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Preface

This book is intended for researchers, teachers, and students willing to ex-
plore conceptual bridges between the fields of Automatic Control and Power
Electronics. The need to bring the two disciplines closer has been felt, for
many years, both by Power Electronics specialists and by Automatic Control
theorists, as a means of fruitful interaction between the two scientific com-
munities. There have, certainly, been many steps given in that direction in
the last decade as evidenced by the number of research articles in journals,
special sessions in conferences, and summer courses throughout the world.
This book hopes to become a small but positive contribution in the needed
proximity of the two engineering fields. Automatic Control specialists are,
generally speaking, not fully aware of the limitations, fundamental needs and
nature of the technical problems in Power Electronics design. On the other
hand, Power Electronics specialists are seldom Automatic Control theorists
themselves, nor are they convinced of the advantageous viewpoint hidden in
the, often rather complex, mathematical developments of Automatic Control
theory. The net result has been a misunderstanding of the value of each others
field with little interaction and a diminished chance for cross-fertilization of
ideas, methods, visions and solutions.

Power electronics devices are physical devices that can be mathematically
modelled as controlled dynamic systems and, hence, they are suitably con-
formed for the application of existing control theories. Specifically, control
theory is mainly concerned in the design of the regulating subsystem in a po-
wer electronics device for enhancing its overall performance in accordance with
the prescribed objective. Although difficult, the objectives behind the design
of a certain power electronics device can usually be translated into a rather
concrete “control objective” for which an arsenal of techniques exist nowa-
days. These facts makes Power Electronics an area of natural development
and applications of Automatic Control while keeping its unique character and
demands for enhanced reliability, reduced cost, and the need for experimental
verification of mathematically founded claims. Automatic Control theories,
on the other hand, offer a wide range of powerful techniques which can be im-
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mediately applied to problems in Power Electronics. An Automatic Control
theorist dwelling in the Power Electronics area rapidly finds Power Electronics
to be a challenging field with, sometimes, non clear cut, non direct mathema-
tically tractable and, often, multiple and apparently contradictive objectives.

The basic aim of this book is to present some of the Automatic Control
theories and techniques relevant to the design of feedback controllers in Po-
wer Electronics. Specifically, we deal with switched power electronics devices,
mostly constituting DC to DC power converters, or power supplies, invert-
ers and rectifiers of various kinds and of different topologies. Since most of
switched power electronics devices may be cataloged as nonlinear (or, rather,
bi-linear) control systems, we expose the reader to some few general, and
rather traditional, methods for designing feedback controllers in nonlinear sys-
tems. The theoretical introduction to each one of the control design methods is
accompanied by multiple case studies and examples showing the applicability
of the explained theory. We concentrate in the following specific theoretical
developments from the view point of Control Theory: Sliding mode control,
feedback control by means of approximate linearization and nonlinear con-
trol design methods. These last are basically constituted by: exact feedback
linearization methods, differential flatness and passivity based control. At the
beginning of the book, we devote some space to the very important issue of
modelling switched power electronics devices as controlled dynamic systems.

The material contained in this book has been used in teaching one semester
graduate courses at Cinvestav (México City) in the topic of Control of Power
Electronics Devices. The courses have been complemented by home-works,
some of them including team work in the practical implementation of some
of the control techniques, taught in the lectures, to a specific power electron-
ics device. One of the most rewarding experiences in the teaching of these
courses is to find out the ability of students to rapidly come up with a full
implementation of the control ideas in their “proto-board” built electronic
circuits and be able to reconfirm the values of the theoretical results. Some of
the material has also been used in several motivating seminars and tutorials
around the country to groups of engineering students, and teachers, interested
in developing research application areas in their academic environments.

Many people have contributed to the development of this book, which
arose from notes handed out to the Cinvestav master’s and doctoral students.
The students must be thanked first by their many pertinent observations and
questions surrounding the clarity of the material. Among the people we would
like to specially mention, and thank for their support and encouragement, is
Dr. Gerardo Silva-Navarro of the Mechatronics section at Cinvestav. Gerardo
helped us, in many ways, to make this book a reality. The assistance, in many
ways, of Dr. Victor M. Hernández of the Autonoma University of Querétaro
is gratefully acknowledged. The authors are indebted to Mr. Jesus Linares
Flores, a PhD student at Cinvestav, for his involvement and help in the ex-
perimental implementations appearing in this book. The authors have also
been positively influenced by the enthusiasm, in Power Electronics and Auto-



Preface IX

matic Control theory related issues, of Dr. Jaime Arau-Roffiel of the Centro
Nacional de Investigación y Desarrollo Tecnológico (Cenidet) at Cuernavaca,
Morelos state. Both authors have benefited from invitations to Cuernavaca to
deliver seminars, teach courses and participate in their many academic under-
takings. The help and technical assistance of Dr. Mario Ponce-Silva and MSc.
Rene Osorio of Cenidet is greatfully acknowledged. The advice of Dr. Gerardo
Espinosa-Pérez of the Universidad Nacional Autónoma de México (UNAM) is
also gratefully acknowledged. The friendly and informative discussions of top-
ics, developments and trends, in many occasions, with Dr. Jesús Leyva-Ramos,
and Dr. Gerardo Escobar of the Instituto Potosino de Investigación Cient́ıfica
y Tecnológica (IPICyT) in San Luis Potośı have been most fruitful and mo-
tivating. Their insight into Power Electronics has been particularly helpful
to this undertaking. The first author has also immensely benefited from the
capable experience and advice of Dr. Victor Cárdenas and Dr. Ciro Núñez,
of the Universidad Autónoma de San Luis Potośı. The colleagues, former stu-
dents, and friends at the Universidad de Los Andes (Mérida-Venezuela) have
been particularly helpful and motivational. He would like to specially thank
Professor Mario Spinnetti Rivera and Dr. Richard Márquez Contreras for
their continuous support, generosity and their willingness to offer a helping
hand with many practical as well as theoretical issues. Their good experience
in directing practical implementations of many of the methods developed in
these pages have been fundamental in our motivation to write this book. The
generosity and advice of Dr. Joachim Rudolph of the Technical University
in Dresden (Germany) is gratefully acknowledged. A one semester visit of
R. Silva-Ortigoza to his laboratory was made possible thanks to the Consejo
Nacional de Ciencia y Tecnoloǵıa of México (CONACYT) and the Deutscher
Akademischer Austauschdienst (DAAD).

The research work contained in this book has been primarily supported
by the Centro de Investigación y Estudios Avanzados del Instituto Politécnico
Nacional (Cinvestav-IPN) at México City and by the generous financial as-
sistance of CONACYT, under Research Project 42231-Y, and a scholarship
granted to the second author.

H. Sira-Ramı́rez dedicates his work in this book to his beloved wife, Maria
Elena Gozaine, for the constant immense moral support and her kind un-
derstanding of the many demands implicit in the writing of this book. R.
Silva-Ortigoza dedicates his work in this book, with all possible affection, to
Jessica, to his parents and his family.

México City, Hebertt Sira-Ramı́rez
May 2006. Ramón Silva-Ortigoza
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1

Introduction

This book contains a collection of Automatic Control techniques for the re-
gulation of power electronics devices, such as: DC-to-DC power converters,
DC-to-AC supplies (inverters), AC-to-AC conversion circuits (rectifiers) and
some of its variants. As dynamical controlled systems, power electronics de-
vices are prone to feedback controller design applications. In this respect,
models of such devices may fall into one of two categories, mono-variable and
multi-variable. The first class refers to the presence of only one control in-
put variable, usually represented by the position of a switch. In the second
class, we have multiple, independent switches. Typically, in this last category
we find: cascaded arrangements of DC-to-DC power converters, three phase
rectifiers etc. Since most of the devices treated in this book are of nonli-
near nature, the control synthesis problem associated with the automatically
regulated operation of these devices falls into the category of nonlinear con-
trol systems. We explore several feedback controller design methodologies.
Namely; approximate linearization, exact feedback linearization and its ver-
sions: input-state and input-output linearization, passivity based control in its
various forms (dynamic and static), observer design and Generalized Propor-
tional Integral (GPI) control. In order to make this feedback controller design
techniques relevant and applicable to switched power electronics devices, we
need to use average models of the switched dynamics describing these devices.
Such average models are usually obtained under the assumption of ideal in-
finite switching frequency operation. The infinite frequency idealization is, of
course, never verified in practise. Nevertheless, as a necessary step in the con-
troller design procedure, its use sidesteps cumbersome exact discretization of
the dynamic models and the mathematically involved, complex, form of the
resulting sampled data controllers. Also, the infinite frequency idealization has
the enormous advantage of rather accurately predicting the actual behavior
of the implemented finite switching frequency controller. The finite frequency
implementation of the average feedback controller design is here tackled in a
manner which is rather different from the traditional approach. We specifi-
cally resort to Σ − ∆ modulation as a means of synthesizing a binary valued
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input to the actual switch command subsystem. Realistic Σ − ∆ modulation
can also be suitably proposed to provide a finite frequency logic input to the
switching arrangement while preserving the most relevant qualitative features
of the closed loop average based feedback controller design.

In this book, we advocate the use of normalization as a systematic time
scale and state variable model transformation that offers several advantageous
features to the designer. In the first place, normalization simplifies the math-
ematical description of the system by eliminating the presence of superfluous
parameters and exhibiting only those parameters which are responsible for im-
portant qualitative changes in the system response and behavior. Normaliza-
tion, therefore, enormously simplifies the algebraic manipulation of the model
equations at the controller design stage and allows for qualitative insight into
the form of the proposed control solutions. It also portrays the relevance,
and implications, of the partial analytic results derived from the model, such
as: equilibrium points, steady state behavior, control amplitude restrictions
and the like. Simulation runs on normalized models considerably facilitates
the mathematical processor operations and it result in fast, accurate, reliable,
computations devoid of the traditional numerical “stiffness” present in most
power electronics devices models arising from small capacitance and small
inductance values (i.e., exceedingly large right hand sides of the involved dif-
ferential equations). Finally, reverting to non-normalized variables amounts to
the multiplication by constant factors of the state variables magnitudes and
of the simulation time scale.

Most chapters in this book include the description of a laboratory imple-
mentation of at least one of the feedback controller design options explained
in that chapter. We include circuit layouts and details that will allow the
interested reader to obtain a physical realization of some of the studied con-
trollers, thus creating the opportunity to synthesize and try out some other
controllers of his (her) interest.

Chapter 2 deals with the modelling of DC-to-DC power Converters. Even
though an Euler-Lagrange modelling approach could have been undertaken in
this part. The authors feel that this modelling technique has been sufficiently
explained, and illustrated, in the book by Ortega et al. [48]. A closely related
modelling technique, with many interesting implications in modern electronics
circuits, is that of “Port Controlled Hamiltonian” systems (see Escobar [11]
and Escobar et al. [13]). Here, we prefer the more direct approach of using
Kirkchoff’s voltage and Kirkchoff’s current laws on each constitutive part of
the system, obtained from each possible commanded switch position, and then
combine the obtained dynamical equations. Throughout, we hypothesize the
presence of an ideal switch, characterized by a switch position function taking
values in the discrete set: {0, 1}. In some special instances, we advocate the
use of discrete sets of the form: {−1, 1}, or {−1, 0, 1}.

In this chapter, we undertake the detailed modelling of the several DC-to-
DC power converters. In particular we examine the derivation of the models of
the “Buck”, the “Boost”, the “Buck-Boost”, the “non-inverting Buck-Boost”,



1 Introduction 3

the “Cúk ”, the “Sepic”, the “Zeta” and the “quadratic Buck” converter.
These are all mono-variable converters, i.e., the control action is constituted by
a single switch acting as a control input. A more interesting and versatile class
of DC-to-DC power converters is constituted by the cascade arrangement of
several converters. These, in general, constitute the multi-variable converters.
Two examples of this class of converters are introduced and modelled in detail
in this chapter. They are the “Boost-Boost” converter and the “double Buck-
Boost” converter.

The models analyzed and derived in Chapter 2 include ideal switch models.
This assumption is found to be quite unrealistic when one attempts actual
laboratory implementation of certain feedback controllers. Switches are often
realized by suitable arrangements of diodes and transistors. These electronic
components include non-ideal components, such as: parasitic resistances and
offset voltages. For this reason, the chapter concludes by examining some more
refined models of standard DC-to-DC power converters (see the article by
Kazimierczuk and Czarkowski [36]) for further details about non-ideal models
of switches. Here, we simply adopt models which include inductor resistances,
diode internal resistors and parasitic voltages as well as transistor resistances.
These models, which are slightly more involved, have been found useful in
several realistic simulations leading to actual controller designs.

In Chapter 3, we present a tutorial introduction to sliding mode control
of switch regulated systems. The sliding mode control technique is perhaps
the simplest control technique that may be applied to switched controller con-
verters. The reasons being, the simplicity of generating a meaningful sliding
surface, the relative ease for implementation of the derived control law and
the fact that the analysis of the ideal sliding dynamics and steady state char-
acteristics of the closed loop system is relatively straightforward and easy to
understand. The reader is advised to read the fundamental work in this area by
Professor V. Utkin in his books [75] and [76]. In Utkin et al. [77] the reader
may find applications of sliding mode control to DC-to-DC power conver-
sion. The chapter deals with the essential elements of sliding mode control in
rather general single-input and multiple-input systems (i.e., in mono-variable
and multi-variable switched systems). We demonstrate, in a theoretical man-
ner, the traditional foundation of the robustness claims usually advertised
in sliding mode control as a nonlinear, discontinuous, control technique. The
robustness characteristic of sliding mode control refers to the annihilation of
matched perturbations. We explore the implications of a sliding mode control
approach in a wide variety of DC-to-DC power converters. The several ex-
amples will provide the reader with a systematic view towards sliding mode
controller design, thus revealing the conceptual advantages and the simplicity
of the approach. In order to avoid some of the consequences of unmatched per-
turbations and, more importantly, to be able to effectively use linear as well
as nonlinear traditional feedback controller design techniques in the realm of
switched controlled systems, we propose an alternative to sliding mode im-
plementation, known as the Σ −∆ modulation approach. In fact, this imple-
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mentation technique will be present throughout this book. Σ−∆ modulation
is quite well known, and popular, in areas other than control theory (mainly:
communications, signal processing, analog to binary conversion, etc.). The
idea is to have a block capable of translating continuous valued, bounded,
signals into high frequency (ideally, infinite frequency) switched signals with
one important property: that the average or ideal equivalent behavior of the
output signal coincides, exactly, with the continuous input to the modulator.
∆ modulation and its variants: Σ−∆ modulation, Double Σ modulation and
two sided Σ − ∆ modulation, etc., was used in the early days of voice trans-
mission in space flights, and many other areas of signal digitalization (see the
books by Steele and, most notably, that by Norsworthy et al. [47]). Its use
in sliding mode controller design has been more recent (see Sira-Ramı́rez [62]
and [61] although initial developments may be traced back to [56]).

Chapter 4 revisits the most popular feedback control technique used in
the area of DC-to-DC power electronics. It deals with the approximate linea-
rization based feedback control. The new feature we advocate is the Σ − ∆
modulation implementation of the derived average feedback controllers. We
explore several controller design techniques: Linear static state feedback con-
trol, Linear dynamic state feedback control, Generalized PI control, and linear
passivity based control. As expected, in this chapter we deal with linearized
average models of DC-to-DC power converters. The linearized average models
are computed via standard first order Taylor series approximations of the av-
erage nonlinear dynamics around desired average equilibrium points. We first
assume the availability of the entire linearized state of the system. Application
of linear state feedback control is then quite natural and direct. Linear state
feedback control is quite well known in the control literature and only a tu-
torial introduction is presented in this chapter which explains how to achieve
closed loop desired pole placement and stabilization of the incremental state
trajectory. The relation with traditional Proportional Derivative (PD) control
is immediate, as PD control can be reinterpreted as a state feedback control
technique. A second proposal is that of using Fliess’ Generalized Canonical
forms (GCF) of the various converters models in order to obtain a dynamic
state feedback controller. GCF were introduced by Fliess in [15] as a gen-
eralization of Kalman state representations of linear and nonlinear dynamic
systems. In fact, these canonical forms correspond to input-output descrip-
tions of the average linearized model of the dynamic plant. We also examine
the implications of this approach, within the nonlinear setting, in Chapter 5.
The limitation of this design method is evidently related to the non-minimum
phase phenomenon present in some of those circuits. In such cases, the output
exhibits a transfer function characterized by an unstable numerator complex
variable polynomial.

If, as it may usually be the case, the state of the system is not available
for measurement and feedback, then, one traditionally resorts to asymptotic
observer design. Although this last statement is certainly true in most of con-
trol problems, in power electronics one may always sidestep the need with an
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extra measurement of a needed current or voltage. However, extra measure-
ments tend to complicate the circuit design, introduces more hardware into
the circuit, it somewhat increases the costs, and it results in a decrease of the
feedback controller reliability. The fundamental property to be tested is then
the observability of the system as this property is related to the possibilities
of obtaining states from inputs and outputs (and a finite number of its time
derivatives). Once the system is determined to be observable, an asymptotic
observer of the Luenberger type may be proposed to asymptotically obtain the
unavailable, or unmeasured, linearized states needed in the designed feedback
control law. However, the use of observers in Power Electronics is not popular
due also to circuit cost increase. In fact, a dynamic observer system has to be
synthesized, via analog electronics, or software, creating a system of the same
order, or of reduced order depending on the number of outputs, than that of
the observed system. For this reason, we prefer to advocate a different option
that integrates observer and controller in a single design. This technique has
become known as GPI. This input-output feedback control technique is based
on the idea of avoiding traditional observer design by using only structural
estimates or integral reconstructors of the unmeasured states as estimates for
such variables. One of the attractive features of the GPI control method lies
in the fact that it is based only on measurements of inputs and outputs, and
linear combinations of finite numbers of iterated integrals of these available
signals. These estimates are computed modulo initial conditions and modulo
the influence of classical perturbations (such as steps, ramps, parabolas, etc.).
As a result, the integral reconstructors differ from the actual signals in errors
that can be described by finite order time polynomials signals. The structural
errors thus being fundamentally unstable. The superposition principle is then
invoked to complement, at the feedback controller design stage, the recon-
structor based feedback with a suitable finite number of iterated integrals of
the stabilization output error, so as to counteract the destabilizing effect of
the structural estimator. As a result, one obtains a higher order controller
which effectively stabilizes the closed loop system using nothing more than a
simple pole placement technique on an increased order characteristic polyno-
mial. GPI control has only been recently introduced in the control literature
by Fliess and his coworkers [21] and its application to the control of power
electronics devices has been advocated in [69] and in [72].

Within the framework of approximate state linearization, one may also
obtain, in a relatively simple fashion, a Generalized Hamiltonian model of the
linear incremental dynamic model (see [58] and also [59]). Such models are
also known as “Port controlled Hamiltonian systems” (see Escobar et al. [13]).
Using this special Hamiltonian form of the linearized incremental model, we
develop a simple controller design procedure, which is based on static passiv-
ity considerations. The technique allows for the specification of a stabilizing
incremental state feedback controller provided a certain dissipation match-
ing condition is satisfied. Fortunately, most of the popular power electronics
devices for DC-to-DC power conversion do satisfy such a matching condi-
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tion. Incidentally, this static passivity based controller design procedure has
an interesting implication and generalization in the nonlinear framework, as
explained in Chapter 5.

Chapter 5 is devoted to the relevance of nonlinear feedback controller de-
sign in power electronics devices of the DC-to-DC power conversion type. We
explore, and illustrate, several feedback controller design methods: Feedback
linearization, passivity based control through the traditional method of “en-
ergy shaping and damping injection” advocated in Ortega et al. [48]. Static
and dynamic input-output linearization and static nonlinear passivity based
control. We start by revisiting the exact feedback linearization technique in
the context of stabilization problems. The technique proves to be tractable
only in the simplest of cases. The geometric theory of nonlinear control sys-
tems, as nicely described in the book by Isidori [31], is used for testing the
linearizability of the average models of the most popular DC-to-DC power
converters. The input-output static feedback linearization is also examined
through the use of Isidori’s canonical form. As a result, the minimum and
non-minimum phase nature of the corresponding zero dynamics is presented
for all the illustrative case studies treated in that chapter. Through exact
models of the open loop tracking error dynamics, we also explore the possi-
bilities of static passivity based control. This feedback technique invariably
results in linear, time invariant, state feedback controllers for stabilization
problems and in linear, time-varying, state feedback controllers for trajectory
tracking problems. A dissipation matching condition, satisfied by most of the
traditional average models of DC-to-DC converters topologies, guarantees the
semi-global asymptotic stability of the state tracking error equilibrium point,
located at the origin. The linear controller requires, nevertheless, of the nom-
inal state and nominal input trajectories. A most useful property that can be
exploited in off-line determining these trajectories, with great ease, is that of
differential flatness; a technique introduced 14 years ago by Fliess and his col-
leagues (see Fliess et al. [18] and, also, Sira-Ramı́rez and Agrawal [63]). The
dynamic input-output linearization of average converters is examined through
Fliess’ generalized canonical forms [15]. This chapter also explores the use of
nonlinear asymptotic observers for the determination of unmeasured states
from input and output data. Special attention is devoted to a new class of
observers whose state reconstruction error dynamics explicitly depends, in a
“non-harming manner” upon the control input. Thanks to the energy man-
aging structure of the system, this control input dependance is proven to be
irrelevant in the stability properties of the average reconstruction error. As a
means to avoid the use of observers, we also present an extension of the Gen-
eralized Proportional Integral control design technique to some of the better
known nonlinear average DC-to-DC power converter topologies.

In Chapter 6, we explore the nonlinear feedback controller design problem
for DC-to-AC power conversion schemes, using some of the traditional DC-
to-DC power conversion topologies. Our approach is to treat the controller
design problem as an output trajectory tracking controller design problem for
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the given average converter plant. The problem of specifying nominal state
and input trajectories compatible with the desired output voltage is found
to be particularly, and surprisingly, challenging in the cases of plants whose
output signal variable happens to be a non-minimum phase output, such as in
the Boost and the Buck-Boost topologies. An effective approximate solution
scheme, based on functional iterations involving an unbounded “operator”,
are presented. Emphasis in this chapter is devoted to the underlying nomi-
nal trajectory generation, or trajectory planning, problem. Several relevant
feedback controller design techniques are briefly summarized.

Chapter 7, is devoted to the regulation of several AC-to-DC switched con-
verters of various kinds, also widely known as rectifiers. This topic has been
extensively treated in Escobar [11] and, in fact, an abundant literature exists
on the problem and its solutions (see, for instance, Escobar et al. [12], Wu
[80] and also Blasko and Kaura [3] and the many references therein). Here, we
concentrate mainly on the static passivity based control of the exact average
tracking error model dynamics. We explore the implications of this controller
design technique, invariably leading to quite simple linear, time-varying, feed-
back controllers in the mono-phasic and the three-phasic type of rectifiers. The
emphasis is placed on simultaneously achieving unit power factor along with
rectified output voltage command. Two applications of the proposed control
technique are explained in detail which deal with the more complex cases of
the angular velocity regulation of a DC motor feeded by either a monophasic
unit power factor rectifier or a three phase Boost rectifier.



Part I

Modelling



2

Modelling of DC-to-DC Power Converters

2.1 Introduction

In this chapter, we derive the dynamic models of DC-to-DC power converters.
The most elementary structures of these converters are broadly classified into
second order converters and fourth order converters. In attention to the num-
ber of independent switches they are classed into two groups: mono-variable,
or Single Input Single Output (SISO), and multi-variable, or Multiple Input
Multiple Outputs (MIMO). The most commonly used converters correspond
to the SISO second order converters. The advantages and difficulties of the
MIMO converters is just beginning to be fully understood. We remark that
there are converters with multiple dependent switches. These may still be SISO
or MIMO. The second order converters that we study in this book are: the
Buck converter, the Boost converter, the Buck-Boost converter and the non-
inverting Buck-Boost converter. The fourth order converters are: the Cúk
converter, the Sepic converter, the Zeta converter and the quadratic Buck
converter. Some multi-variable converters can be obtained by a simple cas-
cade arrangement of the basic SISO converter topologies while considering the
switch in each stage as being completely independent of the other switches
present in the arrangement. Many books in the Power Electronics literature
present derivations of the power converters models. For a rather thorough
presentation of the Euler-Lagrange modelling technique in DC-to-DC power
converters, the reader is referred to the book by Ortega et al. [48]. The au-
thors find the pioneering book by Severns and Bloom [54] quite accessible
and direct. The thoughtful book by Kassakian et al. [35] contains also de-
tailed derivations of the most popular DC-to-DC power converters topologies.
Standard reference textbooks, which do contain models of DC-to-DC power
converters but with a special emphasis on the steady state PWM switched
behavior, are those of Bose [4], Czaki et al. [8], Rashid [50], Mohan et al. [44],
Wood [79] and Batarseh [1].

We extensively use, in the derivation of the dynamic controlled models
of the several converters, the fundamental Kirchoff’s current and Kirchoff’s
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voltage laws. The methodology for the derivation of the models is, therefore,
quite straightforward. We fix the position of the switch, or switches, and derive
the differential equations of the circuit model. We then combine the derived
models into a single one parameterized by the switch position function whose
value must coincide, for each possible case, with the numerical values of either
“zero” or “one”. In other words, the numerical values ascribed to the switch
position function is the binary set {0, 1}. The obtained switched model is then
interpreted as an average model by letting the switch position function take
values on the closed interval of the real line [0, 1]. This state averaging pro-
cedure has been extensively justified in the literature since the early days of
power electronics and, therefore, we do not dwell into the theoretical justifica-
tions of such averaging procedure. The consequences of this idealization will
not be counterproductive in the controller design procedure, nor in its actual
implementation through Pulse Width Modulated (PWM) “electronic actua-
tors” or its corresponding sliding mode counterparts. In order to simplify the
exposition, we make no distinction between the average model variables and
the switched model variables. At the beginning, we shall only distinguish be-
tween these models by using uav for the control input variable in the average
model and by using u for the switched model. In later chapters, we shall also
lift this distinction. It will be clear from the context whether we are referring
to the average or to the switched model.

After the derivation of the average model of each converter, we systemat-
ically proceed to normalize the controlled differential equations constituting
the dynamic model of each one of the studied converters. This normalization
procedure has a definite advantage in the simulation of the converters and their
derived controllers, aside from producing a rather simplified model of the sys-
tem with as few parameters as possible. We point out that DC-to-DC power
converters are somewhat difficult to simulate in computer packages, such as
Simnon�, or MATLAB�, when considered in their traditional physical circuit
form equations. This is due to the small values of inductances and capacitances
which multiply the left hand sides of the involved differential equations. This
fact produces quite large right hand sides thus making the model numerically
“stiff” for computer simulations. The required numerical precision may then
be achieved only at the cost of extremely small integration steps thus requir-
ing longer simulation periods with a definite negative consequence in the trust
placed on the obtained numerical precision. We, thus, evade these difficulties
by resorting to normalization. We clarify that the normalization procedure
not only refers to an appropriate scaling of the magnitudes of currents and
voltages, but also to a re-scaling of the time variable to dimensionless units
thus considerably simplifying the right hand side of the associated differential
equations with an effective “acceleration” of the simulation time. This advan-
tageous stand is achieved without sacrificing the required numerical precision.
It is also quite straightforward to revert the normalization procedure, back to
original variables magnitudes and time magnitudes, with a simple multiplica-
tion operation on the trajectories and time spans obtained for the normalized
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variables. Naturally, as long as actual laboratory implementation goes, the
normalization considerably simplifies the controller design but the obtain de-
sign cannot be directly implemented. The actual gain values and expressions
in the derived controllers have to be naturally “de-normalized” (i.e., placed in
original physical units) before the implementation. We believe such an extra
effort is worth the pain.

In the exposition about each converter, average models are utilized in
establishing the average values of the equilibrium points. We usually param-
eterize the derived equilibrium points in terms of the desired average normal-
ized value of the output voltage. Other parameterizations are still possible
and, in fact, the normalized model equations allow us to carry them out with
relative ease. The nature of the parametrization of the equilibrium points usu-
ally determines the fundamental characteristic of the converter in the sense
that its static features define the amplifying, attenuating, or even both, fea-
tures present in a specific converter. We refer to the static average normalized
input-output relation as the static transfer function. This quantity is readily
obtained from the average input value parametrization of the desired equilib-
rium output voltage.

2.2 The Buck Converter

The circuit diagram of the Buck converter is shown in Figure 2.1. In this
figure, we actually depict the circuit schematic with the transistor-diode sym-
bols. These arrangements constitute the actual synthesis, or realization, of the
switching element. In Figure 2.2 however we show the ideal switch represen-
tation of the same converter circuit. In any of the two cases, the presented
topological arrangement is addressed as the Buck converter. The Buck con-
verter belongs to the class of “chopper” circuits, or attenuation circuits. It
actually multiplies the constant input voltage E by a scalar factor, smaller
than unity, at the output.

L
i

v C RE D

Q

Fig. 2.1. Semiconductor realization of the Buck converter.
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Li

u

u

v C RE

Fig. 2.2. Ideal switch representation of the Buck converter.

2.2.1 Model of the Converter

To obtain the differential equations describing the Buck converter, we consider
the ideal topology shown in Figure 2.2. The system of differential equations
describing the dynamics of the Buck converter is obtained through the direct
application of Kirchoff’s current and Kirchoff’s voltage laws for each one of the
possible circuit topologies arising from the assumed particular switch position
function value. Thus, when the switch position function exhibits the value
u = 1, we obtain the topology corresponding to the non-conducting mode for
the diode. Alternatively, when the switch position exhibits the value u = 0 we
obtain the second possible circuit topology corresponding to the conducting
mode for the diode.

We first let the switch position function to be u = 1, and proceed to apply
Kirchoff’s current and Kirchoff’s voltages laws to the resulting circuit (see
Figure 2.3(a)). We obtain then the following system of differential equations:

L
di

dt
= −υ + E

C
dυ

dt
= i − υ

R
(2.1)

When the diode is in the non-conducting mode, i.e., when the switch position
function is: u = 0 (see Figure 2.3(b)), the dynamics of the system is described
by the following differential equations:

L
di

dt
= −υ

C
dυ

dt
= i − υ

R
(2.2)

By comparing the obtained particular dynamic systems descriptions, we im-
mediately obtain the following unified dynamic system model. This results
in:

L
di

dt
= −υ + uE

C
dυ

dt
= i − υ

R
(2.3)



2.2 The Buck Converter 15

Indeed, when u = 1 or u = 0, the model (2.3) recovers the system models
(2.1) and (2.2), respectively. The Buck converter model is then represented
by Equation 2.3. We usually refer to this model as the switched model, and,
sometimes, we make emphasis on the binary valued nature of the switch po-
sition function u by using the set theoretic relation u ∈ {0, 1}.

The average converter model would be represented exactly by the same
mathematical model (2.3), possibly by renaming the state variables with dif-
ferent symbols and by redefining the control variable u as a sufficiently smooth
function taking values in the compact interval of the real line [0, 1]. In order to
simplify the exposition, we shall refer to the model (2.3), with u replaced by
uav, as the average model and use it to derive average feedback control laws,
for the average (continuous) input variable uav. We shall however distinguish
between the average control input, denoted by uav and the switched control
input, denoted by u.

The only feature distinguishing the average model from the switched model
will then be the control input. This will surely make things unequivocal.

The average model of the Buck converter is then described by

L
di

dt
= −υ + uavE

C
dυ

dt
= i − υ

R
(2.4)

E

i L

v
R

C

(a) Switch position at u = 1.

E

i L

v
R

C

(b) Switch position at u = 0.

Fig. 2.3. Circuit topologies in the Buck converter.

2.2.2 Normalization

Once the average model of the converter is obtained, we proceed to make
some convenient changes in the scales measuring the magnitudes of the state
variables and the time variable.

We define the new set of variables for the normalized system as follows:(
x1

x2

)
=

(
1
E

√
L
C 0

0 1
E

)(
i

υ

)
, τ =

t√
LC

(2.5)

Note that the voltages in the system are being divided by the constant
value of the external source voltage E. The normalized voltage of the source
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is therefore represented by 1. Using this state and input coordinate transfor-
mation on the average system (2.4) we readily obtain the average normalized
model of the Buck converter

dx1

dτ
= −x2 + uav

dx2

dτ
= x1 − x2

Q
(2.6)

where now the derivations in the left hand sides represent differentiations with
respect to normalized (dimensionless) time τ . The variable x1 is the normal-
ized average current in the inductor L, x2 is the normalized average output
voltage and uav represents the average switch position function, necessarily
restricted to continuously take values on the set [0, 1]. The parameter Q is the
inverse of the quality factor of the circuit and it is related to the resistance of
the load by means of the relation: Q = R

√
C/L.

2.2.3 Equilibrium Point and Static Transfer Function

The control objective will be, most often, to regulate, the output voltage of the
converter towards the desired average output voltage equilibrium value, taken
as a constant reference signal. This is to be achieved by the application of an
appropriate feedback control law u which will command the switch position in
reference to an average value (this average value is most often interpreted as a
duty ratio in a PWM scheme, but it may also be interpreted as an equivalent
control in a sliding mode control scheme).

In general, it is desirable to relate the average values of the system vari-
ables, in steady state equilibrium, with the corresponding constant average
value of the control input. These relations, also addressed as: steady state
relations are useful in establishing the main static features of the converter.

In equilibrium, the time derivatives of the normalized average currents
and voltages is set to zero while letting the average control input uav to adopt
a constant value uav = U . As a result, we obtain a simple linear system of
equations for the steady state equilibrium values of the average normalized
state variables. Using the normalized average state representation (2.6) we
obtain, denoting the average equilibrium values of the current and the output
voltage as x1 and x2, the following relation:(

0 1
1 − 1

Q

)(
x1

x2

)
=
(

U
0

)
(2.7)

Solving the system of equations for the unknowns x1 and x2, we obtain the
equilibrium state of the system as:

x1 =
1
Q

U, x2 = U (2.8)
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This average control input parametrization of the equilibrium point is
useful in establishing the “attenuation” characteristics of the converter. Indeed
the average normalized output voltage exhibits the numerical value of the
average control input U which is restricted to the interval [0, 1]. The average
steady state output voltage is then restricted to such an interval. Since the
normalized input voltage is fixed to the value of 1, this means that the output
voltage will be only a fraction of the input voltage. The converter cannot
“amplify” the input voltage.

The equilibrium state (2.8) can also be conveniently parameterized in
terms of the desired equilibrium value of the output voltage. Suppose such
a desired voltage is represented by Vd. We would then have, x2 = Vd, and
thus,

x1 =
1
Q

Vd, x2 = Vd (2.9)

We define the normalized static transfer function of the converter (also known
as the normalized converter gain) as the normalized steady state normalized
output voltage x2, written in terms of the constant average input U . We
denote this quantity by H and, since it will be parameterized by the average
input value U , we denote it by H(U). In the Buck converter case, it is given
by the simple relation

x2 = H(U) = U (2.10)

In original coordinates, we can readily write the corresponding steady state
relation by using (2.5). We define the non-normalized static transfer function,
or simply the static transfer function, as the ratio of the steady state output
voltage υ and the constant input voltage E. We have

υ

E
=

UE

E
= U = H (U) (2.11)

Clearly, the normalized and non-normalized static transfer functions are equiv-
alent. Also, the maximum value of the gain is seen to be 1. For this reason, the
Buck converter is sometimes addressed as the voltage chopper, or the down
converter. The characteristic curve, corresponding to the value of the gain
under feasible variations of the average control input equilibrium value U , is
represented by a straight line as it is illustrated in Figure 2.4.

The equilibrium point for the actual state variables is obtained by inverting
the transformation used in the normalization. This yields:

i =
1
R

υ, υ = uE (2.12)
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Fig. 2.4. Static transfer function of the Buck DC-to-DC power converter.

2.2.4 A Buck Converter Prototype

The Buck converter circuit, shown in Figure 2.1, was synthesized according
to the diagram shown in Figure 2.5.
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Fig. 2.5. Circuit diagram of the Buck converter prototype.

In this prototype circuit we will be implementing a feedback control law
designed for the regulation of this system. The following parameters charac-
terize the experimental test bed:

L = 15.91 mH, C = 50 µF, R = 25 Ω, E = 24 V
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The Buck converter was designed for an operation frequency of 45 kHz. The
circuit diagram shown in Figure 2.5 illustrates the corresponding parts of the
Buck system, while Figure 2.6 depicts a photograph of the actual circuit.

INDUCTOR CURRENT SENSOR

BUCK CONVERTER

Fig. 2.6. Picture of the experimental Buck system.

According to Figure 2.5 we remark that the experimental Buck converter
prototype consists of the following parts: Buck system (which includes the
Buck converter, the inductor current sensor, the capacitor voltage sensor and
the driver) and the actuator, represented by a Σ −∆-modulator or its corre-
sponding sliding mode (SM) counterpart.

• Buck system: The core of this block is the Buck converter. The inductor
current sensor consist of a LEM HAW 15-P sensor which operate under
Hall effect principle. Additionally, the sensor bestows galvanic isolation
between the Buck converter and the corresponding control circuit. The
output voltage of the sensor is proportional to the inductor current i i.e.,
of the form ki. To obtain a relation 1 A : 1 V, we propose the circuit
diagram shown in Figure 2.7. The capacitor voltage sensor let us obtain
a measurement of the output voltage υ. It consist of a voltage divisor so
that we can reduce the amplitude of this signal in such a way that its final
value is always in the 0-9 V interval. Figure 2.8 shows the voltage sensor.
On the other hand, the driver is made up of the NTE3087 integrated
circuit (IC). This circuit provides optical isolation between the actuator
and the Buck converter. It also provides a suitably switching pulsed signal
with amplitudes of 0 and 5 V, programmed to have a sampling rate of 45
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kHz. The provided output signal allows to command the gate of a Mosfet
(NTE2984) acting as a switch.

• Σ −∆-modulator : In this block the average synthesized control strategies
are appropriately implemented in a switched manner. Σ − ∆ modulation
is a sliding mode based implementation technique which will be extremely
useful in the actual realization of feedback control laws designed on the
basis of average models. We present, at the end of Chapter 3 a detailed
theoretical treatment of Σ−∆ modulation, and we also provide a proposal
for the practical implementation of the Σ − ∆-modulator which allows to
limit the commutation frequency of the circuit to a finite value.
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Fig. 2.7. Conditioning circuit for the inductor current measurement.

2.3 The Boost Converter

The electronic circuit of the Boost converter, also known as the up converter,
is shown in Figure 2.9. We assume that the semi-conductors are ideal, i.e., the
transistor Q has an infinitely fast response while the diode D has a threshold
value equal to zero. This allows that the conduction state and the blocking
states are activated with no loss of time whatsoever. From the preceding,
we have the following behavior: when the transistor Q is in the ON state,
the diode D is inversely polarized. As a consequence, there is no connection
between the source voltage E and the system load R. This can be seen from
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Fig. 2.8. Conditioning circuit for the capacitor voltage measurement.

the Figure 2.10(a). On the other hand, when the transistor Q is in the OFF
state, the diode D is directly polarized, or D is conducting. This allows the
flow of energy between the voltage source E and the load of the system R, as
illustrated in Figure 2.10(b).
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Fig. 2.9. Switched DC-to-DC power converter Boost using semi-conductor devices.
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(b) The switch at the position u = 0.

Fig. 2.10. Circuit topologies involved in the Boost converter.
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The two circuit topologies associated with the Boost converter (see Fig-
ure 2.10) may be combined into a single circuit diagram by means of the
introduction of an ideal switch as shown in Figure 2.11.

i

v

L

E

u

u

RC

Fig. 2.11. DC-to-DC Boost converter with an ideal switch.

2.3.1 Model of the Converter

To obtain the dynamics of the Boost converter, we may apply Kirchoff’s laws
in each one of the circuit topologies arising as a consequence of the two switch
positions. The first circuit topology is obtained when the switch position func-
tion is set to adopt the numerical value u = 1, and the second circuit topology
is obtained when the switch position function takes the value u = 0. The two
circuit topologies are shown in Figure 2.10.

When the switch position function is set to u = 1, we obtain, using Kir-
choff’s voltage and Kirchoff’s current laws, the dynamics described by the
following set of equations,

L
di

dt
= E

C
dυ

dt
= − υ

R
(2.13)

When the switch position function is set to u = 0, we obtain the dynamics
described by the equations,

L
di

dt
= −υ + E

C
dυ

dt
= i − υ

R
(2.14)

The Boost converter dynamics is then described by the following bilinear 1

type of system:
1 We say that a system is bilinear when it is, independently, linear in the control u

and linear in the state variables x, but not in both. In other words, the dynamics
contains as nonlinearities, only the products of the form xiu.
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L
di

dt
= − (1 − u) υ + E

C
dυ

dt
= (1 − u) i − υ

R
(2.15)

2.3.2 Normalization

The normalization of the Boost converter system equations is carried out by
redefining the state variables and the time variable as follows:(

x1

x2

)
=

(
1
E

√
L
C 0

0 1
E

)(
i

υ

)
, τ =

t√
LC

(2.16)

We obtain the following average normalized model for the Boost converter,

dx1

dτ
= − (1 − uav) x2 + 1

dx2

dτ
= (1 − uav)x1 − x2

Q
(2.17)

where the parameter Q, representing the inverse of a circuit quality factor, is
obtained by the relation: Q = R

√
C/L. The variable x1 is the normalized in-

ductor current while x2 represents the normalized output voltage. The switch
position function is invariant with respect to the normalization process.

2.3.3 Equilibrium Point and Static Transfer Function

One of the control objectives, which we desire to achieve when using or de-
signing a DC-to-DC power converter, is to regulate the output voltage so as to
stabilize it to a constant value or to track a given reference signal. In the case
of stabilization it becomes quite important to understand the steady state
behavior of the circuit.

In the steady state regime, corresponding to constant equilibrium values,
all time derivatives of the state variables in the description of the system are
set to zero. Thus, the control input must also remain constant, i.e., uav =
U = constant. This condition results in a set of simultaneous equations whose
solutions describe the equilibrium points of the system.

The normalized average model of the Boost converter corresponding to a
constant value of the control input uav = U , generates the following system
of equations for the equilibrium states:(

0 (1 − U)
(1 − U) − 1

Q

)(
x1

x2

)
=
(

1
0

)
(2.18)

The solution of this system of equations for the steady state equilibrium val-
ues: x1 and x2 is given by
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x1 =
1
Q

1
(1 − U)2

, x2 =
1

(1 − U)
(2.19)

A different parametrization is obtained by expressing the equilibrium value
in terms of the desired average output voltage of the converter, denoted by
x2 = Vd:

x1 =
1
Q

V 2
d , x2 = Vd, U =

Vd − 1
Vd

(2.20)

In this manner, from the relation (2.19), it is clear that the static normalized
transfer function of the Boost converter is given by:

H(U) = x2 =
1

(1 − U)
(2.21)

It is clear that the gain of the converter circuit is always larger than 1. For this
reason, this converter is addressed as the up converter or the Boost converter.
The characteristic curve of the static transfer function for the Boost converter
is depicted in Figure 2.12. It is clear that through the variation of the duty
cycle or average control input U , we can read the actual steady state output
voltage of desired value υ provided it is larger than 1.
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Fig. 2.12. Characteristic curve of the static transfer function of the Boost DC-to-
DC power converter.

The equilibrium values of the non-normalized Boost power converter state
variables are obtained as:

ī =
1
R

υ2

E
, υ =

E

(1 − U)
(2.22)

2.3.4 Alternative Model of the Boost Converter

It is important to notice that the switch position function values u = 1 and
u = 0 of the Buck and Boost power converters can be realized in a non-unique
form, i.e., any of the ideal switch positions can be made to correspond with,
say, the value u = 1. In general, it is more convenient to assign the position
function value u = 1 to that corresponding to the conducting mode for the
power transistor Q. As a consequence, the other position function value, u = 0,
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corresponds to the power transistor Q being in the non-conducting mode. This
is a natural convention that will be adopted in this chapter. However, in the
following chapters, we will also use the alternative model for some of the
converters, in particular for the Boost converter. The alternative models may
be of significant help in the algebraic manipulations for the derivation of the
various controller schemes. Thus, the alternative model for the normalized
average model of the Boost converter (2.17) is given by:

dx1

dτ
= −uavx2 + 1

dx2

dτ
= uavx1 − 1

Q
x2 (2.23)

where clearly, the new control input uav satisfies,

uav = 1 − uav (2.24)

2.3.5 A Boost Converter Prototype

Figure 2.13 shows the circuit diagram of a Boost converter prototype. The
circuit parameters adopted for this experimental system are given by:

L = 15.91 mH, C = 50 µF, R = 52 Ω, E = 12 V

where the inductor L was designed to operate at 45 kHz. Figure 2.14 depicts
a picture of the actual Boost system. Similar to the Buck converter prototype,
the Boost converter prototype is made up of two blocks: Boost system and a
Σ−∆-modulator, or its corresponding SM counterpart, acting as an actuator.

• Boost system: It is made up of four circuits: 1) a Boost converter, 2) an
inductor current sensor, 3) a capacitor voltage sensor and 4) a driver.
The inductor current sensor was chosen to be a LEM HAW 15-P. The
conditioning circuits for the inductor current and capacitor voltage mea-
surements are the same that we employed for the Buck system. These
circuits are shown in Figure 2.7 and Figure 2.8, respectively. On the other
hand, the driver is made up of an NTE3087 IC. The NTE3087 IC provides
optical isolation between the Σ − ∆-modulator and the Boost converter
circuit. It provides a suitably switching pulsed signal with amplitudes re-
stricted to 0 and 5 V. It is programmed to sustain a sampling rate of 45
kHz. The provided output signal allows to command the gate of the Mosfet
NTE2984, which acts as the switch (see Figure 2.13).

• Σ − ∆-modulator : In this block, the control strategies, designed on the
basis of average models, are appropriately implemented.
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Fig. 2.13. Circuit diagram for the experimental Boost converter prototype.

BOOST CONVERTER

INDUCTOR CURRENT SENSOR

Fig. 2.14. Photograph of the experimental Boost system.
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2.4 The Buck-Boost Converter

Another possible arrangement of the semiconductor switches, gives room to a
third type of DC-to-DC power converter known as the Buck-Boost converter.
In fact, this new converter is obtained by interchanging the diode D and the
inductor L of the Buck converter. The circuit is shown in Figure 2.15. This
converter is also known as the chopper-amplifier converter. In this type of
converter, the circuit gain may be higher or lower than 1 modulo a polarity
change. The fundamental difference of this class of converter with the Buck
and the Boost converters is that the output voltage is of opposite sign to that
of the constant source E.

L
E v RC

i

DQ

Fig. 2.15. Buck-Boost converter with semiconductor switch realization.

Assuming that the Buck-Boost circuit components are ideal, the resulting
circuit is the one shown in Figure 2.16, where the semiconductors (Q, D) have
been substituted by an ideal switch.

L

u

E

u

v RC

i

Fig. 2.16. Ideal switch representation of the Buck-Boost DC-to-DC converter.

2.4.1 Model of the Converter

The operation of this system is as follows: when the transistor is switched to
the ON state (conduction state), the diode is inversely polarized generating
a circuit topology which is shown in Figure 2.17(a). During this period, the
inductor current is generated from the source voltage E. While the diode
remains inversely polarized we say the circuit is operating in the “charging
period”. When the transistor is switched OFF, the diode is directly polarized
generating the circuit topology shown in Figure 2.17(b). This second period
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is known as the “discharging period” due to the fact that the stored energy
in the inductor L is transferred to the system load R.

L
R

vE C
i

(a) Switch position at u = 1.

L
R

vE C
i

(b) Switch position at u = 0.

Fig. 2.17. Circuits topologies associated with the Buck-Boost converter.

When the Kirchoff’s voltage and current laws are applied to the two circuit
topologies of Figure 2.17, and the obtained models are combined into a single
dynamic model, the resulting system of differential equations describing the
Buck-Boost converter is the following:

L
di

dt
= (1 − u) υ + uE

C
dυ

dt
= − (1 − u) i − υ

R
(2.25)

2.4.2 Normalization

The average normalized model of the Buck-Boost converter is given by

dx1

dτ
= (1 − uav)x2 + uav

dx2

dτ
= − (1 − uav)x1 − x2

Q
(2.26)

where the variable x1 represents the normalized inductor current, x2 is the
normalized output voltage and uav, represents, as before, the average control
variable.

Clearly the underlying transformation is, just as before, given by(
x1

x2

)
=

(
1
E

√
L
C 0

0 1
E

)(
i

υ

)
, Q = R

√
C/L, τ =

t√
LC

(2.27)

Similarly as in the Boost converter case, we can justify the use of the
following alternative model for the Buck-Boost converter,

dx1

dτ
= uavx2 + (1 − uav)

dx2

dτ
= −uavx1 − 1

Q
x2 (2.28)
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where
uav = 1 − uav (2.29)

2.4.3 Equilibrium Point and Static Transfer Function

The equilibrium point of the Buck-Boost corresponding to a constant value of
the average control input is obtained by letting the right hand side of the state
equations (2.26) to be zero while the control variable is set to be uav = U =
constant. We thus obtain a system of equations for x1 and x2 given by(

0 (1 − U)
− (1 − U) − 1

Q

)(
x1

x2

)
=
(−U

0

)
(2.30)

The equilibrium point of the Buck-Boost converter parameterized in terms of
the constant value U of the control input is then given by,

x1 =
1
Q

U

(1 − U)2
, x2 = − U

(1 − U)
(2.31)

The equilibrium point, parameterized now in terms of the desired constant
normalized average output voltage x2 = Vd, is given by the following relations:

x1 = (Vd − 1)
Vd

Q
, x2 = Vd, U =

Vd

Vd − 1
(2.32)

On the other hand, the actual (or de-normalized) steady state variables cor-
responding to the equilibrium point (2.32) are obtained when we introduce
the redefining state variables (2.27) into (2.32), generating:

i =
(

υ

E
− 1

)
υ

R
, υ = −

(
U

1 − U

)
E (2.33)

The normalized static transfer function of the Buck-Boost converter is imme-
diately obtained from Equation 2.31 as:

H(U) = − U

(1 − U)
(2.34)

The graph in Figure 2.18 depicts the static transfer function of the Buck-
Boost converter. It is also clear that we may read the steady state output
voltage of the system υ, in correspondence with the average control input
equilibrium value U . It is also clear from the characteristic curve of the Buck-
Boost converter that this circuit may either amplify, or reduce, the constant
input voltage but with the output voltage polarity being opposite to that of
the system constant input voltage source E.
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Fig. 2.18. Characteristic curve of the Buck-Boost DC-to-DC power converter.

2.4.4 A Buck-Boost Converter Prototype

The circuit schematics, the actual circuit, as well as a picture of the proto-
type for the Buck-Boost system are shown in Figures 2.15, 2.19, and 2.20,
respectively. The values of the components for this system were set to be:

L = 15.91 mH, C = 470 µF, R = 52 Ω, E = 12 V

The switching frequency for this converter, as in the previous converters, is
45 kHz.
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Fig. 2.19. Circuit of the Buck-Boost converter prototype.
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BUCK BOOST CONVERTER

INDUCTOR CURRENT SENSOR

Fig. 2.20. Hardware implementation of the Buck-Boost system.

2.5 The Non-inverting Buck-Boost Converter

Our main objective in the previous section was centered around the study of
the DC-to-DC Buck-Boost converter, which exhibited the particular property
of delivering an output voltage of opposite polarity with respect to that of
the input voltage source E along with the possibility of amplifying or scaling
down this value. Following the same presentation scheme used in the previous
section, we shall now deal with the non-inverting Buck-Boost converter. This
converter also has the capability of scaling and of amplifying the constant
input voltage source value E at the output. The fundamental difference is
that this new converter does not change the polarity of the input voltage
source E at the output.

2.5.1 Model of the Converter

The configuration of the non-inverting Buck-Boost converter, assuming that
the circuit components are all ideal, is shown in Figure 2.21.

If we consider the ideal switch version of the converter, shown in Fig-
ure 2.21, the model of the system may be directly obtained using the same
procedure as in the previous examples.

The dynamics describing to the non-inverting Buck-Boost converter is
found to have the following state representation:
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Fig. 2.21. Simplified non-inverting Buck-Boost converter.
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(a) Switch position at u = 1.

LE
i

R
v C

(b) Switch position at u = 0.

Fig. 2.22. Circuit topologies involved in the non-inverting Buck-Boost converter.

L
di

dt
= − (1 − u) υ + uE

C
dυ

dt
= (1 − u) i − υ

R
(2.35)

where i and υ are, respectively, the current through the inductor L and the
voltage across the terminals of the capacitor C. The external source voltage
E has a constant value. The variable u is the control input, which represents
the switch position, restricted to take values in the discrete set {0, 1}. The
control objective consists in regulating the output voltage υ around a desired
equilibrium point.

2.5.2 Normalization

Using precisely the same state coordinate transformation and time scaling
used in the three previous cases, the normalized model of the non-inverting
Buck-Boost converter is written as,

ẋ1 = − (1 − u)x2 + u

ẋ2 = (1 − u)x1 − x2

Q
(2.36)

With some abuse of notation we use “ · ” to denote the derivative with
respect to the dimensionless time τ . The normalized variables x1 y x2 repre-
sent, respectively, the normalized current and the normalized output voltage.
The switch position function is still represented by u. The only remaining
parameter in the normalized model, Q, is expressed as,

Q = R

√
C

L
(2.37)
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2.5.3 Equilibrium Point and Static Transfer Function

The equilibrium point of the average non-inverting Buck-Boost converter is
obtained from the solution of the corresponding set of algebraic equations
when uav is set to be the constant value U and the time derivatives of the
normalized state variables is set to zero. We obtain,

x1 =
1
Q

U

(1 − U)2
, x2 =

U

(1 − U)
(2.38)

Using these expressions, we may rewrite the normalized value of the equi-
librium inductor current x1 in terms of the normalized output voltage x2 as
follows:

x1 = (x2 + 1)
x2

Q
(2.39)

Thus, if we wish to regulate the normalized output voltage x2 towards a
desired equilibrium value x2, then, this may be achieved in an indirect fashion
by regulating the variable x1 towards its corresponding equilibrium value given
by (2.39).

According to (2.38) the normalized gain for the non-inverting Buck-Boost
converter is given by:

H(U) = x2 =
U

(1 − U)
(2.40)

From here, we may confirm that, in steady state, the non-inverting Buck-Boost
converter may either attenuate, or rise, at the output terminals, the constant
input voltage E. Moreover, this is achieved without polarity inversion with
respect to the input source E.

The graph of the corresponding characteristic curve for this converter sys-
tem is shown in Figure 2.23.
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Fig. 2.23. Characteristic curve for the non-inverting Buck-Boost converter.
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2.6 The Cúk Converter

By suitable combination of some of the basic converter topologies representing
the Buck, the Boost and the Buck-Boost converters, one may obtain some
other useful DC-to-DC power converters. A typical example is the cascade
connection of the Boost and the Buck converter which produces the well
known Cúk converter. This converter is shown in Figure 2.24. The input circuit
in the Cúk converter is, clearly, a Boost, converter and the output circuit is
seen to be a Buck converter. Thus, we may also think of the Cúk converter
as a “Boost-Buck” converter. In contradistinction to the basic topologies, the
Cúk converter requires two (dependent) switches instead of one as well as two
inductors L1, L2, and two capacitors; one for storing the energy and the second
one to transfer the energy from the input circuit towards the output circuit
load. This results in a higher complexity for the analysis and construction of
the converter. The static transfer function of the Cúk converter exhibits the
same characteristic curve we obtained for the Buck-Boost converter, as it will
be shown in this section.
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Fig. 2.24. Practical Cúk converter realization.

The ideal switch (and ideal components) circuit diagram for the Cúk con-
verter is shown in Figure 2.24. This idealization may be contrasted against a
practical realization of the Cúk converter, shown in Figure 2.25. This simpli-
fied circuit representation will allow us to obtain, rather directly, the dynamic
model of the converter.

The Cúk converter exhibits two different modes of operation. The first
mode is obtained when the transistor is ON and instantaneously, the diode D
is inversely polarized generating an circuit topology shown in Figure 2.26(a).
During this period, the current through the inductor L1 is drawn from the
voltage source E. This mode represents the charging mode. The second mode
of operation starts when the transistor is OFF and the diode D is directly
polarized generating the circuit topology shown in Figure 2.26(b). This stage
or mode of operation is known as the discharging mode since all the energy
stored in L1 is now transferred to the load R.
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Fig. 2.25. Ideal switch representation of the Cúk converter.
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Fig. 2.26. Equivalent circuits of the Cúk converter.

2.6.1 Model of the Converter

The derivation of the dynamics of the Cúk converter is carried out in the same
manner in which we analyzed the topologies of the previous basic DC-to-DC
power converters.

When u = 1, we obtain the following equations for i1 and i2 in the obtained
circuit topology,

L1
di1
dt

= E

L2
di2
dt

= −υ1 − υ2 (2.41)

and the following equations for the capacitor voltages υ1 and υ2,
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C1
dυ1

dt
= i2

C2
dυ2

dt
= i2 − υ2

R
(2.42)

When u = 0, we obtain the following equations for i1 and i2,

L1
di1
dt

= −υ1 + E

L2
di2
dt

= −υ2 (2.43)

The capacitor voltages υ1 and υ2 are described by,

C1
dυ1

dt
= i1

C2
dυ2

dt
= i2 − υ2

R
(2.44)

The Cúk converter dynamics is then described by combining the previous
partial models. We obtain the following system of differential equations:

L1
di1
dt

= − (1 − u) υ1 + E

C1
dυ1

dt
= (1 − u) i1 + ui2

L2
di2
dt

= −uυ1 − υ2

C2
dυ2

dt
= i2 − υ2

R
(2.45)

where υ1 and i1 are, respectively, the voltage across the capacitor C1 and
the current in the inductor L1, while υ2 and i2 are, respectively, the voltage
across the parallel branches formed by the capacitor C2 and the load R, and
the current through the inductor L2. As usual, the external voltage source
E has a constant value. The variable u is the control input, which represents
the switch position restricted to take values in the discrete set {0, 1}. It is
assumed that the converter operates in the continuous conduction mode, i.e.,
neither of the inductor currents are identically zero on an open interval of
time.

2.6.2 Normalization

Once we have obtained the Cúk converter model, we proceed to perform the
normalizing transformations of the state variable and time coordinates.

The state coordinates transformation and time scaling:
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x2

x3

x4

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1
E

√
L1
C1

0 0 0
0 1

E 0 0

0 0 1
E

√
L1
C1

0
0 0 0 1

E

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

i1

υ1

i2

υ2

⎞⎟⎟⎟⎟⎠ , τ =
t√

L1C1

(2.46)

yields the following normalized model for the Cúk converter:

ẋ1 = − (1 − u)x2 + 1
ẋ2 = (1 − u) x1 + ux3

α1ẋ3 = −ux2 − x4

α2ẋ4 = x3 − x4

Q
(2.47)

where the symbol: “ · ” again represents (abusively) the derivative with
respect to the dimensionless time coordinate τ . The variables x1, x3 and x2, x4

represent, respectively, the currents and the voltages of the normalized system,
while u represents the switch position function. The parameter Q is defined
as Q = R

√
C1/L1, while the constants α1 and α2 are defined by the quotients

α1 = L2/L1, α2 = C2/C1 (2.48)

2.6.3 Equilibrium Point and Static Transfer Function

Setting to zero the right hand sides of the average normalized model (2.47)
with uav = U = constant, yields the following system of equations:⎛⎜⎜⎝

0 − (1 − U) 0 0
1 − U 0 U 0

0 −U 0 −1
0 0 1 − 1

Q

⎞⎟⎟⎠
⎛⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−1
0
0
0

⎞⎟⎟⎠ (2.49)

whose solution is found to be given by:

x1 =
1
Q

U2

(1 − U)2
, x2 =

1
1 − U

, x3 = − 1
Q

U

(1 − U)
, x4 = − U

1 − U

(2.50)
A different parametrization of the equilibria is obtained by using a constant
desired value of the output voltage x4. Such a parametrization is given by:

x1 =
x2

4

Q
, x2 = 1 − x4, x3 =

x4

Q
, U =

x4

x4 − 1
(2.51)

From the relation existing between the constant output voltage of the con-
verter, x4 and the corresponding value of the average control input U , deter-
mined in (2.50), the static normalized transfer function of the Cúk converter
is readily found to be
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Fig. 2.27. Characteristic curve of the static transfer function of the Cúk DC-to-DC
power converter.

H (U) = x4 = − U

(1 − U)
(2.52)

The characteristic curve of the static transfer function of the Cúk converter
is shown in Figure 2.27. As it was previously stated, the characteristic curve
of the voltage gain of the Cúk converter is the same as that of the Buck-Boost
converter.

2.7 The Sepic Converter

Figure 2.28 shows the Sepic DC-to-DC converter circuit with switches realized
by means of semiconductor devices(Q,D). These operate in a complementary
fashion i.e., when the transistor Q is in the conducting mode then the diode
D is inversely polarized and viceversa.
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Fig. 2.28. The Sepic DC-to-DC power converter.

Figure 2.29 depicts the ideal switch realization of the Sepic converter. The
equivalent circuits, corresponding to the switch position function values, u = 1
and u = 0, are shown in Figure 2.30
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Fig. 2.29. Sepic converter realization with ideal switches.

2.7.1 Model of the Converter

The model of the converter is derived to be:

L1
di1
dt

= − (1 − u) (υ1 + υ2) + E

C1
dυ1

dt
= (1 − u) i1 − ui2

L2
di2
dt

= uυ1 − (1 − u) υ2

C2
dυ2

dt
= (1 − u) (i1 + i2) − υ2

R
(2.53)

where υ1 and i1 are, respectively, the voltage across capacitor C1 and the
current through the inductor L1, υ2 and i2 are, respectively, the voltage across
the capacitor C2 and the load R, and the inductor current L2. The source
voltage E is constant. The control input u is the switch position function
taking values in {0, 1}.

2.7.2 Normalization

The following state coordinate transformation and time scaling,⎛⎜⎜⎜⎜⎜⎝
x1
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1
E

√
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0 0 0
0 1

E 0 0
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0
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E

⎞⎟⎟⎟⎟⎠
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i1

υ1

i2

υ2

⎞⎟⎟⎟⎟⎠ , τ =
t√

L1C1

(2.54)

yields the following normalized model of the Sepic converter:

ẋ1 = − (1 − u) (x2 + x4) + 1
ẋ2 = (1 − u)x1 − ux3

α1ẋ3 = ux2 − (1 − u)x4

α2ẋ4 = (1 − u) (x1 + x3) − x4

Q
(2.55)
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Fig. 2.30. Circuit topologies associated with the Sepic converter.

The constants α1, α2 and Q are defined by:

α1 = L2/L1, α2 = C2/C1, Q = R
√

C1/L1 (2.56)

2.7.3 Equilibrium Point and Static Transfer Function

The normalized average state equilibrium point, parameterized in terms of
the constant average input U , is readily obtained as

x1 =
1
Q

U2

(1 − U)2
, x2 = 1, x3 =

1
Q

U

(1 − U)
, x4 =

U

(1 − U)
(2.57)

Parameterizing the equilibrium values in terms of the constant output voltage
x4 leads to:

x1 =
x2

4

Q
, x2 = 1, x3 =

x4

Q
, U =

x4

x4 + 1
(2.58)

The static transfer function is obtained to be:

H (U) = x4 =
U

(1 − U)
(2.59)

which points to the fact that the Sepic converter can reduce or amplify, in
steady state, the constant input source voltage value. Clearly, the output
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voltage is of the same polarity as that of the source input E. Figure 2.31
shows the corresponding characteristic curve.

The equilibrium point for the actual state variables is obtained by inverting
the transformation used in the normalization. This yields:

i1 =
1
R

υ2
2

E
, υ1 = E, i2 =

υ2

R
, υ2 =

U

(1 − U)
E (2.60)

where,

U =
υ2

υ2 + E
(2.61)
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Fig. 2.31. Characteristic curve for the Sepic DC-to-DC power converter.

2.8 The Zeta Converter

Similarly to the Cúk and the Sepic converters, the Zeta converter may be
represented by a fourth order nonlinear (bilinear) system. The reason being is
that it includes two capacitors and two inductors as dynamic storage elements.
The Zeta converter can both amplify and reduce, without polarity inversions,
the value of the input source voltage E. We briefly summarize next the most
important features involved in the modelling of the Zeta converter.

Figure 2.32 depicts a semiconductor realization of a Zeta DC-to-DC power
converter. The ideal switch based realization of the Zeta converter is depicted
in Figure 2.33.

2.8.1 Model of the Converter

The Zeta converter exhibits two different modes of operation. The first mode
is obtained when the transistor is ON and instantaneously, the diode D is
inversely polarized generating an equivalent circuit shown in Figure 2.34(a).
During this period, the current through the inductor L1 and L2 are drawn
from the voltage source E. This mode is the charging mode. The second mode
of operation starts when the transistor is OFF and the diode D is directly
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Fig. 2.32. A Zeta converter using a semiconductor realization of the switches.
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Fig. 2.33. The Zeta converter with ideal switches.

polarized generating the equivalent circuit shown in Figure 2.34(b). This stage
or mode of operation is known as the discharging mode since all the energy
stored in L2 is now transferred to the load R.
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(b) Switch position function value u = 0.

Fig. 2.34. Circuit topologies associated with the Zeta converter.
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The dynamical model of the Zeta converter is found to be

L1
di1
dt

= − (1 − u) υ1 + uE

C1
dυ1

dt
= (1 − u) i1 − ui2

L2
di2
dt

= uυ1 − υ2 + uE

C2
dυ2

dt
= i2 − υ2

R
(2.62)

2.8.2 Normalization

After the required change of state and time variables one obtains the following
normalized model for the converter:

ẋ1 = − (1 − u)x2 + u

ẋ2 = (1 − u) x1 − ux3

α1ẋ3 = ux2 − x4 + u

α2ẋ4 = x3 − x4

Q
(2.63)

with
α1 = L2/L1, α2 = C2/C1, Q = R

√
C1/L1 (2.64)

2.8.3 Equilibrium Point and Static Transfer Function

The equilibrium equations are given by⎛⎜⎜⎝
0 − (1 − U) 0 0

1 − U 0 −U 0
0 U 0 −1
0 0 1 − 1

Q

⎞⎟⎟⎠
⎛⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−U
0

−U
0

⎞⎟⎟⎠ (2.65)

The average normalized equilibrium point, parameterized in terms of uav =
U is found to be given by

x1 =
1
Q

U2

(1 − U)2
, x2 =

U

1 − U
, x3 =

1
Q

U

(1 − U)
, x4 =

U

1 − U

(2.66)
A parametrization in terms of the desired output equilibrium voltage x4 is
found by elimination of the parameter U , yielding:

x1 =
x2

4

Q
, x2 = x4, x3 =

x4

Q
, U =

x4

x4 + 1
(2.67)

The static transfer function is hence given by:
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H (U) = x4 =
U

(1 − U)
(2.68)

which confirms the basic features of the Zeta converter as a possible scaling
or amplifying converter.

The characteristic curve of the static transfer function is shown in Figure
2.35.
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Fig. 2.35. Characteristic curve of the static transfer function for the Zeta DC-to-DC
power converter.

2.9 The Quadratic Buck Converter

The quadratic Buck converter owes its name to the quadratic nature of the
static transfer function in terms of a constant average control input value.
This quadratic feature enhances the adjustment properties of the steady state
equilibrium when the input is found to be close to the saturation limits. Here,
we summarize the modelling features of a quadratic Buck converter shown in
Figure 2.36.

2.9.1 Model of the Converter

L1
di1
dt

= −υ1 + uE

C1
dυ1

dt
= i1 − ui2

L2
di2
dt

= uυ1 − υ2

C2
dυ2

dt
= i2 − υ2

R
(2.69)
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Circuit Diagram
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Fig. 2.36. The quadratic Buck converter with semiconductor realizations of the
switches.

Ideal Circuit Realization
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Fig. 2.37. Ideal switches realization of the quadratic Buck converter.

2.9.2 Normalized Model

ẋ1 = −x2 + u

ẋ2 = x1 − ux3

α1ẋ3 = ux2 − x4

α2ẋ4 = x3 − x4

Q
(2.70)

with,
α1 = L2/L1, α2 = C2/C1, Q = R

√
C1/L1 (2.71)

2.9.3 Equilibrium Point

The equilibrium points, parameterized in terms of a constant value U of the
average control input, are found to be:

x1 =
1
Q

U3, x2 = U, x3 =
1
Q

U2, x4 = U2 (2.72)
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These equilibrium points, parameterized now in terms of constant output
voltage x4, are written as:

x1 =
1
Q

(x4)
3/2

, x2 = (x4)
1/2

, x3 =
1
Q

x4 (2.73)

2.9.4 Static Transfer Function

The static transfer function of the quadratic Buck converter is obtained from
(2.72) as:

H (U) = x4 = U2 (2.74)
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Fig. 2.38. Characteristic curve of the static transfer function for the quadratic Buck
DC-to-DC power converter.

2.10 The Boost-Boost Converter

A tandem connection of two Boost converters, while preserving the indepen-
dence of the control switches, results in a multi-variable DC-to-DC power
converter. This converter has interest in applications where two loads need to
be independently controlled with a single converter device. With some limi-
tations, this is possible using the described combination of Boost converters.

Figure 2.39 depicts the Boost-Boost circuit with the switches realized by
suitable arrangement of diodes and transistors.
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Fig. 2.39. The Boost-Boost circuit.

A realization of the circuit, entitling ideal switches, is shown in Figure 2.40.
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Fig. 2.40. Ideal switch realization of the Boost-Boost converter.

2.10.1 Model of the Boost-Boost Converter

L1
di1
dt

= − (1 − u1) υ1 + E

C1
dυ1

dt
= (1 − u1) i1 − υ1

R1
− i2

L2
di2
dt

= υ1 − (1 − u2) υ2

C2
dυ2

dt
= (1 − u2) i2 − υ2

RL
(2.75)

2.10.2 Average Normalized Model

dx1

dτ
= − (1 − u1av)x2 + 1

dx2

dτ
= (1 − u1av)x1 − 1

Q1
x2 − x3

α1
dx3

dτ
= x2 − (1 − u2av) x4

α2
dx4

dτ
= (1 − u2av)x3 − 1

QL
x4 (2.76)

with,

α1 =
L2

L1
, α2 =

C2

C1
, Q1 = R1

√
C1

L1
, QL = RL

√
C1

L1
(2.77)

2.10.3 Equilibrium Point and Static Transfer Function

Under the assumption of constant average control inputs U1 and U2 we find
the following equations for the state equilibrium point,
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0 − (1 − U1) 0 0

(1 − U1) − 1
Q1

−1 0
0 1 0 − (1 − U2)
0 0 (1 − U2) − 1

QL

⎞⎟⎟⎠
⎛⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−1
0
0
0

⎞⎟⎟⎠ (2.78)

The solution of the above equations, parameterized by the constant values
of the average control inputs is given by⎛⎜⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1

Q1QL

Q1+QL(1−U2)
2

(1−U1)
2(1−U2)

2

1
1−U1

1
QL

1
(1−U1)(1−U2)

2

1
(1−U1)(1−U2)

⎞⎟⎟⎟⎠ (2.79)

The output variables of the Boost-Boost converter are considered to be the
voltage variables, x2 and x4. A parametrization of the equilibrium point in
terms of the steady state output voltages: x2 = V2d and x4 = V4d, is obtained
as

x1 =
V 2

2d

Q1
+

V 2
4d

QL
, x2 = V2d, x3 =

V 2
4d

QLV2d
, x4 = V4d (2.80)

where:
U1 =

V2d − 1
V2d

, U2 =
V4d − V2d

V4d
(2.81)

Such an equilibrium point, in original state variables, is found to be:

i1 =
1

R1

υ2
1

E
+

1
RL

υ2
2

E
, i2 =

1
RL

υ2
2

υ1
(2.82)

and
υ1 =

1
(1 − U1)

E, υ2 =
1

(1 − U1) (1 − U2)
E (2.83)

Therefore
U1 = 1 − E

υ1
, U2 = 1 − υ1

υ2
(2.84)

The normalized static transfer matrix is now defined as a row vector relat-
ing the two output voltages with the scalar constant input voltage. Evidently,
the entries of such a matrix are now functions of U1 and U2. This matrix is
constituted by the steady state values of the output voltages. We have

H(U1, U2) =
[
x2(U1, U2) x4(U1, U2)

]
=
[

1
1−U1

1
(1−U1)(1−U2)

]
(2.85)
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2.10.4 Alternative Model of the Boost-Boost Converter

In order to simplify the manipulations involved in the controller design for
the multi-variable Boost-Boost converter, we present the alternative average
model of the system in the same spirit as that presented for the mono-variable
case.

dx1

dτ
= −u1avx2 + 1

dx2

dτ
= u1avx1 − 1

Q1
x2 − x3

α1
dx3

dτ
= x2 − u2avx4

α2
dx4

dτ
= u2avx3 − 1

QL
x4 (2.86)

Clearly, we have defined the following new control inputs:

u1av = (1 − u1av) (2.87)
u2av = (1 − u2av) (2.88)
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Fig. 2.41. Circuit diagram of the Boost-Boost converter prototype.
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2.10.5 A Boost-Boost Converter Experimental Prototype

The actual circuit and a picture of the Boost-Boost system are shown in Fig-
ures 2.41, and 2.42, respectively. We have set the following parameter values:

L1 = 15.91 mH, C1 = 48 µF, L2 = 40 mH, C2 = 107 µF,

R1 = 52 Ω, RL = 52 Ω, E = 12 V

The switching frequency for the Boost-Boost converter, as in the previous
converters, is 45 kHz. Thus, the inductors L1 and L2 were designed for this
operation frequency.

BOOST BOOST CONVERTER

INDUCTORS CURRENT SENSORS

Fig. 2.42. Photograph of the Boost-Boost system.

2.11 The Double Buck-Boost Converter

Similarly to the Boost-Boost system, we propose a double Buck-Boost con-
verter as a multi-variable DC-to-DC power converter with interesting, but
limited, independence features for handling two loads with different steady
state, or tracking, requirements. As in the previous case we limit ourselves
to a summary of the relevant equations of the model and the steady state
features.

Figure 2.43 depicts the tandem connection of two Buck-Boost DC-to-DC
power converters.
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Fig. 2.43. Double Buck-Boost converter circuit.

2.11.1 Model of the Double Buck-Boost Converter

L1
di1
dt

= (1 − u1) υ1 + u1E

C1
dυ1

dt
= − (1 − u1) i1 − υ1

R1
− u2i2

L2
di2
dt

= u2υ1 + (1 − u2) υ2

C2
dυ2

dt
= − (1 − u2) i2 − υ2

RL
(2.89)

2.11.2 Average Normalized Model

dx1

dτ
= (1 − u1av) x2 + u1av

dx2

dτ
= − (1 − u1av)x1 − 1

Q1
x2 − u2avx3

α1
dx3

dτ
= u2avx2 + (1 − u2av) x4

α2
dx4

dτ
= − (1 − u2av)x3 − 1

QL
x4 (2.90)

with,

α1 =
L2

L1
, α2 =

C2

C1
, Q1 = R1

√
C1

L1
, QL = RL

√
C1

L1
(2.91)

2.11.3 Equilibrium Point and Static Transfer Function

The parametrization of the equilibrium point in terms of U1 and U2 is found
to be ⎛⎜⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
U1

Q1QL

Q1U2
2+QL(1−U2)

2+

(1−U1)
2(1−U2)

2

− U1
1−U1

− 1
QL

U1U2
(1−U1)(1−U2)

2

U1U2
(1−U1)(1−U2)

⎞⎟⎟⎟⎟⎠ (2.92)
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The parametrization in terms of the desired output voltages x2 = V2d and
x4 = V4d, is found to be

x1 = −
(

V 2
2d

Q1
+

V 2
4d

QL

)(
1 − V2d

V2d

)
, x2 = V2d, x3 =

V4d

QL

(
V4d

V2d
− 1

)
, x4 = V4d

(2.93)
where

U1 = − V2d

1 − V2d
, U2 =

V4d

V4d − V2d
(2.94)

The normalized static transfer matrix is, as before, given by a row vector
whose entries are functions of U1 and U2,

H(U1, U2) =
[
− U1

1−U1

U1U2
(1−U1)(1−U2)

]
(2.95)

2.12 Power Converter Models with Non-ideal
Components

In this chapter, we have emphasized ideal components in the constitution of
dynamical average DC-to-DC power converter models. For instance, we have
not considered resistances in series with the inductors, we have neglected par-
allel conductances in combination with capacitors and have also assumed that
the switches have no imperfections attached. In real life, inductors do exhibit
associated resistances, capacitors must be considered along with parallel con-
ductances, or equivalent series resistances, and switches are synthesized by
means of physical transistor and diode arrangements which exhibit important
resistances and parasitic voltage sources.

A more realistic model of a DC-to-DC power converter must, therefore,
include a number of “parasitic” resistances and voltage sources in connection
with the diode-transistor arrangements synthesizing the regulating switch.
Here we will only present one such example, concerning the “Boost” converter
model, in order to highlight the important differences with the already derived
ideal model.

Figure 2.44 shows a Boost converter model including parasitic components
surrounding the ideal switch. The model of such a converter, using the Kir-
choff’s voltage and current laws as in the several previous examples presented
in this chapter, results in the following set of differential equations (see also
Ortega et al. [48])

ẋ1 = − r

L
x1 − u

R

(rC + R)L
x2 +

E

L
− u

VF

L

ẋ2 = u
R

(rC + R)C
x1 − 1

(rC + R)C
x2

x0 =
R

rC + R
x2 + u

rCR

rC + R
x1
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where (rC ||R) stands for the resistance associated with the parallel arrange-
ment of resistors of values: rC and R. The resistance r is given by

r = [rL + (1 − u)rDS + u (RF + (rC ||R))]

The variable x0 is the output voltage which, in this instance, is not directly
constituted by the capacitor voltage x2 and directly receives the influence of
x1 and of the control input variable u. Note that if the values of the parasitic
resistances described by rC , rL and rDS are all set to zero, we recover the
ideal model of the “Boost” converter.

Fig. 2.44. A realistic model of the Boost converter.

A rigorous mathematical analysis aimed at the derivation of control laws
for a DC-to-DC power converter should entitle a realistic model of the con-
verter of the same nature as that described in the previous paragraphs for
the Boost converter. However, experience tells that the complexity of the
derivations associated with such models does not substantially improve the
quality of the overall converter performance, as far as the closed loop opera-
tion is concerned, when compared with that achieved by a controller derived in
terms of the idealized models. Naturally, the fundamental discrepancies refer
to constant steady state stabilization or tracking errors, and transients qual-
ity. These features may, in principle, be remedied by automatic adjustment
features (say, of the integral tracking error type) bestowed on the simplified
controller. Nevertheless, in order to justify the assertion we have just made,
we state that all the laboratory tests of controller performance, carried out
on the actual prototypes described in this book, involved controller designs
entirely based on the ideal models.
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2.13 A General Mathematical Model for Power
Electronics Devices

Most of power electronics devices, such as: DC-to-DC power converters, DC-
to-AC converters, ac rectifiers, inverters, and combinations of these devices
with dc and ac electric motors are accurately described by nonlinear system
models of varying complexity. A closer examination of such models reveals that
even though these systems are nonlinear, they belong, generally speaking, to
the class of bilinear systems. As such, it is also revealing to study the “energy
dissipation structure” of most of these dynamic models.

In a state space framework viewpoint electric circuits are considered as
lumped parameter dynamical systems. this is the case of electric and elec-
tronic circuits in general, as opposed to distributed i.e., infinite dimensional
circuits. Lumped parameter circuits are described, in general, by ordinary
nonlinear vector differential equations. The right hand side of these systems
of equations are vectors which depend nonlinearly on the state vector of the
system, These nonlinear vector functions are generally addressed as vector
fields. The presence of control inputs in the right hand side of the describing
differential equations is termed controlled vector fields. A nonlinear dynamic
system is then generally described by the set of equations

ẋ = f(x, u) (2.96)

where x is a vector in Rn and the control input u ∈ Rm. The nonlinear
map f is assumed to be either smooth, i.e., it admits an infinite number of
derivatives with respect to its arguments, of analytic i.e., at any point in
the (x, u) space we can obtain a infinite convergent Taylor series expansion
of the function f(x, u). In the description of power electronics devices, the
control input functions u represent, in general, switch position functions, i.e.,
each component of the vector u independently takes values in a discrete set.
In some instances such set is represented by a binary set with two numerical
values, say {0, 1}. In other instances, such binary set is of the form {−W, +W}
where W is a constant real number. We denote the set where the switched
control input vector takes values by a “power” of the binary set where each
component takes values: i.e., {0, 1}m, or {−W,W}m. Such powers evidently
mean, cartesian products of the base set a finite number of times defined by
m.

