
Chapter 5

Field decompositions and the EM
potentials

5.1 Spatial symmetry decompositions

Spatial symmetry can often be exploited to solve electromagnetics problems. For
analytic solutions, symmetry can be used to reduce the number of boundary conditions
that must be applied. For computer solutions the storage requirements can be reduced.
Typical symmetries include rotation about a point or axis, and reflection through a
plane, along an axis, or through a point. We shall consider the common case of reflection
through a plane. Reflections through the origin and through an axis will be treated in
the exercises.

Note that spatial symmetry decompositions may be applied even if the sources and
fields possess no spatial symmetry. As long as the boundaries and material media are
symmetric, the sources and fields may be decomposed into constituents that individually
mimic the symmetry of the environment.

5.1.1 Planar field symmetry

Consider a region of space consisting of linear, isotropic, time-invariant media having
material parameters ε(r), µ(r), and σ(r). The electromagnetic fields (E, H) within this
region are related to their impressed sources (Ji , Ji

m) and their secondary sources Js = σE
through Maxwell’s curl equations:
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We assume the material constants are symmetric about some plane, say z = 0. Then

ε(x, y, −z) = ε(x, y, z),

µ(x, y, −z) = µ(x, y, z),

σ (x, y, −z) = σ(x, y, z).

That is, with respect to z the material constants are even functions. We further assume
that the boundaries and boundary conditions, which guarantee uniqueness of solution, are
also symmetric about the z = 0 plane. Then we define two cases of reflection symmetry.

Conditions for even symmetry. We claim that if the sources obey
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then the fields obey

Ex (x, y, z) = Ex (x, y, −z), Hx (x, y, z) = −Hx (x, y, −z),

Ey(x, y, z) = Ey(x, y, −z), Hy(x, y, z) = −Hy(x, y, −z),

Ez(x, y, z) = −Ez(x, y, −z), Hz(x, y, z) = Hz(x, y, −z).

The electric field shares the symmetry of the electric source: components parallel to the
z = 0 plane are even in z, and the component perpendicular is odd. The magnetic field
shares the symmetry of the magnetic source: components parallel to the z = 0 plane are
odd in z, and the component perpendicular is even.

We can verify our claim by showing that the symmetric fields and sources obey
Maxwell’s equations. At an arbitrary point z = a > 0 equation (5.1) requires
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So this component of Faraday’s law is satisfied. With similar reasoning we can show that
the symmetric sources and fields satisfy (5.2)–(5.6) as well.



Conditions for odd symmetry. We can also show that if the sources obey
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then the fields obey

Ex (x, y, z) = −Ei
x (x, y, −z), Hx (x, y, z) = Hx (x, y, −z),

Ey(x, y, z) = −Ey(x, y, −z), Hy(x, y, z) = Hy(x, y, −z),

Ez(x, y, z) = Ez(x, y, −z), Hz(x, y, z) = −Hz(x, y, −z).

Again the electric field has the same symmetry as the electric source. However, in this
case components parallel to the z = 0 plane are odd in z and the component perpendicular
is even. Similarly, the magnetic field has the same symmetry as the magnetic source. Here
components parallel to the z = 0 plane are even in z and the component perpendicular
is odd.

Field symmetries and the concept of source images. In the case of odd symmetry
the electric field parallel to the z = 0 plane is an odd function of z. If we assume that
the field is also continuous across this plane, then the electric field tangential to z = 0
must vanish: the condition required at the surface of a perfect electric conductor (PEC).
We may regard the problem of sources above a perfect conductor in the z = 0 plane as
equivalent to the problem of sources odd about this plane, as long as the sources in both
cases are identical for z > 0. We refer to the source in the region z < 0 as the image of
the source in the region z > 0. Thus the image source (JI , JI

m) obeys
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That is, parallel components of electric current image in the opposite direction, and
the perpendicular component images in the same direction; parallel components of the
magnetic current image in the same direction, while the perpendicular component images
in the opposite direction.

In the case of even symmetry, the magnetic field parallel to the z = 0 plane is odd,
and thus the magnetic field tangential to the z = 0 plane must be zero. We therefore
have an equivalence between the problem of a source above a plane of perfect magnetic
conductor (PMC) and the problem of sources even about that plane. In this case we
identify image sources that obey
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Parallel components of electric current image in the same direction, and the perpendicular
component images in the opposite direction; parallel components of magnetic current
image in the opposite direction, and the perpendicular component images in the same
direction.

In the case of odd symmetry, we sometimes say that an “electric wall” exists at z = 0.
The term “magnetic wall” can be used in the case of even symmetry. These terms are
particularly common in the description of waveguide fields.



Symmetric field decomposition. Field symmetries may be applied to arbitrary
source distributions through a symmetry decomposition of the sources and fields. Con-
sider the general impressed source distributions (Ji , Ji

m). The source set

J ie
x (x, y, z) = 1

2

[
J i

x (x, y, z) + J i
x (x, y, −z)

]
,

J ie
y (x, y, z) = 1

2

[
J i

y(x, y, z) + J i
y(x, y, −z)

]
,

J ie
z (x, y, z) = 1

2

[
J i

z (x, y, z) − J i
z (x, y, −z)

]
,

J ie
mx (x, y, z) = 1

2

[
J i

mx (x, y, z) − J i
mx (x, y, −z)

]
,

J ie
my(x, y, z) = 1

2

[
J i

my(x, y, z) − J i
my(x, y, −z)

]
,

J ie
mz(x, y, z) = 1

2

[
J i

mz(x, y, z) + J i
mz(x, y, −z)

]
,

is clearly of even symmetric type while the source set
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is of the odd symmetric type. Since Ji = Jie + Jio and Ji
m = Jie

m + Jio
m , we can decompose

any source into constituents having, respectively, even and odd symmetry with respect
to a plane. The source with even symmetry produces an even field set, while the source
with odd symmetry produces an odd field set. The total field is the sum of the fields
from each field set.

Planar symmetry for frequency-domain fields. The symmetry conditions intro-
duced above for the time-domain fields also hold for the frequency-domain fields. Because
both the conductivity and permittivity must be even functions, we combine their effects
and require the complex permittivity to be even. Otherwise the field symmetries and
source decompositions are identical.

Example of symmetry decomposition: line source between conducting planes.
Consider a z-directed electric line source Ĩ0 located at y = h, x = 0 between conducting
planes at y = ±d, d > h. The material between the plates has permeability µ̃(ω) and
complex permittivity ε̃c(ω). We decompose the source into one of even symmetric type
with line sources Ĩ0/2 located at y = ±h, and one of odd symmetric type with a line



source Ĩ0/2 located at y = h and a line source − Ĩ0/2 located at y = −h. We solve each
of these problems by exploiting the appropriate symmetry, and superpose the results to
find the solution to the original problem.

For the even-symmetric case, we begin by using (4.407) to represent the impressed
field:
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For y > h this becomes
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The secondary (scattered) field consists of waves propagating in both the ±y-directions:
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The impressed field is even about y = 0. Since the total field Ez = Ei
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z must be
even in y (Ez is parallel to the plane y = 0), the scattered field must also be even. Thus,
A+ = A− and the total field is for y > h
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Now the electric field must obey the boundary condition Ẽz = 0 at y = ±d. However,
since Ẽz is even the satisfaction of this condition at y = d automatically implies its
satisfaction at y = −d. So we set
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The total field for this case is
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For the odd-symmetric case the impressed field is
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which for y > h is
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The scattered field has the form of (5.7) but must be odd. Thus A+ = −A− and the
total field for y > h is
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Setting Ẽz = 0 at z = d and solving for A+ we find that the total field for this case is
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Adding the fields for the two cases we find that
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which is a superposition of impressed and scattered fields.

5.2 Solenoidal–lamellar decomposition

We now discuss the decomposition of a general vector field into a lamellar component
having zero curl and a solenoidal component having zero divergence. This is known as a
Helmholtz decomposition. If V is any vector field then we wish to write

V = Vs + Vl , (5.9)

where Vs and Vl are the solenoidal and lamellar components of V. Formulas expressing
these components in terms of V are obtained as follows. We first write Vs in terms of a
“vector potential” A as

Vs = ∇ × A. (5.10)

This is possible by virtue of (B.49). Similarly, we write Vl in terms of a “scalar potential”
φ as

Vl = ∇φ. (5.11)



To obtain a formula for Vl we take the divergence of (5.9) and use (5.11) to get

∇ · V = ∇ · Vl = ∇ · ∇φ = ∇2φ.

The result,

∇2φ = ∇ · V,

may be regarded as Poisson’s equation for the unknown φ. This equation is solved in
Chapter 3. By (3.61) we have

φ(r) = −
∫

V

∇′ · V(r′)
4π R

dV ′,

where R = |r − r′|, and we have
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Similarly, a formula for Vs can be obtained by taking the curl of (5.9) to get

∇ × V = ∇ × Vs .

Substituting (5.10) we have

∇ × V = ∇ × (∇ × A) = ∇(∇ · A) − ∇2A.

We may choose any value we wish for ∇ · A, since this does not alter Vs = ∇ × A.
(We discuss such “gauge transformations” in greater detail later in this chapter.) With
∇ · A = 0 we obtain

−∇ × V = ∇2A.

This is Poisson’s equation for each rectangular component of A; therefore
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Summing the results we obtain the Helmholtz decomposition
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Identification of the electromagnetic potentials. Let us write the electromagnetic
fields as a general superposition of solenoidal and lamellar components:

E = ∇ × AE + ∇φE , (5.14)
B = ∇ × AB + ∇φB . (5.15)

One possible form of the potentials AE , AB , φE , and φB appears in (5.13). However,
because E and B are related by Maxwell’s equations, the potentials should be related to
the sources. We can determine the explicit relationship by substituting (5.14) and (5.15)



into Ampere’s and Faraday’s laws. It is most convenient to analyze the relationships
using superposition of the cases for which Jm = 0 and J = 0.

With Jm = 0 Faraday’s law is

∇ × E = −∂B
∂t

. (5.16)

Since ∇ × E is solenoidal, B must be solenoidal and thus ∇φB = 0. This implies
that φB = 0, which is equivalent to the auxiliary Maxwell equation ∇ · B = 0. Now,
substitution of (5.14) and (5.15) into (5.16) gives

∇ × [∇ × AE + ∇φE ] = − ∂

∂t
[∇ × AB] .

Using ∇ × (∇φE ) = 0 and combining the terms we get

∇ ×
[
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]
= 0,
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∇ × AE = −∂AB
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+ ∇ξ.

Substitution into (5.14) gives

E = −∂AB

∂t
+ [∇φE + ∇ξ ] .

Combining the two gradient functions together, we see that we can write both E and B
in terms of two potentials:

E = −∂Ae

∂t
− ∇φe, (5.17)

B = ∇ × Ae, (5.18)

where the negative sign on the gradient term is introduced by convention.

Gauge transformations and the Coulomb gauge. We pay a price for the simplicity
of using only two potentials to represent E and B. While ∇ × Ae is definitely solenoidal,
Ae itself may not be: because of this (5.17) may not be a decomposition into solenoidal
and lamellar components. However, a corollary of the Helmholtz theorem states that a
vector field is uniquely specified only when both its curl and divergence are specified. Here
there is an ambiguity in the representation of E and B; we may remove this ambiguity
and define Ae uniquely by requiring that

∇ · Ae = 0. (5.19)

Then Ae is solenoidal and the decomposition (5.17) is solenoidal–lamellar. This require-
ment on Ae is called the Coulomb gauge.

The ambiguity implied by the non-uniqueness of ∇ · Ae can also be expressed by the
observation that a transformation of the type

Ae → Ae + ∇�, (5.20)

φe → φe − ∂�

∂t
, (5.21)



leaves the expressions (5.17) and (5.18) unchanged. This is called a gauge transformation,
and the choice of a certain � alters the specification of ∇ · Ae. Thus we may begin with
the Coulomb gauge as our baseline, and allow any alteration of Ae according to (5.20)
as long as we augment ∇ · Ae by ∇ · ∇� = ∇2�.

Once ∇ · Ae is specified, the relationship between the potentials and the current J
can be found by substitution of (5.17) and (5.18) into Ampere’s law. At this point
we assume media that are linear, homogeneous, isotropic, and described by the time-
invariant parameters µ, ε, and σ . Writing J = Ji + σE we have
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Taking the divergence of both sides of (5.22) we get
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Then, by substitution from the continuity equation and use of (5.19) along with ∇·∇φe =
∇2φe we obtain

∂
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For a lossless medium this reduces to

∇2φe = −ρi/ε (5.24)

and we have
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We can obtain an equation for Ae by expanding the left-hand side of (5.22) to get
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under the Coulomb gauge. For lossless media this becomes
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∇φe. (5.27)

Observe that the left-hand side of (5.27) is solenoidal (since the Laplacian term came
from the curl-curl, and ∇ · Ae = 0), while the right-hand side contains a general vector
field Ji and a lamellar term. We might expect the ∇φe term to cancel the lamellar
portion of Ji , and this does happen [91]. By (5.12) and the continuity equation we can
write the lamellar component of the current as

Ji
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Thus (5.27) becomes
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∂t2
= −µJi

s . (5.28)



Therefore the vector potential Ae, which describes the solenoidal portion of both E and
B, is found from just the solenoidal portion of the current. On the other hand, the scalar
potential, which describes the lamellar portion of E, is found from ρi which arises from
∇ · Ji , the lamellar portion of the current.

From the perspective of field computation, we see that the introduction of potential
functions has reoriented the solution process from dealing with two coupled first-order
partial differential equations (Maxwell’s equations), to two uncoupled second-order equa-
tions (the potential equations (5.24) and (5.28)). The decoupling of the equations is often
worth the added complexity of dealing with potentials, and, in fact, is the solution tech-
nique of choice in such areas as radiation and guided waves. It is worth pausing for
a moment to examine the form of these equations. We see that the scalar potential
obeys Poisson’s equation with the solution (5.25), while the vector potential obeys the
wave equation. As a wave, the vector potential must propagate away from the source
with finite velocity. However, the solution for the scalar potential (5.25) shows no such
behavior. In fact, any change to the charge distribution instantaneously permeates all
of space. This apparent violation of Einstein’s postulate shows that we must be careful
when interpreting the physical meaning of the potentials. Once the computations (5.17)
and (5.18) are undertaken, we find that both E and B behave as waves, and thus propa-
gate at finite velocity. Mathematically, the conundrum can be resolved by realizing that
individually the solenoidal and lamellar components of current must occupy all of space,
even if their sum, the actual current Ji , is localized [91].

The Lorentz gauge. A different choice of gauge condition can allow both the vector
and scalar potentials to act as waves. In this case E may be written as a sum of two
terms: one purely solenoidal, and the other a superposition of lamellar and solenoidal
parts.

Let us examine the effect of choosing the Lorentz gauge

∇ · Ae = −µε
∂φe

∂t
− µσφe. (5.29)

Substituting this expression into (5.26) we find that the gradient terms cancel, giving

∇2Ae − µσ
∂Ae

∂t
− µε

∂2Ae

∂t2
= −µJi . (5.30)

For lossless media

∇2Ae − µε
∂2Ae

∂t2
= −µJi , (5.31)

and (5.23) becomes

∇2φe − µε
∂2φe

∂t2
= −ρi

ε
. (5.32)

For lossy media we have obtained a second-order differential equation for Ae, but φe

must be found through the somewhat cumbersome relation (5.29). For lossless media
the coupled Maxwell equations have been decoupled into two second-order equations, one
involving Ae and one involving φe. Both (5.31) and (5.32) are wave equations, with Ji

as the source for Ae and ρi as the source for φe. Thus the expected finite-velocity wave
nature of the electromagnetic fields is also manifested in each of the potential functions.
The drawback is that, even though we can still use (5.17) and (5.18), the expression for E
is no longer a decomposition into solenoidal and lamellar components. Nevertheless, the
choice of the Lorentz gauge is very popular in the study of radiated and guided waves.



