
6.38

CHAPTER 6.4
MICROPROCESSORS

S.Tewksbury

INTRODUCTION

This chapter reviews microprocessors, ranging in complexity and performance from 8-bit microprocessors
widely used in embedded systems applications to very high performance 32- and 64- bit microprocessors used
for powerful desktop, server, and higher-level computers. The history of the evolution of microprocessor archi-
tectures is rich in the variety of hardware/software environments implemented and the optimization of archi-
tectures for general-purpose computation. A variety of simple 8-bit microprocessors introduced over 30 years
ago continue to thrive, adding to the basic microprocessor architecture a variety of other analog and digital
functions to provide a system-on-a-chip solution for basic, intelligent products. These include digital cameras,
electronic toys, automotive controls, and many other applications. These applications represent cases in which
the programmable capabilities of microprocessors are embedded in products to yield “intelligent modules”
capable of performing a rich variety of functions in support of the application. Many of these applications are
intended for portable products (such as cameras) where battery operation places a premium on the power dis-
sipated by the electronics.

Starting from the early 8-bit microprocessors, most manufacturers (Intel, Motorola, and so forth) followed
a path of evolutionary development driven by the exponentially increasing amount of digital logic and memo-
ry that could be placed on a single IC. The class of microprocessor generally called microcontroller made use
of the additional circuitry available on an IC to integrate earlier external circuitry directly onto the microcon-
troller IC. For example, 8-bit microcontrollers based on the Motorola 6800 and Intel 8085 8-bit microproces-
sors have evolved to include substantial nonvolatile memory (able to hold programs without power), significant
internal RAM (above to provide storage for data being manipulated), digital ports (e.g., serial ports, parallel
ports, and so forth) to the external world, and various analog circuit functions. Among the analog circuit func-
tions are analog-to-digital and digital-to-analog converters, allowing the microcontroller to capture informa-
tion from sensors and to drive transducers. With increasing circuitry per IC, functions such as the
analog-to-digital converters have evolved into more complex components—for example, allowing a multiplic-
ity of different analog input signals to be converted into digital signals using an analog multiplexing circuit and
allowing programmable gain to amplify the incoming analog signal to levels minimizing the background noise
included in the digital signal.

As the density of VLSI ICs has increased, earlier microprocessors requiring the full IC area have become
smaller in area required. The 8- and 16-bit controllers can now be embedded in VLSI ICs to extend many of
today’s applications to “intelligent” systems. This embedding of microprocessor cores into other digital circuit
functions has extended to the area of programmable logic (general-purpose arrays to logic that can be user pro-
grammed to perform a custom function). For example, Altera programmable logic ICs includes IP (Intellectual
Property) cores such as a 200 MHz 32-bit ARM9 core processor along with embedded RAM cores. Similar
capabilities exist for other manufacturers of programmable logic. Today, the combination of programmable
logic allows a user to efficiently implement custom logic functions of considerable complexity (i.e., the Xilinx
Virtex family of programmable logic provides 8 million gates and can operate at a 300 MHz clock rate) while

Christiansen_Sec_06.qxd 10/28/04 10:41 AM Page 6.38

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Source: STANDARD HANDBOOK OF ELECTRONIC ENGINEERING

MICROPROCESSORS 6.39

including the familiar functionality of well-established microprocessors for overall control. As the VLSI tech-
nologies continue to advance, the more powerful microprocessors of today will eventually migrate into these
embedded applications as even more powerful microprocessors emerge for the desktop/laptop computer market.

Another evolutionary path was to create increasingly powerful microprocessors for applications such as
desktop computers. Drawing power directly from a plug, minimizing power dissipation is less a priority (aside
from the inevitable side issue of heating due to power dissipation). Instead, raw computing performance is the
objective. Having to provide connections among integrated circuits to handle different peripheral functions
(floating point arithmetic units, modules managing memory access though cache and other techniques, image
processing modules, and so forth) can create a substantial performance barrier because of data transfer rate lim-
itations. Migrating such peripheral functions essential to the basic computer operation can greatly improve the
performance of the overall computer (microprocessor and peripherals). As an example, the evolution of the
Motorola 68000 family starts with the basic MC68000. It then progressed to the MC68010, to the MC68020,
to the MC68030, to the MC68040, and beyond not by changing the core microprocessor architecture greatly
but rather by moving “onto the chip” such functions as the floating point accelerator, the memory management
unit, virtual memory control, cache memory to reuse data/instructions loaded from RAM, and so forth.

The greater computational power of these early 16/32-bit microprocessors (such as the Motorola
MC68000) is attractive in many embedded applications. As a result, microcontrollers have evolved beyond the
8-bit microprocessor cores to include these classical 16/32-bit microprocessor cores. At the same time, the
microcontrollers retain the integration of other peripherals that support the applications (such as automotive
and entertainment) into which they are embedded.

Returning to the microprocessors used for desktop computers, workstations, servers, and so forth, more
recent advances have challenged and overcome many limitations that were once considered fundamental.
Microprocessors such as the Pentium introduced in 2001–2002 operate at clock rates well above 1 GHz, a
clock rate that was deemed unrealizable not long ago. Figure 6.4.1 shows the evolution of clock rates for Intel
microprocessors. A high-end microprocessor recently demonstrated by Intel operates with voltages near 1 V

FIGURE 6.4.1 Clock rates of Intel Microprocessors. (From R. Ronen et al., “Coming Challenges
in Microarchitectures and Architecture,” 2001.)

Christiansen_Sec_06.qxd 10/28/04 10:41 AM Page 6.39

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

MICROPROCESSORS

and at power levels of over 100 W. That corresponds to currents of 100 A or greater. To respect how large this
current is, not that most homes have 100 A or 200 A services to operate the entire house. Today’s high-end
microprocessors employ well over 100,000,000 transistors on a single integrated circuit not much larger than
a few square centimeters. Internally, the architectures have become sufficiently sophisticated that the hardware/
firmware providing operating system functions are a fundamental part of the microprocessor. The architectures
themselves have become highly refined.