Power electronics models are thus, generally speaking, Variable Structure
Systems. This class of systems is naturally characterized by the possibility of
sudden changes in their differential equation description. This immediately
translates, in the circuit description arena, to a sudden change in the circuit
topology. Such topological changes may be made 1) “occasionally” in a non-
periodic fashion, 2) periodically, with a significant frequency or, even, at an
ideally infinite frequency rate. This last idealization, most often, proves to be
useful in rescuing the main qualitative features of high-frequency topological
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changes (such as those provided, say, by a PWM train of pulses triggering
such topology changes), without resorting to exact or approximate discretiza-
tions of the nonlinear set of differential equations describing the power device.
In general, we term such ideally infinite frequency models as average models.
These average models are most suitable for feedback control considerations.
With an abuse of notation, we customarily mathematically describe such av-
erage models with the same symbols for state variables as in the switched
model, except for a distinction in the control input. We write,

ẋ = f(x, uav) (2.97)

where now x is addressed as the average state vector, still taking values in Rn

and uav is now a continuous valued m-dimensional function. The average con-
trol input functions uav are now bounded functions continuously taking values
over compact sets in Rm. If the original control input function components
ui, i = 1, ..., m take values, independently, on, say, the binary set {0, 1}, then
the components of the average control input vector uav will take values on
the closed interval [0, 1] of the real line. Hence, the vector uav takes values on
[0, 1]m.

The most general model one can think of, for power electronics devices,
clearly exhibits the following decomposition of the “energy managing” struc-
ture: 1) An input dependent conservative vector field, characterized by the
product of a skew symmetric matrix with the state vector. The skew sym-
metric matrix is, generally speaking, an affine function of the input vector
components and its most important property is that it does not intervene in
the system stability considerations. 2) A dissipative vector field characterized
by the product of a constant symmetric, positive semi-definite, matrix with
the state vector. This term accounts for the dissipation forces in the system
due to resistances and frictions. 3) The control input channels which entitle
a constant matrix multiplying the input vector. The input vector is consti-
tuted by switching functions representing the discontinuous control inputs to
the system. 4) A time varying or, alternatively constant, vector field repre-
senting the external input sources. Such sources are of fixed nature, i.e., their
amplitude values and frequencies are not subject to our command. The sum
of this various fields produces the rate of change of the state of the system.
Such a general model is summarized in the following n-dimensional differential
equation:

Aẋ = J (u)x −Rx + Bu + E(t) (2.98)

where: x is an n-dimensional vector, A is a symmetric, positive definite, con-
stant, matrix, J is a skew symmetric matrix of the form:

J = J0 +
m∑

i=1

Jiui av (2.99)

for all ui, where J0 is constant and skew symmetric and Ji is also constant
skew symmetric for all i. R is a symmetric, positive semi-definite constant



56 2 Modelling of DC-to-DC Power Converters

matrix. B is a constant n × m matrix and, hence y is an m dimensional
output vector. In terms of its n dimensional column vectors, the matrix B
is given by B = [b1, b2, · · · , bm]. The vector uav is the average control input
vector assumed to be m-dimensional, with each component ui av taking values
either in the closed set [0, 1], or in the closed set [−1, 1], of the real line. In
any case, ui av represents a bounded average control input function. E(t) is a
n-dimensional smooth vector function of t or, sometimes, a vector of constant
entries.

Note that the matrix R represents the dissipative field of the system while
J (u) represents the, possibly control input dependent, conservative field of the
system. The control input channels are represented by the constant matrix
B while E(t) represent external input sources, such as batteries or ac line
voltages.

We will be using this rather general bilinear system model, rather exten-
sively, in later chapters in connection with linear feedback controller designs
for power electronics devices. The average models, or infinite frequency mod-
els, corresponding to this general mathematical model will be described by
the following set of controlled differential equations:

Aẋ = J (uav)x −Rx + Buav + E(t) (2.100)

The general model (2.100) has a number of interesting properties which
enormously ease the feedback controller design task. We defer the study of
the mathematical properties of this model to Chapter 5, where we address
the study of nonlinear methods for controller design.

2.13.1 Some Illustrative Examples of the General Model

Here, we present just a couple of examples illustrating the validity of the
general mathematical model, proposed in this section, in relation to some
DC-to-DC power converter models. In Chapter 7 we shall also use this general
model for monophasic and three phase rectifiers. The general model is also
valid for power converters loaded by DC motors as well as mono and three
-phase rectifiers loaded with DC motors.

The Boost-Boost Converter

Consider the following average normalized model of the Boost-Boost con-
verter.

dx1

dτ
= −u1avx2 + 1,

dx2

dτ
= u1avx1 − 1

Q1
x2 − x3

α1
dx3

dτ
= x2 − u2avx4, α2

dx4

dτ
= u2avx3 − 1

QL
x4 (2.101)

The mathematical model of the average normalized Boost-Boost converter
may be written, in matrix form, as:
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1 0 0 0
0 1 0 0
0 0 α1 0
0 0 0 α2

⎤⎥⎥⎦
⎡⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 −u1av 0 0

u1av 0 −1 0
0 1 0 −u2av

0 0 u2av 0

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦

−

⎡⎢⎢⎣
0 0 0 0
0 1

Q1
0 0

0 0 0 0
0 0 0 1

QL

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦+

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦
Hence, in reference to the proposed general model (2.100) we have

A =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 α1 0
0 0 0 α2

⎤⎥⎥⎦ , R =

⎡⎢⎢⎣
0 0 0 0
0 1

Q1
0 0

0 0 0 0
0 0 0 1

QL

⎤⎥⎥⎦ , B = b = 0, E =

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦

J (uav) = J0 + J1u1av + J2u2av

=

⎡⎢⎢⎣
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎤⎥⎥⎦+

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦u1av +

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎤⎥⎥⎦u2av

The Sepic Converter

Consider now, the following average normalized model of the Sepic converter:

ẋ1 = − (1 − uav) (x2 + x4) + 1
ẋ2 = (1 − uav)x1 − uavx3

α1ẋ3 = uavx2 − (1 − uav)x4

α2ẋ4 = (1 − uav) (x1 + x3) − x4

Q
(2.102)

Writing the model in matrix form we have:⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 α1 0
0 0 0 α2

⎤⎥⎥⎦
⎡⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 −(1 − uav) 0 −(1 − uav)

1 − uav 0 −uav 0
0 uav 0 −(1 − uav)

1 − uav 0 1 − uav 0

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦

−

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

Q

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦+

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦
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In reference to the proposed general model (2.100), we have:

A =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 α1 0
0 0 0 α2

⎤⎥⎥⎦ , R =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

Q

⎤⎥⎥⎦ , B = b = 0, E =

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦

J (uav) = J0 + J1uav =

⎡⎢⎢⎣
0 −1 0 −1
1 0 0 0
0 0 0 −1
1 0 1 0

⎤⎥⎥⎦+

⎡⎢⎢⎣
0 1 0 1
−1 0 −1 0
0 1 0 1
−1 0 −1 0

⎤⎥⎥⎦uav

The proposed mathematical model is also valid for original (i.e., non-
normalized) switched DC-to-DC power converter models when they are suit-
ably rewritten in matrix form. We leave it to the reader to verify that anyone of
the converter models presented in this chapter, except for the Boost converter
exhibiting realistic parasitic components, conform to the general mathemati-
cal model (2.100).

When parasitic components are considered, the symmetric dissipative ma-
trix R may be an affine function of the control input, i.e., we must consider
control dependent dissipations, R(u) = R0 + R1u.
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Sliding Mode Control

3.1 Introduction

This chapter is devoted to an exposition of sliding mode control of switch-
regulated non linear systems and its implications in the feedback regulation of
DC-to-DC power converters exhibiting one or multiple, independent, switches.

Sliding mode control is a well known discontinuous feedback control tech-
nique which has been exhaustively explored in many books and journal ar-
ticles by many authors. The technique is naturally suited for the regulation
of switched controlled systems, such as power electronics devices, in general,
and DC-to-DC power converters, in particular. Sliding mode control was stud-
ied primarily by Russian scientists in the former Soviet Union. A complete
account of the history and fundamental results of sliding modes, or sliding
regimes, is found in books, such as that by Emelyanov [10], Utkin [75], [76]
and Utkin et al. [77]. In [77], the discontinuous feedback control of a rather
complete collection of physical electro-mechanical systems is addressed along
with remarkable laboratory implementation results. In that book, there is
some detailed attention devoted to the control and stabilization of DC-to-DC
power converters. A recent book, mainly devoted to the area of linear systems,
with a terse and very clear exposition of the topics along with some interest-
ing laboratory and industry applications, is that of Edwards and Spurgeon
[9]. Well documented books, containing chapters on sliding mode control, are
those of Slotine and Li [73], Kwatny and Blankenship [38], Sastry [53], Żak
[84], among many others. The state of the art has been recently summarized
in the edited books by Sabanovic et al. [52], Perruquetti and Barbot [49] and
that by Young and Özgüner [83].

In this chapter, we provide an introduction to the sliding mode control
of switch-regulated nonlinear systems. We formulate the sliding mode cre-
ation problem in a rather general set up, using the language of elementary
differential geometry. We revisit both the single switch case and the multiple
switch case (i.e., the SISO and the MIMO cases). We examine the most salient
features and theoretical elements of sliding mode control: the sliding surface
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accessibility, or reachability, problem, the definition of the equivalent con-
trol and its corresponding ideal sliding dynamics and, finally, the robustness
of closed loop sliding mode responses with respect to additive perturbation
fields satisfying the so called perturbation matching condition. The approach
naturally allows one to relate these important features with well known con-
cepts of nonlinear geometric control such as: invariance, zero dynamics, min-
imum and non-minimum phase outputs, projection operators (over tangent
subspaces along, or parallel to, the span of given input vector fields, or input
matrix spans) and local stability in the sense of Lyapunov. After the theo-
retical introductions to SISO and MIMO sliding mode control cases, we then
center our attention on the sliding mode control of the most popular DC-
to-DC power converters written, for ease of treatment, in normalized form.
Incidentally, normalization is an invariant throughout our book. This practise
not only greatly facilitates the algebraic manipulation in the controller design
process and the computer simulation tasks, but it is also a good guide and
handy check possibility for actual implementation of feedback controllers in
many areas of Power Electronics. We also present, at the end of the chapter,
a detailed treatment of Σ − ∆ modulation, a sliding mode technique which
will be extremely useful in the actual implementation of feedback control laws
designed on the basis of average models.

3.2 Variable Structure Systems

A variable structure system is a system in which the current dynamic model
heavily depends on the region of the state space where the operation of the
system is circumstantially found. The discontinuous nature of the model is
characteristic and these abrupt changes occur due to either a voluntary action
on the part of the operator, due to the automatic activation of one or more
switches present in the system, or due to the change of the temporary values
of certain system parameters.

The class of variable structure systems is quite wide for its detailed study
and, moreover, its interest in Power Electronics is limited. For this reason, we
shall study variable structure systems regulated by one or several switches.
The position of the switches constitute our only set of available control inputs.

Additionally we restrict ourselves to the class of systems where such de-
scriptions, or structures, have in common the dimension of the resulting sys-
tem as well as the nature of the describing state of the system.

3.2.1 Control of Single Switch Regulated Systems

We study the control of systems represented by nonlinear state space models
of the following form:

ẋ = f(x) + g(x)u, y = h(x) (3.1)
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where x ∈ Rn, u ∈ {0, 1}, y ∈ R. The vector functions f(x) and g(x) represent
smooth vector fields, i.e., infinitely differentiable vector fields, defined over the
tangent space to Rn. The output function, h(x), is a smooth scalar function
of x taking values in the real line R. We refer to x as the state of the system.
The variable u is addressed as the control input, or simply as the control. The
variable y is the output of the system. We usually refer to f(x) as the drift
vector field and to g(x) as the control input field.

The main feature of the systems we consider is the binary valued nature
of the control input variable. Without loss of generality, we assume that the
control input takes values on the discrete set {0, 1}. Note that if the set of
possible values for the scalar control input u, were the discrete set {W1,W2}
with Wi ∈ R, i = 1, 2, then the following invertible input coordinate trans-
formation: v = (u − W2)/(W1 − W2), u = W2 + v(W1 − W2) makes the new
control input v a binary valued control input function taking values in the set
{0, 1}
Example 3.1. The following circuit represents a DC-to-DC power converter,
known as the “Boost” converter, controlled by a single switch.

i

v

L

E

u

u
RC

Fig. 3.1. Alternative DC-to-DC Boost converter with an ideal switch.

The controlled differential equations describing the system are given by

L
di

dt
= −uv + E

C
dv

dt
= ui − 1

R
v

where i is the input inductor current, v is the output voltage and u is the
switch position function satisfying, (u ∈ {0, 1}).

In matrix terms, the mathematical description of the “Boost” converter is
given by:

d

dt

[
i
v

]
=
[

0 0
0 − 1

RC

] [
i
v

]
+
[− v

L
i
L

]
u +

[
E
L
0

]
Letting x = [x1 x2]T = [i v]T , we have

f(x) =
[

0 0
0 − 1

RC

]
x +

[
E
L
0

]
=
[

E
L− x2
RC

]
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and

g(x) =
[−x2/L

x1/C

]

3.2.2 Sliding Surfaces

In the context of single switch, n-dimensional, systems, a sliding surface, de-
noted by S, is represented by the set of state vectors in Rn where the algebraic
restriction, h(x) = 0, is satisfied, where h : Rn → R is a smooth scalar output
function of the system. We define

S = {x ∈ Rn | h(x) = 0} (3.2)

The set S represents a smooth variety or smooth manifold of dimension n− 1
in Rn.

The main assumption is the following:
There exist feedback control actions u(x), possibly of discontinuous na-

ture, that render the restriction: h(x) = 0 to be locally satisfied by the state
trajectory x(t). The motions of the system state, x, on the smooth surface S
ideally produces an overall desired, local, behavior for the state of the con-
trolled system. The constrained evolution of the state is accomplished thanks
to appropriate control input actions satisfying: u ∈ {0, 1}.

One of the primordial features in the design of feedback control laws for
switch-regulated systems is represented by the fact that the specification of
the smooth scalar function h(x) is part of the design problem. The choice of
the output function y = h(x) and, hence, of the smooth manifold S depends
entirely of our will in correspondence with the specified control objective for
the system.

Example 3.2. In the previous “Boost” converter example, a sliding surface
may be proposed as specified by the output function:

h(x) = v − υ = x2 − Vd

where υ = Vd is the average desired output equilibrium voltage. If one suc-
ceeds in forcing h(x) to be zero, even if only locally, along the controlled
trajectories of the system, then, the output voltage locally ideally coincides
with the desired voltage.

Another sliding surface that one may consider, in this particular case, is
given by,

h(x) = i − i = x1 − Id

where i = Id = V 2
d /(RE) represents an average equilibrium input current

which corresponds, with the desired average output equilibrium voltage Vd.

Even though both sliding surfaces above represent a desired behavior of
the output, only one of them is actually feasible due to internal stability
considerations.
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3.2.3 Notation

Let f(x) and g(x) be smooth vector fields, locally defined on the tangent space
to Rn. Let h(x) be a scalar function taking values on R.

We denote the directional derivative of h(x) in the direction of f(x) as the
scalar quantity ∂h

∂xT f(x) and we denote it by means of Lfh(x). Similarly, we
refer to Lgh(x) as the directional derivative of h(x) in the direction of g(x).

In local coordinates we have:

∂h

∂xT
=
(

∂h
∂x1

∂h
∂x2

· · · ∂h
∂xn

)
, f(x) =

⎡⎢⎢⎢⎣
f1(x)
f2(x)

...
fn(x)

⎤⎥⎥⎥⎦
and

Lfh(x) =
n∑

i=1

∂h

∂xi
fi(x)

3.2.4 Equivalent Control and the Ideal Sliding Dynamics

Let us assume that thanks to the use of an appropriate switching law
u ∈ {0, 1}, we manage to make the state x of the system locally evolve re-
stricted to the smooth manifold, S. While the condition x ∈ S is satisfied, it
is assumed that we are complying with a specific control objective. In other
words, assume we can achieve the invariance of S with respect to the tra-
jectories of the state of the system by means of appropriate control input
commutations taking place in the set {0, 1}, regardless how fast these com-
mutations should be performed as needed. It is not difficult to realize that
when the state trajectories collide obliquely with the sliding surface, then the
control input commutations have to be, necessarily, of infinite frequency, for
finite frequency switchings may make the trajectory temporarily stray away
from the surface. The evolution of the state along S takes place then as if it
had been produced by a smooth control input, rather than a switched control
input. This equivalence between an infinite frequency switched control input
and a smooth feedback control is known as the equivalent control concept.

We define the equivalent control as the smooth feedback control law, de-
noted by ueq(x) which locally sustains the evolution of the state trajectory
ideally restricted to the smooth manifold S when the initial state of the system
x(t0) = x0 is located precisely on the manifold S, i.e., when h(x0) = 0.

The coordinate function h(x) satisfies then the following invariance con-
dition,

ḣ(x) =
∂h

∂x
(f(x) + g(x)ueq(x)) = 0 (3.3)

In other words,
Lfh(x) + [Lgh(x)]ueq(x) = 0
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and therefore, the equivalent control is expressed, in a unique fashion, as the
quotient:

ueq(x) = −Lfh(x)
Lgh(x)

(3.4)

The controlled vector field, f(x) + g(x)ueq(x), and the corresponding evo-
lution over the smooth manifold S of the state trajectories of the system, is
expressed as,

ẋ = f(x) − g(x)
Lfh(x)
Lgh(x)

(3.5)

Note that for any other initial condition which is not over the smooth
manifold S evolves, under the actions of ueq(x), in such a manner that the
function h(x) remains constant since ẏ is identically, locally, zero. Such a
constant value of y = h(x) only adopts the value of zero when the initial state
x0 is located on S. The closed loop system, feeded back by the equivalent
control may be alternatively described as follows:

ẋ =
{

I − 1
Lgh(x)

g(x)
∂h

∂x

}
f(x) = M(x)f(x) (3.6)

Proposition 3.3. The square n×n matrix M(x), is a projection operator,
over the tangent space to S, along the span g(x). The operator M(x) projects
any smooth vector field defined in the tangent space of Rn over the tangent
subspace to the manifold S in a parallel fashion to the {span g(x)} or in the
direction of the control input field g(x).

Indeed, let v be a vector field in the tangent space to Rn such that v ∈
span g(x) i.e., v(x) may be expressed as v(x) = g(x)α(x) where α(x) is a
smooth scalar function. We then have,

M(x)v(x) =
{

I − 1
Lgh(x)

g(x)
∂h

∂x

}
g(x)α(x)

=
{

g(x) − 1
Lgh(x)

g(x)
∂h

∂x
g(x)

}
α(x)

=
{

g(x) − 1
Lgh(x)

g(x)Lgh(x)
}

α(x)

= [g(x) − g(x)] α(x) = 0

Additionally, the n-th dimensional row vector: ∂h/∂xT , is orthogonal to
the image under M(x) of the vector fields lying in the tangent space of Rn.
For this, it is enough to show that any 1-form in the span of ∂h

∂xT annihilates
all the column vectors of M(x).

A 1-form in the span of ∂h/∂xT is written as: ξ(x)
(
∂h/∂xT

)
, where ξ(x)

is a completely arbitrary nonzero scalar function. Indeed:
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ξ(x)
∂h

∂xT
M(x) = ξ(x)

∂h

∂xT

{
I − 1

Lgh(x)
g(x)

∂h

∂xT

}
= ξ(x)

[
∂h

∂xT
− Lgh(x)[Lgh(x)]−1 ∂h

∂xT

]
= ξ(x)

[
∂h

∂xT
− ∂h

∂xT

]
= 0

The image, under M(x), of any vector field in the tangent space to Rn are
in the null space of ∂h/∂xT . In other words, they are in the tangent subspace
to the manifold S.

Clearly, M2(x) = M(x) given that M(x)G(x) = 0.

3.2.5 Accessibility of the Sliding Surface

Let x be a representative point of a state trajectory, located in an open neigh-
borhood of the manifold S (This neighborhood strictly contains its intersec-
tion with the sliding manifold). Assume, without loss of generality that at this
point the surface coordinate function h(x) of the manifold S is strictly posi-
tive, i.e., h(x) > 0. We may, conventionally, say that we are located above the
surface S. Our objective is to prescribe an appropriate control action which
guarantees that the trajectory of the system reaches and crosses the manifold
S. The time derivative of h(x) at the point x is given by

d

dt
h(x) =

∂h

∂x
(f(x) + g(x)u) = Lfh(x) + [Lgh(x)]u

If we assume that Lgh(x) > 0 in a neighborhood of S (i.e., Lgh(x) is strictly
positive, “above” and “below” S in the vicinity of this surface), then we require
that the time derivative of h(x) be strictly negative at the point x.

Since by assumption Lgh(x) > 0, we must choose the control that annihi-
lates the positive incremental effect that this term has over the derivative of
h,. We must then let u = 0. The time derivative of h(x) for this control input
entirely coincides with the directional derivative Lfh(x). It follows that being
Lgh > 0 in an open neighborhood of S, it is necessary that Lfh(x) be strictly
negative in a neighborhood of S.

If we now assume that the point x is located “below” the surface, i.e.,
h(x) < 0 then, it is easy to see that for the trajectories to reach and cross
the sliding manifold S, the time derivative of h(x) must be strictly positive.
In other words, Lfh(x) + [Lgh(x)]u > 0. Since Lg(x) > 0 and Lfh(x) < 0, we
must choose u = 1 so as to magnify the positive incremental effect of Lgh(x)
over the time derivative of h(x), but, besides, it is necessary that this positive
term be of such magnitude that it may overcome the effect of the negative
increment represented by Lfh(x) over the time derivative.

We conclude that, assuming Lgh(x) > 0, in an open neighborhood of
S, the necessary condition for the existence of a sliding regime on S is that
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Lgh(x) > −Lfh(x) > 0. In other words, dividing this inequality by the strictly
positive quantity Lgh(x), it is necessary that:

1 > −Lfh(x)
Lgh(x)

> 0

Note that this inequality must be valid in an open neighborhood of Rn ex-
hibiting a non-empty intersection with S. In particular, if this inequality is
locally valid for x ∈ S, then it is also valid in an open neighborhood of S in
Rn, given the smooth character of the involved vector fields and of the surface
coordinate function h(x).

Under the assumption that Lgh(x) > 0 around S, it is easy to see that the
previously discussed existence condition is also sufficient.

Indeed, if the representative point is located, say, above the sliding man-
ifold S, the inequality tells us that Lfh(x) < 0 and then it suffices to take
u = 0 since then ḣ(x) < 0 in any open neighborhood of S. The state trajec-
tory thus approaches, and crosses, the manifold S from any neighboring point
located above the surface. If the representative point is located below S then,
the inequality establishes that Lf (x) + Lgh(x) > 0 and, therefore, the choice,
u = 1, forces the condition: ḣ(x) > 0 for any point in an open neighborhood
of S. This says that the state trajectory approaches the manifold S.

Note that if we locally had Lgh(x) < 0, we then should have Lfh(x) > 0
in any neighborhood of S. The changes in the previous arguments for surface
reachability are referred only to the choice of u in each case. In this case, we
would choose u = 1 when x is located above S and we should set u = 0 when
we are below the sliding surface.

Nevertheless, and in order to avoid confusion, we note that if locally,
Lgh(x) < 0, we may always redefine S taking as a sliding surface coordinate
function, −h(x) instead of h(x), and now all the previous analysis becomes
valid.

The condition Lgh(x) > 0 is particularly important and it determines the
switching policy that locally achieves a sliding regime over the sliding manifold
S. We address this condition as the transversal condition of the control input
field g(x) in relation to the sliding manifold S. Note that if Lgh(x) = 0 on
an open set around the sliding manifold, the system is not controllable and
the quantity ḣ(x) cannot be made to change its sign in such a vicinity of
S. Therefore, the transversal condition is a necessary condition for the local
existence of a sliding regime.

By virtue of the fact that the quantity −Lfh(x)/Lgh(x) coincides with
the equivalent control we conclude that the following theorem is valid.

Theorem 3.4. The necessary and sufficient condition for the local existence
of a sliding regime over the smooth manifold S = {x | h(x) = 0} is that the
equivalent control satisfies:

0 < ueq(x) < 1, x ∈ S.
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The transversal condition Lgh(x) > 0, or, more generally: Lgh(x) �= 0,
tells us that if the sliding surface coordinate function h(x), is considered as
a system output function, y = h(x), then, this function must be, necessarily,
locally relative degree equals to 1, around the value y = 0. Note that for y = 0
the zero dynamics entirely coincides with the ideal sliding dynamics given by,

ẋ = f(x) − g(x)
Lfh(x)
Lgh(x)

= f(x) + g(x)ueq(x)

Under the assumption that the transversal condition adopts the form:

Lgh(x) > 0

in a sufficiently large open neighborhood of the sliding surface S, the control
law, that locally forces the state trajectories to reach the sliding surface and
thus acquire the possibility of “crossing” this surface, is given by

u =
{

1 if h(x) < 0
0 if h(x) > 0 , u =

1
2

[1 − sign h(x)]

Evidently, any incipient incursion of the state trajectory to the “other side”
of the sliding manifold causes an immediate control reaction commanding the
switch to change its position to the other only available value. As a conse-
quence, the trajectory is forced to return towards the surface possibly crossing
it again with the a corresponding new change in the switch control position.
The resulting motion taking place around an arbitrarily small neighborhood
of the sliding surface is characterized by a “zig-zag” motion whose frequency
is, theoretically speaking, infinitely large and known as a sliding regime or a
sliding motion.

3.2.6 Invariance Conditions for Matched Perturbations

One of the main features of sliding regimes, or sliding mode control, is their
robustness with respect to certain external perturbation inputs affecting the
system behavior. In this section, we explore what type of conditions should
be satisfied by the perturbation for them to be automatically rejected from
the description of the ideal sliding dynamics.

Consider the nonlinear additively perturbed system:

ẋ = f(x) + g(x)u + ξ(x)

controlled by a single switch and, moreover, let S be a smooth sliding surface
over which we may create a local sliding regime in spite of the presence of
the perturbation. The perturbation field ξ(x) is assumed to be an unknown
smooth function of the state x and it is assumed that its values are bounded.

Suppose then that it is possible to create a sliding regime over the sliding
surface S in spite of the presence of the perturbation field ξ. The existence of
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such a sliding regime implies the existence of an equivalent control, ueq, which
ideally, and possibly locally, sustains the state trajectories on the smooth
manifold S. The equivalent control is, necessarily, a function of the unknown
perturbation field ξ and it is given by

ueq(x) = −Lfh(x) + Lξh(x)
Lgh(x)

The ideal sliding dynamics, with x ∈ S, is then obtained to be,

ẋ = f(x) − g(x)
Lfh(x) + Lξh(x)

Lgh(x)
+ ξ(x)

=
[
I − 1

Lgh(x)
g(x)

∂h

∂xT

]
f(x)

+
[
I − 1

Lgh(x)
g(x)

∂h

∂xT

]
ξ(x)

The projection operator M(x) over the tangent space to S, along the span
of g(x), acts over the addition of the vector fields: f(x)+ ξ(x), in the creation
of the local sliding regime on S.

Clearly, the ideal sliding dynamics is totally independent of the influence
of the perturbation vector ξ(x) if and only if the vector field ξ(x) is in the
null space of M(x), i.e.,[

I − 1
Lgh(x)

g(x)
∂h

∂xT

]
ξ(x) = 0

In other words, the sliding motions are invariant with respect to the perturba-
tion if and only if the vector field ξ(x) is in the span of g(x), i.e., there exists
a non-zero scalar function α(x) such that

ξ(x) = α(x)g(x)

The perturbation field ξ(x) is thus aligned with the control vector field g(x).
Such perturbations receive the name of matched perturbations and the con-
dition

ξ ∈ span {g}
is known as the perturbation matching condition.
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3.3 Control of the Boost Converter

We now present the control of the sliding mode of the Boost converter, with
the converter model appropriately normalized, as explained in Chapter 2.

ẋ1 = −ux2 + 1

ẋ2 = ux1 − 1
Q

x2

In the context of the previously defined notation we have,

f(x) =
[

1
− 1

Qx2

]
, g(x) =

[−x2

x1

]
The control objective is to drive the normalized average voltage x2 to a

desired equilibrium value x2. We propose first a direct control approach in
which the output variable x2 is used to synthesize a suitable sliding surface
representing the desired objective.

3.3.1 Direct Control

Consider the following sliding surface coordinate function,

h(x) = x2 − x2

Driving the output function h(x) to zero by means of discontinuous control
means that the output voltage coincides with the desired average equilibrium
output voltage. Nevertheless, we wish to establish the nature and the stability
of the corresponding remaining ideal sliding dynamics, or zero dynamics. In
our case, we have

Lfh(x) =
∂h

∂xT
f(x) = − 1

Q
x2

Lgh(x) =
∂h

∂xT
g(x) = x1

The equivalent control is found to be

ueq(x) = −Lfh(x)
Lgh(x)

=
1
Q

(
x2

x1

)
The ideal sliding dynamics occurs when ueq(x) acts on the system as a feed-
back function while the system is ideally satisfying the condition x2 = x2. We
then have,

ẋ1 = − 1
Q

(
x2

2

x1

)
+ 1

It is not difficult to see that this dynamics exhibits an unstable equilibrium
point. We may establish this fact via several approaches.
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An Approximate Linearization Approach

This technique will provide us with the local nature of the stability around
the equilibrium point of the zero dynamics, x1, corresponding with h(x) = 0.
The incremental model (or tangent linearization model) of the normalized
inductor current is given by:

d

dt
x1δ =

1
Q

(
x2

x1

)2

x1δ

where x1δ = x1 − x1 and x1 = x2
2

Q .
The equilibrium point x1 is clearly unstable in view of the fact that the

linearized zero dynamics exhibits a characteristic polynomial with a zero in
the right half part of the complex plane.

A Lyapunov Stability Theory Approach

We rewrite the zero dynamics corresponding to h(x) = 0 as:

dx1

dτ
=

1
x1

(
x1 − x2

2

Q

)
Consider the following Lyapunov function candidate in the x1 variable space

V (x1) =
1
2

(
x1 − x2

2

Q

)2

The derivative of this function, taking into account that x1 > 0 is given by

V̇ (x1) =
1
x1

(
x1 − x2

2

Q

)2

≥ 0

Thus, the zero dynamics is unstable.

A Phase Diagram Approach

Figure 3.2 depicts the phase diagram of the zero dynamics associated with the
motions of the controlled system on the sliding surface S = x2−Vd = 0. Clearly
the nature of the equilibrium point depicted on the diagram is unstable.

3.3.2 Indirect Control

The alternative is then to use, as a sliding surface coordinate function, a
function that, when set to zero, reproduces the desired equilibrium value of the
input inductor current, in correspondence with the desired output equilibrium
voltage. We may propose:
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x1 = Q

X2

2

1

xç 1

x1

Fig. 3.2. Phase diagram of the Boost converter ideal sliding dynamics (direct con-
trol).

h1(x) = x1 − x1

To specify this function, in terms of the desired output voltage, we compute
the equilibrium point of the system under ideal sliding conditions. We write
the equilibrium value of the current in terms of the equilibrium value of the
output voltage as,

x1 =
1
Q

x2
2

We now have,
Lfh(x) = 1, Lgh(x) = −x2

The equivalent control is then given by

ueq(x) =
1
x2

The ideal sliding dynamics corresponding to h(x) = 0, i.e., x1 = x1, is given
by:

ẋ2 =
x2

2

Qx2
− x2

Q

It is easy to see that the unique equilibrium point of the zero dynamics is an
asymptotically stable equilibrium point.

Indeed, consider the following Lyapunov function candidate, defined in the
x2 space describing the ideal sliding dynamics, or zero dynamics,

V (x2) =
1
2
(x2 − x2)2 (3.7)

The time derivative of this candidate function is given by
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V̇ (x2) = − 1
Qx2

(x2 − x2)(x2
2 − x2

2) = − 1
Qx2

(x2 − x2)2(x2 + x2)

Evidently, the last expression is negative definite around the equilibrium point
x2, given that x2 > 0 around the equilibrium. The ideal sliding dynamics ex-
hibits an asymptotically stable equilibrium point given by the desired voltage.

According to the developed theory, the sliding surface is reachable, or
accessible, by means of the following switching policy,

u =
{

1 if (x1 − x1) > 0
0 if (x1 − x1) < 0 (3.8)

In other words, the control policy given by:

u =
1
2

[1 + sign (x1 − x1)]

yields the desired regulation with an internally stable system. In non normal-
ized form this expression is given by:

u =
1
2

[1 + sign (i − Iref )] (3.9)

where i is the real inductor current and Iref = i.
The fact that in a Boost converter, the zeroing of the output voltage y = x2

entitles an unstable corresponding zero dynamics is addressed, in the control
systems literature, by stating that the output voltage is a non-minimum phase
output. On the contrary, the inductor current, regarded as an output of the
converter, is said to be a minimum phase output.

3.3.3 Simulations

We take a Boost converter with the following parameter values

L = 15.91 mH, C = 50 µF, R = 52 Ω, E = 12 V

It is desired to regulate the output voltage to the average equilibrium value

υ = 24 V

The equilibrium value of the corresponding average non-normalized inductor
current is given by

i = 0.923 A

Figure 3.3 depicts the simulated state trajectories of the sliding mode
controlled Boost converter.
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Fig. 3.3. Sliding mode controlled responses of a Boost converter.
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Fig. 3.4. Block diagram of the Boost converter with sliding mode controller.

3.3.4 Experimental Implementation

We now present the experimental sliding mode controller performance results,
obtained on the basis of the experimental prototype of the Boost converter
described in Chapter 2.

Figure 3.4 depicts a block diagram of the Boost system, along with the
corresponding sliding mode control block.
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• Control block. In this block, the designed sliding mode control strategy
determined by (3.9) is implemented using analog electronics. The core of
this block is a comparator circuit.

Comparator Circuit

A comparator circuit is a device which compares two voltages, or two currents
signals, and determines which one is greater. In Figure 3.5 we shown a general
op-amp configured as a comparator.

-

+ Vout
V

V

+

-

VCC

VCC

A

Fig. 3.5. Comparator circuit.

The operation principle for the comparator circuit is the following:

• When the input voltage (V+) is higher than the input (V−), the high gain of
the op-amp, A, causes the op-amp’s output to be approximately saturated
to the positive supply voltage (i.e., +VCC). For this case we can represent
the output voltage by the following expression:

Vout = A (V+ − V−) ≈ +VCC

• On the other hand, when the input (V−) is greater than the input (V+),
the high gain A of the op-amp causes that the op-amp’s output be also
approximately saturated to the negative supply voltage (i.e., to −VCC).
We have,

Vout = A (V+ − V−) � −VCC

The above expressions are unified by the following equation:

Vout = VCC sign(V+ − V−) (3.10)

The actual control block circuit is shown in Figure 3.6. This figure shows
how the comparator circuit is connected to produce the sliding mode controller
circuit. The output of the comparator is an ON OFF digital signal. The input
(V+) of the comparator is connected to the inductor current signal i (which
was transformed into a proportional voltage signal vi, via the LEM HAW 15-
P current sensor, see Figure 2.7) coming from the Boost system, while the
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comparator’s input (V−) is feeded by a reference current signal Iref , which is
the desired current for the Boost converter. This current is determined by the
corresponding desired equilibrium value of the output voltage of the converter,
denoted by v.
The control block circuit was designed using the voltage comparator LM311
IC. The control circuit provides a digital output signal, with amplitudes of
0V or +5V , so it can be interfaced to a TTL logic circuit. The LM311 IC
achieves this feature with its open collector output arrangement, a pull-up
resistor (R = 1 kΩ) and a 0 V to +5 V power supply. The resulting signal
is directly interfaced with the TTL compatible NTE3087 IC, via the Hex
Inverting Schmidt Trigger 74HC14 IC, which commands the gate of the Mosfet
NTE2984 acting as a switch. We can see in Figure 3.4 the entire block diagram.
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Fig. 3.6. Control circuit diagram for the sliding mode controller.

Experimental Results

Figure 3.7 illustrates the experimental performance of the indirect output
voltage sliding mode regulation scheme for a typical “Boost” converter circuit,
characterized by the parameters:

L = 15.91 mH, C = 50 µF, R = 52 Ω, E = 12 V

We set an actual desired output voltage of υ = 24 V. This corresponding to
an actual current Iref = i = 0.923 A.
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Fig. 3.7. Experimental sliding mode closed loop response of the Boost converter.

3.4 Control of the Buck-Boost Converter

The circuit shown in Figure 3.8 represents a DC-to-DC power converter con-
trolled by a switch. This system is better known as the “Buck-Boost” con-
verter.

L

u

E

u

v RC

i

Fig. 3.8. The Buck-Boost DC-to-DC power converter.

As it was shown in Chapter 2, the normalized model of the Buck-Boost
DC-to-DC power converter is given by

dx1

dτ
= (1 − u)x2 + u

dx2

dτ
= −(1 − u)x1 − 1

Q
x2

In the vector field notation, introduced earlier, we specifically have,
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f(x) =
[

x2

−x1 − 1
Qx2

]
, g(x) =

[
1 − x2

x1

]
The control objective is to have the normalized average voltage x2 to

converge towards the desired equilibrium value x2.

3.4.1 Direct Control

We try first with the following sliding surface coordinate function

h(x) = x2 − x2

Clearly, if h(x) is forced to be zero, the output capacitor voltage coincides
with the desired value. As before, we must establish the stability features of
the corresponding internal, or zero, dynamics of this output function.

In our case we have,

Lfh(x) =
∂h

∂xT
f(x) = −x1 − 1

Q
x2

Lgh(x) =
∂h

∂xT
g(x) = x1

and the equivalent control is then given by

ueq(x) = −Lfh(x)
Lgh(x)

= 1 +
1
Q

(
x2

x1

)
The ideal sliding dynamics, corresponding with the equivalent control,

taking place on the sliding surface is given by:

ẋ1 =
(1 − x2)x2

Q

(
1
x1

)
+ 1

This dynamics has a unique equilibrium point, x1 = (x2 − 1) x2
Q , which is

unstable. We show this fact via two approaches.

An Approximate Linearization Approach

The linear incremental model (or the tangent linearization model) of the nor-
malized average current is given, after defining the incremental variable as:
x1δ = x1 − x1, by:

d

dτ
x1δ =

Q

(x2 − 1)x2
x1δ

This linear dynamics has the origin as an unstable equilibrium point due to
the fact that the characteristic polynomial of the linearized dynamics exhibits
a zero in the right hand side of the complex plane. This is established from
the fact that x2 < 0.



80 3 Sliding Mode Control

A Lyapunov Stability Theory Approach

We rewrite the zero dynamics corresponding to h(x) = 0 as:

dx1

dτ
=

1
x1

(
x1 − (x2 − 1)

x2

Q

)
and consider the positive definite Lyapunov function in the x1 space

V (x1) =
1
2

(
x1 − (x2 − 1)

x2

Q

)2

By virtue of the fact that x1 > 0, the time derivative of this function is seen
to be positive semi-definite. Indeed,

V̇ (x1) =
1
x1

(
x1 − (x2 − 1)

x2

Q

)2

≥ 0

The zero dynamics is thus unstable.

3.4.2 Indirect Control

The alternative is then to use, as the sliding surface coordinate function, a
function which reproduces for the variable x1 the desired equilibrium current
in correspondence with the desired average normalized voltage. We set

h(x) = x1 − x1

Writing the equilibrium current in terms of the average equilibrium nor-
malized output voltage we get,

x1 = − (1 − x2)
x2

Q

We have, in our directional derivative notation,

Lfh(x) = x2, Lgh(x) = 1 − x2

The equivalent control is therefore given by

ueq(x) = − x2

1 − x2

The ideal sliding dynamics corresponding to the zero value of the output
function h(x), yielding x1 = x1, is, after some algebraic manipulations, given
by,

ẋ2 = − 1
Q

(
1 +

x2

x2 − 1

)
(x2 − x2)
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Note that the factor 1+ x2
x2−1 is strictly positive due to the fact that x2 < 0

and x2 < 0. It is easy to verify that the unique equilibrium point of this zero
dynamics, or ideal sliding dynamics, is asymptotically stable.

Indeed take as a Lyapunov function candidate the following function,

V (x2) =
1
2

(x2 − x2)
2

which is globally strictly positive in the x2 space, except at x2 = x2 where it
is zero. The time derivative of this function, along the trajectories of the zero
dynamics is given by

V̇ (x2) = − 1
Q

(
1 +

x2

x2 − 1

)
(x2 − x2)2

This quantity is zero at x2 = x2 and strictly negative in the operating region of
the converter x2 < 0. The equilibrium point x2 = x2 is hence asymptotically
stable.

According to the developed theory, the sliding surface is reachable or acces-
sible and the sliding motion is feasible due to internal stability considerations.
The switching policy, which allows the state trajectory to reach the sliding sur-
face and it is capable of sustaining the sliding motion on the sliding manifold
is given by,

u =
{

1 if (x1 − x1) < 0
0 if (x1 − x1) > 0

3.4.3 Simulations

We take, as the Buck-Boost converter parameters the following ones:

L = 20 mH, C = 20 µF, R = 30 Ω, E = 15 V

It is desired to control the output voltage to the following desired equilibrium
value

υ = −22.5 V

The corresponding equilibrium current is just found to be,

i = 1.875 A

Figure 3.9 depicts the simulated state trajectories of the sliding mode con-
trolled Buck-Boost converter.



82 3 Sliding Mode Control

Fig. 3.9. Simulated responses of sliding mode controlled Buck-Boost converter.

3.5 Control of the Cúk Converter
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Fig. 3.10. The Cúk DC-to-DC power converter.

The Cúk converter, shown in Figure 3.10, is described by the following
normalized set of equations.

dx1

dτ
= − (1 − u)x2 + 1

dx2

dτ
= (1 − u)x1 + ux3

α1
dx3

dτ
= −ux2 − x4

α2
dx4

dτ
= x3 − 1

Q
x4

Using the notation previously established, we identify the vector fields
defining the system as,
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f (x) =

⎡⎢⎢⎢⎣
1 − x2

x1

− 1
α1

x4

1
α2

(
x3 − x4

Q

)
⎤⎥⎥⎥⎦ , g (x) =

⎡⎢⎢⎢⎣
x2

−x1 + x3

− 1
α1

x2

0

⎤⎥⎥⎥⎦
Similarly as in the previous examples, the control objective is to drive the

normalized output voltage, represented in this case by the state variable x4,
towards the desired equilibrium value x4 = Vd.

3.5.1 Direct Control

The following sliding surface coordinate function:

h (x) = x4 − x4 = x4 − Vd

appears to be natural and simple enough. As already discussed, forcing the
sliding surface coordinate function h(x) to be zero means that the output
voltage coincides with the desired equilibrium voltage Vd.

In this case, we have

Lfh (x) =
∂h (x)
∂xT

f (x) =
1
α2

(
x3 − x4

Q

)
Lgh (x) =

∂h (x)
∂xT

g (x) = 0

The proposed sliding surface coordinate function h(x) has relative degree
greater than one and, hence, the equivalent control cannot be defined. We
must therefore propose a sliding surface coordinate function of the form,

h (x) = ẋ4 + λ (x4 − Vd) =
1
α2

(
x3 − x4

Q

)
+ λ (x4 − Vd)

where λ is a strictly positive constant. This function is relative degree one
since

Lgh (x) =
∂h (x)
∂xT

g (x) = − 1
α1α2

x2 �= 0

If h(x) = 0 the dynamics corresponding to x4 produces trajectories with
exponential convergence towards the desired equilibrium point x4 = Vd. We
now evaluate the zero dynamics corresponding to this steady state behavior.

The equivalent control corresponding to the ideal sliding dynamics is given
by ueq = −Vd/x2. From the last equation it follows that the ideal behavior of
the x3 variable corresponds itself to a constant value, i.e., x3 = x3 = Vd

Q . We
therefore have that the zero dynamics is characterized by

dx1

dτ
= − (x2 + Vd) + 1

dx2

dτ
=
(

1 +
Vd

x2

)
x1 − Vd

x2
x3
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The linearized zero dynamics around the equilibrium point

(x1, x2) =
(
V 2

d /Q, 1 − Vd

)
described by the incremental variables

x1δ = x1 − V 2
d

Q
, x2δ = x2 − (1 − Vd)

is given by [
ẋ1δ

ẋ2δ

]
=

[
0 −1
1

(1−Vd)
V 2

d

Q(1−Vd)

][
x1δ

x2δ

]

whose characteristic polynomial is just obtained as: s2 − 1
Q

V 2
d

(1−Vd)s + 1
(1−Vd) ,

which clearly has at least one unstable root in the complex plane.
The proposed sliding surface is therefore not viable since the zero dynamics

corresponding to its zero level set is unstable. i.e., the system, along with the
proposed sliding surface coordinate function viewed as an output, exhibits a
non-minimum phase output.

3.5.2 Indirect Control

The alternative is then to use, as a sliding surface coordinate function, a
function involving the a desired average equilibrium behavior for the input
inductor current. We set then,

h (x) = x1 − x1 = x1 − V 2
d

Q

In this case we have, corresponding to this value of h(x), the following
quantities:

Lfh (x) =
∂h (x)
∂xT

f (x) = 1 − x2

Lgh (x) =
∂h (x)
∂xT

g (x) = x2

The equivalent control is then well defined and given by

ueq (x) = 1 − 1
x2

which under, non-saturated operating conditions, satisfies

0 < ueq (x) < 1

and, hence x2 ∈ (1,∞).
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The ideal sliding dynamics, or the zero dynamics, corresponding to x1 = V 2
d

Q ,
is given by:

dx2

dτ
= x1

1
x2

+
(

1 − 1
x2

)
x3

α1
dx3

dτ
= 1 − x2 − x4

α2
dx4

dτ
= x3 − 1

Q
x4 (3.11)

The equilibrium point of the ideal sliding dynamics is clearly given by

x2 = 1 − Vd, x3 =
Vd

Q
, x4 = Vd

In order to assess the stability of the zero dynamics (3.11), we propose the
following candidate Lyapunov function

V (x2, x3, x4) =
1
2

[
(x2 − x2)

2 + α1 (x3 − x3)
2 + α2 (x4 − x4)

2
]

+ γ

+
∫ τ

0

[x2 (σ) − x2] [x3 (σ) − x3]
x2 (σ)

dσ

with γ being a strictly positive constant parameter, which is assumed to be
sufficiently large so that V is strictly positive, and x2 ∈ (1,∞). The time
derivative of V , along the solution of the system of differential equation yields,
after quite straightforward but tedious algebraic manipulations, the following
expression:

V̇ (x2, x3, x4) = − 1
Q

(x4 − x4)
2 + x3

(x2 − x2)
2

x2
≤ 0

The inequality follows from the fact that, both, Q and x2 are strictly positive
quantities, while that x3 is a strictly negative quantity. By LaSalle’s theorem,
the trajectories: x4 = x4 and x2 = x2, which produce the relation V̇ =
0, should not be incompatible with the equilibrium trajectory, for the zero
dynamics system to be asymptotically stable to its equilibrium point.

From the third equation of the zero dynamics system (3.11), we have that:
x3 = x4

Q , which is true at the equilibrium point. From the second equation in
(3.11), we have that x2 = 1−x4, which implies x2 = 1−x4 = x2. Finally, from
the first equation in (3.11), we obtain: x1 = (1 − x2)x3 = x3x4 = x2

4
Q . Hence,

the only trajectory for which V̇ (x2, x3, x4) = 0 is the one represented by the
equilibrium point itself. Also, since V̇ ≤ 0 outside the equilibrium point, then
V is bounded and, in particular, the integral quantity found in the expression
for V is bounded. Hence, a constant γ > 0 exists which bounds this integral
quantity.
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It is then clear that the average normalized input inductor current x1,
taken as a system output, is a minimum phase output. We, thus, attempt an
indirect regulation of the converter average normalized output voltage, x4,
towards the desired value x4 = Vd. This is accomplished by primarily regu-
lating the inductor current x1 towards its corresponding average equilibrium
value, x1 = V 2

d

Q . The demonstrated asymptotic stability of the zero dynam-
ics corresponding to x1 takes care of the complete internal stabilization of
the controlled system. To achieve the stabilization goal, we propose a sliding
mode control strategy.

According to the developed theory, the sliding surface is reachable, or
accessible, by means of the following switching policy:

u =
{

1 if (x1 − x1) < 0
0 if (x1 − x1) > 0

with an asymptotically stable ideal sliding dynamics.

Fig. 3.11. Simulated responses of sliding mode controlled Cúk converter.

3.5.3 Simulations

We take a Cúk converter with the following parameter values

L1 = 30 mH, C1 = 150 µF, L2 = 30 mH, C2 = 50 µF,

R = 10 Ω, E = 100 V
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It is desired to regulate the output voltage to the average equilibrium value
υ2 = −200 V. The actual equilibrium values of the corresponding currents
and the internal capacitor voltage are given by

i1 = 40 A, υ1 = 300 V, i2 = −20 A

Figure 3.11 shows the simulated behavior of the sliding mode controlled
Cúk converter.

3.6 Control of the Zeta Converter
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Fig. 3.12. The Zeta converter circuit.

The Zeta converter, shown in Figure 3.12, is described by the following
normalized set of differential equations, including switched control inputs.

dx1

dτ
= − (1 − u)x2 + u

dx2

dτ
= (1 − u)x1 − ux3

α1
dx3

dτ
= ux2 − x4 + u

α2
dx4

dτ
= x3 − 1

Q
x4

Using the notation previously established, we identify the vector fields defining
the system,

f (x) =

⎡⎢⎢⎢⎣
−x2

x1

− 1
α1

x4

1
α2

(
x3 − x4

Q

)
⎤⎥⎥⎥⎦ , g (x) =

⎡⎢⎢⎢⎣
1 + x2

−x1 − x3

1
α1

(1 + x2)

0

⎤⎥⎥⎥⎦
The control objective is to drive the normalized output voltage x4 towards

the desired equilibrium value x4 = Vd.
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3.6.1 Direct Control

We propose a sliding surface coordinate function of the form,

h (x) = ẋ4 + λ (x4 − Vd) =
1
α2

(
x3 − x4

Q

)
+ λ (x4 − Vd)

where λ is a strictly positive constant. This function is clearly relative degree
one since

Lgh (x) =
∂h (x)
∂xT

g (x) =
1

α1α2
(1 + x2) �= 0

If h(x) = 0 the dynamics corresponding to x4 produces trajectories with
exponential convergence towards the desired equilibrium point x4 = Vd. We
now evaluate the zero dynamics corresponding to this steady state behavior.

The equivalent control corresponding to the ideal sliding dynamics is given
by ueq = Vd/(1 + x2). It follows that the ideal behavior of the x3 variable
corresponds itself to a constant value, i.e., x3 = x3 = Vd

Q . We therefore have
that the zero dynamics is characterized by

dx1

dτ
= −x2 + Vd

dx2

dτ
= x1 − Vd

(1 + x2)
(x1 + x3)

The linearized zero dynamics around the equilibrium point (x1, x2) =(
V 2

d /Q, Vd

)
, described by the incremental variables x1δ = x1 − V 2

d

Q , x2δ =
x2 − Vd, is given by

ẋδ =

[
0 −1
1

1+Vd

V 2
d

Q(1+Vd)

]
xδ

whose characteristic polynomial is just obtained as: s2 − 1
Q

V 2
d

1+Vd
s + 1

1+Vd
.

Clearly this polynomial has at least one unstable root in the complex plane.
The sliding surface is therefore not viable since the zero dynamics cor-

responding to the zero level set of the sliding surface coordinate function is
unstable. i.e., the system along with the proposed sliding surface coordinate
function, viewed as an output, exhibits a non-minimum phase output.

3.6.2 Indirect Control

The alternative is then to use, as a sliding surface coordinate function, a
function involving the a desired average equilibrium behavior for the input
inductor current. We set then,

h (x) = x1 − x1 = x1 − V 2
d

Q
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In this case we have, corresponding to this value of h(x), the following
directional derivatives:

Lfh (x) =
∂h (x)
∂xT

f (x) = −x2

Lgh (x) =
∂h (x)
∂xT

g (x) = 1 + x2

The equivalent control is then given by

ueq (x) =
x2

1 + x2

which under, non-saturated operating conditions, satisfies

0 < ueq (x) < 1 ⇒ x2 > 0 (3.12)

The ideal sliding dynamics, or the zero dynamics, corresponding to x1 = V 2
d

Q ,
is given by:

dx2

dτ
=
(

1
1 + x2

)
(x1 − x2x3)

α1
dx3

dτ
= x2 − x4

α2
dx4

dτ
= x3 − 1

Q
x4 (3.13)

The equilibrium point of the ideal sliding dynamics is clearly given by

x2 = Vd, x3 =
Vd

Q
, x4 = Vd

In order to assess the stability of the zero dynamics (3.13), we propose the
following candidate Lyapunov function

V (x2, x3, x4) =
1
2

[
(x2 − x2)

2 + α1 (x3 − x3)
2 + α2 (x4 − x4)

2
]

+ γ

−
∫ τ

0

[x2 (σ) − x2] [x3 (σ) − x3]
[1 + x2 (σ)]

dσ

with γ being a strictly positive constant parameter, assumed to be sufficiently
large so that V is strictly positive, with x2 > 0 by (3.12). The time derivative
of V , along the solution of the system of differential equation yields, after quite
straightforward but tedious algebraic manipulations, the following expression:

V̇ (x2, x3, x4) = − 1
Q

(x4 − x4)
2 − x3

(x2 − x2)
2

(1 + x2)
≤ 0

The inequality follows from the fact that, Q, x2 and x3 are strictly positive
quantities. By LaSalle’s theorem, the trajectories: x4 = x4 and x2 = x2, which
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make V̇ = 0, should not be incompatible with the equilibrium trajectory, for
the zero dynamics system to be asymptotically stable to that equilibrium.
From the , third equation of the zero dynamics set of equations (3.13) we
have that: x3 = x4

Q , which is true at the equilibrium point. From the second
equation in (3.13), we have that x2 = x4, which implies x2 = x4 = x2. Finally,
from the first equation in (3.13), x1 = x2x3 = x2

4
Q . Hence, the only trajectory

for which V̇ (x2, x3, x4) = 0 is the one represented by the equilibrium point
itself. Also, since V̇ ≤ 0 outside the equilibrium point, then V is bounded and,
in particular, the integral quantity found in the expression for V is bounded.
Hence, a constant γ > 0 exists which bounds this integral quantity.

It is then clear that the average normalized input inductor current x1,
taken as a system output, is a minimum phase output. We, thus, attempt an
indirect regulation of the converter average normalized output voltage, x4,
towards the desired value x4 = Vd. This is accomplished by primarily regu-
lating the inductor current x1 towards its corresponding average equilibrium
value, x1 = V 2

d

Q . The demonstrated asymptotic stability of the zero dynamics
corresponding to x1 takes care of the complete internal stabilization of the
controlled system. To achieve the stabilization goal, we propose an sliding
mode control.

Thus, according to the developed theory, the sliding surface is reachable,
or accessible, by means of the following switching policy:

u =
{

1 if (x1 − x1) < 0
0 if (x1 − x1) > 0

The sliding motions achieved by this control law yield an asymptotically stable
ideal sliding dynamics.

3.6.3 Simulations

Taking as the converter parameters the following ones,

L1 = 600 µH, C1 = 15 µF, L2 = 1.3 mH, C2 = 12 µF,

R = 25 Ω, E = 120 V

It is desired to control the average output voltage to the following desired
equilibrium value

υ2 = 60 V

The corresponding steady state equilibrium for the rest of the state variables
are given by:

i1 = 1.2 A, υ1 = 60 V, i2 = 2.4 A

Figure 3.13 shows the simulated behavior of the sliding mode controlled
Zeta converter.
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Fig. 3.13. Simulated sliding mode controlled responses for the Zeta converter.

3.7 Control of the Quadratic Buck Converter

Let us now consider the quadratic Buck converter, shown in Figure 3.14. The
normalized differential equations describing this system are given by:

dx1

dτ
= −x2 + u

dx2

dτ
= x1 − ux3

α1
dx3

dτ
= ux2 − x4

α2
dx4

dτ
= x3 − 1

Q
x4

1

3

D

Q
L

Cv

v

R

C

1

1

1
1

22

2L
i

E

D 2
D

i2

Fig. 3.14. Switch regulated DC-to-DC quadratic Buck power converter.
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The equilibrium point of the quadratic Buck converter, parameterized in
terms of the desired output voltage x4 = Vd, is computed to be:

x1 =
(Vd)

3
2

Q
, x2 =

√
Vd, x3 =

Vd

Q
, U =

√
Vd (3.14)

Using the notation previously established, we identify the vector fields
defining the system,

f (x) =

⎡⎢⎢⎢⎣
−x2

x1

− 1
α1

x4

1
α2

(
x3 − x4

Q

)
⎤⎥⎥⎥⎦ , g (x) =

⎡⎢⎢⎢⎣
1

−x3

1
α1

x2

0

⎤⎥⎥⎥⎦
3.7.1 Direct Control

The control objective is to drive the normalized output voltage x4 towards
the desired equilibrium value x4 = Vd.

We first try with the following sliding surface coordinate function:

h (x) = x4 − x4 = x4 − Vd

Forcing the sliding surface coordinate function h(x) to be zero means that
the output voltage coincides with the desired equilibrium voltage.

In this case we have

Lfh (x) =
∂h (x)
∂xT

f (x) =
1
α2

(
x3 − x4

Q

)
Lgh (x) =

∂h (x)
∂xT

g (x) = 0

From the preceding we conclude that the proposed sliding surface coordi-
nate function has relative degree equals greater than one and hence we must
propose a sliding surface coordinate function of the form,

h (x) = ẋ4 + λ (x4 − Vd) =
1
α2

(
x3 − x4

Q

)
+ λ (x4 − Vd)

where λ is a strictly positive constant. This function is relative degree one
since

Lgh (x) =
∂h (x)
∂xT

g (x) =
1

α1α2
x2 �= 0

If h(x) = 0 the dynamics corresponding to x4 produces trajectories with
exponential convergence towards the desired equilibrium point x4 = Vd. We
now evaluate the zero dynamics corresponding to this steady state behavior.
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The equivalent control corresponding to the ideal sliding dynamics is given
by ueq = Vd

x2
. From the last equation it follows that the ideal behavior of the

x3 variable corresponds itself to a constant value, i.e., x3 = x3 = Vd

Q . We
therefore have that the zero dynamics is characterized by

dx1

dτ
= −x2 +

Vd

x2

dx2

dτ
= x1 − Vd

x2
x3

The linearized zero dynamics around the equilibrium point:

x1 = (Vd)
3
2 /Q, x2 =

√
Vd

described by the incremental variables

x1δ = x1 − (Vd)
3
2

Q
, x2δ = x2 −

√
Vd

is given by

ẋ1δ = −2x2δ

ẋ2δ = x1δ +
Vd

Q
x2δ

whose characteristic polynomial is just obtained as: s2− Vd

Q s+2, which, clearly,
has at least one unstable root in the complex plane.

The sliding surface is therefore not viable since the zero dynamics cor-
responding to the zero level set of the sliding surface coordinate function is
unstable. i.e., the system along with the proposed sliding surface coordinate
function, viewed as an output, is a non-minimum phase system.

3.7.2 Indirect Control

The alternative is then to use as a sliding surface coordinate function one
involving the a desired average equilibrium behavior for the input inductor
current. We set then,

h (x) = x1 − x1 = x1 − (Vd)
3
2

Q

In this case we have, corresponding to this value of h(x), the following
quantities:

Lfh (x) =
∂h (x)
∂xT

f (x) = −x2

Lgh (x) =
∂h (x)
∂xT

g (x) = 1
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The equivalent control is then given by

ueq (x) = x2

which, under non-saturated operating conditions, satisfies

0 < x2 < 1

The ideal sliding dynamics, or the zero dynamics, corresponding to x1 = x1 =
(Vd)

3
2

Q , is given by:

dx2

dτ
= x1 − x2x3

α1
dx3

dτ
= x2

2 − x4

α2
dx4

dτ
= x3 − 1

Q
x4 (3.15)

The equilibrium point of the ideal sliding dynamics is clearly given by

x2 =
√

Vd, x3 =
Vd

Q
, x4 = Vd

In order to assess the stability of the zero dynamics (3.15), we propose the
following candidate Lyapunov function

V (x2, x3, x4) =
1
2

[
(x2 − x2)

2 + α1 (x3 − x3)
2 + α2 (x4 − x4)

2
]

+ γ

−x2

∫ τ

0

[x2 (σ) − x2] [x3 (σ) − x3] dσ

with γ being a strictly positive constant parameter, which is assumed to be
sufficiently large so that V is strictly positive, and x2 = U ∈ (0, 1). The time
derivative of V , along the solution of the system of differential equation yields,
after quite straightforward but tedious algebraic manipulations, the following
expression:

V̇ (x2, x3, x4) = − 1
Q

(x4 − x4)
2 − x3 (x2 − x2)

2 ≤ 0

The inequality follows from the fact that, both, Q and x3 are strictly pos-
itive quantities. By LaSalle’s theorem, the trajectories: x4 = x4 and x2 = x2,
which force the relation V̇ = 0, should not be incompatible with the equilib-
rium trajectory (3.14), for the zero dynamics system to be asymptotically sta-
ble to that equilibrium. From the zero dynamics equations (3.15), third equa-
tion, we have that: x3 = x4

Q , which is true at the equilibrium point. From the
second equation in (3.15), we have that x2

2 = x4, which implies x2 =
√

x4 = x2.
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Finally, from the first equation in (3.15), x2x3 = (x4)
3
2 /Q = x1. Hence, the

only trajectory for which V̇ (x2, x3, x4) = 0 is the one represented by the equi-
librium point itself. Also, since V̇ ≤ 0 outside the equilibrium point, then V
is bounded and, in particular, the integral quantity found in the expression
for V is bounded. Hence, a constant γ > 0 exists which bounds this integral
quantity.

It is then clear that the average normalized input inductor current x1,
taken as a system output, is a minimum phase output. We, thus, attempt an
indirect regulation of the converter average normalized output voltage, x4, to-
wards the desired value x4 = Vd. This is accomplished by primarily regulating
the inductor current x1 towards its corresponding average equilibrium value,
x1 = (Vd)

3
2 /Q. The demonstrated asymptotic stability of the zero dynamics

corresponding to x1 takes care of the complete internal stabilization of the
controlled system. To achieve the stabilization goal, we propose an sliding
mode control.

Thus, according to the developed theory, the sliding surface is reachable,
or accessible, by means of the following switching policy:

u =
{

1 if (x1 − x1) < 0
0 if (x1 − x1) > 0

3.7.3 Simulations

We consider a quadratic Buck converter with the following parameters:

L1 = 600 µH, C1 = 10 µF, L2 = 600 µH, C2 = 10 µF,

R = 40 Ω, E = 100 V

It is desired to regulate the output capacitor voltage to the equilibrium value

υ2 = 25 V

The equilibrium values of the currents and the internal capacitor voltage are
given by

i1 = 0.3125 A, υ1 = 50 V, i2 = 0.625 A

Figure 3.15 shows the behavior of the sliding mode controlled quadratic
Buck converter.

3.8 Multi-variable Case

The general description of systems controlled by multiple independent switches
corresponds, within the framework of the state space representation, to the
following form:

ẋ = f(x) + G(x)u, y = h(x)
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Fig. 3.15. Sliding mode controlled responses of a quadratic Buck converter.

where x ∈ Rn, u ∈ {0, 1}m, and y ∈ Rm. The function f(x) is a smooth
vector field defined over the tangent space to Rn and usually addressed as
the drift vector field. G(x) is a matrix whose entries are smooth functions of
the state x of the system and its dimensions are n × m, i.e., n rows and m
columns. The columns of G(x), denoted by means of gi(x), i = 1, 2, . . . , m also
represent smooth vector fields. The matrix G(x) is called the input matrix.
The output function h(x) is a smooth map taking values in Rm. We refer to
the point x as the state vector of the system, while u is the input vector and
y is the output vector.

Example 3.5. Figure 3.16 represents a MIMO DC-to-DC power converter con-
trolled by two switches and known as the Boost-Boost converter. This con-
verter consists of two stages, each one independently controlled by means of
a switch position function,

E

L
2

vv
u

R
C

1

1

11 2

2L
ii

1

1 u2

LR
C2

Fig. 3.16. Ideal switch realization of the Boost-Boost converter.

The differential equations describing the system are the following:
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L1
di1
dt

= − (1 − u1) υ1 + E

C1
dυ1

dt
= (1 − u1) i1 − υ1

R1
− i2

L2
di2
dt

= υ1 − (1 − u2) υ2

C2
dυ2

dt
= (1 − u2) i2 − υ2

RL
(3.16)

where i1 is the input current, v1 is the output voltage of the first stage, i2 is
the input current to the second stage and v2 represents the output voltage of
the second stage.

In matrix terms, the mathematical description of the system is given by:

d

dt

⎡⎢⎢⎣
i1
v1

i2
v2

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 − 1

L1
0 0

1
C1

− 1
R1C1

− 1
C1

0
0 1

L2
0 − 1

L2

0 0 1
C2

− 1
RLC2

⎤⎥⎥⎦
⎡⎢⎢⎣

i1
v1

i2
v2

⎤⎥⎥⎦+

⎡⎢⎢⎣
v1
L1

0
− i1

C1
0

0 v2
L2

0 − i2
C2

⎤⎥⎥⎦[u1

u2

]
+

⎡⎢⎢⎣
E
L1

0
0
0

⎤⎥⎥⎦
Here, evidently, letting x = [i1 v1 i2 v2]T , yields the following expressions for
the drift vector field f(x) and the input matrix G(x),

f(x) =

⎡⎢⎢⎣
0 − 1

L1
0 0

1
C1

− 1
R1C1

− 1
C1

0
0 1

L2
0 − 1

L2

0 0 1
C2

− 1
RLC2

⎤⎥⎥⎦x +

⎡⎢⎢⎣
E
L1

0
0
0

⎤⎥⎥⎦
and

G(x) =

⎡⎢⎢⎣
x2
L1

0
− x1

C1
0

0 x4
L2

0 − x3
C2

⎤⎥⎥⎦ , u =
[

u1

u2

]

3.8.1 Sliding Surfaces

In the context of n dimensional controlled systems regulated by m indepen-
dent switches and where m sliding surface coordinate functions are defined
as system outputs, a sliding surface is represented by the simultaneous sat-
isfaction of m smooth, independent, algebraic restrictions summarized in the
equation: h(x) = 0.

The fundamental assumption is the following: The simultaneous verifica-
tion of m restrictions, h(x) = 0, produces, ideally, a desired behavior for the
system’s state trajectory, x(t), of the controlled system. These restrictions are
represented by a smooth variety, S, locally of dimension n−m. The condition
x ∈ S, happens thanks to the control actions, which in turn are restricted by:
u ∈ {0, 1}m, i.e., ui ∈ {0, 1} for i = 1, 2, · · · ,m.
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The smooth algebraic restrictions, hi(x) = 0, i = 1, . . . , m define m smooth
manifolds, or surfaces, in Rn, each one of dimension n − 1. We denote each
smooth manifold by Si. We have,

Si = {x ∈ Rn | hi(x) = 0}

The intersection of the m smooth manifolds Si is denoted by S and it is
defined as follows:

S = {x ∈ Rn | x ∈ Si, i = 1, 2, · · · , m}

One of the primordial facets of the design of feedback control laws for
multi-variable switch regulated systems is given by the fact that the m smooth
functions, hi(x), constitute a part of the control design problem. The choice
of the outputs and, therefore, of the restrictions hi(x) = 0, i.e., of S =

⋂Si,
depend entirely on the control objectives.

We assume that the surfaces Si are locally functionally independent, this
means that at any given point x of their intersection, the set of surface gradi-
ents, expressed by the row vectors: ∂hi/∂xT , i = 1, 2, ...,m are locally linearly
independent. This means that the m×n matrix, [∂h/∂xT ], is locally full rank
around the point x.

Notation

Let f(x) be a smooth vector field, defined on the tangent space to Rn and
let G(x) be a smooth matrix constituted by m columns representing smooth
vector fields, gi(x), i = 1, 2, · · · ,m. We assume that dim {span G(x)} = m,
i.e., that span G(x) is a proper m-dimensional subspace of the tangent space
to Rn. Also, we say that the range of G(x) is m. Let h(x) be a smooth m-
dimensional map, i.e., one taking values in Rm.

From our assumptions about the local functional independence of the con-
ditions hi(x) = 0 and the local full rank condition on the matrix G(x), it
follows that the m×m matrix, ∂h/∂xT G(x), is locally full rank m and, hence,
invertible.

We define the directional derivative of a smooth map h(x), along the direc-
tion of the vector field f(x), as the vector quantity: ∂h

∂xT f(x). We denote this
m dimensional vector as, Lfh. Similarly, we represent by means of LGh(x)
the invertible matrix:

∂h

∂xT
G(x) =

∂h

∂xT
[g1(x), · · · , gm(x)] = [Lg1h(x), Lg2h(x), · · · , Lgm

h(x)]

Let σ be an m-dimensional vector. We denote by “SIGN(σ)” a vector, also
of dimension m, whose i-th component is just sign(σi).
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3.8.2 Equivalent Control and Ideal Sliding Dynamics

Let us assume that through the application of suitable smooth feedback con-
trol laws, u(x), that define the position of the m switches in the system,
ẋ = f(x) + G(x)u, as a function of the state vector, we manage to locally
make the condition: x ∈ S valid. In other words, assume we may force the
state x of the system to evolve on the intersection of the the smooth manifolds
Si, that represent the desired algebraic restrictions which, in turn, allow the
system to satisfy the specified control objectives.

We define the equivalent control as the smooth feedback control law, de-
noted by ueq(x), which, ideally, locally sustains the state evolution on the
smooth variety S when the initial state of the system happens to be located,
precisely, on S.

The sliding surface coordinate functions, hi(x), satisfy then, simultane-
ously, the following invariance condition:

ḣ(x) =
∂h

∂xT
(f(x) + G(x)ueq(x)) = 0

i.e.,
Lfh(x) + [LGh(x)]ueq(x) = 0

and, therefore, the equivalent control is expressed, in a unique fashion, as:

ueq(x) = −[LGh(x)]−1Lfh(x)

The closed loop controlled vector field evolving on the manifold S is ex-
pressed as:

ẋ = f(x) − G(x)[LGh(x)]−1Lfh(x)

Note that for any other initial condition which is not located on the smooth
manifold S, the state of the system, governed by ueq(x), evolves in such a
manner that h(x) remains constant. Clearly, this constant value adopts the
value 0 only when the initial state x0 satisfies x0 ∈ S. The closed loop system,
virtually controlled by the equivalent control, may be alternatively written as:

ẋ =
{

I − G(x)[LGh(x)]−1 ∂h

∂xT

}
f(x) = M(x)f(x)

Proposition 3.6. The square n × n, matrix M(x), is a projection oper-
ator, over the tangent space to S, whose null space is represented by the
span G(x). In other words, M(x) projects any smooth vector field lying in the
tangent space to Rn over the tangent subspace to S in a parallel fashion to
the span of G(x).

Indeed, let v be a vector field defined in the tangent space to Rn such
that v ∈ span G(x) i.e., v may be expressed as v(x) = G(x)α(x) for a certain
m-dimensional smooth vector field α(x). Then,
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M(x)v(x) =
{

I − G(x)[LGh(x)]−1 ∂h

∂x

}
G(x)α(x)

=
{

G(x) − G(x)[LGh(x)]−1 ∂h

∂x
G(x)

}
α(x)

=
{
G(x) − G(x)[LGh(x)]−1LGh(x)

}
α(x)

= [G(x) − G(x)] α(x) = 0

Additionally, the n-dimensional row vectors of the matrix ∂h/∂xT , are all
orthogonal to the images under M(x) of the vector fields lying in the tangent
space to Rn. To see this, it is enough to demonstrate that any 1-form lying
in the span of the matrix, ∂h/∂xT , annihilates all the (column) vector fields
constituting the matrix, M(x).

A 1-form in the span of ∂h
∂xT is written as: ξT (x) ∂h

∂xT , where ξT (x) is a
non-zero, completely arbitrary, m-dimensional row vector.

Indeed:

ξT (x)
∂h

∂xT
M(x) = ξT (x)

∂h

∂xT

{
I − G(x)[LGh(x)]−1 ∂h

∂xT

}
= ξT (x)

[
∂h

∂xT
− LGh(x)[LGh(x)]−1 ∂h

∂xT

]
= ξT (x)

[
∂h

∂xT
− ∂h

∂xT

]
= 0

The image, under M(x), of any vector lying in the tangent space of Rn is
found in the null space of ∂h/∂xT . In other words, they belong to the tangent
subspace of S.

It is clear that M2(x) = M(x), given that M(x)G(x) = 0.

3.8.3 Invariance with Respect to Matched Perturbations

Consider the multi-variable nonlinear system, additively perturbed by an un-
known, possibly state dependent, vector field, of unknown nature denoted by,
ξ(x), affecting the system as follows: ẋ = f(x) + G(x)u + ξ(x). The system is
assumed to be controlled by m independent switches. Let S be a sliding sur-
face, obtained as the intersection of m smooth manifolds represented by the
algebraic conditions: hi(x) = 0 for i = 1, 2, · · · ,m. Over this sliding surface,
S, we want to locally induce a forced trajectory of the system state as that
obtained through the creation of a sliding regime. The perturbation field ξ(x)
is assumed to be a bounded function of the state of the system.

Assume we may create a sliding motion on the sliding surface: S in spite
of the presence of the perturbation field ξ(x). The existence of such a sliding
regime implies the existence of a smooth control, the perturbed equivalent
control, still denoted by: ueq(x), which, in an ideal fashion, would maintain
the trajectories of the system constrained to the manifold S.
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Necessarily, the equivalent control is, in this case, a function of the un-
known vector field ξ(x). It would be given by:

ueq(x) = −[LGh(x)]−1 (Lfh(x) + Lξh(x))

The corresponding ideal sliding dynamics is then written as,

ẋ = f(x) − G(x)[LGh(x)]−1 (Lfh(x) + Lξh(x))

=
[
I − G(x)[LGh(x)]−1 ∂h

∂xT

]
f(x) +

[
I − G(x)[LGh(x)]−1 ∂h

∂xT

]
ξ(x)

The projection operator M(x) over the tangent space to S, parallel to the
span of G(x), acts over the sum of vector fields f(x)+ ξ(x), in the creation of
a sliding regime on S.

Clearly, the ideal sliding dynamics is totally independent of the pertur-
bation input vector ξ(x), if, and only if, the vector field ξ(x) lies in the null
space of M(x), i.e., [

I − G(x)[LGh(x)]−1 ∂h

∂xT

]
ξ(x) = 0

According to our previous result, the ideal sliding dynamics is therefore in-
variant with respect to the perturbation field if, and only if, the vector ξ(x)
belongs to the span of G(x). There exists then a non-zero vector function,
taking values in Rm and denoted by α(x), such that,

ξ(x) = G(x)α(x)

The perturbation field ξ(x) is contained in the span of the columns of G(x).
Such perturbations receive the name of matched perturbations and the pre-
vious condition has been addressed as the perturbation matching condition.

3.8.4 Accessibility of the Sliding Surface

Consider the scalar quantity:

V (y) =
1
2
yT y =

1
2
hT (x)h(x) ≥ 0

This quantity represents a sort of instantaneous sliding surface “output error
energy” measuring the distance from the representative point x in the state
space to the smooth manifold S. The quantity V (y) is identically zero precisely
over the manifold S and it represents a positive semi-definite function of the
sliding surface coordinate function y.

Therefore, a plausible strategy to reach the sliding surface from a neigh-
borhood of the manifold S which allows us to satisfy the desired restriction
h(x) = 0, is to exercise control actions u ∈ {0, 1}m that result in a strict
decrease of the quantity V (h(x)).
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This is achieved influencing the system in such a manner that the velocity
of variation of V (h(x)) be strictly negative. This means,

d

dt
(V (h(x))) =

1
2

d

dt

(
hT (x)h(x)

)
= hT (x)ḣ(x) < 0

Using the relation, ḣ(x) = Lfh(x)+LGh(x)u and realizing that Lfh(x)+
LGh(x)ueq = 0 for any x /∈ S and further adding and subtracting the quantity:
LGh(x)ueq to the first order time derivative of h(x) in the previous expression,
we have the following relations:

hT (Lfh(x) + LGh(x)u) = hT (Lfh(x) + LGh(x)(u − ueq) + LGh(x)ueq)
= hT LGh(x)(u − ueq) < 0

This inequality may be expressed in the following manner:

hT [Lg1h]u1 + hT [Lg2h]u2 + · · ·hT [Lgm
h]um <

hT [Lg1h]u1eq + hT [Lg2h]u2eq + · · ·hT [Lgmh]umeq

A sufficient condition to achieve this last inequality is to apply one of the
two possible values for uj , j = 1, . . . , m, according to the sign of the factor
multiplying the control input uj represented by hT Lgj

h. We use then,

uj =
{

1 if hT Lgj h(x) < 0
0 if hT Lgj h(x) > 0

In other words,

uj =
1
2
[
1 − sign

(
hT Lgj

h(x)
)]

If we denote 1m an m dimensional column vector constituted by 1 in each
entry, the suggested control law is written as follows:

u =
1
2

[
1m − SIGN

(
hT LGh(x)

)T
]

3.9 Control of the Boost-Boost Converter

Consider the normalized model of the Boost-Boost system.

ẋ1 = − (1 − u1) x2 + 1

ẋ2 = (1 − u1)x1 − 1
Q1

x2 − x3

α1ẋ3 = x2 − (1 − u2)x4

α2ẋ4 = (1 − u2)x3 − 1
QL

x4 (3.17)
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Using the previously introduced notation, we have:

f(x) =

⎡⎢⎢⎢⎣
1 − x2

x1 − 1
Q1

x2 − x3
1

α1
(x2 − x4)

1
α2

(
x3 − 1

QL
x4

)
⎤⎥⎥⎥⎦ , G(x) =

⎡⎢⎢⎣
x2 0
−x1 0
0 1

α1
x4

0 − 1
α2

x3

⎤⎥⎥⎦
The control objective is to have the normalized average capacitor voltages

x2 and x4 to adopt the following constant desired equilibrium values: x2 = V1d,
x4 = V2d, respectively.

3.9.1 Direct Control

We try the following sliding surface coordinate functions:

h1(x) = x2 − x2, h2(x) = x4 − x4

Clearly, forcing to zero the vector of sliding surface coordinate functions
means that the capacitor voltages reach the desired equilibrium values. We
must nevertheless establish the nature and stability of the corresponding zero
dynamics, or ideal sliding dynamics.

In our case we have

Lfh(x) =
∂h

∂xT
f(x) =

[
x1 − 1

Q1
x2 − x3

1
α2

(
x3 − 1

QL
x4

)]

LGh(x) =
∂h

∂xT
G(x) =

[−x1 0
0 − 1

α2
x3

]
and the equivalent control is given by

ueq(x) = −[LGh(x)]−1Lfh(x) =

[
1 − (1/Q1)x2+x3

x1

1 − 1
QL

(
x4
x3

) ]

The ideal sliding dynamics occurs when ueq(x) acts over the system and this
satisfies the conditions: x2 = x2 and x4 = x4. We then have

ẋ1 = −
(

(1/Q1)x2 + x3

x1

)
x2 + 1

α1ẋ3 = − 1
QL

(
x2

4

x3

)
+ x2

It is not difficult to see that these set of dynamics is unstable around the
desired equilibrium point.
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3.9.2 Indirect Control

The alternative is then to consider, as coordinate functions of the sliding
surfaces, other functions which stably reproduce the desired output voltages
when forced to be zero. These alternative functions are represented by the
stabilization errors of the input inductor currents.

h1(x) = x1 − x1, h2(x) = x3 − x3

To specify these functions we compute the state and input equilibrium
points in terms of the desired average output equilibrium voltages, which
expressed in terms of the output voltages x2 = V2d and x4 = V4d are given by

x1 =
V 2

2d

Q1
+

V 2
4d

QL
, x2 = V2d, x3 =

V 2
4d

QLV2d
, x4 = V4d (3.18)

We now have:

Lfh(x) =
[

1 − x2
1

α1
(x2 − x4)

]
, LGh(x) =

[
x2 0
0 1

α1
x4

]
, ueq(x) =

⎡⎣1 − 1
x2

1 − x2
x4

⎤⎦
Thus, the ideal sliding dynamics corresponding to x1 = x1, x3 = x3 is

given by:

ẋ2 =
1
x2

x1 − 1
Q1

x2 − x3

α2ẋ4 =
x2

x4
x3 − 1

QL
x4 (3.19)

It is not difficult to verify, with the help of 3.18, that the obtained zero dy-
namics system 3.19 has the desired average output equilibrium voltages as its
asymptotically stable equilibrium point.

