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Professor Obert has observed in his famous treatise on Thermodynamics that concepts are
better understood by their repeated applications to real life situations. A firm conviction of
this principle has prompted the author to arrange the text material in each chapter in the
following order.

In the first section after enunciating the basic concepts and laws mathematical models
are developed leading to rate equations for heat transfer and determination of temperature
field, simple and direct numerical examples are included to illustrate the basic laws. More
stress is on the model development as compared to numerical problems.

A section titled “SOLVED PROBLEMS” comes next. In this section more involved
derivations and numerical problems of practical interest are solved. The investigation of the
effect of influencing parameters for the complete spectrum of values is attempted here. Problems
involving complex situations are shown solved in this section. Two important ideas are stressed
in this section. These are checking of dimensional homogeneity in the case of all equations
derived and the validation of numerical answers by cross checking. This concept of validation
in professional practice is a must in all design situations.

In the next section objective type questions are given. These are very useful for
understanding the basis and resolving misunderstandings.

In the final section a large number of graded exercise problems involving simple to
complex situations are included.

In the first of the 14 chapters the basic laws for the three modes of heat transfer are
introduced and the corresponding rate equations are developed. The use of electrical analogy
is introduced and applied to single and multimode heat transfer situations. The need for iterative
working is stressed in the solved problems.

The second chapter deals with one dimensional steady state conduction. Mathematical
models are developed by the three geometries namely Plate, Hollow Cylinder and Hollow Sphere.
Multilayer insulation is also discussed. The effect of variation of thermal conductivity on heat
transfer and temperature field is clearly brought out. Parallel flow systems are discussed.
Examples on variation of area along the heat flow direction are included. The use of electrical
analogy is included in all the worked examples. The importance of calculating the temperature
gradient is stressed in many of the problems.

In the third chapter models for conduction with heat generation are developed for three
geometric configurations namely plate, cylinder and sphere. The effect of volume to surface
area and the convection coefficient at the surface in maintaining lower material temperature
is illustrated. Hollow cylindrical shape with different boundary conditions is discussed.
Conduction with variable heat generation rate is also modelled.

Fins/extended surface or conduction-convection situation is discussed in the fourth
chapter. Models for heat transfer and temperature variation are developed for four different
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boundary conditions. Optimisation of the shape of the fin of specified volume for maximum
heat flow is discussed. Circumferential fins and variable area fins are analysed. The use of
numerical method is illustrated. Error in measurement of temperature using thermometer is
well discussed. The possibility of measurement of thermal conductivity and convective heat
transfer coefficient using fins is illustrated.

Two dimensional steady state conduction is discussed in the fifth chapter. Exact analysis
is first developed for two types of boundary conditions. The use of numerical method is illustrated
by developing nodal equations. The concept and use of conduction shape factor is illustrated
for some practical situations.

One dimensional transient (unsteady) heat conduction is discussed in Chapter 6. Three
types of models arise in this case namely lumped heat capacity system, semi-infinite solid and
infinite solid. Lumped heat capacity model for which there are a number of industrial
applications is analysed in great detail and problems of practical interest are shown solved.
The condition under which semi-infinite solid model is applicable as compared to infinite solid
model is clearly explained. Three types of boundary conditions are analysed. Infinite solid
model for three geometric shapes is analysed next. The complexity of the analytical solution is
indicated. Solution using charts is illustrated in great detail. Real solids are of limited
dimensions and these models cannot be applied directly in these cases. In these cases product
solution is applicable. A number of problems of practical interest for these types of solids are
worked out in this section. In both cases a number of problems are solved using numerical
methods. Periodic heat flow problems are also discussed.

Concepts and mechanism of convection are discussed in the seventh chapter. After
discussing the boundary layer theory continuity, momentum and energy equations are derived.
Next the different methods of solving these equations are discussed. In addition to the exact
analysis approximate integral method, analogy method and dimensional analysis are also
discussed and their applicability is indicated. General correlations for convective heat transfer
coefficient in terms of dimensionless numbers are arrived at in this chapter.

In Chapter 8, in addition to the correlations derived in the previous chapter, empirical
correlations arrived at from experimental results are listed and applied to flow over surfaces
like flat plate, cylinder, sphere and banks of tubes. Both laminar and turbulent flows situation
are discussed.

Flow through ducts is discussed in Chapter 9. Empirical correlations for various situations
are listed. Flow developing region, fully developed flow conditions, constant wall temperature
and constant wall heat flux are some of the conditions analysed. Flow through non-circular
pipes and annular flow are also discussed in this chapter.

Natural convection is dealt with in Chapter 10. Various geometries including enclosed
space are discussed. The choice of the appropriate correlation is illustrated through a number
of problems. Combined natural and forced convection is also discussed.

Chapter 11 deals with phase change processes. Boiling, condensation, freezing and
melting are discussed. Basic equations are derived in the case of freezing and melting and
condensation. The applicable correlations in boiling are listed and their applicability is
illustrated through numerical examples.

Chapter 12 deals with heat exchangers, both recuperative and regenerative types. The
LMTD and NTU-effectiveness methods are discussed in detail and the applicability of these
methods is illustrated. Various types of heat exchangers are compared for optimising the size.
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Thermal radiation is dealt with in Chapter 13. The convenience of the use of electrical
analogy for heat exchange among radiating surfaces is discussed in detail and is applied in
almost all the solved problems. Gas radiation and multi-body enclosures are also discussed.

Chapter 14 deals with basic ideas of mass transfer in both diffusion and convection
modes. A large number of problems with different fluid combinations are worked out in this
chapter.

A large number of short problems and fill in the blank type and true or false type
questions are provided to test the understanding of the basic principles.

Author
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Unit Conversion Constants

Quantity S.I. to English English to S.I.

Length 1 m = 3.2808 ft 1 ft = 0.3048 m

Area 1 m2 = 10.7639 ft2 1 ft2 = 0.0929 m2

Volume 1 m3 = 35.3134 ft3 1 ft3 = 0.02832 m3

Mass 1 kg = 2.20462 lb 1 lb = 0.4536 kg

Density 1 kg/m3 = 0.06243 lb/ft3 1 lb/ft3 = 16.018 kg/m3

Force 1 N = 0.2248 lbf 1 lbf = 4.4482 N

Pressure 1 N/m2 = 1.4504 × 10–4 lbf /in2 1 lbf /in2 = 6894.8 N/m2

Pressure 1 bar = 14.504 lbf /in2 1 lbf /in2 = 0.06895 bar

Energy 1 kJ = 0.94783 Btu 1 Btu = 1.0551 kJ

(heat, work) 1 kW hr = 1.341 hp hr 1 hp hr = 0.7457 kW hr

Power 1 W = 1.341 × 10–3 hp 1 hp = 745.7 W

Heat flow 1 W = 3.4121 Btu/hr 1 Btu/hr = 0.29307 W

Specific heat 1 kJ/kg°C = 0.23884 Btu/lb°F 1 Btu/lb°F = 4.1869 kJ/kg°C

Surface tension 1 N/m = 0.068522 lbf /ft 1 lbf /ft = 14.5939 N/m

Thermal conductivity 1 W/m°C = 0.5778 Btu/hr ft°F 1 Btu/hrft°F = 1.7307 W/m°C

Convection coefficient 1 W/m2°C = 0.1761 Btu/hrft2°F 1 Btu/hr ft2°F = 5.6783 W/m2°C

Dynamic viscosity 1 kg/ms = 0.672 lb/fts 1 lb/fts = 1.4881 kg/ms
= 2419.2 lb/ft hr or Ns/m2

Kinematic viscosity 1 m2/s = 10.7639 ft2/s 1 ft2/s = 0.092903 m2/s

Universal gas const. 8314.41 J/kg mol K
= 1545 ft lbf /mol R
= 1.986 B tu/lb mol R

Stefan Boltzmann const. 5.67 W/m2K4 = 0.174 Btu/hr ft2 R4
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Quantity S.I. to Metric Metric to S.I.

Force 1 N = 0.1019 kgf 1 kgf = 9.81 N

Pressure 1 N/m2 = 10.19 × 10–6 kgf /cm2 1 kgr /cm2 = 98135 N/m2

Pressure 1 bar = 1.0194 kgf /cm2 1 kgf /cm2 = 0.9814 bar

Energy 1 kJ = 0.2389 kcal 1 kcal = 4.186 kJ
(heat, work) 1 Nm (= 1 J) = 0.1019 kgf m 1 kgf m = 9.81 Nm (J)

Energy
(heat, work) 1 kWhr = 1.36 hp hr 1 hp hr = 0.736 kW hr

Power (metric) 1 W = 1.36 × 10–3 hp 1 hp = 736 W

Heat flow 1 W = 0.86 kcal/hr 1 kcal/hr = 1.163 W

Specific heat 1 kJ/kg°C = 0.2389 kcal/kg°C 1 kcal/kg°C = 4.186 kJ/kg°C

Surface tension 1 N/m = 0.1019 kgf /m 1 kgf/m = 9.81 N/m

Thermal conductivity 1 W/m°C = 0.86 kcal/hrm°C 1 kcal/hrm°C = 1.163 W/m°C

Convection coefficient 1 W/m2°C = 0.86 kcal/hrm2°C 1 kcal/hrm2°C = 1.163 W/m2°C

Dynamic viscosity 1 kg/ms (Ns/m2) = 0.1 Poise 1 poise = 10 kg/ms (Ns/m2)

Kinematic viscosity 1 m2/s = 3600 m2/hr 1 m2/hr = 2.778 × 10–4 m2/s

1 Stoke = cm2/s = 0.36 m2/hr = 10–4 m2/s

Universal gas const. 8314.41 J/kg mol K = 847.54 m kgf/kg mol K
= 1.986 kcal/kg mol K

Gas constant in air (SI) = 287 J/kg K

Stefan Boltzmann const. 5.67 × 10–8 W/m2 K4 = 4.876 × 10–8 kcal/hr m2 K4

UNIT CONVERSION CONSTANTS xvi
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AN OVERVIEW OF HEAT TRANSFER

1

1.0 INTRODUCTION

The present standard of living is made possible by the energy available in the form of heat
from various sources like fuels. The process by which this energy is converted for everyday use
is studied under thermodynamics, leaving out the rate at which the energy is transferred. In
all applications, the rate at which energy is transferred as heat, plays an important role. The
design of all equipments involving heat transfer require the estimate of the rate of heat transfer.
There is no need to list the various equipments where heat transfer rate influences their
operation.

The driving potential or the force which causes the transfer of energy as heat is the
difference in temperature between systems. Other such transport processes are the transfer of
momentum, mass and electrical energy. In addition to the temperature difference, physical
parameters like geometry, material properties like conductivity, flow parameters like flow
velocity also influence the rate of heat transfer.

The aim of this text is to introduce the various rate equations and methods of
determination of the rate of heat transfer across system boundaries under different situations.

1.1 HEAT TRANSFER

The study of heat transfer is directed to (i) the estimation of rate of flow of energy as heat
through the boundary of a system both under steady and transient conditions, and (ii) the
determination of temperature field under steady and transient conditions, which also will
provide the information about the gradient and time rate of change of temperature at various
locations and time. i.e. T (x, y, z, τ) and dT/dx, dT/dy, dT/dz, dT/dτ etc. These two are interrelated,
one being dependent on the other. However explicit solutions may be generally required for
one or the other.

The basic laws governing heat transfer and their application are as below:
1. First law of thermodynamics postulating the energy conservation principle: This

law provides the relation between the heat flow, energy stored and energy generated in a
given system. The relationship for a closed system is: The net heat flow across the system
bondary + heat generated inside the system = change in the internal energy, of the
system. This will also apply for an open system with slight modifications.

The change in internal energy in a given volume is equal to the product of volume
density and specific heat ρcV and dT where the group ρcV is called the heat capacity of the
system. The basic analysis in heat transfer always has to start with one of these relations.
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2 FUNDAMENTALS OF HEAT AND MASS TRANSFER

k

T1

Q

T2

x1
L

x2

Fig. 1.1. Physical model for
example 1.1

2. The second law of thermodynamics establishing the direction of energy transport
as heat. The law postulates that the flow of energy as heat through a system boundary will
always be in the direction of lower temperature or along the negative temperature gradient.

3. Newtons laws of motion used in the determination of fluid flow parameters.
4. Law of conservation of mass, used in the determination of flow parameters.
5. The rate equations as applicable to the particular mode of heat transfer.

1.2 MODES OF HEAT TRANSFER

1.2.1. Conduction: This is the mode of energy transfer as heat due to temperature
difference within a body or between bodies in thermal contact without the
involvement of mass flow and mixing. This is the mode of heat transfer through solid
barriers and is encountered extensively in heat transfer equipment design as well as in heating
and cooling of various materials as in the case of heat treatment. The rate equation in this
mode is based on Fourier’s law of heat conduction which states that the heat flow by
conduction in any direction is proportional to the temperature gradient and area
perpendicular to the flow direction and is in the direction of the negative gradient.
The proportionality constant obtained in the relation is known as thermal conductivity, k,  of
the material. The mathematical formulation is given in equation 1.1.

Heat flow, Q = – kA dT/dx ...(1.1)
The units used in the text for various parameters are:
Q – W, (Watt), A – m2, dT – °C or K (as this is only temperature interval, °C and K can

be used without any difficulty). x – m, k – W/mK.
For simple shapes and one directional steady conditions with constant value of thermal

conductivity this law yields rate equations as below:
1. Conduction, Plane Wall (Fig. 1.1), the integration of the equation 1.1 for a plane

wall of thickness, L between the two surfaces at T1 and T2 under steady condition leads to
equation 1.2. The equation can be considered as the mathematical model for this problem.

Q = T T
L kA
1 2

( / )
− ...(1.2)

Example 1.1: Determine the heat flow across a plane wall of 10 cm thickness with a constant
thermal conductivity of 8.5 W/mK when the surface temperatures are steady at 100°C and
30°C. The wall area is 3m2. Also find the temperature gradient in the flow direction.
Solution: Refer to Fig. 1.1 and equation 1.2:

T1 = 100°C, T2 = 30°C, L = 10 cm = 0.1 m,
k = 8.5 W/mK, A = 3 m2.

Therefore, heat flow,   Q = (100 – 30) / (0.1/(8.5 × 3))
 = 17850 W or 17.85 kW.

Referring to equation 1.1
        Q = – kA dT/dx

       17850 W = – 8.5 × 3 dT/dx.
Therefore  dT/dx = – 17850/(8.5 × 3)

 = – 700°C/m
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This is also equal to – (100 – 30)/0.1 = – 700°C/m, as the gradient is constant all through
the thickness.

QT1 T2

L/kA

IV1
V2

R

(a) (b)

Fig. 1.2. Electrical analogy (a) conduction circuit (b) Electrical circuit.

The denominator in equation 1.2, namely L/kA can be considered as thermal resistance
for conduction. An electrical analogy is useful as a concept in solving conduction problems
and in general heat transfer problems.
1.2.2. Thermal Conductivity: It is the constant of proportionality in Fourier’s equation and
plays an important role in heat transfer. The unit in SI system for conductivity is W/mK. It is
a material property. Its value is higher for good electrical conductors and single crystals like
diamond. Next in order or alloys of metals and non metals. Liquids have conductivity less than
these materials. Gases have the least value for thermal conductivity.

In solids heat is conducted in two modes. 1. The flow of thermally activated electrons
and 2. Lattice waves generated by thermally induced atomic activity. In conductors the
predominant mode is by electron flow. In alloys it is equal between the two modes. In insulators,
the lattice wave mode is the main one. In liquids , conduction is by atomic or molecular diffusion.
In gases conduction is by diffusion of molecules from higher energy level to the lower level.

Thermal conductivity is formed to vary with temperature. In good conductors, thermal
conductivity decreases with temperature due to impedance to electron flow of higher
electron densities. In insulators, as temperature increases, thermal atomic activity also
increases and hence thermal conductivity increases with temperature. In the case of
gases, thermal conductivity increases with temperature due to increased random activity
of atoms and molecules. Thermal conductivity of some materials is given in table 1.1.

Table 1.1. Thermal conductivity of some materials at 293 K

Material Thermal conductivity, W/mK

Copper 386.0
Aluminium 204.2
Carbon Steel 1% C 43.3
Chrome Steel 20% Cr 22.5
Chrome Nickel Steel 12.8
Concrete 1.13
Glass 0.67
Water 0.60
Asbestos 0.11
Air 0.026
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The variation of thermal conductivity of various materials with temperature is shown
in Fig. 1.3.
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Fig. 1.3. Effect of temperature on thermal conductivity of materials.

1.2.3. Thermal Insulation: In many situations to conserve heat energy, equipments have to
be insulated. Thermal insulation materials should have a low thermal conductivity. This is
achieved in solids by trapping air or a gas in small cavities inside the material. It may also be
achieved by loose filling of solid particles. The insulating property depends on the material as
well as transport property of the gases filling the void spaces. There are essentially three types
of insulating materials:

1. Fibrous: Small diameter particles or filaments are loosely filled in the gap between
surfaces to be insulated. Mineral wool is one such material, for temperatures below 700°C.
Fibre glass insulation is used below 200°C. For higher temperatures refractory fibres like
Alumina (Al2O3) or silica (S1O2) are useful.

2. Cellular: These are available in the form of boards or formed parts. These contain
voids with air trapped in them. Examples are polyurethane and expanded polystyrene foams.

3. Granular: These are of small grains or flakes of inorganic materials and used in
preformed shapes or as powders.

The  effective  thermal  conductivity  of  these  materials  is  in  the range of 0.02 to 0.04
W/mK.
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1.2.4. Contact Resistance: When two
different layers of conducting materials are
placed in thermal contact, a thermal
resistance develops at the interface. This
is termed as contact resistance. A
significant temperature drop develops at
the interface and this has to be taken into
account in heat transfer calculation. The
contact resistance depends on the surface
roughness to a great extent. The pressure
holding the two surfaces together also
influences the contact resistance. When the
surfaces are brought together the contact
is partial and air may be trapped between
the other points as shown in Fig. 1.4.

Some values of contact resistance for
different surfaces is given in table 1.2.

Table 1.2.

Surface type Roughness µm Temp. Pressure atm R, m2°C/W × 104

Stainless Steel ground in air 2.54 20-200 3-25 2.64
Stainless Steel ground in air 1.14 20° 40-70 5.28
Aluminium ground air 2.54 150 12-25 0.88
Aluminium ground air 0.25 150 12-25 0.18.

1.2.5. Convection: This mode of heat transfer is met with in situations where energy is
transferred as heat to a flowing fluid at the surface over which the flow occurs. This mode is
basically  conduction in a very thin fluid layer at the surface and then mixing caused by the
flow. The energy transfer is by combined molecular diffusion and bulk flow. The heat flow is
independent of the properties of the material of the surface and depends only on the fluid
properties. However the shape and nature of the surface will influence the flow and hence the
heat transfer. Convection is not a pure mode as conduction or radiation and hence involves
several parameters. If the flow is caused by external means like a fan or pump, then the
mode is known as forced convection. If the flow is due to the buoyant forces caused by
temperature difference in the fluid body, then the mode is known as free or natural convection.
In most applications heat is transferred from one fluid to another separated by a solid surface.
So heat is transferred from the hot fluid to the surface and then from the surface to the cold
fluid by convection. In the design process thus convection mode becomes the most important
one in the point of view of application. The rate equation is due to Newton who clubbed all the
parameters into a single one called convective heat transfer coefficient (h) as given in equation
1.3. The physical configuration is shown in Fig. 1.5. (a).

Fig. 1.4. Contact resistance temperature drop

T2

Tc1

Tc2

T1

T

�T

0 x

Insulated
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T1 T2Solid B

Q Q

x0

Insulated

Solid A

Solid B

Gap between solids
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Heat flow, Q = hA (T1 – T2) = T T
hA

1 2
1 /

− ...(1.3)

where, Q → W.A → m2, T1, T2 → °C or K, ∴ h → W/m2K.
The quantity 1/hA is called convection resistance to heat flow. The equivalent circuit is

given in Fig. 1.5(b).

Surface T1

T2T > T1 2

Fluid flow

Q

T1
T2

I/hA

Q

(a) (b)

Fig. 1.5. Electrical analogy for convection heat transfer

Example 1.2: Determine the heat transfer by convection over a surface of 0.5 m2 area if the
surface is at 160°C and fluid is at 40°C. The value of convective heat transfer coefficient is 25
W/m2K. Also estimate the temperature gradient at the surface given k = 1 W/mK.
Solution: Refer to Fig. 1.5a and equation 1.3

      Q = hA (T1 – T2) = 25 × 0.5 × (160 – 40) W = 1500 W or 1.5 kW
The resistance = 1/hA = 1/25 × 0.5 = 0.08°C/W.
The fluid has a conductivity of 1 W/mK, then the temperature gradient at the surface

is
      Q = – kA dT/dy

Therefore, dT/dy = – Q/kA
= – 1500/1.0 × 0.5 = – 3000°C/m.

The fluid temperature is often referred as T∞ for indicating that it is the fluid temperature
well removed from the surface. The convective heat transfer coefficient is dependent on several
parameters and the determination of the value of this quantity is rather complex, and is
discussed in later chapters.
1.2.6. Radiation: Thermal radiation is part of the electromagnetic spectrum in the limited
wave length range of 0.1 to 10 µm and is emitted at all surfaces, irrespective of the temperature.
Such radiation incident on surfaces is absorbed and thus radiation heat transfer takes place
between surfaces at different temperatures. No medium is required for radiative transfer but
the surfaces should be in visual contact for direct radiation transfer. The rate equation is due
to Stefan-Boltzmann law which states that heat radiated is proportional to the fourth power
of the absolute temperature of the surface and heat transfer rate between surfaces is given in
equation 1.4. The situation is represented in Fig. 1.6 (a).

 Q = F σ A (T1
4 – T2

4) ...(1.4)
where, F—a factor depending on geometry and surface properties,

σ—Stefan Boltzmann constant 5.67 × 10–8 W/m2K4 (SI units)
A—m2, T1, T2 → K (only absolute unit of temperature to be used).
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This equation can also be rewritten as.

 Q = ( )
1 / { ( ) ( )}

1 2

1 2 1
2

2
2

T T
F A T T T T

−
+ +σ

...(1.5)

where the denominator is referred to as radiation resistance (Fig. 1.6)

T1 T2

Q

1

F A (T + T )(T + T )� 1 1 2 1 2
2 2

A2

T2

(K)

Q2
A1

T1

(K)
Q1

T > T1 2

(a) (b)

Fig. 1.6. Electrical analogy-radiation heat transfer.

Example 1.3: A surface is at 200°C and has an area of 2m2. It exchanges heat with another
surface B at 30°C by radiation. The value of factor due to the geometric location and emissivity
is 0.46. Determine the heat exchange. Also find the value of thermal resistance and equivalent
convection coefficient.
Solution: Refer to equation 1.4 and 1.5 and Fig. 1.6.

T1 = 200°C = 200 + 273 = 473K, T2 = 30°C = 30 + 273 = 303K.
(This conversion of temperature unit is very important)

σ = 5.67 × 10–8, A = 2m2, F = 0.46.
Therefore,  Q = 0.46 × 5.67 × 10–8 × 2[4734 – 3034]

= 0.46 × 5.67 × 2 [(473/100)4 – (303/100)4]
(This step is also useful for calculation and will be followed in all radiation problems-

taking 10–8 inside the bracket).
Therefore, Q = 2171.4 W
Resistance can be found as

 Q = ∆T/R, R = ∆T/Q = (200–30)/2171.4
Therefore, R = 0.07829°C/W or K/W
Resistance is also given by 1/hrA.
Therefore,  hr = 6.3865 W/m2K
Check Q = hrA∆T = 6.3865 × 2 × (200–30) = 2171.4 W
The denominator in the resistance terms is also denoted as hrA. where hr = Fσ (T1 + T2)

(T1
2 + T2

2) and is often used due to convenience approximately hr = Fσ T T1 2+F
HG

I
KJ2

3
. The

determination of F is rather involved and values are available for simple configurations in the
form of charts and tables. For simple cases of black surface enclosed by the other surface F = 1
and for non black enclosed surfaces F = emissivity. (defined as ratio of heat radiated by a
surface to that of an ideal surface).
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In this chapter only simple cases will be dealt with and the determination of F will be
taken up in the chapter on radiation. The concept of hr is convenient, though difficult to arrive
at if temperature is not specified. The value also increases rapidly with temperature.

1.3 COMBINED MODES OF HEAT TRANSFER

Previous sections treated each mode of heat transfer separately. But in practice all the three
modes of heat transfer can occur simultaneously. Additionally heat generation within the solid
may also be involved. Most of the time conduction and convection modes occur simultaneously
when heat from a hot fluid is transferred to a cold fluid through an intervening barrier. Consider
the following example. A wall receives heat by convection and radiation on one side. After
conduction to the next surface heat is transferred to the surroundings by convection and
radiation. This situation is shown in Fig. 1.7.

QR1

Qcm1

L

T
1

T
2

T2

T1
k

QR2

1 2

Qcm
T
1

1
h Ar1

1
h A1

Q

L
kA 1

h Ar2

1
h A2

T
2

Fig. 1.7. Combined modes of heat transfer.

The heat flow is given by equation 1.6.

Q
A

T T

h h
L
k h hr r

=
−

+
+ +

+

∞ ∞1 2

1 1
1 21 2

...(1.6)

where hr1  and hr2  are radiation coefficients and h1 and h2 are convection coefficients.

Example 1.4: A slab 0.2 m thick with thermal conductivity of 45 W/mK receives heat from a
furnace at 500 K both by convection and radiation. The convection coefficient has a value of
50 W/m2K. The surface temperature is 400 K on this side. The heat is transferred to surroundings
at T∞2 both by convection and radiation. The convection coefficient on this side being 60 W/m2K.
Determine the surrounding temperature.

Assume F = 1 for radiation.

Solution: Refer Fig. 1.7. Consider 1 m2 area. Steady state condition.

Heat received = σ (T T∞ −1
4

1
4 ) + h (T∞1 – T1)

= 5.67 
500
100

400
100

50 500 400
4 4F

HG
I
KJ − FHG

I
KJ

R
S|
T|

U
V|
W|

+ −( )

= 7092.2 W.
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 1To determine T2,      Q = ∆T
R

or ∆T = QR = 7092.2 × 0 2
45
.  = 31.57 K.

∴      T2 = 400 – 31.57 = 368.43 K.
on the other side,

        7092.2 = 5.67 368 43
100 100

4
2

4.F
HG

I
KJ − FHG

I
KJ

R
S|
T|

U
V|
W|

∞T  + 60 (368.43 – T∞2)

or   5.67 T∞F
HG
I
KJ

2
4

100
 + 60 T∞2 = 16056. Solving by trial

T∞2 = 263.3 K.
1.3.1. Overall Heat Transfer Coefficient: Often when several resistances for heat flow is
involved, it is found convenient to express the heat flow
as  Q = U A ∆T, ...(1.7)
where U is termed as overall heat transfer coefficient having the same unit as convective
heat transfer coefficient, h. The value of U can be obtained for a given area A by equation 1.8.

 1 1 1 1
1 2 3UA R R R

= + +  + ...... ...(1.8)

where R1, R2, R3, ...... are the resistances in series calculated based on the reas A1, A2, A3 etc.
1.3.2. Energy Balance With Heat Transfer: There are situations when a body receives heat
by convection and radiation and transfer part of it to the surroundings and stores the remaining
in the body by means of increase in temperature. In such a situation, the rate of temperature
change can be obtained by the equation 1.9. Heat generation may also be included.

  dτ (Qin – Qout) + dτ q = ρVC dT.

or  
dT
d

Q Q q
VCτ ρ

= − +in out ...(1.9)

where q is the heat generation rate per unit volume and ρ, V and C are the density, Volume
and specific heat of the body.

When equilibrium is reached, dT
dτ

 = 0, So

 Qin = Qout ...(1.10)

Example 1.5: In a cylindrical shaped body of 30 cm diameter and 30 cm length heat is generated
at a rate 1.5 × 106 W/m3. The surface temperature is 400°C. The convection coefficient is 200
W/m2K. Heat is convected and radiated to the surroundings at 100°C. The radiation factor is
one. The solid has a density of 19000 kg/m3 and a specific heat of 0.118 kJ/kgK. Determine the
rate of change of temperature of the body at that instant in °C/s.
Solution: Refer equation 1.4 and Fig. 1.8

(q – QR – QC) dτ = ρVC dT
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∴
dT
d

q Q Q
VC
R C

τ ρ
= − −

The surface area = 2πr2 + 2πrh
= 2π × 0.152 + 2π × 0.15 × 0.3
= 0.4241m2

 Heat capacity = Volume × density × sp. heat
= πr2h × 19000 × 118
= π × 0.152 × 0.3 × 19000 × 118
= 47543 J/°C

Heat generated = Volume × q = πr2h × 1.5 × 106 W = 31809 W or 31809 J/s
Heat convected = hA ∆T = 200 × 0.4241 × (400 – 100) = 25446 W or 25446 J/s
Heat radiated = σA (T1

4 – T2
4)

= 5.67 × 10–8 × 0.4241 [(400 + 273)4 – (100 + 273)4]
= 4468 W or 4468 J/s

Therefore, Heat generated – Heat convected – Heat radiated
= 31809 – 25446 – 4468 = 1895 W or 1895 J/s

 ρcV = 47543 J/°C

Therefore,  dT
dτ

=
1895
47543  = 0.03985°C/s

Possible simplifications are.
(i) no heat generation, (ii) no radiation or, (iii) steady state etc, which will reduce one of

the terms to be zero.

1.4 DIMENSIONS AND UNITS

For numerical estimation of heat transfer rate units of various parameters become necessary.
All equations should be dimensionally homogeneous. Dimensions are universal and there is no
difference from country to country. But the systems of unit varies from country to country.
Three popular systems are (1) FPS (foot, pound, second, °F) (2) MKS (metre, kilogram, second
°C) and (3) SI (metre, kilogram, second, K) system of units. In this text SI system of units is
adopted. The units used for various quantities is listed in table 1.2 and conversion factors are
given separately.

Table 1.3. Units adopted for various quantities

Parameter Unit and symbol Unit multiples

Mass kilogram, kg, Ton = 1000 kg
Length metre, m cm, mm, km
Time Seconds, s, minute, hour
Force Newton, N, (kg m/s2) kN, MN

0.3 m

0.3 m

Fig. 1.8

(Contd...)
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Energy, (heat) Joule, J ≡ Nm kJ, MJ
Power Watt, W (J/s) kW, MW
Temperature kelvin, K, also °C
Dynamic viscosity µ, Nm/s2 Poise
Kinematic viscosity v, m2/s Stoke
Specific heat c, J/kg K kJ/kg K

The units for other parameters will be defined as and when these are used.
In solving numerical problems, consistent sets of units should be used. Otherwise the

answer will be meaningless.
Example 1.6: Convert the following units into their equivalent SI units :

(i) BTU/hr ft°F, (ii) BTU/hr ft2°F. From published tables the following are read. 1J =
9.4787 × 10–4 BTU, 1m = 39.370 inches, kg = 2.2046 lb, °C = 9/5°F.
Solution: (i) Therefore, 1 BTU = 1/9.4787 × 10–4 J = 1054.997 J, ft = (12/39.37) m

Therefore, BTU/hr ft°F = 1054.997J/3600s (12/39.37) m. (5/9)°C
 = 1.7306 J/s m°C or 1.7306 W/m°C

or,   1 W/mK = 0.5778 BTU/hr ft°F.
(ii) BTU/hr ft2 °F = 1054.997J/3600s (12/39.37)2 m2 (5/9)°C

 = 5.67792 W/m2°C or 1W/m2°C = 0.1761 BTU/hr ft2 °F.

1.5 CLOSURE

An overview of the field of heat transfer is presented in this chapter. Each mode of heat transfer
will be discussed in greater detail in the following chapters.

A series of steps listed below will be useful in analysing and estimating heat transfer.
1. List the available data for the problem situation. Then look for additional data from

other sources, like property listings.
2. Sketch a schematic diagram for the system involved and identify the basic processes

involved. (Physical model)
3. List the simplifying assumptions that are reasonable. This should be checked later.
4. Apply the rate equations and conservation laws to the situation. (Mathematical model).
5. Try to validate the results obtained. This is an important step, which is often overlooked

with disastrous results.

SOLVED PROBLEMS

Combined Convection and Radiation
Problem 1: A surface is at 200°C and is exposed to surroundings at 60°C and convects and
radiates heat to the surroundings. The convection coefficient is 80W/m2K. The radiation factor
is one. If the heat is conducted to the surface through a solid of conductivity 12 W/mK, determine
the temperature gradient at the surface in the solid.
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Solution: Refer equation 1.10
Heat convected + heat radiated = heat conducted considering 1m2,

h(T1 – T2) + σ(T1
4 – T2

4) = – kdT/dx

Therefore, 80(200 – 60) + 5.67 {[(200 + 273)/100]4 – [(60 + 273)/100]4} = – 12 dT
dx

Therefore dT
dx

 = – (11200 + 2140.9)/12 = – 1111.7°C/m.

Problem 2: Heat is conducted through a material with a temperature gradient of – 9000 °C/m.
The conductivity of the material is 25W/mK. If this heat is convected to surroundings at 30°C
with a convection coefficient of 345W/m2K, determine the surface temperature.

If the heat is radiated to the surroundings at 30°C determine the surface temperature.
Solution: In this case only convection and conduction are involved.

– kAdT/dx = hA(T1 – T2). Considering unit area,
 – 25 × 1 × (– 9000) = 345 × 1 (T1 – 30)

Therefore, T1 = 682.17°C
In this case conduction and radiation are involved.

Heat conducted = Heat radiated
– 25 × 1 × (– 9000) = 5.67 [(T1/100)4 – (303/100)4]

Therefore,  T1 = 1412.14K = 1139°C.
Problem 3: There is a heat flux through a wall of 2250W/m2. The same is dissipated to the
surroundings by convection and radiation. The surroundings is at 30°C. The convection
coefficient has a value of 75W/m2K. For radiation F = 1. Determine the wall surface temperature.
Solution: For the specified condition, Consider unit area.

The heat conducted = heat convected + heat radiated
Using the rate equations, with absolute temperature

 2250 = T2 303
1 75 1

−
×/

 + 5.67 × 1[(T2/100)4 – (303/100)4]

= 75T2 – 22725 + 5.67(T2/100)4 – 477.92
or, (T2/100)4 + 13.2275T2 – 4489.05 = 0.

T1

T2

2250 W/m
2

T

h = 75 W/m K
2

Radiation

T = 30°Cs

convection

Radiation

TsT2

Fig. 1.9
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This  equation  can  be  solved  only  by  trial.  It may be noted that the contribution of
(T2/100)4 is small and so the first choice of T2 can be a little less than 4489/13.227 = 340K. The
values of the reminder for T2 = 300, 310, 320, 330 are given below:

Assumed value of T2 300 310 320 330 330.4 330.3

Remainder – 439.80 – 296.2 – 15.1 – 5.38 0.484 – 0.98

So, the temperature T2 is near 330K. By one more trial T2 is obtained as 330.4K or
57.4°C.

Check:  Q = 75(330.4 – 303) + 5.69(3.3044 – 3.034)
= 2047.5 + 206 = 2253.5 W.

Problem 4: The outside surface of a cylindrical cryogenic container is at – 10°C. The outside
radius is 8 cm. There is a heat flow of 65.5 W/m, which is dissipated to the surroundings both
by radiation and convection. The convection coefficient has a value of 4.35 W/m2K. The radiation
factor F = 1. Determine the surrounding temperature.
Solution:

Radiation

Ts

Convection

Radiation

TsT1

r = 0.08 m2

T = – 10°C1

4.35 W/m K
2

T�

Q

Fig. 1.10

In this case, heat conducted = heat convected + heat radiated.
Temperature should be in Kelvin consider unit length:

65.5 = 2 × π × 0.08 [4.35 {Ts – 263} + 5.67 {(Ts/100)4 – (263/100)4}]
This reduces to (Ts/100)4 + 0.767 Ts – 272.6 = 0
This equation has to be solved by trial.
The first trial value can be chosen near 272.6/0.767 = 355.4 K.

Chosen value of Ts 290 280 275 278 277.75

Residue 20.6 3.6 – 4.4 0.4 0.0

The surrounding temperature is 277.75K or 4.75°C.
Check:  Q = hA(Ts – T1) + σA[(Ts/100)4 – (263/100)4]

= 4.35 × π × 0.08 × 2 (277.75 – 263) + 5.67 × 2 × π × 0.08 × 1[2.77754 – 2.634]
= 32.25 + 33.26 = 65.51 W checks to a very reasonable value.
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Problem 5: A spherical reactor vessel of outside radius 0.48 m has its outside temperature as
123.4°C. The heat flow out of the vessel by convection and radiation is 450 W. Determine the
surrounding temperature.
Solution: In this case Temp should be in K,

Radiation

T = T
� s

r = 0.48 m2

T = 123.4°C2

1.5 W/m K
2

T
�

450 W

Fig. 1.11

heat conducted = heat convected + heat radiated
 450 = hA(T2 – Ts) + σA(T2

4 – Ts
4)

= 1.5 × 4π × 0.482(396.4 – Ts) + 5.67 × 4π × 0.482

{(3.964/100)4 – (Ts/100)4}
or, (Ts/100)4 + 0.2646 Ts – 324.36 = 0.

Assumed value of T2 380 385 390 387 386 386.3 386.1

Residue – 15.4 – 2.78 10.18 2.34 – 0.34 0.34 0.03

Therefore,  Ts = 386.1K or 113.10°C
Check Q = 1.5 × 4π × 0.482(396.4 – 386.1) + 5.67 × 4π

× 0.482(3.9644 – 3.8614)
= 44.73 + 405.15 = 449.88 W, checks.

Problem 6: A solid receives heat by radiation over its surfaces at 4kW and the heat convection
rate over the surface of the solid to the surroundings is 5.2 kW, and heat is generated at a rate
of 1.7 kW over the volume of the solid, determine the heat capacity of the solid if the time rate of
change of the average temperature of the solid is 0.5°C/s.
Solution: The energy balance yields: Heat received by radiation – heat convected + heat
generated = heat stored.

But, heat stored = heat capacity × change in temperature.
Qrdτ – Qcdτ + qdτ = ρVC dT

dT
d

Q Q q
VC

r c
τ ρ

= − + or ρVC = Q Q q
dT
d

r c− +

τ
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 1 dT
dτ

 = 0.5°C/s, Qr = 4000 J/s, Qc = 5200 J/s

 q = 1700 J/s.

∴ ρVC = 4000 5200 1700
0 5

− +
.  = 1000 J/°C.

Problem 7: A cube shaped solid 20 cm side having a density of 2500 kg/m3 and specific heat of
0.52kJ/kgK has a uniform heat generation rate of 100kJ/m3/s. If heat is received over its
surfaces at 240 W, determine the time rate of temperature change of the solid.
Solution: The energy equation yields:

Heat received + heat generated = heat stored
Heat stored = Volume × density × specific heat × temp. rise.

 Q dτ + qV dτ = ρVC dT.

dT
d

Q qV
VCτ ρ

= + , Q = 240J/s, q = 100000J/m3/s

V = 0.2 × 0.2 × 0.2 m3, C = 520J/kg K, s = 2500 kg/m3

∴
dT
dτ

= + ×
× ×

240 100000 0 2
520

3.
2500 0.23  = 0.1°C/s

Time rate of temperature change = 0.1°C/s.
Problem 8: A spherical mass 1m diameter receives heat from a source at 160°C by radiation
and convects heat to the surroundings at 30°C, the convection coefficient being 45 W/m2K.
Determine the steady state temperature of the solid.

Assume F = 1 for radiation.
Solution: Using energy balance,

As dT
dτ

 = 0,

heat received by radiation = heat convected.
σA (Ts

4 – T4) = hA(T – T∞)
It is to be noted that the temperature values

should be in absolute units. cancelling A on both
sides and substituting the values.

5.67 
160 273

100
100

4
4+L

NM
O
QP −

R
S|
T|

U
V|
W|

( / )T  = 45 [T – (273 + 30)]

Rearranging: 1993.13 – 5.67(T/100)4 – 45T + 13635 = 0
or  (T/100)4 + 7.9365T – 2756.30 = 0

Solving by trial and first taking value near 2747/7.91 approx. 330

160°C

Radiation

1 m

T
h = 45 W/m K

2

30°C

Fig. 1.12
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Temp, K 330 331 332 332.1

residue – 18.67 – 9.6 – 0.11 + 0.72

Therefore the equilibrium temperature is 332K or 59°C.
Check: heat convected 45 [332 – (273 + 30)] = 1305 W/m2

heat received = 5.67 (4.334 – 3.324) = 1304.3 W/m2

Checks within reasonable limits.
Problem 9: A person sits in a room with surrounding air at 26°C and convection coefficient
over the body surface is 6 W/m2K. The walls in the room are at 5°C as the outside temperature
is below freezing. If the body temperature is 37°C, determine the heat losses by convection and
radiation. Assume F = 1.0 for radiation. Consider a surface area of 0.6 m2.
Solution: Heat loss by convection: hA (T1 – T2) = 6 × 0.6 (37 – 26) W = 39.6 W

Heat loss by radiation: σA (T1
4 – T2

4) Note that T should be in K.

= 5.67 × 0.6 
273 37

100
273 5

100

4 4+F
HG

I
KJ − +F
HG

I
KJ

L
N
MM

O
Q
PP  = 110.99 W

Total = 150.59 W
The direct heat loss by radiation makes one feel cooler though the surrounding temp is

not that low. Calculate the same when the wall temp is also 26°C in summer.
Convection loss = 39.6 W
Radiation loss:

= 5.67 × 0.6 
273 37

100
273 26

100

4 4+F
HG

I
KJ − +F
HG

I
KJ

L
N
MM

O
Q
PP  = 42.28 W

Total heat loss = 81.88 W.
Problem 10: A person stands in front of a fire at 650 C in a room where air is at 5°C. Assuming
the body temperature to be 37°C and a connection coefficient of 6 W/m2K, the area exposed to
convection as 0.6m2, determine the net heat flow from the body. The fraction of radiation from
the fire of 1m2 are reaching the person is 0.01.
Solution: Heat loss by convection = hA(T1 – T2) = 6 × 0.6(37 – 5) = 115.2 W

Substituting the values, heat gain by radiation = σA(T1
4 – T2

4)

= 5.67 × 0.01 
650 273

100
273 37

100

4 4+F
HG

I
KJ − +F
HG

I
KJ

L
N
MM

O
Q
PP  = 406.3 W

Net heat gain = 406.3 – 115.2 = 291.1 W.
This shows that sudden exposure to the high temperature warms up a person quickly.

Problem 11: A electric room heater (radiator) element is 25 cm long and 4 cm in diameter. The
element dissipates heat to the surroundings at 1500 W mainly by radiation, the surrounding
temperature being 15°C. Determine the equilibrium temperature of the element surface.
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Solution: At equilibrium, neglecting convection,

Q = σA(T1
4 – T2

4)

Using absolute units of temperature,

1500 = 5.67 × π × 0.04

× 0.25 [(T1/100)4 – (288/100)4]

Solving, T1 = 959.9 K or 686.9°C

Check:  Q = 5.67 × π × 0.04 × 0.25 [9.5994 – 2.884] = 1500 W
Problem 12: A steel plate is exposed to solar heat flux of 800 W/m2 on one side. The plate is
exposed to air at 30°C on both sides. The convection coefficients are 10 W/m2K on the back side
and 15 W/m2K on the front. Determine the equilibrium temperature. Neglect radiation loss.
Solution: The energy balance yields, (Fig. 1.14)

Q = 800 W/m
2

T°C

30°C h = 15 W/m K
2

30°C h = 10 W/m K
2

Fig. 1.14

The incident heat rate = convection on the front side + convection on the back side
Substituting the values, and considering 1m2

800 = 15 (T – 30) + 10(T – 30)
Therefore, T = 62°C.
Check: 15(62 – 30) + 10(62 – 30) = 800 W.

Problem 13: A thin plate receives radiation on one side from a source at 650°C and radiates on
the other face to a surface at 150°C. Determine the temperature of the plate. Take F = 1. Neglect
convection heat flow.
Solution: The energy conservation leads to (Fig. 1.15)] radiation received by the surface =
radiation from the surface

σA(T1
4 – T4] = σA[T4 – T2

4]
Remembering to use Kelvin scale,

650 273
100

100 100 150 273
100

4
4 4

4+F
HG

I
KJ −

L
N
MM

O
Q
PP = − +F

HG
I
KJ

L
N
MM

O
Q
PPT T/ /b g b g

Fig. 1.13

0.25 m

0.04 m

288 K
Radiation

T1

1500 W
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923 K T, K 423 K

Radiation Radiation

Plate

Fig. 1.15

Therefore T = 784.6K or 511.6°C
Later, this concept will be called as radiation shielding. The calculation of the heat flow

with and without the intervening sheet will show that the heat flow is reduced by half.

With sheet,   Q1 = 5.67 
650 273

100
6 100

4
4+F

HG
I
KJ −

L
N
MM

O
Q
PP784. /b g  = 19664.9 W

Without the sheet,  Q2 = 5.67 
650 273

100
150 273

100

4 4+F
HG

I
KJ − +F
HG

I
KJ

L
N
MM

O
Q
PP

= 39336.66 which is 2 × Q1.
Problem 14: Air at 120°C flows over a plate 20 mm thick and the temperatures in the middle
10mm layer of the plate was measured using thermo couples and were found to be 42°C and
30°C. The thermal conductivity of the material is known to be 22.5 W/mK. Determine the average
convection coefficient over the plate.
Solution: The surface temperature Ts and Q
can provide the means for the determination
of the convection coefficient.

Using the rate equation,
Q = hA(Ts – T∞).

Using the temperature drop and the
thermal conductivity of the wall material, Q
can be determined using

  Q = ∆T
L kA/

( )
( . / . )

= −
×

42 30
0 01 225 1

 = 27000 W/m2

The surface temperature can be found assuming the material to be isotropic and
having constant thermal conductivity. The drop in temperature over a 10mm layer is, 42 – 30
= 12°C. Hence, over 5mm, the drop will be 6°C. Hence the surface temperature = 42 + 6 = 48°C.

Fig. 1.16

5
mm

42°C

30°C

k = 22.5 W/mK

h = ?

Air, 120°C

20
mm10 mm
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Substituting,  27000 = h × 1 (120 – 48)
Therefore, h = 375 W/m2K.

Problem 15: In a solar flat plate heater some of the heat is absorbed by a fluid while the
remaining heat is lost over the surface by convection the bottom being well insulated. The fraction
absorbed is known as the efficiency of the collector. If the flux incident has a value of 800 W/m2

and if the collection temperature is 60°C while the outside air is at 32°C with a convection
coefficient of 15 W/m2K, determine the collection efficiency. Also find the collection efficiency if
collection temperature is 45°C.
Solution: The heat lost by convection = Q = hA(T1 – T2)

Q = 800 W/m
2

32°C, h = 15 W/m K
2

Air

Plate

Insulation

60°CFluid passage

Fig. 1.17

Assuming unit area ,  Q = 15 × 1(60 – 32) = 420 W

Therefore efficiency of the collector = 
800 420

800
−

 = 0.475 or 47.5%.

If collection temperature is 45°C,
Heat lost by convection = 15 × 1(45 – 32) = 195 W

Collection efficiency = 
800 195

800
−

 – 0.75625 or 75.625%

The efficiency improves with lower collection temperature and also with lower convection
heat transfer coefficient over the surface. The efficiency at various collection temperatures are
tabulated.

Solar heat flux: 800 W/m2, h = 15 W/m2K. Ambient temp = 32°C

Collection temp. °C 40 50 60 70 80 85.34

Efficiency % 85 66.25 47.5 28.75 10 0.0

Problem 16: A glass plate at 40°C is heated by passing hot air over it with a convection coefficient
of 18 W/m2K. If the temperature change over 1mm thickness is not to exceed 5°C to avoid
distortion damage, determine the maximum allowable temperature of the air. Thermal
conductivity of the plate material is 1.4 W/mK.
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Tair

Hot air,

h = 18 W/m K
2

5°C

1 m

T

Glass
plate

Fig. 1.18

h = 30 W/m K
2

T = 60°C�

T = 260°C2

k = 9.5 W/mk

dT
dx

Fig. 1.19

Solution: The heat flow by conduction = heat flow
by convection

The conduction heat flow is found using the
allowable temperature drop over 1mm thickness.
(Fig. 1.18)

 Q = T T
L kA
1 2

/
−

Assuming unit area,

 Q = 
5

0 001 14 1. / ( . )×  = 7000 W

Therefore,
7000 = hA(Tair – 40)

 = 18(Tair – 40)
Therefore, Tair = 428.9°C.

Problem 17: A surface at 260°C convects heat at steady
state  to  Air  at 60°C with a convection coefficient of 30
W/m2K. If this heat has to be conducted through wall with
thermal conductivity of 9.5 W/mK, determine the
temperature gradient in the solid.
Solution: Energy balance yields the relation, heat
conducted = heat convected

Assuming Unit area
 = – kA(dT/dx) = hA(T2 – T∞)

Therefore  dT/dx = (–h/k) (T2 – T∞)
(30/9.5) (260 – 60) = – 631.5°C/m

 or, – 6.315°C/cm.

Problem 18: A thin metal sheet receives heat on one side from a fluid at 80°C with a convection
coefficient of 100 W/m2K while on the other side it radiates to another metal sheet parallel to it.
The second sheet loses heat on its other side by convection to a fluid at 20°C with a convection
coefficient of 15 W/m2K. Determine the steady state temperature of the sheets. The two sheets
exchange heat only by radiation and may be considered to be black and fairly large in size.
Solution: The energy balance provides (Fig. 1.19) heat received convection by

sheet 1 = heat radiation exchange between sheet 1 and 2.
= heat convected by sheet 2.

 h1A(T∞1 – T1) = σA(T1
4 – T2

4) = h2A(T2 – T∞2)
Substituting the values: considering unit area

 100 × 1(353 – T1) = 15 × 1(T2 – 293)
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T1

Radiation

T2

Sheet 1 Sheet 2

h = 100 W/m K1
2

80°C

h = 15 W/m K2
2

20°C

Fig. 1.20

Therefore, T2 = (100/15) (353 – T1) + 293. Considering radiation,
 100 × 1(353 – T1) = 5.67 × 1[(T1/100)4 – (T2/100)4]

Combining, 17.64 (353 – T1) + (26.46 – T1/15)4 –  (T1/100)4 = 0
This is solved by trial for T1.

Temperature T1 345 349 350 346.9 349.95

residue 142.76 26.19 – 1.57 1.18 – 0.20

Hence, T1 = 349.95 and T2 = 313.33 K
Check: 100(353 – 349.95) = 305 W

15(313.13 – 293) = 305 W
5.67 (3.49954 – 3.13334) = 303.81 W hence checks.

Problem 19: Heat  is  conducted  at steady state through a solid with temperature gradient of
– 5°C/cm, the thermal conductivity of the solid being 22.5 W/mK. If the heat is exchanged by
radiation from the surface to the surroundings at 30°C, determine the surface temperature.
Solution: Energy balance yields the
relation (Fig. 1.21)

 Heat conducted = heat radiated
– kA.dT/dx = σA(T2

4 – Ts
4)

Considering unit area and
substituting the values

– 22.5 × – 5 × 100 = 5.67 [(T2/100)4

– (303/100)4]
(The gradient should be converted

to °C/m by multiplying by 100)
Therefore T2 = 674.4K or 401.4°C.

Problem 20: A satellite in space is of 2m dia and internal heat generation is 2000 W. If  it is
protected from direct solar radiation by earths shadow determine its surface temperature.

Fig. 1.21

T2

Radiation

T = T = 303 K	 s

– 5°C/cm or

– 500°C/m

dT
dx
— =
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Solution: In the absence of atmosphere the only possible way heat is dissipated is by radiation.
The temperature of the space may taken as 0K.

Hence heat generated   = heat radiated.

 2000 = 4π × 12 × 5.67 T
100

0
4F

HG
I
KJ −

R
S|
T|

U
V|
W|

∴  T = 230.18K.
Problem 21: A heat flux meter on the outside surface of a wall shows 10 W/m2. The wall is 0.2
m thick and conductivity is 1.5 W/mK. Determine the temperature drop through the wall.

Solution:  Q = ∆T
R

or ∆T = QR. R = L
kA

 , A = 1, Q = 10J/s.

∴ ∆T = 10 × 0.2/(1.5 × 1) = 1.33°C.

EXERCISE PROBLEMS

1.1 Model the following heat transfer situations. Specify heat flows and storages. Try to
write down the mathematical expressions.
(i) Solar heating of the road surface

(ii) A steam pipe passing through an open space between two buildings
(iii) Heat transfer from a person in a warm room in the cold season
(iv) Pressure cooker-warming up-cooling down
(v) Pressure cooker-steady conditions

(vi) A rod with one end in a furnace and the remaining surface in atmosphere
(vii) A wire carrying current, exposed to air

(viii) A water heater (electrical) with hot water being drawn out with cold water admission.
(ix) Cake being baked in an oven or a fruit placed in a refrigeration
(x) A frying pan placed on a stove.

1.2 Choose the correct statement in each question.
(i) A pipe carrying steam at about 300°C traverses a room, the air being still at 30°C. The major

fraction of the heat loss will be by (a) conduction to the still air (b) convection to the air (c)
radiation to the surroundings (d) conduction and convection put together.

(ii) A satellite in space exchanges heat with its surroundings by (a) conduction (b) convection (c)
radiation (d) conduction as well as convection.

(iii) For the same temperature drop in the temperature ranges of 300–400°C the heat flow rate
will be highest by (a) conduction process (b) convection process (c) radiation process (d) other
factors should be known before any conclusion.

(iv) In the cold season a person would prefer to be near a fire because (a) the conduction from the
fire will be better (b) the convection will be better if he is near the fire (c) direct unimpeded
radiation will provide quick warmth (d) combined conduction and convection will be better.

(v) A finned tube hot water radiator with a fan blowing air over it is kept in rooms during winter.
The major portion of the heat transfer from the radiator to air is due to
(a) radiation (b) convection
(c) conduction (d) combined conduction and radiation.

(vi) For a specified heat input and a given volume which material will have the smallest tempera-
ture rise (Use data book if necessary) (a) steel (b) aluminium (c) water (d) copper.
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(vii) When a hot metal piece is left to cool in air the time rate of cooling of the outer layer will be
(a) slower at start and faster near the end
(b) faster at start and slower near the end
(c) both rates will be the same
(d) this will depend on the material.

(viii) A thin black plate at temperature T receives radiation from a surface at Temperature T1 and
radiates to a surface at T2. If all surfaces are black at steady state
(a) (T1 – T) > (T – T2) (b) (T1 – T) < (T – T2)
(c) (T1 – T) = (T – T2) (d) can be any one of a, b or c.

(ix) The temperature profile (in) a slab initially at a constant temperature and then allowed to
cool by convection for a short time will be as shown in Fig :
(a) E1.2a (b) E1.2b
(c) E1.2c (d) E1.2d.

T
ih

T�

T
ih

T�

T
i

T�

h

T�

T
ih

T�

(a) (b) (c) (d)

Fig. 1.22

Answer to problem 1.2: (i) c, (ii) c, (iii) d, (iv) c, (v) b, (vi) c, (vii) b, (viii) b, (ix) c.
1.3 A wall is exposed on one side to a heat flux of 1.5 kW/m2 which is conducted through the wall. For

the following combinations, determine the temp drop through the wall (a) thickness 0.16m and k
= 1.4, 15, 25, 45, 210 and 340 W/mK. (ii) Thickness 0.25m and k as above. Plot the temperature
drop against the radio (L/k) and also (k/L).

1.4 The heat flux through a layer of material 40 mm thick conducting heat under steady state with
a temperature drop of 40°C, was measured as 106 W. Determine the thermal conductivity of the
material.

1.5 A glass pane is 8mm thick and the inside surface temperature was 25°C and outside surface
temperature was 33°C. If k = 1.4 W/mK determine the heat flow through an area of 0.8m × 1m
size pane.

1.6 The surface temperature of a plate over which air flows was measured as 80°C. The air tempera-
ture was 40°C. In order to maintain the surface temperature over an area of 0.1m2, the heater
rating required was found to be 1.5 kW. Determine the value of convection coefficient.

1.7 A strip heater of area 0.2m2 and rating of 1200W is fixed on a vertical wall and mostly convects
the heat into the room air at 20°C. Determine the value of convective heat transfer coefficient if
the surface temperature of the heater is not to exceed 60°C. Indicate whether such a value can be
achieved by natural convection.

1.8 A strip heater with an area of 0.05m2 has to radiate at 600°C to surroundings at 30°C. Deter-
mine the rating assuming that convection is negligible.

1.9 The filament of an incandescent lamp of 60 W rating has a total surface area of 40mm2. If the
surrounding is at 30°C and if 90% of the power is converted to heat and radiated, determine the
temperature of the filament.
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1.10 A sphere of 0.5m diameter containing hot fluid has an insulation of 0.1m thickness. Before add-
ing the insulation, the surface temperature was 260°C and heat loss was mainly due to radia-
tion. After adding the insulation, the surface temperature is reduced to 160°C and again the
heat loss is mainly due to radiation, the surroundings in both cases being at 25°C. Determine the
change in heat transfer rate.

1.11 A surface maintained at 80°C dissipates heat to surroundings at 25°C both by radiation and
convection. If convection accounts for 60% of heat loss, determine the value of convection coeffi-
cient and also the total heat loss.

1.12 A pipe of internal diameter 0.2m and wall thickness 0.008m carries steam at 220°C, the thermal
conductivity of the material is 12.5 W/mK. Heat is lost from the outside surface by convection to
surroundings at 30°C. Determine the outside surface temperature if the convection coefficient
has a value of 38.5 W/m2. Also find the heat loss /m length.

1.13 Considering the problem 12, if the heat loss from the surface is only by radiation, determine the
surface temperature.

1.14 If in problem 12, the loss from the surface is both by radiation and convection, determine the
surface temperature.

1.15 A flat plate solar collector absorbs 80% of radiation of 820 W/m2 received. The top loss coefficient
is 12 W/m2K. Determine the temperature of heat collection if the efficiency of collection is 0.6.

1.16 Heat is generated in a solid having a total surface area of 0.56m2 and a volume of 0.26m3 at a
rate of 1MW/m3. Determine the surface temperature if the heat is convected as well as radiated
to the surroundings at 27°C. The convective heat transfer coefficient has a value of 245 W/m2K.

1.17 A thermocouple junction of 2mm dia spherical shape receives heat from a flowing fluid at 800°C
with a convection coefficient of 250 W/m2K and radiates to the surroundings at 450°C. Deter-
mine the temperature of the surface at equilibrium.

1.18 Repeat the problem 1.17 for a cylinder of 2mm diameter and 8mm length with convection coeffi-
cient of 125 W/m2K.

1.19 One side of an insulation layer of 25mm thickness is maintained at 300°C, while the other side
is exposed to convection at 30°C with a convective heat transfer coefficient of 400 W/m2K. Deter-
mine the surface temperature neglecting radiation. Also find the heat flow. Conductivity of the
material is 40 W/mK.

1.20 Repeat problem No. 1.19, if radiation is also present on the other side to the same surrounding
temperature.

1.21 A steel billet of 0.2m × 0.2m × 0.4m lies on its 02m × 0.4m face on the floor of a furnace and is
exposed to radiation on all the other faces from a source at 1500°C. The density of the material
is 7830 kg/m3 and the specific heat is 960 J/kgK. Determine the rate of rise in the average
temperature of the billet when its surface temperature is 500°C. Will the heating rate increase
or decrease with rise in temperature of the surface?

1.22 For an air conditioned space, a double glass window pane with a thin air gap between the plates
the preferred when compared to a single glass pane. Discuss the reasons for the above.

1.23 Heat is convected and also radiated from the surface of a solid at 160°C to the surroundings at
30°C. The convection coefficient is 45 W/m2K. Assuming the solid to be isotropic and to have
constant properties and the heat is conducted through the solid at steady state, determine the
temperature gradient in the solid for k = 15, k = 45, k = 210 and k = 340 W/mK.

1.24 Heat is conducted through a solid layer of 0.3m and is then convected at the surface. The tem-
perature drop in the solid and the temperature drop in the convective layer are equal. The con-
ductivity of the material is 12.5 W/mK. Determine the value of convection coefficient. Also evalu-
ate the conduction and convection resistances.

1.25 The temperature gradient in a solid of thermal conductivity k = 12.5 W/mK, conducting heat
under steady conditions is – 6°C/cm. If the heat is radiated at the surface, determine the tem-
perature at the surface. The surroundings are at 30°C.
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1.26 In a solid conducting heat at steady state, sketch the variation of the temperature gradient if
(i) the thermal conductivity increases along the thickness (ii) the thermal conductivity decreases
along the thickness.

1.27 The temperature variation along a slab is shown in Fig. 1.27. Determine the heat flow directions
at locations x1, x2, x3 and x4.

x

x1 x2 x3 x4

Fig. 1.27

1.28 Discuss the conditions at which (under thermal conduction) the following temperature varia-
tions as in Fig. 1.28 in a slab is possible.

x x x x

T

T T T

Fig. 1.28

1.29 A surface at 200°C receives a radiation flux of 800 W/m2 and reflects 40% of the same. It also
radiates with an emissivity of 0.6. Determine the total radiation flux coming out of the surface
(This is also known as radiosity).

1.30 A surface receives radiation from another surface at 400°C and having an emissivity of 0.6 and
also the reflected radiation originating from the surface with emissivity of 0.5 and 200°C. Calcu-
late the total radiation flux incident on the surface (This is also known as irradiation).

1.31 Calculate the value of hr between two surfaces at 100°C and 200°C. Also investigate the percent-
age variation in hr as the surface temperature of the second surface increases to 300°C and
400°C.

1.32 A small thin metal plate absorbs solar energy at the rate 500 W/m2 and dissipates it by convec-
tion into ambient air at 300 K. The convection coefficient is 20 W/m2K and by radiation to the
surroundings it at 280 K. The surface emissivity is 0.9. The backside of the plate is insulated.
Determine the temperature of the plate.

[Ans. 315.5 K]
1.33 A thin metal sheet is placed between two large parallel surfaces. The surface 1 is at 1000 K. The

other surface 2 is at 400 K. Assume black body condition and determine the temperature of the
thin metal sheet.
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STEADY  STATE  CONDUCTION

2

2.0 CONDUCTION

Conduction is the mode of energy transfer as heat due to temperature difference in a solid or
any phase of material where the mass is contiguous and in thermal contact. Microscopically
this mode of energy transfer is attributed to free electron flow from higher to lower energy
levels, lattice vibration and molecular collision. However no macroscopic mass movement is
involved. The applications have been indicated earlier.

2.1 THE GENERAL MODEL FOR CONDUCTION STUDY

The general model for conduction study is a body in which
(i) heat flows in all the coordinate directions

(ii) heat is generated uniformly all over the volume and
(iii) the temperature at any location in the body changes with time. In addition, the

properties also vary with the coordinate directions.
The energy equation for the model is given below for a time period considered.
The net heat flow through the body surface in all the coordinate directions considered +

heat generated in the volume = the energy stored
This can be reduced to (Qk + qV) dτ = ρcV dT ...(2.1)

Where Qk  heat conducted over all surfaces, W
 q  heat generation for unit volume, W/m3

 V  Volume, m3

ρ  density kg/m3

c  Specific heat J/kg K
dT  Change in temperature during time period considered °C
dτ  Time period considered, s

The temperature in the body will be a function of location and time. In the popular
cartesian coordinates

 T = T(x, y, z, τ)
The temperature field is obtained by deriving and solving the differential equation based

on energy balance relations for the volume.
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2.1.1. Considering the subvolume with dimensions dx, dy and dz in the cartesian coordinate
system and taking a time interval dτ, and noting that temperature is a function of all the four,
the following steps lead to the general differential equation (Ref. Fig. 2.1(a)).

dx

dy

dz

qx qy

qz
z

x

y
x

y
z

P(x, y, z)

Fig. 2.1. (a) An elemental volume considered in cartesian coordinates.

The heat flow by conduction through the boundary is obtained by considering the
conduction over all six faces. The area perpendicular to x direction has a value dydz. Using

Fourier’s law, the heat flow at the dydz face at x over time period dτ = – k dydz . ∂
∂
T
x

 dτ

The flow at x + dx is = – k dy dz dτ ∂
∂

∂
∂

τ ∂
∂

T
x x

k dy dz d T
x

dx+ −FHG
I
KJ

The net flow in the x direction is obtained by taking the sum of these two which yields

∂
∂

∂
∂

τ
x

k T
x

dy dz d dx. .F
HG

I
KJ  = ∂

∂
∂
∂

τ
x

k T
x

dx dy dz d. .F
HG

I
KJ

Similar consideration in y and z directions give

∂
∂

∂
∂

τ
y

k T
y

dx d dz dy.F
HG
I
KJ and ∂

∂
∂
∂

τ
z

k T
z

dx dy d dz.F
HG
I
KJ

Heat generated in the volume during dτ is given by q dx dy dz dτ

The change in the energy of this volume over the time dτ when temperature changes is
ρc dx dy dz ∂T.

The sum is simplified by assuming dx, dy and dz do not change along the coordinate
directions and k is constant

∂
∂

∂
∂

∂
∂

ρ ∂
∂τ

2 2 2T
x

T
y

T
z

q
k

c
k

T
2 2 2+ + + = . ...(2.2)

k
cρ

 is defined as thermal diffusivity denoted by α.

∴
∂
∂

∂
∂

∂
∂ α

∂
∂τ

2 2 2T
x

T
y

T
z

q
k

T
2 2 2

1+ + + = . ...(2.3)
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If say k varies with location it should be within the differential like ∂
∂

∂
∂x

k T
x

F
HG
I
KJ  and the

integration of the equation has to consider the functionality of k with direction.
2.1.2. Similar steps may be followed to obtain the following differential equations in the
cylindrical and spherical coordinate systems. Here it has to be noted that the area value
changes in the coordinate directions.

In cylindrical coordinate (r, Φ, z), Fig. 2.1 (b), we get

1 1
2r r

kr T
r r

k T∂
∂

∂
∂

∂
∂Φ

∂
∂Φ

F
HG

I
KJ + F

HG
I
KJ + F

HG
I
KJ + =∂

∂
∂
∂

ρ ∂
∂τz

k T
z

q c T ...(2.4)

With k constant eqn. in 2.4 reduces to

1 1
2

2

2r r
r T

r r
T∂

∂
∂
∂

∂
∂Φ

F
HG
I
KJ +  + + =

∂
∂ α

∂
∂τ

2

2
1T

z
q
k

T. ...(2.4a)

dz

Z

dr

r

(r, , z)�

Y

X

� d�

Z

(r, , )	 �

Y

X

� d�

Z

dr

	
d	

Fig. 2.1. (b) Elemental volume in cylindrical Fig. 2.1. (c) Elemental volume in spherical
 coordinates.  coordinates.

In spherical coordinates (r, Φ, θ), Fig. 2.1(c), we get
1 1
2

2
2 2r r

kr T
r r

k T∂
∂

∂
∂ θ

∂
∂Φ

∂
∂Φ

F
HG

I
KJ + F

HG
I
KJsin

.

+ 1
2r

k T q c T
sin

. sin
θ

∂
∂θ

θ ∂
∂θ

ρ ∂
∂τ

F
HG

I
KJ + = FHG

I
KJ ...(2.5)

With k constant eqn. 2.5 reduces to

1 1
2

2
2 2

2

2r r
r T

r r
T∂

∂
∂
∂ θ

∂
∂Φ

F
HG

I
KJ +

F
HG
I
KJsin

.

+ 1 1
2r

T q
k

T
sin

. sin
θ

∂
∂θ

θ ∂
∂θ α

∂
∂τ

F
HG

I
KJ + = FHG

I
KJ ...(2.5a)
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2.1.3. The complete solutions to the general model is rather complex. Some of the simplified
models for which solutions are attempted are listed below:

1. One dimensional steady flow (x or r directions) with constant or variable properties,
without heat generation.

2. Same as above but with heat generation
3. Two dimensional steady flow (with constant properties, without heat generation)

and
4. One dimensional unsteady state without heat generation.

The simplified expressions in these cases in the various coordinate systems are
Cartesian

 ∂
∂

∂
∂

∂
∂x

k T
x

T
x

L
NM
O
QP = 0

2

2and  = 0

∂
∂

2

2
T

x
q
k

+  = 0

∂
∂ α

∂
∂τ

2

2
1T

x
T

= . ...(2.6a, b, c)

Cylinderical coordinates

1
r r

kr T
r

∂
∂

∂
∂

L
NM
O
QP  = 0 and 1

r r
r T

r
∂
∂

∂
∂
L
NM
O
QP  = 0

1
r r

r T
r

q
k

∂
∂

∂
∂
L
NM
O
QP +  = 0

1 1
r r

r T
r

T∂
∂

∂
∂ α

∂
∂τ

L
NM
O
QP = ...(2.7a, b, c)

Spherical coordinates

1
2

2

r r
kr T

r
∂
∂

∂
∂

L
NM

O
QP  = 0 and 1

2
2

r r
r T

r
∂
∂

∂
∂

L
NM
O
QP  = 0

1
2

2

r r
r T

r
q
k

∂
∂

∂
∂

L
NM
O
QP +  = 0

1 1
2

2

r r
r T

r
T∂

∂
∂
∂ α

∂
∂τ

L
NM
O
QP = ...(2.8a, b, c)

These sets of equations 2.6, 2.7 and 2.8 can be integrated and these solutions follow in
this and subsequent chapters.

Presently softwares are available to model and solve conduction problems for various
types of boundary and initial conditions. However it is necessary to have a basic understanding
of the problem. Today all design offices use one of the many available softwares. Hence the
learner should become familiar with such software if he wants to be prepared for a career.
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2.2.0   STEADY CONDUCTION IN ONE DIRECTION (ONE DIMENSIONAL)

2.2.1. Plane wall: Steady flow in the x direction, (Fig. 2.2)
Assuming constant properties, the problem can be solved by applying the basic law due

to Fourier or by integrating the simplified differential equation (2.6a)
From Fourier’s law

 Q = – kA dT
x∂

As k and A are constants, the equation can be integrated
to obtain

 Q = kA T T
x x

1 2

2 1

−
−

...(2.9)

Taking x2 – x1 = L

 Q = T T
L kA
1 2−

( / )
...(2.10)

where L/kA is called thermal resistance
Integrating equation 6a

 ∂
∂

2

2
T

x
 = 0, ∂

∂
T
x

 = c1, T = c1x + c2.

At x = x1, T = T1 ∴  T1 = c1x1 + c2 ...(A)
At x = x2, T = T2 ∴ T2 = c1x2 + c2 ...(B)

(A – B) leads to c1 = T T
x x

1 2

1 2

−
−

From A c2 = T1 – c1x1 = T1 – T T
x x

1 2

1 2

−
−

 . x1

Substituting in the general solution

T = T T
x x

1 2

1 2

−
−

 . x + T1 – T T
x x

1 2

1 2

−
−

 x1

∴ T – T1 = T T
x x

1 2

1 2

−
−

 . (x – x1)

or T T
T T

x x
x x

−
−

= −
−

1

1 2

1

1 2

or T T
T T

x x
x x

1 −
−

= −
−1 2

1

2 1
...(2.11)

 Q = – kA dT
dx

, but dT
dx

 = c1 = T T
x x

1 2

1 2

−
−

x dx

x1 x2

L = x – x2 1

dT

T1

T2

Q

Q

x

Fig. 2.2. Conduction-Plane wall.
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∴  Q = – kA . T T
x x

kA T T
x x

1 2

1 2

1 2

2 1

−
−

= −
−

. . same as eqn 2.9

For a wall made of several layers of different materials (Fig. 2.3), using the condition
that heat flow through one layer is equal to the heat flow through the other layers,

First layer: Q = T T
L k A

1 2

1 1

−
/ or T1 – T2 = Q L

k A
1

1

Second layer Q = T T
L k A

2 3

2 2

−
/ or T2 – T3 = Q . L

k A
2

2

Third layer Q = T T
L k A

3 4

3 3

−
/

or T3 – T4 = Q L
k A

3

3

Adding  T1 – T4 = Q . L
k A

L
k A

L
k A

1

1

2

2

3

3
+ +

RST
UVW

or Q = ( )T T
L

k A
L

k A
L

k A

1 4

1

1

2

2

3

3

−

+ +
 ,

In general Q = ∆T
L

k A
L

k A
L

k A
1

1

2

2

3

3
+ + + ......

...(2.12)

Any interface temperature can be obtained
using

Q = ∆T
R

i

i
...(2.13)

where ∆Ti is the temperature drop in layer i and
Ri = Li/(kiA)

In case convection is involved on either side
with T∞1, h1 and T∞2 and h2

 Q = T T
R R Rc c

∞ ∞−
+ + +

1 2

1 1 2...... ...(2.14)

where Rc1 = 1
1h A

 and Rc2 = 1
2h A

 are convection

resistances.
In certain cases contact between two layers may not be perfect, introducing contact

resistance. Some typical values can be found in data books. This resistance is due to the surface
roughness leading to material contact at high spots only. A temperature drop will occur at the
interface

Q = ∆T
R R R Rc s c1 1 1 2+ + + +......

...(2.15 a)

Where Rs1 is the contact resistance between the first and second layers. The temperature
variation in such a case is shown in Fig. Ex. 2.1.

Fig. 2.3. Composite wall-conduction.

Q

L1 L2 L3

T1

T2

T3

T4

T1

T2

T3

T

k1 k2 k3
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The contact resistance will depend on the material, surface roughness, the fluid between
surfaces and the pressure applied. However, contact resistance may not be considered at the
first instance in many situations. Refer Fig. Ex. 2.1.

A overall heat transfer coefficient is also used for convenience where Q = UA ∆T where

UA = 1
2 3R R R1 + + + ...... ...(2.15b)

Example 2.1: A furnace wall is of three layers, first layer of insulation brick of 12 cm thickness
of conductivity 0.6 W/mK. The face is exposed to gases at 870°C with a convection coefficient of
110 W/m2K. This layer is backed by a 10 cm layer of firebrick of conductivity 0.8 W/mK. There
is a contact resistance between the layers of 2.6 × 10–4 m2 °C/W. The third layer is the plate
backing of 10 mm thickness of conductivity 49 W/mK. The contact resistance between the second
and third layers is 1.5 × 10–4 m2 °C/W. The plate is exposed to air at 30°C with a convection
coefficient of 15 W/m2K. Determine the heat flow, the surface temperatures and the overall heat
transfer coefficient.
Solution: The data and equivalent circuit are shown in Fig Ex. 2.1(a).

Q

k1 k2 k3
870°C

T1

T2
1

T3
1

T4

30°C

h = 15 W/m K2
2

30°C

h = 110 W/m K1
2

870°C

0.12 m 0.1 m
0.01

m

T2
2

T3
2

RC1 Rs1 R2 Rs2

870°C

R1 R3 RC2
30 C°

Q

Fig. Ex. 2.1. Composite wall.

Using equation 2.5

    Q = ∆
Σ

T
R

The resistances (°C/W) are: Taking A = 1.0 m2,

Rc1 = 1 1
1101h A

= ∆T = T∞1 – T∞2 = (870 – 30) = 840°C

R1 = L
k A

1

1
 = (0.12/0.6) Rs1 = 2.6 × 10–4
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R2 = L
k A

2

2
 = (0.1/0.8) Rs2 = 1.5 × 10–4

R3 = L
k A

3

3

0 01
49

= . RC2 = 1/15

∴  Q = 
840

1
110

0 12
0 6

2 6 10 0 1
0 8

15 10 0 01
49

1
15

4 4+ + × + + × + +− −.
.

. .
.

. .

= 2092.8 W/m2

 Q = UA ∆T. Where U is the overall heat transfer coefficient.

As A = 1 ∴ U = Q
T∆

= 2092 8
840

.  = 2.491 W/m2°C

Surface temperatures:

 Q = T T
h

∞ −1 1

11 /

∴ Q × 
1
1h  = T∞1 – T1 or 2092 8

110
.  = 870 – T1

∴ T1 = 850.97°C
Similarly

Q = 
T T1 2

1

0 12
0 6

−
.
.

∴ T2
1 = 432.40°C

Q × Rs1 = (T2
1 – T2

2) ∴ T2
2 = 431.86°C

 Q = T T2
2

3
1−

0.1 0.8/ ∴ T3
1 = 170.26°C

Q × Rs2 = T3
1 – T3

2 ∴ T3
2 = 169.95°C

 Q = T T3
2

4
49

−
0.01/ ∴ T4 = 169.52°C

Note: The contact drops and drop in the metal plate are very small. The insulation resistances
and outside convection are the controlling resistances.
2.2.3. Steady radial heat flow through hollow cylinder. As mentioned in the previou’s
article, the solution can be obtained either using Fouriers law or integrating equation 2.7(a)
directly.

A quarter of circle is shown due to symmetry. The integration of (with constant k)

1
r r

kr T
r

∂
∂

∂
∂

F
HG

I
KJ  = 0 yields

dT
dr

C
kr

= 1 ...(2.16 a)
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dr

r1

r2Q

I

r

r2

r1

Q

dr

r

Fig. 2.4. Heat conduction-hollow cylinder.

Integrating again  kT = C1 ln r + C2 ...(2.16 b)
Using the boundary conditions, that at r = r1, T = T1 and at r = r2,

T = T2, kT1 = C1 ln r1 + C2 ...(A)
kT2 = C1 ln r2 + C2 ...(B)

Subtracting and solving

C1 = k T T
r
r

( )

ln
2 1

2

1

− ...(C)

From A C2 = kT1 – C1 ln r1

C2 = kT1 – k T T
r
r

( )

ln
2 1

2

1

−  . ln r1 ...(D)

∴ From 2.16b  kT = k T T
r
r

( )

ln
2 1

2

1

−  . ln r + kT1 – k T T
r
r

( )

ln
2 1

2

1

−  ln r1

∴  T – T1 = ( )

ln

T T
r
r

2 1

2

1

− [ln r – ln r1]

T T
T T

r r
r r

−
−

=1

2 1

1

2 1

ln ( / )
ln ( / ) ...(2.17)

 A = 2π rl, dT
dr

C
kr

T T

r r
r

= =
−1 2 1

2

1
ln

Using Q = – kA dT
dr

 , and substituting for dT
dr

 and A

Q = T T
r
r

kl
1 2

2

1
2

−

ln / π
...(2.18)

Where ln r
r

/ 2 kl2

1
π  is the thermal conduction resistance for l m length.
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When a number of layers of different materials are involved with convection on both
sides, Refer Fig. Ex. 2.2.

 Q = T T

h r l
r r
k l

r r
k l

r r
k l h r l

∞ ∞−

+ + + +

1 2

1 1

2 1

1

3 2

2

4 3

3 2 4

1
2 2 2 2

1
2π π π π π

ln / ln / ln / ...(2.19)

= T T
R

∞ ∞−1 1

1Σ

The interface temperature can be obtained using

Q = ∆T
R

i

i
...(2.20)

Where ∆Ti is the temperature drop in that layer and Ri is the thermal resistance of that
layer. The equation will automatically indicate whether heat flow is inwards or outwards.
Example 2.2: A pipe carrying steam at 230°C has an internal diameter of 12 cm and the pipe
thickness is 7.5 mm. The conductivity of the pipe material is 49 W/mK the convective heat
transfer coefficient on the inside is 85 W/m2K. The pipe is insulated by two layers of insulation
one of 5 cm thickness of conductivity 0.15 W/mK and over it another 5 cm thickness of conductivity
0.48 W/mK. The outside is exposed to air at 35°C with a convection coefficient of 18 W/m2K.
Determine the heat loss for 5 m length. Also determine the interface temperatures and the overall
heat transfer coefficient based on inside and outside areas.
Solution: Data are shown in Fig. Ex. 2.2(a). The equivalent circuit is shown in Fig. Ex. 2.2(b).
A quarter of the section is shown due to symmetry.

0.06 m

0.0675 m
0.1175 m

0.1675 m

T = 230°C�1

h = 85 W/m K1
2

k1 k2 k3

h = 18 W/m K2
2

T = 35°C�2

49 W/m K

0.15 W/m K

0.48 W/m K

Q

R1 R2 R3 RC2RC1
T�1 T�2

Q

(a) (b)

Fig. Ex. 2.2. Composite cylinder.

Using equations 2.19

 Q = T T

r h l
r r
k l

r r
k l

r r
k l r h l

∞ ∞−

+ + + +

1 2

1 1

2 1

1

3 2

2

4 3

3 4 2

1
2 2 2 2

1
2π π π π π

ln ln ln/ / /
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Substituting

Q = 230 35

1
2 0 06 85 5 49 5 015 5 0 48 5

1
2 01675 18 5

−

× × ×
+

× ×
+

× ×
+

× ×
+

× × ×π π π π π. . . .

ln 0.0675
0.06

2

ln 0.1175
0.0675

2

ln 0.1675
0.1175

2

= 195
0 1580.  = 1234.06 W for 5 m length.

Overall heat transfer coefficient.
based on inside area: Q = UAi ∆T

∴ 1234.06 = Ui × 2πril × (230 – 35)
∴ Ui = 1234.06/2π × 0.06 × 5 × 195 = 3.3574 W/m2K

using the same procedure, Uo based on outside area = 1.203 W/m2K
Interface Temperatures:

To find T1,  Q = T T

r h l

T∞ −
=

−

× × ×

1 1

1 1

1
1

2

230
1

2 0 06 85 5π π .

∴ T1 = 222.3°C

To find T2, Q = 

T T1 2
0 0675
0 06

2 49 5

−
L
NM

O
QP

× ×

ln .
.

π ∴ T2 = 222.2°C

To find T3, Q = 

T T2 3
01175
0 0675

2 015 5

−
L
NM

O
QP

× ×

ln .
.
.π

∴ T3 = 77.04°C

To find T4, Q = 

T T3 4
01675
01175

2 0 48 5

−
L
NM

O
QP

× ×

ln .
.
.π

∴ T4 = 48.03°C

To check  Q = h2A2 ∆T2 = 18 × 2π × ro × (48.03 – 35) × 5
= 18 × 2π × 0.1675 × 13.03 × 5 = 1234.18 W

∴ checks.
2.2.4. Contact resistance can also be added taking care to use the proper value of area.
Contact resistance is left out ordinarily due to the difficulty in the estimation. The overall heat
transfer coefficient concept is also useful, except that it has to be based on either outside or
inside area and

Uo Ao = Ui Ai = 1/(R1 + R2 ......) = 1
ΣR

...(2.21)

and  Q = Uo Ao ∆T or Ui Ai ∆T ...(2.22)
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R should be based on area. The temperature variation along the radius will not be linear
and is logrithamic as shown by equation 2.17.
Example 2.3: A composite cylinder is made of 6 mm thick layers each of two materials of
thermal conductivities of 30 W/m°C and 45 W/m°C. The inside is exposed to a fluid at 500°C
with a convection coefficient of 40 W/m2 °C and the outside is exposed to air at 35°C with a
convection coefficient of 25 W/m2K. There is a contact resistance of 1 × 10–3 m2 °C/W between
the layers. Determine the heat loss for a length of 2 m and the surface temperatures. Inside dia
= 20 mm.

The data and equivalent circuit are shown in Fig. Ex. 2.3.
Solution: Using the equation 2.19 and adding the contact resistances, contact resistance has
to be for the area encountered. The area here is 2π × 0.016 × 2m2

0.01 m

0.016 m

0.022 m

500°C

h = 40 W/m K
2

T1 T2� T3

h = 25 W/m K
2

35°C

T2

k = 30 W/mK1

k = 45 W/mK2

R1 RS1 R2 RC2RC1

T�1 T�2

Q

T1 T2 T2� T3

+

(a) (b)

Fig. Ex. 2.3. Composite cylinder with contact resistance.

Contact resistance = 1 × 10–3 m
W m

2
C°

× ×
.

.
1

2 0 016 2 2π

= 0.004973592°C/W

Q = T T

r h l
r r
k l

r r
k l r h l

∞ ∞−

+ + + +

1 2

1 1

2 1

1

3 2

2 3 2

1
2 2 2

1
2π π π π

ln ln contact resistance/ /

Q = 

500 35

1
2 0 01 40 2

0 016
0 010

2 30 2

0 022
0 016

2 45 2
1

2 0 022 25 2

−

× × ×
+

× ×
+

× ×
+

× × ×π π π π.

.

.
.
.

.

ln ln
 + 0.004974

= 1327 W
Overall heat transfer coefficient:
Based on inside area = Q/∆TAi = 22.7 W/m2K
Based on outside area = Q/∆TAo = 16.52 W/m2K
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r2

r1

Q

dr

r

T2

T1

Interface Temperatures and temperature drops:

Q = T T∞ −

× × ×

1 1
1

2 0 01 40 2π .

∴ T1 = 236°C, ∆T1 = 264°C

T2,  Q = 

T T1 2
0 016
0 01

2 30 2

−
L
NM
O
QP

× ×

ln .
.

π
∴ T2 = 234.35°C, ∆T2 = 1.65°C

T2
1, Q = T T

R
T2 2

1
2
1234 35

0 004974
−

=
−.

.
∴ T2

1 = 227.75°C ∆T3 = 6.60°C

T3,  Q = 

T T2
1

3
0 022
0 016

2 45 2

−
L
NM
O
QP

× ×

ln .
.

π ∴ T3 = 227°C ∆T4 = 0.75°C

Check Q = (227 – 35) × 25 × 2π × 0.022 × 2 = 1327 W
(Using outside convection), checks.

2.2.5 Steady radial heat flow through hollow sphere (Fig. 2.8). A quarter section is
shown due to symmetry integrating equation 2.8(a).

1
2

2

r r
r T

r
∂
∂

∂
∂

F
HG
I
KJ  = 0

 r2 ∂
∂
T
r  = C1 or ∂

∂
T
r

C
r

= 1
2

∴ T = – Cr
1  + C2 ...(A)

At r = r1, T = T1 and r = r2, T = T2.

T1 = – Cr
1

1
 + C2 and T2 = – C

r
1

2
 + C2  ...(B)

   T1 – T2 = C1 
1 1
2 1r r

−
F
HG

I
KJ or C1 = T T

r r

1 2−

−1 1
2 1

...(C)

From B, C2 = T1 + C
r

T T T

r r
r

1

1
1

2 1
11 1
1= +

−

−

1 2 . ...(D)

Substituting in A

T = – T T

r r
r

T T T

r r
r

1 2 1 2−

−
+ +

−

−1 1
1

1 1
1

2 1

1

2 1
1

.

Fig. 2.8. Radial heat conduction-
hollow sphere.
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T – T1 = T T

r r
r r

1 2−

−
−

RST
UVW1 1

1 1

2 1
1

T T
T T

r r

r r

−
−

=
−

−

1

1 2

1 1

1 1
1

2 1

or T T
T T

r r

r r

1

1 2

−
−

=
−

−

1 1

1 1
1

1 2

...(2.24)

Q = – kA dT
dr

k r T T

r r
r

k T T

r r

= −
−

−
=

−

−
4 1 1

1 4 1 1
2

2 1
2

1 2

π π1 2 1 2. ...(2.25)

The term 1
4 k

1
r

1
r1 2π

−
F
HG

I
KJ  is called conduction resistance in this case.

Conduction through composite sphere can be solved by using the same method as in the
previous two articles. Refer Fig. Ex. 2.4.

 Q = ∆T
R R Rc c1 1 2+ + +......

= T T

h r k r r h r

∞ ∞−

+ −
L
NM

O
QP + +

1 2
1

4
1

4
1 1 1

41 1
2

1 2 2 2
2π π π

......
...(2.26)

Example 2.4: A spherical vessel of ID 0.3 m and thickness of 20 mm is made of steel with
conductivity of 40 W/mK. The vessel is insulated with two layers of 60 mm thickness of
conductivity 0.05 and 0.15 W/mK. The inside surface is at – 196°C. The outside is exposed to
air at 30°C with convection coefficient of 35 W/m2K. There is a contact resistance of 1 × 10–3

m2°C/W between the two insulations. Determine the heat gain and also the surface temperatures
and the overall heat transfer coefficient based on the outside surface area of the metallic vessel.
Solution: The data and equivalent circuit is shown in Fig. Ex. 2.14.

A quarter section is shown due to symmetry.
Using the equation 2.26 and adding the contact resistance,

Q = T T

k r r k r r
R

k r r r hs

1 2−

−
F
HG

I
KJ + −

F
HG

I
KJ + + −

F
HG

I
KJ +

∞

1
4

1 1 1
4

1 1 1
4

1 1 1
41 1 2 2 2 3 3 3 4 4

2
2π π π π

Here the inside surface temperature is specified. Hence there is no convective resistance
on the inside.

Q = − −

×
−F

HG
I
KJ +

×
−F

HG
I
KJ +

×
−F

HG
I
KJ

196 30
2

4 40
1

0 15
1

0 17
1

4 0 05
1

0 17
1

0 23
1

4 0 15
1

0 23
1

0 29π π π. . . . . . . .

+ 1
4 0 29 352π × ×.

 + Rs
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0.15 m

0.17 m
0.23 m

0.29 m

h = 35 W/m K
2

30°C

k = 0.15 W/m K3

k = 0.05 W/m K2

k = 40 W/m K1

1 3 4 2
4�

– 196°C

R1 RS1 R3 RC2

T1 T�2
T3 T4 T4� T2

R2

Fig. Ex. 2.4. Composite sphere.

Rs = 1 × 10–3 m2 °C/W is based on 1 m2

The area in this problem is 4π × 0.232 m2

∴  Rs for the area = 1 × 10–3/(4π × 0.232) = 1.5 × 10–3 °C/W

Substituting Q = 
− 226
2 95.  = – 76.6 W

overall heat transfer coefficient based on the outside area of the vessel
Q = UA ∆T i.e. 76.6 = U × 4π × 0.172 × (– 196 – 30)
∴ U = 0.932 W/m2 K.
Interface temperatures:

To find T3:  Q = – 76.6 = − −

×
−F

HG
I
KJ

196
1

4 10
1

015
1

017

3T

π . .

 , T3 = – 195.88°C

Similarly T4 = – 8.75°C.
After contact drop T4′ = – 8.64°C and T2 = 27.93°C
Check using outside convection,

 Q = (– 30 + 27.93) 4π × 0.292 × 35 = – 76.7 W
As in the previous case contact resistance can also be taken into account by adding the

value in the equation (2.26). The corresponding area should be taken into account as the
resistance value will be generally available in the unit m2 °C/W.

Also  UoAo = UiAi = 1
ΣR

...(2.27)

1 1
U A U Ao o i i

=  = ΣR ...(2.28)

The temperature variation is non linear.
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2.3 CONDUCTION IN OTHER SHAPES

The analysis is more complex correlation equations are available in hand books and references.
Two such shapes are considered in examples 2.5 and 2.6.
Example 2.5: A circular pipe of OD 20 cm is enclosed centrally in a square section insulation
of 36 cm side. The thermal conductivity of the material is 8.5 W/mK. The inside surface is at
200°C. The outside is exposed to convection at 30°C with h = 35 W/m2K. Determine the heat
flow per a length of 5 m.
Solution: The data are shown in Fig. Ex. 2.5.

a = 0.36 m.sq

35 W/m K
2

T = 30°C�

hb

b

k = 8.5 W/mK

5 m

0.2 m

T = 200°Ca

Fig. Ex. 2.5. Problem model.

Using hand book (a = side length)
The resistance is given by

R = 1
2

1 108
2 2π

π
l k

a
r h ab

ln . +
L
NM

O
QP

(Internal convection is absent)

R = 1
2 5

1
8 5

108 0 36
0 2 2 35 0 36π

π
×

× +
× ×

L
NM

O
QP.

. .
. .

ln  = 0.002529°C/W

 Q = ∆T
R

= −200 30
0 002529.  = 67219 W.

Example 2.6: A pipe of 30 cm OD is insulated by a material of thermal conductivity of 0.45 W/
mK. Due to space restriction the insulation of outside diameter is placed with an eccentricity of
5 cm. (Fig. Ex. 2.6) The inner surface is at 250°C. The outer surface is at 60°C. Determine the
loss for a length of 5 m. Outside dia = 0.6 m.
Solution: From hand book the thermal resistance is obtained by

1
2

2 1
2 2

2 1
2 2

2 1
2 2

2 1
2 2πkl

r r e r r e

r r e r r e
ln

[( ) ] [( ) ]
[( ) ] [( ) ]

+ − + − −

+ − − − −

R = 1
2 0 45 5

0 15 0 3 0 05 0 3 0 15 0 05
0 15 0 3 0 05 0 3 0 15 0 05

2 2 2 2

2 2 2 2π × ×
+ − + − −

+ − − − −.
[( . . ) . ] [( . . ) . ]
[( . . ) . ] [( . . ) . ]

ln
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= 
1

2 0 45 5
0 4472 0 14142
0 4472 0 14142π × ×

+
−.

. .

. .
ln  = 0.046325°C/W

 Q = ∆T
R

= −250 60
0 046326.  = 4101 W.

0.
15

m

0.05 m

60°C

0.3
m

250°C

k = 0.45 W/m K
2

Fig. Ex. 2.6. Eccentric insulation.

2.4 ONE DIMENSIONAL STEADY STATE HEAT CONDUCTION WITH
VARIABLE HEAT CONDUCTIVITY OR VARIABLE AREA ALONG
THE SECTION

A glance at the graphs in hand books showing the variation of thermal conductivity with
temperature will convince the learner that the assumption of constant thermal conductivity is
valid only for heat flow with small temperature differences. Even then the conductivity value
for the corresponding temperature range should be used. Generally a linear relationship as in
equation 2.29 below can be used without sacrificing accuracy

k = ko (1 ± βT) ...(2.29)
where ko is conductivity at some reference temperature and T is the temperature above the
reference and b is a constant and may be positive or negative. Substituting this in the Fourier’s
equation, yields for slab

 Q = – ko (1 ± βT) dT
dx

,

Q dx k Ao1

2

1

2z z= − (1 + βT) dT

 Q (x2 – x1) = – A ko T T+
L
NMM

O
QPP

β 2

1

2

2
 = – A ko T T T T

2
2

1
1+ − −

L
N
MM

O
Q
PP

β β2 2

2 2

= – A ko ( 2 2 1T T T T− + −L
NM

O
QP1

2 2
2

) ( )β

= + A (T1 – T2) k T T
o 1

2
2+

+F
HG

I
KJ

L
NM

O
QP

β
( )1

= A (T1 – T2) km, as k T T
o 1

2
2+

+F
HG

I
KJβ 1  = km.
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∴ (x2 – x1) = L,

∴  Q = ( )
/

T T
L k Am

1 − 2 ...(2.30)

This holds good in the case k = ko (1 – βT) also.

where  km = ko 1
2

2± −F
HG

I
KJ

RST
UVW

β T T1 ...(2.31)

Hence if linear variation is assumed, the average value of thermal conductivity between
these temperatures can be used in the equation (2.10). It is found that for other shapes also,
this result k = km is found valid.

Thus for a cylinder Q = ∆T
r r k lmln ( / ) /1 2 2π

...(2.32)

For a sphere Q = ∆T

k r rm

1
4

1 1
1 2π

−
F
HG

I
KJ

...(2.33)

Example 2.7: An insulating wall 16 cm thick has one face at 600°C while the other is at 100°C.
The thermal conductivity of the material is given by k = 0.078 (1 + 17.95 × 10–4 T) W/mK and T
is in °C. Determine the heat loss per unit area and the mid plane temperature.
Solution: Using equation 2.30 and 2.31.

Q = ∆T
L k Am/  and km = ko 1

2
1 2+

+F
HG

I
KJβ

T T

km = 0.078 [1 + 17.95 × 10–4 (600 + 100)/2] = 0.127 W/mK

Q = 
( )

. / ( . )
600 100

0 16 0 127 1
−

×  = 396.9 W/m2

To find the mid plane temperature, the heat flow for
thickness upto mid plane is equated to the calculated heat flow.
Taking T as the mid plane temperature,

∴  396.9 = T T
L k A

1 −
( / )mid mid

kmid = 0.078 [1 + 17.95 × 10–4 (600 + T)/2]
∴  396.9 = (600 – T) /(0.08/0.078 {1 + 17.95

× 10–4 (600 + T)/2}]
∴ 17.95 × 10–4 T2 + 2T – 1032.05 = 0
Solving T = 383.8°C
These data are shown plotted in Fig. Ex. 2.7 (check using

Eqn. 2.34 page 46).

600

Q

x

100

T°C

0.08 m
0.16 m

383.8

350

Fig. Ex. 2.7. Temperature
distribution in slab with variable

thermal conductivity.
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Example 2.8: The thermal conductivity of an insulating material used over a hot pipe varies
as k = 0.0545 (1 + 28.4 × 10–4 T) where T is in °C and k is in W/mK. This insulation is used for
a thickness of 12 cm over a pipe of diameter 0.6 m. The pipe surface is at 300°C and the outside
insulation temperature is 60°C. Determine the heat flow for a length of 5 m. Also find the mid
layer temperature.

The heat flow is calculated using equation 2.32. The data are shown in Fig. Ex. 2.8.
Quarter section is shown due to symmetry.

0.3 m

0.36 m
0.42 m

300°C

Mid plane

183.47°C

Q

60°C

300

200

100

T°C

183.5

60

0
0.3 0.36 0.42

r

(a) (b)

Fig. Ex. 2.8. Temperature variation in hollow cylinder with variable thermal conductivity.

Solution:  Q = 
∆T
r rln 2 1/b g  × 2π km l

km = 0.0545 1 28 4 10 300 60
2

4+ × +F
HG

I
KJ

L
NM

O
QP

−.  = 0.08236 W/mK

Q = 
( )

.
.

300 60
0 42
0 3

−

ln
 2π × 0.08736 × 5 = 1845.6 W

To find the mid plane temperature, equate this heat flow for half thickness of the cylinder

1845.6 = 300
036
03

− T

ln .
.

 2π × 5 × 0.0545 1 28 4 10 300
2

4+ × +F
HG

I
KJ

L
NM

O
QP

−. T

simplifying, 14.2 × 10–4 T2 + T – 231.27 = 0
solving for T = 183.47°C. Check using eqn. 2.35 page 46.

Example 2.9: The thermal conductivity of an insulating material used to reduce heat gain into
a cryogenic spherical shaped container varies as k = 0.028 (1 + 50 × 10–4 T). Where T is in degree
centigrade and k is in W/mK. The inner radius is 16 cm and the insulation thickness is 12 cm.
The inner surface is at – 190°C while the outer surface is at 10°C. Determine the heat loss, the
temperature at mid radius and the radius at which the temperature is – 40°C.
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Solution:  Using equation 2.33. One quarter view is shown for clarity.

0.16 m

0.22 m
0.28 m

– 190°C

Mid plane

– 32°C
Q

10°C
0

– 100

T°C

– 190
0.16 0.28

r

10

Temperature variation

– 32

(a) (b)

Fig. Ex. 2.9. Model.

 Q = T

k r rm

1
4

1 1
1 2π

−
F
HG

I
KJ

as km = 0.028  1 50 10 10 190
2

4+ × + −L
NM

O
QP

− ( )  = 0.0154 W/mK

Substituting Q = − −

×
−L

NM
O
QP

190 10
1

4 0 0154
1

0 16
1

0 28π . . .

 = – 14.45 W, heat flow is inwards

Mid radius temperature

– 14.45 = − −

× × − +F
HG

I
KJ

L
NM

O
QP

−L
NM

O
QP

190

190
1

016
1

0 22

T

T
1

4 0.028 1 + 50 10
2

–4π
. .

Simplifying 25 × 10–4 T2 + T + 29.506 = 0
Solving T = – 32.37°C (the other solutions – 367.63°C being not acceptable.
To locate the radius at which T = – 40°C.

 Q = ∆T k

r r

m×

−
L
NM
O
QP

4
1 1
1

π

km = 0.028 1 50 10 190 40
2

4+ × − −F
HG

I
KJ

L
NM

O
QP

−  = 0.0119 W/mK
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 14.45 = 
{ ( )} .

.

− − − × ×

−L
NM

O
QP

190 40 4 0 0119
1

0 16
1

π

r
Solving r = 0.21287 m.
(Check: This is less than 0.22 where the temperature is – 32.08°C).

2.4.1. In these cases, determination of the temperature variation requires more involved
equations. These are given below. For a slab equating the heat flow in section L1 and L2.

T T
x x
k Am

1 2−
−2 1

1
 = 

T T
x x
k Am

1 −
− 1

2

 
T T
T T

x x k
x x k

x x T T
x x T T

m

r

1

1 2

2 1

1

−
−

= −
−

= − + +
− + +

( )
( )

( ) [ ( ) / ]
( ) [ ( ) / ]

1 1

2 1

1

2 1

1 2
1 2

β
β

( )
(

1 1

1 2 1 2

T T T T
T T T T

x x
x x

− + +
− + +

= −
−

[ ( ) / ]
) [ ( ) / ]

1 2
1 2

1

2 1

β
β

...(2.34)

For cylinder ( )
(

ln

ln
1 1

1 2 1 2

T T T T
T T T T

r
r
r
r

− + +
− + +

=
[ ( ) / ]

) [ ( ) / ]
1 2
1 2

1

2

1

β
β

...(2.35)

For sphere ( )
(

1 1

1 2 1 2

T T T T
T T T T

r r

r r

− + +
− + +

=
−

−

[ ( ) / ]
) [ ( ) / ]

1 2
1 2

1 1

1 1
1

1 2

β
β

...(2.36)

It is suggested to solve for the temperature from basics, i.e. using the relation, heat flow
over the full thickness = heat flow over the given thickness.
2.4.2. Variation of area in the direction of heat flow. Some possible relationships are

A = Ao (1 + Cx), A = Ao Cx, A = Ao Cx2, A = Ao (1 + Cx2)
These are for truncated wedge, developed hollow cylinder, developed hollow sphere and

truncated cone (Fig. 2.11a, b, c, d)

Q

x

x

Q

2 r� 1
2

InsulatedInsulated

T , A1 1

r1 r2

2 r� 2
2

T , A2 2

(a) (b)

Fig. 2.11. (a), (b), (c), (d) Variable area sections.
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x

Q

��r1
2

Insulated

r1 r2

��r2
2

Q

x

Insulated

r1

r2

(c) (d)

Fig. 2.11. (c), (d),

The heat flow can be found by substituting the relation in the Fourier equation and
integrating the same between the two surfaces.

The method is illustrated in example 2.10.
Example 2.10:  A truncated conelike solid has its circumferential surface insulated. The base
is at 300°C and the area along the flow direction at x is given by A = 1.3 (1 – 1.5x). Where x is
measured from the base in the direction of flow in m and A is in m2. If the thermal conductivity
is 2.6 W/mK and the plane at x = 0.2 m is maintained at 100°C, determine the heat flow and
also the temperature at x = 0.1 m. Calculate the temperature gradients at the three sections.
Solution: Using the Fourier’s equation (Fig. Ex. 2.10)

Insulated

100°C

0.91 m
2

0.2 m

1.3 m
2

300°C

k = 2.6 W/mK
300

200

T°C

209

100
0 0.1 0.2

Distance

Q

(a) (b)

Fig. Ex. 2.10. Heat transfer in variable area section.

Q = – kA dT
dx

and substituting the relation for A and integrating after separating variables.

Q = – k × 1.3 (1 – 1.5x) . dT
dx

 Q 
0

0 2

1 15
13

1

2.

( . )
.z z−

= −dx
x

k dT
T

T

 Q 1
15

1 15
0

0.2

−
−

L
NM

O
QP.

( . )ln x  = – 1.3k (T2 – T1)

substituting the values at x = 0.2 and x = 0,
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 Q = 
13 15

0 70
2. ( ) .

. )
× − ×

−
k T T1

ln(

= 
13 2 6 15 300 100

0 70
. . . ( )

( . )
× × −

− ln  = 2842.9 W

At 0.1m 2842.9 = 13 15 2 6(300
1 15 01

. . . )
. . )

× × −
− − ×

T
ln(

∴ T = 208.87°C
Temperature gradients:

Q = – kA dT
dx

∴
dT
dx

Q
kA

= −

Section x = 0, dT
dx

 = – 2842.9/2.6 × 1.3 = – 841.09°C/m

x = 0.1, A = 1.3(1 – 1.5 × 0.1) = 1.105, dT
dx  = – 989.52°C/m

x = 0.2, dT
dx  = – 1201.6°C/m

combined variation of thermal conductivity and area can be dealt with in a similar way. For
example

Q = – ko (1 + βT) Ao (1 + cx) dT
dx ...(2.37)

equation 2.37 can be integrated by separating the variables to obtain the value of heat flow.
The temperature at any location can be found by equating the heat flow with thickness up to
that section to the heat flow with the full thickness, as was done in the earlier sections.

2.5 CRITICAL THICKNESS OF INSULATION

Adding insulation will always increase the conduction resistance. But when the total resistance
is made up of both conduction resistance and convection resistance, the addition of  insulation
in some cases may reduce the convection resistance due to the increase in surface area (as in
the case of a cylinder and sphere) and the total resistance may actually decrease resulting in
increased heat flow. It may be shown that the resistance actually decreases and then increases
in certain cases. The thickness upto which heat flow increases and after which heat flow
decreases is termed as critical thickness. In the case of cylinders and spheres it is called critical
radius. An expression for the same can be obtained by finding the rate of change of the total
resistance with change in radius and equating the same to zero i.e. zero slope condition.

Cylinder:

Total resistance, R, for radius r = 
ln r

r
kl h rl

1
2

1
2

F
HG
I
KJ

+
π π

cancelling the common factors R = 
1 1 1

1k
r
r h r

ln +
F
HG

I
KJ  × constant
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dR
dr k r h r

= −
1 1 1 1

2. , equating this to zero

rcr = k
h ...(2.38)

For spheres the following relationship can be derived, using similar method

 R = 
1

4
1 1 1

41
2π πk r r r h

−
L
NM
O
QP

+

dR
dr k rh

= −
1

4
1 2

4π π
[ ] , equating to zero

rcr = 
2k
h ...(2.39)

Example 2.11: A copper pipe carrying refrigerant at – 20°C is 10 mm in OD and is exposed to
convection at 50 W/m2K to air at 25°C. It is proposed to apply insulation of conductivity 0.5
W/mK. Determine the thickness beyond which the heat gain will be reduced. Calculate the heat
gains for 2.5 mm, 5.0 mm and 7.5 mm thicknesses for 1m length. The convection coefficient
remains constant. (Using equation 2.38, the critical thickness up to which the heat flow will
increase is calculated as below

 rc = k
h  = 0.5/50 = 0.01 m.

Solution: rc this means that up to a thickness of 5 mm, the heat flow will increase:
The heat flow at various configurations is given below. Bare pipe: unit length

 Q = hA (∆T) = 50 × 2π × 0.005 × 1 {25 – (– 20)} = 70.69 W/m
For 2.5 mm thickness

 Q = 45

1
50 2 0 0075 1

0 0075
0 005

2 0 5× × ×
+

×π π.

.
.

.

ln
 = 81.3 W/m

For 5 mm thickness

 Q = 
45

1
50 2 0 01 1

0 010
0 005

2 0 5× × ×
+

×π π.

.

.
.

ln
 = 83.49 W/m

for 7.5 mm thickness

Q = 
45

1
50 2 0 0125 1

0 0125
0 005

2 0 5× × ×
+

×π π.

.
.

.

ln
 = 82.37 W/m

The heat flow for various thickness is shown in Fig. Ex. 2.13
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90

80

70

60

50
0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

81.3
83.5

Thickness, mm

Q, W

Fig. Ex. 2.13. Heat flow with thickness of insulation.

It will be seen that a thickness of 20 mm insulation only will reduce the heat flow to the
level of bare pipe.

 Q = 
45

1
50 2 0 025 1

0 025
0 005

2 0 5× × ×
+

×π π.

.

.
.

ln
 = 70.35 W/m

Only after 20 mm thickness of insulation the heat flow will decrease due to insulation.
This principles applies generally to small diameter pipes. Also insulation thickness for

electrical wire has to be designed on this basis. Adding the electrical insulation may increase
the heat flow and reduce the temperature of the wire.
Example 2.12: It is desired to increase the heat dissipated over the surface of an electronic
device of spherical shape of 5 mm radius exposed to convection with h = 10 W/m2K by encasing
it in a transparent spherical sheath of conductivity 0.04 W/mK. Determine the diameter of the
sheath for maximum heat flow. For a temperature drop of 120°C from device surface determine
the heat flow for bare and sheathed device.
Solution: The requirement is the calculation of critical radius

For a sphere eqn. 2.39 gives

rc = 2k
h  = 2 × 0.04/10 = 0.008 or 8 mm

So the diameter is 16 mm
Bare device Q = 4πr1

2 h(∆T) = 4 × π × 0.0052 × 10 × 120 = 0.377 W

Sheathed device  Q = 120
1

4 0 008 10
1

4 0 04
1

0 005
1

0 0082π π× ×
+

×
−F

HG
I
KJ. . . .

= 0.439 W, about 16% increase.

2.6 MEAN AREA CONCEPT

When the area changes in the direction of flow, sometimes it is convenient to use a mean area
and use the heat equation applicable to a slab i.e.

 Q = ( )
/

T T
L kA
1 2−

when this concept is applied to a cylinder
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 Q = ( ) ( )T T kA
L

T T kl
r
r

m1 2 1 2

ln

−
=

− × 2
2

1

π

 Am = 2 2 1

2

1

2

1

πl r r
r
r

A A
A
A

( ) ( )−
=

−

ln ln
2 1 ...(2.40)

as r
r

A
A

2

1

2

1
= , L = r2 – r1

Similarly for a sphere Am = 4π ( )r r1 2 ...(2.41)
or the area at the geometric mean of the radii.

Example 2.13: A hollow cylinder of inner radius 0.16 m and thickness 8 cm conducts heat
radially. Determine the mean area and check for the heat flow:
Solution: Using equation 2.40

 Am = A A
A
A

l
l
l

2 1

ln ln

−
= −

× ×
× ×

2

1

2 0 24 016
2 0 24
2 016

π
π
π

( . . )
.
.

Considering as a slab of Am area and thickness (r2 – r1) and conductivity k

 Q = k × 2 0 24 016
2 0 24
2 016

0 24 016
π

π
π

( . . )
.
.

( . . )
−

× ×
× ×

−
l
l
l

k T

ln

∆  = 2
0 24
016

πk l T∆

ln .
.

same as eqn. 2.18

2.7 PARALLEL FLOW

There are certain occasions where the barrier to heat flow is made up of several materials in
the same thickness as in a brick wall where bricks and mortar form the same layer. In this
case the heat flow is along parallel paths. (Fig. 2.11(a))

The assumption made here is that temperature drop in each layer is the same. This is
solved by using electrical analogy as shown in Fig. 2.11(b), (c).

C

D

A
F

GB

E

T1 T2

L1 L2 L3

(a)
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T1

RA

RB

RC

RE

RF

RG

T2

Q

Req1

T1

Req2 Req3

T2

Q

RD

(b) (c)

Fig. 2.11. (a, b, c)

It is necessary that the thickness, area occupied and thermal conductivity of each material
be specified.

 Q = 
T T1 2

Total resistance
−

RA = L
k AA A

1  , RB = L
k AB B

1 , RC = 
L

k AC C

2 , RD = L
k AD D

2

RE = L
k AE E

2  , RF = L
k AF F

3  and RG = L
k AG G

3

The equivalent resistance for a parallel circuit is given by

ReQ1 = 1
1 1

R RA B
+

ReQ2 = 1
1 1 1

R R RC D E
+ +

ReQ3 = 1
1 1

R RF G
+

 Q = 
T T

REQ

1 2−
Σ ...(2.42)

Example 2.14: Two slabs are placed in contact, but due to roughness, only 40% of area is in
contact and the gap in the remaining area is 0.02 mm thick and is filled with air. The slabs are
10 cm thick each and their conductivities are 15.5 W/mK and 200 W/mK. The temperature of
the face of the hot surface is at 250°C and the outside surface of the other slab is at 35°C.
Determine the heat flow and the contact resistance. The conductivity of air is 0.0321 W/mK.
Solution: Of the contact area it is assumed that half of the contact is due to either metal. Total
area is taken as 1m2.

The equivalent circuit is given below (suffixes refer to the circuit)
1 1 1 1

R R R Req
= + +

2 3 4

R1 = 
0 1

15 5 1
.

. ×  = 0.0065°C/W, R2 = 
0 00002

15 5 0 2
.
. .×  , R3 = 

0 00002
200 0 2

.
.×
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R4 = 
0 00002

0 0321 0 6
.

. .×  , R5 = 
01

200 1
.
×

 = 0.0005°C/W

1
Req

=
×

+
×

+
×155 0 2

0 00002
0 0321 0 6

0 00002
200 0 2
0 00002

. .
.

. .
.

.
.

 Req = 0.464 × 10–6

R = 0.0065 + 0.464 × 10–6 + 0.0005 = 0.00695°C/W

A
20%

250°C

A
C 60%

20%B

k = 15.5 W/mK

Air gap

35°C

k = 200 W/mK

0.1 m 0.02
mm

0.1 m

B

(a)

R1

T1

Req R5

T2

Q

T1

R2

T2

Q

250 C0 R1 R3

R4

R5 35 C0

(b) (c)

Fig. Ex. 2.14. Model and equivalent circuit.

Q = ∆T
R

= −250 35
0 00695.  = 30926 W

contact resistance = 0.464 × 10–6°C/W
Temperature drop at contact = Q . Req = 0.0143°C.

SOLVED PROBLEMS

The problems in this section are on steady state heat conduction involving the various
situations discussed in this chapter. Most of the problems are closed end type and have a
unique solution. A situation involving n variables may give rise to n type of problems at least.
As an example, the equation for heat flow through a plane wall, is given below in six forms.
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 Q = T T
L kA
1 2−

/ ...(1)

 L = T T
Q kA

1 2−
/

...(2)

k = Q . L/A (T1 – T2) ...(3)
 A = Q . L/k (T1 – T2) ...(4)
T1 = T2 + QL/kA ...(5)
T2 = T1 – QL/kA ...(6)

It is not necessary to formulate and remember all the various explicit forms. However,
one has to be adept in spotting the specified variables and the one to be determined and get the
explicit form from the general one. Checking the answer is also facilitated by such formulations.
Problem 2.1: The inside of a furnace wall is at 1000°C and with the existing wall of material
with thermal conductivity of 1.7 W/mK looses 2.5 kW/m2 when the outside is exposed to
convection to air at 30°C with h = 27 W/m2K. Determine the wall thickness. Additionally 75
mm thickness of insulation with k = 0.15 W/mK is added on the inside. The furnace wall
temperature and the surrounding temperature and convection coefficient remain unchanged.
Determine the reduction in heat flow and reduction in the outside surface temperature. Also
find the overall heat transfer coefficient and the temperature gradient in each layer.
Solution:

Case 1: Fig. P. 2.1(a)

1000°C

Q = 2500 W/m
2

T2

30°C

L

h = 27 W/m K
2

30°C

k = 1.7 W/mK

1000°C

T2

30°C

h = 27 W/m K
2

30°C

k = 1.7 W/mK2

0.597 m075 m

k = 0.15 W/mK1

1 2

QT3

Fig. P. 2.1. Problem model.

To find the outside wall temperature: Consider unit area and convection on the
outside Q = hA∆T, A = 1

2500 = 27(T2 – 30) T2 = 122.6°C
To find the thickness:  Q = ∆T/(L/kA),  A = 1

2500 = 1000 122 60− .
L / 1.7 ∴ L = 0.597 m

The temperature gradient = – 1000 122 60− .
0.597  = – 1469.7°C/m
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Case 2: Fig. P. 2.1(b)

Heat flow = ∆T
R R R1 2 3+ +

= −

+ +

1000 30
0 075
015

0597
17

1
27

.
.

.
.

= 
970

0 888.  = 1092.1 W

% reduction is 100 2500 1092 1
2500

−L
NM

O
QP

.  = 56.32%

The outside wall temperature is found using the convection layer
 Q = h(T2 – 30) = 1092.1 h = 27 W/m2K

∴ T2 = 70.45°C, 1092.1 = ( . ) .
.

T3 70 45 17
0597

−
∴ T3 = 453.95°C

check using second layer: Q = 453 95 70 45
0 597 17

. .
( . / . )

−  = 1092 W, checks.

In the case of the plane wall there is only one area to be considered. In this problem the
area is 1m2

∴  U . 1 = 1 1
0 075
015

0597
17

1
27

R R R1 2 3+ +
=

+ +.
.

.
.

 U = 
1

0 5 0 351 0 037
1

0 8882. . . .+ +
=  = 1.126 W/m2°C

Check:  Q = UA(∆T) = 1.126 × 1(1000 – 30) = 1092.2 W
The temperature gradient in the first layer is

= – 1000 453 95
0 075

− .
.  = – 7280.67°C/m

The temperature gradient in the second layer is

= – 
453 95 70 45

0 597
. .

.
−

 = – 642.38°C/m.

Problem 2.2: A composite slab is made of 75 mm thick layer of material with thermal
conductivity 0.15 W/mK and 0.597 m thick layer of material of thermal conductivity 1.7 W/
mK. The inner surface is maintained at 1000°C while the outer surface was exposed to convection
to air at 30°C with convection coefficient of 27 W/m2K. The heat flow was measured as 1080 W
as against the calculated value of 1.092 kW. It is presumed that this may be due to contact
resistance. Determine the contact resistance and the temperature drop at the interface.

Solution:  Q = ∆T
R R

= −1000 30  = 1080 W ∴ R = 0.898°C/W

 R = 0.898 = 0 075
0 15

0 597
17

1
27

.
.

.
.

+ +  + Rcontact.

∴  Rcontact = 0.00995°C/W
 ∆Tcontact = 0.00995 × 1080 = 10.75°C.
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Problem 2.3: A double glazed window is made of 2 glass panes of 6 mm thick each with an air
gap of 6 mm between them. Assuming that the air layer is stagnant and only conduction is
involved, determine the thermal resistance and overall heat transfer coefficient. The inside is
exposed to convection with h = 1.5 W/m2K and the outside to 9 W/m2K. Compare the values
with that of a single glass of 12 mm thickness. The conductivity of the glass = 1.4 W/mK and
that for air is 0.025 W/mK.

Glass Air gap Glass
k = 1.4 W/mK

k = 0.025 W/mK

h = 15 W/m K1
2

h = 9 W/m K2
2

6 mm 6 mm 6 mm
R1 R3 RC2

T�2

R2RC1

T�1

Q

Q

(a) (b)

Fig. P. 2.3. Problem model.

Solution: Considering unit area
Double glazing: (Fig. P. 2.3)

Total resistance = 
1

15
0 006

14
0 006
0 025

0 006
14

1
9

+ + + +.
.

.

.
.
.

= 0.067 + 0.0043 + 0.24 + 0.0043 + 0.11 = 0.426°Cm2/W

UA = 1
ΣR

 , A = 1 here

 U = 1 1
0 426ΣR

=
.  = 2.35 W/m2°C

Single glass,  U = 1/
1

15
0 012

14
1
9

+ +L
NM

O
QP

.
.  = 5.37 W/m2°C

The heat flow will be almost doubled for the same temperature drop. The resistance for
some unit of thickness like inch or cm is often used to compare insulating materials.
Problem 2.4: A composite wall is made up of 3 layers of thicknesses 25 cm, 10 cm and 15 cm
with thermal conductivities of 1.7, kB and 9.5 W/mK. The outside surface is exposed to air at
20°C with convection coefficient of 15 W/m2K and the inside is exposed to gases at 1200°C with
a convection coefficient of 28 W/m2 K and the inside surface is at 1080°C. Determine the unknown
thermal conductivity, all surface temperatures, resistances of each layer and the over all heat
transfer coefficient. Compare the temperature gradients in the three layers.
Solution: As the gas temperature, inside surface temperature and convection coefficients are
known, the heat flow can be found. Assuming unit area,

 Q = 28 (1200 – 1080) = 3360 W
The heat flow is the same allthrough and is equal to Total temperature deep/Total

resistance



VED

c-4\n-demo\damo2-2

C
ha

pt
er

 2

STEADY STATE CONDUCTION 57

∴ 3360 = 1200 20
1

28
0 25
17

0 1 0 15
9 5

1
15

1180

0 2652 0 1
−

+ + + +
=

+.
.

. .
.

. .
k kB B

k = 9.5 W/mKC

h = 28 W/m K1
2

h = 15 W/m K2
2

0.1 m 0.15 m

1200°C

1080°C

120°C

0.25 m

20°C

k =
1.7 W/mK

A

20°C
A B C

T1

T2

T3

RA RC RC2

T�2

RBRC1

T�2

1200°C 20°C

1080 T1 T2 T3

Q

(a) (b)

Fig. P. 2.4.

 891.07 + 336
kB

 = 1180 ∴ kB = 1.163 W/mK

Total resistance = 
1

28
0 25
17

0 1
1163

0 15
9 5

1
15

+ + + +.
.

.
.

.
.  = 0.3512°Cm2/W

Overall heat transfer coefficient = U = 1
R

 = 2.85 W/m2K

To determine the surface temperatures, the heat flow is equated to the (temperature
drop/resistance) of each layer

 3360 = 1080
0 25 17

1− T
. / . ∴ T1 = 585.9°C

3360 = T T T1 2 2
01 1163

585 9
01 1163

−
=

−
. / .

.
. / . T2 = 297°C

3360 = T T T2 3 3
015 95

297
015 95

− = −
. / . . / . ∴ T3 = 243.95°C

Check using outside convection

 Q = 243 95 20
1 15
.
/

−  = 3359.25 W

Resistance  of  layers  including  convection  are: 0.0357, 0.147, 0.086, 0.0158, 0.067°C
m2/W

Temperature gradient = 
T T
x x

2 1

2 1

−
−

 1st layer = 585.9 – 1080 = – 494.1°C. gradient = ∆T
L

=
– .

.
4941
0 25  = – 1976.4°C/m
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2nd layer = 297 – 585.9 = – 288.9°C. gradient = – 2889°C/m
3rd layer = 243.95 – 297 = – 53.05°C. gradient = – 353.7°C/m

Higher the resistance larger the gradient.
Problem 2.5: A composite wall is made of 12 mm and 18 mm layers of materials of thermal
conductivity 12.5 and 22.5 W/mK. The contact resistance between surfaces is 5 × 10–4 m2 °C/W.
The hot side is exposed to fluid at 400°C with h = 75 W/m2K and the cold side is exposed to
fluids at 60°C with h = 400 W/m2K. Determine the heat flow, temperature drop at various
resistances and overall heat transfer coefficient. Comment on the contribution of contact
resistance.
Solution: The specified data are shown in Fig. P. 2.5. Assuming unit area

400°C

T1

T2

T2	

T3

60°C


T1


T2


T3


T4


T5

k = 12.5 W/m K1
k = 22.5 W/m K2

h = 75 W/m K1
2

400°C

0.012 m 0.018 m

h = 400 W/m K2
2

60°C

Q

R1 R2 RC2RSRC1

400°C T2 T2	 T3T1 60°C

Fig. P. 2.5. Problem model

Total resistance = 1 1
1

1

1

2

2 2h
L
k

R L
k h

+ + + +contact

= 1
75

0 012
12 5

5 10 0 018
22 5

1
400

4+ + × + +−.
.

.
.

= 0.018093333 m2 K/W

 U = 1
R  = 55.27 W/m2K

Q = ∆T
R

= −400 60
0 018093333.  = 18791.45 W

Temperature drop:
1st convection layer:  Q = h1(T∞ – T1) ∴ T1 = 149.447°C

18791.45 = 75(400 – T1) ∆T1 = 250.553°C

1st conduction layer Q = ∆T
k

T
L /

=
−149 447

0 012 125
2.

( . / . )
∴ T2 = 131.407°C ∆T2 = 18.04°C
Contact surface drop: ∆T3 = Q.R 5 × 10–4 × 18791.45 = 9.4°C
∴ T2

1 = 122°C
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2nd conduction layer

Q = ∆T
L K2 / 2

∆T4 = Q × L
K

2

2

1879145 0 018
225

= ×. .
.

∆T4 = 15.03°C T3 = 122 – 15.03 = 106.97°C
Check: using last convection layer

 Q = h(∆T5) = 400(106.97 – 60) = 18788 W checks
The contribution of contact resistance is small as this involves a temperature drop of

9.4°C out of 340°C. This is the general order of contact resistance the heat flow calculated
neglecting contact resistance is 19325.50 W. Which is higher by 2.76%. This is less than errors
due to uncertainty in values of k. However, whenever possible the contact resistance should be
taken into account.
Problem 2.6: A composite slab is made of three layers 15 cm, 10 cm and 12 cm thickness. The
first layer is of material with thermal conductivity 1.45 for 60% of the area and the rest is of
material with conductivity of 2.5 W/mK. The second layer is made of material with conductivity
of 12.5 W/mK for 50% area and of material with conductivity 18.5 W/mK is used for the other
50%. The third layer is of single material of thermal conductivity 0.76 W/mK. The slab is
exposed on one side to warm air at 26°C and to cold air at – 20°C on the other side. The convection
coefficients are 15 and 20 W/m2K on the inside and outside respectively. Determine the heat
flow and interface temperatures.
Solution: The thermal resistances of the five material section are found assuming a total area
of 1 m2. Refer Fig. P. 2.6.

RA

RB RC

RD

Q

RC1

26°C

RE RC2

– 20°C

RC1 R0 RC2Req1 Req2

26°C – 20°C
Q

k = 2.5 k = 12.5 k = 0.76

B, 40%

C, 50%

D, 50%

k = 1.45 k = 18.5

EA, 60%

1 2 3 4

0.15 m 0.1 m 0.12 m

h = 20 W/m K2
2

– 20°C

h = 15 W/m K1
2

26°C

(a)

(b)

(c)

Fig. P. 2.6. Problem model.

∴  Rc1 = 
1

1 15×  = 0.06667, RA = 
0 15

145 0 6
.

. .×  , RB = 
0 15

0 4 2 5
.

. .×

∴ RC = 
0 1

12 5 0 5
.

. .×  , RD = 
0 1

18 5 0 5
.

. .×  , RE = 
0 12

0 76 1
.

. ×  = 0.1579

 Rc2 = 
1

1 20×
 = 0.05
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The equivalent resistance for the parallel paths are found using

 1/Req = 1 1
1 2R R

+  where R1 and R2 are the resistances in parallel

∴ 1/Req1 = [1/(0.15/1.45 × 0.6)] + [1/(0.15/0.4 × 2.5)]
∴  Req1 = 0.0802 m2C/W
∴ 1/Req2 = [1/(0.1/18.5 × 0.5)] + [1/(0.1/12.5 × 0.5)]
∴  Req2 = 0.006452 m2C/W

 ΣR = 0.06667 + 0.0802 + 0.006452 + 0.1579 + 0.05 = 0.3612

∴  Q = ∆
Σ

T
R

= − −26 20
03612

( )
.  = 127.35 W/m2

Interface temperatures:

face 1:  Q = ∆T
R

T2

1
= −26

1 15
1

/  = 127.35

∴ ∆T1 = 8.49 ∴ T1 = 17.51°C

face 2:  Q = ∆ ∆T
R

T2

eq1

2
0.0802

=  = 127.35

∴ ∆T2 = 10.21°C ∴ T2 = 7.3°C

face 3: Q = ∆ ∆T
R

T3

eq2

3
0.006452

=  = 127.35

∴ ∆T3 = 0.82°C ∴ T3 = 6.48°C

face 4:  Q = ∆ ∆T
R

T4

4

4
0.12 / 0.76

=  = 127.35

∴ ∆T4 = 20.11°C ∴ T4 = – 13.63°C
Check: heat flow by convection on the cooler side:

h {– 13.63 – (– 20)} = 20 × 6.372 = 127.44 W
It may be noted that some heat flow occurs between A and B as well as between C and D

at their interface and hence the temperature variation in individual materials cannot be
established by this analysis.
Problem 2.7: A heat flux of 1500 W/m2 is incident on the surface of a slab 10 cm thick with
thermal conductivity of 7.5 W/mK. The hot side is found to be at 120°C. On the otherside, the
heat is passed on to the surroundings at 30°C both by convection and radiation. It radiation is
ideal, determine the convection coefficient and also the share of heat flow between the two
processes.
Solution: The specified data are shown in Fig. P. 2.7. Looking at the equivalent circuit,
Fig P. 2.7(b), the value of h is identified as the unknown. The value of h can be found if the
surface temp. is determined. Using the conduction layer only

Q = 1500 = 120
01 7 5

2− T
. / .

∴ T2 = 100°C
To find hr, temperatures should be in absolute units

T2 = 273 + 100 = 373 K, Ts = 273 + 30 = 303 K
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0.1 m

k = 7.5 W/mK

120°C

Q = 1500 W/m
2

Qr

Qcv

T2

h = ?

T = 30°Cs

1/hr

L/k

T = 120°C1 T = 30°Cs

1/h
T = 30°C�

(a) (b)

Fig. P. 2.7. Problem model.

  1/hr = 
1

( ) ( )2 2
2 2σ T T T Ts s+ +

=
× + × +−

1
5 67 10 373 303 373 3038 2 2. ( ) ( )

= 0.112973 m2°C/W

 Q = 100 30−
R

 = 1500 ∴ R = 0.0466°Cm2/W

Using the parallel circuit (Fig. 2.7 b)
1
R

 = hr + h ∴ h = (1/0.0466) – (1/0.112973)

∴ h = 12.58 W/m2K
Qr = σ (T2

4 – Ts
4) = 5.67 (3.734 – 3.034) = 619.62 W 41.3%

Qcv = 12.58 (100 – 30) = 880.6 W. 58.7% Total: 1500.72 W checks.
Problem 2.8: A 2 kW heater element of area 0.04 m2 is protected on the backside with insulation
50 mm thick of k = 1.4 W/mK and on the front side by a plate 10 mm thick with thermal
conductivity of 45 W/mK. The backside is exposed to air at 5°C with convection coefficient of
10W/m2 K and the front is exposed to air at 15°C with convection coefficient including radiation
of 250 W/m2K. Determine the heater element temperature and the heat flow into the room
under steady conditions.
Solution: The equivalent circuit can be drawn as in Fig. 2.8(b).

Q1 + Q2 = 2000 W Q1 = To −

×
+

×

15
0 01

45 0 04
1

250 0 04
.

. .

 = 9.4737 (To – 15)

Q2 = To −

×
+

×

5
0 05

14 0 04
1

10 0 04
.

. . .

 = 0.29473 (To – 5)

Q1 + Q2 = 9.4737 (To – 15) + 0.29473 (To – 5) = 2000
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T0

T2
5°C

Q2 Q1

50 mm 10 mm

h = 10 W/m K
2

15°C

h = 250 W/m K
2

Heater
Q

T1

k = 1.4 W/mK

RC2 R1

5°C T2 T0 T1

R2

15°C

Q

RC1

Q2 Q1

(a) (b)

Fig. P. 2.8. Problem Model.

 9.7684 To – 143.58 = 2000 ∴ To = 219.44°C
Room side

 Q1 = 
( . )

.
. .

219 44 15
0 01

45 0 04
1

250 0 04

−

×
+

×

 = 1936.8 W, 96.84%

Back side  Q2 = ( . )

.
.

. .

219 44 5
1

10 0 04
0 05

14 0 04

−

×
+

×

 = 63.2 W, 3.16%.

Surface temperature ∴ Room side

∆T1 = Q1 × 1 1936 8
250 0 041h A

=
×

.
.

 = 193.68°C

T1 = 193.68 + 15 = 208.68°C

Back side ∆T2 = Q2 × 1 63 2 1
10 0 042h A

= ×
×

.
.

 = 158°C

T2 = 158 + 5 = 163°C.
Problem 2.9: To reduce frosting it is desired to keep the outside surface of a glazed window at
4°C. The outside is at – 10°C and the convection coefficient is 60 W/m2K. In order to maintain
the conditions a uniform heat flux is provided at the inner surface which is in contact with
room air at 22°C with a convection coefficient of 12 W/m2K. The glass is 7 mm thick and has a
thermal conductivity of 1.4 W/mK. Determine the heating required per m2 area

The data are shown is Fig. P. 2.9.
Solution: The heat flow through the barrier = heat convected on the outside

= h (T – T∞1)
= 60 (4 – (– 10)) = 840 W/m2

The heat flow through the barrier is the same

840 = ∆T
R

 = T1 4
0 007 14

−
. / .  ∴ T1 = 8.2°C
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The heat flux + heat received by convection from room = heat flow through barrier
 heat flux = heat flow through glass barrier – heat convected from inside

= 840 – 12 (22 – 8.2) = 840 – 165.6 = 674.4 W

RC2 R1

22°C T1 – 10°C

Q

RC1

Q2 Q1
T222°C

0.007 mm

h = 12 W/m K
2

– 10°C

h = 60 W/m K
2T1

k = 1.4 W/mK

Heater

– 10°C

4°C

(a) (b)

Fig. P. 2.9. Problem model.

If it is desired that the inside well temperature and room temperatures should be equal
for comfort, determine the heat flux. In this case T1 = 22°C and T2 is not known

But heat conducted = heat convected

 22 − T2
0 007 14. / .  = 60 (T2 – (– 10))

solving 22 – T = 0.3 T + 3,T2 = 14.62°C

Q = 22 − 14 62
0 007 14

.
. / .  = 1477 W

Check  Q = h(T – T∞) = 60 × 24.62 = 1477.2 W
This is almost double.

Problem 2.10: In a slab of material 0.25 m thick and having
a thermal conductivity of 45 W/mK, the temperature °C at x
under steady state is given by T = 100 + 200x – 400x2 when x is
measured from one face in m. Determine the heat flow at
x = 0, x = 0.125 and x = 0.25 m and also the temperatures and
temperature gradients at these planes. If the difference in heat
flow at these sections is due to the heat generation, determine
the heat generation rate per unit volume.
Solution: The temperatures are determined from the
equation

T = 100 + 200x – 400x2

at x = 0. T = 100°C

0.25 m
x

Q

k = 45 W/mK

118.75°C

125°C

T =

100 + 200x – 400x °C

x
2

100°C

Fig. P. 2.10. Problem model.
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at x = 0.125 T = 100 + 200 × 0.125 – 400 × 0.1252 = 118.75°C
at x = 0.25 T = 100 + 200 × 0.25 – 400 × 0.252 = 125°C

Differentiating the above equation w.r.t. x
dT
dx  = 200 – 800x Considering unit area

at x = 0, dT
dx

 = 200 heat flow = – kA dT
dx

at x = 0.125, dT
dx

 = 100

at x = 0.25,  dT
dx

 = 0, at x = 0 Q = – 45 × 1 × 200 = – 9000 W

at x = 0.125,  Q = – 45 × 1 × 100 = – 4500 W
at x = 0.25 Q = – 45 × 0 = 0

Heat  flow  over 1m2 and thickness 0.25 m is 9000 W for 1m3 heat generation is 36000
W/m3

This problem illustrates the use of the temperature gradient in the determination of
heat flow. The general one dimensional heat flow equation with heat generation can also be
obtained from the above as detailed

 d T
dx

2

2  = – 800 or d T
dx

2

2  + 800 = 0

or d T
dx

2

2
36000

45
0+ = or d T

dx
q
k

2

2 0+ =

Problem 2.11: A  composite  cylinder  consists of 10 cm
radius steel pipe of 25 mm thickness over which two layers
of insulation 30 mm and 35 mm are laid. The conductivi-
ties are 25 W/mK, 0.25 W/mK and 0.65 W/mK. The in-
side is exposed to convection at 300°C with h = 65 W/m2K.
The outside is exposed to air at 30°C with h = 15 W/m2K.
Determine  the  heat  loss/m. Also find the interface tem-
peratures.
Solution: The heat flow is found by,

 Q = 
Overall temperature drop
Total thermal resistance

considering 1 m length:

Inside convection:  R1 = 1 1
65 2 01 11h A

=
× × ×π .

= 0.0245°C/W

Conduction layer 1: R2 = 
ln

ln
r
r
k l

2

1

12
0 125 0 1

2 25 1π π
=

× ×
( . / . )

 = 0.0014206°C/W

Fig. P. 2.11. Problem model.

0.1 m

0.125 m
0.155 m

0.190 m

300°C
h = 65 W/m K1

2

k = 0.65 W/mK3

25 W/m K
2

30°C

k = 0.25 W/mK2

k = 25 W/mK1

1 2 3 4
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Conduction layer 2: R3 = 
ln ( . / . )

.
0 155 0 125

2 0 25 1π × ×  = 0.13694°C/W

Conduction layer 3: R4 = 
ln ( . / . )

.
0 190 0 155

2 0 65 1π × ×  = 0.04985°C/W

Convection on the outside R5 = 
1 1

15 2 0 190 12 2h A
=

× × ×π .  = 0.05584°C/W

as Total R = 0.2685459, Q = 300 30
0 2685459

−
.  = 1005.42 W/m

To find interface temperatures:

 Q = ∆T
R

1

1
 , ∆T1 = Q × R1 = 1005.42 × 0.0245

∆T1 = 24.61 T1 = 275.39°C
Similarly ∆T2 = 1.43 T2 = 273.96°C

∆T3 = 137.69 T3 = 136.27°C
∆T4 = 50.12 T4 = 86.15°C
∆T5 = 56.15

Total = 270.00 checks
Check: Q = hA ∆T = 15 × 2π × 0.19 × 1 (86.15 – 30)

= 1005.48 W (using outside convection)
Note: 1. The temperature drop is highest for the layer with low value of conductivity.
2. The drop in the metal wall is very small.

Problem 2.12: A 6 cm thick insulation is laid on a steam pipe with surface temperatures of
240°C and diameter of 30 cm with a contact resistance of 0.02 m2°C/W. The conductivity of the
material is 0.4 W/mK. Under natural convection conditions to air at 30°C the convective heat
transfer coefficient has a value of 15 W/m2K. When winds blow (the pipe runs outside) the
coefficient of convective heat transfer reaches a value of 75 W/m2K. Determine the heat loss/m
length in these cases. Also find the temperatures at interfaces, the temperature gradient at the
two surfaces under free convection conditions. Plot the variation of temperature along the radius.
Solution: The data are presented in Fig. P2.12(a)

 Q = ∆
Σ

T
R

There are three resistances:
1. Contact resistance, 2. Conduction resistance and 3. Convection resistance. Considering

1 m length.
1. Contact resistance = 0.02 m2°C/W. This is for 1 m2. The contact area is 2πrl = 2 × π ×

0.15 × 1 m2. Contact resistance for the area considered

= 
0 02

2 0 15 1
.

.× × ×π  = 0.02122066°C/W

2. Conduction resistance = ln r
r
2

1

F
HG
I
KJ /2πkl = ln 0 21

0 15
.
.
F
HG
I
KJ / 2 × π × 0.4 × 1 = 0.1338781°C/W
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0.15 m

0.21 m

240°C

k = 0.4 W/mk
R = 0.02 m °C/Ws

2

200

100

T°C

0
0.15

r, m

30°C

h = 15 W/m K (Case 1)
2

h = 75 W/m K (Case 2)
2

T1

Rs RcR1

Q
240°C 30°C

0.17 0.19 0.21

218.33

167.5

122.3

81.6

(b)

(a)

Fig. P. 2.12. Problem model.

3. Convection resistance on the outside = 1
hAo

Case 1:  
1

15 2
1

15 2 0 21 10×
=

× × ×π πr l .  = 0.05052538°C/W

Case 2: 
1

75 2 0 21 1× × ×π .  = 0.010105075°C/W

Case 1: Total resistance (R1) = 0.02122066 + 0.1338781 + 0.05052538 = 0.205624

heat flow = ∆T
R

= −240 30
0 205624.  = 1021.28 W/m length

R2 = 0.02122066 + 0.1338781 + 0.010105075 = 0.01652

Case 2:  Q = ∆T
R2

= −240 30
01652.  = 1271.15 W, an increase of 24.5%

The temperatures at various locations are calculated under free convection conditions
The pipe surface temp.: 240°C
Temp. drop in the contact resistance

= Q × Rcontact = 1021.28 × 0.02122066 = 21.67°C
Insulation inside surface temp.

= 240 – 21.67 = 218.33°C
Temperature drop in the insulation

= Q × Rinsulation = 1021.28 × 0.1338781 = 136.73°C
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Outside surface temp. = 218.33 – 136.73 = 81.6°C
Check: Convection heat flow on the outside

= 15 × 2π × 0.21 × 1 (81.6 – 30) = 1021.27 W
To find temperature gradient at the inner surface:

 Q = – kA dT
dr

015. m

1021.28 = 0.4 × 2π × 0.15 × 1 dT
dr

dT
dr

∴  inner = – 2709°C/m

Outside: 1021.28 = 0.4 × 2π × 0.21 × 1 dT
dr

dT
dr

∴  outer = – 1935°C/m

To find and plot temperature along the radius, a radius of 0.17, 0.19 are chosen

 Q = 1021.28 = ∆T

ln 017
015 2 0 4 1.
. / .F

HG
I
KJ × ×π

∴  ∆T = 50.86°C
T0.17 = 218.33 – 50.86 = 167.47°C

 1021.28 = 
∆T

ln 0 19
0 15

2 0 4 1.
.

/ .F
HG

I
KJ × ×π

 , ∆T = 96.06°Cs

T0.19 = 218.33 – 96.06 = 122.27°C
These are plotted in Fig. P. 2.12(b).

Problem 2.13: Insulation is added in 3 cm layers over a steel pipe of 30 cm dia. The convection
on the outside is 25 W/m2K. The conductivity of the material is 0.47 W/mK. Determine the
total thermal resistance for the addition of 5 such layers. Compare the % increase in resistance
and % increase in the volume of material over the first layer.
Solution: Calculations are based on : 1 m length

R = 1
2

2

1
hA

r
r
ko

+
ln

π
 ; and V = π (r2

2 – r1
2) × 1

A = 2πrl l = 1 m, k = 0.47 W/mK h = 25 W/m2K

Insulation r1 r2 Thermal % increase in Volume % increase in Q for
thickness resistance R over the V over the 100°C

previous previous drop

0 0.15 0.15 0.0424 — — — 2358.5
0.03 0.15 0.18 0.0971 129.0 0.0311 — 1029.9
0.06 0.15 0.21 0.1443 48.6 0.0679 118.2 693.0
0.09 0.15 0.24 0.1857 28.7 0.1103 62.4 538.5
0.12 0.15 0.27 0.2226 19.9 0.1583 43.6 449.2
0.15 0.15 0.30 0.2559 15.0 0.2121 34.0 390.8
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Addition of insulation beyond a certain point is marginally effective as seen from the
tabulation. This is due to the reduction in convective resistance. Another point to be noted is

that  resistance  increases  continuously  but  at  a  lower  rate.  Critical  radius  Rc = k
h

= 0 47
25
.

= 0.0188, much smaller than the base radius. For larger diameters, the addition of insulation
will generally reduce the heat flow.
Problem 2.14:  A copper wire 5 mm dia carrying current generates 66.76 W/m length

(i) If the surface is exposed to air at 30°C with h = 25 W/m2K. Determine the surface
temperature.

(ii) If a very thin coating of varnish like insulation with a contact resistance of 0.02 m2°C/
W is added, determine the surface temperature.
Solution: Case 1: heat generated = heat convected over the surface

66.76 = 25 × π × 0.005 × 1(T – 30)
∴  T = 200°C
Case 2: heat generated = heat conducted = heat convected

or  Q = ∆T
R

.

The resistance now is made up of contact resistance and convection resistance.

contact resistance = 
0 02

1
0 02
0 005 1

. .
.π π× ×

=
× ×d  = 1.273°C/W

convection resistance = 1 1
25 0 005 1hA

=
× × ×π .

 = 2.5465°C/W

 Q = T −
+
30

25465 1 273( . . )
 = 66.76 W, T = 255 + 30 = 285°C.

Problem 2.15: A copper wire of 5 mm dia carrying current generates 294 W/m length.  It is
exposed to convection at 30°C with h = 25 W/m2K. investigate the effect of adding an insulation
with k = 0.5 W/mK in steps of 2.5 mm thicknesses, on the wire.

Solution: The wire temperature is found using ∆T
R

 = 294 where

 R = 1
2

2

1
hA

r
r
k

+
ln

π
Inner radius = 0.0025 m, 1 m length. The results are tabulated.

Outer radius Conduction Convection Total Wire surface
m resistance °C/W resistance °C/W resistance °C/W temperature °C

Bare wire — 2.5465 2.5465 778.67
0.0050 0.2206 1.2732 1.4938 469.2
0.0075 0.3497 0.8488 1.1985 382.2
0.0100 0.4413 0.6366 1.0779 346.9

(Contd...)
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0.0125 0.5123 0.5093 1.0216 330.3
0.0150 0.5703 0.4244 0.9947 322.5
0.0175 0.6194 0.3638 0.9832 319.1
0.0200 0.6619 0.3183 0.9802 318.2
0.0225 0.6994 0.2829 0.9823 318.8
0.0250 0.7329 0.2546 0.9875 320.33

Note: The wire surface temperature actually decreases by the addition of insulation. After a
certain thickness it again increases. The radius for this condition is called the critical radius and this is
given by

rc = 
k
h

= 0 5
25
.

 = 0.02 m or 20 mm.

Problem 2.16: A 10 mm OD pipe has cold fluid flowing inside which keeps the surface
temperature at 3°C. The pipe is exposed to air at 30°C with a convection coefficient of 10 W/m2K.
Insulation with thermal conductivity of 0.15 W/mK is added in 5 mm layers. Investigate the
effect of this addition on the heat flow in. The pipe surface temperature, surrounding temperature
and convection coefficients remain unchanged.

Solution: Heat flow = ∆T
R R Rc k+

= −30 3

 RC = convection resistance = 1
hA

Rk = 
ln r

r
k

2

1
2

F
HG
I
KJ

π  , l = 1 m, r1 = 5 mm.
The values calculated are tabulated:

Insulation outer Resistance °C/W heat flow/W/m
thickness radius

mm m Rk Rc Total R

0 0.005  — 3.1831 3.1831 8.48
5 0.010 0.7355 1.5915 2.3270 11.60

10 0.015 1.1657 1.0610 2.2267 12.13
15 0.020 1.4709 0.7958 2.2667 11.91
20 0.025 1.7077 0.6366 2.3443 11.52
25 0.030 1.9011 0.5305 2.4316 11.10

The addition of insulation has actually increased the heat leakage. This is due to the
large reduction in convection resistance compared to the increased conduction resistance. It

may be noted that the resistance decreased and then increased. rc = k
h

= 0 15
10
.  m = 15 mm. This

is verified from the tabulation. The bare pipe appears to be better. This situation is met with in
smaller diameter pipes.

In the case of insulating electrical wire the increased heat flow is desirable as this will
keep the wire temperature at lower levels.
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Problem 2.17: A steel pipe of 0.4 m dia carrying oil in the cold region is proposed to be protected
by insulations A and B of 8 cm and 10 cm thickness with conductivities of 0.03 and 0.3 W/mK.
These are purchased in required volumes in powder form. During the execution, by mistake the
material B with conductivity 0.3 W/mK was applied first and then the other material. Investigate
the heat transfer rate in the two situations. The data are presented in Fig. P. 2.17(a) and (b).

0.2 m
0.28 m

0.38 m

k = 0.3 W/mK

k = 0.03 W/mK

A B

0.2 m
0.326 m

0.38 m

k = 0.3 W/mK

k = 0.03 W/mK

AB

As Designed As Executed
(a) (b)

Fig. P. 2.17. Problem model.

Solution: The volume of materials applied are the same, considering 1 m length
Volume of A = π (0.282 – 0.22) × 1 = 0.12064 m3

Volume of B = π (0.382 – 0.282) × 1 = 0.2073 m3

After application the outside radius of B is
0.2073 = π (r2 – 0.22) × 1 r2 = 0.326 m

The outer radius has to be 0.38 m
Check:  V = π (0.382 – 0.3262) × 1 = 0.12064 m3

Case 1: Total resistance (1 m length)

 
ln ln ln ln

r
r
k

r
r
k

2

1

1

3

2

22 2

0 28
0 2

2 0 03

0 38
0 28

2 0 3π π π π
+ =

×
+

×

.
.
.

.

.
.

= 1.785 + 0.162 = 1.947°C/W

Case 2:  
ln ln0 326

0 2
2 0 3

0 38
0 326

2 0 03

.
.
.

.
.

.π π×
+

×  = 0.2592 + 0.8131 = 1.0723°C/W

The resistance is reduced to 55% of the value and heat flow will increase. For insulation
this is not desirable. Thus the order of application becomes important.
Problem 2.18: Orders were placed to supply formed layers of insulation A and B of thickness
5 cm each to be applied over a pipe of 0.3 m dia, the insulation A to be of 0.3 m ID and 0.4 m OD
and insulation B is to be of 0.4 m ID and 0.5 m OD. The conductivities of A and B are to be 0.04
and 0.08 W/mK. However the supplier by mistake has supplied insulation A of size 0.4 m ID
and OD of 0.5 m and insulation B of 0.3 ID and 0.4 m OD. Check whether there will be any
change in heat flow.
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Solution: Case 1: As proposed: (1 m length)

Resistance = 
1

2
1

2
2

1

3

2π πk
r
r k

r
rA B

ln ln+

= 
1

2 0 04
0 2
0 15

1
2 0 08

0 25
0 2π π×

+
×.

.
. .

.
.

ln ln

= 1.145 + 0.444 = 1.589°C/W
Case 2: As supplied:

0.15 m
0.2 m

0.25 m

k = 0.04 W/mK

k = 0.08 W/mK

AB

0.15 m
0.2 m

0.25 m

k = 0.08 W/mK

k = 0.04 W/mK

A B

Proposed Supplied

(a) (b)

Fig. P. 2.18. Problem model.

Resistance = 
1

2 0 08
0 2
0 15

1
2 0 04

0 25
0 2π π×

+
×.

.
. .

.
.

ln ln

= 0.572 + 0.888 = 1.46°C/W
There is a reduction of 8.1% in the resistance
For a given temperature drop, the heat flow will increase as reciprocal of the resistance

i.e. as
1

1584
1

146.
:

.
 i.e. 0.63 : 0.685 i.e. 1 : 1.087 or 8.7%.

Problem 2.19: A steel pipe of outside diameter 30 cm carries steam and its surface temperature
is 220°C. It is exposed to surroundings at 25°C. Heat is lost both by convection and radiation.
The convective heat transfer coefficient has a value of 22
W/m2K. Determine the heat loss per 1 m length. Check
the economical merits of adding insulation pads of 7.5
cm thickness with thermal conductivity of 0.36 W/mK.
The cost of heat is Rs. 200/- per 106 kJ. The cost of
insulation is Rs. 8000/m length. The unit is in operation
for 200 hr/year. The capital should be recovered in 2
years. After additing the insulation also the same
convection and radiation prevail over the surface.

The data specified are shown in Fig. P. 2.19.

+

Q

220°C

0.15
m

0.225 m k = 0.36 W/mK

h = 22 W/m K
2

25°C

Fig. P. 2.19. Problem model.
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Solution: Case 1: bare pipe
heat lost over the surface Q = heat convected + heat radiated

Q = h A (∆T) + σA(T1
4 – T2

4)
considering unit length

 Q = 22 × π × 0.3 × 1(220 – 25) + 5.67 × π × 0.3 {(220 + 2.73)4 – (25 + 2.73)4}
= 4043.23 + 2735.34 = 6778.57 W/m length.

Case 2: Surface temperature is not known let it be T.
Heat conducted = heat convected + heat radiated.
Using absolute temperature scale.

( )
.
.

273 220
0 225
0 015

+ − T

ln
 × 2π × 0.36 = 22 × π × 0.45 (T – 298)

+ 5.67 × π × 0.45 T
100

298
100

4 4F
HG
I
KJ − FHG

I
KJ

L
N
MM

O
Q
PP

This reduces to T
100

4F
HG
I
KJ  + 4.58T – 1578.2 = 0.

Solving by trial,  T = 321.3 K or 48.3°C.
Heat loss:

( . )
.
.

/ .

220 48 3
0 225
0 15

2 0 36

−

×ln π
 = 957.8 W

Saving = 6778.57 – 957.8 = 5820.77 W

 Cost of heat saved/year = 5820 70 2000 3600
109

. × ×  × 200 = Rs. 8382/-

Hence it is economical (109 – to convert Joule to 106 kJ), as cost is recovered in less than
a year.
Problem 2.20: A hollow cylinder has in internal diameter of 20 mm and thickness of 10 mm.
The inner surface is at 500°C and the outside is at 100°C. Determine the temperature at 2 mm
intervals and plot to scale.

The data are shown in Fig. P. 2.20 (a).

Solution: Using equation 2.17

T T
T T

3 1

2 1

ln

ln

−
−

=

0 012
0 01
0 02
0 01

.
.
.
.

∴ T3 500
100 500

−
−

 = 0.263 ∴ T3 = 394.8°C

T T
T T

4 1

2 1

ln

ln

−
−

=

0 014
0 01
0 02
0 01

.
.
.
.

∴
T4 500
100 500

−
−

 = 0.485 ∴ T4 = 305.8°C
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r = 0.011

100°C
Q

r = 0.0123

r = 0.0144

r = 0.0165

r = 0.0186

r = 0.022

500°C

T2
T6

T5

T4

T3

T1

500

400

300

200

100

0

395

306

229

161

100

0.01 0.02 0.04 0.06 0.08 0.01

r, m

T°C

Fig. P. 2.20. Variation of temperature along the radius in hollow cylinder.

T T
T T

5 1

2 1

ln

ln

−
−

=

0 016
0 01
0 02
0 01

.
.
.
.

∴ T5 500
100 500

−
−

 = 0.678 ∴ T5 = 228.8°C

T T
T T

6 1

2 1

ln

ln

−
−

=

0 018
0 01
0 02
0 01

.
.
.
.

∴
T6 500
100 500

−
−

 = 0.848 ∴ T3 = 160.8°C

The result is shown in Fig. P. 2.20(b).
Problem 2.21: A hollow spherical form is used to determine the conductivity of materials. The
inner diameter is 20 cm and the outer diameter is 50 cm. A 30 W heater is placed inside and
under steady conditions, the temperatures at 15 and 20 cm radii were found to be 80 and 60°C.
Determine the thermal conductivity of the material. Also find the outside temperature. If the
surrounding is at 30°C, determine the convection heat transfer coefficient over the surface. Plot
the temperature along the radius.

The data are presented in Fig. P. 2.21(a).
Solution: Under steady conduction, the heat input by the heater has to pass through this
layer between r = 0.15 m and 0.2 m

 Q = ∆T

k r r k
1

4
1 1

80 60
1

4
1

015
1

0 201 2π π−
F
HG

I
KJ

= −

× ×
−F

HG
I
KJ. .

 = 30

20 4
1

0 15
1

0 20

× × ×

−

π k

. .

 = 30 ∴ k = 0.199 W/mK
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0.1 m

k = ?

Q = 30 W

0.15 m
0.2 m

0.25 m

60°C
80°C

h = ?

T = 30°C�

120

80

40

0
0.1 0.15 0.2 0.25

80

60

Radius, m

(a) (b)

T°C
48

Fig. P. 2.21. Problem model.

To find the inside surface temperatures: Using the known temperature at 0.2 m

Q = Ti −

×
−LNM
O
QP

60
1

4 0199
1
01

1
0 2π . . .

 = 30 ∴ Ti = 120°C

For the outer surface Temperature

Q = 120
1

4 0199
1
01

1
0 25

−

×
−LNM
O
QP

To

π . . .

 = 30 ∴ To = 48°C

For the convection coefficient: h × 4π ro
2 (48 – 30) = 30

ro = 0.25 ∴ h = 2.12 W/m2K

check Q = 
60 48

1
4 0 199

1
0 2

1
0 25

−

×
−L

NM
O
QPπ . . .

 = 30 W checks.

The temperature plot is shown in Fig. P.2.21(b). The slope is higher at the inside surface
and lower at the outside surface. Why ?
Problem 2.22: A spherical container holding a cryogenic
fluid at – 140°C and having an outer diameter of 0.4 m is
insulated with three layers each of 50 mm thick
insulations of k1 = 0.02, k2 = 0.06 and k3 = 0.16 W/mK
(starting from inside). The outside is exposed to air at
30°C with h = 15 W/m2K. Determine the heat gain and
the various surface temperatures.

The data available are shown in Fig. P.2.22.

Solution: Heat flow = 
Temp. drop

Thermal resistance
0.2 m
0.25 m

0.3 m
0.35 m

– 140°C

h = 15 W/m K
2

T = 30°C�
1 2 3 4

k = 0.16 W/mK3

k = 0.06 W/mK2

k = 0.02 W/mK1

Fig. P. 2.22. Problem model.
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The resistance consist of convection resistance at the surface and conduction resistances
of three layers

These are: 1st layer = 1
4 0 02

1
0 2

1
0 25π ×

−F
HG

I
KJ. . .  = 3.979°C/W

2nd layer = 
1

4 0 06
1

0 25
1

0 3π ×
−F

HG
I
KJ. . .  = 0.884°C/W

3rd layer = 1
4 0 16

1
0 3

1
0 35π ×

−F
HG

I
KJ. . .  = 0.237°C/W

convection = 
1

4 0 35 152π × ×.  = 0.043°C/W

 Total resistance = 5.1432°C/W

 Q = 30 140 170
5143

− − =
( )

.R
 = 33 W (33.053)

To find the interface temperatures

 1st layer = T2 140
1

4 0 02
1

0 2
1

0 25

− −

×
−F

HG
I
KJ

( )

. . .π

 = 33.053 T2 = – 8.5°C

2nd layer = T T3 2
1

4 0 06
1

0 25
1

03

−

×
−F

HG
I
KJπ . . .

 = 33.053 T3 = 20.7°C

 3rd layer = T T4 3
1

4 016
1

03
1

035

−

×
−F

HG
I
KJπ . . .

 = 33.053 T2 = 28.53°C

Check: Q = 15 × 4π × 0.352 (30 – 28.53) = 33.94 W (using outside convection)
Problem 2.23: A spherical vessel of outside diameter 0.6 m
is insulated with a layer of thickness 0.16 m. The inside
surface is at – 190°C. The outside is at 20°C. Determine the
temperatures at 4 cm intervals and plot to scale.

The data is shown in Fig. P. 2.23. A quarter section is
shown due to symmetry.
Solution: Using equation 2.25

 
T T
T T

r r

r r

1

1 2

−
−

=
−

−

1 1

1 1
1

1 2

0.3 m

20°C
Q

0.34 m
0.38 m

0.42 m
0.46 m

– 190°C

5

4
3
2

Fig. P. 2.23. (a) Problem model.
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0

– 50

– 100

– 150

– 190

0.3 0.46

– 18

– 63

– 119

T°C

20∴ T at 0.34 radius, i.e. T3

  
T T
T T

T1 3

1 2

−
−

= − −
− −

190
190 20

3

= − −
−

190
210

3T  = 
1

0 3
1

0 34
1

0 3
1

0 46

. .

. .

−

−

∴ T3 = – 118.9°C

 
T T
T T

T1 4

1 2

−
−

= − −
− −

190
190 20

4

= 
− −

−
190

210
4T

 = 

1
0 3

1
0 38

1
0 3

1
0 46

. .

. .

−

−

∴ T4 = – 62.89°C

 
T T
T T

T T1 5

1 2

−
−

=
− −
− −

=
− −

−
=

−

−

190
190 20

190
210

1
0 3

1
0 42

1
0 3

1
0 46

4 4 . .

. .
∴ T5 = – 17.5°C
The plot is shown in Fig. P. 2.23(b).

Problem 2.24: A spherical vessel of 1 m outer dia contains hot fluid at 240°C investigate the
effect of adding 5 cm layers of insulation with k = 0.26 W/mK. The outside is exposed to air at
30°C with a convection coefficient of 18 W/m2K (including radiation). Compare the percentage
change in heat flow and material volume added (m3).
Solution: The data is presented in Fig. P. 2.24.

The tabulated quantities are calculated using:

Conduction resistance = 1
4

1 1
1 2πk r r

−
F
HG

I
KJ

Convection resistance = 
1

4 2
2πr h

Q = ∆T
R R1 2+

,

volume added = 
4
3  π (r2

3 – r1
3)

r1 = 0.50 m, k = 0.26 W/mK,
h = 18 W/m2K ∆T = 210°C

Fig. P. 2.23. (b) Radial tempera-
ture variation-sphere

Fig. P. 2.24. Problem model.

0.5 m

r m2

240°C

k = 0.26 W/mk

30°C

h = 18 W/m K
2



VED

c-4\n-demo\damo2-3

C
ha

pt
er

 2

STEADY STATE CONDUCTION 77

Fig. P. 2.25. (a)

The results are tabulated below:

Outer Conduction Convection Total Heat Total ∆Q/∆V
radius resistance resistance Resistance flow volume

(m) °C/W °C/W °C/W W added m3

0.50 — 0.017684 0.017684 11875
0.55 0.05563 0.014615 0.070265 2989 0.1733 51275
0.60 0.10202 0.012280 0.11430 1837 0.3812 5541
0.65 0.14126 0.010463 0.15172 1384 0.6268 1845
0.70 0.17490 0.009022 0.18392 1142 0.9132 845
0.75 0.20405 0.007860 0.21191 991 1.2435 457
0.80 0.22955 0.006908 0.23646 888 1.6211 273

This type of calculations and comparisons can be done effortlessly if computers are used.
The results can be also graphically presented.

The values of ∆Q/∆V provides a good guidance for selection of material thickness. This
ratio can also be converted to return/investment ratio if costs of energy and material are known.
Problem 2.25: A spherical electronic device of 10 mm dia generates 1 W. It is exposed to air at
20°C with a convection coefficient of 20 W/m2K. Find the surface temperature. The heat transfer
consultant advices to enclose it in a glass like material of k = 1.4 W/mK, to a thickness of 5 mm
all around to reduce the temperature. Investigate the problem and also find the thickness to
obtain 50°C surface temperature.
Solution. Case 1: Bare device:

The available information is presented in Fig.
P. 2.25(a)

Q = 1 Q = ∆T
R

Ts=
−

× ×

20
1

4 0 005 202π .

 = 1

∴ Ts = 179.15°C
Note: Usual method to reduce temperature is to

increase h or increase surface area.
Case 2:  Enclosed  in  glass  like material (Fig. P.2.25(b)).

Q = 1 = ∆T

r h k r r
1

4
1

4
1 1

2
2

1 2π π
+ −
F
HG

I
KJ

∆T = 1
4

1
4

1 1
2

2
1 2π πr h k r r

+ −
F
HG

I
KJ

RS|T|
UV|W|

 × Q

0.005 m

1 W

h = 20 W/m K
2

T = 20°C�

0.005 m

1 W

h = 20 W/m K
2

T = 20°C�

0.01 m

k = 1.4 W/mK

Fig. P. 2.25. (b)
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= 1
4 0 01 20

1
4 14

1
0 05

1
0 12π π× ×

+
×

−F
HG

I
KJ

RST
UVW. . . .  × 1 = 40.36

∴  Ts = (20 + 40.36) = 60.36°C. The temperature is reduced considerably.

Case 3: The problem reduces to finding r2 such that ∆T = 30°C

  ∆T = 30 = – 1
4

1
4

1
0 005

1
2

2
2π πr h k r

+ −
F
HG

I
KJ.

 as Q = 1

  307 = 
1

20
1

14
1

0 005
1

142
2

2r r
+ × −

. . .

1
20

1
142r r

−
.  – 234.14 = 0

this can be solved exactly or by trial: r2 = 0.01315 or a thickness of 8.15 mm. Such a reduction

will go on up to r2 = 2 2 8
20

k
h

= .  = 0.14 m or 140 mm and the temperature corresponding to this

is 31.2°C. The learner can check this value.
Problem 2.26: The surface of a spherical

container with 0.4 m outer diameter is at – 195°C.
Two layers of insulation each of 2.5 cm thickness is
added. The thermal conductivities of the materials are
0.004 and 0.03 W/mK. The contact resistances are
each 5 × 10–4 m2 °CW. The outside is exposed to air at
30°C with a convection coefficient of 16 W/m2K.
Determine the heat gain and the temperatures at
various surfaces and also the drops due to contact
resistance.

The data are presented in Fig. P.2.26. A quarter
section is shown due to symmetry.

Solution: Heat flow  = 
Temp. drop

Total thermal resistance
The resistances are:
1. Contact resistance (to be calculated for the area)

 R1 = 
5 10

4
5 10
4 0 2

4

1
2

4

2
× = ×

×

− −

π πr .  °C/W = 9.95 × 10–4 °C/W

2. Conduction resistance of first layer

 R2 = 1
4

1 1 1
4 0 004

1
0 2

1
0 2251 2π πk r r

−
F
HG

I
KJ =

×
−F

HG
I
KJ. . .  = 11.05°C/W

Fig. P. 2.26. Problem model.

0.2 m
0.225 m

0.25 m

k = 0.03 W/mK2

k = 0.004 mK1

R = 5 × 10 W/m °C/Ws
–4 2

h = 16 W/m K
2

T = 30°C�

– 195°C
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3. Contact resistance = R3 = 5 10
4 0 225

4

2
×
×

−

π .
 = 7.86 × 10–4 °C/W

4. Conduction resistance of second layer = R4

= 1
4 0 03

1
0 225

1
0 25π ×

−F
HG

I
KJ. . .  = 1.179°C/W

5. Convection resistance = R5 = 
1

4
1

4 0 25 160
2 2π πr h

=
×.  = 0.0796°C/W

Total resistance = 12.3127°C/W

 Q = ∆T
R

= − −30 195
12 3127

( )
.  = 18.27 W

To find temperatures:
Drop in the first contact = Q.R1 = 0.0182°C ∴ T1 = – 194.98°C
Drop in the first layer = Q.R2 = 201.97°C ∴ T2 = 6.99°C
Drop in the contact = Q.R3 = 0.0144°C ∴ T3 = 7.00°C
Drop in the second layer = Q.R4 = 21.55°C ∴ T4 = 28.55°C
Drop in the convection = Q.R5 = 1.46°C ∴ T5 = 30.01°C

Total = 225.01°C checks
Note: When thermal resistances are large, the effect of contact resistances become negligible.

Problem 2.27: Two insulating materials A and B in powder form with thermal conductivities
of 0.004 and 0.03 W/mK were purchased for use over a sphere of 0.4 m dia. Material A is to
form the first layer of a thickness of 4 cm and B is to form the next layer to 5 cm thickness.
During the installation, by mistake material B was applied first using up all the material and
material. A was applied over it. Investigate whether the thermal resistance will change.

The original configuration is shown in Fig. P.2.27(a).

