
Chapter 4

Temporal and spatial frequency domain
representation

4.1 Interpretation of the temporal transform

When a field is represented by a continuous superposition of elemental components, the
resulting decomposition can simplify computation and provide physical insight. Such rep-
resentation is usually accomplished through the use of an integral transform. Although
several different transforms are used in electromagnetics, we shall concentrate on the
powerful and efficient Fourier transform.

Let us consider the Fourier transform of the electromagnetic field. The field depends
on x, y, z, t , and we can transform with respect to any or all of these variables. However,
a consideration of units leads us to consider a transform over t separately. Let ψ(r, t)
represent any rectangular component of the electric or magnetic field. Then the temporal
transform will be designated by ψ̃(r, ω):

ψ(r, t) ↔ ψ̃(r, ω).

Here ω is the transform variable. The transform field ψ̃ is calculated using (A.1):

ψ̃(r, ω) =
∫ ∞

−∞
ψ(r, t) e− jωt dt. (4.1)

The inverse transform is, by (A.2),

ψ(r, t) = 1

2π

∫ ∞

−∞
ψ̃(r, ω) e jωt dω. (4.2)

Since ψ̃ is complex it may be written in amplitude–phase form:

ψ̃(r, ω) = |ψ̃(r, ω)|e jξψ (r,ω),

where we take −π < ξψ(r, ω) ≤ π .
Since ψ(r, t) must be real, (4.1) shows that

ψ̃(r, −ω) = ψ̃∗(r, ω). (4.3)

Furthermore, the transform of the derivative of ψ may be found by differentiating (4.2).
We have

∂

∂t
ψ(r, t) = 1

2π

∫ ∞

−∞
jωψ̃(r, ω) e jωt dω,



hence
∂

∂t
ψ(r, t) ↔ jωψ̃(r, ω). (4.4)

By virtue of (4.2), any electromagnetic field component can be decomposed into a contin-
uous, weighted superposition of elemental temporal terms e jωt . Note that the weighting
factor ψ̃(r, ω), often called the frequency spectrum of ψ(r, t), is not arbitrary because
ψ(r, t) must obey a scalar wave equation such as (2.327). For a source-free region of
space we have (

∇2 − µσ
∂

∂t
− µε

∂2

∂t2

)
1

2π

∫ ∞

−∞
ψ̃(r, ω) e jωt dω = 0.

Differentiating under the integral sign we have

1

2π

∫ ∞

−∞

[(∇2 − jωµσ + ω2µε
)
ψ̃(r, ω)

]
e jωt dω = 0,

hence by the Fourier integral theorem(∇2 + k2
)
ψ̃(r, ω) = 0 (4.5)

where

k = ω
√

µε

√
1 − j

σ

ωε

is the wavenumber . Equation (4.5) is called the scalar Helmholtz equation, and represents
the wave equation in the temporal frequency domain.

4.2 The frequency-domain Maxwell equations

If the region of interest contains sources, we can return to Maxwell’s equations and
represent all quantities using the temporal inverse Fourier transform. We have, for ex-
ample,

E(r, t) = 1

2π

∫ ∞

−∞
Ẽ(r, ω) e jωt dω

where

Ẽ(r, ω) =
3∑

i=1

îi Ẽi (r, ω) =
3∑

i=1

îi |Ẽi (r, ω)|e jξ E
i (r,ω). (4.6)

All other field quantities will be written similarly with an appropriate superscript on the
phase. Substitution into Ampere’s law gives

∇ × 1

2π

∫ ∞

−∞
H̃(r, ω) e jωt dω = ∂

∂t

1

2π

∫ ∞

−∞
D̃(r, ω) e jωt dω + 1

2π

∫ ∞

−∞
J̃(r, ω) e jωt dω,

hence

1

2π

∫ ∞

−∞
[∇ × H̃(r, ω) − jωD̃(r, ω) − J̃(r, ω)]e jωt dω = 0



after we differentiate under the integral signs and combine terms. So

∇ × H̃ = jωD̃ + J̃ (4.7)

by the Fourier integral theorem. This version of Ampere’s law involves only the frequency-
domain fields. By similar reasoning we have

∇ × Ẽ = − jωB̃, (4.8)
∇ · D̃ = ρ̃, (4.9)

∇ · B̃(r, ω) = 0, (4.10)

and

∇ · J̃ + jωρ̃ = 0.

Equations (4.7)–(4.10) govern the temporal spectra of the electromagnetic fields. We may
manipulate them to obtain wave equations, and apply the boundary conditions from the
following section. After finding the frequency-domain fields we may find the temporal
fields by Fourier inversion. The frequency-domain equations involve one fewer derivative
(the time derivative has been replaced by multiplication by jω), hence may be easier to
solve. However, the inverse transform may be difficult to compute.

4.3 Boundary conditions on the frequency-domain fields

Several boundary conditions on the source and mediating fields were derived in § 2.8.2.
For example, we found that the tangential electric field must obey

n̂12 × E1(r, t) − n̂12 × E2(r, t) = −Jms(r, t).

The technique of the previous section gives us

n̂12 × [Ẽ1(r, ω) − Ẽ2(r, ω)] = −J̃ms(r, ω)

as the condition satisfied by the frequency-domain electric field. The remaining boundary
conditions are treated similarly. Let us summarize the results, including the effects of
fictitious magnetic sources:

n̂12 × (H̃1 − H̃2) = J̃s,

n̂12 × (Ẽ1 − Ẽ2) = −J̃ms,

n̂12 · (D̃1 − D̃2) = ρ̃s,

n̂12 · (B̃1 − B̃2) = ρ̃ms,

and

n̂12 · (J̃1 − J̃2) = −∇s · J̃s − jωρ̃s,

n̂12 · (J̃m1 − J̃m2) = −∇s · J̃ms − jωρ̃ms .

Here n̂12 points into region 1 from region 2.



4.4 Constitutive relations in the frequency domain and the
Kronig–Kramers relations

All materials are to some extent dispersive. If a field applied to a material undergoes
a sufficiently rapid change, there is a time lag in the response of the polarization or
magnetization of the atoms. It has been found that such materials have constitutive
relations involving products in the frequency domain, and that the frequency-domain
constitutive parameters are complex, frequency-dependent quantities. We shall restrict
ourselves to the special case of anisotropic materials and refer the reader to Kong [101]
and Lindell [113] for the more general case. For anisotropic materials we write

P̃ = ε0 ˜̄χe · Ẽ, (4.11)
M̃ = ˜̄χm · H̃, (4.12)
D̃ = ˜̄ε · Ẽ = ε0[Ī + ˜̄χe] · Ẽ, (4.13)
B̃ = ˜̄µ · H̃ = µ0[Ī + ˜̄χm] · H̃, (4.14)
J̃ = ˜̄σ · Ẽ. (4.15)

By the convolution theorem and the assumption of causality we immediately obtain the
dyadic versions of (2.29)–(2.31):

D(r, t) = ε0

(
E(r, t) +

∫ t

−∞
χ̄e(r, t − t ′) · E(r, t ′) dt ′

)
,

B(r, t) = µ0

(
H(r, t) +

∫ t

−∞
χ̄m(r, t − t ′) · H(r, t ′) dt ′

)
,

J(r, t) =
∫ t

−∞
σ̄(r, t − t ′) · E(r, t ′) dt ′.

These describe the essential behavior of a dispersive material. The susceptances and
conductivity, describing the response of the atomic structure to an applied field, depend
not only on the present value of the applied field but on all past values as well.

Now since D(r, t), B(r, t), and J(r, t) are all real, so are the entries in the dyadic
matrices ε̄(r, t), µ̄(r, t), and σ̄(r, t). Thus, applying (4.3) to each entry we must have

˜̄χe(r, −ω) = ˜̄χ∗
e(r, ω), ˜̄χm(r, −ω) = ˜̄χ∗

m(r, ω), ˜̄σ(r, −ω) = ˜̄σ∗
(r, ω), (4.16)

and hence

˜̄ε(r, −ω) = ˜̄ε∗
(r, ω), ˜̄µ(r, −ω) = ˜̄µ∗

(r, ω). (4.17)

If we write the constitutive parameters in terms of real and imaginary parts as

ε̃i j = ε̃′
i j + j ε̃′′

i j , µ̃i j = µ̃′
i j + jµ̃′′

i j , σ̃i j = σ̃ ′
i j + j σ̃ ′′

i j ,

these conditions become

ε̃′
i j (r, −ω) = ε̃′

i j (r, ω), ε̃′′
i j (r, −ω) = −ε̃′′

i j (r, ω),

and so on. Therefore the real parts of the constitutive parameters are even functions of
frequency, and the imaginary parts are odd functions of frequency.



In most instances, the presence of an imaginary part in the constitutive parameters
implies that the material is either dissipative (lossy), transforming some of the electro-
magnetic energy in the fields into thermal energy, or active, transforming the chemical or
mechanical energy of the material into energy in the fields. We investigate this further
in § 4.5 and § 4.8.3.

We can also write the constitutive equations in amplitude–phase form. Letting

ε̃i j = |ε̃i j |e jξε
i j , µ̃i j = |µ̃i j |e jξµ

i j , σ̃i j = |σ̃i j |e jξσ
i j ,

and using the field notation (4.6), we can write (4.13)–(4.15) as

D̃i = |D̃i |e jξ D
i =

3∑
j=1

|ε̃i j ||Ẽ j |e j[ξ E
j +ξε

i j ], (4.18)

B̃i = |B̃i |e jξ B
i =

3∑
j=1

|µ̃i j ||H̃ j |e j[ξ H
j +ξ

µ

i j ], (4.19)

J̃i = | J̃i |e jξ J
i =

3∑
j=1

|σ̃i j ||Ẽ j |e j[ξ E
j +ξσ

i j ]. (4.20)

Here we remember that the amplitudes and phases may be functions of both r and ω.

For isotropic materials these reduce to

D̃i = |D̃i |e jξ D
i = |ε̃||Ẽi |e j (ξ E

i +ξε), (4.21)

B̃i = |B̃i |e jξ B
i = |µ̃||H̃i |e j (ξ H

i +ξµ), (4.22)

J̃i = | J̃i |e jξ J
i = |σ̃ ||Ẽi |e j (ξ E

i +ξσ ). (4.23)

4.4.1 The complex permittivity

As mentioned above, dissipative effects may be associated with complex entries in the
permittivity matrix. Since conduction effects can also lead to dissipation, the permittivity
and conductivity matrices are often combined to form a complex permittivity. Writing
the current as a sum of impressed and secondary conduction terms (J̃ = J̃i + J̃c) and
substituting (4.13) and (4.15) into Ampere’s law, we find

∇ × H̃ = J̃i + ˜̄σ · Ẽ + jω ˜̄ε · Ẽ.

Defining the complex permittivity

˜̄εc
(r, ω) = ˜̄σ(r, ω)

jω
+ ˜̄ε(r, ω), (4.24)

we have

∇ × H̃ = J̃i + jω ˜̄εc · Ẽ.

Using the complex permittivity we can include the effects of conduction current by merely
replacing the total current with the impressed current. Since Faraday’s law is unaffected,
any equation (such as the wave equation) derived previously using total current retains
its form with the same substitution.

By (4.16) and (4.17) the complex permittivity obeys

˜̄εc
(r, −ω) = ˜̄εc∗

(r, ω) (4.25)



or

ε̃c′
i j (r, −ω) = ε̃c′

i j (r, ω), ε̃c′′
i j (r, −ω) = −ε̃c′′

i j (r, ω).

For an isotropic material it takes the particularly simple form

ε̃c = σ̃

jω
+ ε̃ = σ̃

jω
+ ε0 + ε0χ̃e, (4.26)

and we have

ε̃c′(r, −ω) = ε̃c′(r, ω), ε̃c′′(r, −ω) = −ε̃c′′(r, ω). (4.27)

4.4.2 High and low frequency behavior of constitutive parameters

At low frequencies the permittivity reduces to the electrostatic permittivity. Since ε̃′

is even in ω and ε̃′′ is odd, we have for small ω

ε̃′ ∼ ε0εr , ε̃′′ ∼ ω.

If the material has some dc conductivity σ0, then for low frequencies the complex per-
mittivity behaves as

ε̃c′ ∼ ε0εr , ε̃c′′ ∼ σ0/ω. (4.28)

If E or H changes very rapidly, there may be no polarization or magnetization effect at
all. This occurs at frequencies so high that the atomic structure of the material cannot
respond to the rapidly oscillating applied field. Above some frequency then, we can
assume ˜̄χe = 0 and ˜̄χm = 0 so that

P̃ = 0, M̃ = 0,

and

D̃ = ε0Ẽ, B̃ = µ0H̃.

In our simple models of dielectric materials (§ 4.6) we find that as ω becomes large

ε̃′ − ε0 ∼ 1/ω2, ε̃′′ ∼ 1/ω3. (4.29)

Our assumption of a macroscopic model of matter provides a fairly strict upper frequency
limit to the range of validity of the constitutive parameters. We must assume that the
wavelength of the electromagnetic field is large compared to the size of the atomic struc-
ture. This limit suggests that permittivity and permeability might remain meaningful
even at optical frequencies, and for dielectrics this is indeed the case since the values of
P̃ remain significant. However, M̃ becomes insignificant at much lower frequencies, and
at optical frequencies we may use B̃ = µ0H̃ [107].

4.4.3 The Kronig–Kramers relations

The principle of causality is clearly implicit in (2.29)–(2.31). We shall demonstrate
that causality leads to explicit relationships between the real and imaginary parts of the
frequency-domain constitutive parameters. For simplicity we concentrate on the isotropic
case and merely note that the present analysis may be applied to all the dyadic com-
ponents of an anisotropic constitutive parameter. We also concentrate on the complex
permittivity and extend the results to permeability by induction.



The implications of causality on the behavior of the constitutive parameters in the
time domain can be easily identified. Writing (2.29) and (2.31) after setting u = t − t ′

and then u = t ′, we have

D(r, t) = ε0E(r, t) + ε0

∫ ∞

0
χe(r, t ′)E(r, t − t ′) dt ′,

J(r, t) =
∫ ∞

0
σ(r, t ′)E(r, t − t ′) dt ′.

We see that there is no contribution from values of χe(r, t) or σ(r, t) for times t < 0. So
we can write

D(r, t) = ε0E(r, t) + ε0

∫ ∞

−∞
χe(r, t ′)E(r, t − t ′) dt ′,

J(r, t) =
∫ ∞

−∞
σ(r, t ′)E(r, t − t ′) dt ′,

with the additional assumption

χe(r, t) = 0, t < 0, σ (r, t) = 0, t < 0. (4.30)

By (4.30) we can write the frequency-domain complex permittivity (4.26) as

ε̃c(r, ω) − ε0 = 1

jω

∫ ∞

0
σ(r, t ′)e− jωt ′

dt ′ + ε0

∫ ∞

0
χe(r, t ′)e− jωt ′

dt ′. (4.31)

In order to derive the Kronig–Kramers relations we must understand the behavior of
ε̃c(r, ω) − ε0 in the complex ω-plane. Writing ω = ωr + jωi , we need to establish the
following two properties.

Property 1: The function ε̃c(r, ω) − ε0 is analytic in the lower half-plane (ωi < 0)
except at ω = 0 where it has a simple pole.

We can establish the analyticity of σ̃ (r, ω) by integrating over any closed contour in
the lower half-plane. We have∮

�

σ̃ (r, ω) dω =
∮

�

[∫ ∞

0
σ(r, t ′)e− jωt ′

dt ′
]

dω =
∫ ∞

0
σ(r, t ′)

[∮
�

e− jωt ′
dω

]
dt ′. (4.32)

Note that an exchange in the order of integration in the above expression is only valid
for ω in the lower half-plane where limt ′→∞ e− jωt ′ = 0. Since the function f (ω) = e− jωt ′

is
analytic in the lower half-plane, its closed contour integral is zero by the Cauchy–Goursat
theorem. Thus, by (4.32) we have ∮

�

σ̃ (r, ω) dω = 0.

Then, since σ̃ may be assumed to be continuous in the lower half-plane for a physical
medium, and since its closed path integral is zero for all possible paths �, it is by Morera’s
theorem [110] analytic in the lower half-plane. By similar reasoning χe(r, ω) is analytic
in the lower half-plane. Since the function 1/ω has a simple pole at ω = 0, the composite
function ε̃c(r, ω) − ε0 given by (4.31) is analytic in the lower half-plane excluding ω = 0
where it has a simple pole.



Figure 4.1: Complex integration contour used to establish the Kronig–Kramers relations.

Property 2: We have

lim
ω→±∞ ε̃c(r, ω) − ε0 = 0.

To establish this property we need the Riemann–Lebesgue lemma [142], which states that
if f (t) is absolutely integrable on the interval (a, b) where a and b are finite or infinite
constants, then

lim
ω→±∞

∫ b

a
f (t)e− jωt dt = 0.

From this we see that

lim
ω→±∞

σ̃ (r, ω)

jω
= lim

ω→±∞
1

jω

∫ ∞

0
σ(r, t ′)e− jωt ′

dt ′ = 0,

lim
ω→±∞ ε0χe(r, ω) = lim

ω→±∞ ε0

∫ ∞

0
χe(r, t ′)e− jωt ′

dt ′ = 0,

and thus

lim
ω→±∞ ε̃c(r, ω) − ε0 = 0.

To establish the Kronig–Kramers relations we examine the integral∮
�

ε̃c(r, �) − ε0

� − ω
d�

where � is the contour shown in Figure 4.l. Since the points � = 0, ω are excluded,
the integrand is analytic everywhere within and on �, hence the integral vanishes by the
Cauchy–Goursat theorem. By Property 2 we have

lim
R→∞

∫
C∞

ε̃c(r, �) − ε0

� − ω
d� = 0,



hence ∫
C0+Cω

ε̃c(r, �) − ε0

� − ω
d� + P.V.

∫ ∞

−∞

ε̃c(r, �) − ε0

� − ω
d� = 0. (4.33)

Here “P.V.” indicates that the integral is computed in the Cauchy principal value sense
(see Appendix A). To evaluate the integrals over C0 and Cω, consider a function f (Z)

analytic in the lower half of the Z -plane (Z = Zr + j Zi ). If the point z lies on the real
axis as shown in Figure 4.1, we can calculate the integral

F(z) = lim
δ→0

∫
�

f (Z)

Z − z
d Z

through the parameterization Z − z = δe jθ . Since d Z = jδe jθ dθ we have

F(z) = lim
δ→0

∫ 0

−π

f
(
z + δe jθ

)
δe jθ

[
jδe jθ

]
dθ = j f (z)

∫ 0

−π

dθ = jπ f (z).

Replacing Z by � and z by 0 we can compute

lim
�→0

∫
C0

ε̃c(r, �) − ε0

� − ω
d�

= lim
�→0

∫
C0

[
1
j

∫ ∞
0 σ(r, t ′)e− j�t ′

dt ′ + �ε0
∫ ∞

0 χe(r, t ′)e− j�t ′
dt ′

]
1

�−ω

�
d�

= −π
∫ ∞

0 σ(r, t ′) dt ′

ω
.

We recognize ∫ ∞

0
σ(r, t ′) dt ′ = σ0(r)

as the dc conductivity and write

lim
�→0

∫
C0

ε̃c(r, �) − ε0

� − ω
d� = −πσ0(r)

ω
.

If we replace Z by � and z by ω we get

lim
δ→0

∫
Cω

ε̃c(r, �) − ε0

� − ω
d� = jπε̃c(r, ω) − jπε0.

Substituting these into (4.33) we have

ε̃c(r, ω) − ε0 = − 1

jπ
P.V.

∫ ∞

−∞

ε̃c(r, �) − ε0

� − ω
d� + σ0(r)

jω
. (4.34)

If we write ε̃c(r, ω) = ε̃c′(r, ω) + j ε̃c′′(r, ω) and equate real and imaginary parts in (4.34)
we find that

ε̃c′(r, ω) − ε0 = − 1

π
P.V.

∫ ∞

−∞

ε̃c′′(r, �)

� − ω
d�, (4.35)

ε̃c′′(r, ω) = 1

π
P.V.

∫ ∞

−∞

ε̃c′(r, �) − ε0

� − ω
d� − σ0(r)

ω
. (4.36)



These are the Kronig–Kramers relations, named after R. de L. Kronig and H.A. Kramers
who derived them independently. The expressions show that causality requires the real
and imaginary parts of the permittivity to depend upon each other through the Hilbert
transform pair [142].

It is often more convenient to write the Kronig–Kramers relations in a form that
employs only positive frequencies. This can be accomplished using the even–odd behavior
of the real and imaginary parts of ε̃c. Breaking the integrals in (4.35)–(4.36) into the
ranges (−∞, 0) and (0, ∞), and substituting from (4.27), we can show that

ε̃c′(r, ω) − ε0 = − 2

π
P.V.

∫ ∞

0

�ε̃c′′(r, �)

�2 − ω2
d�, (4.37)

ε̃c′′(r, ω) = 2ω

π
P.V.

∫ ∞

0

ε̃c′(r, �)

�2 − ω2
d� − σ0(r)

ω
. (4.38)

The symbol P.V. in this case indicates that values of the integrand around both � = 0
and � = ω must be excluded from the integration. The details of the derivation of
(4.37)–(4.38) are left as an exercise. We shall use (4.37) in § 4.6 to demonstrate the
Kronig–Kramers relationship for a model of complex permittivity of an actual material.

We cannot specify ε̃c′ arbitrarily; for a passive medium ε̃c′′ must be zero or negative at
all values of ω, and (4.36) will not necessarily return these required values. However, if
we have a good measurement or physical model for ε̃c′′, as might come from studies of the
absorbing properties of the material, we can approximate the real part of the permittivity
using (4.35). We shall demonstrate this using simple models for permittivity in § 4.6.

The Kronig–Kramers properties hold for µ as well. We must for practical reasons
consider the fact that magnetization becomes unimportant at a much lower frequency
than does polarization, so that the infinite integrals in the Kronig–Kramers relations
should be truncated at some upper frequency ωmax. If we use a model or measured
values of µ̃′′ to determine µ̃′, the form of the relation (4.37) should be [107]

µ̃′(r, ω) − µ0 = − 2

π
P.V.

∫ ωmax

0

�µ̃′′(r, �)

�2 − ω2
d�,

where ωmax is the frequency at which magnetization ceases to be important, and above
which µ̃ = µ0.

4.5 Dissipated and stored energy in a dispersive medium

Let us write down Poynting’s power balance theorem for a dispersive medium. Writing
J = Ji + Jc we have (§ 2.9.5)

− Ji · E = Jc · E + ∇ · [E × H] +
[

E · ∂D
∂t

+ H · ∂B
∂t

]
. (4.39)

We cannot express this in terms of the time rate of change of a stored energy density
because of the difficulty in interpreting the term

E · ∂D
∂t

+ H · ∂B
∂t

(4.40)



when the constitutive parameters have the form (2.29)–(2.31). Physically, this term
describes both the energy stored in the electromagnetic field and the energy dissipated by
the material because of time lags between the application of E and H and the polarization
or magnetization of the atoms (and thus the response fields D and B). In principle this
term can also be used to describe active media that transfer mechanical or chemical
energy of the material into field energy.

Instead of attempting to interpret (4.40), we concentrate on the physical meaning of

−∇ · S(r, t) = −∇ · [E(r, t) × H(r, t)].

We shall postulate that this term describes the net flow of electromagnetic energy into the
point r at time t . Then (4.39) shows that in the absence of impressed sources the energy
flow must act to (1) increase or decrease the stored energy density at r, (2) dissipate
energy in ohmic losses through the term involving Jc, or (3) dissipate (or provide) energy
through the term (40). Assuming linearity we may write

− ∇ · S(r, t) = ∂

∂t
we(r, t) + ∂

∂t
wm(r, t) + ∂

∂t
wQ(r, t), (4.41)

where the terms on the right-hand side represent the time rates of change of, respectively,
stored electric, stored magnetic, and dissipated energies.

4.5.1 Dissipation in a dispersive material

Although we may, in general, be unable to separate the individual terms in (4.41), we
can examine these terms under certain conditions. For example, consider a field that
builds from zero starting from time t = −∞ and then decays back to zero at t = ∞.
Then by direct integration1

−
∫ ∞

−∞
∇ · S(t) dt = wem(t = ∞) − wem(t = −∞) + wQ(t = ∞) − wQ(t = −∞)

where wem = we +wm is the volume density of stored electromagnetic energy. This stored
energy is zero at t = ±∞ since the fields are zero at those times. Thus,

�wQ = −
∫ ∞

−∞
∇ · S(t) dt = wQ(t = ∞) − wQ(t = −∞)

represents the volume density of the net energy dissipated by a lossy medium (or supplied
by an active medium). We may thus classify materials according to the scheme

�wQ = 0, lossless,
�wQ > 0, lossy,

�wQ ≥ 0, passive,
�wQ < 0, active.

For an anisotropic material with the constitutive relations

D̃ = ˜̄ε · Ẽ, B̃ = ˜̄µ · H̃, J̃c = ˜̄σ · Ẽ,

1Note that in this section we suppress the r-dependence of most quantities for clarity of presentation.



we find that dissipation is associated with negative imaginary parts of the constitutive
parameters. To see this we write

E(r, t) = 1

2π

∫ ∞

−∞
Ẽ(r, ω)e jωt dω, D(r, t) = 1

2π

∫ ∞

−∞
D̃(r, ω′)e jω′t dω′,

and thus find

Jc · E + E · ∂D
∂t

= 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
Ẽ(ω) · ˜̄εc

(ω′) · Ẽ(ω′)e j (ω+ω′)t jω′ dω dω′

where ˜̄εc is the complex dyadic permittivity (4.24). Then

�wQ = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

[
Ẽ(ω) · ˜̄εc

(ω′) · Ẽ(ω′) + H̃(ω) · ˜̄µ(ω′) · H̃(ω′)
] ·

·
[∫ ∞

−∞
e j (ω+ω′)t dt

]
jω′ dω dω′. (4.42)

Using (A.4) and integrating over ω we obtain

�wQ = 1

2π

∫ ∞

−∞

[
Ẽ(−ω′) · ˜̄εc

(ω′) · Ẽ(ω′) + H̃(−ω′) · ˜̄µ(ω′) · H̃(ω′)
]

jω′ dω′. (4.43)

Let us examine (4.43) more closely for the simple case of an isotropic material for
which

�wQ = 1

2π

∫ ∞

−∞

{[
j ε̃c′(ω′) − ε̃c′′(ω′)

]
Ẽ(−ω′) · Ẽ(ω′)+

+ [
jµ̃′(ω′) − µ̃′′(ω′)

]
H̃(−ω′) · H̃(ω′)

}
ω′ dω′.

Using the frequency symmetry property for complex permittivity (4.17) (which also holds
for permeability), we find that for isotropic materials

ε̃c′(r, ω) = ε̃c′(r, −ω), ε̃c′′(r, ω) = −ε̃c′′(r, −ω), (4.44)
µ̃′(r, ω) = µ̃′(r, −ω), µ̃′′(r, ω) = −µ̃′′(r, −ω). (4.45)

Thus, the products of ω′ and the real parts of the constitutive parameters are odd
functions, while for the imaginary parts these products are even. Since the dot products
of the vector fields are even functions, we find that the integrals of the terms containing
the real parts of the constitutive parameters vanish, leaving

�wQ = 2
1

2π

∫ ∞

0

[−ε̃c′′|Ẽ|2 − µ̃′′|H̃|2] ω dω. (4.46)

Here we have used (4.3) in the form

Ẽ(r, −ω) = Ẽ∗(r, ω), H̃(r, −ω) = H̃∗(r, ω). (4.47)

Equation (4.46) leads us to associate the imaginary parts of the constitutive parameters
with dissipation. Moreover, a lossy isotropic material for which �wQ > 0 must have at
least one of εc′′ and µ′′ less than zero over some range of positive frequencies, while an



active isotropic medium must have at least one of these greater than zero. In general,
we speak of a lossy material as having negative imaginary constitutive parameters:

ε̃c′′ < 0, µ̃′′ < 0, ω > 0. (4.48)

A lossless medium must have

ε̃′′ = µ̃′′ = σ̃ = 0

for all ω.
Things are not as simple in the more general anisotropic case. An integration of (4.42)

over ω′ instead of ω produces

�wQ = − 1

2π

∫ ∞

−∞

[
Ẽ(ω) · ˜̄εc

(−ω) · Ẽ(−ω) + H̃(ω) · ˜̄µ(−ω) · H̃(−ω)
]

jω dω.

Adding half of this expression to half of (4.43) and using (4.25), (4.17), and (4.47), we
obtain

�wQ = 1

4π

∫ ∞

−∞

[
Ẽ∗ · ˜̄εc · Ẽ − Ẽ · ˜̄εc∗ · Ẽ∗ + H̃∗ · ˜̄µ · H̃ − H̃ · ˜̄µ∗ · H̃∗] jω dω.

Finally, using the dyadic identity (A.76), we have

�wQ = 1

4π

∫ ∞

−∞

[
Ẽ∗ ·

(
˜̄εc − ˜̄εc†

)
· Ẽ + H̃∗ ·

(
˜̄µ − ˜̄µ†

)
· H̃

]
jω dω

where the dagger (†) denotes the hermitian (conjugate-transpose) operation. The condi-
tion for a lossless anisotropic material is

˜̄εc = ˜̄εc†
, ˜̄µ = ˜̄µ†

, (4.49)

or

ε̃i j = ε̃∗
j i , µ̃i j = µ̃∗

j i , σ̃i j = σ̃ ∗
j i . (4.50)

These relationships imply that in the lossless case the diagonal entries of the constitutive
dyadics are purely real.

Equations (4.50) show that complex entries in a permittivity or permeability matrix
do not necessarily imply loss. For example, we will show in § 4.6.2 that an electron
plasma exposed to a z-directed dc magnetic field has a permittivity of the form

[ ˜̄ε] =

 ε − jδ 0

jδ ε 0
0 0 εz




where ε, εz , and δ are real functions of space and frequency. Since ˜̄ε is hermitian it
describes a lossless plasma. Similarly, a gyrotropic medium such as a ferrite exposed to
a z-directed magnetic field has a permeability dyadic

[ ˜̄µ] =

 µ − jκ 0

jκ µ 0
0 0 µ0


 ,

which also describes a lossless material.



4.5.2 Energy stored in a dispersive material

In the previous section we were able to isolate the dissipative effects for a dispersive
material under special circumstances. It is not generally possible, however, to isolate
a term describing the stored energy. The Kronig–Kramers relations imply that if the
constitutive parameters of a material are frequency-dependent, they must have both real
and imaginary parts; such a material, if isotropic, must be lossy. So dispersive materials
are generally lossy and must have both dissipative and energy-storage characteristics.
However, many materials have frequency ranges called transparency ranges over which
ε̃c′′ and µ̃′′ are small compared to ε̃c′ and µ̃′. If we restrict our interest to these ranges,
we may approximate the material as lossless and compute a stored energy. An important
special case involves a monochromatic field oscillating at a frequency within this range.

To study the energy stored by a monochromatic field in a dispersive material we
must consider the transient period during which energy accumulates in the fields. The
assumption of a purely sinusoidal field variation would not include the effects described
by the temporal constitutive relations (2.29)–(2.31), which show that as the field builds
the energy must be added with a time lag. Instead we shall assume fields with the
temporal variation

E(r, t) = f (t)
3∑

i=1

îi |Ei (r)| cos[ω0t + ξ E
i (r)] (4.51)

where f (t) is an appropriate function describing the build-up of the sinusoidal field. To
compute the stored energy of a sinusoidal wave we must parameterize f (t) so that we
may drive it to unity as a limiting case of the parameter. A simple choice is

f (t) = e−α2t2 ↔ F̃(ω) =
√

π

α2
e− ω2

4α2 . (4.52)

Note that since f (t) approaches unity as α → 0, we have the generalized Fourier trans-
form relation

lim
α→0

F̃(ω) = 2πδ(ω). (4.53)

Substituting (4.51) into the Fourier transform formula (4.1) we find that

Ẽ(r, ω) = 1

2

3∑
i=1

îi |Ei (r)|e jξ E
i (r) F̃(ω − ω0) + 1

2

3∑
i=1

îi |Ei (r)|e− jξ E
i (r) F̃(ω + ω0).

We can simplify this by defining

Ě(r) =
3∑

i=1

îi |Ei (r)|e jξ E
i (r) (4.54)

as the phasor vector field to obtain

Ẽ(r, ω) = 1

2

[
Ě(r)F̃(ω − ω0) + Ě∗(r)F̃(ω + ω0)

]
. (4.55)

We shall discuss the phasor concept in detail in § 4.7.
The field E(r, t) is shown in Figure 4.2 as a function of t , while Ẽ(r, ω) is shown in

Figure 4.2 as a function of ω. As α becomes small the spectrum of E(r, t) concentrates
around ω = ±ω0. We assume the material is transparent for all values α of interest so
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Figure 4.2: Temporal (top) and spectral magnitude (bottom) dependences of E used to
compute energy stored in a dispersive material.

that we may treat ε as real. Then, since there is no dissipation, we conclude that the
term (4.40) represents the time rate of change of stored energy at time t , including the
effects of field build-up. Hence the interpretation2

E · ∂D
∂t

= ∂we

∂t
, H · ∂B

∂t
= ∂wm

∂t
.

We shall concentrate on the electric field term and later obtain the magnetic field term
by induction.

Since for periodic signals it is more convenient to deal with the time-averaged stored
energy than with the instantaneous stored energy, we compute the time average of we(r, t)
over the period of the sinusoid centered at the time origin. That is, we compute

〈we〉 = 1

T

∫ T/2

−T/2
we(t) dt (4.56)

where T = 2π/ω0. With α → 0, this time-average value is accurate for all periods of the
sinusoidal wave.

Because the most expedient approach to the computation of (4.56) is to employ the
Fourier spectrum of E, we use

E(r, t) = 1

2π

∫ ∞

−∞
Ẽ(r, ω)e jωt dω = 1

2π

∫ ∞

−∞
Ẽ∗(r, ω′)e− jω′t dω′,

∂D(r, t)

∂t
= 1

2π

∫ ∞

−∞
( jω)D̃(r, ω)e jωt dω = 1

2π

∫ ∞

−∞
(− jω′)D̃∗(r, ω′)e− jω′t dω′.

2Note that in this section we suppress the r-dependence of most quantities for clarity of presentation.



We have obtained the second form of each of these expressions using the property (4.3)
for the transform of a real function, and by using the change of variables ω′ = −ω.
Multiplying the two forms of the expressions and adding half of each, we find that

∂we

∂t
= 1

2

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π

[
jωẼ∗(ω′) · D̃(ω) − jω′Ẽ(ω) · D̃∗(ω′)

]
e− j (ω′−ω)t . (4.57)

Now let us consider a dispersive isotropic medium described by the constitutive rela-
tions D̃ = ε̃Ẽ, B̃ = µ̃H̃. Since the imaginary parts of ε̃ and µ̃ are associated with power
dissipation in the medium, we shall approximate ε̃ and µ̃ as purely real. Then (4.57)
becomes

∂we

∂t
= 1

2

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
Ẽ∗(ω′) · Ẽ(ω)

[
jωε̃(ω) − jω′ε̃(ω′)

]
e− j (ω′−ω)t .

Substitution from (4.55) now gives

∂we

∂t
= 1

8

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π

[
jωε̃(ω) − jω′ε̃(ω′)

] ·
· [

Ě · Ě∗ F̃(ω − ω0)F̃(ω′ − ω0) + Ě · Ě∗ F̃(ω + ω0)F̃(ω′ + ω0)+
+ Ě · ĚF̃(ω − ω0)F̃(ω′ + ω0) + Ě∗ · Ě∗ F̃(ω + ω0)F̃(ω′ − ω0)

]
e− j (ω′−ω)t .

Let ω → −ω wherever the term F̃(ω + ω0) appears, and ω′ → −ω′ wherever the term
F̃(ω′ + ω0) appears. Since F̃(−ω) = F̃(ω) and ε̃(−ω) = ε̃(ω), we find that

∂we

∂t
= 1

8

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
F̃(ω − ω0)F̃(ω′ − ω0) ·

·
[
Ě · Ě∗[ jωε̃(ω) − jω′ε̃(ω′)]e j (ω−ω′)t + Ě · Ě∗[ jω′ε̃(ω′) − jωε̃(ω)]e j (ω′−ω)t+

+ Ě · Ě[ jωε̃(ω) + jω′ε̃(ω′)]e j (ω+ω′)t + Ě∗ · Ě∗[− jωε̃(ω) − jω′ε̃(ω′)]e− j (ω+ω′)t
]
.

(4.58)

For small α the spectra are concentrated near ω = ω0 or ω′ = ω0. For terms involving
the difference in the permittivities we can expand g(ω) = ωε̃(ω) in a Taylor series about
ω0 to obtain the approximation

ωε̃(ω) ≈ ω0ε̃(ω0) + (ω − ω0)g
′(ω0)

where

g′(ω0) = ∂[ωε̃(ω)]

∂ω

∣∣∣∣
ω=ω0

.

This is not required for terms involving a sum of permittivities since these will not tend
to cancel. For such terms we merely substitute ω = ω0 or ω′ = ω0. With these (4.58)
becomes

∂we

∂t
= 1

8

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
F̃(ω − ω0)F̃(ω′ − ω0) ·

·
[
Ě · Ě∗g′(ω0)[ j (ω − ω′)]e j (ω−ω′)t + Ě · Ě∗g′(ω0)[ j (ω′ − ω)]e j (ω′−ω)t+

+ Ě · Ěε̃(ω0)[ j (ω + ω′)]e j (ω+ω′)t + Ě∗ · Ě∗ε̃(ω0)[− j (ω + ω′)]e− j (ω+ω′)t
]
.



By integration

we(t) = 1

8

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
F̃(ω − ω0)F̃(ω′ − ω0) ·

·
[
Ě · Ě∗g′(ω0)e

j (ω−ω′)t + Ě · Ě∗g′(ω0)e
j (ω′−ω)t+

+ Ě · Ěε̃(ω0)e
j (ω+ω′)t + Ě∗ · Ě∗ε̃(ω0)e

− j (ω+ω′)t
]
.

Our last step is to compute the time-average value of we and let α → 0. Applying
(4.56) we find

〈we〉 = 1

8

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
F̃(ω − ω0)F̃(ω′ − ω0) ·

·
[

2Ě · Ě∗g′(ω0) sinc

(
[ω − ω′]

π

ω0

)
+ {

Ě∗ · Ě∗ + Ě · Ě
}
ε̃(ω0) sinc

(
[ω + ω′]

π

ω0

)]

where sinc(x) is defined in (A.9) and we note that sinc(−x) = sinc(x). Finally we let
α → 0 and use (4.53) to replace F̃(ω) by a δ-function. Upon integration these δ-functions
set ω = ω0 and ω′ = ω0. Since sinc(0) = 1 and sinc(2π) = 0, the time-average stored
electric energy density becomes simply

〈we〉 = 1

4
|Ě|2 ∂[ωε̃]

∂ω

∣∣∣∣
ω=ω0

. (4.59)

Similarly,

〈wm〉 = 1

4
|Ȟ|2 ∂[ωµ̃]

∂ω

∣∣∣∣
ω=ω0

.

This approach can also be applied to anisotropic materials to give

〈we〉 = 1

4
Ě∗ · ∂[ω ˜̄ε]

∂ω

∣∣∣∣
ω=ω0

· Ě, (4.60)

〈wm〉 = 1

4
Ȟ∗ · ∂[ω ˜̄µ]

∂ω

∣∣∣∣
ω=ω0

· Ȟ. (4.61)

See Collin [39] for details. For the case of a lossless, nondispersive material where the
constitutive parameters are frequency independent, we can use (4.49) and (A.76) to
simplify this and obtain

〈we〉 = 1

4
Ě∗ · ε̄ · Ě = 1

4
Ě · Ď∗, (4.62)

〈wm〉 = 1

4
Ȟ∗ · µ̄ · Ȟ = 1

4
Ȟ · B̌∗, (4.63)

in the anisotropic case and

〈we〉 = 1

4
ε|Ě|2 = 1

4
Ě · Ď∗, (4.64)

〈wm〉 = 1

4
µ|Ȟ|2 = 1

4
Ȟ · B̌∗, (4.65)

in the isotropic case. Here Ě, Ď, B̌, Ȟ are all phasor fields as defined by (4.54).



4.5.3 The energy theorem

A convenient expression for the time-average stored energies (4.60) and (4.61) is found
by manipulating the frequency-domain Maxwell equations. Beginning with the complex
conjugates of the two frequency-domain curl equations for anisotropic media,

∇ × Ẽ∗ = jω ˜̄µ∗ · H̃∗,

∇ × H̃∗ = J̃∗ − jω ˜̄ε∗ · Ẽ∗,

we differentiate with respect to frequency:

∇ × ∂Ẽ∗

∂ω
= j

∂[ω ˜̄µ∗]

∂ω
· H̃∗ + jω ˜̄µ∗ · ∂H̃∗

∂ω
, (4.66)

∇ × ∂H̃∗

∂ω
= ∂ J̃∗

∂ω
− j

∂[ω ˜̄ε∗]

∂ω
· Ẽ∗ − jω ˜̄ε∗ · ∂Ẽ∗

∂ω
. (4.67)

These terms also appear as a part of the expansion

∇ ·
[

Ẽ × ∂H̃∗

∂ω
+ ∂Ẽ∗

∂ω
× H̃

]
=

∂H̃∗

∂ω
· [∇ × Ẽ] − Ẽ · ∇ × ∂H̃∗

∂ω
+ H̃ · ∇ × ∂Ẽ∗

∂ω
− ∂Ẽ∗

∂ω
· [∇ × H̃]

where we have used (B.44). Substituting from (4.66)–(4.67) and eliminating ∇ × Ẽ and
∇ × H̃ by Maxwell’s equations we have

1

4
∇ ·

(
Ẽ × ∂H̃∗

∂ω
+ ∂Ẽ∗

∂ω
× H̃

)
=

j
1

4
ω

(
Ẽ · ˜̄ε∗ · ∂Ẽ∗

∂ω
− ∂Ẽ∗

∂ω
· ˜̄ε · Ẽ

)
+ j

1

4
ω

(
H̃ · ˜̄µ∗ · ∂H̃∗

∂ω
− ∂H̃∗

∂ω
· ˜̄µ · H̃

)
+

+ j
1

4

(
Ẽ · ∂[ω ˜̄ε∗]

∂ω
· Ẽ∗ + H̃ · ∂[ω ˜̄µ∗]

∂ω
· H̃∗

)
− 1

4

(
Ẽ · ∂ J̃∗

∂ω
+ J̃ · ∂Ẽ∗

∂ω

)
.

Let us assume that the sources and fields are narrowband, centered on ω0, and that ω0

lies within a transparency range so that within the band the material may be considered
lossless. Invoking from (4.49) the facts that ˜̄ε = ˜̄ε† and ˜̄µ = ˜̄µ†, we find that the first two
terms on the right are zero. Integrating over a volume and taking the complex conjugate
of both sides we obtain

1

4

∮
S

(
Ẽ∗ × ∂H̃

∂ω
+ ∂Ẽ

∂ω
× H̃∗

)
· dS =

− j
1

4

∫
V

(
Ẽ∗ · ∂[ω ˜̄ε]

∂ω
· Ẽ + H̃∗ · ∂[ω ˜̄µ]

∂ω
· H̃

)
dV − 1

4

∫
V

(
Ẽ∗ · ∂ J̃

∂ω
+ J̃∗ · ∂Ẽ

∂ω

)
dV .

Evaluating each of the terms at ω = ω0 and using (4.60)–(4.61) we have

1

4

∮
S

(
Ẽ∗ × ∂H̃

∂ω
+ ∂Ẽ

∂ω
× H̃∗

) ∣∣∣∣
ω=ω0

· dS =

− j [〈We〉 + 〈Wm〉] − 1

4

∫
V

(
Ẽ∗ · ∂ J̃

∂ω
+ J̃∗ · ∂Ẽ

∂ω

) ∣∣∣∣
ω=ω0

dV (4.68)



where 〈We〉+ 〈Wm〉 is the total time-average electromagnetic energy stored in the volume
region V . This is known as the energy theorem. We shall use it in § 4.11.3 to determine
the velocity of energy transport for a plane wave.

4.6 Some simple models for constitutive parameters

Thus far our discussion of electromagnetic fields has been restricted to macroscopic
phenomena. Although we recognize that matter is composed of microscopic constituents,
we have chosen to describe materials using constitutive relationships whose parameters,
such as permittivity, conductivity, and permeability, are viewed in the macroscopic sense.
By performing experiments on the laboratory scale we can measure the constitutive
parameters to the precision required for engineering applications.

At some point it becomes useful to establish models of the macroscopic behavior of
materials based on microscopic considerations, formulating expressions for the consti-
tutive parameters using atomic descriptors such as number density, atomic charge, and
molecular dipole moment. These models allow us to predict the behavior of broad classes
of materials, such as dielectrics and conductors, over wide ranges of frequency and field
strength.

Accurate models for the behavior of materials under the influence of electromagnetic
fields must account for many complicated effects, including those best described by quan-
tum mechanics. However, many simple models can be obtained using classical mechanics
and field theory. We shall investigate several of the most useful of these, and in the
process try to gain a feeling for the relationship between the field applied to a material
and the resulting polarization or magnetization of the underlying atomic structure.

For simplicity we shall consider only homogeneous materials. The fundamental atomic
descriptor of “number density,” N , is thus taken to be independent of position and time.
The result may be more generally applicable since we may think of an inhomogeneous
material in terms of the spatial variation of constitutive parameters originally deter-
mined assuming homogeneity. However, we shall not attempt to study the microscopic
conditions that give rise to inhomogeneities.

4.6.1 Complex permittivity of a non-magnetized plasma

A plasma is an ionized gas in which the charged particles are free to move under
the influence of an applied field and through particle-particle interactions. A plasma
differs from other materials in that there is no atomic lattice restricting the motion of
the particles. However, even in a gas the interactions between the particles and the fields
give rise to a polarization effect, causing the permittivity of the gas to differ from that
of free space. In addition, exposing the gas to an external field will cause a secondary
current to flow as a result of the Lorentz force on the particles. As the moving particles
collide with one another they relinquish their momentum, an effect describable in terms
of a conductivity. In this section we shall perform a simple analysis to determine the
complex permittivity of a non-magnetized plasma.

To make our analysis tractable, we shall make several assumptions.

1. We assume that the plasma is neutral : i.e., that the free electrons and positive ions
are of equal number and distributed in like manner. If the particles are sufficiently



dense to be considered in the macroscopic sense, then there is no net field produced
by the gas and thus no electromagnetic interaction between the particles. We also
assume that the plasma is homogeneous and that the number density of the electrons
N (number of electrons per m3) is independent of time and position. In contrast to
this are electron beams, whose properties differ significantly from neutral plasmas
because of bunching of electrons by the applied field [148].

