
CHAPTER 18.4
SOFTWARE

NATURE OF THE PROBLEM

Even though hardware costs have been declining dramatically over a 30-year period, the overall cost of devel-
oping and implementing new data processing systems and applications has not decreased. Because developing
software is a predominantly labor-intensive effort, overall costs have been increasing. Furthermore, the prob-
lems being solved by software are becoming more and more complex. This creates a real challenge to achieve
intellectual and management control over the software development process.

The successful development of software requires discipline and rigor coupled with appropriate manage-
ment control arising from adequate visibility into the development process itself. This has led to the rise of
software engineering, defined as the application of scientific knowledge to the design and construction of
computer programs and the associated documentation and to the widespread use of standardized commer-
cially available software packages. In addition, a set of software tools has been developed to assist in system
analysis of designs. The tools, often called computer assisted systems engineering, or CASE tools, mecha-
nize the graphic and textual descriptions of processes, test interrelationships, and maintain cross-referenced
data dictionaries.

THE SOFTWARE LIFE-CYCLE PROCESS

In the earlier history of software the primary focus was on its development, but it has become evident that many
programs are not one-shot consumables but are tools intended to be used repetitively over an extended time.
As a result, it is obvious that the entire software life cycle must be considered. The software life cycle is that
period of time over which the software is defined, developed, and used. Figure 18.4.1 shows the traditional
model of the software life-cycle process and its five major phases. It begins with the definition phase, which
is the key to everything that follows. During the definition phase, the system requirements to be satisfied by
the system are developed and the system specifications, both hardware and software, are developed. These
specifications describe what the software product must accomplish. At the same time, test requirements should
also be developed as a requisite for systems acceptance testing.

The design phase is concerned with the design of a software structure that can meet the requirements. The
design describes how the software product is to function. During the development phase, the software product is
itself produced, implemented in a programming language, tested to a limited degree, and integrated. During the
test phase, the product is extensively tested to show that it does in fact satisfy the user’s requirements. The oper-
ational phase includes the shipment and installation of the data-processing system in the user’s facility. The sys-
tem is then employed by the user, who usually embarks on a maintenance effort, modifying the system to improve
its performance and to satisfy new requirements. This effort continues for the remainder of the life of the system.

18.71

Christiansen_Sec_18.qxd 10/28/04 11:12 AM Page 18.71

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Source: STANDARD HANDBOOK OF ELECTRONIC ENGINEERING

PROGRAMMING

When a stored-program digital computer operates, its storage contains two types of information: the data being
processed and program instructions controlling its operations. Both types of information are stored in binary
form. The control unit accesses storage to acquire instructions; the ALU makes reference to storage to gain
access to data and modify it. The set of instructions describing the various operations the computer is designed
to execute is referred to as a machine language, and the act of constructing programs using the appropriate
sequences of these computer instructions is called machine-language programming. It is possible but expen-
sive to write them directly in machine languages, and maintenance and modification is virtually impossible.
Programming languages have been created to make the code more accessible to its writers.

A programming language consists of two major parts: the language itself and a translator. The language is
described by a set of symbols (the alphabet) and a grammar that tells how to assemble the symbols into cor-
rect strings. The translator is a machine-language program whose main function is to translate a program writ-
ten in the programming language (the source code) into machine language (object code) that can be executed
in the computer. Before describing some of the major programming languages currently in use, we consider
two important programming concepts, alternation and iteration, and also see by examples some of the diffi-
culties associated with machine-language programming.

ALTERNATION AND ITERATION

These techniques are illustrated here using a computer whose storage consists of 10,000 words each contain-
ing 4 bytes numbered 1 to 4. The instruction format is

18.72 DIGITAL COMPUTER SYSTEMS

FIGURE 18.4.1 Traditional model of the software life-cycle process showing
its five major phases.

