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CHAPTER 1.2
INFORMATION SOURCES, CODES,
AND CHANNELS

Geoffrey C. Orsak, H. Vincent Poor, John B.Thomas

MESSAGE SOURCES

As shown in Fig. 1.1.1, an information source can be considered as emitting a given message ui from the set
{U} of possible messages. In general, each message ui will be represented by a sequence of symbols xj from
the source alphabet {X}, since the number of possible messages will usually exceed the size M of the source
alphabet. Thus sequences of symbols replace the original messages ui, which need not be considered further.
When the source alphabet {X} is of finite size M, the source will be called a finite discrete source. The prob-
lems of concern now are the interrelationships existing between symbols in the generated sequences and the
classification of sources according to these interrelationships.

A random or stochastic process xi, t � T, can be defined as an indexed set of random variables where T is the
parameter set of the process. If the set T is a sequence, then xt is a stochastic process with discrete parameter
(also called a random sequence or series). One way to look at the output of a finite discrete source is that it is a
discrete-parameter stochastic process with each possible given sequence one of the ensemble members or real-
izations of the process. Thus the study of information sources can be reduced to a study of random processes.

The simplest case to consider is the memoryless source, where the successive symbols obey the same fixed
probability law so that the one distribution p(xi) determines the appearance of each indexed symbol. Such a
source is called stationary. Let us consider sequences of length n, each member of the sequence being a real-
ization of the random variable xi with fixed probability distribution p(xi). Since there are M possible realiza-
tions of the random variable and n terms in the sequence, there must be Mn distinct sequences possible of
length n. Let the random variable Xi in the jth position be denoted by Xij so that the sequence set (the message
set) can be represented by

{U} = Xn = {Xi1, Xi2, . . . , Xin} i = 1, 2, . . . , M (1)

The symbol Xn is sometimes used to represent this sequence set and is called the nth extension of the memo-
ryless source X. The probability of occurrence of a given message ui is just the product of the probabilities of
occurrence of the individual terms in the sequence so that

p{ui} = p(xi1)p(xi2) . . . p{xin} (2)

Now the entropy for the extended source Xn is

(3)H X p u p u nH Xn
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INFORMATION SOURCES, CODES, AND CHANNELS 1.13

as expected. Note that, if base 2 logarithms are used, then H(X) has units of bits per symbol, n is symbols per
sequence, and H(Xn) is in units of bits per sequence. For a memoryless source, all sequence averages of informa-
tion measures are obtained by multiplying the corresponding symbol by the number of symbols in the sequence.

MARKOV INFORMATION SOURCE

The memoryless source is not a general enough model in most cases. A constructive way to generalize this
model is to assume that the occurrences of a given symbol depends on some number m of immediately pre-
ceeding symbols. Thus the information source can be considered to produce an mth-order Markov chain and
is called an mth-order Markov source.

For an mth-order Markov source, the m symbols preceding a given symbol position are called the state sj
of the source at that symbol position. If there are M possible symbols xi, then the mth-order Markov source will
have Mm = q possible states sj making up the state set

S = {s1, s2, … , sq} q = Mm (4)

At a given time corresponding to one symbol position the source will be in a given state sj. There will exist a
probability p(sk sj) = pjk that the source will move into another state sk with the emission of the next symbol.
The set of all such conditional probabilities is expressed by the transition matrix T, where

(5)

A Markov matrix or stochastic matrix is any square matrix with nonnegative elements such that the row
sums are unity. It is clear that T is such a matrix since

(6)

Conversely, any stochastic matrix is a possible transition matrix for a Markov source of order m, where q = Mm

is equal to the number of rows or columns of the matrix.
A Markov chain is completely specified by its transition matrix T and by an initial distribution vector p

giving the probability distribution for the first state occurring. For the memoryless source, the transition matrix
reduces to a stochastic matrix where all the rows are identical and are each equal to the initial distribution vec-
tor p, which is in turn equal to the vector giving the source alphabet a priori probabilities. Thus, in this case,
we have

(7)

For each state si of the source an entropy H(si) can be defined by

(8)

The source entropy H(S) in information units per symbol is the expected value of H(si); that is,

(9)H S p s p s s p s s pi j i
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1.14 INFORMATION, COMMUNICATION, NOISE, AND INTERFERENCE

where p(si) = pi is the stationary state probability and is the ith element of the vector P defined by

P = [p1 p2 · · · pq] (10)

It is easy to show, as in Eq. (8), that the source entropy cannot exceed log M, where M is the size of the
source alphabet {X}. For a given source, the ratio of the actual entropy H(S) to the maximum value it can have
with the same alphabet is called the relative entropy of the source. The redundancy h of the source is defined
as the positive difference between unity and this relative entropy:

(11)

The quantity log M is sometimes called the capacity of the alphabet.

NOISELESS CODING

The preceding discussion has emphasized the information source and its properties. We now begin to consider
the properties of the communication channel of Fig. 1.1.1. In general, an arbitrary channel will not accept and
transmit the sequence of xi’s emitted from an arbitrary source. Instead the channel will accept a sequence of
some other elements ai chosen from a code alphabet A of size D, where

A = {a1, a2, . . . , aD} (12)

with D generally smaller than M. The elements ai of the code alphabet are frequently called code elements or
code characters, while a given sequence of ai’s may be called a code word.

The situation is now describable in terms of Fig. 1.1.2, where an encoder E has been added between the
source and channel. The process of coding, or encoding, the source consists of associating with each source
symbol xi a given code word, which is just a given sequence of ai’s. Thus the source emits a sequence of ai’s
chosen from the source alphabet A, and the encoder emits a sequence of ai’s chosen from the code alphabet A.
It will be assumed in all subsequent discussions that the code words are distinct, i.e., that each code word cor-
responds to only one source symbol.

