
Chapter 6

Integral solutions of Maxwell’s equations

6.1 Vector Kirchoff solution: method of Stratton and Chu

One of the most powerful tools for the analysis of electromagnetics problems is the
integral solution to Maxwell’s equations formulated by Stratton and Chu [187, 188].
These authors used the vector Green’s theorem to solve for Ẽ and H̃ in much the same
way as is done in static fields with the scalar Green’s theorem. An alternative approach is
to use the Lorentz reciprocity theorem of § 4.10.2, as done by Fradin [74]. The reciprocity
approach allows the identification of terms arising from surface discontinuities, which
must be added to the result obtained from the other approach [187].

6.1.1 The Stratton–Chu formula

Consider an isotropic, homogeneous medium occupying a bounded region V in space.
The medium is described by permeability µ̃(ω), permittivity ε̃(ω), and conductivity σ̃ (ω).
The region V is bounded by a surface S, which can be multiply-connected so that S is
the union of several surfaces S1 , . . . , SN as shown in Figure 6.1; these are used to exclude
unknown sources and to formulate the vector Huygens principle. Impressed electric and
magnetic sources may thus reside both inside and outside V .

We wish to solve for the electric and magnetic fields at a point r within V . To do this we
employ the Lorentz reciprocity theorem (4.173), written here using the frequency-domain
fields as an integral over primed coordinates:

−
∮

S

[
Ẽa(r′, ω) × H̃b(r′, ω) − Ẽb(r′, ω) × H̃a(r′, ω)

] · n̂′d S′ =∫
V

[
Ẽb(r′, ω) · J̃a(r′, ω) − Ẽa(r′, ω) · J̃b(r′, ω)− (6.1)

H̃b(r′, ω) · J̃ma(r′, ω) + H̃a(r′, ω) · J̃mb(r′, ω)
]

dV ′. (6.2)

Note that the negative sign on the left arises from the definition of n̂ as the inward normal
to V as shown in Figure 6.1. We place an electric Hertzian dipole at the point r = rp

where we wish to compute the field, and set Ẽb = Ẽp and H̃b = H̃p in the reciprocity
theorem, where Ẽp and H̃p are the fields produced by the dipole (5.88)–(5.89):

H̃p(r, ω) = jω∇ × [p̃G(r|rp; ω)], (6.3)

Ẽp(r, ω) = 1

ε̃c
∇ × (∇ × [p̃G(r|rp; ω)]

)
. (6.4)



Figure 6.1: Geometry used to derive the Stratton–Chu formula.

We also let Ẽa = Ẽ and H̃a = H̃, where Ẽ and H̃ are the fields produced by the impressed
sources J̃a = J̃i and J̃ma = J̃i

m within V that we wish to find at r = rp. Since the dipole
fields are singular at r = rp, we must exclude the point rp with a small spherical surface
Sδ surrounding the volume Vδ as shown in Figure 6.1. Substituting these fields into (6.2)
we obtain

−
∮

S+Sδ

[
Ẽ × H̃p − Ẽp × H̃

] · n̂′ d S′ =
∫

V −Vδ

[
Ẽp · J̃i − H̃p · J̃i

m

]
dV ′. (6.5)

A useful identity involves the spatially-constant vector p̃ and the Green’s function
G(r′|rp):

∇′ × [∇′ × (Gp̃)
] = ∇′[∇′ · (Gp̃)] − ∇′2(Gp̃)

= ∇′[∇′ · (Gp̃)] − p̃∇′2G

= ∇′(p̃ · ∇′G) + p̃k2G, (6.6)

where we have used ∇′2G = −k2G for r′ �= rp.
We begin by computing the terms on the left side of (6.5). We suppress the r′ de-

pendence of the fields and also the dependencies of G(r′|rp). Substituting from (6.3) we
have ∮

S+Sδ

[Ẽ × H̃p] · n̂′ d S′ = jω
∮

S+Sδ

[
Ẽ × ∇′ × (Gp̃)

] · n̂′ d S′.

Using n̂′ · [Ẽ × ∇′ × (Gp̃)] = n̂′ · [Ẽ × (∇′G × p̃)] = (n̂′ × Ẽ) · (∇′G × p̃) we can write
∮

S+Sδ

[Ẽ × H̃p] · n̂′ d S′ = jωp̃ ·
∮

S+Sδ

[n̂′ × Ẽ] × ∇′G d S′.



Figure 6.2: Decomposition of surface Sn to isolate surface field discontinuity.

Next we examine∮
S+Sδ

[Ẽp × H̃] · n̂′ d S′ = − 1

ε̃c

∮
S+Sδ

[
H̃ × ∇′ × ∇′ × (Gp̃)

] · n̂′ d S′.

Use of (6.6) along with the identity (B.43) gives∮
S+Sδ

[Ẽp × H̃] · n̂′ d S′ = − 1

ε̃c

∮
S+Sδ

{
(H̃ × p̃)k2G −

− ∇′ × [
(p̃ · ∇′G)H̃

] + (p̃ · ∇′G)(∇′ × H̃)
} · n̂′ d S′.

We would like to use Stokes’s theorem on the second term of the right-hand side. Since
the theorem is not valid for surfaces on which H̃ has discontinuities, we break the closed
surfaces in Figure 6.1 into open surfaces whose boundary contours isolate the disconti-
nuities as shown in Figure 6.2. Then we may write∮

Sn=Sna+Snb

n̂′ · ∇′ × [
(p̃ · ∇′G)H̃

]
d S′ =

∮
�na+�nb

dl′ · H̃(p̃ · ∇′G).

For surfaces not containing discontinuities of H̃ the two contour integrals provide equal
and opposite contributions and this term vanishes. Thus the left-hand side of (6.5) is

−
∮

S+Sδ

[
Ẽ × H̃p − Ẽp × H̃

] · n̂′ d S′ =

− 1

ε̃c
p̃ ·

{∮
S+Sδ

[
jωε̃c(n̂′ × Ẽ) × ∇′G + k2(n̂′ × H̃)G + n̂′ · (J̃i + jωε̃cẼ)∇′G

]
d S′

where we have substituted J̃i + jωε̃cẼ for ∇′ × H̃ and used (H̃ × p̃) · n̂′ = p̃ · (n̂′ × H̃).
Now consider the right-hand side of (6.5). Substituting from (6.4) we have∫

V −Vδ

Ẽp · J̃i dV ′ = 1

ε̃c

∫
V −Vδ

J̃i · [∇′ × ∇′ × (p̃G)
]

dV ′.

Using (6.6) and (B.42), we have∫
V −Vδ

Ẽp · J̃i dV ′ = 1

ε̃c

∫
V −Vδ

{
k2(p̃ · J̃i )G + ∇′ · [J̃i (p̃ · ∇′G)] − (p̃ · ∇′G)∇′ · J̃i

}
dV ′.



Figure 6.3: Geometry of surface integral used to extract E at rp.

