# CHAPTER 13.2 NATURALLY COMMUTATED CONVERTERS

Arthur W. Kelley

## INTRODUCTION

The applications for this family of naturally commutated converters embrace a very wide range, including dc power supplies for electronic equipment, battery chargers, dc power supplies delivering many thousands of amperes for electrochemical and other industrial processes, high-performance reversing drives for dc machines rated at thousands of horsepower, and high-voltage dc transmission at the gigawatt power level.

The basic feature common to this class of converters is that one set of terminals is connected to an ac voltage source. The ac source causes natural commutation of the converter power electronic devices. In these converters, a second set of terminals operates with dc voltage and current. This class of converters is divided in function depending on the direction of power flow. In *ac-to-dc rectification*, the ac source, typically the utility line voltage, supplies power to the converter, which in turn supplies power to a dc load. In *dc-to-ac inversion*, a dc source, typically a battery or dc generator, provides power to the converter, which in turn transfers the power to the ac source, again, usually the utility line voltage. Because natural commutation synchronizes the power semiconductor device turn on and turn off to the ac source, this converter is also known as a *synchronous inverter* or a *line-commutated inverter*. This process is different from supplying power to an ac load, which usually requires forced commutation.

The power electronic devices in these converters are typically either *silicon controlled rectifiers* (SCRs) *diodes*. To simplify the discussion that follows, the SCRs and diodes are assumed to (1) conduct forward current with zero forward voltage drop, (2) block reverse voltage with zero leakage current, and (3) switch instantaneously between conduction and blocking. Furthermore, stray resistive loss is ignored and balanced three-phase ac sources are assumed.

## **Converter Topologies**

**Basic Topologies.** The number of different converter topologies is very large (Schaeffer, 1965; Pelly, 1971; Dewan, 1975; Rashid, 1993). Using SCRs as the power electronic devices, Table 13.2.1 illustrates four basic topologies from which many others are derived. These ac-to-dc converters are rectifiers that provide a dc voltage  $V_0$  to a load. The rectifier often uses an output filter inductor  $L_0$  and capacitor  $C_0$ , but one or the other or both are often omitted. Rectifiers are usually connected to the ac source through a transformer. Note that the transformer is often utility equipment, located separately from the rectifier. The transformer adds a series leakage inductance  $L_{s}$ , which is often detrimental to rectifier operation.

Rectifier topologies are classified by whether the rectifier operates from a single- or three-phase source and whether the rectifier uses a bridge connection or transformer midpoint connection. The *single-phase bridge rectifier* shown in Table 13.2.1*a* requires four SCRs and a two-winding transformer. The *single-phase midpoint* 





*rectifier* shown in Table 13.2.1*b* requires only two SCRs but requires a transformer with a center-tapped secondary to provide the midpoint connection. The *three-phase bridge rectifier* shown in Table 13.2.1*c* requires six SCRs and three two-winding transformers. The *three-phase midpoint rectifier* shown in Table 13.2.1*d* requires three SCRs and three transformers using a Y-connected "zig-zag" secondary. The Y-connected secondary provides the necessary midpoint connection and the zig-zag winding prevents unidirectional secondary winding currents from causing magnetic saturation of the transformers.

The bridge rectifier is better suited to using the simple connection provided by the typical utility transformer. For the same power delivered to the load, the bridge rectifier often requires a smaller transformer. Therefore, in the absence of other constraints, the bridge rectifier is often preferred over the midpoint rectifier.

**Pulse Number.** Converters are also classified by their pulse number q, an integer that is the number of current pulses appearing in the rectifier output current waveform  $i_X$  per cycle of the ac source voltage. Higher pulse number rectifiers generally have higher performance but usually with a penalty of increased complexity. Of the rectifiers shown in Table 13.2.1, both single-phase rectifiers are two-pulse converters (q = 2) with one current pulse in  $i_X$  for each half-cycle of the ac source voltage. The three-phase midpoint rectifier is a three-pulse converter (q = 3) with one current pulse in  $i_X$  for each cycle of each phase of the three-phase ac source voltage. The three-phase bridge rectifier is a six-pulse converter (q = 6) with one current pulse in  $i_X$  for each half cycle of each phase of the three-phase ac source voltage.