Even though each code word is required to be distinct, sequences of code words may not have this property.
An example is code A of Table 1.2.1, where a source of size 4 has been encoded in binary code with charac-
ters 0 and 1. In code A the code words are distinct, but sequences of code words are not. It is clear that such a
code is not uniquely decipherable. On the other hand, a given sequence of code words taken from code B will
correspond to a distinct sequence of source symbols. An examination of code B shows that in no case is a code
word formed by adding characters to another word. In other words, no code word is a prefix of another. It is
clear that this is a sufficient (but not necessary) condition for a code to be uniquely decipherable. That it is not
necessary can be seen from an examination of codes C and D of Table 1.2.1. These codes are uniquely deci-
pherable even though many of the code words are prefixes of other words. In these cases any sequence of code
words can be decoded by subdividing the sequence of 0s and 1s to the left of every 0 for code C and to the
right of every 0 for code D. The character 0 is the first (or last) character of every code word and acts as a
comma; therefore this type of code is called a comma code.

η = −1
H S

M

( )

log

TABLE 1.2.1 Four Binary Coding Schemes

Source symbol Code A Code B Code C Code D

x1 0 0 0 0
x2 1 10 01 10
x3 00 110 011 110
x4 11 111 0111 1110

Note: Code A is not uniquely decipherable; codes B, C, and D are uniquely decipherable;
codes B and D are instantaneous codes; and codes C and D are comma codes.
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In general the channel will require a finite amount of time to transmit each code character. The code words
should be as short as possible in order to maximize information transfer per unit time. The average length L of
a code is given by

(13)

where ni is the length (number of code characters) of the code word for the source symbol xi and p(xi) is the
probability of occurrence of xi. Although the average code length cannot be computed unless the set {p(xi)} is
given, it is obvious that codes C and D of Table 1.2.1 will have a greater average length than code B unless
p(x4) = 0. Comma codes are not optimal with respect to minimum average length.

Let us encode the sequence x3x1x3x2 into codes B, C, and D of Table 1.2.1 as shown below:

Code B: 110011010

Code C: 011001101

Code D: 110011010

Codes B and D are fundamentally different from code C in that codes B and D can be decoded word by word
without examining subsequent code characters while code C cannot be so treated. Codes B and D are called
instantaneous codes while code C is noninstantaneous. The instantaneous codes have the property (previously
maintained) that no code word is a prefix of another code word.

The aim of noiseless coding is to produce codes with the two properties of (1) unique decipherability and
(2) minimum average length L for a given source S with alphabet X and probability set {p(xi)}. Codes which
have both these properties will be called optimal. It can be shown that if, for a given source S, a code is opti-
mal among instantaneous codes, then it is optimal among all uniquely decipherable codes. Thus it is sufficient
to consider instantaneous codes. A necessary property of optimal codes is that source symbols with higher
probabilities have shorter code words; i.e.,

(14)

The encoding procedure consists of the assignment of a code word to each of the M source symbols. The
code word for the source symbol xi will be of length ni; that is, it will consist of ni code elements chosen from
the code alphabet of size D. It can be shown that a necessary and sufficient condition for the construction of a
uniquely decipherable code is the Kraft inequality

(15)

NOISELESS-CODING THEOREM

It follows from Eq. (15) that the average code length L, given by Eq. (13), satisfies the inequality

L ≥ H(X)/log D (16)

Equality (and minimum code length) occurs if and only if the source-symbol probabilities obey

p(xi) = D−ni i = 1, 2, . . . , M (17)

A code where this equality applies is called absolutely optimal. Since an integer number of code elements must
be used for each code word, the equality in Eq. (16) does not usually hold; however, by using one more code
element, the average code length L can be bounded from above to give

H(X)/log D ≤ L ≤ H(X)/log D + 1 (18)

This last relationship is frequently called the noiseless-coding theorem.
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1.16 INFORMATION, COMMUNICATION, NOISE, AND INTERFERENCE

CONSTRUCTION OF NOISELESS CODES

The easiest case to consider occurs when an absolutely optimal code exists; i.e., when the source-symbol prob-
abilities satisfy Eq. (17). Note that code B of Table 1.2.1 is absolutely optimal if p(x1) = 1/2, p(x2) = 1/4, and
p(x3) = p(x4) = 1/8. In such cases, a procedure for realizing the code for arbitrary code-alphabet size (D ≥ 2) is
easily constructed as follows:

1. Arrange the M source symbols in order of decreasing probability.

2. Arrange the D code elements in an arbitrary but fixed order, i.e., a1, a2, . . . , aD.

3. Divide the set of symbols xi into D groups with equal probabilities of 1/D each. This division is always pos-
sible if Eq. (17) is satisfied.

4. Assign the element a1 as the first digit for symbols in the first group, a2 for the second, and ai for the ith group.

5. After the first division each of the resulting groups contains a number of symbols equal to D raised to some
integral power if Eq. (17) is satisfied. 

Thus, a typical group, say group i, contains Dki symbols, where ki is an integer (which may be zero). This
group of symbols can be further subdivided ki times into D parts of equal probabilities. Each division decides
one additional code digit in the sequence. A typical symbol xi is isolated after q divisions. If it belongs to the
i1 group after the first division, the i2 group after the second division, and so forth, then the code word for xi
will be ai1 ai2 . . . aiq.

An illustration of the construction of an absolutely optimal code for the case where D = 3 is given in Table 1.2.2.
This procedure ensures that source symbols with high probabilities will have short code words and vice versa,
since a symbol with probability D−ni will be isolated after ni divisions and thus will have ni elements in its code
word, as required by Eq. (17).