1 2 3 4

op code 0 Address

Op code Name Description

01 LOAD Loads value from addressed word into data register
02 COMP Compares value of addressed word with data-register value
03 ADD Adds value of addressed word to data register
08 STORE Copies value of data register into addressed storage word
20 BRLO Branches if data-register value from last previously executed COMP was less than comparand

Christiansen_Sec_18.qxd 10/28/04 11:12 AM Page 18.72

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

SOFTWARE

FLOWCHARTS

One way to depict the logical structure of a program graphically is by the use of flowcharts. Flowcharts are
limited in what they can convey about a computer program, and with the advent of modern programming
design languages they are becoming less widely used. However, they are used here to portray these simple pro-
grams graphically. The program of the preceding example is depicted by the flowchart shown in Fig. 18.4.2.

The flowchart contains boxes representing processes (rectangular boxes) and decisions (alternations—
diamond-shaped boxes). The arrows connecting the boxes represent the paths and sequences of instruction
execution. An alternation represents an instruction (or a sequence of instructions) with more than one possible
successor depending on the result of some processing test (this is commonly a conditional branch). In the
example, instruction 0103 is or is not executed depending on the values of the two items.

If the example is extended to require finding the least of four item values, the flowchart is that shown in
Fig. 18.4.3. If the example is further extended to find the largest value of 1000 items (in locations 0336 through
0790 inclusive in hexadecimal), the flowchart and the corresponding program become very large if analogous
extensions of the flowcharts are used.

The alternative is to use the technique known as the program loop. A program loop for this latter example is:

SOFTWARE 18.73

The computer used in this simplified example contains a separate nonaddressable data register that contains
one word of data. Further, each instruction is accessed at an address 1 more than that of the previously exe-
cuted instruction unless that instruction was BRLO instruction with a low COMP condition, in which case the
address part of the BRLO instruction is the address at which the next instruction is to be accessed.

Consider the following program instructions (beginning at address 0100) to select the lower value of two
items (in words 0950 and 0951) and place the selected value in a specific place (word 0800):

Address Instruction Effect

0100 01000950 Place first-item value in data register
0101 02000951 Compare second-item value with data-register value
0102 20000104 Branch to next instruction at address 0104 if data-register value was lower
0103 01000951 Place second item value in data register
0104 08000800 Store lower value in result (word 0800)

FIGURE 18.4.2 Flowchart of a simple program. The boxes represent
processes; the diamonds represent decisions.

Christiansen_Sec_18.qxd 10/28/04 11:12 AM Page 18.73

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

SOFTWARE

18.74 DIGITAL COMPUTER SYSTEMS

Address Instruction Effect

0100 01000950 Move first item as initial value of result (ITEMHI)
0101 08000800
0102 01000900 Initialize loop to begin with item 2
0103 08000104
0104 (00000000) Loop, Nth item to data register
0105 02000800 Compare with prior ITEMHI value
0106 20000108 Branch to 108 if Nth item value low
0107 08000800 Store Nth item value as ITEMHI
0108 01000104 Increment value, of N by 1
0109 03000901
010A 08000104
010B 02000902 Compare against N = 1001
010C 2000104 Branch for looping if N < 1001
010D end
0900 01000951 Load item 2; initial instruction
0901 00000001 Address increment of 1
0902 010003E9 Limit test; load 1001st item

FIGURE 18.4.3 Flowchart of a repetitive task. FIGURE 18.4.4 Flowchart showing a program loop.

Christiansen_Sec_18.qxd 10/28/04 11:12 AM Page 18.74

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

SOFTWARE

The corresponding flowchart appears in Fig. 18.4.4. The loop proper (instructions 0104 to 010C) is executed
999 times. The instruction at 0104 accesses the Nth item and is indexed each time the program flows through
the loop so that on successive executions successive words of the item table are obtained. After each loop exe-
cution, a test is made to determine whether processing is complete or a branch should be made back to the
beginning of the loop to repeat the loop program.

The loop proper is preceded by several instructions that initialize the loop, presetting ITEMHI and the
instruction 0104 value for the first time through. A loop customarily has a process part, and an induction part
to make changes for the next loop iteration, and an exit test or termination to determine whether an additional
iteration is required.

