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MATERIALS SCIENCE

This text is intended for a second-level course in materials science
and engineering. Chapters encompass crystal symmetry including quasi-
crystals and fractals, phase diagrams, diffusion including treatment of
diffusion in two-phase systems, solidification, solid-state phase trans-
formations, amorphous materials, and bonding in greater detail than is
usual in introductory materials science courses. Additional subject mate-
rial includes stereographic projection, the Miller–Bravais index system
for hexagonal crystals, microstructural analysis, the free energy basis for
phase diagrams, surfaces, sintering, order–disorder reaction, liquid crys-
tals, molecular morphology, magnetic materials, porous materials, and
shape memory and superelastic materials. The final chapter includes use-
ful hints in making engineering calculations. Each chapter has problems,
references, and notes of interest.

William F. Hosford is a Professor Emeritus of Materials Science and Engi-
neering at the University of Michigan. Professor Hosford is the author of
a number of books including the leading selling Metal Forming: Mechan-
ics and Metallurgy, 2/e (with R. M. Caddell), Mechanics of Crystals and
Textured Polycrystals, Physical Metallurgy, and Mechanical Behavior of
Materials.
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Preface

This text is written for a second-level materials science course. It assumes that the
students have had a previous course covering crystal structures, phase diagrams,
diffusion, Miller indices, polymers, ceramics, metals, and other basic topics. Many
of those topics are discussed in further depth, and new topics and concepts are
introduced. The coverage and order of chapters are admittedly somewhat arbitrary.
However, each chapter is more or less self-contained so those using this text may
omit certain topics or change the order of presentation.

The chapters on microstructural analysis, crystal symmetry, Miller–Bravais
indices for hexagonal crystals, and stereographic projection cover material that
is not usually covered in introductory materials science courses. The treatment
of crystal defects and phase diagrams is in greater depth than the treatments in
introductory texts. The relation of phase diagrams to free energy will be entirely
new to most students. Although diffusion is covered in most introductory texts,
the coverage here is deeper. It includes the Kirkendall effect, Darken’s equation,
and diffusion in the presence of two phases.

The topics of surfaces and sintering will be new to most students. The short
chapter on bonding and the chapters on amorphous materials and liquid crystals
introduce new concepts. These are followed by treatment of molecular morphol-
ogy. The final chapters are on magnetic materials, porous and novel materials,
and the shape memory.

This text may also be useful to graduate students in materials science and
engineering who have not had a course covering these materials.

The author wishes to thank David Martin for help with liquid crystals.

xiii
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1 Microstructural Analysis

Many properties of materials depend on the grain size and the shape of grains.
Analysis of microstructures involves interpreting two-dimensional cuts through
three-dimensional bodies. Of interest are the size and aspect ratios of grains,
and the relations between grain size and the amount of grain boundary area per
volume. Also of interest is the relation between the number of faces, edges, and
corners of grains.

Grain size

There are two commonly used ways of characterizing the grain size of a crystalline
solid. One is the ASTM grain size number, N , defined by

n = 2N−1 or N = 1 + ln(n)/ ln 2, (1.1)

where n is the number of grains per square inch observed at a magnification of
100X. Large values of N indicate a fine grain size. With an increase of the grain
diameter by a factor of

√
2, the value of n is cut in half and N is decreased by 1.

EXAMPLE 1.1. Figure 1.1 is a micrograph taken at 200X. What is the ASTM
grain size number?

SOLUTION: There are 29 grains entirely within the micrograph. Counting each
grain on an edge as one half, there are 22/2 = 11 edge grains. Counting each cor-
ner grain as one quarter, there is 1 corner grain. The total number of grains
is 41. The 12 square inches at 200X would be 3 square inches at 100X, so
n = 41/3 = 13.7. From Equation (1.1),

N = ln(n)/ ln(2) + 1 = 4.78 or 5.

The average linear intercept diameter is the other common way to character-
ize grain sizes. The system is to lay down random lines on the microstructure
and count the number of intersections per length of line. The average intercept
diameter is then �̄ = L/N , where L is the total length of line and N is the number

1
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2 MATERIALS SCIENCE: AN INTERMEDIATE TEXT

1.1. Counting grains in a microstructure at
200X.

of intercepts. Alternatively, a rectangular grid of lines may be laid down on an
equiaxed microstructure.

EXAMPLE 1.2. Find the average intercept diameter for the micrograph in
Figure 1.1.

SOLUTION: In Figure 1.2, 6 × 4 + 5 × 3 = 39 inches of line are superimposed on
the microstructure. This corresponds to (39 in. /200)(25.4 mm/in.) = 4.95 mm.
There are 91 intercepts so �̄ = .495/91 = 0.054 mm = 54 µm.

1.2. Finding the linear intercept grain size of
a microstructure at 200X.

For random microstructures, �̄ and the ASTM grain size are related. An approx-
imate relationship can be found by assuming that the grains can be approximated
by circles of radius, r. The area of a circular grain, πr2, can be expressed as
the average linear intercept, �̄, times its width, 2r, as shown in Figure 1.3, so
�̄ · 2r = πr2. Therefore,

r = (2/π)�̄ or �̄ = (π/2) r. (1.2)
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l

2r1.3. The area of a circle, π r 2, equals the
average intercept times twice the radius,
2�̄ r , so �̄ = (π/2) r .

Thus, the area per grain is A = 2r �̄ = (4/π) �̄ 2. The number of grains per area
is (π/4)/�̄ 2. From the definition of n, the number of grains per area is also
n[(25.4 mm/in.)/(100 in.)]2. Substituting n = 2N−1 = 2N /2 and equating,

(π/4)/�̄ 2 = (2N /2)(0.254)2. (1.3)

Solving for �̄,

�̄ = 4.93/2N/2. (1.4)

Often grains are not equiaxed. They may be elongated in the direction of prior
working. Restriction of grain growth by second-phase particles may prevent for-
mation of equiaxed grains by recrystallization. In these cases, the linear intercept
grain size should be determined from randomly oriented lines or an average of two
perpendicular sets of lines. The degree of shape anisotropy can be characterized
by an aspect ratio, α, defined as the ratio of average intercept in the direction of
elongation to that at 90◦:

α = �̄||/�̄⊥. (1.5)

Relation of grain boundary area per volume to grain size

The grain boundary area per volume is related to the linear intercept. Assuming
that grain shapes can be approximated by spheres, the grain boundary surface per
grain is 2πR2, where R is the radius of the sphere. (The reason that it is not 4πR2

is that each grain boundary is shared by two neighboring grains.) The volume per
spherical grain is (4/3)πR3, so the grain boundary area/volume, Sv , is given by

Sv = (2πR2)/[(4/3)πR3] = 3/(2R). (1.6)

To relate the spherical radius, R, to the linear intercept, �̄, consider the circle
through its center, which has an area of πR2 (Figure 1.4). The volume equals
the product of this area, πR2, and the average length of line, �̄, perpendicular
to it, v = �̄πR2. Therefore, (4/3)πR3 = πR2�̄ or R = (3/4)�̄. Substituting into
Sv = 3/(2R),

Sv = 2/�̄. (1.7)
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RπR2

l 1.4. The volume of a sphere = �̄πR2.

Relation of intersections per area and line length

The number of intersections per area of dislocations with a surface is less than the
total length of dislocation line per volume. Consider a single line of length L in a
box of height h and area of A. The number of intersections per area, NA, equals
1/A (Figure 1.5). The length per volume is LV = L/(h A) so NA/LV = h/L .
Because cos θ = h/L, NA/LV = cos θ. For randomly oriented lines, the number
oriented between θ and θ + dθ is dn = nd f , where d f = sin θdθ. For randomly
oriented lines, NA/LV = ∫ 2π cos θ sin θdθ = 1/2. Therefore,

NA = LV /2. (1.8)

A

L

h

θ 1.5. Relation of the number of intersections
per area with the length of line per volume.

Volume fraction of phases

Point counting is the easiest way of determining the volume fraction of two or more
phases in a microstructure. The volume fraction of a phase equals the fraction of
points in an array that lies on that phase. A line count is another way of finding
the volume fraction. If a series of lines are laid on a microstructure, the volume
fraction of a phase equals the fraction of the total line length that lies on that
phase.

Alloy composition from volume fraction of two or more phases

The composition of an alloy can be found from the volume fractions of phases.
The relative weight of component B in the α phase is (Vα)(ρα)(Cα), where Vα is
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the volume fraction of α, ρα is the density of α, and Cα is the composition (%B)
of the α phase. With similar expressions for the other phases, the relative weight
of component B, WB , is given by

WB = (Vα)(ρα)(Cα) + (Vβ)(ρβ)(Cβ) + · · · (1.9)

With similar expressions for the other components, the overall composition of the
alloy is

%B = 100WB/(WA + WB + · · ·). (1.10)

Microstructural relationships

Microstructures consist of three-dimensional networks of cells or grains that fill
space. Each cell is a polyhedron with faces, edges, and corners. Their shapes
are strongly influenced by surface tension. However, before examining the nature
of three-dimensional microstructures, the characteristics of two-dimensional net-
works will be treated.

A two-dimensional network of cells consists of polygons, edges (sides), and
corners. The number of each is governed by the simple relation

P − E + C = 1, (1.11)

where P is the number of polygons, E is the number of edges, and C is the number
of corners. Figure 1.6 illustrates this relationship. If the microstructure is such
that three and only three edges meet at each corner, E = (3/2)C , so

P − C/2 = 1 and P − E/3 = 1. (1.12)

P = 1
E = 5
C = 5

P = 4
E = 12
C = 9

P = 4
E = 17 
C = 14

1.6. Three networks of cells illustrating that P − E + C = 1.

For large numbers of cells, the one on the right-hand side of Equations (1.9)
and (1.10) becomes negligible, so E = 3P and C = 2P . This restriction of three
edges meeting at a corner also requires that the average angle at which the edges
meet is 120◦ and that the average number of sides per polygon is six.
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If the edges were characterized by a line tension (in analogy to the surface
tension of surfaces in three dimensions) and if the line tensions for all edges were
equal, equilibrium would require that all edges meet at 120◦, so cells with more
than six edges would have to be curved with the center of curvature away from
the cell and those cells with fewer than six sides would be curved the opposite
way, as shown in Figure 1.7. Since boundaries tend to move toward their centers
of curvature, the cells with large numbers of sides would tend to grow and those
with few sides should shrink. Only a network in which all of the cells were regular
hexagons would be stable.

1.7. The sides of grains with fewer than six neighbors are inwardly concave (left). The sides of
grains with more than six neighbors are outwardly concave (right).

Three-dimensional relations

Euler proposed that for a single body

C − E + F − B = 1. (1.13)

For an infinite array of three-dimensional bodies,

C − E + F − B = 0. (1.14)

Here, B is the number of bodies (grains), F is the number of faces, E is the
number of edges, and C is the number of corners. Consider an isolated cube,
for example. There is one body, and there are six faces, 12 edges, and eight
corners. B = 1, F = 6, E = 12, and C = 8. 8 − 12 + 6 − 1 = 1. For an infi-
nite array of stacked cubes, each face is shared by two cubes so F = 6B/2.
Each edge is shared by four cubes so E = 8B/4, and each corner is shared by
eight cubes so C = 12B/8. Substituting into Euler’s equation, 8B/8 − 12B/4 +
6B/2 − B = 0. Table 1.1 illustrates Equation (1.11) for several simple polyhedra.

Kelvin tetrakaidecahedron

Grains in a real material have certain restrictions: Each corner is shared by four
grains, and each edge is shared by three grains. Furthermore, grains stack in such
a way as to fill space. Very few simple shapes fulfill these conditions. One simple
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Table 1.1. Characteristics of several polyhedra

Polyhedron Faces (F) Edges (E) Corners (C) F − E + C

Tetrahedron 4 6 4 2
Cube 6 12 8 2
Octahedron 8 12 6 2
Dodecahedron(cubic) 12 24 14 2
Dodecahedron(pentag.) 12 30 20 2
Tetrakaidecahedron 14 36 24 2

1.8. The Kelvin tetrakaidecahedron and its construction by truncation of an octahedron by a
cube. The edges of the tetrakaidecahedron are one third as long as the edges of the octahedron.

shape is the tetrakaidecahedron proposed by Lord Kelvin.* Figure 1.8 shows that
it can be thought of as a cube with each corner truncated by an octahedron.
Alternatively, it can be thought of as an octahedron with each corner truncated
by a cube. There are 14 faces, 36 edges, and 24 corners. For an infinite array of
these polyhedra,

F = 14B/2 = 7B, C = 24B/4 = 6B, and E = 36B/3 = 12B,

so C − E + F − B = 6B − 12B + 7B − B = 0.

This shape is a useful approximation for analyzing grains in a polycrystal. For
example, calculation of the surface area of the faces to the grain volume can be
compared with other solid shapes and a sphere. Six of these are squares parallel
to {100} planes and eight are regular hexagons parallel to {111} planes. There
are 24 corners and 36 edges. Thus, the total length of edges is 36e, where e is the
length of an edge, and the total surface area is the area of the six square faces plus
the eight hexagonal faces:

6e2 + 8(3
√

3)e2 = 47.569e2.

The volume is the volume of the octahedron less the volume of the six truncated
pyramids:

[9
√

2 − 6(1/3
√

2)]e3 = 8
√

2e3 = 11.314e3.

* W. T. Lord Kelvin, Proc. R. Soc. 55 (1894).
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Of the 14 faces, 6 have four edges and 8 have six edges. The average number
of edges per face is (6 × 4 + 8 × 6)/14 = 51/7 This is very close to the results of
experiments on β brass, vegetable cells, and soap bubbles, as shown in Figure 1.9.
For the Kelvin tetrakaidecahedron the ratio of surface area to that of a sphere of
the same volume is 1.099. Most other shapes have much higher ratios.

edges per face

fr
e

q
u

e
n

cy

0

20

40

60

80

3 4                5                 6 7                8

soap bubbles

brass

vegetable cells

β
1.9. Frequency of polygonal faces with dif-
ferent numbers of edges. Data from C. S.
Smith, in Metal Interfaces (Cleveland, OH:
ASM, 1952). Reprinted with permission from
ASM International®. All rights reserved.
www.asminternational.org.

NOTES OF INTEREST

1. Lord Kelvin (1824–1907), a Scottish mathematician and physicist, did the
pioneering work on the second law of thermodynamics, arguing that it was the
explanation of irreversible processes. He noted that the continual increase of
entropy would lead to a universe with a uniform temperature and maximum
entropy.

2. Waire and Phelan* report that space filling is 0.3% more efficient with an
array of of six polyhedra with 14 faces and two polyhedra with 12 faces than
with the Kelvin tetrakaidecahedron. (This calculation allows faces in each
to be curved.) The 14-faced polyhedra have 12 pentagonal and 2 hexagonal
faces, while the 12-faced polyhedra have distorted pentagons for faces. The
average number of faces per polyhedra = (6 × 14 + 2 × 12)/8 = 13.5.
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PROBLEMS

1. A soccer ball has 32 faces. They are all either pentagons or hexagons. How
many are pentagons?

2. Figure 1.10 is a microstructure at a magnification of 200X.
A. Determine the ASTM grain size number.
B. Determine the intercept grain size.
C. Compare the answers to A and B using Equation (1.5).

3. Count the number of triple points in Figure 1.10 and deduce the ASTM grain
size from this count. Compare with your answer to Problem 2A.

8  cm
8 

 c
m

1.10. Hypothetical microstructure at a mag-
nification of 200X.

4. What is the linear intercept grain size (in millimeters) corresponding to an
ASTM grain size number of 8?

5. Dislocation density is often determined by counting the number of disloca-
tions per area intersecting a polished surface. If the dislocation density in
cold-worked copper is found to be 2 × 1010/cm2, what is the total length of
dislocation line per volume?

6. Calculate the average number of edges per face for the space-filling array of
polyhedra reported by Waire and Phelan.

7. If the ASTM grain size number is increased by one, by what factor is the
number of grains per volume changed?

8. If a material with grains shaped like tetrakaidecahedra were recrystallized
and new grains were nucleated at each corner, by what factor would the grain
diameter, �̄, change?
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9. Derive an equation relating the aspect ratio of a microstructure after uniaxial
tension to the strain, assuming that the microstructure was initially equiaxed.

10. Determine the aspect ratio in Figure 1.11.

1.11. Microstructure for Problem 10.

11. Determine the volume fraction of graphite in the cast iron shown in
Figure 1.12.

1.12. A schematic drawing of ferritic ductile
cast iron. The white areas are ferrite and the
dark circles are graphite.
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2 Symmetry

Crystal systems

Crystals can be classified into seven systems. A crystal system is defined by the
repeat distances along its axes and the angles between its axes. Table 2.1 lists the
seven systems.

Table 2.1. The seven crystal systems

System Axial lengths Axial angles

Triclinic a �= b �= c α �= β �= γ �= 90◦

Monoclinic a �= b �= c α = β = 90◦ �= γ

Orthorhombic a �= b �= c α = β = γ = 90◦

Tetragonal a = b �= c α = β = γ = 90◦

Cubic a = b = c α = β = γ = 90◦

Rhombohedral a = b = c α = β = γ �= 90◦

Hexagonal a = b �= c α = β = 90◦, γ = 120◦

These systems can be described in terms of their symmetry elements. A tri-
clinic crystal has only a center of symmetry. Monoclinic crystals have a single
axis of twofold rotational symmetry. Orthorhombic crystals have three mutually
perpendicular axes of twofold symmetry. With tetragonal symmetry, there is a sin-
gle axis of fourfold symmetry. Cubic crystals are characterized by four threefold
axes of symmetry, the <111> axes. There is a single axis of threefold symmetry in
the rhombohedral system. The hexagonal system involves a single axis of sixfold
symmetry.

Space lattices

Crystals can be further divided into 14 space lattices, which describe the positions
of lattice points. For example, there are three cubic space lattices. The simple cubic
has lattice points only at the corners of the cubic cell; the body-centered cubic
(bcc) has lattice points at the corners and the body-centering position, and the
face-centered cubic (fcc) has lattice points at the corners and the centers of the
faces. Table 2.2 and Figure 2.1 illustrate these.

11
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Table 2.2. The 14 space lattices

Triclinic Simple tetragonal
Simple monoclinic Body-centered tetragonal
Base-centered monoclinic Simple cubic
Simple orthorhombic Body-centered cubic
Body-centered orthorhombic Face-centered cubic
Base-centered orthorhombic Rhombohedral
Face-centered orthorhombic Hexagonal

β

triclinic
simple
monoclinic

base-centered
monoclinic

simple
orthorhombic

body-centered
orthorhombic

base-centered
orthorhombic

face-centered
orthorhombic

simple
tetragonal body-centered

tetragonal
simple
cubic

body-centered
cubic

face-centered
cubic

rhombohedral hexagonal

a

c

a a
b b

c c

b

α β

γ

β

120°

c c c c

a a a a
b b b b

a
a a a

a a a a

a aa

a a

c
c

a a
a

a
a

c

α α
α

2.1. The 14 space lattices.

Symmetry elements include axes of twofold, threefold, fourfold, and sixfold
rotational symmetry and mirror planes. There are also axes of rotational inversion
symmetry. With these, there are rotations that cause mirror images. For example,
a simple cube has three <100> axes of fourfold symmetry, four axes of <111>
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threefold symmetry, and six <110> axes of twofold symmetry. A cube also has
nine mirror planes (three {100} planes and six {110} planes). See Figure 2.2.

[110]

[101]

[101]

[011]
[011]

[110][100]

[001]

[010]

[111]

[111][111]

[111]

(010)

(100) (110)

(110)

2.2. Symmetry elements of a cube. There are three fourfold axes, four threefold axes, and six
twofold axes of rotation. There are three {100} mirror planes and six {110} mirror planes (only
two are shown).

On the other hand, not all crystals with a cubic space lattice have all of the sym-
metry elements. Consider a tetrahedron (Figure 2.3). It has four axes of threefold
symmetry, but the <100> directions have only twofold symmetry. There is no mir-
ror symmetry about the {100} planes, but the six {110} planes do have mirror
symmetry.

[001]

[100]

[010]

[111]

[111] [111]

[111]

(110)

(110)

2.3. Symmetry elements of a tetrahedron.
The {101}, {101̄}, {011}, and {011̄} planes
also have mirror symmetry.
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There are 32 crystal classes that describe all of the possible combinations of
crystal systems and symmetry elements. These are treated in other texts.

Quasicrystals

There are a number of polyhedra that have axes of fivefold symmetry (Figure 2.4).
However, there are no crystal classes or space lattices that permit fivefold sym-
metry. In 1984, Schectman et al.* found that the diffraction patterns from an
aluminum–manganese alloy showed apparent tenfold symmetry (Figure 2.5).
Figure 2.6 is a scanning electron microscope (SEM) photograph of a grain of
Al62Cu25.5Fe12.5 that shows fivefold symmetry. Quasicrystals are composed of
certain combinations of polyhedra that fill space and have apparent five- or ten-
fold symmetry with some degree of short-range order. Such quasicrystals have
since been found in many systems.

pentagonal dodecahedron                icosahedron

 icosidodecahedron                      tricontahedron

2.4. Opposite: Several polyhedra with axes
of fivefold symmetry.

2.5. Below, left: Diffraction pattern from an
aluminum–manganese alloy showing appar-
ent tenfold symmetry. From C. Janot, Qua-
sicrystals, A Primer, 2nd ed. (London: Oxford
Univ. Press, 1994), p. 102, top photo (a).

2.6. Below, right: Scanning electron micro-
scope (SEM) photograph of a dodecahedral
grain of Al62Cu25.5Fe12.5 showing fivefold
symmetry. From C. Janot, Quasicrystals, A
Primer, 2nd ed. (London: Oxford Univ. Press,
1994), p. 86, bottom photo (c).

* D. Schechtman, I. Bloch, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53 (1984): 1951–3.
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A crystal has both symmetry and long-range order. It also has translational
order; it can be replicated by small translations. It is possible to have both symme-
try and long-range order without translational order. A one-dimensional example
is a Fibonacci series that is composed of two segments, A and B. The series consists
of terms Nn such that Nn = Nn−1 + Nn−2. For example, the series starting with
A and B is BA, BAB, BABBA, BABBABAB, . . . . Such a series has long-range
order and will not repeat itself if Nn−2/Nn−1 is an irrational number. For the series
starting 0, 1, Nn−2/Nn−1 → τ = (1 + √

5)2, which is called the golden ratio.
Penrose tiling patterns are two-dimensional analogs of quasicrystals. They fill

space with patterns that have no long-range order. They require tiles of at least
two different shapes. Figure 2.7 illustrates two shapes that can be tiled to produce
patterns with fivefold short-range order. The interior angles are multiple integers
of π/10. Figure 2.8 shows such a two-dimensional pattern. Note that there is
fivefold rotational symmetry about the dark point in the center. However, there
is no other point about which there is fivefold symmetry, even if the tiling is
extended indefinitely.

π/102π/10

3π/10

4π/10

2.7. Two two-dimensional tiles that can be
assembled into a tiling pattern with short-
range fivefold symmetry.

2.8. Penrose tiling with a tile having a 36◦

interior angle and another with a 72◦ interior
angle.

If the tiling in Figure 2.8 is rotated 36◦ about the fivefold axis and translated the
right amount, there is coincidence of the vertices with those of the original tiling
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though there is no longer a center of symmetry. This 36◦ rotation corresponds to
tenfold symmetry.

A Fibonacci series in which each element of the series is the sum of
the previous two elements is a one-dimensional analog. An example is the
series, starting with L and S,

L S SL SLS SLSSL SLSSLSLS . . . .

If L/S = τ = 2 cos 36◦ = (1 + √
5)/2 = 1.618034, which is the golden ratio,

the sequence has no repetition but there are diffraction peaks.
Certain polyhedra (Figure 2.9) can be assembled into a three-dimensional tiling

to form a quasicrystal with regimes of icosahedral symmetry. An icosahedron has
20 faces and 12 axes of fivefold symmetry, as shown in Figure 2.10. The structures
of MoAl12 and WAl12 can be described as clusters of 12 aluminum atoms around
molybdenum (or tungsten) atoms forming icosahedrons that fill space in a bcc
arrangement.

(0,0,0)

(τ,0,1)

(0,-1,τ)
(0,1,τ)

(0,0,0)

(-τ,1,0)

2.9. Oblate and prolate rhombohedrons that can be combined to form three-dimensional tiling
necessary for a quasicrystal.

2.10. An icosahedron with 20 faces and six
axes of fivefold symmetry.

An electron diffraction pattern of the aluminum–manganese alloy and a
computed Fourier pattern of a three-dimensional Penrose tiling are shown in
Figure 2.11.
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2.11. Electron diffraction pattern of an AlMn quasicrystal along the fivefold axis (left) and a
computed Fourier pattern of a three-dimensional Penrose tiling (right). From C. Janot, Quasi-
crystals, A Primer, 2nd ed. (London: Oxford Univ. Press, 1994), p. 3, figure 1.24.

Fractals

Fractals are self-similar shapes that have similar appearances as they are magni-
fied. This is called dilational symmetry. Each generation looks like the previous
generation. Cauliflower is an example. Each branch looks just like a miniature of
the whole head. Figure 2.12 shows an irregular fractal. Fractals that have greater
symmetry are called regular fractals. Figure 2.13 is an example.

2.12. A two-dimensional projection of a
three-dimensional irregular fractal.

A useful parameter is the fractal dimension, D, which is the exponent in the
relation between the mass, M, to a linear dimension, R:

M = C RD. (2.1)
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2.13. A regular fractal.

For example, in Figure 2.13, M2/M1 = (R2/R1)D so D = ln(M2/M1)/
ln(R2/R1). Here M2 = 54, M1 = 9, R2 = 9, and R1 = 3. Substituting these,
D = 1.63. A solid object can be thought of as a fractal of D = 3.

Fractals find use in studies of fracture, surface roughness, and disordered
materials.

NOTE OF INTEREST

M. C. Escher’s woodcut Heaven and Hell (Figure 2.14) is an illustration of sym-
metry in art. It also is an example of fractals.

2.14. A woodcut titled Heaven and Hell,
by M. C. Escher. From M. C. Escher, The
Graphic Work of M. C. Escher (New York:
Ballantine Books, 1967), plate 23.
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PROBLEMS

1. Why is there no face-centered tetragonal space lattice? Why is there no
base-centered tetragonal?

2. How many twofold axes of rotation are there in a simple hexagonal prism?

3. Deduce the five two-dimensional Bravais lattices.

4. Show that τ 2 − τ − 1 = 0, where τ is the golden ratio.

5. Calculate the packing factor for the first, second, and third generation of the
fractal in Figure 2.12.

6. Calculate the fractal dimension for the two-dimensional fractal in Fig-
ure 2.15.

2.15. A two-dimensional fractal.

7. Describe the symmetry elements in Figure 2.14.



P1: JzG
0521867053c02 CUFX036/Hosford 0 521 86705 3 printer: Sheridan November 2, 2006 16:7

20 MATERIALS SCIENCE: AN INTERMEDIATE TEXT

8. Describe the symmetry elements of a pentagonal dodecahedron. It has
12 faces and 30 edges. See Figure 2.16.

2.16. Pentagonal dodecahedron.
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3 Miller–Bravais Indices for
Hexagonal Crystals

The Miller–Bravais index system for identifying planes and directions in hexag-
onal crystals is similar to the Miller index system except that it uses four axes
rather than three. The advantage of the four-index system is that the symmetry is
more apparent. Three of the axes, a1, a2, and a3, lie in the hexagonal (basal) plane
at 120◦ to one another and the fourth or c-axis is perpendicular to then, as shown
in Figure 3.1.

120°

120°

120°

a1

a2

a3

a2

a3

a1

c

3.1. Axis system for hexagonal crystals.

Planar indices

The rules for determining Miller–Bravais planar indices are similar to those for
Miller indices with three axes.

1. Write the intercepts of the plane on the four axes in order (a1, a2, a3, and c).
2. Take the reciprocals of these.
3. Reduce to the lowest set of integers with the same ratios.
4. Enclose in parentheses (hki�).

Commas are not used, except in the rare case that one of the integers is larger
than one digit. (This is rare because we are normally interested only in directions

21
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with low indices.) If a plane is parallel to an axis, its intercept is taken as ∞
and its reciprocal as 0. If the plane contains one of the axes or the origin, either
analyze a parallel plane or translate the axes before finding indices. This is per-
missible since all parallel planes have the same indices. Figure 3.2 shows several
examples.

a2

a3

a1

c

intercepts: 1,∞,-1,1
reciprocals:1,0,-1,1  
indices: (1011)

intercepts: ∞,∞,∞,1
reciprocals:0,0,0,1  
indices: (0001)

A.

a2

a3

a1

c

B.

a2

a3

a1

c

a2

a3

a1

c

intercepts: 1,∞,-1,∞
reciprocals:1,0,-1,0  

indices: (1010)

C.

intercepts: 1,1,-1/2,∞
reciprocals:1,1,-2,0  
indices: (1120)

D.

3.2. Examples of planar indices for hexagonal crystals. Note that the sum of the first three
indices is always zero: h + k + i = 0.

In the four-digit system, the third digit, i , can always be deduced from the first
two, i = −h − k, and is therefore redundant. With the three-digit systems, it may
either be replaced by a dot, (hk · �), or omitted entirely, (hk�). If the third index
is omitted, the hexagonal symmetry is not apparent. In the four-digit Miller–
Bravais system, families of planes are apparent from the indices. For example,
{011̄0} = (011̄0), (1̄010), and (11̄00). The equivalence of the same family is not so
apparent in the three-digit system, {010} = (010){010} = (010), (1̄00), and (1̄10).
Also compare {2̄110} = (2̄110), (12̄10), and (112̄0) with {2̄10} = (2̄10), (12̄0),
and (110). {2̄10} = (2̄10), (12̄0).

Direction indices

The direction indices are the translations parallel to the four axes that produce the
direction under consideration. The first three indices must be chosen so that they
sum to zero and are the smallest set of integers that will express the direction. For
example, the direction parallel to the a1 axis is [21̄1̄0]. The indices are enclosed
without commas in brackets [hki�]. Examples are shown in Figure 3.3.
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a3

a2

a1

c

a1

a2

a3

-1

-1

-1 -1

 2
[2110]

[1100]

-1

1

1

[0111]

a3

a2

a1

c

-2/3
1/3

1/3

-1

[2113]

a

a

a

3.3. Examples of direction indices with the Miller–Bravais system.

Three-digit system

There is also the three-digit system for directions in hexagonal crystals. For planar
indices, it uses intercepts on the a1, a2, and c axes. The indices (HKL) are related
to the Miller–Bravais indices (hki�) by

H = 2h + k + �, K = k − h + �, L = −2k − h + �, (3.1)

h = (1/3)(H − K ), k = (1/3)(K − L), i = −(h + k), and

� = (1/3)(H + K + L). (3.2)

The direction indices use the translations along the a1, a2, and c axes (U, V, and W,
respectively). The four-digit [uvtw] and three-digit [UVW ] systems are re-
lated by

U = u − t, V = v − t, W = w, (3.3)

and

u = (2U − V )/3, v = −(2V − U )/3,

t = −(u + v) = −(U + V )/3, w = W. (3.4)

The four- and three-digit systems are compared in Figure 3.4 for four directions.
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a1

a2-a3

c

a1

a2-a3

c

a1

a2-a3

c

a1

a2-a3

c

A

B

C
D

A: [2110] = [100] B: [1100] = [110]

C: [1011] = [211] D: [2243] = [221]

3.4. Comparison of the four- and three-digit systems.

NOTE OF INTEREST

Auguste Bravais (1811–1863) first proposed the Miller–Bravais system for
indices. Also, as a result of his analyses of the external forms of crystals, he
proposed the 14 possible space lattices in 1848. His Études Cristallographiques,
published in 1866, after his death, treated the geometry of molecular polyhedra.
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PROBLEMS

1. Write the correct direction indices, [ ], and planar indices, ( ), for the direc-
tions and planes in Figure 3.5.
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c

a1

a2−a3

c

D

a1

a2−a3

c

E

F
a1

a2−a3

c

a1

a2−a3

C

BA

3.5. Several planes and directions for Problem 1.

2. Translate (210) in the three-digit system into the four-digit Miller–Bravais
system. What are the equivalent {210} planes? Express these in both the
three-digit and four-digit systems.

3. Sketch the (2̄112) plane in a hexagonal cell.
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4 Stereographic Projection

Projection

Stereographic projection provides a convenient way of displaying the angular
relations between planes and directions in a crystal in two dimensions. The
system involves first projecting planes and directions of interest onto a spher-
ical surface and then mapping the spherical surface. Figure 4.1 illustrates how
planes and directions are projected onto a sphere. If an infinitesimal crystal were
placed at the center of a sphere and its planes extended, they would intersect
the sphere as great circles and their directions would intersect the sphere as
points.

4.1. Mapping of planes and directions by
placing an infinitesimal crystal at the cen-
ter of a sphere and projecting planes onto
the sphere to form great circles and lines to
form points.

Projecting these points and great circles onto a flat surface is the same prob-
lem as projecting the earth’s surface to form maps. The stereographic projec-
tion can be envisioned as placing the reference sphere on a plane and having
a light source on the surface opposite the point of tangency. The light source
then projects the lower half of the sphere onto the flat surface, as shown in
Figure 4.2. Because of the symmetry of crystals, only one hemisphere need be
mapped.

26
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4.2. With stereographic projection, the elements on the lower half of the sphere are projected
onto a flat surface from a point opposite the point of tangency.

Standard cubic projection

Of particular interest is the standard projection of a cubic crystal (Figure 4.3).
The [001] direction is at the north pole, so the (001) plane forms the equator. The
[100] direction is at the center, and the (100) plane forms the reference circle. The
[010] direction is on the equator and the reference circle, and the (010) plane is a
vertical line through the center. The <100> directions are represented by squares
to symbolize their fourfold symmetry.

[100]

[010]

[001]

(100)

(010)

(001) [100]

[001]

(001) [010]

(010) (100)

[001]

[010]

A. B. C.

4.3. Projection of cube planes and directions.

The [01̄1] and [011] directions (and their opposite ends, [011̄] and [01̄1̄]) are
indicated by ellipses because they have twofold symmetry (Figure 4.4A). They are
on the reference circle, 45◦ from±[010] and ±[001]. The corresponding (01̄1) and
(011) planes cut diagonally through the center. Note that (01̄1), [100], and (011̄)
all lie on the (011) plane because they are 90◦ from [011]. The (110), (11̄0), (101),
and (101̄) planes and their normals are similarly constructed and symbolized.
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[010][100][010]

[001]

[001]

[110]

[101]

[011]

[110]

[101]

[011]

[010][100]
[010]

[001]

[001]

[101]

[110][110]

[011]

[101]

[011]

[111][111]

[111][111]

A. B.

4.4. Construction of the standard cubic projection.

There are four points at which three great circles representing the {110} inter-
sect. These points must be the directions that lie in all three of those planes,
namely, the <111> directions. Triangles are used as symbols for the <111> direc-
tions because they have threefold symmetry (Figure 4.4B). This construction
divides orientation space into 24 spherical triangles, each of which have <100>,
<110>, and <111> corners (Figure 4.5). All of the triangles are crystallographi-
cally equivalent.

[100]

[111]

[110]

4.5. Standard triangle for cubic crystals.

Locating the hk� pole in the standard stereographic
projection of a cubic crystal

Consider the standard projection with [100] at the center and [001] at the north
pole (Figure 4.6). For all poles in the projected hemisphere the index, h, is positive
because these poles lie 90◦ or less from [100] at the center, so their dot product
hk� with [100] is positive. Poles on the outer circumference are 90◦ from [100],
so for these h = 0. Similarly, the projected hemisphere can be divided into four
quadrants. In the first quadrant k > 0 and � > 0 because all poles in this quadrant
are less than 90◦ from both [010] and [001]. In the second quadrant k < 0 because
poles in this region are more than 90◦ from [010]. Both k and � are negative in
the third quadrant because poles in this region are more than 90◦ from both [010]
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and [001]. Finally, � > 0 in the fourth quadrant because poles in this region are
90◦ or more from [001].

h > 0
k > 0
l > 0

h > 0
k < 0
l > 0

h > 0
k > 0
l < 0

h > 0
k < 0
l < 0

[001]

[100] [010]4.6. Signs of h, k, and � in the four quadrants
of the standard projection.

Similarly, each quadrant can be divided in half according to whether h > k,
whether k > �, and whether h > �, as shown in Figure 4.7 for the first quadrant.
These three bisections of the first quadrant split it into six triangles, as illustrated
in Figure 4.8 with the appropriate <123> pole in each triangle.

4.7. Relative values of h, �, and k in different regions of the first quadrant.

101

100 010

001

110

011
213

132

123

321

312
231

4.8. Locations of the <123> poles in the first
quadrant.

EXAMPLE 4.1. Locate [21̄1] on the standard projection.

SOLUTION: See Figure 4.9. Examination of the signs of each of the indices shows
that [21̄1] lies in the fourth quadrant (Figure 4.9A). The dot products [21̄1] · [01̄0]
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and [21̄1] · [001] are equal, so [21̄1] is equidistant from [01̄0] and [001] on the
line connecting [100] and [01̄1] (Figure 4.9B). Finally, the dot product of [21̄1]
with [100] is larger than the dot products of [21̄1] with [01̄1]. This indicates that
the angle between [21̄1] and [100] is less than the angles between [21̄1] and [01̄1]
(Figure 4.9C).

[100]
[100]

[011]

[100]

[011]

[211]

A B C

4.9. Location of [21̄1] on the standard projection.

Other projections are possible, but crystallographers use the stereographic pro-
jection because the angles between planes in the projection are the true angles
between the planes.

Standard hexagonal projection

Figure 4.10 shows the standard hexagonal projection. Note that there are 12
equivalent triangles with corners at <21̄1̄0>, <101̄0>, and [0001].

4.10. Standard hexagonal projection.
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Spherical trigonometry

The angular relations expressed graphically by the stereographic projection can be
expressed quantitatively by spherical geometry. A spherical triangle is a triangle
on the surface of a sphere whose sides are great circles, as shown in Figure 4.11.
Two very simple and useful relations are

cos a = cos b cos c + sin b sin c cos α (4.1)

and

cos α = cos β cos γ + sin β sin γ cos a, (4.2)

where a, b, and c are the angular lengths of the sides and α, β, and γ are the
interior angles.

α

β
γ

a

b

c4.11. Spherical triangle.

NOTE OF INTEREST

Of the various ways of projecting a spherical surface onto a plane, the stere-
ographic projection is the only one that preserves angles between directions
and preserves circles as circles. The word “stereographic” comes from the
Greek stereos meaning solid and graphicus meaning writing, drawing, or
engraving.

REFERENCES

C. S. Barrett and T. B. Massalski. Structure of Metals, 3rd ed. New York: McGraw-
Hill, 1980.

W. F. Hosford. The Mechanics of Crystals and Textured Polycrystals. Oxford,
U.K.: Oxford Science, 1993.

A. Kelly, G. W. Groves, and P. Kidd. Crystallography and Crystal Defects. New
York: Wiley 2000.

PROBLEMS

1. Locate [312] on a stereographic projection with [001] at the north pole and
[100] in the center.

2. What is the angle between the [110] and [321] directions in a cubic crystal?
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3. How many different <210> directions are there in a cubic crystal? How many
stereographic triangles does each <210> direction share?

4. Calculate the great circle distance from Chicago (lat. = 41.8 N, long. =
87.75 W) and Auckland (lat. = 36.75 S, long. = 174.75 E). The earth’s
diameter is 12,742 km.
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5 Crystal Defects

Vacancies in pure metals

A common lattice defect is a vacant lattice site or vacancy. The presence of a
vacancy increases the enthalpy by �hf and the entropy by �s f . Because the
free energy of a system is lowered by increased entropy, there is an equilib-
rium fraction of vacant lattice, xv , which increases with temperature. At equilib-
rium, �g f = �hf − T �sf = 0, so �hf = −T �sf . From statistical mechanics,
�sf = −k ln xv , so

xv ≈ exp(−�hf /kT ), (5.1)

where k is Boltzmann’s constant, 86.1 × 10−6 eV/K. Data for pure metals (Fig-
ure 5.1) indicate that �hf ≈ 0.75 × 10−3 Tm , where Tm is the melting point in
Kelvins. This means that at the melting point of a metal, the equilibrium concen-
tration, xv , is about 2 × 10−4 and at Tm/2, xv ≈ 5 × 10−7.

Actual vacancy concentrations at low temperatures are often much higher
than the equilibrium number. There are three reasons for this: First, as a metal is
cooled the number of vacancies can decrease only by diffusing to sinks, such as
edge dislocations, grain boundaries, or free surfaces. Unless cooling from a high
temperature is very slow, there will not be enough time for all of the excess vacan-
cies to diffuse to these sinks. A second reason is that, during plastic deformation,
intersecting dislocations create jogs, and the movement of jogged dislocations
generates vacancies. Radiation is a third possible cause of excess vacancies.
Neutrons may knock atoms out of their normal lattice positions, creating both
vacancies and interstitial atoms. This is particularly important in nuclear reactors.

The increase of resistivity after cold work is caused by vacancies. Recovery
annealing decreases vacancy concentration, restoring conductivity.

In principle, there should also be an equilibrium concentration of interstitial
atoms that increases with temperature:

xi ≈ exp(−�hi/kT ), (5.2)

33
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5.1. Correlation of the heat of formation of vacancies with melting points. Data from R. A.
Johnson in Diffusion (Materials Park: ASM, 1972) All rights reserved. www.asminternational.
org.

where �hi is the energy to create an interstitial. However, estimated values of
�hi are so high that even at the melting point xi is negligible.