According to the developed theory, the intersection of the sliding surfaces
is reachable by means of the following switching policy:

u1 =

{
1 if (x1 − x1)x2 < 0

0 if (x1 − x1)x2 > 0
, u2 =

{
1 if 1

α1
(x3 − x3)x4 < 0

0 if 1
α1

(x3 − x3)x4 > 0

In other words, the control policy are given by:

u1 =
1
2
[
1 − sign

(
hT Lg1h (x)

)]
=

1
2

[1 − sign ((x1 − x1)x2)]

u2 =
1
2
[
1 − sign

(
hT Lg2h (x)

)]
=

1
2

[1 − sign ((x3 − x3)x4)] (3.20)

since α1 > 0.
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Since E, L1 and C1 are all positives and given that υ1 ≥ 0 and υ2 ≥ 0
(because x2 ≥ 0 and x4 ≥ 0) around the equilibrium point of the system. We
can rewrite (3.20) in non-normalized form as:

u1 =
1
2
[
1 − sign

(
i1 − i1

)]
u2 =

1
2
[
1 − sign

(
i2 − i2

)]
(3.21)

where i1 and i2 are given by:

i1 =
1

R1

υ2
1

E
+

1
RL

υ2
2

E

i2 =
1

RL

υ2
2

υ1

3.9.3 Simulations

We take a typical converter with the following parameters

L1 = 15.91 mH, C1 = 48 µF, L2 = 40 mH, C2 = 107 µF,

R1 = 52 Ω, RL = 52 Ω, E = 12 V

It is desired to control the capacitor voltages to the values:

υ1 = 15 V, υ2 = 24 V

The equilibrium values of the average input inductor currents to each stage
correspond approximately to the following values:

i1 = 1.28 A, i2 = 0.738 A

Figure 3.17 shows the behavior of the sliding mode controlled Boost-Boost
converter.

3.9.4 Experimental Sliding Mode Control Implementation

The experimental prototype of the Boost-Boost converter, described in Chap-
ter 2, was used for the implementation of the software implementation of
the multi-variable sliding mode feedback controller (3.21). It was imple-
mented on a National InstrumentsTM PCI-6025E data acquisition board with
MATLAB� Simulink�

Figure 3.18 depicts the entire block diagram of the Boost-Boost converter
prototype including the multi-variable sliding mode control.

In Figure 3.19 the main block diagram used for code generation is shown,
and in Figure 3.20 the multi-variable sliding control is shown.
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Fig. 3.17. Closed loop responses of the Boost-Boost converter to a multi-input
sliding mode controller.
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Fig. 3.19. Main block diagram for C-code generation from Simulink�

Figure 3.20 depicts the software realization of the multi-variable sliding
mode control law, based on the indirect regulation of the output voltage vec-
tor for the Boost-Boost converter. It consists of two controls (control 1, and
control 2). Each one of these controls accepts, as inputs, two signals: the induc-
tor current signal and the desired current reference signal. The output of the
control block is constituted by two pulsed signals with amplitudes of 0 V and
1 V, which are amplified by 5, see Figure 3.19. These two signals command,
respectively, the gate of the two Mosfet NT2984 IC’s acting as switches.
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Fig. 3.20. Simulink� block diagram for the multi-variable control.
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Experimental Results

Figure 3.21 presents the experimental results portraying the closed loop re-
sponse of the Boost-Boost controlled by the designed multi-variable sliding
mode controller. The controller and the system parameters were chosen to be
exactly the same as in the simulation results presented in the previous section.
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Fig. 3.21. Experimental closed loop responses of the Boost-Boost converter vari-
ables to a multi-input sliding mode controller.

3.10 Control of the Double Buck-Boost Converter

Consider the composite converter constituted by the cascade connection of two
stages of the Buck-Boost converter, which we address as the double Buck-
Boost converter. This circuit is shown in Figure 3.22. Clearly this system
represents a multi-input converter regulated by two independent switches.

The set of normalized differential equations describing the converter dy-
namics was already obtained in Chapter 2. These are given by,
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Fig. 3.22. Switch regulated DC-to-DC double Buck-Boost power converter.

dx1

dτ
= (1 − u1) x2 + u1

dx2

dτ
= − (1 − u1)x1 − 1

Q1
x2 − u2x3

α1
dx3

dτ
= u2x2 + (1 − u2)x4

α2
dx4

dτ
= − (1 − u2)x3 − 1

QL
x4 (3.22)

In terms of vector fields and input matrices, we clearly have the following
identifications:

f (x) =

⎡⎢⎢⎢⎣
x2

−x1 − 1
Q1

x2
1

α1
x4

− 1
α2

(
x3 + 1

QL
x4

)
⎤⎥⎥⎥⎦ , G (x) =

⎡⎢⎢⎣
1 − x2 0

x1 −x3

0 1
α1

(x2 − x4)
0 1

α2
x3

⎤⎥⎥⎦
The control objective consists in stably regulating the average normalized

output voltages, x2 and x4, towards the desired equilibrium values: x2 = V2d

and x4 = V4d, respectively.

3.10.1 Direct Control

Consider the following sliding surface coordinate functions:

h1(x) = x2 − V2d, h2(x) = x4 − V4d

Forcing these functions to zero, evidently, means that the output capacitor
voltages coincide with the desired values. We must establish the nature of the
stability of the corresponding zero dynamics.

For this system we have,

Lfh (x) =
∂h

∂xT
f (x) =

[ −x1 − 1
Q1

x2

− 1
α2

(
x3 + 1

QL
x4

)]

LGh (x) =
∂h

∂xT
G (x) =

[
x1 −x3

0 1
α2

x3

]
The equivalent control is then given by
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ueq (x) = − [LGh (x)]−1
Lfh (x) =

[
1 +

(
1

Q1
x2 + x3 + 1

QL
x4

)
1
x1

1 + 1
QL

x4
x3

]

The ideal sliding dynamics is readily obtained to be given by,

dx1

dτ
= (1 − V2d)

(
V2d

Q1
+

V4d

QL
+ x3

)
1
x1

+ 1

α1
dx3

dτ
= −V4d

QL
(V4d − V2d)

1
x3

+ V2d

It is not difficult to see that this dynamics is unstable around the equilib-
rium point. We show this fact below by means of approximate linearization.

The ideal sliding dynamics, or the zero dynamics, for the state variable x3

represents a decoupled system whose equilibrium point is given by

x3 =
V4d

QL

(
V4d − V2d

V2d

)
The approximate linearization model, of the nonlinear dynamics for the

variable x3 is found to be,

α1ẋ3δ =
QLV 2

2d

V4d (V4d − V2d)
x3δ

where x3δ = x3 − x3. The linearized system is, evidently, unstable for its
characteristic polynomial exhibits a zero in the right hand of the complex
plane. The zero dynamics is therefore unstable, regardless of the stability
characteristics of the variable x1.

3.10.2 Indirect Control

Consider now the following indirect approach represented by the sliding sur-
faces:

h1 = x1 − x1, h2 = x3 − x3

The equilibrium point of the system under ideal sliding conditions is given
by

x1 = −
(

V 2
2d

Q1
+

V 2
4d

QL

)(
1 − V2d

V2d

)
, x3 =

V4d

QL

(
V4d − V2d

V2d

)
In this case, we have

Lfh (x) =
∂h

∂xT
f (x) =

[
x2
1

α1
x4

]
LGh (x) =

∂h

∂xT
G (x) =

[
1 − x2 0

0 1
α1

(x2 − x4)

]
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The equivalent control is then given by,

ueq (x) = − [LGh (x)]−1
Lfh (x) =

[ x2
x2−1

x4
x4−x2

]
The ideal sliding dynamics corresponding to x1 = x1, x3 = x3 is given by:

dx2

dτ
= −

(
1

1 − x2

)
x1 − 1

Q1
x2 −

(
x4

x4 − x2

)
x3

α2
dx4

dτ
=
(

x2

x4 − x2

)
x3 − 1

QL
x4

It is easy to verify that the equilibrium point of this zero dynamics is an
asymptotically stable equilibrium point.

According to the developed theory, the intersection of the sliding surfaces
is reachable by means of the following switching policy

u1 =

{
1 if (x1 − x1)(1 − x2) < 0

0 if (x1 − x1)(1 − x2) > 0
, u2 =

{
1 if 1

α1
(x3 − x3)(x2 − x4) < 0

0 if 1
α1

(x3 − x3)(x2 − x4) > 0

In other words, the control policy given by:

u1 =
1
2
[
1 − sign

(
hT Lg1h (x)

)]
=

1
2

[1 − sign ((x1 − x1)(1 − x2))]

u2 =
1
2
[
1 − sign

(
hT Lg2h (x)

)]
=

1
2

[1 − sign ((x3 − x3)(x2 − x4))]

since α1 > 0, yields the desired control objective with an internally stable
ideal sliding dynamics.

3.10.3 Simulations

Simulations were carried out with the following design parameter values:

L1 = 20 mH, C1 = 20 µF, L2 = 20 mH, C2 = 20 µF,

R1 = 30 Ω, RL = 30 Ω, E = 15 V

The prescribed control objectives are set to regulate the voltage variables to
the values

υ1 = −22.5 V, υ2 = 22.5 V

The corresponding equilibrium currents are given by

i1 = 3.75 A, i2 = −1.5 A

Figure 3.23 shows the behavior of the sliding mode controlled double Buck-
Boost converter.
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Fig. 3.23. Closed loop responses of the double Buck-Boost converter variables to a
multi-input sliding mode controller.

3.11 Σ − ∆ Modulation

As was seen in previous sections, the sliding mode control technique is, funda-
mentally, a state space-based discontinuous feedback control technique. The
lack of complete knowledge of the state vector components forces the designer
to use asymptotic state observers, of the Luenberger, or of the sliding mode
type [77], or perhaps to resort to direct output feedback control schemes (see
[9]). Unfortunately, the first approach is not robust with respect to unforseen
exogenous perturbation inputs, even if they happen to be of the “classical
type” (by this we mean: steps, ramps, parabolas, etc.). The second approach
is quite limited in nature and it is not directly applicable in a host of non-
minimum phase systems. Generically speaking, state space based sliding mode
techniques fall into the unmatched perturbation input case, while output feed-
back control techniques do not suffer such realistic drawback.

In this section, we propose a rather practical approach for the synthesis of
sliding mode feedback control schemes in nonlinear switch controlled systems,
in general, and in DC-to-DC power converters and other switch controlled
Power Electronics devices, in particular. We carry out a sliding mode imple-
mentation of average feedback controller design schemes, based on an analog
version of Σ − ∆ modulators. Although we could use average state feedback
controllers, we concentrate on dynamical output feedback control schemes as
the desired paradigm of control laws. This points to the issue that states are
not really needed for sliding mode control. We show that the use of analog
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Σ − ∆-modulators 1 allows for the switched synthesis of any feedback con-
troller which has been synthesized from an average viewpoint (i.e., assuming
that the control input continuously takes values on a closed subset of the real
line, usually restricted to be the closed interval [0, 1]). We show that a Σ−∆-
modulator can be used to translate such a continuous average design into a
discontinuous one with the property that the “equivalent output” signal of the
modulator, in an ideal sliding mode sense, precisely matches the modulator’s
input signal generated by the continuous average feedback controller.

When we combine Σ −∆-modulation with standard state or output feed-
back control, the result is that the induced sliding motion retains all the desir-
able essential features of the average devised controller (robustness, adaptabil-
ity, perturbation rejection properties etc). This technique is, therefore, most
interesting in the case of dynamical output feedback control. The correspond-
ing induced sliding mode control does not require, in that case, of the state of
the plant. A limitation which has been imposed on sliding mode control for a
number of years.

The Σ − ∆ modulation approach for the sliding mode implementation
provides a systematic approach to average based controller design for switched
systems. In this respect, the proposed approach is quite different from that
found in Yeung et al. [82] where the sliding surface is synthesized in terms of
(filtered) differential polynomials acting on inputs and outputs (see also [62]
for a yet different perspective). As an additional outcome, the scheme here
presented requires no matching conditions whatsoever.

3.11.1 Σ − ∆-Modulators

Consider the basic block diagram of Figure 3.24, reminiscent of a traditional
Σ − ∆-modulator block used in early communications systems theory and
analog to digital conversion schemes, but with a binary valued forward non-
linearity, taking values in the discrete set {0, 1}. The following theorem sum-
marizes the relation of the considered modulator with sliding mode control
while establishing the basic features of its input-output performance.

Theorem 3.7. Consider the Σ − ∆-modulator of Figure 3.24. Given a suffi-
ciently smooth, bounded, signal µ(t), then the integral error signal, e(t), con-
verges to zero in a finite time, th. Moreover, from any arbitrary initial value,
e(t0), a sliding motion exists on the perfect encoding condition surface, rep-
resented by e = 0, for all t > th, provided the following encoding condition is
satisfied for all t,

0 < µ(t) < 1 (3.23)

1 A complete account of ∆-modulators, and their modification: Σ −∆ modulators,
extensively used in analog signal encoding, which never benefited from the theo-
retical basis of sliding mode control, is found in the classical book by Steele [74]
and in the excellent book by Norsworthy et al. [47].
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Fig. 3.24. Σ − ∆-modulator.

Proof. From Figure 3.24, the variables in the Σ − ∆-modulator satisfy the
following relations:

ė = µ(t) − u, u =
1
2

[1 + sign(e)] (3.24)

The quantity eė is given by

eė = e

[
µ − 1

2
(1 + sign(e))

]
= −|e|

[
1
2
(1 + sign(e)) − µsign(e)

]
For e > 0 we have eė = −e(1 − µ), which, according with the assumption in
(3.23) leads to eė < 0. On the other hand, when e < 0, we have eė = −|e|µ < 0.
A sliding regime exists then on e = 0 for all time t after the hitting time th
(see [75]). Under ideal sliding, or ideal encoding, conditions, e = 0, ė = 0,
we have that the, so called, equivalent value of the switched output signal, u,
denoted by ueq(t) satisfies ueq(t) = µ(t).

An estimate of the hitting time th is obtained by examining the modulator
system equations with the worst possible bound for the input signal µ in each
of the two conditions: e > 0 and e < 0, along with the corresponding value of
u. Consider then e(0) > 0 at time t = 0. We have for all 0 < t ≤ th,

e(t) = e(0) +
∫ t

0

(µ(σ) − u(σ))dσ ≤ e(0) + t

[
sup

t∈[0,t]

µ(t) − 1

]

< e(0) + th

[
sup

t
µ(t) − 1

]
. (3.25)

Since e(th) = 0, we have:

th ≤ e(0)
1 − supt µ(t)

(3.26)

��
The average Σ − ∆-modulator output ueq, ideally yields the modulator’s

input signal µ(t) in an equivalent control sense (see [75]).
To illustrate, by means of simulations, the feature just stated about Σ−∆

modulation, we let µ(t) = 0.5(1 + A sin(ωt)) with A = 0.8, ω = 3 rad/s. At
the output of the modulator we put a second order low pass filter of the form
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y =
ω2

n

s2 + 2ζωns + ω2
n

with ζ = 0.81 and ωn = 30. We may compare the filter output y with the
input signal µ(t): modulo a small delay and the second order filter transient
from zero initial conditions, the filtering of the switched output signal, u(t), of
the modulator, represented by the variable y(t), reproduces, quite accurately,
the sinusoidal input to the modulator. Figure 3.25 depicts the results.

Fig. 3.25. Performance of Σ−∆ modulator and tracking properties of the low pass
filtered switched output.

3.11.2 Average Feedbacks and Σ − ∆ -Modulation

Suppose we have a smooth nonlinear system of the form ẋ = f(x) + ug(x)
with u being a (continuous) control input signal that, due to some physi-
cal limitations, requires to be bounded by the closed interval [0, 1]. Suppose,
furthermore, that we have been able to specify a dynamic output feedback
controller of the form u = −κ(y, ζ), ζ̇ = ϕ(y, ζ), with desirable closed loop
performance features. Assume, furthermore, that for some reasonable set of
initial states of the system (and of the dynamic controller), the values of the
generated feedback signal function, u(t), are uniformly strictly bounded by
the closed interval [0, 1].
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If an additional implementation requirement entitles now that the control
input u of the system is no longer allowed to continuously take values within
the interval [0, 1], but that it may only take values in the discrete set, {0, 1},
the natural question is: how can we now implement the previously derived
continuous controller, so that we can recover, possibly in an average sense, the
desirable features of the derived dynamic output feedback controller design in
view of the newly imposed actuator restriction?

The answer is clearly given by the average reproducing features of the in-
put signal in the previously considered Σ−∆-modulator. Recall, incidentally,
that the output signal of such a modulator is restricted to take values, pre-
cisely, in the discrete set {0, 1}. Thus, if the output of the designed continuous
controller, call it uav(t), is feeded into the proposed Σ − ∆ modulator, the
output signal of the modulator reproduces, on the average, the required con-
trol input signal uav(t). Figure 3.26 shows the switch based implementation of
an average designed output feedback controller, through a Σ −∆-modulator,
which reproduces, in an average sense, the features of a designed continuous
controller.

Fig. 3.26. Sliding mode implementation of a designed continuous output feedback
controller through a Σ − ∆-modulator.

In view of the previous result, we have the following general result con-
cerning the control of nonlinear systems through sliding modes synthesized on
the basis of an average feedback controller and a Σ − ∆-modulator. We only
deal with the dynamic output feedback controller case for the stabilization
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problem around an equilibrium. The result, however, can also be extended to
be valid for trajectory tracking problems.

Theorem 3.8. Consider the following n-dimensional smooth, nonlinear, sin-
gle input, system: ẋ = f(x) + ug(x), with the smooth scalar output map,
y = h(x). Assume the dynamic smooth output feedback controller u =
−κ(y, ξ), ξ̇ = ϕ(y, ξ), with ξ ∈ Rp, locally (globally, semi-globally) asymp-
totically stabilizes the system towards a desired constant equilibrium state,
represented by X. Assume, furthermore, that the control signal, u, is uni-
formly strictly bounded by the closed interval [0, 1] of the real line. Then the
closed loop system:

ẋ = f(x) + ug(x)
y = h(x)

uav(y, ξ) = −κ(y, ξ, X)
ξ̇ = ϕ(y, ξ, X)

u =
1
2

[1 + sign e]

ė = uav(y, ξ) − u

exhibits an ideal sliding dynamics which is locally (globally, semi-globally)
asymptotically stable to the same constant state equilibrium point, X, of the
system.

Proof. The proof of this theorem is immediate upon realizing that under
the hypothesis made on the average control input, uav, the previous theorem
establishes that a sliding regime exists on the manifold e = 0. Under the
invariance conditions: e = 0, ė = 0, which characterize ideal sliding motions
(see Sira-Ramı́rez [57]), the corresponding equivalent control, ueq, associated
with the system satisfies: ueq(t) = uav(t). The ideal sliding dynamics is then
represented by

ẋ = f(x) + uavg(x)
y = h(x)

uav(y, ξ) = −κ(y, ξ, X)
ξ̇ = ϕ(y, ξ, X)

which is assumed to be locally (globally, semi-globally) asymptotically stable
towards the desired equilibrium point.

Remark 3.9. Note that the Σ-∆ modulator state, e, can be initialized at the
value e(t0) = 0. This implies that the induced sliding regime exists uniformly
for all times after t0. Hence, no reaching time of the sliding surface, e = 0, is
required. This practical feature is adopted throughout this book.
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3.11.3 A Hardware Realization of a Σ − ∆-Modulator

Ideal sliding motions imply infinite frequency in the switched signals. Such
a demand is impossible to achieve in practise. A practical solution for the
realization of a Σ − ∆-modulator, characterized by high, but finite switching
frequency, would not markedly affect the key results. For this, we propose
a Pulse Width Modulator (PWM) based Σ − ∆-modulator, which allows a
finite switching frequency to be selected by the user. The block diagram of
the proposed Σ − ∆-modulator circuit is shown in Figure 3.27, while Figure
3.28 shows the actual Σ −∆-modulator realization. This practical realization
arises from replacing the switching block of the Σ−∆-modulator by a classical
(PWM) block.

ø t( ) = uav t( )

u t( )

u t( )
e t( ) comparator

Triangular
waveform

A

T

0

1

T

R

Fig. 3.27. Block diagram for the realization of a Σ-∆-modulator.

In reference to Figure 3.27 (or Figure 3.28) realizing the Σ − ∆ modula-
tor, we distinguish a subtractor block, an integrator block, a triangular-wave
generator system and a classical PWM circuit.

The subtractor block, shown in Figure 3.29, will produce an output which
represents the voltage difference between the input signals V1 and V2. For
arbitrary values of R1, R2, R3 and R4, the difference amplifier circuit produces
the following output:

Vout =
(

(R3 + R1)R4

(R4 + R2)R1

)
V2 −

(
R3

R1

)
V1

Letting R1 = R2 and R3 = R4, one obtains the output signal Vout given by,

Vout =
(

R3

R1

)
(V2 − V1)

Naturally, for R1 = R3 and R2 = R4, the output Vout of the difference ampli-
fier is now,

Vout = V2 − V1



3.11 Σ − ∆ Modulation 119

+

-

TL082

+

-

TL082TL082

+

-

AD711

�

�

-

+

Difference amplifier circuit

LF355 -

LF355

+

0 V

5 V

74HC14

LM311

�

�

-

+

Vout 3

Unipolar triangle wave

V

V

+

-

74HC14

Integrator circuit

PWM circuit

Triangular wave generator system
-

uav

2:7k

2:7k
2:7k

2:7k

10k

D

33nF

100k

1k

1k

1k

10k

10k21:6nF

1:1k

1:1k4:7k

5V

5V

+ 12V

à 12V

u t( )

u t( )

u t( )

Vout1 Vout2

Vout3

Fig. 3.28. Circuit diagram of an experimental Σ − ∆-modulator.
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Fig. 3.29. Difference amplifier circuit.

In the realization we are proposing of the Σ −∆-modulator, we used the last
choice of resistor values with all the resistors value taken to be, R = 2.7 kΩ.
In our control oriented applications, we set, V1 = uav and V2 = u.

The basic integrator circuit is shown in Figure 3.30. It integrates, over
time, the signal Vout, properly inverted.

Vout = − 1
RC

∫ t

0

Vin(σ)dσ + V0 initial

where V0 initial is the output voltage of the integrator at time t = 0.
The triangular-wave generator system uses an triangular-wave generator

circuit and an inverting amplifier circuit with offset null configuration. These
circuits are shown in Figure 3.31 and Figure 3.32, respectively.
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R

-

+

C

Vin
Vout

Fig. 3.30. Basic integrator circuit.

In reference to Figure 3.31, the triangular-wave generator circuit was
synthesized using two operational amplifiers (Op-Amp) identified as the IC-
TL082 Op-Amp. The first op-amp works as a Schmidt circuit and the second
op-amp works as an integration circuit. At the output, Vout1, of the Schmidt
circuit a square wave is obtained. The output Vout1 is the input to the in-
tegration circuit which generates the triangular wave, Vout2. The IC-TL082
require 12 Volt supply. Additionally, the condition R2 > R3 is necessary, to
work in the oscillation mode of the circuit. Finally, if the absolute magnitudes
of +Vsat and −Vsat are equal, the frequency of oscillation can be calculated
by the following formula:

f =
1

4R1C

(
R2

R3

)
for the component values of the circuit diagram, R1 = R3 = 1.1 kΩ, R2 =
4.7 kΩ and C = 21.6 nF, the frequency of oscillation is approximately of 45
kHz.
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-
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-

TL082TL082

Vout 2
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Vout 2
Vout 1

Vsat

Vsat

-

+

1:1k

1:1k

21:6nF

C

4:7k

R3

R2

R1

Fig. 3.31. Triangular-wave generator circuit.

On the other hand, the inverting amplifier circuit with offset null con-
figuration generates an unipolar triangular-wave, which is necessary for the
synthesis of the classical PWM block placed inside the Σ − ∆-modulator
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structure. The circuit diagram for this constitutive block is shown in Fig-
ure 3.31. The unipolar triangle-wave circuit was implemented via the op-amp
IC-AD711. The output of the integration circuit, Vout2 is the input to the
inverting amplifier circuit, which additionally has offset null configuration.
The output of the inverting amplifier circuit, denoted by Vout3, becomes the
unipolar triangular-wave represented in Figure 3.32.

10K

1K

+

-

12V

12V

AD711

�

�

10K

Vout 2

Vout 2
Vout 3

Vout 3

Bipolar triangle Unipolar triangle wavewave

Fig. 3.32. Inverting amplifier circuit with offset null configuration.

A classical PWM circuit is synthesized with the help of a comparator cir-
cuit, which has, as inputs, a unipolar triangle-wave and a signal for comparison
which is the output of the integrator circuit. The actual classical PWM circuit
is shown in Figure 3.33.

1K

0 V

5V

LM311

�

�

5V

5V

-

+

V

V

+

-

Vout 3

Vout 3

Unipolar triangle wave

_

74HC14

74HC14

Fig. 3.33. Classical PWM circuit.

The PWM circuit was designed using the voltage comparator IC LM311,
programmed to have a sampling rate of 45 kHz. The PWM circuit provides a
digital output signal, with amplitudes of 0V or +5V , so can be interfaced to
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TTL logic. The IC LM311 achieves this with their open collector output ar-
rangement, a pull-up resistor (R = 1kΩ) and a 0V to +5V power supply. The
resulting signal is directly interfaced with the TTL compatible IC NTE3087,
via the Hex Inverting Schmidt Trigger IC 74HC14, which commands the gate
of the Mosfet NTE2984 acting as a switch.

Figure 3.34 depicts a picture of the implemented Σ − ∆-modulator.

Fig. 3.34. Hardware implementation of the experimental Σ − ∆-modulator.
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Approximate Linearization in the Control of
Power Electronics Devices

4.1 Introduction

In this chapter, we undertake the simplest, most studied and most applied,
controller design method for nonlinear systems, in general, and for dc to dc
power converters in particular: the approximate linearization method. Many
books have been devoted to linear control design techniques. The list is im-
mense and a detailed survey of the available literature seems to be out of place
in this book. We recommend a few fundamental references which have been
particularly useful to the authors in understanding the issues and grasping the
feeling for controller design. The book by Brockett [5] is a classical reference
for a solid understanding of linear systems theory in general. An excellent
reference textbook is that of Kailath [33] which is highly recommended to
students and people unfamiliar with linear systems theory. A most readable
and clearly written book is that of Furuta et al. [26]. The book by Rugh [51] is
also highly recommended. A recent contribution with many interesting topics
and a clear, didactic, approach in the exposition is the book by Glad and
Ljung [29].

The philosophy of the approximate linearization method in the control of
switched power electronics devices is quite simple: by designing a state, or
output, feedback controller on the basis of the average tangent linearization
model around a desired equilibrium, or reference trajectory, the use of the de-
rived incremental average feedback controller will also prove to be successful
on the full nonlinear system. The desired equilibrium, or the reference tra-
jectory, will be achieved, or tracked, provided the controlled system (initial)
state is sufficiently close to the desired control objective. Nevertheless, average
dc-to-dc power converters enjoy a unique property which will be fully explored
in the next chapter: The average approximate linearization based controller
design is successful in semi-globally controlling the nonlinear system itself.
This is true for stabilization and trajectory tracking tasks.

To ease the controller design computations, we resort, as in previous chap-
ters, to system normalization. For the most known converter topologies, the
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incremental average feedback controller is here designed by resorting to sev-
eral linear feedback control techniques primarily designed on the basis of the
approximately linearized, normalized, average converter model. There exist a
host of recent linear controller design techniques that we do not exploit, such
as H∞, matrix inequalities, L2, etc. These will be left for the interested reader
to explore and develop in the context of power electronics.

4.2 Some Linear Feedback Control Design Methods

In this section, we first briefly revisit some of the most traditional linear feed-
back control design methods and its applications in the regulation of dc-to-dc
power converters. The basic road map is as follows: We start by obtaining,
or presenting, the average normalized model of switched converters, next we
compute the physically meaningful constant average equilibrium points of the
system. Here we make an emphasis in parameterizing such equilibria in terms
of the desired average normalized output voltage of the converter. We pro-
ceed to design a feedback controller by means of one of the following methods:
pole placement via state feedback, pole placement via observer design, flat-
ness, Generalized Proportional Integral (GPI) control, passivity based control
by means of the energy shaping plus damping injection method and, finally,
static passivity based control via a Hamiltonian viewpoint using feedback of
the passive output error associated with the linearized exact tracking, or sta-
bilization, error dynamics.

4.2.1 Pole Placement by Full State Feedback

The average linearized model of the normalized average converter circuit
model, assumed controllable, is placed in the traditional state space form:

ẋδ = Axδ + buav,δ (4.1)

where xδ is the average incremental state defined as the difference, x − x,
with x = X being an average constant equilibrium state corresponding to the
constant average equilibrium input, uav = U . The incremental average control
input is then, uav,δ = uav−U . The matrix A is a constant square n×n matrix
and b is a constant, n-dimensional column vector. The controllability of the
system is expressed by the fact,

rank C = rank
[
b, Ab, · · · , An−1b

]
= n (4.2)

The matrix C is known as the controllability matrix of the system (4.1).
Under such conditions, a linear incremental average feedback controller of

the form:
uav,δ = −kT xδ
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exists which guarantees exponential stability of the origin of the average in-
cremental state coordinates.

The trajectories of the closed loop linearized system,

ẋδ = (A − bkT )xδ

arising from initial incremental states x0,δ are guaranteed to converge to the
origin thanks to appropriate placement of the closed loop eigenvalues of the
matrix A−bkT in the stable region of the complex plane (respecting symmetry
with respect to the real axis).

The linear state feedback control law, using the incremental input defini-
tion, is given by,

uav = uav − kT xδ = U − kT (x − X) (4.3)

In the context of switched power electronics models, such as dc-to-dc power
converters, the derived average feedback control law (4.3) cannot be directly
implemented on the nonlinear converter due to the nature itself of the ac-
tual control input u. The feedback controller is feeded to the switched power
converter via a Σ − ∆ modulator as shown in the scheme of Figure 4.1

Fig. 4.1. Linear average state feedback via Σ − ∆ modulation.

In dc-to-dc power converters, linearization based feedback controllers usu-
ally achieve regulation to the desired equilibrium point even from initial con-
ditions which are significantly far away from such an equilibrium. This unique
feature of power converters is perhaps at the root of the common practise,
among power electronics engineers, of adopting the use of linear feedback con-
troller design as a preferred control scheme rather than resorting to nonlinear
feedback control techniques.

In particular, the linearization based feedback controllers perform a sta-
bilization to the desired equilibrium point even when the motions of the con-
trolled nonlinear system start at the origin of the state space, i.e., they are
also suitable for the start up phase of the converters operation.

We will also use the time-invariant tangent linearization models, and the
associated linear control laws, to achieve trajectory tracking in rest-to-rest,
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or equilibrium-to-equilibrium maneuvers. For this last special requirement,
we invariably resort to the flatness property in order to specify the required
nominal state and input trajectories associated with a particular trajectory
tracking problem. The concept of flatness is explained further ahead in this
chapter.

The linearized model of a nonlinear average model of the converter also
leads to input-output linearized models of the system usually expressed in
traditional transfer function form.

We show that, except for the Buck converter average model, such average
input-output models invariably exhibit a non-minimum phase property when
the incremental output capacitor voltage of the system is considered as the
measured output of the system. On the other hand, the model obtained with
the input inductor current, regarded as an output, exhibits a minimum phase
property. An indirect regulation of the output voltage can then be feasibly
achieved. For such indirect regulation possibility, we propose Proportional-
Derivative (PD) controllers, which can be readily synthesized on the basis of
the available state vector components. These average feedback controllers are,
thus, based on a stable zero cancellation via dynamic linear state feedback.
Naturally, such PD controllers are not feasible for input-output models based
on the incremental average output capacitor voltage as measured output vari-
able.

4.2.2 Pole Placement Based on Observer Design

Although, in principle, all variables in a circuit are measurable to a certain
extent, it is also true that excess of measurement devices increases cost in
circuit design and may contribute to performance and reliability degrada-
tion. Another common feature of switched power electronic devices, in which
switched inductor currents are needed for control law synthesis, is the often
discontinuous and chattering nature of such current variables. For this reason,
it is, sometimes, not advisable to relay on inductor current measurements.

The preceding considerations lead to consider feedback laws based only
on output system measurements. A common and traditional approach to out-
put feedback control design is to resort to state observers, whether full state
observers or reduced state observers. We provide several design examples con-
centrating only on reduced order observers.

In this chapter, we study the use of linear state observers for the control
of traditional dc-to-dc power converters of the Buck, Boost and Buck-Boost
types. The nonlinear average converter models are linearized about their equi-
librium points and an observer is proposed for the average linearized model.
The observed average state and the available output are then used in the
synthesis of the linear full state feedback control law which is to regulate the
nonlinear switched converter.

Consider the linearized average model of a dc-to-dc power converter
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ẋδ = Axδ + buav,δ

yδ = cT xδ (4.4)

where yδ is the incremental output, defined as y − y with y = cT x being the
scalar average output of the system and y = Y is the equilibrium value of the
output corresponding to the state equilibrium value x = X, i.e., y = cT x.

The linearized average converter system is assumed to be observable from
the measured output yδ = cT xδ. This means that the following property is
valid

rank O = rank

⎡⎢⎢⎢⎣
cT

cT A
...

cT An−1

⎤⎥⎥⎥⎦ = n

The matrix O is known as the observability matrix of the system (4.4).
The Luenberger observer for such a system is represented by a dynamical

system, built in the following form,

˙̂xδ = Ax̂δ + buav,δ + l(yδ − ŷδ)
ŷδ = cT x̂δ

where l is a (column) vector of constant gains. The estimation error eδ =
xδ − x̂δ evolves according to the dynamics

ėδ = (A − lcT )eδ

The observability property of the average linearized system 4.4 guarantees
that the eigenvalues of the matrix (A − lcT ) can be arbitrarily placed in the
complex plane (modulo symmetry with respect to the real axis) by appropriate
choice of the entries in the vector l. In other words, the state estimation error
is said to be stabilizable to zero by means of output injection. This guarantees
global asymptotic stability of the origin of coordinates in the incremental
estimation error space describing eδ.

One of the fundamental results of linear systems theory is the separation
principle. This principle states that the observer problem (i.e., that of selecting
the gains in l that guarantee asymptotic estimation of the state variables xδ)
and the controller design problem (i.e., that of selecting the gains of the vector
kT to obtain an asymptotically stable system when the estimated states are
used in the feedback law) can be independently solved, as if the estimated
states were, in fact, the actual states.

This amounts to demonstrate that the following composite system is
asymptotically stable to zero.

ẋδ = Axδ + buav,δ

uav,δ = −kT x̂δ

˙̂xδ = Ax̂δ + buav,δ + lcT (xδ − x̂δ)
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provided the system ẋδ = (A − bkT )xδ has the origin as an asymptotically
stable equilibrium point.

The composite system is rewritten in matrix form as[
ẋδ

˙̂xδ

]
=
[

A −bkT

lcT A − lcT − bkT

] [
xδ

x̂δ

]
Transforming, via an invertible transformation, this system[

xδ

eδ

]
=
[

I 0
I −I

] [
xδ

x̂δ

]
,

[
xδ

x̂δ

]
=
[

I 0
I −I

] [
xδ

eδ

]
we obtain [

ẋδ

ėδ

]
=
[

(A − bkT ) bkT

0 (A − lcT )

] [
xδ

eδ

]
The stability of the overall closed loop system depends, in an decoupled

manner, on the linear feedback stabilization of xδ as if it were perfectly known
and the stabilization of the state estimation error by means of output injection.

The average incremental output feedback control scheme, based on average
incremental state estimation, for a dc-to-dc power converter, is depicted in
Figure 4.2

Fig. 4.2. Linear average output feedback for dc-to-dc power converters via Σ − ∆
modulation.

4.2.3 Reduced Order Observers

Consider the linear system, expressed in composite form[
ẋ1,δ

ẋ2,δ

]
=
[

A11 A12

A21 A22

] [
x1,δ

x2,δ

]
+
[

b1

b2

]
uδ

yδ = [I 0]
[

x1,δ

x2,δ

]
= x1,δ
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where x1,δ ∈ Rn1 and x2,δ ∈ Rn2 with n1 + n2 = n. The elements in the
matrices A and b are partitioned correspondingly to these dimensions. We
assume that the pair of matrices C = [I 0] and A are observable. We are
interested in designing a reduced order observer, which only reconstructs, or
estimates, the unmeasured state x2,δ with an n2 dimensional observer rather
than a full order observer.

The x2,δ system is then given by

ẋ2,δ = A21yδ + A22x2,δ + b2uδ

The first equation reads

ẏδ = A11yδ + A12x2,δ + b1uδ

We may take the right hand side of the following expression:

A12x2,δ = ẏδ − A11yδ − b1uδ (4.5)

as a virtual measurement equation for x2,δ, in the x2,δ subsystem, obtained
through the artificial measurement map A12.

Of course we have to avoid taking time derivatives on yδ as suggested by
this equation. If zδ = A12x2,δ is then considered as an extra measurement we
propose the following observer for x2,δ,

˙̂x2,δ = A21yδ + A22x̂2,δ + b2uδ + l2(zδ − ẑδ)
zδ = A12x2,δ = ẏδ − A11yδ − b1uδ

ẑδ = A12x̂2,δ

Note that for such an observer the estimation error e2,δ = x2,δ − x̂2,δ is
given by subtracting, term by term, the following two equations:

ẋ2,δ = A21yδ + A22x2,δ + b2uδ

˙̂x2,δ = A21yδ + A22x̂2,δ + b2uδ + l2A12(x2,δ − x̂2,δ)

we obtain
ė2,δ = (A22 − l2A12)e2,δ

The desired asymptotic convergence property of e2,δ to zero and, hence, the
existence of an n2-dimensional injection vector l2, is established by determin-
ing the observability of the pair of matrices (A12, A22). This, incidentally, is
a direct consequence of the assumed observability of the matrices ([I 0], A).

In order to obtain a feasible expression for the observer, which does not
involve derivatives of the system output, y, we proceed as follows.

Substitution of the term A12x2,δ, by its expression found in (4.5), into
the obtained reduced order observer equation results in the following set of
equalities:
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˙̂x2,δ = A21yδ + A22x̂2,δ + b2uδ + l2(A12x2,δ − A12x̂2,δ)
= A21yδ + A22x̂2,δ + b2uδ + l2(ẏδ − A11yδ − b1uδ − A12x̂2,δ)
= (A21 − l2A11)yδ + (b2 − l2b1)uδ + (A22 − l2A12)x̂2,δ + l2ẏδ

We define ζ2,δ = x̂2,δ − l2yδ and by adding and subtracting the quantity −l2yδ

to x̂2,δ, we obtain the reduced order observer for the unmeasured state x2,δ:

ζ̇2,δ = (A21 − l2A11)yδ + (b2 − l2b1)uδ

+(A22 − l2A12)ζ2,δ + (A22 − l2A12)l2yδ

x̂2,δ = ζ2,δ + l2yδ

4.2.4 Flatness

In general, a nonlinear MIMO system is said to be flat if there exists a set of
independent artificial outputs, of the same cardinality as the control input set,
called the flat outputs, which completely differentially parameterize the system
states, control inputs and natural outputs of the system. This means that all
variables in the system can be expressed in terms of the flat outputs and a
finite number of their time derivatives. As suspected, this property enormously
facilitates the computation of nominal state and nominal input trajectories,
once the flat output trajectories are established, in accordance with the desired
control objectives of the underlying nonlinear system. The involvement of
the concept of flatness is better explained in the need for obtaining nominal
state and control input trajectories for the nonlinear average system model.
These trajectories are thus easily computed when the system is known to
be flat and the flat output has a clear physical meaning (this is usually the
case). The method simply entitles to propose a trajectory for the flat output
which is compatible with the desired rest-to-rest maneuver. The flat output
trajectory uniquely determines the state and the control input trajectory for
the nonlinear system.

In the context of linear dynamic systems, flatness, adopts its simpler rela-
tion to the controllability of the system. A linear system is flat if, and only if,
it is controllable. In other words, flatness and controllability are equivalent in
the context of linear systems.

For SISO systems, a system is flat if, and only if, we can find an artificial
scalar output y which completely differentially parameterizes all the states
and the input of the system.

Consider the linear system ẋδ = Axδ + buδ with full rank controllability
matrix given by C = [b, Ab, · · ·An−1b], and define zδ = C−1xδ. We have that,
in new coordinates z, the system is expressed as

żδ = C−1ACzδ + C−1buδ

Let F = C−1AC and g = C−1b. The form of these matrices is easily assessed
from the relation
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CF = AC, Cg = b

In other words, F and g must be such that

[b, Ab, · · ·An−1b]F = [Ab,A2b, · · · , Anb]

and
[b, Ab, · · · , An−1b]g = b

It follows, after taking into account Cayley-Hamilton’s theorem:

An = −α1A
n−1 − α2A

n−2 − · · · − αn−1A − αnI

that

F =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 −αn

1 0 · · · 0 −αn−1

0 1 · · · 0 −αn−2

...
...

. . .
...

...
0 0 · · · 1 −α1

⎤⎥⎥⎥⎥⎥⎦ , g =

⎡⎢⎢⎢⎢⎢⎣
1
0
0
...
0

⎤⎥⎥⎥⎥⎥⎦
The transformed system is then given, explicitly, by the following set of

differential equations

ż1,δ = −αnzn,δ + uδ

ż2,δ = z1,δ − αn−1zn,δ

...
żn−1,δ = zn−2,δ − α2zn,δ

żn,δ = zn−1,δ − α1zn,δ

It is clear that the transformed state variable zn,δ plays the role of the sought
flat output variable, yδ, capable of differentially parameterizing the rest of the
state variables and the input.

Indeed, we obtain from the transformed equations, letting y = zn,

zn−1,δ = ẏδ + α1yδ

zn−2,δ = ÿδ + α1ẏδ + α2yδ

...
z1,δ = y

(n−1)
δ + α1y

(n−2)
δ + · · · + αn−1yδ

uδ = y
(n)
δ + α1y

(n−1)
δ + · · · + αnyδ

The flat output is doubtlessly the transformed variable zn, i.e.,

yδ = [0, 0, · · · 0, 1]zδ

or, in terms of the original state variables
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yδ = [0, 0, · · · 0, 1]C−1xδ

Clearly any multiple factor of yδ also completely differentially parame-
terizes the state variables and the input variable. The flat output is, thus,
constituted by any multiple of the quantity obtained from the linear combi-
nation of the state variables formed with the last row of the inverse of the
controllability matrix.

Note that the flat output yδ is an observable output of the system.
Thanks to the differential parametrization provided by flatness, the feed-

back controller design problem is reduced to that corresponding to a pure
chain of integrations.

Indeed, the state dependent input coordinate transformation

uδ = vδ + α1y
(n−1)
δ + · · · + αnyδ

renders the system equivalent to the pure integration system

y
(n)
δ = vδ (4.6)

with auxiliary input vδ.
The successive time derivatives of the flat output are obtained as

⎡⎢⎢⎢⎣
yδ

ẏδ

...

y
(n−1)
δ

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 0 1
0 0 · · · 0 1 −α1

0 0 · · · 1 −α1 −(α1 + α2)
...

... · · ·
...

...
...

1 ∗ · · · ∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

z1,δ

z2,δ

...
zn,δ

⎤⎥⎥⎥⎦
The obtained time derivatives of the flat output yδ can always be placed

back in terms of the original state variables xδ by simply using the (invertible)
relation between zδ and xδ,⎡⎢⎢⎢⎣

yδ

ẏδ

...
y
(n−1)
δ

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 0 1
0 0 · · · 0 1 −α1

0 0 · · · 1 −α1 −(α1 + α2)
...

... · · · ...
...

...
1 ∗ · · · ∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎦ C−1xδ (4.7)

Naturally, in such simple system as those constituted by the average mod-
els of the dc-to-dc power converters such formula are seldom used since the
corresponding relations may be worked out by hand.

The flat output usually has a nice physical interpretation. In terms of the
linearized average models of most of the dc-to-dc power converters studied
here, the flat outputs have the interpretation of an incremental linearized
stored energy. In the Buck converter case, however, it just represents the
output capacitor voltage.
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Let the polynomial pd(s) in the complex variable s, with real coefficients
{γ1, . . . , γn−1}, given by

pd(s) = sn + γ1s
n−1 + · · · + γn

be a Hurwitz polynomial. This means that pd(s) has all its roots strictly in
the left portion of the complex plane.

A convenient full state linear feedback controller specifying the auxiliary
output vδ for the pure integration system 4.6 may be proposed to be,

vδ = −γ1y
(n−1)
δ − · · · − γnyδ

In other words, the feedback control law:

uδ = (α1 − γ1)y
(n−1)
δ + · · · + (αn − γn)yδ (4.8)

renders a closed loop system whose characteristic polynomial is, precisely,
pd(s).

Naturally, in view of the relation (4.7), the availability of the flat output
yδ, and its first n − 1 time derivatives, is guaranteed as long as the state of
the system xδ is available for measurement. The feedback law (4.8) can then
be synthesized as

uav = u +
[
θn θn−1 · · · θ1

]
⎡⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 1
0 0 · · · 0 1 −α1

0 0 · · · 1 −α1 −(α1 + α2)
...

... · · · ...
...

...
1 ∗ · · · ∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎦ C−1xδ

with θj = αj − γj , j = 1, 2, ...n.
If the states of the system are not readily available, but the flat output yδ

is, then thanks to the observability of the flat output, a Luenberger observer
may be devised to asymptotically recover the full state of the system. The
formulae developed above can be used except that xδ is to be replaced by
its asymptotic estimate. Similarly, if an observable output, other than the
flat output, is the only available signal, the above formulae can still be used
replacing the state xδ by its asymptotic estimate.

4.2.5 Generalized Proportional Integral Controllers

If the design of a reduced asymptotic state observer needs to be avoided in
the average feedback controller design, a possible alternative is represented
by the use of state reconstructors based on iterated integration of inputs and
outputs. The technique, also called Generalized Proportional Integral (GPI)
control, is, fundamentally, a linear controller design technique. It bypasses
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the use of asymptotic observers and integrates the controller design into an
input-output feedback approach.

A GPI controller may be shown to be equivalent to a classical compensation
network controller. We shall explore the GPI control of average models of dc-
to-dc power converters using the linearized model around a given equilibrium
and, whenever tractable, we shall establish the relationship of these controllers
with classical feedback compensation networks.

The GPI control technique is based on integral reconstructors of the state
vector. Such reconstructors obtain the state variables as a finite linear com-
bination of iterated integrals of inputs and outputs in compliance with the
system model while regarding the unknown initial conditions, and other ex-
ternal perturbations of classical type, as being zero.

The obtained expressions for the state are then in error which may grow
only in a time polynomial manner. Thanks to the superposition principle, the
use of such a faulty estimator in any state based compensator design may be
conveniently compensated (also in an unstable manner) using a compatible
linear combination of iterated integrals of the output signal error, or of the
input signal error, which guarantees overall closed loop asymptotic stability.
It may be shown that the appropriate nesting of integrations in the controller
expression, à la Hörmander, leads to an internally stable controller.

Consider the linear observable system ẋδ = Axδ + buδ, yδ = cT xδ. Ne-
glecting the state initial conditions (formally setting xδ(0) = 0), we obtain

xδ = A

∫ t

0

xδ(σ)dσ + b

∫ t

0

uδ(σ)dσ

For simplicity we drop the integral limits and the integration variable in favor
of the simpler notation

xδ = A(
∫

xδ) + b(
∫

uδ) 1

Iterating on the implicit expression for the state xδ we find the following
implicit expression for x in terms of n−1 integrals of x and the control input:

xδ = An−1(
∫ (n−1)

xδ) +
n−1∑

1

Aj−1b(
∫ (j)

uδ)

On the other hand, we may obtain the following string of output signal
time derivatives

1 We also let, (
∫ (k)

ϕδ) =
∫ t

0

∫ σ1
0

· · · ∫ σk−1
0

ϕδ(σk)dσk · · · dσ1.
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⎡⎢⎢⎢⎣
yδ

ẏδ

...
y
(n−1)
δ

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
cT

cT A
...

cT An−1

⎤⎥⎥⎥⎦x +

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 0

... 0

cb 0
... 0

cAb cb · · · 0
...

...
. . .

...
cAn−2b cAn−3b · · · cb

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
uδ

u̇δ

...
u

(n−2)
δ

⎤⎥⎥⎥⎦

Integrating this expression a total of n − 1 times, neglecting again initial
conditions for the output derivatives and the input derivatives, we obtain:⎡⎢⎢⎢⎢⎣

(
∫ (n−1)

yδ)
(
∫ (n−2)

yδ)
...
yδ

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
cT

cT A
...

cT An−1

⎤⎥⎥⎥⎦ (
∫ (n−1)

xδ)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 0

... 0

cb 0
... 0

cAb cb · · · 0
...

...
. . .

...
cAn−2b cAn−3b · · · cb

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
(
∫ (n−1)

uδ)
(
∫ (n−2)

uδ)
...

(
∫

uδ)

⎤⎥⎥⎥⎥⎦
which we rewrite, letting O denote the system observability matrix, as⎡⎢⎢⎢⎢⎣

(
∫ (n−1)

yδ)
(
∫ (n−2)

yδ)
...
yδ

⎤⎥⎥⎥⎥⎦ = O(
∫ (n−1)

xδ) + M

⎡⎢⎢⎢⎢⎣
(
∫ (n−1)

uδ)
(
∫ (n−2)

uδ)
...

(
∫

uδ)

⎤⎥⎥⎥⎥⎦
Eliminating the term with the iterated integral of xδ between the two

found expressions, we find

xδ = An−1O−1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
(
∫ (n−1)

yδ)
(
∫ (n−2)

yδ)
...
yδ

⎤⎥⎥⎥⎥⎦− M

⎡⎢⎢⎢⎢⎣
(
∫ (n−1)

uδ)
(
∫ (n−2)

uδ)
...

(
∫

uδ)

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

+
n−1∑

1

Aj−1b(
∫ (j)

uδ)

Let P (s−1)y and Q(s−1)u denote suitable polynomial vectors of iterated inte-
grations of the output and the input variables. We may adopt as a structural
estimate of the state vector x, denoted by x̂, the expression:
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x̂δ = P (s−1)yδ + Q(s−1)uδ

The structurally estimated (or integrally reconstructed) state of the sys-
tem in terms of finite linear combinations of iterated integrals of inputs and
outputs exhibits a finite order time polynomial error with respect to the ac-
tual state vector value. Using the integral reconstruction of the state vector in
place of the actual state in the linear state feedback control law produces an
unstable closed loop system rendering the designed feedback control useless.
One resorts then to the superposition principle and complements the esti-
mated state feedback controller with a suitable additive signal comprising a
linear combination of a sufficient number of iterated integrals of the incremen-
tal output errors, so that the destabilizing effect of the reconstruction error
is cancelled in the closed loop system output differential equation descrip-
tion. This last statement of compensating unstable components is justified
in the fact that a suitable integral action cancels the off-set effect caused by
a constant estimation error (assumed to come from the integral reconstruc-
tor error). A suitably tuned double integration of the output stabilization,
or tracking, error cancels an increasing, or decreasing, linear function of time
appearing additively in the closed loop system as injected by the erroneous
feedback. Three iterated integrals cancel a time parabolic term and so on.
Naturally, the unstable cancellation requires some further algebraic manipu-
lation in order to produce a stable controller. This is usually achieved through
iterated integration nesting or by resorting to transfer function descriptions of
the compensating subsystem comprising the reconstructed state feedback and
the iterated integral compensation terms.

4.2.6 Passivity Based Control

The linearized models of the studied dc-to-dc power converters exhibit a clear
“energy management” structure. The linearized system clearly exhibits the
conservative part of the system, the dissipative part of the system and the en-
ergy acquisition part of the dynamics. It turns out that if internal resistances
of inductors and switches are overlooked, all of the basic converter structures
are under-damped, i.e., some degrees of freedom of the converter do not have
any dissipative forces. Based on Lyapunov stability theory, we propose a de-
sired time varying trajectory for the linearized dynamics state. This results
in the need to inject damping into the desired system dynamics and to force
the incremental energy (energy of the tracking error system) to be driven to
zero by feedback.

The methodology results in an output dynamic feedback controller which
induces a “shaped” closed loop energy and enhances the closed loop damping
of the system. For this reason, the method is better known as the “Energy
shaping + damping injection” (ESDI) methodology (see [48]).

It turns out that for the linearized models of the studied dc-to-dc power
converters, the ESDI method produces simple to implement dynamic output
feedback controllers.
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Consider a linear time-invariant single input, controllable, system of the
form: Pẋδ = Axδ + buδ, where P is a positive definite symmetric matrix. In
most cases P is just the identity matrix or it can be removed by the invertible
state coordinate transformation zδ = P−1xδ. We specifically assume that the
(drift) vector Axδ of the linear system is such that the right hand side of the
system exhibits the following particular structure:

Pẋδ = J xδ −Rxδ + buδ

where J is a skew-symmetric matrix, R is a symmetric, positive semi-definite,
matrix, i.e.,

J T + J = 0, RT = R
We say that the term J xδ represents the conservative forces and that the term
Rxδ represents the dissipative forces in the system. The term buδ is the energy
acquisition term. A justification for advocating this terminology stems from
the fact that if xT

δ Pxδ represents a “state energy” then its time derivatives
exhibits a zero term, xT

δ J xδ, i.e., J xδ yields the invariant part of the energy,
a negative semi-definite term −xT

δ Rxδ and the term xT
δ buδ which is the one

responsible for acquiring, or discarding, energy to control the system. Since
the passive output of the system, denoted by yδ, is defined as: yδ = bT xδ, this
last term is simply the product yδuδ, also known as the supply rate.

Let x∗
δ(t) represent a state trajectory, which is deemed to be desirable.

Controllability of the system guarantees the possibility of tracking such a
state trajectory via a suitable feedback control law. Consider the following
strictly positive tracking error energy function,

V (xδ − x∗
δ(t)) =

1
2
(xδ − x∗

δ(t))
TP(xδ − x∗

δ(t))

The time derivative of such an energy function is given by

V̇ = (xδ − x∗
δ(t))

T (ẋδ − ẋ∗
δ(t))

= (xδ − x∗
δ(t))

T (J xδ −Rxδ + buδ − ẋ∗
δ(t))

Let us assume that the time derivative term, ẋ∗
δ(t), is taken to be

ẋ∗
δ(t) = J x∗

δ(t) −Rx∗
δ(t) + RI(xδ − x∗

δ(t)) + buδ (4.9)

where RI is a positive semi-definite matrix such that

R + RI > 0

The exogenous system (4.9) represents a copy of the system with enhanced
damping which is active only when the tracking error eδ = xδ − x∗

δ(t) is
nonzero. It precisely coincides with the original system dynamics when the
tracking error is null.
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We obtain the following evaluation of the time derivative of V along the
trajectories of the tracking error state eδ = xδ − x∗

δ(t):

V̇ (e) = −(xδ − x∗
δ(t))

T (R + RI)(xδ − x∗
δ(t)) < 0

According to Lyapunov stability theory the error eδ asymptotically converges
to zero and, therefore, xδ and x∗

δ converge to each other.
The dynamics (4.9) represents a desired nominal dynamics, or a reference

dynamics that we would like the system to emulate. Thus, given a reference
trajectory x∗

δ(t), and assuming that the state xδ is measurable, we can com-
pute the required control uδ from one of the equations in the system (4.9) in
which uδ explicitly appears along with some components of the state xδ. We
can compute uδ from the exogenous system equations:

uδ =
bT

bT b
[Pẋ∗

δ(t) − J x∗
δ(t) + Rx∗

δ(t) −RI(xδ − x∗
δ(t))] (4.10)

which is simply obtained by pre-multiplying the exogenous system equations
(4.9) by bT and solving for uδ.

Consider now the projection operator matrix

M =
(

I − 1
bT b

bbT

)
Note that M2 = M, while Mb = 0. Thus M is a projection operator, along
b, onto the orthogonal subspace to b. Thus, for any z ∈ Rn, Mz ⊥b.

Using the projection operator, M, on both sides of the reference trajectory
dynamics (4.9), we obtain the following redundant dynamic system, represent-
ing the dynamic part of the required feedback controller.

MPẋ∗
δ(t) = MJ x∗

δ(t) −MRx∗
δ(t) + MRI(xδ − x∗

δ(t)) (4.11)

Note that bTRI cannot be identically zero, for then the control uδ in (4.10)
does not depend on the system state xδ and uδ would be a open loop controller.
Therefore RIb �= 0 and b is not in the null space of the symmetric matrix RI .
Since the null space and the range space of a symmetric matrix are orthogonal,
it follows that b is in the range space of RI .

The effects of the complementary damping map RI which are present in
the n− 1 dimensional subspace orthogonal to the range of b do not affect the
feedback control actions since these pass through the input vector b before
affecting the state evolution. Hence, it is superfluous to propose a matrix RI

whose range space does not coincide with the one-dimensional range space of
the vector b. This yields, for any arbitrary positive constant γ, the need that
the system satisfies following dissipation matching condition :

R + γbbT > 0 (4.12)

which will be important in the next section.
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4.2.7 A Hamiltonian Systems Viewpoint

Consider again the linear system, written out in the form

ẋ = J x −Rx + bu

If the output of the system happens to be given by y = bT x, it receives the
name of passive output. This simple fact prompts us to view the previous
version of the system as a Hamiltonian system.

Indeed, note that if we take H = 1
2xT x, and from the fact that the column

vector: ∂H/∂x coincides with the state x, we may take H as a storage function.
The system, with scalar output y = bT x, has the natural representation as a
linear Hamiltonian system:

ẋ = J ∂H

∂x
−R∂H

∂x
+ bu

y = bT ∂H

∂x

In fact, it is easy to show that any linear system in state space represen-
tation trivially enjoys such a Hamiltonian representation taking the stored
energy to be H(x) = 1

2xT x. We have,

ẋ = A
∂H

∂x
+ bu

The square matrix A can be decomposed into a symmetric part and a skew
symmetric part as follows

A =
1
2
(A + AT ) +

1
2
(A − AT )

Hence,

ẋ =
1
2
(A − AT )

∂H

∂x
+

1
2
(A + AT )

∂H

∂x
+ bu

Let J = 1
2 (A − AT ) and define R = − 1

2 (A + AT ). The system is then rep-
resented as

ẋ = J x −Rx + bu

The passive output is clearly y = bT x = bT ∂H
∂x . Note that it will be assumed

that R ≥ 0.
The total time derivative of the scalar storage function H, with due account

of the fact that
∂H

∂xT
J ∂H

∂x
=
[
∂H

∂x

]T

J ∂H

∂x
= 0,

and that y = bT ∂H
∂x , is given by:
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Ḣ =
∂H

∂xT

[
J ∂H

∂x
−R∂H

∂x
+ bu

]
= − ∂H

∂xT
R∂H

∂x
+ yu

Integrating the previous expression, we obtain, by virtue of the positive
semi-definite character of R, the basic passivity relation

H(x(t)) − H(x(t0)) ≤
∫ t

t0

y(σ)u(σ)dσ

Suppose for a moment that the control objective is to stably drive the
system state x = ∂H

∂x towards zero. Furthermore, note that due to the fact
that H is a storage function, H(0) = 0. We assume also that H is positive
definite (usually, it is only a positive semi-definite function in order to qualify
as a storage function).

The passivity relation implies that along the trajectories of the system we
have

d

dt
H(x(t)) ≤ yu = − ∂H

∂xT
R∂H

∂x
+

∂H

∂xT
bu

(note that y is scalar and, hence, yT = y). We may clearly choose the control
input as an output feedback control law of the form:

u = −γbT ∂H

∂x
= −γy

where γ is a positive scalar quantity.
The total time derivative of the energy function H > 0 is given by

Ḣ = − ∂H

∂xT

[R + γbbT
] ∂H

∂x

The time derivative of H is negative definite as long as the matrix R+γbbT

is negative definite. This means that the proposed output feedback controller,
u = −γy, causes the origin to be a globally asymptotically stable equilibrium
point. If, on the other hand, R + γbbT is only negative semi-definite. The
origin is still an asymptotically stable equilibrium point provided the largest
invariant set{

x | ∂H

∂xT

[R + γbbT
] ∂H

∂x
= xT

[R + γbbT
]
x = 0

}
is represented only by x = 0.

The stability condition
[R + γbbT

]
> 0 is equivalent to the following

matching condition:

N ( R ) ⊂ Im (b), Im R⊕ Im (b) = Rn
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Note that since dim{Im(b)} = 1, then for guaranteeing global asymptotic
stability of the origin of coordinates, it is necessary that dim{Im R}, equals
n − 1. Since this is seldom the case in converters of dimension greater than
2, then the La Salle’s invariance principle, associated with the set of states
satisfying the relation:{

x | ∂H

∂xT

[R + γbbT
] ∂H

∂x
= 0

}
= {0}

must be verified.
The feedback control design approach, implied in the previous develop-

ments, can be easily extended to stabilization and tracking problems.
Indeed, if the desired equilibrium is given by x, with corresponding equi-

librium input u, we can rewrite the linear system, after defining e = x − x
and eu = u − u and ey = y − y, as:

ė = J ∂H(e)
∂e

−R∂H(e)
∂e

+ beu

ey = bT ∂H(e)
∂e

Note that with H = 0.5xT x, we have

x − x =
∂H(x)

∂x
− ∂H(x)

∂x

∣∣∣∣
x

=
∂H(e)

∂e

Clearly, the incremental control input eu = −γey, or, equivalently: u =
u − γey = u − γ(y − y), yields, under the previous assumptions, the origin of
the state error space, e, as an asymptotically stable equilibrium.

In some instances, the Hamiltonian model of the system adopts the fol-
lowing modified Hamiltonian form

Dẋ = J ∂H

∂x
−R∂H

∂x
+ bu,

y = bT ∂H

∂x

with D = DT > 0 and the usual structural characteristics: J + J T = 0,
R = RT ≥ 0.

Finally, in the multi-variable case, with H(x) = 1
2xT x

ẋ = J ∂H

∂x
−R∂H

∂x
+ Bu

with B a full rank n × m matrix, The passive outputs are readily given by

y = BT ∂H

∂x
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The system is evidently passive since

Ḣ(x) = − ∂H

∂xT
R∂H

∂x
+ yT u ≤ yT u

The output feedback control law

u = −Γy, Γ = ΓT > 0

yields,

Ḣ(x) = − ∂H

∂xT

[R + BΓBT
] ∂H

∂x

The dissipation matching condition , guaranteeing exponential asymptotic
stability of the origin, adopts the form:

R + BΓBT > 0

4.3 The Buck Converter

4.3.1 Generalities about the Average Normalized Model

Li

u

u

v C RE

Fig. 4.3. The Buck converter.

Consider the average normalized model of the Buck converter circuit shown
in Figure 4.3.

ẋ1 = −x2 + uav

ẋ2 = x1 − x2

Q

where x1 is the normalized inductor current, x2 is the normalized output
voltage and uav represents the average switch position function, necessarily
restricted to continuously take values on the set [0, 1].

The average system, which is linear, is clearly controllable and observable
from each one of the states when taken as single system outputs.
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Equilibrium point

The equilibrium of the average normalized state, parameterized in terms of
the desired average equilibrium output voltage x2 = Vd is given by

x1 =
Vd

Q
, x2 = Vd, uav = Vd

Hence, the desired equilibrium output voltage must satisfy the restriction:

0 < Vd < 1

Input-output model

Taking y = x1 as the system output, the input-output relation is given by:

ÿ +
1
Q

y + y = u̇av +
1
Q

uav

The system is clearly minimum phase from this output, since when y =
y = Vd/Q, the zero dynamics is given by

u̇av = − 1
Q

(uav − Qy) = − 1
Q

(uav − Vd)

The system is stable with eigenvalues located at the points

s1,2 = − 1
2Q

±
√

1
4Q2

− 1

The two roots above are real and negative whenever 1
2Q > 1. They are

equal when Q = 0.5. Otherwise, the roots are complex, but they are still
located in the stable portion of the complex plane.

Taking y = x2 as the system output, the input-output relation is given by:

ÿ +
1
Q

ẏ + y = uav

The system is devoid of a zero dynamics, clearly indicating that y = x2 is
the flat output.

The system is also stable with eigenvalues located at the points

s1,2 = − 1
2Q

±
√

1
4Q2

− 1

The two roots are real and negative whenever 1
2Q > 1, critical at Q = 0.5,

and they are, otherwise, complex, but they are still stable.
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4.3.2 Controller Design by Pole Placement

Recall the average normalized model of the Buck converter

ẋ1 = −x2 + uav

ẋ2 = x1 − x2

Q

We assume that both states are available for measurement. Suppose it is
desired to regulate the state of the system to the equilibrium point x1 = Vd/Q,
x2 = Vd.

Notice that the equilibrium state satisfies the relations:

0 = −x2 + uav

0 = x1 − x2

Q

Defining: e1 = x1 − x1, e2 = x2 − x2 and euav = uav − uav = uav − Vd, we
find, subtracting term by term both expressions, the state error dynamics

ė1 = −e2 + euav

ė2 = e1 − e2

Q

We devise the following state error feedback control law:

euav = −k1e1 − k2e2

This choice yields the closed loop system:

ė1 = −k1e1 − (1 + k2)e2

ė2 = e1 − e2

Q

which, in matrix form, reads

ė =
[−k1 −(1 + k2)

1 − 1
Q

]
e

The eigenvalues of the closed loop system are obtained from the solution
of the characteristic equation:

s2 +
(

1
Q

+ k1

)
s +

k1

Q
+ k2 + 1 = 0

By comparison with a desired characteristic equation of the form

s2 + 2ζωns + ω2
n = 0
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we obtain the controller gains

k1 = − 1
Q

+ 2ζωn, k2 = −1 − 1
Q

(
− 1

Q
+ 2ζωn

)
+ ω2

n

The average state error feedback controller is then found to be:

uav = uav +
(

1
Q

− 2ζωn

)
e1 +

(
1 − ω2

n − 1
Q2

+
2
Q

ζωn

)
e2

with:
e1 = x1 − Vd

Q
, e2 = x2 − Vd, uav = Vd

4.3.3 Proportional-Derivative Control via State Feedback

Recall the normalized average model of the Buck converter

ẋ1 = −x2 + uav

ẋ2 = x1 − x2

Q

Assume both states are available for measurement. Suppose it is desired to
regulate the output voltage x2 to a reference constant value Vd ∈ (0, 1). The
input output relation, with y = x2 was determined to be:

ÿ +
1
Q

ẏ + y = uav

A feedback controller that places the closed loop response in the form:

ÿ + 2ζωnẏ + ω2
n(y − Vd) = 0

where ζ and ωn represent desirable damping factor and natural frequency is
given by the following proportional derivative controller with constant feed-
forward term:

uav = (1 − ω2
n)y +

(
1
Q

− 2ζωn

)
ẏ + ω2

nVd

From the state space representation of the system we have that y = x2 and
ẏ = x1 − x2/Q. Placing the proportional derivative controller in terms of the
states of the system yields:

uav =
(

1
Q

− 2ζωn

)
x1 +

(
1 − ω2

n − 1
Q2

+
2
Q

ζωn

)
x2 + ω2

nVd

Note that the derived controller completely coincides with the error state
feedback controller previously designed.
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Indeed,

uav =
(

1
Q

− 2ζωn

)
x1 +

(
1 − ω2

n − 1
Q2

+
2
Q

ζωn

)
x2 + ω2

nVd

subtracting the equilibrium state value to each state and adding the required
terms so as not to alter the expression we have

uav =
(

1
Q

− 2ζωn

)(
x1 − Vd

Q

)
+
(

1 − ω2
n − 1

Q2
+

2
Q

ζωn

)
(x2 − Vd)

+ω2
nVd +

(
1
Q

− 2ζωn

)
Vd

Q
+
(

1 − ω2
n − 1

Q2
+

2
Q

ζωn

)
Vd

= Vd +
(

1
Q

− 2ζωn

)
e1 +

(
1 − ω2

n − 1
Q2

+
2
Q

ζωn

)
e2

The state stabilization problem is most efficiently accomplished by consid-
erations on the input output relation associated to the variable x2 alone.

Simulations

We used the following normalized parameter value Q = 0.5, the desired nor-
malized voltage Vr = 0.6, and for the controller design we set:

ζ = 0.81, ωn = 0.9

Figure 4.4 shows the normalized average response of the Buck system to
the proposed PD controller using full state feedback.

Figure 4.5 shows the Buck converter responses to a Σ−∆ modulator imple-
mentation of the average normalized state feedback control. Simulations were
carried out with the Euler integration algorithm including a large integration
step of 0.1 time units.

Figure 4.6 shows the responses of the same Buck converter to a Σ − ∆
implementation of the average normalized state feedback control. Simulations
were carried out with the Euler integration algorithm including a smaller
integration step of 0.05 time units.

4.3.4 Trajectory Tracking

Consider now the problem of trajectory tracking for the output voltage. In
particular, we are interested in driving the system from an initial equilibrium
to a final equilibrium in a given amount of time. Let Vr(τ) be a time function
defining the desired normalized voltage output reference trajectory starting
at a constant value Vr1 at time τ = τ1 and ending at the value Vr2 at time
τ = τ2 with τ2 = τ1 + T .

Recall the input output expression for the average normalized system:
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Fig. 4.4. Average PD-controlled performance of Buck converter.

Fig. 4.5. Performance of PD-controlled Buck converter using a Σ − ∆ modulator.

ÿ +
1
Q

ẏ + y = uav

A controller that imposes a desired characteristic polynomial for the tracking
error dynamics ëy + 2ζωnėy + ω2

ney = 0, with ey = y − Vr(τ), thus achieving
the desired equilibrium transfer, is given by
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Fig. 4.6. PD-controlled responses of a Buck converter using a Σ − ∆ modulator
with small integration step.

uav = (1 − ω2
n)y +

(
1
Q

− 2ζωn

)
ẏ + ω2

nVr(τ) + 2ζωnV̇r(τ) + V̈r(τ)

This controller is seen to be equivalent to the following controller after
adding and subtracting some feed-forward terms:

uav = (1 − ω2
n)(y − Vr) +

(
1
Q

− 2ζωn

)
(ẏ − V̇r) + Vr(τ) +

1
Q

V̇r(τ) + V̈r(τ)

but, V̈r(τ) + 1
Q V̇r(τ) + Vr(τ) is just the nominal control input corresponding

to the desired output trajectory. We call such a controller u∗(τ), or ur(τ). We
have:

uav = (1 − ω2
n)(y − Vr(τ)) +

(
1
Q

− 2ζωn

)
(ẏ − V̇r(τ)) + u∗(τ)

In terms of the tracking error we obtain:

uav = (1 − ω2
n)ey +

(
1
Q

− 2ζωn

)
ėy + u∗(τ)

Let uav − u∗(τ) = euav , we get

euav
= (1 − ω2

n)ey +
(

1
Q

− 2ζωn

)
ėy

Notice that the control input
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uav = euav + u∗(τ) = euav + V̈r(τ) +
1
Q

V̇r(τ) + Vr(τ)

yields the closed loop system

ëy +
1
Q

ėy + ey = euav

The tracking error proportional derivative controller euav finally yields the
desired tracking error dynamics

ëy + 2ζωnėy + ω2
ney = 0

Note that we would have obtained exactly the same result if we started
with the system model along with the “reference model”

ẋ1 = −x2 + uav

ẋ2 = x1 − x2

Q

ẋ∗
1(τ) = −x∗

2(τ) + u∗(τ)

ẋ∗
2(τ) = x∗

1(τ) − x∗
2(τ)
Q

where evidently

x∗
1(τ) = ẋ∗

2(τ) +
1
Q

x∗
2(τ)

The error system is just

ė1 = −e2 + euav

ė2 = e1 − e2

Q

where e1 = x1 − x∗
1 and e2 = x2 − x∗

2(τ) = y − Vr(τ).
Letting ey = e2 we have the input output relationship

ëy +
1
Q

ėy + ey = euav

The proportional derivative controller is the justified also from a state space
viewpoint.

Simulations

We propose a controller for smoothly rising the steady state normalized
average output voltage, used as a target in the previous simulation exam-
ple, from the value: Vr(τ1) = Vr1 = 0.6 towards the final desired value:
Vr(τ2) = Vr2 = 0.8, in, say, 5 normalized units of time.
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We use the following reference trajectory:

Vr(τ) = Vr1 + (Vr2 − Vr1)ϕ(τ, τ1, τ2)

where ϕ(τ, τ1, τ2) is a piecewise polynomial function interpolating between the
values of 0 and 1, which is of the following form:

ϕ(τ, τ1, τ2) =

⎧⎪⎪⎨⎪⎪⎩
0 for τ ≤ τ1(

τ−τ1
τ2−τ1

)5
[
21 − 35

(
τ−τ1
τ2−τ1

)
+ 15

(
τ−τ1
τ2−τ1

)2
]

for τ ∈ (τ1, τ2)

1 for τ ≥ τ2

Figure 4.7 shows the trajectory tracking features of the average normalized
Buck converter to a proportional derivative tracking controller.

Fig. 4.7. Average PD controlled trajectory tracking for a Buck converter.

Figure 4.8 shows the trajectory tracking features of the switched normal-
ized Buck converter model to a proportional derivative tracking controller
implemented through a Σ − ∆ modulator.

4.3.5 Fliess’ Generalized Canonical Forms

A standard procedure in the control of linear systems consists in the so
called transformation to controller canonical form. In our Buck example this
amounts to a rather direct exercise in using invertible state coordinate trans-
formations. For instance, in the average Buck converter system
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Fig. 4.8. PD controlled trajectory tracking for a Buck converter using a Σ − ∆
modulator.

ẋ1 = −x2 + uav

ẋ2 = x1 − 1
Q

x2

The invertible state coordinate transformation:[
z1

z2

]
=
[

0 1
1 − 1

Q

] [
x1

x2

]
,

[
x1

x2

]
=
[ 1

Q 1
1 0

] [
z1

z2

]
leads to the controlled system model

ż =
[

0 1
−1 − 1

Q

]
z +

[
0
1

]
uav

Clearly, this canonical form is quite useful for control design purposes.
If we consider the average normalized system, along with an output func-

tion, then the Fliess’ generalized observability canonical form may be com-
puted. Since when the output is y = x2, the resulting observability canonical
form coincides with the controller canonical form (a fact intimately related to
the flatness of the particular output x2), we only revise the case when y = x1.

Consider the following invertible input dependent state coordinate trans-
formation of the average model:

z1 = x1, z2 = −x2 + uav, x1 = z1, x2 = −z2 + uav

We obtain
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ż1 = z2

ż2 = −z1 − 1
Q

z2 +
1
Q

uav + u̇av

y = z1

The nature of the zero dynamics of the output and the dynamic feedback
controller design by stable zero cancellation follow quite readily from this
canonical form.

4.3.6 State Feedback Control via Observer Design

Consider the normalized average model of the Buck converter circuit

ẋ1 = −x2 + uav

ẋ2 = x1 − x2

Q

where x1 represents the normalized inductor current, x2 stands for the nor-
malized output voltage and uav denotes the control input (switch position
function).

The average system model was found to be controllable and observable
from both states. In particular, the system is observable from the output
capacitor voltage variable y = x2.

An observer for the state variable x1 could be tentatively proposed as
follows:

˙̂x1 = −y + u + λ(x1 − x̂1)

with λ > 0 a design constant. Evidently, such an “observer” is not feasible,
due to the fact that it requires the actual state x1 for its realization, which is
precisely the variable we would like to estimate. Nevertheless, the observer has
a satisfying property: the estimation error e1 = x1− x̂1 exhibits the dynamics

ė1 = −λe1

which implies exponential stability of the origin of the error space, as long as
we choose λ > 0.

Let us replace the average current variable x1 by its equivalent expression,
obtained from the second equation of the Buck converter model:

x1 = ẏ +
y

Q

We obtain the observer

˙̂x1 = −y + uav + λ

(
ẏ +

y

Q
− x̂1

)
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The additional complication with this observer is the presence of the time
derivative of the output signal y. Something that can be achieved in practise
nowadays, but which is not advisable in many many applications. For this
reason, define the auxiliary variable ζ = x̂1 − λy and obtain, after some
rearrangement, the stable dynamics of this auxiliary variable,

ζ̇ = −λζ −
(

1 − λ

Q
+ λ2

)
y + uav

The auxiliary variable ζ only requires for its synthesis, inputs, outputs, and
being able to solve linear differential equations from arbitrary initial condi-
tions. The synthesis of ζ as a dynamic system poses no problem whatsoever.
From knowledge of ζ, the estimate of x1 is readily obtained as

x̂1 = ζ + λy

We propose the observer controller average feedback law:

uav = Vd − k1

(
x̂1 − Vd

Q

)
− k2(x2 − Vd)

x̂1 = ζ + λy

ζ̇ = −λζ −
(

1 − λ

Q
+ λ2

)
y + uav

with k1 and k2 designed as if the state of the average system were fully
available for measurement. In other words, we used the same gains, k1 and k2,
found for the regulation of the converter through full state average feedback
control and pole placement described earlier. As already mentioned, we chose
λ > 0.

Simulations

Figure 4.9 shows the responses of the normalized Buck converter variables to
the full state linear feedback controller synthesized with the help of a reduced
order observer estimating the inductor current and implemented via a Σ −∆
modulator. The initial condition of the observer was, on purpose, chosen to
be different to that of the initial normalized inductor current.



154 4 Approximate Linearization Methods

Fig. 4.9. Controlled responses of a Buck converter using a reduced order observer.

4.3.7 GPI Controller Design

Consider the average normalized model of the Buck converter with the output
capacitor voltage x2 taken as the measured output,

ẋ1 = −x2 + uav

ẋ2 = x1 − x2

Q
y = x2

The average inductor current is given, modulo a constant additive initial
condition term, by

x̂1(t) =
∫ t

0

[u(σ) − y(σ)] dσ

A state feedback controller of the form,

uav = Vd − k1x1 − k2x2

would be replaced by the GPI controller:

uav = Vd − k1x̂1 − k2y − k3ρ, ρ̇ = y − Vd

Note that the reconstructed state x̂1 differs from the actual value of the
average inductor current in a constant quantity determined by the initial
condition x1(t0) = x10. Indeed

x̂1 = x1 − x10
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This fact becomes useful at the closed loop stability analysis stage.
The closed loop system is then given by

ẋ1 = −(y − Vd) − k1(x1 − x10) − k2y − k3ρ

ẏ = x1 − y

Q

ρ̇ = y − Vd

Eliminating x1 we obtain

ÿ = −(y − Vd) − k1

(
ẏ +

1

Q
y − x10

)
− k2y − k3ρ − 1

Q
ẏ

ρ̇ = y − Vd

In other words,

ÿ = −
(

1

Q
+ k1

)
ẏ −

(
k2 +

k1

Q
+ 1

)
(y − Vd) − k3ρ + γ

ρ̇ = y − Vd

with γ being a constant of the form: γ = k1x10 − (k2 + k1/Q)Vd

Finally, the closed loop system, in terms of the average output capacitor
voltage variable is given by

y(3) +
(

1
Q

+ k1

)
ÿ +

(
k2 +

k1

Q
+ 1

)
ẏ + k3(y − Vd) = 0

Evidently, the design gains k1, k2 and k3 can be chosen to obtain a desired
characteristic polynomial with roots located at preselected locations in the
stable portion of the complex plane. For instance, letting the desired charac-
teristic polynomial pd(s) be

pd(s) = (s2 + 2ξωns + ω2
n)(s + p)

= s3 + (p + 2ξωn)s2 + (ω2
n + 2ξωnp)s + ω2

np

We can immediately obtain the design gains by direct comparison of the
closed loop characteristic polynomial with the desired characteristic polyno-
mial

k1 = p + 2ξωn − 1
Q

k2 = − 1
Q

(
p + 2ξωn − 1

Q

)
− 1 + ω2

n + 2ξωnp

k3 = ω2
np

The proposed GPI controller admits a reinterpretation in classical terms. De-
fine euav = uav − uav = uav − Vd and let ey = y − Vd. We may rewrite the
proposed GPI controller as:
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euav
= −k1

∫ t

t0

(euav
− ey)dt − k2ey − k3

∫ t

t0

eydt − k2Vd

In transfer function notation, the controller is obtained as

euav (s) = −
[
k2s + (k1 − k3)

s + k3

]
ey(s)

The reinterpretation of the average GPI feedback control scheme as a
classical compensating network is shown in Figure 4.10.

Buck converter
(Average model)s+k3

k2s+(k1àk3)
Vd

y
+

+
+

Vd

à

à ey

eu uav

y

Fig. 4.10. The GPI controller as a classical compensation network.

The form of the classical controller corresponds to either a “lead” or a
“lag” controller, depending, respectively, whether the zero of the controller
transfer function is closer to the imaginary axis than the pole of the same
transfer function.

Simulations

Figure 4.11 shows the performance of the GPI controller acting on a switched
Buck converter.

The design parameters were set to be

Vd = 0.6, ζ = 0.81, ωn = 1, p = 1

For this choice the controller turned out to be a lag controller.

4.3.8 Passivity Based Control

Note that the normalized Buck converter model

ẋ1 = −x2 + uav

ẋ2 = x1 − x2

Q
y = x2
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Fig. 4.11. Performance of GPI controlled Buck converter.

may be equivalently written in a manner that clearly depicts the energy struc-
ture of the system

ẋ =
[

0 −1
1 0

]
x +

[
0 0
0 − 1

Q

]
x +

[
1
0

]
uav

The first term clearly exhibits the conservative part of the dynamics, the
second term is the dissipative part of the dynamics and the last one is the
input port or energy acquisition term. We briefly denote these terms by ẋ =
J x + Rx + buav.