ASSEMBLY LANGUAGES

The previous example illustrates the difficulty of preparing and understanding even simple machine-language
programs. One help would be the ability to use a symbolic (or mnemonic) representation of the operations
and addresses used in the program. The actual translation of these symbols to specific computer operations
and addresses is a more or less routine clerical procedure. Since computers are well suited to performing such
routine operations, it was quite natural that the first automatic programming aids, assembly languages and
their associated assembly programs, were developed to take advantage of that fact. Assembly languages permit
the critical addressing interrelations in a program to be described regardless of the storage arrangement, and they
can produce therefrom a set of machine instructions suitable for the specific storage layout of the computer in
use. An assembly-language program for the 1000-value program of Fig. 18.4.4 is shown in Fig. 18.4.5.

The program format illustrated is typical. Each line has four parts: location, operation, operand(s), and com-
ments. The location part permits the programmer to specify a symbolic name to be associated with the address

SOFTWARE 18.75

FIGURE 18.4.5 An assembly program. The program statements are in a one-to-one correspondence with machine
instructions. Hence the procedure is fully supplied by the programmer according to the particular macroinstruction
set of the system. The assembly language alleviates housekeeping routines, such as specific assignments, and makes
user-oriented symbols possible instead of numeric or binary code.

Christiansen_Sec_18.qxd 10/28/04 11:12 AM Page 18.75

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

SOFTWARE

of the instruction (or datum) defined on that line. The operation part contains a mnemonic designation of the
instruction operation code. Alternatively, that line may be designated to be a datum constant, a reservation of
data space, or a designation of an assembly pseudo operation (a specification to control the assembly process
itself). Pseudo operations in the example are ORG for origin and END to designate the end of the program.

The operand field(s) give the additional information needed to specify the machine instruction, e.g., the
name of a constant, the size of the data reservation, or a name associated with a pseudo operation. The com-
ment part serves for documentation only; it does not affect the assembly-program operation.

After a program is written in assembly language, it is processed by an assembler. The assembly program
reads the symbolic assembly-language input and produces (1) a machine instruction program with constants,
usually in a form convenient for subsequent program loading, and (2) an assembly listing that shows in typed
or printed form each line of the symbolic assembly-language input, together with any associated machine
instructions or constants produced therefrom.

The assembly pseudo operation ORG specifies that the instructions and/or constant entries for succeeding lines
are to be prepared for loading at successive addresses, beginning at the specified load origin (value of operand field
or ORG entry). Thus the 13 symbolic instructions following the initial ORG line in Fig. 18.4.5 are prepared for
loading at addresses 0100 through 010C inclusive, with the following symbolic associations established:

Four instructions of this group of 13 contain the symbol LOOP ST in the operand field, and the corre-
sponding machine instructions will contain 0104 in their address parts.

The operation of a typical assembly program therefore consists of (1) collecting all location symbols and
determining their values (addresses), called building the symbol table, and (2) building the machine instruc-
tions and/or constants by substituting op codes for the OP mnemonics and location symbol values for their
positions in the operand field. The symbol table must be formed first since, as the first instruction in the exam-
ple shows, a machine instruction may refer to a location symbol that appears in the location field near the pro-
gram end. Thus most assembly programs process the program twice; the first pass builds the symbol table, and
the second pass builds the machine-language program. Note in the example the use of the operation RESRV
to reserve space (skipping in the load-address sequence) for variable data.

Assembly language is specific to a particular computer instruction repertoire. Hence, the basic unit of
assembly language describes a single machine instruction (so-called one-for-one assembly process).

Most assembly languages have a macroinstruction facility. This permits the programmer to define macros
that can generate desired sequences of assembly-language statements to perform specific functions. These
macro definitions can be placed in macro libraries, where they are available to all programmers in the facility.

The term procedure (also subroutine and subprogram) is used to refer to a group of instructions that per-
form some particular function used repeatedly in essentially the same context. The quantities that vary between
contexts may be regarded as parameters (or arguments) of the procedure. The method of adaptation of the pro-
cedure determines whether it is an open or closed procedure.