Interstitials may be generated by radiation.

Point defects in ionic crystals

Point defects in ionic crystals are always paired to preserve electrical neutrality.
There are several types of defect pairs:

1. A cation vacancy may be paired with an anion vacancy. This is called a Schottky
defect. An example is the formation of Li+ and F− vacancies in LiF. This is
illustrated in Figure 5.2A.

2. A cation vacancy may be paired with a nearby cation interstitial. This is called
a Frenkel pair. An example is the formation of Zn+2 vacancies and Zn+2

interstitials in ZnO. This is illustrated in Figure 5.2B. In principle, paired
anion vacancies and interstitials are possible, but this is less likely because of
the larger size of the anions.

3. A solution of cations of a higher valence than that of the solvent cation must
be accompanied by one or more anion vacancies. For example, consider the
presence of Fe+3 ions in FeO. For every two Fe+3 ions, there is an O−2, vacancy,
as shown in Figure 5.2C.

There is a useful notation system for defects in ionic crystals. Either the chem-
ical symbol for the element or “V” for a vacancy indicates what is on a lattice
site. A subscript of either the chemical symbol for the element or “i” if it is an
interstial site indicates what is normally on the site. The charge, relative to the
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Fe+2 O-2 Fe+2 O-2 Fe+2 O-2 Fe+2

Fe+2 O-2 Fe+2 O-2 Fe+2 O-2O-2

Fe+2 O-2 Fe+3 O-2 Fe+2 O-2 Fe+2

Fe+2 O-2 Fe+2 O-2 Fe+2 O-2O-2

Fe+2 O-2 Fe+2 Fe+2 O-2 Fe+2

Fe+2 O-2 Fe+2 O-2 Fe+3 O-2O-2

Fe+2 O-2 Fe+2 O-2 Fe+2 O-2 Fe+2

Fe+2 O-2 Fe+2 O-2 Fe+2 O-2O-2

Li+  F- Li+  F- Li+  F- Li+  F- Li+  F-

Li+  F- Li+  F- Li+  F- Li+  F- Li+ F-

Li+  F- Li+  F- Li+  F- Li+ Li+  F-

Li+  F-  F- Li+  F- Li+  F- Li+ F-

Li+  F- Li+  F- Li+  F- Li+  F- Li+  F-

Li+  F- Li+  F- Li+  F- Li+  F- Li+ F-

Li+  F- Li+  F- Li+  F- Li+  F- Li+  F-

Li+  F- Li+  F- Li+  F- Li+  F- Li+ F-

Zn+2  O-2 Zn+2  O-2 Zn+2  O-2 Zn+2  O-2 

O-2 Zn+2  O-2 Zn+2  O-2 Zn+2  O-2 Zn+2 

Zn+2  O-2 

Zn+2   

Zn+2  O-2 Zn+2  O-2 

O-2 Zn+2  O-2 Zn+2  O-2 Zn+2  O-2 Zn+2  

Zn+2 Zn+2  O-2 Zn+2  O-2 

O-2 Zn+2  O-2 Zn+2  O-2 Zn+2  

Zn+2  O-2 Zn+2  O-2 Zn+2  O-2 Zn+2  O-2 

O-2 Zn+2  O-2 Zn+2  O-2 Zn+2  O-2 Zn+2  

A.

C.

B.

O-2 

O-2 O-2 
Zn+2 

O-2 

Zn+2 

5.2. (A) Shottky defects consist of paired cation and anion vacancies . (B) Frenkel defects consist
of ion vacancy and ion interstitial pairs. (C) Anion vacancies may be neutralized by substitution
of cations of higher valence.

normal charge of the site, is indicated by a superscript + for positive charges, –
for negative charges or ◦ for no change of charge.

For example, using this system, V−
Na indicates a vacant site normally occupied

by a Na+ ion so the site has a charge of −1, Fe+
Fe indicates an Fe+++ substituting

for an Fe++ so the site has a charge of +1, and Ag◦
Ag indicates a silver ion on

its proper site. Reactions can be written with this system. For example, formation
of a Frenkel defect in NaCl can be written as Na◦

Na → Na+
i + V−

Na and the
creation of a Schottky defect can be written Null → V−

Na + V+
Cl.

The enthalpies associated with several reactions are listed in Table 5.1 The
equilibrium number of defect pairs is given by

n = exp(−�g/2kT ) ≈ exp(−�h/2kT ). (5.3)

Substitution of an ion having a different valence than the solute causes a defect.
For example, solution of CaCl2 in NaCl creates a vacancy on a Na+ site. The

Table 5.1. Formation enthalpies for vacancy formation in a few ionic crystals

Crystal Reaction Formation enthalpy, ∆h, eV

AgBr Ag◦
Na → Ag+

i + V −
Ag 1.1

LiF Li◦ Li → Li+ i + V−
Li 2.4 – 2.7

TiO2 O◦
O → V2+

O + O2−
i 8.7

ZnO O◦
O → V2+

O + O2−
i 2.5

Al2O3 Null → 2V3+
Al+32+◦

O 26
FeO Null → Fe2−

Fe + V2+
O 6.5

MgO Null → Mg2−
Mg + V2+

O 7.7
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5.3. An edge dislocation in a simple cubic
crystal.

solution reaction can be written as CaCl2 → Ca+
Na + V−

Na + 2Cl◦Cl. Defects
caused by impurities are called extrinsic defects in contrast to temperature-
dependent intrinsic defects. In ionic crystals, point defects can act as charge
carriers. Therefore, the electrical conductivity increases with an increasing num-
ber of defects.

Dislocations

A dislocation is a line defect in a crystal. The atoms around a dislocation are
displaced from their normal positions. The lattice distortion is greatest near the
dislocation and decreases with distance from it. Figure 5.3 shows an edge dislo-
cation, which is a special form of dislocation. Its geometry is equivalent to cutting
into a perfect crystal and inserting an extra half plane of atoms into the cut, as
sketched in Figure 5.4. The dislocation is the bottom edge of the extra half plane.

A more general way of visualizing a dislocation is to imagine cuting into a
crystal and shearing one side of the cut relative to the other by an atomic distance.
This is illustrated in Figure 5.5. If the direction of shearing is perpendicular to the
end of the cut, the end of the cut is an edge dislocation. If the shearing is parallel
to the end of the cut, the end of the cut is a screw dislocation. The atoms around

5.4. Creation of an edge dislocation by
insertion of an extra half plane of atoms.
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5.5. Creation of an edge dislocation by shearing perpendicular to a cut (middle) and a screw dis-
location by shearing parallel to a cut (right.) From W. F. Hosford, Physical Metallurgy (Cleveland,
OH: CRC Press, 2004), p. 126, figure 8.2.

it are on planes that spiral around the dislocation like the ramps of a parking
structure.

In both cases the dislocation is the boundary between the region that has been
sheared and the region that has not. The boundary need not be either perpendicular
or parallel to the direction of slip. Edge and screw orientations are extremes. A
dislocation need not be a straight line. However, as a dislocation wanders through
a crystal, its Burgers vector is always the same. When a dislocation moves, it
causes some material to undergo slip.

Burgers vectors

A dislocation is characterized by its Burgers vector. An atom-to-atom circuit that
would close in a perfect crystal will fail to close if it is drawn around a dislocation.
The closure failure is the Burgers vector of the dislocation. This is illustrated in
Figure 5.6. The edge dislocation (middle) is perpendicular to its Burgers vector
and the screw dislocation (right) is parallel to its Burgers vector.

A Burgers vector has both a direction and a magnitude. Its direction is the direc-
tion of the displacement that would be caused by movement of the dislocation,
and the magnitude is the length of that displacement. The direction and magni-
tude normally correspond to a slip direction and slip displacement. The common
notation indicates the direction by Miller indices. A scalar in front indicates the
magnitude. For example, b = (a/2)[110] indicates a vector a/2, a/2, 0, where

b
b

5.6. A circuit that closes in a perfect crystal (left). If that circuit is drawn around an edge dislo-
cation (dashed line), the closure failure, b, is perpendicular to the dislocation (middle). Around
a screw dislocation, the closure failure, b, is parallel to the dislocation (right).
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a is the lattice parameter. This is the Burgers vector corresponding to a full slip
displacement in an fcc crystal. Its magnitude is (a/2)[12 + 12 + 02]1/2 = a/

√
2.

Energy of dislocations

The energy per length of a screw dislocation is approximately

EL = Gb2, (5.4)

where G is the shear modulus of the crystal. For an edge dislocation the energy
is about one and a half times greater, EL = Gb2/(1 − ν), where ν is Poisson’s
ratio. These expressions of energy per length are equivalent to line tensions.
Dislocations tend to straighten themselves to minimize their energy.

Two parallel dislocations can combine to form a third dislocation, or one dis-
location can dissociate into two others. In either case, the vector sums of the
products and reactants must be equal. That is, if b1 + b2 → b3 + b4, b1 + b2 =
b3 + b4. Since the energy of a dislocation is proportional to b2, dislocation
reactions are energetically favorable if b1

2 + b2
2 > b3

2 + b4
2 and unfavorable if

b1
2 + b2

2 < b3
2 + b4

2. This is known as Frank’s rule. For example, the reaction
(a/2)[110] + (a/2)[011] → (a/2)[121] is unfavorable because (a/2)2[12 + 12 +
02] + (a/2)2[02 + 12 + 12] = a2 is less than (a/2)2[12 + 22 + 12] = (3/2)a2.

Stress fields around dislocations

The displacements of atoms near a dislocation from their normal lattice positions
are the same as the displacements that would be caused by some external stress.
Therefore, we can think of the dislocation as causing a stress field around it.
Around an edge dislocation, there is a state of hydrostatic stress, σH = σx +
σy + σz , at a location x, y,

σH = Ay/(x2 + y2), (5.5)

where A = Gb(1 + ν)/[3π (1 − ν)]. This is illustrated in Figure 5.7. Above the
dislocation the extra half plane causes crowding. This is equivalent to hydrostatic
compression. There is hydrostatic tension below the dislocation. The level of the
hydrostatic stress decreases with distance from the dislocation.

The stress field around an edge dislocation causes interactions with solutes.
Interstitial solutes tend to segregate to the region of hydrostatic tension. Substitu-
tional solutes that are larger than the lattice atoms also segregate to the region of
the hydrostatic tension. Small substitutional solutes will segregate to the region
of compression. In all cases the segregation lowers the energy of the dislocation,
making it more difficult to move. There is no dilation around a screw disloca-
tion in an isotropic crystal so there is little interaction between solutes and screw
dislocations.

The stress fields of edge dislocations interact with other edge dislocations. The
systems’ energy is lowered if they are aligned so that the compressive field of one
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y

x

hydrostatic compression

hydrostatic tension

contours of equal levels
of hydrosttic  stress

5.7. Hydrostatic stress field around an edge
dislocation.

overlaps the tensile field of another. Such an arrangement forms a low-angle grain
boundary, as shown in Figure 5.8. The angle of misorientation, θ , is given by

θ = b/d. (5.6)

θ
d

b

5.8. Low–angle grain boundary formed by a
series of edge dislocations.

Partial dislocations

In fcc metals, the normal slip dislocations can dissociate into partial dislocations:

(a/2)[110] → (a/6)[121] + (a/6)[211̄]. (5.7)

This reaction is energetically favorable. The resulting (a/6) < 211 > dislocations
are called partial dislocations because their movement does not restore the lattice.
They repel each other but leave a stacking fault between them. This is illustrated
in Figure 5.9. The stacking of close-packed planes in this region corresponds to a
three-atom layer of hexagonal close-packed (hcp) packing (Figure 5.10). This is
not the normal stacking and, therefore, there is a stacking fault energy associated
with such a region.
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partial
dislocation

partial
dislocation

stacking fault

5.9. Between two partial dislocations there
is a stacking fault. Reproduced with per-
mission of Cambridge University Press from
W. F. Hosford, Mechanical Behavior of Mate-
rials (New York: Cambridge Univ. Press,
2005).

5.10. A stacking fault corresponds to a thin region of hcp packing. Reproduced with permission
of Cambridge University Press from W. F. Hosford, Mechanical Behavior of Materials (New York:
Cambridge Univ. Press, 2005).

NOTES OF INTEREST

1. The term ion was first used in 1834 by Michael Faraday. It comes from a
Greek word meaning “to go.” He also named anion (thing going up) and
cation (thing going down.)

2. Early theoretical chemists studying how crystals grow realized that once an
atomic plane was complete another would have to be nucleated. However,
their calculations indicated that nucleation of new planes would be far too
slow to account for observed rates of crystal growth. The postulation of screw
dislocations removed this dilemma because nucleation of new planes would
not be required.

3. As part of an investigation, in 1952, of the failure of some electrical con-
densers, Treuting found whiskers of tin (about 2 × 10−6 m diameter) growing
from the condenser walls, as shown in Figure 5.11. When these whiskers were
tested in bending,* (a/2)[110] → (a/6)[21̄1] + (a/6)[121], it was found
that these whiskers could be bent to a strain of 2 to 3% without plastic
deformation. This meant that the yield strength was more than 2.5% of

* C. Herring and J. K. Galt, Phys. Rev. 85 (1952): 1060–1.
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5.11. Tin whiskers growing on tin-plated
steel. From W. C. Ellis, D. F. Gibbons, and R.
G. Treuting in Growth and Perfection of Crys-
tals, B. H. Doremus, B. W. Roberts, and D.
Turnbull, eds. (New York: Wiley, 1958), p.102.

the Young’s modulus. For tin, E = 44 GPa, so the yield strength was over
1 GPa. Overnight, tin became the strongest material known to man. Once the
Herring–Galt observation was reported, many others began testing whiskers
of other metals such as copper and iron with similar results and tin lost this
distinction.
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PROBLEMS

1. The composition of wustite is Fe<1O. The equilibrium ratio Fe/O depends on
the oxygen partial pressure. The primary charge carriers are electron holes
(Fe+3 ions). Explain how the conductivity of wustite changes with oxygen
partial pressure.
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2. It is estimated that the energy to form an interstitial atom in a metal is
four times as great as that to form a vacancy. Estimate the equilibrium
concentration of interstitials just below the melting point.

3. A. Estimate the equilibrium vacancy concentration of aluminum at 25 ◦C.
B. Give two reasons why the actual concentration might be much higher

than this amount.

4. A crystal of aluminum contains 1012 meters of dislocation per cubic meter.
A. Calculate the total amount of energy associated with dislocations 1012

per m3. Assume half of the dislocations are edges and half are screws.
B. If all of this energy could be released as heat, what would be the temper-

ature rise?

Data for aluminum: atomic diameter = 0.286 nm,
crystal structure = fcc, density = 2.70 Mg/m3,
atomic mass = 27 g/mol, C = 0.90 J/g C, G = 70 GPa, ν = 0.3.

5. Calculate the average spacing between dislocations in a 1/2◦ tilt boundary
in aluminum. Look up any required data.

6. Consider the reactions between parallel dislocations given below. In each
case write the Burgers vector of the product dislocation and determine
whether the reaction is energetically favorable.
A. (a/2)(a/2)[11̄0] + (a/2)[110] →
B. (a/2)[101] + (a/2)[011̄] →
C. (a/2)[11̄0] + (a/2)[101] →

7. Consider the dislocation dissociation reaction (a/2)[110] → (a/6)[21̄1] +
(a/6)[121](a/2)[11̄0] + (a/2)[101] →in an fcc crystal. Assume that the
energy/length of a dislocation is given by EL = Gb2 and neglect any depen-
dence of the energy on the edge versus the screw nature of the dislocation.
Assume that this reaction occurs and the partial dislocations move very far
apart.
A. Express the total decrease in energy/length of the original (a/2)[110]

dislocation in terms of a and G.
B. On which {111} plane must these dislocations lie?

8. Referring to Figure 5.10, find the ratio of the wrong second-nearest neighbors
across a stacking fault to the number across a twin boundary. If the surface
energies are proportional to the number of wrong second-nearest neighbors,
what is γSF/γT B?
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6 Phase Diagrams

The Gibbs phase rule

The Gibbs phase rule relates the number of equations that are required to describe
a system at equilibrium to the number of variables necessary to describe the
system. The number of degrees of freedom is the number of variables that can be
changed independently without affecting the number of phases in equilibrium. It
is the difference between the number of variables and the number of equations
describing equilibrium.

Variables: The variables in the system are the composition of each phase and
the environmental variables. C−1 independent terms are needed to express the
composition of each phase, where C is the number of components (elements or
compounds). For example, to describe the composition of the α phase we would
need to fix cA

α, cB
α, . . . , cC

α−1, where cA
α is the amount of A in the α phase.

The reason that the number of compositional variables for the α phase is C−1
rather than C is that once the percent (or fraction) of all but one of the components
has been established, the amount of the last one is fixed. With P phases and
C−1 compositional variables for each phase, the total number of compositional
variables is P (C−1).

The usual environmental variables are temperature and pressure. However, one
can imagine a system in which equilibrium is affected by some other variable (e.g.,
a magnetic field). Pressure is not considered to be a variable when equilibrium is
described at a fixed total pressure (e.g., atmospheric). In general the number of
environmental variables is designated as E. Most phase diagrams are at constant
pressure so the only environmental variable is temperature. In this case E = 1.
(If both variations in both temperature and pressure are considered, E = 2).

Equalities: In a phase at equilibrium there is no driving force for a change of
composition. Therefore, the vapor pressure, p, of each element must be the same
in all phases.∗ For example, if the equilibrium vapor pressure of water vapor were

∗ Some authors prefer to describe the equilibrium in terms of partial free energies or chemical
activities instead of vapor pressures. Because these quantities are uniquely related to vapor
pressures, the result is the same.
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higher for the α phase than for the β phase, water vapor would evaporate at the
α, and diffuse to and condense at the β. It does not matter if the vapor pressures
are extremely low. Equilibrium therefore implies that

pA
α = pA

β = pA
γ = ...

pB
α = pB

β = pB
γ = ...

pC
α = pC

β = pC
γ = ...

(6.1)

The subscripts refer to the components and the superscripts refer to the phases.
For example, pA

β is the equilibrium vapor pressure of element A in phase β.
With P phases (α, β, γ, . . .) there are P−1 equalities (equal signs) in each line.
There are C lines, where C is the number of components (A, B, C, etc.) so the
total number of equalities is C (P−1).

Degrees of freedom: The number of degrees of freedom, F, is the number of
variables that can be changed independently without changing which phases are
in equilibrium. It is the number of variables that are not fixed by the equalities, so
it equals the number of variables, P (C−1) + E, minus the number of equalities,
C (P−1),

F = P(C − 1) + E − C(P − 1) or

F = C + E − P. (6.2)

This is the Gibbs phase rule. For constant pressure but variable temperature it can
be written as F = C − P + 1.

One simple way of remembering the phase rule is to write it as P + F =
C + E , which might also be a shorthand way of saying a Police Force equals
Cops plus Executives.)

Invariant reactions

Invariant reactions are ones that occur at constant temperatures. In a binary sys-
tem, three phases may be in equilibrium at a constant temperature. A number of
common invariant reactions are illustrated in Figure 6.1.

Ternary phase diagrams

In systems involving three components, composition is plotted on a triangular
section (Figure 6.2). Pure components are represented at the corners and the grid
lines show the amount of each component. All of the lines parallel to AB are lines
on which the %C is constant. Those nearest C have the greatest amount of C. To
represent temperature, a third dimension is needed. Figure 6.3 is a sketch of a
three-dimensional ternary diagram in which temperature is the vertical coordinate.

Ternary equilibrium can be represented in two dimensions by either isother-
mal or vertical sections. A typical isothermal section is indicated in Fig-
ure 6.4. There are single-phase regions (α, β, γ, and δ), two-phase regions
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6.1. Several invariant reactions.
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6.2. A triangular grid for representing the compositions in a three-component system.

(α + γ, α + δ, δ + γ, δ + β, and β + γ), and three-phase regions (α + δ + γ

and δ + β + γ). As in binary diagrams, there are always two-phase regions
between single-phase regions. Three-phase regions are triangular and meet single-
phase regions only at their corners.
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A

B

C

T1

T2

T3

T4

6.3. A three-dimensional model of a ternary
phase diagram with a ternary eutectic. T1

corresponds to the AB binary eutectic tem-
perature, T2 to the AC binary eutectic
temperature, T3 to the BC binary eutec-
tic temperature, and T4 to the ABC ternary
eutectic temperature.

Two-phase regions: In two-phase regions, tie lines are needed to indicate the
compositions of the two phases that are in equilibrium with each other. Often
the tie lines are not shown. However, they can usually be approximated with a
little judgment. The lever law may be used to find the relative amounts of the two
phases at opposite ends of a tie line going through the overall composition. (In
applying the lever law, the composition may be expressed in terms of any of the
three components but greatest accuracy will be obtained by using the component
that differs the most between the two phases.)

A

α + δ

δ

γ

βα

β + γ

α + β

δ + γ

δ + β
α + δ + β

δ + γ + β

C

B

%B

%C

%A

6.4. An isothermal section of a hypothetical ternary phase diagram showing one-, two-, and
three-phase regions.

Three-phase regions: These are triangular. The compositions of the phases are
at the corners. The relative amounts of the three phases can be found from a
modified lever law,

fα = (Cav − Cα)/(Cα′ − Cα), (6.3)
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where Cα
′ is found by extrapolating a line drawn through Cα and Cav to the

opposite side of the triangle, as shown in Figure 6.5.

δ

β
α

Cα

C α

Cο

fα = 
(C α − Cο)

(C α − Cα)

6.5. Use of the lever law in a three-phase
region.

The progression of phases during solidification can be followed from a pro-
jection of the liquidus on triangular coordinates. Figure 6.6 shows the liquidus
surface of the CaO−Al2O3−SiO2 system. During freezing the composition of the
liquid moves away from the solid phase that is forming and down the temperature
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6.6. The liquidus surface of the CaO−Al2O3−SiO2 ternary diagram. In the diagram, C denotes
CaO, A denotes Al2O3, and S denotes SiO2. Temperatures in Celsius. From Phase Diagrams for
Ceramic 1 (1964): 219.
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6.7. Pseudobinary sections of a ternary.

gradient. Once a eutectic valley is reached, the liquid composition follows the
eutectic valley toward lower temperatures.

Vertical sections: Vertical cuts through a ternary can be made at either a constant
amount of one of the components or at a constant ratio of two components (Fig-
ure 6.7). These pseudobinaries differ from binary phase diagrams in that the tie
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6.8. Section at 0.10% C of the iron-rich end of the Fe–Cr–C phase diagram. Reprinted with
permission of ASM International® from American Society for Metals, Metals Handbook, 8th ed.,
vol. 8, Metallography, Structures, and Phase Diagrams (Materials Park, OH: ASM, 1973). All
rights reserved. www.asminternational.org.
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lines between compositions in equilibrium with one another do not in general lie
in the plane of the cut. It is, therefore, impossible to determine from a vertical
section the compositions or the amounts of the phases in equilibrium.

Figure 6.8 is the section of the Fe–Cr–C diagram at 0.10% C. Note that there
is an α + γ two-phase region but no α single-phase region. The α phase cannot
dissolve at 0.10% C.

NOTES OF INTEREST

1. Josiah Gibbs (1839–1903) was the first American scientist after Benjamin
Franklin to establish an international reputation. He earned the first engineer-
ing PhD granted in the United States from Yale in 1863. His dissertation was
titled On the Form of Teeth in Wheels in Spur Gearing. After studying at var-
ious places in Europe, he returned to teach and do research at Yale (without
salary). He published his work on thermodynamics and statistical mechanics
in the Transactions of the Connecticut Academy of Arts and Sciences. This
journal was little read in the United States, but he sent reprints to the lead-
ing scientists in Europe, where his reputation grew rapidly. In 1876, Clerk
Maxwell said of Gibbs, “an obscure American has shown that the problem
which long has resisted the efforts of myself and others may be solved at
once.”

2. The equilibrium crystallographic form of ice depends on temperature and
pressure. A phase diagram showing some of these is shown in Figure 6.9.
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6.9. Phase diagram for ice. Ice Ih is hexag-
onal, ice II is rhombohedral, ice III and ice VI
are tetragonal, and ice V is monolinic. There
are five other forms of ice.
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PROBLEMS

1. A portion of the isothermal section of an aluminum–iron–manganese phase
diagram at 600 ◦C is shown in Figure 6.10. Assuming equilibrium, list the
phases present, give their compositions, and calculate the relative amounts
of them for
A. 0.40% Fe, 0.40% Mn and
B. 0.20% Fe, 0.60% Mn.
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6.10. The Al–Fe–Mn phase diagram. The aluminum-rich corner is enlarged at the right. Reprinted
with permission of ASM International® from American Society for Metals, Metals Handbook,
8th ed., vol. 8, Metallography, Structures, and Phase Diagram (Materials Park, OH: ASM, 1973).
All rights reserved. www.asminternational.org.

2. Four distinct phases were observed in the microstructure of a ternary alloy
at room temperature. Discuss this observation briefly in terms of the phase
rule. What is the most likely explanation?

3. Consider the freezing of a ternary eutectic. The pressure is constant. The
liquid simultaneously freezes to three solid phases, so there are four phases
present during the freezing. One student applies the phase rule and concludes
that there are zero degrees of freedom. Another student says that this is wrong
because the amounts of the phases are not constant. Who is right? Discuss
briefly.

4. Considering both temperature and pressure to be variables, what is the
largest number of phases that can coexist at equilibrium in a binary
alloy?

5. Consider a binary alloy of copper and silver. At a temperature near
850 ◦C and an alloy composition near 80% Cu–20% Ag, the phase diagram
says that there should be a copper-rich solid and a liquid. Considering the
pressure to be fixed at one atmosphere but allowing temperature variations,
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how many degrees of freedom are there? What is (are) the independent
variable(s)?

6. Trace the liquid composition during freezing of 50% SiO2, 25% Al2O3, and
25% CaO. See Figure 6.6. What is the composition of the last liquid to
solidify? What phases are present in the final solid?



P1: JzG
0521867053c07 CUFX036/Hosford 0 521 86705 3 printer: Sheridan November 2, 2006 17:49

7 Free Energy Basis of Phase Diagrams

Gibbs free energy

Phase diagrams are related to how the Gibbs free energy of a system varies
with composition, temperature, and pressure. Equilibrium corresponds to the
state of lowest free energy. The Gibbs free energy of a system, G, is defined as
G = H − T S, where H is the enthalpy of the system, S is the entropy of the
system, and T is the temperature. The enthalpy or heat content is given by

H =
∫

CdT + �(�Htrans), (7.1)

where the �Htrans terms are the latent heats associated with phase changes. The
value of H is relative to a base temperature, that is, the lower limit of the integral.

Entropy is a measure of the randomness of a system. It is given by

S =
∫

(C/T )dT + �(�Htrans/T ). (7.2)

In every system, equilibrium corresponds to the state of lowest free energy. When
two components form a solution, the change of free energy on mixing is

�Gm = �Hm − T �Sm, (7.3)

where the subscript m refers to the change on mixing.

Enthalpy of mixing

When a solution is formed, the enthalpy may increase, decrease, or remain
unchanged. If the enthalpy does not change (�Hm = 0), the solution is called
an ideal solution. If �Hm is positive, cooling occurs on mixing because heat is
absorbed to form the solution. This indicates that AA and BB bonds are stronger
than AB bonds. On the other hand, if there is a strong attraction between unlike
near neighbors, �Hm is negative and heat will be released, warming the solution.

52
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For every two AB bonds formed by mixing, an AA and a BB bond must be broken.
Therefore, the heat of mixing is given by

�Hm = PAB[εAB − (εAA + εB B)/2], (7.4)

where PAB is the number of AB bonds per mole and εAB, εAA, and εB B are the
energies of the AB, AA, and BB bonds. An estimate of PAB may be made by
assuming a random solution. In that case

PAB = (noz/2)X A X B, (7.5)

where no is Avogadro’s number, z is the coordination number, and X A and X B are
the mole fractions of A and B. Substituting Equation (7.5) into Equation (7.4),

�Hm = X A X B�, (7.6)

where � = (noz/2)[εAB − (εAA + εB B)/2].

Entropy of mixing

According to statistical mechanics, the change of entropy, �Sm , for a random
mixture is given by

�Sm = k ln(p), (7.7)

where p is the number of distinguishable arrangements of atoms and k is Boltz-
mann’s constant. Consider a mole of atoms where n A is the number of atoms of
element A, and nB is the number of atoms of element B. The total number of
atoms is given by no = n A + nB = 6.02 × 1023. In a mole of solution, there are
no possible sites for atoms in a crystal. Filling these sites one at a time, with na

atoms of A, the first atom of A can be put in any of no sites, the second in any
of (no − 1) sites, the third in any of (no − 2) sites, and so on, until the last atom
of A can be put in any of (no − na + 1) sites. The total ways of filling the sites is
then equal to no, (no − 1), (no − 2) . . . (no − na + 1). However, this is not the
number of distinguishable arrangements because it does not matter whether we
put the 3rd A atom in the 3rd site or the 1st site or the 112th site. The number of
distinguishable arrangements is

p = [no · (no − 1) · (no − 2) · . . . (no − n A + 1)]/n A!. (7.8)

If both the numerator and denominator are multiplied by nb!, Equation (7.8) can
be expressed as

p = no!/(n A!nB!) (7.9)

so

�Sm = k ln(p) = k[ln(no!) − ln(n A!) − ln(nB!)]. (7.10)
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Using Stirling’s approximation, ln(x!) = x ln x − x ,

�Sm = k[no ln(no) − na ln(na) − nb ln(nb) − no + n A + nB]. (7.11)

Simplifying, �Sm = k(n A + nB) ln(no) − n A ln(n A) − nB ln(nB)], or �Sm =
−k[no ln(n A/no) + no ln(nB/no)]. Now, recognizing that the mole fraction of
element A is NA = n A/no, the mole fraction of element B is (1 − NA) = NB =
nB/no, and the gas constant R = kno,

�Sm = −R[NA ln NA + NB ln NB]. (7.12)

Equation (7.12) is based on a random solution. If the solution is not random, �Sm

will be somewhat lower. However, Equation (7.10) is a good approximation.
The change of Gibbs free energy on mixing is then

�Gm = �Hm − T �Sm = �Hm + RT [X A ln X A + X B ln X B]. (7.13)

Note that the second term is always negative since both X A and X B are both
less than one and the natural log of a number less than one is negative. �H
may be either negative or positive so �G can also be either negative or positive.
Substituting �Hm = X A X B�,

�Gm = X A X B� + RT [X A ln X A + X B ln X B]. (7.14)

Elements A and B are completely miscible if � is negative. However, the
solubility is limited if � is positive. Figure 7.1 is a plot of Equation (7.14) for a
positive value of �. The solubilities correspond to the tangent points for a line
tangent to both minima.
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7.1. The variation of Hm, T Sm, and Gm with composition for a system with limited solubility. The
arrows indicate the solubility limits of the terminal solid solutions.
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Solid solubility

The solubility limit of B corresponds to d(�Gm)/dX B = 0. Expressing Equa-
tion (7.14) as �Gm = X B(1 − X B)� + RT [(1 − X B) ln(1 − X B) + X B ln X B]
and differentiating, d(�Gm)/dX B = �(1 − 2X B) + RT [−(1 − X B) ln(1 − X B)
− ln(1 − X B) + X B ln X B + ln X B] = 0. Therefore, the solubility of B corre-
sponds to�Hm = X A X B�:

RT [(1 + X B) ln X B − ln(1 − X B)(2 − X B)] = �(1 − 2X B). (7.15)

For dilute solutions X B → 0, so ln(1 − X B) → 0, 1 + X B → 1, and (1 −
2X B) → 1, so RT1nX B → −�. The solubility is given by

X B ≈ exp[−�/(RT )]. (7.16)

Equation (7.16) is a good approximation to the solvus in many systems. It can
also be used to predict the equilibrium solubilities of vacancies and interstitial
defects.

EXAMPLE 7.1: Find the solubility of B in A at 860 ◦C if � = −30000 J/mole.

SOLUTION: Substituting T = 860 ◦C = 1133 K and R = 8.314 into Equa-
tion (7.14),

9216RT [(1 + X B) ln X B − ln(1 − X B)(2 − X B)]/(1 − 2xB) = �.

Solving by trial and error, X B = 0.079.

Relation of phase diagrams to free energy curves

If total free energy of each phase is plotted against composition, the free energy
of the system in the two-phase region is given by the line tangent to the free
energies of the two phases. Furthermore, the solubility in each phase is given
by its tangent point. Figure 7.2 shows the relation between a free energy versus
composition plot and the phase diagram for a system that forms a single solid
solution.

Figure 7.3 shows the free energy versus composition curves for a system
that forms a simple eutectic. At the lowest temperature, T1, there is equilibrium
between two solid solutions, α and β. At the eutectic temperature, T2, there is a
common tangent between α, liquid, and β. At T3, equilibrium corresponds to Gα ,
the tangent between Gα and GL , GL , the tangent between GL and Gβ, and Gβ .
Finally, at T4, the lowest free energy corresponds to liquid for all compo-
sitions.
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7.2. Relation of free energy diagrams to a
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7.3. Relation of the free energy diagrams to the phase diagram for a eutectic system at four
different temperatures.
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Pressure effects

Le Chatelier’s principle states that a system will shift in the direction that nullifies
the effect of a pressure change. Increased pressure favors the denser phase. Fig-
ure 7.4 shows the effects of temperature and pressure on water. Note that because
liquid water is denser than ice, increased pressure lowers the melting point. It is
said that forces required for ice skating are very low because the pressure of the
skates on the ice creates a liquid film. At constant temperature,

(∂GL→S/∂P)T = �VL→S, (7.17)
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7.4. The phase diagram for water.

where G and V are the free energy and volume per mole. Consequently,

dTeq/dP = Teq�V/�H, (7.18)

where Teq is the equilibrium phase transformation temperature, �V is the trans-
formation volume change per mole, and �H is the latent heat of transfor-
mation. This is known as the Clausius–Clapeyron equation. For example, for
water Teq = 273 K, �V = 1.8 × 10−6 m3/mol, �H = 6 kJ/mol, so a pressure
increase of one atmosphere (10 kPa) will decrease the melting temperature by

(10,000)(273)(1.8 × 10−6 m3/mol)/6 × 103 J/m3 = 8.28 × 10−4 ◦C.

Metastability

Sometimes a phase will appear when the presence of another phase would lower
the free energy. The presence of cementite (Fe3C) in iron–carbon alloys is an
example. True equilibrium in iron–carbon alloys involves graphite rather than
cementite. Figure 7.5 shows the iron–carbon diagram. The dotted lines repre-
sent the true equilibrium between austenite and graphite and between ferrite and
graphite. The solid lines show the metastable equilibrium with cementite. The free
energy curves in Figure 7.6 illustrate why the solubility of carbon in austenite and
ferrite is lower for the true equilibrium with graphite than it is for the metastable
equilibrium with cementite.



P1: JzG
0521867053c07 CUFX036/Hosford 0 521 86705 3 printer: Sheridan November 2, 2006 17:49

58 MATERIALS SCIENCE: AN INTERMEDIATE TEXT

700

750

800

850

900

950

0 0.2 0.4 0.6 0.8 1

Percent carbon

T
em

pe
ra

tu
re

, °
C

727
738

0.77

0.680.0206

0.0218

α

α

 + γ

γ

7.5. The iron–carbon diagram showing the true equilibrium with graphite (dotted lines) as well
as the metastable equilibrium with cementite.
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7.6. The solubility of carbon in austenite. If there is true equilibrium with graphite, the solubility
is lower because the point of tangency on the austenite free energy curve is lower than for
metastable equilibrium with cementite.

When austenite is transformed to ferrite and pearlite below 727 ◦C, the com-
position of the pearlite and the amount of proeutectoid ferrite depend on the
transformation temperature. The reason for this can be understood by extrapo-
lating below 727 ◦C the line that represents the solubility of carbon in austenite,
as shown in Figure 7.7. In a steel that contains less than 0.77% C, proeutectoid
ferrite must form before any pearlite forms. Ferrite formation enriches the carbon
content of the austenite. Pearlite can form only when the austenite has been
enriched enough so that it is saturated with respect to carbon. This happens at
0.77% C if the transformation occurs at 727 ◦C. At temperatures below 727 ◦C,
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7.7. Extrapolation of the line that represents the solubility of carbon in austenite.

the carbon solubility in metastable austenite is lower. At 600 ◦C, cementite will
first form until the composition of the austenite reaches about 0.5% C, so the
pearlite will contain 0.5% C instead of 0.77%.

EXAMPLE 7.2: Determine the ratio of the widths of ferrite and cementite in
pearlite that has been formed at 727 and 600 ◦C. Assume that the densities of
cementite and ferrite are equal and the composition of cementite is 6.67% C.

SOLUTION: Pearlite formed at 727 ◦C will contain 0.77% C. Using the lever law
on the pearlite composition,

fα = (6.67 − 0.77)/(6.67 − 0.02) = 0.887,

fcem = 0.113, so wα/wcem = 7.9.

Pearlite formed at 600 ◦C will contain about 0.50% C. Using the lever law on the
pearlite composition, fα = (6.67 − 0.50)/(6.67 − 0.0) = 0.925, fcem = 0.075,

so wα/wcem = 12.3.

The effect of this extrapolation can be seen in isothermal diagrams. Figure 7.8
is the isothermal transformation diagram for a 1050 steel. Note that proeutectoid
ferrite must form before cementite for transformation temperatures above about
600 ◦C in accordance with Figure 7.8. The agreement is not perfect because in
addition to 0.50% C, the 1050 steel contains 0.91% Mn, which lowers the eutectoid
temperature and composition.
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7.8. Isothermal transformation diagram for a 1050 steel.

Extrapolations of solubility limits

Extrapolation of a phase boundary between α and β that represents the solubility
B into the two-phase region α + γ represents the solubility of B in α that is in
metastable equilibrium (see Figure 7.9A). The solubility of the metastable phase
must be greater than for the true equilibrium. If a phase diagram were drawn
so that the extrapolation of the phase boundary between α and β extended into
the α single-phase region (Figure 7.9B), this would predict that the solubility
of the metastable phase was less than for the true equilibrium. This is clearly

α
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α + γ

α + β

α + γ
αT

em
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re

Percent B Percent B

A. B.

7.9. The extrapolation of the boundary of a single-phase region must not extend into that
single-phase region. Diagram A is possible. Diagram B is not.
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impossible. Generalizing, the phase boundaries must meet at angles less than
180◦.

NOTES OF INTEREST

1. Henri Louis Le Chatelier’s (1850–1936) first education in chemistry and
mathematics came from his engineer father who was involved in starting
France’s aluminum industry. Later he graduated from the École Polytech-
nique with the intention of becoming a mining engineer. His study of phase
equilibrium led to his first proposal in 1884 of the principle which bears his
name.∗ Later he rephrased it as “Every change of one of the factors of an
equilibrium occasions a rearrangement of the system in such a direction that
the factor in question experiences a change in a sense opposite to the original
change.” He was no doubt heavily influenced by Willard Gibbs, whose works
he first translated into French.

2. It is commonly believed that ice is slippery because the pressure from our
weight causes the ice under our feet to melt. However, even the concentrated
pressure under ice skates lowers the melting temperature only a few
degrees Celsius. One would not be able to skate when the temperature was
25 ◦F (−4 ◦C). The real explanation is that even without pressure there is a
thin film of water, a few molecules thick, on the surface of ice, as illustrated
in Figure 7.10. The reason is that the molecules on the surface are bound
to fewer neighboring molecules than those in the interior, and therefore
vibrate more. This surface film persists for several tens of degrees below the
equilibrium melting point. Similar liquid films have been observed on lead
just below its melting point. This film had been postulated by Faraday and
Tyndall as early as 1842, but James and William Thompson (Lord Kelvin)
countered with the argument that the thin water layer was caused by pressure.
Only recently has there been proof of the liquid film without pressure.

7.10. Liquid layer a few molecules thick on
the surface of ice. From J. G. Dash and J. W.
Wettlaufer, Scientific American 282 (2005):
50–3.

∗ H. L. Le Chatelier, Comptes rendus 99 (1884).
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PROBLEMS

1. Figure 7.11 shows the free energy versus composition curves for the AB
system. Construct the AB phase diagram.

α

β

α
β

L

T1

G

β
L

T2

A                      %B                      B

A                      %B                       B

A                      %B                      B

α

G

G

T3

L

α

7.11. Free energy versus composition dia-
grams for the AB system at three tempera-
tures, T1 > T2 > T3.

2. In the CD system, the C-rich solid solution, γ , is often in metastable equi-
librium with C2D, but true equilibrium exists between γ and the compound,
CD2. Compare the corresponding solubilities of D in γ .

3. Sketch a plausible free energy versus composition diagram for the AB system
in Figure 7.12 at temperature T.
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7.12. The AB phase diagram.

4. Estimate the change of the melting point of aluminum caused by a pressure
change of 1 kbar. The density of solid aluminum is 2.7 Mg/m3, its melting
point is 660 ◦C, its heat of fusion is 98 kJ/mol, and aluminum contracts 6%
when it freezes.

5. The solubility of carbon in iron is 0.0218 at 727 ◦C. Estimate the solubility
at 200 ◦C.

6. Use the Clausius–Clapeyron equation to calculate the pressure required to
depress the melting point of ice by 1 ◦C. The density of ice is 917 kg/m3,
the density of water is 1000 kg/m3, and the heat of fusion is 3.3 × 105 J/kg.