2. We ignore the motion of the positive ions in the computation of the secondary
current, since the ratio of the mass of an ion to that of an electron is at least as
large as the ratio of a proton to an electron (m p/me = 1837) and thus the ions
accelerate much more slowly.

3. We assume that the applied field is that of an electromagnetic wave. In § 2.10.6
we found that for a wave in free space the ratio of magnetic to electric field is
|H|/|E| = √

ε0/µ0, so that

|B|
|E| = µ0

√
ε0

µ0
= √

µ0ε0 = 1

c
.

Thus, in the Lorentz force equation we may approximate the force on an electron
as

F = −qe(E + v × B) ≈ −qeE

as long as v � c. Here qe is the unsigned charge on an electron, qe = 1.6021 ×
10−19 C. Note that when an external static magnetic field accompanies the field of
the wave, as is the case in the earth’s ionosphere for example, we cannot ignore the
magnetic component of the Lorentz force. This case will be considered in § 4.6.2.

4. We assume that the mechanical interactions between particles can be described
using a collision frequency ν, which describes the rate at which a directed plasma
velocity becomes random in the absence of external forces.

With these assumptions we can write the equation of motion for the plasma medium.
Let v(r, t) represent the macroscopic velocity of the plasma medium. Then, by Newton’s
second law, the force acting at each point on the medium is balanced by the time-rate of
change in momentum at that point. Because of collisions, the total change in momentum
density is described by

F(r, t) = −NqeE(r, t) = d℘(r, t)

dt
+ ν℘ (r, t) (4.69)

where

℘(r, t) = Nmev(r, t)

is the volume density of momentum. Note that if there is no externally-applied electro-
magnetic force, then (4.69) becomes

d℘(r, t)

dt
+ ν℘ (r, t) = 0.

Hence

℘(r, t) = ℘0(r)e−νt ,

and we see that ν describes the rate at which the electron velocities move toward a
random state, producing a macroscopic plasma velocity v of zero.



The time derivative in (4.69) is the total derivative as defined in (A.58):

d℘(r, t)

dt
= ∂℘ (r, t)

∂t
+ (v · ∇)℘ (r, t). (4.70)

The second term on the right accounts for the time-rate of change of momentum per-
ceived as the observer moves through regions of spatially-changing momentum. Since
the electron velocity is induced by the electromagnetic field, we anticipate that for a
sinusoidal wave the spatial variation will be on the order of the wavelength of the field:
λ = 2πc/ω. Thus, while the first term in (4.70) is proportional to ω, the second term is
proportional to ωv/c and can be neglected for non-relativistic particle velocities. Then,
writing E(r, t) and v(r, t) as inverse Fourier transforms, we see that (4.69) yields

− qeẼ = jωmeṽ + meνṽ (4.71)

and thus

ṽ = −
qe

me
Ẽ

ν + jω
. (4.72)

The secondary current associated with the moving electrons is (since qe is unsigned)

J̃s = −Nqeṽ = ε0ω
2
p

ω2 + ν2
(ν − jω)Ẽ (4.73)

where

ω2
p = Nq2

e

ε0me
(4.74)

is called the plasma frequency.
The frequency-domain Ampere’s law for primary and secondary currents in free space

is merely

∇ × H̃ = J̃i + J̃s + jωε0Ẽ.

Substitution from (4.73) gives

∇ × H̃ = J̃i + ε0ω
2
pν

ω2 + ν2
Ẽ + jωε0

[
1 − ω2

p

ω2 + ν2

]
Ẽ.

We can determine the material properties of the plasma by realizing that the above
expression can be written as

∇ × H̃ = J̃i + J̃s + jωD̃

with the constitutive relations

J̃s = σ̃ Ẽ, D̃ = ε̃Ẽ.

Here we identify the conductivity of the plasma as

σ̃ (ω) = ε0ω
2
pν

ω2 + ν2
(4.75)

and the permittivity as

ε̃(ω) = ε0

[
1 − ω2

p

ω2 + ν2

]
.



We can also write Ampere’s law as

∇ × H̃ = J̃i + jωε̃cẼ

where ε̃c is the complex permittivity

ε̃c(ω) = ε̃(ω) + σ̃ (ω)

jω
= ε0

[
1 − ω2

p

ω2 + ν2

]
− j

ε0ω
2
pν

ω(ω2 + ν2)
. (4.76)

If we wish to describe the plasma in terms of a polarization vector, we merely use D̃ =
ε0Ẽ + P̃ = ε̃Ẽ to obtain the polarization vector P̃ = (ε̃ − ε0)Ẽ = ε0χ̃eẼ, where χ̃e is the
electric susceptibility

χ̃e(ω) = − ω2
p

ω2 + ν2
.

We note that P̃ is directed opposite the applied field Ẽ, resulting in ε̃ < ε0.
The plasma is dispersive since both its permittivity and conductivity depend on ω.

As ω → 0 we have ε̃c′ → ε0εr where εr = 1 − ω2
p/ν

2, and also ε̃c′′ ∼ 1/ω, as remarked
in (4.28). As ω → ∞ we have ε̃c′ − ε0 ∼ 1/ω2 and ε̃c′′ ∼ 1/ω3, as mentioned in (4.29).
When a transient plane wave propagates through a dispersive medium, the frequency
dependence of the constitutive parameters tends to cause spreading of the waveshape.

We see that the plasma conductivity (4.75) is proportional to the collision frequency ν,
and that, since ε̃c′′ < 0 by the arguments of § 4.5, the plasma must be lossy. Loss arises
from the transfer of electromagnetic energy into heat through electron collisions. If there
are no collisions (ν = 0), there is no mechanism for the transfer of energy into heat, and
the conductivity of a lossless (or “collisionless”) plasma reduces to zero as expected.

In a lowloss plasma (ν → 0) we may determine the time-average stored electromagnetic
energy for sinusoidal excitation at frequency ω̌. We must be careful to use (4.59), which
holds for materials with dispersion. If we apply the simpler formula (4.64), we find that
for ν → 0

〈we〉 = 1

4
ε0|Ě|2 − 1

4
ε0|Ě|2 ω2

p

ω̌2
.

For those excitation frequencies obeying ω̌ < ωp we have 〈we〉 < 0, implying that the
material is active. Since there is no mechanism for the plasma to produce energy, this is
obviously not valid. But an application of (4.59) gives

〈we〉 = 1

4
|Ě|2 ∂

∂ω

[
ε0ω

(
1 − ω2

p

ω2

)] ∣∣∣∣
ω=ω̌

= 1

4
ε0|Ě|2 + 1

4
ε0|Ě|2 ω2

p

ω̌2
, (4.77)

which is always positive. In this expression the first term represents the time-average
energy stored in the vacuum, while the second term represents the energy stored in the
kinetic energy of the electrons. For harmonic excitation, the time-average electron kinetic
energy density is

〈wq〉 = 1

4
Nmev̌ · v̌∗.

Substituting v̌ from (4.72) with ν = 0 we see that

1

4
Nmev̌ · v̌∗ = 1

4

Nq2
e

meω̌2
|Ě|2 = 1

4
ε0|Ě|2 ω2

p

ω̌2
,

which matches the second term of (4.77).



Figure 4.3: Integration contour used in Kronig–Kramers relations to find ε̃c′ from ε̃c′′ for
a non-magnetized plasma.

The complex permittivity of a plasma (4.76) obviously obeys the required frequency-
symmetry conditions (4.27). It also obeys the Kronig–Kramers relations required for
a causal material. From (4.76) we see that the imaginary part of the complex plasma
permittivity is

ε̃c′′(ω) = − ε0ω
2
pν

ω(ω2 + ν2)
.

Substituting this into (4.37) we have

ε̃c′(ω) − ε0 = − 2

π
P.V.

∫ ∞

0

[
− ε0ω

2
pν

�(�2 + ν2)

]
�

�2 − ω2
d�.

We can evaluate the principal value integral and thus verify that it produces ε̃c′ by
using the contour method of § A.1. Because the integrand is even we can extend the
domain of integration to (−∞, ∞) and divide the result by two. Thus

ε̃c′(ω) − ε0 = 1

π
P.V.

∫ ∞

−∞

ε0ω
2
pν

(� − jν)(� + jν)

d�

(� − ω)(� + ω)
.

We integrate around the closed contour shown in Figure 4.3. Since the integrand falls
off as 1/�4 the contribution from C∞ is zero. The contributions from the semicircles Cω

and C−ω are given by π j times the residues of the integrand at � = ω and at � = −ω,
respectively, which are identical but of opposite sign. Thus, the semicircle contributions
cancel and leave only the contribution from the residue at the upper-half-plane pole
� = jν. Evaluation of the residue gives

ε̃c′(ω) − ε0 = 1

π
2π j

ε0ω
2
pν

jν + jν

1

( jν − ω)( jν + ω)
= − ε0ω

2
p

ν2 + ω2



and thus

ε̃c′(ω) = ε0

(
1 − ω2

p

ν2 + ω2

)
,

which matches (4.76) as expected.

4.6.2 Complex dyadic permittivity of a magnetized plasma

When an electron plasma is exposed to a magnetostatic field, as occurs in the earth’s
ionosphere, the behavior of the plasma is altered so that the secondary current is no longer
aligned with the electric field, requiring the constitutive relationships to be written in
terms of a complex dyadic permittivity. If the static field is B0, the velocity field of the
plasma is determined by adding the magnetic component of the Lorentz force to (4.71),
giving

−qe[Ẽ + ṽ × B0] = ṽ( jωme + meν)

or equivalently

ṽ − j
qe

me(ω − jν)
ṽ × B0 = j

qe

me(ω − jν)
Ẽ. (4.78)

Writing this expression generically as

v + v × C = A, (4.79)

we can solve for v as follows. Dotting both sides of the equation with C we quickly
establish that C · v = C · A. Crossing both sides of the equation with C, using (B.7), and
substituting C · A for C · v, we have

v × C = A × C + v(C · C) − C(A · C).

Finally, substituting v × C back into (4.79) we obtain

v = A − A × C + (A · C)C
1 + C · C

. (4.80)

Let us first consider a lossless plasma for which ν = 0. We can solve (4.78) for ṽ by
setting

C = − j
ωc

ω
, A = j

ε0ω
2
p

ωNqe
Ẽ,

where

ωc = qe

me
B0.

Here ωc = qe B0/me = |ωc| is called the electron cyclotron frequency. Substituting these
into (4.80) we have

(
ω2 − ω2

c

)
ṽ = j

ε0ωω2
p

Nqe
Ẽ + ε0ω

2
p

Nqe
ωc × Ẽ − j

ωc

ω

ε0ω
2
p

Nqe
ωc · Ẽ.

Since the secondary current produced by the moving electrons is just J̃s = −Nqeṽ, we
have

J̃s = jω

[
− ε0ω

2
p

ω2 − ω2
c

Ẽ + j
ε0ω

2
p

ω(ω2 − ω2
c)
ωc × Ẽ + ωc

ω2

ε0ω
2
p

ω2 − ω2
c

ωc · Ẽ

]
. (4.81)



Now, by the Ampere–Maxwell law we can write for currents in free space

∇ × H̃ = J̃i + J̃s + jωε0Ẽ. (4.82)

Considering the plasma to be a material implies that we can describe the gas in terms
of a complex permittivity dyadic ˜̄εc such that the Ampere–Maxwell law is

∇ × H̃ = J̃i + jω ˜̄εc · Ẽ.

Substituting (4.81) into (4.82), and defining the dyadic ω̄c so that ω̄c · Ẽ = ωc × Ẽ, we
identify the dyadic permittivity

˜̄εc
(ω) =

[
ε0 − ε0

ω2
p

ω2 − ω2
c

]
Ī + j

ε0ω
2
p

ω(ω2 − ω2
c)
ω̄c + ε0ω

2
p

ω2(ω2 − ω2
c)
ωcωc. (4.83)

Note that in rectangular coordinates

[ω̄c] =

 0 −ωcz ωcy

ωcz 0 −ωcx

−ωcy ωcx 0


 . (4.84)

To examine the properties of the dyadic permittivity it is useful to write it in matrix
form. To do this we must choose a coordinate system. We shall assume that B0 is aligned
along the z-axis such that B0 = ẑB0 and ωc = ẑωc. Then (4.84) becomes

[ω̄c] =

 0 −ωc 0

ωc 0 0
0 0 0


 (4.85)

and we can write the permittivity dyadic (4.83) as

[ ˜̄ε(ω)] =

 ε − jδ 0

jδ ε 0
0 0 εz


 (4.86)

where

ε = ε0

(
1 − ω2

p

ω2 − ω2
c

)
, εz = ε0

(
1 − ω2

p

ω2

)
, δ = ε0ωcω

2
p

ω(ω2 − ω2
c)

.

Note that the form of the permittivity dyadic is that for a lossless gyrotropic material
(2.33).

Since the plasma is lossless, equation (4.49) shows that the dyadic permittivity must
be hermitian. Equation (4.86) confirms this. We also note that since the sign of ωc is
determined by the sign of B0, the dyadic permittivity obeys the symmetry relation

ε̃c
i j (B0) = ε̃c

ji (−B0) (4.87)

as does the permittivity matrix of any material that has anisotropic properties dependent
on an externally applied magnetic field [141]. We will find later in this section that the
permeability matrix of a magnetized ferrite also obeys such a symmetry condition.



We can let ω → ω − jν in (4.81) to obtain the secondary current in a plasma with
collisions:

J̃s(r, ω) = jω

[
− ε0ω

2
p(ω − jν)

ω[(ω − jν)2 − ω2
c ]

Ẽ(r, ω)+

+ j
ε0ω

2
p(ω − jν)

ω(ω − jν)[(ω − jν)2 − ω2
c)]

ωc × Ẽ(r, ω) +

+ ωc

(ω − jν)2

ε0ω
2
p(ω − jν)

ω[(ω − jν)2 − ω2
c ]
ωc · Ẽ(r, ω)

]
.

From this we find the dyadic permittivity

˜̄εc
(ω) =

[
ε0 − ε0ω

2
p(ω − jν)

ω[(ω − jν)2 − ω2
c ]

]
Ī + j

ε0ω
2
p

ω[(ω − jν)2 − ω2
c)]

ω̄c +

+ 1

(ω − jν)

ε0ω
2
p

ω[(ω − jν)2 − ω2
c ]
ωcωc.

Assuming that B0 is aligned with the z-axis we can use (4.85) to find the components of
the dyadic permittivity matrix:

ε̃c
xx (ω) = ε̃c

yy(ω) = ε0

(
1 − ω2

p(ω − jν)

ω[(ω − jν)2 − ω2
c ]

)
, (4.88)

ε̃c
xy(ω) = −ε̃c

yx (ω) = − jε0
ω2

pωc

ω[(ω − jν)2 − ω2
c)]

, (4.89)

ε̃c
zz(ω) = ε0

(
1 − ω2

p

ω(ω − jν)

)
, (4.90)

and

ε̃c
zx = ε̃c

xz = ε̃c
zy = ε̃c

yz = 0. (4.91)

We see that [ε̃c] is not hermitian when ν �= 0. We expect this since the plasma is lossy
when collisions occur. However, we can decompose [ ˜̄εc] as a sum of two matrices:

[ ˜̄εc] = [ ˜̄ε] + [ ˜̄σ]

jω
,

where [ ˜̄ε] and [ ˜̄σ] are hermitian [141]. The details are left as an exercise. We also note
that, as in the case of the lossless plasma, the permittivity dyadic obeys the symmetry
condition ε̃c

i j (B0) = ε̃c
ji (−B0).

4.6.3 Simple models of dielectrics

We define an isotropic dielectric material (also called an insulator) as one that obeys
the macroscopic frequency-domain constitutive relationship

D̃(r, ω) = ε̃(r, ω)Ẽ(r, ω).

Since the polarization vector P was defined in Chapter 2 as P(r, t) = D(r, t) − ε0E(r, t),
an isotropic dielectric can also be described through

P̃(r, ω) = (ε̃(r, ω) − ε0)Ẽ(r, ω) = χ̃e(r, ω)ε0Ẽ(r, ω)



where χ̃e is the dielectric susceptibility. In this section we shall model a homogeneous
dielectric consisting of a single, uniform material type.

We found in Chapter 3 that for a dielectric material immersed in a static electric field,
the polarization vector P can be viewed as a volume density of dipole moments. We
choose to retain this view as the fundamental link between microscopic dipole moments
and the macroscopic polarization vector. Within the framework of our model we thus
describe the polarization through the expression

P(r, t) = 1

�V

∑
r−ri (t)∈B

pi . (4.92)

Here pi is the dipole moment of the ith elementary microscopic constituent, and we form
the macroscopic density function as in § 1.3.1.

We may also write (4.92) as

P(r, t) =
[

NB

�V

] [
1

NB

NB∑
i=1

pi

]
= N (r, t)p(r, t) (4.93)

where NB is the number of constituent particles within �V . We identify

p(r, t) = 1

NB

NB∑
i=1

pi (r, t)

as the average dipole moment within �V , and

N (r, t) = NB

�V

as the dipole moment number density. In this model a dielectric material does not require
higher-order multipole moments to describe its behavior. Since we are only interested
in homogeneous materials in this section we shall assume that the number density is
constant: N (r, t) = N .

To understand how dipole moments arise, we choose to adopt the simple idea that mat-
ter consists of atomic particles, each of which has a positively charged nucleus surrounded
by a negatively charged electron cloud. Isolated, these particles have no net charge and
no net electric dipole moment. However, there are several ways in which individual par-
ticles, or aggregates of particles, may take on a dipole moment. When exposed to an
external electric field the electron cloud of an individual atom may be displaced, resulting
in an induced dipole moment which gives rise to electronic polarization. When groups
of atoms form a molecule, the individual electron clouds may combine to form an asym-
metric structure having a permanent dipole moment. In some materials these molecules
are randomly distributed and no net dipole moment results. However, upon application
of an external field the torque acting on the molecules may tend to align them, creating
an induced dipole moment and orientation, or dipole, polarization. In other materials,
the asymmetric structure of the molecules may be weak until an external field causes
the displacement of atoms within each molecule, resulting in an induced dipole moment
causing atomic, or molecular, polarization. If a material maintains a permanent polar-
ization without the application of an external field, it is called an electret (and is thus
similar in behavior to a permanently magnetized magnet).

To describe the constitutive relations, we must establish a link between P (now describ-
able in microscopic terms) and E. We do this by postulating that the average constituent



dipole moment is proportional to the local electric field strength E′:

p = αE′, (4.94)

where α is called the polarizability of the elementary constituent. Each of the polarization
effects listed above may have its own polarizability: αe for electronic polarization, αa for
atomic polarization, and αd for dipole polarization. The total polarizability is merely the
sum α = αe + αa + αd .

In a rarefied gas the particles are so far apart that their interaction can be neglected.
Here the localized field E′ is the same as the applied field E. In liquids and solids where
particles are tightly packed, E′ depends on the manner in which the material is polarized
and may differ from E. We therefore proceed to determine a relationship between E′

and P.

The Clausius–Mosotti equation. We seek the local field at an observation point
within a polarized material. Let us first assume that the fields are static. We surround
the observation point with an artificial spherical surface of radius a and write the field at
the observation point as a superposition of the field E applied, the field E2 of the polarized
molecules external to the sphere, and the field E3 of the polarized molecules within the
sphere. We take a large enough that we may describe the molecules outside the sphere in
terms of the macroscopic dipole moment density P, but small enough to assume that P
is uniform over the surface of the sphere. We also assume that the major contribution to
E2 comes from the dipoles nearest the observation point. We then approximate E2 using
the electrostatic potential produced by the equivalent polarization surface charge on the
sphere ρPs = n̂ · P (where n̂ points toward the center of the sphere). Placing the origin
of coordinates at the observation point and orienting the z-axis with the polarization P
so that P = P0ẑ, we find that n̂ · P = − cos θ and thus the electrostatic potential at any
point r within the sphere is merely

�(r) = − 1

4πε0

∮
S

P0 cos θ ′

|r − r′| d S′.

This integral has been computed in § 3.2.7 with the result given by (3.103) Hence

�(r) = − P0

3ε0
r cos θ = − P0

3ε0
z

and therefore

E2 = P
3ε0

. (4.95)

Note that this is uniform and independent of a.
The assumption that the localized field varies spatially as the electrostatic field, even

when P may depend on frequency, is quite good. In Chapter 5 we will find that for a
frequency-dependent source (or, equivalently, a time-varying source), the fields very near
the source have a spatial dependence nearly identical to that of the electrostatic case.

We now have the seemingly more difficult task of determining the field E3 produced
by the dipoles within the sphere. This would seem difficult since the field produced by
dipoles near the observation point should be highly-dependent on the particular dipole
arrangement. As mentioned above, there are various mechanisms for polarization, and
the distribution of charge near any particular point depends on the molecular arrange-
ment. However, Lorentz showed [115] that for crystalline solids with cubical symmetry,



or for a randomly-structured gas, the contribution from dipoles within the sphere is zero.
Indeed, it is convenient and reasonable to assume that for most dielectrics the effects of
the dipoles immediately surrounding the observation point cancel so that E3 = 0. This
was first suggested by O.F. Mosotti in 1850 [52].

With E2 approximated as (4.95) and E3 assumed to be zero, we have the value of the
resulting local field:

E′(r) = E(r) + P(r)
3ε0

. (4.96)

This is called the Mosotti field. Substituting the Mosotti field into (4.94) and using
P = Np, we obtain

P(r) = NαE′(r) = Nα

(
E(r) + P(r)

3ε0

)
.

Solving for P we obtain

P(r) =
(

3ε0 Nα

3ε0 − Nα

)
E(r) = χeε0E(r).

So the electric susceptibility of a dielectric may be expressed as

χe = 3Nα

3ε0 − Nα
. (4.97)

Using χe = εr − 1 we can rewrite (4.97) as

ε = ε0εr = ε0
3 + 2Nα/ε0

3 − Nα/ε0
, (4.98)

which we can arrange to obtain

α = αe + αa + αd = 3ε0

N

εr − 1

εr + 2
.

This has been named the Clausius–Mosotti formula, after O.F. Mosotti who proposed it
in 1850 and R. Clausius who proposed it independently in 1879. When written in terms of
the index of refraction n (where n2 = εr ), it is also known as the Lorentz–Lorenz formula,
after H. Lorentz and L. Lorenz who proposed it independently for optical materials in
1880. The Clausius–Mosotti formula allows us to determine the dielectric constant from
the polarizability and number density of a material. It is reasonably accurate for certain
simple gases (with pressures up to 1000 atmospheres) but becomes less reliable for liquids
and solids, especially for those with large dielectric constants.

The response of the microscopic structure of matter to an applied field is not instanta-
neous. When exposed to a rapidly oscillating sinusoidal field, the induced dipole moments
may lag in time. This results in a loss mechanism that can be described macroscopically
by a complex permittivity. We can modify the Clausius–Mosotti formula by assuming
that both the relative permittivity and polarizability are complex numbers, but this will
not model the dependence of these parameters on frequency. Instead we shall (in later
paragraphs) model the time response of the dipole moments to the applied field.

An interesting application of the Clausius–Mosotti formula is to determine the permit-
tivity of a mixture of dielectrics with different permittivities. Consider the simple case
in which many small spheres of permittivity ε2, radius a, and volume V are embedded



within a dielectric matrix of permittivity ε1. If we assume that a is much smaller than
the wavelength of the electromagnetic field, and that the spheres are sparsely distributed
within the matrix, then we may ignore any mutual interaction between the spheres. Since
the expression for the permittivity of a uniform dielectric given by (4.98) describes the
effect produced by dipoles in free space, we can use the Clausius–Mosotti formula to
define an effective permittivity εe for a material consisting of spheres in a background
dielectric by replacing ε0 with ε1 to obtain

εe = ε1
3 + 2Nα/ε1

3 − Nα/ε1
. (4.99)

In this expression α is the polarizability of a single dielectric sphere embedded in the
background dielectric, and N is the number density of dielectric spheres. To find α

we use the static field solution for a dielectric sphere immersed in a field (§ 3.2.10).
Remembering that p = αE and that for a uniform region of volume V we have p = V P,
we can make the replacements ε0 → ε1 and ε → ε2 in (3.117) to get

α = 3ε1V
ε2 − ε1

ε2 + 2ε1
. (4.100)

Defining f = N V as the fractional volume occupied by the spheres, we can substitute
(4.100) into (4.99) to find that

εe = ε1
1 + 2 f y

1 − f y

where

y = ε2 − ε1

ε2 + 2ε1
.

This is known as the Maxwell–Garnett mixing formula. Rearranging we obtain

εe − ε1

εe + 2ε1
= f

ε2 − ε1

ε2 + 2ε1
,

which is known as the Rayleigh mixing formula. As expected, εe → ε1 as f → 0. Even
though as f → 1 the formula also reduces to εe = ε2, our initial assumption that f � 1
(sparsely distributed spheres) is violated and the result is inaccurate for non-spherical
inhomogeneities [90]. For a discussion of more accurate mixing formulas, see Ishimaru
[90] or Sihvola [175].

The dispersion formula of classical physics. We may determine the frequency de-
pendence of the permittivity by modeling the time response of induced dipole moments.
This was done by H. Lorentz using the simple atomic model we introduced earlier. Con-
sider what happens when a molecule consisting of heavy particles (nuclei) surrounded by
clouds of electrons is exposed to a time-harmonic electromagnetic wave. Using the same
arguments we made when we studied the interactions of fields with a plasma in § 4.6.1,
we assume that each electron experiences a Lorentz force Fe = −qeE′. We neglect the
magnetic component of the force for nonrelativistic charge velocities, and ignore the mo-
tion of the much heavier nuclei in favor of studying the motion of the electron cloud.
However, several important distinctions exist between the behavior of charges within a
plasma and those within a solid or liquid material. Because of the surrounding polarized
matter, any molecule responds to the local field E′ instead of the applied field E. Also,
as the electron cloud is displaced by the Lorentz force, the attraction from the positive



nuclei provides a restoring force Fr . In the absence of loss the restoring force causes
the electron cloud (and thus the induced dipole moment) to oscillate in phase with the
applied field. In addition, there will be loss due to radiation by the oscillating molecules
and collisions between charges that can be modeled using a “frictional force” Fs in the
same manner as for a mechanical harmonic oscillator.

We can express the restoring and frictional forces by the use of a mechanical analogue.
The restoring force acting on each electron is taken to be proportional to the displacement
from equilibrium l:

Fr (r, t) = −meω
2
r l(r, t),

where me is the mass of an electron and ωr is a material constant that depends on the
molecular structure. The frictional force is similar to the collisional term in § 4.6.1 in
that it is assumed to be proportional to the electron momentum mev:

Fs(r, t) = −2�mev(r, t)

where � is a material constant. With these we can apply Newton’s second law to obtain

F(r, t) = −qeE′(r, t) − meω
2
r l(r, t) − 2�mev(r, t) = me

dv(r, t)

dt
.

Using v = dl/dt we find that the equation of motion for the electron is

d2l(r, t)

dt2
+ 2�

dl(r, t)

dt
+ ω2

r l(r, t) = − qe

me
E′(r, t). (4.101)

We recognize this differential equation as the damped harmonic equation. When E′ = 0
we have the homogeneous solution

l(r, t) = l0(r)e−�t cos

(
t
√

ω2
r − �2

)
.

Thus the electron position is a damped oscillation. The resonant frequency
√

ω2
r − �2 is

usually only slightly reduced from ωr since radiation damping is generally quite low.
Since the dipole moment for an electron displaced from equilibrium by l is p = −qel,

and the polarization density is P = Np from (93), we can write

P(r, t) = −Nqel(r, t).

Multiplying (4.101) by −Nqe and substituting the above expression, we have a differential
equation for the polarization:

d2P
dt2

+ 2�
dP
dt

+ ω2
r P = Nq2

e

me
E′.

To obtain a constitutive equation we must relate the polarization to the applied field E.
We can accomplish this by relating the local field E′ to the polarization using the Mosotti
field (4.96). Substitution gives

d2P
dt2

+ 2�
dP
dt

+ ω2
0P = Nq2

e

me
E (4.102)

where

ω0 =
√

ω2
r − Nq2

e

3meε0



is the resonance frequency of the dipole moments. We see that this frequency is reduced
from the resonance frequency of the electron oscillation because of the polarization of
the surrounding medium.

We can now obtain a dispersion equation for the electrical susceptibility by taking the
Fourier transform of (4.102). We have

−ω2P̃ + jω2�P̃ + ω2
0P̃ = Nq2

e

me
Ẽ.

Thus we obtain the dispersion relation

χ̃e(ω) = P̃

ε0Ẽ
= ω2

p

ω2
0 − ω2 + jω2�

where ωp is the plasma frequency (4.74). Since ε̃r (ω) = 1 + χ̃e(ω) we also have

ε̃(ω) = ε0 + ε0
ω2

p

ω2
0 − ω2 + jω2�

. (4.103)

If more than one type of oscillating moment contributes to the permittivity, we may
extend (4.103) to

ε̃(ω) = ε0 +
∑

i

ε0

ω2
pi

ω2
i − ω2 + jω2�i

(4.104)

where ωpi = Ni q2
e /ε0mi is the plasma frequency of the ith resonance component, and

ωi and �i are the oscillation frequency and damping coefficient, respectively, of this
component. This expression is the dispersion formula for classical physics, so called
because it neglects quantum effects. When losses are negligible, (4.104) reduces to the
Sellmeier equation

ε̃(ω) = ε0 +
∑

i

ε0

ω2
pi

ω2
i − ω2

. (4.105)

Let us now study the frequency behavior of the dispersion relation (4.104). Splitting
the permittivity into real and imaginary parts we have

ε̃′(ω) − ε0 = ε0

∑
i

ω2
pi

ω2
i − ω2

[ω2
i − ω2]2 + 4ω2�2

i

,

ε̃′′(ω) = −ε0

∑
i

ω2
pi

2ω�i

[ω2
i − ω2]2 + 4ω2�2

i

.

As ω → 0 the permittivity reduces to

ε = ε0

(
1 +

∑
i

ω2
pi

ω2
i

)
,

which is the static permittivity of the material. As ω → ∞ the permittivity behaves as

ε̃′(ω) → ε0

(
1 −

∑
i ω2

pi

ω2

)
, ε̃′′(ω) → −ε0

2
∑

i ω2
pi�i

ω3
.

This high frequency behavior is identical to that of a plasma as described by (4.76).
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Figure 4.4: Real and imaginary parts of permittivity for a single resonance model of a
dielectric with �/ω0 = 0.2. Permittivity normalized by dividing by ε0(ωp/ω0)

2.

The major characteristic of the dispersion relation (4.104) is the presence of one or
more resonances. Figure 4.4 shows a plot of a single resonance component, where we
have normalized the permittivity as

(ε̃′(ω) − ε0)/(ε0ω̄
2
p) = 1 − ω̄2[

1 − ω̄2
]2 + 4ω̄2�̄2

,

−ε̃′′(ω)/(ε0ω̄
2
p) = 2ω̄�̄[

1 − ω̄2
]2 + 4ω̄2�̄2

,

with ω̄ = ω/ω0, ω̄p = ωp/ω0, and �̄ = �/ω0. We see a distinct resonance centered at
ω = ω0. Approaching this resonance through frequencies less than ω0, we see that ε̃′

increases slowly until peaking at ωmax = ω0
√

1 − 2�/ω0 where it attains a value of

ε̃′
max = ε0 + 1

4
ε0

ω̄2
p

�̄(1 − �̄)
.

After peaking, ε̃′ undergoes a rapid decrease, passing through ε̃′ = ε0 at ω = ω0, and
then continuing to decrease until reaching a minimum value of

ε̃′
min = ε0 − 1

4
ε0

ω̄2
p

�̄(1 + �̄)

at ωmin = ω0
√

1 + 2�/ω0. As ω continues to increase, ε̃′ again increases slowly toward
a final value of ε̃′ = ε0. The regions of slow variation of ε̃′ are called regions of normal
dispersion, while the region where ε̃′ decreases abruptly is called the region of anomalous
dispersion. Anomalous dispersion is unusual only in the sense that it occurs over a
narrower range of frequencies than normal dispersion.



The imaginary part of the permittivity peaks near the resonant frequency, dropping
off monotonically in each direction away from the peak. The width of the curve is an
important parameter that we can most easily determine by approximating the behavior
of ε̃′′ near ω0. Letting �ω̄ = (ω0 − ω)/ω0 and using

ω2
0 − ω2 = (ω0 − ω)(ω0 + ω) ≈ 2ω2

0�ω̄,

we get

ε̃′′(ω) ≈ −1

2
ε0ω̄

2
p

�̄

(�ω̄)2 + �̄2
.

This approximation has a maximum value of

ε̃′′
max = ε̃′′(ω0) = −1

2
ε0ω̄

2
p

1

�̄

located at ω = ω0, and has half-amplitude points located at �ω̄ = ±�̄. Thus the width
of the resonance curve is

W = 2�.

Note that for a material characterized by a low-loss resonance (� � ω0), the location of
ε̃′
max can be approximated as

ωmax = ω0

√
1 − 2�/ω0 ≈ ω0 − �

while ε̃′
min is located at

ωmin = ω0

√
1 + 2�/ω0 ≈ ω0 + �.

The region of anomalous dispersion thus lies between the half amplitude points of ε̃′′:
ω0 − � < ω < ω0 + �.

As � → 0 the resonance curve becomes narrower and taller. Thus, a material charac-
terized by a very low-loss resonance may be modeled very simply using ε̃′′ = Aδ(ω −ω0),
where A is a constant to be determined. We can find A by applying the Kronig–Kramers
formula (4.37):

ε̃′(ω) − ε0 = − 2

π
P.V.

∞∫
0

Aδ(� − ω0)
� d�

�2 − ω2
= − 2

π
A

ω0

ω2
0 − ω2

.

Since the material approaches the lossless case, this expression should match the Sellmeier
equation (4.105):

− 2

π
A

ω0

ω2
0 − ω2

= ε0
ω2

p

ω2
0 − ω2

,

giving A = −πε0ω
2
p/2ω0. Hence the permittivity of a material characterized by a low-loss

resonance may be approximated as

ε̃c(ω) = ε0

(
1 + ω2

p

ω2
0 − ω2

)
− jε0

π

2

ω2
p

ω0
δ(ω − ω0).
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Figure 4.5: Relaxation spectrum for water at 20◦ C found using Debye equation.

Debye relaxation and the Cole–Cole equation. In solids or liquids consisting of
polar molecules (those retaining a permanent dipole moment, e.g., water), the resonance
effect is replaced by relaxation. We can view the molecule as attempting to rotate in
response to an applied field within a background medium dominated by the frictional
term in (4.101). The rotating molecule experiences many weak collisions which continu-
ously drain off energy, preventing it from accelerating under the force of the applied field.
J.W.P. Debye proposed that such materials are described by an exponential damping of
their polarization and a complete absence of oscillations. If we neglect the acceleration
term in (4.101) we have the equation of motion

2�
dl(r, t)

dt
+ ω2

r l(r, t) = − qe

me
E′(r, t),

which has homogeneous solution

l(r, t) = l0(r)e− ω2
r

2�
t = l0(r)e−t/τ

where τ is Debye’s relaxation time.

By neglecting the acceleration term in (4.102) we obtain from (4.103) the dispersion
equation, or relaxation spectrum

ε̃(ω) = ε0 + ε0
ω2

p

ω2
0 + jω2�

.

Debye proposed a relaxation spectrum a bit more general than this, now called the Debye
equation:

ε̃(ω) = ε∞ + εs − ε∞
1 + jωτ

. (4.106)



Figure 4.6: Arc plots for Debye and Cole–Cole descriptions of a polar material.

Here εs is the real static permittivity obtained when ω → 0, while ε∞ is the real “optical”
permittivity describing the high frequency behavior of ε̃. If we split (4.106) into real and
imaginary parts we find that

ε̃′(ω) − ε∞ = εs − ε∞
1 + ω2τ 2

, ε̃′′(ω) = −ωτ(εs − ε∞)

1 + ω2τ 2
.

For a passive material we must have ε̃′′ < 0, which requires εs > ε∞. It is straightforward
to show that these expressions obey the Kronig–Kramers relationships. The details are
left as an exercise.

A plot of the Debye spectrum of water at T = 20◦ C is shown in Figure 4.5, where we
have used εs = 78.3ε0, ε∞ = 5ε0, and τ = 9.6 × 10−12 s [49]. We see that ε̃′ decreases
over the entire frequency range. The frequency dependence of the imaginary part of the
permittivity is similar to that found in the resonance model, forming a curve which peaks
at the critical frequency

ωmax = 1/τ

where it obtains a maximum value of

−ε̃′′
max = εs − ε∞

2
.

At this point ε̃′ achieves the average value of εs and ε∞:

ε′(ωmax) = εs + ε∞
2

.

Since the frequency label is logarithmic, we see that the peak is far broader than that
for the resonance model.

Interestingly, a plot of −ε̃′′ versus ε̃′ traces out a semicircle centered along the real axis
at (εs + ε∞)/2 and with radius (εs − ε∞)/2. Such a plot, shown in Figure 4.6, was first
described by K.S. Cole and R.H. Cole [38] and is thus called a Cole–Cole diagram or “arc
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Figure 4.7: Cole–Cole diagram for water at 20◦ C.

plot.” We can think of the vector extending from the origin to a point on the semicircle
as a phasor whose phase angle δ is described by the loss tangent of the material:

tan δ = − ε̃′′

ε̃′ = ωτ(εs − ε∞)

εs + ε∞ω2τ 2
. (4.107)

The Cole–Cole plot shows that the maximum value of −ε̃′′ is (εs − ε∞)/2 and that
ε̃′ = (εs + ε∞)/2 at this point.

A Cole–Cole plot for water, shown in Figure 4.7, displays the typical semicircular
nature of the arc plot. However, not all polar materials have a relaxation spectrum
that follows the Debye equation as closely as water. Cole and Cole found that for many
materials the arc plot traces a circular arc centered below the real axis, and that the line
through its center makes an angle of α(π/2) with the real axis as shown in Figure 4.6.
This relaxation spectrum can be described in terms of a modified Debye equation

ε̃(ω) = ε∞ + εs − ε∞
1 + ( jωτ)1−α

,

called the Cole–Cole equation. A nonzero Cole–Cole parameter α tends to broaden the
relaxation spectrum, and results from a spread of relaxation times centered around τ

[4]. For water the Cole–Cole parameter is only α = 0.02, suggesting that a Debye
description is sufficient, but for other materials α may be much higher. For instance,
consider a transformer oil with a measured Cole–Cole parameter of α = 0.23, along with
a measured relaxation time of τ = 2.3 × 10−9 s, a static permittivity of εs = 5.9ε0, and
an optical permittivity of ε∞ = 2.9ε0 [4]. Figure 4.8 shows the Cole–Cole plot calculated
using both α = 0 and α = 0.23, demonstrating a significant divergence from the Debye
model. Figure 4.9 shows the relaxation spectrum for the transformer oil calculated with
these same two parameters.
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4.6.4 Permittivity and conductivity of a conductor

The free electrons within a conductor may be considered as an electron gas which is
free to move under the influence of an applied field. Since the electrons are not bound to
the atoms of the conductor, there is no restoring force acting on them. However, there
is a damping term associated with electron collisions. We therefore model a conductor
as a plasma, but with a very high collision frequency; in a good metallic conductor ν is
typically in the range 1013–1014 Hz.

We therefore have the conductivity of a conductor from (4.75) as

σ̃ (ω) = ε0ω
2
pν

ω2 + ν2

and the permittivity as

ε̃(ω) = ε0

[
1 − ω2

p

ω2 + ν2

]
.

Since ν is so large, the conductivity is approximately

σ̃ (ω) ≈ ε0ω
2
p

ν
= Nq2

e

meν

and the permittivity is

ε̃(ω) ≈ ε0

well past microwave frequencies and into the infrared. Hence the dc conductivity is often
employed by engineers throughout the communications bands. When approaching the
visible spectrum the permittivity and conductivity begin to show a strong frequency
dependence. In the violet and ultraviolet frequency ranges the free-charge conductivity
becomes proportional to 1/ω and is driven toward zero. However, at these frequencies the
resonances of the bound electrons of the metal become important and the permittivity
behaves more like that of a dielectric. At these frequencies the permittivity is best
described using the resonance formula (4.104).

4.6.5 Permeability dyadic of a ferrite

The magnetic properties of materials are complicated and diverse. The formation
of accurate models based on atomic behavior requires an understanding of quantum
mechanics, but simple models may be constructed using classical mechanics along with
very simple quantum-mechanical assumptions, such as the existence of a spin moment.
For an excellent review of the magnetic properties of materials, see Elliott [65].

The magnetic properties of matter ultimately result from atomic currents. In our sim-
ple microscopic view these currents arise from the spin and orbital motion of negatively
charged electrons. These atomic currents potentially give each atom a magnetic moment
m. In diamagnetic materials the orbital and spin moments cancel unless the material is
exposed to an external magnetic field, in which case the orbital electron velocity changes
to produce a net moment opposite the applied field. In paramagnetic materials the spin
moments are greater than the orbital moments, leaving the atoms with a net permanent
magnetic moment. When exposed to an external magnetic field, these moments align in
the same direction as an applied field. In either case, the density of magnetic moments
M is zero in the absence of an applied field.



In most paramagnetic materials the alignment of the permanent moment of neigh-
boring atoms is random. However, in the subsets of paramagnetic materials known as
ferromagnetic, anti-ferromagnetic, and ferrimagnetic materials, there is a strong coupling
between the spin moments of neighboring atoms resulting in either parallel or antiparal-
lel alignment of moments. The most familiar case is the parallel alignment of moments
within the domains of ferromagnetic permanent magnets made of iron, nickel, and cobalt.
Anti-ferromagnetic materials, such as chromium and manganese, have strongly coupled
moments that alternate in direction between small domains, resulting in zero net mag-
netic moment. Ferrimagnetic materials also have alternating moments, but these are
unequal and thus do not cancel completely.

Ferrites form a particularly useful subgroup of ferrimagnetic materials. They were first
developed during the 1940s by researchers at the Phillips Laboratories as low-loss mag-
netic media for supporting electromagnetic waves [65]. Typically, ferrites have conduc-
tivities ranging from 10−4 to 100 S/m (compared to 107 for iron), relative permeabilities
in the thousands, and dielectric constants in the range 10–15. Their low loss makes them
useful for constructing transformer cores and for a variety of microwave applications.
Their chemical formula is XO · Fe2O3, where X is a divalent metal or mixture of metals,
such as cadmium, copper, iron, or zinc. When exposed to static magnetic fields, ferrites
exhibit gyrotropic magnetic (or gyromagnetic) properties and have permeability matrices
of the form (2.32). The properties of a wide variety of ferrites are given by von Aulock
[204].

To determine the permeability matrix of a ferrite we will model its electrons as simple
spinning tops and examine the torque exerted on the magnetic moment by the application
of an external field. Each electron has an angular momentum L and a magnetic dipole
moment m, with these two vectors anti-parallel:

m(r, t) = −γ L(r, t)

where

γ = qe

me
= 1.7592 × 1011 C/kg

is called the gyromagnetic ratio.
Let us first consider a single spinning electron immersed in an applied static magnetic

field B0. Any torque applied to the electron results in a change of angular momentum as
given by Newton’s second law

T(r, t) = dL(r, t)

dt
.

We found in (3.179) that a very small loop of current in a magnetic field experiences
a torque m × B. Thus, when first placed into a static magnetic field B0 an electron’s
angular momentum obeys the equation

dL(r, t)

dt
= −γ L(r, t) × B0(r) = ω0(r) × L(r, t) (4.108)

where ω0 = γ B0. This equation of motion describes the precession of the electron spin
axis about the direction of the applied field, which is analogous to the precession of a
gyroscope [129]. The spin axis rotates at the Larmor precessional frequency ω0 = γ B0 =
γµ0 H0.

We can use this to understand what happens when we insert a homogeneous ferrite
material into a uniform static magnetic field B0 = µ0H0. The internal field Hi experienced
by any magnetic dipole is not the same as the external field H0, and need not even be in



the same direction. In general we write

H0(r, t) − Hi (r, t) = Hd(r, t)

where Hd is the demagnetizing field produced by the magnetic dipole moments of the
material. Each electron responds to the internal field by precessing as described above
until the precession damps out and the electron moments align with the magnetic field.
At this point the ferrite is saturated. Because the demagnetizing field depends strongly
on the shape of the material we choose to ignore it as a first approximation, and this
allows us to concentrate our study on the fundamental atomic properties of the ferrite.

For purposes of understanding its magnetic properties, we view the ferrite as a dense
collection of electrons and write

M(r, t) = Nm(r, t)

where N is the number density of electrons. Since we are assuming the ferrite is homoge-
neous, we take N to be independent of time and position. Multiplying (4.108) by −Nγ ,
we obtain an equation describing the evolution of M:

dM(r, t)

dt
= −γ M(r, t) × Bi (r, t). (4.109)

To determine the temporal response of the ferrite we must include a time-dependent
component of the applied field. We now let

H0(r, t) = Hi (r, t) = HT (r, t) + Hdc

where HT is the time-dependent component superimposed with the uniform static com-
ponent Hdc. Using B = µ0(H + M) we have from (4.109)

dM(r, t)

dt
= −γµ0M(r, t) × [HT (r, t) + Hdc + M(r, t)].

With M = MT (r, t) + Mdc and M × M = 0 this becomes

dMT (r, t)

dt
+ dMdc

dt
= −γµ0[MT (r, t) × HT (r, t) + MT (r, t) × Hdc +
+ Mdc × HT (r, t) + Mdc × Hdc. (4.110)

Let us assume that the ferrite is saturated. Then Mdc is aligned with Hdc and their cross
product vanishes. Let us further assume that the spectrum of HT is small compared
to Hdc at all frequencies: |H̃T (r, ω)| � Hdc. This small-signal assumption allows us to
neglect MT × HT . Using these and noting that the time derivative of Mdc is zero, we see
that (4.110) reduces to

dMT (r, t)

dt
= −γµ0[MT (r, t) × Hdc + Mdc × HT (r, t)]. (4.111)

To determine the frequency response we write (4.111) in terms of inverse Fourier
transforms and invoke the Fourier integral theorem to find that

jωM̃T (r, ω) = −γµ0[M̃T (r, ω) × Hdc + Mdc × H̃T (r, ω)].

Defining

γµ0Mdc = ωM ,



where ωM = |ωM | is the saturation magnetization frequency, we find that

M̃T + M̃T ×
[
ω0

jω

]
=

[
− 1

jω
ωM × H̃T

]
, (4.112)

where ω0 = γµ0Hdc with ω0 now called the gyromagnetic response frequency . This has
the form v + v × C = A, which has solution (4.80). Substituting into this expression and
remembering that ω0 is parallel to ωM , we find that

M̃T =
− 1

jωωM × H̃T + 1
ω2

{
ωM [ω0 · H̃T ] − (ω0 · ωM)H̃T

}
1 − ω2

0
ω2

.

