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11.1 Introduction

Induction machines have become the staple for electromechanical energy conversion in today’s industry;
they are used more often than all other types of motors combined. Several factors have made them the
machine of choice for industrial applications vs. DC machines, including their ruggedness, reliability,
and low maintenance [1, 2]. The cage-induction machine is simple to manufacture, with no rotor
windings or commutator for external rotor connection. There are no brushes to replace because of wear,
and no brush arcing to prevent the machine from being used in volatile environments. The induction
machine has a higher power density, greater maximum speed, and lower rotor inertia than the DC machine.

The induction machine has one significant disadvantage with regard to torque control as compared
with the DC machine. The torque production of a given machine is related to the cross-product of the
stator and rotor flux-linkage vectors [3–5]. If the rotor and stator flux linkages are held orthogonal to
one another, the electrical torque of the machine can be controlled by adjusting either the rotor or stator
flux-linkage and holding the other constant. The field and armature windings in a DC machine are held
orthogonal by a mechanical commutator, making torque control relatively simple. With an induction
machine, the stator and rotor windings are not fixed orthogonal to one another. The induction machine
is singly excited, with the rotor field induced by the stator field, further complicating torque control.
Until a few years ago, the induction machine was mainly used for constant-speed applications. With
recent improvements in semiconductor technology and power electronics, the induction machine is
seeing wider use in variable-speed applications [6].

This chapter discusses how these challenges related to the induction machine are overcome to effect
torque and speed control comparable with that of the DC machine. The first section involves what is
termed volts-per-hertz, or scalar, control. This control method is derived from the steady-state machine
model and is satisfactory for many low-performance industrial and commercial applications. The rest
of the chapter will present vector-controlled methods applied to the induction machine [7]. These
methods are aimed at bringing about independent control of the machine torque- and flux-producing
stator currents. Developed using the dynamic machine model, vector-controlled induction machines
exhibit far better dynamic performance than those with scalar control [8].
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11.2 Scalar Induction Machine Control

Induction machine scalar control is derived using the induction machine steady-state model shown in
Fig. 11.1 [1]. The phasor form of the machine voltages and currents is indicated by capital letters. The
stator series resistance and leakage reactance are R1 and X1, respectively. The referred rotor series resistance
and leakage reactance are R2 and X2 , respectively. The magnetizing reactance is Xm; the core loss due to
eddy currents and the hysteresis of the iron core is represented by the shunt resistance Rc. The machine
slip s is defined as [1]

(11.1)  

where ωe is the synchronous, or excitation frequency, and ωr is the machine shaft speed, both in electrical
radians-per-second. The power supplied to the machine shaft can be expressed as

(11.2)  

Solving for I2 and using Eq. (11.2), the shaft torque can be expressed as

(11.3)  

where the numeral 3 in the numerator is used to include the torque from all three phases. This expression
makes clear that induction machine torque control is possible by varying the magnitude of the applied
stator voltage. The normalized torque vs. slip curves for a typical induction machine corresponding to
various stator voltage magnitudes are shown in Fig. 11.2. Speed control is accomplished by adjusting the
input voltage until the machine torque for a given slip matches the load torque. However, the developed
torque decreases as the square of the input voltage, but the rotor current decreases linearly with the input
voltage. This operation is inefficient and requires that the load torque decrease with decreasing machine speed
to prevent overheating [1, 2]. In addition, the breakdown torque of the machine decreases as the square
of the input voltage. Fans and pumps are appropriate loads for this type of speed control because the
torque required to drive them varies linearly or quadratically with their speed.

Linearization of Eq. (11.3) with respect to machine slip yields

(11.4)

The characteristic torque curve can be shifted along the speed axis by changing ωe with the capability

FIGURE 11.1 Induction machine steady-state model.
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for developing rated torque throughout the entire speed range given a constant stator voltage magnitude.
An inverter is needed to drive the induction machine to implement frequency control.