0.2 m
0.24 m

0.29 m

k = 0.03 W/mKB

k = 0.004 W/mKA

A B

0.2 m
0.265 m

0.29 m

k = 0.03 W/mKB

k = 0.004 W/mKA

AB

(a) Proposed (b) As applied

Fig. P. 2.27. (a), (b) Problem model.
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Solution: When the materials are interchanged, there is a change in the radius:

Volume of A = 4
3
π  (0.243 – 0.23) = 0.0243955 m3

Volume of B = 4
3
π  (0.293 – 0.243) = 0.044255 m3

the new radius is found by 0.044255 = 
4
3

0 22
3 3π ( . )r − ∴ r2 = 0.2648 m

Case 1 Resistance = 
1

4 0 004
1

0 2
1

0 24
1

4 0 08
1

0 24
1

0 29π π×
−L

NM
O
QP + ×

−L
NM

O
QP. . . . . .

= 16.57 + 1.91 = 18.48°C/W

Case 2 Resistance = 1
4 0 03

1
0 2

1
0 2648

1
4 0 004

1
0 2648

1
0 29π π×

−L
NM

O
QP + ×

−L
NM

O
QP. . . . . .

= 3.25 + 6.53 = 9.78°C/W
Heat flow will almost double.

Problem 2.28: The thermal conductivities of some materials at 127°C and 527°C are tabulated.
Assuming linear variation of thermal conductivity with temperature work out the values of ko
and β, a constant for the material. k = ko (1 + βT) is assumed with T in °C.
Solution:

Material k at 127°CW/mK k at 527°C, W/mK

Aluminium 240.0 218.0
Cromium 90.9 71.3
Copper 393.0 366.0
Carbon steel 56.7 39.2
Cr. Steel 42.0 34.5
Stainless Steel 16.6 22.6
Uranium 29.6 38.8
Carbon 1.89 2.37

The values are worked out using (taking 0°C as base)

 ko = k127 – 127
400

 (k527 – k127)

β = 
1

400
1.
ko

 (k527 – k127)

For Aluminium:  ko = 240 – 127
400

 (218 – 240) = 246.985 W/mK

β = 1
400

1
246 985

×
.  (218 – 240) = – 2.227 × 10–4
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The values of ko and β are shown in the tabulation.

Material ko , W/mK β × 104 (1/K)

Aluminium 246.985 – 2.227
Cromium 97.123 – 5.045
Copper 401.5725 – 1.681
Carbon steel 62.256 – 7.027
Cr. Steel 44.380  – 4.225
Stainless Steel 14.695  + 10.208
Uranium 26.679  + 8.621
Carbon 1.7376  + 6.906

Check. For Aluminium k527 = 246.985 (1 – 2.227 × 10–4 × 527)
= 217.998 or 218 checks

For Uranium k527 = 26.679 (1 + 8.621 × 10–4 × 527)
= 38.799998 or 38.8 checks.

Problem 2.29: The values of thermal conductivities of some insulating materials at 300°C
100°C are tabulated. Determine the values of ko and β in the equation k = ko (1 + βT) for the
variation of thermal conductivity. Where k is the thermal conductivity at T°C and ko is the
thermal conductivity at 0°C and β, is a material constant.
Solution:

Material k at 100°C, W/mK k at 300°C, W/mK

Fire clay brick 0.76 0.895
Slag brick 0.68 0.77
Red brick 0.56 0.66
Diatomaceous
earth brick 0.138 0.176
Sovelite 0.092 0.12
85% Magnesia 0.08 0.101
Slag wool 0.07 0.101
Mineral wool 0.042 0.070

The value of ko is obtained using the given data. The results are shown in the tabulation
below.

ko = k100 – k k300 100
300 100

−
−

L
NM

O
QP
 100

β = 
1

200
1−
ko

 (k300 – k100)

For example: For fire clay:

ko = 0.76 – 0 895 0 76
200

. .−L
NM

O
QP  × 100 = 0.6925

 β = 9.747 × 10–4.
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Material ko , W/mK β × 104 (1/K)

Fire clay brick 0.6925 9.747
Slag brick 0.635 7.087
Red brick 0.51 9.804
Diatomaceous
earth brick 0.119 15.966
Sovelite 0.078 17.959
85% Magnesia 0.0695 15.108
Slag wool 0.0545 28.440
Mineral wool 0.028 50.000

Check: 85% Magnesia: k300 = 0.0695 (1 + 15.108 × 10–4 × 300) = 0.101.
Problem 2.30: A furnace wall insulation is of fireclay
brick with thermal conductivity k = 0.6925 (1 + 9.747 ×
10–4 T) where T is in °C and k is in W/mK. The wall is 30
cm thick. The inside surface is at 500°C while the outside
surface is at 70°C. Determine the heat flow and also the
temperatures at the mid section and at 7.5 cm from the
surfaces. Also find the value of the slopes at the surfaces.
Solution: The results are presented in Fig. P.2.30
considering unit area: Heat flow

Q = ∆T
L km/

km = 0.6925 1 9 747 10 500 70
2

4+ × +F
HG

I
KJ

L
NM

O
QP

−.

= 0.885 W/mK.

 Q = 500 70
0 3 0 885

−
. / .  = 1268.5 W/m2

The slope at the hot side:

 Q = – kA dT
dx

, k at 500°C

= 0.6925 [1 + 9.747 × 10–4 × 500) = 1.03 W/mK
dT
dx

Q= − = −
103

12685
1 03.

.
.  = – 1231.6°C/m

Slope at the cold side:  k = 0.6925 (1 + 9.747 × 10–4 × 70) = 0.74 W/mK

Slope dT
dx

= − 1268 5
0 74

.
.  = – 1714.2°C/m (steeper)

Temperature at 7.5 cm:

 Q = ( )500 3− T
0.075  × km = 1268.5 W

Fig. P. 2.30. Temperature
variation in wall

500

400

300

200

100

0
0 0.075 0.15 0.225 0.3

k = 0.6925

(1 + 9.747 × 10 T)W/mK
–4

404.6
k = Constant

302.5
285

191.77

70

Thicknesse, m

T°C
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= 
( ) . .500 0 6925 1 9 747 10 500

23
4 3− × + × +L

NM
O
QP

−T T

0.075
 = 1268.5

0.6925 (500 – T3) 1 9747 10 500
2

4 3+ ×
+F

HG
I
KJ

RST
UVW

−. T  = 1268.5 × 0.075

(500 – T3) 1 9747 10 500
2

4 3+ × +F
HG

I
KJ

RST
UVW

−. T  = 137.4

This can solved as a quadratic equation or by trial.
Simplifying 2 × 484.44 – 2T3 – 9.747 × 10–4 T3

2 = 0

T3 = − + + × × × ×
× ×

−

−
2 2 4 2 484 44 9 747 10

2 9 747 10

2 4

4
( . . )

.
 = 404.64°C

Check  Q = 
500 404 64

0 075
0 6925 1 500 404 61

2
9 747 10 4− × + + × ×RST

UVW
−.

.
. . .

= 1267.8 W
Mid plane temp.: (at 15 cm)

1268.5 = 
500

015
0 6925 1 500

2
9 747 104 4 4−L

NM
O
QP × +

+F
HG

I
KJ ×

RST
UVW

−T T
.

. .

or,
∴ T4

2 × 9.747 × 10–4 + 2T4 – 694.14 = 0

∴ T4 = − + + × × ×
× ×

−

−
2 4 4 694 14 9 747 10

2 9 747 10

4

4
( . . )

.
 = 302.48°C.

Check  Q = 
500 302 48

0 15
0 6925 1 500 302 48

2
9 747 10 4−L

NM
O
QP × + + × ×RST

UVW
−.

.
. . .

= 1268.51 W
Temperature at 22.5 cm plane:

1268.5 = 500
0 225

0 6925 1 500
2

9747 105 5 4−L
NM

O
QP × + +F

HG
I
KJ ×

RST
UVW

−T T
.

. .

This reduces to T5
2 × 9.747 × 10–4 + 2T5 – 419.38 = 0

∴ T5 = 
− + + × × ×

× × −
2 4 4 419 38 9 747 10

2 9 747 10 4
( . . )

.
 = 191.77°C

Check Q = 
500 19177

0 225
0 6925 1 500 19177

2
9 747 10 4−L

NM
O
QP + + × ×RST

UVW
−.

.
. . . .

= 1268.49 W
slope at the other planes: (x3 = 0.075, x4 = 0.15, x5 = 0.225). Using the temperature calculated,
are – 1313°C/m, – 1414°C/m, – 1543.2°C/m. It can be seen that the slopes increase with distance.
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Note: The temperature curve is above the st. line. This is because higher the temperature higher
the value of k and smaller the gradient for the same heat flow.
Problem 2.31: A steel slab 16 cm thickness, has thermal
conductivity k = 51 (1– 8.6 × 10–4 T) where T is in °C and
k is the thermal conductivity at T°C in W/mK. The slab
surfaces are maintained at 400 and 180°C. Determine the
heat flow, the temperatures at 4, 8 and 12 cm distances
and also the temperature gradients at these locations.

The given data are presented in Fig. P.2.31.
Solution: Assuming unit area

q = ∆T
L

 km

km = 
k k1 2

2
+

= 51 1 8 6 10 400 180
2

4− × × +F
HG

I
KJ

−.

= 38.28 W/mK

 q = 400 180
0 16

−
.

 × 38.28 = 52635 W/m2

Temperatures: Plane 3 : 0.04 m

q = 52635 = 400
0 04

3−L
NM

O
QP

T
. . 51 1 8 6 10 400

2
4 3− ×

+F
HG

I
KJ

RST
UVW

−. T

This reduces to 8.6 × 10–4 T3
2 – 2T3 + 579.84 = 0

T3 = + − − × × ×
× ×

−

−
2 4 4 8 6 10 579 84

2 8 6 10

4

4
( . . )

.
 = 339.5°C

Check   q = 400 3395
0 04

51 1 8 6 10 400 3395
2

4− × − × × +RST
UVW

−.
.

. .  = 52609 W checks.

plane 4 : 0.08 m

q = 52635 = 400
0 08

51 1 8 6 10 400
2

8 6 10
2

4 4 4 4−
× − × − ×RST

UVW
− −T T

.
. .

This reduces to 8.6 × 10–4 T4
2 – 2T4 + 497.28 = 0

T4 = + − − × × ×
× ×

−

−
2 4 4 8 6 10 497 28

2 8 6 10

4

4
( . . )

.
 = 283.1°C

check  Q = 
400 283 1

0 08
51 1 8 6 10 400 283 1

2
4− × − × × +RST

UVW
−.

.
. .

 = 52634 checks

plane 5 : 0.12 m  Q = 52635 = 400
012

51 1 8 6 10 400
2

8 6 10
2

5 4 4 5−
− × × − ×RST

UVW
− −T T

.
. . .

Fig. P. 2.31. Problem model.

400

300

200

100

0
0 0.04 0.08 0.012 0.016

180

230

283.1

339.5

k = 51(1–8.6 × 10 T)W/mK
–4

k = Constant

290°C

Thickness, m

T°C
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This reduces to 8.6 × 10–4 T5
2 – 2T5 + 414.7 = 0

T5 = + − − × × ×
× ×

−

−
2 4 4 8 6 10 414 7

2 8 6 10

4

4
( . . )

.
 = 230.12°C

Slopes are found using dT
dx

Q
k

= −  as A = 1

 k1 = 33.456, k3 = 36.1, k4 = 38.6, k5 = 40.9, k2 = 43.1
slopes = – 1573.3°C/m, – 1458°C/m, – 1364.2°C/m, – 1286°C/m – 1221°C/m

The slope is higher at higher temperature levels.
Problem 2.32: A steam pipe of 20 cm OD carrying steam
at 260°C is insulated with a material having thermal
conductivity k = 0.07 (1 + 15 × 10–4 T), where k is the thermal
conductivity in W/mK at temperature T°C. The outer
surface is at 60°C. Determine the heat flow and also the
temperature at mid thickness. The insulation thickness is
6 cm. Also find the slopes.

The data are presented in Fig. P. 2.32.

Solution: Q = ∆T
r
r

k lmln 2

1
2/ π

 let l = 1

km = 0.07 1 15 10 260 60
2

4+ × +F
HG

I
KJ

RST
UVW

−  = 0.0868

 Q = 260 60
0 16
0 1

2 0 0868

−

×1n .
.

/ .π
 = 232.08 W/m

To find mid plane Temperatures:

 232.08 = 260
013
01

2 0 07 1 15 10 260
2

4

−

× + × +F
HG

I
KJ

L
NM

O
QP

−

T

ln T.
.

/ .π

 138.44 = (260 – T) 1 15 10 260
2

15 10
2

4 4+ × + ×F
HG

I
KJ

− − T

= 260 + 260 15 10
2

2 4× × −
 + 260 × 15 × 10–4 T2  – T

– 15 × 10–4 × 260
2

 T – 15 × 10–4 T
2

2
or 15 × 10–4 T2 + 2T – 344.52 = 0

T = − + + × × ×
× ×

−

−
2 4 4 15 10 344 52

2 15 10

4

4
( . )  = 154.38°C

0.1 m
0.16 m

260°C

60°C

k = 0.07

(1 + 15 × 10 T)W/mK
–4

Fig. P. 2.32. Problem model.
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check  Q = 
260 154 38

0 13
0 1

2 0 07 1 15 10 260 154 38
2

4−
L

N

MMM

O

Q

PPP
× × + × × −F

HG
I
KJ

−.
.
.

. .

ln
π

= 232.08 W, checks

slopes dT
dx

Q
kA

= −

Inside surface k = 0.07 (1 + 15 × 10–4 × 260) = 0.0973 W/mK
 A = 2πr1 = 2π × 0.1

∴
dT
dx

inside = −
× ×

232 08
0 0973 2 01

.
. .π

 = – 3796.2°C/m

mid plane : k = 0.07 (1 + 15 × 10–4 × 154.38) = 0.08621 W/mK

∴ dT
dx

= −
× ×

232 08
0 08621 2 013

.
. .π

 = – 3295.8°C/m

outer surface: k = 0.07 (1 + 15 × 10–4 × 60) = 0.0763 W/mK

∴ dT
dx

= −
× ×
232 08

0 0763 2 016
.

. .π
 = – 3025.6°C/m.

Problem 2.33: A spherical container with OD 0.4 m
and surface temperature of – 180°C is insulated by 8
cm thick layer of material with thermal conductivity k
= 0.028 (1 + 5 × 10–3 T) W/mK where T is in °C. If the
outside surface is at 15°C, determine the heat flow in.

The data given are presented in Fig. P.2.33.

Solution: Q = ∆T

k r rm

1
4

1 1
1 2π

−
F
HG

I
KJ

km = 0.028 1 5 10 180 15
2

3+ × − +F
HG

I
KJ

L
NM

O
QP

−

= 0.01645 W/mK

Q = 15 180
1

4 0 01645
1

0 2
1

0 28

− −

×
−F

HG
I
KJ

( )

. . .π

 = 28.22 W

A constant value of thermal conductivity will yield values removed by as much as 70%
from this value, adopting the upper value of 0.028 and 83% if the lower value at – 190°C is
used. Hence the necessity to consider the variation in thermal conductivity whenever possible.

Fig. P. 2.33. Problem model.

0.2 m
0.28 m

– 180°C

15°C

k = 0.028

(1 + 5 × 10 T)W/mK
–3
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Problem 2.34: A wall of 20 cm thickness put up as
insulation in an oven has its thermal conductivity
given by k = 0.5 (1 + 10–3 T) where k is the thermal
conductivity at T°C in W/mK. One side of the slab
is exposed to convection at 300°C with h = 40 W/
m2K and the otherside is exposed to air at 30°C with
h = 20 W/m2K. Determine the heat flow through the
wall per unit area.

The data given are presented in Fig. P.2.34.

Solution:   Q = ∆T

h
L

k hm

1 1
1 2

+ +

km = 0.5 {1 + 10–3 (T1 + T2)/2} as T1 and T2 are unknown, a trial solution may be attempted.
The mean temperature is taken as (330/2), and km = 0.5825 W/mK.

The heat flow corresponding to this value is

 Q = 300 30
1

40
0 2

0 5825
1

20

−

+ +.
.

 = 645 W.

T1 and T2 can now be estimated using Q = h1 (300 – T1) and Q = h2 (T2 – 30). This gives
T1 = 283.9°C and T2 = 62.25°C now estimating km = 0.5 {1 + 10–3 (283.9 + 62.25)/2} = 0.5865 W/
mK and substituting this value in the expression for Q, Q = 649.06. Using a second trial or may
be one more

T1 = 283.8°C and T2 = 62.4°C and Q = 649 W
In this case the first guess is very near the true value, but it may not be always so.
For multilayer or composite walls with convection boundary with variable thermal

conductivity, direct solution for heat flow will not be possible. Trial solution becomes necessary.
This is not difficult with the use of calculators and is very simple with the use of computers.

Problem 2.35: The  sectional  area  of  cone like  solid varies as per the law, A(m2) = π × 0 5
4

2.  x

(m2). The solid between sections x1 = 0.025 and x2 = 0.125 conducts heat along the x direction
having its outside surface well insulated. The surface at x1 is maintained at 600°C while the
surface at x2 is at 400°C. k = 210 W/mK. Determine the heat flow, the temperatures and
temperature gradients along the length and plot the same to scale.
Solution: In the integration of Fouriers equation, the variation of the area should be taken
into account. In this case assume

A = Cx where C = 0.19635 i.e. (π × 0.52/4)
For derivation C can be used in place of the numerical value

Q = – kA dT
dx

k C dT
dxx= − .

 Q . 
dx
x  = – kC . dT

Fig. P. 2.34. Problem model.

0.2 m

T1

T2

T = 300°C�1

T = 30°C�

h = 40 W/m K1
2

T = 300°C�1

h = 20 W/m K2
2

T = 30°C�

k = 0.5(1 + 10 × T)W/mk
–3
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600°C

Insulated

k = 210 W/mK
400°C

Q

600

500

400

513.9

463.4

427.7

0.025 0.05 0.075 0.1 0.125

T°C

x = 0.0251 x = 0.1252

(a) (b)

Fig. P.2.35.  Problem model.

Integrating and simplifying

 Q = kC T T
x
x

( ) . ( )
.
.

1

ln ln

−
= × −2

2

1

2210 05
4

600 400
0125
0 025

π  = 5124 W

dT
dx

x Q
kA

= = −0 025.  = 
− ×

× × ×
5124 4

210 0 5 0 0252π . .  = – 4970.72°C/m

dT
dx

x = = − ×
× × ×

0125 5124 4
210 05 01252.

. .π
 = – 994.15°C/m

for other values of x similar calculation is made

dT
dx

 x = 0.05, 0.075, 0.10 are: – 2485.36°C/m, – 1656.9°C/m and – 1242.68°C/m

To determine the temperatures, use

Q = kC T T
x
x

( )1

ln

− 2

2

1

 , at 0.05, 5124 = 210 0 5
4

600
0 05
0 025

2
2× × × −π . ( )

.
.

T

ln

∴ T2 = 513.86°C
at 0.075  T3 = 463.48°C
at 0.10  T4 = 427.73°C
To check find Q between 0.075 and 0.10

 Q = 
210 0 5

4
463 48 427 73

0 1
0 075

2× × −
L
NM
O
QP

L

N

MMMM

O

Q

PPPP
π . . .

.
.

ln
 = 5124 W

The temperature plot is shown in Fig. P.2.35.
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Problem 2.36: A truncated cone like solid has its
circumference insulated and heat flows along the axis.

The area of section at x is given by A = 
π
4  x3 and the faces

are at 0.075 m and 0.225 m. The thermal conductivity of
the material varies as k = 0.5 (1 + 5 × 10–3 T) W/mK. The
surface at x = 0.075 m is at 300°C and the surface at x =
0.225 is at 50°C. Determine the heat flow.

The data given are presented in Fig. P.2.36.

Solution:  Q = – kA dT
dx

= – 0.5 (1 + 5 × 10–3 T) π
4

3x dT
dx

F
HG
I
KJ

separating variables

Q × dx
x3

0 5
4

=
− ×. π  (1 + 5 × 10–3 T) dT

Integrating between the limits

Q −LNM
O
QP = − + ×L

NMM
O
QPP

−1
3 8

5 10
22

0 075

0 225 3
2

300

50

x
T T

.

. π

 Q [52.68] = – π
8

50 300 5 10
2

50 300
3

2 2( (− + × −
L
NMM

O
QPP

−
) )  = 184.07

∴  Q = 3.5 W.
Problem 2.37: The thermal conductivity of a slab varies as k = ko (1 + α T2). Determine the heat
flow through a slab of thickness L m and surface temperatures T1 and T2.

Solution:  Q = – kA dT
dx

 = – ko (1 + α T2) A dT
dx

 Q
Ako

 dx = – (1 + α T2) dT

Integrating: Q
Ako

 (x2 – x1) = − −
L
NMM

O
QPP

T T

T

T
α 3

3
1

2

 = (T1 – T2) + α
3  (T1

3 + T2
3)

 Q = Ak
x x

o

2 1−
 [T1 – T2] 1

3
+ + +L
NM

O
QP

α ( )T T T T1
2

1 2 2
2 ...(p1)

= 
Ak T T T T

L

o 1
3

+ + +L
NM

O
QP

α ( )1
2

1 2 2
2

 (T1 – T2)

Fig. P. 2.36. Problem model.

Insulated
50°C

300°C

k = 0.5

(1 + 5 × 10 T)W/mK
–3

0.15 m

x = 0.075 m1

x = 0.225 m2

Ax = ( /4) x�
3
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The heat flow upto x is the same as full heat flow.

Ak
x x

T T T T T To

2 1
1

3−
− + + +L
NM

O
QP[ ] ( )1 2 1

2
1 2 2

2α

=  Ak
x x

T T T T T To
−

− +FHG
I
KJ + +

L
NM

O
QP1

1
3

[ ] ( )1 1
2

1
2α

∴
T T
T T

T T T T

T T T T

x x
x x

1

1 2

1
2

1 2 2
2

1
2

1
2

−
−

L
NM

O
QP

=
+ + +L
NM

O
QP

+ + +L
NM

O
QP

×
−
−

1
3

1
3

1

2 1

α

α

( )

( )
...(p2)

This equation gives the temperature distribution. Of course T is involved on both sides
and the solution has to be by trial.

In the case of copper the conductivity is found to vary roughly as k = 408.21 (1 – 3.75 ×
10–7 T2). Determine the heat flow through a plate of 55 cm thickness when faces are held at
100°C and 50°C. Using the equation P1 of this problem, substituting the values with A = 1 m2.

 Q = 408 21
0 55

.
.

 [100 – 50] [1 – (375/3) × 10–7 (1002 + 100 × 50 + 502)]

= 37029 W/m2 (Try to find mid plane temp.)
Problem 2.38: A trough which is in the form of one half of a hollow cylinder of thickness t has
heat flow only in the circumferential direction. Formulate the general differential equation.

Solve the same for 180° with the temp. T = T1 at 0°C and T = T2 at 180°, for steady
conditions and without heat generation

The configuration is shown in Fig. P.2.38. Assume unit depth ⊥ r to the paper.

d	

	
T1T2 r1

r2
r3

Q

d	

	

1

2

3

4

r
d	

(r + dr)d	

r dr

Fig. P. 2.38. Problem model.

Solution: Considering the elemental volume at radius r and thickness dr, and taking heat
flow in the θ direction (circumferential)

Heat conducted
through barriers

heat generated
in the volume

time
interval

heat stored in the
volume during the time

+
L
NM

O
QP =

Heat is conducted only through face 1-2 and 3-4 (rdθ is the distance between planes 1-2
and 3-4)
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Heat conducted through 1-2 = – k dr × 1
r

T kdr
r

T∂
∂θ

∂
∂θ

. .∂τ = −  . ∂τ

Heat conducted through 3-4
= heat conducted through 1-2 + rate of change of heat  conduction with distance

× distance

= − + −LNM
O
QP

kdr
r

T
r

k r
r

T rd. .
( )

. .∂
∂θ

∂τ ∂
∂ ∂θ

∂ ∂
∂θ

∂τ θ

Taking the difference, the net heat conducted is

1
r

k
r

T r rd∂
∂θ

∂
∂θ

∂τ ∂ θ.F
HG

I
KJ

heat generated = q rdθ dr ∂τ
heat stored – ρ . c r dθ 1dr dT. Summing up

1 1
2

2

2r
T q

k
T∂

∂θ α
∂
∂τ

+ =

which is also obtainable from the general equation in cylindrical coordinates.

For steady conduction without heat generation, the equation reduces to d T
d

2

2θ
 = 0. The

general solution is T = C1θ + C2
at θ = 0, T = T1 ∴ C2 = T1

at θ = π, T = T2 T2 = π . C1 + T1 ∴ C1 = T T2 − 1
π

∴ Substituting in the general solution.

T = T T2 − 1
π

 θ + T1 or T T
T T

1

2 1

−
−

= θ
π

Heat flow can be obtained as

 Q = k r
rπ

ln 2

1
 . [T1 – T2] × depth.

Problem 2.39: The temperature of air outside is found to vary at a location as per the relation

T°C = 25 + 20 sin 2
12

π tFHG
I
KJ  , (angle in radians.) where t is time in hours starting from 9 am as zero

time and going up to 3 pm, the time t having value of 6 at this point. An air conditioned space
is protected from this atmosphere by a wall having a total resistance 2.8449 m2K/W. The inside
is maintained at 20°C. Considering the thermal capacity of the wall as low, determine the
maximum, minimum and average load on the AC. The total barrier area is 400 m2.
Solution: The outside temperature is tabulated using the given equation T°C

= 25 + 20 sin 2
12

π tFHG
I
KJ  (the angle should be in radians)
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Time of day 9 10 11 12 1 2 3
t (hrs) 0 1 2 3 4 5 6

T °C 25 35 42.32 45 42.32 35 25

The maximum flux is at 12 noon:

 Qmax = ( )
.

45 20 400
2 8449
− ×  = 3515 W

Qmin = ( )
.

25 20 400
2 8449
− ×  = 703 W

Average: using arithmetic average of temperatures at middle of each interval
Average temperature = 37.44°C

Average flux = ( . )
.

37 44 20
2 8449

−  × 400 = 2452 W

Calculating the average temperature by integration:

The  angle  θ = 
2
12

π tFHG
I
KJ   varies  from  0 – π,  by  letting  θ  =  

2
12

π tFHG
I
KJ   and t taking values

from 0-6

Average excess over 25°C = 20
0π

πz  sin θ dθ = 20 2 40
π π

× =  = 12.732

Average temperature = 37.732

Average flux = ( . )
.

37 732 20 400
2 8449

−  = 2493.16 W/m2.

OBJECTIVE QUESTIONS

Choose the Correct Answer
2.1 In a slab under steady conduction if the thermal conductivity increases along the thickness, the

temperatures gradient along the direction will become
(a) Steeper (b) flatter
(c) will depend upon the heat flow (d) will remain constant.

2.2 In steady state heat conduction in the x direction, the sectional area increases along the flow
direction. Then the temperature gradient in the x direction will
(a) Remain constant (b) will become flatter
(c) will become steeper (d) either b or c depending on the heat flow rate.

2.3 In steady state conduction with variable thermal conductivity if the conductivity decreases along
the flow direction, then the temperature gradient along the flow direction will become
(a) steeper (b) flatter
(c) remain constant (d) either of the three depending on heat flow rate
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2.4 In steady state conduction with thermal conductivity given by k = ko (1 + βT) where β, is +ve, a
slab of given thickness and given temperature drop will conduct
(a) more heat at lower temperature levels
(b) more heat at higher temperature levels
(c) will be the same as flow depends on the temperature drop
(d) will be the same as flow depends on the thickness only.

2.5 Choose the correct statement or statements
(a) the thermal conductivity of gases decreases with temperature
(b) the thermal conductivity of insulating solids increase with temperature
(c) The thermal conductivity of good electrical conductors or generally low
(d) The thermal conductivity variation is of low percentage in gases as compared to solids.
Answers to objective questions: (1) b, (2) b, (3) a, (4) b, (5) b.

 EXERCISE PROBLEMS

2.1 A furnace operating at 900°C is to be insulated. The outside is to be exposed to air at 30°C with
h = 15 W/m2K. The convection coefficient on the inside (including radiation) is 85 W/m2K. The
maximum space available is 0.25 m. The heat loss should not exceed 300 W/m2. Determine the
thermal conductivity of the material to be chosen for the insulation.

2.2 A composite wall is to be used to insulate a freezer chamber at – 35°C. Two insulating materials
are to be used with conductivities of 0.04 W/mK and 0.1 W/mK. If the outside surface temperature
of the inner layer (0.04 W/mK) should not go below zero and if the exposed surface temperature
should not go below (the expected wet bulb temperature) 22°C determine the insulation
thicknesses. The heat gain is to be limited to 10 W/m2. Also estimate the value of convection
coefficient at such a situation. Outside is at 25°C. (0.14 m, 0.22 m, 3.33 W/m2K).

2.3 A composite wall consists of 20 mm thick steel plate backed by insulation brick (k = 0.39 W/mK)
of 50 cm thickness and overlaid by mineral wool of 20 cm thickness (k = 0.05 W/mK) and 70 cm
layer of brick of (k = 0.39 W/mK). The inside is exposed to convection at 650°C with h = 65 W/
m2K. The outside is exposed to air at 35°C with a convection coefficient of 15 W/m2K. Determine
the heat loss per unit area, interface temperatures and temperature gradients in each materials.

2.4 A solar collector receives 880 W/m2. Its surface temperature is 60°C. The back side is to be
insulated so that back losses are limited to 15%. Insulating material with a thermal conductivity
of 0.05 W/mK is available. The atmospheric temperature is 30°C and the convection coefficient
on the back side is 5 W/m2K. Determine the insulation thickness.

2.5 A composite plate is made up of stainless steel sheet of 25 mm thickness backed by 30 mm
carbon steel plate. The thermal conductivities are 19.1 W/mK and 39.2 W/mK. A contact resist-
ance of 5.28 × 10–4 m2°C/W exists between the sheets. If the total temperature drop in the com-
posite wall is 18°C, determine the heat flow. If convection on the stainless steel side is from fluid
at 160°C with h = 45 W/m2K find the surface temperatures of the plates. If the outside is exposed
to air at 35°C, determine the convection coefficient on the outside.

2.6 A membrane type electrical heater of 20,000 W/m2 capacity is sandwiched between an insulation
of 25 mm thickness with thermal conductivity of 0.029 W/mK and a metal plate with k = 12.6 W/
mK of thickness 15 mm. The convection coefficient is 150 W/m2K. The surroundings are at 5°C.
Determine the surface temperature of the heater and the flow on either side.

2.7 A composite wall is made of two layers of 0.3 m and 0.15 m thickness with surfaces held at 600°C
and 20°C respectively. If the conductivities are 20 and 50 W/mK, determine the heat conducted.
In order to restrict the heat loss to 5 kW/m2 another layer of 0.15 m thickness is proposed.
Determine the thermal conductivity of the material required (32.22 kW, 1.53 W/mK).
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2.8 A three layer insulation is proposed for a computer room to be maintained at 20°C. The materi-
als chosen are 10 mm layer finishing material inside with k = 0.12 W/mK and a 20 mm layer of
weathering material on the outside with k = 0.25 W/mK. The heat gain is limited to 7 W/m2.
Determine the conductivity of the material required for the middle layer if the thickness is re-
stricted to 100 mm. The convection coefficient on the inside is 30 W/m2K. The outside air is at
39°C with a convection coefficient of 60 W/m2K (Answer: 0.04 W/mK)

2.9 Determine  the  heat flow and interface temperatures for the composite wall section shown in
Fig. 2.9.

A

B

C

D

E

F

h = 20 W/m K2
2

T = 30°C�2

h = 60 W/m K1
2

T = 260°C�1

0.025 m 0.04 m 0.02 m

Fig. 2.9

A-1/3 area kA = 0.08 W/mK B-1/3 area kB = 0.12 W/mK

C-1/3 area kC = 0.21 W/mK D-40% area kD = 0.6 W/mK

E-60% area kE = 0.82 W/mK F-Full area kF = 1.3 W/mK.

2.10 Determine the temperatures at all faces for the arrangement shown in Fig. 2.10.

A

B

C

D

E

F

18 W/m K
2

T = 30°C�

0.015 m 0.04 m 0.025 m

2000 W/m
2

Fig. 2.10

A-full area kA = 0.82 W/mK B-20% area kB = 0.3 W/mK
C-50% area kC = 0.08 W/mK D-30% area kD = 0.14 W/mK

E-40% area kE = 1.2 W/mK F-60% area kF = 2.3 W/mK.
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2.11 A part of a sphere of ID D1 and OD D2 and cut as shown in Fig. 2.11 conducts heat along the
direction shown. Derive the general conduction equation and integrate the same for steady con-
ditions without heat generation. Assume that the curved surfaces are insulated.

	

T2 T2
Q

T1T1

D1

D2

Q

Insulated

Fig. 2.11

2.12 A pipe carrying brine at – 8°C passes through a room at 30°C. The outside diameter of the pipe
is 15 cm and the convection coefficient has a value of 18 W/m2K. Determine the heat gain for
10 m length. In order to reduce the heat gain moulded insulations of 2.5 cm, 4 cm, 6 cm and 8 cm
thicknesses are available with conductivities of 0.06 W/mK. Determine the percentage reduction
due to each of these. If the cost of heat is Rs. 3/1000 kJ determine in each case the break even
cost per m3 of insulation material if the investment is to be realized in one year of operation. The
unit is in operation for 7000 hr/year.

2.13 A hot water pipe of outside diameter 2.5 cm and surface temperature 85°C passes from the boiler
room to the heater through a room at 20°C. The convective heat transfer coefficient is 15 W/m2K.
An insulation with conductivity of 0.11 W/mK is recommended. Determine the thickness of insu-
lation to reduce the heat loss by 60% of that of the bare pipe.  Also find the surface temperature
of the insulation.

2.14 An electronic device in the form of cylinder of 5 mm dia generates 25 W/m length. The heat is
convected to air at 25°C with a convection coefficient of 10 W/m2K. Determine the surface tem-
perature of the device. An insulation of 4 mm thickness with thermal conductivity of 1.4 W/mK
is applied over the device and is exposed to the same convective conditions. Determine the sur-
face temperature of the device. If the thermal conductivity of the material chosen is 0.065 W/mK,
determine the surface temperature. What will happen if the thickness is increased to 6 mm in
the later case.

2.15 A hollow cylindrical insulation has an internal diameter of 16 cm thickness of 8 cm. The inner
surface is at – 10°C while the outer surface is at 35°C. Determine the radius at which the tem-
perature is 0°C.

2.16 A pipe carrying steam at 220°C has an internal diameter of 15 cm. The convection coefficient on
the inside is 60 W/m2K. The pipe wall thickness is 15 mm and the thermal conductivity is 35 W/
mK. The outside is exposed to a chemical at 130°C with a convection coefficient of 15 W/m2K.
Determine the overall heat transfer coefficient, based on (i) inner and (ii) outer area. If the pipe
wall is covered with two insulation layers, the first 3 cm thickness with thermal conductivity of
0.12 W/mK and the second 4 cm thickness with a thermal conductivity of 0.35 W/mK and a
contact resistance of 6 × 10–4 m2 °C/W also is there between the two layers determine the heat
flow and interface temperatures. Also calculate the overall  heat transfer coefficient based on
outside area.

2.17 A steam pipe carrying steam at 260°C is of 15 cm dia and 20 mm thickness. The convection
coefficient on the inside is 45 W/m2K. The conductivity of the material is 35 W/mK. An insulation
of 4 cm thickness with a conductivity of 0.08 W/mK is installed over the pipe with a contact
resistance of 6 × 10–4 °C m2/W. The outside is exposed to surroundings at 30°C with a convection
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coefficient of 18 W/m2K and to also radiation to the same surroundings. Determine the heat flow,
overall heat transfer coefficient based on outside area, and the interface temperatures.

2.18 A spherical container filled with a fluid of good thermal conductivity which is constantly being
stirred is to be insulated. The inner diameter of the container is 0.4 m. The heat capacity of the
fluid is 70 kJ/°C. The wall thickness is 15 mm and the conductivity of the material is 15 W/mK.
The fluid is at 160°C. The convection coefficient on the inside is 45 W/m2K. The outside is ex-
posed to air at 30°C with a convection coefficient of 25 W/m2K. Determine the overall heat trans-
fer coefficient based on outside area, heat loss and the instantaneous rate of cooling of the fluid.

2.19 A hollow spherical insulation has internal diameter of 16 cm and a thickness of 8 cm. The inner
surface is at – 10°C while the outer surface is at 35°C. Determine the radius at which the tem-
perature is 0°C.

2.20 A spherical vessel 10 cm OD at – 24°C is exposed to air at 20°C with convection coefficient of 10
W/m2K. Determine the heat gain rate. If the sphere is insulated with 5 cm thick insulation of
thermal conductivity of 0.5 W/mK, determine the heat gain rate. Also investigate thicknesses of
2.5 cm and 7.5 cm of insulation.

2.21 A spherical vessel containing hot fluid at 160°C (in a chemical process) is of 0.4 m OD and is
made of Titanium of 25 mm thickness. The thermal conductivity is 20 W/mK. The vessel is
insulated  with  two  layers  of  5 cm  thick  insulations  of  thermal conductivities 0.06 and 0.12
W/mK. There is a contact resistance of 6 × 10–4 and 5 × 10–4 m2 °C/W between the metal and first
insulation and between the insulating layers. The outside is exposed to surrounding at 30°C
with a convection coefficient of 15 W/m2K. Determine the rate of heat loss, the interface tem-
peratures and the overall heat transfer coefficient based on the metal surface area.

2.22 An insulating wall of a furnace has the following relationship for its thermal conductivity k = 0.7
(1 + 15 × 10–4 T) W/mK where T is in °C. The wall is 0.25 m thick. The inside surface is at 760°C
and the outside surface is at 60°C. Determine the heat loss per unit area and also the tempera-
ture at the mid section.

2.23 The wall in problem 2.22 has the inside surface exposed to gases at 760°C with a convection
coefficient of 40 W/m2K and the outer surface is exposed to air at 35°C with a convection coeffi-
cient of 20 W/m2K. Determine the heat flow rate, the surface temperatures and the mid plane
temperature.

2.24 A pipe of 0.3 m outer diameter at a temperature of 160°C is insulated with a material having a
thermal conductivity of k = 0.055 (1 + 2.8 × 10–3T) W/mK where T is in °C. The outside surface
temperature is 40°C. Determine the heat flow/m length and the temperature at the mid radius.

2.25 A cylindrical pressure vessel of ID 2 m made of material with thermal conductivity k = 14.7 (1 +
10–3 T) W/mK where T is in °C and has a wall thickness of 20 cm. Plot the temperature along the
radius if the inside surface is at 400°C and the outside is 300°C.

2.26 A cylindrical pressure vessel of 1 m inner diameter and wall thickness 15 cm is made of material
with conductivity k = 44 (1 – 4.2 × 10–4 T) W/mK where T is in °C. If the inside surface tempera-
ture is 420°C and the outer surface temperature is 300°C, plot the temperature variation along
the radius.

2.27 A spherical vessel of 0.4 m inside diameter an 15 cm thickness is made of material with thermal
conductivity of k = 51 (1 – 8 × 10–4 T) W/mK where T is in °C. The inside surface is at – 190°C
while the outside is at – 90°C. Plot the temperature variation with radius. Also find the heat
gain.

2.28 A spherical vessel of 2 m outer dia and a surface temperature of 80°C is insulated with a mate-
rial having its thermal conductivity given by k = 0.12 (1 + 1.6 × 10–3 T) W/mK, where T is in °C.
The thickness of insulation is 18 cm and the outer surface is at 20°C. Determine the heat loss.
Also find the temperature at mid thickness.

2.29 The temperature variation in a slab is given by t(x) = 40 – 200 x2 where x is in m and x coordinate
being zero at the left face of the slab and 0.1 m at the right face. Determine the heat flow at the
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faces x = 0 and x = 0.1 m. The conductivity of the material is 45 W/mK. If the conditions are
steady, determine the heat generation rate in the slab.

2.30 The temperature distribution in a body is given by the equation T (x, y, z, τ) = y2 – 2x2 + z2 – xy +
2xz. Examine whether it represents steady state conduction.

2.31 A truncated cone of height L has heat conduction along the axis as detailed in Fig. 2.31. Derive
an expression for the variation of thermal conductivity along x, given

A = Ao 1 −FHG
I
KJ

x
L

 , T(x) = 300 1 2
3

− FHG
I
KJ − FHG
I
KJ

R
S|
T|

U
V|
W|

x
L

x
L

L

Insulated

6000 W

6000 W

x

Fig. 2.31.

2.32 In an aluminium surface with a roughness depth (after applying pressure) of 0.01 mm, the area
of crests is 50% of the total area. The outer plate is in contact with stainless steel with roughness
depth of 0.01 mm with the area of contact of 50%. Determine the contact resistance (i) If the inter
space is filled with air (ii) If it is filled with oil of k = 0.15 W/mK.

2.33 A furnace with an operating temperature of 900°C is insulated by a wall 0.25 m thick with
convection coefficient of 85 W/m2K on the inside and exposed on the outside to air at 30°C with a
convection coefficient of 15 W/m2K. The supplier reported that the conductivity of the material
was 0.08 W/m2K. After installation, a note was received that the material thermal conductivity
varies with temperature and it is given by k = 0.08 (1 + 9 × 10–4 T) W/mK. Calculate the actual
heat flow and the original designed flow T is in °C.

2.34 A wall 2 m thick has the following temperatures distribution: T(x) = 60 + 18x – 6x3 where x is in
m and T(x) is in °C. Determine the location of maximum temperature and the heat flow per m2

area at both faces, k = 30 W/mK.
2.35 A hollow cylinder of inner radius R1 and outer radius Ro has the following variation of tempera-

ture along the radius. T(r) = 300 – 300 ln (r/R1). The conductivity of the material is 45 W/mK. If
the inner radius is 6 cm and the outer radius is 9 cm determine the direction and rate of flow of
heat at the two surfaces for 1 m length of pipe.

2.36 A hollow sphere of inner radius R1 and outer radius Ro has the following variation of tempera-
ture along the radius. T(r) = 300 + 300 1n (r/Ro). The conductivity of the material is 45 W/mK. If
the inner radius is 6 cm and the outer radius is 9 cm determine the direction and rate of flow of
heat at the two surfaces.

2.37 A cross section of a wall is shown in Fig. 2.37. Determine the heat flow for a 0.25 m height for
unit depth. The surface temperatures are – 15°C and 20°C. The conductivities of the materials
are kA = 0.65 W/mK, kB = 0.08 W/mK, kC = 0.16 W/mK, kD = 2.10 W/mK, kE = 3.5 W/mK. Material
A is exposed to – 15°C. Also find interface temperatures.
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A B D E

B

C

C

C

B

0.25 m

0.1 m

0.015

0.09 0.09

0.01 0.015

20°C– 15°C

Fig. 2.37

2.38 A 5 mm dia copper cable is insulated with a material of conductivity of 0.16 W/mK and is exposed
to air at 30°C with a convection coefficient of 20 W/m2K. If the surface temperature of the wire
can be 120°C, determine the insulation thickness for maximum heat flow and the heat dissi-
pated per m length.

2.39 An aircraft canopy in the form of a part of a sphere of diameter of 1.2 m is made of a transparent
material 15 mm thickness having a conductivity of 2.5 W/mK is exposed on the outside to – 60°C
and a convection coefficient of 180 W/m2K. On the inside the temperature is 25°C and the con-
vection coefficient is 10 W/m2K. If the area exposed to the surroundings, is a quarter of a sphere
determine the heat loss through the canopy.

2.40 To determine the contact resistance between two surfaces, stainless steel rods of 2.5 cm diam-
eter with the ends machined to the required surface roughness and held together at the required
pressure. One of the rod is heated at the free end, while the remaining portion is insulated. The
temperatures are measured at points as shown in Fig, 2.40. Determine the contact resistance. k
= 40 W/mK. The temperatures at A, B, C and D are 110°C, 105°C, 100°C and 95°C respectively.

A B C D

Contact k = 40 W/mKHeated end

0.05 m 0.05 m

0.012 m

0.025 �

Fig. 2.40
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3.0 INTRODUCTION

In the previous chapter, steady state heat conduction problems were discussed. In these cases
the boundary conditions governed the temperature distribution. In this chapter the additional
factor of heat generation within the body is to be considered. Heat generation is met with in
electrical conductors carrying current. The resistance heating has to be dissipated in such a
way that the conductor does not fail. The maximum temperature in the wire has to be limited.
A more serious case is the heat generation in nuclear reactor fuel rods. Here the generation
rate is very high and accidents will be catastropic. The heat generated has to be collected at
the required rates at the boundary to avoid failure. Microwave heating is another example.
Exothermic reaction in chemical processes also may cause problems if proper care is not taken
to maintain the temperature at or below the allowable level. The heat flow under steady
conditions is easily estimated as the product of the volume of the body and heat generation
rate. The temperature drop through the body will increase with increased heat generation.
Higher thermal conductivity will lead to lower temperature drop. As in the previous chapter
three geometric shapes, namely plane, cylinder and sphere, are analysed. Hollow cylinder
with internal and external heat collection is also discussed. Variable heat generation rate is
also considered.

3.1 STEADY STATE ONE DIMENSIONAL CONDUCTION IN A SLAB WITH
UNIFORM HEAT GENERATION

The physical model is shown in Fig. 3.1(a) and 3.1(b). Two types of boundary specifications are
possible as shown in these figures.

x
2 L

2 L0

k

q

T
¥

h

x = 0
T = Tw

x = 2L
T = Tw

T
�

h

2 L
L

k

qh

x = – L
T = Tw

x = L
T = Tw

T
�

h

dx

– L

(a) (b)

0 x

T
¥

Fig. 3.1. (a), (b) Slab with heat generation.
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The results of analysis are the same in both cases.
In the following discussions the model in 3.1(b) is adopted.
A large slab of thickness 2L with uniform heat generation rate of q (W/m3) is considered.

There is equal convection at T∞ on both sides such that the surface temperature is Tw on both
sides. The centre plane is taken as the origin for x and the slab extends to + L on the right and
– L on the left. The conductivity of the materials is k. A thin section of dx is considered at a
distance x from the origin for heat balance.

Calculations are made on the basis of unit area. The differential equation applicable for
this case has been derived in chapter 2. The equation 2.6(b) is

 d T
dx

q
k

2

2 +  = 0 ...(3.1)

Considering the thin section of thickness dx at x, the energy balance can be written as
heat conducted at section x + heat generated in the dx thickness – heat flowing

out at x + dx = 0.

or – kA dT
dx

q+  dx A – − + −FHG
I
KJ

L
NM

O
QPkA dT

dx
d
dx

kA dT
dx

dx  = 0

Simplifying d T
dx

q k
2

2 + /  = 0.

Writing the equation as below and integrating

d dT
dx

q
k

F
HG
I
KJ = −  dx

 dT
dx

q
k

= −  x + C1 ...(3.2)

∴ T = – qx2

2
 + C1x + C2 ...(3.3)

At the mid section, at x = 0, there is no heat flow across the section or dT
dx

 = 0. From
equation (3.2), C1 = 0.

At x = L, T  = Tw , ∴ Tw = – 
q
k2
F
HG
I
KJ  L2 + C2

∴  C2 = Tw + q
k2

 L2 ...(3.4)

Substituting in eqn. (3.3),

T = – q
k2
F
HG
I
KJ  x2 + Tw + q

k2
 L2

or  T – Tw = q
k2

 (L2 – x2) ...(3.5(a))
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Sometimes only T∞ and h will be known. In such cases the equation (3.5(a)) can be
modified.

At the boundary  ALq = hA (Tw – T∞) ∴ Tw = T∞ + qL
h

Eqn. (3.5(a)) can be written as

 T – T∞ = q
k2

 (L2 – x2) + qL
h

...(3.5(b))

For these equations to be applicable model (3.1(b)) should be used.
The temperature at x = 0 is obtained from (3.5(a)) and (3.5(b)) as

 To = Tw + q
k2  L2 ...(3.6(a))

 To = T∞ + q
k

L qL
h

2 + ...(3.6(b))

Equation (3.5(a)) can also be modified as below. Using 3.5a and 3.6a.

 T – To = ( )q
k

L x T T q
k

L q
kw w2 2 2

2 2 2− + − − = −  x2

From (3.6(a))    Tw – To = – q
k

L
2

2.

∴ T T
T T

x
L

x
L

o

w o

−
−

= = FHG
I
KJ

2

2

2
...(3.7)

This shows that the temperature variation is parabolic. It may be also seen that the
temperature gradient becomes steeper along x as more heat is to be conducted as x increases.
Example 3.1: Heat is generated in a slab of 120 mm thickness with a conductivity of 200 W/
mK at a rate of 106 W/m3. Determine the temperature at the mid and quarter planes if the
surface of the solid on both sides are exposed to convection at 30°C with a convection coefficient
of 500 W/m2K. Also find the heat flow rate at these
planes and the temperature gradients at these
planes.

The data are shown in Fig. Ex. 3.1.
Solution: Using equation (3.5): at quarter plane,
(L = 0.12/2 = 0.06 m)

Considering unit area heat flow on the right
side = 0.06 × 1 × 1 × 106. This equals the convection
heat gain.

∴ 0.06 × 1 × 106 = 1 × 500 (Tw – 30)
Solving Tw = 150°C.

T – Tw = (q/2k)(L2 – x2), at x = 0.03 m
T1 – 150 = (106/2 × 200) (0.062 – 0.032)

Therefore T1 = 156.75°C.
at x = 0

Fig. Ex. 3.1. Problem model.
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2
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1 2Q
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500 W/m K
2
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To  – 150 = (106/2 × 200) × (0.062 – 0)
Therefore  To = 159°C
Heat flow at x = 0.03m. Heat generated from mid plane to this section is conducted at

this section. So for unit area, i.e. 1 m2

Q = 106 × 1 × 0.03 = 30,000 W/m2.
Therefore Temperature gradient = – Q/kA = – 30000/200 × 1 = – 150°C/m.
At x = 0.06 m as above Q = 106 × 1 × 0.06 = 60000 W/m2.
Therefore temperature gradient = – 60000/200 × 1 = – 300°C/m.

3.1.1. The other boundary of interest is when the two surfaces are maintained at different
specified temperatures as in Fig. 3.2.

The solution for T at plane x is obtained from hand books
as

Tx = T T q k L x T T
L

w w w w1 2 2 2 2 1
2

2
2

+
+ − +

−F
HG

I
KJ( / )( )  x

...(3.8)
The location for the maximum temperature is obtained

by calculating (dT/dx) and equating the value to zero. This
procedure gives

xmax = (k/2qL) (Tw2 – Tw1) ...(3.9)

and Tmax = ( / ) ( )qL
k

k qL T T T T
w w

w w
2

2
2 1

2 2 1
2

8
2

+ − +
+

...(3.10)
Example 3.2: In example 3.1, if the temperatures at the surfaces are maintained at 130°C and
150°C on the left and right sides determine the location and value of the maximum temperature.
Also  find  the  heat  flow on each side and the temperature at the centre plane. q = 106 W/m3,
L = 0.06 m, k = 200 W/mK.
Solution: Using equation (3.9) the location of the maximum temperature is found as below:

 xmax = (k/2qL) (Tw2 – Tw1)
= (200/2 × 106 × 0.06) (150 – 130) = 0.0333 m

This moves to right.
Using equation (3.10), the maximum temperature is found

  Tmax = qL2/2k + (k/8qL2) (Tw2 – Tw1)2 + T Tw w2 1
2
−

= 10 0 06
2 200

200
8 10 0 06

150 130 150 130
2

6 2

6 2
2×

×
+

× ×
− + +.

.
( )

= 9 + 2.778 + 140 = 151.778°C
The heat flow on either side is the heat generated from the maximum temperature

plane to the surface.

Fig. 3.2. Problem model.
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0.06

130

0.06

149 151.8
150

0.0333

xmax

On the 130°C side:
Q = 106 × 0.09333 = 93333.3 W/m2

On the 150°C side:
Q = 106 × (0.06 – 0.03333) = 26666.7 W/m2

Total = 120,000 W
Center plane temperature is found using equation

(3.8)

 Tx = T T T T x L q
k

w w w w1 2 2 1
2 2 2
−

+
−

+( / )  (L2 – x2)
and x = 0

To = 130 150
2

150 130
2

+ + −  × (0.0/L) + 10
2 200

6

×
× (0.062 – 0) = 140 + 0 + 9 = 149°C

Also refer solved problem 3.10.

3.2 STEADY STATE RADIAL HEAT CONDUCTION IN CYLINDER WITH
UNIFORM HEAT GENERATION. (FIG. 3.3)

A cylinder of radius R with uniform heat generation q and conductivity k is considered.
Outside convection h is at T∞

Considering the elemental annular volume
between r and r + dr, the energy balance gives (taking 1
m length)

heat conducted in + heat generated – heat
conducted out = 0.

– k 2πr.l (dT/dr) + q2πrdr.l – (– k2πr.ldT/dr)
– (d/dr) (– k2πr.l.dT/dr)dr = 0

Therefore (d/dr) (r dT/dr) + (q r/k) = 0 ...(3.11)
This equation is the same as the simplified equation

(2.7(b)) of chapter 2.
Integrating after separating variables

dT/dr = – (q/2k)r + C1/r ...(3.12)
T = – (q/4k)r2 + C1 lnr + C2 ...(3.13)

This is the general solution and the constants C1 and C2 are evaluated using the boundary
conditions. The four boundary conditions of interest are discussed in the following paras.
3.2.1. Solid Cylinder: The boundary conditions are:

(i) at r = 0, dT/dr = 0, (ii) at r = R, T = Tw.

Condition (i) yields C1 = 0 as C1 = qr
k

2

2 and r = 0. (eqn. 3.12)

Condition (ii) yields  C2 = Tw + (q/4k) (R2)
Therefore  T – Tw = (q/4k) (R2 – r2) ...(3.14(a))

Fig. 3.3. Model.

Fig. Ex. 3.2. Problem model.

dr

r

k, q
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The maximum temperature, To is at the axis and is
To – Tw = (q/4k) (R2) ...(3.15(a))

Therefore  T T
T T

w

o w

−
−

 = 1 – (r/R)2 ...(3.16)

This can also be rearranged as

(r/R)2 = 1 – T T
T T

T T
T T

w

o w

o

o w

−
−

L
NM

O
QP

=
−
−

...(3.16(a))

The temperature variation will be parabolic with radius.
Taking convection into account, heat generation unit length = πR2 × 1 × q
This is absorbed by the fluid in the outside area 2πR × 1

∴ πR2q = 2πRh (Tw – T∞) ∴ Tw = T∞ + Rq
h2

 .

Eqn. (3.14(a)) reduces to T – T∞ = ( )q
k

R r Rq
h4 2

2 2− + ...(3.14)

Eq. (3.15(a)) reduces to To = T∞ + q
k

R Rq
h4 2

2 + ...(3.15)

Example 3.3: A cylinder of 12 cm diameter has a heat generation rate 106 W/m3. The
conductivity of the material is 200 W/mK. The surface is exposed to air at 30°C. The convection
coefficient is 500 W/m2K. Determine the temperatures at the center and also at mid radius.
Also determine the heat flow at the surface on unit area basis. Calculate the temperature gradients
at the mid radius and surface.

Solution:   Tw = T∞ + Rq
h

.
2

30 0 06 10
2 500

6
= +

×
×

 = 90°C

Using equation (3.14(a))
To – Tw = (q/4k) [R2 – r2]

Temperature at radius r = 0 is

Therefore To = 90 + 10
4 200

6

×
 (0.062 – 0) = 94.5°C.

 At mid radius r = 0.03

∴ T = 90 + 10
4 200

6

×
 (0.062 – 0.032) = 93.375°C

Heat flow upto mid radius is the heat generated in the cylinder. Therefore
 Q = q × πr2 × 1 W/m = 106 × π × 0.032 = 2827.4 W/m.

On area basis:  Q/A = 2827.4/2 πr × 1 = 2827.4/2π × 0.03 = 15,000 W/m2

Heat flow at the surface Q = q × πR2 × 1 = 106 × π × 0.062 = 11309.7 W/m.
On area basis Q/A = 11309.7/π × 0.12 × 1 = 30,000 W/m2
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Temperature gradient
 Q = – kAdT/dr. Using the heat flow on area basis.

at mid radius 15,000 = – 200 × 1 dT/dr. Therefore dT/dr = – 75°C/m.
at surface  30,000 = – 200 × 1 × dT/dr. Therefore dT/dr = – 150°C/m.

Example 3.4: A 3 mm diameter wire of thermal conductivity of 20 W/mK carries 200 Amps.
The resistivity ρρρρρ of the material is 75 µΩ cm. The heat generated is absorbed by a fluid at 120°C.
With convective heat transfer coefficient of 4000 W/m2K. Determine the maximum temperature
of in the wire.

Solution: Heat generated = I2R, Resistance R = ρ L
A

. Assume 1 m length where ρ is the

resistivity, L is the length and A is sectional area.

Resistance R = 
75 10 1

100 0 0015

6

2
× ×

× ×

−

π .  = 0.1061 Ω

Heat generated in 1 m wire = 2002 × 0.1061 = 4244.3 W
.

.
q = =

× ×
heat generated

volume
4244 3
0 0015 12π

 = 600.41 × 106 W/m3.

Using equation (3.15(b)), R-radius

To = T∞ + qR
k

qR
h

2

4 2
+

= 120 + 600 41 10 0 0015
4 20

600 41 10 0 0015
2 4000

6 2 6. . . .× ×
×

+
× ×

×

= 249.5°C
The maximum temperature in the wire is 249.5°C.

3.2.2. Hollow cylinder of radius Ri, Ro with Ti and To specified. The boundary
conditions are
(i) r = Ri, T = Ti (ii) r = Ro, T = To

After a somewhat long arithmetic work the equation that can be obtained is

 Tr – To = (q/4k) (Ro
2 – r2) + [(To – Ti) + (q/4k) (Ro

2 – Ri
2)] ...(3.17(a))

[ln (r/Ro)/ln (Ro/Ri)] or
 Tr – Ti = (q/4k) (Ri

2 – r2) + [(To – Ti) + (q/4k) (Ro
2 – Ri

2)] ...(3.17(b))
[ln (r/Ri)/ln (Ro/Ri)]

The radius at which the maximum temperature occurs is obtained by differentiating
the expression (3.17) and equating to zero.

 Rmax
2 = 2

4
2 2k

q R R
T T q

k
R R

o i
o i o iln( / )

( ) ( )− + −L
NM

O
QP . ...(3.18)
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Example 3.5: A hollow cylinder 6 cm ID and 12 cm OD has a heat generation rate of 5 × 106

W/m3. The inner surface is maintained at 380°C and the outer surface at 360°C. The conductivity
of the material is 30 W/mK. Determine (i) the location and value of the maximum temperature
(ii) the fraction heat generated going to the inner surface.

The location of the maximum temperature is determined using equation 3.18.
Solution: Using eqn. 3.18,  Ri = 0.03 m, Ro = 0.06 m, Ti = 380°C, To = 360°C

Rmax
2 = 

2 30

5 10 0 06
0 03

360 380 5 10
4 30

0 06 0 03
6

6
2 2×

× F
HG
I
KJ

− + ×
×

−
L
NM

O
QPln .

.

( ) ( . . )

= 0.0016.
∴  Rmax = 0.04 m.
To determine Tmax, eqn. 3.17(b) is used.

  Tr – 380 = 5 10
4 30

0 03 0 04

0 04
0 03
0 06
0 03

360 380 5 10
4 30

0 06 0 03
6

2 2
6

2 2×
×

− +

F
HG
I
KJ

F
HG
I
KJ

− + ×
×

−
L
NM

O
QP

( . . )
ln .

.

ln .
.

( ) ( . . )

= 9.22°C
∴ Tmax = 389.22°C.
Heat flow to the inside is the heat generated upto Rmax.
∴  Qin = 5 × 106 × π (0.042 – 0.032) = 10995.6 W.

3.2.3. Hollow cylinder with inner surface adiabatic: The boundary conditions are:
(i) dT/dr = 0 at r = Ri (ii) T = To at r = Ro. This gives

  T – To = (q/4k) (Ro
2 – r2) + (q/2k) Ri

2 . ln(r/Ro) ...(3.19)
The maximum temperature occurs at the inner surface.

Tmax = Ti = To + (q/4k) (Ro
2 – Ri

2) + (q/2k) . Ri
2 . ln(Ri/Ro) ...(3.20)

 Tmax – To = (q/4k) (Ro
2 – Ri

2) + (q/2k) . Ri
2 . ln(Ri/Ro) ...(3.20a)

Example 3.6: The heat generation rate in a hollow cylinder of ID 0.14082 m and OD 0.018 m
is 5 × 106 W/m3. The conductivity of the material is 30 W/mK. If the inside surface is insulated,
determine the temperature at the inside surface. The outside surface is exposed to a fluid at
100°C with a convection coefficient of 335.73 W/m2K.
Solution: As the inside surface is insulated, the heat generated is given to the fluid flowing
over the outside surface, by convection process. The outside surface temperature is determined
using (considering 1 m length)

q × π (Ro
2 – Ri

2) × 1 = h × 2π × Ro × 1 × (To – T∞)
5 × 106 × (0.092 – 0.070412) × 1 = 335.73 × 2 × 0.09 × 1 (To – 100)
Therefore To = 360°C.
The temperature at the inner radius is determined using equation 3.19 and substituting

Ri for r
 Ti – To = (q/4k) (Ro

2 – Ri
2) + (q/2k) Ri

2 . ln(Ri/Ro)
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 Ti – 360 = 5 10
4 30

0 09 0 07041 5 10
2 30

0 07041 0 07041
0 09

6
2 2

6
2×

×
− + ×

×
× L

NM
O
QP( . . ) . . ln .

.
 Ti – 360 = 130.93 – 101.41 = 29.52°C

Therefore  Ti = 389.52°C.
3.3.4. Hollow cylinder with outside surface adiabatic: The boundary conditions are:

(i) dT/dr = 0 at r = Ro
(ii) T = Ti at r = Ri This gives

 Tr – Ti = (q/4k) (Ri
2 – r2) + (q/2k) Ro

2 . ln (r/Ri) ...(3.21)
The maximum temperature is at the outer surface:

 Tmax = To = Ti + (q/2k) Ro
2 . ln(Ro/Ri) – (q/4k)(Ro

2 – Ri
2) ...(3.22)

In all the cases the total heat flow is the heat generated in the volume between the
immediate adiabatic section and the section considered.

Example 3.7: A  hollow  cylinder  of  ID  0.12 m and OD 0.14082 has a heat generation rate of
5 × 106 W/m3. The conductivity of the material is 30 W/mK. The outside surface is insulated
and heat is removed by convection over the inside surface by a fluid at 130°C with a convection
coefficient of 226.26 W/m2K. Determine the temperature on the outside surface.
Solution: The heat generation is convected at the inner surface.

Therefore   q × π(Ro
2 – Ri

2) × 1 = h2πRi × 1(Ti – T∞)
5 × 106 × (0.070412 – 0.062) × 1 = 226.26 × 2 × 0.06 × (Ti – 130)

Therefore  Ti = 380°C
To determine the outside surface temperature, equation 3.22 is used.

Tmax = Ti + (q/2k)(Ro
2) . ln(Ro/Ri) – (q/4k)(Ro

2 – Ri
2)

Tmax = 380 + 5 10
2 30

0 070412 0 07041
0 06

5 10
4 30

6 6×
×

× L
NM

O
QP −

×
×

. . ln .
.

 (0.070412 – 0.062)

= 380 + 66.1 – 56.57 = 389.53°C.

3.3 RADIAL CONDUCTION IN SPHERE WITH UNIFORM HEAT GENERATION
(FIG. 3.4)

Considering a thin layer of thickness dr at r, the energy equation gives
– k4πr2dT/dr + 4πr2qdr + k4πr2dt/dr

+ (d/dr) (k4πr2dT/dr) dr = 0.
(d/dr) (r2dT/dr) + (q/k)r2 = 0 ...(3.23)

This equation is the same as 2.8(b) of chapter 2.
Integrating dT/dr = – (q/3k)r + C1/r2

dT/dr = 0 at r = 0
Therefore C1 = (q/3k)r3 = 0

dr

r

k, q

To

R

TwT�

h

Fig. 3.4. Model.
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Therefore T = 
− qr

k

2

6  + C2

at r = R, T = Tw

Therefore C2 = Tw + 
qR

k

2

6
Therefore  T – Tw = (q/6k)(R2 – r2) ...(3.24(a))
The maximum temperature is at r = 0.

To – Tw = (q/6k)R2 ...(3.25)

∴
T T
T T

w

o w

−
−

 = 1 – (r/R)2 ...(3.26)

Therefore,  1 – T T
T T

T T
T T

w

o w

o

o w

−
−

= −
−

 = (r/R)2 ...(3.26(a))

Considering convection, the energy balance at the outside is
4
3  πR3q = 4πR2h (Tw – T∞)

∴ Tw = T∞ + Rq
h3

The eqn. 3.24 can be written as

T – T∞ = ( )q
k

R r Rq
h6 3

2 2− + ...(3.24(b))

The eqn. 3.25 can be written as

To – T∞ = q
k

R Rq
h6 3

2F
HG
I
KJ +

The temperature distribution is parabolic as seen from eqn. 3.26(a). The heat flow at

any section can be found using – kA dT
dr

 = Q. And Q is the heat generated up to the section.

Example 3.8: A solid sphere of 0.09 m radius generates heat at 5 × 106 W/m3. The conductivity
of the material is 30 W/mK. The heat generated is convected over the outer surface to a fluid at
160°C, with a convective heat transfer coefficient of 750 W/m2K. Determine the maximum
temperature in the material and the temperature at radius = 0.06 m.

Solution: Therefore  (4/3) πR3q = 4π R2h(Tw – T∞)
(4/3) π × 0.093 × 5 × 106 = 4 × π × 0.092 × 750 (Tw – 160)

Therefore Tw = 360°C
To determine the maximum temperature equation 3.25 is used.

To = Tw + qR2/6k = 360 + 5 10 0 09
6 30

6 2× ×
×

.  = 585°C
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To calculate the temperature at a radius of 0.06 m, equation 3.24 is used.

 T – Tw = (q/6k) (R2 – r2) = 5 10
6 30

6×
×

 (0.092 – 0.062)

T – Tw = 125°C
Therefore T = 360 + 125 = 485°C.

Example 3.9: A hollow sphere of ID 12 cm and OD 21 cm made of material with conductivity
of 30 W/mK generates heat at a rate of 5 × 106 W/m3. The inside is closed and so can be taken
as insulated. Determine the maximum temperature in the solid. The outside temperature is
360°C.
Solution: Considering the differential equation 3.23 and integrating and applying the boundary
conditions of dT/dr = 0 at r = Ri and T = To at r = Ro

(d/dr) (r2dT/dr) + (q/k)r2 = 0,
Therefore dT/dr = (– q/3k)r + C1/r2

Therefore C1 = + (q/3k) (Ri
3), Substituting

dT/dr = – (q/3k) r + q R
k
i
3

3
 (1/r2), Integrating the equation.

 T = – ( q R
k
i
3

3
/6k)r2 – qR

k r
i
3

3
1  + C2 Using the second boundary

To = (– q/6k) (Ro
2) – q

k
R
R

i

o3

3
 + C2

Therefore C2 = To + (q/6k) Ro
2 + (q/3k) Ri

3/Ro Substituting and rearranging
T – To = (q /6k) (Ro

2 – r2) – (q Ri
3/3k) (1/r – 1/Ro) ...(E3.8.1)

Substituting for r = Ri to get the maximum temperature

 T = 360 + 5 10
6 30

0 105 0 06 5 10 0 06
3 30

6
2 2

6 3×
×

− −
× ×

×
( . . ) .  (1/0.06 – 1/0.105)

= 480.53°C (compare with example 3.7)
Note: The volume of sphere in example 3.7 is nearly the same as in this problem. But the maxi-

mum temperature is reduced considerably. Why ?

3.4 CONCLUSION

The heat generated in a solid is conducted through the solid and is then convected at the
surface. The maximum temperature in the solid is often the limiting factor in design. Once the
conductivity, heat generation rate and size are specified, the convective heat transfer coefficient
has to be increased to the limiting value. In case the convection coefficient has limitations,
then the size or the heat generation rate has to be reduced to obtain the limiting maximum
temperature. In such a case cylinder of same linear dimension is better compared with slab
configuration. In case the heat generation rate increases with temperature as in the case of
electrical conductors, instability or continued increase in temperature may result.
Example 3.10: Heat is generated in a sphere of radius Ro at a rate depending on the radius
given by qr = qo (r/Ro) where qr is the generation rate in W/m3 at any radius r. The material
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thermal conductivity is k. Derive an expression for the temperature variation along the radius.
Also obtain the value of total heat generated in the sphere. Check the value using the heat
conducted  at  the  surface.  Considering  qo =  5  ×  106 W/m3,  Ro  =  0.09m, k = 30 W/mK and
To = 360°C, determine the maximum temperature in the sphere.
Solution: Using the general differential equation 3-23.

(d/dr) (r2dT/dr) + (q/k)r2 = 0, substituting for q = qo, r/Ro

 (d/dr) (r2dT/dr) + (qo/kRo) (r3) = 0.
Integrating r2dT/dr = – (qo/4kRo)r4 + C1 and C1 is zero as

dT/dr = 0 at r = 0.

Therefore  dT/dr = – q
kR

o

o4
 . r2 ...(E10.1)

Therefore T = – q
kR

o

o12
 . r3 + C2 ...(E10.2)

Using the condition that T = To at R = Ro.

C2 = To + q
k

Ro
o12

2.L
NM

O
QP

Substituting the value

T – To = q
kR

R ro

o
o12

3 3( )−
L
NM

O
QP ...(E 10.3)

Total heat generation can be found by summing up the heat generated in layers of dr
thickness at various radii.

 Q = qo 
0

Roz 4πr2 . (r/Ro) dr = qoπππππRo
3

Q = (– kAdT/dr) at r = Ro from equation (E 10.1) (dT/dr) at r = Ro = – qo/4k.Ro

A = 4π Ro
2 Therefore Q = – k × 4π Ro

2 × (– qoRo/4k)
= qoπRo

3 Thus proved.

Maximum temperature = To + q
kR

Ro

o
o12

360 5 10 0 09
12 30 0 09

3
6 3

. .
.

L
NM

O
QP

= + × ×
× ×

L
NMM

O
QPP

= 472.5°C (compare with example 3.7)

SOLVED PROBLEMS

Problem 3.1: A plate shaped nuclear fuel element of 24 mm thickness exposed on the sides to
convection at 200°C with a convective heat transfer coefficient of 900 W/m2K generates heat at
20 MW/m3. Determine (i) the surface temperature, (ii) the maximum temperature in the plate
and  (iii)  the  temperature  gradient  at  the  surface.  Thermal  conductivity  of the material is
25 W/mK.



VED

c-4\n-demo\damo3-1

C
ha

pt
er

 3

CONDUCTION WITH HEAT GENERATION 111

k = 25 W/mK

0.012 mTw

To

q = 20 × 10 W/m
6 3

900 W/m K
2

T = 200°C�

Fig. P. 3.2. Solid cylinder.

Solution: The data given are shown in Fig. P3.1.

To

x

k = 25 W/mK

q = 20 × 10 W/m
6 3

Tw

0.012 m 0.012 m

900 W/m K
2

T = 200°C�

900 W/m K
2

T� = 200°C
T�

Fig. P. 3.1. Problem model.

(i) To find the surface temperatures, heat generated = heat convected
qL × 1 = h × 1(Tw – T∞)

 20 × 106 × 0.012 = 900(Tw – 200) Therefore Tw = 466.7°C

(ii) To – Tw = (q/2k) (L2) = 20 10 0 012
2 25

6 2× ×
×

.  = 57.6°C

Therefore To = Maximum temperature = 466.7 + 57.6 = 524.3°C
(iii) The temperature gradient at the surface is found by using

Q = – kA dT/dx/x = L, Q = q × L × 1

Therefore  (dT/dx) = − × ×
×

=
× ×q L

k
1

1
20 10 0 012

25
6 .  = – 9600°C/m.

Problem 3.2: Determine in the case of a cylindrical fuel rod of radius 0.012 m, considering
other details as in problem 1 (i) the surface temperature (ii) the centre temperature and (iii) the
temperature gradient at the surface. The data given are shown in Fig. P3.2.

k = 25 W/mK, Q = 20 × 106 W/m3

T∞ = 200°C, h = 900 W/m2K.
Solution: (i) To find the surface temperature: Heat
generated = heat convected

Therefore πr2 × 1.q = 2πr × 1 . h(Tw – T∞).
 Tw = T∞  + rq/2h

= 200 + 0.012 × 20 × 106/2 × 900
= 333.3C.

(ii) To = Tw + (qR2/4k)

= 333.3 + 20 10 0 012
4 25

6 2× ×
×

.

= 333.3 + 28.8 = 362.1°C
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k = 25 W/mK

0.012 mTw

To

q = 20 × 10 W/m
6 3

900 W/m K
2

T = 200°C�

(iii) Temperature gradient: πr2 × q × 1 = – k.2πr(dT/dr)

Therefore   (dT/dr) = – 0 012 20 10
2 25

6. × ×
×

 = – 4800°C/m.

Problem 3.3: (a) Using other data as in problem 1, determine in the case of a sphere of 0.012 m
radius (i) the surface temperature (ii) the centre temperature and (iii) the temperature gradient
at the surface. q = 20 × 106 W/m3, R = 0.012 m, k = 25 W/mK, T∞ = 200°C, h = 900 W/m2K.

(b) Summarise the results of the three problems in a tabular form and comment on the
results.

The given data are shown in Fig. P3.3.
Solution: (a) (i). To find the surface temperature, heat
generated = heat convected.

 (4/3)πR3q = 4πR2 . h(Tw – T∞)
Therefore  Tw = T∞ + (Rq/3h)

= 200 + 0 012 20 10
3 900

6. × ×
×

= 288.9°C
(ii) To = Tw + (qR2/6k)

= 288.9 + 20 10 0 012
6 25

6 2× ×
×

.

= 288.9 + 19.2
Maximum temperature = 308.1°C

(iii) Temperature gradient at the surface
 Q = – kA dT/dr, Therefore (4/3) πR3 × q = – k4πR2 (dT/dr)

Therefore (dT/dr) = (– R/3) (q/k) = – 0 012 20 10
3 25

6. × ×
×

 = – 3200°C/m

(b). The values are tabulated below for comparison.

Shape Surface temp. Maximum temp. diff. Temp. gradient
°C °C ∆T°C at surface °C/m

Plate 466.7 524.3 57.6 – 9600
Cylinder 333.3 362.1 28.8 – 4800
Sphere 288.9 308.1 19.2 – 3200

1. The temperature increase is highest in the plate type of geometry and lowest for
spherical shape. Discuss Why ?

2. If the total temperature drop is the criterion then either lower values of heat generation
or higher values of convection coefficient or smaller linear dimension has to be used.

Fig. P. 3.3. Solid sphere.
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Problem 3.4: Assuming that the maximum temperature above the fluid temperature to be the
same compare, for the same radius, the heat generation rates of cylinder and spherical
configurations.
Solution: (To – T∞) should be the same for both cylinder and sphere.

(To – T∞)cyl = 
q

k
R

q R
h

cyl cyl .
4 2

2 +  .

(To – T∞)sp = 
q

k
R

q R
h

sp sp .
6 3

2 +

equating and dividing by qcyl and cancelling R

R
k h

q
q

R
k h4

1
2 6

1
3

+ = +LNM
O
QP

sp

cyl

∴
q
q

R
k h

R
k h

Rh k
Rh k

sp

cyl
=

+

+
= +

+
4

1
2

6
1

3

9
4

2 4
3 6

Let R = 0.012 m, k = 30 W/m2k and h = 900 W/m2

and qcyl = 20 × 106 W/m3.

 
( . ) ( )
( . ) ( )

qsp

20 10
9
4

2 0 012 900 4 30
3 0 012 900 6 306×

= × × + ×
× × + ×  = 1.5

∴ heat generation in the sphere for the given condition is 30 × 106 W/m3.
Problem 3.5: The heat generation rate in a plane wall of 0.24 m thickness is 0.4 MW/m3. The
wall is exposed on both sides to convection at 30°C.

(a) Determine  and  compare  the maximum temperatures for k = 25, k = 50, k = 200 and
k = 410 W/mK assuming h = 250 W/m2K.

(b) Determine and compare the maximum temperature for h = 50, 250, 500 and 1000 W/
m2K with k = 25 W/mK.
Solution: (a) In  all  cases  in  this  part  h = 250  W/m2K.  Therefore  Tw  can  be found using:
1 × 0.12 × 4 × 105 = 250 × 1 (Tw – 30)

Therefore  Tw = 222°C
(To – Tw) = qL2/2k. Therefore for k = 25, To – Tw = 115.2°C

Therefore To = 337.2°C.
For other values, similar calculations yield the results in the tabulation.

k, W/mK Tw °C (To – Tw) °C To °C

25 222 115.2 337.2
50 222 57.6 279.6

200 222 14.4 236.4
410 222 7.0 229.0
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(i) It is obvious that as k increases ∆T decreases in the same ratio.
(ii) The convection resistance is predominant here.
(b) Sample calculation: In this case k is constant at 25 W/mK.

 heat generated = heat convected
 q × L × 1 = h × 1 (Tw – T∞)

Therefore  Tw = T∞ + q L/h, in the case h = 50 W/m2K,

 Tw = 30 + 4 10 0 12
50
5× ×L

NM
O
QP

.  = 990°C

To – Tw = (q/2k) (L2) = 4 10 0 12
2 25

5 2× ×
×

.  = 115.2°C,

and is constant for all h values.
For  h = 50 W/m2K, To = 1105.2°C
For other values of h, values are calculated as per the sample and tabulated below.

h, W/mK Tw °C To – Tw °C To °C

50 990 115.2 1105.2
250 222 115.2 337.2
500 126 115.2 241.2

1000 78 115.2 193.2

The value of convection coefficient influences the maximum temperature and whenever
heat generation is encounterd, it is desirable to design for high value of convection coefficient.

Heat generation rate and thickness also play an important role on the value of maximum
temperature.
Problem 3.6: A nuclear fuel rod is in the form of solid cylinder. The heat generation rate is 50
MW/m3. The conductivity of the material is 24.2 W/mK. The heat generated is absorbed by a
fluid at 200°C. Determine the convective heat transfer required for diameter of

(i) 25 mm and (ii) 16 mm.
Solution: Using the eqn. 3.15(b)

Case 1: To – T∞ = qR
k

qR
h

2

4 2
+

360 – 200 = 50 10 0 0125
4 24 2

50 10 0 0125
2

6 2 6× ×
×

+
× ×.

.
.

h
Solving  h = 3941 W/m2K.

Case 2: 360 – 200 = 
50 10 0 008

4 241
50 10 0 008

2
6 2 6× ×
×

+ × ×.
.

.
h

Solving h = 1575 W/m2K.
Smaller diameter means lower convection coefficient, but the heat generated is also

lower.
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Problem 3.7: A cylindrical nuclear fuel rod of 25 mm dia solid cylinder is converted to hollow
cylinder of 5 mm thickness. If the maximum temperature in the rod should not exceed 360°C
when the heat is absorbed on the outside by a fluid at 200°C, determine the convection coefficient
required. Conductivity of the material is 24.2 W/mK.
Solution: Equating the volumes with inside radius ri

π × 0.01252 × 1 = π × 1 [(ri + 0.005)2 – ri
2]

Solving ri = 0.013125 m and ro = 0.018125 m.
Inside is adiabatic. All the heat flows at the outer surface.
Using eqn. 3.20(a)

 Tmax – To = (q/4k) (ro
2 – ri

2) + (q/2k) ri
2 . ln (ri/ro), To – Surface temp.

= 50 10
4 24 2

6×
× .

 (0.0181252 – 0.0131252) + 50 10
2 24 2

6×
× .

 . 0.0131252 ln 0 013
0 018
.
.

= 23.26,
∴  To = 336.24°C, as To = 360°C

 Q = hA(336.24 – 200)

∴ h = 50 10 0 018125 0 013125 1
0 018125 2 136 24

6 2 2× × − ×
× ×

( . . )
. .  = 1581.8 W/m2K.

This is better compared to 3940.7 for solid cylinder, Problem 3.6.
Problem 3.8: A nuclear reactor fuel rod of solid cylinder of 25 mm is converted into + shaped
form of thickness 6 mm. The heat generation rate is 50 MW/m3. Thermal conductivity is 24.2
W/mK. The heat generated is absorbed by a fluid at 200°C. Determine the convective heat
transfer coefficient on the surface.

Assuming B as side length (See Fig)
Solution: π × 0.01252 = B × 0.006 + (B – 0.006) 0.006

= B × 2.0 × 0.006 – 0.0062

Therefore B = 43.91 mm
The maximum temperature can be found using a slab of 6

mm thickness, L = 3 mm

To – Tw = (q/2k)L2 = 50 10 0 003
2 24 2

6 2× ×
×

.
.

= 9.3°C
Therefore  Tw = 360 – 9.3 = 350.7°C

Q = hA (350.7 – 200) considering one arm, Assuming unit length
Q = 1 × 0.003 × 0.04391 × 50 × 106 = h × 0.04391 × (350.7 – 200)

Therefore  h = 995.4 W/m2K.
This is also a good configuration for heat removal.
The basic requirement is that for a given volume, generating heat, the surface area

should be increased to reduce the convection coefficient and maximum temperature.

Fig. P. 3.8. Problem model.

B

0.006
m

h?

200°C
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k = 24.2 W/mK

0.0125 m

q = 50 × 10 W/m
6 3

T = 360°Co

h = ? 200°C

Problem 3.9: A nuclear fuel element is in the form of a solid sphere of 12.5 mm radius. Its
thermal conductivity is 24.2 W/mK. The heat generation rate is 50 × 106 W/m3. The heat
generated is absorbed by a fluid at 200°C. If the maximum temperature is limited to 360°C,
determine the convection coefficient required.
Solution: To – Tw = (q/6k) (R2)

360 – Tw = 50 10 0 0125
6 24 2

6 2× ×
×

.
.  = 53.8°C

(compare 80.7°C for solid cylinder)
Therefore surface temperature

= 360 – 53.8 = 306.2°C
Heat generated = heat convected

(4/3)R3 qπ = h.4πR2 (Tw – T∞)
h = (R/3) q/(Tw – T∞)

 = 0 0125
3

50 10
306 2 200

6.
( . )

×
×

−
 = 1961.7 W/m2K

Also on the higher side.
Hollow cylinder with inside adiabatic conditions appears to be the one requiring least

value of convection coefficient.
Problem 3.10: A wall 40 mm thick has its surfaces maintained at 0°C and 100°C. The heat
generation rate is 3.25 × 105 W/m3. If the thermal conductivity of the material is 2 W/mK,
determine the temperature at the mid plane, the location and value of the maximum temperature
and the heat flow at either end.

The data are shown in Fig. P. 3.10.
Solution: Equation 3.8, 9, 10 are applicable for this
problem.

Tx = T T T Tw w w w2 1 2 1
2 2
+

+
+  . (x/L)

+ (q/2k) (L2 – x2)
xmax = (k/2qL) (Tw2 – Tw1)
The temperature at x = 0, (mid plane)

To = 100 0
2

100 0
2

0 3 25 10
2 2

5+
+

−
+

×
×

. .
L

 × 0.022

 = 82.5°C

xmax = 2
2 3 25 10 0 025× × ×. .

 (100 – 0) = 0.01538 m

(on the right of centre)

Therefore Tmax = 100 0
2

100 0
2

0 01538
0 02

3 25 10
2 2

5+ + − + ×
×

. .
.

.  × (0.022 – 0.015382)

= 50 + 38.46 + 13.27 = 101.74°C

Fig. P. 3.9. Solid Sphere.

Fig. P. 3.10. Slab with different
boundary condition.
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heat flow is found either by using – kA dT/dx or by calculation of the heat generated from the
maximum temperature plane.

On the 100°C side, (0.2 – 0.01538) × q = 1500 W/m2

On the 0°C side (0.02 + 0.01538) q = 11500 W/m2

Total = 13000 W/m2

By differentiating eqn. 3.8

 T = 
T T q

k
L x

T T
L

w w w w1 2 2 1

2 2 2
2 2+

+ − +
−

( )  x

∴ dT/dx = 
T T

L
q
k

xw w2 1

2
−L

NM
O
QP

− LNM
O
QP( )

at x = 0.02, = – 750°C/W Therefore Q = – 2 × 1 × – 750 = 1500 W/m2

at x = – 0.02 = 5750°C/W Therefore Q = 2 × 5750 = 11500 W/m2 checks.
There are certain restrictions in this boundary. For example if (Tw2 – Tw1) > (2q/k)(L2)

then the solution will indicate that the maximum temperature occurs at a distance greater
than L.
Problem 3.11: Using  numeric  methods  solve  for  the temperature for the models shown in
Fig. P.3.11(a) and P.3.11(b).

100°C h = 50 W/m K
2

k = 25 W/mK

q = 10 W/m
Insulated
0.02 m

6 3

0.032 m T = 100°C

h = 50 W/m K

�
2

Fig. P. 3.11. (a) Inside Insulated. Fig. P. 3.11. (b) Outside Insulated

Solution: (a) Consider nodes as indicated (Fig P.3.11(c))

A B C

1 2 3 4

0.02 m
0.024 m

0.028 m
0.032 m

Fig. P. 3.11. (c) Nodes.
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T4 can be determined using heat generated = heat conducted assuming 1 m length,
  q × π (0.0322 – 0.022) = 2πrh(T4 – T∞)
106 × (0.09322 – 0.022) = 2 × 0.032 × 50 (T4 – 100)

Therefore T4 = 295°C
Considering the heat flow between node 3 and 4, the heat generated up to plane C is

conducted with temperature drop between 3 and 4.

Therefore 106.π × (0.032 – 0.022) = 25 2 0 03 295
0 004

3× × −. ( )
.

T π

Therefore T3 = 296.33

Similarly 106 × (0.0262 – 0.022) = 25 2 0 026 296 33
0 004

2× × −. ( . )
.

T

(Cancelling π on both sides)
Therefore T2 = 297.18°C
Similarly 106 × (0.0222 – 0.022)

= 25 2 0 022 29718
0 004

1× × −. ( . )
.

T
∴ T1 = 297.49°C

Therefore  ∆T = T1 – T4 = 2.49°C
Check: use equation 3.20

 Tmax – To = 10
4 25

6

×
 (0.0322 – 0.022) + 10

2 25
6

×
 (0.022) ln (0.02/0.032)

= 6.24 – 3.76 = 2.48°C checks.
(b) By using similar procedure: (for outside adiabatic)

106 × (0.0322 – 0.022) = 2 × 0.02 × 50 (T1 – 100) T1 = 412°C
106 × (0.0322 – 0.222) = 2 × 0.022 × 25 (T2 – 412)/0.004, T2 = 413.96°C

 106 × (0.0322 – 0.0262) = 2 0 026 25 413 96
0 004

2× × −. ( . )
.

T  , T3 = 415.03°C

 106 × (0.0322 – 0.032) = 2 0 03 25 415 03
0 004

4× × −. ( . )
.

T  , T4 = 415.36°C

Therefore  ∆T = T4 – T1 = 3.36°C
Check: use equation 3.22

 T = (q/2k)(Ro
2) ln (Ro/Ri) – (q/4k)(Ro

2 – Ri
2)

= 10
2 25

6

×
 × 0.0322 ln (0.032/0.02) – 10

4 25
0 032 0 02

6
2 2

×
−

L
NM

O
QP

( . . )

= 9.63 – 6.24 = 3.39°C checks.
Note: The numerical method is a very powerful method.
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Problem 3.12: Nuclear fuel rods are to be clad with aluminium or stainless steel or zirconium
with melting temperatures in the range of 650°C, 1400°C, and 1800°C. The diameter is 30 mm
and the heat generation rate is 7 × 108 W/m3. The convection on the surface is to a fluid at
100°C with h = 7000 W/m2K. The conductivity of the material is 52 W/mK. At shut down times,
coolant may not circulate and the surface temperature may reach the mean between the steady
state surface and centre temperature. Check for the material to be used.

The data given are shown in Fig. P.3.12.
Solution: The surface temperature is found using heat
generated = heat conducted

 πr2 × q = h2πr (Tw – T∞)
 0.015 × 7 × 108 = 2 × 7000 (Tw – 100)

Therefore  Tw = 850°C.
To – Tw = (q/4k) R2

= 7 10 0 015
4 52

8 2× ×
×

.

= 757.2°C
Therefore To = 1607.2°C

Mean temperature = 1607 2 850
2

. +  = 1228.6°C.

1. Aluminium cannot be used.
2. To check for stainless steel: mean temp. = 1228°C
Therefore use of stainless steel is risky as it is near 1400°C. Hence Zirconium cladding

can be safely used. (look for its exact melting point).
Problem 3.13: A copper cable of 30 mm diameter carries 300A when exposed to air at 30°C
with a convection coefficient of 20 W/m2K. The resistance is 5 × 10–3 ohm/m. If k = 395 W/mK,
determine the surface and center temperatures.
Solution: Heat generated in 1m length = l2R  = 3002 × 5 × 10–3 W = 450 W

q = 450/πr2 × 1 = 450/π × 0.0152 = 636620 W/m3

To find surface temperature:
450 = 2π × 0.015 × 20 (Tw – 30) Therefore Tw = 268.73°C

To – Tw = 
.qR

k

2 2

4
636620 0 015

4 395
L
NM
O
QP

=
×

×  = 0.09°C

Therefore center temperature = 268.82°C.
The cable is more or less at uniform temperature. This is generally the case with materials

of high conductivity and small diameters.
Problem 3.14: In a slab of thickness as shown in Fig. P.3.14 insulated in x = 0 plane, heat is
generated at any plane as per q = qo[x/L]. Determine the temperature distribution, heat flow at
any section and the heat flow at the surface.

Fig. P. 3.12. Problem model.
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Solution: The model is shown in Fig. P.3.14.
The differential equation reduces to (Ref. eqn. 3.1)

d2T/dx2 = (– qo/k) (x/L)
Integrating:  dT/dx = (– qo/k) . (x2/2L) + C1

as dT/dx = 0 at x = 0, (insulated) ∴ C1 = 0.

Integrating  T = – q
kL
o

6  (x3) + C2

at x = L, T = Tw. Therefore Tw + q
kL

Lo
6

3.L
NM

O
QP  = C2

Therefore T = q
kL

L xo
6

3 3. ( )−L
NM

O
QP  + Tw

or T – Tw = q
kL

L xo
6

3 3. ( )−L
NM

O
QP

...(P.14.1)
The maximum temperature occurs at x = 0

Therefore To = Tw + 
q L

k
o

2

6
L
NMM
O
QPP

...(P.14.2)

Q = – kA dT/dx = (– k) . −L
NM

O
QP =

q
k

x Lo . 2 / 2 q x
2L
o

2
 W/m2

at the surface, x = L, Therefore Q = q Lo
2  W/m2. As the variation is linear, the average value of

heat generation rate between x = 0 and x = L i.e. 0
2

+ q Lo .

Problem 3.15: In a slab the heat generation rate at x is given by q = 106 e–50x W/m3 where x is
in m. Consider a slab insulated at x = 0, and the thickness at which q = 1000 W. Determine the
temperature difference between the planes and the heat flow at the surface.

Solution: This variation can be considered as q = qoe–ax

(Note: a has a dimension of 1/m)
Substituting this in the differential equation.

(d2T/dx2) + (q/k) = 0 is modified as d T
dx

q e
k

o
ax2

2 +
−

 = 0.

Integrating it dT/dx = q
ka

e Co ax− +L
NM

O
QP1

As at x = 0, dT/dx

∴  C1 = −L
NM

O
QP

−q
ka

eo ao  or C1 = −L
NM
O
QP

q
ka

o

L

x

Insulated dx

Fig. P. 3.14. Problem model.
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Therefore 
dT
dx

q
ka

e q
ka

o ax o= −L
NM

O
QP

−

Integrating T = −
−−q

ka
e q x

ka
o ax o
2 .  + C2

at x = L T = Tw

Therefore ∴ Tw = −
−−q

ka
e q L

ka
o aL o
2 .  + C2

Therefore C2 = (qo/ka2) e–aL + (qo/ka)(L) + Tw
Therefore  T = [qo/ka2] (e–aL – e–ax) + (qo/ka) (L – x) + Tw

or T – Tw = (qo/ka2) (e–aL – e–ax) + (qo/ka) (L – x) ...(P.15.1)
Maximum temperature occurs at x = 0.

To – Tw = (qo/ka2) (e–aL – 1) + (qo/ka) (L)
Heat flow = – kA dT/dx, dT/dx can be found from eqn. P.15.1.

as dT/dx = (qo/ka) (e–ax) – (qo/ka) ...(P.15.2(a))

Therefore Q|Surface = – q
a
o  [1 – e–aL] ...(P.15.2)

For qo = 106, a = 50, k = 15 W/mK.
The thickness is found using the conditions that at x = L,

q = 1000 = qoe–ax = 106e–50x, Solving x = 0.1382 m.
To – Tw = (qoL/ka2) (e–aL – 1) + (qoL/ka)

= 10
15 50

1 10
15 50

0 1382
6

2
50 0.1382

6

×
− +

×
×

L
NM

O
QP

− ×. [ ] .( )e

 ∆T = – 26.64 + 184.2 = 157.6°C

(dt/dx) surface = 10
15 50

10
15 50

6
50 0.1382

6

×
−

×
− ×. e  (eqn. (15.2(a)) is used)

= 1.33 – 1333.33 = – 1332°C/m
Therefore Q = (– 1332) × (– 15) = 19980 W/m2

Also from eqn. P.15.2, Q = (qo/a) (1 – e–aL) = 10
50

6
 (1 – e50×0.1382) = 19980 W.

Problem 3.16: In a plane wall heat flux β qo enters the wall at x = 0. In the wall there is a
uniform heat generation q = qo (1 – β) α e–αx. Under steady state conditions all the heat is
convected at x = L. Determine the temperature distribution, the temperature drop (To – TL) and
the heat flow at any section as well as at x = L.

The model is shown in Fig. P.3.16.
Solution: The differential equation reduces to (d2T/dx2) + (qo/k) (1 – β) α . e–αx = 0.

Integrating  dT/dx = (qo/k) (1 – β) e–ax + C1 ...(1)
At the boundary at x = 0 heat is to be conducted in at β qo, A = 1
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 – kA dT/dx |x = 0 = β qo
Therefore dT/dx at x = 0, = – (β qo/k)
Therefore (qo/k) (1 – β) e–α×0 + C1 = – β qo/k
Therefore C1 = [– (βqo/k) – (qo/k)]/(1 – β) = – qo/k.
Therefore  (dT/dx) = (qo/k) (1 – β) e–αx – qo/k ...(2)
Heat flux at any section can be obtained by multiplying

this equation by – k. Since (Q/A = – k dT/dx)
Therefore Q/A = – qo(1 – β) e–αx – qo

 = qo [1 – (1 – β) e– αx] ...(3)
Integrating eqn. (2),

T = (– qo/k) ( )1 − β
α

 e–αx – (qox/k) + C2

The boundary condition is at x = L, T = Tw

C2 = Tw + (qo/k) ( )1 − β
α

 . e–αL + (qoL/k)

Therefore  T – Tw = (qo/k) (1 )− β
α

 [e–αααααL – e–αααααx] + [qo/k] {L – x] ...(4)

and To – Tw = [qo/k] ( )1 − β
α

 [e–αL – 1] + [qo/k] [L] ...(5)

Note: qo – W/m2, α = 1/m, β dimensionless.
The heat flow can also be obtained by integrating the heat generated and adding the

flux at x = 0

Heat generated = 
o

Lz  qo (1 – β) α e–αx dx = – qo (1 – β) e–αL + qo (1 – β)

Heat entering = β qo ...(5a)
Adding, total flow = qo [(1 – (1 – β) e–αL)]
From equation (3) at x = L

Q/A  = qo [1 – (1 – β) e–αL] ...(6) checks.
Problem 3.17 At an instant the temperature distribution in a nuclear fuel rod of 25 mm radius
at steady state is given by the equation T = A – Br2 when it
was generating heat at a steady state. The properties are k
= 30 W/mK, density = 1800 kg/m3, c = 0.8 kJ/kgK. If A
800°C and B = 4.167 × 105 °C/m2 at that condition,
determine the heat generation rate/m and also/m3 basis.
If the heat generation rate is doubled, determine the initial
rate of temperature rise at r = 0 and at surface.
Solution: The heat generated can be found by calculating
the heat flow at the surface.

– kA (dT/dr) | at (x = R) = Q
T = 800 – 4.167 × 105 r2

Fig. P. 3.16.

Fig. P. 3.17. Problem model.

k = 30 W/mK

0.025 m

� = 18,000 kg/m
3

c = 800 J/kgK
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Therefore dT/dr = – 4.167 × 105 × 2r,  ∂
∂

2T
r2  = – 4.167 × 105 × 2

Therefore Q = – 30 × 2π × 0.025 × – 4.167 × 105 × 2 × 0.025
Q = 98182.624 W/m length

The volume is π r2 × 1
Therefore q = 98182.624/π × 0.025 × 0.025 = 5 × 107 W/m3

The rate of temperature rise is given by ∂T/∂τ
The general differential equation under unsteady conditions in cylindrical co-ordinates

can be simplified using the given relation as

∂2T/∂r2 + (1/r) ∂T/∂r + q/k = (ρc/k) (∂T/∂τ) = 1
α

∂
∂

. T
r

 ∂2T/∂r2 = – 2B, ∂T/∂r = – 2Br substituting in the equation

– 2B + – 2Br/r + q/k = 1
α

 (∂T/∂τ)

 α [– 4B + q/k] = ∂T/∂τ

Substituting the values (∂T/∂τ) = 
30

1800 800×  [– 4 × 4.167 × 105 + (108/30)] = 34.72°C/s

This is irrespective of the radius. But as time proceeds, the rate will change.
Problem 3.18: It is proposed to heat the window glass panes in a living space at 26°C. A
company  offers  resistance  embedded  glasses with uniform heat generation. The outside is at
– 15°C, and the convection coefficient on the outside is 20 W/m2K. The pane is 8mm thick and
has a conductivity of 1.4 W/mK. What should be heat generation rate if the inside surface
temperature is equal to the room temperature.

The data are presented in Fig. P.3.18.
Solution: The heat generated = heat convected

There is no heat flow on the inner surface
 qL = (T – T∞) hA, but T = 26 – qL2/2k

Therefore qL . 1 = (26 – qL2/2k – T∞) h . 1.

q × 0.008 = 20 × 1 × 26 0 008
2 14

15
2

− ×
×

− −
L
NMM

O
QPP

.
.

( )q

q × 0.008 = 20 [41 – 2.28 × 10–5 q]
8.457 × 10–3 × q = 20 × 41

Therefore q = 97 kW/m3

For the pane: 1m2 basis: 775.7 W/m2

The surface temperature, T is found using heat
generated Fig. 3.18: Q = hA(∆T)

775.7 = 20(T – (– 15))
Therefore T = 23.785°C

Fig. P. 3.18.

k = 1.4 W/mK

0.008 m
x

T°C

– 15°C

q ?
.

Roomside

20 W/m K
2

– 15°C

26°C
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This arrangement reduces surface condensation, and better comfort as the radiation
from body to the glass is reduced, but it is expensive.
Problem 3.19: In the problem 3.18 if the outside surface temperature can be adjusted to be 4°C
and if the heat generation rate is reduced to 1/4th the value, determine the heat loss from the
room air. Also find the convection coefficient that has to exist inside the room.
Solution: The total heat loss is now known by using

 Q = hA(T – T∞) = 20 × 1 × [(4 – (– 15)] = 380 W
The heat generation rate now is 775.7/4 W/m2 = 193.925 W
Therefore heat from room air = 186.075 W
Present heat generation rate,  q = 97 × 1000/4 = 24250 W/m3

Therefore inside surface temperature: 4 + 24250
2 14

0 0082
×

×
L
NM

O
QP.

.  = 4.6°C

Therefore hi (26 – 4.6) = 186.075
hi = 8.7 W/m2K.

The heat loss is reduced but occupants will feel chilled by radiation to 4.6°C.
Problem 3.20: Compare the temperatures at the centre line for circular rods with heat generation
rate of 50 MW/m3, when exposed to a fluid at 150°C with a convection coefficient of 1000 W/
m2K. The conductivity is 25 W/mK. Take r = 0.025, 0.05, 0.1 and 0.2.
Solution: First the surface temperatures are to be found using

 Q = hA (Tw – T∞) Q = πr21 × q A = 2πr × 1
 πr2q/h2πr × 1 = (Tw – T∞)

Therefore  Tw = (qr/2h) + T∞

r, m Tw,°C To°C

0.025 m 775°C 1087.5 °C
0.05 m 1400°C 2650°C
0.1 m 2650°C 7650 °C
0.2 m 5150°C 25150°C

To – Tw = (q/4k) r2. Therefore To = Tw + (q/4k) r2 is used in the above. This problem is to
illustrate the rapid rate of increase in the value of maximum temperature with radius for the
same convection condition and heat generation rate.
Problem 3.21: A fuse wire of diameter 2 mm with a resistivity of 5 micro ohm cm is to be used
in a circuit. The convection coefficient to surroundings at 30°C is 6 W/m2K. If the wire melts at
800°C, determine the rating. Thermal conductivity = 357 W/mK.

Solution: The resistance for 1 m length is found using . R = ρ L
A

 where ρ is the resistivity, L
is the length in cm and A is the area in cm2

R = 5 10 100
0 1

6

2
× ×

×

−

π .
 = 0.016 ohm

Heat convected = hA ∆T = 6 × π × 0.002 × 1 (800 – 30) = 29.03 W
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This is equal to l2R. Therefore  l = 42.7 amps
Heat generation rate q = 29.03/V = 29.03/π × r2 × 1 (V-Volume)

= 9.24 × 106 W/m3

To – Tw = qR2/4k = 0.0065°C (R – radius here)
When radius is small, the whole wire is at near uniform temperature.

OBJECTIVE QUESTIONS

Choose the Correct Statement or Statements
(i) In a slab generating heat uniformly and at steady state convecting equally on both sides, the

temperature gradient will
(a) flatten out as the distance from the centre increases
(b) become steeper as the distance from the centre increases
(c) will remain constant
(d) can be any of (a, b) or (c) depending the heat generation rate.

(ii) For the same linear size (i.e. L, r) and heat generation rate, the temperature drop from centre
to surface is highest in
(a) spherical shape (b) plate shape
(c) cylindrical shape (d) rod of square section.

(iii) The temperature drop in a heat generating solid under steady state conduction depends to a
greater extent on
(a) linear dimension (b) thermal conductivity
(c) heat generation rate (d) convection coefficient at the surface.

(iv) The most effective way to reduce the temperature drop in a heat generating solid is to
(a) reduce the linear dimension
(b) reduce the thermal conductivity
(c) reduce the convection coefficient on the surface
(d) reduce the heat generation rate.

(v) The thermal gradient in a heat generating cylinder under steady conduction, at half the radius
location will be
(a) One half of that at surface (b) One fourth of that at surface
(c) Twice that at surface (d) Four times that at surface.

(vi) In a sphere under steady state conduction with uniform heat generation, the temperature
gradient at half the radius location will be
(a) one half of that at the surface (b) one fourth of that at the surface
(c) one eight of that at the surface (d) 2 times of that at the surface.

Answers: (i) b, (ii) b, (iii) a, (iv) a, (v) a, (vi) a.

EXERCISE PROBLEMS

3.1 An exothermic reaction in a slab of material generates heat uniformly at a rate of 2 × 106 W/m3.
The material has a thermal conductivity of 6.5 W/mK and the thickness is 80 mm. The slab is
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exposed on both sides. If the surface is maintained at 150°C by convection, determine the centre
temperature. Also determine the value of convection coefficient it heat is extracted by fluid at
100°C. (396°C, 1600 W/m2K)

3.2 An exothermic reaction takes place in a long cylinder of radius 40 mm with a thermal conductiv-
ity of 6.5 W/mK which leads to the generation of heat uniformly in the volume. If the allowed
temperature difference between the surface and the centre is 246°C, determine the heat genera-
tion rate possible. Also find the required value of convection coefficient to dissipate the heat to a
fluid at 100°C, with the surface temperature to be at 150°C. (4 × 106 W/m3, 1600 W/m2K)

3.3 Heat is generated uniformly by chemical reaction in a sphere of radius 40 mm. The conductivity
of the material is 6.5 W/mK. If the allowable temperature rise at the centre over the surface is
246°C, determine the heat generation rate. If the surface temperature is 150°C and if a fluid at
100°C is used to collect the heat, determine the required value of convection coefficient. (6 × 106

W/m3, 1600 W/m2K).
 3.4 In a slab of thickness 0.1 m, insulated on one face heat is generated as per the rate q = 106 × cos

πx
0 2.  where x is the distance in m from the insulated face. If the centre temperature is not to

exceed 150°C and the thermal conductivity of the material is 52 W/mK, determine the surface
temperature. Also find the heat transfer rate at the surface and the convection coefficient re-
quired to dissipate the heat to a fluid at 40°C. (72°C, 63622 W, 989 W/m2K).

 3.5 Heat generation in a cylinder of radius 0.04 m is non-uniform and varies with the radius r by the
relation q = qo (1 – cr) where c is a constant having a unit of 1/m. The conductivity of the material
is 12 W/mK. If c = 20/m. qo = 106 W/m3 and if the centre temperature is to be 170°C, determine
the temperature at which the surface should be maintained. Also find the heat flow rate at the
surface and the convection coefficient required to maintain the temperature if the heat is ex-
tracted by fluid at 60°C.

[T – Tw = (qo/4k) (R2 – r2) – (qo/9kR) (R3 – r3), 148.5°C, 2346 W/m2, 105.5 W/m2K]
 3.6 In a sphere of radius R, the heat generation rate varies with the radius r as q = qo [1 – (r/R)2]. If

the thermal conductivity is k, derive the expression for the temperature variation with radius.
[T – Tw = (qo/6k) (R2 – r2) – (qo/20kR2) (R4 – r4)]

3.7 In problem 6, if qo = 1 × 106, R = 0.04, k = 12 and if the centre temperature is 170°C, determine
the surface temperature. Also find the heat flow rate at the surface. Also find the value of h if the
fluid extracting heat is at 60°C. (154.4°C, 107.2 W, 56 W/Km2)

3.8 It is proposed to generate power in a nuclear installation at the rate of 100 MW/m3 of fuel. The
fuel has a thermal conductivity of 25 W/mK. Each fuel element has a sectional area of 20 cm2.
The convection coefficient has a value of 200 W/m2K. The heat extraction is at 200°C. Compare
the maximum temperatures of solid cylinder and hollow cylinder of 10 mm thickness with heat
extraction from the outside surface.

3.9 A plate of 0.1 m thickness insulated on one side and generating heat uniformly has to have the
maximum temperature gradient limited to 1000°C/m to avoid thermal distortion. If the thermal
conductivity of the material has a value of 200 W/mK, determine the maximum heat generation
rate. Also find the centre temperature if the surface is at 100°C. (2 × 106 W/m3, 150°C)

3.10 A cylinder of radius 0.2 m generates heat uniformly at 2 × 106 W/m3. If the thermal conductivity
of the material has a value of 200 W/mK, determine the maximum temperature gradient. Also
find the centre temperature if the surface is at 100°C. What is the value of heat flux at the
surface and heat flux per m length. (2000°C/m, 20°C, 2 × 105 W/m2, 2.5 × 105 W/m length)

3.11 A slab generating heat at the rate of 3.8 × 106 W/m3 is 30 mm thick and has its surfaces main-
tained at 100°C and 300°C. The thermal conductivity of the material is 1.24 W/mK. Determine
the location and the value of maximum temperature. Also find the temperature at the mid point.
(2.2 mm from centre, 566°C, 544.8°C)
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3.12 The heat generation rate in a solid cylinder of radius R varies as qo e–ar. Derive an expression for
the temperature distribution.

3.13 A slab of 0.10 m thickness generating heat uniformly at 2 × 106 W/m3 has a thermal conductivity
of 25 W/m°C. On both sides a layer of stainless steel of 5 mm thickness with k = 12.5 W/mK is
laid to protect the surface. The outside wall of the stainless steel is exposed to a fluid at 210°C
with a convection coefficient of 500 W/m2K. Determine the centre temperature and also the
temperature on both sides of the stainless steel plate. Compare the temperature gradients at the
surface of the heat generating wall and also the stainless steel material.

3.14 A cylindrical rod generating heat at a rate of 2 × 106 W/m3 and having a radius of 0.05 m has a
thermal conductivity of 25 W/mK. It is clad with stainless steel layer of 5 mm thickness with a
conductivity of 12.5 W/mK and the surface is exposed to fluids at 210°C with a convection coeffi-
cient of 500 W/m2K. Determine the centre temperature, heat transfer rate at the surface and all
surface temperatures. Calculate also the temperature gradients at the interface for both materi-
als.

3.15 A heat generating wall of 0.1 m thickness with a heat generation rate of 5 MW/m3 is of material
with a conductivity of 25 W/mK is exposed on both sides to convection as well as radiation to
surroundings at 100°C. The convection coefficient is 200 W/m2K. Determine the centre and sur-
face temperatures.

3.16 A concrete dam of thickness 15 m, having a thermal conductivity of 5 W/mK has heat generation
due to the setting of cement at a rate of 20 W/m3. The surfaces are at 20°C. Determine the centre
temperature (132.5°C).
Note: Concrete is laid after chilling the aggregate and cooling is also done for some period of
time when laying a large volume of concrete).

3.17 Using numerical method solve for the centre temperature in the case of a slab of 0.1 m thickness
exposed on both sides to convection to fluid at 180°C with h = 200  W/m2K. The conductivity of
the material is 25 W/mK. The heat generation rate is 2 MW/m3.

3.18 Solve problem 18 for a cylinder of radius 0.05 m.
3.19 Solve problem 18 for a sphere of radius 0.05 m.
3.20 A computer chip made of silicon and of thickness 4 mm has a heat generation rate of 1.7 × 106 W/

m3. (This is equal to 1W for a chip of 4 mm × 10 mm × 15 mm). The chip is exposed to cold air on
one side at 20°C with a convection coefficient of 25 W/m2K. Determine the centre temperature.
(The other side may be assumed to be insulated). k = 95 W/mK.

3.21 The heat generation in a wall varies as qx = qo cos ax, where qo is the heat generation at x = 0. a

is a unstant with unit 1
m

 . The wall thickness is L and the wall is insulated at x = 0. The surface

temperature is Tw. Derive an expression for the heat flux at the wall surface.
3.22 An aluminium cable of diameter 30 mm carries an electrical current of 250 A. The thermal

conductivity is 200 W/mK. The electrical resistivity is 3µΩ cm. Calculated the temperature drop
for the cable (note: Resistance in ohm = Resistivity × length/area).

3.23 Derive an expression for the temperature distribution in a hollow cylinder with heat source
which varies as q = a + br when q is the generation rate per unit volume at radius r.
The boundary conditions are T = Ti at r = ri. and T = To at r = ro.
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HEAT TRANSFER WITH EXTENDED
SURFACES (FINS)

4

4.0  INTRODUCTION

There are numerous situations where heat is to be transferred between a fluid and a surface.
In  such  cases  the  heat flow depends on three factors namely (i) area of the surface (ii)
Temperature difference and (iii) the convective heat transfer coefficient.

The base surface area is limited by design of the system. The temperature difference
depends on the process and cannot be altered. The only choice appears to be the convection
heat transfer coefficient and this also cannot be increased beyond a certains value. Any such
increase will be at the expense of power for fans or pumps. Thus the possible option is to
increase the base area by the so called extended surfaces or fins. The situation is depicted in
Fig. 4.1. The fins extend form the base surface and provide additional convection area for the
heat conducted into the fin at the base. Fins are thus used whenever the available surface area
is found insufficient to transfer the required quantity of heat with the available temperature
deep and heat transfer coefficient. In the case of fins the direction of heat transfer by convection
is perpendicular to the direction of conduction flow. The conduction in fins is considered to be
one dimensional though it is essentially two dimensional. This is acceptable as the length
along the fin is much larger to the transverse length. The process of heat transfer  with fins is
often termed as combined conduction convection systems.

Common examples of the use of extended surfaces are in cylinder heads of air cooled
engines and compressors and on electric motor bodies. In air conditioners and radiators tubes
with circumferential fins are used to increase the heat flow. Electronic chips cannot function
without use of fins to dissipate the heat generated. Several shapes of fins are in use. These are
(i) Plate fins of constant sectional area (ii) Plate fins of variable sectional area (iii) Annular or
circumferential fins constant thickness (iv) Annular fins of variable thickness (v) Pin fins of
constant sectional area and (vi) Pin fins of variable sectional area. Some of these are shown in
Fig. 4.1.

The main aim of the study is to design fins to optimise the use of a given amount of
material to maximise heat transfer. For this purpose it will be desirable that the fin surface
temperature is closer to the base surface temperature. This can be achieved by the use of
materials of high thermal conductivity like copper or aluminium. In terms of weight and ease
of lubrication aluminium  will score over copper though its thermal conductivity will be lower.
It will be shown later that there are limitations about the length of the fin in terms of
effectiveness of the material used. In order to increase the area for a given volume, thinner
fins should be chosen. Fins are found more valuable when the convective heat transfer coefficient
is low. This is the case in the case of gas flow and natural convection and fins are more commonly
used in these cases.
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Fig. 4.1. Schematic Diagrams of Different Types of Fins: (a) Longitudinal Fin of Rectangular Profile;
(b) Cylindrical Tube with Fins of Rectangular Profile; (c) Longitudinal Fin of Trapezoidal Profile;

(d) Longitudinal Fin of Parabolic Profile; (e) Cylindrical Tube with Radial Fin of Rectangular Profile;
(f) Cylindrical Tube with Radial Fin of Truncated Conical Profile; (g) Cylindrical Pin Fin;

(h) Truncated Conical Spine; (i) Parabolic Spine.

Pin fins of constant cross-section are chosen first for analysis in order to make the analysis
tractable. Four boundary conditions are analysed. In order to calculate the heat flow it is
necessary first to obtain expression for temperature variation along the fin. This will lead to
the calculation of temperature gradient at the base and heat flow. In the case of circumferential
and variable area pin fins, the formulation is more complex. These are designed using charts
plotting efficiency against physical parameters. As in more and more applications
circumferential fins are used, learning the use of the charts is more valuable.

4.1  FIN MODEL

A simplified model for the analysis of heat transfer with extended surfaces is shown in Fig. 4.2.
The area of cross section is assumed to be constant along the heat flow direction (variable area
will be discussed later). The surface area of the slab from which heat is to be dissipated to the
fluid surrounding it is extended by a fin on it. Heat is transferred from the surface to the fin at
its base by conduction. This heat is convected to the surrounding fluid over the fin surface (it
may be radiated also). The energy balance under steady conditions for the fin will yield

T
�

h

x

L

x

T k

dx

A

P
Tb

Fig. 4.2. Pin fin.
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heat conducted in at the base – heat convected over the fin surface upto the section x.
= heat conducted out at the section x into the remaining fin material.

The process indicates that the temperature continuously varies along the length and
the  heat  flow also varies along the length. The main quantities required to be calculated are
(i) the temperature along the length and (ii) the total heat flow.

4.2 TEMPERATURE CALCULATION

The parameters involved in the analysis are:
Tb — the base temperature, T∞—the fluid temperature,
k — thermal conductivity of the material, (considered as constant)
h — Convective heat transfer coefficient,
A — the sectional area perpendicular to the heat flow direction and
P — perimeter exposed to the fluid, direction of convection.

The analysis can be done by considering the energy balance for a small elemental volume
at a distance x as shown in Fig. 4.3.

The heat balance under steady conditions gives
heat conducted in at section x (1, 2) –– heat conducted out at section x + dx (3, 4)

–– heat convected over the surface of the element = 0
–– kA (dT/dx) – (– kA dT/dx + (d/dx) (– kA dT/dx) dx) – hP dx (T – T∞) = 0 ...(4.1)

assuming k and A are constant and not influenced
by temperature or location and P dx is the surface
area for convection

d2T/dx2 – (hP/kA) (T – T∞) = 0 ...(4.2)
In order to solve the equation, a new variable

θ is introduced.
θ = T – T∞, d2T/dx2 = d2θ/dx2

Also a variable m is defined as ( / )hP kA
The equation reduces to d2θθθθθ/dx2 – m2θθθθθ = 0

...(4.3)
The general solution for the equation is θ = C1 emx + C2 e–mx ...(4.4)
The constant C1 and C2 are determined using the boundary conditions. There are four

possible sets of boundary conditions, each giving a different set of values to C1 and C2. These
boundary conditions and the solution for temperature distribution for each case is shown in
Table 4.1.

Case 1: Long fin configuration:
(i) x → ∞, θ = 0 (ii) x = 0, θ = Tb – T∞

 θ = C1 emx + C2 e–mx.
From first boundary condition, C1 = 0 as otherwise θ will become infinite which is not

possible.
∴  θ = C2 e–mx, at x = 0, θ = Tb – T∞

Tb – T∞ = E2 e–mo = C2.

Fig. 4.3.
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∴
θ

θo b

T T
T T

= − ∞

∞–  = e–mx ...(4.5)

In this case the variation of temperature is exponential.
A question arises as to what should be the limiting length for this equation to apply.

Assuming that the temperature ratio (T – T∞)/(To – T∞) = 0.01, the corresponding value of mL

= 4.6. Hence as long as L = 4.6/m = 4.6 
kA
hP
F
HG
I
KJ

1 2/

 this equation can be applied without significant

error.
Case 2. Short fin end insulated:

At x = 0, θ = θo = Tb – T∞ , At x = L, d
dx

θ  = 0 as the surface is insulated. From the first
condition, θ = C1 emx + C2 e–mx leads to

∴ θo = C1 + C2 ...(1)

 
d
dx

θ

L
 = m (– C1 emL + C2 e–mL) = 0 ...(2)

∴  C1 emL = C2 e–mL or C2 = C1 e2mL ...(3)

using eqn. (1)  θo = C1 + C1 e2mL or C1 = θo
mLe1 2+

using eqn. (3)

∴ C2  = θ θo
mL

mL o
mLe

e
e1 12

2
2+

=
+ −.

∴
θ

θo

mx

mL

mx

mL
e
e

e
e

=
+

+
+

−

−1 12 2

= e e
e e

e e
e e

e e
e e

mx mL

mL mL

mx mL

mL mL

m L x m L x

mL mL

−

−

−

−

− − −

−+
+

+
=

+
. .( ) ( )

 
T T
T T

m L x
mLb

−
−

= −∞

∞

cosh ( )
cosh ...(4.6)

In this case the heat convected at the tip is neglected. The error due to this can be
reduced by increasing the length by ∆L equal to t/2 where the thickness of the fin is t. In the
case of circular fins ∆L = D/4.

The temperature ratio at the tip is
T T
T T mL

L

o

−
−

=∞

∞

1
cosh ...(4.7)

Case 3. Short fin with convection, hL at the tip.
The boundary conditions are

at x = 0, θ = θo, at  x = L, – kA dT
dx L

 = hLA (TL – T∞)
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The algebra is more involved. The resulting equation is

T T
T T

m L x h
mk

m L x

mL h
mk

mLb

L

L

−
−

=
− + −

∞

∞

cosh ( ) sinh ( )

cosh . sinh+ ...(4.8)

At the tip, the temperature ratio is
T T
T T mL h

mk
mL

L

b L

−
−

=∞

∞

1

cosh . sinh+ ...(4.9)

Eqn. 4.6 can be obtained from eqn. 4.8 with hL = 0.
Case 4. Specified end temperatures.
At x = 0, θ = Tb1 – T∞ where Tb1 is the temperature at end 1
At x = L, θ = Tb2 – T∞ where Tb2 is the temperature at end 2.
In this case also the algebra is involved. The resulting solution is

T T
T T

T T T T mx m L x
mLb

b b−
−

= − − + −∞

∞

∞ ∞

1

2 1[( ) / ( )]sinh sinh ( )
sinh

...(4.10)

The boundary conditions and solutions are given in Table 4.1.
Table 4.1. Temperature distribution in constant area fins for different

boundary conditions, m = hP kA/

Boundary condition and Temperature distribution
general nomenclature

1. Long fin
x = 0, θ = To – T∞ (T – T∞)/(To – T∞) = e–mx ...(4.5)

2. Short fin end insulated

(length L)
T T
T T

m L x
mLo

− ∞
−

= −

∞

cosh ( )
cosh ( ) ...(4.6)

x = 0, θ = To – T∞
x = L, dT/dx = 0

3. Short fin (convection at the tip hL, considered),
x = 0, θ = To – T∞

x = L, (– kA dT/dx) |L = hL A(TL – T∞)

T T
T T

m L x h
mk

m L x

mL h
mk

mLo

L

L

−
−

=
− + FHG

I
KJ −

F
HG
I
KJ

∞

∞

cosh ( ) sinh ( )

cosh ( sinh) +
...(4.8)

4. Fixed end temperature
x = 0, θ = To1 – T∞

x = L, θ = To2 – T∞ ...(4.10)

T T
T T

T T T T mx m L x
mLb

b b−
−

=
− − + −∞

∞

∞ ∞

1

[( ) / ( )] sinh ( ) sinh ( )
sinh (

2 1
)
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The first three examples illustrate the difference between the first three end conditions
for similar a fins at similar surroundings.
Example 4.1: A long rod 12 mm square section made of low carbon steel protrudes into air at
35°C from a furnace wall at 200°C. The convective heat transfer coefficient is estimated at
22W/m2K. The conductivity of the material is 51.9 W/mK. Determine the location from the
wall at which the temperature will be 60°C. Also calculate the temperature at 80 mm from base.

The data are shown on Fig. 4.4.

Fig. 4.4. Problem model.

Solution: The long fin model will suit the problem situation.
T T
T Tb

−
−

= −
−

∞

∞

60 35
200 35  = e–mx

The distance x is to be calculated:

m = hP kA/ ( . / . . . )= × × × ×22 4 0 012 519 0012 0 012

= 11.89, 1
m

Taking logarithm and solving x = 0.159 m or 159 mm.
Temperature at 80 mm: (T – 35)/(200 – 35) = e–11.89×0.08 ∴ T = 98.74°C.

Example 4.2: In the example 4.1 if the length of the rod is 159 mm. Determine the end
temperature. Also find the temperature at 80 mm distance. All the data in example 4.1 are used
as such, except that the length is 159 mm and end insulated (or heat convected at the tip is
negligible). The temperature distribution is given by

 
T T
T T

m L x
mLb

−
−

= −∞

∞

cosh ( )
cosh m (from example 1) = 11.89

To find end temperature x = L.

TL −
−

=
×

35
200 35

1
11 89 0159cosh ( . . )  = 0.295 TL = 83.72°C

(compare with that of long fin at this location, 60°C)
Temperature at 80 mm (or 0.08 m)
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 T −
−

= −
×

35
200 35

1189 0159 0 08
11 89 0159

cosh . ( . . )
cosh ( . . )

 = 0.4354 ∴ T = 106.84°C

(compare at the same location in long fin, 98.74°C).
Example 4.3. In the example 4.1, consider the fin to be 80 mm long and end face convection
also exists. Determine the end temperature.
Solution: This problem model is the short fin situation.

 
T T
T T

m L x h km m L x
mL h km mLb

L

L

−
−

=
− + −∞

∞

cosh ( ) ( / ) sinh ( )
cosh ( ( / ) sinh) +

as x = L this reduces to

 
TL −

−
=

× + × ×
35

200 35
1

11 89 0 08 22 51 9 11 89 11 89 0 08cosh ( . . ) ( / ( . . )) sinh ( . . )
 TL = 143.1°C

The plot of temperature along the length is shown in Fig. 4.5.
T

Short fin

1

143

106

98

2

83

60
3

Long fin

End insulated

200°C

0
0 80 159

Fig. 4.5. Temperature variation along fins of different boundary.

The heat flow in these cases will be discussed in examples 4.4, 5 and 6.

4.3 HEAT FLOW CALCULATION

Referring to Fig. 4.2, the following two methods can be used to determine the heat flow
(i) All the heat has to come into the fin at the base by conduction or (ii) the total heat

flow into the fin is the sum of heat convected over the surface of the fin.
Both methods lead to the same expression.
Using the first method fin long fin boundary

 Q = – kA (dT/dx)x = 0
For long fin (T – T∞) = (To – T∞) e–mx

dT/dx = – m (To – T∞) e–mx, Q = (– kA) {– m(To – T∞)} e–m0

 Q = kA hP kA/  . (To – T∞) . 1 = hP kA  . (Tb – T∞) ...(4.11)
using the second method: for long fin . L ..... > ∞
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 Q = 
0

∞z  hP dx (T – T∞), as (T – T∞) = (Tb – T∞) e–mx

 Q = 
0

∞z  hP (Tb – T∞) . e–mx dx = LNM – (1/m) . hP (Tb – T∞) e–mx OQP
∞

0

= [0 – (– (1/ kA hP/ )) . hP (Tb – T∞) . e–m0]

= hP kA  (To – T∞) ...(4.11)
(ii) Short fin end insulated boundary:

 Q = – kA dT
dx x = 0

.

T – T∞ = (Tb – T∞) . cosh ( )
cosh

m L x
mL

−

 
dT
dx

T T
mLx

b

=

∞=
−

0

( )
cosh  × – m sinh mL

∴  Q = – kA × – m × (Tb – T∞) . sinh
cosh

mL
mL

or  Q = hPkA  (Tb – T∞) tanh (mL) ...(4.12)
The method of integration will lead to the same expression.
The results for the other two involve more algebraic manipulation. The expression for

heat flow is shown in Table 4.2.
Table 4.2. Expression for heat flow for fins with various boundaries

Boundary condition Heat flow

1. Long fin, x = 0, T = Tb Q = ( )hPkA  . (Tb – T∞) ...(4.11)
x = ∞, T = T∞

2. Short fin insulated. Q = ( )hPkA  . (Tb – T∞) . tanh (mL) ...(4.12)
x = 0, T = Tb

3. Short fin
x = L, – kA (dT/dx) = hA (Tb – T∞)

Q = ( )hPkA  . (Tb – T∞) sinh ( / ) . cosh
cosh ( / ) . sinh

mL h mk mL
mL h mk mL

L

L

+
+

L
NM

O
QP

...(4.13)

4. Fixed end temperature
x = 0, T = Tb1.
x = L, T = Tb2,

Q = ( )hPkA  [(Tb1 – T∞) + (Tb2 – T∞)] cosh (
sinh (

mL
mL

)
)
− 1 ...(4.14)
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Note that equation 4.12 can be obtained from 4.13 by assuming hL = 0, or end insulated
condition. So also equation 4.11 from 4.12 by taking L = ∞, then tanh (mL) = 1.

Examples 4.4-4.7 compare the heat flow characteristics of fins under the four different
boundary conditions.
Example 4.4: Calculate in the case of problem 4.1, the total heat flow and heat convected up to
159 mm and 80 mm lengths. (Fig. 4.3)

Using equation 4.10 and using the data of example 1.

0.159 m

x

200°C
0.06 m

60°C

k = 51.9 W/mk

12 mm sq

35°C 22 W/m K
2

98.74°C

Fig. 4.6. Problem model.

Solution: Eqn. 4.11 is applicable:

Q = (hPkA)  . (Tb – T∞)
Q = A(22 × 4 × 0.012 × 51.9 × 0.0122) (200 – 35)

= 14.66 W
The heat convected upto 0.159 m length can be found by taking the difference of total

heat flow and heat conducted at 0.159 m length: From 4, 1, T0.159 = 60°C, T0.08 = 98.74°C.
heat convected upto 0.159 m

Q0.159 = 14.66 – (hPkA )  (T0.159 – T∞) = 14.66 – 2.22 = 12.44 W
or 84.86% of long fin

Similarly, heat convected upto 0.08 m is given by

 Q0.08 = (14.66) – (h kP A)  (T0.08 – T∞) = 14.66 – 5.66 = 9 W
or 61.4% of long fin.

The results indicate that most of the heat is dissipated in a short length of the fin and
extending the fin length beyond a certain value is uneconomical.

Example 4.5: Using the data in example 4.1 and 4.2, determine the heat dissipated by a fin of
0.159 m length with end insulated conditions. Also find the heat dissipated upto 0.08 m length
in this case.

The equation suitable for this situation is given by 4.12.

Solution:  Q = (hPkA )  (Tb – T∞) . tanh (mL)
using the data and calculated value of m from problem 1, m = 11.89
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0.159 m

200°C
0.8 m

T = 106.8°C

k = 51.9 W/mk
12 mm sq

35°C 22 W/m K
2

T = 83.7°C

Fig. 4.7. Problem model.

 Q = ( . . . . ) ( ) tanh ( . . )22 4 0 012 519 0 012 0 012 200 35 1189 0 159× × × × × − ×

= 14 W
Only 0.66 W less than that of long fin. (Example 4.4)
Heat  dissipated  up  to  0.08 m  can  be  found  by  difference  of  original  fin  and fin of

L = (0.159 – 0.08) m end insulated with the base temperature as calculated.

Q0.08 = 14 – (hPkA) (106.84 – 35) . tanh (11.89 0.079) =14 – 4.69×  = 9.31 W
or 66.5%.
Example 4.6: In example 4.3, determine the heat flow through the fin. Using expression 4–12
(Length 80 mm).

Solution:  Q = ( ( ) . sinh ( ( / ) . cosh (
cosh ( ( / ) . sinh (

hPkA T T mL h mk mL
mL h mk mLo

L

L
) ) )

) )
− +

+∞

= ( . . . . ) ( – )22 4 0 012 519 0 012 0 012 200 35× × × × ×

× 
sinh ( . . ) ( / . . ) cosh ( . . )
cosh ( . . ) ( / . . ) sinh ( . . )

1189 0 08 22 1189 519 1189 0 08
1189 0 08 22 1189 519 1189 0 08

× + × ×
× + × ×

= 11.08 W or 75.6% of long fin or 79% of fin of double its length.
Hence use of long fin generally is wasteful of material.

Example 4.7: Consider the data in example 4.1. The ends of the rod 159 mm long is held at
200°C and 100°C. Determine the temperature at mid location. Also find the minimum
temperature and its location.

The data are presented in Fig. 4.8.

0.159 m

k = 51.9 W/mk

12 mm. sq

35°C 22 W/m K
2

T = 100°Co2

T = 200°Co1

Fg. 4.8. Problem model.
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Solution: This situation corresponds to the end conditions being held at specified temperatures.
Using equation 4.8 and 4.13.

 
T T

T T
T T T T mx m L x

mLb

b b−
−

=
− ∞ − ∞ + −∞

∞1

[( ) / ( )] sinh ( ) sinh ( )
sinh (

2 1
)

Temperature at the mid location

 
T −

−
= − − × + −

×
35

200 35
100 35 200 35 1189 0159 2 11 89 0159 0159 2

1189 0159
[( ) / ( )] sinh ( . . / ) sinh . ( . . / )

sinh ( . . )
= 0.47 ∴ T = 112.65°C

 Q = (hPkA)  . ((Tb1 – T∞) + (Tb2 – T∞)) ((cosh (mL) – 1)/sinh (mL))

= ( . . . . )22 4 0 012 519 0 012 0 012× × × × ×  {(200 – 35)
+ (100 – 35)} {(cosh (11.89 × 0.159) – 1)/sinh (11.89 × 0.159)} = 15.07 W.

To find the location of the minimum temperature, the condition that (dT/dx)x = 0 at the
point is used.

100°C

0.0225 m0.1365 m

97.7°C100°C

80°C
0 0.04 0.08 0.12 0.16

200°C

Fig. 4.9. Temperature variation along fin.

Differentiating equation 4.8 and equating to zero.
{(Tb2 – T∞)/(Tb1 – T∞)}  × cosh (mx) = cosh m(L – x). Solving by trial

 xmin = 0.1365 m and substituting in eqn. 4.8, Tmin = 99.7°C
The temperature plot is shown in Fig. 4.9.
As a check for the location, the heat flow can be calculated as the sum of heat flow from

two short end insulated fins with one of 0.1365 m and one of 0.0225 m lengths with base
temperatures of 200°C and 100°C respectively.

 Q1 = (hPkA )  (T01 – T∞) tanh (11.89 × 0.1365) = 13.56 W

 Q2 = (hPkA )  (T02 – T∞) tanh (11.89 × 0.0225) = 1.51 W
Total = 15.07 W Checks:

Another check is to determine the temperature at this location using the above concept
of two fins.
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 (T – 35)/(200 – 35) = 1/(cosh (11.89 × 0.1365)) ∴ T = 97.67°C
 (T – 35)/(100 – 35) = 1/(cosh (11.89 × 0.0225)) ∴ T = 97.74°C

The value obtained using the single unit concept is 97.7°C. This also checks the location
of minimum temperature. Note that such checks are very useful.

4.4 FIN PERFORMANCE

It is necessary to evaluate the performance of fins to achieve minimum weight or
maximum heat flow etc. Fin effectiveness, fin efficiency total efficiency are some methods used
for performance evaluation of fins.
4.4.1. Fin Effectiveness, εεεεεf: Fins are used to increase the heat transfer from a surface by
increasing the effective surface  area.  When  fins  are  not present, the heat convected by the
base area is given by Ah(To – T∞), where A is the base area. When fins are used the heat
transferred by the fins, qf, is calculated using equations 4.11 to 4.14. The ratio of these quantities
is defined as fin effectiveness.

εf = 
q

hA T T
f

b( )− ∞
...(4.15)

Fin effectiveness should be as large as possible for effective use of material. Use of fins
with effectiveness less than 2 can be rarely justified. Considering the long fin boundary,

εf = 
hPkA T T
hA T T

kP
hA

b

b

( )
( )

−
−

= FHG
I
KJ

∞

∞

1/2

...(4.16)

Some conclusions from eqn. 4.16 are
1. Thermal conductivity of the fin material should be high to give large fin effectiveness.

This leads to the choice of aluminium and its alloys.

2. The ratio P
A

 should be large. This requirement can be achieved by the use of thinner

fins. Use more thin fins of closer pitch than fewer thicker fins at longer pitch.
3. Effectiveness will be higher if h is lower. Generally convection in gas flow, and heat

flow under free convection lead to lower values of heat transfer coefficient, h. Hence fins are
used on the gas side of heat exchanges. The condition that εεεεεf > 2 leads to the relation
kP
hA

 > 4.

Concept of thermal resistance can also be used to express effectiveness of fins. The
resistance to heat flow by the fin can be expressed as

 Rf = 
T T

q
b

f

− ∞ ...(4.17)

The convection resistance of the base area is

 Rb = 1
hA

...(4.18)

∴ εf = 
R
R hA

q
T T

b

f

f

b
=

− ∞

1 . ...(4.19)
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Higher values of effectiveness can result from higher values of convection resistance
compared to the fin resistance. In effect it can be said that fins reduce to resistance to heat
flow at the surface.
4.4.2. Fin efficiency, ηηηηηf: This quantity is more often used to determine the heat flow when
variable area fins are used. Fin efficiency is defined as the ratio of heat transfer by the
fin to the heat transfer that will take place if the whole surface area of the fin is at
the base temperature.

 ηf = 
q

hA T T
f

s b( − ∞ ) ...(4.20)

where As is the surface area of the fin.
For constant area fin with adiabatic tip,

 ηf = 
hPkA T T mL

hPL T T
mL

mL
b

b

( ) . tanh ( )
( )

tanh ( )−
−

=∞

∞
...(4.21)

The surface area As = PL.
This equation  can  be  used  in  general  without  significant  error  by  increasing  the

fin  length  with  surface  area equal to the area at the tip. In the case of plate fins new length

Lc = L + t
2  where t is the thickness. In the case of circular fins Lc = L + D/4, where D is the

diameter of the fin. Error associated with this assumption is negligible if ht
k

hD
k

or
2

 ≤ 0.0625.

From equation 4.21, it is seen that fin efficiency is a function of the term ‘‘mLc’’.

 mLc = 
hP
kA

Lc
F
HG
I
KJ

1 2/

...(4.22)

Assuming fin plate fins P ~_  2W, where W is the width of the fin and A = Wt. Substituting

 mLc = 
2 1 2h
kt

Lc
F
HG
I
KJ

/

...(4.23)

Multiplying and dividing the RHS of (4.23),

 mLc = 2 21 2
3 2

1 2
3 2h

ktL
L h

kA
L

c
c

p
c

F
HG
I
KJ =

F
HG
I
KJ

/
/

/
/. ...(4.24)

where Ap is called the profile area = Lc × t.

Hence  ηf = f L h
kAc

p

3 2
1 2

2/
/

.
F
HG
I
KJ

L

N
MM

O

Q
PP ...(4.25)

This relationship is used to plot the fin efficiency of variable area fins and annular fins.
Such a chart for plate fins is given below. Similar charts are available far annular fins and pin
fins.
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100

80

60

40

20

0 0.5 1.0 1.5 2.0 2.5 3.0

Rectangular and Triangular fins
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	—fin efficiency, fraction

L h
kAc

p

1 5
0 5

.
.F

HG
I
KJ

L L t
c = +

2
Ap = tLc
 Lc = L As = 2Lc (Depth)

 Ap = t L
2

4.4.3. Overall surface efficiency or total efficiency, ηηηηηT: Fin efficiency gives the performance
of a single fin. Overall efficiency gives the performaula of an array of fins and the surface on
which these fins are provided. Let there be N fins each of area Af . Let the total area be At . The
free surface over which convection takes place is Ab = At – NAf.

The total heat flow = heat flow by fins + heat flow by base area
 qt = [Nηf hAf + h(At – NAAf)] (Tb – T∞)

= hAt 1 1− −
L
NM

O
QP

NA
A

f

t
f( )η  (Tb – T∞)

The ideal or maximum value is
= hAt (Tb – T∞)

∴  ηt =  1 – NA
A

f

t
f( )1 − η ...(4.26)

This equation can be used to calculate the heat flow in a surface array provided ηt is
available.
Example 4.9: Determine the value of fin effectiveness for the fins in example 4.4, 5 and 6.

U
V|
W|

Rectangular fin

U
V|
W|

Triangular fin
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Solution: In all these cases the base area = 0.012 × 0.012 m2, h = 22 W/m2K, (To – T∞) = (200 –
35) = 165. The heat dissipated are 14.66, 14 and 11.08, using eqn 4.15.

Effectiveness: (i) long fin: 14.66/(0.012 × 0.012 × 22 × 165) = 28.0
(ii) short fin end insulated: 14.0/(0.012 × 0.012 × 22 × 165) = 26.7

(iii) short fin: 11.08/(0.012 × 0.012 × 22 × 165) = 21.2
Apparently the effectiveness of the short fin is lower. But the volume of material used

also is the lowest. Hence the ratio of (effectiveness/volume) only can determine the form of the
fin which will be economical. In that point of view the short fin has the advantage. Effectiveness
concept can be used to evaluate a fin but will not be useful by itself for the optimisation of the
volume of material used for a fin.

4.5 CIRCUMFERENTIAL FINS AND PLATE FINS OF VARYING SECTIONS

Circumferential fins and plate fins of varying sections are in common use. The preceding analysis
has not taken this into account. As already mentioned the fin efficiency is correlated to the
combination of parameters L, t, h and k (length, thickness, convection coefficient and thermal
conductivity). Once these are specified, the chart can be entered by using the parameter to
determine efficiency. The value of efficiency, the surface area, temperature and convection
coefficient provide the means to calculate the heat dissipated.

 Q = fin efficiency. As h (Tb – T∞) ...(4.18)
Charts are available for constant thickness circumferential fins, triangular section plate

fins and pin fins of different types. The parameters used for these charts are given in the
charts.

The fin efficiency chart for circumferential fins is given below:
Circumferential Rectangular Fins

Q = η Ash (Tb – T∞)

0 0.5 1.0 1.5 2.0 2.5 3.0
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2 – r1

2)
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 Example 4.10: Determine the heat flow for (i) rectangular fins and (ii) triangular fin of 20
mm length and 3 mm base thickness. Thermal conductivity = 45 W/mK. Convection coefficient
= 100 W/m2K, base temperature = 120°C surrounding fluid temperature = 35°C Determine also
the fin effectiveness. Use the charts.

The data are shown in Fig 4.10. Using the nomenclature in the chart (Skeleton chart
shown in Fig. (4.11)

3 mm

120°C k = 45 W/mk

35°C h = 100 W/m K
2

3 mm

120°C

20 mm

Triangular

Rectangular

100

0.81
0.79

F
in

	
0

0 3.0
LC

1.5 h
kAp

0.5

0.585 0.77

Fig. 4.10 Fig. 4.11

Solution: (i)  Lc = 0.02 + 0.003/2 = 0.0215
 Ap = 0.003 × 0.0215, As = 2 × 0.0215 × 1

 Lc
1.5 (h/k Ap)0.5 = 0.02151.5 (100/(45 × 0.0215 × 0.003))0.5 = 0.585

Entering the chart at 0.585, fin efficiency is read as 0.81 (As in Fig. 4.11)
Q = 0.81 × 2 × 0.0215 × 1 × 100 (120 – 35)

= 296.06 W/m depth.

Check Q = ( )hPkA  . (To – T∞) tanh (mL),
 ( ) (( ) / ( . ))hPkA = × ×100 2 45 0 003

= 38.49, mL = 0.77,  Q = 285.73 W, checks.
 Effectiveness = 296.06/(0.003 × 1 × 100 (120 – 35)) = 11.61

(ii) For triangular fin:
 Lc = L = 0.02, As = 2 × 0.02 × 1 Ap = (0.003/2) × 0.02

Lc
1.5 (h/kA)0.5 = 0.021.5 ((100)/(45 × 0.0015 × 0.02))0.5 = 0.77

Entering the chart at 0.77, efficiency is read as 0.79. (as in Fig. 4.11)
Q = 0.79 × 2 × 0.02 × 1 × 100 × (120 – 35) = 268.6 W

 Effectiveness = 268.6/0.003 × 100 (120 – 35) = 10.53
Though the effectiveness is less, in this case note that the volume of material used is

only half of that used for the rectangular fin.
Example 4.11: A circumferential fin on a pipe of 50 mm OD is 3 mm thick and 20 mm long.
Using the property values and other parameters in example 4.10, determine the (i) heat flow
and effectiveness (ii) If the pitch is 10 mm, determine the increase in heat flow for 1 m length of
pipe. Also determine the total efficiency.



VED

c-4\n-demo\demo4-1

144 FUNDAMENTALS OF HEAT AND MASS TRANSFER

Using the nomenclature in the efficiency chart (Skeleton chart shown in Fig. 4.12(b).

0.02 m

r = 0.025 m1

0.003
m

0.01 m

120°C

k = 45 W/mK

100 W/m K 35 C
2

°

1.0

0.75

F
in

	

0,0

LC
1.5 h

kAp

0.5

0.585

r
r
2C

1
= 2.16

Fg. 4.12 (a) Fig. 4.12 (b)

Solution: Lc = L + t/2 = 0.02  + 0.003/2 = 0.0215 m
 r2c = r1 + Lc = 0.025 + 0.0215 = 0.0465 m
Ap = 0.003 (0.0465 – 0.0215) = 0.0255 × 0.003
As = 2π (0.04652 – 0.02152)

(i)  Lc
1.5 (h/kAp)0.5 = 0.02151.5 (100/(45 × 0.003 × 0.0255))0.5 = 0.585

r2c/r1 = 0.0465/0.0215 = 2.16
Entering the chart at 0.585 and using the curve corresponding to r2c/r1 = 2.16

(interpolation) the fin efficiency is read as 0.75 (As in Fig. 4.12(b))
Q = 0.75 × 2π (0.04652 – 0.02152) 100 × (120 – 35) = 68.09 W/fin

Effectiveness = 68.09/2(π × 0.025 × 0.003 × 100 × (120 – 35)) = 17
(ii) Considering 1 m length The heat flow without the fins

= 2π × 0.025 × 1 × 100 × (120 – 35) = 1335.2 W/m length.
As the pitch is 10 mm, the number of fins per m length will be 100 fins remaining base

length will be 0.7 m.
 Q with fins = 100 × 68.09 + 1335.2 × 0.7 = 7743.6 W

This is about 5.8 times that of bare pipe.
Total area = (π × 0.025 × 1) + 100 × π (0.0452 – 0.0252) = 0.94247 m2

 Maximum heat flow = hA∆T = 100 × 0.94247 × (120 – 35) = 8011 W.

Total efficiency = 
7743 6
8011

.
 = 0.9665 or 96.65%.
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4.6  OPTIMISATION

If fins of constant cross sectional area are used, then there is a wastage of material because,
the section required for heat conduction for the same temperature gradient will be continuously
decreasing with length. Several possibilities are there for the choice of section. Some of these
are trapesoidal, triangular, convex parabolic and concave parabolic as shown in Fig. 4.13.

(i) (ii) (iii) (iv) (v)

(i) Rectangular (ii) Trapezoidal
(iii) Triangular (iv) Convex Parabolic
(v) Concave Parabolic

Fig. 4.13. Fin sections

Out of these sections, the concave parabolic has the highest fin efficiency for a given set
of parameters, and this will also require the least weight for a given amount of heat dissipation.

Fin efficiency chart for pin fins is given below

Concave
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Triangualr
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Rectangular
(L = L + r )oc

Q = As h(T – T )	 h � Pin fins-varying section
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Concave

1.0

0.89
0.85

�
�
�
�

0.0

LC
h

kro

0.5

0.481 0.597

0.93

Triangular

Convex

Constant area

Example 4.12: Considering pin fins of constant section, triangular, concave and convex parabolic
sections of base dia 12 mm and length 25 mm, determine the fin efficiency, k = 45 W/mK, h =
100 W/m2K.

Referring to efficiency chart.

Solution: Lc ( / )h kro  is to be determined for these cases.
(i) Constant section:  Lc = L + ro = 0.025 + 0.006 = 0.031

   Lc ( / )h kro  = 0.031 ( / . )100 45 0 006×  = 0.597
Entering  the  fin  efficiency  chart  at  0.597,  the  fin  efficiency  is  read  as 0.74 (as

in Fig. 4.14)
(ii) Triangular:  Lc = L

Lc ( / ) . ( / . )h kro = ×0 025 100 45 0 006
= 0.481

This is the same for the other two sections also.
Entering the fin efficiency chart at this value, the fin

efficiency values are read as (as in Fig. 4.14)
(i) Triangular = 0.89

(ii) Convex parabolic = 0.85
(iii) Concave parabolic = 0.93
The material used is the least in the case of concave

parabolic section. The efficiency is the highest. The surface
areas are vary nearly the same for the last three.

4.7 FIN WITH RADIATION SURROUNDINGS

Instead of pure convection on the surface, both convection and radiation or pure radiation may
prevail on the surface. In such a situation, the differential equation will be as shown below:
Convection and radiation.

 d T
dx

hP kA T T P kA
2

2 − − −∞( ) ( ) ( )/ /σ  (T4 – T∞
4) = 0 ...(4.21)

Pure radiation: d T
dx

P kA
2

2 − ( )σ /  (T4 – T∞
4) = 0 ...(4.22)

Solutions are available for these cases in hand books. But these situations can be solved
more easily to numerical methods. (σ—Stefan-Boltzmann constant).

4.8 CONTACT RESISTANCE

Fins may be integral with the base surface from which heat is to be dissipated or these may be
welded or fixed by pressure due to crimping etc. in which case a contact resistance is introduced.
The contact resistance reduces the base temperature of the fin and thus the heat dissipated by
the fin. If loosely fitted this drop may be high. Manufacture of integral fins is not possible in

Fig. 4.14. Skeleton chart.
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many cases, but care should be taken to reduce the contact resistance. A trial solution will be
necessary in this case as the base temperature at the contact depends on the heat flow which
again is a function of the base temperature. An example is worked out later in the chapter for
this situation. (Problem 4.25, 4.28)

4.9 NUMERICAL METHOD

Numerical methods can be conveniently
adapted to solve for the temperature distribution
and the heat flow in fins. Considering the fin
shown in Fig. 4.15, the energy equation for ith

node can be written as
Heat conducted into the volume – heat

conducted out of the volume = heat dissipated
at the surface.

kA T T
x

kA T T
x

i i i

i

i i i

i

( ) ( )− + +

+

− − −1 1 1

1∆ ∆
 = hPi (Ti – T∞) (∆xi + ∆xi+1)/2

or (kAi/∆xi) × Ti–1 + {(kAi+1/(∆xi+1)} × Ti+1

– kA
x

kA
x

hP x xi

i

i

i

i i i
∆ ∆

∆ ∆+ + +L
NM

O
QP

+

+

+1

1

1
2

( )  Ti

+ hP x xi i i( )∆ ∆+ +1
2  T∞ = 0 ...(4.23)

If ∆x and A and P are taken to be constant, then this reduces to

Ti–1 + Ti+1 – 2 2 2+LNM
O
QP + ∞

hP
kA

x T hP
kA

x Ti. . .∆ ∆  = 0 ...(4.24)

For the last node alone area is P∆ x/2 and the equation is

Ti–1 – 1
2 2

2 2
+
L
NMM

O
QPP

+ ∞
hP
kA

x T hP
kA

x Ti. . .∆ ∆  = 0 ...(4.25)

The resulting simultaneous equations can be solved by solving the coefficient matrix
equation. All variations including that in conductivity and convection coefficient in addition to
the sectional area and perimeter can be taken into account. Of course a computer is needed to
solve the matrix. Now softwares are available using which the problem can be solved by inputting
the values of various parameters like the dimensions, conductivity, area, convection coefficient
etc. In case radiation is involved, the convection term is replaced  by the radiation term.
Example 4.13: A rod of 5 mm dia and 100 mm length is used as a fin. The convection coefficient
is 30 W/m2K. Determine for what value of thermal conductivity above which the fin can be
considered as an infinite or long fin.

Solution: On the basis of heat flow: heat flow in long fin, Q = hPkA T To( )− ∞ .

Adiabatic tip, Q = hPkA T To( )− ∞  tanh (mL).
Assuming 1%, difference is allowable,

Fig. 4.15

Ti – 1
Ti Ti + 1

Tip

�x
i

�x
i + 1

T , h, k, A , P specified� i

To
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It tanh (mL) = 0.99, then mL = 2.65
If L ≥ 2.65/m, then it can be considered as a long fin.
Using the equality mL = 2.65, As L = 0.1 m, m = 26.5

∴  m = 26.5 = (( . ) / . )30 0 005 4 0 0052× × × × ×π πk
∴ k = 34.18 W/mK.
The conductivity should be less than or equal to 34.18 W/mK.
On the basis of tip temperature,

Long fin,  T T
T T

L

o

−
−

∞

∞
 = 0,

Short fin adiabatic tip,

 
T T
T T mL

L

o

−
−

=∞

∞

1
cosh ( )

Assuming 2% difference, between these two

 1
cosh ( )mL

 = 0.02 ∴ mL = 4.6.

In this case, as L = 0.1, m = 4b,

∴  4b = (( . ) / ( . )30 0 005 4 0 0052× × × × ×π πk
∴ k = 11.34 W/mK.

Example 4.14: In the example 4.13, if Tb = 200°C, and T∞ = 30°, determine the end temperature
assuming (i) long fin model, (ii) short fin end insulated model m = 26.5 (from example 4.13).

(i) long fin model: (T – 30)/(200 – 30) = e–mx = e–26.5×0.1 = 0.07065, T = 42°C
(ii) Assuming short fin end insulated model.

Solution: (T – 30)/(200 – 30) = 1/cosh (mL) = 1/cosh (26.5 × 0.1) ∴ T = 53.9°C
It can be checked that the heat flow will be less only by 1%

i.e. 1 – tanh (mL) = (1 – tanh (26.5 × 0.1) = 0.01

SOLVED PROBLEMS

Problem 4.1: One end of long rod 1 cm dia having a thermal conductivity of 45 W/mK is
placed in a furnace. The rod is exposed to air at 30°C over its surface and the convection coefficient
is estimated at 35 W/m2K. If the temperature is read as 265°C at a distance of 39.3 mm from
the furnace end, determine the base temperature of the rod.
Solution: Equation 4.5 for long fin model can be used.

 (T – T∞)/(Tb – T∞) = e–mx

 m = ( / (( . ) / ( . ))hP kA ) = × × × × ×35 0 01 4 45 012π π  = 17.64
x = 0.0393, mx = 0.693

 (265 – 30)/(Tb – 30) = e–0.693 = 0.50 ∴ Tb = 500°C.
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Problem 4.2: One end of a long rod of 1 cm dia is maintained at 500°C by placing it in a
furnace. The rod is exposed to air at 30°C with a convection coefficient of 35 W/m2K. The
temperature measured at a distance of 78.6 mm was 147.5°C. Determine the thermal conductivity
of the material.
Solution: Equation 4.5 can be used as this is a long fin configuration.

 (T – T∞)/(Tb – T∞) = e–mx, (147.5 – 30)/(500 – 30) = 0.25 = e–m×0.0786

Solving   m = 17.64 = ( / (( . ) / ( . ))hP kA k) = × × × × ×35 0 01 4 012π π

Solving k = 45 W/mK.
Problem 4.3: One end of a rod of 1 cm dia and 80 mm length is maintained at a temperature
T when the rod is exposed to air at 30°C. The conductivity of the rod is 12.5 W/mK and the
convection coefficient over the surface is 25 W/m2K. If the temperature at the tip was measured
as 80°C, determine the value of temperature T.

The data are presented in Fig. P.4.3. The short fin end insulated model is suitable for the
problem. So equation 4.6 is used.

0.08 m Insulated

80°C 10 mm 	k = 12.5 W/mK

T = ?

30°C h = 25 W/m K
2

Fig. P.4.3

Solution:   (TL – T∞)/(Tb – T∞) = 1/cosh (mL)

m = ( / (( . ) / ( . . ))hP kA ) = × × × × ×25 0 01 4 125 012π π

= 28.28, mL = 2.26
 (80 – 30)/(T – 30) = 1/cosh (2.26) = 0.206. Solving T = 272.84°C.

Problem 4.4: A short fin of 0.08 m length and diameter 12 mm is exposed to air at 30°C.
Thermal conductivity is 15 W/mK. The base temperature is 280°C. The heat dissipated by the
fin is 7W. Determine the value of convection coefficient and also the tip temperature.

The data are shown in Fig. P.4.4.

0.08 m Insulated

12 mm 	k = 15 W/mK

280°C

30°C h = ?

7 W

Fig. P.4.4. Problem model
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Short fin, end insulated condition is suitable for the problem and heat flow is given. So
equation 4.11 is used.

Solution: Q = (hPkA )  (Tb – T∞) tanh (mL) = 7 W

Convection coefficient is involved in tanh (mL) as well as in (hPkA ) . Hence a trial
solution is attempted. Assume:  h = 20 W/m2K,

m = ( (( . ) / ( . ))hP kA/ ) = × × × × ×20 0 012 4 15 0 0122π π

= 21.08, mL = 1.6864

 Q = (( . . / )20 0 012 15 0 012 42× × × × ×π π  (280 – 30) tanh (1.6864) = 8.35 W
Assume:  h = 15, m = 18.26, mL = 1.46.

Q = (( . . / )15 0 012 15 0 012 42× × × × ×π π  (280 – 30) tanh (1.46) = 6.952 W
Assume: h = 16, m = 18.86, mL = 1.508, Q = 7.25 W

 interpolating h = 15 + (7 – 6.952)/(7.25 – 6.952) = 15.161 W/m2K
m = 18.355, mL = 1.468, Q = 7.00 W

Check: Tip temp. = 139.4°C.
Problem 4.5: One end of long rod of diameter 10 mm is inserted into a furnace. The temperatures
measured at two points A and B, 39.3 mm apart gave 265°C and 147.5°C respectively. If the
convection coefficients is 35 W/m2K, when exposed to air at 30°C, determine the conductivity of
the material.

The data are shown in Fig P.4.5(a). The location A itself can be taken as the base and
then the fin can be treated as a long fin. This is the easier method. Fig. P.4.5(b).

10 mm 	

T = 30°C� 35 W/m K
2

x
0.0393 m

265°C 147.5°C
k = ?

A B

10 mm 	

T = 30°C� 35 W/m K
2

0.0393 m

265°C 147.5°C k = ?

Fig. P.4.5 (a) Fig. P.4.5 (b)

Solution: 
T T
T Tb

−
−

∞

∞
 = e–mx

(147.5 – 30)/(265 – 30) = e–m×0.0393 ∴ m = 17.64

 m = 17.64 = (( (( . ) / ( . ))hP kA k) / ( )) = × × × × ×35 0 01 4 0 012π π

 k = 45 W/mK
[Or (TA – T∞)/(Tb – T∞) = e–mx, (TB – T∞)/(Tb – T∞) = e–m(x+0.393)

dividing, (TB – T∞)/(TA – T∞) = e–m×0.0393, same as above].
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Problem 4.6: One end of a long rod of dia 12 mm is inserted into a furnace and the temperatures
measured at points A and B 91.2 mm apart are found to be 147.5°C and 77°C respectively. If the
conductivity of the material is 45 W/mK and the surrounding is at 30°C determine the convection
coefficient.
Solution: Considering the section A itself as the base: and using long fin model.

12 mm 	

T = 30°C� h = ?

0.0912 m

147.5°C 77.0°C k = 45 W/mK

A B

Fig. P.4.6

 (77 – 30)/(147.5 – 30) = e–m×0.0912, solving m = 10.05

(( (( . ) / ( . ))h k hP) / ( A)) = × × × × ×π π0 012 4 45 0 0122  = 10.05,

∴ h = 13.62 W/m2K.
Problem 4.7: Two rods of dia D mm and length L mm have
one of the ends at 120°C and are exposed to air at 30°C. The
conductivity of the material of one rod is 45 W/mK and the
temperature of the rod at the end is measured as 80°C, while
the end temperature of the other rod was 60°C. Determine the
conductivity of the other material.
Solution: Short fin end insulated condition suits the problem

(80 – 30)/(120 – 30) = 1/cosh (m1L),
∴ m1L = 1.193

(60 – 30)/(120 – 30) = 1/cosh(m2L),
∴  m2L = 1.763, dividing L cancels

m1/m2 = 0.677

= ( / )hP k A k A hP/ ) ( 21 ,
  k2/k1 = 0.6772, k2 = 20.62 W/mK.

Problem 4.8: A rod of 12 mm dia is used as a fin of length 0.08 m. The material conductivity is
15.5 W/mK. The convection coefficient is 25 W/m2K. Compare the heat flow if the same volume
is used for two fins of same length.

Assuming short fin end insulated condition.
Solution: If the new diameter is d m, then 2πd2/4 = π × 0.0122/4

d = 0.008485 m.

 Q1 = ( )hP kA1 1  (Tb – T∞) tanh (m1L),

30°C h

D

120°C

k = 45 W/mK

80°C

Insulated

D

120°C 60°C

k = ?

L

Insulated

Fig. P.4.7
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 m1 = (( . ) ( . . ))25 0 012 4 15 5 0 0122× × × × ×π π  = 23.19
∴ m1L = 1.855

 Q2 = ( )hP kA2 2  (Tb – T∞) tanh (m2L),

 m2 = (( . ) ( . . ))25 0 008485 4 15 5 0 0084852× × × × ×π π  = 27.575
∴ m2L = 2.206

2Q2/Q1 = 2 2 2 1 1 2 1. (( ) / ( )) . (tanh ( ) / tanh ( )hP kA hP kA m L m Le j

= (2 . (( . . ) /
( . . )) (tanh ( . )) / (tanh ( . ))

h k
h k

× × × × × ×
× × × × × × ×

π π
π π

0 008485 0 00845 4
4 0 012 0 012 2 206 1855

2

2

= 1.22 or 22% increase. It is desirable to use a thinner or lower sectional
 area fin.

Problem 4.9: A plate fin of 8 mm thickness of 60 mm length is used on a wall at 200°C. The
convection coefficient is 25 W/m2K. The conductivity is 210 W/mK. (i) If the surroundings is at
35°C, determine the heat flow. (ii) if the same fin is split into 4 mm thick fins determine the total
heat flow.

Short fin end insulated condition can be used or chart can also be used emsider 1 m
width of fin.
Solution: (i) 8 mm fin

Q = ( ) ( ) tanh ( )hPkA T T mLb − ∞ ,

m = (( (( . ) / ( . ))hP kA) / ( )) = × ×25 2 016 210 0 008  = 5.48 mL = 0.3286

 Q = ( . . )25 2 016 210 0 008× × ×  (200 – 35) tanh (0.3286) = 481.74 W/m width
(ii) 4 mm fin

m = (( . ) / ( . ))25 2 008 210 0 004× ×  = 7.73, mL = 0.464

 Q = ( . . )25 2 008 210 0 004× × ×  (200 – 35) tanh (0.464)
= 465.2 W/fin. In two fins Q = 930.40 W/m width.

about 97% increase over single fin.
This example illustrates that the thinner fin particularly with a higher value of thermal

conductivity will be better.
Problem 4.10: A plate fin of 8 mm thickness and 60 mm length is used on a wall at 200°C. The
convection coefficient is 25 W/m2K and the surroundings is at 35°C. The conductivity of the
material  is  210 W/mK. Determine the change in heat flow if the fin volume is used as a fin of
4 mm thickness 120 mm length.

(1) The heat flow in 8 mm fin is obtained as 481.74 W/m width from problem P.4.9.
(2) For 4 mm thick fin, 0.12 m long, using the short fin end insulated model.
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Solution: m = ( . ) / ( . ))25 2 008 210 0 004× ×  = 7.73, mL 0.928

 Q = ( ) ( ) tanh ( )hPkA T T mLb − ∞

= (( . . ))25 2 008 210 0004× × ×  (200 – 35) tanh (0.928) = 781.8 W
There is an improvement of only 62% as against 97% in the case of two fins of

the same length. Increasing the length is less effective.
Problem 4.11: A motor body outside dia is 30 cm and its surface temperature should not
exceed 50°C when dissipating 0.15 kW. The length of the body is 20 cm. Longitudinal fins of 12
mm thickness and 30 mm height are proposed. The conductivity of the material is 40 W/mK
and the convection coefficient is 40W/m2K. Determine the number of fins required. Atmospheric
temperature is 35°C.

This is a short fin situation. Equation 4.12 is to be used.

k = 40 W/mK

0.2 m

12 mm

30 mm

35°C

40 W/m K
2

Fig. P.4.11. Problem model.

Solution: Q = ( ) ( )hPkA T Tb − ∞  . {[(sinh (mL) + (h/mk) cosh (mL)]/[(cosh (mL)
+ (h/mk) sinh (mL))]}

 m = (( ( / ) (( . . ) / ( . . ))hP kA) / ( )) = + × ×40 40 0 2 0012 2 0 2 0 012  = 13.292,
mL = 0.39875

Q = ( . . . )40 0 424 40 0 2 0 012× × × ×  (50 – 35) (sinh (0.39875)
+ (40/13.292 × 40) cosh (0.39875))/(cosh (0.39875)

+ (40/13.292 × 40) sinh (0.39875)) = 8.45 W
Number of fins required = 150/8.45 = 18 fins
The pitch will be, assuming that fins are arranged over 270°

(πD × 270)/(360) × (1)(18) = 40 mm.

Problem 4.12: Frying requires oil to be heated to about 350°C. A laddle is used in the frying.
The section of the handle is 4 mm × 15 mm. The surroundings are at 35°C. The conductivity of
the material is 210 W/mK. If the temperature at a distance of 40 cm from the oil should not
reach 45°C, determine the convection heat transfer coefficient required.
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The situation can be modelled as shown in Fig. P.4.12.

k = 210 W/mK 45°C

350°C
0.4 m

35°C h = ?

15 mm

4 mm

Fig. P.4.12

Solution: Long fin assumption can be made:
 P = (15 + 4) 2 mm = 0.038 m.
A = 0.015 × 0.004 m2, x = 0.4 m.

(T – T∞)/(Tb – T∞) = e–mx, m = ( )hP kA/  = ?

 (45 – 35)/(350 – 35) = e–m×0.4 ∴ m = 8.625 = (( . ) / ( . . ))h × × ×0 038 210 0 015 0 004
∴ h = 24.67 W/m2K, Some air circulation is required.
It instead of aluminium, stainless steel with k = 22 W/mK is used, then,

8.625 = ( . ) / ( . . )h × × ×0 038 22 0 015 0 004 ,
h = 2.58 W/m2K and this is a better proposition as it is easier to obtain.

Problem 4.13: A rectangular fin has to be designed for maximum heat flow per given volume.
The sectional area available is 5 cm2. The convective heat transfer coefficient has value of 100
W/m2K. The conductivity of the material is 200 W/mK. Using short fin end insulated conditions
determine the thickness for maximum heat flow.

Assuming a thickness t m, the length will be (5 × 10–4/t) m, Considering depth of 1 mm,
P = 2 m, and A = t × 1 m2

L

1 m

k = 200 W/mK

To

A = 5 cm
2

100 W/m K
2

T�

t

Fig. P.4.13. Problem model.

Solution:  Q = ( ) ( ) tanh ( )hPkA T T mLb − ∞

= ( ) . ( ) . tanh (( ) / ( )) . /hPk T T t hP kt tb − ×RST
UVW∞

−5 10 4
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letting (hPk) (Tb – T∞) = C, and substituting the values for the remaining

Q = C t t. tanh ( / )) ( / )/100 2 200 5 10 14 3 2× ×FH IK−

= C t tanh  5 10 3 2× –4 // t

differentiating Q with respect to t
(dQ)/(dt) = constant [(t1/2) × 5 × 10–4 × (– 3/2) t(–3/2)–1/(cosh2 (5 × 10–4/t3/2)]

+ constant t–1/2 . tanh (5 × 10–4/t3/2)1/2

Equating to zero,
3 × 5 × 10–4 t(1/2)–(5/2)+(1/2) = (cosh2 (5 × 10–4/t3/2)/(tanh (5 × 10–4/t3/2))

15 × 10–4/t3/2 = cosh (5 × 10–4/t3/2) sinh (5 × 10–4/t3/2)
This is solved by trial starting from 0.01 m and going down.
Assumed:
Thickness mm: 10 8 6 5 4 3
RHS value: 0.59 0.95 2.21 4.215 13.01 3.88
LHS value: 1.5 2.1 3.23 4.243 5.93 4.118
The optimum thickness is 0.005 m or 5 mm.

check : using  Q = ( ) ( ) tanh ( )hPkA T T mLb − ∞

Assumed
thickness mm: 10 8 6 5 4 3
Length mm: 50 62.5 83.33 100 125 166.6
Heat flow/∆T: 9.24 10.79 12.26 12.56 12.17 10.90
The value of heat flow is seen as maximum at t = 5 mm (about).