The IBM Power4 microprocessor’s basic description illustrates this sophistication, With 170 million tran-
sistors, the Power4 microprocessor is a 64-bit microprocessor operating at frequencies greater than 1 GHz,
using an eight-instruction-wide design with superscalar operation and out-of-order execution of instructions.
More than 200 instructions can be pending completion in each of the two on-chip processor cores.

Programming these contemporary microprocessors requires sophisticated programming support tools and
generally require that programs be written in higher-level programming language (such as C++). Programming
basic programs in assembly language is virtually impossible.

In a very real sense, microprocessors have become ubiquitous throughout our technologically driven soci-
ety. Dozens appear in an automobile, invisible to the owner but providing the intelligence and control that are
at the heart of the advanced automotive systems. Portable video game players contain some of the most
remarkable microprocessors available, supporting advanced visualization in the palm of your hand.

CMOS Technology

Digital circuits today are based on complementary MOS (CMOS), CMOS having emerged as a preferred
technology for a variety of reasons, perhaps the most important being the low dc power dissipation provid-
ed. Despite the dominance of pure CMOS, a hybrid version of CMOS and bipolar devices (called BiCMOS)
has been developed to provide the advantages of low power in CMOS with the capabilities of high speed in
bipolar circuits. Such BiCMOS technologies are used, for example, in the Intel Pentium microprocessors.

Digital electronics used a standard +5 V supply voltage over several generations, driven in part by the ear-
lier dominance of bipolar circuits. With the migration to a dominance of CMOS, lower voltage operation has
been possible and supply voltages have been decreasing significantly over the past decade. Initially, voltages
were decreased to 3.3 V, with subsequent advances leading to further reductions to voltages of about 1 V. These
reductions in supply voltage provide substantial performance advantages. For example, the lower voltage leads
to a lower power consumption per device, an important reduction for holding overall chip power dissipations
within acceptable limits as the number of devices per chip has increased. In addition, the steady decrease in
feature sizes leads to cases in which the electric fields within the IC increase if the voltages are not reduced.
Reduction of supply voltage in combination with reductions in feature sizes has helped prevent excessive elec-
tric fields and their associated effects. Beyond the simple reduction of externally provided supply voltage, con-
temporary microprocessor chips have evolved to include sophisticated internal power management
subsystems—generating internal voltages as needed as well as allowing selective turning off of various sec-
tions of the system to reduce power consumption. Although voltage levels have decreased over the past sever-
al years, today’s advanced, high-performance microprocessors require remarkably high current supplies
(several tens of amps up to 100 A or higher). These high currents present complications associated with volt-
age losses along power interconnections within the IC because of the nonzero resistance of those lines and volt-
age drops due to that resistance. Such complications have led to specialized metalization layers for distribution
of power throughout the IC.

The trends toward very high performance microprocessors are quite visible through their impact on suc-
cessive generations of personal computers. Less visible have been the dramatic advances in microprocessor
based systems intended for embedded applications (e.g., microprocessors embedded in automobiles, in audio
equipment, in toys, and so forth). Microprocessor architectures from earlier generations of microprocessors
provide the core computing power for these embedded applications while the addition of a wide range of
peripheral functions (including analog input and output) have provided essentially single-chip solutions for
intelligent embedded systems. In contrast to high-performance desktop computers, which receive power from
a wall plug, these embedded applications often receive their power from batteries. Minimization of power dis-
sipation is essential to provide long battery life.

6.40 INTEGRATED CIRCUITS AND MICROPROCESSORS

Christiansen_Sec_06.qxd 10/28/04 10:41 AM Page 6.40

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

MICROPROCESSORS

MICROPROCESSORS 6.41

These two application areas have led to two distinct roadmaps for future generation technologies—one
roadmap for the high-performance microprocessors and another roadmap for the battery-powered, lower-
performance microprocessors. The roadmap generated at regular intervals by the Semiconductor Industry
Associates (SIA) organization provides not only a perspective on the current state of the technologies but also
on the planned progression of those technologies over the next 10 years. The roadmaps can be viewed at the
SIA website.

General Overview

Contemporary microprocessors include many of the functions that in earlier generation computers were imple-
mented on separate integrated circuit chips. In addition, their architectural designs have become highly sophis-
ticated, supporting not only routine user programs but also the underlying operating system associated with the
computers. To provide a basic overview of computer architectures, the basic architecture of earlier generation
systems implementing the computer on one or more PC boards, rather than on a single integrated circuit, is
used here. The reader is advised, however, that far more sophisticated systems have replaced these earlier gen-
eration systems.

Figure 6.4.2 illustrates a typical multichip computer based on the earlier generation Intel microprocessors
and peripheral chips. The role of the various blocks is as follows.

Processor. The block labeled “processor” was one of the earlier generation microprocessors (e.g., 8088 and
higher generations). The internal processor architecture is discussed in the next section. In general, the proces-
sor manages the operation of the entire system, communicating with the peripheral functions using a “system
bus” shown as the horizontal line. This system bus includes parallel wires (address lines) to select the periph-
eral and an internal data storage item in the peripheral (or memory), parallel wires (data lines) to transfer data
to and from the peripherals and memory, a read/write line to specify whether data are being transferred to
or from the microprocessor, and interrupt line(s) allowing external peripherals to “interrupt” the currently

FIGURE 6.4.2 Block diagram of a typical PC motherboard.