7. Estimate the composition of pearlite formed in an Fe–C alloy isothermally
at 700 ◦C. What is the ratio of Fe3C to α in this pearlite?

8. Estimate the lowering of the melting point of ice by the weight of a 180-lb
skater. Assume that his entire weight is on one skate and that the skate makes
an area of contact of 100 mm2 with the ice.
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8 Ordering of Solid Solutions

Solid solutions are not usually random. If �Hm is positive, there is a tendency
to form fewer AB bonds than would exist in a random solution. The result is
clustering. On the other hand, if �Hm is negative, there is a tendency to form
more AB bonds than would exist in a random solution and the result is ordering.
Ordering may be either long range or short range.

Long-range order

Long-range order is possible in some binary solid solutions having compositions
corresponding to simple ratios of the number of A and B atoms. One species
of atom may tend to occupy certain lattice positions. Figure 8.1 shows several
ordered structures and Table 8.1 lists compositions that can form these ordered
structures.

Alloys of copper and platinum form two other ordered structures. The compo-
sition CuPt forms an ordered structure with copper and platinum atoms occupying
alternating close-packed planes in what would otherwise be an fcc solid solution.
The ordering in the composition Cu3Pt5 can be visualized as alternating close-
packed planes, one filled with Pt atoms and the other having Pt atoms in one
fourth of the sites.

There is a long-range order parameter, s, defined as the fraction of A atoms, f A,
occupying the correct sites minus the fraction occupying the wrong sites:

s = f A − (1 − f A) = 2 f A − 1. (8.1)

This parameter varies from 0 for a random solid solution to 1 for perfect order.
The degree of order decreases with increasing temperature and drops to zero
at a critical temperature, Tc. The temperature dependence of s is shown in
Figure 8.2.

Long-range order domains may be nucleated at several places within a grain.
When the domains grow together, a boundary will be formed if the domains
are out of phase. Figure 8.3 illustrated such an antiphase domain boundary. The

64
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Table 8.1. Ordered structures

L20 L12 L10 DO3 DO19

CuZn Cu3Au CuAu Fe3Al Mg3Cd
FeCo Au3Cu CoPt Fe3Si Cd3Mg
NiAl Ni3Mn FePt Fe3Be Ti3Al
FeAl Ni3Al Cu3Al Ni3Sn
AgMg Pt3Fe

Cu Zn Cu Au Cu Au

a. b. c.

AI Fe Cd Mg

d. e.

8.1. Five common ordered structures:
(A) L20-type CuZn, (B) L12-type Cu3Au,
(C) L10-type CuAu, (D) DO3-type Fe3Al, and
(E) DO19-type Mg3Cd. From W. F. Hosford,
Physical Metallurgy (Boca Raton, FL: CRC
Press, 2004), p. 97, figure 5.6.
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8.2. Long-range order parameter, s, decreases with temperature.

L20 ordering corresponds to the body-centered cubic with either of the species
occupying the body-centered sites. In this case there are two possible “phases” to
the ordering. In the L12 ordering the Au atoms may occupy any of four equivalent
sites, so there are four “phases.”

The change from an ordered state to a disordered state is a second-order
phase change. In a first-order phase change, thermodynamic properties such as
enthalpy and entropy undergo abrupt changes. In contrast, there is no heat of
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8.3. The antiphase boundary between two
domains.
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8.4. Excess specific heat of β brass near the
critical temperature.

transformation, �H , but there is an excess specific heat, as illustrated in Figure 8.4
for β brass. This is similar to the change from ferromagnetic to nonferromagnetic
states in iron at the Curie temperature.

Phase diagrams show the compositions for which ordering is possible. With
increased temperature, the range of compositions decreases to the stochiometric
composition at the Curie temperature. The phase diagram for the CuAu system
is given in Figure 8.5.
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8.5. Low-temperature region of the Cu–Au phase diagram showing the ordered phase regions,
Cu3Au (α′) and CuAu (α′′). Reprinted with permission of ASM International® from ASM
Handbook, vol. 8, 8th ed. (Materials Park, OH: ASM, 1973), p. 267. All rights reserved. www.
asminternational.org.
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Effect of long-range order on properties

The effect of long-range order on the electrical resistivity of copper–gold alloys
is shown in Figure 8.6. The increased periodicity produced by ordering during
annealing at 200 ◦C decreases the resistivity.

annealed at 200°C

0
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8.6. Ordering lowers the electrical resistivity
of copper–gold alloys. Adapted from C. S.
Barrett, Structure of Metals and Alloys (New
York: McGraw-Hill, 1943), p. 244, figure 14.

Long-range order also increases the yield strength. Passage of a normal dislo-
cation through a structure with long-range order produces an antiphase domain
boundary. The introduction of an antiphase domain boundary increases the sys-
tem’s energy so a greater force is required than to move a dislocation through a
disordered structure.

Short-range order

Even in the absence of long-range order, the positions of atoms in substitutional
solid solutions may not be random. If the strength of AB bonds is greater than
average of the AA and BB bond strength, A atoms will tend to be surrounded by
B atoms. This is called short-range order. If, on the other hand, the average of
the AA and BB bond strengths is greater than that of an AB bond, there will be
clustering. An A atom will have more than the statistical number of B atoms. The
degree of short-range order can be characterized by a parameter,

σ = (NAB − NABrandom)/(NABmax − NABrandom). (8.2)

For a random solid solution,σ = 0. Perfect order corresponds toσ = 1. A negative
value of σ indicates clustering. The tail of excess specific heat above the Curie
temperature in Figure 8.4 reflects the loss of remaining short-range order.

NOTE OF INTEREST

In 1919, G. Tammann
∗

predicted that long-range order might exist in alloys.
He used the German term Überstructur, which translates as “superlattices,” to
describe the phenomenon. Papers by C. H. Johannson, J. O. Linde, and G. Borelius

∗
G. Tammann, Zeit. anorg.Chem. 1 (1919).



P1: JzG
0521867053c08 CUFX036/Hosford 0 521 86705 3 printer: Sheridan November 2, 2006 17:56

68 MATERIALS SCIENCE: AN INTERMEDIATE TEXT

starting in 1925 reported on ordering in gold–copper, copper–palladium, and
copper–platinum. These provided much of the early understanding of long-range
order.
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PROBLEMS

1. Calculate the value of s for the two-dimensional solutions shown in Fig-
ure 8.7A and B.

A B

8.7. An AB solid solution with NA = NB = 50.

2. How many phases are there for L12-type Cu3Au ordering?

3. Sketch a simple two-dimensional crystal that has been ordered. Now make
another sketch, showing the change that occurs by passage of a single
dislocation.

4. Discuss the possibility of order in interstitial solid solutions.

5. Sketch the close-packed planes in Cu3Pt5.
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9 Diffusion

Fick’s first law

Fick’s first law states that in a solution with a concentration gradient there will be a
net flux of solute atoms from regions of high solute concentration to regions of low
concentration and that the net flux of solute is proportional to the concentration
gradient. This can be expressed as

J = −Ddc/dx, (9.1)

where J is the net flux of solute, D is the diffusivity (or diffusion coefficient), c is
the concentration of solute, and x is distance. See Figure 9.1.

J 

dc/dx

co
nc

en
tr

at
io

n,
 c

distance, x

9.1. The diffusion flux, J, is proportional to
the concentration gradient. Note that the
gradient shown is negative (dc/dx < 0) and
the flux, J, is positive.

The flux is the net amount of solute crossing an imaginary plane per area of
the plane and per time. The flux may be expressed as solute atoms/(m2 · s), in
which case the concentration, c, must be expressed as atoms/m3. Alternatively, J
and c may be expressed in terms of mass of solute, the units of J being
(kg solute)/(m2 · s) and of c being (kg solute)/m3. The diffusivity has dimensions
of m2/s and depends on the solvent, the solute, the concentration, and the
temperature.

Fick’s first law for mass transport by diffusion is analogous to the laws of thermal
and electrical conduction. For heat conduction, q = kdT/dx , where dT/dx is a
thermal gradient (◦C/m); k is the thermal conductivity, J/(ms◦C); and q is the flux;

69



P1: KAE
0521867053c09 CUFX036/Hosford 0 521 86705 3 printer: Sheridan November 2, 2006 19:49

70 MATERIALS SCIENCE: AN INTERMEDIATE TEXT

J/(m2s). Ohm’s law, I = E/R, can be expressed in terms of a current density,
i = σε, where the current density, i, in coulombs/(m2s) is a flux; ε is the voltage
gradient (V/m); and the proportionality constant is the conductivity, σ = 1/ρ, in
(ohm · m)−1.

Direct use of Fick’s first law is limited to steady-state (or nearly steady-state)
problems in which the variation of dc/dx over the concentration range of concern
can be neglected.

Fick’s second law

Fick’s second law expresses how the concentration at a point changes with time.
According to Fick’s first law the flux into an element of unit area and thickness,
dx , is Jin = −Ddc/dx and the flux out of it is Jout = −Ddc/dx − d (−Ddc/dx)
(see Figure 9.2). The rate of change of the composition within the element is then
dc/dt = Jin − Jout or

dc/dt = ∂(Ddc/dx). (9.2)

x dx

distance, x

co
nc

en
tr

at
io

n,
 c Jin Jout

9.2. The rate of change of composition in
an element of volume, Adx, equals the dif-
ferences between the fluxes into and out of
the element.

This is a general statement of Fick’s second law, which recognizes that the diffusiv-
ity may be a function of concentration and therefore of distance, x. In applications
where the variation of D with distance and time can be neglected, Equation 9.2
can be simplified into a more useful form:

dc/dt = Dd2c/dx2. (9.3)

Rigorously, concentration should be expressed in atoms or mass per volume,
but if density changes are neglected concentration may be expressed in atomic
percent or weight percent.

Solutions of Fick’s second law and the error function

There are specific solutions to Fick’s second law for specific boundary conditions.
Addition of material to or removal from a surface: If the composition at the

surface of a material is suddenly changed from its initial composition, co, to a
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new composition, cs , and held at that level (Figure 9.3), the solution to Equa-
tion (9.3) is

c = cs − (cs − co) erf [x/(2
√

Dt)], (9.4)

distance, x

co
nc

en
tr

at
io

n,
 c

C

C

S

O

9.3. Solution to Fick’s second law for a con-
stant surface concentration, cs.

where erf is the error function defined as

erf (x) = (2/π1/2)

x∫

0

exp(−t2)dt. (9.5)

Table 9.1 and Figure 9.4 show how the erf(x) depends on x. One application of
this solution involves carburizing and decarburizing of steels. Three straight lines
make a rough approximation to the error function, as shown in Figure 9.5. For
x ≥ 1, erf(x) = 1; for 1 ≥ x ≥ −1, erf(x) = x ; for −1 ≥ x, erf(x) = −1.

Table 9.1. Values of the error function, erf(x) = (2/π1/2)
∫ x

0
exp(−t2)dt

x erf(x) x erf(x) x erf(x) x erf(x)

0.00 0.000 0.05 0.0564 0.10 0.1125 0.15 0.1680
0.20 0.2227 0.25 0.2763 0.30 0.3286 0.35 0.3794
0.40 0.4284 0.45 0.4755 0.50 0.5205 0.55 0.5633
0.60 0.6039 0.65 0.6420 0.70 0.6778 0.75 0.7112
0.80 0.7421 0.85 0.7707 0.90 0.7970 0.95 0.8209
1.00 0.8427 1.10 0.8802 1.20 0.9103 1.30 0.9340
1.40 0.9523 1.50 0.9661 1.60 0.9763 1.70 0.9838
1.80 0.9891 1.90 0.9928 2.00 0.9953 2.20 0.9981
2.40 0.9993 2.60 0.9998 2.80 0.9999

Note: erf(−x) = −erf(x), i.e., erf(−0.20) = −0.2227. For small values of x, erf(x) ≈ 2x/
√

π .

Junction of two solid solutions: Another simple solution is for two blocks of
differing initial concentrations, c1 and c2, that are welded together. In this case

c = (c2+ c1)/2 − [(c2− c1)/2] erf [x/
√

Dt]. (9.6)

Figure 9.6 illustrates this solution. Note that Equation (9.6) is similar to Equa-
tion (9.4), except that (c1+ c2)/2 replaces cs and (c1− c2)/2 replaces cs− co.
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9.4. The dependence of erf(x) on x.
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9.5. Approximation of the erf(x). For x ≤ −1, erf(x) = −1. For x ≥ 1, erf(x) = 1. For −1 ≤ x ≤
1, erf(x) = x.
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9.6. The solution of Fick’s second law for two solutions with different concentrations.
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9.7. Sinusoidal concentration profile, co, resulting from interdendritic segregation, and the pro-
file, c, after some homogenization.

Homogenization: Interdendritic segregation during solidification causes local
composition variations that can be approximated by a sine wave of wavelength
2x and amplitude comax. Homogenization by diffusion decreases the amplitude
comax to cmax, as shown in Figure 9.7. Defining c and co as the differences between
local concentrations and the average composition, the extent of homogenization
is described by

c/co = exp[−(πX )2], (9.7)

where X = x
√

Dt .
General: All solutions to Fick’s second law are of the form

f (concentrations) = x/
√

Dt, (9.8)

where f (concentrations) depends on the concentration at a specific point, c;
the initial concentration, co; the surface concentration, cs ; and so on. In many
problems, these concentrations are fixed so

x/
√

Dt = constant. (9.9)

Mechanisms of diffusion

Diffusion in interstitial solid solutions occurs by interstitially dissolved atoms
jumping from one interstitial site to another. For an atom to move from one
interstitial site to another, it must pass through a position where its potential energy
is a maximum. The difference between the potential energy in this position and
that in the normal interstitial site is the activation energy for diffusion and must
be provided by thermal fluctuations. The overall diffusion rate is governed by an
Arrhenius-type rate equation,

D = Do exp (−E/kT ), (9.10)

where Do is a constant for the diffusing system, k is Boltzmann’s constant, T is
the absolute temperature, and E is the activation energy (the energy for a single
jump). Often this equation is written as

D = Do exp (−Q/RT ), (9.11)
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Table 9.2. Diffusivities for interstitials

Solvent Solute Do(m2/s) Q(kJ/mol)

Ta O 4 × 10−7 106.
N 6 158.
C 6.7 162.

Fe(γ) C 4 80.3
N 75.9

Ni H 7.8 41.2
Pt H 6 27.

Source: Reprinted with permission of ASM International® from D. N. Besher, Dif-
fusion (Materials Park, OH: ASM, 1973), pp. 218–19. All rights reserved. www.
asminternational.org.

where the activation energy, Q = no E , is for a mole of jumps. (no is Avo-
gadro’s number: 6.02 × 1023 jumps.) Correspondingly, R (= nok) is the gas con-
stant. Experimental data for diffusion of interstitials in several metals is given in
Table 9.2.

Kirkendall effect

In early studies of diffusion it was assumed that in substitutional solid solutions
both species of atoms diffuse in opposite directions at the same velocity. It was
assumed that there was an interchange mechanism with two atoms changing place
or a cooperative rotation of a ring of four or six or more atoms, as sketched in
Figure 9.8. However, experiments by Smigelskas and Kirkendall* showed that
this could not be so. They studied diffusion in a diffusion couple formed by
plating copper onto a brass bar containing 30% zinc (Figure 9.9). Molybdenum
wires were wrapped around the bar before plating so the initial interface could
be located after diffusion. Examination of the couple after diffusion revealed an
apparent movement of the wires. That is, the distance between the wires and center
of the bar had decreased. Because the wires cannot diffuse, the only reasonable
interpretation is that the net flux of zinc past the wires in one direction was
faster than the flux of copper atoms in the opposite direction. This observation
is inconsistent with all of the exchange mechanisms for diffusion and thereby
provided strong supporting evidence for the vacancy mechanism of diffusion.

A 

B 

C 

9.8. Schematic illustration of several mech-
anisms proposed for substitutional diffusion.
(A) Ring interchange, (B) simple interchange,
and (C) vacancy migration.

* A. Smigelskas and E. Kirkendall, Trans. AIME 171 (1947): 130–42.
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70% Cu/30% Zn

copper

molybdenum wires

9.9. Diffusion couple in the Kirkendall exper-
iments. Because zinc atoms diffused faster
than copper atoms, the molybdenum wires
appeared to move toward the center of the
specimen.

Porosity can be formed because of the different rates of diffusion of two species.
Because zinc diffuses faster than copper, there is a net flux of vacancies into the
zinc-rich brass. Under some circumstances, these vacancies may diffuse to grain
boundaries. In this case there is a volume contraction as the vacancies disappear
into the boundaries. However, volume contraction of the brass may be prevented
by macroscopic constraints. Then porosity will result from the precipitation of
the vacancies to form voids. Such porosity can occur as concentration gradients
formed by interdendritic segregation are minimized during annealing. In brass
ingots, the centers of the dendrite arms are copper rich and the interdendritic
regions are zinc rich. When the mechanical working of an ingot reduces the den-
dritic spacing enough that homogenization takes place during annealing, porosity
will be formed in the zinc-rich regions.

Temperature dependence

The equilibrium number of vacancies depends exponentially on temperature:

nv = no exp(−E f /kT ), (9.12)

where nv/no is the fraction of the lattice sites that are vacant and Ef is the energy
to form a vacancy. The rate that a given vacant site will be filled by a substitutional
atom moving into it is also dependent on thermal activation,

rate = exp(−Em/kT ), (9.13)

where Em is the energy barrier to fill a vacancy by movement of an adjacent
substitutional atom. The net rate of diffusion is proportional to the product of the
number of vacancies and the rate at which they contribute to diffusion. Therefore,
D = Do exp(−E f /kT ) · exp(−Em/kT ), which simplifies to

D = Do exp(−E/kT ), (9.14)

where

E = E f + Em . (9.15)
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Table 9.3. Self-diffusion data

Metal Crystal Q Do Tm Q/RTm

structure kJ/mol (m2/s) (K)

Cu fcc 196. 2.32 × 10−4 1356 17.5
Ag fcc 185.6 1.06 1234 18.0
Ni fcc 289 2.22 1726 19.6
Au fcc 176.7 0.107 1336 17.8
Pb fcc 109 1.37 600 20.4
α − Fe bcc 240 2.01 1809 15.9
γ − Fe fcc 267.5 0.22 1809 17.7
Nb bcc 401 1.1 2741 19.4
Mo bcc 460 1.8 2883 19.2
Mg hcp 134.6 1.0 923 17.8

Source: Selected data from J. Askill, Tracer Diffusion Data for Metals, Alloys and Simple Oxides
(New York: Plenum, 1970), pp. 31–41.

Of course, this equation can also be expressed in an equivalent form in terms of
Q, the activation energy per mole of diffusion jumps:

D = Do exp(−Q/RT ). (9.16)

With the use of radioactive isotopes it has been possible to measure the rates of
self-diffusion in solids. The activation energies for self-diffusion and diffusion of
substitutional solutes are considerably higher than those for interstitial diffusion
and therefore the diffusion rates are much lower. Data for self-diffusion in several
metals are given in Table 9.3. In comparing these data, several other trends are
apparent. One is that the activation energies increase with melting point. In fact,
for most relatively close-packed metals (fcc, bcc, hcp), Q/T m is nearly the same.
Self-diffusion can play a significant role in such diverse phenomena as sintering,
creep, thermal etching, and grain boundary migration.

Special diffusion paths

Diffusion occurs rapidly along grain boundaries, dislocations, and free surfaces.
The most important of these diffusion paths are grain boundaries. Data for self-
diffusion in silver are given in Table 9.4 These data are based on experiments on
both polycrystals and single crystals of silver.

The overall diffusivities measured in silver are shown in Figure 9.10. It should
be noted that the effects of grain boundary diffusion are observable only at low

Table 9.4. Self-diffusion in silver

Path Do(m2/s) Q(kJ/mol)

Lattice 90 × 10−6 193.0
Grain boundary∗ 2.3 × 10−9 110.9

∗ To express the diffusion in terms of a diffusivity, an effective width of the grain boundary path
was assumed to be 30 nm.
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9.10. Experimental measurements of the self-diffusion coefficient in silver. Silver single crystals
and polycrystals of a 35-µm grain size. The higher values of D for the polycrystal at low tem-
peratures (high values of 1/T) are a result of grain boundary diffusion. At high temperatures (low
1/T), lattice diffusion masks the contribution of grain boundary diffusion.

temperatures. In most practical diffusion problems, grain boundary diffusion can
be neglected.

Darken’s equation

The solutions to Fick’s second law (Equations (9.5)–(9.7)) are based on a single
diffusivity, D, whereas the Kirkendall experiments show that each species has its
own diffusivity. Darken* showed that Fick’s second law should be written as

∂ NA/∂t = ∂/∂x[D̃∂ NA/∂x], (9.17)

where D̃ is the effective diffusivity and is related to the intrinsic diffusivities of
the two species, DA and DB , by

D̃ = NB DA + NA DB, (9.18)

where NA and NB are the atomic fractions of the two species. For dilute solutions
NB → 0, so D̃ approaches the diffusivity of the solute (D̃ → DB).

Darken also showed that the velocity, v, of the markers in the Kirkendall exper-
iments is given by

v = (D A−DB)∂ NA/∂x . (9.19)

* L. S. Darken, Trans. AIME 175 (1948): 184–215.
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Diffusion in systems with more than one phase

In analyzing diffusion couples involving two or more phases, there are two key
points:

1. Local equilibrium is maintained at interfaces. Therefore, there are discon-
tinuities in composition profiles at interfaces. The phase diagram gives the
compositions that are in equilibrium with one another.

2. No net diffusion can occur in a two-phase microstructure because both phases
are in equilibrium and there are no concentration gradients in the phases. These
points will be illustrated by several examples.

EXAMPLE 9.1. Consider diffusion between two pure metals in a system that has
an intermediate phase, as illustrated Figure 9.11. Interdiffusion between blocks
of pure A and pure B at temperature T will result in the concentration profiles
shown in Figure 9.12. Note that a band of β will develop at the interface. The
compositions at the α − β and β − γ interfaces are those from the equilibrium

11

α
β γ

Liq

C

Composition

T
em

pe
ra

tu
re

Cα Cβ1 β2 CγA                                                                                 B

9.11. The AB phase diagram.
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interface

9.12. Microstructure of diffusion couple
between A and B (top) and concentration
profile (bottom).
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9.13. Iron–carbon diagram.

diagram so the concentration profile is discontinuous at the interfaces. No two-
phase microstructure will develop.

EXAMPLE 9.2. Consider the decarburization of a steel having a carbon content
of co when it is heated into the austenite (γ) region and held in air (Figure 9.13).
At this temperature the reaction 2C + O2 → 2CO effectively reduces the carbon
concentration at the surface to zero. A layer of α forms at the surface and into
the steel to a depth of x . The concentration profile near the surface is shown
in Figure 9.14. The concentration gradient is dc/dx = −cα/x, where cα is the
carbon content of the α in equilibrium with the γ. Fick’s first law gives the flux,
J = −Ddc/dx = Dcα/x . As the interface advances a distance, dx (Figure 9.15),
the amount of carbon that is removed in a time interval, dt , is approximately
(cγ −cα)dx so the flux is

J = (cγ − cα)dx/dt . (9.20)

Equating the two expressions,

(cγ − cα)dx/dt = Dcα/x (9.21)

%
 C

ar
bo

n

Distance from surface, x

Co

Cγ

Cα

x9.14. Carbon concentration profile.
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%
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Cγ

Cα

x dx
9.15. Change of concentration profile as the
α − γ interface advances a distance, dx, in
a time interval, dt.

so xdx = D{cα/(cγ − cα)}dt . Integrating gives x2= [2Dcα/(cγ−cα)]t or

x = [2Dtcα/(cγ − cα)]1/2. (9.22)

Note that for fixed concentrations x/
√

Dt is constant or x is proportional to
√

Dt .

EXAMPLE 9.3. It is known that with a certain carburizing atmosphere it takes
8 h at 900 ◦C to obtain a carbon concentration of 0.75 at a depth of 0.020 in. Find
the time to reach the same carbon concentration at a depth of 0.03 in. at another
temperature.

SOLUTION: x2/
√

D2t2 = x1/
√

D1t1. Let t1 = 8 h, x1 = 0.020 in., x2 = 0.030
in., and D2 = D1. Then t2 = t1(x2/x1)2 = 8(.03/.02)2 = 18 h.

EXAMPLE 9.4. A steel containing 0.20% C is to be carburized in an atmosphere
that maintains a carbon concentration of 1.20% at the surface.

A. After 10 h at 870 ◦C, at what depth below the surface would you find a
concentration of 0.40% C? (For diffusion of C in austenite, Do = 2.0 × 10−5

m2/s and Q = 140 × 103 J/mol.)
B. How long would it take, still at 870 ◦C, to double the depth (part A) at which

the concentration is 0.40%?
C. What carburizing time at 927 ◦C gives the same results as 10 h at 870 ◦C?

SOLUTION:

A. Using c = cs − (cs − co)erf [x/(2
√

Dt], with c = 0.4, co= 0.2, and cs =
1.2, then (c − co)/(cs−co) = 0.2, or erf [x/(2

√
Dt)] = 0.8. Interpolating,

x/(2
√

Dt) = 0.90 + 0.05 − (0.8 − 0.7970)/(0.8209 − 0.7970) = 0.906, so
x = 0.906 − 2

√
Dt , where D = 2.0 × 10−5 exp[−140000/(8.31 − 1143)] =

7.939 × 10−12 m2/s, t = 36, 000s, and x = 0.906 × 2[7.939 × 10−12 ×
36000]1/2 = 9.69 × 10−4 m or about 1 mm.

B. x/
√

Dt = constant. For the same temperature, D is fixed so x2/
√

Dt2 =
x1/

√
Dt1, or t2 = t1(x2/x1)2 = 10(2)2 = 40 h.
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C. For the same carburizing results, the concentration profile must be the
same. Therefore, Dt = constant, or D2t2 = D1t1, t2 = t1(D1 D2) = 10 h·
exp[(−Q/R)(1/T 1 − T2)] = 10 exp[(−140000/8.31)/(1/1143 − 1/1200)] =
4.97 or 5h.

EXAMPLE 9.5. A steel containing 0.25% C was heated in air for 10 h at 700 ◦C.
Find the depth of the decarburized layer (i.e., the layer in which there is no Fe3C).
Given: The solubility of C in α − Fe at 700 ◦C is 0.016%. One may assume that
the carbon concentration at the surface is negligible.

SOLUTION: At 700 ◦C the steel consists of two phases, α and Fe3C. The concen-
tration profile must appear as sketched in Figure 9.13. Near the surface there is a
decarburized layer containing only α. The concentration in the α must vary from
0% C at the outside surface to cα= 0.016% C where it is in contact with Fe3C.
See Figure 9.16.

%
 C

ar
bo

n

Distance from surface, x

Cγ

Cα

x dx
9.16. Decarburization of a steel heated in
the α + Fe3C phase region.

An approximate solution can be obtained by using Fick’s first law to make
a mass balance as the interface moves a distance of dx. The amount of carbon
transported to the surface in a period, dt, is (c̄−cα)dx and this must equal the flux
times dt, −Jdt = D(dc/dx)dt . Substituting, dc/dx = (cα − 0)/x, (c̄−cα)dx =
D(cα/x)dt and integrating, x2/2 = Dtcα/(c̄−cα), x = [2Dtcα/(c̄−cα)]1/2.
Now substituting, D = 2 × 10−6 exp[−84,400/(8.31 × 973)] = 5.86 × 10−11

m2/s, c̄ = 0.25, cα = 0.016, and t = 36,000 s, so x = 0.00057 m or 0.6 mm.

NOTE OF INTEREST

Ernest Kirkendall’s doctoral thesis on the interdiffusion between copper and brass
disproved the almost universally accepted concept that diffusion in substitutional
solutions occurs by interchange of atoms and led to the conclusion that diffusion
was the result of vacancy migration. His results were so startling to the leading
metallurgists of the day that publication of his work was held up by reviewers
who doubted his results.



P1: KAE
0521867053c09 CUFX036/Hosford 0 521 86705 3 printer: Sheridan November 2, 2006 19:49

82 MATERIALS SCIENCE: AN INTERMEDIATE TEXT

REFERENCES

D. N. Besher. Diffusion. Materials Park, OH: ASM, 1973.
Diffusion in BCC Metals. Materials Park, OH: ASM, 1965.
W. F. Hosford. Physical Metallurgy. Boca Raton, FL: CRC Press, 2005.
P. G. Shewmon. Diffusion in Solids. New York: McGraw-Hill, 1963.

PROBLEMS

1. A block of an alloy of Cu−6% Al was welded to a block of Cu−14% Al
and heated to 700 ◦C. Sketch the concentration profile after some diffusion
occurred. Figure 9.17 shows the phase diagram.

2. Consider a piece of steel containing 0.20% C at 750 ◦C in an atmosphere
that reduces the concentration at the surface to 0% C. Do = 2.0 × 10 −4m2/s
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9.17. Copper–aluminum phase diagram. Reprinted with permission of ASM International® from
ASM Handbook, vol. 8, 8th ed. (Materials Park, OH: ASM, 1973), p. 259. All rights reserved.
www.asminternational.org.
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and Q = 140 kJ/mole in γ − Fe, and Do = 0.2 × 10−4 m2/s and Q = 84
kJ/mol in α − Fe.
A. What is the solubility (wt.%) of carbon in α iron at 750 ◦C? Sketch

the concentration profile near the surface. (Plot %C vs. distance from
surface.)

B. Find an appropriate diffusivity for C in iron at 750 ◦C.
C. Using Fick’s first law, J = −Ddc/dx , express the flux, J, in terms of the

depth of the decarburized layer.

3. In an incremental time period, dt, the decarburized depth increases by dx ,
such that Jdt = (co−cα)dx, where J = Dcα/x .
A. Find x as a function of time by integration.
B. What would be the depth of the decarburized layer after 4 h?

For diffusion of carbon in ferrite, Q = 84 kJ/mol, Do = 0.20 ×
10 −4 m2/s.

For diffusion of carbon in austenite, Q = 140 kJ/mol,Do = 2.0 ×
10 −4 m2/s.

4. A. If the average grain diameter of silver were doubled, by what factor would
the net diffusion by grain boundary diffusivity change?

B. At what temperature would the net transport by grain boundary diffusion
be the same as with the original grain size at 1000 ◦C?

5. When iron containing 0.20% C is exposed to a carbon-bearing atmosphere
at 850 ◦C, it is found that after 2 h, the concentration of carbon is 0.65%
at 1 mm below the surface. If iron were exposed to the same atmosphere at
900 ◦C for 1.5 h, at what depth below the surface would the concentration
of carbon be 0.65%?
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9.18. The silver–copper phase diagram. Reprinted with permission of ASM International® from
L. A. Willey, Metals Handbook, vol. 8, 8th ed. (Materials Park, OH: ASM, 1973), p. 259. All rights
reserved. www.asminternational.org.
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6. Explain why one does not bother with Darken’s equation when considering
problems of diffusion of carbon in iron.

7. At one period, dimes and quarters were made from lamination of two alloys.
The composition of the interior sheet was 90% Cu−10% Ag and the compo-
sition of the outer sheet was 10% Cu−90% Ag. Plot how the composition
would vary with distance from the center after a long time just below the
eutectic temperature. The copper–silver diagram is given in Figure 9.18.
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10 Freezing

Liquids

Liquids have more order than gases but much less than crystals. When a mate-
rial freezes, its entropy and enthalpy decrease. The enthalpy difference between
the liquid and solid states is the latent heat of fusion, �H f , that is released to
the surroundings. Similarly, when a metal vapor condenses, the latent heat of
vaporization, �Hv , is released. For most metals �Hv is 20 to 30 times as great
as �H f . The difference is because on vaporization all near-neighbor bonds are
broken, whereas melting statistically breaks only a fraction of a bond per atom.
For coordination numbers of 8 and 12, vaporization breaks four and six bonds
per atom. Assuming that both �H f and �Hv are proportional to the number of
near-neighbor bonds broken, melting must break only a fraction of a bond per
atom. The entropy change on melting, �S f = �H f /Tm , is about 10 MJ/mol K
and the entropy change on vaporization, �Sv = �Hv/Tb, is about 10 times larger,
as shown in Table 10.1.

Most materials contract when they freeze. For most metals the contraction is
between 1 and 6%, as shown in Table 10.2 Materials for which packing in the solid
is not dense (e.g., Si, Ge, Bi, Ga, and H2O) actually expand when they solidify.

Homogeneous nucleation

The formation of a tiny sphere of solid in a liquid (Figure 10.1) requires an
increase of free energy. The surface energy of the system is increased by 4πr2γL S ,
where γL S is the energy per area of surface. Because the solid is more stable
below the melting point, freezing reduces the free energy by (4/3)πr3�Gv , where
�Gv is the free energy change per volume transformed. The net change of free
energy is

�G = 4πr2γL S − (4/3)πr3�Gv. (10.1)

85
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Table 10.1. Entropy of melting and vaporization of several metals

Element ∆S f MJ/mol K ∆Sv MJ/mol K ∆Sv/∆Sf

Al 11.5 105. 9.15
Bi 20.7 97 4.7
Cd 11.3 95.5 8.4
Ca 7.7 101.5 13.2
Co 9.73 134 13.7
Cu 9.6 104.7 10.9
Ga 18.4 101.2 5.5
Au 9.25 106.9 11.6
Fe 7.71 124.6 16.4
Pb 7.93 96.7 12.2
Li 6.61 97.5 14.7
Mg 9.69 93.3 9.6
Hg 10.1 86.9 8.6
Mo 9.0 84.3 9.4
Re 9.59 103 10.7
Rb 6.96 79 11.3
Ag 11.7 116.5 10.0
Na 7.01 77.2 11.0
Ta 8.85 133.8 15.1
Sn 14.0 93.6 6.7

Source: Data from J. H. Hollomon and D. Turnbull, in Solidification of Metals and Alloys
(New York: AIME, 1951), p. 13.

As the radius increases, the energy of the system (Figure 10.2) initially
increases. However, once a critical radius, r*, is reached the free energy decreases
with further growth so the particle can grow spontaneously. An activation energy,
�G∗, is required to reach this critical radius. The critical radius and the critical
activation energy can be found by differentiating Equation (10.1) and setting
d�G/dr = 0:

d�G/dr = 8πrγL S − 4πr2�Gv = 0 (10.2)

r∗ = 2γL S/�Gv. (10.3)

Table 10.2. Volume change on melting

Metal
Crystal
structure

% vol. change
on melting Metal

Crystal
structure

% vol. change
on melting

Li bcc 1.65 Mg hcp 4.1
Na bcc 2.2 Zn hcp 4.2
K bcc 2.55 Cd hcp 4.7
Rb bcc 2.5 Sn bct 2.8
Cs bcc 2.6 Hg rhomb −1.6
Fe bcc 3.4 Bi rhomb −3.35
Pb fcc 3.5 Si dia cub −12.
Nb bcc 0.9 Ge dia cub −12.
Al fcc 6.0 water hex −8.3
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r

solid

liquid

10.1. Spherical embryo of solid forming in a
liquid.

∆G

r

surface term

volume term
total free

energy change

∆G*

r*

10.2. Free energy change during nucleation. The change of free energy, �G, increases with
embryo size up to a critical radius, r ∗. The critical free energy for nucleation is �G∗.

Substituting r* into Equation (10.1),

�G∗ = (16/3)πγ 3
L S/�G2

v. (10.4)

Both�Gv and�G∗ become increasingly negative as the temperature is lowered
below the melting point:

�Gv = �Hv − T �Sv. (10.5)

The values of �Hv and �Sv are almost independent of temperature. For freezing
at the equilibrium melting temperature, Tm, �Gv = 0 so �Hv = Tm�Sv . Below
the melting point,

�Gv = (Tm − T )�Sv = (�T/Tm)�Hv. (10.6)
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Table 10.3. Data on subcooling of small droplets

Material Tm (K)
∆Sf = H f /Tm

MJ/(mole K)
∆Tmax

(K) ∆Tmax/Tm

Hg 234 10.0 46 0.197
Sn 506 14.2 110 0.218
Pb 601 8.5 80 0.133
Al 933 11.3 130 0.140
Ag 1234 9.15 227 0.184
Cu 1356 9.6 236 0.174
Ni 1725 10.2 319 0.185
Fe 1803 8.2 295 0.164
Pt 1828 9.4 332 0.182
Water 273 22.1 39 0.143

Source: From J. H. Hollomon and D. Turnbull, in Solidification of Metals and Alloys
(New York: AIME, 1951).

Substituting into Equation (10.4),

�G ∗ = (16/3)πγ 3
L S/(�Hv�T/Tm)2 (10.7)

so �G∗ decreases with greater supercooling.
As with other thermally activated processes, the rate of nucleation, N , can be

expressed by an Arrhenius equation with �G ∗ as the activation energy,

Ṅ = Ṅ O exp(−�G ∗/kT ), (10.8)

where Ṅ O is a constant and k is Boltzmann’s constant.
Substituting Equation (10.7) into Equation (10.8),

Ṅ = Ṅ O exp{−(16/3)πγ 3
L S/[(�T/Tm)(�Hv)2kT ]}. (10.9)

Equation (10.9) predicts that the nucleation rate is extremely temperature
dependent.

The value of Ṅ O in Equation (10.9) has been estimated to be about
1039 nuclei/m3s for most metals. This leads to the prediction that a very
large subcooling is necessary to produce any nuclei in any reasonable time.
For copper at subcoolings of �T = 100 ◦C, Equation (10.9) predicts that
Ṅ = 1039 exp[−5.58 × 10−18/(13 × 10−24 × 1266)] = 1 × 10−147 nuclei/m3s.
At this rate of nucleation it would take 3 × 10138 centuries to form one nucleus
in a cubic meter of liquid. Undercoolings of �T ≈ 0.18 Tm have been reported
for many liquids. See Table 10.3.

Heterogeneous nucleation

Such large undercoolings are normally not observed in metals. Undercoolings are
usually so small that they are not noticed. The reason for the difference between the
theory and practice is that the theory assumes nucleation occurs homogeneously
(i.e., randomly throughout the liquid), whereas nuclei usually form on preexisting
solid surfaces.
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The importance of special nucleation sites becomes apparent if one watches
the formation of gas bubbles in a carbonated beverage. Streams of bubbles rise
from certain spots. These are usually small cracks in the glass or dirt particles on
a liquid–glass surface.

When nucleation of a solid, S, occurs on a preexisting solid surface, Q, the
area between the solid, Q, and the liquid, L, is reduced. However, a new surface
is created between S and Q. See Figure 10.3. The net effect is a reduction of the
activation energy for nucleation,

�Ghetero∗ = �Ghomo∗(2 + cos θ )(1 − cos θ )2/4, (10.10)

liquid, L nucleating solid, S

preexisting solid, Q

γSQ

γSL

γLQ10.3. Heterogeneous nucleation on a pre-
existing surface, Q. As the new surfaces, SL
and SQ, are formed, the surface LQ is lost.

where �Ghetero∗ and �Ghomo∗ are the activation energies for such heterogeneous
and homogeneous nucleation, respectively (�Ghomo∗ = �G∗ in Equation (10.4)).
The wetting angle, θ , is given by

cos θ = (γL Q − γSQ)/γSL . (10.11)

If θ is low, nucleation on the surface is energetically favorable. The preexisting
solid surface of most importance in casting is usually the mold wall where the
temperature is the lowest. Sometimes nucleating agents with low −γSQ are added
to castings to refine the grain size. Crevices or cracks in the mold wall offer special
nucleation sites, because they further lower the activation energy.

Growth

Once a solid metal or material with simple molecules (e.g., water) has been
nucleated, the freezing rate (velocity of the liquid–solid interface) is controlled
almost entirely by the rate of heat removal. The temperature of the solid–liquid
interface remains very near the equilibrium freezing temperature. Even if there is
substantial undercooling before nucleation, the temperature will rise rapidly back
to Tm as freezing occurs because the latent heat, H f , is large and its release will
heat the undercooled liquid.

However, in materials consisting of large molecules (e.g., polymers) or cova-
lently bonded liquids (e.g., siliceous materials), the growth rate may be controlled
by the rate at which the molecules can assemble into crystalline form. In this
case crystallization may be suppressed with the resulting formation of glass (see
Chapter 15).
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Grain structure of castings

Many grains are nucleated when a metal is cast against a cold mold. The orien-
tations of these grains are random, but as they grow into the liquid, certain ori-
entations grow slightly ahead of the others and gradually squeeze out the slower
growing orientations. This results in columnar structure of the fastest growing
orientation, as illustrated in Figure 10.4. In fcc and bcc metals, the <100> direction
is the axis of the columnar grains. With hcp metals and water, the columnar axes
are perpendicular to the c axis. With continued growth, the degree of alignment
increases.

10.4. Columnar grains with axes parallel to
the direction of heat flow during freezing.
As freezing progresses, the more favorably
oriented and faster growing crystals cut off
the less favorably oriented, slower growing
crystals.

During the freezing of pure materials, the liquid–solid interface is normally
planar and crystals grow by the advance of this interface. In contrast, alloys usu-
ally freeze by dendritic growth. (The word “dendrite” comes from the Greek,
dendrites, meaning treelike.) The basic features of dendritic growth are needle-
shaped crystals that grow into the liquid and thicken. Usually there are side
arms (secondary arms) and sometimes there are tertiary arms (Figure 10.5). The
primary arms and the secondary and tertiary arms are crystallographically ori-
ented with <100> being the direction in cubic metals. The reason for dendritic
growth will be taken up later. The final columnar structure results from parallel
growth of different colonies of dendrites and the gradual lateral growth between
them. Whether columnar grains form from plane-front growth as in pure met-
als or by dendritic growth as in alloys, the final shape and orientations are the
same.