TABLE 1.2.2 Construction of an Optimal Code; D = 3

Source A priori
symbols probabilities 

Step

xi p(xi) 1 2 3 Final code

x1
1/3 1 1

x2
1/9 0 1 0 1

x3
1/9 0 0 0 0

x4
1/9 0 –1 0 –1

x5
1/27 –1 1 1 –1 1 1

x6
1/27 –1 1 0 –1 1 0

x7
1/27 –1 1 –1 –1 1 –1

x8
1/27 –1 0 1 –1 0 1

x9
1/27 –1 0 0 –1 0 0

x10
1/27 –1 0 –1 –1 0 –1

x11
1/27 –1 –1 1 –1 –1 1

x12
1/27 –1 –1 0 –1 –1 0

x13
1/27 –1 –1 –1 –1 –1 –1

Note: Average code length L = 2 code elements per symbol: source entropy H(X) = 2 log2 3 bits per symbol.

L
H X

=
( )

log2 3
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INFORMATION SOURCES, CODES, AND CHANNELS 1.17

The code resulting from the process just discussed is sometimes called the Shannon-Fano code. It is apparent
that the same encoding procedure can be followed whether or not the source probabilities satisfy 
Eq. (17). The set of symbols xi is simply divided into D groups with probabilities as nearly equal as possible. The
procedure is sometimes ambiguous, however, and more than one Shannon-Fano code may be possible. The
ambiguity arises, of course, in the choice of approximately equiprobable subgroups.

For the general case where Eq. (17) is not satisfied, a procedure owing to Huffman guarantees an optimal code,
i.e., one with minimum average length. This procedure for code alphabet of arbitrary size D is as follows:

1. As before, arrange the M source symbols in order of decreasing probability.

2. As before, arrange the code elements in an arbitrary but fixed order, that is, a1, a2, . . . , aD.

3. Combine (sum) the probabilities of the D least likely symbols and reorder the resulting M − (D − 1) prob-
abilities; this step will be called reduction 1. Repeat as often as necessary until there are D ordered proba-
bilities remaining. Note: For the binary case (D = 2), it will always be possible to accomplish this reduction
in M − 2 steps. When the size of the code alphabet is arbitrary, the last reduction will result in exactly D
ordered probabilities if and only if

M = D + n(D − 1)

where n is an integer. If this relationship is not satisfied, dummy source symbols with zero probability
should be added. The entire encoding procedure is followed as before, and at the end the dummy symbols
are thrown away.

4. Start the encoding with the last reduction which consists of exactly D ordered probabilities; assign the ele-
ment a1 as the first digit in the code words for all the source symbols associated with the first probability;
assign a2 to the second probability; and ai to the ith probability.

5. Proceed to the next to the last reduction; this reduction consists of D + (D − 1) ordered probabilities for a
net gain of D − 1 probabilities. For the D new probabilities, the first code digit has already been assigned
and is the same for all of these D probabilities; assign a1 as the second digit for all source symbols associ-
ated with the first of these D new probabilities; assign a2 as the second digit for the second of these D new
probabilities, etc.

6. The encoding procedure terminates after 1 + n(D − 1) steps, which is one more than the number of reductions.

As an illustration of the Huffman coding procedure, a binary code is constructed in Table 1.2.3.

CHANNEL CAPACITY

The average mutual information I(X; Y) between an information source and a destination was given by
Eqs. (25) and (26) as

I(X; Y) = H(Y) − H(Y X) = H(X) − H(X Y ) ≥ 0 (19)

TABLE 1.2.3 Construction of Huffman Code; D = 2
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1.18 INFORMATION, COMMUNICATION, NOISE, AND INTERFERENCE

The average mutual information depends not only on the statistical characteristics of the channel but also on
the distribution p(xi) of the input alphabet X. If the input distribution is varied until Eq. (19) is a maximum for
a given channel, the resulting value of I(X; Y) is called the channel capacity C of that channel; i.e.,

(20)

In general, H(X), H(Y ), H(X Y ), and H(Y X) all depend on the input distribution p(xi). Hence, in the general
case, it is not a simple matter to maximize Eq. (19) with respect to p(xi).

All the measures of information that have been considered in this treatment have involved only probability
distributions on X and Y. Thus, for the model of Fig. 1.1.1, the joint distribution p(xi, yj) is sufficient. Suppose
the source [and hence the input distribution p(xi)] is known; then it follows from the usual conditional-proba-
bility relationship

p(xi, yj) = p(xi)p(yj xi) (21)

that only the distribution p(yj xi) is needed for p(xi yj) to be determined. This conditional probability p(yj xi)
can then be taken as a description of the information channel connecting the source X and the destination Y.
Thus, a discrete memoryless channel can be defined as the probability distribution

p(yj xi) xi � X and yj � Y (22)

or, equivalently, by the channel matrix D, where

(23)

A number of special types of channels are readily distinguished. Some of the simplest and/or most inter-
esting are listed as follows:

(a) Lossless Channel. Here H(X Y) = 0 for all input distribution p(xi), and Eq. (20) becomes

(24)

This maximum is obtained when the xi are equally likely, so that p(xi) = 1/M for all i. The channel capaci-
ty is equal to the source entropy, and no source information is lost in transmission.

(b) Deterministic Channel. Here H(Y X) = 0 for all input distributions p(xi), and Eq. (20) becomes

(25)

This maximum is obtained when the yj are equally likely, so that p(yj) = 1/N for all j. Each member of the
X set is uniquely associated with one, and only one, member of the destination alphabet Y.