Replacing ∇′ · J̃i with − jωρ̃i from the continuity equation and using the divergence
theorem on the second term on the right-hand side, we then have∫

V −Vδ

Ẽp · J̃i dV ′ = 1

ε̃c
p̃ ·

[∫
V −Vδ

(k2J̃i G + jωρ̃i∇′G) dV ′ −
∮

S+Sδ

(n̂′ · J̃i )∇′G d S′
]

.

Lastly we examine ∫
V −Vδ

H̃p · J̃i
m dV ′ = jω

∫
V −Vδ

J̃i
m · ∇′ × (Gp̃) dV ′.

Use of J̃i
m · ∇′ × (Gp̃) = J̃i

m · (∇′G × p̃) = p̃ · (J̃i
m × ∇′G) gives∫

V −Vδ

H̃p · J̃i
m dV ′ = jωp̃ ·

∫
V −Vδ

J̃i
m × ∇′G dV ′.

We now substitute all terms into (6.5) and note that each term involves a dot product
with p̃. Since p̃ is arbitrary we have

−
∮

S+Sδ

[
(n̂′ × Ẽ) × ∇′G + (n̂′ · Ẽ)∇′G − jωµ̃(n̂′ × H̃)G

]
d S′ +

+ 1

jωε̃c

∮
�a+�b

(dl′ · H̃)∇′G =
∫

V −Vδ

[
−J̃i

m × ∇′G + ρ̃i

ε̃c
∇′G − jωµ̃J̃i G

]
dV ′.

The electric field may be extracted from the above expression by letting the radius of
the excluding volume Vδ recede to zero. We first consider the surface integral over Sδ.
Examining Figure 6.3 we see that R = |rp − r′| = δ, n̂′ = −R̂, and

∇′G(r′|rp) = d

d R

(
e− jk R

4π R

)
∇′ R = R̂

(
1 + jkδ

4πδ2

)
e− jkδ ≈ R̂

δ2
as δ → 0.

Assuming Ẽ is continuous at r′ = rp we can write

− lim
δ→0

∮
Sδ

[
(n̂′ × Ẽ) × ∇′G + (n̂′ · Ẽ)∇′G − jωµ̃(n̂′ × H̃)G

]
d S′ =

lim
δ→0

∫
�

1

4π

[
(R̂ × Ẽ) × R̂

δ2
+ (R̂ · Ẽ)

R̂
δ2

− jωµ̃(R̂ × H̃)
1

δ

]
δ2 d� =

lim
δ→0

∫
�

1

4π

[−(R̂ · Ẽ)R̂ + (R̂ · R̂)Ẽ + (R̂ · Ẽ)R̂
]

d� = Ẽ(rp).



Here we have used
∫
�

d� = 4π for the total solid angle subtending the sphere Sδ. Finally,
assuming that the volume sources are continuous, the volume integral over Vδ vanishes
and we have

Ẽ(r, ω) =
∫

V

(
−J̃i

m × ∇′G + ρ̃i

ε̃c
∇′G − jωµ̃J̃i G

)
dV ′ +

+
N∑

n=1

∫
Sn

[
(n̂′ × Ẽ) × ∇′G + (n̂′ · Ẽ)∇′G − jωµ̃(n̂′ × H̃)G

]
d S′ −

−
N∑

n=1

1

jωε̃c

∮
�na+�nb

(dl′ · H̃)∇′G. (6.7)

A similar formula for H̃ can be derived by placing a magnetic dipole of moment p̃m at
r = rp and proceeding as above. This leads to

H̃(r, ω) =
∫

V

(
J̃i × ∇′G + ρ̃i

m

µ̃
∇′G − jωε̃cJ̃i

m G

)
dV ′ +

+
N∑

n=1

∫
Sn

[
(n̂′ × H̃) × ∇′G + (n̂′ · H̃)∇′G + jωε̃c(n̂′ × Ẽ)G

]
d S′ +

+
N∑

n=1

1

jωµ̃

∮
�na+�nb

(dl′ · Ẽ)∇′G. (6.8)

We can also obtain this expression by substituting (6.7) into Faraday’s law.

6.1.2 The Sommerfeld radiation condition

In § 5.2.2 we found that if the potentials are not to be influenced by effects that are
infinitely removed, then they must obey a radiation condition. We can make the same
argument about the fields from (6.7) and (6.8). Let us allow one of the excluding surfaces,
say SN , to recede to infinity (enclosing all of the sources as it expands). As SN → ∞ any
contributions from the fields on this surface to the fields at r should vanish.

Letting SN be a sphere centered at the origin, we note that n̂′ = −r̂′ and that as
r ′ → ∞

G(r|r′; ω) = e− jk|r−r′|

4π |r − r′| ≈ e− jkr ′

4πr ′ ,

∇′G(r|r′; ω) = R̂
(

1 + jk R

4π R2

)
e− jk R ≈ −r̂′

(
1 + jkr ′

r ′

)
e− jkr ′

4πr ′ .

Substituting these expressions into (6.7) we find that

lim
SN →S∞

∮
SN

[
(n̂′ × Ẽ) × ∇′G + (n̂′ · Ẽ)∇′G − jωµ̃(n̂′ × H̃)G

]
d S′

≈ lim
r ′→∞

∫ 2π

0

∫ π

0

{[
(r̂′ × Ẽ) × r̂′ + (r̂′ · Ẽ)r̂′] (

1 + jkr ′

r ′

)

+ jωµ̃(r̂′ × H̃)
} e− jkr ′

4πr ′ r ′2 sin θ ′ dθ ′ dφ′

≈ lim
r ′→∞

∫ 2π

0

∫ π

0

{
r ′ [ jkẼ + jωµ̃(r̂′ × H̃)

] + Ẽ
} e− jkr ′

4π
sin θ ′ dθ ′ dφ′.



Since this gives the contribution to the field in V from the fields on the surface receding
to infinity, we expect that this term should be zero. If the medium has loss, then the
exponential term decays and drives the contribution to zero. For a lossless medium the
contributions are zero if

lim
r→∞ r Ẽ(r, ω) < ∞, (6.9)

lim
r→∞ r

[
ηr̂ × H̃(r, ω) + Ẽ(r, ω)

] = 0. (6.10)

To accompany (6.8) we also have

lim
r→∞ rH̃(r, ω) < ∞, (6.11)

lim
r→∞ r

[
ηH̃(r, ω) − r̂ × Ẽ(r, ω)

] = 0. (6.12)

We refer to (6.9) and (6.11) as the finiteness conditions, and to (6.10) and (6.12) as the
Sommerfeld radiation condition, for the electromagnetic field. They show that far from
the sources the fields must behave as a wave TEM to the r -direction. We shall see in
§ 6.2 that the waves are in fact spherical TEM waves.