The Hertzian potentials. With a little manipulation and the introduction of a new
notation, we can maintain the wave nature of the potential functions and still provide a
decomposition into purely lamellar and solenoidal components. In this analysis we shall
assume lossless media only.

When we chose the Lorentz gauge to remove the arbitrariness of the divergence of the
vector potential, we established a relationship between Ae and φe. Thus we should be
able to write both the electric and magnetic fields in terms of a single potential function.
From the Lorentz gauge we can write φe as

φe(r, t) = − 1

µε

∫ t

−∞
∇ · Ae(r, t) dt.

By (5.17) and (5.18) we can thus write the EM fields as

E = 1

µε
∇

∫ t

−∞
∇ · Aedt − ∂Ae

∂t
, (5.33)

B = ∇ × Ae. (5.34)

The integro-differential representation of E in (5.33) is somewhat clumsy in appear-
ance. We can make it easier to manipulate by defining the Hertzian potential

Πe = 1

µε

∫ t

−∞
Ae dt.

In differential form

Ae = µε
∂Πe

dt
. (5.35)

With this, (5.33) and (5.34) become

E = ∇(∇ · Πe) − µε
∂2

∂t2
Πe, (5.36)

B = µε∇ × ∂Πe

∂t
. (5.37)

An equation for Πe in terms of the source current can be found by substituting (5.35)
into (5.31):

µε
∂

∂t

(
∇2Πe − µε

∂2

∂t2
Πe

)
= −µJi .

Let us define

Ji = ∂Pi

∂t
. (5.38)

For general impressed current sources (5.38) is just a convenient notation. However, we
can conceive of an impressed polarization current that is independent of E and defined
through the relation D = ε0E + P + Pi . Then (5.38) has a physical interpretation as
described in (2.119). We now have

∇2Πe − µε
∂2

∂t2
Πe = −1

ε
Pi , (5.39)

which is a wave equation for Πe. Thus the Hertzian potential has the same wave behavior
as the vector potential under the Lorentz gauge.



We can use (5.39) to perform one final simplification of the EM field representation.
By the vector identity ∇(∇ · Π) = ∇ × (∇ × Π) + ∇2Π we get

∇ (∇ · Πe) = ∇ × (∇ × Πe) − 1

ε
Pi + µε

∂2

∂t2
Πe.

Substituting this into (5.36) we obtain

E = ∇ × (∇ × Πe) − Pi

ε
, (5.40)

B = µε∇ × ∂Πe

∂t
. (5.41)

Let us examine these closely. We know that B is solenoidal since it is written as the curl
of another vector (this is also clear from the auxiliary Maxwell equation ∇ · B = 0). The
first term in the expression for E is also solenoidal. So the lamellar part of E must be
contained within the source term Pi . If we write Pi in terms of its lamellar and solenoidal
components by using

Ji
s = ∂Pi

s

∂t
, Ji

l = ∂Pi
l

∂t
,

then (5.40) becomes

E =
[
∇ × (∇ × Πe) − Pi

s

ε

]
− Pi

l

ε
. (5.42)

So we have again succeeded in dividing E into lamellar and solenoidal components.

Potential functions for magnetic current. We can proceed as above to derive the
field–potential relationships when Ji = 0 but Ji

m = 0. We assume a homogeneous, loss-
less, isotropic medium with permeability µ and permittivity ε, and begin with Faraday’s
and Ampere’s laws

∇ × E = −Ji
m − ∂B

∂t
, (5.43)

∇ × H = ∂D
∂t

. (5.44)

We write H and D in terms of two potential functions Ah and φh as

H = −∂Ah

∂t
− ∇φh,

D = −∇ × Ah,

and the differential equation for the potentials is found by substitution into (5.43):

∇ × (∇ × Ah) = εJi
m − µε

∂2Ah

∂t2
− µε

∂

∂t
∇φh . (5.45)

Taking the divergence of this equation and substituting from the magnetic continuity
equation we obtain

µε
∂2

∂t2
∇ · Ah + µε

∂

∂t
∇2φh = −ε

∂ρi
m

∂t
.



Under the Lorentz gauge condition

∇ · Ah = −µε
∂φh

∂t

this reduces to

∇2φh − µε
∂2φh

∂t2
= −ρi

m

µ
.

Expanding the curl-curl operation in (5.45) we have

∇(∇ · Ah) − ∇2Ah = εJi
m − µε

∂2Ah

∂t2
− µε

∂

∂t
∇φh,

which, upon substitution of the Lorentz gauge condition gives

∇2Ah − µε
∂2Ah

∂t2
= −εJi

m . (5.46)

We can also derive a Hertzian potential for the case of magnetic current. Letting

Ah = µε
∂Πh

∂t
(5.47)

and employing the Lorentz condition we have

D = −µε∇ × ∂Πh

∂t
,

H = ∇(∇ · Πh) − µε
∂2Πh

∂t2
.

The wave equation for Πh is found by substituting (5.47) into (5.46) to give

∂

∂t

[
∇2Πh − µε

∂2Πh

∂t2

]
= − 1

µ
Ji

m . (5.48)

Defining Mi through

Ji
m = µ

∂Mi

∂t
,

we write the wave equation as

∇2Πh − µε
∂2Πh

∂t2
= −Mi .

We can think of Mi as a convenient way of representing Ji
m , or we can conceive of an

impressed magnetization current that is independent of H and defined through B =
µ0(H + M + Mi ). With the help of (5.48) we can also write the fields as

H = ∇ × (∇ × Πh) − Mi ,

D = −µε∇ × ∂Πh

∂t
.



Summary of potential relations for lossless media. When both electric and mag-
netic sources are present, we may superpose the potential representations derived above.
We assume a homogeneous, lossless medium with time-invariant parameters µ and ε. For
the scalar/vector potential representation we have

E = −∂Ae

∂t
− ∇φe − 1

ε
∇ × Ah, (5.49)

H = 1

µ
∇ × Ae − ∂Ah

∂t
− ∇φh . (5.50)

Here the potentials satisfy the wave equations
(

∇2 − µε
∂2

∂t2

) {
Ae

φe

}
=

{−µJi

− ρi

ε

}
, (5.51)

(
∇2 − µε

∂2

∂t2

) {
Ah

φh

}
=

{
−εJi

m

− ρi
m
µ

}
,

and are linked by the Lorentz conditions

∇ · Ae = −µε
∂φe

∂t
,

∇ · Ah = −µε
∂φh

∂t
.

We also have the Hertz potential representation

E = ∇(∇ · Πe) − µε
∂2Πe

∂t2
− µ∇ × ∂Πh

∂t

= ∇ × (∇ × Πe) − Pi

ε
− µ∇ × ∂Πh

∂t
, (5.52)

H = ε∇ × ∂Πe

∂t
+ ∇(∇ · Πh) − µε

∂2Πh

∂t2

= ε∇ × ∂Πe

∂t
+ ∇ × (∇ × Πh) − Mi . (5.53)

The Hertz potentials satisfy the wave equations(
∇2 − µε

∂2

∂t2

) {
Πe

Πh

}
=

{− 1
ε
Pi

−Mi

}
.

Potential functions for the frequency-domain fields. In the frequency domain it
is much easier to handle lossy media. Consider a lossy, isotropic, homogeneous medium
described by the frequency-dependent parameters µ̃, ε̃, and σ̃ . Maxwell’s curl equations
are

∇ × Ẽ = −J̃i
m − jωµ̃H̃, (5.54)

∇ × H̃ = J̃i + jωε̃cẼ. (5.55)

Here we have separated the primary and secondary currents through J̃ = J̃i + σ̃ Ẽ, and
used the complex permittivity ε̃c = ε̃ + σ̃ /jω. As with the time-domain equations we



introduce the potential functions using superposition. If J̃i
m = 0 and J̃i = 0 then we

may introduce the electric potentials through the relationships

Ẽ = −∇φ̃e − jωÃe, (5.56)

H̃ = 1

µ̃
∇ × Ãe. (5.57)

Assuming the Lorentz condition

∇ · Ãe = − jωµ̃ε̃cφ̃e,

we find that upon substitution of (5.56)–(5.57) into (5.54)–(5.55) the potentials must
obey the Helmholtz equation

(∇2 + k2
) {

φ̃e

Ãe

}
=

{−ρ̃i/ε̃c

−µ̃J̃i

}
.

If J̃i
m = 0 and J̃i = 0 then we may introduce the magnetic potentials through

Ẽ = − 1

ε̃c
∇ × Ãh, (5.58)

H̃ = −∇φ̃h − jωÃh . (5.59)

Assuming

∇ · Ãh = − jωµ̃ε̃cφ̃h,

we find that upon substitution of (5.58)–(5.59) into (5.54)–(5.55) the potentials must
obey

(∇2 + k2
) {

φ̃h

Ãh

}
=

{−ρ̃i
m/µ̃

−ε̃cJ̃i
m

}
.

When both electric and magnetic sources are present, we use superposition:

Ẽ = −∇φ̃e − jωÃe − 1

ε̃c
∇ × Ãh,

H̃ = 1

µ̃
∇ × Ãe − ∇φ̃h − jωÃh .

Using the Lorentz conditions we can also write the fields in terms of the vector potentials
alone:

Ẽ = − jω

k2
∇(∇ · Ãe) − jωÃe − 1

ε̃c
∇ × Ãh, (5.60)

H̃ = 1

µ̃
∇ × Ãe − jω

k2
∇(∇ · Ãh) − jωÃh . (5.61)

We can also define Hertzian potentials for the frequency-domain fields. When J̃i
m = 0

and J̃i = 0 we let

Ãe = jωµ̃ε̃cΠ̃e

and find

Ẽ = ∇(∇ · Π̃e) + k2Π̃e = ∇ × (∇ × Π̃e) − J̃i

jωε̃c
(5.62)



and

H̃ = jωε̃c∇ × Π̃e. (5.63)

Here J̃i can represent either an impressed electric current source or an impressed polar-
ization current source J̃i = jωP̃i . The electric Hertzian potential obeys

(∇2 + k2)Π̃e = − J̃i

jωε̃c
. (5.64)

When J̃i
m = 0 and J̃i = 0 we let

Ãh = jωµ̃ε̃cΠ̃h

and find

Ẽ = − jωµ̃∇ × Π̃h (5.65)

and

H̃ = ∇(∇ · Π̃h) + k2Π̃h = ∇ × (∇ × Π̃h) − J̃i
m

jωµ̃
. (5.66)

Here J̃i
m can represent either an impressed magnetic current source or an impressed

magnetization current source J̃i
m = jωµ̃M̃i . The magnetic Hertzian potential obeys

(∇2 + k2)Π̃h = − J̃i
m

jωµ̃
. (5.67)

When both electric and magnetic sources are present we have by superposition

Ẽ = ∇(∇ · Π̃e) + k2Π̃e − jωµ̃∇ × Π̃h

= ∇ × (∇ × Π̃e) − J̃i

jωε̃c
− jωµ̃∇ × Π̃h

and

H̃ = jωε̃c∇ × Π̃e + ∇(∇ · Π̃h) + k2Π̃h

= jωε̃c∇ × Π̃e + ∇ × (∇ × Π̃h) − J̃i
m

jωµ̃
.

5.2.1 Solution for potentials in an unbounded medium: the retarded
potentials

Under the Lorentz condition each of the potential functions obeys the wave equation.
This equation can be solved using the method of Green’s functions to determine the
potentials, and the electromagnetic fields can therefore be determined. We now examine
the solution for an unbounded medium. Solutions for bounded regions are considered in
§ 5.2.2.

Consider a linear operator L that operates on a function of r and t . If we wish to solve
the equation

L{ψ(r, t)} = S(r, t), (5.68)

we first solve

L{G(r, t |r′, t ′)} = δ(r − r′)δ(t − t ′)



and determine the Green’s function G for the operator L. Provided that S resides within
V we have

L
{∫

V

∫ ∞

−∞
S(r′, t ′)G(r, t |r′, t ′) dt ′ dV ′

}
=

∫
V

∫ ∞

−∞
S(r′, t ′)L{G(r, t |r′, t ′)} dt ′ dV ′

=
∫

V

∫ ∞

−∞
S(r′, t ′)δ(r − r′)δ(t − t ′) dt ′ dV ′

= S(r, t),

hence

ψ(r, t) =
∫

V

∫ ∞

−∞
S(r′, t ′)G(r, t |r′, t ′) dt ′ dV ′ (5.69)

by comparison with (5.68).
We can also apply this idea in the frequency domain. The solution to

L{ψ̃(r, ω)} = S̃(r, ω) (5.70)

is

ψ̃(r, ω) =
∫

V
S̃(r′, ω)G(r|r′; ω) dV ′

where the Green’s function G satisfies

L{G(r|r′; ω)} = δ(r − r′).

Equation (5.69) is the basic superposition integral that allows us to find the potentials
in an infinite, unbounded medium. We note that if the medium is bounded then we must
use Green’s theorem to include the effects of sources that reside external to the bound-
aries. These are manifested in terms of the values of the potentials on the boundaries
in the same manner as with the static potentials in Chapter 3. In order to determine
whether (5.69) is the unique solution to the wave equation, we must also examine the
behavior of the fields on the boundary as the boundary recedes to infinity. In the fre-
quency domain we find that an additional “radiation condition” is required to ensure
uniqueness.

The retarded potentials in the time domain. Consider an unbounded, homoge-
neous, lossy, isotropic medium described by parameters µ, ε, σ . In the time domain the
vector potential Ae satisfies (5.30). The scalar components of Ae must obey

∇2 Ae,n(r, t) − µσ
∂ Ae,n(r, t)

∂t
− µε

∂2 Ae,n(r, t)

∂t2
= −µJ i

n(r, t), n = x, y, z.

We may write this in the form(
∇2 − 2�

v2

∂

∂t
− 1

v2

∂2

∂t2

)
ψ(r, t) = −S(r, t) (5.71)

where ψ = Ae,n, v2 = 1/µε, � = σ/2ε, and S = µJ i
n . The solution is

ψ(r, t) =
∫

V

∫ ∞

−∞
S(r′, t ′)G(r, t |r′, t ′) dt ′ dV ′ (5.72)



where G satisfies(
∇2 − 2�

v2

∂

∂t
− 1

v2

∂2

∂t2

)
G(r, t |r′, t ′) = −δ(r − r′)δ(t − t ′). (5.73)

In § A.1 we find that

G(r, t |r′, t ′) = e−�(t−t ′) δ(t − t ′ − R/v)

4π R
+

+ �2

4πv
e−�(t−t ′)

I1

(
�

√
(t − t ′)2 − (R/v)2

)
�

√
(t − t ′)2 − (R/v)2

, t − t ′ >
R

v
,

where R = |r − r′|. For lossless media where σ = 0 this becomes

G(r, t |r′, t ′) = δ(t − t ′ − R/v)

4π R

and thus

ψ(r, t) =
∫

V

∫ ∞

−∞
S(r′, t ′)

δ(t − t ′ − R/v)

4π R
dt ′ dV ′

=
∫

V

S(r′, t − R/v)

4π R
dV ′. (5.74)

For lossless media, the scalar potentials and all rectangular components of the vector
potentials obey the same wave equation. Thus we have, for instance, the solutions to
(5.51):

Ae(r, t) = µ

4π

∫
V

Ji (r′, t − R/v)

R
dV ′,

φe(r, t) = 1

4πε

∫
V

ρi (r′, t − R/v)

R
dV ′.