Consider the following energy function V (x) = 1
2 (x − xd(τ))T (x − xd(τ))

where xd(τ) represents a desired state trajectory.
The time derivative of the energy function, along the trajectories of the

system is given by

V̇ (x) = (x − xd)T (ẋ − ẋd) = (x − xd)T (J x + Rx + bu − ẋd)

Let ẋd be given by

ẋd = J xd + Rxd + RI(x − xd) + buav

where RI is a positive definite symmetric matrix, such that Rd = R−RI is
a symmetric, negative definite matrix. We have

V̇ (x) = (x − xd)T (J (x − xd) + Rd(x − xd))
= (x − xd)TRd(x − xd) < 0

As a consequence the tracking error (x−xd) decreases asymptotically to zero.
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The dynamics

ẋd = J xd + Rxd + RI(x − xd) + buav

yields both the control input and the dynamics of the required controller.
We set,

RI =
[

RI 0
0 0

]
, RI > 0

We obtain, then, the following dynamical controller, after replacing x2d by
the controller state variable ξ

uav = ẋ1d + ξ − RI(x1 − x1d)

ξ̇ = x1d − 1
Q

ξ

In the previously derived controller, addressed as a damping injection plus
energy shaping controller, or shortly, passivity based controller, the signal,
x1d(t), represents a nominal desired trajectory for the average Buck converter
circuit model.

Note that a nominal trajectory for x1 of the form, x1d(τ), may be com-
pletely specified in terms of a desired behavior for the average output capacitor
voltage x2, which we denote by x∗

2(τ). Indeed, x1 is differentially parameteri-
zable in terms of x2 via the expression

x1 = ẋ2 +
1
Q

x2

We thus obtain x1d from the relation

x1d(t) = ẋ∗
2(t) +

1
Q

x∗
2(τ)

Simulations

We propose the derived passivity based controller for smoothly rising the
steady state normalized average output voltage from the initial equilibrium
value: x2(τ1) = 0.6 towards the final desired value: x2(τ2) = 0.8, in, say,
τ2 − τ1 = 5 normalized units of time.

We use, as proposed earlier, the following reference trajectory:

x∗
2(τ) = x2(τ1) + (x2(τ2) − x2(τ1))ϕ(τ, τ1, τ2)

where ϕ(τ, τ1, τ2) is a piecewise polynomial function interpolating between the
values of 0 and 1, which is of the following form:
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ϕ(τ, τ1, τ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for τ ≤ τ1(
τ−τ1
τ2−τ1

)5
[
252 − 1050

(
τ−τ1
τ2−τ1

)
+ 1800

(
τ−τ1
τ2−τ1

)2

−1575
(

τ−τ1
τ2−τ1

)3

+ 700
(

τ−τ1
τ2−τ1

)4

− 126
(

τ−τ1
τ2−τ1

)5
]

for τ ∈ (τ1, τ2)
1 for τ ≥ τ2

For the simulations, we set: τ1 = 3 and τ2 = 8 with RI = 1.

Fig. 4.12. Passivity based average controlled responses of Buck converter in a
trajectory tracking task.

Figure 4.12 shows the trajectory tracking features of the average normal-
ized Buck converter responding to a passivity based tracking controller achiev-
ing a rest-to-rest maneuver for the output capacitor voltage.

Figure 4.13 shows the trajectory tracking features of the switched nor-
malized Buck converter, implemented with the help of a Σ − ∆ modulator,
responding to a passivity based tracking controller achieving a rest-to-rest
maneuver of the output capacitor voltage.

4.3.9 The Hamiltonian Systems Viewpoint

Consider the positive definite storage function of the incremental variables
e1 = x1 − x1 = x1 − Vd

Q , e2 = x − Vd, given by H(e) = 0.5(e2
1 + e2

2).

ė =
[

0 −1
1 0

]
∂H(e)

∂e
+
[

0 0
0 − 1

Q

]
∂H(e)

∂e
+
[

1
0

]
euav
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Fig. 4.13. Passivity based controlled responses of Buck converter in a tracking task
implemented via a Σ − ∆ modulator.

The passive output error variable ey is given by

ey = y − y = e1 = [1 0]
∂H(e)

∂e

The passivity based controller is simply obtained from euav = −γey, i.e.,

uav = uav − γ(x1 − x1) = Vd − γ

(
x1 − Vd

Q

)
The closed loop system is given by

ẋ1 = −x2 + Vd − γ

(
x1 − Vd

Q

)
ẋ2 = x1 − x2

Q
y = x1

This system is equivalent to the average Hamiltonian error system:

ė =
[

0 −1
1 0

]
∂H(e)

∂e
+
[−γ 0

0 − 1
Q

]
∂H(e)

∂e

The origin of the error space turns into a globally, exponentially asymp-
totically stable equilibrium point for the closed loop system.

uav = uav − γ (x1 − x1) = Vd − γ

(
x1 − Vd

Q

)
(4.13)

Note the striking similarity, and simplicity, of this controller with the one
obtained by standard passivity considerations.
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Simulations

For the simulations we have chosen γ = 0.25, Vd = 0.6 and Q = 0.75. Figure
4.14 shows the average system response to the linear passive output average
feedback control, starting from zero initial conditions.

Fig. 4.14. Average responses of a Buck converter to a linear passivity based con-
troller.

In order to test the versatility of this simple controller, we demanded a
rest-to-rest trajectory tracking task. The corresponding controller turned out
to be

uav(τ) = u∗
av(τ) − γ[x1 − x∗

1(τ)] (4.14)

with u∗
av(τ) and x∗

1(τ) determined on the basis of the desired output voltage
trajectory, y∗(τ) = x∗

2(τ), by means of the differential parametrization:

x∗
1(τ) = ẏ∗(τ) +

1
Q

y∗(τ)

u∗
av(τ) = ÿ∗(τ) +

1
Q

ẏ∗(τ) + y∗(τ)

We set an equilibrium-to-equilibrium transfer from the initial value:

(x1(τ1), x2(τ1)) = (Vd1/Q, Vd1) = (0.8, 0.6)

to the final equilibrium value:

(x1(τ2), x2(τ2)) = (Vd2/Q, Vd2) = (0.8, 1.0667)
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within a time interval [τ1, τ2], defined by τ1 = 3, τ2 = 8, i.e., τ2 − τ1 = 5
normalized time units. Figure 4.15 shows the performance of the responses of
the system to the average feedback controller actions, implemented through
a Σ − ∆ modulator.
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Fig. 4.15. Trajectory tracking performance of a Buck converter using linear pas-
sivity based controller and Σ − ∆ modulation.

4.3.10 Implementation of the Linear Passivity Based Control for
the Buck Converter

In this section, we implement and validate, using a Σ − ∆-modulator circuit,
the feedback controller obtained by standard passivity considerations (4.13)
on the Buck system prototype.

Figure 4.16 shows a block diagram of the Buck system including a control
block, and an amplitude limiter circuit block.

The Buck system and driver blocks, respectively, were already explained
in detail in the Section 2.2. We will present the experimental implementation
of a linear passive output average feedback control acting on the the Buck
converter and implemented with the help of a Σ − ∆-modulator circuit. We
only describe here the synthesized control circuit and its associated amplitude
limiter circuit.

Control block

In the control circuit block the average linear passivity based control strategy
is realized. The electric current i and the voltage signals υ are received from
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Passivity-based controller

CurrentVoltage
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Fig. 4.16. Block diagram of the Buck power converter to a Σ − ∆-modulator
implementation of a linear passive output average feedback control.

the Buck system block (see Figure 2.5). Control strategy (4.13) is implemented
using analog electronics lifting the normalization of the involved expressions.
Using

x1 =
1
E

√
L

C
i, x2 =

υ

E
, Q = R

√
C

L

we can rewrite (4.13) as:

uav =
υ

E
− γactual

[
i − υ

R

]
E (4.15)

where γactual > 0, represents the de-normalized form of the normalized gain
γ. The relation within γactual and γ normalized (denoted only by the symbol
γ) after quite straightforward but tedious algebraic manipulations, is given by
the following expression:

γ =

[
E2

√
C

L

]
γactual (4.16)

this relation is also true for the Boost and Buck-Boost power converters.
Figure 4.17 shows the actual control block circuit. It also shows the transfer

functions that realize the op-amps that achieve the actual implementation of
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the designed passivity based controller (4.15). The figure also depicts the
inputs and the output signals of the control block.
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Fig. 4.17. Control circuit structure implemented for the passivity based stabilizing
controller.

The control block processes two signals coming from the Buck converter:
the inductor current signal i, transformed into a proportional voltage signal
v,

i using the LEM HAW 15-P current sensor (see Figure 2.7), and the output
voltage υ. On the other hand, the output of the control block is the de-
normalized input uav given by (4.15).

Ideally, the average control output uav is limited to take values into the
interval [0, 1]. In practise this interval is actually a [0,5] volt interval. The
average control signal is transformed into an equivalent switching pulse signal,
with amplitudes of 0 V and 5 V, thanks to the Σ − ∆-modulator block. The
output of this block commands the gate of the Mosfet IC NT2984.

Generally speaking, the limit bounds for uav are exceed when the Buck
converter operates in the transitory start-up state. Consequently, the Σ −∆-
modulator block could suffer damages. Thus, we built a block that limits the
input voltage for the Σ − ∆-modulator block to the interval [0 V, 5 V]. For
this task we using a Amplitude limiter circuit, which we explain next.

Amplitude limiter circuit

The amplitude limiter circuit, or clipper, is used to eliminate signal values
which lie outside a certain voltage interval. In our case, we desire to limit the
output voltage of the control block, uav, to the interval [0 V, 1 V] at all times.
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Fig. 4.18. Circuit diagram of an amplitude limiter circuit.

An amplitude limiter circuit consists of a bipolar-output dead-zone circuit
and an adding resistor, RC , (see [7]). Since the output of the first component
is an inverting precision limiter, this output is connected to the input of an
inverting amplifier, which has a closed loop gain given by:

A =
υo

υi
= −RF

Ri

We set A = −5 to accomplish the re-scaling required at the input of the
experimental Σ − ∆-modulator block. As a consequence, the resulting output
for the amplitude limiter circuit block is a non-inverting precision limiter,
shown in Figure 4.18. Figure 4.19 shows the hardware implementation of the
amplitude limiter circuit block. The actual amplitude limiter circuit block was
designed with the help of six op-amps IC TL082.

Experimental results

Figure 4.20 depicts the experimental results portraying the closed loop re-
sponse of the Buck converter system when the linear passivity based stabiliz-
ing controller is implemented. The controller and the system parameters were
chosen to be:

L = 15.91 mH, C = 50 µF, R = 25 Ω, E = 24 V

with γactual = 0.1. We set an actual desired output voltage of υ = 18 V. This
voltage determines a steady state current i = 0.72 A, and uav = 0.75.
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Fig. 4.19. Hardware implementation of the amplitude limiter circuit.
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Fig. 4.20. Experimental closed loop response of the Buck power converter to a
Σ − ∆-modulator implementation of a passivity based stabilizing controller.

On the other hand the corresponding de-normalized controller (4.14) is
given by

uav(t) = u∗
av(t) − γactual [i − i∗ (t)] E (4.17)
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We implemented this controller using the PCI-6025E National Instruments
card, in connection with the MATLAB�-Simulink� program. A nominal de-
sired output voltage profile, exhibiting a rather smooth start for the dc-to-dc
converter, was specified using an interpolating Bezier polynomial of tenth or-
der, defined by:

F ∗ (t) = v∗(t) = v (t1) + [v (t2) − v (t1)] ϕ (t, t1, t2) (4.18)

where ϕ(t, t1, t2) is a piecewise polynomial function interpolating between the
values of 0 and 1. This function is of the following form:

ϕ (t, t1, t2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for t ≤ t1(
t−t1
t2−t1

)5
[
252 − 1050

(
t−t1
t2−t1

)
+ 1800

(
t−t1
t2−t1

)2

−1575
(

t−t1
t2−t1

)3

+ 700
(

t−t1
t2−t1

)4

− 126
(

t−t1
t2−t1

)5
]

for t ∈ (t1, t2)
1 for t ≥ t2

(4.19)

We have used: t1 = 0.5 s, t2 = 1.2 s, i.e., t2 − t1 = 0.7 s, and γactual = 0.18.
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Fig. 4.21. Experimental input current, output voltage and average control input
response for a nominal output voltage trajectory tracking task.
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We set an equilibrium-to-equilibrium transfer from the initial value:

[
i (t1) , v (t1)

]
=
[
vini

R
, vini

]
= [40 mA, 1 V]

to the final equilibrium value:

[
i (t2) , v (t2)

]
=
[
vfin

R
, vfin

]
= [800 mA, 20 V]

Finally, the corresponding average control input signal generated by the
linear feedback controller of the Buck converter varies between the initial and
final values, respectively, uav (t1) = 41.667×10−3 and uav (t2) = 0.83333. The
values for L,C, R and E were chosen to be exactly the same as in the previous
experimental results about regulation.

Figure 4.21 depicts the experimental results which achieve the demanded
rest to rest task.

4.4 The Boost Converter

4.4.1 Generalities about the Average Normalized Model

Consider the Boost dc-to-dc power converter shown in Figure 4.22

i

v

L

E

u

u
RC

Fig. 4.22. The Boost converter.

The average normalized model of this system is given by

ẋ1 = −uavx2 + 1

ẋ2 = uavx1 − 1
Q

x2

with x1 being the normalized inductor current, x2 represents the normalized
output voltage and uav is the control input (switch position function).
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Equilibrium points

The average state equilibrium point is obtained from the preceding model, as-
suming that the control input variable continuously takes values in the inter-
val (0, 1). Parameterizing the equilibrium in terms of the desired equilibrium
output voltage, x2 = Vd > 0, we have:

x1 =
V 2

d

Q
, uav =

1
Vd

Since Q > 0 then x1 > 0 and then we also have:

1 < Vd < ∞

Approximate linearization

The linearization of the average state system around the average equilibrium
point is given by

ẋ1δ = − 1
Vd

x2δ − Vduav,δ

ẋ2δ =
1
Vd

x1δ − 1
Q

x2δ +
V 2

d

Q
uav,δ

where

x1δ = x1 − V 2
d

Q
, x2δ = x2 − Vd, uav,δ = uav − 1

Vd

In matrix form, ẋδ = Axδ + buav,δ, we have,

ẋδ =

⎡⎣ 0 − 1
Vd

1
Vd

− 1
Q

⎤⎦xδ +

⎡⎢⎣−Vd

V 2
d

Q

⎤⎥⎦uav,δ

The linearized system is found controllable,

C =

⎡⎢⎣−Vd −Vd

Q

V 2
d

Q −
(
1 + V 2

d

Q2

)
⎤⎥⎦ , det C = Vd

(
1 + 2

V 2
d

Q2

)

The system is also observable from any of the state variables. Indeed, when
yδ = x2δ, we have,

O =
[

0 1
1

Vd
− 1

Q

]
, detO = − 1

Vd

In a similar form, when yδ = x1δ, we have:

O =
[

1 0
0 − 1

Vd

]
, detO = − 1

Vd
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Input-output model

The average normalized input-output relation depends on the defined system
output. Taking yδ = x2δ as the system output, we obtain the following input-
output model,

ÿδ +
1
Q

ẏδ +
1

V 2
d

yδ = −uav,δ +
V 2

d

Q
u̇av,δ

which clearly says that the system is stable with unstable zero dynamics

−uav,δ +
V 2

d

Q
u̇av,δ = 0, u̇av,δ =

(
Q

V 2
d

)
uav,δ

In other words, the transfer function of the linearized system is given by

yδ(s)
uav,δ(s)

= Gδ(s) =

(
V 2

d

Q

)
s − 1

s2 + 1
Qs + 1

V 2
d

Then, clearly, the incremental average normalized output capacitor voltage
yδ = x2δ is a non-minimum phase output.

Taking the output of the system to be yδ = x1δ, we have, after some
algebraic manipulations:

ÿδ +
1
Q

ẏδ +
1

V 2
d

yδ = −
(

2Vd

Q
uav,δ + Vdu̇av,δ

)
which clearly says that the system is stable with stable zero dynamics

2Vd

Q
uav,δ + Vdu̇av,δ = 0, u̇av,δ = −

(
2
Q

)
uav,δ

The transfer function of the average linearized system is given by,

yδ(s)
uav,δ(s)

= Gδ(s) = −
Vd

(
s + 2

Q

)
s2 + 1

Qs + 1
V 2

d

The output yδ = x1δ is then a minimum phase output.

Flatness

The system, being controllable, is also differentially flat. The flat output is
any variable proportional to the following variable z:

z = [0 1]C−1xδ =
−V 2

d

Q x1δ − Vdx2δ

Vd

(
1 + 2V 2

d

Q2

)
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i.e., we can take as a flat output

Fδ =
V 2

d

Q
x1δ + Vdx2δ = x1x1δ + x2x2δ

i.e., the flat output is the linearized total normalized stored energy 0.5(x2
1+x2

2).
The first order time derivative of Fδ is just

Ḟδ = x1δ − 2Vd

Q
x2δ

and the second order time derivative,

F̈δ =
(

2Vd

Q2
− 1

Vd

)
x2δ − 2

Q
x1δ − Vd

(
1 +

2V 2
d

Q2

)
uav,δ

The differential parametrization of the state and input variables in terms
of the incremental normalized flat output Fδ is given by

x1δ =
1

(1 + 2V 2
d

Q2 )

[
Ḟδ +

(
2
Q

)
Fδ

]

x2δ =
1

Vd

(
1 + 2V 2

d

Q2

) [Fδ −
(

V 2
d

Q

)
Ḟδ

]

uav,δ = − 1

Vd

(
1 + 2V 2

d

Q2

) [F̈δ +
1
Q

Ḟδ +
1

V 2
d

Fδ

]

Thus, under the input coordinate transformation:

uav,δ = − 1

Vd

(
1 + 2V 2

d

Q2

) [vδ +
1
Q

Ḟδ +
1

V 2
d

Fδ

]

the normalized Boost system is seen to be equivalent to the second order pure
integration system:

F̈δ = vδ

The previously given differential parametrization allows one to reconfirm
several of the already established properties of the tangent linearization sys-
tem for the Boost converter.

For instance, letting x1δ = 0, we find the stable zero dynamics

Ḟδ = −
(

2
Q

)
Fδ

For x2δ = 0, we find that the zero dynamics is unstable and given by,

Ḟδ =
(

Q

V 2
d

)
Fδ
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Similarly, letting uav,δ = 0, we find that the free incremental response is
asymptotically stable:

F̈δ +
1
Q

Ḟδ +
1

V 2
d

Fδ = 0

The linearized system eigenvalues are given by the roots of the character-
istic equation:

s2 +
(

1
Q

)
s +

1
V 2

d

= 0

Indeed,

s1,2 = − 1
2Q

±
√

1
4Q2

− 1
V 2

d

The roots are both real and strictly negative as long as

1
Vd

<
1

2Q

otherwise they are still located in the left half of the complex plane, but no
longer real.

4.4.2 Control via State Feedback

Consider the linearized state space model of the average Boost converter
around the state equilibrium point, x1 = V 2

d /Q, x2 = Vd

ẋ1δ = − 1
Vd

x2δ − Vduav,δ

ẋ2δ =
1
Vd

x1δ − 1
Q

x2δ +
V 2

d

Q
uav,δ

The system was found to be controllable, hence stabilizable by means of
linear state feedback to the origin of the incremental state space.

The feedback controller:

uav,δ = −k1x1δ − k2x2δ

yields the average closed loop system in matrix form

ẋδ =

⎡⎣ k1Vd −
(

1
Vd

− k2Vd

)(
1

Vd
− k1

V 2
d

Q

)
−
(

1
Q + k2

V 2
d

Q

)⎤⎦xδ

The characteristic polynomial of the average closed loop system is found to
be,

p(s) = s2 +
(

1
Q

+ k2
V 2

d

Q
+ k1Vd

)
s +

1
V 2

d

− k2 − 2k1
Vd

Q
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By equating the characteristic polynomial to a desired one, given in traditional
form: pd(s) = s2 + 2ζωns + ω2

n, we obtain

k1 =
1

Vd

(
1 − 2V 2

d

Q2

) [− 2
Q

+ 2ζωn +
V 2

d

Q
ω2

n

]

k2 = − 1

Vd

(
1 − 2V 2

d

Q2

) [2Vd

Q

(
− 1

Q
+ 2ζωn

)
+ Vd

(
ω2

n − 1
V 2

d

)]

Simulations

It is desired to control the original nonlinear Boost converter towards the state
equilibrium point

x1 = 3, x2 = Vd = 1.5

The corresponding equilibrium value for the control input is uav = 1
Vd

=
0.6666.

In this instance, we have taken the quality parameter Q = 0.75, and the
linearized feedback controller design parameters as:

ζ = 0.81, ωn = 1.2

Fig. 4.23. Average responses of a linear feedback controlled Boost converter.

Figure 4.23 shows the performance of the average nonlinear Boost circuit
to the action of the linear stabilizing feedback controller.

Figure 4.24 shows the performance of the switched nonlinear Boost circuit
to the action of the linear stabilizing feedback controller implemented through
a Σ − ∆ modulator.



174 4 Approximate Linearization Methods

Fig. 4.24. Responses of a linear feedback controlled Boost converter using a Σ −∆
modulation implementation.

4.4.3 Proportional-Derivative State Feedback Control

Consider the state space model of the average normalized Boost converter
linearized around the state equilibrium point x1 = V 2

d /Q, x2 = Vd

ẋ1δ = − 1
Vd

x2δ − Vduav,δ

ẋ2δ =
1
Vd

x1δ − 1
Q

x2δ +
V 2

d

Q
uav,δ

The corresponding input-output incremental model when the output yδ is
taken to be x1δ is given by,

ÿδ +
1
Q

ẏδ +
1

V 2
d

yδ = −Vd

(
2
Q

uav,δ + u̇av,δ

)
Notice that the following dynamic PD controller stabilizes the incremental

system state to the origin of coordinates,

u̇av,δ +
2
Q

uav,δ = − 1
Vd

[(
1
Q

− 2ζωn

)
ẏδ +

(
1

V 2
d

− ω2
n

)
yδ

]
The closed loop dynamics is readily found to be

ÿδ + 2ζωnẏδ + ω2
nyδ = 0

The dynamic PD controller is transformed into a dynamic state feedback
controller by replacing yδ = x1δ and ẏδ =

(
− 1

Vd
x2δ − Vduav,δ

)
. We obtain
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u̇av,δ = −
(

1
Q

+ 2ζωn

)
uav,δ

− 1
Vd

[(
1

V 2
d

− ω2
n

)
x1δ − 1

Vd

(
1
Q

− 2ζωn

)
x2δ

]
This average linear controller is to be used in the control of the actual switched
nonlinear Boost circuit system. We use the average dynamic feedback con-
troller.

uav = uav + uav,δ

u̇av,δ = −
(

1
Q

+ 2ζωn

)
uav,δ

− 1
Vd

[(
1

V 2
d

− ω2
n

)(
x1 − V 2

d

Q

)
− 1

Vd

(
1
Q

− 2ζωn

)
(x2 − Vd)

]
with uav = 1

Vd
and

u = 0.5(1 + sign(e)),
de

dt
= uav − u

Simulations

It is desired to control the original nonlinear Boost converter towards the state
equilibrium point

x1 = 3, x2 = Vd = 1.5

The corresponding equilibrium value for the control input is uav = 1
Vd

=
0.6666.

In this instance, we have taken the quality parameter Q = 0.75, and the
linearized feedback controller design parameters as:

ζ = 0.81, ωn = 1.5

Figure 4.25 depicts the performance of the dynamic state feedback con-
troller to an initial equilibrium perturbation in the average normalized Boost
converter system.

Figure 4.26 depicts the performance of the switched dynamic state feed-
back controller for a Boost converter system.

The proposed dynamical proportional derivative feedback controller for
the average Boost converter circuit is also capable of achieving the desired
state equilibrium value from zero initial conditions.

The simulations depicting the average controlled responses of the Boost
system, started from zero initial conditions, are shown in Figure 4.27.

Figure 4.28 depicts the performance of the dynamic state feedback con-
troller in the switched normalized Boost converter system starting from zero
initial conditions.
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Fig. 4.25. Performance of average dynamic state feedback controller for a Boost
converter.

Fig. 4.26. Performance of dynamic state feedback controller for a Boost converter
using a Σ − ∆ modulator.

4.4.4 Trajectory Tracking

We now examine the possibilities of relaying on the linearized tangent aver-
age model of the Boost converter to perform trajectory tracking maneuvers
implying excursions of the state trajectory which significantly take the state
away from the equilibrium point.2

2 We clarify that the considered linearized tangent model is computed around a
specific equilibrium point. A second possibility is given by the tangent lineariza-
tion around the given desired state and corresponding input trajectories, yielding
a time-varying linear incremental system model. The treatment of this challeng-
ing case falls somewhat outside the scope of this book. The interested reader is
referred to [72]
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Fig. 4.27. Start-up performance of dynamic state feedback controlled average Boost
converter.

Fig. 4.28. Start-up performance of dynamic state feedback controlled Boost con-
verter.

We propose to use the already studied linear average state feedback con-
troller

uav,δ = −k1x1δ − k2x2δ

with

k1 =
1

Vd

(
1 − 2V 2

d

Q2

) [− 2
Q

+ 2ζωn +
V 2

d

Q
ω2

n

]

k2 = − 1

Vd

(
1 − 2V 2

d

Q2

) [2Vd

Q

(
− 1

Q
+ 2ζωn

)
+ Vd

(
ω2

n − 1
V 2

d

)]
Instead of considering the incremental state variables x1δ, x2δ and the

incremental input variable uav,δ as representing, respectively, a stabilization



178 4 Approximate Linearization Methods

error, and a control input error, we consider them to represent a normalized
trajectory tracking error:

x1δ = x1 − x∗
1(τ), x2δ = x2 − x∗

2(τ), uav,δ = uav − u∗(τ)

The problem reduces then to specify a suitable normalized state trajectory
x∗(τ) and its corresponding nominal control input trajectory u∗(τ) for the
average normalized nonlinear Boost circuit.

ẋ1 = −uavx2 + 1

ẋ2 = uavx1 − x2

Q

The state trajectory planning is most efficiently carried out in terms of
the average total stored energy of the system

F =
1
2
[
x2

1 + x2
2

]
The time derivatives of F , along the system trajectories, are given by

Ḟ = x1 − x2
2

Q

F̈ =
(

1 +
2

Q2
x2

2

)
− uavx2

(
1 +

2
Q

x1

)
From these relations we obtain the following parametrization of the state

variables

x1 = −Q

2
+

√
Q2

4
+ QḞ + 2F

x2 =

√√√√Q

(
−Ḟ − Q

2
+

√
Q2

4
+ QḞ + 2F

)

uav =

(
1 + 2

Q2 x2
2

)
− F̈

x2

(
1 + 2

Qx1

)
Thus, if a trajectory is prescribed for the average total stored energy which

corresponds to a transfer between initial and final normalized state equilibria,
then the state trajectories and the nominal input trajectories are completely
determined. These trajectories would be useful in the specification of the pro-
posed full state feedback trajectory tracking controller.

Suppose we want to transfer the system from the initial equilibrium point
x1(τ1) = V 2

d1
Q , x2(τ1) = Vd1 towards the final equilibrium x1(τ2) = V 2

d2
Q ,

x2(τ2) = Vd2 during an interval of time [τ1, τ2]. The corresponding average
total stored energy values are given by
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F (τ1) =
1
2

[
V 4

d1

Q2
+ V 2

d1

]
, F (τ2) =

1
2

[
V 4

d2

Q2
+ V 2

d2

]
One proceeds to prescribe a nominal normalized average trajectory F ∗(τ)

for the average total stored energy F using a smooth interpolating polynomial
function on the time interval [τ1, τ2]. Once F ∗(τ) is prescribed, the nominal
average control input and the nominal state trajectories are easily computed.

x∗
1(τ) = −Q

2
+

√
Q2

4
+ QḞ ∗(τ) + 2F ∗(τ)

x∗
2(τ) =

√√√√Q

(
−Ḟ ∗(τ) − Q

2
+

√
Q2

4
+ QḞ ∗(τ) + 2F ∗(τ)

)

u∗
av(τ) =

1 + 2
Q2 [x∗

2(τ)]2 − F̈ ∗(τ)

x∗
2(τ)

[
1 + 2

Qx∗
1(τ)

]
It is desired to transfer the normalized state equilibrium point from the

initial value x1 = 3, x2 = Vd1 = 1.5 towards the final desired value x1 = 5.333,
x2 = Vd2 = 2.0 in 10 normalized units of time. The state feedback controller
previously designed for stabilization is seen to also accomplish the desired
equilibrium-to-equilibrium transfer as the following figure depicts.

Fig. 4.29. Equilibrium to equilibrium transfer using a linear state feedback con-
troller.

The total stored energy was planned to undergo a rest to rest transfer from
the initial value of 5.625 towards the final value of 16.222 in 10 normalized
time units. We used an interpolation polynomial of the form:
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F ∗(τ) = F (τ1) + [F (τ2) − F (τ1)] ϕ(τ, τ1, τ2)

with

ϕ(τ, τ1, τ2) =
(

τ − τ1

τ2 − τ1

)5
[
r1 − r2

(
τ − τ1

τ2 − τ1

)
+ · · · − r6

(
τ − τ1

τ2 − τ1

)5
]

r1 = 252, r2 = 1050, r3 = 1800

r4 = 1575, r5 = 700, r6 = 126

Fig. 4.30. Average rest-to-rest trajectory tracking for the Boost converter.

Figure 4.30 shows the normalized average state and control input tra-
jectories of the nonlinear Boost circuit computed on the basis of an off-line
planned total average stored energy reference trajectory F ∗(τ). Such a trajec-
tory is computed in correspondence with the transfer from an initial average
equilibrium output voltage towards a final desired average equilibrium output
voltage.

Note that the response of the output variable x∗
2(τ) exhibits the typical

non-minimum phase behavior.

Simulations

Figure 4.31 depicts the response of the nonlinear normalized switched Boost
converter circuit to the control action of a full state incremental feedback
controller computed on the basis of the linearized tangent average system
complemented with the nominal control input.
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Fig. 4.31. Trajectory tracking performance of Boost converter to a linear state
feedback controller.

4.4.5 Fliess’ Generalized Canonical Form

Consider the linearized normalized average Boost converter system:

ẋ1δ = − 1
Vd

x2δ − Vduav,δ

ẋ2δ =
1
Vd

x1δ − 1
Q

x2δ +
V 2

d

Q
uav,δ

yδ = x1δ

The input dependent state coordinate transformation

z1δ = x1δ, z2δ = − 1
Vd

x2δ − Vduav,δ

x1δ = z1δ, x2δ = −Vdz2δ − V 2
d uav,δ

leads to the generalized observability canonical form, given by

ż1δ = z2δ

ż2δ = − 1
V 2

d

z1δ − 1
Q

z2δ − Vd

Q
uav,δ − Vdu̇av,δ

Letting yδ = z1δ, the incremental input-output model for the average normal-
ized Boost system is readily obtained as

ÿδ +
1
Q

ẏδ +
1

V 2
d

yδ = −Vd

Q
uav,δ − Vdu̇av,δ (4.20)

Zero dynamics and average dynamic feedback controller design by stable
zero cancellation follows readily from this model.
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4.4.6 State Feedback Control via Observer Design

Consider the tangent linearization of the average normalized Boost converter
system around an average normalized equilibrium point,

ẋ1δ = − 1
Vd

x2δ − Vduav,δ

ẋ2δ =
1
Vd

x1δ − 1
Q

x2δ +
V 2

d

Q
uav,δ

where

x1δ = x1 − V 2
d

Q
, x2δ = x2 − Vd, uav,δ = uav − 1

Vd

Considering yδ = x2δ, as a system output, a reduced order observer for
x1δ is readily obtained as,

˙̂x1δ = − 1
Vd

yδ − Vduav,δ + λ(x1δ − x̂1δ)

with

x1δ = Vd

[
ẏδ +

1
Q

yδ − V 2
d

Q
uav,δ

]
Define ζ = x̂1δ − λVdyδ. We have the following stable dynamics for ζ:

ζ̇ = −λζ −
(

1
Vd

− λVd

Q
+ λ2Vd

)
yδ −

(
Vd +

λV 3
d

Q

)
uav,δ

and the estimate of the average normalized incremental inductor current x1δ

is given by
x̂1δ = ζ + λVdyδ

Simulations

Figure 4.32 shows the response of the normalized Boost converter to the full
state linear feedback controller synthesized with the help of a reduced order
observer estimating the incremental inductor current.

The initial condition of the observer dynamics was, on purpose, chosen
to be different from zero to obtain an initial average normalized incremental
inductor current which was also different from zero.
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Fig. 4.32. Average responses of Boost converter to linear state controller achieved
via a reduced order observer.

4.4.7 GPI Controller Design

We consider the linearized model of the Boost converter around a desired
average equilibrium point given, as already stated, by

x1 =
V 2

d

Q
, x2 = Vd, uav =

1
Vd

ẋ1δ = − 1
Vd

x2δ − Vduav,δ

ẋ2δ =
1
Vd

x1δ − 1
Q

x2δ +
V 2

d

Q
uav,δ

y2δ = x2δ

A structural estimate of the unmeasured incremental average inductor
current x1δ is simply given by

x̂1δ = −
∫ τ

t0

[
1
Vd

yδ(σ) + Vduav,δ(σ)
]

dσ

The structural estimate of x1δ differs from its actual average value in a
constant quantity

x1δ = x̂1δ + x1δ(τ0) = x̂1δ + x10δ

The incremental controller uav,δ = −k1x1δ − k2x2δ is now replaced by the
controller based on the structural estimate plus some output error integral
compensation term.
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uav,δ = −k1x̂1δ − k2yδ − k3ρδ

ρ̇δ = yδ

We use, however, in the forthcoming analysis, the relation: x̂1δ = x1δ − x10δ.
The closed loop system is hence given by

ẋ1δ = Vdk1x1δ +
(

k2Vd − 1
Vd

)
yδ + k3Vdρδ − Vdk1x10δ

ẏδ =
(

1
Vd

− k1
V 2

d

Q

)
x1δ −

(
1
Q

+ k2
V 2

d

Q

)
yδ − V 2

d

Q
k3ρδ + k1

V 2
d

Q
x10δ

ρ̇δ = yδ

Clearly, the equilibrium point of the closed loop linear system is given by

yδ = 0, x1δ = 0, ρδ =
k1

k3
x10δ

The closed loop system is of the form ẋδ = Axδ +vδ, with vδ = constant. The
eigenvalues of the A matrix are obtained from the relation:

det

⎡⎢⎢⎣
s − Vdk1 −

(
k2Vd − 1

Vd

)
−k3Vd

−
(

1
Vd

− k1
V 2

d

Q

)
s +

(
1
Q + k2

V 2
d

Q

)
k3

V 2
d

Q

0 −1 s

⎤⎥⎥⎦ = 0

The characteristic polynomial is then given by

p(s) = s3 −
(

Vdk1 − V 2
d

Q
k2 − 1

Q

)
s2 −

(
2
Vd

Q
k1 + k2 − V 2

d

Q
k3 − 1

V 2
d

)
s − k3

Equating the coefficients of the closed loop characteristic polynomial to those
of a desired characteristic polynomial pd(s) of the form:

pd(s) = s3 + (2ζωn + p)s2 + (2ζωnp + ω2
n)s + ω2

np

we obtain the following system of linear equations for the k gains⎡⎢⎣ −Vd
V 2

d

Q 0

−2Vd

Q −1 V 2
d

Q

0 0 −1

⎤⎥⎦
⎡⎣k1

k2

k3

⎤⎦ =

⎡⎣ − 1
Q + 2ζωn + p

− 1
V 2

d
+ 2ζωnp + ω2

n

ω2
np

⎤⎦
i.e.,

⎡⎣k1

k2

k3

⎤⎦ =

⎡⎢⎢⎢⎣
−Q2 1/Q+2ζωn+p

Vd(Q2+2V 2
d )

− VdQ
− 1

V 2
d

+2ζωnp+ω2
n

Q2+2V 2
d

− V 3
d ω2

np

Q2+2V 2
d

2Q 1/Q+2ζωn+p
Q2+2V 2

d
− Q2

− 1
V 2

d

+2ζωnp+ω2
n

Q2+2V 2
d

− V 2
d Qω2

np

Q2+2V 2
d−ω2

np

⎤⎥⎥⎥⎦
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The proposed GPI controller is rewritten as a classical output feedback com-
pensator given by:

uav,δ(s) = −
⎡⎣k2s −

(
1

Vd
k1 − k3

)
s − Vdk1

⎤⎦ yδ(s)

4.4.8 Passivity Based Control

The normalized average linearized Boost converter system is written in the
“energy revealing” form: ẋδ = J xδ + Rxδ + buav,δ. Indeed

ẋδ =
[

0 − 1
Vd

1
Vd

0

]
xδ +

[
0 0
0 − 1

Q

]
xδ +

[
−Vd
V 2

d

Q

]
uav,δ

Using the procedure developed in the previous passivity based controller de-
sign example, we obtain the following damped copy of the desired system
behavior (we choose RI > 0),

ẋ∗
δ =

[
0 − 1

Vd
1

Vd
0

]
x∗

δ +

[
0 0
0 − 1

Q

]
x∗

δ +

[RI 0
0 0

]
(xδ − x∗

δ) +

[
−Vd

V 2
d

Q

]
uav,δ

The tracking error eδ = xδ − x∗
δ evolves according to

ėδ =
[

0 − 1
Vd

1
Vd

0

]
eδ −

[RI 0
0 1

Q

]
eδ

The stability of the error dynamics is assessed by the evolution of the Lya-
punov function candidate V (eδ) = 0.5(e2

1δ + e2
2δ). We obtain, along the tra-

jectories of the incremental average tracking error variable e(t)

V̇ (eδ) = −RIe
2
1δ −

1
Q

e2
2δ ≤ −2

[
min

{
R,

1
Q

}]
V (eδ)

The incremental tracking error exponentially converges to zero.
The passivity based dynamic average incremental feedback controller is

then given by:

uav,δ = − 1
Vd

[
ẋ∗

1δ(τ) +
1
Vd

ζδ −RI(x1δ − x∗
1δ(τ))

]
ζ̇δ = − 1

Q
ζδ +

1
Vd

x∗
1δ(τ) +

V 2
d

Q
uav,δ
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Simulations

We set as our desired average trajectory for the incremental variable x∗
1δ(τ)

the value of zero. This means that we are interested in using the controller
for stabilization purposes.

We have set the controller design parameter RI to be 1. The desired av-
erage output voltage Vd = 1.6 and Q = 0.75.

The average control input is then prescribed to be

uav = uav + uav,δ

with uav,δ as given by the passivity based average controller. Note that for
initial conditions which imply a large value of the incremental average control
input value, uav,δ, actual average control input saturations are possible (i.e.,
uav /∈ [0, 1]).

Figure 4.33 depicts the response of the average Boost converter model to
the incremental passivity based average feedback controller. Controller satu-
ration is dully accounted for.

Fig. 4.33. Average responses of Boost converter to the linear passivity based con-
troller.

Figure 4.34 depicts the response of the switched Boost converter model
to the incremental passivity based average feedback controller implemented
through a Σ − ∆ modulator. Controller saturation is clearly exhibited in
the switched controller behavior from the start-up operation from zero initial
conditions. Nevertheless, the feedback option manages to stabilize the system
around the desired equilibrium.
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Fig. 4.34. Responses of switched Boost converter to the linearization based passivity
based controller.

4.4.9 The Hamiltonian Systems Viewpoint

Take as an average energy function of the linearized system the quantity

H(xδ) =
1
2
[
x2

1δ + x2
2δ

]
The passive output is clearly

yδ = −Vdx1δ +
V 2

d

Q
x2δ

Note that the dissipation matching condition is satisfied. For this, write it in
the form:

R + γbbT =

⎡⎣ γV 2
d −γ

V 3
d

Q

−γ
V 3

d

Q

(
1
Q + γ

V 4
d

Q2

)⎤⎦ > 0

A linear stabilizing controller is then given by

uav,δ = −γyδ = γVdx1δ − γ
V 2

d

Q
x2δ

Simulation

We set γ = 0.25 and as a desired average normalized equilibrium point to be,
x2 = Vd = 1.2 and x1 = V 2

d /Q = 1.92 with Q = 0.75.
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Fig. 4.35. Average responses of the Boost converter to linear static passivity based
controller.

Figure 4.35 depicts the average controlled response of the nonlinear Boost
converter to the proposed incremental passivity based output feedback control.

Figure 4.36 depicts the switched controlled response of the nonlinear Boost
converter to the proposed incremental passivity based output feedback control
implemented through a Σ − ∆ modulator.

Fig. 4.36. Responses of the switched Boost converter to linear static passivity based
controller.
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4.5 The Buck-Boost Converter

4.5.1 Generalities about the Model

Consider the Buck-Boost dc-to-dc power converter, shown in Figure 4.37.

L

u

E

u

v RC

i

Fig. 4.37. The Buck-Boost converter.

The normalized average model of this system is given by

ẋ1 = uavx2 + (1 − uav)

ẋ2 = −uavx1 − 1
Q

x2

where x1 is the normalized average inductor current, x2 is normalized average
output voltage and uav is the average control input.

The average state equilibrium point is obtained from the preceding model,
assuming that the average control input variable is constant. Parameterizing
the equilibrium in terms of the desired equilibrium output voltage, x2 = Vd <
0, we have:

x1 = − (1 − Vd)Vd

Q
, uav =

1
1 − Vd

Since Q > 0 and Vd < 0, then x1 > 0 and then since uav ∈ (0, 1), we also
have:

0 > Vd > −∞

Approximate linearization

The tangent linearization of the average normalize Buck-Boost system model,
around the average equilibrium point is given by

ẋ1δ =
1

1 − Vd
x2δ − (1 − Vd)uav,δ

ẋ2δ = − 1
1 − Vd

x1δ − 1
Q

x2δ +
(

(1 − Vd)Vd

Q

)
uav,δ

where
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x1δ = x1 +
(1 − Vd)Vd

Q
, x2δ = x2 − Vd, uav,δ = uav − 1

1 − Vd

In matrix form: ẋδ = Axδ + buav,δ we have,

ẋδ =

⎡⎣ 0 1
1−Vd

− 1
1−Vd

− 1
Q

⎤⎦xδ +

⎡⎣−(1 − Vd)

(1−Vd)Vd

Q

⎤⎦uav,δ

We summarize the fundamental properties of the average normalized lin-
earized system:

The system is controllable

C =

⎡⎢⎣−(1 − Vd) Vd

Q

(1−Vd)Vd

Q 1 − (1−Vd)Vd

Q2

⎤⎥⎦ , det C = −(1 − Vd)
[
1 − (1 − 2Vd)Vd

Q2

]

The system is observable from any state variable. Indeed, when the output
of the system is set to be: yδ = x2δ, we have,

O =
[

0 1
1

1−Vd
− 1

Q

]
, detO =

1
1 − Vd

In a similar form, when the output is regarded to be, yδ = x1δ, we have:

O =
[

1 0
0 1

1−Vd

]
, detO =

1
1 − Vd

Input-output models

Consider the linearized output, yδ = x2δ,

ÿδ +
1
Q

ẏδ +
1

(1 − Vd)2
yδ = uav,δ +

(1 − Vd)Vd

Q
u̇av,δ

which clearly says that the linearized system is stable with unstable zero
dynamics

uav,δ +
(1 − Vd)Vd

Q
u̇av,δ = 0, u̇av,δ = −

(
Q

(1 − Vd)Vd

)
uav,δ

In other words, the transfer function of the linearized system is given by:

yδ(s)
uav,δ(s)

= Gδ(s) = −
(

(1−Vd)Vd

Q

)
s + 1

s2 + 1
Qs + 1

(1−Vd)2

Then yδ = x2δ is a non-minimum phase output.
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Consider now the output, yδ = x1δ. We have, after some algebraic manip-
ulations:

ÿδ +
1
Q

ẏδ +
1

(1 − Vd)2
yδ = −

(
1 − 2Vd

Q

)
uav,δ − (1 − Vd)u̇av,δ

which clearly says that the linearized system is stable with stable zero dynam-
ics

1 − 2Vd

Q
uav,δ + (1 − Vd)u̇av,δ = 0, u̇av,δ = −

(
1 − 2Vd

Q(1 − Vd)

)
uav,δ

The transfer function of the linearized system is then given by

yδ(s)
uav,δ(s)

= Gδ(s) = −
(1 − Vd)s + 1−2Vd

Q

s2 + 1
Qs + 1

(1−Vd)2

The output yδ = x1δ is then a minimum phase output.

Flatness

The average normalized system, being controllable, is also differentially flat.
The flat output may be chosen to be

Fδ = −
[
(1 − Vd)Vd

Q

]
x1δ − (1 − Vd)x2δ

i.e., the flat output is the linearization of the following quantity: 0.5[x2
1 +(1−

x2)2], which is related to the normalized total stored energy.
The first order time derivative of Fδ is just

Ḟδ = x1δ +
(

1 − 2Vd

Q

)
x2δ

and the second order time derivative,

F̈δ = − 1 − 2Vd

Q(1 − Vd)
x1δ +

[
1

1 − Vd
+

1 − 2Vd

Q2

]
x2δ − (1 − Vd)

[
1 − Vd

Q

]
uav,δ

The differential parametrization of the average incremental state and input
variables in terms of the incremental normalized flat output Fδ is given by,

x1δ =
1

(1 − Vd)
[
1 − Vd(1−2Vd)

Q2

] [1 − 2Vd

Q
Fδ + (1 − Vd)Ḟδ

]

x2δ = − 1

(1 − Vd)
[
1 − Vd(1−2Vd)

Q2

] [Fδ +
(

(1 − Vd)Vd

Q

)
Ḟδ

]

uav,δ = − 1

Vd

(
1 + 2V 2

d

Q2

) [F̈δ +
1
Q

Ḟδ +
1

V 2
d

Fδ

]
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Thus, under the input coordinate transformation:

uav,δ = − 1

Vd

(
1 + 2V 2

d

Q2

) [vδ +
1
Q

Ḟδ +
1

V 2
d

Fδ

]

the normalized average model of the linearized Buck-Boost converter system
is seen to be equivalent to the second order pure integration system:

F̈δ = vδ

The previously given differential parametrization allows one to reconfirm
several of the already established properties of the tangent linearization sys-
tem for the Buck-Boost converter. For instance, letting x1δ = 0, we find the
corresponding stable zero dynamics

Ḟδ = −
[

1 − 2Vd

Q(1 − Vd)

]
Fδ

For x2δ = 0, we find that the zero dynamics is unstable

Ḟδ = −
[

Q

(1 − Vd)Vd

]
Fδ, (Vd < 0)

Similarly, letting uav,δ = 0, we find that the free incremental response is
asymptotically stable:

F̈δ +
1
Q

Ḟδ +
1

V 2
d

Fδ = 0

The average linearized system eigenvalues are given by the two solutions
of the characteristic equation:

s2 +
(

1
Q

)
s +

1
(1 − Vd)2

= 0

Indeed,

s1,2 = − 1
2Q

±
√

1
4Q2

− 1
(1 − Vd)2

The roots of the characteristic polynomial are both real and strictly neg-
ative as long as

1
1 − Vd

<
1

2Q

otherwise, they are still located in the left half of the complex plane but no
longer real.
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4.5.2 State Feedback Controller Design

We consider now the tangent linearization model of the average normalized
Buck-Boost converter system:

ẋ1 = uavx2 + (1 − uav)

ẋ2 = −uavx1 − x2

Q

around the equilibrium point:

x1 = − (1 − Vd)Vd

Q
, x2 = Vd < 0, uav =

1
1 − Vd

The linearization of the average model is given by,

ẋ1δ =
1

1 − Vd
x2δ − (1 − Vd)uav,δ

ẋ2δ = − 1
1 − Vd

x1δ − 1
Q

x2δ +
(

(1 − Vd)Vd

Q

)
uav,δ

where,

x1δ = x1 +
(1 − Vd)Vd

Q
, x2δ = x2 − Vd, uav,δ = uav − 1

1 − Vd
.

We seek an average linear state feedback controller of the form:

uav,δ = −k1x1δ − k2x2δ

which drives the average stabilization error state xδ to zero in an exponentially
stable fashion. We design such a controller with the help of the average tangent
linearization system and will use, for the average nonlinear system, the control
input

uav =
1

1 − Vd
− k1

(
x1 +

(1 − Vd)Vd

Q

)
− k2(x2 − Vd)

The closed loop tangent system is given by

ẋδ =

[
k1(1 − Vd) 1

1−Vd
+ k2(1 − Vd)

−
(

1
1−Vd

+ k1
Vd(1−Vd)

Q

)
−
(

1
Q

+ k2
Vd(1−Vd)

Q

) ] xδ

whose characteristic polynomial is given by

p(s) = s2 +
[

1
Q

− k1(1 − Vd) + k2

(
Vd(1 − Vd)

Q

)]
s

+
[

1
(1 − Vd)2

+ k2 − k1

(
1 − 2Vd

Q

)]
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Equating this polynomial to a desired closed loop polynomial of the form:
pd(s) = s2 +2ζωns+ω2

n, we obtain the feedback gains for the linear controller

k1 = r

[
− 1

Q
+ 2ζωn − Vd(1 − Vd)

Q

(
ω2

n − 1

(1 − Vd)2

)]
k2 = r

[
1 − 2Vd

Q

(
− 1

Q
+ 2ζωn

)
− (1 − Vd)

(
ω2

n − 1

(1 − Vd)2

)]
where

r = − 1

(1 − Vd)(1 − Vd(1−2Vd)
Q )

Simulations

We performed simulations to assess the effectiveness of the proposed full state
feedback controller, computed on the basis of the tangent linearized system,
to accomplish a stabilization around a normalized equilibrium value for initial
conditions set at the origin of coordinates.

We used the following parameters and design values

Q = 0.75, Vd = −1.5, ζ = 0.81, ωn = 0.65

It turns out that for linearized closed loop natural frequencies, ωn, which
demand faster responses the average control input initially takes negative
values. This would cause a temporary saturation to zero of the corresponding
switched controller. For this reason a slower response is proposed.

Fig. 4.38. Response of average Buck-Boost converter to linear state feedback con-
troller.
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Figure 4.38 depicts the response of the nonlinear average Buck-Boost con-
verter circuit to the control action of a full state incremental feedback con-
troller computed on the basis of the linearized tangent average system com-
plemented with the nominal equilibrium control input.

Fig. 4.39. Response of switched Buck-Boost converter to linear state feedback
controller.

Figure 4.39 depicts the response of the nonlinear switched Buck-Boost
converter circuit to the control action of a full state incremental feedback
controller computed on the basis of the linearized tangent average system
complemented with the nominal equilibrium control input. The switched con-
trol is implemented with the help of a Σ − ∆ modulator.

A faster demanded response for the linearized dynamics is obtained with
a higher value of ωn. We let this design parameter be ωn = 0.85. Figure
4.40 depicts the saturation of the switched delta modulation controller which
temporarily looses the sliding mode behavior of the Σ − ∆ modulator. Nev-
ertheless, after the sliding mode is recovered in the Σ − ∆ modulator, the
system converges towards the specified equilibrium state.

4.5.3 Dynamic Proportional-Derivative State Feedback Control

Recall the input-output average linearized model of the normalized Buck-
Boost converter when the output yδ is taken to be x1δ:

ÿδ +
1
Q

ẏδ +
1

(1 − Vd)2
yδ = −

(
1 − 2Vd

Q

)
uav,δ − (1 − Vd)u̇av,δ

Clearly, a dynamic proportional derivative feedback controller of the form,
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Fig. 4.40. Response of switched Buck-Boost converter to linear state feedback
controller with input saturation.

u̇av,δ = −
(

1 − 2Vd

Q(1 − Vd)

)
uav,δ

− 1
1 − Vd

[(
1
Q

− 2ζωn

)
ẏδ +

(
1

(1 − Vd)2
− ω2

n

)
yδ

]
yields a closed loop system of the desired classical form,

ÿδ + 2ζωnẏδ + ω2
nyδ = 0

In terms of the incremental state variables, the average dynamical PD
controller is rewritten as:

u̇av,δ = −
(

1 − 2Vd

Q(1 − Vd)
+ 2ζωn − 1

Q

)
uav,δ

− 1
1 − Vd

[
1

1 − Vd

(
1
Q

− 2ζωn

)
x2δ +

(
1

(1 − Vd)2
− ω2

n

)
x1δ

]
The control to be applied to the average nonlinear Buck-Boost circuit is

of the form:
uav =

1
1 − Vd

+ uav,δ

while the actual switched control is synthesized with the help of a Σ − ∆
modulator.
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Simulations

We set the normalized value Vd = −1.5 as a desired capacitor voltage value.
The controller gains were set to be, as usual

ζ = 0.81, ωn = 0.9, Q = 0.75

For the controller design we used the tangent linearized model about the
equilibrium point

x2 = Vd = −1.5, x1 = −Vd(1 − Vd)
Q

= 5

Fig. 4.41. Average responses of Buck-Boost converter to dynamic PD control.

Figure 4.41 depicts the response of the nonlinear average normalized Buck-
Boost converter circuit to the proposed dynamical PD control action. The
controller is synthesized as a full state incremental feedback controller on the
basis of the linearized tangent input output model of the average system,
complemented with the nominal control input.

Figure 4.42 depicts the response of the nonlinear switched Buck-Boost
converter circuit to the control action of a full state incremental feedback
controller of the PD type computed on the basis of the linearized tangent
input output model of the average system complemented with the nominal
control input.
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Fig. 4.42. Responses of switched Buck-Boost converter to dynamic PD control.

4.5.4 Trajectory Tracking

As it was done in the Boost converter, we now examine the possibilities of re-
laying on the linearized tangent average model to perform trajectory tracking
maneuvers which imply excursions of the state trajectory which significantly
take the state away from the equilibrium point.

We propose to use the already considered state feedback controller

uav,δ = −k1x1δ − k2x2δ

with

k1 = r

[
− 1

Q
+ 2ζωn − Vd(1 − Vd)

Q

(
ω2

n − 1

(1 − Vd)2

)]
k2 = r

[
1 − 2Vd

Q

(
− 1

Q
+ 2ζωn

)
− (1 − Vd)

(
ω2

n − 1

(1 − Vd)2

)]
where

r = − 1

(1 − Vd)
(
1 − Vd(1−2Vd)

Q

)
The incremental normalized state variables x1δ, x2δ and the incremental

input variable uav,δ are now regarded as state and control input trajectory
tracking errors:

x1δ = x1 − x∗
1(τ), x2δ = x2 − x∗

2(τ), uav,δ = uav − u∗(τ)

The problem reduces then to specify a suitable state trajectory x∗(τ) and
its corresponding nominal control input trajectory u∗(t) for the nonlinear
normalized average Buck-Boost circuit model.



4.5 The Buck-Boost Converter 199

ẋ1 = uavx2 + (1 − uav)

ẋ2 = −uavx1 − x2

Q

The state trajectory planning may be carried out in terms of the following
quantity, related to the average total stored energy of the system

F =
1
2
[
x2

1 + (x2 − 1)2
]

The time derivatives of F , along the system trajectories, are given by

Ḟ = x1 +
x2(1 − x2)

Q

F̈ = −uav

[
1 +

1
Q

(1 − 2x2)x1 − x2

]
− (1 − 2x2)x2

Q2

From the previous expressions, we should be able to obtain a parametrization
of the state and input variables

x1 = ϕ1(F, Ḟ ), x2 = ϕ2(F, Ḟ ), uav = ϑ(F, Ḟ , F̈ ) (4.21)

However, these functions are not easy to find, as a full fourth degree algebraic
equation must be solved. This prompts the concept of implicit differential
parameterizations, a topic beyond the scope of this book.

4.5.5 Fliess’ Generalized Canonical Forms

The normalized average linearized model of the Buck-Boost converter with
output function yδ = x1δ is given by:

ẋ1δ =
1

1 − Vd
x2δ − (1 − Vd)uav,δ

ẋ2δ = − 1
1 − Vd

x1δ − 1
Q

x2δ +
(

(1 − Vd)Vd

Q

)
uav,δ

yδ = x1δ

The, invertible, input dependent state coordinate transformation[
z1δ

z2δ

]
=
[

1 0
0 1

1−Vd

] [
x1δ

x2δ

]
+
[

0
−(1 − Vd)

]
uav,δ[

x1δ

x2δ

]
=
[

1 0
0 (1 − Vd)

] [
z1δ

z2δ

]
+
[

0
(1 − Vd)2

]
uav,δ

Leads to the Fliess’ generalized observability canonical form for the average
linearized Buck-Boost converter
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ż1δ = z2δ

ż2δ = − 1

(1 − Vd)2
z1δ − 1

Q
z2δ − (1 − Vd)2

Q
uav,δ − (1 − Vd)u̇av,δ

yδ = z1δ

In a similar fashion, for the average output yδ = x2δ, we obtain,

ż1δ = z2δ

ż2δ = − 1

(1 − Vd)2
z1δ − 1

Q
z2δ − uav,δ − Vd(1 − Vd)

Q
u̇av,δ

yδ = z2δ

by using the following invertible, input dependent, state coordinate transfor-
mation [

z1δ

z2δ

]
=
[

0 1
− 1

1−Vd
− 1

Q

] [
x1δ

x2δ

]
+

[
0

Vd(1−Vd)
Q

]
uav,δ

The properties of the linearized system zero dynamics and the task of
designing dynamic linear feedback controllers follows quite directly from this
type of average normalized model.

4.5.6 Control via Observer Design

Consider the tangent linearization model of the average normalized Buck-
Boost converter dynamics around an equilibrium point given by:

x1 = − (1 − Vd)Vd

Q
, uav =

1
1 − Vd

This linearized average model is given by,

ẋ1δ =
1

1 − Vd
x2δ − (1 − Vd)uav,δ

ẋ2δ = − 1
1 − Vd

x1δ − 1
Q

x2δ +
(

(1 − Vd)Vd

Q

)
uav,δ

where

x1δ = x1 +
(1 − Vd)Vd

Q
, x2δ = x2 − Vd, uav,δ = uav − 1

1 − Vd

Recall that the system was found to be observable from the (non-minimum
phase) output, yδ = x2 − Vd.

Consider then a Luenberger reduced order observer for the unmeasured
incremental average normalized inductor current:

˙̂x1δ =
1

1 − Vd
yδ − (1 − Vd)uav,δ + λ(x1δ − x̂1δ)



4.5 The Buck-Boost Converter 201

with x1δ obtained from the second equation of the linearized average converter
model,

x1δ = (1 − Vd)
[
−ẏδ − 1

Q
yδ +

(1 − Vd)Vd

Q
uav,δ

]
Define: ζ = x1δ + λ(1 − Vd)yδ, and obtain the estimate of the incremental
inductor current, x1δ, as

x1δ = ζ − λ(1 − Vd)yδ

with ζ being the solution of the stable system:

ζ̇ = −λζ +

[
1

1 − Vd
− λ

1 − Vd

Q
+ λ2(1 − Vd)

]
yδ −

[
(1 − Vd) − λ

(1 − Vd)2Vd

Q

]
uav,δ

Simulations

Fig. 4.43. Response of the switched Buck-Boost converter to a linear feedback
controlled using a reduced order observer.

Figure 4.43 depicts the response of the nonlinear switched Buck-Boost
converter circuit to the control action of a full state incremental feedback
controller synthesized on the basis of a reduced order observer for the average
inductor current of the linearized tangent system model. The switched input
is obtained from a Σ − ∆ modulator.
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4.5.7 GPI Controller Design

Consider the linearized model of the average normalized Buck-Boost con-
verter, around a desired average equilibrium point given by,

x1 = − (1 − Vd)Vd

Q
, x2 = Vd, uav =

1
1 − Vd

ẋ1δ =
1

1 − Vd
x2δ − (1 − Vd)uav,δ

ẋ2δ = − 1
1 − Vd

x1δ − 1
Q

x2δ +
(1 − Vd)Vd

Q
uav,δ

y2δ = x2δ

A structural estimate of the unmeasured incremental average inductor
current x1δ is simply given by

x̂1δ =
∫ τ

τ0

[
1

1 − Vd
yδ(σ) − (1 − Vd)uav,δ(σ)

]
dσ

The structural estimate of x1δ differs from its actual average value in a
constant quantity

x1δ = x̂1δ + x1δ(τ0) = x̂1δ + x10δ

The incremental state feedback controller uav,δ = −k1x1δ − k2x2δ is now
replaced by the controller based on the structural estimate plus some output
error integral compensation term.

uav,δ = −k1x̂1δ − k2yδ − k3ρδ

ρ̇δ = yδ

We use, however, in the forthcoming analysis, the relation: x̂1δ = x1δ−x10δ.
The closed loop system is hence given by

ẋ1δ = k1(1 − Vd)x1δ +

(
k2(1 − Vd) +

1

1 − Vd

)
yδ + k3(1 − Vd)ρδ − k1(1 − Vd)x10δ

ẏδ = −
(

1

1 − Vd
+ k1

(1 − Vd) Vd

Q

)
x1δ −

(
1

Q
+ k2

(1 − Vd) Vd

Q

)
yδ

−k3
(1 − Vd) Vd

Q
ρδ + k1

(1 − Vd) Vd

Q
x10δ

ρ̇δ = yδ

Clearly, the equilibrium point of the closed loop linear system is given by:

yδ = 0, x1δ = 0, ρδ =
k1

k3
x10δ
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The closed loop system is of the form ẋδ = Axδ +vδ, with vδ = constant. The
eigenvalues of the A matrix are obtained from the relation:

det

⎡⎢⎢⎣
s − k1 (1 − Vd) −

(
k2 (1 − Vd) + 1

1−Vd

)
−k3 (1 − Vd)(

1
1−Vd

+ k1
(1−Vd)Vd

Q

)
s +

(
1
Q + k2

(1−Vd)Vd

Q

)
k3

(1−Vd)Vd

Q

0 −1 s

⎤⎥⎥⎦ = 0

The characteristic polynomial is then given by

p (s) = s3 +
(

1
Q

− k1 (1 − Vd) + k2
(1 − Vd) Vd

Q

)
s2

+

(
1

(1 − Vd)
2 − k1

(1 − 2Vd)
Q

+ k2 + k3
(1 − Vd)Vd

Q

)
s + k3

Equating the coefficients of the closed loop characteristic polynomial to those
of a desired characteristic polynomial pd(s) of the form:

pd(s) = s3 + (2ζωn + p)s2 + (2ζωnp + ω2
n)s + ω2

np

we obtain the following system of linear equations for the k gains,⎡⎢⎣− (1 − Vd)
(1−Vd)Vd

Q 0
− (1−2Vd)

Q 1 (1−Vd)Vd

Q

0 0 1

⎤⎥⎦
⎡⎣k1

k2

k3

⎤⎦ =

⎡⎣a
b
c

⎤⎦
i.e.⎡⎣k1

k2

k3

⎤⎦ =

⎡⎢⎢⎣
−Q2 a

(Q2−Vd+2V 2
d )(1−Vd)

+ VdQ
b

(Q2−Vd+2V 2
d ) − (1−Vd)V 2

d c

(Q2−Vd+2V 2
d )

Q2 b

(Q2−Vd+2V 2
d ) − Q (1−2Vd)a

(Q2−Vd+2V 2
d )(1−Vd)

− Q (1−Vd)Vdc

(Q2−Vd+2V 2
d )

c

⎤⎥⎥⎦
where

a = − 1
Q

+ 2ζωn + p, b = − 1
(1 − Vd)

2 + 2ζωnp + ω2
n, c = ω2

np

The proposed GPI controller is rewritten as a classical output feedback com-
pensator given by:

uav,δ(s) = −
⎡⎣k2s +

(
1

1−Vd
k1 + k3

)
s − k1 (1 − Vd)

⎤⎦ yδ(s)
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4.5.8 Passivity Based Control

The average linearized Buck-Boost converter system is written in the “energy
revealing” form: ẋδ = J xδ + Rxδ + buav,δ. Indeed

ẋδ =
[

0 1
1−Vd− 1

1−Vd
0

]
xδ +

[
0 0
0 − 1

Q

]
xδ +

[
−(1 − Vd)
(1−Vd)Vd

Q

]
uav,δ

Using the procedure developed in the previous passivity based controllers
design examples, we obtain the following damped copy of the desired system
behavior (we choose RI > 0),

ẋ∗
δ =

[
0 1

1−Vd− 1
1−Vd

0

]
x∗

δ +

[
0 0
0 − 1

Q

]
x∗

δ +

[RI 0
0 0

]
(xδ − x∗

δ) +

[
−(1 − Vd)
(1−Vd)Vd

Q

]
uav,δ

The tracking error eδ = xδ − x∗
δ evolves according to

ėδ =
[

0 1
1−Vd− 1

1−Vd
0

]
eδ −

[RI 0
0 1

Q

]
eδ

The stability of the error dynamics is assessed by the evolution of the
Lyapunov function candidate V (eδ) = 0.5(e2

1δ + e2
2δ). We obtain, along the

trajectories of the incremental average tracking error variable e(τ)

V̇ (eδ) = −RIe
2
1δ −

1
Q

e2
2δ ≤ −2

[
min

{
R,

1
Q

}]
V (eδ)

The incremental tracking error exponentially converges to zero.
The passivity based dynamic average incremental feedback controller is

then given by:

uav,δ = − 1
1 − Vd

[
ẋ∗

1δ(τ) − 1
1 − Vd

ζδ −RI(x1δ − x∗
1δ(τ))

]
ζ̇δ = − 1

Q
ζδ − 1

1 − Vd
x∗

1δ(τ) +
(1 − Vd)Vd

Q
uav,δ

Simulations

We set as our desired average trajectory for the incremental variable x∗
1δ(τ)

the value of zero. This means that we are interested in using the controller
for stabilization purposes.

We have set the controller design parameter RI to be 1. The desired av-
erage output voltage Vd = −1.5 and Q = 0.75.

The average control input is then prescribed to be

uav = uav + uav,δ
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with uav,δ as given by the passivity based average controller. Note that for
initial conditions which imply a large value of the incremental average control
input value, uav,δ, actual average control input saturations are possible (i.e.,
uav /∈ [0, 1]).

Figure 4.44 depicts the response of the average Buck-Boost converter
model to the incremental passivity based average feedback controller. Con-
troller saturation is dully accounted for.

Fig. 4.44. Average responses of the Buck-Boost converter to passivity based dy-
namic feedback control.

Figure 4.45 depicts the response of the switched Buck-Boost converter
model, to the incremental passivity based average feedback controller imple-
mented through a Σ−∆ modulator. Controller saturation is clearly exhibited
in the switched controller behavior.

4.5.9 The Hamiltonian Systems Viewpoint

The average linearized Buck-Boost converter system is written in the Hamil-
tonian form:

ẋδ = J ∂H(xδ)
∂xδ

+ R∂H(xδ)
∂xδ

+ buav,δ

yδ = bT ∂H(xδ)
∂xδ

with H(xδ) = 1
2

[
x2

1δ + x2
2δ

]
.

Indeed,

ẋδ =
[

0 1
1−Vd− 1

1−Vd
0

]
∂H(xδ)

∂xδ
+
[

0 0
0 − 1

Q

]
∂H(xδ)

∂xδ
+

[
−(1 − Vd)
(1−Vd)Vd

Q

]
uav,δ
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Fig. 4.45. Responses of the switched Buck-Boost converter to passivity based dy-
namic feedback control.

The passive output is given by

yδ = bT ∂H(xδ)
∂xδ

= −(1 − Vd)x1δ +
(1 − Vd)Vd

Q
x2δ

The dissipation matching condition adopts the form:

R + γbbT =

[
γ(1 − Vd)2 −γ (1−Vd)2Vd

Q

−γ(1−Vd)2Vd

Q
1
Q + γ

(1−Vd)2V 2
d

Q2

]
> 0

The average incremental passive output stabilizing feedback controller is
readily obtained as:

uav,δ = −γyδ = γ(1 − Vd)x1δ − γ
(1 − Vd)Vd

Q
x2δ (4.22)

Using the definition of the incremental average control:

uav,δ = uav − uav

whit
uav =

1
1 − Vd

and

x1 = − (1 − Vd) Vd

Q
, x2 = Vd

we can write (4.22) as:

uav =
1

1 − Vd
+ γ

[
(1 − Vd)

(
x1 +

(1 − Vd)Vd

Q

)
− (1 − Vd)Vd

Q
(x2 − Vd)

]
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Reducing terms in the previous expression, we obtained:

uav =
1

1 − Vd
+ γ

[
x1 +

Vd

Q
(1 − x2)

]
(1 − Vd) (4.23)

The incremental average closed loop system is given by

ẋδ =
[

0 1
1−Vd− 1

1−Vd
0

]
∂H(xδ)

∂xδ
−
[

γ(1 − Vd)2 −γ (1−Vd)2Vd

Q

−γ(1−Vd)2Vd

Q
1
Q + γ

(1−Vd)2V 2
d

Q2

]
∂H(xδ)

∂xδ

Simulations

We set: Vd = −1.5, Q = 0.75, γ = 0.25. The average passive output feedback
controller manages to stabilize the nonlinear switched converter from the zero
initial conditions, in spite of initial controller saturation.

Figure 4.46 depicts the response of the nonlinear system to the proposed
average static passivity based controller implemented through a Σ −∆ mod-
ulator.

Fig. 4.46. Responses of switched Buck-Boost converter to static passivity based
control based on the linearized model.

4.5.10 Experimental Passivity based Control of the Buck-Boost
Converter

Here we propose to implement in the Buck-Boost experimental prototype, the
developed normalized static passivity based controller (4.23) computed on the
basis of the linearized average converter model and using the Σ−∆-modulator
implementation scheme.
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In Figure 4.47 we show the corresponding block diagram. It illustrates all
the components of the system that we built with its respective control block
already inserted. We remark that there are four important blocks, similar to
previous implementations, in this case we have the following blocks: Buck-
Boost system, Σ − ∆-modulator, amplitude limiter circuit and the control.

Here we only will explain the hardware implementation of the control block
for the Buck-Boost converter when it is controlled through a linearization
based static passivity based feedback control, implemented through a Σ −∆-
modulator block, which was presented at the end of the Chapter 3.

Passivity-based controller

CurrentVoltage

SensorSensor

� �

MODULATOR

0 V

5 V

Control block

Buck boost system

Buck boost

Driver block

Converter
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5 V

iu t( )

u t( )

t

t

LIMITER
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3

v

i
ø
v
;i
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uav = vàE
v
à í ià E

v
à 1

ð ñ

R
v

h i
E à v( )

Fig. 4.47. Block diagram of the Buck-Boost power converter with a Σ − ∆-
modulator implementation of a linear static passivity based average feedback control.

Control block

The control strategy (4.23) is implemented using analog electronics while
noticing that

x1 =
1
E

√
L

C
i, x2 =

υ

E
, Q = R

√
C

L

We rewrite (4.23) in non-normalized form as:

uav =
E

E − υ
+ γactual

[
i −

( υ

E
− 1

) υ

R

]
(E − υ) (4.24)

where γactual > 0, represents the de-normalized form of the gain γ.
Figure 4.48 shows the actual control block. It also shows the transfer func-

tions that realize the op-amps for achieving the actual implementation of the
de-normalized linear static passivity based controller.
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Fig. 4.48. Control circuit structure implemented for the static passivity based
stabilizing controller based on the linearized model of the Buck-Boost converter.

The control block receives two signals: the inductor current signal i, which
is transformed into a proportional voltage signal v,

i using the LEM HAW 15-
P current sensor (see Figure 2.7), and the output voltage υ, both from the
Buck-Boost system. On the other hand, the output of the control block is the
de-normalized average control uav (4.24).

An amplitude limiter circuit block is placed between the control block
output and the Σ − ∆-modulator block input. The resultant conditioned av-
erage control input signal, generated by the amplitude limiter circuit block,
is transformed at a switched pulse signal with values of 0 V and 5 V into the
Σ − ∆-modulator block. The output of the modulator feeds the Mosfet IC
NT2984 acting as switch.
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Experimental results

The corresponding experimental results obtained on the developed experi-
mental test bench are shown in Figure 4.49. The figure depicts the closed
loop response of the Buck-Boost system for the implemented passivity based
stabilizing controller. The values of the components for this system were set
to be:

L = 15.91 mH, C = 470 µF, R = 52 Ω, E = 12 V

with γactual = 0.1. We set an actual desired output voltage of υ = −24 V.
This voltage determines a steady state current i = 1.385 A, and uav = 0.666.
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Fig. 4.49. Experimental closed loop response of the Buck-Boost power converter to
a Σ −∆-modulator implementation of a static passivity based stabilizing controller
computed on the basis of the linearized converter model.

4.6 The Cúk Converter

4.6.1 Generalities about the Model

The dc-to-dc power converter known as the Cúk converter is shown in Figure
4.50.

Consider the average normalized model of the Cúk converter

ẋ1 = − (1 − uav)x2 + 1
ẋ2 = (1 − uav) x1 + uavx3

α1ẋ3 = −uavx2 − x4

α2ẋ4 = x3 − 1
Q

x4



4.6 The Cúk Converter 211

uu

L

C

2

v

v

R

C
1

1 1

1

22

2L
ii

E

Fig. 4.50. The Cúk converter.

The average normalized tangent linearization model of this converter,
around the equilibrium point:

x1 =
V 2

d

Q
, x2 = 1 − Vd, x3 =

Vd

Q
, x4 = Vd, uav = − Vd

1 − Vd

is given by,

ẋ1δ = − 1
1 − Vd

x2δ + (1 − Vd)uav,δ

ẋ2δ =
1

1 − Vd
x1δ − Vd

1 − Vd
x3δ +

Vd(1 − Vd)
Q

uav,δ

α1ẋ3δ =
Vd

1 − Vd
x2δ − x4δ − (1 − Vd)uav,δ

α2ẋ4δ = x3δ − 1
Q

x4δ

where

x1δ = x1 − x1, x2δ = x2 − x2, x3δ = x3 − x3, x4δ = x4 − x4

and
uav,δ = uav − uav

The linearized average normalized system is found to be controllable and
hence flat.

A rather fast test for the observability of the incremental average output
yδ = x4δ is as follows:

Assuming we know uav,δ, yδ and its time derivatives. We see that all state
variables will be known or computable. Indeed, from the last equation we
would find: x3δ as α2ẏδ + (1/Q)yδ. Knowing now x3δ, the state variable x2δ

can be computed from the third equation and, finally, x1δ is computed from
the second equation. We conclude that all state variables may be computed in
terms of the incremental input, the incremental output, and a finite number
of its time derivatives. The average system is, hence, observable from the
incremental output capacitor voltage variable x4δ.
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Similarly, the system is observable from the incremental average input
inductor current, x1δ.

To investigate the nature of the zero dynamics corresponding to these two
observable outputs we proceed as follows:

Let yδ = x4δ = 0, then, from the last equation of the linearized model, we
get that, x3δ = 0. Hence, from the third equation we find that the average
incremental control input must be given by,

uav,δ =
Vd

(1 − Vd)2
x2δ

Substituting this expression for the incremental control input in the first two
linearized equations leads to the closed loop system:

ẋ1δ = −x2δ

ẋ2δ =
1

1 − Vd
x1δ +

V 2
d

Q(1 − Vd)
x2δ

which is unstable with characteristic polynomial given by

p(s) = s2 − V 2
d

Q(1 − Vd)
s +

1
1 − Vd

Let yδ = x1δ = 0, then, from the first equation of the linearized model, we
get that, the incremental average control input must be

uav,δ =
[

1
(1 − Vd)2

]
x2δ

Substituting this expression for the incremental control input in the rest of
the linearized equations, and using the fact that x1δ = 0, leads to the closed
loop system:

ẋ2δ = − Vd

1 − Vd
x3δ +

Vd

(1 − Vd)Q
x2δ

α1ẋ3δ = −x2δ − x4δ

α2ẋ4δ = x3δ − 1
Q

x4δ

which is stable with characteristic polynomial given by

p(s) = s3 +
1 − (1 + α2)Vd

α2(1 − Vd)Q
s2 − (α1 + α2Q

2)Vd − (1 − Vd)Q2

α1α2(1 − Vd)Q2
s − 2Vd

α1α2(1 − Vd)Q

The average linearized Cúk converter system exhibits the incremental output
voltage as a non-minimum phase output and the incremental input current
as a minimum phase output.

This fact, which is common to many classical dc-to-dc power converters,
prompts indirect feedback control of the converter by regulating the incremen-
tal input inductor current to the desired equilibrium and letting the asymptot-
ically stable zero dynamics take care of the internal and actual output voltage
behavior.
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4.6.2 The Hamiltonian System Approach

We write the average linearized Cúk converter model in the modified Hamil-
tonian form

Pẋδ = J ∂H

∂xδ
−R ∂H

∂xδ
+ buav,δ

with H(xδ) = 1
2xT

δ xδ and P = diag(1, 1, α1, α2).
We have:⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 α1 0
0 0 0 α2

⎤⎥⎥⎦ ẋδ =

⎡⎢⎢⎣
0 − 1

1−Vd
0 0

1
1−Vd

0 − Vd

1−Vd
0

0 Vd

1−Vd
0 −1

0 0 1 0

⎤⎥⎥⎦ ∂H

∂xδ

−

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

Q

⎤⎥⎥⎦ ∂H

∂xδ
+

⎡⎢⎢⎣
(1 − Vd)
Vd(1−Vd)

Q

−(1 − Vd)
0

⎤⎥⎥⎦uav,δ

The dissipation matching condition is not strictly satisfied and takes the
form

R + γbbT =

⎡⎢⎢⎢⎢⎣
γ(1 − Vd)2 γ Vd(1−Vd)2

Q −γ(1 − Vd)2 0

γ Vd(1−Vd)2

Q γ
V 2

d (1−Vd)2

Q2 −γ Vd(1−Vd)2

Q 0

−γ(1 − Vd)2 −γ Vd(1−Vd)2

Q γ(1 − Vd)2 0
0 0 0 1

Q

⎤⎥⎥⎥⎥⎦ ≥ 0

The passive output is given by,

yδ = (1 − Vd)x1δ +
Vd(1 − Vd)

Q
x2δ − (1 − Vd)x3δ

The set of vectors which are in the null space of the matrix, R+ γbbT , are
of the form: z = [x1δ x2δ x3δ 0] such that ξδ = x1δ + Vd

Q x2δ −x3δ = 0, i.e., they
lay in a subspace of R4 and corresponds to yδ = (1−Vd)ξδ = 0. This means the
nonlinear system is controlled by the equilibrium input: uav = −Vd/(1− Vd),
i.e., the incremental system is controlled by uav,δ = 0. The only trajectory of
the incremental system with x4δ = 0 and uav,δ = 0 corresponds to the origin.

This is compatible with the fact that in order for the closed loop incremen-
tal average system to have the origin as an asymptotically stable equilibrium,
the trajectories of the system should have no other equilibrium than the ori-
gin itself. The origin of the average output feedback controlled system is,
according to LaSalle’s theorem, an asymptotically stable equilibrium.

The output feedback control law (with design parameter γ > 0)
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uav,δ = −γ

[
(1 − Vd)x1δ +

Vd(1 − Vd)
Q

x2δ − (1 − Vd)x3δ

]
The average control to be implemented is synthesized as

uav = − Vd

1 − Vd
− γ

[
(1 − Vd)

(
x1 − V 2

d

Q

)
+

Vd(1 − Vd)
Q

(x2 − (1 − Vd)) − (1 − Vd)
(

x3 − Vd

Q

)]
(4.25)

Simulations

We consider a simple non-normalized average Cúk converter model with the
following parameter values

L1 = 30 mH, C1 = 150 µF, L2 = 30 mH, C2 = 50 µF,

R = 10 Ω, E = 100 V

and the design parameter to γ = 1.
It is assumed that it is desired to drive the average output voltage to

υ2 = −200 V, with corresponding steady state values of the currents and
internal capacitor voltage given by:

i1 = 40 A, υ1 = 300 V, i2 = −20 A

and
uav = 0.666

Figure 4.51 shows the average response of the average Cúk converter model to
the average static passivity based feedback controller computed on the basis
of the average normalized system linearization.

4.7 The Zeta Converter

4.7.1 Generalities about the Model

Consider the dc-to-dc power converter known as the Zeta converter, shown in
Figure 4.52. The average normalized model of this system is given by

dx1

dτ
= − (1 − uav)x2 + uav

dx2

dτ
= (1 − uav)x1 − uavx3

α1
dx3

dτ
= uavx2 − x4 + uav

α2
dx4

dτ
= x3 − 1

Q
x4
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Fig. 4.52. The Zeta converter.

The average normalized state equilibrium point is obtained from the pre-
ceding model, assuming that the control input variable continuously takes
values in the interval (0, 1). Parameterizing the equilibrium in terms of the
desired equilibrium output voltage, x4 = Vd, we have:

x1 =
V 2

d

Q
, x2 = Vd, x3 =

Vd

Q
, x4 = Vd, uav =

Vd

1 + Vd

Hence due to the average control input hard limitations (0 < uav < 1) we
have that the equilibrium output voltage must satisfy the positive output
voltage restriction:

Vd > 0

The tangent linearization of the average state system around the average
equilibrium point is given by
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ẋ1δ = − 1
1 + Vd

x2δ + (1 + Vd) uav,δ

ẋ2δ =
1

1 + Vd
x1δ − Vd

1 + Vd
x3δ − Vd

Q
(1 + Vd) uav,δ

α1ẋ3δ =
Vd

1 + Vd
x2δ − x4δ + (1 + Vd) uav,δ

α2ẋ4δ = x3δ − 1
Q

x4δ

where

x1δ = x1 − V 2
d

Q
, x2δ = x2 − Vd, x3δ = x3 − Vd

Q
, x4δ = x4 − Vd

and
uav,δ = uav − Vd

1 + Vd

In matrix form: ẋδ = Axδ + buav,δ we have,

ẋδ =

⎡⎢⎢⎢⎣
0 − 1

1+Vd
0 0

1
1+Vd

0 − Vd

1+Vd
0

0 Vd

α1(1+Vd) 0 − 1
α1

0 0 1
α2

− 1
α2Q

⎤⎥⎥⎥⎦xδ +

⎡⎢⎢⎢⎢⎣
(1 + Vd)

−Vd

Q (1 + Vd)
1

α1
(1 + Vd)

0

⎤⎥⎥⎥⎥⎦uav,δ

The system is found to be controllable and hence flat, since the controlla-
bility matrix, C =

[
B Ab A2b A3b

]
, has full range, i.e., rank [C] = 4.