# **BASIC CONVERTER OPERATION**

Given a certain operating point, rectifier operation and performance are dramatically influenced by the values of source inductance  $L_{s}$ , output filter inductance  $L_{o}$ , and output filter capacitance  $C_{o}$ .

**Operation with Negligible Ac Source Inductance.** Figures 13.2.1 and 13.2.2 show example time waveforms for the single- and three-phase bridge rectifiers of Table 13.2.1*a* and 13.2.1*c*, respectively. In these











**FIGURE 13.2.2** Time waveforms for three-phase bridge rectifier with  $\alpha = 20^{\circ}$ : (*a*) CCM and (*b*) DCM.

examples  $L_s$  is comparatively small and its influence is neglected. The value of  $C_o$  is relatively large so that the ripple in the output voltage  $V_o$  is relatively small. Operation of single- and three-phase phase-controlled rectifiers is described in detail in (Kelley, 1990).

Figure 13.2.1*a* shows time waveforms for the single-phase bridge rectifier when the current  $i_x$  in  $L_o$  flows continuously without ever falling to zero. The rectifier is said to be operating in the *continuous conduction* mode (CCM). The CCM occurs for relatively large  $L_o$ , heavy loads, and small  $\alpha$ . Figure 13.2.1*b* shows time waveforms for the single-phase bridge rectifier when  $i_x$  drops to zero twice each cycle and the rectifier is said to be operating in the *discontinuous conduction mode* (DCM). The DCM occurs for relatively small  $L_o$ , light loads, and large  $\alpha$ .

Figure 13.2.1 also shows the conduction intervals for SCRs  $Q_1$  to  $Q_4$  and the rectifier voltage,  $v_x$ . A controller, not shown in Fig. 13.2.1, generates gating pulses for the SCRs. The controller gates each SCR at a *firing angle*  $\alpha$  (alpha) with respect to a *reference* that is the point in time at which the SCR is first forward biased. The SCR ceases conduction at the *extinction angle*  $\beta$  (beta). The reference,  $\alpha$ , and  $\beta$  for  $Q_1$  are illustrated in Fig. 13.2.1. The SCR *conduction angle*  $\gamma$  (gamma) is the difference between  $\beta$  and  $\alpha$ . In DCM the SCR ceases conduction because  $i_x$  falls naturally to zero, while in the CCM the SCR ceases conduction even though  $i_x$  is not zero because the opposing SCR is gated and begins conducting  $i_x$ . Therefore in CCM,  $\gamma$  is limited to a maximum of one-half of an ac source voltage cycle, while in DCM  $\gamma$  depends on  $L_{\alpha}$ , load, and  $\alpha$ .

Note that  $v_x$  equals  $v_s$  when  $Q_1$  and  $Q_4$  are conducting and that  $v_x$  equals  $-v_s$  when  $Q_2$  and  $Q_3$  are conducting. The output filter  $L_0$  and  $C_0$  reduces the ripple in  $v_x$  and delivers a relatively ripple-free voltage  $V_0$  to the load. The firing angle  $\alpha$  determines the composition of  $v_x$  and ultimately the value of  $V_0$ . Increasing  $\alpha$  reduces  $V_0$  and is the mechanism by which the controller regulates  $V_0$  against changes in ac source voltage and load.



**FIGURE 13.2.3** Time waveforms for three-phase bridge rectifier with appreciable  $L_{S}$ .

This method of output voltage regulation is referred to as *phase control*, and a rectifier using it is said to be a *phase-controlled rectifier*.

Since in CCM the conduction angle is always one half of a source voltage cycle, the dc output voltage is easily found from  $v_x$  as

$$V_o = \frac{2}{\pi} \sqrt{2} \, V_s \cos \alpha \tag{1}$$

where  $V_s$  is the rms value of the transformer secondary voltage  $v_s$ . Unfortunately, the conduction angle in DCM depends on  $L_o$ , the load, and  $\alpha$ , and  $V_o$  cannot be calculated except by numerical methods.

