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Preface

The subject of fluid mechanics is a vast and complex one that deals
with the behavior of all types of fluid either at rest or in motion.
Since a great deal of fluid behavior is impossible or extremely complex
to analyze mathematically, it is often necessary to resort to experi-
mental data to obtain working results. This tends to make the study
of fluid mechanics rather overwhelming for the student meeting it for
the first time; and therefore it is essential to use a simple and straight-
forward approach in an elementary fluid mechanics course.

Thistext is intended to meet the need of students attending technical
institutes and colleges. It deals with the subject at a level which will
be easily comprehensible to them, at the same time giving them
sufficient knowledge to deal with the practical fluid mechanics prob-
lems that they are likely to encounter in their later work.

Throughout this book the mathematics have been kept as simple
as possible, and the work may be covered coincidently with a first
course in calculus. The work content of the book is about 150 classroom
hours for technological students, although it may be completed more
rapidly by advanced students using it as an introduction to an ad-
vanced fluid mechanics course.

At the end of each chapter are a number of problems for the student
to solve. If each problem is properly completed and understood by the
student, all the principles involved will be clear to him.

Reference to experimental data has been kept to a minimum since
it is assumed that the student will receive experimental instruction
in a parallel laboratory course.

J. L. Robinson
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CHAPTER .I

The Properties of a Fluid

1.1 The definition of a fluid

A fluid may be defined as a substance which is incapable of resisting
shearing forces when in static equilibrium. To illustrate this, consider
the riveted joint shown in Fig. 1-1. The rivet is subject to a pure
shear force across the face AB and will hold until the applied shear
force is sufficient to cause the metal to fail. It is obvious that if the
rivet were replaced with a fluid, then the smallest applied force would
be sufficient to cause distortion. The reason for this is the complete
inability of the fluid to resist a static shearing force.

Fig. 1-1. A rivet in shear. l
S AlTE

The inability of a fluid to resist a shear force is caused by the large
molecular spacing within fluids. In a solid the molecules are closely
packed and the intermolecular forces are large, enabling a solid to
resist any change of shape. However, liquid molecular spacing is much
greater with correspondingly smaller cohesive forces, enabling the
molecules to move more freely. This gives a liquid the ability to flow,

A division of fluids into two categories, liquids and gases, is possible
because of the extremely large molecular gap which occurs in gases.
These very large gaps cause gases to flow more eagily than liquids
and give gases their extreme compressibility.

1
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Fig. 12, Pressure forces acting on an Fig. 1-3. Pressure force acting on «
element of fluid. curved area.

the total horizontal force on the entire surface is given by the product of
the pressure and the vertically projected area.

Example: The end plate of a boiler consists of a hemispherical cap of
5-ft diameter, as shown in Fig. 1-4. The boiler contains steam at a

] >

5 60 psig

i

pressure of 60 psig. What is the force required to hold the cap in
position?

Fig. 1-4

Total end thrust = pressure X projected area of cap
60 144 X 25
_ X : X Wlb

84.8 short tons

I

1.3 Specific weight, density, specific gravity, and specific volume

Specific weight is defined as weight per unit volume and has the
symbol ¥ (gamma). The units of specific weight are pounds per cubic
foot (Ib/ft?). -

Density is defined as mass per unit volume and is given the symbol
p (tho). The units of density are slugs per cubic foot (slugs/ft?). The
slug unit has been introduced by engineers to avoid confusion between
weight and mass. One slug of mass actually weighs ¢ pounds. It will
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causes a viscous or shearing stress to be present between the two layers.
This stress is given the symbol r (tau). The coefficient of viscosity u
(mu) is defined as the ratio

Shearing stress
Rate of shearing strain

and may be compared with the modulus of rigidity of a solid.
The rate of shearing strain is given by dv/dy, and hence

_ T
B= dv/dy
dv
or T=u @ (1-3)

p is also called the absolute or dynamic viscosity and has units of
Ib-sec/ft? or slugs/ft-sec.
Y

_d_{; v:dv 7/
T

Fig. 1:5. Laminor flow profile close to
a boundary.

WALL

A distinct difference exists between fluids of liquid and gaseous
natures in the effect of temperature on the value of their dynamic
viscosity. Increase of temperature causes a decrease in the viscosity
of a liquid and an increase in the viscosity of a gas, with a few rare
exceptions. .

Referring back to Fig. 15, at the surface the shear stress is supported
by the wall itself and appears as friction drag on the wall. Equation
(11):3) makes it possible to estimate this friction drag from the relation-
ship

dv

Twall = M
dywau

(14)



THE PROPERTIES OF A FLUID 7

Consider 1 ft of the bearing. dv/dy can be written as —dv/dr, since
y = —r (sce Fig. 1:7). Now at a radius of r feet the torque can be
written as
T = r X surface area X r

dv
=p X ——X2mr Xr
dr

d
= —2umr? 2

dr
= a constant across the gap
dv T

Therefore ol Dy

Hence, by integrating,

D[ T(, Y
v= 2rp o 2w T

where ¢ is a constant of integration.

Now whenr = 2{2ft,» = wr = 3,000 X 2r X 2/60 X 12 = 52.4 fps
and when r = 2.01/12 ft, v = 0 (since at the surface there is no
relative velocity between the fluid and the wall). Hence

12
°~ 201
which gives
2y

=1/7‘—C

= 13.25 Ib-ft/ft

The student should show that for a sufficiently small gap, as in this
problem, dv/dy can be closely approximated to v/y.

The ratio p/p occurs frequently in the study of fluid mechanics and
is termed the kinematic viscosity » (nu). The units of kinematic
viscosity are square feet per second (ft?/sec) or square centimeters
per second (cm?/sec). One cm?/sec is called a stoke, after Sir George
Stokes, and since this is rather a large unit, it is more usual to deal
with 0.01 stoke, which is ealled a centistoke. In this text, however,
only engineering units of {t2/sec will be used.

15 Surface tension

When two immiscible fluids, such as air and water, are in contact
with one another, a slight pressure difference is observed across the
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blown at A and B and isolated by closing taps D and E. When tap C
is closed and the two bubbles are connected by opening D and Z, the
small bubble will deflate and thus inflate the larger one.

Fig. 1-9. Demonstration of the excess pressure within a small soap bubble.

1.6 Contact angle and capillarity

When a liquid comes into contact with a solid, the surface tension
effect causes the surface of the liquid close to the boundary to rise
or fall, according to the conditions that prevail, to form a curved
surface or meniscus. Figure 1-10 shows water and mercury in contact
with a glass surface. The angle made between the liquid surface and
the solid boundary is called the contact angle. Combinations with an
upward-curving meniscus, such as in Fig, 1-10a, have contact angles

A

}
CONTACT.
ANGLE

le—"

>

GLASS

WATER MERCURY

GLASS
JECIELRLHERRAREAHREEERANRRARSRRRANNARSRANNY
EUALARANATARARNANARARTRERRNNRMEA N RN RN

(o} {5}
Fig. 1-10. Contact angle.

between 0 and 90°; those with a downward-curving meniscus have
contact angles between 90 and 180°. This meniscus effect causes
a liquid to rise or fall in an open tube placed in a liquid, which is
called capillarity or the capillary effect.

Neglecting the amount of liquid above the bottom of the meniscus
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the force per inch along the weld when the pipe contains a fluid under
30 psig pressure?

1.5 An aulomobile hydraulic brake system has a master brake
cylinder 2 in. in diameter. The individual cylinders on each wheel
are 34 in. in diameter. What force is exerted at each wheel for a brake
pedal force of 100 1b? (Assume that the brake pedal force is applied
directly to the master cylinder.) If each wheel piston (eight in all)
moves a total distance of 14 in., calculate the required movement of
the master cylinder piston.

!—>-TO MASTER CYLINDER
i

L ﬂl 77

A
ve——— ——

S O—— L.

| ~WHEEL PISTONS\

\ -~ S
—— —
| V. J
BRAKE SHOE BRAKE SHOE

Prob. 1-5

1.6 An automobile hydraulie lift has a ram diameter of 1 ft. What
supply pressure is required to lift a combined car and ram weight of
3,000 1b? If a pump is available with an output of 0.2 cfs at the required
pressure, how long will it take to lift the car 6 ft?

1.7 The density of air at standard atmospheric conditions is
0.00238 slugs/ft*. What is the weight of 17 ft® of such air?

1:8 A block of wood weighing 30 1b slides at a constant speed down
an inclined plane. The angle of inclination is 45° the contact area of
the wood is 1.5 ft2, and the velocity is 10 fps. If the wood slides on
an oil film with ¢ = 0.007 Ib-sec/ft? find the thickness of the oil film.

1.9 A flat plate of area 0.5 ft2 moves in oil parallel to and midway
between two large flat plates, 12 in. apart with a velocity of 10 fps.
If the viscosity of the oil is 6 X 10~° Ib-sec/ft?, calculate the drag on
the plate.

1:10  If the plate of the previous problem moves 3 in. from one
large plate and 9 in. from the other, what will be the drag?

1-11 A ground-effect vechicle rides on a cushion of air 3 in. thick.
If the diameter of the hase of the machine is 16 ft, calculate the
viscous resistance due to the air cushion at 50 mph.

112 A shaft 6 in. in diameter and revolving at 3,000 rpm is sup-
ported in a bearing 6 in. long. If the gap between the shaft and the



CHAPTER 2

Fluid Statics

The subject of fluid mechanics is divided into three subgroups: fluid
statics, hydrodynamics, and gas dynamics. The study of fluid statics
is the simplest of these three groups, because it deals only with fluids
at rest, in which state viscosity does not enter into the analysis.

2.1 The pressure-density-height relationship

Consider the container shown in Fig. 2-1. A column of liquid of
specific weight v and height & is supported in the container by the base,
which has an area A. The weight of the liquid contained is yA4k, and

Fig. 2:1. A fluid container. SPECIFIC WEIGHT 5
Y
X
727

the area supporting this weight is A. The pressure of the liquid on the
base, then, is

v4ah
p= -[—1— = ’)’]I, (2.])

13
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p1 = p, p2 = 0, hy = 0, and ho = h, this reduces to

vh =p
which agrees with Eq. (2-1).

Example: A column of compressible fluid of height &, has a specific
weight which varies linearly from 0 at the top of the column to v, at
the base, as shown in Fig. 2-3. Show that the difference in pressures at
the top and bottom of the column is the same as that for a similar
column of constant specific weight equal to v1/2.

>

Pof=——=

HEIGHT

Py

1
SPECIFIC WEIGHT Ty
Fig. 2:3

The pressure difference for a fluid of constant specific weight v1/2 is

hl'Yl
71 P2 = 2

For the compressible fluid

h
p1~p2=/0 ~ dh

But n__
hy  hy—h
therefore _ vl —h)
hy
Hence PL— P = /}“M_’}
0 hy
_n ~
Iy (hl h) dh

h? ,“ ’)’lhl
= [’“’“5] =75 QED

0
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2.3 Pressure measurement and variations of the simple manometer

The range of pressure measurements made in fluid mechanics extends
from hundreds of pounds per square inch to fractions of a pound per
square foot. In order to cover such a large range, many types of pres-
sure gages are used.

The Bourdon gage. This type of gage consists of a tube bent into a
circular form and sealed at one end, as shown in Fig, 2-5. When a pres-
sure is applied at the open end, the tube tends to straighten out and
actuates a linkage which causes a needle to move over a calibrated scale.

=

Fig. 2:5. The Bourdon gage. >

SEALED
TUBE \l

A properly adjusted gage will read zero when disconnected, so it will
be seen that such an instrument reads gage pressures, to which the
local atmospheric pressure must be added if absolute pressures are
required.

Vacuum pressures may also be read with Bourdon gages since a pres-
sure lower than atmospheric within the tube will cause it to contract
and thus move the needle in the opposite direction.

Bourdon gages are made in a great variety of sensitivities and may
be used to measure high or low pressures accordingly.

The pressure transducer. The pressure transducer consists basically
of a small strain gage attached to a diaphragm, The diaphragm is
mounted in a short tube, and the space behind the diaphragm is evacu-
ated (Fig. 2-6). Application of pressure causes the diaphragm to deflect
and thus changes the electrical resistance of the strain gage. This
change in resistance is measured electrically and eonverted into pres-
sure from the transducer calibration.

The transducer has the advantage that it will read absolute pressures
directly, independent of the ambient atmospheric pressure, if the space
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The inclined manometer. By inclining a simple manometer at an
angle 6 to the vertical, it can be made more sensitive. A vertical head
of h (Fig. 2-8) will produce a larger inclined head of h sec § when so
inclined; and since sec 8 varies from 1 to infinity as # varies from 0 to
90°, it is apparent that the larger 6 becomes, the more sensitive the
manometer becomes. A practical limit is reached, however, when the
meniscus of the liquid in the tube becomes very large and offsets the
gain in sensitivity.

Inclined manometers are usually arranged on a board which may
be rotated through any desired angle. The pressure can then be caleu-
lated by using the relationship

p = vh' cos @ (2-3)

where i/ = measured inclined head
6 = angle of inclination from the vertical

Fig. 2.8. Aninclined manometer.

The simple manometer with enlarged ends. This sensitive manome-
ter consists of a simple manometer with enlarged ends, containing two
immiscible Jiquids, such as oil and water. Before any pressure is applied,
the common surface of the two liquids is at 0-0, and the heights of the
two liquids above this level are k; and h,, as shown in Fig. 2-9. Since
the fluids are in equilibrium, the pressure at this level is the same in
both tubes; hence

hyyr = hayy (2'4)

where v, and v are the specific weights of the two fluids. A pressure is
applied to one arm of the tube, which causes the fluids to be displaced,
and the common surface descends an amount y to the new datum
0"-0". The levels of the two liquids above the common surface are now
%1 and @, and the applied pressure p is given by

T1v1 = Toye + P
or D = T1v1 — Taye (2-5)

But if the common surface descended an amount y, the open surface in
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2 BASIC FLUID MECHANICS

Since at a sohd flnd boundary there can be no shear stress within
a static flud, 1t follows that any force exerted by the flurd on the
solid must act normally to the surface, whatever the shape of the
surface may be, so that the tangential or shearing component of the
force 1s zero

Although fluds comsist of discrete molecules, the study of flud
mechanics treats flurds as continuous media, which 18 justifiable sinee
the molecular size and mov are m ! 1n comparison with
the distances involved m engineering appheations

12 Fluid pressure

The pressure of a flud 1s measured m terms of force per unit area,
usually pounds per square inch (ps1) or pounds per square foot (psf)
Since at ground Jevel the weight of the atmosphere 1s sufficient to
produce an atmospherie pressure of 14 7 psi, 1t 1s usual to designate
pressures as gage or absolute to indicate whether they are relative to
atmospheric or zero pressure A gage pressure 1s the difference belween
the pressure beng measured and the surrounding atmospheric pressure,
whereas an absolute pressure 15 the sum of the gage pressure and the
atmospheric pressure In order to differentiate between them, these
pressures are written as psig and psia

Example

Spaig =147+ 5= 197 psia
10psia = 10 ~ 147 = —4 7 psig = 4 7 ps1 of vacuum

At a pomt wn a flud the pressure wnlensity acls equally wn all direc-
trons To prove this, consider the small fluid element of unt thickness
shown in T1g 12 ABC 1s a night angled triangle with AB = ¢ The
pressures acting on the sides AC, BC, and AB are py, P2, and p;
respectively The length of these sides are a cos 8, @ sin 8, and @ respec-
tively Therefore the forces actmg on these three sides are p.a cos 6,
paa sin 6, and psa 1n that order

Revolving these forces horzontally and vertically for equilibrium
conthiions gives

maesinf = p.asin g
Paa cos § = pa cos f
Therefore P1=p:r=ps

In Fig 13 the small surface area A 13 acted on by a pressure p
normal to the surface, since no shear ean ewst The force acting on
this surface 15 pA, and the horizontal component 1s pA cos § But
A cos § = 8, the vertical projection of the area A Hence 1 follows that
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Example T A block wesghing 100 Ib and having an area of 2 ft? slides
down an itchined plane as shown n Fig 16, with a constant velocity
An o1l gap between the block and the plane s 001 m thick, the mchna-
t1on of the plane 15 30° to the honizontal, and the velocity of the bloch
15 6 fps Tind the viscosity of the lubricatng film

&
fg 16 Fig 17
The component of the weight acting down the plane 1s opposed by
a viscous force exactly equal and opposite to 1t Therefore
F = 1005 30° = 50 1b

F 5

Hence T=7= —2—0 = 25 psf
dv
but =p
it T=eg
001

Therefore fou 25dy = “L‘. &

25 X 001
1e, Gu = 13

# = 000347 Ib sec/ft?

Example 2 Ashaft41n 1n diameter res olves at 3,000 rpm n 2 bearing
with a clearance of 001 1n all round The gap 15 filled with o1l of vis-
cosity 120 X 10-* lb-see/ft? I'ind the torque lost per foot of bearng
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contact surface The pressure is supported by the contact surface
which acts as though 1t were an clastic shin, stretched and 1n teneion
snevery direction ‘Thus tension force 1s called surface tension o (sigma)
and has units of force per umt length, usually pounds per foot (Ib/ft)

If a needle 18 placed on a prece of blotting paper and the blotting
paper then floated on the surface of a bowl of water, the blotting
paper will eventually sink and leave the needle “floating” on the
water, supported by the surface tension effect

A soap bubble 1s mamtamed by the surface tension of the film
Consider half a bubble as shown in Tig 18 The two halves of the

Fig 18  Surface fension forces

bubble are, of course, 1n equilibrium The excess pressure nswle the
bubble 15 p, and the total foree acting to the nght 15

2
P X projected area of the bubble = p X EZ—

The foree resisting this 1s supplied by the surface tension and has
magnitude

rde
2
Therefore rdo=1p x’-r;i
40
= — 185
or Pl (18

Lquation (15) gives the relationship between the pressure mn o
bubble and 1ts diameter It will be obseryed that the pressurc decreases
with an mncrease 1 diameter This ean readily be verified by using
the apparatus shown in Tig 19 Two bubbles of different size are
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m Tig 111, the weight of liquid 1n the tube above the general surface
Jevel 5
wd

137 5

This weight 15 supported by the vertical component of the surface

4

Fig 111  Capillary ef
fect

tension at the edge of the memscus If @ 1s the contact angle, the
vertical component 1s

rdocosd
Equating these,
2
hy 7% =rdocosf
Hence h = docos
yd

It will be noticed that for 0° £ 6 < 90°, k 13 posttive and that for
90° € # < 180°, & 1s negative

PROBLEMS

11 Tahing atmosphenc pressure as 14 7 psia, convert the following
pressures to psig (a) 16 psa, (b) 4 2 psia, (c) 965 psfa (d) 60o psf
of vacuum

12 A diving <phere has o hateh 3 ft in diameter What will be
the force on the hatch when the sphere 15 submerged to a depth where
the water pressure 15 100 psig?

13 A living dome to be erected on the moon consists of part of a
sphere having a diameter of 30 ft at the base and 4+ maximum height
of 10 ft If the pressure within the dome 15 9 ps1a (outside pressure 15
zero), caleulate the force tending to Lt the dome

14 A pipe 6 1n 1 dinmeter 15 welded along the <eam What 1
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bearmg surface 1s 001 1n around the shaft and contamns a lubricant
of p = 105 X 105 Ib sec/ft%, find the horsepower loss due to the
friction

113 A forque of 03 lbn 1s required to turn a cylinder 1 ft long
and 2 m in diameter concentrically within a fixed eylinder of 2 2-in
mside diameter at a rate of 6 rad/sec Determune the coeffictent of
viscosity of the flurd betwecn the two cylinders

1-14 Show that the pressure and ditmeter of a spherical bubble
immersed 1n water are related by the expression

d

1.15 1If an open glass tube of 0 05-in bore 1s placed 1n a dish of
mercury, will the capillary effect cause the level in the tube to be above
or below the free surface, and by how much? (For mercury take
4 = 850 1b/ft?, o = 0035 1b/ft, and the contact angle for glass-
mereury = 130°)
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Ths 15 dependent only upon the speeific werght of the fluid and the
height of the ind Thus 1t 15 possible to express a pressure as a “head”
of hquid, for example, feet of water or inches of mercury

f the column of hquid 1s replaced by & compressible flwd, that 1s to
<ay, a gas, then the demtation of the pressure at the base of the column
1s & hittle more complex Consider o small element of 2 column of gas
as shown n Tig 22 A 1s the cross sectional area of the column and
hence the arca of the element, ¥ 15 the speaific weight of the gas at this
pomt (It must be noted that ¥ 1s now a vanahle ) Tor the clement to be

prdp
AREA
A
- Fig 22 A small element of fud
V ¥ equilibrum
14
# INCREASING

1 equultbrium, the sum of the downward forces on the element must
be equal to the sum of the upward forces

Acting downward are the pressure force (p + dp)4 and the weght
of the element v4 d& Supporting these 1s the upward pressure foree
pd Hence

pAd = A dh+ (p + dp)A

Therefore —vydh =dp or % = —v
[¢
Integrating this yelds
» 2
—M'ydh=/:dp=1’¢-7’l @2

If v 13 regarded as a constant n Iq 22, the equation reduces to
Y — ka) = (pz — py)

Considering the pressure at the bottom of a column of height &, so that
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22 Maonometers

Since a pressure can be expressed n terms of a head of hqud, 1t 1s
possible to measure pressures with a hgwid head device A manomester
15 an nstrument that uses thus prieiple Tigure 2 4 shows a sumple
manometer which consists of a U tube of gliss AB, contaming o hquid
of known speeific weight One end of the tube 15 open to atmosphere,
and the other end 1s connected to the pressure source to be measured
The excess pressure 1n the arm B, that 1s to say, the gage pressure n B,
causes the liquid to move mn the tube unttl equilibrium s reached At

4 8

10
PRESSURE
SCURCE

Fig 24 A smple manomater

x

this point the pressures 1n both arms at the datum level z-z are equal
Hence the gage pressure betng measured 1s given by

p=vh
Example One arm of & simple U tube manometer contaiming mercury
1s connected to a pressure source, and the other arm 1s open to the
atmosphere (147 ps1) The mercury mn the open arm 1s seen to be

17 55 1 above the level 1n the other arm What 1s the pressure bemng
measured 1n psia? (v for mereury 15 850 lb/ft?)

1756
ho=1 =
7551 ) ft
850 X 17 56
P=7h—Tp<fg
80X 1785
=iz x1ar PR

=805+ 147 psia
23 65 psia

[}
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behind the diaphragm 1s evacuated If this space 1s open to the atmos-
phere, then, of course, the mstrument will read gage pressures

Transducers are also made 1n & vartety of sensitivities and may be
used for any pressure range One great advantage 1s that they are
usually small and easily fitted mn places that might otherwise be
1naceessible

DIAPHRAGM STRAIN GAGE

PERFORATED N

PROTECTING IN— ELECTRICAL
PLATE Iy CONNECTION

Fig 26 A pressure transducer

 —

Fig 27 A differential manometer.

The differential manometer. The differential manometer 1s used to
measure pressure differences It differs from the simple manometer
only in that each end of the U tube 1s connected to a pressure source,
and the difference 1n levels of the Lhiquid 1n the two arms gives the
difference between the two pressure sources being measured Thus, for
g 27,

pa = pr = h(ye — v¥)

where y6 = spenific weight of gage flud
y# = spearfic weight of Aluid flowing
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%

T

WATER 1 N

Fig 29 An enlarged-ended U tube manometer

the enlarged ends must have descended or risen by an amount z, so that,
Az = ay (26)

where 4 = area of cross section of large ends
a = arca of cross sectton of tube

Also mn=h+z+y
and zo=hi—2z+y

Substituting these m Eq (2 5) gives

p=mnlutz+y) —vlhe~ 2+
=vfz+y) ~ 1ly —2)

since vihy = vk Now

s=y
—AJ

Therefare p=y ['n (1 -+ %) - 'y,(l -~ %)] @7

Example: An enlarged-ended U-tube manometer contains water
one mb (v = 62 4 1b/ft%) and o1l 1n the other (v = 48 0 1b/it®) The
diameter of the large ends 1s 1 1n, and the bore of the tube is 0 197 m
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But & d4 equals the moment of arca of the small sttip about a hne
drawn in the swface, and so

f AB hdA = Ak, total moment of area

where h, = vertical distance from centroid of area to surface
A = total area
So the total force on a plane submerged surface 1s grven by

F = vAh, (28)
which 18 to say that the force 15 equal to the product of the area and the

o

Fig 210 Animmersed flat plate

pressure ot the centrowd of the area This foree acts normally to the surface
so0 that, if the surface 1s inchined at an angle « to the horizontal, the
hornizontal component 1s grven by

Fp=Fsmna

Example 1 A sluce gate extends from 5 10 10 {1 belon the surface of

the water, as shown n Fig 211 Caleulate the force on the gate if the
gate 1s 4 ft wide

At a depth k the pressure mntensity 1s v& Therefore the force on a
small horizontal strip at this depth 1s given by

AF = yhadh
and hence

P= [ tuhdn = 9360 1b
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Example I1nd the position of the center of pressure of the sluiee gate
1n Example 1 of Art 24 {sec T1g 213)
The force acting on the small horizonial stnp 15

vhidh
and the moment of tlus about the surface 1s
R4 dh
11 £ 18 the depth of the center of pressure, then
rf= [yt ah
[l amsan [V ywsan [ ran

or = =
r Cohaan [Than
(hl/g]l\)
= {hﬁ/ll‘:“ =781t

Fig 213

Center of pressure by moments of nerha method In the preceding
artiele the vertical depth of the center of pressure of a plane arca was
established as

l weas

ho=dh—— 29)
YT

n
Now fA h* dA s the second moment of area or the moment of inertia,

E
of the area concerned about the surfice, or I,,« The quaniity /“ LdA
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The direction of the foree 1s normal to the planc The distance of the
center of pressure below the centroid 15 given by

Therefore, b = k. + z = 6 167 ft below the surface Or alternatively,
the center of pressure 1s 0 167/sin 60° or 0 192 ft downward along the
area below the centrod

26 The forces on submerged curved surfaces

Consider the curved surfrce AB shown m Fig 215 The net hort
zontal foree on this curved section 1s the same as the force on the

2
]
I
|
|I
i
I
1

_____ Iy

S

8

fig 215 Forces actng on a curved Fig 216 Forces actng on curved
submerged area submerged areas

section EB (1e, pressure X projected area), and 1t acts through the
center of pressure of £B The methods developed m Arts 24 and 25
may be used to evaluate this force

Since no shear can exist across CB or DA, the weght of the flnd
enclosed by ABCD must be supported by the surface AB and 18 thus the
rertical force applied to AB It acts through the center of gravity of ABCD

The resultant force may now be calculated from these two It should
be noted that both the vertical and horizontal forces are the same on
hoth sides of 4B, although they act in different dwections Hence the
forces acting on AB 1n Iig 2 16a and b have the same magnitude, and
those in (@) may be calculated by using the data shown mn (b) and
reversing the sign
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27 Buoyancy and flotation

Following from Art 2 6, the prineiples of Archimedes, with which
the reader 15 probably famuliar, may be rapidly deduced

The sertical force acting downward on the immersed body shown m
Tig 218 1s the weight of flud contaned m the volume ABDIC The
vertical foree acting upward on the body 1s the same as the weight of
hqud which would be contained in the volume ABDFC in the absence
of the body Thus there ts a net upward force called buoyancy, equal lo
the werght of flmd dusplaced by the body

If the body 15 less dense than the flud, then this buoyant force 13
larger than the weight, and the body will rise to the surface, if allowed