If we define the dyadic ω̄M such that ω̄M · H̃T = ωM × H̃T , then we identify the dyadic
magnetic susceptibility

˜̄χm(ω) = jωω̄M + ωMω0 − ωMω0Ī

ω2 − ω2
0

(4.113)

with which we can write M̃(r, ω) = χ̄m(ω) · H̃(r, ω). In rectangular coordinates ω̄M is
represented by

[ω̄M ] =

 0 −ωMz ωMy

ωMz 0 −ωMx

−ωMy ωMx 0


 . (4.114)

Finally, using B̃ = µ0(H̃ + M̃) = µ0(Ī + ˜̄χm) · H̃ = ˜̄µ · H̃ we find that

˜̄µ(ω) = µ0[Ī + ˜̄χm(ω)].

To examine the properties of the dyadic permeability it is useful to write it in matrix
form. To do this we must choose a coordinate system. We shall assume that Hdc is
aligned with the z-axis so that Hdc = ẑHdc and thus ωM = ẑωM and ω0 = ẑω0. Then
(4.114) becomes

[ω̄M ] =

 0 −ωM 0

ωM 0 0
0 0 0




and we can write the susceptibility dyadic (4.113) as

[ ˜̄χm(ω)] = ωM

ω2 − ω2
0


−ω0 − jω 0

jω −ω0 0
0 0 0


 .

The permeability dyadic becomes

[ ˜̄µ(ω)] =

 µ − jκ 0

jκ µ 0
0 0 µ0


 (4.115)

where

µ = µ0

(
1 − ω0ωM

ω2 − ω2
0

)
, (4.116)

κ = µ0
ωωM

ω2 − ω2
0

. (4.117)



Because its permeability dyadic is that for a lossless gyrotropic material (2.33), we call
the ferrite gyromagnetic.

Since the ferrite is lossless, the dyadic permeability must be hermitian according to
(4.49). The specific form of (4.115) shows this explicitly. We also note that since the
sign of ωM is determined by that of Hdc, the dyadic permittivity obeys the symmetry
relation

µ̃i j (Hdc) = µ̃ j i (−Hdc),

which is the symmetry condition observed for a plasma in (4.87).
A lossy ferrite material can be modeled by adding a damping term to (4.111):

dM(r, t)

dt
= −γµ0 [MT (r, t) × Hdc + Mdc × HT (r, t)] + α

Mdc

Mdc
× dMT (r, t)

dt
,

where α is the damping parameter [40, 204]. This term tends to reduce the angle of
precession. Fourier transformation gives

jωM̃T = ω0 × M̃T − ωM × H̃T + α
ωM

ωM
× jωM̃T .

Remembering that ω0 and ωM are aligned we can write this as

M̃T + M̃T ×

ω0

(
1 + jα ω

ω0

)
jω


 =

[
− 1

jω
ωM × H̃T

]
.

This is identical to (4.112) with

ω0 → ω0

(
1 + jα

ω

ω0

)
.

Thus, we merely substitute this into (4.113) to find the susceptibility dyadic for a lossy
ferrite:

˜̄χm(ω) = jωω̄M + ωMω0 (1 + jαω/ω0) − ωMω0 (1 + jαω/ω0) Ī

ω2(1 + α2) − ω2
0 − 2 jαωω0

.

Making the same substitution into (4.115) we can write the dyadic permeability matrix
as

[ ˜̄µ(ω)] =

 µ̃xx µ̃xy 0

µ̃yx µ̃yy 0
0 0 µ0


 (4.118)

where

µ̃xx = µ̃yy = µ0 − µ0ωM
ω0

[
ω2(1 − α2) − ω2

0

] + jωα
[
ω2(1 + α2) + ω2

0

]
[
ω2(1 + α2) − ω2

0

]2 + 4α2ω2ω2
0

(4.119)

and

µ̃xy = −µ̃yx = 2µ0αω2ω0ωM − jµ0ωωM
[
ω2(1 + α2) − ω2

0

]
[
ω2(1 + α2) − ω2

0

]2 + 4α2ω2ω2
0

. (4.120)

In the case of a lossy ferrite, the hermitian nature of the permeability dyadic is lost.



4.7 Monochromatic fields and the phasor domain

The Fourier transform is very efficient for representing the nearly sinusoidal signals
produced by electronic systems such as oscillators. However, we should realize that the
elemental term e jωt by itself cannot represent any physical quantity; only a continuous
superposition of such terms can have physical meaning, because no physical process can
be truly monochromatic. All events must have transient periods during which they are
established. Even “monochromatic” light appears in bundles called quanta, interpreted
as containing finite numbers of oscillations.

Arguments about whether “monochromatic” or “sinusoidal steady-state” fields can
actually exist may sound purely academic. After all, a microwave oscillator can create
a wave train of 1010 oscillations within the first second after being turned on. Such a
waveform is surely as close to monochromatic as we would care to measure. But as with
all mathematical models of physical systems, we can get into trouble by making non-
physical assumptions, in this instance by assuming a physical system has always been
in the steady state. Sinusoidal steady-state solutions to Maxwell’s equations can lead to
troublesome infinities linked to the infinite energy content of each elemental component.
For example, an attempt to compute the energy stored within a lossless microwave cavity
under steady-state conditions gives an infinite result since the cavity has been building up
energy since t = −∞. We handle this by considering time-averaged quantities, but even
then must be careful when materials are dispersive (§ 4.5). Nevertheless, the steady-
state concept is valuable because of its simplicity and finds widespread application in
electromagnetics.

Since the elemental term is complex, we may use its real part, its imaginary part, or
some combination of both to represent a monochromatic (or time-harmonic) field. We
choose the representation

ψ(r, t) = ψ0(r) cos[ω̌t + ξ(r)], (4.121)

where ξ is the temporal phase angle of the sinusoidal function. The Fourier transform is

ψ̃(r, ω) =
∫ ∞

−∞
ψ0(r) cos[ω̌t + ξ(r)]e− jωt dt. (4.122)

Here we run into an immediate problem: the transform in (4.122) does not exist in the
ordinary sense since cos(ω̌t + ξ) is not absolutely integrable on (−∞, ∞). We should not
be surprised by this: the cosine function cannot describe an actual physical process (it
extends in time to ±∞), so it lacks a classical Fourier transform. One way out of this
predicament is to extend the meaning of the Fourier transform as we do in § A.1. Then
the monochromatic field (4.121) is viewed as having the generalized transform

ψ̃(r, ω) = ψ0(r)π
[
e jξ(r)δ(ω − ω̌) + e− jξ(r)δ(ω + ω̌)

]
. (4.123)

We can compute the inverse Fourier transform by substituting (123) into (2):

ψ(r, t) = 1

2π

∫ ∞

−∞
ψ0(r)π

[
e jξ(r)δ(ω − ω̌) + e− jξ(r)δ(ω + ω̌)

]
e jωt dω. (4.124)

By our interpretation of the Dirac delta, we see that the decomposition of the cosine
function has only two discrete components, located at ω = ±ω̌. So we have realized our



initial intention of having only a single elemental function present. The sifting property
gives

ψ(r, t) = ψ0(r)
e jω̌t e jξ(r) + e− jω̌t e− jξ(r)

2
= ψ0(r) cos[ω̌t + ξ(r)]

as expected.

4.7.1 The time-harmonic EM fields and constitutive relations

The time-harmonic fields are described using the representation (4.121) for each field
component. The electric field is

E(r, t) =
3∑

i=1

îi |Ei (r)| cos[ω̌t + ξ E
i (r)]

for example. Here |Ei | is the complex magnitude of the ith vector component, and ξ E
i is

the phase angle (−π < ξ E
i ≤ π). Similar terminology is used for the remaining fields.

The frequency-domain constitutive relations (4.11)–(4.15) may be written for the time-
harmonic fields by employing (4.124). For instance, for an isotropic material where

D̃(r, ω) = ε̃(r, ω)Ẽ(r, ω), B̃(r, ω) = µ̃(r, ω)H̃(r, ω),

with

ε̃(r, ω) = |ε̃(r, ω)|eξε(r,ω), µ̃(r, ω) = |µ̃(r, ω)|eξµ(r,ω),

we can write

D(r, t) =
3∑

i=1

îi |Di (r)| cos[ω̌t + ξ D
i (r)]

= 1

2π

∫ ∞

−∞

3∑
i=1

îi ε̃(r, ω)|Ei (r)|π
[
e jξ E

i (r)δ(ω − ω̌) + e− jξ E
i (r)δ(ω + ω̌)

]
e jωt dω

= 1

2

3∑
i=1

îi |Ei (r)|
[
ε̃(r, ω̌)e j (ω̌t+ jξ E

i (r)) + ε̃(r, −ω̌)e− j (ω̌t+ jξ E
i (r))

]
.

Since (4.25) shows that ε̃(r, −ω̌) = ε̃∗(r, ω̌), we have

D(r, t) = 1

2

3∑
i=1

îi |Ei (r)||ε̃(r, ω̌)|
[
e j (ω̌t+ jξ E

i (r)+ jξε(r,ω̌)) + e− j (ω̌t+ jξ E
i (r)+ jξε(r,ω̌))

]

=
3∑

i=1

îi |ε̃(r, ω̌)||Ei (r)| cos[ω̌t + ξ E
i (r) + ξ ε(r, ω̌)]. (4.125)

Similarly

B(r, t) =
3∑

i=1

îi |Bi (r)| cos[ω̌t + ξ B
i (r)]

=
3∑

i=1

îi |µ̃(r, ω̌)||Hi (r)| cos[ω̌t + ξ H
i (r) + ξµ(r, ω̌)].



4.7.2 The phasor fields and Maxwell’s equations

Sinusoidal steady-state computations using the forward and inverse transform formulas
are unnecessarily cumbersome. A much more efficient approach is to use the phasor
concept. If we define the complex function

ψ̌(r) = ψ0(r)e jξ(r)

as the phasor form of the monochromatic field ψ̃(r, ω), then the inverse Fourier transform
is easily computed by multiplying ψ̌(r) by e jω̌t and taking the real part. That is,

ψ(r, t) = Re
{
ψ̌(r)e jω̌t

} = ψ0(r) cos[ω̌t + ξ(r)]. (4.126)

Using the phasor representation of the fields, we can obtain a set of Maxwell equations
relating the phasor components. Let

Ě(r) =
3∑

i=1

îi Ěi (r) =
3∑

i=1

îi |Ei (r)|e jξ E
i (r)

represent the phasor monochromatic electric field, with similar formulas for the other
fields. Then

E(r, t) = Re
{
Ě(r)e jω̌t

} =
3∑

i=1

îi |Ei (r)| cos[ω̌t + ξ E
i (r)].

Substituting these expressions into Ampere’s law (2.2), we have

∇ × Re
{
Ȟ(r)e jω̌t

} = ∂

∂t
Re

{
Ď(r)e jω̌t

} + Re
{
J̌(r)e jω̌t

}
.

Since the real part of a sum of complex variables equals the sum of the real parts, we
can write

Re

{
∇ × Ȟ(r)e jω̌t − Ď(r)

∂

∂t
e jω̌t − J̌(r)e jω̌t

}
= 0. (4.127)

If we examine for an arbitrary complex function F = Fr + j Fi the quantity

Re
{
(Fr + j Fi )e

jω̌t
} = Re {(Fr cos ω̌t − Fi sin ω̌t) + j (Fr sin ω̌t + Fi cos ω̌t)} ,

we see that both Fr and Fi must be zero for the expression to vanish for all t . Thus
(4.127) requires that

∇ × Ȟ(r) = jω̌Ď(r) + J̌(r), (4.128)

which is the phasor Ampere’s law. Similarly we have

∇ × Ě(r) = − jω̌B̌(r), (4.129)
∇ · Ď(r) = ρ̌(r), (4.130)
∇ · B̌(r) = 0, (4.131)

and

∇ · J̌(r) = − jω̌ρ̌(r). (4.132)

The constitutive relations may be easily incorporated into the phasor concept. If we
use

Ďi (r) = ε̃(r, ω̌)Ěi (r) = |ε̃(r, ω̌)|e jξε(r,ω̌)|Ei (r)|e jξ E
i (r),



then forming

Di (r, t) = Re
{

Ďi (r)e jω̌t
}

we reproduce (4.125). Thus we may write

Ď(r) = ε̃(r, ω̌)Ě(r).

Note that we never write ε̌ or refer to a “phasor permittivity” since the permittivity does
not vary sinusoidally in the time domain.

An obvious benefit of the phasor method is that we can manipulate field quantities
without involving the sinusoidal time dependence. When our manipulations are complete,
we return to the time domain using (4.126).

The phasor Maxwell equations (4.128)–(4.131) are identical in form to the temporal
frequency-domain Maxwell equations (4.7)–(4.10), except that ω = ω̌ in the phasor
equations. This is sensible, since the phasor fields represent a single component of the
complete frequency-domain spectrum of the arbitrary time-varying fields. Thus, if the
phasor fields are calculated for some ω̌, we can make the replacements

ω̌ → ω, Ě(r) → Ẽ(r, ω), Ȟ(r) → H̃(r, ω), . . . ,

and obtain the general time-domain expressions by performing the inversion (4.2). Simi-
larly, if we evaluate the frequency-domain field Ẽ(r, ω) at ω = ω̌, we produce the phasor
field Ě(r) = Ẽ(r, ω̌) for this frequency. That is

Re
{
Ẽ(r, ω̌)e jω̌t

} =
3∑

i=1

îi |Ẽi (r, ω̌)| cos
(
ω̌t + ξ E (r, ω̌)

)
.

4.7.3 Boundary conditions on the phasor fields

The boundary conditions developed in § 4.3 for the frequency-domain fields may be
adapted for use with the phasor fields by selecting ω = ω̌. Let us include the effects of
fictitious magnetic sources and write

n̂12 × (Ȟ1 − Ȟ2) = J̌s, (4.133)
n̂12 × (Ě1 − Ě2) = −J̌ms, (4.134)
n̂12 · (Ď1 − Ď2) = ρ̌s, (4.135)
n̂12 · (B̌1 − B̌2) = ρ̌ms, (4.136)

and

n̂12 · (J̌1 − J̌2) = −∇s · J̌s − jω̌ρ̌s, (4.137)
n̂12 · (J̌m1 − J̌m2) = −∇s · J̌ms − jω̌ρ̌ms, (4.138)

where n̂12 points into region 1 from region 2.

4.8 Poynting’s theorem for time-harmonic fields

We can specialize Poynting’s theorem to time-harmonic form by substituting the time-
harmonic field representations. The result depends on whether we use the general form



(2.301), which is valid for dispersive materials, or (2.299). For nondispersive materials
(2.299) allows us to interpret the volume integral term as the time rate of change of
stored energy. But if the operating frequency lies within the realm of material dispersion
and loss, then we can no longer identify an explicit stored energy term.

4.8.1 General form of Poynting’s theorem

We begin with (2.301). Substituting the time-harmonic representations we obtain the
term

E(r, t) · ∂D(r, t)

∂t
=

[
3∑

i=1

îi |Ei | cos[ω̌t + ξ E
i ]

]
· ∂

∂t

[
3∑

i=1

îi |Di | cos[ω̌t + ξ D
i ]

]

= −ω̌

3∑
i=1

|Ei ||Di | cos[ω̌t + ξ E
i ] sin[ω̌t + ξ D

i ].

Since 2 sin A cos B ≡ sin(A + B) + sin(A − B) we have

E(r, t) · ∂

∂t
D(r, t) = −1

2

3∑
i=1

ω̌|Ei ||Di |SDE
ii (t),

where

SDE
ii (t) = sin(2ω̌t + ξ D

i + ξ E
i ) + sin(ξ D

i − ξ E
i )

describes the temporal dependence of the field product. Separating the current into an
impressed term Ji and a secondary term Jc (assumed to be the conduction current) as
J = Ji + Jc and repeating the above steps with the other terms, we obtain

−1

2

∫
V

3∑
i=1

|J i
i ||Ei |C J i E

ii (t) dV = 1

2

∮
S

3∑
i, j=1

|Ei ||Hj |(îi × î j ) · n̂C E H
i j (t) d S +

+1

2

∫
V

3∑
i=1

{−ω̌|Di ||Ei |SDE
ii (t) − ω̌|Bi ||Hi |SB H

ii (t) + |J c
i ||Ei |C J c E

ii (t)
}

dV, (4.139)

where

SB H
ii (t) = sin(2ω̌t + ξ B

i + ξ H
i ) + sin(ξ B

i − ξ H
i ),

C E H
i j (t) = cos(2ω̌t + ξ E

i + ξ H
j ) + cos(ξ E

i − ξ H
j ),

and so on.
We see that each power term has two temporal components: one oscillating at fre-

quency 2ω̌, and one constant with time. The oscillating component describes power that
cycles through the various mechanisms of energy storage, dissipation, and transfer across
the boundary. Dissipation may be produced through conduction processes or through
polarization and magnetization phase lag, as described by the volume term on the right-
hand side of (4.139). Power may also be delivered to the fields either from the sources,
as described by the volume term on the left-hand side, or from an active medium, as
described by the volume term on the right-hand side. The time-average balance of power
supplied to the fields and extracted from the fields throughout each cycle, including that



transported across the surface S, is given by the constant terms in (4.139):

−1

2

∫
V

3∑
i=1

|J i
i ||Ei | cos(ξ J i

i − ξ E
i ) dV = 1

2

∫
V

3∑
i=1

{
ω̌|Ei ||Di | sin(ξ E

i − ξ D
i )+

+ω̌|Bi ||Hi | sin(ξ H
i − ξ B

i ) + |J c
i ||Ei | cos(ξ J c

i − ξ E
i )

}
dV +

+1

2

∮
S

3∑
i, j=1

|Ei ||Hj |(îi × î j ) · n̂ cos(ξ E
i − ξ H

j ) d S. (4.140)

We associate one mechanism for time-average power loss with the phase lag between
applied field and resulting polarization or magnetization. We can see this more clearly
if we use the alternative form of the Poynting theorem (2.302) written in terms of the
polarization and magnetization vectors. Writing

P(r, t) =
3∑

i=1

|Pi (r)| cos[ω̌t + ξ P
i (r)], M(r, t) =

3∑
i=1

|Mi (r)| cos[ω̌t + ξ M
i (r)],

and substituting the time-harmonic fields, we see that

−1

2

∫
V

3∑
i=1

|Ji ||Ei |C J E
ii (t) dV + ω̌

2

∫
V

3∑
i=1

[|Pi ||Ei |S P E
ii (t) + µ0|Mi ||Hi |SM H

ii (t)
]

dV

= − ω̌

2

∫
V

3∑
i=1

[
ε0|Ei |2SE E

ii (t) + µ0|Hi |2SH H
ii (t)

]
dV +

+1

2

∮
S

3∑
i, j=1

|Ei ||Hj |(îi × î j ) · n̂C E H
i j (t) d S. (4.141)

Selection of the constant part gives the balance of time-average power:

−1

2

∫
V

3∑
i=1

|Ji ||Ei | cos(ξ J
i − ξ E

i ) dV

= ω̌

2

∫
V

3∑
i=1

[|Ei ||Pi | sin(ξ E
i − ξ P

i ) + µ0|Hi ||Mi | sin(ξ H
i − ξ M

i )
]

dV +

+1

2

∮
S

3∑
i, j=1

|Ei ||Hj |(îi × î j ) · n̂ cos(ξ E
i − ξ H

j ) d S. (4.142)

Here the power loss associated with the lag in alignment of the electric and magnetic
dipoles is easily identified as the volume term on the right-hand side, and is seen to arise
through the interaction of the fields with the equivalent sources as described through the
phase difference between E and P and between H and M. If these pairs are in phase, then
the time-average power balance reduces to that for a dispersionless material, equation
(4.146).

4.8.2 Poynting’s theorem for nondispersive materials

For nondispersive materials (2.299) is appropriate. We shall carry out the details here
so that we may examine the power-balance implications of nondispersive media. We



have, substituting the field expressions,

−1

2

∫
V

3∑
i=1

|J i
i ||Ei |C J i E

ii (t) dV = 1

2

∫
V

3∑
i=1

|J c
i ||Ei |C J c E

ii (t) dV +

+ ∂

∂t

∫
V

3∑
i=1

{
1

4
|Di ||Ei |C DE

ii (t) + 1

4
|Bi ||Hi |C B H

ii (t)

}
dV +

+1

2

∮
S

3∑
i, j=1

|Ei ||Hj |(îi × î j ) · n̂C E H
i j (t) d S. (4.143)

Here we remember that the conductivity relating E to Jc must also be nondispersive.
Note that the electric and magnetic energy densities we(r, t) and wm(r, t) have the time-
average values 〈we(r, t)〉 and 〈wm(r, t)〉 given by

〈we(r, t)〉 = 1

T

∫ T/2

−T/2

1

2
E(r, t) · D(r, t) dt = 1

4

3∑
i=1

|Ei ||Di | cos(ξ E
i − ξ D

i )

= 1

4
Re

{
Ě(r) · Ď∗(r)

}
(4.144)

and

〈wm(r, t)〉 = 1

T

∫ T/2

−T/2

1

2
B(r, t) · H(r, t) dt = 1

4

3∑
i=1

|Bi ||Hi | cos(ξ H
i − ξ B

i )

= 1

4
Re

{
Ȟ(r) · B̌∗(r)

}
, (4.145)

where T = 2π/ω̌. We have already identified the energy stored in a nondispersive material
(§ 4.5.2). If (4.144) is to match with (4.62), the phases of Ě and Ď must match: ξ E

i = ξ D
i .

We must also have ξ H
i = ξ B

i . Since in a dispersionless material σ must be independent
of frequency, from J̌c = σ Ě we also see that ξ J c

i = ξ E
i .

Upon differentiation the time-average stored energy terms in (4.143) disappear, giving

−1

2

∫
V

3∑
i=1

|J i
i ||Ei |C J i E

ii (t) dV = 1

2

∫
V

3∑
i=1

|J c
i ||Ei |C E E

ii (t) dV −

−2ω̌

∫
V

3∑
i=1

{
1

4
|Di ||Ei |SE E

ii (t) + 1

4
|Bi ||Hi |SB B

ii (t)

}
dV +

+1

2

∮
S

3∑
i, j=1

|Ei ||Hj |(îi × î j ) · n̂C E H
i j (t) d S.

Equating the constant terms, we find the time-average power balance expression

−1

2

∫
V

3∑
i=1

|J i
i ||Ei | cos(ξ J i

i − ξ E
i ) dV = 1

2

∫
V

3∑
i=1

|J c
i ||Ei | dV +

+1

2

∮
S

3∑
i, j=1

|Ei ||Hj |(îi × î j ) · n̂ cos(ξ E
i − ξ H

j ) d S. (4.146)



This can be written more compactly using phasor notation as∫
V

pJ (r) dV =
∫

V
pσ (r) dV +

∮
S

Sav(r) · n̂ d S (4.147)

where

pJ (r) = −1

2
Re

{
Ě(r) · J̌i∗(r)

}
is the time-average density of power delivered by the sources to the fields in V ,

pσ (r) = 1

2
Ě(r) · J̌c∗(r)

is the time-average density of power transferred to the conducting material as heat, and

Sav(r) · n̂ = 1

2
Re

{
Ě(r) × Ȟ∗(r)

} · n̂

is the density of time-average power transferred across the boundary surface S. Here

Sc = Ě(r) × Ȟ∗(r)

is called the complex Poynting vector and Sav is called the time-average Poynting vector.
Comparison of (4.146) with (4.140) shows that nondispersive materials cannot manifest

the dissipative (or active) properties determined by the term

1

2

∫
V

3∑
i=1

{
ω̌|Ei ||Di | sin(ξ E

i − ξ D
i ) + ω̌|Bi ||Hi | sin(ξ H

i − ξ B
i ) + |J c

i ||Ei | cos(ξ J c

i − ξ E
i )

}
dV .

This term can be used to classify materials as lossless, lossy, or active, as shown next.

4.8.3 Lossless, lossy, and active media

In § 4.5.1 we classified materials based on whether they dissipate (or provide) energy
over the period of a transient event. We can provide the same classification based on
their steady-state behavior.

We classify a material as lossless if the time-average flow of power entering a homoge-
neous body is zero when there are sources external to the body, but no sources internal
to the body. This implies that the mechanisms within the body either do not dissipate
power that enters, or that there is a mechanism that creates energy to exactly balance the
dissipation. If the time-average power entering is positive, then the material dissipates
power and is termed lossy. If the time-average power entering is negative, then power
must originate from within the body and the material is termed active. (Note that the
power associated with an active body is not described as arising from sources, but is
rather described through the constitutive relations.)

Since materials are generally inhomogeneous we may apply this concept to a vanish-
ingly small volume, thus invoking the point-form of Poynting’s theorem. From (4.140)
we see that the time-average influx of power density is given by

−∇ · Sav(r) = pin(r) = 1

2

3∑
i=1

{
ω̌|Ei ||Di | sin(ξ E

i − ξ D
i ) + ω̌|Bi ||Hi | sin(ξ H

i − ξ B
i )+

+ |J c
i ||Ei | cos(ξ J c

i − ξ E
i )

}
.



Materials are then classified as follows:

pin(r) = 0, lossless,
pin(r) > 0, lossy,

pin(r) ≥ 0, passive,
pin(r) < 0, active.

We see that if ξ E
i = ξ D

i , ξ H
i = ξ B

i , and Jc = 0, then the material is lossless. This implies
that (D,E) and (B,H) are exactly in phase and there is no conduction current. If the
material is isotropic, we may substitute from the constitutive relations (4.21)–(4.23) to
obtain

pin(r) = − ω̌

2

3∑
i=1

{
|Ei |2

[
|ε̃| sin(ξ ε) − |σ̃ |

ω̌
cos(ξσ )

]
+ |µ̃||Hi |2 sin(ξµ)

}
. (4.148)

The first two terms can be regarded as resulting from a single complex permittivity
(4.26). Then (4.148) simplifies to

pin(r) = − ω̌

2

3∑
i=1

{|ε̃c||Ei |2 sin(ξ εc
) + |µ̃||Hi |2 sin(ξµ)

}
. (4.149)

Now we can see that a lossless medium, which requires (4.149) to vanish, has ξ εc =
ξµ = 0 (or perhaps the unlikely condition that dissipative and active effects within the
electric and magnetic terms exactly cancel). To have ξµ = 0 we need B and H to be in
phase, hence we need µ̃(r, ω) to be real. To have ξ εc = 0 we need ξ ε = 0 (ε̃(r, ω) real)
and σ̃ (r, ω) = 0 (or perhaps the unlikely condition that the active and dissipative effects
of the permittivity and conductivity exactly cancel).

A lossy medium requires (4.149) to be positive. This occurs when ξµ < 0 or ξ εc
< 0,

meaning that the imaginary part of the permeability or complex permittivity is negative.
The complex permittivity has a negative imaginary part if the imaginary part of ε̃ is
negative or if the real part of σ̃ is positive. Physically, ξ ε < 0 means that ξ D < ξ E and
thus the phase of the response field D lags that of the excitation field E. This results
from a delay in the polarization alignment of the atoms, and leads to dissipation of power
within the material.

An active medium requires (4.149) to be negative. This occurs when ξµ > 0 or ξ εc
> 0,

meaning that the imaginary part of the permeability or complex permittivity is positive.
The complex permittivity has a positive imaginary part if the imaginary part of ε̃ is
positive or if the real part of σ̃ is negative.

In summary, a passive isotropic medium is lossless when the permittivity and perme-
ability are real and when the conductivity is zero. A passive isotropic medium is lossy
when one or more of the following holds: the permittivity is complex with negative imag-
inary part, the permeability is complex with negative imaginary part, or the conductivity
has a positive real part. Finally, a complex permittivity or permeability with positive
imaginary part or a conductivity with negative real part indicates an active medium.

For anisotropic materials the interpretation of pin is not as simple. Here we find that
the permittivity or permeability dyadic may be complex, and yet the material may still
be lossless. To determine the condition for a lossless medium, let us recompute pin using
the constitutive relations (4.18)–(4.20). With these we have

E ·
[
∂D
∂t

+ Jc

]
+ H · ∂B

∂t
= ω̌

3∑
i, j=1

|Ei ||E j |
[

− |ε̃i j | sin(ω̌t + ξ E
j + ξ ε

i j ) cos(ω̌t + ξ E
i ) +



+ |σ̃i j |
ω̌

cos(ω̌t + ξ E
j + ξσ

i j ) cos(ω̌t + ξ E
i )

]
+

+ ω̌

3∑
i, j=1

|Hi ||Hj |
[
−|µ̃i j | sin(ω̌t + ξ H

j + ξ
µ

i j ) cos(ω̌t + ξ H
i )

]
.

Using the angle-sum formulas and discarding the time-varying quantities, we may obtain
the time-average input power density:

pin(r) = − ω̌

2

3∑
i, j=1

|Ei ||E j |
[
|ε̃i j | sin(ξ E

j − ξ E
i + ξ ε

i j ) − |σ̃i j |
ω̌

cos(ξ E
j − ξ E

i + ξσ
i j )

]
−

− ω̌

2

3∑
i, j=1

|Hi ||Hj ||µ̃i j | sin(ξ H
j − ξ H

i + ξ
µ

i j ).

The reader can easily verify that the conditions that make this quantity vanish, thus
describing a lossless material, are

|ε̃i j | = |ε̃ j i |, ξ ε
i j = −ξ ε

j i , (4.150)
|σ̃i j | = |σ̃ j i |, ξσ

i j = −ξσ
j i + π, (4.151)

|µ̃i j | = |µ̃ j i |, ξ
µ

i j = −ξ
µ

j i . (4.152)

Note that this requires ξ ε
i i = ξ

µ

i i = ξσ
i i = 0.

The condition (4.152) is easily written in dyadic form as

˜̄µ(r, ω̌)† = ˜̄µ(r, ω̌) (4.153)

where “†” stands for the conjugate-transpose operation. The dyadic permeability ˜̄µ is
hermitian. The set of conditions (4.150)–(4.151) can also be written quite simply using
the complex permittivity dyadic (4.24):

˜̄εc
(r, ω̌)† = ˜̄εc

(r, ω̌). (4.154)

Thus, an anisotropic material is lossless when the both the dyadic permeability and the
complex dyadic permittivity are hermitian. Since ω̌ is arbitrary, these results are exactly
those obtained in § 4.5.1. Note that in the special case of an isotropic material the
conditions (4.153) and (4.154) can only hold if ε̃ and µ̃ are real and σ̃ is zero, agreeing
with our earlier conclusions.

4.9 The complex Poynting theorem

An equation having a striking resemblance to Poynting’s theorem can be obtained
by direct manipulation of the phasor-domain Maxwell equations. The result, although
certainly satisfied by the phasor fields, does not replace Poynting’s theorem as the power-
balance equation for time-harmonic fields. We shall be careful to contrast the interpre-
tation of the phasor expression with the actual time-harmonic Poynting theorem.

We begin by dotting both sides of the phasor-domain Faraday’s law with Ȟ∗ to obtain

Ȟ∗ · (∇ × Ě) = − jω̌Ȟ∗ · B̌.



Taking the complex conjugate of the phasor-domain Ampere’s law and dotting with Ě,
we have

Ě · (∇ × Ȟ∗) = Ě · J̌∗ − jω̌Ě · Ď∗.

We subtract these expressions and use (B.44) to write

−Ě · J̌∗ = ∇ · (Ě × Ȟ∗) − jω̌[Ě · Ď∗ − B̌ · Ȟ∗].

Finally, integrating over the volume region V and dividing by two, we have

− 1

2

∫
V

Ě · J̌∗ dV = 1

2

∮
S
(Ě × Ȟ∗) · dS − 2 jω̌

∫
V

[
1

4
Ě · Ď∗ − 1

4
B̌ · Ȟ∗

]
dV . (4.155)

This is known as the complex Poynting theorem, and is an expression that must be obeyed
by the phasor fields.

As a power balance theorem, the complex Poynting theorem has meaning only for
dispersionless materials. If we let J = Ji +Jc and assume no dispersion, (4.155) becomes

−1

2

∫
V

Ě · J̌i∗ dV = 1

2

∫
V

Ě · J̌c∗ dV + 1

2

∮
S
(Ě × Ȟ∗) · dS −

− 2 jω
∫

V
[〈we〉 − 〈wm〉] dV (4.156)

where 〈we〉 and 〈wm〉 are the time-average stored electric and magnetic energy densities
as described in (4.62)–(4.63). Selection of the real part now gives

− 1

2

∫
V

Re
{
Ě · J̌i∗} dV = 1

2

∫
V

Ě · J̌c∗ dV + 1

2

∮
S

Re
{
Ě × Ȟ∗} · dS, (4.157)

which is identical to (4.147). Thus the real part of the complex Poynting theorem gives
the balance of time-average power for a dispersionless material.

Selection of the imaginary part of (4.156) gives the balance of imaginary, or reactive
power:

−1

2

∫
V

Im
{
Ě · J̌i∗} dV = 1

2

∮
S

Im
{
Ě × Ȟ∗} · dS − 2ω̌

∫
V

[〈we〉 − 〈wm〉] dV . (4.158)

In general, the reactive power balance does not have a simple physical interpretation (it
is not the balance of the oscillating terms in (4.139)). However, an interesting concept
can be gleaned from it. If the source current and electric field are in phase, and there is
no reactive power leaving S, then the time-average stored electric energy is equal to the
time-average stored magnetic energy:∫

V
〈we〉 dV =

∫
V
〈wm〉 dV .

This is the condition for “resonance.” An example is a series RLC circuit with the source
current and voltage in phase. Here the stored energy in the capacitor is equal to the
stored energy in the inductor and the input impedance (ratio of voltage to current) is
real. Such a resonance occurs at only one value of frequency. In more complicated
electromagnetic systems resonance may occur at many discrete eigenfrequencies.



4.9.1 Boundary condition for the time-average Poynting vector

In § 2.9.5 we developed a boundary condition for the normal component of the time-
domain Poynting vector. For time-harmonic fields we can derive a similar boundary
condition using the time-average Poynting vector. Consider a surface S across which
the electromagnetic sources and constitutive parameters are discontinuous, as shown in
Figure 2.6. Let n̂12 be the unit normal to the surface pointing into region 1 from region
2. If we apply the large-scale form of the complex Poynting theorem (4.155) to the two
separate surfaces shown in Figure 2.6, we obtain

1

2

∫
V

[
Ě · J̌∗ − 2 jω̌

(
1

4
Ě · Ď∗ − 1

4
B̌ · Ȟ∗

)]
dV + 1

2

∮
S

Sc · n̂ d S

= 1

2

∫
S10

n̂12 · (Sc
1 − Sc

2) d S (4.159)

where Sc = Ě × Ȟ∗ is the complex Poynting vector. If, on the other hand, we apply the
large-scale form of Poynting’s theorem to the entire volume region including the surface
of discontinuity, and include the surface current contribution, we have

1

2

∫
V

[
Ě · J̌∗ − 2 jω̌

∫
V

(
1

4
Ě · Ď∗ − 1

4
B̌ · Ȟ∗

)]
dV + 1

2

∮
S

Sc · n̂ d S

= −1

2

∫
S10

J̌∗
s · Ě d S. (4.160)

If we wish to have the integrals over V and S in (4.159) and (4.160) produce identical
results, then we must postulate the two conditions

n̂12 × (Ě1 − Ě2) = 0

and

n̂12 · (Sc
1 − Sc

2) = −J̌∗
s · Ě. (4.161)

The first condition is merely the continuity of tangential electric field; it allows us to be
nonspecific as to which value of E we use in the second condition. If we take the real
part of the second condition we have

n̂12 · (Sav,1 − Sav,2) = pJ s , (4.162)

where Sav = 1
2 Re{Ě × Ȟ∗} is the time-average Poynting power flow density and pJ s =

− 1
2 Re{J̌∗

s · Ě} is the time-average density of power delivered by the surface sources. This
is the desired boundary condition on the time-average power flow density.

4.10 Fundamental theorems for time-harmonic fields

4.10.1 Uniqueness

If we think of a sinusoidal electromagnetic field as the steady-state culmination of a
transient event that has an identifiable starting time, then the conditions for uniqueness
established in § 2.2.1 are applicable. However, a true time-harmonic wave, which has
existed since t = −∞ and thus has infinite energy, must be interpreted differently.



Our approach is similar to that of § 2.2.1. Consider a simply-connected region of
space V bounded by surface S, where both V and S contain only ordinary points. The
phasor-domain fields within V are associated with a phasor current distribution J̌, which
may be internal to V (entirely or in part). We seek conditions under which the phasor
electromagnetic fields are uniquely determined. Let the field set (Ě1, Ď1, B̌1, Ȟ1) satisfy
Maxwell’s equations (4.128) and (4.129) associated with the current J̌ (along with an
appropriate set of constitutive relations), and let (Ě2, Ď2, B̌2, Ȟ2) be a second solution.
To determine the conditions for uniqueness of the fields, we look for a situation that
results in Ě1 = Ě2, Ȟ1 = Ȟ2, and so on. The electromagnetic fields must obey

∇ × Ȟ1 = jω̌Ď1 + J̌,

∇ × Ě1 = − jω̌B̌1,

∇ × Ȟ2 = jω̌Ď2 + J̌,

∇ × Ě2 = − jω̌B̌2.

Subtracting these and defining the difference fields Ě0 = Ě1 − Ě2, Ȟ0 = Ȟ1 − Ȟ2, and so
on, we find that

∇ × Ȟ0 = jω̌Ď0, (4.163)
∇ × Ě0 = − jω̌B̌0. (4.164)

Establishing the conditions under which the difference fields vanish throughout V , we
shall determine the conditions for uniqueness.

Dotting (4.164) by Ȟ∗
0 and dotting the complex conjugate of (4.163) by Ě0, we have

Ȟ∗
0 · (∇ × Ě0

) = − jω̌B̌0 · Ȟ∗
0,

Ě0 · (∇ × Ȟ∗
0

) = − jω̌Ď∗
0 · Ě0.

Subtraction yields

Ȟ∗
0 · (∇ × Ě0

) − Ě0 · (∇ × Ȟ∗
0

) = − jω̌B̌0 · Ȟ∗
0 + jω̌Ď∗

0 · Ě0

which, by (B.44), can be written as

∇ · (
Ě0 × Ȟ∗

0

) = jω̌
[
Ě0 · Ď∗

0 − B̌0 · Ȟ∗
0

]
.

Adding this expression to its complex conjugate, integrating over V , and using the di-
vergence theorem, we obtain

Re
∮

S

[
Ě0 × Ȟ∗

0

] · dS = − j
ω̌

2

∫
V

[(
Ě∗

0 · Ď0 − Ě0 · Ď∗
0

) + (
Ȟ∗

0 · B̌0 − Ȟ0 · B̌∗
0

)]
dV .

Breaking S into two arbitrary portions and using (??), we obtain

Re
∮

S1

Ȟ∗
0 · (n̂ × Ě0) d S − Re

∮
S2

Ě0 · (n̂ × Ȟ∗
0) d S =

− j
ω̌

2

∫
V

[(
Ě∗

0 · Ď0 − Ě0 · Ď∗
0

) + (
Ȟ∗

0 · B̌0 − Ȟ0 · B̌∗
0

)]
dV . (4.165)

Now if n̂ × E0 = 0 or n̂ × H0 = 0 over all of S, or some combination of these conditions
holds over all of S, then∫

V

[(
Ě∗

0 · Ď0 − Ě0 · Ď∗
0

) + (
Ȟ∗

0 · B̌0 − Ȟ0 · B̌∗
0

)]
dV = 0. (4.166)



This implies a relationship between Ě0, Ď0, B̌0, and Ȟ0. Since V is arbitrary we see that
one possible relationship is simply to have one of each pair (Ě0, Ď0) and (Ȟ0, B̌0) equal to
zero. Then, by (4.163) and (4.164), Ě0 = 0 implies B̌0 = 0, and Ď0 = 0 implies Ȟ0 = 0.
Thus Ě1 = Ě2, etc., and the solution is unique throughout V . However, we cannot in
general rule out more complicated relationships. The number of possibilities depends on
the additional constraints on the relationship between Ě0, Ď0, B̌0, and Ȟ0 that we must
supply to describe the material supporting the field — i.e., the constitutive relationships.
For a simple medium described by µ̃(ω) and ε̃c(ω), equation (4.166) becomes∫

V

(|Ě0|2[ε̃c(ω̌) − ε̃c∗(ω̌)] + |Ȟ0|2[µ̃(ω̌) − µ̃∗(ω̌)]
)

dV = 0

or ∫
V

[|Ě0|2ε̃c′′(ω̌) + |Ȟ0|2µ̃′′(ω̌)
]

dV = 0.

For a lossy medium, ε̃c′′ < 0 and µ̃′′ < 0 as shown in § 4.5.1. So both terms in the
integral must be negative. For the integral to be zero each term must vanish, requiring
Ě0 = Ȟ0 = 0, and uniqueness is guaranteed.

When establishing more complicated constitutive relations we must be careful to ensure
that they lead to a unique solution, and that the condition for uniqueness is understood.
In the case above, the assumption n̂× Ě0

∣∣
S = 0 implies that the tangential components of

Ě1 and Ě2 are identical over S — that is, we must give specific values of these quantities
on S to ensure uniqueness. A similar statement holds for the condition n̂ × Ȟ0

∣∣
S = 0.

In summary, the conditions for the fields within a region V containing lossy isotropic
materials to be unique are as follows:

1. the sources within V must be specified;
2. the tangential component of the electric field must be specified over all or part of

the bounding surface S;
3. the tangential component of the magnetic field must be specified over the remainder

of S.

We may question the requirement of a lossy medium to demonstrate uniqueness of the
phasor fields. Does this mean that within a vacuum the specification of tangential fields
is insufficient? Experience shows that the fields in such a region are indeed properly
described by the surface fields, and it is just a case of the mathematical model being
slightly out of sync with the physics. As long as we recognize that the sinusoidal steady
state requires an initial transient period, we know that specification of the tangential
fields is sufficient. We must be careful, however, to understand the restrictions of the
mathematical model. Any attempt to describe the fields within a lossless cavity, for
instance, is fraught with difficulty if true time-harmonic fields are used to model the
actual physical fields. A helpful mathematical strategy is to think of free space as the
limit of a lossy medium as the loss recedes to zero. Of course this does not represent
the physical state of “empty” space. Although even interstellar space may have a few
particles for every cubic meter to interact with the electromagnetic field, the density of
these particles invalidates our initial macroscopic assumptions.

Another important concern is whether we can extend the uniqueness argument to all
of space. If we let S recede to infinity, must we continue to specify the fields over S, or
is it sufficient to merely specify the sources within S? Since the boundary fields provide
information to the internal region about sources that exist outside S, it is sensible to



assume that as S → ∞ there are no sources external to S and thus no need for the
boundary fields. This is indeed the case. If all sources are localized, the fields they
produce behave in just the right manner for the surface integral in (4.165) to vanish, and
thus uniqueness is again guaranteed. Later we will find that the electric and magnetic
fields produced by a localized source at great distance have the form of a spherical wave:

Ě ∼ Ȟ ∼ e− jkr

r
.

If space is taken to be slightly lossy, then k is complex with negative imaginary part, and
thus the fields decrease exponentially with distance from the source. As we argued above,
it may not be physically meaningful to assume that space is lossy. Sommerfeld postulated
that even for lossless space the surface integral in (4.165) vanishes as S → ∞. This has
been verified experimentally, and provides the following restrictions on the free-space
fields known as the Sommerfeld radiation condition:

lim
r→∞ r

[
η0r̂ × Ȟ(r) + Ě(r)

] = 0, (4.167)

lim
r→∞ r

[
r̂ × Ě(r) − η0Ȟ(r)

] = 0, (4.168)

where η0 = (µ0/ε0)
1/2. Later we shall see how these expressions arise from the integral

solutions to Maxwell’s equations.

4.10.2 Reciprocity revisited

In § 2.9.3 we discussed the basic concept of reciprocity, but were unable to examine
its real potential since we had not yet developed the theory of time-harmonic fields. In
this section we shall apply the reciprocity concept to time-harmonic sources and fields,
and investigate the properties a material must display to be reciprocal.

The general form of the reciprocity theorem. As in § 2.9.3, we consider a closed
surface S enclosing a volume V . Sources of an electromagnetic field are located either
inside or outside S. Material media may lie within S, and their properties are described
in terms of the constitutive relations. To obtain the time-harmonic (phasor) form of the
reciprocity theorem we proceed as in § 2.9.3 but begin with the phasor forms of Maxwell’s
equations. We find

∇ · (Ěa × Ȟb − Ěb × Ȟa) = jω̌[Ȟa · B̌b − Ȟb · B̌a] − jω̌[Ěa · Ďb − Ěb · Ďa] +
+ [Ěb · J̌a − Ěa · J̌b − Ȟb · J̌ma + Ȟa · J̌mb], (4.169)

where (Ěa, Ďa, B̌a, Ȟa) are the fields produced by the phasor sources (J̌a, J̌ma) and (Ěb, Ďb, B̌b, Ȟb)

are the fields produced by an independent set of sources (J̌b, J̌mb).
As in § 2.9.3, we are interested in the case in which the first two terms on the right-

hand side of (4.169) are zero. To see the conditions under which this might occur, we
substitute the constitutive equations for a bianisotropic medium

Ď = ˜̄ξ · Ȟ + ˜̄ε · Ě,

B̌ = ˜̄µ · Ȟ + ˜̄ζ · Ě,

into (4.169), where each of the constitutive parameters is evaluated at ω̌. Setting the
two terms to zero gives

jω̌
[
Ȟa ·

(
˜̄µ · Ȟb + ˜̄ζ · Ěb

)
− Ȟb ·

(
˜̄µ · Ȟa + ˜̄ζ · Ěa

)]
−



− jω̌
[
Ěa ·

(
ˇ̄ξ · Ȟb + ˜̄ε · Ěb

)
− Ěb ·

(
˜̄ξ · Ȟa + ˜̄ε · Ěa

)]
= 0,

which holds if

Ȟa · ˜̄µ · Ȟb − Ȟb · ˜̄µ · Ȟa = 0,

Ȟa · ˜̄ζ · Ěb + Ěb · ˜̄ξ · Ȟa = 0,

Ěa · ˜̄ξ · Ȟb + Ȟb · ˜̄ζ · Ěa = 0,

Ěa · ˜̄ε · Ěb − Ěb · ˜̄ε · Ěa = 0.