For the three-phase bridge rectifier, Figures 13.2.2*a* and 13.2.2*b* show time waveforms for CCM and DCM, respectively. Operation is similar to the single-phase rectifier except that  $v_x$  equals each of the six line-to-line voltages— $v_{AB}$ ,  $v_{AC}$ ,  $v_{BC}$ ,  $v_{EA}$ ,  $v_{CA}$ , and  $v_{CB}$ —in succession. In CCM, the SCR conduction angle  $\gamma$  is one-third of an ac source voltage cycle, and in DCM  $\gamma$  depends on  $L_o$ , load, and  $\alpha$ . In CCM the dc output voltage  $V_o$  is found from  $v_x$  as

$$V_o = \frac{3}{\pi} \sqrt{3} \sqrt{2} V_s \cos \alpha \tag{2}$$

where  $V_S$  is the rms value of the transformer secondary line-to-neutral voltage. In DCM, the value of  $V_O$  must be calculated by numerical means. To produce a ripple-free output voltage  $V_O$ , the time waveform of  $v_X$  for the threephase rectifier naturally requires less filtering than the time waveform of  $v_X$  for the single-phase rectifier.

## NATURALLY COMMUTATED CONVERTERS

Therefore, if a three-phase ac source is available, a three-phase rectifier is always preferred over a single-phase rectifier.

**Operation with Appreciable Ac Source Inductance.** The preceding discussion assumes that the value of  $L_s$  is small and does not influence circuit operation. In practice the effect of  $L_s$  must often be considered. The three-phase rectifier CCM time waveforms of Fig. 13.2.2 are repeated in Fig. 13.2.3 but for an appreciable  $L_s$ . Since  $i_x$  is always nonzero in CCM, the principal effect of  $L_s$  is to prevent instantaneous transfer of  $i_x$  from one transformer secondary winding to the next transformer secondary winding as the SCRs are gated in succession. This process is called *commutation* and the interval during which it occurs is called *commutation overlap*.

For example, at some point in time  $Q_1$  is conducting  $i_{SA}$  equal to  $i_X$  and  $Q_3$  is gated by the controller. Current  $i_{SA}$  through  $Q_1$  falls while  $i_{SB}$  through  $Q_3$  rises. During this interval both  $Q_1$  and  $Q_3$  conduct simultaneously and the sum of  $i_{SA}$  and  $i_{SB}$  is equal to  $i_X$ . As a result transformer secondary  $v_{SA}$  is directly connected to transformer secondary  $v_{SB}$  effectively creating a line-to-line short circuit. This connection persists until  $i_{SA}$  falls to zero and  $Q_1$  ceases conduction. The duration of the connection is the *commutation angle*  $\mu$  (mu). During this interval  $v_{SA}$  experiences a positive-going voltage "notch" while  $v_{SB}$  experiences a negative-going voltage notch. The enclosed area of the positive-going notch equals the enclosed area of the negative-going notch and represents the flux linkage or "volt seconds" necessary to produce a change in current through  $L_S$  equal to  $i_X$ . If  $L_O$  is sufficiently large so that  $i_X$  is relatively constant with value  $I_X$  during the time that both SCRs conduct, then the notch area is used to find

$$\cos\alpha - \cos(\mu + \alpha) = \sqrt{\frac{2}{3}} \left(2\pi f L_s I_x / V_s\right)$$
(3)

which can be solved numerically for  $\mu$ . Note that the commutation angle is always zero in DCM since  $i_X$  is zero when each SCR is gated to begin conduction.

## **CONVERTER POWER FACTOR**

**Source Current Harmonic Composition.** The time waveforms of the prior section show that the rectifier is a nonlinear load that draws a highly distorted nonsinusoidal waveform  $i_{S}$ . Fourier series is used to decompose  $i_{S}$  into a fundamental-frequency component with rms value  $I_{S(1)}$  and phase angle  $\phi_{S(1)}$  with respect to  $v_{S}$ , and into harmonic-frequency components with rms value  $I_{S(h)}$  where *h* is an integer representing the harmonic number. In general, the  $I_{S(h)}$  are zero for even *h*. Furthermore, depending on converter pulse number *q*, certain  $I_{S(h)}$  are also zero for some odd *h*. Apart from h = 1 for which  $I_{S(1)}$  is always nonzero, the  $I_{S(h)}$  are nonzero for