(c) Symmetric Channel. Here the rows of the channel matrix D are identical except for permutations, and the
columns are identical except for permutations. If D is square, rows and columns are identical except for
permutations. In the symmetric channel, the conditional entropy H(Y X) is independent of the input dis-
tribution p(xi) and depends only on the channel matrix D. As a consequence, the determination of channel
capacity is greatly simplified and can be written

(26)C N p y x p y xj i
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This capacity is obtained when the yi are equally likely, so that p(yj) = 1/N for all j.
(d) Binary Symmetric Channel (BSC). This is the special case of a symmetric channel where M = N = 2. Here

the channel matrix can be written

(27)

and the channel capacity is

C = log 2 − G(p) (28)

where the function G(p) is defined as

G(p) = −[p log p + (1 − p) log (1 − p)] (29)

This expression is mathematically identical to the
entropy of a binary source as given in  Eq. (5) and is plot-
ted in Fig. 1.1.3 using base 2 logarithms. For the same
base, Eq. (28) is shown as a function of p in Fig. 1.2.1.
As expected, the channel capacity is large if p, the prob-

ability of correct transmission, is either close to unity or to zero. If p = 1/2, there is no statistical evidence
which symbol was sent and the channel capacity is zero.

DECISION SCHEMES

A decision scheme or decoding scheme B is a partitioning of the Y set into M disjoint and exhaustive sets B1,
B2, … , BM such that when a destination symbol yk falls into set Bi, it is decided that symbol xi was sent. Implicit
in this definition is a decision rule d(yj), which is a function specifying uniquely a source symbol for each des-
tination symbol. Let p(e yj) be the probability of error when it is decided that yj has been received. Then the
total error probability p(e) is

(30)

For a given decision scheme b, the conditional error probability p(e yj) can be written

p(e yj) = 1 − p[d(yj) yj] (31)

where p[d(yj) yj] is the conditional probability p(xi yj) with xi assigned by the decision rule; i.e., for a given
decision scheme d(yj) = xi. The probability p(yj) is determined only by the source a priori probability p(xi) and
by the channel matrix = D [p(yj xi)]. Hence, only the term p(e yj) in Eq. (30) is a function of the decision
scheme. Since Eq. (30) is a sum of nonnegative terms, the error probability is a minimum when each summand is
a minimum. Thus, the term p(e yj) should be a minimum for each yj. It follows from Eq. (31) that the minimum-
error scheme is that scheme which assigns a decision rule

d(yj) = x* j = 1, 2, . . . , N (32)

where x* is defined by

p(x* yj) ≥ p(xi yj) i = 1, 2, . . . , M (33)

In other words, each yj is decoded as the a posteriori most likely xi. This scheme, which minimizes the proba-
bility of error p(e), is usually called the ideal observer.
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FIGURE 1.2.1 Capacity of the binary symmetric channel.
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1.20 INFORMATION, COMMUNICATION, NOISE, AND INTERFERENCE

The ideal observer is not always a completely satisfactory decision scheme. It suffers from two major
disadvantages: (1) For a given channel D, the scheme is defined only for a given input distribution p(xi). It
might be preferable to have a scheme that was insensitive to input distributions. (2) The scheme minimizes
average error but does not bound certain errors. For example, some symbols may always be received 
incorrectly. Despite these disadvantages, the ideal observer is a straightforward scheme which does mini-
mize average error. It is also widely used as a standard with which other decision schemes may be 
compared.

Consider the special case where the input distribution is p(xi) = 1/M for all i, so that all xi are equally likely.
Now the conditional likelihood p(xi yj) is

(34)

For a given yj, that input xi is chosen which makes p(yj xi) a maximum, and the decision rule is

d(yj) = x† j = 1, 2, . . . , N (35)

where x† is defined by

p(yj x†) ≥ p(yj xi) i = 1, 2, . . . , M (36)

The probability of error becomes

(37)

This decoder is sometimes called the maximum-likelihood decoder or decision scheme.
It would appear that a relationship should exist between the error probability p(e) and the channel capacity C.

One such relationship is the Fano bound, given by

H(X Y) ≤ G[p(e)] + p(e) log (M − 1) (38)

and relating error probability to channel capacity through Eq. (20). Here G(⋅) is the function already defined
by Eq. (29). The three terms in Eq. (38) can be interpreted as follows:

H(X Y) is the equivocation. It is the average additional information needed at the destination after recep-
tion to completely determine the symbol that was sent.

G[p(e)] is the entropy of the binary system with probabilities p(e) and 1 − p(e). In other words, it is the
average amount of information needed to determine whether the decision rule resulted in an error.

log (M − 1) is the maximum amount of information needed to determine which among the remaining M − 1
symbols was sent if the decision rule was incorrect; this information is needed with probability p(e).

THE NOISY-CODING THEOREM

The concept of channel capacity was discussed earlier. Capacity is a fundamental property of an information
channel in the sense that it is possible to transmit information through the channel at any rate less than the
channel capacity with arbitrarily small probability of error. This result is called the noisy-coding theorem or
Shannon’s fundamental theorem for a noisy channel.

The noisy-coding theorem can be stated more precisely as follows: Consider a discrete memoryless chan-
nel with nonzero capacity C; fix two numbers H and � such that

0 < H < C (39)
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and

� > 0 (40)

Let us transmit m messages u1, u2, . . . , um by code words each of length n binary digits. The positive integer
n can be chosen so that

m ≥ 2nH (41)

In addition, at the destination the m sent messages can be associated with a set  V = {n1, n2, . . . , nm} of received
messages and with a decision rule d(nj) = uj such that

(42)

i.e., decoding can be accomplished with a probability of error that does not exceed �. There is a converse to
the noise-coding theorem which states that it is not possible to produce an encoding procedure which allows
transmission at a rate greater than channel capacity with arbitrarily small error.