These are called the retarded potentials since their values at time t are determined by the
values of the sources at an earlier (or retardation) time t − R/v. The retardation time is
determined by the propagation velocity v of the potential waves.

The fields are determined by the potentials:

E(r, t) = −∇ 1

4πε

∫
V

ρi (r′, t − R/v)

R
dV ′ − ∂

∂t

µ

4π

∫
V

Ji (r′, t − R/v)

R
dV ′,

H(r, t) = ∇ × 1

4π

∫
V

Ji (r′, t − R/v)

R
dV ′.

The derivatives may be brought inside the integrals, but some care must be taken when
the observation point r lies within the source region. In this case the integrals must be
performed in a principal value sense by excluding a small volume around the observation
point. We discuss this in more detail below for the frequency-domain fields. For details
regarding this procedure in the time domain the reader may see Hansen [81].



The retarded potentials in the frequency domain. Consider an unbounded, ho-
mogeneous, isotropic medium described by µ̃(ω) and ε̃c(ω). If ψ̃(r, ω) represents a scalar
potential or any rectangular component of a vector or Hertzian potential then it must
satisfy

(∇2 + k2)ψ̃(r, ω) = −S̃(r, ω) (5.75)

where k = ω(µ̃ε̃c)1/2. This Helmholtz equation has the form of (5.70) and thus

ψ̃(r, ω) =
∫

V
S̃(r′, ω)G(r|r′; ω) dV ′

where

(∇2 + k2)G(r|r′; ω) = −δ(r − r′). (5.76)

This is equation (A.46) and its solution, as given by (A.49), is

G(r|r′; ω) = e− jk R

4π R
. (5.77)

Here we use v2 = 1/µ̃ε̃ and � = σ̃ /2ε in (A.47):

k = 1

v

√
ω2 − j2ω� = ω

√
µ̃

(
ε̃ − j

σ̃

ω

)
= ω

√
µ̃ε̃c.

The solution to (5.75) is therefore

ψ̃(r, ω) =
∫

V
S̃(r′, ω)

e− jk R

4π R
dV ′. (5.78)

When the medium is lossless, the potential must also satisfy the radiation condition

lim
r→∞ r

(
∂

∂r
+ jk

)
ψ̃(r) = 0 (5.79)

to guarantee uniqueness of solution. In § 5.2.2 we shall show how this requirement arises
from the solution within a bounded region. For a uniqueness proof for the Helmholtz
equation, the reader may consult Chew [33].

We may use (5.78) to find that

Ãe(r, ω) = µ̃

4π

∫
V

J̃i (r′, ω)
e− jk R

R
dV ′. (5.80)

Comparison with (5.74) shows that in the frequency domain, time retardation takes the
form of a phase shift. Similarly,

φ̃(r, ω) = 1

4πε̃c

∫
V

ρ̃i (r′, ω)
e− jk R

R
dV ′. (5.81)

The electric and magnetic dyadic Green’s functions. The frequency-domain elec-
tromagnetic fields may be found for electric sources from the electric vector potential
using (5.60) and (5.61):

Ẽ(r, ω) = − jωµ̃(ω)

∫
V

J̃i (r′, ω)G(r|r′; ω) dV ′ − jωµ̃(ω)

k2
∇∇ ·

∫
V

J̃i (r′, ω)G(r|r′; ω) dV ′,

H̃ = ∇ ×
∫

V
J̃i (r′, ω)G(r|r′; ω) dV ′. (5.82)



As long as the observation point r does not lie within the source region we may take the
derivatives inside the integrals. Using

∇ · [
J̃i (r′, ω)G(r|r′; ω)

] = J̃i (r′, ω) · ∇G(r|r′; ω) + G(r|r′; ω)∇ · J̃(r′, ω)

= ∇G(r|r′; ω) · J̃i (r′, ω)

we have

Ẽ(r, ω) = − jωµ̃(ω)

∫
V

{
J̃i (r′, ω)G(r|r′; ω) + 1

k2
∇ [∇G(r|r′; ω) · Ji (r′, ω)

]}
dV ′.

This can be written more compactly as

Ẽ(r, ω) = − jωµ̃(ω)

∫
V

Ḡe(r|r′; ω) · J̃i (r′, ω) dV ′

where

Ḡe(r|r′; ω) =
[

Ī + ∇∇
k2

]
G(r|r′; ω) (5.83)

is called the electric dyadic Green’s function. Using

∇ × [J̃i G] = ∇G × J̃i + G∇ × J̃i = ∇G × J̃i

we have for the magnetic field

H̃(r, ω) =
∫

V
∇G(r|r′; ω) × J̃i (r′, ω) dV ′.

Now, using the dyadic identity (B.15) we may show that

J̃i × ∇G = (J̃i × ∇G) · Ī = (∇G × Ī) · Ji .

So

H̃(r, ω) = −
∫

V
Ḡm(r|r′; ω) · J̃i (r′, ω) dV ′

where

Ḡm(r|r′; ω) = ∇G(r|r′; ω) × Ī (5.84)

is called the magnetic dyadic Green’s function.
Proceeding similarly for magnetic sources (or using duality) we have

H̃(r) = − jωε̃c
∫

V
Ḡe(r|r′; ω) · J̃i

m(r′, ω) dV ′,

Ẽ(r) =
∫

V
Ḡm(r|r′; ω) · J̃i

m(r′, ω) dV ′.

When both electric and magnetic sources are present we simply use superposition and
add the fields.

When the observation point lies within the source region, we must be much more
careful about how we formulate the dyadic Green’s functions. In (5.82) we encounter the
integral ∫

V
J̃i (r′, ω)G(r|r′; ω) dV ′.



Figure 5.1: Geometry of excluded region used to compute the electric field within a source
region.

If r lies within the source region then G is singular since R → 0 when r → r′. However,
the integral converges and the potentials exist within the source region. While we run
into trouble when we pass both derivatives in the operator ∇∇· through the integral
and allow them to operate on G, since differentiation of G increases the order of the
singularity, we may safely take one derivative of G.

Even when we allow one derivative on G we must be careful in how we compute the
integral. We exclude the point r by surrounding it with a small volume element Vδ as
shown in Figure 5.1 and write

∇∇ ·
∫

V
J̃i (r′, ω)G(r|r′; ω) dV ′ =

lim
Vδ→0

∫
V −Vδ

∇ [∇G(r|r′; ω) · J̃i (r′, ω)
]

dV ′ + lim
Vδ→0

∇
∫

Vδ

∇G(r|r′; ω) · J̃i (r′, ω) dV ′.

The first integral on the right-hand side is called the principal value integral and is usually
abbreviated

P.V.

∫
V

∇ [∇G(r|r′; ω) · J̃i (r′, ω)
]

dV ′.

It converges to a value dependent on the shape of the excluded region Vδ, as does the
second integral. However, the sum of these two integrals produces a unique result. Using
∇G = −∇′G, the identity ∇′ · (J̃G) = J̃ · ∇′G + G∇′ · J̃, and the divergence theorem,
we can write

−
∫

Vδ

∇′G(r|r′; ω) · J̃i (r′, ω) dV ′ =

−
∮

Sδ

G(r|r′; ω)J̃i (r′, ω) · n̂′ d S′ +
∫

Vδ

G(r|r′; ω)∇′ · J̃i (r′, ω) dV ′

where Sδ is the surface surrounding Vδ. By the continuity equation the second integral
on the right-hand side is proportional to the scalar potential produced by the charge
within Vδ, and thus vanishes as Vδ → 0. The first term is proportional to the field at r
produced by surface charge on Sδ, which results in a value proportional to Ji . Thus

lim
Vδ→0

∇
∫

Vδ

∇G(r|r′; ω) · J̃i (r′, ω) dV ′ = − lim
Vδ→0

∇
∮

Sδ

G(r|r′; ω)J̃i (r′, ω) · n̂′ d S′

= −L̄ · J̃i (r, ω), (5.85)



so

∇∇ ·
∫

V
J̃i (r′, ω)G(r|r′; ω) dV ′ = P.V .

∫
V

∇ [∇G(r|r′; ω) · J̃i (r′, ω)
]

dV ′ − L̄ · J̃i (r, ω).

Here L̄ is usually called the depolarizing dyadic [113]. Its value depends on the shape of
Vδ, as considered below.

We may now write

Ẽ(r, ω) = − jωµ̃(ω) P.V.

∫
V

Ḡe(r|r′; ω) · J̃(r′, ω) dV ′ − 1

jωε̃c(ω)
L̄ · J̃i (r, ω). (5.86)

We may also incorporate both terms into a single dyadic Green’s function using the
notation

Ḡ(r|r′; ω) = P.V. Ḡe(r|r′; ω) − 1

k2
L̄δ(r − r′).

Hence when we compute

Ẽ(r, ω) = − jωµ̃(ω)

∫
V

Ḡ(r|r′; ω) · J̃i (r′, ω) dV ′

= − jωµ̃(ω)

∫
V

[
P.V. Ḡe(r|r′; ω) − 1

k2
L̄δ(r − r′)

]
· J̃i (r′, ω) dV ′

we reproduce (5.86). That is, the symbol P.V. on Ge indicates that a principal value
integral must be performed.

Our final task is to compute L̄ from (5.85). When we remove the excluded region
from the principal value computation we leave behind a hole in the source region. The
contribution to the field at r by the sources in the excluded region is found from the
scalar potential produced by the surface distribution n̂ · Ji . The value of this correction
term depends on the shape of the excluding volume. However, the correction term always
adds to the principal value integral to give the true field at r, regardless of the shape of
the volume. So we must always match the shape of the excluded region used to compute
the principal value integral with that used to compute the correction term so that the
true field is obtained. Note that as Vδ → 0 the phase factor in the Green’s function
becomes insignificant, and the values of the current on the surface approach the value at
r (assuming Ji is continuous at r). Thus we may write

lim
Vδ→0

∇
∮

Sδ

J̃i (r, ω) · n̂′

4π |r − r′| d S′ = L̄ · J̃i (r, ω).

This has the form of a static field integral. For a spherical excluded region we may com-
pute the above quantity quite simply by assuming the current to be uniform throughout
Vδ and by aligning the current with the z-axis and placing the center of the sphere at the
origin. We then compute the integral at a point r within the sphere, take the gradient,
and allow r → 0. We thus have for a sphere

lim
Vδ→0

∇
∮

S

J̃ i cos θ ′

4π |r − r′| d S′ = L̄ · [ẑ J̃ i (r, ω)].

This integral has been computed in § 3.2.7 with the result given by (3.103). Using this
we find

lim
Vδ→0

[
∇

(
1

3
J̃ i z

)] ∣∣∣∣
r=0

= ẑ
J̃ i

3
= L̄ · [ẑ J̃ i (r, ω)]



Figure 5.2: Geometry of an electric Hertzian dipole.

and thus

L̄ = 1

3
Ī.

We leave it as an exercise to show that for a cubical excluding volume the depolarizing
dyadic is also L̄ = Ī/3. Values for other shapes may be found in Yaghjian [215].

The theory of dyadic Green’s functions is well developed and there exist techniques
for their construction under a variety of conditions. For an excellent overview the reader
may see Tai [192].

Example of field calculation using potentials: the Hertzian dipole. Consider
a short line current of length l � λ at position rp, oriented along a direction p̂ in a
medium with constitutive parameters µ̃(ω), ε̃c (ω), as shown in Figure 5.2. We assume
that the frequency-domain current Ĩ (ω) is independent of position, and therefore this
Hertzian dipole must be terminated by point charges

Q̃(ω) = ± Ĩ (ω)

jω

as required by the continuity equation. The electric vector potential produced by this
short current element is

Ãe = µ̃

4π

∫
�

Ĩ p̂
e− jk R

R
dl ′.

At observation points far from the dipole (compared to its length) such that |r − rp| � l
we may approximate

e− jk R

R
≈ e− jk|r−rp |

|r − rp| .

Then

Ãe = p̂µ̃ Ĩ G(r|rp; ω)

∫
�

dl ′ = p̂µ̃ Ĩ lG(r|rp; ω). (5.87)

Note that we obtain the same answer if we let the current density of the dipole be

J̃ = jωp̃δ(r − rp)



where p̃ is the dipole moment defined by

p̃ = Q̃lp̂ = Ĩ l

jω
p̂.

That is, we consider a Hertzian dipole to be a “point source” of electromagnetic radiation.
With this notation we have

Ãe = µ̃

∫
V

[
jωp̃δ(r′ − rp)

]
G(r|r′; ω) dV ′ = jωµ̃p̃G(r|rp; ω),

which is identical to (5.87). The electromagnetic fields are then

H̃(r, ω) = jω∇ × [p̃G(r|rp; ω)], (5.88)

Ẽ(r, ω) = 1

ε̃c
∇ × ∇ × [p̃G(r|rp; ω)]. (5.89)

Here we have obtained Ẽ from H̃ outside the source region by applying Ampere’s law.
By duality we may obtain the fields produced by a magnetic Hertzian dipole of moment

p̃m = Ĩml

jω
p̂

located at r = rp as

Ẽ(r, ω) = − jω∇ × [p̃m G(r|rp; ω)],

H̃(r, ω) = 1

µ̃
∇ × ∇ × [p̃m G(r|rp; ω)].

We can learn much about the fields produced by localized sources by considering the
simple case of a Hertzian dipole aligned along the z-axis and centered at the origin. Using
p̂ = ẑ and rp = 0 in (5.88) we find that

H̃(r, ω) = jω∇ ×
[

ẑ
Ĩ

jω
l
e− jkr

4πr

]
= φ̂

1

4π
Ĩ l

[
1

r2
+ j

k

r

]
sin θe− jkr . (5.90)

By Ampere’s law

Ẽ(r, ω) = 1

jωε̃c
∇ × H̃(r, ω)

= r̂
η

4π
Ĩ l

[
2

r2
− j

2

kr3

]
cos θe− jkr + θ̂

η

4π
Ĩ l

[
j
k

r
+ 1

r2
− j

1

kr3

]
sin θe− jkr .

(5.91)

The fields involve various inverse powers of r , with the 1/r and 1/r3 terms 90◦ out-of-
phase from the 1/r2 term. Some terms dominate the field close to the source, while others
dominate far away. The terms that dominate near the source1 are called the near-zone
or induction-zone fields:

H̃N Z (r, ω) = φ̂
Ĩ l

4π

e− jkr

r2
sin θ,

ẼN Z (r, ω) = − jη
Ĩ l

4π

e− jkr

kr3

[
2r̂ cos θ + θ̂ sin θ

]
.

1Note that we still require r � l.



We note that H̃N Z and ẼN Z are 90◦ out-of-phase. Also, the electric field has the same
spatial dependence as the field of a static electric dipole. The terms that dominate far
from the source are called the far-zone or radiation fields:

H̃F Z (r, ω) = φ̂
jk Ĩ l

4π

e− jkr

r
sin θ, (5.92)

ẼF Z (r, ω) = θ̂η
jk Ĩ l

4π

e− jkr

r
sin θ. (5.93)

The far-zone fields are in-phase and in fact form a TEM spherical wave with

H̃F Z = r̂ × ẼF Z

η
. (5.94)

We speak of the time-average power radiated by a time-harmonic source as the integral
of the time-average power density over a very large sphere. Thus radiated power is the
power delivered by the sources to infinity. If the dipole is situated within a lossy medium,
all of the time-average power delivered by the sources is dissipated by the medium. If
the medium is lossless then all the time-average power is delivered to infinity. Let us
compute the power radiated by a time-harmonic Hertzian dipole immersed in a lossless
medium. Writing (5.90) and (5.91) in terms of phasors we have the complex Poynting
vector

Sc(r) = Ě(r) × Ȟ∗(r)

= θ̂η

(
| Ǐ |l
4π

)2

j
2

kr5

[
k2r2 + 1

]
cos θ sin θ + r̂η

(
| Ǐ |l
4π

)2
k2

r2

[
1 − j

1

k3r5

]
sin2 θ.