These in turn hold if

˜̄ε = ˜̄εT
, ˜̄µ = ˜̄µT

, ˜̄ξ = − ˜̄ζ
T
, ˜̄ζ = − ˜̄ξ

T
. (4.170)

These are the conditions for a reciprocal medium. For example, an anisotropic dielectric
is a reciprocal medium if its permittivity dyadic is symmetric. An isotropic medium
described by scalar quantities µ and ε is certainly reciprocal. In contrast, lossless Gy-
rotropic media are nonreciprocal since the constitutive parameters obey ˜̄ε = ˜̄ε† or ˜̄µ = ˜̄µ†

rather than ˜̄ε = ˜̄εT or ˜̄µ = ˜̄µT .
For a reciprocal medium (4.169) reduces to

∇ · (Ěa × Ȟb − Ěb × Ȟa) = [
Ěb · J̌a − Ěa · J̌b − Ȟb · J̌ma + Ȟa · J̌mb

]
. (4.171)

At points where the sources are zero, or are conduction currents described entirely by
Ohm’s law J̌ = σ Ě, we have

∇ · (Ěa × Ȟb − Ěb × Ȟa) = 0, (4.172)

known as Lorentz’s lemma. If we integrate (4.171) over V and use the divergence theorem
we obtain∮

S

[
Ěa × Ȟb − Ěb × Ȟa

] · dS =
∫

V

[
Ěb · J̌a − Ěa · J̌b − Ȟb · J̌ma + Ȟa · J̌mb

]
dV .

(4.173)

This is the general form of the Lorentz reciprocity theorem, and is valid when V contains
reciprocal media as defined in (4.170).

Note that by an identical set of steps we find that the frequency-domain fields obey
an identical Lorentz lemma and reciprocity theorem.

The condition for reciprocal systems. The quantity

〈f̌a, ǧb〉 =
∫

V

[
Ěa · J̌b − Ȟa · J̌mb

]
dV

is called the reaction between the source fields ǧ of set b and the mediating fields f̌ of an
independent set a. Note that Ěa · J̌b is not quite a power density, since the current lacks
a complex conjugate. Using this reaction concept, first introduced by Rumsey [161], we
can write (4.173) as

〈f̌b, ǧa〉 − 〈f̌a, ǧb〉 =
∮

S

[
Ěa × Ȟb − Ěb × Ȟa

] · dS. (4.174)



We see that if there are no sources within S then∮
S

[
Ěa × Ȟb − Ěb × Ȟa

] · dS = 0. (4.175)

Whenever (4.175) holds we say that the “system” within S is reciprocal. Thus, for
instance, a region of empty space is a reciprocal system.

A system need not be source-free in order for (4.175) to hold. Suppose the relationship
between Ě and Ȟ on S is given by the impedance boundary condition

Ět = −Z(n̂ × Ȟ), (4.176)

where Ět is the component of Ě tangential to S so that n̂ × E = n̂ × Et , and the complex
wall impedance Z may depend on position. By (4.176) we can write

(Ěa × Ȟb − Ěb × Ȟa) · n̂ = Ȟb · (n̂ × Ěa) − Ȟa · (n̂ × Ěb)

= −ZȞb · [n̂ × (n̂ × Ȟa)] + ZȞa · [n̂ × (n̂ × Ȟb)].

Since n̂ × (n̂ × Ȟ) = n̂(n̂ · Ȟ) − Ȟ, the right-hand side vanishes. Hence (4.175) still holds
even though there are sources within S.

The reaction theorem. When sources lie within the surface S, and the fields on S
obey (4.176), we obtain an important corollary of the Lorentz reciprocity theorem. We
have from (4.174) the additional result

〈f̌a, ǧb〉 − 〈f̌b, ǧa〉 = 0.

Hence a reciprocal system has

〈f̌a, ǧb〉 = 〈f̌b, ǧa〉 (4.177)

(which holds even if there are no sources within S, since then the reactions would be
identically zero). This condition for reciprocity is sometimes called the reaction theorem
and has an important physical meaning which we shall explore below in the form of
the Rayleigh–Carson reciprocity theorem. Note that in obtaining this relation we must
assume that the medium is reciprocal in order to eliminate the terms in (4.169). Thus,
in order for a system to be reciprocal, it must involve both a reciprocal medium and a
boundary over which (4.176) holds.

It is important to note that the impedance boundary condition (4.176) is widely appli-
cable. If Z → 0, then the boundary condition is that for a PEC: n̂× Ě = 0. If Z → ∞, a
PMC is described: n̂× Ȟ = 0. Suppose S represents a sphere of infinite radius. We know
from (4.168) that if the sources and material media within S are spatially finite, the fields
far removed from these sources are described by the Sommerfeld radiation condition

r̂ × Ě = η0Ȟ

where r̂ is the radial unit vector of spherical coordinates. This condition is of the type
(4.176) since r̂ = n̂ on S, hence the unbounded region that results from S receding to
infinity is also reciprocal.

Summary of reciprocity for reciprocal systems. We can summarize reciprocity
as follows. Unbounded space containing sources and materials of finite size is a reciprocal
system if the media are reciprocal; a bounded region of space is a reciprocal system only



if the materials within are reciprocal and the boundary fields obey (4.176), or if the
region is source-free. In each of these cases∮

S

[
Ěa × Ȟb − Ěb × Ȟa

] · dS = 0 (4.178)

and

〈f̌a, ǧb〉 − 〈f̌b, ǧa〉 = 0. (4.179)

Rayleigh–Carson reciprocity theorem. The physical meaning behind reciprocity
can be made clear with a simple example. Consider two electric Hertzian dipoles, each
oscillating with frequency ω̌ and located within an empty box consisting of PEC walls.
These dipoles can be described in terms of volume current density as

J̌a(r) = Ǐaδ(r − r′
a),

J̌b(r) = Ǐbδ(r − r′
b).

Since the fields on the surface obey (4.176) (specifically, n̂×Ě = 0), and since the medium
within the box is empty space (a reciprocal medium), the fields produced by the sources
must obey (4.179). We have∫

V
Ěb(r) · [

Ǐaδ(r − r′
a)

]
dV =

∫
V

Ěa(r) · [
Ǐbδ(r − r′

b)
]

dV,

hence

Ǐa · Ěb(r′
a) = Ǐb · Ěa(r′

b). (4.180)

This is the Rayleigh–Carson reciprocity theorem. It also holds for two Hertzian dipoles
located in unbounded free space, because in that case the Sommerfeld radiation condition
satisfies (4.176).

As an important application of this principle, consider a closed PEC body located in
free space. Reciprocity holds in the region external to the body since we have n̂ × Ě = 0
at the boundary of the perfect conductor and the Sommerfeld radiation condition on the
boundary at infinity. Now let us place dipole a somewhere external to the body, and
dipole b adjacent and tangential to the perfectly conducting body. We regard dipole a
as the source of an electromagnetic field and dipole b as “sampling” that field. Since the
tangential electric field is zero at the surface of the conductor, the reaction between the
two dipoles is zero. Now let us switch the roles of the dipoles so that b is regarded as
the source and a is regarded as the sampler. By reciprocity the reaction is again zero
and thus there is no field produced by b at the position of a. Now the position and
orientation of a are arbitrary, so we conclude that an impressed electric source current
placed tangentially to a perfectly conducting body produces no field external to the body.
This result is used in Chapter 6 to develop a field equivalence principle useful in the study
of antennas and scattering.

4.10.3 Duality

A duality principle analogous to that found for time-domain fields in § 2.9.2 may be
established for frequency-domain and time-harmonic fields. Consider a closed surface S
enclosing a region of space that includes a frequency-domain electric source current J̃



and a frequency-domain magnetic source current J̃m . The fields (Ẽ1,D̃1,B̃1,H̃1) within
the region (which may also contain arbitrary media) are described by

∇ × Ẽ1 = −J̃m − jωB̃1, (4.181)
∇ × H̃1 = J̃ + jωD̃1, (4.182)
∇ · D̃1 = ρ̃, (4.183)
∇ · B̃1 = ρ̃m . (4.184)

Suppose we have been given a mathematical description of the sources (J̃, J̃m) and have
solved for the field vectors (Ẽ1, D̃1, B̃1, H̃1). Of course, we must also have been supplied
with a set of boundary values and constitutive relations in order to make the solution
unique. We note that if we replace the formula for J̃ with the formula for J̃m in (4.182)
(and ρ̃ with ρ̃m in (4.183)) and also replace J̃m with −J̃ in (4.181) (and ρ̃m with −ρ̃ in
(4.184)) we get a new problem. However, the symmetry of the equations allows us to
specify the solution immediately. The new set of curl equations requires

∇ × Ẽ2 = J̃ − jωB̃2, (4.185)
∇ × H̃2 = J̃m + jωD̃2. (4.186)

If we can resolve the question of how the constitutive parameters must be altered to
reflect these replacements, then we can conclude by comparing (4.185) with (4.182) and
(4.186) with (4.181) that

Ẽ2 = H̃1, B̃2 = −D̃1, D̃2 = B̃1, H̃2 = −Ẽ1.

The discussion regarding units in § 2.9.2 carries over to the present case. Multiplying
Ampere’s law by η0 = (µ0/ε0)

1/2, we have

∇ × Ẽ = −J̃m − jωB̃, ∇ × (η0H̃) = (η0J̃) + jω(η0D̃).

Thus if the original problem has solution (Ẽ1, η0D̃1, B̃1, η0H̃1), then the dual problem
with J̃ replaced by J̃m/η0 and J̃m replaced by −η0J̃ has solution

Ẽ2 = η0H̃1, (4.187)
B̃2 = −η0D̃1, (4.188)

η0D̃2 = B̃1, (4.189)
η0H̃2 = −Ẽ1. (4.190)

As with duality in the time domain, the constitutive parameters for the dual problem
must be altered from those of the original problem. For linear anisotropic media we have
from (4.13) and (4.14) the constitutive relationships

D̃1 = ˜̄ε1 · Ẽ1, (4.191)
B̃1 = ˜̄µ1 · H̃1, (4.192)

for the original problem, and

D̃2 = ˜̄ε2 · Ẽ2, (4.193)
B̃2 = ˜̄µ2 · H̃2, (4.194)



for the dual problem. Substitution of (4.187)–(4.190) into (4.191) and (4.192) gives

D̃2 =
(

˜̄µ1

η2
0

)
· Ẽ2, (4.195)

B̃2 = (
η2

0
˜̄ε1

) · H̃2. (4.196)

Comparing (4.195) with (4.193) and (4.196) with (4.194), we conclude that

˜̄µ2 = η2
0
˜̄ε1, ˜̄ε2 = ˜̄µ1/η

2
0. (4.197)

For a linear, isotropic medium specified by ε̃ and µ̃, the dual problem is obtained by
replacing ε̃r with µ̃r and µ̃r with ε̃r . The solution to the dual problem is then

Ẽ2 = η0H̃1, η0H̃2 = −Ẽ1,

as before. The medium in the dual problem must have electric properties numerically
equal to the magnetic properties of the medium in the original problem, and magnetic
properties numerically equal to the electric properties of the medium in the original
problem. Alternatively we may divide Ampere’s law by η = (µ̃/ε̃)1/2 instead of η0. Then
the dual problem has J̃ replaced by J̃m/η, and J̃m replaced by −ηJ̃, and the solution is

Ẽ2 = ηH̃1, ηH̃2 = −Ẽ1. (4.198)

There is no need to swap ε̃r and µ̃r since information about these parameters is incor-
porated into the replacement sources.

We may also apply duality to a problem where we have separated the impressed and
secondary sources. In a homogeneous, isotropic, conducting medium we may let J̃ =
J̃i + σ̃ Ẽ. With this the curl equations become

∇ × ηH̃ = ηJ̃i + jωηε̃cẼ,

∇ × Ẽ = −J̃m − jωµ̃H̃.

The solution to the dual problem is again given by (4.198), except that now η = (µ̃/ε̃c)1/2.
As we did near the end of § 2.9.2, we can consider duality in a source-free region. We

let S enclose a source-free region of space and, for simplicity, assume that the medium
within S is linear, isotropic, and homogeneous. The fields within S are described by

∇ × Ẽ1 = − jωµ̃H̃1,

∇ × ηH̃1 = jωε̃ηẼ1,

∇ · ε̃Ẽ1 = 0,

∇ · µ̃H̃1 = 0.

The symmetry of the equations is such that the mathematical form of the solution for Ẽ
is the same as that for ηH̃. Since the fields

Ẽ2 = ηH̃1, H̃2 = −Ẽ1/η,

also satisfy Maxwell’s equations, the dual problem merely involves replacing Ẽ by ηH̃
and H̃ by −Ẽ/η.



4.11 The wave nature of the time-harmonic EM field

Time-harmonic electromagnetic waves have been studied in great detail. Narrowband
waves are widely used for signal transmission, heating, power transfer, and radar. They
share many of the properties of more general transient waves, and the discussions of
§ 2.10.1 are applicable. Here we shall investigate some of the unique properties of time-
harmonic waves and introduce such fundamental quantities as wavelength, phase and
group velocity, and polarization.

4.11.1 The frequency-domain wave equation

We begin by deriving the frequency-domain wave equation for dispersive bianisotropic
materials. A solution to this equation may be viewed as the transform of a general
time-dependent field. If one specific frequency is considered the time-harmonic solution
is produced.

In § 2.10.2 we derived the time-domain wave equation for bianisotropic materials.
There it was necessary to consider only time-independent constitutive parameters. We
can overcome this requirement, and thus deal with dispersive materials, by using a Fourier
transform approach. We solve a frequency-domain wave equation that includes the fre-
quency dependence of the constitutive parameters, and then use an inverse transform to
return to the time domain.

The derivation of the equation parallels that of § 2.10.2. We substitute the frequency-
domain constitutive relationships

D̃ = ˜̄ε · Ẽ + ˜̄ξ · H̃,

B̃ = ˜̄ζ · Ẽ + ˜̄µ · H̃,

into Maxwell’s curl equations (4.7) and (4.8) to get the coupled differential equations

∇ × Ẽ = − jω[ ˜̄ζ · Ẽ + ˜̄µ · H̃] − J̃m,

∇ × H̃ = jω[ ˜̄ε · Ẽ + ˜̄ξ · H̃] + J̃,

for Ẽ and H̃. Here we have included magnetic sources J̃m in Faraday’s law. Using the
dyadic operator ∇̄ defined in (2.308) we can write these equations as(

∇̄ + jω ˜̄ζ
)

· Ẽ = − jω ˜̄µ · H̃ − J̃m, (4.199)(
∇̄ − jω ˜̄ξ

)
· H̃ = jω ˜̄ε · Ẽ + J̃. (4.200)

We can obtain separate equations for Ẽ and H̃ by defining the inverse dyadics

˜̄ε · ˜̄ε−1 = Ī, ˜̄µ · ˜̄µ−1 = Ī.

Using ˜̄µ−1 we can write (4.199) as

− jωH̃ = ˜̄µ−1 ·
(
∇̄ + jω ˜̄ζ

)
· Ẽ + ˜̄µ−1 · J̃m .

Substituting this into (4.200) we get[(
∇̄ − jω ˜̄ξ

)
· ˜̄µ−1 ·

(
∇̄ + jω ˜̄ζ

)
− ω2 ˜̄ε

]
· Ẽ = −

(
∇̄ − jω ˜̄ξ

)
· ˜̄µ−1 · J̃m − jωJ̃. (4.201)



This is the general frequency-domain wave equation for Ẽ. Using ˜̄ε−1 we can write (4.200)
as

jωẼ = ˜̄ε−1 ·
(
∇̄ − jω ˜̄ξ

)
· H̃ − ˜̄ε−1 · J̃.

Substituting this into (4.199) we get[(
∇̄ + jω ˜̄ζ

)
· ˜̄ε−1 ·

(
∇̄ − jω ˜̄ξ

)
− ω2 ˜̄µ

]
· H̃ =

(
∇̄ + jω ˜̄ζ

)
· ˜̄ε−1 · J̃ − jωJ̃m . (4.202)

This is the general frequency-domain wave equation for H̃.

Wave equation for a homogeneous, lossy, isotropic medium. We may specialize
(4.201) and (4.202) to the case of a homogeneous, lossy, isotropic medium by setting
˜̄ζ = ˜̄ξ = 0, ˜̄µ = µ̃Ī, ˜̄ε = ε̃Ī, and J̃ = J̃i + J̃c:

∇ × (∇ × Ẽ) − ω2µ̃ε̃Ẽ = −∇ × J̃m − jωµ̃(J̃i + J̃c), (4.203)
∇ × (∇ × H̃) − ω2µ̃ε̃H̃ = ∇ × (J̃i + J̃c) − jωε̃J̃m . (4.204)

Using (B.47) and using Ohm’s law J̃c = σ̃ Ẽ to describe the secondary current, we get
from (4.203)

∇(∇ · Ẽ) − ∇2Ẽ − ω2µ̃ε̃Ẽ = −∇ × J̃m − jωµ̃J̃i − jωµ̃σ̃ Ẽ

which, using ∇ · Ẽ = ρ̃/ε̃, can be simplified to

(∇2 + k2)Ẽ = ∇ × J̃m + jωµ̃J̃i + 1

ε̃
∇ρ̃. (4.205)

This is the vector Helmholtz equation for Ẽ. Here k is the complex wavenumber defined
through

k2 = ω2µ̃ε̃ − jωµ̃σ̃ = ω2µ̃

[
ε̃ + σ̃

jω

]
= ω2µ̃ε̃c (4.206)

where ε̃c is the complex permittivity (4.26).
By (4.204) we have

∇(∇ · H̃) − ∇2H̃ − ω2µ̃ε̃H̃ = ∇ × J̃i + ∇ × J̃c − jωε̃J̃m .

Using

∇ × J̃c = ∇ × (σ̃ Ẽ) = σ̃∇ × Ẽ = σ̃ (− jωB̃ − J̃m)

and ∇ · H̃ = ρ̃m/µ̃ we then get

(∇2 + k2)H̃ = −∇ × J̃i + jωε̃cJ̃m + 1

µ̃
∇ρ̃m, (4.207)

which is the vector Helmholtz equation for H̃.

4.11.2 Field relationships and the wave equation for two-dimensional
fields

Many important canonical problems are two-dimensional in nature, with the sources
and fields invariant along one direction. Two-dimensional fields have a simple structure



compared to three-dimensional fields, and this structure often allows a decomposition
into even simpler field structures.

Consider a homogeneous region of space characterized by the permittivity ε̃, perme-
ability µ̃, and conductivity σ̃ . We assume that all sources and fields are z-invariant, and
wish to find the relationship between the various components of the frequency-domain
fields in a source-free region. It is useful to define the transverse vector component of an
arbitrary vector A as the component of A perpendicular to the axis of invariance:

At = A − ẑ(ẑ · A).

For the position vector r, this component is the transverse position vector rt = ρ. For
instance we have

ρ = x̂x + ŷy, ρ = ρ̂ρ,

in the rectangular and cylindrical coordinate systems, respectively.
Because the region is source-free, the fields Ẽ and H̃ obey the homogeneous Helmholtz

equations

(∇2 + k2)

{
Ẽ
H̃

}
= 0.

Writing the fields in terms of rectangular components, we find that each component
must obey a homogeneous scalar Helmholtz equation. In particular, we have for the
axial components Ẽz and H̃z ,

(∇2 + k2)

{
Ẽz

H̃z

}
= 0.

But since the fields are independent of z we may also write

(∇2
t + k2)

{
Ẽz

H̃z

}
= 0 (4.208)

where ∇2
t is the transverse Laplacian operator

∇2
t = ∇2 − ẑ

∂2

∂z2
. (4.209)

In rectangular coordinates we have

∇2
t = ∂2

∂x2
+ ∂2

∂y2
,

while in circular cylindrical coordinates

∇2
t = ∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂φ2
. (4.210)

With our condition on z-independence we can relate the transverse fields Ẽt and H̃t to
Ẽz and H̃z . By Faraday’s law we have

∇ × Ẽ(ρ, ω) = − jωµ̃H̃(ρ, ω)

and thus

H̃t = − 1

jωµ̃

[∇ × Ẽ
]

t
.



The transverse portion of the curl is merely

[∇ × Ẽ
]

t
= x̂

[
∂ Ẽz

∂y
− ∂ Ẽy

∂z

]
+ ŷ

[
∂ Ẽx

∂z
− ∂ Ẽz

∂x

]
= −ẑ ×

[
x̂
∂ Ẽz

∂x
+ ŷ

∂ Ẽz

∂y

]

since the derivatives with respect to z vanish. The term in brackets is the transverse
gradient of Ẽz , where the transverse gradient operator is

∇t = ∇ − ẑ
∂

∂z
.

In circular cylindrical coordinates this operator becomes

∇t = ρ̂
∂

∂ρ
+ φ̂

1

ρ

∂

∂φ
. (4.211)

Thus we have

H̃t (ρ, ω) = 1

jωµ̃
ẑ × ∇t Ẽz(ρ, ω).

Similarly, the source-free Ampere’s law yields

Ẽt (ρ, ω) = − 1

jωε̃c
ẑ × ∇t H̃z(ρ, ω).

These results suggest that we can solve a two-dimensional problem by superposition.
We first consider the case where Ẽz �= 0 and H̃z = 0, called electric polarization. This
case is also called TM or transverse magnetic polarization because the magnetic field is
transverse to the z-direction (T Mz). We have

(∇2
t + k2)Ẽz = 0, H̃t (ρ, ω) = 1

jωµ̃
ẑ × ∇t Ẽz(ρ, ω). (4.212)

Once we have solved the Helmholtz equation for Ẽz , the remaining field components
follow by simple differentiation. We next consider the case where H̃z �= 0 and Ẽz = 0.
This is the case of magnetic polarization, also called TE or transverse electric polarization
(T Ez). In this case

(∇2
t + k2)H̃z = 0, Ẽt (ρ, ω) = − 1

jωε̃c
ẑ × ∇t H̃z(ρ, ω). (4.213)

A problem involving both Ẽz and H̃z is solved by adding the results for the individual
TEz and TMz cases.

Note that we can obtain the expression for the TE fields from the expression for the
TM fields, and vice versa, using duality. For instance, knowing that the TM fields obey
(4.212) we may replace H̃t with Ẽt/η and Ẽz with −ηH̃z to obtain

Ẽt (ρ, ω)

η
= 1

jωµ̃
ẑ × ∇t [−ηH̃z(ρ, ω)],

which reproduces (4.213).



4.11.3 Plane waves in a homogeneous, isotropic, lossy material

The plane-wave field. In later sections we will solve the frequency-domain wave
equation with an arbitrary source distribution. At this point we are more interested in
the general behavior of EM waves in the frequency domain, so we seek simple solutions
to the homogeneous equation

(∇2 + k2)Ẽ(r, ω) = 0 (4.214)

that governs the fields in source-free regions of space. Here

[k(ω)]2 = ω2µ̃(ω)ε̃c(ω).

Many properties of plane waves are best understood by considering the behavior of a
monochromatic field oscillating at a single frequency ω̌. In these cases we merely make
the replacements

ω → ω̌, Ẽ(r, ω) → Ě(r),

and apply the rules developed in § 4.7 for the manipulation of phasor fields.
For our first solutions we choose those that demonstrate rectangular symmetry. Plane

waves have planar spatial phase loci. That is, the spatial surfaces over which the phase
of the complex frequency-domain field is constant are planes. Solutions of this type may
be obtained using separation of variables in rectangular coordinates. Writing

Ẽ(r, ω) = x̂Ẽx (r, ω) + ŷẼy(r, ω) + ẑẼz(r, ω)

we find that (4.214) reduces to three scalar equations of the form

(∇2 + k2)ψ̃(r, ω) = 0

where ψ̃ is representative of Ẽx , Ẽy , and Ẽz . This is called the homogeneous scalar
Helmholtz equation. Product solutions to this equation are considered in § A.4. In
rectangular coordinates

ψ̃(r, ω) = X (x, ω)Y (y, ω)Z(z, ω)

where X , Y , and Z are chosen from the list (A.102). Since the exponentials describe
propagating wave functions, we choose

ψ̃(r, ω) = A(ω)e± jkx (ω)x e± jky(ω)ye± jkz(ω)z

where A is the amplitude spectrum of the plane wave and k2
x + k2

y + k2
z = k2. Using this

solution to represent each component of Ẽ, we have a propagating-wave solution to the
homogeneous vector Helmholtz equation:

Ẽ(r, ω) = Ẽ0(ω)e± jkx (ω)x e± jky(ω)ye± jkz(ω)z, (4.215)

where E0(ω) is the vector amplitude spectrum. If we define the wave vector

k(ω) = x̂kx (ω) + ŷky(ω) + ẑkz(ω),

then we can write (4.215) as

Ẽ(r, ω) = Ẽ0(ω)e− jk(ω)·r. (4.216)



Note that we choose the negative sign in the exponential function and allow the vector
components of k to be either positive or negative as required by the physical nature of
a specific problem. Also note that the magnitude of the wave vector is the wavenumber:
|k| = k.

We may always write the wave vector as a sum of real and imaginary vector components

k = k′ + jk′′ (4.217)

which must obey

k · k = k2 = k ′2 − k ′′2 + 2 jk′ · k′′. (4.218)

When the real and imaginary components are collinear, (4.216) describes a uniform plane
wave with

k = k̂(k ′ + jk ′′).

When k′ and k′′ have different directions, (4.216) describes a nonuniform plane wave.
We shall find in § 4 . 1 3 t h a t any frequency-domain electromagnetic field in free space
may be represented as a continuous superposition of elemental plane-wave components of
the type (4.216), but that both uniform and nonuniform terms are required.

The TEM nature of a uniform plane wave. Given the plane-wave solution to
the wave equation for the electric field, it is straightforward to find the magnetic field.
Substitution of (4.216) into Faraday’s law gives

∇ × [
Ẽ0(ω)e− jk(ω)·r] = − jωB̃(r, ω).

Computation of the curl is straightforward and easily done in rectangular coordinates.
This and similar derivatives often appear when manipulating plane-wave solutions; see
the tabulation in Appendix B, By (B.78) we have

H̃ = k × Ẽ
ωµ̃

. (4.219)

Taking the cross product of this expression with k, we also have

k × H̃ = k × (k × Ẽ)

ωµ̃
= k(k · Ẽ) − Ẽ(k · k)

ωµ̃
. (4.220)

We can show that k · Ẽ = 0 by examining Gauss’ law and employing (B.77):

∇ · Ẽ = − jk · Ẽe− jk·r = ρ̃

ε̃
= 0. (4.221)

Using this and k · k = k2 = ω2µ̃ε̃c, we obtain from (4.220)

Ẽ = −k × H̃
ωε̃c

. (4.222)

Now for a uniform plane wave k = k̂k, so we can also write (4.219) as

H̃ = k̂ × Ẽ
η

= k̂ × Ẽ0

η
e− jk·r (4.223)



and (4.222) as

Ẽ = −ηk̂ × H̃.

Here

η = ωµ̃

k
=

√
µ̃

ε̃c

is the complex intrinsic impedance of the medium.
Equations (4.223) and (4.221) show that the electric and magnetic fields and the wave

vector are mutually orthogonal. The wave is said to be transverse electromagnetic or
TEM to the direction of propagation.

The phase and attenuation constants of a uniform plane wave. For a uniform
plane wave we may write

k = k ′k̂ + jk ′′k̂ = kk̂ = (β − jα)k̂

where k ′ = β and k ′′ = −α. Here α is called the attenuation constant and β is the phase
constant . Since k is defined through (4.206), we have

k2 = (β − jα)2 = β2 − 2 jαβ − α2 = ω2µ̃ε̃c = ω2(µ̃′ + jµ̃′′)(ε̃c′ + j ε̃c′′).

Equating real and imaginary parts we have

β2 − α2 = ω2[µ̃′ε̃c′ − µ̃′′ε̃c′′], −2αβ = ω2[µ̃′′ε̃c′ + µ̃′ε̃c′′].

We assume the material is passive so that µ̃′′ ≤ 0, ε̃c′′ ≤ 0. Letting

β2 − α2 = ω2[µ̃′ε̃c′ − µ̃′′ε̃c′′] = A, 2αβ = ω2[|µ̃′′|ε̃c′ + µ̃′|ε̃c′′|] = B,

we may solve simultaneously to find that

β2 = 1

2

[
A +

√
A2 + B2

]
, α2 = 1

2

[
−A +

√
A2 + B2

]
.

Since A2 + B2 = ω4(ε̃c′2 + ε̃c′′2)(µ̃′2 + µ̃′′2), we have

β = ω
√

µ̃′ε̃c′

√√√√1

2

[√(
1 + ε̃c′′2

ε̃c′2

) (
1 + µ̃′′2

µ̃′2

)
+

(
1 − µ̃′′

µ̃′
ε̃c′′

ε̃c′

)]
, (4.224)

α = ω
√

µ̃′ε̃c′

√√√√1

2

[√(
1 + ε̃c′′2

ε̃c′2

) (
1 + µ̃′′2

µ̃′2

)
−

(
1 − µ̃′′

µ̃′
ε̃c′′

ε̃c′

)]
, (4.225)

where ε̃c and µ̃ are functions of ω. If ε̃(ω) = ε, µ̃(ω) = µ, and σ̃ (ω) = σ are real and
frequency independent, then

α = ω
√

µε

√√√√1

2

[√
1 +

( σ

ωε

)2
− 1

]
, (4.226)

β = ω
√

µε

√√√√1

2

[√
1 +

( σ

ωε

)2
+ 1

]
. (4.227)



These values of α and β are valid for ω > 0. For negative frequencies we must be more
careful in evaluating the square root in k = ω(µ̃ε̃c)1/2. Writing

µ̃(ω) = µ̃′(ω) + jµ̃′′(ω) = |µ̃(ω)|e jξµ(ω),

ε̃c(ω) = ε̃c′(ω) + j ε̃c′′(ω) = |ε̃c(ω)|e jξε(ω),

we have

k(ω) = β(ω) − jα(ω) = ω
√

µ̃(ω)ε̃c(ω) = ω
√

|µ̃(ω)||ε̃c(ω)|e j 1
2 [ξµ(ω)+ξε(ω)].

Now for passive materials we must have, by (4.48), µ̃′′ < 0 and ε̃c′′ < 0 for ω > 0.
Since we also have µ̃′ > 0 and ε̃c′ > 0 for ω > 0, we find that −π/2 < ξµ < 0 and
−π/2 < ξε < 0, and thus −π/2 < (ξµ + ξ ε)/2 < 0. Thus we must have β > 0 and α > 0
for ω > 0. For ω < 0 we have by (4.44) and (4.45) that µ̃′′ > 0, ε̃c′′ > 0, µ̃′ > 0, and
ε̃c′ > 0. Thus π/2 > (ξµ + ξ ε)/2 > 0, and so β < 0 and α > 0 for ω < 0. In summary,
α(ω) is an even function of frequency and β(ω) is an odd function of frequency:

β(ω) = −β(−ω), α(ω) = α(−ω), (4.228)

where β(ω) > 0, α(ω) > 0 when ω > 0. From this we find a condition on Ẽ0 in (4.216).
Since by (4.47) we must have Ẽ(ω) = Ẽ∗(−ω), we see that the uniform plane-wave field
obeys

Ẽ0(ω)e[− jβ(ω)−α(ω)]k̂·r = Ẽ∗
0(−ω)e[+ jβ(−ω)−α(−ω)]k̂·r

or

Ẽ0(ω) = Ẽ∗
0(−ω),

since β(−ω) = −β(ω) and α(−ω) = α(ω).

Propagation of a uniform plane wave: the group and phase velocities. We
have derived the plane-wave solution to the wave equation in the frequency domain, but
can discover the wave nature of the solution only by examining its behavior in the time
domain. Unfortunately, the explicit form of the time-domain field is highly dependent on
the frequency behavior of the constitutive parameters. Even the simplest case in which
ε, µ, and σ are frequency independent is quite complicated, as we discovered in § 2.10.6.
To overcome this difficulty, it is helpful to examine the behavior of a narrowband (but
non-monochromatic) signal in a lossy medium with arbitrary constitutive parameters.
We will find that the time-domain wave field propagates as a disturbance through the
surrounding medium with a velocity determined by the constitutive parameters of the
medium. The temporal wave shape does not change as the wave propagates, but the
amplitude of the wave attenuates at a rate dependent on the constitutive parameters.

For clarity of presentation we shall assume a linearly polarized plane wave (§ ??) with

Ẽ(r, ω) = êẼ0(ω)e− jk(ω)·r. (4.229)

Here Ẽ0(ω) is the spectrum of the temporal dependence of the wave. For the temporal
dependence we choose the narrowband signal

E0(t) = E0 f (t) cos(ω0t)

where f (t) has a narrowband spectrum centered about ω = 0 (and is therefore called a
baseband signal). An appropriate choice for f (t) is the Gaussian function used in (4.52):

f (t) = e−a2t2 ↔ F̃(ω) =
√

π

a2
e− ω2

4a2 ,



producing

E0(t) = E0e−a2t2
cos(ω0t). (4.230)

We think of f (t) as modulating the single-frequency cosine carrier wave, thus providing
the envelope. By using a large value of a we obtain a narrowband signal whose spectrum
is centered about ±ω0. Later we shall let a → 0, thereby driving the width of f (t) to
infinity and producing a monochromatic waveform.

By (1) we have

Ẽ0(ω) = E0
1

2

[
F̃(ω − ω0) + F̃(ω + ω0)

]
where f (t) ↔ F̃(ω). A plot of this spectrum is shown in Figure 4.2. We see that
the narrowband signal is centered at ω = ±ω0. Substituting into (4.229) and using
k = (β − jα)k̂ for a uniform plane wave, we have the frequency-domain field

Ẽ(r, ω) = êE0
1

2

[
F̃(ω − ω0)e

− j[β(ω)− jα(ω)]k̂·r + F̃(ω + ω0)e
− j[β(ω)− jα(ω)]k̂·r

]
. (4.231)

The field at any time t and position r can now be found by inversion:

êE(r, t) = 1

2π

∫ ∞

−∞
êE0

1

2

[
F̃(ω − ω0)e

− j[β(ω)− jα(ω)]k̂·r+

+ F̃(ω + ω0)e
− j[β(ω)− jα(ω)]k̂·r

]
e jωt dω. (4.232)

We assume that β(ω) and α(ω) vary slowly within the band occupied by Ẽ0(ω). With
this assumption we can expand β and α near ω = ω0 as

β(ω) = β(ω0) + β ′(ω0)(ω − ω0) + 1

2
β ′′(ω0)(ω − ω0)

2 + · · · ,

α(ω) = α(ω0) + α′(ω0)(ω − ω0) + 1

2
α′′(ω0)(ω − ω0)

2 + · · · ,

where β ′(ω) = dβ(ω)/dω, β ′′(ω) = d2β(ω)/dω2, and so on. In a similar manner we can
expand β and α near ω = −ω0:

β(ω) = β(−ω0) + β ′(−ω0)(ω + ω0) + 1

2
β ′′(−ω0)(ω + ω0)

2 + · · · ,

α(ω) = α(−ω0) + α′(−ω0)(ω + ω0) + 1

2
α′′(−ω0)(ω + ω0)

2 + · · · .
Since we are most interested in the propagation velocity, we need not approximate α

with great accuracy, and thus use α(ω) ≈ α(±ω0) within the narrow band. We must
consider β to greater accuracy to uncover the propagating nature of the wave, and thus
use

β(ω) ≈ β(ω0) + β ′(ω0)(ω − ω0) (4.233)

near ω = ω0 and

β(ω) ≈ β(−ω0) + β ′(−ω0)(ω + ω0) (4.234)

near ω = −ω0. Substituting these approximations into (4.232) we find

êE(r, t) = 1

2π

∫ ∞

−∞
êE0

1

2

[
F̃(ω − ω0)e

− j[β(ω0)+β ′(ω0)(ω−ω0)]k̂·re−[α(ω0)]k̂·r+

+ F̃(ω + ω0)e
− j[β(−ω0)+β ′(−ω0)(ω+ω0)]k̂·re−[α(−ω0)]k̂·r

]
e jωt dω. (4.235)



By (4.228) we know that α is even in ω and β is odd in ω. Since the derivative of an
odd function is an even function, we also know that β ′ is even in ω. We can therefore
write (4.235) as

êE(r, t) = êE0e−α(ω0)k̂·r 1

2π

∫ ∞

−∞

1

2

[
F̃(ω − ω0)e

− jβ(ω0)k̂·re− jβ ′(ω0)(ω−ω0)k̂·r+

+ F̃(ω + ω0)e
jβ(ω0)k̂·re− jβ ′(ω0)(ω+ω0)k̂·r

]
e jωt dω.

Multiplying and dividing by e jω0t and rearranging, we have

êE(r, t) = êE0e−α(ω0)k̂·r 1

2π

∫ ∞

−∞

1

2

[
F̃(ω − ω0)e

jφe j (ω−ω0)[t−τ ]+
+ F̃(ω + ω0)e

− jφe j (ω+ω0)[t−τ ]
]

dω

where

φ = ω0t − β(ω0)k̂ · r, τ = β ′(ω0)k̂ · r.

Setting u = ω − ω0 in the first term and u = ω + ω0 in the second term we have

êE(r, t) = êE0e−α(ω0)k̂·r cos φ
1

2π

∫ ∞

−∞
F̃(u)e ju(t−τ) du.

Finally, the time-shifting theorem (A.3) gives us the time-domain wave field

êE(r, t) = êE0e−α(ω0)k̂·r cos
(
ω0

[
t − k̂ · r/vp(ω0)

])
f
(
t − k̂ · r/vg(ω0)

)
(4.236)

where

vg(ω) = dω/dβ = [dβ/dω]−1 (4.237)

is called the group velocity and

vp(ω) = ω/β

is called the phase velocity.
To interpret (4.236), we note that at any given time t the field is constant over the

surface described by

k̂ · r = C (4.238)

where C is some constant. This surface is a plane, as shown in Figure 4.10, with its
normal along k̂. It is easy to verify that any point r on this plane satisfies (4.238). Let
r0 = r0k̂ describe the point on the plane with position vector in the direction of k̂, and
let d be a displacement vector from this point to any other point on the plane. Then

k̂ · r = k̂ · (r0 + d) = r0(k̂ · k̂) + k̂ · d.

But k̂ · d = 0, so

k̂ · r = r0, (4.239)

which is a fixed distance, so (238) holds.
Let us identify the plane over which the envelope f takes on a certain value, and follow

its motion as time progresses. The value of r0 associated with this plane must increase
with increasing time in such a way that the argument of f remains constant:

t − r0/vg(ω0) = C.



Figure 4.10: Surface of constant k̂ · r.

Differentiation gives

dr0

dt
= vg = dω

dβ
. (4.240)

So the envelope propagates along k̂ at a rate given by the group velocity vg. Associated
with this propagation is an attenuation described by the factor e−α(ω0)k̂·r. This accounts
for energy transfer into the lossy medium through Joule heating.

Similarly, we can identify a plane over which the phase of the carrier is constant; this
will be parallel to the plane of constant envelope described above. We now set

ω0
[
t − k̂ · r/vp(ω0)

] = C

and differentiate to get

dr0

dt
= vp = ω

β
. (4.241)

This shows that surfaces of constant carrier phase propagate along k̂ with velocity vp.
Caution must be exercised in interpreting the two velocities vg and vp; in particular, we

must be careful not to associate the propagation velocities of energy or information with
vp. Since envelope propagation represents the actual progression of the disturbance, vg

has the recognizable physical meaning of energy velocity. Kraus and Fleisch [105] suggest
that we think of a strolling caterpillar: the speed (vp) of the undulations along the
caterpillar’s back (representing the carrier wave) may be much faster than the speed (vg)
of the caterpillar’s body (representing the envelope of the disturbance).

In fact, vg is the velocity of energy propagation even for a monochromatic wave (§ ??).
However, for purely monochromatic waves vg cannot be identified from the time-domain
field, whereas vp can. This leads to some unfortunate misconceptions, especially when
vp exceeds the speed of light. Since vp is not the velocity of propagation of a physical
quantity, but is rather the rate of change of a phase reference point, Einstein’s postulate
of c as the limiting velocity is not violated.

We can obtain interesting relationships between vp and vg by manipulating (4.237)
and (4.241). For instance, if we compute

dvp

dω
= d

dω

(
ω

β

)
= β − ω

dβ

dω

β2



Figure 4.11: An ω–β diagram for a fictitious material.

we find that

vp

vg
= 1 − β

dvp

dω
. (4.242)

Hence in frequency ranges where vp decreases with increasing frequency, we have vg < vp.
These are known as regions of normal dispersion. In frequency ranges where vp increases
with increasing frequency, we have vg > vp. These are known as regions of anomalous
dispersion. As mentioned in § 4.6.3, the word “anomalous” does not imply that this type
of dispersion is unusual.

The propagation of a uniform plane wave through a lossless medium provides a par-
ticularly simple example. In a lossless medium we have

β(ω) = ω
√

µε, α(ω) = 0.

In this case (4.233) becomes

β(ω) = ω0
√

µε + √
µε(ω − ω0) = ω

√
µε

and (4.236) becomes

êE(r, t) = êE0 cos
(
ω0

[
t − k̂ · r/vp(ω0)

])
f
(
t − k̂ · r/vg(ω0)

)
.

Since the linear approximation to the phase constant β is in this case exact, the wave
packet truly propagates without distortion, with a group velocity identical to the phase
velocity:

vg =
[

d

dω
ω

√
µε

]−1

= 1√
µε

= ω

β
= vp.

Examples of wave propagation in various media; the ω–β diagram. A plot
of ω versus β(ω) can be useful for displaying the dispersive properties of a material.
Figure 4.11 shows such an ω–β plot, or dispersion diagram, for a fictitious material. The
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Figure 4.12: Dispersion plot for water computed using the Debye relaxation formula.

slope of the line from the origin to a point (β, ω) is the phase velocity, while the slope
of the line tangent to the curve at that point is the group velocity. This plot shows
many of the different characteristics of electromagnetic waves (although not necessarily
of plane waves). For instance, there may be a minimum frequency ωc called the cutoff
frequency at which β = 0 and below which the wave cannot propagate. This behavior is
characteristic of a plane wave propagating in a plasma (as shown below) or of a wave in
a hollow pipe waveguide (§ 5.4.3). Over most values of β we have vg < vp so the material
demonstrates normal dispersion. However, over a small region we do have anomalous
dispersion. In another range the slope of the curve is actually negative and thus vg < 0;
here the directions of energy and phase front propagation are opposite. Such backward
waves are encountered in certain guided-wave structures used in microwave oscillators.
The ω–β plot also includes the light line as a reference curve. For all points on this line
vg = vp; it is generally used to represent propagation within the material under special
circumstances, such as when the loss is zero or the material occupies unbounded space.
It may also be used to represent propagation within a vacuum.

As an example for which the constitutive parameters depend on frequency, let us
consider the relaxation effects of water. By the Debye formula (4.106) we have

ε̃(ω) = ε∞ + εs − ε∞
1 + jωτ

.

Assuming ε∞ = 5ε0, εs = 78.3ε0, and τ = 9.6 × 10−12 s [49], we obtain the relaxation
spectrum shown in Figure 4.5. If we also assume that µ = µ0, we may compute β as a
function of ω and construct the ω–β plot. This is shown in Figure 4.12. Since ε′ varies
with frequency, we show both the light line for zero frequency found using εs = 78.3ε0,
and the light line for infinite frequency found using εi = 5ε0. We see that at low values
of frequency the dispersion curve follows the low-frequency light line very closely, and
thus vp ≈ vg ≈ c/

√
78.3. As the frequency increases, the dispersion curve rises up and
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eventually becomes asymptotic with the high-frequency light line. Plots of vp and vg

shown in Figure 4.13 verify that the velocities start out at c/
√

78.3 for low frequencies,
and approach c/

√
5 for high frequencies. Because vg > vp at all frequencies, this model

of water demonstrates anomalous dispersion.
Another interesting example is that of a non-magnetized plasma. For a collisionless

plasma we may set ν = 0 in (4.76) to find

k =



ω
c

√
1 − ω2

p

ω2 , ω > ωp,

− j ω
c

√
ω2

p

ω2 − 1, ω < ωp.

Thus, when ω > ωp we have

Ẽ(r, ω) = Ẽ0(ω)e− jβ(ω)k̂·r

and so

β = ω

c

√
1 − ω2

p

ω2
, α = 0.

In this case a plane wave propagates through the plasma without attenuation. However,
when ω < ωp we have

Ẽ(r, ω) = Ẽ0(ω)e−α(ω)k̂·r

with

α = ω

c

√
ω2

p

ω2
− 1, β = 0,

and a plane wave does not propagate, but only attenuates. Such a wave is called an
evanescent wave. We say that for frequencies below ωp the wave is cut off, and call ωp

the cutoff frequency.
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Consider, for instance, a plane wave propagating in the earth’s ionosphere. Both
the electron density and the collision frequency are highly dependent on such factors
as altitude, time of day, and latitude. However, except at the very lowest altitudes,
the collision frequency is low enough that the ionosphere may be considered lossless.
For instance, at a height of 200 km (the F1 layer of the ionosphere), as measured for a
mid-latitude region, we find that during the day the electron density is approximately
Ne = 2×1011m−3, while the collision frequency is only ν = 100s−1 [16]. The attenuation is
so small in this case that the ionosphere may be considered essentially lossless above the
cutoff frequency (we will develop an approximate formula for the attenuation constant
below). Figure 4.14 shows the ω–β diagram for the ionosphere assuming ν = 0, along
with the light line vp = c. We see that above the cutoff frequency of f p = ωp/2π = 4.0
MHz the wave propagates and that vg < c while vp > c. Below the cutoff frequency the
wave does not propagate and the field decays very rapidly because α is large.

A formula for the phase velocity of a plane wave in a lossless plasma is easily derived:

vp = ω

β
= c√

1 − ω2
p

ω2

> c.

Thus, our observation from the ω–β plot that vp > c is verified. Similarly, we find that

vg =
(

dβ

dω

)−1

=

1

c

√
1 − ω2

p

ω2
+ 1

c

ω2
p/ω

2√
1 − ω2

p

ω2




−1

= c

√
1 − ω2

p

ω2
< c

and our observation that vg < c is also verified. Interestingly, we find that in this case
of an unmagnetized collisionless plasma

vpvg = c2.



Since vp > vg, this model of a plasma demonstrates normal dispersion at all frequencies
above cutoff.

For the case of a plasma with collisions we retain ν in (4.76) and find that

k = ω

c

√[
1 − ω2

p

ω2 + ν2

]
− jν

ω2
p

ω(ω2 + ν2)
.

When ν �= 0 a true cutoff effect is not present and the wave may propagate at all
frequencies. However, when ν � ωp the attenuation for propagating waves of frequency
ω < ωp is quite severe, and for all practical purposes the wave is cut off. For waves of
frequency ω > ωp there is attenuation. Assuming that ν � ωp and that ν � ω, we may
approximate the square root with the first two terms of a binomial expansion, and find
that to first order

β = ω

c

√
1 − ω2

p

ω2
, α = 1

2

ν

c

ω2
p/ω

2√
1 − ω2

p

ω2

.

Hence the phase and group velocities above cutoff are essentially those of a lossless
plasma, while the attenuation constant is directly proportional to ν.

4.11.4 Monochromatic plane waves in a lossy medium

Many properties of monochromatic plane waves are particularly simple. In fact, cer-
tain properties, such as wavelength, only have meaning for monochromatic fields. And
since monochromatic or nearly monochromatic waves are employed extensively in radar,
communications, and energy transport, it is useful to simplify the results of the preceding
section for the special case in which the spectrum of the plane-wave signal consists of a
single frequency component. In addition, plane waves of more general time dependence
can be viewed as superpositions of individual single-frequency components (through the
inverse Fourier transform), and thus we may regard monochromatic waves as building
blocks for more complicated plane waves.