One remaining complication is the fact that the magnetizing reactance changes linearly with excitation
frequency. Therefore, with constant input voltage, the input current increases as the input frequency
decreases. In addition, the stator flux magnitude increases as well, possibly saturating the machine. To
prevent this from happening, the input voltage must be varied in proportion to the excitation frequency.
From Eq. (11.4), if the input voltage and frequency are proportional with proportionality constant kf ,
the electrical torque developed by the machine can be expressed as

(11.5)

and demonstrates that the torque response of the machine is uniform throughout the full speed range.
The block diagram for the scalar-controlled induction drive is shown in Fig. 11.3. The inverter DC-

link voltage is obtained through rectification of the AC line voltage. The drive uses a simple pulse-width-
modulated (PWM) inverter whose time-average output voltages follow a reference-balanced three-phase
set, the frequency and amplitude of which are provided by the speed controller. The drive shown here
uses an active speed controller based on a proportional integral derivative (PID), or other type of
controller. The input to the speed controller is the error between a user-specified reference speed and
the shaft speed of the machine. An encoder or other speed-sensing device is required to ascertain the
shaft speed. The drive can be operated in the open-loop configuration as well; however, the speed accuracy
will be reduced significantly.

FIGURE 11.2 Normalized torque–slip curves with varying input voltage magnitudes for a typical induction
machine.
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Practical scalar-controlled drives have additional functionality, some of which is added for the conve-
nience of the user. In a practical drive, the relationship between the input voltage magnitude and frequency
takes the form

(11.6)

where Voffset is a constant. The purpose of this offset voltage is to overcome the voltage drop created by
the stator series resistance. The relationship (11.6) is usually a piecewise linear function with several
breakpoints in a standard scalar-controlled drive. This allows the user to tailor the drive response
characteristic to a given application.

11.3 Vector Control of Induction Machines

The derivation of the vector-controlled (VC) method and its application to the induction machine is
considered in this section. The vector description of the machine will be derived in the first subsection,
followed by the dynamic model description in the second subsection. Field-oriented control (FOC) of
the induction machine will be presented in the third subsection and the direct torque control (DTC)
method will be described in the last subsection.

Vector Formulation of the Induction Machine

The stator and rotor windings for the three-phase induction machine are shown in Fig. 11.4 [3]. The
windings are sinusoidally distributed, but are indicated on the figure as point windings. If N0 is the
number of turns for each winding, then the winding density distributions as functions of θ are given by

(11.7)

where θ is the angle around the stator referenced from phase as-axis. The magnemotive force (MMF)
distributions corresponding to (11.7) are [5]

(11.8)

FIGURE 11.3 Block diagram of scalar induction machine drive.
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These scalar equations can be represented by dot products between the following MMF vectors 

(11.9)

and the unit vector whose angle with the as-axis is θ. The vectors   and represent unit vectors
along the respective winding axes. All the machine quantities, including the phase currents and voltages, and
flux linkages can be expressed in this vector form.

The vectors along the three axes as, bs, and cs do not form an independent basis set. It is convenient
to transform this basis set to one that is orthogonal, the so-called dq-transformation, originally proposed
by R. H. Park for application to the synchronous machine [3, 9]. Figure 11.5 illustrates the relationship
between the degenerate abc and orthogonal qd0 vector sets. If φ is the angle between iqs and ias, then the
transformation relating the two coordinate systems can be expressed as

(11.10)

where  = [iqs ids i0s]
T
 and iabcs = [ias ibs ics]

T
. The variable i0s is called the zero-sequence component

and is obtained using the last row in the matrix W [3]. This last row is included to make the matrix
invertible, providing a one-to-one transformation between the two coordinate systems. This row is not
needed if the transformation acts on a balance set of variables, because the zero-sequence component is

FIGURE 11.4 Induction machine stator and rotor windings.
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equal to zero. The zero-sequence component carries information about the neutral point of the abc
variables being transformed. If the set is not balanced, this neutral point is not necessarily zero.

The constant multiplying the matrix of (11.10) is, in general, arbitrary. With this constant equal to 
as it is in (11.10), the result is the power invariant transformation. By using this transformation, the
calculated power in the abc coordinate system is equal to that computed in the qd0 system [3].

If the angle φ = 0, the result is a transformation from the stationary abc system to the stationary qd0
system. However, transformation to a reference frame rotating at an arbitrary speed ω is possible by
defining

(11.11)

As will be seen later, the rotor flux–oriented vector control method makes use of this concept, trans-
forming the machine variables to the synchronous reference frame where they are constants in steady
state [4]. 