We notice that the θ -component of Sc is purely imaginary and gives rise to no time-
average power flux. This component falls off as 1/r3 for large r and produces no net
flux through a sphere with radius r → ∞. Additionally, the angular variation sin θ cos θ

integrates to zero over a sphere. In contrast, the r -component has a real part that varies
as 1/r2 and as sin2 θ . Hence we find that the total time-average power passing through
a sphere expanding to infinity is nonzero:

Pav = lim
r→∞

∫ 2π

0

∫ π

0

1

2
Re


r̂η

(
| Ǐ |l
4π

)2
k2

r2
sin2 θ


 · r̂r2 sin θ dθ dφ

= η
π

3
| Ǐ |2

(
l

λ

)2

(5.95)

where λ = 2π/k is the wavelength in the lossless medium. This is the power radiated by
the Hertzian dipole. The power is proportional to | Ǐ |2 as it is in a circuit, and thus we
may define a radiation resistance

Rr = 2Pav

| Ǐ |2 = η
2π

3

(
l

λ

)2

that represents the resistance of a lumped element that would absorb the same power as
radiated by the Hertzian dipole when presented with the same current. We also note that
the power radiated by a Hertzian dipole (and, in fact, by any source of finite extent) may



Figure 5.3: Geometry for solution to the frequency-domain Helmholtz equation.

be calculated directly from its far-zone fields. In fact, from (5.94) we have the simple
formula for the time-average power density in lossless media

Sav = 1

2
Re

{
ĚF Z × ȞF Z∗} = r̂

1

2

|ĚF Z |2
η

.

The dipole field is the first term in a general expansion of the electromagnetic fields in
terms of the multipole moments of the sources. Either a Taylor expansion or a spherical-
harmonic expansion may be used. The reader may see Papas [141] for details.

5.2.2 Solution for potential functions in a bounded medium

In the previous section we solved for the frequency-domain potential functions in an
unbounded region of space. Here we shall extend the solution to a bounded region and
identify the physical meaning of the radiation condition (5.79).

Consider a bounded region of space V containing a linear, homogeneous, isotropic
medium characterized by µ̃(ω) and ε̃c (ω). As shown in Figure 5.3 we decompose the
multiply-connected boundary into a closed “excluding surface” S0 and a closed “encom-
passing surface” S∞ that we shall allow to expand outward to infinity. S0 may consist
of more than one closed surface and is often used to exclude unknown sources from V .
We wish to solve the Helmholtz equation (5.75) for ψ̃ within V in terms of the sources
within V and the values of ψ̃ on S0. The actual sources of ψ̃ lie entirely with S∞ but
may lie partly, or entirely, within S0.

We solve the Helmholtz equation in much the same way that we solved Poisson’s
equation in § 3.2.4. We begin with Green’s second identity, written in terms of the
source point (primed) variables and applied to the region V :∫

V
[ψ(r′, ω)∇′2G(r|r′; ω) − G(r|r′; ω)∇′2ψ(r′, ω)] dV ′ =



∮
S0+S∞

[
ψ(r′, ω)

∂G(r|r′; ω)

∂n′ − G(r|r′; ω)
∂ψ(r′, ω)

∂n′

]
d S′.

We note that n̂ points outward from V , and G is the Green’s function (5.77). By
inspection, this Green’s function obeys the reciprocity condition

G(r|r′; ω) = G(r′|r; ω)

and satisfies

∇2G(r|r′; ω) = ∇′2G(r|r′; ω).

Substituting ∇′2ψ̃ = −k2ψ̃ − S̃ from (5.75) and ∇′2G = −k2G − δ(r − r′) from (5.76)
we get

ψ̃(r, ω) =
∫

V
S̃(r′, ω)G(r|r′; ω) dV ′ −

−
∮

S0+S∞

[
ψ̃(r′, ω)

∂G(r|r′; ω)

∂n′ − G(r|r′; ω)
∂ψ̃(r′, ω)

∂n′

]
d S′.

Hence ψ̃ within V may be written in terms of the sources within V and the values of ψ̃

and its normal derivative over S0 + S∞. The surface contributions account for sources
excluded by S0.

Let us examine the integral over S∞ more closely. If we let S∞ recede to infinity, we
expect no contribution to the potential at r from the fields on S∞. Choosing a sphere
centered at the origin, we note that n̂′ = r̂′ and that as r ′ → ∞

G(r|r′; ω) = e− jk|r−r′|

4π |r − r′| ≈ e− jkr ′

4πr ′ ,

∂G(r|r′; ω)

∂n′ = n̂′ · ∇′G(r|r′; ω) ≈ ∂

∂r ′
e− jkr ′

4πr ′ = −(1 + jkr ′)
e− jkr ′

4πr ′ .

Substituting these, we find that as r ′ → ∞
∮

S∞

[
ψ̃

∂G

∂n′ − G
∂ψ̃

∂n′

]
d S′ ≈

∫ 2π

0

∫ π

0

[
−1 + jkr ′

r ′2 ψ̃ − 1

r ′
∂ψ̃

∂r ′

]
e− jkr ′

4π
r ′2 sin θ ′ dθ ′ dφ′

≈ −
∫ 2π

0

∫ π

0

[
ψ̃ + r ′

(
jkψ̃ + ∂ψ̃

∂r ′

)]
e− jkr

4π
sin θ ′ dθ ′ dφ′.

Since this gives the contribution to the field in V from the fields on the surface receding
to infinity, we expect that this term should be zero. If the medium has loss, then the
exponential term decays and drives the contribution to zero. For a lossless medium the
contribution is zero if

lim
r→∞ ψ̃(r, ω) = 0, (5.96)

lim
r→∞ r

[
jkψ̃(r, ω) + ∂ψ̃(r, ω)

∂r

]
= 0. (5.97)

This is called the radiation condition for the Helmholtz equation. It is also called the
Sommerfeld radiation condition after the German physicist A. Sommerfeld. Note that



we have not derived this condition: we have merely postulated it. As with all postulates
it is subject to experimental verification.

The radiation condition implies that for points far from the source the potentials
behave as spherical waves:

ψ̃(r, ω) ∼ e− jkr

r
, r → ∞.

Substituting this into (5.96) and (5.97) we find that the radiation condition is satisfied.
With S∞ → ∞ we have

ψ̃(r, ω) =
∫

V
S̃(r′, ω)G(r|r′; ω) dV ′ −

−
∮

S0

[
ψ̃(r′, ω)

∂G(r|r′; ω)

∂n′ − G(r|r′; ω)
∂ψ̃(r′, ω)

∂n′

]
d S′,

which is the expression for the potential within an infinite medium having source-
excluding regions. As S0 → 0 we obtain the expression for the potential in an unbounded
medium:

ψ̃(r, ω) =
∫

V
S̃(r′, ω)G(r|r′; ω) dV ′,

as expected.
The time-domain equation (5.71) may also be solved (at least for the lossless case) in

a bounded region of space. The interested reader should see Pauli [143] for details.

5.3 Transverse–longitudinal decomposition

We have seen that when only electric sources are present, the electromagnetic fields
in a homogeneous, isotropic region can be represented by a single vector potential Πe.
Similarly, when only magnetic sources are present, the fields can be represented by a
single vector potential Πh . Hence two vector potentials may be used to represent the
field if both electric and magnetic sources are present.

We may also represent the electromagnetic field in a homogeneous, isotropic region us-
ing two scalar functions and the sources. This follows naturally from another important
field decomposition: a splitting of each field vector into (1) a component along a certain
pre-chosen constant direction, and (2) a component transverse to this direction. Depend-
ing on the geometry of the sources, it is possible that only one of these components will
be present. A special case of this decomposition, the TE–TM field decomposition, holds
for a source-free region and will be discussed in the next section.

5.3.1 Transverse–longitudinal decomposition in terms of fields

Consider a direction defined by a constant unit vector û. We define the longitudinal
component of A as ûAu where

Au = û · A,

and the transverse component of A as

At = A − ûAu .



We may thus decompose any vector into a sum of longitudinal and transverse parts. An
important consequence of Maxwell’s equations is that the transverse fields may be written
entirely in terms of the longitudinal fields and the sources. This holds in both the time
and frequency domains; we derive the decomposition in the frequency domain and leave
the derivation of the time-domain expressions as exercises. We begin by decomposing
the operators in Maxwell’s equations into longitudinal and transverse components. We
note that

∂

∂u
≡ û · ∇

and define a transverse del operator as

∇t ≡ ∇ − û
∂

∂u
.

Using these basic definitions, the identities listed in Appendix B may be derived. We
shall find it helpful to express the vector curl and Laplacian operations in terms of
their longitudinal and transverse components. Using (B.93) and (B.96) we find that the
transverse component of the curl is given by

(∇ × A)t = −û × û × (∇ × A)

= −û × û × (∇t × At ) − û × û ×
(

û ×
[
∂At

∂u
− ∇t Au

])
. (5.98)

The first term in the right member is zero by property (B.91). Using (B.7) we can replace
the second term by

−û
{

û ·
(

û ×
[
∂At

∂u
− ∇t Au

])}
+ (û · û)

(
û ×

[
∂At

∂u
− ∇t Au

])
.

The first of these terms is zero since

û ·
(

û ×
[
∂At

∂u
− ∇t Au

])
=

[
∂At

∂u
− ∇t Au

]
· (û × û) = 0,

hence

(∇ × A)t = û ×
[
∂At

∂u
− ∇t Au

]
. (5.99)

The longitudinal part is then, by property (B.80), merely the difference between the curl
and its transverse part, or

û (û · ∇ × A) = ∇t × At . (5.100)

A similar set of steps gives the transverse component of the Laplacian as

(∇2A)t =
[
∇t (∇t · At ) + ∂2At

∂u2
− ∇t × ∇t × At

]
, (5.101)

and the longitudinal part as

û
(
û · ∇2A

) = û∇2 Au . (5.102)

Verification is left as an exercise.



Now we are ready to give a longitudinal–transverse decomposition of the fields in a
lossy, homogeneous, isotropic region in terms of the direction û. We write Maxwell’s
equations as

∇ × Ẽ = − jωµ̃H̃t − jωµ̃ûH̃u − J̃i
mt − û J̃ i

mu, (5.103)
∇ × H̃ = jωε̃cẼt + jωε̃cûẼu + J̃i

t + û J̃ i
u, (5.104)

where we have split the right-hand sides into longitudinal and transverse parts. Then,
using (5.99) and (5.100), we can equate the transverse and longitudinal parts of each
equation to obtain

∇t × Ẽt = − jωµ̃ûH̃u − û J̃ i
mu, (5.105)

− û × ∇t Ẽu + û × ∂Ẽt

∂u
= − jωµ̃H̃t − J̃i

mt , (5.106)

∇t × H̃t = jωε̃cûẼu + û J̃ i
u, (5.107)

− û × ∇t H̃u + û × ∂H̃t

∂u
= jωε̃cẼt + J̃i

t . (5.108)

We shall isolate the transverse fields in terms of the longitudinal fields. Forming the
cross product of û and the partial derivative of (5.108) with respect to u, we have

−û × û × ∇t
∂ H̃u

∂u
+ û × û × ∂2H̃t

∂u2
= jωε̃cû × ∂Ẽt

∂u
+ û × ∂ J̃i

t

∂u
.

Using (B.7) and (B.80) we find that

∇t
∂ H̃u

∂u
− ∂2H̃t

∂u2
= jωε̃cû × ∂Et

∂u
+ û × ∂ J̃i

t

∂u
. (5.109)

Multiplying (5.106) by jωε̃c we have

− jωε̃cû × ∇t Ẽu + jωε̃cû × ∂Ẽt

∂u
= ω2µ̃ε̃cH̃t − jωε̃cJ̃i

mt . (5.110)

We now add (5.109) to (5.110) and eliminate Ẽt to get(
∂2

∂u2
+ k2

)
H̃t = ∇t

∂ H̃u

∂u
− jωε̃cû × ∇t Ẽu + jωε̃cJ̃i

mt − û × ∂ J̃i
t

∂u
. (5.111)

This one-dimensional Helmholtz equation can be solved to find the transverse magnetic
field from the longitudinal components of Ẽ and H̃. Similar steps lead to a formula for
the transverse component of Ẽ:(

∂2

∂u2
+ k2

)
Ẽt = ∇t

∂ Ẽu

∂u
+ jωµ̃û × ∇t H̃u + û × ∂ J̃i

mt

∂u
+ jωµ̃J̃i

t . (5.112)

We find the longitudinal components from the wave equation for Ẽ and H̃. Recall that
the fields satisfy

(∇2 + k2)Ẽ = 1

ε̃c
∇ρ̃i + jωµ̃J̃i + ∇ × J̃i

m,

(∇2 + k2)H̃ = 1

µ̃
∇ρ̃i

m + jωε̃cJ̃i
m − ∇ × J̃i .



Splitting the vectors into longitudinal and transverse parts, and using (5.100) and (5.102),
we equate the longitudinal components of the wave equations to obtain

(∇2 + k2
)

Ẽu = 1

ε̃c

∂ρ̃i

∂u
+ jωµ̃ J̃ i

u + ∇t × J̃i
mt , (5.113)

(∇2 + k2
)

H̃u = 1

µ̃

∂ρ̃i
m

∂u
+ jωε̃c J̃ i

mu − ∇t × J̃i
t . (5.114)

We note that if J̃i
m = J̃i

t = 0, then H̃u = 0 and the fields are TM to the u-direction; these
fields may be determined completely from Ẽu . Similarly, if J̃i = J̃i

mt = 0, then Ẽu = 0
and the fields are TE to the u-direction; these fields may be determined completely from
H̃u . These properties are used in § 4.11.7, where the fields of electric and magnetic line
sources aligned along the z-direction are assumed to be purely TMz or TEz , respectively.

5.4 TE–TM decomposition

5.4.1 TE–TM decomposition in terms of fields

A particularly useful field decomposition results if we specialize to a source-free region.
With J̃i = J̃i

m = 0 in (5.111)–(5.112) we obtain(
∂2

∂u2
+ k2

)
H̃t = ∇t

∂ H̃u

∂u
− jωε̃cû × ∇t Ẽu, (5.115)(

∂2

∂u2
+ k2

)
Ẽt = ∇t

∂ Ẽu

∂u
+ jωµ̃û × ∇t H̃u . (5.116)

Setting the sources to zero in (5.113) and (5.114) we get(∇2 + k2
)

Ẽu = 0,(∇2 + k2
)

H̃u = 0.

Hence the longitudinal field components are solutions to the homogeneous Helmholtz
equation, and the transverse components are specified solely in terms of the longitudinal
components. The electromagnetic field is completely specified by the two scalar fields Ẽu

and H̃u (and, of course, appropriate boundary values).
We can use superposition to simplify the task of solving (5.115)–(5.116). Since each

equation has two forcing terms on the right-hand side, we can solve the equations using
one forcing term at a time, and add the results. That is, let Ẽ1 and H̃1 be the solutions to
(5.115)–(5.116) with Ẽu = 0, and Ẽ2 and H̃2 be the solutions with H̃u = 0. This results
in a decomposition

Ẽ = Ẽ1 + Ẽ2, (5.117)
H̃ = H̃1 + H̃2, (5.118)

with

Ẽ1 = Ẽ1t , H̃1 = H̃1t + H̃1u û,

H̃2 = H̃2t , Ẽ2 = Ẽ2t + Ẽ2u û.