A 8 ¢

. /
Z

7 w

Fig 218 Buoyant force on animmersed Fig 219 A posihvely stoble system
sol

to, and float In the floating condition the buoyant force and the werght
are exactly equal
Restating these results in therr usual form
1. 4 body immersed 1n a flnd 15 buoyed up by a force equal to the
weght of fand displaced by the body
2 A floating body displaces us own werght of fluad 1n which 1 floats

2:8 The stability of floating bodies

A flonting body has three possible conditions of stability positive,
neutral, or negative

Positive stabihity. A body with positive stability will tend to return
to 1ts equilibrium position when shghtly disturbed

An aerostatic balloen, as shown in Tig 2 19, has positine stabihty
The hiting foree 15 located at the center of the balloon and acts verti-
cally upward The load 1s eartted m the gondola and acts vertically
downward When the balloon 15 displaced from the upnght position,
say by a gust of wind, the resulting moment 1s seen to be a nghting
one, and so the balloon will return to 1ts origmal position
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centric herght A zero value for the metacentric height nould mndicate
neutral stability and a negative value, mstabihity

Fig 222 Metacentac height

210 Static fluid masses subjected to acceleration

In this section 1t 1s important that the concept of a statie flud mass
under acceleration be understood Static flnd ymples one 1 which all
the flmd particles are at rest relative to one another, although the
fluid as 2 whole may be moving To achieve this, a completely statie
flud must be subjected to a constant acceleration There will be an
unsteady period durning which equilibnum 1s bemng estabhshed, and
thereafter the fluid will be statsic This final steady equbbrium condy
tion 13 constdered here

There are three types of acceleration to consider—vertical, horizon-
tal, and radial—the latter being called a forced vortex This must not
be confused with 2 free vortex, which 1s a flmd dynamie effect and so
dealt with in the next chapter

Verhcal accelerations Accelerating a tank of fluid vertieally will
not cause any change of the flud position, the surface remaining
horrzontal

Now consider a column of a vertically accelerated fimd as shown m
Tig 223 The vertical accelerating force on the column 1s

pAd — W

and this 1s causing an upward vertical acceleration of @ ft/scc? There
fore

pA—WsEa
g
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Resolving these forces horizontally and vertieally yrelds

Consider an element mn the surface of the fluid The net force exerted
on 1t by the surrounding flud must be normal to the surface, therefore,
the surface at that pomnt would make an angle with the horzontal
so that

tan0=£=~—=— (212)
v

This 1s a constant for any part of the surface therefore the fluzd
surface will be strazght and wnclined at a constant engle to the horizontal,
as shown in Fig 225

8
£ 5

Fig 225 Free surface under horizonta!

acceleration
5 \

Now the pressure intensity at any point may be calculated by using
the relationship
=k

and the forces on the ends of the tank I'y and F: may be evaluated As
a check, the difference between the end forces F; and F; (Ing 2 26)
equals the accelerating force

Fr—F2= Ma

Example An open horzontal tank 2 ft hugh, 2 ft wide and 4 it long1s
full of water How much water 1s spilled when the tank 1s accelerated
horizontally at 8 05 ft/see? m a direction parallel with its longest stde?
What are the forces on the ends under these conditions?
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‘The pressure force on the rear face 1s given by the area multiphed
by the pressure at the centrord Therefore

Fi=2X2X1X624=2501Ib
and sumlarly
F,=2X1X1%X024=6241b

[Checkh F, — F; = 187 6 b, the required accelerating force 1s
624
—4)—— X805 =18741Ib
(16 — 4) 322 X 805 = 1. ]

Radial acceleration Radial acceleration 1s apphed to a2 static flud
(1e, one m which the flud particles are at rest relative to one anather)
by rotating 1t 1 a vertical cylindncal container about its vertical axis
with a constant angular velooty This causes the flmd to nse toward
the outside edge of the contamer

I s or ~——{

a8 gz

rdg p+dp

22

Fig 228 Flwd mass under radial acceleration

Consider a small element of a fimd of unit depth, rotating at a con-
stant angular veloeity w as shown in Iig 228 In a honzontal sense
the forces acting outward on the element are given by

prdé — (p + dp)rds

and these must sustam a radial acceleration of rw? toward the center
of rotation Hence

AR — (pr dpYr ds = —vutrdedy 4
g
which reduces to
= wtr 213)
g

Since all the terms on the right-hand side of the equation are positive,
1t 15 apparent that pressure 1s increasing with raduis
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From Eq (215)
wirl .
2
_ 100 X 157
T o644
—35ft
The jolume spilled 15 the volume of the paraboloid (equal to half
the volume of the surrounding eylinder), or

Ymax =

;x15'><35=124n=

The pressure intensity at the center of the base of the cylinder 1s
that duc to a bead of water of 0 5 ft Therefore

p=05X%624 =312psf

PROBLEMS

21 Caleulate the gage pressure at a depth of 200 ft m seawater
What 1s this pressure in inches of mercury absolute? (Take barometnie
pressure as 30 1n of mercury )

22 The speafic neght of o compressible flid vartes directly as
the vertical distance from a fixed horizontal datum The specific weight
18 0 1 1h/ft® at a depth of 1,800 ft Caleulate the pressure at a pont
where the specific weight 15 0 06 Ib/ft?

23 Assuming that the atmospherie speeific werght +ares according
to the equation

= et o0

where v, 15 the sea level value of 0 076 1b/ft* and A 1s the altitude 1n
feet, calculate the sea level pressure in ps1

24 Calculate the pressure at the base of the contamer shown If
the manometer tube contains water, how far below the level of the
o1l 1s the water 1n the tube?

oL 3
spg 08

WATER

Prob 24
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28 Calculate the pressure at A m the figure

Prob 28 Prob 29

29 Calculate the distance of the gage below the top of the mercury
column

210 A differential U tube manometer containing mercury is con
nected between two pressure sources with pressures of 72 psig and 6
of mercury vacuum respectively What 13 the measured difference 1n
levels in the two arms of the manometer?

211 If the manometer of Prob 2 10 1s tilted at an angle of 60° to
the vertieal what will be the inchned difference m levels 1n the arms
of the manometer?

212 A verysmall p difference 15 d with an enlarged
ended U tube manometer containing ol (sp gr = 0 82) and water The
large ends are 2 1n 1n diameter and the tube bore 1s 0 197 in If the
common surface 1n the tube 1s seen to fall 3 5 1, what 1s the apphed
pressure?

213 An enlarged ended U tube manometer contamming two mm
miscible flwds (sp gr — 08 and 0 91) has ends of 1 1n diameter and a
tube bore of 0197 1n What movement of the common level will be
caused by a pressure difference of 0 04 psi?

214 Find the depth of the center of pressure for an equilateral
triangle immersed m water with an edge mn the surface and the plane
of the tnangle perpendicular to the surface

215 The gate 15 12 ft long Calculate the water pressure force on
the gate and the position of the center of pressure
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219 Dstimate the height & of water that will cause the gate to open

220 A seagomng stup’s hull consists of a rectangle wath a semreircle
drawn on the lower edge Tind the foree acting on the two vertieal
sides and also that acting on the curved portion of the hull if the hull
15 70 ft long

Prob 220 Prob 221

221 A dam 300 ft long has a vertical face with a errcular foot as
shown Tind the force on the curved portion
222 Calculate the total pressure force on a 1-ft length of this dam

PARABOLA

N

Prob 222

223 A tank truck has an elliptical tank 8 ft wide and 4 ft deep
Caleulate the pressure force acting on a lower quadrant of this tank
if the tanh 1s 18 {t long and contains water
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231 A tank 8 it long, 2 ft deep, and 3 ft wide, ongnally full of
liquid, 1s nccelerated horizontally at 16 1 ft/see? How much hqud s
spilled, and what are the forces on each end of the tank under these
conditions? (The liquid has a spectfic gravity of 0 9)

232 A rochet fuel tank contmning nitric acid (v = 80 1b/ft?) con-
sists of a vertical cylinder 2 ft 1n diameter and 7 ft long What 15 the
pressure force on the base of the tank when with the tank full, the
rochet 1s fired with a vertical acceleration of 5¢?

At a point 1n the flight when the tank 1s half empty, the acceleration
15 7 5 vertically upward What s the pressure at the base of the tank
under these conditions?

233 Caleulate the pressure force on each end of a tank 2 ft wide
and contaiming 3 ft of water when (a) accelerated vertically upward
at 10 ft/sec?, and (b) accelerated vertically downward at 7 ft/sec?

234 An upnght ¢ylindneal tank 3 ft n diameter and containing
ol of sp gr = 087 1s spun about 1ts vertical axs at 200 rpm so that
the depth of flmd at the center of the tank 15 1 ft Caleulate the
pressure intensity at the foot of the vertical sides At what rotational
<peed would the depth of flurd at the center be zero assuming that
none 1s spitled?

235 An upright cylndnceal tank of 1 ft radws contmns 1 ft of
water Calculate the pressure intensity at the foot of the vertical edge
when rotated at 100 rpm
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The treatment of unsteady flows 15 beyond the scope of this text,
hence, only steady flows will be conwidered

VELCCITY

NO UNSTEADY STEADY
FLOW FLOW FLOW

Py IS

2 TIME

Fig 31 Development of steady flow n a pipe
32 Thestr line and the str tub

If a hne s drawn in a flow m such a manner that any tangent to
the Iine 1s m the direction of the velocity of the flow at the tangency
pont, then that line 15 a streamhine The<e streamhines arc very useful
1n obtamng a visual mnterpretation of a flow pattern

Since the streamline 15 at all points parallel to the surrounding flow,
1t 18 apparent that there can be no flow across it Streamlines m an
accelerating flow will thercfore become closer together, whereas m a
decelerating flow they will spread apart

HIGH VELOCITY REGION

— =

—_,—
—_— 4

/
LOW VELOCITY REGION

Fig 32 Streamline representation of flow over an arfoll

Figure 3 2 shows the flow past a Lfting arrfoil Notice that on the
top surface of the wing, 2 ligh velocity area 1s shown with the stream-
lines close together and that on the lower surface of the wing, the low-
velocity area 15 shown with the streamhnes farther apart
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a nozzle since the streamlnes are never parallel, the flow 1s three-
dimensional

34 The equahion of continuty

Constder the steady-flow streamtube shown mm Fig 35 The flow
1s enterng at section 1 and leaving at section 2 There 1s no flow acrossy
the tube wall and since the flow 1s steady, there 18 no aceumulation

1 2

Fig 35 Steady flow streamtube

of fluud taking place within the streamtube It 13 necessary, then, that
the amount of flmd entering section 1 1n a given time be equal to the
amount of flurd leaving section 2 1n the same time

If the velocity, flud den<ity, and tube cross sectional area at statrons
1 and 2 are VipiA; and Viped, respectively, then

ndiVy = p2dsVe
or pAV = const = G, the mass flow rate (31}

Tius 15 the equation of confinuaty For incompressible flow (e,
p = constant), 1t reduces to

AV = const = @, the flow rate (32)

35 Euler s equation of motion

Luler’s equation 1s most easily estabhshed by considenng a small
element of fld enclosed m a streamtube

The element shown mn I'ig 3 6 has a mean cross-sectional area of
A and a mean peniphery of P Its length 1s ds, and the centroid of
s downsirenm faee v 42 hngher v Ve ventrond of s apsiaea faee

There 15 2 frictional shear stress of 7 acting at the walls of the tube
and, hence, a fnctional retarding force of 7P ds owing to this stress

The net pressure on the element 1n the downstream direction 18

(ptdp)—p=dp

and therefore, the pressure force acting on the element 18 A dp The
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1t 13 important to remember that since Egs (33) and (3 4) were
established by considening the flow within a streamtube, they apply
only to flow within a streamtube or long a streamlme
36 Bernoulli s equation

Integration of Eq (3 4) yelds Bernoullt’s equalion, one of the mast
useful tools of flurd mechanics

2 2V A7 >
[le X0, o
17 T 7 1

— Ve — T2
Thercfore [l XUy (22— 2z) =0
v 29

assumng that v 1s constant Hence

n

V.2 V2
o ta=04 2t 35
v % Y2
2
or P+L+z=ccnst (36)
Y 2

This equation stated in words means that the sum of the pressure
energy, the velocity or kinetic energy, and the potential energy of an
rdeal incompressible flnd 1s & constant along a streamline

In Bernoullt’s equation, as dernved above, the quantity z s referred
to as the potential head of the flud Since the pressure and velocity
terms also have units of length, 1t 15 usual to refer to them as the
pressure head and the velocity head They are shown diagrammatiecally
m Ig 37 Notice that the total energy line 1s honizontal, parallel to
the potential datum If the fimd 35 not 1deal and exmbits fnctional
effects, a gradual loss of total energy appears

Example 1 A 31 diameter fire hose contamns water flowing at a
rate of 3 cfs If the pressure within the pipe 1s 10 psig, what 1s the
maximum height to winch the water may be sprayed?

In this problem all the energy of the water 1s to be converted into
potential energy The veloaty and the pressure will both be zero at
the maximum height

The onginal pressure energy 1s given by

p_10X144
L= Tmi —BIn
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Example 2 Water 15 flowing upward through the contraction shown
m g 38 A manometer records the pressure difference ps — p4 as
shown Caleulate the flow rte

Fg 38

The pressure 1n each arm of the U tube at level O O 1s the same
On the left hand side the pressure 1s

pa + 121 of water
and on the right hand side the pressure 1s
ps+ 4m of mercury + 321 of water
Therefore p« — pe = 4 1 mercury -+ (32 — 12) in water
Pa—pn_4X1355+20

H = it
ence " i3 618
Now z4 — zz = —2 {t and from the equation of continuity
T LAY
Vil = =
4y Ve 4<2)
v,

or Va= -f

Applying Bernoulli’s equation for an incompressible 1deal flud

—_ '[72_ 7 2
oz pn VooV | ez =0
v 2
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Example Tind the distance x that the jet from the tank of Nig 310
will travel honizontally before impinging on the floor
From Torncelli’s theorem
1T =V2h = 1135 fps

In a vertical sense, the Awd starts from rest and falls a distance of
8 ft under the aceeleration due to gravity, thus
-

=g

so the time taken to fall 2 ft 15 4/ 25/g or 0 353 se¢ Dunng this time

!
L

2
————r ——————>|
Fg 310

the fluid will travel a horizontal distance of
1135 X 0353 = 41t

The energy equation for systems to which external energy 1s
added It was seen 1n Art 36 that the umts of each term of the
mcompressible form of Bernoull’s equation were umts of length,
usually feet

Now the energy content of a flud can be measured n umts of
ft-lb/lb, and these umits have the same dimensions as the terms of
Bernoullt’s equation It 1s possible to say, then, that p/v represents
the pressure head of o flnd or the pressure energy confmned per pound
of flurd, and simlarly for the velocity and potential heads

Tor a system 1n which 2 machne, such as a pump or turbine, 13
addmg or subtracting encrgy from the system at a rate of E ft-Ib/lb
of flud flowing, Bernoull’s equation can be npphed, provided that
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The rate of flud flow 19 given by @ = AV cfs, and the weight of flurd
flommng by Qv Ib/sec Therefore the work done on the turbme s
EQny ft Ib/sec or

LQy, 1687 Xr X 45X 024
550 ° 7 1% 550
= 675 hp

The aerodynamic form of Bernoulll's equation (for incompressihle
1deal gos flow) Multiplymng Eq (3 6) through by v gives

Py
-+ o -+ 2y = const 310)

The ratio v/g 1s the density p and for gases the quantity vz 1s neghgr
ble since the specific weight of gases 1s very small Usually the change
m potental 2 1s also small 1n gas dyname problems Iquation (3 10)
then reduces to

P+ Y4pV? = const (311)

whteh 13 the aerodynamuce form of Bernoull's equation for wdeal w-
compressible flow of gases

In this equation p 1s referred to as the static pressure and pV?%/2
as the dynamuc pressure The umts of both are pressure untts, usually
psf

If at any pomnt 1 3 gas flow the velooity 1s reduced to zero, the
paint 18 referred to as a stagnation point, and the static pressure at
this point 1s called the stagnation pressure p, This i1s the maximum
pressure that may be recorded 1n a flow

Pe=po+ Y5eV2 (312)

where p, = free stream static pressure
V. = free stream velocity

Example What 18 the maximum pressure exerted on an ureraft flying
at 200 mph at sea level? (o = 000238 slug/ft?, p, = 147 pst )
The maximum pressure 1s at a stagnation pomnt and 1s given by

Peo= 147 X 144 -+ 35 X 0 00238(200 X 38§0)*
2,220 psfa
= 1542 psia

n
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common types of flow-measuring devices 1s the venlurs mefer This 15
shown diagrammatically m Ig 3 14

1t 1s basteally a simple, smooth contraction with a diffusing section
added to restore the pipe diameter to 1ts onginal value The mcluded
angle m the diffuser 1s kept to 6° or less to prevent flow breakaway

J/ BN
L 4

Fig 314 A ventun meter

from the diffuser walls, causing Inrge head losses 1o the meter Pressure
tappings are made 1n the upstream parallel sided section of the meter
and at the throat The flow rate through the meter 1s given by

_ 20(p1/7 + 21— pafy — 23}
Q= C,,Az\/+—————————l o FWINT (314)

where Cy 15 a constant for the meter The value of €, 1s determined
experimentally for each meter and lies between 0 6 and 0 95 usually

T TOTAL ENERGY

vires
v, INCREASING

POTENTIAL DATUM

Fg 315 Pressure and veloaty variation through o ventur meter

Figure 3 15 shows the vannation of pressure through a typieal ventun
tube Notice that as the inlet veloaaty V, increases, the pressure at
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C, 18 o constant for the meter, and the flow rate 13 given by

Q= Cde 1< Gy

Now taking nto account the losses inherent in the meter, the true
flow rate 1s given by

/
Aa/Ay)?

20(pr/y +

Q = C,Cod2 (315

where €, 15 the loss coefficient for the meter

Fig 316 An onfice meter

T
On Qn
Evaluating the coefficients €, and C, 15 considerably more difficult

than evaluating C, for the ventur: meter, but if the ratio da/d, 1s
sufficiently small, say one-third or less, then

1-co (‘B)’ -1
Ay

and the flow rate reduces to

0 = C.Chs 20 (’ﬂ fa-P_ zz)
Y ¥
=7A.\/z,;(’l‘+z.—?—’—z,) (316)
Y e

where k 1s the overall constant for the meter

The pitot static tube The pitot static tube 1s 1 device for measurmg
flow velacities It consists of two tubes, ane withm the other and sealed
at the jomts, as shown m Fig 317 The nner or pitot tube 1s open at
the end and, when pomting directly into the flow, records the total
head of the flow, p + pV?/2
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39 Flow m a cirevlor path

Tigure 3 18 shows a small element of umt length flowing horizontally
1n a crreular path about center O The volume of this element 1s

rdfdr
and 1ts mass 1s

Y godr slugs
g

There 15 2 centrifugal force on the element of m12/r acting away from

Fig 318 Circvlar flow

the center of curvature, or

Yyeqgar
g

which 15 balanced by the pressure forces

(p -+ dp)r d6 — prdg

Hence Yyedapdr = rao dp
g
d, 12
Thus & dr 317
Y g
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32 3,000 Ib/sec of water flows in a channel 30 ft wide and 18 1n
deep What 1s the flow velocity®

33 The maximum pressure 2vailable 1 a certamn water main 1s
40 psta What 1s the maximum pressure avalable at a faucet 35 it
above the mamn?

34 Calculate the pressure and velocity of the flon m the 3-in -
diameter pipe

Bft/sec

6 DIA

Prob 34

35 An automatic boat baier consists of a ventun: tube drawn
through the water at a speed of 10 fps, from the throat of which a
tube 1s connected to the hottom of the boat The mavimum height
that the water in the boat must be raised 1s 2 ft Calculate the necessary
Tnimum area rato for the ventun tube

36 Caleulate the flow rate of water through this nozzle

10 psig

3 DIA 2 DIA

Prob 36
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310 The mlets to ¢ submarine’s buoyancy tanks are 10 f§ below
the surface As the submarine sinks the pressure difference ncross the
wlets remams 10 ft of salt water If the area of the mlet ports 13 2
t”, how long will 1t take to ndmut 10 000 1b of seanater to the tanks?

311 A dam contans a head of 60 ft of water In the base of the
dam a 2 ft diameter channel leads the water through a turbine and
discharges 1t 10 a;r The pressure just before the turbine 1s 18 psig
Calculate the turbine output horsepower

312 A pump at the bottom of a 200 ft mme shaft has to pump
3 ofs of water from the base to the top of the shaft through a 31
diameter pipe  Caleulate the requiced pump horsepower

313 A pump draws 05 cfs of nater from a 410 diameter mamn
and delners 1t through an 8 1n diameter pipe Upstream of the pump
the pressure 1s 20 psig 4t 2 point downstream from the pump and 10
ft vertically above 1t the pressurc 1s 28 psig Calculate the pump
horseponer

314 Calculate the horseponer output of this water turbine

L

Prob 314

315 At 2 pomt on the upper surface of an airplane wing the ar
veloaity 1s 380 mph relative to the wing If the airplanc 1s traveling
at 300 mph at sea level (p = 000238 slug/ft’) what 1s the suction
pressure at this point?

316 Atmospheric air (p = 147 pua p = 000238 slug/ft?) 1s
drawn through an automohile carburetor At the throat the velocity
of the ar 18 8a fps Caleulate the mavimum height {rom which the
suction pressure can draw gasohne (y = 42 Ib/ft?) from the float
chamber

317 What 1s the drag force due to air resistance of an automobile
with an effective frontal area of 18 ft2 at speeds of 30, 60 and 90 mph?
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324 Thnd the height of the fluid i the tube

20 ftfsee
e
spgr 085

T T T I Z

Prob 324

3:25 18 ft from the center of a whirlpool the veloaity of the water
15 1 fps and the pressure 27 psia If the vapor pressure of water is
30 psia (at which pressure, cavitation oceurs), what 1s the diameter
of the hollow cere of the whirlpool at this level?
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reference will be made to them n this chapter If the reader 13 not
already famuliar with these equations, he 13 referred for proofs to the
references listed or to any elementary thermodynamics text

The universal gas law In its simplest form this may be stated as

pV = RT {42}

where p = absolute pressure, psf

¥V = volume, ft*

T = absolute temperature (1¢, °1 4 460 or °C 4 273)

R = pas constant for gas concerned
If Eq (42) 15 apphied to 1 1b of the gas, then 17 becomes the speerfic
volume of the gas or 1/ or 1/pg Substituting this in Tq (4 2) grves

2 _ 4rT {43)
»

The value of R varwes from gas to gas (for aur, R = 53 3{t/°R) but
the product of R and the molecular weight of the gas 1s very nearly
constant for all gases This product 1s called the universal gas constant

mR = G = 1,550 ft/°R (44)

The tsothermal process An isothermal process 1s one 1 which the
temperature remams constant Tor this to occur, heat exchange
between the gas and its surroundings must take place

Lquation (4 2), when appled to an 1sothermal process, becomes

pV = const

or L const (45)
»

The adiabatic process An adiabatic process 1s one 1 which no
heat transfer occurs between the gas and its surroundings This usually
RIS that the proctss Tk W e

If an 1deal adiabatic process takes place, that 1s with no fricton
losses, 1t 15 called an 1sentropic (or constant entropy) process

Adiabatic processes obey the law

pV* = const

or r_ const {46)

o
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Substituting these m Eq (4 8),

2 g2 2 ekt d-
w0
2g 1 Y

2
= / chy-tdy
1

(=t — D)

()7 =1)
2,
vt _ P

But eyt = ¢~
T2 Y2

2’

vy — 0,2 pak [(71)"“ ]
Y 70 — =P -1
Therefore % + (22— 21) =1 L\

Very often 1 problems mvolving the use of this cquation, the term
(22 — 21) 18 neghgible, 1 which case

Ll w

This 15 one form of Bernoull’s equation for ideal compressible flow
There are many other ways of writing Lq (4 9) mvolving different
parameters, but the student should remember that these are only
alternative forms of the same equation, and not new equations For
mstance, by making the substitution

u_ (&x)”*
Y2 Pz,
Eq (4 9) can be written as

122 — u? _1 L [(ﬂ)u—nlk ] 410
2g yeh — 1| \p2 ! i)

Or, by considering the relationship

r_rl_ (g)’
n pl P,
and dividing by pa/ps,

T (p,)m—l (m)u—k n (p‘ (k=Dk
T, \ps “\m B ;A)
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It exhausts to atmosphere through a convergent nozzle with an exit
area of 0 5 ft? Caleulate the mass flon rate

Referring to the reservoir conditions as station 2 and the nozzle exit
as station 1

=P XM 130 Iyttt
"= kT, T bas woa - 0 10 IN/E

Using Eq (4 10),

0—v;’_25><144X14[(147)"‘“‘_1]

27 D10 XO04 25

7\0 288
—94)(10‘[(14) —1]

Therefore 2 = 624 X 108(1 — 0859) = 624 X 0 141 X 10*
hence vy = 940 fps

11
Now n. zll)

k& P2,
1 147
so = «/z(;i:) =0 120(25 ) = 0089 Ib/fts
Therefore G = pidwy = (wxs—:;w = 1 30 slugs/sec

44 Mach number

The four basic equations with which all compressible flow problems
may be solved have now been established These are

1 The unutersal gas law, p/y = RT

2 The adwbatic law, p/y* = const

3 The equation of continualy p4v = const

4 Bernoull: & equation 1n s various forms

A new parameter which will help 1n the study of compressible flows
18 now introduced This 1s the ratio of local veloeity to local acoustie
velaety, called the mach nwumber (after the Austrian physicist Ernst
Mach) and given the symbol AT

Tor subsonte flows 3 1s less than 1, and for supersonte flows 2 1
greater than 1 The tegion m which 3 approximately equals 1 1s called
the transonme region

Example Calculate the exit mach number for the nozzle of Example
2, Art 43
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Expanding this binomaily,

zZ A
17:=Pn(1+§ +§}:+ )

Zpsy VA
= po+ Py (l + ry + )
Z _ Viye Vo
L_tove _ o g
Now 1 T o 3
zZ 1 Ve 1
and Fh=3 ;70 =, poVo?
e
Therefore Pe = po-+ YopoVo? (1 + T + ) {412)

It will be noticed that the compressible stagnation pressure 1s higher
than the incompressible stagnation pressure by an amount propor
tional to the term m the bracket, referred to as the mach factor VF
This means that a pitot static tube demigned to read velocities in
mcompressible flow will read high if used m a compressible flow without
correction

The error wnvolved m neglecting terras 1 the mach factor becomes
greater as Af approaches unity, and at mach numbers greater than
umty the equation 1s no longer valid because of the esistence of shock
waves (see Art 4 6) shead of the stagnation pomt

Exomple An ASI s cahbrated for mcompressible flow Calculate the
pilot’s observed speed if the TAS 1s 480 mph at (a) sea level, and (b)
25,000 ¢

(a) At sen level, p = 0 00238 slug/ft3, T = 60°F Therefore
¢=VkgRT = V14 X322 X 533 X 520 = 1,120 fps

)4 480 X 88
H Me-—me 2 o
ence ¢ “Lmoxe - 0%
A2
d = -
and so Y 00967
Therefore Pc — Po = }5peVo?(1 0967)

neglecting terms in M4, ete Now since the instrument is ealibrated for
compressible flow, 1t reads this as poV,2/2, where V, 13 the mdicated
velocity and po 18 the sea level value of the density

Therefore V= Ve X 10907

or T:= 480 V10967 = 502 mph
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The pressure ratio ncross a normal shock 15 given by
P2 _ Lt AUy
P 1+ LAL2

and the temperature ratio by

Ty _ 11k — 1)/2Me
T, 1+ [( — D/2D02

(414)

(415)

Exomple The flow of air in the working section of o Mach 3§ super-
some wind tunnel 18 decelerated by means of a normal shoch If the
worhing section has a temperature of 300°R and the pressure behind
the shock 1s atmospherie, calculate the pressure and velocity mn the
workmng section and the mach number and veloetty behind the shoek

In the working section

6 ="v14X322 X533 X 300 = 850 fps

Therefore v, = 3¢; = 2,550 fps

i

Behind the shock

1+02X9\¢
= (222X L gars
My (14x9—02) 0435
and N ( 1+14%09 )
Pr=P\{ T x02%
_1315
Therefore =147 136 =142 psia

The temperature behind the shock 1s given by

B 1402X9 .
T2 =80 T o 0235 ~ S8R
Therefore ¢, = V14 X 322 X 533 X 808 = 1,395 fps
50 2 = Maes = 0475 X 1,395 = 662 fps

47 The rate of change of area with mach number
The equation of continuity states that

G = pAV
Taking loganithms of this,

InG=mhp+In4d+InV
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than p;, and 1f some veloaity 1s to be achieved, 1t must occur at the
nozzle exit

P Fig 42 A convergent
nozzle
Ay ——py

Applying Eq (4 10) between the reservorr and the nozzle exit,

)
2wl — DIAp

stnce ¥y = 0 Now replacing Va? by c* = Apsg/y: and substituting

(P1/P2)er o fOT D1/ Do,
Lp‘ _ pod [(El)(k—l)/k 1]
2v2 vk — 1) W\po/ae

-—_ (k=1)jk
ar L= S, (P’)
2 D2/ers

By 1+ 1\MG-D
Hence (~) = ( )
P/ 2

or more usually

0. ()
prfeae L1

11 the 1ot p3/p11s eyual 1o this entical pressure ratio, some velooty
will occur at the nozzle exit, and the nozzle extt pressure p, wall equal ps
1 the value of ps/py 18 less than the required critieal ratio, sonic veloeity
will still occur at the nozzle extt, but the pressure ps will be greater than
Ps, and further expanston will take place outside the nozzle

If the ratio ps/p, 15 greater than the enitical ratio, some velooity
will not occur, and again p: and p; will be equal

The value of the critieal ratio for air 19 0 528
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The flow accelerates subsonmcally 1n the convergent section, reaching
Mach 1 at the throat, in which ease the ratio pa/pi1s the eritieal 1atio
for the gas concerned

Supersonic acceleratton takes place m the divergent section, pro-
vided that the ratio pi/p; 15 sufficiently small

The convergent seetton ean be fairly short, but the divergent section
18 usually comparatively long 1n ordex to prevent flow breakaway from
the walls

4
"T 1)
)
Pert @
Py
REDUCING
i
ey

Fig 44 Pressure variat ons through o convergent divergent nozzle

Tgure 4 4 shows the varations mn pressure through a convergent-
divergent nozzle Of course the important parameter i convergent-
divergent nozzle problems 1s the ratio pa/py, but mn order to clanfy the
explanation, p; 1s assumed to be constant and ps 1s alloned to fall n
stages

Curve ¢ shons an entirely subsonic flow case The veloaty at the
thront 1s subsonie, 4he pressure 84, the throad 1s greater than the ertweal
value, and p; equals py

Reduction of p, causes the veloeity at the throat to ierease uniil
sonte veloeity oceurs pp/py 18 now the critieal ratio for the gas con-
cerned This casc 1s shown 1n curve b However the back pressure ps1s
too high to cause further acceleration, and the flow decelerates sub-
somcally mn the divergent section to make p; equal p4 again

A further reduction of p; cannot affect the flow before the throat, but
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At exit, for full expansion, ps = p; Therefore
1k
Ys— 71 (ﬂ) = 0100 Ib/ft?
P,
147 X 144
and so T3 = P X 5I6°R

Now smnce V2 = 0,

or 1,805 fps
and ¢s = VAgRT, = 042 ips

1
Therefore My = =192

s
For full expansion

228 — v3d;Vs = 0145 X 1,805
or Ay =001201t? = 182m?

