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SECTION 1

INFORMATION,
COMMUNICATION, NOISE,
AND INTERFERENCE

The telephone profoundly changed our methods of communication, thanks to Alexander Graham Bell and
other pioneers (Bell, incidentally, declined to have a telephone in his home!). Communication has been at
the heart of the information age. Electronic communication deals with transmitters and receivers of
electromagnetic waves. Even digital communications systems rely on this phenomenon. This section of the
handbook covers information sources, codes and coding, communication channels, error correction,
continuous and band-limited channels, digital data transmission and pulse modulation, and noise and
interference. C.A.
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CHAPTER 1.1
COMMUNICATION SYSTEMS

Geoffrey C. Orsak, H. Vincent Poor, John B.Thomas

CONCEPTS

The principal problem in most communication systems is the transmission of information in the form of
messages or data from an originating information source S to a destination or receiver D. The method of
transmission is frequently by means of electric signals under the control of the sender. These signals are
transmitted via a channel C, as shown in Fig. 1.1.1. The set of messages sent by the source will be denot-
ed by {U}. If the channel were such that each member of U were received exactly, there would be no com-
munication problem. However, because of channel limitations and noise, a corrupted version {U"} of {U}
is received at the information destination. It is generally desired that the distorting effects of channel
imperfections and noise be minimized and that the number of messages sent over the channel in a given
time be maximized.

These two requirements are interacting, since, in general, increasing the rate of message transmission
increases the distortion or error. However, some forms of message are better suited for transmission over a
given channel than others, in that they can be transmitted faster or with less error. Thus it may be desirable to
modify the message set {U} by a suitable encoder E to produce a new message set {A} more suitable for a
given channel. Then a decoder E~! will be required at the destination to recover {U"} from the distorted set
{A"}. A typical block diagram of the resulting system is shown in Fig. 1.1.2.

SELF-INFORMATION AND ENTROPY

Information theory is concerned with the quantification of the communications process. It is based on
probabilistic modeling of the objects involved. In the model communication system given in Fig. 1.1.1, we
assume that each member of the message set { U} is expressible by means of some combination of a finite set
of symbols called an alphabet. Let this source alphabet be denoted by the set {X} with elements x,, x,, . . .,

X,,» Where M is the size of the alphabet. The notation px),i=1,2,..., M, will be used for the probabil-
ity of occurrence of the ith symbol x,. In general the set of numbers {p(x,)} can be assigned arbitrarily pro-
vided that
px) =0 i=1L,2,....M (1)
and
M
> px)=1 @)
i=1
1.7
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{v} {v*}

Information l Information
source Channel destination
S ¢ D

FIGURE 1.1.1 Basic communication system.

A measure of the amount of information contained in the ith symbol x; can be defined based solely on the
probability p(x,). In particular, the self-information I(x,) of the ith symbol x; is defined as

1(x) = log 1/p(x)) = ~log p(x,) (3)

This quantity is a decreasing function of p(x,) with the endpoint values of infinity for the impossible event and
zero for the certain event.

It follows directly from Eq. (3) that I(x) is a discrete random variable, i.e., a real-valued function defined
on the elements x; of a probability space. Of the various statistical properties of this random variable I(x)), the
most important is the expected value, or mean, given by

M M
E{I(x)}=H(X)=Y p(x)I(x)=- p(x)logp(x,) @)

i=1 i=1

This quantity H(X) is called the entropy of the distribution p(x,). If p(x,) is interpreted as the probability of the
ith state of a system in phase space, then this expression is identical to the entropy of statistical mechanics and
thermodynamics. Furthermore, the relationship is more than a mathematical similarity. In statistical mechan-
ics, entropy is a measure of the disorder of a system; in information theory, it is a measure of the uncertainty
associated with a message source.

In the definitions of self-information and entropy, the choice of the base for the logarithm is arbitrary, but
of course each choice results in a different system of units for the information measures. The most common
bases used are base 2, base e (the natural logarithm), and base 10. When base 2 is used, the unit of I(-) is
called the binary digit or bit, which is a very familiar unit of information content. When base e is used, the
unit is the nat; this base is often used because of its convenient analytical properties in integration, differen-
tiation, and the like. The base 10 is encountered only rarely; the unit is the Hartley.