A rather fast test for observability of the incremental average output yδ =
x4δ is as follows:

Assuming we know uav,δ, yδ and its time derivatives, we see that all state
variables will be known or computable. Indeed, from the last equation we
would find: x3δ as α2ẏδ + 1

Qyδ. Knowing now x3δ, the state variable x2δ can
be computed from the third equation and x1δ from the second equation. We
conclude that all state variables are computable in terms of the incremental
input, the incremental output, and a finite number of its time derivatives. The
average system is, hence, observable from the incremental output capacitor
voltage variable x4δ.

Similarly, the system is observable from the incremental average input
inductor current, x1δ.

To investigate the nature of the zero dynamics corresponding to these two
observable outputs we proceed as follows:

Let yδ = x4δ = 0, then, from the last equation of the linearized model,
we get that, x3δ = 0. Hence, from the third equation we find that the control
input must be

uav,δ = − Vd

(1 + Vd)
2 x2δ
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Substituting this expression for the incremental control input in the first
two linearized equations leads to the closed loop system:

ẋ1δ = −x2δ

ẋ2δ =
1

1 + Vd
x1δ +

1
Q

V 2
d

(1 + Vd)
x2δ

which is unstable with characteristic polynomial given by

p (s) = s2 − 1
Q

V 2
d

1 + Vd
s +

1
1 + Vd

Let yδ = x1δ = 0, then, from the first equation of the linearized model, we
get that, the control input must be

uav,δ =
1

(1 + Vd)
2 x2δ

Substituting this expression for the incremental control input in the rest
of the linearized equations, and using the fact that x1δ = 0, leads to the closed
loop system:

ẋ2δ = −Vd

Q

1
(1 + Vd)

x2δ − Vd

1 + Vd
x3δ

α1ẋ3δ = x2δ − x4δ

α2ẋ4δ = x3δ − 1
Q

x4δ

which is stable with characteristic polynomial given by

p (s) = s3 + ηs2 + µs + κ

where

η =
1
Q

(
1
α2

+
Vd

1 + Vd

)
µ =

α1Vd + (1 + (1 + α2) Vd)Q2

α1α2 (1 + Vd)Q2

κ =
2Vd

α1α2 (1 + Vd) Q

since the Routh-Hurwitz array for this polynomial is given by

s3

s2

s
s0

∣∣∣∣∣∣∣∣
1 µ
η κ

µ − κ
η

κ
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and all the coefficients in first column all have the same sign, i.e.,

η > 0

µ − κ

η
=

1
α2

[
Vd

(Vd + 1)Q2
+

1 +
(
2 +

(
1 + α2

2

)
Vd

)
Vd

α1 (1 + Vd) (1 + (1 + α2) Vd)

]
> 0

κ > 0

Therefore, all the roots of p (s) have negative real parts. Thus, the average
linearized Zeta converter system exhibits the incremental output voltage as a
non-minimum phase output and the incremental input current as a minimum
phase output.

This fact, which is common to many classical dc-to-dc power converters,
prompts indirect feedback control of the converter by regulating the incremen-
tal input inductor current to the desired equilibrium and letting the asymptot-
ically stable zero dynamics take care of the internal and actual output voltage
behavior.

4.7.2 The Hamiltonian System Approach

We write the average linearized Zeta converter model in the modified Hamil-
tonian form

Pẋδ = J ∂H

∂xδ
−R ∂H

∂xδ
+ buav,δ

with H (xδ) = 1
2xT

δ xδ and P = diag (1, 1, α1, α2).
We have:⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 α1 0
0 0 0 α2

⎤⎥⎥⎦ ẋδ =

⎡⎢⎢⎣
0 − 1

1+Vd
0 0

1
1+Vd

0 − Vd

1+Vd
0

0 Vd

(1+Vd) 0 −1
0 0 1 0

⎤⎥⎥⎦ ∂H

∂xδ

−

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

Q

⎤⎥⎥⎦ ∂H

∂xδ
+

⎡⎢⎢⎣
(1 + Vd)

−Vd

Q (1 + Vd)
(1 + Vd)

0

⎤⎥⎥⎦uav,δ

The dissipation matching condition is not strictly satisfied and takes the
form

R + γbbT = (1 + Vd)
2

⎡⎢⎢⎢⎣
γ −γ Vd

Q γ 0

−γ Vd

Q γ
V 2

d

Q2 −γ Vd

Q 0
γ −γ Vd

Q γ 0
0 0 0 1

(1+Vd)2Q

⎤⎥⎥⎥⎦ ≥ 0

The passive output is given by,
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yδ = (1 + Vd) x1δ − Vd

Q
(1 + Vd)x2δ + (1 + Vd)x3δ

The set of vectors which are in the null space of the matrix, R+ γbbT , are
of the form: z =

[
x1 x2δ x3δ 0

]
such that ξδ = x1δ − Vd

Q x2δ + x3δ, i.e., they
lay in a subspace of R4 and corresponds to yδ = (1 + Vd) ξδ = 0. This means
the nonlinear system is controlled by the equilibrium input: uav = Vd

1+Vd
, i.e.,

the incremental system is controlled by uav,δ = 0. The only trajectory of the
incremental system with x4δ = 0 and uav,δ = 0 corresponds to the origin.

This is compatible with the fact that in order for the closed loop incremen-
tal average system to have the origin as an asymptotically stable equilibrium,
the trajectories of the system should have no other equilibrium than the origin
itself. The origin of the average output feedback controlled system is, hence,
an asymptotically stable equilibrium.

The output feedback control law (with design parameter γ > 0)

uav,δ = −γbT ∂H (xδ)
∂xδ

= −γ

[
(1 + Vd)x1δ − Vd (1 + Vd)

Q
x2δ + (1 + Vd) x3δ

]
The average control to be implemented is synthesized as

uav =
Vd

1 + Vd
− γ

[
(1 + Vd)

(
x1 − V 2

d

Q

)
−Vd (1 + Vd)

Q
(x2 − Vd) + (1 + Vd)

(
x3 − Vd

Q

)]

Simulations

Figure 4.53 shows the average response of the Zeta converter model to the
incremental average passive output feedback controller for a typical average
Zeta converter circuit model (L1 = 600 µH, C1 = 10 µF, L2 = 600 µH,
C2 = 10 µF, R = 40 Ω and E = 100 V). We set a desired steady state output
voltage of υ2 = 200 V and the corresponding steady state variables yields:
i1 = 10 A, υ1 = 200 V, i2 = 5 A and uav = 0.666. This parameters values
yields Q = 5.164, α1 = α2 = 1 and the time normalization factor was found
to be

√
L1C1 = 7.746×10−5 s. The design parameter we make equal to γ = 1.

4.8 The Quadratic Buck Converter

4.8.1 Generalities about the Model

The dc-to-dc power converter known as the quadratic Buck converter has the
following average normalized model:
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Fig. 4.53. Average response of the average Zeta converter model to the incremental
average passive output feedback controller.
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Fig. 4.54. Switch regulated dc-to-dc quadratic Buck power converter.

The average equilibrium point of the system is, in terms of the desired
output equilibrium voltage x4 = Vd, given by:
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x1 =
(Vd)

3
2

Q
, x2 =

√
Vd, x3 =

Vd

Q
, x4 = Vd

uav =
√

Vd

Hence, due to the average control input hard limitations (0 < uav < 1)
we have that the equilibrium output voltage must satisfy the positive output
voltage restriction:

0 < Vd < 1

Tangent linearization of the average model, around the equilibrium point,
leads to the following set of equations,

ẋ1δ = −x2δ + uav,δ

ẋ2δ = x1δ −
√

Vdx3δ − Vd

Q
uav,δ

α1ẋ3δ =
√

Vdx2δ − x4δ +
√

Vduav,δ

α2ẋ4δ = x3δ − 1
Q

x4δ

where

x1δ = x1− (Vd)
3
2

Q
, x2δ = x2−

√
Vd, x3δ = x3− Vd

Q
, x4δ = x4−Vd

uav,δ = uav −
√

Vd

In matrix form: ẋδ = Axδ + buav,δ we have,

ẋδ =

⎡⎢⎢⎣
0 −1 0 0
1 0 −√

Vd 0
0

√
Vd

α1
0 − 1

α1

0 0 1
α2

− 1
α2Q

⎤⎥⎥⎦xδ +

⎡⎢⎢⎣
1

−Vd

Q√
Vd

α1

0

⎤⎥⎥⎦uav,δ

The system is controllable and, hence flat

C =
[
b Ab A2b A3b

]

=

⎡⎢⎢⎢⎢⎢⎢⎣
1 Vd

Q − β1
α1

−Vdβ2
α1Q

−Vd

Q
β1
α1

Vdβ2
α1Q

Vd(1+α2Vd)−α2
1α2

α2
1α2

√
Vd

α1
− V

3
2

d

α1Q −
√

Vd(1−β4)
α2

1α2

√
Vd[1+α2Vd(1+α2β2)]

α2
1α2

2Q

0
√

Vd

α1α2
−

√
Vd(1+α2Vd)

α1α2
2Q

√
Vd[β3−α2Q2(1−β4)]

α2
1α3

2Q2

⎤⎥⎥⎥⎥⎥⎥⎦
The controllability matrix has full range, i.e., rank [C] = 4, where:

β1 = α1 − Vd, β2 = α1 + Vd, β3 = α1 (1 + α2Vd) , β4 = α2 (α1 − Vd)
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A rather fast test for observability of the incremental average output yδ =
x4δ is as follows:

Assuming we know uav,δ, yδ and its time derivatives, we see that all state
variables will be known or computable. Indeed, from the last equation we
would find: x3δ as α2ẏδ + 1

Qyδ. Knowing now x3δ, the state variable x2δ can
be computed from the third equation and x1δ from the second equation. We
conclude that all state variables are computable in terms of the incremental
input, the incremental output, and a finite number of its time derivatives. The
average system is, hence, observable from the incremental output capacitor
voltage variable x4δ.

Similarly, the system is observable from the incremental average input
inductor current, x1δ.

To investigate the nature of the zero dynamics corresponding to these two
observable outputs we proceed as follows:

Let yδ = x4δ = 0, then, from the last equation of the linearized model,
we get that, x3δ = 0. Hence, from the third equation we find that the control
input must be

uav,δ = −x2δ

Substituting this expression for the incremental control input in the first two
linearized equations leads to the closed loop system:

ẋ1δ = −2x2δ

ẋ2δ = x1δ +
Vd

Q
x2δ

which is unstable with characteristic polynomial given by

p (s) = s2 − Vd

Q
s + 2

Let yδ = x1δ = 0, then, from the first equation of the linearized model, we
get that, the control input must be

uav,δ = x2δ

Substituting this expression for the incremental control input in the rest
of the linearized equations, and using the fact that x1δ = 0, leads to the closed
loop system:

ẋ2δ = −Vd

Q
x2δ −

√
Vdx3δ

α1ẋ3δ = 2
√

Vdx2δ − x4δ

α2ẋ4δ = x3δ − 1
Q

x4δ

which is stable with characteristic polynomial given by
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p (s) = s3 +
(1 + α2Vd)

α2Q
s2 +

α1Vd + Q2 (1 + 2α2Vd)
α1α2Q2

s +
3Vd

α1α2Q

The average linearized quadratic Buck converter system exhibits the incre-
mental output voltage as a non-minimum phase output and the incremental
input current as a minimum phase output.

This fact, which is common to many classical dc-to-dc power converters,
prompts indirect feedback control of the converter by regulating the incremen-
tal input inductor current to the desired equilibrium and letting the asymptot-
ically stable zero dynamics take care of the internal and actual output voltage
behavior.

4.8.2 State Feedback Controller Design

We consider now the tangent linearization model of the average normalized
quadratic Buck converter system:

dx1

dτ
= −x2 + uav

dx2

dτ
= x1 − uavx3

α1
dx3

dτ
= uavx2 − x4

α2
dx4

dτ
= x3 − 1

Q
x4

around the equilibrium point parameterizing in terms of the desired constant
input control, i.e., uav = U :

x1 =
U3

Q
, x2 = U, x3 =

U2

Q
, x4 = U2

given by

ẋδ =

⎡⎢⎢⎣
0 −1 0 0
1 0 −U 0
0 1

α1
U 0 − 1

α1

0 0 1
α2

− 1
α2Q

⎤⎥⎥⎦xδ +

⎡⎢⎢⎣
1

− 1
QU2

1
α1

U

0

⎤⎥⎥⎦uav,δ

where

x1δ = x1 − U3

Q
, x2δ = x2 − U, x3δ = x3 − U2

Q
, x4δ = x4 − U2

uav,δ = uav − U

In this case the controllability matrix again has full rank, hence the tangent
linearization of the system is controllable, and is given by:
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C =
[

b Ab A2b A3b
]

=

⎡⎢⎢⎢⎢⎢⎢⎣
1 U2

Q
U2

α1
− 1 − (α1+U2)U2

α1Q

−U2

Q
α1−U2

α1

(α1+U2)U2

α1Q

(1+α2U2)U2−α2
1α2

α2
1α2

U
α1

− U3

α1Q − [1−α2(α1−U2)]U
α2

1α2

[α2(α1α2+α2U2+1)U2+1]U
α2

1α2
2Q

0 U
α1α2

− (1+α2U2)U

α1α2
2Q

[α1α2
2Q2+(α1−α2Q2)(1+α2U2)]U

α2
1α3

2Q2

⎤⎥⎥⎥⎥⎥⎥⎦
We seek for a linear state feedback controller of the form

uav,δ = −Kxδ = −K1x1δ − K2x2δ − K3x3δ − K4x4δ

which drives the stabilization error state xδ to zero in an exponentially stable
fashion.

We can obtain the design gains, K, by direct application from the formula
proposed by Ackermann (see [33]), given by:

K =
[
0 0 0 1

] C−1αc (A) (4.26)

where the inverse of the controllability matrix for this system is:

C−1 =
1

det C adjugate C

=
α4

1α
3
2Q

4

β2α2
1 + β1α1 + β0

⎡⎢⎢⎣
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

γ41 γ42 γ43 γ44

⎤⎥⎥⎦ (4.27)

with the coefficients β and γ defined for the following relationships:

β2 = 2
(
U4 + Q2

) (
α2U

2 + 2α2
2Q

2 + 1
)
U2

β1 =
[
3α2U

8 +
(
4α2

2Q
2 + 3

)
U6 − 7α2Q

2U4

− (
8α2

2Q
2 + 3

)
Q2U2 − 4α2Q

4
]
U2

β0 =
[
3α2U

6 +
(
4α2

2Q
2 + 6

)
U4 + 4α2Q

2U2 + Q2
]
Q2U2

γ41 =
α1α2U

6 +
(
α1 + α2Q

2
)
U4 + Q2 (2 − 3α1α2)U2 − α1Q

2

α3
1α

2
2Q

3
U2

γ42 =
2α1α2U

4 + 2
(
α1 + α2Q

2
)
U2 + (1 − 2α1α2) Q2

α3
1α

2
2Q

2
U2

γ43 =
α1α2U

6 +
(
α1 + α2Q

2
)
U4 + Q2 (α1α2 − 1)U2 + α1Q

2

α2
1α

2
2Q

3
U

γ44 =
2α1α2U6+[2α2(Q2+α2

1)−α1]U4+(1−4α1α2)Q
2U2−α1(1−2α1α2)Q

2

α3
1α2Q2 U
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The parameters “ ∗ ” in general are different of zero, but they are not matter in
the calculation of the gains K when the Ackermann’s formula is used since the
vector

[
0 0 0 1

]
only extracts the last row of the adjugate of the controllability

matrix.
We propound that the tangent linearization of the average state system has

its poles, in closed loop, in the roots of the desired characteristic polynomial:

Pd (s) =
(
s2 + 2ξωns + ω2

n

)2
= s4 + 4ξωns3 + 2ω2

n

(
1 + 2ξ2

)
s2 + 4ξω3

ns + ω4
n

hence αc (A) is reduces to the following:

αc (A) = A4 + 4ξωnA3 + 2ω2
n

(
1 + 2ξ2

)
A2 + 4ξω3

nA + ω4
nI

=

⎡⎢⎢⎣
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤⎥⎥⎦ (4.28)

where:

a11 = ω4
n − 2

(
1 + 2ξ2

)
ω2

n +
U2

α1
+ 1

a21 = 4
[
ω2

n − 1
α1

(
α1 + U2

)]
ξωn

a31 =
1
α1

[
2
(
1 + 2ξ2

)
ω2

n − 1 + α2U
2

α1α2
− 1

]
U

a41 =
1

α1α2

[
4ξωn − 1

α2Q

]
U

a12 = 4
α1

(
1 − ω2

n

)
+ U2

α1
ξωn

a22 = ω4
n − 2

(
1 + 2ξ2

) (
α1 + U2

)
α1

ω2
n +

U2

α2
1α2

+

(
α1 + U2

)2
α2

1

a32 =
4ξU

α1
ω3

n − 4

[
1 +

(
α1 + U2

)
α2

]
ξU

α2
1α2

ωn +
U

α2
1α

2
2Q

a42 = 2U
α1α2

(
1 + 2ξ2

)
ω2

n − 4ξU
α1α2

2Q
ωn + [α1−Q2α2(1+α2(α1+U2))]U

α2
1α3

2Q2
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a13 = 2
(
1 + 2ξ2

)
Uω2

n −
[
1 + α2

(
α1 + U2

)]
U

α1α2

a23 = −4Uξω3
n + 4

[
1 + α2

(
α1 + U2

)]
ξU

α1α2
ωn − U

α1α2
2Q

a33 = ω4
n − 2(1+2ξ2)(1+α2U2)

α1α2
ω2

n + 4
Q

ξ
α1α2

2
ωn +

(1+α2U2)2

α1α2
2

+U2− 1
α3
2Q2

α1

a43 = 4 ξ
α2

ω3
n − 2 1+2ξ2

α2
2Q

ω2
n − 4(Q2α2−α1+Q2U2α2

2)ξ

α1α3
2Q2 ωn +

1+α2U2−α1−Q2α2
α2Q2

α1α3
2Q

a14 = −4
ξU

α1
ωn +

U

α1α2Q

a24 = 2

(
1 + 2ξ2

)
U

α1
ω2

n − 4
ξU

α1α2Q
ωn +

U

α2
1

[
α1 − α2Q

2

α2
2Q

2
− (

α1 + U2
)]

a34 = −4 ξ
α1

ω3
n + 2 1+2ξ2

α1α2Qω2
n + 4[α2(1+α2U2)Q2−α1]ξ

α2
1α2

2Q2 ωn +
α1−α2(2+α2U2)Q2

α2
1α3

2Q3

a44 = ω4
n − 4

ξ

α2Q
ω3

n + 2

(
α1 − α2Q

2
) (

1 + 2ξ2
)

α1α2
2Q

2
ω2

n + 4

(
2α2Q

2 − α1

)
ξ

α1α3
2Q

3
ωn

+
α1

(
α1 − 3α2Q

2
)

+ α2
2

(
1 + α2U

2
)
Q4

α2
1α

4
2Q

4

Finally, substituting (4.27) and (4.28) in the Ackermann’s formula (4.26),
K is given by:

K =
α4

1α
3
2Q

4

β2α2
1 + β1α1 + β0

[
δ11 δ12 δ13 δ14

]
where:

δ11 = a11γ41 + a21γ42 + a31γ43 + a41γ44

δ12 = a12γ41 + a22γ42 + a32γ43 + a42γ44

δ13 = a13γ41 + a23γ42 + a33γ43 + a43γ44

δ14 = a14γ41 + a24γ42 + a34γ43 + a44γ44

Hence, the feedback linear control law that stabilizes the incremental
model around the origin is given then for:

uav,δ = − α4
1α

3
2Q

4

β2α2
1 + β1α1 + β0

[δ11x1δ + δ12x2δ + δ13x3δ + δ14x4δ]

and the linear controller that stabilizes the original nonlinear system to the
equilibrium point (x1, x2, x3, x4), it is obtained substituting the incremental
variables in the linear controller for their values in function of the original
variables. Thus the average control to be implemented is synthesized as:
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uav = U − α4
1α

3
2Q

4

β2α2
1 + β1α1 + β0

×
[δ11 (x1 − x1) + δ12 (x2 − x2) + δ13 (x3 − x3) + δ14 (x4 − x4)]

4.8.3 The Hamiltonian System Approach

We write the average linearized quadratic Buck converter model in the mod-
ified Hamiltonian form

Pẋδ = J ∂H

∂xδ
−R ∂H

∂xδ
+ buav,δ

with H (xδ) = 1
2xT

δ xδ and P = diag (1, 1, α1, α2).
We have:⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 α1 0
0 0 0 α2

⎤⎥⎥⎦ ẋδ =

⎡⎢⎢⎣
0 −1 0 0
1 0 −√

Vd 0
0
√

Vd 0 −1
0 0 1 0

⎤⎥⎥⎦ ∂H (xδ)
∂xδ

−

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

Q

⎤⎥⎥⎦ ∂H (xδ)
∂xδ

+

⎡⎢⎢⎣
1

−Vd

Q√
Vd

0

⎤⎥⎥⎦uav,δ

The dissipation matching condition is not strictly satisfied and takes the form

R + γbbT =

⎡⎢⎢⎢⎢⎢⎣
γ −γ Vd

Q γ
√

Vd 0

−γ Vd

Q γ
(

Vd

Q

)2

−γ
V

3
2

d

Q 0

γ
√

Vd −γ
V

3
2

d

Q γVd 0
0 0 0 1

Q

⎤⎥⎥⎥⎥⎥⎦ ≥ 0

The passive output is given by,

y = bT ∂H (xδ)
∂xδ

= x1δ − Vd

Q
x2δ +

√
Vdx3δ

The set of vectors which are in the null space of the matrix, R + γbbT ,
are of the form: z =

[
x1δ x2δ x3δ 0

]
such that ξδ = x1δ − Vd

Q x2δ +
√

Vdx3δ,
i.e., they lay in a subspace of R4 and corresponds to yδ = ξδ = 0. This means
the nonlinear system is controlled by the equilibrium input: uav =

√
Vd, i.e.,

the incremental system is controlled by uav,δ = 0. The only trajectory of the
incremental system with x4δ = 0 and uav,δ = 0 corresponds to the origin.

This is compatible with the fact that in order for the closed loop incremen-
tal average system to have the origin as an asymptotically stable equilibrium,
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the trajectories of the system should have no other equilibrium than the origin
itself. The origin of the average output feedback controlled system is, hence,
an asymptotically stable equilibrium.

The output feedback control law (with design parameter γ > 0)

uav,δ = −γbT ∂H (xδ)
∂xδ

= −γ

[
x1δ − Vd

Q
x2δ +

√
Vdx3δ

]
The average control to be implemented is synthesized as

uav =
√

Vd − γ

[(
x1 − (Vd)

3
2

Q

)
− Vd

Q

(
x2 −

√
Vd

)
+
√

Vd

(
x3 − Vd

Q

)]

Simulations

We consider a quadratic Buck converter with the following parameters:

L1 = 1.5 H, C1 = 10 µF, L2 = 600 µH, C2 = 10 µF,

R = 40 Ω, E = 100 V
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Fig. 4.55. Response of the average quadratic Buck converter model to the incre-
mental passivity based average feedback controller.

It is desired to regulate the output capacitor voltage to the equilibrium
value: υ2 = 25 V.
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The equilibrium values of the currents and the internal capacitor voltage
are given by

i1 = 0.3125 A, υ1 = 50 V, i2 = 0.625 A

and uav = 0.5.
Figure 4.55 depicts the average response of the average quadratic Buck

converter model to the incremental average passive output feedback controller
when the design parameter we make equal to γ = 1.

4.9 The Boost-Boost Converter

4.9.1 Generalities about the Model

Consider the average normalized model of a multi-variable Boost-Boost con-
verter, with the following simplification: α1 = α2 = 1, we have

ẋ1 = −u1avx2 + 1

ẋ2 = u1avx1 − 1
Q1

x2 − x3

ẋ3 = x2 − u2avx4

ẋ4 = u2avx3 − 1
QL

x4

The equilibrium point of the system, for a desired set of output average equi-
librium voltages x2 = V2d and x4 = V4d, is given by,

x1 =
V 2

2d

Q1
+

V 2
4d

QL
, x2 = V2d, x3 =

V 2
4d

QLV2d
, x4 = V4d

u1,av =
1

V2d
, u2,av =

V2d

V4d

The linearized system around such an equilibrium point is given by,

ẋ1δ = − 1
V2d

x2δ − V2du1av,δ

ẋ2δ =
1

V2d
x1δ − x2δ

Q1
− x3δ +

(
V 2

2d

Q1
+

V 2
4d

QL

)
u1av,δ

ẋ3δ = x2δ − V2d

V4d
x4δ − V4du2av,δ

ẋ4δ =
V2d

V4d
x3δ − x4δ

QL
+

V 2
4d

V2dQL
u2av,δ

The system is controllable, and the variables x1δ and x3δ are observable
minimum-phase outputs, while x2δ and x4δ are non-minimum phase outputs.
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A decoupled average incremental feedback control policy proposes feed-
back control actions which, for each input utilize only variables pertaining to
its particular subsystem. In this case, one would like to propose a controller
of the form

u1av,δ = −k1x1δ − k2x2δ

u2av,δ = −k3x3δ − k4x4δ

to obtain the closed loop linearized average dynamics

ẋδ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1V2d k2V2d − 1
V2d

0 0

1
V2d

− k1(
V 2
2d

Q1
+

V 2
4d

QL
) − 1

Q1
− k2(

V 2
2d

Q1
+

V 2
4d

QL
) −1 0

0 1 k3V4d − V2d
V4d

+ k4V4d

0 0
V2d
V4d

− k3
V 2
4d

V2dQL
− 1

QL
− k4

V 2
4d

V2dQL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
xδ

The closed loop system fourth order characteristic polynomial exhibits quite
a complex expression from which nonlinear equations would have to be solved
for the required feedback gains k1, k2, k3 and k4. We adopt a decoupled design
strategy by placing the poles of each block through the corresponding gains
and locate the poles of each subsystem deep into the stable region of the
complex plane.

The control gains are obtained by forcing the block diagonal matrices of
the closed loop system to have their eigenvalues at desired locations: Thus,
we have chosen k1 and k3 so that the eigenvalues of the sub-matrix[

k1V2d k2V2d − 1
V2d

1
V2d

− k1(
V 2

2d

Q1
+ V 2

4d

QL
) − 1

Q1
− k2(

V 2
2d

Q1
+ V 2

4d

QL
)

]

were located in the stable region of the complex plane.
Similarly, we have chosen the gains k3 and k4 so that the eigenvalues of

the sub-matrix: [
k3V4d −V2d

V4d
+ k4V4d

V2d

V4d
− k3

V 2
4d

V2dQL
− 1

QL
− k4

V 2
4d

V2dQL

]
were located at desired locations in the stable region of the complex plane.

Such gains are obtained by equating the characteristic polynomial of each
sub-matrix to the desired polynomials

pid(s) = s2 + 2ζiωins + ω2
in, i = 1, 2

We obtain the following expressions for the gains:

k1 =
−(− 1

Q1
+ 2ζ1ωn1) − (V 2

4d

QL
+ V 2

2d

Q1
)(− 1

V 2
2d

+ ω2
n1)

V2d + (V 2
4d

QL
+ V 2

2d

Q1
)( V 2

4d

V2dQL
+ 2V2d

Q1 )
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k2 =
( V 2

4d

V2dQL
+ 2V 2

2d

Q1 )(− 1
Q1

+ 2ζ1ωn1) − V2d(− 1
V 2

2d
+ ω2

n1)

V2d + (V 2
4d

QL
+ V 2

2d

Q1
)( V 2

4d

V2dQL
+ 2V2d

Q1 )

k3 =
−V2d(− 1

QL
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4d

V2dQL
)(−V 2

2d

V 2
4d

+ ω2
n2)

V2dV4d + 2 V 3
4d

V2dQ2
L
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QL
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QL
+ 2ζ2ωn2) − V4d(−V 2
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V 2
4d

+ ω2
n2)

V2dV4d + 2 V 3
4d

V2dQ2
L

Simulations

It is desired to bring the normalized capacitor voltages V2d and V4d to the
values V2d = 1.5 and V4d = 2 in a Boost-Boost converter with Q1 = 0.5,
Q2 = 0.75. We used the proposed decoupled feedback control laws for closed
loop pole placement with the following parameters:

ζ1 = ζ2 = 0.81, ωn1 = ωn2 = 1

Figure 4.56 depicts the average response of the Boost-Boost converter to
the block decoupled linear feedback control law stabilizing the system state
variables to the desired equilibrium from the origin of coordinates.

Fig. 4.56. Average performance of Boost-Boost converter to stabilizing block de-
coupled linear feedback.

Figure 4.57 depicts the response of the switched Boost-Boost converter
to the block decoupled linear average feedback control law forcing the state
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Fig. 4.57. Average performance of Boost-Boost converter to stabilizing block de-
coupled linear feedback.

variables to the desired equilibrium from the origin of coordinates. A Σ − ∆
modulator was used for the implementation.

Figure 4.58 depicts the response of the switched Boost-Boost converter
to the saturated block decoupled linear average feedback control law forcing
the state variables to the desired equilibrium from the origin of coordinates.
(ζ1 = ζ2 = 0.81, ωn1 = ωn2 = 1.2)

Fig. 4.58. Performance of switched Boost-Boost converter to stabilizing block de-
coupled linear feedback from zero start-up conditions.
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4.9.2 The Hamiltonian System Approach

The normalized, linearized, average system is written in Hamiltonian form

ẋ =

⎡⎢⎢⎣
0 − 1

V2d
0 0

1
V2d

0 −1 0
0 1 0 −V2d

V4d

0 0 V2d

V4d
0

⎤⎥⎥⎦ ∂H

∂x
−

⎡⎢⎢⎣
0 0 0 0
0 1

Q1
0 0

0 0 0 0
0 0 0 1

QL

⎤⎥⎥⎦ ∂H

∂x

+

⎡⎢⎢⎢⎣
−V2d 0(

V 2
2d

Q1
+ V 2

4d

QL

)
0

0 −V4d

0 V 2
4d

V2dQL

⎤⎥⎥⎥⎦uav,δ

The average model clearly depicts the two constitutive blocks with an in-
put decoupled structure and a decoupled dissipative map structure. Note the
simple state interaction represented by the off-diagonal blocks in the conser-
vative map of the system.

The nearly decoupled structure of the system motivates the search for a
decoupled output feedback structure.

Note that by choosing: the Γ matrix in a diagonal form: Γ = diag[γ1, γ2],
with γ1, γ2 > 0, the dissipation matching condition takes the following natural
block-decoupled form:

R + BΓBT =⎡⎢⎢⎢⎢⎢⎢⎣
γ1V

2
2d −γ1V2d

(
V 2
2d

Q1
+

V 2
4d

QL

)
0 0

−γ1V2d

(
V 2
2d

Q1
+

V 2
4d

QL

)
1

Q1
+ γ1

(
V 2
2d

Q1
+

V 2
4d

QL

)
0 0

0 0 γ2V
2
4d −γ2

V 3
4d

QLV2d

0 0 −γ2
V 3
4d

QLV2d

1
QL

+ γ2
V 4
4d

Q2
L

V 2
2d

⎤⎥⎥⎥⎥⎥⎥⎦ > 0

The passive outputs are given by

yδ = BT ∂H(xδ)
∂xδ

which, in explicit form yields:

y1δ = −V2dx1δ +
(

V 2
2d

Q1
+

V 2
4d

QL

)
x2δ, y1δ = −V4dx3δ +

V 2
4d

QV2d
x4δ

Each passive output involves state variables which are ascribed to his own
converter block. The average passive output feedback control policy can be
proposed to be decoupled, as follows

u1av,δ = γ1V2dx1δ − γ1

(
V 2

2d

Q1
+

V 2
4d

QL

)
x2δ, u2av,δ = γ2V4dx3δ − γ2

V 2
4d

QLV2d
x4δ
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Simulations

We prescribed a normalized equilibrium point corresponding to the following
parameter values and desired average normalized capacitor voltages:

Q1 = 0.5, QL = 0.75, V2d = 1.5, V4d = 2.0

The feedback gains were chosen to be: γ1 = 0.05, γ2 = 0.2
Figure 4.59 depicts the response of the average nonlinear model of the

Boost-Boost circuit to the decoupled average static exact stabilization error
dynamics passive output feedback controller.

Fig. 4.59. Boost-Boost converter response to static passivity based controller.

Figure 4.60 depicts the response of the switched nonlinear Boost-Boost
circuit model to the decoupled average passive output feedback controller
implemented through a Σ − ∆ modulator.

Fig. 4.60. Boost-Boost converter switched response to static passivity based con-
troller.



5

Nonlinear Methods in the Control of Power
Electronics Devices

5.1 Introduction

In this chapter, we explore several nonlinear feedback controller design tech-
niques for DC-to-DC power converters. The variety of nonlinear control tech-
niques which is available nowadays is vast. Therefore, we concentrate only in
a few methods where controllers may be relatively simpler. We concentrate
on the following possibilities for nonlinear feedback control design: Feedback
state linearization, input output linearization, flatness, passivity based con-
trol, dynamic feedback control by input-output linearization and exact track-
ing, or stabilization, error passive output feedback, which we also address as,
static linear passivity based control. In fact, within this last energy-based for-
mulation, it becomes readily apparent that an interesting class of nonlinear
systems, which includes SISO and MIMO DC-to-DC power converters, can be
properly semi-globally stabilized by means of linear, time-invariant, feedback
of the exact stabilization error dynamics. Moreover, trajectory tracking can
also be achieved by linear feedback but now using time-varying gains. This
useful result, intuitively used by many practitioners in the Power Electron-
ics field, seems to be completely unnoticed in the existing control literature.
A key point in establishing these results comes from the possibilities of ex-
actly expressing the stabilization and tracking error dynamics in a stability
invariant, isomorphic, manner to the tangent linearization model of all studied
DC-to-DC power converters.

We also devote some attention, in this chapter, to the problem of state
estimation in DC-to-DC power converters. Full order observers, and reduced
order observers, are developed for the most common DC-to-DC power convert-
ers. The underlying feature of these two types of observers is the dependence
of the estimation error dynamics on the control input. Contrary to the linear
systems case, the presence of the input signal in the estimation error dynamics
is not disturbing at all since, systematically, such external influence is invari-
ably constrained to the conservative portion of the system energy managing
structure, thus playing no active role in the asymptotic convergence proper-
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ties of the estimated states to the actual states. In reduced order observers, a
similar invariance of the estimation error dynamics with respect to the explicit
dependance on control inputs can also be established, but this time in terms
of appropriate control dependent time scalings of the error dynamics.

5.2 Control of DC-to-DC Power Converters via
Feedback Linearization

We start out by revisiting the elementary aspects of geometric control the-
ory, as applied to SISO nonlinear systems of the form ẋ = f(x) + g(x)uav

with output y = h(x) where f and g are smooth vector fields and h is a
smooth scalar output function. This smooth system has the interpretation of
an average model of a certain DC-to-DC power converter regulated by a single
switch. All our considerations are local in nature, i.e., they are valid on an
open neighborhood of an arbitrary representative point of the system state x.
A complete account of the geometric theory of nonlinear systems is available
from the excellent book by Isidori [31]. The reader may also benefit from the
clear exposition in Khalil [37].

5.2.1 Isidori’s Canonical Form

Let the scalar output function y = h(x) be a smooth function. Assume that
the system is relative degree equals to r, which is a strictly positive integer,
not greater than the order n of the system, i.e., 1 ≤ r ≤ n. This relative
degree assumption means that the r-th time derivative of the output function
y is the first higher order time derivative of y that explicitly exhibits, in its
expression, the control input function uav. In other words:

∂y(j)

∂uav
= 0, j = 1, · · · , r − 1,

∂y(r)

∂uav
�= 0

This means, in particular, that⎡⎢⎢⎢⎣
y
ẏ
...

y(r−1)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
h(x)

Lfh(x)
...

Lr−1
f h(x)

⎤⎥⎥⎥⎦
The absence of any influence of the average control input uav on the first

r − 1 time derivatives of y is valid thanks to the following fact

LgL
j
fh(x) = 0, j = 0, 1, 2, · · · , r − 2

Clearly then, the explicit appearance of uav in the r-th time derivative of y is
due to the condition
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LgLr−1
f h(x) �= 0

We will propose a full state coordinate transformation which will explicitly
exhibit the integration input-output structure of the system. For this, we shall
adopt the first r coordinate functions of such transformation, to be of the form:

z = Φ(x) =

⎡⎢⎢⎢⎣
h(x)

Lfh(x)
...

L
(r−1)
f h(x)

⎤⎥⎥⎥⎦
Note that these first r coordinates are necessarily independent of each

other. In fact, there is no linear combination of such r coordinates, using
non-zero constant coefficients, that can be made identically zero. Indeed, let
γ1, · · · , γr be non-zero constant parameters, and assume, contrary to what we
want to prove, that

q(x) =
r∑

j=1

γjL
j−1
f h(x) = 0

Taking the directional derivative of q(x) with respect to the vector field
g, we obtain: γrLgL

r−1
f h = 0, which implies, by virtue of the relative degree

r assumption, LgL
r−1
f h �= 0, that, necessarily, γr = 0. It follows that q(x) is

then given by,

q(x) =
r−1∑
j=1

γjL
j−1
f h(x)

Taking now the directional derivative with respect to f and then with
respect to g of q(x), i.e., taking the iterated directional derivative LgLf of
q(x), we obtain now that γr−1LgL

r−1
f h(x) = 0 and hence, necessarily γr−1 = 0

since LgL
r−1
f h(x) �= 0. In this manner, we soon conclude that all the γjs are

necessarily zero, which is a contradiction.
The rest of the variables in the transformation to be defined, in number

of n − r, may be arbitrarily chosen, as long as they are independent among
themselves and independent also of the first r variables. These additional
variables do not yield any specially interesting structure to the transformed
equations and, therefore, we generically lump them into the n−r dimensional
vector which will still satisfy a nonlinear set of differential equations (linearly)
involving the control input uav and the first r variables z. We then define⎡⎢⎢⎢⎣

η1

η2

...
ηn−r

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ψ1(x)
ψ2(x)

...
ψn−r(x)

⎤⎥⎥⎥⎦
The complete state coordinate transformation



238 5 Nonlinear Methods[
z
η

]
=
[

Φ(x)
Ψ(x)

]
= Θ(x)

yields a set of differential equations which are in general nonlinear. Clearly,
the first r new coordinates z = (z1, · · · , zr) satisfy the suggestive set of equa-
tions which may be exactly turned into a set of linear equations after a state
dependent input coordinate transformation. This first r equations are:

ż1 = z2

ż2 = z3

...
żr = Lr

f (h ◦ Θ−1)(z, η) + LgL
r−1
f (h ◦ Θ−1)(z, η)uav (5.1)

The rest of the transformed equations are given by an expression of the
form

η̇ = A(z, η) + B(z, η)uav

One can, of course, arrange the nature of the transformation Ψ(x), so as to
eliminate the influence of the control input uav in the last n − r transformed
equations, but this is not really necessary to understand the fundamental
structure of the system, which is represented by the first r transformed equa-
tions.

The transformed system reads as follows:

ż1 = z2

ż2 = z3

...
żr = Lr

f (h ◦ Θ−1)(z, η) + LgL
r−1
f (h ◦ Θ−1)(z, η)uav

η̇ = A(z, η) + B(z, η)uav

y = z1

which is here addressed as Isidori’s canonical form for nonlinear SISO systems.

5.2.2 Input-Output Feedback Linearization

The invertible, state-dependent, input coordinate transformation:

Lr
f (h ◦ Θ−1)(z, η) + LgL

r−1
f (h ◦ Θ−1)(z, η)uav = vav (5.2)

leading to,

uav =
vav − Lr

f (h ◦ Θ−1)(z, η)

LgL
r−1
f (h ◦ Θ−1)(z, η)

(5.3)

yields a specially simple system in the first r coordinates,
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ż1 = z2

ż2 = z3

...
żr = vav

η̇ = Γ (z, η, vav)
y = z1

where Γ (z, η, vav) is obtained from the use of the input transformation (5.3),
in the last n − r equations. i.e.,

Γ (z, η, vav) = A(z, η) + B(z, η)

[
vav − Lr

f (h ◦ Θ−1)(z, η)

LgL
r−1
f (h ◦ Θ−1)(z, η)

]

Let y be a desired equilibrium point of the system output. Corresponding
to this constant equilibrium value, one has the equilibrium value of the trans-
formed variable z, which we denote by z. Given the nature of the components
of z the variables: z2, · · · , zr clearly have as equilibrium value, the value of
zero. We denote by z the vector z = (y, 0, · · · , 0).

It is relatively simple to device a feedback control law for vav, depending
on a finite number of time derivatives of y = z1, which stabilizes the output
of the system, y = z1, to the desired constant value, y. Such a controller could
be devised, in transformed coordinates, as

vav(z) = −α0(z1 − y) − α1z2 − · · · − αr−1zr

where the αjs are design gains, properly chosen. Clearly, this controller re-
quires the generation of several time derivatives of y, represented here by the
variables z2, z3, · · · , zr. But, we should not forget that these required signals
are also functions of the states of the system through the transformation func-
tion (z, η) = Θ(x). If all state variables are available for measurement, such a
control law can be synthesized nonlinearly in terms of x. We choose the set of
design constant parameters: α0, · · · , αr−1 in an appropriate fashion, so as to
make the linear closed loop subsystem, expressed in z coordinates, exhibit an
asymptotically stable behavior. This simply entitles to have the input-output
linear closed loop system

y(r) + αr−1y
(r−1) + · · · + α1ẏ + α0(y − y) = 0

have a characteristic polynomial with all roots in the left half of the complex
plane.

Extreme caution should be placed, however, on the use of this controller
design method since the silent presence of the closed loop differential equations
for the state variables η,

η̇ = Γ (z, η, vav(z))
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may not exhibit a convenient closed loop behavior. We say that the system
output, y, is a non-minimum phase output variable whenever the induced
dynamics (also called the zero dynamics)

η̇ = Γ (z, η, vav(z))

is unstable. Otherwise, we say that the output is a minimum phase output.
Only in minimum phase cases we may actually attempt an exact input-output
linearization controller implementation for the regulation of the output to-
wards a desired equilibrium value, or for the tracking of a desired trajectory.
This limitation will become evident in the control of some average models of
DC-to-DC power converters.

Figure 5.1 depicts the exact input-output linearization feedback control
scheme for a stabilization task around a constant output equilibrium value of
the DC-to-DC power converter implemented through a Σ − ∆ modulator.

Fig. 5.1. Stabilization scheme in an exact average input-output linearization scheme
for a DC-to-DC power converter.

We address the previous feedback control design technique as exact input-
output feedback linearization. It is one of the most explored nonlinear feedback
control design technique in the area of average control of DC-to-DC power
converters. The more ambitious alternative of exact “input to state” feedback
linearization results in more involved controllers but, certainly, with some
definite advantages. We explore this new alternative in the next paragraphs.

5.2.3 State Feedback Linearization

Exact state feedback linearization may be achieved when the output of the
system y = h(x) is relative degree equals to n. i.e., when there is no zero
dynamics associated with the output y. Since, seldom the system output, y,
satisfies this requirement, one proceeds to search for such linearizing, or flat,
output function h(x). In the SISO case it becomes quite systematic to carry
out this task. The rule is that if the matrix
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C(x) = [g, adfg, ad2
fg, · · · , adn−1

f g]

which we call, somewhat abusively, “the controllability matrix” of the system,
is full rank, and the set of vector fields {g, adfg, ad2

fg, · · · , adn−2
f g} is involu-

tive then the row gradient of the flat output h, denoted in local coordinates
by dh = ∂h/∂xT , is given by the last row of the inverse of the controllability
matrix C(x) multiplied by an arbitrary nonzero scalar factor γ(x). i.e.,

dh =
∂h

∂xT
= γ(x)[ 0 0 · · · 1 ]C−1(x)

To prove this result, we proceed as follows: We realize that if the seek an
output function y = h(x) which is to be relative degree n, then the following
set of relations must be satisfied

LgL
j
fh(x) = 0, j = 0, 1, · · · , n − 2, LgL

n−1
f h(x) = γ(x) �= 0

The first n − 1 relations lead to a rather involved set of higher order
partial differential equations which are not easy to solve. Using the well known
relation,

LfLgh(x) − LgLfh(x) = L[f,g]h(x)

and the notation [f, g] = adfg, we readily obtain an equivalence between the
condition LgLfh(x) = 0 (representing a second order linear partial differen-
tial equation for the unknown function h) and the condition Ladf gh(x) = 0
(representing only a first order linear partial differential equation for h). Us-
ing now the following relation Ladf gLfh − LfLadf gh = L[f,adf g]h = Lad2

f gh,
the condition: LgL

2
fh(x) = 0 is found to be equivalent to Lad2

f gh = 0. We

find that the set of equalities: LgL
j
fh(x) = 0, j = 0, 1, · · · , n− 2 is equivalent

to the set of equalities Ladj
f gh, j = 0, 1, 2, · · · , n − 2 and that the equality

LgL
n−1
f h(x) = γ(x) is equivalent to Ladn−1

f gh = γ(x). As a result, we obtain
the following set of linear partial differential equations for h

∂h

∂xT
[g, adfg, · · · , adn−2

f g, adn−1
f g] = [ 0 · · · 0 γ(x) ]

The integrability of the vector fields: {g, adfg, · · · , adn−2
f g}, i.e., the existence

of a smooth scalar function h(x) such that all these vector fields conform a
tangent plane, of local fixed dimension n−1, to the level sets h(x) = constant
is guaranteed, thanks to Frobenius’s theorem, if and only if the set of vector
fields {g, adfg, · · · , adn−2

f g} conform an involutive set. In other words, there
exists a smooth scalar function h(x) that “integrates” all the vector fields such
that its row gradient, dh = ∂h

∂xT , annihilates the given set of vector fields. The
result follows.

The state coordinate transformation, z = Φ(x), defined by
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z = Φ(x) =

⎡⎢⎢⎢⎣
h(x)

Lfh(x)
...

L
(n−1)
f h(x)

⎤⎥⎥⎥⎦
yields the transformed system in the following particular form:

ż1 = z2

ż2 = z3

...
żn = Ln

f (h ◦ Φ−1)(z) + LgL
r−1
f (h ◦ Φ−1)(z)uav (5.4)

The invertible, state dependent, input coordinate transformation given by

Ln
f (h ◦ Φ−1)(z) + LgL

r−1
f (h ◦ Φ−1)(z)uav = vav

takes the system into the Brunovsky’s canonical form

ż1 = z2

ż2 = z3

...
żn = vav (5.5)

The transformed system (5.5) is equivalent to the pure integration system

y(n) = vav

Given a trajectory tracking task, for the original state x of the system,
denoted by x∗(t), this trajectory can be immediately translated into a corre-
sponding trajectory tracking objective for the linearizing, or flat, output y,
that we will denote by y∗(t). This is easy to establish by reading the first
entry of the nominal transformed coordinates z∗ = Φ(x∗). More frequently,
a flat output trajectory tracking task is demanded and specified in the form
of of y∗(t). The time derivatives of this reference trajectory are readily estab-
lished to conform the nominal value z∗(t) of the transformed state variable
z. The corresponding state reference trajectory is immediately obtained using
the inverse transformation x∗ = Φ−1(z)

A trajectory tracking feedback controller for the Brunovsky system (5.5),
is easily specified as follows:

vav = z∗n(t) −
n∑

j=1

αj−1(zj − z∗j (t)) (5.6)
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where the constant coefficients α are set so that the corresponding closed loop
linear system for the stabilization error e = y − y∗(t) = z1 − z∗1(t), exhibits a
characteristic polynomial of the form

pd(s) = sn + αn−1s
n−1 + · · · + α0

with all roots in the left half of the complex plane.

5.2.4 The Boost Converter

Consider the average normalized model of the Boost converter

ẋ1 = −uavx2 + 1

ẋ2 = uavx1 − x2

Q

Suppose it is desired to regulate the average value of the output capacitor
voltage x2 towards the average equilibrium value y = Vd. The corresponding
average equilibrium values for x1 and u are given, respectively, by x1 = V 2

d /Q
and uav = 1/Vd.

Input-Output Feedback Linearization

Direct Method

Take as the output function of the system, the average normalized output
capacitor voltage y = x2.

The input-output feedback linearization is achieved by forcing the equation
for x2 to represent a linear dynamics with y = Vd representing an asymptoti-
cally exponentially stable equilibrium point. We set then the average control
input to

uav =
y/Q − λ(y − y)

x1

with the restriction, 0 ≤ uav ≤ 1, being enforced in closing the loop and λ
being a strictly positive scalar constant.

The value of the average feedback function uav, corresponding to the
steady state of the average output variable y is given by uav(y) = y/(Qx1).
The corresponding zero dynamics of the controlled output function y is then
obtained as

ẋ1 = −
(

y2

Q

)
1
x1

+ 1 = −
(

V 2
d

Q

)
1
x1

+ 1

The average zero dynamics of the output capacitor voltage variable is
therefore unstable. To show this, we simply resort to approximate lineari-
zation and find that around the equilibrium point x1 = V 2

d /Q the tangent
linearization of the dynamics for x1 satisfies
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ẋ1δ =
(

Q

V 2
d

)
x1δ

which is clearly unstable due to the strict positivity of the parameter Q. The
feedback controller locally linearizing the input-output dynamics is therefore
not feasible when the output function is represented by the average normalized
output capacitor voltage since this is a non-minimum phase variable.

Indirect Method

Consider now the case when the output is given by the average input inductor
current y = x1. Suppose it is desired to regulate the average normalized
current to the desired equilibrium value x1 = V 2

d

Q . We have that the linearizing
controller is given by

uav =
1 + λ(x1 − V 2

d /Q)
x2

and the control input corresponding to the steady state value of the output
y = x1 is simply given by uav(y) = 1/x2. The corresponding zero dynamics is
readily found to be

ẋ2 =
V 2

d

Qx2
− x2

Q
= − 1

Qx2
(x2

2 − V 2
d ) = − 1

Qx2
(x2 − Vd)(x2 + Vd)

Consider the Lyapunov function candidate which is positive definite in the
state space of the zero dynamics V (x2) = 1

2 (x2−Vd)2 > 0. The time derivative
of this function along the solutions of the differential equation describing x2

is given by

V̇ (x2) = − (x2 + Vd)
Qx2

(x2 − Vd)2

which is negative definite for all positive values of the state x2. The equilibrium
point x2 = Vd is asymptotically stable. The control in this case is indirectly
regulating the output voltage towards the equilibrium value x2 = Vd.

State Feedback Linearization

We carry out the search for the linearizing, or flat, output y = h(x). In this
case, we have the following definition of the vector fields characterizing the
average system

f(x) =
[

1
−x2

Q

]
, g(x) =

[−x2

x1

]
The vector g is by itself trivially involutive since [g, g] = 0. One of the condi-
tions for feedback linearization is clearly satisfied. The vector columns of the
“controllability matrix” and its determinant are computed to be,
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C(x) = [g, adfg] =
[−x2

x2
Q

x1 1 + x1
Q

]
, det C = −x2(1 + 2

x1

Q
)

The system satisfies the linear independence property as long as the evo-
lution of the variables are away from the condition det C = 0 represented here
by x2 = 0 and x1 = −Q/2. Neither condition corresponds with the control
objective which are to regulate the output voltage to a positive equilibrium
value with a corresponding positive equilibrium value for the average inductor
current. We therefore assume that det C �= 0 along the controlled trajectories
leading towards stabilization. The gradient of the linearizing output is com-
puted to be

∂h

∂xT
=

γ(x)
det C [0 1]

[
1 + x1

Q −x2
Q

−x1 −x2

]
= − γ(x)

det C [x1 x2]

We can freely set γ(x) to be γ(x) = −det C since the system is assumed to
be controllable throughout its trajectories towards stabilization around the
desired average equilibrium point.

The linearizing output thus satisfies the pair of linear partial differential
equations

∂h

∂x1
= x1,

∂h

∂x2
= x2

and a possible expression for the required linearizing output y is given by

y =
1
2
[
x2

1 + x2
2

]
The flat output, or linearizing output, is represented by the average total
stored energy in the circuit. We have

ẏ = x1 − x2
2

Q

ÿ =
(

1 +
2

Q2
x2

2

)
− uavx2

(
1 +

2
Q

x1

)
Note that the expression multiplying the average control input uav is that

of det C. The state dependent, locally invertible, input coordinate transforma-
tion with auxiliary input variable vav, defined by

(
1 +

2
Q2

x2
2

)
− uavx2

(
1 +

2
Q

x1

)
= vav, uav =

(
1 + 2

Q2 x2
2

)
− vav

x2

(
1 + 2

Qx1

)
yields a linear second order system for the average total stored energy,

ÿ = vav
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An average controller stabilizing the energy towards a desired equilibrium
value y, is given by

vav = −2ζωnẏ − ω2
n(y − y) = −2ζωn

(
x1 − x2

2

Q

)
− ω2

n

(
1
2
[
x2

1 + x2
2

]− y

)
where ζ and ωn are design parameters establishing the performance quality
characteristics of the closed loop response of the second order linear system
governing the evolution of the average total stored energy. We set ζ, ωn > 0 to
obtain an asymptotically exponentially stable equilibrium point for the closed
loop system.

The full average state, locally linearizing, feedback controller is then ob-
tained as

uav =

(
1 + 2

Q2 x2
2

)
+
[
2ζωn

(
x1 − x2

2
Q

)
+ ω2

n

(
1
2

[
x2

1 + x2
2

]− y
)]

x2

(
1 + 2

Qx1

)
The desired equilibrium value for the total stored energy is most conveniently
parameterized in terms of the desired average output equilibrium voltage value
Vd, as

y =
1
2

[
V 4

d

Q2
+ V 2

d

]

5.2.5 The Buck-Boost Converter

Consider now the average normalized model of the Buck-Boost converter

ẋ1 = uavx2 + (1 − uav)

ẋ2 = −uavx1 − x2

Q

It is desired to regulate the average value of the output capacitor voltage x2

towards the average equilibrium value y = Vd < 0. The corresponding average
equilibrium values for x1 and u are given, respectively, by x1 = −Vd(1−Vd)/Q
and uav = 1/(1 − Vd).

Input-Output Feedback Linearization

Direct Method

Take as the output function of the system, the average normalized output
capacitor voltage y = x2.

The input-output feedback linearization is achieved by inducing the vari-
able x2 to be described by a linear dynamics, with y = Vd < 0, representing
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an asymptotically exponentially stable equilibrium point. We set then the
average control input to

uav =
λ(y − Vd) − y/Q

x1

with λ > 0 and the restriction, 0 ≤ uav ≤ 1, being enforced in the closed loop
system.

The value of the average feedback function uav(x), corresponding to the
steady state of the average output variable y is given by uav(y) = −y/(Qx1) =
−Vd/(Qx1). The corresponding zero dynamics of the controlled output func-
tion y is then obtained as

ẋ1 = 1 +
Vd(1 − Vd)

Qx1

The average zero dynamics of the output capacitor voltage variable is
found to be unstable. To demonstrate this fact, we simply resort to ap-
proximate linearization and find that around the equilibrium point: x1 =
−Vd(1 − Vd)/Q, the tangent linearization of the dynamics for x1 satisfies,

ẋ1δ = − Q

Vd(1 − Vd)
x1δ

which is clearly unstable due to the strict positivity of the parameter Q and
the negativity of the average normalized desired voltage Vd. The feedback con-
troller locally linearizing the input output dynamics is therefore not feasible
when the output function is represented by the average normalized output
capacitor voltage since this is a non-minimum phase variable.

Indirect Method

Consider now the case when the output is given by the average input inductor
current y = x1. Suppose it is desired to regulate the average normalized
current to the desired (positive) equilibrium value x1 = −Vd(1−Vd)

Q . We have
that the average feedback linearizing controller is given by

uav =
1 + λ(x1 + Vd(1 − Vd)/Q)

1 − x2

and the control input corresponding to the steady state value of the output
y = x1 is simply given by uav(y) = 1/(1 − x2). The corresponding zero
dynamics is readily found to be

ẋ2 =
Vd(1 − Vd)
Q(1 − x2)

− x2

Q
= − x2 − Vd

Q(1 − x2)
(1 − x2 − Vd)

Consider the Lyapunov function candidate which is positive definite in the
state space of the zero dynamics V (x2) = 1

2 (x2−Vd)2 > 0. The time derivative
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of this function along the solutions of the differential equation describing x2

is given by

V̇ (x2) = − (x2 − Vd)2

Q(1 − x2)
(1 − x2 − Vd)

which is negative definite for all negative values of the state x2 in its operating
region. The equilibrium point x2 = Vd < 0 is therefore asymptotically stable.

State Feedback Linearization

We now look for the linearizing, or flat, output y = h(x). In this particular
case we have,

f(x) =
[

1
−x2

Q

]
, g(x) =

[−(1 − x2)
−x1

]
The vector g clearly satisfies [g, g] = 0 indicating the involutivity of the

set constituted by the vector field g alone. The first condition for feedback li-
nearization is then clearly satisfied. The column vectors of the “controllability
matrix” and its determinant are computed to be

C = [g, adfg] =
[−(1 − x2) −x2

Q

−x1 −1 − x1
Q

]
, det C = (1 − x2)

(
1 +

x1

Q

)
− x1x2

Q

The system satisfies the linear independence property as long as the evolution
of the variables are away from the condition det C = 0. We assume that
det C �= 0 along the controlled trajectories leading towards stabilization. The
gradient of the linearizing output is computed to be

∂h

∂xT
=

γ(x)
det C [0 1]

[
−
(
1 + x1

Q

)
x2
Q

x1 −(1 − x2)

]
=

γ(x)
det C [x1 − (1 − x2)]

We can freely set γ(x) to be γ(x) = det C, given that the system is assumed
to be controllable throughout its trajectories towards stabilization around the
desired average equilibrium point.

The linearizing output thus satisfies the pair of linear partial differential
equations

∂h

∂x1
= x1,

∂h

∂x2
= −(1 − x2)

and a possible expression for the required linearizing output y is given by

y =
1
2
[
x2

1 + (1 − x2)2
]

We have,
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ẏ = x1 − (1 − x2)x2

Q

ÿ = 1 +
x2(1 − x2)

Q2
+

x2
2

Q
− uav

[
(1 − x2)

(
1 − x1

Q

)
+

x1x2

Q

]
Note that the expression multiplying the average input uav is, not coinciden-
tally, that of det C. The state dependent, locally invertible, input coordinate
transformation with auxiliary input variable vav, defined by

1 +
x2(1 − x2)

Q2
+

x2
2

Q
− uav

[
(1 − x2)

(
1 − x1

Q

)
+

x1x2

Q

]
= vav,

uav =
1 + x2(1−x2)

Q2 + x2
2

Q − vav

(1 − x2)
(
1 − x1

Q

)
+ x1x2

Q

yields a linear second order system for the average total stored energy,

ÿ = vav

An average auxiliary state feedback controller stabilizing the average total
stored energy towards a desired equilibrium value y, is given by

vav = −2ζωnẏ − ω2
n(y − y)

= −2ζωn

(
x1 − (1 − x2)x2

Q

)
− ω2

n

(
1
2
[
x2

1 + (1 − x2)2
]− y

)
We set ζ, ωn > 0 to obtain an asymptotically exponentially stable equilibrium
point for the closed loop system.

The full state feedback locally linearizing controller is then obtained as

uav =
1 + x2(1−x2)

Q2 +
x2
2

Q
+
{

2ζωn

(
x1 − (1−x2)x2

Q

)
+ ω2

n

(
1
2

[
x2

1 + (1 − x2)
2
]− y

)}
(1 − x2)

(
1 − x1

Q

)
+ x1x2

Q

The desired equilibrium value for the total stored energy is most con-
veniently parameterized in terms of the desired average output equilibrium
voltage value, Vd, as

y =
1
2
(1 − Vd)2

[
V 2

d

Q2
+ 1

]
5.2.6 The Cúk Converter

Consider the average normalized model of the Cúk converter

ẋ1 = − (1 − uav)x2 + 1
ẋ2 = (1 − uav) x1 + uavx3

α1ẋ3 = −uavx2 − x4

α2ẋ4 = x3 − 1
Q

x4
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For this system is desired to regulate the average value of the output
capacitor voltage x4 towards the average equilibrium value y = Vd < 0. The
corresponding average equilibrium values for x1, x2, x3 and uav are given,
respectively, by:

x1 =
V 2

d

Q
, x2 = 1 − Vd, x3 =

Vd

Q
, uav =

Vd

Vd − 1

Input-Output Feedback Linearization

Direct Method

Take as the output function of the system, the average normalized output
capacitor voltage y = x4.

The input-output feedback linearization is achieved by forcing the equa-
tion for x4 to represent a linear dynamics with y = Vd < 0 representing an
asymptotically exponentially stable equilibrium point. We set then the aver-
age control input to

uav =
− 1

α1α2
y − 1

α2Q ẏ − vav

1
α1α2

x2

where
vav = −λ0 (y − y) − λ1ẏ

with the restriction, 0 ≤ uav ≤ 1, being enforced in closing the loop and λ0

and λ1 being strictly positives scalars constants.
The value of the average feedback function uav, corresponding to the

steady state of the average output variable y is given by uav (y) = −y/x2.
It follows that the ideal behavior of the x3 variable corresponds itself to a
constant value, i.e., x3 = x3 = Vd/Q. The corresponding zero dynamics of the
controlled output function y is then obtained as

ẋ1 = 1 − (x2 + Vd)

ẋ2 =
(

1 +
Vd

x2

)
x1 − V 2

d

Q

1
x2

which has by equilibrium point to (x1, x2) =
(
V 2

d /Q, 1 − Vd

)
. The average zero

dynamics of the output capacitor voltage variable is therefore unstable. To
show this we simply resort to approximate linearization and find that around
the equilibrium point (x1, x2) the tangent linearization of the dynamics for x1

and x2 satisfies [
ẋ1δ

ẋ2δ

]
=

[
0 −1
1

(1−Vd)
V 2

d

Q(1−Vd)

][
x1δ

x2δ

]
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whose characteristic polynomial is just obtained as:

p (s) = s2 − 1
Q

V 2
d

(1 − Vd)
s +

1
(1 − Vd)

which is clearly unstable because it has at least one unstable root in the
complex plane. The feedback controller locally linearizing the input output
dynamics is therefore not feasible when the output function is represented by
the average normalized output capacitor voltage since this is a non-minimum
phase variable.

Indirect Method

Consider now the case when the output is given by the average input inductor
current y = x1. Suppose it is desired to regulate the average normalized
current to the desired equilibrium value x1 = V 2

d

Q . We have that the linearizing
controller is given by

uav =
x2 − 1 − λ(x1 − V 2

d /Q)
x2

and the control input corresponding to the steady state value of the output
y = x1 is simply given by uav (y) = 1 − 1/x2, which under non-saturated
operating conditions satisfies

0 < uav (y) < 1 (5.7)

and, hence x2 ∈ (1,∞).
The corresponding zero dynamics is readily found to be

ẋ2 =
V 2

d

Q

1
x2

+
(

1 − 1
x2

)
x3

α1ẋ3 = 1 − x2 − x4

α2ẋ4 = x3 − 1
Q

x4 (5.8)

which has by equilibrium point to

x2 = 1 − Vd, x3 =
1
Q

Vd, x4 = Vd

It is important to say that the zero dynamics, given by Equation 5.8, is the
same that we obtained in (3.11), then consider the Lyapunov function candi-
date

V (x2, x3, x4) =
1
2

[
(x2 − x2)

2 + α1 (x3 − x3)
2 + α2 (x4 − x4)

2
]

+ γ

+
∫ τ

0

[x2 (σ) − x2] [x3 (σ) − x3]
x2 (σ)

dσ
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with γ being a strictly positive constant parameter, which is assumed to be
sufficiently large so that V is strictly positive, and x2 ∈ (1,∞) by (5.7). The
time derivative of V , along the solution of the system of differential equation
yields the following expression:

V̇ (x2, x3, x4) = − 1
Q

(x4 − x4)
2 + x3

(x2 − x2)
2

x2
≤ 0

and by LaSalle’s theorem, it is then clear that the average normalized in-
put inductor current x1, taken as a system output, is a locally minimum
phase output. We, thus, attempt an indirect regulation of the converter aver-
age normalized output voltage, x4, towards the desired value x4 = Vd. This
is accomplished by primarily regulating the inductor current x1 towards its
corresponding average equilibrium value, x1 = V 2

d

Q .

State Feedback Linearization

Starting out from the normalized average model of the Cúk converter, we
show that such a system cannot be written in Brunovsky’s canonical form,
i.e., there is no artificial output function of the states of the form y = h (x),
for which the system is exactly linearizable.

The bilinear set of equations describing the average normalized Cúk con-
verter is of the general form:

ẋ = f (x) + g (x) uav

where the drift vector field, f (x), and the control vector field g (x), are given
by:

f (x) =

⎡⎢⎢⎢⎣
1 − x2

x1

− 1
α1

x4

1
α2

(
x3 − x4

Q

)
⎤⎥⎥⎥⎦ , g (x) =

⎡⎢⎢⎢⎣
x2

−x1 + x3

− 1
α1

x2

0

⎤⎥⎥⎥⎦
In this case, the conditions for the existence of a flat output are the fol-

lowing:

1. The set of vector fields
{

g, adfg, ad2
fg, ad3

fg
}

is linearly independent

2. The reduced set of vector fields
{

g, adfg, ad2
fg
}

is involutive.

Computing the involved vector fields adfg, ad2
fg and ad3

fg, we obtain:
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adfg = [f, g] =
∂g

∂x
f − ∂f

∂x
g =

⎡⎢⎢⎣
x3

−1 − 1
α1

x4

− 1
α1

x1
1

α1α2
x2

⎤⎥⎥⎦

ad2
fg = [f, adfg] =

∂adfg

∂x
f − ∂f

∂x
adfg =

⎡⎢⎢⎢⎢⎢⎣
−1 − 2

α1
x4

−
(
1 + 1

α1α2

)
x3 + 1

α1α2Qx4

− 1
α1

[
1 −

(
1 + 1

α1α2

)
x2

]
1

α1α2

[
2x1 + 1

α2Qx2

]

⎤⎥⎥⎥⎥⎥⎦

ad3
fg =

[
f, ad2

fg
]

=

⎡⎢⎢⎢⎢⎢⎣
−(α1α2+3)Qx3+3x4

α1α2Q
α2

1α2
2Q2+α1Qx3+[α2(3α1α2+1)Q2−α1]x4

α2
1α2

2Q2

α2(α1α2+3)Qx1+x2
α2

1α2
2Q

3α1α2(α2Q+x1)Q−[α2(3α1α2+1)Q2−α1]x2

α2
1α3

2Q2

⎤⎥⎥⎥⎥⎥⎦
It is quite straightforward to show that the set of vector fields:{

g, adfg, ad2
fg, ad3

fg
}

is linearly independent. Indeed, the “controllability matrix” C (x), for the Cúk,
converter, defined by:

C (x) =
[
g, adfg, ad2

fg, ad3
fg
]

is full rank, i.e., rank [C (x)] = 4.
For exact feedback linearization, the reduced set of vector fields:{

g, adfg, ad2
fg
}

(5.9)

must be involutive. We form then the following set of matrices,{
g, adfg, ad2

fg, [g, adfg] ,
[
g, ad2

fg
]
,
[
adfg, ad2

fg
]}

It is found that the rank of each one of these matrices is equal to 3. However,
the vector field, [g, adfg], which is given by:

[g, adfg] =
∂adfg

∂x
g − ∂g

∂x
adfg =

⎡⎢⎢⎢⎣
1 − 1

α1
(x2 − x4)

1
α1

x1 + x3

− 1
α1

(
1 + x2 + 1

α1
x4

)
− 1

α1α2
(x1 − x3)

⎤⎥⎥⎥⎦
yields the following matrix to be of rank 4{

g, adfg, ad2
fg, [g, adfg]

}
The set of vector fields (5.9) is not involutive. We conclude that there not
exists output function of the form h (x), such that the Cúk converter model
is flat from this output.
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5.2.7 The Sepic Converter

Consider now the average normalized model of the Sepic converter

ẋ1 = − (1 − uav) (x2 + x4) + 1
ẋ2 = (1 − uav)x1 − uavx3

α1ẋ3 = uavx2 − (1 − uav)x4

α2ẋ4 = (1 − uav) (x1 + x3) − 1
Q

x4

It is desired to regulate the average value of the output capacitor voltage x4

towards the average equilibrium value y = Vd. The corresponding average
equilibrium values for x1, x2, x3 and uav are given, respectively, by

x1 =
V 2

d

Q
, x2 = 1, x3 =

Vd

Q
, uav =

Vd

Vd + 1

Input-Output Feedback Linearization

Direct Method

Take as the output function of the system, the average normalized output
capacitor voltage y = x4.

The input-output feedback linearization is achieved by inducing the vari-
able x2 to be described by a linear dynamics with y = Vd representing an
asymptotically exponentially stable equilibrium point. We set then the aver-
age control input to

uav =
α2λ (y − y) − y/Q + x1 + x3

x1 + x3

with λ > 0 and the restriction, 0 ≤ uav ≤ 1, being enforced in the closed loop
system.

The value of the average feedback function uav, corresponding to the
steady state of the average output variable y is given by uav(y) = 1− Vd

Q(x1+x3)
.

The corresponding zero dynamics of the controlled output function y is then
obtained as

ẋ1 = 1 − Vd

Q

(
Vd + x2

x1 + x3

)
ẋ2 = −x3 +

Vd

Q

α1ẋ3 = x2 − Vd

Q

(
Vd + x2

x1 + x3

)
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The equilibrium point of the zero dynamics is clearly given by

x1 =
V 2

d

Q
, x2 = 1, x3 =

Vd

Q

The average zero dynamics of the output capacitor voltage variable is
found to be unstable. To demonstrate this fact, we simply resort to approxi-
mate linearization and find that around the equilibrium point (x1, x2, x3) the
tangent linearization of the dynamics for (x1, x2, x3) satisfies⎡⎢⎣ ẋ1δ

ẋ2δ

ẋ3δ

⎤⎥⎦ =

⎡⎢⎣
Q

Vd(Vd+1) − 1
(1+Vd)

Q
Vd(Vd+1)

0 0 −1
Q

α1Vd(1+Vd)
Vd

α1(1+Vd)
Q

α1Vd(1+Vd)

⎤⎥⎦
⎡⎢⎣x1δ

x2δ

x3δ

⎤⎥⎦
whose associated characteristic polynomial is given by

p (s) = s3 − (1 + α1) Q

α1Vd (1 + Vd)
s2 +

Vd

α1 (1 + Vd)
s − Q

α1Vd (1 + Vd)

which is unstable due to the strict positivity of the parameters Q,α1 and the
positivity of Vd. The feedback controller locally linearizing the input output
dynamics is therefore not feasible when the output function is represented by
the average normalized output capacitor voltage since this is a non-minimum
phase variable.

Indirect Method

Consider now the case when the output is given by the average input inductor
current y = x1. Suppose it is desired to regulate the average normalized
current to the desired equilibrium value x1 = V 2

d

Q . We have that the linearizing
controller is given by

uav =
x2 + x4 − 1 − λ (y − y)

x2 + x4

and the control input corresponding to the steady state value of the output
y = x1 is simply given by uav = 1− 1

x2+x4
. The corresponding zero dynamics

is found to be

ẋ2 =
V 2

d /Q + x3

x2 + x4
− x3

α1ẋ3 = x2 − 1

α2ẋ4 =
V 2

d /Q + x3

x2 + x4
− 1

Q
x4

The equilibrium point of the zero dynamics is clearly given by
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x2 = 1, x3 =
Vd

Q
, x4 = Vd

In this case the average zero dynamics of the output inductor current variable
is found to be stable. To demonstrate this fact, we simply resort to approxi-
mate linearization and find that around the equilibrium point (x2, x3, x4) the
tangent linearization of the dynamics for (x2, x3, x4) satisfies⎛⎜⎝ ẋ1δ

ẋ2δ

ẋ3δ

⎞⎟⎠ =

⎛⎜⎝ − Vd

Q(1+Vd) − Vd

(1+Vd) − Vd

Q(1+Vd)
1

α1
0 0

− Vd

α2Q(1+Vd)
1

α2(1+Vd) − (1+2Vd)
α2Q(1+Vd)

⎞⎟⎠
⎛⎜⎝x1δ

x2δ

x3δ

⎞⎟⎠
which has the following associated characteristic polynomial

p (s) = s3 +
1 + (2 + α2)Vd

α2 (1 + Vd)Q︸ ︷︷ ︸
=:η

s2 +

(
α1 + α2Q

2
)
Vd

α1α2 (1 + Vd)Q2︸ ︷︷ ︸
=:µ

s +
2Vd

α1α2 (1 + Vd) Q︸ ︷︷ ︸
=:κ

And applying the Routh-Hurwitz stability criteria for p (s), the corresponding
Routh-Hurwitz array is given by

s3

s2

s
s0

∣∣∣∣∣∣∣∣
1 µ
η κ

ηµ−κ
η

κ

and since there are no change of signs in the first column of the Routh-Hurwitz
array, i.e.,

1 + (2 + α2)Vd

α2 (1 + Vd)Q
> 0

ηµ − κ

η
> 0

2Vd

α1α2 (1 + Vd)Q
> 0

then the equilibrium point (x2, x3, x4) is therefore locally asymptotically sta-
ble.

State Feedback Linearization

Consider the average normalized model of the Sepic converter which is, as in
the previous case, of the form:

ẋ = f (x) + g (x) uav

with f (x) and g (x) given by:
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f (x) =

⎡⎢⎢⎢⎣
1 − (x2 + x4)

x1

− 1
α1

x4

1
α2

(
x1 + x3 − x4

Q

)
⎤⎥⎥⎥⎦ , g (x) =

⎡⎢⎢⎣
x2 + x4

− (x1 + x3)
1

α1
(x2 + x4)

− 1
α2

(x1 + x3)

⎤⎥⎥⎦
We next show that the normalized average model does not admit a state and
input coordinate transformation which exactly linearizes the system.

We compute the following vector fields:

adfg = [f, g] =
∂g

∂x
f − ∂f

∂x
g =

⎡⎢⎢⎢⎢⎣
−x3 − 1

α2Qx4

−1 + 1
α1

x4

1
α1

(
x1 − 1

α2Qx4

)
− 1

α2

(
1 + 1

α2Qx1 + 1
α1

x2 + 1
α2Qx3

)
⎤⎥⎥⎥⎥⎦

ad2
fg = [f, adfg] =

∂adfg

∂x
f − ∂f

∂x
adfg =

⎡⎢⎢⎣
γ11

γ21

γ31

γ41

⎤⎥⎥⎦
where

γ11 = −1 − 1
α2

− 2
α2

2Q
x1 − 1

α1α2
x2 − 2

α2
2Q

x3 +
(

2
α1

+ 1
α2

2Q2

)
x4

γ21 = 1
α1α2

x1 +
(

1
α1α2

+ 1
)

x3 + 1
α2Q

(
1 − 1

α1

)
x4

γ31 = 1
α1

[(
1 − 1

α2

)
− 2

α2
2Q

x1 −
(
1 + 1

α1α2

)
x2 − 2

α2
2Q

x3 −
(
1 − 1

α2
2Q2

)
x4

]
γ41 =

1
α2

⎡⎣ − 2
α2Q −

(
1

α2
2Q2 + 2

α1

)
x1 + 1

α2Q

(
1 − 1

α1

)
x2

−
(

1
α2

2Q2 − 1
)

x3 + 2
α2Q

(
1

α1
+ 1

)
x4

⎤⎦
We do not write down the vector ad3

fg, due to its involved component
expressions. The computation of such a vector field is carried out, nevertheless,
accordingly to:

ad3
fg =

[
f, ad2

fg
]

=
∂ad2

fg

∂x
f − ∂f

∂x
ad2

fg

It is quite straightforward to demonstrate, making use of well known symbolic
manipulation computer packages, that the controllability matrix

C (x) =
[
g, adfg, ad2

fg, ad3
fg
]

is full rank 4.
On the other hand, we can also verify, with some further work, that the

set of vectors {
g, adfg, ad2

fg
}

is not involutive. As a consequence, the Sepic converter average normalized
dynamics is not exactly linearizable by means of a nonlinear state coordinate
transformation and a state dependent input coordinate transformation.
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5.2.8 The Zeta Converter

Consider the average normalized model of the Zeta converter

ẋ1 = − (1 − uav)x2 + uav

ẋ2 = (1 − uav) x1 − uavx3

α1ẋ3 = uavx2 − x4 + uav

α2ẋ4 = x3 − 1
Q

x4

It is desired to regulate the average value of the output capacitor voltage
x4 towards the average equilibrium value y = Vd. The corresponding average
equilibrium values for x1, x2, x3 and uav are given, respectively, by:

x1 =
V 2

d

Q
, x2 = Vd, x3 =

Vd

Q
, uav =

Vd

Vd + 1

Input-Output Feedback Linearization

Direct Method

Take as the output function of the system, the average normalized output
capacitor voltage y = x4.

The input-output feedback linearization is achieved by forcing the equation
for x4 to represent a linear dynamics with y = Vd representing an asymptoti-
cally exponentially stable equilibrium point. We set then the average control
input to

uav =
α1α2vav + α1

Q ẏ + y

1 + x2

where
vav = −λ0 (y − y) − λ1ẏ

with the restriction, 0 ≤ uav ≤ 1, being enforced in closing the loop and λ0

and λ1 being strictly positives scalars constants.
The value of the average feedback function uav, corresponding to the

steady state of the average output variable y is given by uav (y) = y/ (1 + x2).
It follows that the ideal behavior of the x3 variable corresponds itself to a con-
stant value, i.e., x3 = x3 = Vd/Q. The corresponding zero dynamics of the
controlled output function y is then obtained as

ẋ1 = −x2 + Vd

ẋ2 = x1 −
(

Vd/Q + x1

1 + x2

)
Vd

which has by equilibrium point to (x1, x2) =
(
V 2

d /Q, Vd

)
. The average zero

dynamics of the output capacitor voltage variable is therefore unstable. To



5.2 Feedback Linearization 259

show this we simply resort to approximate linearization and find that around
the equilibrium point (x1, x2) the tangent linearization of the dynamics for x1

and x2 satisfies [
ẋ1δ

ẋ2δ

]
=

[
0 −1
1

1+Vd

V 2
d

Q(1+Vd)

][
x1δ

x2δ

]
whose characteristic polynomial is just obtained as:

p (s) = s2 − 1
Q

V 2
d

1 + Vd
s +

1
1 + Vd

which is clearly unstable because it has at least one unstable root in the
complex plane. The feedback controller locally linearizing the input output
dynamics is therefore not feasible when the output function is represented by
the average normalized output capacitor voltage since this is a non-minimum
phase variable.

Indirect Method

Consider now the case when the output is given by the average input inductor
current y = x1. Suppose it is desired to regulate the average normalized cur-
rent to the desired equilibrium value x1 = V 2

d /Q. We have that the linearizing
controller is given by

uav =
x2 − λ(x1 − V 2

d /Q)
1 + x2

and the control input corresponding to the steady state value of the output
y = x1 is simply given by uav (y) = x2/ (1 + x2), which under non-saturated
operating conditions satisfies

0 < uav (y) < 1 (5.10)

thus x2 > 0.
The corresponding zero dynamics is found to be

ẋ2 =
V 2

d /Q − x2x3

1 + x2

α1ẋ3 = x2 − x4

α2ẋ4 = x3 − 1
Q

x4 (5.11)

which has by equilibrium point to

x2 = Vd, x3 =
Vd

Q
, x4 = Vd
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It is important to say that the zero dynamics given by Equation 5.11 is the
same that we obtained in (3.13), then consider the candidate Lyapunov func-
tion

V (x2, x3, x4) =
1
2

[
(x2 − x2)

2 + α1 (x3 − x3)
2 + α2 (x4 − x4)

2
]

+ γ

−
∫ τ

0

[x2 (σ) − x2] [x3 (σ) − x3]
[1 + x2 (σ)]

dσ

with γ being a strictly positive constant parameter, which is assumed to be
sufficiently large so that V is strictly positive, with x2 > 0 by (5.10). The
time derivative of V , along the solution of the system of differential equation
yields the following expression:

V̇ (x2, x3, x4) = − 1
Q

(x4 − x4)
2 − x3

(x2 − x2)
2

(1 + x2)
≤ 0

and by LaSalle’s theorem, it is then clear that the average normalized in-
put inductor current x1, taken as a system output, is a locally minimum
phase output. We, thus, attempt an indirect regulation of the converter aver-
age normalized output voltage, x4, towards the desired value x4 = Vd. This
is accomplished by primarily regulating the inductor current x1 towards its
corresponding average equilibrium value, x1 = V 2

d /Q.