PROBLEMS

41 An applied pressure of 6 000 ps1 1s found to reduce the volume
of a certan hqnd from 1 to 0 98 ft? Caleulate the bulk modulus of
the fluid

42 Seawater at the surface has a speeific neight of 64 0 Ib/ft? and
a bulk modulus of 3 X 10° ps1 Caleulate the specific neight of seawater
at a depth where the pressure 1s 3,100 pst

43 What 1s the temperature of a mass of arr with a specific weight
of 010 Ib/ft? when the pressure 1s 120 psia?

4 4 Standard air 1s considered to have a pressure of 14 7 psi2 &
temperature of 58°F, and a denity of 000238 slug/ft? Estimate the
value of B

45 The awr of Prob 4 18 compressed 1sothermally to a pressure of
100 psia Caleulate 1ts new specific weight

46 Airat 100°F and 15 psia 1s compressed adribatically to 60 psia
Caleulate the specific weight before and after the compression

47 Arr from a service station storage tank at 100 psiz and 60°F 1>
used to nflate a tire to 30 psig Assuming adiabatic expansion calew
late the temperature of the air entering the tire at 30 psig
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4:22 Calculate the eritical pressute ratio for earbon dioxide

423 A tank containing nitrogen at 60°T discharges into atmosphere
(p = 14 7 pata) through o convergent nozzle with a 1an -dismeter exit
Caleulate the mimmum tank pressure that will cause the flow to be
some at et and the mass flow under these conditions

424 Air flows through a convergent-divergent nozzle from atmos-
phere (p = 14 7 psia, T = 60°T") into a tank in which the pressure 13
maintained at 20 1n of mercury vacuum Caleulate the mach number
at exit, assuming full expansion

425 Air flows from a reservorr, 1n which the pressure and tempera-
ture are 60 psia and 200°T, through a convergent-divergent nozzle
of 2w throat diameter into a regon of 14 7 puia pressure Caleulate
the diameter of the exit for full expansion



84 BASIC FLUID MECHANICS

the flurd on the blade This reaction foree can be used to cause the
blade to move and do work

52 The impulse momentum equation

The impul e momentum equation 18 used to calculate the forces
exerted on a solid boundary by a moving flurd stream It can readdy
be derssed from the familine Newtonin relation F = Ma

i 2

Fig 52 Astreamtube

Conwider the flow through the streamtube shown mn Iig 52 The
flurd at section 1 reaches section 2 1n a fintte fime At If the flow rate
through the streamtube 1s @ cfs then the mass flowmng between sections
Land 215

Qatp
and the equation of motion becomes
F = Q At p X acceleration

{Note that F1s considered a vector force )
Now the aceeleration 1s given by

av
At
and thercfore

F=QA2p%=OpAV (1)

since At 1s a finute time interval
Also, 4V 15 the vector change m velocity and equals

V.-V,
Hence Eq (5 1) can be wntten m its final vector form
F=Qp(V: ~ V) G2

This 15 called the general impul ¢ momentum equation and stated
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Hence, from Eq (5 2),

P1hy — prAscos b — F, = Qp(Vacos 8 — V) {5 3a)
Now resolving vertically,
F,— W —p4,sm6
15 the vertical accelerating force, and the vertical velocity change 1s

Vising — 0
Hence Fy~ W — pydssm 8 = Qp(Vasin 8 — 0) (5 3b})

It will frequently be necessary to apply Bernoull’s equation to
determne one of the pressures imvolved For small bends the vamation
m potentral at the mnlet and outlet may be ignored but for bends with
large vertical dimensions the potential variation must be taken into
account

With this additional mformation Eqs (53¢} and (5 3) may be
solved for F. and F,, both of which wall be positive if therr directron
was correctly chosen mitially A negative value for exther merely indi~
cates that the chosen direction was mitially incorrect

Example 1 A 12-n -diameter horizontal pipe terminates n a nozzle
with an extt diameter of 3 1n, as shown 1n Fig 54 If water flows

A A
fals) L]

Fg 54

through the pipe at a rate of 5 cfs, caleulate the force exerted on the
nozzle
Trom symmetry, there 1s no F, force The velocities at stations 1 and
2 are given by
HVy= 4V, =Q

Therefore ¥ = 63 {ps

i
/4
and Ve=16X 63 = 102 fps
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Bernoullt’s equation 1s used to caleulate po, Vi =12 21 =0, and
2a = 1 Therefore

LI

Y T
and so pr=p1— v =300 — 624 = 2376 psf
Now V=2

A

2 9

=25X% o isips
T

Applymg Lq (5 2) horizontally,

prdy — Fo= Qo0 ~ V) = —QoV
300x 624
= — —— X718
Therefore F 3 + 25 s X711

= 1391b
And vertreally,

Fy = W = pady = Q¥
25X 624 X715
=222 2R 00
322
= 180 Ib

Therefore -+ 0624 4+ 237 67-!;

Hence the resultant force acting on the flud (equal and opposite to
the required foree) 1s

V139" + 1807 = 227 1b

= arctan 188{z9 = 522°

and the angle 815

54 The impulse turbine

In Arts 51 and 52 the pninaple of momentum was diseussed, and
1t nas shown that by deflecting a flud jet with a stationary blade
force was exerted on the blade Thus force may be used to cause the
blade to move and do work, which 1s the basic principle of the smpulse
turbine

Naturally the force on the blade will be modified by the blade move-
ment, and a single blade would soon move away from the mfluence of
the flurd jet The latter problem 1s overcome by providing n series of
blades around the periphery of a turbme so that one or more of the
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force required to cause this veloeity change yrelds
F. = QoAV.
Since the force moves with a veloaity v, the work done by the turbine 1s
P =F.v=0QpAV.v ft-lb/sec (54)
Similarly, there 1s an axal force F, given by
Fy = Qual,

but as this force moves through no distance, 1t does no work and causes
only a thrust at the bearings

Fig 58 Impulse turbine com
bined velocity diagram

The power output 15 2 maximum for any given blade speed when
ai = 0° and @, = 180°, since this gives the largest possible value for
AV, For such a condition, the flid must enter and leave the blades
tangentially so that 8, = 8, = 0°, and 1t may be shown that the maxi-
mum possible output 15 under these conditions and when v = V,/2

Since the energy content of the fluid entering the turbine 15

V 2
Botia+n st/
Y 2
and that of the flmd leaving the turbine 18

v
Byl liadl ftb/b
Y 2%
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The absolute change 1n veloeity 1n the direetion of the blade motion 1s
given by AV, and equals 150 fps Therefore
5 X 624 X150

P, =QpaV. = 322 b
and the power 1s

5 X 624 X 150 X 200

322 X 550

hp = 528 hp

¥, 350 ttisec

vy 250 f/sec

| 100ft/sec

A v 200 tt/sec |
fig 59

Example 2 The blades of an impulse turbine have a peripheral veloeity
of 150 fps Water flows into the turbine with an nlet velocity of 300 fps
at 90° to the blade direction and out at an angle of 160° to the blade
direction with a veloetty of 175 Ips Calculate the turbme efficiency

In this ease U5 and U are not equal because fmction 1s present, how-
ever, enough mformation 1s given to enable the velocity diagram (see
Fig 510) to be drawn directly



96 BASIC FLUID MECHANICS

The rate of change of angular momentum 1s found by differentiating
Eq (58),

dMa dw
@~z ©9

The nght-hand side of Bq (5 9) 1s the famaliar expression for torque

1t 1s now possible to state the general angular momentum equation
thus The lorque required lo produce a change 1n angular velocity of a faud
18 equal fo the rate of change of angular momentum produced

Figure 511 shows a streamtube through which a flow of @ ¢fs1s
passing Consider & small mass of fluid AM at station 1 This small mass
reaches station 2 at a time Af later At station 1 the moment of wnertia

2

0

1N Fig 511 A curved streamtube
3
< o

of the small mass about the eenter of rotation 1s AM 7:%, and 1ts angular
momentum 1s AM ri%: At station 2 the moment of mertia and mo
mentum have become AM r9? and AM 742w, respectively

The net change 1n angular momentum between these two stations 1s

AM (riw; — rilws)
The rate of change of angular momentum 15 then

AM
¢ (rler = ries)
but AY/At 1s the mass flowing per second and equals Qp Therefore
the applied torque 1s gaiven by
T = Qpfr ity — 1-705) (5 10)

Now 7w 1s equal to the tangential veloctty component at station 1,
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The fluid entermg the turbine 1s given an angular veloaty, or swirl,
by the stator blades and then enters the rotor The fixed stator blades
do no vork smee they are not in motion The rotor reduces the angular
veloeity of the fluud (ideally, back to zera) and, i so downg absorbs a
torque from the flmd This torque 1s available at the turbine output,
shaft

The flurd enters the reaction turbine with a velocity Vo whieh 1s
considered to be entirely radial This inlet velocity Vais related to the
overall flow rate @ by the expression

Q = 27recV,
where ro = outer 1adius of stator
¢ = blade depth

After passing over the fixed blades the flud enters the rotor at an

angle 8, to the blade direction with a veloaity 11 (greater than ¥ o since

v

Fg 513 Reacton torb ne inlet veloc ty
v 3 7 d agrom

% '
¥ 3
o

the radius is deereasing) Thos entry veloaity Vy may be considered the
tesultant of two vector components V, radwally and V, tangentially,
as shown mm Fig 513 The radial veloctty V, 1s related to the flow
rate by the expression

Q = 2rricV, {512a)

V1 mav also be considered the resultant of the blade velocity wri
(o = the angular velocity of the turbme) and the velocity of the flud
relative to the blade U;, which 1s drawn to enter the blade smoothly
at an angle a; the blade mlet angle Compounding these, 1t 15 possible
io draw a velooity diagram for blade entry conditions A typeal dia
gram 18 shown m g 513

Now at blade extt the radial veloeity component V., 1s given by

Q = 2xrscV,, (5 12b}
and the blade veloaity by wr,
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‘The abeolute flind entry angle 15 grven as 30° to the blade durection,
and so the entry veloeity diagram can be drawn as shown i g 516
Trom this diagram the blnde entry angle 1s measured as 63°, the swirl
velocity Vi, as 45 fps, and the nlet veloeity as 53 fps

i 4sfi/sec
1

Y. 265 ft/sec
n ¥ s3fsec fu

120 ft/sec
30° “ﬁff
wr, 34fusec
Fig 516 lnlet
At outlet, V,, = 0 Therefore V. = V,, which s found thus
Q 1,000
V, = o = 2= = 4541
P e
At the outlet radius the blade veloeity 1s given by
wry =_5_l)_>_<_26_1(r)_><_3~5 = 18 3 fps

Naow the outlet velocity diagram can be drawn (see Iig 5 17), and the

4

72
454 ftssec frg 517 Ext

1 20 ft/sec

wry 183 fikec

blade outlet angle measured This 1s found to be 112°
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and therefore the rate of change of momentum of the rocket 15 M17/g
Ib-see/sec The rate of change of momentum 15 equal to the thrust,
and so
Ay
r=2
g

Example 1+ A hqud-propellant rochet uses 22 Ib of fuel per second and
300 1b of owudant per second The exhaust gases leave the rochet at
2,000 fps Caleulate the rocket thrust

IV
=M
[
300 + 22
=g X 2,000 = 20,000 Ib
A more I devige for prod et thrust 1s the ar-breath

ng jet engine Unlike the rocket, this does not need to carry its own

M+[ Ib/sec GASES
¥, firsec

M lbssec AR
W 1t/sec

Fig 518 A (et engine
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Tigure 5 19 shows an actuator dish moving through 4 flurd with a
veloeity Vi This 1s essentially the same as a stationary disk in a flow
of velocity Vy The flow will accelerate as 1t approaches the disk,
recelve an energy mcrease 1m the form of a pressure mse mn passmg
through the disk, and continue to accelerate downstream of the disk

1 PR

% v Y%

DISK:

Fg 519 Flow through an ideal propeller d sk

until the pressure of the stream 1s the same a that of the free stream
The four stations mdicated in Fig 519 are

1 The free stream unaffected by the disk

2 Immedrately ahead of the disk

3 Immedrately belind the dish

4 Far dovwnstream from the disk

Now p1 = p: and since 2 and 3 are obviously very close together,
V.= V3 = V, say The thrust developed 1s grven by

T=(ps—pld
where A 15 the dish area Also, from Eq (52)
T =Qo(Va— Vi)
=pAV(Vi— V)
Therefore Pi—pa=pV(Vi—T1) (514)

Applymg Bernouili’s equation between stations 1 and 2 and between
stations 3 and 4,
P1+ 1oV % = ps + 14pV2
and Pa+ 350V = pa+ 350V ¢

Subtracting these two gives
P3 — P2 = ps + 35Vt — ps — 35pV32
= LV — V1) (5 15)
Lquatmg (5 14) and (5 15),
(V2 = Vi) = pV(Vs = V)
Vit Vy

5 (5186)

Therefore V=
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The thrust 1s given by

000238 X 49x X 315 X 104

T=AV(Vi— V) = 1

= 3,200 1b
The horsepower output 18

TV, _ 3290 X 203 _
550 550 -

PROBLEMS

51 A honzontal pipe contamns a constniction which reduces the
diameter from 4 to 210 Upstream of the constriction the pressure in the
pipess 17 psig and 1 5 efs of water 1s flowing in the pipe Caleulate the
magnttude and direction of the force exerted on the constriction

52 1If the constriction of Prob § 1 1s used as a nozzle m a system
where the upstream pressure 18 mamtaged at 17 psig, estimate the
magmtude and direction of the force exerted by the water on the nozzle

53 The arm of a horzontally rotating lawn sprinkler contams
water at a pressure of 6 pstg The end of the arm consists of 2 90° bend
and a nozzle reducing the diameter from 1 to Y3 1n If 0 05 cfs of nater
passes through the nozzle, caleulate the force exerted on 1t

54 A sertical pipe 6 m m diameter contains 2 conteal expan«ion
to 12 m diameter, the expansion 1s 3 ft i length The velocity of the
water m the 6 in pipe 1s 12 fps upward, and the pressure 1s 25 psig
Estmmate the force exerted on the expansion

55 The flow m a 3 diameter pipe passes around a 100° hori-
zontal bend The velocity of the water in the prpe 15 20 fps, and the
pressure 15 10 psig Caleulate the force exerted on the bend

56 Animpulse turbine with a blade veloeity of 200 fps 1s driven by
01 slug of air per second entering with a veloeity of 500 fps If the
mlet blade angle 15 70° and the exit veloeity 15 250 fps, calculate the
blade exit angle and the turbine output horsepower

57 The turbine of Prob 56 1s to be coupled to a water supply <o
that the water leaves the turbine at right angles to the blade direction
with a velocity of 100 fps Tind the new veloaty for the turbine blades
and the diameter of the inlet jet to give the same power output

58 Flud enters an 1mpulse turbine at a rate of 0 08 slug/sec nith
a velocity of 400 fps at 45° to the blade direction 1f the blade yeloeity
15 200 fps and the flow 15 turned through an absolute angte of 90°, caleu
late the turbme efficiency whes delivering 10 hp and the outlet veloeaty

59 The et fimd from the turbme of Prob 5 8 flows directly into 2
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Exammng the dimensions of this equation for equalty,
LTt = (LT-"L)% = LT

showns that the equation 1s dimensionally consistent

Suppose now that Bq (3 7) was not known The method of dimen-
stonal analysis muhes 1t possible to deduce the equation empineally,
provided that the dependent vanables can be correctly assumed

Toble 61 VLT dimensions of some common variables

Quantsty Symbol | Dymensions
Length L L
Time t T
Mass M v
Temperature [ 3
Force r uig—
Veloeity v 1T
Acceleration a LT
Area A 12
Yolume v F2]
Flow rate Q AV
Weight flow rate [l ML3™
Alass flaw rate G MT
Pressure r ML T 2
Denaity P ML 3
Speeific weight ¥ ML T 2
Speafic gravity 8 None
Dynamie viscostty “ ML s
Raematie viceosity v nr-t
Bulk modulus A ML 72
Gas constant R Lo ¢

Decrding upon the correct vartables 1s the most difficult part of the
analysis, but with eareful reasomng and a lttle expertence, 1ncorrect
assumptions will be eliminated

In thes case 1t ¢an be seen that the velocity may depend solely upon

1. The hewght b of the flwd head above the hole

2. The type of flwd, represented by its density p

3. The acceleration due to grassty, g
Since the fluid 15 considered 1deal, all the viscouty terms may be
neglected

Thus the equation for the veloeity from such an orifice may be
written as

T = const heplge
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number of yanables by grouping terms together as dimensionless
quantities T'ar example, the force everted on a body moving through
an meompresstble flind may be established as follows

The value of the force depends =olely upon

1 The size of the object, represented by 4 typical length, L

2 The relatrve veloerty between the fluid and the object, v

3 The flwd denstty, »

4 The flud viscostty, v

5 The acceleration due to gravity, g
Thus the equation can be written as

F = const Levbpeyiye ©n
and dimensionally

MLT=" = Lo(LT W(ML-3)(L2L Y(LT-?)e

Examnng each of the dimensions mdidually,

M I1=c¢
L I=a+b+2d—3c+e
T ~2=—-b—-d~2

Solving these 1n terms of d and e,

1
2—d-—2
4~2d~e—b=2—d+e

so that Eq (6 1) can be written as

F = const L2-#te 1 2-d-2geage ©2)
L\ et 2
and therefore I' = const (—) (——) pv'L? (63)
v gL,

where the terms i parenthesis are dumensionless

64 Reynolds number and Froude number

T Loy 48 D) e vk vo dimersivdess wuwninins, vhf v wsd et /gl
The first of these 1s culled the Reynolds number after the British physt
cst O Reynolds and 15 a number of extreme mmportance 1 flud
mechanies It 1s particularly important 1n the evaluation of model test
results and their extrapolation to full scale prediction The second
quantity 1s ealled the Froude number and has particular sigmficance
the evaluation of test results involving surface movements and wave
drag
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hetween model and full scale effects The most common of these are
the compressed air wind tunnel and the water tunnel Both are used s¢
that varation between model and full scale velocities can be com
pensated for by 2 vamation 1n fhud density and viscosity

Example 1 A one fifth scale modet of an mrplane 15 tested m (a) a
wind tunnel and {b) a water tunnel Caleulate the tunnel speeds re-
quired to correspond to a full seale speed of 100 fps at sea level

Dpnga = M1y
il uly

Therefore
Ym 173
vu Ly
or Iy —tg—
v T
¥m Hun P,
-5y, sopimZL
vr By Pm

(@) In the wind tunnel pm = g, and p, = p; and so

1w 500 fps

(0) In the water tunnel

pm = 21X 10 5Ib-sec/ft?

y = 00377 X 10 5 Ib sc/ft*
pr = 000238 slug/ft*

pm = 194 slugs/ft3

21 000238
Therefs e — 5
erefore v, 500 0037 191
— 34 2{ps

Example 2 A 5 it model of a slup 200 ft long 15 tested 1n a tank of
flmd with a spemfic gravity of 09 and a viscosity of 42 X 107% tb
sec/ft* Caleulate the model veloaity to give the same wate patiern as
the full scale pattern at 30 fps and the ratio of the Rejymolds numbers
at this speed
For 1dentical wave patterns the I'roude numbers must be the same
L v

Loy Lyg

Therefore U = 1)
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69 A model of a water mamn runnmg full, 1s to be made to one
twentieth scale, ustng gasolne 4s the fluid Caleulate the veloeity ratio
required for dynamie similanty

610 A one-uateenth scile modecl of an automolile s tested m a
water tunnel Caleulate the water velocity to give dynamic similanty
between the model and the full scale vehicle moving at 60 mph

If the force exerted on the model 1 the tunnel 1s 1,000 Ib, ealculate
the horseponer requured by the vehicle to overcome air resistance at
60 mph

411 An ohject which moves wholly 1 air 18 model tested o
water tunnel What model scale must be used to give complele dy namic
stmilanty {re, corrcct Reynolds and Froude numbers)” What will
be the model yelocity ?

612 A ship designed to travel at 30 mph s 450 t long At what
speed should a 10 ft-long model be towed through water to give dy-
namic simlarity ?

If the force required to tow the model at this speed 1s 1 10 Ib caleu
late the horsepower required by the ship when traveling at 30 mph
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In lammnar flow, a flud particle at 2 point in the flow 33 constramned
to move 1n the lamina containing that pont However, i turbulent
flow there are no “layers,” the flud becoming thoroughly mixed 1

=

THME AVERAGE V

VELOCITY.

Yy
TIME

TIME AVERAGE O

Fig 71 Turbulent Row veloaty vanations

flowing and the turbulent eddies causing a considerable increase m
resistance to flow

7-2  The eritical Reynolds number

In 1883 Reynolds performed the now classic experiment, to determme
the conditions govermng the transition from laminar to turbulent flow
Usmg the apparatus shown 1 Fig 7 2, he allowed the flud from the
large tank to flow through a bell mouthed entrance and along a smooth
glass tube controllng the flow by means of a valve at the end A
capillary tube connected to a reservoir of dye allowed the mtroduction
of a filament of dye 1nto the flow stream

While the flow i the tube remamed lamunar, the dye filament
remained steady But when turbulence occurred, the dye filament
became ragged and dispersed, eventually completely mixing wath the
main flmd

Reynolds found that with care, laminar flow could be mamtamed
until the flow Reynolds number reached 12,000, a value which has
since been extended to 40,000—50,000 by allowing the flusd m the
tank to stand for several days pnior to the experiment and by making
sure that the apparatus is entirely free from wvibratton This value 1s
called the upper critical Reynolds number It has little or no sigruficance
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important region of varying velotity 1s termed the boundary layer The
study of the boundary layer 1s a subject 1n 1tself, and no atterpt will
be made here to analyze the flow within the boundary layer, other
than n an elementary fashion

The boundary layer 1s not a <eparate part of 2 flow 1n that 1t has no
actual! physical Itmat, but 1t 1s generally defined as the region in which
the flow veloaity 1s less than 99 per cent of the maximum veloeity of
that flow, as shown mn Fig 73 In other words 1t 1s the region in which

% ]
P s e—

&

]

g

3

3

&

=

3

g

“ BOUNDARY
u LAYE

H THICKNESS
2 ]

a

B

VELOCITY
Frg 73 The boundary layer

all but a very small fraction of the viscous losses occur Qutside the
boundary layer, the velocity vanation and the resulting shear stresses
are neghgible

The thickness of the boundary layer varies considerably from apph
cation to appheation On the surface of a high speed amrcraft wing the
thickness of the boundary layer 13 of the order of hundredths of an
weeh, wheters w o fully estoblushed fom w2 pye e boeedesy layes
fills the pipe completely

Although the boundary layer s not 2 separate part of the flow, 1t does
act hke a thin, pliable film placed on the surface of a sohd boundary
Free stream pressures are transmitted unchanged across this film, but
adverse pressure gradients, that is, pressures which increase in the
downstream direction—usually associated with decelerating flow, can
causc the boundary layer to separate from the sohd boundary, causing
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turbulent just before the onset of the adverse pressure gradient The
turbulent boundary layer will adhere to the surface longer than the

WIRES CAUSING
TRANSITION:

LAMINAR BL
TURBULENT BL

Fig 75 Artfically produced transthon

laminar boundary layer, resulting 1n 2 rather narrower wake, with a
net drag less than for the all lammar flow case
74 Lominar flow analyzed
The baste equation of laminar fow,
di
=u— 13
TGy as)

was estabhshed 1n Art 14 by considering the lamnar flow of a flmd

past a solid boundary, and no eonstderation was grven at that tune to

the possibility of the flow being turbulent It must now be emphasized
I

Fig 76 Veloaty distrbution between
v parallel fiat plates in relative motion

[4

that the equation 1s true only 1if the flow 1s lamunar, that 1s to say, if
the flow Reynolds number 1s less than 2,000 Provided that this condi-
tion 15 observed, Eq (1 3) may be used to analyze the various types of
laminar flow that ocour
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Hence the net force on the plate 1s
3(0 0186 + 0 0062) = 00744 1b

Laminar flow between flat, parallel stationary boundaries For
this type of flow the velocity distribution must be of the form ndi
cated in Fig 78 which 1s to say that the velocity must be zero at both
plates and & maximum af the center In order to maintamn flow agatnst
the resulting viscous resistance, a force m the form of a pressure differ
ential or & potential drop must exist

Consider the equilibrium of the element shown i Fig 78 The ele
ment 13 centered on the flow center line for symmetry and 1s of umt
depth <o that the viscous force on the element 1s 2rdz The net

£

Tdx ¥
l ’
2stp+dp)

Fg 78 Velocty dstibut on between parallel stat onary flat plates

7

pressure force on the element 15 25 dp 1n the same direction and for
equilibrium
2sdp + 2rdz =0

Therefore r= —s% = “L‘iij for larnar flon

Now at any section the pressure 15 constant geross the flow hence

_lzf_
v T L -

ldp
Theref =—-—=
erefore v iz (2+c)

¢
d. s =_—
fa s inee s =, —y

But whens = #4/2 v =0 Soc¢ = —2/8 and

1dp (s t*
=i - 71
v udx(z 8) an
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Hence the Reynolds number 15

0067 X03

Ex12x 10 %0

and so the flow is laminar.