An open subroutine is adapted to its parameter values during code preparation (assembly or compilation) in
advance of execution, and a separate copy of the subroutine code is made for each different execution context. A
closed subroutine is written to adapt itself during execution to its parameter values; hence, a single copy suffices
for several execution contexts in the same program. The open subroutine executes faster since tailoring to its pa-
rameter values occurs before execution begins. The closed subroutine not only saves storage space, since one copy
serves multiple uses, but is more flexible, in that parameter values derived from the execution itself can be used.

A closed subroutine must be written to determine its parameter values in a standard way (including the
return point after completion). The conventions for finding the values and/or addresses of values are called the
subroutine linkage conventions. Quite commonly, a single address is placed in a particular register, and this
address in turn points to a consecutively addressed list of addresses and/or values to be used. Subroutines com-
monly use (or call) other closed subroutines, so that there are usually a number of levels of subroutine control

Location symbol (Local) address

START 100
LOOP ST 104
LOOP INC 108

18.76 DIGITAL COMPUTER SYSTEMS

Christiansen_Sec_18.qxd 10/28/04 11:12 AM Page 18.76

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

SOFTWARE

available at any point during execution. That is, one routine is currently executing, and others are waiting at
various points in partially executed condition.

HIGH-LEVEL PROGRAMMING LANGUAGES

On general-purpose digital computers, high-level programming languages have largely superseded assembly
languages as the predominant method of describing application programs. Such programming languages are
said to be high-level and machine-independent. High-level means that each program function is such that sev-
eral or many machine instructions must be executed to perform that function. Machine-independent means that
the functions are intended to be applied to a wide range of machine-instruction repertoires and to produce for
each a specific machine representation of data.

The high-level language translator is known as a compiler, i.e., a program that converts an input program
written in a particular high-level language (source program) to the machine language of a particular machine
type (object program) each time the source code is executed.

HIGH-LEVEL PROCEDURAL LANGUAGES

Most of the high-level programming languages are said to be procedural. The programmer writing in a high-
level procedural language thinks in terms of the precise sequence of operations, and the program description
is in terms of sequentially executed procedural statements. Most high-level procedural languages have state-
ments for documentation, procedural execution, data declaration, and various compiler and execution control
specifications.

The program in Fig. 18.4.6, written in the FORTRAN high-level language, describes the program function
given in Fig. 18.4.5 in assembly language. The first six lines are for documentation only, as indicated by C in
the first column. The DIMENSION statement defines ITEM to consist of 1000 values. The assignment state-
ment ITEMHI = ITEM (1) is read as “set the value of ITEMHI to the value of the first ITEM.” The next state-
ment is a loop-control statement meaning: “do the following statements through the statement labeled 1 for the
variable N assuming every value from 2 through 1000.” The statement labeled 1 causes a test to be made to
“see if the Nth ITEM is greater than .GT. the value of ITEMHI, and if so, set the ITEMHI value equal to the
value of the Nth item.

SOFTWARE 18.77

FIGURE 18.4.6 An example of a FORTRAN program, corresponding to the flowchart of Fig. 18.4.4 and assem-
bly program of Fig. 18.4.5.

Christiansen_Sec_18.qxd 10/28/04 11:12 AM Page 18.77

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

SOFTWARE

FORTRAN

The high-level programming languages most commonly used in engineering and scientific computation are
C++, FORTRAN, ALGOL, BASIC, APL, PL/I, and PASCAL FORTRAN, the first to appear was developed
during 1954 to 1957 by a group headed by Backus of IBM. Based on algebraic notation, it allows two types
of numbers: integers (positive and negative) and floating point. Variables are given character names of up to
six positions. All variables beginning with the letters I, J, K, L, M, or N are integers; otherwise they are float-
ing point. Integer constants are written in normal fashion, 1, 0, –4, and so on. Floating-point constants must
contain a decimal point, 3.1, – 0.1, 2.0, 0.0, and so on. For example, 6.02 × 1024 is written 6.02E24. This stan-
dard notation was adopted to accommodate the limited capability of computer input-output equipment.

