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SECTION 10

FILTERS AND ATTENUATORS

To make communication systems, radar systems, and the like work, we need filters and attenuators. Filters
are basic electronic building blocks that are passive and active, analog and digital. They basically allow us to
condition electrical signals in order to accomplish the elements of most of our complex electrical systems in

use today.

Active filters have led to the elimination of elements that prohibited miniaturization. Active filters easily

fit into today’s microcircuits and systems.

Digital filters represent a class of filters that do not have the limitations of analog filters. Although they
require much care and attention in how they are designed and how they will be used, they most certainly

have given us a significantly larger set of applications some of which could never be handled by analog
filters. Because of the nature of digital filters, we need to fully understand the problems with phase.

In this section we look at the basic principles behind all of these filters. In Chap. 10.7, we look at
attenuators that are used in matching impedances, critical in high-frequency systems.

In This Section:

CHAPTER 10.1 IDEAL FILTERS AND APPROXIMATIONS

INTRODUCTION

INSERTION-LOSS FILTER DESIGN

CLASSIFICATION OF IDEAL FILTERS

THE LOW-PASS PROTOTYPE

THE APPROXIMATION PROBLEM

TRANSFER FUNCTION CONSTRUCTION

THE BUTTERWORTH APPROXIMATION

THE CHEBYSHEV APPROXIMATION

COMPARISON OF BUTTERWORTH AND CHEBYSHEV APPROXIMATIONS
THE MODIFIED CHEBYSHEV APPROXIMATION

THE LEGENDRE-PAPOULIS APPROXIMATION

THE BESSEL APPROXIMATION

THE STEP RESPONSE

THE PROTOTYPE FILTER NETWORKS

THETABLE OF ELEMENT VALUES

EXPLICIT BUTTERWORTH AND CHEBYSHEV FORMULAS
THE INVERSE CHEBYSHEV APPROXIMATION

THE ELLIPTIC FILTER

DELAY EQUALIZATION

TABLES

CHAPTER 10.2 FILTER DESIGN

PRACTICAL FILTER DESIGN
THE LOW-PASS FILTER
ATIME-DELAY NETWORK
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CHAPTER 10.1

IDEAL FILTERS AND
APPROXIMATIONS

Edwin C. Jones, Jr., Harry W. Hale

INTRODUCTION

Campbell and Wagner independently developed the concept of an electrical wave filter in 1915. The continua-
tion of this work proceeded along two paths, image-parameter filter design and insertion-loss filter design. The
latter technique is now dominant.

Insertion-loss filter design requires the designer to specify an appropriate network response as a part of a
transfer function. The part might be magnitude, phase, or delay. Norton, Foster, Cauer, Bode, and Darlington
developed procedures to determine the complete transfer function and to synthesize the network. Digital com-
puters have made the techniques practical, and now the design of these filters is largely a matter of looking up
element values in computer-generated tables and modifying them in a routine fashion. Virtually all techniques
use a low-pass prototype and derive other filters from this prototype.

This chapter describes insertion loss techniques, develops common transfer functions, and gives structures and
element values for passive networks. It also extends use of the transfer functions to several types of active networks.

Throughout, the notation is that of the Laplace transformation. The general frequency variable is s = 0+ jo,
where @ is the signal frequency in rad/s.

INSERTION-LOSS FILTER DESIGN

Figure 10.1.1 shows two general networks, often called two-ports. One has a current source, the other, a volt-
age source. The design procedure consists of these steps:

1. Determine filter specifications

2. Approximate the specifications with a network function part that will lead to a realizable circuit. Typical
magnitude functions are

|G, s(jo)| = (D

1%
L (jo)
VS

Chapters 10.1 to 10.5 and Chap. 10.7 were contributed by Edwin C. Jones Jr. and Harry W. Hale. Portions were adapted from Fink and
Beaty (eds.), “Standard Handbook for Electrical Engineers,” 13th ed., McGraw-Hill, 1993. Chapter 10.6 was contributed by Arthur B.
Williams and Fred J. Taylor, author’s of the “Electronic Filter Design Handbook,” 3rd ed., McGraw-Hill, 1995, from which portions were
adapted.

10.7
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10.8 FILTERS AND ATTENUATORS

Rs
Lossless + Lossless +
Vs coupling i $FAL Rs | coupling w 3SR
network _ network _
(a) (6)

FIGURE 10.1.1 General form of network: (a) with voltage source; (b) with current source.

1Z,5(jo)l = 2

v, .
— (J
IS(J)

for networks of Fig. 10.1.1a and b, respectively. (For convenience, subsequent references to G, ; omit sub-
scripts, and the discussion applies to Z,  except where noted.) The phase function

0(w) = arg G(jw) 3

is often the specification.

3. Synthesize the coupling network of Fig. 10.1.1a or b. Darlington” showed that this network may be loss-
less, and often that it is a ladder network, an attractive circuit structure.

CLASSIFICATION OF IDEAL FILTERS

It is convenient to have ideal filter characteristics for discussion purposes. Four are ideal magnitude charac-
teristics, and one is for phase. They are:

IG| ]5] 1. The low-pass filter transmits without attenuation or
loss signal frequencies from zero to a cutoff frequency
I | and stops all signal frequencies higher than the cutoff.
0  we w 0 we w 2. The high-pass filter stops all signal frequencies below
(a) (6) its cutoff, and transmits without attenuation signal fre-
lGI |6| quencies above the cutoff.
I I I | 3. The bandpass filter passes all signal frequencies
} I between the lower and upper cutoff frequencies, and
0 we Wowe2 w 0 wet wowez w stops all signal frequencies outside this range.
wo* ‘;“/w"z wo* ;‘;/' wez 4. The bandstop (or reject) filter stops signal frequencies
l Gl ¢ 8w between its lower and upper cutoff frequencies, and
transmits all signal frequencies outside this range.
5. The all-pass filter transmits all signal frequencies. It
0 ) 0 m produces a predictable phase shift.
(e) (f)

These ideal filter characteristics are shown in

FIGURE 10.1.2 Ideal-filter characteristics: (a) low- Fig. 10.1.2

pass; (b) high-pass; (c¢) bandpass; (d) band-elimination;
(e) all-pass (magnitude); (f) all-pass (phase).