Problem 4.14: A volume of 5 cm3 is available for a circular pin fin. Determine the optimum
diameter. Conductivity = 200 W/mK, convection coefficient = 200 W/m2K. Assume end insulated
fin.

Solution:  Q = ( ) . ( ) . tanh ( )hPkA T T mLb − ∞

Assuming a diameter D, and noting (πD2/4) . L = 5 × 10–6

Q = ( ) ( ) ( /hk T T D Db − ∞ π π 2 4
tanh 0.5 [(h/k) . (πD . 4/πD2) . (5 × 10–6 × 4)/(πD2)]0.5

= (π/2) ( ) ( )hk T Tb − ∞  . D3/2 tanh [c/D5/2]

where c = 4h k/  × 4 × 5 × 10–6/π

Let (π/2)   ( )hk  (Tb – T∞) = C1

Q = C1 D3/2 . tanh [c D–5/2]
(dQ/dD) = C1 [D3/2 c( – 5/2) D(–5/2)–1/cosh2 (cD–5/2)]

+ (3/2) D(3/2–1) tanh (cD–5/2)}
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Equating to zero, (5/3) cD–5/2 = cosh (cD–5/2) sinh (cD–5/2)

c = (( ) / ( ))100 4 200×  × 4 × 5 × 10–6/π = 9 × 10–6

Substituting and solving by trial D = 0.01 or 10 mm.
As a check Q is calculated using

Q = ( )hPkA  (∆T) tanh (mL), Assuming D, L can be calculated as (πD2/4)
L = 5 × 10–6

Assumed
Value of D mm 5 6 7 8 9 10 11
Heat flow/∆T 0.079 0.109 0.127 0.146 0.156 0.159 0.156
Maximum heat flow at D = 10 mm.

Problem 4.15: A copper fin 12 mm dia and 200 mm long spans two walls one at 200°C and the
other at 120°C. The thermal conductivity of the material is 330 W/mK. Air at 30°C flows between
the walls and the convection coefficient over the rod was 56.8 W/m2K. Determine the heat flow
through the rod. Also find the temperature at the mid section and the location and value of the
minimum temperature.

The data are presented in Fig. P.4.15.

200°C

k = 330 W/mK

200 mm

120°C

30°C 56.8 W/m K
2

12 mm 	

Fig. P.4.15

Solution: The model suitable is a fin with specified end temperatures. Using equations 4.8
and 4.13.

 (T – T∞)/(Tb – T∞) = [{(TL – T∞)/(Tb – T∞)} sinh (mx) + sinh m (L – x)] / [sinh (mL)]
at the centre: x = 0.1 m, L = 0.2 m.

m = (( )) (( . . ) / ( . ))hP kA) / ( = × × × × ×56 8 0 012 4 330 0 0122π π  = 7.575
(T – 30)/(200 – 30) = ([(120 – 30)/(200 – 30)] sinh (7.575 × 0.1)

+ sinh (7.575) (0.2 – 0.1))/(sinh (7.575 × 0.2)
 T = 129.9°C

To find the minimum temp. location, find (dT)/(dx) and equate to zero
{(TL – T∞)/(Tb – T∞)} cosh (mx) m + (– m) cosh m (L – x) = 0

or {(TL – T∞)/(Tb – T∞)} cosh (mx) = cosh m (L – x), solving by trial
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The minimum temperature location is x = 0.169 m.
(Tmin – 30)/(200 – 30) = [((120 – 30)/(200 – 30)) sinh (7.575 × 0.169))

+ sinh (7.575 × (0.02 – 0.169))]/sin h (7.575 × 0.2)
= 0.5153

∴  Tmin = 117.61°C

Heat flow:  Q = (hPkA )  {(Tb – T∞) + (TL – T∞)} (cosh mL – 1)/(sinh mL)]

= (( . . . / )56 8 0 012 330 0 012 42× × × × ×π π  {(200 – 30)

+ (120 – 30)} [(cosh (m × 0.2) – 1)/sinh (m × 0.2)] = 47 W.
Check: Considering as two fins of L = 0.169 and 0.031

Q = Q1 + Q2 = (hPkA)  (Tb – T∞) tanh (mx) + (hPkA)  (TL – T∞) tanh m(L – x)
= 41.16 + 5.87 = 47.03 W.

Check for temp: (L = 0.169)
(T – T∞)/(Tb – T∞) = 1/cosh (mx) = 0.156 T = 117.74°C.

Problem 4.16: For the purpose of thermal process requirements the junction of two long rods of
5 mm dia are to be held at 700°C. The rods are exposed to air to 30°C with a convection coefficient
of 12 W/m2K. Determine the power input needed in the case of materials with following
conductivity values (i) 360 W/mK, (ii) 218 W/mK and (iii) 149 W/mK.
Solution: The situation is equivalent to the heat dissipation by long fins

Q = (hPkA)  (Tb – T∞)
As two rods are involved, power = 2Q

(i) Q = ( . . / )12 0 005 360 0 005 42× × × × ×π π  (700 – 30) = 24.5 W

Power = 2 × 24.5 = 49 W

(ii) Q = ( . . / )12 0 005 218 0 005 42× × × × ×π π  (700 – 30) = 19.03 W

 Power = 38.06 W

(iii) Q = ( . . / )12 0 005 149 0 005 42× × × × ×π π  (700 – 30) = 15.73 W

Power = 31.46 W
This condition is for steady state requirements. But the practical situation requires

quick heating and the power requirements in the process will be several times more.

Problem 4.17: A fin in the form of a ring of 0.25 mm thickness and 15 mm OD and 15 mm long
is used on an electric device to dissipate heat. Consider the outer surface alone to be effective
and exposed to air at 25°C with a convection coefficient of 40 W/m2K. The conductivity of the
material is 340 W/mK. If the heat output is 0.25 W and if the device is also of the same OD,
determine the device temperature with and without the fin.



VED

c-4\n-demo\demo4-2

158 FUNDAMENTALS OF HEAT AND MASS TRANSFER

Solution: The heat is lost from the surface of the device by
convection without fin:

0.25 = 40 × (π × 0.0152/4) (Ts – 25)
∴ Ts = 60.36°C
With the addition of the fin: Fig. P.4.17.

Q = (hPkA)  (To – T∞) tanh (mL)
P = π × 0.015,
A = (π/4) (0.0152 – 0.01452),
L = 0.015 m

m = ( . ) / ( ( . . ) / )40 0 015 340 0 015 0 0145 42 2× × × −π  = 8.876.
∴ mL = 28.876 × 0.015 = 0.3281
Substituting

∴ hPkA = × × × × × −( . ( . . ) /40 0 015 340 0 015 0 0145 42 2π π

= 0.08616
Q = 0.25 = 0.08616 × tan (0.3281) (To – 25)

∴ To = 9.16 + 25 = 34.16°C.
There is a drop of 26.2°C due to the fin.

Problem 4.18: A handle fixed to a chemical process equipment is as shown in Fig. P.4.18. The
handle is exposed to air at 37°C with a convection coefficient of 15 W/m2K. The conductivity of
the material is 20 W/mK. Determine the heat lost and also the temperature at the mid location.

The data given are shown in Fig. P.4.18(a).
Solution: The handle can be considered as equal to a fin of length 190 mm with specified end
conditions. (Fig. P.4.18(b)).

100°C

k = 20 W/mK

60 mm

100°C

70 mm

15 W/m K
2

37°C

100°C

k = 20 W/mK

190 mm

100°C

37°C 15 W/m K
2

15 × 6 mm

Fig. P.4.18. (a) Fig. P.4.18. (b)

Using equation 4.8

 m = ( ( . / . . )hP kA/ ) = × × ×15 0 042 20 0 015 0 006  = 18.7
mL = 3.555

15 mm 	

14.5 mm 	

15 mm

Device

T = ?o

k = 340 W/mK

40 W/m K
2

25°C

Fig. P.4.17
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(T – T∞)/(Tb – T∞) = [((TL – T∞)/(To – T∞)) sinh (mx) + sinh m (L – x)]/(sinh (mL)
x = 0.095 m, substituting and calculating

(T – 37)/(100 – 37) = 0.329; T = 57.7°C

 Q = (hPkA )  {(To – T∞) + (TL – T∞)} {(cosh (mL) – 1)/(sinh (mL))}

= ( . . . )15 0 042 20 0 015 0 006× × × ×  {(100 – 37) + (100 – 37)}
(cosh (3.555) – 1)/sinh (3.555) = 4.01W (Check considering two fins).

Problem 4.19: A plane wall exposed to a fluid with a
convection coefficient is found insufficient to dissipate
the heat. One mm thick plate fins of 40 mm length are
added with a pitch of 10 mm. The addition of the fins
causes a reduction in the convection coefficient to 30
W/m2K from the original value of 40 W/m2K. If the
conductivity of the material is 210 W/mK determine
the percentage increase in heat dissipation.

The data are shown in fig P. 4.19.
Heat dissipated by base surface of 1 pitch width,

(considering 1 m depth)
Q = 40 × 0.01 × 1 × (Tb – T∞) = 0.4 ∆T

Solution: Heat dissipation with fin:

m = ( ( / . )hP kA/ ) = × ×30 2 210 0 001  = 16.9, mL = 6.76

 Q = 0.009 × 30 × 1 × (Tb – T∞) + ( (hPkA )  (Tb – T∞) tanh (mL)

= 0.27∆T + 30 2 210 0 001× × × .  tanh (6.76)
= 3.82 ∆∆∆∆∆T.

The increase is about 855%.
Thin, high conductivity fin leads to the increase, though there is a reduction in heat

transfer coefficient.
Problem 4.20: A rectangular plate fin of 2 mm
thickness and 15 mm length is being used on a
surface. It is proposed to reduce the material to 70%
and use a triangular fin of same base thickness. The
convection coefficient is 100 W/m2K the conductivity
is 200 W/mK. The base temperature is 5°C. The
surrounding temperature is 35°C. Determine the heat
gain in both the cases. Also find the effectiveness.
Solution: The original fin is rectangular. Assume 1
m depth, the volume is 0.002 × 0.015 × 1 m3. Now
using 70% of the volume this is made into a
triangular  fin:  length  –  0.7  ×  0.002  ×  0.015  ×  1
= 0.001 × L × 1 ∴ L = 0.021 m.

Fig. P.4.19.

0.032 0.0680.5

0.99

1.0 Triangular

Constant area

Fin 


LC
1.5 h

kAm

0.5

Fig. P.4.20. Skeleton chart

k = 210 W/mK

40 mm

30 W/m K
2

P
itc

h
10

m
m

1 mm

T�

To
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The heat flow is found using the chart
rectangular fin: Triangular fin:

Lc = L + (t/2) = 0.016 m Lc = L = 0.021 m
Ap = 0.002 × 1 m2 Ap = 0.001 × 1 m2

As = 2 × 0.016 × 1 m2 As = 2 × 0.021 × 1 m2

Lc
1.5 [h/kAm]0.5 = 0.032 Lc

1.5 [h/kAm]0.5 = 0.068
Entering the chart with these values efficiencies are read as 0.99 and 0.99 for triangular

and rectangular fins. (Method is indicated in Fig, 4.20)
Heat flow: rectangular fin:

Q = fin eff. h As (Tb – T∞)
= 0.99 × 100 × 2 × 0.016 (5 – 35)
= 95.04 W (inwards)

Triangular fin:  Q = 0.99 × 100 × 2 × 0.021 (5 – 35) = 124.74 W (inwards)
An increase of 23.8% after reduction in volume of material of 30%

Effectiveness: 
Heat flow by fin

heat flow over area replaced by fin
(i) Rectangular: 95.04/100 × 0.002 (5 – 35) = 15.84

(ii) Triangular: 124.74/100 × 0.002 (5 – 35) = 20.79.
Problem 4.21: A thermometer well is made of 1 mm thick
material of thermal conductivity 55 W/mK and the inner
diameter is 8 mm. The convection coefficient on the surfaces
is 50 W/m2K. The wall temperature is 120°C. The
thermometer placed in contact with well bottom reads 380°C.
Determine the fluid temperature and the error as a
percentage of true temperature in °C. Discuss the possible
methods to reduce the error. The length of the well is 6 cm.
Solution: The data are shown in Fig. P.4.21. Let the fluid
temperature be T∞. The thermometer well can be considered
as a short fin (end insulated). Only the outer surface is
effective  for  convection.  Measuring  x  from wall surface,
L = 0.006 m, P = π × 0.01 m, A = (π/4) (0.0102 – 0.0082)

m = ( / ) (( . ) / ( ( . . ))hP kA = × × × × × −50 0 01 4 55 0 01 0 0082 2π π

 = 31.782, mL = 1.907
(T – T∞)/(Tb – T∞) = (380 – T∞)/(120 – T∞) = 1/(cosh mL) = 0.291

380 – T∞ = 0.291 (120 – T∞) = 34.88 – 0.291 T∞
 380 – 34.88 = (1 – 0.291) T∞ ; T∞ = 487°C

The error involved is 487 – 380 = 107°C or 22%. The reasons can be
(1) The wall temperature is too different from the fluid temperature which may not be

the case most of the time
(2) Low value of thermal conductivity
(3) Short length and
(4) Low convection coefficient.

Fig. P.4.21 . Thermometer well.

x
Well50 W/m K

2

T�

8 mm

k
=

55
W

/m
K

380°C

10 mm

120°CWall

60 mm
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Problem 4.22: Consider  the  data  in  problem P.4.21. If the wall temperature is 300°C and if
h = 300 W/m2K and L = 0.08 m determine the error:

Solution:  m = ( ( . / ( . . ))h kP / A) = × × × × × −300 0 01 4 55 0 01 0 0082 2π π  = 77.88,

mL = 6.228
 (T – T∞)/(Tb – T∞) = (380 – T∞)/(300 – T∞) = 1/cosh (6.228) = 0.0039

380 – 1.184 = 0.9061 T∞

 T∞ = 380.32°C Error is 0.32°C
This shows that the well should be longer and the convection coefficient higher to reduce

the error.
Problem 4.23: A thermometer well of 10 mm OD and 8 mm ID is of material with thermal
conductivity of 25 W/mK. It is exposed to gases at 2°C, and the temperature of the wall in which
the well is fixed is 12°C. If an error of not more than 0.6°C is to be involved, determine the
length of the well h = 50 W/m2K.

The data are shown in Fig. P.4.23.

x
Well50 W/m K

2

2°C

8 mm

k
=

25
W

/m
K

2.6°C

10 mm

12°CWall

L = ?

Fig. P.4.23. Thermometer wall.

Solution: Assuming end insulated boundary,
P = π × 0.01 m
A = (π/4) (0.012 – 0.0082) m2

 (T – T∞)/(Tb – T∞) = (2.6 – 2)/(12 – 2) = 1/cosh (mL) = 0.6/10 = 0.06

mL = 3.506 ; m = ( ( . / ( . . ))hP kA/ ) = × × × × × −50 0 01 4 25 0 01 0 0082 2π π

= 47.14
L = 0.0744 m or 7.44 cm.

Problem 4.24: Circumferential fins of constant thickness of 1 mm are fixed on a 50 mm pipe at
a pitch of 4 mm. The fin length is 20 mm. The wall temperature is 130°C. The thermal conductivity
of the material is 210 W/mK. The convection coefficient is 50W/m2K. Determine the heat flow
and effectiveness.
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Solution:  The data are shown in Fig. 4.24 (a)
 r1 = 0.025 m, r2 = 0.045 m
r2c = 0.045 + 0.0005 = 0.0455 m

r2c/r1 = 0.0455/0.025 = 1.82
Lc = L + t/2 = 0.0205 m

Ap = Lc × t = 0.0205 × 0.001

As = 2π (r rc2
2

1
2− )

Lc1.5 (h/kAm)0.5 = 0.02051.5 [50/(210 × 0.0205 × 0.001)]0.5 = 0.316

r = 0.025
i

r = 0.045o

4 mm

1 mm

k = 210 W/mK

50 W/m K
2

25°C

1.0

0.91

0.316

LC
1.5 h

kAp

0 .5

Fin �

r
/r = 1.812

1
2c

Fig. P.4.24 (a) A circumferential fins. Fig. P.4.24 (b) Skeleton chart.

Entering the chart at this value (Fig. 4.24(b)) the efficiency is read as 0.91
Qf = fin eff. As h(∆T)

= 0.91 × 2π (0.04552 – 0.0252) × 50 × (130 – 25) = 43.38 W.
Heat flow on the bare area is

 Qc = 2 × π × 0.025 × 0.003 × 50 (130 – 25) = 2.47 W
Total heat flow per pitch distance = 45.85 W
Without fin : 2 × π × 0.025 × 0.004 × 50 (130 – 25) = 3.3 W, an increase of 14 fold.

Effectiveness = 55.59 (try this out).

Example 4.25: In the problem 4.24, if there is a contact resistance of 0.88 × 10–4 m2C/W, find
the heat flow through the fin.

The contact resistance reduces the base temperature and so the heat flow is reduced.
Solution: The heat flow is 43.38 W,

Resistance for the area of the fin contact surface is given by
(0.88 × 10–4 m2C/W)(π × 0.025 × 0.001 m2) = 0.56° C/W

Therefore temperature drop = 43.38 × 056 = 24.3°C or T0 = (130 – 24.3) = 105.7° C
Corrected heat flow = 33.3 W, temp. drop at contact = 33.3 × 0.56 = 18.65°C
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This process is repeated till the difference is small
To = 111.4°C

Corrected  Q = 35.7 W
 ∆T = 20°C corrected Q = 35.1 W, and so on.

The final answer is Q = 35.2 W and ∆T at base = 19.7°C or the actual base temperature
is 110.3°C.

It can be seen that contact resistance drastically reduces the heat flow in fins and hence
every attempt should be made to obtain good contact between surfaces.
Example 4.26: The outer diameter of a small engine cylinder is 56 mm. Determine the heat
dissipation by a circumferential fin of 4 mm thickness and 40 mm length if k = 210 W/mK and
h = 115 W/m2K. The base temperature is 200°C and surroundings are at 35°C.
Solution: The data are shown in Fig. P.4.26(a).

 r1 = 0.028 m, r2 = 0.068 m
r2c = r2 + t/2 = 0.07 m

 r2c/r1 = 0.07/0.028 = 2.5
Lc = L + t/2 = 0.042 m
Ap = 0.042 × 0.004, As = 2π (r rc2

2
1
2− )

Lc
3/2 [h/kAp]0.5 = 0.0421.5 [(115)(210 × 0.042 × 0.004)]0.5 = 0.491

115 W/m K
2

35°C

0.068 m

0.028 m

200°C

0.04 m

4 mm

k = 210 W/m K

0.79

0.491

LC
1.5 h

kAp

0 .5

Fin �

r
/r = 2.5
1

2c

Fig. P.4.26. (a) Model. Fig. P.4.26. (b) Skeleton chart.

Entering  the  chart at 0.491 reading on curve for 2.5 as in (Fig. P.4.26(b). Fin eff. =
0.79. Q = 0.79 × 2π (0.072 – 0.0282) (100 – 35) × 115 = 152.7 W.
Example 4.27: Annular aluminium fins of 1 mm thickness and 15 mm length are fixed on
copper tubes of OD 16 mm at 0°C. Air at 30°C passes over the fins with a convection coefficient
of 100 W/m2K. If k = 225 W/mK, determine the heat gain per fin, for a capacity of 2 kW,
determine the tube requirements if pitch is 5 mm.
Solution: The data are shown in Fig P.4.27. Using table 4.4 :

 r1 = 0.008 m, r2 = 0.023 m
r2c = r2 + t/2 = 0.0235 m.
 L = 0.015 m, Lc = 0.0155 m
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 Ap = 0.0155 × 0.001
As = 2π (0.02352 – 0.0082)

 Lc1.5 (h/kAm)0.5 = 0.01551.5 [100/(225 × 0.0155 × 0.001)]0.5 = 0.327
 r2c/r1 = 0.0235/0.008 = 2.94

0.88

0.327

LC
h

kAp

0.5

Fin �

r /r = 2.942c 1

0.008

0.023

0.015 mm

1 mm 5 mm

k = 225 W/mK

0.008 mm

0°C

30°C 100 W/m K
2

Fig. P. 4.27 (a) Model. Fig. P.4.27 (b) Skeleton chart.

Entering the chart at this value the fin efficiency is read as 0.88 (as in Fig. 4.27(b))
 Q = 0.88 × 100 × 2π (0.02352 – 0.0082) (0 – 30) = 8.1 W

Per pitch length  Q = 8.1 + πDh ∆Tl
= 8.1 + π × 0.016 × 100 × 30 × 0.004 = 8.7 W

No of pitch distances 2000/8.7 = 229, length = 1.15 m.
Example 4.28 : Annular fins, 2 mm thick and 15 mm length are fixed on a 30 mm tube at
100°C. Air at 30°C flows over the fins with a convection coefficient of 75 W/m2K. k = 235 W/
mK. A contact resistance of 2 × 10–4 m2 K/W is encountered. Determine the reduction in heat
flow due to the contact resistance.
Solution: Using the chart.

r1 = 0.015 m, r2 = 0.03 m, r2c = 0.031 m, t = 0.002 m
L = 0.015 m ; Lc = 0.016m, r2c/r1 = 0.031/0.015 = 2.07

Ap = Lc.t = 0.016 × 0.002, As = 2π (0.0312 – 0.0152)
Lc1.5 (h/kAp)0.5 = 0.0161.5 [75/(235 × 0.016 × 0.002)0.5 = 0.2021
Entering the chart at 0.2021 and reading on curve for r2c/r1 = 2.07 (inter polation) fin

efficiency is 0.94 (as in figures of previous problems 4.27)
Q = 2π (0.0312 – 0.0152) × 75 × 0.94 (100 – 30) = 22.82 W.

The temperature drop at contact depends on heat flow and vice versa. So a trial solution
is necessary.

The contact resistance for the area of contact.
= (2 × 10–4)/(π × 2 × 0.015 × 0.002) = 1.061°C/W

Contact temperature drop = Q.R = 22.82 × 1.061 = 24.2°C
Base temp. = 75.8°C. corrected Q = 14.93 W
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Final values are ∆∆∆∆∆T = 18°C
Base temp = 82.01°C. Q = 16.95 W checks
A reduction of 26%.

Example 4.29: A flat aluminium plate 0.2 m wide and 3 mm thick and fairly long has its top
exposed to solar radiation of 800 W/m2, all of which is absorbed. Heat is collected at the side
edges at 60°C. The bottom is well insulated and top end losses are negligible. Determine the
maximum temperature in the plate. k = 240 W/mK.
Solution: The data are show in Fig 4.29.

The x coordinate is chosen at the fin
centre. Considering a strip of width dx at a
distance x from the centre, heat balance yields
heat conducted in + heat received at this
surface—heat conducted out = 0.

Taking unit length and considering
thickness as t and heat flux as q W/m2

– k × t × 1 (dT/dx) – (– k × t × 1(dT/dx) – (d/dx) [– kt(dT/dx)dx] + qd × 1 = 0
(d2T/dx2) + q/kt = 0. ...(P.29.1)

Integrating and using the boundary that at x = L, T = Tw
and at x = 0, (dT/dx) = 0. yields

 (T – Tw) = (q/2kt) (L2 – x2) ...(P.29.2)
at (T0 – Tw) = (q/2kt) L2

T0 – 60 = (800/(2 × 240 × 0.003)) [0.12] ...(P.29.3)
∴ T0 = 65.56°C.
Check :  Q = – kA (dT)/(dx) |x = L from P.29.2, dT/dx = (– q/kt) x.
Substituting Q = [– 240 × 0.003 × (– 800)/(0.003 × 240)] × 0.1 = 80 W checked. This is the

heat received by the strip and so the values found are checked.
Example 4.30 : Using the data in problem P.4.29, if heat is lost by combined convection and
radiation with a total  coefficient of h, determine the temperature distribution and the maximum
temperature.
Solution: Considering  a  strip  of  dx  width  at  a  distance x and writing the energy equation
(Fig. 4.29).
heat conducted in + heat received by heat flux – heat conducted out-heat convected
= 0.

– kA (dT/dx) + dx 1 × q – {– kA(dT/dx) + (d/dx) (– kA(dT/dx))dx) – hdx (T – T∞) = 0
which reduces to (taking A = t × 1)

d2T/dx2 + q/kt – (h/kt) (T – T∞) = 0.
Now introducing a new variable θ = T – T∞, this reduces to

(d2θ/dx2) – (h/kt)θ + q/kt = 0

Setting m2 = h/kt, d
dx

2

2
θ  – m2 θ + 

q
kt  = 0 ...(P.30.1)

x dx

0.2 m wide

60°C 3 mm

k = 240 W/mK

60°C

800 W/m
2

Fig. P.4.29.
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This equation is of the standard form
 (d2y/dx2) – m2y + S = 0 for which the general solution is

y = c1emx + c2e–mx + S/m2

The solution for eqn. 30.1 is
θ = c1emx + c2e–mx + (q/kt) (kt/h) = c1emx + c2e–mx + (q/h)
θ = T – T∞ = c1emx + c2e–mx + q/h

at x = 0,  dT/dx = 0, mc/emx – mc2e–mx = 0, and x = 0, so c1 = c2
T – T∞ = c1(emx + e–mx) + q/h

At x = L, T = Tw
 (Tw – T∞) = c1(emL + e–mL) + q/h

 c1 = ((Tw – T∞)/(emL + e–mL)) – (q/h)/(emL + e–mL)
T – T∞ = (Tw – T∞)((emx + e–mx)/(emL + e–mL)) – (q/h) ((emx + e–mx)/ (emL + e–mL)) + q/h

or  T – T∞ = (Tw – T∞) (cosh (mx)/cosh (mL)) + (q/h) (1 – (cosh mx)/
(cosh mL))

maximum temperature is at x = 0
T0 – T∞∞∞∞∞ = (Tw – T∞∞∞∞∞) (1/cosh mL) + (q/h) [1 – (1/cosh mL)].

Problem 4.31: In the problem 4.30 consider the following data and find the maximum
temperature : q = 800 W/m2, Total width 15 cm, k = 240 W/mK, h = 10 W/m2K, t = 0.003 m, Tw
= 60°C, T∞ = 30°C. Also find the heat flow by each mode.

(Read the problem 4.31)
Solution: m = h kt/ ( / . )= ×10 240 0 003  = 3.73, mL = 0.28

(i)  T0 – T∞ = (60 – 30)/cosh (0.28) + (800/10) (1 – 1/cosh (0.28))
= 28.86 + 3.04 = 31.90

T0 = 61.90°C
(ii) Heat flow by conduction = – kA[(dt/dx)] at x = L

 T – T∞ = (Tw – T∞)/(cosh (mx)/[(cosh (mL))] + (q/h)(1 – (cosh mx)/cosh mL))
 [dt/dx] L = ((Tw – T∞)/(cosh mL)) m sinh mL – (q/h) m (sin mL)/(cosh mL)

= m (Tw – T∞) tanh (mL) – (q/h) m tanh (mL)
= 3.73 (60 – 30) tanh (0.28) – (800/10) 3.73 tanh (0.28) = – 50.89

 – kA[dt/dx]|L = – 240 × 0.003 × – 50.89 = 36.64 W.
(iii) Heat flow by convection:

 
0

L
h T T dxz − ∞( )  = 

0

L
wh T Tz − ∞(( ) /(cosh mL)) cosh (mx) dx + 

0

Lz  (q/h)

(1 – (cosh mx)/(cosh mL)) dx
= h ((Tw – T∞)/(m) tanh (mL) + q[L – (1/m) tanh (mL)]
= 10 × ((60 – 30)/3.73) tanh (0.28) + 800[0.075 – (1/3.73) tanh (0.28)]
= 21.95 + 1.47 = 23.42 W

Total = 36.64 + 23.42 = 60.08 W
 Total input = 0.075 × 800 = 60 W so checks.
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Problem 4.32: A circular strip of aluminium 3 mm thick and 0.2 m diameter is exposed to
solar radiation of 800 W/m2 at the top. The bottom is insulated and the top losses are negligible.
If heat is collected around the circumference at 60°C, determine the centre temperature. k = 240
W/mK.
Solution: Refer Fig. P.4.29 Considering the strip of width dr at r, the energy balance is

r dr

0.2 m �

60°C 3 mm

k = 240 W/mK

60°C

800 W/m
2

dr

r

Fig. P.4.32. Model.

– k2πrt (dT)/(dr) – [– k2πrt (dT)/(dr) + (d/dr) (– k2 πrt (dT/dr) dr] + q 2πrdr = 0
On simplification (d/dr) (rdT/dr) = (– q/kt)r ...(1)
Integrating and using boundary conditions,

 dT/dr = 0 at r = 0 and T = Tw at r = R
 T – Tw = (q/4 kt) (R2 – r2) ...(2)

T0 = Tw + (q/4 kt)R2 = Tw + (800 × 0.12)/(4 × 240 × 0.003) = 60 + 2.78
= 62.78°C

Check:  heat flow = – kA (dT)/(dr)|r = R ; (dt/dr) = (– q/2kt) r
Q = – k2π Rt × (– q/2kt)R = πR2q which is the heat received.

Problem 4.33: Heat is generated at q (W/m3) in
a thin rod of diameter D and length 2 L with a
thermal conductivity of k and is exposed at the
surface to convection to a fluid at T∞ with a
convection coefficient of h. The ends are also
maintained at T∞ using a heat sink. With x
coordinate origin at mid point, derive an
expression for the temperature distribution.
Solution: Considering the slice of thickness dx
at a distance of x from origin, and taking the heat
balance, (Fig. P.4.33).

Fig. P.4.33. Model.

x dx

2 L

60°C

k

60°C

dia D

q

T� h
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Net heat conducted + heat generated – heat convected = 0
– kA dT/dx – [– kA dT/dx + (d/dx) (– kA dT/dx) dx] + q dx A – hP dx (T – T∞) = 0

 d2 T/dx2 – (hP/kA) (T – T∞) + q/k = 0
Introducing a new variable, θ = T – T∞, and also defining m2 = hP/kA, this equation

reduces to
d2θ/dx2 – m2θ + q/k = 0

This is a standard form for which the solution is
θ = c1emx + c2e–mx + (q/km2),

at x = 0, the boundary condition is (dT/dx) = 0 so c1 = c2
T – T∞ = c1 (emx + e–mx) + q/km2 ; at x = L, T = T∞

0 = c1(emL + e–mL) + q/km2 ; c1 = – (q/km2) (1/(emL + e–mL))
T – T∞ = (q/km2) [1 – cosh mx/cosh mL]

∴ T0 – T∞∞∞∞∞ = (q/km2) [1 – (1/cosh mL)]
 (T – T∞)/(T0 – T∞) = (cosh (mL) – cosh (mx))/(cosh (mL) – 1)

this equation gives the temperature distribution.
Heat conducted = – k A(dT/dx) |L = kA (q/km2) m tanh mL

= (qA/m) × tanh (mL) at x = L

Heat convected = 
0

L
h T T Pdxz − ∞( )  = 

0

Lz  (hqP/km2), [1 – cosh mx/cosh mL)] dx

= (hq P/km2)(L – (1/m) tanh (mL))
Problem 4.34: A square rod of side 10 mm and 0.2 m length has a uniform heat generation
rate of 106 W/m3. The thermal conductivity of the material is 25 W/mK and it is exposed to air
at 30°C with a convective heat transfer coefficient of 25 W/m2K. The ends are maintained at
30°C. Determine the temperature at the centre and also the heat conducted at the ends and the
heat convected.

reading from problem 4.33, using eqn 33.1.

Solution: T0 – T∞ = {q/km2} [1 – 1/cosh (mL)], m = ( / )hP kA

h = 25 W/m2 K, P = 0.04 m, k = 25 W/mK, A = 1 cm2 = 1 × 10–4 m2

m = ( . / )25 0 04 25 1 10 4× × × −  = 20, m2 = 400, mL = 20 × 0.1 = 2

 T0 – 30 = (106/(25 × 400)) [1 – 1/cosh (2)] = 73.42°C
∴ T0 = 103.42°C
Heat conducted : Q = (qA/m) tanh (mL) = (106 × 1 × 10–4/20 tanh (2))

  = 4.82 W (one helf length)
Heat convected : (hqP/km2) [L– (1/m) tanh (mL)] = (25 × 106 × 0.04/(25 × 400))

[0.1 – (1/20) tanh (2)] = 5.18 W (One half length)
Total = 10 W. Heat generated = 106 × 1 × 10–4 × 0.1 = 10 W checks.
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Problem 4.35: A copper rod heated at one end is placed in an air stream. The diameter of the
rod is 10 mm and the length is 80 mm. The base temperature is 80°C and the surrounding
temperature is 30°C. It is found that 12 W power is needed to maintain steady conditions in the
rod. Taking k = 385 W/mK, determine the value of convective heat transfer coefficient over the
surface.

Solution:  Q = ( )hPkA  (T0 – T∞) tanh (mL) (end insulated)

12 = h( . . / )π π× × × ×0 01 385 0 01 42  (80 – 30) tanh (m × 0.08)

m = h kA( / )P ,
h is involved in the hyperbolic function also. Hence trial solution is made.

Q is found using various values of h. The trial values are listed.
Hence h = 120 W/m2 K corresponding to 12 W.

h Q
60 6.65

100 10.36
120 12.00
140 13.61.

Problem 4.36: In a gas turbine stage the gas temperature at the blade surface is found to be
400°C. The convection coefficient over the surface is 260 W/m2K. The conductivity of the material
is 25 W/mK. The root of the blade is at 300°C. The blade section has an area of 2.5 cm2 and the
average circumference is 10 cm. The height of the blade is 6 cm.

Determine the heat flow in at the root.

Solution: The blade acts as a fin. The section is not of simple gemetic shape. However P and A
are known

 m = ( / )hP kA  = (( . )/( . ))260 01 25 2 5 10 4× × × −  = 64.5, mL = 3.87
Assuming end insulated condition.

Q = ( )hPkA  (T0 – T∞) tanh (mL)

( . . )260 0 1 25 2 5 10 4× × × × −  (400 – 300) tanh (3.87)

= 40.3 W/blade. (Heat flow at tip neglected).
Problem 4.37: Formulate the set of simultaneous equations to be solved for a plate fin shown
in Fig. 4.37. The depth is 1m.
Solution: Considering element 1,

heat conducted in = (115 – T1)/{(0.01)/(50 × 0.019)}
heat conducted out = (T1 – T2)/(0.01)/(50 × 0.017)
Heat convected = 10(2 × 0.01005) × (T1 – 20)
Using the energy balance this reduces to

85 T2 – 180.201 T1 + 10929 = 0
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115°C
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20 mm

18 16 14 12 10

54321 10

k = 50 W/mK
20°C h = 10 W/m K

2

T9

1

T10

Last node

Fig. P. 4.37. Model of nodes.

Similarly for other elements
85 T1 – 160.201 T2 + 75 T3 + 4.02 = 0
75 T2 – 140.201 T3 + 65 T4 + 4.02 = 0
65 T3 – 120.201 T4 + 55 T5 + 4.02 = 0
55 T4 – 100.201 T5 + 45 T6 + 4.02 = 0
45 T5 – 80.201 T6 + 35 T7 + 4.02 = 0
35 T6 – 60.201 T7 + 25 T8 + 4.02 = 0
25 T7 – 40.201 T8 + 15 T9 + 4.02 = 0
 15 T8 – 20.201 T9 + 5 T10 + 4.02 = 0

5 T9 – 5.1005 T10 + 2.01 = 0
For the last node

(T9 – T10)/((0.01)/(50 × 0.001)) + 10 × 0.01005 (20 – T10) = 0
This reduces to the last equation above.
These equations can be solved for temperature distribution using matrix inversion or

other such methods.

OBJECTIVE QUESTIONS

Choose the correct statement
1. In a long fin if the thermal conductivity is increased with other parameters maintained con-

stant.
(a) The temperature will drop at a faster rate along the length
(b) The temperature will drop at a lower rate along the length
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(c) The temperature gradient is not strongly influenced by the conductivity
(d) The temperature gradient is dependent on the heat flow only.

2. In a long fin if the convection coefficient is increased with other parameters maintained con-
stant.
(a) The temperature drop along the length is not strongly influenced by the convection coefficient.
(b) The temperature gradient depends only on heat flow rate.
(c) The temperature drop will be faster along the length.
(d) The temperature drop along the length will be at a lower rate.

3. In a long fin if the parameter m = ( )h kP/ A  increases, other parameters being maintained con-
stant then.
(a) The temperature drop along the length will be at a lower rate
(b) The temperature drop along the length will be steeper
(c) The parameter m influences the heat flow only
(d) The temperature profile will remain the same.

4. For a given sectional area of fin if the circumference is increased by adopting different geometric
shape, then
(a) The temperature variation along the fin length will be steeper.
(b) The temperature variation along the fin length will be featter
(c) The circumference length does not affect the temperature change
(d) The circumference will only influence the heat convected.

5. In a given fin configuration increase in conductivity will
(a) Decrease the total heat flow
(b) Will affect only the temperature gradient
(c) Increase the total heat flow
(d) Heat flow is influenced only by the base temperature and sectional area.

6. An increase in convection coefficient over a fin will
(a) increase effectiveness (b) decrease effectiveness
(c) does not influence effectiveness (d) influences only the fin efficiency

7. In the case of fins it is desirable to have
(a) area of section maintained constant along the length
(b) area of section reduced along the length
(c) area of section increased along the length
(d) better to vary the convection coefficient than the area.

8. Fin effectiveness will be increased more by
(a) having a higher value of convection coefficient
(b) higher sectional area
(c) higher thermal conductivity
(d) longer circumference.

9. If a square section fin is split longitudinally and used as two fins
(a) The total heat flow will decrease
(b) The total heat flow will increase
(c) The toal heat flow will remain constant
(d) Heat flow may increase or decrease depending on the material used.
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10. For a given volume of material for use in a pin fin
(a) longer the fin, better the total neat flow
(b) shorter the fin, better the heat flow
(c) As the volume is constant, the heat flow will not change
(d) As length is increased heat flow will increase and after some length will decrease.

Choose the correct statement or statements for the following questions
11. (a) If the convection coefficients is low, it is not desirable to use a fin

(b) If the conductivity is large, a longer fin will be more effective
(c) Plate fins of smaller thickness is better in the point of view of heat dissipation.
(d) Finned surface is desirable under conditions of boiling.

12. (a) Aluminium fins are better because the material is light
(b) A constant area fin provides the best (heat flow/weight) ratio.
(c) On rare occasions the heat flow may be reduced by the addition of fins.
(d) If conductivity is high a short fin will be a good proportion.

13. (a) A constant temperature gradient along the length of a constant area fin is not possible
(b) The temperature gradient, in circular section fin dissipating heat will increase along the

 length.
(c) Longitudinal fins are less effective compared to annular fins.
(d) Fins at close pitch will give a high heat dissipation rate.

14. (a) An aluminium fin will be cooler at a given distance compared to a copper fin of identical
section and other parameters.
(b) An aluminium fin will be hotter at a given distance compared to a copper fin of identical
section and other parameters.
(c) An aluminium fin of same configuration will dessipate more heat compared to copper fin.
(d) A aluminium fin of same configuration will dessipate less heat compared to copper fin.

Answers
1. (b) 2. (c) 3. (b) 4. (a) 5. (c)
6. (a) 7. (b) 8. (d) 9. (b) 10. (d)

11. (c) 12. (a, d) 13. (a), (b) (d) 14. (b), (d).

EXERCISE PROBLEMS

4.1 A copper rod extends from a surface at 300°C. The diameter is 12 mm and length is 9 cm. The rod
is exposed to air at 30°C with convection coefficient of 35 W/m2 K. Assuming end is insulated
determine the tip temperature. k = 340 W/mK. If an aluminium fin of the same diameter is used,
what should be the length of the fin, if the tip temperature is to be the same as the copper fin.
Assume k = 210 W/mK.

4.2 A surface is at 200°C. Pin fins of diameter 6 mm and length 12 mm are used at 12 mm spacing
between centres. The surroundings are at 20°C. The convection coefficient is 30 W/m2K. The
conductivity of the material is 131 W/m K. Determine  the increase in heat loss from the surface.
Another proposal is to use fins of half the length at the same spacing, but the diameter increased
to 8 mm. Compare the heat dissipation for this proposal, workout the heat dissipation/unit vol-
ume of fin.
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4.3 A poker used for stirring hot coal in a furnace is in the from of a pipe of 20 mm ID and 24 mm OD.
One end is at 350°. The outside of the poker is exposed to air at 35°C with a convection coefficient
of 20 W/m2K. The conductivity of the material is 45 W/mK. Determine the temperature at a
distance of 0.35 m from the end.

4.4 A stainless steel vessel of circular shape of inside diameter 20 cm has a plate thickness of 2 mm.
It is filled with hot gravy at 90°C up to a depth of 8 cm from the top. Determine the temperature
at the top of the vessel. The surroundings are at 30°C and the convection coefficient is 30 W/m2K.
The conductivity of the material is 20 W/mK. Assume only the outside surface is effective in
convection.

4.5 The size of a transformer tank is 0.6 m × 0.4 m × 0.6 m. Plate fins are used to dissipate heat at
the four sides. Fins are 5 mm thick and 6 cm long and run along the vertical direction, 0.6 m
deep. The conductivity of the material is 45 W/mK. The convection coefficient  is 45 W/m2K.
Totally 100 fins are used. Determine whether it can meet the requirements of the unit if maximum
wall temperature is 60°C. The surrounding temperature is 38°C. Heat to be dissipated is 10 kW.

4.6 In an experiment to determine conductivity of materials, rods of different materials extend from
a vessel containing boiling water, and the rods are coated with a thin layer of wax and the length
up to which the wax melts is used to determine the conductivity of materials. The melting point
of wax is 40°C, the base temperature is 99°C, the diameter of rods is 8 mm. The length of  rods
are  60 mm,  determine  the length upto which wax will melt if the rod is of copper with k = 330
W/mK. The surroundings are at 25°C  and the convection coefficient is 20 W/m2K. State whether
the length of melt in the case of Aluminium rod will be longer or shorter and justify your  answer.

4.7 A hollow haxagonal pipe of sides 10 mm (inside) and 1.5 mm wall thickness protrudes from a
surface at 200°C. The length of protrusion is 9 cm. The material has a thermal conductivity of 45
W/mK and the surface is exposed to a fluid at 35°C with a convection coefficient of 15 W/m2K.
Determine the heat loss and the temperature at the tip and at mid point along the length. Con-
vection is absent inside of pipe.

4.8 A square section pipe of 18 mm side and 1.55 mm wall thickness is used as a fin from a surface
at 200°C. The outside is exposed to air at 35°C, with a convection coefficient of 15 W/m2K. Deter-
mine the heat loss and the temperature at the tip and the mid point. The length of the pipe is 9
cm. Conductivity = 55 W/mK.

4.9 A rectangular section of thickness 3 mm and depth 37.5 mm and length 9 cm is used as a fin on
a wall at 200°C . The surroundings are at 35°C and the convection coefficient is 15 W/m2K. The
conductivity of the material is 45 W/mK. Determine the heat loss from the fin and the tip and
mid point temperatures.

4.10 Circular pipe of 23.9 mm OD and 1.5 mm wall thickness and length 90 mm is used as a fin on a
wall at 200°C. The outside is exposed  to air at 35°C with a convection coefficient of 15 W/m2K.
The conductivity of the material is 45 W/mK. Determine the heat loss from the fin and also the
mid section and tip temperature.

4.11 A plate fin having section of an angle of 5 mm thickness and 12 mm side is proposed (i) Fixed at
45°  to  the  surface  to  reduce  space.  (ii)  fixed  at  90° to the surface. Determine the heat loss.
T0 = 110°C, h = 30 W/m2K. k = 200 W/mK. The surrounding is at 35°C.

4.12 A thermometer well used to measure temperature of a fluid flowing in a pipe is of 6 mm ID, 1 mm
wall thickness and 65 mm long. The fluid is at 600°C. The convection coefficient over the well
surface is 50 W/m2K. The conductivity of the material is 50 W/mK. The uninsulated wall was at
80°C lower than the fluid temperature. Determine the temperature that will be indicated by the
thermometer. As the error in measurement was found unacceptable, the pipe wall was insulated
on the outside so that the wall temperature was now 20°C lower than the fluid temperature.
Estimate the reduction in the error.

4.13 A turbine blade is of hollow section of 2 mm thickness with the outside periphery of 100 mm. The
blade is exposed to gasess at 400°C with a convection coefficient of 80 W/m2 K. The conductivity
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of the material is 32 W/mK. If the blade root is at 300°C, determine the heat flow into the root
section.

4.14 A rod of 1 cm square section and 6 cm length with a thermal conductivity of 50 W/mK protrudes
from a surface at 180°C, and is exposed to air at 35°C. The tip temperature is measured as 90°C.
Determine the value of convection coefficient and the heat dissipated by the rod.

4.15 The area of section available for a rectangular fin is 2 cm2. The conductivity of the material is
130 W/mK and the convection coefficient is 65 W/m2K. The wall temperature is 200°C and  the
surrounding is at 35°C. Determine the thickness for maximum heat flow and the heat dissipated
for 1 m depth of such a fin.

4.16 The handle of a stainless coffee cup is in the form of a circular ring of 3 cm mean dia and wire
diameter of 4 mm. It is welded to the cup surface at a circumferential point. The coffee is at 80°C.
The surroundings are at 30°C and the convection coefficient is 8 W/m2K. The conductivity of the
material is 30 W/mK. Determine the temperature of the ring opposite to the point of weld. Also
determine the heat dissipated by the handle.

4.17 Two hot surfaces one at 300°C and the other at 200°C are connected by a plate 3 cm wide and 0.5
cm thick, the distance between the surfaces being 10 cm. The plate is of material with conductiv-
ity of 130 W/mK and is exposed to gases at 80°C. with a convective heat transfer coefficient of 65
W/m2K. Determine the location and value of the minimum temperature in the plate and also the
heat dissipated by the plate.

4.18 The volume of material available for a pin fin of square section is 4 cm3. The conductivity of the
material is 140 W/MK and the convection coefficient is 60 W/m2K. Determine the size of the fin
for maximum heat flow.

4.19 A plate fin of 2 mm thickness and 20 mm length is dissipating heat from a surface at 200°C. The
fin is exposed to air at 30°C with a convection coefficient of 85 W/m2K. If the conductivity of the
material is 235 W/mK, determine the heat dissipated in 1 m depth of fin. If a contact resistance
of 2.5 × 10–4 m2 °C/W is involved determine the reduction in heat dissipation. (53,392.4, 28.8%).

4.20 A circumferential fin of thickness 1 mm and length 16 mm is used on a 15mm dia pipe used to
cool air. The pipe surface temperature is 3°C and the air temperature is 28°C. If the convection
coefficient is 80 W/m2K and the conductivity is 200 W/mK. determine the heat dissipated by a
fin. If the cooling  load is 2 kW and if the pitch is 4 mm, determine the length of finned pipe
necessary to meet the load.

4.21 The cylinder head of an engine is fitted with plate fins of 4 mm thickness and 25 mm length the
material having a thermal conductivity of 50 W/mK. The convection coefficient is 85 W/m2K. If
the total fin depth  is 0.8 m, determine the heat dissipation for a wall to surrounding tempera-
ture difference of 290°C.

4.22 A Cast iron cylinder of an air cooled engine is provided with circumferential fins of 4 mm thick-
ness and 25 mm length. The OD of the cylinder is 90 mm. The conductivity of the metal is 45 W/
mK. The convection coefficient is 80 W/m2K. The surface is at 280°C and the surroundings are at
38°C. Determine the heat loss per fin.

4.23 Circumferential fin of a water preheater is 2 mm thick and 40 mm long and are fixed on pipes of
60 mm outside diameter. The conductivity of the material is 55 W/mK and the fins are exposed
to hot gases at 200°C. The wall temperature is 120°C. The convection coefficient is 45 W/m2K. If
fins are fixed at 12 mm pitch and if total length pipe is 40 m, determine the total heat collection
rate.

4.24 A room heater uses steam in pipes of 60 mm OD and the steam temperature is 130°C. The pipe
is provided with fins of 1 mm thickness and 30 mm length at a pitch of 8 mm. The room air is at
25°C and the convection coefficient is 22 W/m2K. The conductivity of the material is 210 W/mK.
If the heat loss to the surroundings from the room is 4 kW, determine the length of pipe required.
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4.25 An electronic device is of 15 mm dia and space is available for three circumferential fins of 0.8
mm thickness and 8 mm length. If the heat to be dissipated by the fins is 12 W and if the base
temperature is not to exceed 60°C when the surrounding is at 20°C, check the suitability of
silver, copper, gold and aluminium with conductivity values of 407, 386, 317 and 204 W/mK. The
convection coefficient has value of 25 W/m2K.

4.26 Solar radiation is incident on a plate of 2 mm thickness and conductivity of 204 W/mK at 800 W/
m2. Energy is collected by water flowing in pipes fixed at a pitch distance of 12 cm at a tempera-
ture of 48°C. Determine the maximum temperature in the plate. Assume that losses are negligi-
ble.

4.27 Radiation flux of 5000 W/m2 is incident on an annular plate of 150 mm inner diameter and 500
mm outer diameter. The plate is 4 mm thick and has a conductivity of 210 W/mK. The inner and
outer edges are maintained at 10°C by collection of heat. There is a loss to outside air at 40°C by
convection with h = 40 W/m2K. Determine the maximum temperature in the plate and also the
heat flow at either of the edges.

4.28 Heat is generated in a bar of rectangular section of 6 mm × 24 mm at a uniform rate of 106 W/m3.
The conductivity of the material is 30 W/mK. The bar is surrounded by a fluid at 180°C with a
convection coefficient of 200 W/m2K. The bar is 1 m long and the ends are fixed to walls main-
tained at 180°C. Determine the temperature at mid lenght and the heat flow at the ends and
over the surface.

4.29 A heating surface has resistance rods 20 mm dia and 1 m length generating 4 KW of heat. The
ends are fixed to supports at 300°C. The combined convection and radiation heat transfer coeffi-
cient on the rod is 500 W/m2K and the surroundings are at 700°C. If the conductivity of the
material is 15 W/mK, determine the maximum temperature in the rod and the heat flow at the
ends.

4.30 A solar collector plate is exposed to a flux of 900 W/m2. Heat is collected by water pipes fixed at
12 cm pitch with a water temperature of 48°C. The plate is 2 mm thick and has a conductivity of
204 W/mK. If the losses over the plate is accounted by a convection coefficient of 15 W/m2K to air
at 30°C, determine the maximum temperature in the plate and also the rate of heat collection by
the water per pitch  width and 1 m length.
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TWO DIMENSIONAL STEADY HEAT
CONDUCTION

5

5.0 INTRODUCTION

In several situations one dimensional conduction approximation provides reasonably acceptable
answers. However there are situations where the heat conduction in two dimensions has to be
considered. One example is corners in a rectangular furnace. The solution required is the
temperature at various locations and the heat flow. If the temperature field is established,
heat flow can be determined by Fourier’s conduction equation. Mainly four methods have been
in use for solving two dimensional conduction problems. These are (1) Analytical method solving
the differential equation using the boundary conditions (2) Graphical method of sketching
equal temperature lines and then the equal heat flow paths (3) Use of electrical analogy and
use of conduction paper to plot equal temperature lines and (4) Finite difference method.
Rigorous analytical solutions are available only for very simple boundary conditions and these
are not amenable for complex boundaries. With computer software becoming popular, the fourth
method is replacing the graphical and analogy methods.

5.1 SOLUTION TO DIFFERENTIAL EQUATION

From chapter 2, the differential equation in cartesian coordinates for steady two dimensional
conduction, without heat generation is given as (refer eqn. (2.3)

 ∂
∂

+ ∂
∂

2

2

2

2
T

x
T

y
 = 0 ...(5.1)

This equation is solved by the method of separation of variables. Solutions are available
only for a limited sets of boundary conditions. However limited, these solutions provide an
insight into the problem.
5.1.1 One of the simpler problem is illustrated here. Consider a rectangular plate as shown in
Fig. 5.1. The plate is W m wide and H m high. The origin of the cartesian coordinates is
considered to be at the left bottom corner of the plate. The two sides and the bottom side are as
temperature T1. The top side temperature varies as in equation 5.2.

T = Tmsin πx
W

T+ 1 ...(5.2)

This leads to the condition  that the top corners the temperature is T1 in whichever way
the corner is reached. Thus singularity is avoided in this boundary set as compared to the next
boundary set considered. The essential feature of this method is that the solution for this
equation is assumed to take the product from.
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Let T = XY where X = f(x) ...(5.3)
Y = f(y)

Substituting 5.3 in 5.1, the equation 1 reduce to ordinary differential equation

1 12

2

2

2X
d X
dx Y

d Y
dy

+ .  = 0 ...(5.4)

As these two terms are functions of independent variables, this equation can be reduced
to two ordinary differential equation. These are

d X
dx

X
2

2
2+ λ  = 0 ...(5.5)

  dY
dy

Y2
2− λ  = 0 ...(5.6)

where λ2 is called separation constant. Since the sine function boundary condition is to be
satisfied, λ2 cannot be zero. The solutions are

 X = C1 e–λx
 + C2 eλx ...(5.7)

 Y = C3 cos λx + C4 sin λx ...(5.8)
Hence,  T = XY = (C3 cos λx + C4 sin λx) (C1e–λx + C2eλx) ...(5.9)
The boundary conditions are: (Fig. 5.1)

T = T1 at y = 0, T = T1 at x = 0, T = T1 at x = W

at  y = H, T = T1 + Tm sin πx
W
F
HG
I
KJ

It is easier to use a now variable θ = T – T1
The boundary conditions reduce to

θ = 0 at y = 0, θ = 0, at x  = 0, θ = 0 at x = W,

θ = Tm sin πx
W

 at y = H. ...(5.10)

Applying these conditions, we get
(C3 cos λx + C4 sin λx) (C1 + C2) = 0 ...(a)

 C3 (C1e–λx + C2 eλx) = 0 ...(b)
 (C3 cos λW + C4 sin λW) (C1e–λx + C2eλx) = 0 ...(c)

   (C3 cos λ x + C4 sin λy) (C1e–λH + C2eλH) = Tm sin πx
W
F
HG
I
KJ ...(d)

From a, c1 = c2, From b, c3 = 0
From c, c3c1 sin λW (e–λx – eλx) = 0 ...(5.11)

c sin λW (e–λx – eλx) = 0.
∴ sin λ W = 0
This can be satisfied for all values of

λ = πx
W

Fig. 5.1.

0, H
W, H

0, 0

H

T1

T1

T1

W,0W
x

Surface
considered

y T + T sin ——1 m
�x
W
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This solution reduces to as ( )e ey yλ λ− −

2
 → sinh (λ y)

θ = T – T1 = 
n

nc n x
W

n y
W=

∞

∑
1

sin sinhπ π ...(5.12)

This should satisfy the formula boundary condition also i.e. at y = H.

∴ Tm sin πx
W

 = 
n

nc n x
W

n H
W=

∞

∑
1

sin sinhπ π ...(5.13)

As cn = 0 sin n > 1, its reduces only to c1. c1 is obtained from 5.13 and substituted in 5.12.
obtaining.

T – T1 = Tm sinh ( Y / W)
sinh( H / W)

. sin x
W

π
π

π ...(5.14)

5.1.2. The other boundary condition is slightly different from the previous one. Instead of a
sine function in the temperature at y = H, a constant temperature is assumed. This leads to
singularity at the top corners.

T = T1 at y = 0, T = T1 at x = 0, T = T1 at x = W.
T = T2 at y = H ...(5.15)

As the first three boundary conditions are the same, the result of these boundaries give
(eqn. 5.11)

T – T1 = 
n

nc n x
W

n y
W=

∞

∑
1

sin .sinhπ π

The last boundary condition gives

 T2 – T1 = 
n

n

nc n x
W

n H
W=

= ∞

∑
1

sin . sinhπ π
...(5.16)

Expanding this in a Fourier series in the interval 0 < x < W

 T2 – T1 = (T2 – T1) 
2 1 1

1

1

π
π

n

n

n
n x
W=

∞ +

∑ − +( ) sin ...(5.17)

Upon comparison between 5.16, 5.17

 cn = 2 1 1 11

π π
( )

sin( / )
( )T T

n H W n

n

2 1−
− ++

The final solution thus is

T T
T T n

n x
W

n y W
n H W

n

n

−
−

= − ++∞

∑1

2 1

2 1 11

π
π π

π
( ) . sin . sinh( / )

sinh( / ) ...(5.18)
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Some more boundary conditions are solved in textbooks exclusively on conduction. For
complex boundaries the use of computers softwares will provide the temperature distribution
and heat flow at surfaces at a reasonable cost and time.
Example 5.1: A plate 1 m × 2 m side has both its 2 m sides and one 1 m side at 100°C. The

temperature along the fourth side is given by T = 400 sin 
πx
1
F
HG
I
KJ  + 100, where x is in m from the

corner and T is in °C. Determine the temperatures taking 1 m on the x direction and 2 m on the
y direction at the following locations.

(i) (0.25, 0.5), (ii) (0.5, 0.5) (iii) (0.25, 1), (iv) (0.5, 1), (v) (0.25, 1.5) (vi) (0.5, 1.5)
(vii) (0.25, 2) and (vii) (0.5, 2.0).

Solution: These points are shown in Fig. 5.2 (Use radian mode in calculations).

y

100°C

7 8

5 6

3 4

1 2

100 + 400 sin( x)�

100°C

H = 2 m

100°C

W = 1 m
x

Fig. 5.2.

 T(x, y) = T1 + Tm sinh ( / )
sinh ( / )

sinπ
π

πy W
H W

x
W
F
HG
I
KJ

(i)  T(0.25, 0.5) = 100 + 400 
sinh ( . / )

sinh ( / )
sin .π

π
π× ×F
HG

I
KJ

0 5 1
2 1

0 25
1  = 102.43°C

(ii)  T(0.5, 0.5) = 100 + 400 sinh( . / )
sinh( / )

sin .π
π

π× ×F
HG

I
KJ

0 5 1
2 1

0 5
1

 = 103.44°C

(iii)  T(0.25, 1) = 100 + 400 sinh( ).sin( . / )
sinh ( / )

π π
π

× ×
×

1 0 25 1
2 1  = 112.2°C

(iv) T(0.5, 1) = 100 + 400 sinh ( / ).sin ( . / )
sinh ( / )

π π
π

× ×
×

1 1 0 5 1
2 1  = 117.25°C

(v)  T(0.25, 1.5) = 100 + 400 sinh ( . / ). sin ( . )
sinh ( / )

π π
π

× ×
×

15 1 0 25
2 1  = 158.79°C
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(vi)  T(0.5, 1.5) = 100 + 400 sinh ( . / ).sin ( . )
sinh ( / )

π π
π

× ×
×

15 1 0 5
2 1  = 183.15°C

(vii)  T(0.25, 2) = 100 + 400 sinh ( / ).sin ( . )
sinh ( / )

π π
π

× ×
×

2 1 0 25
2 1  = 382.15°C

(viii)  T(0.5, 2) = 100 + 400 
sinh ( / ).sin ( . )

sinh ( / )
π π

π
× ×

×
2 1 0 5

2 1  = 500°C

The calculated values are shown in Fig. 5.3 (a). These values can be used to plot contours
also. Heat flow at any section can be also calculated using these values.

2

0.125

1
0 0.2 0.4

0.04

0.5

1.507

1.354
1.338

150°C

2.0
100 382.2°C 500

1.5

1.0

0.5

0
0 0.25 0.5 m

0.5 m

7

100

100

100

100

158.8

112.2

102.4

100

8

5 6

3 4

1 2

100

103.4

117.25

183.2

2 m

P

Q R

Fig. 5.3 (a) Temperature plate. Fig.  5.3 (b) Contour.

For example at the 1 m level, the Heat flow in the x direction across PQ can be roughly
found by using  dT/dx as – (112.2 – 100)/0.25 = –48.8°C m. Q1 = kA 48.8 W. If area and
conductivity are known, then Qx can be found. Qy can be found by using similar method. Across
QR, Qy = – kA. (102.4 – 112.2)/0.25 = kA 39.2 W.

Example 5.2: In example 5.1 determine the locations of 150°C along the plate.
Solution: This is solved using

 T = T1 + Tm sinh ( / )
sinh ( / )

sin ( / )π
π

πy W
H W

x W

In this case W = 1,  H = 2, Tm = 400, T1 = 100, T = 150

∴ ( ) sinh ( / )150 100
400

2 1− × ×π  = sinh (πy/W). sin (πx/W)

First at y = 2 the x value is found. After that at intervals of 0.1 for x and y values are
found and tabulated. It is shown plotted in Fig. 5.3 (b).
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T = 3002

(0, 0)
W

y

(W, H)

H

T
=

10
0

1

T
=

10
0

1

T
=

10
0

1
X

x y

0.04 2.000
0.2 1.507
0.3 1.406
0.4 1.354
0.5 1.338

Similar contours can be worked out for other values of temperature and a complete
picture can be obtained.

This solution is of theoretical interest only as rarely this boundary conditions may prevail
in any practical problem. But any boundary can be split into a sum of sine series and then this
method may be used.
Example 5.3: A rectangle of 1 m × 2 m (with 1 m on the x direction) has all edges except y = H
edge at 100°C. The y = H edge is at 300°C. Determine the temperature at the points (0.5, 1.0),
and (0.5, 1.5).  Using equation 5.5 and Fig. 5.4 (use radian mode in calculations).
Solution:

T( . , ) ( / ) sin . . sinh ( . . / )
sinh ( . / )

0 5 1 100
300 100

2 2 1 05
1

1 1 1
1 2 1

−
−

= ×
×π

π π
π

+ 2
3

3 0 5 3
6

2
5

5 0 5 5
10

sin ( . ). sinh ( )
sinh ( )

sin ( . ) sinh ( )
sinh ( )

π
π
π

π
π
π

× + ×

+ × +2
7

7 0 5 7
14

sin ( . ). sinh( )
sinh ( )

...π π
π ]

= 2
π

(0.08627 – 5.38 × 10–5 + 6.03 × 10–8 – 8.04 × 10–11)

= 0.0549 ∴ T(0.5,1) = 111°C
T( . , . ) [ . sin . . sinh ( . / )

sinh ( )
0 5 1 5 100
300 100

2 2 05
1

15 1
2

−
−

= ×F
HG

I
KJ

×
π

π π
π

+ 
2
3

3 0 5 3 15
6

sin ( . ). sinh ( . )
sinh ( )

π
π

π
×

× ×

+ × × +2
5

5 05 5 15
10

sin ( . ). sinh ( . )
sinh ( )

... ]π π
π

= 2
π

[0.4157 – 6 × 10–3 + 1.55 × 10–4 – 4.8 × 10–6] = 0.2609

∴ T(0.5,1.5) = 152°C
In this case it is difficult to locate position for a given temperature. Analytical solutions

have limited application. However, these methods are basic and can be used for at least
validation purpose.

Also the problem can be split up into 4 problems with all except one edge at 0°C and the
solutions can be super imposed.

Fig. 5.4.
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5.2 GRAPHICAL METHOD

This method was very popular when computing aids were rather primitive. The method consists
of plotting by trial, constant temperature contours and constant heat flow paths, using the
boundary conditions as the initial guide. The orthogonality of these two sets of lines help in
plotting orthogonal squares. An example is shown in Fig. 5.5. In most cases by the use of
symmetry it is necessary to plot these only for part of an object. In the example the temperatures
are specified for the inner wall and outer walls of a square duct. Due to symmetry the plot is
required for only one eight of the wall.

T2

T1

T2

T1

Adiabatic

Adiabatic

Fig. 5.5.

The important requirement is that these intersecting lines should form curvilinear
squares. Also the isothermals should be perpendicular to the adiabatic surfaces. The distances
have to be adjusted repeatedly to obtain such squares. The number of temperature intervals
(N) and the number of flow paths (M) are counted and the heat flow is calculated for unit depth
as

Q = M
N  k ∆ T ...(5.19)

This is because ∆T
N

 is the temperature shape in each square and M∆x is the total length

of the path. If any square is taken in the flow path i, depth perpendicular to paper is l. The
heat flow is given by

Qi = k ∆ x l. ∆
∆

T
N x

. 1 ...(5.20)

By the principle adopted in during flow line the flow is the same along all the paths. As
there are M such paths Q = Qi M or

 Q = M k ∆ x l ∆
∆

T
N x

. 1  = k l M
N

T∆ ...(5.21)

The quantity (M l /N) is called the conduction shape factor, S. For several shapes the
shape factor has been determined and these are listed in hand books and text books. A few of
these are shown in Fig. 5.6.



VED

c-4\n-demo\demo5-1

C
ha

pt
er

 5

TWO DIMENSIONAL STEADY HEAT CONDUCTION 183

These shape factors can be used to determine heat flow in such cases.

D

r2

r1

Eccentric cylinder length, L

L >> r S L
r r D

r r

=
+ −L

N
MM

O
Q
PP

−

2

2
1 1

2
2

2 2

1 2

π

cosh

r1

W sq

Cylinder in square, Length L

L >> W S = 2
0 54

πL
W rln ( . / )

L >> r S = 2πL
D rcosh–1 ( / )

D > 3r S = 2
2
πL
D rln ( / )

D >> r S = 2πL

L r L D
Lr

ln ( / ) ln ( )
ln ( / )

/L
NM

O
QP

r1

D

Sphere in semi

infinite medium

D > r S = 
4

1 2D
πr

r– ( / )

r

L

Cylindrical hole

L >> 2r S = 2πL
L rln (2 / )

Fig. 5.6. Shape factors.

r1

D

Cylinder in semi infinite

medium, Length L
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1.2 m

0.3 m

5°C

5°C

5°C

5°C

200°C

Example 5.4: A cylinder of dia 0.6 m with surface temperature of 200°C is enclosed in a square
of 1.2 m side, the material having a thermal conductivity of 2.5 W/mK. The outside surface is
at 5°C. Determine the heat loss per 15 m length.
Solution: The data are shown in Fig. 5.7. Using the
tabulation in Fig. 5.6, the shape factor is read as

S = 2πL/ln (0.54 W/r)
Substituting the values,

S = 2π × 15/ln (0.54 × 1.2/0.3) = 122.382
Q = k S ∆ T = 2.5 × 122.382 × (200 – 5)

= 59661.5 W
The shape factor can be graphically determined by

taking 1/4 of the insulation and plotting equal temperature
and flow lines. The shape factor values are available for many
other configurations. (Ref. Heat Transfer J.P. Holman).

5.3 NUMERICAL METHOD

There are three methods used under this heading namely (i) the energy balance method, where
the sum of energy flowing into volume is equated to the energy stored or depleted (ii) the finite
difference method, where the differential equation is converted to difference equation. The
resultant equations often time will be the same as obtained using the energy balance method
and (iii) the finite element method which is more complicated due to the basic nature of
approximating the function rather than the derivative. But today the user without going into
the details can use softwares based on this method and obtain solutions very quickly even for
complicated shapes.
5.3.1. The application of numerical method for two dimensional flow is attempted in this
article. Let us consider the two dimensional flow situation for which analytical solution was
obtained in the article, 5.1.1. The solid can now be divided into small elements as shown in Fig.
5.8 (a). As the surface temperatures are given, nodes are selected at the boundary. In this case
three types of nodes are encountered. These are (i) internal nodes (numbered as 1 for example)
(ii) surface nodes (numbered as 2 for example) and (iii) corner node (numbered as 3).

Later we shall see some other typical nodes also.
Consider node 1. Let the node be in the mth column and nth row. The node is shown

enlarged in Fig. 5.8 (b). All the nodal distances are taken as equal to ∆x = ∆y for convenience of
simplification. For steady state conduction, the sum of the heat flow into the volume marked
ABCD should be zero. The total heat flow is the sum of flow through each of the faces AB, BC,
CD and DA. Considering depth to be unity and using the important approximation that the
temperature gradient is equal to the temperature difference divided by the distance, the
following relationship is obtained.

k y
T T

x
T T

y
k x

T T
x

k ym n m n m n m n m n m n∆
∆ ∆

∆
∆

∆.
( )

. ., , , , , ,1 1 11 1 1− + +−
+

−
+

−

+ 
T T

y
k xm n m n, , . .− −1 1

∆
∆  = 0 ...(5.22)

Fig. 5.7 Problem model.
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�y

�x

3

21

A B

m, n + 1

�y

m – 1, n

m + 1, n

D C

Y

X

�x
m, n – 1

m, n

Fig. 5.8. (a) Nodal representation. Fig. 5.8. (b) Internal node.

Simplification of 5.6 yields
Tm–1, n + Tm, n+1 + Tm+1, n + Tm, n–1 – 4Tm, n = 0 ...(5.22(a))

For internal nodes, when equal nodal distances are used the nodal temperature is the
average of the adjacent temperatures. It is also assumed that the properties like conductivity
are uniform and independent of temperature of location or direction. The equation 5.22(a) is
applicable for all the nodes except those on the surface and corner.

Let  us  now  consider  the  surface node (2). The node is shown in an enlarged view in
Fig. 5.8 (c). As in the previous case assuming unit depth and considering the volume enclosed
by ABCD, the total heat flow into the volume should be zero. There is no heat flow to the
surface. Note  now that the distances AB and CD are equal to ∆x/2. The sum of heat conducted
is given by

A B

m, n + 1

m – 1, n

D C

m, n – 1

m, n

Am – 1, n

B C

m, n – 1

m, n

Fig. 5.8. (c) Surface node. Fig. 5.8. (d) Corner node.
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m, n + 1

A B

m – 1, n m, n

E
D

Insulated

m + 1, n

m, n – 1

Convection

C

k∆y.1 
( )

., , , ,T T
x

T T
y

x km n m n m n m n− +−
+

−1 1

2
1

∆ ∆
∆  + 

T T
y

x km n m n, , .− −1

2
1

∆
∆  = 0

or   2Tm–1,n + Tm,n+1 + Tm,n–1 – 4Tm,n = 0 ...(5.7 (b))
The other type of node in this problem is the external corner node, shown enlarged in

Fig. 5.8 (d). In this case heat flow is through faces AB and BC. The net heat flow is

 T T
x

y k
T T

y
x km n m n m n m n− −−

+
−1 1

2
1

2
1, , , ,. . .

∆
∆

∆
∆  = 0

Simplification gives Tm–1,n + Tm,n–1 – 2Tm,n = 0
Now as many equations as there are nodes can be obtained in this manner. The solution

of these equations can be obtained using standard computer programmes.
The other types of nodes are (i) internal corner node with and without convection (ii)

surface and corner nodes with heat convection and (iii) irregularly shaped node. But practically
many other nodes are possible and the method to be used to obtain the equation connecting the
temperatures is similar to the method adopted in the above case. Some of the important cases
are given in data books and hand books. Some of these are also dealt with in the worked
examples.
Example 5.5: Derive the nodal equation for the element shown in Fig. 5.9.
Solution: The total heat flow through the surfaces into the volume containing the node is
equated  to  zero.  The  conduction surfaces are AB. BC, DE and EA. The convection surface is
D-m, n. The convection temperature difference is assumed as (T∞ – Tm,n). This yields

( )
. . . ., , , , , ,T T

x
y k

T T
y

xk
T T

x
y km n m n m n m n m n m n− + +−

+
−

+
−1 1 11 1

2
1

∆
∆

∆
∆

∆
∆

+
−

+ −−
∞

T T
y

x k h y T Tm n m n
m n

, ,
,. . . . . ( )1

2
1

2
1

∆
∆ ∆  = 0

Simplifying, we get

2Tm–1,n + 2Tm,n+1 + Tm+1,n + Tm,n–1 – Tm,n 6 +FHG
I
KJ + ∞

h y
k

h
k

y T∆ ∆ .  = 0

Similarly even radiation boundary can be considered.
The numerical method is flexible and can

be used to analyse any type of boundary and also
three dimensional flow. In three dimensional flow,
two more surfaces for heat flow will be there and
here also the nodal temperature will be the average
of adjacent six  nodal temperatures in the case of
internal nodes. For other nodes, the areas, and
flows have to be considered carefully to arrive at
the nodal equations. This tedius process has been
to some extent simplified in the finite element
softwares and hence time need not be wasted in
detailing. Very powerful softwares are replacing
the present methods of solution of two and three
dimensional heat conduction problems.

Fig. 5.9. Internal corner node.
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5.4 ELECTRICAL ANALOGY

The flux plot by judgement is a tedious process and is to some extent subjective. As any potential
is similar to temperature potential, electrically conducting papers and measuring instruments
can be used to plot equivalent voltage and flow lines which can be used to calculate the shape
factor more accurately. But this method is also obsolete.

5.5 IN THE FINITE DIFFERENCE FORMULATION

The temperature gradients are written as follows. Considering rule (m,n) surrounded by nodes
(m + 1, n), (m –1 n), (m, n+1) and m (n – 1) with nodal distances of ∆x = ∆y.

 
∂
∂

−
−

+

+T
x

T T
xm n

m n m n
1
2

1~ , ,

∆

∂
∂

−
−

−

−T
x

T T
xm n

m n m n
1
2

1

,

, ,~
∆

∂
∂

−
−

+

+T
y

T T
ym n

m n m n

,

, ,~
1
2

1

∆

∂
∂

−
−

−

−T
y

T T
ym n

m n m n

,

, ,~
1
2

1

∆

∂
∂

−

∂ − ∂
∂+ −2

2

1
2

1
2T

x

T
x

T
x

x
m n

m n m n

,

, ,~
∂

∆
 = 

T T T
x

m n m n m n+ −+ −1 1
2

, , ,

∆

 ∂
∂

−

∂
∂

− ∂
∂

=
+ −+ − + −

2

2

1
2

1
2 1 1

2
2T

y

T
y

T
y

y
T T T

ym n

m n m n m n m n m n

,

, , , , ,~
∆ ∆

The equation ∂
∂

+ ∂
∂

2

2

2

2
T

x
T

y
 = 0

Reduces to
T T T

x
T T T

y
m n m n mn m n m n m n+ − + −+ −

+
+ −1 1

2
1 1

2
2 2, , , , ,

∆ ∆
 = 0

As ∆x = ∆y (assumed), the final result is
Tm+1, n + Tm–1, n + Tm, n+1 + Tm, n–1 – 4Tm, n = 0.

This is the same as equation 5.6 (a)
If heat generation is involved or unsteady conditions prevail, the proper differential

equation should be converted to difference equation as in the above example.
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SOLVED PROBLEMS

Problem 5.1: For the boundary conditions for the plate shown in Fig. P. 5.1 determine using
analytical  method the temperature at the midpoint p, under steady two dimensional conduction.
(use upto 5 terms in the series summation).

0.0

90°C

30°C

30°C

30°C

P (1.5, 0, 75)

W = 3 m

H = 1.5 m

x

+

Fig. P. 5.1. Problem model.

Solution: Using equation 5.5
T T
T T n

n x
W

n y W
n H Wn

n−
−

= − +
=

∞ +
1

2 1 1

12 1 1
π

π π
π

Σ ( ) sin . sinh( / )
sinh( / )

 x
W

y
W

H
W

= = =05 0 25 05. , . , .

Substituting and noting that odd terms are zero
T −

−
= +
L
NM

30
90 30

2 2
2

4
2

2
3

15 075
15π

π π
π

π π
π

sin .sinh( / )
sinh( / )

sin ( . ). sinh( . )
sinh( . )

+ 
2
5

2 5 125
2 5

2
7

3 5 175
3 5

sin ( . ). sinh( . )
sinh( . )

sin ( . ) sinh( . )
sinh( . )

π
π
π

π
π
π

+  + O
QP

2
9

4 5 2 25
4 5

sin ( . ). sinh( . )
sinh( . )

π π
π

= 2
π

 [0.7549 – 0.0626 + 0.0078 – 0.0012 + 0.0002]

= 0.4451
∴ Tp = 56.71°C
More terms should be considered for points near the surface.

Problem 5.2: Use the data in problem 5.1 except that the top surface temperature is given by
T(x) = 30 + 60 sin (πx/3) where x is in m and T(x) is in °C. Draw the contour for T = 60°C.
Solution: Fig. P.5.1 and equation 5.4 are used.

First the location for 60°C is found on the edge y = 1.5.

 T(x, y) = T1 + Tm sin π π
π

x
W

y W
H W

. sinh( / )
sinh( )/

y = 1.5, H = 1.5, W = 3, T1 = 30°C, Tm = 60°C

60 = 30 + 60 sin π π
π

x
3

15 3
15 3

. sinh( . / )
sinh( . / )

∴ x = 0.5 m
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Fig. P. 5.3. Problem model.

Now taking x values of 0.75. 1, 1.25 and 1.5, y values are determined

x = 0.75: 60 = 30 + 60 sin 
π π

π
. . sinh( / )

sinh( . / )
0 75
3

3
15 3

F
HG

I
KJ

y
∴ y = 1.21 m

x = 1.00: 60 = 30 + 60 sin 
π π

π
. sinh( / )

sinh( . / )
1

3
3

15 3
F
HG
I
KJ

y
∴ y = 1.05 m

x = 1.25: 60 = 30 + 60 sin π π
π

. . sinh( / )
sinh( . / )

125
3

3
15 3

F
HG

I
KJ

y
∴ y = 0.97 m

x = 1.5: 60 = 30 + 60 sin π π
π

. . sinh( / )
sinh( . / )

15
3

3
15 3

F
HG
I
KJ

y ∴ y = 0.94 m

This is ploted in Fig. P. 5.2.

1.5

1.0

0.5
0.5 0.75 1.0 1.25 1.5

60°C
90°C

30°C

Fig. P. 5.2. Contour for 60°C.

Problem 5.3: A long  pipe of outside diameter of 0.5 m is buried in earth with axis at a depth
of 1.5 m. The surface of the pipe is at 85°C and the surface temperature of the earth is 20°C.
Determine the heat loss from the pipe per m length. The
conductivity of the earth is 0.52 W/mK.

The data are shown in Fig. P.5.3.
Solution: This problem is solved by using the shape factor
concept. The shape factor is available in hand books and texts.
In this case the shape factor is given by

As D > 3r S = 
2 2 1

2 15 0 25
π πL
D rln (2 / ) ln ( . / . )

= ×
×

= 2.529 m = 2.529 m
∴  Q = kS ∆T = 0.52 × 2.529 × (85 – 20)

= 85.48 W/m length.
Problem 5.4: If the pipe of problem 5.4 is buried with axis at a depth of 0.5 m, determine the
heat loss/m length.
Solution: In this case D < 3r, From handbook

∴ S = 2πL/cos h–1 (D/r) = 2π × 1/cos h–1 (0.5/0.25) = 4.77
∴ Q = kS ∆T = 0.52 × 4.77 × (85 – 20) = 161.23 W/m length
If the equation as in problem 5.4 is used, Q = 153.19 W, an under estimate.

D
=

1.
5

m

Ground
20°C

k = 0.52 W/mK

+

0.5 m 

85°C
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Problem 5.5: If the pipe in P.5.3 buried at a much deeper level like 4 m, then determine the
heat loss.
Solution: In this case D >> r and so also L >> D

∴ S = 2
2

1

πL
L
r

L D
L r

ln ln( / )
ln ( / )

F
HG
I
KJ −
RST

UVW
 = 

2 1
1

0 25
1 2 4

1 1 0 25

π .

ln
.

ln ( / )
ln ( / . )

F
HG
I
KJ

×
−
RST

UVW
 = 2.05 m

Q = kS ∆T = 2.05 × 0.52 × 65 = 69.19 W/m.

Problem 5.6: A  pipe  of  OD.0.5m  carrying  steam  at  250°C  is  insulated with glass wool of
k = 0.058 W/mK for a thickness of 0.1m and is buried in soil with centre line at a depth of 1.5m.
The  soil  surface  is  at  0°C.  Determine  the  heat  flow per m length under steady conditions.
k = 0.52 W/mK for the soil.
Solution: Also determine the temperature on the outside of insulation. The data are shown in
Fig. P.5.6.

In this case two resistances are involved one due to the shape factor for the outer cylinder
and the other resistance due to the insulation.

Q = 
250 0
R R1 2

−
+

  R2 = 1
ks

, R1 = 
ln r

r
k Lw

2

1
2π

 S = 2πl/ln(2D/r2)
= 2π × 1/ln(2 × 1.5/0.35) = 2.925

∴  R2 = 
1

0 52 2 925. .×
 = 0.6576°C/W

R1 = ln .
.

/ .0 35
0 25

2 0 058 1× × ×π  = 0.9233°C/W

∴ Q = 
250 0

0 6576 0 923
−

+. .  = 158.14 W/m length

The temperature on the outside insulation:

 Q = 250

2

250
0 92332

1

− = −T
r
r

k l

T

wln / .π

∴ T = 104°C.
Problem 5.7: A long pipe of OD 0.6 m passes centrally inside in a concrete wall of 1.2 m
thickness, the wall height is large compared to thickness. If the pipe is at 120°C and the concrete
surfaces  are  at  5°C,  determine the heat loss per m length. The conductivity of the concrete is
0.8 W/mK.

Fig. P. 5.6. Problem model.

1.
5

m
Ground

0°C

k = 0.52 W/mK

0.35 m

250°C
Glass wool
k = 0.058 W/mK

0.25 m
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Solution: In this problem also, the shape factor is to
be used. The data are shown in Fig. P.5.7

From handbooks

for D r S L
D r2

2
4 2

> =,
ln( / )

π

 = 2π × 1/ln (1.2 × 4/0.6)
 = 3.02

∴ Q = kS ∆T = 0.8 × 3.02 × (120 – 5)
 = 277.84 W/m.

Problem 5.8: If in problem 5.8, the pipe is buried in
concrete 1.2 × 1.2 m square section determine the heat loss/
m length.
Solution: The situation is represented in Fig. P.5.8

S = 2
108

πL
W Dln ( . )/

= 
2 1

108 12 0 6
π ×
×ln( . . / . )  = 8.1588

∴  Q = 0.8 × 8.1588 × (120 – 5) = 750.61 W
This is 2.7 times the heat flow of P.5.7 due to the

reduction of resistance on two sides.

Problem 5.9: A sphere of 1.5 m dia is buried in soil with centre at a depth of 6 m. Heat is
generated in the sphere at a rate of 600 W. The soil surface is at 5°C and the conductivity of the
soil is 0.52 W/mK. Determine the surface temperature of the sphere under steady state condition.
Solution: The situation is represented in Fig. P.5.9. Under steady
state, heat generated = head conducted away = k S ∆T

From handbooks:

S = 4πr/(1 – (r/2D) = 
4 0 75

1 0 75 2 6
× ×

− ×
π .

( ( . / ))
= 10.053

∴ Q = kS ∆T = 0.52 × 10.053 × (T – 5)
= 600 W

∴ The surface temperature
T = 119.8°C.

Problem 5.10: A rectangular pipe with a surface temperature of 120°C is buried in soil as
shown in Fig. P.5.10. Determine the heat loss per m length. The soil surface is at 0°C and the
conductivity is 0.52 W/mK.

0.6 m �

120°C

k = 0.8 W/mK

D
=

1.
2

m

5°C

5°C

Fig. P.5.7. Problem model.

0.6 m �

1.
2

m
sq

5°C Alround

120°C

k = 0.8 W/mK

Pipe

Slab

Fig. P.5.8. Problem model
6

m

Ground
5°C

k = 0.52 W/mK

+

1.5 m sphere

T = ?

q = 600 W

Fig. P.5.9. Problem model.
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Solution: The shape factor is given by

S = 1675 1
0 59 0 078

. log
. .

L b
a

D
C

+FHG
I
KJ

L
NM

O
QP
L
NM
O
QP

− −

= 1685 1 1 10
0 4

1
0 3

0.59 0.078
. log .

. .
× +FHG

I
KJ

L
NM

O
QP
L
NM
O
QP

− −

= 2.1967
∴  Q = 0.52 × 2.1967 (120 – 0)

= 137.08 W/m length.

Problem 5.11: A casting in the form of a hemisphere of radius 0.4 m is in a sand mould on the
ground with the circular face parallel to the ground and on the surface as shown in Fig. P.5.11.
The surface temperature of the casting is 900°C and the soil
temperature is 60°C. Determine the heat loss to the soil.
Solution: k = 0.6 W/mK.

The shape factor  S = 2 πr
∴ Q = 0.6 × 2 × π × 0.4 (900 – 60)

= 1266.7 W

Problem 5.12: A spent nuclear material in the form of a thin disk and dia 0.4 m generating
heat at 1 kW is buried in soil at a depth of 2 m. Determine the surface temperature of the disk.
Conductivity of the soil is 0.6 W/mk. Soil surface is at 30°C.
Solution: The shape factor when depth is greater than diameter is given by 8R. Where R is
the radius of the disk S = 8R

∴   1000 = 0.6 × 8 × 0.4 (T – 30) ∴ T = 550.83°C
(Note: depth of burial does not figure in the shape factor)

Problem 5.13: Two long pipes one of OD 0.12 m carrying steam at 200°C and another of OD
0.08 m carrying water at 30°C are buried in soil at a centre distance of 0.6 m. The conductivity
of the soil is 0.52 W/mK. Determine the heat flow between the pipes for 1 m length.
Solution: The situation is shown in Fig. P.5.13.

Soil
k = 0.52 W/mK

W = 0.6 m

200°C
30°C

D = 0.12 m1 D = 0.08 m2

Fig. P.5.13. Problem model.

b
=

1
m

Ground
0°C

k = 0.52 W/mK

c = 0.3 m

Lm

a = 0.4 m

120°C

Fig. P.5.10. Problem model.

r = 0.4 m
900°C

Soil
k = 0.6 W/mK
60°C

Casting

Fig. P.5.11. Problem model.
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The shape factor is given by

S = 2

2
1

2
πL

W D D
D D

cosh ( )− − −4 2
1

2
2

1 2

L = 1,

∴ S = 2 1
4 0 6 0 12 0 08

2 0 12 0 08
1

2 2 2
π ×

× − −
× ×

−cosh . . .
. .

 = 1.25763

∴  Q = 1.25763 × 0.52 (200 – 30) = 111.17 W.
Problem 5.14: Two spheres of 0.2 m dia and 0.1 m dia with surface temperatures of 400°C and
40°C are buried in soil at a centre distance of 1m. The conductivity of the soil is 0.52 W/mK.
Determine the heat exchange between the spheres.
Solution: The distance between the spheres D is greater than 5 × r1, the radius of the  larger
sphere. Under this condition the shape factor

S = 4

1
1

2

2

2 1
1

4

2
2 2

π r

r r r D
r D

r D( / ) ( / )
( / )

[ / ]−
−

L
NMM

O
QPP

−

Where r2 is the radius of smaller sphere.

∴ S = 4 0 05

0 1 0 2 1 0 1 1

1 0 05
1

2 0 05 1
4

2

π .

( . / . ) ( . / )
.

[ . / ]−
− FHG

I
KJ

L

N

MMMM

O

Q

PPPP
− ×

 = 1.571 m

∴ Q = 0.52 × 1.571 (400 – 40) = 294.09 W.
Problem 5.15: A heater of 5 mm dia and 90 mm length is fitted in a vertical hole in a metal
with a conductivity of 12.5 W/mK, whose surface is at 20°C. If the heater dissipates 60 W,
determine the temperature of the heater surface.
Solution: The data is shown in Fig. P.5.15.

From hand book, the shape factor S is
obtained

S = 2
4

πL
L Dln( )/

= 
2 0 09

4 0 09
0 005

π ×
×F
HG

I
KJ

.

ln .
.

 = 0.13223

and  Q = kS∆T = 12.5 × 0.13223 × (T – 20)
= 60

∴ T = 56.3°C

k = 12.5 W/mK

D = 0.005 m �

T = ?

L
=

0.
09

m

20°C

Heater, 60 W

Fig. P.5.15. Model.
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Problem 5.16: A disk 40 mm dia and generating 200W is placed on a semi infinite medium
with thermal conductivity of 200W/mK. If the temperature of the medium is 30°C, determine
the temperature of the disk surface in contact with the medium.
Solution: The shape factor for this situation is given as 2D where D is the diameter of the
disk.

∴  Q = k 2D ∆T = 200 = 200 × 2 × 0.04 × (T – 30)
∴ T = 42.5°C.

Problem 5.17: If in the problem 5.17, there is a contact resistance of 5 × 10–5 m2 °C/W, determine
the surface temperature.
Solution: There are two resistances in this case, (i) contact resistance and (ii) conduction
resistance.

These are: 1
kS  and 5.0 × 10–5/(πD2/4)

As S = 2D,

∴ 200 = T −

× ×
+ × ×

×

30
1

200 2 0 04
5 10 4

0 042. .

–5

π

 = 
T −

+
30

0 0625 0 0398. .

∴ T = 50.46°C.
Problem 5.18: A furnace has inside dimensions of 1 m × 1.2 m × 1.5 m. The walls are 0.25 m
thick. The inside surface is at 750°C while the outside surface is at 80°C. If the conductivity of
the material is 0.45 W/mK determine the heat loss, taking into account the corner and edge
effects and also the bottom. (shape factors are taken from hand books).
Solution: (i) The wall areas are: 2 × 1 × 1.2 + 2 × 1.2 × 1.5 + 2 × 1 × 1.5 m2 = 9 m2

Shape factor for walls = A
L , (L – thickness)

∴ Heat flow through walls = 0.45 × 9
0.25  × (750 – 80) = 10854 W

(ii) There are four edges each of 1m, 1.2 m and 1.5 m length and all of 0.25 × 0.25 section.
Total length = 4 + 4.8 + 6 = 14.8 m. The shape factor is 0.54D where D is the length of edges.

∴ Qedges = 14.8 × 0.54 × 0.25 × 0.45 × (750 – 80) = 602 W
(iii) There are 8 corners each of cubical shape of 0.25 m side. The shape factor is 0.15L,

where L is the length of side.
∴  Qcorners = 8 × 0.15 × 0.25 × 0.45 (750 – 80) = 90.45 W
Total heat flow = 11546 W

considering one dimensional flow with average area
2 × 1.25 × 1.45 + 2 × 1.45 × 1.75 + 2 × 1.25 × 1.75 = 13.075

Q = 0.45 × 13.075
0.25  (750 – 80) = 15768.45 W

Over estimates the heat flow by 27%
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Problem 5.19: Write down the nodal equation for an inside corner node with inside surface
exposed to convection.
Solution: The node is shown in Fig. P.5.19.

A B

m, n + 1

m – 1, n

m + 1, n

D C

m, n – 1

m, n

EF

h

T�

Fig. P.5.19.

Considering the node m,n
Heat  flow across AB, BC, CD, DE, EF and FA are to be summed up. There is conduction

across AB, BC, EF and FA and convection over CD and DE. Considering unit depth,

∴
k x T T

y
k y T T

x
h x T Tm,n m n m n m n

m n
∆

∆
∆

∆
∆( +1 −

+
−

+ −+
∞

, , ,
,

) ( )
( )

2 2
1

   + h y T T k x T T
y

k y
T T

xm n
m n m n m n m n∆ ∆

∆
∆

∆2 2
1 1( )

( ) ( )
,

, , , ,
∞

− −− +
−

+
−

 = 0

Noting ∆x = ∆y. The equation is simplified as

2Tm, n+1 + 2Tm–1, n + Tm+1, n + Tm, n–1 – Tm, n 2 6 2h
k

x h x
k

∆ ∆+L
NM

O
QP +
L
NM
O
QP ∞T  = 0

This can be verified with the equation in texts.
h ∆x/k is considered as Biot number.

Problem 5.20: Derive the nodal equation for an exterior corner node with convection on one
face, the other face being adiabatic. Indicate modification for heat generation.
Solution: The node is shown in Fig. P.5.20.

Considering heat flow across AB, BC and CD, (AD is adiabatic)

k y T T
x

k x T T
y

h y T Tm n m n m n m n
m n

∆
∆

∆
∆

∆
2 2

1
2

1 1− −
∞

−
+

−
+ −, , , ,

,( )

= 0
Noting ∆x = ∆y, Simplification gives

2 2 41 1T T T h x
k

T h x
km n m n m n− − ∞+ − +LNM

O
QP +, , ,

∆ ∆  = 0 ...(1)

Fig. P.5.20. Cover node.

A

m – 1, n

B C

m, n

D

Insulated

h

T�
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If q is the volume heat generation rate, the heat generated in the element

= 
∆ ∆ ∆x y q x q
2 2

1
4

2
× × =

This quantity should be added to the LHS of the equation 1 to take care of heat generation.
Problem 5.21: Derive the nodal equation for the node m, n shown in Fig. P.5.21.

B

m + 1, n

C

m, n – 1

m, n

h

T�

m – 1, n – 1

m + 1, n + 1

A

Fig. P.5.21.

Solution: The node m,n is enclosed by surfaces AB, BC, and CA. The surface CA is exposed to
convection.

( ), ,T T
x

k ym n m n+ −
+1

∆
∆  ( )

. ( ), ,
,

T T
y

k x h x y T Tm n m n
m n

−
∞

−
+ + −1 2 2

∆
∆ ∆ ∆  = 0

Noting ∆x = ∆y

T T T xh
k

xh
k

Tm n m n m n+ − ∞+ − +
F
HG

I
KJ +1 1 2 2 2

, , ,
∆ ∆

 = 0

If heat generation is present add ∆ ∆x y.
2

 q to the RHS.

Problem 5.22: A tool tip as shown in Fig. P.5.22 has a uniform heat flux of q W/m2 on the top
surface. Formulate the nodal equation for the tip. Assume a constant thickness.
Solution: The node is enclosed by surface AB, BC, and CA

AB receives uniform flux q W/m2

BC-conduction is present across this face
CA-convection over the face.
Heat balance yields: (assuming thickness t)

t x q
T T

x
y t km n m n× +

−+∆
∆

∆
2 2

1. ., ,

+ h t x y T Tm n. ( ),
1
2

2 2∆ ∆+ −∞  = 0

Cancelling t and noting ∆x = ∆y Fig. P.5.22. Model.

�y

m + 1, n

q

A

�x

m, n
B

CT�

h

m + 1, n + 1
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T q x
k

T x h
k

xh
k

Tm n m n+ ∞+ − +
F
HG

I
KJ +1 1 2 2

, ,
. . .∆ ∆ ∆  = 0

Note: Check dimensions in each term for example
q
k

x W
m

mK
W

∆ → 2 .  . m leading to K

∆ xh
k

m W mK
m K W

→
.
2  no dimension. (Biot number)

Problem 5.23: Formulate a nodal equation for a node on the
interface of two materials.
Solution: The situation is shown in Fig. P.5.23.

The node under consideration is numbered zero and the
adjacent nodes are numbered as 1, 2, 3, 4.

Considering heat flow across surfaces AB, BC, CD and
AD (Unit depth)

(i) Conduction across AB is in a single material A
(ii) Conduction across BC is half in material A and half

in B
(iii) Conduction across CD is in material b
(iv) Conduction across DA is half in material A and half in B.

k x
y

T T k y
x

T T k y
x

T TA A B
∆
∆

∆
∆

∆
∆

( ) ( ) )2 0 02
− + − + −

2
(3 0 3

+ k x
y

T T k y
x

T T k y
x

T TB B A
∆
∆

∆
∆

∆
∆

( ) ( ) ( )4 1 1− + − + −0 0 02 2
 = 0

Cancelling ∆x and ∆y as equal,

k T T k T T k T T k T TA
A B

B( ) ( ) ( ) ( )2 0 3 0 3 0 4 02 2
− + − + − + −

+ k T T k T TB A
2 20 0( ) ( )1 1− + −  = 0

2kA T2 + 2kBT4 + T3(kA + kB) + T1 (kA + kB) – T0(4kA
+ 4kB) = 0

If kA = kB this reduces to
T1 + T2 + T3 + T4 – 4T0 = 0 as a check.

Problem 5.24: Formulate from basics the nodal equation for
node m, n in Fig. P.5.24.
Solution: The temperature on the slant face is Ts. Considering

faces AB, BC, CD and DA, these are all of length 3
4  ∆x and

distances from Ts to Tm, n is 1
2  ∆x.

Fig. P.5.23. Model of node.

Fig. P.5.24. Node.

�x/4

A B

D C

T�

�x/4

�y

m, n m + 1, n

�x

m, n – 1

A A B

D C

1

2

3

kA

kB

0

B

Interface

4
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Writing the energy balance equation,

k x
T T

y
k y

T T
x

s m n m n m n3
4 2

3
4

1∆
∆

∆
∆

( )
( / )

( ), , ,−
+

−+

+ k x
T T

y
k y

T T
x

m n m n s m n3
4

3
4 2

1∆
∆

∆
∆

( ) ( )
( / )

, , ,− −
+

−
 = 0

Cancelling k, ∆x and 3
4

 2(Ts – Tm, n) + (Tm+1, n – Tm, n) + (Tm, n–1 – Tm, n) + 2 (Ts – Tm, n) = 0
Tm+1, n + Tm, n–1 + 4Ts – 6Tm, n = 0

This can be verified using tabulated values for a general node the slant face cutting the
axes at a. ∆ x and b. ∆y.
Problem 5.25: The temperature distribution and boundary condition in part of a solid is shown
in Fig. P.5.25. Determine the Temperatures at nodes marked A, B and C. Determine the heat
convected over surface exposed to convection. k = 1.5 W/mK.
Solution: Considering A

k T T kA A01 137
01

172 9
01

01. ( )
.

( .
.

.−
+

−
×

)

+ ( . ( . .200 01 132 8 01− + × + − × ×T k T kA A)
0.1

)
0.1  = 0

Insulated
45.8

B129.4

137 103.5
C

A

200°C

172.9 132.8 67

h = 50 W/m K
2

30°C

Convection
face

Fig. P.5.25.

∴ 137 + 172.9 + 200 + 132.8 = 4TA

∴ TA = 160.68°C
Considering B

k T T k k TB B B×
−

+
−

× + ×
−0 05 129 4

01
103 5

01
01 0 05 45 8

01
. ( .

.
( . )

.
. . .

.
)  = 0

∴ 129.4 + 2 × 103.5 + 45.8 = 4TB ∴ TB = 95.55°C
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Considering C
15 0 05 45 8

01
1035 01 15

01
. . ( . )

.
( . ) . .

.
× −

+
− × ×T TC C

+ ( .
( ) .67

01
30 50 01− × × + − ×T TC

C
) 1.5 0.05  = 0

∴ TC = 48.7°C
Heat flow by convection over the surface

= 50 (200 – 30) × 0.05 + 50 × 0.1 (67 – 30) + 50 × 0.1 (48.7 – 30) + 50
× 0.05 (45.8 – 30) = 743.15 W.

EXERCISE PROBLEMS

5.1 A rectangle 0.5 m × 1 m has both the 1 m sides and one 0.5 m side at 200°C. The other side is
having a temperature distribution given by T = 200 + 400 sin (π x/0.5) where x is in m and T in
°C. Locate the y values at x = 0.5 m at which the temperatures will be 300, 400, 500°C. Also
locate the values of x for y = 1 m at which these temperatures occur.

5.2 For the plate in problem 5.1 draw the contour for 350°C.
5.3 In problem 5.1 determine the temperatures at point p (0.45, 0.5) and determine the heat con-

ducted out across the plane x = 0.475 between the locations y = 0.45 and y = 0.55. Take k = 40W/
mK.

5.4 A plate of size 0.5 m × 1 m has three of the sides at 200°C while the fourth side of 0.5 m length is
held at 600°C. Determine the temperatures at location P (0.45, 0.5) and calculate the amount of
heat conducted along the x direction across the plane x = 0.475 between the locations y = 0.45
and y = 0.55.

5.5 A pipe carrying oil and having a diameter of 0.6 m is buried in soil of conductivity 0.6W/mK at a
depth of 6m. The surface temperature of the pipe is 80°C. The surface of the soil is at –10°C.
Determine the heat loss from the pipe for 1 m length. If the velocity is 2 m/s and the density is
900 kg/m3 and specific heat 2000 J/kgK determine the temperature drop in flow through a dis-
tance of 100 m.

5.6 In problem 5.5, if the pipe is insulated with a 10 cm layer of insulation of thermal conductivity
0.04 W/mK determine the heat loss per m and also the temperature on the out side surface of
insulation.

5.7 A sphere containing spent nuclear material and of diameter 0.6 m is buried in soil at a depth of
10 m. The soil thermal conductivity is 0.6 W/mK. If the heat generated in the sphere is 106 W/m3,
determine the surface temperature of the sphere. The soil surface temperature is 10°C.

5.8 A pipe carrying steam and of OD 0.15 m is embedded centrally in a concrete wall of thickness 0.4
m. The conductivity of the material is 1.4 W/mK. If the surface temperature of the pipe is 200°C
and the surface temperature of the wall is 10°C, determine the heat loss from the pipe for a
length of 6 m.

5.9 If in the problem 5.8 the pipe is encased in a concrete block of 0.4 × 0.4 m centrally, determine
the heat loss per m length.

5.10 A pipe carrying steam at 250°C with and OD of 0.2 m is insulated using a material with
conductivity of 0.085 W/mK. The insulation is off-set from the axis by 0.05 m and the OD of the
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insulation is 0.4 m. Determine the heat loss from the pipe if the outside surface temperature of
the insulation is 60°C.

5.11 A pipe carrying hot water at 90°C and having an outer diameter of 0.4 m is buried parallel with
a water pipe of diameter of 0.3 m at a centre distance of 0.8 m. The conductivity of the soil is 0.65
W/mK. If the water is at 15°C determine the heat gain by the water pipe.

5.12 A hole in a large metal piece is to be heat treated. The hole is 5 mm in dia and 65 mm in depth.
The hole surface should be maintained at 220°C. Determine the heat input necessary. The metal
surface is at 40°C and the conductivity of the metal is 30 W/mK.

5.13 A sphere of 0.35 m dia and another of 0.25 m dia are buried at a centre distance of 0.85 m in soil.
The larger sphere is at 250°C and the smaller one is at 30°. If the conductivity of the soil is 0.52
W/mK, determine the heat flow from the larger to the smaller sphere.

5.14 A spot of dia 50 mm in a large metal surface is to be maintained at 300°C. The metal is at 30°C.
Determine the rating for the heater. The conductivity of the metal is 130 W/mK.

5.15 A furnace has internal dimensions of 2 m × 1.5 m × 1.2 m and the wall thickness is 0.2 m. The
inner surfaces are at 650°C and the outer surface is at 80°C. If the conductivity of the wall
material is 0.4 W/mK. Determine the heat loss through the walls and the floor.

5.16 Write down the nodal equation for the nodes shown in Fig. 5.16 (a), (b), and (c).

Insulated

m, n
T�
m, n

h m, n

45° h

T�

(a) (b) (c)

Fig. 5.16 (a, b, c)

5.17 Write the nodal equation for a corner node when corner is in contact with another material as in
Fig. 5.17.

Material-B

m, n

Material-A

1 2
T = 30°Ch = 50 W/m K

2

T = 30°C
200°C

3

Fig. 5.17. Fig. 5.18

5.18 Write down the nodal equations for the nodes shown in Fig. 5.18 for nodes 1, 2 and 3.



VED

c-4\n-demo\demo5-2

C
ha

pt
er

 5

TWO DIMENSIONAL STEADY HEAT CONDUCTION 201

5.19 The temperature in a plate at the nodes indicated are shown in Fig. 5.19. Determine the heat
flow over the surfaces.
The conductivity is 3 W/m°C, Top surface is exposed to convection at 50°C with h = 50 W/m2K

900

900

900

900

900

900

1021 1021984

1092 1063 1092

1111 1068 1111

Insulated

500

500

500

500

356 356337

435

457

A 435

300°C10 W/mK

Fig. 5.19. Fig. 5.20

5.20 A part of a solid with temperatures at the nodes and the boundaries are shown in Fig. 5.20.
Determine the temperature at node A and also the heat flow over the convecting surface. The top
surface is exposed to convection at 300°C with h = 10 W/m2K.

5.21 A rod 15 mm dia and 200 mm long has a heat generation rate of 106 W/m3. The rod is exposed to
convection over the surface to air at 40°C with h = 20 W/m2C. The conductivity of the material is
5W/mK. Both ends are at 40°C. Write down nodal equations taking 20 mm nodal distances and
solve for the temperatures.
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6

6.0     INTRODUCTION

Heat transfer equipments operating at steady state is only one phase of their functioning. These

have to be started and shut down as well as their performance level may have to be altered as per

external requirements. A heat exchanger will have to operate at different capacities. This changes

the conditions at the boundary of heat transfer surfaces. Before a barrier begins to conduct heat at

steady state the barrier has to be heated or cooled to the temperature levels that will exist at

steady conditions. Thus the study of transient conduction situation is an important component of

conduction studies. This study is a little more complicated due to the introduction of another

variable namely time to the parameters affecting conduction. This means that temperature is not

only a function of location but also a function of time, τ, i.e. T = T (x, y, z, τ). In addition heat

capacity and heat storage (as internal energy) become important parameters of the problem. The

rate of temperature change at a location and the spatial temperature distribution at any time are

the important parameters to be determined in this study. This automatically provides information

about the heat conduction rate at any time or position through the application of Fourier law.

6.1     A WALL EXPOSED TO THE SUN

A wall exposed to the sun has to first get heated before it conducts heat into an airconditioned

room. A vegetable taken out of a refrigerator and left in air gets heated up. How long will it take

for the material to reach room conditions? A vegetable is placed in refrigerator. How long will it

take for it to cool down? What is the load on the refrigerator at any instant? Questions similar to

these are answered in this chapter.

6.1.1. There are two distinguishable ways in which things may heat up or cool down. (i) The

temperature within the body remains the same at all locations at any one time but this value will

vary continuously with time (Fig. 6.1 (a)). This can be observed in heating up or cooling down of

materials with high conductivity, small size or low surface convection. The temperature gradient

within the body is nearly zero all over the body or the temperature at any location and at any

instant is nearly the same. (ii) The other type is when there is an observable and large temperature

variation within a body. This is illustrated in Fig. 6.1 (b). In Fig. 6.1(a), the temperature is shown

to vary with time, but within the body the temperature is the same. In Fig. 6.1(b) temperature is

shown to vary not only with time but also with location.

In the first type, conduction within the body is not a problem. The body as a whole can be

considered to be at a given temperature at any instant. The model for this study is known as

“Lumped parameter” model. The body in this case need not be studied as made up of different

C
h

a
p

te
r 

6
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layers with heat being conducted and stored at different rates at different layers. In this case
an energy balance equation is sufficient to predict the temperature at any instant. This
phenomenon is discussed first before taking up the more complex–the second type.

Outside
temp. level

T�

Initial temp.

h

T�

Slab

T

Time

h

T�

�0

�1
�2
�3

Outside
temp. level

Initial temp.

h1

T�

T

Time

T�

�0

�1

�2

�3

�4
h2

(a) (b)

Fig. 6.1 (a) Cooling down without large temperature gradient in the body.
 (b) Cooling down with a large temperature gradient within the body.

6.2 LUMPED PARAMETER MODEL

It is also known as lumped heat capacity system. This model is applicable when a body with a
known or specified temperature level is exposed
suddenly to surroundings at a different temperature
level and when the temperature level in the body as a
whole increases or decreases without any difference
of temperature within the body. i.e., T = T(τ) only. Heat
is received from or given to the surroundings at the
surface and this causes a temperature change
instantly all through the body. The model is shown in
Fig. 6.2.

The body with surface area As, volume V,
density ρ, specific heat c and temperature T at the time instant zero is exposed suddenly to the
surroundings at T∞ with a convection coefficient h (may be radiation coefficient hr). This causes
the body temperature T to change to T + dT in the time interval dτ. The relationship between
dT and dτ can be established by the application of the energy conservation principle.

Heat convected over the boundary = Change in internal energy
over a time period dτττττ during this time

If dT is the temperature change during the time period dτ then the following relationship
results: (As-Surface area)

  h As (T – T∞) dτ = ρ c VdT ...(6.1)
This equation can be integrated to obtain the value of T at any time. The integration is

possible after introducing a new variable.

Fig. 6.2. Lumped heat capacity system.

V, , c, T�

As

Body-heated or cooled

Convection or
Radiation

T�
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θ = T – T∞ ...(6.2)
The equation (6.1) now becomes

h As θ dτ = ρ c Vdθ ...(6.3)
hA
cV

d ds
ρ

τ θ= ...(6.3 (a))

Separating the variables and integrating and using the initial conditions that at τ = 0,
θ = θ0 and denoting V/As = L, we get

ln .θ
θ ρ

τ
0

=
hA
cV

s

Substituting for θ and θ0 and taking the antilog

 
T T
T T

−
−

∞

∞0
 = e e

hA
cV

h
cL

s− −
=ρ

τ
ρ

τ.
...(6.4)

Heat flow up to time τ
θ = ρcV (Tτ – Ti) ...(6.4(a))

where Ti is the initial temperature of the body. The value of V/As for cylinder, sphere and cube
are r/2, r/3 and a/6 where a is the side of the cube.

This shows that the temperature decays or builds up exponentially and the rate depends
on the parameter (hAs/ρcV) as shown in Fig. 6.3 (a, b).

hA

cV
s

�

T – T�

T – To �

Cooling

Time

hA

cV
s

�

T – T�

T – To �

Time

Heating

1.0

Fig. 6.3. (a) Cooling, (b) Heating.

For radiation boundary refer solved problem 6.9.
6.2.1. Applicability of the relationship in equation (6.4) depends on several factors, but the
condition can be checked  by using the relative temperature drop within the solid compared to
the temperature drop from the outside surface to the fluid. Heat is conducted within the solid
and this can be obtained using the equations derived in the case of a slab as

 Q = kA T
L

s( )∆

where ∆Ts is the temperature drop in the solid, L is the thickness and k thermal conductivity.
This heat is convected at the surface and is given by

 Q = hA(∆T)c where (∆T)c is the convection drop.
Equating these two RHS
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( )
( )
∆
∆

T
T

hL
k

s

c
=

It can be checked that the term hL/k is dimensionless. This dimensionless quantity is
named as Biot number. If this number is small then (∆T)s will be small and so the temperature
difference in the body is small and so it can be taken as the check for the applicability of
lumped parameter model. If Biot number is less than 0.1, it has been proved that this model
can be used without appreciable error. As this model is simpler to apply, it is worthwhile
checking in all cases for the value of Biot number before attempting the solution. If Bi < 0.1,
then the simpler model can be adopted.
6.2.2. Electrical Analogy: Now going back to equation (6.4), the term (hAs/ρVc) can be used
to visualise an electrical analogy in terms of a
capacitance resistance circuit and the process of heating

or cooling as charging and discharging the capacitor 1
hAs

 is

the convection resistance, ρVc is the heat capacity of the
system and hence the analogy. In the case of transient
conduction, the heat capacity to the material is taken as
equivalent to the capacitance in an electrical circuit. The
equivalent circuit is shown in Fig. 6.4.
6.2.3. The quantity (hAs/ρVc) can also be expressed as a product of two dimensionless numbers
by rearranging the terms as below, taking As/V = 1/L an equivalent length

hA
Vc

hL
k

k
cL

hL
k L

sτ
ρ

τ
ρ

ατ=
F
HG
I
KJ =2 . 2  = Bi.Fo. ...(6.5)

The Biot number has already been defined. It should be noted here that L = V/As
= Volume/Surface area. The value of L can be obtained from the shape of the solid. The quantity
(k/ρc) has already been defined as thermal diffusivity. ατ/L2 is defined as Fourier number. This
number signifies the heat penetration depth in time τ, with respect to the body dimension.
Fourier number should be large for quick heating or cooling. Leaving out the time, higher the
value of thermal diffusivity or smaller the body dimension, quicker will be the heating up or
cooling down.

The response characteristics of a body with respect to heating or cooling is compared by
using the time required for the temperature difference to drop to 1/e times the original value
(e-base of natural logarithm). This time is called the thermal time constant for the condition
specified. This leads to the condition that the time constant

 τc = ρVc
h sA ...(6.6)

For quick response as in the case of probes for temperature mesurements the time
constant should be small.
Example 6.1: A thermocouple is formed by soldering end-to-end wires of 0.5 mm dia. The
thermal diffusivity of the material is 5.3 × 10–6 m2/s. The conductivity of the material is 19.1
W/mK. The probe initially at 30°C is placed in a fluid at 600°C to measure the temperature of
the fluid. If the convective heat transfer coefficient between the wire and the fluid is 85 W/m2K,
determine the time constant for the probe and also the time taken for it to read 598°C.

Fig. 6.4. Resistance capaci-
tance circuit.

C
or
cV�

V
or
T�

R or
1/hAs
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Solution: Using equation (6.4)

 T T
T T

e hA Vcs−
−

=∞

∞

−

0

( / )ρ τ  and noting As /V = 2 2
2

π
π

rl
r l r

=

First a check is made to find the applicability of the Lumped parameter model
hL
k

= ×
×

85 0 00025
19 1 2

.
.  = 0.55 × 10–3 << 0.1.

So the model can be used. Noting ρc = k/α
(i) τττττc = Time constant (eqn. 6.6)

(ρVc/hAs) = k r
hα

. . .
.

. . .
2

1 19 1
5 3 10

0 00025
2

1
856=

× −  = 5.355 S

(ii) 598 600
30 600

85 2 5 3 10
0.00025 19 0.1887

6

−
−

= =
− × × ×

×
F
HG

I
KJ −

−

e e
.

.1
τ

τ

∴ τττττ = 30 seconds
This is rather long and attempts should be made to reduce the value, if the instrument

is to be useful. This can be achieved by reducing heat capacity and or increasing the value of h.
Example 6.2:  A slab of high thermal conductivity at temperature Ti at zero time receivers on
one side a heat flux of qW/m2. On the other side there is convection at a temperature T∞ with
convection coefficient h W/m2k. The thickness of the slab is  Lm. Drive an expression for the
temperature at time τ. Assume that lumped heat capacity model can be used.
Solution: The energy equation is

 Aq + Ah [T∞ – Tτ] = ρcAL dT
d

τ

τ

or  q + h (T∞ – Tτ) = ρcL dT
d

τ

τ
Defining θτ = Tτ – T∞, and Q = q/ρcL

 dT
d

h
cL

q
cL

τ
ττ ρ

θ
ρ

+ =  = Q

The solution in this equation is defining h
cLρ

 as m,

 θτ = ce–mτ + θp

c is the constant of integration and θp = Q
m

 is the particular solution.

 θτ = θ0 at τ = 0, i.e. θτ = Ti – T∞.

∴ θ0 = c
Q
m

+

∴ θτ = θ0 e–mτ + (1 – e–mτ) Q
m

The final result being

or θτ = Tτ – T∞ = θ0e–mτ + (1 – e–mτ) Q
h

...(E.6.2.1)
when the time is long, or τ → ∞ ...(E.6.2.2)
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θ∞ = q
h

Example 6.3: A solar concentrator provides a heat flux of 8000 W/m2 to heat a 10 mm plate
on one side. The other side of the plate is exposed to convection at 40 W/m2k at 20°C. The plate
material has a density of 800 kg/m3 and specific heat of 500 J/kg K. The initial temperature of
the plate is 20°C. Thermal conductivity of the material is 80 W/m°C.

(i) Determine the time for the plate to reach 100°C.
(ii) Determine the plate temperature after 6 minutes.

Solution:

Bi = hL
k

= ×40 0 01
80

.  = 0.005

Hence lumped parameter model can be used.
From equation (E.6.2.1)

θτ = θ0e–mτ + (1 – e–mτ) q
h

This can be  reordered as

τ = 1 0

m

q
h
q
h

ln
θ

θτ

−FHG
I
KJ

−FHG
I
KJ

θ0 = 20 – 20 = 0, θτ = 100 – 20 = 80

 q
h

= 8000
40  = 200, m = 

k
cLρ

=
× ×

80
800 500 0 01.  = 0.02

∴ τττττ = 
1

0 02

8000
40

80 8000
40

.
ln

−

−
 = 25.5 seconds

The plate will reach 100°C after 25.5 seconds or 0.43 min.
To find the temperature after 6 minutes or 360 sec

 θτ = 0 + (1 – e–0.002 × 360) 8000
40  = 102.6 °C

Temperature after 6 min.
∴      Tτ = 102.6 + 20 = 122.6°C

6.3 SEMI INFINITE SOLID

Theoretically a solid which extends in both the positive and negative y and z directions to
infinity and in the positive x direction to infinity is defined as a semi infinite body. There can
be no such body in reality. If one surface of a solid with a particular temperature distribution
is suddenly exposed to convection conditions or has its surface temperature changed suddenly,
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conduction will produce a change in the temperature distribution along the thickness of the
body. If this change does not reach the other side or surface of the solid under the time under
consideration, then the solid may be modelled as semi infinite solid. A thick slab with a low
value of thermal diffusivity exposed to a different environment on its surface can be treated as
semi infinite body, provided heat does not penetrate to the full depth in the time under
consideration. A road surface exposed to solar heat or chill winds can be cited as an example of
a semi infinite body. There are a number of practical applications in engineering for the semi
infinite medium conduction.

The differential equation applicable is the simplified general heat conduction equation:
in rectangular coordinates, (excluding heat generation) eqn. 2.6 c.

∂
∂

= ∂
∂τ

2

2
1T

x
T

α
...(6.7)

There are three types of boundary conditions for which solutions are available in a
simple form. These are (i) at time τ = 0, the surface temperature is changed and maintained at
a specified value, (ii) at time τ = 0, the surface exposed to convection at T∞ and (iii) at time τ =
0, the surface is exposed to a constant heat flux q.
6.3.1. Surface temperature suddenly changed and maintained: The conditions can be
stated as follows:

at τ = 0, T(x, τ) = Ti, or T(x, 0) = Ti
For  τ > 0, T(0, τ) = Ts  i.e. at  x = 0, T = Ts at all times.

The analytical solution for this case is given by derivation available in specialised texts
on conduction

 
T T
T T
x s

i s

,τ −
−

 = erf 
x

2 ατ
F
HG
I
KJ ...(6.8)

where, erf indicates “error function of” and the definition of error function is generally available
in mathematical texts. Usually tabulations of error function values are available in handbooks.
(Refer appendix).

The heat flow at the surface at any time is obtained using Fourier’s equation –kA (dT/
dx). The surface heat flux at time τ is

 qs(τ) = k(Ts – Ti)/ πατ ...(6.9)
The total heat flow during a given period can be

obtained by integrating qs(τ) dτ between the limits of 0
and τ

Qτ = 2k × A (Ts – Ti) τ πα/ ...(6.10)
The heat flow at any section at a specified time is

given by

qx(τ) = k T Ts i( )−
πατ

 exp [–x2/4 α τ]

...(6.11)
The temperature distribution with time in this case

is shown schematically in Fig. 6.5.

T = constants

x

Face

Time, �

Distance0

T

T
i

Fig. 6.5. Temperature distribution in
semi infinite solid whose surface is

suddenly raised and maintained at Ts.
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xDistance0
T

i

T�

T

Face

h

T�

Time, �

Example 6.4: A thick concrete wall fairly large in size initially at 30°C suddenly has its surface
temperature increased to 600°C by an intense fire which lasted for 25 minutes. The material
will disintegrate upto a depth where the temp. reaches 400°C. Determine the thickness which
may disintegrate. The thermal diffusivity is 4.92 × 10–7 m2/s; k = 1.28 W/mK. Also determine
the total heat flow/m2 during the time.
Solution: As it is mentioned that it is a thick wall, without any thickness dimension, semi
infinite solid model is applicable. Also the surface temperature is suddenly increased and
maintained at 600°C. Using equation (6.8)

   
T T

T T
xx s

i s

( , )τ

ατ

−
−

=
F
HG
I
KJerf

2
Substituting the values

 400 600
30 600 2

−
−

=
F
HG
I
KJerf x

ατ
, Using tables of error function

x
2 ατ

 = 0.32

∴ x = 0 32 2. × ατ  = 0 32 2 4.92 10 25 607. × × × ×−  = 0.017 m
The concrete will disintegrate to a depth of 17 mm.
Using equation (6-10)

Q(τττττ) = 2k s i( )T T−
F
HG
I
KJ

τ
πα

For 25 minutes, ∴ Q = 2 × 1.28 (600 – 30) 25 60 4 92 10 7× × × −/ .π

= 45.5 × 106 J/m2

6.3.2. The boundary condition more commonly met
with is convective boundary. The initial and
boundary conditions are:

τ = 0, T (x, 0) = Ti

− = −
=

∞k dT
dx

h T T
x 0

0( ),τ ...(6.12)

The temperature at any location and time is
obtained as

    
T T
T T

xx i

i

,τ

ατ

−
−

= −
L
NM

O
QP∞

1
2

erf

− − +
F
HG

I
KJ

L
N
MM

O
Q
PP1

2
erf x h

kατ
ατ

× exp hx
k

h
k

+
F
HG

I
KJ

L
N
MM

O
Q
PP

2

2
ατ

...(6.13(a))

Fig. 6.6. Temperature variation with time –
semi infinite solid-convection boundary.
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Semi Infinite Solid—Temperature—Time History—Convection Boundary
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Also
T T
T T

x hx
k

h
k

x h
k

x

i

, expτ

ατ
ατ

ατ
ατ−

−
= + +

L
NM

O
QP

− +
F
HG

I
KJ

L
N
MM

O
Q
PP

∞

∞
erf erf

2
1

2

2

2 ...(6.13(b))

As the equation is rather long charts are available to calculate the temperature ratio
with parameters x/2 ατ , and hx/k. Such a chart is shown in the previous page. The heat flow
can be found by obtaining ∂T/∂x at any section.

For surface temp. Toτ these equations can be simplified as

T T
T T

h
k

h
k

o i

i

, expτ ατ ατ−
−

= − −
L
N
MM

O
Q
PP
L
NMM

O
QPP∞

1 1
2

2erf ...(6.13(c))

T T
T T

h
k

h
k

o

i

τ ατ ατ−
−

= −
L
NMM

O
QPP

∞

∞
exp

2

2 1 erf ...(6.13(d))

The temperature variation with time is shown schematically in Fig. 6.6.

Example 6.5: A concrete wall initially at 30°C is exposed to gases at 900°C with a convective
heat transfer coefficient of 85 W/m2K. The thermal diffusivity of the material is 4.92 × 10–7 m2/s.
The thermal conductivity of the material is 1.28 W/mK. Determine the temperature of the
surface and temperatures at 1 cm depth and also 5 cm depth after 1 hr. Also estimate the heat
flow at the surface at the instant.
Solution: The temperature is determined using equation (6-13) at the surface x = 0.

  T T
T T

h
k

h
k

i

i

−
−

= − − − +
F
HG

I
KJ

L
N
MM

O
Q
PP × +

F
HG

I
KJ

L
N
MM

O
Q
PP∞

1 0 1 0 0
2

2erf erf ατ ατexp

         = 1 1 85 4.92 10 3600
1 28

85 4.92 10 3600
1 28

7 2 7

2− −
× ×L

N
MM

O
Q
PP

× × ×F
HG

I
KJ

L
N
MM

O
Q
PP

− −
erf

.
exp

.

= 1 – [1 – 0.999924] [2466] = 1 – 0.1875 = 0.8125
∴  T = 737°C
Use of chart on page 210 will be more convenient than the use of equation (6.13).
The chart is plotted with

[(Txτ – T∞] /(Ti – T∞)] against x/2 ατ  with (hx/k) as parameter.
For 1 cm depth, after one hour or 3600 seconds

x
2

0 01
2 4 92 10 36007ατ

=
× ×−

.
.

 = 0.1188

 
hx
k

= ×85 0 01
128

.
.  = 0.664

Entering the x axis at 0.1188 and reading against the value of hx/k = 0.664, the
temperature ratio is obtained as 0.3.
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∴  Txτ −
−

900
30 900

 = 0.3, solving, Txτ = 639°C

By equation it is obtained as 638°C.
For 5 cm depth after one hour,

 
x

2
0 05

2 4 92 10 36007ατ
=

× ×−

.
.

 = 0.594

hx
k

= ×85 0 05
128

.
.  = 3.32

Entering at 0.594 and reading at hx
k  = 3.32, the temperature ratio is obtained as 0.715.

 Txτ −
−

900
30 900

 = 0.715. Solving Txτττττ = 278°C

By equation the value is 267°C.
Heat flow is obtained assuming linear variation of temp. up to 0.01

∴  Q = 737 639
0 01

128 1− × ×
.

.  = 12672 W/m2

6.3.3. The third initial and boundary condition set for semi infinite solid is exposure to uniform
heat flux, q W/m2

 τ = 0, T(x,0) = Ti

 −
∂
∂

=
=

k T
x

q
x 0

...(6.14)

The  solution for temperature distribution is given by

 (Tx,τ – Ti) = 
2

4
1

2

1/2 2q
k

x qx
k

x( / ) expατ π
ατ ατ

−F
HG
I
KJ − −

F
HG
I
KJ

L
NM

O
QP

erf ...(6.15)

An example for this is solar radiation being incident on a road surface or heating in a
radiation furnace.

Example 6.6: Sunlight falls on a concrete wall starting from 10 am and the flux is 800 W/m2.
The initial temperature was 30°C. Determine the surface temperature and the temperature at a
depth of 5 cm at 12 noon. Thermal diffusivity = 4.92 × 10–7 m2/s and conductivity = 1.28 W/mK.
Solution: At the surface x = 0, using equation 6.15.

 (T0 – Ti) = (T0 – 30) = 2 800 4 92 10 2 3600
128

7 1/2× × × ×−( . / )
.

π . exp (0) – 0

= 42 ∴ T0 = 72°C at surface
At x = 0.05 m,

T – 30 = 2 800 4 92 10 2 3600
128

0 05
4 4 92 10 2 3600

7 1/2 2

7
× × × × −

× × × ×

−

−
( . / )

.
exp .

.
π
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− × −
× × ×

L
N
MM

O
Q
PP−

800 0 05
1 28

1 0 05
2 4.92 10 2 36007

.
.

.erf

= 35 19 800 0 05
128

1 0 4475. .
.

.− × −  = 35.19 – 17.26 = 17.92

∴  T = 47.92°C
The temperature variation in this case with time

is shown schematically in Fig. 6.7.
The learner is often confused about when to use

the semi infinite solid model. Generally when the
thickness is large this can be tried. If the temperature
penetrates to the other surface, then the infinite slab
model is to be used (discussed later).

As  the equations for the convection environment
is long and calculations are tedious, recourse may be
had to the use of charts which plot the temperature
ratio in terms of the parameter (x/2 ατ ) and either
(hx/k) or h2 ατ/κ2.

6.4 PERIODIC HEAT CONDUCTION

There are occasions when the surrounding temperature varies periodically as in the
case of an IC engine cylinder. In these cases it is necessary to know (i) the variation of
temperature of the solid and (ii) the time lag between the variation in the surrounding and the
variation in the solid. In the case of semi infinite solid it is also necessary to know upto what
depth the variation will penetrate at steady state in addition to the study of these variations at
different depths.
6.4.1. Lumped parameter system: In this case any temperature variation in the surroundings
causes a temperature variation throughout the solid. The variation is shown in Fig. 6.8.

�

a1

a2

A

B

Surrounding
temperature

Solid
temperature

Time, �

Fig. 6.8. Temperature variation with time.

Face

T

q

T
i

Time, �

0 Distance x

Fig. 6.7. Temperature variation in with
heat flux.
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The surrounding temperature varies with time as shown in curve A. The solid
temperature will vary as shown in curve B. The two quantities of interest are (i) amplitude
ratio  a2/a1, and (ii) δ in terms of degree or radian. For sinusoidal variations, the following
relations held. The lag δ is given by, where τ0 is the period per cycle in seconds

δ = tan–1 [(2π/τ0). (cρV/hAs)] ...(6.16)
The amplitude ratio  is given by

 
a
a

2

1 2
1

1
=

+ tan δ ...(6.17)

Example 6.7: A resistance thermometer wire of 0.5 mm dia is used to measure the temperature
varying at 2 cycles per second. The thermal conductivity of the material is 69 W/mK. The
thermal diffusivity is 2.42 × 10–5 m2/s. The convective heat transfer coefficient is 280 W/m2K.
Determine the temperature variation in the wire if the surrounding temperature varies between
1500°C and 500°C. Also find the time lag between these two.
Solution: Taking the value τ0 = 1/2 = 0.5 as there are two cycles/sec and ρcV/hAs is rearranged

as ρc
k

k
h

V
As

F
HG

I
KJ  and V/As = πr2 l/2πrl = r/2 = 0.0005/4 m and using equations (6.16), the lag angle

is given by

δ = tan–1 ( / . ) ( . ) . . .2 0 5 1 2 42 10 69
200

0 0005
4

5π / × F
HG
I
KJ
F
HG

I
KJ

L
NM

O
QP

−

∴ δδδδδ = 1.526 radians or 87.44° or in terms of time 0.12 sec.
Amplitude ratio is found using equation (6.17)

 a
a

2

1
=

+
=

+
1

1
1

1 4982tan δ
 = 0.045

The wire temperature will fluctuate by only 45°C. This shows that this measurement is
of little use.
6.4.2. For semi infinite solid for sinusoidal surface temperature variation, the amplitude
ratio at any depth x is given by

 
a
a

e x2

1

0= − π ατ/
...(6.18)

and the time lag is given by

∴ δ = 1
2 0x τ απ/ ...(6.19)

In this case the temperature variation will not reach the full depth. The depth of
penetration (where the amplitude ratio becomes zero) is given by (after equilibrium is
established)

x = 2 0πατ ...(6.20)
The derivations are involved but the results are usable.
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L L

Th

T�

�, k
h

T
i

L– L
x

T�

T�

Fig. 6.9. Slab exposed to convective
surroundings.

Example 6.8: The surface temperature of the soil varies with 24 hr period, the minimum
temperature being –40°C. Determine the minimum temperature at a depth of 0.2m and also the
time of occurrence of the minimum temperature. Surface minimum occurs at 3 am. The thermal
diffusivity of the material is 1.26 × 10–6 m2/s. The mean temperature is 0°C.
Solution: Using equation (6.18), and taking x = 0.2, τ0 = 24 × 3600 sec

 
a
a

2

1
= =− − × × ×−

e ex π ατ π/ / .260
60.2 1 10 24 3600  = 0.3415

∴ The minimum temperature at this depth is –13.66°C.
Using equation (6.19) to find the time lag,

∴ δδδδδ = 1
2

1
2

24 3600
1 26 10

0 20 6τ απ
π

/
.

.x = ×
× ×

RST
UVW

×−  = 14774 s

= 4.1 hours (in terms of angle 
4 1
24

360. ×  = 61.6°)

This occurs at 7.1 am.
Using equation 6.20, the depth of penetration is found.

x = 2 2 126 10 24 36000
6πατ π= × × × ×−.  = 1.17 m

The seasonal variation will be felt upto 1.17 m depth only.

6.5 TRANSIENT HEAT CONDUCTION IN LARGE SLAB OF LIMITED
THICKNESS, LONG CYLINDERS AND SPHERES

This model is the one which has a large number of applications in heating and cooling processes
a special case being heat treatment. The general solution process attempts to estimate the
temperature at a specified location in a body (which was at a specified initial temperature)
after exposure to a different temperature surroundings for a specified time. The other quantity
of interest is the change in the internal energy of the body after such exposure.
6.5.1. The differential equation applicable for a slab extending to ∞ in the  y and z directions
and thickness 2L in the  x direction with both surfaces
suddenly exposed to the surroundings is equation (2.6)

 ∂
∂

= ∂
∂τ

2 1T
x

T
2 α

The situation for slab is shown in Fig. 6.9.
The initial condition at time zero is
T = Ti all through the solid. i.e. x = – L to x = L.
The boundary condition is

   h (T∞ – TL) = − ∂
∂

k T
x

 at x = L and x = – L

The equation is solved using a set of new variables X
and θ defining T = X.θ (X is a function of x only and θ is a
function of τ only). The algebra is long and tedious.
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The solution obtained is given below :

  
T T
T T

x L ex

i

n n

n nn

n, .Fosin( ) cos( / )
( sin )

.τ δδ δ
δ δ

−
−

=
+

∞

∞ =

∞
−∑ 2Bi

2
1

2

Bi ...(6.21)

The temperature essentially is a function of Bi, Fo and x
L

 or T = f (Bi, Fo, x
L )

where Tx,τ—the temperature at x and time τ
Ti—initial temperature
T∞—surrounding temperature

Bi— hL
k

—biot number

Fo—Fourier number ατ/L2

δn—roots of the equation δn tan δn = Bi
The solution using calculating devices is rather tedius and the results in a graphical

form, was first published by Heisler in 1947, using the parameters Biot number and Fourier
number. As there is an additional parameter (x/L) which cannot be represented in a single
chart, the solution was split into two quantities. The first solution is for the centre temperature
at x = 0. In the centre temperature chart (T0τ – T∞)/(T1 – T∞) is plotted against Fourier number
with hL/k as parameter. Then  the location temperature and centre temperature excess ratio
is obtained using the parameters Biot number and (x/L). In the location temperature chart (Txτ
– T∞)/(T0,τ – T∞) is plotted against Biot number with x/L as parameter. The charts are shown in
the next pages.

The product of these two temperature ratios gives the required location temperature
ratio.

 
T T
T T

T T
T T

T T
T T

x

i i

x

o

, , ,

,
.τ τ τ

τ

−
−

=
−

−
−
−

∞

∞

∞

∞

∞

∞

0 ...(6.22)

The suffix, xτ indicates at location x and time τ. The suffix, 0τ indicates at centre at time τ.

The centre temperature ratio 
T T
T T
o

i

,τ −
−

∞

∞
 is obtained from a chart the skeleton form of

which is shown in Fig. 6.10.

Read

Biot number

Enter

T – To� �

T – T
i �

C

A

Fo��/L
2

B

Enter

T – Tx ��

T – T
o� � Read

A

Bi

x /L3

x /L2

x /L1

d
B

Fig. 6.10 Fig. 6.11
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�

20

Centre Temp. Chart—Infinite Plate—Temperature—Time History at Mid Plane



VED

c-4\n-demo\damo6-2

218 FUNDAMENTALS OF HEAT AND MASS TRANSFER

The procedure is as follows: For a given slab and time specification and specification of
surroundings Fourier number and Biot numbers are calculated. The centre temperature chart
is entered at A  and the intersection with the Biot number curve (B) provides the centre
temperature ratio (C). In case the temperature is known the procedure is just reversed and
Fourier number is read to find the time. Note that there is curve for Bi = ∞, indication of h has
a large value. This is equal to raising and maintaining surface temperature at T∞.

The ratio (Tx,τ – T∞)/(To,τ – T∞) is  obtained from chart of the form shown in Fig. 6.11,
with x/L as parameter.

With Biot number and location parameter (x/L) known the chart is entered at A and the
meeting point with the location curve (B) provides the excess temperature ratio (d).

Location Temp. Chart Infintie Plate—Temperature—Time History at any Position
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1.0
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0.8
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0.4
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0.0
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Long Cylinder—Temperature—Time History at Centreline Centre Temperature Chart
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In case the temperature is known then the meeting point of line from d and line from A
gives the location parameter. Now the product of these two ratios as in equation 6.22 will give
the solution required. Chart solutions are available only for symmetric exposure. Exposure on
one side can be solved by using it as a half slab of double side exposure.
6.5.2. For long cylinders and spheres suddenly exposed to a specified surroundings the
solutions are similar and charts are available for these shapes also. The procedure is as shown
in Fig. 6.10 and Fig. 6.11. The parameters will involve the radius in the place of thickness i.e.,
Bi = hR/k = α τ/R2, x/L = r/R.

These charts are shown on pages 219-222.
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Sphere—Temperature—Time History at Centre Temperature Chart

hR /ko0.1

0.2

0.3

0.8

.11.5

.2
.3

.510
r/R = 0o

20

�

100

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0.1 0.2 0.3 0.4 0.6 0.8 1 2 3 4 6 8 10 20 30 40

(T
–

T
)

/(
T

–
T

)
o

�
�

i

Fourier number, /R�� o
2

9.
0

0.5
0.4



VED

c-4\n-demo\damo6-2

222 FUNDAMENTALS OF HEAT AND MASS TRANSFER

Read
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6.5.3. Heat Transfer during a given time period: The total heat transfer can be obtained
by using

 Q = h T T d( )L,τ
τ

τ− ∞z0
and substituting for TL,τ from equation (6.21). As the resulting
expression indicates that it is a function of h2α τ/k2 and hL/k
these solutions have been presented by Heisler as shown in
the skeleton form  in Fig. 6.12. as Q/Qo.
where Q-heat transferred over the given period, and

Qo = ρ cV (Ti – T∞) ...(6.23)
As the various parameters are specified the chart is

entered at A after calculating h2 ατ/k2. The meeting point
with the Biot number curve at B provides the value of Q/Qo
(C). The heat flow upto the specified time is the product of
the value read and ρcV(Ti – T∞). Separate charts are available for the shapes slab, long cylinder
and sphere. These are given in page 223.

Fig. 6.12. Internal energy ratio.
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Infinite Solids/Heat Transfer Upto Time τ
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Fig. 6.12. Internal energy ratio.

Example 6.9: A slab of thickness 15 cm initially at 30°C is exposed on one side to gases at
600°C with a convective heat transfer coefficient of 65W/m2K. The other side is insulated. Using
the following property values determine the temperatures at both surfaces and the centre plane
after 20 minutes, density: 3550 kg/m3, sp. heat = 586 J/kgK, conductivity = 19.5 W/mK. Also
calculate the heat flow upto the time into the solid.
Solution: The data is presented in Fig. 6.13(a). The slab model with the centre plane at zero
and  thickness  0.15 m  is  used.  As inside is insulated this can be considered as half slab with
x = 0 at insulated face.
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The quantities Bi and Fo are calculated using

Bi = 65 0 15
19 5
× .

.  = 0.5,

Fo = 
19 5

3550 586
.
×  × 20 × 60/0.15 × 0.15 = 0.5

The procedure of obtaining temperature is illustrated with skeleton charts in Fig. 6.13
(b) and (c). The centre temperature is obtained by entering the chart as shown in Fig. 6.13 (b).
The excess temperature ratio at the centre is obtained as 0.864.

65 W/m K
2

600°C

0.15 m

30°C

Insulated

T
i

� = 3550 kg/m
c = 586 J/kg K
k = 19.5 W/mK

2

Read

0.864

Enter

0.5

Bi = 0.5

T – To 	�

T – T
i 	

Fo

Fig. 6.13 (a) Model. Fig. 6.13 (b)

T T
T T
o

i

,τ −
−

∞

∞
 = 0.864, after  20 minutes

To,τ −
−

600
30 600  = 0.864 ∴ To,τττττ = 107.52°C

To obtain the surface and mid plane temperatures, the location chart is entered at
Bi = 0.5 as schematically shown in Fig. 6.13 (c) and the values at x/L = 1 and 0.5 are read as
0.792 and 0.948.

The surface temperature is given by
T T
T T
L

i

,τ −
−

∞

∞
 = 0.792 × 0.864

TL,τ −
−

600
30 600

 = 0.6843

∴ Surface temperature TL = 210°C
The mid plane temperature:

Tx,τ −
−

600
30 600  = 0.864 × 0.948

∴       T = 133.13°C
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The heat flow is determined using the heat flow chart as shown schematically in Fig.
6.13(d). First the parameter is calculated:

0.5

T – Tx� 	

T – To 	

Bi

0.948

0.792
x/L

0.5

1.0

1.0

0.33

Bi = 0.5

Q
Qo

h /k
2 2
��0.125

Fig. 6.13 (c) Fig. 6.13 (d)

h
k

2

2 2
65 65 19 5 20 60

3550 568 19 5
ατ = × × × ×

× ×
.

.  = 0.125

Entering the chart at this point and finding the meeting of point with Bi = 0.5, the ratio
Q/Qo is read as 0.33.

∴ Q = 0.33 × 3350 × 586 × 0.15 × 1(600 – 30)
= 55.39 × 106 J/m2

A rough check can be made by using an average temperature increase and finding the
change in internal energy. The average temperature rise is (107.52 + 210 + 133.13)/3 – 30 =
120.22°C.

Q = 3350 × 0.15 × 586 × 120.22 = 37.51 × 106

This is of the same order of magnitude and hence checks.

Example 6.10: A long cylinder of radius 15 cm initially at 30°C is exposed over the surface to
gases at 600°C with a convective heat transfer coefficient of 65 W/m2K. Using the following
property values determine the temperatures at the centre, mid radius and outside surface after
20 minutes. Density = 3550 kg/m3, sp. heat = 586J/kg K, conductivity = 19.5 W/mK. Also
calculate the heat flow.
Solution: The procedure is described in articles 6.1.2 and 6.1.3.

Bi = 
hR
k

= ×65 0 15
19 5

.
.  = 0.5, Fo = 

ατ
R2

19 5
3550 586

20 60
0 15 0 15

=
×

× ×
×

.
. .  = 0.5

Entering the chart for centre temperature as schematically shown in Fig. 6.14 (a) the
temperature ratio is read as 0.72.

∴ Centre temperature is found using

 
To,τ −

−
600

30 600  = 0.72

∴ To,τ = 189.6°C
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0.54

Bi

Q
Qo

h /k
2 2
��

0.125

0.5

To calculate the temperatures at the surface and mid radius, the location chart as
schematically shown in Fig. 6.14 (b) is entered at Bi = 0.5 and values are read at r/R = 1 and
0.5, as 0.78 and 0.92.

0.72
hR /k = 0.5o

��/Ro
20.5

T – To� 	

T – T
i 	

0.78

Bi0.5

r/R
0.5

1.0

0.92

T – Tx 	�

T – To 	

Fig. 6.14 (a, b)

∴ Surface temperature is obtained using
T T
T T

TR

i

R,τ τ−
−

=
−

−
∞

∞

, 600
30 600

= 0.72 × 0.78
∴  TR,τττττ = 279.9°C
Mid radius temperature is obtained using

 
T T
T T
r

i

,τ −
−

∞

∞
 = 0.72 × 0.92

∴  Tr,τττττ = 222.4°C
Heat flow: Calculating the value of h2ατ/k2, as

schematically shown the heat flow chart is entered at this
value 0.125 and the meeting point with Bi = 0.5 is read of as
Q/Qo is equal to 0.54 (Fig. 6.14 (c))

h2 α τ/k2 = 
65 65 19 5

3350 586
30 60

19 5 19 5
× ×

×
×

×
×

.
. .  = 0.125

∴  Q = π × 0.152 × 1 × 3550 × 586 × (600 – 30) × 0.54
= 45.26 × 106 J/m length

Note that the cylinder of equal dimension gets heated up quicker due to larger surface
area for a given volume.
Example 6.11: Use the data in example 6.10 for a sphere of radius 0.15 m. Determine the
centre, surface and mid radius temperatures and also the heat flow after 20 minutes.
Solution: The values of Bi, Fo, h2 α τ/k2 are read from the example 6.8 as 0.5, 0.5 and 0.125.

The centre excess temperature chart is entered at Fo = 0.5 and read at Bi = 0.5 (ref.
figures in example 6.10) and the value is 0.58. Also the location charts are entered at Bi = 0.5
for r/R = 1 and 0.5 and the temperature ratios are read as 0.782 and 0.942.

 Fig. 6.14 (c)
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0.4

Enter

Bi = 0.5

Fo

Read

0.77

T – To� �

T – T
i �

Centre temperature:

 T −
−

600
30 600  = 0.58 ∴ Tmid = 269.4°C

Surface temperature:

 T −
−

600
30 600  = 0.58 × 0.782 ∴ Tsur = 341.5°C

Mid radius temperature:

 T −
−

600
30 600  = 0.58 × 0.942 ∴ T = 288.6°C

Q/Qo is obtained from the chart as 0.73

∴  Q = 0.73 × 4
3  × π × 0.153 × 3550 × 586 (600 – 30) = 12.24 × 106J

Note: It can be seen that the sphere heats up quicker compared to the other two geometries.

Example 6.12: In the case of the sphere in example 6.11, determine the time when the centre
temperature will reach 372°C.
Solution: Direct solution is possible only for specified
centre temperature. For temperature specifications at
other locations, a trial solution is needed.

Bi = 0.5, Temperature ratio is
372 600
30 600

228
570

−
−

=  = 0.4

Entering the centre temperature chart for sphere
as shown schematically at 0.4 and noting the cut off for
Bi = 0.5, Fo is read as 0.77 (Fig. 6.15)

∴ 
19 5

3550 586 0 152
.

.×
× τ

 = 0.77

∴  τ τ τ τ τ = 1848.27 sec or 30.8 min.

6.6. PRODUCT SOLUTION

Most of the practical cases involve shapes of specified sizes and infinite slab or long cylinder
solution cannot be used directly. In the case of a short cylinder, in addition to the curved
surface the flat surfaces are also exposed to the surroundings and hence the cooling or heating
will be faster. Such cases can be treated as a combination of two solids and temperature ratio
is obtained as the product of temperature ratios obtained considering it as part of each of these
solids. In the case of a short cylinder the situation is shown in Fig. 6.16.

For exposures at base and top the short cylinder is taken as part of slab of 2L = height of
cylinder and the temperature ratio at any axial distance is determined as described earlier.

Fig. 6.15
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Part of long cylinder

Slab

Part of
slab

L

Fig. 6.16

For the exposure of the curved surface the short cylinder is treated as part of a long
cylinder and the temperature ratio at any radial position is calculated as described earlier.

The temperature ratio at the given point is the product of these two ratios determined.
The heat flow also can be calculated as a combination of individual heat flow. Some of the
possible combinations and the equations are shown in table 6.1. A brick like object is taken as
a combination of three slabs. A long rectangular prism is taken as a combination of two slabs
and a semi-infinite solid. A hemisphere is taken as a combination of sphere and slab. Semi-
infinite solid solution is also usable in such combinations.

Table. 6.1. Product solutions for temperatures in multidimensional systems

2s1

x

P(X)S(X )1

Semi-infinite plate

Semi-infinite
rectangular bar

2s
2

2s 1

S(X) P(X ) P(X )1 2

x

Infinite rectangular bar

2s
2 2s 1

P(X ) P(X )1 2

P(X ) P(X ) P(X )1 2 3

Rectangular
parallelopiped

2s
2 2s 1

2s3

(Contd...)
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C( ) S(X)�

x

2s

Semi-infinite cylinder

C( ) P(X)�

2s
Short cylinder

2s

P(X) Solution for infinite plate
S(X) Solution for semi-infinite bodies
C(θθθθθ) Solution for infinite cylinder
Intersection of two bodies:

  
Q
Q

Q
Q

Q
Q

Q
Qo o o

F
HG
I
KJ =

F
HG
I
KJ +
F
HG
I
KJ −

F
HG
I
KJ

L
N
MM

O
Q
PPTotal 1 2 0 1

1

Intersection of three one dimensional systems:

  
Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Qo o o o o o

F
HG
I
KJ =

F
HG
I
KJ +
F
HG
I
KJ −

F
HG
I
KJ

L
N
MM

O
Q
PP +
F
HG
I
KJ −

F
HG
I
KJ

L
N
MM

O
Q
PP −
F
HG
I
KJ

L
N
MM

O
Q
PPTotal 1 2 0 1 3 1 2

1 1 1

Example 6.13: A cylinder of radius 0.15 m and height 0.30 m having properties as in examples
6.9 and 6.10 initially at 30°C is exposed to gases at 600°C with a convective heat transfer
coefficient of 65 W/m2K. Determine the temperatures after 20 minutes at locations 1 to 9 shown
in Fig. 6.17. This problem can be solved using the solutions of examples 6.9 and 6.10. Using
these solutions, the temperature ratios at various locations are tabulated below:

Mid plane Half thickness Surface
axis mid radius

Slab 0.864 0.864 × 0.948 0.864 × 0.792
Cylinder 0.72 0.72 × 0.92 0.72 × 0.78

1

2

3

4

5

6

7

8

9

Slab

Cylinder

Fig. 6.17
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Solution: The temperatures at the various locations from 1 to 9 are found as below:
Point 1: Axis of cylinder and mid plane of slab

∴  
T T
T T

T
i

1 1 600
30 300

−
−

=
−
−

∞

∞
 = 0.72 × 0.864 ∴ T1 = 245.4°C

Point 2: Mid radius of cylinder and mid plane of slab

 T T
T T

T
i

2 2 600
30 600

−
−

= −
−

∞

∞
 = 0.72 × 0.92 × 0.864 ∴ T2 = 273.8°C

Point 3: Surface of cylinder and mid plane of slab

 T3 600
30 600

−
−

 = 0.72 × 0.78 × 0.864 ∴ T3 = 323.4°C

Point 4: Axis of cylinder and half thickness of slab

∴  T4 600
30 600

−
−

 = 0.72 × 0.864 × 0.948 ∴ T4 = 263.9°C

Point 5: Mid radius of cylinder and half thickness of slab

 T5 600
30 600

−
−

 = 0.72 × 0.92 × 0.864 × 0.948 ∴ T5 = 290.7°C

Point 6: Surface of cylinder and half thickness of slab

 T6 −
−

600
30 600

 = 0.72 × 0.78 × 0.864 × 0.948 ∴ T6 = 337.8°C

Point 7: Axis of cylinder and surface of slab

∴
T7 600
30 600

−
−

 = 0.72 × 0.864 × 0.792 ∴ T7 = 319.2°C

Point 8: Mid radius of cylinder and surface of slab

∴  
T8 600
30 600

−
−

 = 0.72 × 0.92 × 0.864 × 0.792 ∴ T8 = 341.6°C

Point 9: Surface of cylinder and surface of slab

 
T9 600
30 600

−
−

 = 0.72 × 0.78 × 0.864 × 0.792 ∴ T9 = 381°C

Note: It can be seen that the temperature is highest at the edge. Why?

6.7 NUMERICAL METHOD

Using energy conservation principle, and dividing the solid into several layers, expressions
can be obtained for the increase in temperature during any given period at any location subjected
to transient conditions. The method is illustrated using a plane wall as shown in Fig. 6.18.

Considering the planes numbered n – 1, n, n + 1 at distances ∆x and using a double
subscript notation for temperature as Tn

p to indicate the temperature at plane n at time interval
p each time interval being ∆τ the energy balance for a layer of ∆ x thickness at plane n can be
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�x �x

�
c
k

n – 1 n + 1n
x

written as net heat energy conducted into the layer during
a time period = energy stored in the layer = heat capacity
× temperature increase during the time period

or k T T
x

kA T T
x

n
p

n
p

n
p

n
pA( ) ( )− +−

+
−1 1

∆ ∆
= ρcA x T Tn

p
n
p∆ ( )+ −1

or   T T Tn
p

n
p

n
p

− ++ −1 1 2  = ∆x T Tn
p

n
p

2
1

α∆τ
( )+ −

denoting ∆x
T

2

α∆
 = M ...(6.24)

1
M  [Tn–1

p + Tn+1
p – (2 – M) Tn

p] = Tn
p+1 ...(6.25)

This equation is the basis for numerical method of temperature estimation under
transient conditions in a slab. In the use of the method it is found that ∆x and ∆τ should be
chosen in such a way that M > 2. Otherwise the solution does not converge.

A special case is when the values of ∆x, ∆τ are chosen for a given material with property
values specified, such that M = 2. In this case

Tn
p+1  = 1

2
( )T Tn

p
n
p

− ++1 1 ...(6.26)
The present nodal temperature is equal to the average of the temperatures at

the adjacent nodes during the previous time interval. Later this will be used in graphical
method. In this case if time interval ∆τ is chosen for a given material the distance interval ∆x
is automatically specified. Though this may appear as a restriction, it is convenient for both
graphical method and for calculator solutions. An advantage of the numerical method is that
any initial temperature distribution can be dealt with. Shapes like cylinder, sphere or even
odd shapes can be analysed, except that in these case the area, volumes etc. will vary with the
nodal plane and so each coefficient has to be determined specifically.
Example 6.14: A semi infinite slab with a thermal diffusivity of 1.67 × 10–6 m2/s initially at
100°C has its surface suddenly raised to 200°C and maintained at the level. Taking a time
interval of 120 seconds and nodal thickness of 2 cm, write down the nodal equation and solve
for the temperatures at the nodes upto 6 time intervals.
Solution: M is determined in the equation (6.25) using equation (6.24).

 M = 
∆x2 2

6
0 02

167 10 120α∆τ
=

× ×−
.

.  = 2

This is convenient for the solution of the problem. Equation 6.26 results if M = 2
∴  Tn

p+1  = ( )/T Tn
p

n
p

− ++1 1 2
The calculation is done in the tabulation below.
The present nodal temperature is the average of the previous nodal temperatures at the

adjacent nodes.
At node zero the temperature is maintained at 200°C and at any location, it can be

verified that the temperature is the mean of the adjacent nodal temperatures at the previous
period. For example take node 2 time interval 2. The temperature is 125 = (150 + 100)/2.

Fig. 6.18. Mode representation.
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Node No. 0 1 2 3 4 5 6 7 8
Time
interval

0 200 100 100 100 100 100 100 100 100
1 200 150 100 100 100 100 100 100 100
2 200 150 125 100 100 100 100 100 100
3 200 162.5 125 112.5 100 100 100 100 100
4 200 162.5 137.5 112.5 106.25 100 100 100 100
5 200 168.75 137.5 121.875 106.25 103.175 100 100 100
6 200 168.75 145.19 121.875 112.5 103.175 101.56 100 100

This can be plotted for better visualisation.
6.7.1. Heat generation can be also accommodated. For example if heat generation is present,
equation 2.25 becomes (q – heat generation rate W/m3)

1 21 1

2

M
T T M T q x

kn
p

n
p

n
p

− ++ − − +
L
NMM

O
QPP

( ) ∆
 = Tn

p+1 ...(6.27)

and if ∆τ and ∆x are chosen such that M = 2
1
2 1 1

2
T T q x

kn
p

n
p

− ++ +
L
NMM

O
QPP

∆  = Tn
p+1 ...(6.28)

Example 6.15: In the example 6.14 other things remaining the same if the heat generation is
1.25 × 106 W/m3 and conductivity is 50 W/mK, determine the nodal temperatures upto 6 or 7
times intervals.
Solution: The equation to be used is 6.28

q x
k

∆ 2 6 2125 10 0 02
50

= × ×. .  = 10

So the present nodal temperature is the average of the adjacent nodes at the end of
previous time interval plus 10/2 °C. The values are tabulated using

Tn
p+1  = 

1
2  [ ]T Tn

p
n
p

− ++ +1 1 10

For example node 3 and time interval 3, T3,3 = 135 110 10
2

+ +  = 127.5.
Nodal temperatures

Node 0 1 2 3 4 5 6 7 8 9
No Surface

Time

0 200 100 100 100 100 100 100 100 100 100
1 200 155 105 105 105 105 105 105 105 105
2 200 157.5 135 110 110 110 110 110 110 110
3 200 172.5 138.75 127.5 115 115 115 115 115 115
4 200 174.4 155 131.9 126.3 120 120 120 120 120
5 200 182.5 158.1 145.6 130.9 128.1 125 125 125 125
6 200 184 169 149.5 141.9 133 131.6 130 130 130

A plot will be very graphic in bringing out the result-try it.
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6.7.2. In the case of convection boundary, the nodal equation for the zeroth node or the
surface will be different. For all other nodes equations 6.25, 6.26 and 6.28 will apply as per the
conditions specified. For the zeroth or surface node with

M > (2 + h ∆x/2)

 T p
0

1+  = 2 11M
h x

k
T T T Mp

o
p∆

∞ + + −L
NM

O
QP( ) ...(6.29)

This equation can be used to solve for the nodal temperatures, but this does not converge
and so ∆ x2/α ∆ x should be taken to have values higher than 2 + 2 [(h ∆x)/k].

6.8 GRAPHICAL METHOD

Graphical method can be adopted for both semi-infinite and infinite slabs (without heat
generation) using the equation 6.26. If the nodal temperatures at any time is known, then
choose ∆ x and so that ∆ x2/α∆τ = 2. Referring to Fig. 6.19, if the nodal temperatures at n–1 and
n + 1 nodes at the previous time are (to scale) marked as Tn

p
−1 and Tn

p
+1 at the present time the

temperature at the nth node is obtained by joining the two temperatures and taking the point
on the nth nodal plane.

The full picture can be obtained by continuing the process. Convection boundary can
also be taken care of by adding a layer of thickness

 ∆x k
h

=  m.
This layer should be used as such with the single node at its surface with T = T∞.

Example 6.16: Work out the example 6.12 by the graphical method. The nodes are laid as in
Fig. 6.20. The first line is from A to x2 which fixes

T1
1 = (T0

0 + T2
0)/2.

Next T1
1 is joined with x3 giving T2

2 = (T1
1 + T3

1)/2
Now joining T2

2 to A we get T1
3 = (T0

2 + T2
2)/2. This is continued as in figure.

Tn
P + 1

T n + 1
P

T n – 1
P

T

�x �x

Tn
P

5

3

1
6

4

2
5

3 4

2

200°C

150°C

100°C
0 x1 x2 x3 x4 x5

5

A

T1
7

T2
6

T3
7

T4
6

T5
7

Fig. 6.19. Fig. 6.20.
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Solution: It may be noted that at node 1 or odd numbered nodes temperatures at 1, 3, 5, 7 i.e.,
odd time interval ends will be obtained. At the even numbered nodes, temperatures at even
number time intervals will be obtained. Interpolation will provide the temperature at the end
of any interval at all nodes.

This ingeneous idea of Schmidt can be very easily executed by simple computer
programme.

SOLVED PROBLEMS

Lumped Parameter System (6–1 to 6–15)
Problem 6.1: A diecast component has a mass of 1.2 kg and density 7150 kg/m3 with surface
area of 0.075 m2. The thermal conductivity of the material is 95 W/mK and the specific heat is
385 J/kg K. It comes out of the machine at 345°C and is exposed to air at 20°C with a convective
heat transfer coefficient of 56.8 W/m2K. Determine (i) The temperature of the part after 5 minutes
(ii) The time required to reach 50°C (iii) The time constant (iv) The value of convective heat
transfer coefficient upto which the lumped parameter model can be used (v) The volume/area
ratio upto which the lumped parameter model can be used.
Solution: First a check has to be made to ascertain whether lumped parameter model can be
used. For that purpose the Biot number is to be calculated

Bi = hL/k, L = Volume/Surface area, Volume = 
mass

density
L = 1.2/(7150 × 0.075) = 2.24 × 10–3 m

∴ Bi = 56.8 × 1.2
7150

× ×1
0 075

1
95.  = 1.34 × 10–3

This is much less than 0.1. So the model can be adopted.
The calculations are made using equation 6.4.

 
T T
T T

e e
o

hA cV h c L−
−

= =∞

∞

− −( / ) ( / ) ( )ρ τ ρ τ1/

(i) T −
−

= −
×

×
×

× ×
L
NM

O
QP−

20
345 20

exp .
.

56 8
7150 385

1
2 24 10

5 603  = 0.063

∴ Temperature after 5 minutes is T = 40.5°C

(ii) 50 20
345 20

56 8
7150 385

1
2 24 10 3

−
−

= −
×

×
×

×
L
NM

O
QP−exp .

.
τ

Taking ln, 2.383 = 56 8
7150 385 2 24 10 3

.
.× × ×

×− τ

∴ τττττ = 258.7 sec or 4.31 minutes
(iii) The time constant is the time at which the temperature ratio (equation 6.6)

T T
T T e

h
cLo

−
−

=∞

∞

1 or τ
ρ

 = 1

∴ τττττ = ρ cL/h = 7150 385 2 24 10
56 8

3× × × −.
.

 = 108.6 seconds
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(iv) For the lumped parameter model to be used

 
hL
k  < 0.1  converting to equality

h = 0 1 0 1 95
2 24 10 3

. .
.

k
L

= ×
× −  = 4241 W/m2K

For any value less than this the model can be used

(v) hL
k

V
A

= = = ×01 95 01
56 8

. , .
.

L  = 0.1672 m

the present value is 0.00224 m.
Note: This problem brings out all the various nuances of the model.

Problem 6.2: Cylindrical pieces of size 60 mm dia and 60 mm height with density = 7800 kg/
m3, specific heat = 486 J/kgK and conductivity 43 W/mK are to be heat treated. The pieces
initially at 35°C are placed in a furnace at 800°C with convection coefficient at the surface of 85
W/m2K. Determine the time required to heat the pieces to 650°C. If by mistake the pieces were
taken out of the furnace after 300 seconds, determine the shortfall in the requirements.
Solution: First it is necessary to check for the use of lumped parameter model by calculating
Biot number.

 Biot number = hL
k , L = Volume/Surface area

Volume = π r2 h, surface area = 2π r2 + 2 π rh

∴  L = π
π π

r h
r rh

rh
r h

2

22 2 2 2
0 03 0 06

2 0 03 0 06+
=

+
= ×

+
. .

( . . )  = 0.01 m

∴ Bi = 85 0 01
43
× .  = 0.02

This is much less than 0.1 and hence the lumped parameter model is applicable. To
determine the time needed for the heating, equation 6.4 is used.

650 800
35 800

85
7800 486

1
0 01

−
−

= −
×

×
L
NM

O
QPexp

.
. τ

Solving τ = 726.6 seconds or 12 min 7 seconds
If the piece is taken out after 300 seconds, then

T −
−

= − ×
× ×

L
NM

O
QP

800
35 800

exp
.

85 300
7800 486 0 01

∴ T = 409.6°C. This falls short by about 240°C.
Problem 6.3: A bearing piece in the form of half of a hollow cylinder of 60 mm ID, 90 mm OD
and 100 mm long is to be cooled to –100°C from 30°C using a cryogenic gas at –150°C with a
convection coefficient of 70W/m2K. density = 8900 kg/m3, specific heat = 444 J/kgK, conductivity
= 17.2 W/mK. Determine the time required.
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Solution: The piece to be cooled  is shown in Fig. P. 6.3.
The volume of the piece

 V =  π ( . . ) .0 045 0 03
2

0 1
2 2− ×  m3

= 1.76715 × 10–4 m3

Surface area = (π × 0.03 × 0.1)
+ (π × 0.045 × 0.1) + (2 × 0.1 × 0.015)

+ 2 0 045 0 03
2
2 2π ( . . )−  = 0.030096 m2

∴  L = V
A

= × −176715 10
0 030096

4.
.

 = 5.872 × 10–3 m

Bi = hL
k

= × × −70 5 872 10
17 2

3.
.

 = 0.02389.

This is smaller than 0.1 hence, lumped parameter model can be used. To determine the
time, equation 6.4 is used.

− − −
− −

= − ×
× × ×

L
NM

O
QP−

100 150
30 150

70
8900 444 5 872 10 3

( )
( )

exp
.
τ

Solving for τττττ, time required for the cooling is obtained as 424.6 sec or 7.08 minutes.
Problem 6.4: A thermocouple in the form of a long cylinder of 2 mm dia initially at 30°C is
used to measure the temperature of a cold gas at –160°C. The convection coefficient over the
surface is 60 W/m2K. The material properties are; density = 8922 kg/m3, specific heat = 410 J/
kgK, conductivity = 22.7 W/mK. Determine the time it will take to indicate –150°C. Also calculate
the time constant.
Solution: Considering lm length the characteristic length for the solid is

V/As = πR2/2πR  = R/2 = 0.0005 m.

Bi = 60 0 0005
22 7

× .
.  = 1.322 × 10–3.

Hence lumped parameter model can be used.

 
− − −

− −
= − ×

× ×
L
NM

O
QP

150 160
30 160

60
8922 410 0 0005

( )
( )

exp
.

τ

∴ τττττ = 89.76 seconds, rather high. This can be reduced by using smaller wire diameter
or higher value of h.

The time constant  τττττc = ρcL
h

= × ×8922 410 0 0005
60

.  = 30.5 seconds.

Problem 6.5: It is desired to estimate the batch time for a heat treatment process involved in
cooling alloy steel balls of 15 mm dia from 820°C to 100°C in oil at 40°C with a convection
coefficient of 18 W/m2K. The material properties are: density = 7780 kg/m3, specific heat = 526
J/kgK, conductivity = 45 W/mK. Determine the time required. If this is to be achieved in 10
minutes, determine the value of convection coefficient.

0.1 m

0.045 m

0.03 m

Fig. P. 6.3.



VED

c-4\n-demo\damo6-3

C
ha

pt
er

 6

TRANSIENT HEAT CONDUCTION 237

Solution: The characteristic length in the case of a sphere is

 4
3

4
3

0 015
6

3 2π πR R R/ .
= =m

∴ Biot number = 
18 0 015

6 45
×
×

.
 = 1 × 10–3 m. So lumped parameter model can be used.

The time is determined using equation 6.4.

100 40
820 40

18 6
7780 526 0 15

−
−

= − × ×
× ×

L
NM

O
QPexp

.
τ

∴ τττττ = 1457.8 seconds

If the cooling is to be achieved in 10 min. or 600 seconds

 
100 40
820 40

600 6
7780 526 0 015

−
−

= − × ×
× ×

L
NM

O
QPexp

.
h

∴ h = 43.74 W/m2K

Check whether  hL/k < 0.1, 
43 74 0 015

6 45
. .×

×
 = 2.43 × 10–3.

Problem 6.6: In problem 6.5, if the convection coefficient is increased to 5000 W/m2K using
evaporating liquid, determine the time required to cool 100°C.
Solution: Using data from problem, 6.5, (L = R/3)

hL
k

=
×
×

5000 0 015
6 45

.  = 0.28

So the lumped parameter model cannot be used. Recourse should be taken to the use of
Heisler chart. Assuming that the centre to reach 100°C. Refer procedure in section 6.1.2.

excess temperature ratio = T T
T T

o

i

−
−

= −
−

∞

∞

100 40
820 40  = 0.077

Entering the centre temperature chart at 0.077 and reading on Bi = 0.28, Fo = 3.4
∴ α τ/R2 = 3.4 ∴ τ = 3.4 × R2/α

α = k
cρ

 = 45/(7780 × 526), R = 0.015/2

∴  τττττ = 3 4 0 015 7780 526
4 45

2. .× × ×
×

 = 17.5 s

By using location chart, the surface temperature can be obtained. The correction factor
is 0.87.

∴
T T
T To

−
−

∞

∞
 = 0.077 × 0.87 ∴ T = 92.3°C

If lumped parameter method is used (eqn. 6.4) the time is estimated as 5.25
seconds.
Problem 6.7: A copper sphere of 10 mm dia at 80°C is placed in an air stream at 30°C. The
temperature dropped to 65°C after 61 seconds. Calculate the value of convection coefficient.
Assume property values as follows: density = 8925 kg/m3, specific heat = 397 J/kg K, conductivity
= 393 W/mK. The characteristic length dimension = R/3 = 0.005/3 m.
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for  
hL
k  = 0.1 ∴ h = 

0.1 393 3
0.005
× ×

 = 23580 W/m2K.