READ and WRITE statements permit values of variables to be read into or written from the ALU, from or
to input, output, or intermediate storage devices. The latter may operate merely by transcribing values or may
be accompanied by conversions or editing specified in a separate FORMAT statement. Some idea of the range
of operations provided in FORTRAN is shown by the following value-assignment statement:

ROOT = (–(B/2.0) + SQRT ((B/2.0) ** 2 – A*C))/A

This is the formula for the root of a quadratic equation with coefficients A, B, and C. The asterisk indicates
multiplication, / stands for division, and ** exponentiation.

The notation: name (expression) and name (Expression, expression), and so forth, is used in FORTRAN
with two distinct meanings depending on whether or not the specific name appears in a DIMENSION state-
ment. If so, the expression(s) are subscript values; otherwise the name is considered to be a function name, and
the expressions are the values of the arguments of the function. SQRT ((B/2.0) **2 – A*C) in the preceding
assignment statement requires the expression (B/2.0)**2 – A*C to be evaluated, and then the function (square
root here) of that value is determined. Square root and various other common trigonometric and logarithmic
functions and their respective inverses are standardized in FORTRAN, typically as closed subroutines.

The same notations may be employed for a function defined by a FORTRAN programmer in the FORTRAN
language. This operation is performed by writing a separate FORTRAN program headed by the statement

FUNCTION name (arg 1, arg 2, etc.)

where arg represents the name that stands for the actual argument value at each evaluation of that function.
Similarly, any action or set of actions described by a closed FORTRAN subroutine is called for by “CALL sub-
routines (args)” together with a defining FORTRAN subroutine headed by “SUBROUTINE subroutine name
(args).”

BASIC

BASIC is high-level programming language based on algebraic notation that was developed for solving prob-
lems at a terminal; it is particularly suitable for short programs and instructional purposes. The user normally
remains at the terminal after entering his program in BASIC, while it compiles, executes, and types the output,
a process that typically requires only a few seconds. Widely used in PCs, BASIC is usually bundled with PC
operating systems. It is available in both interpretive and compiled versions, and may include an extensive set
of programming capabilities. Visual BASIC is currently being used on display-oriented operating systems such
as Windows.

APL

A programming language (APL) is high-level language that is often used because it is easy to learn and has
an excellent interactive programming system supporting it. Its primitive objects are arrays (lists, tables, and
so forth). It has a simple syntax, and its semantic rules are few. The usefulness of the primitive functions is

18.78 DIGITAL COMPUTER SYSTEMS

Christiansen_Sec_18.qxd 10/28/04 11:12 AM Page 18.78

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

SOFTWARE

further enhanced by operations that modify their behavior in a systematic manner. The sequence control is sim-
ple because one statement type embraces all types of branches and the termination of the execution of any
function always returns control to the point of use. External communication is established by variables shared
between APL and other systems.

PASCAL

An early high-level programming languages is PASCAL, developed by Niklaus Wirth. It has had widespread
acceptance and use since its introduction in the early 1970s. The language was developed for two specific pur-
poses: (1) to make available a language to teach programming as a systematic discipline and (2) to develop a
language that supports reliable and efficient implementations. PASCAL provides a rich set of both control
statements and data structuring facilities. Six control statements are provided: BEGIN-END, IF-THEN-ELSE,
WHILE-DO, REPEAT-UNTIL, FOR-DO, and CASE-END. Similar control statements can be found in virtu-
ally all high-level languages.

In addition to the standard scalar data types, PASCAL provides the ability to extend the language via user-
defined scalar data types. In the area of higher-level structured data types, PASCAL extends the array facility
of ALGOL 60 to include the record, set, file, and pointer data types. In addition to these, PASCAL contains a
number of other features that make it useful for programming and teaching purposes. In spite of this, PASCAL
is a systematic language and modest in size, attributes that account for its popularity.