We can view the monochromatic field as a specialization of (4.230) for a → 0. This
results in F̃(ω) → δ(ω), so the linearly-polarized plane wave expression (4.232) reduces
to

êE(r, t) = êE0e−α(ω0)[k̂·r] cos(ω0t − jβ(ω0)[k̂ · r]). (4.243)

It is convenient to represent monochromatic fields with frequency ω = ω̌ in phasor form.
The phasor form of (4.243) is

Ě(r) = êE0e− jβ(k̂·r)e−α(k̂·r) (4.244)

where β = β(ω̌) and α = α(ω̌). We can identify a surface of constant phase as a locus of
points obeying

ω̌t − β(k̂ · r) = CP (4.245)

for some constant CP . This surface is a plane, as shown in Figure 4.10, with its normal
in the direction of k̂. It is easy to verify that any point r on this plane satisfies (4.245).
Let r0 = r0k̂ describe the point on the plane with position vector in the k̂ direction, and
let d be a displacement vector from this point to any other point on the plane. Then

k̂ · r = k̂ · (r0 + d) = r0(k̂ · k̂) + k̂ · d.



But k̂ · d = 0, so

k̂ · r = r0, (4.246)

which is a spatial constant, hence (4.245) holds for any t . The planar surfaces described
by (4.245) are wavefronts.

Note that surfaces of constant amplitude are determined by

α(k̂ · r) = CA

where CA is some constant. As with the phase term, this requires that k̂ · r = constant,
and thus surfaces of constant phase and surfaces of constant amplitude are coplanar.
This is a property of uniform plane waves. We shall see later that nonuniform plane
waves have planar surfaces that are not parallel.

The cosine term in (4.243) represents a traveling wave. As t increases, the argument of
the cosine function remains unchanged as long as k̂·r increases correspondingly. Thus the
planar wavefronts propagate along k̂. As the wavefront progresses, the wave is attenuated
because of the factor e−α(k̂·r). This accounts for energy transferred from the propagating
wave to the surrounding medium via Joule heating.

Phase velocity of a uniform plane wave. The propagation velocity of the progress-
ing wavefront is found by differentiating (4.245) to get

ω̌ − βk̂ · dr
dt

= 0.

By (4.246) we have

vp = dr0

dt
= ω̌

β
, (4.247)

where the phase velocity vp represents the propagation speed of the constant-phase sur-
faces. For the case of a lossy medium with frequency-independent constitutive parame-
ters, (4.227) shows that

vp ≤ 1√
µε

,

hence the phase velocity in a conducting medium cannot exceed that in a lossless medium
with the same parameters µ and ε. We cannot draw this conclusion for a medium with
frequency-dependent µ̃ and ε̃c, since by (4.224) the value of ω̌/β might be greater or less
than 1/

√
µ̃′ε̃c′, depending on the ratios µ̃′′/µ̃′ and ε̃c′′/ε̃c′.

Wavelength of a uniform plane wave. Another important property of a uniform
plane wave is the distance between adjacent wavefronts that produce the same value of
the cosine function in (4.243). Note that the field amplitude may not be the same on
these two surfaces because of possible attenuation of the wave. Let r1 and r2 be points
on adjacent wavefronts. We require

β(k̂ · r1) = β(k̂ · r2) − 2π

or

λ = k̂ · (r2 − r1) = r02 − r01 = 2π/β.

We call λ the wavelength.



Polarization of a uniform plane wave. Plane-wave polarization describes the tem-
poral evolution of the vector direction of the electric field, which depends on the manner
in which the wave is generated. Completely polarized waves are produced by antennas or
other equipment; these have a deterministic polarization state which may be described
completely by three parameters as discussed below. Randomly polarized waves are emit-
ted by some natural sources. Partially polarized waves, such as those produced by cosmic
radio sources, contain both completely polarized and randomly polarized components.
We shall concentrate on the description of completely polarized waves.

The polarization state of a completely polarized monochromatic plane wave propa-
gating in a homogeneous, isotropic region may be described by superposing two simpler
plane waves that propagate along the same direction but with different phases and spa-
tially orthogonal electric fields. Without loss of generality we may study propagation
along the z-axis and choose the orthogonal field directions to be along x̂ and ŷ. So we
are interested in the behavior of a wave with electric field

Ě(r) = x̂Ex0e jφx e− jkz + ŷEy0e jφy e− jkz . (4.248)

The time evolution of the direction of E must be examined in the time domain where we
have

E(r, t) = Re
{
Ěe jωt

} = x̂Ex0 cos(ωt − kz + φx ) + ŷEy0 cos(ωt − kz + φy)

and thus, by the identity cos(x + y) ≡ cos x cos y − sin x sin y,

Ex = Ex0 [cos(ωt − kz) cos(φx ) − sin(ωt − kz) sin(φx )] ,

Ey = Ey0
[
cos(ωt − kz) cos(φy) − sin(ωt − kz) sin(φy)

]
.

The tip of the vector E moves cyclically in the xy-plane with temporal period T = ω/2π .
Its locus may be found by eliminating the parameter t to obtain a relationship between
Ex0 and Ey0. Letting δ = φy − φx we note that

Ex

Ex0
sin φy − Ey

Ey0
sin φx = cos(ωt − kz) sin δ,

Ex

Ex0
cos φy − Ey

Ey0
cos φx = sin(ωt − kz) sin δ;

squaring these terms we find that(
Ex

Ex0

)2

+
(

Ey

Ey0

)2

− 2
Ex

Ex0

Ey

Ey0
cos δ = sin2 δ,

which is the equation for the ellipse shown in Figure 4.15. By (4.223) the magnetic field
of the plane wave is

Ȟ = ẑ × Ě
η

,

hence its tip also traces an ellipse in the xy-plane.
The tip of the electric field vector cycles around the polarization ellipse in the xy-

plane once every T seconds. The sense of rotation is determined by the sign of δ, and
is described by the terms clockwise/counterclockwise or right-hand/left-hand. There is
some disagreement about how to do this. We shall adopt the IEEE definitions (IEEE
Standard 145-1983 [189]) and associate with δ < 0 rotation in the right-hand sense: if



Figure 4.15: Polarization ellipse for a monochromatic plane wave.

the right thumb points in the direction of wave propagation then the fingers curl in the
direction of field rotation for increasing time. This is right-hand polarization (RHP). We
associate δ > 0 with left-hand polarization (LHP).

The polarization ellipse is contained within a rectangle of sides 2Ex0 and 2Ey0, and
has its major axis rotated from the x-axis by the tilt angle ψ , 0 ≤ ψ ≤ π . The ratio of
Ey0 to Ex0 determines an angle α, 0 ≤ α ≤ π/2:

Ey0/Ex0 = tan α.

The shape of the ellipse is determined by the three parameters Ex0, Ey0, and δ, while
the sense of polarization is described by the sign of δ. These may not, however, be
the most convenient parameters for describing the polarization of a wave. We can also
inscribe the ellipse within a box measuring 2a by 2b, where a and b are the lengths of
the semimajor and semiminor axes. Then b/a determines an angle χ , −π/4 ≤ χ ≤ π/4,
that is analogous to α:

±b/a = tan χ.

Here the algebraic sign of χ is used to indicate the sense of polarization: χ > 0 for LHP,
χ < 0 for RHP.

The quantities a, b, ψ can also be used to describe the polarization ellipse. When we
use the procedure outlined in Born and Wolf [19] to relate the quantities (a, b, ψ) to
(Ex0, Ey0, δ), we find that

a2 + b2 = E2
x0 + E2

y0,

tan 2ψ = (tan 2α) cos δ = 2Ex0 Ey0

E2
x0 − E2

y0

cos δ,

sin 2χ = (sin 2α) sin δ = 2Ex0 Ey0

E2
x0 + E2

y0

sin δ.

Alternatively, we can describe the polarization ellipse by the angles ψ and χ and one of
the amplitudes Ex0 or Ey0.



Figure 4.16: Polarization states as a function of tilt angle ψ and ellipse aspect ratio angle
χ . Left-hand polarization for χ > 0, right-hand for χ < 0.

Each of these parameter sets is somewhat inconvenient since in each case the units
differ among the parameters. In 1852 G. Stokes introduced a system of three independent
quantities with identical dimension that can be used to describe plane-wave polarization.
Various normalizations of these Stokes parameters are employed; when the parameters
are chosen to have the dimension of power density we may write them as

s0 = 1

2η

[
E2

x0 + E2
y0

]
, (4.249)

s1 = 1

2η

[
E2

x0 − E2
y0

] = s0 cos(2χ) cos(2ψ), (4.250)

s2 = 1

η
Ex0 Ey0 cos δ = s0 cos(2χ) sin(2ψ), (4.251)

s3 = 1

η
Ex0 Ey0 sin δ = s0 sin(2χ). (4.252)

Only three of these four parameters are independent since s2
0 = s2

1 + s2
2 + s2

3 . Often the
Stokes parameters are designated (I, Q, U, V ) rather than (s0, s1, s2, s3).

Figure 4.16 summarizes various polarization states as a function of the angles ψ and
χ . Two interesting special cases occur when χ = 0 and χ = ±π/4. The case χ = 0
corresponds to b = 0 and thus δ = 0. In this case the electric vector traces out a straight
line and we call the polarization linear. Here

E = (
x̂Ex0 + ŷEy0

)
cos(ωt − kz + φx ).

When ψ = 0 we have Ey0 = 0 and refer to this as horizontal linear polarization (HLP);
when ψ = π/2 we have Ex0 = 0 and vertical linear polarization (VLP).

The case χ = ±π/4 corresponds to b = a and δ = ±π/2. Thus Ex0 = Ey0, and E
traces out a circle regardless of the value of ψ . If χ = −π/4 we have right-hand rotation
of E and thus refer to this case as right-hand circular polarization (RHCP). If χ = π/4
we have left-hand circular polarization (LHCP). For these cases

E = Ex0 [x̂ cos(ωt − kz) ∓ ŷ sin(ωt − kz)] ,



Figure 4.17: Graphical representation of the polarization of a monochromatic plane wave
using the Poincaré sphere.

where the upper and lower signs correspond to LHCP and RHCP, respectively. All other
values of χ result in the general cases of left-hand or right-hand elliptical polarization.

The French mathematician H. Poincaré realized that the Stokes parameters (s1, s2, s3)

describe a point on a sphere of radius s0, and that this Poincaré sphere is useful for
visualizing the various polarization states. Each state corresponds uniquely to one point
on the sphere, and by (4.250)–(4.252) the angles 2χ and 2ψ are the spherical angular
coordinates of the point as shown in Figure 4.17. We may therefore map the polarization
states shown in Figure 4.16 directly onto the sphere: left- and right-hand polarizations
appear in the upper and lower hemispheres, respectively; circular polarization appears at
the poles (2χ = ±π/2); linear polarization appears on the equator (2χ = 0), with HLP
at 2ψ = 0 and VLP at 2ψ = π . The angles α and δ also have geometrical interpretations
on the Poincaré sphere. The spherical angle of the great-circle route between the point
of HLP and a point on the sphere is 2α, while the angle between the great-circle path
and the equator is δ.

Uniform plane waves in a good dielectric. We may base some useful plane-wave
approximations on whether the real or imaginary part of ε̃c dominates at the frequency
of operation. We assume that µ̃(ω) = µ is independent of frequency and use the notation
εc = ε̃c(ω̌), σ = σ̃ (ω̌), etc. Remember that

εc = (
ε′ + jε′′) + σ

jω̌
= ε′ + j

(
ε′′ − σ

ω̌

)
= εc′ + jεc′′.

By definition, a “good dielectric” obeys

tan δc = −εc′′

εc′ = σ

ω̌ε′ − ε′′

ε′ � 1. (4.253)



Here tan δc is the loss tangent of the material, as first described in (4.107) for a material
without conductivity. For a good dielectric we have

k = β − jα = ω̌
√

µεc = ω̌
√

µ [ε′ + jεc′′] = ω̌
√

µε′√1 − j tan δc,

hence

k ≈ ω̌
√

µε′
[

1 − j
1

2
tan δc

]
(4.254)

by the binomial approximation for the square root. Therefore

β ≈ ω̌
√

µε′ (4.255)

and

α ≈ β

2
tan δc = σ

2

√
µ

ε′

[
1 − ω̌ε′′

σ

]
. (4.256)

We conclude that α � β. Using this and the binomial approximation we establish

η = ω̌µ

k
= ω̌µ

β

1

1 − jα/β
≈ ω̌µ

β

(
1 + j

α

β

)
.

Finally,

vp = ω̌

β
≈ 1√

µε′

and

vg =
[

dβ

dω

]−1

≈ 1√
µε′ .

To first order, the phase constant, phase velocity, and group velocity are the same as
those of a lossless medium.

Uniform plane waves in a good conductor. We classify a material as a “good
conductor” if

tan δc ≈ σ

ω̌ε
� 1.

In a good conductor the conduction current σ Ě is much greater than the displacement
current jω̌ε′Ě, and ε′′ is usually ignored. Now we may approximate

k = β − jα = ω̌
√

µε′√1 − j tan δc ≈ ω̌
√

µε′√− j tan δc.

Since
√− j = (1 − j)/

√
2 we find that

β = α ≈
√

π f µσ. (4.257)

Hence

vp = ω̌

β
≈

√
2ω̌

µσ
= 1√

µε′

√
2

tan δc
.

To find vg we must replace ω̌ by ω and differentiate, obtaining

vg =
[

dβ

dω

]−1 ∣∣∣∣
ω=ω̌

≈
[

1

2

√
µσ

2ω̌

]−1

= 2

√
2ω̌

µσ
= 2vp.



In a good conductor the group velocity is approximately twice the phase velocity. We
could have found this relation from the phase velocity using (4.242). Indeed, noting that

dvp

dω
= d

dω

√
2ω

µσ
= 1

2

√
2

ωµσ

and

β
dvp

dω
=

√
ωµσ

2

1

2

√
2

ωµσ
= 1

2
,

we see that
vp

vg
= 1 − 1

2
= 1

2
.

Note that the phase and group velocities may be only small fractions of the free-space
light velocity. For example, in copper (σ = 5.8 × 107 S/m, µ = µ0, ε = ε0) at 1 MHz,
we have vp = 415 m/s.

A factor often used to judge the quality of a conductor is the distance required for a
propagating uniform plane wave to decrease in amplitude by the factor 1/e. By (4.244)
this distance is given by

δ = 1

α
= 1√

π f µσ
. (4.258)

We call δ the skin depth. A good conductor is characterized by a small skin depth. For
example, copper at 1 MHz has δ = 0.066 mm.

Power carried by a uniform plane wave. Since a plane wavefront is infinite in
extent, we usually speak of the power density carried by the wave. This is identical to
the time-average Poynting flux. Substitution from (4.223) and (4.244) gives

Sav = 1

2
Re{Ě × Ȟ∗} = 1

2
Re

{
Ě ×

(
k̂ × Ě

η

)∗}
. (4.259)

Expanding the cross products and remembering that k · Ě = 0, we get

Sav = 1

2
k̂ Re

{
|Ě|2
η∗

}
= k̂ Re

{
E2

0

2η∗

}
e−2αk̂·r.

Hence a uniform plane wave propagating in an isotropic medium carries power in the
direction of wavefront propagation.

Velocity of energy transport. The group velocity (4.237) has an additional interpre-
tation as the velocity of energy transport. If the time-average volume density of energy
is given by

〈wem〉 = 〈we〉 + 〈wm〉
and the time-average volume density of energy flow is given by the Poynting flux density

Sav = 1

2
Re

{
Ě(r) × Ȟ∗(r)

} = 1

4

[
Ě(r) × Ȟ∗(r) + Ě∗(r) × Ȟ(r)

]
, (4.260)

then the velocity of energy flow, ve, is defined by

Sav = 〈wem〉ve. (4.261)



Let us calculate ve for a plane wave propagating in a lossless, source-free medium where
k = k̂ω

√
µε. By (4.216) and (4.223) we have

Ẽ(r, ω) = Ẽ0(ω)e− jβk̂·r, (4.262)

H̃(r, ω) =
(

k̂ × Ẽ0(ω)

η

)
e− jβk̂·r = H̃0(ω)e− jβk̂·r. (4.263)

We can compute the time-average stored energy density using the energy theorem (4.68).
In point form we have

− ∇ ·
(

Ẽ∗ × ∂H̃
∂ω

+ ∂Ẽ
∂ω

× H̃∗
) ∣∣∣∣

ω=ω̌

= 4 j〈wem〉. (4.264)

Upon substitution of (4.262) and (4.263) we find that we need to compute the frequency
derivatives of Ẽ and H̃. Using

∂

∂ω
e− jβk̂·r =

(
∂

∂β
e− jβk̂·r

)
dβ

dω
= − j k̂ · r

dβ

dω
e− jβk̂·r

and remembering that k = k̂β, we have

∂Ẽ(r, ω)

∂ω
= dẼ0(ω)

dω
e− jk·r + Ẽ0(ω)

(
− jr · dk

dω

)
e− jk·r,

∂H̃(r, ω)

∂ω
= dH̃0(ω)

dω
e− jk·r + H̃0(ω)

(
− jr · dk

dω

)
e− jk·r.

Equation (4.264) becomes

−∇ ·
{

Ẽ∗
0(ω) × dH̃0(ω)

dω
+ dẼ0(ω)

dω
× H̃∗

0(ω)−

− jr · dk
dω

[
Ẽ∗

0(ω) × H̃0(ω) + Ẽ0(ω) × H̃∗
0(ω)

]} ∣∣∣∣
ω=ω̌

= 4 j〈wem〉.

The first two terms on the left-hand side have zero divergence, since these terms do not
depend on r. By the product rule (B.42) we have

[
Ẽ∗

0(ω̌) × H̃0(ω̌) + Ẽ0(ω̌) × H̃∗
0(ω̌)

] · ∇
(

r · dk
dω

) ∣∣∣∣
ω=ω̌

= 4〈wem〉.

The gradient term is merely

∇
(

r · dk
dω

) ∣∣∣∣
ω=ω̌

= ∇
(

x
dkx

dω
+ y

dky

dω
+ z

dkz

dω

) ∣∣∣∣
ω=ω̌

= dk
dω

∣∣∣∣
ω=ω̌

,

hence

[
Ẽ∗

0(ω̌) × H̃0(ω̌) + Ẽ0(ω̌) × H̃∗
0(ω̌)

] · dk
dω

∣∣∣∣
ω=ω̌

= 4〈wem〉. (4.265)

Finally, the left-hand side of this expression can be written in terms of the time-average
Poynting vector. By (4.260) we have

Sav = 1

2
Re

{
Ě × Ȟ∗} = 1

4

[
Ẽ0(ω̌) × H̃∗

0(ω̌) + Ẽ∗
0(ω̌) × H̃0(ω̌)

]



and thus we can write (4.265) as

Sav · dk
dω

∣∣∣∣
ω=ω̌

= 〈wem〉.

Since for a uniform plane wave in an isotropic medium k and Sav are in the same direction,
we have

Sav = k̂
dω

dβ

∣∣∣∣
ω=ω̌

〈wem〉

and the velocity of energy transport for a plane wave of frequency ω̌ is then

ve = k̂
dω

dβ

∣∣∣∣
ω=ω̌

.

Thus, for a uniform plane wave in a lossless medium the velocity of energy transport is
identical to the group velocity.

Nonuniform plane waves. A nonuniform plane wave has the same form (4.216) as a
uniform plane wave, but the vectors k′ and k′′ described in (4.217) are not aligned. Thus

Ě(r) = E0e− jk′ ·rek′′ ·r.

In the time domain this becomes

Ě(r) = E0ek′′ ·r cos[ω̌t − k ′(k̂′ · r)]

where k′ = k̂′k ′. The surfaces of constant phase are planes perpendicular to k′ and
propagating in the direction of k̂′. The phase velocity is now

vp = ω̌/k ′

and the wavelength is

λ = 2π/k ′.

In contrast, surfaces of constant amplitude must obey

k′′ · r = C

and thus are planes perpendicular to k′′.
In a nonuniform plane wave the TEM nature of the fields is lost. This is easily seen

by calculating Ȟ from (4.219):

Ȟ(r) = k × Ě(r)
ω̌µ

= k′ × Ě(r)
ω̌µ

+ j
k′′ × Ě(r)

ω̌µ
.

Thus, Ȟ is no longer perpendicular to the direction of propagation of the phase front. The
power carried by the wave also differs from that of the uniform case. The time-average
Poynting vector

Sav = 1

2
Re

{
Ě ×

(
k × Ě
ω̌µ

)∗}

can be expanded using the identity (B.7):

Sav = 1

2
Re

{
1

ω̌µ∗
[
k∗ × (Ě × Ě∗) + Ě∗ × (k∗ × Ě)

]}
. (4.266)



Since we still have k · E = 0, we may use the rest of (B.7) to write

Ě∗ × (k∗ × Ě) = k∗(Ě · Ě∗) + Ě(k · Ě)∗ = k∗(Ě · Ě∗).

Substituting this into (4.266), and noting that Ě × Ě∗ is purely imaginary, we find

Sav = 1

2
Re

{
1

ω̌µ∗
[

jk∗ × Im
{
Ě × Ě∗} + k∗|Ě|2]} . (4.267)

Thus the vector direction of Sav is not generally in the direction of propagation of the
plane wavefronts.

Let us examine the special case of nonuniform plane waves propagating in a lossless
material. It is intriguing that k may be complex when k is real, and the implication is
important for the plane-wave expansion of complicated fields in free space. By (4.218),
real k requires that if k ′′ �= 0 then

k′ · k′′ = 0.

Thus, for a nonuniform plane wave in a lossless material the surfaces of constant phase
and the surfaces of constant amplitude are orthogonal. To specialize the time-average
power to the lossless case we note that µ is purely real and that

E × E∗ = (E0 × E∗
0)e

2k′′ ·r.

Then (4.267) becomes

Sav = 1

2ω̌µ
e2k′′ ·r Re

{
j (k′ − jk′′) × Im

{
E0 × E∗

0

} + (k′ − jk′′)|Ě|2}
or

Sav = 1

2ω̌µ
e2k′′ ·r [

k′′ × Im
{
E0 × E∗

0

} + k′Ě|2] .

We see that in a lossless medium the direction of energy propagation is perpendicular
to the surfaces of constant amplitude (since k′′ · Sav = 0), but the direction of energy
propagation is not generally in the direction of propagation of the phase planes.

We shall encounter nonuniform plane waves when we study the reflection and refrac-
tion of a plane wave from a planar interface in the next section. We shall also find in
§ 4.13 that nonuniform plane waves are a necessary constituent of the angular spectrum
representation of an arbitrary wave field.

4.11.5 Plane waves in layered media

A useful canonical problem in wave propagation involves the reflection of plane waves
by planar interfaces between differing material regions. This has many direct applica-
tions, from the design of optical coatings and microwave absorbers to the probing of
underground oil-bearing rock layers. We shall begin by studying the reflection of a plane
wave at a single interface and then extend the results to any number of material layers.

Reflection of a uniform plane wave at a planar material interface. Consider
two lossy media separated by the z = 0 plane as shown in Figure 4.18. The media are as-
sumed to be isotropic and homogeneous with permeability µ̃(ω) and complex permittivity
ε̃c(ω). Both µ̃ and ε̃c may be complex numbers describing magnetic and dielectric loss,



respectively. We assume that a linearly-polarized plane-wave field of the form (4.216) is
created within region 1 by a process that we shall not study here. We take this field to
be the known “incident wave” produced by an impressed source, and wish to compute
the total field in regions 1 and 2. Here we shall assume that the incident field is that of a
uniform plane wave, and shall extend the analysis to certain types of nonuniform plane
waves subsequently.

Since the incident field is uniform, we may write the wave vector associated with this
field as

ki = k̂i ki = k̂i (ki ′ + jki ′′)

where

[ki (ω)]2 = ω2µ̃1(ω)ε̃c
1(ω).

We can assume without loss of generality that k̂i lies in the xz-plane and makes an angle
θi with the interface normal as shown in Figure 4.18. We refer to θi as the incidence angle
of the incident field, and note that it is the angle between the direction of propagation
of the planar phase fronts and the normal to the interface. With this we have

ki = x̂k1 sin θi + ẑk1 cos θi = x̂ki
x + ẑki

z .

Using k1 = β1 − jα1 we also have

ki
x = (β1 − jα1) sin θi .

The term ki
z is written in a somewhat different form in order to make the result easily

applicable to reflections from multiple interfaces. We write

ki
z = (β1 − jα1) cos θi = τ i e− jγ i = τ i cos γ i − jτ i sin γ i .

Thus,

τ i =
√

β2
1 + α2

1 cos θi , γ i = tan−1(α1/β1).

We solve for the fields in each region of space directly in the frequency domain. The
incident electric field has the form of (4.216),

Ẽi (r, ω) = Ẽi
0(ω)e− jki (ω)·r, (4.268)

while the magnetic field is found from (4.219) to be

H̃i = ki × Ẽi

ωµ̃1
. (4.269)

The incident field may be decomposed into two orthogonal components, one parallel
to the plane of incidence (the plane containing k̂ and the interface normal ẑ) and one
perpendicular to this plane. We seek unique solutions for the fields in both regions, first
for the case in which the incident electric field has only a parallel component, and then
for the case in which it has only a perpendicular component. The total field is then
determined by superposition of the individual solutions. For perpendicular polarization
we have from (4.268) and (4.269)

Ẽi
⊥ = ŷẼ i

⊥e− j (ki
x x+ki

z z), (4.270)

H̃i
⊥ = −x̂ki

z + ẑki
x

k1

Ẽ i
⊥

η1
e− j (ki

x x+ki
z z), (4.271)



Figure 4.18: Uniform plane wave incident on planar interface between two lossy regions
of space. (a) TM polarization, (b) TE polarization.

as shown graphically in Figure 4.18. Here η1 = (µ̃1/ε̃
c
1)

1/2 is the intrinsic impedance of
medium 1. For parallel polarization, the direction of Ẽ is found by remembering that the
wave must be TEM. Thus Ẽ‖ is perpendicular to ki . Since Ẽ‖ must also be perpendicular
to Ẽ⊥, we have two possible directions for Ẽ‖. By convention we choose the one for which
H̃ lies in the same direction as did Ẽ for perpendicular polarization. Thus we have for
parallel polarization

H̃i
‖ = ŷ

Ẽ i
‖

η1
e− j (ki

x x+ki
z z), (4.272)

Ẽi
‖ = x̂ki

z − ẑki
x

k1
Ẽ i

‖e− j (ki
x x+ki

z z), (4.273)

as shown in Figure 4.18. Because Ẽ lies transverse (normal) to the plane of incidence
under perpendicular polarization, the field set is often described as transverse electric or
TE. Because H̃ lies transverse to the plane of incidence under parallel polarization, the
fields in that case are transverse magnetic or TM.

Uniqueness requires that the total field obey the boundary conditions at the planar
interface. We hypothesize that the total field within region 1 consists of the incident
field superposed with a “reflected” plane-wave field having wave vector kr , while the
field in region 2 consists of a single “transmitted” plane-wave field having wave vector
kt . We cannot at the outset make any assumption regarding whether either of these
fields are uniform plane waves. However, we do note that the reflected and transmitted
fields cannot have vector components not present in the incident field; extra components
would preclude satisfaction of the boundary conditions. Letting Ẽr be the amplitude of
the reflected plane-wave field we may write

Ẽr
⊥ = ŷẼr

⊥e− j (kr
x x+kr

z z), H̃r
⊥ = −x̂kr

z + ẑkr
x

k1

Ẽr
⊥

η1
e− j (kr

x x+kr
z z),



H̃r
‖ = ŷ

Ẽr
‖

η1
e− j (kr

x x+kr
z z), Ẽr

‖ = x̂kr
z − ẑkr

x

k1
Ẽr

‖e− j (kr
x x+kr

z z),

where (kr
x )

2 + (kr
z )

2 = k2
1 . Similarly, letting Ẽ t be the amplitude of the transmitted field

we have

Ẽt
⊥ = ŷẼ t

⊥e− j (kt
x x+kt

z z), H̃t
⊥ = −x̂kt

z + ẑkt
x

k2

Ẽ t
⊥

η2
e− j (kt

x x+kt
z z),

H̃t
‖ = ŷ

Ẽ t
‖

η2
e− j (kt

x x+kt
z z), Ẽt

‖ = x̂kt
z − ẑkt

x

k2
Ẽ t

‖e− j (kt
x x+kt

z z),

where (kt
x )

2 + (kt
z)

2 = k2
2 .

The relationships between the field amplitudes Ẽ i , Ẽr , Ẽ t , and between the components
of the reflected and transmitted wave vectors kr and kt , can be found by applying the
boundary conditions. The tangential electric and magnetic fields are continuous across
the interface at z = 0:

ẑ × (Ẽi + Ẽr )|z=0 = ẑ × Ẽt |z=0,

ẑ × (H̃i + H̃r )|z=0 = ẑ × H̃t |z=0.

Substituting the field expressions, we find that for perpendicular polarization the two
boundary conditions require

Ẽ i
⊥e− jki

x x + Ẽr
⊥e− jkr

x x = Ẽ t
⊥e− jkt

x x , (4.274)
ki

z

k1

Ẽ i
⊥

η1
e− jki

x x + kr
z

k1

Ẽr
⊥

η1
e− jkr

x x = kt
z

k2

Ẽ t
⊥

η2
e− jkt

x x , (4.275)

while for parallel polarization they require

ki
z

k1
Ẽ i

‖e− jki
x x + kr

z

k1
Ẽr

‖e− jkr
x x = kt

z

k2
Ẽ t

‖e− jkt
x x , (4.276)

Ẽ i
‖

η1
e− jki

x x + Ẽr
‖

η1
e− jkr

x x = Ẽ t
‖

η2
e− jkt

x x . (4.277)

For the above to hold for all x we must have the exponential terms equal. This requires

ki
x = kr

x = kt
x , (4.278)

and also establishes a relation between ki
z , kr

z , and kt
z . Since (ki

x )
2 + (ki

z)
2 = (kr

x )
2 + (kr

z )
2 =

k2
1 , we must have kr

z = ±ki
z . In order to make the reflected wavefronts propagate away

from the interface we select kr
z = −ki

z . Letting ki
x = kr

x = kt
x = k1x and ki

z = −kr
z = k1z ,

we may write the wave vectors in region 1 as

ki = x̂k1x + ẑk1z, kr = x̂k1x − ẑk1z .

Since (kt
x )

2 + (kt
z)

2 = k2
2 , letting k2 = β2 − jα2 we have

kt
z =

√
k2

2 − k2
1x =

√
(β2 − jα2)2 − (β1 − jα1)2 sin2 θi = τ t e− jγ t

.

Squaring out the above relation, we have

A − j B = (τ t )2 cos 2γ t − j (τ t )2 sin 2γ t



where

A = β2
2 − α2

2 − (β2
1 − α2

1) sin2 θi , B = 2(β2α2 − β1α1 sin2 θi ). (4.279)

Thus

τ t = (
A2 + B2

)1/4
, γ t = 1

2
tan−1 B

A
. (4.280)

Renaming kt
z as k2z , we may write the transmitted wave vector as

kt = x̂k1x + ẑk2z = k′
2 + jk′′

2

where

k′
2 = x̂β1 sin θi + ẑτ t cos γ t , k′′

2 = −x̂α1 sin θi − ẑτ t sin γ t .

Since the direction of propagation of the transmitted field phase fronts is perpendicular
to k′

2, a unit vector in the direction of propagation is

k̂′
2 = x̂β1 sin θi + ẑτ t cos γ t√

β2
1 sin2 θi + (τ t )2 cos2 θi

. (4.281)

Similarly, a unit vector perpendicular to planar surfaces of constant amplitude is given
by

k̂′′
2 = x̂α1 sin θi + ẑτ t sin γ t√

α2
1 sin2 θi + (τ t )2 sin2 γ t

. (4.282)

In general k̂′ is not aligned with k̂′′ and thus the transmitted field is a nonuniform plane
wave.

With these definitions of k1x , k1z, k2z , equations (4.274) and (4.275) can be solved si-
multaneously and we have

Ẽr
⊥ = �̃⊥ Ẽ i

⊥, Ẽ t
⊥ = T̃⊥ Ẽ i

⊥,

where

�̃⊥ = Z2⊥ − Z1⊥
Z2⊥ + Z1⊥

, T̃⊥ = 1 + �̃⊥ = 2Z2⊥
Z2⊥ + Z1⊥

, (4.283)

with

Z1⊥ = k1η1

k1z
, Z2⊥ = k2η2

k2z
.

Here �̃ is a frequency-dependent reflection coefficient that relates the tangential compo-
nents of the incident and reflected electric fields, and T̃ is a frequency-dependent trans-
mission coefficient that relates the tangential components of the incident and transmitted
electric fields. These coefficients are also called the Fresnel coefficients.

For the case of parallel polarization we solve (4.276) and (4.277) to find

Ẽr
‖,x

Ẽ i
‖,x

= kr
x

ki
x

Ẽr
‖

Ẽ i
‖

= − Ẽr
‖

Ẽ i
‖

= �̃‖,
Ẽ t

‖,x
Ẽ i

‖,x
= (kt

z/k2)Ẽ t
‖

(ki
z/k1)Ẽ i

‖
= T̃‖.

Here

�̃‖ = Z2‖ − Z1‖
Z2‖ + Z1‖

, T̃‖ = 1 + �̃‖ = 2Z2‖
Z2‖ + Z1‖

, (4.284)



with

Z1‖ = k1zη1

k1
, Z2‖ = k2zη2

k2
.

Note that we may also write

Ẽr
‖ = −�̃‖ Ẽ i

‖, Ẽ t
‖ = T̃‖ Ẽ i

‖

(
ki

z

k1

k2

kt
z

)
.

Let us summarize the fields in each region. For perpendicular polarization we have

Ẽi
⊥ = ŷẼ i

⊥e− jki ·r,
Ẽr

⊥ = ŷ�̃⊥ Ẽ i
⊥e− jkr ·r, (4.285)

Ẽt
⊥ = ŷT̃⊥ Ẽ i

⊥e− jkt ·r,

and

H̃i
⊥ = ki × Ẽi

⊥
k1η1

, H̃r
⊥ = kr × Ẽr

⊥
k1η1

, H̃t
⊥ = kt × Ẽt

⊥
k2η2

. (4.286)

For parallel polarization we have

Ẽi
‖ = −η1

ki × H̃i
‖

k1
e− jki ·r,

Ẽr
‖ = −η1

kr × H̃r
‖

k1
e− jkr ·r,

Ẽt
‖ = −η2

kt × H̃t
‖

k2
e− jkt ·r, (4.287)

and

H̃i
‖ = ŷ

Ẽ i
‖

η1
e− jki ·r,

H̃r
‖ = −ŷ

�̃‖ Ẽ i
‖

η1
e− jkr ·r,

H̃t
‖ = ŷ

T̃‖ Ẽ i
‖

η2

(
ki

z

k1

k2

kt
z

)
e− jkt ·r. (4.288)

The wave vectors are given by

ki = (x̂β1 sin θi + ẑτ i cos γ i ) − j (x̂α1 sin θi + ẑτ i sin γ i ), (4.289)
kr = (x̂β1 sin θi − ẑτ i cos γ i ) − j (x̂α1 sin θi − ẑτ i sin γ i ), (4.290)
kt = (x̂β1 sin θi + ẑτ t cos γ t ) − j (x̂α1 sin θi + ẑτ t sin γ t ). (4.291)

We see that the reflected wave must, like the incident wave, be a uniform plane wave.
We define the unsigned reflection angle θr as the angle between the surface normal and
the direction of propagation of the reflected wavefronts (Figure 4.18). Since

ki · ẑ = k1 cos θi = −kr · ẑ = k1 cos θr

and

ki · x̂ = k1 sin θi = kr · x̂ = k1 sin θr



we must have

θi = θr .

This is known as Snell’s law of reflection. We can similarly define the transmission angle
to be the angle between the direction of propagation of the transmitted wavefronts and
the interface normal. Noting that k̂′

2 · ẑ = cos θt and k̂′
2 · x̂ = sin θt , we have from (4.281)

and (4.282)

cos θt = τ t cos γ t√
β2

1 sin2 θi + (τ t )2 cos2 γ t
, (4.292)

sin θt = β1 sin θi√
β2

1 sin2 θi + (τ t )2 cos2 γ t
, (4.293)

and thus

θt = tan−1

(
β1

τ t

sin θi

cos γ t

)
. (4.294)

Depending on the properties of the media, at a certain incidence angle θc, called the
critical angle, the angle of transmission becomes π/2. Under this condition k̂′

2 has only
an x-component. Thus, surfaces of constant phase propagate parallel to the interface.
Later we shall see that for low-loss (or lossless) media, this implies that no time-average
power is carried by a monochromatic transmitted wave into the second medium.

We also see that although the transmitted field may be a nonuniform plane wave, its
mathematical form is that of the incident plane wave. This allows us to easily generalize
the single-interface reflection problem to one involving many layers.

Uniform plane-wave reflection for lossless media. We can specialize the preceding
results to the case for which both regions are lossless with µ̃ = µ and ε̃c = ε real and
frequency-independent. By (4.224) we have

β = ω
√

µε,

while (4.225) gives

α = 0.

We can easily show that the transmitted wave must be uniform unless the incidence angle
exceeds the critical angle. By (4.279) we have

A = β2
2 − β2

1 sin2 θi , B = 0, (4.295)

while (4.280) gives

τ = [
A2

]1/4 =
√

|β2
2 − β2

1 sin2 θi |
and

γ t = 1

2
tan−1(0).

We have several possible choices for γ t . To choose properly we note that γ t represents
the negative of the phase of the quantity kt

z = √
A. If A > 0 the phase of the square root

is 0. If A < 0 the phase of the square root is −π/2 and thus γ t = +π/2. Here we choose
the plus sign on γ t to ensure that the transmitted field decays as z increases. We note



that if A = 0 then τ t = 0 and from (4.293) we have θt = π/2. This defines the critical
angle, which from (4.295) is

θc = sin−1

(
β2

2

β2
1

)
= sin−1

(
µ2ε2

µ1ε1

)
.

Therefore

γ t =
{

0, θi < θc,

π/2, θi > θc.

Using these we can write down the transmitted wave vector from (4.291):

kt = kt ′ + jkt ′′ =
{

x̂β1 sin θi + ẑ
√|A|, θi < θc,

x̂β1 sin θi − j ẑ
√|A|, θi > θc.

(4.296)

By (4.293) we have

sin θt = β1 sin θi√
β2

1 sin2 θi + β2
2 − β2

1 sin2 θi

= β1 sin θi

β2

or

β2 sin θt = β1 sin θi . (4.297)

This is known as Snell’s law of refraction. With this we can write for θi < θc

A = β2
2 − β2

1 sin2 θi = β2
2 cos2 θt .

Using this and substituting β2 sin θt for β1 sin θi , we may rewrite (4.296) for θi < θc as

kt = kt ′ + jkt ′′ = x̂β2 sin θt + ẑβ2 cos θt . (4.298)

Hence the transmitted plane wave is uniform with kt ′′ = 0. When θi > θc we have from
(4.296)

kt ′ = x̂β1 sin θi , kt ′′ = −ẑ
√

β2
1 sin2 θi − β2

2 .

Since kt ′ and kt ′′ are not collinear, the plane wave is nonuniform. Let us examine the
cases θi < θc and θi > θc in greater detail.

Case 1: θi < θc. By (4.289)–(4.290) and (4.298) the wave vectors are

ki = x̂β1 sin θi + ẑβ1 cos θi ,

kr = x̂β1 sin θi − ẑβ1 cos θi ,

kt = x̂β2 sin θt + ẑβ2 cos θt ,

and the wave impedances are

Z1⊥ = η1

cos θi
, Z2⊥ = η2

cos θt
,

Z1‖ = η1 cos θi , Z2‖ = η2 cos θt .

The reflection coefficients are

�̃⊥ = η2 cos θi − η1 cos θt

η2 cos θi + η1 cos θt
, �̃‖ = η2 cos θt − η1 cos θi

η2 cos θt + η1 cos θi
. (4.299)



So the reflection coefficients are purely real, with signs dependent on the constitutive
parameters of the media. We can write

�̃⊥ = ρ⊥e jφ⊥ , �̃‖ = ρ‖e jφ‖ ,

where ρ and φ are real, and where φ = 0 or π .
Under certain conditions the reflection coefficients vanish. For a given set of constitu-

tive parameters we may achieve �̃ = 0 at an incidence angle θB , known as the Brewster
or polarizing angle. A wave with an arbitrary combination of perpendicular and paral-
lel polarized components incident at this angle produces a reflected field with a single
component. A wave incident with only the appropriate single component produces no
reflected field, regardless of its amplitude.

For perpendicular polarization we set �̃⊥ = 0, requiring

η2 cos θi − η1 cos θt = 0

or equivalently

µ2

ε2
(1 − sin2 θi ) = µ1

ε1
(1 − sin2 θt ).

By (4.297) we may put

sin2 θt = µ1ε1

µ2ε2
sin2 θi ,

resulting in

sin2 θi = µ2

ε1

ε2µ1 − ε1µ2

µ2
1 − µ2

2

.

The value of θi that satisfies this equation must be the Brewster angle, and thus

θB⊥ = sin−1

√
µ2

ε1

ε2µ1 − ε1µ2

µ2
1 − µ2

2

.

When µ1 = µ2 there is no solution to this equation, hence the reflection coefficient cannot
vanish. When ε1 = ε2 we have

θB⊥ = sin−1
√

µ2

µ1 + µ2
= tan−1

√
µ2

µ1
.

For parallel polarization we set �̃‖ = 0 and have

η2 cos θt = η1 cos θi .

Proceeding as above we find that

θB‖ = sin−1

√
ε2

µ1

ε1µ2 − ε2µ1

ε2
1 − ε2

2

.

This expression has no solution when ε1 = ε2, and thus the reflection coefficient cannot
vanish under this condition. When µ1 = µ2 we have

θB‖ = sin−1

√
ε2

ε1 + ε2
= tan−1

√
ε2

ε1
.



We find that when θi < θc the total field in region 1 behaves as a traveling wave
along x , but has characteristics of both a standing wave and a traveling wave along z
(Problem �4.7). The traveling-wave component is associated with a Poynting power flux,
while the standing-wave component is not. This flux is carried across the boundary
into region 2 where the transmitted field consists only of a traveling wave. By (4.161)
the normal component of time-average Poynting flux is continuous across the boundary,
demonstrating that the time-average power carried by the wave into the interface from
region 1 passes out through the interface into region 2 (Problem �4.8).

Case 2: θi < θc. The wave vectors are, from (4.289)–(4.290) and (4.296),

ki = x̂β1 sin θi + ẑβ1 cos θi ,

kr = x̂β1 sin θi − ẑβ1 cos θi ,

kt = x̂β1 sin θi − j ẑαc,

where

αc =
√

β2
1 sin2 θi − β2

2

is the critical angle attenuation constant. The wave impedances are

Z1⊥ = η1

cos θi
, Z2⊥ = j

β2η2

αc
,

Z1‖ = η1 cos θi , Z2‖ = − j
αcη2

β2
.

Substituting these into (4.283) and (4.284), we find that the reflection coefficients are
the complex quantities

�̃⊥ = β2η2 cos θi + jη1αc

β2η2 cos θi − jη1αc
= e jφ⊥ ,

�̃‖ = −β2η1 cos θi + jη2αc

β2η1 cos θi − jη2αc
= e jφ‖ ,

where

φ⊥ = 2 tan−1

(
η1αc

β2η2 cos θi

)
, φ‖ = π + 2 tan−1

(
η2αc

β2η1 cos θi

)
.

We note with interest that ρ⊥ = ρ‖ = 1. So the amplitudes of the reflected waves
are identical to those of the incident waves, and we call this the case of total internal
reflection. The phase of the reflected wave at the interface is changed from that of the
incident wave by an amount φ⊥ or φ‖. The phase shift incurred by the reflected wave
upon total internal reflection is called the Goos–Hänchen shift.

In the case of total internal reflection the field in region 1 is a pure standing wave while
the field in region 2 decays exponentially in the z-direction and is evanescent (Problem
�4.9). Since a standing wave transports no power, there is no Poynting flux into region 2.
We find that the evanescent wave also carries no power and thus the boundary condition
on power flux at the interface is satisfied (Problem 4.10�). We note that for any incident
angle except θi = 0 (normal incidence) the wave in region 1 does transport power in the
x-direction.



Reflection of time-domain uniform plane waves. Solution for the fields reflected
and transmitted at an interface shows us the properties of the fields for a certain single
excitation frequency and allows us to obtain time-domain fields by Fourier inversion.
Under certain conditions it is possible to do the inversion analytically, providing physical
insight into the temporal behavior of the fields.

As a simple example, consider a perpendicularly-polarized, uniform plane wave incident
from free space at an angle θi on the planar surface of a conducting material (Figure 4.18).
The material is assumed to have frequency-independent constitutive parameters µ̃ = µ0,
ε̃ = ε, and σ̃ = σ . By (4.285) we have the reflected field

Ẽr
⊥(r, ω) = ŷ�̃⊥(ω)Ẽ i

⊥(ω)e− jkr (ω)·r = ŷẼr (ω)e− jω k̂r ·r
c (4.300)

where Ẽr = �̃⊥ Ẽ i
⊥. We can use the time-shifting theorem (A.3)to invert the transform

and obtain

Er
⊥(r, t) = F−1

{
Ẽr

⊥(r, ω)
} = ŷEr

(
t − k̂r · r

c

)
(4.301)

where we have by the convolution theorem (12)

Er (t) = F−1
{

Ẽr (ω)
} = �⊥(t) ∗ E⊥(t).

Here

E⊥(t) = F−1
{

Ẽ i
⊥(ω)

}
is the time waveform of the incident plane wave, while

�⊥(t) = F−1
{
�̃⊥(ω)

}
is the time-domain reflection coefficient.

By (4.301) the reflected time-domain field propagates along the direction k̂r at the
speed of light. The time waveform of the field is the convolution of the waveform of
the incident field with the time-domain reflection coefficient �⊥(t). In the lossless case
(σ = 0), �⊥(t) is a δ-function and thus the waveforms of the reflected and incident fields
are identical. With the introduction of loss �⊥(t) broadens and thus the reflected field
waveform becomes a convolution-broadened version of the incident field waveform. To
understand the waveform of the reflected field we must compute �⊥(t). Note that by
choosing the permittivity of region 2 to exceed that of region 1 we preclude total internal
reflection.