Christiansen_Sec_06.qxd 10/28/04 10:41 AM Page 6.41

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

MICROPROCESSORS

executing program to allow the peripheral to communicate at its request with the microprocessor. The bus also
includes other lines for functions such as providing resets and clocks.

Dynamic RAM. The dynamic RAM (640k shown, corresponding to the DOS system RAM capacity in those
earlier computers) provides storage of both data and instructions. To access a particular item in the RAM, the
address lines provide the location of the specific information involved in the data transfer. Today’s RAM is far
larger than the 640k shown, with standard personal computer memory capacities approaching 1 Gbyte.

System ROM. This nonvolatile memory provides the startup information needed to start the computer in a
desired state. During startup, special logic in the processor accesses this startup information.

Disk Controller. The external disk hard drive stores user programs, operating systems, and other informa-
tion, retained when the power is turned off. The disk controller manages the exchange of data between the
microprocessor system (and its RAM) and the disk drive. There has been a substantial evolution in the philos-
ophy and technologies of disk controllers over the past two decades, evolving from manufacturer specific con-
trollers to standardized controller functions and data interfaces. Today’s computer systems employ disk drives
of substantial capacity (tens to hundreds of Gbyte capacity). The technologies used in contemporary disk dri-
ves have advanced dramatically in parallel with the advances in VLSI technologies, providing not only much
larger capacities but also smaller and more rugged drives.

Cache Memory. Although the speeds of microprocessors have increased dramatically, memory components
have seem a less dramatic increase. Memory access times (DRAMs) are typically several tens of nanoseconds.
With microprocessor clock rates having increased to 1GHz and higher, a read or write of external memory can
take the microprocessor about 50 to 100 clock cycles. Static RAMS have substantially faster response times,
but have lower data storage capacities per IC. This has led to the introduction of “staged” memories, with
instructions (and in some cases data) transferred from the slow DRAM into fast SRAM where the instructions
(and data) can be retrieved more quickly. If an instruction is reused (and in the case of a loop instruction
sequence) or data are reused (as in several computational algorithms), the second use of the instruction (data) is
more quickly retrieved from the SRAM. Rather sophisticated algorithms are used to decide when information
in a cache can be replaced by new information and to search the cache for instructions (content-addressable
memories). Contemporary microprocessors have included one or more stages of cache within the IC. First-
level caches are smaller than second-level caches, but significantly faster (two to three cycles for first-level
cache versus six to 10 cycles for the second-level cache).

Video Card. The video card provides access to the display of the computer. As in all other components,
video displays have seen dramatic improvements over the past 20 years, including not only the transition to
high-resolution color displays but also to flat panel displays such as used with laptop computers. The expec-
tations of the display drivers (hardware and software) have increased sufficiently that video cards continue to
play a major role in the performance of the overall computer system.

Interrupt Logic. While the processor is in control, it determines to whom it will talk and is oblivious to any
needs originating at a peripheral. For example, the serial port of the computer may receive data (e.g., through
a modem) and the processor must be made aware that there are data to be read before the next data byte is
received by the serial port. Interrupts provide the mechanism through which the peripherals can “interrupt” the
processor’s current activities and request that it handle requests originating in the peripherals. The “8259”
shown for the interrupt logic is an classic integrated circuit included on computer board to interface interrupts
from the peripherals for presentation to the processor. The interrupts ask the microprocessor to interrupt its
operation and service the peripheral requesting service. The microprocessors allow external inputs to be turned
on or off. When an interrupt occurs, the software program branches to a predetermined location where com-
mands determine which peripheral generated the interrupt and then to a location where the program handles
the needs of the interrupting peripheral.

Keyboard Logic. The “8255” component shown for interfacing the computer to a keyboard was also an inte-
grated circuit designed specifically for this purpose.

6.42 INTEGRATED CIRCUITS AND MICROPROCESSORS

Christiansen_Sec_06.qxd 10/28/04 10:41 AM Page 6.42

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

MICROPROCESSORS

DMA Controller. The direct memory access controller provides a high-speed means of streaming data to and
from the computers RAM. When active, this replaces the normal single word at a time operations provided by
the processor across the system bus.

Coprocessor. The capabilities of operations performed by the microprocessor is limited by the number of
transistors available, leading to cases in which some desired operations on data that would normally be pro-
vided by the processor must be performed instead by an auxiliary integrated circuit. The classic example was
floating point computations, since the standard microprocessor’s arithmetic unit was designed to operate only
on integers. Addition of the coprocessor allowed floating point instructions to be added to the instruction sets,
the data being exchanged between the microprocessor and the floating point coprocessor (bypassing the inter-
nal arithmetic unit of the microprocessor) for fast hardware execution. The alternative is a slower sequence of
instructions executed within the microprocessor to perform the floating point computations as a program. Like
many of the other peripherals shown, such floating point coprocessors have migrated into the microprocessor
IC. This has led to contemporary architectures with multiple arithmetic units and an ability to execute more
than one arithmetic function at a time. This ability is actually employed, and contributes to the ability of micro-
processors to execute (on average) one instruction for each clock period.

Timer. The timer function (shown as the earlier 8253 integrated circuit) allows a variety of timing functions
to be performed. These include measuring time, generating timing pulses for various peripherals, and so forth.

Not Shown. Not shown in Fig. 6.4.2 are several other peripheral functions such as serial ports for modems
and parallel ports for printers. Specialized integrated circuits were also developed to handle these peripheral
ports and have evolved over time to include several types of peripheral ports (USB, Firewire, RGB TV, SCSI,
and several others). These “standardized” interfaces allow components from different manufacturers to be used
in combination with different computers and have played a substantial role in the availability of a rich set of
reasonably priced peripherals.