ADA PROGRAMMING LANGUAGE

(Ada is a registered trademark of the Department of Defense.) Ada is named after Lord Byron’s daughter. This
language was developed by the U.S. Department of Defense to be a single successor to a number of high-level
languages in use by the armed forces of the United States. It was finalized in 1980.

The Ada language was designed to be a strongly typed language, with features from modern programming
language theory and software engineering practices. It is a block-structured language providing mechanisms
for data abstraction and modularization. It supports concurrent processing and provides user control over
scheduling and interrupt handling.

C PROGRAMMING LANGUAGE

Research is continuing in the development of new languages that support the concepts growing out of modern
software technology development. One such language is the C programming language (a registered trademark
of AT&T). C is a general-purpose programming language designed to feature modern control flow and data
structures and a rich set of operators, yet provide an economy of expression. Although it was not specialized
for any one area of application, it has been found especially useful for implementing operating systems and is
being more widely used in communications and other areas. C++ is a later version of this language. An exten-
sion of this language has been called JAVA, developed by Sun Microsystems.

OBJECT-ORIENTED PROGRAMMING LANGUAGES

A second area of programming language development has been the creation of object-oriented languages. These
are used for message-object programming, which incorporates the concepts of objects that communicate by
messages. An object includes data, a set of procedures (methods) that operate on the data, and a mechanism for

SOFTWARE 18.79

Christiansen_Sec_18.qxd 10/28/04 11:12 AM Page 18.79

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

SOFTWARE

translating messages. These languages should contribute to improved reusability of software—a highly sought
after goal to increase programming productivity and reduce software costs. These languages are based on the
concept that “objects,” once defined, are henceforth available for reuse, without reprogramming. Programs can
then be viewed as mechanisms that employ the appropriate object at the appropriate time to accomplish the
task at hand.

COBOL AND RPG

High-level programming languages used for business data-processing applications emphasize description and
handling of files for business record keeping. Two widely used programming languages for business applica-
tions are COBOL (common business-oriented language) and RPG (report program generation). Compilers for
these languages, with generalized sorting programs, form the fundamental automatic programming aids of
many computer installations primarily used for business data processing. COBOL and RPG have comparable
file, record, and field-within-record descriptive capabilities, but the specification of processing and sequence
control device from basically different concepts.

OPERATING SYSTEMS

There are many reasons for developing and using an operating system for a digital computer. One of the main
reasons is to optimize the scheduling and use of computer resources, so as to increase the number of jobs that

can be run in a given period. Creation of a multiprogram-
ming environment means that the resources and facilities of
the computing system can be shared by a number of differ-
ent programs, each written as if it were the only program in
the system.

Another major objective for an operating system is to
provide the full capability of the computing system to the
user while minimizing the complexity and depth of knowl-
edge of the computer system required. This is accom-
plished by establishing standard techniques for handling
system functions like program calling and data manage-
ment and providing a convenient and effective interface to
the user. In effect the user is able to deal with the operating
system as an entity rather than having to deal with each of
the computer’s features. As indicated in Fig. 18.4.7 each

user will be thought of conceptually as a unit consisting of both the hardware and the programs and procedures
that make up the operating system.

GENERAL ORGANIZATION OF AN OPERATING SYSTEM

There are many ways to structure operating systems, but for the purpose of this discussion the organization
shown in Fig. 18.4.8 is typical. The operating system is composed of two major sets of programs, control (or
supervision) programs and processing programs. Control programs supervise the execution of the support pro-
grams (including the user application programs), control the location, storage, and retrieval of data, handle
interrupts, and schedule jobs and resources needed in processing. Processing programs consist of language
translators, service programs, and user-written application programs, all of which are used by the programmer
in support of program development.

18.80 DIGITAL COMPUTER SYSTEMS

FIGURE 18.4.7 The user’s view of the operating sys-
tem as an extension of the computing system yet an
integral part of it.

Christiansen_Sec_18.qxd 10/28/04 11:12 AM Page 18.80

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

SOFTWARE

The work to be processed by the computer can be viewed as a stack of jobs to be run under the manage-
ment of the control program. A job is a unit of computational work that is independent of all other jobs con-
currently in the system. A single job may consist of one or a number of steps.