We can specialize the frequency-domain reflection coefficient (4.283) for our problem
by noting that

k1z = β1 cos θi , k2z =
√

k2
2 − k2

1x = ω
√

µ0

√
ε + σ

jω
− ε0 sin2 θi ,

and thus

Z1⊥ = η0

cos θi
, Z2⊥ = η0√

εr + σ
jωε0

− sin2 θi

,

where εr = ε/ε0 and η0 = √
µ0/ε0. We thus obtain

�̃⊥ =
√

s − √
Ds + B√

s + √
Ds + B

(4.302)



where s = jω and

D = εr − sin2 θi

cos2 θi
, B = σ

ε0 cos2 θi
.

We can put (4.302) into a better form for inversion. We begin by subtracting �⊥∞, the
high-frequency limit of �̃⊥. Noting that

lim
ω→∞ �̃⊥(ω) = �⊥∞ = 1 − √

D

1 + √
D

,

we can form

�̃0
⊥(ω) = �̃⊥(ω) − �⊥∞ =

√
s − √

Ds + B√
s + √

Ds + B
− 1 − √

D

1 + √
D

= 2

√
D

1 + √
D

[ √
s − √

s + B/D√
s + √

D
√

s + D/B

]
.

With a bit of algebra this becomes

�̃0
⊥(ω) = − 2

√
D

D − 1

(
s

s + B
D−1

) 
1 −

√
s + B

D

s


 − 2B(

1 + √
D

)
(D − 1)

(
1

s + B
D−1

)
.

Now we can apply (C.12), (C.18), and (C.19) to obtain

�0
⊥(t) = F−1

{
�̃0

⊥(ω)
} = f1(t) + f2(t) + f3(t) (4.303)

where

f1(t) = − 2B

(1 + √
D)(D − 1)

e− Bt
D−1 U (t),

f2(t) = − B2

√
D(D − 1)2

U (t)
∫ t

0
e− B(t−x)

D−1 I

(
Bx

2D

)
dx,

f3(t) = B√
D(D − 1)

I

(
Bt

2D

)
U (t).

Here

I (x) = e−x [I0(x) + I1(x)]

where I0(x) and I1(x) are modified Bessel functions of the first kind. Setting u = Bx/2D
we can also write

f2(t) = − 2B
√

D

(D − 1)2
U (t)

∫ Bt
2D

0
e− Bt−2Du

D−1 I (u) du.

Polynomial approximations for I (x) may be found in Abramowitz and Stegun [?], making
the computation of �0

⊥(t) straightforward.
The complete time-domain reflection coefficient is

�⊥(t) = 1 − √
D

1 + √
D

δ(t) + �0
⊥(t).
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Figure 4.19: Time-domain reflection coefficients.

If σ = 0 then �0
⊥(t) = 0 and the reflection coefficient reduces to a single δ-function. Since

convolution with this term does not alter wave shape, the reflected field has the same
waveform as the incident field.

A plot of �0
⊥(t) for normal incidence (θi = 00) is shown in Figure 4.19. Here two

material cases are displayed: εr = 3, σ = 0.01 S/m, which is representative of dry water
ice, and εr = 80, σ = 4 S/m, which is representative of sea water. We see that a pulse
waveform experiences more temporal spreading upon reflection from ice than from sea
water, but that the amplitude of the dispersive component is less than that for sea water.

Reflection of a nonuniform plane wave from a planar interface. Describing the
interaction of a general nonuniform plane wave with a planar interface is problematic
because of the non-TEM behavior of the incident wave. We cannot decompose the fields
into two mutually orthogonal cases as we did with uniform waves, and thus the analysis
is more difficult. However, we found in the last section that when a uniform wave is
incident on a planar interface, the transmitted wave, even if nonuniform in nature, takes
on the same mathematical form and may be decomposed in the same manner as the
incident wave. Thus, we may study the case in which this refracted wave is incident on
a successive interface using exactly the same analysis as with a uniform incident wave.
This is helpful in the case of multi-layered media, which we shall examine next.

Interaction of a plane wave with multi-layered, planar materials. Consider
N + 1 regions of space separated by N planar interfaces as shown in Figure 4.20, and
assume that a uniform plane wave is incident on the first interface at angle θi . Each region
is assumed isotropic and homogeneous with a frequency-dependent complex permittivity
and permeability. We can easily generalize the previous analysis regarding reflection
from a single interface by realizing that in order to satisfy the boundary conditions each



Figure 4.20: Interaction of a uniform plane wave with a multi-layered material.

region, except region N , contains an incident-type wave of the form

Ẽi (r, ω) = Ẽi
0e− jki ·r

and a reflected-type wave of the form

Ẽr (r, ω) = Ẽr
0e− jkr ·r.

In region n we may write the wave vectors describing these waves as

ki
n = x̂kx,n + ẑkz,n, kr

n = x̂kx,n − ẑkz,n,

where

k2
x,n + k2

z,n = k2
n, k2

n = ω2µ̃n ε̃
c
n = (βn − jαn)

2.

We note at the outset that, as with the single interface case, the boundary conditions
are only satisfied when Snell’s law of reflection holds, and thus

kx,n = kx,0 = k0 sin θi (4.304)

where k0 = ω(µ̃0ε̃
c
0)

1/2 is the wavenumber of the 0th region (not necessarily free space).
From this condition we have

kz,n =
√

k2
n − k2

x,0 = τne− jγn

where

τn = (A2
n + B2

n )1/4, γn = 1

2
tan−1

(
Bn

An

)
,

and

An = β2
n − α2

n − (β2
0 − α2

0) sin2 θi , Bn = 2(βnαn − β0α0 sin2 θi ).

Provided that the incident wave is uniform, we can decompose the fields in every region
into cases of perpendicular and parallel polarization. This is true even when the waves



in certain layers are nonuniform. For the case of perpendicular polarization we can write
the electric field in region n, 0 ≤ n ≤ N − 1, as Ẽ⊥n = Ẽi

⊥n + Ẽr
⊥n where

Ẽi
⊥n = ŷan+1e− jkx,n x e− jkz,n(z−zn+1),

Ẽr
⊥n = ŷbn+1e− jkx,n x e+ jkz,n(z−zn+1),

and the magnetic field as H̃⊥n = H̃i
⊥n + Hr

⊥n where

H̃i
⊥n = −x̂kz,n + ẑkx,n

knηn
an+1e− jkx,n x e− jkz,n(z−zn+1),

H̃r
⊥n = +x̂kz,n + ẑkx,n

knηn
bn+1e− jkx,n x e+ jkz,n(z−zn+1).

When n = N there is no reflected wave; in this region we write

Ẽ⊥N = ŷaN+1e− jkx,N x e− jkz,N (z−zN ),

H̃⊥N = −x̂kz,N + ẑkx,N

kN ηN
aN+1e− jkx,N x e− jkz,N (z−zN ).

Since a1 is the known amplitude of the incident wave, there are 2N unknown wave am-
plitudes. We obtain the necessary 2N simultaneous equations by applying the boundary
conditions at each of the interfaces. At interface n located at z = zn, 1 ≤ n ≤ N − 1, we
have from the continuity of tangential electric field

an + bn = an+1e− jkz,n(zn−zn+1) + bn+1e+ jkz,n(zn−zn+1)

while from the continuity of magnetic field

−an
kz,n−1

kn−1ηn−1
+ bn

kz,n−1

kn−1ηn−1
= −an+1

kz,n

knηn
e− jkz,n(zn−zn+1) + bn+1

kz,n

knηn
e+ jkz,n(zn−zn+1).

Noting that the wave impedance of region n is

Z⊥n = knηn

kz,n

and defining the region n propagation factor as

P̃n = e− jkz,n�n

where �n = zn+1 − zn, we can write

an P̃n + bn P̃n = an+1 + bn+1 P̃2
n , (4.305)

−an P̃n + bn P̃n = −an+1
Z⊥n−1

Z⊥n
+ bn+1

Z⊥n−1

Z⊥n
P̃2

n . (4.306)

We must still apply the boundary conditions at z = zN . Proceeding as above, we find
that (4.305) and (4.306) hold for n = N if we set bN+1 = 0 and P̃N = 1.

The 2N simultaneous equations (4.305)–(4.306) may be solved using standard matrix
methods. However, through a little manipulation we can put the equations into a form
easily solved by recursion, providing a very nice physical picture of the multiple reflections
that occur within the layered medium. We begin by eliminating bn by subtracting (4.306)
from (4.305):

2an P̃n = an+1

[
1 + Z⊥n−1

Z⊥n

]
+ bn+1 P̃2

n

[
1 − Z⊥n−1

Z⊥n

]
. (4.307)



Figure 4.21: Wave flow diagram showing interaction of incident and reflected waves for
region n.

Defining

�̃n = Z⊥n − Z⊥n−1

Z⊥n + Z⊥n−1
(4.308)

as the interfacial reflection coefficient for interface n (i.e., the reflection coefficient as-
suming a single interface as in (4.283)), and

T̃n = 2Z⊥n

Z⊥n + Z⊥n−1
= 1 + �̃n

as the interfacial transmission coefficient for interface n, we can write (4.307) as

an+1 = anT̃n P̃n + bn+1 P̃n(−�̃n)P̃n.

Finally, if we define the global reflection coefficient Rn for region n as the ratio of the
amplitudes of the reflected and incident waves,

R̃n = bn/an,

we can write

an+1 = anT̃n P̃n + an+1 R̃n+1 P̃n(−�̃n)P̃n. (4.309)

For n = N we merely set RN+1 = 0 to find

aN+1 = aN T̃N P̃N . (4.310)

If we choose to eliminate an+1 from (4.305) and (4.306) we find that

bn = an�̃n + R̃n+1 P̃n(1 − �̃n)an+1. (4.311)

For n = N this reduces to

bN = aN �̃N . (4.312)

Equations (4.309) and (4.311) have nice physical interpretations. Consider Figure 4.21,
which shows the wave amplitudes for region n. We may think of the wave incident on



interface n + 1 with amplitude an+1 as consisting of two terms. The first term is the
wave transmitted through interface n (at z = zn). This wave must propagate through a
distance �n to reach interface n + 1 and thus has an amplitude anT̃n P̃n. The second term
is the reflection at interface n of the wave traveling in the −z direction within region n.
The amplitude of the wave before reflection is merely bn+1 P̃n, where the term P̃n results
from the propagation of the negatively-traveling wave from interface n + 1 to interface
n. Now, since the interfacial reflection coefficient at interface n for a wave incident from
region n is the negative of that for a wave incident from region n − 1 (since the wave
is traveling in the reverse direction), and since the reflected wave must travel through a
distance �n from interface n back to interface n + 1, the amplitude of the second term is
bn+1 P̃n(−�n)P̃n. Finally, remembering that bn+1 = R̃n+1an+1, we can write

an+1 = anT̃n P̃n + an+1 R̃n+1 P̃n(−�̃n)P̃n.

This equation is exactly the same as (4.309) which was found using the boundary con-
ditions. By similar reasoning, we may say that the wave traveling in the −z direction
in region n − 1 consists of a term reflected from the interface and a term transmitted
through the interface. The amplitude of the reflected term is merely an�̃n. The amplitude
of the transmitted term is found by considering bn+1 = R̃n+1an+1 propagated through a
distance �n and then transmitted backwards through interface n. Since the transmission
coefficient for a wave going from region n to region n − 1 is 1 + (−�̃n), the amplitude of
the transmitted term is R̃n+1 P̃n(1 − �̃n)an+1. Thus we have

bn = �̃nan + R̃n+1 P̃n(1 − �̃n)an+1,

which is identical to (4.311).
We are still left with the task of solving for the various field amplitudes. This can be

done using a simple recursive technique. Using T̃n = 1 + �̃n we find from (4.309) that

an+1 = (1 + �̃n)P̃n

1 + �̃n R̃n+1 P̃2
n

an. (4.313)

Substituting this into (4.311) we find

bn = �̃n + R̃n+1 P̃2
n

1 + �̃n R̃n+1 P̃2
n

an. (4.314)

Using this expression we find a recursive relationship for the global reflection coefficient:

R̃n = bn

an
= �̃n + R̃n+1 P̃2

n

1 + �̃n R̃n+1 P̃2
n

. (4.315)

The procedure is now as follows. The global reflection coefficient for interface N is, from
(4.312),

R̃N = bN /aN = �̃N . (4.316)

This is also obtained from (4.315) with R̃N+1 = 0. We next use (4.315) to find R̃N−1:

R̃N−1 = �̃N−1 + R̃N P̃2
N−1

1 + �̃N−1 R̃N P̃2
N−1

.



This process is repeated until reaching R̃1, whereupon all of the global reflection coeffi-
cients are known. We then find the amplitudes beginning with a1, which is the known
incident field amplitude. From (4.315) we find b1 = a1 R̃1, and from (4.313) we find

a2 = (1 + �̃1)P̃1

1 + �̃1 R̃2 P̃2
1

a1.

This process is repeated until all field amplitudes are known.
We note that the process outlined above holds equally well for parallel polarization as

long as we use the parallel wave impedances

Z‖n = kz,nηn

kn

when computing the interfacial reflection coefficients. See Problem ??.
As a simple example, consider a slab of material of thickness � sandwiched between

two lossless dielectrics. A time-harmonic uniform plane wave of frequency ω = ω̌ is
normally incident onto interface 1, and we wish to compute the amplitude of the wave
reflected by interface 1 and determine the conditions under which the reflected wave
vanishes. In this case we have N = 2, with two interfaces and three regions. By (4.316)
we have R2 = �2, where R2 = R̃2(ω̌), �2 = �̃2(ω̌), etc. Then by (4.315) we find

R1 = �1 + R2 P2
1

1 + �1 R2 P2
1

= �1 + �2 P2
1

1 + �1�2 P2
1

.

Hence the reflected wave vanishes when

�1 + �2 P2
1 = 0.

Since the field in region 0 is normally incident we have

kz,n = kn = βn = ω̌
√

µnεn.

If we choose P2
1 = −1, then �1 = �2 results in no reflected wave. This requires

Z1 − Z0

Z1 + Z0
= Z2 − Z1

Z2 + Z1
.

Clearing the denominator we find that 2Z2
1 = 2Z0 Z2 or

Z1 =
√

Z0 Z2.

This condition makes the reflected field vanish if we can ensure that P2
1 = −1. To do

this we need

e− jβ12� = −1.

The minimum thickness that satisfies this condition is β12� = π . Since β = 2π/λ, this
is equivalent to

� = λ/4.

A layer of this type is called a quarter-wave transformer. Since no wave is reflected from
the initial interface, and since all the regions are assumed lossless, all of the power carried
by the incident wave in the first region is transferred into the third region. Thus, two
regions of differing materials may be “matched” by inserting an appropriate slab between



Figure 4.22: Interaction of a uniform plane wave with a conductor-backed dielectric slab.

them. This technique finds use in optical coatings for lenses and for reducing the radar
reflectivity of objects.

As a second example, consider a lossless dielectric slab with ε̃ = ε1 = ε1rε0, and µ̃ = µ0,
backed by a perfect conductor and immersed in free space as shown in Figure 4.22. A
perpendicularly polarized uniform plane wave is incident on the slab from free space
and we wish to find the temporal response of the reflected wave by first calculating the
frequency-domain reflected field. Since ε0 < ε1, total internal reflection cannot occur.
Thus the wave vectors in region 1 have real components and can be written as

ki
1 = kx,1x̂ + kz,1ẑ, kr

1 = kx,1x̂ − kz,1ẑ.

From Snell’s law of refraction we know that

kx,1 = k0 sin θi = k1 sin θt

and so

kz,1 =
√

k2
1 − k2

x,1 = ω

c

√
ε1r − sin2 θi = k1 cos θt

where θt is the transmission angle in region 1. Since region 2 is a perfect conductor we
have R̃2 = −1. By (4.315) we have

R̃1(ω) = �1 − P̃2
1 (ω)

1 − �1 P̃2
1 (ω)

, (4.317)

where from (4.308)

�1 = Z1 − Z0

Z1 + Z0

is not a function of frequency. By the approach we used to obtain (4.300) we write

Ẽr
⊥(r, ω) = ŷR̃1(ω)Ẽ i

⊥(ω)e− jkr
1(ω)·r.

So

Er
⊥(r, t) = ŷEr

(
t − k̂r

1 · r
c

)



where by the convolution theorem

Er (t) = R1(t) ∗ Ei
⊥(t). (4.318)

Here

Ei
⊥(t) = F−1

{
Ẽ i

⊥(ω)
}

is the time waveform of the incident plane wave, while

R1(t) = F−1
{

R̃1(ω)
}

is the global time-domain reflection coefficient.
To invert R̃1(ω), we use the binomial expansion (1 − x)−1 = 1 + x + x2 + x3 + · · · on

the denominator of (4.317), giving

R̃1(ω) = [�1 − P̃2
1 (ω)]

{
1 + [�1 P̃2

1 (ω)] + [�1 P̃2
1 (ω)]2 + [�1 P̃2

1 (ω)]3 + . . .
}

= �1 − [1 − �2
1]P̃2

1 (ω) − [1 − �2
1]�1 P̃4

1 (ω) − [1 − �2
1]�2

1 P̃6
1 (ω) − · · · . (4.319)

Thus we need the inverse transform of

P̃2n
1 (ω) = e− j2nkz,1�1 = e− j2nk1�1 cos θt .

Writing k1 = ω/v1, where v1 = 1/(µ0ε1)
1/2 is the phase velocity of the wave in region 1,

and using 1 ↔ δ(t) along with the time-shifting theorem (A.3) we have

P̃2n
1 (ω) = e− jω2nτ ↔ δ(t − 2nτ)

where τ = �1 cos θt/v1. With this the inverse transform of R̃1 in (4.319) is

R1(t) = �1δ(t) − (1 + �1)(1 − �1)δ(t − 2τ) − (1 + �1)(1 − �1)�1δ(t − 4τ) − · · ·

and thus from (4.318)

Er (t) = �1 Ei
⊥(t) − (1 + �1)(1 − �1)Ei

⊥(t − 2τ) − (1 + �1)(1 − �1)�1 Ei
⊥(t − 4τ) − · · · .

The reflected field consists of time-shifted and amplitude-scaled versions of the incident
field waveform. These terms can be interpreted as multiple reflections of the incident
wave. Consider Figure 4.23. The first term is the direct reflection from interface 1 and
thus has its amplitude multiplied by �1. The next term represents a wave that pene-
trates the interface (and thus has its amplitude multiplied by the transmission coefficient
1 + �1), propagates to and reflects from the conductor (and thus has its amplitude mul-
tiplied by −1), and then propagates back to the interface and passes through in the
opposite direction (and thus has its amplitude multiplied by the transmission coefficient
for passage from region 1 to region 0, 1 − �1). The time delay between this wave and
the initially-reflected wave is given by 2τ , as discussed in detail below. The third term
represents a wave that penetrates the interface, reflects from the conductor, returns to
and reflects from the interface a second time, again reflects from the conductor, and
then passes through the interface in the opposite direction. Its amplitude has an ad-
ditional multiplicative factor of −�1 to account for reflection from the interface and an
additional factor of −1 to account for the second reflection from the conductor, and is
time-delayed by an additional 2τ . Subsequent terms account for additional reflections;



Figure 4.23: Timing diagram for multiple reflections from a conductor-backed dielectric
slab.

the nth reflected wave amplitude is multiplied by an additional (−1)n and (−�1)
n and is

time-delayed by an additional 2nτ .
It is important to understand that the time delay 2τ is not just the propagation time

for the wave to travel through the slab. To properly describe the timing between the
initially-reflected wave and the waves that reflect from the conductor we must consider
the field over identical observation planes as shown in Figure 4.23. For example, consider
the observation plane designated P-P intersecting the first “exit point” on interface 1.
To arrive at this plane the initially-reflected wave takes the path labeled B, arriving at
a time

D sin θi

v0

after the time of initial reflection, where v0 = c is the velocity in region 0. To arrive at
this same plane the wave that penetrates the surface takes the path labeled A, arriving
at a time

2�1

v1 cos θt

where v1 is the wave velocity in region 1 and θt is the transmission angle. Noting that
D = 2�1 tan θt , the time delay between the arrival of the two waves at the plane P-P is

T = 2�1

v1 cos θt
− D sin θi

v0
= 2�1

v1 cos θt

[
1 − sin θt sin θi

v0/v1

]
.

By Snell’s law of refraction (4.297) we can write

v0

v1
= sin θi

sin θt
,

which, upon substitution, gives

T = 2
�1 cos θt

v1
.

This is exactly the time delay 2τ .



4.11.6 Plane-wave propagation in an anisotropic ferrite medium

Several interesting properties of plane waves, such as Faraday rotation and the exis-
tence of stopbands, appear only when the waves propagate through anisotropic media.
We shall study the behavior of waves propagating in a magnetized ferrite medium, and
note that this behavior is shared by waves propagating in a magnetized plasma, because
of the similarity in the dyadic constitutive parameters of the two media.

Consider a uniform ferrite material having scalar permittivity ε̃ = ε and dyadic per-
meability ˜̄µ. We assume that the ferrite is lossless and magnetized along the z-direction.
By (4.115)– (4.117) the permeability of the medium is

[ ˜̄µ(ω)] =

 µ1 jµ2 0

− jµ2 µ1 0
0 0 µ0




where

µ1 = µ0

[
1 + ωMω0

ω2
0 − ω2

]
, µ2 = µ0

ωωM

ω2
0 − ω2

.

The source-free frequency-domain wave equation can be found using (4.201) with ˜̄ζ =
˜̄ξ = 0 and ˜̄ε = εĪ: [

∇̄ ·
(

Ī
1

ε

)
· ∇̄ − ω2 ˜̄µ

]
· H̃ = 0

or, since ∇̄ · A = ∇ × A,

1

ε
∇ × (∇ × H̃

) − ω2 ˜̄µ · H̃ = 0. (4.320)

The simplest solutions to the wave equation for this anisotropic medium are TEM
plane waves that propagate along the applied dc magnetic field. We thus seek solutions
of the form

H̃(r, ω) = H̃0(ω)e− jk·r (4.321)

where k = ẑβ and ẑ · H̃0 = 0. We can find β by enforcing (4.320). From (B.7) we find
that

∇ × H̃ = − jβ ẑ × H̃0e− jβz .

By Ampere’s law we have

Ẽ = ∇ × H̃
jωε

= −ZT E M ẑ × H̃, (4.322)

where

ZT E M = β/ωε

is the wave impedance. Note that the wave is indeed TEM. The second curl is found to
be

∇ × (∇ × H̃
) = − jβ∇ × [

ẑ × H̃0e− jβz
]
.

After an application of (B.43) this becomes

∇ × (∇ × H̃
) = − jβ

[
e− jβz∇ × (ẑ × H̃0) − (ẑ × H̃0) × ∇e− jβz

]
.



The first term on the right-hand side is zero, and thus using (B.76) we have

∇ × (∇ × H̃
) = [− jβe− jβz ẑ × (ẑ × H̃0)

]
(− jβ)

or, using (B.7),

∇ × (∇ × H̃
) = β2e− jβzH̃0

since ẑ · H̃0 = 0. With this (4.320) becomes

β2H̃0 = ω2ε ˜̄µ · H̃0. (4.323)

We can solve (4.323) for β by writing the vector equation in component form:

β2 H0x = ω2ε
[
µ1 H0x + jµ2 H0y

]
,

β2 H0y = ω2ε
[− jµ2 H0x + µ1 H0y

]
.

In matrix form these are[
β2 − ω2εµ1 − jω2εµ2

jω2εµ2 β2 − ω2εµ1

] [
H0x

H0y

]
=

[
0
0

]
, (4.324)

and nontrivial solutions occur only if∣∣∣∣β2 − ω2εµ1 − jω2εµ2

jω2εµ2 β2 − ω2εµ1

∣∣∣∣ = 0.

Expansion yields the two solutions

β± = ω
√

εµ± (4.325)

where

µ± = µ1 ± µ2 = µ0

[
1 + ωM

ω0 ∓ ω

]
. (4.326)

So the propagation properties of the plane wave are the same as those in a medium with
an equivalent scalar permeability given by µ±.

Associated with each of these solutions is a relationship between H0x and H0y that can
be found from (4.324). Substituting β+ into the first equation we have

ω2εµ2 H0x − jω2εµ2 H0y = 0

or H0x = j H0y . Similarly, substitution of β− produces H0x = − j H0y . Thus, by (4.321)
the magnetic field may be expressed as

H̃(r, ω) = H0y[± j x̂ + ŷ]e− jβ±z .

By (4.322) we also have the electric field

Ẽ(r, ω) = ZT E M H0y[x̂ + e∓ j π
2 ŷ]e− jβ±z .

This field has the form of (4.248). For β+ we have φy − φx = −π/2 and thus the wave
exhibits RHCP. For β− we have φy − φx = π/2 and the wave exhibits LHCP.
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Figure 4.24: Dispersion plot for unmagnetized ferrite with ωM = 2ω0. Light line shows
ω/β = vc = 1/(µ0ε)

1/2.

The dispersion diagram for each polarization case is shown in Figure 4.24, where we
have arbitrarily chosen ωM = 2ω0. Here we have combined (4.325) and (4.326) to produce
the normalized expression

β±
ω0/vc

= ω

ω0

√
1 + ωM/ω0

1 ∓ ω/ω0

where vc = 1/(µ0ε)
1/2. Except at low frequencies, an LHCP plane wave passes through

the ferrite as if the permeability is close to that of free space. Over all frequencies we
have vp < vc and vg < vc. In contrast, an RHCP wave excites the electrons in the ferrite
and a resonance occurs at ω = ω0. For all frequencies below ω0 we have vp < vc and
vg < vc and both vp and vg reduce to zero as ω → ω0. Because the ferrite is lossless,
frequencies between ω = ω0 and ω = ω0 + ωM result in β being purely imaginary and
thus the wave being evanescent. We thus call the frequency range ω0 < ω < ω0 + ωM

a stopband ; within this band the plane wave cannot transport energy. For frequencies
above ω0 + ωM the RHCP wave propagates as if it is in a medium with permeability less
than that of free space. Here we have vp > vc and vg < vc, with vp → vc and vg → vc as
ω → ∞.

Faraday rotation. The solutions to the wave equation found above do not allow the
existence of linearly polarized plane waves. However, by superposing LHCP and RHCP
waves we can obtain a wave with the appearance of linear polarization. That is, over
any z-plane the electric field vector may be written as Ẽ = K (Ex0x̂ + Ey0ŷ) where Ex0

and Ey0 are real (although K may be complex). To see this let us examine

Ẽ = Ẽ+ + Ẽ− = E0

2
[x̂ − j ŷ]e− jβ+z + E0

2
[x̂ + j ŷ]e− jβ−z



= E0

2

[
x̂

(
e− jβ+z + e− jβ−z

) + j ŷ
(−e− jβ+z + e− jβ−z

)]
= E0e− j 1

2 (β++β−)z

[
x̂ cos

1

2
(β+ − β−)z + ŷ sin

1

2
(β+ − β−)z

]
or

Ẽ = E0e− j 1
2 (β++β−)z [x̂ cos θ(z) + ŷ sin θ(z)]

where θ(z) = (β+ − β−)z/2. Because β+ �= β−, the velocities of the two circularly
polarized waves differ and the waves superpose to form a linearly polarized wave with a
polarization that depends on the observation plane z-value. We may think of the wave
as undergoing a phase shift of (β+ + β−)z/2 radians as it propagates, while the direction
of Ẽ rotates to an angle θ(z) = (β+ − β−)z/2 as the wave propagates. Faraday rotation
can only occur at frequencies where both the LHCP and RHCP waves propagate, and
therefore not within the stopband ω0 < ω < ω0 + ωM .

Faraday rotation is non-reciprocal. That is, if a wave that has undergone a rotation of
θ0 radians by propagating through a distance z0 is made to propagate an equal distance
back in the direction from whence it came, the polarization does not return to its initial
state but rather incurs an additional rotation of θ0. Thus, the polarization angle of the
wave when it returns to the starting point is not zero, but 2θ0. This effect is employed
in a number of microwave devices including gyrators, isolators, and circulators. The
interested reader should see Collin [40], Elliott [67], or Liao [111] for details. We note
that for ω � ωM we can approximate the rotation angle as

θ(z) = (β+ − β−)z/2 = 1

2
ωz

√
εµ0

[√
1 + ωM

ω0 − ω
−

√
1 + ωM

ω0 + ω

]
≈ −1

2
zωM

√
εµ0,

which is independent of frequency. So it is possible to construct Faraday rotation-based
ferrite devices that maintain their properties over wide bandwidths.

It is straightforward to extend the above analysis to the case of a lossy ferrite. We
find that for typical ferrites the attenuation constant associated with µ− is small for all
frequencies, but the attenuation constant associated with µ+ is large near the resonant
frequency (ω ≈ ω0) [40]. See Problem �4.16.

4.11.7 Propagation of cylindrical waves

By studying plane waves we have gained insight into the basic behavior of frequency-
domain and time-harmonic waves. However, these solutions do not display the funda-
mental property that waves in space must diverge from their sources. To understand this
behavior we shall treat waves having cylindrical and spherical symmetries.

Uniform cylindrical waves. In § 2.10.7 we studied the temporal behavior of cylin-
drical waves in a homogeneous, lossless medium and found that they diverge from a line
source located along the z-axis. Here we shall extend the analysis to lossy media and
investigate the behavior of the waves in the frequency domain.

Consider a homogeneous region of space described by the permittivity ε̃(ω), permeabil-
ity µ̃(ω), and conductivity σ̃ (ω). We seek solutions that are invariant over a cylindrical
surface: Ẽ(r, ω) = Ẽ(ρ, ω), H̃(r, ω) = H̃(ρ, ω). Such waves are called uniform cylindrical
waves. Since the fields are z-independent we may decompose them into TE and TM sets
as described in § 4.11.2. For TM polarization we may insert (4.211) into (4.212) to find

H̃φ(ρ, ω) = 1

jωµ̃(ω)

∂ Ẽz(ρ, ω)

∂ρ
. (4.327)



For TE polarization we have from (4.213)

Ẽφ(ρ, ω) = − 1

jωε̃c(ω)

∂ H̃z(ρ, ω)

∂ρ
(4.328)

where ε̃c = ε̃ + σ̃ /jω is the complex permittivity introduced in § 4.4.1. Since Ẽ =
φ̂Ẽφ + ẑẼz and H̃ = φ̂H̃φ + ẑH̃z , we can always decompose a cylindrical electromagnetic
wave into cases of electric and magnetic polarization. In each case the resulting field is
TEMρ since Ẽ, H̃, and ρ̂ are mutually orthogonal.

Wave equations for Ẽz in the electric polarization case and for H̃z in the magnetic
polarization case can be derived by substituting (4.210) into (4.208):(

∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ k2

) {
Ẽz

H̃z

}
= 0.

Thus the electric field must obey the ordinary differential equation

d2 Ẽz

dρ2
+ 1

ρ

d Ẽz

dρ
+ k2 Ẽ z = 0. (4.329)

This is merely Bessel’s equation (A.124). It is a second-order equation with two inde-
pendent solutions chosen from the list

J0(kρ), Y0(kρ), H (1)
0 (kρ), H (2)

0 (kρ).

We find that J0(kρ) and Y0(kρ) are useful for describing standing waves between bound-
aries, while H (1)

0 (kρ) and H (2)
0 (kρ) are useful for describing waves propagating in the

ρ-direction. Of these, H (1)
0 (kρ) represents waves traveling inward while H (2)

0 (kρ) repre-
sents waves traveling outward. At this point we are interested in studying the behavior
of outward propagating waves and so we choose

Ẽz(ρ, ω) = − j

4
Ẽz0(ω)H (2)

0 (kρ). (4.330)

As explained in § 2.10.7, Ẽz0(ω) is the amplitude spectrum of the wave, while the term
− j/4 is included to make the conversion to the time domain more convenient. By (4.327)
we have

H̃φ = 1

jωµ̃

∂ Ẽz

∂ρ
= 1

jωµ̃

∂

∂ρ

[
− j

4
Ẽz0 H (2)

0 (kρ)

]
. (4.331)

Using d H (2)
0 (x)/dx = −H (2)

1 (x) we find that

H̃φ = 1

ZT M

Ẽz0

4
H (2)

1 (kρ) (4.332)

where

ZT M = ωµ̃

k

is called the TM wave impedance.
For the case of magnetic polarization, the field H̃z must satisfy Bessel’s equation

(4.329). Thus we choose

H̃z(ρ, ω) = − j

4
H̃z0(ω)H (2)

0 (kρ). (4.333)



From (4.328) we find the electric field associated with the wave:

Ẽφ = −ZT E
H̃z0

4
H (2)

1 (kρ), (4.334)

where

ZT E = k

ωε̃c

is the TE wave impedance.
It is not readily apparent that the terms H (2)

0 (kρ) or H (2)
1 (kρ) describe outward prop-

agating waves. We shall see later that the cylindrical wave may be written as a su-
perposition of plane waves, both uniform and evanescent, propagating in all possible
directions. Each of these components does have the expected wave behavior, but it is
still not obvious that the sum of such waves is outward propagating.

We saw in § 2.10.7 that when examined in the time domain, a cylindrical wave of the
form H (2)

0 (kρ) does indeed propagate outward, and that for lossless media the velocity of
propagation of its wavefronts is v = 1/(µε)1/2. For time-harmonic fields, the cylindrical
wave takes on a familiar behavior when the observation point is sufficiently removed from
the source. We may specialize (4.330) to the time-harmonic case by setting ω = ω̌ and
using phasors, giving

Ěz(ρ) = − j

4
Ěz0 H (2)

0 (kρ).

If |kρ| � 1 we can use the asymptotic representation (E.62) for the Hankel function

H (2)
ν (z) ∼

√
2

π z
e− j (z−π/4−νπ/2), |z| � 1, −2π < arg(z) < π,

to obtain

Ěz(ρ) ∼ Ěz0
e− jkρ

√
8 jπkρ

(4.335)

and

Ȟφ(ρ) ∼ −Ěz0
1

ZT M

e− jkρ

√
8 jπkρ

(4.336)

for |kρ| � 1. Except for the
√

ρ term in the denominator, the wave has very much the
same form as the plane waves encountered earlier. For the case of magnetic polarization,
we can approximate (4.333) and (4.334) to obtain

Ȟz(ρ) ∼ Ȟz0
e− jkρ

√
8 jπkρ

(4.337)

and

Ěφ(ρ) ∼ ZT E Ȟz0
e− jkρ

√
8 jπkρ

(4.338)

for |kρ| � 1.
To interpret the wave nature of the field (4.335) let us substitute k = β − jα into

the exponential function, where β is the phase constant (4.224) and α is the attenuation
constant (4.225). Then

Ěz(ρ) ∼ Ěz0
1√

8 jπkρ
e−αρe− jβρ.



Assuming Ěz0 = |Ez0|e jξ E
, the time-domain representation is found from (4.126):

Ez(ρ, t) = |Ez0|√
8πkρ

e−αρ cos[ω̌t − βρ − π/4 + ξ E ]. (4.339)

We can identify a surface of constant phase as a locus of points obeying

ω̌t − βρ − π/4 + ξ E = CP (4.340)

where CP is some constant. These surfaces are cylinders coaxial with the z-axis, and are
called cylindrical wavefronts. Note that surfaces of constant amplitude, as determined
by

e−αρ

√
ρ

= CA

where CA is some constant, are also cylinders.
The cosine term in (4.339) represents a traveling wave. As t is increased the argument

of the cosine function remains fixed as long as ρ is increased correspondingly. Hence the
cylindrical wavefronts propagate outward as time progresses. As the wavefront travels
outward, the field is attenuated because of the factor e−αρ . The velocity of propagation
of the phase fronts may be computed by a now familiar technique. Differentiating (4.340)
with respect to t we find that

ω̌ − β
dρ

dt
= 0,

and thus have the phase velocity vp of the outward expanding phase fronts:

vp = dρ

dt
= ω̌

β
.

Calculation of wavelength also proceeds as before. Examining the two adjacent wave-
fronts that produce the same value of the cosine function in (4.339), we find βρ1 =
βρ2 − 2π or

λ = ρ2 − ρ1 = 2π/β.

Computation of the power carried by a cylindrical wave is straightforward. Since a
cylindrical wavefront is infinite in extent, we usually speak of the power per unit length
carried by the wave. This is found by integrating the time-average Poynting flux given
in (4.157). For electric polarization we find the time-average power flux density using
(4.330) and (4.331):

Sav = 1

2
Re{Ěz ẑ × Ȟ∗

φ φ̂} = 1

2
Re

{
ρ̂

j

16Z∗
T M

|Ěz0|2 H (2)
0 (kρ)H (2)∗

1 (kρ)

}
. (4.341)

For magnetic polarization we use (4.333) and (4.334):

Sav = 1

2
Re{Ěφφ̂ × Ȟ∗

z ẑ} = 1

2
Re

{
−ρ̂

j ZT E

16
|Ȟz0|2 H (2)∗

0 (kρ)H (2)
1 (kρ)

}
.

For a lossless medium these expressions can be greatly simplified. By (E.5) we can write

j H (2)
0 (kρ)H (2)∗

1 (kρ) = j[J0(kρ) − j N0(kρ)][J1(kρ) + j N1(kρ)],

hence

j H (2)
0 (kρ)H (2)∗

1 (kρ) = [N0(kρ)J1(kρ) − J0(kρ)N1(kρ)] + j[J0(kρ)J1(kρ) + N0(kρ)N1(kρ)].



Substituting this into (4.341) and remembering that ZT M = η = (µ/ε)1/2 is real for
lossless media, we have

Sav = ρ̂
1

32η
|Ěz0|2[N0(kρ)J1(kρ) − J0(kρ)N1(kρ)].

By the Wronskian relation (E.88) we have

Sav = ρ̂
|Ěz0|2

16πkρη
.

The power density is inversely proportional to ρ. When we compute the total time-
average power per unit length passing through a cylinder of radius ρ, this factor cancels
with the ρ-dependence of the surface area to give a result independent of radius:

Pav/ l =
∫ 2π

0
Sav · ρ̂ρ dφ = |Ěz0|2

8kη
. (4.342)

For a lossless medium there is no mechanism to dissipate the power and so the wave prop-
agates unabated. A similar calculation for the case of magnetic polarization (Problem
??) gives

Sav = ρ̂
η|Ȟz0|2
16πkρ

and

Pav/ l = η|Ȟz0|2
8k

.

For a lossy medium the expressions are more difficult to evaluate. In this case we expect
the total power passing through a cylinder to depend on the radius of the cylinder, since
the fields decay exponentially with distance and thus give up power as they propagate.
If we assume that the observation point is far from the z-axis with |kρ| � 1, then we can
use (4.335) and (4.336) for the electric polarization case to obtain

Sav = 1

2
Re{Ěz ẑ × Ȟ∗

φ φ̂} = 1

2
Re

{
ρ̂

e−2αρ

8πρ|k|Z∗
T M

|Ěz0|2
}

.

Therefore

Pav/ l =
∫ 2π

0
Sav · ρ̂ρ dφ = Re

{
1

Z∗
T M

}
|Ěz0|2 e−2αρ

8|k| .

We note that for a lossless material ZT M = η and α = 0, and the expression reduces to
(4.342) as expected. Thus for lossy materials the power depends on the radius of the
cylinder. In the case of magnetic polarization we use (4.337) and (4.338) to get

Sav = 1

2
Re{Ěφφ̂ × Ȟ∗

z ẑ} = 1

2
Re

{
ρ̂Z∗

T E

e−2αρ

8πρ|k| |Ȟz0|2
}

and

Pav/ l = Re
{

Z∗
T E

} |Ȟz0|2 e−2αρ

8|k| .



Example of uniform cylindrical waves: fields of a line source. The simplest
example of a uniform cylindrical wave is that produced by an electric or magnetic line
source. Consider first an infinite electric line current of amplitude Ĩ (ω) on the z-axis,
immersed within a medium of permittivity ε̃(ω), permeability µ̃(ω), and conductivity
σ̃ (ω). We assume that the current does not vary in the z-direction, and thus the problem
is two-dimensional. We can decompose the field produced by the line source into TE and
TM cases according to § 4.11.2. It turns out that an electric line source only excites TM
fields, as we shall show in § 5.4, and thus we need only Ẽz to completely describe the
fields.

By symmetry the fields are φ-independent and thus the wave produced by the line
source is a uniform cylindrical wave. Since the wave propagates outward from the line
source we have the electric field from (4.330),

Ẽz(ρ, ω) = − j

4
Ẽz0(ω)H (2)

0 (kρ), (4.343)

and the magnetic field from (4.332),

H̃φ(ρ, ω) = k

ωµ̃

Ẽz0(ω)

4
H (2)

1 (kρ).

We can find Ẽz0 by using Ampere’s law:∮
�

H̃ · dl =
∫

S
J̃ · dS + jω

∫
S

D̃ · dS.

Since J̃ is the sum of the impressed current Ĩ and the secondary conduction current σ̃ Ẽ,
we can also write∮

�

H̃ · dl = Ĩ +
∫

S
(σ̃ + jωε̃)Ẽ · dS = Ĩ + jωε̃c

∫
S

Ẽ · dS.

Choosing our path of integration as a circle of radius a in the z = 0 plane and substituting
for Ẽz and H̃φ , we find that

k

ωµ̃

Ẽz0

4
H (2)

1 (ka)2πa = Ĩ + jωε̃c2π
− j Ẽz0

4
lim
δ→0

∫ a

δ

H (2)
0 (kρ)ρ dρ. (4.344)

The limit operation is required because H (2)
0 (kρ) diverges as ρ → 0. By (E.104) the

integral is

lim
δ→0

∫ a

δ

H (2)
0 (kρ)ρ dρ = a

k
H (2)

1 (ka) − 1

k
lim
δ→0

δH (2)
1 (kδ).

The limit may be found by using H (2)
1 (x) = J1(x) − j N1(x) and the small argument

approximations (E.50) and (E.53):

lim
δ→0

δH (2)
1 (δ) = lim

δ→0
δ

[
kδ

2
− j

(
− 1

π

2

kδ

)]
= j

2

πk
.

Substituting these expressions into (4.344) we obtain

k

ωµ̃

Ẽz0

4
H (2)

1 (ka)2πa = Ĩ + jωε̃c2π
− j Ẽz0

4

[
a

k
H (2)

1 (ka) − j
2

πk2

]
.



Using k2 = ω2µ̃ε̃c we find that the two Hankel function terms cancel. Solving for Ẽz0 we
have

Ẽz0 = − jωµ̃ Ĩ

and therefore

Ẽz(ρ, ω) = −ωµ̃

4
Ĩ (ω)H (2)

0 (kρ) = − jωµ̃ Ĩ (ω)G̃(x, y|0, 0; ω). (4.345)

Here G̃ is called the two-dimensional Green’s function and is given by

G̃(x, y|x ′, y′; ω) = 1

4 j
H (2)

0

(
k
√

(x − x ′)2 + (y − y′)2
)

. (4.346)

Green’s functions are examined in greater detail in Chapter 5
It is also possible to determine the field amplitude by evaluating

lim
a→0

∮
C

H̃ · dl.

This produces an identical result and is a bit simpler since it can be argued that the
surface integral of Ẽz vanishes as a → 0 without having to perform the calculation
directly [83, 8].

For a magnetic line source Ĩm(ω) aligned along the z-axis we proceed as above, but
note that the source only produces TE fields. By (4.333) and (4.334) we have

H̃z(ρ, ω) = − j

4
H̃z0(ω)H (2)

0 (kρ), Ẽφ = − k

ωε̃c

H̃0z

4
H (2)

1 (kρ).

We can find H̃z0 by applying Faraday’s law∮
C

Ẽ · dl = −
∫

S
J̃m · dS − jω

∫
S

B̃ · dS

about a circle of radius a in the z = 0 plane. We have

− k

ωε̃c

H̃z0

4
H (2)

1 (ka)2πa = − Ĩm − jωµ̃

[
− j

4

]
H̃z02π lim

δ→0

∫ a

δ

H (2)
0 (kρ)ρ dρ.

Proceeding as above we find that

H̃z0 = jωε̃c Ĩm

hence

H̃z(ρ, ω) = −ωε̃c

4
Ĩm(ω)H (2)

0 (kρ) = − jωε̃c Ĩm(ω)G̃(x, y|0, 0; ω). (4.347)

Note that we could have solved for the magnetic field of a magnetic line current by
using the field of an electric line current and the principle of duality. Letting the magnetic
current be equal to −η times the electric current and using (4.198), we find that

H̃z0 =
(

−1

η

Ĩm(ω)

Ĩ (ω)

) (
−1

η

[
−ωµ̃

4
Ĩ (ω)H (2)

0 (kρ)

])
= − Ĩm(ω)

ωε̃c

4
H (2)

0 (kρ) (4.348)

as in (4.347).



Nonuniform cylindrical waves. When we solve two-dimensional boundary value
problems we encounter cylindrical waves that are z-independent but φ-dependent. Al-
though such waves propagate outward, they have a more complicated structure than
those considered above.

For the case of TM polarization we have, by (4.212),

H̃ρ = j

ZT M k

1

ρ

∂ Ẽz

∂φ
, (4.349)

H̃φ = − j

ZT M k

∂ Ẽz

∂ρ
, (4.350)

where ZT M = ωµ̃/k. For the TE case we have, by (4.213),

Ẽρ = − j ZT E

k

1

ρ

∂ H̃z

∂φ
, (4.351)

Ẽφ = j ZT E

k

∂ H̃z

∂ρ
, (4.352)

where ZT E = k/ωε̃c. By (4.208) the wave equations are(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂φ2
+ k2

) {
Ẽz

H̃z

}
= 0.

Because this has the form of A.177 with ∂/∂z → 0, we have{
Ẽz(ρ, φ, ω)

H̃z(ρ, φ, ω)

}
= P(ρ, ω)!(φ, ω) (4.353)

where

!(φ, ω) = Aφ(ω) sin kφφ + Bφ(ω) cos kφφ, (4.354)

P(ρ) = Aρ(ω)B(1)
kφ

(kρ) + Bρ(ω)B(2)
kφ

(kρ), (4.355)

and where B(1)
ν (z) and B(2)

ν (z) are any two independent Bessel functions chosen from the
set

Jν(z), Nν(z), H (1)
ν (z), H (2)

ν (z).

In bounded regions we generally use the oscillatory functions Jν(z) and Nν(z) to represent
standing waves. In unbounded regions we generally use H (2)

ν (z) and H (1)
ν (z) to represent

outward and inward propagating waves, respectively.

Boundary value problems in cylindrical coordinates: scattering by a material
cylinder. A variety of problems can be solved using nonuniform cylindrical waves.
We shall examine two interesting cases in which an external field is impressed on a
two-dimensional object. The impressed field creates secondary sources within or on the
object, and these in turn create a secondary field. Our goal is to determine the secondary
field by applying appropriate boundary conditions.