“In many cases, explicit bibliographic references are omitted. However, the bibliography entries are in about the same order as the topics
that are discussed.
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IDEAL FILTERS AND APPROXIMATIONS 109

THE LOW-PASS PROTOTYPE

Synthesis techniques lead to low-pass prototypes, for which extensive tables exist. Modifications of these pro-
totypes enable design of the three remaining filters. The technique is to make R, = 1 and @, = 1, to transform
specifications to the low-pass domain, and to determine the prototype. Transformations of the low-pass proto-
type to the needed domain lead to the final network.

THE APPROXIMATION PROBLEM

The ideal low-pass filter is not realizable. A basic problem is to select a transfer function magnitude |G(jw)|
that approximates the ideal characteristic and results in a practical network. Figure 10.1.3 illustrates the con-
cept, and defines the limits on the frequency response. The

16w Passband limits approximation for |G(jw)| must lie within the shaded
region.
Often it is easier to work with the magnitude-squared
Transition - region limits function, which is of the form
Stopband limits 5
. Alw

L T 77 G = KA 2) )

0 . wel wa f w D((D)

FIGURE 10.1.3 Limits on frequency response. . .
The numerator and denominator must be even, nonnegative

polynomials, and other restrictions apply. Another form for

Eq. 4) is
) N(w?) 1
I IZ — K2 — 2
Gljw) N@HY+M@) | M@) ©)

N(®?)
A common technique is to let N(w?) = 1. Equation (5) then becomes

2

. on. K
Gl = 1+ M(w?) ©®

A requirement for the polynomial M(®?) is that

<] w<l1
>1 wo>>1

IM(wz)I{

which leads to all-pole approximations.

Low-pass filters based on Eq. (6) are ladder structures with inductors as series elements, and capacitors as
shunt. The more general form of Eq. (5) leads to a filter that is a ladder with the series elements having paral-
lel combinations of inductors and capacitors, while the shunt elements are series combinations of inductors and
capacitors. The Inverse Chebyshev and elliptic approximations lead to such filters.

K of Eq. (4) is not arbitrary. The requirement is that, in terms of Fig. 10.1.1,

R
IG(0)|=——+ (M

R +R,
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10.10 FILTERS AND ATTENUATORS

for a voltage source, and

RR,
1Z(0)|=———— ®)
R, +R;

for a current source. K must satisfy this constraint.

TRANSFER FUNCTION CONSTRUCTION

It is necessary to construct a complete transfer function from the approximation. The complete transfer function
allows computation of time-domain responses. Several active realizations require them. The processes show
construction of G(s), in terms of Eq. (6). The technique for Z(s) is identical. The Inverse Chebyshev shows an
extension for the case of Eq. (5), where the nonconstant numerator imposes additional considerations.

From a suitable G(@?), use analytic continuation to obtain

K2
N ) — 9
|G(]w)|w2:—s2 G($)G(-9) 1+M(—S2) ©)

Assign the left-half-plane poles of G(s)G(—s) to G(s) and the right-half-plane poles to G(—s), respectively, to
ensure stability. The result is

Gy=—F (10)

[TG-s)
Jj=1

where s. are the left-half-plane poles.

The following sections describe six different approximations, five to the ideal low-pass filter and one to the
ideal all-pass or time delay filter. Two approximations (the Inverse Chebyshev, and elliptic) are examples of
Eq. (5), while the others all are examples of Eq. (6). Explicit equations give the poles for some approxima-
tions. Examples show use of these equations. Numerical solutions give the poles for other approximations.
Tables show the roots, tabulated in terms of linear and quadratic factors.

THE BUTTERWORTH APPROXIMATION

The nth Butterworth approximation is

. K
|G(Jw)|=m (11)

Figure 10.1.4 shows the general form of the function. The first 2n — 1 derivatives of |IG(jw)! are zero, and the

magnitude of the function decreases monotonically with . Figure 10.1.4 also shows that increasing n

improves the approximation in both the pass and stop bands, at the price of a more complex network. The

appropriate n is the smallest value that will meet frequency domain specifications, as suggested in Fig. 10.1.5.
If the specifications require that

|G(jw)| <A 0,<O< (12)
then the value of n required is the smallest integer satisfying the inequality

K

2—
(1+w2n)1/2 (13)
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Passband limits

6 (jw) 1deal response |G|
X
X Transition
egio
NA zeaton Stopband
i limits
A
0 1 wa 1w
w FIGURE 10.1.5 Determination of the minimum

value of n for the Butterworth approximation.

FIGURE 10.1.4 The Butterworth approximation.

In terms of attenuation, the frequency response is
(14)

a=2010g'CY _ 10100 (140> dB
1G(0)

Atw=1,
a=10log2=3.0103 dB (15)

This is a common interpretation of the cutoff frequency, frequently called the half-power or “3-dB” frequency.
A more general specification of minimum attenuation ¢, (dB) for @ 2 @, and a maximum attenuation ¢,
for o < @), leads to a solution for n of

(loammll()_l)/ ®
n=log-———————= [2 log| —
Tl b (16)

with the next larger integer being chosen.
The stable poles lie on a unit circle in the left half s-plane, and are given by s, = 0, + j®,, where

o ——sin2k_17z: 0] _COSZk_lﬂ' k=12 n 17

ke 2n ke 2n e 17

Since complex poles occur in conjugate pairs, it is convenient to combine them into quadratic factors. When

n =3, Eq. (17) gives
G(s)=(s+D(s>+s+1) (18)
and for n =4,
G(s) = (s> + 1.84776s + 1)(s> + 0.76537s + 1) (19)
THE CHEBYSHEV APPROXIMATION
The nth order Chebyshev approximation is
a 20)

|G(jo)| :W
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GlLUwK

(a) (6)
FIGURE 10.1.6 The Chebyshev approximation: (a) n even; (b) n odd.

where C, () is the nth-order Chebyshev polynomial and € is a real constant less than 1. Specifically,

cos (n cos™ (@) forO0<w<1

cosh (n cosh™ (w)) for 1<w (21,22)

C, () ={

The polynomials in the form of Eqgs. (21) and (22) are convenient for calculations. To show a conventional
polynomial appearance, note that C (@) = 1 and C,(®) = @. Use the recursion formula, which is derived from
a trigonometric identity,

C,./(w)=20C(w)-C, (0 (23)
to develop higher-order polynomials. For example,
Cy(w) = 160° — 2003 + 50 24)

Figure 10.1.6 shows the frequency response for the Chebyshev approximation for n even and odd. In either
case there are n half cycles (from maximum to minimum and the reverse) in the interval 0 < @ < 1. One effect
of the relative minimum at @= 0 when 7 is even is that there are combinations of R, R,, and € that are not real-
izable. In particular, the even-order Chebyshev approximation is unrealizable for any value of € when R; =R, .
The modified Chebyshev approximation that leads to realizable networks in this case.