Microprocessor Architecture

Next, the basic internal architecture of the processor shown in Fig. 6.4.2 is discussed. Again, it is necessary to
review the general architecture from the perspective of earlier generation microprocessors because of the great
complexity of today’s high-end microprocessors. Figure 6.4.3 shows the general architecture of an elementary
microprocessor. Such architectures are typical of the 8-bit microprocessors used in microcontrollers.

The microprocessor’s internal bus is shown as an address bus and a data bus, extending to the external
peripherals as shown in Fig. 6.4.2. The data bus “width” (number of parallel wires) defines the size of the data/
instruction unit transferred into and out of the microprocessor. Typically, this data bus width also defines the
type of microprocessor. An 8-bit microprocessor has an 8-bit data bus, a 16-bit microprocessor has a 16-bit
data bus, and so forth. In the case of the microprocessor reading an instruction from the external memory, the
data bus width also constrains the number of instructions available. The basic sequence of operations in per-
forming an instruction includes first the reading of the instruction itself, then the reading of any constants asso-
ciated with the instruction (e.g., numerical constants, address offsets, and so forth) and then, if the data for the
instruction is stored in memory, the memory locations where these alterable data items are stored. With an 8-bit
data bus, the first instruction item can represent up to 256 instructions, normally setting the limit on the num-
ber of instructions in the microprocessor’s instruction set. With a 16-bit data bus, the first instruction can rep-
resent up to 64,000 instructions (allowing a rich instruction set or an organization of the instruction op code
and operand information in a highly efficient manner, as in the Motorola 68000 processor family).

The width of the address bus defines the amount of memory data storage supported. In 8-bit and 16-bit
microprocessors, the width of the address bus was twice that of the data bus. For example, an 8-bit micro-
processor would have a 16-bit address bus, able to address 216 = 65,536 (equal to “64K” in computer jargon)
memory locations. More memory can be addressed (as in the PC example in Fig. 6.4.2 using “memory banks,”
essentially an external selection of which set of a multiplicity of 64K memory units is accessible through the
address bus. A 16-bit microprocessor with a 32-bit address bus is able to directly address 216 = 4.3 billion mem-
ory locations.

MICROPROCESSORS 6.43

Christiansen_Sec_06.qxd 10/28/04 10:41 AM Page 6.43

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

MICROPROCESSORS

FIGURE 6.4.3 Architecture of an elementary microprocessor.

The internal logic units of the microprocessor shown in Fig. 6.4.3 provide the following functions.

Arithmetic Logic Unit. The arithmetic logic unit (ALU) can perform a variety of arithmetic and logic func-
tions on data inputs (either on two input data items or on a single input data item). Standard arithmetic func-
tions are add, subtract, multiply, and divide. Logic functions include the bit-wise AND, OR, XOR functions.
These are also functions allowing the data word to be shifted in position. The specific operation to be per-
formed is determined by input control signals generated by the controller. If a given ALU function requires
more than one clock period (e.g., the multiply operation), then the controller/sequencer controls the multiple
addition steps to complete the multiplication using a single multiply instruction.

Figure 6.4.3 shows a register receiving the output of the ALU and feeding that output back into the ALU
during the next cycle. This provides, for example, an efficient means of adding a long string of numbers—this
particular function leading to the name “accumulator” associated with the register.

6.44 INTEGRATED CIRCUITS AND MICROPROCESSORS

Christiansen_Sec_06.qxd 10/28/04 10:41 AM Page 6.44

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

MICROPROCESSORS

MICROPROCESSORS 6.45

Microprocessors initially used a single arithmetic unit. However, many programs would allow more than
one arithmetic operation to be performed at the same time. By including multiple arithmetic units (perhaps dif-
ferent types of arithmetic units or other functions), more than one execution cycle can be launched at the same
time. Such architectures are known as superscalar architectures and have become standard in 32-bit and high-
er microprocessors. The superscalar architectures, combined with high-performance cache memories and
pipelined techniques can execute more than one instruction per clock cycle. For example, the Motorola
PowerPC G4 microprocessor supports 1064 MB/s data rates and executes up to 16 simultaneous instructions
per clock cycle.

Status Register. The status register is closely associated with the arithmetic logic unit and holds information
regarding the data. This information is extracted by analyzing the data, deciding, for example, whether the
number is zero, whether the number is negative, whether a carry or borrow state was generated from the high-
end of the data in the operation, whether the result is an overflow (larger than the maximum number allowed),
and so forth. This information is used most often in establishing the condition in conditional instructions (e.g.,
the assembly language equivalent of “if the number is negative then do this”).

Instruction Decoder and Controller/Sequencer. The instructions are stored as binary data words (e.g., 8-bit
data for an 8-bit microprocessor) in memory, using binary codes to represent the specific task to be performed in
completing the reading of the instruction (if a multiword instruction) and carrying out the operation to be per-
formed on the instruction. This binary code must be decoded and then provided to a sequential logic circuit that
can generate the various electronic signals to control the various components within the microprocessor. For exam-
ple, if the instruction says to add the number 10 to the number stored in the accumulator, then the first instruction
defines the operation (addition) and the data to be used. The number 10 would be stored in memory along with the
instruction so a second read of the memory would be required (for an 8-bit microprocessor). Following the read-
ing of the number 10 into the microprocessor, the controller/sequencer would apply the two data items to the arith-
metic unit and tell the ALU to perform an operation. Then, the controller/sequencer would transfer the result to the
location specified in the instruction. Although sounding like a complex task, the controller/sequence can be effi-
ciently implemented using efficient realizations for the basic set of stored information and feedback through reg-
isters to sequence the current state to the next state until the entire instruction has been executed.