$$h = kq \pm 1 \ (k \text{ integer} \ge 1) \tag{4}$$

Therefore harmonic currents for certain harmonic numbers are eliminated for higher pulse numbers. For example, the single-phase bridge rectifier with q = 2 produces nonzero  $I_{S(h)}$  for  $h = 1, 3, 5, 7, 9, \ldots$ , while the three-phase bridge rectifier with q = 6 produces nonzero  $I_{S(h)}$  for  $h = 1, 5, 7, 11, 13, \ldots$ . If rectifier operation is unbalanced, then harmonics are produced for all h. An unbalanced condition can result from asymmetrical gating of the SCRs or from voltage or impedance unbalance of the ac source. The effect is particularly pronounced for three-phase rectifiers with a comparatively small  $L_0$  and a comparatively large  $C_0$  since these rectifiers act like "peak detectors" and  $C_0$  charges to the point where  $V_0$  approaches the peak value of the line-to-line voltage. One phase needs to be only several percent below the other two phases for it to conduct a greatly reduced current and shift most of the current to the other two phases. An unbalanced condition is always evident from the waveform of  $i_x$  because the heights of the pulses are not all the same.

**Power Factor.** The rms value  $I_s$  of  $i_s$  is found from

$$I_{S} = \sqrt{I_{S(1)}^{2} + \sum_{h>1} I_{S(h)}^{2}}$$
(5)

#### NATURALLY COMMUTATED CONVERTERS

## 13.24 POWER ELECTRONICS

The ac source is rated for apparent power S, which is the product of  $V_S$  and  $I_S$  (in volt-amperes, VA). However, the source delivers real input power  $P_I$  (in watts, W), which the rectifier converts to dc and supplies to the load. The *total power factor PF* is the ratio of the real input power and the apparent power supplied by the ac source

$$PF = \frac{P_I}{S} = \frac{P_I}{V_S I_S} \tag{6}$$

and measures the fraction of the available apparent power actually delivered to the rectifier. The source voltage  $v_s$  is an undistorted sine wave only if  $L_s$  is negligible. In this case power is delivered only at the fundamental frequency so that

$$P_I = V_S I_{S(1)} \cos \phi_{S(1)} \tag{7}$$

Note that the harmonics  $I_{S(h)}$  draw apparent power from the source by increasing  $I_S$  but do not deliver real power to the rectifier. Using this assumption, the expression for power factor reduces to

$$PF = \cos \phi_{S(1)} \frac{I_{S(1)}}{I_S}$$
(8)

The displacement power factor  $\cos\phi_{S(1)}$  is the traditional power factor used in electric power systems for sinusoidal operation and is unity when the fundamental of  $i_S$  is in phase with  $v_S$ . The purity factor  $I_{S(1)}/I_S$  is unity when  $i_S$  is a pure sine wave and the rms values of  $I_{S(h)}$  are zero so that  $I_S$  equals  $I_{S(1)}$ . The distortion of  $i_S$  is often and equivalently represented by the total harmonic distortion for current THD<sub>i</sub>

$$THD_{i} = 100 \frac{\sqrt{\sum_{h>1} I_{S(h)^{2}}}}{I_{S(1)}} = 100 \sqrt{\frac{1}{(I_{S(1)}/I_{S})^{2}} - 1} \quad \text{(expressed in percent)}$$
(9)

The purity factor  $I_{S(1)}/I_S$  is also called the distortion power factor, which is easily confused with the total harmonic distortion  $THD_{j}$ .

The theoretical maximum power factor for the single-phase bridge rectifier is 0.90, which occurs for  $\alpha = 0^{\circ}$ and usually requires an uneconomically large value of  $L_o$ . The actual power factor often ranges from 0.5 to 0.75. The theoretical maximum power factor for the three-phase bridge rectifier is 0.96 which also occurs for  $\alpha = 0^{\circ}$ . Because the three-phase bridge rectifier requires less filtering, it is often possible to approach this theoretical maximum power factor with an economical value of  $L_o$ . However, for cost reasons,  $L_o$  is often omitted in both the single- and three-phase rectifiers which dramatically reduces the power factor and leaves it to depend on the value of  $L_s$ .