Solution: The actual value of h will be within this range and so lumped parameter model can
be used. The equation 6.4 is used.

65 30
80 30

61 3
8925 397 0 005

−
−

= − × ×
× ×

L
NM

O
QPexp

.
h

∴ h = 34.53 W/m2K

This is well within 23580 and so lumped parameter model can be used.
Note: This method can be used for estimating convection coefficient.

Problem 6.8: Glass spheres of radius of 2 mm at 600°C are to be cooled in an air stream at
30°C to a temperature of 80°C without any surface crack. Estimate the maximum value of
convection coefficient that may be used. Also determine the minimum time required for the
cooling. The property values are density = 2225 kg/m3, specific heat = 835 J/kgK, conductivity =
1.4 W/mK.
Solution: Surface crack occurs due to temperature difference within the solid. The lumped
parameter model assumes that the temperature all over the body at any point of time is the
same. So if Bi < 0.1, then the cooling should not cause cracking. The condition is

∴  
hL
k  = 0.1, 

h × ×0 002
3

1
14

.
.  = 0.1

∴ h = 210 W/m2K. The maximum value .
There may be an error of about 5%  ∴ safe value of h is 200 W/m2 K.
Time for cooling is obtained using equation 6.4

 
80 30
600 30

210 3
2225 835 0 002

−
−

= − ×
× ×

L
NM

O
QPexp

.
τ

, τττττ = 14.35 s

Problem 6.9:  A  coal pellet of 1 mm dia sphere is to be heated by radiation with a source at
1200 K from 300 K to 900 K. Determine the time required. Take density = 1350 kg/m3. Specific
heat 1260 J/kgK, conductivity = 0.26 W/mK. The equations available cannot be used as such.
Solution: The heat balance can be represented by (assuming black body conditions)

σ A(T∞
4 – T4) d τ = ρ Vc dT

Separating variables

 
σ
ρ

τA
Vc

d dT
T T

=
−∞

4 4

A standard form of integral available is used:

dx
a x a

a x
a x a

x
a4 4 3 3

11
4

1
2−

= +
−

+ −z ln tan

noting that x → T and a → T∞

σ
ρ

τA
V T

T T
T T T

T
Tc T

T
. ln tan=

+
−

+
L
NMM

O
QPP∞

∞

∞ ∞

−

∞

1
4

1
23 3

1

1

2

...(P. 6.9.1)

(if calculators are used in taking tan–1 (T/T∞) radian mode should be used)
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Noting A/V = (3/R), T1 = 300, T2 = 900 K

5 67 10 3
1350 1260 0 0005

8.
.

.× ×
× ×

−

 τ = 1
4 1200

1200 900
1200 900

1200 300
1200 3003×

+
−

F
HG

I
KJ − +

−
F
HG

I
KJ

L
NM

O
QP

ln ln

+ 1
2 1200

900
1200

300
12003

1 1
×

−L
NM

O
QP

− −tan tan

Solving, τττττ = 1.6147 sec
(hint taking 10–8 to the RHS will help in the working).

A check: Applicability of pumped parameter model is checked by calculating the Biot
number.

hr = (T∞ + T) (T∞
2 + T2) Assuming an average of 600°K for T

hr = 5.67 × 10–8 (1200 + 600) (12002 + 6002) = 183.7 W/m2K

∴
hL
k

= ×
×

182 7 0 005
3 0 26
. .

.  = 0.118

Note: Just on the border.
A check for heat transfer: Q = heat capacity × temp. change

∴ Q = 4
3 π 0.00053 × 1350 × 1250 (900 – 300) = 0.534 J = 0.559 J

Using the convection coefficient calculate using 600 K as average
 Q = hA (∆T) τ = 183.7 × 4π × 0.00052 × (1200 – 600) × 1.6147

= 0.559 J. Checks

Problem 6.10: A metal sphere 20 mm radius at 900 K is allowed to cool in a room at 310 K by
(i) convection only (ii) radiation only.
Determine in each case the time required for the sphere to reach 450 K Density = 2700 kg/m3,
specific heat = 1110 J/kgK, conductivity = 218 W/mK. Convection coefficient = 18 W/m2K.
Solution:

(i) Check for applicability of lumped parameter model.

Bi = hL
k

= 18
218

0 02
3
.  = 0.00055. So applicable.

Using equation 6.4

450 310
900 310

18 3
2700 1110 0 02

−
−

= − ×
× ×

L
NM

O
QPexp

.
τ

Solving τττττ = 1597 seconds
(ii) Cooling by radiation: refer, eqn P.6.9.1, – ve sign due to cooling

 τ = − +
−

+
L
NMM

O
QPP∞

∞

∞ ∞

−

∞

ρ
σ
cV
A T

T T
T T T

T

T

T
1

4
1

23 3
1

2

1

ln tan
T
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τττττ = − × ×
×

×
×

+
−

− +
−

RST
UVW

L
N
MM

2700 1110 0 02
5 67 3

10 1
4 310

310 900
310 900

310 450
310 450

8
3

.
.

ln ln

+ 1
2 310

900
310

450
3103

1 1
×

F
HG

I
KJ − FHG

I
KJ

RST
UVW
O
QP

− −tan tan

= 1273 seconds
Problem 6.11: A metal plate 10 mm thick at 30°C is suddenly exposed on one face to a heat flux
of 3000 W/m2 and the other side is exposed to convection to a fluid at 30°C with a convective
heat transfer coefficient of 50 W/m2K.

Determine the temperature variation with time and also the steady state temperatures
and the time to reach 1°C less than the steady state temperature on the hot face. Density = 8933
kg/m3, specific heat = 385 J/kgK, conductivity = 380 W/mK.
Solution: Steady state condition is solved for first.

The heat flow through the wall and the convection over the face is given

 3000 = T1 30
1

50
0 01
380

−

+ . ∴ T1 = 90.08°C

and  3000 = (T2 – 30)50 ∴ T2 = 90°C

q = 3000 W/m
2

k = 380 W/mK

10 mm

T1
T2

30°C

h = 50 W/m K
2

30°C

Fig. P. 6.11. Problem model.

The slab is almost at constant temperature over the thickness. During the transient
conditions, the energy balance at any instant when the plate temperature is T is

As [q – h(T – T∞)] d τ = ρcV dT
Now introducing a new variable, θ = T – T∞

Separating the variables
A
cV

d dT
q h T T

d
q h

s
ρ

τ θ
θ

=
− −

=
−∞( )

 Integrating from 0 time to time τ

 A
cV h

q h
q h

sτ
ρ

θ
θ

= −
−
−
L
NM

O
QP

1 2

1
ln ...(6.11.1)
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or
q h
q h

−
−

θ
θ

2

1
 = exp [–hAsτ/ρcV]

or  
q h T T
q h T T

− −
− −

∞

∞

( )
( )1

 = exp [–hAsτ/ρcV] ...(6.11.2)

This provides the variation of temperature T with time. The temperature to be reached

is 89°C. (note: (T1 = T∞), As/V = 1
L

3000 50 89 30
3000 1
− −

×
( )

 = exp [–50 × τ/8933 × 385 × 0.01]

Solving: τττττ = 2816 seconds

Check for hL
k

, .50 0 01
380
×  = 0.0013 so use of lumped parameter model is justified.

A check can also be made for energy flow:
As T1 – T∞ = 30 – 30 = 0, rearranging equation 2,

h (T – T∞) d τ = q [1 – exp (–hAs/ρcV)] dτ
Integrating the LHS, we get the energy convected over the surface from T∞ to T and this

is given by integrating the RHS from 0 time to time τ.

∴  Energy convected = q e dh c
o

s( )( / )1 − −z A Vρ ττ
τ

= q (τ – 0) + q cV
hA

e e
s

hA cVs. [ )( / )ρ ρ τ− − °

= 3000 (2816 – 0) + 3000 8933 385 0 01
50 1

× × ×
×

L
NM

O
QP

.  e− × × × −( )50 1/8933 385 0.01 2816 1

= 8.448 × 106 – 2.029 × 106

= 6.419 × 106 J
Energy stored = (59 – 30) × 0.01 × 8933 × 385 = 2.029 × 106 J

 Energy in = energy convected + energy stored
= 6.419 × 106 + 2.029 × 106 J = 8.448 × 106 J

From heat flux → 3000 × 2816 = 8.448 × 106 J
Checks to the required accuracy.

Problem 6.12: A device has a mass of 0.5 kg and specific heat of 750 J/kgK and a surface area
of 0.04 m2. The device is initially at 30°C and is exposed to convection to a fluid at 30° with a
convective heat transfer coefficient of 12 W/m2K. If the temperature of the device should increase
to 120°C in 120 seconds, using an embedded heater, determine its capacity.
Solution:  The problem can be modelled on the same basis as problem 6.11. The energy equation
is

 [q – hA (T – T∞) d τ] = ρcVdT.
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∴  
1

ρ
τ θ

θcV
d dT

q hA T T
d

q hA
.

( )
=

− −
=

−∞

letting θ = (T – T∞)
Integrating from 0 to time τ

1 1 2
ρ

τ
θ

cV hA
q hA

q
= −

−F
HG

I
KJln  as hAθ1 = 0

∴  q hA
q

hA
cV

−
= −L
NM
O
QP

θ τ
ρ

2 exp , as ρv = mass = 0.5

 
q

q
− × − = − × ×

×
L
NM

O
QP

12 0 04 120 30 12 0 04 120
0 5 750

. ( ) exp .
.  = 0.8576

Solving q = 303.4 W
Note: As in the problem 6.11, energy flow check can be made.

Problem 6.13: A piece of material is to be dried in an oven. The mass is 0.5 kg, sp. heat = 2999
J/kg K. The surface area is 0.085 m2. In the process the material gets heated and additionally
45 J/s of heat is used up in evaporation process. The oven is at 180°C and the convection coefficient
is 16W/m2K. Determine the time required to heat up the material from 30°C to 90°C.
Solution: The energy equation at the instant when the temperature is T is as below:

hA(T∞ – T) dτ – 45 d τ = m c dT, as (m = ρ V)
Separating variables

1
45 45mc

d dT
hA T T

d
hA

.
( )

τ θ
θ

=
− −

=
− −∞

(Letting θ = T – T∞) Integrating between limits,

∴
1 1 45

45
2

mc hA
hA T T
hA T Ti

τ = −
− − −
− − −

∞

∞
ln )

)
(
(

∴ − =
− − −

− − −
∞

∞

hA
mc

h T T
hA T Ti

τ ln ( )
( )

2 45
45

− − −
− − −

= −L
NM

O
QP

∞

∞

hA T T
hA T T

hA
mci

( )
( )

exp2 45
45

τ ...(1)

For the given data

  
− × − −
− × − −

= − ×
×

L
NM

O
QP

16 0 085 180 90 45
16 0 085 180 30 45

16 0 085
0 5 2999

. ( )

. ( )
exp .

.
τ

−
−
167 4
249

.  = exp [–9.07 × 10–4 τ]

∴ t = 438 seconds.
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Problem 6.14: An electronic component generating heat at 50W is mounted on a sink of mass
0.4 kg and at steady state the temperature of the sink is 115°C. When the surrounding is at 30°C
determine the temperature of the component 6 minutes after power supply is switched on. The
initial and surrounding temperature are 30°C. Specific heat = 949 J/kgK.
Solution: Let the steady state temperature be Ts and surrounding at T∞. Then hAs (Ts – T∞) =
q as energy generated = energy convected. Now the energy balance any time after power supply
is switched on is given by

q.d τ – hAs (T – T∞) d τ = mcdT
Substituting for q from steady state condition,

[hAs (Ts – T∞) – hAs (T – T∞)] d τ = mcdT
∴ hAs (Ts – T) d τ = mcdT
Separating Variables, defining θ = T – Ts

hA
mc

d dT
T T

ds

s
τ θ

θ
=

−
=

( )
Integrating and rearranging

−
=

−
−

−
− ∞

hA
mc

T T
T T

T T
T T

s s

s i

s

s
τ ln ln2 2or

∴
T T
T T

hA
mc

s

s i

s−
−

=
−L
NM

O
QP

2 exp τ

From steady state condition:

hAs = q/(Ts – T∞) = 
50

115 30
50
85−

= , substituting this value

115
115 30

50 6 60
85 0 4 949

−
−

= − × ×
× ×

L
NM

O
QP

T2 exp
.

Solving T2 = 66.34°C
Semi-infinite Solids (6.15)–6.22)
Problem 6.15: On a hot day the wood surface gets heated to 50°C to a considerable depth.
Sudden sharp showers cool the surface to 20°C and maintain the surface at this temperature
level. Determine the temperature at 2 cm depth after 40 minutes. The material properties are:
density = 2115 kg/m3. Specific heat = 920 J/kgK.  Conductivity = 0.062 W/mK. Also calculate
the heat flow from the surface upto the time, instantaneous heat flow at the surface and 2 cm
depth.
Solution: The semi infinite solid model is suitable for this problem. The equation 6.8 is used to
find the temperature. Ts = 20°C, Ti = 50°C,

T T
T T

erf x k
c

x s

i s

, , .τ

ατ
α

ρ
−

−
=
F
HG
I
KJ = =

×2
0 062

2115 920

∴
x

2
0 02

2 0 062 2115 920 40 60ατ
=

× × × ×
.

( . / )  = 1.1435
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From error function Tables, erf (1.1435) = 0.89414 ∴ Tx,τττττ = 46.82°C
Total heat flow upto the time: (equation 6.10)

 Q = 2k (Ts – Ti) τ πα/

= 2 × 0.062 (20 – 50) 40 60 2115 920 0 062× × × ×/ .π

= – 576006 J/m2

Instantaneous surface flow: (equation 6.9)
q0 = k(Ts – Ti)/ πατ

= 0.062 × (20 – 50)/ π × × × ×0 062 40 60 2115 920. / ( )
= – 120 W/m2

Instantaneous heat flow at 0.02 m depth: equation 6.11

qx = k T Tx i( )−
πατ

 exp [–x2/4ατ]

= 
0 062 46 82 50

0 062 40 60 2115 920
. ( . )

. / ( )
−

× × × ×π
× exp [–0.022/(4 × 0.0062 × 40 × 60/2115 × 920)]

= – 3.44 W/m2 (flow in the –ve x direction)
Problem 6.16: The soil temperature was 5°C. Suddenly the surface temperature drops to
– 10°C. Determine the depth at which the temperature will reach 0°C after 12 hours. Also find
the temperature at 0.1 m and 0.05 m. Calculate also the total heat removed per m2 area during
the period. Thermal diffusivity = 3.097 × 10–7 m2/s, conductivity = 0.657 W/mK.
Solution: Semi-infinite slab model can be used for the problem. Using equation 6.8.

T T
T T

xs

o s

−
−

= − −
− −

=erf ( / ), ( )
( )

2 0 10
5 10

10
15

ατ  = 0.667

 erf ( / . )x 2 3 097 10 12 60 607× × × ×−  = 0.667
Using error function tables, this value corresponds to

∴ x / .2 3 097 10 12 60 607× × × ×−  = 0.68
∴ x = 0.1573 m

at x = 0.1 m x / 2 ατ  = 0.43225

∴
T − −

− −
( )
( )

10
5 10  = erf (0.43257) = 0.45912 ∴ T = – 3.11°C

at x = 0.05 m x / 2 ατ  = 0.2161 erf (0.2161) = 0.24010
∴ T = – 6.4°C

Total heat flow = 2 2 0 657 10 5 12 3600 3 097 10 7k T Ts i( ) / . ( ) / .− = × − − × × × −τ πα π

= 4.15 × 106 J/m2
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Problem 6.17: Still water of some depth initially at 37°C has its surface raised to 100°C and
maintained at this level. Determine the depth at which the temperature will reach 48°C after 10
seconds. Also find the heat flow during this time into the water. If the surface temperature only
was raised to 50°C determine these quantities. α = 1.595 × 10–7 m2/s; k = 0.656 W/mK.
Solution: Semi infinite slab model only suits the problem, with usual notations.

 T T
T T

xx o

i o

,τ

ατ

−
−

=
F
HG
I
KJerf

2
∴ 48 100

37 100 2 10 1 595 10 7
−
−

=
× ×

F
H
GG

I
K
JJ−

erf x
.

0.8254 = erf (395.86 x)
Using error function tables, and solving,

x = 2.43 mm

Total heat flow Q = 2 2 0 656 100 37 10 1595 10 7k T To i( ) / . ( ) / .− = × − × × −τ πα π

= 369249 J/m2

For To = 50°C, x is obtained as 0.354 mm
and  Q = 76194 J/m2.

Note: This situation is similar to some one gripping a hot body with hand and 48°C may cause
death of cells. So burn depth can be estimated by this process.

Problem 6.18: A large slab at 350°C suddenly has its surface exposed to convection at 30°C
with h = 80 W/m2K. Determine the temperatures at a depth of 40 mm and at the surface after
300 seconds, given thermal diffusivity = 5.6 × 10–6 m2/s and conductivity = 25 W/mK.
Solution: This is a semi infinite slab with convection boundary (eqn 1.13 (a))

T T
T T

x hx k h kx i

i

, [ ( / ] exp [( / ) ( / )]τ ατ ατ
−
−

= − − + ×
∞

1 2 2 2erf

[ {( / ) ( / )}]1 2− +erf x h kατ ατ
(i) x = 0.04 m τ = 300s, α = 5.6 × 10–6 m2/s, h = 80 W/m2K, k = 25 W/mK. Substituting and

simplifying
Tx,τ −

−
350

30 350  = 1 – 0.5117 (1.1563) (1 – 0.61941) = 0.0482

∴ Tx,τττττ = 334.6°C
(ii) For the surface temperature x = 0.

∴  
T T
T T

h k h ko i

i

, [exp ( / )] [ ( / )]τ ατ ατ
−
−

= − × −
∞

1 12 2 erf

= 1 – 1.01735 (1 – 0.15) = 0.1353.
∴ Tsurface = 306.7°C
This problem can also be solved using charts.
The skeleton charts are shown in Fig. P. 6.18(a) and P. 6.18(b)
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Read
0.95

Enter

0.4879

T – T�

T – T
i �

T – T
i

T – T
i�

or 1 –

x/2��

— = 0.128hx
k

0.135

Enter at x = 0

T – T
i

T – T� i

x/2��

0.13

h ( )/k ��

0

Fig. P. 6.18 (a, b)

In the case 1 Fig. 6.18(a) is used.

 
T T
T T

i

i

−
−∞

 = 0.05 compared to 0.0482

In the case 2, Fig. P. 6.18(b) is used as x = 0, the intersection with y axis is taken as the
value. The value read is 0.135 as compared to 0.1352.

Note: As the equation is long, the charts (refer P 210) may be used for quick calculation and also

for checking. It is not easy to determine heat flow in this case. But h T T
o

( )− ∞z τ  d τ will provide the

value. T is the surface temperature at x = 0, at any time.

Problem 6.19: A thick wooden slab at 30°C is suddenly exposed to combustion gases at 850°C
with convection coefficient of 40 W/m2K. Determine the time elapsed before the surface reaches
400°C. Thermal diffusivity = 1.472 × 10–7 m2/s. Conductivity = 0.207 W/mK.
Solution: This is also a semi infinite slab model with surface convection. In this case x = 0
plane is considered.

T T
T T

i

i

−
−

= −
−

=
∞

400 30
850 30

370
820  = 0.4512

= 1 – exp (h2 ατ/k2) × [ ( / )]1 − erf h kατ

as both terms involve τ, a trial solution is attempted. The value of RHS for τ = 55, 60, 66 and 75
yields the temperature ratio as 0.4091, 0.4228, 0.4322 and 0.4517. So the time elapsed is
near 75 seconds, corresponding to the last trial.

The chart similar to one on Fig. 6.18 (b) available in data books gives by intersection on
the x axis, h kατ /  = 0.65

∴ τ = 76.9 seconds. The values agree within reasonable limits.

Problem 6.20: The soil temperature to a good depth was 5°C. Suddenly chill winds at –20°C
start and blow over the surface producing a convection coefficient of 65 W/m2K. Determine the
depth at which the temperature will be zero after 12 hours. Thermal diffusivity = 3.097 × 10–7

m2/s. Thermal conductivity = 0.657 W/mK.
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Read

0.8
Enter

0.9

x/2��

�
�0 h /k

2 2
�� 131

Fig. P. 6.20

Solution: This is a semi infinite slab model with surface convection. As x is involved is
exponential as well as error function in a complex equation, it is easier to use chart solution,
rather than trial solution. A chart of the type as shown in Fig. P. 6.20 is available in handbooks.
Reading from such chart at

 T T
T T

x

i

−
−

= − −
− −

∞

∞

0 20
5 20

( )
( )  = 0.8

(h2 α τ/k2) = 65 × 65 × 3.097 × 10–7 × 12 × 3600/0.6572 = 131

Entering the chart as shown at 
θ

θ0
 = 0.8, x / 2 ατ  is read as 0.9

∴ x = 0 9 2 0 9 2 3 097 10 12 36007. . .× = × × × ×−ατ

= 0.2082 m
This can also be checked by substitution in the equation number 6.13 as an exercise.

Problem 6.21: A cylindrical refractory combustion chamber wall internal diameter 25  cm
and wall thickness of 25 mm initially at 35°C is suddenly exposed to combustion products at
1450°C with a convection coefficient at 225 W/m2K. Considering the wall as a semi infinite
slab, determine the temperature at various locations 60 seconds after gas exposure. Thermal
diffusivity = 5.16 × 10–7 m2/s, Conductivity = 1.04 W/mK.
Solution: The assumption of semi infinite solid model is valid due to a large radius, short
exposure time and low diffusivity.

The value of x / 2 ατ  at x = 5, 10, 15, 20 and 25 mm are calculated. Using the chart
similar to P. 6.18(a) the values of temperature ratio are read off corresponding to the (hx/k)
value. These are tabulated below:

x(m) 0.005 0.01 0.015 0.02 0.025

x/2 ατ 0.4488 0.898 1.347 1.795 2.24
hx/k 1.082 2.163 3.245 4.327 5.41

(Tx – T∞)/(Ti – T∞) 0.73 0.9 0.97 0.99 1.0
Tx(°C) 417 176.5 77.5 49 35

The inside surface temperature has to be calculated by using the equation
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T T
T T

h
k

h
k

s i

i

−
−

= −
F
HG
I
KJ × −

F
HG

I
KJ

L
N
MM

O
Q
PP∞

1 1
2

2exp ατ ατerf  = 0.618

Ts −
−

= − × × ×L
NMM

O
QPP

× − × ×F
HG

I
KJ

L
NM

O
QP

−
−35

1450 35
1 1exp 225 5.16 10 60

1.04
erf 225

1.04
5.16 10 60

2 7

2
7

  
Ts −

−
35

1450 35  = 0.618

∴ Ts = 909.5°C
Note: From the tabulation it can be noted that at the end of this time the temperature on the

outside surface at 0.025 m is still at the initial temperature. i.e. the heat has not reached the surface.
Hence semi-infinite solid model is applicable.

Problem 6.22: The temperature of road surface at 9 am was 5°C to a good depth. From 9 am to
12 noon the surface is exposed to solar radiation of 650 W/m2 of which 0.4 times is absorbed.
Determine the surface temperature and the temperature at a depth of 4 cm α = 8.26 × 10–7

m2/s, k = 0.552 W/mK.
Solution: The problem can be modelled as semi infinite solid with uniform heat flux at the
surface. (eqn. 6.15)

 Tx – Ti = 2
4

1 2
0 5 2q

k
x qx

k
x( / ) exp [ ( / )]

.ατ π
ατ

ατ
−L
NM
O
QP

− − erf

x = 0, τ = 3 × 3600 seconds, q = 0.4 × 650 W/m2

∴  Ts – 5 = 
2 0 4 650 8 26 10 3 3600

0 552
7 0.5× × × × ×−. ( . / )

.
π

.1 as x = 0,

= 50.2
∴  Ts = 55.2°C

at x = 0.04m,

Tx – 5 = 2 0 4 650
0 552

8 26 10 3 3600 0 04
4 8 26 10 3 3600

7 0.5
2

7
× ×

× × ×
× × × ×

F
HG

I
KJ

−
−

.

.
( . / ) .exp – .

.
π

− × × − × × ×−0 4 650 0 04
0 552

1 0 04 2 8 26 10 3 36007. .
.

[ ( . / ( . ) ]erf

= 48.0 – 14.4 = 33.6
∴  Tx = 38.6°C.

Problem 6.23: Compare the response of a thermocouple and mercury in glass thermometers
when exposed to surroundings with a sinusoidal temperature variation and convection coefficient
of 95 W/m2K.

The dimensions and property values are:
 (i) thermocouple: density 7600 kg/m3, specific heat: 502 J/kg K dia: 0.0016 m
(ii) Mercury: density 13600 kg/m3, specific heat: 1360 J/kg K, dia = 12.8mm.
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Solution: Thermometers are to be used to measure the temperature in a furnace with time
period of 20 minutes. This is a lumped parameter system with periodic temperature change of
surroundings.

The angle of lag is given by (eqn 6.16, 6.17)

δ = tan–1 [(2π/τ0) (ρcV/hA)], amplitude ratio = 1
1 2+ tan δ

     V
A

r l
rl

r= =π
π

2

2 2
.

(i) Thermocouple δ = tan–1 [(2π/20 × 60) (7600 × 502 × 0.0004/95)]
= 0.084 radians or 4.8° or 16 seconds

Amplitude ratio: 1 1 0 0842/ tan .+  = 0.9965

(ii) Glass thermometer: δ = tan–1 [(2π/1200) (13600 × 1360 × 0.0032/95)]
= 127 radians or 72.770 or 242.6 seconds

∴ Amplitude ratio = 0.293 (check by substitution)
Note: The thermocouple responds much better, following the variation closely and with very

small error.

Cyclic Temperature Variation—Semi Infinite Solid
Problem 6.24: A thick furnace wall is exposed to hot gases in a furnace and the surface
temperature varies sinusoidally every 20 minutes from a maximum to minimum value. The
property of the materials are: thermal diffusivity = 5.16 × 10–7 m/s, conductivity = 1.04 W/mK.
Determine the angle of lag and amplitude ratio at a depth of 0.05 m. Also find the depth of
penetration under equilibrium.
Solution: This is a semi infinite slab with periodic surface temperature change.

The time of lag is given by x
2 0τ πα/ ...(eqn. 6.18)

The amplitude ratio is given by e x− π ατ/ 0 ...(eqn. 6.19)

The depth of penetration is given by x0 = 2 0πατ ...(eqn. 6.20)
 τ0 = 20 × 60 = 1200 seconds

∴ Time lag = 0 05
2

1200 5 16 10 7. / .π × × −

= 680.2 seconds or 1.78 radians or 102°C

Amplitude ratio = exp [ . / . ]− × ×−0 05 5 16 10 12007π

∴
T

Tmax
 = 0.0284
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Depth of penetration: x0 = 2 πατ π= × × ×−2 5 16 10 12007.
= 0.088 m.

Note: Such a variation will not affect the initial condition beyond 0.088 m thickness of wall. Also
the amplitude ratio is low. See Fig. P. 6.24.

a2

A

a1

�

Furnace temp.

At 0.05 m

� �or

Fig. P. 6.24. Temperature variation.

Problems On Finite Thickness Solids
Problem 6.25: A plane wall made of material of density 7800 kg/m3, thermal conductivity 45
W/mK and specific heat 465 J/kgK is 0.12 m thick. After it was heated to a uniform temperature
of 310°C, the wall is exposed to convection on both sides to surroundings at 30°C with a convective
heat transfer coefficient of 450 W/m2K. Determine the temperature after 8 minutes at (i) mid
plane (ii) 0.03 m from centre plane and (iii) 0.054 m from centre plane and (iv) at the surface.
also calculate (i) the heat flow out during this period for 1 m2 area on one side and (ii) The
instantaneous flow rate at the surface.
Solution: The data are presented in Fig. P. 6.25(a). This corresponds to infinite slab model
and use of Heisler charts for solution is necessary. Also the mid plane excess temperature ratio
is to be found using the mid plane chart and then location chart has to be used.

T = 310°C
i

� = 7800
c = 465
k = 45

450 W/m K
2

T = 30°C�

0.03

0.052

0.06

Fig. P. 6.25 (a)
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Fig. P.6.25 (d)

The parameters required are hl
k

= ×450 0 06
45

.  = 0.6

(This indicates lumped parameter model cannot be used)

 ατ/L2 = 45 8 60
7800 465 0 062

× ×
× × .

 = 1.654

The mid plane temperature chart is entered at 1.654 as schematically shown and the
reading is taken at the point where it meets hL/k = 0.6.

(Fig. P. 6.25(b)) the value read is 0.478

0.478

1.654

T – To �

T – T
i �

��/L
2

hL/k = 0.6
0.94

0.6

hL/k

0.8

0.76

T – Tx �

T – To �

0.5

0.9
1.0

x/L

Fig. P. 6.25 (b), (c).

 
To −

−
30

310 30  = 0.478 ∴ To = 163.84°C

To find temperatures at 0.03, 0.054 and 0.06 m planes x
L

 values are found as 0.5, 0.9

and 1.
Entering the location chart at hL/k = 0.6, values are read at x/L = 0.5, 0.9 and 1 as 0.94,

0.8 and 0.76 respectively (Fig. P. 6.25 (c)) using the product

∴  T T
T T

T T
T T

T T
T Ti o

o

i

−
−

= −
−

−
−

∞

∞

∞

∞

∞

∞
.  the temperatures are calculated as

155.81, 137.07 and 131.72°C respectively.
For 0.03 m (sample calculation)

 T −
−
30

310 30  = 0.478 × 0.94 = 0.44932

∴ T = 155.81°C
To calculate the total heat flow, the heat flow chart is to

be used. This requires the parameter

h
k

2

2

2450 45 8 60
7800 465 45 45

ατ = × × ×
× × ×  = 0.596

0.5

0.596

h /k
2 2
��

Q
Q0

Bi = 0.6
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Entering the chart as schematically shown in Fig. P. 6.25 (d) at this value and reading
on hL/k = 0.6, Q/Qo is 0.5.

∴ Q = 0.5 × Qo = 0.5 × 7800 × 465 × 0.06 (310 – 30)
= 30.46 × 106 J/m2

Instantaneous flow at the surface = hA(Ts – T∞)
= 450 × 1 × (131.71 – 30) = 4.58 × 104 W/m2

Problem 6.26: A large plate of thickness 0.2 m initially at 40°C is exposed to hot furnace gases
at 530°C with a convection coefficient of 420 W/m2K. The density, specific heat and thermal
conductivity of the material are 2700 kg/m3, 1110 J/kgK and 218 W/mK. Determine the time
required for the centre plane to reach 410°C. At this instant calculate the surface temperature
and the temperature at 0.02 m depth from surface. Also calculate the heat flow upto the time. If
the surface is maintained at 530°C with h → ∞, then determine the centre temperature after
150 seconds.
Solution: The infinite slab model is applicable and Heisler Charts are used as in problem
6.25. The entry points and parameter to be read are reversed. In this case the centre temperature
ratio is known. Enter the chart corresponding to this value.

hL
k

= ×420 0 1
218

.
 = 0.193

(This also indicates that lumped parameter model cannot be used)
The procedure is shown in Fig. P. 6.26.

α = 
k
cρ

=
×

218
2700 1110  = 72.74 × 10–6

0.245

8.4

T – To �

T – T
i �

��/L
2

hL/k = 0.193

0.098

1.091

�

Fig. P. 6.26

  
T T
T T

o

i

−
−

= −
−

=∞

∞

410 530
40 530

0 245.

Entering the chart at 0.245 on the y axis α τ/L2 is read as 8.4 (Fig. P. 6.26)

∴ τττττ = 8.4 × L2/α = 8 4 0 1
72 74 10

2

6
. .
.

×
× −  = 1155 sec.
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(ii) To determine temperature at surface and 0.02 from surface x
L  = 1 and 0.8.

Reading from location chart (T – T∞)/(To – T∞) are obtained as 0.91 and 0.95. ∴ These
temperatures are 420.8 and 416°C (as in problem 6.25)

(iii) The total heat flow is calculated as in problem P.6.25, using the parameter h2 α τ/k2

calculated as 0.30 and hL/k = 0.193 reading from the chart,

 
Q
Qo

 = 0.72 ∴ Q = 0.72 × 0.1 × 2700 × 1110 (530 – 40)

= 105.7 × 106 J/m2

(iv) Reading the centre temperature chart at hL/k = ∞, at the time of 150 s the Fourier
number is 72.74 × 10–6 × 150/0.12 = 1.091

 Fo = 1.091, T0 530
40 530

−
−

 = 0.098, ∴ To = 481.98°C. (rapid heating)

Problem 6.27: A vegetable piece in the form of a slab of thickness of 6 cm at 8°C is
allowed to warm up in air at 35°C with a convection coefficient of 11 W/m2K. Determine the
time required for the centre to reach 22°C. The material properties are Thermal diffusivity =
1.42 × 10–7 m2/s. Thermal conductivity = 0.5978 W/mK, density = 1000 kg/m3, specific heat =
4218 J/kgK. Assume one dimensional flow and exposure on both sides.

Solution: Using infinite slab model and Heisler Chart for slab and entering the chart
at (22 – 35)/(8 – 35) = 0.4815 and reading on hL/k = 11 × 0.03/0.5978) = 0.552, Fourier number
is read as 1.75 (Refer Fig. P. 6.25 (a), (b), (c), (d))

∴ τττττ = 1.75 × 0.032/1.42 × 10–7 = 11091 seconds or 3.08 hours.
The heat transfer can be determined using the parameter h2 α τ/k2 = 0.532 (as calculated).

Entering the chart at this value and reading against hL/k = 0.552, Q/Qo = 0.6.
Assuming a slab 20 × 20 cm area, thickness being 0.03 m

Q = 0.6 × 0.2 × 0.2 × 1000 × 4218 × 0.03 (8 – 35) × 2 = 164000 J or 164 kJ
Note: For heating up under free convection it takes a long time.

Problem 6.28: A plane wall with material properties as follows is 0.12 m thick. Density = 7800
kg/m3. Specific heat 0.465 kJ/kgK. Thermal conductivity = 45 W/mK. It is at 420°C when the
surroundings are at 20°C. It is proposed to allow it to cool by convection to the surroundings
with convective heat transfer coefficient of 450 W/m2K. If 50% of energy above the surroundings
is to be dissipated, how long should the wall be exposed.
Solution:

In this problem  Q/Qo = 0.5, (see Fig. P. 6.25 (d))

The parameters are  hL
k

= ×450 0 06
45

.  = 0.6

and h2 ατ/k2 is to be determined.
So entering the heat flow chart at Q/Qo = 0.5 and cutting the hL/k = 0.6 line h2 ατ/k2 is

read as 0.596.

∴ 4502 × 
45

7800 465
1

452×
× ×τ  = 0.596

∴ τττττ = 480 seconds
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Long Cylinder
Problem 6.29: To heat treat alloy rods, these are placed in a gas stream at 800°C with a
convective heat transfer coefficient of 120 W/m2K. The rod is of 19 mm radius and is at 30°C to
start with. Determine the time required for the rod centre line to reach 610°C. Density = 7978
kg/m2. Specific heat = 0.585 kJ/kgK, thermal conductivity = 21.9 W/mK. Also determine at this
time surface and mid radius temperatures and the heat flow. (P. 219 and 220)
Solution: This is a long rod with surface convection. The Heisler Charts for cylinders are to be
used.

T T
T T

o

i

−
−

= −
−

∞

∞

610 800
30 800  = 0.247, hR/k = 120 × 0.019/21.9 = 0.104

As illustrated in Fig. P. 6.29 entering the chart on the temperature ratio side at 0.247
and cutting the Biot number curve 0.104 (interpolated) ατ/R2 or Fourier number is read as 7.4.

0.247

7.4

T – To �

T – T
i �

��/R
2

hR/k = 0.104

0.95

0.104

T – Tr �

T – To �

0.5

1.0

r/R

Bi

0.98

Fig. P. 6.29 (a), (b)

 τ = 7 4 7 4 0 019
219 7978 585

2 2. . .
( . / )

×
=

×
×

R
α

∴ = 569.3 seconds
The surface and mid radius temperatures are read using location chart as illustrated

and entering at Bi = 0.104
T T
T To

−
−

∞

∞
 is read as 0.95 & 0.98 for r/R = 1 and 0.5 (Fig. P. 6.30 (b))

∴ Ts = 619.5°C T0.5 = 613.8°C
The heat flow is determined using the parameter h2 ατ/k2 = 0.0802 and entering the

chart of this value and reading at Bi = 0.104. Q/Qo = 0.75 (chart p. 223)

∴ Q = 0.75 ρVc (Ti – T∞) = 0.75 × 7978 × π × 0 019
4

585
2. ×

= 3.06 × 106 J/m length.
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Problem 6.30: A metallic rod of 25 mm radius initially at 800°C (density = 3970 kg/m3,
conductivity = 10.5 W/mK, specific heat = 1225 J/kgK) is  exposed to cooling fluid at 300°C with
h = 1500 W/m2K. Determine the bulk average temperature, the center, mid radius and surface
temperatures, after 40 seconds.
Solution: This is a long rod with convection boundary problem and Heisler Charts for cylinders
should be used (for use of charts ref problem 6.25 and 6.29). The Parameters are:

hR
k

= ×1500 0 025
10 5

.
.  = 3.57

ατ
R2 2

10 5 40
3970 1225 0 025

= ×
× ×

.
.  = 0.1382

h
k

2

2

2

2
1500 10 5 40

3970 1225 10 5
ατ = × ×

× ×
.

.
 = 1.762

Entering the center temperature chart at 0.1382 and reading against hR/k = 3.57, the
center temperature ratio is 0.85

i.e.,
T T
T T

o

i

−
−

∞

∞
 = 0.85 ∴ To = 725°C

For the mid radius and surface temperatures, the location charts are used. Entering at
hR/k = 3.57, and reading on r/R = 1 and r/R = 0.5, the temperature ratios are 0.30 and 0.80

∴      Ts = 428°C and T0.5 = 640°C.
To determine the bulk average temperature, the heat loss has to be calculated. Entering

the heat flow chart at h2 ατ/k2 = 1.762, Q/Qo is read as 0.48.
The heat loss/heat capacity provides the average temperature drop which is directly

equal to the product of Q/Qo and the temperature difference at the beginning.
∴ Average temperature after exposure = Ti – 0.48 (Ti – T∞) = 800 – 0.48 (800 – 300)

  = 560°C
Problem 6.31: A cylindrical piece of pudding is to be cooked in 802 seconds when exposed to
convection at 120°C with a convective heat transfer coefficient of 68.6 W/m2K. It is specified as
cooked if the centre line temperature reaches 98°C. The initial temperature is 25°C. Using the
following properties determine the maximum radius of the piece, density = 840 kg/m3, specific
heat 3400 J/kgK, Thermal conductivity = 1.2 W/mK.
Solution: As length is not specified long cylinder configuration is assumed. The centre
temperature ratio is known but, both parameters involve (hR/k and ατ/R2), the radius value.

Hence a trial solution has to be attempted. The centre temperature ratio = 
98 120
25 120

−
−

 = 0.232.

The chart is read as illustrated in Fig. P. 6.31. Y-axis value is known 0.232. As radius is
not specified, the Fourier number is read for several values of Biot number. The values are
tabulated below.

hR/k = 20 10 5 1 0.5
ατ/R2 = 0.38 0.42 0.49 1.1 2.2
R, m = 0.35 0.175 0.0875 0.0175 0.00875
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For these Biot numbers, as h and k are known the R value is calculated. As Fourier
number is available the time can be calculated. The times are tabulated below.

Time, s = 0.11 × 106 30.6 × 103 8.9 × 103 802 401

  α = 
12

840 3400
.

×
 = 0.42 × 10–6

Sample calculation: For value of Biot number 20.

 Fo = 0.38 = 0 42 10
0 35

6

2
.

.
× ×− τ  ∴ τ = 0.11 × 106 sec

As can be seen, the time requirement is satisfied for radius of 0.0175 m or diameter
of 35 mm.

20 10 5 1.0 0.5 hR/k

0.38 0.42 0.49 1.1 2.2

0.232

T – To �

T – T
i �

��/R
2

Fig. P. 6.31

Problem 6.32: A long cylinder of 0.2 m dia initially at 600°C is exposed to a  fluid at 100°C
with a  convection coefficient of 76.0 W/m2K. If the material properties are density = 7835 kg/m3,
specific heat = 485 J/kgK and thermal conductivity = 19.0 W/mK. Plot for time periods of 10,
20, 30 and 40 minutes, the temperature profile. The problem will help visualise the temperature
variation with time.

Solution:
hR
k

= ×76 0 1
19

.  = 0.4

Fourier Number for 10, 20, 30 and 40 minutes are calculated as
ατ τ
R2 2

19
0 1 7835 485

= ×
× ×.  = 0.30, 0.6, 0.9, 1.2

For plotting, the temperature at various radius should be calculated.

r
R

 values used are 0.4, 0.6, 0.8 and 1.0

Using the center temperature chart, as illustrated in Fig. P. 6.32 (a) the center

temperature ratios are read at hR
k  = 0.4.
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Time min 10 20 30 40

Fo 0.3 0.6 0.9 1.2

Temp. ratio 0.88 0.712 0.57 0.47

0.88

0.712

0.57

0.47

T – To �

T – T
i �

Bi = 0.4

0.3 0.6 0.9 1.2°

Fo 0.4

0.97
0.928
0.88
0.82 0.4

r/R

0.6
0.8
1.0

Bi

540
456
385

r/R

335

100

T

� = 10

20

30

40

460
392
334

293

1.00

76 W/m /K
2

100°C

T – Tr �

T – T
i �

Fig. P. 6.32 (a) Fig. P. 6.32 (b), (c)

The location temperature chart is read at hR/k = 0.4 and for r/R = 0.4, 0.6, 0.8, and 1 are
0.97, 0.928, 0.88 and 0.82 as schematically shown in Fig. P. 6.32 (b).

The temperatures are tabulated as below: sample calculation of centre temperature
after 10 minutes and shown below:

T T
T T

To

i

o−
−

= =
−
−

∞

∞
0 88 100

600 100
. ∴ To = 540°C

Temperature at r/R = 0.4, after 10 minutes

 
T T
T Ti

−
−

∞

∞
 = 0.88 × 0.97 ∴ T = 526.8°C

The results from table is shown plotted in Fig. P. 6.32 (c)

Time Min Centre
r
R  = 0.4 0.6 0.8 1.0

10 540 526.8 508.3 487.2 460.8
20 456 445.3 430.4 413.2 391.9
30 385 376.5 364.5 350.8 333.7

40 335 328 318 306.8 292.7

Problem 6.33: In problem 6.32 determine the time when the temperature at the surface reaches
350°C.
Solution: This requires the use of the charts in the reverse order. The location chart is used
first. The reading is 0.82 (at Bi = 0.4, at surface r/R = 1). See Fig. P. 6.32(b)

 350 100
600 100

0−
−

=
−
−

−
−

∞

∞

∞

∞

T T
T T

T T
T Ti o

.
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 0.5 = 0.82. T T
T Ti

0 −
−

∞

∞

∴
T T
T Ti

0 −
−

∞

∞
 = 0.6098

Now entering the centre temperature chart at this value, Fourier number read as 0.82
ατ
R2  = 0.82 ∴ τ = 0 82 0 82 0 1 0 1 7835 485

19
. . . .× = × × × ×R

α
= 1640 seconds or 27.3 minutes.

Problem 6.34: In problem 6.32 if the surface is suddenly brought to 100°C and maintained
determine the temperatures after 20 minutes at the center and 0.6 R radius.

Solution: This is a special case where hR
k  = ∞

∴ Using center temperature chart, and reading on line hR/k = ∞, ατ/R2 = 0.6
Temperature ratio is = 0.06 (as read from chart page 219
∴ To = 0.06 × 500 + 100 = 130°C
The location temperature ratio as read from chart for r/R = 0.6 is 0.54.
∴  T = 0.06 × 0.54 × 500 + 100 = 116.2°C.

Sphere
Problem 6.35: A sphere of 32 mm diameter made of material with density = 400 kg/m3, specific
heat = 1600 J/kgK and thermal conductivity = 1.7 W/mK initially at 800°C is suddenly exposed
to convection over the surface to surroundings at 300°C with a convective heat transfer coefficient
of 80 W/m2K. Determine the time required for the centre to reach 470°C and also determine the
surface and mid radius temperatures and the total heat transfer and the instantaneous rate of
heat transfer at the surface. If the sphere is removed from the surrounding and kept insulated
from the instant estimate its equilibrium temperature. Sketch the temperature variation over
the solid at various times during the cooling.
Solution: This problem is under transient heat conduction from a sphere exposed suddenly to
convection. Use of Heisler Chart is necessary for the solution. (pages 221, 222 and 223)

The parameters are:

Biot number = hR
k

= ×80 0 016
17

.
.  = 0.753

Centre temperature ratio = 
470 300
800 300

−
−  = 0.34

Entering the centre temperature chart at this value as illustrated in Fig. P.6.35 (a) the
Fourier number is read as 0.68.

∴
ατ
R2  = 0.68 ∴ τ = 0 68 2. × R

α
= 0.68 × 0.0162/(1.7/400 × 1600)
= 65.54 seconds
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To determine the surface and mid radius temperatures, location temperature chart is to
be used. Entering the chart as illustrated in Fig. P. 6.35 (b) at Biot number = 0.753, and
reading at r/R = 0.5 and 1.0.

0.34

T – To �

T – T
i �

0.68 Fo

Bi = 0.753

0.708

T – Tr �

0.753

r/R

0.5

0.1

Bi

T – To �

0.92

0.7

0.386

Bi = 0.753

Fo

Q
Qo

h /k
2 2
��

Fig. P. 6.35 (a), (b) Fig. P. 6.35 (c)

The values obtained are 0.92 and 0.708.
∴ mid radius temperature:

 T T
T T

T T
T T

T T
T Ti

o

i o

−
−

=
−
−

−
−

∞

∞

∞

∞

∞

∞
.

T −
−
300

800 300  = 0.34 × 0.92 ∴ T = 456.4°C

Surface temperature:

  Ts −
−
300

800 300
 = 0.34 × 0.708 ∴ Ts = 420.4°C

In order to determine the heat flow, heat flow chart is to be used. The parameter required
is

h
k

2

2 2
80 80 17 65 54

400 1600 17
ατ = × × ×

× ×
. .

.
 = 0.386

Entering the chart at this value and reading against biot number = 0.753 Q/Qo is read as
0.7 as illustrated in Fig. P. 6.35 (c).

∴  Q = 0.7 × 4
3  × π × 0.0163 × 400 × 1600 × (800 – 300) = 3843J

Instantaneous heat flow rate = hA(Ts – T∞)
= 80 × 4 × π × 0.0162 (420.4 – 300) = 31 W

The heat removed = 3843 J.
The average temperature drop due to this heat removal = ρVc × ∆T

∴  ∆T × 400 × 4
3  πr3 × 1600 = 3843

∴  ∆T = 350°C.
∴ Average temperature = 800 – 350 = 450°C.
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Problem 6.36: Ice balls of 10 mm dia at – 32°C are exposed to an air current at 15°C with a
convection heat transfer coefficient of 200 W/m2K. Determine the time when the surface layer
will begin to melt. Also determine the center, midsurface temperatures and heat removed. Use
the following property values, density = 920 kg/m3, specific heat 2040 J/kgK. Thermal conductivity
= 2.00 W/mK.
Solution: As the surface temperatures is specified (0°C) the first chart to be used will be the
location chart. Then the center temperature chart is to be used. Melting occurs when 0°C is
reached at the surface. The parameters are: hR/k and r/R = 1

hR/k = 200 0 005
2

× .  = 0.5

Entering the location chart at this value and reading on r/R = 1
T T
T T

−
−

∞

∞o
 is read as 0.78 (Similar to Fig. P. 6.35(b))

Using  T T
T T

T T
T T

T T
T Ti

o

i o

−
−

=
−
−

−
−

∞

∞

∞

∞

∞

∞

0 15
32 15

0 319 0 78−
− −

= =
−
−

×∞

∞
. .T T

T T
o

i

∴
T T
T T

o

i

−
−

∞

∞
 = 0.4092

Entering the center temperature chart (as illustrated in Fig. P. 6.35) at this value and
reading against hR/k = 0.5, Fourier number is read as 0.76.

∴
ατ
R2  = 0.76 ∴ τ = 0 76 0 005 2040 920

2 0
2. .
.

× × ×  = 17.83 s

The time to reach 0°C at surface = 17.83 sec.
In order to determine the mid radius plane temperature, the location chart is entered at

hR/k = 0.5, and reading against r/R = 0.5 the ratio is read as 0.942, using it center temperature
ratio is calculated,

∴  
T T
T T

T
i

−
−

= −
− −

∞

∞

15
32 15  = 0.4092 × 0.942 ∴ T = – 3.12°C

For center temperature T T
T T

o

i

−
−

∞

∞
 = 0.4092 (already read)

∴ To = – 4.23°C
To determine the heat flow:

 h
k

2

2
ατ  is calculated = 

200 2 17 83
920 2040 2

2

2
× ×

× ×
.

 = 0.19

Entering the heat flow chart at this value and reading against Bi = 0.5, Q/Qo = 0.65

∴  Q = 0.65 × 
4
3  × π × 0.0053 × 920 × 2040 (–32 –15) = – 30.02 J.
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Problem 6.37: Steel balls with density of 7900 kg/m3, specific heat of 582 J/kgK and thermal
conductivity of 24.0 W/mK initially at 800°C are cooled in an oil bath at 100°C, with a convection
heat transfer coefficient of 400 W/m2K. If the centre temperature after 103.5 seconds was 450°C,
determine the radius. Also determine the surface temperature and the percentage of internal
energy removed (above the bath temperature).
Solution: The radius is not specified. The parameter Biot number and Fourier number both
involve the unknown quantity. So trial solution is necessary.

0.5

T – To �

T – T
i �

0.5
1.0
1.5
3
10

0.17 0.22 0.30 0.38 0.60

Fo

Bi

Fig. P. 6.37

Given, T T
T T

o

i

−
−

= −
−

=∞

∞

450 100
800 100

350
700  = 0.5

Entering the centre temperature chart as illustrated in Fig. P.6.37 at this value, Fourier
numbers are read for various values of Biot numbers and are tabulated below.

Calculating radius from Biot number and using the radius and the Fourier number the
time is calculated and tabulated.

Bi 10 3 1.5 1 0.5

Fo 0.17 0.22 0.30 0.38 0.6
R 0.6 0.18 0.09 0.06 0.03

τ, s 11726 1365 465 262 103.5

The Bi = 0.5 and Fo = 0.60 the time is 103.5 seconds as required ∴ Radius of the steel
balls = 0.03 m.

The surface temperature is determined using the location chart. r/R = 1 and temperature
ratio is read entering at Bi = 0.5 against r/R = 1, as 0.78

∴ Surface temperature is given by
T −

−
100

800 100  = 0.5 × 0.78 ∴ T = 373°C

To determine the heat flow:

h2 ατ/k2 is determined as 
400 400 24 103 5
7900 582 24 24

× × ×
× × ×

.
 = 0.1475

Entering the heat flow chart at this value Q/Qo is read against Bi = 0.5 as 0.7.
∴ Percentage internal energy removed (above the surroundings) is 70.0%.
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Problem 6.38: Determine the time required to remove 50% of internal energy above the
surroundings at 30°C from a sphere of 16 cm dia at 650°C  suddenly exposed to surroundings at
30°C with a convection coefficient of 800 W/m2K. The property values are: Thermal conductivity
= 50 W/mK, specific heat = 450 J/kgK, thermal diffusivity = 2 × 10–5 m2/s. Also determine the
centre and surface temperatures at this instant. How much more time is required to remove
30% more energy.

Solution: Biot number = hR/k = 800 0 08
50
× .  = 1.28

The heat flow chart is used and the parameter Q/Qo is used to enter the chart and the
value of h2 ατ/k2 is read against the Biot number 1.28.

The value is 0.35.

∴
h
k

2

2
ατ  = 0.35 ∴ τ = 

0 35 50 50
800 800 2 10 5

. × ×
× × × −  = 68.35 seconds

The value Q/Qo = 0.8 is entered and
h2 ατ/k2 is read as 1.0

∴ The time is 68 35 10
0 35

. .
.

×  = 195.35 seconds

Additional time required is 195.29 – 68.35 = 124.94 s
Almost twice more. This is due to the continuous reduction in temperature difference.
To determine the temperature fourier number is calculated and the center temperature

chart is entered at this value and the temperature ratio is read against Bi = 1.28.

Fo = ατ
R2  = 2 × 10–5 × 68.35/0.082 = 0.214

The value read is 0.73
T T
T T

o

i

−
−

∞

∞
 = 0.73 ∴ To = 482.6°C

For the surface temperature, the location chart is read against r/R = 1, entering at
Bi = 1.28. The ratio read is 0.57

∴
T T
T T

s

i

−
−

∞

∞
 = 

Ts −
−
30

650 30  = 0.73 × 0.57 ∴ Ts = 280°C.

Problem 6.39: A steel sphere of radius 0.1 m with density = 7900 kg/m3, specific heat = 586 J/
kgK and thermal conductivity of 40.0 W/mK initially at 100°C is exposed to convection at 1000°C
with convective heat transfer coefficient of 400 W/m2K. Determine the temperatures at r/R = 0,
0.4, 0.6, 0.8 locations at 8, 16, 24 and 32 minutes times. Plot the temperature to scale.
Solution: The Fourier number are calculated for the various terms specified. The center
temperature ratios are found using the center temperature chart entering at the Fourier
numbers corresponding to the specified Times (Fig. P. 6.39 (a)). Then location chart is used at
the Biot number for the given radius ratios (Fig. P. 6.39 (b)). These are tabulated.
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 Biot Number = hR
k

= ×400 0 1
40

.  = 1.0, α = 
k
cρ

=
×

40
7900 586  = 8.64 × 10–6

1.0

0.935
0.86
0.75
0.63 0.4

r/R

0.6
0.8
1.0

Bi

0.463

0.17

0.06

0.02

T – To �

T – T
i �

Bi = 0.4

0.415 0.83 1.245 1.66

Fo

T – Tr �

T – T��

Fig. P.6.39 (a) Fig. P.6.39 (b)

Time min 8 16 24 32

Fo, (ατ/R2) 0.415 0.83 1.245 1.66

Centre temp. ratio 0.463 0.17 0.06 0.02

Location temperature ratios read are:

r/R 0 0.4 0.6 0.8 1.0

Modifier 1 0.935 0.86 0.75 0.63

Center temp. ratio T T
T T

o

i

−
−

∞

∞
 = 0.463

To −
−
1000

100 1000  = 0.463 ∴ To = 583.3°C

To find surface: temperature;

 
T T
T T

T
i

−
−

= −
−

∞

∞

1000
100 1000  = 0.463 × 0.63 Ts = 737.5°C

The calculated temperatures are tabulated below and shown plotted in Fig. P. 6.39 (c)

Time
Location, r/R

0 0.4 0.6 0.8 1

8 583.3 610.4 641.6 687.5 737.5
16 847 857 868.4 885.3 903.6
24 946 949.5 953.6 959.5 966
32 982 983.2 984.5 986.5 988.7
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400 W/m K
2

100°C

1000°C

982
946

847

583

100°C

737

� = 0

0 0.4 0.8 1.0
r/R

30

24

16

8 min

903

966
988

Fig. P. 6.39 (c)

Problem 6.40: A brinjal in the shape of a sphere of radius 5 cm initially at 25°C is cooked in
water at 100°C with convection coefficient of 240 W/m2K. Taking the properties as below calculate
the time for the temperature at the centre to reach 40, 50, 60, 70 and 80°C density = 1100 kg/m3,
specific heat = 4100 J/kgK, Thermal conductivity = 0.6 W/mK.
Solution: The centre temperature ratios and also the Biot number are specified. So the
corresponding Fourier numbers are read from the centre temperature chart (Fig. P. 6.40).

Bi = hR
k

= ×240 0 05
0 6

.
.  = 20, α = 

0 6
1100 4100

.
×  = 0.133 × 10–6 m2/s

Center Temp. °C 40 50 60 70 80

Temperature ratio 0.8 0.67 0.53 0.4 0.267
(To – T∞)/(Ti – T∞)
Fo, ατ/R2 0.09 0.118 0.145 0.18 0.228
(from chart) (extrapolated)
Time, s 1691 2217 2725 3383 4245

Sample calculation for 40°C, centre temperature ratio is

 T T
T T

o

i

−
−

= −
−

∞

∞

40 100
25 100  = 0.8

Fourier Number read is 0.09

∴ 0.09 = ατ/R2 = 0.133 × 10–6 × τ × 1
0 052.

∴ τττττ = 1691.25 sec

Obviously cooking as a whole piece is not desirable as it may take more than an hour.
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A B

703 C
679

0.35 m.sq
0

2
662 656.3

1

3

650°C

4

0.67

T – To �

T – T
i �

Fo

0.53

0.4

0.267

Bi = 20

0.145 0.118 0.15 0.228

Fig. P. 6.40

Problem 6.41: A long steel billet of 35 × 35 cm section initially
at 35° is exposed to 800°C gases with h = 110 W/m2K in a
furnace. Determine the time needed for the centre to reach
650°C. Also determine the temperatures at the points 1 and
3, 4 shown in Fig. P. 6.41 at this time. The properties are:
density = 7833 kg/m3, specific heat: 465 J/kgK. Thermal
conductivity: 41.5 W/mK. Also calculate the heat input per 1
m length.
Solution: The billet is exposed on four faces to convection.
Hence a product solution with two slabs of 2L = 0.35 m or L
= 0.175 m is to be used, using Heisler charts.

hL
k

=
×

×
110 0 35

2 415
.
.  = 0.464

Given  
T T
T Ti

−
−

= −
−

∞

∞

650 800
35 800  = 0.196. This is the actual value.

The solution for the centre temperature ratio is the product of the two temperature
ratios taking one infinite slab of AD – BC and another of AB – CD. In this case both slabs are
identical. So the solution for one slab is

T T
T Ti

−
−

=∞

∞
0 196.  = 0.443

Entering the chart at this value and reading on Bi = 0.464 the Fourier number ατ/L2 = 2.2.

 τ = 2 2 0 35 2
415

2. ( . / )
.

×  × 7833 × 465 = 5913 sec = 1 hour 38.6 min

(Note for rectangular shapes, time for a given center temperature cannot be directly
determined. Trial solution is necessary. The trial is to be in terms of assuming several time
intervals and then finding the center temperature to obtain a match.)

To obtain the temperature at point 1.
The ratio is product of mid temperature of one slab and x/L = 0.5 for the other slab. For

x/L = 0.5, the location modifier is obtained for hL/k = 0.464 and x/L = 0.5.
Using the location chart it is found as = 0.957, ∴ Temperature ratio = 0.443 × (0.957 ×

0.443)
∴ T1 = 656.3°C.

Fig. P. 6.41
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For point 3, 4 surface temperature ratio is also required: This ratio from location chart
for x/L = 1 is 0.803.

∴ For point 3, mid plane of one and surface of the second.
∴ Temperature ratio = 0.443 × 0.443 × 0.803 = 0.1576
∴ T3 = 679.4°C
For point 4, it is the surface of both:
∴ Temperature ratio = 0.443 × 0.443 × 0.803 × 0.803 = 0.12654
∴ T4 = 703.2°C
The corner temperature is highest as it is exposed on both sides to heating.
The heat flow is determined

Using h2 ατ/k2 = 110 415
7833 465

5913
415

2

2
×
×

×.
.

 = 0.473 and hL/k = 0.464

 
Q
Q  = 0.78 From Table 6.1

   Q
Qo

 = Q
Q

Q
Q

Q
Qo i o o

L
NM
O
QP

+
L
NM
O
QP

−
F
HG
I
KJ

L
N
MM

O
Q
PP2 1

1

= 0.78 + 0.78 × 0.22 = 0.9516
∴  Q = 0.9516 × 0.35 × 0.35 × 1 × 7833 × 465 (800 – 35)

= 324.8 × 106 J per m length.
Problem 6.42: A refractory brick of size 6 cm × 9 cm × 20
cm at 1400°C is exposed suddenly to convection at 30°C
with h = 60 W/m2K. Determine the center temperature,
corner temperatures and temperature at the centre point of
all faces after 45 minutes.
Solution: Property values are k = 1 W/mK, density = 2645
kg/m3, Specific heat = 960 J/kgK.

The solid can be considered as a combination of three
infinite slabs of

(i) 2L = 6 cm, (ii) 2L = 9 cm & (iii) 2L = 20 cm

L, m 0.03 0.045 0.1

hL/k 1.8 2.7 6

ατ/L2 1.182 0.525 1063

Centre temperature
ratio, from chart 0.33 0.6 0.96

Location Temp. ratio 0.5 0.4 0.22

For 0.03 value hL/k = 60 × 0.03/1 = 1.8

Fig. P. 6.42 (a).

6

20

C C

9

f
f

f

1

C
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Using the centre temperature chart the temperature ratios are read as illustrated in
(Fig. P. 6.42 (b)) and tabulated

∴ The centre temperature ratio is
θ
θ

θ
θ

θ
θ

θ
θi i i i

= × ×
1 2 3

0.96

0.6

0.33

0.1063 0.525 1.182

T – To �

T – T
i �

Bi

1.8

2.7

6

Fo

0.4

0.22

1.22 2.7 6.0

Bi

T – Tx �

T – To �

xL = 1

0.5

Fig. P. 6.42 (b), (c).

For the centre: Temperature ratio = 0.33 × 0.6 × 0.96 = 0.19

∴
T −

−
30

1400 30  = 0.19 ∴ T = 290.3°C

To determine surface and corner temperatures:
The location modifier for the three slabs at Bi = 1.8, 2.7 and 6 and x/L = 1 (Fig. P. 6.42

(c)) are read and tabulated.
The corner temperatures:
All corners are on the face of the three slabs considered:
∴  Temp. ratio = (Products or center temp. ratios) × (Products or surface temp. ratios)

= 0.33 × 0.6 × 0.96 × 0.22 × 0.4 × 0.5
∴ Tcorner = 41.45°C
For the centre point of faces:
(i) 6 × 9 face: This point is on center plane of 6 cm slab × center plane of 6 cm  slab ×

surface of 20 cm slab:
∴ Temp. ratio = 0.33 × 0.6 × 0.96 × 0.22

  T = 87.29°C
(ii) 6 × 20 face: Center plane of 20 cm × center plane of 6 cm × surface of 9 cm

Temp. ratio = 0.96 × 0.33 × 0.6 × 0.4
∴  T = 134.2°C

(iii) 9 × 20 face: Center plane of 9 cm × center plane of 20 cm × surface of 6 cm = 0.6 × 0.96
× 0.33 × 0.5
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Base
insulated

A
4 9

105

2 7

1 6

60 sq

3
8

∴  T = 160.2°C
The temperatures at other locations can be calculated in a similar manner. The total

heat flow is given by

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q0

1

0

2

0

1

0

3

0

1

0

2

0
1 1 1= + −
L
NM

O
QP

+ −
L
NM

O
QP

−
L
NM

O
QP

Heat flows are determined calculating

h2 ατ/k2 = 
60 60 1 45 60

2645 960 12
× × × ×

× ×
 = 3.82 (common for all)

Reading against the value for hL/k values of 1.8, 2.7 and 6

∴  
Q
Q

1

0
 = 0.72, 

Q
Q

2

0
 = 0.51 and Q

Q
3

0
 = 0.26

∴  
Q
Q0

 = 0.72 + 0.51 (1 – 0.72) + 0.26 (1 – 0.72) (1 – 0.51) = 0.8984

∴  Q = 0.06 × 0.09 × 0.2 × 2645 × 960 (1400 – 30) × 0.8984 = 3376 kJ.
Problem 6.43: A vegetable piece at 20°C and of size 30 mm × 60 mm × 60 mm rests on 60 × 60
mm face while being heated by exposure to 190°C with h = 18.4 W/m2K. Determine the time
needed for the centre point of the face resting on support to reach 88°C. Also determine the
temperatures at points 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 as shown in Figure. Assume that the base is
adiabatic. The property values are density = 1000 kg/m3, specific heat 4180 J/kgK, conductivity
= 0.552 W/mK. Also calculate the heat added.

Solution: The problem can be solved as the product
solution of three identical slabs of L = 0.03 m. On the
shorter side the slab  is assumed to be half of 0.06 m
thickness, as the base is insulated.

 
hL
k  = 18.4 × 0.03/0.552 = 1.0

The temperature at ‘A’ is given and time is required:

 T T
T Ti

0 88 190
20 190

−
−

= −
−

∞

∞
 = 0.6

This is the product of three equal temperature ratios of three identical solutions
∴ The  centre temperature ratio considering one slab is = (0.6)1/3 or = 0.8434
The chart is entered at this value and Fourier number is read against Bi = 1 and the

value read is 0.37.

∴  τ τ τ τ τ = 0.37 × L2/α = 
0 37 0 03 0 03 1000 4180

0 552
. . .

.
× × × ×

 = 2521.6 sec.

To determine the temperatures at points noted, the location temperature modifier for
x/L = 0.5 and 1 are to be determined. Using the location chart and entering at Bi = 1. These
values are read as 0.908 and 0.64.

To calculate temperatures ratio. In all cases the centre temperature ratio is involved
Point 1, 5: center of two, surface of one plane

Fig. P. 6.43.
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∴ Temp. ratio = 0.84342 × (0.8434 × 0.64)
= 0.6 × 0.64 ∴ T1,5 = 124.7°C

Point 2, 4: centre of one, surface of one, quarter plane (x/L = 0.5) of one
Temp. ratio = 0.6 × 0.64 × 0.908 ∴ T2,4 = 130.7°C

Point 3, 6, 10: centre of one, surface of two
∴ Temp. ratio = 0.6 × 0.64 × 0.64 ∴ T3,6,10 = 148.2°C
Point 7, 9: surface of two and one quarter plane (x/L = 0.5)
∴ Temp.. ratio = 0.6 × 0.64 × 0.64 × 0.908

T7,9 = 152.1°C
Point 8: Surface of three
∴  Temp. ratio = 0.6 × 0.64 × 0.64 × 0.64 ∴ T8 = 163.3°C
To determine the heat flow Q/Qo, the parameter
h2 ατ/k2 is calculated

= 18 4 0 552 25216
4180 1000 0 552

2

2
. . .

.
× ×
× ×

 = 0.369

Entering the heat flow chart at this value and reading on biot number = 1, Q
Qo

 = 0.23

This is the same for all three slabs.

∴
Q
Qo

 = 0.23 + 0.23 (0.77) + 0.23 (0.77) × (0.77) = 0.5435

∴ Q = 1000 × 4180 × 0.06 × 0.06 × 0.03 × 0.5435 × (190 – 20) = 41.71 kJ
Note: The heating (or cooking) time is long.

Problem 6.44: A circular slab 20 cm dia and 20 cm thick at 1400°C is suddenly exposed to
convection all over the surface to a fluid at 30°C with h = 60 W/m2K. Determine the temperatures
after 40 minutes at the points marked in Fig. P. 6.48. The property values are: density = 2645
kg/m3, specific heat 960 J/kgK, conductivity = 2 W/mK. Also calculate the heat flow:

D Enlarged section

3 2 1

6 5 4

9 8 7

Slab Cylinder, D�

A A

Slab

20

20

Fig. P. 6.44 (a)
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A product solution used.
(i) a slab of 2 L = 20 cm or L = 0.1 m

(ii) Cylinder of radius 0.1 m.
Solution:

(i) hL
k

= ×60 0 1
2

.  = 3, (ii) hR
k

= ×60 0 1
2

.  = 3

 Fourier number = ατ/L2 = 
2

2645 960
40 60

0 12×
× ×

.  = 0.189 in both cases.

The temperature ratios at center and the location modification factors are determined
(i) by entering the charts at Fo = 0.189 and reading against hL/k = 3 and (ii) by entering the
charts at hR/k = 3 and reading against x/L or r/R = 0.5 as illustrated in Fig. P. 6.44. The values
are indicated in the figures.

Slab: Center temp. ratio: 0.902, location factor 0.5 → 0.825, 1 → 0.37

0.902
Bi = 3

Fo

0.189

T – To �

T – T
i �

Slab

Bi = 3

Fo

0.189

T – To �

T – T
i �

Cylinder

0.76

(b)

Cylinder center temp. ratio: 0.76, location factor 0.5 → 0.81, 1 → 0.34

0.825

Bi3.0Slab

T – To �

T – T�
0.37

0.5

1.0

r/R

0.81

Bi3.0Cylinder

T – To �

T – T�
0.34

0.5

1.0

r/R

Fig. P. 6.44
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Temperatures:
Point 1: Centre line of cylinder and center plane of slab
∴  Temp. ratio = 0.76 × 0.902 ∴ T1 = 969.2°C
Point 2: Centre line of cylinder, 0.5 surface of slab
∴  Temp. ratio = 0.76 × 0.902 × 0.825 ∴ T2 = 804.8°C
Point 3: Centre line of cylinder, and surface of slab
∴  Temp. ratio = 0.76 × 0.902 × 0.37 ∴ T3 = 377.5°C
Point 4: Mid radius of cylinder and center plane of slab
∴  Temp. ratio = 0.76 × 0.81 × 0.902 ∴ T4 = 790.7°C
Point 5: Mid radius of cylinder and 0.5 plane of slab

 Temp. ratio = 0.76 × 0.81 × 0.902 × 0.825 ∴ T5 = 657.6°C
Point 6: Mid radius of cylinder and surface of slab

 Temp. ratio = 0.76 × 0.81 × 0.902 × 0.37 ∴ T6 = 311.5°C
Point 7: Surface of cylinder and center plane of slab
∴  Temp. ratio = 0.76 × 0.34 × 0.902 ∴ T7 = 293.4°C
Point 8: Surface of cylinder 0.5 Plane of slab

 Temp. ratio = 0.76 × 0.34 × 0.902 × 0.825 ∴ T8 = 299.8°C
Point 9: Surface of cylinder and surface of slab

 Temp. ratio = 0.76 × 0.34 × 0.902 × 0.37 ∴ T9 = 148.9°C
Note: In all cases:

 
T T
T T

T
i

−
−

= −
−

∞

∞

30
1400 30  = Temperature ratio

As it is to be expected, the edge cooled quicker.
To determine heat flow h2 ατ/k2 is calculated.

as R = L, the value for both is 60 60 2 40 60
2645 960 22
× × × ×

× ×
 = 1.7

Entering heat flow chart

For slab 
Q
Qo

 = 0.32, for cylinder 
Q
Qo

 = 0.58

∴  
Q
Qo

 = 0.32 + 0.58 (1 – 0.32) = 0.7144

∴ Q = 0.7144 × 2645 × 960 × π × 0.12 × 0.2 × (1400 – 30) = 15.62 × 106 J.

Problem 6.45:  A hemispherical piece of radius 0.1 m initially at 1400°C is exposed to convection
all over its surface to a fluid at 30°C with convective heat transfer coefficient of 60 W/m2K.
Determine the temperatures at points 1, 2, 3, 4, 5, 6 as shown in Fig. P. 6.44 (a). The elapsed is
40 minutes.
Solution: The property values are: density = 2645 kg/m3

Specific heat: 960 J/kgK, Conductivity = 2 W/mK.
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The problem can be solved taking the solid as a composite of a sphere and slab, the
dimensions being 0.1 m

 
hL
k

hR
k

= × =60 0 1
2

3. ,  = 3

64

1 2 3

0.1 m

5
Hemisphere

5

4

1 2 3

6

Half slab
h

h

Fig. P. 6.45 (a), (b).

ατ ατ
L R2 2 2

2 40 60
2645 960 0 1

= = × ×
× × .

 = 0.189

as R = L
h2 ατ/k2 = 1.7 (see problem 6.44)

Reading the temperature ratio charts and heat flow charts as diagrammatically shown
in Fig. P. 6.45

Plane: center: 0.902 Mid plane: 0.825 Surface = 0.37
Sphere: center: 0.59 Mid plane : 0.798 Surface = 0.345

Termperature ratio: 
T T
T T

T
i

−
−

= −
−

∞

∞

30
1400 30

Point 1: Center of sphere and surface of slab
∴  Temperature ratio = 0.59 × 0.902 × 0.37 ∴ T1 = 299.8°C
Point 2: Mid radius of sphere and surface of slab

Temp. ratio = 0.59 × 0.798 × 0.902 × 0.37 ∴ T2 = 245.27°C
Point 3: Surface of sphere, surface of slab

 Temp. ratio = 0.59 × 0.345 × 0.902 × 0.37 ∴ T3 = 123°C
Point 4: Mid radius of sphere and 0.5 plane of slab

 Temp. ratio = 0.59 × 0.798 × 0.902 × 0.825 ∴ T4 = 510°C
Point 5: Surface of sphere and mid plane of slab

 Temp. ratio = 0.59 × 0.345 × 0.902 ∴ T5 = 281.5°C
Point 6: Surface of sphere and 0.5 plane of slab

 Temp. ratio = 0.59 × 0.345 × 0.902 × 0.825 ∴ T6 = 237.5°C



VED

c-4\n-demo\damo6-5

C
ha

pt
er

 6

TRANSIENT HEAT CONDUCTION 273

The lowest temperature is at the edge (3) as it should be.

0.902
Bi = 3

Fo

0.189

T – To �

T – T
i �

Bi = 3

Fo

0.189

T – To �

T – T
i �

0.59

0.825

Bi3.0

T – To �

T – T
�

0.37
0.5

1.0

x/L

0.798

Bi3.0

T – To �

T – T
�

0.345
0.5

1.0

r/R

h k
2 2
��/

1.7

Q
Q

�

0.32

0.51

1.7

Bi = 3

Slab

Q
Q

�

h k
2 2
��/Sphere

Bi= 3

(a)

(b)

(c)

Fig. P. 6.45.

The heat flow is calculated by using the parameter h2 ατ/k2 = 1.7 and entering the chart
at this value and reading against the Biot number 3 (Fig. P. 6.45(c))

For slab Q
Qo

 = 0.32, for sphere Q
Qo

 = 0.51

 
Q
Qo

 = 0.32 + 0.51 (1 – 0.32) = 0.6668

∴  Q = 0.6668 × 1
2

4
3

×  × π × 0.13 × 2645 × 960 × (1400 – 30)

= 4.86 × 106 J.
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Problem 6.46: A semi cylinder of 0.1 m radius and 0.2 m length initially at 1400°C is exposed
all over to convection at 30°C with h = 60 W/m2K. The property values are as in problem 6.45.
Determine the temperatures after 40 minutes at points 1, 2, 3, 4, 5, 6, 7, 8, 9 shown in
Fig. P. 6.46.
Solution: This solid can be taken as combination of cylinder and two slabs. All are of 0.1 m
dimension.

9

8

7
1

Cylinder

4

5

6

2

3

0.1 m

Slab

0.2 m

0.02 m

Fig. P. 6.46.

Taking the temperature ratio values for plane and cylinder from problem 6.45. (as the
values of R, L and properties and time elapsed are the same)

Temperature ratios at locations r
R

 and x
L

 are

Location 0 0.5 1.0
Slabs 0.902 0.825 0.37

Cylinder 0.76 0.81 0.34

Temperature Ratio, in all cases,

 
T T
T Ti

−
−

∞

∞
 = T −

−
30

1400 30
Point 1: axis of cylinder and surface of both slabs
∴ Temp. ratio = 0.76 × 0.902 × 0.37 × 0.902 × 0.37 ∴ T1 = 146°C
Point 2: axis of cylinder, surface of one slab and 0.5 of another slab
∴ Temp. ratio = 0.76 × 0.902 × 0.37× 0.902 × 0.825 ∴ T2 = 289°C
Point 3: axis of cylinder, surface of one slab and center plane of another slab

Temp. ratio = 0.76 × 0.902 × 0.37 × 0.902 ∴ T3 = 343.4°C
Point 4: surface of cylinder, surface of both slab

Temp. ratio = 0.76 × 0.34 × 0.902 × 0.37 × 0.902 × 0.37 ∴ T4 = 69.4°C
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Point 5: surface of cylinder, surface of one slab and 0.5 of other slab
Temp. ratio = 0.76 × 0.34 × 0.902 × 0.37 × 0.902 × 0.825 ∴ T5 = 118°C

Point 6: surface of cylinder, surface of one slab and center plane of slab
Temp. ratio = 0.76 × 0.34 × 0.902 × 0.37 × 0.902  ∴ T6 = 136.6°C

Point 7: mid radius of cylinder, mid lengths of one slab and surface of 1 slab
Temp. ratio = 0.76 × 0.81 × 0.902 × 0.825 × 0.902 × 0.37

∴ T7 = 239.5°C
Point 8: mid radius of cylinder 0.5 of one slab and 0.5 of another

Temp. ratio 0.81 × 0.34 × 0.902 × 0.825 × 0.902 × 0.825∴ T8 = 497°C
Point 9: mid radius cylinder 0.5 plane of a slab and center plane of another

Temp. ratio = 0.76 × 0.81× 0.902 × 0.825 × 0.902 ∴ T9 = 596.1°C
Note that point 4 has cooled fastest.
The heat flow can be calculated using (problem 6.48)

 
Q
Qo cyl

 = 0.58 For slab Q
Qo

 = 0.32

∴  Q
Qo

 = 0.58 + 0.32 (1 – 58) + 0.32 (1 – 0.58) (1 – 0.32) = 0.806

∴  Q = 0.806 × 0.5 × π × 0.12 × 0.2 × 2645 × 960 × (1400 – 30)
= 8.81 × 106 J.

Problem 6.47: A circular slab 20 cm dia and 20 cm thickness at 1400°C is exposed over the
curved surface to 30°C with h = 600 W/m2K and has the flat surfaces maintained by intense
cooling at 30°C. Determine the temperature at mid point properties are: density = 2645 kg/m3,
specific heat = 960 J/kgK: k = 2W/mK.
Solution: This is a combination of an infinite slab and a long cylinder. In the case of the slab,
h is very large and so hL/k = ∞ is to be noted.

For slab and cylinder ατ/L2 = 
2 40 60

2645 960 0 12
× ×
× × .  = 0.189 as L = R = 0.1m

Cylinder  hR/k = 60 0 1
2
× .  = 3

For slab entering the center temperature chart at 0.189 and reading against hL/k = ∞,
temperature ratio = 0.79. For cylinder reading against hR/K = 3, temp. ratio = 0.76

∴ Total temperature ratio = 0.79 × 0.76 = 0.6004
T −

−
30

1400 30  = 0.6004 ∴ T = 852.5°C

In case temperature at other locations are needed, the location modification chart has to
be used.
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Problem 6.48: A long cylinder of 0.2 m dia initially at 1400°C has its surface and the base
exposed to convection at 30°C with h = 60 W/m2K. Using the property values as in problem 6.48
determine the temperature at the centre of the base and at 0.1 m from the base on the axis of the
cylinder after 40 minutes.
Solution: This is a combination of long cylinder and semiinfinite slab exposed to convection.
The solution for the centre line of cylinder is used from problem 6.48. Temperature ratio = 0.76.

For the infinite slab

0.1 m
T�

h

T� h

Long cylinder

T� h

0.1 m

1 2

Fig. P. 6.48

T T
T T

x hx
k

h
k

x h
k

x i

i

−
−

= − − +
L
NM

O
QP

− +
F
HG

I
KJ

L
N
MM

O
Q
PP∞

(
)

exp1
2

1
2

2

2erf erf
ατ

ατ
ατ

ατ

(i) x = 0,

T −
−

1400
30 1400  = 1 – exp h

k
h

k

2

2 1ατ ατ−
F
HG

I
KJ

L
N
MM

O
Q
PPerf

= 1 – exp 60 60 2 40 60
2 2645 960

1 60 2 2645 960 40 60
22

× × × ×
× ×

L
NM

O
QP

−
× × ×L

N
MM

O
Q
PPerf ( / ( ))

= 1 – 5.481 × [1 – 0.93401]

= 1 – 0.6383 ∴ 
T T
T Ti

−
−

∞

∞
 = 1 – 0.6383 = 0.3617

(ii) x = 0.1

T T
T T

h
k

h
k

h
k

x i

i

−
−

= −
F
HG

I
KJ − +

L
NM

O
QP

− +
F
HG

I
KJ

L
N
MM

O
Q
PP∞

1 0 1
2

0 1 1 0 1
2

2

2erf erf. exp . .
ατ

ατ
ατ

ατ

= (1 – 0.89612) – 110.09 [1 – erf (1.15 + 1.304)] = 0.0467

∴
T T
T Ti

−
−

∞

∞
 = 1 – 0.0467 = 0.9533

Temperature at the centre of base:

 Temp. ratio = T1 30
1400 30

−
−

 = 0.76 × 0.3617 = 0.2749 ∴ T1 = 406.6°C
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At 0.1 m from base: on centre line:

 Temp. ratio = T2 30
1400 30

−
−

 = 0.76 × 0.9533 ∴ T2 = 1022.6°C

At a long distance from base temperature (using 0.6 cylinder only) = 1071.2°C.
Problem 6.49: A slab 0.24 m thick initially at 80°C has both surfaces suddenly lowered to
20°C and surfaces maintained at the level. Thermal diffusivity = 1.5 × 10–6 m2/s. Using numerical
method estimate the temperature at various locations of the slab at the end 30 minutes. The
slab is shown in Fig. P. 6.49.
Solution: One half of the slab can be considered for solution as both sides are identical.

Choosing nodal distance of 0.03 m. The nodal temperature at node 1 is 20°C at all times
after, 0 sec. Considering node other than, 5

net heat conducted to node 2 = heat stored in the node.
For node 2:

12345

20°C
at = 0�

�x
= 0.03

�x �x �x

Fig. P. 6.49. Nodes.

kA T T
x

kA T T
x

cA T T
p p p p

p p1 2 3 2
2

1
2

−F
HG

I
KJ +

−F
HG

I
KJ = × −+

∆ ∆
∆ρ ( )

where p denotes time interval number.
Simplifying and assuming ∆x2/α∆τ = 2, for the chosen value of ∆x = 0.03

∆τ = 300 sec.
 T p

2
1+  = ( ) /T Tp p

1 3 2+

Similarly  T p
3

1+  = ( ) / , ( ) /T T T T Tp p p p p
4 2 4

1
5 32 2+ = ++

For node, 5, there is heat flow only from node 4

( )T Tp p
4 5−  = ρ cA ∆ x

2  ( )T Tp p
5

1
5

+ −

∴ T p
4  = ρc

k
x. ∆
∆τ

2

2
 ( )T T Tp p p

5
1

5 5
+ − +

as ρc
k

x. ∆
∆τ

2

2
 = 1; T p

5
1+  = T p

4

The present last nodal temperature equals the previous temperature of the last but one
node.
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The solution is given as a tabulation. The temperature at any time intervals are the
mean of the adjacent temperature at the previous level for nodes 2, 3, and 4, and for T5 it is
equal to the temperature at the previous interval at T4.

Time, end of T1 T2 T3 T4 T5
minute

0 20 80 80 80 80
5 20 50 80 80 80

10 20 50 65 80 80
15 20 42.5 65 72.5 80
20 20 42.5 57.5 72.5 72.5
25 20 38.75 57.5 65 72.5
30 20 38.75 51.875 65 65
35 20 35.94 51.875 58.43 65

At 30 min the nodal temperatures are 20, 37.35, 51.9, 61.72 and 65°C (at nodes 2 and 4,
mean value is taken).

OBJECTIVE QUESTIONS

6.1 Choose the correct statement
(a) Transient conduction means very little heat transfer
(b) Transient conduction means conduction when the temperature at a point varies with time
(c) Transient conduction means heat transfer for a short time
(d) Transient conduction means heat transfer with very small temperature difference.

6.2 Choose the correct statement
Lumped parameter model can be used when
(a) the thickness is small
(b) when the conductivity is high
(c) when the convective heat transfer coefficient is low
(d) when conditions (a), (b) and (c) are true

6.3 Choose the correct statement
In the lumped parameter model, the temperature variation is
(a) linear with time (b) sinusoidal with time
(c) exponential with time (d) cubic with time.

6.4 Choose the correct statement
The response time of a thermocouple is the time taken for the temperature change to be
(a) 0.5 of original temperature difference
(b) 1/1.414 of original temperature difference
(c) 1/e of original temperature difference
(d) 99% of the original temperature difference.

6.5 Choose the correct statement
To make a thermocouple to respond quickly
(a) the wire diameter should be large
(b) convective heat transfer coefficient should be high



VED

c-4\n-demo\damo6-5

C
ha

pt
er

 6

TRANSIENT HEAT CONDUCTION 279

(c) density should be very small
(d) specific heat should be high.

6.6 Choose the correct statement
Semi infinite model can be adopted when
(a) thickness of the solid is very large (b) heat diffusion is very slow
(c) short time period (d) all of these.

6.7 The temperature distributions in a semi infinite solid with time are shown in Fig. 6.7 (a), (b), (c)
and (d) match these with the statements and figures
(1) sudden surface temperature change (2) cooling
(3) convection boundary (4) constant heat flux.

x

T

�

x

T

(a) (b)

�

Fig. E. 6.7 (a, b)

�

x

�

x

(c) (d)

T T

Fig. E. 6.7 (c, d)

6.8 Choose the correct statement
Heating or Cooling of a road surface can be analysed using
(a) lumped parameter model (b) Infinite slab model
(c) Semi infinite slab model (d) none of these.

6.9 Match the figures and the statements under transient conditions.
(1) cooling (2) heating
(3) steady state (4) heat generation.
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�

x

�

x

TT

�

x

T

x

T
All
times

(a) (b) (c) (d)

Fig. E. 6.9 (a, b, c, d)

EXERCISE PROBLEMS

6.1 For the materials with the following values of conductivity and a convective heat transfer coeffi-
cient of 60 W/m2K, determine the minimum diameter for cylindrical shape for which lumped
parameter model can be applied
(a) Aluminium k = 204.2 W/mK (b) Silumin with k = 136.8 W/mK
(c) Steel k = 43.3 W/mK (d) Nickel steel with k = 19.1 W/mK
(e) Inwar with k = 10.7 W/mK.

6.2 In the problem 6.1 determine the diameter if spherical shape is used.
6.3 In the problem 6.2 determine the thickness if flat slab shape is used.
6.4 Determine the maximum value of convective heat transfer coefficient for the following materials

of spherical shape of diameter 0.05 m for the application of lumped parameter model
(a) k = 204.2 W/mK (b) k = 136.8 W/mK
(c) k = 43.3 W/mK, and (d) k = 107 W/mK.

6.5 Determine the time constant for the following materials if the wire is of 1 mm dia and exposed to
convection at 50 W/m2K. The property values are:

Material density, Specific heat, Thermal conductivity
kg/m3 J/kgK W/mK

a 2700 896 204.2
b 2660 867 136.8
c 8196 461 10.4
d 8954 381 386
e 8922 394 24.9
f 19350 134 162.7
g 10525 235 407

6.6 Pellets of 3 mm × 10 mm × 8 mm size are to be cooled from 25°C to –90°C in atmosphere at
– 176°C with a convection coefficient of 45 W/m2K. The material properties are density = 10525
kg/m3, specific heat = 235 J/kg/K, Thermal conductivity = 407 W/mK. Determine the time re-
quired.

6.7 Plate glass 5 mm thick at 200°C is to be cooled from both sides using air at 40°C. If surface
cracks are to be avoided, determine the maximum value of convective heat transfer coefficient.
Material properties are density = 2500 kg/m3, specific heat 670 J/kgK. Thermal conductivity
0.744 W/mk. Also determine the time required in this case to cool the plate to 80°C.
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6.8 Cylindrical pellets are used to store heat in a heat recovery process. The pellets are to be heated
from 200°C to 300°C using gas at 400°C. The convective heat transfer coefficient attainable is 40
W/m2K. The pellets are then to be cooled to 200°C using air at 60°C with a convective heat
transfer coefficient of 50 W/m2K. The pellets are cylindrical and 15 mm dia and 20 mm long. The
properties of material are: Thermal conductivity = 12 W/mK, density 2400 kg/m3, specific heat
= 456 J/kgK. Determine the batch time (1 heating and 1 cooling). Also calculate the heat recov-
ered for 1 kg of material per batch.

6.9 In an air preheater of rotary storage type the mass moves over the cold air portion during 6
seconds and is exposed to air at 35°C. The mass is made of wires of 3 mm dia with property
values of density = 7900 kg/m3, specific heat = 394 J/kgK and conductivity of 25 W/mK. The
material when entering the cooling zone is at 260°C. If convective heat transfer coefficient has a
value of 245 W/m2K. Determine the termperature at the end of cooling cycle.

6.10 In problem 6.9, if the mass has to be heated from a temperature of 155°C to 260°C by using gases
at 320°C, determine the time required. Also determine the heat collected per kg of material.
If these two processes are to be accommodated in 300° of the rotation, calculate angles of each
sector and the rpm.

6.11 Ice flakes at 0°C are to be cooled to –20°C for long time storage by passing these through a cold
chamber at –40°C with a convection coefficient of 25 W/m2K. The flakes are 2 mm thick and 5
mm square and are exposed on one side to convection. Determine the time required; density
= 920 kg/m3, k = 2.25 W/mK, specific heat = 2261 J/kg.

6.12 A constant thermocouple wire of 0.4 mm dia is to be used to measure a temperature of 600°C.
The wire is initially at 35°C. If the thermocouple should read 595°C in 2 seconds, determine the
value of convection coefficient required. Density = 8922 kg/m3, Sp. heat = 410 J/kgK; Thermal
conductivity = 22.7 W/mK.

6.13 Ice in the form of long cylinders of dia 15 mm at –20°C are exposed to air at 30°C with a convec-
tion coefficient of 15 W/m2K. How long can it be kept exposed before the ice begins to melt. The
property values are: density = 920 kg/m3, specific heat = 2261 J/kgK conductivity = 2.25 W/mK.

6.14 A tool bit in the shape of 15 mm square and 5 mm thickness is to be heated from 40°C to 1200°C
using gases at 1500°C, without much of distortion with Biot number to be restricted to 0.05.
Calculate the maximum value of convective heat transfer coefficient that can be used. How long
will the heating take? density = 19350 kg/m3 sp. heat = 134 J/kgK, k = 162.7 W/mK.

6.15 A thick billet initially at 40°C has its surface temperature increased and maintained at 900°C.
Determine the heat input needed for maintaining the surface temperature for 20 minutes, over
an area of 0.5 m2. Also determine the temperature at a depth of 0.05 m at this time. Thermal
diffusivity = 1.17 × 10–5 m2/s, conductivity = 28 W/mK. Specific heat = 460 J/kgK.

6.16 Sudden flow of lava raises and maintains the surface temperature of soil at 1400°C. Determine
the temperature after 12 hours at the following depths
(i) 0.2 m (ii) 0.4 m and 1 m. Thermal diffusivity = 2.6 × 10–6 m2/s; k = 0.325 W/mK. Also deter-
mine the heat flow into the ground. Specific heat = 796 J/kgK.

6.17 Sandy soil heated by lava flow to 400°C to a considerable depth has its surface suddenly exposed
to snow which reduced the surface temperature to 0°C. Determine taking the property values
from problem 6.16, the depth at which the temperature will be 200°C after 12 hours from the
time it started snowing.

6.18 Hot water from a process at 60°C is continuously let into the top layer of a pond. There is little
chance of mixing of layers. Determine the temperature at a depth of 40 mm from the hot water
layer after exposure to the hot water for 6 hours. Thermal diffusivity = 1.44 × 10–10 m2/s. Also
calculate the heat going into the cold water over this period k = 0.5978 W/mK. Specific heat
= 4180 J/kgK.
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6.19 Warm water at a constant temperature of 60°C is kept in a concrete container of wall thickness
0.2m, initially at 25°C. Estimate the time it will take for the outside surface temperature of the
wall to begin to increase. Thermal diffusivity = 4.9 × 10–7 m2/s. Also determine the temperature
at 5 cm from inside at this time.

6.20 A furnace starts operation at 6 am. The inside surface temperature increases immediately to
900°C. The wall was at 100°C to start with. If the wall is 25 cm thick determine the time elapsed
before the outside surface temperature will begin to increase. Thermal diffusivity = 1.67 × 10–6

m2/s. At this point of time determine the temperature at 12.5 cm from inside.
6.21 Chill wind at –20°C flows over a thick wall initially at 18°C and the convective heat transfer

coefficient over the surface is 65 W/m2K. Determine the surface temperature and the tempera-
ture at a depth of 0.05 m from surface after 1 hour. Also calculate the heat loss from the wall
during the period. Thermal diffusivity = 2.2 × 10–6 m2/s. Thermal conductivity = 1.35 W/mK.

6.22 Process gases at 800°C are let into a chimney lined with 20 cm layer of chrome brick which was
initially at 60°C. The convective heat transfer coefficient has a value of 65 W/m2K. Determine
assuming the radius to be large, the surface temperature and the temperature at 5 cm depth
after 45 minutes. Thermal diffusivity = 1.67 × 10–6 m2/s.

6.23 An ice block at –15°C has air at 20°C flowing over the surface with a convective heat transfer
coefficient of 25 W/m2K. Determine the time at which the surface will begin to melt. Thermal
diffusivity = 1.08 × 10–6 m2/s, k = 2.25 W/mK. At this instant determine the temperature at a
depth of 3 cm.

6.24 An ice block at –15°C kept open has a heat flux of 600 W/m2 incident over the ice. Determine
when the surface will begin to melt. Thermal diffusivity = 1.08 × 10–6 m2/s, k = 2.15 W/mK. Also
calculate the temperature at a depth of 20 cm at that instant.

6.25 Radiant heating is used to heat a thick plate at 30°C with a surface flux of 5 kW/m2. Determine
the surface temperature after 30 minutes. Thermal diffusivity = 6.7 × 10–5 m2/s. Also determine
the temperature at 15 mm depth at this time. k = 22.5 W/mK.

6.26 A thermocouple of 0.2 mm dia wire is used to measure the temperature of a gas which varies
sinusoidally  with  a  period  of  5  minutes.  Determine  the percentage of error expected. h = 60
W/m2K; density = 8200 kg/m3. Specific heat = 560 J/kgK. Conductivity = 12 W/mK.

6.27 A thick metal plate is exposed to a cyclic variation of temperature at the surface with a period of
10 minutes. Determine the lag and amplitude of variation at a depth of 2 cm. Thermal diffusivity
= 1.67 × 10–6 m2/s. Also determine the depth upto which this variation will be felt.

6.28 A metal surface is exposed to periodic temperature variation of the surface which is sinusoidal.
If the depth of peneration is more than 1 cm distortion will occur. If the period is 5 minutes check
whether distortion will occur. Thermal diffusivity = 6.6 × 10–6 m2/s.

6.29 A large plate of 0.16 m thickness initially at 600°C is allowed to cool in air at 30°C with surface
convection coefficient of 35 W/m2K. Thermal diffusivity = 9.6 × 10–6 m2/s: conductivity = 43.5 W/
mK. Determine the temperature at the centre, surface and at (x/L) = 0.5 plane after 30 minutes.
Also estimate the heat flow during the time.

6.30 A refractory wall 0.2 m thick, initially at 60°C is exposed on one side to gases at 600°C with a
convection coefficient of 60 Wm2K. Determine the time elapsed for the temperature at 0.1 m
from  surface  to  reach  300°C.  Assume one side is adiabatic. Thermal diffusivity = 1.16 × 10–6

m2/s. Conductivity = 2.2 W/mK. Also determine the surface temperatures at this instant. Calcu-
late also the heat conducted into the wall during this time.

6.31 A large slab of meat is to be cooked by heating on both sides in an oven at 180°C. The meat is 4
cm thick and is initially at 30°C. The convective heat transfer coefficient over the surface is 80
W/m2K. The meat is well cooked when the centre temperature is 150°C. Determine the time
required for the cooking. Thermal diffusivity = 2.69 × 10–7 m2/s. Also estimate the surface tem-
perature at this time. k = 0.7 W/mK.
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6.32 A large slab of thickness 0.18 m at 800°C is allowed to cool in air at 40°C with a convective heat
transfer coefficient of 45 W/m2K. Determine the time for the surface to reach 600°C. Estimate
the centre temperature at this time. Thermal diffusivity = 8.6 × 10–6 m2s, k = 12 W/mK. What
will be the average temperature of the slab if no further cooling is allowed.

6.33 Estimate the time required to remove 60% energy over the datum of 60°C in a slab of 0.18 m
thickness exposed to convection at 60°C with h = 85 W/m2K. The thermal diffisuvity = 8.6 ×
10–6 m2/s. Thermal conductivity = 12 W/mK. Calculate the centre and surface temperatures at
this time.

6.34 The surfaces of a slab of 0.16 m thickness initially at 60°C is suddenly brought to 300°C by
intense heating and maintained at this value. Determine the time for the centre to reach 280°C.
Thermal diffusivity = 6.6 × 10–6 m2/s. Also estimate the temperature at 0.04 m depth from the
surface.

6.35 Estimate and plot the temperatures at 10, 20, 30 and 40 minutes, along the thickness of a large
wall of 0.26 m thickness exposed on both sides to convection to 600°C with h = 75W/m2K. The
initial temperature was 100°C. Thermal diffusivity = 6.6 × 10–6 m2/s. k = 15 W/mK.

6.36 A long cylinder of radius 0.09 m initially at 700°C is allowed cool by convection over the surface
to surroundings at 30°C with h = 42 W/m2K. The material has a conductivity of 19.2 W/mK and
a thermal diffisivity of 5.3 × 10–6 m2/s. Determine the surface and centre temperatures and also
the temperature at mid radius after 20 minutes.

6.37 A concrete column of 0.4 m dia initially at 15°C has its surface exposed to chill winds at –30°C
with a convective heat transfer coefficient of 45 W/m2K. Estimate the time for the centre to reach
0°C. Thermal diffusivity = 4.9 × 10–7 m2/s. Conductivity = 1.3 W/mK. Estimate the surface tem-
perature also. Calculate the heat loss during the period. Sp. heat = 1130 J/kgK.

6.38 A pudding in the shape of a cylinder of 5 cm dia is to be cooked for the centre to reach 80°C using
steam at 120°C with a convection coefficient of 165 W/m2K. The properties are: density
1100 kg/m3. Sp. heat 3800 J/kgK, conductivity 0.8 W/mK.
Determine the time required.

6.39 A long cylinder of 50 mm dia at 30°C is to be heated in hot air at 180°C till the surface tempera-
ture increases to 100°C. The convection coefficient over the surface is 25 W/m2K. Determine the
time required. Thermal diffusivity = 4.8 × 10–6 m2/s. Conductivity = 45 W/mK.

6.40 In a batch process long cylinders are to be heated in 10 minutes from 30°C to a centre tempera-
ture of 600°C in hot surroundings at 800°C with a convective heat transfer coefficient of 80 W m2K.
If the conductivity is 18 W/mK and thermal diffusivity is 3.6 × 10–6m2/s, determine the maxi-
mum possible diameter.

6.41 A sphere of 0.6 m dia initially at 600°C is allowed to cool in air at 30°C with a convective heat
transfer coefficient of 35 W/m2K. Determine the temperatures at the centre, mid radius and
surface after 30 minutes. Thermal diffusivity = 3.3 × 10–6 m2/s. Thermal conductivity = 7.2 W/
mK. Specific heat = 837 J/kgK. Determine also the heat removed.

6.42 A vegetable piece of spherical shape and of dia 6 cm is to be cooked from 30°C till the centre
reaches 75°C using steam at 110°C with a convection coefficient of 40 W/m2K. Determine the
time required. Thermal diffusivity = 1.7 × 10–7 m2/s. Conductivity = 0.67 W/mK. Also calculate
the surface temperature at this instant.

6.43 Steel balls of dia 0.2 m for a large bearing are to be cooled in a salt bath after healting to 720°C.
The bath is at 160°C. The convection coefficient is 35W/m2K. Determine the time required for
the ball surface to reach 230°C.  Density = 7865 kg/m3, specific heat = 461 J/kgK. Thermal con-
ductivity 12.8 W/mK. Also calculate the centre temperature and average temperature for this
period of cooling.

6.44 Meat balls of dia 10 cm are cooked from initial temperature of 30°C to 90°C (at surface) in a
steam cooker at 130°C with a convection coefficient of 85 W/m2K. Determine the time required.
Thermal diffusivity = 1.7 × 10–7 m2/s. Conductivity = 0.7 W/mK. Also calculate the centre tem-
perature and heat conducted. Specific heat = 3800 J/kgK.
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6.45 A cube of 10 cm side initially at 30°C is heated in a furnace at 1200°C with a convective heat
transfer coefficient of 125 W/m2K. Determine the time for the centre to reach 900°C. Thermal
properties are: density = 2400 kg/m3; conductivity = 1.965 W/mK ; specific heat = 1130 J/kgK.

6.46 A brick like object of sizes 6 × 9 × 15 cm at 30°C is heated in a furnace at 1200°C with a convec-
tion coefficient of 85 W/m2 K. Determine the centre, corner and mid surface temperatures after
30 minutes. Density = 2400 kg/m3; conductivity = 1.965 W/mK. Specific heat = 1130 J/kgK.

6.47 A long billet of 9 cm × 15 cm section initially at 30°C is heated all around and at the base by
gases at 1200°C with a convection coefficient of 125 W/m2K. Determine the corner and base
centre temperatures after 20 minutes. Use property values of problem 6.46.

6.48 A short cylinder 10 cm radius and 20 cm height initially at 630°C is suddenly exposed to air at
30°C with a convective heat transfer coefficient of 25 W/m2K. Determine the centre and edge
temperatures after 20 minutes. Use property value of problem 6.46.

6.49 A quarter sector of a cylinder of radius 0.1 m and height 0.2 m at 630°C is suddenly exposed to
air at 30°C with a convection coefficient of 25 W/m2K. Determine the centre temperature. Use
property values of problem 6.46.

6.50 A quarter of a sphere of radius 0.1 m initially at 600°C is exposed on all surfaces to convection at
30°C with a convective heat transfer coefficient of 25 W/m2K. Determine the temperature at
corners, middle of edges and middle point of solid after 20 minutes. Use property values of prob-
lem 6.46.

6.51 A 1/8 part of a sphere of radius 0.1 m initially at 600°C is exposed on all surfaces to convection at
30°C with a convective heat transfer coefficient of 25 W/m2K. Determine the temperatures at
corners and mid point of edges and the centre of the solid after 20 minutes. Use property values
of problem 6.46.

6.52 A slab at 200°C has a heat generation of 2 × 10–6 W/m3 started at time zero. The slab is 0.18 m
thick and is exposed on one side to convection to 200°C a convection coefficient of 150 W/m2K.
Using numerical method determine the temperature at various thicknesses after 30 minutes.
Thermal diffusivity = 8.58 × 10–6 m2/s. k = 19.9 W/mK.

6.53 Using the data in problem 6.52 for a long cylinder to diameter 0.18 m. Determine using numeri-
cal method the temperature after 30 minutes from the start of heat generation at various radial
positions.

Answers for Objective Questions
1. (b), 2. (d), 3. (c), 4. (c), 5. (b), 6. (d), 7. 1-d, 2-c, 3-a, 4-b, 8. (c), 9. 1-b, 2-c, 3-d, 4-a.
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7.0    INTRODUCTION

In the previous chapters during the discussion of conduction problems convection was applied as

a boundary condition only. The basic mechanism of convection was not discussed so far. In this

chapter it is attempted to explain the basic mechanism of convection. In industrial processes

involving heat transfer, convection plays a very important role. When heat is to be transferred

from one fluid to another through a barrier convection is involved on both sides of the barrier. In

most cases the main resistance to heat flow is by convection.

The process of heat transfer between a surface and a fluid flowing in contact

with it is called convection. If the flow is caused by an external device like a pump or

blower, it is termed as forced convection. If the flow is caused by the buoyant forces generated

by heating or cooling of the fluid the process is called as natural or free convection.

In the previous chapters the heat flux by convection was determined using equation.

q = h (T
s
 – T

∞
) ...(7.1)

q is the heat flux in W/m2, T
s
 is the surface temperature and T

∞ 
 is the fluid temperature of the

free stream, the unit being °C or K. Hence the unit of convective heat transfer coefficient h is W/

m2 K or W/m2 °C both being identically the same.

In this chapter the basic mechanism of convection and the method of analysis that leads to

the correlations for convection coefficient are discussed. In this process the law of conservation of

mass, First law of themodynamics and Newtons laws of motion are applied to the system.

Convective heat transfer coefficient is influenced by (i) fluid properties like density, viscosity

and other thermal properties like specific heat, conductivity (ii) the flow velocity and (iii) the

surface geometry. As the properties vary with temperature and location the value of convective

heat transfer coefficient will vary from point to point. This leads to the situation that analytically

derived equations are applicable only to a limited extent. Practical correlations obtained through

experiments are discussed in the next chapters. Property table for various fluids available in hand

books is necessary for obtaining numerical value for convective heat transfer coefficient.

7.1 MECHANISM OF CONVECTION

In conduction, energy is transferred as heat either due to free electron flux or lattice vibration.

There is no movement of mass in the direction of energy flow. In convection, energy flow occurs at

the surface purely by conduction. But in the next layers both conduction and diffusion-mass

movement in the molecular level or macroscopic level occurs. Due to the mass movement the rate

C
h

a
p
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r 
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the rate of energy transfer is higher. Higher the rate of mass movement, higher will be the
heat flow rate.

The velocity variation and the temperature variation at a point in the flow of a fluid
over a surface is shown in Fig. 7.1.

x qc

Heat flow T� Ts

y

U�

u(y)

Surface
of plate

T(y)

�
�
T
y y = 0

Fig. 7.1. Velocity and temperature variation of a point in a fluid flowing over
a surface, laminar flow, plate hotter.

The fluid coming in contact with the surface receives heat by conduction. This is passed
on by diffusion and mass movement to the fluid in the free stream.

Considering conduction at the surface layer the heat flux is given by the equation

 q = – k 
∂
∂
T
y y = 0

...(7.2)

where k is the thermal conductivity of the fluid. Combining equations (7.1) and (7.2) we obtain
equation. (7.3) for Convection coefficient.

 h = – k 
∂
∂
T
y

T T
y

s
=

∞−
0

( ) ...(7.3)

As the values of thermal conductivity of the fluid and the temperatures of the surface
and the fluid, Ts and T∞ are known, the value of convection coefficient can be determined if the
temperature gradient at the surface is known. The model postulated is used to solve for
temperature as a function of y so that the temperature gradient can be calculated. The gradient
is influenced by   the fluid stream and the surface. Boundary layer theory is applied for the
determination of the gradient.
Example 7.1: Convert equation (7.3) into dimensionless form.This is done first by replacing
T by a dimensionless temperature T* = (T – Ts)/(T∞ – Ts) and y by a dimensionless distance
y* = y/L.

Solution: ∴ ∂
∂

∂
∂

T
y

T T
L

T
yy

s

=

∞=
−

0

( ) *
*

 y = 0

Substituting and rearranging
hL
k  = ∂

∂
∂
∂

[( )/( )]
( / ) *

T T T T
y L

y T
y

s s− −
=∞ 0 or *  y = 0 ...(7.4)
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It may be noted that hL/k is dimensionless and this group is known as Nusselt number
(Nu), a ratio of conduction resistance to heat flow (L/k) and convection resistance to
heat flow (1/h).
Example 7.2: Air at 20°C flows over plate at 60°C. The temperature at a location 0.5 mm from
the surface is measured as 40°C. Determine the value of local convective heat transfer coefficient.
The thermal conductivity may be taken as 0.2656 W/mK.

Solution:  Approximately the gradient near the surface is
∂
∂
T
y  = − 20

0.0005  °C/m.
Using equation (7.3)

h = – 0.02656 × (– 20/0.0005)/(60 – 20) = 26.56 W/m2K.
As the distance is small, linear variation of temperatures is assumed. Hence this value

becomes an estimate rather than an exact value.

Example 7.3: Air at 20°C flows over a surface at 80°C. The local heat flow was measured at a
point as 1000 W/m2. Esimate the value of local convective heat transfer coefficient, temperature
gradient at the surface and the temperature at a distance of 0.5 mm from the surface. Thermal
conductivity of air can be taken as 0.02826 W/mK.
Solution: The value of local convection coefficient is determined using equation (7.1).

 1000 = h(80 – 20), ∴ h = 16.67 W/m2K
The temperature gradient at the surface is determined using equation (7.2).

1000 = – 0.02826 
∂
∂
T
y y = 0

∴
∂
∂
T
y y = 0

 = – 35385.7°C/m.

The temperature at 0.0005 m is 80 + ∂
∂
T
y y = 0

 × ∆y (approximately)

= 80 – 0.0005 × 35385.7 = 62.3°C

7.2 THE CONCEPT OF VELOCITY BOUNDARY LAYER

We have seen that in the determination of the convective heat transfer coefficient the key is
the determination of the temperature gradient in the fluid at the solid-fluid interface. The
velocity gradient at the surface is also involved in the determinations. This is done using the
boundary layer concept to solve for u = f(y), T = f ′(y). The simplest situation is the flow over a
flat plate. The fluid enters with a uniform velocity of u∞ as shown in Fig. 7.2. When fluid
particles touch the surface of the plate the velocity of these particles is reduced to zero due to
viscous forces. These particles in turn retard the velocity in the next layer, but  as these two
are fluid layers, the velocity is not reduced to zero in the next layer. This retardation process
continues along the layers until at some distance y the scale of retardation becomes negligible
and the velocity of the fluid is very nearly the same as free stream velocity u∞ at this level. The
retardation is due to shear stresses along planes parallel to the flow.

The value of y where velocity u = 0.99 u∞∞∞∞∞ is called  hydrodynamic boundary
layer thickness denoted by δδδδδ. The velocity profile in the boundary layer depicts the variation
of u with y, through the boundary layer. This is shown in Fig. 7.2.
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t

t

u¥
Velocity
profile

u
ydx

y
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u
u¥
— = 0.99

x
x

Fig. 7.2. Velocity boundary layer on a flat plate.

The model characterises the flow as consisting of two distinct regions (i) a thin boundary
layer in which the velocity gradients and shear stresses are large and (ii) the remaining region
outside of the boundary layer where the velocity gradients and shear stresses are negligibly
small. This is also called potential flow. The boundary layer thickness increases along the
direction of flow over a flat plate as effects of viscous drag is felt farther into the free stream.

This is called the velocity boundary layer model as this describes the variation of velocity
in the boundary layer.

The direct application of velocity boundary layer is in fluid mechanics for the
determination of the wall shear stress and then the dimensionless drag coefficient.

The net shear over the plate in flow is the wall shear and shear stress beyond the boundary
layer is zero.

The wall shear is given by the equation

 τs = µ ∂
∂
u
y y = 0

...(7.5)

It may be seen that the velocity gradient can be determined if a functional relationship
such as u = f(y) is available. Such a relationship is obtained using the boundary layer model
and applying the continuity and Newtons laws of motion to the flow. The friction coefficient Cf
is defined as below.

Cf = τs/(ρu∞
2/2) ...(7.6)

There are local and average values for both τs and Cf denoted as τs.x. τsCfx and Cf . In
heat transfer the friction coefficient by analogy is found to provide a value for Nusselt number
and hence its importance. Measured values of Cf are also available for various values of an
important parameter, namely Reynolds number. Curve fitted equations are also available for
cf..

Example 7.4: Air at 20°C flows over both sides of a surface measuring 0.2 m × 0.2 m. The drag
force was 0.075 N. Determine the velocity gradient at the surface. Kinematic viscosity has a
value of 15.06 × 10–6 m2/s. Density = 1.205 kg/m3. Also determine the friction coefficient if the
free stream velocity has a value of 40 m/s.
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Solution: Using equation (7.5)

Force = τ . A = µ A ∂
∂
u
y y = 0

 ; µ = ν . ρ ...(a)

 0 075
2

.  = 15.06 × 10–6 × 0.2 × 0.2 × 1.205 × ∂
∂
u
y y = 0

Solving ∂
∂
u
y y = 0

 = 51660.6 (m/s)/m

Using equation (7.6)

 Cf = 0 075
2 0 2 0 2

2
1205 40 40

.
. . .× ×

×
× ×

 = 0.973 × 10–3 ...(b)

Note: Check for dimensional consistency of equation (a)

Force = N, µ = ν ρ = m
s m ms

2

3. kg kg= , A = m2

∂
∂
u
y

 = 
m
s m

. 1

∴  N = m
s m

2

3
kg  m2 m

s m
. 1  = kg . 

m
s2  checks

Considering equation (b) Cf is dimensionless

N
m

m s
2

3 2
.

kg.m2  = N . s2

kg.m  = 1. Also checks.

7.3 THERMAL BOUNDARY LAYER

Velocity boundary layer automatically forms when a real fluid flows over a surface, but thermal
boundary layer will develop only when the fluid temperature is different from the surface
temperature. Considering the flow over a flat plate with fluid temperature of T∞ and surface
temperature Ts the temperature of the fluid is T∞ all over the flow till the fluid reaches the
leading edge of the surface. The fluid particles coming in contact with the surface is slowed
down to zero velocity and the fluid layer reaches equilibrium with the surface and reaches
temperature Ts. These particles in turn heat up the next layer and a tmperature gradient
develops. At a distance y, the temperature gradient becomes negligibly small. The distance y
at which the ratio [(Ts – T)/(Ts – T∞∞∞∞∞)] = 0.99 is defined as thermal boundary layer
thickness δδδδδt. The flow can now be considered to consist of two regions. A thin layer of thickness
δt in which the temperature gradient is large and the remaining flow where the temperature
gradient is negligible. As the distance from the leading edge increases the effect of heat
penetration increases and the thermal boundary layer thickness increases. The heat flow from
the surface to the fluid can be calculated using the temperature gradient at the surface (equation
7.2). The temperature gradient is influenced by the nature of free stream flow. The convective
heat transfer coefficient can be calculated using equation 7.3. Examples 7.2. and 7.3 illustrate
the principles involved. The development of the thermal boundary layer is shown in Fig. 7.3.
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T∞

Temperature
profile

Tyδtx

y

x
x

T – Ts——— = 0.99
T – Ts ∞

Ts

T∞

Fig. 7.3. Thermal boundary layer on a flat plate.

The  thermal  and velocity boundary layers will not be identical except in a case where
Pr = 1. Additional influencing factors change the thickness of the thermal boundary layer as
compared to the thickness of the velocity boundary layer at any location. Note that both boundary
layers exist together. Similar development of boundary layer is encountered in convective
mass transfer also.
Example 7.5: The temperature ratio [(Ts – T)/(Ts – T∞)] = y/0.0075 in a flow over a flat plate.
If k = 0.03 W/mK, determine the value of convective heat transfer coefficient.
Solution: The equation (7.2) is applicable for this case. The equation is

h = – k 
∂
∂
T
y

T T
y

s
=

∞−
0

( ) , from the given relationship

 
∂

∂
[( )/( )]T T T T

y
s s− − ∞  = – 1

0.0075( )
.

T T
T
ys −

=
∞

∂
∂

1

∴
∂
∂
T
y y = 0

 = – T Ts − ∞

0 0075.

Substituting
h 4 W m K

2�  � 
�

��
�
��

 ��
�0 03

0 0075
.

.
/ ( ) / .

T T
T T

s

s

Example 7.6: The temperature ratio [Ts – T)/(Ts – T∞)] = sin (πy/0.015) in flow over a flat
plate. If k = 0.03 W/mK, determine the value of convective heat transfer coefficient.
Solution: [(Ts – T∞)/(Ts – T∞)] = sin (πy/0.015)

  
∂

∂
[( )/( )]T T T T

y
s − − ∞s  = 

∂
∂y  [sin (πy/0.015)] (Ts – T∞)

= π
0 015.

 . cos (π y/0.015)  (Ts – T∞)

or ∂
∂
T
y

 y = 0 = – π( )
.

T Ts − ∞

0 015
 . cos (0) = − − ∞π ( )

.
T Ts

0 015

∴ h = – 0.03 × 
 �
�	



��

�� ( )

.

T Ts

0 015
 / (Ts – T∞) = 6.28 W/m2K.
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Example 7.7: The temperature ratio

 [(Ts – T)/(Ts – T∞)] = 1

2

y

0.0075

3

2

y

0.0075

3

�
��

�
��

�

in flow over a flat plate. If k = 0.03 W/mK, determine the value of convective heat transfer
coefficient, given.

Solution: 
( )T T

T T

s

s


 �

 = 1

2 0 0075

3

2 0 0075

3
y y

. .

�
��

�
��

�

 �
�

[( )/( )]T T T T

y

s s  �  = – 1

T T

T

ys  �

�
�

= 3
2

 y2

0 0075.
 + 3

2
 . 1

0 0075.
 at y = 0, ∂

∂
T
y

 = – ( )

.

T Ts  �
�

� 3

2 0 0075

∴ h = – 0.03 × 
  �

�
�

�
	




�
�

�( )

.

T Ts 3

2 0 0075
 / (Ts – T∞) = 6 W/m2K

Note that in this case we may have to assume that beyond  y = 0.0075, the temperature
equals T∞.

These are some of the simple temperature profiles that may be used to approximate the
value of convection coefficient.

7.4 LAMINAR AND TURBULENT FLOW

The formation of the boundary layer starts at the leading edge. In the starting region
the flow is well ordered. The streamlines along which particles move is regular. The velocity at
any point remains steady. This type of flow is defined as laminar flow. There is no macroscopic
mixing between layers. The momentum or heat transfer is mainly at the molecular diffusion
level. After some distance in the flow, macroscopic mixing is found to occur. Large particles of
fluid is found to move from one layer to another. The motion of particles become irregular. The
velocity at any location varies with respect to a mean value. The flow is said to be turbulent.
Due to the mixing the boundary layer thickness is larger. The energy flow rate is also higher.
The velocity and temperature profiles are flatter, but the gradient at the surface is steeper due
to the same reason. This variation is shown in Fig. 7.4.

T¥

x
Laminar

u¥

u¥

d

u¥

hx

Transition
Turbulent

d

hx

Fig. 7.4. Building up of boundary layer over a flat plate—Laminar—Turbulent.
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The changeover does not occur at a sharp location. However for calculations some location
has to be taken as the change over point. In the velocity boundary layer, this transition is
determined by a dimensionless group, Reynolds number-defined for flow over a plate by the
equation

Rex = ρ u∞ x/µ or u∞ x/ν ...(7.7(a))
For flow in a tube or across a tube or sphere it is given by the equation.

 Re = ρ u∞ D/µ or u∞ D/ν ...(7.7(b))
The grouping represents the ratio of inertia and viscous forces. Upto a point the inertia

forces keep the flow in order and laminar flow exists. When the viscous forces begin to
predominate, movement of particles begin to be more random and turbulence prevails.

The transition Reynolds number for flow over a flat plate depends on many factors
and may be anywhere from 105 to 3 × 106. Generally the value is taken as 5 × 105 unless
otherwise specified. For flow through tubes the transition value is 2300, unless otherwise
specified.

In the quantitative estimation of heat flow, the correlation equations for the two regions
are distinctly different and hence it becomes necessary first to establish whether the flow is
laminar or turbulent.

Turbulent flow is more complex and exact analytical solutions are difficult to obtain.
Analogical model is used to obtain solutions.

7.5 FORCED AND FREE CONVECTION

When heat transfer occurs between a fluid and a surface, if the flow is caused by a fan, blower
or pump or a forcing jet, the process is called forced convection. The boundary layer
development is similar to the descripitions in the previous section. When the temperature of a
surface immersed in a stagnant fluid is higher than that of the fluid, the layers near the
surface get heated and the density decreases in these layers.

The surrounding denser fluid exerts buoyant forces causing fluid to flow upwards near
the surface. This process is called free convection flow and heating is limited to a layer, as
shown in Fig. 7.5. The heat transfer rate will be lower as the velocities and temperature gradients
are lower. If the surface temperature is lower, the flow will be in the downward direction.

dx

x

x

Ts

Heated
plate

Boundary layer

T¥

y

u

dx

x

x

Ts

Cooled
plate

T¥

u

Fig. 7.5. Free convection boundary layer near a vertical surface.
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7.6 METHODS USED IN CONVECTION STUDIES

The important methods of analysis used in convection studies are
1. Analytical method which can again be subdivied as

(i) Formulating and solving the differential equation, also known as exact method
(ii) Formulating and solving integral equations using assumed profiles for velocity

and temperature–(approximate analysis)
(iii) Numerical finite element method

2. Dimensional analysis
3. Analogical methods which apply solutions from one transport phenomenon to another
4. Empirical correlations developed from experimental results guided by the results of

analytical methods and dimensional analysis.
The analytical methods provide a basis as well as validation for any empirical correlation

postulated using experimental results. Dimensional analysis also provides an insight into the
possible ways in which empirical relations can be attempted. Analogical method is very helpful
in extending the solutions from one transport phenomenon to another. This is particularly
found useful in treating turbulent flow.

When it comes to quantitative estimation one has to largely depend today on correlations
obtained from many experimental results. However such correlations are based on a strong
foundation laid by analytical methods and as such are reliable for design. At first glance the
number of correlations may overwhelm a learner but one has to understand that the complexity
of the phenomenon and the variety of materials encountered make it necessary to use different
correlations for different range of values of variables.

The future may prove to be completely different because the availability of softwares (of
course based on the basic principles) and powerful computers may lead to the use of the finite
element method extensively, and the correlations may be used only for a check of values so
obtained. It is necessary for a learner with the future in mind to expose himself to the use such
softwares for covection studies also.
7.6.1. Analystical method: Formulation of differential equations : We have seen that to solve
for the shear stress and friction coefficient the velocity gradient at the surface has to be
determined. Similarly to solve for the convection coefficient the temperature gradient at the
surface has to be determined. This can be done by considering control volume element in the
boundary layer and applying the law of conservation of mass, Newtons second law and first
law of thermodynamics. The resulting differential equations are solved for the given boundary
to obtain u = f(y) and T = f1(y). The gradients can be obtained by differentiation of these functions.
As the temperature and velocity gradients are negligible beyond the respective boundary layers,
it is found sufficient to restrict the solution to the boundary layer. This also provides a boundary
condition required for the solution.

The control volume in the boundary layer considered and the various quantities flowing
in and out of the element are shown in Fig. 7.6.

First the law of conservation of mass is applied to the valume of section dx, dy and depth
unity. The application of the law leads to the statement below: The net mass flow through the
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Fig. 7.6. Control volume considered for derivation of continuity equation.

bounding surfaces  of  the volume = mass stored in the volume. Considering a time interval of
dτ,

Flow through face  AB = ρu dy . 1 . dτ

Flow through face CD = ρ u.dy.1.d τ + ∂
∂x  (ρ u dy.1) dx dτ

Flow through face AD = ρv dx.1. d τ

Flow through face BC =  ρv dx.1. dτ + 
∂
∂y  (ρ ν dy.1) dy dτ

Taking the difference, Net mass flow

= ∂
∂x  (ρ u) dx dy dτ + 

∂
∂y  (ρ ν) dx dy dτ

Mass stored in the volume = dx.dy.1.dρ
simplifying, we get

 
∂ ρ

∂
∂ ρν

∂
( ) ( )u

x y
+  = ∂ρ

∂τ
...(7.8(a))

For steady flow, no storage is possible,

∴  ∂ ρ
∂

∂ ρν
∂

( ) ( )u
x y

+  = 0 ...(7.8(b))

For incompressible flow or constant density conditions ρ = constant.

 
∂
∂

∂ν
∂

u
x y

+  = 0 ...(7.8(c))

This equation is known as continuity equation.
7.6.2. Momentum equation: Newtons second law of motion is applied to the control volume.
The statement resulting from the application is

 x directional forces = rate of change of x directional momentum.
In boundary layer  analysis we are interested in the x directional faces.
The resulting equation is known as momentum equation (for x direction)
The flow quantities and forces are shown in Fig. 7.7.
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Fig. 7.7. x-directional momentum flow through the control volume.

Again an element of unit depth is considered. The pressure and body forces are neglected
as these do not contribute significantly for the boundary layer flow discussed.

Considering unit depth, the x directional momentum flow through various faces is listed
below. (constant density conditions)

face AB: u (ρ u dy.1)

face CD: u
u

x
dx��

��
�
��

�
�

 ρ u
u

x
dx��

��
�
��

�
�

 dy.1

face AD: u (ρ v dx.1)

face BC: u
u

y
dy v

v

y
dy�

�
��

�
��

�
�
��

�
��

�
�

�
�

 ρ dx.1

Neglecting higher order terms, the net momentum flow is given by

ρu �
�
u

x
 dx dy + ρu �

�
u

x
 dx dy + ρv �

�
u

y
 dx dy + ρu �

�
v

y
 dx dy

Rearranging this

ρu �
�
u

x
 dx dy + ρv �

�
u

y
 dx dy + ρu �

�
�
�

u

x

v

y
�

�
��

�
��

 dx dy

As  ∂
∂

∂
∂

u
x

v
y

+  = 0 as per the continuity equation, the net momentum flow is equal to

ρu 
∂
∂
u
x  dx dy + ρν ∂

∂
u
y

 dx dy

The net surface shear forces in the x direction is equal to
∂
∂y  � �

�
u

y

�
��

�
��
 dy dx
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Rearranging,

u ∂
∂
u
x

 + ν ∂
∂
u
y

 = ν ∂
∂

2

2
u

y
...(7.9)

Where ν is the kinematic viscosity equal to µ/ρ. This is also called momentum diffusivity.
These two equations can be written in the dimensionless form by defining the following

terms.

x* = 
x
L

y y
L

u u
u

v v
u

, * , * , *= = =
∞ ∞

Then the dimensionless forms are
∂
∂

∂
∂

u
x

v
y

*
*

*
*

+  = 0 ...(7.10)

 u* ∂
∂

∂
∂

u
x

v v
y

*
*

* *
*

+  = 1 2

2Re
v

yL

∂
∂

*
*

...(7.11)

This also indicates that Reynolds number ReL plays an important role in boundary layer
flow. Equation (7.6) for coefficient of friction, Cf similarly can be expressed as

Cfx = 
2

0ReL

∂
∂
u
y y

*
* =

...(7.12)

The continuity equation and momentum equation have to be solved simultaneously to
obtain the velocity profile in the boundary layer. This leads to the determination of boundary
layer thickness and coefficient of friction, through velocity gradient.

These equations are solved by first defining a stream function ψ (x, y) that automatically
satisfies the continuity equation

u = 
∂ψ
∂y and v = – 

∂ψ
∂x .

Introducing a new variable

η = y u
vx

∞  , we can let ψ = vx u∞  f(η)

where f(η) denotes a dimensionless stream function

 u = ∂ψ
∂y

 = ∂ψ
∂η

 . ∂η
∂y

 = u∞ d f
d

[ ( )]η
η

v = – ∂ψ
∂x  = 1

2
vu

x
∞  

d f
d

f[ ( )] . ( )η
η

η η−
RST

UVW
Expressing the partial differentials in terms of η and substituting in the equation a non

linear ordinary differential equation is obtained

f(η) . d f
d

2

2
[ ( )]η
η

 + 2 d f
d

3

3
[ ( )]η
η

 = 0



VED

c-4\n-demo\damo7-1

C
ha

pt
er

 7

CONVECTION 297

The boundary conditions to be applied are

f(η) = 0 and 
d f

d
[ ( )]η

η  = 0 when η = 0. 
d f

d
[ ( )]η

η  = 1 at η = ∞.

The equation was numerically solved by Blasius in 1908. The results show that when
u

u∞
 is  plotted against  u

x
 Rex   a single  curve  results  for  the velocity profile. This is shown

in Fig. 7.8. The results are validated by experimental results by Hansen. Recent computerised
solutions also validate the results obtained.

++
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++
×

+×

×

+

×

+

×
×

+

+ Blasius

Slope = 0.332

0 1 2 3 4 5 6 7

U = 8 m/s
thin plate (No. 1)

�

1.0

0.5

u
u¥

— ——
y
x

rU x¥
m

0

Fig. 7.8. Velocity profile in a laminar boundary layer according to Blasius, with experimental data of
Hansen courtesy of the National Advisory Committee for Aeronautics, NACA TM 585.

Two significant conclusions are arrived at from the Blasius solution.

The ratio u
u∞

 reaches a value of 0.99 at

y
x  Rex  = 5
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As per the definition of boundary layer thickness y = δ at this condition. This leads to the
very important relation

 δx = 
5x
Rex

...(7.13)

The other result is that the slope at y = 0 for the velocity profile was calculated as 0.332.
When applied to the graph.

 
∂

∂

( / )u u
y
x

Rex
y

∞

=

F
HG
I
KJ 0

 = 0.332 ∴
∂
∂
u
y y = 0

 = 0.332 . u
x

Rex
∞

∴ τs = µ 
∂
∂
u
y y = 0

 = 0.332 . µ 
u
x

Rex
∞ ...(7.14)

 Cfx = 
τs

u1
2

2
∞

 = 
0 664.

Rex
...(7.15)

Cf  = 1
L

L

0z Cfx dx = 1.33 / ReL ...(7.16)

or = [2 Cf]x=L.
The coefficient of friction is not directly involved in heat transfer. Later this quantity is

related to Nusselt number using analogy between heat transfer and momentum transfer. This
quantity is more conveniently measurable by experimetal methods, compared to heat flow
measurement. Hence this coefficient proves very useful in heat transfer studies. Moody diagram
is a source for the values coefficient of friction.

Example 7.8: Water at 30°C flows over a flat plate with a free stream velocity of 0.6 m/s.
Determine the local and average friction coefficient at 0.5 m from the leading edge. Also determine
the local wall shear stress.
Solution: The property of water at 30°C is read from tables.

ν = 1.006 × 10–6 m2/s ρ = 1000 kg/m3

Rex = 
u x∞

−= ×
×ν

0 6 0 5
1006 10 6

. .
.

 = 2.98 × 105 < 5 × 105

So the flow is laminar
∴  CfL = 0.664/(ReL)0.5 = 1.22 × 10–3, Cf  = 2 × CfL. = 2.44 × 10–3

From equation (7.14) τττττsx = µ 
du
dy  y = 0 = µ 0.332 . u

x
Rex

∞

= 1.006 × 10–6 × 1000 × 0.332 × 
0 6
0 5
.
.  2 98 105. ×  = 0.219 N/m2
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7.7 ENERGY EQUATION

This equation is obtained by applying the first law of thermodynamics to the element in the
boundary layer as shown in Fig. 7.8(a). The specific heat is denoted by c.

dx

A

B C

D

dy

rucTdy

rvcTdx – k — dx
¶
¶
T
y

rcdx [{v + — dy} {T + — dy}]
¶
¶
v
y

¶
¶
T
y – k — dx + — [– k — dy]dx

¶
¶
T
y

¶
¶
T
y

¶
¶y

rcdy[{u + — dx} {T + — dx}]
¶
¶
u
x

¶
¶
T
x

Fig. 7.8 (a) Energy flow through the elemental control volume.

Considering unit depth and neglecting viscous work, the application of the first law
leads to the statement-under steady conditions, the heat flow in = heat flow out.

The energy flow with the mass flow through various faces are :
face AB: ρ u c T dy.1

face CD: ρc u u
x

dx+FHG
I
KJ

∂
∂  T T

x
dx+FHG
I
KJ

∂
∂

 dy . 1
face DA: ρ c v T . dx . 1

face BC: ρ c v v
y

dy+
F
HG

I
KJ

∂
∂  T T

y
dy+

F
HG

I
KJ

∂
∂

 . dx . 1

The net energy flow with the mass is given by (neglecting higher order terms)

ρ c u 
∂
∂
T
x  dx dy . 1 + ρ c v ∂

∂
T
y

 dx dy . 1 + ρ c T 
∂
∂

∂
∂

u
x

v
y

+
F
HG

I
KJ  dx dy . 1

The third term is zero as the quantity within the bracket is zero.
The energy conducted into the volume along the x direction is negligible. Summing the

heat conducted through face AD and BC, the net heat flow by conduction is

k . ∂
∂

2

2
T

y
 dx dy . 1

Summing up we get equation (7.17) known as energy equation

u . ∂
∂
T
x  + ν 

∂
∂
T
y  = α ∂

∂

2

2
T

y
...(7.17)

where α = k/ρc known as thermal diffusivity, as already defined in chpater 1.
The non dimensional form of the equation is obtained by defining

 T* = T T
T T

s

s

−
−∞
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u* ∂
∂
T
x

*
*  + v* 

∂
∂
T
y

*
*  = 1

Re Pr
 ∂

∂

2

2
T
y

*
*

...(7.18)

This equation indicates that Prandtl number influences the heat transfer situation in
addition to Reynolds number. The similarity between the momentum and energy equations is
obvious. If α = v, then we can say that the velocity profile calculated will directly apply for the
temperature profile α = v means Pr = 1. But this is not the case as Prandtl number have higher
values for liquids. The solutions for temperature profiles in laminar flow obtained by Pohlhausen
is shown plotted in Fig. 7.8(b).

The result is that separate temperature profiles were obtained for different Prandtl
numbers, as illustrated in Fig. 7.8(b). This is of no great use as unification is not possible.

These values when modified by Pr1/3 resulted in a single curve as shown in Fig. 7.8(c).
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Fig. 7.8 (b) Dimensionless temperature distributions in a fluid flowing over
a heated plate for various Prandtl numbers.
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Fig. 7.8 (c) Dimensionless temperature distribution for laminar
flow over a heated plate at uniform temperature.
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In this case the temperature ratio (T – Ts)/(T∞ – Ts) reached a value of 0.99 at y
x  Rex

1/2

Pr1/3 = 5.
Hence the thermal boundary layer was obtained as

δth = 
δh

xPr
x

Re Pr1/3 1/2 1/3
5= ...(7.19)

Also the slope at y = 0 was obtained as 0.332

i.e.,
∂

∂

[( )/( )]

. Re Pr

T T T T
y
x

s s

x
y

− −
F
HG
I
KJ

L
NM

O
QP

∞

=

1/2 1/3

0

 = 0.332.

∴  
∂
∂
T
y y = 0

 = 0.332 Re Pr T T
x

x s
1/2 1/3 ( )∞ −

Heat flux    qx = – k ∂
∂
T
y y = 0

 = – 0.332 k Re Pr
x

x
1/2 1/3

 (T∞ – Ts)

hx = q
T T

x

s − ∞
 = 0.332 k

x  .  Rex
1/2 Pr1/3 ...(7.20)

∴
h x
k
x  = Nux = 0.332 Rex

1/2 Pr1/3 ...(7.21)

The value of Nusselt number at length L is
 NuL = 0.334 ReL

1/2 Pr1/3 ...(7.22)

 NuL  = 0.664 ReL
1/2 Pr1/2 ...(7.22(b))

The average value of h upto L is

h  = 2 h (x = L) ...(7.23)
From experimental results it is found that these equations are applicable if the property

values are used at film temperature (Ts + T∞)/2.

Example 7.9: Air at 20°C and one atmosphere flows over a surface at 100°C with a free stream
velocity of 6 m/s. Determine the values of Reynolds number, thermal and hydrodynamic
boundary layer thicknesses and the local value and average values of convective heat transfer
coefficients at distances of 0.1, 0.25, 0.5, 0.75, 1, 1.25 m from the leading edge. Also determine
the length at which the flow turns to turbulent taking critical Reynolds number as 5 × 105.
Solution: The temperature at which properties are to be read is (20 + 100)/2 = 60°C for air at
one atmospheric pressure. The following values are read from tables:

ν = 18.97 × 10–6 m2/s, Pr = 0.696,
k = 0.02896 W/mK (these being the required ones for the problem)
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Rex = 
u x∞

ν
 , δx = 5x/Rex

1/2, δth x = δx/Pr1/3

 Nux = 0.332 Rex
1/2 Pr1/3  hx = Nux k/x, hL = 2hL

The calculated values are given below

x, m 0.1 0.25 0.5 0.75 1.0 1.25 1.5
Rex 31629 79072 1.58 × 105 2.37 × 105 3.16 × 105 3.95 × 105 4.74 × 105

δx, mm 2.81 4.45 6.29 7.7 8.89 9.94 10.89
δth x, mm 3.17 5.02 7.10 8.69 10.03 11.22 12.29

Nux 52.32 82.73 117 143.3 165.5 185 202.7
hL, W/m2K 15.15 9.58 6.78 5.53 4.79 4.29 3.91

hL, W/m2K 30.30 19.16 13.56 11.06 9.58 8.58 7.82

The distance at which Rex = 5 × 105 is determined using

 6
18 97 10 6

×
× −

x
.

 = 5 × 105, solving x = 1.58 m

plotting these tabulated result to scale, (particularly h) will be useful for understanding the
phenomenon. The reason for the reduction in the value of convective heat transfer coefficient
can be roughly explained as due to thicker layer through which diffusion has to take place
along the direction of flow.

7.8 INTEGRAL METHOD

The integral method uses the idea of control volume large enough to contain the boundary
layer and the net flows are summed by integration rather than by using the rates. The details
are shown in Fig. 7.9.

Fig. 7.9. Control volume used in the integral method.

The shear force along surface BC and the conduction across it is zero as it is beyond the
boundary layer.

The mass or energy or momentum flow is obtained by considering a small layer by at y
from the wall and integrating it over the whole face. For example, the energy flowing over face
AB is given by
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Energy flow along AB = 
0

Hz  ρ u c T dy

and the flow out across CD is given by

0

Hz  ρ u c T dy + ∂
∂x  

0

H
u c T dyzLNM O

QPρ  . dx

The heat flow is by conduction at the surface AD, and this is calculated using Fourier’s
law. (Refer solved problems 7.20 and 7.22 for detailed working).

The integration is possible if the velocity and temperature profiles satisfying the boundary
condition  is  assumed.  A suitable velocity profile satisfying boundary conditions at y = 0 and
y = δ is

u
u∞

 = 3
2

1
2

3y y
δ δ

− FHG
I
KJ ...(7.24)

This yields boundary layer thickness as
 δx = 4.64 x/ Rex ...(7.25)

The friction coefficient is given by
 Cfx = 0.647 (Rex)–0.5 ...(7.26)

The values differ from the values obtained from exact analysis only by a small percentage. An
important strength of the method is that it is possible to use it for more exacting boundary
conditions. Also it has been proved that it is possible to obtain a universal velocity profile using
dimensionless quantities. This profile can be used to obtain good approximations when other
methods fail.

The thermal boundary layer thickness can be determined using a temperature profile of
the form

T T
T T

s

s

−
− ∞

 = 3
2

1
2

3
y y
th thδ δ

−
F
HG
I
KJ ...(7.27)

This yields a local Nusselt number given by equation (7.28), which differs very little
from equation (7.20).

Nux = 0.33 Rex
0.5 Pr0.33 ...(7.28)

The use of finite element softwares for analysis will replace this method also in the near
future. But the method helps in understanding the basic principles involved. See solved problem
7.20 for derivations.

7.9 DIMENSIONAL ANALYSIS

When more than three parameters influence a problem it becomes very difficult to analyse the
effect of each on the problem. It is found desirable to group these parameters into dimensionless
parameters so that the number of variables can be reduced to three. In this attempt to formulate
dimensionless groups the π–theorem proposed by Buckingham is useful. The theorem states
that if there are m physical quantities involved in a problem requiring n primary dimensions
to express them, then the number of independent dimensionless groups that can be formed is
equal to (m–n). In case there are seven quantities and four dimensions, it is possible to group
these as
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π1 = f(π2, π3)
where π1, π2 and π3 are dimensionless groups. The dimensional analysis aids in the identification
of the groups. This approach provides a method to represent or correlate experimental results.
This method does not lead to exact functional relationship and it also does not ensure that all
the variables are correctly chosen. Fluid mechanics and Heat transfer studies involve a large
number of dimensionless parameters like Reynolds number, Nusselt number etc which have
been first identified using this method. Almost all empirical correlations are based on these
parameters so identified. The application of the method is illustrated by a problem under the
section solved problems. (7.16 and 7.17)
Example 7.10: Using the method of dimensional analysis obtain the dimensionless numbers
in the case of forced convection.

After listing out the influencing parameter with dimensions repeating variables are chosen.
The number of repeating variables equals the number of dimensions involved in representing
the influencing parameters.

Parameter Symbol Unit Dimensions

Flow length L m L
Flow velocity u∞ m/s L/t
Fluid density ρ kg/m3 M/L3

Fluid viscosity µ kg/ms M/Lt
Conductivity k W/mK ML/t3T
Specific heat C J/kg K L2/t2 T
Convection coefficient h W/m2 K M/t3 T.

L–length, M-mass, t–time, T-temperature.
Solution: There are seven variables and four dimensions. So there can be three π terms.

The length L, density ρ, conductivity k and viscosity µ are chosen as repeating variables.
These should contain all the four dimensions and one should not be a simple product of the
other. With the repeating variables each of the other parameters form the π terms. For example,
first

π1 = La ρb kc µd h = La M
L

M L
t T

M
L t

M
t T

b

b

c c

c c

d

d d3 3 3. . ...(a)

As the π terms are dimensionless, the dimensions on the R.H.S. should also be zero.
This leads to four equations, solving which the dimensionless parameter is obtained. In this
case, taking the dimensions on the R.H.S. one by one

L → a – 3b + c – d = 0
M → b + c + d + 1 = 0
t → – 3c – d – 3 = 0
T → – c – 1 = 0

Solving a = 1, b = 0, c = – 1 and d = 0
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Substituing in equation (a),

 π1 = L1 ρ0 k–1 µ0 h = hL
k (Nusselt Number)

π2 = La ρb kc µd c = La M
L

M L
t T

M
L t

L
t T

b

b

c c

c c

d

d d3 3

2

2. . . ...(b)

As before considering each dimension on the R.H.S.
L → a – 3b + c – d + 2 = 0
M → b + c + d = 0
t → – 3c – d – 2 = 0
T → – c – 1 = 0.

Solving a = 0, b = 0, c = – 1, d = 1.
Substituting in equation (b)

π2 = L0ρ0k–1µ1 c = c
k
µ (Prandtl number)

π3 = Laρbkcµdu∞ = La M
L

M L
t T

M
L t

L
t

b

b

c c

e e

d

d d3 3. . . ...(c)

Summing up the indices for each dimension.
L → a – 3b + c – d + 1 = 0
M → b + c + d = 0
t → – 3c – d – 1 = 0
T → – c = 0.

Solving, a = 1, b = 1, c = 0, d = – 1

∴ π3 = L1ρ1k0µ–1u∞ = 
u L∞ ρ

µ . (Reynolds number)

We can now write  Nu = f(Re, Pr);
But the exact function has to be determined by experiments.
Two more problems are worked out by Rayleigh method under solved problems in 7.16

and 7.17.
Example 7.11: Convert the energy equation (7.15) into dimensionless form:

The equation is given by

u ∂
∂

ν ∂
∂

T
x

T
y

+  = α ∂
∂

2

2
T

y
.

Solution: u, ν, T, x, y are the dimensional quantities. These can be replaced by using
dimensionless quantities defined below.

u* = u/u∞, ν* = ν/u∞, x* = x/L, y* = y/L and
 T* = (T – Ts)/(T∞ – Ts)

∴ u ∂
∂
T
x  = 

u u
L T Ts

*
)

∞

∞ −(  ∂
∂
T
x

*
*  , ν ∂

∂
T
y

 = 
ν *

)
u

L T Ts

∞

∞ −(  ∂
∂
T
y

*
*
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  α ∂
∂

2

2
T

y
 = k

c L T T
T

ysρ
∂
∂

. .
( )

.
*

1 *
2

1 2

2
∞ −

Substituting

u u
L T Ts

*
)

∞

∞ −(
 . ∂

∂
T
x

*
*

 + ν ∂
∂ ρ

∂
∂

*
)

.
*

.
)

.
*

u
L T T

T
y

k
c L T T

T
ys s

∞

∞ ∞−
=

−(
* 1

(
*

2
1 2

2

Cancelling common terms and multiplying and dividing R.H.S. by µ, we get

u* ∂
∂
T
x

*
*

 + ν* ∂
∂
T
y

*
*  = k

c u L
T

yµ
µ

ρ
∂
∂

. .
*∞

2

2
*

This reduces to

u* ∂
∂
T
x

*
*

 + ν* 
∂
∂
T
y

*
*  = 1 2

2Re Pr
.

*L

*∂
∂

T
y

...(7.29)

This shows that as all the quantities are dimensionless. The solutions will be similar if
ReL Pr product is equal irrespective other geometric or property values. This is easily realised
by looking at equation (7.20). Thus nondimensionalising helps in generalising experimental
results obtained with one set of parameters.

7.10 ANALOGICAL METHODS

So far we have discussed certain relationships applicable to laminar flow. Because of the
irregularity of flow it is not easy to use the exact method for the analysis of turbulent flow. In
laminar flow momentum transfer between layers is due to molecular level diffusion. In turbulent
flow large particles move from one layer to another speeding up the momentum transfer.
Similar explanation can be given for heat transfer also. Molecular movement is random. If
such randomness is assumed for particle movement also, then except for a difference in scale
both laminar and turbulent flows can be said to be similar. The values of ν and α are enhanced
in turbulent flow by additive quantities defined as eddy diffusivity of momentum and Eddy
diffusivity of heat. To enhance the rate of transfer. This leads to the conclusion that similar
correlations will result except that the constants c, m and n have to be determined separately.

   δx = c1 Rex
n1 ...(7.30)

Nu = c2 Rem2 Prn ...(7.31)
This is also established by using 1/7 power law for velocity variation and also using the

universal velocity profile correlation equations for turbulent flow which will be discussed in
the next chapters.
7.10.1.  Reynolds-Colburn analogy: Using what is known as mixing length theory, it is
shown that

τ = ρ (v + εm) 
du
dy

and q = – cpρ (α + εH) 
dT
dy

where εm is called eddy momentum diffusivity and εH is called eddy diffusivity of heat.
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From equation (7.15)
C

Re
fx

x2
0 332

1 2= .
/ ...(a)

From equation (7.21),
 Nux = 0.332 Re1/2 Pr1/3 ...(b)

This equations (a), (b) can be manipulated such that
Nu Pr

Re Pr
x

x

2 3/
 = 0332

12
.

/Rex
 = 

Cfx

2

The group 
Nu

Re Pr  reduces to hx
C uρ ∞

 which is dimensionless and is defined as Stanton

number. Hence

 hx
C uρ ∞

 . Pr2/3 = stx Pr2/3 = 
Cfx

2 ...(7.32)

This equation connects the friction factor and convective heat transfer coefficient. So if
one quantity is known, the other quantity can be determined. The equation (7.32) is known as
Reynolds–Colburn analogy. This has been found by experiments to be applicable in turbulent
flow conditions also. In general

  St Pr2/3 = 
Cf

2 ...(7.33)

7.11 CORRELATION OF EXPERIMENTAL RESULTS

The validation of the equations derived is essential before these could be confidently applied in
design situations. An experimental set up like the one shown in Fig. 7.10 can be used to measure
average values of convection coefficients.

Fig. 7.10. Experimental set up for convection measurements.

The energy supplied and temperatures can be measured for various conditions of flow.
The average value of convection coefficient can be readily calculated from measurements. The
dimensionless parameters can be calculated and the experimental results can be plotted as in
Fig. 7.11. Using the three identified parameters.

After obtaining these curves, the equations for these lines will yield the constant c, m
and  n  of  equation  of  the  form  7.32.  This  can  be  checked by plotting all the results as in
Fig. 7.12.
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Log (Nu)

Log (Re)

x
x

x
x

x
x

x x

x

x
x

x

Pr1
Pr2

Pr3

Lo
g(

N
u/

P
r

)n

Log (Re)

x

x
x

x

x

x

x

Fig. 7.11. Plot of experimental results Fig. 7.12. Unified plot of
 using dimensionless parameters.     experimental results.

The resulting single curve will establish the relationship required.
This procedure is described easily. But the actual work requires a lot of trial and also

the experimental points for extreme values of parameters like Pr may not fall on lines similar
to the ones in Fig. 7.11. A curve approximated by multiple straight lines may result in place of
single line as in Fig. 7.12.

Most of the usable correlations are the ones established by this method. Hence in
convection one has to depend to a very great extent on such experimental correlations. It is to
be mentioned that such correlations generally give results, only within about ± 25% of true
value. For more accurate determination, one has to use hand books rather than text books to
look up more suitable correlations.

There are many other boundary conditions in external flow. These are discussed in the
next Chapter 8 and the available correlations are listed. Internal flow is discussd in Chapter 9.

SOLVED PROBLEMS

Problem 7.1: Consider the flow of the following fluids at a film temperature of 40°C and a free
stream velocity of 3 m/s over a flat plate.  (a) Determine the lengths at which the flow turns
turbulent (b) Determine the thickness of boundary layer (hydrodynamic and thermal) at the
location where Re = 105. Fluids : (i) air (ii) Carbon dioxide (iii) Hydrogen (iv) water (v) mercury
and (vi) glycerine.
Solution. The property values required for these calculations are (i) kinematic viscosity and
(ii) Prandtl number. These are looked up from property tables–in some cases interpolation is
necessary. These are tabulated below:

Fluid Kinematic viscosity m2/s Prandtl number

Air 16.960 × 10–6 0.699
Carbon dioxide 9.294 × 10–6 0.76
Hydrogen 118.600 × 10–6 0.684
Water 0.657 × 10–6 4.34
Mercury 0.109 × 10–6 0.0252
Glycerine 223.000 × 10–6 2450
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The distance is calculated using the equation 7.8 (a) Turbulence starts of Re = 5 × 105.

Rex = 
u x∞

ν
∴ x = 5 10

3 0
5×

.
 . ν

The hydrodynamic boundary layer thickness is found by first finding x as above at
Re = 105 and then using  δh = 5x/Rex

0.5 equation (7.11) and the thermal boundary layer thickness
is determined using eqn. (7.17).

 δth = δh/Pr0.33. The results are tabulated below.
Tf = 40°C, u∞ = 3 m/s, critical Reynolds no. = 5 × 105

Fluid Critical Distances at Hydrodynamic Thermal
distance, Re = 105 boundary boundary

m m layer layer
Re = 5 × 105 thickness thickness mm

mm

Air 2.83 0.565 8.94 10.00
Carbon dioxide 1.55 0.310 4.90 5.37
Hydrogen 19.77 3.950 62.50 71.00
Water 0.11 0.0219 0.346 0.212
Mercury 0.018 0.00363 0.0057 0.0196
Glycerine 37.17 7.43 117.5 8.72

Note : (i) Higher the value of viscosity longer it takes for the flow to become turbulent as
the viscous forces dampen out any disturbance (ii) If the Prandtl number is less than unity,
thermal boundary layer is thicker than velocity boundary layer and vice versa.

Problem 7.2:  For the flow situations considered in problem 7.1 determine the local and average
friction coefficients up to the location where Re = 105. Also determine the local and average
convection coefficients.
Solution: Equation (7.13) is to be used for the determination of friction coefficient

 Cfx = 0.664/Rex
0.5

As Reynolds number is specified the value will be the same for all cases.

Local friction coefficient = 0.664/ ( )105  = 2.1 × 10–3

Average friction coefficient = 2 × Cfx = 4.2 × 10–3

But this friction coefficient is for different lengths from 0.00363 m for mercury to 7.43 m
for glycerine. Equation (7.20) is to be used to determine the value of convection coefficient.

 Nux = 0.332 . Rex
0.5 Pr0.33

∴ hx = Nu k
x
x .

The thermal conductivity of the materials are read from tables (some cases interpolation
is necessary).
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These are tabulated below :

Fluid Thermal conductivity at 40°C, W/mK

Air 26.56 × 10–3

Carbon dioxide 26.004 × 10–3

Hydrogen 191.256 × 10–3

Water 0.628
Mercury 8.1725
Glycerine 0.2861

Using  the above equation and the value of x from previous problem, local and average
convection coefficient are calculated and tabulated.

  u∞ = 3 m/s, T = 40°C

Fluid x at Re = 105 Nux hx W/m2K h1 , W/m2K

Air 0.565 93.17 4.38 8.76
Carbondioxide 0.310 95.80 8.04 16.08
Hydrogen 3.950 92.5 4.48 8.96
Water 0.0219 171.26 4911 9822
Mercury 0.00363 30.78 69298 138596
Glycerine 7.43 1415.3 54.5 109

Note. The value of convection coefficient is high for Mercury and water. Also note  from problem
7.1 the very thin boundary layers in these cases.

Problem 7.3: Consider the flow of the following fluids over a plate 1 m × 1 m. Determine the
free stream velocity so that flow turns turbulent just at leaving the plate. The plate is at 60°C
and the fluid is at 20°C and gases at 1 atm pressure : (i) air (ii) Helium (iii) Hydrogen (iv) Water
(v) Engine oil (vi) Freon 12 (liquid). Also determine the heat loss in this process over the plate
area.
Solution:  Turbulence may be assumed to set in at Re = 5 × 105. From the definition of Reynolds
number

 Re = u x u Re
x

∞
∞ = = ×

ν
ν, . 5 10

1
5

 × ν
The temperature at which properties are to be read are (60 + 20)/2 = 40°C. (film

temperature). These are read from property tables. Thermal conductivity and Prandtl number
values are necessary to determine convection coefficient. These values are tabulated below
(with some interpolation).

Kinematic Thermal
Fluid viscocity conductivity Prandtl number

m2/s W/mK

Air 16.96 × 10–6 26.56 × 10–3 0.699
Helium 133.4 × 10–6 157.464 × 10–3 0.6772
Hydrogen 118.6 × 10–6 191.256 × 10–3 0.684
Water 0.657 × 10–6 628 × 10–3 4.34
Engine oil 241 × 10–6 144.2 × 10–3 2870
Freon 12 200 × 10–6 69.2 × 10–3 3.5
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The calculated values as described above is tabulated. h  = 0.664 × k
x  .

Re0.5 Pr0.33 is used to calculate h .
 Q = h A∆T = h × 1 × 40
L = 1 m, Re = 5 × 105, T = 40°C, A = 1 × 1 m2

Fluid u∞ m/s h , W/m2K Q, W

Air 8.48 11.07 443
Helium 66.70 64.92 2597
Hydrogen 59.3 79.12 3164.8
Water 0.3285 480.96 19238.4
Engine oil 120.5 962.2 38486
Freon 12 100.0 49.33 1973.2

Note: 1. Higher the value of kinematic viscosity higher the initial velocity for a given Reynolds number
at a given location.

2. h  depends both on Prandtl number and conductivity.
3. Engine oil appears to dissipate  more heat. But look at the velocity required.
4. For high/low values of Pr this equation is not suitable.
5. Velocities of 100 m/s or 120.5 m/s are not practicable. The values are only for comparison.

Problem 7.4:  Air flows over a plate at a free stream velocity of 5 m/s. The plate temperature is
100°C and the air temperature is 20°C. If the average value of convective heat transfer coefficient
is 15 W/m2K, determine the length of the plate in the direction of flow. Using equation (7.20)
and (7.21), we get

 h  = 0.664 × 
k
L  ReL

0.5 Pr0.333

= 0.664 × 
k
L  u L/∞ ν  Pr0.333

or  L = 0.6642 k
h

. u2

2
∞

ν
 . Pr0.667

k, ν and Pr are to be found at film temperature of (100 + 20)/2 = 60°C. The values are read from
data book : k = 28.96 × 10–3, ν = 18.97 × 10–6 m2/s, Pr = 0.696

Solution: Substituting L = 0.6642 
0 02896

15
5

18 97 10

2

2 6
. .

. × −  × 0.6960.667 = 0.34 m

Check the validity ReL = 0 34 5
18 97 10 6

.
.

×
× −  = 89615

This is less than 5 × 105. So the flow is laminar and the equation used is valid.

Nu  = 0.664 . ReL
0.2 × Pr0.033 = 0.664 × 896150.5 × 0.6960.333 = 176.155
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∴  h  = 176 155 28 96 10
0 34

3. .
.

× × −
 = 15 W/m2K.

Problem 7.5: Air  at  1  atm  pressure flows over a plate 0.5 long with a free stream velocity of
5 m/s.  The  film temperature is 60°C. If the friction coefficient on the plate is found as 3.68
× 10–3 for one side, determine the average convective heat transfer coefficient.

The problem can be solved by using equation (7.14) and then solving for ReL and using
the same in equation (7.20) and (7.21) or (7.22) directly to determine the Stanton number and
then the Nusselt number.

Solution: Cf  = 1.334/(ReL)0.5 ...(7.14)

∴ Re1 = (1.334/Cf )2 = (1.334/3.68 × 10–3)2 = 131406.25, so laminar
Nu = 0.664 ReL

0.5 Pr0.333 = 0.664 × 131406.250.5 × 0.6960.333 = 213.31

h = 213 31 28 96 10
0 5

3. .
.

× × −
 = 12.36 W/m2K

(property values are taken from problem 7.4)
St. Pr0.667 = Cf /2 = 3.68 × 10–3/2

∴ St = 2.343 × 10–3/2
St = h/c ρ u∞

∴ h = 2.343 × 10–3 × 1005 × 1.060 × 5 = 12.48 W/m2K
The difference is due to truncation in calculation.

Problem 7.6: Nitrogen at a pressure of 0.1 atm flows over a flat plate with a free stream
velocity of 8 m/s. The temperature of the gas is – 20°C. The plate temperature is 20°C. Determine
the length for the flow to turn turbulent. Assume 5 × 105 as critical Reynolds number. Also
determine the thickness of thermal and velocity boundary layers and the average convection
coefficient for a plate length of 0.3 m.

Properties are to be found at film temperature.
Solution: Film temperature = (– 20 + 20)/2 = 0°C

As density and kinematic viscosities will vary with pressure, dynamic viscosity is read
from tables.

 µ = 16.67 × 10–6 Ns/m2, k = 24.31 × 10–3 W/mK
  Pr = 0.705, ρ = 1.250 × 0.1 = 0.125 kg/m3

 Re = 
u x∞ρ

µ  =  5 × 105

∴ x = 
5 10 16 67 10

8 0 125
5 6× × ×

×

−.
.  = 8.335 m

Check for dimensions :

u∞ = m
s m

, ρ =
kg

3  , x = m, µ = Ns/m2
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∴  m
s

kgm
m

m
Ns

kg . m
s

1
N3

2

2=  = dimensionless

As the density is low, the kinematic viscosity is higher and hence turbulence is suppressed
for a longer distance.

At x = 0.3 m, the Reynolds number is less than 5 × 105 and so the flow is laminar.
 δδδδδh = 5x/Re0.5 = 5 × 0.3/(8 × 0.125 × 0.3/16.67 × 10–6)0.5

= 5 × 0.3/ 17996 4.  = 0.01118 m or 11.18 mm
Thermal boundary

 layer thickness = δh/Pr0.33 = 11.18/0.7050.33 = 12.56 mm
Average convection coefficient:

 h  = 0 644 24 31 10
0 3

3. .
.

× × −
 (8 × 0.125 × 0.3/16.67 × 10–6)0.5 (0.705)0.33

= 6.23 W/m2K,
If the pressure was atmospheric, then boundary layers thickness is

   δδδδδh = 5 × 0.3/(8 × 1.25 × 0.3/16.67 × 10–6)0.5 = 3.54 mm
 δδδδδt = 3.54/(0.705)0.3 = 3.98 mm

h  = 0 664 24 31 10
0 3

3. .
.

× × −
 [(8 × 1.25 × 0.3/16.67 × 10–6)0.5 (0.705)0.33]

= 20.32 W/m2K.
Problem 7.7:  An aircraft flies at an altitude where the temperature is – 60°C and the pressure
is 0.08 atm. The air speed is 900 km/hr. The wing tank contains fuel at 20°C, keeping the
surface at this temperature. Assuming the effect of curvature to be small, determine the Reynolds
number at the wing tip if the wing is 3 m wide. Also determine the location from the leading
edge where Re = 5 × 105. If Cfx

 = 0.059 × Rex
–0.2, determine the value of local heat transfer

coefficient.

Solution:  Re ρ
µ

u x∞ , The values of ρ and µ are to be found at (– 60 + 20)/2 = – 20°C and 0.08

atm,
ρ = 1.395 × 0.08 kg/m3, µ = 16.18 × 10–6 Ns/m2, x = 3 m
k = 22.79 × 10–3 W/mK, Pr = 0.716, u = 900 × 1000/60 × 60 = 250 m/s

Re = 1.395 × 0.08 × 250 × 3/16.18 × 10–6 = 5.173 × 106

Flow is turbulent
The location at which Re = 5 × 105 is found using

x = 
5 10 16 18 10

1395 0 08 250
5 6× × ×

× ×

−.
. .  = 0.29 m

 Cfx = 0.059 × Rex
–0.2 = 0.059/(5.173 × 106)0.2 = 2.68 × 10–3

Using equation (7.35)
St × Pr2/3 = Cfx /2
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Nu
Re Pr

x

x
 . Pr2/3 = 2.68 × 10–3/2

∴  Nux = 2 68 10
2

3. × −
 × Rex Pr0.33

∴ hx = 22 79 10
3

2 68 10
2

3 3. . .× ×− −
 × (5.173 × 106) × (0.716)0.333

= 47.11 W/m2K
There are other correlations available which are discussed in the next chapter.

Problem 7.8: A low speed wind tunnel is to be designed for  tests upto Re = 5 × 105 with air at
0.8 atm and 20°C. The model length is restricted to 0.3 m. If the test section is 0.45 m square,
determine the mass flow required. Check whether the boundary layer on the wall will affect the
test. The tunnel length is 1.5 m.
Solution: The properties are to be obtained at 20°C

ρ = 1.205, µ = 18.14 × 10–6 Ns/m2

Rex = 
ρ

µ
u x∞  , 5 × 105 = 

1205 0 8 0 3
18 14 10 6

. . .
.

× × ×
×

∞
−

u

∴ u∞ = 31.36 m/s
∴   flow rate = (31.36 × 0.45 × 0.45) × (1.205 × 0.8) = 6.12 kg/s
The boundary layer thickness at x = 1.5 m is to be found.
The flow will be turbulent (see next chapter for correlations)
The Reynolds number = 2.5 × 106

∴ The boundary layer thickness is given by
     δδδδδ = 0.381 × Rex

–0.2 = 0.02 m
In a width of 0.45 m, 0.04 m should not cause any problem.

Problem 7.9: Investigate the effect of various parameters on the average value of convection
coefficient in laminar flow over a flat plate.

 NuL  = 2Nux = 0.664. ReL
0.5 Pr0.33.

Solution: Substituting for the dimensionless number,

  hL
k

 = 0.664 u L c
k

∞L
NM
O
QP
L
NM
O
QP

ρ
µ

µ
0.5 0.33

using 1/2 and 1/3 in place of 0.5 and 0.33

h  = 0.664 k
L  . u L c

k
∞

1/2 1/2 1/2

1/2

1/3 1/3

1/3
ρ

µ
µ

= 0.664 k2/3 u∞
1/2ρ1/2 c1/3/L1/2 µ1/6

h
h

2

1
 = k

k
u
u

c
c

L
L

2

1

2 3
2

1

1/2
2

1

1/2
2

1

1/3 1/2
1

2

1/6F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ

∞

∞

/
ρ
ρ

µ
µ

1

2
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The relationships can be summarised as below : In the laminar flow over a flat plate :
1. Convection coefficient varies directly as (2/3) power of thermal conductivity. Higher

the value of thermal conductivity higher the value of convection coefficient, but at a
reduced ratio of increase.

2. Convection coefficient varies directly as the square root of free stream velocity. If the
free stream velocity is increased four times, the convection coefficient will double.

3. The effect of density variation is similar to that of free stream velocity. Increased
density will increase the convection coefficient. But to double the coefficient density
has to increase four times.

4. The convection coefficient is directly proportional to 1/3 power of specific heat. i.e. to
double the value of convection coefficient, specific heat should increase 8 times.

5. The convection coefficient reduces with length, as the square root of the ratio. At
four times the length the average coefficient will be reduced to half the value.

6. Dynamic viscosity has also an inverse relation to 1/6th power. Increased viscosity
will reduce the convection coefficient.

Though the relations are obvious, it is better to organise these influencing parameters.

Problem 7.10: Investigate the effect of various physical parameters on the average value of
convection coefficient in fully turbulent flow from leading edge in flow over a flat plate. Using
the following equation.

 NuL = 0.037 ReL
4/5 Pr1/3

Expanding, i.e. substituting the values of physical parameters for the dimensionless
numbers.

Solution:  h L
k
L  = 0.037 

u L c
k

∞
4 5 4 5 4 5

4 5

1/3 1/3

1/3

/ / /

/
ρ

µ
µ

 hL = 0.037 k2/3 L–1/5 ρ4/5 c1/3 u∞
4/5 µ–7/15

h
h

2

1
 = k

k
c
c

u
u

L
L

2

1

2 3
2

1

4 5
2

1

1/3
2

1

4 5 1/5
1

2

7 15F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ

∞

∞

/ / / /
ρ
ρ

µ
µ

1

2

The influences are similar to that in laminar flow except for the degree.
The effect of conductivity and specific heat are the same as in laminar flow.
1. Convection coefficient proportional to the 2/3 power of thermal conductivity i.e. h

increases as k2/3.
2. Convection coefficient is proportional to 1/3 power of specific heat i.e. h increases as

c1/3.
3. Convection coefficient increases as the 4/5th power of density (as compared 1/2 power)

i.e. density increase has more pronounced effect in turbulent flow.
4. Convection coefficient increases as the 4/5th power of free stream velocity. (as com-

pared 1/2 power) i.e. velocity increase has a more prouounced effect on convection
coefficient in turbulent flow.
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5. As the distance increases, convection coefficient decreases (inverse effect), but to a
very much reduced effect i.e. 1/5th power only. With distance, the convection coeffi-
cient does not decrease rapidly.

6. Dynamic viscosity has a more pronounced effect in readucing convection coefficient
(7/15 power instead of 1/6).

Note. Density and free stream velocity have a pronounced influence in increasing the value of h
and the dynamic viscosity reduces the value of h more drastically.

With distance, the value of h does not drop rapidly in turbulent flow.

Problem 7.11: Air at 1 atm with a temperature of 500°C flows over a plate 0.2 m long and 0.1
m wide. The Reynolds number is 40,000. (flow is along the 0.2 m side). Determine the rate of
heat transfer from the plate at 100°C to air 50°C. If the velocity of flow is doubled and the
pressure is increased to 5 atm, determine the percentage change.

The properties of air are read from tables and interpolated for film temperature of 75°C.
Solution: Density: 1.0145, kg/m3 Sp. heat: 1.009 kJ/kg K

Prandtl No: 0.693 k = 30.065 × 10–3 W/mK
  µ = 20.835 × 10–5 kg/ms or Ns/m2

In the first case, the flow is laminar

∴  h  = 0.664 k
L  (ReL)0.5 Pr0.33

= 0 664 30 065 10
0 20

3. .
.