Two parameters, € and n, define a particular Chebyshev

Passband approximation. Figure 10.1.7 defines the parameters for n odd

limits (the results also apply to n even). The ripple factor € controls

the passband limits, while both eand n control the stopband.

The ratio of upper to lower passband limits is (1 + €)', and

Transition the value of this ratio is sufficient to determine €. The loga-
regton rithmic function

GlUwAX

Jiee

Stopband

4L limits 10 log (1 + €% (dB) (25)

0 1' T describes this ratio. Thus, a Chebyshev approximation with
o wa v € =0.7648 has a 2.0 dB ripple. Equation (26) relates the rip-
FIGURE 10.1.7 Identification of € and n. ple R, in dB, and e, the ripple factor

e=+10%1 -1 (20)

With € known and a specification that

G(jo) <A for @, S W< oo 27)
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The attenuation requirement in the stopband leads to the inequality

K
= [1+€CX(w " @8
From Eq. (28) and the known value of €,
2_A2\12
C ()= u (29)
Ae
This leads to the requirement on 7, the order of the filter,
cosh™ C (w )

ne— n"a’ (30)

cosh™ @,

with the next larger integer value being chosen.

The half-power frequency is a commonly used figure of merit for a filter. At this frequency, the power trans-
mission to the load is 50 percent of the maximum, corresponding to a reduction of 3.0103 (or approximately 3)
dB. Equation (31) gives the half-power frequency.

1 1
®,, = @, = cosh [; cosh™ ;J 3D

To find the stable or left-half s-plane poles of G(s), substitute @-s/j and set the denominator of Eq. (20) to

zero. From this,
C, [ij = cos(n cos™ ij =+ (32)
J J €

This equation is a complex function, and the complex solution is

0, =—sin u, sinh v (33)

@, = cos u, cosh v (34)
where

u = 2k—1 x (35)
k 2n

k=1,2,3,...,n (36)
v=sinh! £ (37)

n €

Since complex roots occur in conjugate pairs, it is convenient to combine such pairs into quadratic factors. For
example, with a ripple of 0.50 dB and third order,

G(s) = (s + 0.62646)(s> + 0.62646s + 1.14245) (38)
while for a ripple of 1.0 dB and fourth order,
G(s) = (s> + 0.27907s + 0.98650)(s> + 0.67374s + 0.27940) (39)

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



10.14

IDEAL FILTERS AND APPROXIMATIONS

FILTERS AND ATTENUATORS

COMPARISON OF BUTTERWORTH AND
CHEBYSHEV APPROXIMATIONS

A good comparison of the Butterworth and Chebyshev responses is possible when they have the same half-power
frequency. In general, this requires a normalization of the Chebyshev approximation to a 3.0103 dB bandwidth
before comparison. This occurs naturally when € = 1.
Chebyshe Figure 10.1.8 shows the two-frequency responses for third

yshev order filters. Analysis shows that:

Gl/w K

1. The Butterworth approximation is superior at and near

al Butterwor th o = 0. Of all polynomial approximations, it has the

V2 I highest number of zero derivatives at the origin.
I 2. The Chebyshev approximation is superior at and near
|l the cutoft frequency or passband edge.
L 3. The Chebyshev approximation is superior in the stop-
o 1 « band.
FIGURE 10.1.8 - Butterworth and Chebyshev approxi- 4. The Chebyshev approximation sacrifices smoothness

tions forn=3 and € = 1. .
fations form =2 an in the passband.

THE MODIFIED CHEBYSHEV APPROXIMATION

With passive networks, even-ordered Chebyshev networks with equal source and load resistances are unreal-
izable, because of the relative minimum at zero frequency in the frequency response. Saal has shown a modifi-
cation of the Chebyshev polynomials that leads to even-ordered polynomials with a zero at @w= 0, relative maxima
and minima of +1 and —1 within the interval 0 < @ < 1, and that are monotonically increasing for @ > 1. These
polynomials are given in Table 10.1.1.

For a given n, the modified Chebyshev polynomials have the property that

C,(@)>C, (0)>C, (o) (40)

for > 1. Thus a low-pass approximation based on these polynomials for even n will be better in the stopband
than that using the Chebyshev polynomial of order n — 1, but not as good as that using the regular Chebyshev
polynomial of order n. However, it will, in passive networks, permit equal source and load resistances.
Figure 10.1.9 compares C,(w) and Cn (w) by plotting the ratio as a function of @.
Table 10.1.2 gives the poles of the transfer function G(s), in terms of quadratic factors, for n = 2, 4, 6, 8,
and 10, and for ripples of 0.01, 0.10, 0.50, 1.00, and 3.00 dB. These poles assume that the end of the ripple
band is the passband edge at w= 1. Table 10.1.11 gives the corresponding half-power frequencies.

TABLE 10.1.1 Modified Chebyshev Polynomials of Even Order

=

C, (@)

>

5.82842713w"* — 4.82842713w*

25.9903811@° — 36.18653350* + 11.1961524 @
109.597711w® — 210.522708 w°®

+122.0343550* — 20.109358 w?

