CHAPTER 10.2 FILTER DESIGN

Edwin C. Jones, Jr., Harry W. Hale

PRACTICAL FILTER DESIGN

Table 10.1.10 gives element value for normalized networks. Three general steps lead to practical filters.

- 1. Statement of the filter specifications
- **2.** Translation of the specifications to equivalent statements for the normalized prototype and their use to determine the parameters necessary to enter Table 10.1.10
- 3. Application of frequency transformations and impedance-level scaling to the normalized prototype to determine the filter network

This process is described in the following paragraphs for the various types of filters, accompanied by examples.

THE LOW-PASS FILTER

The low-pass filter is related to the normalized prototype by frequency and impedance-level scaling. The frequency in the prototype is related to the frequency in the low-pass filter by

$$\omega = \omega' / \omega'_c \tag{1}$$

where the primed quantities refer to the practical low-pass filter, with ω'_c being its cutoff frequency. The application of the frequency scaling implied by Eq. (1) and the impedance-level scaling required to change the load resistance from 1.0 to R_L results in the elements of the low-pass filter becoming those indicated in Fig. 10.2.1.

Example. A low-pass filter is to be designed to have (*a*) a maximally flat amplitude-versus-frequency characteristic at f = 0, (*b*) a cutoff (half-power) frequency of 2 kHz, (*c*) a load resistance of 200 Ω , (*d*) a voltage source input with zero resistance, and (*e*) an attenuation of not less than 20 dB at frequencies greater than 3.2 kHz. A Butterworth approximation is indicated. The frequency in the prototype equivalent to 3.2 kHz is

$$\omega = \frac{(3.2 \times 10^3)(2\pi)}{(2 \times 10^3)(2\pi)} = 1.6$$
(2)

10.38

FILTER DESIGN

1.0

200 0

0.3090

0.8944

4.918

mΗ

0.3559

FIGURE 10.2.1 Relations between elements of (*a*) a normalized prototype and those of (*b*) a practical low-pass filter.

and the equivalent design specifications for the prototype require that the attenuation be no less than 20 dB for $\omega \ge 1.6$. This, using Eq. (16), results in

$$n \ge \frac{20}{20 \log 1.6} = 4.899 \tag{3}$$

and the next larger integer value of 5 is used. The appropriate prototype appears in Fig. 10.2.2*a* with element values taken from Table 10.1.10 for the Butterworth approximation with n = 5 and $R_s = 0$. The application of frequency and magnitude scaling by means of the relations in Fig. 10.2.1 results in the low-pass filter of Fig. 10.2.2*b*.

A TIME-DELAY NETWORK

The frequencies in the time-delay network and its normalized prototype are related by

$$\boldsymbol{\omega} = \boldsymbol{\tau}_a' \boldsymbol{\omega}' \tag{4}$$

where the primed quantities again refer to the practical network, τ'_d being the group delay evaluated at $\omega' = 0$. The element values of the practical network are related to those of the normalized prototype by frequency and impedance-level scaling. These relations are shown in Fig. 10.2.3.

FIGURE 10.2.3 Relations between elements for (*a*) a normalized prototype and those of (*b*) a time-delay network.

Example. A time-delay network is to be designed to have (*a*) a time delay of 1 ms, the error being no greater than 5 percent at 500 Hz; (*b*) a voltage input with a resistance of 500 Ω ; and (*c*) a load resistance of 500 Ω . The prototype frequency equivalent to 500 Hz is

$$\omega = 10^{-3}(2\pi \times 500) = 3.142 \tag{5}$$

and the equivalent specifications for the prototype require a time delay of 1 s, the error being no greater than 5 percent at $\omega = 3.142$. Figure 10.1.12 is used to determine that n = 5 is required to satisfy this requirement. The prototype can be of the form of either Fig. 10.1.16*d* or Fig. 10.1.17*b*. The latter is chosen with the element values taken from Table 10.2.1 for