× × −
 (40000)0.5 (0.693)0.33 = 17.67 W/m2K

Q1 = 0.2 × 0.1 × 17.67 × (100 – 50) = 17.66 W.
If necessary we can determine the velocity also

40000 = 
u∞

−
× ×

×
10145 0 2

20 835 10 6
. .

. ∴ u∞ = 4.1 m/s

From problem 7.9.

h
h

2

1
 = 

k
k

u
u

c
c

L
L

2

1

2 3
2

1

1/2
2

1

1/2
2

1

1/2 1/2
1

2

1/6F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ

∞

∞

/
ρ
ρ

µ
µ

1

2

as c, L, µ and k remain the same and

 u∞2 = 2 u∞1 and 
ρ
ρ

2

1
 = 5 (as temp. is constant)

h2 = 17.66 × 50.5 20.5 = 55.85 W/m2 K
 Q2 = 0.2 × 0.1 × 55.85 × (100 – 50) = 55.85 W

Percentage change = 100 (55.85/17.67) = 316.2%
Check for laminar flow

  Re = 0 2 10145 5 4 1 2
20 835 10 6

. . .
.

× × × ×
× −  = 4 × 105.
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Problem 7.12: A rectangular plate measuring L × 2L has air flowing over the surface at a film
temperatures of Tf and free stream velocity of u∞. The heat transfer from the plate to air is the
same irrespective of the flow being parallel to L or parallel to 2L. Assuming critical Reynolds
number to be 5 × 105, and assuming that the flow is laminar when the flow direction is along L
direction, determine the outlet Reyonlds number for flow in the L direction.
Solution: As the heat flow and temperature difference and area are the same the value of
average convective heat transfer coefficient has to be the same in both cases.

If both flow are laminar, this is not possible as the average convection coefficient in the
laminar region goes on decreasing with distance. So the correlation for average convection
coefficient for both laminar and turbulent flows have to be used. Let us assume that the Reynolds
number in the L direction is Re. Then the Reynolds number in the 2L direction will be 2 Re.
The correlations are:

L direction:

Laminar NuL = hL
k  = 0.664 Re0.5 Pr0.33

2L direction combined laminar

and turbulent  Nu2L = h L
k
2  = [0.037 (2 Re)0.8 – 871)] Pr0.33 (data book)

Equating
 2 × 0.664 Re0.5 Pr0.33 = [0.037 (2Re)0.8 – 871)]Pr0.33

 1.328 Re0.5 = 0.037 (2 Re)0.8 – 871
Solving by Trial: by assuming values for Re,

(2 × 105 the residue is – 343
4 × 105 the residue is + 241).

By trial between these values, Re = 3.161 × 105

Check:  NuL = 0.664 × (3.161 × 105)0.5 Pr0.33 = 373.33 Pr0.33

Nu2L = [0.037 (2 × 3.161 × 105)0.8 – 871] Pr0.33 = 746.65 Pr0.33

As Nu2L = 2NuL, the value checks.
Problem 7.13: Water at 20°C flows over a plate 0.4 m long at 60°C with a free stream velocity
of 0.6 m/s. Check the change in the value of h if instead of the film temperature, the free stream
temperature property values are used.
Solution: Film temperature = (60 + 20)/2 = 40°C.
at 20°C:   density ρ = 1000 kg/m2 Pr = 7.020, µ = 1.006 × 10–3 kg/ms

c = 4178 J/kg K, k = 0.5978 W/mK
at 40°C: ρ = 995 kg/m3 Pr = 4.340, k = 0.628 W/mK

c = 4178 J/kg K, µ = 0.654 × 10–3 kg/ms
Using the expression derived in problem 7.9 in the laminar region

h
h

2

1
 = 

k
k

u
u

c
c

L
L

2

1

2 3
2

1

1/2
2

1

1/2
2

1

1/2 1/2
1

2

1/6F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ

∞

∞

/
ρ
ρ

µ
µ

1

2

or we can also use the direct calculation of  h.
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Substituting the values (as u∞ c and L remains constant)

h
h

2

1
 = 0 628

0 5978
995
1000

1006 10
0 654 10

2 3 1/2 3

3

1/6
.
.

.

.

/L
NM

O
QP
L
NM
O
QP

×
×

L
NM

O
QP

−

−  = 1.1075

or under estimation by about 10% (using property values at 20 °C)
First check for laminar flow:

Re = 
ρ

µ
u x∞  = 1000 × 0.6 × 0.4/(1.006 × 10–3) = 2.39 × 105

So laminar:

h1 = 2 0 664 0 5978
0 4

× ×. .
.  (2.39 × 105)0.5 (7.02)0.333 = 1856.15 W/m2K

h2  = 2 0 664 0 628
0 4

995 0 6 0 4
0 654 10 3

0.5
× × × ×

×
F
HG

I
KJ−

. .
.

. .
.

 . (4.34)0.333 = 2055.05 W/m2K

% under estimate  = 100 
2055 05 1856 15

2055 05
. .

.
−F

HG
I
KJ  = 9.68%.

Problem 7.14: A thin conducting plate separates two parallel  air streams. The hot stream is
at 200°C and 1 atm pressure. The free stream velocity is 15 m/s. The cold stream is at 20°C and
2 atm pressure and the free stream velocity is 5 m/s. Determine the heat flux at the mid point of
the plate of 1 m length.
Solution:  The plate temperature has to be assumed to determine the film temperature. As
the temperature drop on each side will be inversely proportional to the value of convection
coefficient, the ratio of convection coefficients can be a guidance in assuming the plate
temperature.

Using problem 7.9, as the pressure is 2 atm, p2 /p1 = 2

h
h

2

1
 = 

u
u

∞

∞

F
HG

I
KJ = FHG

I
KJ

2

1

2

1

1/2 1/25
15

2
1

ρ
ρ  = 0.8 (approx)

Hence an increase of 100°C on the cold side and 80°C on the hot side are assumed, fixing
the plate temperature as 120°C. The film temperatures are :

(200 + 120)2 = 160°C, (120 + 20)/2 = 70°C. The property values are read and are given
below. On the cold side, the pressure is 2 atm. So dynamic viscosity µ value should be used
with density value at 2 atm.
at 160°C: ν = 30.09 × 10–6 m2/s, Pr = 0.682, k = 36.4 × 10–3 W/mK,
at 70°C: ρ = 1.029 × 2, Pr = 0.694, k = 29.66 × 10–3 W/mK,

µ = 20.59 × 10–6 kg/ms

Check for laminar flow at 0.5 m : Reh = 15 0 5
30 09 10 6

×
× −

.
.

 = 2.49 × 105, laminar

Rec = 
5 0 5 2 1029

20 59 10 6
× × ×

× −
. .
.  = 2.5 × 105, laminar
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hhot = 0 664 36 4 10
0 5

3. .
.

× × −
 (2.49 × 105)0.5 (0.682)0.333 = 21.24 W/m2K

hcold = 0 664 29 66 10
0 5

3. .
.

× × −
 (2.5 × 105)0.5 (0.694)0.333 = 17.43 W/m2K

Equating the heat flow
21.24 (200 – T1) = 17.43 (T1 – 20)

Plate temperature ∴∴∴∴∴ T1 = 118.9°C
This is close to the value assumed and hence, no need for repeating the calculation with

this assumed value.
Heat flux = 21.24 (200 – 118.9) = 1723 W

Check 17.43 (118.9 – 20) = 1723.8 W.
Problem 7.15: Air at 200°C flows over a plane at 120°C. The air pressure is 1.8 atm. The free
stream velocity is 15 m/s. The plate measures 0.2 m × 0.4 m. The air flow was designed to be in
the direction of 0.4 m side. Due to some misunderstanding the equipment was fabricated with
the flow in the 0.2 m direction. Determine the change in performance.
Solution: Originally as per design L = 0.4 m. Now in the fabrication L = 0.2 m.

The film temperature is (200 + 120)/2 = 160°C
As pressure is different from 1 atm, density and dynamic visocity should be used in the

determination of Reynolds number.
The property values are read from tables.
density ρ = 0.815 × 1.8 kg/m3, Pr = 0.682

k = 36.4 × 10–3, µ = 24.53 × 10–6 kg/ms
L = 0.4

  h0.4  = 
2 0 644 36 4 10

0 4
15 0 4 0 815 18

24 52 10

3

6

0.5
× × ×L
NM

O
QP

× × ×
×

L
NM

O
QP

−

−
. .

.
. . .
.  0.6820.33

= 61.81 W/m2K Re = 3.59 × 105 ∴ laminar

  h0.2  = 
2 0 644 36 4 10

0 2
15 0 2 0 815 18

24 52 10

3

6

0.5
× × ×L
NM

O
QP

× × ×
×

L
NM

O
QP

−

−
. .

.
. . .
.  0.6820.33 = 87.41 W/m2K

The heat transfer rate will therefore increase.

The % increase is 100 87 41 6181
6181

( . . )
.

−  = 41.43%

Now the flow rate has to be doubled because the flow width is doubled if the velocity is
to be maintained. If the flow rate remains the same, the u∞ = 15/2. In that case,

h0.2  = 
2 0 644 36 4 10

0 2
15 0 2 0 815 18

24 52 10

3

6

0.5
× × × × × ×

×
L
NM

O
QP

−

−
. .

.
. . .
.  0.6820.33 = 61.81 W/m2K

There is no change in the value of heat transfer.
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This can be checked using equation in problem 7.9.

h
h

2

1
 = 

u
u

L
L

∞

∞

F
HG
I
KJ
F
HG
I
KJ = FHG

I
KJ
F
HG
I
KJ

1

2

1/2 1/2 1/2 1/22
1

1
2

1

2
 = 1.

Problem 7.16: Using the method of dimensional analysis, obtain the relevant dimensionless
groups in forced convection, to obtain convection coefficient.

The physical quantities pertinent to forced convection are listed below, together with
dimensions.

Physical quantity Primary dimension
(1) Flow length, L, m L
(2) Free stream velocity u∞, m/s L/t
(3) Fluid density ρ, kg/m3 m/L3

(4) Fluid viscosity µ, kg/ms m/Lt

(5) Thermal conductivity k, W/mK N kg m
s2=FHG
I
KJ mL/t3T (W = Nm/s mL2/t3)

(6) Specific heat c, J/kg K L2/t2 T(J = Nm → mL2/t2)
(7) Convection coefficient h, W/m2K m/t3T
(1) t–time (2) m–mass, (3) T–Temperature (4) L–Length.

Solution: There are seven physical quantities and four dimensions. Hence three π quantities
can be identified.

This can be done by two methods, the simpler of which is used here. All the physical
parameters together has to also form a dimensionless quantity. Calling this as π, we can write

  π = La u∞
b ρc µd ke cf hg ...(a)

= La L
t

m
L

m
Lt

mL
t T

L
t T

m
t T

b c d e f gL
NM
O
QP
L
NM
O
QP
L
NM
O
QP
L
NM
O
QP
L
NM
O
QP
L
NM
O
QP3

2

23 3

Collecting the indices of each primary dimension.
L → a + b – 3c – d + e + 2f = 0
m → c + d + e + g = 0
t → – b – d – 3e – 2f – 3g = 0
T → – e – g – f = 0

There are seven unknowns and only four equations. So three values should be arbitrarily
chosen. This should be done in such a way that by this assumption, two, of the equations are
not reduced to the same. Only then the four unknowns can be solved for.

Some general rules are :
1. The values arbitrarily fixed should be such that the primary quantity occurs only

once. In this case h is the primary quantity. So the value of g should have a non-zero
value only once.

2. The remaining parameters (after the choice of arbitrary values) should result in four
equation i.e. they should involve all the primary dimensions used. At least one of the
chosen value should be non-zero.
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3. The choice should not lead to the same equation or multiples of it, i.e. the coefficient
matrix should be non singular.

h is the quantity to be solved for. For the first dimensionless number let the index for h be
assumed as 1 i.e. g = 1. Let us assume b = 0 and c = 0. The equations reduce to

a – d + e + 2f = 0
  d + e + 1 = 0 eqns. not repeated,

– d – 3e – 2t – 3 = 0
– e – f – 1 = 0

solving a = 1, e = – 1, f = d = 0

∴ πππππ1 = L k–1 h = hL
k (Nusselt number)

Not to repeat h, the next choice is made with g = 0, and a = 1 and f = 0 to obtain
 1 + b – 3c – d + e = 0

c + d + e = 0
– b – d – 3c = 0 no equation repeated

– e = 0
This gives  e = 0, b = 1, c = 1 and d = – 1, (a = 1, f = 0, g = 0)
∴ πππππ2 = L. u∞ ρ µ–1 = ρρρρρ u∞∞∞∞∞ L/µµµµµ (Reynolds numbers)
Finally we let d = 1, b = 0, g = 0
The equations reduce to

  a – 3c – 1 + e + 2f = 0
c + 1 + e = 0 no equation repeated

 – 1 – 3e – 2f = 0
– e – f = 0

This gives f = 1, e = – 1, and d = 1 and other terms a = 0 and c = 0, b = 0, g = 0

This gives  πππππ3 = c
k
µ

(Prandtl number)

In the case of flow through pipe another physical parameter namely diameter is inolved.
This will give another dimensionless number D/L, which will be later seen in the correlations.
In eqn. (a) add the parameter D to obtain the solution.

Obviously skill is required in the choice of the first three terms and their values.
Problem 7.17: Using dimensional analysis obtain a correlation for free convection.

The physical parameters involved are:
(1) A length parameter L, L
(2) density r, kg/m3 m/L3

(3) Speccific heat c, J/kg K L2/t2T

(4) Thermal conductivity k, W/mK N kg m
s2=FHG
I
KJ mL/t3T
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(5) Viscosity m, kg/ms m/Lt
(6) Coefficient of cubical expansion b, 1/°C 1/T
(7) Temperature difference causing density change ∆T, °C T
(8) gravitational acceleration, g, m/s2 L/t2

(9) Convection coefficient h, W/m2K m/t3T
Solution: The physical parameters are nine in number. The primary dimensions involved are
four. Hence five π quantities can be found. The primary quantity is h. The dimensions involved
are tabulated below.

L ρ c k µ β ∆T g h

Mass – – √ √ – – – À
Length √ À À √ √ – – √ –
time – – √ √ √ – – √ √
temp. – – √ √ – À √ –

We can now write  π = La ρb cc kd µe βt ∆Tg gh hi

= La m
L

L
t T

mL
t T

m
Lt T

T L
t

m
t T

b c d e f
g

h i

3

2

2
L
NM
O
QP
L
NM
O
QP
L
NM
O
QP
L
NM
O
QP
L
NM
O
QP
L
NM
O
QP
L
NM
O
QP3 2 3

1

Combining for each dimension,
for L a – 3b + 2c + d – e + h = 0 ...(i)
for m b + d + e + i = 0 ...(ii)
for t – 2c – 3d – e – 2h – 3 = 0 ...(iii)
for T – e – d – f + g – i = 0 ...(iv)
As h is the primary quantity i = 1 first and a = 1, d = – 1, g = 0, h = 0 are arbitrarily

chosen.
The equations (i) – (iv) reduce to

 1 – 3b + 2c – 1 – e = 0
b – 1 + e + 1 = 0

– 2c + 3 – e – 3 = 0
 – c + 1 – f – 1 = 0

Solving b = 0, e = 0 and f = 0

This gives πππππ1 = L1 k–1 h1 = hL
k , Nusselt number

i = 0 in all other cases. The following arbitrary values are chosen.
i = 0, f = 0, e = 1, d = – 1, c = 1

Then the set of equations reduce to
a – 3b + 2 – 1 – 1 = 0

b – 1 + 1 = 0
 – 2 + 3 – 1 – 2h = 0

 – 1 + 1 + g = 0
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Solving  a = 0, b = 0, g = 0, h = 0

This gives πππππ2 = c1 k–1 µ1 = c
K  µµµµµ, Prandtl number

other choices like a = 0, i = 0, b = 0, f = 0, c = 1 will also yield the same result. Try this.
Next the following choice is made

 i = 0, f = 1, g = 1, a = 0, b = 0
This gives 2c + d – e + h = 0

d + e = 0
 – 2c – 3d – e – 2h = 0

 – c – d – 1 + 1 = 0
Solving c = 0, d = 0, e = 0, h = 0
This gives πππππ3 = β ∆β ∆β ∆β ∆β ∆T
Next we choose i = 0, f = 0, g = 0, c = 0, h = 1
The equations for L, m t and T reduce to

 a – 3b + d – e + 1 = 0
 b + d + e = 0

– 3d – e – 2 = 0
– d = 0

Solving a = 3, b = 2, e = – 2, d = 0

This gives πππππ4 = L3 2

2
ρ

µ
 g. This can be checked to be dimensionless

The product πππππ3 × πππππ4 = πππππ5 = g βββββ ∆∆∆∆∆TL3 ρρρρρ2/µµµµµ2 known as Grashof number
The product πππππ2 × πππππ3 is known as Rayleigh number and is given by

 Ra = g βββββ ∆∆∆∆∆TL3ρρρρρ2 c/µµµµµk
The work may appear tedious, but such work only has led to the correlation of

experimental results into usable relationships for design.

Problem 7.18: Using the following relationships 1, 2 and 3 for the velocity boundary layer,
derive a general expression for the y directional velocity v and obtain therefrom the value at
y = δ.

Solution: Assume continuity equation: ∂
∂

∂
∂

u
x

v
y

+  = 0 ...(1)

Velocity distribution: u
u∞

 = 
3
2

1
2

3y y
δ δ

− FHG
I
KJ ...(2)

Boundary layer thickness dx = 4.64 x/ Re x
ux =

∞

4 64 1/2 1/2

1/2
. ν

...(3)

Also obtain a relationship for the flow out of the boundary layer.
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First equation (3) is substituted in equation (2) to obtain a relationship between u∞
and x.

u
u∞

 = 
3
2  . yu x y u x∞

−
∞

−
−

1/2 1/2

1/2

3 3 2 3 2

3 3 24 64
1
2 4 64.

. .
.

/ /

/ν ν

∂
∂
u
x  = u∞ 3

2
1
2 4 64

1
2

3
2 4 64

1/2

1/2 3 2

3 3 2

3 3 2
5 2. .

.
. .

.
./

/

/
/−FHG

I
KJ − −FHG

I
KJ

L
NMM

O
QPP

∞ ∞ −y u
x

y u x
ν ν

Substituting in equation (1)

∂
∂
v
y  = – ∂

∂
u
x  = u∞ 

3
4 4 64

3
4 4 64

1/2 3 2

1/2

3 2 5 2

3 3 2
3.

.
. .

.
.

/ / /

/
u x y u x y∞

−
∞

−
−

L
NMM

O
QPPν ν

Integrating v
u∞

 = 3
4

1
2 4 64

3
4

1
4 4 64

1/2 3 2

1/2
2

3 2 5 2

3 2
4.

.
. .

.
.

/ / /

/
u x y u x y∞

−
∞

−
−

L
NMM

O
QPPν ν

Using the value of δ = 4.64 
x

u

1/2 1/2

1/2
ν

∞

v
u∞

 = 3
8

3
16

2 4

3. .y
x

y
xδ δ

− ...(A)

This is the general expression for y directional velocity v.

at y = δ, 
v

u∞
 = 

3
16

3
16

δ
x

=  4 64 1/2 1/2

1/2
. v x

u

−

∞

∴  vδ = 3
16  . 4.64 . u x∞

−1/2 1/2 1/2ν

This is dependent only on x.
The flow out of the boundary layer i.e. at y = δ, up to L can be determined by integrating

the expression:

 my = 
0

L
v dxz ρ δ  = 3

16  × 4.64 × u∞
1/2 ν1/2 

0
1/2L

x dxz −

= 3
16

4 64
1 2

1/2 1/2
1/2

0
.

( / )
L u x

L

ρ ν∞
L
NM
O
QP

= 
3
8

4 64
1/2

1/2 1/2. L u
L u

ρ ν
∞

∞

L
NMM

O
QPP

= 
3
8  ρ u∞ δL, (as δL = 4.64 L/ReL

0.5)

This can also be verified using the velocity distribution to determine the flow through
the boundary layer.
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At x = L, along x

 mδ = 
0 0

33
2

1
2

δ δ
ρ ρ δ

δz z= − FHG
I
KJ

L
N
MM

O
Q
PP∞u dy u y y( / )  dy

= ρ u∞ 3
4

1
8

2 4

3
y y
δ δ

−
L
NM

O
QP

at y = δ, mδ = 5
8  ρ u∞ δ

Flow in the free stream of depth δ = ρ u∞ δ

∴ difference = 3
8  ρ u∞ δ. As already seen this is the flow in the y direction.

Problem 7.19: Show that in the case of incompressible boundary layer flow with negligible
pressure gradient, ∂3u/∂y3 = 0 at y = 0.

The momentum equation for the boundary layer is

u ∂
∂

∂
∂

ν ∂
∂

u
x

v u
y

u
y

2

2+ = .

Solution: Differentiating with respect to y

  ∂
∂

∂
∂

∂
∂ ∂

∂
∂

∂
∂

∂
∂

u
y

u
x

u u
x y

v
y

u
y

v u
y

. . .+ + +
2 2

2  = ν 
∂
∂

3

3
u

y

∂
∂

∂
∂

∂
∂

∂
∂ ∂

∂
∂

u
y

u
x

v
y

u u
x y

v u
y

. +
F
HG

I
KJ + +

2 2

2  = ν ∂
∂

3

3
u

y

As ∂
∂

∂
∂

u
x

v
y

+  = 0 and as both u = 0 and v = 0 at y = 0 the L.H.S. is zero.

So  ∂
∂

3

3
u

y
 = 0 at y = 0

That v = 0 at y = 0 can also be seen from equation A in problem no 7.18. The assumed
velocity profile leads to

u
u∞

 = 
3
2

1
2

3y y
δ δ

− FHG
I
KJ

∂
∂
u
y

 = u∞ 3
2

1 1
2

3 12
3.

δ δ
−L

NM
O
QPy

∂
∂

2

2
u

y
 = u∞ −LNM

O
QP

6
2

1
3y

δ

∂
∂

3

3
u

y  = – 3 u∞/δ3

This is not zero. Hence the profile assumed is approximate.
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Problem 7.20: Derive the integral momentum equation for the boundary layer over a flat
plate.

tw

B C

A D

ua

Boundary
layer

y
H

dxx
x

d

ua

Fig. P. 7.20

Solution: Considering the volume ABCD, with unit depth, and with BC well removed from
boundary layer

Mass flow in through AB = 
0

H
u dyz ρ

Mass flow out through CD = 
0

H H
u dy d

dx
u dyz z+ L

NM
O
QPρ ρ

0
 dx

The difference has to come through only BC, as AD is the wall surface

∴ Mass flow in through BC = 
d
dx  

0

H
u dyzLNM O
QPρ  dx

x directional momentum flow in through

AB = 
0

H
u u dyz ρ .

x directional momentum flow in through BC, as x directional velocity well removed from
boundary layer is u∞.

= d
dx

u u dy dx
H

0z ∞
L
NM

O
QPρ .

x directional momentum flow out through CD

= 
0

2H
u dyz ρ  + d

dx
u dyzLNM O
QPρ 2  dx

The net momentum flow

= d
dx

u dy
H

0zLNM O
QPρ 2  dx – d

dx
u u dy dx

H

0z ∞
L
NM

O
QPρ

= – d
dx

u u u dy dx
H

0z ∞ −L
NM

O
QPρ ( )

As (u∞ – u) = 0 or negligible beyond, δ, the limit for integration can now be limited δ
instead of H.
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∴ Net momentum flow = – d
dx

u u u dy dx
0

δ
ρz ∞ −L

NM
O
QP( )

As the net force (neglecting pressure gradient) is – τω

– µ du
dy y = 0

 dx

∴ The momentum equation is given by

d
dx

u u u dy dx
0

δ
ρz ∞ −L

NM
O
QP( )  = µ du

dy y = 0
 dx

or
d
dx

u u u dy
0

δ
ρz ∞ −L

NM
O
QP( )  = µ du

dy y = 0

This can be integrated if function u = f(y) is known or specified.

Problem 7.21:  Assuming linear variation of velocity in the boundary layer i.e. u
u

y
∞

=
δ

, upto y

= δ, and then u = u∞, determine using the integral momentum equation, the boundary layer
thickness.

y

x

d

u

u u
u— = —

y
d

Fig. P. 7.21

Solution:
u

u
y

∞
=

δ  , ∴ u = 
u y∞

δ
.

Substituting in the integral momentum equation

d
dx

u u u dy
0

δ
ρz ∞ −L

NM
O
QP( )  = µ du

dy y = 0
...(A)

Evaluating the integral

 
0

δ
ρ

δ δz ∞
∞

∞−FHG
I
KJ

u y u u y dy  = 
0

2δ ρ
δz ∞u  y dy – 

0

2

2
δ ρ

δz ∞u  y2 dy

= 
ρ

δ
ρ

δ

δ
u y u y∞ ∞−
L
NMM

O
QPP

2 2 2

2
02 3  = 

1
6  ρu∞

2 δ
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The R.H.S.  du
dy y = 0

 = 
u∞

δ

Substituting in A

 
1
6  ρ u∞

2 δ . dδ = µ u∞ dx

Integrating
1

12  ρ u∞
2δ2 = µ u∞ x + C

As δ = 0 at x = 0, C = 0

 δ2 = 
12 2µ
ρ

x
u x∞

 = 12x2 (ν/u∞ x)

∴ δδδδδ = 12  x / Rex  = 3.46 x/ Rex

The constant is 3.46 in the place of 5 for exact solution. A cubic fit will increse this
to 4.64

 Cfx = τs/(ρu2/2) = µ du
dy y = 0

 . 2
2ρu∞

= µ 
u∞

δ
 . 2

2ρu∞
 = 

µ
ρ

.
.

2
3 46
Re

u x
x

∞ ×
 = 0.55/Rex

0.5

compare with 0.664 Rex
–0.5 by the exact analysis.

Problem 7.22: Derive the integral energy equation for the thermal boundary layer over a fiat
plate

B C

A D

u

y

H

dxx
x

dt
Tw

T

Fig. P. 7.22

Solution: Considering the volume ABCD with BC well removed from the thermal boundary
layer, and neglecting viscous work.

Mass flow through BC = d
dx

u dy dx
H

0zLNM O
QPρ (Ref. previous problem)

Energy flow in through AB = 
0

H
c u dyz ρ T

Energy flow through BC (T∞ is used as the entering fluid is at T∞)

= d
dx

c u T dy dx
H

0z ∞
L
NM

O
QPρ
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Energy flow through CD

= 
0

H
c u T dyz ρ  + d

dx
c u T dy dx

H

0zLNM O
QPρ

Net energy flow out of the element
d
dx

c u T dy dx
H

0zLNM O
QPρ  – d

dx
c u T dy dx

H

0z ∞
L
NM

O
QPρ

= – d
dx

c u T T dy dx
H

0z ∞ −L
NM

O
QPρ ( )

As T∞ – T = 0 beyond δt upper limit for inegration can be changed to δt.
This energy flow is equal to the heat conducted at the wall surface AD, as there is no

temperature gradient along the other faces.

The heat conducted = – k dT
dy y = 0

 dx

∴ The energy equation reduces to

– d
dx

c u T T dy
0

tδ
ρz ∞ −L

NM
O
QP( )  = k 

dT
dy y = 0

This equation can be integrated if u = f1(y) and T = f2(y) are known or specified. (See
standard texts for the same, a simple example is given in the next problem).
Problem 7.23:  Assuming the following velocity and temperature profiles and the integral
energy equation derive an expression for the local heat transfer coefficient

(i) u = u∞ for all values

(ii)
T T
T Tw

−
−

∞

∞
 = 

y
δ

 , δ – thermal boundary layer thickness.

Solution: (i) The energy equation is

– d
dx

c u T T dy
0

δ
ρz −L

NM
O
QP∞( )  = k 

dT
dy y = 0

Substituting the values of u and T in the L.H.S. integral

(ii)
0

δ ρ
δz ∞ ∞−c u T Tw( )  . y . dy = 

c u T T ywρ
δ

δ
∞ ∞−L

NM
O
QP

( ) 2

02

= 
c u T Twρ δ∞ ∞−( )

2

  R.H.S., k 
dT
dy y = 0

 = k ( )T Tw − ∞

δ

  d
dx

c u T Twρ δ∞ ∞−L
NM

O
QP

( )
2  = k T Tw − ∞

δ
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∴  δ dδ = 
2k

c uρ ∞
 dx, integrating

 δ2 = 4k
c uρ ∞

 x + C or as d = 0 at x = 0, C = 0

∴ δ2 = 4x2 
k
c u xρ

µ
µ

.
∞

 = 4 × x2/(RexPr)

∴ δ = 2x/(Rex Pr)0.5

hx (Tw – T∞) = 
k T Tw( )− ∞

2δ
 . (Rex Pr)0.5

∴
hx
k  = Nux = 0.5 (Rex Pr)0.5

Compare with relations for liquid metal given by
Nux = 0.565 (Rex Pr)0.5 for Pr < 0.05 and Re < 5 × 105 (for liquid metals, as the velocity

boundary layer is very thin u = u∞ is valid).
Problem 7.24: Assuming the following velocity and temperature profiles and the integral  form
of the energy equation, determine the value of the local convection coefficient

(i) u = u∞ for all y alues

(ii)
T T
T Tw

−
−

∞

∞
 = 3

2  y
δ

 – 
1
2

y 3

δ
F
HG
I
KJ , δ– Thermal boundary layer thickness.

Solution: (i) The integral form of the energy equation is

– d
dx

c u T T dy
0

δ
ρz −L

NM
O
QP∞( )  = k 

dT
dy y = 0

The L.H.S. after substitution of the profiles is (the integral only)

0

δ
ρ

δ δz ∞ ∞−L
NM

O
QP − FHG

I
KJ

L
N
MM

O
Q
PPc u T T y y

w( ) 3
2

1
2

3
 dy

c ρ u∞ (Tw – T∞) 
3
4

1
8

2
4

3
0δ δ

δ

y y−
L
NM

O
QP   = c ρ u∞ (Tw – T∞) 5

8  δ

 k dT
dy y = 0

 = k (Tw – T∞) . 3
2

1
δ

 only the first term contributes

∴  δ d
dx

δ  = 8
5

3
2

k
c uρ ∞

 , integrating

 δ2 = 
48
10

k
c u xµ

µ
ρ ∞

 x2 ∴ δ = 2.191 x
Re Prx( ) .0 5
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 3
2  k (Tw – T∞) 1

δ
 = hx (Tw – T∞)

∴
h x

k
x  = 3

2 2 191

0.5( )
.

Re Prx  = 0.685 (Rex Pr)0.5

Compare  with 0.565  (Rex Pr)0.5  correlation  for  liquid  metals for Pr <  0.05 and Rex <
5 × 105.

OBJECTIVE QUESTIONS

Choose the correct statement
7.1 The convective heat transfer coefficient in laminar flow over a flat plate

(a) increases if a lighter fluid is used
(b) increases if a higher viscosity fluid is used
(c) increases if higher velocities are used
(d) increases with distance.

7.2 In the boundary layer over a flat plate in laminar flow the velocity is
(a) zero at the boundary layer thickness.
(b) slowly decreases from the free stream to the solid surface
(c) slowly increases from the free stream to the wall
(d) only temperature in the boundary layer will be different from that of free stream.

7.3 As viscosity of fluid increases the boundary layer thickness
(a) will increase (b) will decrease
(c) will not change
(d) will increase at medium values and then will decrease.

7.4 The temperature gradient in the fluid flowing over a flat plate
(a) will be zero at the surface (b) will be positive at the surface
(c) will be very steep at the surface (d) will be zero at the top of the boundary layer.

7.5 The ratio of thermal to hydrodynamic boundary layer thickness varies as
(a) root of Reynolds number (b) root Nusselt number
(c) root of Prandtl number (d) one third power of Prandtl number.

7.6 In liquid metal flow over a flat plate (Ts > T∞)
(a) The hydrodynamic boundary layer will be very thick and thermal boundary layer will be very

thick.
(b) The hydrodynamic boundary layer will be very thin and thermal boundary layer will also be

thin
(c) The two will be more or less equal
(d) The thermal boundary layer will be thick and hydrodynamic boundary layer will be thin.

7.7 In forced convection molecular diffusion causes
(a) momentum flow in turbulent region
(b) momentum flow in the laminar region
(c) Heat flow in the turbulent region
(d) diffusion has no part in energy transfer.
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7.8 Heat transfer rate
(a) will be higher in turbulent flow (b) will be lower in turbulent flow
(c) will depend only on the fluid (d) will depend only on viscosity.

7.9 Nusselt number is
(a) ratio of viscous to inertia forces
(b) dimensionless heat transfer coefficient
(c) ratio of conduction to convection resistance
(d) signifies the velocity gradient at the surface.

7.10 Reynolds number is
(a) ratio of conduction to convection resistance
(b) ratio of buoyant to inertia forces
(c) ratio of viscous to inertia forces
(d) ratio of heat conducted to the heat capacity.

7.11 Prandtl number is
(a) ratio of buoyant force to inertia force
(b) ratio of conduction to convection resistance
(c) signifies the temperature gradient at the surface
(d) ratio of Molecular momentum diffusivity to thermal diffusivity.

7.12 The Stanton number is
(a) the dimensionless temperature gradient at the surface in convection
(b) Mass diffused to heat diffused
(c) dimensionless convection coefficient
(d) wall heat transfer/heat transfer by convection.

EXERCISE PROBLEMS

7.1 Nitrogen at 1 atm and – 20°C flows over a flat plate at 20° at a free stream velocity of 15 m/s.
Determine the boundary layer thickness, (both hydrodynamic and thermal) coefficient of drag
and local convection heat transfer coefficient at a distance of 0.4 m from the leading edge.

7.2 Air at 10 atm and 25°C flows with free stream velocity of 6 m/s over a flat plate at 75°C. Deter-
mine the heat flux at 0.05 m intervals upto a distance where the Reynolds number is 5 × 105.

7.3 A van with a roof length of 3.6 m travels in air at 30°C. Determine the speed of travel at which
the flow over the roof will turn just turbulent.

7.4 Air flows parallel to the sides of a house at – 20°C with a speed of 12 km/hr.  The size of the
surface is 4 m × 3 m, the flow being along the 4 m side. The wall surface is at 20°C. Determine
the heat loss to air from the wall.

7.5 Compare the boundary layer thicknesses at 0.4 m for the flow of
(i) air and (ii) water, with a free stream velocity of 1 m/s. The film temperature is 40°C.

7.6 Compare the value of local heat transfer coefficient at 0.2 m for flow of (i) water (ii) engine oil at
a film temperature of 40°C, with a free stream velocity of 1.5 m/s.

7.7 Compare the value of local convective heat transfer coefficient for water flow over a flat plate at
a film temperature of 40°C at Re = 5 × 105 assuming the flow to be (i) laminar (ii) turbulent

7.8 Assuming u/u∞ = y/δ, derive an expression for the y component of velocity in the boundary layer.
Use the continuity equation and δ = 3.64 x/ Rex .
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7.9 Assuming u/u∞ = sin (π  y/2δ) derive an expression for the y variation of velocity in the boundary
layer. Use the continuity equation and δ = 4.5 x/ Rex .

7.10 Derive an expression for the y direction momentum flow at the boundary layer. Use the continu-
ity and momentum equations.

7.11 Experimental results for convection coefficient for flow of air at a film temperature 30°C predicted
a value of 15 W/m2K at a location x. If the results are to be used for predictions for flow of water
at a film temperature of 30°C, for velocities of 0.1 and 0.2 times that of air, determine the value
of x at which the convection coefficient will have the same value as of that of air.

7.12 The local convection coefficient for flow of air at a film temperature of 20°C and pressure of 0.6
atm at a distance of 0.5 m was determined as 12 W/m2K. Using the result predict the value of
local convection coefficient for Hydrogen at a film temperature of 100°C and at 2 atm at a dis-
tance of 0.4 m. Assume equal velocity.

7.13 Helium at 0.2 atm and a film temperture of 50°C was used to cool a plate specimen at 100°C by
flow over the surface evolving heat at 1 kW. It is proposed to change the medium to Hydrogen
keeping the film temperature to be the same. Determine the pressure at which Hydrogen is to be
used to achieve the purpose.

7.14 It is proposed to use air flow to predict the laminar flow heat transfer characteristics of Hydro-
gen in the pressure range of 0.1 to 8 atm with flow velocities ranging from 10 m/s to 60 m/s at a
film temperature of 30°C. If the air pressure variation to be limited to 0.8 to 1.2 atm and if the
film temperature is to be 20°C and the plate length is to remain the same, determine the air
velocity range suitable for the test.

7.15 Hot gases at 120°C and 1 atm with property values approximating to that of air flows over a 1 m
× 1 m plate parallel to a side with a free stream velocity of 30 m/s. One side of the plate is
maintained at 60°C. The heat flow through the plate is no correction to be taken up by air at
20°C, flowing parallel to the hot stream with velocity of 10 m/s. Determine the pressure of the air
to be used.

7.16 A mild breeze at 7 km/hr flows over the flat roof of a building. The surface temperature is 10°C
while the air is at – 30°C. Determine the heat loss by convection over the roof of 3 m × 3 m size.

7.17 Water at 20°C flows over a plate at 80°C with a velocity of 3 m/s. The length of the plate is 1.2 m.
Determine the value of local and average convection coefficients at the trailing edge. Also deter-
mine the location at which turbulence sets in.

7.18 In the problem 7.17, determine the location in the laminar region at which the local heat trans-
fer coefficient has the same value as that at the trailing edge.

7.19 At a location the ground water temperature varies between 15°C to 25°C. This water is to be
chilled by flow over a flat plate below which brine at – 5°C flows. The rate  of flow of brine is large
so that the plate temperature can be taken to be constant at – 5°. The water flow is at a free
stream velocity of 1 m/s. Determine the change in the value of local convection coefficient during
the seasons if the plate length is 0.8 m.

7.20 The average friction coefficient in the laminar region for flow over a flat plate 0.6 m long is 3.32
× 10–6. Determine the value of average convection coefficient for flow of air at a film temperature
of 40°C. Also determine the boundary layer thickness.

Answers for Objective Questions
1. (c), 2. (b), 3. (a), 4. (d), 5. (d), 6. (d), 7. (b), 8. (a), 9. (c), 10. (c), 11. (d), 12. (c)
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CONVECTIVE HEAT TRANSFER

Practical Correlations - Flow Over Surfaces

8

8.0    INTRODUCTION

In chapter 7 the basics of convection was discussed and the methods of analysis were enumerated,

correlations were obtained for laminar flow over flat plate at uniform temperature, starting from

basic principles and using the concept of boundary layer. The application of these correlations are

limited. However these equations provide a method of correlation of experimental results and

extension of these equations to practical situations of more complex nature. Though the basic

dimensionless numbers used remain the same, the constants and power indices are found to vary

with ranges of these parameters and geometries. In this chapter it is proposed to list the various

types of boundaries, ranges of parameters and the experimental correlations found suitable to

deal with these situations, as far as flow over surfaces like flat plates, cylinders, spheres and tube

banks are concerned.

8.1 FLOW OVER FLAT PLATES

Equations for heat transfer in laminar flow over flat plate were derived from basics in Chapter 7.

In this chapter additional practical correlations are introduced. Though several types of boundary

conditions may exist, these can be approximated to three basic types. These are (i) constant wall

temperature, (as may be obtained in evaporation, condensation etc., phase change at a specified

pressure) (ii) constant heat flux, as may be obtained by electrical strip type of heating and (iii) flow

with neither of these quantities remaining constant, as when two fluids may be flowing on either

side of the plate.

Distinct correlations are available for constant wall temperature and constant heat flux.

But for the third case it may be necessary to approximate to one of the above two cases.

8.1.1. Laminar flow: The condition is that the Reynolds number should be less than 5 × 105 or

as may be stated otherwise. For the condition that the plate temperature is constant the following

equations are valid with fluid property values taken at the film temperature.

Hydrodynamic boundary layer thickness (from Chapter 7)

 δ
x
 = 5x/Re

x

0.5 ...(8.1)

Thermal boundary layer thickness

δ
tx

 = δ
x
 Pr–0.333 ...(8.2)

Displacement thickness and Momentum thickness are not directly used in heat

transfer calculations. However, it is desirable to be aware of these concepts.

C
h

a
p

te
r 

8
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Displacement thickness is the difference between the boundary layer thickness
and the thickness with uniform velocity equal to free stream velocity in which the
flow will be the same as in the boundary layer. For laminar flow displacement thickness

is defined as 1
0

−
F
HG

I
KJ∞

z u
u

dy
δ

δd = δx/3 ...(8.3)
Momentum thickness is the difference between the boundary layer thickness

and the layer thickness which at the free stream velocity will have the same
momentum as in the boundary layer.

Momentum thickness δm in the laminar region is defined by

u
u

u
u

dy
∞ ∞

−
F
HG
I
KJ

L
N
MM

O
Q
PPz 2

0

δ

 δm = δx/7 ...(8.4)
Friction coefficient defined as τττττs/(ρρρρρu∞∞∞∞∞

2/2) is given by
 Cfx = 0.664 Rex

–0.5 ...(8.5)
The average value of Cf in the laminar region for a length L from leading edge is given

by (Chapter 7)
CfL = 1.328 ReL

–0.5 ...(8.6)
The value of local Nusselt number is given by (Chapter 7)

 Nux = 0.332 Rex
0.5 Pr0.33 ...(8.7)

  N uL = 2NuL = 0.664 ReL
0.5 Pr1/3 ...(8.7 (a))

This is valid for Prandtl number range of 0.6 to 50.
For low values of Prandtl numbers as in the case of liquid metals, the local Nusselt

number is
 Nux = 0.565 (Rex Pr)0.5 ...(8.8)

This is valid for Prandtl number less than 0.05 (liquid metals) A more general expression
applicable for both low and high values of Prandtl number is given by

 Nux = 0.3387 Re Pr
Pr

x
0.5 0.333

0.67 0.251 0 0468[ ( . / ) ]+
...(8.9)

This is valid for Pr < 0.05 and Pr > 50 and Rex Pr > 100. (liquid metals and silicones).
Note: The modification for very high values of Prandtl number is very little as can be seen in the

worked out problems.
It may be seen that there is gap in the range of Prandtl number 0.6 to 0.1. If one goes through

property values of various fluids in practical application, it will be seen that no fluid is having Prandtl
numbers in this range.
8.1.2. Constant heat flux: The local Nusselt number is given by

 Nux = 0.453 Rex
0.5 Pr0.333 ...(8.10)
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This is also valid in the range of Prandtl numbers 0.6 to 50. In constant heat flux boundary
the plate temperature varies along the lengths. Hence the temperature difference between the
plate and the free stream varies continuously. The average difference in temperature
between the fluid and surface length x is given by

  Twx – T∞ = (qx/k)/[0.6795 Rex
0.5. Pr0.33] ...(8.11)

For low as well as high values of Prandtl numbers the relationship is (For Pr < 0.05 and
Pr > 50)

 Nux = 
0 453

1 0 0207

0.5 0.333

0.67 0.25
.

[ ( . / ) ]
Re Pr

Pr
x

+
...(8.12)

The property values are at film temperature.
In all cases, the average Nusselt number is given by

NuL  = 2 NuL ...(8.13)
This is applicable in all cases when Nu ∝ Re0.5

Using the analogy between heat and momentum transfer the Stanton number is given
by

St Pr0.67 = Cf /2 ...(8.14)
The equations (8.1) to (8.14) are applicable for laminar flow over flat plates. The choice

of the equation depends upon the values of Prandtl number and Reynolds numbers (laminar
flow).

Property values should be at the film temperature, (Ts + T∞)/2.
Eight examples follow, using different fluids at different conditions.

Example 8.1: In a process water at 30°C flows over a plate maintained at 10°C with a free
stream velocity of 0.3 m/s. Determine the hydrodynamic boundary layer thickness, thermal
boundary layer  thickness, local and average values of friction coefficient, heat transfer coefficient
and refrigeration necessary to maintain the plate temperature. Also find the values of
displacement and momentum thicknesses. Consider a plate of 1 m × 1 m size.
Solution: The film temperature = (30 + 10)/2 = 20°C

The property values are:
Kinematic viscosity = 1.006 × 10–6 m2/s,
Thermal conductivity = 0.5978 W/mK
Prandtl number = 7.02, at 1m

Rex = 
u x∞

−= ×
×ν

0 3 1
1006 10 6

.
.

 = 2.982 × 105 ∴ laminar

∴  δδδδδx = 5x/Rex
0.5 = 9.156 × 10–3 m = 9.156 mm

δδδδδtx = δx. PR–0.33 = 9.156(7.02)–0.33 = 4.782 mm
Thermal boundary layer will be thinner if Pr > 1
Displacement thickness

 δδδδδd = δx/3 = 9.156/3 = 3.052 mm
Momentum thickness

δδδδδm = δx/7 = 9.156/7 = 1.308 mm
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 Cfx = 0.664/Re0.5 = 0.664/(2.982 × 105)0.5 = 1.216 × 10–3

 CfL = 2 × CfL = 2 × 1.216 × 10–3 = 2.432 × 10–3

 Nux = 0.332 × Rex
0.5 Pr0.33 = 0.332 × (2.982 × 105)0.5 × 7.020.33

= 347.15

hx = Nux 
k
L

 = 347.15 × 0.5978/1 = 207.52 W/m2K

h  = 2 hL = 415.04 W/m2K
cooling required = hA ∆T = 415.04 × 1 × 1 × (30 – 10) = 8301 W or 8.3 kW.
Example 8.2: Sodium potassium alloy (25% + 75%) at 300°C flows over a 20 cm long plate
element at 500°C with a free stream velocity of 0.6 m/s. The width of plate element is 0.1 m.
Determine the hydrodynamic and thermal boundary layer thicknesses and also the displacement
and momentum thicknesses. Determine also the local and average value of coefficient of friction
and convection coefficient. Also find the heat transfer rate.
Solution: The film temperature is (300 + 500)/2 = 400°C

The property values are:
Kinematic viscosity = 0.308 × 10–6 m2/s, Pr = 0.0108,
Thermal conductivity = 22.1 W/mK, at 0.2 m,

Rex = 0.6 × 0.2/0.308 × 10–6 = 3.9 × 105 ∴ laminar
∴  δδδδδx = 5x/Rex

0.5 = 1.6 mm
δδδδδtx = δx . Pr–0.33 = 7.25 mm

This is larger by several times. So most of the thermal layer is outside the velocity
boundary layers.

Displacement thickness:
 δδδδδd = 1.6/3 = 0.53 mm

Momentum thickness
δδδδδm = 1.6/7 = 0.229 mm

It can be seen that thermal effect is predominant
 Cfx = 0.664/Re0.5 = 0.664/(3.9 × 105)0.5 = 1.064 × 10–3

CfL = 2.128 × 10–3

Using equation (8.8) as the Prandtl number is very low (less than 0.05)
 Nux = 0.565 × (Rex Pr)0.5 = 36.65

hx = Nux 
k
L

 = 36.65 × 22.1/0.2 = 4050 W/m2K

h  = 2 × hL = 8100 W/m2K
Heat flow = 8100 × 0.2 × 0.1 × (500 – 300) = 32,399 W or 32.4 kW

Alternately using equation (8.9)

 Nux = 
0 3387

1 0 0468

0.5 0.333

0.67 0.25
.

[ ( . / ) ]
Re Pr

Pr
x

+
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= 0 3387 3 9 10 0 0108
1 0 0468 0 0108

5 0.5 0.33

0.67 0.25
. ( . ) ( . )

[ ( . / . ) ]
× ×

+
 = 33.79

∴ hx = 33 79 22 1
0 2

. .
.
×  = 3734 W/m2K

h  = 7468 W/m2K Q = 29.87 kW
If equation (8.7) had been used Q = 40.5 kW, an over estimate.

Example 8.3: Engine oil at 80°C flows over a flat surface at 40°C for cooling purpose, the flow
velocity being 2 m/s. Determine at a distance of 0.4 m from the leading edge the hydrodynamic
and thermal boundary layer thickness. Also determine the local and average values of friction
and convection coefficients.
Solution: The film temperature is (80 + 40)/2 = 60°C

The property values are read from tables at 60°C as kinetic viscosity = 83 × 10–6 m2/s, Pr
= 1050. Thermal conductivity = 0.1407 W/mK

Rex = 
u x∞

−= ×
×ν

2 0 4
83 10 6

.  = 9639, laminar

∴  δ δ δ δ δx = 5x/Rex
0.5 = 0.02037 m = 20.37 mm

δδδδδtx = δxPr–1/3 = 20.37 × 1050–0.333 = 2 mm
Thermal boundary layer is very thin as different from liquid metal-viscous effect is

predominant.
 Cfx = 0.664/Rex

0.5 = 6.76 × 10–3

CfL = 0.0135 (rather large)
As the values of Prandtl number is very high equation (8.9) can be used

 Nux = 
0 3387

1 0 0468

0.5 0.33

0.67 0.25
.

[ ( . / ) ]
Re Pr

Pr
x

+

= 0 3387 9639 1050
1 0 0468 1050

0.5 0.33

0.67 0.25
.

[ ( . / ) ]
× ×

+
 = 337.97/1.0003 = 337.87

hx = Nu k
x

x = ×337 87 0 1407
0 4

. .
.  = 118.85 W/m2K

h  = 2hx = 118.85 × 2 = 237.69 W/m2K
For 1 m width the heat flow is given by

 Q = 237.69 × 0.4 × 1 (80 – 40) = 3803 W or 3.803 kW
If equation (8.7) is used Nu = 331.3 and h = 233.01 W/m2K. The difference is very

little.
Example 8.4: Air at 20°C flows over a flat plate having a uniform heat flux of 800 W/m2.
The flow velocity is 4m/s and the length of the plate is 1.2 m. Determine the value of heat
transfer coefficient and also the temperature of the plate as the air leaves the plate.
Solution: As the plate temperature varies, the value of film temperature cannot be determined.
For the first trial, the properties of air at 20°C are used.
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ν = 15.06 × 10–6, k = 0.02593 W/mK, Pr = 0.703
First, a check for laminar flow:

Re = u L∞
−= ×

×ν
4 12

15 06 10 6
.

.
 = 3.187 × 105 ∴ laminar

For constant heat flux, the average temperature difference can be found by using
equation (8.11)

 T Tx − ∞  = (qL/k)/[0.6795 Rex
0.5 Pr0.33] = 108.54°C

Now properties may be found at (108.54 + 20)/2 = 64.27°C

T°C ν, m2/s k, W/mK Pr

60 18.97 × 10–6 0.02896 0.696
70 20.02 × 10–6 0.02966 0.694

64.27 19.42 × 10–6 0.02926 0.695

Using the equation again

Tw – T∞ = 800 12
0 02926

1
0 6795 4 12 19 42 10 0 6956 0.5 0.333

×
× × −

.
.

.
. ( . / . ) ( . )

= 109.644°C
∴ Film temperature = 64.82°C
It does not make much of a difference.
To determine the value of convection coefficient, equation (8.11) is used.

 Nux = 0.453 [Rex Pr]0.5 = 0.453 4 12 0 695
19 42 10 6

0.5
× ×

×
L
NM

O
QP−

. .
.

 = 187.75

∴ hx = 187 75
12

.
.  × 0.02926 = 4.58 W/m2K

 h  = 9.16 W/m2K
To find the temperature at the trailing edge the basic heat flow equation is used:

 (Tw – T∞) = qx
kNux

 as (h = Nuk/x)

= 
800 12

0 02926 187 75
×
×

.
. .  = 174.75°C

∴  Tw = 194.75°C.
Example 8.5: Water at 10°C flows over a flat plate with a uniform heat flux of 8.3 kW/m2. The
velocity of flow is 0.3 m/s. Determine the value of convective heat transfer coefficient and also
the temperature at a distance of 1 m from the leading edge.
Solution: As the film temperature cannot be specified the properties will be taken at 10°C for
the first trial

ν = (1.788 + 1.006) × 10–6/2 = 1.393 × 10–6 m2/s
 Pr = (13.6 + 7.03)/2 = 10.31
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k = (0.5524 + 0.5978)/2 = 0.5751 W/mK
at 1 m, Rex = 0.3 × 1/1.393 × 10–6 = 2.154 × 105 ∴ laminar
The average temperature difference

= 
q L
k Re Pr
. .

. . .
1

0 6795 0 5 0 333

= 8300 1
0 5751

1
0 6795 2 154 10

1
10 315 1/2 0.333

×
× ×.

.
. ( . )

.
.

 = 21.03°C

The property values can now be taken at 15.1°C and results refined.
The heat transfer coefficient can be determined using eqn. (8.10).

 Nux = 0.453 Rex
0.5Pr0.333

taking property values at 15.51°C
 Nux = 465.9

∴ hx = 465.9 × 0.58762/1 = 273.8 W/m2K
Average value = 547.5 W/m2K (compare with example 8.1)
Temp. difference at 1 m:

h∆T = q ∴ ∆T = q
h

∴  h = Nu. k/x ∴ ∆T = qx
Nu k

 ∆T = qx
k Nux

.
. .

1 8300 1
0 58762 465 9

= ×
×

 = 30.32°C

Example 8.6: Sodium postassium alloy (25% + 75%) at 300°C flows over a plate element
with free stream velocity of 0.6 m/s. The plate has a uniform heat generation rate of 1600
kW/m2. Determine the value of average convection coefficient for a length of 0.2 m. Also determine
the plate temperature at this point.
Solution: The Prandtl number has a value less than 0.05 and there is no equation to determine
the temperature difference. Equation (8.12) is used, starting with property values at 300°C

ν = 0.336 × 10–6 m2/s, Pr = 0.0134, k = 22.68
Rex = 0.6 × 0.2/0.366 × 10–6 = 3.279 × 105

∴ Laminar. Flor low value of Pr using equation (8.12).

 Nux = 
0 453

1 0 0207

0.5 0.33

0.67 0.25
.

[ ( . / ) ]
Re Pr

Pr
x

+

= 
0 453 3 279 10 0 0134

1 0 0207 0 0134

5 0.333

0.67 0.25
. . ( . )
[ ( . / . ) ]

× ×
+

 = 49.83

hx = 49 83 22 68
0 2

. .
.
×  = 5651 W/m2K

h = 11302.1 W/m2K



VED

c-4\n-demo\damo8-1

C
ha

pt
er

 8

CONVECTIVE HEAT TRANSFER-PRACTICAL CORRELATIONS-FLOW OVER SURFACES 341

The average temperature difference:

 ∆T = q
h

= 1600000
11302  = 141.6° C

Compare with example 8.2. The results can be refined now taking property values at
300 + (141.6)/2 = 370.8°C (film temperature). Interpolating

  ν = – (0.366 – 0.308) × 0.708 + 0.366 = 0.325 × 10–6 m2/s
Pr = – (0.0134 – 0.0108) × 0.708 + 0.0134 = 0.0116
k = – (22.68 – 22.10) × 0.708 + 22.68 = 22.27 W/mK

∴  Nux = 
0 453 0 6 0 2 0 325 10 0 0116

1 0 0207 0 0116

6 0.5 0.33

0.67 0.25
. ( . . / . ) ( . )

[ ( . / . ) ]
× × ×

+

−

= 49.7 as compared to 49.83. Values are not very different.
Using equation (8.8), Nux = 0.565 (Re Pr)0.5 = 36.98, compared with 49.7.

Example 8.7: Engine oil at 60°C flows over a flat surface with a velocity of 2 m/s, the length of
the surface being 0.4m. If the plate has a uniform heat flux of 10 kW/m2, determine the value
of average convective heat transfer coefficient. Also find the temperature of the plate at the
trailing edge.
Solution: As the film temperature cannot be determined, the property values are taken at
free stream temperature of 60°C

Kinematic viscosity = 83 × 10–6 m2/s, Pr = 1050, k = 0.1407 W/mK

Rex = 
u x∞

−= ×
×ν

2 0 4
83 10 6

.
 = 9639 ∴ laminar

Using equation (8.12)

Nux = 0 453
1 0 0207

0.5 0.33

0.67 0.25
.

[ ( . / ) ]
Re Pr

Pr
x

+
 = 0 453 9639 1050

1 0 0207 1050

0.5 0.333

0.67 0.25
. . .

[ ( . / ) ]+
 = 451.95

hx = 
45195 45195 0 1407

0 4
. . .

.
× = ×k

x  = 158.97 W/m2K

h  = hL × 2 = 317.94 W/m2K
The average temperature difference:

 ∆T = q
h

= 100000
317 94.  = 31.45°C

Now the film temperature can be taken as

  3145
2
.  + 60 = 75.73°C

Using property tables

ν Pr k

80°C 37 × 10–6 490 0.1384
60°C 83 × 10–6 1050 0.1407

at 75.73°C, ν = 46.82 × 10–6 m2/s, Pr = 609.6, k = 0.1389
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Nux = 0 453 2 0 4 46 82 10 609 6
1 0 0207 609 6

6 0.5 0.33

0.67 0.25
. ( . / . ) ( . )

[ ( . / . ) ]
× ×

+

−

 = 501.95

hx = Nu k
x

x = ×50195 0 1389
0 4

. .
.  = 174.3 W/m2K

h  = 348.6 W/m2K

 ∆T = 10000
348 6.  = 28.7°C

The value can be refined further using new value of film temperature.
To determine the plate temperature at the edge:

 ∆T = 10000
174 3.  = 57.4°C

∴  T = 60 + 57.4 = 117.4°C
Compare with example 8.3

8.1.3. Other Special Cases: Laminar constant wall temperature, with heating starting
at a distance x0 from the leading edge.

The correlation is obtained as below

Nux = 0.332. Rex
0.5 Pr0.33 1

0.75 0.333

− FHG
I
KJ

L
N
MM

O
Q
PP

−
x
x
o ...(8.15)

At xo = 0, this will reduce to the regular expression given by equation (8.7). The average
value in this case will not be 2 Nux and the above expression has to be integrated over the
length to obtain the value.

Example 8.8: Considering water at 30°C flowing over a flat plate 1 m × 1 m at 10°C with a free
stream velocity of 0.3 m/s, plot the variation of hx along the length if heating starts from 0.3 m
from the leading edge.
Solution: The film temperature  = (30 + 10)/2 = 20°C

The property values are:  ν = 1.006 × 10–6 m2/s, Pr = 7.02, k = 0.5978 W/mK

The maximum value of Rex = 
0 3 1

1006 10 6
.

.
×

× −  = 2.98 × 105

∴ Laminar flow exists all along.

Nux = 0.332 Rex
0.5 Pr0.33 1

0.75 0.333

− FHG
I
KJ

L
N
MM

O
Q
PP

−
x
x
o

hx = k.Nux/x

at x = 0.35: hx = 0 5978
0 35

0 332 0 3 0 35
1006 10

7 026

0.5
0.333.

.
. . .

.
( . )× ×

×
F
HG

I
KJ−
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1 0 3
0 35

0.75 0.333

− FHG
I
KJ

L
N
MM

O
Q
PP

−
.

.  = 733.93 W/m2K

Similarly for other values at 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0

Distance x hx with heating hx with heating
m from x = 0 from x = 0.3 m

W/m2K W/m2K

0.3 367.47 0
0.35 340.21 733.93
0.4 318.24 549.67
0.5 284.64 416.90
0.6 259.84 315.09
0.7 240.57 309.34
0.8 225.03 279.70
0.9 212.16 257.20
1.0 201.27 239.35

The average value over the heated length can be found only by integrating between
x = xo and x = L.

8.2 TURBULENT FLOW

Rex > 5 × 105 or as specified. In flow over flat plate, the flow is initially laminar and after some
distance turns turbulent, the value of Reynolds number at this point being near 5 × 105. However,
there are circumstances under which the flow turns turbulent at a very short distance, due to
higher velocities or due to disturbances, roughness etc. The critical reynolds number in these
cases is low and has to be specified. In the turbulent region the velocity boundary layer
thickness is given by

 δx = 0.381 x × Rex
–0.2 ...(8.16)

 δt ≈ δx ...(8.17)
The displacement and momentum thickness are much thinner. The displacement

thickness is
 δd = δx/8 ...(8.18)

Momentum thickness is
δm = (7/72) δx ...(8.19)

The local friction coefficient defined as τw/(ρ u∞
2/2) is given for the range Rex from 5 × 105

to 107 by
 Cfx = 0.0592 Rex

–0.2 ...(8.20)
For higher values of Re in the range 107 to 109

Cfx = 0.37 [log10 Rex]–2.584 ...(8.21)
The local Nusselt number is given by

 Nux = 0.0296 Rex
0.8Pr0.33 ...(8.22)
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The average Nusselt number is given by
  Nu  = 0.037 Re0.8 Pr0.33 ...(8.23)

Nu  = Nux/0.8 in this case as Nu is dependent on Rex
0.8. Using analogy between

momentum and heat transfer

 Nux = 
( / )

. ( / ) ( )
C Re Pr
C Pr

fx x

fx

2
1 12 8 2 10.5 0.68+ −

...(8.24)

To obtain the average value, this expression has to be integrated from x = 0 to x = L. But
this is more complex.

For constant heat flux, the Nusselt number is found to increase by 4% over the value for
constant wall temperature.

∴ Nux (constant heat flux) = 1.04 Nux(Constant wall temperature)...(8.25)

Example 8.9: Air at –10°C flows over a flat surface at 10°C with a free stream velocity of
80 m/s. The length of the plate is 3.1 m. Determine the location at which the flow turns
turbulent. Also determine the local and average value of convection coefficient assuming that
the flow is turbulent although. Compare the value of local heat transfer coefficient calculated
using the equation obtained by analogy. (8.24).
Solution: The film temperature is (–10 + 10)/2 = 0°C

The property values are
ν = 13.28 × 10–6 m2/s, Pr = 0.707, k = 0.02442 W/mK

Rex at = 3.1 m
Re = (80 × 3.10/13.28 × 10–6) = 1.8675 × 107

∴ turbulent flow exists
location at which  Re = 5 × 105 is

  x = 5 10 13 28 10
80

5 6× × × −.  = 0.083 m

This length is much shorter (2.7% of the total length) and so the assumption that flow is
turbulent all through is valid. Hydrodynamic boundary layer thickness

 δδδδδx = 0.381 × 3.1 × (1.8675 × 107)–0.2 = 41.54 mm
Thermal boundary layer thickness is also

  δδδδδt = 41.54 mm
Displacement thickness

 δ δ δ δ δd = 41.54/8 = 5.19 mm
Momentum thickness

δδδδδm = 7
72  × 41.54 = 4.04 mm

As Re is in the border (< 108), we can calculate Cfx using eqn (8.20) or (8.21).
 Cfx = 0.0592 × Rex

–02 = 2.08 × 10–3
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Using 8.21  Cfx = 0.37 [log10 Rex ]–2.584 = 2.197 × 10–3

Local Nusselt number is given by eqn. 8.22
 Nux = 0.0296 Rex

0.8 Pr0.33

= 0.0296 × (1.8675 × 107)0.8 (0.707)0.33 = 17302.2

∴ hx = Nu k
L

x  = 136.3 W/m2K

Average value Nu  = 0.037 Rex0.8 × Pr0.33

∴ h  = 170.4 W/m2K
If constant heat flux prevails, this value is increased by 4%. Using Analogy: using

Cfx by eqn. (8.20)

 Nux = 
( / ) .

. ( / ) ( )
C Re Pr
C Pr
fx x

fx

2
1 12 8 2 10.5 0.68+ −

 = 15035

By using Cfx for higher range:
 Nux = 15922

These values are not very much different from the one using eqn. (8.22) (8%).
The values of convection coefficients calculated may be out by as much as 25% in certain

cases and as such these estimates are acceptable.
Example 8.10: Water at 30°C flows over a flat plate 1 m × 1 m at 10°C with a free stream
velocity of 4 m/s. Determine the thickness of boundary layers, displacement thickness, momentum
thickness, local and average value of drag coefficient and convection coefficient.
Solution: The film temperature = (30 + 10)/2 = 20°C. Property values at this temperature are
ν = 1.006 × 10–6 m2/s, Pr = 7.02, k = 0.5978 W/mK.

The maximum value of Reynolds number at 1 m is
= 4 × 1/1.006 × 10–6 = 3.976 × 106 ∴  Turbulent

The length at which flow turns tubulent:
(4 × x/1.006 × 10–6) = 5 × 105 ∴ x = 0.12575 m.

This is 12.5% of total length. As such the assumption that the flow is turbulent althrough
is not unacceptable.

Boundary layer thickness:
 δδδδδx = 0.381 × Rex

–0.2 × 1 = 0.381 × (3.976 × 106)–0.2

= 0.1824 m = 18.24 mm
Thermal boundary layer thickness is also the same = 18.24 mm
Displacement thickness:

 δδδδδd = δx/8 = 2.28 mm
Momentum thickness

δδδδδm = 7
72  × δx = 1.773 mm

 Cfx = 0.0592 × Rex
–0.2 = 2.83 × 10–3
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 Cf  = Cfx/0.8 = 3.54 × 10–3

 Nux = 0.0298 Rex
0.8Pr0.33 = 0.0296 × (3.976 × 106)0.8 × (7.02)0.3

= 10788.8

hx = Nu k
x

x = ×10788 8 05978
1

. .  = 6449.6 W/m2K

Nu  = 0.037 × Re0.8 × Pr0.33 = 13486

h  = 8062 W/m2K
For constant heat flux, the average value is increased by 4%.
By using analogy

 Nux = 
( / ) .

. ( / ) ( ). .
C Re Pr
C Pr

fx x

fx

2
1 12 8 2 10 5 0 68+ −

 = 16967

∴ hx = 10143 W/m2K
This is on the higher side.

8.2.1. The assumption that the flow is turbulent althrough (from start) may not be acceptable
in many situations. The average values are now found by integrating the local values
up to the location where Re = 5 × 105 using laminar flow relationship and then
integrating the local value beyond this point using the turbulent flow relationship and
then taking the average. This leads to the following relationship for constant wall temperature.

 δx = 0.381x × Rex
–0.2 – 10256x × Rex

–1.0 ...(8.26)
CfL = 0.074 ReL

0.2 – 1742 ReL
–1.0 ...(8.27)

This is for critical Reynolds number of 5 × 105. A more general relationship can be used
for other values of critical Reynolds number.

 CfL = 
0 455 8 28

10
2 584

.
(log )

..Re
A

ReL L
−

Where A is given in the tabulation below
Recr A

3 × 105 1050
5 × 105 1700
1 × 106 3300
3 × 106 8700

 Nux = Pr0.333 [0.037ReL
0.8 – 871] ...(8.29)

for Recr = 5 × 105, or more generally
NuL = Pr0.333 [0.037ReL

0.8 – A] ...(8.30)
where  A = 0.037 Recr

0.8 – 0.664 Recr
0.5 ...(8.31)

By analogy Stx. Pr0.666 = Cfx/2 ...(8.32)
For large temperature differences, the estimates may be off the mark by as much as

25%. For low or high Prandtl numbers, these expressions are to be used with some reservations.
For constant heat flux, the value of h is to be increased by 4 percent.
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Example 8.11: Considering the data of Example 8.10, determine the average value of convection
coefficient and Cf values taking into consideration the laminar region. Compare with problem
8.10.

Plate length 1 m, velocity = 4 m/s, plate temperature = 10°C, Water temperature = 30°C.
Film temperature = 20°C. The property values are ν = 1.006 × 10–6 m2/s, Pr = 7.02, k = 0.5978
W/mK.
Solution: The maximum value of Reynolds number

= 4 × 1/1.006 × 10–6 = 3.976 × 106 ∴ Turbulent
Assuming  Recr = 5 × 105

 δδδδδx = 0.381 x Rex
–0.2 – 10256 x Rex

–1.0

= 0.381 × 1 [4/1.006 × 10–6]–0.2 – 10256 × 1/[4/1.006 × 10–6]
= 0.01566 m or 15.66 mm (compared to 18.24 mm)

CfL = 0.074 ReL
–0.2 – 1742 ReL

–1.0

= 3.10 × 10–3 (compared to 3.54 × 10–3 in example 8.10)
Nu = Pr0.33 [0.037 ReL

0.8 – 871]
= 11818 (compared to 13486).

Example 8.12: Air at –10°C flows over a flat plate at 10°C with a free stream velocity of
10 m/s, the length of the plate being 3.1 m. Determine the average value of friction coefficient
and convection coefficient taking into account the laminar length and compare the values with
those obtained assuming turbulent flow throughout. (example 8.9)
Solution: The film temperature = (– 10 + 10)/2 = 0°C

The property values are: ν = 13.28 × 10–6 m2/s, Pr = 0.707
k = 0.02442 W/mK

The maximum value of Reynolds number
= 3.1 × 10/(13.38 × 10–6) = 2.33 × 106 ∴ turbulent

Critical length: 0.664 m ∴ necessary to consider laminar region.
Assuming turbulent flow throughout:

Cf  = 0 0592
0 8

.
.  ReL

–0.2 = 3.94 × 10–3

Taking laminar region into account

Cf  = 0.074 ReL
–0.2 – 1742/ReL = 3.195 × 10–3

Heat transfer coefficient (turbulent all through)

 NuL  = 0.037 × ReL
0.8 Pr0.33 = 4098

∴ h = 
Nu k

L
L ×

 = 32.28 W/m2K

Considering laminar region

 NuL  = Pr0.333 [0.037 × ReL
0.8 – 871] = 3321

h  = 26.17 W/m2K
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Note that at low velocities it will be better to consider the laminar region in taking
averages.

8.3. FLOW ACROSS CYLINDERS

The other type of flow over surfaces is flow across cylinders often met with in heat exchangers
and hot or cold pipe lines in the open. An important difference is the velocity distribution along
the flow. The obstruction by the cylinder causes a closing up of the streamlines and an increase
in pressure at the stagnation point. The velocity distribution at various locations in the flow
differs from the flow over a flat plate as shown in Fig. 8.1.

u

�

u
 u
 u
 u
 u


1 2 3 4 5

Flow
separation

Fig. 8.1. Velocity distribution at various angular locations in flow across cylinders.

As the flow pattern affects the heat transfer, it is found to be difficult to provide a
generalised analytical solution for the problem. The drag coefficient CD is defined by

Drag force = CD Af 
ρu∞

2

2
. Where Af is the frontal or projected area. (for a cylinder of

length of L it is equal to L.D). It is not based on the wetted area. The nature of variation of drag
coefficient for cylinder and sphere with Reynolds number is shown in Fig. 8.2. Reynolds number
should be calculated with diameter D as the length parameter and is some times referred as
ReD.

Thus a simple and single correlation for CD is difficult. The variation of local heat transfer
coefficient with angular location for two values of Reynolds number is shown in Fig. 8.3.

For angles upto 80°, the variation of Nusselt number can be represented by

 hθ = 1.14 ReD
0.5 Pr0.4 1

90

3
− FHG
I
KJ

L
N
MM

O
Q
PP

θ ...(8.32(b))
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100

10

1

0.1

CD

Sphere

Cylinder

log Re

Fig. 8.2. Variation of CD with Reynolds number for flow over cylinders and spheres.
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Fig. 8.3. Variation of Nusselt number with angular location.

This also shows that averaging out the convection coefficient is difficult. The experimental
values measured by various researchers plotted using common parameters ReD and NuD (log
log plot) is shown in Fig. 8.4. It can be seen that scatter is high at certain regions and several
separate straight line correlations are possible for various ranges. Some researchers have
limited their correlations for specific ranges and specific fluids. Thus a number of correlations
are available and are listed below.

A very widely used correlation is of the form (1958)
 NuD = CRcD

m Pr0.333 ...(8.33)
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Scatter
BandNu

(log)
D

(log) ReD

Fig. 8.4. Variation of NuD with ReD for flow across cylinders.

Where C and m are tabulated below. The applicability of this correlation for very
low values of Prandtl number is doubtful. The length parameter in Nusselt number is diameter
D and Nusselt number is referred as NuD.

The properties are to be evaluated at the film temperature.

ReD C m

0.4–4.0 0.989 0.330
4–40.0 0.91 0.385

40–4000 0.683 0.466
4000–40000 0.193 0.618

40000–400000 0.0266 0.805

A more recent (1972) generalised form is

NuD = C ReD
mPrn Pr

Prw

∞F
HG
I
KJ

0.25

...(8.34)

The validity for this correlation is for
0.7 < Pr < 500; 1 < ReD < 106 and

with n = 0.36 for Pr < 10 and n = 0.37 for Pr > 10
The values of C and m are tabulated below

ReD C m

1–4.0 0.75 0.4
40–103 0.51 0.5

103 – 2 × 105 0.26 0.6
2 × 102 – 106 0.076 0.7

The properties for Re and Pr should be at free stream temperature.
A two range (1972) correlation is given below: (f-film temp.)

NuD = [0.43 + 0.50 ReD
0.5] Pr0.38 

Pr
Pr

f

w

F
HG
I
KJ

0.25

...(8.35(a))
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 1 < ReD < 103

NuD = 0.25 ReD
0.6 Pr0.38 

Pr
Pr

f

w

F
HG
I
KJ

0.25

...(8.35(b))

103 < ReD < 2 × 105

This equation is applicable both for gases and liquids with the following conditions:
1. For gases the ratio of Pr numbers can be taken as unity.
2. For gases properties to be evaluated at film temperature.
3. For liquids properties to be evaluated at free stream temperature.
This is not suitable for very low and very high values of Prandtl numbers.
A correlation for liquids is given by (1965)

NuD = [0.35 + 0.56 ReD
0.52] Pr0.33 ...(8.36)

10–1 < ReD < 105 and properties at film temperature.
No indication is available for the applicability at low values of Pr. Another correlation

(1972) applicable over wider range is

NuD = [0.4 ReD
0.5 + 0.06 ReD

0.67] Pr0.4 
µ
µ

∞L
NM
O
QPw

0.25

...(8.37)

10 < ReD < 105; 0.67 < Pr < 300

0.25 < 
µ
µ

∞

w
 < 5.2.

The properties are to be evaluated at free stream temperature T∞∞∞∞∞. Another set
of equations (1977) suitable for a wider range of parameters both Reynolds and Prandtl is

 NuD = 0.3 + 0 62

1 0 4
1

282000

0 5 0 333

0 67 0 75

0 625 0 8
.

.

. .

. .

. .
Re Pr

Pr

ReD D

+ FHG
I
KJ

L
N
MM

O
Q
PP

+ FHG
I
KJ

L
N
MM

O
Q
PP ...(8.38(a))

for 100 < ReD < 107, Pe = ReD  Pr > 0.2
The properties are to be evaluated at film temperature.
A modification of this equation for limited range of Reynolds number is

NuD = 0.3 + 0 62

1 0 4
1

282000

0.5 0.333

0.67 0.25

0.5.

.

Re Pr

Pr

ReD D

+ FHG
I
KJ

L
N
MM

O
Q
PP

+ FHG
I
KJ

L
N
MM

O
Q
PP ...(8.38(b))

 2 × 104 < ReD < 4 × 105, Pr > 0.2
This equation use properties at film temperature and is applicable for all fluids. Finally

for liquid metals another correlation. (1975) is obtained as
NuD = [0.8237 – ln (PeD

0.5)]–1 ...(8.39(a))
where  Pe = RePr
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Other correlations for liquid metals over cylinder are (1979)
NuD = 1.125 (ReD Pr)0.413 ...(8.39(b))

1 ≤ ReD Pr ≤ 100.
Analytical results are also available for constant wall temperature.

NuD = 1.015 (ReDPr)0.5.
For constant heat flux NuD = 1.145 (ReDPr)0.5

This is applicable only for very low values of Pr and Pe. Nu will become negative for
higher values of Pe in eqn (8.39 (a)). Equations (8.33) to (8.39) are obtained from various
experimental results, the difference being that each one of these is dividing the spectrum into
different ranges of parameters. However a common warning is that most of these may give
results varying as much as 25% from experimental results. A single correlation applicable for
various ranges will be easier to use in computer application (say 8.38).

In actual application one has to weight carefully the parameter ranges before choosing
the equation to be used.
8.3.1. Flow Across non Circular Shapes: The general correlation used for gases, including
the Pr 0.333 in the constant is (1949)

Nu = C ReD
n ...(8.40(a))

Nu = C1ReD
nPr0.33 ...(8.40(b))

The values of C, C1 and n various shapes are tabulated below. The properties
are at film temperature.

Square along diagonal length
diagonal distance
Ellipse along major axis length
minor axis
Square along diagonal, length
diagonals distance
Square along face, side
Square along face, side
Plane, perpendicular, width
hexagon perpendicular to flats,
corner distance
hexagon perpendicular to flats,
corner distance
hexagon along flats, length,
between flats
ellipse along minor axis length,
major axis

5000–100000

2500–15000

2500–7500

2500–8000
5000–100000
4000–15000
5000–19500

19500–100000

5000–100000

3000–15000

0.222

0.224

0.267

0.160
0.092
0.205
0.144

0.035

0.138

0.085

0.246

0.250

0.292

0.178
0.102
0.228
0.160

0.039

0.153

0.095

0.588

0.612

0.624

0.699
0.675
0.731
0.638

0.782

0.638

0.804

Shape ReD range n C C1
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Example 8.13: Air at 30°C flows across a steam pipe of 0.2 m dia at a surface temperature of
130°C, with a velocity of 6 m/s. Determine the value of convective heat transfer coefficient using
equations (8.33), (8.34), (8.35) and (8.37) and (8.38).
Solution: Property values are required both at T∞ and Tf and Tw
i.e. 30°C, (30 + 130)/2 = 80°C and 130°C

ν Pr k µ
30°C: 16 × 10–6 m2/s 0.701 0.02675 18.63 × 10–6 Ns/m2

80°C: 21.09 × 10–6 m2/s 0.692 0.03047 21.08 × 10–6 kg/ms
130°C: 26.625 × 10–6 m2/s 0.687 0.034135 23.29 × 10–6 kg/ms
Equation (8.33), properties at film temp.:

 Re = uD/ν = 6 × 0.2/(21.09 × 10–6) = 56,899
∴ Nu = CRem Pr0.33

From tables C = 0.0266, m = 0.805
∴ Nu = 0.0266 (56899)0.805 (0.692)0.333 = 158.29

∴  h = Nu × k
D  = 21.11 W/m2K

Equation (8.34) Nu = CRem Prn Pr
Prw

∞F
HG
I
KJ

0.25

Properties at free stream temp. : at 30°C
Re = (6 × 0.2/16 × 10–6) = 75000 = 0.75 × 105

From tables,  C = 0.26, m = 0.6 as Pr < 10, n = 0.36,

∴ Nu = 0.26 (75000)0.6 (0.701)0.36 
0 701
0 687

0.25.
.
F
HG
I
KJ

= 192.8  ∴ h = 25.79 W/m2K (k at 30°C, 0.02675)
Equation (8.35 b), is applicable

Nu = 0.25 Re0.6 Pr0.38 
Pr
Pr

f

w

F
HG
I
KJ

0.25

for gases: (Prf /Prw)0.25 = 1. for gases properties at film temp. at 80°C
Nu = 0.25 (56899)0.6 (0.692)0.38

= 154.97 ∴ h = 
154 9 0 03047

0 2
. .

.
×

 = 23.61 W/m2K

Equation (8.37) Properties at T∞, 30°C

Nu = [0.4 Re0.5 + 0.06 Re0.67] Pr0.4 
µ
µ

∞L
NM
O
QPw

0.25

= 0 4 6 0 2
16 10

0 06 6 0 2
16 10

0 701 18 63 10
23 29 106

0.5

6

0.67
0.4

6

6

0.25

. . . . . .
.

×
×
×

F
HG

I
KJ +

×
×

F
HG

I
KJ

L
N
MM

O
Q
PP

×
×

L
NM

O
QP− −

−

−
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= 180.76 ∴ h = 24.18 W/m2K, (k = 0.02675)
Equation (8.38 (b)) properties at film temperature

 Nu = 0.3 + 0 62

1 0 4
1

282000
0.5 0.333

0.67 0.25

0.5.

.

Re Pr

Pr

Re

+ FHG
I
KJ

L
N
MM

O
Q
PP

+ FHG
I
KJ

L
N
MM

O
Q
PP

= 0.3 + 
0 62 56899 0 701

1 0 4
0 701

1 56899
282000

0.5 0.333

0.67 0.25

0.5. ( ) ( . )

.
.

+ FHG
I
KJ

L
N
MM

O
Q
PP

+ FHG
I
KJ

L
N
MM

O
Q
PP

= 167.36 ∴ h = 25.5 W/m2K
In this example all the various equation provide answers within a small band. This is

only fortitious and not necessarily so in all cases. The parameters are not in the extreme
range.
Example 8.14: Liquid sodium at 300°C flows across a tube 0.05 m outside dia at 500°C with
a velocity of 8 m/s. Determine the value of convective heat transfer coefficient using suitable
correlations.
Solution: Property values may be required at all the three temperature T∞, Tf and Tw.

T°C ν, m2/s Pr k, W/mK µ = νρ, kg/ms

300 0.394 × 10–6 0.0063 70.94 878 × 10–6

400 0.330 × 10–6 0.0056 63.97 854 × 10–6

500 0.289 × 10–6 0.0053 56.99 829 × 10–6

The possible correlations are only 8.33 and 8.38 (a). Equation (8.33) properties at film
temp., 400°C, Nu = CRem Pr0.333

Re = 8 × 0.05/0.330 × 10–6 = 1212121, (1.212 × 106) values of C and m are only up to
400,000 C = 0.0266, m = 0.805

∴ Nu = 0.0266 (1.212 × 106)0.805 × 0.00560.333 = 372.85,

∴   h = 372 85 63 97
0 05

. .
.
×  = 477022 or 0.477 × 106 W/m2K

equation (8.38(a))  Nu = 0.3 + 0 62

1 0 4
1

282000
0.5 0.333

0.67 0.75

0.625 0.8
.

.

Re Pr

Pr

Re

+ FHG
I
KJ

L
N
MM

O
Q
PP

+ FHG
I
KJ

L
N
MM

O
Q
PP

= 0.3 + 0 62 1212 10 0 0056

1 0 4
0 0056

1 1212 10
282000

6 0.5 0.333

0.67 0.25

6 0.625 0.8
. ( . ) ( . )

.
.

.×

+ FHG
I
KJ

L
N
MM

O
Q
PP

+ ×F
HG

I
KJ

L
N
MM

O
Q
PP

= 159.16 ∴ h = 203236 W/m2K
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The correlation 8.33 is an older one and hence the values obtained from the more recent
correlation (8.38 (a)) has to be taken as more reliable.
Example 8.15: Water at 30°C flows across a pipe 10 cm OD at 50°C with a velocity of 0.6 m/s.
Determine the value of convection coefficient using applicable correlations.

v, m2/s Pr k, W/mK ρ, kg/m3

T∞, 30°C 0.8315 × 10–6 5.68 0.6129 997.5
Tf, 40°C 0.657 × 10–6 4.34 0.628 995
Tw, 50°C 0.5675 × 10–6 3.68 0.63965 990

Solution: Equation (8.33): Properties at Tf
Re = 0.1 × 0.6/0.657 × 10–6 = 91,324, (9.13 × 104)

Nu = C. Rem Pr0.333

From tables C = 0.0266, m = 0.805

∴ Nu = 427.22 ∴ h = Nu k
D

 = 2683 W/m2K

Equation (8.34): properties at free stream temperature, T∞

Re = 0.1 × 0.6/0.8315 × 10–6 = 72159
Nu = CRem Prn (Prf /Prw)0.25

= 0.26 (72159)0.6 (5.68)0.37 (5.68/3.68)0.25

= 453.1, h = 2777 W/m2K
Equation (8.36): Properties at film temperature

Nu = [0.35 + 0.56 Re0.52] Pr0.333

 Re < 105, so applicable
∴ Nu = [0.35 + 0.56 (91324)0.52] [4.34]0.333

= 347.5, h = 2182 W/m2K
Equation (8.35 (b)) (properties at free stream temp.)

 Re = 72159 Applicable
Nu = 0.25 Re0.6 Pr0.38 (Prf /Prw)0.25

= 0.25 (72159)0.6 (5.68)0.38 5 68
3 68

0.25.
.
F
HG
I
KJ

= 443.3 ∴ h = 2717 W/m2K
(note the similarity between equation (8.34) and this)

Equation (8.37) Properties at T∞

Nu = (0.4 Re0.5 + 0.06 Re0.67) Pr0.4 
µ
µ

∞L
NM
O
QPw

0.25

 Re = 72159
Nu = 475.6 ∴ h = 2915 W/m2K
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Equation (8.38 (b)), Properties at film temperature:

Nu = 0.3 + 0 62

1 0 4
1

282000
0.5 0.333

0.67 0.25

0.5.

.

Re Pr

Pr

Re

+ FHG
I
KJ

L
N
MM

O
Q
PP

+ FHG
I
KJ

L
N
MM

O
Q
PP

Re = 91324 Pr = 4.34, k = 0.628
 Nu = 458.4 ∴ h = 2877 W/m2K

In this case also, the values by various correlations fall in a small band varying from
2181-2915 with fewer lower than 2700. For water and air, the correlations give less scatter.
Example 8.16: Air flows across an elliptical tube 0.1 m by 0.15 m perpendicular to the minor
axis with a velocity of 2.4 m/s. Air is at 20°C and the tube surface is at 40°C. Determine the
value of convection coefficient.
Solution: The properties are required at the film temperature i.e. 30°C

ν = 16 × 10–6 m2/s, Pr = 0.701, k = 0.02675
Re = 0.1 × 2.4/16 × 10–6 = 15000
Nu = C. Ren, From tables C = 0.224, n = 0.612

∴ Nu = 0.224 × 150000.612 = 80.54

h = 
80 54 0 02675

0 1
. .

.
×

 = 21.54 W/m2K.

8.4 FLOW ACROSS SPHERES

There are a number of applications for flow over spheres in industrial processes. As in the case
of flow across cylinders, the flow development has a great influence on heat transfer. Various
correlations have been obtained from experimental measurements and these are listed in the
following paras.

The following three relations are useful for air with Pr = 0.71 (1954)
Nu = 0.37 Re0.6  17 < Re < 7000 ...(8.41)

With Properties evaluated at film temperature.
The next correlation can be used for higher values of Re (1978)

Nu = 2 + [0.25 Re + 3 × 10–4 Re1.6]0.5 ...(8.42)
100 < Re < 3 × 105

For still higher values (1978)
Nu = 430 + 5 × 10–3 Re + 0.025 × 10–9 Re2 – 3.1 × 10–17 Re3 ...(8.43)

 3 × 105 < Re < 5 × 106

The next correlation is for liquids (1946)
NuPr–0.3 = 0.97 + 0.68 Re0.5 ...(8.44)

 1 < Re < 2000 with properties at Tf
For oils and water and for higher values of Re (1961)

NuPr–0.3 
µ
µ

w

∞

F
HG
I
KJ

0.25

 = 1.2 + 0.53 Re0.54 ...(8.45)
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 1 < Re < 200000 with properties at T∞

A more recent and a general equation is (1972)

Nu = 2 + (0.4 Re0.5 + 0.06 Re0.67) Pr0.4 
µ
µ

w

∞

F
HG
I
KJ

0.25

...(8.46)

3.5 < Re < 8 × 104, 0.7 < Pr < 380 and properties at T∞

1 < 
µ
µ

w

∞

F
HG
I
KJ  < 3.2

For a sphere falling in a fluid like quenching in hot bath,
Nu = 2 + 0.6  Re0.5 Pr0.333 [25 (x/D)]–0.7 ...(8.47)

For low values of Pr (liquid metals)
Nu = 2 + 0.386 (Re Pr)0.5 ...(8.48)

3.56 × 104 < Re < 1.525 × 105 with properties at film temperature.
These relations also provide values in the range of ± 25%.

Example 8.17: Air at 30°C flows over a sphere of 0.1 m dia with a velocity of 8 m/s. The solid
surface is at 50°C. Determine the value of convection coefficient.
Solution: The property values are

°C ν × 106 m2/s Pr k, W/mK µ × 106, kg/ms

T∞ 30 16 0.701 0.02675 18.63
Tf 40 16.96 0.699 0.02756 19.12
Tw 50 17.95 0.698 0.02820 19.61

At film temp.:   Re = 0.1 × 8/16.96 × 10–6 = 47170
∴ Equation (8.41) can be used

Nu = 0.37. Re0.6 = 235.72, ∴ h = 64.96 W/m2K
Using eqn. (8.42)

Nu = 2 + (0.25 Re + 3 × 10–4 Re1.6]0.5 = 146.25
∴ h = 40.3 W/m2K
Another possible equation is (8.46) (properties at T∞)

Nu = 2 + (0.4 Re0.5 + 0.06 Re0.67) Pr0.4 µ
µ

∞F
HG
I
KJw

0.25

= 2 + 0 4 0 1 8
16 10

0 06 0 1 8
16 10

0 701 18 63
19 616

0.5

6

0.67
0.4

0.25
. . . . ( . ) .

.
×

×
L
NM

O
QP

+ ×
×

L
NM

O
QP

L
N
MM

O
Q
PP

L
NM
O
QP− −

= 151.88
∴  h = 40.62 W/m2K
The equation (8.46) being the latest correlation, it is safer to consider the value of 40.62

W/m2K for convection coefficient.
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Example 8.18: Engine oil flows over a sphere of 4 cm dia with a velocity of 0.31 m/s. The oil
is at 40°C and the ball is at 80°C. Determine the value of convection coefficient.
Solution:  Two possible correlations are 8.45 and 8.46.

Eqn. (8.45),

Nu Pr–0.3 
µ
µ

w

∞

F
HG
I
KJ

0.25

 = 1.2 + 0.53 Re0.54

with properties at T∞

The property values are

°C ν, m2/s Pr k,W/mK, ρ kg/m3

T∞ 40 241 × 10–6 2870 0.1442 876
Tf 60 83 × 10–6 1050 0.1407 864
Tw 80 37 × 10–6 490 0.1384 852

 Re = 
0 31 0 04
241 10 6
. .×

× −  = 51.45 ∴ The equation (8.45) is valid

Nu. (2870)–0.3 37 10 852
241 10 876

12 0 53 0 31 0 04
241 10

6

6

0.25

6

0.54
× ×
× ×

L
NM

O
QP

= + ×
×

L
NM

O
QP

−

− −. . . .

 Nu × 0.057 = 1.2 + 4.45 = 5.65
∴ Nu = 99.07
∴ h = 357.15 W/m2K
The other correlation is given by equation (8.46)

Nu = 2 + (0.4 Re0.5 + 0.06 Re0.67) Pr0.4 µ
µ

∞L
NM
O
QPw

0.25

with properties at T∞

∴ Nu = 2 + 144.2 = 146.2
∴ h = 527.12 W/m2K
Here one of the conditions µ∞/µw < 3.2 is not satisfied and the ratio is about 6.5.
The other possible correlation is 8.44 with properties at Tf

 Nu Pr–0.3 = 0.97 + 0.68 Re0.5

Nu × 0.124 = 0.97 + 0.68 (0.31 × 0.04/83 × 10–6)0.5

= 0.97 + 0.68 (149.4)0.5

Nu = 74.81 ∴ h = 263.15 W/m2K
Note that the scatter is a little more than 25% between 263.15 and 357.15.

Example 8.19: Liquid sodium at 200°C flows over a sphere at 400°C, the diameter of the
sphere being 4 cm. The velocity of flow is 0.8 m/s. Determine the value of convection coefficient.
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° C ν, m2/s Pr k, W/mK ρ, kg/m3

T∞ 200 0.506 × 10–6 0.0075 81.41 903
Tf 300 0.394 × 10–6 0.0063 70.94 878
Tw 400 0.330 × 10–6 0.0056 63.97 854

Considering properties at Tf
Re = 0.04 × 0.8/0.394 × 10–6 = 0.8122 × 105

Solution: ∴ Equation (8.48) is applicable
Nu = 2 + 0.386 (Re Pr)0.5 = 10.73

∴ h = 19032 W/m2K

8.5 FLOW OVER BLUFF BODIES

Prerpendicular to flat plate:
Nu = 0.2 Re2/3 ...(8.49(a))

St. Pr2/3 = 0.930 ReL
–0.5 for all angles of attack ...(8.49(b))

1 < Re < 105 with properties at Tf

For half cylinder with flat surface at the rear
Nu = 0.16 Re2/3 ...(8.50)
 1 < Re < 105 with properties at Tf .

8.5.1. Packed Beds: Definition of two terms are necessary in dealing with packed beds. These
are

(i) Packing diameter DP = 
6V
A  where V is the volume and A is the surface area.

(ii) Void fraction ε = the empty volume/total volume of bed. The equation to find the rate
of heat flow from gas to the packing is

h D
k

c p = −1 ε
ε

 [0.5 ReDP
0.5 + 0.2 ReDP

0.67] Pr1/3 ...(8.51)

10 < ReDP
 < 104  0.34 < ε < 0.78

Re = D VP s.
( )ν ε1 −

, where Vs is the fluid velocity if the bed is empty.

For heat flow from wall to gas (for cylinders)
NuDP = 2.58 ReDP

0.33 Pr0.33 + 0.094 ReDP
0.8 Pr0.4 ...(8.52(a))

for spheres
NuDP = 0.208 ReDP

0.33 Pr0.33 + 0.220 ReDP
0.8Pr0.4 ...(8.52 (b))

40 < ReDP < 2000 and ReDP = 
u D∞ P

ν
Examples are given under solved problems.
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8.6 FLOW ACROSS BANK OF TUBES

In most heat exhangers in use, tube bundles are used with one fluid flowing across tube bundles.
First it is necessary to define certain terms before discussing heat transfer calculations. Two
types of tube arrangement are possible.

(i) in line and (ii) staggered. The distance between tube centres is known as pitch. The
pitch along the flow is known as (Sn) and the pitch in the perpendicular direction is called (Sp).
These are shown in Fig. 8.5.

Sn

Sp

u�

Sn

Sp

u�

{S + (S /2) }n p
2 2 0.5

Inline Staggered

Fig. 8.5. Tube arrangements in tube banks.

Due to the obstruction caused by the tubes, the velocity near the tube increases and this
increased value has to be used in the calculation of Reynolds number. In the case of in line the
actual velocity near the tubes

 Vmax = [Sp/(Sp – D)]u∞ ...(8.53)
In the case of staggered arrangement the larger of the value given by 8.53 and 8.54 is to

be used
 Vmax = [Sp/2 (SD – D)]u∞ ...(8.54)

where SD = S
S

n
p2

2 0.5

2
+
F
HG
I
KJ

L
N
MM

O
Q
PP ...(8.55)

This is because of the larger obstruction possible in the staggered arrangement.
For number of rows of tubes of 10 or more

Nu = 1.33 C Ren. Pr0.33 ...(8.56)
 N ≥ 10, 2000 < Re < 40000

Reynolds number to be calculated based on Vmax. The property values should be
at Tf . The value of C and n are tabulated below in Table 8.1. For larger values of Sp/D, tubes
can be considered as individual tubes rather than tube bank.
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Table 8.1. Values of constant and index for equation (8.56).

1.25 1.5 2.0 3.0
Sp/D C n C n C n C n

In line
1.25 0.348 0.592 0.275 0.608 0.100 0.704 0.0633 0.752
1.5 0.367 0.586 0.250 0.620 0.101 0.702 0.0678 0.744
2.0 0.418 0.570 0.299 0.602 0.229 0.632 0.1980 0.648
3.0 0.290 0.601 0.357 0.584 0.374 0.581 0.2860 0.608

Staggered

0.6 — — — — — — 0.213 0.636
0.9 — — — — 0.446 0.571 0.401 0.581
1.0 — — 0.497 0.558 — — — —
1.125 — — — — 0.478 0.565 0.518 0.560
1.25 0.518 0.556 0.505 0.554 0.519 0.556 0.552 0.562
1.5 0.451 0.568 0.460 0.562 0.452 0.568 0.488 0.568
2.0 0.404 0.572 0.416 0.568 0.482 0.556 0.449 0.570

0.3 0.310 0.592 0.356 0.580 0.440 0.562 0.421 0.574

In case the number of tubes is less than 10 in depth, the value of convection coefficient
should be multiplied by the fraction given in table below (Table 8.2).

Table 8.2. Correction factors for tube banks with rows less than 10 values of (hN/h10)

N 1 2 3 4 5 6 7 8 9 10

In line 0.68 0.75 0.83 0.89 0.92 0.95 0.97 0.98 0.99 1.0
Staggered 0.64 0.30 0.87 0.90 0.92 0.94 0.96 0.98 0.99 1.0

The calculation may appear tedius, but such flows are very common in practical
equipments and hence the importance.

If the number of rows in the flow direction is greater than 20, then the following
correlation is applicable. This equation is found applicable for less than 20 rows deep also (up
to 4)

Nu = C RemPr0.36 
Pr
Prw

∞L
NM
O
QP

0.25

...(8.57)

 N ≥ 20, 0.7 < Pr < 500, 1000 < Re < 2 × 106

Property values at T∞ Re based on Vmax
The values of C and m are tabulated below.
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Conditions C m

Inline, 103 < Re < 2 × 105 0.27 0.63
Inline, 2 × 105 < Re < 2 × 106 0.021 0.84
Staggered: 103 < Re < 2 × 105

Sp/Sn < 2 0.35 S
S

p

n

F
HG
I
KJ

0 2.
0.60

Sp/Sn > 2 0.4 0.60
2 × 105 < Re < 106 0.022 0.82

Liquid metals are now in use in heat exchangers.
The available correlation for tube bank is

Nu = 403 + 0.228 (Re)0.67 ...(8.58)
 2000 < Re < 80000

For finned tubes correlations are more complicated but are available in hand books.
Example 8.20: 20 mm OD copper tubes are arranged in line at 30 mm pitch perpendicular to
flow and 25 mm pitch along the flow. The entry velocity of air is 1 m/s, and the air temperature
is 20°C. The tube wall is at 40°C. Determine the value of convection coefficient if the number of
tubes along the flow is 6 (or Bank is 6 rows deep).
Solution:

Sp = 30 mm, D = 20 mm, Sp/D = 1.5
Sn = 25 mm Sn/D = 1.25

From tables, C = 0.367, n = 0.586 (look carefully for Sp/D and Sn/D)
Property values at Tf = 30°C are

ν = 16 × 10–6 m2/s, Pr = 0.701, k = 0.02675 W/mK

Vmax = [Sp/(Sp – D)] u∞ = 30
10 .1 = 3 m/s

∴ Nu = 0.367 Re0.586

 Re = 3 × 0.02/16 × 10–6 = 3750 > 2000
Hence equation is applicable:

Nu = 45.61 ∴ h = 61.0 W/m2K
But the bank is only 6 rows deep
∴ h6 = h10 × 0.95 = 57.95 W/m2K
(Value 0.95 is read from tables 8.2).

Example 8.21: Work out the value of h for staggered arrangement using data of example
8.20.
Solution: From tables  for Sp/D = 1.5 and Sn/D = 1.25

C = 0.451, m = 0.568
  Vmax = [Sp/2(SD – D)] u∞= 3 m/s
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     SD = Sn
Sp2

2 0.5

2
+
F
HG
I
KJ

L
N
MM

O
Q
PP  = [252 + 152]0.5 = 29.15

∴ Vmax = [20/2 (29.15 – 20)] = 1.6385, lower
∴ 3 m/s is taken as from [Sp/(Sp – D)] u∞

∴ Nu = 0.451 (3750)0.568 = 48.33
∴  h = 64.64 W/m2K
For 6 rows: correction factor is 0.94

h6 = 64.64 × 0.94 = 60.76 W/m2K
For increasing the value of h, Sp should be reduced.

SOLVED PROBLEMS

Problem 8.1: The local Nusselt number in the case of rough plate was correlated to give
 Nux = 0.04 Rex

0.9Pr1/3.
Determine the average value upto a length L

Solution:
h x
k

u x Prx = F
HG
I
KJ

∞0 04
0.9

0.9 1/3.
ν

hx = 0 04 1/3
0.9

0.1. .k Pr u x∞ −F
HG
I
KJν

to determine the average length upto L,

h  = 1 1 0 04 1/3
0.9

0.1
00L

h dx
L

k Pr u x dxx
LL

= × F
HG
I
KJ

∞ −zz .
ν

= 
0 04

0 1 1

1/3 0.9 0.1 1

0

. ( / ) .
.

k Pr u v
L

x L
∞

− +

− +
L
NM

O
QP

or h = 0 04 0 9
1/3 0.9

0.9. [ / . ]k Pr
L

Lu∞F
HG
I
KJν

 or

hL
k

= 0 04
0 9
.
.  Pr1/3 ReL

0.9

Nu Re Pr Nu NuL L= =0 04
0 9

1
0 9

0.9 1/3.
. .

or

generally average will be (1/n) times NuL where n is the index of x.
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Problem 8.2: In testing a model, the following measurements were made

Average Nusselt No. Reynolds number

355 80,000

424 100,000

587 150,000

739 200,000

Solution: The test is done using air at film temperature of 30°C. If the results can be correlated
by an equation of the form Nu  = C Rem Pr1/3 determine C and m. For flow of air over a similar
surface of length 6 cm at 70°C with a velocity of 40 m/s, determine the average value of convection
coefficient. Air is at 110°C and 1 atm.

Two readings are sufficient to determine the two unknowns, namely C and m. However,
a check can be made to determine the average values of C and m

At 30°C,      Pr = 0.701 for air
   355 = C (80,000)m (0.701)0.333 ...(1)
   424 = C (100,000)m (0.701)0.333 ...(2)
   587 = C (150,000)m (0.701)0.333 ...(3)
   739 = C (200,000)m (0.701)0.333 ...(4)

Dividing these expressions one by the other and taking in and solving the average
value of m = 0.8.

Substituting this value and finding C, the average is
C = 0.04777

∴ Nu  = 0.04777 Re0.8 Pr1/3

For the given data, Tf = (70 + 100)/2 = 80°C, u = 40 m/s, L = 0.06 m
ν = 21.09 × 10–6 m2/s, Pr = 0.692, k = 0.03047 W/mK

∴ Re = 0.06 × 40/21.06 × 10–6 = 113,798
∴ Nu  = 0.04777 × (113798)0.8 (0.692)0.333 = 468.56
∴ h = 468.56 × 0.03047/0.06 = 237.95 W/m2K
Both Nu and Re lie between data 2 and 3 as a check.

Problem 8.3: In flow over a wedge, the local Nusselt number is given by
Nux = C. Rex

1/2 where

Rex = 
Vx x

m

ν
.

F
HG

I
KJ  and

m = β/(2 – β). Where V is the approach velocity and πβ is the wedge angle. Determine the
relation  between average and local Nusselt number for a length L for β = 0.2, β = 0.5 and β =
1.0.
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Solution: hx = k
x

C V x m. ( / )
ν
F
HG
I
KJ

+
0.5

2 0.5  = k.C V x m
ν
F
HG
I
KJ

−
0.5

0.5 0.5( )

 h  = 1 10.5
0.5 1

0L
h dx k C V

L
x dxx

mL
= F
HG
I
KJ

−zz . . . ( )
ν

= k C
L

V
m

L m. .
. ( )

. ( )
ν
F
HG
I
KJ +

− +
0.5

0.5 1 11
0 5 1

the general expression is:

∴ hL
k

C
m

VL Lm
=

+
F
HG

I
KJ0 5 1

0.5

. ( )
.

ν

As, C Re NU NuL L L
0 5. = = 

C
m

Re
m

Nu NuL L L05 1
1

05 1
0 5

. ( ) . ( )
..

+
=

+
=

For β = 0.2, m = 0 2
18
.
. ∴ 1

0 5 1
1

0 5 0 2
18

1. ( ) . .
.

m +
=

+F
HG

I
KJ

 = 1.8

∴ Nu  = 1.5 NuL

For β = 0.5, m = 
0.5
1.5 0.5 0.5

=
+

= =1
3

1
1

1
4 3

3
2

,
( ) ( / )m

Nu  = 1.5 NuL

β = 1.0, m = 1, 1
0 5 1 1

1
. ( )+

=

∴ Nu  = NuL

Problem 8.4: A plate 5 m long at 470°C has air flowing over it with a velocity of 2.5 m/s. The
air is at 30°C. Determine the heat to be supplied for every m length. Assume unit width.
Solution: The values to be determined are the heat transfer in the first, second and subsequent
m lengths. This can be done by calculating the average heat transfer coefficient for 1 m, 2 m,
3 m. 4 m and 5 m lengths and then finding the heat transfer in each of the case and then taking
the difference.

The film temperature = (470 + 30)/2 = 250°C
The property values are: ν = 40.61 × 10–6 m2/s, Pr = 0.677, k = 0.04268 W/mK

Distance, m 1 2 3 4 5

Re × 105 0.615 1.231 1.847 2.462 3.078
Nu 144.06 204.58 250.56 289.32 323.47

h 6.174 4.366 3.565 3.087 2.761

The flow is completely in the laminar region:
∴ Nu  = 0.664 Re0.5Pr0.33. The values and h  are tabulated above.
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The heat flow: (width 1 m) Q = hA (Tw – T∞), Tw = 470°C, T∞ = 30°C

L, m Q, W ∆Q, W

1 6.174 × (470 – 30) = 2716.6 2716.6
2 2 × 4.366 × (470 – 30) = 3842.1 1225.5
3 3 × 3.565 × (470 – 30) = 4705.8 863.7
4 4 × 3.087 × (470 – 30) = 5433.1 727.3
5 5 × 2.761 × (470 – 30) = 6074.2 641.1

The heat transfer in the extended length decreases as it should.
Problem 8.5: A motor cycle travels at 100 kmph. On the engine head a fin of 0.16 m

length and 0.04 m width is exposed to convection on both sides. The fin surface is at 300°C and
air is at 20°C. Determine the rate of heat removal from the fin assuming turbulent flow prevails
all through.
Solution: In this case it is assumed that due to disturbances turbulent flow starts even at low
Reynolds numbers.

The film temperature = (300 + 20)/2 = 160°C
The property values are ν = 30.09 × 10–6 m2/s, Pr = 0.682, k = 0.0364 W/mK

Nu  = 0.037 ReL
0.8 Pr0.33

∴ Nu  = 0.037 ((100000/3600) × 0.16/30.09 × 10–6)0.8 (0.682)0.333

= 444.95
∴ h  = 101.23 W/m2K
∴  Q = hA ∆T = 101.23 × 0.16 × 0.04 × 2 × (300 – 20) = 362.8 W/fin
The Reynolds number is 1.477 × 105 ∴ laminar flow region. Under such assumption

Nu  = 0.664 Re0.5Pr0.33 = 224.6, ∴ h = 51.1 W/m2

The heat transfer is only about 50% of that assuming turbulent conditions.
Problem 6: An aircraft travelling at 300 kmph has a wing span of 2 m and is at an altitude
where the pressure is 0.7 bar and temperature is –10°C. The wing absorbs solar radiation at
800 W/m2. Determine the wing surface temperature under this condition.
Solution: This problem may be modelled as uniform heat flux model. The film temperature is
not known. Assuming 0°C, the property values are

ν = 13.28 × 10–6 m2/s, Pr = 0.707, k = 0.02442 W/mK
u∞ = 300 × 1000/3600 m/s

As pressure is reduced to 0.7 bar, ν will increase by 1/0.7, due to the change in density

∴ ReL = 
300 1000

3600
2 0 7

13 26 10 6
× × ×

×
F
HG

I
KJ−

.
.  = 8.8 × 106

This is in the turbulent region. (Fully turbulent condition is assumed as Lcr = 0.11 m)
The local Nusselt number is calculated using

 Nux = 0.0296 Rex
0.8 Pr0.33 = 9476

hx = 115.7 W/m2K
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For constant heat flux = hx = hx × 1.04 = 120.3 W/m2K
∆T at this location:

800 = 120.2 × 1 × ∆T = 6.65°C
∴ Wing temp. = – 3.35°C at the trailing edge.
The assumption of 0°C as Tf  is in error. The new value can be now used and the results

refined.
At a distance of 1 m from leading edge.

 Re = (8.8/2) × 106, fully turbulent condition is assumed.
 Nux = 0.0296 Rex

0.8 Pr0.33 = 5442
hx = 132.9 W/m2K

Constant heat flux
hx = 1.04 × 132.9 = 138.2 W/m2K

∴  ∆T = 5.79°C or T = – 4.21°C
The minimum wing surface temperature is –10°C and the maximum about – 3.34°C.

Problem 8.7: A surface 1 m × 1m size has one half very rough and the other half smooth. The
surface is at 100°C. Air at 72 kmph and 20°C flows over the surface. If the flow direction is
reversed is there a possibility of change in the average value of convection coefficient ? If initially
the rough area is at the leading edge, determine the change in the value.
Solution: If the rough surface is at the leading edge, then the flow is turbulent all through.
However, if the smooth surface is at the leading edge, turbulence will begin only at Re = 5 × 105

or at the beginning of the rough surface. So, the convection coefficient will depend on the
direction of flow.

The film temperature is (100 + 20)/2 = 60°C
The property values are: ν = 18.97 × 10–6 m2/s, Pr = 0.696, k = 0.02896 W/mK. Initially

the rough surface is at the leading edge. So the flow is turbulent all through. Rex = 1.054 × 106

(calculated).

∴ h  = k
L

Re PrL0 037 0.8 0.333. ( )

= 0 02896
1

0 037 72000
3600

1 1
18 97 10

0 6966

0.8
0.333. .

.
.× × × ×

×
F
HG

I
KJ−

= 62.5 W/m2K
When the smooth surface is at leading edge,
The Reynolds number at mid location

= 
72000
3600

0 5
18 97 10 6×

×
F
HG

I
KJ−

.
.  = 5.27 × 105

∴ Turbulence starts even before the rough surface is met

∴ h  = k
L  (0.037 ReL

0.8 – 871)Pr0.33 = 40.15 W/m2K

A change of about 36%
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It may so happen that rough surface may start even before the value of Re = 5 × 105. In
such a case the critical Reynolds number should be taken as the Reynolds number at the
location where the rough area begins. Then the number 871 will be different. Equation (8.00)
and (8.31) should be used in such a case

i.e. Nu  = Pr0.333 (0.37 ReL
0.8 – A) where

 A = 0.037 Recr
0.8 – 0.664 Recr

0.5.

Problem 8.8: Wind blows at 20 kmph parallel to the wall of adjacent rooms. The first room
extends to 10 m and the next one to 5 m. The wall is 3.2 m high. The room inside is at 20°C and
the ambient air is at 40°C. The walls are 25 cm thick and the conductivity or the material is 1.2
W/mK. On the inside convection coefficient has a value of 6 W/m2 K. Determine the heat gain
through the walls of each room.
Solution: The film temperature is not known. But it has to be between 40°C and 20°C. A
choice is made as 35°C.

The property values are: v = 16.48 × 10–6 m2/s, Pr = 0.70, k = 0.02716 W/mK
Reynolds numbers at 10 m and 15 m locations are:

10 m: Re = 10 20000
3600

1
16 48 10 6× ×

×
F
HG

I
KJ−.

 = 3.371 × 106

15 m: Re = 15 20000
3600

1
16 48 10 6× ×

×
F
HG

I
KJ−.

 = 5.0566 × 106

Average values of h are:

10 m:  h = k
L

.Pr0.33 (0.037 Re0.8 – 871) = 12.783 W/m2K

Similarly, for 15 m:   h  = 12.324 W/m2K
∴ Average for last 5 m = (12.324 × 15 – 12.783 × 10)/5 = 11.406 W/m2K
Heat gain in the first room

= A T

h
L
k h

∆
1 1

20 3 2 10
1

12 783
0 25
12

1
61

1

1 2
+ +

= × ×

+ +

.

.
.
.

 = 1412.1 W

Heat gain in the second room

= 
20 3 2 5
1

11406
0 25
12

1
6

× ×

+ +

.

.
.
.

 = 691.6 W

The surface temperature can now be found using the heat flow quantity at the surface.
10 × 3.2 × 12.783 (40 – Ts) = 1412.1 ∴ Ts = 36.55°C

The value of Tf can now be refined and calculations repeated to obtain more accurate
values.
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Problem 8.9: Icebergs 1 km long by 0.8 km wide and 0.3 km thick at 0°C are proposed to be
towed to arid regions for obtaining supply of fresh water. If the average water temperature is
10°C and if the iceberg is to travel at 1.2 km/hour, determine the thickness of ice melted per
hour. The latent heat of ice is 334 kJ/kg. Assume that the iceberg is towed along the 1 km
direction.
Solution: The temperature  of the ice is taken as 0°C. So the film temperature = 5°C.

Properties of water are : (using 0°C and 20°C values)
ν = (1.788 – 1.006) × 0.75 + 1.006 × 10–6 m2/s

Pr = (13.600 – 7.020) × 0.75 + 7.020
k = (0.552 – 0.5978) × 0.75 + 0.5978
ν = 1.5925 × 10–6 m2/s, Pr = 11.955 , k = 0.56345 W/mK
L = 1000 m, u∞ = 1.2 × 1000/3600 = 0.333 m/s, latent heat = 3.34 × 105 J/kg.

∴  ReL = 0.2093 × 109

∴ A suitable correlation is
∴ St Pr2/3 = Cf /2 can be used

Cf L = 0 495
10

2 584
.

(log ) .Re ReL L
− 1700  = 2.066 × 10–3

 Nu
Re Pr

 . Pr2/3 = 2.066 × 10–3/2

∴ Nu = 
Cf

2  × Re. Pr1/3 = 494478.6

∴ h  = Nu k
L
×  = 494478 6

1000
.  × 0.56345 = 278.61 W/m2K

∴ heat gain for each 1 m2 = h (∆T). Time
= 278.61 × 10 × 3600 = 10.03 × 106 J/hr

∴ mass of ice melted = 10.03 × 106/3.34 × 105 = 30.03 kg/hr
The thickness melted= 30.03 mm/hr or 3 cm/hr.

Problem 8.10: Water flows over a flat plate having a uniform heat generation rate. The plate
is 15 cm × 15 cm side. Water is at 20°C and the flow velocity is 3 m/s. Determine the heat that
may be carried away by the water if the maximum temperature of the plate is not to exceed
80°C.
Solution: The property values can be evaluated at a mean temperature i.e. 50°C in this case
to start with

Property values are :
ν = (0.657 + 0.478) × 10–6/2 = 0.5675 × 10–6 m2/s

Pr = (4.34 + 3.02)/2 = 3.68
k = (0.628 + 0.6513)/2 = 0.63956 W/mK

Re = 3 × 0.15/0.5675 × 10–6 = 7.929 × 105
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∴ The flow is turbulent as Re > 5 × 105

∴ Nu  = (0.037 . Re0.8 – 871) Pr0.33 = 1649

∴ h = Nu k
L

.  = 1649 0.63965
0.15
×  = 7032 W/m2K

For constant heat flux : h = 1.04 × h (constant temp.)
= 7313.25 W/m2K

∴  Q = h A ∆T = 7313.25 × 0.15 × 0.15 × 60 = 9873 W = 9.873 kW
This assumes an average value of h. But the maximum temperature is to be at edge. So

the local Nusselt number should be used for better estimate.
Nux = 0.0296 Rex

0.8 Pr0.33 = 2395 hx = 10213
∴ h (constant heat flux) = 10621.6 W/m2K.

qx = h ∆T = 10601.6 × 60 = 637295 W/m2

∴ Heat carried from plate = A.q = 14.34 kW
There is a difference of 31%
As the heat generation at every location is the same this method may be used.
These calculations can serve only as a first estimate, and refinements are necessary to

get at more accurate values.
Problem 8.11: Glycerine at 30°C flows past a 30 cm square flat plate at a velocity of  1.5 m/
s. The drag force measured was 8.9 N. Determine the value of convection coefficient for such a
system.
Solution: This problem has to use the analogy method. Cf can be calculated using the drag
force. The film temperature is taken as 30°C.

 density = 1258 kg/m3, ν = 501 × 10–6 m2/s, Pr = 5380, k = 0.2861 W/mK

Force on 1 m2 = 8 9
0 3 0 3

.
. .×

 N

 Cf = τ / ρ u∞
2

2
 = 8 9

0 3 0 3
.

. .×
 / 1258 15

2
2× .  = 0.06987

St Pr2/3 = Cf /2 = 0.034935
 Nu = (Cf /2) × Re Pr1/3, Re = 1.5 × 0.3/501 × 10–6

∴ Nu = 549.86 ∴ h = Nu k
L

.  = 524.4 W/m2/K

Measurement of drag force is much easier compared to the measurement of heat flow.
Hence the analogy method is very useful in estimating convection coefficients.
Problem 8.12: Helium at a pressure of 0.15 atm and 30°C flows over a flat plate at 70°C at a
velocity of 50 m/s. The plate is 1 m long. Calculate the value of convection coefficient.
Solution: The film temperature is (70 + 30)/2 = 50°C

The property values are : density = (0.178 + 0.130)/2 kg/m3

ν = ((105 + 176)/2) × 10–6 m2/s, Pr = (0.684 + 0.667)/2
k = (0.14304 + 0.1791)/2
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As the pressure is not 1 atm., the value of
µ = νρ only remains constant ∴ ν1ρ1 = ν2ρ2

∴  ν2 = ν1 
ρ
ρ

1

2
 = ν1 × 

P
P

1

2
 as temperature is constant

= 936.7 × 10–6 m2/s
∴   Re = 50 × 1/936.7 × 10–6 = 0.53338 × 105 ∴ laminar
∴  Nu = 0.664 Re0.5 Pr0.333 = 134.6
∴ h = 21.68 W/m2K

Problem 8.13: Liquid ammonia at – 20°C flows with a velocity of 5 m/s over a plate 0.45 m
length at 20°C. Determine the value of average convection coefficient.
Solution: The film temperature is (– 20 + 20)/2 = 0°C

The property values are
ρ = 640 kg/m3, ν = 0.373 × 10–6 m2/s

Pr = 2.050, k = 0.5396 W/mK
Re = 5 × 0.45 /0.373 × 10–6 = 6.03 × 106

Turbulent flow prevails.
 Nu  = (0.037 Re0.8 – 871) Pr0.333 = 11381.7

∴ h = 13648 W/m2K
The value is high as it is liquid flow at a high velocity.

Problem 8.14: Calculate the value of convection coefficient for flow of the following fluids at
10°C across a pipe 20 mm dia at 30°C, the flow velocity being 5 m/s

(a) Air (b) Water (c) engine oil (d) liquid ammonia.
Solution: (a) The property values for air are

T°C ν × 106 m2/s Pr k, W/mK

10 14.16 0.705 0.02512
20 15.06 0.703 0.02593
30 16.0 0.701 0.02675

ReD = 5 × 0.02/15.06 × 10–6 = 6640 (film temp.)
Using NuD = C Rem Pr0.333 C = 0.193, m = 0.618
∴ NuD = 0.193 × 66400.618 (0.0703)0.333 = 39.5
∴ h = 51.22 W/m2K
(b) Water

 20°C, ν = 1.006 × 10–6 m2/s, Pr = 7.020, k = 0.5978 W/mK
ReD = 5 × 0.02/1.006 × 10–6 = 99403

Using NuD = C. Rem Pr0.333, C = 0.0266, m = 0.805
∴ Nu = 536.9 ∴ h = 16048 W/m2K
(c) Engine oil at 20°C

ν = 901 × 10–6 m2/s, Pr = 10400, k = 0.1454 W/mK
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The Prandtl number value is very high. One suitable correlation can be
Nu = [0.35 + 0.56 Re0.52] Pr0.333

 Re = 5 × 0.02/901 × 10–6 = 111
∴ Nu = 149.14 ∴ h = 1084 W/m2K
If the general equation is used

C = 0.683, m = 0.466
∴ Nu = C Rem . Pr0.333 = 133.82
∴  h = 972.9 W/m2 K
(d) Liquid ammonia at 20°C

ν = 0.358 × 10–6 m2/s, Pr = 2.02, k = 0.521 W/mK
Re = 5 × 0.02/0.358 × 10–6 = 2.79 × 105

Using Nu = C Rem Pr0.333, C = 0.0266, m  = 0.805
∴ Nu = 814.3, ∴ h = 21213 W/m2K
Note that for liquids higher value (of one or two orders of magnitude) of convection

coefficient is obtained for the same velocity of flow.
Problem 8.15: A wire 0.5 mm dia is at 40°C in a cross flow of air at 20°C while dissipating 35
W/m. Determine the velocity of the air stream.

The convective heat transfer coefficient can be determined from the data.
Solution: 35 = h × π × 0.0005 × 1 × (40 – 20)

∴ h = 1114.08 W/m2K
Nu = C. Rem Pr0.333

h D
k
.  = C Rem Pr0.333

m and C are to be found. Properties are: at 30°C
ν = 16 × 10–6 m2/s, Pr = 0.701, k = 0.02675 W/mK

 Re = 
0 0005
16 10 6
. ×

×
∞

−
u

h D
k
.  = 

1114 08 0 0005
0 02675
. .
.

×
 = 20.82

For range of values of Re around 1000 – 2000, C = 0.683,  m = 0.466 By trial

R.H.S. Assumed Velocity L.H.S.

20.82 (constant) 20 m/s 12.18
40 m/s 16.8

100 m/s 25.79
80 m/s 23.25
70 m/s 21.84
65 m/s 21.10
60 m/s 20.33
63 m/s 20.80
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∴ The velocity is 63 m/s (nearest) Re = 1968
Check by another equation

Nu = C Rem Prn 
Pr
Prw

∞F
HG
I
KJ

0.25

Properties at T∞ = 20°C. K = 0.02593
u∞ = 63 m/s ν = 15.06 × 10–6 m2/s

Pr∞ = 0.703, Prw = 0.699

∴ Re = 
63 0 0005
15 06 10 6

×
× −
.

.  = 2091.63

From tables for this value of Re
C = 0.26, m = 0.6, n = 0.37

 Nu = 0.26 × (2091.63)0.6 (0.703)0.37 0 699
0 703

0.25.
.
F
HG
I
KJ  = 22.4

∴ h = 1161 W/m2K
Q = 36.5 W as against 35 W

∴ The estimate is acceptable.
Problem 8.16: Air at 20°C flows over a cylinder 10 cm dia at 60°C with a velocity of 10 m/s.
Compare the value of convective heat transfer coefficient with a plate of length πD/2 with other
parameters remaining the same.
Solution: The properties at Tf = (20 + 60)/2 = 40°C are

ν = 16.96 × 10–6 m2/s Pr = 0.699, k = 0.02756 W/mK
Cylinder: ReD = 0.1 × 10/16.96 × 10–6 = 58962
Using  Nu = C . Rem . Pr0.333, C = 0.0266, m = 0.805
∴ Nu = 163.43 ∴ h = 45.04 W/m2K
Taking it as a plate:  L = π × 0.1/2
∴ Re = (π × 0.05) × 10/16.96 × 10–6 = 92617.7 ∴ Laminar

 Nu  = 0.664 Re0.5 Pr0.333 = 172.86 ∴ h = 30.32 W/m2K
The curved surface provides greater turbulence and higher convection coefficient.

Problem 8.17: Approximating a human body as a cylinder of 0.3 m dia and 1.75 m long, at
surface temperature of 30°C exposed to winds at 15 kmph at 10°C, determine the rate of heat
loss.
Solution: This problem may give an idea about the chilling in cold winds.

The film temperature = (30 + 10)/2 = 20°C
Property values are ν = 15.06 × 10–6 m2/s

Pr = 0.703, k = 0.02593 W/mK

Re = 15000
3600  × 0.3 × 1

15 06 10 6. × −  = 83,001
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Using the common equation
Nu = C Rem Pr0.333 , C = 0.0266, m = 0.805

∴ Nu = 215.64, h = 18.64 W/m2K
∴  Q = 18.64 × π × 0.3 × 1.75 (30 – 10) = 614.8 W,

rather high. Of course clothing reduces this loss to a very small value over larger fraction of
the area.

Also we can use Nu = 0.25 Re0.5 Pr0.38 (for gases properties at T1)
= 195.5, ∴ h = 16.9 W/m2K

A difference of 8%.
Problem 8.18: Carbon dioxide at 1 atm and 100°C flows across a pipe 0.2 m dia at 300°C
with a velocity of 50 m/s. Determine the value of convection coefficient.
Solution: The property values at the film temperature of 200°C are

ν = 19.2 × 10–6 m2/s, Pr = 0.715, k = 0.03094 W/mK
Re = 60 × 0.2/19.2 × 10–6 = 5.2 × 10–5

The equation that can be used is
Nu = 0.25 Re0.5 Pr0.38 (103 < Re < × 105)

= 592.4 ∴ h = 91.64 W/m2K
The other suitable equation is

Nu = C . Rem Pr0.37 
Pr
Prw

∞F
HG
I
KJ

0.25

with data at T∞
Property values at T∞, 100°C, ν = 12.6 × 10–6 m2/s

Pr = 0.733, k = 0.02279 W/mK
 Re = 50 × 0.2/12.6 × 10–6 = 7.93 × 105, Prw = 0.712

so values of C = 0.076, m = 0.7 ∴ Nu = 920.0 ∴ h = 104.8 W/m2K about 12% change.
Problem 8.19: A tube with 4 cm square cross section has air blown across it at 20 m/s. The air
is at 30°C and the pipe surface is at 50°C. Determine the convective heat transfer coefficient
when (i) the flow is along diagonal and (ii) the flow is perpendicular to a face.
Solution: The film temperature is (50 + 30)/2 = 40°C

The property values are:
ν = 16.96 × 10–6 m2/s. Pr = 0.699, k = 0.02756 W/mK

(i) flow along diagonal
 D = ( . )0 04 22 ×  = 0.0566 m

∴ Re = 20 × 0.0566 /16.96 × 10–6 = 66708
Using Nu = C. Ren, C = 0.222, n = 0.588
∴ Nu = 152.40 ∴ h = 74.27 W/m2K
(ii) Perpendicular to face

 Re = 20 × 0.04/16.96 × 10–6 = 47170
Using Nu = C Ren, C = 0.092, n = 0.675
∴ Nu = 131.4 ∴ h = 90.5 W/m2 K
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Problem 8.20: A spherical chemical container of 4 m dia has a surface temperature of 15°C
while the outside air is at 25°C. Determine the heat gain when a 20 kmph wind blows across it.
Solution: The film temperature is (15 + 25)/2 = 20°C

The property values are:
ν = 15.06 × 10–6 m2/s, Pr = 0.703
k = 0.02593 W/mK

Re = 
2000
3600  × 4 

1
15 06 10 6. × −  = 1.4755 × 106

suitable equation for this Reynolds number is
Nu = 430 + 5 × 10–3 Re + 0.025 × 10–9 Re2 – 3.1 × 10–17 Re3

= 7762.7 ∴ h = 50.94 W/m2K

∴ heat gain = 4 π × 
4
2

2F
HG
I
KJ  × 50.94 × (25 – 15)W = 26.04 kW

Problem 8.21: In order to preheat air for a process from 50°C to 350°C packed bed of 10 cm dia
pipe filled with spherical particles of 1 cm dia is used. The flow rate of air is 20 kg/hr. The pipe
surface is at 400°C. Determine the height of bed required.
Solution: The film temperature at entry = (50 + 400)/2 = 225°C

The film temperature at exit = (350 + 400)/2 = 375°C
∴ Average film temperature = (225 + 375)/2 = 300°C
Taking the properties of air at this condition

ν = 48.2 × 10–6 ρ = 0.615 kg/m3, Pr = 0.674,
k = 0.04605 W/mK, cp = 1047 J/kg K

Eq. particle dia = 6 × volume/surface area

= 6 × 
4
3  π r3/4 π r2 = 2 r = D = 0.01 m

∴ Superficial velocity = 
20

0 615.  × 
1
0 052π × .  × 

1
3600  m/s = 1.15 m/s

∴ ReDP = uD/v = 238.6 Using eqn (8.52 (b)).
 Nu = 0.203 ReDP

1/3 Pr1/3 + 0.220 ReDp
0.8 Pr0.4

= 16.1 ∴ h = 74.14 W/m2K
Q = 20 × 1047 × (350 – 50)/3600 W = 1745 W

Heat transfer is also equal to the pipe area × h × LMTD
LMTD = 154.2°C

π DL × h × ∆T = π × 0.1 × L × 74.14 × 154.2 ∴ L = 0.486 m.
Problem 8.22: Sodium potassium alloy (25% + 75%) flows across a nuclear fuel rod at 500°C.
The temperature of the alloy is 300°C. The rod dia is 5 cm and the flow velocity is 6 m/s.
Determine the value of convection coefficient.
Solution: At film temperature 400°C

ν = 0.308 × 10–6 m2/s, Pr = 0.0108, k = 22.10 W/mK



VED

c-4\n-demo\damo8-3

376 FUNDAMENTALS OF HEAT AND MASS TRANSFER

Reynolds no = 6 × 0.05/0.308 × 10–6 = 9.74 × 105

Re Pr = 10519 (properties at Tf)
∴ possible correlation is, 8.38 (a)

Nu = 0.3 + 0 62

1 0 4
1

282000
0.5 0.333

0.666 0.25

0.625 0.8
.

.
Pr

Re Pr Re

+ FHG
I
KJ

L
N
MM

O
Q
PP

+ FHG
I
KJ

L
N
MM

O
Q
PP

 = 182.77

∴  h = 80785.6 W/m2 K (Liquid Metal)
Problem 8.23: Dry air at 80°C blows over a copper sphere at 320°C at a velocity of 14 m/s. The
diameter of the sphere is 25 mm. Determine the heat transfer rate at that instant.
Solution: The film temperature is 200°C. The property values are :

ν = 34.85 × 10–6 m2/s, Pr = 0.68, k = 0.03931 W/mK
 Re = 0.025 × 14/34.85 × 10–6 = 1 × 104

The suitable equation is, 8.42
Nu = 2 + (0.25 Re + 3 × 10–4 Re1.6)0.5 = 59.18

∴ h = 93.05 W/m2K
∴ heat transfer rate = 4 π r2 h ∆T = 43.85 W
We can also use:  Nu = 0.37 × Re0.6 = 93.17, h = 146.5 W/m2K
This is an older correlation (1953) as compared to the previous (1978).

Problem 8.24: An incandescent bulb can be considered as a sphere of 0.05 m dia. The bulb
surface is at 140°C. Air at 20°C flows over it with a velocity of 0.6 m/s. Determine the heat loss
from the bulb surface.
Solution: The film temperature = (140 + 20)/2 = 80°C

The property values are:
ν = 21.09 × 10–6 m2/s. Pr = 0.692,

 k = 0.03047 W/mK
∴  Re = 0.6 × 0.05/21.09 × 10–6 = 1422.5
Using Nu = 0.37 × Re0.6 = 28.84, h = 17.58 W/m2K
Using Nu = 2 + (0.25 Re + 3 × 104 Re1.6)0.5 = 21.72
Not very much different, h = 13.24 W/m2K

Heat loss = h 4 π r2 ∆T = 16.56 W, for h = 17.58 W/m2K
= 12.48 W for h = 13.24 W/m2K.

Problem 8.25: Liquid sodium at 200°C flows over a sphere of 5 cm dia at a velocity of
1.2 m/s. The surface is at 400°C. Determine the rate of heat loss from the sphere.
Solution: The film temperature is (200 + 400)/2 = 300°C

The property values are
ν = 0.394 × 10–6 m2/s, Pr = 0.0063, k = 70.94 W/mK

 Re = 0.05 × 1.2/0.394 × 10–6 = 1.52 × 105



VED

c-4\n-demo\damo8-3

C
ha

pt
er

 8

CONVECTIVE HEAT TRANSFER-PRACTICAL CORRELATIONS-FLOW OVER SURFACES 377

The applicable equation is
Nu = 2 + 0.386 (Re Pr)0.5 = 13.96

∴  h = 19800 W/m2K
∴  Q = 4π r2h ∆T = 31102 W
This shows that liquid sodium can extract heat at a high rate and so is used in breeder

reactors.
Problem 8.26: A bank of tubes consists of 10 mm tubes 100 numbers arranged in a square
array of 15 mm pitch. The tube wall is at 40°C and air enters at 20°C with  a velocity of 4 m/s.
Determine the value of convection coefficient and the heat transferred to the air for 1 m length
of tubes in the array.
Solution: The property values at T∞, Tf and Tw are

T°C ρ, kg/m3 ν × 106, m2/s Pr k, W/mK Cp, J/kg K

20 1.205 15.06 0.703 0.02593 1005
30 1.165 16.00 0.707 0.02675
40 1.128 16.96 0.699 0.02756

Vmax = 4 × 
15

15 10−  = 12 m/s

Using properties at film temperature
 Re = 12 × 0.01/16 × 10–6 = 7500

Using the tables for the constants in the equation:
Nu = 1.13 Pr0.33 C Ren

Sn/D = 1.5 and Sp/D = 1.5
 C = 0.25, n = 0.62

∴ Nu = 63.41 ∴ h = 169.61 W/m2K
No correction necessary as it is 10 rows deep.
Area for heat flow: π × 0.01 × 100 × 1 m2

As  the  temperature  of  air  varies  along  the flow, T cannot be taken as 20°C. But as
(T∞1 + T∞2)/2

The heat transfer due to the temperature rise for the air is equated to the heat transfer
by convection :

mass fiow = 10 × 0.05 × 1 × 4 × 1.205 kg/s

∴ = 169.61 × π × 0.01 × 100 40 20
2

2−
+L

NM
O
QP

∞T

= 10 × 0.05 × 1 × 4 × 1.205 × 1005 (T∞2 – 20)
 15985.4 – T∞2 × 266.42 = 726.615 T∞2 – 14532.3

∴ T∞∞∞∞∞2 = 30.73°C

 Q = 169.61 × π × 0.01 × 100 40 20 30 73
2

− +L
NM

O
QP

.

= 7798 W or 7.8 kW
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Using the other correlations with properties at T∞∞∞∞∞

Nu = C Rem Pr0.36 
Pr
Prw

∞L
NM
O
QP

0.25

Re = 12 × 0.01/15.06 × 10–6 = 7968, C = 0.27, m = 0.63
∴ Nu = 68.35 ∴ h = 177.37 W/m2K
The variation is less than 10% and the previous value is as reliable as this value.

Problem 8.27: For the data in problem 8.26, assume that the pitch parallel to flow direction is
reduced to 10 mm, determine the value of convection coefficient for staggered arrangement.
Solution: To find Vmax

Check: Sp – D < 2 (( / ) )S Sp n2 2 2+  – 2 D
Sp – D = 15 – 10 = 5 mm,

2 ( / )S Sp n2 2 2+  – 2D = 2 7 5 102 2. +  – 20 = 25 – 20 = 5
These two are equal. So eitherway Vmax has the same value. The check is whether 2 × Sp

< (Sn – D). (see Fig. 8.5 for Sp). In that case the value of Vmax will increase as the flow area is
reduced.

In the problem given, the value of  Vmax is the same as in 8.26. But the values of C and
n are different for staggered arrangement. These are : 0.497 and 0.558.

∴ Nu = 0.497 (7500)0.558 1.13 × Pr0.333 (eqn. 8.56)
= 72.49 ∴ h = 193.91 W/m2K

No correction as the bank is 10 rows deep
This is as compared to 169.61 W/m2K, an increase of 14.3 % due to staggered arrangement.

This also gives a more compact heat exchanger. But the value of friction loss for the two
arrangements should be calculated before adopting the compact arrangement.
Problem 8.28: Water flows over 20 mm tubes 6 rows deep inline arrangement with 40 mm
square pitch. Water enters at 20°C and the tube wall is at 60°C. The velocity of water is
1.2 m/s at enetry. Determine the value of convection coefficient.
Solution: The property values are:

T ν × 106 Pr k Cp

20 1.006 7.020 0.5978 41.78
40 0.657 4.340 0.628
60 0.478 3.020 0.6513

Vmax = u∞ . 40 20
20
−  = 2.4 m/s

Using property values at  Tf = 40°C
for Sn/D = 2 and Sp/2 = 2,
the values of C and n in the equation
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Nu = 1.13 Pr0.333 × C . Ren are C = 0.229, n = 0.632
∴ Nu = 500.32 ∴ h10 = 15710 W/m2K
As the bank is 6 rows  deep, this is corrected by 0.94 (see tables)
∴   h6 = 14768 W/m2K
Assuming 1 m × 1 m, the number of rows perpendicular to flow direction is 1/0.04 = 25

rows. Total tubes = 25 × 6 = 150.
Using the relationship that the increase in the internal energy of water = heat convected,

and also assuming water outlet temperature as T∞2
1 × 1 × 1.2 × 1000 × 4178 (T∞2 – 20) = π × 0.02 × 150 × 1 × 14768

× 60 20
2

2−
+F

HG
I
KJ

∞T

T∞∞∞∞∞2 = 21.1°C
∴ Heat transfer = 5491 kW
Using the other correlation:

Nu = C Rem Pr0.36 Pr
Prw

∞F
HG
I
KJ

0.25

This uses properties at T∞

∴  Re = 2.4 × 0.02/1.006 × 10–6 = 47714
For this range of Reynolds number, C = 0.27, m = 0.63
∴ Nu = 596 h10 = 17811 W/m2K

h6 = 16742 W/m2K
This provides higher values, 13.4%
It can be noted here that these constants and correlations predict values within ± 25%

only as compared to experimental results.
Problem 8.29: Using the data or problem 8.28 except that the bank is of staggered arrangement
with the longitudinal pitch reduced to 18 mm, calculate the value of convection coefficient.
Solution: In this case, distance

P = (182 + 202)2 – D = 6.9 mm
 2P = 13.81 mm

This is less than (40 – 20) = 20

∴ Vmax = 1.2 × 
40

13 81.  = 3.475 m/s

Re = 3.475 × 0.02/0.657 × 10–6 = 105806, (1.05 × 105)
Using the relation:  Nu = 1.13 × (Pr)0.333 C Ren

In this arrangement, (2, 0.9) C = 0.446, n = 0.571
∴ Nu = 608.0 ∴ h10 = 19091 W/m2K
For 6 rows, h6 = 17946 W/m2K as compared to 14768 in the inline arrangement (21.5%

increase)
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If the other correlation is used, with properties at T∞

Re = 3.475 × 0.02/1.006 × 10–6 = 69085
C = 0.27, m = 0.63

 Nu = C . Rem Pr0.36 Pr
Prw

∞F
HG
I
KJ

0.25

= 752.38 ∴ h10 = 22489 W/m2K
h6 = 22140 W/m2K (about 18% more than the other correlation). For water flow this may be
better
Problem 8.30: Hot air is used to heat up rocks in a container 1 m dia and 2 m long. The rocks
are approximately spherical with a diameter of 30 mm. The bed has void space of 42%. The rock
is at 20°C. The air is at 80°C and flows in the axial direction at a flow rate of 1 kg/s. Calculate
the value of convection coefficient.
Solution: The case is heat transfer from gas to fillings (as compared to wall to the gas discussed
in problem no. 8.22)

 Reynolds = 
D UBS
ν ε( )1 −

D = 6 V/surface area = 6 × 
4
3  π r3/4 π r2 = 2r = D = 0.03 m

UBS = superficial velocity based on the area of empty container
= 1 × sp vol/(π × 12/4) = 4/π = 1.273 m/s

at 80°C, 1 atm, sp. vol. = 1 m3/kg
The property values at 100/2 = 50°C, ν = 17.95 × 10–6 m2/s, Pr = 0.698

k = 0.02826 W/mK
Re = 0.03 × 1.273/17.95 × 10–6  = 2128

h D
k
.

 = 
1 − ε

ε
 [0.5 Re0.5 + 0.2 Re0.67] Pr1/3

= 
0 58
0 42
.
.  [0.5 (2128)0.5 + 0.2 (2128)0.67] (0.698)0.333 = 69.83

∴ h = 65.78 W/m2K

OBJECTIVE QUESTIONS

Choose the correct statement
8.1 In flow over a flat plate the convection coefficient

(a) Always increases along the flow
(b) Decreases, increases and decreases
(c) Increases upto critical Reynolds number and then decreases
(d) Decreases upto critical Reynolds number and then increases.
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8.2 In laminar flow over a flat plate,
(a) The thermal boundary layer and hydrodynamic boundary layers are of equal thickness
(b) The thermal boundary layer is thicker if the Prandtl number is greater than one
(c) The thermal boundary layer is thicker if the Prandtl number is less than one
(d) The thermal boundary layer is always thinner in the laminar region.

8.3 The friction factor in the laminar region is proportional to
(a) Re0.5 (b) Re0.2 (c) Re–0.2 (d) Re–0.5.

8.4 The boundary layer thickness in laminar flow is proportional to
(a) Re0.2 (b) Re0.5 (c) Re–0.5 (d) Re–0.2.

8.5 In laminar flow over a flat plate the convection coefficient is proportional to
(a) x–0.5 (b) x0.5 (c) x–0.2 (d) x.

8.6 The boundary layer thickness in laminar flow over a flat plate, is proportional to
(a) x (b) x0.5 (c) x–0.5 (d) x–1.

8.7 (a) higher the value of kinematic viscosity thinner will be the boundary layer
(b) Higher the Prandtl number lower will be the thickness of thermal boundary layer.
(c) The convective heat transfer coefficient will be lower in turbulent flow as compared to laminar

flow
(d) The boundary layer will thicken as the free stream velocity increases.

8.8 In flow across a cylinder, the local Nusselt number will be highest at
(a) 90° from the stagnation point
(b) At the stagnation point
(c) At 80°C from stagnation point
(d) At 135°C from stagnation point.

8.9 In banks of tubes heat transfer will be highest
(a) In linear arrangement with square pitch
(b) Linear arrangement with lower longitudinal pitch
(c) Staggered arrangement with equal pitch
(d) Staggered arrangement with lower longitudinal pitch.

EXCERCISE PROBLEMS

8.1 Nitrogen at 30°C flows over a plate maintained at 70°C with a free stream velocity of 10 m/s.
(a) Determine the local and average values of convective heat transfer coefficient
(b) Also calculate the values of the boundary layer thickness (velocity, thermal) and momentum

and displacement thicknesses at these locations.
(c) Determine also the location at which the flow turns turbulent, considering Recr = 5 × 105.

8.2 Air at 20°C was heated by flow over a flat plate at 100°C, the flow velocity being 16 m/s. The
plate is 1 m wide and 1.2 m long. Due to deterioration of performance of the fan and the heating
medium, the plate temperature is reduced to 80°C while the flow velocity is reduced to 10 m/s.
Determine the percentage reduction in heat flow.

8.3 It is desired to predict the performance of heat transfer in an equipment using liquid ammonia
at a film temperature of – 30°C upto a Reynolds number of 105, using heat transfer studies on
similar flat surface, with air as the test fluid. The maximum velocity of air is 10 m/s and the film
temperature is 40°C. Determine the length of the plate to be used for the experiment.
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8.4 A plate air heater 1 m wide and 2 m long at 120°C is designed to heat air at 20°C with a flow
velocity of 8 m/s, with flow along 1 m direction. During fabrication, misunderstanding the in-
struction, the flow direction was fixed along the 2 m direction. Determine whether the heating
rate will be lower or higher than the design value, and by what percentage.

8.5 Water at 20°C flows over a flat plate at 80°C with a velocity of 1.2 m/s. Determine the incremen-
tal heat transfer for every 0.2 m length after the leading edge upto a length of 1.2 m.

8.6 Air at 10 atm and 60°C flows over a plate at a velocity of 4 m/s, the plate temperatrue being
100°C. Determine at a location 0.5 m from the leading edge, the local and average values of
convection coefficient. Also calculate the thermal boundary layer thickness at this location.

8.7 In a wind tunnel air flow is at 0.1 atm and 20°C. For heat transfer studies a plate 1 m length is
kept at 80°C in the air stream. The flow velocity has a maximum value of 30 m/s. Determine the
maximum Reynolds number at which observations can be made. Also calculate the heat input
for the plate if it is 0.4 m wide. It is desired to modify the tunnel to operate at 0.8 atm and 40°C
with the plate being at 80°C. Calculate the heat input if the maximum velocity is now reduced to
18 m/s.

8.8 A thin metal plate has hot air at 180°C flowing on one side at 20 m/s and cold air at 30°C flowing
on the other side, both streams being parallel. Determine the heat flux at 0.4 m from the leading
edge.

8.9 Air at 20°C flows over a flat plate at 60°C at a velocity of 60 m/s. Determine the value of average
convection coefficient upto a Reynolds number of 107 (i) considering the laminar region (ii) con-
sidering that roughness causes turbulence even at the leading edge.

8.10 Air at 20°C flows over a flat plate with a velocity 10 m/s. The plate temperature is maintained at
60°C from a point 0.5 m from the leading edge. Determine the value of convection coefficient at
a location 1 m from the leading edge.

8.11 A plate 40 cm square has a uniform heat generation rate of 8 kW/m2. Water at 20°C flows over it
with a velocity of 1.2 m/s. Determine the value of convection coefficient at the trailing edge and
also the temperature at this location.

8.12 If air at 2 atm and 20°C flows over a plate 0.4 m square with a velocity of 8 m/s and if the plate
has uniform heat generation of 8 kW/m2, determine the temperature at the trailing edge. Also
determine the value of convection coefficient at this location.

8.13 Air at 10°C flows across a road surface at 10°C with a speed of 25 kmph. The road surface is 10
m wide and rough enough to cause turbulence even at the leading edge. Determine the value of
convection coefficient at the trailing edge and also the average convection coefficient. Calculate
also the thickness of hydrodynamic boundary layer at the trailing edge.

8.14 Liquid sodium at 200°C flows over a plate at 400°C with velocity of 6 m/s. Determine the average
value of convection coefficient if the plate is (i) 0.6 m long (ii) 2 m long.

8.15 Engine oil at 80°C is cooled by flow over a plate maintained at 20°C with water flow below it. The
flow velocity is 0.66 m/s. Determine the heat absorbed by a plate 0.25 m × 0.25 m size.

8.16 The value of local Nusselt number is given by the following equation

 Nux = 
( / )

. / ( ).
C Re Pr

C Pr
fx

fx

2
1 12 8 2 10 68+ −

Where   Cfx = 0.059 Rex
–02 and Re = u x∞

ν
 and

  Nux = 
u x

k
∞

Derive an expression for the average value of h.
8.17 A surface well insulated at the bottom absorbs heat at 650 W/m2 on the top face. The top is

exposed to air flow at 0.1 atm and – 10°C, with a velocity of 300 kmph. If the plate is 3 m long in
the direction of flow, determine the average plate temperature.
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8.18 A truck travels at 130 kmph in air at 50°C and its surface is at 10°C. The truck may be approxi-
mated to a rectangular box of 3 m × 2 m × 6 m. Assuming that there is no flow separation and the
flow is turbulent althrough, determine the heat loss from four surfaces. (neglect front and back).
Also calculate the frictional drag.

8.19 Water at 20°C flows over a slab of ice at 0°C of size 1 m × 1 m with a velocity of 0.8 m/s. Deter-
mine the rate of thickness reduction of the ice (mm per min) if the latent heat of melting has a
value of 3.34 × 105 J/kg. Density of ice = 900 kg/m3

8.20 A steam pipe of 0.4 m OD at 95° passes in air at 25° C over a distance of 15 m. Air flows across
the tube at 5 kmph. Determine the heat loss through the exposed length of pipe.

8.21 A thermometer at 30°C having a cylindrical shape 8 mm dia is inserted into an air stream at
40°C flowing with a velocity of 25 m/s. Estimate the value of convective heat transfer coefficient
over the bulb.

8.22 Investigate the variation of current carrying capacity of a fuse wire exposed to air flow, with the
variation of velocity of flow across the wire. Assume dimensions and property values.

8.23 A fin of cylindrical shape 1 cm dia extending from a base at 100°C is exposed to air flow across it
at 20°C with a velocity of 5 m/s. Determine the value of average heat transfer coefficient over the
fin and the heat dissipated by the fin. The fin is 8 cm long.

8.24 An electrical heater rod 25 mm diameter is exposed to air at 20°C, the velocity of flow across it
being 25 m/s. If the rod surface temperature is not to exceed 180°C, determine the capacity of
heater rod, that can be used.

8.25 A nuclear fuel rod is to be cooled by using sodium potassium alloy (25% + 75%) at a temperature
of 200°C, with a maximum velocity of 16 m/s. If the rod of 25 mm dia should have its surface
maintained at temperatures not exceeding 400°C, determine the heat generation rate for m
length of fuel rod.

8.26 Pipe carrying oil in the arctic region, has outside diameter of 0.8 m, a temperature of 60°C. If
winds blow across it at 40 kmph and – 20°C, determine the heat loss per 1 m length of pipe.

8.27 Helium at 1 atm and 50°C flows across a 5 mm dia cylinder at 150°C, with a velocity of 9 m/s.
Determine the heat transfer rate per 1 m length of pipe.

8.28 Air flows across a 4 cm square cylinder with a velocity of 10 m/s. The air is at 25°C while the
surface is at 75°C. Determine the heat transfer rate if (i) flow is along the diagonal (ii) flow is
along face (or perpendicular to face).

8.29 Air at 25°C flows across a 4 × 6 cm elliptical pipe at 75°C with a velocity of 10 m/s. Estimate the
heat flow/m length if the flow is (i) across minor axis (ii) across major axis.

8.30 A chemical storage tank of spherical shape of 2 m dia has its surface maintained at 80°C by
steam heating. Air at 20°C flows at 20 kmph across the tank. Determine the requirement of
heating capacity.

8.31 Water flows across a sphere of 25 mm dia at 40°C with a velocity of 1.4 m/s. The sphere surface
is at 80°C. Determine the heat loss rate from the sphere at the instant.

8.32 A nuclear element is in the form of sphere of 25 mm dia. Liquid sodium at 200°C is used to
extract heat. A flow velocity of 12 m/s is used. If the surface temperature is not to exceed 400°C,
determine the heat generation rate possible (per sphere and also per m3).

8.33 Heated steel balls of 15 mm dia at 260°C are quenched in water at 40°C by free fall. If the balls
travel in the water at 8 m/s, determine the value of convection coefficient.

8.34 A bank of tubes consists of 20 mm dia tubes at 30 mm pitch in the linear and transverse direc-
tions and arranged in line. The surface temperature of the tubes is 60°C. Air at 20°C flows across
the tubes at an entry velocity of 8 m/s. If the tube bank is 8 rows deep and 20 rows across and if
the length of tubes is 1 m, determine the heat transferred to the air.

8.35 If the tube arrangement in the bank of problem 8.34 is changed to staggered arrangement with
the logitudinal pitch changed to 18 mm, determine the heat transferred to the air.
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8.36 Water is preheated in a tube bank with flue gases at 220°C flowing across the tubes at a velocity
of 10 m/s. The tubes are 50 mm dia and are arranged staggered with a transverse pitch of 100
mm and lognitudinal pitch of 45 mm. If the bank is 6 rows deep and the tubes are 2 m long and
the there are 20 rows across, determine the heat picked up by the water. Tube Surface is at 30°C.

8.37 An airconditioning coil has 15 mm dia tubes arranged staggered with a transverse pitch of 30
mm and longitudinal pitch of 13.55 mm and is 4 rows deep. Determine the value of convective
heat transfer coefficient. Air at 30°C enters the bank with a velocity of 10 m/s. The tube surface
is at 10°C.

8.38 A packed bed is used to transfer heat from the vessel wall to the gas flowing through the bed. The
bed is a pipe of 0.25 m dia and 0.8 m length filled with spherical filling of 8 mm dia. The tube
wall is at 230°C. The gas enters at 30°C.
Determine the heat transfer from the surface to the gas. The rate of flow of air is 2 kg/s at 1 atm
pressure.

8.39. For solar heat storage in pebbles solar heated air at 70°C is passed through a bed of pebbles of
average diameter of 12 mm. The pebbles are at 30°C. The flow velocity is (superficial) 8 m/s. The
void fraction is 42%. Determine the value of convective heat transfer coefficient.

Answers to Objective Questions
1. (b) 2. (c) 3. (d) 4. (c) 5. (a) 6. (b)
7. (b) 8. (d) 9. (d)
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9

9.0 INTERNAL FLOW

The internal flow configuration is the most convenient and popularly used geometry for heating
or cooling of fluids in various thermal and chemical processes. There are basic differences in
the development of boundary layer between the external flow geometry and internal flow
geometry. In the case of internal flow, the fluid is confined by a surface, and the boundary
layer after some distance cannot develop further. This region is called entrance region.
The region beyond this point is known as fully developed region. Another important difference
is that the flow does not change over at a location from laminar to turbulent conditions, but is
laminar or turbulent from the start, depending upon the value of Reynolds number (based
on diameter) being greater or less than about 2300.

A third difference is that in many cases there is no well defined free stream velocity as
in the case of flow over a flat plate. So the mean velocity using the mass flow is to be adopted
in place of u∞. The mean velocity um is defined by the following equation.

 um = 1
A

udA
Az

The flow rate is defined by

 G = ρAum = ρπD2

4
 . um

In the case of circular section,

 A = πD2

4
.

Using these in the definition of Reynolds number leads, in the case of circular pipes, to
the following additional expression for Reynolds number.

 Re = 4G/πππππDµµµµµ ...(9.1)
Where G is the flow through pipe in kg/s.
This expression (9.1) may be often used in place of umρD/µ in the analysis.
A fourth difference is that as the fluid flows through the pipe, its mean temperature

increases and there is no free stream temperature as such. The concept of free stream
temperature has to give way to a new term called bulk mean temperature or mixing cup
temperature. The bulk mean temperature at a location x along the pipe is the average
temperature of the fluid if the fluid at the location is well mixed to attain a common temperature.
The mean temperature is defined by :
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 Tm = 
1

u A
uT dA

m Az .

Hence the convection correlations will be different in the case of internal flow. However
the dimensionless parameters used are the same because the basic phenomenon does not change.

9.1 HYDRODYNAMIC BOUNDARY LAYER DEVELOPMENT

The development of hydrodynamic boundary layer in a pipe, together with velocity distributions
at various sections for laminar and turbulent flows are shown in Figs. 9.1 (a) and 9.1 (b) (for
isothermal flow). Refer solved problem 9.1 for the shape of the profile in laminar flow given by

u
u

r
R

r

max
= − FHG

I
KJ1

2

where umax is the velocity at the centreline.
Also  umax = 2um.

v

u

Core, u > U

Boundary layer, u < U

Constant-u
surface

Tube wall

x

x = 0

r

r0

0

U

Entrance region
(developing flow)

x < X

u(r, x)

x X� Fully developed flow
x > X

D
ra

u = 2Umax

u(r)

(a) Entrance region and fully develped flow region of laminar flow through a tube.

um

Entry region Fully developed

u u u

Boundary layer

(b) Turbulent flow in a pipe.

Fig. 9.1



VED

c-4\n-demo\damo9-1

C
ha

pt
er

 9

FORCED CONVECTION 387

The velocity distribution beyond the entry region will remain invariant. But the actual
distribution will be affected by the fluid property variation during heating or cooling. If heating
or cooling causes reduction in the viscosity near the wall, the velocity profile flattens out as
compared to isothermal flow. If viscosity increases, then the velocity near the wall will be
reduced further and the velocity distribution will be more peaked. This is shown in Fig. 9.2 (a).
Such distortion will affect the heat transfer correlations to some extent.

A A-isothermal

C-Viscosity increases near surface-
heating of gas or cooling of liquid

B-viscosity decreases near surface-
cooling of gas or heating of liquid

C

B

Fig. 9.2. (a) Distortion in velocity profile due to heating/cooling.

9.2 THERMAL BOUNDARY LAYER

The development of thermal boundary layer is somewhat similar to the development of velocity
profile. As shown in Fig. 9.2 (b). The differences are:

x

x = 0

r

ro

0U

Thermal entrance
region x < XT

x ~ XT Thermally fully
developed region

x > XT

To

Thermal boundary layer

Fully developed flow
u(r), v = 0

qw
�

Tw

To

Tw

Tm
Tm

Fig. 9.2. (b) Thermal entrance region and the thermally fully developed
region of fully developed flow through a tube.

(i) As the temperature increases continuously the direct plot of temperature will vary
with x location. However the plot of dimensionless temperature ratio will provide a constant
profile in the fully developed region. The bulk mean temperature Tm varies along the length as
heat is added/removed along the length. The ratio (Tw – Tr)/(Tw – Tm) remains constant along
the x direction in the fully developed flow. Tr is the temperature at radius r and Tm is the bulk
mean temperature.
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(ii) The length of entry region will be different as compared to the velocity boundary
development.

(iii) Boundary conditions are also different–constant wall temperature and constant heat
flux.

(iv) The development of both boundary layers may be from entry or heating may start
after the hydrodynamic boundary layer is fully developed.

These are in addition to the laminar and turbulent flow conditions.
Thus it is not possible to arrive at a limited number of correlations for convection

coefficient.
In the case of internal flow, there are four different regions of flow namely (i) Laminar

entry region (ii) Laminar fully developed flow (iii) Turbulent entry region and (iv) Turbulent
fully developed region.

There are two possible boundary conditions in all the four regions listed, namely constant
wall temperature or constant heat flux. As such 16 separate situations arise in this type of
flow.

Another complicating factor is whether velocity and thermal boundary layers develop
simultaneously or thermal boundary starts (heating) after velocity boundary layer has
developed. As correlations are different for such different conditions, a large number of
correlation have to be used.

Another factor is the fluid property values and their variation with temperature. Due to
this liquid metals having very low value of Prandtl number require quite different correlations.

A third situation is non circular section of the flow duct, which again requires different
correlations.

In the following articles the more popular correlations are discussed.

9.3 LAMINAR FLOW

Constant Wall Temperature: (Red < 2300) Reynolds number is defined as below:
 Re = Dum/ν = 4G/π Dµ ...(9.2)

Friction factor f is defined as below

 f = ∆P
L D umρ( )( / )/ 2 2

...(9.3)

where ∆P is the pressure drop in length L, the other terms defined as usual. This factor f
(Darcy friction factor) is also equal to 4Cf. Refer solved problem 9.2 for proof. Where Cf is

Fanning friction coefficient defined in Chapter 6 and 7 as Cf = τw/ 1
2 ρu2.

Refer solved problem 9.3 for proof.
For laminar flow  f = 64/Re ...(9.4)
The entry length depends on several factors. Varied correlations are available in

literature. A fairly well accepted correlation is given by
Hydrodynamic x/D = 0.04 Re ...(9.4 (a))
Thermal  (xt/D) = 0.04 Re.Pr
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9.3.1. Entry Region: For short lengths (x/D small), with hydrodynamic layer already
developed: the average Nusselt number is (1943)

Nu = 1.67 [Re Pr/(x/D)]0.333 ...(9.5)

For 
x
D
F
HG
I
KJ /Re Pr < 0.01, Re Pr D

x  is also termed as Graetz number Gz.

The property values are to be taken at (Tmi + Tmo)/2 where Tmi and Tmo are bulk
mean temperatures at entry and at exit. Iterative working may become necessary if the outlet
temperature is not specified.

For longer tubes for length x, with hydrodynamic boundary layer already developed, the
average value of convection coefficient is given by Hassen as (1943) (applicable for Pr > 07)

Nu = 3.66 + 
0 0668

1 0 04 0.67
. ( / )

+ . [ / ] ]
D x Re Pr

D x Re Pr
...(9.6)

For x
D

/Re Pr < 0.01

It is to be noted that for long tubes Nusselt number does not vary with length and is
constant as given by equation (9.7) (Nu ≠ f(x))

Nu = 3.66 ...(9.7)
Equations (9.5) and (9.6) are applicable assuming velocity boundary layer is fully

developed before heating begins. This assumption has practical use, as in the case of highly
viscous fluids.
9.3.2. Both boundary layers simultaneously developing– constant wall temperature.
For short lengths for liquid in tubes (1936)

Nu = 1.86 (Re Pr D/x)0.333 µ
µw

F
HG
I
KJ

0.14

...(9.8)

for (x/D)/Re Pr < 0.1 and 0.5 < Pr < 16000
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Fig. 9.3. Mean and local Nusselt numbers for thermally developing, hydrodynamically
developed laminar flow inside a circular tube.
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More generally given by Kays (1950)

Nu = 3.66 + 
0 104

1 0 16 0.8
. ( / )

( / )
Re Pr D x
Re Pr D x+ . ...(9.9)

For Pr > 0.6
This also reduces for long lengths to

Nu = 3.66 L >> D ...(9.10)
The Nusselt number variation in the entry region for constant wall temperature and

constant heat flux (with Hydrodynamic boundary layer already developed) is shown in Fig. 9.3.
9.3.3. For laminar, constant heat flux: The equation obtained for fully developed
hydrodynamic flow is given below: (1956)

Nu = 1.30 Re Pr
x D( / )
L
NM

O
QP

0.33
...(9.11)

applicable for (x/D)/Re Pr < 0.01
For long lengths as in the other case Nusselt number is independent of length

and is a constant given by equation (9.12).
 Nu = 4.364 ...(9.12)

  Pr > 0.6
The analogy between heat and momentum transfer also provides

  St Pr0.67 = f/8 ...(9.13)
The values of f can be obtained from equation (9.4) for laminar region.
The Nusselt number variation in the entry region at constant wall temperature is shown

in Fig. 9.4. (Both boundary layers developing simultaneously).
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Fig. 9.4. Mean Nusselt numbers for simultaneously developing laminar flow inside
a circular tube subjected to constant wall temperature.
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Example 9.1: Water at a bulk mean temperature of 40°C flows through a tube of 0.05 m inner
diameter with a velocity of 0.025 m/s. The tube is 2 m long and its surface is at a constant
temperature of 60°C. Determine the heat transfer and the mean temperature rise during the
flow. Assume hydrodynamic boundary layer already developed.
Solution: The properties of water at 40°C are

Constant wall temperature

Nu

4.84 × 10
–3

—/RePrx
D

E. 9.1

ρ = 995 kg/m3, ν = 0.657 × 10–6 m2/s,
 Pr = 4.34, C = 4178 J/kg K, k = 0.628 W/mK.

 Re = 0.05 0.025
0.657 10 6

×
× −  = 1902.6. laminar flow

 x
D

Re Pr/ /= 2
0.05  (1902.6 × 4.34) = 4.844 × 10–3 < 0.01

Using the chart in Fig. 9.3 (schematically shown in E9.1) the value of Nu  is read as 9.

 h = ×9 0.628
0.05

 = 113.04 W/m2 K

Heat transferred,  Q = hA(TS – TM)
= 113.04 × π × 0.05 × 2(60 – 40) = 710 W.

Temperature rise = Q
mc

 m = ρAV = 995 × π × 0.052

4
 × 0.025 = 0.04884 kg/s

Temperature rise = 710/(0.04884 × 4178) = 3.48°C

By equation (9.5),   Nu = 1.67 Re Pr D
x

F
HG

I
KJ = × ×F

HG
I
KJ

1/3 1/3
1.67 1902.6 4.34 0.05

2
 = 9.86

By equation (9.6), Nu = 3.66 + 
0.668

0.04

Re Pr D
x

Re Pr D
x

F
HG

I
KJ

+ F
HG

I
KJ1

0.67  = 9.35

The values are close.
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Example 9.2: Water at 30°C enters a pipe of 25 mm ID with a mean velocity of 0.06 m/s. The
pipe surface temperature is 50°C. Determine the outlettemperature for lengths of (i) 1 m (ii) 4 m
and (iii) 10 m. Assume hydrodynamic boundary layer fully developed.
Solution: As the bulk mean temperature is not known, property values at the entry temperature
is first considered. At 30°C

ρ = 997.5 kg/m3, ν = 0.8315 × 10–6 m2/s, Pr = 5.68
c = 4178 J/kg K, k = 0.6129 W/mK.

Case (i) 1 m length

 Re = u D
v

m  = 0.06 × 0.025/0.8315 × 10–6 = 1804

∴ Flow is laminar.

  x
D

Re Pr/
.

= 1
0 025 / (1804 × 5.68) = 0.004 < 0.01.

Using the chart Fig. 9.3, the average value of Nu is read as 10.

Using equation (9.5), Nu = 1.67 1804 5 68
1

× ×F
HG

I
KJ. 0.025 0.333

 = 10.6.

∴  h = 10.6 × 0.6129/0.025 = 260 W/m2 K.
As the temperature difference varies continuously, logarithmic mean temperature should

be used in heat flow calculation.
Energy balance gives

Q = hA(LMTD) = mc(Tmo – Tmi) ...(a)

 LMTD = ( ) ( )

ln ln

T T T T
T T
T T

T T
T T
T T

w mi w mo

w mi

w mo

mo mi

w mi

w mo

− − −
−
−

=
−
−
−

Substituting in a, and rearranging

T T
T T

ew mi

w mo

hA
mc−

−
=

−
, m = ρAcV ...(b)

   hA
mc

= × × ×

× × × ×

260 1

997 5
4

4178
2

π
π

0.025
0.0025 0.06.

 = 0.1664

∴     50 30
50

−
− Tmo

 = e–0.1664

Solving Tmo = 33.07°C
Another trial with properties at (30 + 33.07)/2 will improve the result.
Case (ii) For 4 m length, with the properties as in case (i)

 Re = 1804, x
D

Re Pr/
.

= 4
0 025

/ (1804 × 5.68) = 0.016.
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From chart Fig. 9.3, at this value Nu  is read as 6. (Try by equation 9.6, Nu = 6.27)

∴  h = 6 0.6129
0.025

×  = 147.1 W/m2 K

From equation (b)

T T
T T

ew mi

w mo

hA
mc−

−
=

−

For 4 m length  hA
mc

 = 0.3765

50 30
50

−
− Tmo

 = e–0.3765

Solving Tm = 36.3°C
Another trial will improve results.
Case (iii) 10 m length,

 x
D

 / Re Pr = 0.04

Reading from chart Fig. 9.3, at this value,
Nu = 4.9 (By equation 9.6, Nu = 4.91).

∴ h = 120.13 W/m2 K.
Using equation (b)

 50 30
50

−
−

=
−

T
e

mo

hA
mc , hA

mc
 = 0.7687.

∴ Tmo = 40.72°C
Another trial with properties at 35°C will improve the results.

Example 9.3: Water at 30°C enters a pipe of 25 mm ID with a mean velocity of 0.06 m/s. The
pipe surface temperature is maintained at 50°C. Assuming both boundary layers to be developing
simultaneously, determine the exit temperature for lengths of (i) 1 m (ii) 4 m and (iii) 10 m.
Solution: As the bulk mean temperature is not known, property values are taken at entry
condition of 30°C.