State Feedback Linearization

In this case we have

f (x) =

⎡⎢⎢⎢⎣
−x2

x1

− 1
α1

x4

1
α2

(
x3 − x4

Q

)
⎤⎥⎥⎥⎦ , g (x) =

⎡⎢⎢⎢⎣
1 + x2

− (x1 + x3)
1

α1
(1 + x2)

0

⎤⎥⎥⎥⎦
The controllability matrix

C (x) =
[
g, adfg, ad2

fg, ad3
fg
]

is found to be full rank 4.
The set of vector fields

{
g, adfg, ad2

fg
}

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎡⎢⎢⎣

1 + x2

−x1 − x3
(1+x2)

α1

0

⎤⎥⎥⎦ ;

⎡⎢⎢⎢⎣
−x3

(x4−α1)
α1
1

α1
x1

− (1+x2)
α1α2

⎤⎥⎥⎥⎦ ;

⎡⎢⎢⎢⎢⎣
−1 + 2

α1
x4

(1+α1α2)Qx3−x4
α1α2Q

− 1+(1+α1α2)x2
α2

1α2

− (1+2α2Qx1+x2)
α1α2

2Q

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

is linearly independent, of course, but it is found to be non-involutive. This
means that the system is not exactly feedback linearizable.
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5.2.9 The Quadratic Buck Converter

It is left as an exercise, for the interested reader, that the average normalized
quadratic Buck converter model, given by:

ẋ1 = −x2 + uav

ẋ2 = x1 − uavx3

α1ẋ3 = uavx2 − x4

α2ẋ4 = x3 − x4

Q

is not feedback linearizable by means of state feedback linearization, nor via
an input-output feedback linearization at direct form.

5.3 Passivity Based Control of DC-to-DC Power
Converters

The feedback controller design presented in this section follows the line of the
energy shaping plus damping injection Passivity Based Control, as advocated
in the book by Ortega et al. [48].

We postulate a rather general average model of DC-to-DC power convert-
ers regulated by a single switch. These are described, in general, by a system
of the form:

Aẋ = J (uav)x −Rx + buav + E
where A is a diagonal positive definite matrix, J (uav) is a skew symmetric
matrix for all uav and it is, moreover, an affine function of u of the form J0 +
J1u. This term represents the conservative forces of the system. The matrix
R is a positive semi-definite symmetric matrix representing the dissipation
terms of the circuit model. b is, generally speaking, a constant vector and it
may contain some components which are dependent on the external constant
sources. The term E also represents external constant voltage sources. The
vector x ∈ Rn is assumed to be available for measurement.

The control task is to track a given reference state trajectory, x∗(t) which
is to be determined on the basis of knowledge of the system structure and a
specified output trajectory tracking, or stabilization, task.

One starts with a Lyapunov function candidate in the tracking error e =
(x − x∗(t)), of the form

V (e) =
1
2
eT Ae =

1
2
(x − x∗(t))A(x − x∗(t))

The time derivative of such a function along the trajectories of the system is
given by
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V̇ (e) = (x − x∗(t))TA(ẋ − ẋ∗(t))
= (x − x∗(t))T ([J (uav) −R] x + buav + E − Aẋ∗(t))

Setting

Aẋ∗(t) = J (uav)x∗(t) −Rx∗(t) + buav + E + RI(x − x∗(t))

with RI being a symmetric positive definite, or positive semi-definite, matrix
satisfying the condition: R + RI > 0. The above choice of the reference tra-
jectory dynamics yields, in view of the fact that eTJ (u)e = 0 for all u, the
following evaluation of the time derivative of the Lyapunov function V (e),

V̇ (e) = eT (J (uav)e −Re −RIe) = −eT (R + RI)e < 0

The tracking error e has the origin as an asymptotically stable equilibrium
point. The stability of such desired equilibrium point for the tracking error
may be determined to be even of exponential nature. Indeed, let κA and
κR+RI

be, respectively, the smallest eigenvalues of the positive definite sym-
metric matrices A and R + RI . Let κ = min{κA, κR+RI

}, we then have

V̇ (e) = −eT (R + RI)e ≤ −κ V (e)

The tracking error e has then the origin as an asymptotically exponentially
stable equilibrium point.

Note that the symmetric matrix RI complements the stability features of
the damping matrix R originally in the system. The condition R + RI > 0
must be regarded as a sort of dissipation matching condition since the struc-
ture of the matrix b is responsible for achieving such a damping in a feedback
manner, then the range space of RI and the range space of b are not, neces-
sarily, independent.

The system

Aẋ∗(t) = J (uav)x∗(t) −Rx∗(t) + buav + E + RI(x − x∗(t))

plays the role of an exogenous controlled system which mimics the energy
structure of the system and adds some extra damping term of the form RI(x−
x∗(t)). This damping “injection” complements the dissipation of the original
system in the tracking error dynamics. The exogenous system is a controlled
system which plays the role of a reference model system with a fundamentally
enhanced dissipation structure. Defining a desired reference trajectory for a
relative degree one minimum phase output (state) variable in the reference
model, the control input can be immediately computed in closed loop form
while the rest of the reference states play the role of the dynamics of the
reference variables, other than the chosen minimum phase output, constituting
the feedback controller.
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5.3.1 The Boost Converter

Consider the Boost converter shown in Figure 5.2

i

v

L

E

u

u

RC

Fig. 5.2. The Boost converter.

The average normalized model of this converter is given by

ẋ1 = −(1 − uav)x2 + 1

ẋ2 = (1 − uav)x1 − 1
Q

x2

Given a constant average control input uav = U the corresponding equi-
librium values for the average input current, x1, and average output voltage,
x2, are given by:

x1 =
1
Q

1
(1 − U)2

, x2 =
1

(1 − U)

Using these expressions, we can write:

x1 =
1
Q

x2
2

Since the average normalized voltage variable x2 is a non-minimum phase
output, it is highly advisable to indirectly control the capacitor average voltage
through the corresponding inductor current x1, which is, in fact, a minimum
phase output.

The Boost Converter as a Passive System

Considered the following storage function

H (x) =
1
2
(
x2

1 + x2
2

)
The time derivative of H (x) along the regulated evolution of the system

is given by

Ḣ(x) = x1ẋ1 + x2ẋ2 = − 1
Q

x2
2 + x1 ≤ x1
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It results in a passive relation involving the normalized external “input” E,
which here corresponds with the additive scalar constant “1” in the normalized
model, and the average normalized input current variable x1. Direct integra-
tion yields the following passivity inequality,

H [x (t)] − H [x (0)] ≤
∫ t

0

x1 (σ) dσ

Passivity Based Control for the Boost Converter

The average normalized Boost circuit model may be written in the following
matrix form:[

ẋ1

ẋ2

]
=
[

0 − (1 − uav)
(1 − uav) 0

] [
x1

x2

]
+
[

0 0
0 − 1

Q

] [
x1

x2

]
+
[

1
0

]
The exogenous system corresponding to the desired state variables xd is

thus given by,[
ẋ1d

ẋ2d

]
=
[

0 − (1 − uav)
(1 − uav) 0

] [
x1d

x2d

]
+
[

0 0
0 − 1

Q

] [
x1d

x2d

]
+
[

1
0

]
−
[−R1 0

0 0

] [
x1 − x1d

x2 − x2d

]
with R1 > 0, being a positive scalar, and xd =

[
x1d x2d

]T .
An indirect stabilization of the output voltage may be accomplished by

setting: x1d = x1 = constant. We obtain, from the first equation of the exoge-
nous normalized model above, the following dynamical controller expression
for the average input uav:

uav = − 1
ξ2

[1 + R1 (x1 − x1)] + 1

ξ̇2 = (1 − uav)x1 − 1
Q

ξ2

where the introduced variable ξ2, has been used in replacement of the variable
x2d in the exogenous model. The differential equation for ξ2 represents the
dynamic part of the feedback controller.

We propose to use the average designed passivity based controller in a
switched implementation using a Σ − ∆-modulator.

u =
1
2

[1 + sign z] , ż = uav − u

uav = − 1
ξ2

[1 + R1 (x1 − x1)] + 1

ξ̇2 = (1 − uav)x1 − 1
Q

ξ2
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Simulations

A typical Boost converter circuit is characterized by the following parameters:

L = 20 mH, C = 20 µF, R = 30 Ω, E = 15 V

These given set of parameter values yield the following normalized param-
eter values,

Q = 0.9487,
√

LC = 6.3246 × 10−4 s

It is desired to reach an actual steady state equilibrium voltage of value
v = 30 V. The corresponding actual steady state current and control input,
respectively, are given by i = 2 A and uav = 0.5.

Figure 5.3 depicts the average responses of the Boost converter model to
the passivity based control synthesized via the energy shaping and damping
injection method.
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Fig. 5.3. Average response of Boost converter to passivity based control.

Figure 5.4 shows the closed loop response of the switched Boost power
converter to a Σ−∆-modulator implementation of a passivity based stabilizing
controller. The controller and the system parameters were chosen to be exactly
the same as in the previous simulation.
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Fig. 5.4. Response of switched Boost converter to passivity based control imple-
mented through a Σ − ∆ modulator.

5.3.2 The Buck-Boost Converter

Consider the average normalized model of the Buck-Boost converter circuit

ẋ1 = (1 − uav)x2 + uav

ẋ2 = −(1 − uav)x1 − 1
Q

x2

As in the case of the Boost converter, x2, is a non-minimum phase output
for the average system. On the other hand, x1 is a minimum phase output for
the average system.

Given a constant average control input uav = U the corresponding equi-
librium values for the average input current, x1, and average output voltage,
x2, are:

x1 =
1
Q

U

(1 − U)2
, x2 = − U

(1 − U)

using these expressions, we can write:

x1 = (x2 − 1)
x2

Q

Thus, if we desire to regulate x2 towards an equilibrium value x2, then,
such a regulation can be indirectly accomplished by regulating x1 towards its
corresponding equilibrium value.
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The Buck-Boost Converter as a Passive System

Considered the following average storage function,

H (x) =
1
2
(
x2

1 + x2
2

)
The time derivative of H (x) along the regulated evolution of the Buck-

Boost system trajectories is given by

Ḣ(x) = x1ẋ1 + x2ẋ2 = − 1
Q

x2
2 + uavx1 ≤ uavx1

The system is then a passive system and, in this case, the passivity relation
directly involves the average control input uav and the average current vari-
able x1. The integration of the time derivative of H, produces the following
passivity inequality:

H [x (t)] − H [x (0)] ≤
∫ t

0

x1 (σ)uav (σ) dσ

As in the previous case, we proceed to design a dynamic output feedback
controller using the energy shaping plus damping injection controller design
method.

Letting, x1d = x1 = constant, we obtain the following average dynamical
output feedback controller expression

uav =
1

ξ2 − 1
[R1 (x1 − x1) + ξ2]

ξ̇2 = − (1 − uav) x1 − 1
Q

ξ2

where ξ2, has replaced the variable x2d in the exogenous system description.

Simulations

A typical set of parameters for the Buck-Boost converter circuit are:

L = 20 mH, C = 20 µF, R = 30 Ω, E = 15 V

These parameter values yield:

Q = 0.9487,
√

LC = 6.3246 × 10−4 s

We set a desired steady state voltage of v = −22.5 V, with the correspond-
ing steady state current:

i = 1.875 A

while the average equilibrium input turns out to be given by uav = 0.6.
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Fig. 5.5. Average responses of Buck-Boost converter to passivity based control.

Figure 5.5 shows the non-normalized system response of the Buck-Boost
power converter, to the average passivity based controller designed on the
basis of energy shaping plus damping injection.

Figure 5.6 shows the closed loop response of a Buck-Boost power converter
to a Σ −∆-modulator implementation of the passivity based stabilizing con-
troller.
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Fig. 5.6. Responses of switched Buck-Boost converter to passivity based control
implemented through a Σ − ∆ modulator.
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5.3.3 The Cúk Converter

The average normalized model of the Cúk DC-to-DC power converter is given
by,

ẋ1 = −(1 − uav)x2 + 1
ẋ2 = (1 − uav)x1 + uavx3

α1ẋ3 = −uavx2 − x4

α2ẋ4 = x3 − 1
Q

x4

Given a constant average control input uav = U , the corresponding equilib-
rium values for the average input currents, x1 and x3, and the average output
voltages, x2 and x4, are given by,

x1 =
1
Q

U2

(1 − U)2
, x2 =

1
1 − U

, x3 = − 1
Q

U

(1 − U)
, x4 = − U

1 − U

Using these expressions, we can write:

x1 =
x2

4

Q
, x2 = 1 − x4, x3 =

x4

Q

In the Cúk converter circuit dynamics, the output voltage x4 is found to
be a non-minimum phase output, so it is preferable to indirectly control the
average capacitor output voltage x4 through the average inductor current x1,
which is a minimum phase output.

Considered the following average storage function,

H (x) =
1
2
(
x2

1 + x2
2 + α1x

2
3 + α2x

2
4

)
The time derivative of H (x) along the controlled motions of the system is

given by,

Ḣ(x) = x1ẋ1 + x2ẋ2 + α1x3ẋ3 + α4x4ẋ4 = − 1
Q

x2
4 + x1 ≤ x1

then the average Cúk system is a passive system between the normalized input,
E, here represented by the constant “1” and the input current variable x1.
The integration of the time derivative of H, produces the traditional passivity
inequality,

H [x (t)] − H [x (0)] ≤
∫ t

0

x1 (σ) dσ

The auxiliary, exogenous, system, of the average Cúk converter model is
then given
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ẋd =

⎛⎜⎜⎝
0 −1 + uav 0 0

1 − uav 0 uav

α1
0

0 −uav

α1
0 − 1

α1α2

0 0 1
α1α2

0

⎞⎟⎟⎠ ∂H(xd)
∂xd

+

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 − 1

α2
2Q

⎞⎟⎟⎠ ∂H(xd)
∂xd

+

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠−

⎛⎜⎜⎝
−R1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

x1 − x1d

x2 − x2d

α1 (x3 − x3d)
α2 (x4 − x4d)

⎞⎟⎟⎠
with R1 > 0, being a positive scalar, and:

xd = [x1d, x2d, x3d, x4d]
T

, ∂H(xd)/∂xd = [x1d, x2d, α1x3d, α2x4d]
T

Letting, x1d = x1 = constant, we obtain the following dynamical average
feedback controller expression for the average input uav:

uav = − 1
ξ2

[1 + R1 (x1 − x1)] + 1

ξ̇2 = (1 − uav)x1 + ξ3uav

ξ̇3 = − 1
α1

ξ2uav − 1
α1

ξ4

ξ̇4 =
1
α2

ξ3 − 1
α2Q

ξ4

where the variables ξ2, ξ3 and ξ4, acting as the dynamical controller states,
have replaced the auxiliary state variables x2d, x3d and x4d, respectively.

Simulations

We take a Cúk converter with the following parameter values

L1 = 30 mH, C1 = 150 µF, L2 = 30 mH, C2 = 50 µF,

R = 10 Ω, E = 100 V

We set as desired steady state voltage υ2 = −200 V, with corresponding
steady state values of the currents and internal capacitor voltage given by:

i1 = 40 A, υ1 = 300 V, i2 = −20 A

and
uav = 0.666

Figure 5.7 depicts the average Cúk converter system response to the ac-
tions of a passivity based controller using the energy shaping plus damping
injection method.
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Fig. 5.7. Average responses of Cúk converter to a passivity based controller.
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Fig. 5.8. Responses of switched Cúk converter to a passivity based controller im-
plemented with a Σ − ∆ modulator.

Figure 5.8 shows the closed loop response of a Cúk power converter to a
passivity based stabilizing controller implemented with the help of a Σ − ∆-
modulator.
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5.3.4 The Sepic Converter

The average normalized model of the Sepic converter circuit is given by

ẋ1 = −(1 − uav)(x2 + x4) + 1
ẋ2 = (1 − uav)x1 − uavx3

α1ẋ3 = uavx2 − (1 − uav)x4

α2ẋ4 = (1 − uav)(x1 + x3) − 1
Q

x4

Given a constant average value of the output capacitor voltage x4 towards
the average equilibrium value Vd, the corresponding equilibrium values for the
average input currents, x1 and x3, and the average output voltage x2, are:

x1 =
V 2

d

Q
, x2 = 1, x3 =

Vd

Q
, uav =

Vd

Vd + 1

In the average normalized model of the Sepic converter, the output voltage
x4 is a non-minimum phase output while x1 is a minimum phase output. We
proceed to indirectly control the capacitor output voltage x4 through the
inductor current x1.

Consider the following storage function

H (x) =
1
2
(
x2

1 + x2
2 + α1x

2
3 + α2x

2
4

)
The Sepic converter is shown to satisfy a passivity inequality by consider-

ing the time derivative of the average stored energy H (x) along the controlled
motions of the system. Indeed,

Ḣ(x) = x1ẋ1 + x2ẋ2 + α1x3ẋ3 + α4x4ẋ4 = − 1
Q

x2
4 + x1 ≤ x1

The integration of this expression produces the following passivity inequality,

H [x (t)] − H [x (0)] ≤
∫ t

0

x1 (σ) dσ

The explicit exogenous system for the Sepic converter, corresponding to
the desired state variables xd, is thus given by:

ẋd =

⎛⎜⎜⎝
0 −1 + uav 0 − 1−uav

α2

1 − uav 0 −uav

α1
0

0 uav

α1
0 − 1

α1

1−uav

α2
1−uav

α2
0 1

α1

1−uav

α2
0

⎞⎟⎟⎠ ∂H(xd)
∂xd

+

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 − 1

α2
2Q

⎞⎟⎟⎠ ∂H(xd)
∂xd

+

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠−

⎛⎜⎜⎝
−R1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

x1 − x1d

x2 − x2d

α1 (x3 − x3d)
α2 (x4 − x4d)

⎞⎟⎟⎠
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with R1 > 0, being a positive scalar, and

xd = [x1d, x2d, x3d, x4d]
T

, ∂H(xd)/∂xd = [x1d, x2d, α1x3d, α2x4d]
T

Define the following average normalized error variables, ei = xi − xid,
i = 1, . . . , 4. We obtain the following tracking error dynamics:

ė1 = −(1 − uav) (e2 + e4) − R1e1

ė2 = (1 − uav)e1 − uave3

α1ė3 = uave2 − (1 − uav)e4

α2ė4 = (1 − uav) (e1 + e3) − 1
Q

e4

Consider now the following Lyapunov function candidate, defined in the
trajectory tracking error space described by the coordinates, e = (e1, e2, e3, e4),

H (e) =
1
2
(
e2
1 + e2

2 + α1e
2
3 + α2e

2
4

)
The time derivative of such a positive definitive function, along the controlled
trajectories of the tracking error dynamics, yields

Ḣ (e) = −R1e
2
1 −

1
Q

e2
4 ≤ 0

The set points in the tracking error space which satisfy Ḣ (e) = 0 are given
by the intersection of the hyper-planes, e1 = e4 = 0. This implies, from the
tracking error dynamics, that also e3 = 0 and e2 = 0. According to LaSalle’s
theorem, the equilibrium point ei = 0, i = 1, . . . , 4 is a globally asymptoti-
cally stable equilibrium point for the controlled tracking error dynamics. This
means that the average converter system trajectories, x (t), and the auxil-
iary system trajectories, xd (t), asymptotically converge towards each other.
It then suffices to fix a suitable trajectory, or constant reference value, (for
the desired average inductor current x1d) in the auxiliary system dynamics
and define the control input in a corresponding fashion.

Letting, x1d = x1 = constant, we obtain the following average dynamical
output feedback controller expression for converter Sepic:

uav = − 1
ξ2 + ξ4

[1 − (ξ2 + ξ4) + R1 (x1 − x1)]

ξ̇2 = (1 − uav)x1 − uavξ3

α1ξ̇3 = uavξ2 − (1 − uav)ξ4

α2ξ̇4 = (1 − uav) (x1 + ξ3) − 1
Q

ξ4

where the variables ξ2, ξ3 and ξ4, acting as the dynamical controller states,
have replaced the auxiliary state variables x2d, x3d and x4d, respectively.



274 5 Nonlinear Methods

We propose to implement the average designed passivity based controller
on the switched converter by means of a Σ−∆-modulator. As usual we have,

u =
1
2

[1 + sign z] , ż = e = uav − u

uav = − 1
ξ2 + ξ4

[1 − (ξ2 + ξ4) + R1 (x1 − x1)]

ξ̇2 = (1 − uav)x1 − uavξ3

α1ξ̇3 = uavξ2 − (1 − uav)ξ4

α2ξ̇4 = (1 − uav) (x1 + ξ3) − 1
Q

ξ4

Simulations

A typical Sepic converter circuit is characterized by the following parameters:

L1 = 30 mH, C1 = 150 µF, L2 = 30 mH, C2 = 50 µF,

R = 10 Ω, E = 100 V

We desire to regulate the system towards a steady state, non-normalized,
voltage of value υ2 = 200 V. The corresponding steady state variables yield:
i1 = 40 A, υ1 = 100 V and i2 = 20 A with uav = 0.666.

Figure 5.9 depicts the average Sepic system responses to the designed con-
tinuous, average passivity based controller synthesized via the energy shaping
plus damping injection method.

Figure 5.10 shows the switched closed loop response of a Sepic power
converter to a Σ−∆-modulator implementation of a passivity based stabilizing
controller that uses energy shaping plus damping injection.

5.3.5 The Zeta Converter

Consider the average normalized model of a Zeta converter,

ẋ1 = −(1 − uav)x2 + uav

ẋ2 = (1 − uav)x1 − uavx3

α1ẋ3 = uavx2 − x4 + uav

α2ẋ4 = x3 − 1
Q

x4

Given a constant average value of the output capacitor voltage x4 = Vd,
the corresponding average equilibrium values for x1, x2, x3 and uav are given,
respectively, by:

x1 =
V 2

d

Q
, x2 = Vd, x3 =

Vd

Q
, uav =

Vd

Vd + 1
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Fig. 5.9. Average responses of Sepic converter controlled by a passivity based con-
troller.
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Fig. 5.10. Switched responses of Sepic converter controlled by an average passivity
based controller implemented via a Σ − ∆ modulator.

The average normalized output voltage x4 is a non-minimum phase output
while the average normalized inductor current x1 is a minimum phase output.
We proceed to indirectly control the capacitor output voltage x4 through the
regulation of x1.

Consider the average normalized storage function,
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H (x) =
1
2
(
x2

1 + x2
2 + α1x

2
3 + α2x

2
4

)
The time derivative of H (x) along the controlled motions of the system is
given by,

Ḣ(x) = − 1
Q

x2
4 + (x1 + x3)uav ≤ (x1 + x3)uav

The system is then a passive system with a passive mapping existing between
the control input uav and the sum of the currents (x1 + x3) acting as the
output of the system. The integration of the time derivative of H, produces
the passivity inequality,

H [x (t)] − H [x (0)] ≤
∫ t

0

[x1 (σ) + x3 (σ)]uav (σ) dσ

Consider an auxiliary, exogenous, system, which is a copy of the orig-
inal system, with injected damping represented by a term of the form:
R1 (x1 − x1d), R1 > 0. The injected damping affects only the copy of the
average input inductor current dynamics, i.e., we consider,

ẋ1d = − (1 − uav) x2d + uav + R1 (x1 − x1d)
ẋ2d = (1 − uav)x1d − uavx3d

α1ẋ3d = uavx2d − x4d + uav

α2ẋ4d = x3d − x4d

Q

Define the following average normalized error variables, ei = xi − xid, i =
1, . . . , 4. We then obtain the following tracking error dynamics:

ė1 = − (1 − uav) e2 − R1e1

ė2 = (1 − uav) e1 − ue3

α1ė3 = uave2 − e4

α2ė4 = e3 − 1
Q

e4

Consider now the following Lyapunov function candidate, defined in the
trajectory tracking error space described by the coordinates, e = (e1, e2, e3, e4),

H (e) =
1
2
(
e2
1 + e2

2 + α1e
2
3 + α2e

2
4

)
The time derivative of such a positive definitive function, along the con-

trolled trajectories of the tracking error dynamics, yields

Ḣ (e) = −R1e
2
1 −

1
Q

e2
4 ≤ 0
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The set points in the tracking error space which satisfy Ḣ (e) = 0 are given
by the intersection of the hyper-planes, e1 = e4 = 0. This implies, from the
tracking error dynamics, that also e3 = 0 and e2 = 0. According to LaSalle’s
theorem , the equilibrium point ei = 0, i = 1, . . . , 4 is a globally asymptoti-
cally stable equilibrium point for the controlled tracking error dynamics. This
means that the average converter system trajectories, x (t), and the auxiliary
system trajectories, xd (t), asymptotically converge towards each other.

We fix a desired constant reference value for the average inductor current
x1d in the auxiliary system dynamics and solve from the control input from
the first equation of the auxiliary dynamics. We denote, x1d = x1, and obtain,
a dynamic average feedback controller, uav, of the form:

uav =
1

1 + ξ2
[ξ2 − R1 (x1 − x1)]

ξ̇2 = (1 − uav)x1 − uavξ3

α1ξ̇3 = uavξ2 − ξ4 + uav

α2ξ̇4 = ξ3 − 1
Q

ξ4

where the variables ξ2, ξ3 and ξ4, acting as the dynamical controller states,
have replaced the auxiliary state variables x2d, x3d and x4d, respectively. The
signal uav is, therefore, the output of the derived average controller. The
only measurement required from the converter system is represented by the
normalized average input inductor current x1. The obtained controller is then
truly a dynamic output feedback controller.

Simulations

A typical Zeta DC-to-DC power converter circuit is characterized by the fol-
lowing component parameter values: L1 = 600 µH, C1 = 10 µF, L2 = 10 mH,
C2 = 10 µF, R = 40 Ω and E = 100 V.

We desired a steady state output voltage of value, υ2 = 200 V, with the
corresponding equilibrium values for the state variables given by,

i1 = 10 A, υ1 = 200 V, i2 = 5 A

and
uav = 0.666

Figure 5.11 shows the simulated average responses of the Zeta converter to
the actions of the designed average passivity based feedback controller using
the energy shaping plus damping injection method.
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Fig. 5.11. Average responses of Zeta converter from a passivity based controller.

Figure 5.12 depicts the closed loop, switched, response of a Zeta power
converter to a Σ−∆-modulator implementation of a passivity based stabilizing
controller using the energy shaping plus damping injection design method.
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Fig. 5.12. Responses of a switched Zeta converter from a passivity based controller
implemented via a Σ − ∆ modulator.
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5.3.6 The Quadratic Buck Converter

The average normalized model of the quadratic Buck converter is given by,

ẋ1 = −x2 + uav

ẋ2 = x1 − uavx3

α1ẋ3 = uavx2 − x4

α2ẋ4 = x3 − 1
Q

x4

The equilibrium point parameterized in terms of a constant output voltage
x4 = x4 for this converter is given by,

x1 =
√

x4
3

Q
, x2 =

√
x4, x3 =

x4

Q

In the average normalized quadratic Buck model, the output voltage x4 is a
non-minimum phase output and the inductor current x1 is a minimum phase
output. Regulation of the output voltage can be indirectly achieved by the
regulation of the inductor current x1 towards its equilibrium value.

The average normalized model of the quadratic Buck converter is found
to represent a passive map between the average input uav and the inductor
current variable x1. Consider the normalized average total stored energy of
the system,

H (x) =
1
2
(
x2

1 + x2
2 + α1x

2
3 + α2x

2
4

)
The time derivative of H (x) along the controlled motions of the system is
given by,

Ḣ(x) = − 1
Q

x2
4 + x1uav ≤ x1uav

This reveals a passive map between the average control input uav and the
current x1. The integration of the time derivative of H, produce the following
passivity inequality,

H [x (t)] − H [x (0)] ≤
∫ t

0

x1(σ)uav(σ)dσ

The auxiliary, exogenous, system, is written as a copy of the original sys-
tem, with injected damping represented by a term of the form: R1 (x1 − x1d),
R1 > 0. We have,

ẋ1d = −x2d + uav + R1 (x1 − x1d)
ẋ2d = x1d − uavx3d

α1ẋ3d = uavx2d − x4d

α2ẋ4d = x3d − x4d

Q
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Define the following average normalized error variables, ei = xi − xid,
i = 1, . . . , 4. We then obtain the following tracking error dynamics:

ė1 = −e2 − R1e1

ė2 = e1 − uave3

α1ė3 = uave2 − e4

α2ė4 = e3 − 1
Q

e4

Consider now the following Lyapunov function candidate, defined in the
trajectory tracking error space described by the coordinates, e = (e1, e2, e3, e4),

H (e) =
1
2
(
e2
1 + e2

2 + α1e
2
3 + α2e

2
4

)
The time derivative of such a positive definitive function, along the con-

trolled trajectories of the tracking error dynamics, yields

Ḣ (e) = −R1e
2
1 −

1
Q

e2
4 ≤ 0

The set points in the tracking error space which satisfy Ḣ (e) = 0 are given
by the intersection of the hyper-planes, e1 = e4 = 0. This implies, from the
tracking error dynamics, that also e3 = 0 and e2 = 0. According to LaSalle’s
theorem, the equilibrium point ei = 0, i = 1, . . . , 4 is a globally asymptoti-
cally stable equilibrium point for the controlled tracking error dynamics. This
means that the average converter system trajectories, x (t), and the auxiliary
system trajectories, xd (t), asymptotically converge towards each other.

We fix a constant reference equilibrium value for the desired average induc-
tor current x1d in the auxiliary system dynamics and define the control input
by solving from uav from the first auxiliary dynamics equation. We obtain the
following dynamic average feedback controller uav for the system

uav = ξ2 − R1 (x1 − x1)
ξ̇2 = x1 − uavξ3

α1ξ̇3 = uavξ2 − ξ4

α2ξ̇4 = ξ3 − 1
Q

ξ4

where the variables ξ2, ξ3 and ξ4, representing the dynamical controller states,
replace the auxiliary state variables x2d, x3d and x4d, in the auxiliary dynamics
model. We have also let x1d = x1.

The signal uav is, therefore, the output of the derived average dynamic
feedback controller. The only measurement required from the converter sys-
tem is represented by the normalized average input inductor current x1. The
obtained controller is then truly a dynamic output feedback controller.

A Σ − ∆-modulator can be used for the switched implementation of the
average feedback control law uav.
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Simulations

Consider a quadratic Buck converter characterized by the following parameter
values:

L1 = 600 µH, C1 = 10 µF, L2 = 600 µH, C2 = 10 µF,

R = 40 Ω, E = 100 V

These parameter values allow the computation of the normalized values:

Q = 5.164,
√

L1C1 = 7.746 × 10−5 s, α1 = 1, α2 = 1

We prescribe a desired steady state voltage of value, υ2 = 25 V with the
following corresponding steady state values for the rest of the state variables:

i1 = 0.3125 A, υ1 = 50 V, i2 = 0.625 A

and uav = 0.5.
Figure 5.13 depicts the average quadratic Buck system response to the

actions of an average passivity based controller designed on the basis of energy
shaping plus damping injection.

Fig. 5.13. Average feedback controlled responses of a quadratic Buck converter
using a passivity based controller of the energy shaping plus damping injection
type.

Figure 5.14 shows the closed loop response of a quadratic Buck power
converter to a Σ−∆-modulator implementation of a passivity based stabilizing
controller. The controller and the system parameters were chosen to be exactly
the same as in the previous simulation.
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Fig. 5.14. Feedback controlled responses of a switched quadratic Buck converter
using a Σ − ∆ modulator implementation of a passivity based controller.

5.4 Exact Error Dynamics Passive Output Feedback
Control

In this section we explore a rather direct approach to the feedback controller
design for the stabilization of a large class of DC-to-DC power converters.
The approach is based on first generating an exact dynamic model of the
stabilization error of the average system model. Exploiting the energy man-
aging structure of the error dynamics, which can be placed in Generalized
Hamiltonian form, and identifying the passive output associated with this
stabilization error dynamics, a simple linear, time invariant, feedback con-
troller may be synthesized which renders the desired equilibrium point into
a semi-globally asymptotically stable equilibrium for the closed loop system,
provided a structural dissipation matching condition is satisfied.

5.4.1 A General Result

Consider the general model of a normalized DC-to-DC power converter, dis-
cussed in Chapter 2, written now in Generalized Hamiltonian canonical form
(see [58]):

ẋ = J (uav)
∂H

∂x
−R∂H

∂x
+ buav + E (5.12)

where H(x) is the total stored energy given by the quadratic form H(x) =
1
2xT x, from where it is clear that the term ∂H/∂x = x. The matrix J (uav)
is skew-symmetric, R is symmetric and positive semi-definite, the vector b is
constant and E represents non-switched constant external voltage sources.



5.4 Exact Error Dynamics Passive Output Feedback Control 283

For instance, in the normalized Boost converter, we have

J (uav) =
[

0 −uav

uav 0

]
, b = 0, E =

[
1
0

]
while in the quadratic Buck converter we have,

J (uav) =

⎡⎢⎢⎣
0 −1 0 0
1 0 −uav 0
0 uav 0 −1
0 0 1 0

⎤⎥⎥⎦ , b =

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦ , E = 0

It is quite straightforward to check that all the average models of the
converters treated so far, conform to the Generalized Hamiltonian form model
given above in (5.12).

We explore now fundamental properties of such model. The following as-
sumptions are common to all nonlinear converters (except for the Buck con-
verter, which is a linear system, and the matrix J (uav) = J is constant).

• The matrix J (uav), which is skew-symmetric, is at most affine in the
average control input uav. This means that J(uav) satisfies, for any constant
ū, the following exact expansion property:

J (uav) = J (ū) +
∂J (uav)

∂uav

∣∣∣∣
uav=ū

(uav − ū)

Because J (uav) is affine in uav then the matrix ∂J (uav)/∂uav is a skew
symmetric constant matrix.

• Under equilibrium conditions, the system equations read

0 = J (ū)
∂H

∂x

∣∣∣∣
x=x

−R ∂H

∂x

∣∣∣∣
x=x

+ bū + E

i.e.,
0 = J (ū)x −Rx + bū + E

where x is a constant average state equilibrium corresponding to the constant
average control input ū satisfying ū ∈ [0, 1].

Define the stabilization errors e = x − x, eu = uav − ū. Recall that,

e = x − x =
∂H(x)

∂x
− ∂H(x)

∂x
=

∂H(e)
∂e

and, clearly ė = ẋ.
We have the following proposition:

Proposition 5.1. The stabilization error dynamics satisfies, without any ap-
proximations, the following dynamics:

ė = J (uav)
∂H(e)

∂e
−R∂H(e)

∂e
+ beu +

[
∂J (uav)

∂uav

∂H

∂x

∣∣∣∣
x=x

]
eu
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or, in simpler terms

ė = J (uav)e −Re +
[
b +

∂J (uav)
∂uav

x

]
eu

The proof proceeds by direct computation, adding and subtracting the
required equilibrium related quantities,

ė = J (uav)
∂H(e)

∂e
−R∂H(e)

∂e
+ beu + E

+J (uav)
∂H

∂x

∣∣∣∣
x=x

−R ∂H

∂x

∣∣∣∣
x=x

+ bū

Using the equilibrium relations:

0 = E + J (ū)
∂H

∂x

∣∣∣∣
x=x

−R ∂H

∂x

∣∣∣∣
x=x

+ bū

we have that the error dynamics satisfies:

ė = J (uav)
∂H(e)

∂e
−R∂H(e)

∂e
+ beu + [J (uav) − J (ū)]

∂H

∂x

∣∣∣∣
x=x

where use of the exact expansion property of J (uav) around ū, we have:

ė = J (uav)
∂H(e)

∂e
−R∂H(e)

∂e
+ beu +

∂J (uav)
∂uav

[
∂H

∂x

∣∣∣∣
x=x

]
eu

i.e.,

ė = J (uav)e −Re + beu +
∂J (uav)

∂uav
xeu

which we rewrite as

ė = J (uav)e −Re +
[
b +

∂J (uav)
∂uav

x

]
eu

The crucial observations on this exact stabilization error dynamics are
that:

• The term J (uav)e = J (uav)∂H(e)
∂e is the only nonlinear term in the

derived dynamics. This term happens to be conservative, i.e., for any uav

eTJ (uav)e =
∂H(e)
∂eT

J (uav)
∂H(e)

∂e
= 0, ∀e

The conservative term, as expected, has no contribution in the stability prop-
erties of the closed loop system from the incremental input eu = u − ū
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• The term −Re + beu + ∂J (uav)
∂uav

xeu, representing the rest of the error
dynamics, exactly coincides with the tangent linearization part of the dynam-
ics which is independent of the matrix J (uav). In other words, note that the
tangent linearization of the nonlinear dynamics

ẋ = J (uav)
∂H

∂x
−R∂H

∂x
+ buav + E

around the equilibrium point x = x, uav = ū, given by:

ẋδ = J (ū)xδ −Rxδ + buδ +
J (uav)
∂uav

x̄uδ

exhibits, exactly, the same three last terms in the right hand side as the
derived exact stabilization error dynamics. For this, of course, we agree in the
validity of the equivalence of xδ = x − x with e and uδ = uav − ū with eu.

We have the following theorem

Theorem 5.2. A linear incremental feedback controller, deduced on the basis
of the stabilization to zero of the tangent linearization average model of the
converter around a desired equilibrium point, also stabilizes the nonlinear sys-
tem to the desired equilibrium from any permissible initial condition. In other
words, the linearized feedback control law, obtained from the tangent linearized
model, makes the equilibrium point of the nonlinear converter semi-globally
asymptotically stable.

The proof, which is based on the previous developments, follows now quite
easily. Indeed, Let the average linear incremental feedback control law

eu = uδ = −kT e = −kT xδ

locally stabilize the nonlinear system thanks to the appropriate pole placement
of the tangent linearization average model dynamics. Let kT then be a row
vector of gains feeding back the stabilization errors of the state. The closed
loop system error dynamics is given by

ė = J (uav)e −Re −
[
b +

∂J (uav)
∂uav

x

]
kT e

i.e.,

ė = J (uav)e −
[
R +

(
b +

∂J (uav)
∂uav

x

)
kT

]
e

Let for simplicity,

M =
[
R +

(
b +

∂J (uav)
∂uav

x

)
kT

]
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Clearly, the matrix M has all its eigenvalues in the right portion of the com-
plex plane.

Note that M is not symmetric or skew-symmetric, but it can, nevertheless,
be written as:

M = JM + RM

where JM is skew-symmetric and RM is symmetric and positive definite (i.e.,
−RM is negative definite). Indeed,

M =
1
2
[M−MT

]
+

1
2
[M + MT

]
The closed loop system is then of the form

ė = [J (uav) − JM ] e − [R + RM ] e

The semi-global stability of the closed loop system is obvious from the skew-
symmetry of the matrix J (uav) − JM for any uav, and the positive definite
nature of the symmetric matrix R + RM .

This theorem has evident implications in the stability of nonlinear average
converters using feedback of the passive incremental output. This simple linear
feedback also semi-globally stabilizes the nonlinear average converter models.

5.4.2 The Boost Converter

Consider the normalized average model of the Boost DC-to-DC power con-
verter

ẋ1 = −uavx2 + 1

ẋ2 = uavx1 − 1
Q

x2

y = x2

It is desired to regulate the system trajectories towards a constant av-
erage state equilibrium point characterized, in terms of the desired output
equilibrium voltage x2 = Vd, by

x1 =
V 2

d

Q
, x2 = Vd, uav =

1
Vd

A translation of the state coordinates to the stabilization error space e1 =
x1 − V 2

d /Q, e2 = x2 − Vd yields,

ė1 = −uave2 + 1 − uavVd

ė2 = uave1 − 1
Q

e2 + uav
V 2

d

Q
− 1

Q
Vd

which written in matrix form yields,
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ė =
[

0 −uav

uav 0

]
e −

[
0 0
0 1

Q

]
e +

[
−Vd
V 2

d

Q

]
uav +

[
1

−Vd

Q

]
Consider the following error energy function candidate,

H(e) =
1
2

[(
x1 − Vd

Q

)2

+ (x2 − Vd)
2

]
=

1
2
[
e2
1 + e2

2

]
Since ∂H(e)/∂e = e we may write the average stabilization error system in
classical Hamiltonian form:

ė =
[

0 −uav

uav 0

]
∂H(e)

∂e
−
[

0 0
0 1

Q

]
∂H(e)

∂e
+

[
−Vd
V 2

d

Q

]
uav +

[
1

−Vd

Q

]
which we conveniently rewrite as

ė =
[

0 −uav

uav 0

]
∂H(e)

∂e
−
[

0 0
0 1

Q

]
∂H(e)

∂e
+

[
−Vd
V 2

d

Q

]
euav

where
euav

= uav − 1
Vd

The error dynamics is then of the form

ė = J ∂H(e)
∂e

−R∂H(e)
∂e

+ beuav

The passive output corresponding to this Hamiltonian stabilization error rep-
resentation is given by

ey = −Vde1 +
V 2

d

Q
e2

The dissipation matching condition is evidently satisfied since

R + γbbT =
[

0 0
0 1

Q

]
+ γ

[
V 2

d −V 2
d

Q

−V 3
d

Q
V 4

d

Q2

]
=

[
γV 2

d −γ
V 2

d

Q

−γ
V 2

d

Q
1
Q + γ

V 4
d

Q2

]
> 0

A feedback controller which makes the equilibrium point globally asymp-
totically stable is just

euav = −γey = −γ

[
−Vde1 +

V 2
d

Q
e2

]
= −γ

[
−Vd

(
x1 − V 2

d

Q

)
+

V 2
d

Q
(x2 − Vd)

]
The average stabilizing feedback control, based on passive output feedback,

is then given by

uav =
1
Vd

− γ

[
−Vd

(
x1 − V 2

d

Q

)
+

V 2
d

Q
(x2 − Vd)

]
this expression can be simplified to the form:

uav =
1
Vd

+ γ

(
x1 − Vd

Q
x2

)
Vd (5.13)
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Simulations

Figure 5.15 depicts the normalized switched controlled response of the Boost
converter with the average control input designed on the basis of static exact
stabilization error dynamics passive output feedback.
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Fig. 5.15. Switch controlled responses of Boost converter to linear static passive
feedback.

5.4.3 Experimental Implementation

In order to evaluate the validity of the proposed static linear passivity based
control, which was determined in normalized form by Equation 5.13, this con-
troller is implemented and tested on the experimental Boost system developed
in Chapter 2 with the help of a Σ − ∆-modulator circuit already described
also in Chapter 3.

In Figure 5.16 we show the functional block diagram of the Boost con-
verter. It illustrates all the components of the system that we built with its
respective control block already inserted. A Σ −∆ modulator with a limiting
circuit is used in connection with the static linear passivity based average
feedback control law implementation.

Control Block

In this block the average control static passivity based control strategy is im-
plemented for the Boost converter. The inductor current and the output volt-
age signals (i and υ, respectively) are received from the Boost system block.
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Fig. 5.16. Functional block diagram of the Boost power converter to a Σ − ∆-
modulator implementation of a passivity based stabilizing controller.

The average feedback control strategy (5.13) is implemented using analog
electronics by noticing that, using

x1 =
1
E

√
L

C
i, x2 =

υ

E
, Q = R

√
C

L

we can rewrite (5.13) in non-normalized form as:

uav =
E

υ
+ γactual

[
i − υ

RE
υ

]
υ (5.14)

for the alternative model of the Boost converter (see Figure 3.1), or

uav =
υ − E

υ
− γactual

[
i − υ

RE
υ

]
υ (5.15)

for the model given by Equation 2.15 (see Figure 2.11).
Figure 5.17 shows the actual control circuit block. It also shows the trans-

fer functions that realize the op-amps for achieving the actual implemen-
tation of the designed linear static passivity based controller, expressed in
non-normalized form by (5.15).

Experimental Results

Figure 5.18 depicts the experimental results portraying the closed loop con-
trolled responses of the Boost system when the average linear static passivity
based stabilizing controller is implemented through the designed Σ −∆ mod-
ulator. The controller and the system parameters were chosen to be:
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Fig. 5.17. Control circuit structure implemented for the passivity based stabilizing
controller.
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Fig. 5.18. Experimental closed loop response of the Boost DC-to-DC power con-
verter to a Σ − ∆-modulator implementation of a static linear passivity based sta-
bilizing controller.

L = 15.91 mH, C = 50 µF, R = 52 Ω, E = 12 V
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with γactual = 0.1. We take the steady state output voltage value υ = 24 V as
the desired output voltage. The corresponding steady state current is given
by i = 0.923 A, and uav = 0.5.

5.4.4 The Buck-Boost Converter

Consider the average normalized model of the Buck-Boost DC-to-DC power
converter

ẋ1 = uavx2 + (1 − uav)

ẋ2 = −uavx1 − 1
Q

x2

y = x2

It is desired to regulate the system trajectories towards a constant av-
erage state equilibrium point characterized, in terms of the desired output
equilibrium voltage x2 = Vd, by

x1 = −Vd(1 − Vd)
Q

, x2 = Vd, uav =
1

1 − Vd

A translation of the state coordinates to the stabilization error space e1 =
x1 + Vd(1 − Vd)/Q, e2 = x2 − Vd yields,

ė1 = uave2 − (1 − Vd)
(

uav − 1
1 − Vd

)
ė2 = −uave1 − 1

Q
e2 +

Vd(1 − Vd)
Q

(
uav − 1

1 − Vd

)
which, written in matrix form, yields

ė =
[

0 uav

−uav 0

]
e −

[
0 0
0 1

Q

]
e +

[
1 − Vd

Vd(1−Vd)
Q

](
uav − 1

1 − Vd

)
The error energy function candidate,

H(e) =
1
2

[(
x1 − Vd

Q

)2

+ (x2 − Vd)
2

]
=

1
2
[
e2
1 + e2

2

]
allows, by virtue of the fact that ∂H(e)/∂e = e, to write the system in classical
Hamiltonian form:

ė =
[

0 uav

−uav 0

]
∂H(e)

∂e
−
[

0 0
0 1

Q

]
∂H(e)

∂e
+

[
−(1 − Vd)
Vd(1−Vd))

Q

]
euav

where
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euav = uav − 1
1 − Vd

The passive output, corresponding to this exact Hamiltonian stabilization
error dynamics representation, is given by

ey = −(1 − Vd)e1 +
Vd(1 − Vd)

Q
e2

The dissipation matching condition is evidently satisfied since

R + γbbT =
[

0 0
0 1

Q

]
+ γ

[
(1 − Vd)2 −Vd(1−Vd)2

Q

−Vd(1−Vd)2

Q
V 2

d (1−Vd)2

Q2

]

=

[
γ(1 − Vd)2 −γ Vd(1−Vd)2

Q

−γ Vd(1−Vd)2

Q
1
Q + γ

V 2
d (1−Vd)2

Q2

]
> 0

A feedback controller which makes the equilibrium point globally asymp-
totically stable is just,

euav
= −γey = −γ

[
−(1 − Vd)e1 +

Vd(1 − Vd)
Q

e2

]
= γ

[
(1 − Vd)

(
x1 +

Vd(1 − Vd)
Q

)
− Vd(1 − Vd)

Q
(x2 − Vd)

]
The average stabilizing feedback control, based on passive output feedback, is
then given by

uav =
1

1 − Vd
+ γ

[
(1 − Vd)

(
x1 +

Vd(1 − Vd)
Q

)
− Vd(1 − Vd)

Q
(x2 − Vd)

]
This is, precisely, the linear feedback controller obtained by tangent lineari-
zation and feedback of the linearized passive output given by the Equation
4.23.

Figure 4.46 depicts the response of the nonlinear system to the proposed
average static passivity based controller implemented through a Σ −∆ mod-
ulator.

Note that the error vector coordinates have the origin as a semi-global
asymptotically stable equilibrium with the static incremental linear passivity
based control just proposed.

Indeed, the time derivative of the stabilization error energy, along the
closed loop trajectories of the error system is given by,

Ḣ(e) =
∂H(e)
∂eT

J (u)
∂H(e)

∂e
− ∂H(e)

∂eT

[R + γbbT
] ∂H(e)

∂e

= 0 − ∂H(e)
∂eT

[R + γbbT
] ∂H(e)

∂e
< 0

The stability of the closed loop system does not depend on the nonlinear part
of the system, which is conservative. Only the linear part is relevant.
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5.4.5 The Cúk Converter

Consider the average normalized Cúk converter model

ẋ1 = −(1 − uav)x2 + 1
ẋ2 = (1 − uav)x1 + uavx3

α1ẋ3 = −uavx2 − x4

α2ẋ4 = x3 − 1
Q

x4

Let us express the system in state stabilization error coordinates with
respect to the average equilibrium point corresponding to a desired output
voltage, x4 = Vd. We have,

e1 = x1 − V 2
d

Q
, e2 = x2 − (1 − Vd), e3 = x3 − Vd

Q
, e4 = x4 − Vd

The average input error euav
is defined as

euav = uav +
Vd

1 − Vd

We obtain the following expression for the transformed system

ė1 = −(1 − uav)e2 + (1 − Vd)
(

uav +
Vd

1 − Vd

)
ė2 = (1 − uav)e1 + uav e3 +

Vd(1 − Vd)
Q

(
uav +

Vd

1 − Vd

)
α1ė3 = −uave2 − e4 − (1 − Vd)

(
uav +

Vd

1 − Vd

)
α2ė4 = e3 − 1

Q
e4

Taking the average error energy function H(e) as

H(e) =
1
2
[
e2
1 + e2

2 + e2
3 + e2

4

]
we have that ∂H(e)/∂e = [e1, e2, e3, e4]T .

Writing the stabilization error in Generalized Hamiltonian form we obtain

Aė =

⎡⎢⎢⎣
0 −(1 − uav) 0 0

(1 − uav) 0 uav 0
0 −uav 0 −1
0 0 1 0

⎤⎥⎥⎦ ∂H

∂e
−

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

Q

⎤⎥⎥⎦∂H

∂e
+

⎡⎢⎢⎣
(1 − Vd)
Vd(1−Vd)

Q

−(1 − Vd)
0

⎤⎥⎥⎦euav

where A = diag [1, 1, α1, α2].
The passive output of the stabilization error dynamics is given by
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ey = y − Vd = bT ∂H(e)
∂e

= (1 − Vd)e1 +
Vd(1 − Vd)

Q
e2 − (1 − Vd)e3

The dissipation matching condition is not strictly satisfied and reads

R + γbbT =

⎡⎢⎢⎢⎢⎣
γ(1 − Vd)2 γ Vd(1−Vd)2

Q −γ(1 − Vd)2 0

γ Vd(1−Vd)2

Q γ
V 2

d (1−Vd)2

Q2 −γ Vd(1−Vd)2

Q 0

−γ(1 − Vd)2 −γ Vd(1−Vd)2

Q γ(1 − Vd)2 0
0 0 0 1

Q

⎤⎥⎥⎥⎥⎦ ≥ 0

Again, the nonlinear system is stabilized by a feedback control law using
the passive output of the exact stabilization error dynamics with an average
equilibrium input feed-forward

uav = − Vd

1 − Vd
− γey (5.16)

This control law renders the origin of the error space as an asymptotically
stable equilibrium point by virtue of LaSalle’s theorem.

It is important to remark that (5.16) is, precisely, the linear feedback
controller obtained by tangent linearization and feedback of the linearized
passive output given by Equation 4.25.

Figure 5.19 depicts the response of the switched Cúk converter model, to
the passivity based average feedback controller implemented through a Σ−∆
modulator. The system parameters were chosen to be exactly the same as in
the Section 4.6.2, with γ = 1.

5.4.6 The Sepic Converter

Consider the normalized average model of the Sepic DC-to-DC power con-
verter

ẋ1 = − (1 − uav) (x2 + x4) + 1
ẋ2 = (1 − uav)x1 − uavx3

α1ẋ3 = uavx2 − (1 − uav)x4

α2ẋ4 = (1 − uav) (x1 + x3) − 1
Q

x4

It is desired to regulate the system trajectories towards a constant average
state equilibrium point characterized, in terms of the desired output equilib-
rium voltage, x4 = Vd, by

x1 =
V 2

d

Q
, x2 = 1, x3 =

Vd

Q
, uav =

Vd

1 + Vd
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Fig. 5.19. Responses of the switched Cúk converter based on passive output feed-
back.

Define

e1 = x1 − V 2
d

Q
, e2 = x2 − 1, e3 = x3 − Vd

Q
, e4 = x4 − Vd

and define also the average input error euav
, as:

euav = uav − Vd

1 + Vd

We transform the average normalized system into state stabilization error
coordinates with respect to the average equilibrium point corresponding to
the prescribed output reference voltage, x4 = Vd. We obtain the following
expression for the transformed system:

ė1 = − (1 − uav) (e2 + e4) + (1 + Vd)
(

uav − Vd

1 + Vd

)
ė2 = (1 − uav) e1 − ue3 − Vd (1 + Vd)

Q

(
uav − Vd

1 + Vd

)
α1ė3 = uave2 − (1 − uav) e4 + (1 + Vd)

(
uav − Vd

1 + Vd

)
α2ė4 = (1 − uav) (e1 + e3) − 1

Q
e4 − Vd (1 + Vd)

Q

(
uav − Vd

1 + Vd

)
Consider the average stabilization error energy function H (e) as
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H (e) =
1
2

[(
x1 − V 2

d

Q

)2

+ (x2 − 1)2 + α1

(
x3 − Vd

Q

)2

+ α2 (x4 − Vd)
2

]

=
1
2
eTAe =

1
2
[
e2
1 + e2

2 + α1e
2
3 + α2e

2
4

]
where

A = AT = diag (1, 1, α1, α2) , e = [e1, e2, e3, e4]
T

The exact stabilization error dynamics can be placed in Generalized Hamil-
tonian form. We obtain,⎡⎢⎢⎣

ė1

ė2

ė3

ė4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 − (1 − uav) 0 − 1

α2
(1 − uav)

(1 − uav) 0 − 1
α1

uav 0
0 1

α1
uav 0 − 1

α1α2
(1 − uav)

1
α2

(1 − uav) 0 1
α1α2

(1 − uav) 0

⎤⎥⎥⎦ ∂H

∂e

−

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

α2
2

1
Q

⎤⎥⎥⎦ ∂H

∂e
+

⎡⎢⎢⎢⎣
(1 + Vd)
−Vd(1+Vd)

Q
1

α1
(1 + Vd)

− 1
α2

Vd(1+Vd)
Q

⎤⎥⎥⎥⎦ euav

The passive output associated with the exact stabilization error dynamics
is given by

ey = bT ∂H (e)
∂e

= ey = (1 + Vd)
[
e1 − Vd

Q
e2 + e3 − Vd

Q
e4

]
We may clearly choose the average feedback control input as an output

feedback control law of the form:

euav
= −γbT ∂H (e)

∂e
= −γey

where γ is a positive scalar quantity.
The total time derivative of the energy function H (e) > 0 is given by

Ḣ (e) = −∂H (e)
∂eT

[R + γbbT
] ∂H (e)

∂e
= −eT A

[R + γbbT
]
Ae

and the dissipation matching condition is not strictly satisfied and takes the
form

A [R + γbbT
]A = γ (1 + Vd)

2

⎡⎢⎢⎢⎢⎣
1 −Vd

Q 1 −Vd

Q

−Vd

Q
V 2

d

Q2 −Vd

Q
V 2

d

Q2

1 −Vd

Q 1 −Vd

Q

−Vd

Q
V 2

d

Q2 −Vd

Q
1

γ(1+Vd)2Q
+ V 2

d

Q2

⎤⎥⎥⎥⎥⎦ ≥ 0

The set of vectors which are in the null space of the preceding matrix, are
of the form: z =

[
e1 e2 e3 0

]
such that ξδ = e1− Vd

Q e2+e3− Vd

Q e4 = 0, i.e., they
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lay in a subspace of R4 and correspond to ey = (1 + Vd) ξδ. This means the
nonlinear system is controlled by the equilibrium input uav = Vd/ (1 + Vd),
i.e., the error system is controlled by euav

= 0. The only trajectory of the
error system with e4 = 0 and euav = 0 corresponds to the origin.

This is compatible with the fact that in order for the closed loop incremen-
tal average system to have the origin as an asymptotically stable equilibrium,
the trajectories of the system should have no other equilibrium than the origin
itself. The origin of the average output feedback controlled system is, hence,
an asymptotically stable equilibrium.

The output feedback control law, with design parameter γ > 0, is given
by

euav = −γey = −γ (1 + Vd)
[
e1 − Vd

Q
e2 + e3 − Vd

Q
e4

]
The nonlinear average normalized Sepic converter model is stabilized by

the feedback of the passive output associated with the exact stabilization error
dynamics, complemented with average equilibrium input feed-forward.

The average feedback control law to be implemented is synthesized as

uav =
Vd

1 + Vd
− γ (1 + Vd)

[(
x1 − V 2

d

Q

)
− Vd

Q
(x2 − 1)

+
(

x3 − Vd

Q

)
− Vd

Q
(x4 − Vd)

]
This control law renders the origin of the error space as a semi-global

asymptotically stable equilibrium point by virtue of LaSalle’s theorem.
The above expression can be rewritten, in a simpler form, as:

uav =
Vd

1 + Vd
− γ (1 + Vd)

[
x1 + x3 − Vd

Q
(x2 + x4)

]
(5.17)

Simulations

Consider a Sepic converter circuit with parameter values:

L1 = 30 mH, C1 = 150 µF, L2 = 30 mH, C2 = 50 µF,

R = 10 Ω, E = 100 V

with γ = 1.
We take the steady state output voltage value υ2 = 200 V as the desired

output voltage with the following corresponding steady state values for the
rest of the state variables:

i1 = 40 A, υ1 = 100 V, i2 = 20 A

and
uav = 0.666

Figure 5.20 depicts the actual average state variables responses of the
switched controlled system accomplishing the required stabilization task.
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Fig. 5.20. Switched controlled responses of Sepic power converter implemented via
a Σ − ∆ modulator.

5.4.7 The Zeta Converter

Consider the normalized average model of the Zeta DC-to-DC power converter

ẋ1 = − (1 − uav)x2 + uav

ẋ2 = (1 − uav) x1 − uavx3

α1ẋ3 = uavx2 − x4 + uav

α2ẋ4 = x3 − 1
Q

x4

It is desired to regulate the system trajectories towards a constant av-
erage state equilibrium point characterized, in terms of the desired output
equilibrium voltage x4 = Vd, by

x1 =
V 2

d

Q
, x2 = Vd, x3 =

Vd

Q
, uav =

Vd

1 + Vd

A state coordinates transformation, of the translation type, to the stabilization
error space: e1 = x1 − V 2

d /Q, e2 = x2 − Vd, e3 = x3 − Vd/Q, e4 = x4 − Vd

yields,
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ė1 = − (1 − uav) e2 + (1 + Vd)
(

uav − Vd

1 + Vd

)
ė2 = (1 − uav) e1 − uave3 − Vd (1 + Vd)

Q

(
uav − Vd

1 + Vd

)
α1ė3 = uave2 − e4 + (1 + Vd)

(
uav − Vd

1 + Vd

)
α2ė4 = e3 − 1

Q
e4

Consider the following stabilization error energy function candidate,

H (e) =
1
2
eT Ae =

1
2
[
e2
1 + e2

2 + α1e
2
3 + α2e

2
4

]
where

A = AT = diag (1, 1, α1, α2) , e = [e1, e2, e3, e4]
T

Since
∂H (e)

∂e
= Ae = [e1, e2, α1e3, α2e4]

T

we may write the system in Generalized Hamiltonian form:⎡⎢⎢⎣
ė1

ė2

ė3

ė4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 − (1 − uav) 0 0

(1 − uav) 0 − 1
α1

uav 0
0 1

α1
uav 0 − 1

α1α2

0 0 1
α1α2

0

⎤⎥⎥⎦ ∂H (e)
∂e

−

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

α2
2Q

⎤⎥⎥⎦ ∂H (e)
∂e

+

⎡⎢⎢⎣
(1 + Vd)
−Vd(1+Vd)

Q
1

α1
(1 + Vd)

0

⎤⎥⎥⎦ euav

where euav
= uav − Vd

1+Vd
.

The passive output corresponding to this Hamiltonian stabilization error
representation is given by

ey = bT ∂H (e)
∂e

= (1 + Vd)
[
e1 − Vd

Q
e2 + e3

]
The dissipation matching condition is not strictly satisfied and reads

A [R + γbbT
]A = γ (1 + Vd)

2

⎡⎢⎢⎢⎣
1 −Vd

Q 1 0

−Vd

Q
V 2

d

Q2 −Vd

Q 0
1 −Vd

Q 1 0
0 0 0 1

γ(1+Vd)2Q

⎤⎥⎥⎥⎦ ≥ 0

The set of vectors which are in the null space of the matrix, preceding
matrix are of the form: z =

[
e1 e2 e3 0

]
such that ξδ = e1− Vd

Q e2+e3 = 0, i.e.,
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they lay in a subspace of R4 and corresponds to ey = (1 + Vd) ξδ. This means
the nonlinear system is controlled by the equilibrium input uav = Vd/ (1 + Vd),
i.e., the error system is controlled by euav

= 0. The only trajectory of the error
system with e4 = 0 and euav = 0 corresponds to the origin.

This is compatible with the fact that in order for the closed loop incremen-
tal average system to have the origin as an asymptotically stable equilibrium,
the trajectories of the error system should have no other equilibrium than the
origin itself. The origin of the average output feedback controlled system is,
hence, an semi-globally asymptotically stable equilibrium.

A feedback controller which makes the equilibrium point asymptotically
stable, by virtue of LaSalle’s theorem, is given by the feedback of the passive
output associated with the exact stabilization error dynamics,

euav = −γey = −γ (1 + Vd)
[
e1 − Vd

Q
e2 + e3

]
The average stabilizing feedback control, based on linear, static, passive

output feedback, is then given by

uav =
Vd

1 + Vd
− γ (1 + Vd)

[(
x1 − V 2

d

Q

)
− Vd

Q
(x2 − Vd) +

(
x3 − Vd

Q

)]

Simulations

A set of typical parameters for a Zeta power converter circuit is given by:

L1 = 600 µH, C1 = 10 µF, L2 = 600 µH, C2 = 10 µF,

R = 40 Ω, E = 100 V

These parameter values allow the computation of the quantities:

Q = 5.164,
√

L1C1 = 7.746 × 10−5 s, α1 = 1, α2 = 1

We have set the controller design parameter γ to be 1, and we specify a desired
steady state equilibrium voltage of value υ2 = 200 V with the corresponding
steady state equilibrium values for the rest of the original circuit variables:

i1 = 10 A, υ1 = 200 V, i2 = 5 A

and uav = 0.666.
Figure 5.21 shows the switched responses of Zeta converter to the action of

the static linear feedback controller based on the passive output of the exact
stabilization error dynamics implemented through a Σ − ∆-modulator.
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Fig. 5.21. Switched stabilization response of Zeta converter.

5.4.8 The Quadratic Buck Converter

Consider the normalized average model of the quadratic Buck DC-to-DC po-
wer converter

ẋ1 = −x2 + uav

ẋ2 = x1 − uavx3

α1ẋ3 = uavx2 − x4

α2ẋ4 = x3 − 1
Q

x4

It is desired to regulate the system trajectories towards a constant av-
erage state equilibrium point characterized, in terms of the desired output
equilibrium voltage, x4 = Vd, by

x1 =
(Vd)

3/2

Q
, x2 =

√
Vd, x3 =

Vd

Q
, uav =

√
Vd

A translation of the state coordinates to the stabilization error space defined,
by

e1 = x1 − (Vd)
3/2

Q
, e2 = x2 −

√
Vd, e3 = x3 − Vd

Q
, e4 = x4 − Vd

yields the following relations:
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ė1 = −e2 +
(
uav −

√
Vd

)
ė2 = e1 − uave3 − Vd

Q

(
uav −

√
Vd

)
α1ė3 = uave2 − e4 +

√
Vd

(
uav −

√
Vd

)
α2ė4 = e3 − 1

Q
e4

The error energy function candidate,

H (e) =
1
2
eTAe =

1
2
[
e2
1 + e2

2 + α1e
2
3 + α2e

2
4

]
where

A = AT = diag (1, 1, α1, α2) , e = [e1, e2, e3, e4]
T

allows, by virtue of the fact that

∂H (e)
∂e

= Ae = [e1, e2, α1e3, α2e4]
T

to write the (open loop) stabilization error system in Generalized Hamiltonian
form:

ė =

⎡⎢⎢⎣
0 −1 0 0
1 0 − 1

α1
uav 0

0 1
α1

uav 0 − 1
α1α2

0 0 1
α1α2

0

⎤⎥⎥⎦ ∂H(e)
∂e −

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

α2
2Q

⎤⎥⎥⎦ ∂H(e)
∂e +

⎡⎢⎢⎣
1

−Vd

Q√
Vd

α1

0

⎤⎥⎥⎦ euav

where euav = uav −√
Vd.

The passive output corresponding to this Hamiltonian stabilization error
representation is given by

ey = bT ∂H (e)
∂e

= e1 − Vd

Q
e2 +

√
Vde3

The dissipation matching condition is not strictly satisfied since

Ḣ (e) = −∂H (e)
∂eT

[R + γbbT
] ∂H (e)

∂e
= −eTA [R + γbbT

]Ae ≤ 0

i.e.,

A [R + γbbT
]A =

⎡⎢⎢⎢⎢⎣
γ −γ Vd

Q γ
√

Vd 0

−γ Vd

Q γ
V 2

d

Q2 −γ (Vd)3/2

Q 0

γ
√

Vd −γ (Vd)3/2

Q γVd 0
0 0 0 1

Q

⎤⎥⎥⎥⎥⎦ ≥ 0

The set of vectors which are in the null space of the above matrix are
of the form: z =

[
e1 e2 e3 0

]
such that ξδ = e1 − Vd

Q e2 +
√

Vde3 = 0, i.e.,
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they lay in a subspace of R4 that corresponds to ey = ξδ. This means that in
such a subspace, the nonlinear system is controlled by the equilibrium input
uav =

√
Vd, i.e., the error system is controlled by euav

= 0. The only trajectory
of the error system with e4 = 0 and euav = 0 corresponds to the origin.

According to LaSalle’s theorem for asymptotic stability, in order for the
average closed loop error system to have the origin as an asymptotically stable
equilibrium, the trajectories of the system taking place in the set {e | Ḣ(e) =
0} should have no other equilibrium than the origin itself. The origin of the
average feedback controlled error system is, hence, an asymptotically stable
equilibrium.

A feedback controller which makes the equilibrium point asymptotically
stable, is just

euav = −γey = −γ

[
e1 − Vd

Q
e2 +

√
Vde3

]
The average stabilizing feedback control, based on passive output feedback, is
then given by

uav =
√

Vd − γ

[(
x1 − (Vd)

3/2

Q

)
− Vd

Q

(
x2 −

√
Vd

)
+
√

Vd

(
x3 − Vd

Q

)]

This is, precisely, the linear feedback controller obtained by tangent linea-
rization and feedback of the incremental passive output.

Simulations

A typical set of parameter values for the quadratic Buck converter circuit is
given by:

L1 = 1.5 H, C1 = 10 µF, L2 = 600 µH, C2 = 10 µF,

R = 40 Ω, E = 100 V

For the simulations we have chosen γ = 1, and a constant reference output
equilibrium voltage of value υ2 = 25 V with the actual corresponding steady
state variables specified by:

i1 = 0.3125 A, υ1 = 50 V, i2 = 0.625 A

and uav = 0.5.
Figure 5.22 shows the switched system responses to the static linear pas-

sivity based controller processing the passive output of the exact stabilization
error dynamics for the quadratic Buck DC-to-DC power converter.
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Fig. 5.22. Switched stabilization response of quadratic Buck converter controlled
via a static linear passivity based feedback controller.

5.4.9 The Boost-Boost Converter

Consider now the average normalized model of a multi-variable Boost-Boost
converter, with the following simplification: α1 = α2 = 1, we have

ẋ1 = −u1avx2 + 1

ẋ2 = u1avx1 − 1
Q1

x2 − x3

ẋ3 = x2 − u2avx4

ẋ4 = u2avx3 − 1
QL

x4

The equilibrium point of the system, for a desired set of output average equi-
librium voltages x2 = V2d and x4 = V4d, is given by,

x1 =
V 2

2d

Q1
+

V 2
4d

QL
, x2 = V2d, x3 =

V 2
4d

QLV2d
, x4 = V4d

u1av =
1

V2d
, u2av =

V2d

V4d

Transforming the system into average stabilization state error variables
yields,



5.4 Exact Error Dynamics Passive Output Feedback Control 305

ė1 = −u1ave2 − V2d

(
u1av − 1

V2d

)
ė2 = u1ave1 − e2

Q1
− e3 +

(
V 2

2d

Q1
+

V 2
4d

QL

)(
u1av − 1

V2d

)
ė3 = e2 − u2ave4 − V4d

(
u2av − V2d

V4d

)
ė4 = u2ave3 − e4

QL
+

V 2
4d

QLV2d

(
u2av − V2d

V4d

)
The system may be written in Hamiltonian canonical form

ė =

⎡⎢⎢⎣
0 −u1av 0 0

u1av 0 −1 0
0 1 0 −u2av

0 0 u2av 0

⎤⎥⎥⎦ ∂H(e)
∂e

−

⎡⎢⎢⎣
0 0 0 0
0 1

Q1
0 0

0 0 0 0
0 0 0 1

QL

⎤⎥⎥⎦ ∂H(e)
∂e

+

⎡⎢⎢⎢⎣
−V2d 0(

V 2
2d

Q1
+ V 2

4d

QL

)
0

0 −V4d

0 V 2
4d

V2dQL

⎤⎥⎥⎥⎦
[

eu1av

eu2av

]

We note that the nonlinear part of the system, which includes the inter-
action between the stages, does not intervene in the average system stability
and the dissipative linear incremental part, which is decoupled, plays the im-
portant role in stability. As a consequence, a linear decoupled controller of
the average passive outputs is all that is required for semi-global asymptotic
stability of the desired equilibrium state.

Note that by choosing the Γ matrix in a diagonal form: Γ = diag[γ1, γ2],
with γ1, γ2 > 0, the dissipation matching condition takes the following natural
block-decoupled form:

R + BΓBT =⎡⎢⎢⎢⎢⎢⎢⎣
γ1V

2
2d −γ1V2d

(
V 2
2d

Q1
+

V 2
4d

QL

)
0 0

−γ1V2d

(
V 2
2d

Q1
+

V 2
4d

QL

)
1

Q1
+ γ1

(
V 2
2d

Q1
+

V 2
4d

QL

)
0 0

0 0 γ2V
2
4d −γ2

V 3
4d

QLV2d

0 0 −γ2
V 3
4d

QLV2d

1
QL

+ γ2
V 4
4d

Q2
L

V 2
2d

⎤⎥⎥⎥⎥⎥⎥⎦ > 0

The passive outputs of the stabilization error dynamics are given by

ey = BT ∂H(e)
∂e

which, in explicit form yields:
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y1 = −V2de1 +
(

V 2
2d

Q1
+

V 2
4d

QL

)
e2

y2 = −V4de3 +
V 2

4d

QV2d
e4

Each passive output involves state variables which are ascribed to his own
converter block. The average passive output feedback control policy can be
proposed to be decoupled, as follows

eu1av = γ1V2de1 − γ1

(
V 2

2d

Q1
+

V 2
4d

QL

)
e2

eu2av
= γ2V4de3 − γ2

V 2
4d

QLV2d
e4

5.4.10 The Double Buck-Boost Converter

Consider now the average normalized model of a multi-variable double Buck-
Boost converter:

ẋ1 = (1 − u1av)x2 + u1av

ẋ2 = − (1 − u1av) x1 − 1
Q1

x2 − u2avx3

α1ẋ3 = u2avx2 + (1 − u2av)x4

α2ẋ4 = − (1 − u2av) x3 − 1
QL

x4

The equilibrium point of the average normalized system, for a desired set
of output average equilibrium voltages x2 = V2d and x4 = V4d, is given by,

x1 = −
(

V 2
2d

Q1
+

V 2
4d

QL

)(
1 − V2d

V2d

)
, x2 = V2d, x3 =

V4d

QL

(
V4d

V2d
− 1

)
, x4 = V4d

u1av = − V2d

1 − V2d
, u2av =

V4d

V4d − V2d

We express the system in state error coordinates with respect to the av-
erage equilibrium point corresponding to a desired set of output voltages
x2 = V2d and x4 = V4d,

e1 = x1 +
(

V 2
2d

Q1
+

V 2
4d

QL

)(
1 − V2d

V2d

)
, e2 = x2 − V2d

e3 = x3 − V4d

QL

(
V4d

V2d
− 1

)
, e4 = x4 − V4d

The average components of the input error vector euav are defined as
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eu1av = u1av +
V2d

1 − V2d
, eu2av = u2av − V4d

V4d − V2d

Transforming the system into average state error variables we obtain the
following expressions

ė1 = (1 − u1av) e2 + (1 − V2d)
(

u1av +
V2d

1 − V2d

)
ė2 = − (1 − u1av) e1 − 1

Q1
e2 − u2ave3 + β1eu1av + β2eu2av

α1ė3 = u2ave2 + (1 − u2av) e4 − (V4d − V2d)
(

u2av − V4d

V4d − V2d

)
α2ė4 = − (1 − u2av) e3 − 1

QL
e4 − β2

(
u2av − V4d

V4d − V2d

)
where:

β1 = −
(

V2d

Q1
+

V 2
4d

V2dQL

)
(1 − V2d) , β2 = − V4d

V2dQL
(V4d − V2d)

Consider the average stabilization error energy function H (e) as

H (e) =
1
2
eTAe =

1
2
[
e2
1 + e2

2 + α1e
2
3 + α2e

2
4

]
where

A = AT = diag (1, 1, α1, α2) , e = [e1, e2, e3, e4]
T

Since
∂H (e)

∂e
= Ae = [e1, e2, α1e3, α2e4]

T

we may write the average normalized model of the double Buck-Boost system
in Generalized Hamiltonian canonical form:

ė =

⎡⎢⎢⎣
0 (1 − u1av) 0 0

− (1 − u1av) 0 − 1
α1

u2av 0
0 1

α1
u2av 0 1

α1α2
(1 − u2av)

0 0 − 1
α1α2

(1 − u2av) 0

⎤⎥⎥⎦ ∂H (e)
∂e

−

⎡⎢⎢⎣
0 0 0 0
0 1

Q1
0 0

0 0 0 0
0 0 0 1

α2
2QL

⎤⎥⎥⎦ ∂H (e)
∂e

+

⎡⎢⎢⎣
(1 − V2d) 0

β1 β2

0 − 1
α1

(V4d − V2d)
0 − 1

α2
β2

⎤⎥⎥⎦[ eu1av

eu2av

]

Note that by choosing the Γ matrix in a diagonal form: Γ = diag [γ1, γ2],
with γ1, γ2 > 0, the dissipation matching condition takes the following form:
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A [R + BΓBT
]A =

⎡⎢⎢⎣
γ1δ

2
1 γ1β1δ1 0 0

γ1β1δ1
1

Q1
+ γ1β

2
1 + γ2β

2
2 −γ2β2δ2 −γ2β

2
2

0 −γ2β2δ2 γ2δ
2
2 γ2β2δ2

0 −γ2β
2
2 γ2β2δ2 γ2β

2
2 + 1

QL

⎤⎥⎥⎦
where:

δ1 = (1 − V2d) , δ2 = (V4d − V2d)

Sylvester´s test to the above matrix, A [R + BΓBT
]A, yields principal minor

determinants given by,

0 <
∣∣∣γ1 (1 − V2d)

2
∣∣∣

0 <

∣∣∣∣ γ1 (1 − V2d)
2

γ1β1 (1 − V2d)
γ1β1 (1 − V2d) 1

Q1
+ γ1β

2
1 + γ2β

2
2

∣∣∣∣ = η1

0 <

∣∣∣∣∣∣
γ1 (1 − V2d)

2
γ1β1 (1 − V2d) 0

γ1β1 (1 − V2d) 1
Q1

+ γ1β
2
1 + γ2β

2
2 −γ2β2 (V4d − V2d)

0 −γ2β2 (V4d − V2d) γ2 (V4d − V2d)
2

∣∣∣∣∣∣ = η2

0 <
∣∣A [R + BΓBT

]
A
∣∣ = η3

with

η1 = γ1

(1 − V2d)
2 (1 + γ2β

2
2Q1

)
Q1

η2 = γ1γ2
(1 − V2d)

2 (V4d − V2d)
2

Q1

η3 = γ1γ2
(1 − V2d)

2 (V4d − V2d)
2

Q1QL

which are all strictly positive, due to the fact that the parameters: Q1, QL

and the design gains γ1, γ2 are all positive and the average equilibrium point
corresponding to a desired set of output voltages is such that V2d < 0 and
V4d > 0, respectively. Thus the matrix A [R + BΓBT

]A is positive definite.
Therefore Ḣ (e) = −eTA [R + BΓBT

]Ae is negative definite.
The passive outputs are given by

ey = BT ∂H (e)
∂e

which, in explicit form read as:

ey =
[

ey1

ey2

]
=
[

(1 − V2d) e1 + β1e2

β2e2 − (V4d − V2d) e3 − β2e4

]
In this case, the passive outputs involves the sharing of information, among

the two system controllers, of the the error variable e2. A feedback controller
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which makes the equilibrium point globally asymptotically stable is just the
linear controller: euav

= −Γey, hence:

euav
=
[

eu1av

eu2av

]
=
[ −γ1 [(1 − V2d) e1 + β1e2]
−γ2 [β2e2 − (V4d − V2d) e3 − β2e4]

]
The average stabilizing feedback control, based on passive output feedback,

is then given by

uav =

[
u1av

u2av

]
=

[
− V2d

1−V2d
− γ1 [(1 − V2d) e1 + β1e2]

V4d

V4d−V2d
− γ2 [β2e2 − (V4d − V2d) e3 − β2e4]

]
This is, precisely, the linear feedback controller obtained by tangent linea-

rization and feedback of the linearized incremental passive output.
Note that the error vector has the origin as a semi-global asymptotically

stable equilibrium with the incremental control proposed above.

Simulations

Simulations were carried out with the following design parameter values:

L1 = 20 mH, C1 = 20 µF, L2 = 20 mH, C2 = 20 µF,

R1 = 30 Ω, RL = 30 Ω, E = 15 V

with γ1 = 0.1 and γ2 = 0.1. The corresponding values for the normalized
parameter turned out to be:

Q1 = QL = 0.9487,
√

L1C1 = 632.46 µs, α1 = α2 = 1

It is desired to regulate the voltage variables to the reference equilibrium
values: υ1 = −22.5 V and υ2 = 22.5 V. The corresponding control inputs and
the equilibrium currents are given, respectively, by: u1av = 0.6 and u2av = 0.5,
while i1 = 3.75 A and i2 = −1.5 A.

Figure 5.23 depicts the average response of the switched system to a pas-
sivity based controller.

5.5 Trajectory Tracking via Error Dynamics Passive
Output Feedback

A variant of the previous result is obtained when we consider trajectory track-
ing problems in terms of the exact nonlinear average tracking error model. We
present the general formulation for all DC-to-DC power converters studied
thus far.

A general average model, discussed in Chapter 2, of the SISO DC-to-DC
power converters is of the form
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Fig. 5.23. Average responses of double Buck-Boost converter to an exact stabiliza-
tion error passive output feedback controller.