Filter type	Y_0	Y_1	Y_2	<i>Y</i> ₃	Y_4	Y_5	Y_A	Y _B
Low-pass	0	$G_1 + sC_1$	G_2	sC_3	G_{4}	G_5	0	G_{R}
High-pass	G_0	G_1	$s\tilde{C_2}$	G_3	G_{A}^{\dagger}	G_5	0	sC_{F}^{D}
Bandpass	sC_0	$G_1^{'}$	sC_{2}	G_3	$\vec{G_A}$	G_{5}	0	G_{R}
Band-stop, version 1	0	sC_1	G_2	G_3	$\vec{G_A}$	G_{5}	sC_A	G_{R}^{D}
Version 2	G_0	$G_1^{'}$	G_{2}	G_3	$s\vec{C_A}$	0	G_{A}^{A}	sC_{μ}
All-pass	$G_0^{^0}$	$G_1^{'}$	$s\tilde{C_2}$	G_3	G_4^{\neg}	0	$G_A = G_4$	sC_{E}

TABLE 10.2.1 Element Choices for GIC Biquadratic Filters

the Bessel approximation with n = 5 and $G_s = 1$. The prototype is shown in Fig. 10.2.4*a* and the application of the relation is Fig. 10.2.3 results in the time-delay network of Fig. 10.2.4*b*.

THE HIGH-PASS FILTER

The frequency in the high-pass filter is related to that in the normalized prototype by

$$\omega = \omega_c' / \omega' \tag{6}$$

where the primed quantities refer to the high-pass filter, ω'_c being the cutoff frequency. The relations between the elements of the normalized prototype and those of the high-pass filter are given in Fig. 10.2.5.

Example. A high-pass filter is to be designed to have (*a*) a cutoff frequency of 7.5 kHz, (*b*) an equiripple characteristic in the passband with a 0.5-dB ripple ($\epsilon = 0.3493$), (*c*) an attenuation of at least 35 dB at frequencies below 3 kHz, (*d*) equal load and source resistance of 2000 Ω , and (*e*) a voltage source input. The prototype frequency equivalent to 3 kHz is

$$\omega = \frac{2\pi(7.5 \times 10^3)}{2\pi(3 \times 10^3)} = 2.5 \tag{7}$$

Thus the prototype is based on a Chebyshev approximation with a 0.5-dB ripple, equal load and source terminations, voltage source input, and an attenuation of at least 35 dB for frequencies greater than $\omega = 2.5$. The last requirement, used with Eq. (29), results in $C_n(2.5) \approx 161.0$. This result, used in Eq. (30), yields n = 3.69, and n = 4 is used. Since the regular Chebyshev approximation is not available, the modified Chebyshev approximation is used. The networks of Figs. 10.1.16*c* and 10.1.17*a* are possible. The former is chosen, and the

FIGURE 10.2.4 (*a*) A normalized prototype and (*b*) resulting time-delay network.

FIGURE 10.2.5 Relations between elements of (*a*) a normalized prototype and those of (*b*) a high-pass filter.

FILTER DESIGN

FIGURE 10.2.6 (*a*) A normalized prototype and (*b*) resulting high-pass filter.

FIGURE 10.2.7 Relations between elements of (*a*) a normalized prototype and those of (*b*) a bandpass filter.

resulting prototype is shown in Fig. 10.2.6*a*. The relations of Fig. 10.2.5 are then used to determine the element values of the high-pass filter of Fig. 10.2.6*b*.

THE BANDPASS FILTER

The frequency in the bandpass filter is related to that in the normalized prototype by

$$\omega = \frac{\omega_0'}{\beta'} \left(\frac{\omega'}{\omega_0'} - \frac{\omega_0'}{\omega'} \right) \tag{8}$$

where the primed quantities refer to the bandpass filter, ω'_0 being the center frequency and β' the bandwidth, $\omega'_{c2} - \omega'_{c1}$, as defined in Fig. 10.1.2*c*. The elements of the normalized prototype and those of the bandpass filter are related as shown in Fig. 10.2.7.