1

AL
3
e

L

Now from Eq (7 3)

Fig 79

tmex = 38V = 10 fps
and from Eq (7 5)

»n 12.,VL  125VL
By g 2 h
k + i gt
12X 125 X 10~ X 067 X 180
- 0.3\?
(E) X 322
= 0895
and so B 0895 — 3 = —2105ft
Y
or = m{zx—m T y vacunm
P = 1355 i mercury va

= 1781n mereury vacuum

Laminar flow through circular pipes. Consideration of this flow
shows that around the circumference of the pipe the velocity 1s zero
and that the maximum veloaity oceurs nlong the eenter hine of the flow
The equation of the velocity profile may be obtained by constdermng the
forces acting on a cyhndrical element of radius 7 placed symmetrically
about the pipe center Line, as shown in Ig 710 The viscous force
acting on the element is 72zr dr, and the net pressure foree 13 dp #r”
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Now solving for the pressure drop,

+ 32uV
/ dp = — , "D dzx
Therefore P1—pr= - 33; (z: — z3)
32 v
“ (2 — z1)
32MVL
=5 (79)

and since this 15 the pressure drop due to lamnar friction, Bernoull’’s
equation can be written as
P VL m VP BWVL
v % v % D
Exomple If Q 15 cfs of oil of viscosity 120 X 10~%1b sec/ft? and specific

gravity 0 92 flows through a straight 2 1 -diameter smooth pipe, caleu-
late the pipe gradient to give constant pressure along the prpe

Q 144 X015 _

(710

Henee the Reynolds number s
092 X 624 X 687 X2
322 X 120 X 12 X 10—
and so the flow 1s Jammar
Now applying Eq (7 10) and putting py = p2 and Vy = Vs,
32uVL
v

= 1,700

2= =
so that for I = 1 ft,

32 X 120 X 10-% X 687 X 36
624 X 092

L =22 =
= 0166 ft
which 15 to say that the gradient of the pipe must be 0 166

75 The velocaity distribution i turbulent flow

A large majortty of the flows encountered 1n engineering are flons at
Iigh Reynolds numbers, and so are turbulent Unfortunately, the com-
plex nature of turbulent flow does not allow complete mathematical
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roughness 1s such that the effects of 1t are transmitted through the
lamnar sublayer and extended into the region of fully des eloped turbu
lent flow, so that this surface must be constdered rough

The actual shape of the veloeity profile in turbulent flow 1s hard to
analyze, but expermment shows 1t to be flatter than the laminar one,
with a laminar profile close to the wall (see Tig 7 12) Experimental
results show that the average velocity and the mavmum velocity

Z LLL s L.
\\ TURBULENT

\\\
) LAMINAR
v SUBLAYER

re
-~
7 LAMINAR

72

Fig 712  Compar son of lam nar and turbulent veloaty profles

fully developed turbulent flow within a encular pipe are related by the
expression
tmae = 124V 7

Now 1t 1s reasonable to assume that the veloaity profile can be ex-
pressed as a function of the distance from a boundary Thus

N (4) @12)

where y = distance from boundary
a = const (I/2 for a pipe)

or v =124 (:l’) (713)
Blasius showed experimentally that the shear stress i o, turbulently

flowing fld within a cireular prpe could be expressed nondimensionally
1n terms of the Reynolds number as

T
ol

= 0 0395N 5% {714)
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and stnee this has umts of feet, 1t can be rewritten 1n terms of the veloc-
1ty head V¥/2¢g Thus
_ Ginlg E
T 4DV 2y
G4pL V2
pVD22g
G4n LV
VDD
64 LV
= =2 7 16,
NxD2g 7 16)
Trom Lq (7 16), assuming the turbulent resistance loss to be stmi-
larly related to the veloesty head and the pipe length/diameter ratio,
Darcy and Weisbach established experimentally the general equation
for head loss due to turbulent friction as
LV
E=fl—
D2

(717)

which 1s called the Darcy Weisbach equation The quantity f 1s called
the friction factor and was estabhished experimentally by Darey and
Weisbach for varous pipe flows Inlamunar flow the friction factor was
found to be given by 64/Nk, as indicated by Eqs (7 16) and (7 17) In
turbulent flows, however, when the surface roughness affects the
viscous resistance, the frictton factor was found to be a function of both
the Reynolds number and the surface roughness ¢, which 1s a measure
af the height of a typreal surface wregulanty

Table 71 gives the approsimate values for ¢ for several common
matenals, when new

Table 7 1 Surface roughness factors
Surface Roughness

Materral e
Glass Smooth
Brass Smooth
Copper BSmooth
Wrought rron 0 002
Steel 0 002
Galvanized ron 0 006
Cast yron D01
Concrete, smooth 0 001
Concrete, rough o0

In turbulent flow the friction factor 1s hard to estabhsh with any
degree of certamty If the surface roughness ¢, as shown n Fig 713,
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Fig 7 14 Fnction factors

7:7 Viscous losses due to pipe obstructions

The various head losses that occur because of pipe obstructions may
be expressed 85 a simple function of the flow velocity head, or in the
ense where the veloeity changes, as a funetion of the bead loss Thus

2 2 — V.,
[ DA S £ .Y

W1
% = {7.18)
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Lk
29
where by = const for sudden contraction = 05

ke = const for 90° elbow =09
Ly = const for gate valve = 02

VZ
Now b = f'llsl + (hy + 2Ra 4 h3) %

‘,2
‘Therefore hy = (400f +05-+1840 2)-,5

I3 VZ
= (25 + 400f) %
Subshtutimg this in Lg (7 19),
‘72
20 = (354 200) 5,

Now there are two unknown quantities, f and V' These quantities are
related by the curve for smooth pipes of Tig 7 14, and so & senes of
approximations must be made to determine values of f and ¥ whieh
will fit both systems In practice two approximations are usually
sufficient

Assuming o value of 0 0158 for f,

40¢g
V= 35+4%j~1145fps
1145 X 194 X 10°
d = m e TR 10%
an Nr 1 x4a 264 X 10

Referring to Fig 7 14, the value of f corresponding to this Reynolds
number 1s 0 0158, vahdating the onginal assumption
The flow rate s given by

PROBLEMS

(See also Probs 18ta 113)

71 Liqud of speafic gravity 08 flows downward to atmosphere
between two vertical gliss plates, 2 ft wide and 4 ft long and {o 1n
apart, at a rate of 008 cfs If the pressure at the top of the plates s
10 psig, caleulate the flow Reynolds number and the fluid viscosity



CHAPTER 8

Open-channel Flow

Open-channel flows ocour nvturally in the form of nvers and streams
and artifically as canals and other structures which must convey large
quantittes of flmd

The flow through such channels 1s much more comphcated 1n analysis
than pipe flow since the flow area and depth of flow 1n an open channel
are both free to change Dluch of the avalable knowledge of channel
flowsis empiriealinats nature and the results obtaned from it are only
approamate This means that 4 great deal of caution 1s advisable when
dealing with open channe! flows and that experience 1s certainly the
best teacher

81 The Chezy Manning equation for uniform flow

When the veloaty eross sectional area and depth of a channel flow
remain constant from section to section that flow 18 sad to be umiform
Uniform flows are necessanly steady but steady flows can be nonum
farm as 1 the case of & converging or diverging section Steady flow
mmphes no change of varables with time at a point but umform flow
implies no change of vanables with fume or distance

In the previous chapter the Darcy Wesshach equation

Ii?

h-ins (717)

was establiched for the flow of fluids through areular pipes By mtro-

dueing a new parameter the hydraulie radius this equation ean be

modified for use 1n flows of a noncireular nature The hydraulic radius
128
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Thus Eq (8 2) may be written as
V= In—s R¥ /RS (8-4)

which 13 called the Chézy-Manning equation

Example- A river with an earthen bed, a flow cross-sectional area of
100 £t% and 2 hydraulie radrus of 4 £t falls 1 ft 1 1,000 ft Calculate the

flow rate
15 4
o g e
V=50 Ve
=38 X 4%
=478 {ps
Hence Q = 478 efs

82 Specific energy and critical depth
Consider the steady flow along the channel shownin Fig 81 The
total energy per pound at any pont 1s given by

Vi
Piov >
¥ 29
and since p = 0 m the open surface, this can be expressed as
2
aty+ %

where @ 1s the height of the stream bed above some horizontal datum
and y 18 the flow depth

IDEAL TOTAL ENERGY 4
,,
V2 To >
7 TAl
LA L ENERGY WITH FricTion 2
2

A SURFacE

—
2 = 2 ]
a 1 HANNEL BEp ooty
l l HORIZONTAL DATUM 5717

Fig 81 Flow in on open channel

The specific energy 1s defined as the distance between the total energy
hine and the channel bed or

V2
L‘>=y+§; {8 5}
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At the critical depth

2
Y = % = (Bua — ye)2u:’

from Eq (87) Therefore

¥ = 2Lmays —~ 2y
So 3y’ = 2Emunye®
or Yo = 35Emn (8 9}

Example: 1,200 cfs of water flons through a rectangular channel 10 ft
wide at a depth of G ft Is the flow rapid or tranqul? Determine the
specific energy of the flow and the mimmum specific energy for the
same flow rate

—
[X3
=3

Therefore Yo = =765 ft

and stnce 6 1s less than 7 65, the flow 15 rapid
The flow speaific energy 18

z ¢
At
= 6+—0' = 12 2 {t-lb/1b

and the mmmum speeific energy for the same flow rate1s
Euw = 34y, = 11 5t 1b/lb

83 Critical depth as a means of flow measurement
From Eq (8 8) the flow rate per umit channel width can be written as

7= Vygy'

so that if a critreal flow can be established, the flow rate may be esti-
mated by knowing only the flon depth

Consider the flow from a <ouree of constant head ove:r a ugh, broad
horizontal werr, as shown e g 83 The specific energy of the flow
over the wen 1s constant and equal to I, whatever the posiion of the
control gate, and the mavimum flow rate oceurs when the gate 1s clear
of the flon Since the specific energy 1s constant, thes mazimum flow rale
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The depth before and after the jump are related by the expression

.
¢ - ) 810)

PROBLEMS

81 A smaoth rectangular conerete channel 10 ft wide and 6 ft deep
18 to carry 1000 efs of water Caleulate the required channel slope

82 AnS ft-hameter brick sewer with a slope of 2 47 X 107815 half
full of water Caleulate the flow rate

B3 A stream with a gravel bed has a cross sectional ares of 50 ft*
and carries a flow of 1,000 efs The slope of this stream 1s 0 008 Calcu-
late the hydrauhe radius of the eross section

84 A rectangular channel 12 ft wide pas<es 600 cfs of water What
15 the eritical depth of such a flow?

85 A flow of 8 fps takes place in 4 channel 8 ft vide What 1s the
entical depth for this flow?

86 Show that for cntical flow the ernitical depthis given by

VZ

Ve=—

87 10,000 cfs of water passes through a rectangular channel 30 ft
wide with o veloetty of 30 fps Is this rapud or tranqml flow? Determine
the entical veloaity, the speeific energy, and the mmmum speafic
energy for ths flow rate

88 The flow of a niver 15 passed over a high, broad crested weir,
8 ft wide Calculate the flow rate if the depth of water over the weir 1s
41t

89 The top of a high, broad-crested weir 1s 3 ft below the surface
level of a reservorr and well above the level of the discharge channel
Caleulate the depth of flow over the weir and the discharge tate

810 A maximum flow rate of 20,500 ¢fs 1s to be permitted from 2
reseryorr whichis 100 ft deep when full The flow1s controlled by a high,
‘orowd eresfied werr 2§y neross Fnat snonid 've Toe height of Yms wur
above the reservorr bed?

811 A flow of 140 cfs flows through o rectangular channel 10 ft
wide at a depth of 1 ft If the flow 1s rapid, calculate the height of the
tranqul flow that would exst after & hydrauhe jump

812 The flow of Prob & 7 undergoes a hydrauhe yjump Caleulate
the depth of flow after the jump and the speaific energy loss due to the
Jump
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amreraft and are called body azes, in which z 13 posittve n the forward
direction, ¥ 1s positive to the nght or starboard, and z1s positive down-
ward The forces acting in these directions have positive signs The
commonly used notation for the moments 1s shown in Table 91

Toble 91 Three axis rotational convention Clockwise (ooking aut along each axis

Roll Pich Yaw
Ratational axis z v 2z
Moment (Ib-ft) L M A
Rate (rad/sec) ? 7 r
Angle ¢ e 8
Positive direction Starboard Noseup | Starboard
wing down wing back

92 The controls and their funchion

Figure 9 2 shows the external parts of the aircraft which can be
moved by the pilot 1n order to achieve control These are described
below

Fg @2 Accaft cootale

The ailerons The outboard truling edges of the wmgs, which are
connected to the mun wing by a hinged support as shownin Fig 93,
are called mlerons They are arrang d to move differentially so that one
moves up while the other moves down The hft of the wing with a
ratsed atleron 1s reduced while the hft of the wing with a depressed
«uleron 18 ncreaced, resulting tn a rolling moment Since the areraft
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cause the atreraft {a elamb, not ta acedlerite, unless the clevater posttion
15 changed as well

The flaps. In order 1o reduce the mummum fly ing speed to it lowest
value for the purpase of tabing off and Janding, most aireraft wings are
fitted sith flaps These are deflected downward into the asrstream from
the lower side of the wings, which increases the hit and drag of the wing,
thus enabling the aireraft to fly at a redueed mrepeed and, wadentally,
acting as an arrbrake At other times the flaps are retracted into the
wing to form & part of 1t

Of the mny tvpes of flap n use, the two most common are the plam
split flap and the Fowler flap, shown in Lig @ 4a and b respectively
The Towler flip, although mechuelly mare camplieated, seryves to

T
o) s:\

fg 94 Fops
increase the wing chord as well as defleet the urstream, thus producing
a greater hft than the plam pht flap
923 Lift and the wings
Equation (67) shoned that the force acting on a moving body
immersed 1n a flurd could be expressed as
F = Cr}gpVL? ©7)
and so Iift ean be written as
L = Cc}4oVS (9.1}

where €y, = Iift coefficient
8 = wng area, ft*
L = Ift = weight in level flight
This hit foree, which supporis the aireraft in flight, 1s generated on
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2. The slope of the hne, dCr/da, 1s theoretically equal to 2 per
radian, but 1n practice 1s less than this A value of 4 5 per radian
would be typical

3. The onset of a stall can be gradual or sudden, sharp-edged wings
often have severe stalling characteristics

A certain amount of warnmg in the form of buffeting 1s destrable be-
cause 1t serves to narn the pilot that he 1s flying dangerously close to
the stalling pont If a stall does oceur, the aweraft 1s hikely to drop
suddenly or even begin to spin

s

|
|
|
|
1
!
|
{
!
1
6

rg

Fig 97 Cuaganst @

Example An awreraft weighing 50,000 1b has a wing area of 1,000 ft*
and a maximum bt coeffictent of 1 4 wath flaps down If the value of
the Itft coefficient at zero angle of attack 15 0 4 and the value of dCr/da
18 4 per rachan with the flaps down, calculate the areraft’s landing speed
and the angle of attack when landing

From Eq (91)

2L
28C1n0e

_ \/ 100,000
V14X 1000 X 000238

Voun =

since p at sea level 1s 0 00238 slug/ft’ Therefore

Vi = 173 Ips
= 118 mph
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coefficient 1anes considerably A plot of Cp agamnst €:* 15 shown
Tig 9 8andss found to be nearly strasght, nitha<lope of 1 /x4, where }

Fig 99 Co agoast Cal

15 the induced drag factor (1deally equal to 1, but 1n practice between
1 and 2) and A 1s the aspect ratio of the wing

span 28
= == 4
mean chord & w4

Thus the total drag coefficient can be written as

Co= Cot =002 95)
A

Now wniting the total drag as
D = ColspV?S
s (o + £ )
A
L Ly
72 —
sov's oo+ 2 () |

b
aV? 4 b (96)

where a and b are constants, 1t can be seen that the profile drag vares
as the veloaity squared, whereas the induced drag varies mversely as
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95 Steady, straight, and level fight

Tor level fight the moments L, Af, and N are zero and the thrust and
drag are equal, as are the Iift and weight Therefore

L =W = Cil4pV*8

Pt~ (o.,, + cu) 14pv1S
< Cosols + 1 /;“;b ©8)
D= avit 3 ©0
Now differentiating Lq (9 6)
D v -2 whes ¥ = " @9

which corresponds to the mummum drag speed, so

n=a\/§+b\/%=2\/a_b ©10)

and tius corresponds to equal profile and induced drags Now from

Lq (98)
f W ;.c,
Datn = 2/14pSC0, AS=2W 2 {911)
2L 2 4LV
d Vi = \/ \/—H 12
o 4= Nrdp8 p8Co, ~ VrdCo 'S @12

Tt 13 mteresting to note from Eq (9 11) that the value of the rommum
drag 15 ndependent of altitude, but from Dg (9 12) that the value of
the mimmum drag speed rises with ncresse i altitude

Example Calculate the mimmum drag and the mimmum drag speed
{or the aureraft of the two previous enamples when at sea level

Dae = 2 X 50,000 4 T = 2960 Ib
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The rate of sink of the saslplane 15 then
405 315° =22 fps
and since the updraft 1s greater than this, the sailplane can soar

97 Steady chmbing fight

There are two basic cases to consider here, the shallow chmb case
with the arreraft substantially horizontal and the steep chimb case with
the aircraft inchined to the horizon

The shallow climb Since for ths case the aircraft 13 considered horn-
zontal, the ift and weight are equal, as are the thrust and drag A plot
of power required to maintamn level flight agamst speed 1s shown n

POWER AVAILABLE

Fg 912 Power aganst speed

Fig 912, with a typical power available curve supenmposed The

pont at which these two curves cross represents the maximum fhght

speed, and at all other velocities the difference between the hines AH 13

the amount of power available for chimbing Therefore, if ¢ 15 the verts-

cal rate of chmb,

=
550

v = 550 AH

w

- 33000 AH

w

The steep cimb Consider the case of the same arcraft chmbimg
stecply at angle 6 to the horizon as shown i Fig 913 but at the same

or fps

and fpm 914
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since I = L for the level-flight case and smce 1n level flight 7 = D,
T, L
T = e 9(1+Dtanﬂ) (916)

Equation (9 16) makes 1t possible to determune the climbing thrust
required, provided that the angle of attack 1s known so that the hit/
drag ratio may be estimated for that particular angle

The power required m climbing 1s

H = TV, _ Decos®

L —
550 550 (1+5tan9)¥ +/cos @

_bv ,ﬁ( L )
—55“005 [ 1+Dtan.9

and sinee DV /550 1s the level flight power requrement,
H, L
== 3 =
e cos™ § (1 + ) tan 9) {917)

Example A fighter arrcraft with a weight of 30,000 Ib requires 2,000 hp
to fly at 300 mph in straight and leve! fight At what speed and with
what power may the awrcraft be climbed at an angle of 45°?

The drag 1n level flight 1s

2,800 X 550

o = 25001
and thus the hit/drag ratio 1s

30,000
2,500

The chmbing power required 1s

H. = 2,000 X 0 594(1 + 12)
= 15,500 hp

and the chmbing veloaity 1s
V. = 300 +/cos 45° = 252 mph
98 Steady banked turns

Figure 9 14 shows an aireraft 1n a steady turn of radws B ft The
aireraft 15 banked through an angle of $° so that a component of the
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yz
and <o = —————a on &

(400 X 3%0) ., ..

= xag ~oTOR

PROBLEMS
The following problems refer to an awreraft with these data

Weight 50,000 1b Span 100 it
Cp, 005 Mean chord R
Ct,, {no flap) 13 Avmlable hp 4000 4/V, where V
Cr.., (mith flap) 20 15 the forward specd mfpsand o s
Induced drag factor 12 the ratio of density to sea level

1alue for density

91 Determine the mmumum drag speed, the minmum drag the
landing speed (with full flap), the stalling speed, and the best ghding
angle at altritudes of 0, 10,000, 20,000 and 30,000 ft

92 Plot curves of drag against speed for each of the above altitudes
and comment on the results Mark the values caleulated 1n Prob 91on
the curves

93 Plot required power and avalable power against speed sepa-
rately for each altitude From the<e plots determine (a) the maximum
level speed, () the maximum rate of chimb, (c) the best cimbing speed
for each altitude Mark the stalling speed with and without flaps on
cach curse Comment on the results

94 Tlot the masumum rate of cimb agamst altitude and extrapo-
late to estimate the arrcraft’s ceting Taking 2,000 ft intervals along
this curve, determine the time required to ehimb to 20,000 ft

95 What s the steepest chmb angle that this aircraft can achieve
at sea level, and at what speed? If a rochet assist were available, how
much thrust would be needed to merease the chimb angle to 20° at the
same speed?

96 Calculate the required bank angle and the radius of the smallest
turn that the aircraft can make at 300 fps at sea level
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where &1s the wing mean chord (note that it 1s neeessary to include this
extra length dimenston 1n order to achieve units of moment) and the
pitching moment coefficient about the acrodynamie center 1s denoted
by €., Since the aerodynamic center has been defined as the pomt
about which no change of pitching moment occurs with an merease of
hft, 1t follows that Cn, 15 a constant for cach wing, although C,, the
moment coeffictent about the center of gravity, changes with angle of
attack

If a wing 1n steady flight 1s disturbed from 1ts equilibrium position by
a gust, 50 that 1t tips nose up, a negative or nose down moment 1s
necessary to restore the wing to its original position It then becomes

Fig 102 Astablized wing

apparent that the rate of change of pitching moment coeffictent with
angle of attack must be negative for stability or

daCyn
i 0 for stabihty (10 2}

Taking moments about the center of gravity 1n Fig 101,

M = Mo+ RL
or Cn}spViSc = Crb5pViSc + hCLYEPV"S

and diniding by 14pV28e,
Co = Cmy -+ ? Cy

Differentiating this with respect to «,

a1y

da ¢ da o3

since C'w, 15 4 constant Now since dC'/de 1s positive, 1t follows that &
must be negative for stability Or n other words the center of gravily
must be ahead of the aerodynamac center This can easily be demonstrated
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103 Downwash and tail plane incidence

Behind an arwrcraft wing 1s a region of disturbance 1n which there s a
downward awr movement called the downwash Since the tal plane
1s mounted at the rear of the sarcraft in most conventronal layouts 1t
has to act i this reglon of downwash, which tends to reduce the effec
tive tul plane angle of attack Figure 10 3 showns the arflow across a

Fig 103  Downwash angle

hfting wing with the flow turned through an angle ¢ (epsilon) to cause
the downwash The value of e depends upon the hit the wing 1s produc
1ng and hence upon the angle of attach The curve of e agamst a1s very
much hke the Cp o curve as con be seen from Fig 104 and 1ts slope
de/de 18 an ymportant parameter mn arrcraft stability work The value
of tms stope 1s usually about 34 to 34

fig 104 Downwash varation
Wb o

a

1f the angle of attack of the awrcrait 1s & and the tail plane 1s set on
e waerath "W wh wTEE ar Yo Une wimg dnord Yie viesive i Pons

meidence 1s
ap=a+ar—¢ {103)

104 Tail plone it and longitudinal bolance

Figure 10 5 shows diagrammatically the forces acting on an aweraft
inlevel fight Obwiously, for balance the total moment about the center
of gravity must be zero
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attach = a;
ég—L! = rate of change of tail plane Lift coeflicient with elevator
angle = a;
8o Cir = arla + ar — ¢) + am (107)

Example The mireraft of the example of Art 10 2 has a weight of
20000 b and o ¢ g at the leading edge of the mean chord If the values
of @y and a2 are 3 per radian and 2 5 per radian respectnely and the
effective tail plane angle of attach 1s 1°, ealeulate the tasl plane hit
coefficient and the necessary elevator angle «t a fhght speed of 300 mph
at sca level

The overall hft coefficient 1s

Co= - o217
7 ST

and the ¢ g 1s 3¢ ahead of the aerodyname center, so that

LIS
¢ 4
Now from Egq (10 6)
1 1
=027 X —= X == ~0
Cr, =0217 X 4[)(05 108
and from Eq (107)
1
—0108 =
0108 3573-’_ 5573
Hone g Q18X ETEES o

105 Trim tabs and hinge moments

Consideration of the forces acting on a depressed elevator, as shown
wm Tig 106, will show that & hinge moment H has to be resisted i
order to heep the elevator deflected In the case of an mreraft with fully
powered controls, this hinge moment 1s resisted by hydraulic pressure
and 1s of no further concern, but 1n a manually controlled aireraft the
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projects mto the atrstream well ahead of the hinge to cause a balancing

hinge moment
When the control 1s arranged so that by = b = 0, the hinge moment

equals zero when
bay + BB =0

b
or a:—b—:q (109)

Since be and by are both negative, 8 and 4 must haie opposile signs
L HINGE LINE

HORN
1 CONTROL

Fig 108 Ahom balanced con
trot

106 Complete aircraft stability
It wag shown m Art 10 1 that for a wing to be longitudinally stable,

% <0 (102)
de

and thus 1s equally true for a complete areraft
Writing the pitching moment about the center of gravity for the
entire aircraft shown m Tig 109 as

M = Mo+ AL — lzLy

or 1n cocfficient form, by dividing through by 34aV*Se,

Com Cot b~ €LY
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Now the stich free casc can best be defined as having zero elevator
hinge moment, so, from Eq (10 8), {neglecting the tab)

0 = by -+ by + ban
=bo+ by(a + ar — € + b

bo b
Hence 7 = —ﬁ~ﬁ(a+ar—e)
dy by de
and so ol o (1 da)

Substituting this in Eq (10 13),

dC, hdC. 5 de azby de
T "o da V[“‘(‘ ‘E)’ PN (‘ —da)]

= hdCe _ Va,(l - k) (1 - ‘1&) < 0 for stability (10 14)
¢ de de, ab,

Dividing Eq (10 14) by dCr/da or @, gives

o _h_ 17‘“(1—ili (1 —i‘i’ﬂ)= -k, (o)

da ¢ a da, arbe,

where h;, 18 the “stick free static margmn,” or the destance of the actual
center of gravety ahead of the neutral pownt, measured as a fraction of the
mean chord with the stick free