ERROR-CORRECTING CODES

The codes considered earlier were designed for minimum length in the noiseless-transmission case. For
noisy channels, the noisy-coding theorem guarantees the existence of a code which will allow transmis-
sion at any rate less than channel capacity and with arbitrarily small probability of error; however, the
theorem does not provide a constructive procedure to devise such codes. Indeed, it implies that very long
sequences of source symbols may have to be considered if reliable transmission at rates near channel
capacity are to be obtained. In this section, we consider some of the elementary properties of simple
error-correcting codes; i.e., codes which can be used to increase reliability in the transmission of infor-
mation through noisy channels by correcting at least some of the errors that occur so that overall proba-
bility of error is reduced.

The discussion will be restricted to the BSC, and the noisy-coding theorem notation will be used. Thus, a
source alphabet X = {x1, x2, . . . , xm} of M symbols will be used to form a message set U of m messages uk,
where U = {u1, u2, . . . , um}. Each uk will consist of a sequence of the xi’s. Each message uk will be encoded
into a sequence of n binary digits for transmission over the BSC. At the destination, there exists a set V = {n1,
n2, . . . , n2n} of all possible binary sequences of length n. The inequality m ≤ 2n must hold. The problem is to
associate with each sent message uk a received message nj so that p(e), the overall probability of error, is
reduced.

In the discussion of the noisy-coding theorem, a decoding scheme was used that examined the received
message nj and identified it with the sent message uk, which differed from it in the least number of binary dig-
its. In all the discussions here it will be assumed that this decoder is used. Let us define the Hamming distance
d(nj, nk) between two binary sequences nj and nk of length n as the number of digits in which nj and nk
disagree. Thus, if the distance between two sequences is zero, the two sequences are identical. It is easily seen
that this distance measure has the following four elementary properties:

d(nj, nk) ≥ 0 with equality if and only if nj = nk (43)

d(nj, nk) = d(nk, nj) (44)

d(nj, nl) ≤ d(nj, nk) + d(nk, nl) (45)

d(nj, nk) ≤ n (46)

The decoder we use is a minimum-distance decoder. As mentioned earlier, the ideal-observer decoding scheme
is a minimum-distance scheme for the BSC.

p d j j[ ( ) ]ν ν ≥ −1
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FIGURE 1.2.2 Representation of binary sequences as the corners of an n-cube, n = 3; (a) the eight binary
sequences of length 3; (b) shift in sequences 000 and 111 from a single error.

1.22 INFORMATION, COMMUNICATION, NOISE, AND INTERFERENCE

It is intuitively apparent that the sent messages should be represented by code words that all have the great-
est possible distances between them. Let us investigate this matter in more detail by considering all binary
sequences of length n = 3; there are 2n = 23 = 8 such sequences, viz.,

000 001 011 111

010 110

100 101

It is convenient to represent these as the eight corners of a unit cube, as shown in Fig. 1.2.2a, where the x axis
corresponds to the first digit, the y axis to the second, and the z axis to the third. Although direct pictorial rep-
resentation is not possible, it is clear that binary sequences of length n greater than 3 can be considered as the
corners of the corresponding n-cube.

Suppose that all eight binary sequences are used as code words to encode a source. If any binary digit is
changed in transmission, an error will result at the destination since the sent message will be interpreted incor-
rectly as one of the three possible messages that differ in one code digit from the sent message. This situation
is illustrated in Fig. 1.2.2 for the code words 000 and 111. A change of one digit in each of these code words
produces one of three possible other code words.

Figure 1.2.2 suggests that only two code words, say 000 and 111, should be used. The distance between these
two words, or any other two words on opposite corners of the cube, is 3. If only one digit is changed in the trans-
mission of each of these two code words, they can be correctly distinguished at the destination by a minimum-dis-
tance decoder. If two digits are changed in each word in transmission, it will not be possible to make this distinction.

This reasoning can be extended to sequences containing more than three binary digits. For any n ≥ 3, sin-
gle errors in each code word can be corrected. If double errors are to be corrected without fail, there must be
at least two code words with a minimum distance between them of 5; thus, for this case, binary code words of
length 5 or greater must be used.

Note that the error-correcting properties of a code depend on the distance d(nj, nk) between the code words.
Specifically, single errors can be corrected if all code words employed are at least a distance of 3 apart, double
errors if the words are at a distance of 5 or more from each other, and, in general, q-fold errors can be corrected if

d(nj, nk) ≥ 2q + 1 j ≠ k (47)

Errors involving less than q digits per code word can also be corrected if Eq. (63) is satisfied. If the distance
between two code words is 2q, there will always be a group of binary sequences which are in the middle, i.e.,
a distance q from each of the two words. Thus, by the proper choice of code words, q-fold errors can be detect-
ed but not corrected if

d(nj, nk) = 2q j ≠ k (48)
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INFORMATION SOURCES, CODES, AND CHANNELS 1.23

Now consider the maximum number of code words r that can be selected from the set of 2n possible binary
sequences of length n to form a code that will correct all single, double, . . . , q-fold errors. In the example of
Fig. 1.2.2, the number of code words selected was 2. In fact, it can be shown that there is no single-error-cor-
recting code for n = 3, 4 containing more than two words. Suppose we consider a given code consisting of the
words . . . , uk, uj, . . . . All binary sequences of distance q or less from uk must “belong” to uk, and to uk only,
if q-fold errors are to be corrected. Thus, associated with uk are all binary sequences of distance 0, 1, 2, . . . ,
q from uk. The number of such sequences is given by

(49)

Since there are r of the code words, the total number of sequences associated with all the code words is

This number can be no larger than 2n, the total number of distinct binary sequences of length n. Therefore the
following inequality must hold:

(50)

This is a necessary upper bound on the number of code words that can be used to correct all errors up to and
including q-fold errors. It can be shown that it is not sufficient.

