3.7 Consider a point charge between two grounded conducting plates as shown in
Figure 3.26. Write the Green’s function as the sum of primary and secondary terms and
apply the boundary conditions to show that the secondary Green’s function is

Gs(r|r′) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

[
−e−kρ(d−z) sinh kρz′

sinh kρd
− e−kρ z sinh kρ(d − z′)

sinh kρd

]
e− jkρ ·r′

2kρ

d2kρ.

(3.212)



3.8 Use the expansion

1

sinh kρd
= csch kρd = 2

∞∑
n=0

e−(2n+1)kρd

to show that the secondary Green’s function for parallel conducting plates (3.212) may
be written as an infinite sequence of images of the primary point charge. Identify the
geometrical meaning of each image term.

3.9 Find the Green’s functions for a dielectric slab of thickness d placed over a perfectly
conducting ground plane located at z = 0.

3.10 Find the Green’s functions for a dielectric slab of thickness 2d immersed in free
space and centered on the z = 0 plane. Compare to the Green’s function found in
Problem 3.9.

3.11 Referring to the system of Figure 3.9, find the charge density on the surface of
the sphere and integrate to show that the total charge is equal to the image charge.

3.12 Use the method of Green’s functions to find the potential inside a conducting
sphere for ρ inside the sphere.

3.13 Solve for the total potential and electric field of a grounded conducting sphere
centered at the origin within a uniform impressed electric field E = E0ẑ. Find total
charge induced on the sphere.

3.14 Consider a spherical cavity of radius a centered at the origin within a homogeneous
dielectric material of permittivity ε = ε0εr . Solve for total potential and electric field
inside the cavity in the presence of an impressed field E = E0ẑ. Show that the field in
the cavity is stronger than the applied field, and explain this using polarization surface
charge.

3.15 Find the field of a point charge Q located at z = d above a perfectly conducting
ground plane at z = 0. Use the boundary condition to find the charge density on the
plane and integrate to show that the total charge is −Q. Integrate Maxwell’s stress
tensor over the surface of the ground plane and show that the force on the ground plane
is the same as the force on the image charge found from Coulomb’s law.

3.16 Consider in free space a point charge −q at r = r0 + d, a point charge −q at
r = r0 − d, and a point charge 2q at r0. Find the first three multipole moments and the
resulting potential produced by this charge distribution.

3.17 A spherical charge distribution of radius a in free space has the density

ρ(r) = Q

πa3
cos 2θ.

Compute the multipole moments for the charge distribution and find the resulting poten-
tial. Find a suitable arrangement of point charges that will produce the same potential
field for r > a as produced by the spherical charge.

3.18 Compute the magnetic flux density B for the circular wire loop of Figure 3.18 by
(a) using the Biot–Savart law (3.165), and (b) computing the curl of (3.138).



Figure 3.27: Parallel plate capacitor.

3.19 Two circular current-carrying wires are arranged coaxially along the z-axis. Loop
1 has radius a1, carries current I1, and is centered in the z = 0 plane. Loop 2 has radius
a2, carries current I2, and is centered in the z = d plane. Find the force between the
loops.

3.20 Choose Q = ∇′ ( 1
R

) × c in (3.162) and derive the following expression for B:

B(r) = µ

4π

∫
V

J(r′) × ∇′
(

1

R

)
dV ′ −

− 1

4π

∮
S

[
[n̂′ × B(r′)] × ∇′

(
1

R

)
+ [n̂′ · B(r′)]∇′

(
1

R

)]
d S′,

where n̂ is the normal vector outward from V . Compare to the Stratton–Chu formula
(6.8).

3.21 Compute the curl of (3.163) to obtain the integral expression for B given in Prob-
lem 3.20. Compare to the Stratton–Chu formula (6.8).

3.22 Obtain (3.170) by integration of Maxwell’s stress tensor over the xz-plane.

3.23 Consider two thin conducting parallel plates embedded in a region of permittivity
ε (Figure 3.27). The bottom plate is connected to ground, and we apply an excess charge
+Q to the top plate (and thus −Q is drawn onto the bottom plate.) Neglecting fringing,
(a) solve Laplace’s equation to show that

�(z) = Q

Aε
z.

Use (3.87) to show that

W = Q2d

2Aε
.

(b) Verify W using (3.88). (c) Use F = −ẑdW/dz to show that the force on the top plate
is

F = −ẑ
Q2

2Aε
.

(d) Verify F by integrating Maxwell’s stress tensor over a closed surface surrounding the
top plate.



3.24 Consider two thin conducting parallel plates embedded in a region of permittivity
ε (Figure 3.27). The bottom plate is connected to ground, and we apply a potential V0 to
the top plate using a battery. Neglecting fringing, (a) solve Laplace’s equation to show
that

�(z) = V0

d
z.

Use (3.87) to show that

W = V 2
0 Aε

2d
.

(b) Verify W using (3.88). (c) Use F = −ẑdW/dz to show that the force on the top plate
is

F = −ẑ
V 2

0 Aε

2d2
.

(d) Verify F by integrating Maxwell’s stress tensor over a closed surface surrounding the
top plate.

3.25 A group of N perfectly conducting bodies is arranged in free space. Body n is
held at potential Vn with respect to ground, and charge Qn is induced upon its surface.
By linearity we may write

Qm =
N∑

n=1

cmn Vn

where the cmn are called the capacitance coefficients. Using Green’s reciprocation the-
orem, demonstrate that cmn = cnm . Hint: Use (3.210). Choose one set of voltages so
that Vk = 0, k �= n, and place Vn at some potential, say Vn = V0, producing the set of
charges {Qk}. For the second set choose V ′

k = 0, k �= m, and Vm = V0, producing {Q′
k}.

3.26 For the set of conductors of Problem 3.25, show that we may write

Qm = Cmm Vm +
∑
k �=m

Cmk(Vm − Vk)

where

Cmn = −cmn, m �= n, Cmm =
N∑

k=1

cmk .

Here Cmm , called the self capacitance, describes the interaction between the mth con-
ductor and ground, while Cmn, called the mutual capacitance, describes the interaction
between the mth and nth conductors.

3.27 For the set of conductors of Problem 3.25, show that the stored electric energy is
given by

W = 1

2

N∑
m=1

N∑
n=1

cmn Vn Vm .

3.28 A group of N wires is arranged in free space as shown in Figure 3.28. Wire n
carries a steady current In, and a flux �n passes through the surface defined by its
contour �n. By linearity we may write

�m =
N∑

n=1

Lmn In



Figure 3.28: A system of current-carrying wires.

where the Lmn are called the coefficients of inductance. Derive Neumann’s formula

Lmn = µ0

4π

∮
�n

∮
�m

dl · dl′

|r − r′| ,

and thereby demonstrate the reciprocity relation Lmn = Lnm .

3.29 For the group of wires shown in Figure 3.28, show that the stored magnetic energy
is given by

W = 1

2

N∑
m=1

N∑
n=1

Lmn In Im .

3.30 Prove the minimum heat generation theorem: steady electric currents distribute
themselves in a conductor in such a way that the dissipated power is a minimum. Hint:
Let J be the actual distribution of current in a conducting body, and let the power it
dissipates be P. Let J′ = J + δJ be any other current distribution, and let the power it
dissipates be P ′ = P + δP. Show that

δP = 1

2

∫
V

1

σ
|δJ|2 dV ≥ 0.
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