Because Ẽ1 has no u-component, Ẽ1 and H̃1 are termed transverse electric (or TE ) to
the u-direction; H̃2 has no u-component, and Ẽ2 and H̃2 are termed transverse magnetic
(or TM ) to the u-direction.2 We see that in a source-free region any electromagnetic
field can be decomposed into a set of two fields that are TE and TM, respectively, to
some fixed u-direction. This is useful when solving boundary value (e.g., waveguide
and scattering) problems where information about external sources is easily specified
using the values of the fields on the boundary of the source-free region. In that case
Ẽu and H̃u are determined by solving the homogeneous wave equation in an appropriate
coordinate system, and the other field components are found from (5.115)–(5.116). Often
the boundary conditions can be satisfied by the TM fields or the TE fields alone. This
simplifies the analysis of many types of EM systems.

5.4.2 TE–TM decomposition in terms of Hertzian potentials

We are free to represent Ẽ and H̃ in terms of scalar fields other than Ẽu and H̃u . In
doing so, it is helpful to retain the wave nature of the solution so that a meaningful
physical interpretation is still possible; we thus use Hertzian potentials since they obey
the wave equation.

For the TM case let Π̃h = 0 and Π̃e = û�̃e. Setting J̃i = 0 in (5.64) we have

(∇2 + k2)Π̃e = 0.

Since Π̃e is purely longitudinal, we can use (B.99) to obtain the scalar Helmholtz equation
for �̃e:

(∇2 + k2)�̃e = 0. (5.119)

Once �̃e has been found by solving this wave equation, the fields can be found by using
(5.62)–(5.63) with J̃i = 0:

Ẽ = ∇ × (∇ × Π̃e), (5.120)
H̃ = jωε̃c∇ × Π̃e. (5.121)

We can evaluate Ẽ by noting that Π̃e is purely longitudinal. Use of property (B.98) gives

∇ × ∇ × Π̃e = ∇t
∂�̃e

∂u
− û∇2

t �̃e.

Then, by property (B.97),

∇ × ∇ × Π̃e = ∇t
∂�̃e

∂u
− û

[
∇2�̃e − ∂2�̃e

∂u2

]
.

By (5.119) then,

Ẽ = ∇t
∂�̃e

∂u
+ û

(
∂2

∂u2
+ k2

)
�̃e. (5.122)

The field H̃ can be found by noting that Π̃e is purely longitudinal. Use of property
(B.96) in (5.121) gives

H̃ = − jωε̃cû × ∇t�̃e. (5.123)

2Some authors prefer to use the terminology E mode in place of TM, and H mode in place of TE,
indicating the presence of a u-directed electric or magnetic field component.



Similar steps can be used to find the TE representation. Substitution of Π̃e = 0 and
Π̃h = û�̃h into (5.65)–(5.66) gives the fields

Ẽ = jωµ̃û × ∇t�̃h, (5.124)

H̃ = ∇t
∂�̃h

∂u
+ û

(
∂2

∂u2
+ k2

)
�̃h, (5.125)

while �̃h must satisfy

(∇2 + k2)�̃h = 0. (5.126)

Hertzian potential representation of TEM fields. An interesting situation occurs
when a field is both TE and TM to a particular direction. Such a field is said to be
transverse electromagnetic (or TEM ) to that direction. Unfortunately, with Ẽu = H̃u =
0 we cannot use (5.115) or (5.116) to find the transverse field components. It turns out
that a single scalar potential function is sufficient to represent the field, and we may use
either �̃e or �̃h .

For the TM case, equations (5.122) and (5.123) show that we can represent the electro-
magnetic fields completely with �̃e. Unfortunately (5.122) has a longitudinal component,
and thus cannot describe a TEM field. But if we require that �̃e obey the additional
equation (

∂2

∂u2
+ k2

)
�̃e = 0, (5.127)

then both E and H are transverse to u and thus describe a TEM field. Since �̃e must
also obey (∇2 + k2

)
�̃e = 0,

using (B.7) we can write (5.127) as

∇2
t �̃e = 0.

Similarly, for the TE case we found that the EM fields were completely described in
(5.124) and (5.125) by �̃h . In this case H̃ has a longitudinal component. Thus, if we
require (

∂2

∂u2
+ k2

)
�̃h = 0, (5.128)

then both Ẽ and H̃ are purely transverse to u and again describe a TEM field. Equation
(5.128) is equivalent to

∇2
t �̃h = 0.

We can therefore describe a TEM field using either �̃e or �̃h , since a TEM field is
both TE and TM to the longitudinal direction. If we choose �̃e we can use (5.122) and
(5.123) to obtain the expressions

Ẽ = ∇t
∂�̃e

∂u
, (5.129)

H̃ = − jωε̃cû × ∇t�̃e, (5.130)

where �̃e must obey

∇2
t �̃e = 0,

(
∂2

∂u2
+ k2

)
�̃e = 0. (5.131)



If we choose �̃h we can use (5.124) and (5.125) to obtain

Ẽ = jωµ̃û × ∇t�̃h, (5.132)

H̃ = ∇t
∂�̃h

∂u
, (5.133)

where �̃h must obey

∇2
t �̃h = 0,

(
∂2

∂u2
+ k2

)
�̃h = 0. (5.134)

5.4.3 Application: hollow-pipe waveguides

A classic application of the TE–TM decomposition is to the calculation of waveguide
fields. Consider a hollow pipe with PEC walls, aligned along the z-axis. The inside is filled
with a homogeneous, isotropic material of permeability µ̃(ω) and complex permittivity
ε̃c(ω), and the guide cross-sectional shape is assumed to be independent of z. We assume
that a current source exists somewhere within the waveguide, creating waves that either
propagate or evanesce away from the source. If the source is confined to the region
−d < z < d then each of the regions z > d and z < −d is source-free and we may
decompose the fields there into TE and TM sets. Such a waveguide is a good candidate
for TE–TM analysis because the TE and TM fields independently satisfy the boundary
conditions at the waveguide walls. This is not generally the case for certain other guided-
wave structures such as fiber optic cables and microstrip lines.

We may represent the fields either in terms of the longitudinal fields Ẽz and H̃z , or
in terms of the Hertzian potentials. We choose the Hertzian potentials. For TM fields
we choose Π̃e = ẑ�̃e, Π̃h = 0; for TE fields we choose Π̃h = ẑ�̃h , Π̃e = 0. Both of the
potentials must obey the same Helmholtz equation:(∇2 + k2

)
�̃z = 0, (5.135)

where �̃z represents either �̃e or �̃h . We seek a solution to this equation using the
separation of variables technique, and assume the product solution

�̃z(r, ω) = Z̃(z, ω)ψ̃(ρ, ω),

where ρ is the transverse position vector (r = ẑz + ρ). Substituting the trial solution
into (5.135) and writing

∇2 = ∇2
t + ∂2

∂z2

we find that

1

ψ̃(ρ, ω)
∇2

t ψ̃(ρ, ω) + k2 = − 1

Z(z, ω)

∂2

∂z2
Z(z, ω).

Because the left-hand side of this expression has positional dependence only on ρ while
the right-hand side has dependence only on z, we must have both sides equal to a constant,
say k2

z . Then

∂2 Z

∂z2
+ k2

z Z = 0,

which is an ordinary differential equation with the solutions

Z = e∓ jkz z .



We also have

∇2
t ψ̃(ρ, ω) + k2

c ψ̃(ρ, ω) = 0, (5.136)

where kc = k2 −k2
z is called the cutoff wavenumber. The solution to this equation depends

on the geometry of the waveguide cross-section and whether the field is TE or TM.
The fields may be computed from the Hertzian potentials using u = z in (5.122)–

(5.123) and (5.124)–(5.125). Because the fields all contain the common term e∓ jkz z , we
define the field quantities ẽ and h̃ through

Ẽ(r, ω) = ẽ(ρ, ω)e∓ jkz z, H̃(r, ω) = h̃(ρ, ω)e∓ jkz z .

Then, substituting �̃e = ψ̃ee∓ jkz z , we have for TM fields

ẽ = ∓ jkz∇t ψ̃e + ẑk2
c ψ̃e,

h̃ = − jωε̃cẑ × ∇t ψ̃e.

Because we have a simple relationship between the transverse parts of Ẽ and H̃, we may
also write the fields as

ẽz = k2
c ψ̃e, (5.137)

ẽt = ∓ jkz∇t ψ̃e, (5.138)
h̃t = ±Ye(ẑ × ẽt ). (5.139)

Here

Ye = ωε̃c

kz

is the complex TM wave admittance. For TE fields we have with �̃h = ψ̃he∓ jkz z

ẽ = jωµ̃ẑ × ∇t ψ̃h,

h̃ = ∓ jkz∇t ψ̃h + ẑk2
c ψ̃h,

or

h̃z = k2
c ψ̃h, (5.140)

h̃t = ∓ jkz∇t ψ̃h, (5.141)
ẽt = ∓Zh(ẑ × h̃t ). (5.142)

Here

Zh = ωµ̃

kz

is the TM wave impedance.

Modal solutions for the transverse field dependence. Equation (5.136) describes
the transverse behavior of the waveguide fields. When coupled with an appropriate
boundary condition, this homogeneous equation has an infinite spectrum of discrete so-
lutions called eigenmodes or simply modes. Each mode has associated with it a real
eigenvalue kc that is dependent on the cross-sectional shape of the waveguide, but inde-
pendent of frequency and homogeneous material parameters. We number the modes so
that kc = kcn for the nth mode. The amplitude of each modal solution depends on the
excitation source within the waveguide.



The appropriate boundary conditions can be found by employing the condition that
for both TM and TE fields the tangential component of Ẽ must be zero on the waveguide
walls: n̂ × Ẽ = 0, where n̂ is the unit inward normal to the waveguide wall. For TM
fields we have Ẽz = 0 and thus

ψ̃e(ρ, ω) = 0, ρ ∈ �, (5.143)

where � is the contour describing the waveguide boundary. For TE fields we have n̂×Ẽt =
0, or

n̂ × (ẑ × ∇t ψ̃h) = 0.

Using

n̂ × (ẑ × ∇t ψ̃h) = ẑ(n̂ · ∇t ψ̃h) − (n̂ · ẑ)∇t ψ̃h

and noting that n̂ · ẑ = 0, we have the boundary condition

n̂ · ∇t ψ̃h(ρ, ω) = ∂ψ̃h(ρ, ω)

∂n
= 0, ρ ∈ �. (5.144)

The wave nature of the waveguide fields. We have seen that all waveguide field
components, for both TE and TM modes, vary as e∓ jkzn z . Here k2

zn = k2 − k2
cn is the

propagation constant of the nth mode. Letting

kz = β − jα

we thus have

Ẽ, H̃ ∼ e∓ jβze∓αz .

For z > d we choose the minus sign so that we have a wave propagating away from the
source; for z < −d we choose the plus sign.

When the guide is filled with a good dielectric we may assume µ̃ = µ is real and
independent of frequency and use (4.254) to show that

kz = β − jα =
√[

ω2µε′ − k2
c

] − jω2µε′ tan δc

=
√

µε′
√

ω2 − ω2
c

√
1 − j

tan δc

1 − (ωc/ω)2

where δc is the loss tangent (4.253) and where

ωc = kc√
µε′

is called the cutoff frequency. Under the condition

tan δc

1 − (ωc/ω)2 � 1 (5.145)

we may approximate the square root using the first two terms of the binomial series to
show that

β − jα ≈
√

µε′
√

ω2 − ω2
c

[
1 − j

1

2

tan δc

1 − (ωc/ω)2

]
. (5.146)
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Figure 5.4: Dispersion plot for a hollow-pipe waveguide. Light line computed using
v = 1/

√
µε.

Condition (5.145) requires that ω be sufficiently removed from ωc, either by having
ω > ωc or ω < ωc. When ω > ωc we say that the frequency is above cutoff and find from
(5.146) that

β ≈ ω
√

µε′
√

1 − ω2
c/ω

2, α ≈ ω2µε′

2β
tan δc.

Here α � β and the wave propagates down the waveguide with relatively little loss.
When ω < ωc we say that the waveguide is cut off or that the frequency is below cutoff
and find that

α ≈ ω
√

µε′
√

ω2
c/ω

2 − 1, β ≈ ω2µε′

2α
tan δc.

In this case the wave has a very small phase constant and a very large rate of attenuation.
For frequencies near ωc there is an abrupt but continuous transition between these two
types of wave behavior.

When the waveguide is filled with a lossless material having permittivity ε and per-
meability µ, the transition across the cutoff frequency is discontinuous. For ω > ωc we
have

β = ω
√

µε

√
1 − ω2

c/ω
2, α = 0,

and the wave propagates without loss. For ω < ωc we have

α = ω
√

µε

√
ω2

c/ω
2 − 1, β = 0,

and the wave is evanescent. The dispersion diagram shown in Figure 5.4 clearly shows
the abrupt cutoff phenomenon. We can compute the phase and group velocities of the
wave above cutoff just as we did for plane waves:

vp = ω

β
= v√

1 − ω2
c/ω

2
,
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Figure 5.5: Phase and group velocity for a hollow-pipe waveguide.

vg = dω

dβ
= v

√
1 − ω2

c/ω
2, (5.147)

where v = 1/
√

µε. Note that vgvp = v2. We show later that vg is the velocity of energy
transport within a lossless guide. We also see that as ω → ∞ we have vp → v and
vg → v. More interestingly, as ω → ωc we find that vp → ∞ and vg → 0. This is shown
graphically in Figure 5.5.

We may also speak of the guided wavelength of a monochromatic wave propagating
with frequency ω̌ in a waveguide. We define this wavelength as

λg = 2π

β
= λ√

1 − ω2
c/ω̌

2
= λ√

1 − λ2/λ2
c

.

Here

λ = 2π

ω̌
√

µε
, λc = 2π

kc
.

Orthogonality of waveguide modes. The modal fields in a closed-pipe waveguide
obey several orthogonality relations. Let (Ěn, Ȟn) be the time-harmonic electric and
magnetic fields of one particular waveguide mode (TE or TM), and let (Ěm, Ȟm) be
the fields of a different mode (TE or TM). One very useful relation states that for a
waveguide containing lossless materials∫

C S
ẑ · (

ěn × ȟ∗
m

)
d S = 0, m = n, (5.148)

where C S is the guide cross-section. This is used to establish that the total power carried
by a wave is the sum of the powers carried by individual modes (see below).



Other important relationships include the orthogonality of the longitudinal fields,∫
C S

Ězm Ězn d S = 0, m = n, (5.149)∫
C S

Ȟzm Ȟzn d S = 0, m = n, (5.150)

and the orthogonality of transverse fields,∫
C S

Ětm · Ětn d S = 0, m = n,∫
C S

Ȟtm · Ȟtn d S = 0, m = n.

These may also be combined to give an orthogonality relation for the complete fields:∫
C S

Ěm · Ěn d S = 0, m = n, (5.151)∫
C S

Ȟm · Ȟn d S = 0, m = n. (5.152)

For proofs of these relations the reader should see Collin [39].

Power carried by time-harmonic waves in lossless waveguides. The power car-
ried by a time-harmonic wave propagating down a waveguide is defined as the time-
average Poynting flux passing through the guide cross-section. Thus we may write

Pav = 1

2

∫
C S

Re
{
Ě × Ȟ∗} · ẑ d S.