10 452.3444150'° — 1102.4926750% + 926.297276 w°
—306.717773w" + 31.568758 w*

0 N A~ N
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IDEAL FILTERS AND APPROXIMATIONS 10.15

THE LEGENDRE-PAPOULIS APPROXIMATION

Papoulis derived an approximation using Legendre polynomials (Ln(a)z)) of the first kind. The nth order
approximation is

IG(jo)! !
j = —
1o} JI+L, (0% (41)
n
0sr 12 Egjggg’, Table 10.1.3 shows the polynomials, and Table 10.1.4
osl 6(0.812) shows the denominator roots (poles) for this function.
Cn 4(0.729) This approximation has three important properties:
Cn |
o7 1. L (®?) increases monotonically, and thus |G(jo)|
o6l decreases monotonically.
os 2o 2. L(0)=0and L (1) = 1, which means that |G(0)| = 1 and
’ :' [ T S S SR NN SN N S N | |G(l)| = 050'
o 15 20 3. Of all polynomials satisfying 1 and 2, L (®?) has the

¢ largest derivative at @ = 1, and thus this filter has the

FIGURE 10.1.9 Ratio of modified Chebyshev poly- steepest cutoff characteristic.
nomial to Chebyshev polynomial. Limiting value as @
approaches infinity is in parentheses for each value of n. Figure 10.1.10 compares the Legendre—Papoulis approx-
imation with the Butterworth, and Chebyshev (3 dB) approx-
imations for n = 3.

The selection of n follows the same general procedure as for the Butterworth approximation. To satisty the

specification
A2|G(jwa)|=1/./1+Ln(w2) (42)

or
L, (02 (1/A*) -1 43)

evaluate successively higher-ordered polynomials of Table 10.1.3 at @,.

THE BESSEL APPROXIMATION

The ideal all pass characteristics of Fig. 10.1.2.

IG(jo) =K (44)
and

0(jw) =-Tw (45)

implies that the output is a scaled (by K) replica of the input, delayed in time by 7 s. This notion leads to the
definition of group delay, which is the negative derivative of the phase function

d ..
-5 60 =7, () (46)

In the ideal case, the group delay is a constant 7.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



IDEAL FILTERS AND APPROXIMATIONS

10.16 FILTERS AND ATTENUATORS

TABLE 10.1.2 Quadratic Factors Giving Poles of Modified Chebyshev
Transfer Functions

n Ripple, dB [G(s)]™!
2 0.01 5% + 6.4541054s + 20.8277385
0.10 5% + 3.6200009s + 6.5522033
0.50 52 +2.3928122s + 2.8627752
1.00 s+ 1.9825371s + 1.9652267
3.00 52+ 1.4158936s + 1.0023773
4 0.01 5% +2.2680440s + 1.6170715
5% +0.9235542s + 2.2098435
0.10 5%+ 1.5452285s + 0.7991383
52+ 0.6059475s + 1.4067406
0.50 52+ 1.1191759s + 0.4523364
52+ 0.4086395s + 1.0858612
1.00 5% +0.9486848s + 0.3398608
5% +0.3272401s + 0.9921108
3.00 5% +0.6845838s + 0.1932927
5% +0.2013994s + 0.8897428
6 0.01 s+ 1.4118889s + 0.5893450

5%+ 1.005857Ls + 0.9699759
52+ 0.3640166s + 1.4018414
0.10 5% +0.9995998s + 0.3173248
5%+ 0.6819299s + 0.6966158
5% +0.2448454s + 1.1404529
0.50 s+ 0.7362729s + 0.1875012
5% +0.4662515s + 0.5727968
s+ 0.1663135s + 1.0255810
1.00 5%+ 0.6267633s + 0.1428406
s+ 0.3748110s + 0.5343433
5% +0.1333343s + 0.9906678
3.00 5% +0.4534072s + 0.0825380
52+ 0.2315851s + 0.4909174
5% +0.0820877s + 0.9518235

8 0.01 52+ 1.0335548s + 0.3097540
s+ 0.8491714s + 0.5489161

52 +0.5591534s + 0.9283901

5%+ 0.1954150s + 1.2038909

0.10 52+ 0.7417790s + 0.1718214
s+ 0.5828511s + 0.4083754

5%+ 0.3806989s + 0.7943820

s2+0.1328521s + 1.0725554

0.50 5%+ 0.5496051s + 0.1030188
52+ 0.4007060s + 0.3416991

5%+ 0.2600622s + 0.7328336

5%+ 0.0906706s + 1.0125586

1.00 52+ 0.4685593s + 0.0788470
5%+ 0.3226466s + 0.3205446

52 +0.2088595s + 0.7137508

5%+ 0.0727952s + 0.9940103

3.00 s+ 0.3392712s + 0.0458028
s2+0.1997071s + 0.2963792

5%+ 0.1288387s + 0.6922959

52 +0.0448874s + 0.9731910

10 0.01 s2 4+ 0.8175750s + 0.1921666
s2 4+ 0.7133475s + 0.3528340
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TABLE 10.1.2 Quadratic Factors Giving Poles of Modified Chebyshev
Transfer Functions (Continued)

n Ripple, dB [G(s)I™!

s2+0.5571617s + 0.6426718
s? 4+ 0.3555630s + 0.9397252
2+ 0.1222554s + 1.1244354
0.10 2+ 0.5905036s + 0.1080675
s2 + 0.4925060s + 0.2665100
2+ 0.3816272s + 0.5602769
s? 4+ 0.2431732s + 0.8592520
s2 + 0.0835800s + 1.0446869
0.50 s? 4+ 0.4387194s + 0.0652281
s2 + 0.3394908s + 0.2246543
2+ 0.2614400s + 0.5216326
s? 4+ 0.1664374s + 0.8217378
2+ 0.0571933s + 1.0075592
1.00 s? 4+ 0.3742846s + 0.0500294
2+ 0.2735736s + 0.2112433
2+ 0.2101536s + 0.5095395
2+ 0.13374465 + 0.8100361
s2 4+ 0.0459557s + 0.9959854
3.00 2+ 0.2711265s + 0.0291328
2+ 0.1694797s + 0.1958431
2+ 0.1297678s + 0.4958770
s2 + 0.0825542s + 0.7968406
2+ 0.0283639s + 0.9829386

A series of Bessel polynomials provides a transfer function that yields a maximally flat approximation to
the ideal delay. The form of the function that gives a group delay of 1 s at =0 is

Kb, 47
+b, 5"+ +bs+b, “47)

G(s)=—
S

A recursion formula relates these polynomials
B =@2n-1B_, +sB , (48)

and Table 10.1.5 gives the coefficients of the first eight Bessel polynomials. Table 10.1.6 gives the pole loca-
tions for G(s) in terms of quadratic factors.