Aẋ = J (uav)x −Rx + buav + E

Whenever we need to emphasize the Hamiltonian character of the system we
simply use the fact that with H(x) = 1

2xTAx, then ∂H
∂x is simply equals to

Ax. Multiplying out the system equation by A−1 and replacing the vector x
by the equivalent expression A−1Ax we obtain

ẋ = A−1J (uav)A−1Ax −A−1RA−1Ax + A−1buav + A−1E

Defining now b̃ = A−1b and A−1E = Ẽ , we see from the fact that the
conservative character of the term J (uav)x and the dissipative of Rx is
preserved, respectively, in their new forms A−1J (uav)A−1 = J̃ (uav) and
A−1RA−1 = R̃, we have:

ẋ = J̃ (uav)
∂H

∂x
− R̃∂H

∂x
+ b̃uav + Ẽ

From the above developments we consider in this section, when needed,
and without loss of generality, the Generalized Hamiltonian models of the
form:

ẋ = J (uav)
∂H

∂x
−R∂H

∂x
+ buav + E

Let x∗(t) be a desired state trajectory which can be effectively accom-
plished by means of the nominal average control input u∗

av(t). We thus have

ẋ∗(t) = J (u∗
av)x∗ −Rx∗(t) + bu∗

av(t) + E
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Therefore, defining e = x−x∗(t), and euav = uav −u∗, we have, using the last
relation,

ė = J (uav)(x − x∗) −R(x − x∗) + b(uav − u∗) + E
+J (uav)x∗ −Rx∗ + bu∗ − ẋ∗

= J (uav)e −Re + beuav + J (uav)x∗ −Rx∗ + bu∗
av

−J (u∗
av)x∗ + Rx∗(t) − bu∗

av(t) − E
= J (uav)e −Re + beuav + [J (uav) − J (u∗

av)] x∗

Using the affine nature of J (uav) on the average control input uav, we have
the following exact model for the tracking error dynamics:

ė = J (uav)e −Re + beuav
+

∂J (uav)
∂uav

x∗euav

It is interesting to note that the nonlinear part of the error system dy-
namics is conservative and that the control input vector is now a time-varying
vector depending upon the desired state trajectory. We rewrite the tracking
error dynamics in Hamiltonian form, with H(e) = 1

2eT e, as

ė = J (uav)
∂H(e)

∂e
−R∂H(e)

∂e
+
[
b +

∂J (uav)
∂uav

x∗(t)
]

euav

The passive output tracking error is just given by

ey = y − y∗ =
[
b +

∂J (uav)
∂uav

x∗(t)
]T

∂H(e)
∂e

A linear time-varying average incremental passive output feedback controller
is simply given by

euav = −γey = −γ

[
b +

∂J (uav)
∂uav

x∗(t)
]T

∂H(e)
∂e

which produces the closed loop system given by

ė = J (uav)
∂H(e)

∂e

−
(
R + γ

[
b +

∂J (uav)
∂uav

x∗(t)
] [

b +
∂J (uav)

∂uav
x∗(t)

]T
)

∂H(e)
∂e

The time derivative of the positive definite tracking error energy function
H(e) is given by:

Ḣ(e) = −∂H(e)
∂eT

(
R + γ

[
b +

∂J (uav)
∂uav

x∗(t)
] [

b +
∂J (uav)

∂uav
x∗(t)

]T
)

∂H(e)
∂e
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The dissipation matching condition adopts the following time varying form:(
R + γ

[
b +

∂J (uav)
∂uav

x∗(t)
] [

b +
∂J (uav)

∂uav
x∗(t)

]T
)

> 0

We assume that the dissipation matching condition is strictly satisfied.
Otherwise, if the dissipation matching condition is not strictly satisfied as in:(

R + γ

[
b +

∂J (uav)
∂uav

x∗(t)
] [

b +
∂J (uav)

∂uav
x∗(t)

]T
)

≥ 0

we have to resort to LaSalle’s theorem to establish semi-global asymptotic
stability of the origin of the tracking error space.

The nature of the average passive output feedback control law is that of a
linear time-varying average incremental state feedback law:

euav = −γey = −γ

[
b +

∂J (uav)
∂uav

x∗(t)
]T

∂H(e)
∂e

The average control input is therefore synthesized as

uav = u∗
av(t) − γ

[
b +

∂J (uav)
∂uav

x∗(t)
]T

(x − x∗(t))

Obtaining the average nominal state trajectory x∗(t), in an explicit man-
ner, may prove to be a difficult task sometimes (as in the Buck-Boost con-
verter, for instance). For obtaining an explicit expression of the nominal state
trajectory is sometimes useful resorting to the converter’s flatness property.

Recall that the matrix ∂J (uav)/∂uav is assumed to be constant, that we
denote by J1, we denote by b∗(t) the vector

b∗(t) = [ b + J x∗(t) ]

5.5.1 The Boost Converter

Recall the normalized average model of the Boost DC-to-DC power converter

ẋ1 = −uavx2 + 1

ẋ2 = uavx1 − 1
Q

x2

It is desired to regulate the system trajectories between two average state
equilibrium points characterized, in terms of the desired output equilibrium
voltage x2(τ1) = Vd1, and x2(τ2) = Vd2 while following a corresponding com-
patible state trajectory x∗(τ).

A time-varying translation of the state coordinates to the tracking error
space e1 = x1 − x∗

1, e2 = x2 − x∗
2 yields,
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ė1 = −uave2 + 1 − uavx∗
2(τ) − ẋ∗

1(τ)

ė2 = uave1 − 1
Q

e2 + uavx∗
1(τ) − 1

Q
x∗

2 − ẋ∗
2(τ)

where

ẋ∗
1(τ) = −u∗

av(τ)x∗
2(τ) + 1

ẋ∗
2(τ) = u∗

av(τ)x∗
1(τ) − 1

Q
x∗

2(τ)

We then have,

ė1 = −uave2 − x∗
2(τ)(uav − u∗

av(τ))

ė2 = uave1 − 1
Q

e2 + x∗
1(τ)(uav − u∗

av(τ))

or

ė1 = −uave2 − x∗
2(τ)euav

ė2 = uave1 − 1
Q

e2 + x∗
1(τ)euav

The passive average output is given by

ey = −x∗
2(τ)e1 + x∗

1(τ)e2

The dissipation matching condition adopts the form,[
γ(x∗

2(τ))2 −γx∗
1(τ)x∗

2(τ)
−γx∗

1(τ)x∗
2(τ) 1

Q + γ(x∗
1(τ))2

]
> 0

and the average passive output linear feedback control law for the average
input error is given by:

euav
= −γey = γx∗

2(τ)(x1 − x∗
1(τ)) − γx∗

1(τ)(x2 − x∗
2(τ))

The average control input is readily established to be

uav = u∗(τ) + γ [x∗
2(t)x1 − x∗

1(τ)x2] (5.18)

Nominal Trajectory Generation

The normalized Boost converter model is differentially flat, with flat output
given by the normalized total stored energy

F =
1
2
[x2

1 + x2
2]

Indeed, all variables are parameterizable in terms of F and a finite number
of its time derivatives
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x1 = −Q

2
+

√
Q2

4
+ QḞ + 2F

x2 =

√√√√2F −
(
−Q

2
+

√
Q2

4
+ QḞ + 2F

)2

uav =

(
1 + 2

Q2 x2
2

)
− F̈

x2

(
1 + 2

Qx1

)
Recall it is desired to regulate the system trajectories between two average

state equilibrium points characterized, in terms of the desired normalized out-
put equilibrium voltages x2(τinit) = Vd1, and x2(τfinal) = Vd2, while following
a corresponding state trajectory x∗(τ).

Given an average normalized equilibrium, say x2(τinit) = Vd1 for the nor-
malized average output capacitor voltage, the corresponding equilibrium of
the average normalized inductor current is given by

x1(tinit) =
V 2

d1

Q

The corresponding equilibria of the average normalized flat output are

F init =
1
2

[
V 4

d1

Q2
+ V 2

d1

]
, F final =

1
2

[
V 4

d2

Q2
+ V 2

d2

]
We prescribe a nominal trajectory for the flat output that smoothly inter-

polates between F init, F final in a reasonable time interval [τinit, τfinal].

F ∗(τ) = Finit + (Ffinal − Finit)ϕ(τ, τinit, τfinal)

with

ϕ(τ, τinit, τfinal) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for τ ≤ τinit

∆8
τ

[
r1 − r2∆τ + · · · − r8∆

7
τ + r9∆

8
τ

]
for τ ∈ [τinit, τfinal]

1 for τ ≥ τfinal

where

∆t =
[

τ − τinit

τfinal − τinit

]
and

r1 = 12870, r2 = 91520, r3 = 288288, r4 = 524160, r5 = 600600,

r6 = 443520, r7 = 205920, r8 = 54912, r9 = 6435

This type of polynomial interpolation functions are addressed as Bezier poly-
nomials
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Simulations

We used a Boost converter model with the following parameters:

L = 20 [mH], C = 20 [µF], R = 30 [Ω], E = 15 [V]

We set t1 = 6.32 [ms], t2 = 37.94 [ms], with v(tinit) = 22.36 [V], and
v(tfinal) = 45.0 [V]. We have chosen γ = 0.5 as the controller gain parameter.

Figure 5.24 depicts the simulated responses of the non-normalized switched
Boost converter circuit to the exact tracking error passive output feedback
control. The average designed feedback controller is implemented via a Σ−∆
modulator.

Fig. 5.24. Trajectory tracking response of the switched Boost converter circuit.

5.5.2 Experimental Results

The corresponding non-normalized controller (5.18) is given by

uav(t) = u∗
av(t) + γactual [v∗ (t) i − i∗ (t) v] (5.19)

We implemented this controller using the PCI-6025E National Instruments
card, in connection with the MATLAB�-Simulink� program. A nominal de-
sired output energy profile, exhibiting a rather smooth start for the Boost
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converter, was specified using an interpolating Bezier polynomial of tenth or-
der, defined by:

F ∗ (t) = F (t1) +
[
F (t2) − F (t1)

]
ϕ (t, t1, t2) (5.20)

where ϕ(t, t1, t2) is a piecewise polynomial function interpolating between the
values of 0 and 1. This function is of the following form:

ϕ (t, t1, t2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for t ≤ t1(
t−t1
t2−t1

)5
[
252 − 1050

(
t−t1
t2−t1

)
+ 1800

(
t−t1
t2−t1

)2

−1575
(

t−t1
t2−t1

)3

+ 700
(

t−t1
t2−t1

)4

− 126
(

t−t1
t2−t1

)5
]

for t ∈ (t1, t2)
1 for t ≥ t2

(5.21)

We have used: t1 = 0.5 s, t2 = 1 s, i.e., t2 − t1 = 0.5 s, and γactual = 0.1.
It is desired to transfer the system from the initial equilibrium point,[

i (t1) , v (t1)
]

=
[
v2

init

RE
, vinit

]
= [360.58 mA, 15 V]

towards the final equilibrium:

[
i (t2) , v (t2)

]
=

[
v2

final

RE
, vfinal

]
= [923.08 mA, 24 V]

during an interval of time [t1, t2]. The corresponding average total stored
energy values are given by

F (t1) =
1
2

[
L

R2E2
v4

init + Cv2
init

]
, F (t2) =

1
2

[
L

R2E2
v4

final + Cv2
final

]
Finally, the corresponding average control input signal generated by the

linear feedback controller of the Boost converter varies between the initial and
final values, respectively, uav (t1) = 0.8 and uav (t2) = 0.5. The system param-
eters were chosen to be exactly the same as in the corresponding experimental
results at the end of Section 5.4.3.

Figure 5.25 depicts the experimental results which achieve the demanded
rest to rest task.

5.6 Controller Design via Fliess’ Generalized Canonical
Form

In this section, dynamic controllers for DC-to-DC power converters are de-
signed by means of state feedback using Fliess’ generalized observability ca-
nonical form (GOCF). We examine this control synthesis methodology in the
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Fig. 5.25. Experimental trajectory tracking response of the switched Boost DC-to-
DC converter.

cases of the following converter topologies: Boost, Buck-Boost and quadratic
Buck. Also, we carry out the closed loop stability analysis of the nonlinear zero
dynamics corresponding to the considered output of the system (normalized
currents and/or voltages, respectively). The algebraic theory of nonlinear sys-
tems, basically differential algebra, which supports the development of Fliess’
GOCF is contained in several articles by Prof. Michel Fliess. The reader is
advised to browse through [15] for a rather rigorous account of the theory.

5.6.1 The Boost Converter

The average normalized dynamics of the Boost converter is given by:

ẋ1 = − (1 − uav) x2 + 1

ẋ2 = (1 − uav)x1 − x2

Q

System Output: The Input Current

Consider y = h(x) = x1 to be the output of the average normalized Boost
system. This output is clearly relative degree one. Consider then the input-
dependent state coordinate transformation:
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z1

z2

]
=
[

h (x)
ḣ (x)

]
=
[

x1

− (1 − uav) x2 + 1

]
The corresponding inverse transformation can be obtained, by inspection, as:

x1 = z1

x2 =
1 − z2

1 − uav

We obtain then the following generalized observability canonical form for
the Boost converter,

ż1 = z2

ż2 =
u̇av

1 − uav
(1 − z2) − (1 − uav)2 z1 +

1 − z2

Q

y = z1 (5.22)

The zero dynamics, which is now a nonlinear differential equation relating
uav and u̇av, is found to be stable around a desired output equilibrium point.
Substituting y = z1 in (5.22) yields to the following relation:

u̇av = (1 − uav)
[
(1 − uav)2 z1 − 1

Q

]
(5.23)

The following are possible equilibrium points for the zero dynamics:

uav = 1, uav = 1 −
√

1
z1Q

, uav = 1 +
√

1
z1Q

The solution uav = 1 − √
1/z1Q has physical and control theoretic signifi-

cance. The phase diagram of the zero dynamics (5.23) shown in Figure 5.26,
graphically illustrates that this equilibrium value is locally stable. We ver-
ify, once more, that the average model of the Boost converter with average
inductor current z1 taken as the system output is of minimum phase nature.

Dynamic Feedback Controller Design

Consider the auxiliary input variable υav defined as

υav =
u̇av

1 − uav
(1 − z2) − (1 − uav)2 z1 +

1 − z2

Q

The system can be then be written as the following linear system

ż1 = z2

ż2 = υav

y = z1
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Fig. 5.26. Phase diagram of the inductor current zero dynamics for the Boost
converter.
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Fig. 5.27. Block diagram of the linearized system.

In fact, the system simply reduces to a set of two integrators arranged in
cascade, as shown in Figure 5.27.

It is evident that the problem of stabilizing the average converter current
output to a desired reference equilibrium value z1, appears now to be trivial.
Indeed, the control law

υav = −2ξωnz2 − ω2
n (z1 − z1)

produces a linear closed loop system with assignable transient features by
proper choices of ξ > 0 and ωn > 0,

ż1 = z2

ż2 = −2ξωnz2 − ω2
n (z1 − z1)

y = z1

The trajectories of the closed loop system asymptotically converge to the
desired reference equilibrium point, z1 = z1, z2 = 0.

The dynamic feedback controller required for synthesizing the auxiliary
input υav can be obtained from the relations
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u̇av

1 − uav
(1 − z2) − (1 − uav)2 z1 +

1 − z2

Q
= −2ξωnz2 − ω2

n (z1 − z1)︸ ︷︷ ︸
=:υav

that results in

u̇av =
1 − uav

(1 − z2)

[
υav + (1 − uav)2 z1 − 1 − z2

Q

]
(5.24)

The proposed controller (5.24) constitutes a dynamic nonlinear state feed-
back control law. We require that the restriction: z2 �= 1 be valid. This can
be guaranteed since on the one hand: z2 = 1 implies that x2 = 0 and, on the
other hand, under non-saturated average control, in the case of y = x1 = z1,
the amplifying condition x2 > 1 of the converter is fulfilled.

Finally, the average dynamic feedback control law may be expressed in
terms of the original average normalized variables, x1 and x2, resulting in,

u̇av =
1
x2

[
− 2ξωn [− (1 − uav)x2 + 1] − ω2

n (x1 − x1)

+ (1 − uav)2 x1 − (1 − uav)x2

Q

]

Simulations

We use the following component and design parameters for simulating the
Boost converter:

L = 20 mH, C = 20 µF, R = 30 Ω, E = 15 V

These parameters result in a quality factor of Q = 0.9487 and a time normal-
ization factor of

√
LC = 6.3246×10−4 s. Furthermore, the desired normalized

voltage is enforced to be: x2 = 2, in steady state conditions (corresponding
to v = 30 V). These values correspond to a normalized equilibrium current of
value, x1 = 4.2164 (corresponding to i = 2 A). The equilibrium value of the
average input is uav = 0.5.

Figure 5.28 shows the closed loop response of the system using the average
dynamic controller based on Fliess’ GOCF, the purpose of which is regulating
the output voltage in an indirect manner employing current control, using a
Σ − ∆ modulator.

System Output: The Output Capacitor Voltage

We take now the normalized voltage x2 as the system output output y =
h (x) = x2. The relative degree of this output is equal to 1.

Define the following input dependent state coordinate transformation:[
z1

z2

]
=
[

h (x)
ḣ (x)

]
=
[

x2

(1 − uav) x1 − x2
Q

]
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Fig. 5.28. Switched closed loop responses of a Boost power converter to a Σ − ∆
modulator implementation of a linearizing controller based on Fliess’s GOCF.

The inverse transformation is readily found to be,

x1 =
z1 + Qz2

(1 − uav)Q
x2 = z1

Thus, the Fliess’ GOCF for the Boost converter, assuming y = x2, is given
by

ż1 = z2

ż2 = − u̇av

(1 − uav)
(z1 + Qz2)

Q
− (1 − uav)2 z1 + (1 − uav) − z2

Q
y = z1

The zero dynamics associated to an equilibrium point of the average output
voltage z2 = z2 and corresponding average equilibrium current, z1 = z1, is
represented by the following nonlinear differential equation in uav,

u̇av = −Q

z1
(1 − uav)2 [(1 − uav) z1 − 1] (5.25)

This zero dynamics has the following equilibrium points

uav = 1, uav = 1 − 1
z1

only the second one has a physical meaning since z1 = x2 > 1.
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The phase diagram of the zero dynamics (5.25) is shown in Figure 5.29.
Clearly the feasible equilibrium point is unstable. We conclude that the av-
erage model of the Boost converter, with output y = x2, is a non-minimum
phase system.

−0.03

0

0.03

u  .

u 

u = 1u = U

Fig. 5.29. Phase diagram of the zero dynamics of the output capacitor voltage of
a Boost converter.

5.6.2 The Buck-Boost Converter

In this section, using Fliess’ GOCF for the average normalized Buck-Boost
converter, we establish the main features of the stability of the zero dynamics
associated to the possible output variables, x1 and x2 around given refer-
ence equilibrium points and derive a feasible stabilizing dynamical feedback
controller for the indirect regulation of the non-minimum phase output x2.

The average normalized dynamics of the Buck-Boost is given by:

ẋ1 = (1 − uav)x2 + uav

ẋ2 = −(1 − uav)x1 − 1
Q

x2

System Output: The Input Inductor Current

Consider the average normalized model of the Buck-Boost converter circuit
and let y = x1 to be the output of the system. The output y = x1 is, clearly,
relative degree 1.
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Define the following input-dependent state coordinates transformation:[
z1

z2

]
=
[

h (x)
ḣ (x)

]
=
[

x1

(1 − uav) x2 + uav

]
(5.26)

with inverse transformation given by,[
x1

x2

]
=
[

z1
z2−uav

1−uav

]
The GOCF of the average normalized Buck-Boost converter system, with

output y = z1 = x1 is then given by,

ż1 = z2

ż2 =
(

1 − z2

1 − uav

)
u̇av − (1 − uav)2 z1 +

uav − z2

Q

y = z1 (5.27)

The zero dynamics of the system (5.27), associated with an average output
equilibrium point y = z1 = x1, can be expressed as

u̇av = (1 − uav)
[
(1 − uav)2 z1 − uav

Q

]
The equilibrium points of the zero dynamics are given by

uav = 1, uav = 1 +
1

2Qz1
+

√(
1

2Qz1

)2

+
1

Qz1
,

uav = 1 +
1

2Qz1
−
√(

1
2Qz1

)2

+
1

Qz1

The first two equilibrium points of the zero dynamics are unstable. The
remaining equilibrium, which is the only one with physical meaning, is locally
stable. This fact is illustrated in Figure 5.30.

Dynamic Feedback Controller Design

We propose an average dynamical feedback control law for regulating the
Buck-Boost converter in the vicinity of the equilibrium point using Fliess’s
GOCF of the average normalized converter model,

ż1 = z2

ż2 =
(

1 − z2

1 − uav

)
u̇av − (1 − uav)2 z1 +

uav − z2

Q

y = z1 (5.28)
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Fig. 5.30. Phase diagram of the output current zero dynamics for the Buck-Boost
converter.

Define an auxiliary input υav given by

υav =
(

1 − z2

1 − uav

)
u̇av − (1 − uav)2 z1 +

uav − z2

Q

The input transformed system results in the following linear system:

ż1 = z2

ż2 = υav

y = z1

The problem of stabilizing the average normalized inductor current to a
constant value z1 = x1, from the auxiliary input υav can be carried out by
means of a linear feedback control law. Indeed, the average state feedback
control law

υav = −2ξωnz2 − ω2
n (z1 − z1)

yields a closed loop system of the form:

ż1 = z2

ż2 = −2ξωnz2 − ω2
n (z1 − z1)

y = z1

The trajectories of the average controlled system can be asymptotically
stabilized to the desired equilibrium point z1 = z1, z2 = 0 by suitable choice
of the design parameters ξ > 0 and ωn > 0.
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The nonlinear average dynamic state feedback controller for the trans-
formed system (5.28) is given

u̇av =
1 − uav

1 − z2

[
−2ξωnz2 − ω2

n (z1 − z1) + (1 − uav)2 z1 − uav − z2

Q

]
(5.29)

It is required, however, that the condition z2 �= 1 remains valid throughout
the transient performance of the system. The condition is actually a satura-
tion condition thanks to the negative amplifying character of the Buck-Boost
converter.

Substituting the coordinate transformation (5.26) in (5.29) we obtain the
expression for the average dynamic feedback controller based on Fliess’ GOCF
of the Buck-Boost converter circuit in the original, normalized state variables.

Simulations

Figure 5.31 illustrates the indirect output voltage regulation for a typical av-
erage Buck-Boost converter circuit model with parameter values: L = 20 mH,
C = 20 µF, R = 30 Ω, E = 15 V. We set as a desired steady state out-
put voltage the value x2 = −1.5, then x1 = 3.95. This value corresponds
to v = −22.5 V and i = 1.875 A. The parameter values yield the normal-
ized parameter: Q = 0.9487 and the time normalization factor is found to
be

√
LC = 6.3246 × 10−4[s]. The average control input equilibrium value is

uav = 0.6.
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Fig. 5.31. Average responses of a Buck-Boost converter to dynamic linearizing state
feedback controller based on Fliess’ GOCF.
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System Output: The Output Capacitor Voltage

Considering the customary average normalized model of the Buck-Boost con-
verter with output variable y = x2 representing the average normalized output
capacitor voltage. Clearly, the relative degree of this output is equal to 1. We
define the following input-dependent state coordinates transformation:[

z1

z2

]
=
[

h (x)
ḣ (x)

]
=
[

x2

− (1 − uav)x1 − x2
Q

]
The inverse transformation can be obtained directly from solving for x1 and
x2, that is [

x1

x2

]
=
[− z1+Qz2

(1−uav)Q

z1

]
Fliess’ GOCF for the Buck-Boost converter, assuming y = z1 = x2, is

determined by

ż1 = z2

ż2 = υav = − u̇av

(1 − uav)
z1 + Qz2

Q
− (1 − uav) [(1 − uav) z1 + uav] − z2

Q
y = z1

The resulting zero dynamics under equilibrium conditions for the output,
y = z1 results in,

u̇av = −Q

z1
(1 − uav)2 [(1 − uav) z1 + uav] (5.30)

The equilibrium points of the zero dynamics are given by

uav = 1, uav =
z1

z1 − 1

Among these equilibrium points, uav = z1
z1−1 , is the only one that has a

physical meaning, since z1 = x2 < 0. The phase diagram of (5.30) is shown
in Figure 5.32. It is clear that this equilibrium point is unstable. Hence, the
output y = x2 = z1 representing the output capacitor voltage is a non-
minimum phase output.

5.6.3 The Quadratic Buck Converter

In this section we obtain Fliess’ GOCF of the quadratic Buck converter only
for the case when the output of the system is the normalized current x1. Using
Fliess’ GOCF for the quadratic Buck converter, we design an indirect dynamic
state feedback control for the regulation of the output capacitor voltage which
is based on the regulation of the inductor current.
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Fig. 5.32. Phase diagram of the zero dynamics of the average output voltage for a
Buck-Boost converter.

Consider the normalized average model of the quadratic Buck converter,
i.e.,

ẋ1 = −x2 + uav

ẋ2 = x1 − uavx3

α1ẋ3 = uavx2 − x4

α2ẋ4 = x3 − x4

Q
y = x1

The relative degree of the system output is equal to 1, as it can be easily
established. The following invertible input-dependent state coordinates trans-
formation⎡⎢⎢⎣

z1

z2

z3

z4

⎤⎥⎥⎦ = φ (x) =

⎡⎢⎢⎣
h (x)

ḣ (x)

ḧ (x)

h(3) (x)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x1

uav − x2

u̇av + uavx3 − x1

üav + x3u̇av + 1
α1

(uavx2 − x4 − α1) uav + x2

⎤⎥⎥⎦
(5.31)

leads to the Fliess’ GOCF for the system that we do not write for the sake of
brevity.

The inverse transformation associated to (5.31) is
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x1

x2

x3

x4

⎤⎥⎥⎦ = φ−1 (z) =

⎡⎢⎢⎣
z1

uav − z2

− (u̇av − z1 − z3)
1

uav

α1
üav
uav

− α1
(u̇av−z1−z3)

u2
av

u̇av + (uav − z2) uav − α1
(z2+z4)

uav

⎤⎥⎥⎦
(5.32)

The zero dynamics of the Fliess’ GOCF for the quadratic Buck converter
around a desired average reference equilibrium value for the output, can be
shown to be given by:

u(3)
av +

(
z1

uav
− 3

uav
u̇av +

1
α2Q

)
üav +

2
u2

av

u̇3
av −

(
2z1

u2
av

+
1

α2uavQ

)
u̇2

av

+
(

2
u2

av

α1
+

1
α1α2

+
z1

α2uavQ

)
u̇av +

1
α1α2

(
u3

av

Q
− z1

)
= 0 (5.33)

The equilibrium points of the zero dynamics (5.33) are the roots of the poly-
nomial

p (uav) =
1

α1α2

(
u3

av

Q
− z1

)
that is

uav = 3
√

Qz1, uav =
1
2

3
√

Qz1

(
−1 ±

√
3i
)

Among these equilibrium points only uav = 3
√

Qz1 has a physical meaning.
Since it is not easy to check the stability of the zero dynamics via a phase
diagram, we resort to the construction of a respective Lyapunov function given
in Chapter 3. We conclude that the zero dynamics (5.33) is asymptotically
stable.

Dynamic Feedback Controller Design

The model of quadratic Buck converter in Fliess’ GOCF is given by

ż1 = z2

ż2 = z3

ż3 = z4

ż4 = u(3)
av + x3üav +

3uavx2 − 2x4 − α1

α1
u̇av

+
(u2

av + α1) (x1 − uavx3)
α1

+
x4 − Qx3

α1α2Q
uav

y = z1

with the state vector (x1, x2, x3, x4) defined by the corresponding inverse
transformation (5.32).

The linearizing average dynamic feedback controller results from equating
the right hand side of ż4 to an auxiliary input variable υav to obtain:
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ż1 = z2

ż2 = z3

ż3 = z4

ż4 = υav

y = z1

where

υav = u(3)
av + x3üav +

3uavx2 − 2x4 − α1

α1
u̇av

+
(u2

av + α1) (x1 − uavx3)
α1

+
x4 − Qx3

α1α2Q
uav (5.34)

The equilibrium point of this system is z = (z1, 0, 0, 0). Thus, if it is desired
that the trajectories of the system to converge to the equilibrium point z the
auxiliary variable υav may be chosen as

υav = −β4z4 − β3z3 − β2z2 − β1 (z1 − z1) (5.35)

which forces that the average system, in closed loop, takes the following form:⎛⎜⎜⎝
ż1

ż2

ż3

ż4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1

−β1 −β2 −β3 −β4

⎞⎟⎟⎠
⎛⎜⎜⎝

z1 − z1

z2 − z2

z3 − z3

z4 − z4

⎞⎟⎟⎠
Obviously, the characteristic polynomial of this system is

p (s) = s4 + β4s
3 + β3s

2 + β2s + β1 (5.36)

and guaranteed to be Hurwitz by means of an appropriate choice of a desired
polynomial pd (s). Hence, we calculate the coefficients of pd (s) according to
stable roots located in the left semi-plane of the complex plane. A desired
appropriate characteristic polynomial is the choice

pd (s) =
(
s2 + 2ξ1ωn1s + ω2

n1

) (
s2 + 2ξ2ωn2s + ω2

n2

)
= s4 + 2 (ξ1ωn1 + ξ2ωn2) s3 +

(
ω2

n1 + 4ξ1ξ2ωn1ωn2 + ω2
n2

)
s2

+2
(
ξ1ωn1ω

2
n2 + ξ2ω

2
n1ωn2

)
s + ω2

n1ω
2
n2 (5.37)

Equating the coefficients of the polynomials (5.36) and (5.37) we obtain the
feedback gains β1, β2, β3, and β4:

β1 = ω2
n1ω

2
n2

β2 = 2
(
ξ1ωn1ω

2
n2 + ξ2ω

2
n1ωn2

)
β3 =

(
ω2

n1 + 4ξ1ξ2ωn1ωn2 + ω2
n2

)
β4 = 2 (ξ1ωn1 + ξ2ωn2)
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Equating (5.34) and (5.35) we determine the feedback law of the nonlinear
dynamic controller, which ensures the stabilization of the system by means of
a linearization scheme in the closed loop. Hence,

u(3)
av = −β4z4 − β3z3 − β2z2 − β1 (z1 − z1) − x3üav − 3uavx2 − 2x4 − α1

α1
u̇av

− (u2
av + α1) (x1 − uavx3)

α1
− x4 − Qx3

α1α2Q
uav (5.38)

For the simulation we define the state variables

µ1 = uav, µ2 = u̇av, µ3 = üav

The dynamic controller (5.38), expressed in these state variables, exhibits the
following form:

µ̇1 = µ2

µ̇2 = µ3

µ̇3 = −β4z4 − β3z3 − β2z2 − β1 (z1 − z1) − x3µ3 − 3µ1x2 − 2x4 − α1

α1
µ2

− (µ2
1 + α1) (x1 − µ1x3)

α1
− x4 − Qx3

α1α2Q
µ1 (5.39)

Carrying out the corresponding substitutions in (5.31), the transformed state
variables z1, z2, z3 and z4, result in

z1 = x1

z2 = µ1 − x2

z3 = µ2 + µ1x3 − x1

z4 = µ3 + µ2x3 +
1
α1

(µ1x2 − x4 − α1)µ1 + x2

Simulations

Figure 5.33 depicts computer simulations which resemble the closed loop re-
sponse of the system. The controller design based on Fliess’ GOCF is imple-
mented using a Σ − ∆ modulator. It illustrates the indirect output voltage
regulation for the quadratic Buck converter whose parameters are:

L1 = 600 µH, C1 = 10 µF, L2 = 600 µH, C2 = 10 µF,

R = 40 Ω, E = 100 V

with a desired steady state voltage of x4 = 0.25, (corresponding to υ2 = 25 V),
and x1 = 2.4206 × 10−2 (corresponding to i1 = 0.3125 A). Moreover, in this
converter we have x2 = uav = 0.5 and x3 = 4.8412 × 10−2 (corresponding
to υ1 = 50 V and i2 = 0.625 A, respectively). These parameter values yield
Q = 5.164 and the time normalization factor is

√
L1C1 = 7.746 × 10−5 s.



5.7 Nonlinear Observers for Power Converters 331

Fig. 5.33. Closed loop response of a quadratic Buck converter to a Σ−∆ modulator
implementation of a stabilizing controller based on Fliess’ GOCF.

5.7 Nonlinear Observer Design for DC-to-DC Power
Converters

The topic of nonlinear observers has been of sustained interest over the last
twenty years in the automatic control literature. Several books exist on the
topic with various levels of theoretical exposition. The reader is referred to
the work of Gauthier and Kupka [28]. A book, containing a rather concise and
rigorous treatment of nonlinear observers and the many variations in the direc-
tion of adaptive schemes, is that of Marino [41]. Some recent developments on
nonlinear observers have been gathered in the edited volume by Nijmeijer and
Fossen [46]. New interesting directions about algebraic observers, which may
have important implications in power electronics devices, has been published
by Fliess and Sira-Ramı́rez [24], [25] and [64]. For a parallel development of
nonlinear observers from the standpoint of Generalized Hamiltonian Systems,
the reader is referred to [71].

5.7.1 Full Order Observers

Consider the rather general average model of DC-to-DC power converters,
which may well be a multi-input system

Aẋ = J (uav)x −Rx + Buav + E
y = CT x

where x ∈ Rn, u ∈ Rm and y ∈ Rp
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We assume the system to be observable, i.e., there exists a differential
parametrization of the states in terms of the inputs u and the outputs y.

The nonlinear observer:

A ˙̂x = J (uav)x̂ −Rx̂ + Buav + E + K(y − ŷ)
y = CT x̂

yields the following input dependent error system:

Aė = J (uav)e −Re −Key

ey = CT e

where e is the state estimation error defined to be e = x− x̂, ey is the output
estimation error, ey = y − ŷ.

Note that if the observer gain vector K is chosen to be the column vector
(or matrix) ΓC, with the p × n matrix Γ being a strictly positive matrix
Γ > 0, then the output injected estimation error dynamics is given by

Aė = J (uav)e − [R + γCΓCT
]
e

ey = CT e

The dual dissipation matching condition establishes that if the symmetric
matrix: [R + CΓCT

]
(5.40)

is positive definite, then the estimation error vector e asymptotically semi-
globally converges to zero.

If the matrix (5.40) is only positive semi-definite, then the origin of the
estimation error space may still represent an asymptotically stable equilibrium
point for the error dynamics, provided that the set of error trajectories e satisfy
the following condition:

{e | eT
[R + CΓCT

]
e = 0} = {0}

This result follows directly from LaSalle’s theorem.
Interestingly enough, if the output vector of the system is given by the

system’s passive output y = BT x, then the input dependent observer enjoys a
passive output injection stability property, provided the dissipation matching
condition [R + BΓBT

]
(5.41)

is satisfied.
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5.7.2 The Boost Converter

Consider the normalized average model of the Boost DC-to-DC power con-
verter.

ẋ1 = −uavx2 + 1

ẋ2 = uavx1 − 1
Q

x2

y = x2

where x1 represents the average normalized inductor current, x2 is the aver-
age normalized output voltage. The function uav denotes the average control
input.

It is desired to asymptotically obtain the average inductor current x1 on
the basis of a full order observer based on the measured average input uav

and the average output y.
We propose the following full order Luenberger type of observer:

˙̂x1 = −uavx̂2 + 1 + λ1(y − x̂2)

˙̂x2 = uavx̂1 − 1
Q

x̂2 + λ2(y − x̂2)

y = x2

The estimation errors, e1 = x1 − x̂1, and, e2 = x2 − x̂2, evolve according
to the following input dependent dynamics[

ė1

ė2

]
=

[
0 −uav

uav 0

] [
e1

e2

]
−
[

0 0
0 1

Q

] [
e1

e2

]
−
[

λ1e2

−λ2e2

]
Note that the influence of the average control input uav is centered on the

conservative forces of the estimation error dynamics and, hence, it does not
affect the stability of the observer error.

Consider the following Lyapunov function candidate for assessing the sta-
bility of the estimation error dynamics

V (e) =
1
2
[
e2
1 + e2

2

]
> 0

The time derivative of this average estimation energy function, along the
trajectories of the system, is given by

V̇ (e) = −λ1e1e2 −
(

λ2 +
1
Q

)
e2
2

Setting λ1 = 0, we obtain that V̇ (e) ≤ 0. The set of error vectors where V̇ (e)
is zero coincides then with e2 = 0. But e2 = 0 implies uave1 = 0. Since uav

is not identically zero when the system is being controlled, then e1 = 0 is the
only controlled trajectory of the system which is compatible with the largest
invariant set.

The estimation error dynamics has the origin as an asymptotically stable
equilibrium point. The estimated average inductor current converges to the
actual average current.
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Simulations

We tested the performance of the full order observer with a controller derived
on the basis of the passivity based control methodology using energy shaping
plus damping injection previously explained in this chapter.

uav =
−ẋ∗

1(t) + 1 + RI(x̂1 − x∗
1(t))

ζ

ζ̇ = uavx∗
1(t) −

1
Q

ζ

where x∗
1(t) is the desired reference trajectory for x1. We set as x∗

1(t) the con-
stant desired equilibrium value x1 = V 2

d

Q with Vd = 1.5. We set the controller
gain RI to the value of 1. The observer gain λ2 was also set to 1. The value
of Q was also set to 1.

Figure 5.34 illustrates the response of an average Boost converter model to
a passivity based controller, synthesized with the help of a full order observer
(Q = 1). The corresponding switched controlled trajectories, implemented via
a Σ − ∆ modulator are shown in Figure 5.35.
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Fig. 5.34. Average responses of Boost converter controlled via passivity based
control and a full order observer.
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Fig. 5.35. Responses of switched Boost converter controlled via passivity based
control, a full order observer and a Σ − ∆ modulator.

5.7.3 The Buck-Boost Converter

Consider the normalized average model of the Buck-Boost DC-to-DC power
converter.

ẋ1 = uavx2 + (1 − uav)

ẋ2 = −uavx1 − 1
Q

x2

y = x2

where x1 is the normalized inductor current, x2 stands for the normalized
output voltage and uav is the average control input or average switch position
function.

It is desired to asymptotically obtain the average inductor current x1 on
the basis of a full order observer based on the measured average input uav

and the average output y.
We propose as a full order observer the Luenberger type:

˙̂x1 = uavx̂2 + 1 − uav + λ1(y − x̂2)

˙̂x2 = −uavx̂1 − 1
Q

x̂2 + λ2(y − x̂2)

y = x2

The estimation errors, e1 = x1 − x̂1, and, e2 = x2 − x̂2, evolve according
to the following input dependent dynamics[

ė1

ė2

]
=

[
0 uav

−uav 0

] [
e1

e2

]
−
[

0 0
0 1

Q

] [
e1

e2

]
−
[

λ1e2

−λ2e2

]
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Note that the influence of the average control input uav is ascribed to the
conservative forces of the estimation error dynamics and, hence, it does not
affect the stability of the origin of coordinates of the observation error.

Consider the following Lyapunov function candidate for assessing the sta-
bility of the estimation error dynamics

V (e) =
1
2
[
e2
1 + e2

2

]
The time derivative of this energy function, along the trajectories of the sys-
tem, is given by

V̇ (e) = −λ1e1e2 −
(

λ2 +
1
Q

)
e2
2

Setting λ1 = 0, we obtain that V̇ (e) ≤ 0. The set of error vectors where V̇ (e)
is zero coincides then with e2 = 0. But e2 = 0 implies uave1 = 0. Since uav is
not identically zero, then e1 = 0 is the only trajectory of the system which is
compatible with the largest invariant set.

The estimation error dynamics has the origin as a semi-globally asymp-
totically stable equilibrium point. The estimated average inductor current
converges to the actual average current.

Simulations

We tested the performance of the full order observer with a controller derived
on the basis of the passivity based control methodology that uses energy
shaping plus damping injection.

uav =
−x∗

1(t) − 1 + uav + RI(x̂1 − x∗
1(t))

ζ

ζ̇ = −uavx∗
1(t) −

1
Q

ζ

where x∗
1(t) is the desired trajectory for x1. We set x∗

1(t) to be the constant
desired equilibrium value x1 = − (1−Vd)Vd

Q with Vd = −1.5. We set the con-
troller gain RI to the value 1. The observer gain λ2 was also set to 1 and
Q = 1.

The figure 5.36 depicts the response of the switched Buck-Boost normal-
ized converter model to a passivity based controller synthesized with the help
of a full order observer and a Σ − ∆ modulator.
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Fig. 5.36. Switched response of Buck-Boost converter controlled via a passivity
based control, a full order observer and Σ − ∆ modulation.

5.8 Reduced Order Observers with Input Dependent
Error

5.8.1 The Boost Converter

Consider the normalized average model of the Boost DC-to-DC power con-
verter

ẋ1 = −uavx2 + 1

ẋ2 = uavx1 − 1
Q

x2

y = x2

It is desired to asymptotically obtain the average inductor current x1 on the
basis of a reduced order observer which uses only the measured average input
uav and the average output y.

Recall that the average control input uav is a signal constrained to take
values in the open interval (0, 1) of the real line. Also, note that the signal
uavx1 can be expressed as follows in terms of the measured output y

uavx1 = ẏ +
1
Q

y

We thus propose the following reduced order observer:

˙̂x1 = −uavy + 1 + λ(uavx1 − uavx̂1)
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The estimation error e = x1 − x̂1 evolves according to the input dependent
linear dynamics

ė = −λuave

which, by virtue of the strictly positive character of the average input uav

results in a dynamics with the origin as an asymptotically stable equilibrium
point provided the input trajectory uav(t) is bounded away from zero by a
strictly negative real constant.

Under these circumstances, letting, dρ = uav(τ)dτ , we find that the es-
timation error, in transformed time scale satisfies the asymptotically stable
linear time-invariant dynamics

d

dρ
e(ρ) = −λe(ρ)

Substituting the expression for uavx1 in the observer dynamics we obtain:

˙̂x1 = −uavy + 1 + λ(ẏ +
1
Q

y − uavx̂1)

Defining ζ = x̂1−λy yields the following reduced order nonlinear observer:

ζ̇ = −λuavζ +
[

λ

Q
− uav(1 + λ2)

]
y + 1

x̂1 = ζ + λy

Note that if the initial states are at rest at the origin and the observer
state is initially set to zero, then the estimation error is identically zero for
all t. Such a singular situation must and can be avoided in practise.

Simulations

We test the performance of the proposed controller with several feedback
controllers.

First, consider the traditional sliding mode controller

u =
1
2

[1 + sign(s)]

with an estimated sliding surface of the form: s = x̂1 − V 2
d

Q .
It is desired to drive the output voltage to the average equilibrium Vd = 1.5.

This requires to indirectly control the inductor current to the value V 2
d /Q. We

show the simulations corresponding to zero initial conditions of the converter
and the observer when Q = 1.

The control is initially saturated to the value of zero, while the inductor
charges from the external voltage source. The estimator dynamics corresponds
with ζ̇ = 1 which is exactly the same as that for the inductor current ẋ1 = 1.
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Fig. 5.37. Sliding mode controller responses of a Boost converter using a reduced
order observer.

Since both the variable x1 and ζ start from zero, the responses are identi-
cal. When the current overshoots the desired equilibrium value the switched
control input changes and saturates to u = 1, the observer is activated and
perfectly tracks the state due to the identical values up to that activation
moment. The sliding mode creation is imminent. This controlled behavior of
the Boost converter is shown in Figure 5.37

If the initial states of the system and of the estimator are not equal, then
due to the initial saturation of the control input to zero, the inductor current
and the reduced order observer state variables both evolve as straight parallel
lines with a finite difference error. Once the desired current is overshot the
observer is activated and a sliding regime is induced. The controlled behavior
for the considered Boost converter is depicted in Figure 5.38.

Consider now an average controller based on the linearized system model
and the exact tracking error dynamics passive output feedback scheme. Such
a controller was shown to have interesting semi-global stability features (see,
respectively, Sections 4.4.9 and 5.4.2). The controller is recalled as given by,

uav =
1
Vd

− γ

[
−Vd

(
x1 − V 2

d

Q

)
+

V 2
d

Q
(x2 − Vd)

]
We use following observer based controller using the previously introduced

reduced order nonlinear observer,

uav =
1
Vd

− γ

[
−Vd

(
x̂1 − V 2

d

Q

)
+

V 2
d

Q
(y − Vd)

]
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Fig. 5.38. Sliding mode controller responses of a Boost converter using a reduced
order observer.

Fig. 5.39. Switched responses of Boost converter to an exact stabilization error
passive output feedback controller using a reduced order observer and Σ − ∆ mod-
ulation.
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5.8.2 The Buck-Boost Converter

Consider the normalized average model of the Buck-Boost DC-to-DC power
converter.

ẋ1 = uavx2 + (1 − uav)

ẋ2 = −uavx1 − 1
Q

x2

with x1 being the normalized inductor current, x2 represents the normalized
output voltage and uav stands for the average control input.

It is desired to asymptotically obtain the average inductor current x1 on
the basis of a reduced order observer based on the measured average input
uav and the average output y

As in most of the studied converters, the average control input uav is a
signal constrained to take values in the interval [0, 1] of the real line. Also, note
that the signal uavx1 can be expressed as follows, in terms of the measured
output y

uavx1 = −ẏ − 1
Q

y

We thus propose the following reduced order observer:

˙̂x1 = uavy + 1 − uav + λ(uavx1 − uavx̂1)

The estimation error e = x1 − x̂1 evolves according to the input dependent
linear dynamics:

ė = −λuave

which, by virtue of the strictly positive character of the average input uav

exhibited when the system is being controlled, results in a dynamics with the
origin as an asymptotically stable equilibrium point.

Substituting the expression for uavx1 in the observer dynamics, we obtain,
after some algebraic manipulations which involve the definition of the variable
ζ as ζ = x̂1 − λy:

dζ = −λuavζ +
[
(1 + λ2)uav − λ

Q

]
y + (1 − uav)

z = ζ − λy

Note that, as in the previous case, if the system initial states are at rest
at zero and the observer is initially set to zero, then the estimation error is
identically zero for all t.

Simulations

We test the performance of the proposed reduced order observer with several
average feedback controllers.
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Fig. 5.40. Sliding mode controlled responses of a Buck-Boost converter using a
reduced order observer.

First, consider the traditional sliding mode controller

u =
1
2

[1 + sign(s)]

with an estimated sliding surface of the form: s = x̂1 + (1−Vd)Vd

Q .
It is desired to drive the output voltage to the average equilibrium value:

Vd = −1.5. This requires to indirectly control the inductor current to the
value: x1 = −(1 − Vd)Vd/Q. We show the simulations corresponding to non
zero initial conditions for the converter and for the normalized resistor value,
Q = 1.

The control is initially saturated to the value of zero, while the inductor
charges from the external voltage source. The estimator dynamics is blocked
and it corresponds with, ζ̇ = 1, which is exactly the same as that for the
closed loop inductor current ẋ1 = 1. Since both the variable x1 and ζ start
from different initial conditions, the responses differ only by a constant. When
the current overshoots the desired equilibrium value, the control input changes
from zero to one and it remains saturated to u = 1 while the sliding surface
is newly reached. The observer being activated tracks the state. The sliding
mode controlling the system is thus created. The controlled behavior of the
system is depicted in Figure 5.40.

Consider now an average feedback controller based on the linearized system
model and the static passive output linear feedback scheme (see, respectively,
Sections 4.5.10 and 5.4.4). The controller is recalled as given by,

uav =
1

1 − Vd
+ γ

[
(1 − Vd)

(
x1 +

(1 − Vd)Vd

Q

)
− (1 − Vd)Vd

Q
(x2 − Vd)

]
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Fig. 5.41. Switched controlled responses of a Buck-Boost converter using an incre-
mental static passive controller, a reduced order observer and a Σ − ∆ modulator.

We use following controller based on the previously introduced nonlinear
observer,

uav =
1

1 − Vd
+ γ

[
(1 − Vd)

(
x̂1 +

(1 − Vd)Vd

Q

)
− (1 − Vd)Vd

Q
(y − Vd)

]

5.9 GPI Sliding Mode Control of DC-to-DC
Power Converters

In this section we propose some additional sliding mode feedback control op-
tions for the Buck, the Boost and the Buck-Boost converter circuits. The pro-
posed schemes are based on the idea of Integral State Reconstructors, which
has resulted in a far reaching generalization of classical PID control and is ad-
dressed as Generalized PI controllers (GPI) (See Fliess et al. [20], [21], Fliess
and Márquez [19], and Fliess [16]). The GPI control technique side-steps the
need for asymptotic observers, or for on-line calculations based on samplings
and time-discretizations, in the feedback regulation of observable linear dy-
namic systems. The extension of the integral reconstructor-based feedback
control technique to the nonlinear arena, and in particular to switched sys-
tems, is here accomplished in the context of the sliding mode regulation of
DC-to-DC power converter circuits, of the Buck, Boost and Buck-Boost types,
operating in continuous conduction mode. The results concerning the GPI
control of the Boost converter can also be found in an article by Sira-Ramı́rez
et al. [69].
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The integral reconstructor-based sliding mode schemes for the treated po-
wer converters are shown to exhibit similar stabilizing features as the tradi-
tional sliding mode controllers, but they turn out to be vastly superior as far
as robustness, with respect to un-modelled load resistance parameter varia-
tions, is concerned. The proposed feedback control schemes gives traditional
“op-amps”, and modern integrated analog circuits, a renewed importance in
the feedback regulation of power electronics circuits. The direct economic con-
sequence is then a substantial lowering of implementation costs.

5.9.1 The Buck Converter

Consider the average normalized model of the Buck converter

ẋ1 = −x2 + u

ẋ2 = x1 − z2

Q
(5.42)

with output signal represented by the normalized output capacitor voltage
y = x2. The system is clearly observable from this output variable and, hence,
reconstruction of the unmeasured state variable x1 is possible (see Fliess et
al., [20]).

An integral input output parametrization, or an integral resconstructor,
of the average normalized inductor current, x1(τ), is directly obtained from
the first of the system equations (5.42) by simple integration,

x̂1(τ) =
∫ τ

0

(u(ρ) − y(ρ)) dρ (5.43)

The integral reconstructor of x1 may be considered to be a “open loop es-
timate” of the normalized inductor current x1 which is biased by an unknown
constant value, represented by the initial condition x1(0).

It is clear that the relation linking the estimated value x̂1 of x1 to its actual
value, is just given by

x1(τ) = x̂1(τ) + x1(0) (5.44)

We use the estimate (5.43) of the inductor current, x1, in the traditional
sliding surface definition

S = { x ∈ R2 | σ(x) = x1 − x1 = x1 − Vd/Q = 0 } (5.45)

and proceed to complement the expression with an integral control action,
computed on the basis of the output voltage stabilization error, y − Vd.

Consider then the following integral reconstructor-based sliding mode con-
troller,

uav =
{

1 for σ̂(y, u), ξ) < 0
0 for σ̂(y, u, ξ) > 0 (5.46)
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σ̂(y, u), ξ) =
∫ τ

0

(u(ρ) − y(ρ)) dρ − Vd

Q
+ k0ξ (5.47)

ξ̇ = y(τ) − Vd, ξ(0) = 0 (5.48)

with k0 being a strictly positive design constant to be chosen later.
The modified sliding surface coordinate function, σ̂, can also be equiva-

lently written in terms of the, non-measured, actual state x1 as,

σ̂(x1, ξ) = x1 − Vd

Q
− x1(0) + k0ξ (5.49)

In spite of the unknown constant value of x1(0), the expression (5.49) is found
to be useful for our analysis purposes.

The time derivative of any of the two equivalent expressions of the modified
sliding surface coordinate function (5.49), or (5.47), is given by

˙̂σ(y, u, ξ) = u − y + k0(y − Vd) (5.50)

Note that on σ̂ = 0 the inductor current, x1, is given by the expression
x1 = Vd

Q + x1(0) − k0ξ.
The equivalent control, corresponding to the modified sliding surface co-

ordinate function is now given by

ueq = y − k0(y − Vd) (5.51)

The ideal sliding dynamics, obtained from the invariance conditions, σ̂ =
0, ˙̂σ = 0, is obtained as

ẋ1 = −k0(y − Vd)

ẏ = x1 − y

Q

ξ̇ = y − Vd (5.52)

Thus, the ideal closed loop behavior of the normalized output capacitor
voltage is governed by the second order differential equation

ÿ +
1
Q

ẏ + k0(y − Vd) = 0 (5.53)

Given the strictly positive character of Q and k0, the ideal sliding behavior of
the output signal y exponentially asymptotically converges towards the desired
equilibrium value y = Vd. The corresponding average equilibrium point of the
normalized inductor current is then given by x1 = Vd/Q.

The only constant equilibrium point, (y, x1, ξ), of the ideal closed loop
sliding dynamics, according to (5.49) and (5.52), is given by

x1 =
Vd

Q
, y = Vd, ξ =

1
k0

x1(0), (5.54)
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A sliding regime locally exists on σ̂(y, u, ξ) = 0 whenever the following
existence condition, 0 < ueq < 1, is satisfied (see Sira-Ramı́rez [66] ):

0 < (1 − k0)y + k0Vd < 1 (5.55)

which, under the prevailing physical considerations, is equivalent to the fol-
lowing set of inequalities{

max
{

0, 1−k0Vd

k0−1

}
< y < min

{
1, k0Vd

k0−1

}
for k0 > 1

0 < y < 1 ≤ 1−k0Vd

1−k0
, for 0 < k0 < 1

(5.56)

Thus, the set of values for k0 that guarantees a larger region of existence
of a sliding regime, compatible with the physical limitations, corresponds to
the condition, k0 ∈ (0, 1). The following choice of, k0, as a strictly positive
constant, within the interval:

0 < k0 < Vd < 1 (5.57)

clearly guarantees the non-empty character of the region of existence of sliding
motions and it will prove to be most convenient to assure sliding surface
reachability from the origin of the system’s state space. We thus assume that
condition 5.57 remains valid throughout.

The local reachability of the sliding surface, σ̂ = 0, from an arbitrary,
though physically compatible, initial state value, is established by the well
known condition, σ̂ ˙̂σ < 0, to be verified in a neighborhood of the modified
sliding surface. Suppose that (5.57) is valid. Let σ̂ < 0, then, according to
(5.46), the control is set to u = 1. The time derivative of the modified sliding
surface coordinate is given by ˙̂σ = 1 + (k0 − 1)y − k0Vd. Then for all y <
(1 − k0Vd)/(1 − k0), which is always the case since y < 1 and k0 ∈ (0, Vd),
the time derivative, ˙̂σ is positive and the product σ̂ ˙̂σ is negative. Suppose
now that σ̂ is positive, then, the control input is given by u = 0. The time
derivative of the sliding surface coordinate is ˙̂σ = (k0 − 1)y − k0Vd. Thus, for
all y > 0, the product σ̂ ˙̂σ is, again, negative. We conclude that the modified
sliding surface, Ŝ = { (y, u, ξ) | σ(y, u, ξ) = 0}, is reachable in finite time, by
means of the proposed discontinuous control law (5.46). Due to the physical
restrictions on the state of the system y, x1 > 0 and y < 1, we say that the
sliding surface is semi-globally reachable in finite time.

For the reachability of the sliding surface from the origin, suppose the
system is initially resting at the zero state, x1(0) = 0, x2(0) = 0, ξ(0) = 0,
then, the initial value of the modified sliding surface is negative, σ̂(x1(0), 0) =
σ̂(0, 0) = −Vd/Q < 0, and u is set to 1. The initial value of the product, σ̂ ˙̂σ,
is given by:

σ̂(0, 0) ˙̂σ(0, 0) = −Vd

Q
(1 − k0Vd)

The modified sliding surface σ̂, thus, starts increasing towards zero from the
given zero initial condition, provided k0 is chosen within the prescribed in-
terval, k0 ∈ (0, Vd) ⊂ (0, 1). In light of the semi-global reachability property
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shown above, we have that, in particular, the sliding surface is always reach-
able, by means of the proposed switched control strategy (5.46), from the
origin of the state space. Note that the origin is commonly regarded as a
starting point for the operation of DC-to-DC power converters. We summa-
rize the proven result in the following proposition.

Proposition 5.3. Consider a Buck converter in normalized form in which it
is desired to stabilize the measured output variable, y = x2, towards the given
constant value, Vd > 0. Suppose that the control input, u, is also available for
measurement. Then, the following integral reconstructor-based sliding mode
controller, using only input-output, information:

u =
{

1 for σ̂(y, u, ξ) < 0
0 for σ̂(y, u, ξ) > 0

σ̂(y, u, ξ) =
∫ τ

0

(u(ρ) − y(ρ)) dρ − Vd

Q
+ k0ξ

ξ̇ = y(τ) − Vd, ξ(0) = 0, 0 < k0 < Vd

(5.58)

yields a permanent sliding motion on the surface:

Ŝ = { (y, u, ξ) | σ̂(y, u, ξ) = 0}
= { (x, ξ) | x1 − Vd

Q
− x1(0) + k0ξ = 0} (5.59)

which is reachable from the origin of coordinates in finite time. The induced
ideal sliding motions on the sliding manifold, Ŝ exponentially asymptotically
stabilize the trajectories of the variables x1, x2 and ξ towards the unique equi-
librium point:

x1 =
Vd

Q
, x2 = Vd, ξ =

1
k0

x1(0)

where x1(0) is the unknown initial state of the normalized inductor current
variable x1. The sliding motions globally exist on the physically significant
domain of Ŝ, provided the design constant k0 is chosen so that 0 < k0 < 1.

Figure 5.42 depicts the integral reconstructor-based indirect sliding mode
feedback control scheme for the stabilization of the normalized Boost converter
circuit.

Remark 5.4. The sliding mode controller (5.46)-(5.48), based on integral re-
construction of the normalized inductor current, x1, exhibits a fundamental
limitation in the injection of appropriate damping to the closed loop dynamics
of the output capacitor voltage y = x2, as it follows from Equation 5.53. The
following alternative sliding surface
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Fig. 5.42. Integral reconstructor-based indirect sliding mode control scheme for the
stabilization of the Buck converter circuit.

σ̂(y, u, ξ) =
∫ τ

0

(u(ρ) − y(ρ)) dρ − Vd

Q
+ k0ξ + k1y

ξ̇ = y − Vd

results in an ideal sliding dynamics for y governed by

ÿ + (
1
Q

+ k1)ẏ + k0(y − Vd) = 0

which has complete command over the damping and the natural frequency of
the closed loop ideal sliding dynamics. The existence of a sliding regime and
the reachability of the sliding surface follows from a similar analysis as that
carried out for the previous sliding mode controller. The closed loop average
dynamics for y clearly shows that the scheme is also robust with respect to
load, or quality parameter, step variations since these only imply a change,
always within strictly positive limits, in the damping factor but not in the
achieved steady state equilibrium value.

Simulation Results

Simulations were performed on a typical Buck converter circuit with the same
parameter values used before. It was desired to bring the state trajectories
from the origin towards the final desired value of z2 = 7.5 [V], with cor-
responding z1 = 0.2488 [A]. The simulations, shown in Figure 5.43, depict
the performance of the proposed sliding mode plus integral reconstructor-
based feedback control scheme on the behavior of the considered DC-to-DC
Buck converter circuit. The value of the design constant k0 was set to be
k0 = 1/(4Q2).

Robustness to Load Variations

In order to test the robustness of the proposed GPI sliding mode control
scheme, we let the load resistor R undergo a sudden un-modelled and perma-
nent variation of 100% of its nominal value of 30Ω. This variation took place,
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Fig. 5.43. Integral reconstruction based sliding mode controlled Buck converter
performance.

approximately, at time, t = 0.01586 [s], while the system was already stabi-
lized to the desired voltage value. Figure 5.44 shows the excellent recovering
features of the proposed controller to the imposed load variation.
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Fig. 5.44. Robust performance of integral reconstructor based sliding mode control
of the Buck converter subject to un-modelled load variations of 100%.
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Fig. 5.45. Robust performance of integral reconstructor based sliding mode control
of the Buck converter subject to un-modelled load variations of 100%.

5.9.2 The Boost Converter

The normalized Boost system

ẋ1 = −ux2 + 1

ẋ2 = ux1 − x2

Q
(5.60)

is observable, in an average sense, from the measured normalized output vari-
able y = x2. This is easily verified since the “observability” matrix:

∂(y, ẏ)
∂x

=
[

0 1
u − 1

Q

]
(5.61)

is rank 2 for all average values of u which are not identically equal to zero.
Since the average value of the input, under ideal sliding mode conditions, is
ueq = 1/Vd > 0, the observability condition is clearly met.

An integral state resconstructor for x1 may be obtained in this case as

x̂1(τ) =
∫ τ

0

(1 − u(ρ)y(ρ)) dρ (5.62)

The relation linking the estimated value x̂1 of x1 to its actual value, is
clearly given by

x1(τ) = x̂1(τ) + x1(0) (5.63)

We propose using the estimate (5.62) of the inductor current, x1, in the
following traditional sliding surface definition

S = { x ∈ R2 | σ(x) = x1 − x1 = x1 − V 2
d /Q = 0 } (5.64)
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and, as before, proceed to complement the expression with an integral output
error control action based on the stabilization error, y − Vd.

Consider then the following integral reconstructor-based sliding mode con-
troller,

u =
{

1 for σ̂(y, u, ξ) > 0
0 for σ̂(y, u, ξ) < 0 (5.65)

σ̂(y, u, ξ) =
∫ τ

0

(1 − u(ρ)y(ρ)) dρ − V 2
d

Q
+ k0ξ (5.66)

ξ̇ = y(τ) − Vd, ξ(0) = 0 (5.67)

with k0 a strictly positive design constant to be chosen later.
The modified sliding surface coordinate function, σ̂, can be written in

terms of the actual state x1 as,

σ̂(x1, ξ) = x1 − V 2
d

Q
− x1(0) + k0ξ (5.68)

In spite of the unknown value of x1(0), the expression (5.68) is useful for
analysis purposes.

The time derivative of any of the modified sliding surface coordinate func-
tion (5.68), or (5.66), is given by

˙̂σ(y, u, ξ) = 1 − uy + k0(y − Vd) (5.69)

Note that on σ̂ = 0 the inductor current, x1, is given by the expression
x1 = V 2

d

Q + x1(0)− k0ξ. The equivalent control, corresponding to the modified
sliding surface coordinate function is now given by

ueq =
1 + k0(y − Vd)

y
(5.70)

A sliding regime locally exists on σ̂(y, u, ξ) = 0 whenever the condition,
0 < ueq < 1, is satisfied:

0 < 1 + k0(y − Vd) < y (5.71)

which is equivalent to the following set of inequalities{
Vd − 1

k0
< y < Vd + 1−Vd

1−k0
for k0 > 1

y > Vd − min
{

1
k0

, Vd−1
1−k0

}
for 0 < k0 < 1

(5.72)

Thus, the set of values for k0 that guarantees a larger region of existence
of a sliding regime corresponds to the condition, k0 ∈ (0, 1). The following
choice of, k0, as a strictly positive constant, within the interval:
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0 < k0 <
1
Vd

< 1 (5.73)

clearly guarantees the non-empty character of the region of existence of sliding
motions and it will prove to be the most convenient to assure reachability from
the origin of state coordinates.

The ideal sliding dynamics, obtained from the invariance conditions, σ̂ =
0, ˙̂σ = 0, is now obtained as

ẋ1 = −k0(y − Vd)

ẏ =
1 + k0(y − Vd)

y

[
V 2

d

Q
+ x1(0) − k0ξ

]
− y

Q

ξ̇ = y − Vd (5.74)

where the output signal y is assumed to satisfy the non-singularity condition,
y > 1 > 0.

The only constant equilibrium point, (y, ξ), of the ideal closed loop sliding
dynamics (5.74) is given by

y = Vd, ξ =
1
k0

x1(0), (5.75)

The reachability of the sliding surface, σ̂ = 0, from a given initial state
value, is established by the well known condition, σ̂ ˙̂σ < 0, to be verified in a
local neighborhood of the modified sliding surface. Suppose, then, that (5.73)
is valid. Let σ̂ < 0, then, according to (5.65), the control is set to u = 0.
The time derivative of the modified sliding surface coordinate is given by
˙̂σ = 1 + k0(y − Vd). Then for all y > Vd − 1/k0, the time derivative, ˙̂σ is
positive and the product σ̂ ˙̂σ is negative. Suppose now that σ̂ is positive, then,
the control input is given by u = 1. The time derivative of the sliding surface
coordinate is ˙̂σ = 1−y +k0(y−Vd). Thus, for all y > 1−k0Vd

1−k0
= Vd − Vd−1

1−k0
, the

product σ̂ ˙̂σ is, again, negative. Due to the constrained physically plausible
values of the system states, we conclude that a sliding regime semi-globally
exists on the modified sliding surface, Ŝ = { (y, u, ξ) | σ(y, u, ξ) = 0}, which is
also reachable in finite time, by means of the proposed discontinuous control
law (5.65).

For the reachability of the sliding surface from the origin, suppose the
system is initially resting at the zero state, x1(0) = 0, x2(0) = 0, ξ(0) = 0,
then, the initial value of the modified sliding surface is negative, σ̂(x1(0), 0) =
σ̂(0, 0) = −V 2

d /Q < 0, and the initial value of the product, σ̂ ˙̂σ, is given by:

σ̂(0, 0) ˙̂σ(0, 0) = −V 2
d

Q
(1 − k0Vd)

The modified sliding surface σ̂, thus, starts increasing towards zero from the
given zero initial condition, provided k0 is chosen within the prescribed in-
terval. According to the previously demonstrated semi-global attractiveness
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of the sliding surface, the sliding surface, is, therefore, always reachable from
the origin by the proposed switched control strategy (5.65).

It remains to be proved the nature of the stability of the average equilib-
rium point for ideal sliding trajectories starting on the sliding surface Ŝ. Due
to the physical limitations of the variables only local existence of the sliding
motions may be guaranteed. The equilibrium point is thus clearly not attrac-
tive from every point of the sliding surface. We prove then local asymptotic
stability, which suffices for our purposes, by resorting to tangent linearization
of the ideal sliding dynamics.

The tangent linearization of the ideal sliding dynamics (5.74) is given by

ξ̇δ = yδ

ẏδ = − k0

Vd
ξδ − 2 − k0Vd

Q
yδ (5.76)

where ξδ = ξ − x1(0)/k0 and yδ = y − Vd. Since 0 < k0 < 1/Vd, the linearized
system (5.76) is asymptotically stable to zero. The result follows.

Note that a small value of the design parameter, k0, not only increases
the damping in the linearized average version of the closed loop system, but it
also lowers the corresponding natural frequency. This results, generally speak-
ing, in a slower convergence of the controlled motions towards the origin of
the incremental variables and, hence, a slower convergence of the nonlinear
controlled system output towards the desired constant equilibrium.

We summarize the proven result in the following proposition.

Proposition 5.5. Consider a Boost converter, represented in normalized
form, in which it is desired to stabilize the measured output variable, y = x2,
towards the given constant value, Vd > 0. Suppose that the control input, u,
is also available for measurement. Then, the following integral reconstructor-
based sliding mode controller, using only input-output, information:

u =
{

1 for σ̂(y, u) > 0
0 for σ̂(y, u) < 0

σ̂(y, u, ξ) =
∫ τ

0

(1 − u(ρ)y(ρ)) dρ − V 2
d

Q
+ k0ξ

ξ̇ = y(τ) − Vd, ξ(0) = 0, 0 < k0 <
1
Vd

(5.77)

yields a permanent sliding motion on the surface:

Ŝ = { (y, u, ξ) | σ̂(y, u, ξ) = 0}
= { (x, ξ) | x1 − V 2

d

Q
− x1(0) + k0ξ = 0} (5.78)

which is reachable from the origin in finite time. The induced sliding motions
on the sliding manifold, Ŝ, ideally, locally asymptotically stabilize the trajec-
tories of the circuit variables x1, x2 and ξ towards the equilibrium values:
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x1 =
V 2

d

Q
, x2 = Vd, ξ =

1
k0

x1(0)

where x1(0) is the unknown initial state of the normalized inductor current
variable x1. The sliding motions exist on, Ŝ, whenever the regulated values of
the output, y, satisfy the inequality:

y > Vd − min
{

1
k0

,
Vd − 1
1 − k0

}
(5.79)

��
Figure 5.46 depicts the integral reconstructor-based sliding mode feedback

control scheme for the stabilization of the normalized Boost converter circuit.

Fig. 5.46. Integral reconstructor-based sliding mode control scheme for the stabi-
lization of the Boost converter circuit.

Simulations

Simulations were performed on a typical Boost converter circuit with param-
eter values given by

L = 20 [mH], C = 20 [µF], R = 30 [Ω], E = 15 [V]

This parameter values yield a value of Q given by Q = 0.9486 and a time
normalization factor given by t = 6.32 × 10−4 τ .

It was desired to bring the Boost converter trajectories from unknown
initial conditions (taken to be, for the simulation purposes, x1(0) = 0.5 and
x2(0) = 0.8) towards the final desired value of z2 = 30 [V], with corresponding
z1 = 2 [A]. The simulations, shown in Figure 5.47, depict the performance of
the proposed sliding mode plus integral reconstructor-based feedback control
scheme on the behavior of the considered DC-to-DC Boost converter circuit.
The value of the design constant k0 was set to be k0 = 0.1 < 1/V d = 0.5.
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Fig. 5.47. Integral reconstructor based sliding mode controlled Boost converter
performance.

Robustness to Load Variations

In order to test the robustness of the proposed GPI sliding mode control
scheme, we let the load resistor R undergo a sudden un-modelled and perma-
nent variation of 400% of its nominal value of 30Ω. This variation took place,
approximately, at time, t = 0.0633 [s], while the system was not yet stabi-
lized to the desired voltage value. Figure 5.48 shows the excellent recovering
features of the proposed controller to the imposed load variation.

5.9.3 The Buck-Boost Converter

The normalized model of the system is given by (where “ ˙ ” stands for d
dτ and

Q = R
√

C/L):

ẋ1 = (1 − u)x2 + u

ẋ2 = −(1 − u)x1 − 1
Q

x2

Consider the following integral reconstructor of the normalized inductor
current for the Buck-Boost converter

x̂1 =
∫ τ

0

[u(ρ) + (1 − u(ρ)) y(ρ)] dρ

The relation between the integral reconstructor of x1 and its actual value
is given by
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Fig. 5.48. Robust performance of integral reconstructor based sliding mode control
of the Boost converter subject to un-modelled load variations of 400%.

x1(τ) = x̂1(τ) + x1(0)

We consider, then, the modified sliding surface

σ̂(x) = x̂1 − Vd(1 + Vd)
Q

− k0

∫ τ

0

(y + Vd) dρ

The invariance conditions σ̂ = ˙̂σ = 0 result in the ideal sliding dynamics

ẋ1 = k0 (y + Vd)

ẏ = − 1
1 − y

[
Vd(1 + Vd)

Q
− x1(0) + k0ξ

]
− y

Q

ξ̇ = y + Vd

which exhibits the physically meaningful equilibrium point,

x1 =
Vd(1 + Vd)

Q
, y = −Vd, ξ =

x1(0)
k0

Figure 5.49 depicts the robustness of the integral reconstructor based slid-
ing mode controller when the resistance load undergoes an un-modelled vari-
ation of 200% above its nominal value.

In this section we have pointed to some of the basic limitations of tradi-
tional indirect sliding mode control when applied to the regulation of switched
power converters. These limitations generally refer to: 1) complete system
state availability and 2) a lack of robustness with respect to un-modelled load
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Fig. 5.49. Robust performance of integral reconstructor based sliding mode control
of the Buck-Boost converter subject to un-modelled load variations of 200%.

resistance variations. We have proposed a direct use of the GPI control tech-
nique, based on integral reconstructors, to the realm of sliding mode control
within the context of three specific physical examples of wide interest in the
Power Electronics area. Integral reconstructors with suitable integral output
error compensation provide asymptotically stabilizing sliding mode controllers
which only require measurements of the output voltage of the converter (i.e.,
of the non-minimum phase state variable) and the availability of the input
signal. The integral reconstructor-based controller may be motivated by the
usual indirect design of the traditional sliding surface coordinate function in
terms of the normalized inductor current variable stabilization around a con-
stant value. Alternatively, in some cases, the technique allows for a closed
loop average linearization approach. An integral reconstructor of the normal-
ized inductor current variable, exhibiting a constant “off-set” error, is syn-
thesized in terms of an integral of simple algebraic functions of the available
input and the measured output signals. The sliding surface synthesis uses this
“open loop” estimate of the inductor current in combination with a suitable
integral output error compensation term. The integral input-output param-
eterized sliding surface is shown to be semi-globally reachable and, once a
sliding regime is established on the sliding manifold, an asymptotically stable
ideal sliding dynamics is obtained which converges to the desired equilibrium
values.

Through computer simulations, the proposed control schemes were shown
to be remarkably robust with respect to unusually large, un-modelled, load
parameter step variations. Note that for an extremely large load variation it
is possible that the inductor current signal drops to the zero value, saturating
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the controller action to yield a fixed switch position and a consequent, tem-
porary or permanent, loss of feedback. Strategies to efficiently emerge from,
or avoid, such situations, are known as operation in discontinuous conduc-
tion mode. These are the object of sustained studies in the current power
electronics systems literature. Our approach, while being quite robust in this
respect, is not devised to entirely avoid such adverse possibility. An on-line
algebraic identification scheme combined with GPI control has been proposed
to effectively deal with the problem (see Fliess and Sira-Ramı́rez [23] and
Sira-Ramı́rez et al. [65])

The same integral reconstructor-based sliding mode control technique is
readily applicable to un-interruptible power supplies and, possibly, to the Cúk
converter. An interesting topic for further study is represented by the integral
reconstructor-based AC voltage generation problem using traditional DC-to-
DC Power Converters (see Sira-Ramı́rez, [60]).



Part III

Applications



6

DC-to-AC Power Conversion

6.1 Introduction

Traditional approaches to DC-to-AC power conversion include, among other
options: PWM commanded switch based inverters, feeded by un-interruptible
power supplies or rectified voltage sources; various combinations of series-
resonant DC-to-AC inverters and, more recently, the so called zero-voltage-
switching (ZVS) PWM commutation cells linking constant voltage sources and
Buck converters (see, among an immense wealth of articles in these areas, the
works of Mendes de Seixas [42], [43], Garćıa and Barbi [27], Jung and Tzou
[32], Hsieh et al. [30] and the many references therein).

DC-to-AC power conversion using the traditional DC-to-DC power con-
verter topologies constitutes a relatively recent sub-area of the power elec-
tronics field which has proven to constitute a challenging area from the feed-
back controller design viewpoint. This is specially so for DC-to-AC conversion
schemes using converters other than the step down, Buck, converter (see the
many articles published in the yearly Power Electronics Specialist Conference
(PESC)). Our work in this chapter, however, is motivated by that of Cáceres
and Barbi [6] and the article by Zinober et al. [85]). In [6], a sliding mode
controller is proposed for a set of coupled Boost converters, viewing each con-
verters AC output capacitor voltage as a bounded, unknown, perturbation
for the other converters AC signal tracking task. In [85] two approaches are
proposed. The first one reduces the tracking task to the Fourier series solu-
tion of an Abel type of differential equation. The second approach proposes
a back-stepping controller for the tracking task. Some of the developments in
this chapter are taken from [60]. We base our considerations on some of the
more traditional DC-to-DC power converter topologies, basically, the Buck,
the Boost and the Buck-Boost converters, as working examples.

Generally speaking, DC-to-AC power conversion is a special class of tra-
jectory tracking problems for the output voltage variable of the converter
system. As such, the control synthesis problem based on total, or partial, sys-
tem inversion presents severe difficulties in all converter topologies except for
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the Buck converter. The reason being that in those topologies the output ca-
pacitor voltage is a non-minimum phase output variable. The solution to the
trajectory tracking problem for this class of systems is usually found by exer-
cising an indirect control approach (see Benvenuti, Di Benedetto and Grizzle
[2]). In other words, design efforts are primarily placed on synthesizing a feed-
back controller for the induced trajectory tracking problem, described now
in terms of a corresponding desired trajectory for a minimum phase output
variable, such as the inductor current or the total stored energy.

In this chapter, we consider a particular but important aspect of the DC-
to-AC power conversion problem viewed as a particular trajectory tracking
problem. Namely, that of nominal trajectory generation. The details of the
specific feedback controller design for the trajectory tracking problem have
already been studied in previous chapters from a variety of methodological
viewpoints. The feedback control techniques that may be used for DC-to-AC
power conversion trajectory tracking task include: approximate linearization,
differential flatness based solutions, indirect sliding mode control and a Lya-
punov control approach based on the exact tracking error dynamics passive
output feedback (ETEDPOF). We remark that the presented approaches,
however, can also be successfully extended to include the Cúk converter and
many others DC-to-DC power conversion topologies.

We base great part of our considerations on differential flatness, which is an
important structural property of many physical nonlinear systems in general
and of some DC-to-DC power converters in particular (see the seminal work
of Fliess et al. [18], [17], for the underlying theoretical considerations and
see [63] for the potential of this technique in applications). As it is known,
the Buck converter is linear and controllable, hence flat. For this converter,
the flat output is given by the output capacitor voltage. Therefore, there is no
special difficulty in generating the nominal current and input trajectories used
in the already studied feedback control design schemes solving the underlying
trajectory tracking problem. The differential flatness of the Boost converter is
characterized by the fact that the total stored energy completely parameterizes
all system variables. A similar statement may be made for the Buck-Boost
converter. In DC-to-AC power conversion tasks, however, it is not trivial, nor
intuitive, to assess the waveform of this type of flat output. Flatness is shown
to allow for the development of an efficient, rapidly convergent, iterative, off-
line, computational scheme which yields, in an approximate manner, a suitable
finite differential parametrization of the inductor current reference trajectory
in terms of the desired capacitor voltage AC reference signal. This approximate
finite dimensional parametrization simply means that the inductor current
reference trajectory is approximately expressible as a function of the desired
capacitor voltage and a finite number of its time derivatives.
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6.2 Nominal Trajectories in DC-to-AC Power Conversion

In many of the feedback control schemes presented in this chapter, it will
be required to know the off-line nominal state and input trajectories corre-
sponding to a DC-to-AC power conversion task on the controlled behavior
of a particular switch-mode power converter topology. For this reason, in this
part of the chapter we devote attention to the problem of finding such nominal
trajectories based on the concept of differential flatness. We shall concentrate,
mainly, on three basic topologies: The Buck converter, the Boost converter and
the Buck-Boost converter. The fundamental problem for finding such nominal
state and input trajectories, at least in the Boost and Buck-Boost converters,
is that by fixing the output capacitor voltage to be a biased sinusoid, it is not
straightforward to find out what the corresponding input inductor current
and the associated average control input should be. This difficulty is due to
the non-minimum phase character of the output voltage variable. As it will
be shown, the Buck converter offers no difficulty whatsoever.

6.2.1 The Buck Converter

It is not difficult to realize that a traditional Buck converter circuit is capa-
ble of producing only biased sinusoidal average output voltage signals whose
values are never to become negative. The reason being that negative output
reference voltages saturate the average switch position function which takes
values on the set [0, 1]. For this reason, the Buck converter must be slightly
modified to include the possibilities of producing negative average output
voltage values. This is achieved by a suitable input source polarity reversal at
those moments when the sinusoidal tracking requires the generation of nega-
tive output values. The net result is equivalent to expanding the set of possible
control inputs to the discrete set {−1, 0, 1}. This particular modification may
be realized by means of a double bridge circuit changing the polarity of the
voltage source as required. The consequences of this extended switch position
function on the average model of the double bridge Buck converter is that the
closed interval of existence for the average control input is now the interval
[−1, 1] of the real line. The average model of the double bridge Buck converter
is therefore the same as the traditional Buck converter but with the average
control input taking values in the closed interval [−1, 1] of the real line. The
switched implementation of the average feedback control law requires now of
a two sided Σ − ∆ modulation as explained at the end of this section.

The normalized average model of a double bridge Buck converter (see
Figure 6.1) is given by

ẋ1 = −x2 + uav

ẋ2 = x1 − x2

Q
(6.1)

where x1 is the average normalized input inductor current, x2 is the average
normalized output capacitor voltage. The distinctive feature of this converter
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is that the actual control input u takes value in the discrete set {−1, 0, 1}.
Thus, the average control input uav is assumed to take values in the closed
set [−1, 1] of the real line.

L

C R

E

x1

x
2+

+

S1

S2

S
3

S4

Fig. 6.1. The double bridge Buck converter.

The average normalized double bridge Buck converter model (6.1) is flat,
with flat output given by the average normalized output voltage F = x2.
Indeed, all system variables are parameterizable in terms of F and a finite
number of its time derivatives,

x1 = Ḟ +
1
Q

F

x2 = F

uav = F̈ +
1
Q

Ḟ + F (6.2)

We are interested in generating a sinusoidal signal at the output voltage of
the average normalized system. Let such a desired output voltage trajectory
be specified by:

x∗
2(τ) = F ∗(τ) = A sin(ω0τ) (6.3)

where τ is the dimensionless normalized time scale τ = t/
√

LC.
The differential parametrization (6.2) yields the following corresponding

values of the average normalized inductor current x∗
1(τ) and the nominal av-

erage control input u∗
av(τ).

x∗
1(τ) =

A

Q

[√
1 + Q2ω2

0

]
sin (ω0τ + arctan [ω0Q])

u∗
av(τ) =

A

Q

[√
Q2(1 − ω2

0)2 + ω2
0

]
sin

(
ω0τ + arctan

[
ω0

Q(1 − ω2
0)

])
(6.4)
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The last expression in Equation 6.4 reveals the limitations, naturally im-
posed by the bounded nature of the average control input, uav, on the am-
plitude and frequencies of sinusoidal signals that can be demanded on the
normalized average output voltages. Indeed the fact that uav ∈ [−1, 1] yields:

A ≤ Q√
Q2(1 − ω2

0)2 + ω2
0

=
1√

(1 − ω2
0)2 +

[
ω0
Q

]2 (6.5)

This expression reveals that the amplitude and the angular frequency of
the normalized average output sinusoidal voltage cannot be independently
chosen. The critical values of the right hand side, as a function of the angular
normalized frequency ω0, occur at the values: ω0 = 0, which has no meaning
from the DC-to-AC conversion task viewpoint, and at ω0 =

√
2 − 1

Q2 . Hence,

the normalized load value should be larger than Q =
√

2/2. The sinusoidal
frequency ω0 is thus limited to normalized values which are bounded below
by

√
2.

6.2.2 Two-Sided Σ − ∆ Modulation

It is possible to extend the Σ − ∆ modulation scheme to deal with control
inputs taking values in the discrete set {−1, 0, 1}. To this category of switched
systems can be reduced the great majority of switched power electronics de-
vices provided with “double bridges”.