To understand this concept intuitively, consider the balanced set of stator MMF vectors of a typical
induction machine given in (11.9). It is not difficult to show that the sum of these vectors produces a
resultant MMF vector that rotates at the frequency of the stator currents. The length of the vector is
dependent upon the magnitude of the MMF vectors. Observing the system from the synchronous
reference frame effectively removes the rotational motion, resulting in only the magnitude of the vector
being of consequence. If the magnitudes of the MMF vectors are constant, then the synchronous variables
will be constant. Transients in the magnitudes of the stationary variables result in transients in the
synchronous variables. This is true for currents, voltages, and other variables associated with the machine.

Induction Machine Dynamic Model

The six-state induction machine model in the arbitrary reference frame is presented in this section. This
dynamic model will be used to derive the FOC and DTC methods. As will be seen, the derivations of
these control methods will be simpler if they are performed in a specific coordinate reference frame. An
additional advantage is that transforming to the qd0 coordinate system in any reference frame removes

FIGURE 11.5 Illustration for reference frame transformation.

φ

iqs

i
ics

ias

bs
i

ds

2
3
--

f t( ) w dt
0

t

∫=
© 2002 by CRC Press LLC



the time-varying inductances associated with the induction machine [10]. The machine model in a given
reference frame is obtained by substituting the appropriate frequency for ω in the model equations.

The state equations for the six-state induction motor model in the arbitrary reference frame are given
in Eqs. (11.12) through (11.22) [3, 4]. The induction machine nomenclature is provided in Table 11.1.
The derivative operator is denoted by p, and the rotor quantities are referred to the stator. The state
equations are

(11.12)

(11.13)

(11.14)

(11.15)

(11.16)

(11.17)

where the stator and rotor flux linkages are given by

(11.18)

(11.19)

(11.20)

(11.21)

TABLE 11.1 Induction Machine Nomenclature

Induction Machine Parameter or Variable Symbol

Stator voltages (V) vqs, vds

Stator currents (A) iqs, ids

Stator flux-linkages (Wb) λqs, λds

Rotor voltages (V) vqr, vdr

Rotor currents (A) iqr, idr

Rotor flux-linkages (Wb) λqr, λdr

Reference frame speed (rad/s) ω
Rotor speed (rad/s) ωr

Stator series resistance (Ω) rs

Stator leakage inductance (H) Lls

Rotor series resistance (Ω) rr

Rotor leakage inductance (H) Llr

Magnetizing inductance (H) Lm

Number of machine poles P
Developed electrical torque (N⋅m) Te

Machine load torque (N⋅m) Tload

Torque due to windage and friction losses (N⋅m) Tloss

vqs rsiqs plqs wlds+ +=

vds rsids plds wlqs–+=

vqr 0 rriqr plqr w wr–( )ldr+ += =

vdr 0 rridr pldr w wr–( )lqr–+= =

pwr
P
2J
----- Te Tload– Tloss–( )=

pqr wr=

lds Llsids Lm ids idr+( )+=

lqs Llsiqs Lm iqs iqr+( )+=

ldr Llridr Lm ids idr+( )+=

lqr Llriqr Lm iqs iqr+( )+=
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The electrical torque developed by the machine is [4, 5]

(11.22)

where the stator transient reactance is defined as = Ls −  where Lr = Llr + Lm and Ls = Lls + Lm.
It is important to note that in Eqs. (11.14) and (11.15), the shaft speed ωr is expressed in electrical
radians-per-second, that is, scaled by the number of machine pole pairs.

Field-Oriented Control of the Induction Machine

Field-oriented control is probably the most common control method used for high-performance induc-
tion machine applications. Rotor flux orientation (RFO) in the synchronous reference frame is considered
here [4]. There are other orientation possibilities, but rotor flux orientation is the most prominent, and
so will be presented in detail. 