As a first example, consider a material cylinder of radius a, complex permittivity ε̃c,
and permeability µ̃, aligned along the z-axis in free space (Figure 4.25). An incident
plane wave propagating in the x-direction is impressed on the cylinder, inducing sec-
ondary polarization and conduction currents within the cylinder. These in turn produce



Figure 4.25: TM plane-wave field incident on a material cylinder.

secondary or scattered fields, which are standing waves within the cylinder and outward
traveling waves external to the cylinder. Although we have not yet learned how to write
the secondary fields in terms of the impressed sources, we can solve for the fields as a
boundary value problem. The total field must obey the boundary conditions on tangen-
tial components at the interface between the cylinder and surrounding free space. We
need not worry about the effect of the secondary sources on the source of the primary
field, since by definition impressed sources cannot be influenced by secondary fields.

The scattered field can be found using superposition. When excited by a TM impressed
field, the secondary field is also TM. The situation for TE excitation is similar. By
decomposing the impressed field into TE and TM components, we may solve for the
scattered field in each case and then superpose the results to determine the complete
solution.

We first consider the TM case. The impressed electric field may be written as

Ẽi (r, ω) = ẑẼ0(ω)e− jk0x = ẑẼ0(ω)e− jk0ρ cos φ (4.356)

while the magnetic field is, by (4.223),

H̃i (r, ω) = −ŷ
Ẽ0(ω)

η0
e− jk0x = −(ρ̂ sin φ + φ̂ cos φ)

Ẽ0(ω)

η0
e− jk0ρ cos φ.

Here k0 = ω(µ0ε0)
1/2 and η0 = (µ0/ε0)

1/2. The scattered electric field takes the form
of a nonuniform cylindrical wave (4.353). Periodicity in φ implies that kφ is an integer,
say kφ = n. Within the cylinder we cannot use any of the functions Nn(kρ), H (2)

n (kρ),
or H (1)

n (kρ) to represent the radial dependence of the field, since each is singular at the
origin. So we choose B(1)

n (kρ) = Jn(kρ) and Bρ(ω) = 0 in (4.355). Physically, Jn(kρ) rep-
resents the standing wave created by the interaction of outward and inward propagating
waves. External to the cylinder we use H (2)

n (kρ) to represent the radial dependence of the
secondary field components: we avoid Nn(kρ) and Jn(kρ) since these represent standing
waves, and avoid H (1)

n (kρ) since there are no external secondary sources to create an
inward traveling wave.



Any attempt to satisfy the boundary conditions by using a single nonuniform wave
fails. This is because the sinusoidal dependence on φ of each individual nonuniform wave
cannot match the more complicated dependence of the impressed field (4.356). Since the
sinusoids are complete, an infinite series of the functions (4.353) can be used to represent
the scattered field. So we have internal to the cylinder

Ẽ s
z (r, ω) =

∞∑
n=0

[An(ω) sin nφ + Bn(ω) cos nφ] Jn(kρ)

where k = ω(µ̃ε̃c)1/2. External to the cylinder we have free space and thus

Ẽ s
z (r, ω) =

∞∑
n=0

[Cn(ω) sin nφ + Dn(ω) cos nφ] H (2)
n (k0ρ).

Equations (4.349) and (4.350) yield the magnetic field internal to the cylinder:

H̃ s
ρ =

∞∑
n=0

jn

ZT M k

1

ρ
[An(ω) cos nφ − Bn(ω) sin nφ] Jn(kρ),

H̃ s
φ = −

∞∑
n=0

j

ZT M
[An(ω) sin nφ + Bn(ω) cos nφ] J ′

n(kρ),

where ZT M = ωµ̃/k. Outside the cylinder

H̃ s
ρ =

∞∑
n=0

jn

η0k0

1

ρ
[Cn(ω) cos nφ − Dn(ω) sin nφ] H (2)

n (k0ρ),

H̃ s
φ = −

∞∑
n=0

j

η0
[Cn(ω) sin nφ + Dn(ω) cos nφ] H (2)′

n (k0ρ),

where J ′
n(z) = d Jn(z)/dz and H (2)′

n (z) = d H (2)
n (z)/dz.

We have two sets of unknown spectral amplitudes (An, Bn) and (Cn, Dn). These can
be determined by applying the boundary conditions at the interface. Since the total field
outside the cylinder is the sum of the impressed and scattered terms, an application of
continuity of the tangential electric field at ρ = a gives us

∞∑
n=0

[An sin nφ + Bn cos nφ] Jn(ka) =
∞∑

n=0

[Cn sin nφ + Dn cos nφ] H (2)
n (k0a) + Ẽ0e− jk0a cos φ,

which must hold for all −π ≤ φ ≤ π . To remove the coefficients from the sum we apply
orthogonality. Multiplying both sides by sin mφ, integrating over [−π, π ], and using the
orthogonality conditions (A.129)–(A.131) we obtain

π Am Jm(ka) − πCm H (2)
m (k0a) = Ẽ0

∫ π

−π

sin mφe− jk0a cos φ dφ = 0. (4.357)

Multiplying by cos mφ and integrating, we find that

2π Bm Jm(ka) − 2π Dm H (2)
m (k0a) = Ẽ0εm

∫ π

−π

cos mφe− jk0a cos φ dφ

= 2π Ẽ0εm j−m Jm(k0a) (4.358)



where εn is Neumann’s number (A.132) and where we have used (E.83) and (E.39) to
evaluate the integral.

We must also have continuity of the tangential magnetic field H̃φ at ρ = a. Thus

−
∞∑

n=0

j

ZT M
[An sin nφ + Bn cos nφ] J ′

n(ka) =

−
∞∑

n=0

j

η0
[Cn sin nφ + Dn cos nφ] H (2)′

n (k0a) − cos φ
Ẽ0

η0
e− jk0a cos φ

must hold for all −π ≤ φ ≤ π . By orthogonality

π
j

ZT M
Am J ′

m(ka) − π
j

η0
Cm H (2)′

m (k0a) = Ẽ0

η0

∫ π

−π

sin mφ cos φe− jk0a cos φ dφ = 0 (4.359)

and

2π
j

ZT M
Bm J ′

m(ka) − 2π
j

η0
Dm H (2)′

m (k0a) = εm
Ẽ0

η0

∫ π

−π

cos mφ cos φe− jk0a cos φ dφ.

The integral may be computed as∫ π

−π

cos mφ cos φe− jk0a cos φ dφ = j
d

d(k0a)

∫ π

−π

cos mφe− jk0a cos φ dφ = j2π j−m J ′
m(k0a)

and thus

1

ZT M
Bm J ′

m(ka) − 1

η0
Dm H (2)′

m (k0a) = Ẽ0

η0
εm j−m J ′

m(k0a). (4.360)

We now have four equations for the coefficients An, Bn, Cn, Dn. We may write (4.357)
and (4.359) as [

Jm(ka) −H (2)
m (k0a)

η0

ZT M
J ′

m(ka) −H (2)′
m (k0a)

] [
Am

Cm

]
= 0, (4.361)

and (4.358) and (4.360) as[
Jm(ka) −H (2)

m (k0a)
η0

ZT M
J ′

m(ka) −H (2)′
m (k0a)

] [
Bm

Dm

]
=

[
Ẽ0εm j−m Jm(k0a)

Ẽ0εm j−m J ′
m(k0a)

]
. (4.362)

Matrix equations (4.361) and (4.362) cannot hold simultaneously unless Am = Cm = 0.
Then the solution to (4.362) is

Bm = Ẽ0εm j−m

[
H (2)

m (k0a)J ′
m(k0a) − Jm(k0a)H (2)′

m (k0a)

η0

ZT M
J ′

m(ka)H (2)
m (k0a) − H (2)′

m (k0a)Jm(ka)

]
, (4.363)

Dm = −Ẽ0εm j−m

[
η0

ZT M
J ′

m(ka)Jm(k0a) − J ′
m(k0a)Jm(ka)

η0

ZT M
J ′

m(ka)H (2)
m (k0a) − H (2)′

m (k0a)Jm(ka)

]
. (4.364)

With these coefficients we can calculate the field inside the cylinder (ρ ≤ a) from

Ẽz(r, ω) =
∞∑

n=0

Bn(ω)Jn(kρ) cos nφ,



H̃ρ(r, ω) = −
∞∑

n=0

jn

ZT M k

1

ρ
Bn(ω)Jn(kρ) sin nφ,

H̃φ(r, ω) = −
∞∑

n=0

j

ZT M
Bn(ω)J ′

n(kρ) cos nφ,

and the field outside the cylinder (ρ > a) from

Ẽz(r, ω) = Ẽ0(ω)e− jk0ρ cos φ +
∞∑

n=0

Dn(ω)H (2)
n (k0ρ) cos nφ,

H̃ρ(r, ω) = − sin φ
Ẽ0(ω)

η0
e− jk0ρ cos φ −

∞∑
n=0

jn

η0k0

1

ρ
Dn(ω)H (2)

n (k0ρ) sin nφ,

H̃φ(r, ω) = − cos φ
Ẽ0(ω)

η0
e− jk0ρ cos φ −

∞∑
n=0

j

η0
Dn(ω)H (2)′

n (k0ρ) cos nφ.

We can easily specialize these results to the case of a perfectly conducting cylinder by
allowing σ̃ → ∞. Then

η0

ZT M
=

√
µ0ε̃c

µ̃ε0
→ ∞

and

Bn → 0, Dn → −Ẽ0εm j−m Jm(k0a)

H (2)
m (k0a)

.

In this case it is convenient to combine the formulas for the impressed and scattered fields
when forming the total fields. Since the impressed field is z-independent and obeys the
homogeneous Helmholtz equation, we may represent it in terms of nonuniform cylindrical
waves:

Ẽ i
z = Ẽ0e− jk0ρ cos φ =

∞∑
n=0

[En sin nφ + Fn cos nφ] Jn(k0ρ),

where we have chosen the Bessel function Jn(k0ρ) since the field is finite at the origin
and periodic in φ. Applying orthogonality we see immediately that En = 0 and that

2π

εm
Fm Jm(k0ρ) = Ẽ0

∫ π

−π

cos mφe− jk0ρ cos φ dφ = Ẽ02π j−m Jm(k0ρ).

Thus, Fn = Ẽ0εn j−n and

Ẽ i
z =

∞∑
n=0

Ẽ0εn j−n Jn(k0ρ) cos nφ.

Adding this impressed field to the scattered field we have the total field outside the
cylinder,

Ẽz = Ẽ0

∞∑
n=0

εn j−n

H (2)
n (k0a)

[
Jn(k0ρ)H (2)

n (k0a) − Jn(k0a)H (2)
n (k0ρ)

]
cos nφ,

while the field within the cylinder vanishes. Then, by (4.350),

H̃φ = − j

η0
Ẽ0

∞∑
n=0

εn j−n

H (2)
n (k0a)

[
J ′

n(k0ρ)H (2)
n (k0a) − Jn(k0a)H (2)′

n (k0ρ)
]

cos nφ.



Figure 4.26: Geometry of a perfectly conducting wedge illuminated by a line source.

This in turn gives us the surface current induced on the cylinder. From the boundary
condition J̃s = n̂ × H̃|ρ=a = ρ̂ × [ρ̂H̃ρ + φ̂H̃φ]|ρ=a = ẑH̃φ|ρ=a we have

Js(φ, ω) = − j

η0
ẑẼ0

∞∑
n=0

εn j−n

H (2)
n (k0a)

[
J ′

n(k0a)H (2)
n (k0a) − Jn(k0a)H (2)′

n (k0a)
]

cos nφ,

and an application of (E.93) gives us

Js(φ, ω) = ẑ
2Ẽ0

η0k0πa

∞∑
n=0

εn j−n

H (2)
n (k0a)

cos nφ. (4.365)

Computation of the scattered field for a magnetically-polarized impressed field pro-
ceeds in the same manner. The impressed electric and magnetic fields are assumed to be

Ẽi (r, ω) = ŷẼ0(ω)e− jk0x = (ρ̂ sin φ + φ̂ cos φ)Ẽ0(ω)e− jk0ρ cos φ,

H̃i (r, ω) = ẑ
Ẽ0(ω)

η0
e− jk0x = ẑ

Ẽ0(ω)

η0
e− jk0ρ cos φ.

For a perfectly conducting cylinder, the total magnetic field is

H̃z = Ẽ0

η0

∞∑
n=0

εn j−n

H (2)′
n (k0a)

[
Jn(k0ρ)H (2)′

n (k0a) − J ′
n(k0a)H (2)

n (k0ρ)
]

cos nφ. (4.366)

The details are left as an exercise.

Boundary value problems in cylindrical coordinates: scattering by a perfectly
conducting wedge. As a second example, consider a perfectly conducting wedge im-
mersed in free space and illuminated by a line source (Figure 4.26) carrying current
Ĩ (ω) and located at (ρ0, φ0). The current, which is assumed to be z-invariant, induces
a secondary current on the surface of the wedge which in turn produces a secondary



(scattered) field. This scattered field, also z-invariant, can be found by solving a bound-
ary value problem. We do this by separating space into the two regions ρ < ρ0 and
ρ > ρ0, 0 < φ < ψ . Each of these is source-free, so we can represent the total field using
nonuniform cylindrical waves of the type (4.353). The line source is brought into the
problem by applying the boundary condition on the tangential magnetic field across the
cylindrical surface ρ = ρ0.

Since the impressed electric field has only a z-component, so do the scattered and total
electric fields. We wish to represent the total field Ẽz in terms of nonuniform cylindrical
waves of the type (4.353). Since the field is not periodic in φ, the separation constant
kφ need not be an integer; instead, its value is determined by the positions of the wedge
boundaries. For the region ρ < ρ0 we represent the radial dependence of the field using
the functions Jν since the field must be finite at the origin. For ρ > ρ0 we use the
outward-propagating wave functions H (2)

δ . Thus

Ẽz(ρ, φ, ω) =
{∑

ν [Aν sin νφ + Bν cos νφ] Jν(k0ρ), ρ < ρ0,∑
δ [Cδ sin δφ + Dδ cos δφ] H (2)

δ (k0ρ), ρ > ρ0.
(4.367)

The coefficients Aν, Bν, Cδ, Dδ and separation constants ν, δ may be found by applying
the boundary conditions on the fields at the surface of the wedge and across the surface
ρ = ρ0. On the wedge face at φ = 0 we must have Ẽz = 0, hence Bν = Dδ = 0. On
the wedge face at φ = ψ we must also have Ẽz = 0, requiring sin νψ = sin δψ = 0 and
therefore

ν = δ = νn = nπ/ψ, n = 1, 2, . . . .

So

Ẽz =
{∑∞

n=0 An sin νnφ Jνn (k0ρ), ρ < ρ0,∑∞
n=0 Cn sin νnφH (2)

νn
(k0ρ), ρ > ρ0.

(4.368)

The magnetic field can be found from (4.349)–(4.350):

H̃ρ =
{∑∞

n=0 An
j

η0k0

νn
ρ

cos νnφ Jνn (k0ρ), ρ < ρ0,∑∞
n=0 Cn

j
η0k0

νn
ρ

cos νnφH (2)
νn

(k0ρ), ρ > ρ0,
(4.369)

H̃φ =
{

− ∑∞
n=0 An

j
η0

sin νnφ J ′
νn

(k0ρ), ρ < ρ0,

− ∑∞
n=0 Cn

j
η0

sin νnφH (2)′
νn

(k0ρ), ρ > ρ0.
(4.370)

The coefficients An and Cn are found by applying the boundary conditions at ρ = ρ0.
By continuity of the tangential electric field

∞∑
n=0

An sin νnφ Jνn (k0ρ0) =
∞∑

n=0

Cn sin νnφH (2)
νn

(k0ρ0).

We now apply orthogonality over the interval [0, ψ]. Multiplying by sin νmφ and inte-
grating we have

∞∑
n=0

An Jνn (k0ρ0)

∫ ψ

0
sin νnφ sin νmφ dφ =

∞∑
n=0

Cn H (2)
νn

(k0ρ0)

∫ ψ

0
sin νnφ sin νmφ dφ.

Setting u = φπ/ψ we have∫ ψ

0
sin νnφ sin νmφ dφ = ψ

π

∫ π

0
sin nu sin mu du = ψ

2
δmn,



thus

Am Jνm (k0ρ0) = Cm H (2)
νm

(k0ρ0). (4.371)

The boundary condition n̂12 × (H̃1 − H̃2) = J̃s requires the surface current at ρ = ρ0. We
can write the line current in terms of a surface current density using the δ-function:

J̃s = ẑ Ĩ
δ(φ − φ0)

ρ0
.

This is easily verified as the correct expression since the integral of this density along
the circular arc at ρ = ρ0 returns the correct value Ĩ for the total current. Thus the
boundary condition requires

H̃φ(ρ+
0 , φ, ω) − H̃φ(ρ−

0 , φ, ω) = Ĩ
δ(φ − φ0)

ρ0
.

By (4.370) we have

−
∞∑

n=0

Cn
j

η0
sin νnφH (2)′

νn
(k0ρ0) +

∞∑
n=0

An
j

η0
sin νnφ J ′

νn
(k0ρ0) = Ĩ

δ(φ − φ0)

ρ0

and orthogonality yields

− Cm
ψ

2

j

η0
H (2)′

νm
(k0ρ0) + Am

ψ

2

j

η0
J ′
νm

(k0ρ0) = Ĩ
sin νmφ0

ρ0
. (4.372)

The coefficients Am and Cm thus obey the matrix equation[
Jνm (k0ρ0) −H (2)

νm
(k0ρ0)

J ′
νm

(k0ρ0) −H (2)′
νm

(k0ρ0)

] [
Am

Cm

]
=

[
0

− j2 Ĩ η0

ψ

sin νmφ0

ρ0

]

and are

Am =
j2 Ĩ η0

ψ

sin νmφ0

ρ0
H (2)

νm
(k0ρ0)

H (2)′
νm (k0ρ0)Jνm (k0ρ0) − J ′

νm
(k0ρ0)H (2)

νm (k0ρ0)
,

Cm =
j2 Ĩ η0

ψ

sin νmφ0

ρ0
Jνm (k0ρ0)

H (2)′
νm (k0ρ0)Jνm (k0ρ0) − J ′

νm
(k0ρ0)H (2)

νm (k0ρ0)
.

Using the Wronskian relation (E.93), we replace the denominators in these expressions
by 2/( jπk0ρ0):

Am = − Ĩ
η0

ψ
πk0 sin νmφ0 H (2)

νm
(k0ρ0),

Cm = − Ĩ
η0

ψ
πk0 sin νmφ0 Jνm (k0ρ0).

Hence (4.368) gives

Ẽz(ρ, φ, ω) =
{

− ∑∞
n=0 Ĩ η0

2ψ
πk0εn Jνn (k0ρ)H (2)

νn
(k0ρ0) sin νnφ sin νnφ0, ρ < ρ0,

− ∑∞
n=0 Ĩ η0

2ψ
πk0εn H (2)

νn
(k0ρ)Jνn (k0ρ0) sin νnφ sin νnφ0, ρ > ρ0,

(4.373)



where εn is Neumann’s number (A.132). The magnetic fields can also be found by
substituting the coefficients into (4.369) and (4.370).

The fields produced by an impressed plane wave may now be obtained by letting the
line source recede to infinity. For large ρ0 we use the asymptotic form (E.62) and find
that

Ẽz(ρ, φ, ω) = −
∞∑

n=0

Ĩ
η0

2ψ
πk0εn Jνn (k0ρ)

[√
2 j

πk0ρ0
jνn e− jk0ρ0

]
sin νnφ sin νnφ0, ρ < ρ0.

(4.374)
Since the field of a line source falls off as ρ

−1/2
0 , the amplitude of the impressed field

approaches zero as ρ0 → ∞. We must compensate for the reduction in the impressed
field by scaling the amplitude of the current source. To obtain the proper scale factor,
we note that the electric field produced at a point ρ by a line source located at ρ0 may
be found from (4.345):

Ẽz = − Ĩ
k0η0

4
H (2)

0 (k0|ρ − ρ0|) ≈ − Ĩ
k0η0

4

√
2 j

πk0ρ0
e− jk0ρ0 e jkρ cos(φ−φ0), k0ρ0 � 1.

But if we write this as

Ẽz ≈ Ẽ0e jk·ρ

then the field looks exactly like that produced by a plane wave with amplitude Ẽ0 trav-
eling along the wave vector k = −k0x̂ cos φ0 − k0ŷ sin φ0. Solving for Ĩ in terms of Ẽ0 and
substituting it back into (4.374), we get the total electric field scattered from a wedge
with an impressed TM plane-wave field:

Ẽz(ρ, φ, ω) = 2π

ψ
Ẽ0

∞∑
n=0

εn jνn Jνn (k0ρ) sin νnφ sin νnφ0.

Here we interpret the angle φ0 as the incidence angle of the plane wave.
To determine the field produced by an impressed TE plane-wave field, we use a mag-

netic line source Ĩm located at ρ0, φ0 and proceed as above. By analogy with (4.367) we
write

H̃z(ρ, φ, ω) =
{∑

ν [Aν sin νφ + Bν cos νφ] Jν(k0ρ), ρ < ρ0,∑
δ [Cδ sin δφ + Dδ cos δφ] H (2)

δ (k0ρ), ρ > ρ0.

By (4.351) the tangential electric field is

Ẽρ(ρ, φ, ω) =
{

− ∑
ν [Aν cos νφ − Bν sin νφ] j ZT E

k
1
ρ
ν Jν(k0ρ), ρ < ρ0,

− ∑
δ [Cδ cos δφ − Dδ sin δφ] j ZT E

k
1
ρ
δH (2)

δ (k0ρ), ρ > ρ0.

Application of the boundary conditions on the tangential electric field at φ = 0, ψ results
in Aν = Cδ = 0 and ν = δ = νn = nπ/ψ , and thus H̃z becomes

H̃z(ρ, φ, ω) =
{∑∞

n=0 Bn cos νnφ Jνn (k0ρ), ρ < ρ0,∑∞
n=0 Dn cos νnφH (2)

νn
(k0ρ), ρ > ρ0.

(4.375)

Application of the boundary conditions on tangential electric and magnetic fields across
the magnetic line source then leads directly to

H̃z(ρ, φ, ω) =
{

− ∑∞
n=0 Ĩm

η0

2ψ
πk0εn Jνn (k0ρ)H (2)

νn
(k0ρ0) cos νnφ cos νnφ0, ρ < ρ0

− ∑∞
n=0 Ĩm

η0

2ψ
πk0εn H (2)

νn
(k0ρ)Jνn (k0ρ0) cos νnφ cos νnφ0, ρ > ρ0.

(4.376)



For a plane-wave impressed field this reduces to

H̃z(ρ, φ, ω) = 2π

ψ

Ẽ0

η0

∞∑
n=0

εn jνn Jνn (k0ρ) cos νnφ cos νnφ0.

Behavior of current near a sharp edge. In § 3.2.9 we studied the behavior of static
charge near a sharp conducting edge by modeling the edge as a wedge. We can follow
the same procedure for frequency-domain fields. Assume that the perfectly conducting
wedge shown in Figure 4.26 is immersed in a finite, z-independent impressed field of a
sort that will not concern us. A current is induced on the surface of the wedge and we
wish to study its behavior as we approach the edge.

Because the field is z-independent, we may consider the superposition of TM and TE
fields as was done above to solve for the field scattered by a wedge. For TM polarization,
if the source is not located near the edge we may write the total field (impressed plus
scattered) in terms of nonuniform cylindrical waves. The form of the field that obeys the
boundary conditions at φ = 0 and φ = ψ is given by (4.368):

Ẽz =
∞∑

n=0

An sin νnφ Jνn (k0ρ),

where νn = nπ/ψ . Although the An depend on the impressed source, the general behavior
of the current near the edge is determined by the properties of the Bessel functions. The
current on the wedge face at φ = 0 is given by

J̃s(ρ, ω) = φ̂ × [φ̂H̃φ + ρ̂H̃ρ]|φ=0 = −ẑH̃ρ(ρ, 0, ω).

By (4.349) we have the surface current

J̃s(ρ, ω) = −ẑ
1

ZT M k0

∞∑
n=0

An
νn

ρ
Jνn (k0ρ).

For ρ → 0 the small-argument approximation (E.51) yields

J̃s(ρ, ω) ≈ −ẑ
1

ZT M k0

∞∑
n=0

Anνn
1

�(νn + 1)

(
k0

2

)νn

ρνn−1.

The sum is dominated by the smallest power of ρ. Since the n = 0 term vanishes we
have

J̃s(ρ, ω) ∼ ρ
π
ψ

−1
, ρ → 0.

For ψ < π the current density, which runs parallel to the edge, is unbounded as ρ → 0.
A right-angle wedge (ψ = 3π/2) carries

J̃s(ρ, ω) ∼ ρ−1/3.

Another important case is that of a half-plane (ψ = 2π) where

J̃s(ρ, ω) ∼ 1√
ρ

. (4.377)

This square-root edge singularity dominates the behavior of the current flowing parallel
to any flat edge, either straight or with curvature large compared to a wavelength, and
is useful for modeling currents on complicated structures.



In the case of TE polarization the magnetic field near the edge is, by (4.375),

H̃z(ρ, φ, ω) =
∞∑

n=0

Bn cos νnφ Jνn (k0ρ), ρ < ρ0.

The current at φ = 0 is

J̃s(ρ, ω) = φ̂ × ẑH̃z|φ=0 = ρ̂H̃z(ρ, 0, ω)

or

J̃s(ρ, ω) = ρ̂
∞∑

n=0

Bn Jνn (k0ρ).

For ρ → 0 we use (E.51) to write

J̃s(ρ, ω) = ρ̂
∞∑

n=0

Bn
1

�(νn + 1)

(
k0

2

)νn

ρνn .

The n = 0 term gives a constant contribution, so we keep the first two terms to see how
the current behaves near ρ = 0:

J̃s ∼ b0 + b1ρ
π
ψ .

Here b0 and b1 depend on the form of the impressed field. For a thin plate where ψ = 2π

this becomes

J̃s ∼ b0 + b1
√

ρ.

This is the companion square-root behavior to (4.377). When perpendicular to a sharp
edge, the current grows away from the edge as ρ1/2. In most cases b0 = 0 since there is
no mechanism to store charge along a sharp edge.

4.11.8 Propagation of spherical waves in a conducting medium

We cannot obtain uniform spherical wave solutions to Maxwell’s equations. Any field
dependent only on r produces the null field external to the source region, as shown in
§ 4.11.9. Nonuniform spherical waves are in general complicated and most easily handled
using potentials. We consider here only the simple problem of fields dependent on r and
θ . These waves display the fundamental properties of all spherical waves: they diverge
from a localized source and expand with finite velocity.

Consider a homogeneous, source-free region characterized by ε̃(ω), µ̃(ω), and σ̃ (ω).
We seek wave solutions that are TEMr in spherical coordinates (H̃r = Ẽr = 0) and
φ-independent. Thus we write

Ẽ(r, ω) = θ̂ Ẽθ (r, θ, ω) + φ̂Ẽφ(r, θ, ω),

H̃(r, ω) = θ̂H̃θ (r, θ, ω) + φ̂H̃φ(r, θ, ω).

To determine the behavior of these fields we first examine Faraday’s law

∇ × Ẽ(r, θ, ω) = r̂
1

r sin θ

∂

∂θ
[sin θ Ẽφ(r, θ, ω)] − θ̂

1

r

∂

∂r
[r Ẽφ(r, θ, ω)] + φ̂

1

r

∂

∂r
[r Ẽθ (r, θ, ω)]

= − jωµ̃H̃(r, θ, ω). (4.378)



Since we require H̃r = 0 we must have

∂

∂θ
[sin θ Ẽφ(r, θ, ω)] = 0.

This implies that either Ẽφ ∼ 1/ sin θ or Ẽφ = 0. We choose Ẽφ = 0 and investigate
whether the resulting fields satisfy the remaining Maxwell equations.

In a source-free, homogeneous region of space we have ∇ ·D̃ = 0 and thus also ∇ ·Ẽ = 0.
Since we have only a θ -component of the electric field, this requires

1

r

∂

∂θ
Ẽθ (r, θ, ω) + cot θ

r
Ẽθ (r, θ, ω) = 0.

From this we see that when Ẽφ = 0, the field Ẽθ must obey

Ẽθ (r, θ, ω) = f̃ E (r, ω)

sin θ
.

By (4.378) there is only a φ-component of magnetic field which obeys

H̃φ(r, θ, ω) = f̃H (r, ω)

sin θ

where

− jωµ̃ f̃H (r, ω) = 1

r

∂

∂r
[r f̃E (r, ω)]. (4.379)

So the spherical wave is TEM to the r -direction.
We can obtain a wave equation for f̃ E by taking the curl of (4.378) and substituting

from Ampere’s law:

∇ × (∇ × Ẽ) = −θ̂
1

r

∂2

∂r2
(r Ẽθ ) = ∇ × (− jωµ̃H̃

) = − jωµ̃
(
σ̃ Ẽ + jωε̃Ẽ

)
,

hence

d2

dr2
[r f̃E (r, ω)] + k2[r f̃E (r, ω)] = 0. (4.380)

Here k = ω(µ̃ε̃c)1/2 is the complex wavenumber and ε̃c = ε̃ + σ̃ /jω is the complex
permittivity. The equation for f̃H is identical.

The wave equation (4.380) is merely the second-order harmonic differential equation,
with two independent solutions chosen from the list

sin kr, cos kr, e− jkr , e jkr .

We find sin kr and cos kr useful for describing standing waves between boundaries, and
e jkr and e− jkr useful for describing waves propagating in the r -direction. Of these, e jkr

represents waves traveling inward while e− jkr represents waves traveling outward. At this
point we choose r f̃E = e− jkr and thus

Ẽ(r, θ, ω) = θ̂ Ẽ0(ω)
e− jkr

r sin θ
. (4.381)

By (4.379) we have

H̃(r, θ, ω) = φ̂
Ẽ0(ω)

ZT E M

e− jkr

r sin θ
(4.382)



where ZT E M = (µ̃/εc)1/2 is the complex wave impedance. Since we can also write

H̃(r, θ, ω) = r̂ × Ẽ(r, θ, ω)

ZT E M
,

the field is TEM to the r -direction, which is the direction of wave propagation as shown
below.

The wave nature of the field is easily identified by considering the fields in the phasor
domain. Letting ω → ω̌ and setting k = β − jα in the exponential function we find that

Ě(r, θ) = θ̂ Ě0e−αr e− jβr

r sin θ

where Ě0 = E0e jξ E
. The time-domain representation may be found using (4.126):

E(r, θ, t) = θ̂E0
e−αr

r sin θ
cos(ω̌t − βr + ξ E ). (4.383)

We can identify a surface of constant phase as a locus of points obeying

ω̌t − βr + ξ E = CP (4.384)

where CP is some constant. These surfaces, which are spheres centered on the origin, are
called spherical wavefronts. Note that surfaces of constant amplitude as determined by

e−αr

r
= CA,

where CA is some constant, are also spheres.
The cosine term in (4.383) represents a traveling wave with spherical wavefronts that

propagate outward as time progresses. Attenuation is caused by the factor e−αr . By
differentiation we find that the phase velocity is

vp = ω̌/β.

The wavelength is given by λ = 2π/β.
Our solution is not appropriate for unbounded space since the fields have a singularity

at θ = 0. To exclude the z-axis we add conducting cones as mentioned on page 105. This
results in a biconical structure that can be used as a transmission line or antenna.

To compute the power carried by a spherical wave, we use (4.381) and (4.382) to obtain
the time-average Poynting flux

Sav = 1

2
Re{Ěθ θ̂ × Ȟ∗

φ φ̂} = 1

2
r̂ Re

{
1

Z∗
T E M

}
E2

0

r2 sin2 θ
e−2αr .

The power flux is radial and has density inversely proportional to r2. The time-average
power carried by the wave through a spherical surface at r sandwiched between the cones
at θ1 and θ2 is

Pav(r) = 1

2
Re

{
1

Z∗
T E M

}
E2

0e−2αr
∫ 2π

0
dφ

∫ θ2

θ1

dθ

sin θ
= π F Re

{
1

Z∗
T E M

}
E2

0e−2αr

where

F = ln

[
tan(θ2/2)

tan(θ1/2)

]
. (4.385)



This is independent of r when α = 0. For lossy media the power decays exponentially
because of Joule heating.

We can write the phasor electric field in terms of the transverse gradient of a scalar
potential function !̌:

Ě(r, θ) = θ̂ Ě0
e− jkr

r sin θ
= −∇t!̌(θ)

where

!̌(θ) = −Ě0e− jkr ln

(
tan

θ

2

)
.

By ∇t we mean the gradient with the r -component excluded. It is easily verified that

Ě(r, θ) = −∇t!̌(θ) = −θ̂ Ě0
1

r

∂!̌(θ)

∂θ
= θ̂ Ě0

e− jkr

r sin θ
.

Because Ě and !̌ are related by the gradient, we can define a unique potential difference
between the two cones at any radial position r :

V̌ (r) = −
∫ θ2

θ1

Ě · dl = !̌(θ2) − !̌(θ1) = Ě0 Fe− jkr ,

where F is given in (4.385). The existence of a unique voltage difference is a property of
all transmission line structures operated in the TEM mode. We can similarly compute
the current flowing outward on the cone surfaces. The surface current on the cone at
θ = θ1 is J̌s = n̂ × Ȟ = θ̂ × φ̂Ȟφ = r̂Ȟφ , hence

Ǐ (r) =
∫ 2π

0
J̌s · r̂r sin θdφ = 2π

Ě0

ZT E M
e− jkr .

The ratio of voltage to current at any radius r is the characteristic impedance of the bi-
conical transmission line (or, equivalently, the input impedance of the biconical antenna):

Z = V̌ (r)

Ǐ (r)
= ZT E M

2π
F.

If the material between the cones is lossless (and thus µ̃ = µ and ε̃c = ε are real), this
becomes

Z = η

2π
F

where η = (µ/ε)1/2. The frequency independence of this quantity makes biconical anten-
nas (or their approximate representations) useful for broadband applications.

Finally, the time-average power carried by the wave may be found from

Pav(r) = 1

2
Re

{
V̌ (r) Ǐ ∗(r)

} = π F Re

{
1

Z∗
T E M

}
E2

0e−2αr .

The complex power relationship P = V I ∗ is also a property of TEM guided-wave struc-
tures.



4.11.9 Nonradiating sources

We showed in § 2.10.9 that not all time-varying sources produce electromagnetic waves.
In fact, a subset of localized sources known as nonradiating sources produce no field
external to the source region. Devaney and Wolf [54] have shown that all nonradiating
time-harmonic sources in an unbounded homogeneous medium can be represented in the
form

J̌nr (r) = −∇ × [∇ × f̌(r)
] + k2 f̌(r) (4.386)

where f̌ is any vector field that is continuous, has partial derivatives up to third order,
and vanishes outside some localized region Vs . In fact, Ě(r) = jω̌µf̌(r) is precisely the
phasor electric field produced by J̌nr (r). The reasoning is straightforward. Consider the
Helmholtz equation (4.203):

∇ × (∇ × Ě) − k2Ě = − jω̌µJ̌.

By (4.386) we have (∇ × ∇ × −k2
) [

Ě − jω̌µf̌
] = 0.

Since f̌ is zero outside the source region it must vanish at infinity. Ě also vanishes at
infinity by the radiation condition, and thus the quantity Ě − jω̌µf̌ obeys the radiation
condition and is a unique solution to the Helmholtz equation throughout all space. Since
the Helmholtz equation is homogeneous we have

Ě − jω̌µf̌ = 0

everywhere; since f̌ is zero outside the source region, so is Ě (and so is Ȟ).
An interesting special case of nonradiating sources is

f̌ = ∇!̌

k2

so that

J̌nr = − (∇ × ∇ × −k2
) ∇!̌

k2
= ∇!̌.

Using !̌(r) = !̌(r), we see that this source describes the current produced by an oscillat-
ing spherical balloon of charge (cf., § 2.10.9). Radially-directed, spherically-symmetric
sources cannot produce uniform spherical waves, since these sources are of the nonradi-
ating type.

4.12 Interpretation of the spatial transform

Now that we understand the meaning of a Fourier transform on the time variable, let
us consider a single transform involving one of the spatial variables. For a transform over
z we shall use the notation

ψ z(x, y, kz, t) ↔ ψ(x, y, z, t).



Here the spatial frequency transform variable kz has units of m−1. The forward and
inverse transform expressions are

ψ z(x, y, kz, t) =
∫ ∞

−∞
ψ(x, y, z, t)e− jkz z dz, (4.387)

ψ(x, y, z, t) = 1

2π

∫ ∞

−∞
ψ z(x, y, kz, t)e jkz z dkz, (4.388)

by (A.1) and (A.2).
We interpret (4.388) much as we interpreted the temporal inverse transform (4.2).

Any vector component of the electromagnetic field can be decomposed into a continuous
superposition of elemental spatial terms e jkz z with weighting factors ψ z(x, y, kz, t). In
this case ψ z is the spatial frequency spectrum of ψ . The elemental terms are spatial
sinusoids along z with rapidity of variation described by kz .

As with the temporal transform, ψ z cannot be arbitrary since ψ must obey a scalar
wave equation such as (2.327). For instance, for a source-free region of free space we
must have (

∇2 − 1

c2

∂

∂t2

)
1

2π

∫ ∞

−∞
ψ z(x, y, kz, t)e jkz z dkz = 0.

Decomposing the Laplacian operator as ∇2 = ∇2
t +∂2/∂z2 and taking the derivatives into

the integrand, we have

1

2π

∫ ∞

−∞

[(
∇2

t − k2
z − 1

c2

∂2

∂t2

)
ψ z(x, y, kz, t)

]
e jkz z dkz = 0.

Hence (
∇2

t − k2
z − 1

c2

∂2

∂t2

)
ψ z(x, y, kz, t) = 0 (4.389)

by the Fourier integral theorem.
The elemental component e jkz z is spatially sinusoidal and occupies all of space. Because

such an element could only be created by a source that spans all of space, it is nonphysical
when taken by itself. Nonetheless it is often used to represent more complicated fields.
If the elemental spatial term is to be used alone, it is best interpreted physically when
combined with a temporal decomposition. That is, we consider a two-dimensional trans-
form, with transforms over both time and space. Then the time-domain representation
of the elemental component is

φ(z, t) = 1

2π

∫ ∞

−∞
e jkz ze jωt dω. (4.390)

Before attempting to compute this transform, we should note that if the elemental term
is to describe an EM field ψ in a source-free region, it must obey the homogeneous scalar
wave equation. Substituting (4.390) into the homogeneous wave equation we have(

∇2 − 1

c2

∂2

∂t2

)
1

2π

∫ ∞

−∞
e jkz ze jωt dω = 0.

Differentiation under the integral sign gives

1

2π

∫ ∞

−∞

[(
−k2

z + ω2

c2

)
e jkz z

]
e jωt dω = 0



and thus

k2
z = ω2

c2
= k2.

Substitution of kz = k into (4.390) gives the time-domain representation of the elemental
component

φ(z, t) = 1

2π

∫ ∞

−∞
e jω(t+z/c) dω.

Finally, using the shifting theorem (A.3) along with (A.4), we have

φ(z, t) = δ
(

t + z

c

)
, (4.391)

which we recognize as a uniform plane wave propagating in the −z-direction with velocity
c. There is no variation in the directions transverse to the direction of propagation and
the surface describing a constant argument of the δ-function at any time t is a plane
perpendicular to the direction of propagation.

We can also consider the elemental spatial component in tandem with a single sinu-
soidal steady-state elemental component. The phasor representation of the elemental
spatial component is

φ̌(z) = e jkz z = e jkz .

This elemental term is a time-harmonic plane wave propagating in the −z-direction.
Indeed, multiplying by e jω̌t and taking the real part we get

φ(z, t) = cos(ω̌t + kz),

which is the sinusoidal steady-state analogue of (4.391).
Many authors choose to define the temporal and spatial transforms using differing

sign conventions. The temporal transform is defined as in (4.1) and (4.2), but the spatial
transform is defined through

ψ z(x, y, kz, t) =
∫ ∞

−∞
ψ(x, y, z, t)e jkz z dz, (4.392)

ψ(x, y, z, t) = 1

2π

∫ ∞

−∞
ψ z(x, y, kz, t)e− jkz z dkz . (4.393)

This employs a wave traveling in the positive z-direction as the elemental spatial com-
ponent, which is quite useful for physical interpretation. We shall adopt this notation in
§ 4.13. The drawback is that we must alter the formulas from standard Fourier transform
tables (replacing k by −k) to reflect this difference.

In the following sections we shall show how a spatial Fourier decomposition can be
used to solve for the electromagnetic fields in a source-free region of space. By employing
the spatial transform we may eliminate one or more spatial variables from Maxwell’s
equations, making the wave equation easier to solve. In the end we must perform an
inversion to return to the space domain. This may be difficult or impossible to do
analytically, requiring a numerical Fourier inversion.

4.13 Spatial Fourier decomposition of two-dimensional fields

Consider a homogeneous, source-free region characterized by ε̃(ω), µ̃(ω), and σ̃ (ω).
We seek z-independent solutions to the frequency-domain Maxwell’s equations, using



the Fourier transform to represent the spatial dependence. By § 4.11.2 a general two-
dimensional field may be decomposed into fields TE and TM to the z-direction. In the
TM case H̃z = 0, and Ẽz obeys the homogeneous scalar Helmholtz equation (4.208).
In the TE case Ẽz = 0, and H̃z obeys the homogeneous scalar Helmholtz equation.
Since each field component obeys the same equation, we let ψ̃(x, y, ω) represent either
Ẽz(x, y, ω) or H̃z(x, y, ω). Then ψ̃ obeys

(∇2
t + k2)ψ̃(x, y, ω) = 0 (4.394)

where ∇2
t is the transverse Laplacian (4.209) and k = ω(µ̃ε̃c)1/2 with ε̃c the complex

permittivity.
We may choose to represent ψ̃(x, y, ω) using Fourier transforms over one or both

spatial variables. For application to problems in which boundary values or boundary
conditions are specified at a constant value of a single variable (e.g., over a plane), one
transform suffices. For instance, we may know the values of the field in the y = 0 plane
(as we will, for example, when we solve the boundary value problems of § ??). Then
we may transform over x and leave the y variable intact so that we may substitute the
boundary values.

We adopt (4.392) since the result is more readily interpreted in terms of propagating
plane waves. Choosing to transform over x we have

ψ̃ x (kx , y, ω) =
∫ ∞

−∞
ψ̃(x, y, ω)e jkx x dx, (4.395)

ψ̃(x, y, ω) = 1

2π

∫ ∞

−∞
ψ x (kx , y, ω)e− jkx x dkx . (4.396)

For convenience in computation or interpretation of the inverse transform, we often
regard kx as a complex variable and perturb the inversion contour into the complex kx =
kxr + jkxi plane. The integral is not altered if the contour is not moved past singularities
such as poles or branch points. If the function being transformed has exponential (wave)
behavior, then a pole exists in the complex plane; if we move the inversion contour across
this pole, the inverse transform does not return the original function. We generally
indicate the desire to interpret kx as complex by indicating that the inversion contour is
parallel to the real axis but located in the complex plane at kxi = �:

ψ̃(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

ψ̃ x (kx , y, ω)e− jkx x dkx . (4.397)

Additional perturbations of the contour are allowed provided that the contour is not
moved through singularities.

As an example, consider the function

u(x) =
{

0, x < 0,

e− jkx , x > 0,
(4.398)

where k = kr + jki represents a wavenumber. This function has the form of a plane
wave propagating in the x-direction and is thus relevant to our studies. If the material
through which the wave is propagating is lossy, then ki < 0. The Fourier transform of
the function is

ux (kx ) =
∫ ∞

0
e− jkx e jkx x dx = 1

j (kx − k)

[
e j (kxr −kr )x e−(kxi −ki )x

] ∣∣∣∣
∞

0

.



Figure 4.27: Inversion contour for evaluating the spectral integral for a plane wave.

The integral converges if kxi > ki , and the transform is

ux (kx ) = − 1

j (kx − k)
.

Since u(x) is an exponential function, ux (kx ) has a pole at kx = k as anticipated.
To compute the inverse transform we use (4.397):

u(x) = 1

2π

∞+ j�∫
−∞+ j�

[
− 1

j (kx − k)

]
e− jkx x dkx . (4.399)

We must be careful to choose � in such a way that all values of kx along the inversion
contour lead to a convergent forward Fourier transform. Since we must have kxi > ki ,
choosing � > ki ensures proper convergence. This gives the inversion contour shown in
Figure 4.27, a special case of which is the real axis. We compute the inversion integral
using contour integration as in § A.1. We close the contour in the complex plane and use
Cauchy’s residue theorem (A.14) For x > 0 we take 0 > � > ki and close the contour
in the lower half-plane using a semicircular contour CR of radius R. Then the closed
contour integral is equal to −2π j times the residue at the pole kx = k. As R → ∞ we
find that kxi → −∞ at all points on the contour CR . Thus the integrand, which varies as
ekxi x , vanishes on CR and there is no contribution to the integral. The inversion integral
(4.399) is found from the residue at the pole:

u(x) = (−2π j)
1

2π
Reskx =k

[
− 1

j (kx − k)
e− jkx x

]
.

Since the residue is merely je− jkx we have u(x) = e− jkx . When x < 0 we choose � > 0
and close the contour along a semicircle CR of radius R in the upper half-plane. Again
we find that on CR the integrand vanishes as R → ∞, and thus the inversion integral
(4.399) is given by 2π j times the residues of the integrand at any poles within the closed
contour. This time, however, there are no poles enclosed and thus u(x) = 0. We have
recovered the original function (4.398) for both x > 0 and x < 0. Note that if we had



erroneously chosen � < ki we would not have properly enclosed the pole and would have
obtained an incorrect inverse transform.

Now that we know how to represent the Fourier transform pair, let us apply the
transform to solve (4.394). Our hope is that by representing ψ̃ in terms of a spatial
Fourier integral we will make the equation easier to solve. We have

(∇2
t + k2)

1

2π

∞+ j�∫
−∞+ j�

ψ̃ x (kx , y, ω)e− jkx x dkx = 0.

Differentiation under the integral sign with subsequent application of the Fourier integral
theorem implies that ψ̃ must obey the second-order harmonic differential equation[

d2

dy2
+ k2

y

]
ψ̃ x (kx , y, ω) = 0

where we have defined the dependent parameter ky = kyr + jkyi through k2
x + k2

y = k2.
Two independent solutions to the differential equation are e∓ jky y and thus

ψ̃(kx , y, ω) = A(kx , ω)e∓ jky y .