Source Voltage Distortion and Power Quality. The time waveforms of Fig. 13.2.3 show that with appreciable  $L_s$  the rectifier distorts the voltage source  $v_s$  supplying the rectifier. Fourier series is also used to represent  $v_s$  as a fundamental voltage of rms value  $V_{S(1)}$  and harmonic voltages of rms value  $V_{S(h)}$ . The distortion of  $v_s$  is often represented by the total harmonic distortion for voltage *THD*<sub>v</sub>

$$THD_{\nu} = 100 \frac{\sqrt{\sum_{h>1} V_{S(h)^2}}}{V_{S(1)}} \quad \text{(expressed in percent)} \tag{10}$$

Note that the definition of power factor (Eq. (7)) is valid for appreciable  $L_s$  and distorted  $v_s$  but (Eq. (8)) is strictly valid only when  $L_s$  is negligible and  $v_s$  is undistorted.

Voltage distortion can cause problems for other loads sharing the rectifier ac voltage source. Computerbased loads, which have become very common, appear to be particularly sensitive. Issues of this kind have been receiving increased attention and fall under the general heading of *power quality*. Increasingly strict

power factor and harmonic current limits are being placed on ac-to-dc converters (IEEE-519, 1992; IEC-1000, 1995). In particular, limits on the total harmonic distortion of the current  $THD_i$ , the rms values  $I_{S(h)}$  of the harmonics, and the rms values of the harmonics relative to the fundamental  $I_{S(h)}/I_{S(1)}$  are often specified. These limits present new challenges to the designers of ac-to-dc converters.

# ADDITIONAL CONVERTER TOPOLOGIES

This section summarizes the large number of converters that are based on the rectifiers of Table 13.2.1. These converters are shown in Table 13.2.2.

**Uncontrolled Diode Rectifier.** Replacing SCRs with diodes produces an uncontrolled rectifier as shown in Table 13.2.2*a*. In contrast to the SCRs, which are gated by a controller, the diodes begin conduction when initially forward biased by the circuit so that an uncontrolled diode rectifier behaves like a phase-controlled rectifier operated with  $\alpha = 0^{\circ}$ . Details of uncontrolled diode rectifier operation are described in Kelley (1992).

Half-Controlled Bridge Rectifier. In the half-controlled bridge rectifier the even-numbered SCRs ( $Q_2$  and  $Q_4$  for the single-phase rectifier, and  $Q_2$ ,  $Q_4$ , and  $Q_6$  for the three-phase rectifier) are replaced with diodes as shown in Table 13.2.2b. The remaining odd-numbered SCRs ( $Q_1$  and  $Q_3$  for the single-phase rectifier, and  $Q_1$ ,  $Q_3$ , and  $Q_5$  for the three-phase rectifier) are phase controlled to regulate the dc output voltage  $V_0$ . This substitution is advantageous because diodes are cheaper than SCRs and the cathodes of the remaining SCRs are connected to a common point that simplifies SCR gating.

Note that the diodes begin conduction when first forward biased while the SCRs begin conduction only after being gated while under forward bias. As a result, during a certain portion of each cycle,  $i_X$  freewheels through the series connection of a diode and SCR, thereby reducing  $i_S$  to zero. For example, in the single-phase bridge rectifier  $i_X$  freewheels through  $Q_1$  and  $D_2$  for one part of the cycle and through  $Q_3$  and  $D_4$  for another part of the cycle. In the three-phase rectifier  $i_X$  freewheels through  $Q_1$  and  $D_2$  for one part of  $Q_1$  and  $D_2$ ,  $Q_3$  and  $D_4$ , and  $Q_5$  and  $D_6$  during different parts of the cycle. This freewheeling action prevents  $v_X$  from changing polarity and improves rectifier power factor as  $\alpha$  increases and  $V_{\alpha}$  decreases.

*Freewheeling Diode.* The same effect is achieved if a *freewheeling diode*  $D_X$  is connected across terminals 1 and 2 of the rectifier as shown in Table 13.2.2*c*. The freewheeling diode is used with both the bridge and midpoint rectifier connections.

*Dc Motor Drive.* Any of the phase-controlled rectifiers described above can be used as a dc motor drive by connecting the motor armature across terminals 1 and 2 as shown in Table 13.2.2*d*. Phase control of SCR firing angle  $\alpha$  controls motor speed.