The RFO control method involves making the induction machine behave similarly to a DC machine.
The rotor flux is aligned entirely along the d-axis. The stator currents are split into two components: a
field-producing component that induces the rotor flux and a torque-producing component that is orthog-
onal to the rotor field. This is analogous to the DC machine where the field flux is along one direction, and
the commutator ensures an orthogonal armature current vector. This task is greatly simplified through
transformation of the machine variables to the synchronously rotating reference frame. 

Under FOC, the q-axis rotor flux linkage is zero in the synchronous reference frame, by using Eq. (11.22),
the electric torque of the induction machine can be expressed as

(11.23)

where the e superscript indicates evaluation in the synchronous reference frame. This torque equation
is very similar to that of the DC machine. If either the flux linkage  or current  is held constant,
then the torque can be controlled by changing the other. Assuming the inverter driving the induction
machine is current sourced, the stator currents can be controlled almost instantaneously. However, by
setting  = 0 in Eq. (11.15) and substituting the result in Eq. (11.20), it can be shown that the d-axis
rotor flux linkage is governed by 

(11.24)

where τr is termed the rotor time constant. Equation (11.24) dictates that the rotor flux cannot be changed
arbitrarily fast. Therefore, the best dynamic torque response will result if the rotor flux linkage is held
constant, and the electrical torque is controlled by changing  Assuming a current-sourced inverter,
this control configuration allows torque control for which the response is limited only by the response
time of the inverter driving the machine.

Implementation of RFO control requires that the machine variables be transformed to the synchronous
reference frame. To accomplish this task, the synchronous reference frame speed must be calculated in
some manner. There are two common methods of finding the synchronous speed. In indirect FOC, the
synchronous speed is obtained by using a rotor speed measurement and a corresponding slip calculation
[4, 11]. Direct FOC uses air-gap flux measurement or other machine-related quantities to compute the
synchronous speed. The indirect method is the most common and will be presented here.

Te

3PLm

4Lr

------------ ldriqs lqrids–( )
3PLm

LrL′s
------------  lqsldr lqrlds–( )= =

L′s Lm
2 /Lr,

Te

3PLm

4Lr

------------ ldr
e iqs

e=

ldr
e iqs

e

lqr
e

ldr
e Lmrr

Llr Lm+( )p 1+
----------------------------------- ids

e Lm

trp 1+
---------------- ids

e= =

iqs
e .
© 2002 by CRC Press LLC



In indirect FOC, the synchronous reference frame speed must be found, and this value integrated to
obtain the angle used in the reference frame transformation W(φ). Rewriting Eq. (11.14) with  = 0 yields

(11.25)

Again, with  = 0, rewrite Eq. (11.21) as

(11.26)

Substitution of Eq. (11.26) into Eq. (11.25) yields the desired expression for ωe

(11.27)

This expression provides the needed synchronous speed in terms of the rotor flux, which is specified by
the controller, and the q-axis stator current that is adjusted for torque control. The rotor flux time constant
τr is required for the slip calculation, and in many cases must be estimated online because of its depen-
dence on temperature and other factors [12, 13]. The d-axis stator current needed to produce a given
rotor flux can be computed using Eq. (11.24). The angle φ used for the reference frame transformation
is calculated via

(11.28)

The block diagram for the FOC drive is shown in Fig. 11.6. The current  is used for torque control,
while the current  is calculated using the reference rotor flux  Also present in the diagram is an optional
speed controller (connected via the dotted lines) that uses the error between a reference value and the actual

FIGURE 11.6 Block diagram of the indirect FOC drive.
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machine speed to control the q-axis stator current. The machine reference currents in the stationary reference
frame , , and  are computed using the transformation W

−1
(φ). The inverter phase voltages are deter-

mined using hysteretic controllers [14]. Other methods include ramp comparison and predictive controllers.
The shaft speed of the induction machine is obtained using a shaft encoder or similar device.