Substituting this into the inversion integral, we have the solution to the Helmholtz equa-
tion:

ψ̃(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A(kx , ω)e− jkx x e∓ jky y dkx . (4.400)

If we define the wave vector k = x̂kx ± ŷky , we can also write the solution in the form

ψ̃(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A(kx , ω)e− jk·ρ dkx (4.401)

where ρ = x̂x + ŷy is the two-dimensional position vector.
The solution (4.401) has an important physical interpretation. The exponential term

looks exactly like a plane wave with its wave vector lying in the xy-plane. For lossy media
the plane wave is nonuniform, and the surfaces of constant phase may not be aligned
with the surfaces of constant amplitude (see § 4.11.4). For the special case of a lossless
medium we have ki → 0 and can let � → 0 as long as � > ki . As we perform the inverse
transform integral over kx from −∞ to ∞ we will encounter both the condition k2

x > k2

and k2
x ≤ k2. For k2

x ≤ k2 we have

e− jkx x e∓ jky y = e− jkx x e∓ j
√

k2−k2
x y

where we choose the upper sign for y > 0 and the lower sign for y < 0 to ensure that the
waves propagate in the ±y-direction, respectively. Thus, in this regime the exponential
represents a propagating wave that travels into the half-plane y > 0 along a direction
which depends on kx , making an angle ξ with the x-axis as shown in Figure 4.28. For kx in
[−k, k], every possible wave direction is covered, and thus we may think of the inversion
integral as constructing the solution to the two-dimensional Helmholtz equation from a
continuous superposition of plane waves. The amplitude of each plane wave component
is given by A(kx , ω), which is often called the angular spectrum of the plane waves and



Figure 4.28: Propagation behavior of the angular spectrum for (a) k2
x ≤ k2, (b) k2

x > k2.

is determined by the values of the field over the boundaries of the solution region. But
this is not the whole picture. The inverse transform integral also requires values of kx in
the intervals [−∞, k] and [k, ∞]. Here we have k2

x > k2 and thus

e− jkx x e− jky y = e− jkx x e∓
√

k2
x −k2 y,

where we choose the upper sign for y > 0 and the lower sign for y < 0 to ensure
that the field decays along the y-direction. In these regimes we have an evanescent wave,
propagating along x but decaying along y, with surfaces of constant phase and amplitude
mutually perpendicular (Figure 4.28). As kx ranges out to ∞, evanescent waves of all
possible decay constants also contribute to the plane-wave superposition.

We may summarize the plane-wave contributions by letting k = x̂kx + ŷky = kr + jki

where

kr =
{

x̂kx ± ŷ
√

k2 − k2
x , k2

x < k2,

x̂kx , k2
x > k2,

ki =
{

0, k2
x < k2,

∓ŷ
√

k2
x − k2, k2

x > k2,

where the upper sign is used for y > 0 and the lower sign for y < 0.
In many applications, including the half-plane example considered later, it is useful to

write the inversion integral in polar coordinates. Letting

kx = k cos ξ, ky = ±k sin ξ,

where ξ = ξr + jξi is a new complex variable, we have k · ρ = kx cos ξ ± ky sin ξ and
dkx = −k sin ξ dξ . With this change of variables (4.401) becomes

ψ̃(x, y, ω) = k

2π

∫
C

A(k cos ξ, ω)e− jkx cos ξ e± jky sin ξ sin ξ dξ. (4.402)

Since A(kx , ω) is a function to be determined, we may introduce a new function

f (ξ, ω) = k

2π
A(kx , ω) sin ξ



Figure 4.29: Inversion contour for the polar coordinate representation of the inverse
Fourier transform.

so that (4.402) becomes

ψ̃(x, y, ω) =
∫

C
f (ξ, ω)e− jkρ cos(φ±ξ) dξ (4.403)

where x = ρ cos φ, y = ρ sin φ, and where the upper sign corresponds to 0 < φ < π

(y > 0) while the lower sign corresponds to π < φ < 2π (y < 0). In these expressions
C is a contour in the complex ξ -plane to be determined. Values along this contour must
produce identical values of the integrand as did the values of kx over [−∞, ∞] in the
original inversion integral. By the identities

cos z = cos(u + jv) = cos u cosh v − j sin u sinh v,

sin z = sin(u + jv) = sin u cosh v + j cos u sinh v,

we find that the contour shown in Figure 4.29 provides identical values of the integrand
(Problem 4.24). The portions of the contour [0 + j∞,0] and [−π, −π − j∞] together
correspond to the regime of evanescent waves (k < kx < ∞ and −∞ < kx < k), while
the segment [0, −π ] along the real axis corresponds to −k < kx < k and thus describes
contributions from propagating plane waves. In this case ξ represents the propagation
angle of the waves.

4.13.1 Boundary value problems using the spatial Fourier represen-
tation

The field of a line source. As a first example we calculate the Fourier representation
of the field of an electric line source. Assume a uniform line current Ĩ (ω) is aligned along
the z-axis in a medium characterized by complex permittivity ε̃c(ω) and permeability
µ̃(ω). We separate space into two source-free portions, y > 0 and y < 0, and write the
field in each region in terms of an inverse spatial Fourier transform. Then, by applying
the boundary conditions in the y = 0 plane, we solve for the angular spectrum of the
line source.



Since this is a two-dimensional problem we may decompose the fields into TE and TM
sets. For an electric line source we need only the TM set, and write Ez as a superposition
of plane waves using (4.400). For y≷0 we represent the field in terms of plane waves
traveling in the ±y-direction. Thus

Ẽz(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A+(kx , ω)e− jkx x e− jky y dkx , y > 0,

Ẽz(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A−(kx , ω)e− jkx x e+ jky y dkx , y < 0.

The transverse magnetic field may be found from the axial electric field using (4.212).
We find

H̃x = − 1

jωµ̃

∂ Ẽz

∂y
(4.404)

and thus

H̃x (x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A+(kx , ω)

[
ky

ωµ̃

]
e− jkx x e− jky y dkx , y > 0,

H̃x (x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A−(kx , ω)

[
− ky

ωµ̃

]
e− jkx x e+ jky y dkx , y < 0.

To find the spectra A±(kx , ω) we apply the boundary conditions at y = 0. Since tangential
Ẽ is continuous we have, after combining the integrals,

1

2π

∞+ j�∫
−∞+ j�

[
A+(kx , ω) − A−(kx , ω)

]
e− jkx x dkx = 0,

and hence by the Fourier integral theorem

A+(kx , ω) − A−(kx , ω) = 0. (4.405)

We must also apply n̂12 × (H̃1 − H̃2) = J̃s . The line current may be written as a surface
current density using the δ-function, giving

− [
H̃x (x, 0+, ω) − H̃x (x, 0−, ω)

] = Ĩ (ω)δ(x).

By (A.4)

δ(x) = 1

2π

∫ ∞

−∞
e− jkx x dkx .

Then, substituting for the fields and combining the integrands, we have

1

2π

∞+ j�∫
−∞+ j�

[
A+(kx , ω) + A−(kx , ω) + ωµ̃

ky
Ĩ (ω)

]
e− jkx x = 0,



hence

A+(kx , ω) + A−(kx , ω) = −ωµ̃

ky
Ĩ (ω). (4.406)

Solution of (4.405) and (4.406) gives the angular spectra

A+(kx , ω) = A−(kx , ω) = −ωµ̃

2ky
Ĩ (ω).

Substituting this into the field expressions and combining the cases for y > 0 and y < 0,
we find

Ẽz(x, y, ω) = −ωµ̃ Ĩ (ω)

2π

∞+ j�∫
−∞+ j�

e− jky |y|

2ky
e− jkx x dkx = − jωµ̃ Ĩ (ω)G̃(x, y|0, 0; ω). (4.407)

Here G̃ is the spectral representation of the two-dimensional Green’s function first found
in § 4.11.7, and is given by

G̃(x, y|x ′, y′; ω) = 1

2π j

∞+ j�∫
−∞+ j�

e− jky |y−y′|

2ky
e− jkx (x−x ′) dkx . (4.408)

By duality we have

H̃z(x, y, ω) = −ωε̃c Ĩm(ω)

2π

∞+ j�∫
−∞+ j�

e− jky |y|

2ky
e− jkx x dkx = − jωε̃c Ĩm(ω)G(x, y|0, 0; ω) (4.409)

for a magnetic line current Ĩm(ω) on the z-axis.
Note that since the earlier expression (4.346) should be equivalent to (4.408), we have

the well known identity [33]

1

π

∞+ j�∫
−∞+ j�

e− jky |y|

ky
e− jkx x dkx = H (2)

0 (kρ).

We have not yet specified the contour appropriate for calculating the inverse transform
(4.407). We must be careful because the denominator of (4.407) has branch points at
ky = √

k2 − k2
x = 0, or equivalently, kx = ±k = ±(kr + jki ). For lossy materials we have

ki < 0 and kr > 0, so the branch points appear as in Figure 4.30. We may take the branch
cuts outward from these points, and thus choose the inversion contour to lie between the
branch points so that the branch cuts are not traversed. This requires ki < � < −ki . It
is natural to choose � = 0 and use the real axis as the inversion contour. We must be
careful, though, when extending these arguments to the lossless case. If we consider the
lossless case to be the limit of the lossy case as ki → 0, we find that the branch points
migrate to the real axis and thus lie on the inversion contour. We can eliminate this
problem by realizing that the inversion contour may be perturbed without affecting the
value of the integral, as long as it is not made to pass through the branch cuts. If we
perturb the inversion contour as shown in Figure 4.30, then as ki → 0 the branch points
do not fall on the contour.



Figure 4.30: Inversion contour in complex kx -plane for a line source. Dotted arrow shows
migration of branch points to real axis as loss goes to zero.

There are many interesting techniques that may be used to compute the inversion
integral appearing in (4.407) and in the other expressions we shall obtain in this section.
These include direct real-axis integration and closed contour methods that use Cauchy’s
residue theorem to capture poles of the integrand (which often describe the properties
of waves guided by surfaces). Often it is necessary to integrate around the branch cuts
in order to meet the conditions for applying the residue theorem. When the observation
point is far from the source we may use the method of steepest descents to obtain
asymptotic forms for the fields. The interested reader should consult Chew [33], Kong
[101], or Sommerfeld [184].

Field of a line source above an interface. Consider a z-directed electric line current
located at y = h within a medium having parameters µ̃1 (ω) and ε̃c

1 (ω). The y = 0 plane
separates this region from a region having parameters µ̃2 (ω) and ε̃c

2 (ω). See Figure 4.31.
The impressed line current source creates an electromagnetic field that induces secondary
polarization and conduction currents in both regions. This current in turn produces a
secondary field that adds to the primary field of the line source to satisfy the boundary
conditions at the interface. We would like to solve for the secondary field and give its
sources an image interpretation.

Since the fields are z-independent we may decompose the fields into sets TE and TM
to z. For a z-directed impressed source there is a z-component of Ẽ, but no z-component
of H̃; hence the fields are entirely specified by the TM set. The impressed source is
unaffected by the secondary field, and we may represent the impressed electric field
using (4.407):

Ẽ i
z(x, y, ω) = −ωµ̃1 Ĩ (ω)

2π

∞+ j�∫
−∞+ j�

e− jky1|y−h|

2ky1
e− jkx x dkx , y ≥ 0 (4.410)



Figure 4.31: Geometry of a z-directed line source above an interface between two material
regions.

where ky1 =
√

k2
1 − k2

x and k1 = ω(µ̃1ε̃
c
1)

1/2. From (4.404) we find that

H̃ i
x = − 1

jωµ̃1

∂ Ẽ i
z

∂y
= Ĩ (ω)

2π

∞+ j�∫
−∞+ j�

e jky1(y−h)

2
e− jkx x dkx , 0 ≤ y < h.

The scattered field obeys the homogeneous Helmholtz equation for all y > 0, and thus
may be written using (4.400) as a superposition of upward-traveling waves:

Ẽ s
z1(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A1(kx , ω)e− jky1 ye− jkx x dkx ,

H̃ s
x1(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

ky1

ωµ̃1
A1(kx , ω)e− jky1 ye− jkx x dkx .

Similarly, in region 2 the scattered field may be written as a superposition of downward-
traveling waves:

Ẽ s
z2(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A2(kx , ω)e jky2 ye− jkx x dkx ,

H̃ s
x2(x, y, ω) = − 1

2π

∞+ j�∫
−∞+ j�

ky2

ωµ̃2
A2(kx , ω)e jky2 ye− jkx x dkx ,

where ky2 =
√

k2
2 − k2

x and k2 = ω(µ̃2ε̃
c
2)

1/2.
We can solve for the angular spectra A1 and A2 by applying the boundary conditions

at the interface between the two media. From the continuity of total tangential electric
field we find that

1

2π

∞+ j�∫
−∞+ j�

[
−ωµ̃1 Ĩ (ω)

2ky1
e− jky1h + A1(kx , ω) − A2(kx , ω)

]
e− jkx x dkx = 0,



hence by the Fourier integral theorem

A1(kx , ω) − A2(kx , ω) = ωµ̃1 Ĩ (ω)

2ky1
e− jky1h .

The boundary condition on the continuity of H̃x yields similarly

− Ĩ (ω)

2
e− jky1h = ky1

ωµ̃1
A1(kx , ω) + ky2

ωµ̃2
A2(kx , ω).

We obtain

A1(kx , ω) = ωµ̃1 Ĩ (ω)

2ky1
RT M(kx , ω)e− jky1h,

A2(kx , ω) = −ωµ̃2 Ĩ (ω)

2ky2
TT M(kx , ω)e− jky1h .

Here RT M and TT M = 1 + RT M are reflection and transmission coefficients given by

RT M(kx , ω) = µ̃1ky2 − µ̃2ky1

µ̃1ky2 + µ̃2ky1
,

TT M(kx , ω) = 2µ̃1ky2

µ̃1ky2 + µ̃2ky1
.

These describe the reflection and transmission of each component of the plane-wave
spectrum of the impressed field, and thus depend on the parameter kx . The scattered
fields are

Ẽ s
z1(x, y, ω) = ωµ̃1 Ĩ (ω)

2π

∞+ j�∫
−∞+ j�

e− jky1(y+h)

2ky1
RT M(kx , ω)e− jkx x dkx , (4.411)

Ẽ s
z2(x, y, ω) = −ωµ̃2 Ĩ (ω)

2π

∞+ j�∫
−∞+ j�

e jky2(y−hky1/ky2)

2ky2
TT M(kx , ω)e− jkx x dkx . (4.412)

We may now obtain the field produced by an electric line source above a perfect
conductor. Letting σ̃2 → ∞ we have ky2 =

√
k2

2 − k2
x → ∞ and

RT M → 1, TT M → 2.

With these, the scattered fields (4.411) and (4.412) become

Ẽ s
z1(x, y, ω) = ωµ̃1 Ĩ (ω)

2π

∞+ j�∫
−∞+ j�

e− jky1(y+h)

2ky1
e− jkx x dkx , (4.413)

Ẽ s
z2(x, y, ω) = 0. (4.414)

Comparing (4.413) to (4.410) we see that the scattered field is exactly the same as that
produced by a line source of amplitude − Ĩ (ω) located at y = −h. We call this line source
the image of the impressed source, and say that the problem of two line sources located



Figure 4.32: Geometry for scattering of a TM plane wave by a conducting half-plane.

symmetrically on the y-axis is equivalent for y > 0 to the problem of the line source
above a ground plane. The total field is the sum of the impressed and scattered fields:

Ẽz(x, y, ω) = −ωµ̃1 Ĩ (ω)

2π

∞+ j�∫
−∞+ j�

e− jky1|y−h| − e− jky1(y+h)

2ky1
e− jkx x dkx , y ≥ 0.

We can write this in another form using the Hankel-function representation of the line
source (4.345):

Ẽz(x, y, ω) = −ωµ̃

4
Ĩ (ω)H (2)

0 (k|ρ − ŷh|) + ωµ̃

4
Ĩ (ω)H (2)

0 (k|ρ + ŷh|)

where |ρ ± ŷh| = |ρρ̂ ± ŷh| =
√

x2 + (y ± h)2.
Interpreting the general case in terms of images is more difficult. Comparing (4.411)

and (4.412) with (4.410), we see that each spectral component of the field in region 1 has
the form of an image line source located at y = −h in region 2, but that the amplitude
of the line source, RT M Ĩ , depends on kx . Similarly, the field in region 2 is composed of
spectral components that seem to originate from line sources with amplitudes −TT M Ĩ
located at y = hky1/ky2 in region 1. In this case the amplitude and position of the image
line source producing a spectral component are both dependent on kx .

The field scattered by a half-plane. Consider a thin planar conductor that occupies
the half-plane y = 0, x > 0. We assume the half-plane lies within a slightly lossy medium
having parameters µ̃(ω) and ε̃c(ω), and may consider the case of free space as a lossless
limit. The half-plane is illuminated by an impressed uniform plane wave with a z-
directed electric field (Figure 4.32). The primary field induces a secondary current on
the conductor and this in turn produces a secondary field. The total field must obey the
boundary conditions at y = 0.

Because the z-directed incident field induces a z-directed secondary current, the fields
may be described entirely in terms of a TM set. The impressed plane wave may be
written as

Ẽi (r, ω) = ẑẼ0(ω)e jk(x cos φ0+y sin φ0)



where φ0 is the angle between the incident wave vector and the x-axis. By (4.223) we
also have

H̃i (r, ω) = Ẽ0(ω)

η
(ŷ cos φ0 − x̂ sin φ0)e

jk(x cos φ0+y sin φ0).

The scattered fields may be written in terms of the Fourier transform solution to the
Helmholtz equation. It is convenient to use the polar coordinate representation (4.403)
to develop the necessary equations. Thus, for the scattered electric field we can write

Ẽ s
z (x, y, ω) =

∫
C

f (ξ, ω)e− jkρ cos(φ±ξ) dξ. (4.415)

By (4.404) the x-component of the magnetic field is

H̃ s
x (x, y, ω) = − 1

jωµ̃

∂ Ẽ s
z

∂y
= − 1

jωµ̃

∫
C

f (ξ, ω)
∂

∂y

(
e− jkx cos ξ e± jky sin ξ

)
= − 1

jωµ̃
(± jk)

∫
C

f (ξ, ω) sin ξe− jkρ cos(φ±ξ) dξ.

To find the angular spectrum f (ξ, ω) and ensure uniqueness of solution, we must apply
the boundary conditions over the entire y = 0 plane. For x > 0 where the conductor
resides, the total tangential electric field must vanish. Setting the sum of the incident
and scattered fields to zero at φ = 0 we have∫

C
f (ξ, ω)e− jkx cos ξ dξ = −Ẽ0e jkx cos φ0 , x > 0. (4.416)

To find the boundary condition for x < 0 we note that by symmetry Ẽ s
z is even about

y = 0 while H̃ s
x , as the y-derivative of Ẽ s

z , is odd. Since no current can be induced in the
y = 0 plane for x < 0, the x-directed scattered magnetic field must be continuous and
thus equal to zero there. Hence our second condition is∫

C
f (ξ, ω) sin ξe− jkx cos ξ dξ = 0, x < 0. (4.417)

Now that we have developed the two equations that describe f (ξ, ω), it is convenient
to return to a rectangular-coordinate-based spectral integral to analyze them. Writing
ξ = cos−1(kx/k) we have

d

dξ
(k cos ξ) = −k sin ξ = dkx

dξ

and

dξ = − dkx

k sin ξ
= − dkx

k
√

1 − cos2 ξ
= − dkx√

k2 − k2
x

.

Upon substitution of these relations, the inversion contour returns to the real kx axis
(which may then be perturbed by j�). Thus, (4.416) and (4.417) may be written as

∞+ j�∫
−∞+ j�

f
(
cos−1 kx

k

)
√

k2 − k2
x

e− jkx x dkx = −Ẽ0e jkx0x , x > 0, (4.418)

∞+ j�∫
−∞+ j�

f

(
cos−1 kx

k

)
e− jkx x dkx = 0, x < 0, (4.419)



Figure 4.33: Integration contour used to evaluate the function F(x).

where kx0 = k cos φ0. Equations (4.418) and (4.419) comprise dual integral equations for
f . We may solve these using an approach called the Wiener–Hopf technique.

We begin by considering (4.419). If we close the integration contour in the upper
half-plane using a semicircle CR of radius R where R → ∞, we find that the contribution
from the semicircle is

lim
R→∞

∫
CR

f

(
cos−1 kx

k

)
e−|x |kxi e j |x |kxr dkx = 0

since x < 0. This assumes that f does not grow exponentially with R. Thus∮
C

f

(
cos−1 kx

k

)
e− jkx x dkx = 0

where C now encloses the portion of the upper half-plane kxi > �. By Morera’s theorem
[110],%citeLePage, the above relation holds if f is regular (contains no singularities
or branch points) in this portion of the upper half-plane. We shall assume this and
investigate the other properties of f that follow from (4.418).

In (4.418) we have an integral equated to an exponential function. To understand the
implications of the equality it is helpful to write the exponential function as an integral
as well. Consider the integral

F(x) = 1

2 jπ

∞+ j�∫
−∞+ j�

h(kx )

h(−kx0)

1

kx + kx0
e− jkx x dkx .

Here h(kx ) is some function regular in the region kxi < �, with h(kx ) → 0 as kx → ∞.
If we choose � so that −kxi > � > −kxi cos θ0 and close the contour with a semicircle in
the lower half-plane (Figure 4.33), then the contribution from the semicircle vanishes for
large radius and thus, by Cauchy’s residue theorem, F(x) = −e jkx0x . Using this (4.418)
can be written as

∞+ j�∫
−∞+ j�

[
f
(
cos−1 kx

k

)
√

k2 − k2
x

− Ẽ0

2 jπ

h(kx )

h(−kx0)

1

kx + kx0

]
e− jkx x dkx = 0.



Setting the integrand to zero and using
√

k2 − k2
x = √

k − kx
√

k + kx , we have

f
(
cos−1 kx

k

)
√

k − kx
(kx + kx0) = Ẽ0

2 jπ

√
k + kx

h(kx )

h(−kx0)
. (4.420)

The left member has a branch point at kx = k while the right member has a branch point
at kx = −k. If we choose the branch cuts as in Figure 4.30 then since f is regular in
the region kxi > � the left side of (4.420) is regular there. Also, since h(kx ) is regular in
the region kxi < �, the right side is regular there. We assert that since the two sides are
equal, both sides must be regular in the entire complex plane. By Liouville’s theorem
[35] if a function is entire (regular in the entire plane) and bounded, then it must be
constant. So

f
(
cos−1 kx

k

)
√

k − kx
(kx + kx0) = Ẽ0

2 jπ

√
k + kx

h(kx )

h(−kx0)
= constant.

We may evaluate the constant by inserting any value of kx . Using kx = −kx0 on the right
we find that

f
(
cos−1 kx

k

)
√

k − kx
(kx + kx0) = Ẽ0

2 jπ

√
k − kx0.

Substituting kx = k cos ξ and kx0 = k cos φ0 we have

f (ξ) = Ẽ0

2 jπ

√
1 − cos φ0

√
1 − cos ξ

cos ξ + cos φ0
.

Since sin(x/2) = √
(1 − cos x)/2, we may also write

f (ξ) = Ẽ0

jπ

sin φ0

2 sin ξ

2

cos ξ + cos φ0
.

Finally, substituting this into (4.415) we have the spectral representation for the field
scattered by a half-plane:

Ẽ s
z (ρ, φ, ω) = Ẽ0(ω)

jπ

∫
C

sin φ0

2 sin ξ

2

cos ξ + cos φ0
e− jkρ cos(φ±ξ) dξ. (4.421)

The scattered field inversion integral in (4.421) may be rewritten in such a way as to
separate geometrical optics (plane-wave) terms from diffraction terms. The diffraction
terms may be written using standard functions (modified Fresnel integrals) and for large
values of ρ appear as cylindrical waves emanating from a line source at the edge of the
half-plane. Interested readers should see James [92] for details.

4.14 Periodic fields and Floquet’s theorem

In several practical situations EM waves interact with, or are radiated by, structures
spatially periodic along one or more directions. Periodic symmetry simplifies field com-
putation, since boundary conditions need only be applied within one period, or cell, of
the structure. Examples of situations that lead to periodic fields include the guiding of
waves in slow-wave structures such as helices and meander lines, the scattering of plane
waves from gratings, and the radiation of waves by antenna arrays. In this section we
will study the representation of fields with infinite periodicity as spatial Fourier series.



4.14.1 Floquet’s theorem

Consider an environment having spatial periodicity along the z-direction. In this envi-
ronment the frequency-domain field may be represented in terms of a periodic function
ψ̃p that obeys

ψ̃p(x, y, z ± mL , ω) = ψ̃p(x, y, z, ω)

where m is an integer and L is the spatial period. According to Floquet’s theorem, if ψ̃

represents some vector component of the field, then the field obeys

ψ̃(x, y, z, ω) = e− jκzψ̃p(x, y, z, ω). (4.422)

Here κ = β − jα is a complex wavenumber describing the phase shift and attenuation of
the field between the various cells of the environment. The phase shift and attenuation
may arise from a wave propagating through a lossy periodic medium (see example below)
or may be impressed by a plane wave as it scatters from a periodic surface, or may be
produced by the excitation of an antenna array by a distributed terminal voltage. It is
also possible to have κ = 0 as when, for example, a periodic antenna array is driven with
all elements in phase.

Because ψ̃p is periodic we may expand it in a Fourier series

ψ̃p(x, y, z, ω) =
∞∑

n=−∞
ψ̃n(x, y, ω)e− j2πnz/L

where the ψ̃n are found by orthogonality:

ψ̃n(x, y, ω) = 1

L

∫ L/2

−L/2
ψ̃p(x, y, z, ω)e j2πnz/L dz.

Substituting this into (4.422), we have a representation for the field as a Fourier series:

ψ̃(x, y, z, ω) =
∞∑

n=−∞
ψ̃n(x, y, ω)e− jκn z

where

κn = β + 2πn/L + jα = βn − jα.

We see that within each cell the field consists of a number of constituents called space
harmonics or Hartree harmonics, each with the property of a propagating or evanescent
wave. Each has phase velocity

vpn = ω

βn
= ω

β + 2πn/L
.

A number of the space harmonics have phase velocities in the +z-direction while the re-
mainder have phase velocities in the −z-direction, depending on the value of β. However,
all of the space harmonics have the same group velocity

vgn = dω

dβ
=

(
dβn

dω

)−1

=
(

dβ

dω

)−1

= vg.

Those space harmonics for which the group and phase velocities are in opposite directions
are referred to as backward waves, and form the basis of operation of microwave tubes
known as “backward wave oscillators.”



Figure 4.34: Geometry of a periodic stratified medium with each cell consisting of two
material layers.

4.14.2 Examples of periodic systems

Plane-wave propagation within a periodically stratified medium. As an exam-
ple of wave propagation in a periodic structure, let us consider a plane wave propagating
within a layered medium consisting of two material layers repeated periodically as shown
in Figure 4.34. Each section of two layers is a cell within the periodic medium, and we
seek an expression for the propagation constant within the cells, κ.

We developed the necessary tools for studying plane waves within an arbitrary layered
medium in § 4.11.5, and can apply them to the case of a periodic medium. In equations
(4.305) and (4.306) we have expressions for the wave amplitudes in any region in terms
of the amplitudes in the region immediately preceding it. We may write these in matrix
form by eliminating one of the variables an or bn from each equation:

[
T (n)

11 T (n)
12

T (n)
21 T (n)

22

] [
an+1

bn+1

]
=

[
an

bn

]
(4.423)

where

T (n)
11 = 1

2

Zn + Zn−1

Zn
P̃−1

n ,

T (n)
12 = 1

2

Zn − Zn−1

Zn
P̃n,

T (n)
21 = 1

2

Zn − Zn−1

Zn
P̃−1

n ,

T (n)
22 = 1

2

Zn + Zn−1

Zn
P̃n.

Here Zn represents Zn⊥ for perpendicular polarization and Zn‖ for parallel polariza-
tion. The matrix entries are often called transmission parameters, and are similar to
the parameters used to describe microwave networks, except that in network theory the
wave amplitudes are often normalized using the wave impedances.We may use these



parameters to describe the cascaded system of two layers:[
T (n)

11 T (n)
12

T (n)
21 T (n)

22

] [
T (n+1)

11 T (n+1)
12

T (n+1)
21 T (n+1)

22

] [
an+2

bn+2

]
=

[
an

bn

]
.

Since for a periodic layered medium the wave amplitudes should obey (4.422), we have[
T11 T12

T21 T22

] [
an+2

bn+2

]
=

[
an

bn

]
= e jκL

[
an+2

bn+2

]
(4.424)

where L = �n + �n+1 is the period of the structure and[
T11 T12

T21 T22

]
=

[
T (n)

11 T (n)
12

T (n)
21 T (n)

22

] [
T (n+1)

11 T (n+1)
12

T (n+1)
21 T (n+1)

22

]
.

Equation (4.424) is an eigenvalue equation for κ and can be rewritten as[
T11 − e jκL T12

T21 T22 − e jκL

] [
an+2

bn+2

]
=

[
0
0

]
.

This equation only has solutions when the determinant of the matrix vanishes. Expansion
of the determinant gives

T11T22 − T12T21 − e jκL(T11 + T22) + e j2κL = 0. (4.425)

The first two terms are merely

T11T22 − T12T21 =
∣∣∣∣ T11 T12

T21 T22

∣∣∣∣ =
∣∣∣∣ T (n)

11 T (n)
12

T (n)
21 T (n)

22

∣∣∣∣
∣∣∣∣ T (n+1)

11 T (n+1)
12

T (n+1)
21 T (n+1)

22

∣∣∣∣ .
Since we can show that ∣∣∣∣ T (n)

11 T (n)
12

T (n)
21 T (n)

22

∣∣∣∣ = Zn−1

Zn
,

we have

T11T22 − T12T21 = Zn−1

Zn

Zn

Zn+1
= 1

where we have used Zn−1 = Zn+1 because of the periodicity of the medium. With this,
(4.425) becomes

cos κL = T11 + T22

2
.

Finally, computing the matrix product and simplifying to find T11 + T22, we have

cos κL = cos(kz,n�n) cos(kk,n−1�n−1) −
− 1

2

(
Zn−1

Zn
+ Zn

Zn−1

)
sin(kz,n�n) sin(kz,n−1�n−1) (4.426)

or equivalently

cos κL = 1

4

(Zn−1 + Zn)
2

Zn Zn−1
cos(kz,n�n + kz,n−1�n−1) −

− 1

4

(Zn−1 − Zn)
2

Zn Zn−1
cos(kz,n�n − kz,n−1�n−1). (4.427)



Note that both ±κ satisfy this equation, allowing waves with phase front propagation in
both the ±z-directions.

We see in (4.426) that even for lossless materials certain values of ω result in cos κL > 1,
causing κL to be imaginary and producing evanescent waves. We refer to the frequency
ranges over which cos κL > 1 as stopbands, and those over which cos κL < 1 as passbands.
This terminology is used in filter analysis and, indeed, waves propagating in periodic
media experience effects similar to those experienced by signals passing through filters.

Field produced by an infinite array of line sources. As a second example, consider
an infinite number of z-directed line sources within a homogeneous medium of complex
permittivity ε̃c(ω) and permeability µ̃(ω), aligned along the x-axis with separation L
such that

J̃(r, ω) =
∞∑

n=−∞
ẑ Ĩnδ(y)δ(x − nL).

The current on each element is allowed to show a progressive phase shift and attenua-
tion. (Such progression may result from a particular method of driving primary currents
on successive elements, or, if the currents are secondary, from their excitation by an
impressed field such as a plane wave.) Thus we write

Ĩn = Ĩ0e− jκnL (4.428)

where κ is a complex constant.
We may represent the field produced by the source array as a superposition of the fields

of individual line sources found earlier. In particular we may use the Hankel function
representation (4.345) or the Fourier transform representation (4.407). Using the latter
we have

Ẽz(x, y, ω) =
∞∑

n=−∞
e− jκnL


−ωµ̃ Ĩ0(ω)

2π

∞+ j�∫
−∞+ j�

e− jky |y|

2ky
e− jkx (x−nL) dkx


 .

Interchanging the order of summation and integration we have

Ẽz(x, y, ω) = −ωµ̃ Ĩ0(ω)

2π

∞+ j�∫
−∞+ j�

e− jky |y|

2ky

[ ∞∑
n=−∞

e jn(kx −κ)L

]
e− jkx x dkx . (4.429)

We can rewrite the sum in this expression using Poisson’s sum formula [142].
∞∑

n=−∞
f (x − nD) = 1

D

∞∑
n=−∞

F(nk0)e
jnk0x ,

where k0 = 2π/D. Letting f (x) = δ(x − x0) in that expression we have
∞∑

n=−∞
δ

(
x − x0 − n

2π

L

)
= L

2π

∞∑
n=−∞

e jnL(x−x0).

Substituting this into (4.429) we have

Ẽz(x, y, ω) = −ωµ̃ Ĩ0(ω)

2π

∞+ j�∫
−∞+ j�

e− jky |y|

2ky

[ ∞∑
n=−∞

2π

L
δ

(
kx − κ − n

2π

L

)]
e− jkx x dkx .



Carrying out the integral we replace kx with κn = κ + 2nπ/L, giving

Ẽz(x, y, ω) = −ωµ̃ Ĩ0(ω)

∞∑
n=−∞

e− jky,n |y|e− jκn x

2Lky,n

= − jωµ̃ Ĩ0(ω)G̃∞(x, y|0, 0, ω) (4.430)

where ky,n = √
k2 − κ2

n , and where

G̃∞(x, y|x ′, y′, ω) =
∞∑

n=−∞

e− jky,n |y−y′|e− jκn(x−x ′)

2 j Lky,n
(4.431)

is called the periodic Green’s function.
We may also find the field produced by an infinite array of line sources in terms of

the Hankel function representation of a single line source (4.345). Using the current
representation (4.428) and summing over the sources, we obtain

Ẽz(ρ, ω) = −ωµ̃

4

∞∑
n=−∞

Ĩ0(ω)e− jκnL H (2)
0 (k|ρ − ρn|) = − jωµ̃ Ĩ0(ω)G̃∞(x, y|0, 0, ω)

where

|ρ − ρn| = |ŷy + x̂(x − nL)| =
√

y2 + (x − nL)2

and where G̃∞ is an alternative form of the periodic Green’s function

G̃∞(x, y|x ′, y′, ω) = 1

4 j

∞∑
n=−∞

e− jκnL H (2)
0

(
k
√

(y − y′)2 + (x − nL − x ′)2
)

. (4.432)

The periodic Green’s functions (4.431) and (4.432) produce identical results, but are
each appropriate for certain applications. For example, (4.431) is useful for situations
in which boundary conditions at constant values of y are to be applied. Both forms are
difficult to compute under certain circumstances, and variants of these forms have been
introduced in the literature [203].

4.15 Problems

4.1 Beginning with the Kronig–Kramers formulas (4.35)–(4.36), use the even–odd be-
havior of the real and imaginary parts of ε̃c to derive the alternative relations (4.37)–
(4.38).

4.2 Consider the complex permittivity dyadic of a magnetized plasma given by (4.88)–
(4.91). Show that we may decompose [ ˜̄εc] as the sum of two matrices

[ ˜̄εc] = [ ˜̄ε] + [ ˜̄σ]

jω

where [ ˜̄ε] and [ ˜̄σ] are hermitian.



4.3 Show that the Debye permittivity formulas

ε̃′(ω) − ε∞ = εs − ε∞
1 + ω2τ 2

, ε̃′′(ω) = −ωτ(εs − ε∞)

1 + ω2τ 2
,

obey the Kronig–Kramers relations.

4.4 The frequency-domain duality transformations for the constitutive parameters of
an anisotropic medium are given in (4.197). Determine the analogous transformations
for the constitutive parameters of a bianisotropic medium.

4.5 Establish the plane-wave identities (B.76)–(B.79) by direct differentiation in rect-
angular coordinates.

4.6 Assume that sea water has the parameters ε = 80ε0, µ = µ0, σ = 4 S/m, and that
these parameters are frequency-independent. Plot the ω–β diagram for a plane wave
propagating in this medium and compare to Figure 4.12. Describe the dispersion: is it
normal or anomalous? Also plot the phase and group velocities and compare to Figure
4.13. How does the relaxation phenomenon affect the velocity of a wave in this medium?

4.7 Consider a uniform plane wave incident at angle θi onto an interface separating
two lossless media (Figure 4.18). Assuming perpendicular polarization, write the explicit
forms of the total fields in each region under the condition θi < θc, where θc is the critical
angle. Show that the total field in region 1 can be decomposed into a portion that is
a pure standing wave in the z-direction and a portion that is a pure traveling wave in
the z-direction. Also show that the field in region 2 is a pure traveling wave. Repeat for
parallel polarization.

4.8 Consider a uniform plane wave incident at angle θi onto an interface separating
two lossless media (Figure 4.18). Assuming perpendicular polarization, use the total
fields from Problem 4.7 to show that under the condition θi < θc the normal component
of the time-average Poynting vector is continuous across the interface. Here θc is the
critical angle. Repeat for parallel polarization.

4.9 Consider a uniform plane wave incident at angle θi onto an interface separating
two lossless media (Figure 4.18). Assuming perpendicular polarization, write the explicit
forms of the total fields in each region under the condition θi > θc, where θc is the critical
angle. Show that the field in region 1 is a pure standing wave in the z-direction and that
the field in region 2 is an evanescent wave. Repeat for parallel polarization.

4.10 Consider a uniform plane wave incident at angle θi onto an interface separating
two lossless media (Figure 4.18). Assuming perpendicular polarization, use the fields
from Problem 4.9 to show that under the condition θi > θc the field in region 1 carries no
time-average power in the z-direction, while the field in region 2 carries no time-average
power. Here θc is the critical angle. Repeat for parallel polarization.

4.11 Consider a uniform plane wave incident at angle θi from a lossless material onto
a good conductor (Figure 4.18). The conductor has permittivity ε0, permeability µ0,
and conductivity σ . Show that the transmission angle is θt ≈ 0 and thus the wave in
the conductor propagates normal to the interface. Also show that for perpendicular
polarization the current per unit width induced by the wave in region 2 is

K̃(ω) = ŷσ T̃⊥(ω)Ẽ⊥(ω)
1 − j

2β2



and that this is identical to the tangential magnetic field at the surface:

K̃(ω) = −ẑ × H̃t |z=0.

If we define the surface impedance Zs(ω) of the conductor as the ratio of tangential
electric and magnetic fields at the interface, show that

Zs(ω) = 1 + j

σδ
= Rs(ω) + j Xs(ω).

Then show that the time-average power flux entering region 2 for a monochromatic wave
of frequency ω̌ is simply

Sav,2 = ẑ
1

2
(Ǩ · Ǩ∗)Rs .

Note that the since the surface impedance is also the ratio of tangential electric field to
induced current per unit width in region 2, it is also called the internal impedance.

4.12 Consider a parallel-polarized plane wave obliquely incident from a lossless medium
onto a multi-layered material as shown in Figure 4.20. Writing the fields in each region
n, 0 ≤ n ≤ N − 1, as H̃‖n = H̃i

‖n + H̃r
‖n where

H̃i
‖n = ŷan+1e− jkx,n x e− jkz,n(z−zn+1),

H̃r
‖n = −ŷbn+1e− jkx,n x e+ jkz,n(z−zn+1),

and the field in region N as

H̃‖N = ŷaN+1e− jkx,N x e− jkz,N (z−zN ),

apply the boundary conditions to solve for the wave amplitudes an+1 and bn in terms of
a global reflection coefficient R̃n, an interfacial reflection coefficient �n‖, and the wave
amplitude an. Compare your results to those found for perpendicular polarization (4.313)
and (4.314).

4.13 Consider a slab of lossless material with permittivity ε = εrε0 and permeability
µ = µrµ0 located in free space between the planes z = z1 and z = z2. A right-hand
circularly-polarized plane wave is incident on the slab at angle θi as shown in Figure
4.22. Determine the conditions (if any) under which the reflected wave is: (a) linearly
polarized; (b) right-hand or left-hand circularly polarized; (c) right-hand or left-hand
elliptically polarized. Repeat for the transmitted wave.

4.14 Consider a slab of lossless material with permittivity ε = εrε0 and permeability µ0

located in free space between the planes z = z1 and z = z2. A transient, perpendicularly-
polarized plane wave is obliquely incident on the slab as shown in Figure 4.22. If the
temporal waveform of the incident wave is Ei

⊥(t), find the transient reflected field in region
0 and the transient transmitted field in region 2 in terms of an infinite superposition of
amplitude-scaled, time-shifted versions of the incident wave. Interpret each of the first
four terms in the reflected and transmitted fields in terms of multiple reflection within
the slab.

4.15 Consider a free-space gap embedded between the planes z = z1 and z = z2

in an infinite, lossless dielectric medium of permittivity εrε0 and permeability µ0. A
perpendicularly-polarized plane wave is incident on the gap at angle θi > θc as shown



in Figure 4.22. Here θc is the critical angle for a plane wave incident on the single
interface between a lossless dielectric of permittivity εrε0 and free space. Apply the
boundary conditions and find the fields in each of the three regions. Find the time-
average Poynting vector in region 0 at z = z1, in region 1 at z = z2, and in region 2 at
z = z2. Is conservation of energy obeyed?

4.16 A uniform ferrite material has scalar permittivity ε̃ = ε and dyadic permeability
˜̄µ. Assume the ferrite is magnetized along the z-direction and has losses so that its
permeability dyadic is given by (4.118). Show that the wave equation for a TEM plane
wave of the form

H̃(r, ω) = H̃0(ω)e− jkz z

is

k2
z H̃0 = ω2ε ˜̄µ · H̃0

where kz = β − jα. Find explicit formulas for the two solutions kz± = β± − jα±. Show
that when the damping parameter α � 1, near resonance α+ � α−.

4.17 A time-harmonic, TE-polarized, uniform cylindrical wave propagates in a lossy
medium. Assuming |kρ| � 1, show that the power per unit length passing through a
cylinder of radius ρ is given by

Pav/ l = Re
{

Z∗
T E

} |Ȟz0|2 e−2αρ

8|k| .

If the material is lossless, show that the power per unit length passing through a cylinder
is independent of the radius and is given by

Pav/ l = η|Ȟz0|2
8k

.

4.18 A TM-polarized plane wave is incident on a cylinder made from a perfect electric
conductor such that the current induced on the cylinder is given by (4.365). When the
cylinder radius is large compared to the wavelength of the incident wave, we may ap-
proximate the current using the principle of physical optics. This states that the induced
current is zero in the “shadow region” where the cylinder is not directly illuminated by
the incident wave. Elsewhere, in the “illuminated region,” the induced current is given
by

J̃s = 2n̂ × H̃i .

Plot the current from (4.365) for various values of k0a and compare to the current com-
puted from physical optics. How large must k0a be for the shadowing effect to be signif-
icant?

4.19 The radar cross section of a two-dimensional object illuminated by a TM-polarized
plane wave is defined by

σ2−D(ω, φ) = lim
ρ→∞ 2πρ

|Ẽ s
z |2

|Ẽ i
z|2

.

This quantity has units of meters and is sometimes called the “scattering width” of the
object. Using the asymptotic form of the Hankel function, determine the formula for
the radar cross section of a TM-illuminated cylinder made of perfect electric conductor.



Show that when the cylinder radius is small compared to a wavelength the radar cross
section may be approximated as

σ2−D(ω, φ) = a
π2

k0a

1

ln2(0.89k0a)

and is thus independent of the observation angle φ.

4.20 A TE-polarized plane wave is incident on a material cylinder with complex per-
mittivity ε̃c(ω) and permeability µ̃(ω), aligned along the z-axis in free space. Apply the
boundary conditions on the surface of the cylinder and determine the total field both
internal and external to the cylinder. Show that as σ̃ → ∞ the magnetic field external
to the cylinder reduces to (4.366).

4.21 A TM-polarized plane wave is incident on a PEC cylinder of radius a aligned
along the z-axis in free space. The cylinder is coated with a material layer of radius b
with complex permittivity ε̃c(ω) and permeability µ̃(ω). Apply the boundary conditions
on the surface of the cylinder and across the interface between the material and free
space and determine the total field both internal and external to the material layer.

4.22 A PEC cylinder of radius a, aligned along the z-axis in free space, is illuminated
by a z-directed electric line source Ĩ (ω) located at (ρ0, φ0). Expand the fields in the
regions a < ρ < ρ0 and ρ > ρ0 in terms of nonuniform cylindrical waves, and apply the
boundary conditions at ρ = a and ρ = ρ0 to determine the fields everywhere.

4.23 Repeat Problem 4.22 for the case of a cylinder illuminated by a magnetic line
source.

4.24 Assuming

f (ξ, ω) = k

2π
A(kx , ω) sin ξ,

use the relations

cos z = cos(u + jv) = cos u cosh v − j sin u sinh v,

sin z = sin(u + jv) = sin u cosh v + j cos u sinh v,

to show that the contour in Figure 4.29 provides identical values of the integrand in

ψ̃(x, y, ω) =
∫

C
f (ξ, ω)e− jkρ cos(φ±ξ) dξ

as does the contour [−∞ + j�, ∞ + j�] in

ψ̃(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A(kx , ω)e− jkx x e∓ jky y dkx . (4.433)

4.25 Verify (4.409) by writing the TE fields in terms of Fourier transforms and apply-
ing boundary conditions.



4.26 Consider a z-directed electric line source Ĩ (ω) located on the y-axis at y = h.
The region y < 0 contains a perfect electric conductor. Write the fields in the regions
0 < y < h and y > h in terms of the Fourier transform solution to the homogeneous
Helmholtz equation. Note that in the region 0 < y < h terms representing waves traveling
in both the ±y-directions are needed, while in the region y > h only terms traveling in
the y-direction are needed. Apply the boundary conditions at y = 0, h to determine the
spectral amplitudes. Show that the total field may be decomposed into an impressed
term identical to (4.410) and a scattered term identical to (4.413).

4.27 Consider a z-directed magnetic line source Ĩm(ω) located on the y-axis at y = h.
The region y > 0 contains a material with parameters ε̃c

1(ω) and µ̃1(ω), while the region
y < 0 contains a material with parameters ε̃c

2(ω) and µ̃2(ω). Using the Fourier transform
solution to the Helmholtz equation, write the total field for y > 0 as the sum of an
impressed field of the magnetic line source and a scattered field, and write the field for
y < 0 as a scattered field. Apply the boundary conditions at y = 0 to determine the
spectral amplitudes. Can you interpret the scattered fields in terms of images of the line
source?

4.28 Consider a TE-polarized plane wave incident on a PEC half-plane located at
y = 0, x > 0. If the incident magnetic field is given by

H̃i (r, ω) = ẑH̃0(ω)e jk(x cos φ0+y sin φ0),

determine the appropriate boundary conditions on the fields at y = 0. Solve for the
scattered magnetic field using the Fourier transform approach.

4.29 Consider the layered medium of Figure 4.34 with alternating layers of free space
and perfect dielectric. The dielectric layer has permittivity 4ε0 and thickness � while
the free space layer has thickness 2�. Assuming a normally-incident plane wave, solve
for k0� in terms of κ�, and plot k0 versus κ, identifying the stop and pass bands. This
type of ω–β plot for a periodic medium is named a Brillouin diagram, after L. Brillouin
who investigated energy bands in periodic crystal lattices [23].

4.30 Consider a periodic layered medium as in Figure 4.34, but with each cell con-
sisting of three different layers. Derive an eigenvalue equation similar to (4.427) for the
propagation constant.
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