10.5. Schematic drawing of a dendrite with
secondary and tertiary arms.
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Segregation during freezing

Solute segregation occurs during the freezing of an alloy. The first solid to form
is much purer than the overall composition of the alloy (Figure 10.6). As solid-
ification continues, the newly formed solid contains increasing amounts of B.
Diffusion in the solid is much too slow to eliminate such concentration gradients.
There are several models for predicting solute segregation during freezing, based
on the assumption that there is local equilibrium at the liquid–solid interface. If
perfect mixing occurred in both the liquid and the solid, the composition of each
phase would be that given by the phase diagram.

0   1             5  

T
em

pe
ra

tu
re

% B

liquid

solid

alloy
composition

first solid, 1% B
2% B3% B

4% B 5% B

10.6. Schematic drawing showing a binary phase diagram (left) and contours of concentration
in a region that has frozen (right).

In analyzing the segregation, Scheil* assumed that there is no mixing in the
solid and that mixing is perfect in the liquid. The segregation that occurs when
an alloy freezes can be modeled by freezing in a horizontal boat (Figure 10.7A).
The fraction solid is fs = x/L , where x denotes the position of the solid–liquid
interface and L is the mold length, and the fraction liquid is fL = 1 − fs =
(L − x)/L . Figure 10.7B shows the relevant portion of the phase diagram. The
composition profile at some time during freezing is illustrated in Figure 10.7C. cL

and cS are the compositions of the liquid and the solid at the interface, expressed
as weight of B per volume. However, they can be expressed as either weight
percentage or atom percentage if the density differences are neglected.

As the solid–liquid interface advances a distance, dx , the amount of solute
rejected by the solid is (cL − cS)dx . This solute enriches the liquid composition
by dcL . A mass balance gives

(cL − cS)dx = (L − x)dcL . (10.12)

The liquidus and solidus can usually be approximated by straight lines. Then at
all temperatures,

cS = kcL , (10.13)

* E. Scheil, Z. Metallkunde 34 (1942): 70.
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10.7. Plane-front solidification in a horizontal mold.

where k is the distribution coefficient. Substituting cS = kcL , fS = x/L , and
dx = Ld fS, cL = c0 at fS = 0 and cL at fS , so kcL

∫ fs

0 d fS/(1 − fS) = 1/(1 −
k)

∫ cL

c0
dcL/cL . [1/(1 − k)] ln(cL/c0) = −ln(1 − fS) or

cL = c0(1 − fS)−(1−k) and cS = kc0(1 − fS)−(1−k). (10.14)

Equation (10.14) is called the Scheil equation. Figure 10.8 shows its predictions
of how the composition of the ingot changes with fS for c0 = 5% and k = 1/5. It
should be noted that Equation (10.14) is valid as long as no diffusion occurs in the
solid and there is perfect mixing in the liquid. It applies for even dendritic growth.

10.8. Segregation during freezing for an alloy containing 5% B and having a distribution coef-
ficient of k = 0.2.

For a given alloy, the nonequilibrium solidus (average solid composition) can be
calculated as a function of the temperature. The average composition of the solid,
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c̄s , can be found from solving the simple mass balance c0 = c̄s fs + cL (1 − fs),
c̄s = [c0 − cL (1 − fs)]/ fs . Substituting fs = 1 − (cL/c0)−1/(1−k) from the Scheil
equation,

cS = [c0 − cL (cL/c0]−1/(1−k)]/[1 − (cL/c0)−1/(1−k)]. (10.15)

Figure 10.9 shows the nonequilibrium solidus calculated for an alloy containing
1% B and A melting at 1660 ◦C. The liquidus temperature is approximated by
TL = 660 − 40cL or cL = (660 − T )/40 and cS = (660 − T )/200, so the distri-
bution coefficient is 0.20.
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10.9. Plot of the nonequilibrium solidus for an alloy of 1% B, superimposed on the phase
diagram.

Zone refining

Materials can be purified by directional solidification by cropping off and saving
the first end to freeze. A material may be further purified by combining first ends
from several ingots and repeating the process. A simpler, continuous process
called zone melting was proposed by W. Pfann. This involves repeatedly passing
molten zones through the ingot, as shown in Figure 10.10. Although the first pass
in zone refining produces less purification than directional solidification, further
purification can be achieved by passing additional zones through the material.
Figure 10.11 shows calculations of the purification by successive passes.

10.10. Zone refining. As a liquid zone is
passed slowly from left to right, it collects
impurities.
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10.11. Impurity concentration after a number of passes. Adapted from W. G. Pfann, Zone Melting
(New York: Wiley, 1958). Reprinted with permission of John Wiley & Sons, Inc.

The actual purification is somewhat less than that predicted by Equa-
tion (10.15) and by Figure 10.11 because mixing is not perfect in the liquid.
A thin boundary layer of impurity forms in the liquid just ahead of the interface.
See Figure 10.12. The formation of a boundary layer causes the concentration
of the impurity in the liquid at the liquid–solid interface to be greater than for
perfect mixing. Therefore, there is less purification. Zone refining is most efficient
in relatively pure materials, where the boundary layer builds up.
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10.12. Boundary layer ahead of liquid–solid
interface.
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Steady state

A steady-state condition is reached when the boundary layer becomes great
enough that the solid forming has the same composition, c0, as the liquid beyond
the boundary layer. The liquid composition at the interface of the boundary layer
is c0/k. This is illustrated in Figure 10.13.
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D/v
10.13. Steady-state freezing. The interface
composition in the liquid is c0/k, so the solid
that forms has the composition c0.

At steady state, the thickness, t, of the boundary layer can be approximated as

t = D/v, (10.16)

where D is the diffusivity of the solute in the liquid and v is the velocity of the
solid–liquid interface.

Dendritic growth

The formation of a boundary layer may lead to a breakdown of plane-front growth
and dendritic growth. Figure 10.14 shows dendrites forming during solidification
of a solution of polymers. The variation of the composition in the liquid of the
boundary layer (Figure 10.15A) causes a variation in the local liquidus temper-
atures in accordance with the phase diagram (Figure 10.15B). Both the liquidus
temperature and the actual temperature are plotted in Figure 10.15C. The actual
temperature at the interface equals the liquidus temperature. The actual temper-
ature just ahead of the interface is lower than the liquidus temperature for the
local composition. This condition is called constitutional supercooling because it
results from compositional (constitutional) variations. This situation is unstable.
If the solid anywhere in the interface happens to extend slightly ahead of the other
places, it will freeze faster and grow rapidly into the undercooled liquid, leading
to dendritic growth.

Figure 10.16 shows that the critical thermal gradient for prevention of dendritic
growth is

(dT/dx)crit = (T1 − T3)/(D/v), (10.17)

where T1 and T3 are the liquidus temperatures of the compositions c0 and c0/k.
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10.14. Dendrites forming during the freezing
of a transparent polymer solution. Reprinted
with permission of ASM International® from
K. A. Jackson, Solidification (Materials Park,
OH: ASM, 1971), p. 121. All rights reserved.
www.asminternational.org.
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10.15. Constitutional supercooling resulting from boundary layer formation.

Sometimes a distinction is made between cellular growth and dendritic growth.
In cellular growth the primary arms extend into the liquid but there are no sec-
ondary dendrite arms. Figure 10.17 illustrates this. In either case, however, pri-
mary arms extend in the direction of heat flow. The tendency to cellular and
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10.16. (A) The composition profile near the
liquid–solid interface for steady-state freez-
ing. (B) The temperature in the liquid near
the interface, TL , and the equilibrium liq-
uidus temperature, Te, corresponding to the
local composition. The region where TL < Te

is supercooled so dendrites can form. Den-
drites cannot form if the actual thermal gra-
dient is greater than the critical gradient.

liquidsolid10.17. Cellular growth.

dendritic growth increases as the thermal gradient, G, decreases and as the growth
velocity, v, increases.

The length of dendrites, L , can be estimated from knowledge of the thermal
gradient and the phase diagram. For a given alloy, the temperature at the tips of
the dendrites is the liquidus temperature of the alloy, TL , and the temperature
at the base of the dendrites is the solidus temperature, TS . While this may be
lower than the equilibrium solidus of the alloy, the separation of the liquidus and
solidus temperatures gives an approximate indication of the relative tendency to
form long or short dendrites:

L = (T L−T S)/(dT/dx). (10.18)

The spacing, λ, between secondary dendrite arms has been shown to increase
with solidification time, t f ,

λ = k(dT/dt)p, (10.19)

where the exponent p is about 1/3. With dendritic growth the segregation is
almost entirely interdendritic rather than macroscopic. The distances between the
concentration minima are the distances between dendrite arms.
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Dendritic growth also affects the nature of porosity in castings. Without den-
dritic growth, shrinkage results in large cavities in the last regions to freeze. If
the dendrites are so long that liquid cannot flow easily through the interdendritic
channels to compensate for the shrinkage, the shrinkage will occur interdendriti-
cally on a microscopic scale. With such interdendritic shrinkage, the macroscopic
shrinkage will be absent or greatly reduced.

Gas solubility and gas porosity

Most gases dissolve monatomically in liquid metals. For example, the solution
reactions may be written as H2 → 2H, N2 → 2N, O2 → 2O, where the under-
lining signifies the element is in solution. Sievert’s law for diatomic gases is an
application of the mass action principle. It states that the solubility is proportional
to the square root of the partial pressure of the gas. For example,

H = k(PH2
), (10.20)

where H is the concentration of the dissolved hydrogen that is in equilibrium
with the partial pressure, PH2 , of hydrogen gas and k is a temperature-dependent
constant. In addition to diatomic gases, carbon monoxide and water vapor are
soluble in metals (CO → C + O) and H2O → 2H + O). Hydrogen is soluble in
almost all liquid metals.

The solubilities of gases in solid metals are much lower than liquid metals.
Figure 10.18 shows the solubility of hydrogen in copper and copper–aluminum
alloys. Because of the lower solubility in the solid, gas bubbles are released at the
liquid–solid interface as the metal freezes. With long dendrites the gas bubbles
are trapped and the result is gas porosity.

Growth of single crystals

Single crystals may be grown by directional solidification. With the Bridgman
technique, a mold is slowly removed from a furnace. Freezing starts at one end
and slowly progresses to the other. Because freezing starts at a point, only one
crystal is nucleated. The Czochralski method involves lowering a seed crystal
into melt so that it partially melts and then withdrawing it slowly upward. The
growing crystal is rotated about a vertical axis to help stir the liquid. The lack
of a mold eliminates contamination from mold walls but makes it impossible to
control the exterior shapes of the crystals. This method is used to grow silicon
crystals for the semiconductor industry.

Eutectic solidification

As a eutectic front advances during solidification, the solutes must partition
between the two phases, as suggested in Figure 10.19. With increased rates of
solidification, there is less time for diffusion so the eutectic structures are finer.
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10.18. The solubility of hydrogen in iron and nickel as a function of temperature. From A. Guy,
Elements of Physical Metallurgy (Reading, MA: Addison-Wesley, 1959), p. 210.
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10.19. Growing eutectic. The solute must
partition between the two phases.

Eutectic reactions, liquid → α + β, can result in several geometric configu-
rations of α and β. When the volumes of both phases are nearly equal, the most
common morphology is lamellar. This is true of the Cu–Ag and Pb–Sn eutec-
tics. If the amount of one phase is much less than the other, the eutectic is likely
to be rods of one phase surrounded by the other phase (e.g., NiAl–Cr, TaC–Ni
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eutectics.) If the volume fraction of one phase is very low, that phase may form as
isolated islands (e.g., graphite in Fe, Si in Si−Al alloys.) Whether the morphology
is in the form of platelets, rods, or isolated spheres depends on the volume fraction
of the two phases. The most likely morphology is the one that minimizes the total
interphase area and depends on the volume fraction, f, of the minor phase.

For spheres in a simple cubic array, the volume fraction is f = (4/3)π (r/λ)3,
where λ is the separation distance and the surface area per volume, Av , is 4πr2/λ3.
Combining, Av = (4π )1/3(3 f )2/3/λ.

For a square array of rods, f = π (r/λ)2 and Av = 2πr/λ2. Combining, Av =
2( f π )1/2/λ.

For parallel platelets, the surface area per volume, Av , is 2/λ, regardless of f.
Figure 10.20 is a plot of Av/(Av)parallel plates for the three geometries as a function
of f. According to this simple analysis, parallel plates have the least area for
f ≥ 1/π = 31.8%, rods the least area for 4π/81(= 15.5%) ≤ f ≤ 1/π (31.8%)
and isolated spheres for f ≤ 4π/81 = 15.5%.
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10.20. Relative amount of interphase area in eutectics composed of platelets, rods, and spheres.
The morphology with the lowest interphase area has the least energy. From W. F. Hosford,
Physical Metallurgy (Boca Raton, FL: CRC Press, 2005).

Peritectic freezing

The freezing of an alloy of the peritectic composition, c0, is schematically illus-
trated in Figure 10.21. During the reaction α + liquid → β, the β forms on the
surface of preexisting α where there is contact between the α phase and the liquid.
The film of β prevents direct contact between the liquid and α. Further reaction
can occur only by diffusion of A or B atoms through the β, so as the film thick-
ens, the reaction becomes extremely slow. Usually peritectic reactions do not go
to completion. Microstructures usually contain α phase, even though the phase
diagram predicts it should not exist. The term surrounding is used to describe this
phenomenon.
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10.21. (A) Portion of a phase diagram with a peritectic reaction. (B) Particle of α just before the
peritectic reaction. (C) The same region as β begins to form between the α and the liquid.

NOTES OF INTEREST

1. Refrigerator ice cubes have tiny hollow tubular channels oriented in the direc-
tion of freezing. Because the solubility of air in ice is much less than in liquid
water, air is released as the ice forms. Very careful examination of these
“ice worms” will reveal that their diameter changes periodically, as shown in
Figure 10.22. The cause of this periodicity became a subject of some inter-
est at one of the leading industrial laboratories until someone observed that
the periodicity was related to the on–off cycle of the refrigerator. When the
temperature was low the channels were wider because the faster freezing
occurred more rapidly, allowing less time for diffusion of air to the surface.

ice

ice

worm
10.22. “Worm” in an ice cube.

2. Crevice nucleation can be observed in a glass of carbonated beverage. A
series of bubbles can be seen rising from the same place. The source of these
bubbles is a favored nucleation site, probably a minute scratch in the bottom
of the glass.
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PROBLEMS

1. The rate at which metals freeze is controlled by the rate at which heat can
be extracted. Consider the freezing of copper. If the liquid–solid interface
advances at 1 mm/s, what is the thermal gradient (◦C/mm) in the solid?

Data for aluminum: melting point = 1085 ◦C, specific heat = 400 J/
(kg − ◦C), heat of fusion = 205 J/kg, atomic wt. = 63.5, density =
8.9 Mg/m3, thermal conductivity = 160 (W/m − ◦C), and coefficient of
linear expansion = 17 × 10−6/◦C.

2. An ingot of Al−4% Cu is directionally solidified. Assume that there is no
diffusion in the solid and that there is perfect mixing in the liquid. Pure
aluminum melts at 660 ◦C. At the eutectic temperature of 548 ◦C, the liquid
composition is 33.2% Cu and the solid composition is 5.35% Cu. Assume
that the liquidus and solidus are straight lines.
A. Find the distribution coefficient expressed as k = cS/cL , where cS and

cL are expressed as % Cu.
B. Calculate the composition of the liquid when the solidification is 60%

complete.
C. What is the average composition of the solid, c̄S , at this point. (Make

sure that 0.60c̄S + 0.40cL = 4%.)
D. What is the liquid–solid interface temperature at this point?
E. How much eutectic will be formed?

3. Consider the freezing of an aluminum alloy containing 0.002% copper.
A. What would be the composition of the first solid to freeze?
B. What would be the average composition of the first half to freeze?

4. Consider the steady-state freezing of an aluminum alloy containing 0.55%
Cu. In steady-state freezing the boundary layer is such that the solid freezing
has the same composition as the alloy. Assume that the liquid–solid interface
moves at a rate of 80 µm/s. The diffusion coefficient of copper in liquid
aluminum is 3 × 10−9 m2/s.
A. What is the interface temperature?
B. What is the thickness of the boundary layer?
C. What temperature gradient would be required to maintain plane-front

growth?

5. At the melting point of aluminum and one atmosphere partial pressure of
hydrogen, the equilibrium solubility of hydrogen is 7 × 10−3 cm3/g of Al
in the liquid and 4 × 10−4 cm3/g of Al in the solid. The solubilities, 4 ×
10−4 cm3/g and 7 × 10−3 cm2/g, are expressed as the volumes measured at
20 ◦C and 1 atmosphere (STP), not the volumes at the melting point.
A. Calculate the equilibrium solubilities in the liquid and solid at 0.2 atmo-

sphere H2. Express your answer in STP.
B. What volumes of H2 would be liberated during the freezing per volume

of aluminum, if the partial pressure of H2 were 0.2 atmospheres? (The



P1: JzG
0521867053c10 CUFX036/Hosford 0 521 86705 3 printer: Sheridan November 2, 2006 20:21

FREEZING 103

H2 is liberated at a total pressure of 1 atmosphere and at the melting point
of aluminum.) Assume the perfect gas law. Your answer should equal the
percentage of gas porosity if the gas is trapped interdendritically.

6. Consider an aluminum–rich binary aluminum–silicon alloy. The melting
temperature of aluminum is 660 ◦C, and the eutectic is at 577 ◦C and
12.6 wt% Si. The maximum solubility of silicon in aluminum is 1.65%
Si at 577 ◦C. The liquidus and solidus can be approximated by straight lines.
The diffusivity of silicon in liquid aluminum is 8 × 10−8 m2/s. Freezing
occurs at a rate of 10 µm/s.
A. For an alloy of 0.05% Si, what is the interface temperature for steady-state

freezing?
B. Find the thickness of the boundary layer.
C. What temperature gradient is necessary to maintain plane-front growth?
D. Repeat A, B, and C for an alloy containing 1% silicon.

7. Predict the morphology of each of the eutectics listed below. The compo-
sitions are from phase diagrams in the Metals Handbook, vol. 8, 8th ed.
(1973). Some of the densities are estimates.

System Phase Composition Density

Sn/Pb α Sn 97.5% Sn 7.3 Mg/m3

Eutectic 61.9% Sn
βPb 19% Sn 10.6

Cu/Cu2O αCu 0.036% O 8.9
Eutectic 0.39% O
Cu2O 11.3% O 8.7

Bi/Pb BiPb2 42% Bi 11.4
Eutectic 56% Bi
Bi 100% Bi 9.8

Source: Reprinted with permission of ASM International®. All rights reserved. www.
asminternational.org.

8. The melting point of pure aluminum is 660 ◦C and aluminum and silicon
form a eutectic, the eutectic temperature is 577 ◦C, the eutectic composition
is 12% Si, and the maximum solubility of of silicon in solid aluminum is
1.65%. Assume the phase diagram consists of straight lines. If aluminum
containing 0.15 wt% Si were solidified, what would be the composition of
the first solid to form?

9. Some solutes raise the melting temperature, causing both the liquidus and
solidus to increase with additional solute. In this case the distribution coef-
ficient is k > 1.

A. Is the Scheil equation (10.14) still valid?
B. Describe qualitatively how having k > 1 affects the segregation.
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11 Phase Transformations

Solid-state reactions may be classified by whether or not they require both nucle-
ation and diffusional growth: Eutectoid and precipitation reactions require nucle-
ation and growth by long-range diffusion. Examples include pearlite formation in
iron–carbon alloys and precipitation of the θ phase in aluminum–copper alloys.
In massive transformations, such as transformation of the bcc to fcc structures in
pure iron, there is no change of composition so only nucleation and local readjust-
ment of atom positions are required. Martensitic reactions occur by nucleation
and shear without any composition change so diffusion is not required. An exam-
ple is the formation of iron–carbon martensite on quenching austenite. Finally,
there is no nucleation stage in spinodal transformations that occur on cooling into
a miscibility gap. However, diffusion is required.

Nucleation in the solid state

Nucleation of a new phase in the solid state is more complicated than that of
nucleation in freezing. Volume difference between the new and old phases causes
an elastic misfit term that increases �G. Destruction of existing grain boundaries
reduces �G. An expression for the free energy change during nucleation of β in
a matrix of α is

�G = γ αβ�Aαβ − γαgb�Aαgb + �Gv�V β + an elastic strain energy term,

(11.1)

where γαβ and �Aαβ are the α–β interfacial energy and change of α–β interfacial
area and γαgb and �Aαgb are the α grain boundary energy and the change of α

grain boundary area.
In general, the nuclei are not spherical. There are several reasons for this. One

is that the α–β surface energy term, γαβ, depends on the orientations of the
α and β phases. Another reason is that when nucleation occurs on α–α grain
boundaries, the angle of contact, θ , between the α and β phases depends on the
ratio of γαβ/γαgb. A third reason is that the elastic strain energy is minimized if
the precipitating phase is lenticular.

104
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Grain boundaries, grain edges, and grain corners are special sites for nucle-
ation (Figure 11.1) because the formation of a new phase eliminates some grain
boundaries in the old phase. Figure 11.2 shows the dependence on the critical
free energy for nucleation at these special sites on the wetting angle, θ . The equi-
librium wetting angle, θ , depends on the ratio of the energy, γαgb, of α–α grain
boundaries and the interfacial energy, γαβ, between α and β grains, as shown in
Figure 11.3. A force balance gives

2γ αβcosθ = γαβ. (11.2)

grain boundary

grain boundary

grain boundary

11.1. Special nucleation sites on grain boundaries, along grain edges, and at grain corners.

0

0.2

0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

∆G
* he

t/∆
G

* ho
m

o

cos θ

grain edges

grain boundaries

grain corners

11.2. Relative energy of a nucleus at special
sites as a function of the equilibrium wetting
angle. Adapted from J. W. Cahn, Acta Met.
4 (1956): 456.
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11.3. Wetting angle.

Eutectoid transformations

The growth rate of eutectoids is controlled by the rate at which the components
can separate into two different phases. Figure 11.4 illustrates schematically the
reaction γ → α + β, where α is rich in component A, and β is rich in component
B. Component A must diffuse away from the advancing β and B away from the
advancing α. This diffusion occurs in the α–γ and β–γ boundaries. In the case
of a pure binary alloy, only A and B need to diffuse, so the rate of growth will be
determined by the diffusivities of these components. In systems with more than
two components, the other components partition between the α and β phases,
so they must diffuse as well. Alloying elements in steels diffuse much slower
than carbon, so the rate of growth of pearlite is controlled by the diffusion of the
alloying elements.

α

α

α

α

β

β

β

γ

A

A

A

B

B

B

Bα

α

α

α

11.4. Growth of a lamellar eutectoid colony
is controlled by the rate of diffusion of the
components at the interface between the
parent phase and the eutectoid phases.

Although the eutectoid structure in Figure 11.4 consists of parallel platelets,
other geometric arrangements are possible. The most likely arrangement is the one
that minimizes the diffusion distances. The spacing of platelets or rods depends
on the temperature at which the reaction occurs. With greater supercooling, the
spacing is finer. This compensates somewhat for the slower diffusion rates. Fig-
ure 11.5 shows the decrease of pearlite spacing as the transformation temperature
is lowered below the equilibrium eutectoid temperature.

It is possible to cool steels so that pearlite is formed at a temperature, T, below
the equilibrium eutectoid temperature, Te. In this case, the platelet spacing, λ,
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m11.5. With lower transformation tempera-
tures, the lamellae spacing of pearlite is
finer. Data is from D. D. Pearson and J. D.
Verhoeven, Met. Trans., A 15A (1984):
1037.

is inversely proportional to the undercooling, �T = Te − T , as shown in Fig-
ure 11.5:

λ = A/�T, (11.3)

where A is a composition-dependent constant.
A simple analysis can be made of the temperature dependence of the growth

rate of pearlite. The lamellae spacing has two effects on the growth rate. The
diffusion gradient, dc/dx , depends on λ and the flux required for a given rate of
growth is proportional to λ. According to Fick’s first law, the flux of carbon to the
growing carbide is

J = −Ddc/dx = D(cc − cγ )/( fdλ), (11.4)

where cc and cγ are compositions of the carbide and austenite and fd is the ratio
of the effective diffusion distance to λ. The flux must equal the rate that carbon
is incorporated into the growing carbide:

J = fc(cc − cγ )dx/dt, (11.5)

where fc is the volume fraction carbide. Combining Equations (11.3), (11.4) and
(11.5) and substituting dx/dt = G,

G = B D�T 2, (11.6)

where B is a constant. Because D = Do exp[−Q/(RT )],

G = C�T 2 exp[−Q/(RT )], (11.7)

where C is a new constant.
The temperature dependence caused by the exp[−Q/(RT )] term is opposite

to that of the (�T )2 factor. The net effect is that there is a maximum growth rate
near 600 ◦C, as shown in Figure 11.6. Figure 11.6 also shows that the nucleation
rate, N , continues to increase with lower temperatures.
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11.6. Temperature dependence of pearlite
nucleation and growth rates in a 0.78% C,
0.63% Mn steel of ASTM grain size 5.25.
Data from R. F. Mehl and A. Dube, Phase
Transformations in Solids (New York: Wiley,
1951), 545. Reprinted with permission of
John Wiley & Sons, Inc.

The net effect is that the overall transformation rate has a maximum somewhat
below 600 ◦C, as shown in Figure 11.7. The time for transformation is inversely
related to the transformation rate. Isothermal transformation diagrams (or TTT
curves) are plots of the time required for transformations to occur. Because time
is reciprocally related to rate, isothermal transformation diagrams have a C shape,
as shown in Figure 11.8.
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11.7. Schematic figure showing how a
transformation rate varies with temperature.

Avrami kinetics

Johnson and Mehl * analyzed the kinetics of pearlite formation by assuming that
the growth rates, G, in three dimensions and the nucleation rate, N , are constant.
With a constant growth rate, the volume, V , of a spherical particle nucleated at a
time, τ , at a time, t, is

V = (4π/3)G3(t − τ )3. (11.8)

* W. A. Johnson and R. F. Mehl, Trans. AIME 135 (1939): 416.
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11.8. Isothermal transformation of a 1080 steel. The left-hand line is for the observable start of
the reaction and the right-hand line is for the essential completion of the reaction. Data from
Atlas of Isothemal Transformation Diagrams (Pittsburgh: U.S. Steel, 1951).

The number of nuclei per volume of untransformed material formed in a time
increment, dτ , is Ndτ . In the early stage of transformation impingement of trans-
formed material may be neglected. In that case, the fraction transformed is

f = (4π/3)G3 N

∫
(t − τ )3dτ = (π/3)G3 Nt4. (11.9)

However, this is valid only for f << 1. At longer times the fraction of the volume
that is available for growth and nucleation is (1 − f ). When this term is included,
the Johnson–Mehl equation becomes

f = 1 − exp[−(π/3)G3 Nt4]. (11.10)

For cases in which the nucleation and the growth rates are not constant or
the growth is not three dimensional, Avrami* showed that this equation can be
generalized to

f = 1 − exp(−ktn), (11.11)

where the exponent n may be less than 4. The effect of the exponent, n, on the
transformation is shown in Figure 11.9. The values of k were not adjusted, so the
apparent faster transformation rate with lower exponents is not real. The ratio of
90% and 10% completion times is less for the higher value of n.

EXAMPLE 11.1. Find the ratio of the times for a reaction to be 90% complete
to the time for it to be 10% complete. Compare that ratio for n = 4 and n = 2.

SOLUTION: From Equation 11.10, ln(1 − f ) = −ktn . Comparing two degrees
of completion, ln(1 − f 2)/ln(1 − f 1) = (t2/t1)n so t2/t1 = [ln(1 − f 2)/
ln(1 − f 1)]1/n .

* M. Avrami, J. Chem. Phys. 7 (1939): 1103.
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11.9. The effect of the exponent in the Avrami equation on the transformation. On a log( f )-log(t)
plot, the slope increases with n.

Substituting f2 = 0.9 and f1 = 0.1, t2/t1 = 21.81/n . For n = 4, t2/t1 = 2.16;
for n = 2, t2/t1 = 4.7.

The constant, k, which incorporates both G and N, is very temperature sen-
sitive because both G and N depend on temperature. Changes in k shift the
curve horizontally on a semilogarithmic plot but do not change its shape. Fig-
ure 11.10 shows the rate of transformation for two temperatures, T1 and T2, with
n = 4.

For 50% transformation, −kt (0.5)
n = ln(0.5), where t(0.5) is the time for f =

50%, so

k = .69/t (0.5)n . (11.12)

There are several reasons why the Avrami exponent may be less than 4. The
nucleation rate may decrease with time because most favorable nucleation sites
are used up early. In the extreme, it is possible that all nucleation sites are used
up at the very start so nucleation makes no contribution to the exponent. In some
cases, the growth rate may decrease with time. This is true for precipitation from
solid solution. For precipitation, the rate of growth is inversely proportional to the
square root of time. Finally, if growth is in only one or two dimensions instead of
three, the contribution of growth will contribute less to the exponent. Table 11.1
lists the contributions to the exponents.
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Table 11.1. Contributions to the Avrami exponent

Growth Constant G G ∝ δt−1/2

3-dimensional 3 1.5
2-dimensional 2 1
1-dimensional 1 0.5
Nucleation Constant N Site saturation

1 0
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11.10. The effect of temperature on transformation kinetics. T1 is higher than T2.

EXAMPLE 11.2 A reaction Ṅ is 20% complete after 45 s and 85% complete
after 1.25 min. Determine the value of n in the Avrami equation.

SOLUTION: Writing the Avrami equation as −ln(1 − f ) = btn and evaluating at
two conditions,

ln(1 − f2)/ ln(1 − f1) = bt2
nbt1

n = (t2/t1)n so

n = ln[ln(1 − f2)/ ln(1 − f1)]/ ln(t2/t1)

= ln(ln0.8/ln0.15)/ln(45/1.25 × 60) = 4.2.

Many reactions, including recrystallization, can be described by Avrami kinetics.

Growth of precipitates

Diffusion of the solute is necessary for precipitate growth. The diffusional flux
depends on both the diffusivity and the concentration gradient, which is propor-
tional to co − cα . At low amounts of supercooling, the term co − cα is nearly
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proportional to the degree of supercooling so the growth rate increases with
supercooling. However, at high supercoolings, the temperature dependence of
the diffusivity masks this effect and the growth rate decreases. The rate of nucle-
ation increases with supercooling, resulting in a finer dispersion.

At low amounts of supercooling the driving force for nucleation is so small
that grain boundary nucleation predominates. Figure 11.11 shows schematically
the phase diagram of an alloy in which precipitates can form. If an alloy solution
is treated and then quenched to temperature T, particles of β will precipitate out
of the α. The α phase at the α–β boundary will have the composition cα given
by the phase diagram, whereas the composition of the α phase remote from the
particle will remain co. The concentration gradient, dc/dx , in the α-phase allows
diffusion of element B to the growing β. The growth rate of β is proportional
to the diffusion flux, J = −Ddc/dx . The concentration gradient, dc/dx , can
be approximated as (co − cα)/L , as indicated in Figure 11.12. A mass balance
requires that (cβ − co)x = L(co − cα)/2 so L = 2(cβ − co)x/co − cα) and

J = −Ddc/dx = −D(co − cα)2/[2(cβ − co)x]. (11.13)
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11.11. Phase diagram of A–B system (left) showing the alloy composition, cav, and the compo-
sitions of the α and β at the precipitation temperature, T . At the right is the composition profile
through a β particle and the neighboring α. Particle growth requires diffusion of B through the
α. As the particle grows, the concentration gradient decreases.

The flux, J, is given by J = (cβ − co)dx/dt. Equating, (cβ − co)dx/dt =
−D(co − cα)2/[2(cβ − co)x]. Rearranging and integrating,∫

xdx = −D[(co − cα)/(cβ − co)]2/2
∫

dt or

x = [(co − cα)/(cβ − co)](Dt)1/2. (11.14)

The growth rate G = dx/dt = (1/2) [(co − cα)/(cβ − co)](D/t)1/2.

Thus, the growth rate decreases with time and the particle radius is proportional
to

√
(Dt). The growth rate slows even more when diffusion fields overlap, as

shown in Figure 11.13.
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11.12. The concentration gradient near a growing precipitate. The dashed line is a linear approx-
imation to the gradient. The areas (cβ − co)x and (1/2)(co − cα )L are equal.
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11.13. Overlapping of the diffusion fields of
two particles slows the growth. From W. F.
Hosford, Physical Metallurgy (Boca Raton:
CRC Press, 2004), p. 198, figure 10.18.

Transition precipitates

Often a transition precipitate forms before the equilibrium precipitate. Fig-
ure 11.14 is a schematic plot of the free energy versus composition curves for
such a case. Note that when α is in metastable equilibrium with β ′ its solubility
for B is greater than when α is in equilibrium with β.

Precipitation-free zones

If the precipitation occurs at high temperatures, the degree of supersaturation will
be low and the precipitates will grow rapidly. These conditions lead to formation of
large precipitates at the grain boundaries. The growth of these precipitates drains
the region near the grain boundaries of solute, so a precipitation-free zone will
form near the grain boundaries. An example is shown in Figure 11.15. Quenching
minimizes the width of the precipitation-free zone. This is illustrated schemati-
cally in Figure 11.16.

Ostwald ripening

During precipitation the number of particles initially increases with time as more
nuclei are formed. Eventually a maximum is reached and then the number of
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11.14. Schematic plot of free energies for
α, β, and metastable β′ phases. Note that
the solubility of B in α is greater for the
metastable β′.

11.15. Precipitation-free zones at grain
boundaries in an aluminum-base alloy. From
D. A. Porter and K. E. Easterling, Phase
Transformations in Metals and Alloys, 2nd
ed. (London: Chapman & Hall, 1992), p. 306.

precipitate particles gradually decreases as the larger particles grow and the
smaller ones shrink and disappear. The driving force for this coarsening is the
decrease of surface area between the precipitate and the matrix for large particles.
The surface energy per volume is lower for large precipitate particles than for
small ones so the amount of solute in solution near large particles is less than
that near small ones. This results in a concentration gradient that allows solute to
diffuse from the small particles to the large ones, as illustrated in Figure 11.17.
This coarsening process is called Ostwald ripening.

Martensitic transformations

Martensitic transformations occur by nucleation and shear. There is no compo-
sition change and hence no growth by diffusion. Rather, a region of the lattice
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11.16. The width of the precipitate-free zone can be minimized by rapid quenching. cα′ and cα

are the equilibrium compositions at high and low temperatures, respectively.
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11.17. The higher free energy of small particles (upper left) results in a greater solubility of B
in α. This in turn produces a concentration gradient in α between small and large β particles
(right), which causes the diffusion needed for the small particles to dissolve and to allow the
large ones to grow.

suddenly transforms by shear. The elastic energy caused by misfit of the new and
old lattice is minimized if the region undergoing the transformation is lenticular.
Figure 11.18 shows the effect of a shear strain of γ = 2 on a spherical particle
(top) and an ellipsoidal particle of the same volume (bottom). With the ellipsoidal
particle, there is much less disturbance of the surrounding matrix.

A martensitic transformation occurs over a temperature range. The temperature
at which the martensite first starts to form on cooling is called the Ms temperature.
More martensite will form only if the temperature is lowered. The temperature at
which the reaction is complete is called the M f temperature. However, the concept
of an M f temperature may be more of a convenience than a reality because often
there is no sharp completion of martensite formation.
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sphere

ellipsoid of same volume

11.18. A spherical region undergoing a martensitic shear distorts a much larger volume of
material than an ellipsoid of the same volume.

In most systems the martensitic reaction is geometrically reversible. On heat-
ing, the martensite will start to form the higher temperature phase at the As

temperature and the reaction will be complete at an Af temperature, as illustrated
in Figure 11.19. Martensite in the iron–carbon system is an exception. On heating,
the iron–carbon martensite decomposes into iron carbide and ferrite before the
As temperature is reached. Martensite can be induced to form at temperatures
somewhat above the Ms by deformation. The highest temperature at which this
can occur is called the Md temperature. Likewise, the reverse transformation can
be induced by deformation at the Ad temperature somewhat below the As . The
temperature at which the two phases are thermodynamically in equilibrium must
lie between the Ad and Md temperatures.
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11.19. The fraction martensite increases as
the temperature is lowered below the Ms to
the M f . On heating, the reversion starts at
As and finishes at A f .

The volumes of the low and high temperature phases are usually not the same
so there is often a volume change associated with the martensite reaction.

Spinodal decomposition

Spinodal reactions may occur in systems that have a miscibility gap. On cooling,
a single solid solution decomposes into two solid solutions, as indicated in Fig-
ure 11.20. The corresponding free energy versus composition curves are shown
in Figure 11.21. Consider Alloy 1, cooled suddenly from the single-phase region
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11.20. Phase diagram with a miscibility gap.

11.21. Free energy versus composition
curves for the system in Figure 11.20 at two
temperatures.

(temperature T1) to temperature T2. Segregation will occur with some regions
richer in B and other regions richer in A. This will lower the free energy of the
system even though no discrete phase boundary is initially necessary. Because no
new boundaries are necessary, there is no nucleation stage in the usual sense of
a thermally activated process. The single solid solution can start to break up into
two phases without nucleation. Diffusion is, however, necessary.

Figure 11.22 shows that for compositions for which ∂2G/∂c2 > 0, such spin-
odal decomposition is not possible and nucleation of α1 and α2 is required. Hence,
spinodal reactions are possible only for composition/temperature combinations
for which ∂2G/∂c2 is negative. Sometimes this region is shown by dotted lines
on phase diagrams, as in Figure 11.23.

11.22. If Alloy 1, for which ∂ 2G/∂c2 < 0,
segregates into two regions, one rich in B
and the other lean in B, the free energy of
the system is lowered. On the other hand, if
Alloy 2, for which ∂2G/∂c2 > 0, segregates,
the free energy of the system increases.

The local composition changes during spinodal decomposition and precipita-
tion by nucleation and growth are compared in Figure 11.24. It is interesting to
note that spinodal decomposition requires uphill diffusion. The boundary between
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11.23. Phase diagram corresponding to Figure 11.21, showing the region in which a spinodal
reaction is possible at temperature T1.

11.24. Comparison of spinodal decomposition and precipitation by nucleation and growth.

the two phases sharpens during the spinodal reaction. In contrast, for nucleation
and growth precipitation, the boundaries between the two phases are already
sharp.

NOTE OF INTEREST

At room temperature tin has a body-centered tetragonal structure. This is called
β or white tin. Below 13 ◦C, the equilibrium structure is diamond cubic and is
called gray tin. The transformation of white tin to gray tin results in disintegration
into a powder because the volume expansion is very large (27%) and the gray-tin
phase is very brittle. It would ruin any part made from or joined by tin. However,
the transformation is extremely sluggish and inhibited by common impurities.
There is an apocryphal story that attributes Napoleon’s defeat at Moscow to this
transformation. It is said that the cold Russian winter caused the tin buttons on
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the French uniforms to transform and disintegrate so the French could not fight
and hold up their trousers at the same time.
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PROBLEMS

1. The ratio of the activation energy for heterogeneous nucleation of a new
phase on a grain boundary, �G∗

hetero, to that for homogeneous nucleation,
�G∗

homo, is given by S(θ ) = �G∗
hetero/�G∗

homo, = (1/2)(2 + cos θ )(1 −
cos θ )2, where θ is the wetting angle between the new phase, β, and the old
one, α.
A. Calculate S(θ ) if γαβ = γαgb.
B. According to Figure 11.2, what would be the value of S(θ ) for nucleation

at the corners of grains if γαβ = 1.2γαgb?

2. Figure 11.25 gives data on a phase transformation.
A. Determine the exponent in the Avrami equation.
B. At what time would you expect the fraction transformed to be 0.001?
C. At what time would you expect the fraction transformed to be 0.999?
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11.25. A plot for a phase transformation of the fraction transformed as a function of time.
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3. For a material that undergoes a martensitic transformation, which phase,
martensite or austenite, has the lower free energy:
A. a temperature between the Ms and Md?
B. a temperature between the As and Ad?

4. A. Describe the conditions under which a reaction α → α1 + α2 will take
place by a spinodal decomposition.

B. Describe the temperature dependence of these conditions.

5. Data from a near eutectoid steel indicate that the growth rate of pearlite is
10−2 mm/s at both 660 ◦C and 540 ◦C. Using this information, determine
the activation energy for the effective diffusion. Take Te as 723 ◦C for this
steel.
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12 Surfaces

Every surface has an energy per area associated with it because molecules or
atoms at a surface have different surroundings than those in the interior. The
units of surface energy are J/m2. Surface tension, in N·m, is equivalent to surface
energy. The work to create a surface can be thought of as a surface tension on a
line, working through a distance.

Relation of surface energy to bonding

An approximate calculation of surface energy can be made by envisioning a
surface being formed by mechanical forces across it and calculating the work
required to separate the two halves of a crystal (see Figure 12.1). Here the surface
energy, γs , is given by

γs = (1/2)(work/area) = (1/2)
∫

σds, (12.1)

S
tr

es
s,

 σ

Strain, ε

slope = σ/ε = E

σ = (E/π)sin(πε)

0 1

12.1. Schematic plot of bonding strength as
a function of atom separation.

where σ is the stress required to create a separation, s, of the two surfaces and
the lower and upper limits of integration are s = 0 and s = ∞. To proceed further
along these lines, something must be assumed about how σ varies with s. One
assumption is that the curve can be approximated by

σ = (E/π ) sin(πε), (12.2)

121
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between ε = 0 and 1, where ε = (s/so). Substituting Equation (12.2) and ds =
sodε into Equation (12.1), γs = E/(2π )

∫
sin(πε)sodε. Integrating between ε = 0

and 1,

γs = Eso/(2π2). (12.3)

It is customary to take so = d (the atomic diameter). Evaluating this approxi-
mation for copper (E = 128 GPa and d = 0.255 nm), γs = 1.65 J/m2, compared
to the experimentally measured value of 1.7 J/m2.