Example The areraft of Art 10 4 has a hift-curve slope of 4 per radian
and values for by and b; of 0 1 and —0 3 respectively If the value of
de/de 18 0 3, coleulate the static margins, stick fised and stack free, and
the distance of the ¢ g ahead of the neutral point in each ease

hn=71‘<1—d5 -2

a do) " ¢
=05X3(1—-08)+025
= 0513

Tieras e bt o e vy whiewd of Yhe Yudk fixed nentrd poird 1
0513¢c = 308 .

de ash h
sl 2)(-2)-
e 17a de, ! b, c

2501
=05 11 —-03) (1 + —=——
X 34( )<+30X03>+025
= () 587
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The Properties of Some

Common Liquids at 68°F

-_—

# X 108 a,

s
Liqua Seer | e /16 | Ib/s
—_— T B
Aleohol 0s 24 | 0005
Benzine 088 136 ] 0002
Gasolie 08 063] o o017
Glycerine 13 1,800 0 0013
Linseed o1l 095 % 0 0023
Mercury 13 55 324 0035
Olive o1l 09 175 0 0023
Turpentine 085 31| o o018
Water, fresh 10 209 0005
103 32

Water, sea 0 006

174
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A List of Important Equations

Application Equanion
Shear stress viscosity _ @
refationskig TRy
Excess pressure within a 4o
soap bubble P=7
Pressure-density-height P =~h
relationship
Large-ended U-tube o a
manometer r=y [7’ (l + A) - 72(1 - X)]
Depthof the centerof pres- Ris
sure below centroid Ak,
Pressure 1 a verticalty . +g
accelerated flud Pty
Surface angle of a honzon- tang =2
tally accelerated fwd 0 g
Surface profile of a radi- _wir?
ally accelerated flmd  ° ~ 2g
Lquation of continuity pAV = const
4;
Euler's equation 0= 7p +- % + dg

), V2
Bernoull’s equation for P 4 4z = const
mcompressthle flow v 2g

Torneelly’s equation V = +/2¢h
76
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Application

Propeller effictency
Reynolds number

Froude number

Force on an immersed
moving object

Head loss 1n laminar flow
betneen flat paralicl
stationary plates

Head Joss 1n laminar flow
m circular pipes

Blasius seventh root law
Darey-Wesbach equation

Loss due to pipe
abstructions

Chézy-Manning equation

Critical depth

Axrcraft hft

Drag
Drag coefficient

Aspect ratio

Drag coefficent
Mimmum drag

Mintmum drag speed

Equation
= I"
1= v
’
Ng= l£
»
IY!
Ny =
F gL

_ 127
7
32uTL
By =
L ‘YD’
3
v=1241 (’4)
a,
Ly
b= 155,
v
h=1 ?g
V= 15 R% /B8
Yo =
= 24Emn
L = C14pV28
D = CplspVS
Cp = Cp 4+ Cp,
=S
T &

Duo = 27 4[5
A

v _:/ 4
M TACp p%8?
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411
413
415
437
419
423
425

53
55
57
59
SN

513
515
517
519

67

411
71
7.3
75

BASIC FLUIP MECHANICS

1,120, 865 ips

21 6 b/see, 7°1°, 0 98
214

596 psia

147 psia

27 8 psin, 0 5 1b/sec
22lm

104 1b downstream
2041

13751

156 fps, 0305 1n

055 hp

103 rpm, 24,500 ft-lb,
480 hp

88hp, 77 ps1

662 Ib

190 mph

4,150 Ib, 166 hp

1,000 Ib

84

14,0 408V

120, 4 94 X 107 Ib sec/ft?
14 5 psig, 147

1,755, 505 X 10~ {t?/sec

77
79
A
83
8:5
87

-3

811
91

9-3

9-5
101

103
105

100 pss

034 cfs

004068

18214t

2t

Ramd, 221 fps; 251, 227
ft-Ib/ib

211,10 1 cfs/it

31

204, 236, 278, 330 fps,
3,910 b, 162, 188, 221,
264 fps, 201, 233, 274,
327 fps, 4 5°

453, 448, 435, 396 fps,
2,880, 1,920, 1,100,

260 fpm, 225, 250, 290,
300 fps

12°, 224 fps, 5,900 b
075,0078¢,0101¢, 7 4,
97,0578, 0 601c
(behind leading edge), yes,
stich free

212,231 ft, unproved
78°,-13°
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Awrspeed indrcator (ASI), 59

Aleohol, properties of, 174

Argular momentuwm, 93-97, 177

Archumedes, principles of, 28

Areg, dimension of, 110

Atmosphere, pressure of, 2
properties of standard US,

173

Benzme, properties of, 174
Bernoullt's equation, 48-54, 176
aerodynamtc form of, 54, 170
compressible form of, 69-72,
177
derivations from, 51-54
Torrcelly’s theorem and, 51~
52, 176
Blasius seventh root law, 131,
178
Boundary layer, n flow of flurds,
119-122
laminar, 121

Conerete, Manmng roughness

factor of, 139
surface roughness factor of,
132

Contact angle of fluid and sohd,
9-10

Continuity, equation of, 46

Copper, surface roughness factor
of, 132

Critical depth, 140-143, 178

Critical pressure ratio, 77-79,
177

Cylinder, flow around, 121

Darcy-Weishach equation, 132,
138, 178
Density, definttion of, 3—4
dimension of, 110
Depth, critical, 140-143
equation for, 178
Dimensional analysis, 109-116
elimination of variables by,

turbulent, 121-122 111-112
Bourdon gage, 17 of independent vanables, 110-
Brass, surface roughness factor 111
of, 132 method of, 109-111
Brich, M; g rough factor D , MLTS8, 108
of, 139 of common vanables, 110

Bulk modulus, dimension of,
110
Buoyancy, defimtion of, 28

Camber of areraft wings, 149

Capillanty of fluds, 9-10

Carbon dioxide, properties of,
175

Chézy equation, 139

Chézy-Manning equation, 138~
140, 178

Circular flow, equation of motion
of, 60-61

Compressthle fluids (see Tlnds)

Llevators, aireraft, purpose of,
147

Tlevons, 147

Luler’s equation of motion, 46-
48, 176

Tloating bodtes, stabihty of, 28~
29

Flotation, 28

Flow rate, dimension of, 110

Flowmeters, 55-59

Flud inpulse, prineiples of, 85~
108
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Impulse-momentum equatton,
86-87, 177
apphcation of, 87-90
Impulse turbine, prineiples of,
90 95

Incompressible fluids, fow of,
43-66
Inerta, moments of, center of
pressure measured by, 24-26
Iron, cast, Manning roughnesy
factor of, 139
surface roughness factor of,
132
galvamzed, surface roughness
factor of, 132
wrought, surface roughness
factor of, 132
Isentropic process, defimition of,
68

Isotherma] process, definition of,
63

Jet engine, pnnciples of, 102-
103

Jet propulsion, flud 1mpulse and,
85-108

Lamnar boundary layer, 121
Lammnar flow, 4-5
analysis of types of, 122-128
compared with turbulent floy,
129-130
head loss 1n, equation for, 178
nature of, 117-118
surfaces n, 120-130
Length, dumension of, 110
Tanseed oil, properties of, 174
Laquds, commaon, properties of,
174
compresaibility of, 67
definition of, 1
(Sec also Fluids)

Mach factor, 74
Mach number, 72-73
for normal shock waves,
equation for, 76-77, 177
rate of change of area with,
76-77
Mannmg roughness factors, 139
Manometers, 18
differentsal, 18
with enlarged ends, 19-21
equetion for, 176
nelmed, 19
Mass, dimenston of, 110
Meniscus, definition of, 9
“ercury, properties of, 174
Metacentric height of ships
20-30
Model similarity, dimensional
analyss and, 109 116
Models, use of, 113-115
Moments of mertia, center of
pressure measured by, 24 26
Momentum, angular, 95-97, 177
defimtion of, 85
prineiple of, 85-86
Motion, Euler’s equation of,
46-48, 176

Needle, “floating” of, 8
Nitrogen, properties of, 173
Nozzles, convergent, pressure in,
77-79
cony ergent divergent, flos
through, 79-82
flurd flow through, 88 89

Ohve oi1l, properties of, 174
Open channel flow of fluids,
138-141
Orifice meter, 57-58
equation for flow rate n, 177
Oxygen, properties of, 175
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Temperature, dimension of, 110
Time, dimension of, 110
Torque, 95 97
Torque-angular momentum
equation, 95-97, 177
Torneell’s theorem, §1-52, 176
Tunnel, water, tests m, 114-115
wind, tests m, 76, 114
Turbine, energy equation, 52-54
mpulse, 90-95
reaction, principles of, 97-101
Turbulent boundary layer, 121-
122
Turbulent flow of flaids, 17—

compared with lamnar flow,
129-130
through prpes, 131-134
resistance to, 131-133
veloaty distribution n, 128~
131
Turpentine, properties of, 174

Vanables, dimensions of, 110 111
elmination of, 111-112
Veloeity, dimension of, 110
sonie, 69, 77
Veloasty head, 48
Venturi meter, 55-57
equation for flow rate i, 177
Viscostty, 4-7
absolute, 5§
caefficient of, &
definttion of, 4
determination of, &
dynamic, 5
kmematic, 7
dimension of, 110
Viscous resistance to flow, 117~
137
Volume, dimenston of, 110

Water, properties of, 174
‘Wood, Manning roughness fac-
tor of, 139
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Or alternatively

7.5 ft
7.5 X 62.4 psf

Depth of centroid of the area
Pressure at this depth

]

Thus the total force on the gate is
7.5 X624 X5 X4 =293601b
Example 2: A dam 4,000 ft long contains water 100 ft decp. The face

N
V/rirrrrsvrres

2

Fig. 211 Fig. 2:12

of the dam slopes at 60° to the horizontal, as shown in Fig. 2.12. What
is the total horizontal force on the dam?

Depth of centroid = 50 ft
Pressure at centroid = 50 X 62.4 psf

Therefore the total force acting on the dam horizontally is

50 X 62.4 X projected vertical area = 50 X 62.4 X 100 X 4,000
= 1.25 X 10° Ib

2.5 Center of pressure

Having established the total pressure force acting on a submerged

area, it can be considered a single force acting at a point called the
center of pressure, at a depth 7.

Referring back to Fig. 2-10 and taking moments about O,

Fh cosec o« = EAF h cosec o = / AB hdA h cosec o
B B
[y mraa [Papaa
il = =
fA vhdA

or (2-9)
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is the first moment of area about the surface, or Ah.. Thus

_ Isurf

~ Ah,

R

Moments of inertia are usually quoted about an axis passing through
the centroid; shifting the axis from the surface to a parallel axis passing

through the centroid gives
E _ I 0 + Ahrz
T Ak,

where I, is the moment of inertia of the area about a horizontal axis
through the centroid.

—.—__'r_;’—_._..— I 6509

Fig. 2.14

Now if the center of pressure is a vertical distance z below the
centroid, so that 2 = h, + 2,

I,
he+ =
e + 2 An -+ h,
Therefore x = To (2-10)
Ah,

Example: Calculate the magnitude, direction, and point of action of
the resultant force on one side of a circular disk immersed in water at
an inclination of 60° with its center 6 ft below the surface, as shown in
TFig. 2-14. ’

The magnitude of the force is

Yhed = 62.4 X 6 X 4r = 4,710 Ib
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Example: Find the magnitude and direction of the force acting on
the curved portion of the water tank shown in Fig. 2-17.
For the horizontal force Fy,

Fy = pressure at centroid of 0B X OB X 3
=55X624X3X3
= 3,090 Ib

And for the vertical force Fy,
Fv = weight of water above AB
=<4><3+ 3>X3X624
= 3,560 Ib

Hence the net force B = V/3,0902 + 3,560 = 4,700 Ib.

\u&x

oo mm e

Fig. 217

Since AB is circular, the resultant, being normal to the surface, must
pass through O at an angle 6 to the horizontal given by

Fy 3,090

6 = 49°
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Neutral stability. A system in which the buoyant force and the
weight are always vertically in line has neutral stability. In this cond.i-
tion the body may be moved to any position, and it will remain in this
position. .

Consider, for example, a floating ball as shown in Tig. 2-20. Dis-
placement of the ball through any number of degrees will not change
the position or value of the forces actling, and therefore no resulting
moment can occur.

Negative stability. A system in which a small displacement from
the equilibrium will cause the system to overturn has negative stability.
Figure 2-21 shows a ship with a small hull and a tall mast very heavily

Fig. 2-20. A nevtrally stable system. Fig. 2:21. A negatively stable system.

weighted at the top. A small deflection from the vertical will result in
an overturning moment, and the ship will capsize.

2:9 Metacentric height

In shipbuilding it is usual to have the center of buoyancy of the hull
below the center of gravity (c.g.). By designing the hull cross section
accordingly, any desired rolling stability may be obtained.

In the simple example shown in Fig. 2-22, the hull is assumed to be
rectangular, and the ship is seen rolled through an angle 6.

The ship rolls about a point level with the waterline, since the
shaded areas are the same, resulting in no increase of displacement.
(This is the case for all ships with vertical sides when rolled through
small angles.) The distribution of the displacement is changed, how-
ever, since there is a larger submerged area on one side than on the
other, causing the center of buoyancy to move from B to B’.

The center of gravity, of course, remains on the center line, and the
resulting moment is a righting one for a properly designed hull. The
distance GM belween the center of gravily and the point where the ship’s
center line cuts the vertical through the center of buoyancy when 6 is small
18 called the melacentric height. 1t is a direct measure of the stability
of the hull; the more stable the hull, the larger the value of the meta-
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But W = hAg. Therefore

L4
pd — hAy = e

a+t+g
g

(2-11)

or p = hy

which shows that for a constant acceleration the pressure infensity at a
point is still a linear function of the depth of the fluid,

g
—
b l lw
o ft/sec? :

I} s

Fig. 2:23. Fluid mass under vertical Fig. 224, Fluid mass under horizontal
acceleration. acceleration.

Example: A tank containing 2 ft of water is accelerated vertically
upward at 8 ft/sec?. Estimate the horizontal force on a 6-ft length of
one side of the tank.

The force on the side of the tank is given by

F = vertical area X pressure at depth of centroid of area
6 X 2 X pressure at depth of 1 ft

322+ 8
=1 g2t
2 X 624 39.2

= 935 1b

Horizontal accelerations. Accelerating a tank of fluid horizontally
will cause the fluid level at the front of the tank to fall and that at the
rear to rise. If the acceleration is kept constant, the fluid will reach a
stable equilibrium position. Now consider the forces acting on a small
element of this stable fluid, as shown in Fig. 2-24.

The surrounding fluid exerts a force which can be considered a
vertical component I, and a horizontal component F,. The weight of
the element W acts downward, and the inertia force Ma acts to the left.



FLUID STATICS 33

The surface will incline at an angle 6 to the horizontal so that
a
tan § = ~ = -

The water will spill until the level at the rear of the tank just reaches
the top of the tank and the surface is inclined at an angle of arctan

a ft/sec?

—_—

ORIGINAL LEVEL

)

Fig. 2-26. An open tank under horizontal acceleration.

A V-4

!m
/
N

Fig. 2.27

¥4 to the horizontal. The quantity spilled is the volume of the wedge
ABCA'B'C’, as shown in Fig. 2-27. Now
BC
'-4— =tan 6 = 14
and therefore . BC =11t
The volume spilled, then, is 4 ft2,
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Integrating this between the center of rotation (r =0, p = p,)
and any general radius », where the pressure is p,

p
/dp= /——dr
Po

re "
Therefore — Py = [*]
»—D 7 L2,
— P, w2
or ] (2:14)

Now the left-hand side of Eq. (2:13) has units of length and repre-
sents a head of fluid. This term can be replaced by y, which is the
height of the fluid above the central height, yielding

2

wr

29

2

Yy = a parabola (2-15)

This is shown in Fig. 2-29. The pressure at any point can now be deter-
mined by using the relationship p = vh.

Yh '

Fig. 2:29, Rotating tank of fluid. Fig. 2:30

Example: A cylinder of radius 1.5 ft and height 4 ft is rotated at
10 rad/sec about its vertical axis. If the cylinder was originally full of
water, how much is spilled, and what is the pressure intensity at the
center of the base of the cylinder? (See Tig. 2-30.)
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25 Calculate the reading of the gage shown in the figure.

WATER g

0

Prob. 2:5

™ MERCURY

2-6 Taking 14.7 psi as atmospheric pressure, complete the following

table.

psia psig

in, of mercury,
absolute

ft of water,
absolute

ft of water,
gage

14.7
34

16

55

2.7 Calculate the reading of the gage A in the figure.

A

16 psig

-7

Prob. 2.7

I
6"Hg
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NN

T 227 //// 7L
Prob. 2:15

2:16 Calculate the pressure force on the dam face and the position
of the center of pressure.

Yamm = 20 =~

1,000' LONG ¥=180 Ib/ft3

60°
¥

60° 60°
ki ¥

Prob. 2-16 Prob. 2:17

2-177 The dam is 100 ft long. Calculate the resultant force on the
dam and its position and direction.

218 Estimate the height & of water that will cause the gate to open.
Neglect the weight of the gate.

|

}IVOT
| PIVOT
17 7, L~

f—73' U h _4j T

Y 7Y

ez e

Prob, 2:18 Prob. 2:19
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224 Calculate the net force acting on the cone shown in the figure.
The fluid is water.

X

| '
I 8
Prob. 2-24

2:25 A ship weighing 80,000 Ib has vertical sides and a draft of 4 ft
in fresh water. What will be the draft in seawater?

226 If a cargo weighing 20,000 Ib is placed in the ship of Prob.
2:25, what would be the drafts in fresh and salt water?

2-27 A submarine has a total volume of 1,700 ft? and a weight of
80,000 1b. How much seawater must be pumped in to keep the sub-
marine submerged?

2.28 What volumetric displacement would be required to float a
seaplane of 5,000-1b weight in seawater?

2:29 An aircraft gravity-feed fuel tank is mounted 2 ft above and
8 ft behind the carburetor. What is the maximum level acceleration
that the aircraft can attain without suffering fuel starvation?

2:30  What is the maximum level acceleration that can be applied
to this tank without causing the liquid to spill?

~

|
P [\) oot

Prob, 2-30



CHAPTER 3

The Flow of Incompressible Fluids

The large number of variables involved in predicting the behavior of
a fluid in motion makes it impossible to analyze that motion without
agsuming some degree of simplification.

The degree of simplification allowable depends upon the required
accuracy of the result and the validity of the assumptions made. For
instance, it is reasonable to assume incompressibility for water under
most circumstances, but air must often be considered a very compressi-
ble fluid.

Viscosity often causes great mathematical difficulty in analysis, and
for this reason the concept of an ideal fluid is introduced. An ideal
fluid is one that has zero viscosity and therefore will not support a
shear force of any kind. Results obtained from consideration of an
ideal fluid often vary considerably from the observed behavior of a
real fluid, and care must be exercised when deciding whether the
assumption of an ideal fluid may be justified.

In this chapter the flow of both real and ideal fluids will be con-
sidered, but incompressibility will be assumed throughout.

31 Steady and unsteady flow

Fluid flow may be steady or unsteady. If at any point in a flow any
variable changes with time, then the flow is unsteady. Conversely, if
at any point in a flow all the variables remain constant with time,
then the flow is steady.

Consider a fixed point in a water pipe downstream from a closed
valve. At this point the velocity is zero. At time ¢; the valve is opened,
and the velocity at the considered point changes as shown in Fig. 3-1.
Between times ¢, and ¢, the flow is changing and therefore unsteady.
After time ¢, the flow is fully established and has become steady.

43
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If, in a three-dimensional flow, a closed loop is drawn and a stream-
line drawn through each point of that loop, a streamiube is generated
(Fig. 3-3). Since there can be no flow across a streamline, it follows
that there can be no flow across the walls of a streamtube.

Fig. 3-3. A streamtube, "

3:3 One-, two-, and three-dimensional flows

One-dimensional flow is that in which the behavior of each and
every streamline is the same and all the streamlines are parallel. The
flow may be considered to have only one dimension, i.e., along a
streamline, since any streamline will be representative of them all.
The flow through a pipe or channel is one-dimensional (see Fig. 3-4a).

Fig. 34, One-, two-, and three-dimen- /@

sional flows,

(5)

(c)

. The flow across an infinitely long airfoil is considered two-dimen-
sional. The flow pattern shown in Fig. 3-4b is the same at any cross
section of the airfoil and may be regarded as representative of the
whole airfoil. The streamlines are everywhere parallel with the plane
of the page.

.Any flow in which the streamlines are nowhere parallel is a three-
dimensional flow. Figure 3-4¢ shows the streamlines of a flow entering
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total resistive force on the clement is then

Adp + P ds

and so the work done in moving fluid from station 1 to station 2
against this force is (4 dp + 7P ds) ds.

Fig. 3:6. (a) A small fluid element within
streamtube. (b) Detail of the element.

The gain in kinetic energy in moving from station 1 to station 2 is

YopA ds [(V 4 dV)? — V2] = 4pd ds 2V dV + dV?)
= pAV dV ds
when terms in dV? are neglected. The gain in potential energy is

pA ds g dz

Since no external energy has been added, the work done and the
energy gained must sum to zero. Thus

(Adp + 7P ds) ds + pAV dV ds + pAgdsdz = 0
which, on division by pdg ds, gives

dp  Pds VAV
g pgA g

But pg = v, and A/P is defined as the hydraulic radius R; hence

d ds Vdv
P = ta=0 (3:3)
v R g

which is Euler's equation of motion. For ideal fluids, 7 = 0, and Eq.
(3:3) reduces to

d Vv

7p+"g—+d2=0 (34)
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FRICTIONAL
LOSSES
S - IDEAL TOTAL ENERGY
2 T — LINE
1 ~
29 ¥2 \\i\
\ £ VELOOTY A7~ TOTAL ENERGY LINE
g HEAD 143 WITH FRICTION LOSSES
PRESSURE 37
HEAD
Pyy Payy
4/‘
/ POTENTIAL 73
L
// HEAD
/ Z

)’ POTENTIAL
DATUM

Z=0

Fig. 3:7. Head variations through an irregular tube,

The velocity of the water in the hose may be obtained from the
equation of continuity, @ = AV.

3= a X 32’[7'
T4 X2
64
Hence V =3 X — = 61.05 fps
ks

Thus the kinetic energy of the flow is

61.052

——— = 579f
2 X 32.2 79t

Defining the level of the hose as the potential energy datum, the total
energy is
23.1 4 57.9 4+ 0 = 81.0 ft

and this is the height, to which the water may be sprayed.
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V(4 — 1)

or 6.18 + 2=0
29
3’{/’82
i = 418
ie., 8¢
Hence Vs = 19 fps
and therefore Q = AgVp = 3.73 cfs

3.7 Derivations from Bernoulli's equation

Torricelli's theorem. Applying Bernoulli’s equation to the flow from
a large reservoir, it is possible to reduce the velocity and pressure to
zero at a point on the surface of the reservoir.

At station 1 on the streamline shown in Fig. 3-9, the velocity may
be considered zero if the tank is sufficiently large. Since station 1 lies
on the fluid surface, the pressure at this point is zero (gage).

1

= X

Fig. 3-9. Flow from a large tank.

The pressure in an open fluid jet must be atmospheric (i.e., zero
gage) since there are no walls to restrain a different pressure; thus
o= Vl = P2 = 0.

Applying Bernoulli’s equation between stations 1 and 2 gives

V2
2 = _é—g_ + 2z
or "Vz? == 29(21 — 22)

But z; — 2, = A, the applied head; hence
Vo= V2gh (3-7)

Th.is 1s Torricelli’s theorem. If the area of the jet in Fig. 39 is A square
units, then the flow rate leaving the tank is

Q@ =4Vyh (3:8)



THE FLOW OF INCOMPRESSIBLE FLUIDS 53

an extra term is added to account for the external energy. Thus, for
the system shown in Fig. 3-11,

V.2 V2
LSS ST - N RLE S (3.9)
v 2g Y 29

Example: A hydraulic turbine operates from a water supply with a
200-ft head above the turbine inlet, as shown in Fig. 3-12. It discharges
the water to atmosphere through a 12-in.-diameter duct, with a
velocity of 45 fps. Calculate the horsepower output of the turbine.

2 1
e
1 PUMP 200
¥ 12"
.
£ ft-1b/1b FLOWING T A
TURBINE
Fig. 3-11. Energy balance in a pump. Fig. 3-12

If E is the energy extracted per pound of fluid flowing, then the
energy equation may be written as

'[/’2 o "722
Bt ra=m+242 1,
Y 2 Yy %

where suffix 1 refers to a point upstream of the turbine and suffix 2
to a point downstream of the turbine.

If the exit from the turbine is defined as the potential datum, then
2 = 0 and

7.2

Pro Tt 200 fidb/Ib
Y 2

0 7 2

Therefore 200 = E + L + v

¥ 29

Now since the discharge is to atmosphere, p» = 0. Hence

452
200 = I +
29
Thus E = 200 — 31.3 = 168.7 ft-Ib/Ib
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3.8 Flowmeters and suction devices

If the cross-sectional area of a flow changes reasonably rapidly, the
flow rate can be calculated from pressures read at two points along
the flow.

Fig. 3-13. A crude flowmeter.

POTENTIAL
DATUM

Consider, for example, the flow through the contraction shown in
Tig. 3-13. The equation of continuity gives

Q = Alvl = Asz (3'2)

and from Bernoulli’s equation,

2

12! LS v
7+21+2g——7+22+2g (3:5)

Now from these two equations

E D P Vi

g Ty TR Ty TRy
7 2
=&+21—?—2—22+M
Y Y 2g
1722 A2 o 1
R L G I EERE R
or Vs, = \/29@1/7 + 21 — po/y — 22)
1 — (4:/Ay)?
Therefore Q= 4, 20(ps/y + 21 — p2/v — 29) @13)
1— (As/AD? )

The .venfuri meter. It is not usually desirable to reduce the diameter
of a pipe dow_nstream of a flowmeter, and for this reason the simple
contraction discussed above is seldom used. One of the two most
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the throat p. decreases, eventually becoming negative. When the
pressure in the throat becomes sufficiently small, so that

then fluid (of the same specific weight) can be sucked from the datum
level by connecting a tube from the throat to the fluid at datum level,
provided that the value of p. is not as low as the vapor pressure of
the fluid—in which case the fluid would boil with unpredictable results.

Example: Water flows through a horizontal venturi meter with an
inlet diameter of 4 in. and a throat diameter of 2 in. The pressure at
the inlet end is 10 psig, and at the throat the pressure is 3 in. of mercury
vacuum. Calculate the flow rate, given that the constant for the meter
is 0.82,

Since the meter is horizontal, 2z, = z, = 0, say, and

Q = 0.824, \/@'(m/v — p2/7)

1 — (As/A))?
pr 10 X 144
N \g —_—_—— 7
ow » 624 ft of water
and %2 = —349 X 13.55 {t of water
Hemeo O — 0.827 % \[2;;(1,440/62.4 + 3 X 13.55/12)
4 144 1— A
= 0.0179 V/68.7(23.1 + 3.39)
= (.765 cfs

The orifice meter. Whereas the venturi meter is designed to have
very low resistance to flow, it has a serious disadvantage in that the
larger the value of 4,/A, and thus the more sensitive the meter, the
longer the meter must he. Where space is limited, a second type of
meter called the orifice meter is used.