Data Registers and Address Registers. Figure 6.4.3 shows two banks of registers, one the set of data regis-
ters and the other the set of address registers. The distinction between the data and address notations is largely
based on the use of address registers to provide part of a memory address (e.g., the base address of a large
table). Otherwise, the registers are similar and provide the function of “scratch pad” storage on the micro-
processor chip. By taking data inputs to the ALU from these registers (and storing results from the ALU into
these registers for later reuse), the delays associated with transferring data to and from external memory are
avoided. As an example of the use of this scratch pad data storage, consider the following three instructions:
(a) X = B + C, (b) Y = D + E, and (c) Z = X * Y. Upon completion of the first instruction, the value of X could
be stored in data register D0. On completion of the second instruction, the value of Y could be stored in data
register D1. Then at some later instruction, instruction (c) could be performed by retrieving the values of X
and Y stored in the data registers D0 and D1. An example of using the address registers to generate addresses
is illustrated by the example of addressing external memory to obtain successive components of a vector V(j).
The address (base address) of the first component V(0) could be stored in address register A0. Then, the
ALU/accumulator can be used to generate the sequence 0, 1, 2, By using the so-called indexed address-
ing mode, the address in A0 and the number from the ALU are added without having to perform an explicit
addition instruction in the ALU.

Program Counter. The program counter is a counter that is automatically incremented after each instruction
has been retrieved from the external RAM so that the number in the counter is the address for the start of the
next instruction. This automatic incrementing reflects the typical case of instructions being executed in
sequence. In the case when the program jumps to some other place, the offset between the current value of the
program counter and the desired value of the program counter is added to the count in the program counter.
Since the program counter always points to the next address, this automatically causes program execution to
jump to the desired instruction in memory.

Christiansen_Sec_06.qxd 10/28/04 10:41 AM Page 6.45

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

MICROPROCESSORS

6.46 INTEGRATED CIRCUITS AND MICROPROCESSORS

Included among the address registers discussed previously (or defined separately) is a specialized register
called the “stack.” This register performs a critical function when external interrupts occur or when the pro-
gram calls a subroutine stored in some area of memory. Once the program jumps to the subroutine (or the “sub-
routine” used to respond to the interrupt), the microprocessor has lost the value of the next instruction that
would have been executed (memory address following the current instruction). When such jumps occur, the
location of the next instruction in sequence, in particular the address given by the program counter, is stored
automatically in the memory location whose address is in the stack register and the contents of the stack point-
er is either incremented (or decremented depending on the microprocessor family used). The address in the
stack pointer at any time is the memory location in which the last item was stored, allowing that address to be
used to retrieve that item. On retrieving an item, the address in the stack pointer is decremented (or incre-
mented) so that the address points to the previous memory location. In this manner, the stack pointer operation
implements in memory a “last in, first out” data structure. The memory structure is generally called a stack,
suggesting a stack of addresses from which you retrieve the address at the top of the stack, exposing the address
underneath. Return from the subroutine to the point in the program from which the jump was called is achieved
simply by placing the address stored in the stack in the program counter.

Instruction Execution Sequence

The overall execution of an instruction involves a basic sequence of three steps, starting with the reading of
the instruction from memory. The three steps are (1) the reading of the instruction, (2) the decoding of the
instruction within the microprocessor, and (3) execution of the instruction (including the storage of the result
of an instruction). Figure 6.4.4 illustrates this sequence of steps in combination with a clock signal driving the
progression. The time from the start of the reading of the instruction (called “fetch” in Fig. 6.4.4) to the com-
pletion of the instruction including writing of any results into storage is called the instruction cycle time. The
example illustrated in Fig. 6.4.4 is merely representative of several different approaches that can be used to
arrange the orderly completion of these three basic steps. For example, in some 8-bit microprocessors, a sin-
gle clock cycle is used to complete a single basic instruction. When the clock is in one state (e.g., high), the
instruction information is fetched and when the clock signal is in the other state (e.g., low) the instruction is
decoded and executed. There are also important cases in which a multiplicity of clock cycles are needed for
some instructions. For example, a multiply operation in a microprocessor with only a addition-based ALU
requires that a sequence of multiplies and adds be performed to complete the overall instruction. In this case,
each addition operation will consume one or more clock cycles.

Figure 6.4.4 suggests that only one of the three operations can be performed at any given time. However,
the fetch operation involves interfacing to the external memory (setting addresses and reading external data
into the microprocessor), whereas the other operations are performed within the microprocessor. It is there-
fore possible to arrange for the fetching of the next instruction to be started while the decoding/execution
stages of the current instruction are being completed. It is also possible to separate the decode and execution
operations and perform them in parallel. For example, while executing the current instruction the decoder
could be decoding the next instruction while at the same time the microprocessor is fetching still one more
instruction. The approach is called “pipelining” (reflecting the output from one step being fed into the next
step while a new action is being input to that first step). Pipelining provides a faster throughput of instruc-
tions (more instructions per second can be executed) but does not intrinsically reduce the time to execute a
given instruction (i.e., pass a single instruction through the pipe). Figure 6.4.5 illustrates the basic principle,
here taking the basic instruction cycle as having four phases—fetching an instruction (F), decoding the

FIGURE 6.4.4 Instruction cycle timing.

Christiansen_Sec_06.qxd 10/28/04 10:41 AM Page 6.46

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

MICROPROCESSORS

MICROPROCESSORS 6.47

instruction (D), executing the instruction (E), and storing the result (S). Figure 6.4.5a shows the operation
without pipelining, each instruction starting after the previous has completed. In Figure 6.4.5b, each of the
four steps can be performed in parallel, allowing a higher throughput rate for instructions. Optimizing the per-
formance of a pipeline is complicated by the common use of branch instructions in programs. To handle such
cases, sophisticated schemes to manage the pipeline have been developed. Modern high-performance micro-
processors are characterized by an increasing number of pipeline stages (e.g., the Pentium Pro has more than
10 pipeline stages).