Another way of estimating surface energy is based on a hypothetical experiment
in which two new surfaces are formed by breaking of bonds. The energy of the
two surfaces equals the energy expended in breaking the bonds. One way of
estimating this is to assume that the value of the latent heat of sublimation (solid →
gas transformation), �Hs , expressed on a per-atom basis is the energy to break
all of an atom’s bonds. Then the surface energy can be found by calculating how
many bonds per area must be broken to create the surface. Such calculations
predict an orientation dependence of surface energy with more densely packed
surfaces having the lower energies. This prediction is in accord with experimental
observations of the prevalence of low index surfaces when surface tension controls
the surfaces present.

Because both surface energies and melting temperatures are related to bonding
strength, the surface energy is closely related to melting point, as shown in Fig-
ure 12.2.
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12.2. Correlation of surface energy with melting point. From W. F. Hosford, Physical Metallurgy.
(Boca Raton, FL: CRC Press, 2004), p. 77, figure 4.8.

Orientation-dependence of surface energy

The surroundings of atoms at the surface of a material are different from those
in the interior. A simple way of estimating the orientation dependence of surface
energy is to determine the number of missing near-neighbor bonds per area of
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surface. The heat of vaporization per atom, hv , is the energy to break all of an
atom’s bonds. Therefore, the energy to form a surface is the product of hv and the
number of atoms per area of surface, na , and the fraction, α, of their bonds that
are missing:

γ = αhvna. (12.4)

Consider a {100} surface of an fcc metal. There are two surface atoms per unit cell
so n = 2/a2, and one third of the bonds of each are broken (α = 1/3). Breaking
these bonds creates two surfaces each of area, a2. The energy associated with
this is γ = 2(1/3)hv/(2a2). For copper, the heat of sublimation of copper is
(4.73 MJ/kg)(63.54 × 10−3 kg/mol)/(6.023 × 1023 atoms/mol) = 4.99 × 10−19

J/atom, and the lattice parameter is 0.3615 × 10−9 m. Using this data, an estimate
of the surface energy is 2(1/3)(4.99 × 10−19 J/atom)/[2(0.3615 × 10−9)2m2] =
1.27 J /m2. This is lower than the value for polycrystalline copper, 1.7 J/m2, but
that is expected because the {100} surface energy is lower than the average for a
polycrystal.

The surface energy of a crystal is anisotropic. For planes with low indices,
it is possible to calculate by trigonometry the number of near-neighbor bonds
missing per area and follow the procedure above to estimate the relative surface
energies of different low-index planes. The orientation dependence of the free
surface energy of a two-dimensional square lattice depends on the orientation of
the surface and can be found as follows.

Consider the square lattice in Figure 12.3 and let the area of the surface equal 1.
For 0 ≤ θ ≤ 90◦, the number of missing vertical bonds is sin θ/a and the number
of missing horizontal bonds is cos θ/a, so the total number of missing bonds is
(sin θ + cos θ )/a. Breaking these bonds creates two surfaces of total length = 2,
so the surface energy per area is

γθ = Ub(cosθ + |sinθ |)/(2a), (12.5)

where Ub is the energy per bond. This plots as a circle of radius
√

2Ub/a, centered
at x = y = Ub/

√
2. Symmetry indicates that in other quadrants γθ also plots as

a circle of radius
√

2Ub/a. Figure 12.4 is a polar plot of γ .
Gibbs realized that the equilibrium shape of solid is one that minimizes the

total surface energy, Us = ∫
γ dA. Wulff showed that the minimum energy con-

figuration can be found by constructing planes (Wulff planes) perpendicular to

θsin θ

cos θ

1

a

12.3. Two surfaces created by breaking
bonds. The surface energy is proportional to
the number of broken bonds per area. From
W. F. Hosford, Physical Metallurgy, (Boca
Raton, FL: CRC Press, 2004), p. 79, fig-
ure 4.9.
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θ

equillibrium 
shape

2aγ/Ub 12.4. Polar plot of the surface energy of a
two-dimensional square crystal as a func-
tion of orientation. The total surface energy
of a crystal is a minimum when it is bounded
by planes constructed perpendicular to the
shortest normals. From W. F. Hosford, Phys-
ical Metallurgy (Boca Raton, FL: CRC Press,
2004), p. 80, figure 4.10.

radii where γ is a minimum on a polar plot. The equilibrium shape of isolated
particles is bounded by portions of Wulff planes that can be reached from the
origin without crossing any other Wulff planes. For the two-dimensional crystal
in Figure 12.4, this corresponds to a square.

Figure 12.5 is a schematic plot showing how the surface energy changes with θ

for orientations near a low-index plane. Plots of surface energy versus orientation
have cusps at low-index orientations.

misorientation  angle, θ

en
er

gy

+         0         -

12.5. The dependence of surface energy on
the angle of deviation from a low index plane.

A two-dimensional Wulff plot for a three-dimensional crystal having both
{100} and {111} faces is illustrated in Figure 12.6. The corresponding solid is
sketched.

polar plot of surface energy

shape with the lowest energy

12.6. A polar plot of γ for a hypothetical
crystal. The lowest energy shape for the
crystal corresponds to planes normal to radii
at the cusps.
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Surfaces of amorphous materials

A simple bond-breaking approach is not applicable to amorphous materials such
as thermoplastics and glasses because they will adjust their molecular configura-
tion to minimize the number of missing bonds. If there is more than one type of
bond, the missing bonds at the surface are likely to be the weakest bonds and not
characteristic of the overall bond strength.

Grain boundaries

The energy of a grain boundary depends on the misorientation across the bound-
ary. Low-angle tilt grain boundaries are composed of edge dislocations (Fig-
ure 12.7). The angle of misorientation, θ , is given by

θ = b/L , (12.6)

b

L

θ

12.7. A low-angle tilt boundary is composed
of edge dislocations.

where b is the Burgers vector and L is the distance between dislocations. The
number of dislocations per length, n, is equal to the reciprocal of L:

n = 1/L = θ/b. (12.7)

The energy of an edge dislocation is given by (Gb2/4π) ln(r1/ro)/(1 + ν),
where G is the shear modulus, ν is Poisson’s ratio, and ro is a constant equal
to about b/4. The value of r1 is approximately equal to the distance between
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dislocations, so r1 = b/θ . Substituting, the energy of a low angle tilt bound-
ary is

γ = n(Gb2/4π) ln(r1/ro)/(1 + ν) or γ

= (θ/b)(Gb2/4π) ln[(4/θ )]/(1 + ν). (12.8)

At low angles, γ is proportional to θ , but at higher angles, γ /θ decreases, as
illustrated in Figure 12.8. Screw dislocations on a plane form twist boundaries. The
misorientation across a low-angle twist boundary and its energy are proportional
to the number of dislocations.
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12.8. Relative energy of a low-angle tilt
boundary calculated from Equation 12.4.

Certain high-angle boundaries have low energies. For special rotations about
<100> and about <111> normals, there is a coincidence of atom sites. Figure 12.9
is a plan view of a 36.9◦ twist boundary in a simple cubic lattice. One fifth of
the atoms have common sites. In an fcc lattice, a 60◦ rotation about a <111>
direction forms a twin boundary. All of the atoms in the boundary have sites that
are common to both sides of the twin boundary. The energies of these special
boundaries are much lower than the energy of a general high-angle boundary.
Experimental measurements of the energies of high-angle boundaries indicate
that the energy is between one third and one half of the free surface energy.

Figure 12.10 shows that five independent parameters are needed to describe
fully a grain boundary. Three angles are required to characterize the misorientation
and two angles are needed to identify the orientation of the grain boundary plane.
Studies of grain boundaries in polycrystalline materials have shown that bound-
aries with the lowest energies have the highest occurrence.∗ These correspond to

∗ D. M. Saylor, A. Morawiec, and G. S. Rohrer, J. Amer. Ceram. Soc. 85 (2002): 3081–3 and
D. M. Saylor, A. Morawiec, and G. S. Rohrer, Acta Mater. 51 (2003): 3363–86.
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36.9°

12.9. Coincidence grain boundary in a sim-
ple cubic lattice that corresponds to a 36.9◦

rotation about a <100> direction. One fifth of
the atoms (dark circles) in the boundary have
common sites.

certain boundary planes. The most frequent boundary planes in MgO are near
{100}. In fcc metals the most frequent boundary planes are near {111}, but a
number also correspond to {110} tilt boundaries. Coincidence boundaries were
not frequently observed.

12.10. Five angles are required to describe
a grain boundary.

Segregation to surfaces

Segregation of solutes to a grain boundary lowers its energy. Solutes that have a
larger atomic size than the parent atoms occupy positions that are open and smaller
solute atoms occupy sites where there is crowding, as shown schematically in
Figure 12.11.

S
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L

L

S

S

L

L

L

S

L
12.11. Two-dimensional sketch of a grain
boundary. The crowding at atom positions
indicated by S can be relieved if they are
occupied by small atoms. Open positions,
indicated by L, attract large atoms.
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The ratio of grain boundary concentration to overall concentration, cgb/cφ0,
decreases with increasing solubility. Hondras and Seah* showed that

cgb/c0 = A/cmax, (12.9)

where cmax is the solubility limit in the matrix and A is a constant with a value of
about 1.

There is also segregation of solutes to free surfaces. One example is soapy water.
Soap segregates to the surface, lowering the surface energy (surface tension).

Direct measurements of surface energy

Most measurements of surface energies have been indirect, comparing the energy
of one surface to that of another. There have been relatively few direct mea-
surements of surface energy. A classic experiment in some physics courses is
the measurement of the surface tension of soapy water. This is illustrated in Fig-
ure 12.12. Measurement is made of the force, F , that must be applied to a soap film
of fixed length, L , to keep it from contracting. A force balance gives F = 2Lγ ,
so the surface tension is given by

γ = F/(2L). (12.10)

L

Fsoap film

sliding  bar

12.12. Measurement of surface tension of a
soap film.

The reason that F is divided by 2L is that there are two liquid–vapor interfaces
associated with a soap film.

Buttner, Udin, and Wulff † measured the surface energy for gold (or more
properly, the energy of the interface between solid gold and its vapor). A weighted
gold wire was suspended from the cover of an evacuated gold box (Figure 12.13),
the system was heated to a high temperature, and the rate of creep was measured.

* E. D. Hondras and M. P. Seah, Int. Metall. Rev. 42 (1977): Review No. 222.
† F. H. Buttner, H. Udin, and J. Wulff, J. Metals 3 (1951): 1209.
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12.13. Measurement of the surface energy of gold.

The experiment was repeated with different weights. With low weights, the
wire contracted because of its surface tension, but with greater weights, the wire
elongated. They determined the weight, W , at which the wire neither elongated
nor contracted. One might be tempted to calculate the surface tension, γ , by equat-
ing the weight, W to the longitudinal force, πDγ , where D is the wire diameter
and πD is its circumference. However, this would neglect the fact that the sur-
face tension is also acting to contract the circumference. The surface area of the
wire is A = π DL . As the wire elongates by dL , its diameter changes by dD so
the area changes by dA = π DdL + π LdD. Because the volume, V = π D2L/4,
is constant, dV = (π/4)(D2dL + 2L DdD) = 0, or dD = −(D/2L)dL . Substi-
tuting this in the expression for the area, dA = π [DdL − (D/2)dL], so dA =
(π D/2)dL . The change of total surface energy is γ dA and this must equal the
external work, W dL . Therefore, γ (πD/2)dL = W dL , or

γ = 2W/π D. (12.11)

Values of surface energy measured by this technique were found to be
1.140 J/m2 for Ag at 903 ◦C, 1400J/m2 for Au at 1204 ◦C, and 1.650 J/m2

for Cu at 1000 ◦C. The solid–vapor surface energy is relatively independent of
the temperature, but the surface energy of a solid–vapor interface depends on
its crystallographic orientation, so these measured values must reflect an average
value for many orientations.

Measurements of relative surface energies

Most surface energies have been determined from other surface energies by
measuring the angles at which surfaces meet. The angles at which three sur-
faces meet depend on the relative energies of the three interfaces (Figure 12.14).
Each surface exerts a force per length on the junction that is equal to its surface
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tension. At equilibrium, the force vectors must form a triangle, so the law of sines
gives

γ23/ sin θ1 = γ31/ sin θ2 = γ12/ sin θ3. (12.12)

12.14. Relative surface energies.

Often two of the angles and two of the surface energies are equal. For example,
consider the intersection of a grain boundary with a free surface. If the temperature
is high enough and the time is long enough, the surface will thermally etch (by
vaporization or surface diffusion) until an equilibrium angle is formed. From a
balance of forces parallel to the grain boundary (Figure 12.15),

γgb = 2γsv cos(θ/2). (12.13)

θ

γgb

γsvγsv

grain 2grain 1

vapor

12.15. Intersection of a grain boundary with
a free surface.

Similar relations can be used to find the twin boundary energy from the grain
boundary energy and the boundary energy between two phases from the energy
of a grain boundary in one of them.

Wetting of grain boundaries

Grain boundaries of one phase, α, will be completely wetted by a second phase,
β, if γgb ≥ 2γαβ. In this case θ = 0. If 0 < 2θ < 60◦, the edges and corners of
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Table 12.1. Surface energies

γSV (J/m2) γgb (J/m2) γLS (J/m2) γgb/γSV γgb/γSV

Copper 1.70 0.60 0.181 0.35 0.106
Silver 1.40 0.135 0.096
Gold 1.20 0.40 0.128 0.33 0.107

Source: From J. H. Brophy, R. M. Rose, and J. Wulff, Thermodynamics of Structure (New York:
Wiley, 1964), p. 1870. Reprinted with permission of John Wiley & Sons, Inc.

grains will be wetted by β if 0 < 2θ < 60◦ and the β phase will form a continuous
network along the α grain boundaries. If 60 < 2θ < 120◦, only the grain corners
of α will be wetted by β.

Relative magnitudes of energies

Table 12.1 gives the surface energies of the fcc metals copper, gold, and silver.
Since about one third of the near-neighbor bonds are missing at a free surface, it
can be concluded that at a grain boundary about 10% of the near-neighbor bonds
are missing and at a liquid–solid interface roughly 3.5% of the bonds are missing.

NOTE OF INTEREST

As children, most of us were fascinated by soap bubbles. One cannot blow bubbles
of pure water. We were told that soap made bubbles possible because soap lowered
the surface tension by segregating to the surface of the water. However, it is not
the surface tension, per se, that permits bubbles to be blown from soapy water. It
is because the surface tension of soap solutions is variable. The surface tension at
the top of a bubble is higher than that at the bottom because of the weight of the
water it must support. This requirement can be met in soap solutions by different
surface concentrations at different locations.
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PROBLEMS

1. Estimate for a simple cubic crystal the relative energies of a {410} and {420}
face. (Find γ410/γ420.)

2. A. Consider a {111} face of an fcc crystal. For the surface atoms, what
fraction of the near-neighbor bonds is missing?
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B. Consider a {100} face of an fcc crystal. For the surface atoms, what
fraction of the near-neighbor bonds is missing?

C. A reasonable first-order approximation is that the surface energy is pro-
portional to the number of missing bonds per area. Using this assumption,
estimate γ111/γ100 . γ111/γ100.

3. For copper, what is the equilibrium angle between
A. a free surface and a grain boundary?
B. a grain boundary and a twin boundary?
The surface energy of a twin boundary in copper is about 20 mJ/m.2

4. Evaluate γθ/(Ub/a2) for a two-dimensional crystal with a square lattice over
the range –10◦ ≤ θ≤ +10◦ and plot γθ/(Ub/a2) versus θ .

5. Calculate the pressure inside a sphere of solid gold having a diameter of 20
µm.

6. Estimate the free surface energy of lead and nickel. Lead melts at 327 ◦C
and nickel melts at 1455 ◦C.

7. Knowing that low-angle tilt boundaries are composed of edge dislocations,
predict the most common planes for tilt boundaries in fcc and in bcc metals.

8. Examine the copper–aluminum phase diagram and predict whether cgb/c0 is
larger for copper segregating to grain boundaries in aluminum or aluminum
segregating to grain boundaries in copper.

9. The microstructure of superalloys consists of fcc γ ′ particles in a matrix of
fcc γ . The γ ′ particles are usually cuboidal. Speculate as to the reason for
this morphology.
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13 Bonding

Ionic binding energy

Ionic bonding is the result of the mutual attraction of ions of opposite charge. The
energy of the bond, Upair, between a pair of oppositely charged ions depends on
the charges on the ions and their separation,

Upair= −z1z2e2/d, (13.1)

where z1e and z2e are the charges on the ions and d is their separation. For a
crystal, the bonding energy for an ion is the sum of the attractions and repulsions
to all of the other ions in the crystal. This can be expressed as

U = −Mz1z2e2/d, (13.2)

where M is the Madelung constant. The value of M can be calculated by con-
sidering the attraction and repulsion between a central ion and each shell of ions
about it. For example, the first two shells of ions in sodium chloride about a central
positive ion are sketched in Figure 13.1. In the first shell around a central positive
ion, there are six negative ions at a distance d, twelve positive ions at a distance
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13.1. First two shells surrounding a central positive ion in the NaCl structure.
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Table 13.1. Madelung constants

Structure Madelung constant

Sodium chloride 1.74755
Cesium chloride 1.76267
Zinc blende 1.63806
Wurtzite 1.641

√
2d, and eight negative ions at a distance

√
3d, so the bonding energy with the

first shell is −(−6/1 + 12/
√

2 − 8/
√

3)z2e2 = +2.1335z2e2/d.
For the second shell the bond energy is −(+6/2 − 24/

√
5 + 24/

√
6 + 48/√

8 − 48/
√

9 + 8/
√

12)z2e2 = −3.1405z2e2/d. Similarly, the bonding energies
with the third through seventh shells are +3.2797, −0.74295, +0.4125,

−0.1937932, and +0.1658019 times z2e2. Continued calculations for subsequent
shells form a series that converges at M = 1.747, as illustrated in Figure 13.2.
Table 13.1 gives the Madelung constants for several crystal structures.

13.2. Sum of the attractive energy of subsequent shells in a NaCl crystal. The series converges
at M = 1.74755.

Melting points

Since U = −z1z2e2/d, the binding energies of ionic crystals of formula AB
increase with the square of z. The melting points of ionic solids correlate very
well with z2/d (Figure 13.3).

Elastic moduli

The elastic moduli of ionic crystals are also related to the valences and the dis-
tances between ions. The force, F = dU /dd, required to separate two ions is
proportional to z1z2/d2. The stress is σ = F/A, where A is proportional to d2.
Therefore, Young’s modulus, E , of AB compounds is

E = Cz2/d4, (13.3)

where C is a constant that reflects the Madelung constant,α. Figure 13.4 shows that
the elastic constant for AB compounds is approximately proportional to z2/d4.
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13.3. The melting points of AB ionic crystals increase with z2/d.
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13.4. The correlation between z2/d4 and the elastic modulus, c44, for various AB compounds
with a NaCl structure. Data from J. J. Gilman, Progress in Ceramic Science 1 (1961): 146–94.
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The ionic bonding energy is U = −αz2e2/d. The bonding force is F =
dU/dd. In the bonding stress, σ = F/A, A is proportional to d2 so the
bonding stress σ = β(1/d2)∂u/∂r , where β = d2/A. Substituting, dσ/dr =
(1/d2)∂2u/∂d2 and dε = dd/d,

E = dσ/dε = (1/d)(∂2u/∂d2) = C Z2/d4. (13.4)

Covalent bonding

Bond strengths, elastic moduli, and melting temperatures for covalent bonding
also all increase with z2 and decrease with d. Silicon carbide, silicon nitride, and
aluminum oxide all have a very high stiffness and melting point. There are also
repulsive forces between ions caused by overlapping of the inner electron clouds.
These are appreciable only over very short distances. The usual approximation is
that the repulsive energy between two ions is proportional to 1/Dn , where n is
approximately 9, so this term is negligible except for nearest neighbors.

Covalent bonds involve sharing of valence electrons to complete electron shells.
For each bond, two electrons are shared. Covalent bonds are generally tighter than
ionic bonds. In many compounds the bonding is intermediate between ionic and
covalent.

Hydrogen atoms have one valence electron. Covalently bonded to another atom
(e.g., oxygen or carbon), it shares its electron and one of the other atom’s to form a
bond. Carbon has four valence electrons. When bonded in CH4 or C2H6, it shares
two electrons with each of the hydrogen atoms and the other carbons. In ethylene,
C2H4, the carbon atoms share four electrons between them, forming a double
bond. Table 13.2 gives the valences of several elements in organic compounds.

Bonds have characteristic strengths and lengths. Table 13.3 gives the energies
of several bonds and the bond lengths in organic compounds.

When C and Si are bonded to four other atoms of the same specie (e.g., diamond,
CH4, CCl4, silicon, SiF4), the bonds are at tetrahedral angles of arccos(1/3) =
109.5◦. When all of the surroundings are not the same (e.g., CH3Cl, C2H6), angles
deviate from 109.5◦. Table 13.4 gives the bond angles for some bonds.

Geometric considerations

The structure of ionic crystals usually corresponds to the maximum possible
coordination number. If the ions are assumed to be hard spheres, there must
be contact between ions of opposite signs and no contact between ions of
like sign. The coordination depends on the ratio of anion-to-cation diame-
ters. Figure 13.5 shows that the critical condition for threefold coordination is
R/(R + r ) = cos 30◦ = √

3/2. Therefore, to prevent contact between like ions,

r/R > 0.1547. (13.5)



P1: JzG
0521867053c13 CUFX036/Hosford 0 521 86705 3 printer: Sheridan November 2, 2006 21:17

BONDING 137

Table 13.2. Valences

Element Valence

H, Cl, F, B 1
O, S, Se, Te 2
N, P, As 3
C, Si, Ge 4

Table 13.3. Energies and bond lengths

Bond energy (kJ/mole) Bond length, nm

C–H 435 0.11
C–C 370 0.155
C≡C 680 0.13
C=C 890 0.12
O–H 500 0.10
C–O 360 0.14
C=O 535 0.12
C–F 450 0.14
C–Cl 340 0.18
N–H 430 0.10
O–O 220 0.15
H–N 435 0.074

Table 13.4. Bond angles (degrees)

Diamond C C–C–C 109.5
Methane CH4 H–C–H 109.5
Ammonia NH3 H–N–H 107
Water H2O H–O–H 104
Hydrogen sulfide H2S H–S–H 92

Source: Data from W. G. Moffatt, G. W. Pearsall, and J. Wulff, Structure (New York: Wiley, 1964).
Reprinted with permission of John Wiley & Sons, Inc.

R

R+r

30°

13.5. For threefold coordination, r/R >

0.155.
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Fourfold or tetrahedral coordination corresponds to the smaller ion at the center
of a tetrahedron with the larger ions on the corners, as shown in Figure 13.6. The
critical condition can be easily analyzed by imagining the tetrahedron inside a
cube. Then [2(R + r )]2 = 3a2. At the critical condition, (2R)2 = 2a2, so 4(R +
r )2 = 6R2, and

r/R >
√

3/2 − 1 = 0.2247. (13.6)

R

e a

r

13.6. For fourfold tetrahedral coordination, r/R > 0.2247.

Figure 13.7 shows that sixfold or octahedral coordination corresponds to the
smaller ion at the center of an octahedron with the larger ions on the corners. The
critical ratio corresponds to [2(r + R)]2 = 2R2, so

r/R >
√

2 − 1 = 0.4142. (13.7)

Rr

2R

13.7. For sixfold (octahedral) coordination,
r/R > 0.4142.

With eightfold or cubic coordination, the smaller ion is in the center of a cube
with larger ions on the corners (Figure 13.8). [2(r + R)]2 = 3(2R)2, so

r/R >
√

3 − 1 = 0.7321. (13.8)

These geometric restrictions are summarized in Table 13.5.
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Table 13.5. Geometric restrictions on coordination

Coordination minimum r/R ratio

3-fold 0.1547
4-fold 0.2247
6-fold 0.4142
8-fold 0.7321

R

r

2R

13.8. For eightfold (cubic) coordination,
r/R > 0.7321.

Ionic radii

When anions are formed, atoms lose electrons. Therefore, the ionic radii of ele-
ments are smaller than the corresponding atomic radii. Both ionic and atomic
radii of elements in the same period decrease with increasing atomic number. See
Figure 13.9.

0

0.1

0.2

1 0 1 1 1 2 1 3 1 4

atomic number

ra
di

i, 
nm

Na+1 Mg+2 Al+3 Si+4

atomic radii

ionic radii
13.9. For metals, the ionic radii are smaller
than the corresponding atomic radii. For the
same period, both decrease with increasing
atomic number.

For the same column of the table, both the anion and atomic radii increase
with the atomic number, as shown in Figure 13.10. Cation radii are larger than the
corresponding atomic radii and, for the same column of the periodic table, both the
cation and atomic radii increase with the atomic number, as shown in Figure 13.11.

Generally anions have smaller radii than cations. Ionic radii of anions tend to
decrease with higher valences. Table 13.6 lists ionic radii for sixfold coordination.
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atomic radii

ionic radii

Li

0.3

0.2

0.1

0
Na K Cs

ra
di

i, 
nm

13.10. For the same period, the radii of metal atoms and anions increase with atomic number.

F−1 Cl−1 Br−1 l−1

13.11. For nonmetals, the cation radii are larger than the atomic radii. For the same period, both
increase with atomic number.

Ionic radii are somewhat smaller with fourfold coordination and are somewhat
larger with eightfold coordination:

RC N=4 = RC N=6. (13.9)

and

0.97RC N=8 = RC N=6. (13.10)

Structures of compounds

Many ionic compounds have structures based on either fcc or hcp packing of
one of the ions. Both of these structures have sites of fourfold coordination and
sites of sixfold coordination. Several simple structures for AB compounds are
illustrated in Figure 13.12. Both the zinc blende structure, which is based on
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Table 13.6. Ionic radii

Ion Radius, nm Ion Radius, nm

Li +1 0.068 Be +2 0.035
O −2 0.140 F −1 0.133
Na +1 0.097 Mg +2 0.066
Al +3 0.051 Si +4 0.042
S −2 0.184 Cl −1 0.181
K +1 0.133 Ca +2 0.099
Ti +4 0.068 Cr +3 0.063
Mn +2 0.074 Fe +2 0.074
Fe +3 0.064 Co +2 0.072
Ni +1 0.069 Cu +2 0.096
Zn +2 0.074 Ag +1 0.126
Sn +4 0.071 I −1 0.220
Cs +1 0.167 W +4 0.070
Au +1 0.137 Hg +2 0.110
Pb +2 0.120 U +4 0.097

Source: Data from L. Pauling, Nature of the Chemical Bond, 3rd ed. (Ithaca, NY: Cornell Univ.
Press, 1960), p. 514, table 13.3.

13.12. Several simple structures for AB compounds.
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Table 13.7. Common structures

Coordination
Anion Cation
packing Anion Cation sites Name Example

FCC 6 6 All oct Halite NaCl
FCC 4 4 1/2 tet Zinc blende αZnS
FCC 4 8 All tet Antifluorite Li2O
FCC 12,6 6 1/4 oct Perovskite CoTiO3

FCC 4,6 4 1/8 oct Spinel FeAl2O4

HCP 6 6 All oct Nickel arsenide NiAs
HCP 4 4 1/2 tet Wurtzite βZnS
HCP 6 4 2/3 oct Corundum Al2O3

HCP 6,6 4 2/3 oct Ilmenite FeTiO3

HCP 6,4 4 1/2 oct Olivine Mg2SiO4

Simple cubic 8 8 All cubic Cesium chloride CsCl
Simple cubic 8 4 1/2 cubic Fluorite CaF2

an fcc arrangement of cations, and the wurtzite structure, which is based on an
nhcp arrangement of cations, have fourfold coordination. The sodium chloride
structure, which is based on an fcc arrangement of cations, has sixfold coordi-
nation. The eightfold coordination of the cesium chloride structure is based on a
simple cubic arrangement of cations.

The packing of anions, the coordination of the anions and cations, and the
cation site occupation for a number of the common crystal structures are listed
in Table 13.7

Table 13.8 is a compilation of the structures of many inorganic compounds.

Table 13.8. Structures of some compounds

Halite NaCl, MgO, CaO, SrO, BaO, CdO, MnO, FeO, CoO, NiO KCl, KI, KBr,
Zinc blende αZnS, ZnO, SiC, BeO, AlP, GaP, αCdS, HgS, βAgI, InP, BeSe, AlAs,

GaAs, CdSe, HgSe, CuI, InSb, BeTe, AlSb
Antifluorite Li2O, Na2O, K2O
Perovskite CoTiO3, SrTiO3, SrSnO3, BaTiO3, SrZrO3

Spinel FeAl2O4, ZnAl2O4, MgA2O4

Wurtzite βZnS, ZnO, SiC, BeO, MgTe, CdSe, αAgI, βZnS, βCdS, MgTe
Nickel arsenide NiAs, FeS, FeSe, CoSe
Corundum Al2O3, Fe2O3, Cr2O3, Ti2O3, V2O3

Ilmenite FeTiO3, NiTiO3, CoTiO3

Olivine Mg2SiO4, Fe2SiO4

Cesium chloride CsCl, CsBr
Fluorite CaF2, UO2, CeO2, ZrO2, HfO2

NOTE OF INTEREST

Linus Pauling (1901–1994) was one of the twentieth century’s greatest scientists.
He twice won Nobel prizes, once for chemistry and once for peace. His Nature
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of the Chemical Bond and the Structure of Molecules and Crystals ( Ithaca, NY:
Cornell Univ. Press, 1960) treated bond angles and lengths and has become the
basis for predicting coordination in crystals.
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PROBLEMS

1. Calculate the Madelung constant for a two-dimensional crystal with a square
unit cell having a positive ion at the center and negative ions on the corners.

2. A. Calculate the energy released as heat when 1 g of ethylene (CH2=CH2)
is polymerized to polyethylene (−CH2−CH2−).

B. If the process were adiabatic, what would be the temperature rise? The
heat capacity of polyethylene is 2 kJ/kg ◦C.

3. Estimate Young’s modulus for NaCl given that Young’s modulus for MgO is
210 GPa.

4. The boron ion, B+3, has a radius of about 0.025 nm. Predict the coordination
of B+3 in B2O3.

5. Predict the structure of CsI.

6. Predict the structure of AgI.

7. The structure of diamond is like the zinc blende structure except that all
of the atoms are carbon. Calculate the lattice parameter of diamond if the
atomic diameter of carbon is 0.92 nm.

8. What coordination would be expected if r/R < 0.1547?
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14 Sintering

Sintering is a process of bonding small particles without melting them. It is a
simple and cheap way of fabricating parts of metals, ceramics, and some polymers.
The driving force for sintering is the reduction energy resulting from decreased
surface area. Most ceramics are consolidated by sintering. These include clay
products as well as refractory oxides. These ceramics cannot be fabricated by
melting and freezing. Sintering is also used to produce parts of metals that are
difficult to melt. Examples include carbide tools and tungsten for lamp filaments.
Mixed powders are sintered to make composites that are not otherwise possible,
such as friction materials for brakes and clutches. Porous parts for filters or oilless
bearings are made by incomplete sintering. Even some polymeric materials are
sintered. Teflon cannot be melted without decomposing so Teflon parts are made
by sintering powder.

Mechanisms

During sintering adjacent particles adhere and a neck is formed at the area of
contact. Figure 14.1 is a micrograph of such a neck formed between two nickel
spheres. There are two groups of sintering mechanisms, as shown in Figure 14.2.
Mechanisms like vapor and surface diffusion transport material from the surface
to form the neck. These do not change the distance between the centers of particles
so they contribute little to densification. Mechanisms that transport material from
the interface between the particles to form the neck (grain boundary and lattice
diffusion) do cause densification.

German*gives several geometric relations between the particle radius, r; the
neck radius, ρ; the movement of the center of the particle toward the plane of con-
tact, h; the area of contact, A; and the volume of material that must be transported
to form the neck, V (Figure 14.3).

* R. M. German, Sintering Theory and Practice (New York: Wiley, 1996).

144
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14.1. An SEM photograph of the neck
formed between two 33-mm diameter
spheres of nickel after 30 min at 1030 ◦C.
The marker is 5 µm. Reprinted with permis-
sion from Powder Metallurgy Science, 1984,
Metal Powder Industries Federation, 105
College Road East, Princeton, New Jersey,
USA.
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14.2. Growth of a neck by transport from the spherical surface (left) and from the grain boundary
formed between the particles (right).
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14.3. Two cases of sintering: Transport of
material from the spherical surfaces to the
neck (top) does not contribute to densifi-
cation. Transport of material from the inter-
face between the particles to the neck (bot-
tom) does contribute to densification. ρ is
the neck’s radius of curvature, r is the par-
ticle radius, 2h is the decrease of distance
between particle centers, and x is the radius
of contact.
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If there is no shrinkage,

V = πx4/(2r ) (14.1)

h = 0 (14.2)

A = π2x3/r (14.3)

ρ = x2/(2r ). (14.4)

For the shrinkage case,

V = π4/(4r ) (14.5)

h = x2/(2r ) (14.6)

A = π2x3/(2r ) (14.7)

ρ = x2/(4r ). (14.8)

Early stage of sintering

In the early stage of sintering, the rate at which the contact increases is described
by

(x/r )n = Btrm (14.9)

and the shrinkage is described by

(�L/L)n/2 = Bt/(2n−mrm), (14.10)

where x and r are defined in Figure 14.3, L is any linear dimension, and the expo-
nents n and m depend on the mechanism. The term B expresses the temperature
dependence:

B = Bo exp(−Q/RT ). (14.11)

Table 14.1 gives the exponents n and m and expressions for B for various mech-
anisms.

Table 14.1. Exponents for several mechanisms

Mechanism n m B

Viscous flow 2 1 3γ /2η

Plastic deformation 2 1 9πγ bDv/(kT )
Vapor transport 3 2 (3Pγ /ρ2)(π/2)1/2(M/kT )3/2

Volume diffusion 5 3 80Dvγ�/(kT )
Surface diffusion 7 4 56Dsγ�4/3/(kT )
Grain boundary diffusion 6 2 20δDbγ�/(kT )

Note: γ = surface energy, Dv = volume diffusivity, Ds = surface diffusivity, Db = grain bound-
ary diffusivity, η = viscosity, b = Burgers vector, k = Boltzman’s constant, ρ = density, δ = width
of grain boundary diffusion path, P = pressure, M = molecular weight, and � = atomic volume.
Source: From R. M. German, Sintering Theory and Practice (New York: Wiley, 1996). Reprinted
with permission of John Wiley & Sons, Inc.
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Intermediate stage of sintering

The unfilled edges between the particles form continuous pore paths along the
unfilled edges of the particles, as illustrated in Figure 14.4. These paths can be
approximated as cylindrical tubes. The porosity, Vp, is

Vp = π (dp/G)2, (14.12)

14.4. Continuous tubular pore structure.

where dp is the diameter of the cylindrical tubes and G is the grain size.

Final stage of sintering

The cylindrical pores become unstable when their length l ≥ πdp. At this point,
they collapse into more or less spherically shaped pores at the grain corners. These
spheres have diameters larger than the tubes. The collapse starts at about 15%
total porosity and is complete by about 5% total porosity. By assuming that the
particles have the shape of tetrakaidecahedra and the pores are spherical, Coble*

calculated the porosity as

Vp = (π/
√

2)(dp/2 l)3, (14.13)

where l is the length of a side of the tetrakaidecahedron. These pores and those
remaining on the edges, faces, and grain interiors are isolated. Therefore, the rate
of shrinkage slows. Pores at corners may either shrink or grow, depending on the
ratio of surface energies, γSV /γSS , where γSV is the vapor–solid surface energy
and γSS is the solid–solid (grain boundary) surface energy and the number of
grains contacted by the pore (Figure 14.5).

Loss of surface area

Throughout the sintering the surface area is decreasing. Figure 14.6 shows the
decrease of surface area, �S/So, of alumina as it is heated.

Once grain growth has allowed the grain boundaries to leave the pores, the only
mechanism of densification is by lattice diffusion of atoms from grain boundaries

* R. L. Coble, J. Appl. Phys. 32 (1961): 787–92.
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14.5. Whether a corner pore shrinks or
grows depends on the dihedral angle and
the number of grains it borders. Data from
G. C. Kuczynski, in Powder Metallurgy for
High Performance Applications, ed. J. J.
Burke and V. Weiss (Syracuse, NY: Syracuse
Univ. Press, 1972).
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14.6. The loss of surface area as alumina is
heated at 5 ◦C per minute. Data from S. H.
Hillman and R. M. German, J. Mat. Sci. 27
(1992): 2641–8.

or dislocations to the pores. Lattice diffusion also allows large isolated pores
to grow at the expense of smaller pores because the pressure inside the smaller
ones is higher.

Particle-size effect

Of course, the time required for sintering is decreased as the particle size
decreases. Figure 14.7 shows that if surface diffusion is the controlling mech-
anism, the time is inversely proportional to D4.
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14.7. Time needed to reach a neck size of x/D = 0.1 in the sintering of various sizes of ice
particles. The controlling mechanism is surface diffusion. Data from W. D. Kingery, J. Appl.
Phys. 31 (1960): 833–8.

The relation between two temperatures, T1 and T2, required for equal degrees
of sintering of particles of diameters D1 and D2 is

1/T2 = 1/T1 − m(R/Q) ln(D2/D1). (14.14)

Grain growth occurs during the later stages of sintering. Figure 14.8 shows data
for grain growth in alumina at 1550 ◦C.
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14.8. Grain growth in alumina during sintering at 1550 ◦C. Data from R. L. Coble, J. Appl. Phys.
33 (1961): 793.
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Activated sintering

Sometimes the addition of a very small amount of a second material greatly
increases the rate of sintering. Usually this can be attributed to the forma-
tion of a phase with a much lower melting point in which the diffusion is
much faster. Figure 14.9 shows that the sintering rate of tungsten is dra-
stically increased by enough of certain elements to form a four-atom-thick
layer.

14.9. Sintering of tungsten is activated by addition of small amounts of Pd, Ni, Fe, or other
elements. Data are for 1 h at the indicated temperatures. Reprinted with permission from Pow-
der Metallurgy Science, 1984, Metal Powder Industries Federation, 105 College Road East,
Princeton, New Jersey, USA.

Liquid-phase sintering

Mixtures of powders of two materials sinter very rapidly if one of them melts
at the sintering temperature. Initially capillary action causes the liquid phase
to rapidly wet the solid phase, causing an initial contraction. Then as the
solid phase dissolves in the liquid it is rapidly transported to locations that
decrease the pore volume. Carbide tool material is made from a mixture of
cobalt and tungsten carbide powders sintered below the melting point of cobalt.
The volume fraction liquid must be limited so capillarity can retain the shape
during sintering.
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Hot isostatic pressing

If pressure is applied at the sintering temperature, plastic deformation by creep
increases the rate of sintering. This is referred to by the term HIPping. It is used
on castings as well as powder compacts.

NOTE OF INTEREST

Snowballs are the most common example of sintering. Unless it is very cold, ice
will sinter rapidly enough to allow snowballs to be made.
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PROBLEMS

1. Stainless steel powder with a mean particle diameter of 50 mm has been
compacted to a green density of 58% and sintered in pure H2. The result-
ing shrinkage measurements are given below. Published diffusion data for
this stainless steel show that the activation energies are 225 kJ/mol for sur-
face diffusion, 200 kJ/mol for grain boundary diffusion, and 290 kJ/mol for
volume diffusion. Use the data below to determine the mechanism.

Temperature Time Shrinkage Temperature Time Shrinkage
◦C h % ◦C h %

1050 2.0 0.62 1200 1.5 1.63
1100 2.0 0.91 1200 2.0 1.82
1150 2.0 1.31 1250 2.0 2.49
1200 0.5 1.05 1300 2.0 3.33
1200 1.0 1.38

2. A. What is the surface area of 1 g of copper powder with a 50-µm diameter?
B. What is the total energy of the surface? (γSV = 1700 erg/cm2)

3. The density of a powder after compaction is 85% and after sintering 99%.
What diameter die and punch should be used to make a cylinder 25 mm in
diameter and 22 mm tall?

4. The time for a given degree of sintering is proportional to Dm . Determine
the exponent, m, for ice from the data in Figure 14.7.
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14.10. Neck growth in polymethylmethacrylate at various temperatures. Data from
N. Rosenzweig and M. Narkis, Polymer Sci. Eng. 21 (1981): 1167–70.

5. Data for the neck growth of polymethyl methacrylate (PMMA) during sin-
tering is plotted in Figure 14.10.
A. Determine the activation energy.
B. Determine the value of the exponent, n, in the equation X/D = Ctn .
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15 Amorphous Materials

Glass transition

In the amorphous state there is no long-range order and there is no symmetry.
There is, however, a great deal of short-range order. If crystallization is prevented
during cooling, a glass will form with short-range order inherited from the liquid.
The critical cooling rate to prevent crystallization varies greatly from one material
to another. See Table 15.1. Glasses form in strongly bonded silicates unless the
cooling rate is extremely slow. On the other hand, extremely rapid cooling is
required to prevent crystallization of metals. Indeed, glassy structures have been
produced only in metallic alloys with complex compositions. These usually have
compositions that correspond to deep eutectics.