ρ = 997.5 kg/m2, ν = 0.8315 × 10–6 m2/s, Pr = 5.68, c = 4178 J/kg K,
k = 0.6129 W/mK, µ = ρv, At 50°C, v = 0.675 × 10–6 m2/s, ρ = 990 kg/m3

Re = 0.06 × 0.025/0.8315 × 10–6 = 1804 ∴ laminar flow.
x
D

Re Pr/ = 1
0.025 / 1804 × 5.68 = 0.004

From chart Fig. 9.4, for this value Nu  = 9.8
Using equation (9.8)
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Nu = 1.86 Re Pr D
x w

F
HG

I
KJ
F
HG
I
KJ

0.3 µ
µ

0.14

= 1.86 1804
1

997.5 8315 10
990 10

6

6
× ×F

HG
I
KJ

× ×
× ×

L
NM

O
QP

−

−
5.68 0.025 0.

0.675

0.33 0.14

 = 12.175

Considering the chart value,
h = 9.8 × 0.6129/0.025 = 204.26 W/m2 K

Case (i) 1 m length, From equation (b) of example 9.2.

 T T
T T

ew mi

w mo

hA
mc−

−
=

−

   hA
mc

= × × ×

× × × ×

240.26 1

997.5
4

4178
2

π

π

0.025
0.025 0.06

 = 0.15373

∴  50 30
50

−
− Tmo

 = e–0.15373 = 0.8575

∴   Tmo = 32.85°C
Another trial with properties at 31.5°C will refine the answer.
Case (ii) 4 m length

x
D

/Re Pr = 0.016, From chart Fig. 9.4

 Nu = 6.2 ∴ h = 6.2 × 0.6129/0.025 = 152 W/m2 K

   hA/mc = 0.389, T T
T T

w mi

w mo

−
−

 = e–0.389 = 0.6778

Solving: Tmo = 36.45°C
Another trial with properties at 33°C, will refine the answer.
Case (iii) Length 10 m.

 
x
D /Re Pr = 0.039

From chart Fig. 9.4, for this value,
 Nu  = 5 (By equation 9.9, Nu = 4.51)

h = 5 × 0.6129/0.025 = 122.6 W/m2 K
By equation (b) of example 9.2

T T
T T

ew mi

w mo

hA
mc−

−
=

−

  hA
mc

 = 0.7845 ∴
50 30

50
−

− Tmo
 = e–0.7845 = 0.4564.
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Solving: ∴ Tmo = 40.87°C
It will be desirable to repeat the process with properties at 35°C.

ρ = 996.25, ν = 0.74425 × 10–6, Pr = 5.01,
c = 4178 J/kg K, 0.62105 W/mK.

Re = 0.06 × 0.025/0.74425 × 10–6 = 2015 < 2300 laminar

x
D

Re Pr/ /= 10
0.025  (2015 × 5.01) = 0.03962

Corresponding to this value, from Fig. 9.4,
 Nu = 5.

There is not much difference.

Example 9.4: Engine oil enters at 35°C into a tube of 10 mm 1 D at the rate of 0.05 kg/s and is
to be heated to 45°C. The tube wall is maintained at 100°C by condensing steam. Determine the
length of the tube required.

Solution: Bulk mean temperature = (Tmi + Tmo)/2 = 35 45
2
+  = 40°C.

The property value from data book:
  ρ = 876 kg/m3, c = 1964 J/kg K, µ = 0.210 Ns/m2, k = 0.144 W/mK,
Pr = 2870.

Using equation (9.1)

 Re = 4G
Dπ µ π

= ×
× ×

4 0.05
0.01 0.210  = 30.32

∴ Laminar.
Assuming long tube, Nu = 3.66.

∴ h = 3.66 0.144
0.01
×  = 52.7 W/m2 K

Heat transferred: mc ∆T
= 1966 × 0.05 × (45 – 35) = 983 W.

The temperature varies as shown in figure.

∴ LMTD = 65 55
65
55

−

ln
 = 59.9°C

  π DL h(LMTD) = Q

∴  L = Q/π Dh(LMTD) = 
983

52.7π × × ×0.01 59.9  = 9.92 m

Tube length required = 9.92 m say 10 m.

�T = 651

35

45

100°C
�T = 552

E. 9.4
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Example 9.5: Water at a bulk mean temperature of 40°C flows in a tube of 0.05 m diameter
with a velocity of 0.025 m/s. The tube length is 2 m. In the surface there is a uniform heat flux
of 1500 W/m2.

Determine the heat transfer coefficient.
Solution: At the bulk mean temperature of 40°C, the property values are

 ρ = 995 kg/m3, ν = 0.657 × 10–6 m2/s,
c = 4178 J/kg K, Pr = 4.34, k = 0.628 W/mK.

Reynolds number = 0.025 0.05
0.657

×
× −10 6  = 1902.6

∴ Flow is laminar.

Pr = 4.34

Nu
12

4.844 × 10
–3

—/RePrx
D

Fig. E. 9.5

Check for x
D

Re Pr/ /= 10
0.025  1902.6 × 4.34 = 4.844 × 10–3 < 0.01

The values can be read from chart, Fig. 9.3. (shown schematically)

Nu = 12 ∴ h = 12 × 0.628
0.05  = 150.72 W/m2 K

Heat transfer rate = qA = qπ DL = 1500 × π × 0.05 × 2 = 471.24 W

Average temperature difference = 
Q
hA

=
× × ×
471.24

150.72 2π 0.05  = 9.95°C

Example 9.6: Water at 10°C enters at the rate of 0.01 kg/s into a tube of 20 mm inner diameter.
It is to be heated to 40°C. There is a uniform heat flux of 15 kW/m2 over the surface. Determine
the (i) Reynolds number (ii) length of pipe needed (iii) heat transfer coefficient (iv) Tube
temperature at outlet (v) Friction factor and (vi) Pressure drop over the length.
(Assume fully developed flow.)
Solution: Bulk mean temperature = (40 + 10)/2 = 25°C.

Property values at 25°C are
ρ = 997 kg/m3, cp = 4180 J/kg K, k = 0.608 W/mK,
µ = 910 × 10–6 Ns/m2, using equation 9.1
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(i) Reynolds number   = 4 4
910 10 6

G
Dπ µ π

= ×
× × × −

0.01
0.02

 = 699.6

∴ Laminar flow
(ii) Length of pipe needed. Under uniform heat flux, the heat balance yields

 q × π DL = m Cp(Tmo – Tmi)

 L = 
m C

qD
T Tp

mo miπ π
( )− = ×

× ×
0.01

0.02
4180

15000  × 30 = 1.33 m.

(iii) Heat transfer coefficient: under fully developed condition, Nu = 4.364.

h = k
D

Nu = 0.608
0.02

 × 4.364 = 132.67 W/m2 K.

(iv) Tube surface temperature at exit:

 Tso = 
q
h

Tmo+ = 1500
132.67  + 40 = 153.1°C

(v) Friction factor:

 f = 64 64
699.6Re

=  = 91.48 × 10–3

(vi) Pressure drop:

 ∆P = ρ . f Lu
g De

2

2
, u = 4

2
m
Dρπ

 ∆P = 997 91.48 10
2 1

4
997 0 02

3

2

2
× × ×

× ×
× ×

× ×
F
HG

I
KJ

− 1.33
0.02

0.01
π .

 = 3.09 N/m2

Example 9.7: Water is to be heated at the rate of 0.01 kg/s from bulk temperature of 20°C to
60°C as it flows through a tube of 20 mm ID by means of electrical resistance heating at the rate
of 15 × 103 W/m2. Calculate the length required. Also find the heat transfer coefficient.
Solution: Bulk mean temperature = (60 + 20)/2 = 40°C

The property values are:
ρ = 995 kg/m3, ν = 0.657 × 10–6 m2/s, Pr = 4.34,
c = 4178 J/kg K, k = 0.628 W/mK. µ = ρν

Using equation (9.1),

Re = 4G/π Dµ = 
4
995 10 6

×
× × × × −

0.01
0.02 0.657π

 = 974

∴ Laminar.
Constant heat flux condition: assuming fully developed flow

Nu = 4.364, ∴ h = 4.364 0.628
0.02

×  = 136.0 W/m2 K
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Using energy balance,

π DLq = mc ∆Tm ∴ L = 
mc T

Dq
m∆

π

L = 0.01
0.02

× × −
× × ×

4178 60 20
15 103

( )
π

 = 1.773 m.

Example 9.8: A solar concentrator causes a heat flux of 2000 W/m2 on tube of 60 mm ID.
Pressurised water flows through the tube at a rate of 0.01 kg/s. If the bulk temperature at inlet
is 20°C, what will be the length required to heat the water to a bulk temperature of 80°C. Also
find the wall temperature at exit.
Solution: Bulk mean temperature = (80 + 20)/2 = 50°C.

The property values are
  ρ = 990, ν = 0.5675 × 10–6, Pr = 3.68, k = 0.64 W/mK, c = 4181 J/kg K.

Re = 4 4
990 10 6

G
Dπ µ π

= ×
× × × × −

0.01
0.06 0.5675

 = 377.7

∴ Flow is laminar.

π DLq = mc ∆Tm, ∴ L = 
mc T

Dq
m∆

π

L = 
0.01

0.06
× × −
× ×
4181 80 20

2000
( )

π  = 6.65 m.

Assuming fully developed condition,

Nu = 4.364, ∴ h = 4.364 0.64
0.06

×  = 46.55 W/m2 K

To find the temperature at exit :

 T50 = q
h  + Tmo = 2000

46.55  + 80 = 122.97°C.

Example 9.9: Air at 20°C flows inside a pipe 18 mm ID having a uniform heat flux of 150 W/m2

on the surface, the average flow velocity at entry being 1.0 m/s. The air pressure is 2 bar. Determine
the value of convection coefficient. If the pipe is 2.5 m long, determine the air exit temperature
and the wall temperature at the exit. Assume fully developed hydrodynamic boundary layer.
Solution: The exit temperature of air can be obtained using energy balance relationship

 Area × heat flux = mass × sp. heat × temp. rise,
(mass flow = area × velocity × density)

 π × 0.018 × 2.5 × 150 = π ×
× ×

×
×

0.018 1.0
2 5

4
2 10

287 293  × 1005 × ∆T

∴  ∆T = 34.86°C ∴ Tmo = 54.86°C
Note that the mass flow is calculated with the density at entrance.



VED

c-4\n-demo\damo9-1

C
ha

pt
er

 9

FORCED CONVECTION 399

Average bulk temperature = (54.86 + 20)/2 = 37.43°C
The properties at this temperature and pressure of 2 bar are density = 2.275 kg/m3, Pr

= 0.7, c = 1005 J/kg K, µ = 18.994 × 10–6 kg/ms, k = 27.35 × 10–3 W/mK,

∴  Re = 1.0 2.275 0.018
18.994 10 6
× ×

× −  = 2156 < 2300 ∴ flow is laminar

Note that Re is determined using velocity at entrance

 x
D /Re Pr = 0.092 > 0.01 So long pipe value is used.

∴ Nu = 4.364
From chart Fig. 9.3 Nu = 5.

∴  h = 5 × 0.02735
0.018  = 7.597 W/m2 K

As .q A  = hA ∆T, cancelling A,
150 = 7.597 × ∆T, ∴ ∆T = 19.74°C.

Wall temperature at exit, Tso = 54.86 + 19.74 = 74.6°C.

9.4 TURBULENT FLOW

The development of boundary layer is similar except that the entry region length is between
10 to 60 times the diameter. The convective heat transfer coefficient has a higher value as
compared to laminar flow.

The friction factor for smooth pipes is given by eqn. (9.14) for Re > 104

f = 0.184 Re–0.2 ...(9.14 (a))
f = [0.7 ln Re – 1.64]–2 ...(9.14 (b))
f = 4[1.58 ln Re – 3.28]–2 ...(9.14 (c))

For transition range
f = 0.316 Re–0.25 ...(9.15)

For rough pipes, the Moody chart can be used. Also for relative roughness of ε/D

f = 1.325

3.7 
5.74ln /ε

D
Re+L

NM
O
QP

0.9
2 ...(9.16)

The importance of the calculation of the friction factor in heat transfer is in
the use of its value for the determination of convection coefficient by analogy.

The following two relations are useful for the entrance region.

Nu  = 0.036 Re0.8 Pr0.33 D
x
F
HG
I
KJ

0.055
...(9.17)

Nu  = Nu 1 +
L
NM

O
QP

C
x D( / ) ...(9.18)

C = 1.4 hydrodynamic layer developed
C = 6 hydrodynamic layer not developed

x/D > 10
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Also Nu  = Nu [1 + (D/x)0.7] ...(9.19)
2 < x/D < 20, In (9.18) and (9.19) Nu is calculated using (9.20).

In the equations (9.18) and (9.19), Nu is calculated for fully developed flow. The property
values are to be at average bulk temperature.

The more popular correlation for fully developed flow in smooth tubes is due to Dittus
and Boelter (1930) (modified Colburn)

Nu = 0.023 Re0.8 Prn ...(9.20)
 n = 0.3 for cooling and 0.4 for heating of fluids.

A modified form when the property variation due to temperature change was large
proposed by Sieder and Tate (1936) is

Nu = 0.027 Re0.8 Pr0.33 
µ
µ

m

w

L
NM
O
QP

0.14

...(9.21)

0.7 < Pr < 16700, Re > 104, L
D  > 60

A more recent correlation (1970) which fits experimental values more closely is given
by (properties at film Temp., except µ)

Nu = (
1.07 ( /8)0.5 0.67

f Re Pr
f Pr

m

w

n/ )
[ ]

8
12.7 1+ −

L
NM
O
QP

µ
µ

...(9.22)

 n = 0.11 for heating of fluids
 n = 0.25 for cooling of fluids
 n = 0 for constant heat flux

Also µ
µ

m

w
 to be replaced by T

T
w

m
 for gases, (temp. in K)

For Rough tubes
 St. Pr0.67 = f/8 ...(9.23)

In the place of the constants 1.07 and 12.7 in the equation (9.22) more refined values are
also available based on f and Pr.

In the choice of the equation to be used, there will be some ambiguity. But equation
(9.22) is more recent and found to fit the experimental values more closely.

The correction factors 
µ
µ

m

w

nL
NM
O
QP  for liquids or T

T
w

m

nL
NM
O
QP

 for gases is used to correct for large

variation in properties.
Example 9.10: Air at 20°C flows through a tube 8 cm dia with a velocity of 9 m/s. The tube wall
is at 80°C. Determine for a tube length of 5 m, the exit temperature of air.
Solution: For the first trial property value taken at 20°C. ρ = 1.205, ν = 15.06 × 10–6 m2/s, Pr
= 0.703. k = 0.02593 W/mK, Cp = 1005 J/kg K, µ = 18.14 × 10–6 kg/ms

 Re = 9 × 0.08/15.06 × 10–6 = 47809
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∴ flow is turbulent
Using equation (9.20) (heating, n = 0.4)

Nu = 0.023 Re0.8 Pr0.4 = 110.69, ∴ h = 35.88 W/m2K
The bulk temperature at exit can be found by energy balance.
As the temperature difference varies along the length LMTD should be used in place of

∆T.

mc(Tmo – Tmi) = hA . LMTD = hA 
( ) ( )

ln

T T T T
T T
T T

w mo w mi

w mo

w mi

− − −
−
−

This leads to the equation. (Ref. Example 9.1)

T T
T T

ew mi

w mo

hA
mc−

−
=

+
...(A)

 A = π DL, m = ρ VAc = 1.205 × 9 × π × 0.082

4
 = 0.05451 kg/s

hA
mc

=
× × ×

×
35.88 5

1005
π 0.08

0.05451  = 0.823

∴
80 20

80
−

− Tmo
 = e0.823, Solving Tmo = 53.65°C

The mean temperature = (53.65 + 20)/2 = 36.825°C
Taking properties of 40°C and reworking.

Tmo = 35.47.
Using equation (9.22), with f = [0.79 ln Re – 1.64]–2 = 0.021736

Nu = 87.91, h = 30.28 W/m2 °C

Using analogy, St. Pr2/3 = f
8 , Nu = 102.37, h = 35.27 W/m2K

The correlations yield in the case of air, value not for removed from each other.
Example 9.11: Air at 20°C flows through an 8 cm dia pipe with a velocity of 9 m/s, The pipe
wall is at 80°C. The length of the pipe is 1 m. Determine the exit temperature of air.

Solution: L
D .

= 1
0 08  = 12.5. So it is better to use entry region correlations.

Considering properties at 20°C
ρ = 1.205 kg/m3, ν = 15.06 × 10–6 m2/s, Pr = 0.703,
k = 0.02593 W/mK, Cp = 1005 J/kg K, Re = 9 × 0.08/15.06 × 10–6 = 47809.

Using equation (9.17)
Nu = 0.036 Re0.8 Pr0.33 (D/x)0.055

= 154.37, ∴ h = 50.04 W/m2K
Using equation (9.19).
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Nu Nu D
x

= 1+ FHG
I
KJ

L
N
MM

O
Q
PP

0.7
, where Nu = 0.023 Re0.8 Pr0.4 = 113.32

∴  Nu  = 113.32 1 0 08
1

0.7
+ FHG

I
KJ

L
N
MM

O
Q
PP

.  = 132.64

∴ h = 42.99 W/m2K
Using equation (9.18)

 Nu  = Nu [1 + 6/(x/D)] = 113.32 [1 + 6/12.5] = 167.71
∴ h = 54.36 W/m2K
Adopting the value of 50.04 W/m2K using the heat balance
The temperature variation is shown in figure. So LMTD should be used in place of ∆T.

xT = 20°Cmi

80°C
Wall temperature

�TL

�TO

TW

Tmo

Fluid temperature

E. 9.11. Fluid Temperature along the flow.

From problem example 9.10,

 T T
T T

e
T

w mi

w mo

hA
mc

mo

−
−

= = −
−

− 80 20
80

 = e–0.1653

as hA
mc

= × × ×

× × × ×

50.04 1

1205
4

9 1005
2

π

π

0.08
0.08.

 = 0.1653

Solving Tmo = 29.1°C

9.5 LIQUID METAL FLOW

Liquid metals are characterised by low values of Prandtl number and higher values of
conductivity. Liquid metals provide large values of convection coefficient and are used to extract
heat in breeder type of nuclear reactors where the volume heat generation rate is very high.
Constant heat flux situation is more common in these cases.
9.5.1. Liquid metals: The following three relations are applicable for constant heat flux.
Properties are to be evaluated at average of bulk temperatures.

Entry region:
Nu = 3.0 Re0.0833 Re Pr < 100 ...(9.24)



VED

c-4\n-demo\damo9-2

C
ha

pt
er

 9

FORCED CONVECTION 403

A simple relation, but with large deviations is given by
Nu = 0.625 (Re Pr)0.4 ...(9.25)

102 < Re Pr < 104, 
L
D  > 60

More recent correlation now in use is
Nu = 4.82 + 0.0185 (Re Pr)0.827 ...(9.26)
102 < Re Pr < 104 and 3.6 × 103 < Re < 9.05 × 108.

9.5.2. Liquid metals: For constant wall temperature the correlation is
Nu = 5 + 0.025 (Re Pr)0.8 ...(9.27)

Re Pr > 100, 
L
D  > 60

These equations provide only an estimation. For more dependable and closer values,
one has to go into literature.
Example 9.12: Liquid sodium flows through a 5 cm dia pipe at a velocity of 4 m/s. The
temperature of the fluid at entry is 300°C. If at the pipe wall the fluid is exposed to uniform heat
flux, determine the value of convective heat transfer coefficient.
Solution: The property values at 300°C are

ρ = 903 kg/m3, ν = 0.506 × 10–6 m2/s, Pr = 0.0075, k = 81.41 W/mK, c = 1327.2 J/kg K
Re = 0.05 × 4/0.506 × 10–6 = 395257

Using equation (9.26)
Nu = 4.82 + 0.0185 (Re Pr)0.827 = 18.58, ∴ h = 30244 W/m2K

Using equation (9.25)
 Re = 0.625 (Re Pr)0.4 = 15.3 ∴ h = 24904 W/m2K

The values are quite different.
The heat flux value influences the value of convection coefficient only marginally. The

wall temperature is decided by the heat flux value. Higher the heat flux, larger will be the
temperature difference between the fluid and the surface.
Example 9.13: Liquid sodium at 200°C is heated in a tube of 5 cm dia to 400°C with a uniform
heat flux of 2500 kW/m2. The flow rate is 9 kg/s. Determine the length of pipe required and also
the mean temperature difference between the wall and fluid.
Solution: The property vlaue can be evaluated at (200 + 400)/2 × 300°C. The values are

ρ = 878 kg/m3, ν = 0.394 × 10–6 m2/s, Pr = 0.0063,
k = 70.94 W/mK, c = 1281.2 J/kg K

The length required can be calculated using the energy balance.
mass flow × sp. heat × temp. rise = Area × heat flux
9 × 1281.2 × 200 = π × 0.05 × L × 2500000

∴ L = 5.873 m
To estimate the wall temperature, the value of convection coefficient is to be determined.

(G-mass flux)
 Re = 4G/π Dµ = 4 × 9/π × 0.05 × 0.394 × 10–6 × 878

= 662509 (check using calculated velocity)
(as µ – νρ, u = m/ρA)
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Using equation (9.26),
Nu = 4.82 + 0.0185 (Re Pr)0.827 = 23.07

∴  h = 32737 W/m2K
The wall temperature can be determined by using energy balance.

h × π DL T T T
s

mi mo−
+F

HG
I
KJ2

 = q π DL,

Substituting 32737 × ∆T = 2500,000 ∴ ∆∆∆∆∆T(average) = 76.37°C.
Example 9.14: Liquid sodium potassium alloy (25 + 75) at 200°C is to be heated in a pipe of
0.020 m dia to 400°C at a rate of 0.5 kg/s the pipe wall being at 500°C. Determine the length of
pipe required.
Solution: The property values are evaluated at (200 + 400)/2 = 300°C

ρ = 799 kg/m3, ν = 0.366 × 10–6 m2/s, Pr = 0.0134, k = 22.68 W/mK
c = 1038.3 J/kg K

Re = 4m/π Dµ = 4m/π Dνρ = 4 × 0.5/π × 0.02 × 0.336 × 10–6 × 799
= 118567, ∴ turbulent flow.

Using equation (9.27),
Nu = 5 + 0.025 (Re Pr)0.8 = 14.095

∴  h = 15983 W/m2K

15983 × π × 0.02 × L 500 200 400
2

− +F
HG

I
KJ  = 0.5 × 1038.3 × (400 – 200)

∴ L = 0.52m, L
D  = 26,

This is shorter than the entry region L
D  = 60. Hence this correlation may deviate from

actual value. However, this is safe, as the value of h will be higher in the entry region and the
length required may be even shorter.

9.6 FLOW THROUGH NON-CIRCULAR SECTIONS

For non circular sections, the value of Reynolds number should be calculated using hydraulic
diameter Dh in place of D. The hydraulic diameter is defined as the ratio of four times the
sectional area A to the wetted perimeter P.

 Dh = 4 A/P ...(9.28)
For circular section Dh = D
Reynolds number should be calculated using the velocity and not the mass flow as flow

does not depend on Dh.
In turbulent flow the correlations already mentioned in section 9.4 (equations 9.14 to

9.23) can be used with this value of Dh given by equation (9.28).
In the case of laminar flow, the values of Nusselt number for fully developed flow is

shown in table 9.1. For short tubes of non circular sections correlations are more involved and
are available in literature.



VED

c-4\n-demo\damo9-2

C
ha

pt
er

 9

FORCED CONVECTION 405

Table 9.1. Nu for fully developed laminar flow-noncircular sections

Shape Constant wall temp. Constant heat flux all over f. Re

Square 2.98 3.09 56.41
Rectangle

2:1 3.39 3.02 62.19
4:1 4.44 2.93 72.93
8:1 5.59 2.90 82.34

and Long Parallel Plates
Triangle (60°) 2.47 1.89 53.13
Ellipse 0.9 3.66 4.35 74.80
Hexagon 3.34 3.86 60.22

A third type of boundary is also possible, and the same is uniform heat flux along length
and uniform peripheral temperature at any location, but this is not considered here.
9.6.1. A special case of noncircular flow is through an annulus: A number of possible
situations are there but one of important application is with outside surface adiabatic and
inside surface with either constant heat flux or constant temperature.

Dh = Do – Di ...(9.29)
For laminar flow, fully developed, Nusselt number varies with Di, Do as shown below for

constant wall temperature and constant heat flux (both inner tubes)
Di, Do 0.05 0.1 0.25 0.5
NuT 17.46 11.56 7.37 5.74 Const. wall temp.
NuH 17.81 11.91 8.5 6.58 Const. heat flux

For turbulent flow the correlations of section 9.4 can be used with D replaced by Dh.
Example 9.15: n-butyl alcohol flows through a square duct of 0.1 m side with a velocity of
30 mm/s. The duct is 4 m long. The walls are at constant temperature of 27°C. The bulk mean
temperature is 20°C. Determine the heat transfer coefficient and friction factor.
Solution: For a square the hydraulic diameter is the side length itself.

The property values at the bulk mean temperature are
ρ = 810 kg/m3, µ = 29.5 × 10–4 Ns/m2, Pr = 50.8, k = 0.167 W/mK.

Reynolds number

Re = ν ρ
µ
Dh = × ×

× −
0.03 0.1 810

29.5 10 4  = 823.7

From Table 9.1

Nu  for square duct = 2.98

∴ h = 
2.98 0.167

0.1
×

 = 4.97 W/m2 K

From Table 9.1, f. Re = 56.91, ∴ f = 
56.91
823.7  = 69.09 × 10–3
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Example 9.15: Water is cooled in the annual section of double pipe heat exchanger with inner
tube containing evaporating refrigerant vapour at 5°C. The inner tube is 2.5 cm outer dia and
the outer pipe is 5 cm inner dia. The average bulk temperature of water is 10°C. For the flow
rates of water of (i) 0.055 kg/s (ii) 0.400 kg/s, determine the convection coefficient. The outside
is insulated. Also calculate the same for flow of water in the inside of tube with refrigerant
outside for circular section. Assume thin tube.
Solution: The property values are taken at 10°C

ρ = 1001 kg/m3, ν = 1.397 × 10–6m2/s, Pr = 10.31, k = 0.5751 W/mK,
c = 4197 J/kg K, Dh = Do – Di = 0.025 m, Di/Do = 0.5

Case (i) Flow = 0.055 kg/s (const. wall temp.-evaporation)
Velocity of flow in the annulus

= 0.055
1001

×
−

4
2 2π( )D Do i

 = 0.0374 m/s

∴  Re = 
0.025 0.0374
1.397

×
× −10 6  = 668.36 ∴ laminar

Fully developed flow: (From tabulation)
∴ Nu = 3.66 ∴ h = 84.19 W/m2 K
Case (ii) Flow = 0.4 kg/s

∴  Velocity = 
0.4

0.05 0.0251001
4

2 2×
× −π ( )  = 0.2714 m/s

 Re = 
0.2714 0.025
1.397

×
× −10 6  = 4856, Turbulent

(n = 0.3, cooling)
∴ Nu = 0.023 × Re0.8 Pr0.3 = 41.12, ∴ h = 945.8 W/m2 K

for circular section:

u = 0.4
0.0251001
4

2×
×π

 = 0.814 m/s

∴  Re = 
0.025 0.814
1.397

×
× −10 6  = 14568, Nu = 99.18

∴  h = 2281 W/m2K

9.7 THE VARIATION OF TEMPERATURE ALONG THE FLOW DIRECTION

Constant Wall Temperature: The change in temperature (bulk) of the fluid for length dx is
equal to the heat convected in the section divided by the heat capacity. This can be written as

mc (dTb) = P dx h(Ts – Tb) ...(9.30)
P is the perimeter,

for constant surface temperature, (Tw = constant), this leads to

( )
( )

expT T
T T

h A
m C

s bo

s bi

s

p

−
−

=
−L
N
MM

O
Q
PP ...(9.31)
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Where As = surface area, Tbo, Tbi = bulk temperature.
This shown plotted in Fig. (9.4)

x
Tbi

T
Const

Tbo

∆TO

∆T
i

Ts

Tβ

Fig. 9.6. Temperature variation of the fluid along flow-constant wall temperature.

The heat flow can be more accurately calculated by

q = h A T T
T Ts

i o

i o

∆ ∆
∆ ∆

−L
NM

O
QPln ( / )

...(9.32)

As = π DL. Length L can be more accurately calculated using equation (9.32) rather than
using the arithmetic average as below.

q = h As T T T
s

bi bo−
+L

NM
O
QP2

Constant heat flux,  q w/m2: The bulk temperature of the fluid varies linearly as
equal amounts of heat is added along the length.

 Tmx = Tmi + 
q A
mc

s

p
...(9.33)

The surface temperature is calculated using the heat flow by convection at the location.
It is given by (9.34)

Ts = Tmi + 4 1qD
k Nu

x D
Re Pr4

+
L
NM

O
QP

/ ...(9.34)

The  variation  of  surface and fluid temperatures
along the flow direction is shown in Fig. (9.7).

The variation of surface temperature Ts becomes
linear in the fully developed region as  in the relation
9.35, h and q are constant

(Ts – Tb) hAs = qAs ...(9.35)
The determination of convection coefficient in

internal flow is of practical importance. Several other
configurations (internally finned tubes, coiled tubes etc.)
may be met in practice.

For solutions to these situations one has recourse
to a rather extensive literature available in this area.

Ts

Tb

T

x

Const

Entry
Fully developed

Fig. 9.7. Variation of surface and fluid
temperatures-uniform heat flux.
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SOLVED PROBLEMS

Problem 9.1: Derive the expression for the velocity distribution in fully developed laminar
flow in a pipe.
Solution: Considering cylindrical element of radius r and length dx in the flow, the force
balance gives (Fig. P. 9.1)

   π r2 [P – (P + dp)] = τ 2π r dx = – µ du
dr
F
HG
I
KJ  2π r dx

∴ du = 
1

2µ
dp
dx
F
HG
I
KJ  r dr

Intergrating from r = 0 to r = R and using the boundary conditions at r = R, u = 0 and at
r = 0, u = umax.

dx (p + dp) r	
2


 	2 rdx

P r	
2

r

R
r

Fig. P. 9.1

 u = 
1

4µ
. dp

dx  r2 + c

c = – 
1

4µ
dp
dx  . R2

∴ u = r R dp
dx

2 2

4
−
µ

. (P. 9.1)

at r = 0

umax = – R dp
dx

2

4µ
. , dividing and simplifying

(as dp
dx  is –ve in the x direction, umax is positive in the x direction)

 u
u

1 r
Rmax

2
= − FHG

I
KJ (P. 9.1.2)

The velocity distribution is parabolic in fully developed laminar flow.
Problem 9.2: Fanning friction coefficient Cf and Darcy friction factor f are defined as below.
Show that Cf = f/4. Using flow in a pipe. (gc = go)

Cf = τs/(ρu2/2gc), f = ∆P . 
D
L

1
( u /2g )2

cρ
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Solution: Considering the fluid element of length L shown in figure
 ∆Pπ R2 = 2π R τsL

or  ∆P = 2τs L/R
Substituting for ∆P in the definition of f

 f = 
2 1

22
τ

ρ
s

c

L
R

D
L u g

. . .
( / )

noting R = D
2

 f = 4τs/(ρu2/2gc) = 4Cf or Cf = f/4
Problem 9.3: Show that for laminar fully developed flow in a pipe f = 64/Re.
Solution: The mass flow through a pipe under this condition is calculated using

 m u r dr
R

= zρ π
0

2

substituting for u from P. 9.1, u = r R dp
dx

2 2

4
−
µ

. .

and also using – ∆p/L in place of dp/dx (fully developed)

( )m P
L

r R r dr
R

= − −z∆ . π
µ

ρ
2 0

2 2

.m P R
L

P D
L

= =
∆ ∆π ρ

µ
π ρ

µ

4 4

8 128
The average velocity  = volume flow/area

∴ U m
R

P D
L

=
322ρ π µ

= ∆ 2

∴   ∆ P = 32 µ L
D

U2  Dividing and multipying by U , ρ and 2

 ∆ P = 32 × 2
2 2

ρ
ρ

µU
U

U L
D

.

= 64
2( )

. .
ρ µ

ρ
UD

L
D

U
/

2

= 64
2

2

Re
L
D

UL
NM
O
QP
L
NM

O
QP

. . ρ (P. 9.3)

Compare with definition of f

 f = ∆ P D
L U gc

.
( / )

1
22ρ

P + P�P

L R

Pipe

s

Fig. P. 9.2
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∆P = f × L
D

U
gc

. ρ 2

2
F
HG

I
KJ

Compare with P. 9.3 and note gc is a force conversion factor with value 1 in S.I. system
and in others g/ge will be used in place of 1/gc.

∴   f = 64
Re .

Problem 9.4: In the flow of liquid metal in a pipe of radius R the velocity is constant (u) all
through the section (slug flow). The temperature variation at a section is parabolic given by

T – Ts = C 1 r
R

2
− FHG
I
KJ

L
N
MM

O
Q
PP
 where Ts is the wall temperature and C is a constant and r is the radius

at which temperature is T. Derive the value of Nusselt number (hD/k) at this location.
Solution: From basic convection equation at any location the heat flow at the wall is given by,
where Tb is the fluid temperature

Pipe A dr

r

R

u
Ts

Tr

T

Fig. P. 9.4

q = h(Ts – Tb) ...( P. 9.4.1)
Considering a small element at radius r, the average temperature is found by

  Tb = 1 2 2
2 0 2c R u

r dr u cT
u R

uT r dr
m

R

m C

R

ρπ
π ρz z=

In this case  u = um and T – Ts = C 1
2

− FHG
I
KJ

L
N
MM

O
Q
PP

r
R

Substituting

Tb = 2 12 0

2

R
T C r

R
rdr

R
sz + − FHG

I
KJ

L
N
MM

O
Q
PP

F
HG

I
KJ

= 2
2 2 42

2 2

2
4

0R
T r C r C

R
rs + −

L
NM

O
QP

.
R

∴ Tb = Ts + C ...( P. 9.4.2)
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The heat flux at the surface is found from the distribution

  q = k 
∂
∂

= − = −
= =

T
r

kC r
R

C k
Rr R r R

2 22.

Substituting h = q
T T

C k
R

C
k

Rs b−
=

−

−
=

2 2

∴ Nu = 
hD
k

k R R
k

= ×( / )2 2
 = 4

For the given distributions Nu = 4 for slug flow.
Problem 9.5: Engine oil at 20°C flows through a 2 cm dia tube at a rate of 0.01 kg/s, The tube
wall is at 100°C. Determine the temperature at 0.5 m, 1 m, 2.5 m, 5 m lengths.
Solution: As the mean of bulk temperature is not specified, the properties are first evaluated
at 20°C

ρ = 888 kg/m3, ν = 901 × 10–6 m2/s, Pr = 10400, k = 0.1454 W/mK

The velocity of flow = mass
density

1
Area

0.01
888

4
0.022× = ×

×π
= 0.0358 m/s

∴   Re = 0.358 × 0.02/901 × 10–6 = 0.8
In the cae of high Prandtl numbers, the development of thermal boundary layer takes

longer distance compared to hydrodynamic boundary layer. (0.04 Re Pr = 332.8 m)

Nu = 3.66 + 0.0668 ( / )
1 0.04 [( / ) ]0.67

D L Re Pr
D L Re Pr+

L 0.5 1 2.5 5 m

Nu 11.25 8.67 6.33 5.23

h 81.79 63.03 46.02 38
W/m2K

The exit temperature can be determined using (using arithmetic mean)

 mc(Tmo – Tmi) = h π DL T T T
s

mo mi−
+F

HG
I
KJ2

at 0.5 m

0.01 × 1880 (Tmo – 20) = 81.79 02× × ×π 0. 0.5
2

 [200 – (20 + Tmi)]

 Tmo = 30.23 ∴ New trial becomes necessary
 1 m Tmo = 35.24 -do-
2.5 m Tmo = 45.8°C -do-
5 m Tmo = 58.56°C -do-
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The property values are now evaluated as the new estimated mean temperatures
0.5 m (20 + 30.23)/2 = 25°C
1 m (20 + 35.24)/2 = 27.5°C
2.5 m (20 + 45.8)/2 = 32.5°C
5 m (20 + 58.56)/2 = 39°C

Temp. ρ ν Pr k c

25 885 736 × 10–6 8517.5 0.1451 1901
27.5 883.5 653.5 × 10–6 7576.25 0.1450 1911.5
32.5 880.5 488.5 × 10–6 5693.75 0.1447 1932.5
39.0 876.6 274 × 10–6 3246.5 0.1443 1959.8

Length Reynolds Nu h Tmo Previous
°C estimate °C

0.5 0.974 11.26 81.68 30.12 30.23
1.0 1.09 8.686 62.97 35.0 35.24
2.5 1.467 6.352 45.96 45.18 45.8
5.0 2.616 5.259 37.94 57.3 58.56

The outlet temperatures are very near the assumed values and hence can be taken as
good.
Problem 9.6: An air precheater used hot gases (property values equal to that of air) at 350°C to
heat air at 30°C. The gas pressure is 1 bar and the flow velocity is 1 m/s. Compare 5 cm tubes
and 10 cm tubes for the unit. Determine the length of pipe required in each case and also the
friction pressure drop. The gas has to be cooled to 200°C.
Solution: The bulk mean temperature = (350 + 200)/2 = 275°C

The property values at this temperature are density = 0.6445 kg/m3, ν = 44.4 × 10–6 m2 s,
Pr = 0.6755, k = 0.044365 W/mK, c = 1053 J/kg K
0.5 m dia

 Re = 1 × 0.05/44.4 × 10–6 = 1126
0.1 m dia

 Re = 1 × 0.1/44.4 × 10–6 = 2252
The flow is in the laminar region. The assumption that the boundary layers develop

simultaneously is better. (eqn. 9.9)

Nu = 3.66 + 
0.104 /
0.16

( )
( / )
Re Pr D x
Re Pr D x1 0.8+

For 0.05 m dia:
The length is not known. Assuming 5 m

Nu = 4.10, h = 3.64 W/m2 K
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Using heat balance
π × ×0.05 0.05

4  × 1 × 0.6445 × 1053 (350 – 200)

= h × π × 0.05 × L 
350 200

2
30+ −F

HG
I
KJ

∴ L = 1.43 m
So the value is to be recalculated using L = 1.43 m

Nu = 4.523 ∴ h = 4.01 W/m2 K
π × ×0.05 0.05

4  × 1 × 0.6445 × 1053 × (350 – 200)

= h × π × 0.05 L 350 200
2

30+ −F
HG

I
KJ

∴ L = 1.29 m or 1.3 m.
Another calculation based on 1.3 m yields Nu = 4.56, h = 4.05
∴ L = 1.284 m. ∴ 1.30 m can be used
For 0.1 m dia: Assuming 5 m length,

Nu = 4.57 ∴ h = 2.03
Using energy balance:

π × ×0.1 0.1
4

 × 1 × 0.6445 × 1053 (350 – 200)

= h × π × 0.1 × L 
350 200

2
30+ −F

HG
I
KJ

∴ L = 5.12 m
This is close enough to the assumed value and repeated calculations yields
∴ Nu = 4.57. Adopt 5.12 m

 f = 
64
Re

∴  ∆P = 
f L D um× ρ( )/ 2

2

0.05 m dia, ∆∆∆∆∆P = 
64

1126
1

2
2

. 0.6445 1.3
0.05

× ×
×  = 0.476 N/m2

0.1 m dia, ∆∆∆∆∆P = 
64

2252
1

2
2

. 0.6445 5.12
0.1

× ×
×

 = 0.469 N/m2

For the same flow rate the number of tubes required will be 4 times more in the case of
0.05 m dia tube, but still it will be economical to use the smaller dia tubes area wise.
Problem 9.7: In the problem 9.6, assume the velocity to be 8 m/s and compare 0.1 m dia and
0.05 m dia in terms of frictional drop and length requirements.
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Solution: At 275°C, (Tm), ρ = 0.6445 kg/m3, ν = 44.4 × 10–6 m2/s, Pr = 0.6755, k = 0.044365 W/
mK, c = 1053 J/kg K.

0.05 m dia
Re = 8 × 0.05/44.4 × 10–6 = 9009, flow is turbulent

∴ The length required is not known
Assuming 1 m length (eqn, 9.17)

Nu = 0.036 Re0.8 Pr0.33 (D/L)0.055 = 39
∴  h = 34.66 W/m2 K
Using energy balance equation

π × ×0.05 0.05
4  × 8 × 0.6445 × 1053 × 150

= 34.66 × π × 0.05 × L × 
350 200

2
30+ −F

HG
I
KJ

∴  L = 1.2 m
Reworking with this value: Nu = 38.66, ∴ 34.3 W/m2 K

 L = 1.21 m So 1.2 m is used

 ∆P = fρ L
D

u.
2

2
, f = 0.316 × Re–0.2

∴  ∆P = 0.316 × 
1

9009
0.6445 1.21

0.05 20.2 × ×
×  × 82 = 25.52 N/m2

0.1 m dia: Assuming a length of 4 m, Re = 18018, turbulent
Using eqn. (9.17),  Nu = 65.46, h = 29.04 W/m2 K

using energy balance
π × ×0.1 0.1

4  × 8 × 0.6445 × 1053(350 – 200)

= 29.04 × π × 0.1 × L 
350 200

2
30+ −F

HG
I
KJ

∴  L = 2.86 m
Reworking using 2.9 m

Nu = 66.63 h = 29.56 W/m2 K
∴  L = 2.6 m
The value is used for reworking,

Nu = 67.03, h = 29.74 W/m2 K
∴  L = 2.8 m
This value can be adopted.

 f = 0.184 × Re–0.2 = 0.0259

 ∆∆∆∆∆P = 
0.0259 0.6445 2.8 8

2 0.1
2× × ×

×
 = 14.97 N/m2



VED

c-4\n-demo\damo9-3

C
ha

pt
er

 9

FORCED CONVECTION 415

The length of tube in this case is about twice but the number of tubes only 1/4. The
frictional loss is also reduced. However other considerations have to be looked into before the
choice. The longer length is due to large mass flow.
Problem 9.8: Water is heated in an economiser (under pressure) from 40°C to 160°C. The tube
wall is at 360°C. Determine the length of 0.05 m dia tube, if the flow velocity is 1 m/s.
Solution: Tm = 100°C, ρ = 961 kg/m2, ν = 0.293 × 10–6 m2/s

 Pr = 1.74, k = 0.6804 W/mK c = 4216 J/kg K
µw = 909 × 0.189 × 10–6 kg/ms
 Re = 0.05 × 1/0.293 × 10–6 = 0.1706 × 106 ∴ Turbulent

Using the more recent expression

Nu = ( / )
( / ) [ ]

f Re Pr
f Pr

m

w

8
12.7 8 10.5 0.67

0.11

1.07 + −
F
HG
I
KJ

µ
µ

 f = (1.82 log10 Re – 1.64)–2 = 0.016
∴ Nu = 476.2 ∴ h = 6480.5 W/m2 K
Heat balance is used to determine the length:

π × 0.052

4
 × 1 × 961 × 4216(160 – 40)

= π × 0.05 × L × 6480.5 360 160 40
2

− +F
HG

I
KJ

∴ L = 3.6 m, 
L
D  = 72 ∴ use of equation is justified.

 ∆∆∆∆∆P = f . ρ u2 L/2D = 553.5 N/m2

If we use
Nu = 0.023 Re0.8 Pr0.33, Nu = 424.1, h = 5773 w/m2 K
 L = 4.05 m

LMTD can be used to assess length more accurately

Q = m AC (160 – 40) = h.A. LMTD = 5773 × π × 0.05 × L 
320 −
F
HG
I
KJ

L

N
MMM

O

Q
PPP

200
320
200

ln

∴ L = 4.12 m.
Problem 9.9: For problem 9.8, if 10 cm dia pipes are used, determine the length required.
Solution: Using the property values as in 9.8,

Re = 0.3413 × 106

Nu = ( / )
( / ) [ ]

f Re Pr
f Pr

m

w

8
12.7 8 10.5 0.671.07

0.11

+ −
L
NM
O
QP

µ
µ

 f = (1.82 log10 Re – 1.64)–2 = 0.014
∴  Nu = 843.2 ∴ h = 5737 W/m2 K
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∴ L = 8.15 m

∆∆∆∆∆P = f u L
D

ρ . .2

2
= × × ×

×
0.014 961 1 8.15

2 0.1
2

 = 548 N/m2

For the same temperature rise, longer length is required for higher diameter. This is
due to the larger mass flow for the same velocity. (4 times).
Problem 9.10: Dry compressed air at 7 bar and 125°C is to be cooled to 75°C in a tubular
cooler, the diameter being 5 cm and the wall temperature at 20°C. Determine the length of tube
required. The velocity used  is 1.2 m/s.
Solution: The property values are to be evaluated at (125 + 75)/2 = 100°C,

ρ = 0.946 × 7, Pr = 0.688, k = 0.0321 W/mK,
c = 1009 J/kg K µm = 21.87 × 10–6 kg/ms

∴   ν = 21.87/0.946 × 7 m2/s, µw = 18.14 × 10–6 kg/ms
Re = 1.2 × 0.05 × 0.946 × 7/21.87 × 10–6 = 18167

∴ Flow is turbulent (cooling, index = 0.25)

∴  Nu = ( / )
. . ( / ) [ ]

f Re Pr
f Pr

m

w

8
107 12 7 8 10.5× −

L
NM
O
QP0.67

0.25
µ
µ

 f = (1.82 log10 Re – 1.64)–2 = 0.0268
∴  Nu = 48.2 ∴ h = 30.99 W/m2 K
As the temperatures are known, LMTD can be used

π × 0.052

4
 × 1.2 × 7 × 0.964 × 1009 (125 – 75)

= π × 0.05 × L × h 105 −
F
HG
I
KJ

L

N
MMM

O

Q
PPP

55
105
55

ln

∴ L = 2.13 m, L
D

 = 42.6 < 60

So another trial using Nu in the entry region can be used
 Nu = 0.036 Re0.8 Pr0.33 (D/L)0.55

 Nu = 66.07, ∴ h = 42.48 W/m2K
L = 1.55 m

A later correlation is

Nu Nu C
x D

= +
/

1FHG
I
KJ C = 6.0

= 48.2 1 6+
F
HG

I
KJ( / )1.55 0.05  = 57.53,
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∴ h = 37 W/m2 K, ∴ L = 1.79 m
The length ranges from about 1.5 m to 2.1 m
Less than ± 20% about 1.8 m.

Problem 9.11: Steam at 1 bar and 200°C flows inside a 5 cm dia tube at a velocity of 15 m/s.
The tube wall temperature is 500°C. Determine the temperature of steam at the outlet if the pipe
is 6 m long.
Solution: The property values at 1 bar and 200°C are (steam which is superheated can be
considered as gas).

ρ = 0.464 kg/m3, ν = 30.6 × 10–6 m2/s, Pr = 0.94, Cp = 1976 J/kg K
k = 0.0334 W/m2 K, µ = 15.89 × 10–6 kg/ms

Re = 0.05 × 15/30.6 × 10–6 = 24510
So the flow is turbulent
Using equation (9.22) (Tm = 200°C)

 Nu = ( / )
( / ) [ ]

f Re Pr
f Pr

T
T

w

m

8
8 11.07 12.7 0.5 0.67

0.11

+ −
L
NM
O
QP

Note. Temperature in Kelvin to be used
 f = (0.79 ln Re – 1.64)–2 = 0.0248

Nu = 72.42 ∴ h = 48.5 W/m2K
If the equation (9.20) is used

 Nu = 0.023 Re0.8 Pr0.4 = 72.85 ∴ h = 48.67 W/m2K
These values are close.
Using equation (9.21).

 Nu = 0.027 Re0.8 Pr0.33 
µ
µ

m

w

L
NM
O
QP

0.14

µm at 200°C = 15.89 × 10–6

µw at 500°C = 28.64 × 10–6

∴ Nu = 79.08 ∴ h = 52.83 W/m2 K
Not far removed from other values.
The exit temperature is determined using energy balance. (assuming arithmetic mean)

mass flow × sp. heat × temp. rise
= Area × convect coefficient × average temp. difference

Taking the value of h as 48.5 W/m2 K

0.464 × 15 × π × 0.052

4
 × 1976 (Tmo – 200)

= 48.5 × π × 0.05 × 6 500 200
2

−
+F

HG
I
KJ

Tmo
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∴  Tmo = 475°C
This is large enough. So another trial is necessary taking property values at (475 + 200)/

2 = 337.5°C.
The property values are:

ρ ν Pr c k µ

300 0.384 44.3 × 10–6 0.91 2014 0.44419 24.32
400 0.326 60.5 × 10–4 0.90 2073 0.05594 28.64

Taking at 337.5°C
ρ = 0.362 kg/m3, ν = 50.375 × 10–6 m2s, Pr = 0.906, k = 0.0486 W/mK, µ =

25.94 × 10–6 kg/ms
Re = 0.05 × 15/50.375 × 10–6 = 14888 ∴ Turbulent

Using equation (9.22) and (9.14)
 f = (1.82 log10 Re – 1.64]–2 = 0.0282

 Nu = ( / )
( / ) [ ]

f Re Pr
f Pr

T
T

w

m

8
12.7 8 11.07 0.5 0.67

0.11

× −
L
NM
O
QP

 = 47.76

Temperature in Kelvin
∴   h = 46.41 W/m2 K
Using equation (9.20)

 Nu = 0.023 Re0.8 Pr0.333 = 48.5, ∴ h = 47.14 W/m2 K
Using the value and substituting in the energy balance (check please) taking mass flow

rate as before
Tmo = 470.8°C, less than 475°C previously calculated

Another trial is not warranted in the academic level. But for design purposes, another
trial will be useful.
Problem 9.12: Air flows through a 5 cm ID rough pipe with a relative roughness (ε/D) of
0.006, the mean velocity of air being 12 m/s. The air enters at 150°C and the tube wall is at
30°C. Determine the exit temperature of air. The pipe is 3 m long.
Solution: Considering that the air may be cooled to about 90°C and taking a mean temperature
of 120°C, the property values are ρ = 0.898, ν = 25.45 × 10–6 m2/s, Pr = 0.686, c = 1009, k = 0.03338
W/mK, ρ = 0.8345 (150°C).

Re = 0.05 × 12/25.45 × 10–6 = 23576, ∴ Turbulent
using eqn. (9.16)

 f = 1.325

3.7
5.74 0.9ln . /ε

D
Re1 2F

HG
I
KJ +L

NM
O
QP

 = 0.0321

(for smooth tubes this works out to 0.025, eqn. (9.14 (b))
(from Moody diagram f = 0.035)
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Using Analogy St. Pr2/3 = f/8

 Nu = 0.0321
8

 × Re . Pr0.333 = 83.45

∴ h = 55.72 W/m2 K
To determine the outlet temperature, energy balance is used

π × 0.052

4
 × 12 × 0.8345 × 1009 (150 – Tmo)

= π × 0.05 × 3 × 55.72 150
2

30+
−F

HG
I
KJ

Tmo

∴ Tmo = 54.43°C
In case LMTD method is used, the outlet temperature comes as 61.8°C
So another trial is necessary. Considering Tmo = 60°C
The mean temperature = (150 + 60)/2 = 105°C
The property values at 105°C are (in the usual units)

   ρ = 0.934, ν = 23.71 × 10–6 m2/s, Pr = 0.689, k = 0.03242, c = 1009
Re = 12 × 0.05/23.71 × 10–6 = 25306

 f = 1.325
0.006

3.7
5.74ln

( )
+L

NM
O
QP25306 0.9

2  = 0.03211

h value is calculated as before.
∴ Exit temperature, using energy balance is obtained as 51.94°C. This value is good

enough as an estimate. It is to be noted that roughness causes a higher rate of heat transfer
(compare the values of f).
Problem 9.13: Water at 20°C flows through smooth tubes of 25 mm dia at a mean velocity of
2.2 m/s. The surface of the tube is at 5°C and the water is chilled in the process. The tube is 4 m
long. Determine the outlet temperature of water.
Solution: Considering property values at 20°C

ρ = 1000 kg/m3, ν = 1.006 × 10–6 m2/s, Pr = 7.02, k = 0.5978 W/mK, c = 4216 J/kg K
Re = 2.2 × 0.025/1.006 × 10–6 = 54672, Turbulent flow
Using equation (9.22)

Nu = ( / )
( / ) [ ]

f Re Pr
f Pr

m

w

8
12.7 8 10.51.07 0.67

0.25

+ −
L
NM
O
QP

µ
µ

f = [1.82 log10 Re – 1.64]–2 = 0.0205, (eqn. 9.14(b))
 µm = νmρm, µm = νw × ρw = 1.5925 × 10–6 × 1000.5
 µm = 1.006 × 10–6 × 1000

substituting Nu = 314.98 ∴ h = 7532 W/m2 K
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Using the simpler expression (cooling)
  Nu = 0.023 Re0.8 Pr0.3 = 254.6, h = 6088 W/m2 K

There is a larger difference in this case.
To determine the outlet temperature, energy balance is made, using average temperature,

instead of LMTD.

π × 0.0252

4
 × 2.2 × 1000 × 4216(20 – Tmo)

= 7532 × π × 0.025 × 4 × 20
2

5+
−F

HG
I
KJ

Tmo

∴  Tmo = 13.81°C
In case LMTD method is used Tmo = 14.9°C
The average temp. = 16.9°C and property values used are at 20°C. The difference will be

marginal.
As a check: use analogy method

St Pr2/3 = f/8
 Nu = (f/8) Re Pr0.33 ∴ Nu = 268.4 (compare 315, 224.6)

Using equation (9.21)

 Nu = 0.027 Re0.8 Pr0.33 
µ
µ

m

w

L
NM
O
QP

0.14

 = 299.04

The values by use of eqn. (9.21) and (9.22) are closer.
Problem 9.14: Air is heated using an electrically heated pipe of 15 mm dia from 20°C to 180°C,
with constant heat flux maintained over the wall. The flow rate is 2 kg/hr. The average
temperature difference is 20°C, so that the wall temperature does not exceed 200°C. Determine
the length required and the heat flux.
Solution: The property values are evaluated at (20 + 180)/2 = 100°C

ρ = 0.946 kg/m3, v = 23.13 × 10–6 m2/s
Pr = 0.688, k = 0.0321 W/mK, c = 1009 J/kg K
µ = 21.87 × 10–6 kg/ms, velocity = 3.32 m/s. (Calculated)

Using mass flow,

Re = 4 G/πDµ = 4 2
3600

1
0 015

1
2187 10 6

× ×
×

×
× −π . .

= 2156.2
So laminar flow (assume fully developed flow)

 Nu = 4.36 From chart for . 1 0.34, 4.36 so checksx
D Re Pr

Nu= =
F
HG

I
KJ

∴ h = 9.33 W/m2 K
Q = mc ∆T

Q = 2
3600  × 1009 × (180 – 60) = 67.267 W
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 Heat convected = 9.33 × π × 0.015 × L × 20
∴ L = 7.65 m
This is also equal to the product of heat flux and area
∴  heat flux = 67.267/π DL = 186.6 W/m2 or 8.8 W/m length.

Problem 9.15: Nitrogen at – 20°C gets heated as it flows through a pipe of 25 mm dia at a flow
rate of 13.725 kg/hr at 2 atm pressure. The pipe is heated with a uniform heat flux of 500 W/m2.
The pipe is 4 m long. Determine the value of the pipe temperature at the exit.
Solution: As the pipe length and heat flux are specified the exit temperture of nitrogen can be
found

 c ≈ 1030 J/kgK

π × 0.025 × 4 × 500 = 13 725
3600

.  × 1030 × (Tmo – (– 20))

∴ Tmo = 20°C
Property values are taken at 0°C

ρ = 1.25 × 2 kg/m3 Pr = 0.705, c = 1030 J/kg K
k = 0.02431 W/mK µ = 16.67 × 10–6 kg/ms

Re = 4 4 13725
3600 0 025 16 67 10 6

G
Dπ µ π

= ×
× × × × −

.
. .

 = 11648

Turbulent flow
The equations applicable are

 Nu = 0.023 Re0.8 Pr0.4 ...(A)

 Nu = ( / )
. . ( / ) [ ]

f Re Pr
f Pr
8

107 12 7 8 10.5 0.67+ −
 . (const. heat flux) ...(B)

f = (1.82 log10 Re – 1.62)–2 = 0.03
Using A:  Nu = 35.8, h = 34.81 W/m2 K
Using B:  Nu = 34.07 h = 33.13 W/m2 K
To determine the temperature at exit, using h = 34.81 W/m2 K

qA = hA ∆T ∴ ∆T = 14.4°C
∴ pipe temperature = – 20 + 14.4 = 5.6°C

Problem 9.16: Exhaust from a truck engine enters the exhaust pipe at 400°C and the pipe is 5
cm in dia with a constant wall temperature of 120°C. The pipe is 3 m long. The flow rate is 500
kg/hr. Determine the exit temperature.

Assume properties as that of air.
Solution:

Making a first assumption of 200°C exit, the property values are evaluated at 300°C.
ρ = 0.615 kg/m3 v = 48.2 × 10–6 m2/s  Pr = 0.6/4.
k = 0.04605 W/mK u = 29.71 × 10–6 kg/ms c = 1047 J/kg K
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Re = 4 G/πDµ = 
4 500
3600

1
0 05 29 71 10 6

× ×
× × × −π . .

= 119043 ∴ Turbulent
for a first estimate:

 Nu = 0.023 Re0.8 Pr0.3 = 234.4, ∴ h = 215.34 W/m2K
Using heat balance,
500

3600  × 1047 × (400 – Tmo) = 216.34 × π × 0.05 × 3 400
2

120+
−F

HG
I
KJ

Tmo

 Tmo = 254.6°C
The mean temperature can now be taken as 325°C
The properties are:

ρ = 0.5905 kg/m3 v = 51.83 × 10–6 m2/s, Pr = 0.675
c = 1053 J/kgK k = 0.047565 W/mK µm = 30.545 × 10–6 kg/ms

µw = (120°C) = 22.85 × 10–6 kg/ms
Re = 4 m/πD µ = 115789

Using Nu = ( / )
. . ( / ) [ ]

f Re Pr
f Pr

m

w

8
107 12 7 8 10.5 0.67

0.25

+ −
F
HG
I
KJ

µ
µ

 f = (1.82 log10 Re – 1.64)–2 = 0.01742
∴  Nu = 196.1, and h = 186.55 W/m2 K
500

3600  × 1047 (400 – Tmo) = 186.55 × π × 0.05 × 3 400
2

120+
−F

HG
I
KJ

Tmo

Tmo = 270°C
In case LMTD method is used Tmo = 273°C
Another iteration with properties at 335°C yields

ρ = 0.5805 kg/m3, v = 53.282 × 10–6 m2/s, Pr = 0.675, k = 0.0482 W/mK
µ = 30.879 × 10–6 kg/ms

Re = 114537, f = 0.0175, Nu = 194.98, h = 187.96 W/m2K
 Tmo = 269.3°C, The outlet can be taken to be at 270°C.

Problem 9.17: A water pipe of dia 7.5 cm absorbs solar radiation at 800 W/m2 over the projected
area as it passes along an open space for a distance of 10 m. The flow rate of water entering at
25°C is 100 kg/hr. Determine the pipe temperature at the outlet.
Solution: The temperature rise can be found using the heat flux and flow rate (projected area
= length × diameter)

800 × 10 × 0.0785 = 
100

3600  × 4178 (Tmo – 25)

∴ Tmo = 30.17°C



VED

c-4\n-demo\damo9-3

C
ha

pt
er

 9

FORCED CONVECTION 423

Taking property values at (25 + 30.17)/2 = 27.585°C
 ρ = 998.1 m3/kg v = 0.87364 m2/s, Pr = 6.004
 k = 0.6093 W/mK c = 4178 J/kgK

Re = 4 G/π D µ = 
4 100
3600

1
0 075 0 87364 10 98 16

× ×
× × × ×−π . . .  = 564.88

Laminar, constant heat flux, fully developed
∴  Nu = 4.36, ∴ h = 35.42 W/m2 K
∴ 35.42 × π × D × 1(Tw – T∞) = D × 1 × 800
∴ Tw – T∞ = 7.19°C, At outlet Tw = 30.17 + 7.19 = 37.36°C

Problem 9.18: Saturated steam at 300°C enters a radient super heater tube of 7.5 cm dia of 4
m length exposed to uniform heat flux of 60 kW/m2. Determine the tube wall temperature at exit.
The steam flow rate is 0.5 kg/s.
Solution: The average property values may be taken as below

ρ = 46.2 kg/m3 µ = 21.28 × 10–6 kg/ms c = 4424 J/kgK
k = 0.0442 W/mK, Pr = 2.13

Re = 4 G/π D µ = 4 × 0.5/π × 0.075 × 21.28 × 10–6 = 398885 or 3.99 × 105

Flow is turbulent, constant heat flux,

 Nu = ( / )
. . ( / ) [ ]

f Re Pr
f Pr
8

107 12 7 8 10.5 0.67+ −
 f = (1.82 log10 Re – 1.64)–2 = 0.0137

∴  Nu = 1026.5 ∴ h = 605 W/m2 K
q × A = hA(∆T)

∴ 60000 = 605 × ∆T, ∴ ∆T = 99.17°C
(wall temeprature above steam temperature)

Exit steam temp. = 0.5 × 4424 × ∆T = 60000 × π × 0.075 × 4
∴  ∆T = 25.56°C (Temp. rise of steam)
∴ Suface temp. at exit = 300 + 25.56 + 99.17 = 424.73°C

Problem 9.19: In problem 9.18 if the flow rate is increased to 2 kg/s, maintaining other
parameters, determine the tube wall temperature at the outlet. Use the same average value of
properties.

Solution: Re = 4 G/π D µ = 
4 2

0 075 2128 10 6
×

× × × −π . .
= 1.6 × 106 Turbulent flow

f = (1.82 log Re – 1.64)–2 = 0.01074

 Nu = ( / )
. . ( / ) [ ]

f Re Pr
f Pr
8

107 12 7 8 10.5 0.67+ −
 = 3318.2

∴ h = 1955.5 W/m2 K
 q = h ∆T
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∆T is wall temp. above fluid temp.
∴  60000 = 1955.5 × ∆T, ∴ ∆∆∆∆∆T = 30.68°C
Fluid temp. rise:

q × π D L = m cp (Tmo – Tmi)
60000 × π × 0.075 × 4 = 2 × 4424 (Tmo – 300)

∴ Tmo = 306.39°C
∴   Wall temp. at exit = 306.39 + 30.68 = 337.07°C (compare with 424 in 9.18)
Larger flow rate keeps lower wall temperature.
At low loads, the pipes may over heat due to reduced flow rates and proper precautions

become necessary to prevent tube failure due to overheating.

Problem 9.20: Liquid ammonia flows in a duct of section of equilateral triangle of 1 cm side.
The average bulk temperature is 20°C and the duct wall is at uniform temperature of 50°C.
Fully developed laminar flow with Reynolds number of 1200 is maintained. Calculate the average
value of heat transfer for 1 m length.
Solution: For fully developed flow, the triangular section, laminar flow, Nu = 2.47 (from tables)

Nu = h D
k

h.  , Dh = 
4A
P

 A = 01 × 0.01 sin 60/2 m2 P = 3 × 0.01
∴ Dh = 5.77 × 10–3 m

k = 0.521 W/m2 K ∴ h = 
2 47 0 521
5 77 10 3
. .
.

×
× −  = 222.89 W/m2 K

 Q = 0.03 × 1 × 222.89 × (50 – 20) = 200.6 W/m

Problem 9.21: Water at mean bulk temperature of 20°C flows in a duct having cross section of
10 mm × 20 mm with uniform wall temperature of 60°C. For fully developed laminar flow,
calculate the heat transfer for 1 m length.
Solution: From tables for rectangle of 1 : 2 sides, the value of Nu for fully developed laminar
flow is read as 3.391.

k at 20°C for water is 0.5978 W/mK
Hydraulic radius,

Dh = 4 0 01 0 02
2 0 01 0 02

× ×
+

. .
( . . )

 = 0.01333 m

∴  h = 
3 391 0 5978

0 01333
. .

.
×

 = 152.04 W/m2 K

Q = 1 × 0.06 × 152.04 × (60 – 20) = 364.9 W/m

Problem 9.22: Water flows in a pipe of 50 mm ID at a rate of 3 kg/s and is heated from 15°C to
25°C over a length of 2 m. Determine the temperature of the tube wall if uniform wall temperature
conditions prevail.
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Solution: The property values are at 20°C, (15 + 25)/2
ρ = 1000 kg/m3 v = 1.006 × 10–6 m2/s Pr = 7.02
k = 0.5978 W/mK, c = 4178 J/kg K

 Re = 4 G/π D µ = 4 m/π D v ρ = 4 × 3/π × 0.5 × 1000 × 1.006 × 10–6 = 75938
∴ Flow is turbulent, heating of fluid

 Nu = ( / )
. . ( / ) [ ]

f Re Pr
f Pr
8

107 12 7 8 10.5 0.67+ −
 

µ
µ

m

w

F
HG
I
KJ

0.11

As the wall temperature is not known, it is assumed as 60°C
 µw = 985 × 0.478 × 10–6 kg/ms

f = (1.82 log10 Re – 1.64)–2 = 0.01906
∴  Nu = 507.18 ∴ h = 6064 W/m2 K

3 × 4178 × 10 = 6064 × π × 0.05 × 2 (Tw – 20)
Tw = 85.8°C

This is near enough to our assumption of 60°C to warrant one more iteration. Another
older correlation is

 Nu = 0.023 Re0.8 Pr0.4 = 402.4, h = 4810 W/m2K
This leads to a wall temperature of : 102.94°C

Problem 9.23: The pressure drop in flow of water at the rate of 1 kg/s in a pipe of 25 mm dia
over a length of 1.5 m was measured as 7000 N/m2. The water inlet temperature is 20°C and
the wall temperature is maintained at 50°C. Determine the water temperature at the exit.
Solution: The property values are taken at 20°C

ρ = 1000 kg/m3, v = 1.006 × 10–6 m2/s, Pr = 7.02,
k = 0.5978 W/mK, c = 4178 J/kgK ρ50 = 990 kg/m3,

ν50 = 5675 × 10–6m2/s
Friction factor is found from pressure drop and analogy is used to solve from in

 ∆P = f . ρ L
D

u2

2
, u = 0.001 × 4/π × 0.0252 m/s = 2.0372 m/s

substituting, f = 7000 × 0.025 × 2/1000 × 1.5 
0 001 4

0 0252

2.
.

×
×
F
HG

I
KJπ

 = 0.05622

Re = uD/ν = 2.0372 × 0.025/1.006 × 10–6 = 50626
If we assume smooth pipe,

 f = (1.82 log Re – 1.64)–2 = 0.02087
so the pipe considered should be a rough pipe,

Using Colburn analogy
∴ St Pr2/3 = f/8

 Nu = 
f
8
F
HG
I
KJ  Re . Pr1/3 = 0 05622

8
.  × 50626 × 7.020.333

= 681.22
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∴  h = 16289 W/m2 K

 1 × 4178 (Tmo – 20) = π × 0.025 × 1.5 × 16289 50 20
2

−
+F

HG
I
KJ

Tmo

∴ Tmo = 31.2°C
Another trial can be made with Tm = 25.6°C
This may be tried.

Problem 9.24: Water is heated at the rate of 1 kg/s from 30°C to 50°C in a smooth pipe of 25
mm ID. The tube wall temperature is 9.1°C above the fluid temperature all along the length.
Estimate the length of tube required and also the heat flux and the temperature of wall at exit.
Solution:  The mean bulk temperature = (30 + 50)/2 = 40°C

ρ = 995 kg/m3, v = 0.657 × 10–6 m2/s, Pr = 4.34,
k = 0.628 W/mK c = 4178 J/kg K

As the temperature difference between the wall and fluid is constant, this should be a
case of constant heat flux.

Re = 4 G/π Dµ = 4 × 1/π × 0.025 × 995 × 0.657 × 10–6

= 77908 So the flow is turbulent

Using  Nu = 
( / )

. . ( / ) [ ]
f Re Pr

f Pr
8

107 12 7 8 10.5 0.67+ −

 f = (1.82 log Re – 1.64)–2 = 0.01896
∴  Nu = 382.16 ∴ h = 9600 W/m2 K
Using  mc (Tmo – Tmi) = h × π DL ∆T

1 × 4178 × (50 – 30) = 9600 × π × 0.025 × L × 9.1
Length of tube,  L = 12.18 m

 Q × A = hA ∆T ∴ Q = 9600 × 9.1 = 87.36 kW/m2, (A = 1)
 heat flux = 87.36 kW/m2 or 6.861 kW/m length

Wall temperature at exit = 59.1°C

Problem 9.25: Water flows at the rate of 6 kg/s in a pipe 5 cm dia and 9 m length. The relative
roughness is 0.002. The pipe wall is at a uniform temperature of 70°C. Water enters at 40°C.
Determine the exit temperature.
Solution: As a first trial, consider properties at 40°C

ρ = 995 m3/kg v = 0.657 × 10–6 m2/s, Pr = 4.34,
k = 0.628 W/mK c = 4178 J/kg K

As the pipe is rough, it is desirable to use Colburn analogy
 ε/D = 0.002

 St. Pr2/3 = f/8
Re = 4 × 6/π × 0.05 × 995 × 0.657 × 10–6 = 233724
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  f = 1325

3 7
5 74 0.9

2
.

ln
.

. /Reε
D

+L
NM

O
QP

 = 0.0234

 Nu = (f/8) Re Pr0.333

= 1115.7
∴ h = 14014 W/m2 K
Using energy balance, Tmo = 57°C
Another trial will be desirable taking property values say at 50°C.

Problem 9.26: A constant heat flux is provided over a cylinder of diameter 2.5 cm and water at
a high pressure flows over it in an annulus between the cylinder and 5 cm dia pipe. Water enters
at 120°C and is to be heated to 240°C. The flow rate is 6 kg/s. The heat flux is 8100 kW/m2.
Determine the length required and also the temperature of the inner cylinder wall at the exit.
The outer surface can be taken as insulated.
Solution: The mean temperature is (120 + 240)/2 = 180°C

Considering property values at this temperature.
ρ = 889 kg/m3 v = 0.173 × 10–6 m2/s,  Pr = 1.044,
k = 0.6757 W/mK c = 4417 J/kg K Dh = Do – Di = 0.025 m

 Velocity of flow = 6
1000

4
0 05 0 0252 2×

−π ( . . )
 = 4.074 m/s.

The velocity and heat flow rate should be used to calculate the length.
Reynolds number

Re = 4.074 × 0.025/0.173 × 10–6

= 588728 ∴ flow is turbulent
Using the general equation:

 Nu = 0.023 Re0.8 Pr0.4 = 964.9, h = 26079 W/m2 K

Using  Nu = 
( / )

. . ( / ) [ ]
f Re Pr

f Pr
8

107 12 7 8 10.5 0.67+ −

and f = (1.82 log Re – 1.64)–2 = 0.01274
 Nu = 902

Taking the later value,
h = 24374 W/m2 K

The length required can be determined using the heat flux
6 × (240 – 120) 4417 = π × 0.025 × L × 8100,000

Length required ∴ L = 5 m
The temperature difference determined using h = 24379
Using h × ∆T = q, ∴ ∆T = 332.3°C

wall temp. at exit = 240 + 332.3 = 572.3°C
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Problem 9.27: Dry air at a pressure of 8 bar and 20°C is chilled in an annulus between a 5 cm
tube and 2.5 cm tube whose walls are kept at 0°C by evaporating refrigerant. The length is 6 m.
Determine the exit temperatures for flow rates of

(i) 7.6 kg/hr (ii) 75 kg/hr.
Solution: Considering property values at 10°C (8 bar)

  ρ = 1.247 × 8 kg/m3,  µ = 17.65 × 10–6 kg/ms, k = 0.02512 W/mK
  c = 1005 J/kg K Pr = 0.705, ∴ ν = 1.80 × 10–6 m2/s

µ at 0°C = 17.16 × 10–6 kg/ms
Reynolds should be found using the velocity and Dh

Dh = 0.05 – 0.025 = 0.025 m
(i) Flow rate of 7.6 kg/hr

  u = 
7 6

3600 1247 8
4

0 05 0252 2
.
. ( . )× ×

×
−π

 = 0.1437 m/s

Re = 0 1437 0 025
180 10 6
. .

.
×

× −

= 1996
∴ flow is laminar
Assuming fully developed flow Di/Do = 0.5.

 Nu = 5.74 (from tables) ∴ h = 5.77 W/m2 K

7 6
3600

.  × 1005 × (20 – Tmo) = π × 0.025 × 6 × 5.77 Tmo +
−F

HG
I
KJ

20
2

0

 Tmo = 4.38°C
Another trial with Tm = (20 + 4.38)/2 will improve the result. But this will be marginal.

(ii) Flow rate of 75 kg/hr

Velocity u = 
75

3600
1

1247 8
4

0 05 0252 2×
×

×
−. ( . )π  = 1.4181 m/s

∴ Re = 
14181 0 025

18 10 6
. .

.
×

× −  = 19696, flow is turbulent

General correlations can be used with D = Dh

 Nu = ( / )
. . ( / ) [ ]

f Re Pr
f Pr

m

w

8
107 12 7 8 10.5 0.67

0.25

+ −
F
HG
I
KJ

µ
µ

 f = (1.82 log Re – 1.64)–2 = 0.026
Substituting
∴  Nu = 50.84 ∴ h = 51.09 W/m2 K
Using energy balance,
∴ Tmo = 5.39°C
Another trial can be done but the average value is very near the value chosen and hence

only marginal improvement can be expected.



VED

c-4\n-demo\damo9-4

C
ha

pt
er

 9

FORCED CONVECTION 429

Problem 9.28: Ethylene glycol is cooled from 60°C to 40°C in a 30 mm dia tube, the tube wall
temperature being maintained constant at 20°C. The average velocity at entry is 10 m/s. Determine
the length required.
Solution: The average of bulk temperature is 50°C. The property values are

ρ = 1094 kg/m3, µw = 19.174 × 10–6 × 1116, k = 0.25765 W/mK
c = 2518 J/kg K Pr = 72, ν = 6.7165 × 10–6 m2/s, µm = ρν

 Re = 10 × 0.03/6.7165 × 10–6 = 44666
Flow is turbulent
Using the more recent equation

 Nu = ( / )
. . ( / ) [ ]

f Re Pr
f Pr

m

w

8
107 12 7 8 10.5 0.67

0.25

+ −
F
HG
I
KJ

µ
µ

 f = [1.82 log Re – 1.64]–2 = 0.0215
Substituting

 Nu = 552.5, ∴ h = 4810 W/m2 K
Using heat balance: ρ at 60°C = 1087 kg/m3

π × 0 03
4

2.  × 10 × 1087 × 2518 (60 – 40) = 4810 × π × 0.03 × L(50 – 20)

∴ L = 28.45 m.
Problem 9.29: Liquid sodium potassium alloy (25 : 75) at 300°C is heated to 500°C in a tube of
6 m length and of diameter 0.05 m, using uniform heat flux. Determine the value of the average
wall temperature and heat flux. Flow rate is 3.0 kg/s.
Solution: The property values are taken at 400°C, (Tm = (300 + 500)/2)

 ρ = 775 kg/m3, ν = 0.308 × 10–6 m2/s, Pr = 0.0108, k = 22.1 W/mK
 c = 1000.6 J/kg K

Re = 4 G/π Dµ = 4 × 3.0/π × 0.05 × 0.308 × 10–6 × 775.73
= 320043

∴ flow is turbulent
For constant heat flux for liquid metals the suitable correlation is

 Nu = 4.82 + 0.0185 (Re Pr)0.827

= 4.82 + 0.0185 (320043 × 0.0108)0.827 = 20.44
∴ h = 9034 W/m2 K

q × π × D ×  L = mc ∆T = 3 × 1000.6 × (500 – 300)
∴  q = 637 kW/m2

mc (Tmo – Tmi) = h π DL ∆T
3 × 1000.6 × (500 – 300) = 9034 × π × 0.05 × 6.∆T
∴  ∆T = 70.51°C
∴ Average wall temperature = (300 + 70.51 + 500 + 70.51)/2 = 470.51°C.
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Another estimate is
Nu = 0.625 (Re Pr)0.4 = 16.26
 h = 7190 W/m2 K

This is on the lower side.
Problem 9.30: Liquid sodium potassium alloy (25:75) at 200°C is heated to 400°C in a pipe of
50 mm ID with a constant wall temperature of 600°C. Determine the length required if the flow
rate is 3 kg/s.
Solution: The property values are to be evaluated at (200 + 400)/2 = 300°C

ρ = 799 kg/m3 ν = 0.366 × 10–3 m2/s, k = 22.68 W/mK,
c = 1038.3 J/kgK Pr = 0.0134

  Re = 4 m/π Dµ = 4 × 3/π × 0.05 × 799 × 0.366 × 10–6

  = 261236, (2.61 × 105), Turbulent
For constant wall temperature

 Nu = 5 + 0.025 [Re Pr]0.8 = 22.11
∴ h = 10029 W/m2 K
Using energy balance

mc (Tmo – Tmi) = h π DL T T T
w

mo mi−
+F

HG
I
KJ2

3 × 1038.3 × (400 – 200) = 10029 × π × 0.05 × L 600 400 200
2

− +F
HG

I
KJ

∴ L = 1.32 m
Problem 9.31: Compare the value of convective heat transfer coefficient for a circular pipe of
diameter 5 cm with uniform wall temperature, with a square section of the same area. The fluid
is air at an average bulk temperature of 40°C.

The flow rate is 0.06 kg/s. The air heated.
Solution: The property values are:

ρ = 1.128 kg/m3, ν = 16.96 × 10–6 m2/s, Pr = 0.699
k = 0.02756 W/mK, c = 1005 J/kg K

The value of Re for cylinder
= 4 m/π Dµ = 4 × 0.06/π × 0.05 × 1.128 × 16.96 × 10–6

= 79865
∴ Turbulent

 Nu = 0.023 Re0.8 Pr0.4  (Pr0.4–heating)
= 166.5,

∴ h = 91.77 W/m2 K
For square section: side a is calculated using

πD2

4
 = a2

∴ a = π × 0 05
2

2.  = 0.0443 m
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 Dh = 4
4

2.a
a

 = a, u = 0.06 × 
1

1128
1
2.

×
a  = 27.28 m/s

 Re = 27.28 × 0.0443/16.96 × 10–6 = 71284, Turbulent
∴ Nu = 0.023 Re0.8 Pr0.4 = 155.7, h = 96.8 W/m2 K
This comparison is for the same area and mass flow and so the velocity in the square

section is the same. Use of non-circular section is not desirable in heat transfer or for construction
purposes, but may be dictated by other considerations.

OBJECTIVE QUESTIONS

9.1 Choose the correct Statement in flow through pipes:
(a) In laminar flow, the exit Nusselt number in the fully developed condition is lower than at

entry.
(b) In laminar flow, the exit Nusselt number in the fully developed condition is higher than at

entry.
(c) In laminar flow, the Nusselt number remains constant.
(d) In laminar flow the Nusselt at constant wall temperature is higher as compared to Nusselt at

constant heat flux.
9.2 In flow through pipes for the same Reynolds number,

(a) The thermal entry length is longer for low Prandtl number fluids
(b) The thermal entry length is longer for high Prandtl number fluids
(c) Prandtl number does not influence the thermal entry length.
(d) The thermal entry length effect is more pronounced only in turbulent flow.

9.3 (a) Flow of air can be considered as hydrodynamic layer fully developed and thermal layer devel-
oping

(b) Flow of oils can be considered as HFD and thermal layer developing
(c) Flow of liquid metals can be considered as Hydrodynamic layer fully developed and thermal

layer developing
(d) Flow of water can be considered as hydrodynamic layer fully developed and thermal layer

developing.
9.4 In pipe flow, the average convection coefficient

(a) will be higher in rough pipes
(b) will be higher in smooth pipes
(c) Roughness affects only pressure drop and not the convection coefficient
(d) Only Reynolds and Prandtl numbers influence the convection coefficient and not the rough-

ness.
9.5 In pipe flow:

(a) for constant heat flux, the initial length is more effective compared to the end length
(b) for constant wall temperature the initial length are less effective compared to the end lengths
(c) In fully developed flow and constant wall temperature, the effectiveness increases with length
(d) In fully developed flow and constant heat flux, the effectiveness decreases with length.

9.6 (a) In smooth pipes a laminar flow remains laminar all through the length
(b) In smooth pipes a laminar flow turns turbulent after a certain length
(c) The temperature profile in fully developed layer remains the same
(d) The velocity profile in a pipe flow is established at the entry.
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Answers
1. (a) 2. (b) 3. (c) 4. (a) 5. (a) 6. (a).

EXERCISE PROBLEMS

9.1 Show that (1.2 log Re – 1.64)–2 = 4 (1.58 ln Re – 3.28)–2

9.2 Show that

2/f  = 2.46 ln (Re . f /2  + 0.292) and 1 4/ f  = 2 log [Re 4 f ] – 0.8.
9.3 For air flow at constant wall temperature of 100°C and bulk mean temperature of 40°C through

a 4 cm ID pipe, determine the value of average convection coefficients for a length of 1 m if the
entrance velocity is (i) 0.6 m/s, (ii) 0.8 m/s, (iii) 10 m/s.

9.4 For air flow at a constant wall temperature of 100°C and average bulk temperature of 40°C
through a 4 cm ID pipe, determine the value of average convection coefficient for an inlet velocity
of 0.8 m/s if the pipe length is  (i) 1 m, (ii) 3 m, (iii) 10 m.

9.5 Air is to be heated at a rate of 5 kg/hr through a 40 mm ID pipe from 20°C to 60°C, the pipe wall
being maintained at 100°C by condensing steam. Determine the length required.

9.6 5m length of 50 mm dia pipe has its wall maintained at 100°C. Air at 20°C enters the pipe. If the
exit temperature of air is to be 60°C, determine the air flow rate.

9.7 Air at 20°C is to be heated to 40°C using constant heat flux over a pipe of 40 mm ID at a flow rate
of 5 kg/hr. Determine the pipe length required and also the average pipe wall temperature. The
heat flux is 500 W/m2.

9.8 100 kg of water per hour is to be heated by flow through a 2.5 cm ID pipe from 20°C to 60°C. The
pipe wall is at 100°C. Determine the length of pipe required. Also determine the mean tempera-
ture at half this length.

9.9 Water is to be heated from 20°C at a rate of 500 kg/hr by flow through a pipe of 25 mm ID with
a wall temperature of 100°C. Determine the length required. Also determine the temperature at
half this length.

9.10 Water flows at a rate of 500 kg/hr through a pipe uniformly heated. It is heated from 20°C to
60°C through a length of 5.6 m. The pipe diameter is 25 mm. Determine the average pipe tem-
perature.

9.11 Water flows at a rate of 500 kg/hr through a 40 mm dia pipe with uniform wall heat flux and is
heated from 20°C to 40°C over a length of 8 m. Determine the wall temperature at the exit.

9.12 Engine oil is cooled from 120°C by flow through a tube of 5 mm ID, with uniform wall tempera-
ture of 40°C at a rate of 0.08 kg/s. Estimate the temperature of the oil at the outlet for lengths of
1 m, 5 m and 10 m.

9.13 Furnace oil is to be heated from 30°C to 70°C for proper atomisation. Steam is used at 110°C for
the heating. If the flow rate through a 15 mm ID pipe is 40 kg/hr, determine the length of pipe
required. (use the property values of engine oil for the estimate).

9.14 Liquid ammonia flows in a duct of diameter 2 cm. The average bulk temperature is 20°C. The
duct wall is at 50°C. If fully developed laminar flow prevails, determine the heat transfer per m
length.

9.15 Liquid refrigerant R12 (CCl2 F2) flows through a 4 mm dia tube at 30°C, the Reynolds number
being 1000. Calculate the length necessary to cool the fluid to 20°C. The wall temperature is
10°C.

9.16 Air at 14 atm pressure flows through a 75 mm ID pipe at a rate of 0.55 kg/s, the duct wall being
at 20°C. The average air temperature at inlet is 60°C. The duct is 6 m long. Estimate the tem-
perature of air as it leaves, the duct.
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9.17 Air at 0.9 atm and 30°C flows through a 10 mm dia pipe at a rate of 4.2 × 10–4 kg/s. Constant heat
flux is maintained over the wall surface. The tube wall temperature is 50°C above the average
fluid temperature. For a tube length 0.5 m, determine the outlet temperature of the air.

9.18 Water at 10°C flows with an average velocity of 1 m/s through a pipe of 20 mm dia and 1 m
length, with uniform wall heat flux of 100 kW/m2. Determine the average wall temperature.

9.19 Water is heated in a triangular tube of 2 cm side from 10°C to 50°C. The tube wall is at 80°C. The
flow velocity is 1.1 m/s. Determine the length required.

9.20 A square duct of 25 cm side carries cool air at 10°C over length 20 m. The average velocity at
entrance is 1.5 m/s. The duct wall is at 25°C. Determine the outlet temperature of the air.

9.21 A rectangular duct of 15 cm × 30 cm section carries cool air at 10°C over a length of 20 m. The
average velocity at entrance is 1.5 m/s. The duct wall is at 25°C. Determine the outlet tempera-
ture of the air.

9.22 Water flows through the annular area formed between a 2 cm and a 4 cm circular pipes (coaxial)
at a velocity of 2 m/s. The outside surface is insulated. The inside surface is at 80°C. Water
enters at 20°C. Determine the outlet temperature of the water if the length is 4 m.

9.23 Oil at 160°C is to be cooled to 80°C by flow in an annulus formed between 15 mm and 30 mm
tubes. The flow velocity is 0.8 m/s. The inside tube wall is maintained at 30°C by larger quantity
of water flow. Determine the length required.

9.24 In a heat exchanger 4 cm dia pipes of 3 m length are used to heat air with a flow rate of 0.02 kg/s.
The air inlet is at 30°C. The tube wall temperature is 200°C. Determine the outlet temperature
of the air. A proposal is made to use 2 cm dia pipes with mass flow per unit sectional area
remaining the same. Determine the exit temperature of air in this case.

9.25 Water flows through a pipe with a Reynolds number of 2000. Compare the values of convection
coefficients for (i) both boundary layers developing together and (ii) hydrodynamic layer fully
developed and thermal layer developing.

9.26 Water flows in a rough pipe with a relative roughness 0.004. The pipe diameter is 5 cm and the
length is 3 m. Water at 20°C enters at a flow velocity of 1.2 m/s. Determine the outlet tempera-
ture. Also determine the pressure drop over this length.

9.27 Water flows in a pipe of 5 cm dia and 3 m length with an inlet velocity of 1 m/s. The pressure drop
was observed as 8000 N/m2. The water enters at 60°C. The tube wall is at 15°C. Determine  the
water outlet temperature.

9.28 An air conditioning duct has a section of 45 cm × 90 cm and the average velocity of air is 7 m/s
and the air entry is at 10°C. The wall is at 20°C. Determine the heat gain over a length of 1 m.

9.29 A tubular heat exchanger has a total mass flow of 10,000 kg/hr. The maximum velocity is to be
limited to 1 m/s. The water is heated from 30°C to 35°C with a tube wall temperature of 45°C.
Keeping the length of the tube as the influencing parameter compare 37.5 mm and 50 mm ID
tubes.
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NATURAL CONVECTION

10.0    INTRODUCTION

In the previous  chapters, we discussed heat transfer under forced  flow conditions. Though it is

desirable to use forced convection as higher rates of heat transfer coefficient may be obtained by

this method, leading to compact equipments, it is not possible and sometimes not desirable to use

forced convection in the design of several equipments. In these situations, free or natural convection

has to be adopted in designs. Medium size electrical transformers erected in open space cannot

use forced convection. So also steam radiators used for comfort heating.

When a surface is maintained in still fluid at a temperature higher or lower than that of

the fluid, a layer of fluid adjacent to the surface gets heated up or cooled. A density difference is

created between this layer and the still fluid surrounding it. The density difference introduces a

buoyant force causing flow of the fluid near the surface. Heat transfer under such conditions is

known as natural or free convection. Usually a thin layer of flowing fluid forms over the surface.

The fluid beyond this layer is essentially still, and is at a constant temperature of T
∞
.

The flow velocities encountered in free convection is lower compared to flow velocities in

forced convection. Consequently the value of convection coefficient is lower, generally by one order

of magnitude. Hence for a given rate of heat transfer larger area will be required. As there is no

need for additional devices to force the fluid, this mode is used for heat transfer in simple devices

as well as for devices which have to be left unattended for long periods.

The heat transfer rate is calculated using the general convection equation given below:

Q = h A(T
w
 – T

∞
) ...(10.1)

Q—heat transfer in W, h—convection coefficient – W/m2K.

A—area in m2, T
w
—surface temperature

T
∞
—fluid temperature at distances well removed from the surface (here the stagnant fluid

temperature).

The basic nature of flow and various correlations available for the calculation of convection

coefficient for different flow situations and geometries are discussed in this chapter.

Boundary layer theory is used for the analysis of natural  convection also. The example

10.1 brings out the difference in area requirements between natural and forced convection conditions.

Example 10.1: A transformer of 50 kW capacity dissipates by natural convection 1.20 kW of heat

generated inside it. If the value of convective heat transfer coefficient is 5 W/m2K, and if the

temperature of the unit should not exceed 30°C above the ambient level, determine the area

required. In case of forced convection h = 50 W/m2K. Determine the area under this condition.

Solution: Equation 10.1 is suitable for the calculation

Q = h A (T
w
 – T

∞
)

or  A = Q/h (T
w
 – T

∞
)

10

C
h

a
p

te
r 

1
0
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Substituting  Q = 1200 W, h = 5 W/m2K, (Tw – T∞) = 30°C
the area is obtained as 8 m2. This is a fairly large area and hence the equipment has to be
bulky. Under forced convection, the area required will be 0.8 m2.

The methods of analysis of the boundary layer and the basic physical laws applied in the
analysis are the same as in forced convection. The exception is that buoyant forces are to be
taken into account in the formulation of momentum equation. The boundary conditions are
also different. The velocity is zero both at the surface and also at the edge of boundary layer,
the bulk fluid remaining still.

Analytical methods using exact differential equations as well as approximate integral
methods can be used to study simple cases. However these methods are useful mainly in the
validation of experimental results. The dimensional analysis method is useful in identifying
dimensionless groups that can be used in interpreting the experimental results. Some of the
derivations are given under solved problems.

For design situations, correlations obtained from experimental results using the identified
dimensionless numbers are used more often. These correlations are constantly reviewed and
improved by researchers.

10.1 BASIC NATURE OF FLOW UNDER NATURAL CONVECTION CONDITIONS

The layer of fluid near the surface gets heated or cooled depending on the temperature of the
solid surface. A density difference is created between the fluid near the surface and the stagnant
fluid. This causes as in a chimney a flow over the surface.

Similar to forced convection a thin boundary layer is thus formed over the surface.
Inertial, viscous and buoyant forces are predominant in this layer. Temperature and velocity
gradients exist only in this layer. The velocity and temperature distributions in the boundary
layer near a hot vertical surface are shown in Fig. 10.1.

δx

TW

Boundary
layer

Stagnant fluid at T
T > T

∝

∝w

A A

x x

y

Tw

T∝

T

T, u

u

δ

y

Fig. 10.1. Velocity and temperature distributions in the boundary layer.

The velocity is zero at the surface and also at the edge of the boundary layer. As in the
case of forced convection the temperature gradient at the surface is used in the determination
of heat flow (heat is transferred at the surface by conduction mode).



VED

c-4\n-demo\damo10-1

436 FUNDAMENTALS OF HEAT AND MASS TRANSFER

h = – k 
∂

∂
δ

T T
T T

y
w

y

−
−

F
HG

I
KJ

F
HG
I
KJ

∞

∞

= 0

.

The temperature gradient at the surface can be evaluated using either the solution of
differential equations or by assumed velocity and temperature profiles in the case of integral
method of analysis. This leads to the identification of Nusselt number and Prand the number
as in the case of forced convection. These numbers have the same physical significance as in
forced convection.

The buoyant forces play an important role in this case, in addition to the viscous and
inertia forces encountered in forced convection. This leads to the identification of a new
dimensionless group called Grashof number.

Grashof number is defined by equation 10.2

 Gr = g T T Lwβ
ν

( − ∞ ) . 3

2 ...(10.2)

where β is the coefficient of cubical expansion having a dimension of 1/Temperature. For gases
β = 1/T where T is in K. For liquids β can be calculated if variation of density with temperature
at constant pressure is known. The other symbols carry the usual meaning.

The physical significance of this number is given by,

 Gr = Inertia force
Viscous force

Buoyant force
Viscous force

• ...(10.3)

The flow turns turbulent for value of Gr Pr > 109. As in forced convection the microspic
nature of flow and convection correlations are distinctly different in the laminar and turbulent
regions. The example 10.2 illustrates the statement of equation 10.3.
Example 10.2: Check the dimensions for Grashof number and rearrange it to express it as
ratio of forces as noted in equation 10.3.

 Gr = g T T Lw
3

2
β

ν
( − ∞ ) .  → m

s
. 1

K
. Ks

m2

2

4  . m3 = 1

Solution: So the group is dimensionless

Viscous force  τ = µ 
du
dy  → µ  . 

u
y

Inertia force is proportional to ρv2 or ρ u2

Buoyant forces are proportional to dρ . dH . g

the group g T T Lwβ
ν

( − ∞ ) . 3

2  is rearranged as, ν = µ/ρ

= gβ 
ρ
µ
u2

2  . (Tw – T∞) 
ρ

u2  . L3

= 
ρ
µ µ

βρu
u L u L

g T T Lw

2 1
/ ( /

. (
F
HG
I
KJ −
F
HG

I
KJ∞)

) .  = Inertia force
Viscous force

buoyant force
Viscous force

L
NM

O
QP
L
NM

O
QP
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as ρ β (Tw – T∞) = dρ L = dH
so the expression g βρ (Tw – T∞) L represents buoyant force.
Example 10.3: A vertical plate is maintained at 40°C in 20°C still air. Determine the height at
which the boundary layer will turn turbulent if turbulence sets in at Gr Pr = 109. Repeat the
problem for water flow at film temperature of 30°C. This illustrates the difference between
gases and liquids.
Solution: The property values of air should be evaluated at
Tf , (40 + 20)/2 = 30°C

The property values are read from tables,
ν = 16 × 10–6 m2/s ρ = 1.165 kg/m3, Pr = 0.701

β = 
1

273 30
1

303+
=

The flow becomes turbulent when Gr. Pr = 109

∴ 109 = 9.81 × 
1

303
40 20
16 10

3

6 2× −
× −

( )
( )

x
 × 0.701

solving x = 0.8262 m. The flow turns turbulent at this height
For water the property value at 30°C are

ν = 0.8315 × 10–6 m2/s, Pr = 5.68, β = 0.31 × 10–3/K
Turbulence sets in when Gr Pr = 109

109 = 9.81 × 0.31 × 10–3 × 
( )

( . )
40 20

0 8315 10

3

6 2
−

× −
x

 . x3 . 5.68

solving x = 0.126 m, as against 0.8262 m.
in water turbulence sets in at a much shorter distance.
due to higher inertia which over comes viscous forces quickly.

10.2 METHODS OF ANALYSIS

Derivation of continuity and momentum equations. Consider the element in the boundary
layer of size dx dy 1 as shown in Fig. 10.2.

x

y

Tw

v

u
�g

� dx
dy

1

( – )g� �

� �� �+ ( / y)dy

T
T > T



w 

Fig. 10.2. Forces on an element in the boundary layer.

Boundary
layer

20°C
still air

40°C

Hot
plate

Fig. E.10.3
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The continuity equation is found identical to that in forced convection
∂
∂

∂
∂

u
x

v
y

+  = 0 ...(10.4)

In the momentum equation, an additional force term is involved namely the buoyant
force term given by g β (T – T∞).

The resulting momentum equation is

u ∂
∂

∂
∂

u
x

v u
y

+  = ν ∂
∂

2

2
u

y
 + g β (T – T∞) ...(10.5)

where β is the coefficient of cubical expansion (equal to 1/T for gases–T in absolute units).
These two equations are to be solved to obtain the velocity distribution and hydrodynamic

boundary layer thickness, the boundary conditions being
u = 0 at y = 0 and u = 0 at y = δ (boundary layer thickness)

The energy equation is the same as that in forced convections, with no additional
terms involved.

u ∂
∂

∂
∂

T
x

v T
y

+  = α ∂
∂

2

2
T

y
...(10.6)

The boundary conditions are T = Tw at y = 0 and T = T∞ at y = δ
An idea about the dimensionless numbers correlating the phenomenon can be obtained

by non-dimensionalising these equations. In the Natural convection no quantity like free stream
velocity u∞  is encountered. So a reference velocity term ux is introduced. The following definitions
are used for nondimensionalising these equations (also refer Chapter 7).

x* = x/L, y* = y/L, u* = u/ux, v* = v/ux

and  T* = 
T T
T Tw

−
−

∞

∞
...(10.7)

The momentum equation reduces to

u* ∂
∂
u
x

*
*

 + v* ∂
∂
v
y

*
*  = 

g T T L
u

w

x

β ( )− ∞
2  T* + 

1 2

2Re
u

y
. *

*
∂

∂
...(10.8)

The energy equation reduces to

u* ∂
∂
T
x

*
*  + v* 

∂
∂
T
y

*
*  = 1 2

2Re Pr
T

y
.

*
∂
∂

* ...(10.9)

Where Re = Reynolds number = uxL/ν
Three dimensionless parameters identified in the process are Re, Pr and

g T T L
u

w

x

β ( − ∞ )
2

As ux cannot be determined it is found convenient to eliminate the quantity by multiplying
this term with Re2

g T T L
u

w

x

β ( )− ∞
2  . u Lx

2 2

2ν
 = g T T Lwβ

ν
( − ∞ ) 3

2 ...(10.10)
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This group can be recognised as Grashof number already defined.
The heat conducted at the fluid surface is equal to the heat convected to the fluid. This

principle leads to the formulation of Nusselt number.

 – k . ∂
∂
T
y y = 0

 = h(Tw – T∞)

∂
∂
T
y

 is solved for by using the energy equation involving u and T. The solution for u is obtained

from the momentum and continuity equations. This analysis determines that the heat transfer
correlations for natural convection of the form

Nu = f (Gr. Pr) ...(10.11)
The dimensional analysis method also confirms this conclusion (see solved problem 7.17).

10.3 INTEGRAL METHOD

Continuity, momentum and energy equations can be also obtained
in the integral form considering volume ABCD as shown in Fig.
10.3 the volume extending beyond the boundary layer (see also
chapter 7 on forced convection section 7.8 and solved problem 7.22)

The momentum integral can be written as

d
dx

u dy
0

2δzLNM O
QP  = – ν 

∂
∂
u
y y = 0

, + g β 
0

δz − ∞( )T T dy

The energy integral can be written as

d
dx

u T T dy
0

δz −L
NM

O
QP∞( )  = – α 

∂
∂
T
y y = 0

.

The integration limits can be restricted to δ as no
contribution to energy or momentum flow bryond y = δ exists. The
integral formulations are similar to those in forced convection. The integral equations can be
solved only if relations like u = u(y) and T = T(y) are available. A set of suitable distributions
satisfying the boundary conditions are :

u
ux

 = y y
δ δ

1
2

−FHG
I
KJ ...(10.12 (a))

and   
T T
T Tw

−
−

∞

∞
 = 1

2
−FHG
I
KJ

y
δ

...(10.12 (b))

The boundary conditions u = 0 at y = 0 and y = δ, T = Tw at y = 0 and T = T∞ at y = δ are
satisfied by these equations.

From such analysis the local boundary layer thickness in laminar flow is obtained as

 δx = 3 93 0 952 0.25

0.25 0.5
. ( . )x Pr

Gr Prx

+ ...(10.13)

δx dx

B

CD

A

Tw

T∝

x

y

Fig. 10.3. Elemental volume
for integral analysis.
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    – kA dT
dy y = 0

 = hA (Tw – T∞)

From (10.2 (b)), dT
dy y = 0

 = – 
2
δ

 (Tw – T∞)

∴
h
k  = 

2
δ

or Nux = 
hx
k

x= 2
δ

Substituting in (10.13), we get (10.14).

and  Nux = 
0 508

0 952

0.5 0.25

0.25
.
( . )

Pr Gr
Pr

x

+
...(10.14)

The average value upto L works out as
 Nu  = (4/3) NuL ...(10.15)

(x3/4 is involved in the integration )
Note that this is different from the correlation in forced convection over flat plate, where

Nu  = 2 NuL. (x1/2 is involved in the integration)
The same method applied to turbulent flow with the velocity and temperature variations

as below leads to the boundary layer thickness for turbulent region as in equation (10.17).
The velocity distribution and temperature distribution in the turbulent region

is assumed as
u
ux

 = 1.862 y
δ
F
HG
I
KJ

1/7
 1

4
−FHG
I
KJ

y
δ

...(10.16 (a))

and  
T T
T Tw

−
−

∞

∞
 = 1

1/7
−FHG
I
KJ

y
δ

...(10.16 (b))

This leads to    δturbulent
 = 0.565 (1 0.494 )2/3

0.1 8/15
x Pr
Gr Pr

+ ...(10.17)

Equation (10.14) and (10.17) form the basis for correlations of experimental
results in free convection. For design purposes correlations have been formulated using
experimental results and these will be discussed in the next sections.
Example 10.4: Illustrates the values of heat transfer coefficient in the laminar region for a gas
and a liquid. Note the large difference. For the flows in example 10.3 determine the value of
boundary layer thickness and average convection coefficient at the location where flow turns
turbulent.
Solution: Air: The property values required are: k = 0.02675 W/mK, Pr = 0.701

  δx = 3.93 x[0.952 + Pr]0.25/Gr0.25 Pr0.5, Gr Pr = 109 ...(10.17(a))
∴ Gr = 109/Pr = 109/0.701 = 1.4265 × 109

x = 0.8262 m (example 10.3)
Substituting is (a)
∴ δδδδδx = 0.0226 m or 22.6 mm

 Nux = 0.508
( 0.952)

0.5 0.25

0.25
Pr Gr

Pr +
 = 72.9
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 hx = Nu k
x
x ×  = 72 9 0 02675

0 8262
. .

.
×  = 2.36 W/m2 K

 h  = 4
3  hL= 3.15 W/m2 K

Water: Gr = 109/Pr = 109/5.68, k = 0.6129 W/mK, Pr = 5.68
Gr = 1.76 × 108

x = 0.126 m (example 10.3)

δδδδδx = 3 93 0 126 952 5 68
176 10 5 68

0.25

8 0.25 0.5
. . [0. . ]

( . ) ( . )
x +

×
 = 2.89 × 10–3 m = 2.89 mm

Nux = 0 508 5 68 176 10
0 952 5 68

0.5 8 0.25

0.25
. . [ . ]

( . . )
× ×

+
 =  86.9

 hx = 86 9 0 6129
0 126

. .
.
×  = 422.7 W/m2 K,

 h  = 4
3  hL = 563.6 W/m2 K.

Example 10.5: Illustrates the variation of boundary layer thickness as well as the variation of
local and average heat transfer coefficients. A vertical plate maintained at 40°C is placed in
still air at 20°C. The plate is 0.80 m high and 1 m wide. Tabulate the values of δx and hx at 0.2
m intervals. Also determine the heat input required to maintain the plate at 40°C.
Solution: The property values are to be evaluated at 30°C.

 ρ = 1.165, ν = 16 × 10–6 m2/s. Pr = 0.701, k = 0.02675 W/mK, β = 1/303,

 Grx = g T T xwβ
ν

( − ∞ ) 3

2  = 9 81
303

20
16 10 6 2

.
( )

×
× −  . x3 = 2.53 × 109 . x3

δx 
3 93 952 0.25

0.25 0.5
. [0. ]x Pr

Gr Prx

+  = 5.32 x/Grx
0.25

Nux = 
0 508 0.5 0.25

0.25
. .

]
Pr Gr

Pr
x

[0.952 +  = 0.3751 . Grx
0.25

 hx = 0.3751 Gr
x
x
0.25

 × 0.02675 = 0.010034 . Grx
0.25/x

hL  = 4
3  hL

The values calculated are given below:

Distance, m Gr δx (mm) Nux hx h  W/m2 K
0.2 2.024 × 107 15.871 25.16 3.365 4.49
0.4 1.619 × 108 18.874 42.31 2.83 3.77
0.6 5.463 × 108 20.887 57.35 2.56 3.41
0.8 1.295 × 109 22.445 71.16 2.38 3.17
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The heat input required for maintaining the plate at 40°C on one side is
Q = hA ∆T = 3.17 × 0.8 × 1 × (40 – 20) W = 50.72 W

on both sides Q = 101.44 W.

10.4 CORRELATIONS FROM EXPERIMENTAL RESULTS

In Natural convection also most of the correlations used in design have been formulated from
experimental results. The parameters used are the three dimensionless numbers, Nu, Pr and
Gr. A plot of Nu against (Gr Pr) on log-log scale results in curves as shown in Fig. 10.4. This
curve has been divided into a number of straight lines in some cases and just two straight lines
in some cases.

1000

100

10

1
0.1 10 1000 10

5
10

7
10

9
10

11
10

13

Gr PrL

NuL

Fig. 10.4. Free convection experimental results.

For the average Nusselt number a correlation of the form given in 10.18 below is found
suitable

Nu = C (Gr Pr)n ...(10.18)
The values of C and n for different configurations and selected ranges of parameters is

given in table 10.1. These are for constant wall temperature conditions. The property values
are evaluated at the film temperature of

Tf = (Tw + T∞)/2
The product Gr Pr is known as Rayleigh number (Ra)
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Table 10.1. Values of C and n in the equation
Nu = C (Gr Pr) in natural convection

Geometry year of Application C n
publication range of values

of Gr Pr

Vertical planes
and cylinders
with D > 35 GrL

0.25 1954 104—109 0.59 0.25
Characteristic 1951 109—1013 0.021 0.4
dimension—L
Preferred eqn. 1968 109—1013 0.1 0.333
Horizontal cylinder

1954 104—109 0.53 0.25
1954 109—1012 0.13 0.33

Alternate 1975 102—104 0.85 0.188
Characteristic 1975 104—107 0.480 0.25
dimension–D– 1975 107—1012 0.125 0.33

Vertical cylinder
D = H 1983 104—106 0.775 0.21

Horizontal plate
-different shapes
(characteristic dimension,
L = a for square,
L = (a + b)/2
for rectangle,
0.9 D for cylinder
and L = Area/perimeter
for other shapes)
upper surface hot 1972 2 × 104—8 × 106 0.54 0.25
or lower surface
cooled 1972 8 × 106—1011 0.15 0.33
Lower surface
heated 1972 105—1011 0.27 0.25

Irregular solids
characteristic
length = distance
fluid particle
travels in the boundary layer 1973 104—109 0.52 0.25

Majority of practical cases can be solved using the listed correlations.
However it may be noted that it does not cover all situations.
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Examples 10.6 to 10.12 lllustrate the application of the above correlations. Note the difference
in values of heat transfer coefficient for the same situation, using different correlations applicable
in the same range of Gr Pr.

Example 10.6: A vertical plate 0.80 m high and 1 m wide is maintained at 35°C in still air at
25°C. Determine the value of average convection coefficient using correlation given in table 10.1
and compare with the answer of example 10.5.
Solution: The property values are evaluated at (25 + 35)/2 = 30°C with usual units

ρ = 1.165 v = 16 × 10–6 Pr = 0.701 k = 0.02675, β = 1/303

Gr = 9.81 × 
1

303
35 25 8
16 10

3

6 2. ( )0.
( )

−
× −  = 0.6475 × 109

From Table 10.1,  C = 0.59, n = 0.25
∴ Nu = 0.59 (Gr Pr)0.25 = 86.12
∴ h = 2.88 W/m2 K (about 3.2, in example 10.5).

Example 10.7:  A Vertical plate 4 m high and 1 m wide is maintained at 60°C in still air at
0°C. Determine the value of convection coefficient.
Solution: The average value of temperature = (0 + 60)/2 = 30°C. Property values from 10.6 can
be used.

 Gr = 9.81 × 1
303

60 0 4
16 10

3

6 2. ( )
( )

− ×
× −  = 4.86 × 1011

From table 10.1  C = 0.021, n = 0.4
Nu = 0.021 (Gr Pr)0.4 = 861, h = 5.76 W/m2 K

The alternate set of values are
 C = 0.1, n = 0.333

using these values,  Nu = 698.25 h = 4.67 W/m2 K
There is a variation of 20–25%. The literature indicates the later correlation is more

desirable. So the value of h = 4.67 W/m2 K is more suitable.
Later we shall see some more correlations also for this range.

Example 10.8:  Check above what diameters these correlations used in examples 10.6 and 10.7
can be used for vertical cylinders.

Solution: The condition is   D ≥ 
35

Gr0.25

For example (10.6),  Gr = 0.6475 × 109

∴  D ≥ 0.22 m
For example (10.7)   Gr = 4.86 × 1011

∴  D ≥ 0.042 m
For large values of Gr, even small dia cylinders can be considered as vertical

plate.
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Example 10.9: A plate heater with graded heat flux so that the plate temperature remains
constant is used to heat water in a large tank. The plate is 0.6 m × 0.30 m with the longer side
vertical. The plate temperature is 60°C while the water temperature is 20°C. Determine the
value of convection coefficient.
Solution: The film temperature is (60 + 20)/2 = 40°C

Property values are with usual units
ρ = 995, ν = 0.657 × 10–6 m2/s, Pr = 4.34, k = 0.628, β = 0.41 × 10–3

Gr = 9 81 0 41 10 60 20 0 6
0 657 10

3 3

6 2
. . ( ) .

( . )
× × − ×

×

−

−  = 8.05 × 1010

so the flow is turbulent.
Two correlations are possible and values of h are (Table 10.1)

Nu = 0.021 (Gr Pr)0.4 = 870.06, h = 910.66 W/m2 K
or Nu = 0.1 (Gr Pr)0.333 = 704.33,  h = 737.2 W/m2 K

Between the two there is a difference of 20–25% in this case also. Some later correlations
are available for this situation, and the same will be discussed subsequently.

Example 10.10: Water is heated in a tank using horizontal pipes of diameter 50 mm with a
wall temperature of 60°C maintained by steam condensing on the inside of the tubes. The water
in the tank is at 20°C. Calculate the value of convection coefficient if the water is stagnant.
Solution: This is a case of free convection over a horizontal pipe.

The film temperature is (60 + 20)/2 = 40°C
The property values are as in example 10.9

Gr = 9.81 × 0.41 × 10–3 (60 – 20) × 0.053/(0.657 × 10–6)2 = 4.66 × 107

Two correlations are possible (Table 10.1)
  Nu = 0.53 (Gr. Pr)0.25 = 0.53 (4.66 × 107 × 4.34)0.25

∴  Nu = 63.2, h = 793.8 W/m2 K
 Nu = 0.125 (Gr Pr)0.33 = 0.125 (4.66 × 107 × 4.34)0.33

∴  Nu = 68.83, h = 864.6 W/m2 K
A difference of 9% is observed, between the two correlations.

Example 10.11: A horizontal plate 1 m × 0.8 m is kept in a water tank with the top surface at
60°C providing heat to warm stagnant water at 20°C. Determine the value of convection
coefficient. Repeat the problem for heating on bottom surface.
Solution: This is a case of natural convection.

The film temperature is (60 + 20)/2 = 40°C
The property values are taken as in example 10.9
In this case L = Area/perimeter = 1 × 0.8/2(1 + 0.8) = 0.222
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Upper surface heated : (Table 10.1 is used to find n and C)
Gr = 9.81 × 0.41 × 10–3 (60 – 20) × 0.2223/(0.657 × 10–6)2

= 4.09 × 109, n = 0.33, C = 0.15
 Nu = 0.15 (Gr Pr)0.33 = 361.7 ∴ h = 1022.1 W/m2 K

Lower surface heated: n = 0.25, C = 0.27
 Nu = 0.27 (Gr Pr)0.25 = 98.55, ∴ h = 278.5 W/m2 K

As the flow is obstructed when the bottom surface is heated, the value of convection
coefficient is lower.

10.5 A MORE RECENT SET OF CORRELATIONS

Churchill and Chu (1975) for vertical plate and vertical cylinders in natural convection have
given the equations (10.19) and (10.20) below.

 Nu = 0.68 + 0.67 ( )
[1 (0.492/ ) ]

0.25

9/16 4/9
Gr Pr

Pr+
...(10.19)

This is valid for Gr Pr < 109

A correlation for larger range of Gr Pr (from 10–1 to 1012) is

Nu = 0 825
2

. +
+

L
NM

O
QP

0.387 ( )
[1 (0.492/ ) ]

1/6

9/16 8/27
Gr Pr

Pr
...(10.20)

These are for constant wall temperature. Equations (10.19) and (10.20) are valid
for constant flux also. In this case the value 0.492 is to be replaced by 0.437.

Example 10.12: Repeat example 10.6, 10.7 and 10.9 using the recent correlations given by
(10.19) and (10.20).
Solution: For Example 10.6:

 Gr = 0.6475 × 109, Pr = 0.701. k = 0.02675 W/mk, L = 0.8 m
Eqn (10.19) is applicable:

Nu = 0.68 + 
0 67 6475 10 0 701

1 0 492 0 701

9 0.25

9 16 4 9
. [0. . ]

[ ( . / . ) ]/ /
× ×

+
 = 75.63

∴  h = 2.53 W/m2 K (compared to 2.88)
For Example 10.8:  Gr = 4.86 × 1011, Pr = 0.701, k = 0.02675 W/mk, L = 4 m
Equation (10.20) is applicable:

Nu0.5 = 0 825 0 387 4 86 10 0 701
1 0 492 0 701

11 1/6

9 16 8 27. . ( . . )
[ ( . / . ) ]/ /+

× ×
+

L
NM

O
QP  = 27.91

∴ Nu = 779.05, ∴ h = 5.21 W/m2K (compared to 5.76)
for example 10.9 (b)   Gr = 8.05 × 1010, Pr = 4.34, k = 0.628 W/mk, L = 0.6 m



VED

c-4\n-demo\damo10-1

C
ha

pt
er

 1
0

NATURAL CONVECTION 447

Equation (10.20) is applicable

Nu1/2 = 0 825 0 387
1 0 492

1/6

9 16 8 27. . Pr)
[ ( . /Pr) ]/ /+

+

L
NM

O
QP

(Gr  = 30.92

Nu = 955.81 ∴ h = 1000.4 W/m2 K (compared to 910.66)

10.6 CONSTANT HEAT FLUX CONDITION—VERTICAL SURFACES

Here the value of wall temperature is not known. So ∆T is unspecified for the calculation of
Grashof number. Though a trial solution can be attempted, it is found easier to eliminate ∆T
by q which is known in most cases. This is done by multiplying Grashof number by Nusselt
number and equating q = h∆T.

This product is known as modified Grashof number, Gr*

  Grx
*  = Grx Nux = g t x hx

k
g q x

k
β

ν
β

ν
∆ 3

2

4

2. = ...(10.21)

The correlation for laminar range is given by

 Nux = 0.60 [Grx
*  Pr]0.2 ...(10.22)

105 < Gr* < 1011

The correlation for the turbulent region above Gr* > 1011 is

 Nux = 0.17 (Grx
*  Pr)0.25 ...(10.23)

The average value for the laminar region is obtained by integration as

  h = 5
4  hL = 1.25 hL ...(10.24)

x4/5  is involved in the integration
For the turbulent region, it can be proved that hx is
∴ h = 1.136 × hL ...(10.25)

Example 10.13: A flat electrical heater of 0.4 m × 0.4 m size is placed vertically in still air at
20°C. The heat generated is 1200 W/m2. Determine the value of convective heat transfer coefficient
and the average plate temperature.
Solution: The film temperature is not known. Assuming an average value of h = 5 W/m2K,

∆T = 1200/5 = 240°C
∴  Tf = (240 + 20)/2 = 130°C. From tables, the property values are read as

 ρ = 0.876, ν = 26.625 × 10–6 m2/s, Pr = 0.685, k = 34.135 × 10–3 W/mK
 c = 1011 J/kgK

  Gr* = g q x
k
β

ν

4

2  = 9.81 × 
1

273 130
1200 0 4

34 135 10 26 625 10

4

3 6 2+
× ×

× ×− −
.

. ( . )
= 3.09 × 1010

This is in the laminar range. (for G*)
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∴ Nux = 0.60 [Gr*x Pr]0.2 = 69.71, ∴ hx = 5.95 W/m2 K

 h  = 5
4  h = 7.44 W/m2 K, ∴ T = 20 + 1200/7.44 = 181.3°C.

∴   Tf = (181.3 + 20)/2 = 100°C. Another trial with properties at 100°C should be
made.

Taking average temp. 100°C and plate temp. of 180°C.

Grx
*  = g q x

k
β

ν

4

2  = 9.81 × 
1

273 100+  × 1200 × 
0 4

23 13 10

4

6
.

( . )× −  × 
1

32 1 10 3. × −

 = 4.7 × 1010, using eqn. (10.22), Nu = 75.9, h = 7.62 W/m2 K
plate temp. = 177.6°C. Hence acceptable
If eqn (10.19) was used with 0.492 replaced by 0.437

Gr = 0.503 × 109

 Nu = 0.68 + 0 67
1 0 437

0.25

9 16 4 9
. ( )

[ ( . / ) ]/ /
Gr Pr

Pr+
 = 71.6

∴  h = 716 32 1 10
0 4

3. .
.

× × −
 = 5.74 W/m2 K

∆∆∆∆∆T = 208, Tw = 228, Tf = 128°C.
Example 10.14: If in the example 10.13, the heat flux has a value of 10,000 W/m2 determine
the value of h and the average plate temperature.
Solution: The film temperature is not specified.

Assuming h = 20 W/m2 K, ∆T = 500°C. So taking property values at 250°C
 ν = 40.61 × 10–6 m2/s, Pr = 0.677, k = 42.68 × 10–3 W/mK, L = 0.4 m.

∴ Gr* = 9.81 × 1
273 250+

 . 104 × 0.44 × 
1

42 68 10
1

40 61 103 6 2. ( . )×
×

×− −

= 6.82 × 1010

∴ laminar (reference to Gr*)
∴ Nux = 0.60 (Gr* Pr)0.2 = 81.48
∴ h = 8.70 W/m2 K
∴ Reworking is necessary as

∆T = 1150°C ∴ Tf ≈ 600°C
  ν = 96.89 × 10–6 m2/s k = 62.22 × 10–3 W/mK, Pr = 0.699

Gr* = 981 × 
1

273 600+  × 104 × 0.44 × 
1 1

62.22 10 (96.89 10 )3 6 2×
×

×− −

= 4.92 × 109

∴ laminar

∴ Nux = 0.60 (Grx
*  Pr)0.2 = 48.48

∴ h = 7.54 W/m2 K, ∆∆∆∆∆T = 1326°C
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The value of h will be lower than 7.54. The plate temperature will be around 1400°C.
The value of heat flux is not suitable for free convection as it leads to an unusually high plate
temperature. In case of water this flux may lead to boiling.
10.6.1. Constant Heat Flux, Horizontal Surfaces: For horizontal surfaces, the correlations
are given in table 10.1 for constant wall temperature conditions. Example 10.11 illustrates the
situation. For constant heat flux conditions the following correlations are available. The property
values except β in these cases is to be evaluated at

 Te = Tw – 0.25 (Tw  – T∞) ...(10.26)
β is evaluated at T∞.
The characteristic length L = Area/perimetre generally. For circle 0.9 D and for Rectangle

(L + W)/2
Tw is to be estimated using the basic relation.

 h  (Tw – T∞) = q ...(10.27)
It may be noted that iteration becomes necessary in solving these problems.
For heated face facting upwards or cooled face facing downwards:

laminar conditions,
 Nu = 0.54 (Gr Pr)1/4, Gr Pr → 105 to 2 × 107  ...(10.28a)

Nu  = 0.14 (Gr Pr)1/3 ...(10.28)
Gr Pr → 2 × 107 to 3 × 1010.

For the turbulent range
 Nu  = 0.16 (Gr Pr)1/3 ...(10.29)

 2 × 108 < Gr Pr < 1011

For heated surface facing downward
 Nu = 0.27 (Gr Pr)1/4

Gr Pr → 3 × 105 to 3 × 1010

 Nu = 0.58 (Gr Pr)0.2

106 < Gr Pr < 1011. ...(10.30)
Example 10.15: A plate heater 0.4 × 0.4 m using electrical elements, has a constant heat flux of
1.2 kW/m2. It is placed in room air at 20°C with the hot side facing up. Determine the value of
h and average plate temperature.
Solution: The property values have to be evaluated at

 Te = Tw – 0.25 (Tw – T∞), T∞ = 20°C, Tw is not specified.
Assuming a value of h = 10 W/m2 K,

Tw – T∞ = 1200/10 = 120°C, ∴ Tw = 140°C
∴  Te = 140 – 0.25 (140 – 20) = 110°C
Properties of air at 110°C are : ρ = 0.922, ν = 24.29 × 10–6, Pr = 0.687, k = 32.74 × 10–3

(Usual units).
L for square = length of side = 0.4 m

Gr = g T Lβ
ν

. ∆ 3

2  = 9.81 × 1
293

120 0 4
24 29 10

3

6 2× ×
× −

.
( . )

 = 4.36 × 108
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∴ The equation applicable is (10.29)

Nu  = 0.16 (Gr Pr)1/3 = 107.38, ∴ h = 8.76 W/m2 K
Now using this value of h, ∆T = 137°C ∴ Tw = 157°C

 Te = 157 – 0.25 (157 – 20) = 122.75°C
Properties at this condition are:

 ρ = 0.8925, ν = 25.74 × 10–6 m2/s, Pr = 0.685, k  = 33.57 × 10–3 W/mK

Gr = 9.81 × 1
273

× ×
× −

137 0 4
25 74 10

3

6 2
.

( . )
 = 0.476 × 109

∴ equation (10.29) is applicable
 Nu = 0.16 (0.476 × 109 × 0.685)1/3 = 110.09

∴ h = 9.24 W/m2 K
using this value, ∆∆∆∆∆T = 130°C ∴ Tw = 150°C

 Te = 150 – 0.25 (150 – 20) = 117.5°C
Taking property values at this temperature (usual units)

 ρ = 0.904, v = 25.16 × 10–6, Pr = 0.687, k = 33.22 × 10–3

Gr = 9.81 × 1
273

× ×
× −

130 0 4
25 16 10

3

6 2
.

( . )
 = 4.72 × 108

∴  Nu = 0.16 (Gr Pr)1/3 = 109.94 ∴ h = 9.13 W/m2 K
Further iteration may not improve the accuracy further.
Average plate temperature difference = 1200/9.13 = 131.4°C
∴ Average plate temperature = 151.4°C.

Example 10.16: A circular disk of 0.2 m diameter with a constant heat generation rate of
1 kW/m2 is kept with its heated surface facing down in air at 20°C. Determine the value of
convection coefficient and the average plate temperature.
Solution: This is a problem of free convection. The property values are to be taken at

 Te = Tw – 0.25 (Tw – T∞).
As Tw is not specified, a suitable value is assumed and then iterative calculations is

made. As the value of convection coefficient will be lower, assuming h = 4 W/m2K,
 ∆T = 250°C i.e. (1000/4), ∴ Tw = 270°C
Te = 270 – 0.25 (270 – 20) = 207.5°C

Taking property values at 200°C (nearer)
 ρ = 0.746, ν = 34.85 × 10–6 m2/s, Pr = 0.68

 k = 39.31 × 10–3 W/mK, L = 0.9 × 0.2 = 0.18 m, β = 1
293

∴   Gr = 9 81 250 0 18
293 34 85 10

3

6 2
. .

( . )
× ×

× × −  = 4.019 × 107

Using equation (10.30), (suitable for this range)
 Nu = 0.58 (Gr Pr)0.2 = 17.81 ∴ h = 3.89 W/m2 K
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This is very near the value. However another trial can be made:
 ∆T = 257°C ∴ Tw = 277°C

Te = 277 – 0.25 (257) = 212.75°C
property values at 212.75°C

 ρ = 0.728, ν = 36.32 × 10–6, Pr = 0.679, k = 40.17 × 10–3 W/m K

Gr = 
9 81
293

257 0 18
36 32 10

3

6 2
. .

( . )
× ×

× −  = 3.804 × 107

∴  Nu = 0.58 (Gr Pr)0.2 = 17.61 ∴ h = 3.93 W/m2 K
∴ ∆∆∆∆∆T = 1000/3.93 = 254.4°C ∴ Tw = 274.4°C
When the heated surface faces downward, the surface temperature is higher.

10.7 FREE CONVECTION FROM INCLINED SURFACES

The previous correlations for vertical plates at constant wall temperature conditions can be
applied simply by multiplying Gr by cos θθθθθ  where θ is the angle the surface makes with the
vertical. (or by sin θ if the angle is from horizontal). This is valid upto an angle of 60° from
vertical. In the case of constant heat flux Gr* is multiplied by cos θθθθθ
in the correlations.

For horizontal surfaces with constant heat flux with heated
surface facing down, the correlation is

 Nu = 0.56 (Gr Pr cos θ)0.25

 θ < 88° and 105 < Gr Pr cos θ < 1011 ...(10.31)
Properties to be evaluated at Te (equation 10.26) and β alone at

T∞.
For heated surface facing upwards, the correlations are more involved. A simple

one is
 Nu = 0.56 [(Gr Pr cos θ]1/4 + 0.14 [(Gr Pr)1/3 – (Grc Pr)1/3] ...(10.32)

where Grc is critical value of Grashof number causing flow separation. This value depends on
the angle and is tabulated below:

angle 15 30 60 75

Grc 5 × 109 2 × 109 108 106

Simplified formulations are available for air. Equation 10.22 can be used with Gr* cos θ
in place of Gr*

In the turbulent region, heated surface facing upwards.
Nux = 0.17 (Grx* Pr)1/4 ...(10.33)
1010 < Gr* Pr < 1015

For heated surface facing downward,
Gr* cos2 θ replaces Grx*. The relation will be nearly the same as in table 10.1
Equation (10.33) approximates to the equation given in table 10.1.

	

Plate

Fig. 10.5
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Example 10.17: Consider a surface 0.8 m high, kept at an angle of 55° from the horizontal at
a constant wall temperature of 40°C in air at 20°C. Determine the value of convection coefficient
and compare the same with that of similar vertical plate.
Solution: The film temperature is (40 + 20)/2 = 30°C, θ = 35° (vertical)

The property values are :
 ρ = 1.165, ν = 16 × 10–6 m2/s, Pr = 0.701, k = 26.75 × 10–3 W/m K

For vertical plate:

 Gr = 9 81 20 0 8
303 16 10

3

6 2
. .

( )
× ×

× × −  = 1.295 × 109

Equation applicable is

 Nu = 0 825 0 387
1 0 492

1/6

9 16 8 27

2

. . ( )
[ ( . / ) ]/ /+

+

L
NM

O
QP

Gr Pr
Pr

 Nu = 119.03 ∴ h = 3.98 W/m2 K
Inclined surface:

 Nu = 0 825 0 387
1 0 492

1/6

9 16 8 27

2

. . ( cos )
[ ( . / ) ]/ /+

+

L
NM

O
QP

Gr Pr
Pr

θ

 Nu = 111.91 ∴ h = 3.74 W/m2 K.
Using another possible correlation:
Vertical plate: Nu = 0.1 (Gr Pr)1/3 = 96.83, ∴ h = 3.24 W/m2 K
Inclined plate: Nu = 0.1 (Gr Pr cos θ)1/3 = 90.5 ∴ h = 3.03 W/m2 K
In terms of numbers the difference is about 23% lower by this correlation.

Example 10.18: Consider a vertical plate of height 0.8 m with a constant heat flux of 2 kW/m2.
The still air surrounding it is at 20°C. Determine the average surface temperature. If during
the installation, the plate is inclined to the vertical at 30°, determine the change in temperature.
Solution: The still air is at 20°C. As the wall temperature is not specified, an estimate is made
assuming

 h = 10 W/m2 K ∴ ∆T = 2000/10 = 200°C
∴ The film temperature can be taken as (200 + 20)/2 = 110°C

 ρ = 0.898, ν = 25.45 × 10–6 m2/s, Pr = 0.686, k = 33.38 × 10–3 W/mK
using equation (10.21), vertical location:

Gr* = g q x
k
β

ν

4

2  = 
9 81

273 110
2000 0 8

33 38 10 25 45 10

4

3 6 2
. .

. ( . )+
× ×

× ×− −

= 9.71 × 1011, turbulent
The suitable correlation is equation (10.23)
∴  Nu = 0.17[Gr* Pr]0.25 = 153.56 ∴ h = 6.40 W/m2 K
This is lower than the assumed value: using this value ∆T = 314°C, ∴ Tw = 334°C
∴  Tf = (334 + 20)/2 = 177°C.
Taking property values at 180°C

 ρ = 0.779, ν = 32.49 × 10–6 m2/s, Pr = 0.681, k = 37.8 × 10–3 W/m K
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Gr* = 
9 81

273 180
2000 0 8

37 8 10 32 49 10

4

3 6 2
. .

. ( . )+
× ×

× ×− −  = 4.45 × 1011

∴  Nu = 0.17 [4.45 × 1011 × 0.681]0.25 = 126.1
∴ h = 5.96 W/m2 K
Another iteration is now made

∆T = 336°C ∴ Tw = 356°C
∴ Tf = (356 + 20)/2 = 187.83
Taking property values at 190°C

ρ = 0.763, ν = 33.67 × 10–6 m2/s, Pr = 0.68, k = 38.56 × 10–3 W/m K

Gr* = 
9 81

273 190
2000 0 8

38 56 10 33 67 10

4

3 6 2
. .

. ( . )+
× ×

× ×− −  = 3.97 × 1011

∴  Nu = 0.17 (Gr* Pr)0.25 = 122.54
∴ h = 5.91 W/m2 K
∴ Tw = (2000/5.91) + 20 = 358.6°C
In case of inclined surface,

 Nu = 0.17 (Gr Pr × cos θ)0.25 = 118.21 ∴ h = 5.7 W/m2 K
∴   Tw = 371°C.

Example 10.19: A flat heater of circular shape of 0.2 m dia with a heat generation rate of 1.2
kW/m2 is kept in still air at 20°C with the heated surface facing downward and the plate
inclined at 15° to the horizontal. Determine the value of convection coefficient.
Solution: The plate surface temperature is not specified.

Assuming h = 5 W/m2 K, ∆T = 240°C, Tw = 260°C
Taking properties at Te = Tw – 0.25 (Tw – T∞) = 200°C

ρ = 0.746, ν = 34.85 × 10–6 m2/s, Pr = 0.677, k = 39.31 × 10–3 W/mK
L = 0.9 × 0.2 = 0.18 m, θ = 75°

Gr = 9 81
273 20

240 0 18
34 85 10

3

6 2
. .

( . )+
× ×

× −  = 3.86 × 107

Gr Pr cos θ = 6.76 × 106

Equation (10.31) is used
 Nu = 0.56 (Gr Pr cos θ)0.25 = 28.56 ∴ h = 6.24 W/m2 K

Another trial may be made using this value
  ∆T = 192°C ∴ Tw = 212°C, Te = 212 – 0.25 (212 – 20) = 164°C

property values are now taken at 160°C
 ρ = 0.815, ν = 30.09 × 10–6 m2/s, Pr = 0.682, k = 36.4 × 10–3 W/m K

 Gr Pr cos θ = 
9 81

273 20
192 0 18

30 09 10

3

6 2
. .

( . )+
× ×

× −  × 0.682 × cos 75 = 7.30 × 106

∴  Nu = 29.12, h = 5.89 W/m2 K
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The temperature difference based on this value is 204°C
∴ Tw = 224°C, Te = 224 – 0.25 (224 – 20) = 173°C
Taking property values at 175°C,

 ρ = 0.788, ν = 31.89 × 10–6 m2/s, Pr = 0.681, k = 37.45 × 10–3 W/mK
Using these values, Nu = 28.78, h = 5.99 W/m2 K

∆T = 200°C ∴ Tw = 220°C
(compare with example (10.16) and discuss the results).

10.8 HORIZONTAL CYLINDERS

A more general correlation as compared to the ones given in table 10.1 is available.

 Nu0.5 = 0.60 + 0.387 ( )
[ ( . / ) ]/ /

Gr Pr
Pr1 0 559 9 16 16 9

1/6

+
L
NM

O
QP

...(10.34)

valid in the range  10–5 < Gr Pr < 1012

for the laminar range, Gr Pr < 109 the correlation is

 Nu = 0.36 + 0 518
1 0 559

0.25

9 16 4 9
. ( )

[ ( . / ) ]/ /
Gr Pr

Pr+
...(10.35)

Inclined cylinders: The expression in the case of inclined cylinders is rather long and
may be looked up in data books. An example on this topic is given under solved problems.
Example 10.20: Water in a tank is heated by a horizontal steam pipe of 0.25 m dia, maintained
at 60°C. The water is at 20°C. Calculate the value of convective heat transfer coefficient by
different correlations and compare the results.
Solution: The film temperature is (60 + 20)/2 = 40°C

The property values are:
ρ = 995 ν = 0.657 × 10–6 m2/s, Pr = 4.34, k = 0.628 W/m2 K

 β = 0.41 × 10–3/K

Gr = 
9 81 0 41 10 0 25 40

0 657 10

3 3

6 2
. . .

( . )
× × × ×

×

−

−  = 5.82 × 109

Gr Pr = 2.53 × 1010

The appropriate correlation is

 Nu0.5 = 0.60 + 0.387 ( )
[1 (0.559/ ) ]9/16 16/9

Gr Pr
Pr+

L
NM

O
QP

1/6

∴  Nu = 397.12 ∴ h = 997.6 W/m2 K
The other correlation is (Table 10.1)

 Nu = 0.125 (Gr Pr)1/3 = 366.83 ∴ h = 921.5 W/m2 K
Another possibility is

 Nu = 0.13 (Gr Pr)1/3 = 381.51 ∴ h = 958.4 W/m2 K
All estimates are close.
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10.9 OTHER GEOMETRIES

For spheres: the general correlation is
 Nu = 2 + 0.43 (Gr Pr)0.25 ...(10.37)

Properties to be evaluated at film temperature
For higher values (3 × 105 < Gr Pr < 8 × 1010) 0.43 is replaced by 0.50
Irregular Solids:
Short cylinder D = H Nu = 0.775 (Gr Pr)0.208 ...(10.38)
For other solids  Nu = 0.52 (Gr Pr)0.25 ...(10.39)

where the characteristic length is the distance travelled by a particle in the boundary layer.
For rectangular solids, the characteristic length L is calculated using

 1
L  = 1 1

L LH V
+ ...(10.40)

where LH = average horizontal length, and LV is the vertical length. Based on this length
Nu = 0.55 (Gr Pr)0.25 ...(10.41)
Equation (10.37) and (10.41) should give similar estimates,

The correlation for horizontal cylinders in liquid metals is given by
 Nu = 0.53 (Gr Pr2)1/4. ...(10.36)

Example 10.21: A spherical heater of dia 0.2 m dia with surface at 60°C is used to heat water
at 20°C in a tank. Determine the value of convective heat transfer coefficient.
This is a case of free convection.
Solution: The film temperature is 40°C. The Property values are

 ρ = 995, ν = 0.657 × 10–6 m2/s, Pr = 4.34, k = 0.628 W/mK
β = 0.41 × 10–3/K

The correlation is Nu = 2 + 0.43 (Gr Pr)0.25

 Gr = 
9 81 0 41 10 0 2 40

0 657 10

3 3

6 2
. . .

( . )
× × × ×

×

−

−  = 2.98 × 109

 Nu = 2 + 0.43(2.98 × 109 × 4.34)0.25 = 147.03
∴ h = 461.7 W/m2 K.

Example 10.22: A small cylindrical steam heater of diameter 0.2 m and height 0.2 m maintained
at 60°C is immersed in a tank of water at 20°C. Determine the value of convection coefficient.

This is an example in free convection. The film temperature is 40°C. The property values
are as in example 10.21.
Solution: An available correlation is given by equation (10.38).

 Nu = 0.775 (Gr Pr)0.208

Gr = 
9 81 0 41 10 0 2 40

0 657 10

3 3

6 2
. . .

( . )
× × × ×

×

−

−  = 2.98 × 109

 Nu = 0.775 (2.98 × 109 × 4.34)0.208 = 98.31 ∴ h = 308.7 W/m2 K
Another possible method is to use the length as the length of travel in boundary

layer = D + h = 2D in this case = 0.4 m
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 Nu = 0.52 (Gr Pr)0.25, here Gr is based on length 2D
= [0.52] {9.81 × 0.41 × 10–3 × 40 × (0.4)3/(0.657 × 10–6)2} 4.34]0.25

= 294.96, h = 463.1 W/m2 K
Another way in which the length can be found is

1
L  = 

1 1 1 1 1
0 2

1
0 2L L D DH V

+ = + = +
. .  = 10

∴ L = 0.1 m. Using this value of L

Gr = 9 81 0 41 10 0 1 40
0 657 10

3 3

6 2
. . .

( . )
× × × ×

×

−

−  = 0.373 × 109

Using equation (10.41),
 Nu = 0.55 (Gr Pr)0.25 = 110.32 ∴ h = 692.8 W/m2K

There is a wider spread. However, there is no other way by which such estimates can be
made.

10.10 SIMPLIFIED EXPRESSIONS FOR AIR

Using average property values, simplified (but less accurate) correlations for air is given in
table 10.2. These are applicable for 1 atm pressure and moderate temperature differences.

Table 10.2. Simplified expressions for convective heat transfer coefficient
for free convection in air.

Constant wall temperature ∆T = Tw – T∞

Geometry Laminar Turbulent Eqn. No
104 < Gr Pr < 109 Gr Pr > 109

1. Vertical plane h = 1.42 (∆T/L)1/4 h = 1.31 (∆T)1/3 (10.42)
or cylinder (a, b)

2. Horizontal h = 1.32 (∆T/D)1/4 h = 1.24 (∆T)1/3 (10.43)
cylinder (a, b)

3. Horizontal plate h = 1.32 (∆T/L)1/4 h = 1.52 (∆T)1/3 (10.44)
heated face up or (a, b)
cooled face down

4. Heated face down
or cooled face up h = 0.59 (∆T/L)1/4 (10.45)

For pressures other than 1 atm, multiply the RHS of these expressions as below,
where p is in bar.

Laminar (P/1.0132)0.25 (1.46)
Turbulent (P/1.0132)2/3 (a, b)

Example 10.23: (Read example 10.3) A vertical plate is maintained at 40°C in stagnant air at
20°C. The flow turns turbulent at a height of 0.8262 m. It is found that h = 3.15 W/m2K (example
10.5). In example 10.6, the average value of h at 0.2, 0.4, 0.6, 0.8 are found as 4.49, 3.77, 3.41
and 3.17 W/m2 K.
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Solution: Compare the values that may be obtained using simplified expressions equation
(10.42)

The equation (10.42) is

h = 1.42 
∆T
L
F
HG
I
KJ

0.25
, ∆T = 20°C

Distance: m 0.2 0.4 0.6 0.8 0.8262

h  by classical
method W/m2 K 4.49 3.77 3.41 3.17 3.15
Simplified
expression 4.49 3.78 3.41 3.18 3.15

It is very interesting that there is very close agreement.
Example 10.24. The following results using accurate correlations for free convection in air on
a vertical surface are available.

(a) L = 0.8 m ∆T = 10°C h = 2.88 W/m2 K Gr = 0.65 × 109

(b) L = 4 m ∆T = 60°C h = 5.76 W/m2 K Gr = 4.86 × 1011

Check using approximate relations.
Solution: (a) h = 1.42 (∆T/L)1/4 = 1.42 (10/0.8)1/4 = 2.67 W/m2K (2.88)

(b) h = 1.31 (∆T)1/3 = 1.31 (60)1/3 = 5.13 W/m2 K (5.76)
It can be seen that the approximate relations provide very good estimates in the

laminar region and good estimates in the turbulent region.
Example 10.25: A steam pipe with an outer diameter of 0.4 m at 110°C passes through still air
at 30°C. Determine the value of convection coefficient by the accurate and approximate methods.
film temperature = (110 + 30)/2 = 70°C.
Solution: Property values are :

 ρ = 1.029, ν = 20.02 × 10–6 m2/s, Pr = 0.694, k = 29.66 × 10–3 W/mK
Using horizontal cylinder correlation

Gr = 9 81 80 0 4
273 70 20 02 10

3

6 2
. .

( )( . )
× ×

+ × −  = 3.65 × 108

Gr Pr = 2.54 × 108

 Nu = 0.36 + 0 518
1 0 559

0.25

9 16 4 9
. ( )

[ ( . / ) ]/ /
Gr Pr

Pr+
 = 49.67

∴ h = 3.68 W/m2 K
Approximate method:

h = 1.32 (∆T/D)0.25 = 4.97 W/m2 K
Using equation of tables 10.1

 Nu = 0.125 (Gr Pr)0.33 or 0.53 (Gr Pr)0.25

= 79.12 Nu = 66.88
h = 5.87 W/m2 K h = 4.96 W/m2 K

Another correlation is

 Nu0.5 = 0.60 + 0.387 ( )
[ ( . / ) ]/ /

Gr Pr
Pr1 0 559 9 16 16 9

1/6

+
L
NM

O
QP
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 Nu = 75.14 h = 5.57 W/m2 K.
This shows that the approximate method is not too far off from other methods and

actually coincides with one of the correlations and may be used with confidence for first
estimates.

10.11 FREE CONVECTION IN ENCLOSED SPACES

Double glazed windows used in buildings to reduce heat loss is an
example for this situation. This is shown in Fig. 10.5. Inclined
spaces are encountered in solar collectors. In these cases, the fluid
receives and transfers the heat between the surface by free
convection with the average temperature of the fluid remaining
the same. The heat transfer will be higher than in pure conduction.

The space (rather short) between surface 1 and 2 is stagnant.
 Q = h A (T1 – T2)

is to be used to calculate the heat flow, h is evaluated as described
below. In this case the Grashof number is calculated as

 Gr = g T T
v

β δ( )1
3

2
− 2 ...(10.47)

Nu = 
h
k
δ

 , δ = distance between surfaces ...(10.48)
one of the correlations available is :

 Nu = 0.42 (Gr Pr)0.25 Pr0.012 
1 0.30

δ
F
HG
I
KJ

−

...(10.49)

valid for  104 < Gr Pr < 107, qw = constant
1 < Pr < 20,000 10 < L/δ < 40

 Nu = 0.046 (Gr Pr)1/3 ...(10.50)
 106 < Gr Pr < 109 1 < Pr < 20, 1 < L/δ < 40.

Example 10.26: A double glazed window 1 m × 1 m used in an airconditioned space has the
two plates at a distance of 1 cm. One plate is at 10°C while the other is at 30° C. Determine the
convection coefficient between the plates.
Solution: This can be considered as enclosed space:

 Tf = 20°C, ν = 15.06 × 10–6 m2/s,
Pr = 0.703, k = 25.93 × 10–3 W/m K

Using equation (10.47), (48, 49)

Gr = 9 81 20 0 01
293 15 06 10

3

6 2
. .

( . )
× ×

× × −  = 2952.4

Gr Pr = 2075.57
Using equation (10.49), a possible fit

 Nu = 0.42 (Gr Pr)0.25 Pr0.012 (L/δ)–0.30 = 0.709
h = 1.84 W/m2 K

Comparing conduction and convection resistances : (1m2)
convection resistance = 1/h = 0.544 K/W

L

T1

T2

�

Fig. 10.6. Model of enclosed
space.
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Conduction:   l/k = 
0 01

25 93 10 3
.

. × −  = 0.386 K/W

Conduction heat flow is higher.
For closed vertical or horizontal cylinders (length as linear dimension)

 Nu = 0.55 (Gr Pr)0.25 ...(10.51)
The free convection in the annular space of cylinders and spheres are discussed

under solved problems.
For a horizontal cavity heated from below.

Nu = 1 + 1.44 1 −LNM
O
QP

1708
GrPr  + GrPr

5830
F
HG
I
KJ −

L
N
MM

O
Q
PP

1/3
1 ...(10.52)

In case the quantities in square brackets are – ve these should be taken as zero.

10.12 ROTATING CYLINDERS, DISKS AND SPHERES

A flow is caused due to rotation of axisymmetric objects like motor rotors etc. The flow  is
neither due to density difference nor due to devices like pumps, but due to the centripetal
action.

A new Reynolds number called peripheral speed Reynolds number (Reωωωωω) is defined
and used in the analysis as this quantity is found to influence the setting in of turbulence (ω–
rotational speed. radians/s)

Reω     =     ω π D2/v ...(10.53)

For cylinders Nu = h D
k
c  = 0.11 (0.5 Reω

2  + GrD Pr)0.35 ...(10.54)

For rotating disk  Nu = 0.35 ω
ν
D2 0 5

4
F
HG
I
KJ

.

...(10.55)

for ω D2/ν < 5 × 105

For turbulent condition, the local value of Nusselt number at radius is (d is the
diameter)

Nur = 
hr
k  = 0.0195 ω

ν
d2 0 8

4
F
HG
I
KJ

.

...(10.56)

and the average value is (D0–outside dia)

Nur = 0.015 
ω

ν
D0

2 0 8

4
F
HG

I
KJ

.

 – 100 
D
D

c

0

2F
HG
I
KJ  = hr

k ...(10.57)

when Dc corresponds to ω D2/ν = 5 × 105

For spheres, in the laminar region
NuD = 0.43 Reω

0.5 Pr0.4 ...(10.58)

for  Reω = ω
ν
D2

 < 5 × 104
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Nu = 0.066 Reω
0.67 Pr0.4 ...(10.59)

for  5 × 104 < Reω = ω D2/ν < 7 × 105

These relations are useful in calculating the heat loss in rotating machine elements.
Example 10.27: A hot metal cylinder of dia 0.4 m is machined at a speed of 250 rpm. The
cylinder surface is at 60°C and air is at 20°C. Determine the value of convection coefficient over
the surface.
Solution: The film temperature = 40°C

The property values are:
ρ = 1.128, ν = 16.96 × 10–6 m2/s, Pr = 0.699,
k = 27.56 × 10–3 W/mK

Using equation (10.53),

Reωωωωω = ω π D2/ν = 
2 250

60
0 4

16 96 10

2

6
π π× × ×

× −
.

.  = 775912

Gr Pr = 9 81 40
273 40

0 4
16 96 10

3

6 2
.

( )
.

( . )
×
+

×
× −  . 0.699 = 1.95 × 108

Using equation (10.54)
Nu = 0.11 [0.5 Re2 + Gr Pr]0.35 = 1145.5,
 h = 78.93 W/m2 K.

Example 10.28: A thin disk of 0.3 m dia is being ground on the face and rotates at 3000 rpm.
The disk surface is at 60°C while the air is at 20°C. Determine the value of convection coefficient.
Taking the property values from example 10.27.

Solution. ω
ν
D2

 = 2 300
60

0 3 0 3
16 96 10 6

π × × ×
× −

. .
.

 = 1.668 × 106 > 5 × 105

Using equation (10.57)

   Nur = 0.015 w D D
D

c0
2 0 8

0

2

4
100

ν

F
HG

I
KJ −

F
HG
I
KJ

.

To find Dc 
2 3000

60 16 96 10

2

6
π × ×

× −
Dc

.
 = 5 × 105

∴   Dc = 0.1643 m

∴   Nur = 0.015 (1.668 × 106)0.8 – 100 0 1643
0 3

2.
.

F
HG

I
KJ  = 1394.5

  h = 256.2 W/m2 K.

10.13 COMBINED FORCED AND FREE CONVECTION

When flow velocities are low, natural convection will also contribute in addition to forced
convection. This can be checked using the following.

If Gr/Re2 >> 1 free convection prevails
If Gr/Re2 << 1 forced convection prevails
If Gr/Re2 ≈≈≈≈≈ 1 both should be considered
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In such cases, for flow in pipes in the laminar region

Nu = 1.75 
µ

µm

L
NM
O
QP

0.14

 [Gz + 0.012 (Gz Gr0.333)1.333]0.333 ...(10.60)

where Gz = Re Pr . D
L

For turbulent conditions
Nu = 4.69 Re0.27 Pr0.21 Gr0.07 (D/L)0.36 ...(10.61)

 Re > 2000, Gr Pr D
L

 < 5000

or  Re > 800, Gr Pr D
L

 > 2 × 104

Natural or free convection has extensive applications as equipments based on this
phenomenon are simple and will operate without breakdown over long periods of time.

It is to be kept in mind that estimates may be ± 25% removed from actual values and the
design dimensions should be arrived at based on the performance assurance required.
Example 10.29: A vertical plate 2 m high  is maintained at 60°C in air at 20°C. What is the
limit of flow velocity for the heat flow to be considered as (i) free convection (ii) both free and
forced convection and (iii) forced convection.
Solution: Tf = 40°C. The property values are : ν = 16.96 × 10–6 m2/s

Gr = 
9 81 40

313
2

16 96 10

3

6 2
.

( . )
× ×

× −  = 3.486 × 1010

 Re2 = u L∞F
HG
I
KJ

.
ν

2
 = 

u∞
−×

2 2

6 2
2

16 96 10
.

( . )  = 1.39 × 1010 u∞∞∞∞∞
2

The conditions are: (i) Gr/Re2 > > 1 (ii) Gr/Re2 ≈ 1 (iii) Gr/Re2 << 1

(i) Say  Gr/Re2 = 10 = 
3 486 10

139 10

10

10 2
.

.
×

× × ∞u ∴ u∞∞∞∞∞ = 0.5 m/s

(ii) Gr/Re2 = 1 = 
3 486 10

139 10

10

10 2
.

.
×

× × ∞u ∴ u∞∞∞∞∞ 1.58 m/s

(iii)  Gr/Re2 = 0.05 = 
3 486 10

139 10

10

10 2
.

.
×

× × ∞u ∴ u∞∞∞∞∞ = 7.08 m/s

(0.05 is chosen as a small value limit and 10 as high limit)

SOLVED PROBLEMS

Problem 10.1: Derive an expression for the velocity distribution in the boundary layer in free
convection that will satisfy the boundary conditions. Determine from the same the y-location at
which the velocity is maximum and the value of the maximum velocity.
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δx

TW

Boundary
layer

Stagnant fluid at T∝

x x

y

Fig. P. 10.1

Solution: The Boundary conditions are

(i) u = 0 at y = 0, (ii) u = 0 at y = δ, (iii)
∂
∂
u
y  = 0 at y = δ.

From the momentum equation, at a given location,

u ∂
∂

∂
∂

u
x

v u
y

+  = g β(T – T∞) + ν 
∂
∂

2

2
u

y
The LHS is zero as u = 0 at y = 0 and v = 0 at y = 0

(iv) ∴ ∂
∂

2

2
u

y
 = – g T Twβ

ν
( )− ∞  at y = 0

A cubic distribution can be used as four conditions
are available. Also taking a reference  velocity ux which
can be eliminated later, it may be assumed that

u
ux

 = a + b . y + c . y2 + d . y3

where a, b, c and d have to be determined from the known conditions.
condition (i) leads to a = 0, using the second condition, y = δ

u
ux

 = b δ + c δ2 + d δ3 = 0

∴ b = – (c δ + d δ2) ...(P. 10.1)
Substituting for b and cancelling ux

– c δ – d δ2 + 2c δ + 3 δ2 = 0
c δ  + 2 d δ2 = 0

∴  d = – c/2δ ...(P. 10.2)
Using the other boundary condition,

∂
∂

2

2
u

y
 = ux (2c + 6dy) at y = 0, 2c ux = – g T Twβ

ν
( )− ∞ ...(P. 10.3)

∴ c = – g β (Tw – T∞)/2 ν ux

substituting this in (P. 10.2.)
d = – c/2δ = g β(Tw – T∞)/4ν uxδ ...(P. 10.4)

substituting for c and d in (P. 10.1)

b = – (cδ + dδ2) = 
g T T

u
g T T

u
w

x

w

x

β δ
ν

β δ
ν δ

( ) ( )
.

−
−

−∞ ∞

2 4

2
 = g T T

v u
w

x

β δ( )− ∞

4
Substituting for a, b, c and d in the assumed profile

u
ux

 = 0 + g T T
u

y g T T
u

y g T T
u

w

x

w

x

w

x

β δ
ν

β
ν

β
ν δ

( ) . ( ) . ( )−
−

−
+

−∞ ∞ ∞

4 2 4
2  . y3
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= g T T
u

w

x

β
ν

( )− ∞

4  [δ . y – 2y2 + y3/δ] ...(P. 10.6)

= 
g T T y

u
w

x

β δ
ν

( )− ∞

4  1 2
2

2− +
L
NM

O
QP

y y
δ δ

 = g T T y
u

w

x

β
ν

( )− ∞

4  . δ 1
2

−LNM
O
QP

y
δ

or u = g T Twβ δ
ν

( )− ∞
2

4
 . y

δ
 1

2
−LNM
O
QP

y
δ

...(P. 10.5)

The dimensions can be checked on the RHS to be m/s.
This is the result of an assumed cubic profile satisfying the boundary conditions.
To determine the y location at which u is umax (refer P. 10.6)

∂
∂
u
y

 = 0

∴ constant [δ – 4y + 3y2/δ] = 0

∴  δ2 – 4δy + 3y2 = 0, y = 4 16 12
6

2 2δ δ δ± −( )

solving for y, y = (1/3) δ or δ, the second solution is trivial.
∴  umax occurs at y = (1/3) δδδδδ

substituting in (P. 10.5)

 umax = g T Twβ
ν

( )− ∞

4  . δ2 δ
δ3  1 1

3

2
−LNM
O
QP , umax = g T Twβ δ

ν
( )− ∞

2

27
...(P. 10.6)

and this expression together with (P. 10.5) and (P. 10.6) can be used to determine u and umax in
the laminar region.

Problem 10.2: A plate maintained at 60°C is kept vertical in still air at 20°C. Determine the
velocity profile at x = 0.4 m. Also determine the value of umax at 0.2 0.4 and 0.6 m heights.

Solution: The film temperature is 40°C. The Property values are:
 ρ = 1.128, ν = 16.96 × 10–6 m2/s, Pr = 0.699, k = 27.56 × 10–3 W/mK

The value of δx is involved in all the calculations.

Gr = 
9 81 40

313 16 96 10

3

6 2
. .

( . )
×

× −
x

 = 4.36 × 109 . x3

δδδδδx = 3.93 Pr–0.5 (0.952 + Pr)0.25 x . Grx
–0.25

=  5.328x Gr–0.25 =  5.328 × Gr–0.25

 umax = g T Twβ δ
ν

( )− ∞
2

27  = 2737.7 δδδδδ2
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Solution: This is a case of free convection. For the boundary layers not to interfere the distance
between the plates should be greater than twice the boundary layer thickness.

The film temperature is (40 + 80)/2 = 60°C
The property values are:

ρ = 1.06, ν = 18.97 × 10–6 m2/s,
Pr = 0.696, k = 28.96 × 10–3 W/mK

Gr = 
9 81 1 40 0 6

333 18 97 10

3

6 2
. .

( . )
× × ×

× × −  = 0.707 × 109, ∴ laminar

 δδδδδx = 3.93 × Pr–0.5 (0.952 + Pr)0.25 Grx
–0.25 = 0.01794 m

∴ distance between plates = 2 × δx = 39 mm or say 5 cm for safe operation.

 Nux = 
0 508

0 952

0.5 0.25

0.25
.
( . )

Pr Gr
Pr

x

+
 = 61.00 ∴ hx = 2.94 W/m2K

∴ h  = 3.93 W/m2 K
 A = 2 × N × 0.18 × 0.6, Q = 2000

∴  2000 = 2 × N × 0.18 × 0.6 × 3.93 (80 – 40)
∴ N = 59 plates or say 60 plates.

Problem 10.5: A horizontal cylinder of 0.4 m dia at a surface temperature of 40°C is placed in
air at 80°C. Compare the heat gain by the cylinderical surface with that of a vertical plate of

height 
π × 0.4 m

2  under the same conditions.

Solution: This is a situation of free convection. The film temperature is 60°C. The property
values of air are

ρ = 1.06, ν = 18.97 × 10–6 m2/s, Pr = 0.696, k = 28.96 × 10–3 W/mK

Cylinder:  Gr = 
9 81 1 40 0 4

333 18 97 10

3

6 2
. .

( . )
× × ×

× × −  = 2.096 × 108

Gr Pr = 1.459 × 108

The correlations applicable are:
 Nu = 0.53 (Gr Pr)1/4 = 58.24, also Nu = 0.125 (Gr Pr)1/3 = 65.8
 h = 4.22 W/m2K h = 4.76 W/mK

Approximate sol. h :
h = 1.32 (∆T/d)0.25 = 4.17 W/m2 K

Other correlations are also available. However, these three provide a fair estimate.
Plane:

 Gr = 
9 81 1 40 0 4 2

333 18 97 10

3

6 2
. ( . / )

( . )
× × × ×

× × −
π

 = 8.12 × 108

Gr Pr = 5.653 × 108



VED

c-4\n-demo\damo10-3

466 FUNDAMENTALS OF HEAT AND MASS TRANSFER

The correlations available are:
 Nu = 0.59 (Gr Pr)1/4 = 90.98, h = 4.193 W/m2 K

h = 1.42 (∆T/L)0.25

h = 1.42 (40/π × 0.2)0.25 = 4.01 W/m2 K.
The heat transfer by the vertical plate is marginally lower and the cylinderical surface

appears to be better.
Problem 10.6: A hot plate kept vertical in air develops a boundary layer by free convection.
The thickness of the boundary layer at a distance of 0.4 m was 19 mm. (a) Estimate the location
where it will be 22.5 mm (b) If the gas was carbon dioxide with ν = 12.6 × 10–6 m2/s as compared
to air with ν = 23.13 × 10–6 m2/s, determine the boundary layer thickness at 0.4 m. Assume that
the Prandtl number is nearly the same and all other conditions remain unchanged.
Solution: For a given situation, δx is proportional to xGr–0.25 or x0.25

 22 5
19

.  = x0.25

0.250 4.
∴ x = 0.787 m

δx is proportional to x. Gr–0.25 as x is the same and other conditions remain unchanged,

δx is proportional to 1 1
2 0 25 0 5( ) . .ν ν

or

δ
19  = 

23 13 10
12 6 10

6

6

0.5
.
.

×
×

F
HG

I
KJ

−

− ∴ δδδδδ = 25.74 mm

It is assumed that laminar conditions prevail in both cases.
Problem 10.7: An athlete lies still on the ground in cool air at 24°C. His body temperature is
36°C. Approximating his body to be a cylinder of 0.3 m dia and 2 m long, determine the heat
loss from his body.

Compare this with the heat loss when he runs a 400 m distance in 55 sec, the other
surrounding conditions remaining the same. Neglect end losses.
Solution: Considering free convection over horizontal cylinder. The film temperature is 60/2
= 30°C. The  property  values  are  ρ = 1.165 kg/m3, ν = 16 × 10–6 m2/s,  Pr = 0.701, k = 26.75 ×
10–3 W/mK.

Gr = 
9 81
303

12 0 3
16 10

3

6 2
. .

( )
× ×

× −  = 4.098 × 107

Gr Pr = 2.872 × 107

A suitable correlation is

 Nu = 0.36 + 
0 518

1 0 559

0.25

9 16 4 9
. ( )

[ ( . / ) ]/ /
Gr Pr

Pr+
 = 29

∴ h = 2.586 W/m2 K
∴ Heat loss rate = π × 0.3 × 2 × 2.586 (12) = 58.5 W
If the athlete runs, then it is forced convection

u∞ = 400/55 m/s
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∴ Re = 
0 3 400

55 16 10 6
. ×

× × −  = 1.36 × 105

The correlation is (over cylinder)
Nu = 0.0266 Re0.805 Pr1/3 = 321.28

∴  h = 28.65 W/m2 K
This is more than 10 times the value for free convection.

Problem 10.8: Cans of tomato sauce are to be cooled in a refrigerator. The cans are cylinderical
and 20 cm in length and 15 cm in diameter. The can surface is at 30°C and the air in the
refrigerated space is at 10°C. Two alternate stacking are possible-namely vertical stacking and
horizontal stacking. Determine the method that will be better. Neglect cooling on the end surfaces.
Solution: The film temperature = 20°C. The property values are ρ = 1.205 kg/m3,

ν = 15.06 × 10–6 m2/s, Pr = 0.703, k = 25.93 × 10–3 W/mK.
For vertical stacking:

Gr = 
9 81 20 0 2

293 15 06 10

3

6 2
. .

( . )
× ×

× × −  = 2.362 × 107

Gr Pr = 1.6605 × 107 ∴ Laminar
35/Gr0.25 = 0.50

The diameter is less than this value.
So it is necessary to consider this as short cylinder with D = H

 Nu = 0.775 (Gr Pr)0.208

1
L  = 1 1 1

0 15
1

0 2L LG V
+ = +

. .
L = 0.086

∴ Gr = 
9 81 20

293
0 086

15 06 10

3

6 2
. .

( . )
× ×

× −  = 1.88 × 106

∴  Nu = 14.534 ∴ h = 4.381 W/m2 K
Horizontal stacking:

Gr = 
9 81 20

293
0 15

15 06 10

3

6 2
. .

( . )
× ×

× −  = 9.964 × 106

Gr Pr = 7.005 × 106

The correlation is
 Nu = 0.48 (Gr Pr)0.25 = 24.694

∴ h = 4.27 W/m2 K
There is no distinct advantage due to the method of stacking for this size and conditions,

as the linear dimensions are close.
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Problem 10.9: Plate type of coolers are used to cool the oil in a transformer. The design specified
0.6 m high 0.2 m wide plates. The surface temperature was 80°C and air temperature- was
20°C. During installation, 0.2 m side was placed vertical by mistake. Determine the change in
the convection coefficient and the heat loss.
Solution: The film temperature is 50°C. The property values are:

 ρ = 1.093, ν = 17.95 × 10–6, Pr = 0.698, k = 28.26 × 10–3 W/mK
Case 1: 0.6 m vertical:

Gr = 
9 81 60 0 6

323 17 95 10

3

6 2
. .

( . )
× ×

× × −  = 1.22 × 109

Gr Pr = 0.8527 × 109, laminar
one of the applicable correlation is

 Nu = 0.68 + 0 670
1 0 492

0 25

9 16 4 9
. ( )

[ ( . / ) ]

.

/ /
Gr Pr

Pr+
 = 88.39

h = 4.163 W/m2  K

Case 2: 0.2 m vertical Gr = 
9 81 60 0 2

323 17 95 10

3

6 2
. .

( . )
× ×

× × −  = 4.52 × 107

Gr Pr = 3.158 × 107

using the same correlations, Nu = 39.16, h = 5.533 W/m2 K
Heat flow increases by 33%
Short lengths provide higher values of heat transfer coefficient.

Problem 10.10: A vertical surface 5 m high is at 80°C and is surrounded by still air at 20°C.
Determine the average value of convective heat transfer coefficient at 1 m intervals and also at
the location where Gr = 109.
Solution: The film temperature is 50°C. The property values are:

ρ = 1.093, ν = 17.95 × 10–6 m2/s, Pr = 0.698, k = 28.26 × 10–3 W/mK
 At Gr = 109

 109 = 
9 81 60

323
. × ×

× −
L3

6 2(17.95 10 ) ∴ L = 0.561 m.

 Nu = 0.59 (Gr Pr)1/4 = 95.9, h = 4.83 W/m2 K
For other lengths:
Using the simpler correlation for the turbulent region, beyond 0.561 m

Nu = 0.1 (Gr Pr)1/3

Length, m 1 2 3 4 5

Gr Pr 3.948 × 109 3.158 × 1010 1.066 × 1011 2.526 × 1011 4.93 × 1011

Nu 158.05 316.09 474.14 632.18 790.23
h 4.466 4.466 4.466 4.466 4.466

This shows that in the turbulent region, the value of convection coefficient remains the
same. (Justify from the equations)



VED

c-4\n-demo\damo10-3

C
ha

pt
er

 1
0

NATURAL CONVECTION 469

Problem 10.11: A vertical water heater element is in the form of a cylinder of 6 cm dia and 45
cm length and its surface is maintained at 80°C. Water at 20°C is to be heated. Investigate the
vertical and horizontal configurations.
Solution: The film temperature is (80 + 20)/2 = 50°C, (usual units)

ρ = 990, ν = 0.5675 × 10–6, k = 0.63965, β = 0.48 × 10–3, Pr = 3.68

Vertical:  Gr = 9 81 0 48 10 60 0 45
0 5675 10

3 3

6 2
. . .

( . )
× × × ×

×

−

−  = 7.994 × 1010

 
35

0.25Gr  = 0.065 marginally larger

∴ vertical plate configuration can be used
Nu = 0.1 (Gr Pr)1/3 = 665.07, h = 945.37 W/m2  K

Horizontal: Gr = 9 81 0 48 10 60 0 06
0 5675 10

3 3

6 2
. . .

( . )
× × × ×

×

−

−  = 0.1895 × 109

Nu = 0.125 (Gr Pr)0.333

Nu = 110.85, h = 1181.7 W/m2 K
Horizontal configuration is found better by about 25%.

Problem 10.12: A long horizontal cylindrical heater rod of diameter 2.5 cm is used to heat
liquid sodium. The heater surface is at 400°C and the liquid is at 200°C. Determine the value of
convection coefficient.
Solution: The film temperature is 300°C (usual units)

Property values are  ρ = 878, ν = 0.394 × 10–6, Pr = 0.0063, k = 70.94

β = ((903 – 854)/200) 
1

878  = 2.79 × 10–4

The correlation available is (eqn. 10.36)
Nu = 0.53 (Gr Pr2)1/4

 Gr = 9 81 2 79 10 0 025 200
0 394 10

4 3

6 2
. . .

( . )
× × × ×

×

−

−  = 55.1 × 106

∴ Nu = 3.624 ∴ h = 10284 W/m2 K.
High value due to liquid metal.

Problem 10.13: A long horizontal cooling water tube of 2.5 cm OD is immersed in hot oil
bath at 100°C. The tube surface is at 20°C. Determine the value of convection coefficient.
Solution: The film temperature is 60°C, oil is on the outside.

 ρ = 864, ν = 83 × 10–6 m2/s, Pr = 1050, k = 0.1407 W/m K

 β = 876 852
40

1
864

− ×  = 6.944 × 10–4/K

Gr = 9 81 6 944 10 80 0 025
83 10

4 3

6 2
. . .