TABLE 10.1.3 The Polynomials L (&?)

N

ot

3¢f -3t + &P

60* — 80 + 30

200'° — 400® + 28 — 8 + @?

500'? - 1200'° + 1050® — 400 + 60/

1750 — 525" + 6150'° — 3550® + 1050° — 150 + o?

4900'° — 16800 + 2310w'? — 16240'* + 6150 — 1200° + 10*

17640'8 — 7056 ' + 117040 — 104160'% + 5376 0'° — 1624@® + 276 0° — 240 + @?

529200 - 235200'% + 441000'° — 453600'* + 278600'% — 104160'° + 23100 — 2800 + 150

OO 0NN AW
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10.18 FILTERS AND ATTENUATORS

TABLE 10.1.4 Linear and Quadratic Factors for Poles of Legendre-Papoulis Approximation

n [G)]! n [G()]™!
2 s2+ 1.4142136s + 1.0000000
8 s2 + 0.1378844s + 0.9808397
3 s +0.6203318 52 +0.3885518s + 0.7179832
52 + 0.6903712s + 0.9307119 SZ +0.6005680s + 0.3828971
4 52+ 0.4633774s + 0.9476701 52+ 0.73435265 + 0.1675357
52+ 1.0994868s + 0.4307915
5 s +0.4680899 K s +0.3256878

5%+ 0.3071734s + 0.9608963
5% +0.7762796s + 0.4971406

5% +0.1101944s + 0.9844435
5% +0.3145676s + 0.7666498

6 5% +0.2303854s + 0.9696012
52+ 0.6179218s + 0.5828947
5%+ 0.8778030s + 0.2502256

5% +0.4971058s + 0.4635058
5%+ 0.6187708s + 0.2089807

10 5%+ 0.0918020s + 0.9869313

7 s +0.3821033
524 0.1724170s + 0.9764158
5% +0.4748794s + 0.6621299
5% +0.6984636s + 0.3060005

5% +0.2650376s + 0.8012497
5% +0.4283460s + 0.5282527
5% +0.5548108s + 0.2702425
5% +0.6344130s + 0.1217699

05K |-

Chebyshev

Butterworth

Legendre -
Papoulis

o 1

FIGURE 10.1.10 Comparison of Butterworth, Legendre-Papoulis, and
Chebyshev (e = 1) approximations for n = 3.

TABLE 10.1.5 Coefficients of the Bessel Polynomials

n b, b, b, b, b, by b b,
1 1

2 3 3

3 15 15 6

4 105 105 45 10

5 945 945 420 105 15

6 10,395 10,395 4,725 1,260 210 21

7 135,135 135,135 62,370 17,325 3,150 378 28

8 2,027,025 2,027,025 945,945 270,270 51,975 6,930 630 36
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TABLE 10.1.6 Linear and Quadratic Factors for Poles of Bessel Approximation

n [G(s)I™! n [G)I™!
s2+3s+3
8 2+ 11.175772s + 31.977224
s +2.322185 52+ 10.409682s + 33.934741
52 +3.677814s + 6.459432 2 4 87365785 + 38.569256
4 52 +5.7924225 + 9.140133 52+ 5.677968s + 48.432015
52 +4.207578s + 11.487799
5 5 +3.646739 K § +6.297019
2+ 6.703912s + 14.272476 S2 + 12.258736s + 40.589268
; 52 +9.276880s + 49.788507
6 2+ 8.4967185 + 18.801128 2 1 59585775 + 62.041443
52+ 7.4714165 + 20.852819
s +5.031864s + 26514025 |19 52 + 13.844090s + 48.667550
7 s +4.971787 52+ 13.230582s + 50.582362
52 +9.516582s + 25.666449 52+ 11.9350565 + 54.839151
52+ 8.140278s + 28.936544 52 +9.772440s + 62.625584
52 +5.371354s + 36.596784 52+ 6.217832s + 77.442692

10.19

Figure 10.1.11 shows the general forms of the delay and magnitude functions for this approximation. The
magnitude behavior is that of a low-pass function, and Table 10.1.11 gives the resulting half-power frequencies.
The parameter 7 is selected to satisfy either a minimum group delay requirement or a minimum magnitude
(or the equivalent maximum attenuation) requirement at some frequency @, that is,

or

T(0)2T,

IG(jo )2 A

(49)

(50)

with the more stringent condition being chosen. Figure 10.1.12 shows the attenuation versus @ and the group
delay versus @ for n =2 to 8, and can be used to select n.

THE STEP RESPONSE

The primary design consideration for a filter is its frequency response, but often the step response is of interest.
Computation of the step response requires computation of the inverse Laplace transform of the transfer function

l6]

X

(@)

FIGURE 10.1.11 (a) Magnitude and (b) group delay for maximally flat group-delay approxi-

mation.
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FIGURE 10.1.12  Group delay and attenuation for the
Bessel approximation.

multiplied by 1/s, readily done with modern computers and suitable software. Three figures of merit commonly
characterize the step response. Figure 10.1.13 defines these, which are overshoot, rise time, and delay time.
While the general form of Fig. 10.1.13 is common, the odd order, high ripple Chebyshev and modified
Chebyshev responses have unusual features, as suggested in Figs. 10.1.14 and 10.1.15. Often several relative
maxima occur before the peak value. Tables 10.1.7, 10.1.8, and 10.1.9 give the percent overshoot, rise time, and
delay time, respectively, for the all pole approximations described.

THE PROTOTYPE FILTER NETWORKS

Passive networks that realize all pole functions are lossless ladder networks terminated in resistance at both
ends. Figure 10.1.16 shows four networks classified by the type of transfer function, Z, ¢ or G, (, being realized

e ——— =
Overshoot
oA ———— —— — T NG
osp—————-—
Delay :
N time | |
OSp————— |
|
|
01fk-— [
0 L |

_.J Rise l._ ’

FIGURE 10.1.13  General form of the step response and definitions of figures
of merit.
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VL

I I ! ! 1
0 5 10 15 20 25
t

FIGURE 10.1.14  Step response of third-order Chebyshev approxima-
tion with a 3-dB ripple.

and whether 7 is odd or even. The networks of Figs. 10.1.16¢ and d are duals of those in Figs. 10.1.16a and b,
respectively. An application of source transformations to the networks of Fig. 10.1.16 yields the four networks
of Fig. 10.1.17.