**Battery Charger.** Phase-controlled rectifiers are widely used as battery chargers as shown in Table 13.2.2*e*. Phase control of SCR firing angle  $\alpha$  regulates battery charging current.

*Line Commutated Inverter.* A line-commutated inverter transfers power from the dc terminals 1 and 2 of the converter to the ac source. As shown in Table 13.2.2*f*, the dc terminals are connected to a dc source of power such as a dc generator or a battery. The polarity of each SCR is reversed and the rectifier is operated with  $\alpha > 90^\circ$ . This circuit is called a line-commutated inverter or a synchronous inverter. Note that the half-controlled bridge and the freewheeling diode cannot be used with a line-commutated inverter because they prevent a change in the polarity of  $v_x$ .

Operation with  $\alpha > 90^{\circ}$  causes the majority of the positive half cycle of  $i_s$  to coincide with the negative half cycle of  $v_s$ . Similarly, the negative half cycle of  $i_s$  coincides with the positive half cycle of  $v_s$ . It is this mechanism that, on average, causes power flow from the dc source into the ac source. In principal  $\alpha$  could approach 180°, but in practice  $\alpha$  must be limited to 160° or less to permit sufficient time for the SCRs to stop conducting and regain forward voltage blocking capability before forward voltage is reapplied to them. This requirement is particularly important when  $L_s$  is appreciable.

| TABLE 13.2.2 | Additional | Converter | Topologies |
|--------------|------------|-----------|------------|
|--------------|------------|-----------|------------|

|                                            | Single-Phase Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Three-Phase Source                                            |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| (a) Uncontrolled<br>diode<br>rectifier     | Replace all SCRs 🛊 with diod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | les                                                           |  |
| (b) Half-controlled<br>bridge<br>rectifier | Replace SCRs $Q_2, Q_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Replace SCRs $Q_2, Q_4, Q_6$                                  |  |
|                                            | with diodes $D_2, D_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | with diodes $D_2$ , $D_4$ , $D_6$                             |  |
| (c) Freewheeling<br>diode                  | Retain $L_0$ , $C_0$ , and load, adding diode $D_X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |  |
| (d) Dc motor drive                         | Replace $L_O$ , $C_O$ , and load<br>with dc motor $+ \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               |  |
| (e) Battery charger                        | Replace $L_O$ , $C_O$ , and load<br>with $L_O$ and battery $\begin{array}{c}1\\-\\-\\-\\-\\-\\-\\2\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 고<br>-<br>-                                                   |  |
| (f) Line commutated<br>inverter            | Reverse polarity of all SCRs<br>Replace $L_O$ , $C_O$ , and load with<br>dc generator or battery<br>+ $1$<br>- $2$<br>- $2$ | $\begin{array}{c} & \\ & \\ & \\ \text{and } L_O \end{array}$ |  |



TABLE 13.2.2 Additional Converter Topologies (Continued)

(Continued)

|                                                     | Single-Phase Source | Three-Phase Source                                                                       |
|-----------------------------------------------------|---------------------|------------------------------------------------------------------------------------------|
| (j) Series-connected<br>12-pulse<br>rectifier       | Not-applicable      | A<br>B<br>C<br>C<br>Y<br>pri<br>Y<br>Sec<br>A<br>pri<br>Y<br>Sec<br>A<br>pri<br>Y<br>Sec |
| (k) Parallel-<br>connected<br>12-pulse<br>rectifier | Not-applicable      | A<br>Interphase reactor<br>B<br>C<br>V pri Y sec<br>A pri Y sec                          |

| TABLE 13.2.2 Additional Converter To | pologies (Continued) |
|--------------------------------------|----------------------|
|--------------------------------------|----------------------|

Alternate Three-Phase Transformer Connections. Both primary and secondary transformer windings may be either Y-connected or  $\Delta$ -connected, as shown in Table 13.2.2g except for the midpoint connection, which requires a Y-connected secondary winding. If the connection is Y-Y or  $\Delta$ - $\Delta$  the waveform of secondary current  $i_s$  is scaled by the transformer turn ratio to become the waveform of primary current  $i_p$ . Therefore, the secondary current fundamental  $I_{S(1)}$  and harmonics  $I_{S(h)}$ , when scaled by the turn ratio, become the primary fundamental  $I_{P(1)}$  and harmonics  $I_{P(h)}$ .