Consider the eight possible distinct binary sequences of length 3. Suppose we add one binary digit to each
sequence in such a way that the total number of 1s in the sequence is even (or odd, if you wish). The result is
shown in Table 1.2.4. Note that all the word sequences of length 4 differ from each other by a distance of at
least 2. In accordance with Eq. (48), it should be possible now to detect single errors in all eight sequences.
The detection method is straightforward. At the receiver, count the number of 1s in the sequence; if the num-
ber is odd, a single error (or, more precisely, an odd number of errors) has occurred; if the number is even, no
error (or an even number of errors) has occurred. This particular scheme is a good one if only single errors are
likely to occur and if detection only (rather than correction) is desired. Such is often the case, for example, in
closed digital systems such as computers. The added digit is called a parity-check digit, and the scheme is a
very simple example of a parity-check code.

PARITY-CHECK CODES

More generally, in parity-check codes, the encoded sequence consists of n binary digits of which only k < n are
information digits while the remaining l = n − k digits are used for error detection and correction and are called
check digits or parity checks. The example of Table 1.2.4 is a single-error-detecting code, but, in general, q-fold
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TABLE 1.2.4 Parity-Check Code for Single-Error Detection

Message digits Check digit Word Message digit Check digit Word

000 0 0000 110 0 1100
100 1 1001 101 0 1010
010 1 0101 011 0 0110
001 1 0011 111 1 1111
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1.24 INFORMATION, COMMUNICATION, NOISE, AND INTERFERENCE

errors can be detected and/or corrected. As the number of errors to be detected and/or corrected increases, the
number l of check digits must increase. Thus, for fixed word length n, the number of information digits k = n − l
will decrease as more and more errors are to be detected and/or corrected. Also the total number of words in
the code cannot exceed the right side of Eq. (50) or the number 2k.

Parity-check codes are relatively easy to implement. The simple example given of a single-error-detecting
code requires only that the number of 1s in each code word be counted. In this light, it is of considerable impor-
tance to note that these codes satisfy the noisy-coding theorem. In other words, it is possible to encode a source
by parity-check coding for transmission over a BSC at a rate approaching channel capacity and with arbitrar-
ily small probability of error. Then, from Eq. (41), we have

2nH = 2k (51)

or H, the rate of transmission, is given by

H = k/n (52)

As n → ∞ , the probability of error p(e) approaches zero. Thus, in a certain sense, it is sufficient to limit a study
of error-correcting codes to the parity-check codes.

As an example of a parity-check code, consider the simplest nondegenerate case where l, the number of
check digits, is 2 and k, the number of information digits, is 1. This system is capable of single-error detection
and correction, as we have already decided from geometric considerations. Since l + k = 3, each encoded word
will be three digits long. Let us denote this word by a1a2a3, where each ai is either 0 or 1. Let a1 represent the
information digit and a2 and a3 represent the check digits.

Checking for errors is done by forming two independent equations from the three ai, each equation being
of the form of a modulo-2 sum, i.e., of the form

Take the two independent equations to be

a2 ⊕ a3 = 0 and a1 ⊕ a3 = 0

for an even-parity check. For an odd-parity check, let the right sides of both of these equations be unity. If these
two equations are to be satisfied, the only possible code words that can be sent are 000 and 111. The other six
words of length 3 violate one or both of the equations.

Now suppose that 000 is sent and 100 is received. A solution of the two independent equations gives, for
the received word,

a2 ⊕ a3 = 0 ⊕ 0 = 0
a1 ⊕ a3 = 1 ⊕ 0 = 1

The check yields the binary check number 1, indicating that the error is in the first digit a1, as indeed it is. If
111 is sent and 101 received, then

a2 ⊕ a3 = 0 ⊕ 1 = 1
a1 ⊕ a3 = 1 ⊕ 1 = 0

and the binary check number is 10, or 2, indicating that the error is in a2.
In the general case, a set of l independent linear equations is set up in order to derive a binary checking

number whose value indicates the position of the error in the binary word. If more than one error is to be detect-
ed and corrected, the number l of check digits must increase, as discussed previously.

In the example just treated, the l check digits were used only to check the k information digits immediately
preceding them. Such a code is called a block code, since all the information digits and all the check digits are
contained in the block (code word) of length n = k + l. In some encoding procedures, the l check digits may
also be used to check information digits appearing in preceding words. Such codes are called convolutional or
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INFORMATION SOURCES, CODES, AND CHANNELS 1.25

recurrent codes. A parity-check code (either block or convolutional) where the word length is n and the num-
ber of information digits is k is usually called an (n, k) code.

OTHER ERROR-DETECTING AND ERROR-CORRECTING CODES

Unfortunately, a general treatment of error-detecting and error-correcting codes requires that the code struc-
ture be cast in a relatively sophisticated mathematical form. The commonest procedure is to identify the code
letters with the elements of a finite (algebraic) field. The code words are then taken to form a vector subspace
of n-tuples over the field. Such codes are called linear codes or, sometimes, group codes. Both the block codes
and the convolutional codes mentioned in the previous paragraph fall in this category.

An additional constraint often imposed on linear codes is that they be cyclic. Let a code word a be repre-
sented by

a = (a0, a1, a2, . . . , an−1)

Then the ith cyclic permutation a−i is given by ai = (ai, ai+1, . . . , an−1, a0, a1, . . . , ai−1). A linear code is cyclic
if, and only if, for every word a in the code, there is also a word ai in the code. The permutations need not be
distinct and, in fact, generally will not be. The eight code words

0000 0110 1001 1010

0011 1100 0101 1111

constitute a cyclic set. Included in the cyclic codes are some of those most commonly encountered such as the
Bose and Ray-Chaudhuri (BCH) codes and shortened Reed-Muller codes.