( )
× × × ×

×

−

−  = 1236.12
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 Nu = 0.36 + 0 518
1 0 559

1/4

9 16 4 9
. ( )

[ ( . / ) ]/ /
Gr Pr

Pr+
 = 17.733

∴ h = 99.8 W/m2 K.
Problem 10.14: A sphere of dia 2 m storing chilled brine at – 10°C is insulated by having it
enclosed in another sphere of 2.1 m dia. The gap is filled with air at 0.05 atm. The outside
sphere is at 30°C. Determine the heat convection across the space.
Solution: The film temperature is 10°C

ρ = 1.247 × 0.05, µ = 17.65 × 10–6 kg/ms,
  Pr = 0.705, k = 25.12 × 10–3 W/mK. Available correlation is

 k
k
eff  = 0.74 

b
D D D Di i o

1 4

0
7 5 7 5 5 4

/

/ / /( )− −+

L
NMM

O
QPP  (Gr Pr)1/4 

Pr
0 861

1/4

. Pr+
L
NM

O
QP

2b = Do – Di, b = 0.1/2 = 0.05
Keff = the thermal conductivity that a motionless fluid (with k) in the gap should have to

transfer the same amount of heat as the moving fluid.

 k
k
eff  = 0.74 0 05

2 1 2 2 2 1

0.25

7 5 7 5 5 4
.

. ( . )/ / /× +

L
NM

O
QP− −

× 
9 81 1 40 0 05

283 17 65 10 1247 0 05
0 705

3

6 2

0.25
. .

[( . /( . . )]
.× × ×

× × ×
×

L
NM

O
QP−  × 

0 705
0 861 0 705

0.25.
. .×
L
NM

O
QP  = 0.629

considering the heat flow as though by conduction,
Q = keff π (DiDo/b) (Ti – To)

= 0.629 × 25.12 × 10–3 × π × (2.1 × 2/0.05) × 40 = 166.8 W.
Problem 10.15: A weather baloon of dia 4 m is at an altitude where the pressure is 0.1 atm
and the temperature is – 40°C. The baloon surface is at 0°C. (a). Determine rate of heat loss
from the surface at the instant. (b) If air flows over the balloon at 0.3 m/s, determine the value
of convective heat transfer coefficient due to forced convection. (c) What is the velocity of flow
which will give the same value of convection coefficient as in free convection.
Solution: The properties are to be evaluated at the film temperature of – 20°C

 ρ = 1.395, Pr = 0.716, k = 22.79 × 10–3, µ = 16.18 × 10–6 kg/ms
As the pressure is 0.1 atm

 ρ = 0.1 × 1.395 = 0.1395 kg/m3, ν = (16.18 × 10–6/0.1395) m2/s

Gr = 9.81 × 
1

253
40 4

16 18 10 0 1395

3

6 2× ×
× −( . / . )  = 7.379 × 109

Gr Pr = 5.283 × 109

(a) For sphere,
 Nu = 2 + 0.50 (Gr Pr)0.25 = 136.8

∴ h = 0.779 W/m2 K
∴  Q = 4π r2 h(Tw – T∞) = 4π × 22 × 0.779 × 40 = 1567 W
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(b) Forced convection with u = 0.3 m/s

Re = u D
ν

 = 0 3 4
16 18 10 0 13956

.
( . / . )

×
× −  = 10346.1

 Nu = 2 + [0.25 Re + 3 × 10–4 Re1.6]0.5 = 60.16
∴ h = 0.343 W/m2K

(c) h = 0.779, Nu = h D
k  = 0 779 4

22 79 10 3
.
.

×
× −  = 139.4

 139.4 = 2 + (0.25 Re + 3 × 10–4 Re1.6)0.5

∴ 0.25 Re + 3 × 10–4 Re1.6 = 18868
solving by trial

Re = 43600 ∴ u = 1.27 m/s.
Problem 10.16: In a solar flat plate collector the plate is of 1 m square and its temperature
is 160°C and the glass cover plate at a distance of 8 cm from the collector surface is at 40°C. The
space between is evacuated and is at 0.1 atm. Determine the heat transfer coefficient if the
collector is inclined at 20°C to the horizontal.
Solution: The film temperature is 100°C (usual units)

 ρ = 0.946 × 0.1, Pr = 0.688, k = 32.10 × 10–3, µ = 21.87 × 10–6

Gr Pr = 
9 81 120 0 08 0 688

373 2187 10 0 946 0 1

3

6 2
. . .

( . / . . )
× × ×

× × ×−  = 20801

Nuδ = 0.42 (Gr Pr cos θ)0.25 Pr0.012 (L/δ)–0.3 = 2.317
h = 0.998 W/m2 K

It pressure is 1 atm: GrPr = 2081 × 106

∴ Nuδ = 0.42 (Gr Pr cos θ)0.25 Pr0.012 (L/δ)–0.30 = 7.33
∴ h = 2.94 W/m2 K.

Problem 10.17: Determine the spacing between two plates of 1 m square for heat transfer
by free convection to be the same as heat transfer by conduction. One plate is at 40°C while the
other is at 20°C. Assume that all four edges are closed.
Solution: This is a case of enclosed space. It can be shown that

Nuδδδδδ = k
k
eff

If keff = k, then the heat transfer by convection will equal the heat transfer by conduction.
Considering the laminar region.

Nuδ = 0.42 (Grδ Pr)0.25 Pr0.012 (L/δ)–0.30

 1 = 0.42 
g

v
Prβ δ3

2

0.25L
NM

O
QP  Pr0.012 (L)–0.3 δ0.30

 1 = δ1.05 0.42 g Pr
v
β

2

1/4L
NM

O
QP  Pr0.012 L–0.30
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L0.3/0.42 g Prβ
ν2

1 4L
NM

O
QP

/
 Pr0.012 = δ1.05

In this case  ν = 16 × 10–6 m2/s Pr = 0.701 k = 26.75 × 10–3 W/mK

∴ δ1.05 = 10.3/0.42 
9 81 0 701

303 16 10 6 2

0.25. .
( )

×
×

L
NM

O
QP−  (0.701)0.012 = 0.02464

∴  δδδδδ = 0.02939 m or 29.4 mm
Conduction through an air gap of 29.4 mm will be the same as due to free convection in

the enclosed space.
Problem 10.18: A cylinder of dia 0.04 m and length 1.2 m is inclined to vertical at 30°C its
surface is maintained at 80°C in air at 20°C. Determine the value of convection coefficient.
Solution: The film temperature is 50°C

 ν = 17.95 × 10–6 m2/s, Pr = 0.698, k = 28.26 × 10–3 W/mK

GrL Pr = 9 81 60 12
323 17 95 10

3

6 2
. .

( . )
× ×

× × −  × 0.698 = 6.82 × 109

 GrD = 3.62 × 105 (within applicable limits, 6.9 × 105)
Using available data book correlations:

 (GrL Pr)cr = 2.6 × 109 + 1.1 × 109 × tan θ = 3.23 × 109

∴ Flow is turbulent
NuL = [0.47 + 0.11 (sin θ)0.8] GrD

–1/12 (GrLPr)1/3

= [0.47 + 0.11 (sin 30)0.8] (GrL Pr)1/3 . GrD
–1/12 = 347.94

∴ h = 8.19 W/m2 K.
Problem 10.19: A cylinder of 0.04 m dia and 0.6 m length is inclined at 30°C to the vertical
and its surface is maintained at 80°C in air at 20°C. Determine the value of convection coefficient.
Solution: The film temperature is 50°C, ν = 17.95 × 10–6 m2/s

Pr = 0.698 k = 28.26 × W/mK

GrL Pr = 9 81 60 0 6
323 17 95 10

3

6 2
. .

( . )
× ×

× × −  × 0.698 = 0.8527 × 109

This is less than the critical value of
2.6 × 109 + 1.1 × 109 tan θ = 3.23 × 109 for this case.

From hand book,

∴  NuL = [2.9 – 2.32 (sin θ)0.8] (GrD)–1/12 ( )(1/ (1/ ) (sin ) .
Gr PrL

4 12 1 21+ θ

GrD = 3.62 × 105 ∴ within applicable limits
∴  NuL = 194.37 ∴ h = 9.15 W/m2 K
This is reasonable as h in the laminar region in free convection is generally higher than

that in the turbulent region.
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Problem 10.20: A square duct of 0.3 m side carrying conditioned air at 10°C passes in a
room at 30°C. Determine the heat gain for 1 m length.
Solution: The film temperature is 20°C

 ν = 15.06 × 10–6 m2/s, Pr = 0.703, k = 25.93 × 10–3 W/mK
In this case the length of travel of a particle along the boundary layer is to be taken as

the characteristic length.
L = 0.3 + 0.3 = 0.6 m

Gr Pr = 
9 81 20 0 6

293 15 06 10

3

6 2
. .

( . )
× ×

× × −  0.703 = 4.48 × 108

 Nu = 0.52 (Gr Pr)0.25 = 75.666
∴ h = 3.27 W/m2 K

 Q = 2 × 0.6 × 3.27 (30 – 10) = 78.48 W/m.
Problem 10.21: A ceramic block at 480°C is 0.2 m × 0.2 m × 0.1 with 0.1 m vertical. It is
exposed to air at 20°C. Determine the rate of heat loss to the air.
Solution: The film temperature is (480 + 20)/2 = 250°C

The property values are
ν = 40.61 × 10–6 m2/s, Pr = 0.677, k = 42.68 × 10–3 W/mK

The characteristic length is given by
1
L  = 1 1 1

0.2
1

0.1H VL L
+ = + ∴ L = 0.067 m

∴ Gr Pr = 
9 81 460 0 067

273 250 40 61 10

3

6 2
. .

( ) ( . )
× ×

+ × −  . 0.677 = 1.05 × 106

 Nu = 0.52 (Gr Pr)0.25 = 16.74 ∴ h = 10.60 W/m2 K
∴ heat loss = h A ∆T = 10.6 × {4 × 0.2 × 0.1 + 2 × 0.2 × 0.2) × 460 = 780.3 W.

Problem 10.22: A small copper block having a square bottom of 3 cm side and vertical
height of 6 cm at 100°C cools in air at 20°C.

Calculate the convection coefficient.
Solution: The film temperature is (100 + 20)/2 = 60°C

The property values are:
 ν = 18.97 × 10–6 m2/s, Pr = 0.696, k = 28.96 × 10–3 W/mK

The length parameter is
1
L  = 1 1 1

0.03
1

0.06V HL L
+ = + ∴ L = 0.02 m

∴ Gr = 9 81 80 0 02
273 60 18 97 10

3

6 2
. .

( )( . )
× ×

+ × −  = 52393

 Nu = 0.52 × (Gr Pr)0.25 = 7.186
∴ h = 10.40 W/m2 K
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if the length of travel is considered:
L = 0.03 + 0.06 = 0.09 m

∴  Gr = 4774312
∴ Nu = 22.2, ∴ h = 7.14 W/m2 K.

Problem 10.23: A triangular plate of equal sides of 0.6 m is maintained horizontally in air
at 20°C. The plate temperature is 80°C. The hotter side of the plate faces down. Determine the
value of convection coefficient.
Solution: The film temperature = 50°C

Property values are:  v = 17.95 × 10–6 m2/s, Pr = 0.698
k = 28.26 × 10–3 W/mK

L = A/P = 
0 6 0 6 60

2
. . sin× °F
HG

I
KJ  / 3 × 0.6 = 0.0866 m

 Gr = 9 81
323
.   × 

60 0 0866
17 95 10

3

6 2
×

× −
.

( . )  = 3.67 × 106

Using values from table 10.1
Nu = 0.27 × (Gr Pr)0.25 = 10.8

∴ h = 3.5 W/m2 K.
Problem 10.24: A cylindrical vessel of dia 1 m contains chilled brine at – 20°C. It is
surrounded  by a another vessel of 1.1 m dia. The space between contains air at 0.05 atm
pressure. The outside vessel wall is at 20°C. Determine the heat flow for 1 m length of vessel.
Solution: The average temperature = 0°C

The property values are ρ = 1.293 × 0.05
Pr = 0.707, µ = 17.16 × 10–6 kg/ms, k = 24.42 × 10–3 W/mK, b = 0.05 m

From data book,

k
k
eff  = 0.386 Pr

Pr
R D D

b D Dac
i

i0 861

0.25
0.25

0.75 0.6
0

0.6 1.
[ ] ln ( )

( ) .25+
L
NM

O
QP +

L
NMM

O
QPP− −

0 /

keff /k = 0.809

Q = 
2 2 0 809 24 42 10

11 1
3π πk

D D
T Teff

0 1
1 0/

[ ]
ln

. .
ln . /

− = × × × −

  [40] = 52 W.

Problem 10.25: Two vertical plates 1.2 m × 1.2 m enclose an air space of 4 cm thickness. One
plate is at 40°C, while the other is at 20°C. Determine the value of keff /k for various pressures
from 1 atm to 0.05 atm.
Solution: The film temperature = 30°C,

The property values are,
ρ = 1.165, Pr = 0.701, k = 26.75 × 10–3 W/mK,
µ = 18.63 × 10–6 kg/ms

at 1 atm, ν = 18.63 × 10–6/1.165 = 15.99 × 10–6
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Grδδδδδ = 
9 81
303

20 0 04 1165
18 63 10

3 2

6 2
. . ( . )

( . )
× × ×

× −  = 1.621 × 105

 k
k
eff  = Nuδ = 0.42 (Grδ Pr)1/4 Pr0.012 (L/δ)–0.30 = 2.77

0.9 atm,  ν = 18.63/(1.165 × 0.9) = 17.768 × 10–6 m2/s
k
k
eff  = 0.42 (Gr Pr)1/4 Pr0.012 (L/δ)–0.30 = 0.13794 (Gr)1/4 = 2.7676. P0.5

Gr = 
9.81 20 0.04 (1.165) ( )

303 (18.63 10 )

3 2 2

6 2
× × ×

× × −
P

 = 162055 P2

The results are shown tabulated

Pressure atm keff/k pressure atm keff/k

1 2.77 0.3 1.516
0.9 2.63 0.2 1.238
0.8 2.475 0.15 1.072
0.7 2.316 0.14 1.036
0.6 2.144 0.13 0.998

0.5 1.957 0.10 0.875

When the density is reduced to 0.13 atm, the heat transfer by convection is equal to heat
transfer by pure conduction.

Problem 10.26: Two glass plates 1 m × 1 m enclose air at a pressure of 0.1 atm. The
plate temperatures are 30°C and 10°C. Determine the thickness of air space so that heat
transferred by convection will be the same as heat conducted by the air film.
Solution: For this condition keff/k = 1

Film temperature = 20°C, ρ = 1.025 × 0.1, Pr = 0.703
  µ = 18.14 × 10–6 kg/ms k = 25.93 × 10–3 W/mK
 ν = (18.14 × 10–6/1.205 × 0.1) = 150.53 × 10–6 m2/s, L = 1

keff/k = 0.42 (Gr Pr)0.25 Pr0.012 (L/δ)–0.3 = 1

0.42 × 
9 81 20

293 150 53 10 6 2

0.25.
( . )

×
× ×

L
NM

O
QP− 0.7030.262 δ1.05 1–0.3 = 1

∴  δ δ δ δ δ = 0.0415 m or 4.15 cm.
Problem 10.27: A sphere of 30 mm dia has its surface maintained at 80°C while being immersed
in still (i) air (ii) water (iii) oil at 20°C. Determine the power required to maintain the temperature.
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Solution: The property values evaluated at 50°C are

ν Pr k β

air 17.95 × 10–6 0.698 28.26 × 10–3 1/323
oil 162 × 10–6 1960 0.14245 6.9 × 10–3

Water 0.5675 × 10 3.68 0.63965 0.48 × 10–3

Air: Gr Pr = 9 81 60 0 03
323 17 95 10

3

6 2
. .

( . )
× ×

× × −  × 0.698 = 1.066 × 105

 Nu = 2 + 0.43 (Gr Pr)0.25 = 9.77 (Eqn. 10.37)
∴ h = 9.2 W/m2 K

Water: Gr Pr = 
9 81 0 48 10 60 0 03

0 5675 10

3 3

6 2
. . .

( . )
× × × ×

×

−

−  × 3.68 = 8.716 × 107

 Nu = 2 + 0.50 (Gr Pr)0.25 = 50.31
∴ h = 1072.7 W/m2 K

Oil: Gr Pr = 
9 81 6 9 10 60 0 03 1960

162 10

3 3

6 2
. . .

( )
× × × × ×

×

−

−  = 8.19 × 106

 Nu = 28.75 h = 136.5 W/m2 K
Power required = h A ∆T, 4π (0.03/2)2 × 60 × h = 0.16965 h
Air: 1.56 W, Water: 181.98 W, Oil: 23.16 W.

Problem 10.28: Water in a pan of 20 cm diameter to depth of 10 cm and at 20°C is heated by an
electrical heater on its bottom which maintains a constant temperature of 80°C. Determine the
initial rate of heating Neglect all losses.
Solution: This is a case where a limited amount of fluid (enclosed) is heated from bottom. The
correlation available is (data book).

Nuδ = 1 + 1.44 1 1708
5830

1
1 3

−
L
NM

O
QP

+ FHG
I
KJ −

L
N
MM

O
Q
PPRa

Ra
δ

δ
.

Raδ = Grδ Pr based on thickness δ
The property values are:  at 50°C v = 0.5675 × 10–6 m2/s

Pr = 3.68 k = 0.63965 β = 0.48 × 10–3

Raδδδδδ = Gr Pr = 
9 81 0 48 10 60 0 1

0 5675 10

3 3

6 2
. . .

( . )
× × × ×

×

−

−  × 3.68 = 3.228 × 109

 Nu = 1 + 1.44 + 81.12 = 83.56
∴   h = 535 W/m2 K

Heating rate = 
πD2

4  . h ∆T = 1008.5 W or about 1 kW.
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OBJECTIVE QUESTIONS

Choose the correct Statement in the following cases.
10.1 (a) Buoyant forces and inertia forces only influence  free convection heat transfer.

(b) Viscous and buoyant forces only influence free convection heat transfer.
(c) Viscous and inertia forces only influence free convection heat transfer.
(d) Viscous, inertia and buoyant forces influence the heat transfer in free convection.

10.2 The heat transfer rate in free convection in the laminar region depends on
(a) ∆T (b) ∆T1.25 (c) ∆T1.33 (d) ∆T 0.25.

10.3 The heat transfer rate in free convection in the turbulant region depends on
(a) ∆T1.33 (b) ∆T (c) ∆T 0.33 (d) ∆T1.25.

10.4 The convection coefficient in free convection over a vertical plate in the laminar region depends
on
(a) L–0.25 (b) L–1.25 (c) L–0.33 (d) L+0.25.

10.5 The convection coefficient in the case of a vertical plane in free convection in turbulent region
depends on
(a) L–0.25 (b) L0.25 (c) L0.0 (d) L0.33.

10.6 When some flow velocity is superimposed on free convection, the predominance of either is deter-
mined by
(a) Gr > > Re2 means forced convection
(b) Gr ≈ Re2 means none of the two
(c) Gr < < Re2 means free convection
(d) Gr = Re means purely free convection.

10.7 In free convection, the slope of the curve Nu vs Gr Pr
(a) Increases with increasing Gr Pr
(b) Decreases with increasing Gr Pr
(c) Increases and then decreases with increasing Gr Pr
(d) Decreases and then increases with increasing Gr Pr.

Answers
1. (d) 2. (b) 3. (a) 4. (a) 5. (c) 6. (b)
7. (a).

EXERCISE PROBLEMS

10.1 A large chemical process tank is in the form of a cylinder of 2 m dia and 4.5 m high. The surface
temperature is 80°C and the surrounding air is at 40°C. Determine the rate of heat loss over the
curved surface under these conditions.

10.2 100 m3 of chemical at 80°C is to be stored in a process plant. Examine the heat loss by free
convection from the following shapes. (i) cubical (ii) vertical cylinder of D : L = 1 : 3 (iii) horizon-
tal cylinder of the same length to diameter ratio (iv) sphere. The surrounding is at 20°C. In the
case of cylinder neglect the end losses and for the cubical shape from the top and bottom.

10.3 A cylindrical tank of 1 m dia and 2 m height has its surface maintained at 120°C. It contains
water at 20°C. Determine the free convection heat  transfer coefficient at the surface.
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10.4 A hot water tank contains water at a bulk temperature of 60°C. It is of 1 m × 1 m section and 2
m high. The sides are exposed to air at 20°C. Determine the values of convection coefficients on
the air side and also the wall temperature.

10.5 A room heater radiator (really convector) has steam panels of 0.6 m × 1 m size. The surface
temperature is 50°C and the room air is at 10°C. Investigate which way of positioning the panel
will be better.
(i) 0.6 m side vertical (ii) 1 m side vertical (iii) Horizontal with heating from both sides.

10.6 The following two options are available for heating room air at 0°C.
(i) horizontal steam pipes of 20 cm dia runing along the wall of the room (5 m length)

(ii) Vertical pipes of the same dia running along the wall of the room (two 2.5 m height)
Determine in which case the heat transfer will be higher.

10.7 In winter the walls of a room are at 5°C. The room air is maintained at 25°C. Determine the
convection coefficient over a wall of 3 m height.

10.8 In an air conditioned room the air is at 20°C. The wall is heated by direct solar radiation to 35°C.
Determine the value of convection coefficient over a wall 3 m high.

10.9 A horizontal black surface 1 m × 1 m receives radiant flux of 1.5 kW/m2. The bottom is insulated.
The air is at 20°C. Determine the value of average convective heat transfer coefficient and the
temperature of the surface.

10.10 A horizontal surface receives heat at 1.5 kW/m2 on the bottom side and has its top insulated. The
bottom is exposed to air at 20°C. Determine the surface temperature at equilibrium.

10.11 Vertical plate heaters are used to heat milk in a tank. The plates are 0.2 m wide and 0.6 m long
and the surface is at 90°C. The milk is at 30°C. Determine the value of average convective heat
transfer coefficient for the following positions.
(i) 0.2 m side vertical (ii) 0.6 m side vertical

(iii) horizontal, both sides heated
(iv) plates with 0.6 m side inclined at 30° with vertical.
Assume properties of water for the milk.

10.12 A horizontal steam pipe with a surface temperature of 90°C is used to heat water in a large tank,
the water being at 30°C. Determine the heat flow per 1 m length of the pipe.

10.13 A surface 1 m × 1 m size is inclined at 45°C to the vertical. The plate is insulated at the top side.
The bottom surface is at 100°C and the air is at 40°C. Determine the value of convective heat
transfer coefficient over the surface.

10.14 A large tank of oil is kept warm by a circular heater of 0.3 m dia placed horizontally inside. The
heater surfaces on both sides is at 120°C. The oil is at 20°C. Determine the heat input required
to maintain this surface temperature both at the top and bottom faces.

10.15 A horizontal electrical cable 5 cm dia generates 2.5 W of heat/m length. The surrounding air is at
20°C. Estimate the surface temperature of the cable.

10.16 Estimate the average surface temperature of a 2.5 kW heating element 2.5 cm dia and 0.5 m
length used in a water heater, with the water temperature set at a maximum of 50°C.

10.17 Determine the number of plate type of steam heaters of 0.25 × 0.6 m size placed vertically with
the 0.6 m side to provide 20 kW of heating to a class room at 10°C. The plate temperature is
110°C.

10.18 If hot water at 60°C is used instead of steam in the problem 10.17, determine the number of
plates required.

10.19 Determine the length of steam pipe of 7.5 cm OD at 80°C is required to provide 20 kW of heat to
a space at 20°C.

10.20 A block of ice at 0°C 40 × 40 cm × 40 cm is exposed to air at 20°C. Determine the rate of heat loss
from the block by free convection. Assume that there is no heat transfer from the bottom.
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10.21 A 2 cm dia 60 cm long heater is placed horizontally in a glycerine tank. The surface of the heater
is at 60°C and glycerine is at 20°C. Estimate the heat transfer rate.

10.22 A cylindrical heater 3.0 cm dia and 0.8 m length with a constant heat flux of 1500 W/m2 is
inclined at 35° to the horizontal in room air at 20°C. Estimate the average surface temperature.

10.23 A sphere of 30 cm dia with its surface maintained at 90°C is exposed to still air at 30°C. Calcu-
late the heat loss.

10.24 A circular heater of 0.2 m dia is used to heat oil at 20°C in a large tank. The heater has a uniform
heat generation rate of 10 kW/m2. Determine the average surface temperature if (i) hot surface
is facing up and (ii) hot surface facing down.

10.25 Two square plates 30 cm side enclose water layer 1 cm thick. The plates are at 40°C and 60°C.
Estimate the heat transfer rate. All edges are closed.

10.26 An electrical bulb is of spherical shape of 5 cm dia. The surface is at 120°C and is exposed to air
at 40°C. Determine the heat loss by natural convection from the surface.

10.27 A hot metal casting 40 cm × 40 cm × 20 cm at 600°C is exposed to air at 20°C on all the surfaces
as it is carried in a conveyor. Determine the rate of cooling.

10.28 A solar water heater plate is at 160°C and the cover plate is at 4 cm with the space evacuated to
0.1 atm. The cover plate is at 40°C. The assemly is inclined at 25° to the horizontal. Determine
the rate of heat loss from the plate.

10.29 A spherical vessel of 1 m dia containing liquid refrigerant is at –40°C. An evacuated spherical
cover of 1.08 m dia is provided outside with the pressure inside being 0.05 atm. The outside
surface is at 20°C. Determine the heat loss. Also determine the heat loss if only pure conduction
prevailed.

10.30 If a cylindrical vessel of 1 m dia is used instead of spherical vessel in problem 10.29 estimate the
heat loss and the compare the same with pure conduction loss.

10.31 A vertical plate is kept at 40°C in still air at 30°C. The plate is 1 m high. Determine the velocity
that may produce the same heat loss by forced convection over the plate as that occurring by free
convection.
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PHASE CHANGE PROCESSES

Boiling, Condensation

Freezing and Melting

11

11.0    INTRODUCTION

Condensers and evaporators (Boilers) are important equipments in steam plants and refrigerators.

In the field of chemical engineering chemicals have to be often evaporated and condensed. Freezing

and melting is also encountered in various industries like ice plants and foundries. The study of

heat transfer under these conditions thus becomes important for the  design of these vital

equipments.

11.1 BOILING OR EVAPORATION

When a liquid is heated under constant pressure, the temperature of the liquid first will increase

to a value known as the saturation temperature of the liquid at that pressure. The value of

saturation temperature for a liquid depends on the pressure and increases with pressure. These

values are obtained from tabulations of experimental results. Such a table of values for water is

known as steam tables. Further heat addition causes change of phase from liquid to vapour.

The optimum rate at which heat may be added for producing vapour has to be determined for

designing evaporating equipments. As the rate of heat abstraction by evaporation for unit mass of

liquid is high, the value of convective heat transfer coefficient is very high for the evaporation

process.

As the rate of heat addition is increased the metal surface temperature also increases, but

not linearly. A large change in the rate of heat addition causes a fairly small change in the

surface temperature. As convection coefficient is determined based on the temperature difference

between the surface and the fluid, the surface temperature becomes an important parameter.

Q/A = q = h(Tsurface – Tfluid) ...(11.1)

T
fluid

 is the fluid temperature and for any fluid at a given pressure this value at boiling is

the saturation temperature. The surface temperature has to be higher than the saturation

temperature for boiling to take place.

The difference between the surface and liquid temperatures is called the excess

temperature. The term ∆T = T
w
 – T

sat
 = excess temperature is used in the study of boiling heat

transfer as a primary variable. (where T
w
 is the surface temperature and T

sat
 is the saturation

temperature).

C
h

a
p

te
r 

1
1
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11.1.1. Nature of boiling process: When the temperature of the liquid is lower than the
saturation temperature, the liquid is called undercooled. If the temperature is above saturation
level it is called superheated liquid. Vapour can form only from superheated or saturated
liquid.

Boiling can be classified as pool boiling and flow boiling. Boiling of nonflowing
or stationary fluid is known as pool boiling. Boiling in the case of a fire tube of shell
boiler will come under this category. Boiling as during the flow of water and steam
(two phase fluid) through a tube with wall heat flux is called flow boiling. Pool boiling
is easier to observe by studying what happens when water is heated in a vessel. Compared to
free and forced convections some more basic parameters like surface tension, enthalpy of
evaporation are involved in the study of boiling process. Because of the large number of variables
influencing the process it  becomes difficult to arrive at direct correlations for this process,
using momentum and energy equations etc. The correlations arrived at from experimental
results are based on groups like Reynolds number, Nusselt number etc. except that the length
parameters and velocity parameters are carefully worked out in terms of the physical property
values encountered during the basic boiling process.
11.1.2. Regimes of boiling: The physical phenomenon of pool boiling can be divided basically
into four different regimes based on the excess temperature. Some authors subdivide these
regimes into more finer ones also. The regimes are:

(values are for water boiling at 100°C)
1. Purely convective region ∆T < 5°C
2. Nucleate Boiling 5 < ∆T < 50°C
3. Unstable (nucleate ⇔ film) boiling 50°C < ∆T < 200°C
4. Stable film boiling ∆T > 200°C.
Note that the temperature values are indicative only.
Nucleate Boiling is the process that is useful in equipment design. Unstable and film

boiling regions are avoided except possibly for special applications. Convective boiling is too
slow to be useful.

Purely convective Boiling: Boiling of water at low pressures is considered for the
study. The excess temperature is less than 5°C. The liquid in contact with the hot surface gets
superheated and slowly rises to the surface and vapour formation generally occurs at the
surface. This can be observed by allowing water to be heated to near saturation temperature
and then heating it further using a slow flame. Vapour will be observed over the water surface.
No bubbles will be observed. The heat flux will be of the order of 0.15 MW/m2.

Nucleate Boiling: As the heating rate is increased bubbles of vapour will be seen to
form at favourable locations called nucleation sites on the surface. A favourable location provides
a larger surface area by some roughness, notch etc. The bubbles will grow and will detach
themselves from the surface and will beign to rise to the surface. For lower range of values of
excess temperature, these bubbles will slowly condense again and will get reduced in size as
they rise. This will be the case when the excess temperature is of the order of 10°C.

The heat rate would increase to about three time the pure convection level. Further
increase in heat rate and consequently the surface temperature (also the excess temperature)
will cause vapour bubbles to rise as a stream to the surface. Bubbles will also form at more
number of locations. There will be a steady stream of vapour bubbles rising from a large number
of locations. The excess temperature will be about 20°C and the heat rate will be about 0.5
MW/m2.
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Further increase in the heat addition rate increases the surface temperature and
individual bubbles combine to form a column of vapour also called slugs of vapour rise directly
out of the surface. The columns will be also very close to each other and the liquid movement
to fill up the locations where evaporation is taking place is very brisk. The excess temperature
will be around 50°C and the heat flux will reach values of 1 MW/m2 and convection coefficient
will be around 20,000 W/m2K. Note that the heat rate is the more important quantity from the
design point of view. This governs the excess temperature and thus the value of convection
coefficient. The heat rate reaches a maximum value beyond which it is found that any further
increase quickly increases the excess temperature very rapidly and the process becomes
unstable. It may also cause damage to the surface. Hence design is generally limited below
this condition.

Film Boiling: A further increase in the heat flux causes a film of vapour to cover the
surface. This is due to the merging of favourable locations into an area. This reduces the
convection coefficient and excess temperature shoots up to a very high value. In this situation
the heat transfer is both by radiation and by  conduction to the vapour. If the material is not
strong enough for withstanding this temperature, the equipment will fail by damage to the
material. This is known as burn out.

Experiment in this regime are conducted by maintaining the surface temperature rather
than the heat flux. Experiments are conducted by immersing electrical resistance wire in the
fluid and varying the heat flux by varying the current. A copper rod immersed in water and
heated at the end (like a fin) can show the various regimes of boiling at the same time.

A typical boiling curve for water boiling at atmospheric pressure is shown in Fig. 11.1.
The values indicated are approximate.
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Fig. 11.1. The four regimes of pool boiling in water at atmospheric pressure.
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11.2

The correlations obtained for nucleate pool boiling is given by Rohsenow (1952).

Q
A

 = q = c T
h Pr C

h g
gfg

n
sf

fg
v1

3

1
1

0

0 5
∆L

N
MM

O
Q
PP

−L
NM

O
QP

µ
ρ ρ

σ
( ) .

...(11.2)

suffix l denotes liquid properties and v denotes vapour properties.
Where c1 — Specific heat of liquid J/kgK

  ∆T — excess temperature °C or K, (difference)
hfg — specific enthalpy of evaporation J/kg
Pr — Prandtl number of liquid
n — constant equal to 1 for water and 1.7 for other fluids

Csf — surface factor shown in tabulation 11.1 and taken as 0.013 for other cases

 µ1 — dynamic viscosity of the liquid kg/ms or Ns
m2

 ρ1 — density of the liquid kg/m3

 ρv — density of vapour kg/m3

σ — surface tension-liquid-vapour interface N/m
g — gravitational acceleration m/s2

 g0 — force conversion factor kgm/Ns2 = 1 in SI units.
This correlation is the result of a log log plot of experimental results with parameters.

q
h

g
gfg vµ ρ ρ1

0

1

0.5

( )−
L
NM

O
QP  and C

h
T

Prfg

1
1 7

1
∆ . .

This resulted in a straight line with value of Csf = 0.013 generally leading to the correlation
11.2.
Example 11.1: Show the equation (11.2) is dimensionally consistent.

RHS → q → W
m2

Solution: The LHS is taken as three parts:

(i) c T
C Pr hsf

n
fg

1 ∆  → J
kg K

. K kg
J

 nondimensional

(ii) µ1hfg = kg
ms

. J
kg

J
ms

=  = W
m

(iii) g
g

v

0

1
0.5

ρ ρ
σ
−F

HG
I
KJ

L
NM

O
QP

 → m
s

Ns
kgm

. kg
m

. m
N2

2

3

0.5L
NMM

O
QPP

 = 1
m

∴ i × ii × iii J
ms

. 1
m

J
s

. 1
m2→  → W/m2
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So dimensionally consistent
Such equations can be used with any system of units.

Table 11.1. Values of Csf for various surface fluid combinations

Fluid Surface combination Csf

Water copper 0.0130
Water brass 0.0060
Water emery polished copper 0.0128
Water scored copper 0.0068
Water ground polished stainless steel 0.0080
Water mechanically polished

stainless steel 0.0132
Water chemically etched stainless steel 0.0133
Water platinum 0.0130
CC14 copper 0.0130
CC14 emery polished copper 0.0070
Ethyl alcohol chromium 0.0027

Values for more combinations are available in hand books. For estimates use 0.013 for
other combinations. This results in ± 20% accuracy.

The maximum value of heat flux after which boiling becomes unstable is called
critical heat flux. The correlation for the same is obtained as

 qcr = 0.149 hfg σ ρ ρ ρgg v v0 1
2

1/4

( )−
L
NMM

O
QPP

...(11.3)

The theoretical value of the constant is 0.131 and it is replaced by 0.149 for better
agreement with experimental results. As hfg, ρ1, ρv and σ are dependent  also on pressure, the
critical heat flux is found to be influenced by the evaporating pressure and is found to occur at
about P/Pcr = 0.33 where Pcr is the critical pressure. For water, the flux is about 3.8 MW/m2 at
atmospheric pressure. The maximum heat flux dictates the size and the surface temperature
of the equipment and hence its importance in the design of evaporating equipments.

Simplified expression for boiling water (as in the case of air in free convection)
is given by

h = C(∆T)n (P/Pa)0.4 ...(11.4)
Where P is the system pressure and Pa is the standard atmospheric pressure.
The values of C and n are tabulated below:

Surface Applicable value of q, kW/m2 C n

Horizontal q < 15.8 1040 1/3
15.8 < q < 236 5.56 3

Vertical q < 3.15 539 1/7
3.15 < q < 63.1 7.95 3
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1.2.1. In stable film  boiling heat transfer occurs both by convection and radiation. The
convection component for boiling on horizontal tube of diameter D is given by (with vapour
properties at film temperature)

hc = 0.62 k g h c T
D T

v v v fg pv

v

3
1

0 25
0 68ρ ρ ρ

µ
( ) ( . )

.
− +L

N
MM

O
Q
PP

∆
∆

...(11.5)

For flat surfaces the correlation is

hc = 0.425 
g k h c T

g T
v v v fg pv

v

( ) ( . )
( ) . .

.ρ ρ ρ

σ µ
1

1 5 3

0
0.5

0.25
0 68− +L

N
MM

O
Q
PP

∆

∆
...(11.6)

Where suffix v refers to vapour at film temperature (Tw + Ts)/2.
The radiation component is given by

hr = σr ε 
T T
T T

w

w

4 −
−

L
NMM

O
QPP

sat
4

sat
...(11.7)

Where σr is Stefan Boltzmann constant and ε is the emissivity of the surface.
The combined convection coefficient is given by

 h = hr + hc (hc/h)1/3 ...(11.8)
This equation has to be solved by trial.
Another suggestion is h = hc + 0.75 hr ...(11.9 (a))
A correlation is available for the minimum heat flux in film boiling (1958).

q
A
F
HG
I
KJmin

 = 0.09 hfg ρvf 
gg v

v

0 1

1
2

1 4
σ ρ ρ

ρ ρ
( )

( )

/
−

+

L
NMM

O
QPP

...(11.9 (b))

and ρvf is to be obtained at film temperature.

11.3 FLOW BOILING

This is nothing but forced convection boiling where the fluid is moved by an external device.
The regimes of boiling and the heat flux curve are similar to the ones in pool boiling. The
process occurs in modern high pressure forced circulation boilers. As subcooled liquid enters a
heated tube with wall heat-flux, initially heat transfer occurs by forced convection and the
liquid  is heated to saturation condition. The next regime is where bubbles form at the surface
and then flow into the core where these may condense. At a later section the flow becomes slug
type of flow with alternately liquid and vapour filling the tube. This is followed by what is
termed as annular flow with liquid flowing near the surface and vapour forming the core. The
heat flux reaches the maximum or critical value in this regine. The flow then becomes unstable
with the liquid film breaking out. The heat flux cannot be sustained without the material
becoming overheated. Then the flow becomes what is called mist flow with small droplets of
liquid floating in the vapour. The heat flux at this regime may be even lower than that in the
forced convection regime. In steam generators operation is limited to the annular flow regime
as otherwise damage to steam pipe may occur. The phenomenon is shown in Fig. 11.2. The
heat flux in forced convection boiling is calculated using.
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Fig. 11.2. Characteristics of forced-convection vaporization in a vertical tube:
Heat transfer coefficient versus quality and type of flow regime.

 qTotal = qcon + qboiling ...(11.10)
qcon is calculated using

 Nu = 0.019 Re0.8 Pr0.4 ...(11.11)

where Re = G x D( )1
1

−
µ

where x is dryness G is mass flow rate and
qboiling  = 2.253 (∆T)3.96 W/m2 ...(11.12)

for pressures  0.2 < P < 0.7 MPa
 qboiling = 283.2 P4/3 (∆T)3 W/m2 ...(11.13)

for  0.7 < P < 4 MPa.
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Example 11.2: Water at atmospheric pressure (saturation temperature = 100°C) is boiling on
a brass surface heated from below. If the surface is at 108°C, determine the heat flux and
compare the same with critical heat flux.
Solution: The property values are taken at the liquid temperature

 ρc = 961 kg/m3, hfg = 2257 kJ/kg, ρv = 0.598 kg/m3, c = 4216 J/kg K
 µ1 = 2.816 × 10–4 kg/ms, σ = 58.8 × 10–3 N/m, Pr = 1.74

From table 11.1 Csf = 0.0060, For water n = 1
using equation (11.2), (hfg in J/kg)

   q = c T
c h Prsf fg

n
1

1

3
∆L

N
MM

O
Q
PP  µ1 hfg 

g
g

v( )ρ ρ
σ

1

0

0.5
−L

NM
O
QP

= 
4216 8

0 0060 2257 10 1743

3
×

× × ×
L
NM

O
QP. .  . 2.816 × 10–4 × 2257 × 103 

9 81 961 0 598
1 58 8 10 3

0.5. ( . )
.

−
× ×

L
NM

O
QP−

= 0.746 × 106 W/m2

Critical heat flux is given by equation (11.3)
 qcr = 0.149 hfg [σ g g0 (ρ1 – ρv) ρv

2]1/4

= 0.149 × 2257 × 103 [58.8 × 10–3 × 9.81 × 1 (961 – 0.598) × 0.5982]0.25

= 1.262 × 106 W/m2

The actual flux is less than the critical flux at ∆T = 8°C and hence pool boiling exists.
The critical flux is found to occur at ∆T = 10.5°C when substituted in equation (11.2). Using
simplified expression, equation (11.4)

h = 5.56 (8)3 (1)0.4 = 2846.72 W/m2 K
q = h ∆T = 0.0228 × 106 W/m2, A lower prediction.

Example 11.3: For example 11.2 calculate the flux if the surface was stainless steel mechanically
polished.
Solution: The value of Cst = 0.0132

It is noted from equation (11.2), that the heat flux is inversely proportional to the
cubic power of Csf.

∴  q = 0.746 × 106 × 
0 0060
0 0132

3.
.
F
HG

I
KJ  = 70060 or 0.07 × 106

The heat flux is reduced to about 1/10th value determine with brass.
Example 11.4: In example 11.2, if the excess temperature is increased to 12°C determine the
heat flux and compare with the critical value.
Solution: It is seen from equation (11.2) that the heat flux is proportional to (∆∆∆∆∆T)3

∴  q = 0.746 × 106 
12
8

3F
HG
I
KJ  = 2.52 × 106 W/m2

This is higher than the critical heat flux and this is not possible. So unstable film boiling
may start at this condition.
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Hence, it is desirable to calculate the value of q using equation (11.6)

 hc = 0.425 g k h c T
g T

v v v fg pv

v

( ) [ . ]
( ) .

.

.

.
ρ ρ ρ

σ µ
1

1 5 3

0
0 5

0 25
0 68− +L

N
MM

O
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PP

∆

∆

From tables,
kv = 0.02373 W/mK, µv = 11.96 × 10–6 kg/ms, cpv = 2135 J/kgK

hc = 0.425 
9 81 961 0 598 0 02373 2257 10 0 68 2135 12

1 58 8 10 1196 10 12 0 598

1 5 3 3

3 0.5 6

0.25
. ( . ) . [ .

( . ) . / .

.− × × × + × ×
× × × × ×

L
NM

O
QP− −

 h = 266 W/m2 K
 q = h ∆∆∆∆∆T = 3186 W/m2

Heat flux is considerably reduced.

Note: hr = σ εs 
T T
T T

s

s

4 −
−

L
N
MM

O
Q
PP

sat
4

sat
 assuming εs = 0.6 = 5.67 × 0.6 ( . ) ( . )3 85 373

12
4 4−  = 7.41 W/m2 K.

The contribution due to radiation is negligible at this level.

11.4 CONDENSATION

When saturated vapour comes in contact with a cooler surface, the vapour condenses into
liquid. The surface temperature should be lower in this case as compared to the temperature
of the vapour. The condensate generally moves down by gravity. If the liquid wets the surface
a thin layer of liquids forms over the surface and the film thickness increases along
the downward direction. This type of condensation is known as filmwise condensation
and this is the type encountered in most practical situations. The film introduces a
resistance to heat flow between the surface and the vapour. The heat transfer rate is reduced
because of this resistance. If the surface is nonwetting, then droplets form on the surface
and these roll down individually. The vapour is in direct contact with the surface over
most of the area and heat transfer rates are much higher as there is very little resistance for
heat flow between the vapour and the surface. This type is known as dropwise
condensation. In practice no surface is found to continue as nonwetting over any length of
time. So using the value of heat transfer coefficients assuming dropwise condensation for design
purposes is not advisable.
11.4.1. Formation of condensate film: As condensate forms on the surface, the surface is
fully wetted and the liquid begins to flow down. Under steady conditions additional condensate
is added along the length and the film thickness increases in the direction of flow. The velocity
and temperature distribution in the film are shown in Fig. 11.3.

An element considered for force analysis is shown in Fig. 11.4. The forces encountered
are the viscous shear, gravity force and the buoyant force. The force balance gives.

 ρ1 g(δ – y) dx = µ1 
du
dy  dx + ρv g(δ – y) dx ...(11.14)

Integrating and using the boundary that u = 0 at y = 0
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Fig. 11.3. Formation of condensate film.
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Fig. 11.4. Element considered for force analysis and the forces on the element.

 u = ( )ρ ρ
µ

δ1

1

21
2

−
−FHG
I
KJ

v g y y ...(11.15)

The total mass flow at any section can be determined by integrating the flow using the
velocity distribution.

 m = 
0 1
δ

ρz u dy  = 
0 1
δ

ρz  ( ) .ρ ρ
µ

δ1

1

21
2

− −FHG
I
KJ

L
NM

O
QP

v g y y  dy

= 
ρ ρ ρ δ

µ
1 1

3

13
( )− v g

...(11.16)

Assuming a linear variation of temperature in the film,
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q = – k1 dx 
dT
dy y = 0

 = k1 dx T Tg w−
δ

...(11.17)

The condensation occuring between sections x and x + dx can be obtained using ∆m. The
heat flow in this section will be the product mass and latent heat.

∆m = dm
dx  . dx = d

dx  
ρ ρ ρ δ

µ
1 1

3

13
( )−L

NMM
O
QPP

v g
 dx ...(11.18)

By multiplying and dividing by dδ

∆m = d
dδ

 
ρ ρ ρ δ

µ
δ1 1

3

13
( )−L

NMM
O
QPP

v g d
dx  . dx = 

ρ ρ ρ δ δ
µ

1 1
2

1

( )− v g d
...(11.19)

As heat conducted = heat removed from condensate, for the distance dx along the flow,

 
ρ ρ ρ δ δ

µ
1 1

2

1

( )− v g d
 hfg = k1 dx 

T Tg w−
δ

...(11.20)

Integrating and using δ = 0 at x = 0, yields,

δx = 
4 1 1

1 1

0.25
µ

ρ ρ ρ
k x T T

g h
g w

fg v

( )
( )

−
−

L
N
MM

O
Q
PP ...(11.21)

From basics, heat transfer at the surface by conduction is equal to the heat convected.
Assuming linear temperature variation,

h dx (Tw – Tg) = – k1 dx (T Tg w− )
δ

...(11.22)

∴ h = 
k1
δ

...(11.23)

∴ hx = 
ρ ρ ρ

µ
1 1 1

3

1

1/4

4
( )

( )
−

−

L
N
MM

O
Q
PP

v fg

g w

gh k
x T T ...(11.24)

 Nux = hx
k

gh x
k T T

v fg

g w1

1 1
3

1 1

1/4

4
=

−
−

L
N
MM

O
Q
PP

ρ ρ ρ
µ
( )

( ) ...(11.25(a))

The average value of convection coefficient upto lengths L is obtained by

h  = 1
L

 ∫ hx dx = 4
3  h

x L=

...(11.25 (b))

or h  = 0.943 
ρ ρ ρ

µ
1 1 1

3

1

1/4
( )

( )
−

−

L
N
MM

O
Q
PP

v fg

g w

gh k
L T T ...(11.26)

For higher values of lengths, 0.943 is replaced by 1.13.
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This expression is obtained by direct analysis with the assumption of linear temperature
profile. The property values are at film temperature. In order to take care of the actual nonlinear
temperature variation and also undercooling the enthalpy of evaporation is corrected by

 hfg = hfg + 0.68 c1(Tg – Tw)
where c1 is the specific heat of liquid.

It is found that experimental measurements correlate better when properties are
evaluated at film temperature. For condensation on horizontal tubes of diameter d the
correlation is

h = 0.725 
ρ ρ ρ

µ
1 1

3

1

1/4
( )

( )
−

−

L
N
MM

O
Q
PP

v fg f

g w

gh k
d T T ...(11.27)

and for n tube rows in vertical direction, nd replaces d.
11.4.2. Turbulent film: As the condensate film thickness increases, the flow becomes turbulent.
In order to define this condition a film Reynolds number Reδ concept is used.

Reδ = r u D1 m h

1µ
 and Dh = 4Ac/P

Where Ac is the flow area 1 × δ and P is the wetted perimeter (1m). This can be simplified
to

Reδ = 4G
1µ

...(11.28)

Where G is the mass flow per unit depth of plate given by
 G = ρρρρρ1 um δδδδδ

G can be determined using equation 11.16 and 11.21
For Reδδδδδ > 1800 the flow is turbulent. The correlation for convection coefficient is

 hc  = 0.0077 
g kvρ ρ ρ

µ
1 1 1

3

1
2

1/3
( )−L

NMM
O
QPP  Reδ

0 4. ...(11.29)

A concept called condensation number is also used in the above equation. The
condensation number is defined as

CO = h  
µ

ρ ρ ρ
1
2

1
3

1 1

1/3

k gv( )−

L
NMM

O
QPP ...(11.30)

This leads to the rewriting of equation (11.29) as
CO = 0.0077 Reδ

0.4 ...(11.31)
After the determination of CO from (11.31), h is calculated using (11.30)
For lower film Reynolds numbers for vertical plate (Reδ < 1800)

CO = 1.47 Reδ
(–1/3) ...(11.32)

For horizontal cylinders for (Reδ < 1800)
CO = 1.514 Reδ

–1/3 ...(11.33)
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11.4.3. Condensation inside tubes: In refrigeration where the condensed refrigent has to
be carefully collected condensation occurs inside horizontal tubes. The correlation for such
cases is

 h  = 0.555 
ρ ρ ρ

µ
1 1 1

3

1

1 4
( )

( )

/
− ′

−

L
N
MM

O
Q
PP

v fg

g w

g k h
d T T

...(11.34)

Where  h′fg = hfg + 0.68 c1 (Tg – Tw).
Example 11.5: Check the dimensional consistency of equation (11.24)

 hx = 
ρ ρ ρ

µ
1 1 v fg

g w

1/4
( )g h k

x (T T )
−

−

L
N
MM

O
Q
PP

. 1
3

4 .

Solution: LHS W/m2 K

RHS kg
m

. kg
m

. m
s

. J
kg

W
m K

. ms
kg

. 1
m

. 1
K3 3 2

3

3 3

1/4L
NMM

O
QPP

Cancelling kg, and using J
s

 as W, = W
m K

4

8 4

1/4L
NMM

O
QPP

 = W/m2 K.

The equation is dimensionally consistent. Such equations are independent of the system
of units used.
Example 11.6: Saturated steam at a temperature of 65°C condenses on a vertical surface at
55°C. Determine the thickness of the condensate film at locations 0.2, 0.4, 0.6, 0.8, 1 m from the
top. Also determine the condensate flow, the film Reynolds number, the local and average values
of convective heat transfer coefficients at these locations. Also calculate the condensation numbers.
Solution: The property values for liquid should be taken at the film temperature = (55 + 65)/
2 = 60°C. The liquid property values at 60°C are

ρ1 = 985 kg/m3, k1 = 0.6513 W/mK, c = 4183 J/kgK
µ1 = 4.7083 × 10–4 kg/ms,

 hfg at 65°C = 2346.2 kJ/kg, ρv 1/6.197 kg/m3

Considering unit width: using eqn. (11.21).

 δ = 
4

1 1

0.25
µ

ρ ρ ρ
kx T T

gh
g w

fg v

( )
( )

−
−

L
N
MM

O
Q
PP  = 

4 4 7083 10 0 6513 10
9 81 2346 2 10 985 985 1 6 197

4

3

0.25
× × × ×

× × × −
L
NM

O
QP

−. .
. . ( / .

x

= 1.53 × 10–4 . x0.25

G = m = 
ρ ρ ρ δ

µ
1 1

3

3
( ) .− v g

 = 
985 985 1 6 197 9 81

3 4 7083 10 4
( / . ) .

.
−

× ×
L
NM

O
QP−  δ3

= 6.73 × 109 δ3 kg/m width = 0.024176 × x0.75

Using eqn. (11.28)

 Reδδδδδ = 4 4
4 7083 101

4
G

µ
=

× −.
 G = 5.718 × 1013 . δ3 = 205.39 × x0.75
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All through the flow is laminar. Using eqn. (11.25)

 hx = 
ρ ρ ρ

µ
1 1

3

1

1/4

4
( )

( )
−

−

L
N
MM

O
Q
PP

v fg

g w

g h k
x T T  = 4254.33 × 

1 0.25

x
F
HG
I
KJ , h  = 

4
3  hL

Using 000(11.32)  CO = 1.47 Reδ
–1/3 = 3.816 × 10–5/δ

These values at various locations are tabulated below:
for flow rate m, use eqn. (11.16).

Distance m 0.2 0.4 0.6 0.8 1.0

δ, mm 0.10238 0.12175 0.13474 0.14479 0.1531
m, kg/s/m 0.00723 0.01216 0.0165 0.02045 0.02418
Reδ 61.42 103.31 140.18 173.74 205.4
hx 6361.7 5349.5 4833.9 4498.4 4254.3

h 8482.3 7132.7 6445.2 5997.9 5672.4

CO 0.3730 0.3133 0.2830 0.2634 0.2491

The value of hfg can be corrected to take care of under cooling.
11.4.4. Inclined surfaces: For inclined surfaces, g is replaced by g cos θ where θ is the angle
with the vertical.

In refrigeration, plate type of condensers are used with horizontal tubes brazed on them.
The correlation for the same in terms of condensation number is

 CO = 1.51 Reδ
–1/3 ...(11.35)

Some simplified expressions are available using condensation coefficient which depends
on the fluid and the temperature. These are applicable for vertical and horizontal tubes. These
expressions are to be used with a table of values of condensation coefficients. Some examples
are given under solved problems.
Example 11.7: Saturated steam at 65°C condenses on horizontal cylinder of 0.2 m dia at 55°C.
Determine the value of convection coefficient for (i) single tube and (ii) for a bank of tubes of 10
rows arranged vertically one below the other.
Solution: The property values are as in example 11.6 as the film temperature is 60°C and the
fluid is steam.

Using equation (11.27)
(i) For single tube:

h = 0.725 
ρ ρ ρ

µ
1 1

3 1/4
( )

( )
−

−

L
N
MM

O
Q
PP

v fg f

f g w

g h k
d T T

= 0.725 
985 985 1 6 197 9 81 2346 2 10 0 6513

985 0 478 10 0 2 10

3 3

6

1/4
( / . ) . . .

. .
− × × ×

× × × ×

L
NM

O
QP−

= 6522.4 W/m2 K.
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(ii) For a bank of tubes nd is to be used in place of d in the above expression

∴ h = 3667.8 W/m2 K Check 6522 4 1
100.25. ×F

HG
I
KJ

This reduction is because of the thicker film caused by the condensate from one tube
falling and covering the lower tube.

Example 11.8: Steam at 65°C condenses on vertical tubes of diameter of 0.3 m at 55°C. Determine
the location at which the film will become turbulent.
Solution: Turbulence sets in when

 
4G
µ  = 1800

Taking  property values from example 11.6,

 G = 1800
4  × µ = 1800

4  × 985 × 0.478 × 10–6 = 0.2118735 kg/sm

The length at which turbulence occurs LT is obtained by considering mass flow for unit
depth

 G = m = ρ ρ ρ δ
µ

1 1
3

3
( )− v g

and δ = 
4

1 1

0.25
µ

ρ ρ ρ
kx T T

g h
g w

fg v

( )
( )

−
−

L
N
MM

O
Q
PP

Solving for x, 0.2118735 = 
ρ ρ ρ

µ
1 1

3
( )− v g

 
4

1 1

0.75
µ

ρ ρ ρ
k T T

g h
g w

fg v

( )
( )

−
−

L
N
MM

O
Q
PP  x0.75

∴ LT = x = 18.07 m.
In this case it takes considerable length for flow to become turbulent.

11.5 FREEZING AND MELTING

When a liquid in a vessel is exposed on the top to a temperature lower than the freezing
temperature, the liquid on the top layer will solidify first and slowly the thickness of the solid
layer will increase. The thickness of solid will increase with time. Heat is conducted through
the solid and then convected at the interface. The solid and the liquid have completely different
thermal properties. If the temperature of the liquid is higher than the freezing temperature it
has to be cooled by removal of sensible heat. Similarly if a solid at freezing temperature is
exposed to higher temperature, the solid will begin to melt and if the liquid is not removed,
heat has to be conducted through the liquid layer and then convected at the interface. Other
configuration like long cylinders may be also encountered. Solidification in a cylinder may be
from inside-out or outside-in as required. The model is rather complex and solutions are available
only for simpler situations.



VED

c-4\n-demo\damo11-1

C
ha

pt
er

 1
1

PHASE CHANGE PROCESSES—BOILING, CONDENSATION FREEZING AND MELTING 495

11.5.1. Melting of solid at freezing temperature when exposed to a higher temperature by
convection at the surface.

The physical situation is shown in Fig. 11.5. The assumptions are that the soild is at
freezing temperature and the heat required to increase the temperature of the liquid is small
compared to the heat of fusion of ice to be added.

T�
h�

T�

Liquid

Solid

Tfr

k
l x

dx

Fig. 11.5. Melting of solid at melting temperature.

Then, for unit area, the heat flow at any given instant when the liquid layer is xm thick
with conductivity kl is

q = 
T T

h
x
k

fr

l

∞

∞

−

+

L

N

MMMM

O

Q

PPPP
1 ...(11.36)

If a layer of thickness dx melts during time dτ, the rate of energy required for melting is
given by (for unit area)

q = ρs hsf 
dx
dτ

...(11.37)
Where ρs is the density of solid and hsf is the heat of fusion.
Equating and rearranging

h T T
h

fr

s sf

∞ ∞ −L
N
MM

O
Q
PP

( )
ρ

 dτ = 1 +
L
NM

O
QP

∞xh
kl

 dx ...(11.37 (a))

Now introducing a set of new variables

x* = 
xh
kl

∞  and τ* = 
h T T

k h
fr

l s sf

∞ ∞ −L
N
MM

O
Q
PP

2 ( )
ρ  τ ...(11.38)

The equation (11.37) will become
 dτ* = (1 + x*) dx* ...(11.39)

As RHS of eqn. (11.37) becomes

x* = 
xh
kl

∞ ∴
k
h

l

∞
 . dx* = dx,

∴  1 +
F
HG

I
KJ

∞xh
kl

 dx = 
k
h

l

∞
 (1 + x*) dx*
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LHS of eqn. (11.37) becomes, using (11.38)
dτ* (kl/h∞)

Eqn. (11.39) can be integrated from time 0 to time τ or time τ1 to τ2
This gives τ∗ = x* + 0.5x2 ...(11.40)
Equation (11.40) can be used to determine the time required for a given depth of layer to

melt or the layer thickness melted during a given time. Solid at a temperature lower than
freezing temperature is not considered.
11.5.2. Liquid solidifying at freezing temperature: Equation (11.40) is directly applicable
except that kl should now replace ks and x is thickness of solid layer and not liquid layer. The
model is shown in Fig. 11.6. Here also the time for freezing of certain thickness or the thickness
frozen during a given time interval are calculated. using equation (11.40).

T∝
h∝

T∝

Liquid

Solid

Tfr

ksx

dx

Fig. 11.6. Freezing of liquid at freezing temperature.

11.5.3. A more practical case of freezing is when the liquid is above freezing
temperature.
The model is shown in Fig. 11.7.

T∝
h∝T∝

Liquid

Solid

Tfr

x

dx

T h1 sf

Fig. 11.7. Freezing of liquid at temperature higher than the freezing point.

In this case convection is encountered at the liquid solid interface also.
In this case heat is removed not only for freezing but also for cooling the liquid.
Heat removed for freezing = ρs hsf dx/dτ
Heat removed for cooling the liquid = hc (τ1 – τfr)
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The total heat should pass through the solid layer and to the outside.
T T
x
k h

T T
h

fr

s

fr−
F
HG
I
KJ +
F
HG
I
KJ

=
−∞

∞

1 1
1

1( / )
 + 

ρ
τ

s sfh dx
d

.
...(11.41)

Defining four new variables

 T* = 
T T
T T

fr

fr

1 −
− ∞

,  x* = 
xh
ks

∞

   τ* = 
h T

k h
fr

s s sf

∞ ∞−L
N
MM

O
Q
PP

2 ( T )
ρ  τ , H* = 

h
h

1

∞
...(11.42)

Eqn. (11.41) reduces to
 1/(x* + 1) = H*T* + dx*/dτ* ...(11.43)

Rearranging and integrating from time zero to time τ,

 τ* = 1 1
1 1

2

H T
H T

H T x
x

H T* *
* *

* * ( *) * *
F
HG

I
KJ

−
− +
L
NM

O
QP −ln * ...(11.44)

In this case, the time required for freezing to a certain depth is directly solvable but the
inverse i.e., depth frozen during a given time can be arrived at only by trial or by chart solution.

For the case of freezing of liquid at the saturation temperature, H*T* = 0 and equation
(11.43) should be integrated neglecting H*T*, which gives the same equation as (11.39) and
(11.40) except for properties.

Equation (11.44) should not be directly used in this case, as this will lead to division by
zero.
11.5.4. Freezing inside of cylinder-saturated liquid-inward and outward: The model is
shown in Fig. 11.8 (a) and (b)

Liquid
Solid

Container

Ro

h , T� � T

Pipe

Liquid Tfr

Tube Solid

r
Liquid

Tfr
Ro

h�

T�

(a) (b)

Fig. 11.8. (a) Cylinder-Freezing inwards (b) Cylinder-Freezing outwards

Defining r* = r/R0 R* = h∞ R0/ks

τ* = 
( )T T k

h R
fr s

s sf

− ∞ τ

ρ 0
2 ...(11.45)
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For inward freezing the equation is

τ* = 0.5 r*2 ln r* + 1
2

0 25
R *

+L
NM

O
QP.  (1 – r*2) ...(11.46)

For outward freezing the equation is

 τ* = 0.5 r*2 ln r* + 1
2

0 25
R *

−L
NM

O
QP.  (r*2 – 1) ...(11.47)

Here also it is easier to calculate directly the time required for a given depth of freezing.
The inverse is to be solved by trial, i.e., the thickness frozen in a specified time. Charts are
available in data books for ease of calculation in this case.
Example 11.9: Water at 0°C is exposed over the surface to convection at – 11°C with h∞ = 570
W/m2K. Determine the time required for ice of 3 mm thickness to form.
Solution: ks = 2.22 W/mK, hsf = 333700 J/kg, ρs = 918 kg/m3

 τ* = x* + 0.5 x*2

 τ* = 
h T T

k h
fr

s s sf

∞ ∞−L
N
MM

O
Q
PP

2 ( )
ρ

 τ, x* = xh
ks

∞  x* = 0 003 570
2 22

.
.

×  = 0.77027,

∴  τ* = 1.066928
 τ = τ* ks ρs hsf – h∞

2 (Tfr  – T∞)
= 1.066928 × 2.22 × 918 × 333700/(5702 × 11) = 203 seconds

It requires about 3.5 minutes to form 3 mm layer of ice.

Example 11.10: In example 11.9, if the water is at 8°C with a convection coefficient of 57 W/
m2 K at the surface, and if the convection temperature at the surface is – 20°C, determine the
time for ice to form to a thickness of 4 mm.
Solution: This is freezing of water from a temperature above freezing point.

T* = 
T T
T T

fr

fr

1 −
− ∞

 = 8
20  = 0.4

x* = 0.004 × 570/2.22 = 1.027
 H* = h1/h∞  = 57/570 = 0.1

 τ* = 1 1
1 1

2

H T
H T

H T x* *
* *

* * ( *)
F
HG

I
KJ

−
− +
L
NM

O
QPln  – x

H T
*

**

= 1
0 4 01

1 0 4 01
1 0 4 01 1 1027

1027
0 4 01

2

. .
ln . .

. . ( . )
.

. .×
F
HG

I
KJ

− ×
− × +
L
NM

O
QP − ×

 = 1.66

 τ = τ* ks . ρs hsf/h∞
2 (Tfr – T∞)

= 1.66 × 2.22 × 918 × 333700/(5702 × 20) = 173.6 s
Note that a lower surface temperature is used in this case, and hence the shorter time

requirement.
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Example 11.11: A long cylindrical drum of 0.4 m, dia containing water at 0.°C is exposed on
the outside to a convection of 600 W/m2K, at – 20°C. Determine the time required for ice to form
to a depth of 0.1 m.
Solution: Using the data from example 11.9, (Freezing inside cylinder)

r* = r/R0 = 0 1
0 2

.

.  = 0.5

 R* = 600 × 0.2/2.22 = 54.054
τ = τ* ρs hsf R0

2/ks (Tfr – T∞)

 τ* = 0.5 r*2 ln r* + 
1

2R *
0.25+F

HG
I
KJ  (1 – r*2)

= – 0.00866 + 0.194437 = 0.107794
∴ τ = 29749 s (from definition of τ*, 11.45) or 8.26 hours
Note that the thickness is rather large (10 cm) and hence the longer time period.

SOLVED PROBLEMS

Problem 11.1: Water is evaporated under pool boiling conditions at a pressure of 40 bar over
a mechanically polished stainless steel surfaces. Calculate the critical heat flux and the excess
temperature at which it occurs assuming nucleate boiling to continue upto this point.
Solution: The temperature corresponding to the pressure is 250.4°C. The property values: at
250.4°C are:

 ρv = 20.09 kg/m3, ρ1 = 799.9 kg/m3, hfg = 1714.1 kJ/kg
 σ = 26.1 × 10–3 N/m. From table 11.1 Csf = 0.0132

Using equation (11.3) for calculating critical heat flux and substituting the property
values.

 qcr = 0.149 hfg (σ gg0 (ρ1 – ρv) ρν
2)1/4

= 0.149 × 1714.1 × 103 (26.1 × 10–3 × 9.81
× 1 (799.9 – 20.09) 20.092)1/4

= 4.3031 × 106 W/m2.
Note: In the text, for water the maximum heat flux is mentioned as 3.8 MW/m2.
Assuming that this occurs in the limiting nucleate boiling condition, eqn. (11.2) is used.

Other property values required are c1 = 4856.36 J/kgK, µ1 = 1.119 × 10–4 kg/ms
(The viscosity value is determined as νρ), Pr = 0.8725

q = C T
h Pr C

h g
gfg sf

fg
v1

3

1
1

0

0 5
∆L

N
MM

O
Q
PP

−L
NM

O
QP

µ
ρ ρ

σ
( ) .

= 4856 36
1714 1 10 0 8725 0 01323

3.
. . .

×
× × ×

L
NM

O
QP

∆T  . 1.119 × 10–4 × 1714.1 × 103

×  
9 81 799 9 20 09

1 26 1 10 3

0.5. ( . . )
.

−
× ×

L
NM

O
QP−  = 1545.9 × ∆T3 ...(P. 11.1)
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Substituting qcr for q, ∆T = 14.98°C
This value can be verified from plots of  q vs ∆T for various pressures available in lterature.
In this case Nucleate pool boiling will occur up to an excess temperature of 14.98°C.

Problem 11.2: Determine for the situation of Problem 11.1, the heat flux for excess temperatures
of 2.5, 5, 7.5, 10 and 12.5°C.
Solution: Using eqn. P. 11.1.1, q = 1545.9 × ∆T3, the calculated values are given below:

∆T°C 2.5 5 7.5 10 12.5

q, 106 W/m2 0.0242 0.1932 0.6522 1.5459 3.0193
h, W/m2K 9680 38640 86960 154590 251544

Problem 11.3: Determine the heat flux if in problem 11.1 the excess temperature is 400°C.
Solution: Equation (11.6) is applicable

hc = 0.425 
g k h c T

g T
v v v fg pv

v

( ) ( . )
( )

.ρ ρ ρ

σ µ
1

1 5 3

0
0.5

1/4
0 68− +L

N
MM

O
Q
PP

∆

∆

The property values at film temperature (650.4 + 250.4)/2 = 450.4°C
ρ1 = 799.9 kg/m3, hfg = 1714.1 × 103 J/kg
ρv = 15.94, σ = 9 × 10–3 N/m, kv = 0.0627 W/mk, cpv = 5694 J/kgK
µv = 22.85 × 10–6 kg/ms (density and hfg – steam tables)

∴ hc = 0.425 9 81 799 9 15 94 15 94 0 0627 1714 1 10 0 68 400 5694
1 9 10 22 85 10 400

1 5 3 3

3 0.5 6

0.25
. ( . . ) . ( . ) ( . . )

( ) .

.− × × + × ×
× × × × ×

L
NM

O
QP− −

= 567.7 W/m2K
 hr = ε σ (Tw

4 – Ts
4)/(Tw – Ts) = 0.65 × 5.67 (9.2344 – 5.2344)/400 = 59.18 W/m2K

∴ h = 567.1 + 0.75 (59.18) = 612.1 W/m2 K
q = h ∆T = 0.2448 × 106 W/m2.

Problem 10.4: Refrigerant 12 evaporates at – 20°C to provide the cooling of food. Determine
the critical heat flux and heat flux when the surface temperature is at 10°C. Also determine the
excess temperature at which the critical flux occurs. The property values are:
Solution:  ρ1 = 1460 kg/m3, ρv = 9.15 kg/m3

hfg = 161.78 × 103, σ = 23 × 10–3 N/m, Csf
 = 0.013 (assumed)

Pr = 4.40, c1 = 909 J/kgK
 µ1 = 3.431 × 10–4 kg/ms

Using (11.3)
 qcr = 0.149 × 161.78 × 103 [23 × 10–3 × 9.81 × 1 (1460 – 9.15) 9.152]1/4

= 0.310 × 106 W/m2
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Using (11.2)

q = 909
16178 10 4 4 0 0133 1 7

3
×

× × ×
L
NM

O
QP

∆T
. . ..  3.431 × 10–4 × 161.78 × 103 × 9 81 1460 9 15

1 23 10 3

0.5. ( . )−
× ×

L
NM

O
QP−

q = 1.84334 × ∆T3

Substituting qcr for q, ∆T = 58.8 °C
When surface temp. is 10°C, ∆T = 30°C i.e., 10 – (– 20)
∴  q = 1.84334 × ∆T3 = 0.05 × 106 W/m2

 h = 1659 W/m2 K.
Note : Sources for property values of liquids other than water are scarce.

Problem 11.5:  n-Butyl alcohol boils on a copper surface at 1 atm. The saturation temperature
is 117.5°C. Determine the critical heat flux and heat flux for excess temperatures of 10, 20,
200°C. Also determine the excess temperature at the critical flux condition.
Solution: The property values are:

 σ = 0.0183 N/m, hfg = 591500 J/kg
 ρv = 2.3 kg/m3, µv = 0.143 × 10–3 kg/ms
ρ1 = 737 kg/m3, µ1 = 0.39 × 10–3 kg/ms
c1 = 2876 J/kgK, Pr = 6.9, k1 = 0.163 W/mK

Csf = 0.00305, cρν  = 1706 J/kgK, kν = 0.02 W/mK
Using equation (11.3)

 qcr = 0.149 hfg [σ ggo(ρ1 – ρv) ρv
2]1/4

= 0.149 × 591500 [0.0183 × 9.81 × 1 (737 – 2.3)2.32]1/4 = 0.453 × 106 W/m2

Assuming nucleate boiling and excess temperature ∆Tcr

 0.547 × 106 = µ1 hfg 
c

h pr C
g
g

T
fg sf o

v
cr

1
3

1
0.5

3
1.7

L
N
MM

O
Q
PP

−L
NMM

O
QPP

ρ ρ
σ
b g

∆

= 0.39 × 10–3 × 591500 × 
2876

591500 6 9 0 00305
9 81

1
737 2 3
0 01831 7

3 0.5
3

× ×
L
NM

O
QP

−L
NM

O
QP. .

. .
..
b g

∆Tcr

= 30.910 × ∆T3
cr  ∴ ∆∆∆∆∆Tcr = 26.06°C

For other excess temperatures
  q10 = 30.914 × 103 = 0.0309 × 106 W/m2

 q20 = 30.914 × 203 = 0.2473 × 106 W/m2

At 200°C excess temperature, the condition will be film boiling
Using eqn. (11.6)

h
g k h c T

g T
c

v v v fg pv

o v

=
− +L

N
MM

O

Q
PP =0.425

ρ ρ ρ

σ µ

1
1 5 3

0 5

0 25
0 68

0 425
b g

b g
.

.

.
.

.
∆

∆

× 
9 81 737 2 3 2 3 0 02 591500 0 68 1706 200

1 0 0183 0 143 10 200

1 5 3

0.5 3

0.25
. . . . .

. .

.− × × + × ×

× × × ×

L
N
MM

O
Q
PP−

b g b g
b g

= 72.9 W/m2K
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Let  ε = 0.6, Tw = 317.5 + 273
Tsat = 117.5 + 273
hr = ε σ (Tw

4 – Tsat
4)/(Tw – Tsat)  = 16.72 W/m2 K

q = (72.9 + 0.75 × 16.72) 200 = 0.017 × 106 W/m2

lower than at 10°C excess temperature.
Note: The same value of heat flux can occur at more than one excess temperature lying in the

nucleate and film boiling regimes.

Problem 11.6: For water boiling at 1 atm at 100°C determine the value of excess temperature
in the film boiling region for a heat flux equal to the critical heat flux for this condition. The
property values at 100°C are:

 ρ1 = 961, ρv = 0.598 kg/m3, hfg = 2257 × 103 J/kg.
 σ = 58.8 × 10–3 N/m

Solution: Using eqn. (11.3), qcr = 0.149 × 2257 × 103

× [58.8 × 10–3 × 9.81(961 – 0.598) × 0.5982]1/4 = 1.262 × 106 W/m2

In the film boiling region eqn. (11.6) and (11.7) are to be used.
The convection coefficient hc is given by

h
g k h cp T

g T
c

v v v fg v

v

=
− + ×L

N
MM

O

Q
PP0 425

0 681
1 5 3

0 5

0 25

.
..

.

.
ρ ρ ρ

σ µ

b g
b g

∆

∆
 h

T T
T Tr

w

w
=

−
−

L
NMM

O
QPP

ε σ
4 4

sat

sat

The property values kv and µv should be taken at (Tw + Tsat)/2.
Only a trial solution is possible.
Assuming 1100°C excess temperature, film temp. = 600°C

 ρv = 0.252, kv = 0.08176, µv = 33.15 × 10–6 cpv = 2206 J/kgK
Assuming an emisivity of 0.8 (rough surface)

 Tw = 1100 + 100 + 273 = 1473 K, Tsat = 373K

hr = 0 8 5 67
1100

. .×  [14.734 – 3.734] = 193.33 W/m2 K

hc = 0.425 × 
9 81 961 0 252 0 252 0 08176 2257 10 0 68 1100 2206

1 58 8 10 33 15 10 1100

1 5 3 3

3 0.5 6

1/4
. . . ( . ) [ . ]

( . ) .

.− × × × + × ×
× × × ×

L
N
MM

O
Q
PP− −

b g

    = 155.18 W/m2 K
∴ h = 300.2 W/m2 K ∴ q = 0.33 × 106

This falls short of the critical flux.
Assuming 1900°C excess Temp., Tf = 1000°C
Property values are:

ρv = 0.172, kv = 0.14072, µv = 52.37 × 10–6,
Cpv = 2483
 Tw = 2273 K, Tsat = 373 K
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 hr = 637.8, hc = 273.5, h = 751.85, q = 1.43 × 106 W/m2.
This is nearer to 1.262 × 106.

Problem 11.7: A copper tube of 2.5 cm dia with a surface temperature of 250°C is immersed in
water at 100°C at atmospheric pressure. Determine the convective heat transfer coefficient on
the outside.
Solution: The excess temperature is 150°C. So the regime is film boiling. The property values
are at 100°C for liquid and at 175°C for vapour.

ρ1 = 961, ρv = 0.4975, kv = 0.03105
 hfg = 2257 × 103 J/kg, cpv = 2015.8, µv = 14.91 × 10–6 kg/ms

 hc = 0.62 g k h c T
D T

v v v fg pv

v

( ) ( . )
.

ρ ρ ρ
µ

1
3 0 25

0 68− +L
N
MM

O
Q
PP

∆
∆

= 0.62 
9.81(961 0.4975)0.4975(0.03105) (2257 10 0.68 2016 150)

0.025 14.91 10 150

3 3

6

0.25
− × + × ×

× × ×
L
NM

O
QP−

= 173.84 W/m2 K
Let ε = 0.76 (copper oxidised)

hr = 0.76 × 5.67 
5 23 3 73

150
4 4. .−L

NM
O
QP  = 15.9 W/m2 K

∴  h = 173.8 + 0.75 × 15.9 = 185.8 W/m2K
∴  q = h ∆T = 0.0279 × 106 W/m2

(Compare with maximum heat flux of about 4.3031 × 106 W/m2 problem 11.1)

Problem 11.8: It is desired to generate 500 kg/hr of steam at 180°C saturated condition using
20 m2 area. Determine the surface temperature. Also estimate the value of convection coefficient.
Solution: The property values required are : hfg = 2015 × 103 J/kg (steam tables)

µ1 =1.538 × 10–4, ρ1 = 889, ρv = 5.1533, σ = 42.16 × 10–3 N/m
 Pr = 1.044, c1 = 4417 J/kg K,
Csf = 0.013 (for general application)

Heat flux = 500 × 2015 × 103/3600 × 20 = 0.014 × 106 W/m2

Using eqn. (11.2)

0.014 × 106 = 4417
0 013 2015 10 10443

3
∆T

. .× × ×
L
NM

O
QP

 . 1.538 × 10–4 × 2015 × 103

× 
9 81 889 5 15
1 42 16 10 3

0.5. .
.

−
× ×
L
NM

O
QP−

b g

 ∆∆∆∆∆T = 2.9°C ∴ h = 4876 W/m2 K.
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Problem 11.9: Calculate the flow velocity through a 62.5 mm ID tube for obtaining the value of
convective heat transfer coefficient off 4876 W/m2 K for water at a bulk mean temperature of
180°C (same as boiling with ∆T = 2.9°C).
Solution:  Nu = 0.023 Re0.8Pr0.4 ...(P. 11.9.1)

h = k
D

uD
v

Pr× F
HG
I
KJ0 023

0 8
0 4.

.
.

At 180°C, (bulk mean temperature)
v = 0.173 ×10–6 m2/s , Pr = 1.044, k = 0.6757 W/mK

∴ 4876 = 0 6757
0 0625

0 023 0 0625
0 173 10

10446

0.8
0.4 0.8.

.
. .

.
.×

×
L
NM

O
QP

×− b g u

∴ u = 0.63 m/s, Re = 227 × 103 (Turbulent)
This is for low value of excess temperature.

Problem 11.10: What should be the velocity in problem 11.9 for heat flux to the equal to the
critical heat flux ?
Solution: Critical heat flux (eqn. 11.3)

qcr =  0 149 1
2

0.25

.
.

h
g g

fg v
o v

v
ρ

σ ρ ρ
ρ

−L
NMM

O
QPP

b g

Using the data from problem P. 11.8
qcr = 0.149 × 2015 ×103 × 5.1533

× 
42 16 10 9 81 889 5 1533

5 1533

3

2

0.25
. . .

.
× × −L

N
MM

O
Q
PP

− b g
b g  = 2.98 × 106 W/m2

Using equation P. 11.9.1.

∴  2.98 ×106 = 
0 6757
0 0625

0 023 0 0625
0 176 10

10446

0.8
0.4.

.
. .

.
( . )×

×
F
HG

I
KJ−

 u0.8

∴ u = 1910 m/s.
A very high velocity is required to achieve this heat flux in forced convection.

Problem 11.11: Determine the value of minimum heat flux in film boiling of water at 100°C
over a horizontal stainless steel surface.
Solution: The property values taken at 100°C are ρ1 = 961 kg/m3

ρv = 0.598, hfg = 2257 ×103, σ = 58.8 × 10–3 N/m,
ρvf is assumed as 0.598 to start with
Using equation (11.9 (b)), for unit area

q = 0 09 0 1

1
2

1 4

.
/

h
g g

fg vf
v

v

ρ
σ ρ ρ

ρ ρ

−

−

L
N
MM

O
Q
PP

b g
b g
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Substituting the values q = 0.019 × 106 W/m2

Compare with problem 11.6,  qcr = 1.524 × 106 W/m2

This is about 1.25% of qcr
This is due to the film resistance.
The value will be still lower as ρvf corresponding to the film temperature will be lower

still.
The value has to be solved for by trial.

Problem 11.12: In condensation show that the film Reynolds number at location x can be
expressed as

Solution: Reδ = 3771
3 3 3

5 3

1 4

.
( ) ( )

/
x T T gk

h
g w f f v f

f fg

− −L
N
MM

O
Q
PP

ρ ρ ρ

µ

Film Reynolds number is defined as
Reδ = 4G/µ Where G is the mass flow per unit depth in the film (eqn. 11.28), δ is the film

thickness.
The mass flow unit depth is given by eqn. (11.16)

 G = 
ρ ρ ρ δ

µ
f f v g( )− 3

3 ∴ Reδ = 
4 3

2
ρ ρ ρ δ

µ
f f v g( )−

3
From equation (11.21)

 δ = 
4 0.25

µ
ρ ρ ρ

k T T
g h

g w

fg f v f

× −
−

L
N
MM

O
Q
PP

( )
( )

Substituting

 Reδ = 
4

2
ρ ρ ρ

µ
f f v g( )−

3
 . 

4 3 4
µ

ρ ρ ρ
k T T

g h
g w

fg f v f

× −
−

L
N
MM

O
Q
PP

( )
( )

/

= 
44 4 4 4

8

1/4
ρ ρ ρ

µ
f f v g( )−L

N
MM

O
Q
PP34  

43 3 3 3 3

3 3 3 3

1/4
µ

ρ ρ ρ

k x T T
g h

g w

fg f v f

( )
( )

−

−

L
N
MM

O
Q
PP

= 
4
3

7

4

4 4 4 3 3 3 3

8 3 3 3 3

1/4

.
( ) ( )

( )
ρ ρ ρ µ

µ ρ ρ ρ
f f v g w

fg f v f

g k x T T
g h

− −

−

L
N
MM

O
Q
PP

∴ Reδ = 3.711 
x T T gk

h
g w f f v f

f fg

3 3 3

5 3

1/4
( ) ( )− −L

N
MM

O
Q
PP

ρ ρ ρ

µ
.

Problem 11.13: Mass flow rate in laminar film is available as seen in the problem 11.12.
Derive an expression for the mass flow in a vertical wall at distance x from the top turbulent
film. Use the heat transfer correlation for turbulent region.
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Solution: Two basic relations are used: Assuming unit width and depth x,
heat transfer as measured by condensate = heat convected

 m hfg = hx T∆ ∴ h = m hfg/x∆T
Where m is the flow rate kg/s and ∆T = (Tg– Tw)
The heat transfer correlation is given by eqn. (11.31)

CO = 0.0077 Reδ
0.4

Substituting for condensation number CO from eqn. (11.30) and Re

h
k gv

µ
ρ ρ ρ

2

3
1 1

1/3

( )−

L
NMM

O
QPP  =  0 0077 4 0.4

. .m
µ
L
NM
O
QP

Substituting for h  and  rearranging,

m
h

x T k g
fg

v∆
F
HG
I
KJ −

L
NMM

O
QPP

µ
ρ ρ ρ

2

3
1 1

1/3

( )  = 
0 0077 40.4

0.4
. ×

µ
 m0.4

m3/5 = 0.01341
µ

ρ ρ ρ
µ0.4

3 3 3
1 1

3 2

1/3
x T k g

h
v

fg

∆ ( )−L
N
MM

O
Q
PP

neglecting ρv as small

∴  m = 7.56585 × 10–4 
x T k g

hfg

3 3 3
1
2

3 3

5 9
∆ ρ

µ .2

/L
N
MM

O
Q
PP .

This provides a means of direct calculation of mass condensed for a distance of x metre
for unit width and unit time in the turbulent region.
Problem 11.14: Derive an expression for the average value of convection coefficient in the
turbulent region in terms of property values and distance. Use the correlations in terms of Reδ
as starting point.

CO = 0.0077 Reδ
0.4.

Solution: Substituting for CO and for m in Reδ

 CO = h
k g

µ
ρ ρ ρν

2

3
1 1

1/3

( )−

L
NMM

O
QPP

 and m hfg = h T× ∆  (unit width)

h
k gv

µ
ρ ρ ρ

2

3
1 1

1/3

( )−

L
NMM

O
QPP  = 0.0077 × 40.4 

h x T
hfg

0.4 0.4 0.4

0.4 0.4
∆

µ

∴ h 0.6 = 0.0077 × 40.4 
x T k g

h
v

fg

1 1 3
1 1

1 3

1/3.2 .2

.2 .2
( )∆ ρ ρ ρ

µ
−L

N
MM

O
Q
PP

∴  h = 7.56585 × 10–4 x T k g
h

v

fg

1 1 3
1 1

1 3

5 9.2 .2

.2 .2

/
. ( )∆ ρ ρ ρ

µ
−L

N
MM

O
Q
PP ...(11.14.1)
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This expression is usable directly from property values and temperature difference and
plate dimension.
Problem 11.15: Steam at 100°C condenses on the outside of a horizontal tube of 0.15 m dia
maintained at 95°C. Compare the value of convection coefficient of heat transfer with the
coefficient obtainable in boiling of water at 100°C with wall temperature at 105°C.
Solution: Considering condensation and using equation (11.27)

h = 0.725 ρ ρ ρ
µ

ν1 1
3 1 4

( )
( )

/
−

−

L
N
MM

O
Q
PP

g h k
d T T

fg f

f g w

The property values are ρ1 = 961, ρν  = 0.598
kf = 0.67894, µf = 2.907 × 10–4, hfg = 2257 × 103 J/kg

(f-means at film temperature 97.5°C)

  h = 0.725 
961 961 0 598 9 81 2257 10 0 67894

2 907 10 0 15 5

3 3

4

1/4
( . ) . .

. .
− × × ×

× × ×
L
NM

O
QP−

= 9488.1 W/m2K
Considering Boiling: µ1 = 2.816 × 10–4, σ = 58.8 × 10–3 N/m

c1 = 4216 J/kgK, Pr = 1.74, Csf = 0.013
Using equation (11.2)

q = 
4216 5

0 013 2257 10 1743

3×
× × ×

F
HG

I
KJ. . × 2.816 × 10–4 × 2257 × 103

× 
9 81 961 0 598

58 8 10 3

0.5. .
.

−
×

F
HG

I
KJ−

b g
 = 0.018 × 106

h = q/∆T = 3582 W/m2 K.

Problem 11.16: Compare the value of average convection coefficient in condensation for a
horizontal pipe and a vertical plate of height π D/2 for the same conditions.
Solution : Using eqn. (11.26) and (11.27)

For a plate :  h  = 0.943 
ρ ρ ρ
π µ

1 1
3 1/4

2
( )

( / ) . ( )
−

−

L
N
MM

O
Q
PP

v fg f

f g w

g h k
D T T

For a pipe : h  = 0.725 
ρ ρ ρ

µ
1 1

3 1/4
( )

. ( )
−

−

L
N
MM

O
Q
PP

v fg f

f g w

g h k
D T T

Dividing
h
h
plate

cyl
= 0 943

2
0 7250.25

.
( / )

/ .
π

 = 1.162

For the same area, plate provides a higher value of convection coefficient in condensation
compared to horizontal tube.
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Problem 11.17: A plate type of condenser is of side L × 2L. It was designed to be kept with side
of length 2L in the vertical position. But by oversight, the side of length L was kept vertical. If
other conditions are the same, determine the change in heat transfer if any. Assume laminar
conditions in both cases.
Solution: Using eqn. (11.26)

h = 0.943 
ρ ρ ρ

µ
( ) .

( )
−

−

L
N
MM

O
Q
PP

v fg f

f g w

g h k
L T T

3 1/4

∴
h
h

L

L

2  = 
1
2

1/4F
HG
I
KJ  = 0.8409 or h2L = 0.8409 hL

∴ The heat flow will increase when the shorter side is kept vertical. The increase
is about 18.92%. It is desirable to have the shorter side vertical.
Problem 11.18: A plate condenser is designed to be kept vertical. Due to site conditions, it is to
be kept at 30° to the vertical. Determine the change in heat transfer, assuming that other
conditions remain unchanged.
Solution : For inclined plate g is replaced by g cos θ where θ is the angle with the vertical.

∴  
h
h

inclined

vertical
 = (cos 30)1/4 = 0.9647

There is a reduction of 3.53 %.
Problem 11.19: A plate type vertical condenser was designed for a particular fluid with a
given temperature difference ∆T. This is used with a new fluid whose density is 0.7 of the
original fluid and hfg is 0.5 of the original fluid and the conductivity is double that of the
original fluid and the viscosity is 1.2 times that of the original fluid. The temperature difference
is reduced to 70% of the original value. Determine the % change in the convection coefficient.

Solution :  h1 = 0.943 
ρ
µ
1
2

1
3

1 1

1 4
1

g h k
L T T

fg f

g w( )

/

−

L
N
MM

O
Q
PP h2 = 0.943 

ρ
µ
2
2

2
3

2 2

1/4
2

g h k
L T T

fg f

g w( )−

L
N
MM

O
Q
PP

 ρ2 = 0.7 ρ1, hfg2 = 0.5 hfg1, kf2 = 2kf1, µ2 = 1.2 µ1
∆T2 = 0.7 ∆T1

Substituting

 h2 = 0.943 07 05 2
12 07

2
1
2

1
3

1
3

1 1

1 4
. . .

. .

/
ρ

µ
g h k

L T
fg f

×

L
N
MM

O
Q
PP∆

= 0.943 
ρ

µ
1
2

1 1
3

1 1

1/4 1/4g h k
L T

fg f

×

L
N
MM

O
Q
PP

× ×
×

L
NM

O
QP∆

0.7 0.5 2
1.2 0.7
2 3

∴
h
h

1

2
 = 1/ 

0 7 0 5 2
12 0 7
2 3 1/4

. .
. .
× ×

×
L
NM

O
QP  = 0.8091

h2 = h1 / 0.8091 or an increase of 23.59%.
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Problem 11.20: For condensing conditions, compare condensation over a pipe of diameter D
with that of 2 pipes having the same total circumference, if  (i) Both pipes are horizontal and
parallel (ii) If these are one over the other. Assume that other conditions remain the same.
Solution: D = 2d ∴ d = D/2, Using eqn. (11.28)

 h = 0.725 
ρ ρ ρ

µ
( )

( )

/
−

−

L
N
MM

O
Q
PP

v fg f

f g w

g h k
D T T

3 1 4

Case (i) If D is reduced to half the value, h is increased to (2)0.25 times the original value
or hd = 1.1892 hD

This is due to a thinner film over the surface when diameter is lowered.
Area being the same, the heat flow will increase by 18.92% if two tubes are

used in  parallel instead of one tube of larger diameter.
Case (ii) If pipes are in vertical row, D is replaced by nD here D = 2 (D/2) = D ∴ the heat

flow remains unchanged. Here in the second pipe, the film becomes thicker and so the change
in the first is compensated.
Problem 11.21: Using the expressions derived in problem 11.13 and 11.14 determine the flow
rate and convection coefficient for a vertical plate at 60°C condensing steam at 100°C. The plate
is 5 m high.
Solution: First a check has to be made to determine whether turbulent conditions prevail.

 Reδ = 4G
µ

, G hfg = h L T Tg w. ( )−

∴ Reδ = 
4hL T T

h
g w

fg

( )−
µ

(assuming laminar conditions to start with)

h  = 0.943 ρ ρ ρ
µ

( )
( )

/
−

−

L
N
MM

O
Q
PP

v fg f

f g w

g h k
L T T

3 1 4

The data available are
at 100°C, ρ = 961 kg/m3, ρv = 0.598 kg/m3, hfg = 2257 × 103 J/kg at 80°C

kf = 0.6687 W/mK, µf = 3.545 × 10–4 kg/ms
Substituting,  h  = 2874 W/m2 K

and  Reδ = 2923 ∴ flow is turbulent.
Using expression from problem 11.13

 m = 7.56585 × 10–4 x T k g
hfg

3 3 3 2

3 3

5 9
∆ ρ

µ .2

/L
N
MM

O
Q
PP

Substituting m = 0.68 kg/sm, q = m  hfg = 1.535 × 106 W/m

 h = 7673.4 W/m2 K
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Using expression from problem 11.14.

 h  = 7.56585 × 10–4 x T k g
h

v

fg

1 2 1 2 3

1 2 3 2

5 9. .

. .

/
( )∆ ρ ρ ρ

µ
−L

N
MM

O
Q
PP

Substituting the values
 h  = 7673 W/m2 K A very good agreement

 Reδ = 4 0 68
3 545 10 4

×
× −
.

.
 = 7673 flow is turbulent.

(note that the previous value of Re is approximate)
If other conditions remain the same, determine the distance at which the film turns

turbulent. (Reδ = 1800)

m  = 1800 5 545 10
4

4× × −.  = 0.25 kg/ms,

Substitute for m using 11.13 and solve for x, x = 2.74 m.
Problem 11.22: Refrigerant 12 vapour condenses on a vertical plate. The vapour is at 40°C
and the plate is at 20°C. Determine the value of convective heat transfer coefficient and the
condensate rate for 1 m × 1 m plate.
Solution : Tf = 30°C, kf = 0.0709, µf = 2.5123 × 104 kg/ms
at 40°C, ρ = 1257 kg/m3, hfg = 129.98 × 103 J/kg.

ρv = 54.65 kg/m3

Assuming laminar conditions

h = 0.943 
ρ ρ ρ

µ
( )

( )
−

−

L
N
MM

O
Q
PP

v fg f

f g w

g h k
L T T

3 1/4

= 0.943 1257 1257 54 65 9 81 129 98 10 0 0709
1 2 5123 10 20

3 3

4

1/4
( . ) . . ( . )

.
− × × ×

× × ×
L
NM

O
QP−

= 573.4 W/m2K
q = 573.4 × 1 × 20 = 11467.8 W/m2

m = q/hfg = 0.0882 kg/s or 317.62 kg/hr or 5.29 kg/min.

 Reδ = 
4 m

µ  = 4 0 0882
2 5123 10 4

×
× −

.
.

 = 1404 ∴ laminar flow prevails.

Problem 11.23: Chilled water pipe of 6.25 cm OD with outside surface at 5°C passes through an
area where air is saturated at 35°C. Determine the condensate drip from the pipe per m length.
Solution : Here water vapour exists at the partial pressure at saturation at 35°C. p = 0.05628
bar.

hfg = 2418.6 kJ/kg, ρv = 0.04 kg/m3

The liquid properties at
 Tf = 20°C are ρ = 1000 kg/m3,
kf = 0.5978, µf = 10.06 × 10–4 kg/ms
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Using eqn. (11.27)

 h = 0.725 
ρ ρ ρ

µ
( )

( )
−

−

L
N
MM

O
Q
PP

v fg f

f g w

g h k
d T T

3 1/4

Substituting the values,
h = 5220 W/m2 K
Q = π D × 1 × 5220 (35 – 5) = 30748 W

∴ mass condensed = Q/hfg = 0.012713 kg/s
about 45.77 kg/hr of condensate will flow per m length. The high value is because of the air
being saturated.
Problem 11.24: Ammonia vapour at 35°C is to be condensed on the outside of horizontal
tubes of OD 2.5 cm with a surface temperature of 25°C. A square array of 10 × 10 tubes of 1.2 m
length are used. Determine the rate of condensation of ammonia.
Solution : The liquid properties at Tf = 30°C are

ρ = 596, µf = 596 × 0.35 × 10–6 kg/ms, kf = 0.5071 W/mK
The vapour properties at 35°C are

hfg = 1123.46 × 103 J/kg, ρv = 1.042 kg/m3

Using equation (11.27) with n = 10,

  h = 0.725 
ρ ρ ρ

µ
( )−L
N
MM

O
Q
PP

v fg f

f

g h k
n D T

3 1/4

∆

= 0.725 
596 596 1042 9 81 1123 46 10 0 5071

10 0 025 596 0 35 10 10

3 3

6

1/4
( . ) . . .

. .
− × × ×
× × × × ×

L
NM

O
QP−

= 4053.6 W/m2 K
Q = 4053.6 × π × 100 × 0.025 × 1.2 × 10 W.

= 0.382 × 106 W  or 382 kW.
Ammonia condensed = Q/hfg = 0.34 kg/s. or 1224.22 kg/hr.

Problem 11.25: Refrigerant 12 is to be condensed at the rate of 10,000 kg/hr at 35°C using
water at 25°C. The condenser uses a square array of 25  × 25 tubes of 12 mm OD, calculate the
length of the tube bundle.
Solution : The tube surface is assumed to be at 25°C. Property values at

 Tf = 30°C are ρ = 1295, kf = 0.0709 W/mK
µf = 1295 × 0.194 × 10–6 kg/ms

The vapour properties at 35°C are hfg = 133.22 × 103 J/kg
ρv = 48.08 kg/m3,

Using eqn. (11.27) with n = 25

h = 0.725 
ρ ρ ρ

µ
( )−L
N
MM

O
Q
PP

v fg f

f

g h k
n D T

3 1/4

∆



VED

c-4\n-demo\damo11-2

512 FUNDAMENTALS OF HEAT AND MASS TRANSFER

= 0.725 
1295 1295 48 08 9 81 133 22 10 0 0709

25 0 012 1295 0 194 10 10

3 3

6

1/4
( . ) . . .

. .
− × × ×

× × × × ×
L
NM

O
QP−

= 724.62 W/m2K

Q = 10000
3600  × 133.22 × 103 = 724.62 × 10 × 25 × 25 × π × 0.012 L

∴ L = 2.17 m.
Problem 11.26: Regrigerant 12 at 35°C is condensed inside a 12 mm ID tube with its surface
at 25°C. Determine the convective heat transfer coefficient. Compare this value with that of
condensation over the 12 mm OD pipe surface with other conditions remaining the same.
Solution : The property value are : hfg = 133.22 × 103 J/kg

 ρv = 48.08 kg/m3

 ρ1 = 1295 kg/m3, kf = 0.0709 W/mK,
µf = 1295 × 0.194 × 10–6 kg/ms

Using equation (11.34) (for condensation inside)

 h1 = 0.555 
ρ ρ ρ

µ
( )

( )
−

−

L
N
MM

O
Q
PP∞

v fg

g

g k h
d T T

3

1

1/4

Substituting the values
 h1 = 1240.4 W/m2 K

Using equation (11.27) for outside condensation
 ho = 1620.3 W/m2 K

The coefficient on the outside is larger by a factor of
0 725
0 555
.
.  = 1.306.

Problem 11.27: In condensation situation compare, in the laminar region, the values of
convective heat transfer coefficients when a pipe of diameter 6.25 cm and 1m length kept (i)
vertical and (ii) horizontal.
Solution: For vertical position

hv  = 0.943 
ρ ρ ρ

µ
( )

( )
−

−

L
N
MM

O
Q
PP∞

v fg

g

g k h
L T T

3 1/4

...(A)

For horizontal position

hh  = 0.725 
ρ ρ ρ

µ
( )

( )
−

−

L
N
MM

O
Q
PP∞

v fg

g

g k h
D T T

3 1/4

...(B)

Dividing eqn. (B) by eqn. (A)

h
h

h

v
 = 0 725

0 943
.
.

 × L
D
F
HG
I
KJ

0.25
 = 1.538
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horizontal positioning in this case provides 53.8%, more heat transfer. Condensers are thus
generally of horizontal type. This is because of larger film thickness as length increases. In
case of shorter lengths, the advantage will be less.
Problem 11.28: A slab of ice is placed in a wooden box. The ice is at 0°C. The outside air
is at 35° and the convection coefficient over the surface is 25 W/m2 K. Determine the thickness
melted during 10 min, 60 min and 120 min.
Solution : Assume that the water layer is not removed. The property values are hsf = 333700
J/kg, k1 = 0.60, ρs = 920 kg/m3.

Using equation (11.40) and (11.38)
τ * = x* + 0.5 x*2

x* = xh
k

∞

1
,  τ * = 

h T T
k h

fr

s sf

∞ ∞ −L
N
MM

O
Q
PP

2

1

( )
ρ

τ

For 10 minutes : τ * = 
25 35

0 60 920 333700
2 ×

× ×
L
NM

O
QP.  × 600 = 0.071253

0.5 x*2 + x* – 0.071253 = 0

Using x = − ± −b b ac
a

2 4
2

 form of solution for quadratic equation.

x* = − ± + × ×1 1 4 0.5 0.071253
1

, taking the + ve value

∴ x* = 0.06888

∴ x = 
x k

h
L*

∞
 = 0 06888 0 60

25
. .×  = 1.653 × 10–3 m or 1.653 mm.

After 60 min. τ * = 0.42752
∴ x* = 0.362 ∴ x = 8.69 × 10–3 m or 8.69 mm
After 120 min. τ * = 0.855
∴ x* = 0.6462 ∴ x = 15.51 mm
With time the rate of freezing decreases, due to increasing resistance for heat conduction.

Problem 11.29: Water at 0°C in a lake surface is suddenly exposed to air at – 30°C with a
convection coefficient of 25 W/m2 K. Determine the depth of freezing after 10 min, 60 min and
120 min.
Solution :  hsf = 333700 J/kg ks = 2.22 W/mK ρs = 920 kg/m3

Using equation (11.40)

τ * = x* + 0.5 x*2 where x* = 
xh
ks

∞

and τ * = 
h T T

k h
fr

s s sf

∞ ∞−L
N
MM

O
Q
PP

2 ( )
ρ

τ
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For 10 min

τ * = 25 35
2 22 920 333700

2 ×
× ×.

 60 × 10 = 0.01926

x* = − ± + × ×1 1 4 0 5 0 01926. .  = 0.0191
∴   x = 1.694 × 10–3 or 1.694 mm (melting 1.653 mm)
For 60 min τ * = 0.1155

x* = 0.10955
x = 9.73 × 10–3 or 9.73 mm (melting 8.69 mm)

For 120 min  τ * = 0.2311
x* = 0.2092
x = 0.0186 m or 18.6 mm (melting 15.51 mm)

The increase in freezing thickness is because of the higher conductivity of the ice as
compared to that of water.
Problem 11.30: Ice candy is frozen in cylindrical moulds of 16 mm dia with a wooden
core of 4 mm dia. The water is at its freezing temperature of 0°C. The outside surface of the thin
container is exposed to –35°C with a convection coefficient of 25 W/m2 K. Determine the time for
complete freezing.
Solution: ρs = 920 kg/m2, hsf = 333700 J/kg, ks = 2.22 W/mK

Using equation (11.46)

τ * = 0.5r*2 ln r* + 
1

2
0 25

R *
.+F

HG
I
KJ  (1 – r*2) ...(A)

as the radius upto which freezing is to be done is 2 mm (core)

r* = R/Ro = 
2
8  = 

1
4  = 0.25

R* = h∞Ro/ks = 25 × 0.008/2.22 = 0.09009

Also τ * = 
( )

.
T T k

h R
fr s

s sf o

− ∞

ρ
τ2 (eqn. 11.45) ...(B)

From (A), τ * = 0.5 (0.25)2 ln (0.25) + 1
2 0 09009

0 25
×

+
F
HG

I
KJ.

.  (1 – 0.252)  = 5.3942

From (B), τ  = 5 3942 920 333700 0 008
2 22 35

2. .
.

× × ×
×

 = 1364 s or 22.73 min.

Problem 11.31: Ice is made in a hollow cylindrical shape by immersing a thin cylinder in
a large tank of water. The outer radius is 16 mm. The water is at 0°C. Cold fluid at –35° is
circulated inside the thin cylinder with h = 50 W/m2 K.

Determine the time needed for ice to form upto a radius or 24 mm (property values taken
from 11.30).
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Solution: The equation applicable is (11.47).

τ * = 0.5 r*2 ln r* + 1
2

0 25
R *

.−F
HG

I
KJ  (r*2 – 1)

As freezing is to be done upto R = 24 mm,

 r* = R/Ro = 24
16  = 1.5

R* = h∞.Ro/ks = 25 × 0.016/2.22 = 0.18018

τ * = 
( )T T

h R
fr

s sf o

− ∞ τ

ρ 2  = 
35 2 22

920 333700 0 0162
×

× ×
.

.  τ  = 9.886 × 10–4 × τ ...(A)

Also τ * = 0.5 × 1.52 ln (1.5) + 1
2 0 18018

0 25
×

−F
HG

I
KJ.

. (1.52 – 1) ...(B)

= 3.6124
Solving between (A) and (B)
∴ τ  = 3654 s = 60.90 minutes.

Problem 11.32 : Water at 10°C in a pan is to be frozen by convection over the surface at –20°C.
The convection coefficient at the ice water surface is 20 W/m2 K. Determine the time needed to
freeze 2 cm layer. h = 80 W/m2 K at the surface.
Solution: The equation applicable is (11.44)

τ * = 
1 2

H T* *
F
HG

I
KJ  ln 1

1 1
−

− +
L
NM

O
QP −

H T
H T x

x
H T

* *
* * ( *) * *

*

x* = xh
ks

∞  = 0 02 80
2 22

.
.

×  = 0.7207

 H* = 
h
h

1

∞
 = 

20
80  = 0.25

 t* = 
T T
T T

L fr

fr

−
− ∞

 = 10
20  = 0.5

τ * = 
h T T

k h
fr

s s sf

∞ ∞−2 ( )
ρ

τ  = 1.8781 × 104 τ ...(A)

Substituting in eqn. (11.44)

 τ * = 1
0 25 0 5

2

. .×
F
HG

I
KJ . ln 

1 0 25 0 5
1 0 25 0 5 1 0 7207

− ×
− × +
L
NM

O
QP

. .
. . ( . )   – 0 7207

0 25 0 5
.

. .×
...(B)

= 1.1881
Using (A) and (B)
∴ τ  = 6326 = 105.44 min.
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Problem 11.33: Determine the time needed to freeze (frost bite) a layer of 1mm thickness of
skin exposed to wind at –20°C with a convection coefficient of 50 W/m2 K. Assume properties of
water and the temp. of the skin as 35°C to start with. The convection coefficient at the interface
is 25 W/m2 K.
Solution: Eqn. (11.44) is applicable.

τ * = 1 1
1 1

2

H T
H T

H T x
x

H T* *
ln * *

* * ( *)
*

* *
F
HG

I
KJ

−
− +
L
NM

O
QP −

x* = x × h∞/ks = 0.001 × 50/2.22 = 0.02252252

 H* = 
h
h

1

∞
 = 

25
50  = 0.5

T* = 
T T
T T

L fr

fr

−
− ∞

 = 35
20  = 1.75

τ * = 
h T T

k h
fr

s s sf

∞ ∞−2 ( )
ρ

τ  = 7.33623 × 10–5 τ ...(A)

Substituting

τ * = 
1

0 5 175

2

. .×
F
HG

I
KJ  ln 

1 0 5 175
1 0 5 175 1 0 02252

− ×
− × +
L
NM

O
QP

. .
. . ( . )  – 0 02252

0 5 175
.
. .×

...(B)

= 0.19835
Using (A) and (B), ∴ τ = 2704s = 45 min.
Frost bite may start after 45 min.

OBJECTIVE QUESTIONS

Choose the correct statement in each of the following sets:
11.1 With increase in excess temperature the heat flux in boiling

(a) increases continuously
(b) decreases and then increases
(c) increases then decreases and again increases
(d) decreases then increases and again decreases.

11.2 The heat flux in nucleate pool boiling is proportional to (where hfg is enthalphy of evaporation)
(a) hfg (b) 1/hfg (c) ffg

2 (d) 1/hfg
2.

11.3 The heat flux in nucleate pool boiling is proportional to
(where σ is surface tension)
(a) σ (b) σ0.5 (c) σ–0.5 (d) σ2.

11.4 The critical heat flux in nucleate pool boiling is proportional to (where ρv is the density of va-
pour)
(a) ρv (b) ρv

2 (c) ρv
0.5 (d) ρv

1/3.
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11.5 The critical heat flux in nucleate pool boiling is proportional to (where hfg is the enthalphy of
evaporation)
(a) hfg (b) hfg

0.5 (c) hfg
2 (d) hfg

1/3.
11.6 The critical heat flux in nucleate pool boiling is proportional to (where σ is the surface tension)

(a) σ (b) σ0.5 (c) σ1/3 (d) σ1/4.
11.7 The critical heat flux in nucleate pool boiling is proportional to (where ρf is the density of liquid)

(a) ρl
2 (b) ρl

0.25 (c) ρl
0.5 (d) ρl

1/3.
11.8 In nucleate pool boiling the heat flux depends on

(a) only the material of the surface
(b) material and roughness of the surface
(c) independent of surface
(d) fluid and material and surface roughness.

11.9 In nucleate pool boiling the heat flux is proportional to (∆T is the excess temperature)
(a) ∆T3 (b) ∆T (c) ∆T2 (d) ∆T0.5.

11.10 In nucleate pool boiling the heat flux for boiling of water is proportional to (µ1) is the viscosity of
liquid)
(a) µ1

–2 (b) µ1 (c) µ1
0.5 (d) µ1

2.
11.11 In nucleate pool boiling of liquids other tahn water the heat flux varies as (when µ1 is the viscosity

of liquid)
(a) µ1

5.1 (b) µ1
–4.1 (c) µ1

2 (d) µ1
–2.

11.12 In nucleate film boiling of water the heat flux varies as (where k is the vapur thermal conductivity)
(a) k0.33 (b) k0.75 (c) k2 (d) k5.1.

11.13 In nucleate pool boiling of liquids other than water the heat flux varies as
(a) Pr–5.1 (b) Pr3.1 (c) Pr3 (d) Pr0.5.

11.14 In nucleate pool boiling the convective heat transfer coefficient varies as (where ∆T is excess
temperature)
(a) ∆T2 (b) ∆T3 (c) ∆T2.5 (d) ∆T0.5.

11.15 In film boiling the properties that contribute to the value of convection coefficient are
(a) hfg µ1 . ρ1 and ∆T
(b) hfg µv, kv and ρ1
(c) hfg, kv, µ1 and ∆T
(d) hfg, k1, µv and ∆T.

11.16 The heat flux in nucleate pool boiling will be higher for
(a) horizontal plane (b) vertical plane
(c) horizontal cylinder (d) independent of location.

11.17 In condensing under same conditions, the convection coefficient will be lowest for
(a) vertical palte (b) vertical pipe
(c) horizontal pipe (d) row of vertical pipes.

11.18 In condensation over a vertical surface, the value of convection coefficient varies as (k–conduc-
tivity of liquid)
(a) k3 (b) k0.75 (c) k0.25 (d) k0.33.

11.19 The heat transfer rate in laminar film condensation varies as (where ∆T = Tg – Tw)
(a) ∆T (b) ∆T0.75 (c) ∆T0.25 (d) ∆T–0.25.

11.20 The convective heat transfer coefficient in laminar film condensation varies as (ρ-density of
liquid)
(a) ρ (b) ρ0.5 (c) ρ–0.5 (d) ρ2.
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11.21 In laminar film condensation, the average convection coefficient varies as (where µ is the dynamic
viscosity of liquid).
(a) µ–1 (b) µ–0.5 (c) µ0.25 (d) µ–0.25.

11.22 In laminar film condensation the convection coefficient varies as (where L is the height of plate)
(a) L–1 (b) L–0.5 (c) L (d) L–0.25.

11.23 In laminar film condensation the convection coefficient varies as (hfg is the enthalpy of evapora-
tion).
(a) hfg (b) hfg

0.5 (c) hfg
1/3 (d) hfg

0.25.

EXERCISE PROBLEMS

11.1 Determine the maximum heat flux and the heat flux at an excess temperature of 8°C for water at
pressure corresponding to (i) 50°C (ii) 100°C (iii) 180°C (iv) 310°C. In all cases assume a surface
coefficient of 0.013 and pool boiling in the nucleate regime. Comment on the results.

11.2 Determine for the cases in 11.1 the minimum heat flux in the film boiling regime.
11.3 Determine the heat flux in boiling of water at a pressure corresponding to a saturation tempera-

ture of 310°C under film boiling regime if the excess temperature is (i) 1000°C (ii) 2000°C. As-
sume boiling to take place over a flat surface.

11.4 Smoke tubes of 6.25 cm OD are used in a boiler. Steam is generated at 170°C. The tube surface
is at 178°C. There are 100 tubes of length 3 m each. Estimate the rate of possible steam production
at saturated conditions. Assume pool boiling conditions and Csf = 0.013.

11.5 Ammonia liquid evaporates in a flooded type of evaporator at – 10°C over tube surfaces immersed
in the liquid. Brine at 0°C is circulated through the inside of the tubes and the tube surface is
maintained at 0°C. The tube outside dia is 25 mm. 40 tubes of 1 m length are used. Determine
the evaporation rate of ammonia. Assume σ = 28 × 10–3 N/m, hfg = 1296.5 kJ/kg. Csf = 0.013.

11.6 Boiling heat flux with water over a surface is measured under certain conditions. It is desired to
estimate the heat flux for boiling of water at a higher pressure at which µ2 = 0.8 µ1, hfg2 = 0.8 hfg1,
σ2 = 0.6 σ1, Pr2 = 0.6 Pr1. There is no significant change in density and specific heat and excess
temperature. Determine the % change in the heat flux.

11.7 The maximum heat flux for boiling a liquid was measured under certain conditions. Estimate
the critical heat flux for boiling under similar conditions but at a different saturation tempera-
ture. The following are the significant changes in property value σ2 = 0.7 σ1, hfg2 = 0.9 hfg1,
ρv1 = 2ρv2.

11.8 An electrical heater rod of 10 mm dia is immersed in water at atmospheric pressure. The surface
temperature reached is 600°C. If the emissivity of the surface is 0.5, estimate the electrical
power input.

11.9 Estimate the convection coefficient for steam at 40°C saturation conditions condensing on a
vertical surface maintained at 30°C. The plate is 1.5 m high. Also find the film thickness at 1 m
and 1.5 m from the top edge.

11.10 Determine the value of convection coefficient for steam at 40°C saturation conditions condens-
ing on a flat surface maintained at 30°C. If the surface is inclined at 4° to the vertical. The plate
is 1.5 m high.

11.11 Determine the value of convection coefficient for condensing steam at 40°C saturation condi-
tions over the outside surface of a vertical tube of 6.25 cm OD maintained at 30°C. The tube is
1.5 m high. Also determine the film thickness at 1 m and 1.5 m from top.

11.12 Determine the value of convection coefficient for condensing of steam over the outside surface of
horizontal tubes of 6.25 cm OD with surface temperature maintained at 30°C. Steam tempera-
ture is 40°C. Compare the value with that of a vertical surface of 62.5 cm height.
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11.13 Determine the value of convection coefficient for steam condensing inside of horizontal pipe of
6 cm ID with surface maintained at 30°C. The steam is at 40°C and flows at low velocity.

11.14 Repeat problems 11.9 to 11.14 for ammonia condensing at the same temperature and geometric
configurations.

11.15 Repeat problems 11.9 to 11.14 for Refrigerant 12 (C Cl2F2) condensing at the same temperature
and geometric configurations.

11.16 Determine for a vertical surface the distance at which the condensate film flow will turn turbu-
lent for steam condensing at 100°C with surface maintained at 40°C. Estimate the value of
average convection coefficient for that distance using correlations for turbulent flow. Compare
the value with that for laminar flow.

11.17 It is found that the condensate formed over the surface of a tube of 25 cm OD is the same whether
it is kept vertical or horizontal. Determine the length of the tube [Ans. 71 cm]

11.18 A condensation experiment for steam on a vertical surface was conducted and the convection
coefficient was determined. If the same test set up was used for condensation at a different
conditions where (µ2/µ1) = 0.43 and ρ2/ρ1 = 0.966 and (k2/k1) = 1.083 and hfg2/hfg1 = 0.937, deter-
mine the temperature difference to be maintained to obtain the same value of convection coeffi-
cient.

11.19 A small steam condenser with horizontal tubes of 6.25 cm OD and 6 rows deep with 36 tubes of
1.2 m length condensing steam at 40°C using water at 30°C is proposed to be used to condense
ammonia at 50°C with water at 30°C. Assuming material and other compatibilities determine
the % change in heat rate.

11.20 Chilled water pipe at 10°C passes through air space where partial pressure of water vapour is
0.04246 bar. The pipe diameter is 0.15 m. Determine the condensate drip per m length of tube
per hour.

11.21 Food preparation in the form of horizontal cylinder of 5 cm dia is to be heated by condensation of
steam over its surface. Compare the heating rates when the surface is at 40°C for steam tem-
perature of 100°C and 120°C.

11.22 Compare the heat transfer rate for ammonia when condensing at 40°C with tube surface at 30°C
on (i) inside of tube (ii) outside the tube. The tube is thin and the diameter is 2.5 cm and placed
in horizontal position. The vapour flow velocity is small.

11.23 A glass tumbler of OD 6.5 cm and 12 cm high with ice floating in the liquid inside is kept on a
table in a room where the dewpoint temperature is 25°C. Determine the rate of condensate
formation on the surface. Assume filmwise condensation. Neglect end effects.

11.24 Compare the values of convective heat transfer coefficients for (i) condensation of steam over a
horizontal cylinder of 6.25 cm dia at 100°C. The steam is at 110°C and (ii) for flow of steam at
110°C over the cylinder at a velocity of 15 m/s.

11.25 At the onset of summer, the air temperature over a large sheet of ice rises to 10°C and the
convective heat transfer coefficient due to air flow over the surface is 18 W/m2 K. Assuming there
is no run off of water. Determine the time taken for metlting 4 mm layer of ice at 0°C. Also
determine the thickness melted over a period of 6 hours.

11.26 If in the problem 11.25, the direct solar radiation has effect equal to an increase in the convec-
tion coefficient by 60 W/m2 K (the total being 78 W/m2 K) determine the increase in the depth
melted over a period of 1 hr under this conditions.

11.27 Lake water at 4°C is exposed to chill winds at – 16°C. Determine the depth of formation of ice
after 12 hours. Convection coefficient = 60 W/m2 K, h at interface = 15 W/m2 K.

11.28 It is desired to freeze 1 cm dia long cylindrical ice pieces in thin metallic moulds. The water is at
0°C
The outside is exposed to convection coefficient of 40 W/m2 K. Determine the time required for
(i) 2.5 mm thickness of ice to form and (ii) for complete freezing. The freezing medium is at
– 20°C.



VED

c-4\n-demo\damo11-3

520 FUNDAMENTALS OF HEAT AND MASS TRANSFER

11.29 A long hollow cylindrical piece of ice of ID 6 cm and OD 10 cm is to be made from water at 0°C.
The convection coefficient for the freezing medium at – 20°C is 40 W/m2 K. Determine the time
for forming the ice piece with (i) internal mould and (ii) external mould.

Answers to Objective Questions:
1. (c) 2. (d) 3. (c) 4. (c) 5. (a) 6. (d)
7. (b) 8. (d) 9. (a) 10. (a) 11. (b) 12. (b)

13. (a) 14. (a) 15. (b) 16. (d) 17. (d) 18. (b)
19. (b) 20. (b) 21. (d) 22. (d) 23. (d).
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12.0    INTRODUCTION

In many industrial applications heat has to be transferred from one flowing fluid to

another through a solid barrier separating these fluids. The equipments used for this

purpose are called Heat Exchangers. The application of convection studies is mainly in the

field of design of heat exchangers. The basic design procedures and analysis of performance of

heat exchangers are discussed is this chapter. The various correlations discussed in chapters 8, 9,

10 and 11 are used in this chapter to determine convection coefficients.

12.1 OVER ALL HEAT TRANSFER COEFFICIENT

It is desirable and convenient to combine the various thermal resistances that are encountered in

the heat transfer from one fluid to another in a heat exchanger. Such a combination is achieved

by using the heat transfer equation as in 12.1

Q = UA (∆T) ...(12.1)

Where Q is the heat flow rate in W, A is the heat flow area and ∆T is the temperature difference

between the fluids.

The quantity U which equals the combined effects of all the resistances is called overall

heat transfer coefficient. The unit for overall heat transfer coefficient is the same as the unit for

convective heat transfer coefficient (W/m2 K).

12.1.1. The thermal resistances encountered in heat transfer from one fluid to another are shown

in Fig. 12.1.

The resistances are:

(i) Convection resistance on the inner surface of

the tube for heat flow from fluid to wall. (1/h
i

A
i
)

(ii) The resistance due to deposits that will form

during operation on the inside of the tube called

inside fouling resistance-R
fi
.

(iii) The resistance due to heat conduction through

the solid wall separating the fluids.

(iv) The resistance due to deposits that will form

during operation on the outside of the tube

called outside fouling resistance-R
fo

.

(v) Convection resistance on the outer surface for

heat flow from wall to the fluid (1/h
o
A
o
).

To
ho

Fluid-B Convection
outside

Conduction

Fluid-A

Convection
inside

Fouling
resistances

ro

r
i

h
i

T
i

Fig. 12.1 Thermal resistances across heat

exchanger surface.
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The area on the inside will be equal to the area on the outside in the case of flat surfaces.
These are not as popularly used in heat exchangers as flow through tubes. In tube flow the
inside area will be different from the outside area. So two values are possible for the
area and consequently two values are possible for the overall heat transfer coefficient.
These are:

Ui—overall heat transfer coefficient based on inside area
Uo—overall heat transfer coefficient based on outside area.
The relationship between these two is given by:

UiAi = UoAo
This can be proved by application of equation (12.1) to any situation

as Q = UiAi∆∆∆∆∆T = UoAo∆∆∆∆∆T. In the case of plane wall Ui = Uo
It is easier to consider the resistances (K/W) rather than conductances (W/K) in arriving

at the expression for overall heat transfer coefficient.

The total resistances is given by 1
A Uo o

 or 1
A Ui i

 , K
W

depending upon which from is considered. The convection resistances are given by (1/hA).
Considering flow through pipes, the conduction resistance Rk (K/W) is given by ln(ro/ri)/2πkL,
where L is the length of the pipe. The resistances due to deposits are called fouling resistances,
Rf. The values of fouling resistances have to be obtained from tabulated values of measurements
with actual equipments. The unit used is Km2/W.

Fouling resistance  for some cases is given in table 12.1
For a given area A, the resistance is equal to Rf /A (K/W). Hence

1
U Ai i

 = 1
U Ao o

 = 1 1
h A

R
A

R
R
A h Ao o

fo

o
k

fi

i i i
+ + + +

∴  1
Uo

 = 1 1
0

0
h

R A R A
A

R A
A

.
hfo o k

o

i
fi

i i
+ + + + ...(12.2)

For pipes    1
Uo

 = 1 1
0

0 0
h

R r
k

r
r

r
r

R r
r hfo

o o

i i
fi

i i
+ +

F
HG
I
KJ + +ln . ...(12.2 (a))

also   
1

Ui
 = A

A h
A
A

i

o o

i

o
. 1 +  . Rfo + AiRk + Rfi + 

1
hi

...(12.3)

For pipes
1

Ui
 = r

r h
r
r

i

o o

i

o
. 1 +  Rfo + r

k
r
r

R
h

i o
fi

i
ln

1

1F
HG
I
KJ + + ...(12.3 (a))

The equations (12.2) and (12.3) are basic to heat transfer calculations in heat exchangers.
For (12.2 (a)) and (12.3 (a)) ro and ri are based on the OD and ID of the pipe.

In practical situations the fouling factor is determined by measurement of heat transfer
value for clean surface and surface with deposit.

Rf = 1
U

1
Uf c

−

where Uf is overall heat transfer coefficient for surface after the deposits have formed due to
usage and Uc is for clean surface.



VED

c-4\n-demo\damo12-1

C
ha

pt
er

 1
2

HEAT EXCHANGERS 523

In actual applications only one of these resistances will be controlling the situation and
it will be desirable to improve that value. Conduction resistances will be often negligibly
small and may be overlooked for first estimates. The estimation of values of ‘h’ has been
discussed in chapters 8, 9, 10 and 11. It is necessary to use these correlations in this chapter
also. In the initial discussions however ‘h’ value will be specified.

Table 12.1. Fouling reistance Rf

Type of fluid Fouling resistance Km2/W

Sea water below 52°C 0.0000877
Sea water above 52°C 0.0001754
Treated boiler feed water above 52°C 0.0001754
Fuel oil 0.000877
Quenching oil 0.0007051
Alcohol vapours 0.0000877
Steam, non oil bearing 0.0000877
Industrial oil 0.0003525
Refrigerant 0.0001754

Example 12.1: In a condenser steam flows outside the tubes of radii 59 mm and 54 mm and
sea water flows inside the tubes. The thermal conductivity of the tube material is 60 W/mK.
The steam and water temperatures are below 50°C. The convection coefficient on the steam side
is 12000 W/m2 K and the value on the water side is 650 W/m2K.

Calculate the values of overall coefficients based on the (i) inside and (ii) outside areas.
Also determine the percentage error involved in neglecting (i) conduction resistance (ii)

fouling on the inside and outside and conduction and (iii) considering only the water side
resistance.
Solution: From tabulated values the fouling factors are read as

(i) sea water below 52°C 0.0000877 Km2/W
(ii) steam 0.0000877 Km2/W

Using eqn. (12.2 (a)) 
1

Uo
 = 

1
12 000,  + 0.0000877 + 

0 059 59 54
60

. ln ( / )

+ 
0 059
0 054
.
.  . 0.0000877 + 

0 059
0 054

1
650

.

.
.

 
1

Uo
 = 8.333 × 10–5 + 8.77 × 10–5 + 8.708 × 10–5 + 9.582

× 10–5 + 1.681 × 10–3

 Uo = 491.44 W/m2 K.
In this case it may be noted that all the resistances other than that due to inside convection

coefficient are 2 orders of magnitude lower.
Leaving conduction resistance:

 Uo = 513.40 W/m2 K % change: 4.47%
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Leaving out fouling and conduction resistances
Uo = 566.8 W/m2 K % change: 15.4%

Considering only water side resistance,
Uo = 594.88 W/m2 K % change: 21%

In this case the waterside resistance is controlling, as it forms 80% of the total.
Overall heat transfer coefficient based on inside area:

 UoAo = UiAi ; Uo 2πro L = Ui 2 π ri L

∴ Ui = Uo 
r
r
o

i
 = 536.94 W/m2 K

The value is higher in proportion to the area ratio.

12.2 CLASSIFICATION OF HEAT EXCHANGERS

Functionally Heat Transfer Equipments can be Divided as
(i) Recuperative type: This is the commonly used type, the heat being exchanged

between fluids separated by a barrier.
(ii) Regenerative or storage type: In this case some material is heated by a hot fluid.

Then the hot fluid flow is stopped. Cold fluid now flows over the hot solid and gets
heated. This type is used for air heating in steam plants. This type is also used in
solar heating of homes.

(iii) Direct mixing type: In this case the fluids mix and reach a common temperature.
This type is reraly used.

12.2.1. Types of heat exchangers: The heat transfer surface in heat exchangers can be
arranged in several forms. Some of the important arrangements are listed below. These
arrangements are schematically shown in Fig. 12.2.

1. Single tube arrangement in which one fluid flows inside the tube and the other
fluid flows on the outside. There are three possible directions of fluid flow in this case. (a)
parallel flow, in which the direction of flow of both fluids is the same. (b) counter flow in
which the flow directions are opposite to each other (c) cross flow in which the fluid on the
otuside flows in a perpendicular direction to the pipe axis. These are shown in Fig. 12.2 (a), (b)
and (c).

The analysis is simpler in the case of single tube heat exchanger and the results obtained
for this type is applied with corrective factors to other types.

2. Shell and tube arrangement: Single tube arrangement is suitable only for very
small capacities. So the single tube type is not extensively used in industry. Shell and tube
type is the most popular arrangement. A number of small bore pipes are fitted between two
tube plates and one fluid flows through these tubes. The tube bundle is placed inside a shell
and the other fluid flows through the shell and over the surface of the tubes. Compact
arrangement is possible with this type.

The sub types of shell and tube arrangement are (a) One shell pass and 2, 4 or multiple
tube passes. The end chambers adjacent tube plates are provided with partitions in such a way
that the fluid flowing inside the tubes takes seveal turns within the shell.
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(b) Two shell passes and 4, 8 or multiple tube passes. Here two shells are used in series
and the tubes are arranged for multiple passes. These arrangements are shown in Figs. 12.2
(d), (e), (f).

3. Cross flow heat exchanger: This arrangement is popular with heat exchangers
using air or gas. Plate type as well as tube and plate types are used. The sub type here are (a)
both fluids unmixed and (b) one fluid mixed and the other unmixed.

Cold fluid

Hot fluid

Cold fluid

Inner
tube

Outer tube

Cold fluid

Hot fluid

Inner
tube

Outer tube

Fig. 12.2 (a) Single tube-parallel flow. (b) Single tube-counter flow.

Fluid-A

Fluid-B

Tube fluid

Shell fluid

Fig. 12.2 (c) Single tube-cross flow. (d) Shell and tube

Tube fluid

Shell fluid

Fig. 12.2 (e) Single shell pass, two tube passes.
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Tube fluid

Shell fluid

Fig. 12.2. (f) Two shell passes and multiple tube passes.

These are shown in Figs. 12.2 (g) and (h). When the fluid flows through divided passages
without mixing it is called unmixed. For example fluid flowing through pipes in a bank of
tubes is said to be unmixed. Along the flow path the fluid in one pipe does not mix with the
fluid in the other. Fluid flowing without restriction over a bank of tubes is said to be mixed.

unmixed
flow

Mixed flow

Unmixed

Unmixed

Fig. 12.2. (g) Cross flow—One fluid unmixed. Fig. 12.2. (h) Cross flow—Both fluids unmixed.

These are the basic types which are found to be amenable for direct analysis. There
exist many other types of peculiar designs, which are not listed here.

12.3 MEAN TEMPERATURE DIFFERENCE-LOG MEAN TEMPERATURE
DIFFERENCE

The heat transfer from one fluid to the other at a location is given by equation (12.1). Here the
value of overall heat transfer coefficient can be assumed not to vary with location. But the
temperature difference continuously varies with location. In order to determine the
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total heat flow, either the heat flow should be summed up using elemental areas and the
temperature difference at the location or more conveniently an average value of temperature
difference should be worked out.

The temperature variation of the hot and cold fluids along the flow in a parallel flow
heat exchanger is shown in Fig. 12.3. It can be seen that the temperature difference varies
along the flow and the arithmetic average may not be the real average.

One of the important analysis in heat exchanger performance is the determination of
the mean temperature difference. The heat transfer is then given by

 Q = UA (∆T)mean .. .(12.4)
12.3.1. Determination of mean temperature difference: In the case of single tube parallel
flow heat exchanger: Referring to Fig. 12.3, the cold fuid enters at a temperature Tci and
leaves at Tco. The hot fluid enters at Thi and leaves at Tho. The flow rates and specific heats are
mc cc and mh ch respectively. The product m c is also known as heat capacity sometimes denoted
as Ch and Ce.

dTc

�T = T – Th c
�T

i

�T
i

Tci

dA �To

T – Th c

Th

Tc

Tho

Tco

�To

dTh

Thi

Inlet Outlet

Fig. 12.3. Parallel flow-single tube heat exchanger–Temperature variation along flow.

Consider a small area dA at a location. In passing through the area let the hot fluid be
cooled by dTh and let the cold fluid be heated dTc. Let the heat flow be dQ.

 dQ = – mh Ch dTh = mc cc dTc ...(12.5)
The –ve sign indicates temperature drop or dTh is negative.
The total heat flow is calculated using,

 Q = mh ch (Thi – Tho) = mc cc (Tco – Tci) ...(12.6)
This equation is used to determine one of the unknown temperatures if mass flows are

specified or the unknown mass flow if all temperatures are specified.
Using equation (12.5)

dTh = – dQ
m ch h

, dTc = dQ
m cc c
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dTh – dTc = d(Th – Tc) = – dQ 1 1
m c m ch h c c

+
L
NM

O
QP ...(12.7)

From equation (12.1)
  dQ = U dA (Th – Tc) ...(12.8)

substituting in (12.7)

d T T
T T

h c

h c

( )
( )

−
−

 = – U dA 1 1
m c m ch h c c

+
L
NM

O
QP ...(12.9)

Integrating from the inlet to the outlet

 ln (Th – Tc) 
i

o
 = – U A 1 1

m c m ch h c c
+

L
NM

O
QP ...(12.10)

Substituting the following in equation (12.10),
mh ch = Q/(Thi – Tho) and mccc = Q/(Tco – Tci)

ln ∆
∆
T
T

o

i
 = – UA

Q
 [(Thi – Tho) + (Tco – Tci)]

= UA
Q

 [(Tho – Tco) – (Thi – Tci)]

∴  Q = UA ∆ ∆
∆
∆

T T
T
T

o i

o

i

−
L

N

MMMM

O

Q

PPPPln
...(12.11)

Where ∆To and ∆Ti are the difference in temperatures between the hot and cold fluids at
outlet and at inlet.

Comparing with equation (12.4), the mean temperature is given by

 ∆∆∆∆∆Tmean = ∆ ∆
∆
∆

T T

ln T
T

o i

o

i

−  and this value is known as Log Mean

Temperature Difference or simply LMTD
∴  Q = UA (LMTD) ...(12.12)
Similar derivation is worked out for counter flow under section 12.6.1.
The same expression holds good for counter flow also but the temperature distribution

will be different.
The design of a heat exchanger generally involves the calculation of the total heat transfer

area required. The flow rate of fluids and the specific heats and also the inlet and outlet
temperatures specify the heat transfer rate (equation 12.6). The overall heat transfer coefficient
can be estimated using the fluid properties and flow configuration and dimensions. Hence the
remaining unknown namely area  A can be estimated. Iterative calculations will be required
in actual designs as the distribution of the area can be done by various combinations of tube
diameters and lengths.
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�T = 10o

30°C

20°C

60°C

26°C

T

Inlet OutletA

�T = 34
i

Example 12.2: Determine the area required in parallel flow heat exchanger to cool oil from
60°C to 30°C using water available at 20°C. The outlet temperature of the water is 26°C. The
rate of flow of oil is 10 kg/s. The specific heat of the oil is 2200 J/kg K. The overall heat transfer
coefficient U = 300 W/m2 K. Compare the area required for a counter flow exchager.

Solution: The temperature variation for parallel flow is shown in Fig. 12.4 (a).

�T = 4o
30°C

26°C

60°C

20°C

T

Inlet OutletA

�T = 40
i

Fig. 12.4 (a) Parallel flow

 Q = mh ch (Thi – Tho) = 10 × 2200 (60 – 30) J/s = 6,60,000 W
 Q = U A (LMTD)

 LMTD = 40 4
40
4

−

ln
 = 15.635°C

6,60,000 = 300 × A × 15.635 ∴ A = 140.71 m2

As can be seen a single tube arrangement is
impractical.

Counter flow:
The temperature variation is shown in Fig 12.4 (b)

LMTD = 
34 10

34
10

−

ln
 = 19.611°C

∴  A = 112.18 m2

about 20% less.
The flow rate of water can also be determined as it

will be a necessary data.
 Q = mc Cc (Tco – Tci)

6,60,000 = mc × 4180 (26 – 20)
mc = 26.32 kg/s

The counter flow arrangement provides more uniform temperature difference
along the flow and hence a better rate of heat flow. The counter flow type can also be used to
cool or heat over a wider range of temperatures. In the above case by increasing the area or by
reducing flow the hot oil can in the limit be cooled to 20°C. Manipulation in the opposite
direction can get the water heated to 60°C. This is not possible in the parallel flow where the

Fig. 12.4. (b) Counter flow
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exit temperature has to lie somewhere in between the two inlet temperatures. As far as possible
counter flow is always used in heat exchanger designs.
12.3.2. Special cases of temperature variations: (i) Condensing or evaporating of one
of the fluids and one fluid condensing while other evaporates: The temperature variation is
shown in Fig. 12.5 (a), (b) and (c). Very large flow rate of one of the fluids will also produce a
similar temperature profile. The heat capacity of the fluid is theoretically infinite.

T = Consth

T

Tci

Tco

Inlet Outlet
A

T
Tho

Inlet Outlet
A

Thi

T = Constc

T

Inlet Outlet
A

T = Constc

T = Consth

(a) (b) (c)

Fig. 12.5. (a) Condensing, (b) Evaporating, (c) Condensing and evaporating.

In the first two cases one of the temperatures remain constant throughout the heat
exchanger. In the third case both the temperatures remain constant. The direction of flow is
immaterial in these cases and the LMTD will be the same for both parallel flow, counter flow
and other flow types.

(ii) Cooling, condensing and under cooling a superheated vapour or heating,
evaporating and super heating of under cooled liquid.

The temperature distribution in these cases is shown in Fig. 12.6 (a) and (b).

T

h
i

Cooling
Condensing

Under
cooling

Pinch
Tho

Tci

Tco

A

T
h

i

Pinch

Tci

Tco

A

Tho

Heating

Evaporation

Super
heating

T T

(a) (b)

Fig. 12.6 (a) Cooling, condensation and undercooling
(b) Heating, evaporation and superheating.

In this case the heat exchanger has to be treated as a combination of three heat
exchangers. The area required for evaporation or condensation will be by far the largest. There
is another interesting aspect to the design in that the temperature difference marked ‘pinch’
can be –ve if the areas and flow rates are not properly designed. The application of case (b)
may be found in boilers of nuclear power plants and case (a) in refrigerant condensers.
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(iii) equal heat capacity for both fluids. mh ch = mccc. The temperature variation is shown
in Fig. 12.7 (a) and (b) for parallel and counter flow arrangements.

Thi

Tho

Tco
Tci

∆ ∆T = Tc h

∆Tc

∆Th

A

( )a

Tho

Tco

Tci∆ ∆T = Th c

∆Tc

∆Th

Thi

∆T = Const

A

( )b

Fig. 12.7. (a) Parallel flow-equal heat capacity
(b) Counter flow-equal heat capacity.

In parallel flow the change in temperature will be equal for both fluids (∆Th = ∆Tc). The
slope of the lines will be equal but opposite.

In the case of counter flow the temperature difference is the same at all locations and
LMTD will be of 0/0 form and so we have to use.

 LMTD = Thi – Tco = constant all along.
The situation is encountered in gas turbine regenerative heaters.

12.4 REGENERATIVE TYPE

In these cases the hot fluid and cold fluid exchange heat simultaneously and directly through
a barrier. The fluids generally have no chance of mixing and no intermediate storage is involved.

In certain cases involving gases this arrangement leads to a bulky exchanger. In case
some small amount of contamination can be tolerated, regenerative type of heat exchanger
can be used. These can be more compact and effective. In this case the hot fluid is passed on
some inert material and the material is heated over a period of time. Next, the cold fluid is
passed over the hot material to pick up the heat. This can be done alternately. By the use of
two units heating and cooling can be also achieved as a continuous process. When one of the
units goes through the heating process the other goes through the cooling process and this
operation is cycled to obtain a continuous process.

In larger power plants this cycling is achieved by rotating a cylindrical mass at a slow
rate to pass through the heating and cooling sectors alternately.

The analysis of this type of unit is attempted at the end of the chapter.

12.5 DETERMINATION OF AREA IN OTHER ARRANGEMENTS

In the case of two pass, cross flow and other arrangements the LMTD obtained by using single
tube arrangement does not provide the correct average temperature and a correction factor
has to be applied. Two parameters are found to influence the value of correction factor. These
are

(i) Capacity ratio (R) given by

 R = hot fluid temperature change
cold fluid temperature change  = T T

T T
hi ho

co ci

−
−

...(12.13 (a))
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(ii) The effectiveness (P)

 P = 
The minimum heat capacity fluid temperature rise

The difference between inlet temperatures  = 
t t
T t
2 1

1

−
− ...(12.13 (b))

Charts are available with correction factor F against P with R as parameter. As all the
four temperatures are specified, P and R can be determined and the value of correction factor
F can be read from the chart. A schematic chart is shown in Fig. 12.8.

1.0

F R2
Enter

Read

R1
Read

Enter

P1 P2

R = ———
T – T1 2

t – t2 1

P = ———
T – T1 2

t – t2 1

t2

t1

T1

T2

Fig. 12.8. Correction factor chart (schematic).

corrected average temperature
 (∆ T) = F . (LMTD) counter flow

Q = U A (∆ T) ...(12.14)
Note: P will be zero for condenser, evaporator etc., and F = 1 in these cases. LMTD should be based

on counter flow. Charts for various configuations is shown in the following Fig. 12.9 (a) to (e)
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Fig. 12.9. (a) Correction factor F for shell-and-tube heat exchangers with one shell
pass and any multiple of two tube passes (2, 4, 6, etc., tube passes).
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Fig. 12.9. (b) Correction factor F for shell-and-tube heat exchangers with two shell passes
and any multiple of four tube passes (4, 8, 12, etc., tube passes).
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Fig. 12.9. (c) Correction factor F for cross-flow (single-pass) heat exchangers
in which both streams are mixed.
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Fig. 12.9. (d) Correction factor F for cross-flow (single-pass) heat exchangers
in which one stream is mixed and the other unmixed.
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Fig. 12.9. (e) Correction factor F for cross-flow (single-pass) heat exchangers
in which both streams remain unmixed.
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Example 12.3: Determine the area required for a shell and tube heat exchanger with two tube
passes to cool oil at rate of 10 kg/s from 60°C  to 30°C flowing in the shell using water at 20°C
passing through the tubes and heated up to 26°C. The specific heat of the oil is 2200 J/kg K.
The value of overall heat transfer coefficient is 300 W/m2 K.
Solution: The heat flow rate is given by (Refer example 12.2)

Q = mhch ∆Th = 10 × 2200 × (60 – 30) = 6,60,000 W

LMTD counter flow = ( ) ( )

ln

60 26 30 10
60 26
30 10

− − −
−
−

F
HG

I
KJ

 = 19.611°C.

P = 
26 20
60 20

−
−  = 6

40  = 0.15, R = 
60 30
26 20

−
−  = 5

Reading from chart (see Fig. 12.9 (a)) F = 0.875
∴   6,60,000 = 300 × 0.875 × 19.611 × A
∴  A = 128.2 m2.
This requirement is between parallel flow and counter flow. See example 12.2.

Example 12.4: A cross flow heat exchanger with both fluids unmixed is used to heat water
flowing at a rate of 20 kg/s from 25°C to 75°C using gases available at 300°C to be cooled to
180°C. The overall heat transfer coefficient has a value of 95 W/m2K. Determine the area required.
For gas cp = 1005 J/kgK.
Solution. The properties of gas can be taken as equal to that of air

Heat transfer rate  Q = 20 × 4180 (75 – 25) = 4.18 × 106 W

 LMTD counter flow = 
( ) ( )

ln

300 75 180 25
300 75
180 25

− − −
−
−

F
HG

I
KJ

 = 187.831°C

To find correction factor F:

 P = 
t t

t
2 1

1

−
−T1

 = 
75 25
300 25

−
−  = 0.1818

 R = 
300 180

75 25
−
−  = 120

50  = 2.4

Reading from chart Fig. 8.9 (c)
F = 0.97

∴ A = Q/U. LMTD.
A = 4.18 × 106/95 × 187.831 × 0.97 = 241.5 m2

Flow rate of air : 4.18 × 106/1005 × (300 – 180) = 34.66 kg/s.

12.6 HEAT EXCHANGER PERFORMANCE

It is often necessary to estimate the performance of a heat exchanger when the flow rates
and other parameters are changed from the design values. For example a heat exchanger may
be designed to heat 10 kg/s of water from 30°C to 60°C using gases availabe at 200°C at a flow
rate of 40 kg/s. Now it is possible to estimate the value of convective heat transfer coefficients
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both inside and outside of tubes using the flow rates and once the configurations are finalised,
the area can be estimated. During operation, it may become necessary to heat water from
other than design temperature and flow rates other than the design values. It will be possible
to specify only the new values of flow rates and inlet temperatures. Using these values it will
be necessary to determine the exit temperatures.

This can be done by (i) iterative calculations assuming values of outlet temperature
and checking the values of heat flow calculated by equations (12.6) and (12.11) for convergence.
This was tedius in the precomputer days. So an alternate method was used. (ii) By using the
effectiveness of the heat exchanger and the Net Transfer Units (NTU) of the heat
exchanger. This is a very powerful method for determination of performance of heat exchangers
at off design conditions and when the outlet temperatures are not specified.
12.6.0. Effectiveness: Effectiveness is defined as the ratio of actual heat transfer to the
maximum possible heat transfer in the heat exchanger. The maximum possible heat transfer
is determined using the counter flow concept.

The concept is explained using Fig. 12.10.

T
i

m c < m cc c h h

Practical
limit

Ideal

Th2

T = Th1 c1

A

Tc1

�

Th1
m c < m ch h c c

Practical limit

Ideal

Tc2

T = Th2 c1

A �

Th2 Tc2

 (a) mh ch < mc cc,   (b) mc cc < mh ch

Fig. 12.10

The maximum possible heat transfer is estimated using the concept that in counter
flow, arrangement it is possible by proper adjustment of flow rates either to (i) cool the hot
fluid to the cold fluid inlet temperature Fig. 12.10 (a) or (ii) to heat the cold fluid to the
inlet temperature of the hot fluid Fig. 12.10 (b). This is achieved by reducing the flow rate
of hot fluid in case (i) and reducing the flow rate of cold fluid in case (ii), keeping the other flow
rate constant.

Case (i) mhch < mccc, Actual heat transfer= mhch (Th1 – Th2)
Maximum possible heat transfer = mhch (Th1 – Tc1)
∴   Effectiveness = (Th1 – Th2)/(Th1 – Tc1) ...(12.15)
Case (ii) mccc < mhch
The actual heat transfer = mccc (Tc2 – Tc1)
The maximum possible heat transfer = mccc (Th1 – Tc1)

∴ Effectiveness = T T
T T

c c

h c

2 1

1 1

−
−

...(12.16)

These definitions can also be written in general as.
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effectiveness = 
change in temperature of the minimum heat capacity fluid

Difference between the fluid inlet temperatures
These expressions are simpler because the heat capacities are not involved. Expression

like the following also are correct expressions for effectiveness.

ε = m c T
mc T T

h h h

hi ci

∆
( ) ( )min −

 = m c T
mc T T

c c c

hi ci

∆
( ) ( )min −

...(12.17)

where (mc)min is the lower of the two heat capacities. Simple expressions can be derived for the
value of effectiveness in terms of (i) Cmin/Cmax and

(ii) (UA/Cmin) called NTU or Net Transfer Units. Here C = mc.
12.6.1. Effectiveness: Counter flow heat exchanger. The temperature distribution is shown
in Fig. 12.11.

Th2

Th1

�T =
T – T

1

h1 c2

�T =
T – T

2

h2 c1

Tc1

dTh

dTc

dA

T – Th c

AA

T

Tc2

Fig. 12.11. Temperature profile, counter flow.

Considering a small area dA at the location indicated, the temperature change dTc and
dTh are both –ve in the direction considered.

dQ = UdA (Th – Tc) ...(A)
dQ = – Ch dTh = – Cc dTc

Where C = mass × specific heat = heat capacity
  dTh = – dQ/Ch, dTc = – dQ/Cc, using eqn. (A)

∴ dTh – dTc = d(Th – Tc) = – UdA 1 1
C Ch c

−
L
NM

O
QP  (Th – Tc)

∴  d T T
T T

h c

h c

( )−
−

 = – U dA 1 1
C Ch c

−
L
NM

O
QP

Integrating from entry to exist,

 ln T T
T T

h c

h c

2 1

1 2

−
−

L
NM

O
QP  = – UA 1 1

C Ch c
−

F
HG

I
KJ ...(12.18)

Substituting for Ch and Cc as
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Ch = Q
T Th h1 2−

and Cc = Q
T Tc c2 1−

 ln T T
T T

h c

h c

2 1

1 2

−
−

L
NM

O
QP  = UA

Q
 [(Th2 – Th1) + (Tc2 – Tc1)]

= UA
Q

 [(Th2 – Tc1) – (Th1 – Tc2)]

∴  Q = UA {(∆T2 – ∆T1)/ln (∆T2/∆T1)} ...(12.19)
= UA (LMTD) (Refer equation (12.12) also)

Considering equation (12.18) and inverting

 T T
T T

h c

h c

2 1

1 2

−
−

 = exp − −
F
HG

I
KJ

L
NMM

O
QPP

UA
C Ch c

1 1 ...(12.20)

Considering Cc as Cmin

T T
T T

h c

h c

2 1

1 2

−
−

 = exp − −
F
HG

I
KJ

L
NMM

O
QPP

UA
C

C
Cmin

min

max
1

UA
Cmin

 = NTU. For simplicity let UA
Cmin

 = N and C
C

min

max
 = C,

 T T
T T

h c

h c

2 1

1 2

−
−

 = exp [– N(C – 1)] = 1/exp [– N(1 – C)] ...(12.20 (a))

considering RHS, and noting that for obtaining effectiveness we require Th1 – Tc1 in the ratio,
add and substract Th1 in the numerator and Tc1 in the denominator

 T T
T T

h c

h c

2 1

1 2

−
−

 = ( (
( (
T T T T
T T T T

h c h h

h c c c

1 1 1 2

1 1 2 1

− − −
− − −

) )
) )

dividing by  (Th1 – Tc1) = 
1

1

1 2

1 1
− −

−
−

T T
T T

h h

h c
ε

but (Th1 – Th2) = C
C

c

h
 (Tc2 – Tc1) = C(Tc2 – Tc1)

substituting T T
T T

h c

h c

2 1

1 2

−
−

 = 1
1
−
−
C ε

ε
 = 1

exp[ (1 )]− −N C

solving for effectiveness

ε = 1 exp[ (1 )]
1 exp[ (1 )]

− − −
− − −

N C
C N C

...(12.21)

This is a very important equation in using NTU method.
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If Ch is considered as Cmin, we get the same result as below, considering equation (12.20).

T T
T T

h c

h c

2 1

1 2

−
−

 = exp − −
F
HG

I
KJ

L
NMM

O
QPP

UA
C Ch c

1 1

= exp − −
L
NM

O
QP

UA
C

C
min

(1 )  = exp [– N(1 – C)]

In RHS add and substract Th1 in the numerator and Tc1 in the denominator.
T T
T T

h c

h c

2 1

1 2

−
−

 = ( (
( (
T T T T
T T T T

h c h h

h c c c

1 1 1 2

1 1 2 1

− − −
− − −

) )
) )

dividing by Th1 – Tc1 and noting (Tc2 – Tc1) = C (Th1 – Th2) this reduces to
1

1
−

−
ε
εC

 = exp [– N (1 – C)]

When rearranged, the same result as (12.21) is obtained. The derivation for parallel flow is
obtained using equation (12.10)

ln T T
T T

h c

h c

2 1

1 1

−
−

 = – UA 1 1
C Ch c

+
L
NM

O
QP

Inverting this equation

T T
T T

h c

h c

2 1

1 1

−
−

 = exp − +
F
HG

I
KJ

L
NMM

O
QPP

UA
C

C
Cmin

min

max
1  = exp [– N (1 + C)] ...(A)

This is irrespective of whatever fluid is Cmin.
Rearranging only the numerator by adding and subtracting Th1, noting Ch is Cmin

 − − − −
−

( (T T T T
T T

h h h c

h c

1 2 1 2

1 1

) )  = T T
T T

h c

h c

2 2

1 1

−
−

 – ε

Now adding and subtracting Tc1 in the numerator of the first term and noting
  Tc2 – Tc1 = C(Th1 – Th2)

( (T T T T
T T

h c c c

h c

1 1 2 1

1 1

− − −
−

) )  – ε = 1 – C ε – ε

Substituting in eqn. (A) and rearranging
∴ ε (1 + C) = 1 – exp [– N(1 + C)]

∴ ε = 1 exp[ (1 )]
1

− − +
+
N C
C

...(12.22)

12.6.2. Special Cases:
(i) When Cmin = Cmax, C = 1
∴ For parallel flow substituting in (12.22)

 εp = 1 2
2

− −exp[ ]N ...(12.23)
For counter flow direct substitution results in zero divided  by zero form. So it is

obtained by suitable mathematical methods (for limits) as
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εc = 
N

N + 1 ...(12.24)
(ii) For condensers, evaporators or large value of C, Cmin/Cmax – > 0 or Cmin = 0, for both

cases
 ε = 1 – e–N ...(12.25)

The detailed derivations for these expressions are worked under solved problems 12.4
to 12.7.

For other configurations also such expressions are available. As these are lengthy, chart
solution is generally attempted.
12.6.3. Effectiveness-NTU Chart: A typical effectiveness – NTU  chart  is shown schematically
in Fig. 12.12.

The value of NTU can be determined knowing flow
rates and specific heats of fluids, area of the exchanger
and the overall heat transfer coefficient. Cmin/Cmax is used
as parameter. This value is also obtainable from the data
specified. The chart is entered at the value of NTU and
effectiveness is read where this line cuts the parametric
line (Cmin/Cmax).

Note: (Cmin/Cmax) = 0 for condensers, evaporators and
for very high heat capacity of one fluid.

As effectiveness is defined in terms of the inlet
temperatures and one outlet temperature, this outlet
temperature is determined. The heat transfer rate and
the exit temperature of the other fluid can be worked out
using energy balance.

Effectiveness – NTU charts for various configureuations is shown in Fig. 12.13 (a) – (g).
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Fig. 12.13. (a) The effectiveness of a parallel flow heat exchanger.
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Fig. 12.12. Effectiveness chart
(schematic).
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Fig. 12.13. (b) The effectiveness of a counterflow heat exchanger.
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Fig. 12.13. (c) The effectiveness of shell-and-tube heat exchangers with one shell pass and
any multiple of two tube passes (2, 4, 6, etc., tube passes).
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Fig. 12.13. (d) The effectiveness of shell-and-tube heat exchangers with two shell passes and
any multiple of four tube passes (4, 8, 12, etc., tube passes).
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Fig. 12.13. (e) The effectiveness of a cross-flow (single-pass) heat exchanger
in which both streams are mixed.
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Fig. 12.13. (f) The effectiveness of a cross-flow (single-pass) heat exchanger in which
one stream is mixed and the ohter is unmixed.
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Fig. 12.13. (g) The effectiveness of a cross-flow (single-pass) heat exchanger
in which both streams remain unmixed.

Example 12.5: Considering the data of example 12.2, determine the outlet temperatures of the
fluids if the oil flow rate is increased to 14 kg/s. The other flow rate remains the same. Workout
for parallel flow, counter flow and shell with two tube passes.
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Solution: The unit cools 10 kg/s from 60°C to 30°C using water at 20°C being heated to 26°C.
The flow rate was determined as 26.32 kg/s. The areas are (i) parallel flow : 140.71 m2. (ii)
counter flow : 112.18 m2 (iii) shell with two tube passes 128.2 m2 (example 12.3).

U = 300 W/m2 K. Specific heat of oil: 2200 J/kg K
Considering the changed flow:

mhCh = 14 × 2200 ∴ Ch is Cmin
 mcCc = 26.32 × 4180

 C
C

min

max
 = 

14 2200
26 32 4180

×
×.  = 0.28

Parallel flow

 NTU = UA/Cmin = 
300 140 71

2200 14
×

×
.

 = 1.37

reading from the chart Fig. 12.13 (a) at this value of NTU and Cmin/Cmax
effectiveness = 0.68
Using equation (12.22)

effectiveness = 1 1
1

− − +
+

exp[ ( )]N C
C  = 0.646

It is better to use the equation results

 Effectiveness = 60
60 20

2−
−

Th   ∴ Th2 = 34.16°C

(as hot fluid is Cmin)

Water outlet temperature: 
14 60 34 16 2200

26 32 4180
( . )

.
−

×
 + 20 = 27.234°C

Check :  LMTD = ( ) ( . . )60 20 34 16 27 234− − −
−

−
F
HG

I
KJln (60 20)

34.16 27.234

 = 18.86°C

 Q = UA LMTD = 300 × 140.71 × 18.86 = 0.7962 × 106 W
From energy balance

 Q = 14 × 2200 × (60 – 34.16) = 0.7959 × 106 W
Checks:
Counter flow: NTU = 300 × 112.18/14 × 2200 = 1.093

effectiveness = 1 1
1 1

− − −
− − −

exp[ ( )]
.exp[ ( )]

N C
C N C

 = 0.624

From chart Fig. 12.13 (b) : effectiveness = 0.620
Using the equation results

0.624 = 60
60 20

2−
−
Th ∴ Th2 = 35.03°C
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Water outlet temperature = 20 + 14 (60 35.03) 2200
26.32 4180

− ×
×

 = 26.99°C

Check LMTD = ( . ) ( . )

ln .
.

60 26 99 35 03 20
60 26 99
35 03 20

− − −
−

−
F
HG

I
KJ

 = 22.85°C

 Q = 300 × 112.18 × 22.85 = 0.769 ×106

From energy balance: 14 × 2200 (60 – 35.03) = 0.7691 × 106

Checks
Shell with two tube passes:

NTU = 300 × 128.2/14 × 2200 = 1.249
Cmin/Cmax = 0.28

Using chart, Fig. 12.13 (c) effectiveness = 0.64 = 
60
60 20

2−
−
Th

∴ Th2 = 34.4°C
Water temperature using energy balance,

= 20 + 14 2200 60 34 4
26 32 4180

× −
×
( . )

.  = 27.17°C

 Q = 14 × 2200 (60 – 34.4) = 0.7885 × 106 W
Using LMTD and correction factor, (0.875, see example 12.3)

LMTD = 
( . ) ( . )

ln .
.

60 27 17 34 4 20
60 27 17
34 4 20

− − −
−

−
F
HG

I
KJ

 = 22.36°C

Q = 128.2 × 300 × 22.36 × 0.875 = 0.7526 × 106 W
This difference (5% about) is possibly due to the use of chart solution.

Example 12.6: An economiser in a boiler has flow of water inside the pipes and hot gases on
the outside flowing across the pipes. The flow rate of gases is 2,000 tons/hr and the gases are
cooled from 390°C to 200°C. The specific heat of the gas is 1005 J/kg K. Water is heated (under
pressure) from 100°C to 220°C. Assuming an overall heat transfer coefficient of 35 W/m2 K,
determine the area required. Assume that the air flow is mixed.
Solution: This is a cross flow heat exchanger

The flow rate of gas is 2000 1000
3600

×  kg/s = 555.6 kg/s

Ch = 5.583 × 105 W

The flow rate of water = 
555 6 1005 390 200

4180 220 100
. ( )

( )
× × −

× −  = 211.49 kg/s

Cc = 211.49 × 4180 = 8.84 × 105 W
∴ Ch is Cmin and Cmin /Cmax = 0.632
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Effectiveness with Ch as Cmin = T T
T T

h h

h c

1 2

1 1

−
−

 = 
390 200
390 100

−
−  = 0.6551

From the chart (Ch = Cmin mixed), NTU is read as 1.75

∴  A = 
NTU × C

U
min  = 

175 5 583 10
35

5. .× ×
 = 27,915 m2

Check using LMTD:

LMTD counter flow = ( ) ( )

ln

390 220 200 100
390 220
200 100

− − −
−
−

F
HG

I
KJ

 = 131.92°C

To determine correction factor,

 P = 
220 100
390 100

−
−  = 

120
290  = 0.414, R = 

390 200
220 100

−
−  = 

190
120  = 1.583

From chart Fig. 12.9 (d) F = 0.8
 Q = F U A (LMTD)

∴  A = Q/FU (LMTD) = 2000 1000
3600

×  × 
1005 390 200
35 13192 0 8

( )
. .

−
× ×

∴  A = 28720 m2 checks within reasonable limits.
The LMTD method is simpler in this case.

Example 12.7: If in example 12.6, the water flow rate is increased by 20% without altering
inlet conditions determine the exit conditions and the percentage change in heat transfer.
Solution: The value of Cmax alone is changed in this case. So the value of NTU remains the
same. NTU = 1.75. Taking values from example 12.6

 C
C

min

max
 = 0 632

12
.
.  = 0.527

The value of effectiveness as read from the chart is 0.68. (Note: This can be checked by
equations available, 0.67)

∴ 0.68 = 390
390 100

2−
−

Th ∴ Th2 = 192.8°C

Water outlet temp.:

Tc2 = 555 6 1005 390 192 8
21149 12 4180
. ( . )

. .
× −

− ×
 + 100 = 203.8°C

 Q = 555.6 × 1005 × (390 – 192.8) = 110.112 × 106 W
Q at design value = 555.6 × 1005 (390 – 200) =  106.09 × 106 W

∴ percentage increase = 3.8 %
Note: Though the heat flow has increased, the water outlet temperature is lower because of

increased flow rate.
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12.7  STORAGE TYPE HEAT EXCHANGERS

A diagramatic view of a storage type heat exchanger is shown in Fig. 12.14

m inc

L

dx
x tg

t

m outh

m inh

m outc

Filling

Fig. 12.14. Storage type heat exchanger.

Hot gas flows over the matrix for a given period, heating the mass. The flow is then
stopped and cold fluid flows over the matrix for the next period getting heated in the process.

The energy from the hot fluid is transferred to the cold fluid with intermediate storage
in the matrix.

The gas and matrix temperatures at any location can be solved for by writing the energy
balance equation for the elemental width dx, using the following notations:

Mc = mass of solid per unit length kg/m
Cs = specific heat of solid
V1 = free volume per unit length
A1 = heat transfer surface area per unit length
m = mass flow rate of gas
 ρ = density of gas
C = specific heat of gas
L = length of the matrix column
h = convective heat transfer coefficient between gas and matrix

Considering the solid, at the location x for length dx, where the solid temperature is t,
and gas temperature tg, heat transferred by convection at the solid surface = heat stored in the
solid.

h A1 (tg – t) dx dτ = Mc Cs dx
∂
∂τ
t  . dτ ...(12.26)

Considering the gas
Heat transferred by convection = heat in changing the temperature of gas in the free

volume + change in the stored energy of the flowing gas.

h A1 (t – tg) dx dτ  = ρ C V1dx
∂
∂τ
tg  . dτ + C m dτ

∂
∂
t
x
g  . dx ...(12.27)
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These equations after simplification yield

 ∂
∂τ
t  = hA

C Ms c

1  (tg – t) ...(12.28)

 
∂
∂
t
x
g  + ρV

m
1  . 

∂
∂τ
tg  = hA

Cm
1  (t – tg) ...(12.29)

The second term on LHS is very small and is generally neglected. These equations are
then solved using the boundary and initial conditions and introducing new variables as below:

exi = hA
Cm

1  . x, eta = hA
C Ms c

1  . τ ...(12.30)

The results of the solution are available in chart from available in data books with (i)
dimensionless gas temperature ratio and exi with eta as parameter to determine gas
temperature at any location and (ii) dimensionless solid temperature ratio and exi, with eta as
parameter as shown in Fig. 12.14 (a) and (b) (t0 is initial temperature of solid)

1.0

0.0
10exi

eta 0

(a) (b)

7t – tg go

t – to go

1.0

0.0
10exi

eta 1

20

t – tgo

t – to go

Fig. 12.14. Regenerative exchanger, (a) Gas temperature chart
(b) Soild temperature chart (Schematic).

The variables exi and eta are functions of location and time and material properties and
flow rate. In this case the solid internal resistance is neglected.

The heat flow over a period of time can be calculated by summing up the heat flow at all
the locations.

For continuous rotary type of storage heat exchanger, effectiveness charts are available
in hand books to determine the effectiveness and heat flow.
Example 12.8: A storage type of heater is 1 m2 in section 2.5 m long. It is filled with mesh
which provides 30 m2/m length surface area and a void of 60%. The mass of filler per m length
is 2000 kg. The specific heat of the filler material is 475 J/kgK. The convective heat transfer
coefficient over the surface is 50 W/m2 K.

Determine the filler and gas temperature at 1.25 m location after 12 minutes. Gas at
300°C flows at a rate of 0.4 kg/s. The initial temperature at the location was 60°C specific heat
of gas = 1005 J/kgK.
Solution: This is a storage heat exchanger problem. Use of charts is necessary. The
parameters are

exi = hA
Cm

x1 . eta = hA
C Ms c

1 .τ .
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h = 50 W/m2 K, A1 = 30 m2/m, C = 1005 J/kgK, m = 0.4 kg/s
x = 1.25 m, Cs = 475 J/kgK, Mc = 2000 kg/m, τ = 720 s

∴ exi = 50 30 125
1005 0 4

× ×
×

.
.

 = 4.66 eta = 50 30 720
2000 475

× ×
×

 = 1.14

Using the chart (schematic) (Fig. 12.15 (a))

1.0

0.92

0.5

eta = 1.14

T – Tgo

T – To go

4.66 9.33

10

exi

1.0

0.88
eta

1.44

4.66 9.33

10

exi

0.4T – To go

T – Tg go

(a) (b)

Fig. 12.15. (a, b)

The filler temperature ratio is read as 0.92

 T −
−

300
60 300  = 0.92, ∴ T = 79.2°C

To determine the gas temperature using the chart (schematic) (Fig. 12.15 (b))

 
T T
T T

g go

o go

−
−

 = 0.88
Tg −

−
300

60 300
 = 0.88 ∴ Tg = 88.8°C.

Example 12.9 : In example 12.8, determine how long it will take for the filler temperature at
the exit position to reach 180°C. Determine the gas temperature at this position at that time.

Solution:  exi = 50 30 2 5
1005 0 4

× ×
×

.
.  = 9.33

 
T T
T T

go

o go

−
−

 = 
180 300
60 300

−
−

 = 0.5

Reading from the filler temperature chart, eta = 10

10 = 50 30
2000 475

× ×
×

τ , ∴ τ = 6333 s or 1.76 hours

reading from gas temperature chart for eta = 10 and exi = 9.33, Fig. 12.14 (b),

 
T T
T T

g go

o go

−
−

 = 0.4 ∴ tg = 204°C

The mass flow rate of gas and convection coefficient should be increased if the heating
time is to be reduced.
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12.8 COMPACT HEAT EXCHANGERS

In gas flow, the convective heat transfer coefficients are low and consequently in heat exchangers
using gas flow the overall heat transfer coefficient is low. The area required is large. So the
heat transfer area has to be increased over and above that of the tubes in order to reduce the
heat exchanger size. This is achieved by the use of thin fins. Such heat exchangers are called
compact heat exchangers. Examples are steam to air heaters, automobile radiators and heat
exchangers used in small air conditioners, Several types of construction are employed, some of
them being circular tubes with circular fins, helical fins, plate fins, flat tubes with plate fin
matrix. Test results for several types of matrix arrangement, correlated in terms of Reynolds
number against friction factor and Stanton number are available. Reynolds and Station numbers
are generally calculated using mass velocity.

 Re = G Dh.
µ

and St = h
G C p

G = mass velocity = m/Amin kg/m2 . s
m = mass flow rate, kg/s.

Amin = minimum flow area, m2

 Dh = hydraulic diameter = 4, L Amin/A
 L = flow perimeter A-total heat transfer surface area

These values can be calculated if the construction details are specified.
A typical test result is shown in Fig. 12.16

f

Re Re

St. Pr
2/3

Fig. 12.16. Correlations for compact heat exchanger (Schematic).