For a given type of source and value of n there are two networks to choose from. When the source is a cur-
rent source and 7 is odd, Figs. 10.1.16b and 10.1.17d apply. In the first case, the first and last lossless elements
are capacitors; in the second case, they are inductors.

For a given type of approximation and order of filter, numerical element values apply to four different net-
works. For example, a Butterworth approximation with n =2 and R or G¢ = 1/> according to the specific net-
working being used, yields the four networks of Fig. 10.1.18. Here, the numerical values for the lossless
elements are the same when they are taken in order from the source end. This fact makes it possible to construct
a table of element values, which uses as parameters for entry (1) the type of approximation, including the rip-
ple width in dB, Egq. (25), for Chebyshev approximations; (2) the value of n; and (3) the value of R or Gq,
according to the particular network for Figs. 10.1.16 and 10.1.17 that is being used. Table 10.1.10 is such a table.

THE TABLE OF ELEMENT VALUES

Table 10.1.10 gives element values, numbered in order from the source end as in Figs. 10.1.16 and 10.1.17, for
the five all-pole approximations, n =2 to 10, and for R or G equal to 0 and 1. Five different ripple widths are
tabulated for the Chebyshev approximations.

The synthesis process for determining the element values in Table 10.1.10 often involves a choice of loca-
tion for the zeros of the reflection coefficient. In this table when choices were necessary, the networks have
left-half s-plane zeros.

e R —— =~ —

1 1 ] ] ]
(o] 5 10 15 20 25
f

FIGURE 10.1.15 Step response of fifth-order Chebyshev approxima-
tion with a 3-dB ripple.
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Lo Ln Ly
(6)

fa)

Rs Ly L3 Rs Lq L3 Lo
+ +
’ I N T"
(c) (c)

FIGURE 10.1.16 Four filter networks classified according to type of transfer function and n even or odd: (a)

Z, e neven; (b) Z, . nodd; (c) G neven; (d) G, g nodd.

Gs L2 Lo
+
" A

1.0
fa)
Ly L3 . Ly L3 ) Ln
Is :m Ca 10 Is :m 1.0
T T T
el ' (a)

FIGURE 10.1.17  Filter networks derived from those in Fig. 10.1.16 by source transformations: (a) G, n even;

(D) Gpg, nodd; (c) Z, g, neven; (d) Z; g, n odd.

1
Lp= 3.3461 H Gs=3S L2°3.3461H

- * Yy W 9 Y'Y
T.. : T.
Gs-‘%s N : G

TO.4483F £10 To_4433,- 21.0
) (6)
L1= 0.4483 H Rs= 30  1,=0.4483H
YYY ® Y
_1 Co= Ch=
SR 5 2 ~2
$Rs 78 T3 3461 F 0 3.3461 FT 10
(c) (d)

FIGURE 10.1.18 Four networks resulting from a Butterworth approximation with n = 2 and R or G (as
appropriate to the type of network) equal to 1/2.
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TABLE 10.1.11

IDEAL FILTERS AND APPROXIMATIONS

IDEAL FILTERS AND APPROXIMATIONS 10.29

Half-Power Frequencies for Various Chebyshev and Bessel Filters”

Type of filter

Order of filter

n=2

n=4

n=>5 n==6 n="7 n=38 n=9 n=10

Modified
Chebyshev
0.01 dB

4.563742

1.532784

1.212468 1.114760 1.072036

Modified
Chebyshev
0.10dB

2.559727

1.246004

1.099300 1.053929 1.033948

Modified
Chebyshev
0.50 dB

1.691974

1.108290

1.043913 1.023911 1.015073

Modified
Chebyshev
1.00 dB

1.401865

1.061830

1.025105 1.013681 1.008628

Modified
Chebyshev
3.00 dB

1.001188

1.000174

1.000071 1.000039 1.000024

Bessel half-
power
frequency

Delay at half-
power
frequency

1.3617

0.8090

1.7557

0.9349

2.1140

0.9819

24274 | 27034 29517 | 3.1797 3.3917 | 3.5910

0.9960 | 0.9993 0.9999 | 0.9999 1.0000 | 1.0000

“The Chebyshev filter prototypes have the ripple specified at 1 rad/s. The Bessel filter has a delay of 1 s at very low frequency. The sec-
ond figure given is the delay at the half-power frequency.

Table 10.1.10 assumes:

LR =1

2. W, = 1 for the Butterworth and Legendre-Papoulis approximations.

3. w=1is the end of the ripple band for the Chebyshev approximations.

4. The group delay at =0 is 1 s for the Bessel approximation.

The half-power frequencies for the (regular) Chebyshev approximation are found from Eq. (31), and, for the
modified Chebyshev and Bessel approximations, are tabulated in Table 10.1.11.

2L,

L

> R,71.0
3

i
b G= Ix2 G
B
Tz ! T
(6)

FIGURE 10.1.19 The scaling of symmetrical net-

works to change the value of G.

The two values of R or GS, 0 and 1, used in Table
10.1.10, represent the two most commonly encountered
situations. Zverev and Weinberg give tables for additional
values of R or Gq.

When n is odd, Gy=Ry=1, and the approximation is
either Butterworth or (regular) Chebyshev, the networks
are symmetrical; that is, C1 = Cn, L,=L,, etc. In these
cases, there is a technique to realize other values of Rior G.
Consider Fig. 10.1.16b with n =5, redrawn as Fig. 10.1.19a
to emphasize the symmetry. Scale the half of the network
containing G, and recombine the two center elements.
Making G¢ = /> leads to the network of Fig. 10.1.19b,
where the two parts of the center capacitor are shown sep-
arately before recombination. This procedure leads to
right-half s-plane zeros of the reflection coefficient.
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10.30 FILTERS AND ATTENUATORS

EXPLICIT BUTTERWORTH AND CHEBYSHEV FORMULAS

Closed-form solutions for doubly terminated Butterworth and Chebysheyv filters were derived by Takahasi and
restated by Humpherys.® They assume that the zeros of the reflection coefficient lie in the left half plane, and
so give different networks than the symmetrical network procedure. This gives the designer a choice in cases
where both techniques may be applicable.