6.1.3 Fields in the excluded region: the extinction theorem

The Stratton–Chu formula provides a solution for the field within the region V , external
to the excluded regions. An interesting consequence of this formula, and one that helps
us identify the equivalence principle, is that it gives the null result H̃ = Ẽ = 0 when
evaluated at points within the excluded regions.

We can show this by considering two cases. In the first case we do not exclude the
particular region Vm , but do exclude the remaining regions Vn, n �= m. Then the electric
field everywhere outside the remaining excluded regions (including at points within Vm)
is, by (6.7),

Ẽ(r, ω) =
∫

V +Vm

(
−J̃i

m × ∇′G + ρ̃i

ε̃c
∇′G − jωµ̃J̃i G

)
dV ′ +

+
∑
n �=m

∫
Sn

[
(n̂′ × Ẽ) × ∇′G + (n̂′ · Ẽ)∇′G − jωµ̃(n̂′ × H̃)G

]
d S′ −

−
∑
n �=m

1

jωε̃c

∮
�na+�nb

(dl′ · H̃)∇′G, r ∈ V + Vm .

In the second case we apply the Stratton–Chu formula only to Vm , and exclude all other
regions. We incur a sign change on the surface and line integrals compared to the first
case because the normal is now directed oppositely. By (6.7) we have

Ẽ(r, ω) =
∫

Vm

(
−J̃i

m × ∇′G + ρ̃i

ε̃c
∇′G − jωµ̃J̃i G

)
dV ′ −

−
∫

Sm

[
(n̂′ × Ẽ) × ∇′G + (n̂′ · Ẽ)∇′G − jωµ̃(n̂′ × H̃)G

]
d S′ +

+ 1

jωε̃c

∮
�na+�nb

(dl′ · H̃)∇′G, r ∈ Vm .



Each of the expressions for Ẽ is equally valid for points within Vm . Upon subtraction we
get

0 =
∫

V

(
−J̃i

m × ∇′G + ρ̃i

ε̃c
∇′G − jωµ̃J̃i G

)
dV ′ +

+
N∑

n=1

∫
Sn

[
(n̂′ × Ẽ) × ∇′G + (n̂′ · Ẽ)∇′G − jωµ̃(n̂′ × H̃)G

]
d S′ −

−
N∑

n=1

1

jωε̃c

∮
�na+�nb

(dl′ · H̃)∇′G, r ∈ Vm .

This expression is exactly the Stratton–Chu formula (6.7) evaluated at points within the
excluded region Vm . The treatment of H̃ is analogous and is left as an exercise. Since we
may repeat this for any excluded region, we find that the Stratton–Chu formula returns
the null field when evaluated at points outside V . This is sometimes referred to as the
vector Ewald–Oseen extinction theorem [90]. We must emphasize that the fields within
the excluded regions are not generally equal to zero; the Stratton–Chu formula merely
returns this result when evaluated there.

6.2 Fields in an unbounded medium

Two special cases of the Stratton–Chu formula are important because of their applica-
tion to antenna theory. The first is that of sources radiating into an unbounded region.
The second involves a bounded region with all sources excluded. We shall consider the
former here and the latter in § 6.3.

Assuming that there are no bounding surfaces in (6.7) and (6.8), except for one surface
that has been allowed to recede to infinity and therefore provides no surface contribution,
we find that the electromagnetic fields in unbounded space are given by

Ẽ =
∫

V

(
−J̃i

m × ∇′G + ρ̃i

ε̃c
∇′G − jωµ̃J̃i G

)
dV ′,

H̃ =
∫

V

(
J̃i × ∇′G + ρ̃i

m

µ̃
∇′G − jωε̃cJ̃i

m G

)
dV ′.

We can view the right-hand sides as superpositions of the fields present in the cases
where (1) electric sources are present exclusively, and (2) magnetic sources are present
exclusively. With ρ̃i

m = 0 and J̃i
m = 0 we find that

Ẽ =
∫

V

(
ρ̃i

ε̃c
∇′G − jωµ̃J̃i G

)
dV ′, (6.13)

H̃ =
∫

V
J̃i × ∇′G dV ′. (6.14)

Using ∇′G = −∇G we can write

Ẽ(r, ω) = −∇
∫

V

ρ̃i (r′, ω)

ε̃c(ω)
G(r|r′; ω) dV ′ − jω

∫
V

µ̃(ω)J̃i (r′, ω)G(r|r′; ω) dV ′

= −∇φ̃e(r, ω) − jωÃe(r, ω),



where

φ̃e(r, ω) =
∫

V

ρ̃i (r′, ω)

ε̃c(ω)
G(r|r′; ω) dV ′,

Ãe(r, ω) =
∫

V
µ̃(ω)J̃i (r′, ω)G(r|r′; ω) dV ′, (6.15)

are the electric scalar and vector potential functions introduced in § 5.2. Using J̃i ×∇′G =
−J̃i × ∇G = ∇ × (J̃i G) we have

H̃(r, ω) = 1

µ̃(ω)
∇ ×

∫
V

µ̃(ω)J̃i (r′, ω)G(r|r′; ω) dV ′

= 1

µ̃(ω)
∇ × Ãe(r, ω). (6.16)

These expressions for the fields are identical to those of (5.56) and (5.57), and thus the
integral formula for the electromagnetic fields produces a result identical to that obtained
using potential relations. Similarly, with ρ̃i = 0, J̃i = 0 we have

Ẽ = −
∫

V
J̃i

m × ∇′G dV ′,

H̃ =
∫

V

(
ρ̃i

m

µ̃
∇′G − jωε̃cJ̃i

m G

)
dV ′,

or

Ẽ(r, ω) = − 1

ε̃c(ω)
∇ × Ãh(r, ω),

H̃(r, ω) = −∇φ̃h(r, ω) − jωÃh(r, ω),

where

φ̃h(r, ω) =
∫

V

ρ̃i
m(r′, ω)

µ̃(ω)
G(r|r′; ω) dV ′,

Ãh(r, ω) =
∫

V
ε̃c(ω)J̃i

m(r′, ω)G(r|r′; ω) dV ′,

are the magnetic scalar and vector potentials introduced in § 5.2.

6.2.1 The far-zone fields produced by sources in unbounded space

Many antennas may be analyzed in terms of electric currents and charges radiating in
unbounded space. Since antennas are used to transmit information over great distances,
the fields far from the sources are often of most interest. Assume that the sources are
contained within a sphere of radius rs centered at the origin. We define the far zone of
the sources to consist of all observation points satisfying both r � rs (and thus r � r ′)
and kr � 1. For points in the far zone we may approximate the unit vector R̂ directed
from the sources to the observation point by the unit vector r̂ directed from the origin
to the observation point. We may also approximate

∇′G = d

d R

(
e− jk R

4π R

)
∇′ R = R̂

(
1 + jk R

R

)
e− jk R

4π R
≈ r̂ jk

e− jk R

4π R
= r̂ jkG. (6.17)



Using this we can obtain expressions for Ẽ and H̃ in the far zone of the sources. The
approximation (6.17) leads directly to

ρ̃i∇′G ≈
[

j
∇′ · J̃i

ω

]
(r̂ jkG) = − k

ω
r̂
[∇′ · (GJ̃i ) − J̃i · ∇′G

]
.