ENTROPY OF DISCRETE RANDOM VARIABLES

The more elementary properties of the entropy of a discrete random variable can be illustrated with a simple
example. Consider the binary case, where M = 2, so that the alphabet consists of the symbols 0 and 1 with
probabilities p and 1 — p, respectively. It follows from Eq. (4) that

H (X) =—[plog, p + (1 - p) log, (1 — p)] (bits) (5)

{v} {4} {4%} {v*}
Information l. Encoder _l_. Channel _l_. Decoder l, Iggg{{;‘&‘;&?‘"
u 3 c £ "

FIGURE 1.1.2 Communication system with encoding and decoding.
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Ho(X) Equation (5) can be plotted as a function of p, as shown in
(bits) Fig. 1.1.3, and has the following interesting properties:
1. H(X)=0.
10 2. H(X) is zero only for p=0and p = 1.

3. H(X)is amaximumatp=1-p=1/.

More generally, it can be shown that the entropy H(X) has the

(O] o

following properties for the general case of an alphabet of

size M:
o 1 1. HX) = 0. (6)
° 05 192 2. H(X) =0 if and only if all of the probabilities are zero
FIGURE 1.1.3  Entropy in the binary case. except for one, which must be unity. @)
3. H(X) <log, M. ®)
4. H(X) =log, M if and only if all the probabilities are equal so that p(x,) = 1/M for all i. )

MUTUAL INFORMATION AND JOINT ENTROPY

The usual communication problem concerns the transfer of information from a source S through a channel C
to a destination D, as shown in Fig. 1.1.1. The source has available for forming messages an alphabet X of size
M. A particular symbol x, is selected from the M possible symbols and is sent over the channel C. It is the lim-
itations of the channel that produce the need for a study of information theory.

The information destination has available an alphabet Y of size N. For each symbol x; sent from the source,
a symbol y. is selected at the destination. Two probabilities serve to describe the “state of knowledge” at the
destination. Prior to the reception of a communication, the state of knowledge of the destination about the sym-
bol x; is the a priori probability p(x,) that x;, would be selected for transmission. After reception and selection
of the symbol y, the state of knowledge concernlng x, is the conditional probability p(x; |y) which will be
called the a posteriori probability of x,. Itis the probablhty that x, was sent given that y. was ‘received. Ideally
this a posteriori probability for each glven v should be unity for one x; and zero for all other x,. In this case an
observer at the destination is able to determine exactly which syrnbol x; has been sent after the reception of
each symbol y.. Thus the uncertainty that existed previously and which was expressed by the a priori proba-
bility distribution of x; has been removed completely by reception. In the general case it is not possible to
remove all the uncertainty, and the best that can be hoped for is that it has been decreased. Thus the a posteri-
ori probability p(x; |y) is distributed over a number of x; but should be different from p(x,). If the two proba-
bilities are the same then no uncertainty has been removed by transmission or no information has been
transferred.

Based on this discussion and on other considerations that will become clearer later, the quantity 1(x; y) is
defined as the information gained about x; by the reception of Vi where

1(x; y) = log,, [p(x;]y)/p(x)] (10)
This measure has a number of reasonable and desirable properties.
Property 1. The information measure /(x;; yj) is symmetric in x; and Vi that is,

I y) = Iy x) (11

Property 2. The mutual information /(x;; y) is a maximum when p(x; |y ) =1, that is, when the reception
of Y completely removes the uncertainty concernmg x;

I(Xi; y/) <- IOg p(xl') = (Xi) (12)
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Property 3. If two communications y. and z, concerning the same message x; are received successively,
and if the observer at the destination takes the a posteriori probability of the first as the a priori probability
of the second, then the total information gained about x; is the sum of the gains from both communications:

10y, 7) = 105 ) + 10x; 2, |y) (13)

Property 4. If two communications y; and y, concerning two independent messages x, and x, are received,
the total information gain is the sum of the two information gains considered separately:

1(x;, X5 ¥ v = 1(x; ) + 1(x,,0 y,) (14)

These four properties of mutual information are intuitively satisfying and desirable. Moreover, if one begins
by requiring these properties, it is easily shown that the logarithmic definition of Eq. (10) is the simplest form
that can be obtained.