The field within the guide is assumed to be a superposition of all possible waveguide
modes. For waves traveling in the +z-direction this implies

Ě =
∑

m

(ětm + ẑězm) e− jkzm z, Ȟ =
∑

n

(
ȟtn + ẑȟzn

)
e− jkzn z .

Substituting we have

Pav = 1

2
Re

{∫
C S

[∑
m

(ětm + ẑězm) e− jkzm z ×
∑

n

(
ȟ∗

tn + ẑȟ∗
zn

)
e jk∗

zn z

]
· ẑ d S

}

= 1

2
Re

{∑
m

∑
n

e− j (kzm−k∗
zn)z

∫
C S

ẑ · (
ětm × ȟ∗

tn

)
d S

}
.

By (5.148) we have

Pav = 1

2
Re

{∑
n

e− j (kzn−k∗
zn)z

∫
C S

ẑ · (
ětn × ȟ∗

tn

)
d S

}
.

For modes propagating in a lossless guide kzn = βzn. For modes that are cut off kzn =
− jαzn. However, we find below that terms in this series representing modes that are cut
off are zero. Thus

Pav =
∑

n

1

2
Re

{∫
C S

ẑ · (
ětn × ȟ∗

tn

)
d S

}
=

∑
n

Pn,av.



Hence for waveguides filled with lossless media the total time-average power flow is given
by the superposition of the individual modal powers.

Simple formulas for the individual modal powers in a lossless guide may be obtained
by substituting the expressions for the fields. For TM modes we use (5.138) and (5.139)
to get

Pav = 1

2
Re

{
|kz|2Y ∗

e e− j (kz−k∗
z )

∫
C S

ẑ · (∇t ψ̌e × [ẑ × ∇t ψ̌
∗
e ]

)
d S

}

= 1

2
|kz|2 Re

{
Y ∗

e

}
e− j (kz−k∗

z )

∫
C S

∇t ψ̌e · ∇t ψ̌
∗
e d S.

Here we have used (B.7) and ẑ · ∇t ψ̌e = 0. This expression can be simplified by using the
two-dimensional version of Green’s first identity (B.29):∫

S
(∇t a · ∇t b + a∇2

t b) d S =
∮

�

a
∂b

∂n
dl.

Using a = ψ̌e and b = ψ̌∗
e and integrating over the waveguide cross-section we have∫

C S
(∇t ψ̌e · ∇t ψ̌

∗
e + ψ̌e∇2ψ̌∗

e ) d S =
∮

�

ψ̌e
∂ψ̌∗

e

∂n
dl.

Substituting ∇2
t ψ̌∗

e = −k2
c ψ̌

∗
e and remembering that ψ̌e = 0 on � we reduce this to∫
C S

∇t ψ̌e · ∇t ψ̌
∗
e d S = k2

c

∫
C S

ψ̌eψ̌
∗
e d S. (5.153)

Thus the power is

Pav = 1

2
Re

{
Y ∗

e

} |kz|2k2
c e− j (kz−k∗

z )z
∫

C S
ψ̌eψ̌

∗
e d S.

For modes above cutoff we have kz = β and Ye = ωε/kz = ωε/β. The power carried by
these modes is thus

Pav = 1

2
ωεβk2

c

∫
C S

ψ̌eψ̌
∗
e d S. (5.154)

For modes below cutoff we have kz = − jα and Ye = jωε/α. Thus Re{Y ∗
e } = 0 and

Pav = 0. For frequencies below cutoff the fields are evanescent and do not carry power
in the manner of propagating waves.

For TE modes we may proceed similarly and show that

Pav = 1

2
ωµβk2

c

∫
C S

ψ̌hψ̌
∗
h d S. (5.155)

The details are left as an exercise.

Stored energy in a waveguide and the velocity of energy transport. Consider
a source-free section of lossless waveguide bounded on its two ends by the cross-sectional
surfaces C S1 and C S2. Setting J̌i = J̌c = 0 in (4.156) we have

1

2

∮
S
(Ě × Ȟ∗) · dS = 2 jω

∫
V

[〈we〉 − 〈wm〉] dV,



where V is the region of the guide between C S1 and C S2. The right-hand side represents
the difference between the total time-average stored electric and magnetic energies. Thus

2 jω [〈We〉 − 〈Wm〉] =
1

2

∫
C S1

−ẑ · (Ě × Ȟ∗) d S + 1

2

∫
C S2

ẑ · (Ě × Ȟ∗) d S − 1

2

∫
Scond

(Ě × Ȟ∗) · dS,

where Scond indicates the conducting walls of the guide and n̂ points into the guide. For
a propagating mode the first two terms on the right-hand side cancel since with no loss
Ě×Ȟ∗ is the same on C S1 and C S2. The third term is zero since (Ě×Ȟ∗)·n̂ = (n̂×Ě)·Ȟ∗,
and n̂ × Ě = 0 on the waveguide walls. Thus we have

〈We〉 = 〈Wm〉
for any section of a lossless waveguide.

We may compute the time-average stored magnetic energy in a section of lossless
waveguide of length l as

〈Wm〉 = µ

4

∫ l

0

∫
C S

Ȟ · Ȟ∗ d S dz.

For propagating TM modes we can substitute (5.139) to find

〈Wm〉/ l = µ

4
(βYe)

2
∫

C S
(ẑ × ∇t ψ̌e) · (ẑ × ∇t ψ̌

∗
e ) d S.

Using

(ẑ × ∇t ψ̌e) · (ẑ × ∇t ψ̌
∗
e ) = ẑ · [∇t ψ̌

∗
e × (ẑ × ∇t ψ̌e)

] = ∇t ψ̌e · ∇t ψ̌
∗
e

we have

〈Wm〉/ l = µ

4
(βYe)

2
∫

C S
∇t ψ̌e · ∇t ψ̌

∗
e d S.

Finally, using (5.153) we have the stored energy per unit length for a propagating TM
mode:

〈Wm〉/ l = 〈We〉/ l = µ

4
(ωε)2k2

c

∫
C S

ψ̌eψ̌
∗
e d S.

Similarly we may show that for a TE mode

〈We〉/ l = 〈Wm〉/ l = ε

4
(ωµ)2k2

c

∫
C S

ψ̌hψ̌
∗
h d S.

The details are left as an exercise.
As with plane waves in (4.261) we may describe the velocity of energy transport as the

ratio of the Poynting flux density to the total stored energy density:

Sav = 〈wT 〉ve.

For TM modes this energy velocity is

ve =
1
2ωεβk2

c ψ̌eψ̌
∗
e

2µ

4 (ωε)2k2
c ψ̌eψ̌∗

e

= β

ωµε
= v

√
1 − ω2

c/ω
2,

which is identical to the group velocity (5.147). This is also the case for TE modes, for
which

ve =
1
2ωµβk2

c ψ̌hψ̌
∗
h

2 ε
4 (ωµ)2k2

c ψ̌hψ̌
∗
h

= β

ωµε
= v

√
1 − ω2

c/ω
2.



Example: fields of a rectangular waveguide. Consider a rectangular waveguide
with a cross-section occupying 0 ≤ x ≤ a and 0 ≤ y ≤ b. The material within the guide
is assumed to be a lossless dielectric of permittivity ε and permeability µ. We seek the
modal fields within the guide.

Both TE and TM fields exist within the guide. In each case we must solve the differ-
ential equation

∇2
t ψ̃ + k2

c ψ̃ = 0.

A product solution in rectangular coordinates may be sought using the separation of
variables technique (§ A.4). We find that

ψ̃(x, y, ω) = [Ax sin kx x + Bx cos kx x]
[
Ay sin ky y + By cos ky y

]
where k2

x + k2
y = k2

c . This solution is easily verified by substitution.
For TM modes the solution is subject to the boundary condition (5.143):

ψ̃e(ρ, ω) = 0, ρ ∈ �.

Applying this at x = 0 and y = 0 we find Bx = By = 0. Applying the boundary condition
at x = a we then find sin kx a = 0 and thus

kx = nπ

a
, n = 1, 2, . . . .

Note that n = 0 corresponds to the trivial solution ψ̃e = 0. Similarly, from the condition
at y = b we find that

ky = mπ

b
, m = 1, 2, . . . .

Thus

ψ̃e(x, y, ω) = Anm sin
(nπx

a

)
sin

(mπy

b

)
.

From (5.137)–(5.139) we find that the fields are

Ẽz = k2
cnm

Anm

[
sin

nπx

a
sin

mπy

b

]
e∓ jkz z,

Ẽt = ∓ jkz Anm

[
x̂

nπ

a
cos

nπx

a
sin

mπy

b
+ ŷ

mπ

b
sin

nπx

a
cos

mπy

b

]
e∓ jkz z,

H̃t = jkzYe Anm

[
x̂

mπ

b
sin

nπx

a
cos

mπy

b
− ŷ

nπ

a
cos

nπx

a
sin

mπy

b

]
e∓ jkz z .

Here

Ye = 1

η
√

1 − ω2
cnm

/ω2

with η = (µε)1/2.
Each combination of m, n describes a different field pattern and thus a different mode,

designated TMnm . The cutoff wavenumber of the TMnm mode is

kcnm =
√(nπ

a

)2
+

(mπ

b

)2
, m, n = 1, 2, 3, . . .

and the cutoff frequency is

ωcnm = v

√(nπ

a

)2
+

(mπ

b

)2
, m, n = 1, 2, 3, . . .



where v = 1/(µε)1/2. Thus the TM11 mode has the lowest cutoff frequency of any TM
mode. There is a range of frequencies for which this is the only propagating TM mode.

For TE modes the solution is subject to

n̂ · ∇t ψ̃h(ρ, ω) = ∂ψ̃h(ρ, ω)

∂n
= 0, ρ ∈ �.

At x = 0 we have

∂ψ̃h

∂x
= 0

leading to Ax = 0. At y = 0 we have

∂ψ̃h

∂y
= 0

leading to Ay = 0. At x = a we require sin kx a = 0 and thus

kx = nπ

a
, n = 0, 1, 2, . . . .

Similarly, from the condition at y = b we find

ky = mπ

b
, m = 0, 1, 2, . . . .

The case n = m = 0 is not allowed since it produces the trivial solution. Thus

ψ̃h(x, y, ω) = Bnm cos
(nπx

a

)
cos

(mπy

b

)
, m, n = 0, 1, 2, . . . , m + n > 0.

From (5.140)–(5.142) we find that the fields are

H̃z = k2
cnm

Bnm

[
cos

nπx

a
cos

mπy

b

]
e∓ jkz z,

H̃t = ± jkz Bnm

[
x̂

nπ

a
sin

nπx

a
cos

mπy

b
+ ŷ

mπ

b
cos

nπx

a
sin

mπy

b

]
e∓ jkz z,

Ẽt = jkz Zh Bnm

[
x̂

mπ

b
cos

nπx

a
sin

mπy

b
− ŷ

nπ

a
sin

nπx

a
cos

mπy

b

]
e∓ jkz z .

Here

Zh = η√
1 − ω2

cnm
/ω2

.

In this case the modes are designated TEnm . The cutoff wavenumber of the TEnm mode
is

kcnm =
√(nπ

a

)2
+

(mπ

b

)2
, m, n = 0, 1, 2, . . . , m + n > 0

and the cutoff frequency is

ωcnm = v

√(nπ

a

)2
+

(mπ

b

)2
, m, n = 0, 1, 2, . . . , m + n > 0

where v = 1/(µε)1/2. Modes having the same cutoff frequency are said to be degenerate.
This is the case with the TE and TM modes. However, the field distributions differ and
thus the modes are distinct. Note that we may also have degeneracy among the TE



or TM modes. For instance, if a = b then the cutoff frequency of the TEnm mode is
identical to that of the TEmn mode. If a ≥ b then the TE10 mode has the lowest cutoff
frequency and is termed the dominant mode in a rectangular guide. There is a finite
band of frequencies in which this is the only mode propagating (although the bandwidth
is small if a ≈ b.)

Calculation of the time-average power carried by propagating TE and TM modes is
left as an exercise.

5.4.4 TE–TM decomposition in spherical coordinates

It is not necessary for the longitudinal direction to be constant to achieve a TE–TM
decomposition. It is possible, for instance, to represent the electromagnetic field in terms
of components either TE or TM to the radial direction of spherical coordinates. This may
be shown using a procedure identical to that used for the longitudinal–transverse decom-
position in rectangular coordinates. We carry out the decomposition in the frequency
domain and leave the time-domain decomposition as an exercise.

TE–TM decomposition in terms of the radial fields. Consider a source-free re-
gion of space filled with a homogeneous, isotropic material described by parameters µ̃(ω)

and ε̃c(ω). We substitute the spherical coordinate representation of the curl into Fara-
day’s and Ampere’s laws with source terms J̃ and J̃m set equal to zero. Equating vector
components we have, in particular,

1

r

[
1

sin θ

∂ Ẽr

∂φ
− ∂

∂r
(r Ẽφ)

]
= − jωµ̃H̃θ (5.156)

and

1

r

[
∂

∂r
(r H̃θ ) − ∂ H̃r

∂θ

]
= jωε̃c Ẽφ. (5.157)

We seek to isolate the transverse components of the fields in terms of the radial compo-
nents. Multiplying (5.156) by jωε̃cr we get

jωε̃c 1

sin θ

∂ Ẽr

∂φ
− jωε̃c ∂(r Ẽφ)

∂r
= k2r H̃θ ;

next, multiplying (5.157) by r and then differentiating with respect to r we get

∂2

∂r2
(r H̃θ ) − ∂2 H̃r

∂θ∂r
= jωε̃c ∂(r Ẽφ)

∂r
.

Subtracting these two equations and rearranging, we obtain(
∂2

∂r2
+ k2

)
(r H̃θ ) = jωε̃c 1

sin θ

∂ Ẽr

∂φ
+ ∂2 H̃r

∂r∂θ
.

This is a one-dimensional wave equation for the product of r with the transverse field
component H̃θ . Similarly(

∂2

∂r2
+ k2

)
(r H̃φ) = − jωε̃c ∂ Ẽr

∂θ
+ 1

sin θ

∂2 H̃r

∂r∂φ
,



and (
∂2

∂r2
+ k2

)
(r Ẽφ) = 1

sin θ

∂2 Ẽr

∂φ∂r
+ jωµ̃

∂ H̃r

∂θ
, (5.158)(

∂2

∂r2
+ k2

)
(r Ẽθ ) = ∂2 Ẽr

∂θ∂r
+ jωµ̃

1

sin θ

∂ H̃r

∂φ
. (5.159)

Hence we can represent the electromagnetic field in a source-free region in terms of
the two scalar quantities Ẽr and H̃r . Superposition allows us to solve the TE case with
Ẽr = 0 and the TM case with H̃r = 0, and combine the results for the general expansion
of the field.

TE–TM decomposition in terms of potential functions. If we allow the vector
potential (or Hertzian potential) to have only an r -component, then the resulting fields
are TE or TM to the r -direction. Unfortunately, this scalar component does not satisfy
the Helmholtz equation. If we wish to use a potential component that satisfies the
Helmholtz equation then we must discard the Lorentz condition and choose a different
relationship between the vector and scalar potentials.

1. TM fields. To generate fields TM to r we recall that the electromagnetic fields
may be written in terms of electric vector and scalar potentials as

Ẽ = − jωÃe − ∇φe, (5.160)
B̃ = ∇ × Ãe. (5.161)

In a source-free region we have by Ampere’s law

Ẽ = 1

jωµ̃ε̃c
∇ × B̃ = 1

jωµ̃ε̃c
∇ × (∇ × Ãe).