- This device is simply a plate with a sharp-edged hole in it placed
In t'he pipe, as shown in Fig. 3-16. The flow rate through such a meter
1s given ideally by Eq. (3:13), where

4, = area of pipe upstream of orifice

A; = area of orifice -

However, it is not possible to measure the pressure in the exact plane
of the orifice, and so it must be measured a short distance downstream
of the orifice. At this point the area of flow is given by C,A,, where
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The outer or static tube has a number of holes drilled in it at right
angles to the flow direction so that this tube records only the local
static pressure p.

The difference between the two pressures thus obtained is the
dynamic pressure pV?/2, which can be converted into velocity if the
density p is known.

The most common application of the pitot-static tube is aireraft
velocity measurement. The two pressures are led into an airspeed
indicator (ASI) which is calibrated directly in mph, assuming p to
hav eits sea-level value of 0.00238 slug/ft®. At sea level, then, the

Fig. 3-17. A pitot-static tube. 4

PRESSURE ;
HEAD TOTAL
HEAD

indicated airspeed (IAS) will be the same as the true airspeed (TAS);
but at altitudes where the air density is less than the sea-level value,
the IAS will be less than the TAS. The advantage of this system will
be explained in Chaps. 9 and 10.

Example: An aircraft flying at an altitude of 15,000 ft (o = 0.00150
slug/ft®) has an IAS of 350 mph. What is its TAS?

The ASI is recording the same dynamic pressure that it would
record at sea level and 350 mph; therefore

V: 0.002 :
pl_ 000238 (350 X 88) psf

2 2 60
But at 15,000 {t p = 0.00150 slug/ft®; therefore
7% X 0.00150(v X 8360)% = 14 X 0.00238(350 X 884¢)?
where » is the TAS in mph. Hence

, _ 0.00238
0.00150

X 350 = 512 mph
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Now if terms in z arc neglected, Eq. (3-4) reduces to

dp Vv
Y g
Ve Vav
Therefore —dr = —
rg g
av  d
which reduces to . + —; =0 (3-18)

Equation (3-18) is also obtainable by differentiating the equation
Vr = const (3-19)
which is then the equation of motion of circular flow.

Example: The wind velocity 5 miles from the center of a tornado was
measured as 30 mph, and the barometer was read as 29 in. of mercury.
Calculate the wind velocity 14 mile from the tornado center and the
barometric pressure.

At 5 miles the velocity is 30 mph. Therefore

Vr = 5§ X 30 = 150 miles?/hr
Thus at 14-mile radius, the veloeity is given by

LV = 150
or ¥ = 300 mph

]

At 5 miles the pressure is 29 in. mercury, or
2949 X 13.65 X 62.4 = 2,040 psf

Applying the aerodynamic form of Bernoulli’s equation between the
two points,

2,040 + 14 X 0.00238(30 X 8840)2 = p, + 24 X 0.00238(300 X 884¢)*

Therefore P2 = 1,808 psf
= 25.62 in. mercury

PROBLEMS

31 Two pipes of 3- and 2-in. diameter, carrying flows of velocity
50 and 2§ Ips respectively, flow into one 6-in.-diameter pipe. What is
the velocity of flow in the large pipe?
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3.7 Calculate the water flow rate through this elbow.

<

o
MERCURY/

ﬁ_@

2"DIA |

i

A

8"

2!

ems

|
3

Prob. 3-7

3.8 Calculate the water flow rate from this tank.

-

—

Prob, 3-8

3-9 Calculate the flow rate through this submerged orifice.

ot

—

10'
v
L4 2l
g'pia—1 T

Y.
AN

DIA=2"

i s

Prob. 3.9

63
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3.18 Tind the terminal velocity of a 170-1b parachutist descending
close to the ground with a 20-ft-diameter parachute.

3.19 Calculate the water flow rate through this vertical venturi
tube. (C, for the meter = 0.8.)

Prob. 3:19

320 A horizontal venturi tube with an inlet diameter of 6 in. and
a throat diameter of 4 in. has 3 cfs of benzine (sp gr = 0.9) passing
through it. If the constant for the meter is 0.72, calculate the rise of
mercury in an upright U-tube manometer connecting an upstream
point to the throat.

3:21 An orifice meter consists of a plate with a 2-in.-diameter hole
placed concentrically within a 6-in.-diameter pipe. Water flows through
the pipe, causing a pressure difference of 2 ft of oil (v = 40 1b/ft?)
across the orifice. If the constants for the meter are C, = 0.9 and
C, = 0.6, calculate the exact flow rate and an approx mate flow rate.

3-22 An orifice meter consists of a 4-in.-diameter pipe with an
orifice of 3-in. diameter mounted within it. A U-tube manometer con-
taining oil of specific weight 38 Ib/ft® records a pressure drop of 18
in. of oil across the orifice. If the constants for the meter are C, = 0.7
and C, = 0.82, estimate the percentage error in using the approximate
relationship to find the flow rate.

323 An aircraft pitot-static tube records a pressure difference of

(r)fﬁ psi at an altitude where p = 0.0008 slug/ft3. Find the aireraft’s
AS.



CHAPTER 4

The Flow of Compressible Fluids

In the preceding chapter the equations of motion and the behavior
of incompressible fluids were examined. The study of compressible
fluids is more complex since the density now becomes a variable,
although the ideal fluid concept is still useful in solving many com-
pressible flow problems.

4.1 Liquid compressibility

Although it is usual to regard liquids as incompressible, this is not
exactly true since they are very slightly compressible.

The compressibility of a liquid is measured in terms of the bulk
modulus K, which is defined in the usual way as stress/strain. For a
fluid, the applied stress is the pressure increase Ap, and the strain is
the relative change in volume AV /V; thus

Ap

K== AV)V

(4-1)

The negative sign indicates a decrease in volume with an increase
in pressure; and since the ratio AV /V is dimensionless, K has the same
units as the pressure increment Ap. The value of K for water at normal

temperatures and pressures is approximately 300,000 psi—not a very
compressible fluid!

42 Some thermodynamic properties of gases

In order to deal with the extreme compressibility of gases, it is neces-
sary to have a knowledge of certain thermodynamic properties for
gases. The essential equations are ennumerated here, and constant

67
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where k is the ratio of the specific heat of the gas at constant pressure
to the specific heat at constant volume, C,/C,. The value of k for air
is 1.4.

The speed of sound. The speed of sound ¢ is an important param-
eler in compressible gas flow. It may be written as

]

© g

or since p/p = gRT,

= VkgRT (4-7)

Thus it can be seen that for a given gas, the acoustic velocity is propor-
tional to the square root of the absolute temperature and independent
of pressure and density.

4.3 The compressible form of Bernoulli's equation

In Art. 3-6 Bernoulli’s equation for incompressible ideal flow was
established from

+%’+d=o (34)

assuming v to be constant. The compressible form may be established
from the same root, remembering that v is now a variable.
Integrating Eq. (3-4) between limits gives

/d’p /udv 1

= 29 + (22 — 21) (4-8)

Now it is usual when dealing with compressible gas flow problems

to assume that all processes are rapid and therefore adiabatic. Thus
from Eq. (4-6)

= ¢ a constant

s Ll

or = ¢yt

and so dp = cky*—1dy
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Eq. (410) is reduced to

vt =02 pr kK (_T_,_1>
2g —’sz~1 T,

]\” T1
= R (7= 1)

RE
i — (T, — Ts) (4-11)

which is the simplest form of Bernoulli’s equation.

Example 1: At one point in an air duct the temperature of the flow
is 200°T and the local pressure is 30 psia. At this point the cross-sec-
tional area of the duct is 1 ft2 Downstream of this point the flow tem-
perature is 30°F at a point where the pressure is 15 psia and the area
of flow is 0.3 ft2. Calculate the velocity of flow at the second point and
the mass flow rate.

pi 30 X 144

= = = (.12 3
M= r, T 533 w660 1220 Ib/it
P 15X 144
d ) = = =0. 3
an T2 = Ry, T 53.3 x 400 — 00826 Ib/ft
Now G = v14 1w, _ ')’2A2?12
g g
2 A oUs . 5
Therefore v = YeLdz 0.0825 X 0.3v: = 0.2020,

viAy  0.1225
Applying Eq. (4-11),

202 — 7,2 RE
2g _lc-—l(Tl_T2)
. vl 53.3 X 14 X 170
weobtain — (1 — 0.2022) =
2g ( 0 ) 0.4
50 vy = V64.4 X 33,100 = 1,460 fps

Hence the mass flow rate is

7242 0.0825 X 0.3 X 1,460
g 32.2

= 1.13 slugs/sec

Example 2: Air is contained in a large reservoir at 25 psia and 60°F.
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At the nozzle the speed of sound is given by

oo g
P
14 X 147 X 144 X 322
B 0.089
Therefore ¢ = 1,036 fps
Hence M= % = f’% — 0.907

4.5 Stagnation pressure in subsonic compressible flow

Consider the flow along the streamline shown in TFig. 4-1. O is a
point in the undisturbed free stream, and S is a stagnation point. The
flow is everywhere subsonie.

Fig. 41, A stagnation
point,

o

Applying Eq. (4:10) to this flow,

Vo pok [(p.,)“'—”/k 1]
29 ok — 1) L\ -

since V, = 0. Rearranging for p,,

Vatyalk — 1)\H/G=D
Ds = Po <1 N4 ol )>

2gpok

Now for convenience writing
1702’)’0
Do

Z I — L\Be=D
s &= 1 g
P po( + 5 T >

=7
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(b) At 25,000 ft, p = 0.00107 slug/ft?, 7 = —30°F. At this height,
then,
¢ = 1,120 V439¢,, = 1,020 fps

480 X 88
= o = (),682
Hence M 1,020 X 60
M?
and so T = 0.116
Therefore Pe — Do = 14pV* X 1.116

Again the instrument reads this as 14p,V?; therefore

ve=2Vvex1.116

Po
or V= Voa/1.116 &
po
0.00107
= . — 341
480 /1116 =0 = 341 mph

4.6 Shock waves

When a supersonic flow is retarded sufficiently, a shock wave occurs
in the flow, across which the normal velocity component changes from
supersonic to subsonic abruptly. At the same time the fluid density,
pressure, and temperature all rise suddenly across the shock wave.

The strength of the shock wave depends upon the initial mach
number, high mach numbers producing stronger shock waves than
low mach numbers. The shock wave itself is a thin region of fluid in
which large entropy increases occur with considerable friction, and
thus it cannot be considered an isentropic process. This means that
some of the previously derived equations do not apply across a shock
wave,

The universal gas law and the equation of continuity hold across a
shock wave, but neither Bernoulli’s equation nor the adiabatic gas
law may be applied.

The theory of shock waves is beyond the scope of this text; however,
the following results for a normal shock wave (that is, a shock wave
perpendicular to the flow direction) are quoted without proof. The
reader is referred to the selected references for proofs when required.

The mach number behind a normal shock is related to the mach
number ahead of the shock by the equation

(14 [(k = 1)/21M 2\
M = (le2 — (k- 1)/2>

(4-13)
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and differentiating,

do dA 4V
0=+ 2"y
Now Eq. (3-4) states that
dp _ _Vav
Yy g

if terms in dz are neglected, or

P _ _yay
p

The adiabatic gas law may be written as

p = cp*
and differentiating, \
C p dp
d = — k-1 —_— e = ——
Tk p dp kp dp c?
7 AV
Therefore de = 1 @ = — _I_iil
p ¢y c?
dA dp dV VdV dV
and so b N AL A AR
A P v c? V
dav
= (" —1) (4-16)

It will be immediately noticed that at sonic velocity (M = 1) the
sign of d4/dV changes. In other words, subsonically the velocity of the
flow increases with a decrease in flow area, until sonic velocity occurs.
If the flow is to accelerate further, the area of the duct must increase
do“instream of the point where sonic velocity occurs.

Naturally this process may not be continued indefinitely, the limiting
mach number depending on the pressure ratio. If the back pressure is
too high, the flow will revert to subsonic by means of a shock wave, thus
restoring the pressure to the required value.

48 The critical pressure ratio

Consider the ideal frictionless flow from a very large reservoir
through the entirely convergent nozzle shown in Fig. 4-2. The dis-
charge takes place into a region of pressure p;.

Whatever happens, the pressure at the nozzle exit p, cannot be less
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Example: Air flows from a reservoir at 30 psia and 520°R through
a convergent nozzle with an exit area of 0.5 in.” into atmospheric pres-
sure. Calculate the nozzle exit temperature and the mass flow rate.

14.7
Pa o 20 - 049 <0.528
and so sonic velocity will occur at the exit. The nozzle pressure is then
ps = 0.528 X 30 = 15.85 psia

In the reservoir
1 30 X 144 -
= = = 0.155 1b/{t?
"' T RT, T 53.3 X 520 55 1b/

Y43 D2
and —_— ==
viF o
— b2 HE = 0.714
So Y2 = V1 = 0.155(0.528)

= 0.0984 1b/ft?
At the nozzle

T = = 00081 X 533
Ve=1¢c=V14 X 322 X 53.3 X 435

and so
= 1,022 fps
0.5
Therefore G = vAV = 0.0984 X 1aa X 1,022
= 0.35 1b/sec

49 The convergent-divergent nozzle

.If it is desired to cause the exit flow from a nozzle to be supersonic, as
might be the case in a rocket exhaust for instance, then it is necessary
to use a convergent-divergent nozzle as shown in Fig. 4-3.

Py ,
)

Fig. 43. A convergent-divergent noz- /

zle,
—

N
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causes the flow to accelerate supersonically after it. If the reduction in
ps is fairly small, as shown in the case of curve ¢, it is not sufficient to
maintain continuous acceleration to the exit. In this case a normal
shock occurs in the supersonic flow and causes the velocity to become
subsonic with a corresponding pressure increase. Deceleration will now
occur in the remainder of the divergent section. Again p; equals p4.

If ps is now reduced sufficiently, full expansion will occur. In this
state acceleration takes place throughout the divergent section so that
p3 equals ps. This is shown in Fig. 4-4d.

If ps is reduced below this full expansion level, no difference in flow
is observed in the nozzle, and the pressurcs remain as shown in (d).
However, since p; is greater than ps, further expansion will take place
outside the nozzle.

Example: The products of combustion of a small rocket engine pass
through a frictionless convergent-divergent nozzle with a throat area
of 1in.2 In the combustion chamber, the pressure is 100 psia and the
temperature is 800°R. The values of & and R are 1.3 and 41 {t/°R re-
spectively. If the back pressure is 14.7 psia, calculate the conditions at
the throat, the exit mach number, and the exit area required for full
expansion.
In the chamber
3! 100 X 144

= T = —— = {), f3
71 RT. = 41 % 800 0.439 Ib/ft

P\ _ [ 2 \H¢-v
<p1)cnt B (k 4 1> = 0.546

At the throat

Therefore pe = 54.0 psia
p2 1jk
and Yo = 1 (;) = 0.439(0.546)°77
1
= 0.276 lb/ft3

For sonic velocity at the throat

I3
Vp = ¢ = \/-Lp = 1,192 fps

Y
Hence the weight flow rate is

0.276 X 1,192

ArysVy =
& 144

= 2.28 1b/sec
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48 Carbon dioxide at 32°F and 14.7 psia is compressed until its
density is 0.0085 slug/ft3. What are the pressure and temperature of
the gas at this point?

49 An automobile with a compression ratio of 8:1 draws in air at
14.7 psia and 60°F. What are the temperature, pressure, and specific
weight of the air at top dead center? (Neglect the effects due to
gasoline.)

410 Calculate the speed of sound in air at 20 psig when the density
is 0.004 slugs/ft?.

411 Calculate the speed of sound in air and carbon dioxide at 60°T.

412 What is the speed of an aircraft traveling at M = 2.5 at an
altitude of 40,000 ft?

413 Carbon dioxide flows from a reservoir, where the pressure is
60 psia and the temperature 70°F, through a 4-in.-diameter pipe in
which the pressure is measured as 35 psia. Calculate the mass flow rate,
the temperature, and the mach number in the pipe.

414 Air is flowing in a divergent duct. At a point where the duct
diameter is 3 in., the pressure and temperature are 75 psia and 750°F.
Farther along the pipe, at a point where the diameter is 4 in., the
pressure is 15 psia. Calculate the mass flow rate and the velocity and
mach number at each point.

4.15 Air flows through a pipe of 4.4-in. diameter with a velocity of
1,370 fps. The pipe diameter increases to 6 in., and the velocity of flow
is seen to increase to 2,650 fps. Calculate the mach number in the
large-diameter pipe.

4.16 Deduce the next term in the expression for the mach factor

M?
<1+T+ - )

417 Calculate the pressure on the nose of an object in an airstream
of Mach 0.8 at a temperature of 400°F when the airstream static pres-
sure is 8 in. of mercury absolute.

418 A normal shock occurs in an airstream of Mach 2.8. Calculate
the mach number behind the shock.

419  If the pressure upstream of the shock of Prob. 4-18 is 1.66 psia,
calculate the pressure downstream of the shock.

420 If the pressure and temperature of the flow of Prob. 4-18 are
300°F and 1.66 psia, calculate the stagnation pressure of the flow.

421 Show that the density ratio across a normal shock is given by

pr _ (b + 1)/2M
L+ [(k = 1)/2]002




CHAPTER 5

Fluid Impulse and Jet Propulsion

51 The principle of momentum

Momentum 1is defined as the product of the mass and the velocity of a
body and is a measure of the energy of motion stored in a moving object.
It is a vector quantity in that it has direction as well as magnitude. A
change in momentum can only be produced by the application of an
external force, and therefore a change in momentum implies the appli-
cation of such a force. The last statement is the principle of momentum
and may be demonstrated as follows.

Fig. 5:1. Fluid deflected by a sta-
tionary blade.

In Fig. 5-1 the nozzle ejects a steady stream of fluid at a velocity V.
The stream of fluid strikes a stationary blade and is deflected through
an angle 6, causing the fluid momentum to change direction (but not
magnitude in this case as friction is ignored). To cause this change in
momentum, a force F'; has been exerted by the blade on the fluid, and a

reaction force F; exactly equal and opposite to F; has been exerted by
85
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in words means that the force required to produce a change of momentum
in a fluid is equal to the rate of change of fluid momentum.

5.3 Application of the impulse-momentum equation

In the preceding article the impulse-momentum equation was derived
by considering the flow through a streamtube. Since the definition of a
streamtube shows it to have no flow across its walls, the tube can be
considered a solid boundary, and the flow through pipes may thus be
dealt with directly.

The fluid flowing through the combination bend and contraction
shown in Fig. 5-3 has its direction changed through an angle ¢ and its
velocity changed from V; to V' as it passes from section 1 to scction 2.

e 2
P2l

Fig. 53. A combined bend and
contraction, £

y
I 180-6°
¥ x '
—— - +. -
5 L_/
LA l w
The forces acting on the fluid are:

1. The pressure forces p141 and p.4. at the entry and exit respec-

tively

2. The weight of the fluid contained in the bend

3. A complex of pressure forces at the sides of the bend, summarized

as the horizontal and vertical forces F, and F,

The resultant R of F, and F, is the force exerted on the fluid by the
bend and is exactly equal and opposite to the force exerted on the bend
by the fluid; the latter is the force usually required.

Since this problem is essentially two-dimensional, it will be sufficient
to apply Eq. (5-2) in the horizontal and vertical directions.

Resolving forces in the horizontal direction and considering the
positive direction to be in the direction of the flow,

p1ds — pedscos § — I,

is the horizontal accelerating force, and the horizontal velocity change
is

Vacos 8 — V7,
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Since the nozzle is discharging into atmosphere, p. = 0. Applying
Bernoulli’s equation between stations 1 and 2 to find p;,

P1 6.32 1022

024 9y 7O

+0+0

since z; = 22 = 0. Therefore

1022 — 6.32
p1 = ————— 62.4 = 9,850 psfg
29
Now applying Eq. (5-2) in the direction of flow gives

md — poAz =T, = Qp(Vy— Vi)

62.4
. 9 —_—— —_ 5 — —_—
or ,850 >< F, X 39,9 (102 — 6.3)
x 5 X624 X 95.7
H . =9, - —
ence F 9,850 X 1 39.2
= 6,820 1b

Since F, is positive, the assumed direction of F, was correet. This is
the force exerted by the nozzle on the fluid, and therefore the force
exerted on the nozzle is 6,820 1b in the downstream direction.

Example 2: Water flows round a 90° vertical bend through a pipe
with a diameter of 8 in., as shown in Fig. 5-5. The volume of the bend

Pahy

% S 214, o
——-]

Fig. 5-5

i_s 1 £t%, and the exit from the bend is 1 ft above the horizontal center
line. Calculate the magnitude and direction of the force on the elbow

for a flow rate of 2.5 cfs if the mean pressure in the horizontal pipe is
300 psf.
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blades is constantly in the jet. The force on the moving blades will be
proportional to the rate of change of fluid momentum relative to the
blades.

Consider the flow of fluid into a row of turbine blades, as shown in
the end view of Fig. 5-6. The fluid enters the turbine with an absolute
velocity V; at an absolute inlet angle of 6;. This total velocity vector
may be considered to consist of two component veefors—v, equal to
and in the direction of the blade velocity, and U, the inlet velocity of
the fluid relative to the blades. The vector U, controls the power output
of the turbine, and the angle «; which it makes with the blade velocity
must be the blade inlet angle if smooth entry flow is to occur.

Figure 5-7 shows the velocity diagram for the fluid leaving the tur-
bine blades. The absolute outlet velocity V. may be considered to

1] ] 1) =

TTT = £ -

Fig. 5:6. Impulse turbine inlet velocity Fig. 57. Impulse turbine exit velocity
diagram, diagram,

consist of the two components » and Us; the latter is the outlet velocity
of the fluid relative to the blades. The angle «s which it makes with the
blade direction must be the blade outlet angle, since the flow must
leave the blades tangentially relative to the blades. The angle 8, is the
absolute outlet angle of the fluid.

In the absence of friction, the velocity of the fluid relative to the
blades remains constant in magnitude, although its direction is
changed, so that U; = U,. If friction is present, then U, will be less
than U/,.

Both the previous velocity diagrams (Figs. 56 and 5-7) are based
on a side of length » and are usually supcrimposed into a single com-
bined velocity diagram based on this length, as shown in Fig. 5-8. From
this diagram the turbine performance may be evaluated as follows.

The absolute change in velocity in the x direction is given by AV,
and may be measured from the diagram. Using Eq. (5-2) to evaluate the
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then the energy absorbed by the turbine is
7 42 " V.2
[(E—l I—1-+z1+11> - <&+——2~ + zs + Iz)] Qv ft-1b/sec
Yy 29 Y 29

and the turbine efficiency is

hp output X 550

(/v + Vi/20 + 21 + Tn) — (pa/v + Vo220 + 22 + 101Qv Z’ )
55

For liquids, when p1 = ps, 21 = 2, and I, = I, this reduces to

2 X hp X 550
= 56
T eV — V) (:6)

Equation (5-4) gives the horsepower as

QP AV, v
560

2AV v

Therefore n = m

(5:7)

Example 1: 5 cfs of water flows into an impulse turbine with a velocity
of 350 fps at an absolute inlet angle of 80° to the blade direction. The
turbine blade velocity is 200 fps, and the efflux velocity is 250 fps.
Calculate the required blade inlet and outlet angles and the horsepower
output of the turbine in the absence of friction.

The turbine velocity diagram (see Fig. 5-9) can be constructed as
follows:

1. Draw the base AB equal to 200 fps. (1 in. = 100 fps.)

2. From B draw V,at 80° to AB and 3.5 in. long. The closing side AC
is now the inlet velocity relative to the blades. The magnitude of
this is unchanged in passing over the blades.

Draw the arc CC’ centered at 4.

Since the final velocity V' is 250 fps, draw the are C’C"’ centered
at B with a radius of 2.5 in. The point €’ is the apex of the second
velocity triangle, and so the diagram can be completed.

From these triangles the blade inlet and outlet angles a; and as can
be measured and are found to be

>

ap = 112° ay = 141°
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From the diagram, AV, = 165 fps, and from Eq. (5:7),

_ 24V.v
_ 2X 165 X 150

T 9 X 10% — 3.05 X 104
= 0.831

Therefore the efficiency is 83.1 per cent.
Note: In this case, with ¥, at right angles to the blade direction,

AV, can be calculated directly as V4 cos (180° — 160°).

1"= 100 ft/sec

=300 ft/sec

e AV,=165f1/sec ——>
Uz

Vo= 175 ft/sec
20°

v =150 ft/sec
Fig. 5:10

5:5 Torque and the rate of change of angular momentum

Linear momentum was defined in Art. 5-1 as the product of the mass
and the velocity of a moving body. Angular momentum is similarly
d}iﬁned as the product of the moment of inertia and the angular velocity;
thus

Angular momentum M, = Jw (5-8)
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V., and rews is equal to the tangential velocity component at station 2,
Vg,. SO
T = Qo(riVy, — 12V4) {5-11)

5.6 The reaction turbine

The reaction turbine, as opposed to the impulse turbine, is generally
a more ponderous, slow-moving device, often developing very large
power outputs. Hence it is used as the driving turbine in nearly all
hydroelectric installations.

FIXED
BLADE

MOVING
BLADE

e € —— ]

\

N

or

Fig. 5:12. A reaction turbine.

It derives its power from the working fluid on an action and reaction
basis, rather than by a simple momentum change, and causes a pressure
drop in the working fluid, rather than a change of flow direction. The
flow through a reaction turbine is a radial flow instead of the axial flow
which occurs in an impulse turbine.

The essential parts of a reaction turbine are an outer fixed ring of
stator blades and an inner moving ring of blades forming the rotor.
The flow enters the stator all around its circumference and is dis-
charged from the center of the rotor, as shown in Fig. 5-12.

' The caleulations involved in determining the performance of a reac-
tion turbine may best be demonstrated by considering the typical
turbine in Fig. 5-12.
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The efflux velocity of the fluid relative to the blade U, must be
drawn to leave the blade at an angle as, so that the angle ay is the
blade exit angle shown in TFig. 5-14.

Now the resultant absolute velocity at exit V. may be considered
the resultant of either the radial and tangential components V,, and
V., or the efflux velocity relative to the blade and the blade velocity,
U, and wr.. The exit velocity diagram can now be drawn as shown in
Fig. 5-14. In the case where the outlet swirl is zero, that is, V,, = 0,
then V,, = V.. The exit velocity diagram is as shown in Fig. 5-15.

Yo

8 a 2
A X \
Wiy wry

Fig. 5-14. Reaction turbine exit velocity  Fig. 5-15. Reaction turbine exit velocity
diagram. diagram with zero swirl.

From these diagrams and Eq. (5-11), values may be found for V,, and
V4,; hence the torque and power of the turbine may be calculated.

Example: 1,000 cfs of water is available to drive an industrial reaction
turbine. The water enters the rotary stage at a radius of 6 ft at an
angle of 30° to the blade direction. The blades are 1 ft deep.

Discharge takes place at a radius of 3.5 ft with no swirl. For a turbine
speed of 50 rpm, calculate: (a) the required blade angles; (b) the horse-
power output of the turbine; (c) the pressure drop across the turbine,
neglecting the difference in exit and entry heights.