Similarly, if the transformer connection is Y- $\Delta$  or  $\Delta$ -Y, the secondary current fundamental  $I_{S(1)}$  and harmonics  $I_{S(h)}$ , when scaled by the turn ratio, become the primary fundamental  $I_{P(1)}$  and harmonics  $I_{P(h)}$ . However, the Y- $\Delta$  and  $\Delta$ -Y transformer connections introduce different phase shifts for each harmonic so that the primary current waveform  $i_P$  differs in shape from the secondary current wave-form  $i_S$ . Rectifier power factor remains unchanged; however, this phase shift is used to produce harmonic cancellation in rectifiers with high pulse numbers as described subsequently.

**Bidirectional Converter.** Many applications require bidirectional power flow from a single converter. Table 13.2.2*h* illustrates one example in which a phase-controlled rectifier is, effectively speaking, connected in parallel with a line commutated inverter by replacing each SCR with a *pair* of SCRs connected in antiparallel. The load is replaced either by a battery or by a dc motor. In the bidirectional converter, one polarity of SCRs is used to transfer energy from the ac source to the battery or motor while the opposite polarity of SCRs is used to reverse the power flow and transfer energy from the battery or motor to the ac source.

For example, using the battery, the converter operates as a battery charger to store energy when demand on the utility is low and at a subsequent time the converter operates as a line commutated inverter to supply energy

### NATURALLY COMMUTATED CONVERTERS

#### NATURALLY COMMUTATED CONVERTERS 13.29

when demand on the utility is high. Using a dc motor, the converter operates as a dc motor drive to supply power to a rotating load. Depending on the direction of motor rotation and on which polarity of SCRs is used, the bidirectional converter can both brake the motor efficiently by returning the energy stored in the rotating momentum back to the ac source and subsequently reverse the motors direction of rotation.

Active Power Factor Corrector. In many instances the basic converter topologies of Table 13.2.1 and the additional converter topologies of Table 13.2.2*a* to 13.2.2*g* cannot meet increasingly strict power factor and harmonic current limits without the addition of expensive passive filters operating at line frequency. The active power factor corrector, illustrated in Table 13.2.2*i*, is one solution to this problem (Rippel, 1979; Kocher, 1982; Latos, 1982). The output filter inductor  $L_0$  is replaced by a high-frequency filter and a dc-to-dc converter. The dc-to-dc converter uses high-frequency switching and a fast control loop to actively control the waveshape of  $i_x$ , and therefore control the waveshape of  $i_s$ , for near unity displacement power factor and near unity purity factor resulting in near unity power factor ac-to-dc conversion (Huliehel, 1992). A high-frequency filter is required to prevent dc-to-dc converter switching noise from reaching the ac source.

A slower control loop regulates  $V_o$  against changes in source voltage and load. Because the dc-to-dc converter regulates  $V_o$  over a wide range of source voltage, the active power factor corrector can be designed for a *universal input* that allows the corrector to operate from nearly any ac voltage source. The active power factor corrector is used most commonly for lower powers.

*Higher Pulse Numbers.* When strict power factor and harmonic limits are imposed at higher power levels, and the active factor corrector cannot be used, the performance of the basic rectifier is improved by increasing the pulse number q and elimination of current harmonics  $I_{S(h)}$  for certain harmonic numbers as shown by Eq. (4). Table 13.2.2j and 13.2.2k illustrate two examples based on the three-phase six-pulse bridge rectifier (q = 6) of Table 13.2.1c. The six-pulse rectifiers are shown connected in series in Table 13.2.2j and in parallel in Table 13.2.2k. The parallel connection in Table 13.2.2k requires an *interphase reactor* to prevent commutation of the SCRs in one rectifier from interfering with commutation of the SCRs in the other rectifier. The interphase reactor also helps the two rectifiers share the load equally.