Example. A bandpass filter is to be designed to have (a) a center frequency of 4.0 kHz, (b) a bandwidth of 900 Hz, (c) an equiripple characteristic in the passband with a 1-dB ripple ($\epsilon = 0.5088$), (d) an attenuation of at least 18 dB at 4.9 kHz, (e) equal load and source resistances of 200 Ω , and (f) a current source input. The prototype frequency equivalent to 4.9 kHz is, from Eq. (8), 1.816 and the prototype is based on a Chebyshev approximation with a 1-dB ripple, equal load and source terminations, current source input,

FIGURE 10.2.8 (*a*) A normalized prototype and (*b*) resulting bandpass filter.

and an attenuation of at least 18 dB at $\omega = 1.816$. The last requirement, used with Eq. (29), results in $C_n(1.8163) \approx 19.65$. This result, used in Eq. (30), yields n = 2.86, and n = 3 is used. Two networks, those of Figs. 10.1.16*a* and 10.1.17*d*, are possible. The former is chosen, and the resulting prototype is shown in Fig. 10.2.8*a*. The relations of Fig. 10.2.7 are then used to determine the element values of the bandpass filter of Fig. 10.2.8*b*.

The results of the preceding example illustrate a problem in the transformation from prototype to bandpass filter. For even the moderate ratio of center frequency to bandwidth of the example, the ratio of series-arm to shunt-arm inductances in the bandpass filter is large. This creates some practical problems arising from the stray capacitances associated with large inductances. The reader is referred to Humpherys⁸ for an excellent

FILTER DESIGN

FIGURE 10.2.9 Relations between elements of (*a*) a normalized prototype and those of (*b*) a band-elimination filter.

FIGURE 10.2.10 (*a*) A normalized prototype and (*b*) resulting band-elimination filter.

discussion of this problem and possible ways of overcoming the difficulty. A similarly large ratio of shunt-arm to series-arm capacitances is also present, although the practical problems are not so severe.

THE BAND-ELIMINATION FILTER

The frequency in the band-elimination filter is related to that in the normalized prototype by

$$\omega = \frac{1}{(\omega_0'/\beta')[(\omega_0'/\omega') - \omega'/\omega_0']} \tag{9}$$

where the primed quantities refer to the band-elimination filter, ω'_0 being the center frequency and β' the bandwidth, $\omega'_{c2} - \omega'_{c1}$, as defined in Fig. 10.1.2*d*. The elements of the normalized prototype and those of the bandelimination filter are related as shown in Fig. 10.2.9.

Example. A band-elimination filter is to be designed to have (*a*) a center frequency of 12 kHz, (*b*) a bandwidth (half-power) of 1.5 kHz, (*c*) a maximally flat characteristic at $\omega' = 0$, (*d*) an attenuation of at least 16 dB at 11.6 kHz, (*e*) a current source input, and (*f*) $R_I = 800 \Omega$ and $G_S = 0$. Since the prototype frequency equivalent to 11.6 kHz is, from Eq. (9), 1.8432, the prototype is based on a Butterworth approximation with an attenuation of at least 16 dB at this frequency. This requirement, used with Eq. (16), results in n = 2.99, and n = 3 is used. Since $G_S = 0$, the only network available is that of Fig. 10.2.17*b*, and the resulting prototype is shown in Fig. 10.2.10*a*. The relations of Fig. 10.2.9 are then used to determine the element values of the band-elimination filter of Fig. 10.2.10*b*.

This example illustrates the large ratios of shunt-arm to series-arm inductances and of series-arm to shunt-arm capacitances that result with even a moderate ratio of center frequency to bandwidth. The reader is again referred to Humpherys⁸ for a discussion of this difficulty and steps that can be taken to overcome it.