In the above setup, the inverter voltages were dynamically controlled using the stator current error.
The stator voltages required to produce the currents , , and , can also be computed directly using
the induction machine model. The stator voltage Eqs. (11.12) and (11.13) must first be “decoupled” to
control the armature currents independently. This is because these equations contain stator flux linkage
terms that are dependent upon the rotor currents. The decoupling is accomplished by first substituting
Eqs. (11.20) and (11.21) into Eqs. (11.18) and (11.19), respectively. The resulting forms of Eqs. (11.18)
and (11.19) are then substituted into the stator voltage Eqs. (11.12) and (11.13) to yield [4]

(11.29)

(11.30)

The decoupled voltage equations allow a voltage-sourced inverter to be used directly for FOC. Note
that this is not the only method of performing the decoupling, that PID or other controllers can be used
to generate the cross-coupled terms in the voltage equations. However, this technique requires estimation
of the torque and rotor flux linkage. 

Figures 11.7 and 11.8 display the response of a typical induction machine under FOC. The top plot in
Fig. 11.7 shows the machine speed reference (dotted line) and the shaft speed (solid line). Initially, the

FIGURE 11.7 Induction machine speed reference, actual speed, and load torque.

ia
∗ ib

∗ ic
∗

ia
∗ ib

∗ ic
∗

vqs
e rs L′s p+( )iqs

e we L′s i ds
e Lm

Lrldr
e

-----------+ 
 +=

vds
e rs L′s p+( )ids

e weL′s i qs
e Lm

Lr

------ pldr
e+–=

250

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

Time (s)

Sp
ee

d 
(r

ad
/s

)

Speed reference
Actual speed

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

L
oa

d 
to

rq
ue

 (
N

.m
)

Time (s)
© 2002 by CRC Press LLC



speed reference is equal to 100 rad/s, and at t = 1.5 s, the reference is stepped to 200 rad/s. The machine
load is shown in the lower plot. The initial load is 12 N⋅m and is stepped to 25 N⋅m at t = 1 s. These plots
demonstrate that the FOC induction machine has a fast dynamic response and good disturbance rejection. 

The rotor dq flux linkages are shown in the top plot of Fig. 11.8. The q-axis flux linkage settles to zero
shortly after startup, and the d-axis flux linkage settles to the reference value. This plot verifies that the
rotor flux is oriented along one axis in the synchronous reference frame. The synchronous frame stator
currents are given in the lower plot of Fig. 11.8. The d-axis current settles to a constant value correspond-
ing the constant rotor flux linkage value. The q-axis current is stepped at t = 1 s to satisfy the load torque
and experiences a transient at t = 1.5 s to increase the machine speed.

Direct Torque Control of the Induction Machine

Whereas the FOC method maintains orthogonality between the rotor flux linkage and the stator torque-
producing current, the DTC method directly controls the stator flux linkage to effect torque control
[15–18]. The DTC method operates in the stationary reference frame and acts directly on the inverter
switches to produce the necessary stator voltages. Hysteretic controllers are used to constrain the electrical
torque and stator flux magnitude within certain bounds.

Space Vector Modulation

A DTC drive is constructed using a three-phase switch matrix as shown in Fig. 11.9. The DC input voltage
is denoted vdc and the each of the switches has an associated switching function, given by

(11.31)

FIGURE 11.8 Rotor flux-linkage and stator currents for the FOC induction machine example.
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where q1i = 1 − q2i. The result is eight inverter configurations enumerated by [q11 q12 q13]. For example,
in configuration [1 0 0], phase a is connected to the positive side of the DC bus, and phases b and c are
connected to the negative side. These eight inverter configurations yield eight equivalent voltage vectors
in the dq0 coordinate system as displayed in Fig. 11.10.

The diagram in Fig. 11.10 is called the voltage star for the three-phase inverter [15]. It is arrived at
from the various configurations in Fig. 11.9 and using the transformation (11.10) with φ = 0°. The voltage
vector v1 is calculated using the coordinate transformation and the values va = vdc and vb = vc = − vdc,
and is equal to v1 = vdc  The set of voltage vectors in polar coordinates provided by the inverter
are collectively given by [5, 19]

(11.32)

where  is the polar coordinate representation of  The vectors v0 and v7 correspond to the
case where q11 = q12 = q13 = 0.

Direct Torque Control Concept

From Eqs. (11.12) and (11.13), the stator flux linkages in the stationary reference frame are computed
via [5, 15]

(11.33)

(11.34)

FIGURE 11.9 Switch matrix for the three-phase inverter.