TYPES OF OPERATING SYSTEMS

There are many basic types of operating systems including multiprogramming, time-sharing, real-time, and
multiprocessing.

The multiprocessing system must schedule and control the execution of jobs that are distributed across two
or more coupled processors. These processors may share a common storage, in which case they are said to be
tightly (or directly) coupled, or they may have their own private storage and communicate via other means such
as sending messages over networks, in which case they are said to be loosely coupled.

Operating systems were generally developed for a specific CPU architecture or for a family of CPUs. For
example, MS-DOS and WINDOWS apply to xx86-based systems. However, one operating system, the UNIX
system (a registered trademark of AT&T), has been transported to a number of different manufactures’ sys-
tems and is in very wide use today. UNIX was developed as a unified, interactive, multiuser system. It consists
of a kernel that schedules tasks and manages data, a shell that executes user commands—one at a time or in a
series called a pipe—and a series of utility programs.

TASK-MANAGEMENT FUNCTION

This function, sometimes called the supervisor, controls the operation of the system as it executes units of work
known as tasks or processes. (The performance of a task is requested by a job step.) The distinction between a
task and a program should be noted. A program is a static entity, a sequence of instructions, while a task is a
dynamic entity, the work to be done in execution of the program. Task management initiates and controls the

SOFTWARE 18.81

FIGURE 18.4.8 A typical operating system and its constituent parts.

Christiansen_Sec_18.qxd 10/28/04 11:12 AM Page 18.81

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

SOFTWARE

execution of tasks. If necessary it controls their synchronization. In allocates system resources to tasks and
monitors their use. In particular it is concerned with the dynamic allocation and control of main storage space.

Task management handles all interrupts occurring in the computer, which can arise from five different
sources: (1) supervisor call interrupts occur when a task needs a service from the task-management function,
such as initiating an I/O operation; (2) program interrupts occur when unusual conditions are encountered in
the execution of a task; (3) I/O interrupts indicate that an I/O operation is complete or some unusual condition
has occurred; (4) machine-check interrupts are initiated by the detection of hardware errors; and (5) external
interrupts are initiated by the timer, by the operator’s console, or other external devices.

DATA MANAGEMENT

This function provides the necessary I/O control system services needed by the operating system and the user
application programs. It frees the programmer from the tedious and error-prone details of I/O programming
and permits standardization of these services. It constructs and maintains various file organization structures,
including the construction and use of index tables. It allocates space on disc (auxiliary) storage. It maintains a
directory showing the locations of data sets (files) within the system. It also provides protection for data sets
against unauthorized entry.

OPERATING SYSTEM SECURITY

One of the major concerns in the design of operating systems is to make certain that they are reliable and that they
provide for the protection and the integrity of the data and programs stored within the system. Work is under way
to develop secure operating systems. These systems use the concept of a security kernel—a minimal set of oper-
ating system programs that are formally specified and designed so that they can be proved to implement the desired
security policy correctly. This assures the corrections of all access-controlling operations throughout the system.

SOFTWARE-DEVELOPMENT SUPPORT

There have been great strides in software engineering technology. Out of the research and development efforts
in universities, industry, and government have emerged a number of significant ideas and concepts that can
have significant and long-lasting influence on the way that software is developed and managed. Those con-
cepts are just now starting to find their way into the software-development process but should become more
widely used in the future. They are briefly reviewed below.

REQUIREMENTS AND SPECIFICATIONS

This has been one of the problem areas through the years. Analysis and design errors are, by far, the most cost-
ly and crucial types of errors, and a number of attempts are being made to develop methods for recording and
analyzing software requirements and developing specifications. Most requirements and specifications docu-
ments are still recorded in English narrative form, which introduces problems of inconsistency, ambiguity, and
incompleteness. These problems are addressed with CASE tools and structured programming.