Caleulating V

iy

Q = 27TTIV71
Q 1,000
Therefore V,=-—=—"""=2065T
Y2, 12x 05 1ps

The blade velocity at entry is

50 X 2 6
wry = 20 X 2r X 0 = 31.4 fps
60
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The torque produced is given by
T = QP(7‘1V¢l — 7‘2Vz,)
1,000 X 62.4 X 6 X 45

32.2
= 52,300 ft-1b

Hence the horsepower developed is

52,300 X 50 X 2r
33,000

= 4,980 hp
Applying the energy equation across the turbine,
V 2 V 2
By ta=B+ 2 iath
v 2 Y 2
where E, is the energy extracted by the turbine per pound of fluid

flowing and is given by

_ hp X 550
Qv
4,980 X 550

T 62,400

E,

= 43.9 ft-1b/lb

Now since z; = z,,
P1 — P2 Vet —
y 2
Therefore P1L— P =7 <E2 — M)
29
53 — 45.42
64.4 >

2
LA

= 62.4 (43.9 -

= 2,018 psf
= 14.0 psi

57 Jet propulsion

Jet propulsion is a simple application of the impulse-momentum
equation and is effected by ejecting fluid momentum in the opposite
direction to the required thrust. A very simple example is that of
rocket thrust.

Consider a rocket which is using a total of 2/ 1b of fuel and oxidant
ber second and ejecting it at a velocity of ¥ fps. In 1 sec an amount of
burned fuel and oxidant is ejected with a momentum of MV /g Ib-sec,
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opposite direction. The exhaust gases leave the stationary engine with
a final velocity of V. fps.

Tor an airflow rate of M 1b/sec and a fuel flow rate of f 1b/see, the
initial and final rates of momentum flow of the air and gases are

MV
Initial momentum rate = . ! Ib-sec/sec
M
TFinal momentum rate = ;—f V2 Ib-sec/sec

Therefore the rate of change of momentum is

M+f, MV
g

Ib-sec/sec

_ Il{[-l—fV2 MV,
g g

or thrust T b (5-13)

Example 2: An aircraft traveling at 500 mph is propelled by a jet engine

developing 8,000 1b thrust and operating with an air/fuel ratio of 25:1.

If the exhaust velocity is 1,000 mph, find the required fuel flow rate.
Applying Eq. (5-13),

(M 4+ f) X 1,000 X 88 _ M X 500 X 83

8,000 =
’ g X 60 g X 60

But M = 25f; therefore

26 X X 1,000 X 88 25 X 500 X 88
60g 60g

Hence = 12.95 Ib/sec

8,000 =

3-8 The ideal propeller disk

. Complete airscrew theory is beyond the scope of this text, but some
mmportant general results may be obtained by considering the flow
through a propeller disk (or actuator disk), which is a theoretical con-
cept consisting simply of a disk that increases the momentum of the
fluid passing through it without causing any rotation of the fluid. The
results obtained by this method agree reasonably with those encoun-
tered practically.



FLUID IMPULSE AND JET PROPULSION 105

This indicates that the velocity through the disk is the mean of the
initial and final velocities and that one-half of the acceleration takes
place ahead of the propeller and the rest behind it.

59 Propeller efficiency

The power output P, from the actuator disk is

P,=TVy=Qp(Vsi— V)V,

The power absorbed by the fluid P; is given by
P; = QvE

where E is the energy absorbed by the fluid per pound of fluid flowing,
Since p; = ps and z; = z4,
_ T/'42 — T/'12

2g

E

Hence P; = Qy (Vg2 = V)
29

18Qp(Vs — V)(Vs+ V)
= pQ(Vy — V)V

I

from Eq. (5-16). Therefore the propeller efficiency is

_Po_ Qp(Vi—VyV: Vi
TR T Qv V)V TV

(517)

From Eq. (5:17) it will be seen that only an infinitely large propeller
with ¥, = V will operate at 100 per cent efficiency (or one developing

no thrust!). Actual propellers usually have an efficiency of 80 to 90
per cent.

Example: Calculate the thrust and horsepower output of an aircraft
propeller of 85 per cent efficiency and 7-ft diameter when traveling at
200 mph at sea level.

¥y = 200 mph = 293 fps

\ Vi

Now + =085

therefore V = 2_93 — 345 §
085 ~ S451ps

Hence Vy=2V — V, = 397 fps
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coaxial contrarotating turbine with a peripheral velocity of 50 fps.
Calculate the maximum recoverable horsepower in this turbine.

510 Two identical coaxial impulse turbines are separated by a
row of stator blades and rotate with a common blade velocity of 250
fps. 2 cfs of water flows into the first turbine at 90° to the blade direc-
tion with a velocity of 350 fps. The blade outlet angle is 150°. Cal-
culate the required stator blade angles and the horsepower output of
the combination.

511 The flow of water into a reaction turbine is at a-rate of 100 cfs
at an angle of 25° to the blade direction. The blade angles are oy = 56°
and a; = 100°. The radius at entry to the rotor is 3 ft, and at discharge
1.5 ft. The blade depth is constant at 3 in. Find the running speed of
the turbine, the torque, and the horsepower output.

512 A reaction turbine with inside and outside rotor diameters of
4 and 8 ft respectively and blades 6 in. deep is to develop 1,000 hp at
100 rpm from a supply of 150 cfs of water, exhausting the water with
no swirl. Calculate the required blade angles, the water inlet angle,
and the minimum supply head required.

513 A centrifugal pump (basically a reaction turbine running in
reverse) is to deliver 10 cfs of water at a radius of 1 ft. The water enters
the rotor at a radius of 6 in., after leaving the preswirl stator at an
angle of 45°, and leaves with no swirl. The blade height is 2 in. Caleu-
late the horsepower required to drive the pump at 250 rpm and the
pressure rise across the pump.

514 Assuming that the head of water is kept constant, calculate
the jet thrust on the trolley shown in the figure.

2" DIA

O O

Prob. 5-14

915 Ajet-propelled motorboat draws 15 cfs of water through ports
In the boat’s sides and discharges it astern through orifices with an

effective area of 0.4 ft% If the boat travels at 10 mph, find the propul-
sive force.
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where the indices a, b, and ¢ are constants to be determined by con-
sidering the dimensional balance of the equation.

The dimensions of the left-hand term are LT and of the right-hand
terms arve Le(M L) (LT—?)¢. Equating these gives

LT-' = LML) LT-%)e°
For the length dimensions to balance,
1 =0 — 3b \ \ 4 ¢

and for the mass dimensions,
0=0>
and for the time dimensions,
-1 = -2

Solving these three simultaneous equations gives

a=%Y¥ b=0 <c¢c=14
and so V' = const \/&71

Note that although fluid density was assumed to be one of the varia-
bles in this case, the analysis eliminated it, showing that the discharge
rate is independent of fluid density. This will not always happen and,
generally, too many variables will complicate the analysis. If four or
more variables are involved, unnecessary ones will not be eliminated;
thus 4t is extremely important to include every relevant variable, but to
avoid unnecessary ones at all costs. This is a technique which can only
be learned with practice and experience.

There are two deﬁnite limitat.ions to the method of dimensional
oceurs in all expressions derived by this method “and secondly, it will
only analyze the problem completely if four or less variables are in-
volved. (Three, if the temperature is not included.)

The advantage of the method is not, then, in complete mathematical
analysis, but rather in application to experiment, since the method
indicates the type of variation to be expected.

For the case outlined above, dimensional analysis indicates that a
plot of velocity against the square root of the head should be a straight
line, and from this plot the value of the constant can be determined.

6:3 The elimination of variables in a system of four or
more variables

If a system is examined in which four or more variables are present,
the method of dimensional analysis makes it possible to reduce the



DIMENSIONAL ANALYSIS AND MODEL SIMILARITY 113

If two geometrically similar models of different scale are entirely
immersed in and moving through two different fluids, then the flow
patterns existing around each model are geometrically similar if the
Reynolds numbers of the two flows are the same.

If the motions take place in the surface of the two fluids and wave
motions are involved, then the wave patterns will be similar if the
Froude numbers of the two flows are equal.

L
Reynolds number Np = = (6-4)
14
v2
Froude number Np = — (6-5)
gL
Hence Eq. (6-3) can be written as
F = f(Ng, Np)pviL? (6-6)
or more usually
F = Crl4pv?L2 (6:7)
where Cp is the force coefficient and is given by
Cr = 2f(Ng, N¥) (6-8)

6:5 The use of models and the extrapolation of the results to
full-scale prediction

From Eq. (6-7) it will be seen that in order to predict forces arising
from fluid movement over a solid body, the force coefficient Cr must
be known. This could be found by measuring the force on the object
under known and controlled conditions, such as those existing in a
wind tunnel, but the disadvantages of this are apparent when applied
to something as large as an aircraft. In such a case it is obviously ad-
vantageous to measure the forces on an inexpensive model and use the
results to determine the final forces on the full-scale aircraft, thus
possibly avoiding expensive errors.

The problem is simplified by the use of models, usually smaller than
full-scale, but not necessarily so. Unfortunately, however, mere geo-
metrical similarity is not sufficient. As Eq. (6:6) shows, the Reynolds
number and the Froude number for the model must be the same as for
the full-scale object if the results arc to be exactly coordinated. In
Practice this is seldom achiceved since similarity is maintained between
Froude numbers for problems in which surface effects (such as waves)
occur and between Reynolds numbers otherwise.

Many ingenious methods have been devised to achieve similarity
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The ratio of the Reynolds numbers is

NR, veLigvim
—2\7;_ - Vo Lim vy
30 X 200 g py
T 475X 5 1 om
42X 10 1
= 298 X o T 105 X 0.9
= 56.3

PROBLEMS

6.1 Use the method of dimensional analysis to derive the relation-
ship for pressure intensity at a depth A in a fluid of density p.

6.2 Use the method of dimensional analysis to derive the relation-
ship for the excess pressure within a soap bubble.

6:3 TUse the method of dimensional analysis to derive the relation-
ship for the shear stress in the fluid between two closely spaced, rela-
tively moving plates.

64 TUse the method of dimensional analysis to show that mach
number can be expressed as

Ve
M = f(”K )

where K is the bulk modulus.
6-5 Use the method of dimensional analysis to show that the force
on & body moving in a compressible fluid can be expressed as

F = F(M, Ng, Nz)pv2L?

66 A test representing flight at an altitude of 20,000 ft is to be
carried out in a compressed air wind tunnel on a one-tenth scale model
of an airplane. What should the tunnel pressure be in atmospheres?

67 The lift force on an airfoil of one-sixteenth full scale in an
atmospheric wind tunnel with a speed of 100 fps was found to be
4.00 Ib. Calculate the lift force on the full-scale airfoil, with similar
geometry at 200 fps at 40,000 ff, neglecting any variation in Reynolds
number,

6:8 A one-twentieth scale model seaplane hull is tested in a fresh-
water tank at a speed of 12.5 fps. What speed does this represent for
the full-scale hull in seawater? What is the ratio of the full-scale
Reynolds number to that of the model?
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Viscous Resistance to Fluid Flow

In most of the previous analysis, ideal fluids were assumed, and the
effects due to friction were ignored. In this chapter the effects of viscous
resistance will be discussed. This does not render all the earlier analysis
obsolete; it simply points out the fact that the results will not be
entirely accurate unless friction is considered. In most of the previous
work the conduits were short and the fluids not very viscous, with the
result that the frictional effects were indeed small and justifiably
negligible. However, if the fluids are of high viscosity or if the conduits
are of considerable length, as assumed in this chapter, then the fric-
tional effects cannot be ignored.

71 The nature of laminar and turbulent flows

If a fluid flows in such a manner that any two small particles of fluid,
close together, move along two smooth nonintersecting streamlines,
the flow is said to be laminar. In such a flow the fluid may be considered
to be moving in a series of layers or laminae of molecular thickness,
each layer sliding smoothly over the layer adjacent to it.

If the velocity of a flow reaches a high enough value, the flow ceases
to be laminar and becomes turbulent. In this type of flow, the velocity
at a point in the flow is seen to be a random, continually changing
vector, the time average of which is the mean velocity of the flow. The
random variations consist of small-amplitude high-frequency perturba-
tions both along and across the flow direction, superimposed upon a
steady mean velocity in the flow direction. These are shown in Fig. 7-1.
The velocity V, is measured in the direction of flow and can be seen to
fverage to the mean velocity V; the velocity across the flow direction
V, can be seen to average zero.

17
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in engineering since flows do not generally take place under such well-
controlled conditions. As far as the engineer is concerned, all flows with
a Reynolds number higher than 4,000 are likely to be turbulent.

Once turbulence has started, laminar flow may only be reestablished
by reducing the flow Reynolds number to the lower critical Reynolds

VA—-DYE

r

.
; =)

Fiiixﬁ

Fig. 7°2. Reynolds’ experiment,

number, a value of approximately 2,000. This value does have a prac-
tical application in that all flows with a Reynolds number less than
2,000 will always be laminar.
Thus all flows may be grouped into three regions by Reynolds
number:
1. Less than 2,000: Laminar flow region
2, Between 2,000 and 4,000: Transition region in which the flow
may be laminar or turbulent, but in which a disturbance will
cause transition from laminar to turbulent flow
3. Greater than 4,000: Turbulent flow region

7-3 The boundary layer

In Art. 1-4 it was pointed out that in the flow of real fluids the veloc-
ity of the fluid close to a solid boundary is exactly equal to the velocity
of the boundary, so that no relative motion exists between the boundary
and the layer of fluid next to it. This causes the fluid to have a velocity
profile close to a boundary as shown in Fig. 1-5, the velocity of the
fluid increasing with distance from the boundary, causing shearing
stresses to be present within the fluid.

The velocity gradient and the resulting shearing stresses cause fric-
tion losses to occur within the region of a flow close to a boundary; this
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a wake to form with considerable increase in drag. Such a flow condition
occurs when a real fluid flows round a circular cylinder.

Tigure 7-4a shows the flow of an ideal fluid around a two-dimensional
circular cylinder, in which the flow pattern is symmetrical about the
center of the cylinder. Figure 7-4b shows the flow of a real fluid around
the same cylinder. In passing around the cylinder, the flow accelerates
until the maximum displacement position is reached, causing the pres-
sure to drop up to this point. After this position is reached, the flow
decelerates to reach the free stream velocity far downstream, resulting
in an adverse pressure gradient over the rear of the cylinder which
eventually causes the boundary layer to break away from the cylinder

BOUNDARY
LAYER

Fig. 7-4. Flow round a two-dimensional cylinder.

to form a wake. Since the boundary layer is a region of a real flow (in
which the velocity is less than 99 per cent of the maximum flow veloc-
ity), it too may be laminar or turbulent, according to the flow Reynolds
number,

The laminar boundary layer, by its nature, offers less resistance to
flow than the turbulent layer, but is less stable. In the presence of an
adverse pressure gradient, a laminar boundary layer will always sepa-
rate from a boundary before a turbulent one, and for this reason arti-
ficial means are often used to cause the transition from a laminar to a
turbulent boundary layer before the onset of an adverse pressure
gradient.

Figure 7-5 shows how two strips of thin wire placed along a two-
dimensional circular cylinder cause the boundary layer to become
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Laminar flow between relatively moving, parallel flat plates. This
case may best be considered by assuming one plate lo be stationary
and the other to be moving with a velocity V; as shown in Fig. 7-6.
The shear stress at each plate is equal and opposite, and so the shear
must be transmitted unchanged across the gap. It can be seen, then,
that the value of =, and hence dv/dy, is constant across the gap, resulting
in the linear velocity variation shown in Fig. 7-6.

Example: A flat plate 3 ft* in area moves edgewise through oil between
two large fixed parallel planes, 1 in. from one and 3 in. from the other,
as shown in Fig. 7-7. If the velocity of the plate is 2 fps and the oil has

Z 7. 777777
?"7
2 ft/sec
3“
V277 2277 7, 2222 P27
Fig. 77

a kinematic viscosity of 5 X 10~* ft2/sec and a specific gravity of 0.8,
calculate the drag force on the plate.

Establishing the Reynolds number for the flow between the plate
and the most remote wall,

N = e = ———— = 1
P T xsxios o P
and since the Reynolds number of the second flow is less than this, both

the flows are laminar.

There will be a drag force on both sides of the plate, and solving for
these separately,

vV
b—
Ha
12V v
12 X2 X 0.8 X624 %5 X% 10
32.2

T1 =

Il

0.0186 psf
v

o —
32

= 0.0062 psf

a:nd Tg =
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which is the equation to a parabola. Thus the velocity distribution
across the flow is parabolic, and the maximum velocity is at the center
where s = 0. So

Umax = — — 5 & (72)

The maximum velocity is of only academic interest, the mean or
average velocity having more significance. So, since the area of a parab-
ola is two-thirds of the area of the surrounding rectangle,

t2 _{IE
12 dx

V = 240mex = (7-3)

which can be rearranged to establish the pressure drop; thus

1 Lo,V
/ dp = — / r dx
2 2

124V
£

12V

+ m

12uVL
=== (74)

Therefore Py — P2 = — (1 — T2)

It

(T2 ~ 1)

which represents the pressure drop due to laminar friction. Including
this term in the incompressible form of Bernoulli’s equation gives

(7-5)

2 2 7
—’2+z1+y—‘——(’—’f+z2+ﬁ> _ L2Vl
Y 29 v 29 Ve
Example: 0.05 cfs of water (» = 1.25 X 10~ ft2/sec) flows between
two smooth parallel plates 0.3 in. apart and 3 ft in width. Calculate the
maximum velocity and the pressure 180 ft upstream from an atmos-
pheric discharge if the upstream point is 3 ft higher than the discharge
(see Fig. 7-9).

Flow area = 3 >;20'3 = 0.075 ft2
Therefore V = —Q = 005 = 0.67 fps
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acting in the same direction. Hence, for equilibrium,

2nrr de 4 dp nr? = 0

. d .
Therefore T= — dpr =pu i for laminar flow

Now at any cross section the pressure is constant across the flow;
hence

1 1d .
v=—§—#% rdy=+£d—2/7'd7‘ sincer = D/2 — y
1 dp (r?
Therefore v = % E;(E,: + C)

But v = 0 when r = D/2. Therefore ¢ = —D?*/8 and

1 dp [r° D2>
== (r_ 2 76
v 2ud.1:<2 3 (7:6)

The maximum velocity occurs when 7 = 0, and so

D* dp

- 16p dx @7)

Vmax =

Again the maximum value is of little practical value, the mean veloc-
ity having more physical significance. Since the volume of a paraboloid

s

e |/
T 2nrdx
e

! \o+ap) mr2
e ——{

,(71r/2'>

4

Fig. 7-10. Velocity distribution across a circular pipe.

is one-half the volume of the surrounding cylinder, it is apparent that

Ve—L s — — 2 (7-8)
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analysis of the flow, which is possible for laminar flows. Most of the
equations used in turbulent analysis are obtained from experimental
data, vast quantities of which are available.

Close to a solid boundary in a turbulent flow, the combined effect of
reduced velocity and the restraining influence of the boundary results
in a thin region of laminar flow close to the boundary. This layer,
always present, is called the laminar sublayer. The transition from
laminar to turbulent flow across this region is not sudden so that, al-
though the laminar sublayer is thin, it does not have a definite limit.

i

v TURBULENT
FLOW
LAMINAR SUBLAYER
/// 22 22 7 7 7 72

(a)
, /
TURBULENT
FLOW
LAMINAR SUBLAYER
i et A i e A

(5)
Fig. 7:11. Smooth and rough boundaries.

Y

The velocity distribution across the laminar sublayer is parabolic, but
is so thin that a linear velocity profile may be assumed to exist across
it without undue error.

In laminar flow all surfaces may be assumed smooth as the surface
finish does not affect the fluid resistance. A boundary may be con-
sidered smooth in turbulent flow only if the effects of surface roughness
do not extend beyond the laminar sublayer. Thus a surface may be
either smooth or rough, depending on the width of the laminar sub-
layer, which in turn depends on the flow Reynolds number.

Figure 7-11a shows turbulent flow over a smooth surface. The effects
of surface roughness do not extend beyond the edge of the laminar sub-
layer, which is seen to have a smooth edge. In Tig. 7-11D the surface



VISCOUS RESISTANCE TO FLUID FLOW 131

Rearranging this relationship and substituting Eq. (7-13) gives

VD\ ™%
7 = 0.03950V? <~)

14

= 0.0395pD~ ¥V %

v a\”
- -l [ Z
0.0395pD~ %y [1.24 (y) ]

v D\» 7%
= -1, 14 =
0.03950 D~y [1'24 (22/> ]

since @ = D/2. Now close to the wall 7 must be independent of D.
Therefore

%

n
4

S =
Il 1
N\ o
~N\

or

Equation (7:13) can now be written as
¥
b = 1.24V (%) (7-15)

which is called the seventh root law. It is found to hold true for most of
the flow within a circular pipe, breaking down close to the walls where
the laminar sublayer exists. This part of the profile can be approxi-
_ mated with a straight line joining the origin to the seventh root profile.

7'6 Fluid resistance to turbulent flow through circular pipes

The most important viscous problem facing the hydraulic engineer
concerned with viscous flow through pipes is that of turbulent flow
through circular pipes. Flows through conduits other than circular do
take place occasionally, but their comparative rarity and the com-
plexity of the analysis are such that these flows will not be dealt with
in this elementary text.

The equation for head loss due to friction in laminar pipe flow was
established as

_ 32uVL

h D

(7-10)
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is nondimensionalized by dividing by the pipe diameter, the friction
factor may be read from the experimental results plotted in Fig. 7-14.

As a pipe ages, the surface roughness changes according to the usage
received, the fluid flowing, the environment, etc., with the result that

Fig. 7-13. Surface roughness,

it is impossible to forecast the pipe roughness within an old pipe, except
by experience with the local conditions and by inspired guesswork.

Example: Water is siphoned over a 10-ft-high obstruction through a
6-in. galvanized iron pipe with a total length of 200 ft. If the maximum
height occurs at the midpoint of the pipe length and the velocity of the
water is 10 fps, calculate the vertical distance between the inlet and
outlet and the pressure at the highest point in the pipe.

The flow Reynolds number is pVD/p = 4.61 X 10° and so the flow
is turbulent.

From Table 7-1, the value of e for galvanized iron is 0.006 in. Hence

e 0.006
— = —— = 0.001
D 6
From Fig. 7-14
f = 0.0208
and therefore, from Eq. (7-17),
200 100
h = 0. — — = 1291
0.0208 15 644 9 ft

Hence, to ensure siphoning, the outlet should be 13 ft lower than the
inlet,

Now since the pressure is zero at the outlet, the 7deal pressure at the
highest point would be

—(10 + 13) ft of water = —23 ft of water

But since half the friction loss occurs before the highest point and half
afterward, the actual pressure at the highest point will be

—23 4+ 134 = —16.5 ft of water
= —7.15 psig
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where k is a constant for the type of obstruction under consideration.
The ezact values of k must be established experimentally, but good
approximations for the most commonly occurring obstructions are
shown in Table 7-2.

Table 72 Loss coefficients for various pipe obstructions
Obstruction Type ~

k
Ar\?
Sudden enlargement, 1 - T

Sudden contraction

Gradual entrance to pipe 0. 0
45° bend 0.5
90° bend 0.9
180° hend 2.0
Globe valve, open 10.0
Gate valve, open 0.2

Example: Calculate the water flow rate from the large reservoir shown
in Fig. 7-15. The pipe is smooth copper and has an overall length of
100 ft.

In this system losses are caused by friction, the sudden contraction
at entry, two 90° bends, and an open gate valve. Writing these losses as

|
= A

20'
OPEN
" GATE
3 DA VALVE
ﬁ:%:l

2
Fig. 7:15
hy, and applying Bernoulli’s equation between stations 1 and 2,
T/' 2 V 2
P ta=le T ath
2g Y 2
and since py = po =V, =0and z; — 2o = 20 ft
7.2

T
20 = — —|- hi, (7-19)
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72 Two pipes 25 ft apart carry water flows in which the pressures
are 2.17 psig and 4.76 psig respectively. The high-pressure pipe is 6 ft
vertically higher than the low-pressure pipe. Over a 1-ft length the two
pipes are connected by two parallel plates 0.05 in. apart. Show that the
flow between the two pipes is laminar, and estimate the flow rate
between them.

7:3 Lubricating oil of specific gravity 0.9 and viscosity 110 X
105 Ib-sec/ft? flows downward through a vertical tube of 0.197-in. bore
at a rate of 0.0012 cfs. If the tube is 3 {t long and open at the lower end,
calculate the pressure at the top of the tube and the flow Reynolds
number.

7-4 A chemical condenser consists of 40 {t of glass tubing bent into
a coil 6 ft in length. The bore of the tubing is 0.15 in., and with the coil
in an upright position a fluid of viscosity 4.0 X 10-% Ib-sec/ft? and
specific gravity 0.9 is fed through by gravity. Calculate the hourly mass
flow rate of the fluid.

7-5 TFliid flows from a large reservoir through a horizontal tube
3 t long and 0.2 in. in bore at a rate of 0.0116 cfs. If the tube is 2 ft
below the free surface of the liquid, caleculate the flow Reynolds number
and the kinematic viscosity of the fluid.

76 Water flows through a horizontal 4-in. cast-iron pipe 1,000 ft
long with a velocity of 20 fps. Calculate the head loss in the pipe.

77 Benzine at 500 psig is pumped through a 40-mile-long 10-in.
steel pipe. At the midpoint of the pipe a boost station increases the
pressure sufficiently to deliver 9,820 ft3/hr at atmospheric pressure at
the pipe terminal. Estimate the required pressure increase at the boost
station.

7-8 Water flows between two reservoirs through a circular concrete
duct (¢ = 0.03 in.) with a total length of 300 ft. The duct contains a
sudden contraction at entry to a diameter of 6 in., a sudden enlarge-
ment at exit, and two 90° bends. Calculate the flow rate when the differ-
ence in levels of the reservoirs is 60 ft.

7-9  Water flows from the base of a water tower 100 ft high through
a 2-ft cast-iron main with a velocity of 2 fps. At a point 20,000 ft hori-
zontally from the base of the water tower, a 2-in. steel pipe is teed into
the main and runs 30 ft vertically upward, ending in a 90° bend and an
open globe valve. Calculate the flow rate from the valve.
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R is defined as
Jlow cross-sectional area

welled perimeter

and for a circular pipe running full,

Putting D = 4R in Eq. (7-17) gives

A
Y 29
8ghR
or V= % (8-1)

Since in open-channel flow the surface pressure is always atmos-
pherie, it follows that any head loss in a uniform flow must appear as a
fall in the level of the channel base, so that the ratio h/L in Eq. (8-1)
may be replaced by S, the channel slope. Hence

V = \[%9 VRS = C VRS (8-2)

This is called the Chézy equation.
Manning showed that the value of the constant could be approxi-
mated as

¢ = 12 gy (8-3)
n

where 7 is the Manning roughness factor, some typical values for which
are shown in Table 8-1.

Table 81 Some typical values for Manning roughness factors

Surface Type Manning Roughness Factor n
Concrete, smooth 0.012
Conerete, rough 0.014
Cast iron 0.015
Natural wood 0.015
Brick 0.017
Rubble or carth 0.025

Gravel 0.035
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Although the total energy is continually reduced by friction, the specific
energy can increase or decrease from section to section. Now if the flow
rate per unit channel width is ¢ cfs/ft,

qg=yV (8-6)

2
and so E=y+4 g p (8.7)
29y

Putting g as a constant and differentiating Eq. (8:7),

2 8 2
(E=1~—q—~=0 wheny=\/q—
dy g9y° g

which corresponds to a minimum value for E. Equation (8:7) is shown
plotted in Fig. 8-2. Since ¢ was assumed as a constant for the flow, the

y
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Fig. 8:2. Energy curve.

point of minimum energy corresponds to the point of maximum flow
rate per unit energy and is called the critical point. The depth of flow
at this point is called the critical depth and was found above as

3f
ye = \/—qi (8:8)
g

which is dependent only on the flow rate ¢.