CONTINUOUS-AMPLITUDE CHANNELS

The preceding discussion has concerned discrete message distributions and channels. Further, it has been
assumed, either implicitly or explicitly, that the time parameter is discrete, i.e., that a certain number of 
messages, symbols, code digits, and so forth, are transmitted per unit time. Thus, we have been concerned with
discrete-amplitude, discrete-time channels and with messages which can be modeled as discrete random
processes with discrete parameter. There are three other possibilities, depending on whether the process ampli-
tude and the time parameter have discrete or continuous distributions.

We now consider the continuous-amplitude, discrete-time channel, where the input messages can be mod-
eled as continuous random processes with discrete parameter. It will be shown later that continuous-time cases
of engineering interest can be treated by techniques which amount to the replacement of the continuous 
parameter by a discrete parameter. The most straightforward method involves the application of the sampling
theorem to band-limited processes. In this case the process is sampled at equispaced intervals of length 1/2W,
where W is the highest frequency of the process. Thus the continuous parameter t is replaced by the discrete
parameter tk = k/2W, k = . . . , −1, 0,  1, . . . .

Let us restrict our attention for the moment to continuous-amplitude, discrete-time situations. The discrete
density p(xi), i = 1, 2, . . . , M, of the source-message set is replaced by the continuous density fx(x), where, in gen-
eral, −∞ < x < ∞, although the range of x may be restricted in particular cases. In the same way, other discrete
densities are replaced by continuous densities. For example, the destination distribution p(yj), j = 1, 2, . . . , N,
becomes fy(y), and the joint distribution p(xi, yj) will be called f2(x, y).

In analogy with the discrete-amplitude case [Eq. (4)], the entropy of a continuous distribution fx(x) can be
defined as

(53)H X f x f x dxx x( ) ( ) log ( )= −
−∞

∞
∫
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1.26 INFORMATION, COMMUNICATION, NOISE, AND INTERFERENCE

This definition is not completely satisfactory because of some of the properties of this new H(X). For exam-
ple, it can be negative and it can depend on the coordinate system used to represent the message.

Joint and conditional entropies can also be defined in exact analogy to the discrete case discussed in Chap. 1.1.
If the joint density f2(x, y) exists, then the joint entropy H(X, Y) is given by

(54)

and the conditional entropies H(X Y) and H(Y X) are

(55)

and

(56)

where

The average mutual information follows from Eq. (15) and is

(57)

Although the entropy of a continuous distribution can be negative, positive, or zero, the average mutual infor-
mation I(X; Y) ≥ 0 with equality when x and y are statistically independent, i.e., when f2(x, y) = fx(x)fy(y).

MAXIMIZATION OF ENTROPY OF CONTINUOUS DISTRIBUTIONS

The entropy of a discrete distribution is a maximum when the distribution is uniform, i.e., when all outcomes
are equally likely. In the continuous case, the entropy depends on the coordinate system, and it is possible to
maximize this entropy subject to various constraints on the associated density function.

The Maximization of H(X) for a Fixed Variance of x. Maximizing H(X) subject to the constraint that

(58)

yields the gaussian density

(59)

Thus, for fixed variance, the normal distribution has the largest entropy. The entropy in this case is

H(X) = 1/2 ln 2ps 2 + 1/2 ln e = 1/2 ln 2pes 2 (60)
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INFORMATION SOURCES, CODES, AND CHANNELS 1.27

This last result will be of considerable use later. For convenience, the natural logarithm has been used, and the
units of H are nats.

The Maximization of H(X) for a Limited Peak Value of x. In this case, the single constraint is

(61)

One obtains the uniform distribution

and, the associated entropy is

(62)

The Maximization of H(X) for x Limited to Nonnegative Values and a Given Average Value. The constraints

and

(63)

lead to the exponential distribution

The entropy associated with this distribution is

(64)

GAUSSIAN SIGNALS AND CHANNELS

Let us assume that the source symbol x and the destination symbol y are jointly gaussian, i.e., that the joint
density f2(x, y) is

(65)

where s 2
x and s 2

y are the variances of x and y, respectively, and r is the correlation coefficient given by
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1.28 INFORMATION, COMMUNICATION, NOISE, AND INTERFERENCE

The univariate densities of x and y are given, of course, by

(67)

and

(68)

In this case we have

I (X; Y) = − 1/2 In (1 − r2) (69)

Thus the average mutual information in two jointly gaussian random variables is a function only of the corre-
lation coefficient r and varies from zero to infinity since −1 ≤ r ≤ 1.

The noise entropy H(Y X) can be written

H (Y X) = H(Y) − I(X; Y) = 1/2 In 2pes 2
y (1 − r2)

(70)

Suppose that x and y are jointly gaussian as a result of independent zero-mean gaussian noise n being added
in the channel to the gaussian input x, so that

y = x + n (71)

In this case the correlation coefficient r becomes

(72)

and the noise entropy is

H (Y X) = 1/2 In 2pes 2
n

(73)

where s 2
n is the noise variance given by

(74)

In this situation, Eq. (69) can be rewritten as

I (X; Y ) = 1/2 In (1 + s 2
x / s 2

n)
(75)

It is conventional to define the signal power as Sp = s 2
x and the noise power as Np = s 2

n and to rewrite this last
expression as

I (X; Y ) = 1/2 In (1 + Sp / Np)
(76)

where Sp/Np is the signal-to-noise power ratio.
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INFORMATION SOURCES, CODES, AND CHANNELS 1.29

Channel capacity C for the continuous-amplitude, discrete-time channel is

(77)