Table 15.1. Glass transition temperatures and bonding of several glassy solids

Glass Type of bond Tg, K

SiO2 Covalent 1430
As2Se3 Covalent 470
Si Covalent ≈ 800
Pd0.4Ni0.4P0.2 Metallic 580
FeO0.82B0.18 Metallic 410
Au0.8Si0.2 Metallic 290
BeF2 Ionic 520
Polystyrene Covalent, van der Waals 370
Se Covalent, van der Waals 310
Isopentane Covalent, van der Waals 65
H2O Covalent, hydrogen 140
C2H5OH Covalent, hydrogen 90

Source: From R. Zallen, Physics of Amorphous Solids (New York: Wiley, 1983), p. 6. Reprinted
with permission of John Wiley & Sons, Inc.

The structure of a glass is similar to that of the liquid from which it formed.
There is no abrupt change of properties. However, the rate of change of prop-
erties with temperature is much less than in the liquid state. For example, con-
sider the volume of a given mass. With crystallization, there is an abrupt volume

153
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change, �V (usually contraction), as shown in Figure 15.1. On the other hand,
if crystallization is prevented, the rate of change of volume with temperature,
dV/dT , decreases at the glass transition temperature but there is no abrupt vol-
ume change, �V .

crystal

glass

liquid

melting 
point

glass
transition
temperature

Temperature

V
ol

um
e

free volume

15.1. Schematic representation of the
change of volume with temperature for
crystallization and glass transition.

The glassy state is usually less dense than the crystalline state. The difference
between the volumes is called the free volume:

Vfree = (Vglass − Vcryst)/Vcryst. (15.1)

Glass transition in polymers

As the temperature of an amorphous polymer is lowered, there is a transition
from rubberlike material with a low Young’s modulus to a stiff glass with a high
modulus. For example, the Young’s modulus of PVC (measured at 1 s) increases
from 0.15 to 1.2 GPa as the temperature is decreased from 90 to 75 ◦C. The glass
transition temperature is in this range. The exact temperature depends on the rate
of cooling.

Glass transition temperatures of polymers also depend on their structure. They
are higher in polymers with inflexible main chain groups and where there are
bulky, inflexible side groups. However, long (CH2)n side groups lower the glass
transition temperature. The addition of plasticizers, which are small molecules,
also lowers the glass transition temperature. The effects of di(ethylhexyl)phthalate
on the glass transition temperature of PVC are shown in Figure 15.2.

Molecular length

The length of a linear polymer molecule may be described by its contour length,
which equals n�, where n is the number of units of length �. The end-to-end
distance, r , of a convoluted polymer molecule is much shorter. It is extremely
variable, both with respect to time and to other molecules of the same con-
tour length. To calculate the most probable root-mean-square end-to-end length,
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15.2. The glass transition temperature of
PVC is lowered by di(ethylhexyl)phthalate.

< r2 >1/2, one must assume something about the freedom of rotation at the joints.
One extreme assumption is that the molecule is a freely joined chain. In this case

< r2
f >1/2= n1/2�. (15.2)

However, there is not complete freedom of rotation at each joint of a linear
polymer. Rather, the rotation possible at each joint is governed by the valence
angle, θ . With this restriction

< r2
f >1/2= n1/2�[(1 − cos θ )/(1 + cos θ )]1/2. (15.3)

For C–C backbones of polyethylene, θ ≈ 109.5◦, and cos θ = −1/3. Substituting
into Equation (15.3),

< r2
f a >1/2= √

2n1/2�. (15.4)

If there is steric hindrance from side groups, the mean-square length is

< r2
o >1/2= n1/2�σ [(1 − cos θ )/(1 + cos θ )]1/2, (15.5)

where σ is the steric parameter that describes the steric hinderance.
The characteristic ratio, C∞, is the square of the ratio of the actual root-mean-

square length to the n1/2�:

C∞=< r2
o > /n�2. (15.6)

The characteristic ratio takes into account both the steric hinderance and valence
angle terms. It is a good indicator of the stiffness of the chain. Typical values
of σ and C∞ are listed in Table 15.2. It is clear that the stiffness decreases with
increasing temperature and that large side groups increase the stiffness.

Hard sphere model

The degree of short-range order in an amorphous material can be characterized
by a hard sphere model if the basic structure of an amorphous material is approx-
imated by spheres. The density of packing of atoms around a reference atom is
described by the number of atom centers per volume that lie in a spherical shell
of thickness, dr , and radius about the reference atom. In a hard sphere model, the
number, n, of neighboring spheres with centers between r and dr is measured as
a function of r .
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Table 15.2. Typical values of steric hindrance and the characteristic ratio

Polymer Temperature, ◦C σ C∞

Polyethylene 140 1.8 6.8
Polypropylene 140 1.6 5.2
PVC 25 1.8 6.7
Polystyrene 25 2.3 10.8
Polystyrene 70 2.1 9.2
PMMA 25 2.1 8.6
PMMA 72 1.8 6.6

Source: From R. J. Young and P. A. Lovell, Introduction to Polymers, 2nd ed. (London: Chapman
& Hall, 1991), p. 160.

For example, consider the two-dimensional array in Figure 15.3. For a two-
dimensional material, the function is

g(r ) = 1/(2πr )(dn/dr ). (15.7)

For three dimensions, the appropriate function is

g(r ) = 1/(4πr2)(dn/dr ). (15.8)

r dr

reference 
atom

A

B

C

D

15.3. Two-dimensional distribution of hard
spheres. The function g(r ) is the number of
spheres whose centers are at a distance
between r and r + dr from the reference
sphere. In this case the centers of spheres
A, B, C, and D lie between r and r + dr from
sphere 1 so g(r ) = 4 at the distance r .

In the hard sphere model, atoms may not overlap so g(r ) = 0 for r ≤ D, where
D is the atom diameter. For completely random packing, g(r ) is constant for
r ≥ D. In a crystalline material, g(r ) = 0 except at discrete interatomic distances.
Figure 15.4 shows a schematic plot of g(r ) versus r for random packing, a crystal,

0 D 2D
distance from reference atom, r

g(
r)

0 D 2D
distance from reference atom, r

g(
r)

0 D 2D
distance from reference atom, r

g(
r)

15.4. Schematic plot of g(r ) as a function of r for a random material, a bcc crystal, and a glass
with short-range crystal.
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and an amorphous material. The value of g(r ) for the amorphous material is
intermediate. There is some order at short range, but this disappears for r > 3D.

Voronoi cells

A simulation of the three-dimensional structure of an amorphous material can be
made by establishing a random set of atom or molecule centers such that none
overlap. Planes that bisect straight lines between near neighbors form Voronoi
polyhedra or Wigner–Seitz cells. A two-dimensional construction is illustrated
in Figure 15.5. This type of construction has been used to calculate the num-
ber of faces of three-dimensional polyhedra and the number of edges per face,
using models of solid, liquid, and gaseous states. Finney calculated that, for
a random solid, the cells have an average of 14.26 faces and the faces have
an average of 5.158 edges. Similar calculations for a gas yield slightly higher
numbers.

15.5. Construction of two-dimensional Vor-
onoi cells by bisecting lines that connect
near neighbors.

Silicate glasses

Zachariasen and co-workers* formulated four requirements for formation of glass
from oxides. The requirements are:

1. Oxygen atoms are linked to no more than two anions.
2. The coordination number of the glass-forming anion is small.
3. The polyhedra formed by oxygens share corners, not edges or faces.
4. Polyhedra are linked in a three-dimensional network.

Only oxides A2O3, AO2, and A2O5 satisfy these requirements. Triangular
coordination with A2O3 and tetrahedral coordination with AO2 and A2O5 are
possible.

The basic structural units of silicate glasses are tetrahedra with Si+4 in the
center bonded covalently to O−2 at each corner. In pure silica all corner oxygen
ions are shared by two tetrahedra (Figure 15.6). The result is a covalently bonded
glass with a very high viscosity. As other oxides are added, not all of the oxygen
ions share two corners. This lowers the viscosity.

* W. H. Zachariasen, J. Amer. Chem. Soc. 84 (1932): 3841.
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15.6. A silica glass is composed of tetra-
hedra with four O−2 surrounding a Si+4 at
each center. Each O−2 is shared by two
tetrahedra.

Typical glasses compositions are quite complex. A soda–lime glass may contain
72% SiO2, 14% Na2O, 12% CaO, and 3% MgO. The Na+, Ca+2, and Mg+2 bond
ionically to some of the corner O−2 (Figure 15.7).

Na+

Ca++

Na+

15.7. Commercial glasses contain alkali and
alkaline earth ions, which substitute ionic
bonds for the covalent bonds between tetra-
hedra.

Chemical composition

The chemical components of silicate glasses can be divided into three groups:

1. Glass formers include SiO2 and B2O3. In a pure B2O3 glass the boron ions
are in the center of a circle surrounded by three oxygen ions, each of which
is shared with another triangle.

2. Modifiers such as Na2O, K2O, CaO, and MgO ionically bond with corners
of the silica tetrahedra thus causing “nonbridging” oxygen ions. They tend
to decrease the overall bond strength and thereby lower the viscosity.

3. Intermediates such as Al2O3 and PbO do not form glasses themselves but
may join in the silica network. When Al2O3 is added to glass, some of the
Al+3 ions act as intermediates, occupying centers of the tetrahedra, and some
act as modifiers. Finally, some oxides such as B2O3 are glass formers. Pure
B2O3 can form a glass, with triangles as the basic structural unit with three
O−2 surrounding and covalently bonded to B+3. This is possible because of
the very small size of the B+3 ion.

Bridging versus nonbridging oxygen ions

In a silicate glass, each monovalent cation (Na+ or K+) contributes one unbonded
O corner and each divalent cation (Ca+2 or Mg+2) contributes two. The properties
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change as the number of unbonded corners increases. The number of unbonded
corners per tetrahedron is 2 N/S, where N is the mole fraction of modifiers (each
contributing two oxygens) and S is the mole fraction of SiO2. The number of
bridging oxygen ions per tetrahedron, Y , is

Y = 4 − 2N/S. (15.9)

Substituting N = 1 − S, Y can be expressed as

Y = 6 − 2/S. (15.10)

EXAMPLE 15.1. A soda–lime glass contains 73% SiO2, 13% Na2O, 11% CaO,
and 3% CaO. Find Y and the O/Si ratio.

SOLUTION: There are 73/44 moles of SiO2, 13/62 moles of Na2O, 11/56 moles
of CaO, and 3/24 moles of MgO so Y = (13/62 + 11/56 + 3/24)/(73/44) =
0.64 unbonded corners per tetrahedron. The ratio of O/Si is 4 − 0.64 = 3.36.

Glass viscosity

Figure 15.8 shows the temperature dependence of several glass compositions.
Several temperatures are identified by viscosity: the working temperature of a
glass by 103 Pa · s, the softening point by 4 × 106 Pa · s, the anneal point by 2.5 ×
1012 Pa · s, and the strain point by 4 × 1013 Pa · s. Glass objects are usually shaped
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15.8. The temperature dependence of viscosity for several glasses. The compositions of the
glasses are: A, SiO2 + 0.12% H2O; B, alumino–silicate glass 64% SiO2, 4.5% B2O3, 10.4%
Al2 O3, 8.9% CaO, 10.2% MgO, 1.3% Na2O, 0.7% K2O; C, borosilicate glass (Pyrex) 81% SiO2,

13% B2O3, 4% Na2 O, 2% Al2 O3; D, soda–lime glass 70% SiO2, 21% Na2O, 9% CaO; E, alkali–
lead glass, 77% SiO2, 9% Na2O, 1% CaO, 5% K2O, 8% PbO; F, B2O3.
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at or near the working temperature. The weight of glass objects will cause appre-
ciable creep above the softening point. Stress relief occurs at the annealing point in
15 min. Figure 15.8 shows that the temperature dependence of viscosity is not well
described by an Arrhenius equation. The Vogel–Fulcher–Tammann equation,

η = K exp[E/(T − To)], (15.11)

describes the temperature dependence better.
The viscosities of glasses increase with the fraction of bridging oxygens.

Figure 15.9 shows the increase of η with Y .
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15.9. The viscosity of silicate glasses drops with decreasing O/Si ratios. The data from H. J. L.
Trap and J. M. Stevels, Glastech Ber. 6 (1959): V 131, are for equal molar additions of Na2O, K2O,
CaO, SrO, and BaO.

Thermal shock

Glasses, like most ceramics, are susceptible to fracturing under stresses caused by
temperature gradients. Internal stresses in a material arise when there are different
temperature changes in adjacent regions. In the absence of stress, a temperature
change causes a fractional dimensional change,�L/L = ε = α�T . Under stress,
the total strain is

εx = α�T + (1/E)[σx − ν(σy + σz)]. (15.12)

When two regions, A and B, are in intimate contact they must undergo the same
strains (εxA = εxB). If there is a temperature difference, �T = TA − TB, between
the two regions,

α�T + (1/E)[σxA − σxB + ν(σyA + σzA − σyB − σzB)] = 0. (15.13)
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EXAMPLE 15.2. The temperature of the inside wall of a tube is 200 ◦C and
the outside wall temperature is 40 ◦C. Calculate the stresses at the outside of
the wall if the tube is made from a glass having a coefficient of thermal expan-
sion of α = 8 × 10−6/◦C, an elastic modulus of 60 GPa, and a Poisson’s ratio
of 0.3.

SOLUTION: Let x, y, and z be the axial, hoop, and radial directions. The stress
normal to the tube wall is σz = 0 and symmetry requires that σy = σx . Let the
reference position be the mid-wall where T = 120 ◦C. �T at the outside is
40 − 120 = −80 ◦C. The strains εx and εy must be zero relative to the mid-wall.
Substituting into Hooke’s law, 0 = α�T + (1/E)(σx + ν(σy + σz)), α�T +
(1 − ν) σx/E = 0, so σx = αE�T/(1 − ν). σx = (8 × 10−6/◦C)(80 ◦C)
(60 GPa)/0.7 = 54 MPa.

In general, the stresses reached will be proportional to α, E/(1 − ν), and �T .
The parameter,

R1 = σ f (1 − ν)/(Eα), (15.14)

describes the relative susceptibility to thermal shock. A different thermal shock
parameter,

R2 = K I c/(Eα), (15.15)

is based on the fracture toughness. If the length of preexisting cracks is constant,
these are equivalent because σ f is proportional to the fracture toughness, K I C .
Thermal conductivity has some influence on susceptibility to thermal shock. A
high thermal conductivity reduces the �T term.

Because E does not differ greatly among the various grades of glass, differences
of thermal shock resistance depend primarily on differences in thermal expansion.

Thermal expansion

Additions of alkali and alkaline earth elements are used in glasses to lower the
viscosity at temperatures low enough for the glass to be economically formed
into useful shapes. However, these additions also raise the coefficient of thermal
expansion. Figure 15.10 shows the relation between the coefficient of thermal
expansion and the temperature at which the viscosity is 107 Pa · s, which is con-
sidered a temperature for forming.

Vycor

Vycor was developed by Corning Incorporated to provide a way around the prob-
lem of the difficulty in forming glasses of low thermal conductivity. The vis-
cosity of the starting composition (62.7% SiO2, 26.9% B2O3, 6.6% Na2O, and
3.5% Al2O3) is low enough for the glass to be shaped at a reasonable temperature.
After shaping, the glass is heat treated between 500 and 750 ◦C. A spinodal
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15.10. The relation between the coefficient of thermal expansion and the temperature at which
the viscosity is 103 Pa · s.

reaction occurs during the heat treatment that separates the glass into two phases,
one containing 96% SiO2 and the other with most of the other components. The
impurity-rich phase is removed by acid etching, leaving a silica-rich glass with
about 28% porosity. This can either be used as a filter or reheated to allow sintering
to produce a fully dense product.

Devitrification

If a glass is held for a long period at an elevated temperature it may start to crystal-
lize or devitrify. Devitrification of fused quartz (silica glass) to cristabolite is slow.
Nucleation is usually at a free surface and is often stimulated by contamination
from alkali ions such as sodium. The rate of growth of cristabolite is increased
by oxygen and water vapor. With surface contamination, devitrification of fused
quartz may occur at temperatures as low as 1000 ◦C. However, if the surface is
clean it rarely occurs below 1150 ◦C.

Glasses may intentionally be made to crystallize. David Stookey at Corning
Incorporated discovered a way of producing fine-grained ceramics by crystal-
lizing a glass. This process has been commercialized as Pyroceram and Corn-
ingWare. It involves a lithia–alumina silicate with TiO2 added as a nucleating
agent. Processing involves forming objects to its final shape at an elevated tem-
perature, heat treating at a lower temperature to allow nucleation of crystals, and
then reheating to a higher temperature for growth. This allows glass-forming
processes to be used to obtain the final shapes and produces a final product
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that is resistant to thermal shock because of a very low thermal expansion
coefficient.

Delayed fracture

Glass that has been under stress for a period of time may fracture suddenly.
Such delayed fracture is not common in metals (except in cases of hydrogen
embrittlement of steels) but sometimes does occur in polymers. It is often called
static fatigue. The phenomenon is sensitive to temperature and prior abrasion of
the surface. Most important, it is very sensitive to environment. Cracking is much
more rapid with exposure to water than if the glass is kept dry (Figure 15.11)
because water breaks the Si–O–Si bonds by the reaction −Si–O–Si− + H2O →
Si–OH + HO–Si.
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15.11. The effect of environment on crack
velocity in a silicate glass under load. Re-
printed with permission of ASM Internatio-
nal® from Engineering Materials Handbook,
vol. 4, Ceramics and Glasses (Materials Park,
OH: ASM, 1991), p. 658. All rights reserved.
www.asminternational.org.

Other inorganic glasses

Borax, B2O3, forms a glass in which the basic structural elements are triangles
with boron at the center surrounded and covalently bonded to three oxygen atoms.
Each of the oxygen atoms is shared by three triangles, as shown in Figure 15.12.

oxygen

boron

15.12. Borax glass. Each boron atom is
covalently bonded to three oxygen atoms,
which form a triangle around the boron
atom. Each oxygen atom is shared by two
triangles.

Chalcogenide* glasses consist of long Se (or Te) chains bonded with Ge or
As. In these the basic structural units are chains that are cross-linked by As
or Ge. The structure of molten pure selenium and pure tellurium consists of

* Chalcogens are O, S, Se, and Te.



P1: JzG
0521867053c15 CUFX036/Hosford 0 521 86705 3 printer: Sheridan November 2, 2006 21:52

164 MATERIALS SCIENCE: AN INTERMEDIATE TEXT

long chain molecules. These form glasses if cooled rapidly. However, they will
crystallize if heated between the glass transformation temperature and the melting
point. Small amounts of arsenic or germanium will form a network and prevent
crystallization. Figure 15.13 shows the structure schematically. Such glasses are
useful in xerography.

Se
As
Ge

15.13. Schematic of a chalcogenide glass.

Metal glasses

Crystallization can be prevented in certain alloys if they are cooled rapidly enough.
In these cases metallic glasses will form. Compositions of glass-forming alloys
have several common features:

1. The equilibrium diagrams consist of two or more phases. Redistribution of
the elements by diffusion is necessary for crystallization.

2. The compositions correspond to deep wells in the equilibrium diagram so
the liquid phase is stable at low temperatures where diffusion is slow. See
Figure 15.14.

15.14. Schematic phase diagram. Compo-
sition a is more likely to form a glass
than composition b, because of the much
lower temperature at which crystallization
can start.

3. The compositions usually have large amounts of small metalloids like B, C,
P, Be, and Si.
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Table 15.3. Properties of Vitreloy 1

Density 5.9 mg/m3

Young’s modulus 95 GPa
Shear modulus 35 GPa
YS 1.9 GPa
KI C 55 MPa

√
m

Tg 625 K
Endurance limit/UTS ≈ 0.03

Source: From R. Zallen, Physics of Amorphous Solids (New York:
Wiley, 1983), p. 6, table 1.1.

The formation of metal glasses by rapid cooling was first reported by Paul
Duwez and co-workers in the 1960s.* They achieved cooling rates of thousands
of degrees per second by shooting a fine stream of liquid metal onto a water-
cooled copper drum. With the early compositions, cooling rates of about 105 K/s
were necessary to prevent crystallization. This limited alloys to thin ribbons or
wires.

More recently magnesium-base, iron-base, and zirconium–titanium-base alloys
have been developed that do not require such rapid cooling. In 1992, W. L.
Johnson and co-workers developed the first commercial alloy available in bulk
form: Vitreloy 1, which contains 41.2 a/o Zr, 13.8 a/o Ti, 12.5 a/o Cu, 10 a/o Ni,
and 22.5 a/o Be. The critical cooling rate for this alloy is about 1 K/s so glassy
parts can be made with dimensions of several centimeters. Its properties are given
in Table 15.3.

Metal glasses have very high yield strengths. This permits very high elastic
strains and therefore storage of a large amount of elastic energy. The high ratio
of yield strength to Young’s modulus permits elastic strains of 1.9/95 = 2%. The
tensile stress–strain curves of glassy metals show almost no work hardening.
Tensile tests are characterized by serrated stress–strain curves resulting from
sudden bursts of deformation localized in narrow shear bands with abrupt load
drops. The net effect is that the total plastic strain is quite limited. The localization
can be explained partially by the lack of work hardening. The formation of free
volume and adiabatic heating have been offered as explanations. The fracture
toughness is very high but the fatigue strength is very low. The ratio of endurance
limit to yield strength of 0.03 is very much lower than the ratios of 0.3 to 0.5
typical of crystalline metals.

There are two principal uses for glassy metals. Because metal glasses have no
barriers for domain wall movement they are excellent soft magnetic materials.
Thin ribbons have been used for transformer cores since the 1960s. Metallic
glasses have very good corrosion resistance and very low damping.

The other major application is based on the large amount of elastic energy
that can be stored. The very high yield strengths typical of metallic glasses per-
mit very high elastic strains and therefore storage of a large amount of elastic

* W. Klement, R. H. Willens, and P. Duwez, Nature 187 (1960): 869.



P1: JzG
0521867053c15 CUFX036/Hosford 0 521 86705 3 printer: Sheridan November 2, 2006 21:52

166 MATERIALS SCIENCE: AN INTERMEDIATE TEXT

energy. Commercial use has been made of metallic glass in the heads of golf
clubs (Figure 15.15). The great capacity to store elastic energy has permitted
longer drives.

15.15. Golf club heads of Vitreloy 1. Driver at the left and iron at the right. Courtesy of Otis
Buchanan, Liquidmetal Technologies, Lake Forest, CA.

NOTE OF INTEREST

There is a popular myth that the panes of stained glass windows in the very old
European cathedrals are usually thicker at the bottom than at the top because the
glass has crept over the centuries under its self-weight. If this were true, there
would be large air gaps at the tops of the panes. The true explanation is that the
glass varied in thickness when it was installed. Until the nineteenth century, sheet
glass was made by spinning a hot viscous glob on a rod. Centrifugal force caused
the glob to form into a disc, as shown in Figure 15.16. The disc was thicker near
the center than at the edges, so panes cut from it had a thickness variation. A good
artisan would naturally install a pane with the thicker section at the bottom.

15.16. Before 1800, plate glass was made
by spinning a glob of hot glass on the end
of a rod, allowing centrifugal force to form a
disc about 1.2 m in diameter. Panes were cut
from the disc. Courtesy of Broadfield House
Glass Museum, Kingsford, UK.
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PROBLEMS

1. Describe the shape of the Voroni cell where the centers of cells are arranged
in a body-centered cubic arrangement. How many faces does it have?

2. What fraction of the oxygen ions are unbonded in a class that has a compo-
sition of 70% SiO2, 15% Na2O, 11% CaO, and 4% MgO?

3. What is the root-mean-square length of a molecule of polypropylene of
MW = 5000? Compare this to the contour length of the molecule.

4. Plot g(r ) versus r for a bcc crystal out to 4 r .

5. Plot g(r ) versus r for a two-dimensional crystal with hcp packing.

6. Predict the viscosities of the starting compositions of Vycor glass
(62.7% SiO2, 26.9% B2O3, 6.6% Na2O, and 3.5% Al2O3) at 700 ◦C.

7. Calculate the maximum amount of elastic energy that can be stored per kg
of:
A. High strength steel (Y S = 1.0 GPa, E = 207 GPa, ρ = 7.87 kg/m3).
B. Vitreloy 1 (properties given in Table 15.3).

8. Assume that if Figure 15.8 is extrapolated to 200 ◦C, the viscosity of the
lead–alkali glass is 1018 Pa · s. Using this viscosity, calculate the strain that
would occur in five centuries under a stress of 0.007 Pa. Assume that the
stress is caused by the weight of a panel of glass 1/3 m high. Note that
εY = η′σ , where η′ = √

3η.
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16 Liquid Crystals

The structures of liquid crystals are intermediate between the amorphous and
crystalline states. They have some short-range orientational order. Some also
have positional order. Thousands of organic compounds exhibit liquid crystal
structures. Most have molecules that are very long and thin, but some have
molecules that are flat and pancake shaped. Many compounds may exist in more
than one liquid crystalline state. Transitions from one state to another may be ther-
motropic (caused by temperature change) or lyotropic (caused by change of solute
concentration).

Types of liquid crystals

Liquid crystals may be classified as nematic, cholesteric, smectic, or columnar.
Nematic liquid crystals are characterized only by orientational order. Molecules
tend to be aligned with a director, as illustrated in Figure 16.1.

θ

director

16.1. Nematic order in which there is statis-
tical alignment with a director.

In cholesteric structures there is also alignment, but the direction of alignment
rotates on a screw axis normal to the direction of alignment (Figure 16.2). This
spiraling is responsible for unique optical properties.

Smectic liquid crystals have both positional and orientational order. The
molecules are grouped into layers. In smectic A structures, the molecules tend

168
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pitch

16.2. Order in a cholesteric liquid crystal.
The alignment direction spirals about a
screw axis normal to the alignment direction.

to be oriented normal to the layers, whereas in smectic C structures the direction
of alignment is tilted away from the normal to the layers. These are shown in
Figure 16.3.

smectic A smectic C

n n

16.3. Alignment in smectic A and B.

Columnar liquid crystals consist of flat, disc-shaped molecules aligned in
columns. These columns may be arranged in a hexagonal pattern as illustrated in
Figure 16.4.

16.4. In columnar liquid crystals flat mole-
cules are aligned in columns.

Orientational order parameter

The degree of orientational order can be described in statistical terms by the
angular deviations of molecular orientations, θ , from the director. The parameter

s = <3 cos2 θ − 1>/2 (16.1)

is based on the average value of (3 cos2 θ − 1)/2 rather than on the average
value of θ . The reason for using this parameter is that it better represents the
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statistical distribution of possible orientations. If all orientations were at θ = 0 to
the director, s = 1, and if all of the orientations were at 90◦, s = −1/2. The value
of s for randomly oriented molecules can be found by considering a hemisphere
of all possible orientations (Figure 16.5). The fraction of possible orientations
between angles, θ , and θ + dθ , to a reference direction is sin θdθ/(π/2). The
average value of the quantity s = (3 cos2 θ − 1)/2 for randomly oriented material
is

s = (1/2)(1/2π )
∫ π/2

(3 cos2 θ − 1) sin θdθ = 0. (16.2)

dθsinθ

1

θ

16.5. The fraction of the area of a hemi-
sphere between θ and θ + dθ equals
sin θdθ/ (π/2).

Disclinations

Liquid crystals may have line defects called disclinations. The name comes from
discontinuity and inclination. The director rotates about a line normal to the
disclination. The strength of a disclination, S, is defined by

S = �/2π, (16.3)

where � is the angular rotation of the director in a circuit about the disclination. If
the direction of rotation is the same as the direction of the circuit, S is positive. If
the direction of rotation is the opposite of the direction of the circuit, S is negative.
Figure 16.6 illustrates three possibilities. The configurations in Figure 16.6 are
possible in nematic liquid crystals. It should be noted that they are similar to
whorls that identify fingerprints. The director is in a plane that is perpendicular to
the disclination. Because the energy of a disclination is proportional to S2, only
disclinations with low values of S are common.

S = 1/2 S = 1

S = -1/2

16.6. Several examples of disclinations viewed parallel to the line of the disclination.
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Lyotropic liquid crystals

Lyotropic liquid crystals form in solutions of polar molecules such as soap in
water. One end of the molecule is hydrophilic and the other end is hydrophobic.
The molecules are aligned such that the hydrophilic end is exposed to water
and the hydrophobic end is shielded from the water. There are several forms.
The molecules may be arranged in lamellae or spherical units (Figure 16.7). The
spherical units tend to be arranged in body-centered cubic arrays. The lamellae
may be flat or rolled up to form columns that are arranged in hexagonal patterns.

water

water

water

water

16.7. Arrangements of polar molecules in lyotropic liquid crystals. Open circles indicate
hydrophilic ends and x’s indicate hydrophobic ends.

Temperature and concentration effects

Liquid crystals are stable only over limited temperature ranges. The degree of
orientation decreases with increasing temperature. There is a critical temperature,
Tc, at which s drops to zero, as shown in Figure 16.8. This is analogous to Curie
temperature, Tc in ferromagnetic materials, at which the material ceases to be
ferromagnetic.

Temperature

O
rd

er
 p

ar
am

et
er

, s
 

1

0
Tc

16.8. The order parameter,s, decreases with
increasing temperatures, abruptly dropping
to zero at the critical temperature for a
nematic.
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The order parameter is both temperature and pressure sensitive. The parameter,
s, increases with pressure and decreases with temperature. Figure 16.9 shows that
for the same degree of order,

d ln T/d ln V = −4. (16.4)

5.37 5.39 5.41
6

6.02

6.04

60.6

6.08
218 220 222 224

410

420

430

T
(K

)

Ln
(T

)

In(V)

Vol (cc/mole)

s = 0.55 s = 0.45 s = 0.35

16.9. The effect of temperature and volume
on the order parameter,s, in polyacrylic acid.
The order increases with pressure and de-
creases with temperature. The straight lines
indicate the validity of Equation 16.4. Data
from J. R. McColl and C. S. Shih, Phys. Rev.
Letters 29 (1972): 85.

Phase changes

One compound may exist in more than one liquid crystal form. The structure of
cholestryl myristate changes from solid to smectic A at 71 ◦C, to chiral nematic at
79 ◦C, and finally to an isotropic liquid at 85 ◦C. Figure 16.10 shows the transitions
in p-methoxybenzoic acid. Note that the order increases with increased pressure
and lower temperature. Liquid crystal phases are more densely packed than the

0
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crystal

16.10. Phase diagram for p-methoxybenzoic acid. Data from S. Chandrasekhar, S. Ramase-
shan, A. S. Reshamwala, B. K. Sadashiva, R. Sashudahar, and V. Surendranath, Proc. Internat.
Liquid Crystal Conf. (1973): 117.
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isotropic liquid, though volume changes between liquid phases are small. For the
nematic to isotropic liquid state, �V is 2 to 10% of that for crystal to isotropic
liquid. The latent heats of transition between liquid crystal phases are also very
small. For the nematic to isotropic liquid state, �H is between 1 and 5% of that
for crystal to isotropic liquid.

Optical response

Liquid crystalline materials may appear cloudy. This is because the index of
refraction of polarized light depends on the angle between the angle of polar-
ization and the director. This is represented schematically in Figure 16.11. In a
nematic material, there will normally be regions in which the director is oriented
differently.

In
de

x 
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  r
ef
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n 

n 

iso

Temperature

liquid crystal normal liquid

16.11. The index of refraction depends on
the angle between the director and the polar-
ization.

In nematic single crystals, the molecules have some degree of polarization.
The charge is likely to be positive at one end and negative at the other. Because
of this an electric field will cause the director to rotate into alignment. Rotation
of the direction of polarization is the basis of liquid crystal displays. They can be
made to be opaque or transparent to polarized light.

Temperature changes also can produce color changes in chloresteric liquid
crystals, as illustrated in Figure 16.12.
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16.12. Temperature dependence of wave-
length scattering for 20% chlosteryl acetate
and 80% chlosteryl nonanate. Data from J. L.
Fergason, N. N. Goldberg, and R. J. Nadalin,
Mol. Cryst. 1 (1966): 309.
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Liquid crystal displays

The most important applications of liquid crystals are as displays on all sorts of
electronic devices. The principle of these displays is illustrated in Figure 16.13.
A nematic liquid crystal is placed between two polarized plates of a polymer.
Previous rubbing of the inner surfaces of these plates causes the molecules to
align with the surfaces. The direction of alignment on the top plate differs by 90◦

from that of the bottom plate. Polarization of the plates prevents light from being
transmitted. If a field is applied to the plates, the molecules tend to align with the
field, allowing light to pass.

polarized plates

light source

no
voltage

polarized plates

light source

small 
voltage

16.13. Schematic drawing of a liquid crystal display.

NOTE OF INTEREST

Freidrich Reinirzer first reported liquid crystals. He found that a crystalline choles-
terol ester first melted at 145.5 ◦C into a cloudy liquid that subsequently melted
into a clear liquid at 178.5 ◦C. The term liquid crystal was first coined in 1890 by
Lehman.
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PROBLEMS

1. Determine the value of S for the disclinations in Figure 16.14.

16.14. Two disclinations.

2. Sketch a disclination of strength S = −3/2.

3. By what fraction would the specific volume of polyacrylic acid have to
change keep the same degree of order, s, as a change of temperature from
140 to 145 ◦C?

4. Determine the value of s if all of the molecules were oriented at 30◦ to the
director.
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17 Molecular Morphology

The shape of molecules and the types of bonding between them have significant
effects on properties of materials. Examples include the wide variety of molecular
shapes of silicates and the planar structures of talc, mica, clay, molybdenum
disulfide, and graphite.

Silicates

The basic structural units of silicates are tetrahedra with a silicon atom at the
center surrounded by four oxygen atoms, as sketched in Figure 17.1.

O

Si

-2

+4
17.1. The basic tetrahedron of silicates has
a Si+4 ion at the center surrounded by four
O−2 ions on the corners.

The molecular structure depends on the oxygen-to-silicon ratio. If O/Si = 2,
each oxygen is covalently bonded to two tetrahedra so a three-dimensional network
is formed. At the other extreme, if the O/Si = 4, none of the four oxygen atoms
is shared by another tetrahedra, and isolated molecules are formed. Figure 17.2
shows many of the possibilities.

For O/Si = 4:1 or 3.5:1, isolated molecules are formed. An example is fos-
terite, Mg2SiO4. For O/Si = 3:1 or 2.75:1, linear chains are formed. Asbestos
is an example. The linear molecules are bonded to one another by weak ionic
bonds. The result is a mineral that can be torn into fibers. For O/Si = 2.5:1, sheets
are formed. One example is talc, [Mg3Si4O10(OH)2]2. Its lubricity is due to the
ease with which the covalently bonded sheets can slide over one another. There
are several forms of mica. In muscovite, [KAl3Si3O10(OH)2]2, and in phlogolite,
[KAlMg3Si3O10(OH)2]2, one of the aluminum atoms is in the center of a tetra-
hedron, and the others act as modifiers. The double sheets are weakly bonded to

176
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SiO4−4

Si2O7−6

SiO3−2

4:1

3.5:1

3:1

 island

single chain

Si4O11−4 2.75:1

double chain

Si2O5−2 2.5:1

sheet

 island

SiO2 three-dimensional
structure

2:1

17.2. Silicate structures depend on the O/Si ratio.

one another (Figure 17.3). The very weak van der Waals bonding between these
molecular sheets explains why mica cleaves so easily.

Clays are still another example of sheet structures. Kaolinite has the composi-
tion [Al2Si2O5(OH)4]. It consists of a Si2O−2

5 sheet bonded to an Al2(OH)6 sheet
with two thirds of the (OH)− ions on one side of the Al2(OH)6 sheet replaced by
unsatisfied oxygen ions on the Si2O−2

5 sheet. This creates a one-sided molecular
structure that attracts water, which is responsible for the ability of wet clay to be
shaped easily. The clay becomes rigid when it is dried.

If the O/Si ratio is less than 2.5, three-dimensional framework structures are
formed. Silica, SiO2, occurs in several crystalline forms. These are listed in
Table 17.1. Silica can also occur as a glass (see Chapter 15). In all of these
the basic structural unit is the tetrahedron.
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Table 17.1. Forms of silica

Stable form Temperature range, ◦C Density

Low quartz ≤ 573 2.65
High quartz 573–867
High tridymite 867–1470 2.26
High cristobalite 1470–1710 2.32

Source: From W. D. Kingery, Introduction to Ceramics (New York: Wiley, 1960). Reprinted with
permission of John Wiley & Sons, Inc.

sheet of positive ions, O-2 and (OH)-1 

Alkali
ions

sheet of positive ions, O-2 and (OH)-1 

17.3. The structure of mica consists of two Si2O5
−2 sheets bonded together by alkali ions. There

are layers of positive Al+3 and Mg+2 ions and negative O−2 and OH−1 ions on the outside of
the double sheet.

Molybdenum disulfide

Molybdenum disulfide also forms sheet molecules. It consists of covalently
bonded sheets with sulfur atoms on both sides of molybdenum atoms, as shown
in Figure 17.4. These sheets are only weakly bonded. The ability of these sheets
to slide over each other explains the lubricity of Mo2S, which is used as a high-
pressure solid lubricant in metal working.

Mo     Mo    Mo    Mo    Mo   Mo
 S       S       S       S      S      S 

 S       S       S       S      S      S 

Mo     Mo    Mo    Mo    Mo   Mo
 S       S       S       S      S      S 

 S       S       S       S      S      S 

Mo     Mo    Mo    Mo    Mo   Mo
 S       S       S       S      S      S 

 S       S       S       S      S      S 

17.4. Molybdenum disulfide is composed of
covalently bonded sheets that are weakly
bonded to each other.
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Table 17.2. Directional properties of graphite

Property
Perpendicular to c
(‖ plane of sheet)

Parallel to c
(⊥ plane of sheet)

Electrical resistivity 2.5 − 5 3800 (ohm · m)
Thermal conductivity 398 2.2 W/m · K
Thermal expansion (20 ◦C) slightly negative 25 × 10−6 ◦C−1

Elastic modulus 1060 35.5 GPa

Source: Data from H. O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes
(Norwich, NY: Knovel, 2001).

Carbon: graphite

Graphite is composed of sheets of carbon atoms arranged in a hexagonal pattern
(Figure 17.5). The bonding in the hexagonal sheets is like that in a benzene ring.
Each carbon has two single bonds and a double bond. Only van der Waals bonds
hold the sheets together. The ease with which sheets can slide over one another
explains the lubricity of graphite. Because the double bond can move freely, the
electrical conductivity in the plane of the sheet is very high, like a metal. The
electrical and thermal conductivities perpendicular to the sheets are very low.
Likewise, Young’s modulus is very high in the planes of the sheet and very low
perpendicular to them. The anisotropy of properties listed in Table 17.2 reflects
the difference in bond strengths parallel and perpendicular to the sheets.

17.5. The structure of graphite.

Diamond

In diamond each carbon atom is covalently bonded to four others. Figure 17.6
shows the structure. The very strong bonding makes diamond the hardest material
known. It has an extremely high Young’s modulus (1.100 GPa) and a very low
coefficient of thermal expansion (1 × 10−6/K). Its very high thermal conductivity
(1 to 2 kW/mK) makes it useful for dissipating heat. Its density (3.52 Mg/m3) is
considerably greater than that of graphite (2.25 Mg/m3).

Hard amorphous carbon films may either be fully amorphous or contain tiny
diamond crystallites. Hydrogen-free films may be deposited on surfaces from
graphite by laser ablation or ion sputtering. Hydrogen-containing films are also
possible.
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0,0,0

1/2,1/2,0

0,1/2,1/2

1/4,1/4,1/4

1/2,0,1/2

17.6. The crystal structure of diamond. Each carbon atom is covalently bonded to four others.

Carbon fibers

Carbon fibers are thin graphite ribbons. They are made by pyrolizing polymeric
precursors. Typical precursors are PAN (polyacrylonitrile), pitch, rayon, or other
polymers that have carbon–carbon backbones. Processing consists of several
steps: stretching or spinning to align polymer chains, heating to stabilize the
orientation, further heating to pyrolize, and still further heating to graphitize. The
strengths and moduli are very high because they involve stretching carbon–carbon
bonds. The level of the properties depends greatly on the nature of the precursor,
its diameter, and the details of processing. Young’s moduli of commercial carbon
fibers vary from 200 to 700 GPa and tensile strengths vary from 2 to 7 GPa.

Carbon fibers are used in composite bonded with epoxy. By 2004, the market
had grown to over 35,000 metric tons per year.

Fullerenes

Until 1985, the only known elemental forms of carbon were diamond, graphite,
and amorphous carbon. Then Kroto et al.* announced the discovery of C60, a
spherical arrangement of carbon atoms in hexagons and pentagons, as shown
in Figure 17.7. They called this form Buckminsterfullerene after the architect
Buckminster Fuller, who developed the geodesic dome. The name for this type of
carbon molecule has since been shortened to fullerene, but it is commonly called
a buckyball. Since this first discovery, it has been found that fullerenes can be
made in quantity from electrical arcs between graphite electrodes. About 75% of

* H. Kroto, J. Heath, S. O’Brien, R. Curl, and R. Smalley, Nature 318 (1985): 162–3.
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17.7. C60 buckyball. There are 60 carbon
atoms arranged in hexagons and pentagons.
The arrangement is the same as that on a
soccer ball.

the fullerenes produced by arcs are C60, 23% C80, with the rest being even larger
molecules. About 9000 fullerene compounds are known.