The Butterworth formulas make use of the poles of the transfer functions and require also a factor A that
relates the load and source resistances. The source resistance is assumed to be 1.0, and the formulas are

s, =2sin(mi/2r) (51)
¢, =2 cos(mi/2m) (52)
R 1 1/n
A=—| =L
R +1 63

when the first reactive element is a shunt capacitor, and

G, -1
A=—|Lt— (54)
G, +1
when the first reactive element is a series inductor. Recursive equations give the element values
=4 (55)
17z
C=—1 —  jodd (56)
" (I+ )R,
R
=L n even (57)
"1+ A
S, S
C L — 4m-1"4m+1 58
2m—=1"2m 1_1C4m,2+2'2 ( )
_ Sam—15am1
L2mflc2m+1 - 1_&C4m +/12

1,2,....(n=1)/2 n odd

where m =
1,2,...,n/2 n even

When the first element is a series inductor, the roles of L and C are interchanged. An example follows. Develop
the prototype network for third-order Butterworth, R, =3, R = 1. It follows that

A=-0.7937 (59)
s, = 1.0000 = s (60)
s,=1.7321 =35, 61)
s, =12.0000 (62)
c,=17321 (63)
¢, = 1.0000 (64)
¢, =0.0000 (65)
¢, = 1.0000 (66)
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IDEAL FILTERS AND APPROXIMATIONS 10.31

1.4802 .
A 10000 _ ) 5575

l | =1 o9 (67)
Vs

0.5575% 1.6158 ¢ 3 1
Y
‘ | ‘ | L= 1% —=1.4802 (68)
| _ 1-(=0.7937)(1.0000) + (0.7937)* C,

FIGURE 10.1.20 Prototype Butterworth network,
n=3R.=1R,=3. 55 1

C, = —
3 1=(=0.7937)(=1.0000) +(0.7937)? L,

=1.6158 (69)

The prototype network thus becomes that of Fig. 10.1.20.

The results are similar if the equation for C, is used first and the network is developed from the load end,;
this serves as a check on the work.

The Chebyshev equations are similar. Define the following terms:

€=+10"° -1 €= ripple factor

7
r =ripple, dB 70)
4R R/(R, +R.)* n odd
= LI T R
{4(1+ €)R,R/R, +R)><1 neven (71a, 716)
5, =2 sin(7i/2n) (72)
¢, =2 cos(7il2n) (73)
1/n
k=[1+ iz+l] 74
€ Ve
1/n
1-A 1-A
h:_[\/ & +\/ & +1J (75)
kK =k-1/k (76)
W=h-1/h a7
Recursive equations give the element values

C = 25/R (78)

K —-n

25 /R
=200l odd (79)

k'+h

2s,R

o) n even (80)

n k/ _ hl

4s, .S

C 4m-3"4m—1 (81)

L, =
2m=1"2m k/2 —CZik,h,‘l’h,z +s§i
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10.32 FILTERS AND ATTENUATORS

4S8, .S
4m—1~4m+1 (82)

L =
2m+1 kr2 _CZik/h/+h/2 +s§i

C

2m

2,...,(n=1/2 nodd
where m =
1,2,...,n/2 n even

When the first element is a series inductor, the roles of L and C are interchanged, while G and G, are sub-
stituted for R and R, . As an example, develop the prototype when R¢=3, R, =1, 0.5 dB rlpple and a fourth-
order network is needed It follows that

10%% —1 =0.3493 (83)
A =0.75[1 + (0.3493)%] = 0.8415 (84)
5,=0.7654 =5, (85)
s,=1.4142 =5, (86)
s,=1.8478 =5 (87)
s, =2.0000 (88)
¢, =2.0000 (89)
Cy= 1.4142 (90)
¢, =0.0000 91)
Ce= -1.4142 (92)
k=1.5582 93)
h=-1.2766 (94)
=0.9164 (95)
h =-0.4933 (96)
= 2(0.7654) = 03620 o
3[0.9164 — (—0.4933)]
L= A, = 4.1985
2 C (k/ —C2 /h/+h12 ) - (98)
C= 45555 =0.6399
LK KN+ H 452 99)
4s.s
L, = - ,5 ,7 - =3.6172 100
3 41985 36172 YOG =k +h +57) (100)

The prototype network is shown in Fig. 10.1.21.

Ve TO 3620 T 06399 1

FIGURE 10.1.21 Prototype Chebyshev network,
Ry=3,R;=1,n=4,05 dB ripple.
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THE INVERSE CHEBYSHEV APPROXIMATION

The Inverse Chebyshev approximation uses the Chebyshev polynomials in an approximation that decreases
monotonically in the passband, and has ripples in the stopband. Specifically,

IG, () = M
N1+ €C Vo) (101

where Egs. (21) and (22) define C,. Figure 10.1.22 shows this approximation and defines appropriate design
criteria. K_is the minimum attenuation in the stopband; K is the maximum attenuation in the passband, and it
occurs at > o, The edge of the stopband is at @, = 1, which requires scaling of the specifications different-

ly from the prev10us approximations.
1
= —100'”(5 - (102)

When K is expressed in dB,
Equation (103) gives the order n,. required to meet the specifications, with the next larger integer being

chosen.
oo™~y
h'! [———
cos (10().lkp -1 (103)
n_ .=
e cosh™ (Vw )

1.0

IGI T

. ~_

0

wg 1.0 -

FIGURE 10.1.22 The Inverse Chebyshev low-pass approximation. A fifth-
order function is illustrated.
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In general, the order of inverse Chebyshev filter required to meet a set of specifications is identical with
the order required for a conventional Chebyshev filter. It has improved step response and phase response
characteristics when compared with the (regular) Chebyshev approximation, and a more complex network
realization.

The stopband ripples and the zero magnitudes at finite frequencies in the stopband mean that the Inverse
Chebyshev filter is not an all-pole approximation as the preceding have been, but rather it has roots in the
numerator as well as in the denominator. Explicit formulas for these roots exist.