SOFTWARE DESIGN

The work of Dijkstra, Hoare, and Mills (1968, 1976) had a major influence on software-design methodology
by introducing a number of concepts that led to the development of structured programming. Structured pro-
gramming is a methodology based on mathematical rigor. It uses the concept of top-down design and

18.82 DIGITAL COMPUTER SYSTEMS

Christiansen_Sec_18.qxd 10/28/04 11:12 AM Page 18.82

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

SOFTWARE

implementation by describing the program at a high level of abstraction and then expanding (refining) this
abstraction into more detailed representations through a series of steps until sufficient detail is present for
implementation of the design in a programming language to be possible. This process is called stepwise refine-
ment. The design is represented by a small, finite set of primitives, such as shown in Fig. 18.4.9. These three
primitives are adequate for design purposes but for convenience several others have been introduced; namely,
the indexed alternation or case, the do-until, and the indexed sequence or for-do structure.

It also recognized that the organization and representation of software systems are clearer if certain data
and the operations permitted on those data are organized into data abstractions. The internal details of the orga-
nization of the data are hidden from the user.

The result of applying this methodology is the organization of a sequential software process into a hierar-
chical structure through the use of stepwise refinement. The software system structure is then defined at three
levels—the system, the module, and the procedure. The system (or job) describes the highest level of program
execution. The system is decomposed into modules. The module is composed of one or more procedures and
data that persist between successive invocations of the module. The procedure is the lowest level of system
decomposition, the executable unit of the stored program.

Another important aspect of the design process is its documentation. There is a critical need to record the
design as it is being developed, from its highest level all the way to its lowest level of detail, before its imple-
mentation in a programming language, using language that can be used not only to communicate software
designs between specialists in software development but also between specialists and nonspecialists in rigor-
ous logical terms.

Important elements of the software development process are reviews, walk-throughs, and inspections,
which can be applied to the products of the software-development process to ensure that they are complete,
accurate, and consistent. They are applied to such areas as the design (design inspections), the software source
code (code inspections), documentation, test designs, and test-results analysis. The goals of the software
review and inspection process are to ensure that standards are met, to check on the quality of the product, and
to detect and correct errors at the earliest possible point in the software life cycle. Another important value of
the review process is that it permits progress against development-plan milestones to be measured more objec-
tively and rework for error correction to be monitored more closely.

SOFTWARE 18.83

FIGURE 18.4.9 Basic set of structured control primitives.

Christiansen_Sec_18.qxd 10/28/04 11:12 AM Page 18.83

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

SOFTWARE

TESTING

An important activity in the software-development cycle that is often ignored until too late in the process is
testing. It is also important to note what testing can and cannot do for the software product. Quality cannot
be tested into the software; it must be designed into it. Test planning begins with the requirements analysis at
the beginning of the project. Requirements should be testable; i.e., they should be stated in a form that per-
mits the final product to be tested to assure that it satisfies the requirements. Test planning and test designs
should be developed in parallel with the design of the software.

EXPERT SYSTEMS

One important area of research in computer science has been that of artificial intelligence. The most success-
ful application of artificial intelligence techniques has been in the development of expert systems, or knowl-
edge-based systems, as they are often called. These are human-machine interactive systems with specialized
problem-solving expertise that are used to solve complex problems in such specific areas as medicine, chem-
istry, mathematics, and engineering. This expertise consists of knowledge about the particular problem domain
that the expert system is designed to support (e.g., diagnosis and therapy for infectious diseases) and planning
and problem-solving rules for processes used to identify and solve the particular problem at hand. The two
main elements of an expert system are its knowledge base, which contains the domain knowledge for the prob-
lem area being addressed, and the inference engine, which contains the general problem-solving knowledge.
A key task in constructing an expert system is knowledge acquisition: the extraction and formulation of knowl-
edge (facts, concepts, rules) from existing sources, with special attention paid to the experience of experts in
the particular problem domain being addressed.

18.84 DIGITAL COMPUTER SYSTEMS

Christiansen_Sec_18.qxd 10/28/04 11:12 AM Page 18.84

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

SOFTWARE