Nanotubes

A nanotube can be thought of as a hexagonal sheet of carbon atoms (graphene
sheet), rolled up to make a cylinder and capped at the ends by a half of a buckyball,
as illustrated in Figure 17.8. Tubes typically have diameters of about 1 nm. The
diameter of the smallest nanotube corresponds to the diameter of the smallest
buckyball (C60.) The length-to-diameter ratio is typically about 104.

17.8. Singlewall nanotubes can be thought of as being made from rolled up chicken wire.

Nanotubes fall into three groups, depending on the chiral angle, θ , between
the <21̄1̄0> direction of the hexagons and the tube axis (Figure 17.9). If θ = 0,
a zigzag nanotube results. If θ = 30◦, the nanotube is called an armchair. Chiral
nanotubes are those for which 0 < θ < 30◦. These develop twists. Nanotubes can
have metallic conduction; others are semiconductors or insulators.

Rings can form from nanotubes, when the two ends join each other. Concentric
multiwall nanotubes can form as well as single-thickness nanotubes.

There are a number of potential uses of fullerenes. One potential use of nan-
otubes is for field effect transistors. Nanotubes decorated with metal atoms have
a great potential for hydrogen storage for fuel cells. A3C60 compounds where
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θ

tube 
axis 17.9. One characteristic of a nanotube is the

angle between the tube axis and the crystal-
lographic axes of the hexagons.

A is an alkali (K, Rb, Cs, Na) are superconductors. Sieves that allow biological
compounds to pass through but not larger viruses have been suggested.

Zeolites

Zeolites are a class of porous minerals with Al+3 and Si+4, tetrahedrally bonded
with O−2 and monovalent and divalent cations like Na+, K+, Ca+2, Mg+2,
and H2O. Two examples are chabazite, CaAl2 Si4O12 · 2H2O, and natrolite,
Na2Al2Si3O10 · 2H2O. Each O−2 ion is coordinated with either two Si+4 ions
or with one Si+4 ion and one Al+3 ion (never two Al+3 ions). There are channels
through the zeolite crystals large enough to permit passage of small molecules.
See Figure 17.10.

17.10. Structures of two zeolites. The Al+3−Si+4 skeletons are represented. The holes in the
zeolites range from 0.25 to 1 nm. From J. I. Gersten and F. N. Smith, The Physics and Chemistry
of Materials (New York: Wiley, 2001). Reprinted with permission of John Wiley & Sons, lnc.

Heating drives off the H2O without destroying the structure. The remaining
material is hydrophilic and often used as a dessicant. Zeolites also facilitate ion
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exchange. One example is water softeners. When hard water containing Ca+2

ions is passed through on a zeolite on which Na+ ions are adsorbed, two Na+ ions
exchange with Ca+2 ions. Another major use of zeolites is as catalysts.

NOTES OF INTEREST

1. The word zeolite comes from the Greek word meaning “weeping stone.”
2. The discovery of C60 came about from an attempt by Kroto et al. to under-

stand the adsorption spectra of interstellar space. Although they failed in this
attempt, the discovery of C60 won them the Nobel Prize for chemistry in
1996.

3. Buckminster Fuller (1895–1983) was born in Milton, Massachusetts. He
received many architectural awards including the Gold Medals of the Amer-
ican Institute of Architects and the Royal Institute of British Architects. He
received 47 honorary doctorates, was awarded 27 U.S. patents, and wrote
25 books. He is best known for his introduction of the geodesic dome for
buildings. There are now over 300,000 geodesic domes in the world.
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PROBLEMS

1. What are x and y in (Six Oy)−m for the following?
A. single chain
B. double chain
C. sheet silicates

2. Predict the structures of these silicates.
A. olivine, Mg2SiO4

B. ultramarine, Na8(Al6Si6O24)Cl2
3. In graphite the distance between planes is 0.335 nm and the distance between

carbon atoms in the hexagonal planes is 0.142 nm. Calculate the density of
graphite.

4. How many faces does a C80 buckyball have? How many are hexagons and
how many are pentagons?
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18 Magnetic Behavior of Materials

Until about 200 years ago, magnetism was a mysterious phenomenon. The discov-
ery of the magnetic effect in lodestone (Fe3O4) led to the first use of magnetism in
compasses. When we speak of “magnetic behavior,” we usually mean ferromag-
netic behavior. All materials have some response to a magnetic field. Paramagnetic
materials weakly repulse magnetic fields and diamagnetic materials weakly attract
magnetic fields.

Ferromagnetism

In contrast, ferromagnetic materials very strongly attract magnetic fields. There
are only a few ferromagnetic elements. The important ones are iron, nickel, and
cobalt. A few rare earths are ferromagnetic at low temperatures. Atoms of other
transition elements may be ferromagnetic in alloys or compounds where the dis-
tance between atoms is different than in the elemental state. These include the
manganese alloys Cu2MnAl, Cu2MnSn,Ag5MnAl, and MnBi. Table 18.1 lists a
number of ferromagnetic elements, their Curie temperatures (temperature above
which they cease to be ferromagnetic), and their saturation magnetizations.

Ferromagnetism arises because of an unbalance of electron spins in the 3d shell
of the transition elements (the 4f shell for rare earths). The unbalanced spin
causes a magnetic moment. In metals with valences of 1 or 3 (e.g., Cu or Al),
each atom has an unbalance of spins, but the unbalance is random so there is
no net effect. With the transition elements, the 3d and 4s energy bands overlap
(Figure 18.1).

There are four important energy terms that affect ferromagnetic behavior:

1. exchange energy,
2. magnetostatic energy,
3. magnetocrystalline energy, and
4. magnetostrictive energy.

184



P1: JzG
0521867053c18 CUFX036/Hosford 0 521 86705 3 printer: Sheridan November 3, 2006 14:52

MAGNETIC BEHAVIOR OF MATERIALS 185

Table 18.1. Ferromagnetic materials

Curie Saturation magnetization
Metal temperature,◦ C (tesla)

Iron 771 2.16
Cobalt 1121 1.87
Nickel 358 0.616
Gadolinium 20 8.
Terbium −52 3.4
Dysprosium −188 3.71
Ho −253 3.87
MnBi 630
MnSb 587
Fe80B20 647
Oxide
Fe3O4 858
NiFe2O4 858
MnFe2O4 573
CrO2 386
EuO 69

18.1. For the transition elements the 3d and 4s energy levels overlap.

Exchange energy

For some transition metals, the total energy is lowered in a magnetic field if one
half of the 3d band is completely full, causing an unbalance of electron spins, as
shown schematically in Figure 18.2. This results in a strong magnetic effect. In
ferromagnetic materials, the field caused by neighboring atoms is strong enough
to cause this shift.

This lowering of energy caused by alignment of the unbalanced spins with
that of the neighboring atoms is called the exchange energy. It depends on the
interatomic distance. For example, bcc iron is ferromagnetic but fcc iron is not.
Figure 18.3 illustrates this. Figure 18.4 shows how the maximum number of
unbalanced spins per atom (number of Bohr magnetons) depends on the number
of 3d electrons.
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energy

+ spins - spins

density of energy states

18.2. If one half of the 3d band is completely
full and the other half partially full, there is a
strong unbalance of electron spins causing
a strong magnetic effect.
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18.4. Variation of average atomic moment with the number of 3d plus 4s electrons in binary
alloys of transition metals. From R. Bozorth, Ferromagnetism (Piscataway, NJ: IEEE Press, 1993).
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180° wall
90° wall

18.5. Ferromagnetic domains are regions
in which unbalanced electron spins are
aligned. Parts of three domains are indi-
cated. The dashed lines are 180◦ and 90◦

domain walls. From W. F. Hosford, Physi-
cal Metallurgy (Boca Raton, FL: CRC Press,
2005), p. 445, figure 26.4.

The energy is minimized when neighboring atoms are magnetized in the same
direction. This causes the formation of magnetic domains in which all of the
neighboring atoms are magnetized in the same direction. These may contain 1015

atoms. Figure 18.5 schematically shows parts of three domains.

Magnetostatic energy

Incomplete magnetostatic circuits within the ferromagnetic material raise the
total energy because the circuits must be completed externally (Figure 18.6).
Horseshoe magnets attract iron is to complete their magnetostatic circuits in iron
(Figure 18.7). A typical domain structure is composed of domains that form
complete circuits, as shown in Figure 18.8.

NN N N

S S S S
N N N
S S N N

N NN N S S N N

N N

S S

S S

18.6. Incomplete magnetostatic circuits raise the energy.
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N NS S N S
18.7. A horseshoe magnet attracts iron to
complete a magnetostatic circuit.

18.8. Typical domain structure composed of
complete magnetostatic circuits. From W. F.
Hosford, Physical Metallurgy (Boca Raton,
FL: CRC Press, 2005), p. 447, figure 24.5.

When the there are equal numbers of domains aligned in opposing direc-
tions, their magnetic fields cancel externally so the material appears not to be
magnetized.

Magnetocrystalline energy

Each of the ferromagnetic materials has a specific crystallographic direction in
which it is naturally magnetized. Figure 18.9 shows the B–H curves for iron
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18.9. B–H curves for several directions in
iron. After J. K. Stanley, Electrical and Mag-
netic Properties of Metals (Materials Park,
OH: ASM, 1963). Reprinted with permission
of ASM International.® All rights reserved.
www.asminternational.org.
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crystals of different orientations. For iron, the direction of easy magnetization is
<100>, for nickel it is <111>, and for cobalt it is <0001>.

Magnetostrictive energy

Magnetization strains a material. In a cubic metal, the strain along a <100>

direction is ε100 when the magnetic field is along that direction and the strain
along a <111> direction is ε111 when the field is along the <111> direction. For
iron ε100 = 24 × 10−6 and ε111 = −23 × 10−6, and for nickel ε100 = −63.7 ×
10−6 and ε111 = −29 × 10−6. For randomly oriented material the value of ε is
approximately

ε = 0.4ε100 + 0.6ε111. (18.1)

Stresses must arise if the magnetostrictive strains are prevented.

EXAMPLE 18.1. Calculate the energy associated with the magnetostriction near
a 90◦ domain boundary of length L in iron.

SOLUTION: At a 90◦ domain boundary, there is a zero net strain in the [001]
direction of domain A and the [010] direction of domain B (Figure 18.10). There-
fore, there must be an elastic strain equal in magnitude and opposite in sign to the
magnetostrictive strain. The compressive strain is ε100 and the associated stress is
Eε100, so the energy per volume is (1/2)Eε100

2. The volume associated with this
is L2z/2, where z is the dimension into the paper. Substituting E100 = 130 GPa
and ε100 = 24 × 10−6 for iron, the energy is 780 kJ/m2.

L

L/ 2

domain A

domain B

18.10. 90◦ domain boundary. The shaded
area is the region in which the magnetostric-
tive strain must be compensated by elastic
strains.

Physical units

Further discussion of magnetic behavior requires definition of some terms. The
flux density or induction, B, in a material in a magnetic field is its response to the
intensity of the magnetic field, H . The ratio of B to H is the permeability, µ:

B = µH. (18.2)
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In a vacuum,

B = µo H, (18.3)

where µo = 4π × 10−7 Wb/(A/m). Equation 18.1 can be written as

B = µo(H + M), (18.4)

where M is the magnetization. Both the mks and cgs units to describe B, H ,
and µ are listed in Table 18.2 The intensity of the magnetic field or magnetizing
force, H, is measured in A/m. The magnetic induction, B, is measured in teslas.

Table 18.2. Units

Quantity Symbol mks cgs

Field strength H A/m oersted = 4πx10−3A/m
Flux B T = Wb/m2 gauss = 104 T
Magnetic moment M A/m emu/m3= 103A/m
Permeability µ Wb/(A/m) dimensionless

Note: The magnetic moment, M, caused by one unbalanced electron spin is called a Bohr
magneton and has the value of 9.27 × 10−24A/m2.

The B–H curve

When a magnetic field is imposed on a ferromagnetic material, the domains most
nearly aligned with the field will grow at the expense of the others, as illustrated
in Figure 18.11. As they do, the material’s magnetic induction will increase, as
shown in Figure 18.12. At first, favorably aligned domains grow. Final induction
occurs by rotation of the direction of magnetization out of the easy direction to
be aligned with the field. Figure 18.13 shows an entire B–H curve.

If the field is removed, there is a residual magnetization or remanence, Br . A
reverse field, Hc (coercive force), is required to demagnetize the material. The
area enclosed by the B–H curve (hysteresis) is the energy loss per cycle, and the

Field

18.11. Imposition of an external field causes domains most nearly aligned with the field to grow
at the expense of those antialigned.
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a.

b.

B

C.
d.

H

18.12. Magnetization of a material. Initially,
magnetization increases by growth of favor-
ably oriented domains. At high fields, the
direction of magnetization rotates out of the
easy direction.

18.13. A typical B–H curve.

permeability is defined as µ = B/H. The initial permeability, µo, and the maxi-
mum permeability, µmax, are material properties.

Curie temperature

The Curie temperature is the temperature above which a material ceases to be
ferromagnetic. Figure 18.14 shows the decrease of saturation magnetization, Bmax,
with temperature.

Bloch walls

The boundaries between domains are regions where there is a gradual change
in the direction of magnetization. The width of these (perhaps 20 atoms) is a
compromise between the magnetocrystalline and exchange energy terms. A wider
boundary would require more atoms to be magnetized out of the direction of easy
magnetization. The exchange energy is minimized if the boundary is very wide
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Temperature

B
m

ax

Curie temperature

18.14. Decrease of saturation magnetiza-
tion with temperature up to the Curie
temperature.

so the direction of magnetization changes very little between neighboring atoms.
There are two possibilities. In Bloch walls the direction of magnetization rotates
in a plane parallel to the wall. Figure 18.15 illustrates a 180◦ domain wall and
Figure 18.16 illustrates a 90◦ domain wall.

N

N

N

N

one domain one domaindomain  
wall

N

N

S

S

18.15. Schematic illustration of a 180◦ domain wall.

Magnetic oxides

Magnetite (loadstone) was the first known magnetic material. Its formula Fe3O4

may be written Fe+2Fe+3
2 O−2

4 . Its structure is similar to spinel, Mg+2Al+3
2 O−2

4 .
In both of these structures oxygen ions are arranged in an fcc pattern. There
are two types of sites for the anions: octahedral sites of sixfold coordination
(Figure 18.17A) and tetrahedral sites of fourfold coordination (Figure 18.17B).
The number of octahedral sites is the same as the number of oxygen ions and
there are twice as many tetrahedral sites as oxygen ions. One of the two Fe+3

ions is in a tetrahedral site and the other is in an octahedral site. The Fe+2 ion
is in an octahedral site. There are a number of similar compounds, known as
inverse spinels,∗ where another divalent ion may substitute for Fe+2. An example

∗ In a spinel (e.g., MgAl2O4) the M+2 ions are in tetrahedral sites and the M+3 ions are in
octahedral sites.



P1: JzG
0521867053c18 CUFX036/Hosford 0 521 86705 3 printer: Sheridan November 3, 2006 14:52

MAGNETIC BEHAVIOR OF MATERIALS 193

N

N

N

one domain

one domain

domain
wall

18.16. Schematic illustration of a 90◦

domain wall.

A B

18.17. The black dots indicate the octahe-
dral sites in A and the tetrahedral sites in B.

is NiFe2O4. The magnetic moment of the M+3 ion in the tetrahedral site is opposed
to that of the M+3 ion in the octahedral site so the M+3 ions make no overall
contribution to the magnetism. The sole contribution is from the M+2 ions in the
tetrahedral sites. Table 18.3 lists the magnetic moments per atom in spinels.

Table 18.3. Magnetic moments per atom in spinels

Ion 3d electrons Bohr magnetons

Fe+3 3d5 5
Mn+2 3d5 5
Fe+2 3d6 4
Co+2 3d7 3
Ni+2 3d8 2
Cu+2 3d9 1
Zn+3 3d10 0

Although zinc has no magnetic moment, it raises the magnetic moment of
inverse spinels. Zn+3 ions occupy tetrahedral sites as they would in a normal
spinel, thereby forcing Fe+3 ions into an octahedral site where they contribute to
the magnetic moment.
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EXAMPLE 18.2. Calculate the saturation magnetization of magnetite, [Fe3O4]8.
The lattice parameter of magnetite is about 0.839 nm.

SOLUTION: Only the Fe+2 ions contribute to the magnetization. There are
8 Fe+2 ions, each contributing 4 Bohr magnetons: M = 3 × 8/(0.839 × 10−9m)3

(Bohr magnetons/m3)(9.27 × 10−24)(Am2/Bohr magneton) = 3.77 × 105A/m.

Bs = (4π × 10−7)(3.77 × 105) = 0.47 T.

Soft versus hard magnetic materials

Most magnetic materials fall into one of two classes: soft and hard. Soft magnetic
materials are easily magnetized and demagnetized. Hard magnetic materials are
permanent magnets. They are difficult to magnetize and demagnetize. The hys-
teresis is very large. The remanence, Br , and coercive force, Hc, are high. The
terms soft and hard are historic. The best permanent magnets in the 1910s were
made of martensitic steel, which is very hard, and the best soft magnets were
made from pure annealed iron. The differences of the B–H curves are shown in
Figure 18.18. Table 18.4 shows the extreme differences.

18.18. A hard magnetic material has a much greater hysteresis than a soft magnetic material.
The differences are much greater than shown in this figure.

Soft magnetic materials

For a material to be soft magnetically, its domain walls must move easily. The
principal obstacles to domain wall movement are inclusions and grain boundaries.
Low dislocation contents, residual stresses, and a low interstitial content, are also
important.

Inclusions are important obstacles to domain wall movement because the
energy of the system is lowered more when a domain wall passes through an
inclusion than when the boundary has separated from the inclusion. This is illus-
trated in Figure 18.19.
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Table 18.4. Coercive forces of several materials

Material Composition∗ Coercive force

Hc, A/m
Supermalloy 79% Ni, 5% Mo .016
Oriented Si steel 3.25% Si 8.0
Hot-rolled Si steel 4.5% Si 40
Mild steel (normalized) 0.2% C 320
Carbon steel magnet 0.9% C, 1% Mn 4 × 103

Alnico V 24% Co, 14% Ni, 8% Al, 3% Cu 48 × 103

Alnico VIII 35% Co, 14.5% Ni, 7% Al, 5% 100 × 103

Ti, 4.5% Cu
Barium ferrite BaO−6Fe2O3 150 × 103

Bismanol MnBi 290 × 103

Pt–Co 77% Pt, 23% Co 340 × 103

*Balance Fe.
Source: Data from J. K. Stanley, Electrical and Magnetic Properties of Metals (Materials
Park, OH: ASM, 1943). Reprinted with permission of ASM International®. All rights reserved.
www.asminternational.org.

+
++
+
+
+
+
+
+

++++
++++++++

+−

−−−−−

−

−

−

−
−

−

−

−

−−

−

−

−

−

−−−−−

inclusion inclusion

18.19. The difference between the domain
boundaries at an inclusion depending on
whether the inclusion lies on a boundary (left)
or not (right). The total length of the boundary
is lowered by the inclusion.

Uses of soft magnetic materials include transformers, motors and generator
cores, solenoids, relays, magnetic shielding, and electromagnets for handling
scrap. Many of these applications employ silicon iron (usually 3 to 3.5% Si).
Alloys containing 3% or more silicon are ferritic at all temperatures up to the
melting point. See Figure 18.20. Silicon increases the electrical resistance of iron.
A high electrical resistance is desirable for transformers because eddy currents
are one of the principal power losses in transformers. Remember power loss is
inversely proportional to resistance (P = EI = E2/R). Use of thin sheets also
minimizes eddy current losses.

It is possible to control the crystallographic texture of silicon iron sheet by
controlling the rolling and heat-treating schedules. The usual texture for the
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18.20. Iron–silicon phase diagram.

transformer sheets is {110}<001>, which is called the Goss texture. This texture
has the <001> easy direction of magnetization aligned with the prior rolling
direction. Transformers can be made so that they will be magnetized in a <001>

direction. The cube texture, {100}<001>, is even more desirable, but it is more
difficult to produce. Both are illustrated schematically in Figure 18.21.

Core losses decrease with increasing silicon content and increase with increas-
ing frequency. Oxide materials are very useful at high frequency because power
losses decrease with increasing electrical resistance.

For very soft magnetic magnets, magnetostriction should be minimized. The
reason is that magnetostriction causes dimensional incompatibilities at 90◦

domain boundaries that must be accommodated by elastic straining of the lat-
tice. This is illustrated in Figure 18.22. In iron–nickel alloys the magneto-
striction and the magnetocrystalline anisotropy are very low at about 78% Ni.
Iron–nickel alloys have very high initial permeabilities. Mu metal (75% Ni),
permalloy (79% Ni), and supermalloy (79% Ni, 4% Mo) are examples that find
use in audio transformers.

A metallic glass containing 80% Fe and 20% B is an excellent soft magnetic
material because there are no grain boundaries to obstruct domain wall motion.
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rolling direction

Goss texture
<100>{011}

Cube texture
<100>{001}

18.21. Textures in silicon. In both the Goss and cube textures the <100> direction is aligned
with the rolling direction. The {011} is parallel to the sheet in the Goss texture and the {001} is
parallel to the sheet in the cube texture.

A B C

18.22. In iron, magnetostriction causes an
elongation in the direction of magnetiza-
tion. This creates a misfit along 90◦ domain
boundaries, which must be accommodated
elastically.

Hard magnetic materials

A high Hc coercive force is desirable for hard magnets, but most important is a
high H × B product. The second quadrant of the B–H curve (Figure 18.23) is
most important. Often the maximum B × H product (Figure 18.24) is taken as a
figure of merit.
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18.23. Second quadrant of B–H curves for
selected alloys. From R. M. Rose, L. A. Shep-
ard, and J. Wulff, The Structure and Proper-
ties of Materials,vol. IV, Electronic Properties
(New York: Wiley, 1996). Reprinted with per-
mission of John Wiley & Sons, Inc.
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Hc BxHmax
BxH

B

0
H

18.24. Second quadrant of a B–H curve
(left) and the corresponding B × H product
(right). The maximum B × H product is a fig-
ure of merit.

High B × H products are promoted by

1. small, isolated particles that are single domains.
2. elongated particles
3. a high magneto-crystalline energy

In a microstructure consisting of small isolated particles surrounded by a non-
ferromagnetic phase, there are no domain walls that can move. The direction of
magnetization can be changed only by rotating the magnetization out of the easy
direction into another equivalent easy direction. If there is a high magnetocrys-
talline energy, this will require a high field. Hexagonal structures are useful here
because there are only two easy directions, [0001] and [0001], which differ by
180◦. When ferromagnetic particles are elongated, the intermediate stage will
have a high magnetostatic energy. Figure 18.25 illustrates this.

A

B

C

18.25. As the direction of magnetization of
an elongated particle is reversed (from A
to C), it must be magnetized in a direction
that increases its magnetostatic and mag-
netocrystalline energies (B).

Among the most popular magnet materials are aluminum–nickel–cobalt–iron
alloys called alnico. Alnico V contains 8% Al, 14.5% Ni, 23% Co, 3% Cu, and
0.5% Ti with the balance Fe. At very high temperatures it is a single bcc phase
but it decomposes into two bcc phases below 800 ◦C. The phase high in Co and
Fe is ferromagnetic and it precipitates as fine particles. If the precipitation occurs
in a magnetic field, the particles are elongated (Figure 18.26A) whereas they are
equiaxed in the absence of a field (Figure 18.26B). The difference in the B–H
curves is shown in Figure 18.27.

Some of the best hard magnetic materials are those with a hexagonal structure.
In these there are only two possible domains, differing by 180◦. Table 18.5 lists
the maximum B H product for several alloys. Cheap permanent magnets can be
made by aligning fine iron powder in a magnetic field while it is being bonded by
rubber or a polymer.
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A. B.

18.26. Microstructure of Alnico V (∼50,000X) after precipitation in a magnetic field (left) and in
the absence of a magnetic field (right). From R. M. Rose, L. A. Shepard, and J. Wulff, Structure
and Properties of Materials, vol. IV, Electronic Properties (New York: Wiley, 1966). Reprinted with
permission of John Wiley & Sons, Inc.
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18.27. The effect of heat treating in a mag-
netic field on the demagnetization curves for
Alnico V.

Square-loop materials

Magnetic materials used for memory storage are neither hard nor extremely soft.
They must be soft enough to have their direction of magnetization changed by

Table 18.5. Maximum BH products for several alloys

Samarium–cobalt 120,000 A − Wb/m3

Platinum–cobalt 70,000
Alnico 36,000
Carbon steel 1,500
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currents in computer circuits but hard enough to be unaffected by stray mag-
netic fields. Square B–H curves are desirable. By heat treating permalloy and
supermalloy in a magnetic field, a texture can be formed which has a square-loop
hysteresis curve (Figure 18.28). This is useful in logic circuits where the material
is magnetized in one direction or the other. For high fidelity transformers, linearity
(constant µ) is needed.
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18.28. A square-loop hysteresis curve for
permalloy can be obtained by heat treating
in a magnetic field.

NOTES OF INTEREST

1. The word magnetite comes from Magnesia, which is the region in Asia Minor
from which magnetite first came.

2. The specific heats of ferromagnetic materials show an anomalous specific heat
near their Curie temperatures. Figure 18.29 shows a spike of the specific heat of
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18.29. The specific heat of iron shows a
peak near the Curie temperature. From
W. F. Hosford, Physical Metallurgy (Boca
Raton, FL: CRC Press, 2005), p. 331, fig-
ure 15.2.
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iron near its Curie temperature. When this was first observed, it was mistaken
for a latent heat of transformation to a new phase, β, in temperatures between
the α and γ phases.

3. A magnet provides a simple way of distinguishing austenitic stainless steels
from the other grades.

REFERENCES

E. A. Nesbitt. Ferromagnetic Domains. Murray Hill, NJ: Bell Telephone Labo-
ratories, 1962.

R. M. Rose, L. A. Shepard, and J. Wulff. The Structure and Properties of Materials,
vol. IV, Electronic Properties. New York: Wiley, 1966.

J. K. Stanley. Electrical and Magnetic Properties of Metals. Materials Park, OH:
ASM, 1963.

PROBLEMS

1. Metallic nickel has a saturation magnetization of 0.6 Wb/m2 and a lattice
parameter of 0.352 nm. What is the magnetic moment per atom in Bohr
magnetons?

2. Find the (B×H)max product for the Alnico V heat treated in a magnetic field
from Figure 18.27.

3. How many different domain orientations are possible in (A) iron, (B) nickel,
and (C) cobalt?

4. Explain in terms of your answer to Problem 3 why many of the hard magnetic
alloys are based on cobalt.

5. The density of iron is 7.87 Mg/m3 and its saturation magnetization at 0 K is
2.16 T. Find the number of Bohr magnetons per atom.

6. The Goss texture in silicon iron sheets has a <110> direction aligned with
the prior rolling direction and a {001} plane aligned with the plane of the
sheet. In the cube texture a <100> direction is aligned with the prior rolling
direction and a {001} plane is aligned with the plane of the sheet. For iron,
the permeability, µ, is highest in the <100> direction. Plot schematically
how µ varies with the angle, θ , from the rolling direction for both the cube
and Goss textures. Extend your plot from 0 to 180◦.

7. Why are magnetic oxides preferred for the cores of very high frequency
transformers?
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19 Porous and Novel Materials

Applications of porous materials

There are many applications of porous materials. Their ability to fill space with a
minimum weight leads to their use in packaging. Life jackets and rafts use porous
materials because of their low density. Examples of their use as thermal insulators
range from Styrofoam cups to heat shields for space craft. Aluminum baseball
bats are filled with foam to dampen vibrations. The low elastic moduli and high
elastic strains of foams lead to use as cushions and mattresses. Filters are made
from porous materials.

Stiff lightweight structures such as aircraft wings are made from sandwiches
of continuous sheets filled with foams or honeycombs. Open porous structures
can form frameworks for infiltration by other materials leading to application of
biocompatible implants. Open pore structures are used as supports for catalysts.

Fabrication of porous foams

Natural cellular materials include sponges and wood. Foams of polymers, metals,
and ceramics can be made by numerous methods. Foams are often produced by
entrapping evolved gas. Inert gasses such as CO2 and N2 may be dissolved under
high pressure and released by decreasing the pressure. Gas bubbles may also
be formed by chemical decomposition or chemical reaction. Mechanical beating
will produce foams. Foamed structures may be formed by bonding previously
expanded spheres as in the case of polystyrene. Incomplete sintering of pressed
powders creates materials with continuous internal passages that find use as filters
and oilless bearings.

Metallic and ceramic foams are often made from polymeric precursors.
Ceramic foams can be made by dipping a polymer foam into a ceramic slurry, dry-
ing, and then sintering at a high enough temperature to decompose the polymer.
Metallic foams can be made by electroless plating of metal on a polymer foam
and subsequent heating to drive off the polymer. Finally, carbonaceous foams can
be made by pyrolyzing polymeric foams.

202
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Spinodal decomposition usually results in two continuous phases. If one of
these is etched away, the result is a porous structure. Filters of glass are produced
this way.

Morphology of foams

There are two types of foams: closed cell foams and open cell (or reticulated)
foams. In open foams, air or other fluids are free to circulate. These are used for
filters and as skeletons. They are often made by collapsing the walls of closed
cell foams. Closed cell foams are much stiffer and stronger than open cell foams
because compression is partially resisted by increased air pressure inside the cells.
Figure 19.1 shows that the geometry of open and closed cell foams can modeled
by Kelvin tetrakaidecahedra.

19.1. Open and closed cell foams modeled by tetrakaidecahedra.

Relative density of foams

The parameter ρ∗/ρs , where ρ∗ is the density of the cellular structure and ρs

is the density of the solid material from which it is made, is called the relative
density. Equations 19.1 and 19.2 are first approximations for relative density if
the thicknesses of the walls and ligaments, t, is much smaller than the cell length,
l, (t << l).

For open cell foams

ρ∗/ρs = C2(t/ l)2, (19.1)

and for closed cell foams

ρ∗/ρs = C3(t/ l), (19.2)

where C2 and C3 are constants.
However, these equations need corrections for double counting at edges and

corners. A reasonable approximation for all of the structures is given by

ρ∗/ρs = 1.2[te/ l]2 + 0.7(t f / l), (19.3)

where te and t f are the thicknesses of the edges and faces.
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Structural mechanical properties

The elastic stiffness depends on the relative density. In general the dependence
of relative stiffness, E∗/E , where E∗ is the elastic modulus of the structure and
E is the modulus of the solid material on relative density, is of the form

E∗/E = (ρ∗/ρs)n. (19.4)

Experimental results shown in Figure 19.2 indicate that for open cells n = 2 so

E∗/E = (ρ∗/ρs)2. (19.5)

19.2. Data from L. J. Gibson and M. F. Ashby. Cellular Foams (Cambridge, U.K.: Cambridge
Univ. Press, 1999).

For closed cell foams, E∗/E is much higher and n < 2. While deformation under
compression of open cell foams is primarily by ligament bending, compression of
closed cell wall foams involves gas compression and wall stretching in addition
to wall bending as well.

Honeycombs

Honeycombs can be made by folding and gluing thin sheets, gluing and expanding
thin sheets, casting, and extruding. Figure 19.3 illustrates a honeycomb structure.
Panels with a high bending stiffness-to-weight ratio are often made with a honey-
comb structure sandwiched between two sheets or plates. While the honeycomb
does not directly contribute much to the stiffness, it separates the outer sheets so
they have a maximum bending resistance.
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19.3. Hexagonal honeycomb structure.

Novel structures

A polyester foam with a negative Poisson’s ratio has been reported by Lakes.* Its
cells consist of reentrant faces. Figure 19.4 shows a cell with 24 faces. When the
cell is extended its sides are moved inward and when it is compressed the walls
move outward. The negativity of ν increases with θ .

19.4. A cell structure with a negative Pois-
son’s ratio. If it is compressed, the sides will
move inward.

Sigmund and Torquato
†

devised two-dimensional composite materials with
negative coefficients of thermal expansion by combining a material with a high
coefficient of thermal expansion with one having a low coefficient of thermal
expansion. Figure 19.5 shows an example of such a composite designed by Chen
et al.

‡
As the material is heated, the high thermal expansion causes the horizontal

and vertical bars to move inward.

NOTES OF INTEREST

1. J. Qui and J. W. Halloran∗∗ produced the cross section in Figure 19.6 by
extruding a composite of oxides of Fe-36 atom % Ni(α = 3 × 106/

◦
C) and

Fe-60 atom % Ni(α = 14 × 10−6/
◦
C) and carbon (for the void). Firing reduced

the oxides and burned out the carbon. The result was a composite with a

* R. S. Lake, Science 235 (1987): xxx.
†

O. Sigmund and S. Torquato, J. Mech. Phys Solids, 45 (1997): 1037–67.
‡

B.-C. Chen, E. C. N. Silva, and N. Kikuchi, Int. J. Numer. Meth. Eng. 52 (2001): 23.
∗∗ J. Qui and J. W. Halloran, J. Mater. Sci. 39 (2004): A113–4118.
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19.5. Composite material with a negative coefficient of thermal expansion.

19.6. A wing panel made of diffusion-bonded and superplastically formed titanium.

coefficient of thermal expansion of α = −3 × 10−6/
◦
C compared to the pre-

diction of α = −3.2 × 10−6/
◦
C.

2. Diffusion bonding combined with superplastic forming provides a novel alter-
native to sandwiches filled with a honeycomb for light structures with high
bending resistance. Figure 19.6 shows the cross section of such a structure.
It was made by diffusion bonding three sheets of titanium. Bonding was pre-
vented in certain areas by coating with an inert ceramic coating. The structure
was then expanded by forcing an inert gas into the unbonded channels. Super-
plastic behavior was required because of the severe elongations of the interior
ligaments.

REFERENCE

L. J. Gibson and M. F. Ashby. Cellular Foams. Cambridge, U.K.: Cambrige Univ.
Press, 1999.

PROBLEMS

1. Calculate ν for the structure in Figure 19.4 if θ = 15◦, assuming that the
diagonal bars are very stiff compared to the bars on the cube edges and that
the dimensions are as shown in Figure 19.7.
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19.7. Unit cell for Problem 1.

2. The relative density of honeycombs is given by ρ∗/ρs = C1(t/ l). Determine
the value of C1 for the hexagonal honeycomb in Figure 19.6. Neglect the
tops and bottoms of the cells.
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20 Shape Memory and Superelasticity

Shape memory alloys

With the shape memory effect, heating reverses prior plastic deformation. Alloys
that exhibit this effect are ordered solid solutions that undergo a martensitic trans-
formation on cooling. Shape memory effects were first observed in AuCd in 1932,
but it was the discovery by Buehler et al. in of the effect in NiTi in 1962 that stim-
ulated interest in shape memory. The alloy TiNi (49 to 51 atomic % Ni) has an
ordered bcc structure at 200 ◦C. On cooling it transforms to a monoclinic struc-
ture by a martensitic shear. The shear strain associated with this transformation
is about 12%. There is more than one variant of the transformation. If only one
variant of the martensite were formed, the strain in the neighboring untransformed
lattice would be far too high to accommodate. Instead two mirror image variants
form in such a way that there is no macroscopic strain. The macroscopic shape is
the same as before the transformation. Figure 20.1 illustrates this. The boundaries
between the two variants are highly mobile. The resulting structure can deform
easily by movement of these boundaries. Figure 20.2 shows stress–strain curves
above and below the Ms . Heating the deformed material above the A f temper-
ature causes it to transform back to the ordered cubic structure by martensitic
shear. The overall effect is that the deformation imposed on the low temperature
martensitic form is reversed on heating. The critical temperatures for reversal in
TiNi alloys are typically in the range of 80 to 100 ◦C but are sensitive to very
minor changes in composition so material can be produced with specific reversal
temperatures. Excess nickel greatly lowers the transformation temperature. It is
also depressed by small additions of iron and chromium. Copper decreases the
hysteresis.

Other shape memory alloys are listed in Table 20.1, and Figure 20.3 shows the
dependence of the Ms temperature for Cu–Zn–Al alloys on composition. For the
copper-base alloys controlled cooling is necessary after heating into the β phase
region.

208
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martensite transformation deformation

A B

20.1. (A) As the material is cooled it undergoes a martensitic transformation. By transforming to
equal amounts of two variants, the macroscopic shape is retained. (B) Deformation occurs by
movement of variant boundaries so the more favorably oriented variant grows at the expense
of the other. Reprinted with permission of Cambridge University Press from W. F. Hosford,
Mechanical Behavior of Materials (New York: Cambridge Univ. Press, 2005).
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20.2. Stress–strain curve for a shape mem-
ory material. The lower curve is for defor-
mation when the material is entirely marten-
sitic. The deformation occurs by movement
of variant boundaries. After all of the mate-
rial is of one variant, the stress rises rapidly.
The upper curve is for the material above its
A f temperature. Adapted from a sketch by
D. Grummon.

Superelasticity

This phenomenon is closely related to the shape memory. Applied stress raises the
A f , As, Ms , and M f temperatures, as illustrated in Figure 20.4, so deformation
at temperatures slightly above the A f will cause the material to transform by
martensitic shear to its low temperature form. Once the stress is released, the
material will revert to the high temperature form by reversing the martensitic
shear. A stress–strain curve for Fe3Be is shown in Figure 20.5.
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Table 20.1. Alloys with shape memory

Alloy Composition

Transformation
temperature
range, ◦C

Temperature
hysteresis,
◦C

AuCd 46.5 to 50 at. %Cd 30 to 100 15
Cu–Al–Ni 14 to 14.5 wt. %Al −140 to 100 35

3 to 4.5% wt. %Ni
Cu–Zn–x 38.5 to 41.5% wt. Zn −180 to 200 10
x = a few wt. % Si, Sn or Al.
In–Ti 18–23% at. %Ti 60 to 100 4
Ni–Al 36 to 38% at. %Al −180 to 100 10
NiTi 49–51 at. %Ni −50 to 110 30
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20.3. The dependence of the Ms temper-
ature of copper–zinc–aluminum alloys on
composition. The dots indicate alloys for
which the Ms has been measured. Data
from D. E. Hodgson, M. H. Wu, and R. J.
Biermann, Shape Memory Alloys, Johnson
Matthey, http://www.jmmedical.com/html/
shape memory alloys html (accessed May
6, 2006).

According to the Clausius–Clapeyron equation,

d(Af )/dσ = T εo/�H, (20.1)

where εo is the normal strain associated with the transformation and �H is
the latent heat of transformation (about 20 J/g for TiNi). Note that the terms
d(As)/dσ, d(Ms)/dσ , and d(M f )/dσ could be substituted for d(A f )/dσ in Equa-
tion 20.1.

Figures 20.6 and 20.7 illustrate the relation between shape memory and supere-
lasticity. Shape memory occurs when the deformation takes place at a temperature
below the M f . Superelasticity occurs when the deformation is at a temperature
above the Af . For both the memory effect and superelasticity, the alloy must be
ordered, there must be a martensitic transformation, and the variant boundaries
must be mobile.
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20.4. As stress is applied to a superelas-
tic material, the A f , As, Ms, and M f temper-
atures for the material all increase so that
the material undergoes martensitic shear
strains. When the stress is removed, the
material reverts to its high temperature form,
reversing all of the martensitic deformation.
Adapted from a sketch by D. Grummon.
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20.5. The stress–strain curve for superelas-
tic Fe3Be. After the initial Hookean strain,
the material deforms by martensitic trans-
formation. On unloading the reverse marten-
sitic transformation occurs at a lower stress.
Adapted from R. H. Richman, in Deformation
Twinning (New York: AIME, 1963), p. 267, fig-
ure 23.
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20.6. Schematic stress–strain curves. Sup-
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the A f . The deformation in shape memory
occurs below the M f temperature. Rever-
sion requires heating above the A f .
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20.7. Schematic illustration of the difference between shape memory and superelastic effects.
For shape memory, the deformation occurs at a temperature for which the material is martensitic.
A superelastic effect occurs when the deformation occurs just above the A f temperature. From
J. A. Shaw, Int. J. Plasticity 16 (2000): 542.

Applications

Superplastic applications of TiNi include stents for keeping arteries open and
couplings for sealing tubes or pipes. The very high power-to-weight ratio of
the transformation may lead to other applications. On–off actuators can be con-
structed by combining two materials with different transition temperatures. These
find uses in temperature control systems. Single shape memory materials may be
“trained” to remember two shapes: one at the high temperature and one at the low
temperature. This is possible because of local stress set up by small untransformed
regions. Unfortunately, the shape memory tends to degrade after repeated cycles
and cycling can lead to fatigue failure.

Eyeglass frames made from superelastic NiTi absorb very large deformations
without damage. Medical uses of NiTi include guide wires for steering catheters
in the body and wires for orthodontic corrections.

Shape memory in polymers

When a polymer is deformed at temperatures below its glass transition and
then heated above the glass transition temperature, its shape will revert to that
it originally had before being deformed. The amount of reversible strain is
much larger than in metals (up to 400% for polymers vs. less than 10% for
metals). This effect is utilized in shrink-wrapping of consumer products. Films
are stretched biaxially at temperatures below their glass transition temperature.
After the product is wrapped, the temperature is raised above the glass transition
temperature by warm air, allowing the film to shrink tightly around the prod-
uct. This effect is also used for insulating wiring joints. Preexpanded tubes are
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slipped over the joints. Heating causes them to shrink tightly around the bare
wires.