FIGURE 11.10 Voltage star for the three-phase inverter switch matrix.
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where the superscripted s indicates evaluation in the stationary reference frame. If the stator resistance
rs is small, as is usually the case, the stator flux linkages can be approximated as the time integral of the
stator voltages. This approximation coupled with the space vector development above provides the means
for directly controlling the stator flux linkage vector by manipulation of the stator voltages.

The electrical torque developed by the three-phase induction machine (11.22) can be written as the
cross product [3, 4]

(11.35)

where   and ρ is the angle between the stator and rotor flux linkages.
It is clear from Eq. (11.35), if the stator and rotor flux linkage magnitudes are held constant, then the
machine torque can be controlled by changing the angle ρ. The angle ρ cannot be changed directly, but
can be indirectly modified by changing the stator flux linkage angle rapidly. This is because the stator
flux time constant is typically much faster than the rotor flux time constant. If the stator flux linkage is
changed quickly, the rotor flux will lag behind, resulting in a change in ρ.

Hysteretic comparators are used to control the inverter switches to adjust the magnitude and angle of
the stator flux linkage. This is because the voltages cannot be controlled through continuous ranges, only
two discrete levels: each phase can only be connected to either the positive or negative DC bus voltage.
The two-level hysteretic control function is defined as

(11.36)

The two quantities to be controlled are the electrical torque via the angle ρ, and the stator flux linkage
magnitude. The hysteretic controllers are used to maintain these two quantities within the ranges λref +
∆λ ≥  ≥ λref − ∆λ and Tref + ∆T ≥ Te ≥ Tref − ∆T. The comparators provide the necessary inverter
switch configurations to ensure that the torque and stator flux linkage magnitude stay within these limits.
A rule set relating the torque and stator flux linkage error to the set of inverter configurations must be
developed. To simplify this task, the coordinate frame is separated into sectors as shown in Fig. 11.11.
There are six sectors corresponding to the six active inverter states.

To understand why the sectors are used, consider the situation where the stator flux linkage vector is
in Sector 1, and its magnitude and angle γ must be increased. If the stator voltage vector v2 is used, the
flux linkage magnitude and the angle γ will both increase no matter where the flux linkage vector resides
in Sector 1. The vector v1 cannot be reliably used to accomplish this goal, because if the stator flux linkage
vector is ahead of v1, the angle γ will decrease, resulting in a torque decrease. All of the appropriate
controller responses can be worked out this way to form the lookup table shown in Table 11.2  [4]. Given
the sector number in which the stator flux linkage resides and the outputs of the flux linkage magnitude
and torque hysteretic comparators, the table provides the required inverter voltage vector. The flux linkage
comparator is two level, and the torque comparator is three level. If the estimated torque is within the specified
bounds of the comparator, a zero voltage vector is selected. In this case, the zero voltage vector that requires
the fewest inverter switches changing state is used.

To implement the control described above, the sector number must be determined. The most straight-
forward way of accomplishing this is to find the stator flux linkage angle γ trigonometrically:

(11.37)
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Given the flux linkage angle, the sector number is easily found. In practice, this method is not used
because of the computational burden that the trigonometric inverse places upon the controller. Practical
controllers rely on the sig ns of the flux linkage components to determine the sector number.

One of the major disadvantages of  the DTC method is the required accurate estimation of the stator
flux linkage and the developed electrical torque. The stator flux linkage is estimated using Eqs.  (11.33)
and (11.34) with, perhaps, current feedback for correction. The torque is usually estimated using

(11.38)

There are several variants, but these are the most common ways of  performing the estimates. The speed
of the estimates must be quite fast, with common values for the sampling time in the neighborhood of
25 µs [15]. If the sampling time is not fast enough, excursion outside the limits imposed by the torque
and flux comparators will occur.

The block diagram of the DTC induction machine drive is shown in Fig. 11.12. The error between
the reference torque and the estimated torque is fed to a three-level hysteretic comparator, and the speed
error is g iven to a two-level comparator. The outputs of the comparators are supplied to a vector lookup
table that makes uses o f the relationships in Table 11.2.  The optimal switch states are supplied to the
PWM inverter that drives the induction machine. The machine torque, stator flux vector, and stator flux
sector are estimated online from the machine phase b and c voltages and currents.