The numerator roots, or zeros, are

7, =0 +jp, (104)
where
1
o =0 = k=1,2,3,...,n
k A oS i, (105)
and
"y = 2k—1 . (106)
K 2n
The denominator factors, or poles, are
1
= k=1,2,3,...n (107)
O'k + ]a)k
where
0, =-sinu, sinhv @, = cos u, cosh v (108)
and
1. 1
v=—sinh™ = (109)
n €

and Eq. (106) gives u,.

For example, assume that, using scaled frequency parameters, a designer needs a filter with a maximum
passband attenuation K of 2.0 dB at frequencies below w = 0.58 rad/s, and a minimum stopband attenuation
K of 40 dB above 1.0 rad/s. Equation (103) shows that a fifth-order filter is adequate. Application of Egs. (104)
through (109) shows that

a 0.0500(s* +1.1056)(s> + 2.8944)
(s+0.7878)(s% +1.04965 +0.5110)(s> + 0.3118s + 0.3975)

G(s) (110)

where the numerator constant makes G(0) = 1.0000.

THE ELLIPTIC FILTER

The five approximations thus far described are of a class known as all-pole approximations because the
magnitude-squared function of Eq. (6) has no finite zeros. This concentration of the zeros at infinity usually
gives more attenuation than required at the higher frequencies and less in the vicinity of the cutoff frequency.
If the more general form of Eq. (5) is used for the magnitude-squared function, some of the zeros can be placed
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NI VAR VN

AMOK

b - —— -
b — ——————

ws w ws w
(a) iy
FIGURE 10.1.23 The elliptic approximation for (a) n =3 and (b) n = 4.

close to the stopband edge frequency, with an improvement in the cutoff rate. Specifically, if

1
IG(jo)? = K> ——————
(jo) R () (111)
(n—1/12
2 2
® 11 (o ~0’)
r~ooa —  nodd (112)

I (@ -o})

where R (w)= n /zi:I

H (0* - a)f”.)

re— n even (113)

[1(e*-w?)

i=1

r being a multiplicative constant, the approximation can be made equiripple in both the passband and the stop-
band. Such an approximation is called an elliptic approximation because elliptic functions are used in its deter-
mination. Figure 10.1.23 shows such an approximation in a plot of attenuation versus frequency for n = 3 and
n =4, illustrative of the general characteristics for even and odd n, respectively.

Since the even-order elliptic approximation does not have infinite attenuation at infinite frequency, it can-
not be realized by an LC ladder. A modified even-order elliptic approximation can be obtained by a frequency
transformation. This transformation sacrifices some stopband attenuation to shift a pole of attenuation to eo. A
further modification of the even-order approximation can be used to make the attenuation zero to zero fre-
quency. This permits an LC ladder realization to be equally terminated.

The elliptic approximation is characterized by four parameters.

1. The passband ripple A, or, equivalently, the reflection coefficient p, related to A, by A = -10 log
(1-p»

2. The order n

3. The minimum stopband attenuation A

min

4. The stopband edge frequency @, or, equivalently, the modular angle 6°

Any three of these four parameters can be independently specified.

As for the all-pole approximations, tabulations of pole-zero locations and tables of element values for nor-
malized low-pass filters based on the elliptic approximation are possible. Since three parameters are required
to specify in elliptic approximation, these tabulations are voluminous.
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DELAY EQUALIZATION

The ideal low-pass filter characteristic would have a constant group delay as well as a constant amplitude
throughout the passband so that the various frequency components of a signal would arrive at the output
unattenuated and with the proper phase relationship. Deviations from constant amplitude and group delay pro-
duce amplitude and phase distortion, respectively. While phase distortion is not a problem in many applica-
tions, it is significant when pulse transmission is involved.

With the exception of the Bessel approximation, the various approximations have focused on the amplitude
characteristic. While the Bessel approximation has a good group-delay characteristic, it has a significantly
poorer amplitude characteristic. One approach to the problem of obtaining filters with good amplitude and
group-delay characteristics is through the use of delay equalizers. This consists of using one of the approxi-
mations with desirable amplitude characteristics in conjunction with an all-pass function that does not affect
the amplitude characteristic but modifies the group delay beneficially.

The first-order all-pass function is

Gsy=2=2 (114)
s+6
This function has an emplitude of 1 for all frequencies and a group-delay function
) E—_— (115
¢ 8 1+(w/5) )
The specific properties of the group-delay function are controlled by the selection of o.
The second-order all-pass function is
(s=8)°+p
G()=—T—
() 5+0)+ (116)
with |G(jw)| =1 (117)
and
48(w* + 8%+ B%)
7, ()= (118)

&+ -0y +450"

The specific properties of this group-delay function are controlled by the selection of & and S.

Except for some simple situations, the problem of delay equalization is best approached by using a com-
puter to optimize the group delay in some sense. Blinchikoff and Zverev!! give an excellent discussion of a
least-squares optimization as well as the basic principles of delay equalization.

TABLES

Many authors have published extensive tables of prototype element values for filters. Table 10.1.12 lists some
of the readily available tables, with comments.
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TABLE 10.1.12 Books Containing Element Values for Filters

Reference
number in
First-named references and Length,
author bibliography pages Comment

Biey 33 624 Cauer (elliptic and multicritical-pole equal-ripple
rational (MCPER) functions

Biey 34 561 Active Cauer and MCPER functions

Christian 35 310 Nomographs, poles, and zeros for Butterworth,
Chebyshey, inverted Chebyshev, and Cauer
filters

Craig 36 197 Nomographs and tables for lossy Butterworth and
Chebyshev filters

Genesio 37 598 Constants for digital representations of Butterworth
and Chebyshev filters

Hansell 38 203 Passive filter parameters, attenuation and phase data

Johnson 39 244 60 pages of tables. Design formulas

Moschytz 21 316 Calculator and computer programs

Saal 31 662 Element value tables. Design formulas

Weinberg 7 692 70 pages of element value tables. Design formulas

Wetherhold 9 Tables using standard capacitor sizes for 50-€2,

40 22 5- and 7-element Chebyshev, and for 5-element

elliptic filters

Williams 41 540 116 pages of tables. Design techniques and

42 formulas for active networks
Zverev 6 576 About 150 pages of tables for Butterworth,

Chebysheyv, Bessel, linear phase, Gaussian,
Legendre, Cauer (elliptic) filters. Design
formulas. Crystal filters
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