Substituting this into (6.13), again using (6.17) and also using the divergence theorem,
we have

Ẽ(r, ω) ≈ −
∫

V
jωµ̃

[
J̃i − r̂(r̂ · J̃i )

]
G dV ′ + r̂

k

ωε̃c

∮
S
(n̂′ · J̃i )G d S′,

where the surface S surrounds the volume V that contains the impressed sources. If
we let this volume slightly exceed that needed to contain the sources, then we do not
change the value of the volume integral above; however, the surface integral vanishes
since n̂′ · J̃i = 0 everywhere on the surface. Using r̂ × (r̂ × J̃i ) = r̂(r̂ · J̃i ) − J̃i we then
obtain the far-zone expression

Ẽ(r, ω) ≈ jωr̂ ×
[

r̂ ×
∫

V
µ̃(ω)J̃i (r′, ω)G(r|r′; ω) dV ′

]
= jωr̂ × [

r̂ × Ãe(r, ω)
]
,

where Ãe is the electric vector potential. The far-zone electric field has no r -component,
and it is often convenient to write

Ẽ(r, ω) ≈ − jωÃeT (r, ω) (6.18)

where ÃeT is the vector component of Ãe transverse to the r -direction:

ÃeT = −r̂ × [
r̂ × Ãe

] = Ãe − r̂(r̂ · Ãe) = θ̂ Ãeθ + φ̂ Ãeφ.

We can approximate the magnetic field in a similar fashion. Noting that J̃i × ∇′G =
J̃i × ( jkr̂G) we have

H̃(r, ω) ≈ − j
k

µ̃(ω)
r̂ ×

∫
V

µ̃(ω)J̃i (r′, ω)G(r|r′, ω) dV ′

≈ −1

η
jωr̂ × Ãe(r, ω).

With this we have

Ẽ(r, ω) = −ηr̂ × H̃(r, ω), H̃(r, ω) = r̂ × Ẽ(r, ω)

η
,

in the far zone.
To simplify the computations involved, we often choose to approximate the vector

potential in the far zone. Noting that

R =
√

(r − r′) · (r − r′) =
√

r2 + r ′2 − 2(r · r′)



and remembering that r � r ′ for r in the far zone, we can use the leading terms of a
binomial expansion of the square root to get

R = r

√
1 − 2(r̂ · r′)

r
+

(
r ′

r

)2

≈ r

√
1 − 2(r̂ · r′)

r
≈ r

[
1 − r̂ · r′

r

]
≈ r − r̂ · r′. (6.19)

Thus the Green’s function may be approximated as

G(r|r′; ω) ≈ e− jkr

4πr
e jkr̂·r′

. (6.20)

Here we have kept the approximation (6.19) intact in the phase of G but have used
1/R ≈ 1/r in the amplitude of G. We must keep a more accurate approximation for
the phase since k(r̂ · r′) may be an appreciable fraction of a radian. We thus have the
far-zone approximation for the vector potential

Ãe(r, ω) ≈ µ̃(ω)
e− jkr

4πr

∫
V

J̃i (r′, ω)e jkr̂·r′
dV ′,

which we may use in computing (6.18).
Let us summarize the expressions for computing the far-zone fields:

Ẽ(r, ω) = − jω
[
θ̂ Ãeθ (r, ω) + φ̂ Ãeφ(r, ω)

]
, (6.21)

H̃(r, ω) = r̂ × Ẽ(r, ω)

η
, (6.22)

Ãe(r, ω) = e− jkr

4πr
µ̃(ω)ãe(θ, φ, ω), (6.23)

ãe(θ, φ, ω) =
∫

V
J̃i (r′, ω)e jkr̂·r′

dV ′. (6.24)

Here ãe is called the directional weighting function. This function is independent of r
and describes the angular variation, or pattern, of the fields.

In the far zone Ẽ, H̃, r̂ are mutually orthogonal. Because of this, and because the fields
vary as e− jkr/r , the electromagnetic field in the far zone takes the form of a spherical
TEM wave, which is consistent with the Sommerfeld radiation condition.

Power radiated by time-harmonic sources in unbounded space. In § 5.2.1 we
defined the power radiated by a time-harmonic source in unbounded space as the total
time-average power passing through a sphere of very large radius. We found that for a
Hertzian dipole the radiated power could be computed from the far-zone fields through

Pav = lim
r→∞

∫ 2π

0

∫ π

0
Sav · r̂r2 sin θ dθ dφ

where

Sav = 1

2
Re

{
Ě × Ȟ∗}

is the time-average Poynting vector. By superposition this holds for any localized source.
Assuming a lossless medium and using phasor notation to describe the time-harmonic



Figure 6.4: Dipole antenna in a lossless unbounded medium.

fields we have, by (6.22),

Sav = 1

2
Re

{
Ě × (r̂ × Ě∗)

η

}
= r̂

Ě · Ě∗

2η
.

Substituting from (6.21), we can also write Sav in terms of the directional weighting
function as

Sav = r̂
ω̌2

2η

(
Ǎeθ Ǎ∗

eθ + Ǎeφ Ǎ∗
eφ

) = r̂
k2η

(4πr)2

(
1

2
ǎeθ ǎ∗

eθ + 1

2
ǎeφ ǎ∗

eφ

)
. (6.25)

We note that Sav describes the variation of the power density with θ, φ, and is thus
sometimes used as a descriptor of the power pattern of the sources.

Example of a current source radiating into an unbounded medium: the dipole
antenna. A common type of antenna consists of a thin wire of length 2l and radius a,
fed at the center by a voltage generator as shown in Figure 6.4. The generator induces
an impressed current on the surface of the wire which in turn radiates an electromagnetic
wave. For very thin wires (a � λ, a � l) embedded in a lossless medium, the current
may be accurately approximated using a standing-wave distribution:

J̃i (r, ω) = ẑ Ĩ (ω) sin [k(l − |z|)] δ(x)δ(y). (6.26)

We may compute the field produced by the dipole antenna by first finding the vector
potential from (6.15) and then calculating the magnetic field from (6.16). The electric
field may then be found by the use of Ampere’s law.



We assume a lossless medium with parameters µ, ε. Substituting the current expression
into (6.15) and integrating over x and y we find that

Ãe(r, ω) = ẑ
µ Ĩ

4π

∫ l

−l
sin k(l − |z′|)e− jk R

R
dz′ (6.27)

where R =
√

(z − z′)2 + ρ2 and ρ2 = x2 + y2. Using (6.16) we have

H̃ = ∇ × 1

µ
Ãe = −φ̂

1

µ

∂ Ãez

∂ρ
.