Suppose the channel consists of an additive noise that is a sequence of independent gaussian random variables
n each with zero mean and variance σ2

n . In this case the conditional probability f(y/x) at each time instant is
normal with variance σ2

n and mean equal to the particular realization of X. The noise entropy H(Y X) is given
by Eq. (73), and Eq. (77) becomes

(78)

If the input power is fixed at s2
x then the output power is fixed at s2

y = s2
x + s2

n and H(Y) is a maximum if Y =
X + N is a sequence of independent gaussian random variables. The value of H(Y) is

and the channel capacity becomes

(79)

where Sp/Np is the signal-to-noise power ratio. Note that the input X is a sequence of independent gaussian
random variables and this last equation is identical to Eq. (76). Thus, for additive independent gaussian noise
and an input power limitation, the discrete-time continuous-amplitude channel has a capacity given by Eq. (79).
This capacity is realized when the input is an independent sequence of independent, identically distributed
gaussian random variables.

BAND-LIMITED TRANSMISSION AND THE SAMPLING THEOREM

In this section, messages will be considered which can be modeled as continuous random processes x(t) with
continuous parameter t. The channels which transmit these messages will be called amplitude-continuous,
time-continuous channels. Specifically attention will be restricted to signals (random processes) x(t), which are
strictly band-limited.

Suppose a given arbitrary (deterministic) signal f (t) is available for all time. Is it necessary to know the
amplitude of the signal for every value of time in order to characterize it uniquely? In other words, can f (t)
be represented (and reconstructed) from some set of sample values or samples . . . , f (t), f (t0), f (t1), . . . ?
Surprisingly enough, it turns out that, under certain fairly reasonable conditions, a signal can be represent-
ed exactly by samples spaced relatively far apart. The reasonable conditions are that the signal be strictly
band-limited.

A (real) signal f(t) will be called strictly band-limited (−2pW, 2pW) if its Fourier transform F(w) has the
property

(80)

Such a signal can be represented in terms of its sample taken at the Nyquist sampling times, k = 0, ±
1, . . . via the sampling representation
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1.30 INFORMATION, COMMUNICATION, NOISE, AND INTERFERENCE

This expression is sometimes called the Cardinal series or Shannon’s sampling theorem. It relates the discrete
time domain {k/2W} with sample values f(k/2W) to the continuous time domain {t} of the function f (t).

The interpolation function

(82)

has a Fourier transform K(w) given by

(83)

Also the shifted functions k(t − k/2W) has the Fourier transform

F{k(t − k/2W)} = K(w)ejwk/2W (84)

Therefore, each term on the right side of Eq. (81) is a time function which is strictly band-limited (−2pW,
2pW). Note also that

(85)

Thus, this sampling function k(t − k/2W) is zero at all Nyquist instants except tk, where it equals unity.
Suppose that a function h(t) is not strictly band-limited to at least (−2pW, 2pW) rad/s and an attempt is

made to reconstruct the function using Eq. (81) with sample values spaced 1/2W ⋅ s apart. It is apparent that
the reconstructed signal [which is strictly band-limited (−2pW, 2pW), as already mentioned] will differ from
the original. Moreover, a given set of sample values {f(k/2W)} could have been obtained from a whole class
of different signals. Thus, it should be emphasized that the reconstruction of Eq. (81) is unambiguous only for
signals strictly band-limited to at least (−2pW, 2pW) rad/s. The set of different possible signals with the same
set of sample values {f(k/2W)} is called the aliases of the band-limited signal f(t).

Let us now consider a signal (random process) X(t) with autocorrelation function given by

(86)

and power spectral density

(87)

which is just the Fourier transform of Rx(t). The process will be assumed to have zero mean and to be strictly
band-limited (−2pW, 2pW) in the sense that the power special density fx(w) vanishes outside this interval; i.e.,

(88)

It has been noted that a deterministic signal f(t) band-limited (−2pW, 2pW) admits the sampling represen-
tation of Eq. (81). It can also be shown that the random process X(t) admits the same expansions; i.e.,
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INFORMATION SOURCES, CODES, AND CHANNELS 1.31

The right side of this expression is a random variable for each value of t. The infinite sum means that

where

Thus, the process X(t) with continuous time parameter t can be represented by the process X(k/2W), k = . . . , −2,
−1, 0, 1, 2, . . . , with discrete time parameter tk = k/2W. For band-limited signals or channels it is sufficient,
therefore, to consider the discrete-time case and to relate the results to continuous time through Eq. (89).

Suppose the continuous-time process X(t) has a spectrum jx(w) which is flat and band-limited so that

(90)

Then the autocorrelation function passes through zero at intervals of 1/2W so that

Rx(k/2W) = 0 k = . . . , −2, −1, 1, 2, . . . (91)

Thus, samples spaced k/2W apart are uncorrelated if the power spectral density is flat and band-limited (−2pW,
2pW). If the process is gaussian, the samples are independent. This implies that continuous-time band-limited 
(−2pW, 2pW) gaussian channels, where the noise has a flat spectrum, have a capacity C given by Eq. (79) as

C = 1/2 ln (1 + Sp/Np) (nats/sample) (92)

Here Np is the variance of the additive, flat, band-limited gaussian noise and Sp is Rx(0), the fixed variance of
the input signal. The units of Eq. (92) are on a per sample basis. Since there are 2W samples per unit time, the
capacity C′ per unit time can be written as

C ′ = W ln (1 + Sp/Np) (nats/s) (93)

The ideas developed thus far in this section have been somewhat abstract notions involving information
sources and channels, channel capacity, and the various coding theorems. We now look more closely at con-
ventional channels. Many aspects of these topics fall into the area often called modulation theory.
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