Serial Data Control

Microprocessors interface with a variety of devices that transmit and receive data in serial streams. The inter-
face logic converts serial data to parallel data and vice versa. A programmable communication interface is used
to handle this conversion and samples for data transmission, both synchronous and asynchronous.

Serial protocol involves three possible serial communication techniques. Two of the most widely used are
synchronous and asynchronous serial communication. The third, isosynchronous, is a hybrid.

Asynchronous communication is best suited for data transmission between two devices where data are sent
at low speed in intermittent, small groupings. A typical application is data entry through a CRT keyboard.
Since the receiving device has no way of knowing when data will be sent, the asynchronous format requires
framing information for each character transmitted. This enables the receiver, such as a universal synchronous-
asynchronous receiver-transmitter (USART), to detect a valid data signal properly.

While the receiver waits on a dead line for possible transmission, it constantly samples for the leading edge
of the start bit to occur. Sampling is performed by the USART much faster than the transmission baud rate (bit
rate). For example, a receiver may sample the signal edge at eight times the baud rate. If the baud rate is 100
(100 bits/s), the USART would sample for the leading edge every 1/800 s. Once the edge is detected, however,
the receiver must ensure that it is receiving a valid signal and not a transmission caused by line noise. Upon
detecting a possible start it is receiving a valid signal and not a transmission caused by line noise. Upon detect-
ing a possible start bit, the receiver steps off a half-bit time to see that the bit is a logical 0. Once the start bit
is detected, the receiver times a 1-bit time sampling for the remaining data and stop bits. Through this routine,
the receiver synchronizes on each character transmitted.

In a synchronous protocol there is clocking between the two systems. The transmitter generates the clock
and transmits data on the leading edge of the clock pulse. The receiver uses this clock to read in the serial data
stream.

FIGURE 6.4.5 Instruction step sequencing: (a) nonpipelined; (b) pipelined.

Christiansen_Sec_06.qxd 10/28/04 10:41 AM Page 6.47

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

MICROPROCESSORS

6.48 INTEGRATED CIRCUITS AND MICROPROCESSORS

With synchronous protocol, bit synchronization is not necessary, as data are expected continuously. Still, the
receiver must establish a reference indicating where data begin and end. With a synchronous protocol, charac-
ters are grouped into records, and framing characters are added to the record. These framing characters are SYN
(or synch) characters. The USART uses the SYN characters to determine the boundaries of the message. SYN
characters consist of a synchronization pattern, a pattern not likely to occur during a normal message. They are
generated by the transmitter. The receiver samples these SYN characters bit by bit to establish its reference.

The isosynchronous format of serial communication retains the clock interconnect of the synchronous pro-
tocol, but it does not generate SYN characters. As with the asynchronous format, a start bit is generated. As
the protocol uses clock synchronization, the repetitive samplings of the asynchronous format are eliminated.
The hybrid protocol reduces the amount of MPU time devoted to message recognition, eliminates software
overhead required by framing characters, and implements a greatly simplified protocol.

In receiving and transmitting the serial protocol in any form, the USART strips (or inserts) the framing
characters and bits from the serial data stream and converts the data into a parallel format to be placed on the
data bus. Figure 6.4.6 shows the elementary function of a serial I/O interface.

As far as the MPU is concerned, the USART consists of the data bus buffer, a control, and status registers.
The receive data and transmit data buffers lie passively in the path of received and transmitted data and do not
need direct access. The USART receives the serial-data-in signal and transmits the serial-data-out control sig-
nal. The MPU can service the transmissions on an interrupt-driven basis.

The rate of data transfer in serial data communications is stated in bps (bits per second). Another widely
used terminology is baud rate. Digital systems normally are based on signals that can take one of two possible
values (one corresponding to logic “1” and the other to logic “0”). However, it is also possible to allow a sig-
nal to take on a larger number of discrete values. In such cases, each signal value represents more than a sin-
gle binary bit. For example, if a signal amplitude can assume one of four (eight) different values, each signal
amplitude received represents two (three) bits. The baud rate is the number of signal values transmitted per
second. If the baud rate is constant, then the number of bits per second transmitted increases as the number of

FIGURE 6.4.6 Generalized serial port: (a) using RS-232 interface; (b) using voltage level converters
such as MC1488 and MC1489 chips.

Christiansen_Sec_06.qxd 10/28/04 10:41 AM Page 6.48

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

MICROPROCESSORS

MICROPROCESSORS 6.49

signal levels increases. Serial data communications usually is designed for transmission over as long a distance
as possible, with the result that there is significant attenuation (and noise) associated with the received signal
level, causing transmission of binary signals to be more robust. This dominance of binary signal transmission
has led to the terms bps and baud rate often being used (though incorrectly) as equivalent.

The serial port of a personal computer is a familiar serial data transmission port. The RS232 standard
is common, with characteristics shown in Table 6.4.1. Notice that the voltage levels representing logic 1
and 0 levels are not conventional digital logic levels but rather positive and negative voltages, respective-
ly. These voltage levels are one of the reasons why power supplies for personal computers must provide
+/− 12–15 V in addition to the standard digital logic supply voltages. The RS232 standard allows serial
data transmission over a modest distance at a modest rate. Table 6.4.1 also shows the characteristics of two
extensions of the RS232 standard, both providing substantially higher data rates (or modest data rates over
very long distances).