Writing the sine function in (6.27) in terms of exponentials, we then have

H̃φ = j
Ĩ

8π

[
e jkl

∫ 0

−l

∂

∂ρ

e− jk(R−z′)

R
dz′ − e− jkl

∫ 0

−l

∂

∂ρ

e− jk(R+z′)

R
dz′+

+ e jkl
∫ l

0

∂

∂ρ

e− jk(R+z′)

R
dz′ − e− jkl

∫ l

0

∂

∂ρ

e− jk(R−z′)

R
dz′

]
.

Noting that

∂

∂ρ

e− jk(R±z′)

R
= ±ρ

∂

∂z′
e− jk(R±z′)

R [R ∓ (z − z′)]
= −ρ

1 + jk R

R3
e− jk(R±z′)

we can write

H̃φ = j
Ĩρ

8π

[
−e jkl e− jk(R−z′)

R [R + (z − z′)]

∣∣∣∣
0

−l

− e− jkl e− jk(R+z′)

R [R − (z − z′)]

∣∣∣∣
0

−l

+

+ e jkl e− jk(R+z′)

R [R − (z − z′)]

∣∣∣∣
l

0

+ e− jkl e− jk(R−z′)

R [R + (z − z′)]

∣∣∣∣
l

0

]
.

Collecting terms and simplifying we get

H̃φ(r, ω) = j
Ĩ (ω)

4πρ

[
e− jk R1 + e− jk R2 − (2 cos kl)e− jkr

]
(6.28)

where R1 =
√

ρ2 + (z − l)2 and R2 =
√

ρ2 + (z + l)2. For points external to the dipole
the source current is zero and thus

Ẽ(r, ω) = 1

jωε
∇ × H̃(r, ω) = 1

jωε

{
−ρ̂

∂

∂z
H̃φ(r, ω) + ẑ

1

ρ

∂

∂ρ
[ρ H̃φ(r, ω)]

}
.

Performing the derivatives we have

Ẽρ(r, ω) = j
η Ĩ (ω)

4π

[
z − l

ρ

e− jk R1

R1
+ z + l

ρ

e− jk R2

R2
− z

ρ
(2 cos kl)

e− jkr

r

]
, (6.29)

Ẽz(r, ω) = − j
η Ĩ (ω)

4π

[
e− jk R1

R1
+ e− jk R2

R2
− (2 cos kl)

e− jkr

r

]
. (6.30)

The work of specializing these expressions for points in the far zone is left as an exercise.
Instead, we shall use the general far-zone expressions (6.21)–(6.24). Substituting (6.26)



into (6.24) and carrying out the x and y integrals we have the directional weighting
function

ãe(θ, φ, ω) =
∫ l

−l
ẑ Ĩ (ω) sin k(l − |z′|)e jkz′ cos θ dz′.

Writing the sine functions in terms of exponentials we have

ãe(θ, φ, ω) = ẑ Ĩ (ω)

2 j

[
e jkl

∫ l

0
e jkz′(cos θ−1) dz′ − e− jkl

∫ l

0
e jkz′(cos θ+1) dz′+

+ e jkl
∫ 0

−l
e jkz′(cos θ+1) − e− jkl

∫ 0

−l
e jkz′(cos θ−1)

]
.

Carrying out the integrals and simplifying, we obtain

ãe(θ, φ, ω) = ẑ
2 Ĩ (ω)

k

F(θ, kl)

sin θ

where

F(θ, kl) = cos(kl cos θ) − cos kl

sin θ

is called the radiation function. Using ẑ = r̂ cos θ − θ̂ sin θ we find that

ãeθ (θ, φ, ω) = −2 Ĩ (ω)

k
F(θ, kl), ãeφ(θ, φ, ω) = 0.

Thus we have from (6.23) and (6.21) the electric field

Ẽ(r, ω) = θ̂
jη Ĩ (ω)

2π

e− jkr

r
F(θ, kl) (6.31)

and from (6.22) the magnetic field

H̃(r, ω) = φ̂
j Ĩ (ω)

2π

e− jkr

r
F(θ, kl). (6.32)

We see that the radiation function contains all of the angular dependence of the field
and thus describes the pattern of the dipole. When the dipole is short compared to a
wavelength we may approximate the radiation function as

F(θ, kl � 1) ≈ 1 − 1
2 (kl cos θ)2 − 1 + 1

2 (kl)2

sin θ
= 1

2
(kl)2 sin θ. (6.33)

So a short dipole antenna has the same pattern as a Hertzian dipole, whose far-zone
electric field is (5.93).

We may also calculate the radiated power for time-harmonic fields. The time-average
Poynting vector for the far-zone fields is, from (6.25),

Sav = r̂η
| Ǐ |2

8π2r2
F2(θ, kl),

and thus the radiated power is

Pav = η
| Ǐ |2
4π

∫ π

0
F2(θ, kl) sin θ dθ.



This expression cannot be computed in closed form. For a short dipole we may use (6.33)
to approximate the power, but the result is somewhat misleading since the current on a
short dipole is much smaller than Ĩ . A better measure of the strength of the current is
its value at the center, or feedpoint, of the dipole. This input current is by (6.26) merely
Ĩ0(ω) = Ĩ (ω) sin(kl). Using this we find

Pav ≈ η
| Ǐ0|2
4π

1

4
(kl)2

∫ π

0
sin3 θ dθ = η

π

3
| Ǐ0|2

(
l

λ

)2

.

This is exactly 1/4 of the power radiated by a Hertzian dipole of the same length and
current amplitude (5.95). The factor of 1/4 comes from the difference between the current
of the dipole antenna, which is zero at each end, and the current on the Hertzian dipole,
which is constant across the length of the antenna. It is more common to use a dipole
antenna that is a half wavelength long (2l = λ/2), since it is then nearly resonant. With
this we have through numerical integration the free-space radiated power

Pav = η0
| Ǐ0|2
4π

∫ π

0

cos2
(

π
2 cos θ

)
sin θ

dθ = 36.6| Ǐ0|2

and the radiation resistance

Rr = 2Pav

| Ǐ (z = 0)|2 = 2Pav

| Ǐ0|2
= 73.2 �.

6.3 Fields in a bounded, source-free region

In § 6.2 we considered the first important special case of the Stratton–Chu formula:
sources in an unbounded medium. We now consider the second important special case
of a bounded, source-free region. This case has important applications to the study of
microwave antennas and, in its scalar form, to the study of the diffraction of light.