Here φ̃e and Ãe must satisfy a differential equation that may be derived by examining

∇ × (∇ × Ẽ) = − jω∇ × B̃ = − jω( jωµ̃ε̃cẼ) = k2Ẽ,

where k2 = ω2µ̃ε̃c. Substitution from (5.160) gives

∇ × (∇ × [− jωÃe − ∇φ̃e]
) = k2[− jωÃe − ∇φ̃e]

or

∇ × (∇ × Ãe) − k2Ãe = k2

jω
∇φ̃e. (5.162)

We are still free to specify ∇ · Ãe.
At this point let us examine the effect of choosing a vector potential with only an

r -component: Ãe = r̂ Ãe. Since

∇ × (r̂ Ãe) = θ̂

r sin θ

∂ Ãe

∂φ
− φ̂

r

∂ Ãe

∂θ
(5.163)

we see that B = ∇ × Ãe has no r -component. Since

∇ × (∇ × Ãe) = − r̂
r sin θ

[
1

r

∂

∂θ

(
sin θ

∂ Ãe

∂θ

)
+ 1

r sin θ

∂2 Ãe

∂φ2

]
+ θ̂

r

∂2 Ãe

∂r∂θ
+ φ̂

r sin θ

∂2 Ãe

∂r∂φ



we see that Ẽ ∼ ∇ × (∇ × Ãe) has all three components. This choice of Ãe produces a
field TM to the r -direction. We need only choose ∇ · Ãe so that the resulting differential
equation is convenient to solve. Substituting the above expressions into (5.162) we find
that

− r̂
r sin θ

[
1

r

∂

∂θ

(
sin θ

∂ Ãe

∂θ

)
+ 1

r sin θ

∂2 Ãe

∂φ2

]
+ θ̂

r

∂2 Ãe

∂r∂θ
+ φ̂

r sin θ

∂2 Ãe

∂r∂φ
− r̂k2 Ãe =

r̂
k2

jω

∂φ̃e

∂r
+ θ̂

r

k2

jω

∂φ̃e

∂θ
+ φ̂

r sin θ

k2

jω

∂φ̃e

∂φ
. (5.164)

Since ∇ · Ãe only involves the derivatives of Ãe with respect to r , we may specify ∇ · Ãe

indirectly through

φ̃e = jω

k2

∂ Ãe

∂r
.

With this (5.164) becomes

1

r sin θ

[
1

r

∂

∂θ

(
sin θ

∂ Ãe

∂θ

)
+ 1

r sin θ

∂2 Ãe

∂φ2

]
+ k2 Ãe + ∂2 Ãe

∂r2
= 0.

Using

1

r

∂

∂r

[
r2 ∂

∂r

(
Ãe

r

)]
= ∂2 Ãe

∂r2

we can write the differential equation as

1

r2

∂

∂r

[
r2 ∂( Ãe/r)

∂r

]
+ 1

r2 sin θ

∂

∂θ

[
sin θ

∂( Ãe/r)

∂θ

]
+ 1

r2 sin2 θ

∂2( Ãe/r)

∂φ2
+ k2 Ãe

r
= 0.

The first three terms of this expression are precisely the Laplacian of Ãe/r . Thus we
have

(∇2 + k2)

(
Ãe

r

)
= 0 (5.165)

and the quantity Ãe/r satisfies the homogeneous Helmholtz equation.
The TM fields generated by the vector potential Ãe = r̂ Ãe may be found by using

(5.160) and (5.161). From (5.160) we have the electric field

Ẽ = − jωÃe − ∇φ̃e = − jωr̂ Ãe − ∇
(

jω

k2

∂ Ãe

∂r

)
.

Expanding the gradient we have the field components

Ẽr = 1

jωµ̃ε̃c

(
∂2

∂r2
+ k2

)
Ãe, (5.166)

Ẽθ = 1

jωµ̃ε̃c

1

r

∂2 Ãe

∂r∂θ
, (5.167)

Ẽφ = 1

jωµ̃ε̃c

1

r sin θ

∂2 Ãe

∂r∂φ
. (5.168)



The magnetic field components are found using (5.161) and (5.163):

H̃θ = 1

µ̃

1

r sin θ

∂ Ãe

∂φ
, (5.169)

H̃φ = − 1

µ̃

1

r

∂ Ãe

∂θ
. (5.170)

2. TE fields. To generate fields TE to r we recall that the electromagnetic fields in
a source-free region may be written in terms of magnetic vector and scalar potentials as

H̃ = − jωÃh − ∇φh, (5.171)
D̃ = −∇ × Ãh . (5.172)

In a source-free region we have from Faraday’s law

H̃ = 1

− jωµ̃ε̃c
∇ × D̃ = 1

jωµ̃ε̃c
∇ × (∇ × Ãh).

Here φ̃h and Ãh must satisfy a differential equation that may be derived by examining

∇ × (∇ × H̃) = jω∇ × D̃ = jωε̃c(− jωµ̃H̃) = k2H̃,

where k2 = ω2µ̃ε̃c. Substitution from (5.171) gives

∇ × (∇ × [− jωÃh − ∇φ̃h]
) = k2[− jωÃh − ∇φ̃h]

or

∇ × (∇ × Ãh) − k2Ãh = k2

jω
∇φ̃h . (5.173)

Choosing Ãh = r̂ Ãh and

φ̃h = jω

k2

∂ Ãh

∂r

we find, as with the TM fields,

(∇2 + k2)

(
Ãh

r

)
= 0. (5.174)

Thus the quantity Ãh/r obeys the Helmholtz equation.
We can find the TE fields using (5.171) and (5.172). Substituting we find that

H̃r = 1

jωµ̃ε̃c

(
∂2

∂r2
+ k2

)
Ãh, (5.175)

H̃θ = 1

jωµ̃ε̃c

1

r

∂2 Ãh

∂r∂θ
, (5.176)

H̃φ = 1

jωµ̃ε̃c

1

r sin θ

∂2 Ãh

∂r∂φ
, (5.177)

Ẽθ = − 1

ε̃c

1

r sin θ

∂ Ãh

∂φ
, (5.178)

Ẽφ = 1

ε̃c

1

r

∂ Ãh

∂θ
. (5.179)



Example of spherical TE–TM decomposition: a plane wave. Consider a uni-
form plane wave propagating in the z-direction in a lossless, homogeneous material of
permittivity ε and permeability µ, such that its electromagnetic field is

Ẽ(r, ω) = x̂Ẽ0(ω)e− jkz = x̂Ẽ0(ω)e− jkr cos θ ,

H̃(r, ω) = ŷ
Ẽ0(ω)

η
e− jkz = x̂

Ẽ0(ω)

η
e− jkr cos θ .

We wish to represent this field in terms of the superposition of a field TE to r and a field
TM to r . We first find the potential functions Ãe = r̂ Ãe and Ãh = r̂ Ãh that represent
the field. Then we may use (5.166)–(5.170) and (5.175)–(5.179) to find the TE and TM
representations.

From (5.166) we see that Ãe is related to Ẽr , where Ẽr is given by

Ẽr = Ẽ0 sin θ cos φe− jkr cos θ = Ẽ0 cos φ

jkr

∂

∂θ

[
e− jkr cos θ

]
.

We can separate the r and θ dependences of the exponential function by using the identity
(E.101). Since jn(−z) = (−1)n jn(z) = j−2n jn(z) we have

e− jkr cos θ =
∞∑

n=0

j−n(2n + 1) jn(kr)Pn(cos θ).

Using

∂ Pn(cos θ)

∂θ
= ∂ P0

n (cos θ)

∂θ
= P1

n (cos θ)

we thus have

Ẽr = − j Ẽ0 cos φ

kr

∞∑
n=1

j−n(2n + 1) jn(kr)P1
n (cos θ).

Here we start the sum at n = 1 since P1
0 (x) = 0. We can now identify the vector potential

as
Ãe

r
= Ẽ0k

ω
cos φ

∞∑
n=1

j−n(2n + 1)

n(n + 1)
jn(kr)P1

n (cos θ) (5.180)

since by direct differentiation we have

Ẽr = 1

jωµ̃ε̃c

(
∂2

∂r2
+ k2

)
Ãe

= Ẽ0k

jω2µ̃ε̃c
cos φ

∞∑
n=1

j−n(2n + 1)

n(n + 1)
P1

n (cos θ)

(
∂2

∂r2
+ k2

)
[r jn(kr)]

= − j Ẽ0 cos φ

kr

∞∑
n=1

j−n(2n + 1) jn(kr)P1
n (cos θ),

which satisfies (5.166). Here we have used the defining equation of the spherical Bessel
functions (E.15) to show that(

∂2

∂r2
+ k2

)
[r jn(kr)] = r

∂2

∂r2
jn(kr) + 2

∂

∂r
jn(kr) + k2r jn(kr)

= k2r

[
∂2

∂(kr)2
+ 2

kr

∂

∂(kr)

]
jn(kr) + k2r jn(kr)

= −k2r

[
1 − n(n + 1)

(kr)2

]
jn(kr) + k2r jn(kr) = n(n + 1)

r
jn(kr).



We note immediately that Ãe/r satisfies the Helmholtz equation (5.165) since it has the
form of the separation of variables solution (D.113).

We may find the vector potential Ãh = r̂ Ãh in the same manner. Noting that

H̃r = Ẽ0

η
sin θ sin φe− jkr cos θ = Ẽ0 sin φ

η jkr

∂

∂θ

[
e− jkr cos θ

]
= 1

jωµ̃ε̃c

(
∂2

∂r2
+ k2

)
Ãh,

we have the potential

Ãh

r
= Ẽ0k

ηω
sin φ

∞∑
n=1

j−n(2n + 1)

n(n + 1)
jn(kr)P1

n (cos θ). (5.181)

We may now compute the transverse components of the TM field using (5.167)–(5.170).
For convenience, let us define a new function Ĵn by

Ĵn(x) = x jn(x).

Then we may write

Ẽr = − j Ẽ0 cos φ

(kr)2

∞∑
n=1

j−n(2n + 1) Ĵn(kr)P1
n (cos θ), (5.182)

Ẽθ = j Ẽ0

kr
sin θ cos φ

∞∑
n=1

an Ĵ ′
n(kr)P1

n
′
(cos θ), (5.183)

Ẽφ = j Ẽ0

kr sin θ
sin φ

∞∑
n=1

an Ĵ ′
n(kr)P1

n (cos θ), (5.184)

H̃θ = − Ẽ0

krη sin θ
sin φ

∞∑
n=1

an Ĵn(kr)P1
n (cos θ), (5.185)

H̃φ = Ẽ0

krη
sin θ cos φ

∞∑
n=1

an Ĵn(kr)P1
n

′
(cos θ). (5.186)

Here

Ĵ ′
n(x) = d

dx
Ĵn(x) = d

dx
[x jn(x)] = x j ′

n(x) + jn(x)

and

an = j−n(2n + 1)

n(n + 1)
. (5.187)

Similarly, we have the TE fields from (5.176)–(5.179):

H̃r = − j Ẽ0 sin φ

η(kr)2

∞∑
n=1

j−n(2n + 1) Ĵn(kr)P1
n (cos θ), (5.188)

H̃θ = j
Ẽ0

ηkr
sin θ sin φ

∞∑
n=1

an Ĵ ′
n(kr)P1

n
′
(cos θ), (5.189)

H̃φ = − j
Ẽ0

ηkr sin θ
cos φ

∞∑
n=1

an Ĵ ′
n(kr)P1

n (cos θ), (5.190)



Ẽθ = − Ẽ0

kr sin θ
cos φ

∞∑
n=1

an Ĵn(kr)P1
n (cos θ), (5.191)

Ẽφ = − Ẽ0

kr
sin θ sin φ

∞∑
n=1

an Ĵn(kr)P1
n

′
(cos θ). (5.192)

The total field is then the sum of the TE and TM components.

Example of spherical TE–TM decomposition: scattering by a conducting
sphere. Consider a PEC sphere of radius a centered at the origin and imbedded in a
homogeneous, isotropic material having parameters µ̃ and ε̃c. The sphere is illuminated
by a plane wave incident along the z-axis with the fields

Ẽ(r, ω) = x̂Ẽ0(ω)e− jkz = x̂Ẽ0(ω)e− jkr cos θ ,

H̃(r, ω) = ŷ
Ẽ0(ω)

η
e− jkz = x̂

Ẽ0(ω)

η
e− jkr cos θ .

We wish to find the field scattered by the sphere.
The boundary condition that determines the scattered field is that the total (incident

plus scattered) electric field tangential to the sphere must be zero. We saw in the previous
example that the incident electric field may be written as the sum of a field TE to the
r -direction and a field TM to the r -direction. Since the region external to the sphere
is source-free, we may also represent the scattered field as a sum of TE and TM fields.
These may be found from the functions Ãs

e and Ãs
h , which obey the Helmholtz equations

(5.165) and (5.174). The general solution to the Helmholtz equation may be found using
the separation of variables technique in spherical coordinates, as shown in § A.4, and is
given by {

Ãs
e/r

Ãs
h/r

}
=

∞∑
n=0

n∑
m=−n

CnmYnm(θ, φ)h(2)
n (kr).

Here Ynm is the spherical harmonic and we have chosen the spherical Hankel function h(2)
n

as the radial dependence since it represents the expected outward-going wave behavior
of the scattered field. Since the incident field generated by the potentials (5.180) and
(5.181) exactly cancels the field generated by Ãs

e and Ãs
h on the surface of the sphere, by

orthogonality the scattered potential must have φ and θ dependencies that match those
of the incident field. Thus

Ãs
e

r
= Ẽ0k

ω
cos φ

∞∑
n=1

bnh(2)
n (kr)P1

n (cos θ),

Ãs
h

r
= Ẽ0k

ηω
sin φ

∞∑
n=1

cnh(2)
n (kr)P1

n (cos θ),

where bn and cn are constants to be determined by the boundary conditions. By super-
position the total field may be computed from the total potentials, which are the sum of
the incident and scattered potentials. These are given by

Ãt
e

r
= Ẽ0k

ω
cos φ

∞∑
n=1

[
an jn(kr) + bnh(2)

n (kr)
]

P1
n (cos θ),

Ãt
h

r
= Ẽ0k

ηω
sin φ

∞∑
n=1

[
an jn(kr) + cnh(2)

n (kr)
]

P1
n (cos θ),



where an is given by (5.187).
The total transverse electric field is found by superposing the TE and TM transverse

fields found from the total potentials. We have already computed the transverse incident
fields and may easily generalize these results to the total potentials. By (5.183) and
(5.191) we have

Ẽ t
θ (a) = j Ẽ0

ka
sin θ cos φ

∞∑
n=1

[
an Ĵ ′

n(ka) + bn Ĥ (2)′
n (ka)

]
P1

n
′
(cos θ) −

− Ẽ0

ka sin θ
cos φ

∞∑
n=1

[
an Ĵn(ka) + cn Ĥ (2)

n (ka)
]

P1
n (cos θ) = 0,

where

Ĥ (2)
n (x) = xh(2)

n (x).

By (5.184) and (5.192) we have

Ẽ t
φ(a) = j Ẽ0

ka sin θ
sin φ

∞∑
n=1

[
an Ĵ ′

n(ka) + bn Ĥ (2)′
n (ka)

]
P1

n (cos θ) −

− Ẽ0

ka
sin θ sin φ

∞∑
n=1

[
an Ĵn(ka) + cn Ĥ (2)

n (ka)
]

P1
n

′
(cos θ) = 0.