Both approaches use a Y-Y transformer connection to supply one six-pulse rectifier and a  $\Delta$ -Y transformer connection to supply the second six-pulse rectifier. The primary-to-secondary voltage phase shift of the  $\Delta$ -Y transformer means the two rectifiers operate out of phase with each other producing 12-pulse operation (q = 12). As described previously, the  $\Delta$ -Y transformer also produces a secondary-to-primary phase shift of the current harmonics. As a result, at the point of connection to the ac source, harmonics from the  $\Delta$ -Y connected six-pulse rectifier cancel the harmonics from the Y-Y connected six-pulse rectifier for certain harmonic numbers. For example, the harmonics cancel for h = 5 and 7, but not for h = 11 and 13. Thus the total harmonic distortion for current *THD<sub>i</sub>* and the total power factor for the 12-pulse converter is greatly improved in comparison to either six-pulse converter alone. The 12-pulse output voltage ripple filtering requirement is also greatly reduced compared to a single six-pulse rectifier. This principle can be extended to even higher pulse numbers by using additional six-pulse rectifiers and transformer phase-shift connections.

*High Voltage Dc Transmission.* High Voltage dc (HVDC) Transmission is a method for transmitting power over long distances while avoiding certain problems associated with long distance ac transmission. This requirement often arises when a large hydroelectric power generator is located a great distance from a large load such as a major city. The hydroelectric generator's relatively low ac voltage is stepped up by a transformer, and a phase-controlled rectifier converts it to a dc voltage of a megavolt or more. After transmission over a long distance, a line commutated inverter and transformer convert the dc back to ac and supply the power to the load. Alternately, the rectifier and inverter are co-located and used as a tie between adjacent utilities. The arrangement can be used to actively control power flow between utilities and to change frequency between adjacent utilities operating at 50 and 60 Hz.

With power in the gigawatt range, this is perhaps the highest power application of a power electronic converter. To ensure a stable system, the control algorithms of the rectifier and inverter must be carefully coordinated. Note that since the highest voltage rating of an individual SCR is less than 10 kV, many SCRs are connected in series to form a *valve* capable of blocking the large dc voltage. Both the rectifier and inverter use a high pulse number to minimize filtering at the point of connection to the ac source.

# REFERENCES

Dewan, S. B., and A. Straughen, "Power Semiconductor Circuits," Wiley, 1975.

- Huliehel, F. A., F. C. Lee, and B. H. Cho, "Small-signal modeling of the single-phase boost high power factor converter with constant frequency control," *Record of the 1992 IEEE Power Electronics Specialists Conference (PESC '92)*, pp. 475–482, June 1992.
- IEC-1000 Electromagnetic Compatibility (EMC), Part 3: Limits, Section 2: Limits for Harmonic Current Emissions (formerly IEC-555-2), 1995.
- IEEE Standard 519, "IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems," 1992.
- Kelley, A. W., and W. F. Yadusky, "Phase-controlled rectifier line-current harmonics and power factor as a function of firing angles and output filter inductance," *Proc. IEEE Applied Power Electronics Conf.*, pp. 588–597, March 1990.
- Kelley, A. W., and W. F. Yadusky, "Rectifier design for minimum line-current harmonics and maximum power factor," *IEEE Trans. Power Electronics*, Vol. 7, No, 2, pp. 332–341, April 1992.
- Kocher, M. J., and R. L. Steigerwald, "An ac-to-dc converter with high-quality input waveforms," *Record of the 1982 IEEE Power Electronics Specialists Conference (PESC '82)*, pp. 63–75, June 1982.
- Latos, T. S., and D. J. Bosak, "A high-efficiency 3-kW switchmode battery charger," *Record of the 1982 IEEE Power Electronics Specialists Conference (PESC '82)*, pp. 341–349, June 1982.

Pelley, B. R., "Thyristor Phase-Controlled Converters and Cycloconverters," Wiley, 1971.

Rashid, M. "Power Electronics: Circuits, Devices, and Applications," 2nd ed., Prentice Hall, 1993.

Rippel, W. E., "Optimizing boost chopper charger design," *Proceedings of the Sixth National Solid-State Power Conversion Conference (POWERCON6)*, pp. D1-1–D1-20, 1979.

Schaeffer, J., "Rectifier Circuits: Theory and Design," Wiley, 1965.