6.3.1 The vector Huygens principle

We may derive the formula for a bounded, source-free region of space by specializing
the general Stratton–Chu formulas. We assume that all sources of the fields are within
the excluded regions and thus set the sources to zero within V . From (6.7)–(6.8) we have

Ẽ(r, ω) =
N∑

n=1

∫
Sn

[
(n̂′ × Ẽ) × ∇′G + (n̂′ · Ẽ)∇′G − jωµ̃(n̂′ × H̃)G

]
d S′ −

−
N∑

n=1

1

jωε̃c

∮
�na+�nb

(dl′ · H̃)∇′G, (6.34)

and

H̃(r, ω) =
N∑

n=1

∫
Sn

[
(n̂′ × H̃) × ∇′G + (n̂′ · H̃)∇′G + jωε̃c(n̂′ × Ẽ)G

]
d S′ +



+
N∑

n=1

1

jωµ̃

∮
�na+�nb

(dl′ · Ẽ)∇′G. (6.35)

This is known as the vector Huygens principle after the Dutch physicist C. Huygens, who
formulated his “secondary source concept” to explain the propagation of light. According
to his idea, published in Traité de la lumière in 1690, points on a propagating wavefront
are secondary sources of spherical waves that add together in just the right way to produce
the field on any successive wavefront. We can interpret (6.34) and (6.35) in much the
same way. The field at each point within V , where there are no sources, can be imagined
to arise from spherical waves emanated from every point on the surface bounding V . The
amplitudes of these waves are determined by the values of the fields on the boundaries.
Thus, we may consider the boundary fields to be equivalent to secondary sources of the
fields within V . We will expand on this concept below by introducing the concept of
equivalence and identifying the specific form of the secondary sources.

6.3.2 The Franz formula

The vector Huygens principle as derived above requires secondary sources for the fields
within V that involve both the tangential and normal components of the fields on the
bounding surface. Since only tangential components are required to guarantee uniqueness
within V , we seek an expression involving only n̂ × H̃ and n̂ × Ẽ. Physically, the normal
component of the field is equivalent to a secondary charge source on the surface while
the tangential component is equivalent to a secondary current source. Since charge and
current are related by the continuity equation, specification of the normal component is
superfluous.

To derive a version of the vector Huygens principle that omits the normal fields we
take the curl of (6.35) to get

∇ × H̃(r, ω) =
N∑

n=1

∇ ×
∮

Sn

(n̂′ × H̃) × ∇′G d S′ +
N∑

n=1

∮
Sn

∇ × [
(n̂′ · H̃)∇′G

]
d S′ +

+
N∑

n=1

∇ ×
∮

Sn

jωε̃c(n̂′ × Ẽ)G d S′ +
N∑

n=1

1

jωµ̃

∮
�na+�nb

∇ × [
(dl′ · Ẽ)∇′G

]
d S′. (6.36)

Now, using ∇′G = −∇G and employing the vector identity (B.43) we can show that

∇ × [
f (r′)∇′G(r|r′)

] = − f (r′)
{∇ × [∇G(r|r′)

]} + [∇G(r|r′)
] × ∇ f (r′) = 0,

since ∇ × ∇G = 0 and ∇ f (r′) = 0. This implies that the second and fourth terms of
(6.36) are zero. The first term can be modified using

∇ × {[
n̂′ × H̃(r′)

]
G(r|r′)

} = G(r|r′)∇ × [
n̂′ × H̃(r′)

] − [
n̂′ × H̃(r′)

] × ∇G(r|r′)
= [

n̂′ × H̃(r′)
] × ∇′G(r|r′),

giving

∇ × H̃(r, ω) =
N∑

n=1

∇ ×
∮

Sn

∇ × [
(n̂′ × H̃)G

]
d S′ +

N∑
n=1

∇ ×
∮

Sn

jωε̃c(n̂′ × Ẽ)G d S′.



Finally, using Ampere’s law ∇ × H̃ = jωε̃cẼ in the source free region V , and taking the
curl in the first term outside the integral, we have

Ẽ(r, ω) =
N∑

n=1

∇ × ∇ ×
∮

Sn

1

jωε̃c
(n̂′ × H̃)G d S′ +

N∑
n=1

∇ ×
∮

Sn

(n̂′ × Ẽ)G d S′. (6.37)

Similarly

H̃(r, ω) = −
N∑

n=1

∇ × ∇ ×
∮

Sn

1

jωµ̃
(n̂′ × Ẽ)G d S′ +

N∑
n=1

∇ ×
∮

Sn

(n̂′ × H̃)G d S′. (6.38)

These expressions together constitute the Franz formula for the vector Huygens principle
[192].

6.3.3 Love’s equivalence principle

Love’s equivalence principle allows us to identify the equivalent Huygens sources for the
fields within a bounded, source-free region V . It then allows us to replace a problem in
the bounded region with an “equivalent” problem in unbounded space where the source-
excluding surfaces are replaced by equivalent sources. The field produced by both the
real and the equivalent sources gives a field in V identical to that of the original problem.
This is particularly useful since we know how to compute the fields within an unbounded
region by employing potential functions.

We identify the equivalent sources by considering the electric and magnetic Hertzian
potentials produced by electric and magnetic current sources. Consider an impressed
electric surface current J̃eq

s and a magnetic surface current J̃eq
ms flowing on the closed

surface S in a homogeneous, isotropic medium with permeability µ̃(ω) and complex
permittivity ε̃c(ω). These sources produce

Π̃e(r, ω) =
∮

S

J̃eq
s (r′, ω)

jωε̃c(ω)
G(r|r′; ω) d S′, (6.39)

Π̃h(r, ω) =
∮

S

J̃eq
ms(r′, ω)

jωµ̃(ω)
G(r|r′; ω) d S′, (6.40)

which in turn can be used to find

Ẽ = ∇ × (∇ × Π̃e) − jωµ̃∇ × Π̃h,

H̃ = jωε̃c∇ × Π̃e + ∇ × (∇ × Π̃h).

Upon substitution we find that

Ẽ(r, ω) = ∇ × ∇ ×
∮

S

1

jωε̃c

[
J̃eq

s G
]

d S′ + ∇ ×
∮

S
[−J̃eq

ms]G d S′,

H̃(r, ω) = −∇ × ∇ ×
∮

S

1

jωµ̃

[−J̃eq
ms G

]
d S′ + ∇ ×

∮
S

J̃eq
s G d S′.

These are identical to the Franz equations (6.37) and (6.38) if we identify

J̃eq
s = n̂ × H̃, J̃eq

ms = −n̂ × Ẽ. (6.41)

These are the equivalent source densities for the Huygens principle.



We now state Love’s equivalence principle [39]. Consider the fields within a homoge-
neous, source-free region V with parameters (ε̃c, µ̃) bounded by a surface S. We know
how to compute the fields using the Franz formula and the surface fields. Now consider
a second problem in which the same surface S exists in an unbounded medium with
identical parameters. If the surface carries the equivalent sources (6.41) then the electro-
magnetic fields within V calculated using the Hertzian potentials (6.39) and (6.40) are
identical to those of the first problem, while the fields calculated outside V are zero. We
see that this must be true since the Franz formulas and the field/potential formulas are
identical, and the Franz formula (since it was derived from the Stratton–Chu formula)
gives the null field outside V . The two problems are equivalent in the sense that they
produce identical fields within V .