From Fig. 8-2 it can be seen that at any other value for E there are
two possible flow depths to pass the same flow, one deep and one shal-
low, so that one of these flows is rapid and the other tranquil. These are
sometimes referred to as supercritical and suberitical respectively.
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maust be critical; thus it is only necessary to measure the flow depth over
sueh a weir in order to cstablish the flow rate.

ENERGY LEVEL HGATE

|
e e
¥

LA L

Fig. 8:3. Flow over a broad weir.

8:4 The hydraulic jump

In Art. 8-2 it was shown that at a specific energy level greater than
the minimum there are two possible flow types, rapid and tranquil. The
rapid flow case is an unstable one, and under the right conditions it will
change suddenly to tranquil flow by means of a hydraulic jump, as
shown in Fig. 8-4. This hydraulic jump is analogous to the shock wave
of compressible flow.,

HYDRAULIC | TRANQUIL FLOW
JUMP
Yo
v
/e 2 CILTLIL7 V77Tl 7777 //7l IITITIi77T

Fig. 8:4. A hydraulic jump.

Ahead of the hydraulic jump the flow is rapid and the flow depth
less than critical; downstream of it the flow is tranquil and deeper than
critical. At the jump itself, the surface is turbulent and eddying, with a
certain amount of air entrainment. Thus the hydraulic jump is a useful
device for flow mixing, preventing sedimentation, and preventing chan-
nel erosion since it causes the flow to decelerate.



CHAPTER 9

Aircraft in Steady Flight

9.1 The forces and moments acting on an aircraft

Figure 9-1 shows the six possible modes of motion of an aircraft (three
translational and three rotational) and the forces and moments acting.

y 5’\(*\‘ WEIGHT W
N VELOCITY w
AN
&

Fig. 9-1. Definition of axes.

For steady flight under any conditions the net force and moment on the

aireraft must obviously be zero, and, so that these forces and moments

may be evaluated, it is necessary to adopt a sign convention. The most

commonly used system refers to axes that are considered fixed in the
145
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offers a very large resistance to rolling, it is necessary to place the
ailerons as far outboard as possible so that the maximum rolling
moment may be obtained from them.

The pilot moves the ailerons by moving a control column mounted
in the cockpit floor to the left to cause a roll to the left or to the right
to cause a roll to the right. In larger aircraft this motion is caused by
rotating a small wheel rather like half an automobile steering wheel.

The elevators. The elevators are mounted in the tail-plane trailing
edge and are similar to the ailerons, except that they move together.
The aetion of the elevators controls the attitude of the aircraft and this,
together with the throttle, controls the aircraft’s speed. Since the effect,
of the tail-plane and elevators is to produce a balancing pitching
moment, the effectiveness of the combination is a direct function of the
distance of the tail-plane from the center of gravity.

AILERON

N
ANY

Vz
Fig. 9:3. An dileron.

WING HINGE

Movement of the elevators is caused by a fore and aft movement of
the control column and is arranged so that pulling back on the control
column lifts the aircraft’s nose.

In some modern delta-winged aircraft the function of the elevators
and ailerons is combined into one control mounted at the trailing edge
of the wing and called elevons.

The rudder. The rear portion of the tail fin is hinged to form a rudder,
movement of which causes the nose of the aireraft to swing to the left
or right. The movement is caused by the pilot pressing with his feet
against two rudder pedals and is arranged so that moving the left pedal
forward moves the aircraft’s nose to the left and vice versa. In many
nosewheeled aireraft, rudder pedal movement is also connected to a
nosewheel steering device for taxiing purposes.

The throttle. The power output from an aircraft engine is controlled
by a hand throttle (one per engine), with a friction hold so that once set
the throttle position remains constant without further attention. The
throttle controls the power output of the engine and hence the behavior
of the aircraft. Opening the throttle from a steady flight position will
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the wings that have an airfoil section as shown in Fig. 9-5. The line
joining the nose of the airfoil to the trailing edge is called the chord line,
and the angle between this line and the wind direction is called the
angle of attack «. It will be noticed that the wing is not drawn sym-
metrically about the chord line, but about a line called the camber line,
which is curved above the chord line, The maximum distance between

CAMBER LINE

__________ CHORD
I S— LINE

Fig. 9-5. Camber.

these two lines, expressed as a percentage of the chord, is called the
camber. The amount of camber varies from airfoil to airfoil, but is
generally greatest on slow-speed, high-lift wings, and often zero on
high-speed wings.

In flowing around the airfoil, the air passing over the top surface is
accelerated while that flowing over the lower surface is decelerated, re-
sulting in a low-pressure region above the wing and a high-pressure
region below it, as shown in Fig. 9-6. Obviously, increasing the angle of

1

Fig. 9:6. Pressure distribution round a lifting airfoil.

attack will increase the lift on the wing, and a plot of (7 against « yields
a line that is almost straight for conventional wings up to angles of
16-20°, at which value stalling occurs with flow breakaway from the
top surface. Figure 9-7 shows a typical Cr-a curve for a cambered sec-
tion, some interesting features of which should be noted.
1. At zero angle of attack a small lift remains due to the camber of
the section. If the camber is zero, the curve will pass through the
origin.
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Now dC/da = 4; therefore

14 — 04

24

=4

or 14 radian = 14.3°

R
f

9.4 Drag

The drag force on an aircraft is expressed in terms of a total drag
coefficient; thus
D = CpldpV3S (9-2)

where Cp = total drag coefficient
D = total drag = thrust in level flight
Unlike the lift, the drag is composed of many parts which may be
summarized as follows:
1. The exira to wing drag, which includes the drag of the entire air-
craft with the exception of the wings
2. The wing profile drag, which is the drag of the wings alone, while
generating no lift
3. The induced drag, which is caused by the wing producing lift
The first two of these are added together to give the total profile or
parasite drag, as shown in the drag break-down outlined in Fig. 9-8.

TOTAL DRAG (0)
[
| |

WING DRAG (Ow) EXTRA TO WING DRAG (05}

I
[
INDUCED DRAG (0/7) WING PROFILE DRAG (DP)—l

TOTAL PROFILE DRAG {0z}
Fig. 9:8. Drag breakdown.

Assigning coefficients to these drags so that
Cp = Cp, + Cp, (9-3)

where Cp, = induced drag coefficient

Cp, = profile drag coefficient
Sbows the reason for this grouping of the drags. The profile drag coeffi~
tient remains nearly constant with incidence, whereas the induced drag
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the Velocity; squared. Plotting these as shown in Fig. 9-10 indicates that
there is 2 minimum drag speed; and since the power is given by

P =DV =aV?+ T? (9°7)

there will also be a minimum power required speed.

MINIMUM
DRAG

I
|
l
|
I

MINIMUM v
DRAG
SPEED

Fig. 9:10. Drag against speed.

Example: Given these additional data for the aircraft of the example to
Art. 9-3, calculate the horsepower required for flight at a speed of
300 mph at sea level.

Cp, = 0.03 k=15 4 =16

3 2 X 50,000 X 602
"~ 0.00238 X 1,000 X (300 X 88)%

= 0.217

Cr
and therefore
1.5
= 0. — (0. 2 = (.0314
Cp = 0.03 4 Tom (0.217) 0

Hence D = 34 X 0.00238 X 4402 X 1,000 X 0.0314
= 7,280 Ib

and the required horsepower is

DV _ 7,280 X 440

2 — 5820 h
550 550 5,820 hp
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_ 4 X 1.5 X 50,000?
" = N7 % 16 X 0.03 X (0.00238 X 1,000
= 204 fps
= 139 mph

4

and

9.6 Steady gliding flight

In gliding flight the drag force is overcome by a component of the
weight, and so the aircraft must descend. Figure 9-11 shows the forces
acting on an aireraft in a shallow glide of angle 8 to the horizontal.

Fig. 9:11.  An dircraft in o steady glide.

Resolving forces in the directions of the lift and drag,

L = Wcosé8
D =1 sin 6
and therefore
% = cot 6 (9-13)

The ratio L/D is called the lift/drag ratio and occurs often in aircraft
performance work. The minimum gliding angle, which gives the maxi-
mum horizontal distance for a given altitude loss, corresponds to a
maximum value of L/D.

Example: A sailplane with a maximum lift/drag ratio of 18 at a forward
speed of 40 fps meets a thermal updraft of 3.5 fps. Is the sailplane able
to soar in such an updraft?

The best gliding angle is given by

cot 6 = 18
therefore 6 = 3.15°
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angle of attack and hence the same Cy. Since the required lift decreases
with increase in climb angle, it is apparent that the climbing speed is
less than for the level-flight case. Referring to the climbing case with

e 4Le

N

y O
w

Fig. 9:13. A steeply climbing aircraft.

the suffix ¢ and the level-flight case without suffix,

L. = W cos 0 = Cr}40V.28

and L =W = CrlspV?2S
H Ve)?
ence cos § = (—T;-)

or V.=V «/cos 8 (9-15)
Now resolving the forces in the direction of thrust,
T.= D, - W sin 6

=Dc<1 +g—:sin0>

but D, = ¢p14pV.2S and D = € pY4pV28. Therefore

AL
D, -—D( ) = D cos 8

W sin 6)

(45
(+5

ind so T, = D cos 8
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lift force can balance the centrifugal force WV?/gR acting out of the

turn.
4L

we

Y
w

Fig. 9-14, An aircraft in a steady banked turn,

Resolving the forces vertically and horizontally,

Leosop=W
Wy

Lsin ¢ = oF

H Ve
ence tan ¢ = -(;E
L

and = —
sec ¢ 7

(9-18)

(9:19)

Ef(cmple: An aircraft with a maximum lift of three times its weight
flies in a level banked turn. Calculate the minimum radius of the turn
and the required bank angle when the aircraft is flying at a speed of

400 mph.

From Eq. (9-18) it can be seen that for B to be a minimum, ¢ must

be a maximum; hence L/ W must be a maximum. Thus

or ¢ = 70.6°



CHAPTER ] O

Longitudinal Control and Stability

In order to study the stability of an airplane, it is necessary to under-
stand the effects of each component on the stability. The various parts
will be considered separately and several new parameters will be intro-
duced so that the last section of this chapter may be easily understood.

101 The longitudinal stability of a wing alone

The forces acting on a lifting wing can be summarized as the weight,
acting through the center of gravity; the lift, acting through a point
known as the aerodynamic center; and a pitching moment about this
point, as shown in Fig. 10-1. The aerodynamic center is a point on the

Fig. 10:1. Forces acting on a lifting
wing.

wing about which an increase of lift causes no change of pitching
moment; or alternatively, it is the point at which increments of
lift may be considered to act. For most conventional wings, this point
coincides with the quarter chord point.

In coefficient form the total pitching moment about the center of
gravity can be expressed as

M = Cul4pV?2Se (10.1)
161
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by fastening four paper clips to the corners of a narrow sheet of card-
board. When launched, the cardboard will tumble owing to its instabil-
ity. However, moving the two rear paper clips to the leading edge, as
shown in Fig. 10-2, will stabilize the ‘“wing” if the clips are heavy
enough, and the cardboard will fly in a stable condition, at least until
it stalls.

Example: A model flying wing has a weight of 2 1b and a c.g. at 0.3¢.
What is the minimum weight that will cause stability when attached
to the nose?

If the minimum weight is w, taking moments about the trailing edge
must yield a new c.g. at the quarter chord point for marginal stability.
Therefore

we + 2 X 0.7¢ = (2 + w)0.75¢
w4+ 14 =154+ 075w
or w=041b

102 The tail volume ratio

The effectiveness of the tail-plane in producing a balancing pitching
moment depends upon two variables, the lift of the tail-plane and its
distance from the aircraft’s center of gravity. Since the lift of the tail-
plane is proportional to its area, the tail-plane moment is proportional
to the product of the tail-plane area and its distance from the center of
gravity, which product has units of volume. Dividing this quantity by
a volume that reflects the aircraft size (in this case, the wing area
multiplied by the wing chord) gives a dimensionless quantity called
the tail volume ratio ¥V, which is a direct measure of the tail-plane
effectiveness. Thus

~ Srlr

= 10-4
! % (10-4)

where Sy = tail-plane area
lr = tail-plane moment arm

Example: An aircraft with a wing area of 400 ft2 and an aspect ratio of
16 has a tail-plane of 25 ft*> mounted with its quarter chord point 40 ft
behind the aireraft’s c.g. Calculate the tail volume ratio.

__ span _ area
~ chord ~ (chord)?
Therefore = /%007, =5 ft
and so V = M = 0.5
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Therefore Lh = lyLy
Lh  CLY4pV2Sh
and so Ly = — = ——Ii/&—w
Ir Iy

Writing the tail-plane lift in terms of the tail-plane lift coefficient C7,,

CL14p1V S}
CridspVisy = —221 20
Iy
CLS’L h l
- 10.6
Hence Crp = Silr = (y, T { )

It will be observed that if the aircraft’s center of gravity is ahead of
the aerodynamic center, so that h/¢ is negative, the tail-plane lift

L

§r

' e

Fig. 10-5. Longitudinal balance.

coefficient will be negative, and the lift will be directed downward. The
tail-plane lift is varied by changing the position of the elevators; and so
that this lift may be considered to increase with the increase of clevator
angle g (eta), the elevator angle is measured as positive downward, as
shown in Fig. 10-6.

Ly

Fig. 10-6. Elevator move-
ment,

The tail-plane lift coefficient can now be written as

dCLT CLT

Cr, = (¢ + ar — ¢ +

da
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pilot has to supply the necessary moment, and so it becomes important
to reduce it in order to prevent pilot fatigue. The addition of a second,
smaller control moving in the opposite sense to the elevator, as shown
in Fig. 10-7, causes a small force to exist with a large moment arm
opposing the elevator hinge moment. Such a control is called a tab, and
its deflection 8 is also measured as positive downward.

Fig. 10-7. Tab movement.

The hinge moment coeflicient is expressed as

dCu dCn dCu
Cu=0b
u 0+ de atp+ dnﬂ_}_dﬁﬁ
where by = a constant
dC . .
-gf = rate of change of hinge moment coefficient with angle of
attack = b;
dCx . . .
O rate of change of hinge moment coefficient with elevator
angle = b,
dCy ) . .
B rate of change of hinge moment coefficient with tab
angle = b,
Therefore C” = bO + blalp + b277 + bsﬁ (]0'8)

The value of b, depends upon the static balance of the elevator. If
the leading edge is weighted so that the center of gravity of the control
lies at the hinge point, b, = 0.

The value of b, depends upon the position of the control hinge but is
generally arranged to be equal to zero. b, and by must be negative to
prevent overcontrol, which means that if the control is displaced, it
must tend to return to its equilibrium position and not travel further
from this position.

b.s can be reduced by the use of horn balancing, as shown in Fig. 10-8.
This type of control is arranged so that some of the control surface
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Hence from Eq. (10-7)
I -
Cm = Cmo + E‘L CL - V[al(a + or — e) + 0/27]] (]0,]0)

Stick fixed stability and stick fixed static margin. For a manually
controlled aircraft there are two stability cases to consider—one with
the controls rigid, called “stick fixed,”” and one with the controls free,
called “stick free.” An aircraft with fully powered controls will always
be considered stick fixed.

D&L S Lr
w W

Fig. 10:9. Forces on a complete aircraft.

In the stick fixed case the elevator angle 5 is constant, and so Eq.
(10-10) may be differentiated as

ac., _ -
Cn _hdCo 5 (1 — §E> < 0 for stability (10-11)

“da ¢ da o

since C,,, and ar are constants.
Dividing Eq. (10-11) by dCL/de, or a, gives

de h - de

=m 22 =)= — )

ic, " 7 ! p, (1 da) ha (10-12)
where h, is the “stick fixed static margin,” or the distance of the aircraft’s
actual center of gravity ahead of the center of gravity position for neutral
stability, measured as a fraction of the mean chord with the stick fixed. The
minus sign is introduced in Eq. (10-12) so that an aircraft with positive
stability may have a positive static margin.

Stick free stability and stick free static margin. Differentiating

Eq. (10-10) and retaining the term in », since the control is now con-
sidered free to move,

dCor _ d
___;gd*Cli_ V[th(l _k)_*_az_ﬂ] (10-13)
de de
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and so, in this case, the distance of the c.g. ahead of the stick free

neutral point is
0.587¢ = 35.2 in.

PROBLEMS

The following problems refer to the aircraft of the Chap. 9 problems
with this additional information available:

No lift angle of attack = 0°

Tail-plane area = 60 {t?

Distance between c.g. and tail lift = 80 ft

c.g. position (standard) = 2 ft behind quarter chord point

a; = 3.5 CL

— =4,
Ao = 2.5 do 0
b1 = —05 dE
by = 5.1 e =03

101 Find the tail volume ratio; the static margins, stick fixed and
stick free, in terms of the wing chord and in inches; and the neutral
point positions. Is this a stable airplane and, if so, which is more stable,
stick free or stick fixed?

102 The tail plane of the aircraft is a symmetrical section mounted
at zero incidence on the fuselage, with a maximum lift coefficient of 0.8
with full elevator. Find the possible extent of c.g. travel ahead of the
neutral point, neglecting any contribution of tail-plane lift to the total
lift and remembering that the aircraft must be stable in both modes.

10-3  In the course of a flight the c.g. of this aircraft moves forward
18in. by virtue of the fuel used and redistribution of payload. Calculate
the new static margins, stick fixed and stick free. How is the stability
affected by this c.g. shift?

10-4 If the landing angle of attack of this aircraft is 25°, determine
the necessary elevator angle for landing.

10:5 The wing of the aireraft has zero camber. Calculate the air-
craft angle of attack at 250 mph at 10,000 ft and the corresponding
elevator angle.

1046 Draw a one-sixtieth scale dr awing of this aircraft and mark on
it the positions of the e. g. (standard), the c.g. travel range, the two
heutral points, the aerodynamic center, and the two static margins.



APPENDIX I

The U.S. Standard Atmosphere

Altitude, Temperature, Pressure, Density,
thousands of ft °r psia slug /ft3
0 59 14.7 0.00238
5 41.2 12.2 0.00204

10 23.4 10.1 0.001755
15 5.5 8.3 0.00149
20 —12.3 6.76 0.00126

25 —30.1 5.45 0.001066

30 —47.9 4.36 0.000888

35 —67.8 3.46 0.000737

40 —67.0 2.72 0.000581

45 —67.0 2.20 0.000469

50 —67.0 1.69 0.000358
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The Properties of Some

Common Gases at 68 F and

Atmospheric Pressure

p X 108

R,

Py .
Gas dlug/fts | hesec/ft? | ft/°R k
Air 0.00238 0.0378 53.3 1.4
Carbon dioxide 0.00363 0.0305 34.9 1.28
Hydrogen 0.000166 | 0.0184 767 1.4
Nitrogen 0.00229 0.0363 55.1 1.4
Oxygen 0.00262 0.0417 48.3 1.4
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A LIST OF IMPORTANT EQUATIONS

Application
Aerodynamic form pf
Bernoulli’s equation

Flow rate through a
venturi meter
Flow rate through an
orifice meter

TFree vortex flow

Liquid compressibility
Universal gas law

Adiabatic gas law
Velocity of sound

Bernoulli’s equation for
compressible flow in

its various forms

The stagnation pressure
in compressible flow

Mach number behind a
normal shock wave

Pressure ratio across a
normal shock wave

Temperature ratio across
a normal shock wave

Critical pressure ratio

Impulse-momentum
equation

Torque~angular-
momentum equation

Flow velocity through an
ideal propeller

177

Equation
p + 14pV? = const

_ 2!](7)1/’)’ + 2z - pz/’y — 22)
©= C"Ag\/ 1 — (As/Ay)?

29(p1/y + 21 — p2/v — 22)

= CvCoA.')_
Q 1 — C2(As/AD)?
vr = const

Ap

K=- AVV
Lo rr
Y
% = const
Y
¢ = \/kgRT
Va? — Vi

Sl

S
T ye(k — 1) [\p.
RE
— T, —
EF—1 (T2 — T3)

2
P = po+%PoVo2(1+ﬁ‘—i“+ e )
14+ [(k — 1)/2)M2)*
M, = ‘ WM — (k- 1)/2 }
pe 1+ kM2
P 14 kM
T 14 [(k—1)/2]M
T, 14 [(k — 1)/2]M 2

<p2 ( 2 )k/(k~l)
pl)m T \k+1

F=@Qo(Va— Vi)

T = QP(Tletl - T?Tfiz)

_ Vit Vs

,
’ 2



Application

Best gliding angle
Climbing thrust
Climbing power

Banked turn

Pitching moment

Stability condition

Tail volume ratio
Static margin:

Stick fixed

Stick free

A LIST OF IMPORTANT EQUATIONS
Louation
L
—D— = cot @
-’1—7—6 = 0 (1 + L tan @
= cos 5 an
H. L
Zie 38 ol
T cos”® 8 (1 -+ D tan 0)
72
tan ¢ = iR
_L
sec ¢ = v
M = C,Y4pV2SE
_ Splp
V= Sé
Cha= V‘i‘<1 —~‘E>
é a da
h ~ Qi de asby
eebord( B2
n I ’ a < da> L a1bs

179



11

1.3
1-5
1.7
1.9
11
1-13
1.15
2.1
23
2.5
27
2.9
21
2:13
215
217

219
221
223
225

APPENDIX V l

Answers to Odd-numbered

1.3; —10.5; —8.0; —4.2
psig

458 tons

14.1 1b; 0.281 in.

1.304 1b

0.0012 1b

0.022 b

0.00868 Ib-sec/ft?

0.305 in. below

88.9 psig. 211.5 in. Hg

14.8 psia

3.21 psi

13.05 psi

11.8 ft

306 in.

6.34 in.

24,000 1b; 5.33 ft deep

1.82 X 108 1b; 8.0° from the
vertical, passing through
the base 0.34 ft left of center
6 ft

25.5 X 106 1b

15,700 1b

3.9 1%

18]

2.27
2:29
2.31
2:33
2.35
31
3.3
35
3.7
3.9
3-11
313
315
317
319
3:21
3:23
325
4.1
4.3
4.5
4.7
4.9

Problems

450 ft3

8.05 ft/sec?

36 ft3; 0; 338 1b
736; 440 1b
0.802 psig

15.3 fps

24.9 psia

1.63

0.5006 cfs

10.05 cfs

163 hp

1.59 hp

139 psf
41.7;167; 376 1b
5.5 cfs

0.108; 0.107 cfs
317 mph

9.7 in.

300,000 psi
2780°F

0.521 1h/ft?
—062°F

485°F; 117.6 psia; 0.336
1b/ft3



Acceleration, 30-36
dimension of, 110
horizontal, 31-34
radial, 34-36
vertical, 30-31
Adiabatic process, definition of,
68-69
Aerodynamics, Bernoulli’s
equation, 54,176
Ailerons, purpose of, 146-147
Air, properties of, 175
(See also Atmosphere)
Aireraft, banked turns of, 158-160
equations for, 179
climbing flight of, 156-158
equations for, 178
control of, 146-148
drag forces on, 151-153
equations for, 178
flaps, purpose of, 148
forces acting on, 145-146
gliding flight of, 155-156
equation for best angle of,
178
horn-balanced control in,
167-168
lift of, 148-151
equation for, 178

Index

Aircraft, longitudinal control of,
161-171
pitching moment equation for,
179
rudders, purpose of, 147
stability of, 168-171
equation for, 179
in steady flight, principles of,
145-160
“stick fixed static margin” of,
169
equation for, 179
“stick free static margin” of,
170
equation for, 179
tail-plane lift of, 164-166
tail-volume ratio of, 163, 179
throttles, purpose of, 147-148
trim tabs and hinge moments
of, 166-168
velocity measurement of, 59
wings, aerodynamic center of,
162
downwash of, 164
forces acting on, 161-163
(See also Propellers)
Airspeed, indicated (IAS), 59
true (TAS), 59
183
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Fluid mechanics, divisions of, 13
use of models in, 113-115
Fluid statics, 13—-42
Tluids, bodies in, pressure on,
21-23, 178
columns of, pressure in, 13-15
compressibility of, 67
equation for, 177
compressible, critical pressure
ratio of, 77-79
flow of, 67-84, 177
pressure in, 14-15
shock waves in, 75-76
stagnation pressure in, 73—
75
contact angle of, with solid,
9-10
definition of, 1-2
deflection of, by stationary
blade, 85-86
flow of, accelerated, equation
for, 176
boundary layer in, 119-122
circular, 60-61
equation of continuity, 46,
176
equation for free vortex,
177
in nozzles, 79-82, 88-89
steady and unsteady, 43-44
streamline representation of,
44-45
streamtube representation
of, 45
supersonie, 76-76
viscous resistance to, 117—
137
“head’ of, 14
ideal, 43
incompressible, flow of, 43-66

laminar flow of (see Laminar
flow)

Fluids, open-channel, 138-144
critical depth, 142-143
specific energy and, 140~
142
pressure of, 2-3
properties of, 1-12
static, acceleration of, 30-36
submerged curved surfaces
in, 26-27
turbulent flow of (see Turbu-
lent flow)
viscosity of, 4-7
(See also Liquids)
Force, dimension of, 110
Fowler flap, 148
Friction drag, 5
Friction factor, 132-134
Froude number, 112-113, 178

Gas constant, dimension of,
110
Gas dynamics, 13
Gas law, 68, 177
adiabatie, 177
Gases, definition of, 1
properties of common, 175
thermodynamic properties,
67-69
(See also Fluids, compressible)
Gasoline, properties of, 174
Glass, surface roughness factor
of, 132
Glycerine, properties of, 174
Gravel, Manning roughness fac-
tor of, 139

Hydraulic jump in open-channel
flow, 143-144

Hydraulic radius, 138-140

Hydrodynamics, 13

Hydrogen, properties of, 175
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Pipes, bends of, flow through,
88-89
Jaminar flow through, 126-
128
equation for, 178
obstructions in, viscous losses
due to, 134-136
turbulent flow through, 131~
134
Pitot-static tube, 58-59
Pressure, atmospheric, 2
center of, 23-26
equation for depth of, 176
moments of inertia method,
24-26
in submerged objects, 23-26
critical, ratio of, 77-79, 177
devices for measuring, 16-21
dimension of, 110
fluid, measurement of, 2-3
on submerged curved surfaces,
26-27
on submerged plane surfaces,
21-23
Pressure-density-height equation,
176
Pressure gages, 2, 16-21
Pressure head, 48, 52
Pressure transducer, 17-18
Propeller disks, flow through,
103-105
Propellers, efficiency of, 105-106,
177
flow velocity equation for, 177

Reynolds number, 112~113, 177
critical, 118-119
Rocket, thrust of, 101-103
Rocket engine, exit flow from,
79-81
Rubble, Manning roughness
factor of, 139

Seventh root law, 131, 178
Shear, 1
Shear stress, 5
Shear stress-viscosity equation,
176
Ships, metacentric height of,
29-30
Shock waves, pressure ratio
across, 177
temperature ratio across,
177
theory of, 75-76
Slug as unit of density, 3
Soap bubble, excess pressure in,
equation for, 176
surface tension in, 8
Sound, speed of, 69, 77
Specific energy, 140-142
Specific gravity, definition of, 4
dimension of, 110
Specific volume, definition
of, 4
Specific weight, definition of, 3
dimension of, 110
Stability of floating bodies,
28-29
Stagnation pressure in subsonic
flow, 73-75
Statics, 13-42
Steel, surface roughness factor
of, 132
Stoke as unit of kinematic vis-
cosity, 7
Strain gage, 17-18
Streamline, concept of, 4446
Streamtube, 86
concept of, 45, 46
curved, 96
Suction devices, 55-59
Supersonic flow, 75-76
Surface roughness factors, 132
Surface tension, 7-9