Suppose that the average input signal uav(t) takes values on the closed
interval [−1, 1] of the real line. We propose the following two sided Σ − ∆
modulation system governed by the following equations

ė = uav(t) − u, u =
{

1
2 (1 + sign e) for uav > 0
− 1

2 (1 − sign e) for uav < 0 (6.6)

A sliding regime exists on e = 0 in any of the two cases (uav > 0 and
uav < 0), as it may be easily verified. The double sided Σ − ∆ modulation
equations may be summarized as follows:

ė = uav(t) − u, u =
1
2

[sign uav(t) + sign e] (6.7)

Figure 6.2 shows a typical response of a two sided Σ − ∆ modulator to
an input signal uav(t) of varying polarity, like that represented by a sinusoid
function. The switchings actively commute between 0 and 1 when the input
signal uav(t) is positive and between 0 and -1 when the input signal uav(t) is
negative.
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Fig. 6.2. Typical two sided Σ − ∆ modulation-based switched implementation of
a bounded input signal, uav(t), of changing polarity.

6.2.3 The Boost Converter

The Boost converter circuit cannot produce sinusoidal signals of varying po-
larity around the origin. One cannot easily modify the Boost converter, as it
was done in the Buck case, in order to produce zero mean value sinusoids. In
fact, due to the need of having output voltages higher than the constant input
source voltage, the Boost converter will only produce (positively) polarized
sinusoidal voltages whose minimum values must be uniformly bounded be-
low by the constant value of the input source voltage. In normalized average
terms, the nominal sinusoidal output voltages that can be demanded from a
traditional Boost converter are of the form

x∗
2(τ) = B + A sin(ω0τ) (6.8)

where B − A > 1, i.e., B > 1 + A.
Consider now the average normalized model of the Boost converter.

ẋ1 = −uavx2 + 1

ẋ2 = uavx1 − x2

Q

y = x2 (6.9)

where the “dot” notation stands for derivation with respect to the dimension-
less normalized time variable τ . The flat output of the average normalized
Boost converter is given by the average normalized total stored energy,

F =
1
2
(
x2

1 + x2
2

)
(6.10)
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Note that the time derivative of F , with respect to the normalized time τ , is
given by

Ḟ = x1 − x2
2

Q
(6.11)

From (6.10), (6.11) we obtain, by elementary algebraic manipulations, the
differential parameterizations of the average normalized inductor current, x1,
and the average normalized output capacitor voltage, x2, as follows:

x1 = −Q

2
+

√
Q2

4
+
(
QḞ + 2F

)
x2 =

√√√√Q

[(
−Q

2
+

√
Q2

4
+
(
QḞ + 2F

)
− Ḟ

)]
(6.12)

where we have chosen the positive average normalized current solution for
natural physical reasons.

The differential parametrization of the average control input, uav, follows
from the following relation, obtained directly from the time derivative of Ex-
pression 6.11.

uav =

[(
1 +

2
Q2

x2
2

)
− F̈

]
x2

(
1 +

2x1

Q

) (6.13)

The problem with the flat output based differential parametrization resides
in the fact that it is rather difficult to “guess” what the flat output variable
trajectory, F ∗(τ), should be in order to have x∗

2(τ) exactly coincide with a
desired sinusoidal signal of pre-specified amplitude and frequency. Besides,
if one uses the differential parametrization for x2 in (6.12), one obtains a
differential equation for F ∗ in terms of the desired x∗

2. Unfortunately, this
differential equation yields unstable solutions when x2 is particularized to be
x∗

2(τ) = B + A sin(ω0τ).
We propose a functional iterative scheme in order to obtain suitable ap-

proximations to the nominal average normalized inductor current trajectory,
x∗

1(τ), on the basis of equations (6.10) and (6.11).
Consider,

x∗
1,k+1(τ) = Ḟk(τ) +

x∗
2(τ)
Q

Fk+1(τ) =
1
2
[
(x∗

1,k)2(τ) + (x∗
2(τ))2

]
(6.14)

Note that this algorithm produces entire trajectories for x∗
1(τ) and F ∗(τ)

at each iteration. As such, the recursive formula represents an operator map-
ping the space of smooth functions into itself. The operator is, evidently, an
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unbounded nonlinear operator, thanks to the presence of the time deriva-
tive operator. The convergence properties of this algorithm are quite difficult
to establish. We can only state that if this iterative functional algorithm con-
verges, it converges to the F ∗(τ) trajectory that corresponds with the nominal
trajectories x∗

2(τ) and x∗
1(τ).

Suppose we started with a rather “wild” guess for F ∗(τ), by setting
F ∗

0 = constant. We obtain the following sequence of trajectories candidates
for x∗

1,k(τ) and F ∗
k (τ).

F ∗
0 (τ) = constant

x∗
1,1(τ) = Ḟ0(τ) +

[x∗
2(τ)]2

Q
=

[x∗
2(τ)]2

Q

F ∗
1 (τ) =

1
2
(
[x∗

1,1(τ)]2 + [x∗
2(τ)]2

)
=

[x∗
2(τ)]2

2

(
1 +

[x∗
2(τ)]2

Q2

)
x∗

1,2(τ) = Ḟ ∗
1 (τ) +

[x∗
2(τ)]2

Q
= x∗

2(τ)ẋ∗
2(τ)

(
1 +

x∗
2(τ)
Q2

)
F ∗

2 (τ) =
1
2

{
[x2

∗(τ)]2[ẋ∗
2(τ)]2

(
1 +

x∗
2(τ)
Q2

)2

+ [x∗
2(τ)]2

}
x∗

1,3(τ) = . . .

(6.15)

Simulations

We present below some typical simulations on the outcome of the iterative
functional algorithm and its rapid convergent features.

In Figure 6.3 a run is depicted for the off-line iterative computation of the
non-normalized inductor current reference trajectories x∗

1,1(t), x∗
1,2(t), for a

Boost converter with the following data:

L = 20 mH, C = 20 µF, Q = 0.3535

The reference normalized output voltage x∗
2(τ) was set to be B + A sin(w0τ)

with B = 1.5, A = 0.4, with normalized angular frequency: ω0 = 0.02. The
candidate non-normalized reference trajectory x∗

1,3(t) for the inductor current,
not shown in Figure, is practically coincident with x∗

1,2(t).
Figure 6.4 depicts the tracking performance of the switched Boost con-

verter in response to the linear time-varying controller synthesized on the
basis of exact tracking error dynamics passive output feedback. The data for
the Boost converter used in these simulations are the same as in the above
example except that a larger frequency was used for the normalized sinusoidal
output voltage reference x∗

2(τ).
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Fig. 6.3. Convergence of functional iterative algorithm in reference trajectory gen-
eration for inductor current for a Boost converter.

Fig. 6.4. Performance of switched Boost converter to a DC-to-AC tracking task
accomplished via time-varying linear passivity based control.
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6.2.4 The Buck-Boost Converter

The same remarks made for the Boost converter, concerning the difficulties for
system inversion due to its non-minimum phase character, can be reproduced
for the Buck-Boost converter modulo the voltage inversion performed by this
circuit. Thus, the sinusoidal voltages available from the Buck-Boost converter
are negatively polarized in such a manner that the maximum voltage value
is upper bounded by the normalized value of −1. As a result, the nominal
normalized output sinusoidal voltage of a Buck-Boost converter is, necessarily,
of the form x∗

2(τ) = B + A sin(ω0τ) with B < 0 and B + A < −1, i.e.,
B < −(1 + A).

Consider now the average normalized model of the Buck-Boost converter

dx1

dτ
= uavx2 + (1 − uav)

dx2

dτ
= −uavx1 − x2

Q
(6.16)

The following state coordinate transformation significantly simplifies the
considerations and the algebraic manipulations,

ξ1 = x1

ξ2 = x2 − 1 (6.17)

The system is now written as

dξ1

dτ
= uavξ2 + 1

dξ2

dτ
= −uavξ1 − 1 + ξ2

Q
(6.18)

System 6.18 is rather similar to the normalized model of the Boost converter
given in Equation 6.9.

The flat output of the transformed system (6.18) is given by

F =
1
2
(
ξ2
1 + ξ2

2

)
(6.19)

The time derivative of the flat output is given by

Ḟ = ξ1 − ξ2(ξ2 + 1)
Q

(6.20)

and, after some tedious but straightforward algebraic manipulations, one ob-
tains a differential parametrization of ξ1 and ξ2 in terms of F and Ḟ . Rather
than proceeding in that fashion, we directly resort to an unbounded opera-
tor iterative scheme for the approximation of the nominal average normalized
current x∗

1(τ) in terms of x∗
2(τ), the desired output voltage sinusoidal signal.
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ξ1,k(τ) = Ḟk(τ) +
ξ∗2(τ)(ξ∗2(τ) + 1)

Q

Fk+1(τ) =
1
2
(
ξ2
1,k + [ξ∗2(τ)]2

)
(6.21)

or, in terms of the original normalized state variables

x1,k(τ) = Ḟk(τ) +
[x∗

2(τ) − 1] x∗
2(τ)

Q

Fk+1(τ) =
1
2
(
x2

1,k + [x∗
2(τ) − 1]2

)
(6.22)

At each iteration stage, an approximate flat output trajectory is obtained
for the indirect solution of the underlying non-minimum phase output trajec-
tory tracking problem involved in the DC-to-AC power conversion task using
the Buck-Boost converter.

Since the formulae are rather close to those derived for the Boost con-
verter, we leave it to the reader to perform by himself some simulation runs
to assess the rapid convergent features of the above off-line functional iterative
algorithm for suitable flat output reference trajectory generation.

6.3 An Approximate Linearization Approach

We briefly summarize the possibilities of regulating the output voltages of
the studied DC-to-DC power converter topologies to track a sinusoidal signal.
The controller design methodology to be used is that of approximate linea-
rization around the desired state and input trajectory corresponding to the
required output voltage sinusoidal waveform. The linearization of the average
normalized nonlinear DC-to-DC power converter dynamics, around the nomi-
nal state and input trajectories, invariably results in a time-varying linearized
system dynamics. The feedback controller task consists in driving to zero the
incremental state variables by means of appropriately bounded control inputs.
Since the double bridge Buck converter average model is linear, an approxi-
mate linearization approach does not make much sense. We thus present only
the Boost and Buck-Boost cases.

6.3.1 The Boost Converter

The normalized average model of the Boost converter is given by,

ẋ1 = −uavx2 + 1

ẋ2 = uavx1 − x2

Q
(6.23)

The tangent linearization of the nonlinear average model around the nom-
inal state and average control input trajectories x∗

1(τ), x∗
2(τ), u∗(τ), is given

by
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ẋ1δ = −u∗
av(τ)x2δ − x∗

2(τ)uδ

ẋ2δ = u∗
av(τ)x1δ − 1

Q
x2δ + x∗

1(τ)uδ (6.24)

where x1δ = x1−x∗
1(τ), x2δ = x2−x∗

2(τ) and uδ = uav −u∗
av(τ) are the incre-

mental states and incremental inputs of the linearized time-varying system.
To deduce a stabilizing time-varying feedback controller we adopt a Lya-

punov design approach. For this, consider the total stored normalized incre-
mental energy, defined to be the following positive definite function:

Hδ =
1
2
[
x2

1δ + x2
2δ

]
The time derivative of Hδ along the controlled solutions of the linearized

system is given by

Ḣδ = − 1
Q

x2
2δ + [−x∗

2(τ)x1δ + x∗
1(τ)x2δ] uδ

Let γ be a strictly positive scalar parameter. The choice of uδ as the
following time varying feedback control law

uδ = −γ [−x∗
2(τ)x1δ + x∗

1(τ)x2δ] = −γ [−x∗
2(τ)x1 + x∗

1(τ)x2]

leads to the following negative definite evaluation of the closed loop time
derivative of the Lyapunov function Hδ,

Ḣδ = − 1
Q

x2
2δ − γ [−x∗

2(τ)x1δ + x∗
1(τ)x2δ]

2

= −[x1δ x2δ]
[

γ[x∗
2(τ)]2 −γx∗

1(τ)x∗
2(τ)

−γγx∗
1(τ)x∗

2(τ) 1
Q + γ[x∗

1(τ)]2

] [
x1δ

x2δ

]
< 0

We have proven the following result:

Theorem 6.1. Given a sinusoidal average normalized output reference signal
x∗

2(τ) of the Boost converter model (6.23), to which it corresponds the nomi-
nal average normalized current, x∗

1(τ), and the nominal average control input
trajectory, u∗

av(τ), then the linear time-varying state feedback controller:

uav = u∗
av(τ) − γ [−x∗

2(τ)x1 + x∗
1(τ)x2] , γ > 0

locally asymptotically stabilize the closed loop state trajectories of the average
normalized Boost converter model towards the nominal reference state trajec-
tories.

It will be shown further ahead in this chapter, that this linear controller
actually semi-globally asymptotically stabilizes the state trajectories towards
the nominal reference trajectories.

The previous theorem nevertheless prescribes knowledge of the nominal
average normalized states and control input trajectory compatible with the
sinusoidal average normalized reference output voltage trajectory. A task that,
as it was already seen, is possible only in an approximate manner.
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6.3.2 The Buck-Boost Converter

The tangent linearization of the average normalized Buck-Boost converter
model:

dx1

dτ
= uavx2 + (1 − uav)

dx2

dτ
= −uavx1 − x2

Q
(6.25)

is given by

ẋ1δ = u∗
av(τ)x2δ + (x∗

2(τ) − 1)uδ

ẋ2δ = −u∗
av(τ)x1δ − x2δ

Q
− x∗

1(τ)uδ (6.26)

where x1δ = x1 − x∗
1(τ), x2δ = x2 − x∗

2(τ) and uδ = uav − u∗
av(τ).

A linear incremental state feedback controller can be synthesized with the
help of the Lyapunov function candidate

Hδ =
1
2
[
x2

1δ + x2
2δ

]
Indeed, the time derivative of this incremental average normalized total

stored energy is given by

Ḣδ = − 1
Q

x2
2δ + [x1δ(x∗

2(τ) − 1) − x2δx
∗
1(τ)] uδ

thus suggesting the following incremental average normalized state feedback
controller:

uδ = −γ [x1δ(x∗
2(τ) − 1) − x2δx

∗
1(τ)] , γ > 0

The closed loop evaluation of the time derivative of the Lyapunov function
Hδ may be written as

Ḣδ = − [x1δ x2δ]
[

γ(x∗
2(τ) − 1)2 −γx∗

1(τ)(x∗
2(τ) − 1)

−γx∗
1(τ)(x∗

2(τ) − 1) 1
Q + γ[x∗

1(τ)]2

] [
x1δ

x2δ

]
< 0

thus demonstrating the local asymptotic stability of the origin of the incre-
mental error state space for the closed loop system. We have the following
theorem:

Theorem 6.2. Given a sinusoidal average normalized output reference signal
x∗

2(τ) of the Buck-Boost converter model (6.25), to which it corresponds the
nominal average normalized current, x∗

1(τ), and the nominal average control
input trajectory, u∗

av(τ), then the linear time-varying state feedback controller:

uav = u∗
av(τ) − γ [x1δ(x∗

2(τ) − 1) − x2δx
∗
1(τ)] , γ > 0

locally asymptotically stabilize the closed loop state trajectories of the average
normalized Buck-Boost converter model towards the nominal reference state
trajectories.
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We remark that given a sinusoidal reference trajectory for the normalized
average output voltage, x∗

2(τ), the corresponding average normalized nomi-
nal inductor current trajectory x∗

1(τ) and the average nominal control input
trajectory u∗

av(τ), can only be approximately computed.

6.4 A Flatness Based Approach

6.4.1 The Double Bridge Buck Converter

Under the assumption of full state availability, the differential parametrization
(6.2), for the average input variable, immediately suggests a flatness based
linearizing tracking error feedback controller, with integral action, given by:

uav = vav +
1
Q

Ḟ + F

vav = F̈ ∗(τ) − k2(Ḟ − Ḟ ∗(τ)) − k1(F − F ∗(τ)) − k0

∫ τ

0

(F − F ∗(σ))dσ

(6.27)

The closed loop tracking error system, with e = F − F ∗(τ), is given by

ë + k2ė + k1e + k0

∫ τ

0

e(σ)dσ = 0 (6.28)

This integro-differential system has a characteristic polynomial expressed as,

p(s) = s3 + k2s
2 + k1s + k0 (6.29)

A suitable choice of the controller design parameters k2, k1 and k0 is obtained
by equating the characteristic polynomial in (6.29) to a desired polynomial
with pre-specified stable roots.

pd(s) = (s + p)(s2 + 2ζωns + ω2
n)

= s3 + (p + 2ζωn)s2 + (2pζωn + ω2
n)s + ω2

np,

p > 0, ζ > 0, ωn > 0 (6.30)

We set then

k2 = p + 2ζωn, k1 = 2pζωn + ω2
n, k0 = ω2

np

The designed feedback controller exponentially asymptotically drives the
tracking error system e towards zero.

The feedback controller (6.27) requires the flat output F and its first order
time derivative, Ḟ . These two variables may be directly obtained, from the
system equations, in terms of the state variables, which are here assumed to
be measurable,
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F = x2

Ḟ = x1 − x2

Q
(6.31)

Hence, the state feedback controller is readily found, from (6.27), to be given
by

uav = vav +
1
Q

(
x1 − x2

Q

)
+ x2

vav = F̈ ∗(τ) − k2

[
x1 − x2

Q
− Ḟ ∗(τ)

]
− k1(x2 − F ∗(τ))

−k0

∫ τ

0

(x2 − F ∗(σ))dσ (6.32)

Simplifying the controller expression, we find,

uav = u∗
av(τ) + (

1
Q

− k2)
[
x1 − x2

Q
− Ḟ ∗(τ)

]
+ (1 − k1)(x2 − F ∗(τ))

−k0

∫ τ

0

(x2 − F ∗(σ))dσ (6.33)

where u∗
av(τ) = F̈ ∗ + 1

Q Ḟ ∗ + F ∗.

6.4.2 The Boost Converter

Consider the average normalized model of the Boost converter

ẋ1 = −uavx2 + 1

ẋ2 = uavx1 − x2

Q

The flat output of this system, as already determined in previous sections and
chapters, is the total average normalized energy, defined as

F =
1
2
(
x2

1 + x2
2

)
The differential parametrization of the system variables in terms of the flat
output F is readily obtained to be

x1 =
1
2

[
−Q +

√
Q2 + 4

(
QḞ + 2F

)]

x2 =

√√√√−QḞ +
1
2

[
−Q2 + Q

√
Q2 + 4

(
QḞ + 2F

)]

uav =
1 +

2
Q2

x2
2 − F̈

x2

(
1 + 2

Qx1

) (6.34)
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Note that the singular points x2 = 0 and x1 = −Q/2 are naturally excluded
from consideration thanks to the underlying tracking problem defined on the
bases or a positively biased sinusoid for the output voltage reference trajectory.

The nonlinear state dependent input coordinate transformation

uav =
1 +

2
Q2

x2
2 − vav

x2

(
1 + 2

Qx1

)
where vav is the new, auxiliary, average control input leads to the exact second
order integration dynamics

F̈ = vav

A trajectory tracking linear feedback controller, with integral action, is readily
designed to be

vav = F̈ ∗(τ) − k2

(
Ḟ − Ḟ ∗(τ)

)
− k1 (F − F ∗(τ)) − k0

∫ τ

0

(F − F ∗(σ)) dσ

The choice of the design parameters k2, k1 and k0 readily follows from the
fact that the exactly linearized closed loop system exhibits a characteristic
polynomial given by

p(s) = s3 + k2s
2 + k1s + k0

As it is usual with the flatness based approach, the required time deriva-
tives of the flat output can always be placed back in terms of nonlinear func-
tions of the measured states variables. In this case, we have:

F =
1
2
(
x2

1 + x2
2

)
, Ḟ = x1 − x2

2

Q

The average nominal trajectory for F , denoted by F ∗(τ) may be obtained,
as a function of the desired biased sinusoidal output x∗

1(τ), from the functional
iterative procedure previously explained in this chapter.

6.4.3 The Buck-Boost Converter

The average model of the transformed Buck-Boost converter given in Equation
6.18 is flat with flat output given by 6.19, recalled here for convenience:

F =
1
2
(
ξ2
1 + ξ2

2

)
(6.35)

A differential parametrization for the transformed system average state
variables ξ1, ξ2, is readily obtained from the Expression 6.35 and the time
derivative of F given by
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Ḟ = ξ1 − ξ2(1 + ξ2)
Q

(6.36)

We obtain:

ξ2 = − 1
2(1 + Q)

−
√

1
4(1 + Q)2

− Q

1 + Q

(
Ḟ − 2F

)
ξ1 =

ξ2(1 + ξ2)
Q

+ Ḟ (6.37)

The parametrization for the average control input is obtained from F̈ as
follows:

uav =
Q(F̈ − 1) − (1 + ξ2)(1 + 2ξ2)

Qξ2 + ξ1(1 + 2ξ2)
(6.38)

The state dependent input coordinate transformation:

uav =
Q(vav − 1) − (1 + ξ2)(1 + 2ξ2)

Qξ2 + ξ1(1 + 2ξ2)
(6.39)

where vav is a new control input leads to the exact linearization of the flat
output dynamics

F̈ = vav

As in the previous case, a trajectory tracking linear feedback controller,
with integral action, is readily designed to be

vav = F̈ ∗(τ) − k2

(
Ḟ − Ḟ ∗(τ)

)
− k1 (F − F ∗(τ)) − k0

∫ τ

0

(F − F ∗(σ)) dσ

The prescription of the roots of the corresponding closed loop character-
istic polynomial:

p(s) = s3 + k2s
2 + k1s + k0

by means of the design gains k2, k1 and k0 completes the flatness based feed-
back controller design.

The fact that necessarily the restriction, uav(τ) ∈ [0, 1] must be uniformly
valid for a given biased sinusoidal transformed output voltage of the form:

ξ∗2(τ) = (B − 1) + A sin(ω0τ)

with A > 0, B < 0 and B < −(1+A), leads to important nonlinear amplitude
frequency tradeoffs whose derivation details are left for the reader.
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6.5 A Sliding Mode Control Approach

As already remarked, the solution of the AC voltage generation problem,
as a trajectory tracking problem, the internal instability issue seems to be
unavoidable when inversion or partial input-output inversion of the system is
invoked. The main reason being that a direct solution to the output tracking
problem results in an unfeasible, internally unstable, closed loop, behavior of
the system due to the non-minimum phase properties of the output capacitor
voltage variable (see Sira-Lischinsky [68]).

In the sliding mode control approach off-line computed candidates for the
inductor current reference signals are then used to devise time-varying sliding
surfaces for the converter dynamics on which the sliding mode existence con-
ditions must be inspected. The frequency and amplitude limitations for the
desired AC output voltage signal naturally emerge as a consequence of the
well-known sliding mode existence conditions (see Utkin [75]).

6.5.1 The Boost Converter

Consider the normalized model of the Boost converter:

ẋ1 = −ux2 + 1 (6.40)

ẋ2 = ux1 − x2

Q
(6.41)

The normalized total stored energy, here denoted by F , is given by

F =
1
2
(
x2

1 + x2
2

)
(6.42)

It is desired to devise a discontinuous feedback control law for u, such that
the normalized capacitor voltage, x2, tracks a given desired voltage reference
signal x∗

2(τ). This signal is assumed to be bounded and sufficiently differen-
tiable. In fact, we assume that x∗

2(τ) is smooth, i.e., infinitely differentiable.
Specifically, we are interested in generating a normalized output voltage of
the form x2(t) = A + (B/2) sin ωτ with A , ω > 0 and B being a constant
of arbitrary sign.

6.5.2 A Feasible Indirect Input Current Tracking Approach

The idea that circumvents the underlying non-minimum phase output control
problem is to indirectly generate the desired capacitor voltage signal, x∗

2(τ),
on the basis of tracking a suitable corresponding inductor current signal x∗

1(τ).
The difficulty, as previously remarked, resides in finding such a suitable in-
ductor current reference signal x∗

1(τ). This issue has been treated, using a
plausible approximation scheme, in the previous sections.
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Suppose that a suitable smooth inductor current reference signal is given
as x∗

1(τ), whose time derivative is, of course, also bounded. A discontinuous
feedback controller which reaches and sustains a sliding motion on the time-
varying surface defined as:

σ = x1 − x∗
1(τ)

is given by
u = 0.5(1 + sign σ) (6.43)

Indeed, starting from zero initial conditions for x1 and x2, we have that
initially x1(τ) is smaller than x∗

1(τ) (i.e., σ < 0). The switching strategy (6.43)
sets u = 0 and the normalized inductor current x1 grows with slope equals
to 1, while x2 remains at zero. The sliding surface reaching condition is thus
satisfied from “below”, provided the reference signal x∗

1(τ) is designed with a
time derivative which is bounded above by 1. Clearly, under such assumptions,
the quantity σσ̇ is negative and given by σ (1 − ẋ∗

1(τ)) < 0. When the sliding
surface is reached and slightly overshot, the controller (6.43) starts to inject
large positive current pulses to the output RC filter by letting u = 1. As
a consequence, x2 immediately starts to grow from zero, rapidly reaching
the converters amplifying mode x2 > 1. Thus, while σ is positive, its time
derivative, σ̇ = −x2 +1, becomes negative. Hence, the sliding surface reaching
condition σσ̇ < 0 is also satisfied from “above” after the circuit is found in its
amplifying mode.

The corresponding “equivalent control” is now obtained as

ueq =
1 − ẋ∗

1(τ)
x2

(6.44)

The necessary and sufficient conditions for the existence of a sliding regime,
given by

0 < ueq < 1 (6.45)

imply that, at each instant, the following set of inequalities must be satisfied,

0 < 1 − ẋ∗
1(τ) < x2 (6.46)

The restriction ẋ∗
1(τ) < 1 implies, roughly speaking, a limitation on the

amplitude and frequency of the desired reference signal. Specific tracking lim-
itations of the sliding mode control approach have to be worked out, in detail,
for each particular given reference signal waveform x∗

1(τ).
The ideal sliding dynamics corresponding to the sliding surface σ = x1 −

x∗
1(τ) is given by the following stable time-varying nonlinear dynamics,

ẋ2 =
(

1 − ẋ∗
1(τ)

x2

)
x∗

1(τ) − x2

Q
(6.47)

In order to establish the stability of (6.47) we define the variable ρ = x2
2

which is easily seen to satisfy the following stable linear differential equation
subject to bounded perturbations input signals,
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ρ̇ = − 2
Q

[ρ − Q (1 − ẋ∗
1(τ)) x∗

1(τ)] (6.48)

This linear time-invariant forced system is clearly asymptotically stable
due to the negativity of its only constant eigenvalue. The forcing signal is
clearly bounded. The result follows.

6.6 Exact Tracking Error Dynamics Passive Output
Feedback Control

6.6.1 The Double Bridge Buck Converter

Consider the normalized average model of a double bridge Buck converter:

ẋ1 = −x2 + uav

ẋ2 = x1 − x2

Q
(6.49)

Consider a smooth nominal state trajectory of the system

t → (x∗
1(τ), x∗

2(τ), u∗(τ))

This trajectory actually represents a solution of the average normalized dy-
namics,

ẋ∗
1 = −x∗

2 + u∗
av

ẋ∗
2 = x∗

1 −
x∗

2

Q
(6.50)

The exact tracking error dynamics is readily obtained to be

ė1 = −e2 + eu

ė2 = e1 − e2

Q
(6.51)

where e1 = x1 − x∗
1(τ), e2 = x2 − x∗

2(τ) and eu = uav − u∗
av(τ).

Note that the passive output error, corresponding to the dynamics (6.51)
is represented by ez = e1.

A Lyapunov function candidate of the form

V (e) =
1
2
[
e2
1 + e2

2

]
(6.52)

has as a time derivative, along the controlled solutions of the controlled exact
tracking error dynamics (6.51), the following expression:

V̇ (e) = e1eu − e2
2

Q
(6.53)
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Let γ > 0. Then, the passive output feedback controller expressed in
terms of the input error:

eu = −γe1 = −γ(x1 − x∗
1(τ)) (6.54)

yields,

V̇ (e) = −γe2
1 −

e2
2

Q
≤ 2min

{
γ,

1
Q

}
V (e)

i.e., the origin of the error space, if there are no control input limitations,
is a globally exponentially asymptotic equilibrium point for the closed loop
error dynamics. Due to the average control input limitations, represented by
uav ∈ [−1, 1] the origin of the error space will be, generally speaking, only a
semi-globally exponentially asymptotic equilibrium point for the closed loop
error dynamics.

The average, full state, linear feedback controller may be rewritten as,

uav = u∗
av(τ) − γ(x1 − x∗

1(τ)) (6.55)

For the DC-to-AC power conversion task, the average reference signal,
x∗

1(τ), required by the feedback controller (6.55), is obtained from Equation
6.4, derived in the first section of this chapter.

6.6.2 The Boost Converter

Consider the average normalized model of the Boost converter

ẋ1 = −uavx2 + 1

ẋ2 = uavx1 − x2

Q

Take a smooth average normalized reference state trajectory

t → (x∗
1(τ), x∗

2(τ), u∗(τ))

i.e., a smooth solution of the average normalized dynamics

ẋ∗
1 = −u∗

avx∗
2 + 1

ẋ∗
2 = u∗

avx∗
1 −

x∗
2

Q

Define the tracking error state as e1 = x1 − x∗
1(τ), e2 = x2 − x∗

2(τ) while
the control input error is given by eu = uav − u∗

av(τ). Rather straightforward
algebraic manipulations lead to the following open loop error dynamics, that
we address as exact tracking error dynamics (ETED),

ė1 = −uave2 − x∗
2eu

ė2 = uave1 − e2

Q
+ x∗

1eu (6.56)
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A Lyapunov function of the form

V (e) =
1
2
(
e2
1 + e2

2

)
exhibits a time derivative along the solutions of the controlled ETED given
by

V̇ (e) = [−x∗
2(τ)e1 + x∗

1(τ)e2] eu − e2
2

Q
(6.57)

A natural choice for the average feedback control input error, eu, is given
by:

eu = −γ [−x∗
2(τ)e1 + x∗

1(τ)e2] , γ > 0 (6.58)

i.e., after using the definition of the tracking error variables, we have,

uav = u∗
av(τ) + γ [x∗

2(τ)x1 − x∗
1(τ)x2] (6.59)

The proposed controller (6.59) renders, for all strictly positive values of γ,
a negative definite time derivative for V (e). If the average control input uav

were not constrained to an interval of the real line, then the origin of the error
space (e1, e2) would indeed be a globally asymptotically stable equilibrium
point for the closed loop ETED.

Note that the time-varying linear tracking error controller simply amounts
to a static feedback of the passive output of the ETED. Indeed, the ETED,
(6.56), has as its passive output the following time-varying linear combination
of state error variables:

ez = −x∗
2(τ)e1 + x∗

1(τ)e2 = −x∗
2(τ)x1 + x∗

1(τ)x2 (6.60)

and the proposed feedback controller is simply of the form eu = −γez. This
justifies the name of Exact Tracking Error Dynamics Passive Output Feed-
back (ETEDPOF) to this type of feedback controller. The feedback controller
(6.59), when faced with the natural limitations of uav to lie within the interval
[0, 1], may not necessarily stabilize all initial state errors towards the origin
due to possible control input saturations. This implies that the proposed ET-
EDPOF controller renders the origin of the error space only as a semi-globally
asymptotically stable equilibrium point.

A set of approximate trajectories x∗
1(τ), u∗(τ), generated from the de-

sired AC biased sinusoidal voltage x∗
2(τ), as explained in the first section of

this chapter, may plausibly integrate the time-varying part of the proposed
controller (6.59). The reader is invited to perform simulations to assess the
validity of the previous statement.
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6.6.3 The Buck-Boost Converter

Consider the average normalized model of the Boost converter

ẋ1 = uavx2 + 1 − uav

ẋ2 = −uavx1 − x2

Q

As before, consider a smooth average normalized reference state trajectory,

t → (x∗
1(τ), x∗

2(τ), u∗(τ))

which is indeed a smooth solution of the average normalized dynamics:

ẋ∗
1 = u∗

avx∗
2 + 1 − u∗

av

ẋ∗
2 = −u∗

avx∗
1 −

x∗
2

Q

Let e1 = x1 − x∗
1(τ), e2 = x2 − x∗

2(τ) and eu = uav − u∗
av(τ). We obtain the

following open loop error dynamics,

ė1 = uave2 + [x∗
2 − 1] eu

ė2 = −uave1 − e2

Q
− x∗

1eu (6.61)

A Lyapunov function of the form

V (e) =
1
2
(
e2
1 + e2

2

)
exhibits a time derivative along the solutions of the controlled ETED given
by

V̇ (e) = [e1 (x∗
2(τ) − 1) − x∗

1(τ)e2] eu − e2
2

Q
(6.62)

A natural choice for the average feedback control input error, eu, is given
by:

eu = −γ [e1 (x∗
2(τ) − 1) − x∗

1(τ)e2] , γ > 0 (6.63)

i.e., after using the definition of the tracking error variables, we have,

uav = u∗
av(τ) − γ [x1(x∗

2(τ) − 1) − x2x
∗
1(τ) + x∗

1(τ)] (6.64)

The proposed controller (6.64) renders, for all strictly positive values of γ, a
negative definite time derivative for V (e). It follows that the origin of the error
space (e1, e2) would indeed be a globally asymptotically stable equilibrium
point for the closed loop ETED provided the average control input uav were
not constrained to a closed interval of the real line.

Note that, as in the previous case, the time-varying linear tracking error
controller simply amounts to a static feedback of the passive output of the
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ETED. Indeed, the ETED, (6.61), has as its passive output the following
time-varying linear combination of state error variables:

ez = (x∗
2(τ) − 1)e1 − x∗

1(τ)e2 = (x∗
2(τ) − 1)x1 + x∗

1(τ) − x2(τ)x∗
1(τ) (6.65)

and the proposed feedback controller is simply of the form eu = −γez. The
proposed ETEDPOF controller renders the origin of the error space only as
a semi-globally asymptotically stable equilibrium point due to the effect of
possible controller saturation for some initial states.



7

AC Rectifiers

7.1 Introduction

In this chapter we will address the control of two Boost AC rectifiers: The
monophasic Boost rectifier and the three phase Boost rectifier. In both cases
the control objectives are twofold: the enhancement and regulation of the DC
component of the output voltage and the alignment of input line currents with
the input voltages. The first task represents the desired rectifying features of
the controlled converter while the second task constitutes a desirable oper-
ation feature bestowing a betterment of the converter system power factor.
Both tasks are suitably accounted for in the proposed feedback control strate-
gies which combine the passivity based control with the differential flatness
properties of the system. At the end of this chapter we also present two specific
applications dealing with a three phase rectifier dc-motor combination.

Here, we pretend to be rather tutorial in nature. For this reason, this
chapter presents a somewhat idealized version of the underlying challenging
problem of efficient control of the switched AC rectifiers based on average
normalized models. In order to introduce the reader to the fundamentals of
average based feedback controller design we purposefully avoid a rather crucial
issue in AC rectifier system control. Namely, that the control must be robust
with respect to a lack of knowledge of the value of the constant loads. Load
uncertainty is quite a common feature in this field. It has most frequently
been handled from an adaptive feedback control viewpoint. We feel that with
the advent of recent developments in the are of algebraic identification tech-
niques, the problem of on-line load estimation largely overcomes the need for
asymptotic adaptive control techniques in Power Electronics. The reader is
referred to the work of Fliess and Sira-Ramı́rez [23] for an introduction to the
subject of on-line parameter identification from an algebraic approach.

A brief, necessarily incomplete, survey of some contributions in this field
of controlling AC rectifiers is in order just to provide some guide to the in-
terested reader in his search for some other fundamental features of switched
control of AC rectifiers. A sliding mode control approach for the unity power



386 7 AC Rectifiers

factor rectifier of the Boost type has been addressed in the work of Silva [55]
and also in the article by Morici et al. [45]. A, so called, three-dimensional
pulse width modulated control scheme for the four wire version of the three
phase rectifier is the subject of the work in Wong et al. [78]. A geometric ap-
proach exploiting the input output linearization possibilities in a three phase
rectifier are addressed in the work of Lee [39]. The feedback linearization fea-
tures of three phase rectifiers were established and exploited in Lee et al. [40].
Interesting experimental tests, and precise comparisons among several adap-
tive feedback control schemes based on passivity considerations, are reported
in Karagiannis et al. [34] for mono-phasic Boost DC-AC converters with unit
power factor. An experimental implementation of advanced nonlinear feed-
back control techniques is reported in the article by Yacoubi et al. [81]. The
references of Wu, Dewand and Slemon [80] and that of Blasko and Kaura [3]
are quite useful in many respects regarding the modelling and control of AC
rectifiers from alternative viewpoints.

7.2 Boost Unit Power Factor Rectifier

Power factor rectifiers also receive the name of Power Factor Pre-compensators
to emphasize one of the basic tasks in the switched regulation of AC recti-
fiers. Namely, that of enhancing the power factor of the inserted rectifier and
achieving an alignment of input currents and voltages. This natural demand
poses interesting limitations to the underlying output voltage DC component
regulation to a desirable constant level. In the next section we examine this is-
sue. The results in this section stem, and are largely motivated, from the work
by Escobar et al. [12], where an adaptive control viewpoint is also adopted for
the control of a unity power factor rectifier of the Boost type with unknown
loads. We closely follow their analytic developments except for the controller
design, which in our case turns out to be a linear feedback controller.

7.2.1 Model of the Monophasic Boost Rectifier

Consider the Boost type unit power pre-compensator, or rectifier, shown in
Figure 7.1

The system is described by the following set of differential equations:

L
di

dt
= −uv + E sin(ωt)

C
dv

dt
= ui − 1

R
v

where i is the inductor current, v is the output capacitor voltage and u is the
switch position function taking values in the discrete set {−1, 0, 1}.

While the input voltage is positive, the input u takes values in the set
{0, 1} and when it becomes negative, it takes values in the set {−1, 0}.
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E sin(!t)

L
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î î

î î
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à

Fig. 7.1. Monophasic Boost power factor rectifier.

The normalization of the system equations is carried out according to the
following state and time coordinates transformation

x1 =
i

E

√
L

C
, x2 =

v

E
, Q = R

√
C

L
, τ =

t√
LC

The normalized average system equations are then obtained in the follow-
ing form

ẋ1 = −ux2 + sin(ω0τ)

ẋ2 = ux1 − x2

Q

7.2.2 The Control Objectives

The control objectives for the average monophasic Boost rectifier system are
twofold:

• It is desired to have the average normalized inductor current track a
sinusoidal signal of the same angular frequency ω0 and an amplitude A to be
determined. This guarantees a unit power factor

• It is desired that the DC component of the average normalized voltage
v stabilizes to a constant desired value Vd.

7.2.3 Steady State Considerations

The total stored average normalized energy of the system is given by

H =
1
2
[
x2

1 + x2
2

]
The total power is given by the time derivative of H,
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dH

dt
= x1 sin(ω0τ) − x2

2

Q

where the first summand corresponds with the input power and the second
term corresponds to the delivered power at the load. The steady state value of
the DC component of the total power should balance to zero, since the system
is lossless. We have then the following steady state power balance condition:

〈x1 sin(ω0τ)〉dc =
〈

x2
2

Q

〉
dc

where the “over-line” stands for steady state value of the involved variable.
Using the desired values as the steady state value we obtain the following

relationship 〈
A sin2(ω0τ)

〉
dc

=
V 2

d

Q

From where it is immediate to obtain:

A =
2V 2

d

Q

This relation will be quite useful in the sequel.
The fact that the inductor current amplitude A and the desired DC com-

ponent of the output voltage satisfy the above relation is sometimes addressed
as the solvability condition. When inductor resistances are considered, the ob-
tained condition further reveals a natural limitation of the reachable output
voltages.

7.2.4 Exact Open Loop Tracking Error Dynamics and Controller
Design

In the particular case of the Boost based unity power factor pre-compensator,
we have that the tracking error dynamic system is given by

ė1 = −ue2 − x∗
2(τ)eu

ė2 = ue1 − e2

Q
+ x∗

1(τ)eu

ey = e2

The proposed linear time varying feedback control law reads

eu = −γ [−x∗
2e1 + x∗

1(τ)e2]

and the dissipation matching condition takes the form:[
γ[x∗

2]
2 −γx∗

2x
∗
1

−γx∗
2x

∗
1

1
Q + γ[x∗

1]
2

]
> 0
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which is certainly valid for any non-zero state trajectory.
The average linear time varying controller

u = u∗(τ) + γ [x∗
2(x1 − x∗

1) − x∗
1(x2 − x∗

2)]
= u∗(τ) + γ [x∗

2x1 − x∗
1x2]

is the desired feedback control law.
One possibility for specifying the feedback control law consists in using

as nominal reference trajectories the desired values. For instance, We may
use the steady state value of the inductor current which ideally guarantees a
power factor of 1 and for the output capacitor voltage, the constant steady
state DC component. In other words, we may set:

x∗
1(τ) = A sin(ω0τ), x∗

2(τ) = Vd

with the nominal control input, u∗(τ), computed from the first equation of
the average normalized model as follows:

u∗ =
(sin(ωτ) − ẋ∗

1)
x∗

2(τ)
=

sin(ωτ) − Aω cos(ωτ)
Vd

7.2.5 Simulations

We considered the following Boost type Power Factor Pre-Compensator, char-
acterized by:

L = 1 mH, C = 2 mF, R = 2.4 Ω

These values yield normalized parameter values given by

ω0 = 2πf0, f0 = 60
√

LC = 0.08472,

Q = R

√
C

L
= 33.94, τ = t/0.001414

We set the controller gain to γ = 0.5 and Vd = 1.5.
Figure 7.2 depicts the computer simulations of the closed loop response

of the Boost monophasic rectifier circuit when the static passivity based con-
troller is used.

7.2.6 The Use of the Differential Flatness Property in the Passive
Controller Design

A problem with this response lies in the fact that the quality of the transient
and the precision of the tracking is never guaranteed due to the fact that the
adopted nominal trajectories are not really trajectories of the system.

The main task becomes then one of specifying the nominal state and input
trajectories in accordance with the control objectives which are actual system
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Fig. 7.2. Closed loop response of Boost unit power factor rectifier.

trajectories. The problem is by no means a trivial one unless one resorts to
flatness of the original system. We have the following property of the Boost
based unity power factor pre-compensator system.

The system

ẋ1 = −ux2 + sin(ω0τ)

ẋ2 = ux1 − x2

Q
y = x2

is flat, with flat output given by the total stored energy:

F =
1
2
[
x2

1 + x2
2

]
and its time derivative is given by

Ḟ = x1 sin(ω0τ) − x2
2

Q

Eliminating x2 from the last two relations we obtain a quadratic equation
for x1 in terms of F and Ḟ .

x2
1 + [Q sin(ω0τ)] x1 − (QḞ + 2F ) = 0

and the positive solution for the differential parametrization of the average
normalized current is readily obtained as

x1 = −Q

2
sin(ω0τ) +

√
Q2

4
sin2(ω0τ) + (QḞ + 2F )
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Using the obtained parametrization for x1 one obtains, from the system
equations, the corresponding parametrization for x2

x2 =

√√√√Q

[
−Q

2
sin2(ω0τ) + sin(ω0τ)

√
Q2

4
sin2(ω0τ) + (QḞ + 2F ) − Ḟ

]

The average control input signal u is also differentially parameterized in
terms of F , Ḟ and F̈ using, for instance, the relation obtained from the average
normalized inductor current equation:

u =
sin(ω0τ) − ẋ1

x2

The previous differential parameterizations allow us to compute the nomi-
nal state trajectories and the nominal control input associated with a nominal
trajectory of the flat output which is compatible with the control objectives.

Let the unit power factor desired nominal value of x1(τ) be given by the
signal x∗

1(τ) = A sin(ω0τ) then the differential parametrization of x1 leads to
the following (stable) differential equation for F ∗:

Ḟ ∗ = − 2
Q

F ∗ +
[
A(A + Q)

Q

]
sin2(ω0τ)

In terms of the desired steady state constant average output voltage
〈x2〉dc = Vd the differential equation satisfied by the flat output (average
total stored energy) is obtained by using the relation A = 2V 2

d /Q. We get:

Ḟ ∗ = − 2
Q

F ∗ +
2V 2

d

Q

(
1 +

2V 2
d

Q2

)
sin2(ω0τ)

The DC component of the steady state solution of the above differential
equation is computed to be

〈
F
〉

dc
=

V 2
d

2

(
1 +

2V 2
d

Q2

)
which precisely coincides with the value obtained from the flat output defini-
tion 〈

F
〉

dc
=

1
2
[〈

x2
1

〉
dc

+
〈
x2

2

〉
dc

]
=

1
2
[〈

A2 sin2(ω0τ)
〉

dc
+
〈
V 2

d

〉
dc

]
=

1
2

[
A2

2
+ V 2

d

]
=

V 2
d

2

[
1 +

2V 2
d

Q2

]
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Fig. 7.3. Closed loop response of unit power factor Boost rectifier.

7.2.7 Simulations

Figure 7.3 depicts the computer simulations of the controlled monophasic
Boost rectifier controlled by a static passivity based controller.

The controller used for the simulations is the linear time-varying controller
with x∗

1(τ) = A sin(ω0τ), and x∗
2(τ), as given by the differential parametriza-

tion involving F ∗ and Ḟ ∗. The nominal control input, u∗, was computed from
the first system equation using the computed nominal states. We have set the
controller gain to γ = 1, in this case.

7.3 Three Phase Boost Rectifier

In this section, we propose a linear, time-varying, feedback controller for
the uniform semi-global stabilization of the output voltage in a three phase
switched Boost rectifier. The approach combines differential flatness, linear
static modified output tracking error feedback and Σ − ∆ modulation. The
passive output considerations of the exact tracking error model allows for a
simple linear state feedback which requires the nominal state trajectories and
control inputs as data. The nominal state and inputs trajectories are related
to the desire of having constant flat outputs for the reduced average normal-
ized balanced rectifier model. The nominal state and input trajectories are
thus planned on the basis of the flat outputs ideal constant desired behavior.
We specify these flat output trajectories by imposing ideal behaviors which
conveniently imply: 1) unit power factor for each line, as well as 2) perfect
balancing conditions on the rectifier. The designed average control input sig-
nals are then feed into independent Σ −∆ modulators for an efficient sliding
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mode type of controller signal implementation. The outputs of the Σ − ∆
modulators are, in fact, switched output signals acting as the actual control
inputs. These switched inputs cause average responses which represent the
ideal sliding features of the underlying sliding regime taking place on the er-
ror space of the Σ − ∆ modulators. The designed ideal closed loop average
features are thus efficiently recovered in the switched implementation.

7.3.1 The Three Phase Boost Rectifier Average Model

Consider the following average model of a Boost type three phase rectifier (see
Figure 7.4)

Lẋ1 = −u1,avx4 − Rx1 + V1

Lẋ2 = −u2,avx4 − Rx2 + V2

Lẋ3 = −u3,avx4 − Rx3 + V3

Cẋ4 = u1,avx1 + u2,avx2 + u3,avx3 − x4

RL

where V1 = V cos(ωt), V2 = V cos
(
ωt − 2π

3

)
, V3 = V cos

(
ωt + 2π

3

)
, repre-

sent the balanced external AC voltages. The average inputs, representing the
switching actions, satisfy ui,av ∈ [−1, 1] ∀ i. R is the line resistance.

RL

L

L

L

R

R

R

C

Fig. 7.4. Three phase Boost rectifier.

The state coordinate and time scale transformation

zi =

(
1
V

√
L

C

)
xi, i = 1, 2, 3. z4 =

x4

V
, τ =

t√
LC

yields the following normalized average model of the system:
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ż1 = −u1,avz4 − Qz1 + cos (ωnτ)

ż2 = −u2,avz4 − Qz2 + cos
(

ωτ − 2π

3

)
ż3 = −u3,avz4 − Qz3 + cos

(
ωτ +

2π

3

)
ż4 = u1,avz1 + u2,avz2 + u3,avz3 − z4

QL

where

Q = R

√
C

L
, QL = RL

√
C

L
, ωn = ω

√
LC

We rewrite the normalized average system in the following “energy manage-
ment” form: Aż = J (uav)z −Rz + E(t),

d

dτ

⎡⎢⎢⎣
z1

z2

z3

z4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 0 0 −u1,av

0 0 0 −u2,av

0 0 0 −u3,av

u1,av u2,av u3,av 0

⎤⎥⎥⎦
⎡⎢⎢⎣

z1

z2

z3

z4

⎤⎥⎥⎦

−

⎡⎢⎢⎣
Q 0 0 0
0 Q 0 0
0 0 Q 0
0 0 0 1

QL

⎤⎥⎥⎦
⎡⎢⎢⎣

z1

z2

z3

z4

⎤⎥⎥⎦+

⎡⎢⎢⎣
cos(ωnτ)

cos(ωnτ − 2π
3 )

cos(ωnτ + 2π
3 )

0

⎤⎥⎥⎦
i.e., according to our previous notations; A = I, B = 0 and E(τ) represents
the vector of unit amplitude, normalized, line voltages with zero as the last
component. (We have abusively used the “dot” notation “ ż ” to mean dz

dτ ).
The matrix B∗(τ) is, in this case, given by

B∗(τ) =

⎡⎢⎢⎣
−z∗4(τ) 0 0

0 −z∗4(τ) 0
0 0 −z∗4(τ)

z∗1(τ) z∗2(τ) z∗3(τ)

⎤⎥⎥⎦
We choose the matrix Γ to be diagonal of the form Γ = diag[γ1, γ2, γ3] with
γi > 0 ∀ i. It is easy to verify that the dissipation matching condition is
strongly uniformly satisfied in this case1.
1

R + B∗(τ)Γ [B∗(τ)]T =⎡⎢⎢⎢⎢⎣
Q + γ1[z∗

4 (τ)]2 0 0 γ1z∗
4 (τ)z∗

1 (τ)
0 Q + γ2[z∗

4 (τ)]2 0 γ2z∗
4 (τ)z∗

2 (τ)
0 0 Q + γ3[z∗

4 (τ)]2 γ2z∗
3 (τ)z∗

4 (τ)
γ1z∗

4 (τ)z∗
1 (τ) γ2z∗

4 (τ)z∗
2 (τ) γ3z∗

4 (τ)z∗
3 (τ) 1

QL
+ γ1[z∗

1 (τ)]2 + γ2[z∗
2 (τ)]2 + γ3[z∗

3 (τ)]2

⎤⎥⎥⎥⎥⎦ > 0
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7.3.2 A Static Passivity Based Controller

The average linear tracking error feedback controller, based on static passive
output feedback, is readily obtained as

ui av = u∗
i av(τ) − γi [−z∗4(τ)(zi − z∗i ) + z∗i (z4 − z∗4)]

= u∗
i av(τ) − γi (−z∗4zi + z∗i z4) , i = 1, 2, 3

Contrary to what is customary in many publications in the control of these
devices, we do not resort to d−q transformations nor do we impose the balance
conditions on the original model. Rather, we have used the actual average
normalized current and voltage model to obtain the average linear, passive
output tracking error, feedback controller. We will now resort to flatness in
order to specify the required nominal state and input trajectories. In specifying
such desired nominal trajectories, we shall use the perfect balance conditions.
In other words, we shall force the system to track the response of an ideal
balanced system whose line currents exhibit a unit power factor.

7.3.3 Trajectory Planning

Consider the nominal average normalized system

ż∗1 = −u∗
1,avz∗4 − Qz∗1 + cos(ωnτ)

ż∗2 = −u∗
2,avz∗4 − Qz∗2 + cos

(
ωτ − 2π

3

)
ż∗3 = −u∗

3,avz∗4 − Qz∗3 + cos
(

ωτ +
2π

3

)
ż∗4 = u∗

1,avz∗1 + u∗
2,avz∗2 + u∗

3,avz∗3 − z∗4
QL

along with the normalized average current balance condition:

z∗1 + z∗2 + z∗3 = 0

This condition implies that one of the average nominal line current variables,
say z∗3 does not qualify as a state variable due to its (linear) dependance on the
first two states. Moreover, adding the first three equations and imposing the
balance conditions yields the relation (u∗

1+u∗
2+u∗

3)z
∗
4 = 0 for all z∗4 . Evidently,

the nominal output voltage should not be identically zero. Hence, we also have
that the average nominal control inputs {u∗

1, u
∗
2, u

∗
3} are not independent and

in fact,
u∗

1 + u∗
2 + u∗

3 = 0

Similarly, under the perfect balance conditions, one of the control inputs, say,
u∗

3 can always be expressed in terms of the two other control inputs. Using
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z∗3 = −(z∗1 + z∗2) and u∗
3 = −(u∗

1 + u∗
2). The normalized reduced nominal

average balanced system is readily expressed as:

ż∗1 = −u∗
1,avz∗4 − Qz∗1 + cos(ωnτ)

ż∗2 = −u∗
2,avz∗4 − Qz∗2 + cos

(
ωτ − 2π

3

)
ż∗4 = u∗

1,av (2z∗1 + z∗2) + u∗
2,av (z∗1 + 2z∗2) − z∗4

QL

The normalized reduced nominal average balanced system is flat, with
several interesting possible choices for the flat outputs. We choose

F ∗ = [z∗1 ]2 + [z∗1 ][z∗2 ] + [z∗2 ]2 +
1
2
[z∗4 ]2, L∗ = z∗4

After some tedious but straightforward computations we obtain:

Ḟ ∗ = −2QF ∗ +
(

Q − 1
QL

)
L2 + z∗1

[
3
2

cos(ωnτ) +
√

3
2

sin
(

ωnτ − 2π

3

)]
+
√

3z∗2 sin(ωnτ)

We impose on the nominal system the following nominal values for z∗1 and
z∗2

z∗1 = N cos(ωnτ), z∗2 = N cos
(

ωnτ − 2π

3

)
where N is a constant amplitude to be determined. These nominal values
guarantee unit power factor on the current lines z∗1 and z∗2 . Indeed, from the
balance condition z∗3 = −(z∗1 + z∗2) one readily obtains:

z∗3 = N cos
(

ωnτ +
2π

3

)
We also adopt a constant nominal value for second flat output, L∗, repre-
senting the nominal average normalized output voltage. We let this value be
expressed by L

∗
. The adopted nominal average values of the line currents and

the output voltage yield a constant value of the flat output F ∗ given by

F
∗

=
3
4
N2 +

1
2
L

2

This, in turn, yields a zero value for the time derivative of the nominal
flat output Ḟ ∗. One obtains, after further manipulations on the expression,
Ḟ ∗ = 0, the following relation:

L
2

=
3
2
N (1 − QN)QL (7.1)
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Thus, given a desired steady state constant average normalized output voltage
L, the normalized average line currents amplitude N is found to be

N =
1

2Q
±
√

1
4Q2

− 2
3

L
2

QQL

We choose the minus sign to obtain a smaller amplitude line current. The
last relation also yields a natural limitation on the achievable constant output
voltage. This condition stems from the real (as opposed to complex) character
of the line current amplitude N

[z∗4]
2 = L

2
<

3
8

(
QL

Q

)
The average nominal control inputs are easily computed from the system

relations:

u∗
1,av =

−ż∗1 − Qz∗1 + cos(ωnτ)
z∗4

u∗
2,av =

−ż∗2 − Qz∗2 + cos(ωnτ − 2π
3 )

z∗4

and the balance condition u∗
3 av = −(u∗

1 av + u∗
2 av), as:

u∗
3,av =

[
ż∗1 + ż∗2 + Q(z∗1 + z∗2) + cos(ωnτ + 2π

3 )
z∗4

]
=
[−ż∗3 − Q(z∗3) + cos(ωnτ + 2π

3 )
z∗4

]
The particular steady state values of the average nominal input signals, in

view of the adopted values of the line currents and the steady state normalized
average output voltage, result in:

u∗
1,av =

[√
(Nωn)2 + (1 − QN)2

z∗4

]
sin(ωnτ + φ1),

φ1 = arctan
[
1 − QN

Nωn

]
u∗

2,av =

[√
(Nωn)2 + (1 − QN)2

z∗4

]
sin(ωnτ + φ2),

φ2 = −2π

3
+ arctan

[
1 − QN

Nωn

]
u∗

3,av =

[√
(Nωn)2 + (1 − QN)2

z∗4

]
sin(ωnτ + φ3),

φ3 =
2π

3
+ arctan

[
1 − QN

Nωn

]
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The common amplitude of the steady state average control inputs must
be bounded within the closed interval [−1, 1] of the real line. This imposes
a second limitation on the achievable normalized steady state value of the
average output voltage z∗4. Indeed, we have[√

(Nωn)2 + (1 − QN)2

z∗4

]
< 1

Joining this restriction to the previously found one we obtain that the feasible
average normalized output voltages satisfy the sector condition

√
(Nωn)2 + (1 − QN)2 < z∗4 <

√
3
8

(
QL

Q

)
The previous steady state and equilibrium formulae also allow us to carry

out an efficient trajectory planning for, say, smoothly rising the output av-
erage normalized load voltage z4 of the three phase rectifier from an initial
equilibrium value, say z∗4(τ1), towards a final equilibrium value z∗4(τ2), within a
finite interval of normalized time [τ1, τ2]. Once the initial and final equilibrium
points of z∗4(τ) are decided upon, we may determine the nominal correspond-
ing constant values of the normalized amplitude parameter N , valid before
τ1 and after τ2. We may then use a Bézier polynomial function for smoothly
interpolating between the initial and the final value of N , thus obtaining a
time-varying average normalized amplitude N(τ) for the line currents. This,
in turn, determines the corresponding smooth trajectory for smoothly in-
creasing the amplitude of the reference average normalized line currents.
Since, in such a case, N becomes a time-varying function, then the nomi-
nal currents for the transition maneuver are given by: z∗1(τ) = N(τ) cos(ωnτ),
z∗2(τ) = N(τ) cos(ωnτ− 2π

3 ), etc. These expressions must be taken into account
for computing the nominal average control input signals: u∗

1,av(τ), u∗
2,av(τ) and

u∗
3,av(τ). Computation of the required time derivative Ṅ(τ) is clearly trivial.

7.3.4 Switched Implementation of the Average Design

The implementation of the average feedback control laws, as switched control
actions, is easily accomplished by resorting to Σ − ∆ modulation (See Sira-
Ramı́rez [62]). The Σ−∆ devices accurately translating the average bounded
control signals ui av ∈ [−1, 1] into switched signals ui ∈ {1,−1} are described
by,

ui = sign (ei),
dei

dτ
= ui av − ui, i = 1, 2, 3 (7.2)

For further details and mathematical proofs associated with this implemen-
tation issue, the reader is invited to see [62].
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7.3.5 Simulations

Simulations were performed on the given system with the following data,
where, for simplicity, we have taken the line resistances to be ideally zero.

L = 2 mH, C = 2 mF, RL = 5.9 Ω,

V = 230
√

2 V, R = 0 Ω

It was desired to rise the rectified output voltage, x4, from an initial steady
state value of 500 V to a new voltage of 1106 V in approximately 0.04 s. This
corresponds to planning a smooth transition for N from the initial value of 0.25
to the final value of 1.2. Since we have set, just for simplicity, Q = 0, we have no
limitations in the achievable values of the output voltage (0 < z∗4 < +∞).

Figure 7.5 shows the response of the rectifier system, quickly achieving bal-
anced line currents and steady state stabilization. Then it undergoes a smooth
amplitude increase to the new desired steady state value in a finite time in-
terval. The figure also shows the switching actions along with the average
control input for one of the controls inputs (u1, the rest being rather similar).
The average control signal is obtained from the evolution of the proposed
linear feedback controller and, finally, Figure 7.5 also shows the load voltage
equilibrium to equilibrium transfer, as desired, in a pre-specified amount of
time. This type of trajectory tracking possibility is important in the control
of some electro-mechanical systems, such as DC motors, when they operate
connected, as loads, to a controlled three phase rectifier.

Fig. 7.5. Switched controlled responses of three phase Boost rectifier.
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7.4 A Unit Power Factor Rectifier-DC Motor System

7.4.1 The Combined Rectifier-DC Motor Model

Consider the combination of a Boost type unit power factor rectifier and a
DC motor connected in tandem, as shown in Figure 7.6.

RL

Fig. 7.6. Boost converter-DC motor system.

The system is described by the following set of differential equations:

L
di

dt
= −uv + E sin(ωt)

C
dv

dt
= ui − 1

RL
v − ia

Lm
dia
dt

= −Raia − KΩ + v

J
dΩ

dt
= Kia − BΩ

where i is the inductor current, v is the output capacitor voltage and u is
the switch position function taking values in the discrete set {−1, 1}. ia is the
armature current and Ω represents the motor shaft angular velocity. The line
resistance was assumed to be negligible.

We consider the state average system equations by simply replacing the
actual states of the system description by average states, while letting the
control input continuously take values in the closed interval [−1, 1] of the real
line. In other words, we consider
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L
dI

dt
= −uavV + E sin(ωt)

C
dV

dt
= uavI − V

RL
− Ia

Lm
dIa

dt
= −RaIa − KΩ + v

J
dΩ

dt
= KIa − BΩ

to be the state average model of the original system, with uav being now a
continuous scalar signal taking values in the compact set [−1, 1].

The normalization of the average system equations is carried out according
to the following state and time coordinates transformation:

x1 =
I

E

√
L

C
, x2 =

V

E
, x3 =

Ia

E

√
L

C
, x4 = Ω

√
LC

ωn = ω
√

LC, τ =
t√
LC

The normalized average system equations are then obtained in the following
form

ẋ1 = −uavx2 + sin(ωnτ)

ẋ2 = uavx1 − x2

QL
− x3

αẋ3 = −Qax3 − γx4 + x2

βẋ4 = −QBx4 + γx3

The normalized parameters are thus defined as:

QL = RL

√
C

L
, Qa = Ra

√
C

L
, QB =

B

E2
√

LC

α =
Lm

L
, β =

J

E2C2L
, γ =

K

E
√

LC

Note that, as usual, we have abusively used the “dot” notation to actually
mean derivation with respect to the normalized time coordinate τ .

The control objectives for the average system are twofold:

• It is primordially desired that the normalized angular velocity of the motor
shaft stabilizes to a constant desired value denoted by x4. Later on, we will
also tackle the problem of tracking a desired normalized angular velocity
trajectory.

• It is also desired to have the average normalized inductor current track a
sinusoidal signal of constant amplitude A, yet to be determined, and of the
same angular frequency ωn as the input source. This objective guarantees,
as before, a unit power factor.
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The system is not differentially flat. Nevertheless, the normalized motor
shaft angular velocity is capable of differentially parameterizing three of the
four state variables. Indeed if we denote by F the angular velocity we obtain

x4 = F

x3 =
1
γ

[
βḞ + QBF

]
x2 =

[
βα

γ
F̈ +

(
QBα

γ
+

Qaβ

γ

)
Ḟ +

(
QaQB

γ
+ γ

)
F

]
The average equilibrium values of these three variables are found to be,

x4 = F, x3 =
QB

γ
F , x2 =

[
QaQB

γ
+ γ

]
F

The total stored average normalized energy of the system is given by:

H =
1
2
[
x2

1 + x2
2 + αx2

3 + βx2
4

]
The total power is then given by the time derivative of H,

dH

dτ
= x1 sin(ωnτ) − x2

2

QL
− Qax2

3 − QBx2
4

where the first summand corresponds with the average normalized input power
and the rest of the summands correspond to the average normalized delivered
power at the electric and mechanical loads.

The steady state value of the DC component of the total power should
balance to zero, since the system is lossless. We have then the following steady
state power balance condition:

〈x1 sin(ωnτ)〉dc =
〈

x2
2

QL
+ Qax2

3 + QBx2
4

〉
dc

=

[
1

QL

(
QaQB

γ
+ γ

)2

+ Qa
Q2

B

γ2
+ QB

]
F

2

where the “overline” stands for equilibrium (i.e., “steady state”) value of the
involved variable. We then have, using x1 = A sin(ωnτ), that the average
inductor current amplitude is given by:

A = 2
(

QaQB

γ
+ γ

)[
1

QL

(
QaQB

γ
+ γ

)
+

QB

γ

]
F

2

This last relation will be quite useful below.
The fact that the steady state inductor current amplitude A and the de-

sired equilibrium value of the average motor shaft angular velocity, F = x4,
satisfy the above relation, will be also addressed as the solvability condition.
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When the line resistances are considered, acting in series with the induc-
tor, the obtained corresponding solvability condition further reveals a natural
limitation of the reachable set of output voltages and feasible angular veloci-
ties.

7.4.2 The Exact Tracking Error Dynamics Passive Output
Feedback Controller

The exact open loop tracking error dynamics is easily found to be given by:

ė1 = −uave2 − x∗
2(τ)eu

ė2 = uave1 − e2

QL
− e3 + x∗

1(τ)eu

αė3 = −Qae3 − γe4 + e2

βė4 = −QBe4 + γe3

The proposed linear time varying feedback control law reads as follows:

eu = −Γ [−x∗
2(τ)e1 + x∗

1(τ)e2]

and the dissipation matching condition takes the form:⎡⎢⎢⎣
Γ [x∗

2(τ)]2 −Γx∗
2(τ)x∗

1(τ) 0 0
−Γx∗

2(τ)x∗
1(τ) 1

QL
+ Γ [x∗

1(τ)]2 0 0
0 0 Qa 0
0 0 0 QB

⎤⎥⎥⎦ > 0

which is indeed uniformly valid for any non-zero state trajectory.
The average linear time varying controller:

uav = u∗(τ) + Γ [x∗
2(τ)(x1 − x∗

1(τ)) − x∗
1(τ)(x2 − x∗

2(τ))]
= u∗(τ) + Γ [x∗

2(τ)x1 − x∗
1(τ)x2]

is the required trajectory tracking state feedback control law.

7.4.3 Trajectory Generation

The main problem now becomes one of specifying the nominal state and input
trajectories, (x∗(τ), u∗(τ)), in complete accordance with the announced con-
trol objectives. The problem is by no means a trivial one, unless one resorts to
the partial flatness of the original composite system and the off-line planning
of an auxiliary endogenous variable: the total average stored energy.

Consider the total stored energy of the system,

H =
1
2
[
x2

1 + x2
2 + αx2

3 + βx2
4

]
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The steady state value of H, denoted by 〈H〉dc, can be expressed in terms
of the system parameters and the steady state (equilibrium) value of the
average motor shaft angular velocity F . We obtain:

〈H〉dc =
A2

4
+

1
2

[(
QaQB

γ
+ γ

)2

+ α

(
QB

γ

)2

+ β

]
F

2

i.e.,

〈H〉dc =
(

QaQB

γ
+ γ

)2 [ 1
QL

(
QaQB

γ
+ γ

)
+

QB

γ

]2

F
4

+
1
2

[(
QaQB

γ
+ γ

)2

+ α

(
QB

γ

)2

+ β

]
F

2

Given an equilibrium value of the average angular velocity of the DC mo-
tor, denoted by F init and valid up to time τinit, and a desired final equilibrium
value of this angular velocity, F final valid only after τfinal, with τfinal > τinit,
we can then specify a nominal trajectory for the total steady state stored
energy transfer, here denoted by H(τ). Such a trajectory is specified to
smoothly interpolate between the corresponding values 〈H∗(τinit)〉dc = Hinit

and 〈H∗(τfinal)〉dc = Hfinal with the transfer taking place on the time inter-
val [τinit, τfinal]. i.e.,

〈H∗(τ)〉dc =

⎧⎨⎩
Hinit for τ < τinit

H(τ) for τ ∈ [τinit, tfinal]
Hfinal for τ > τfinal

This procedure allows us to off-line plan the nominal trajectory for the
remaining state variable x1, x∗

1(τ) and the control input u∗
av.

The nominal trajectory planning for the state variable x1 is intimately
related to the initial and final values of the average steady state total stored
energy. This off line energy planning induces a corresponding nominal trajec-
tory for the unit power factor line current amplitude A(τ), as follows:

A(τ) = 2

√√√√{
〈H∗(τ)〉dc −

1
2

[(
QaQB

γ
+ γ

)2

+ α

(
QB

γ

)2

+ β

]
[F (τ)]2

}

Thus
x∗

1(τ) = A(τ) sin(ωnτ)

The nominal average control input u∗(τ) is computed in full compatibility
with the average normalized (line) inductor current trajectory x∗

1(τ).
We obtain from the normalized average system equations,
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u∗(τ) =
−ẋ∗

1(τ) + sin(ωnτ)
x∗

2(τ)

=

[√(
1 − dA(τ)

dτ

)2

+ (A(τ)ωn)2
]

sin(ωnτ + φ(τ))

x∗
2(τ)

φ(τ) = arctan

(
A(τ)ωn

1 − dA(τ)
dτ

)

with

x∗
2(τ) =

[
βα

γ
F̈ ∗(τ) +

(
QBα

γ
+

Qaβ

γ

)
Ḟ ∗(τ) +

(
QaQB

γ
+ γ

)
F ∗(τ)

]
where F ∗(τ) represents the rest-to-rest desired trajectory for the motor’s av-
erage angular velocity.

All the design elements required for the synthesis of the time varying linear
feedback controller, achieving the rest to rest angular velocity tracking, have
therefore been completely computed.

7.4.4 Simulations

We considered a Boost unit power factor rectifier with the same data consid-
ered before in the previous example

L = 6 mH, C = 2.2 mF, RL = 60 Ω, E = 150 V, ωn = 2π60 rad/s

The DC motor data was set to be

J = 1.625 × 10−5 N.m.rad/s2, Lm = 2.5 mH,

Ra = 600 Ω, K = 9 V.s/rad, B = 0 N.m.s/rad

The first task was that of stabilization towards a desired equilibrium point
for the motor angular velocity. We set

Ω∗ = 27.52 rad/s

To this equilibrium it corresponds a steady state input current amplitude
of A = 13.63 A, an rectified converter output steady state voltage of V =
247.71 V and an equilibrium value of 0 A for the armature current. The
control gain Γ was set to be equal to 2.

Figure 7.7 depicts the actual average state variables responses of the con-
trolled system to the stabilization task. The graphs are shown in a non-
normalized fashion in the actual time scale.

The switched implementation of the feedback controller is accomplished
by means of a small variant of the Σ − ∆ modulation scheme:
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Fig. 7.7. Average stabilization response of Boost rectifier-DC motor system.

u = sign(e)
de

dt
= uav − u

i.e., the control input takes values in the discrete set {−1, +1} while the
average control input takes values in the compact set [−1, 1]. Figure 7.8 depicts
the actual average state variables responses of the switched controlled system
accomplishing the required stabilization task.
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Fig. 7.8. Switched stabilization response of Boost rectifier-DC motor system.



7.4 A Unit Power Factor Rectifier-DC Motor System 407

A rest-to-rest tracking task is also presented which entitles a maneuver of
the angular velocity from an initial equilibrium value towards a final equilib-
rium value. The prescribed angular velocity trajectories allows for the off-line
computation of the armature current and the rectified output voltage.

As a second possibility for the planning of the inductor current, we pro-
ceed by computing the steady state sinusoidal inductor current amplitudes
corresponding to the initial and final velocity equilibrium conditions. With
these two equilibrium values for the current amplitudes, we prescribe a nomi-
nal current amplitude trajectory, A∗(t), that smoothly joins these two steady
state values. We prescribe then an inductor current reference trajectory of the
form:

x∗
1(τ) = A∗(τ) sin(ωnτ)

This procedure, guarantees the invariance of the unit power factor condition
during the rest to rest maneuver. The control task becomes now one of track-
ing this current reference trajectory. The nominal control input is computed
as indicated before. Figure 7.9 shows the switched control regulation of the
demanded rest to rest maneuver between initial and final equilibrium values
of the angular velocity.
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Fig. 7.9. Average rest-to-rest trajectory tracking of Boost rectifier-DC motor sys-
tem.
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7.5 A Three Phase Rectifier-DC Motor System

7.5.1 The Combined Three Phase Rectifier DC Motor Model

Consider the following model of a Boost type rectifier feeding a DC motor
shown in Figure 7.10:

RLC

R

R

R

L

L

L

Fig. 7.10. A three phase Boost rectifier-DC motor system.

The dynamic model of the composite system is obtained as:

L
d

dt
i1 = −u1v − Ri1 + Vm cos(ωt)

L
d

dt
i2 = −u2v − Ri2 + Vm cos(ωt − 2π/2)

L
d

dt
i3 = −u3v − Ri3 + Vm cos(ωt + 2π/3)

C
d

dt
v = u1i1 + u2i2 + u3i3 − v

RL
− ia

Lm
d

dt
ia = −Raia − KΩ + v

J
d

dt
Ω = Kia − BΩ

It is desired to rise the motor angular velocity from an initial equilibrium
value towards a final equilibrium value within a feasible finite time interval.

We solve the problem by resorting to an average normalized model of the
switched system.

zj =

(
1

Vm

√
L

C

)
ij , j = 1, 2, 3. z4 =

v

Vm
,

z5 =

(
1

Vm

√
L

C

)
ia, z6 = Ω

√
LC, ωn = ω

√
LC, τ =

t√
LC
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We define

α =
Lm

L
, β =

J

V 2
mC2L

, Q = R

√
C

L
, QL = RL

√
C

L
,

QB =
B

V 2
m

√
LC

, γ =
K

Vm

√
LC

We obtain the following average normalized system

d

dτ
z1 = −u1 avz4 − Qz1 + cos(ωnτ)

d

dτ
z2 = −u2 avz4 − Qz2 + cos(ωnτ − 2π/2)

d

dτ
z3 = −u3 avz4 − Qz3 + cos(ωnτ + 2π/3)

d

dτ
z4 = u1 avz1 + u2 avz2 + u3 avz3 − z4

QL
− z5

α
d

dτ
z5 = −Qaz5 − γz6 + z4

β
d

dτ
z6 = γz5 − QBz6

The average normalized system is of the form

Aż = J (uav)z −Rz + E(τ)

where

A = diag[1, 1, 1, 1, α, β],
R = diag[Q, Q,Q, 1/QL, Qa, QB ]

ET (τ) = [cos(ωnτ) cos(ωnτ − 2π/3) cos(ωnτ + 2π/3) 0 0 0]

J (uav) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 −u1 av 0 0
0 0 0 −u2 av 0 0
0 0 0 −u3 av 0 0

u1 av u2 av u3 av 0 −1 0
0 0 0 1 0 −γ
0 0 0 0 γ 0

⎤⎥⎥⎥⎥⎥⎥⎦
7.5.2 The Exact Tracking Error Dynamics Passive Output
Feedback Controller

Let z∗(τ) and u∗
av(τ) be the nominal state and average control input trajec-

tories. The tracking error system for e = z − z∗(τ) is given by

Aė = J (uav)e −Re + B∗(τ)eu
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where eu = u − u∗(τ).
Let Γ be a diagonal matrix Γ = diag[γ1, γ2, γ3]. The dissipation matching

condition is readily verified to be uniformly satisfied in accordance with:

R + B∗(t)Γ [B∗]T (t) =⎡⎢⎢⎢⎢⎢⎢⎣

Q + γ1[x∗
4]

2 0 0 −γ1x
∗
1x

∗
4 0 0

0 Q + γ2[x∗
4]

2 0 −γ2x
∗
2x

∗
4 0 0

0 0 Q + γ3[x∗
3]

2 γ3x
∗
3x

∗
4 0 0

−γ1x
∗
1x

∗
4 −γ2x

∗
2x

∗
4 −γ3x

∗
3x

∗
4

1
QL

+
∑3

i=1 γi[x∗
i ]

2 0 0
0 0 0 0 Qa 0
0 0 0 0 0 Qb

⎤⎥⎥⎥⎥⎥⎥⎦ > 0

Aė = J (uav)e −Re + B∗(τ)eu

with

B∗(τ) =

⎡⎢⎢⎢⎢⎢⎢⎣
−z∗4(τ) 0 0

0 −z∗4(τ) 0
0 0 −z∗4(τ)

z∗1(τ) z∗2(τ) z∗3(τ)
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Let Γ = diag[γ1, γ2, γ3] with γi > 0, i = 1, 2, 3. The average feedback

control law, based on linear time-varying passive outputs feedback, is given
by

uav = u∗
av(τ) − Γ [B∗(τ)]T (z − z∗(τ))

i.e., for j = 1, 2, 3.

uj av(τ) = u∗
j av(τ) − γj [−z∗4(τ)zj + z∗j (τ)z4]

7.5.3 Trajectory Generation

The system is differentially flat, with the three flat outputs given by either
one of the following sets of variables

{z1, z2, z6}, {z1, z3, z6}, {z2, z3, z6}

We choose as nominal average trajectories the ones resulting from a bal-
anced unit factor voltage and current trajectories based on a trajectory plan-
ning for the nominal motor angular velocity.

According to the control objectives, we specify, thanks to the flatness of the
system, a rest to rest, or equilibrium to equilibrium nominal average trajectory
for z6 as z∗6(τ), and a set of balanced, unit factor currents z∗1(τ) and z∗2(τ).

We set z∗6(τ) as a Bézier polynomial smoothly interpolating between two
normalized average velocity equilibria. We obtain
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z∗5(τ) =
1
γ

(βż∗6(τ) + QBz∗6(τ))

z∗4(τ) =
αβ

γ
z̈∗6(τ) +

1
γ

(Qaβ + αQB)ż∗6(τ) +
(

γ +
QaQB

γ

)
z∗6(τ)

Choosing the average normalized flat outputs z∗1(τ) and z∗2(τ) as balanced
unit factor currents with amplitudes a(τ), yet to be determined

z∗1(τ) = a(τ) cos(ωnτ)
z∗2(τ) = a(τ) cos(ωnτ − 2π/3)
z∗3(τ) = −(z∗1(τ) + z∗2(τ)) = a(τ) cos(ωnτ + 2π/3)

The nominal average control inputs are obtained from the current equa-
tions and the balanced condition as:

u∗
1 av(τ) =

−ż∗1(τ) − Qz∗1(τ) + cos(ωnτ)
z∗4(τ)

,

u∗
2 av(τ) =

−ż∗2(τ) − Qz∗2(τ) + cos(ωnτ − 2π/3)
z∗4(τ)

,

u∗
3 av(τ) = −(u∗

1(τ) + u∗
2(τ)) =

−ż∗3(τ) − Qz∗3(τ) + cos(ωnτ + 2π/3)
z∗4(τ)

In steady state equilibrium conditions we take the amplitude of the bal-
anced currents a(τ) to be constant of value a. We get the following identity:

u∗
1 av(τ)z∗1(τ) + u∗

2 av(τ)z∗2(τ) + u∗
3 av(τ)z∗3(τ) =

3a

2z∗4(τ)
(1 − aQ)

The differential equation for the average normalized armature voltage
z∗4(τ) is given by,

d

dτ
z∗4(τ) =

3a

2z∗4(τ)
(1 − aQ) − z∗4(τ)

QL
− z∗5(τ)

The equilibrium average normalized solution for the rectifier output volt-
age is given by

z∗4 = −z∗5
2

+

√
[z∗5]2

4
+

3
2
a(1 − aQ)QL

which, in terms of the steady state equilibrium value of the angular velocity
z∗6, is expressed as

z∗4 = −QB

2γ
z∗6 +

√
Q2

B

4γ2
[z∗6]2 +

3
2
a(1 − aQ)QL

Since, from the differential parametrization we have:
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z∗4 =
(

γ +
QaQB

γ

)
z∗6

The steady state line current constant voltage amplitude a may be ex-
pressed in terms of the equilibrium value for the motor angular velocity z∗6,
by solving for a from the previous equations. We obtain:

a =
1

2Q
−
√√√√ 1

4Q2
− 2

3QQL

[(
γ +

2QaQB + QB

2γ

)2

− Q2
B

4γ2

]
[z∗6]2

The minus sign being chosen just to get smaller line currents.
A solvability condition which represents a natural limitation for the system

equilibrium motor angular velocity is given by an imposed real nature on the
voltage amplitude.

z∗6 <

√
3
8

(
QL

Q

)
4γ2

(2γ2 + 2QB(1 + Qa)) (2γ2 + 2QaQB)

Note that the relation:

a =
1

2Q
−
√√√√ 1

4Q2
− 2

3QQL

[(
γ +

2QaQB + QB

2γ

)2

− Q2
B

4γ2

]
[z∗6]2

allows us to carry out a trajectory planning for the balanced reference current
common amplitude a(τ) for a rest to rest maneuver of the motor angular
velocity.

Indeed, we may specify,

a(τ) =
1

2Q
−
√√√√ 1

4Q2
− 2

3QQL

[(
γ +

2QaQB + QB

2γ

)2

− Q2
B

4γ2

]
[z∗6(τ)]2

and thus plan the nominal normalized angular velocity reference trajectory
z∗6(τ) so that the solvability condition is uniformly satisfied.

7.5.4 Simulations

We performed simulations on a rectifier and a DC motor with the following
parameter data:

Motor Parameters

J = 1.625× 10−4 N.m.rad/s2, Lm = 25 mH, Ra = 6 Ω, K = 9 V.s/rad,

B = 1.2 × 10−5 N.m.s/rad
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Rectifier Parameters

L = 2 mH, C = 2 mF, RL = 5.9 Ω,

V = 230
√

2 V, R = 0.037 Ω

Figure 7.11 depicts a smooth rest-to-rest maneuver for the angular velocity
of the described DC motor controlled by the AC Boost rectifier circuit.
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Fig. 7.11. A rest-to-rest angular velocity maneuver for a Boost rectifier-DC motor
system.
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