The fields produced by the equivalent sources obey the appropriate boundary condi-
tions across S. From (2.194) and (2.195) we have the boundary conditions

n̂ × (H̃1 − H̃2) = J̃s,

n̂ × (Ẽ1 − Ẽ2) = −J̃ms .

Here n̂ points inward to V , (Ẽ1, H̃1) are the fields within V , and (Ẽ2, H̃2) are the fields
within the excluded region. If the fields produced by the equivalent sources within the
excluded region are zero, then the fields must obey

n̂ × H̃1 = J̃eq
s ,

n̂ × Ẽ1 = −J̃eq
ms,

which is true by the definition of (J̃eq
s , J̃eq

sm).
Note that we can extend the equivalence principle to the case where the media are

different internal to V than external to V . See Chen [29].
With the equivalent sources identified we may compute the electromagnetic field in

V using standard techniques. Specifically, we may use the Hertzian potentials as shown
above or, since the Hertzian potentials are a simple remapping of the vector potentials,
we may use (5.60) and (5.61) to write

Ẽ = − j
ω

k2

[∇(∇ · Ãe) + k2Ãe
] − 1

ε̃c
∇ × Ãh,

H̃ = − j
ω

k2

[∇(∇ · Ãh) + k2Ãh
] + 1

µ̃
∇ × Ãe,

where

Ãe(r, ω) =
∮

S
µ̃(ω)J̃eq

s (r′, ω)G(r|r′; ω) d S′ (6.42)

=
∮

S
µ̃(ω)[n̂′ × H̃(r′, ω)]G(r|r′; ω) d S′, (6.43)

Ãh(r, ω) =
∮

S
ε̃c(ω)J̃eq

ms(r
′, ω)G(r|r′; ω) d S′ (6.44)

=
∮

S
ε̃c(ω)[−n̂′ × Ẽ(r′, ω)]G(r|r′; ω) d S′. (6.45)

At points where the source is zero we can write the fields in the alternative form

Ẽ = − j
ω

k2
∇ × ∇ × Ãe − 1

ε̃c
∇ × Ãh, (6.46)

H̃ = − j
ω

k2
∇ × ∇ × Ãh + 1

µ̃
∇ × Ã. (6.47)



Figure 6.5: Geometry for problem of an aperture in a perfectly conducting ground screen
illuminated by an impressed source.

By superposition, if there are volume sources within V we merely add the fields due
to these sources as computed from the potential functions.

6.3.4 The Schelkunoff equivalence principle

With Love’s equivalence principle we create an equivalent problem by replacing an
excluded region by equivalent electric and magnetic sources. These require knowledge of
both the tangential electric and magnetic fields over the bounding surface. However, the
uniqueness theorem says that only one of either the tangential electric or the tangential
magnetic fields need be specified to make the fields within V unique. Thus we may wonder
whether it is possible to formulate an equivalent problem that involves only tangential
Ẽ or tangential H̃. It is indeed possible, as shown by Schelkunoff [39, 169].

When we use the equivalent sources to form the equivalent problem, we know that they
produce a null field within the excluded region. Thus we may form a different equivalent
problem by filling the excluded region with a perfect conductor, and keeping the same
equivalent sources. The boundary conditions across S are not changed, and thus by the
uniqueness theorem the fields within V are not altered. However, the manner in which
we must compute the fields within V is changed. We can no longer use formulas for
the fields produced by sources in free space, but must use formulas for fields produced
by sources in the vicinity of a conducting body. In general this can be difficult since it
requires the formation of a new Green’s function that satisfies the boundary condition
over the conducting body (which could possess a peculiar shape). Fortunately, we showed
in § 4.10.2 that an electric source adjacent and tangential to a perfect electric conductor
produces no field, hence we need not consider the equivalent electric sources (n̂ × H̃)
when computing the fields in V . Thus, in our new equivalent problem we need the single
tangential field −n̂ × Ẽ. This is the Schelkunoff equivalence principle.



There is one situation in which it is relatively easy to use the Schelkunoff equivalence.
Consider a perfectly conducting ground screen with an aperture in it, as shown in Figure
6.5. We assume that the aperture has been illuminated in some way by an electromagnetic
wave produced by sources in region 1 so that there are both fields within the aperture
and electric current flowing on the region-2 side of the screen due to diffraction from
the edges of the aperture. We wish to compute the fields in region 2. We can create an
equivalent problem by placing a planar surface S0 adjacent to the screen, but slightly
offset into region 2, and then closing the surface at infinity so that all of the screen plus
region 1 is excluded. Then we replace region 1 with homogeneous space and place on S0

the equivalent currents J̃eq
s = n̂ × H̃, J̃eq

ms = −n̂ × Ẽ, where H̃ and Ẽ are the fields on S0 in
the original problem. We note that over the portion of S0 adjacent to the screen J̃eq

ms = 0
since n̂ × Ẽ = 0, but that J̃eq

s �= 0. From the equivalent currents we can compute the
fields in region 2 using the potential functions. However, it is often difficult to determine
J̃eq

s over the conducting surface. If we apply Schelkunoff’s equivalence, we can formulate
a second equivalent problem in which we place into region 1 a perfect conductor. Then
we have the equivalent source currents J̃eq

s and J̃eq
ms adjacent and tangential to a perfect

conductor. By the image theorem of § 5.1.1 we can replace this problem by yet another
equivalent problem in which the conductor is replaced by the images of J̃eq

s and J̃eq
ms in

homogeneous space. Since the image of the tangential electric current J̃eq
s is oppositely

directed, the fields of the electric current and its image cancel. Since the image of the
magnetic current is in the same direction as J̃eq

ms , the fields produced by the magnetic
current and its image add. We also note that J̃eq

ms is nonzero only over the aperture
(since n̂ × Ẽ = 0 on the screen), and thus the field in region 1 can be found from

Ẽ(r, ω) = − 1

ε̃c(ω)
∇ × Ãh(r, ω),

where

Ãh(r, ω) =
∫

S0

ε̃c(ω)[−2n̂′ × Ẽap(r′, ω)]G(r|r′; ω) d S′

and Ẽap is the electric field in the aperture in the original problem. We shall present an
example in the next section.

6.3.5 Far-zone fields produced by equivalent sources

The equivalence principle is useful for analyzing antennas with complicated source
distributions. The sources may be excluded using a surface S, and then a knowledge
of the fields over S (found, for example, by estimation or measurement) can be used to
compute the fields external to the antenna. Here we describe how to compute these fields
in the far zone.