TABLE 11.2 Optimum Lookup Table for DTC Inverter Control

Te Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6

Increase Increase v2 v3 v4 v5 v6 v1

Increase Within limits v7 v0 v7 v0 v7 v0

Increase Decrease v6 v1 v2 v3 v4 v5

Decrease Increase v3 v4 v5 v6 v1 v2

Decrease Within limits v0 v7 v0 v7 v0 v7

Decrease Decrease v5 v6 v1 v2 v3 v4

FIGURE 11.11 Sec tor diagram for the DTC control method.

λλλλs
s

v1

v2
v3

v4

v5
v6

Sector 1

Sector 2Sector 3

Sector 4

Sector 5 Sector 6

q

d

Te
3P
4

------ λλλλs
s is

s×=
© 2002 by CRC Press LLC



FIGURE 11.12 Block diagram of the DTC induction machine drive.

FIGURE 11.13 Stator flux linkage under DTC.
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FIGURE 11.14 Speed reference, actual shaft speed, and load torque for the DTC drive example.

FIGURE 11.15 The electrical torque for the DTC drive.
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The stator flux linkage vector is shown in Fig. 11.13 during start-up of a typical DTC drive. The flux
linkage limits λref ± ∆λ limits of the hysteretic comparator are shown as dashed lines. The flux linkage
vector circles the origin with its magnitude confined within these boundaries. The speed of the rotation
of the flux linkage vector is determined by the estimated torque error of the machine. Since the machine
requires knowledge of the stator flux linkage sector, start-up of the machine is not as simple as for the
FOC drive. Typically, the machine is excited with a small DC current to establish the sector number
needed for the controller.

An example of the operation of typical DTC drive will now be considered. The reference speed, actual
speed, and load torque for the machine are displayed in Fig. 11.14. The initial speed reference is 50 rad/s,
and is stepped to 100 rad/s at t = 0.1 s. The load torque is initially 5 N⋅m, and is stepped to 25 N⋅m at
t = 0.2 s. Note that the drive has excellent response and disturbance rejection, typically better than that
of the RFO controlled drive. The electrical torque as a function of time for the DTC drive is shown in
Fig. 11.15. Due to the lower switching frequency of the drive, the torque ripple of the DTC drive is
considerably greater than for the FOC drive. A close-up of the torque ripple is shown in Fig. 11.16.
The minimum and maximum boundaries of the hysteretic comparator are shown as dashed lines.

11.4 Summary

The evolution of induction machine control began with the development of the scalar-controlled method
allowing variable speed control. However, the scalar-controlled induction machine failed to match the
dynamic performance of a comparable DC drive. The next step was the introduction of the vector-
controlled methods. The goal of these methods is to make the induction machine emulate the DC machine
by transforming the stator currents to a specific coordinate system where one coordinate is related to the

FIGURE 11.16 Electrical torque of the DTC drive.
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torque production and the other to rotor flux. The FOC methods provide excellent dynamic response,
matching that of the DC machine. The main disadvantage of such controls is the computational overhead
required in the coordinate transformation.

The latest development in induction machine control is the DTC method. DTC does not rely on
coordinate transformation, but rather controls the stator flux linkage in the stationary reference frame.
Despite its control simplicity, the DTC method provides possibly the best dynamic response of any of
the methods. The average switching frequency of the drive is lower as well, reducing switching loss as
compared with the FOC drive. Since the control basis is the stator flux linkage, the DTC drive is capable
of advanced functions such as performing “flying starts” and flux braking [15, 18]. Its main disadvantage
lies in the need for accurate estimation of the machine electrical torque and stator flux linkage. At low
speeds, loss of flux control can occur [20]. An additional drawback of the DTC drive is a greater torque
ripple stemming from the low switching frequency.

Both drive types rely on knowledge of the machine parameters for control and observation; therefore,
initial commissioning is usually required by both the FOC and DTC drives before start-up. The goal of
the commissioning stage is to use low-level excitation to obtain estimates of the machine parameters.
After the commissioning stage, and during normal operation, online parameter estimation is typically
employed.
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