These two sets of equations are satisfied by the conditions

bn = − Ĵ ′
n(ka)

Ĥ (2)′
n (ka)

an, cn = − Ĵn(ka)

Ĥ (2)
n (ka)

an.

We can now write the scattered electric fields as

Ẽs
r = − j Ẽ0 cos φ

∞∑
n=1

bn
[
Ĥ (2)′′

n (kr) + Ĥ (2)
n (kr)

]
P1

n (cos θ),

Ẽs
θ = Ẽ0

kr
cos φ

∞∑
n=1

[
jbn sin θ Ĥ (2)′

n (kr)P1
n

′
(cos θ) − cn

1

sin θ
Ĥ (2)

n (kr)P1
n (cos θ)

]
,

Ẽs
φ = Ẽ0

kr
sin φ

∞∑
n=1

[
jbn

1

sin θ
Ĥ (2)′

n (kr)P1
n (cos θ) − cn sin θ Ĥ (2)

n (kr)P1
n

′
(cos θ)

]
.

Let us approximate the scattered field for observation points far from the sphere. We
may approximate the spherical Hankel functions using (E.68) as

Ĥ (2)
n (z) = zh(2)

n (z) ≈ j n+1e− j z, Ĥ (2)′
n (z) ≈ j ne− j z, Ĥ (2)′′

n (z) ≈ − j n+1e− j z .

Substituting these we find that Ẽr → 0 as expected for the far-zone field, while

Ẽ s
θ ≈ Ẽ0

e− jkr

kr
cos φ

∞∑
n=1

j n+1

[
bn sin θ P1

n
′
(cos θ) − cn

1

sin θ
P1

n (cos θ)

]
,

Ẽ s
φ ≈ Ẽ0

e− jkr

kr
sin φ

∞∑
n=1

j n+1

[
bn

1

sin θ
P1

n (cos θ) − cn sin θ P1
n

′
(cos θ)

]
.
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Figure 5.6: Monostatic radar cross-section of a conducting sphere.

From the far-zone fields we can compute the radar cross-section (RCS) or echo area
of the sphere, which is defined by

σ = lim
r→∞

(
4πr2 |Ẽs |2

|Ẽi |2
)

. (5.193)

Carrying units of m2, this quantity describes the relative energy density of the scattered
field normalized by the distance from the scattering object. Figure 5.6 shows the RCS of
a conducting sphere in free space for the monostatic case: when the observation direction
is aligned with the direction of the incident wave (i.e., θ = π), also called the backscatter
direction. At low frequencies the RCS is proportional to λ−4; this is the range of Rayleigh
scattering , showing that higher-frequency light scatters more strongly from microscopic
particles in the atmosphere (explaining why the sky is blue) [19]. At high frequencies the
result approaches that of geometrical optics, and the RCS becomes the interception area
of the sphere, πa2. This is the region of optical scattering. Between these two regions
lies the resonance region, or the region of Mie scattering, named for G. Mie who in 1908
published the first rigorous solution for scattering by a sphere (followed soon after by
Debye in 1909).

Several interesting phenomena of sphere scattering are best examined in the time do-
main. We may compute the temporal scattered field by taking the inverse transform
of the frequency-domain field. Figure 5.7 shows Eθ (t) computed in the backscatter
direction (θ = π) when the incident field waveform E0(t) is a gaussian pulse and the
sphere is in free space. Two distinct features are seen in the scattered field waveform.
The first is a sharp pulse almost duplicating the incident field waveform, but of opposite
polarity. This is the specular reflection produced when the incident field first contacts
the sphere and begins to induce a current on the sphere surface. The second feature,
called the creeping wave, occurs at a time approximately (2 + π)a/c seconds after the
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Figure 5.7: Time-domain field back-scattered by a conducting sphere.

specular reflection. This represents the field radiated back along the incident direction
by a wave of current excited by the incident field at the tangent point, which travels
around the sphere at approximately the speed of light in free space. Although this wave
continues to traverse the sphere, its amplitude is reduced so significantly by radiation
damping that only a single feature is seen.

5.5 Problems

5.1 Verify that the fields and sources obeying even planar reflection symmetry obey the
component Maxwell’s equations (5.1)–(5.6). Repeat for fields and sources obeying odd
planar reflection symmetry.

5.2 We wish to investigate reflection symmetry through the origin in a homogeneous
medium. Under what conditions on magnetic field, magnetic current density, and electric
current density are we guaranteed that

Ex (x, y, z) = Ex (−x, −y, −z),

Ey(x, y, z) = Ey(−x, −y, −z),

Ez(x, y, z) = Ez(−x, −y, −z)?

5.3 We wish to investigate reflection symmetry through an axis in a homogeneous
medium. Under what conditions on magnetic field, magnetic current density, and electric
current density are we guaranteed that

Ex (x, y, z) = −Ex (−x, −y, z),



Ey(x, y, z) = −Ey(−x, −y, z),

Ez(x, y, z) = Ez(−x, −y, z)?

5.4 Consider an electric Hertzian dipole located on the z-axis at z = h. Show that
if the dipole is parallel to the plane z = 0, then adding an oppositely-directed dipole of
the same strength at z = −h produces zero electric field tangential to the plane. Also
show that if the dipole is z-directed, then adding another z-directed dipole at z = −h
produces zero electric field tangential to the z = 0 plane. Since the field for z > 0 is
unaltered in each case if we place a PEC in the z = 0 plane, we establish that tangential
components of electric current image in the opposite direction while vertical components
image in the same direction.

5.5 Consider a z-directed electric line source Ĩ0 located at y = h, x = 0 between con-
ducting planes at y = ±d, d > h. The material between the plates has permeability
µ̃(ω) and complex permittivity ε̃c(ω). Write the impressed and scattered fields in terms
of Fourier transforms and apply the boundary conditions at z = ±d to determine the
electric field between the plates. Show that the result is identical to the expression (5.8)
obtained using symmetry decomposition, which required the boundary condition to be
applied only on the top plate.

5.6 Consider a z-directed electric line source Ĩ0 located at y = h, x = 0 in free space
above a dielectric slab occupying −d < y < d, d < h. The slab has permeability µ0 and
permittivity ε. Decompose the source into even and odd constituents and solve for the
electric field everywhere using the Fourier transform approach. Describe how you would
use the even and odd solutions to solve the problem of a dielectric slab located on top of
a PEC ground plane.

5.7 Consider an unbounded, homogeneous, isotropic medium described by permeabil-
ity µ̃(ω) and complex permittivity ε̃c(ω). Assuming there are magnetic sources present,
but no electric sources, show that the fields may be written as

H̃(r) = − jωε̃c
∫

V
Ḡe(r|r′; ω) · J̃i

m(r′, ω) dV ′,

Ẽ(r) =
∫

V
Ḡm(r|r′; ω) · J̃i

m(r′, ω) dV ′,

where Ḡe is given by (5.83) and Ḡm is given by (5.84).

5.8 Show that for a cubical excluding volume the depolarizing dyadic is L̄ = Ī/3.

5.9 Compute the depolarizing dyadic for a cylindrical excluding volume with height
and diameter both 2a, and with the limit taken as a → 0. Show that L̄ = 0.293Ī.

5.10 Show that the spherical wave function

ψ̃(r, ω) = e− jkr

4πr

obeys the radiation conditions (5.96) and (5.97).

5.11 Verify that the transverse component of the Laplacian of A is

(∇2A)t =
[
∇t (∇t · At ) + ∂2At

∂u2
− ∇t × ∇t × At

]
.



Verify that the longitudinal component of the Laplacian of A is

û
(
û · ∇2A

) = û∇2 Au .

5.12 Verify the identities (B.82)–(B.93).

5.13 Verify the identities (B.94)–(B.98).

5.14 Derive the formula (5.112) for the transverse component of the electric field.

5.15 The longitudinal/transverse decomposition can be performed beginning with the
time-domain Maxwell’s equations. Show that for a homogeneous, lossless, isotropic region
described by permittivity ε and permeability µ the longitudinal fields obey the wave
equations (

∂2

∂u2
− 1

v2

∂2

∂t2

)
Ht = ∇t

∂ Hu

∂u
− εû × ∇t

∂ Eu

∂t
+ ε

∂Jmt

∂t
− û × ∂Jt

∂u
,(

∂2

∂u2
− 1

v2

∂2

∂t2

)
Et = ∇t

∂ Eu

∂u
+ µû × ∇t

∂ Hu

∂t
+ û × ∂Jmt

∂u
+ µ

∂Jt

∂t
.

Also show that the transverse fields may be found from the longitudinal fields by solving(
∇2 − 1

v2

∂

∂t2

)
Eu = 1

ε

∂ρ

∂u
+ µ

∂ Ju

∂t
+ ∇t × Jmt ,(

∇2 − 1

v2

∂

∂t2

)
Hu = 1

µ

∂ρm

∂u
+ ε

∂ Jmu

∂t
− ∇t × Jt .

Here v = 1/
√

µε.

5.16 Consider a homogeneous, lossless, isotropic region of space described by permittiv-
ity ε and permeability µ. Beginning with the source-free time-domain Maxwell equa-
tions in rectangular coordinates, choose z as the longitudinal direction and show that the
TE–TM decomposition is given by(

∂2

∂z2
− 1

v2

∂2

∂t2

)
Ey = ∂2 Ez

∂z∂y
+ µ

∂2 Hz

∂x∂t
, (5.194)(

∂2

∂z2
− 1

v2

∂2

∂t2

)
Ex = ∂2 Ez

∂x∂z
− µ

∂2 Hz

∂y∂t
, (5.195)(

∂2

∂z2
− 1

v2

∂2

∂t2

)
Hy = −ε

∂2 Ez

∂x∂t
+ ∂2 Hz

∂y∂z
, (5.196)(

∂2

∂z2
− 1

v2

∂2

∂t2

)
Hx = ε

∂2 Ez

∂y∂t
+ ∂2 Hz

∂x∂z
, (5.197)

with (
∇2 − 1

v2

∂2

∂t2

)
Ez = 0, (5.198)(

∇2 − 1

v2

∂2

∂t2

)
Hz = 0. (5.199)

Here v = 1/
√

µε.



5.17 Consider the case of TM fields in the time domain. Show that for a homogeneous,
isotropic, lossless medium with permittivity ε and permeability µ the fields may be
derived from a single Hertzian potential Πe(r, t) = û�̃e(r, t) that satisfies the wave
equation (

∇2 − 1

v2

∂2

∂t2

)
�e = 0

and that the fields are

E = ∇t
∂�e

∂u
+ û

(
∂2

∂u2
− 1

v2

∂2

∂t2

)
�e, H = −εû × ∇t

∂�e

∂t
.

5.18 Consider the case of TE fields in the time domain. Show that for a homogeneous,
isotropic, lossless medium with permittivity ε and permeability µ the fields may be
derived from a single Hertzian potential Πh(r, t) = û�̃h(r, t) that satisfies the wave
equation (

∇2 − 1

v2

∂2

∂t2

)
�h = 0

and that the fields are

E = µû × ∇t
∂�h

∂t
, H = ∇t

∂�h

∂u
+ û

(
∂2

∂u2
− 1

v2

∂2

∂t2

)
�h .

5.19 Show that in the time domain TEM fields may be written for a homogeneous,
isotropic, lossless medium with permittivity ε and permeability µ in terms of a Hertzian
potential Πe = û�e that satisfies

∇2
t �e = 0

and that the fields are

E = ∇t
∂�e

∂u
, H = −εû × ∇t

∂�e

∂t
.

5.20 Show that in the time domain TEM fields may be written for a homogeneous,
isotropic, lossless medium with permittivity ε and permeability µ in terms of a Hertzian
potential Πh = û�h that satisfies

∇2
t �h = 0

and that the fields are

E = µû × ∇t
∂�h

∂t
, H = ∇t

∂�h

∂u
.

5.21 Consider a TEM plane-wave field of the form

Ẽ = x̂Ẽ0e− jkz, H̃ = ŷ
Ẽ0

η
e− jkz,

where k = ω
√

µε and η = √
µ/ε. Show that:

(a) Ẽ may be obtained from H̃ using the equations for a field that is TEy ;
(b) H̃ may be obtained from Ẽ using the equations for a field that is TMx ;
(c) Ẽ and H̃ may be obtained from the potential Π̃h = ŷ(Ẽ0/k2η)e− jkz ;



(d) Ẽ and H̃ may be obtained from the potential Π̃e = x̂(Ẽ0/k2)e− jkz ;
(e) Ẽ and H̃ may be obtained from the potential Π̃e = ẑ( j Ẽ0x/k)e− jkz ;
(f) Ẽ and H̃ may be obtained from the potential Π̃h = ẑ( j Ẽ0 y/kη)e− jkz .

5.22 Prove the orthogonality relationships (5.149) and (5.150) for the longitudinal
fields in a lossless waveguide. Hint : Substitute a = ψ̌e and b = ψ̌h into Green’s second
identity (B.30) and apply the boundary conditions for TE and TM modes.

5.23 Verify the waveguide orthogonality conditions (5.151)-(5.152) by substituting the
field expressions for a rectangular waveguide.

5.24 Show that the time-average power carried by a propagating TE mode in a lossless
waveguide is given by

Pav = 1

2
ωµβk2

c

∫
C S

ψ̌hψ̌
∗
h d S.

5.25 Show that the time-average stored energy per unit length for a propagating TE
mode in a lossless waveguide is

〈We〉/ l = 〈Wm〉/ l = ε

4
(ωµ)2k2

c

∫
C S

ψ̌hψ̌
∗
h d S.

5.26 Consider a waveguide of circular cross-section aligned on the z-axis and filled with
a lossless material having permittivity ε and permeability µ. Solve for both the TE and
TM fields within the guide. List the first ten modes in order by cutoff frequency.

5.27 Consider a propagating TM mode in a lossless rectangular waveguide. Show that
the time-average power carried by the propagating wave is

Pavnm = 1

2
ωεβnmk2

cnm
|Anm |2 ab

4
.

5.28 Consider a propagating TE mode in a lossless rectangular waveguide. Show that
the time-average power carried by the propagating wave is

Pavnm = 1

2
ωµβnmk2

cnm
|Bnm |2 ab

4
.

5.29 Consider a homogeneous, lossless region of space characterized by permeability µ

and permittivity ε. Beginning with the time-domain Maxwell equations, show that the
θ and φ components of the electromagnetic fields can be written in terms of the radial
components. From this give the TEr–TMr field decomposition.

5.30 Consider the formula for the radar cross-section of a PEC sphere (5.193). Show
that for the monostatic case the RCS becomes

σ = λ2

4π

∣∣∣∣∣
∞∑

n=1

(−1)n(2n + 1)

Ĥ (2)′
n (ka)Ĥ (2)

n (ka)

∣∣∣∣∣
2

.

5.31 Beginning with the monostatic formula for the RCS of a conducting sphere given
in Problem 5.30, use the small-argument approximation to the spherical Hankel functions
to show that the RCS is proportional to λ−4 when ka � 1.



5.32 Beginning with the monostatic formula for the RCS of a conducting sphere given
in Problem 5.30, use the large-argument approximation to the spherical Hankel functions
to show that the RCS approaches the interception area of the sphere, πa2, as ka → ∞.

5.33 A material sphere of radius a has permittivity ε and permeability µ. The sphere
is centered at the origin and illuminated by a plane wave traveling in the z-direction with
the fields

Ẽ(r, ω) = x̂Ẽ0(ω)e− jkz, H̃(r, ω) = ŷ
Ẽ0(ω)

η
e− jkz .

Find the fields internal and external to the sphere.
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