The serial port evolved from peripherals designed to connect a computer to the telephone network through
a modem (modulator/demodulator). Table 6.4.2 shows the pins of
an RS232 cable using a 25 pin D-type connector. Normally, only
a subset of the control signals shown are used, allowing a smaller
number of cable pins. Table 6.4.3 shows the pins of a 9-pin serial
connector in which the common signals are retained. These tables
show that the RS232 connection provides two serial data streams,
one transmitted data and the other data being received. In addition,
there are a number of control signals that manage the exchange of
data between the computer and the peripheral. Because of the ori-
gins in connecting computers to telephone networks, terminology
related to that connection are still used today. The connectors on
opposite ends of an RS232 cable are not equivalent. For example,
if one connector is configured according to the connector pins list-
ed in Table 6.4.3, then the other end will require that its transmit
data be placed on pin 2 (for reception by the far end) and that its
receive data be taken from pin 3 (from transmission by the far
end). Control signals also show different pin connections on oppo-
site ends of the cable. The two ends are distinguished by the ter-
minology DTE (Data Terminal Equipment, e.g., the computer) and
DCE (Data Communications Equipment, e.g., the connection to
the telephone wire). RS232 ports have evolved to provide connec-
tions to a wide range of peripherals, well beyond the single exam-
ple of a modem. Often, the full set of control signals is not
required. In cases not requiring end-to-end control signals, only
the R × D, T × D, and GND signals shown in Tables 6.4.2 and
6.4.3 are needed.

The RS232 serial port generally transmits ASCI characters. The
relationship between the number code (7-bit binary) and the ASCI

TABLE 6.4.1 RS232 Comparison with RS422 and RS423

RS232 RS422 RS423

Maximum cable length (ft) 50 4000 4000
Maximum speed (baud) 20K 10M/40 ft 100K/30 ft

1M/400 ft 10K/300 ft
100K/4000 ft 1K/4000 ft

Logic 1 voltage level −3 to −25 A > B −4 to −6
Logic 0 voltage level +3 to +25 B > A +4 to +6

TABLE 6.4.2 RS232 Pins

Pin Description

1 Protective ground
2 Transmitted data (T × D)
3 Received data (R × D)
4 Request to send (RTS)
5 Clear to send (CTS)
6 Data set ready (DSR)
7 Signal ground (GND)
8 Data carrier detect (DCD)

9/10 Reserved for data set testing
11 Unassigned
12 Secondary data carrier detect
13 Secondary clear to send
14 Secondary transmitted data
15 Transmit signal element timing
16 Secondary received data
17 Receive signal element timing
18 Unassigned
19 Secondary request to send
20 Data terminal ready (DTR)
21 Signal quality detector
22 Ring indicator
23 Data signal rate select
24 Transmit signal element timing
25 Unassigned

Christiansen_Sec_06.qxd 10/28/04 10:41 AM Page 6.49

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

MICROPROCESSORS

TABLE 6.4.4 The ASCII Code

DECIMAL HEX ASCII DECIMAL HEX ASCII DECIMAL HEX ASCII DECIMAL HEX ASCII

0 00 NUL 32 20 64 40 @ 96 60 r
1 01 SOH 33 21 ! 65 41 A 97 61 a
2 01 STX 34 22 � 66 42 B 98 62 b
3 03 ETX 35 23 # 67 43 C 99 63 c
4 04 EOT 36 24 $ 68 44 D 100 64 d
5 05 ENQ 37 25 % 69 45 E 101 65 e
6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27 ’ 71 47 G 103 67 g
8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 I 105 69 i

10 0A LF 42 2A * 74 4A J 106 6A j
11 0B VT 43 2B + 75 4B K 107 6B k
12 0C FF 44 2C , 76 4C L 108 6C l
13 0D CR 45 2D - 77 4D M 109 6D m
14 0E SO 46 2E . 78 4E N 110 6E n
15 0F SI 47 2F / 79 4F O 111 6F o
16 10 DLE 48 30 0 80 50 P 112 70 p
17 11 DC1 49 31 1 81 51 Q 113 71 q
18 12 DC2 50 32 2 82 52 R 114 72 r
19 13 DC3 51 33 3 83 53 S 115 73 s
20 14 DC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 v
23 17 ETB 55 37 7 87 57 W 119 77 w
24 18 CAN 56 38 8 88 58 X 120 78 x
25 19 EM 57 39 9 89 59 Y 121 79 y
26 1A SUB 58 3A : 90 5A Z 122 7A z
27 1B ESC 59 3B ; 91 5B [123 7B {
28 1C FS 60 3C < 92 5C \ 124 7C |
29 1D GS 61 3D = 93 5D] 125 7D }
30 1E RS 62 3E > 94 5E ∧ 126 7E ~
31 1F US 63 3F ? 95 5F – 127 7F DEL

127 7F DEL

6.50 INTEGRATED CIRCUITS AND MICROPROCESSORS

characters is shown in Table 6.4.4. There is also an 8-bit code, includ-
ing several foreign language characters.

The standard printer interface on desktop computers transmits data
in parallel, rather than serial. Figure 6.4.7 shows the basic printer
cable’s connector. There are two data rate links, one an 8-bit data link
from the computer to the printer and the other an 8-bit data link from
the printer to the computer. Control signals in this case reflect the
handshake between the computer and the printer.

Recently, there has been an emphasis on serial data communica-
tions technologies capable of handling a far wider range of peripher-
als than can be handled by the low data rate of RS232 (and its
extensions). USB and Firewire are two examples, both allowing con-
nections to not only modems and printers but also to cameras, hard
disk drives, and so on. These newer serial data technologies provide

high data rates and allow a single serial data port to be connected to a multiplicity of peripherals. These newer

TABLE 6.4.3 IBM PC 9-Pin Signals

Pin Description

1 Data carrier detect (DCD)
2 Received data (R × D)
3 Transmitted data (T × D)
4 Data terminal ready (DTR)
5 Signal ground (GND)
6 Data set ready (DSR)
7 Request to send (RTS)
8 Clear to send (CTS)
9 Rind indicator (RI)

Christiansen_Sec_06.qxd 10/28/04 10:41 AM Page 6.50

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

MICROPROCESSORS

MICROPROCESSORS 6.51

serial data communication technologies provide significantly smaller connectors and smaller diameter cables,
well suited for today’s laptop computers but also providing improved performance for desktop computers.