The definition of mutual information given by Eq. (10) suffers from one major disadvantage. When errors
are present, an observer will not be able to calculate the information gain even after the reception of all the
symbols relating to a given source symbol, since the same series of received symbols may represent several
different source symbols. Thus, the observer is unable to say which source symbol has been sent and at best
can only compute the information gain with respect to each possible source symbol. In many cases it would
be more desirable to have a quantity that is independent of the particular symbols. A number of quantities of
this nature will be obtained in the remainder of this section.

The mutual information I(x;; yj) is a random variable just as was the self-information I(x,); however, two
probability spaces X and Y are involved now, and several ensemble averages are possible. The average mutual
information I(X; Y) is defined as a statistical average of I(x;; yj) with respect to the joint probability p(x; yj);
that is,

I(X;Y) = Ey {I(x; ¥} = X, D p(x,, y)loglp(x,|y) /p(x))] (15)
o
This new function I(X; Y) is the first information measure defined that does not depend on the individual sym-
bols x; or V- Thus, it is a property of the whole communication system and will turn out to be only the first in
a series of similar quantities used as a basis for the characterization of communication systems. This quantity
I(X; Y) has a number of useful properties. It is nonnegative; it is zero if and only if the ensembles X and Y are
statistically independent; and it is symmetric in X and Y so that I(X; Y) = I(Y; X).

A source entropy H(X) was given by Eq. (4). It is obvious that a similar quantity, the destination entropy

H(Y), can be defined analogously by

N
H(Y)== p(y)logp(y,) (16)
Jj=1

This quantity will, of course, have all the properties developed for H(X). In the same way the joint or system
entropy H(X, Y) can be defined by

M N
H(X’ Y)=_Zzp(x,-, y/-)l()gp(x,-, yj) (17)

i=1 j=1
If X and Y are statistically independent so that p(x,, yj) = p(x,)p( yj) for all 7 and j, then Eq. (17) can be written as
HX,Y)=HX)+H(Y) (18)

On the other hand, if X and Y are not independent, Eq. (17) becomes
H(X,Y)=HX)+H(Y|X)=H(Y) + HX|Y) (19)
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where H(Y |x ) and H(X ly ) are conditional entropies given by

M

N
HY|X)==)"Y p(x,, y,)logp(y;|x,)

i=1 j=I
and by

M N
H(X|Y) = _zzp(xi’ yj)Ing(x,' |yj)

i=1 j=1
These conditional entropies each satisfies an important inequality
0<H(YIH)<H(Y)
and
0<HXI|Y)<HX)
It follows from these last two expressions that Eq. (15) can be expanded to yield
IX;Y)=—HX,Y)+ HX)+ HY) 20
This equation can be rewritten in the two equivalent forms
IX;Y)=HY)-H{Y|X)=0
or
IX1Y)=HX)-HX|Y)>0
It is also clear, say from Eq. (24), that H(X, Y) satisfies the inequality
HX,Y)<HX)+H(Y)

Thus, the joint entropy of two ensembles X and Y is a maximum when the ensembles are independent.

1.1

(20)

2D

(22)

(23)

24

(25)

(26)

27

At this point it may be appropriate to comment on the meaning of the two conditional entropies H(Y [X) and
H(X|Y). Let us refer first to Eq. (26). This equation expresses the fact that the average information gained about
a message, when a communication is completed, is equal to the average source information less the average
uncertainty that still remains about the message. From another point of view, the quantity H(X lY) is the aver-
age additional information needed at the destination after reception to completely specify the message sent.
Thus, HX |Y) represents the information lost in the channel. It is frequently called the equivocation. Let us now
consider Eq. (25). This equation indicates that the information transmitted consists of the difference between the
destination entropy and that part of the destination entropy that is not information about the source; thus the term

H(Y |X) can be considered a noise entropy added in the channel.
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