Given that J̃eq
s = n̂ × H̃ and J̃eq

ms = −n̂ × Ẽ are the equivalent sources on S, we may
compute the fields using the potentials (6.43) and (6.45). Using (6.20) these can be
approximated in the far zone (r � r ′, kr � 1) as

Ãe(r, ω) = µ̃(ω)
e− jkr

4πr
ãe(θ, φ, ω),

Ãh(r, ω) = ε̃c(ω)
e− jkr

4πr
ãh(θ, φ, ω), (6.48)

where

ãe(θ, φ, ω) =
∮

S
J̃eq

s (r′, ω)e jkr̂·r′
d S′,



ãh(θ, φ, ω) =
∮

S
J̃eq

sm(r′, ω)e jkr̂·r′
d S′, (6.49)

are the directional weighting functions.
To compute the fields from the potentials we must apply the curl operator. So we

must evaluate

∇ ×
[

e− jkr

r
V(θ, φ)

]
= e− jkr

r
∇ × V(θ, φ) + ∇

(
e− jkr

r

)
× V(θ, φ).

The curl of V is proportional to 1/r in spherical coordinates, hence the first term on the
right is proportional to 1/r2. Since we are interested in the far-zone fields, this term can
be discarded in favor of 1/r -type terms. Using

∇
(

e− jkr

r

)
= −r̂

(
1 + jkr

r

)
e− jkr

r
≈ −r̂ jk

e− jkr

r
, kr � 1,

we have

∇ ×
[

e− jkr

r
V(θ, φ)

]
≈ − jkr̂ ×

[
e− jkr

r
V(θ, φ)

]
.

Using this approximation we also establish

∇ × ∇ ×
[

e− jkr

r
V(θ, φ)

]
≈ −k2r̂ × r̂ ×

[
e− jkr

r
V(θ, φ)

]
= k2 e− jkr

r
VT (θ, φ)

where VT = V − r̂(r̂ · V) is the vector component of V transverse to the r -direction.
With these formulas we can approximate (6.46) and (6.47) as

Ẽ(r, ω) = − jωÃeT (r, ω) + jk

ε̃c(ω)
r̂ × Ãh(r, ω), (6.50)

H̃(r, ω) = − jωÃhT (r, ω) − jk

µ̃(ω)
r̂ × Ãe(r, ω).

Note that

r̂ × Ẽ = − jωr̂ × ÃeT + jk

ε̃c
r̂ × r̂ × Ãh .

Since r̂ × ÃeT = r̂ × Ãe and r̂ × r̂ × Ãh = −ÃhT , we have

r̂ × Ẽ = η

[
− jωÃhT − jk

µ̃
r̂ × Ãe

]
= ηH̃.

Thus

H̃ = r̂ × Ẽ
η

and the electromagnetic field in the far zone is a TEM spherical wave, as expected.

Example of fields produced by equivalent sources: an aperture antenna. As
an example of calculating the fields in a bounded region from equivalent sources, let
us find the far-zone field in free space produced by a rectangular waveguide opening
into a perfectly-conducting ground screen of infinite extent as shown in Figure 6.6. For
simplicity assume the waveguide propagates a pure T E10 mode, and that all higher-order



Figure 6.6: Aperture antenna consisting of a rectangular waveguide opening into a con-
ducting ground screen of infinite extent.

modes excited when the guided wave is reflected at the aperture may be ignored. Thus
the electric field in the aperture S0 is

Ẽa(x, y) = ŷE0 cos
(π

a
x
)

.

We may compute the far-zone field using the Schelkunoff equivalence principle of § 6.3.4.
We exclude the region z < 0+ using a planar surface S which we close at infinity. We
then fill the region z < 0 with a perfect conductor. By the image theory the equivalent
electric sources on S cancel while the equivalent magnetic sources double. Since the
only nonzero magnetic sources are on S0 (since n̂ × Ẽ = 0 on the screen), we have the
equivalent problem of the source

J̃eq
ms = −2n̂ × Ẽa = 2x̂E0 cos

(π

a
x
)

on S0 in free space, where the equivalence holds for z > 0.
We may find the far-zone field created by this equivalent current by first computing

the directional weighting function (6.49). Since

r̂ · r′ = r̂ · (x ′x̂ + y′ŷ) = x ′ sin θ cos φ + y′ sin θ sin φ,

we find that

ãh(θ, φ, ω) =
∫ b/2

−b/2

∫ a/2

−a/2
x̂2E0 cos

(π

a
x ′

)
e jkx ′ sin θ cos φe jky′ sin θ sin φ dx ′ dy′

= x̂4π E0ab
cos π X

π2 − 4(π X)2

sin πY

πY

where

X = a

λ
sin θ cos φ, Y = b

λ
sin θ sin φ.

Here λ is the free-space wavelength. By (6.50) the electric field is

Ẽ = jk0

ε0
r̂ × Ãh



where Ãh is given in (6.48). Using

r̂ × x̂ = φ̂ cos θ cos φ + θ̂ sin φ

we find that

Ẽ = jk0abE0
e− jkr

r

(
θ̂ sin φ + φ̂ cos θ cos φ

) cos(π X)

π2 − 4(π X)2

sin(πY )

πY
.

The magnetic field is merely H̃ = (r̂ × Ẽ)/η.

6.4 Problems

6.1 Beginning with the Lorentz reciprocity theorem, derive (6.8).

6.2 Obtain (6.8) by substitution of (6.7) into Faraday’s law.

6.3 Show that (6.8) returns the null result when evaluated within the excluded regions.

6.4 Show that under the condition kr � 1 the formula for the magnetic field of a
dipole antenna (6.28) reduces to (6.32), while the formulas for the electric fields (6.29)
and (6.30) reduce to (6.31).

6.5 Consider the dipole antenna shown in Figure 6.4. Instead of a standing-wave
current distribution, assume the antenna carries a traveling-wave current distribution

J̃i (r, ω) = ẑ Ĩ (ω)e− jk|z|δ(x)δ(y), −l ≤ z ≤ l.

Find the electric and magnetic fields at all points away from the current distribution.
Specialize the result for kr � 1.

6.6 A circular loop of thin wire has radius a and lies in the z = 0 plane in free space.
A current is induced on the wire with the density

J̃(r, ω) = φ̂ Ĩ (ω) cos [k0a(π − |φ|)] δ(r − a)
δ(θ − π/2)

r
, |φ| ≤ π.

Compute the far-zone fields produced by this loop antenna. Specialize your results for
the electrically-small case of k0a � 1. Compute the time-average power radiated by, and
the radiation resistance of, the electrically-small loop.

6.7 Consider a plane wave with the fields

Ẽ = Ẽ0x̂e− jkz, H̃ = Ẽ0

η
ŷe− jkz,

normally incident from z < 0 on a square aperture of side a in a PEC ground screen
at z = 0. Assume that the field in the aperture is identical to the field of the plane
wave with the screen absent (this is called the Kirchhoff approximation). Compute the
far-zone electromagnetic fields for z > 0.

6.8 Consider a coaxial cable of inner radius a and outer radius b, opening into a PEC
ground plane at z = 0. Assume that only the TEM wave exists in the line and that no
higher-order modes are created when the wave reflects from the aperture. Compute the
far-zone electric and magnetic fields of this aperture antenna.
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