Disk Interfaces

The evolution of interfaces to hard disk drives illustrates the major impact that standardization plays in the area
of computer systems. Early computer manufacturers provided both the computer and the hard disk drive, using
a proprietary interface requiring that the disk drives be obtained from the same manufacturer as the computer.
In those earlier computers, most of the functional tasks required to read data from and write data to a hard disk
drive was managed by a disk controller located in the computer itself, the disk drive having little built-in intel-
ligence. As VLSI advanced, it became possible to place much of the functionality needed to manage the read-
ing and writing of data in the hard disk drive unit itself. Once this responsibility was separated from the
computer, hard drives could be purchased from a number of manufacturers, so long as the cable connection
between the computer and hard drive was satisfied. This drove the evolution to interface and cable standards
to connect hard drives to computers, allowing the disk drive market to emerge and provide drives for virtually
any computer with the standardized interface.

Standard disk drive interfaces developed to support the Intel-based PC included the ESDI (Enhanced Small
Device Interface) and IDE (Integrated Device Electronics). The SCSI (Small Computer System Interface)
standard (pronounced “scuzzy”) emerged for general computer use, not tied to any particular computer plat-
form. The standards have had to adapt to the remarkable increases in disk drive capacity and data transfer rate,

FIGURE 6.4.7 The Centronics parallel printer interface using a 36-pin connector.

Christiansen_Sec_06.qxd 10/28/04 10:41 AM Page 6.51

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

MICROPROCESSORS

6.52 INTEGRATED CIRCUITS AND MICROPROCESSORS

leading to the highly sophisticated hard disk drives in use today. For example, the SCSI standard has passed
through several generations, successive generations providing higher data rates and less bulky connectors.
These interfaces are used not only for hard disk drives but also for tape drives, CD drives, and DVD drives.

These disk drive interface standards generally require rather bulky cables, limiting their extension to other
peripherals such as digital cameras. The need to support a wide range of external devices has stimulated the
development of less bulky but high data rate interfaces such as USB (modest data rate) and Firewire (high data
rate), signaling a new generation of standardization of cables and connectors for personal computer use as the
variety of peripherals expand.

BIBLIOGRAPHY

Antonakos, J. L., “The Pentium Microprocessor,” Prentice Hall, 1997.
Ayala, K., “The 8086 Microprocessor: Programming and Interfacing the PC,” West, 1995.
Bakoglu, H., and T. Whiteside, “RISC System/6000 Hardware Overview,” IBM RISC Technologies, IBM, 1990. SA23-
2619.

Bartee, T., “Computer Architecture and Logic Design,” McGraw-Hill, 1991.
Carter, J. W., “Microprocessor Architecture and Microprogramming,” Prentice Hall, 1995.
Gibson, V., “Microprocessors: Fundamental Concepts and Applications,” Delmar, 1994.
Gilmore, C., “Microprocessor Principles and Applications,” McGraw-Hill, 1989.
Goody, R., “Intel Microprocessors,” Glencoe/McGraw-Hill, 1992.
Hall, D., “Microprocessors and Interfacing,” 2nd ed., Glencoe/McGraw-Hill, 1991.
Hennessy, J. L., and D. A., Patterson, Computer Architecture: A Quantitative Approach, 2nd ed., Morgan Kaufmann, 1996.
Hester, P., “RISC System/6000 Hardware Background and Philosphies,” IBM RISC Technologies, IBM, 1990.
Horwath, R., “Introduction to Microprocessors Using the MC6809 or MC6800,” McGraw-Hill, 1992.
Kleitz, W., “Digital and Microprocessor Fundamentals,” Prentice Hall, 1990.
Leventhal, L., “Microcomputer Experimentation with the Intel SDK-86,” BBS College, 1987.
Mazidi, M., and J., “The 80 × 86 IBM PC and Compatible Computers,” Vol. I and II, Prentice Hall, 1995.
Mazur, H., “The History of the Microcomputer—Invention and Evolution,” Proc. IEEE, Vol. 83(12), pp. 1601–1608, 1995.
Mueller, S., “Upgrading and Repairing PCS,” 4th ed., Que, 1994.
O’Connor, P., “Digital and Microprocessor Technology,” 2nd ed., Prentice Hall, 1989.
Pack, D. J., and S. F., Barrett, “68HC12 Microcontroller,” Prentice Hall, 2002.
Putnam, B. W., “Digital and Microprocessor Electronics: Theory, Applications, and Troubleshooting,” Prentice Hall, 1986.
Ronen, R. A., Mendelson, K. Lai, S-L. Lu, F. Pollack, and J. P., Shen, “Coming Challenges in Microarchitectures and
Architecture,” Proc. IEEE, Vol. 89 (3), 2001, pp. 325–340.

Smith, A. J., “Cache Memories,” ACM Computer Surveys, Vol 14(3), pp. 473–530, 1982.
Thompson, A., “Understanding Microprocessors: A Practical Approach,” Delmar, 1994.
Treibal, W., and A. Singh, “The 8088 and 8086 Microprocessors,” Prentice Hall, 1992.
Uffenback, J., “The 8086/8088 Family, Design, Programming and Interfacing,” Prentice Hall, 1987.
Urganiak, K., “Experiments for the Intel 8088,” Delmar, 1994.
Valvano, J. W., “Embedded Microcomputer Systems,” Brooks/Cole, 2000.
Yeager, K., “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, Vol. 16(4), pp. 28–40, 1996.

Christiansen_Sec_06.qxd 10/28/04 10:41 AM Page 6.52

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

MICROPROCESSORS