Medical applications of biodegradable shape memory polymers include their
use for removing blood clots formed during strokes. Preshaped foams can be used
to fill cranial aneurisms. Loosely tied sutures made from fibers that have been
stretched at 50 ◦C will tighten when heated just above room temperature.

NOTE OF INTEREST

The discovery of the shape memory effect in TiNi by Buehler et al. at the Naval
Ordinance Labs occurred during an investigation of the alloy for possible use as
a corrosion-resistant knife for underwater activities. The investigators called the
alloy nitinol for Nickel, Titanium, and Naval Ordinance Labs.

REFERENCES

W. J. Buehler, J. V. Gilfrich, and R. C. Wiley. J. Appl. Phys. 34 (1963): 1475–7.
J. D. Harrison and D. E. Hodgson. Shape Memory Effects in Alloys. New York:

Plenum Press, 1975.
Materials for Smart Systems. Pittsburgh, PA: Materials Research Society, 1995.
J. A. Shaw. Int. J. Plasticity 16 (2000): 451–62.
K. Shimizu and T. Tadaki. Shape Memory Alloys. New York: Gordon and Breach,

1987.

PROBLEMS

1. Estimate the stress required to shift the As temperature of a NiTi alloy from
100 to 80 ◦C.

2. Estimate the amount of elastic energy per volume that can be stored at 75 ◦C
in the material shown in Figure 20.7.

3. Figure 20.3 shows that increased amounts of both aluminum and zinc lower
the Ms temperatures of copper–zinc–aluminum alloys. For both aluminum
and zinc, determine dT/dc where T is the Ms temperature and c is the atomic
% solute. Note that the compositions in Figure 20.3 are in wt. %.
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21 Calculations

This chapter is intended to help engineering students solve engineering problems.
A suggested procedure is:

1. Estimate the answer before you start. This will provide you with something to
check your answer against.

2. Consider making a sketch. Very often this will clarify the problem.
3. Define variables and select an appropriate form of analysis. If a numerical

answer is required, this may involve developing an algorithm or selecting
appropriate equations.

4. Be sure to include units.
5. Do the algebra before substituting numbers. Often things drop out. This makes

numerical calculations simpler.
6. Find the solution and check it against the original estimate.
7. Report your answer with an appropriate number of significant figures.

Estimates

When attempting to solve an engineering problem first it is helpful to make an
estimate of the final answer. An initial estimate provides a check to final answers.

Rough estimates can be made from human experience. One knows that most
solids sink when immersed in water so they have densities greater than 1 Mg/m3.
Also almost all solids have densities less than 20 Mg/m3. Those numbers form
reasonable bounds for the density of most materials. Of the solids that float in
water, most float with less than half of the solid above water. That means they have
densities between 1 and 0.5 Mg/m3. Most plastics have densities over 0.9 Mg/m3.

Estimation is necessary for making reasonable assumptions. For example, dur-
ing heat treatment of a metal, grain growth may occur. This growth releases
energy, which will go into heat. A simple calculation will let one know whether it
is reasonable to neglect this when calculating the power needed to run the furnace.

Often a crude estimation will be enough to decide which of several alternatives
should be considered. For example, if an item is to be made by casting, several

214
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different casting processes are possible. An estimation of the total production is
necessary to decide whether die casting, sand casting, or permanent mold casting
is best. Die casting is the fastest and most automated but requires the greatest
capital investment. It is appropriate only for very high quantities. Sand casting
is the slowest and involves the most labor. It is appropriate for making a few
parts. Permanent mold casting is intermediate and may be best for intermediate
quantities.

EXAMPLE 21.1. Estimate the maximum load that a passenger elevator must be
designed to carry. This requires estimating the maximum weight of passengers
and the number of passengers. It would be reasonable to assume 250 lbs per
person and that a 250-lb person would occupy 1.5 ft2. If the elevator measures
5 × 6 ft = 30 ft2, 20 people might squeeze in so the load would be 20 persons ×
250 lb/person = 5000 lb. Let’s not quibble about the estimates of 20 persons and
250 lb/person. This is only a rough estimate. Similarly, the necessary load-carrying
capacity of a bridge can be estimated by multiplying the maximum number of
vehicles that could fit on the bridge multiplied by the average weight per vehicle.
In both cases a factor of safety can be used to cover uncertainties in our estimates.

EXAMPLE 21.2. Estimate the annual U.S. production of soup cans. Here the
guesses are less certain. We might assume that the average person has soup once
every two weeks. With a U.S. population of 300 million the consumption would
be (300 × 106 persons)(365 days per year) (1 can per person/14 days) = 8 billion
cans/year. If we needed a more accurate number, we could use the Web to find a
source that might have figures from can makers.

Estimates are needed to make experiments. If we are to measure an electrical
current, a pressure, a weight, or a length we must first make a crude estimate
of the answer to determine what equipment to use. Ammeters, pressure gauges,
and weighing devices all come in different sizes. An analytical balance that could
weigh an empty can cannot weigh an automobile. Odometers, yardsticks, and
micrometers all measure length but are not interchangeable.

Sketches

In attacking many problems, the very first thing that should be done is to make
a sketch. Pictorial visualization is helpful and often necessary if the problem
involves geometry. Many of the greatest engineers were excellent draftsmen.
Leonardo da Vinci and Michelangelo were the best engineers of their period. The
original drawings of the Brooklyn Bridge by the chief engineer, Roebling, are now
being preserved in an art museum in Brooklyn. Feynman diagrams, devised by
Nobel physicist Richard Feynman to represent nuclear reactions, conceptually are
one of his greatest contributions to physics. Engineers need not be artists. They
need only to be able to make freehand sketches that they themselves can interpret
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correctly. Although it is better if others can also understand the drawings, it is
essential only that the drawer can.

Sketches are important in dealing with a wide variety of problems includ-
ing electrical circuits, crystal structures, force and moment balances, chemical
processes, and flow of air around airfoil or computer programs.

EXAMPLE 21.3. If one is concerned with blanking 6-in.-diameter circles from
a wide sheet, a sketch would help determine the width of a wide sheet that would
minimize the amount of scrap per blank (Figure 21.1).

21.1. Sketch of blank layout.

EXAMPLE 21.4. The contact length between a roll and a work piece can be
visualized with a sketch (Figure 21.2).

21.2. Sketch of deformation zone in rolling.

EXAMPLE 21.5. Still another example is finding the resistance of a network of
resistors (Figure 21.3).

21.3. Arrangement of resistors.
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EXAMPLE 21.6. A sketch of a force balance shows the relation between pres-
sure, diameter, and wall thickness of a pressurized sphere Figure 21.4 shows that
P(πd2/4) = πDtσx .

21.4. Force balance on half a sphere.

EXAMPLE 21.7. A student cannot remember whether the relation of the lattice
parameter of a bcc crystal to the atomic radius is a = 4r/

√
3 or a = √

3 r/4. A
simple sketch (Figure 21.5) would show that a = 4r/

√
3.

21.5. Sketch of body-centered cubic unit cell.

Units

Units are a necessary part of all numerical answers. To express the water con-
sumption of a process as 23 is meaningless. Does that mean 23 gal, 23 m3, 23 ft3,
23 L, or something else? A salary of $100 could mean $100/week, $100/d or
$100/h. One should never assume that the reader will know the correct units.

Every equation must be dimensionally correct. The dimensions on the right-
hand side must be the same as those on the left-hand side. Suppose we
know that the conductivity, σ , of a material may be expressed as σ = nqµ,
where n is the number of carriers per volume, q is the charge per carrier
(coulombs/carrier), and µ is the mobility, but we do not know the units of mobil-
ity. If conductivity, σ , is expressed in (ohm · m)−1, the units of mobility must be
[σ (ohm · m)−1]/[(n carriers/m3)(q C/carrier)] = µ m2/(V/s). This in turn can
be thought of as a drift velocity, (m/s), divided by the voltage gradient, (V/m).

The values of mathematical functions are dimensionless. Quantities such as
sin(θ ), exp(x2/Dt), arctan(x/L), ln(ε̇/ε̇o), and ln(x/L) are dimensionless. Expo-
nents and the arguments of functions must also be dimensionless. If x were to
have the units of length, yx , sin(x), and ln(x) would all have crazy units. Some-
times the units are hidden in constants. The strain–rate dependence of strength is
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sometimes expressed as σ = σo + b ln(ε̇). Since ε̇ has the dimensions of 1/time, it
would appear that the units of b must be (stress)[ln(time)]. However, this equation
is more properly written as σ = σo + b ln(ε̇/ε̇o), where ε̇o is also a constant. Use
of the first form implies that ε̇o = 1/s and ε̇ is expressed in s−1.

The term erf[x/(2
√

Dt)] often arises in problems involving diffusion. Here erf
is called the error function. Note the quantity x/

√
Dt is dimensionless if D is

expressed in m2/s, t in s, and x in m. Similarly, in the equation expressing the
equilibrium number of vacancies per volume, Nv = No exp[−Q/(RT )], the term
Q/(RT ) must be dimensionless. It is if Q is expressed in J/mol, R in J/(mol·K),
and T in K. The equation L = tan(D/L) is dimensionally incorrect because the
right-hand side is dimensionless but left-hand side has units of length.

Often it is useful to combine variables that affect physical phenomenon into
dimensionless parameters. For example, the transition from laminar to turbulent
flow in a pipe depends on the Reynolds number, Re = ρLv/µ, where ρ is the
fluid density, L is a characteristic dimension of the pipe, v is the velocity of flow,
and µ is the viscosity of the fluid. Experiments show that the transition from
laminar to turbulent flow occurs at the same value of Re for different fluids, flow
velocities, and pipe sizes. Analyzing dimensions is made easier if we designate
mass as M, length as L, time as t, and force as F. With this notation, the dimensions
of the variables in Re are M L−3 for ρ, (L) for L, (L/t) for v, and (F L−2t) for µ.
Combining these it is apparent that Re = ρLv/µ is dimensionless.

In problems involving non-steady-state heat conduction, the temperature dis-
tribution depends on a parameter x/[K t/(ρC)], where x is the distance (L) from
a location, t is the time (t), K is the thermal conductivity with dimensions of
energy/[(time)(area)(temperature gradient](ET −1L−1t−1), where E is energy.
Here C is the heat capacity with units of E M−1T −1, ρ is density, M L−3, x is
distance (L), and t is time (t). For the same boundary conditions the same tem-
perature will be found at the same times and locations, with different materials,
if x/[Kt/(ρC)] has the same value.

Often one can solve problems simply by keeping track of units. The density of
copper can be calculated as

density = mass/volume = (mass/unit cell)/(volume/unit cell)

mass/unit cell = (4 Cu atoms/uc)(643g/mol)/(6.023 × 1023 Cu atom/mol.)

Note this is

g/uc

volume/unit cell = (0.3615 × 10−9)3m3/uc

so the density is

[(4 Cu atoms/uc)(643.g/mol)/(6.023 × 1023 Cu atom/mol)]/

[0.3615 × 10−9)3m3/uc] = 8.94 × 106 g/m3 or 8.94 Mg/m3.

Note that if we cannot remember whether to multiply or divide by Avrogadro’s
number, the units will tell us.

Expressing quantities in detailed units is often of key importance.
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EXAMPLE 21.8. Suppose we have a composite material containing two different
materials, A and B. The weight percentages are 14% A and 86% B. Material A
contains 23 wt% Fe and material B contains 12 wt% Fe. To find the total amount
of iron in a gram of composite,

(0.14 g of A/g comp)(0.23 g Fe/g A) + (0.86 g B/g comp)(0.12gFe/g B)

= 0.135 g Fe/gm composite.

Note that by writing 0.23 g Fe/g A instead of just 23% the units work out com-
pletely.

In converting Celsius to Kelvin one should realize that an interval of one
degree on the Celsius scale is exactly the same as an interval of one degree on the
Kelvin scale. The linear coefficient of thermal expansion of iron may be written
as 11.76 × 10−6(m/m)/K or as 11.76 × 10−6(m/m)/◦C. One may think of this
as (�T )K = (�T )◦C. No conversion is necessary. However, when dealing with
absolute temperatures as in the perfect gas law, PV = nRT , or an Arrhenius
rate equation, rate = A exp[−Q/(RT )], the temperature must be in Kelvin. The
conversion T (K) = T (◦C) + 273 is necessary.

If a fractional change of a linear dimension, �L/L , is small and the same
change occurs in all directions, then �V/V = 3�L/L . Thus, for iron, the ther-
mal coefficient of volume expansion is 3 × 11.76 × 10−6(m/m)/◦C = 35.3 ×
10−6(m3/m3)/◦C.

Available data

When problems are assigned in the classroom, the student is very often given all
of the data necessary to solve the problem and no extra data. The real world is
full of data, most of it irrelevant to the problem. The engineer must decide which
data is appropriate to his/her own problem.

If there seems to be too little data, the first question is whether the missing
data are really essential to solving the problem. If the answer is yes, then a search
should be made through appropriate sources (handbooks, texts, etc).

If the missing data are essential and cannot be found, then there are still two
possibilities. The problem can be solved in terms of the missing value by assigning
a symbol to it. For example, the solution might be 37.2Y where Y is the yield
strength of the alloy in MPa. The other possibility is to estimate the missing value
and assume it in the calculation. In this case the assumption should be made clear
to the reader.

Sometimes in solving a problem, it becomes apparent that some of the data
are wrong or inconsistent so that a reasonable solution is impossible or at least
uncertain. This should be made clear to the person assigning the problem. This
is particularly important in an industrial situation because other people may be
using the same data to make important decisions. If possible the correct data
should be found or assumed and the solution continued as with too little data.
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Algebra before numbers

In problem solving, it is generally quicker to do as much algebra as possible
before substituting numbers. Often one will find that some quantities will cancel.
Furthermore, by doing all of the numerical operations at one time, there is less
chance for error.

EXAMPLE 21.9. There are two ways of finding the percentage of increase or
decrease of material costs if magnesium were substituted for aluminum in a part
of 2.5 in3.

Data Aluminum Magnesium

Cost/lb $ 0.86 $1.68
Density 2.70 Mg/m3 1.74 Mg/m3

The long method is to calculate the material cost of each part and compare:
The weight of aluminum would be

(2.5 in3)(0.02543 m3/in3)(2.7 × 106 g/m3) = 110.6 g or
(110.6 g)/(254 g/lb) = 0.243 lb and this would cost
(0.243 lb)($0.83/1b) = 20.9¢.

The weight of magnesium would be

(2.5 in3)(0.02543 m3/in3)(21.74 × 106 g/m3) = 71.3 g or
(71.3 g)/(254 g/lb) = 0.157 lb and this would cost
(0.157 lb)($1.68/lb) = 26.4¢.

Substituting magnesium would increase the cost by a factor of 26.4/20.9 =
1.26 or a 26% increase.

The short method:

Cost = (Cost/wt)(wt/vol)(vol)

CostMg/CostAl = [(cost/wt)/Mg(cost/wt)Al][densityMg/densityAl]

(volMg/volAl) = ($0.86/$1.68)(1.74/2.70) = −1.26 or a 26% increase.

Note that the conversions of cubic inches to cubic meters and of pounds to grams
are unnecessary.

Ratios

Many problems can be solved most easily by setting up ratios. The Arrhenius
equation relates the rate of a reaction to temperature. Rate = A exp[−Q/(RT )]
so the time required to reach a certain stage of reaction is given by time =
C exp[+Q/(RT )]. Suppose we know two combinations of time and temperature,
(t1, T1) and (t2, T2), that result in the same extent of reaction. We can find
the activation energy by setting up the ratio t2/t1 = {C exp[ + Q/(RT 2)]}/
{C exp[ + Q/(RT 2)]} = {exp[ + Q/(RT 2)]}/{exp[ + Q/(RT 1)]} = exp[ + Q/

(RT2 − Q/(RT 1)] = exp[(Q/R)(1/T2 −1/T1)] : Q/R = ln(t2/t1)/(1/T2−1/T1)
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or simply Q = R ln(t2/t1)/(1/T2 − 1/T1). Note that it is not necessary to
know the value of the constant, C. One can find the temperature, T3, nec-
essary to obtain the same amount of reaction in a different time, t3, from
1/T3 = 1/T2 + (R/Q) ln(t3/t2).

Percentage changes

A percentage change is always defined as 100 × (the difference)/(old value).
Specifically, if the old value is x0 and the new value is x1, the percentage change
in x is 100(x1 − x0)/x0. This may be simplified to 100(x1/x0 − 1). With this
definition, a 15% increase in price followed by a 15% decrease is less than the
original price.

One is always free to define new variables. If, for example, the expression
E/(1 − ν2) occurs frequently in a calculation, defining E ′ = E/(1 − ν2) will
reduce the amount of writing.

The use of subscripts may also be used to identify new variables or particular
values of a variable. For example, ro might designate an initial value of a radius
and r1 might designate the radius at some stage 1, or di and do might designate
the inside and outside diameters of a pipe.

Finding slopes of graphs

With two known points, (x1, y1) and (x2, y2), on a straight line determine that its
slope is

(y1 − y2)/(x1 − x2).

If there are more than two points on the line, it does not matter which two points
are chosen to find the slope. However, experimental data rarely lie exactly on a
straight line. There tends to be scatter. A slope that best fits the line can be found by
statistical analysis of the points. Without use of such analyses, a good estimate can
be found by graphing the data and drawing the line that best represents the data.

If no plot is made, the chance of finding a reasonable approximation is highest
if one analyzes two points that are as far apart as possible. Consider the following
data, which are plotted in Figure 21.6.

x y

28 1.0
45 4.15
73 4.9

103 7.9
125 10.8
152 11.7
165 14.0
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21.6. The best straight line through these points has a slope of about 0.089. Note that the
slope between the first two points is �x/�y = (4.15 − 1.0)/(45 − 28) = 0.185, and the slope
between the second pair of points is �x/�y = (4.9 − 4.15)/(73 − 45) = 0.0.027, whereas the
slope determined from the extreme points is �x/�y = (14.0 − 1.0)/(165 − 28) = 0.1095, which
is much closer to the best slope.

Errors in reading a graph are equivalent to scatter of data and have the same
effect. If a slope is to be found from a straight line on a graph, reading points well
separated from one another will minimize error.

Log-log and semilog plots

There are several reasons for using logarithmic scales. Not infrequently, the values
of a quantity being plotted vary by factors of 100, 1000, or more over the range of
interest and distinguishing 8 from 10 is as important as distinguishing 800 from
1000. In assessing the growth potential of stocks, it is the fractional (or percent)
rate of growth that is important. The price histories of stocks are conventionally
plotted on a logarithmic scale. It is the slope on a semilog plot that is important
(Figure 21.7).
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21.7. The change of stock prices over sev-
eral years. The steeper slope of the XYZ
stock indicates a higher percentage of
growth, even though the price of both stocks
rose by about $50 between 1990 and 2000.
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Sometimes there are theoretical reasons for using logarithmic scales. Perhaps
it is expected that the data may be described by an equation of the form y = Axn .
In this case log(y) = log(A) + n log(x) so a plot of log(y) versus log(x) should
be a straight line. There are two different (but equivalent) ways of plotting. One
is to calculate the values of log(y) and log(x) and plot these. (Figure 21.8A). The
other is to plot y versus x on logarithmic scales (Figure 21.8B).
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21.8. Two ways of making a logarithmic plot. (A) Either the logarithms of the numbers may be
plotted or (B) the numbers plotted on logarithmic scales.

Logarithmic scales are often labeled only at intervals differing by factors of ten
with no intermediate grid lines. If x is plotted on a logarithmic scale, the distance
between two values x1 and x2 depends on the ratio of x2/x1. The distance on the
paper between 1 and 2 is the same as the distance between 2 and 4 and between
5 and 10. In reading values between 1 and 10 it is well to remember that 2 is at
a point about 0.3 times the distance between 1 and 10, so 5 is represented by a
point about 0.7 times of the distance between 1 and 10 (Figure 21.9).

0.3 0.3 0.3

0.3

3

0.3

1.0

1 2 4 5 6 7 8 9 10

21.9. Reading a logarithmic scale. Note that
the paper distance between two points that
differ by a factor of 2 is close to 3/10 of the
distance between two points differing by a
factor of 10.

If the x and y log scales have the same intervals for factors of ten, the slope may
be found by measuring �x and �y with a ruler and taking the slope, n, by �y�x ,
as illustrated in Figure 21.10A. A more useful way is to take two points (x1 y1) and
(x2 y2). Note that if y = Axn, (y1/y2) = (x1/x2

n), n = log(y1/y2)/ log(x1/x2).
Therefore, one need only to compute the slope from the coordinates of two points.
These two approaches are illustrated in Figure 21.10B.
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A B
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21.10. Two methods of finding the slope of a line on a log-log plot. (A) Using the ratio of the
number of decades and (B) using the coordinates of two points.

Graphical differentiation and integration

The differential of a function dy/dx is simply the slope of a graph of y versus x .
If the function cannot be expressed analytically, the value of dy/dx at any value
of x can be found by drawing a tangent to the curve and finding the slope of the
tangent, as illustrated in Figure 21.11.

4

2

0
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y

0, 1.75

0.3, 4

at x = 0.1, dy/dx = (4−1.75)/(0.3−0) = 7.5

21.11. Differentiation by finding the slope of a graph. The slope, dy/dx, at a point on a curve is
the slope of a tangent to the curve at that point. The slope of that line is found by picking two
well-separated points on that line. In this case the slope at x = 0.1 is found by taking y = 1.75
at x = 0 and y = 4 at x = 0.3, so dy/dx = �y/�x = (4 − 1.75)/(0.3 − 0) = 7.5.

Integration of a function y(x) between limits of x = a and x = b,
∫ b

a ydx ,
is simply finding the area under a plot of y versus x from a to b. Often the
mathematical dependence of y on x is not known or is too complex to integrate
analytically. In this case graphical integration may be useful. There are several
alternatives.
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21.12. Graphical integration by counting
rectangular elements.
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A21.13. Graphical integration by eyeballing
an average value of y over the interval. A hor-
izontal line representing the average should
be drawn so that (A) the area under the curve
should equal (B) that over the curve.

One method is to count rectangles of dimensions �x by �y under the curve
(Figure 21.12). In this case

∫
ydx = n�x�y, where n is the number of rectangles

under the curve. The elements that are completely and those more than 50%
under the curve are counted. In the case of Figure 21.12, n = 57, �x = 0.2 and
�y = 0.5 so the total area is 5.7. The accuracy of this method increases as the
size of the elements decreases.

A rather crude estimate of the integral can be made by eyeballing the average
value of y over the range x = a to x = b, as shown in Figure 21.12. In this case∫

ydx = yav(xb − xa). For Figure 21.13, this method gives
∫

ydx = 2.2 × 2.5 =
5.5. This is not a very sophisticated method but it does give a reasonable estimate
that can be used as a check for a more sophisticated integration.

The trapezoidal rule provides a rather quick method that is reasonably accu-
rate if the curve is approximated by connecting adjacent points on the curve by
straight lines, as shown in Figure 21.14. The interval between each pair of points
(xn+1, yn+1) and (xn, yn) is a trapezoid of area

An,n+1 = (xn+1 − xn)(yn + yn+1)/2.

The sum of the areas of all of the trapezoids between x = n and x = m is

∫
ydx = �m,n[(xn+1 − xn)(yn + yn+1)].
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21.14. Numerical integration using the trapezoidal rule. The area under the curve is considered
as being composed of a series of trapezoids. The area of each trapezoid is its width, �x, times its
average height, (yn + yn+1)/2. The total area is the sum of these areas, [(xn+1 − xn)(yn + yn+1)]/2,
which in this case equals 5.64. The accuracy of this method is improved by using smaller
intervals, �x, where the curvature is high.

If all of the intervals, �x = (xn+1 − xn), are equal, the summation can be
simplified to

∫
ydx = (xn − xm)�m,n(yn + yn+1)/2. Or more simply

∫
ydx =

(xn − xm)[(yfirst + ylast)/2 + �2nd, next to last(yn)].
This means that one need only find the sum of all points (except the end two),

plus (1/2) times the end two, and multiply this by the total x interval. This method
works well unless there is appreciable curvature between points. Even then the
error is reduced by decreasing the interval �x .

Iterative and graphical solutions

Many equations cannot be solved analytically. One example is x0.22 exp(−x) =
0.35. This equation, however, can be solved numerically by iteration (i.e., trying
many values of x and noting how the left-hand side behaves.) The appropriate
values of x are those for which the left-hand side = 0.35.

x x0.22 exp(−x) x x0.22 exp(−x)

0 0 0.005 0.3101
1 0.3679 0.010 0.394
2 0.1576 0.008 0.34292
1.1 0.3399 0.009 0.35158
1.05 0.3537 0.0088 0.34992
1.06 0.3509
1.63 0.35009

Hence, x = 1.063 and 0.0088. We have to decide from the physics of the
problem which solution is appropriate. Our original estimate should help us make
this decision.
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An equivalent method is to let y = x0.22 exp(−x), and plot y versus x . The
solution is the value (or values) for which y = 0.35. See Figure 21.15.
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21.15. Graphical solution of 0.35 = x0.22 exp(−x). There are two solutions, x = 1.063 and
0.0088. One must decide from physical grounds which solution is correct.

Graphical solutions can also be used where some of the information is available
only in graphical form.

EXAMPLE 21.10. It is known that the fracture toughness, Kc, of aluminum
alloys varies with their yield strengths, as shown in Figure 21.18. In a given
situation, fracture will occur if the stress σ = 1.25Kc. What yield strength should
be specified to allow the highest load without either fracture or yielding? The
solution is obtained by plotting σ = 1.25Kc and σ = σy on the same axes and
noting the intersection of the two curves (Figure 21.16).
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21.16. Graphical solution of the problem of finding the aluminum alloy that will support the
maximum load without either yielding or fracture. The intersection at a yield strength of 57 ksi
gives the optimum.



P1: JzG
0521867053c21 CUFX036/Hosford 0 521 86705 3 printer: Sheridan November 3, 2006 15:56

228 MATERIALS SCIENCE: AN INTERMEDIATE TEXT

Interpolation and extrapolation

Suppose there is a table of data of y at various levels of x and one wishes to know
the value of y that is not listed in the table. There are two possibilities. Either the
desired value of x lies between two listed values of x , in which case one must
interpolate, or the desired value of x lies outside the listed range, so one must
extrapolate. Of the two, interpolation is safer.

Interpolation is done by assuming that y varies linearly between x1 and x2 so
that y = a + bx . If the values y1 and y2 are listed for x1 and x2, (y2 − y1) =
b(x2 − x1) so

(yn − y1)/(y2 − y1) = (xn − x1)/(x2 − x1) or

yn = y1 + (y2 − y1)(xn − x1)/(x2 − x1).

This is illustrated in Figure 21.17A. Note that the term (xn − x1)/(x2 − x1)
represents the fractional distance of xn along the interval x1 to x2. This equals the
fractional change (yn − y1)/(y2 − y1) along the interval y1 to y2.

The same principle applies to extrapolation, except now yn > y2. Now

yn = y2 + (y2 − y1)(xn − x2)/(x2 − x1).

This is illustrated in Figure 21.17B.
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21.17. Interpolating (A) and extrapolating (B).

Analyzing extreme cases (bounding)

It is often useful to calculate an upper bound (a solution that is known to be too
high or a maximum possible value). The true solution then is known to be no
higher than this. Similarly a lower bound (a solution that is known to be too low
or a minimum possible value) sets a lower limit to the true solution. The closer the
upper and lower bounds are, the more accurately one can estimate a true solution.

EXAMPLE 21.11. Calculate the number of 1-in.-diameter balls that would fit
into a box that is 2 ft × 2 ft × 4 ft.

A simple upper bound can be found by dividing the volume of the box by the
volume of a ball. Then N = (2 × 2 × 4 × 123)/[(4/3)π × (.5)3] = 53 × 103 is a
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reasonable upper bound. A lower bound could be found by assuming that each
ball occupies a space of 1in.3 In this case N = (2 × 2 × 4 × 123)/1 = 28 × 103

is a reasonable lower bound. We could make a better upper bound if we happened
to know that the maximum possible packing factor for spheres is 74%. With this
knowledge the upper bound becomes 0.74 × 53 × 103 = 39 × 103. Thus, the true
answer lies between 28 × 103 and 39 × 103.

It is often useful to examine extreme cases to see if one is using the right
equation.

EXAMPLE 21.12. I have trouble remembering whether the equation for stress
relaxation is

σ = σo[1 − exp(−t/τ)] (21.1)

or σ = σo exp(−t/τ). (21.2)

However, I do know that at time t = 0, σ = σo, and at time t = ∞, σ = 0 so
Equation (21.2) is the correct one.

Significant figures

Computers and calculators often give numbers with 7 or 8 figures. Calculated
answers are very seldom this accurate because the input data are not known to
this accuracy. As a general rule, answers should be reported with as many figures
as likely to be accurate. For problems involving only addition, multiplication,
and division, this will be the number of figures to which the least accurate input
data is known. If subtraction is involved, the accuracy may be much less than the
accuracy of the least accurate input. For engineering calculations the accuracy is
very often three figures.

When rounding off numbers, a solution should be reported with the greatest
number of significant figures so no information is lost but no more. In multi-
plication, this amounts to reporting the answer to as many significant figures as
the least certain input, if the first digit of the answer is higher than the first digit of
the uncertain input. Otherwise, one more digit should be reported. The rationale
for this is that the relative (percentage) uncertainty in the product is at least as
high as the relative uncertainty of the least certain input.

EXAMPLE 21.13. If we calculate 4.032 × 0.362/8.012 = 0.187207, the largest
relative uncertainty is ±0.005/0.372 = ±0.0013. The absolute uncertainty of the
product is ±0.0013x = 0.187207 = ±0.0002, so the product can be rounded off
to 0.1872. Information would be lost if we rounded off to 0.187, and reporting
the answer as 0.18721 implies more accuracy than is warranted.

On the other hand, for 4.032 × 0.372/2.731 there is the same relative uncer-
tainty, ±0.005/0.372 = ±0.0013, but now the absolute uncertainty is ±0.0013 ×
0.5491 = 0.0007. Therefore, the answer should be rounded off to 0.549.



P1: JzG
0521867053c21 CUFX036/Hosford 0 521 86705 3 printer: Sheridan November 3, 2006 15:56

230 MATERIALS SCIENCE: AN INTERMEDIATE TEXT

The temptation to round off numbers before the end of the calculation should
be resisted. If all of the calculations are done in a single step this temptation
will not present itself because calculators store more figures than the display can
show.

EXAMPLE 21.14. Consider the consequence of premature rounding off in the
calculation of the ratio D2/D1 of the diffusivities of carbon in iron at two temper-
atures, T2 and T1. We know that D2/D1 = exp[8,900(1/T1 − 1/T2)]. Suppose
we want to calculate the percentage of increase of the diffusivity for a 1 ◦C tem-
perature change at about 500 K. Then D2/D1 = exp[8900(1/500 − 1/501)]. If
we calculate 1/500 = 1.9960 × 10−3 and 1/501 = 0.20000 × 10−3 and round
these off before we subtract, we would find 1/T1 − 1/T2 = 0 so D2/D1 = 0 and
conclude that there was no change of diffusivity.

If we had not rounded off but had done the entire calculation in one step, we
would have found D2/D1 = exp[8900(1/500 − 1/501)] = 1.035 or a about a
3.5% increase for each ◦C.

Rather than writing numbers as 15,000, 0.000,005,5 or 15,300,000,000 it is
helpful to the reader to express them in terms of factors of 103n (e.g., as 15 × 103,
5.5 × 10−6, or 15.3 × 109). Writing 15.3 × 109 is preferable to 1.53 × 1010. 103n

reflect the words thousands, millions, 0−3 billions, and so on.
When the numbers have units, the factors of factors of 103n can be expressed

by SI prefixes. We can write 15 kJ instead of 15 × 103 J and 3.5 µm instead of
3.5 × 10−6 m. Table 21.1 lists standard SI prefixes.

Logarithms and exponents

There are several simple rules for handling exponents that simplify calculations:

(xa)(xb) = x (a+b)

(xa)/(xb) = x (a−b)

(xa)b = xab.

Table 21.1. Standard SI prefixes

103n Name Symbol

10−15 femto f
10−12 pico p
10−9 nano n
10−6 micro µ

10−3 milli m
103 kilo k
106 mega M
109 giga G
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Several simple rules for logarithms are

ln(xa) = a ln(x)
ln(ab) = ln(a) + ln(b)
ln(a/b) = ln(a) − ln(b).

The base of natural logarithms, e = 2.718, is defined such that ln(e) = 1.

ln(ex ) = x ln(e) = x .

Note that ex is often written as exp(x).
Similarly for logarithms of base 10, log(10) = 1 so log(10x ) = x . Note that

ln(x) = 2.3 log(x).

The Greek alphabet

Greek letters are often used in science and engineering. Table 21.2 lists some of
the common uses.

PROBLEMS

1. Sketch a cube, showing one of the body diagonals between opposite corners.
Now calculate the ratio of the length of the body diagonal to the length of
an edge.

2. Estimate the mass of the earth.

3. The viscosity of a fluid, η, is defined in terms of a test in which it is sheared.
The viscosity is the ratio of the shear stress to the shearing strain rate γ̇ , η =
τ/γ̇ . The strain rate, γ̇ , is the rate of shearing between two planes divided
by the distance between them. Determine the SI units for viscosity.

4. Plot the y versus x data on the log-log scale given below (Figure 21.18).
Determine the exponent n in the equation y = Axn .

x y

0.0103
0.0235
0.056
0.113
0.217
0.353

1.256
1.497
1.807
2.103
2.398
2.58

21.18. Figure for Problem 4.
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Table 21.2. Greek alphabet

Letters Symbols Typical use

alpha A
α angle, coefficient of thermal expansion

beta B
β angle

gamma � mathematical function
γ angle, shear strain, surface energy

delta � difference
δ, ∂ difference between differential quantities

epsilon E
ε strain

zeta Z
ζ

eta H
η viscosity, efficiency

theta � temperature
θ angle, temperature

iota I
ι

kappa K
κ

lambda �

λ wave length
mu M

µ coefficient of friction, shear modulus, 10−6

nu N
ν frequency, Poisson’s ratio

xi �

ξ

omicron O

o
pi �

π 3.14167, ratio circle’s circumference to
diameter

rho P
ρ density, radius of curvature, resistivity

sigma � summation
σ stress, conductivity, standard deviation

tau T
τ shear stress

upsilon Y
υ

phi �

φ angle
chi X

χ

psi ! angle
ψ

omega � ohm
ω angular frequency
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5. From the plot below (Figure 21.19), determine the slope, d(ln y)/d(ln x).

0.1 1 10 100 1000
x

100000

10000

1000

100

10

1

0.1

y

21.19. Figure for Problem 5.

6. The plot below (Figure 21.20) shows the annual production of aluminum
beverage cans in the U.S. Find the total number of cans produced between
1970 and 1982.
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21.20. Figure for Problem 6.

7. The linear coefficient of thermal expansion of aluminum is 23.6 × 10−6/K.
What is the percentage of volume change when aluminum is cooled from
100 ◦C to 20 ◦C?

8. From the table below, find the value of x when erf(x) = 0.632.

x erf(x) x erf(x)

0.0 0.0 0.50 0.5202
0.10 0.1125 0.60 0.6039
0.20 0.2227 0.70 0.6778
0.30 0.3286 0.80 0.7420
0.40 0.4284 0.90 0.7970
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9. Consider a composite made from plastic resin reinforced by glass fibers. The
glass has a density of 2.3 g/cm3 and the resin has a density of 0.95 g/cm3.
If the glass fibers occupy 45% of the volume, how many pounds of resin
would be required to make 4 in3 of composition?

10. A certain iron-base alloy contains 5% Cr and 10% W by weight. It is desired
to make a new alloy with molybdenum substituting for tungsten on an atom
for atom basis. That is, one atom of Mo replaces one atom of W. What wt.%
Mo should the alloy contain? The following data are available:

Element Atomic weight (amu)
Density
Mg/m3

Fe 55.85 7.87
Cr 52.0 7.19
W 183.9 19.3
Mo 95.9 10.2
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alnico, 198
amorphous materials, 153–166
antiphase domain boundaries, 65
asbestos, 176
ASTM grain size, 1
austenite, 58
Avrami kinetics, 108–111

Bloch walls, 191
bonding, 133–142

covalent, 136
ionic, 133–134

boundary layer, 94
buckyballs, 180
Burgers vector, 37

carbon fibers, 180
carburization, 80
cementite, 57
characteristic ratio, 155
cholesteric liquid crystals, 168
Clausius–Clapeyron equation, 57
clay, 177
columnar grains, 90
columnar liquid crystals, 169
constitutional supercooling, 95
coordination, 136–139
crystal structures, 140–142
crystal systems, 11
critical radius for nucleation, 86
cube texture, 196
Curie temperature, 66, 171, 191

decarburization, 79
dendrites, 90, 95–98
devitrification, 162
diamond, 179

diffusion, 69–81
Darken’s equation, 77
mechanisms, 73
multiphase systems, 78–81
self, 76
special paths, 76
temperature dependence, 75–76

disclinations, 170
dislocations, 36

energy, 38
stress fields, 38–39
partial, 39

distribution coefficient, 92

elastic moduli, 134
enthalpy of mixing, 52
entropy of mixing, 53
error function, 71
estimates, 214–215
Euler relations, 6
eutectic freezing, 98–100
eutectoid transformation, 106–108
exchange energy, 185

ferromagnetism. See magnetism
Fibonacci series, 16
Fick’s laws, 69–70
foams, 202–204
fractals, 17
free energy, 52
free energy curves, 55–56
free volume, 154
freezing

cellular growth, 96
growth, 89
segregation, 91–93
single crystal growth, 98

235
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freezing (cont.)
steady state, 95
volume change, 85

Frenkel defects, 34
fullerenes, 180

gas porosity, 98
gas solubility, 98
Gibbs free energy. See free energy
Gibbs, Willard, 49
grain boundaries, 125–127

area per volume, 3
wetting, 130

grain size, 1–3
ASTM, 1
linear intercept, 1

glass
bridging oxygens, 158
chalcogenide, 163–166
compositions, 158
delayed fracture, 163
devitrification, 162
inorganic, 157–166
metal, 164–166
silicate, 157
thermal expansion, 161
viscosity, 159
Vycor, 161

glass transition, 153–166
polymers, 154

golden ratio, 16
Goss texture, 196
grain boundary, low-angle, 39
graphite, 179
graphical differentiation and integration,

224–226
Greek alphabet, 231
growth, freezing, 89
growth of precipitates, 111–113

hard sphere model, 155
honeycomb structures, 204
hot isostatic pressing, 151

ice, 49, 57, 61
icosahedron, 16
interpolation and extrapolation, 228
interstitials, 33
invariant reactions, 44
ionic radii, 139–140
isothermal transformation diagrams,

108
iterative solutions, 226–227

Johnson and Mehl equation, 108

Kelvin, Lord, 8
Kirkendall effect, 74–75

Le Chatelier’s principle, 57
liquid crystals, 168–174

displays, 174
orientation parameter, 169
optical response, 173
phase changes, 172
temperature and composition effects, 171

lodestone, 184
log-log and semi-log plots, 222
logarithms and exponents, 230–231
lyotropic liquid crystals, 171

magnetic materials, 184–201
B–H curve, 190
hard, 197–198
oxides, 192
soft, 194–196
square loop, 199

magnetic units, 189
magneto-crystalline energy, 188
magnetostatic energy, 187
magnetostriction, 189
martensitic transformations, 114–116
melting points, 134
metal glasses, 164–166
metastability, 57
mica, 176
microstructural relations, 5–6
Miller–Bravais indices, 21–23
molecular length, 154–155

nanotubes, 181
negative thermal expansion, 205
negative Poisson’s ratio, 205
nematic liquid crystals, 168, 174
nucleation

homogeneous, 85–88
heterogeneous, 88–89
solid state, 104

order, 64–67
long range, 64–67
short range, 67

Ostwald ripening, 113

Pauling, Linus, 142
pearlite, 107
percent changes, 221
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peritectic freezing, 100
Pfann, William, 93
phase rule, 43–44
plasticizers, 154
point defects, 33–36
porous materials, 202–204
precipitation-free zones, 113
precipitates

transition, 113
growth, 111–112

pressure effects, 57

quartz, 178
quasicrystals, 14–17

ratios, 220
radii ratios, critical, 136–138

Scheil equation, 91
Shottky defects, 34
segregation to surfaces, 127
segregation during freezing, 91–93
significant figures, 229–230
shape memory, 208–213
silicates, 176–178
silicon iron, 195
sintering, 144–151

activated, 150
early stages, 146
final stage, 147
intermediate stage, 147
liquid-phase, 150
mechanisms, 144

sketches, 215–217
slopes, 221–222
smectic liquid crystals,

168

solidification. See freezing
solubility limits, extrapolation, 60
space lattices, 11
spinodal reactions, 116–118
spherical triangles, 31
stacking faults, 39
steric parameter, 155
stereographic projection, 26–30
superelasticity, 209
surfaces, 121–131
surface energy

amorphous materials, 125
direct measurement, 128–129
magnitudes, 131
relation to bonding, 121
relative, 129
orientation dependence, 122–124

ternary phase diagrams, 44–49
tetrakaidecahedron, 6–8
thermal shock, 160–161
transformations, 104–119

units, 217–219

vacancies, 33
volume fraction phases, 4
Voroni cells, 157

wetting, grain boundaries, 130
Wigner–Seitz cells, 157
whiskers, 40
wulff plot, 123–124

Zachariasen’s rules, 157
zeolites, 182
zone refining, 93
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