The total area can be calculated if the pitch and the fin dimensions are known. Similarly
the minimum area and length can also be calculated using the fin pitch, and sectional area for
flow.
(for details refer Compact Heat Exchangers – Kays and Londan, McGraw Hill)

SOLVED PROBLEMS

Note: Problems 12.1 - 12.3 are for the determination of overall heat transfer coefficient and are
not on heat exchanger performance.
Problem 12.1: In a refinary fuel oil is to be cooled from 100°C to 40°C by water at 25°C flowing
on the outside of the tube. The inner diameter is 25 mm and the oil flow rate is 1 kg/s. Water is
heated to 45°C. The tube is made of 0.5 % carbon steel of thickness 3 mm. The inner diameter of
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the outer pipe is 62.5 mm. The outside may be considered as insulated. The properties of oil at
70°C are: density = 858 kg/m3, kinematic viscosity v = 60 × 10–6 m/s. k = 0.140 W/mK, specific
heat = 2100 J/kg K. Determine the overall heat transfer coefficient. Consider good performance
even after fairly long usage.
Solution: In this case, the overall heat transfer coefficient has to be determined. The details
required are :

ho, hi, Rk, Rfo and Rfi
(i) Determination of ho : water is flowing in the annular area.
The properties of water at (25 + 45) / 2 = 35°C are

density = 992.5 kg/m3, kinematic viscosity = 0.61225 × 10–6 m2/s
k = 0.634 W/mK, Pr = 4.01,

hydraulic mean radius = (0.0625 – 0.031) m
The rate of flow is obtained by heat balance.

1 × 2100 × (100 – 40) = mh2o × 4180 × (45 – 25)
∴ mh2o = 1.507 kg/s, density = 998.5 kg/m3

The flow area = π
4  (0.06252 – 0.0312)

Average velocity of water = 
1507
998 5
.

.
F
HG
I
KJ  / [(π/4) (0.06252 – 0.0312)] = 0.6574 m/s

Reynolds number  Re = 
0 6574 0 0625 0 031

0 61225 10 6
. ( . . )

.
× −

× −  = 33823

The correlation applicable for burbulent flow in an annulus is the same as per tube flow
using hydraulic mean radius.

∴  Nu = 0.023 Re0.8 Pr0.4 = 168.4

∴ ho = 
168 5 0 634
0 0625 0 031

. .
( . . )

×
−  = 3389.5 W/m2 K

On the oil side, (within the tube), using mass flow rate,
Reynolds number Re = 4 m/π D µ

= 4 × 1/π  × 0.025 × 858 × 60 × 10–6 = 989.31
Laminar flow, Constant wall temperature, fully developed (assumed)

Nu = 3.66, ∴ h1 = 
3 66 0 14

0 025
. .

.
×

 = 20.5 W/m2 K

The values of fouling resistances are read from table 12.1
oil side  Rfi = 0.000877 Km2/W
water side  Rfo = 0.0001754 Km2/W

∴  1
Uo

 = 1
ho

 + Rfo + r
k
o  . ln

r
r
o

i
 + 

r
r
o

i
 . Rfi  + r

r
o

i
 . 1

hi

For the tube material k = 53.6 W/mK
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1

Uo
 = 

1
3389 5.  + 0.0001754 + 

0 031
53 6
.

.  . ln
.
.

0 031
0 025  + 

0.031
0.025  0.000877 + 0.031

0.025
 . 1

20 5.
= 2.95 × 10–4 + 1.754 × 10–4 +1.244 ×10–4 + 10.87 × 10–4 + 604.9 × 10–4

∴  Uo = 16.08 W/m2 K
It can be seen that the convection resistance due to oil is controlling and is two orders of

magnitude above the others (2.95 × 10–4 – > 600 × 10–4)
∴ Ui = 19.95 W/m2 K.

Problem 12.2: In a shell and tube condenser, the tube bank is 10 rows deep. The tube ID is 20
mm and OD is 25 mm. The tubes are arranged in square array of 50 mm pitch. Water flows
across the tubes with a velocity of 0.5 m/s. Sea water flows inside and the flow velocity is 1.0
m/s. The water is cooled form 50°C to 30°C and the sea water temperature in the process increases
from 15°C to 25°C. Assuming for sea water, the same property values of water, determine the
overall heat transfer coefficient. The tubes are of brass with k = 60.6 W/mK.
Solution: Assume a tube length 4 m.

The convective heat transfer coefficients should be determined first.
Considering sea water flow, the mean temperature is 20°C. The property values are :

density = 1000 kg/m3, kinematic viscosity = 1.006 × 10–6 m2/s, Pr = 7.02, k = 0.5978 W/mK,
c = 4178 J/kgK.

Reynolds number  Re = U D
v
.  = 

1 0 02
1006 10 6

×
× −
.

.  = 19881

The flow is turbulent
As L/D = 4/0.02 = 200 fully developed flow can be assumed.

Nu = 0.023 Re0.8 Pr0.4 = 137.72
∴ hi = 4117 W/m2 K
Considering the flow of water over the tube bank. (refer chapter on external flow)

 umax = [Sp/(Sp – D) u∞ = 2 × 0.5 = 1 m/s
The correlation is Nu = C Ren

From tables for  Sp/D = 2, Sn/D = 2, C = 0.229, n = 0.632
Also for water C should be multiplied by
1.13 × Pr0.33 property values  at 40°C are : k = 0.628 W/mK

ρ = 995 kg/m3, v = 0.657 × 10–6 m2/s, Pr = 4.34,
Nu = 1.13 × 4.340.33 × 0.229 × [1 × 0.025 / 0.657 × 10–6]0.632 = 331.29

∴ h0 = 331.29 × 0.628 / 0.025 = 8322 W/m2 K
The fouling resistances are: Water side Rfo = 0.0001754 Km2/W
Sea water side  Rfi = 0.0000877 Km2/W.
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1
U0

 = 1
8322 + 0.0001754 + 0 025

2 60 6
.

.×
 . ln .

.
0 025
0 020  + 0 025

0 020
.
.  0.0000877 + 0 025

0 020
.
.  . 1

4117

∴   Uo = 1325 W/m2K. Ui = 1656 W/m2 K.
Problem 12.3: In a condenser steam condenses on the outside of a tube bank pipes of 25 mm
OD at 35°C. The bank is 10 rows deep. Sea water flows inside the pipe at a velocity of 1.0 m/s.
The  water is heated from 15 to 25°C during the flow. The tubes are of brass with a thermal
conductivity value of 60.6 W/mK. Determine the value of overall heat transfer coefficient. The
tubes are 4 m long. ID = 20 mm.
Solution: Refer to problem 12.2, hi = 4117 W/m2 K

For condensation on the outside : Assuming the tubes to be horizontal, (eqn. 11.27)

h = 0.725 
k gh

n D T T
fg

f s

3 2 0 25
ρ

µ ( )

.

−

L
N
MM

O
Q
PP  = 0.725 k gh

nvD T T
fg

f s

3 0 25
ρ
( )

.

−

L
N
MM

O
Q
PP

For a film temperature of 30°C,
the property values are:

k = 0.6129 W/m K,   ρ = 997.5 kg/m3

v = 0.8315 × 10–6 m2/s, hfg = 2430.5 kJ/kg, µ = v ρ

∴ ho = 0.725 
0 6129 997 5 9 81 2430 5 10

10 0 8315 10 0 025 20

3 3

6

0.25
. . . .

. .
× × × ×

× × × ×
L
NM

O
QP−  = 4367.6 W/m2 K

∴
1

U o
 = 

1
4367 6.  + 0.0001754 + 

0 025
2 60 6

.
.×

 . ln
.
.

0 025
0 20  + 

0 025
0 020
.
.  × 0.0000877

+ 0 025
0 020
.
.  . 1

4117
∴ Uo = 1158 W/m2 K

 Ui = 1447 W/m2 K.

Problem 12.4 : Derive the expression for the temperature rise of cold fluid in a condenser
along the flow area. Also derive the expression for the effectiveness of such a heat exchanger.

dA

T = Constanth

Tc2

dTc

ATc1

Fig. P.12.4
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Solution: The temperature variation is shown in Fig. P. 12.4. The condensing temperature
remains constant.

Consider area dA. Let the heat capacity of the cold fluid be mc cc = Cc.
The heat transferred in the small area.

dq = Cc dTc = UdA (T – Tc) (Note: d Tc is +ve), T is the hot fluid temperature.

∴
dT

T T
c

c−
 = UdA

Cc

Here Cc is Cmin and so UdA
Cc

 is NTU for the small area.

Integrating the expression after separating variables.

dT
T T

c

c−z
1

2

 = UdA /Cc
1

2z , ln T T
T T

c

c

−
−

F
HG

I
KJ

2

1
 = UA

Cc
 = NTU

or  T T
T T

c

c

−
−

2

1
 = e–NTU ...(12.4.1)

(Note: NTU = N, (Cmin / Cmax) = C]
The temperature at any location upto which the area is A can be determined by using

that area A is the calculation of NTU. The effectiveness in this case is given by

 ε = T T
T T
c c

c

2 1

1

−
−

 = 
( ) ( )T T T T

T T
c c

c

− − −
−

1 2

1
 = 1 – 

T T
T T

c

c

−
−

2

1

Substituting from 12.4.1  ε = 1 – e–NTU

This can be also obtained form the general expression for counter flow or parallel flow
heat exchanger, substituting (Cmin/Cmax) = 0. In the case of the condenser Ch – > ∞ .
Problem 12.5: Derive the expression for the effectiveness of a parallel flow heat
exchanger.
Solution: The temperature variation is shown in Fig. P. 12.5. Considering a small area dA,
The heat transfer through the area.

dq = – Ch d Th = Cc dTc = UdA (Th – Tc) ...(12.5.1)

�T2

Th2

Tc2

dTh

dTC

Th1

Tc1 dA

�T1

Fig. P.12.5
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 d Th = – dq
Ch

, d Tc = dq
Cc

(d Th – d Tc) = d (Th – Tc) = – dq 
1 1

C Ch c
+

L
NM

O
QP

Substituting for  dq = U d A (Th – Tc)

d (Th – Tc) = – U d A (Th – Tc) 
1 1

C Ch c
+

L
NM

O
QP

separating variables and integrating, and assuming Ch as Cmin

ln T T
T T

h c

h c

2 2

1 1

−
−

 = – UA 1 1
C Ch c

+
L
NM

O
QP
 = – 

UA
Cmin

 1+
L
NM

O
QP

C
C

min

max

or T T
T T

h c

h c

2 2

1 1

−
−

 = exp [ – N(1 + C) ] ...(12.5.2)

12.5.2 is now modified by adding and substracting Th1 and Tc1 in the numerator as

 T T
T T

h c

h c

2 2

1 1

−
−

 = ( ) ( ) ( )T T T T T T
T T

h c h h c c

h c

1 1 1 2 1 2

1 1

− − − + −
−

as   Cc(Tc2 – Tc1) = Ch(Th1 – Th2)

Tc1 – Tc2
 = – C

C
h

c
 (Th1 – Th2) = – C(Th1 – Th2)

Substituting
T T
T T

h c

h c

2 2

1 1

−
−

 = 1 – T T
T T

h c

h c

1 2

1 1

−
−

 – C T T
T T

h h

h c

1 2

1 1

−
−

 = 1 – ε – Cε

∴ 1 – exp [– N(1 + C)] = ε (1 + C)

∴ εεεεε = 
1 exp[ N(1 C)]

1 C
− − +

+
The same expression can be obtained assuming Cc = Cmin (Try this)
If C = Cmin/Cmax = 0 then εεεεε = 1 – e–N

If C = 1 εεεεε = (1 – e–2N)/2.
Problem 12.6: Derive from basics the expression for effectiveness for a counter flow
heat exchanger with Ch = Cc or (Cmin/Cmax) = 1.
Solution: The temperature variation along the exchanger is shown in Fig. P. 12.6.

The temperature difference all along will be constant as Ch = Cc
∴ dTh = dTc ∴ dTh – dTc = 0

Ch = Cc = Cmin = Cmax, dq = – Ch dTh = U dA (Th – Tc)
As Th – Tc = constant, this can be integrated as such between the limits giving
Ch (Th1 – Th2) = UA (Th – Tc)
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dA

dTh

dTc

A

(T = T ) =
T = Const
h C

�

dT = dTh C

Fig. P. 12.6

∴  T T
T T
h h

h c

1 2−
−

 = UA/Ch = NTU = N

 T T
T T
h h

h c

1 2−
−

 = T T
T T

h h

h c

1 2

1 2

−
−

 = T T
T T T T

h h

h c c c

1 2

1 1 2 1

−
− − −( () )

Cc (Tc2 – Tc1) = Ch (Th1 – Th2) ∴ Tc2 – Tc1 – Th1 – Th2

∴
T T
T T
h h

h c

1 2−
−

 = T T
T T T T

h h

h c h h

1 2

1 1 1 2

−
− − −( () )

Dividing by Th1 – Tc1, noting ε = (Th1 – Th2)/(Th1 – Tc1)
T T
T T
h h

h c

1 2−
−

 = 
ε

ε1 −  = N, ∴ ε = 
N

N + 1
Problem 12.7: From basics derive the expression for effectiveness for parallel flow
heat exchanger with Ch = Cc or equal heat capacities.
Solution: The temperature variation is shown in Fig. P. 12.7

dTh

dTc

dT = dTc h
Th1

TC1

TC2

Th2

A

2dTc

T = consth

TC1

TC2

A

dA

Fig. P. 12.7. (a, b)

As the heat capacities are equal and opposite, (– dTh = dTc)
(dTh – dTc) = – 2 dTc

The temperature variation or ∆T or (Th – Tc) can also be shown as in Fig. P. 12.7 (b)
keeping one temperature at constant value, with variation at any location at double the variation
of any one of the temperatures.
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 dq = Cc dTc = UdA (Th – Tc), d(Th – Tc) = – 2 dTc

∴
d T T

T T
h c

h c

( )−
−

 = – 2U dA
Cc

Integrating, ln T T
T T

h c

h c

2 2

1 1

−
−

 = − 2UA
Cc

 = – 2 NTU = – 2N

∴
T T
T T

h c

h c

2 2

1 1

−
−

 = exp [– 2N]

Introducing Th1 and Tc1 in the numerator.

T T
T T

h c

h c

2 2

1 1

−
−

 = ( ( (T T T T T T
T T

h c h h c c

h c

1 1 1 2 2 1

1 1

− − − − −
−

) ) )

as Ch (Th1 – Th2) = Cc (Tc2 – Tc1) and as Ch = Cc

This reduces to

1 – ε – ε = exp [– 2N] ∴ εεεεε = 1 exp[ 2N]
2

− −

This can also be obtained by substitution in the general expression.

Problem 12.8: The inlet and outlet temperature of hot and cold fluids in a double pipe heat
exchanger are 220°C, 100°C and 80°C and 120°C. Determine whether the exchanger is parallel
flow or counter flow. Also determine the LMTD and effectiveness of the exchanger and the
capacity ratio.
Solution: The temperature are plotted both for parallel flow and counter flow, in Fig. P. 12.8
(a) and 9b).

A A

220°C

120°C

100°C

80°C

Fig. P. 12.8. (a) Parallel flow, (b) Counter flow.

The plot shows that the outlet temperature of the hot fluid is lower than the inlet
temperature of the cold fluid. This will lead to heating of end portion of hot fluid by the cold
fluid. So the specified condition cannot be achieved in parallel flow.

For the counter flow such a higher temperature for the cold fluid is possible. So the
exchanger has to be a counter flow type.
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LMTD = ( ) ( )

ln

220 120 100 80
220 120
100 80

− − −
−
−

F
HG

I
KJ

 = 49.7°C

Effectiveness: The fluid having lower heat capacity will have a higher change in its
temperature.
here  Th1 – Th2 = 220 – 100 = 120°C, Tc2 – Tc1 = 120 – 80 = 40°C

So hot fluid is Cmin. The capacity ratio is given by
C
C

min

max
 = ∆

∆
T
T

max

min

fluid
fluid

= =40
120

1
3

ε = T T
T T

h h

h c

1 2

1 1

−
−

 = 
220 100
220 80

120
140

−
−

=  = 85.71%.

Problem 12.9: In a heat exchanger hot  fluid enters at 180°C and leaves at 120°C while the
cold fluid enters at 100°C and leaves at 120°C. Determine the LMTD and effectiveness in the
following cases. Also find the NTU values.
Solution: cases: 1. Counter flow

2. One shell pass and multiple tube passes
3. two shell passess and multiple tube passes
4. cross flow, both fluids unmixed
5. cross flow, the cold fluid unmixed
This problem illustrates the basic principle involved in the comparison of various types

of heat exchangers.
1. LMTD counter flow:

= 60 20
60
20

−

ln
 = 36.41°C

In the other cases, this value should be multiplied by a factor depending on

P = 
t t
T t

2 1

1 1

−
−

R = T T
t t
1 2

2 1

−
−

∴ P = 120 100
180 100

20
80

−
−

=  = 0.25,  R = 
180 120
120 100

60
20

−
−

=  = 3

Entering the chart at P = 0.25 the value of F are read at R = 3. The values are:
F LMTD,°C

2. One shell pass and multiple tube passes: 0.8 29.13
3. Two shell passes and 4, 6....8 tube passes: 0.86 31.31
4. Cross flow both fluids unmixed: 0.90 32.8
5. Cross flow cold fluids unmixed: 0.86 31.31
The area will be least where the LMTD is highest.



VED

c-4\n-demo\damo12-3

C
ha

pt
er

 1
2

HEAT EXCHANGERS 559

The hot fluid is Cmin as it goes through higher temperature drop.

Effectiveness : T T
T T

h h

h c

1 2

1 1

−
−

 = 
180 120
180 100

60
20

−
−

=  = 0.75

The effectiveness is the same in all cases as the temperatures are specified.
The value of effectiveness is not a direct indicator of the performance of a heat exchanger in
terms of area required.

C
C

min

max
 = 

120 100
180 120

20
60

−
−

=  = 0.3333

The values of NTU can be read from charts (or may be calculated)
1. Counter flow 1.65
2. One shell and Two tube pass 2.3
3. Two shell pass 1.8
4. Cross flow, both fluids unmixed 1.85
5. Cross flow, Cold fluid unmixed 1.9
Lower value of NTU provides better performance for heat exchangers. As U

and Cmin are the same, higher the value of NTU, higher the area required.
Problem 12.10: Water flows at a velocity of 1 m/s through a pipe of 25 mm ID and 30 OD and
3 m length. Air at 30°C flows across the tube, with a velocity of 12 m/s. The inlet temperature of
the water is 60°C. Determine the exit temperature. The thermal conductivity of the tube material
is 47 W/mK.
Solution: This situation can be modelled as a single tube exchanger with the cold fluid (air)
temperature constant.

The value of overall heat transfer coefficient has to be determined. The values of
convective heat transfer coefficients have to be calculated.

Inside: Water at 60°C enters the tube. Assuming a bulk mean temperature of 50°C, the
property values are read:

 ρ = 990 kg/m3, v = 0.5675 × 10–6 m2/s, Pr = 3.68, k = 0.63965 W/mK

Re = 
1 0 025

0 5675 10 6
×

× −
.

.  = 44053 ∴ Turbulent

Using Nu = 0.023 Re0.8 Pr0.3 (cooling)
Nu = 176.47 ∴ hi = 4515 W/m2 K

Air flows on the outside at 30°C. The property values are taken at 40°C (film temperature,
approximate)

ρ = 1.128 kg/m3, v = 16.96 × 10–6 m2/s, Pr = 0.699, k = 0.02756 W/mK
Re = 12 × 0.03/16.96 × 10–6 = 21226.4

Using the correlation of the form
Nu = C Rem Prn, for this range of Reynolds number
 C = 0.26, m = 0.6, n = 0.37

∴ Nu = 89.85 ho = 82.55 W/m2K
calculating the overall heat transfer coefficient based on outside area,
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 1
Uo

 = 
1 1
h

r
k

r
r

r
r ho

o o

i

o

i i
+ +. ln .

= 1
82 25

0 03
47 2

30
25

30
25

1
4515.

. ln .+
×

+ ∴ U0 = 80.03 W/m2 K

The water outlet temperature is not known.
Equating the heat flow calculated using water side heat capacity and temperature change,

and also using LMTD approach,

π × 0 025
4

2.  × 1 × 1000 × 4180 × (60 – Tho)

= 80.03 × π × 0.03 × 3 × ( ) ( )

ln

60 30 30
60 30

30

− − −
−
−

T

T

ho

ho

 90.68 (60 – Tco) = (60 – Tho)/ln 30
30Tho −

Solving by trial:  Tho = 59.66°C
The temperature drop is small due to the large flow rate and small area.

 Q = mass flow × C × ∆T

= π × 0 025
4

2.  × 1 × 1000 × 4180 (60 – 59.66) = 697.6 W

From LMTD,

 Q = UA. LMTD, LMTD = 30 29 66
30

− .

ln
29.66

 = 29.83

= 80.03 × π × 0.03 × 3 × 29.83
= 675 W (correction factor not used)

checks within reasonable limits.
Problem 12.11: If in problem 12.10, air flows inside the tube with a velocity of 9 m/s, determine
the exit temperature air.
Solution: Considering a bulk mean temperature of 40°C, and using property values at this
temperature (see problem 12.10)

 Re = 9 × 0.025/16.96 × 10–6 = 13266.5
Using the correlation

Nu = 0.023 Re0.8 Pr0.3 = 41.05
hi = 41.05 × 0.02756/0.025 = 45.25 W/m2 K
ho = 82.55 W/m2 K (problem 12.10)

∴
1

Uo
 = 

1 1
h

r
k

r
r

r
r ho

o o

i

o

i i
+ +. ln .
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= 1
82 55

0 03
2 47

30
25

30
25

1
45 25.

. . ln .
.

+
×

+

∴  Uo = 25.85 W/m2 K.
Equating the heat flow calculated by LMTD and heat capacity methods.

π × ×0 025 9
4

2.  × 1.128 × 1005 (6 – Tho)

= 25.85 × π × 0.03 × 3 × ( ) ( )

ln

60 30 30
60 30

30

− − −
−
−

T

T

ho

ho

0.6854 (60 – Tho) = 60
60 30

30

−
−
−

T

T

ho

ho
ln

solving by trial Tho = 37°C

Check:  Q = mc ∆T = π × ×0 025 9
4

2.   × 1.125 × 1005 (60 – 37) = 114.88 W

 Q = UA (LMTD) = 25.85 × π × 0.03 × 3 ×  ( ) ( )

ln

60 30 37 30
60 30
37 30

− − −
−
−

= 115.51 W (Correction factor not used)
Agress well. However, another trial with properties of air at (60 + 37)/2 or about 50°C

will provide a more closer value.
Problem 12.12: A heat exchanger is to be designed for a capacity of 100 kW. Water for air
conditioning purpose is to be cooled from 15°C to 5°C in a counter flow arrangement using
brine available at – 20°C. The value of overall heat transfer coefficient is 650 W/m2K and may
be assumed to be constant. Determine the area required if the brine outlet temperature is – 10,
– 5 and 5°C. Comment on the results.
Solution: The temperature variations are shown in Fig. P. 12.12.

The LMTD in the three cases are
(i) Equal heat capacity constant temperature

difference.
∴ 25°C

(ii) 20 25
20
25

−

ln
 = 22.4°C

(iii) 10 25
10
25

−

ln
 = 16.37°C

Q is the same in all cases and equals 100 kW
∴ Areas required are

15°C

5°C

– 5°C

– 10°C

( )i

( )ii

( )iii

5°C

– 20°C

Fig. P. 12.12.
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(i) 6.15 m2 (ii) 6.87 m2 (iii) 9.4 m2

Flow rate of brine are:
(i) 2.39 kg/s (ii) 1.6 kg/s (iii) 0.96 kg/s.
As the flow rate of fluid is decreased for the same capacity and for the same heat transfer

rate, the area has to be increased. as LMTD  decreases. In thermodynamic point of view this is
better, but in the equipment point of view if becomes bulkier. The pump power has to be also
considered. Larger area and larger mass flow compete here in the opposing directions. So
more detailed calculation will be required to optimise the pumping power.
Problem 12.13: Engine oil is to be cooled from 120°C to 70°C in a double pipe exchanger
having an area of 1.4 m2. The specific heat of the oil is 2100 J/kg K. Water at 30°C is used to
cool the oil and the maximum temperature of water is limited to 90°C. The flow rate of water
available is 215.311 kg/hr. The overall heat transfer coefficient is 300 W/m2K. Determine the
maximum possible flow rate of oil.
Solution: The outlet temperature of the hot fluid (70°C) is below the outlet temperature of the
cold fluid (90°C). Hence counter flow only is possible

A heat balance apparently will yield.
mc Cc ∆Tc = mhCh ∆Th

215.311 × 4180 × (90 – 30) = mh 2100 (120 – 70)
∴  mh = 514.286 kg/hr
But the heat flow is  to be checked using Q = UA LMTD

 LMTD = ( ) ( )

ln

120 90 70 30
120 90
70 30

− − −
−

−

 = 34.76°C

 Q = 300 × 1.4 × 34.76 = 14600 W

From heat capacity: Q = 
215 311

3600
4180. ×  × (90 – 30) = 15,000 W

So this flow rate cannot be used. There is only a maximum limit on water outlet
temperature and so it can be lower. The oil temperature is however fixed. Equating heat flow
using LMTD and also heat capacity.

215 311 4180
3600

. ×  (Tco – 30) = 300 × 1.4 × 
( ) ( )

ln
( )

120 60 30
120
60 30

− − −
−
−

T
T

co

co

Simplifying, 0.5952 (Tco – 30) = ( ) ( )

ln

120 60 30
120
60 30

− − −
−
−

T
T

co

co

Solving by trial: Tco = 84.75

oil flow rate: = 
215 311

3600
.

 × 4180 (84.75 – 30) = moil × 2100 (120 – 60)

∴ moil = 0.10863 kg/s = 391 kg/hr
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Check: Heat flow using heat capacity and temperature rise.

= 215 311
3600

.  × 4180 (84.75 – 30) = 13688 W

Using  Q = UA LMTD = 300 × 1.4 × ( . ) ( )

ln .
120 84 75 60 30

120 84 75
60 30

− − −
−
−

= 13673 W, checks
The capacity of the unit is 13.688 kW. The water outlet temperature is below the

maximum fixed.
Problem 12.14:  An air cooled condenser has a fluid condensing at 50°C with air temperature
rising by 8°C, from 25°C. The capacity of the unit is 10 kW. A variable speed fan is used for the
air flow and the performance is obtained at 2400 rpm of the fan. If the air mass flow varies
directly as the fan speed N and if the overall heat transfer coefficient varies as N0.7, determine
the heat transfer at a fan speed of 1200 rpm.
Solution:  Q = UA LMTD

 LMTD = 25 17
25
17

−

ln
 = 20.74

Q = 10,000 = UA LMTD ∴ UA = 482.08
Cair is Cmin as the other fluid is condensing and has infinite heat capacity.

Cmin = 
Q

T∆ min
 = 10 000

8
,

∴  NTU = UA/Cmin = 8 × 482.08/10,000 = 3.286
  ε = 1 – e–NTU ∴ εεεεε = 0.32, also 8/(50 – 25) = 8/25 checks

when operating conditions are changed,

 Cmin2
 = c.m2 = c. m1 (N2/N1) = 

10000
8  × 0.5 = 625

AU2 = AU1 
N
N

2

1

0.7F
HG
I
KJ  = 482.08 × (0.5)0.7 = 296.755

∴ NTU2 = 
AU

C
2

2min
 = 482 08 0 5

625
0.7. ( . )×  = 0.475

ε = 0.378 ∴ ε = 
Tc2 25
50 25

−
− ∴ Tc2 = 34.45°C

Q = UA LMTD = 296.755 × ( ) ( . )

ln
.

50 25 50 34 45
50 25

50 34 45

− − −
−

−

 W

= 5906 W, Cmin = 5000/8,

check  Q = 
5000

8  × (34.45 – 25) = 5906 W.
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Note: NTU and effectiveness increase, but heat transfer decreases due to the decrease in air
flow rate, due to reduction in fan speed.
Problem 12.15: In an evaporator of a refrigerator, the refrigerant evaporates at – 20°C over the
tubes. Water flowing inside the tubes enter at 15°C and is cooled to 5°C. The cooling capacity is
5 kW. Determine the cooling rate if the water flow is increased by 25% keeping the inlet
temperature to be the same.
Solution: This is an evaporator where Cmin/Cmax = 0, so Cmin is that of water.

 Q = 5000 W = UA LMTD = UA 35 25
35
25

−
F

H
GGG

I

K
JJJln

∴ UA = 168.24
Cmin = 5000/(15 – 5) = 500, After change in flow,

NTU = UA/Cmin = 168.24/(500 × 1.25) = 0.269
ε = 1 – e–NTU = 0.236, solving for temperature

∴ Th2 = 6.74°C

 Q = UA LMTD = 168.24 35 26 74
35 26 74
−L

NM
O
QP

.
ln ( / . )  = 5162.4 W

Check
 Q = Cmin (Th1 – Th2) = 625 (15 – 6.74) = 5162.5 W.

Note: 2.5% flow increase, increases the capacity only by 3%.

Problem 12.16: In a cross flow heat exchanger gas flow is at a rate of 5 kg/s with a temperature
drop of 200°C from 360°C. Water is heated from 40°C to 90°C in the tubes. The air flow is
unmixed. Determine the heat transfer rate if the water flow rate is reduced to half the value.
Solution: The hot gas temperature change of 200°C is higher compared to the 50°C temperature
change for water. Hence Cmin is that of gas as seen from the temperature drop values.

Cmin/Cmax = 50/200 = 0.25, capacity = 5 × 1005 × 200/1000 = 1005 kW,
 ε = (Th1 – Th2)/(Th1 – Tc1) = 200/320 = 0.625

From chart Fig 12.13 (e) for cross flow exchanger with both side fluids unmixed,
 NTU = 1.1

Under the changed operating conditions, the water flow is halved.
However its heat capacity is still higher than that of the gas. So UA/Cmin remains

unchanged. Hence NTU remains unchanged.
Now Cmin/Cmax = 0.5. From the chart the value of effectiveness is read as 0.58

∴   ε = T T
T T

h h

h c

1 2

1 1

−
−

∴ 0.58 = 360
360 40

2−
−

Th

∴ Th2 = 174.4°C
Q = 5 × 1005 (360 – 174.4) W = 932.64 kW, a reduction of 7% only.
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Equations available in data book can also be used and in this case trial solution is
necessary to solve for NTU. Try the same.

Water outlet temperature will be high as compared to 90°C i.e., 132.8°C may boil.
Problem 12.17: A shell and tube heat exchanger with one shall pass and two tube passes is
used to heat water (flowing in the tubes) at a rate of 10 kg/s from 30°C to 45°C with steam
condensing over the tubes at 160°C. If the overall heat transfer coefficient (based on outside
area) has a value of 2000 W/m2K, determine the area required. If 20 tubes of 25 mm OD are
used, determine the length required.
Solution: The heat flow is given for a shell and tube exchanger with two tube passes by

 Q = F . UA LMTD
The value of F is a function of P and R where

 R = 
T T
T T

h h

c c

1 2

2 1

−
−  and Th1 – Th2 = 0 for a condenser.

So R = 0, For R = 0, F = 1 in all cases.
The problem is meant to stress the idea that for condensers R = 0 ∴ F = 1 and for

evaporators P = 0 and F = 1
∴ Q = F UA LMTD

 10 × 4180 × (45 – 30) = 1 × 2000 × A × ( ) ( )

ln

160 30 160 45
160 30
160 45

− − −
−
−

∴  A = 2.562 m2 = N π DL = 20 × π × 0.025 L
∴ L = 1.631 m.

Problem 12.18: A steam condenser condensing at 70°C has to have a capacity of 100 kW.
Water at 20°C is used and the outlet water temperature is limited to 45°C. If the overall heat
transfer coefficient has a value of 3100 W/m2K, determine the area required.
Solution: If the inlet water temperature is increased to 30°C determine the increased flow
rate of water for maintaining the same water outlet temperature.

Also determine the flow rate for the same amount of heat transfer.
As the performance is to be evaluated, it is better to use NTU method. Water heat

capacity is Cmin

ε = 
45 20
70 20

−
−  = 0.5

NTU is solved for using
ε = 1 – e–N for Cmin/Cmax = 0 ...(A)

 NTU = 0.6931 = UA
Cmin

Cmin = 100,000/(45 – 20) = 4000 W/K

∴ A = 
0 6931 4000

3100
. ×

 = 0.894 m2
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New operating conditions:
 Tc1 = 30°C, Tc2 = 45°C

ε = (45 – 30)/(70 – 30) = 15/40 = 0.375
Using conditions stated By (A)
∴  NTU = 0.47

UA
Cmin

 = 0.47, Cmin = UA
0.47

3100 0.894
0.47

= ×

= 5899 W/K (Compared to 4000)
The flow rate has to be increased by 47.2%
Heat flow decreases by about 11.5% to 88.5 kW (calculate)
Heat transfer rate and the exit temperature cannot be maintained

simultaneously. In order to maintain the heat transfer rate.
 Q = UA LMTD = 100,000 W

3100 × 0.894 × LMTD = 100,000

∴ LMTD = 36.08 ( ) ( )

ln ( )
( )

70 30 70
70 30
70

2

2

− − −
−
−

T

T

c

c

 = 36.08

Solving by trial Tc2 = 37.6°C
This is within the limits of 45°C
The heat capacity required is

 100000 = C (37.6 – 30) ∴ C = 13158 W/K
This is compared to 4000 W/K. An increase of more than 300%. Maintaining same heat

transfer rate is more expensive compared to maintaining the temperature, when inlet
temperature is changed.

Problem 12.19: A feed water heater uses steam condensing at 120°C to heat water from 30°C to
90°C in a shell and tube heat exchanger at a rate of 5 kg/s. The overall heat transfer coefficient
is equal to 2000 W/m2K. Due to usage deposits have formed on the surfaces resulting in a
fouling resistance of 0.0009 Km2/W. Determine the water exit temperature if flow rates and
inlet temperatures are maintained.
Solution: As it is a condenser, it can be treated as counter flow exchanger. As performance
under a different operating condition is to be studied NTU method is used.

 ε ε ε ε ε = 90 30
120 30

60
90

−
−

=  = 0.667 = 1 – e–NTU

Solving  NTU = 1.0986
  NTU = UA/Cmin ∴ A = 11.48 m2

Due to fouling, the value of U is changed. Cmin and area remain unaltered.
1 1

U Ud c
−  = fouling factor
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Ud–overall heat transfer coefficient for dirty surface
Uc–overall heat transfer coefficient for clean surface

1
Ud

 = 
1

2000  + 0.0009 ∴ Ud = 714.29 W/m2 K

 NTU = UA/Cmin = 714.29 × 11.48/5 × 4180 = 0.3923

∴ ε = 0.325 = T T
T T

c c

h c

2 1

1 1

−
−

 = 
Tc2 30
120 30

−
−

∴ Tc2 = 59.2°C
Water outlet temperature is reduced from 90 to 59.2°C
Heat flow = 5 × 4.180 (59.2 – 30) = 610.44 kW

as compared to 1254 kW. A reduction more than 50%. This problem can be inverted to determine
the fouling factor. This is the reason for use of fouling factor in design.

Problem 12.20: A feed water heater having 5.74 m2 area was used to heat water from 30°C
at a rate of 2.5 kg/s, using steam condensing at 120°C. The exit temperature was measured as
90°C. Determine the value of overall heat transfer coefficient. After 3 years of operation, for the
same flow rates and inlet conditions, the outlet temperature measured only 80°C. Determine
the value of fouling resistance.
Solution: This problem can preferably be solved by NTU method.

As it is a condensing unit Cc = Cmin

ε = 
90 30
120 30

60
90

−
−

=

∴  NTU = – ln (1 – ε) = 1.0986
 NTU = UA/Cmin = U × 5.74/(2.5 × 4180)

∴  U = Uc = 2000.09 W/m2 K
After service the fluid is heated only to 80°C and so,

ε = 
80 30
120 30

50
90

−
−

= ∴ NTU = 0.8109

∴  Ud = 1476.35 W/m2 K

Fouling resistance = 1 1
U Ud c

−  = 0.000177 Km2/W

Problem 12.21: A cross flow type air heater with both fluids unmixed has an area of 50 m2

and the overall heat transfer coefficient is 45 W/m2K. The flow rate of both hot and cold air are
1 kg/s. Hot air enters at 60°C and cold air enters at 20°C. Determine the exit temperature of the
streams. Also determine the exit temperature if (i) the flow rate of both fluids is halved and (ii)
the flow rates are doubled. Compare the heat flow rates also.
Solution: In this case Cmin = Cmax ∴ Cmin/Cmax = 1

Cmin = 1 × 1005 W/K
∴  NTU = UA/Cmin = 45 × 50/1005 = 2.24
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Using the ε–NTU chart for cross flow exchanger with both fluids unmixed, the
effectiveness corresponding to NTU = 2.24 is 0.64

 ε = T T
T T

h h

h c

1 2

1 1

−
−

 = 
60
60 20

2−
−
Th  = 0.64

∴ Th2 = 34.4°C, Tc2 = 45.6°C
Q = 1 × 1005 × (60 – 34.4) W = 23.73 kW

When the flow is halved, NTU = 4.48, from chart ε = 0.755
Th2 = 29.80°C Tc2 = 50.2°C, Q = 15.18 kW

When the flow is doubled NTU = 1.12, From chart ε = 0.5
Th2 = 40°C, Tc2 = 40°C, Q = 40.2 kW.

Note. higher temperature is achieved by reducing flow rates, but with lower heat flow. Lower
temperature is achieved by increasing flow rates, but with higher heat flow.

Problem 12.22: In a cross flow type heat exchanger with steam condensing inside tubes at
100°C is used to heat air from 20°C. The air side may be taken as mixed. The effectivenesss of
the heat exchanger is found as 0.7. If the area is 20 m2 and overall heat transfer coefficient
(clean) based on this area is 150 W/m2K, determine the heat transfer rate.

Also determine the extra area required if a fouling resistance of 0.0006 Km2/W is to be
allowed for.

Determine the exit temperature when the clean surface is operated with ths excess area.
Solution: As steam condensation is used (Cmin/Cmax) = 0

εεεεε = 0.7 Tc2 20
100 20

−
−

∴ Tc2 = 76°C

using the chart for cross flow heat exchanger the value of NTU is read corresponding to ε = 0.7
and (Cmin/Cmax) = 0 as 1.2.

NTU = 1.2 = UA/Cmin
∴ Cmin = 2500 W/K
∴ Heat flow rate = 2500 × (76 – 20) W = 140 kW

 1 1
U Ud c

−  = fouling resistance = 0.0006

∴  Ud = 137.62 W/m2 K
For the same NTU and effectiveness,

137.62
2500

× A  = 1.2 ∴ A = 21.8 m2

As the overall heat transfer coefficient is already low, the extra resistance does not add
to the area requirement by a large amount.

Under the altered area if original flow rate is maintained.
UA

Cmim
 = 150 218

2500
× .  = 1.308
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From chart  ε = 0.73 ∴ Tc2 = 78.4°C
An increase of 2.4°C.

Problem 12.23: Air is to be heated at a rate of 1 kg/s from 30°C to 45°C in a cross flow type
of heat exchanger with finned tubes with water at 90°C flowing inside the tubes. The overall
heat transfer coefficient is 60 W/m2K referred to an area of 7.5 m2. Calculate the flow rate of
water and the water exit temperature. Also determine the % change in the flow rate of water if
the water inlet temperature is 60°C, 70°C, 80°C and 100°C. Assume the air flow rate and air
exit temp. remain unchanged.
Solution: Both the flow rate and exit temperature of the hot fluid are not known (water)

Using  Q = F.UA LMTD = Cc∆Tc
1 × 1005 × 15 = 60 × 7.5 × LMTD × F ...(A)

First assume  F ≈ 1 ∴ LMTD = 33.5°C

∴  33.5 = ( ) ( )

ln

90 45 30
90 45

30

2

2

− − −
−
−

T

T

h

h

solving by trial,  Th2 = 54.2°C.

For this value,  R = 
90 54 2
45 30

−
−

.
 = 2.39, P = 0.25, F = 0.948

Using this value in A, LMTD = 35.34
Solving by trial,  Th2 = 57°C, R = 2.2, F = 0.95
This value is good enough.
Now the flow rate of water is calculated using

 1 × 1005 × 15 = m × 4180 × (90 – 57)
m = 0.1093 kg/s for water exit temperature of 57°C

The water flow is Cmin.
When the inlet temperature is changed, it is to be noted that below a certain

value of inlet temperature it is not possible to maintain the air outlet temperature
even with a very large flow. Take the example of 70°C inlet.

The max value of LMTD in this case is
25 40

25
40

−

ln
 = 31.91 < 35.34

which is lower than the required value for obtaining the heat flow with the given area and
overall heat transfer coefficient. So 70°C and 60°C inlet are not compatible.

For 80°C the oulet temperature is about 67°C and the flow rate is 0.494 kg/s. There is an
increase of 400%.

For 100°C, the outlet temperature is about 59°C and mass flow is 0.088 kg/s a reduction
of about 20%.
Problem 12.24: A shell and tube heat exchanger with 4 tube passes is used to cool hot
water at 90°C at a rate of 10 kg/s using cold water available at 20°C. With the flow rate of cold
water was 5 kg/s the cold water outlet temperature was 70°C.
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Investigate the variation of heat flow rate when the flow rate of cold water is reduced,
maintaining the inlet temperature and the hot water flow rate to be the same.
Solution: As performance is to be evaluated, NTU method may be used. In this case Cc = Cmin,
Cmin/Cmax = 0.5

 ε = 
70 20
90 20

50
70

−
−

=  = 0.714, Using the corresponding chart,

NTU is read as 2.42.
 UA = 2.42 × Cmin = 2.42 × 5 × 4180 = 50578

This value remains constant (assumed)
Q = 5 × 4180 (70 – 20) W = 1045 kW

Case (i) Flow rate of cold water reduced to 4 kg/s
 Cmin/Cmax = 4/10 = 0.4

 NTU = UA/Cmin = 50578/4 × 4180 = 3.025
Using the chart εεεεε = 0.76
∴ Cold fluid outlet temperature is determined using

 0.76 = 
Tc2 20
90 20

−
−

∴ Tc2 = 73.2°C

 Q = 4 × 4180 × (73.2 – 20) = 889504 W or 889.5 kW.
Case (ii) Using the same procedure, the heat flow and outlet temperatures for 3 and 2.5

kg/s are determined as 78.1°C and 728.6 kW and 80.55°C and 632.75 kW. The values are
tabulated below.

Hot water flow rate = 10 kg/s, Th1 = 90°C, Tc1 = 20°C

Cold water flow Cold water outlet
rate kg/s temp.°C Effectiveness Heat transfer kW

5 70 0.714 1045.0
4 73.2 0.76 889.5
3 78.1 0.83 728.6

2.5 80.55 0.865 632.75

As the cold water flow rate is decreased, its outlet temperature increases and
hence effectiveness increases. But the heat flow decreases.
Problem 12.25: For a heat exchanger using condensing steam at Th heating water at a
flow rate with a heat capacity of Cc and water entry temperature of Tc1

 derive an expression for
Tc2  in terms of NTU and Th.
Solution : Using the above determine the exit temperature of cold water for steam condensing
temperatures of 180, 160, 140 and 120°C for a heat exchanger which gave an outlet temperature
of 90°C when heating water at a rate of 50 kg/s from 60°C with steam at 200°C.

 ε = T T
T T

c c

h c

2 1

1

−
−

 = 1 – e–NTU (Capacity ratio = 0)

where NTU = UA/Cmin
∴  Tc2 = Tc1 + (Th – Tc1) (1 – e–NTU) ...(A)
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For a given exchanger and flow rate all quantities on RHS are known and hence Tc2 can
be calculated.

For the given exchanger, (F = 1, condenser)
 Q = mccc (Tc2 – Tc1) = UA × LMTD

∴ UA = m c T Tc c c c( )2 1−
LMTD

 = 

50 4180 90 60
200 60 200 90

200 60
200 90

× −
− − −

−
−

( )
( ) ( )

ln
 = 50403

 NTU = UA/Cmin
Here Cc is Cmin (condensing)
∴ NTU = 50403/(50 × 4180) = 0.2412
This remains constant for the heat exchanger.
∴  1 – e–NTU = 0.2143, using equation (A), for

Th = 200°C, Tc1 = 60°C ∴ Tc2 = 90°C
Check for other values
Th: 180 160 140 120
Tc2: 85.71 81.43 77.14 72.86
Check for Th = 120°C

 Q = UA LMTD
Also  Q = mccc (Tc2 – Tc1)

 LMTD = 60 47 14
60

47 14

− .

ln
.

 = 53.31

 Q = 50403 × 53.31 = 2.687 × 106 W, also
 Q = 50 × 4180 (72.86 – 60) = 2.687 × 106 W

so checks.

Problem 12.26: An air heater uses steam condensing at 110°C to heat air at a rate of 5 kg/s
from 20°C to 75°C. It is desired to double the air flow at the same time achieve air outlet
temperature of 75°C by increasing the steam condensation temperature. Determine the new
condensing temperature N → NTU.
Solution: For condensers ε = 1 – ε–N

ε = 
75 20
110 20

−
−  = 0.6111 ∴ N = 0.9445

As the air flow is doubled Cmin is doubled. UA remains the same.
So the new value of N = 0.9445/2 and ε = 1 – eN = 0.3764

∴  ε = 0.3764 = 75 20
20

−
−Th

Solving Th = 166.12°C
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Check: The heat flow has to be doubled. Also UA is the same and so LMTD has to be
doubled.

Old value of LMTD = ( ) ( )

ln

110 20 110 75
110 20
110 75

− − −
−
−

 = 58.23°C

New value of LMTD  = ( . ) ( . )

ln .
.

166 12 20 166 12 75
166 12 20
166 12 75

− − −
−
−

 = 116.46°C

so checks.
Note: As the temperature increases the condensing pressure also increases. In this case the

pressure increases from about 1.45 to about 7.2 bar. So the tubes may not withstand this pressure.

Problem 12.27: In an existing heat exchanger of counter flow type dry air is cooled from 70°C
to 35°C at a rate of 1.2 kg/s using cold air at 15°C at a rate of 1.5 kg/s. It is desired to cool this
stream by another 10°C by increasing the area with the same inlet conditions. Calculate the
percentage increase in area.
Solution: This problem can be worked by LMTD or NTU method. The main assumption is
that U remains unchanged and Cmin/Cmax are known. Entering the chart NTU can be determined.
The ratio of NTU values is the same as ratio of areas as U and Cmin are the same.

Under the first operating conditions

εεεεε = 
70 35
70 15

35
55

−
−

=  = 0.636, Cmin/Cmax = 1.2/1.5 = 0.8

From chart NTU = 1.5
Under the altered conditions

 ε ε ε ε ε = 
70 25
70 15

45
55

−
−

=  = 0.8182

corresponding  NTU = 3.21
∴ Area increase = 114%.
Note: (i) As all the four temperatures can be worked out these values can be checked using

LMTD method
(ii) equations can be used to determine NTU, instead of using chart.

As N = 
1

1
1
1C C−

−
−

ln ε
ε

These methods may be tried.

OBJECTIVE QUESTIONS

Choose the correct statement.
12.1 The overall heat transfer conefficient is the

(a) sum of all resistances (b) sum of all conductances
(c) sum of the convection coefficients (d) resistance due to the wall material.
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12.2 The range of value of overall heat transfer coefficients fall in the following increasing order
(a) boiling or condensation to liquid, liquid to gas, liquid to liquid, gas to gas.
(b) liquid to liquid, gas to gas, boiling or condensation to liquid, liquid to gas
(c) gas to gas, liquid to gas, liquid to liquid, Boiling or condensation to liquid
(d) boiling or condensation to liquid, Liquid to gas, gas to gas liquid to liquid.

12.3 The decreasing order of effectiveness for a given situation among types of heat exchangers is
(a) parallel flow, cross flow, shell and tube, counter flow
(b) cross flow, counter flow, shell and tube, parallel flow
(c) counter flow, shell and tube, cross flow, parallel flow
(d) counter flow, cross flow, shell and tube, parallel flow.

12.4 When one of the fluid is condensing the best flow arrangement is
(a) counter flow (b) parallel flow
(c) cross flow (d) all are equal.

12.5 Thermodynamically the type which leads to lower loss in availability is
(a) parallel flow (b) counter flow
(c) cross flow (d) shell and tube.

12.6 The Net Transfer Unit is (NTU)
(a) U.Cmin/A (b) UA/Cmin
(c) ACmin (d) U/ACmin.

12.7 Effectiveness of a heat exchanger is
(a) actual heat transfer/heat content of hot fluid
(b) actual heat transfer/heat content of cold fluid
(c) actual heat transfer/heat content of higher heat capacity fluid
(d) actual heat transfer/heat transfer when minimum heat capacity fluid goes through the maxi-
mum temperature difference in the exchanger.

12.8 Cross flow exchangers are popularly used for heat transfer
(a) liquid and liquid (b) liquid and evaporating fluid
(c) condensing fluid and liquid (d) gas and gas or liquid and gas.

12.9 The minimum heat transfer area for a given situation is for
(a) parallel flow (b) counter flow
(c) cross flow (d) shell and tube.

12.10 Effectiveness is generally represented by (with in usual notations)

(a) C
C

T T
T T

h h h

c cmin
1 2
2 1

−
−

(b) C
C

T T
T T

c c c

h hmin
2 1
1 2

−
−

(c) C
C

T T
T T

h h h

h cmin
1 2
1 1

−
−

(d) C
C

T T
T T

c h c

h cmin
1 2
2 1

−
−

.

12.11 The flow direction is immaterial in the case of heat exchange from
(a) Wet or saturated steam to water (b) Water to gas
(c) Oil to water (d) Oil to gas.

Answers
1. (b) 2. (c) 3. (c) 4. (d) 5. (b) 6. (b)
7. (d) 8. (d) 9. (b) 10. (c) 11. (a).
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EXERCISE PROBLEMS

12.1 The inlet and outlet temperatures of the hot and cold fluids in a double pipe heat exchanger are
180°C, 20°C and 140°C and 80°C respectively. Determine the ratio of heat capacities and the
LMTD assuming (i) counter flow and (ii) parallel flow. Also determine the effectiveness.

12.2 For the data of problem 12.1, determine the area ratio for the two flow arrangements. Also deter-
mine the Limiting values of outlet temperatures for the two flow arrangements.

12.3 If the heat capacity of the hot fluid for the heat exchanger of 12.1 was 6000 W/K. determine the
value of NTU for the two flow arrangements.

12.4 If the overall heat transfer coefficient was 600 W/m2 K, for the exchanger of 12.1, determine the
areas for (i) parallel flow (ii) counter flow (iii) one shell pass and two tube passes type of ex-
changers (use data of 12.3 also).

12.5 In a heat exchanger of double tube arrangement the inner tube is of 25 mm ID and 30 mm OD.
The outer pipe is of 50 mm ID. Hot water flows inside at a rate of 1 l/s and cold water flows at a
rate of 2 l/s in the annular space. The inlet temperatures of the hot and cold water are 30°C and
80°C. The tube is 3 m long and is made of material with a conductivity of 40.5 W/mK. Determine
the overall heat transfer coefficient for the exchanger assuming that its performance has to be
guaranteed for 3 years.

12.6 A cross flow heat exchanger with a tube bank of 10 tube depth uses hot flue gases to heat water
flowing inside the tubes. The tubes are of 50 mm ID and 58 mm OD made of material of conduc-
tivity 47 W/mK. The tubes are arranged in a square array of pitch of 95 mm. The hot gases at
280°C approach the bank with a velocity of 10 m/s. The velocity of water inside is 1.2 m/s. The
water entry is at 40°C. Assume that water is pressurised and boiling does not occur. Determine
the overall heat transfer coefficient.

12.7 A heat exchanger of the counter flow type with inlet temperatures of hot and cold fluids of 200°C
and 50°C gave outlet temperature of 100°C for both fluids when the surfaces were clean. After
some extended use for the same flow rate and inlet temperatures, the hot fluid outlet was 120°C.
Determine the percentage change in the value overall heat transfer coefficient and the heat
transfer.

12.8 A clean heat exchanger of counter flow type gave the following inlet and outlet temperatures for
the hot and cold fluids. 200°C, 50°C and 100° for both. If the overall heat transfer coefficient
decreased to 80% of the original value due to fouling determine the outlet temperature of the
fluids.

12.9 A chemical solution with a specific heat of 3200 J/kg K at 100°C is to be cooled to 60°C at a rate
of 30,000 kg/hr using cold water at 30°C with its outlet limited to 50°C. It the overall heat
transfer coefficient has a value of 260 W/m2 K, determine the area required for (i) counter flow
(ii) parallel flow and (iii) one shell pass and four tube pass arrangements. Solve the problem
using LMTD method and check using NTU method.

12.10 Hot water is used to heat air for comfort conditioning in a heat exchanger of the cross flow type
with outside air flow. The flow rate of air is 17000 kg/hr and is to be heated from – 10°C to 22°C.
Hot water enters at 62°C and leaves at 30°C.
The overall heat transfer coefficient has a value of 60 W/m2 K. Determine the area required if the
air flow is (i) unmixed and (ii) mixed. Solve using LMTD method and check using NTU method.

12.11 In a tubular air heater cold air at 2 bar and 20°C flows through the inside of 2.5 cm ID pipes
entering at a velocity of 6 m/s. 20 pipes of 3 m length are used in the bundle. Hot gases at 90°C
flows across the tube bank at 1.33 times the cold air flow rate. The overall heat transfer coeffi-
cient based on inside area of tubes has a value of 82 W/m2 K. Determine the fluid exit tempera-
tures for (i) hot gas side unmixed and (ii) hot gas side mixed.

12.12 A cross flow heat exchanger of area 4.71 m2 has a heat transfer rate of 6.6 kW, when heating 0.14
kg/s of air from 20°C using hot gases at 90°C, the overall heat transfer coefficient being 82
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W/m2 K. The gas flow rate is 1.33 times the air flow rate. Determine the area required for main-
taining the same heat flow rate when cold air rate and inlet temperatures are maintained but
the gas flow rate is changed to (i) the same as air flow rate (2) twice the air flow rate. Assume
both fluids unmixed, and property values of gas to be equal to that of air.

12.13 For the heat exchanger specified in 12.12, Determine the heat flow rate and exit temperatures if
inlet temperature of the fluids are changed to
(i) 20°C and 110°C (ii) 30°C and 90°C and (iii) 30°C and 80°C. Assume both fluids unmixed.

12.14 A counter flow heat exchanger with UA = 1300 W/K is used to heat water from 20°C to a tem-
perature not exceeding 93°C. Using hot air at 260°C at a rate of 1620 kg/hr. Calculate the water
flow rate and gas exit temperature.

12.15 A shell and tube heat exchanger with two shell passes and four tube passes cools a chemical with
a specific heat of 2385 J/kg K at a rate of 1.25 kg/s from 140°C to 80°C, using water at 35°C. The
outlet temperature of the water is 85°C. Determine the area of heat exchanger if U = 800
W/m2 K. If the unit is operated with flow rates doubled, determine the heat transfer. Also deter-
mine the heat transfer if the chemical flow rate is increased by 20%.

12.16 An automobile radiator cools water from 65°C to 40°C at a rate of 0.2 kg/s using air in cross flow
with inlet at 23°C. The overall heat transfer coefficient has a value of 73 W/m2K. The air flow
rate at this speed when the automobile was travelling at 80 kmph was 2.4 kg/s. Determine the
area required. Assume both fluids unmixed. If the mass flow of air is proportional to the speed,
what will be the heat flow rate at 40 kmph if the inlet temperatures and water flow rates are the
same. Assume that the overall heat transfer coefficient varies as the 0.8 power of speed.

12.17 A comfort air conditioner uses air cooled condenser of the cross flow type with finned tubes. The
refrigerant condenses at 40°C, with heat transfer rate of 12 kW. Air at 28°C is used and is heated
to 34°C. Determine the area required if the overall heat transfer coefficient has value of
125 W/m2 K.
During the cooler season air is available at 22°C with the same flow rate maintained by the fan.
Determine the condensing temperature if the same heat rate is to be maintained.

12.18 The evaporator of an air conditioner operates at 5°C. The cooling rate required is 10 kW. Air at
26°C is to be cooled to 12°C for the conditioning process. The value of overall heat transfer
coefficient is 96 W/m2 K. Determine the area required. The unit is cross flow type with finned
tubes. Assume that condensation does not occur.
During mild weather the load reduces to 6 kW. The air flow rate and inlet temperatures remain
unaltered. Determine the evaporation temperature for steady state operation at this load.

12.19 A recuperative air heater having an area of 100 m2 with an overall heat transfer coefficient of 45
W/m2 K is used to heat air at a rate of 2.5 kg/s from 40°C. Using gaes of same heat capacity
available at 220°C. Determine the exit temperatures.

12.20 In a counter flow heat exchanger a cool stream of water at 5°C is heated using a hot stream at
60°C. The flow rate of cold stream is twice that of the hot stream the flow rate of which is 1.3 kg/s.
If the heat transfer rate is 150 kW and the overall heat transfer coefficient is 800 W/m2 K,
determine the area required. Also determine the effectiveness. If the flow rate of cold stream is
reduced by 12.5% determine the exit temperatures and the heat flow rate.

12.21 In a heat exchanger of the counter flow type the hot fluid is cooled from 260°C to 120°C while the
cold fluid is heated from 20°C to 90°C. Determine the effectiveness of the heat exchanger and the
heat flow if the hot fluid heat capacity is 10,000 W/K.
Determine the exit temperatures if
(i) Both fluid flows are doubled (ii) hot fluid flow alone is doubled

(iii) fluid flows are halved. (iv) cold fluid flow alone is doubled.
12.22 A steam condenser is designed to condense 1 kg/s of steam at 65°C using cooling water at 25°C.

The water outlet temperature is to be limited to 40°C. Calculate the area if the overall heat
transfer coefficient is 2600 W/m2 K. The enthalpy of evaporation at 65°C is 2346.2 kJ/kg. If the
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water temperature is reduced to 18°C calculate the water flow rate for maintaining the same
condensation rate.

12.23 In problem 12.22 if the condensation temperature is reduced to 50°C with the same water inlet
temperature determine the flow rate required for the same condensation rate. The enthalpy of
evaporation is 2382.7 kJ/kg.

12.24 A finned tube air heater is available with the following specifications: Area. 10 m2. The overall
heat transfer coefficient based on this area is 62 W/m2 K.
Water at a rate of 1 kg/s available at 60°C and air at 2 kg/s to be heated from –10°C. Determine
the exit temperature of the fluids and the heat flow.

12.25 For the heat exchanger specified in problem 12.24, determine the exit temperature for the same
flow rates for the following water and air inlet temperature combination.
(i) 70°C, 0°C, (ii) 50°C, – 20°C (iii) 40°C, – 30°C. Also calculate the heat flow under these conditions.

12.26 For the heat exchanger specified in problem 12.14, determine the exit temperatures and the
heat flow rates for the following flow combinations of hot and cold fluids: per second.
(i) 1 kg and 1 kg, (ii) 0.5 kg and 2 kg (iii) 2 kg and 2 kg and (iv) equal heat capacities.
The inlet temperatures are 60°C and –10°C.

12.27 A heat exchanger with 20 m2 area with an overall heat transfer coefficient of 800 W/m2 K has hot
water at 93°C available at 5 kg/s. Cold water at 25°C is to be heated. Determine the heat transfer
for the following flow rates of cold water: 2.5, 3.75, 6.25, and 7.5 kg/s.
Also determine the outlet temperature of cold water in these cases.

12.28 1 kg/s of water of 80°C and 1 kg/s of water at 60°C are available to heat cold water at a rate of
1.33 kg/s from 20°C.
Two exchangers each with area of 2 m2 are available, with overall heat transfer coefficient of 836
W/m2 K.
Investigate the following arrangements in terms of heat flow and outlet temperature. (Fig. E.
12.28).

20°C
1.33 kg/s

80°C
1 kg/s

60°C
1 kg/s

20°C
1.33 kg/s

80°C
1 kg/s

60°C
1 kg/s

Fig. E. 12.28

12.29 A heat exchanger cools 1.25 kg/s of a chemical with a specific heat of 2365 J/kg K from 140°C to
80°C, using water which heats up from 35°C to 85°C. The overall heat transfer coefficient has a
value of 800 W/m2 K If the flow rate of the hot fluid is reduced to 0.5 kg/s. What should be the
inlet temperature of water so that its outlet temperature is maintained at 85°C. The water flow
rate is not altered. Asssume shell and tube exchanger with 4 tube passes.

12.30 A heat exchanger is to be designed to heat air at a rate of 10 kg/s from 27°C using hot gases at
375°C at the rate of 10 kg/s with an overall heat transfer coefficient of 50 W/m2 K. If the area is
chosen as 200 m2, determine the heat transfer and exit temperature for the following types.
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(i) Shell and tube with one shell pass and 4 tube passes
(ii) cross flow with both fluids unmixed.

(iii) cross flow with one fluid unmixed.
Assume that the property values of the gases are the same as that of air.

12.31 A heat exchanger with an area of 29 m2 is used to heat water at a rate of 5 kg/s from 30°C to 80°C
using steam condensing at 100°C. Determine the overall heat transfer coefficient required to
obtain this performance. If the flow rate is changed to 1.5 kg/s with an overall heat transfer
coefficient of 80% of the original value and if the water exit temperature is to be 80°C, determine
the water inlet temperature.

12.32 Considering data of problem 12.31, determine the condensing temperature which will give the
same exit temperature at the altered flow condition, the inlet being at 30°C.

12.33 A double tube heat exchanger has hot and cold air enter at 200°C and 35°C respectively. The
flow rate of hot air is 0.75 kg/s and that of the cold air is 1.5 kg/s. Determine the maximum
possible heat flow for (i) parallel flow and (ii) counter flow. For an area of 2.1 m2 determine the
outlet fluid temperatures and heat flow if in both cases. U = 180 W/m2K.

12.34 In an ocean thermal plant 2 kW of electricity is to be generated using a vapour boiler. The plant
overall efficiency is 3%. Evaporation takes places at 17°C using water at 27°C. The water outlet
is at 19°C. Determine the flow rate required. Determine the area required assuming U = 1200 W/m2

K. At half load if the efficiency falls to 2% and if the inlet temperature and evaporation tempera-
tures are maintained as at full load, determine the flow rate and water outlet temperature.

12.35 In a recuperative air heater with cross flow arrangement cold air at a rate of 10 kg/s is heated
from 30 to 210°C as it flows inside the tubes. Hot gases pass across the tubes and are cooled from
360°C to 160°C. Assuming an overall heat transfer coefficient of 140 W/m2K, determine the area
required when (i) the gases are mixed and (ii) both fluids are unmixed. Assume gas properties to
be same as that of air.

12.36 In a water heater using hot combustion gases, the capacity ratio is 0.04 for gas to water, the
water flow rate being 12 kg/s. The entry temperature for the gas and water are 400°C and 30°C.
If UA = 3850 W/K, determine the exit temperature and the heat flow, if the exchanger is
(i) counter flow (ii)  parallel flow and (iii) cross flow with gas flow mixed.

12.37 For the data of problem 12.36 case (iii), if the capacity ratio is changed to 0.05, determine the
outlet temperature and the heat flow.

12.38 An oil with C = 2100 J/kg K is to be cooled from 82°C to 39°C at rate of 5 kg/s. A cooler having an
area of 28 m2 is available. Water at 27°C is to be used for the cooling process. If the estimated
value of overall heat transfer coefficient is 550 W/m2 K. determine the water flow rate required
for the process. Assume counter flow arrangement.

12.39 In a storage type heat exchanger, the bed is 1 m2 in area and 2 m long. The specific heat of the
solid is 445 J/kg K while air is the fluid used. The surface area per unit length of matrix is 40 m2

and the mass flow rate of the fluid is 5 kg/s. The mass of solid for m length is 1200 kg. The solid
was initially at 200°C and the gas temperature at entry is 600°C. Determine the time required
for the matrix at mid point to reach 400°C and also determine the gas temperature at this location
at that time. The convective heat transfer coefficient has a value of 82 W/m2 K.

[Ans: 170s, 512°C]
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THERMAL RADIATION

13

13.0     INTRODUCTION

The process by which heat is transferred from a body by virtue of its temperature,

without the aid of any intervening medium, is called thermal radiation. The physical

mechanism of radiation is only partially understood.

Sometimes radiant energy is taken to be transported by electromagnetic waves while at

other times it is supposed to be transported by particle like photons. Radiation is found to travel at

the speed of light in vacuum. The speed c is about 3 × 108 m/s. When considered as wave

phenomenon, the wavelength λ is c/ν where ν is the frequency in cycles per second. When considered

as a photon, the energy of each photon is given by e = hν where h  is Planck’s constant equal to

6.625 × 10–34 Js and ν is the frequency in cycles/second. The energy can also be expressed in terms

of wavelength as

ν = c/λ or c = λν

The term ‘‘Electromagnetic radiation’’ encompasses many types of radiation namely short

wave radiation like gamma ray, x-ray, microwave, and long wave radiation like radio wave and

thermal radiation. The cause for the emission of each type of radiation is different. Thermal

radiation is emitted by a medium due to its temperature.
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Fig. 13.1. Typical spectrum of electromagnetic radiation due to temperature of a body.

Thermal radiation is emittted in the range of wavelengths from 0.1 to 100 micrometers

(µm). The lower range is ultraviolet and the upper range is infrared while the range of 0.4 to 0.7

µm covers the visible region. The total energy radiated at any temperature (emissive power) is

found to be distributed all over the wavelengths. The energy radiated at any wavelength is known

as monochromatic emissive power. The distribution is known as spectral distribution. The spectral
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The spectral distribution is found to depend on the temperature. As temperature increases a
larger fraction of radiation is emitted at lower wavelengths. For example in solar radiation,
most of the energy is emitted at wavelengths below 3 µm.

Figure 13.1 shows the distribution of radiation with wave length (or the electromagnetic
spectrum).

13.1 BLACK BODY

This is a concept and no such body exists in nature. Black body is an ideal radiator
which emits the maximum possible amount of radiation at any given wavelength at any given
temperature. Such a body is also found to absorb all the radiation incident upon it at any
wavelength and temperature.

Using this concept an artificial black body can be created by a cavity with a small opening
in a body at a uniform temperature. Any radiation entering the cavity will  be absorbed by
repeated reflection and none of it will escape back through the small opening.

For equilibrium the same amount of energy should be radiated. Hence this can be
considered to emit black body or maximum radiation.

Such an arrangement therefore can be taken as a black body source for calibration and
standardisation
13.1.1. Black body radiation: The radiant energy emission per unit area and unit time from
black body over all the wavelengths is defined as its total emissive power and is denoted as
Eb. The radiant energy emission at any wavelength λ is known as monochromatic emissive
power and denoted as Ebλ.

The variation of monochromatic emissive power with wave length is given by Planck’s
law derived in 1900 using quantum theory. The monochromatic emissive power at any given
wavelength and temperature is given by

Ebλ (T) = C1/[λ5 (eC T2/λ  – 1)] ...(13.1)
Where Ebλ (T) is monochromatic emissive power at wave length λ and temperature T,

W/m2/m
  λ—Wavelength, m
C1—First radiation constant = 3.7415 × 10–16 Wm2

C2—Second radiation constant = 1.4388 × 10–2 mK.
This distribution for several temperatures is shown in Fig. 13.2. The distribution has a

maximum value at some wavelength. As the temperature increases, the maximum value is
found to occur at lower wavelengths. The area below any one curve given the total emissive
power at the corresponding temperature.

The wavelength at which the maximum value of Ebλ occurs at any given temperature
can be determined by differentiating the expression 13.1 with respect to λ and equating it to
zero. This given the value of

λmax T = 2.898 × 10–3 mK = constant ...(13.2 (a))
This relationship is known as Wien’s displacement law. It is seen that λmax decreases as

T increases. Substituting this value in equation (13.1) we get
 Ebλ max T = 12.87 × 10–6 T5 W/m3 ...(13.2 (b))
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Fig. 13.2. The effects of wavelength and temprerature on the monochromatic hemispherical
blackbody emissive power, and the meaning of Wien’s displacement law.

13.1.2. Black body emissive power: The basic relationship known as Stefan-Boltzmann’s
equation for black body emissive power is given by

 Eb = σT4 ...(13.3)
Where σ is a constant = 5.67 × 10–8 W/m2 K4 in SI units and Eb is the total emissive

power in W/m2 and T is the temperature in K.
This relationship can be verified using equation (13.1) in the integral given in equation

(13.4.), which leads to Stefan-Boltzmann’s equation.

 Eb = 
0

∞z  Ebλ dλ ...(13.4)

13.1.3. Another use of the relationship is the determination
of radiant energy emission in a wave length range λλλλλ1 and
λλλλλ2. This is obtained by using equation (13.4) with limits λ1 and
λ2. This process is shown in Fig. 13.3.

Eb( )λ λ1 2−  = 
λ

λ
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0 0z z z= −E d E d E db b b

...(13.5)
A more practical way is the determination of this quantity

in a non dimensional form as a fraction of emissive power at the
same temperature. In this attempt the analysis leads to the
relation.
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Fig. 13.3. Radiation emission
in a given wavelength range.
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The result of the integration is available in both graphical and numerical forms with λT
as the independent variable. The tabulation or chart can be used to determine the energy
radiated in any band (λ1 – λ2) at any temperature, T, the values are shown in Table 13.1.

Table 13.1. Blackbody Radiation Functions

λT, µm K
E (0 T)

T
b

4
→ λ

σ
λT, µm K

E (0 T)
T

b
4

→ λ
σ

200 0.341796 × 10–26 6200 0.754187
400 0.186468 × 10–11 6400 0.769234
600 0.929299 × 10–7 6600 0.783248
800 0.164351 × 10–4 6800 0.796180

1000 0.320780 × 10–3 7000 0.808160
1200 0.213431 × 10–2 7200 0.819270
1400 0.779084 × 10–2 7400 0.829580
1600 0.197204 × 10–1 7600 0.839157
1800 0.393449 × 10–1 7800 0.848060
2000 0.667347 × 10–1 8000 0.856344
2200 0.100897 8500 0.874666
2400 0.140268 9000 0.890090
2600 0.183135 9500 0.903147
2800 0.227908 10000 0.914263
3000 0.273252 10500 0.923775
3200 0.318124 11000 0.931956
3400 0.361760 11500 0.939027
3600 0.403633 12000 0.945167
3800 0.443411 13000 0.955210
4000 0.480907 14000 0.962970
4200 0.516046 15000 0.969056
4400 0.548830 16000 0.973890
4600 0.579316 18000 0.980939
4800 0.607597 20000 0.985683
5000 0.633786 25000 0.992299
5200 0.658011 30000 0.995427
5400 0.680402 40000 0.998057
5600 0.701090 50000 0.999045
5800 0.720203 75000 0.999807
6000 0.737864 100000 1.000000

Example 13.1: Determine the maximum value of Ebλλλλλ at a temperature of 1400 K. Also
determine the value at a wavelength of 4 × 10–6 m.
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Solution: Using Wien’s law λmax = 2.898 × 10–3/1400 = 2.07 × 10–6 m
substituting in equation (13.1)

Ebλ = 3 7415 10
2 07 10 1

16

6 5 1 4388 10 2 898 102 3
.

( . ) [ ]( . / . )
×

× −

−

− × ×− −
e

 = 6.919 × 1010 W/m2/m

Check: Using eqn. (13.2 (b))
Ebλ max = 12.87 × 10–6 (1400)5 = 6.922 × 1010 W/m2/m

At 4 micrometer

 Ebλ = 37415 10
4 10 1

16

6 5 4388 10 1400 4 102 6
.

( ) [ ](1. / )
×

× −

−

− × × ×− −
e

 = 3.031 × 1010 W/m2/m.

Example 13.2: Determine the radiant energy emission between wavelengths 2 to 5 µµµµµm
at 1400 K by a black body of area 1 m2.
Solution:  λ1T = 1400 × 2 × 10–6 = 2.8 × 10–3 mK = 2800 µmK

λ2T = 1400 × 5 × 10–6 = 7 × 10–3 mK = 7000 µmK
referring to the Table 9.1 the fractional quantities at these values are read as 0.2281 and
0.8081

i.e.,
E

E
b

b

( )0 2−  = 0.2279 and 
E

E
b

b

( )0 5−  = 0.80816

∴  
E

E
b

b

( )2 5−  = 0.80816 – 0.2279 = 0.58026

Radiant energy emission is this range is
 q = 0.58026 × 5.67 × 10–8 × (1400)4 = 126391 W/m2 or 126.391 kW/m2

Emissive power at 1400 K is 217.819 kW/m2 using (σ T4)
About 60% of the energy is emitted in this wave band.

Example 13.3: Window glass is found to transmit radiant energy in the wave lengths of 0.4 to
2.5 µm. Determine the fractions transmitted for a source temperature of (i) 5000 K  (ii) 300 K.
Solution: (i) at 5000 K, λ1T = 5000 × 0.4 = 2000 µmK

      λ2T = 5000 × 2.5 = 12500 µmK
From tables the corresponding fractions are

0.0667347 and 0.9502
∴ Fraction transmitted = 0.88345
(ii) at 300 K

 λ1T = 120 µmK, λ2T = 750 µmK
At these values the fractions are zero as read from tables. Radiant energy will not be

transmitted out by the glass at this temperature  and the glass is opaque for such radiation.
This is the principle of green house effect. High temperature radiant energy will be

transmitted while low temperature radiation is cut off.
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The difference between these two goes to increase the temperature of the space covered
by glass. Other materials like CO2 also transmit selectively. Solar energy is let in by the CO2
laden atmosphere, while the earths radiation is trapped. This lends to warming up of the
atmosphere.

13.2 INTENSITY OF RADIATION

The radiant energy emitted from a surface travels all over the space. This is also called diffuse
radiation. When the quantity of energy transferred is to be calculated, the energy emitted in a
given direction becomes the basic parameter. The energy emitted per unit solid angle in
a direction is defined as the intensity of radiation in that direction. Using the definition,
a relationship between emissive power and intensity of radiation can be established.

Consider a small black differential area dA1. Let a hemisphere of radius r with its centre
at the centre of dA1 be placed over this area. All the energy emitted by dA1 is intercepted by
the hemispherical surface and is equal to Eb × dA1 (Fig. 13.4)

r sin d� �

r d�

r

dA1r sin �

dA1
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�
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�

Fig. 13.4. Radiation from a differential are dA1 to a hemisphere with center at dA1.

Consider the radiation intercepted by small shaded area between angle φφφφφ and φφφφφ + dφφφφφ and
θθθθθ and θθθθθ + dθθθθθ.

The area is r sin θ . dφ . r dθ
The solid angle dω = area/r2 = sin θ dθ dφ
The projected area of dA1 in the direction considered is dA1 cos θ
If intensity of radiation is I, then the total energy intercepted by this area is given by

dωI dA1 cos θ. Integrating over the hemisphere and dividing by dA1

 E = 
0

2πz  
0

2π /z  I cos θ sin θ dθ . dφ

= 
0

2πz  I dφ sin
/2

0

2

0

2

2 2
θ

π
πL

NMM
O
QPP

= z I  dφ = π I

∴ E = πππππ I ...(13.7)
This is an important relation used in the calculation of radiant heat transfer between

surfaces.



VED

c-4\n-demo\damo13-1

584 FUNDAMENTALS OF HEAT AND MASS TRANSFER

13.3 REAL SURFACES

Solids and liquids emit radiation from the surface, with the material involved limited to a
small thickness at the surface. Gases however emit radiation over the whole volume. Real
surfaces radiate less energy as compared to black surface at the same temperature. The surfaces
also do not have a regular spectral distribution.

Some of the surfaces radiate only in limitted wave bands. Some samples of real surface
monochromatic emission is shown in Fig. 13.5. Curve A represents black body radiation. Curves
B, C and D represent different surface characteristics.

D D
D

C

T = constant
Eb�

A(Black)

C(Actual)

B(Actual)

E(Grey)

D(Band)

�

Fig. 13.5. Monochromatic emissive power of different surfaces at temperature T.

Curve B represents a more uniform behaviour. Curve D represents what is known as
band radiation. The emissive power of these surfaces are obtained by the area below the spectral
distribution curve. As it is difficult to deal with such non uniform behaviour, a fictitious
surface called gray body is defined for general use. A gray surface is one whose
monochromatic emissive power at all wavelengths is the same fraction of the black
body monochromatic emissive power. This is shown as curve E in Fig. 13.5...... . The ratio
of ordinates of curves A and E at any wavelength is the same. Such a surface does not exist.
But real surfaces are approximated to gray surfaces in practical applications.

The ratio E/Eb is known as emissivity (εεεεε) of a surface. Though emissivity of a
surface will vary with temperature for general application an average value is used in practice.
The emissivity value for various surfaces are listed in hand books and data books. Values for
same surfaces is given Table 13.2

ε = E/Eb ...(13.8)
Table 13.2. Hemisphical Emissivities of various surfaces.

Material Temperature
310 K 530 K 800 K

Aluminium, polished 0.04 0.05 0.08
Aluminium oxidised 0.11 0.12 0.18
Copper polished 0.04 0.05 0.18
Copper oxidised 0.87 0.83 0.77
Iron polished 0.06 0.08 0.13
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Cast iron oxidised 0.63 0.66 0.76
Steel rough 0.94 0.97 0.98
Silver polised 0.01 0.02 0.03
Stainless steel 18-8 0.15 0.18 0.22

polished
Stainless steel weathered 0.85 0.85 0.85

13.3.1. Radiation properties: Radiant energy incident on a body may generally be used up
in three ways. Part of the energy may be absorbed, part reflected and the remaining quantity
may be transmitted.

The fraction of incident radiant energy that is absorbed by the body is called
absorptivity of the surface (ααααα);

The fraction reflected is called reflectivity (ρρρρρ);
The fraction transmitted is called transmissivity (τττττ);
These properties at a particular wave length are called monochromatic properties i.e.

αλ, ρλ, and τλ).
In general application the total properties are used. However for special applications

monochromatic properties should be used. For example generally it is assumed that αλ = α but
it need not be so always and the value of αλ as measured should be used in specialised
applications.

Generally for all surfaces α + ρ + τ = 1 ...(13.9 (a))
For opaque surfaces α + ρ = 1 ...(13.9 (b))
For black surfaces α = 1 ...(13.9 (c))
Kirchhoff’s law: An important relationship between emissivity and absorbtivity was

postulated by Kirchhoff. The statement of the law is
‘‘The absorptivity of a surface at a temperature and wavelength is equal to the

emissivity of the surface at the same temperature and wavelength’’.
The proof is given under solved problems 13.1.
For practical application this statement is simplified as

ε = αε = αε = αε = αε = α ...(13.10)
Monochromatic values should be used for critical design situations.
Presently surfaces are being developed which do not follow the general statement of α =

ε but αλT = ελT. The is because  emissivity depends on the surface temperature while absoptivity
depends on the source temperature. These are called selective surfaces. These surfaces have
different values of emissivity at different wavelengths. Particularly the emissivity is high at
short wavelengths while it is low at longer wavelengths.

These surfaces are known to have high absorptivity and emissivity for high temperature
(short wavelength radiation), but low emissivity for low temperature (longer wave length)
radiation. Such a solar collector surface will absorb a large fraction of incident solar radiation,
but will not radiate out much at the lower collector temperature.
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Example 13.4: A solar collector surface has an absorptivity of 0.85 for wave lengths upto 3
µm and a value of 0.15 for wave lengths above this value. Determine assuming Kirchhoff’s law
holds good, the energy absorbed from a source at 5800K if the flux is 800 W/m2. Also determine
the energy radiated by the body if its temperature was 350 K.

Solution. The fraction 
E

E
b

b

(0 3)−  for 5800 × 3 µmK is obtained from tables as 0.9780

∴ Energy absorbed = (800 × 0.978 × 0.85) + (0.022 × 0.15 × 800) = 667.68 W

The fraction E
E

b

b

(0 3)−  for 350 K is obtained from tables as 0.00057

∴ Energy radiated = 0.00057 × 0.85 × 5.67 × 10–8 × 3504

+ 0.99943 × 0.15 × 5.67 × 10–8 × 3504 = 128 W
The loss is about 20%. If the emmissivity was 0.85 throughout, then loss is 723.22 W.

This plate temperature of 350 K cannot be maintained at all.
Example 13.5: In example 13.4, determine the energy absorbed if the source was at 600 K and
the flux was 800 W/m2.

Solution: The fraction E
E

b

b

(0 3)−  is determined from Tables as 0.0397

corresponding to 600 × 3 = 1800 µmK
∴ Energy absorbed = 800 × 0.0397 × 0.85 + 800 × (1 – 0.0397) × 0.15 = 142.23 W
As most of the energy incident is beyond 3 µm, the energy absorbed is low though the

flux is the same.
Note: In addition to the source temperature the flux depends on the geometric location of the

source relative to the surface.
Example 13.6: A surface has emissivities of 0.3 upto 2 µm and 0.85 between 2 and 4 µm and
0.5 beyond this wavelength. Determine the effective emissivity at 4000 K, 2000 K and 400 K.
Solution: (i) 4000 K. The fraction upto 2 µm, and 4 µm are determined using the tables.

 8000 µm K – > 0.856344
16000 µm K – > 0.97389

∴ Effective emissivity is
= 0.3 × 0.856344 – 0.85 (0.97389 – 0.856344) + (1 – 0.97389) × 0.5
= 0.36982.

(ii) 2000 K
4000 µm K – > 0.4809
8000 µm K – > 0.8563

Effective emissivity = 0.3 × 0.4809 + 0.85 (0.8563 – 0.4809) + 0.5 (1 – 0.8563) = 0.5352
(iii) 400 K

800 µm K – > zero
1600 µm K – > 0.02

Effective emissivity = 0.02 × 0.85 + 0.5 (1 – 0.02) = 0.507.
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13.3.2. The absorptivity and emissivity for actual surfaces may also very with temperature
and direction in addition to wavelength. For better estimates in design it is necessary to use
the data available in hand books in chart and table forms for these properties for various
surfaces.
Example 13.7: A directionally emitting surface has an emissivity of 0.6 for angles upto 45°
from vertical and 0.2 for the rest of the range. Determine the total emisivity of the surface.
Solution: The total emissivity can be determined by integrating the local directional emissivities
with respect to the angle θ with which the emissivity varies.

(The derivation is given under solved problems 13.2).

ε = 2 
0

2π /z  ε (θ) cos θ sin θ dθ

This is now split up into two integrals.

ε = 2 
0

4π /z  0.6 cos θ sin θ dθ + 2 
π

π

/

/

4

2z 0.2 cos θ sin θ dθ

= 2 0 6
2
2

0

4

. sin
/

θ
πL

NM
O
QP  + 2 0 2

2
2

4

2

. sin

/

/
θ

π

πL
NM

O
QP  = 0.4

This is also called total hemispherical emissivity.

13.4 RADIATION PROPERTIES OF GASES—ABSORBING,
TRANSMITTING AND EMITTING MEDIUM

In a volume like the combustion furnace radiation exchange takes place between gases and
the surrounding surfaces. So it becomes necessary to determine the emissivity and absorptivity
of gases in a given volume. Unlike in solids and liquids radiation in gases is a volume
phenomenon. In solids and liquids the energy emitted inside the material reaches the  surface
by conduction or convection. At the surface the energy is emitted by radiation.

In the case of gases the if density is low the space between molecules is large and radiant
energy emitted inside the volume can reach the surface without being intercepted. The
emissivity and absoroptivity of gases are found to depend on the linear dimension,
geometric shape and the density (pressure and temperature) of the volume in addition to
the inherent nature of the gas itself.

The commonly occuring gases like Oxygen and Nitrogen are transparent to incident
thermal radiation and hence their absorptivity value is zero. By Kirchhoff’s law the emissivity
is also zero for these cases. Gases like carbon dioxide and water vapour absorb incident thermal
radiation. Consequently they also emit thermal radiation. However the emission is not
distributed over all values of wave lengths. It is limited to specific wavelength intervals called
wave bands.

These aspects make the determination of absorptivity and emissivity values for gases
more complicated.
13.4.1. Absorption of thermal radiation in gases: A gas volume is shown in Fig. 13.6.

A thermal radiation beam (monochromatic) with intensity Iλ0 is incident at face x = 0. As
it passes through the gas volume partly there is absorption of the beam. At location x, the
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intensity is Iλx. As it passes through a differential thickness
dx, let the intensity be reduced by dIλ. Let the absorption
coefficient for the gas be aλ.

Then d Iλ = – aλ Iλx dx
Integrating (by separating the variables) between

limits x = 0 and x = L
I
I

eL a Lλ

λ

λ

0
= − ...(13.11)

This is known as Beers law and this is used in
arriving at the monochromatic transmissivity and
absorptivity of any gas volume. It should be noted that aλ
is a property of the gas.

Transmissivity is the fraction of energy transmitted and is given by equation (13.11).

 τλ = I
I

eL a Lλ

λ

λ

0
= −

As gases do not reflect any radiation,
∴ Absorptivity = 1 – Transmissivity

∴ αλ = 1 – τλ = 1 – e a L− λ ...(13.12)
Application of Kirchhoff’s law gives the relation.

αλ = ελ

The total value of absorptivity or emissivity can be obtained by summing up the
absorptivity in the bands in which the gas radiates. For example water vapour has absorptivity
values  in  bands around 1,1.4, 1.8 and 2.75 µm. Similar bands exit for CO2 at 1.9, 2.7, 4.3 and
15 µm.
13.4.2. Calculation of absorptivity and emissivity values for water vapour and carbon
dioxide: The value of absorptivity is found to depend on the pressure of the gas and the beam
length or characteristic length for the volume and the temperature. The emissivity/absorptivity
increases with pressure and beam length and decreases with temperature If water vapour and
carbon dioxide are found as a mixture with other gases (particularly air) the partial pressure
is to be considered in such cases.

Measured values are available in chart form with emissivity on y axis, temperature on x
axis and pl as parameter (p—partial pressure, l—characteristic length). A schematic chart is
shown in Fig. 13.7.

If the pressure, shape and temperature of the gas body are specified, then the emissivity
value can be read off from the chart. The emissivity depends on the gas body temperature
while the absorptivity will depend on the radiation source temperature. Hence in the calculation
of heat exchange these values should be calculated at different temperatures.

The chart value is for a total pressure of 1 atm for the mixture of gas/vapour considered.
A multiplicative correction factor is necessary to account for the presence of other gases, when
the total pressure is different from 1 atm. The correction factor C is greater than one for higher
total pressures. The factor is less than one for lower partial pressures. A schematic chart is
shown in Fig. 13.8.

0 x dx

I�o
I�x

I� �x x+ d1

Fig. 13.6. A gas volume with incident
thermal radiation beam.
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Fig. 13.7. Emissivity of CO2 Fig. 13.8. Correction factor for total pressures
 other than 1 atm (for CO2)
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Fig. 13.9. Correction factor for the presence of CO2 and H2O in the mixture.

Accurate values for the characteristic lengths for various shapes are available in hand
books. Approximate values for all shapes can be obtained by using

 l = 3.6 volume/surface area. ...(13.13)
For water vapour or CO2 present as a mixture with other non radiating gases, the value

of emissivity is obtained by
εCO2  = ε1 atm . CCO2

...(13.14)
For mixtures of both gases in a volume another subtractive factor (∆ε) is to be used as

the sum of the emissivities calculated using the charts is found to be higher than the actual
measured values. This factor is zero when only one of the gas is found in the mixture. The
values are of the order of 0.05. A sample chart is shown in Fig. 13.9.

The emissivity when both gases are present is calculated using.
 ε = εχo2 + εH O2

− ∆ε ...(13.15)
The heat exchange between a black enclosure and the gas is given by

Q = σ As (εgTg
4 – αgTs

4) ...(13.16)
Where As is the surface area, Tg  is the gas temperature and Ts is the surface temperature.

εg is calculated as indicated in equation (13.15) at Tg. The gas absorptivity is dependent on the
source temperature also. The value is calculated as indicated below.

αg = α αH O CO2
+

2
 – ∆ε ...(13.17)
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αH O H O2 2
= C   T

T
g

s

F
HG
I
KJ

0.45

H O2
ε ...(13.17 (a))

 αCO CO2 2
= C  

T
T

g

s

F
HG
I
KJ

0.65

εCO2 . ...(13.17 (b))

Here εH O2  and εCO should be determined at Ts using a corrected value of pl given by
(pl × Ts/Tg).

The charts are shown in Figure (13.10 a, b 13.11 a, b) and (13.12).
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Fig. 13.10. (a) Emissivity εc of carbon dioxide at a total pressure of PT = 1 atm.
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P . L = 0.76 atm.mCO2
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Fig. 13.10. (b) Correction factor Cc for converting the emissivity of CO2 at 1 atm to emissivity at PT atm.
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Fig. 13.11. (a) Emissivity εw of water vapor at a total pressure of PT = 1 atm
and corresponding to an idealized case of Pw → 0.
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P .L = 0.015 atm. mH O2
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Fig. 13.11. (b) Correction factor Cw for converting emissivity of H2O to values of Pw and PT other than 0
and 1 atm. respectively.
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Fig. 13.12. Emissivity correction ∆ε formutual absorption when water vapor and carbon
dixoxide are present in the gas.

Example 13.8: Determine the emissivity of a gas body of spherical shape of 1 m dia at a total
pressure of 1 atm and 1500 K. The gas body consists of 17.96% of CO2 and the rest oxygen and
Nitrogen.
Solution: From the volume analysis, the partial pressure can be determined. The ratio of
partial pressure to total pressure will be equal the ratio of volume to total value. So the partial
pressure of CO2 is 0.1796 atm.
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The gas body is in the shape of a sphere of diameter 1 m. From tabulated values the
characteristic length for a sphere is 0.67 D.

∴ l = 0.67 m
∴ Pl = 0.1796 × 0.67 = 0.120
Reading from the chart at T = 1500 K and Pl = 0.12, ε = 0.098. As the total pressure is

atmospheric, no correction is necessary.
Emissivity of the gas body = 0.098.

Example 13.9 : In case in the example no. 13.7 the total pressure was (i) 0.3 atm and (ii) 3 atm,
determine the value of emissivity assuming partial pressure of CO2 as 0.1796 atm.
Solution: A correction is required for the value of emissivity to account for pressure other
than 1 atm.

Reading the chart at these total pressure and Pl values the correction factors are obtained
as

(i) 0.3 atm total pressure CCO2
 = 0.78

(ii) 3 atm total pressure CCO2
 = 1.22

The emissivity values are (i) 0.0764 and (ii) 0.1196.
Example 13.10: A furnace in the form of a cube of 2 m side has gas in it at 1500 K. The analysis
of gas is 16% CO2, 10% H2O and the rest are non radiating gases. Determine the emissivity of
the gas body. The total pressure is 1 atm.
Solution: The partial pressure of CO2 = 0.16 atm

The pertial pressure of H2O = 0.1 atm
The characteristic length = 0.67 × side = 0.67 × 2 = 1.34 m
∴  PlCO2  = 0.16 × 1.34 = 0.214

PlH O2  = 0.1 × 1.34 = 0.134
The corresponding emissivity values are read from charts entering at 1500 K and reading

against the Pl values as
εCO2  = 0.12 εH O2  = 0.105

As the total pressure is one atm, no correction is necessary for total pressure. But a
correction (deduction) is necessary to account for the combined presence. This is read from the
chart at

PH O2 /(PCO2  + PH O2 ) and Pcl + Pwl values. These are
0.1/(0.16 + 0.1) = 0.3846 and 0.214 + 0.134 = 0.348.
The temperature is 1500 K. The value of ∆ε = 0.04 (chart is available  for 1200 K only

extrapolated)
 ε = 0.12 + 0.105 – 0.04 = 0.221.

Example 13.11: In example 13.10, if the total pressure was 3 atm, determine the emissivity of
the gas volume.
Solution. The partial pressures are:

PCO2
 – > 0.16 × 3 = 0.48 PH O2  – > 0.1 × 3 = 0.3 atm

PlCO2
 = 0.48 × 1.34 = 0.6432, PlH O2  = 0.402
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The emissivities for the corresponding values are
εCO2  = 0.17, εH O2  = 0.195

The correction factors are: for CO2 at 0.3 and 0.6432, CCO2
12= .

For H2O ( PH O2  + PT)/2 = (3 + 0.3)/2 = 1.65

Pl = 0.402, CH O2
 = 1.41 (extrapolated)

The value of ∆ε is read at 
P

P P
H O

H O CO

2

2 2
+

 = 0.3/(0.3 + 0.48) = 0.3846

and PlCO2  + PlH O2  = 0.6432 + 0.402 = 1.0432, ∴ ∆ε = 0.051
∴ εεεεε = 0.17 × 1.2 + 1.41 × 0.195 – 0.051 = 0.428.

Example 13.12: A furnace of 2 m × 1.5 m × 1.5 m size contains gases at 1500 K while the walls
are at 500 K. The gas contains 18% of CO2 and 12% of water vapour by volume. Determine the
heat exchange from the gases to the walls. The total pressure is 2 atm. Assume black surface.
Solution: The characteristic length = 3.6 volume/surface area

= (3.6 × 1.5 × 1.5 × 2)/(2(1.5 × 1.5 + 2 × 1.5 × 2)) = 0.982 m
The partial pressures are

 CCO2  = 0.18 × 2 = 0.36, ∴ PlCO2
 = 0.354

 PH O2  = 0.12 × 2 = 0.24 ∴ PlH O2  = 0.236
The values of emissivites as read from chart for values of 1500 K and Pl

 εCO2
 = 0.145, εH O2  = 0.155

The correction factors for pressure, as the total pressure is 2 atm are

 CCO2  = 1.1 (at 2 and 0.354)

 CH O2  = 1.42 (at 1.12 and 0.236)
Correction for the simultaneous presence of the two gases:

 PH O2 /(P PCO H O2
)

2
+ = 0.24/(0.36 + 0.24) = 0.4

Pl PlCO H O2 2
+ = 0.354 + 0.236 = 0.590

∆ε = 0.047
∴ εεεεεg = 1.1 × 0.145 + 1.42 × 0.155 – 0.047 = 0.3326
To determine the absorptivity, the temeprature of the wall has to be used. Reading

corresponding to 500 K and P1 = pl × (Ts/Tg) i.e., for PlCO2  = 0.118 and PlH O2  = 0.079
εCO2  = 0.105, εH O2  = 0.17

The correction factor are:
 CCO2  = 1.3 (at 2 atm and 0.118)
 CH O2  = 1.58 (at 1.12 atm and 0.079)
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The subtractive correction factor is read at
 0.4 and (0.118 + 0.079 = 0.197), ∆ε = 0.026

∴ αααααg = 1.3 × 0.105 × 
1500
500

158 0 17 1500
500

0.65 0.45F
HG
I
KJ + × × FHG

I
KJ. .  – 0.026

= 0.2788 + 0.4404 – 0.026 = 0.6932
Heat exchange = σ As [εg Tg

4 – αg Ts
4]

= 5.67 × 16.5 0 3326 1500
100

0 6932 500
100

4 4
. .× FHG

I
KJ − F

HG
I
KJ

L
N
MM

O
Q
PP

= 1.5379 × 106 W.

13.5 HEAT EXCHANGE BY RADIATION

In the preceding sections the radiation properties  and determination of the above were
discussed. The important application of the study is heat transfer from one body to another by
radiation when a temperature difference exists.

Thermal radiation from a surface travels all over the space in all directions above the
surface. Only that portion of radiant energy emitted by a surface which reaches the other body
can be absorbed or transmitted or reflected by that body. So it becomes necessary to estimate
the fraction of energy emitted by a body that reaches the other body. Out of this portion the
energy absorbed by the body can be calculated if the absorptivity of the surface is known. In
the case of black body all the incident energy will be absorbed. For opaque grey bodies part will
be absorbed and part will be reflected. Part of the reflected energy may again reach the original
body which will be disposed off as was the original radiation.

In order to facilitate this study a new concept called shape factor is defined. Several
other terms are also used synonymously. Angle factor, view factor, geometric shape factor
are some of these terms.

Shape factor of surface 1 with respect to surface 2 is defined as fraction of
radiant energy emission form surface 1 reaching the surface 2. The fraction is generally
denoted by E1–2. Shape factor depends on the geometric positions of the surfaces. If the surface
2 encloses the surface 1 completely then F1–2 = 1. If surface two is not visible from surface 1
then F1–2 = 0. The shape factor depends on the distance between the surfaces and the areas of
the surfaces. Two coaxial circular disks facing each other will have higher value of shape
factor if these are moved closer. For the same central distance larger area will give higher
value for shape factor.
13.5.1. Expression for shape factor: The definition of shape factor was given in the last
para. Considering two black surfaces A1 and A2 the quantity of radiant energy emission from
A1 reaching A2 is given by

Q1–2 = A1 F1 – 2 . Eb1 ...(13.18 (a))
This is completely absorbed by surface A2 as it is black. Similarly the quantity of radiant

emission from A2 reaching A1 and absorbed by it is given by
Q2–1 = A2 F2–1 Eb2 ...(13.18 (b))

When surfaces A1 and A2 are at the same temperature, these two quantities should be
equal as no net heat transfer is possible.
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i.e., Eb1 = Eb2 for this condition.
As A1, A2, F2–1 are not zero
∴  A1 F1–2 = A2 F2–1 ...(13.19)
This is known as reciprocity theorem for shape factors and will be used extensively in

many situations.
The net heat exchange

 Q = Q1–2 –  Q2–1 = A1 F1–2 (Eb1 – Eb2) ...(13.20)
Consider the two surfaces A1 and A2. In order to determine

the shape factor first consider the differential area dA1 and dA2
as shown in Fig. 13.13. The line joining the centre of these two
areas has a length r. The normal to the surfaces make angles θ1
and θ2 with this line.

The areas when projected in the direction perpendicular
to the line will equal dA1 cos θ1 and dA2 cos θ2. Let the area dA2
subtend a solid angle dω with respect to dA1. Then the energy
emission from dA1 reaching dA2 is equal to

dqdA dA1 2−  = I1 cos θ1 dA1 . dω

= I1 cos θ1 dA1 . cos θ2 dA2/r2

...(13.21 (a))
Similarly

 dqdA dA1 2−  = I2 cos θ2 dA2 . cos θ1 dA1/r2 ...(13.21 (b))
The net flow is the difference between these quantities.
Replacing I = E/π

Q1–2 = (Eb1 – Eb2) 
A A

dA dA
r1 2

1 2 1 2
2z z cos cosθ θ

π
This is also equal to (Eb1 – Eb2) A1 F1–2

∴  F1–2 = 1
1

1 2 1 2
2

1 2A
dA dA

rA Az z cos cosθ θ
π

The double integral can be evaluated directly only in simple cases. However the values
are available for some important configurations in chart form and is determined using the
geometric prameters. Perpendicular rectangles or squares with common edge, Equal parallel
disks or rectangles are the two important configurations for which chart form solutions are
available. Solutions are available also for surface element to a large parallel area, small sphere
to a parallel plane, for a plane and rows of tubes parallel to it, and unequal coaxial parallel
circular disks.
13.5.2. Shape factor for special cases: The shape factor is equal to one for any surface
completely enclosed by another surface. The shape factor is also one for infinite parallel planes,
from inner cylinder to outer cylinder of long coaxial cylinders and inner to outer concentric
spheres. The reciprocity theorem can be used to find the shape factor of outer to inner cylinder
or sphere.

Fig. 13.13. Shape factor
determination.

A2 dA2

	2 N2

N1 	1

A1
dA1
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For small element dA1 to a parallel circular disk of radius a refer Fig. 13.13(b) at a
distance L, the shape factor is a2/(a2 + L2). ...(13.23 (a))

a

b

LL

a

dA1

Fig. 13.13. (b)

For two unequal coaxial parallel circular disks of radius a and b at a distance L from
each other Ref. Fig. 13.13(b) the shape factor from smaller to larger disk of radius b is given by

 F1–2 = [L2 + a2 + b2 – {( )/ }] /L a b a b a2 2 2 2 2 24 2+ + ...(13.23 (b))
Crossed string method: The shape factors for surfaces that are two dimensional and

infinitely long in one direction with identical cross sections normal to the infinite direction can
be determined using a method called crossed string method due to Hottel and Sarofin

The configuration is shown in Fig. 13.14.

b

a
1

d

c

L1




F = [(ad + cb) – (ab + cd)]/2L1 – 2 1

2

Fig. 13.14. Schematic diagram illustrating the crossed-string method.

F1–2 = [sum of diagonal lengths – sum of end lengths]
/2 × width of plane

 F1–2 = [(ad + cb) – (ab + cd)]/2L1 ...(13.24)
This method can be used for inclined planes which are longer compared to the distance

between them.
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13.5.3. Shape factor relationships: As the shape factor values are available for limited
geometric situations only, it becomes necessary to use some basic relationships between shape
factors to evaluate the shape factor for other connected geometries. For example shape factor
value are available for perpendicular surfaces with a common edge. But shape factor values
for perpendicular surfaces will meet only if extended, is needed. The shape factor relationship
together with the reciprocity theorem are used to evaluate shape of factor value in such
situations.

Consider surfaces A1, A2 and A3 shown in Fig. 13.15. The first of such rules is
F3–1, 2 = F3–1 + F3–2 ...(13.25)

This is an obvious relation as the energy reaching an area is the sum of energies reaching
individual parts of the area. Generally

Fi–j, k, l, m, n..... = Fi–j + Fi–k + Fi–j + Fi–m + .... ...(13.26)

A1

A3

A1, 2

A2

Fig. 13.15. Shape factor relations.

Multiplying the RHS and LHS of equation (13.25), by the area
 A3F3–1, 2 = A3F3–1 + A3F2–3 ...(13.27)
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Fig. 13.16. Shape factor for a surface element dA and a rectangular surface
A parallel to It.



VED

c-4\n-demo\damo13-2

C
ha

pt
er

 1
3

THERMAL RADIATION 599

0 1.0 2.0 3.0 4.0 6 8 10

0.50

0.40

0.30

0.20

0

S
ha

pe
fa

ct
or

F
1

–
2

Y = 0.1 Dimension ratio, Y = 0.1

0.2
0.3
0.4

0.6

0.8

1.0

1.5

2.0

3.0
4.0
6.0
8.0

Scale changes here
Asymptotes

A1 = Area on which heat
transfer equation is based.

Y = y/x
Z = z/x

x

z

y A1

0.10

Dimension ratio, Z

A2

Fig. 13.17. Shape factor for adjacent rectangles in perpendicular planes sharing a common edge.
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VED

c-4\n-demo\damo13-2

600 FUNDAMENTALS OF HEAT AND MASS TRANSFER

Then using the reciprocity theorem,
(A1 + A2) F1,2–3 = A1 F1–3 + A2 F2–3 ...(13.27 (b))

Stated in words this equation is
‘‘The total energy received by area A3 from both A1 and A2 is equal to the sum of energies

received from areas A1 and A2 separately’’.
These relationships are very usuful in evaluation shape factors for various geometries.
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smaller side or diameter
distance between planes

Radiation between parallel planes, directly opposed:
• 1, 2, 3, and 4: Direct radiation between the planes, F

• 5, 6, 7, and 8: Planes connected by nonconducting but reradiating walls, F
• 1 and 5: Disks • 3 and 7: 2: 1 Rectangles
• 2 and 6: Squares • 4 and 8: Long, narrow rectangles

Fig. 13.19. Shape factors for equal and parallel squares, rectangles, and disks.
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Fig. 13.20. Shape factor for a plane and one or two rows of tubes parallel to it .

Example 13.13: Determine the shape factor from the floor of a furnace of 1 m × 2 m × 1.5 m size
to the side surfaces and to the roof.
Solution: The shape factors (Also charts and Tables from Data Book are used in all
problems).

F1–2, F1–3 and F1–4 are to be determined. Refer Fig. 13.21.

1 m

2 m1.5 m

A Floor1

A3

A4
A2

Roof

Fig. 13.21

The parameters for perpendicular surfaces are (for floor to end wall)
Z = height of the vertical surface/width = 1/1.5 = 0.67
Y = length of the horizontal surface/width = 2/1.5 = 1.33

As read from the chart the corresponding value of F1–2 = 0.140
For F1–3 (Floor to side wall)

Z = 1/2.0 = 0.5
Y = 1.5/2.0 = 0.75

The value of F1–3 read from chart = 0.180
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For parallel rectangles (floor to ceiling, F1–4) the parameters
X = longer side/distance between planes = 2/1 = 2.0
Y = shorter side/distance between planes = 1.5/1 = 1.5

The corresponding value F1–4 = 0.36 (from chart)
Check: the sum of all shape factors should be equal to one (2 × 0.14 + 2 × 0.18 + 0.36) = 1
Heat exchange between surfaces can be determined if temperatures are specified,

provided the surfaces are black (by equations discussed so far).

Example 13.14: Determine the shape factor from the base of a cylinder to the curved surface.
Also find the shape factor from curved surface to base and the curved surface to itself.
Solution: The diameter is 1 m and height is also 1 m. The base (1) is enclosed by the top (3)
and curved surface (2) (Fig. 13.22)

∴   F1–2 + F1–3 = 1
F1–3 can be determined by using the chart for parallel disks. The ratio, diameter/distance

between planes = 1
The corresponding value of shape factor is 0.17. Base to curved surface is
∴  F1–2 = 1.0 – 0.17 = 0.83
Using reciprocity theorem

A1F1–2 = A2F2–1

π × ×1 1
4  × 0.87 = π × 1 × 1 × F2–1

∴ F2–1 = 0.2175
Considering the curved surface, as concave surface will intercept some radiation from

the surface itself.
F2–1 + F2–3 + F2–2 = 1

As  F2–1 = F2–3, F2–2 = 1 – 2 × 0.2175 = 0.565
Concave surfaces intercept part of radiation emitted by themselves. Here it intercepts

more than half of the radiation.

1 m

A3

1 m �

A1

A2

2 m

2 m

2 m

2 m

A3

A2

A1

x

y

Fig. 13.22 Fig. 13.23

Example 13.15: Determine the shape factor from the surface 1 to surface 3 shown in Fig. 13.23
(vertical plane and non touching horizontal surface).
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A1

A2
Reradiating
surface

d

b

a c

2 m

2 m

2 m

2 m

A (Roof)2

A (Floor)1

Solution: Denoting surface in between as 2 and using equation (13.27)
(A1 + A2) F1,2–3 = A1 F1–3 + A2 F2–3

F12–3 and F2–3 can be determined
Using the chart
For  F1, 2–3,Y = y/x = 4/2 = 2

 Z = z/x = 2/2 = 1
∴   F1, 2–3 = 0.11643
For F2–3, Y = 2/2 = 1, Z = 2/2 = 1

F2–3 = 0.20004
substituting

(2 × 2 + 2 × 2) 0.11643 = 2 × 2F1–3 + 2 × 2 × 0.20004
∴  F1–3 = 0.03282
To find F3–1 A1 F1–3 = A3 F3–1. In this case, the areas are equal and so F3–1 = 0.03282.

Example 13.16: Determine the shape factor between the floor
and the 45° roof over a long corridor. The width is 2 m and the
height on the lower sides is 2 m. (Fig. 13.24)

Solution: In this case the crossed string method is to be used.
(Approximate)

F1–2 = [(ad + bc) – (ab + cd)]/2L

ad = ( )2 42 2+  = 4.472

bc = ( )2 22 2+  = 2.828

F1–.2 = [4.472 + 2.828 – (2 + 4)]/2 × 2 = 0.325.
13.5.4. Non absorbing Reradiating surface: Very often
radiating surfaces may be enclosed by surfaces which are well
insulated such that very little heat passes through them. The
radiant heat received by such surfaces will be reflected back to
the surfaces surrounding them. Such surfaces increase the heat
transfer between surfaces enclosed by them. For example consider
two parallel surfaces. Let the shape factor be F1–2. If these two
surfaces are enclosed by four surrounding surfaces which are
well insulated, the apparent value of F1–2 will increase. It will
not reach a value of one of course because of reradiations to the
radiating surface. In the case of two disks 1 m dia and 0.5 m
apart, about 37% of radiant emission from surface 1 will reach surface 2. If the surfaces are
enclosed by reradiating surface the heat reaching surface 2 increases to 65%. The reradiating
surface will be at an intermediate temperature between T1 and T2. The geometric shape factor
however depends only on the geometric parameters.

Reradiating surfaces provide an additional paralle path for radiant heat flow, thus
increasing the heat transfer.

Fig. 13.24

Fig. 13.25
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13.6 RADIANT HEAT EXCHANGE BETWEEN BLACK SURFACES

Equation (13.20) can be used to determine radiant heat exchange between black surfaces.
Q1–2 = A1 F1–2 (Eb1 – Eb2)

This can be represented by electrical analogue shown in Fig. 13.26.

Eb1 Eb2

Q

1
A F1 1 – 2

or 1
A F2 2 – 1

Fig. 13.26. Analogue circuit for radiation.

The temperatures and geometric parameters should be specified for solution.
Example 13.17: Using data of exampel 13.13 determine the heat exchange between the floor
and roof. The shape factor between the floor (2 × 1.5 m2) and roof of the furnace is found as
0.360. The temperatures are specified as 1000 K and 600 K.
Solution: Eb2 = 5.67 × (600/100)4 = 7348.32 W/m2

Eb1 = 5.67 × 
1000
100

4F
HG
I
KJ  = 56700 W/m2

1 1
2 15 0 361 1 2A F −

=
× ×( . . )  = 1.08 m–2

 Q = 56700 7348.32
1.08
−  = 45696 W

The electrical analogy is very useful in solving for situations where reradiating surfaces
are encountered.
Example 13.18: In the case of Example 13.13 the side walls are well insulated so that these can
be considered as reradiating. Determine the heat exchange if the floor is at 1000 K and the roof
at 600 K. Also determine the apparent shape factor.
Solution: The equivalent circuit is shown in Fig. 13.27 (a). The temperature of the reradiating
surfaces is not known, but is assumed as T3. Data is taken from 13.13.

Eb1 Eb2

Q1 – 2

Q2 – 3Q1 – 3

A F2 2 – 3

1

A F1 1 – 2

1

Eb3

A F1 1 – 3

1

(a)

Eb2
Eb1

1
A F2 2 – 3

1
A F1 1 – 3

1
A F1 1 – 2

(b)

1.08

0.521 0.521

Fig. 13.27. (a, b)



VED

c-4\n-demo\damo13-2

C
ha

pt
er

 1
3

THERMAL RADIATION 605

In addition to the direct flow between 1 and 2 an additional path is now available for the
heat flow. Clubbing all the sides as surface 3.

F1–2 = 0.360 ∴ F1–3 = 1 – 0.360 = 0.640
1

1 1 2A F −
 = 1.08 m–2

1 1 1
2 15 0 642 2 3 1 1 3A F A F− −

= =
× ×. .  = 0.521 m–2

The circuit can now be represented as in 13.27 (b).

Equivalent resistance = 1
1

1.08
1

1.42
+

 = 0.614

∴  Q = 56700 7348.32
0.614

−  = 80401 W

This is about twice the heat flow, as compared to direct radiation only.
The apparent shape factor will be:

 Q = A1F1–2(Eb1 – Eb2)
Solving F1–2 = 0.5430
Note. The total emissive power of the floor surface is 3 × 56700 = 170100 W and that of the roof

is 22045 W. The difference between these two and Q goes to heating of the reradiating surfaces.

Example 13.19: A furnace is in the shape of a cylinder of 1 m dia and 1 m height. The base is
at 1000 K while the top is at 500 K. The cuved surface is well insulated so that it can be taken as
non absorbing reradiating surface (see Example 13.14 for shape factors and example 13.18 for
emissive power values). Determine the heat exchange between the base and the top with and
without the reradiating surface.
Solution: From example 13.14 the shape factor from base to top is found as 0.17. The shape
factor  form  base  or  top  to  the  curved  surface  is  0.83.  The  equivalent  circuit  is  shown
in Fig. 13.28.

Eb1 Eb2

Q2 – 3Q1 – 3

A F2 2 – 3

1

Eb3

1
A F1 1 – 3

1
A F1 1 – 2

Q1 – 2

Eb1 Eb2

Q1 – 2

A F1 1 – 2

1

Fig. 13.28 (a) Circuit with reradiation (b) Circuit without reradiation.

Eb1 = 56700 W/m2

Eb2 = 7348.32 W/m2
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1
1 1 2A F −

=
× ×

1
1

4
0.17

2π
 = 7.49

1 1 1
1

4
0 832 2 3 1 1 3

2A F A F− −
= =

× ×π .
 = 1.534

with reradiation:
The equivalent resistance

 R = 
1

1
7.49

1
2 1.534

+
×

 = 2.1765

∴  Q = 56700 7348.32
2.1765

−  = 22675 W

without reradiation:

 Q = 56700 7348.32
7.49
−  = 6589 W

This is about 30% of the heat flow with reradiation.
The apparent shape factor from base to top surface is

 F1–2 = 
22675
56700

4
1 1

×
× ×π  = 0.5092. (Compared to 0.17)

13.7 HEAT EXCHANGE BY RADIATION BETWEEN GRAY SURFACES

In the case of black surfaces all the incident radiant energy is absorbed and hence the
determination of heat exchange is rather simple. In the case of gray surfaces there are reflections
and rereflections without end.

The calculation of heat exchange involves the summation of the energy absorbed on
each incidence on the surface. Additional resistance to heat absoption is introduced by the
emissivity/absorptivity of the surface.

In order to simplify the process of calculation two new terms called “radiosity” and
“irradiation” are introduced. Irradiation (G) is the total radiation incident upon a
surface per unit time and unit area (W/m2).

This quantity consists of the radiation from other surfaces and the reflected radiation
from other surfaces.

Radiosity (J) is defined as the total radiation that leaves a surface per unit
time and unit area (W/m2). This quantity consists of the emissive power of the surface and
the reflections by the surface. From these definitions we get

∴  J = εEb + ρG ...(13.28 (a))
as ρ = 1 – α = 1 – ε

J = εEb + (1 – ε)G ...(13.28 (b))
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In the calculation of heat transfer between gray surfaces an important assumption is
that radiosity and irradiation are uniform over the surface. Considering a heat balance over
the surface, the net energy leaving the surface is the difference between radiosity and
irradiation. This can be seen considering the boundary AA over the surface (Fig. 13.29). The
net energy crossing this surface AA is the net energy flow from surface 1 or the net heat
transfer between the surfaces.

Q/A1 = J1 – G1
substituting for G from equation (13.28 (b)) and simplifying

 Q = ε
ε ε ε

1 1

1
1 1

1 1

1 1 11 1
A E J E J

Ab
b

−
− =

−
−

( )
( )/

W ...(13.29)

Similarly for surface 2, consider surface BB

A

G1

J1

ASurface 1

Surface 2

B

J2
BG2

Fig. 13.29. Radiosity-Irradiation concept.

Q = J E
A
b2 2

2 2 21
−

−( )/ε ε
W ...(13.29 (b))

In these equations J1 and J2 are Unknown
The energy leaving surface E1 and reaching surface 2 is given by J1 A1 F1–2. Similarly

energy leaving the surface 2 and reaching surface 1 is given by J2 A2 F2–1. So the net interchange
between the surfaces AA and BB equals.

 Q = J1A1F1–2 – J2 A2 F2–1, W ...(13.29 (c))
Eliminating J1 and J2 using (13.29 (a)) and (13.29 (b))

Q1–2 = 
E E

A A F A

b b1 2
1

1 1 1 1 2

2

2 2

1 1 1
−

− + + −

−

ε
ε

ε
ε

...(13.30)

These equations (13.29 (a)), (b) and (c) and (13.30) can be represented by an equivalent
circuit as in Fig. 13.30.

Eb1 Eb2

Q

or

1
A F1 1 – 2

J1 J2

1 – 1

A1 1
1 – 2

A2 2

Fig. 13.30. Equivalent network for radiation between gray surfaces.
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Equation (13.30) is the most general form which covers radiation heat exchange

between any  two  surfaces  whether  black  or gray. The terms 1 − ε
εA

 is known as surface

resistance and 1/A1F1–2 as space resistance.
If  ε1 = ε2 = 1, (13.30) reduces to the form already derived for black surfaces.

 Q = A1F1–2 (Eb1 – Eb2)
If F1–2 = 0, meaning that the surfaces do not see each other, then

Q = ∆Eb/∞ = 0 obviously.
13.7.1. Special cases: 1. Infinte parallel planes: here F1–2 = 1 and A1 = A2 = 1

∴ q = ( )E Eb b1 2

1 2

1 1 1

−

+ −
F
HG

I
KJε ε

...(13.31)

2. Completely enclosed surfaces: (long coaxial cylinders, concentric spheres etc., from
inner to outer surface)

 Q = ( )E E

A A F A

b b1 2
1

1 1

2

2 2

1 1
−

− + + −

−

ε
ε

ε
ε

1
1 1 2

, as F1–2 = 1

Q = A E E
A
A

A E E
A
A

b b b b1 1 2

1

1

2

2

2

1 1 2

1

1

2 2

1 1 1 1 1

( ) ( )−

+ −F
HG
I
KJ

=
−

+ −
F
HG

I
KJε

ε
ε ε ε

...(13.32)

3. Radiation Shields: Any surface placed in between two surfaces introduces additional
surface resistance reducing heat transfer. This is known as radiation shield and is extensively
used in practice.
13.7.2. Heat exchange among more than two surfaces: It is easy to visualise such exchanges
using the resistance network.

Figure 13.31 (a) shows such network for three surfaces seeing only each other (Fii = 0)

Eb1 Eb2

A F2 2 – 3

1

Eb3

1
A F1 1 – 3

1
A F1 1 – 2

Q1

1 – 1

A1 1

1 – 2

A2 2

Q2

Q3
1 – 3

A3 3

J1 J2

J3

Fig. 13.31. (a) Equivalent network for three gray surfaces which see each other only.
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These circuits can be solved using electrical network analysis. This concept can be
extended to any number of surfaces also.

A special case of such surface is when one of the surfaces becomes a non-absorbing,
reradiating one. As there is no net flow into and out of the surface 3, Eb3 becomes equal to J3
and the equivalent circuit is shown in Fig. 13.31 (b).

Eb1 Eb2

A F2 2 – 3

11
A F1 1 – 3

1
A F1 1 – 2Q

1 – 1

A1 1

1 – 2

A2 2

Q2
J1 J2

E = Jb3 3

Fig. 13.31. Circuit with reradiation – 3 surface.

This circuit can be easily solved for as a simple parallel circuit (see example 13.18).
Example 13.20: Consider the data of exampel 13.13. In a furnace of 2 × 1.5 × 1 m size, floor is
at 1000 K and other surfaces are at 600 K. The surface emissivity for the floor is 0.8 and for the
other surfaces it is 0.5. Determine the heat exchange by radiation from (i) floor to each of side
walls and (ii) floor to roof.
Solution: The shape factor values are taken from example 13.13 (Also refer to Fig. 13.22)

In this case heat flow is only from floor to other surfaces
From floor to smaller side walls (end)

 F1–2 = 0.14
From floor to longer side walls

 F1–3 = 0.18
From floor to ceiling

 F1–4 = 0.360 check (0.36 + 2 × 0.18 + 2 × 0.14) = 1
Heat flow to end walls from floor:

 Q = (Eb1 – Eb2)/
1 1 11

1 1 1 1 2

2

2 2

−
+ +

−L
NM

O
QP−

ε
ε

ε
εA A F A

  Eb1 = σ T1
4 = 5.67 × 1000

100

4F
HG
I
KJ  = 56700 W/m2

  Eb3 = Eb4 = Eb2 = σ T2
4 = 5.67 × 600

100

4F
HG
I
KJ  = 7348.32 W/m2

  (1 – ε1)/A1ε1 = (1 – 0.8)/2 × 1.5 × 0.8 = 0.08333
1/A1F1–2 = 1/2 × 1.5 × 0.14 = 2.381
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(1 – ε2)/A2ε2 = (1 – 0.5)/(1.5 × 1 × 0.5) = 0.6667

∴ Q1–2 = (56700 7348.32)
0.08333 2.381 0.6667

−
+ +

 = 15762 W

This is the heat flow to the two end walls each.
Heat flow to side walls.

 (1 – ε1)/A1ε1 = 0.08333
 1/A1F1–3 = 1/2 × 1.5 × 0.18 = 1.8519

 (1 – ε3)/A3ε3 = (1 – 0.5)/2 × 1 × 0.5 = 0.5
∴   Q1–3 = (56700 – 7348.32)/(0.08333 + 1.8519 + 0.5) = 20266 W.
This is to each of the side walls.
Heat flow to the ceiling

(1 – ε1)/A1ε1 = 0.08333
1/A1F1–4 = 1/(2 × 1.5 × 0.36) = 0.9259

(1 – ε4)/A4ε4 = (1 – 0.5)/2 × 1.5 × 0.5 = 0.3333
∴  Q1–4 = (56700 – 7348.32)/(0.08333 + 0.9259 + 0.3333) = 36759 W.

Example 13.21: Determine the heat transfer from floor to ceiling in example 13.18, if all the
side walls act as reradiating walls. Also determine the average temperature of reradiating
walls. The equivalent circuit is shown in Fig. 13.32.
Solution: Also refer Fig. 13.12

Eb1 Eb2

1
A F1 1 – 2

0.333/m
2

J = 52165 W/m1
2

0.08333/m
2

J = 25488 W/m2
2

7848.32 W/m
2

0.5208/m
2 0.5208/m

2

J = 38827 W/m3
2

0.9259/m
2

Fig. 13.32

Using the values of problem 13.20
   (1 – ε1)/A1ε1 = 0.08333

  1/A1F1–4 = 1/(2 × 1.5 × 0.36) = 0.9259
(1 – ε4)/A4ε4 = (1 – 0.5)/2 × 1.5 × 0.5 = 0.3333

1 1
1 1 3 2 4 4 3 2A F A F− −

=
× × × + ×

= =
, ,

1
2 1.5 (2 0.14 2 0.18)

0.5208

The equivalent resistance between J1 and J2 is

 R = 1
1

0.9259
1

2 0.5208
+

×

 = 0.4902
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Total resistance between Eb1 and Eb2
  RT = 0.08333 + 0.4902 + 0.3333 = 0.9068

∴  Q = 56700 7348.32
0.9068

−  = 54422 W

as compared to 36759 W. The circuit is shown in Fig. 13.33

Eb1 Eb2

J1 J20.9259

56700

0.3333

0.5208 0.5208

7348.32

J3

0.08333

Fig. 13.33

In order to determine the temperature of reradiating surfaces, J3 should be determined.
This is done by considering the nodes J1, J3, J2 and equating the flow into each node to

zero.
Considering node J1

 E J J J J Jb1 1 2 1 3 1
0 08333 0 9259 0 5208

−
+

−
+

−
. . .

 = 0 ...(A)

For node J2,
J J J J E Jb1 2 3 2 2 4
0 9259 0 5208 0 333

−
+

−
+

−
. . .

 = 0 ...(B)

For node J3  J J J J1 3 2 3
0 5208 0 5208

−
+

−
. .

 = 0 ...(C)

Equation (C) when solved gives
 J3 = (J1 + J4)/2 ...(D)

Substituting (D) is equation (A)
12Eb1 – 14.04J1 + 2.04J2 = 0 ...(E)

Substituting (D) in equation (B)
3Eb4 + 2.04J1 – 5.04J2 = 0 ...(F)

Solving for J1 and J2 using equation (E) and (F)
J1 = 52165 W/m2, J2 = 25488 W/m2, J3 = 38827 W/m2

The corresponding temperatures can be determined using
σT4 = J

The values are:
Node J1 T = 979.4 K, Node J2, T = 818.8 K
Node J3 or the reradiating wall temperature = 909.7 K
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A check for the vlaues:
 Q = (Eb1 – J1)/[(1 – ε1)/A1ε1]

= [56700 – 52165]/0.08333 = 54420 W
So the values should be correct. Check between J1 and J2, J3 and Eb2 also.

Example 13.22: Consider the cylindrical furnace of example 13.19. If emissivities of the base
and top surfaces are 0.8 and 0.5, determine the heat exchange.
Solution: As determined in the example shape factor from the base to the top is 0.17.

∴ Q = 56700 7348.32
0.8

0.8
1 4

1 1 0.17
0.5

0.5

−
−

× × ×
+ ×

× × ×
+ −

× × ×
( )

( )
( )1 4

1 1
1 4
1 1π π π

 = 5434.5 W

Compared to 6589 for black surface.
Example 13.23: Two large parallel planes are at 1000 K and 600 K. Determine the heat exchange
per unit area. (i) if surfaces are black (ii) if the hot one has an emissivity of 0.8 and the cooler
one 0.5 (iii) if a large plate is iserted between these two, the plate having an emissivity of 0.2.
Solution: Case (i): The equivalent circuit is shown in Fig. 13.34 (a)

  Q = σA F1–2 (T1
4 – T2

4). As F1–2 = 1
for large parallel surfaces, considering unit area.

Q
A  = 5.67 × 1 

1000
100
F
HG
I
KJ − FHG

I
KJ

L
N
MM

O
Q
PP

4 4600
100  = 49352 W/m2

Case (ii): The equivalent circuit is shown in Fig. 13.34 (b)
Q
A

E E

A A F A

b b=
−

− + + − = −

×
+ +

−

( )1 2
1

1 1 1

2

2 2

1 1
56700 7348.32

1ε
ε

ε
ε

1 0.2
1 0.8

0.5
0.51 2

 = 21934 W/m2

Case (iii): The equivalent circuit is shown in Fig. 13.34 (c)
Q
A

= −
− + + − + − + + −

56700 7348.32
1 0.2

0.2
1 0.2

0.2
1 0.5

0.5
1 0 8

0 8
1 1.

.

 = 4387 W/m2

A considerable heat flow reduction is obtained by shielding. This method finds application
in insulation. The shields should have low absorptivity and high reflectivity for economical
applications.

Eb1 Eb2

1
Eb1 Eb2

J1 J2

1 – �1
�1

1 – �2
�21

(a) (b)

Eb1 Eb2

J1 Js

1 – �1
�1

1 – �s
�s

1 1 – �s
�s

1 1 – �2
�2

Ebs J2Js

(c)

Fig. 13.34. (a) Black surface (b) gray surface (c) with shield.
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Example 13.24: Two perpendicular planes of each 2 m × 2 m meet at a common edge. The
horizontal plane has an emissivity of 0.4 and the vertical plane has an emissivity of 0.6. If these
planes are at 400 K and 600 K determine the radiation exchange.
Solution: Refer problem 13.14. The shape factor from the horizontal to the vertical plane is
0.20004 (From chart). The equivalent circuit is shown in several problems.

The heat flow is given by

 Q = 
5 67 600

100
400
100

1 0 4
4 0 4

1
4

4 4
.

.

.

F
HG
I
KJ − FHG

I
KJ

L
N
MM

O
Q
PP

−
×

+
×

+ −
×0.20004

1 0.6
4 0.6

 = 3292 W.

13.8 EFFECT OF RADIATION ON MEASUREMENT OF TEMPERATURE
BY A BARE THERMOMETER

When a bare thermometer is used to measure the temperature of a flowing gas, errors will be
introduced if the container or duct wall temperature is different from that of the gas.

The thermometer when it comes to thermal equilibrium will not be at the gas temperature
for this situation. As it will loose heat by radiation to the walls its temperature will lie between
the gas temperature and wall temperature. Using the following notations, the energy balance
can be written as in equation (13.33).

Tg – gas temperature, K, Tw – wall temperature, K
Tt – thermometer temperature, K, At – thermometer surface area (bead or bulb)

h At(Tg – Tt) = At σ εt [Tt
4 – Tw

4] ...(13.33)
The error in measurement is (Tg – Tt) and this can be reduced by increasing h or by

using a shield between the thermometer and the wall, so that the thermometer does not see
the wall. It is better to have the shield made of surface with high reflectivity or low emisivity.
The shape factor for the thermometer to the walls is unity. If the quantities are specified Tg or
Tt can be calculated and the error can be established.

In order to reduce the error a shield is placed over the thermometer. If the area of the
shield is As and temperature Ts, then two equations for the energy balance of the thermometer
and that of the shield can be written as follows.

For the shield
2 As hs(Tg – Ts) + At σ εt [Tt

4 – Ts
4] = As εs σ (Ts

4 – Tw
4) ...(13.34 (a))

For the thermometer:
ht At(Tg – Tt) = σ At εt [Tt

4 – Ts
4] ...(13.34 (b))

In order to reduce error As should be large compared to At and εs should be small compared
to εt.
Example 13.25: A bare thermometer measuring the temperature of a gas body reads 600
K. The surrounding walls  are at 500 K. The thermometer bulb is 3 mm in dia and is spherical,
its surface  emissivity  being  0.7.  The  convective  heat  transfer coefficient over the surface is 40
W/m2K. Determine the gas temperature and the error involved.
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Solution: Using equation (13.33),

40 × 4 × π × (0.0015)2 (Tg – 600) = 4π × 0.00152 × 5.67 × 0.7 
600
100

500
100

4 4F
HG
I
KJ − FHG

I
KJ

L
N
MM

O
Q
PP

Solving: Tg = 666.6 K
An error of 66.6 K is involved. This is rather high. This can be reduced using a shield

and also by increasing ‘h’. In this case if h = 80, then error will be 33.3 K.

13.9 MULTISURFACE ENCLOSURE

Consider an enclosure of N surfaces with α1 ... αN, ρ1 ... ρN and ε1 ... εN at temperature T1 ... TN
with radiation exchanges between them. Let the shape factors be determinable.

F1–1, F1–N, F2–1, ... F2–N, FN–1 ... E(N–N) etc.
working out the energy balance say for surface A.

Let Gi = irradiation on Ai W/m2

Ji = Radiosity on Ai W/m2

qi = Net radiation exchange over surface Ai, W/m2

From definitions, and using equations (13.28) (a) and (b)
 qi = Ji – Gi ...(13.35)
 Ji = εi Ebi + (1 – εi)Gi ...(13.36)

The energy leaving any surface say Aj that reaches surface Ai is given by
Jj Aj Fj–i

Using reciprocity theorem this also equals.
Jj Ai Fi–j

The radiation from all surfaces reaching Ai is given as the sum for j =1 to N i.e.,

Ai J Fj i J
j

N

−
=

∑
1

This amount divided by the area Ai gives Gi or

Gi = J Fj i J
j

N

−
=

∑
1

...(13.37)

substituting for Gi in (13.36)

ji = εi . Ebi + (1 – εi)  J Fi i J
j

N

−
=

∑
1

...(13.38)

Rearranging  Ebi = 1 1
1ε

ε
εi

i
i

i
j i j

j

N
J J F−

−
−

=
∑( ) ...(13.39)

Substituting in the heat flow equation 13.35
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 qi = Ji – J Fj i j
j

N

−
=

∑
1

...(13.40)

by eliminating the summation term (eqn. 13.38)

 qi = ε
ε

i

i1 −
 [Ebi – Ji] ...(13.40 (a))

These three equations are very useful for solving multienclosure problems.
When all surface temperatures and emissivities are specified, this results in N

simultaneous equations with N variables (JN). These equations can be solved by any of the
Matrix methods. When J values are solved the heat flow from each surface can be solved for,
using the heat flow equation.

Three special cases are to be recognised.
(i) A surface specified as black: In this case, Ji = Ebi = σ Ti

4 and so there will be N – 1
equations with N – 1 unknowns. The energy balance for the particular area will not yield a
separate equation.

 Ebi = 1 1
1ε

ε
εi

i
i

i
j i j

j

N
J J F−

−
−

=
∑

= Ji – 0
1 1j

N

j i jJ F
=

−∑
L
N
MM

O
Q
PP  = Ji

So  Ji  becomes  a  known  quantity  to be included in the other equations. (Note: Fi–i or
Fj–j or FN–N will be zero for flat or convex surfaces.)

(ii) When net heat flux is specified instead of temperature:
In this case the heat flux equation should be used for the surfaces for which net heat

flux is specified.

 qi = Ji – 
j

N

j i jJ F
=

−∑
1

This provides the relationship for the Ji value, and results in N equations and N
unknowns.

The temperature Ti can be determined using

σ Ti
4 = Ji + 

1 − ε
ε

i

i
 qi

(iii) Reradiating surface is encountered: Generally in this case emissivity may not be
specified as it is immaterial for the solution. Here also the net heat flux equation has to be
used with net heat flux being zero. If surface i is reradiating surface, then

qi = 0 = Ji – 
j

N

j i jJ F
=

−∑
1

The equation provides the value for Ji, resulting in N equations and N unknowns. In
this case qi = 0, σ Ti

4 = Ji.
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Example 13.26: A cylindrical furnace 1 m dia and 1 m long has one end maintained at 1000 K
while the other end is at 600 K. The curved surface is maintained at 400 K. The emissivities are
0.25, 0.5 and 0.5. Determine the heat flow by radiation from each surface.
Solution: This is a 3 surface enclosure. Let the ends be designated as A1 and A2 and the
curved surface as A3.

A1 = A2 = π × 0.52 = 0.25 π m2, A3 = π × 1 × 1 = π m2

From chart F1–2 is determined as 0.18,
(the parameters are L/R1 = 2, R2/L = 0.5)

∴ F1–2 = F2–1 = 0.18,  F1–3 = F2–3 = 0.82
 0.25 π F1–3 = π F3–1 ∴ F3–1 = 0.82/4 = 0.205

F3–2 = 0.205
F1–1 = 0, F2–2 = 0, F3–3 = 1 – 2 × 0.205 = 0.59
Eb1 = 56700,  Eb2 = 7348.32, Eb3 = 1451.52 W/m2

The equations derived from (13.39) gives

Surface 1:  56700 = 1
0 25

1 0 25
0 251.

.
.

J − −  [J1 F1–1 + J2 F1–2 + J3 F1–3]

Surface 2: 7348.32 = 1
0 5

1 0 5
0 52.

.
.

J − −  [J1F2–1 + J2F2–2 + J3 F2–3]

Surface 3: 1451.52 = 1
0 5

1 0 5
0 5.

.
.

J3 − −  [J1F3–1 + J2F3–2 + J3F3–3]

Substituting the values of shape factors, these equations yield:
56700 = 4 J1 – 3(J2 × 0.18 + 0.82 J3)

7348.32 = 2J2 – (0.18 J1 + 0.82 J3)
1451.52 = 2J3 – (0.205 J1 + 0.205 J2 + 0.59 J3)

This reduces to

4 0 54 2 46
0 18 2 0 82
0 205 0 205 141

1
2
3

− −
− −

− −

L
N
MM

O
Q
PP
L

N
MM
O

Q
PP

. .
. .
. . .

J
J
J

  = 
56700

7348.32
1451.52

L
N
MM

O
Q
PP

Solving and substituting in eqn. (13.40)
 q1 = 13236 W/m2 A1 = 0.25 π ∴ Q1 = 10395.6 W

Similarly q2 = 851.7 W/m2 A2 = 0.25 π ∴ Q2 = 668.93 W
q3 = – 3521.94 W/m2 A3 = π ∴ Q3 = – 11064.51 W

Checks are Q1 + Q2 + Q3 = 0.
Example 13.27: In the above example, if the surface 3 acts as reradiating surface, determine
the net heat flow from each surface.
Solution: The first two equations are the same as in the previous case.

56700 = 4J1 – 3(0.18 J2 + 0.83 J3)
7348.32 = 2J2 – (0.18 J1 + 0.82 J3)
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The third equation now is
q3 = 0 = J3 – [J1 F3–1 + J2 F3–2 + J3 F3–3]

Substituting shape factor values,
J3 – 0.205 J1 – 0.205 J1 – 0.59 J3 = 0

or  0.41 J3 – 0.205 J1 – 0.205 J2 = 0
This leads to

4 0 54 2 46
0 18 2 0 82
0 205 0 205 0 41

1
2
3

− −
− −

− −

L
N
MM

O
Q
PP
L

N
MM
O

Q
PP

. .
. .
. . .

J
J
J

 = 
56700

7348.32
0

L
N
MM

O
Q
PP

Solving: J1 = 30705.24, J2 = 16016.32, J3 = 23360.78 W/m2

The heat flow is calculated using:
q1 = J1 – [J1F1–1 + J2 F1–2 + J3 F1–3]
q2 = J2 – [J1F2–1 + J2 F2–2 + J3 F2–3]
q3 = J3 – [J1F3–1 + J2 F3–2 + J3 F3–3]

Substituting the values and calculating,
 q1 = 8666.45 W/m2, A = 0.25 π, Q1 = 6806.6 W
 q2 = – 8666.45 W/m2 Q2 = – 6806.6 W
Q3 = 0 checks

as  σ T3
4 = J3 T3 = 801.17 K.

13.10 SURFACES  SEPARATED  BY  AN  ABSORBING  AND
TRANSMITTING MEDIUM

Surfaces separated by glass or a gas body are examples for this situation.
The intervening body absorbs part of radiation between the surfaces.

Eb1 Eb2

1
A F1 1 – 3 m�

1
A F1 1 – 2Q

1 – �1

A1 1�

1 – �2

A2 2�

Q
J1 J2

Ebm

1
A F2 2 – 3 m�

Fig. 13.35. Network for surfaces separated by absorbing and transmitting medium.

The space resistance now can be shown to be
1
11 1 2A F m− −( )ε

 where εm is the emissivity of the medium.
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Similarly the space resistance between the surface and the medium can be shown to be
1

1 1A F m m− . ε
 and 1

2 2A F m m− . ε

The determination of em in the case of gases is made complicated because of its dependence
on the pressure, temperature and thickness. In the case of glasses the emissivity depends on
the wavelength or the source of radiation.

This method however can be used for a first estimate in such situations.

SOLVED PROBLEMS

Problem 13.1: State and prove Kirchhoff’s law for heat radiation. Kirchhoff’s law states
that the emissivity of a surface is equal to its absoptivity at any given temperature and
wavelength. For gray, bodies, this is approximated for all wavelengths. In general application
it is also approximated to all temperatures.
Solution: Rigorously ελT = αλT, F or grey surfaces εT = αT

general application  ε = α
Proof: Consider an enclosure at uniform temperature

T in which a small body is placed. (Fig. P. 13.1). The walls of
the enclosure can be considered as black. After thermal
equilibrium is attained, the body temperature will reach that
of the walls of the enclosure. The body at this condition has
to emit at every wavelength radiation equal to the radiation
it absorbs. If Gλ is the irradiation in the space.

Eλ = αλ Gbλ ...(A)

 Eλ

λα
 = Gbλ ...(B)

This equation will hold good for any other body also. As Gbλ is the same.

∴ Eλ

λα
1

1
 = Eλ

λα
2

2
 = Eλ

λα
3

3
 = Gbλ ...(C)

As αλ can have a maximum value of unity at which Eλ will equal Ebλ

Gbλ = Ebλ

Using equation (A)
 ελEbλ = αλ Gbλ ...(D)

As this is considered at temperature T,
∴  ε ε ε ε ελλλλλT = α α α α αλλλλλT
This is rigourously true. However this is generalished as ε = α.

Problem 13.2: Show that if emissivity varies with the angle over a surface, the average
can be obtained by

ε = 
0

2π /z  ε (θ) cos θ sin θ dθ, Ref. Fig. P.13.2

Fig. P.13.1.

Const. temp.
insulated
enclosure

Small body
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Solution: The important assumption here is that over the periphery φ the emissivity is uniform.
The energy radiated from the area dA1 in the direction (φ, θ) over angles φ and dφ is given by
dA1 cos θ I dω

r sin d �

r d

r

dA1r sin 

dA1

d�

�

d

n



Fig. P.13.2

The sides of the element considered are r dθ and r sin θ dφ
∴ area = r2 sin θ dθ dφ
The solid angle substended by this area, dω = area/r2

∴  dω = sin θ dθ dφ
∴ Energy radiated per unit area in the dω direction

= I cos θ sin θ dθ dφ
Total over the surface of the hemisphere is

= 
0

2πz  
0

2π /z  I cos θ sin θ dθ dφ

first integrating around the strip,

= 2 
0

2π /z  π I cos θ sin θ dθ

= 2 
0

2π /z  E cos θ sin θ dθ. Now this can be integrated along θ

For a black surface = 2 
0

2π /z  Eb cos θ sin θ dθ

If ε varies with θ, then Dividing

 ε = 
2

2
0

2

0

2

π

π

θ θ θ θ

θ θ θ

/

/

( ) cos sin

cos sin

z
z

E d

E db

 = 
0

2π /z  E
Eb

( )θ  cos θ sin θ dθ

∴  ε = 
0

2π /z  ε (θ) cos θ sin θ dθ
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Problem 13.3: A surface is radiating diffusely. Determine the fraction of emissive power in the
angular region 0° to 45°C from the vertical. (Ref P. 13.2.)
Solution: Energy radiated in the region 0° to 45° upwards

= 
0

2

0

4π πz z /
 I sin θ cos θ dθ dφ = 2π 

0

4π /z  I sin θ cos θ dθ

= 2π I 
sin

/2

0

4

2
θ

πL
NM

O
QP  = 2 π I 

0 5 0
2

. −L
NM

O
QP  = 0.5 π I = 0.5 E

(For 25° it is 0.25 E and For 60° the value is 0.75 E.).
Problem 13.4: The energy received from the sun at the earths atmosphere has been measured
as 1353 W/m2. The diameter of the earth = 1.29 × 107 m. Diameter of the sun = 1.39 × 109 m.
Mean distance = 1.5 × 1011 m. Estimate the emissive power of the sun and the surface temperature
assuming it to be black. Assuming that the source of energy for the earth is from the sun and
earth to be black, estimate the temperature of the earth.
Solution: Using suffix s to denote sun and e to denote earth

The energy received by earth from the sun considering both as disks

= As Is ω = π ω
4 4

2
2

D I E D
s s

s s=  ω

ω = Ae /R2 = π De
2/4 × R2 as Ae

 = 
π De

2

4

∴ Energy received = Ae 1353 W = 
π De

2

4  1353 W

∴
E Ds s

2

4
 . π D

R
e
2

24
 = 

π De
2

4  . 1353 or Es = 1353 . 4 2

2
R

Ds

Ds = 1.39 × 109 m, De = 1.29 × 107 m, R = 1.5 × 1011 m
substituting Es = 63.025 × 106 W/m2

 σ Ts
4 = Es = 63.025 × 106 ∴ Ts = 5774 K

For earth to be in equilibrium.
The earth receives 1353 W/m2 normal to the area, but radiates all over the hemispherical

surface. So

 1353 × 
π De

2

4  = Ee . 2π De
2

2F
HG
I
KJ

∴ Ee = 1353/2 ∴ Te = 330.5 K. (Assuming no atmosphere)
Problem 13.5: The  filament of a light bulb is a rectangle of size 5 mm × 2 mm and consumes
60 W. The filament is at 2800 K. Determine the efficiency of the bulb assuming visible radiation
in the band 0.4 to 0.7 micrometer.
Solution: The fraction of energy falling in the range

 λT = 0.4 × 2800 to 0.7 × 2800 is to be estimated
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For λλλλλT = 1120 the fraction is 0.001409
For λλλλλT = 1960 the fraction is 0.061251
∴ fraction in the band is = 0.059842
Energy in the visible region

= 0.059842 × σ × 28004 × 2 × 5 × 2 × 10–6 = 4.171 W
∴  efficiency = 4.171/60 = 0.0695 or 6.95%.

Problem 13.6: The temperature of the sun’s surface is estimated at 5800 K. Determine the
fractions of emissive power falling in the ultra violet (up to 0.4 µm), visible (0.4 to 0.7 µm) and
infrared (above 0.7 µm) regions.
Solution: λT for the various regions and the corresponding fractions are

0.4 × 5800 = 2320 – > 0.1245088
 0.7 × 5800 = 4060 – > 0.4914181

∴ ultraviolet region: 12.45%.
visible region: 36.69%
Infrared region: 50.85% (by difference)
A seizable fraction is in the visible region.

Problem 13.7: A filament is in the shape of a cylinder of 1 mm dia and 25 mm length and is in
an evacuated space enclosed by transparent medium. The filament is initially maintained at
2900 K by power supply. Determine the time needed for the filament to cool to 1300 K after
power supply is cut.

Density = 19350 kg/m3, specific heat = 134 J/kg K
Emissivity of the filament = 0.45

Solution: The cooling is only by radiation
Energy radiated during a time interval dτ when the temperature of the filament is T

= Af σ ε T4 dτ, Af = π DL, V = πD2L/4
This should equal the change in internal energy

= – V c ρ dT

∴  dT
T 4  = – 4σε

ρD c
 dτ

Integrating

−
L
NM
O
QP

−T 3

2900

1300

3
 = 

− × × ×
× ×

−4 5 67 10 0 45
0 001 134 19350

8. .
.  . τ

– 1
3 1300

1
3 29003 3×

+
×

 = – 3.936 × 10–11 τ

Solving τττττ = 3.5 seconds.
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Problem 13.8: Hot gases are produced continuously at 1 atm and 1400 K in a spherical
combustion chamber of 1 m dia. The gases contain 16% CO2 and rest being N2 and O2. If the
wall is black and is maintained at 500 K, determine the heat flow from the gas to the wall.
Solution: In this case only carbon dioxide is radiating. The partial pressure of CO2 = 0.16 atm.

The beam length = 0.65 D = 0.65 m
∴ Pl = 0.104
The emissivity value is read from the chart as 0.096
No pressure corrections is required in this case as the total pressure is 1 atm. No correction

is required for associated gas presence also.
The absorptivity has to be determined corresponding to the wall temperature of 500 K.

α = 
T
T

g

s

F
HG
I
KJ

0.65

 . ε Pl′

 Pl′ = Pl . Ts/Tg = 0.104 × 500/1400 = 0.0371
The value of ε is read as 0.075

∴ ααααα = 1400
500

0.65F
HG
I
KJ  × 0.075 = 0.1465

 Q = Aσ (εgTg
4 – αgTs

4) = 4π × 0.52 × 5.67 [0.096 (14)4 – 0.1465(5)4]
= 65.02 × 103 W or 65.02 kW.

Problem 13.9: A gas tubine combustion chamber can be considered as a cylinder of 0.2 m dia
and 0.9 m length. The combustion gases are at 8 atm and 1300 K. The partial pressure of CO2
is 0.8 atm and that of water vapour 0.8 atm. The wells are at 800 K. Determine the heat flux
from the gas to the chamber surface.
Solution: The characteristic length can be determined using long cylinder approximation

 l = 0.95 D = 0.95 × 0.2 = 0.190 m
for both gases Pl = 0.8 × 0.19 = 0.152 m atm

Emissivity of CO2: Reading from chart, at 1300 K
 εCO2  = 0.11, CCO2  = 1.4 (extrapolated)

Emissivity of H2O
 εH O2  = 0.12, CH O2

 = 1.8 (extrapolated)
The correction factor for the simultaneous presence of the two radiating gases is read as

(C denotes CO2 and w denotes water vapour)
Pw/(Pc + Pw) = 0.8/(0.8 + 0.8) = 0.5

  Pwl + Pcl = 0.304 m atm
∆ε = 0.04

∴ εεεεε = 0.11 × 1.4 + 0.12 × 1.8 – 0.04 = 0.33
Absorptivity values are determined corresponding to the surface temperature

αw = Cw T
T

g

s

.F
HG
I
KJ

0 45
 . εwPl
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 Pl′ = 0.152 × 800
1300

 = 0.094 m atm

The value of ε are read at this value as 0.105 and 0.15 for CO2 and H2O

αw = 1.8 1300
800

0.45F
HG
I
KJ  × 0.15 = 0.336

αCO2 = 1.4 1300
800

0.65F
HG
I
KJ  × 0.105 = 0.201

(Note. The correction factors are, extrapolated values for H2O at this condition is also 1.8)
∆ε∆ε∆ε∆ε∆ε = 0.04

∴ αααααg = 0.336 + 0.201 – 0.04 ± 0.497
∴ Heat transfer per unit area:

q = σ [εgTg
4 – αgTs

4] = 5.67 [0.33 (13)4 – 0.497 (8)4]
= 41898 or 41.9 kW/m2.

Problem 13.10: The combustion gases in a Lancashire type of boiler flows through the flue
tube of 0.6 m dia and 6 m length. The gas is at 1200 K. The walls are at 500 K. The gases
contain 18% CO2 and 12% H2O by volume. The total pressure is 1 atm. Assuming the surface to
be black determine the heat flux by radiation from the gases to the wall.
Solution: Long cylinder configuration can be assumed.

Beam length = 0.95 D = 0.570 m
Partial pressures of CO2 and H2O are 0.18 and 0.12 atm
∴  Plc = 0.1026 Plw = 0.684
The values of emissivities and correction factors are read from chart:

(c denotes CO2 and w denotes water vapour)
εc = 0.105 Cc = 1

εw = 0.085 Cw = 1.05
  ∆ε = 0.02

∴ εεεεε = 0.105 + 1.05 × 0.085 – 0.02 = 0.174
The absorptivity values are determined using modified Pl values

Plc′ = 0.1025 × 
500
1200  = 0.043

 Plw′ = 0.0684 × 
500
1200  = 0.029

αc = Cc 
T
T

g

ω

F
HG
I
KJ

0.65

 . εc reading for εc from chart

= 1 × 
1200
500

0.65F
HG
I
KJ  × 0.08 = 0.141

αααααw = 1.05 × 
1200
500

0.45F
HG
I
KJ  × 0.098 = 0.153
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∆ε = 0.020
∴ αααααg = 0.141 + 0.153 – 0.02 = 0.274
∴  q = 5.67 [0.174 (12)4 – 0.274 (5)4] = 19487 W/m2.

Problem 13.11: A gas flow between two large parallel planes 0.7 m apart is at 1000°C. The
plates are at 500°C. The gas is at 3 atm and contains 20% CO2 and 15% H2O by volume, the rest
being non radiating gases. Calculate the heat exchange with the plates per unit area.

Solution: L = 0.7 × 1.8 = 1.26 m. PCO2  = 3 × 0.2 = 0.6 atm, PH O2  = 3 × 0.15 = 0.45 atm denoting
CO2  by  c  and  H2O  by w, PcLc = 0.756, PwLw = 0.567 matm,From chart εw = 0.24, Cw = 1.4, εc
= 0.185, Cc = 1.2, ∆ε = 0.054, εεεεε = 0.504. Absorptivity is determined corresponding to wall
temperature as

Plc′ = 773
1273

 . 0.756 = 0.459, Pl′w = 773
1273

 . 0.567 = 0.344

Reading from chart
αw = 0.27, Cw = 1.45
αc = 0.17, Cc = 1.13, ∆ε = 0.028

αw = 1.45 × 0.27 1273
773

0.45F
HG
I
KJ  = 0.49

αc = 1.13 × 0.17 1273
773

0.65F
HG
I
KJ  = 0.266

αααααg = 0.266 + 0.49 – 0.028 = 0.728
q = (εg Ebg – αg Ebw)

= 5.67 [0.504 (12.73)4 – 0.728 (7.73)4]
= 60308 W/m2 or 60.31 kW/m2.

Problem 13.12: Determine the shape factor F1–2 and F2–1 for the following cases shown in Fig
P.13.12. Also find F2–2.
Solution: (a) Surface 1 is the base of hemisphere. All the radiation from surface 1 reaches
surface 2. Hence F1–2 = 1

a
1

b Roof

2
R

R

1

A
2 2

1

B

3

2

1

c, d

(a) Hemisphere (b) Long duct (c) Long duct (d) Long roof

Fig. 13. P.12

Using reciprocity relations, as surface area of hemisphere is 2πr2

A1F1–2 = A2 F2–1, π D2

4
 × 1 = 2π (D/2)2 F2–1
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∴ F2–1 = 0.5
Considering surface 2, F2–1 + F22 = 1 ∴ F22 = 0.5
Half the radiation from the hemisphere surface is intercepted by itself.
(b) Quarter of long cylinder:
An imaginary surface joining edges A and B is named surface 3.

F3–2 = 1 as all radiations from surface 3 reaches surface 2.
By reciprosity rule

A3F3–2 = A2 F2–3
Considering unit length

 2  . R . 1 = π
2  . R . F2–3

 F2–3 = 0.9003
∴  F2–2 = 1 – 0.9003 = 0.0997
Now considering surface 1, and the perpendicular surface,

2F2–1 + F2–2 = 1 ∴ F2–1 = 0.4502
Using reciprocity theorem,

A1F1–2 = A2 F2–1
Considering, unit length,

 R. F1–2 = π
2  . R × 0.4502

∴  F1–2 = 0.7070
Shape factor to the perpendicular surface from surface 1

 F1–4 = 1 – 0.7070 = 0.2930.
This can be checked by crossed string method which gives, (0.2929)
(c) For the long duct considering the surface 1, (it does not see itself):
So  F1–2 = 1
By reciprocity rule

A1F1–2 = A2 F2–1
considering unit length

2R × 1 = 1.5 π R F2–1 ∴ F2–1 = 0.4244
∴  F2–2 = 1 – 0.4244 = 0.5756
(d) The shape factor is calculated using crossed string method. (R = 1)

 F1–2 = ( ) ( )ad bc ab cd
L

+ − +
2 1

 = ( ) ( )2 2 2 0
2 2

+ − +
×

 = 0.5

This can be also checked be extending the roof as a half cylinder. Shape factor for base to
full cylinder = 1. To the quarter cylinder shape factor – 0.5.

 A1 F1–2 = A2F2–1

 2 × 0.5 = 
π × 1

2  × F2–1 ∴ F2–1 = 0.6366
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F2–2 from previous example – > 0.0997
∴  F2–space = 0.2637 → (1 – 0.6366 – 0.0997)
∴  F1–space = 1 – 0.5 = 0.5.

Problem 13.13: Considering the following long grooves of width 2 R determine the shape
factors from the grooves to the outside and also the grooves to themselves. (Fig. P.13.13).
Solution: (a) Circular groove: Considering a fictitious surface to cover the groove and calling
it as surface 2.

R1

2

R

R R 1

2

R

RR
2

1

(a) (b) (c)

Fig. P.13.13

F2–1 = 1 as all radiation from the cover reaches the groove
By reciprocity rule

A1F1–2 = A2
 F2–1

(a) Considering unit length, for hemispherical grove
 π R F1–2 = 2 R × 1

∴  F1–2 = 2/π = 0.6366
 F1–1 = 1 – 0.6366 = 0.3634

(b) Rectangular groove:
 F2–1 = 1

 A1 F1–2 = A2 F2–1
 4 R F1–2 = 2R × 1 ∴ F1–2 = 0.5, ∴ F1–1 = 0.5.

(c) Triangular groove: Considering a fictitious cover – 2,
 F2–1 = 1,

A1F1–2 = A2F2–1
Considering unit length

2 2  R F1–2 = 2 R F2–1 ∴ F1–2 = 0.7071, ∴ F1–1 = 0.2929
Between the two faces: calling one of the face as 1′ and the other as 1″

 2F2–1′ = 1, ∴ F2–1′ = 0.5
 A2F2–1′ = A1′ F1–2′

2R × 0.5 = 2  RF1′–2

2R × 0.5 = 2 R F1′–2

∴ F1′–2 = 1/ 2  = 0.7071
∴  F1′–1″ = 1 – 0.7071 = 0.2929
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Problem 13.14: Determine the shape factor between surfaces 1–2 and also 2 to 1. Also determine
the heat flow if T1 = 1000 K and T2 = 5000 K, (Fig. P.13.14)
Solution:  ε1 = 0.6, ε2 = 0.4

F1–2, 3 = F1–2 + F1–3
height of vertical plane/width = 0.6/1 = 0.6
length of horizontal plane/width = 1/1 = 1, from chart

∴ F1–2,3 = 0.16138
F1–3
height of vertical plane/width = 0.4
length of horizontal plane/width = 1.

 F1–3 = 0.1277
∴  F1–2 = 0.16138 – 0.1277 = 0.03368

 A1 F1–2 = A2 F2–1
 1 × 1 × 0.03368 = 1 × 0.2 × F2–1 ∴ F2–1 = 0.1684

Q = σ
ε
ε

ε
ε

( )T T

A A F A

1
4

2
4

1 12

−
− + + −1 1 11

1 1

2

2 2

= 5 67 10 5
1 0 6
1 0 6

1
1 0 03368

1 0 4
0 2 0 4

4 4. ( )
.
. .

.
. .

−
−
×

+
×

+ −
×

 = 1404.1 W

1 m

A2

A3

A1

1 m

1 m

0.2 m

0.4 m

1 m

A4

A3

A2

0.2 m

0.4 m

A1

0.6 m

0.4 m

Fig. P.13.14 Fig. P.13.15

Problem 13.15: Determine the shape factor between the surfaces 1–4 and 4–1. Also determine
the heat flow if ε1 = 0.4 and ε4 = 0.6 and T1 = 1000 K and T4 = 500 K (Fig. P.13.15)
Solution: A1, 2 F1,2–3,4 = A1F1–3,4 + A2 F2–3,4 ...(A)

F1,2–3,4 and F2–3,4 can be evaluated.
A1F1–3,4 = A1F1–3 + A1F1–4

Also A1F1–3 = A3 F3–1
 F3–1 = F3–2,1 – F3–2

F3–2,1 and F3–2 can be evaluated, so
A1 F1–3,4 = A3 (F3–2,1 – F3–2) + A1 F1–4

substituting in A
A1,2 F1,2–3,4 = A3 (F3–2,1 – F3–2) + A1 F1–4 + A2F2–3,4 ...(B)
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The only unknown is F1–4
Evaluating the various shape factors:
F1,2–3,4 horizontal length to width = 1, vertical length to width = 0.6
∴ F1,2–3,4 = 0.16138
F3–2,1 Consider 3 as horizontal for use of charts,

horizontal length to width = 0.4
Vertical length to width = 1

F3–2,1 = 0.31924
F3–2 as in F3–2,1 horizontal length to width = 0.4

vertical length to width = 0.6
∴ F3–2 = 0.28809
F2–3,4 horizontal length to width = 0.6

Vertical length to width = 0.6
∴ F2–3,4 = 0.23147, substituting in B after rearrangement.

F1–4 = 1
1A

 LNMA1,2 F1,2–3,4 + A3 F3–2 – A2 F2–3,4 – A3 F3–2,1
O
QP

= 
1

0 4.  LNM1 × 0.16138 + 0.4 × 0.28809 – 0.6 × 0.23147 – 0.4 × 0.31924OQP = 0.0251

A1F1–4 = A4F4–1
∴ F4–1 = 0.4 × 0.0251/0.2 = 0.0502

Heat flow 1 – 4   Q = 5 67 10 5
1 0 4

0 4 0 4
1

0 4 0 0251
1 0 6

0 2 0 6

4 4. [ ]
.

. . . .
.

. .

−
−
×

+
×

+ −
×

 = 498.24 W.

Problem 13.16: Determine the shape factor between surfaces 1 and 4 in the following
Fig. (P.13.16 (a) and (b)).
Solution : (a) A1,2 F1,2–3,4 = A1F1–3,4 + A2F2–3,4 ...(A)

A1F1–3,4 = A1F1–3 + A1F1–4
A2F2–3,4 = A2F2–3 + A2F2–4
 A2 F2–3 = A3F3–2

1 m
3 m

4 m
A2

A1

A2

A4

4 m

1 m A1

0.5 m

A3

A4�

A2

1 m

A = A + A4 3 4�

0.5 m

0.5 m
A4

(a) (b)

Fig. P.13.16. (a, b)
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As areas A1 and A3 are equal and
also A2 and A4 are equal.

A3F3–2 = A1F1–4
substituting in A,

A1,2 F1,2–3,4 = A1F1–3 + A2 F2–4 + A1F1–4 + A3F3–2
= A1F1–3 + A2F2–4 + 2 A1F1–4 ...(B)

F1,2–3,4, F1–3, F2–4 can be determined directly from charts as these areas are rectangles
with common edge and at right angles.

F1,2–3,4: ratios of lengths to common edge are both equal to 1, Reading from chart
F1,2–3,4 = 0.2004
F1–3 Both ratios are 4, F1–3 = 0.10136
F2–4 The ratios are 4/3 = 1.333 each and F2–4 = 0.182 (interpolated)
Substituting in B
∴ 4 × 4 × 0.2004 = 4 × 0.10136 + 4 × 3 × 0.182 + 2 × 4 F1–4
Solving F1–4  = 0.077
(b) In this case the shape factor is from the small parallel area to the larger area. Extend

it and name the parts as 1, 2, 3, 4′ as in figure, then using similar arguments as in (a) eqn. (B)
A4 = A3 + A4′

 A1, 2 F1,2–3,4′ = A1F1–3 + A2F2–4′ + 2 A1F1–4′.
All values except F1–4′ can be determined.
F1,2–3,4′: longer  side to inter plane distance = 1.5/0.5 = 3

shorter side to interplane distance = 1/0.5 = 2
∴ F1,2–3,4′′′′′ = 0.475 (chart)
F1–3 : longer side to inter plane distance = 1/0.5 = 2

shorter side to interplane distance = 0.5/0.5 = 1
∴ F1–3 = 0.28588
F2–4′ : longer side to inter plane distance = 1/0.5 = 2

shorter side to interplane distance = 1/0.5 = 2
F2–4′′′′′ = 0.41525
Solving F1–4′′′′′ = 0.15431
But  F1–4 = F1–3 + F1–4′ = 0.28588 + 0.15431 = 0.44019.

Problem 13.17: A cylindrical electrical heater with heating from the inside curved surface
shown in Fig. P.13.17 radiates to a circular disk coaxial with the cylinder. Determine the shape
factor from the internal surface of the cylinder to the disk.
Solution: Consider the heater base AA(2), The shape factor from curved surface to plane AA
can be first determined. The shape factor between AA(2) and the disk can then be determined.

The product will be the shape factor from the curved surface to the disk.
i.e. F1–2 × F2–4 = F1–4

Considering the base AA(2) and top BB(3), circles of 1 m dia, displaced by 1 m, the shape
factor is obtained from chart as F3–2 = 0.18
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∴ F3–2 + F3–1 = 1 as surface 2 and 1 enclose 3.
∴  F3–1 = 1 – 0.18 = 0.82

A3 F3–1 = A1F1–3 
π × ×1 1

4  . 0.82 = π × 1 × 1 × F1–3

Solving F1–3 = F1–2 = 0.205

B A

B A1

23

0.5 m	
1 m	

1 m 1 m

4

Fig. P.13.17

To find F2–4: The surfaces 2 and 4 are coaxial unequal disks and using the chart with
parameters as (i) diameter of larger disk to interplane  distance = 1 and (ii) interplane distance
to diameter of smaller disk = 2

 F2–4 = 0.12
∴  F1–4 = 0.205 × 0.12 = 0.0246
The heat flow rate can be calculated if other parameters are specified.

Problem 13.18: An oven of section as shown in Fig. P.13.18 has its curved surface maintained
at 600 K. The flat surface is at 300 K. The oven is used for drying. Determine the heat transfer
rate per m length of oven. The surfaces may be assumed as black. The oven may be considered
as a long one.
Solution : F1–2 = 1 as all the radiation from surface 1 is completely
intercepted by surface 2.

A1F1–2 = A2 F2–1
Considering unit length

 D × 1 × 1 = πD
2  × 1 × F2–1

∴  F2–1 = 2/π = 0.6366.
 F2–2 = 1 – 0.6366 = 0.3634

q = A1F1–2 σ(Eb1 – Eb2) = π × 0.5 × 1 × 0.6366 × 5.67 (64 – 34)
= 6889 W/m length.

Problem 13.19: A small circular disk of 15 mm dia (1) is located as shown in Fig P.13.19.
Determine the shape factor from the disk to the dome and to the cylinder. Also determine the
shape factor for half the length of the cylinder.
Solution : The shape factor from 1 to 2 and 3 should be equal to one as all the radiation from
1 will be intercepted by these surfaces.

0.5 m

2

1

1 m	

Fig. P.13.18
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3

0.2 m

0.4 m

0.4 m	

1

0.015 m	

5

2

4

Hemisphere

Now considering a fictitious surface 4 forming the base of the hemisphere, the shape
factor to this surface from 1 can be calculated.

Using equation (13.23 (a)) F1–4 = D2/(D2 + 4L2) Where L is
the distance between the planes and D is the diameter of the
larger disk,

 F1–4 = 0.42/(0.42 + 4 × 0.42) = 0.2
∴ F1–3 = 0.2 as the heat intercepted by the base of

hemisphere is the quantity reaching the hemisphere.
 F1–2 = 1 – 0.2 = 0.8

(ii) Now considering half of the curved surface, introduce
a circular surface at the height and call it as 5

F1–5 = 0.42/(0.42 + 4 × 0.22) = 0.5
∴ the  shape  factor  to  the  bottom  half  of  cylinder

is 1 – 0.5 = 0.5. The shape factor to the top half = 0.5 – 0.2 = 0.3
(This is because the energy intercepted by the surface 5 is equal to the energy intercepted

by top half of cylinder and the hemisphere. The shape factor to the hemisphere was determined
as 0.2).
Problem 13.20: Determine the shape factor for areas 2 to 3 and 4 in the Fig. 13.20. Also find
F1–4 and F2–4.
Solution: A12 F1,2–3,4 = A1 F1–3,4 + A2 F2–3,4 ...(A)

The values of F1,2–3,4 and F1–3,4 can be determined using
charts for equal disks.

For F1,2–3,4:  D/L = 0.8/0.2 = 4
From chart F1,2–3,4 = 0.58
F1 = 3,4 is found from F3, 4–1, which has a value 0.21. (using

chart for unequal disks)
By reciprocity principle: F1–3,4 = 0.84
Solving eqn. (A),  F2–3,4 = 0.493

F1–3,4 = F1–3 + F1–4
F1–3 can be determined (equal disks):  D/L = 2
∴  F1–3 = 0.35
∴  F1–4 = 0.85 – 0.35 = 0.49
Using reciprocity theorem: A1F1–4 = A4F4–1

π × 0 4
4

2.  0.49 = π
4  (0.82 – 0.42) . F4–1

∴  F4–1 = 0.163, F1–4 = F3–2 (by similarity), F2–3 = F4–1
F2–3,4 = 0.493 = F2–3 + F2–4 = 0.163 + F2–4

∴ F2–4 = 0.33 = F4–2.

Fig. P.13.19.

Fig. P.13.20

3
4

0.4 m	

+12

0.8 m	

0.2 m
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Problem 13.21: The surface A1  and A2 (Fig. P.13.21 (a)) having emissivities of 0.6 and 0.4 are
maintained at 800 K and 400 K.

(i) Determine the heat exchange between the surfaces per unit length considering these
are long with the third side open and at 400 K.

(ii) If suface 3 is well insulated, so that the surface is non absorbing determine the heat
exchange.
Solution: By symmetry (long duct)

 F1–2 = F2–1 = F3–2 = F2–3  = F1–3 = F3–1 = 0.5
considering surface 1 and 2 the equivalent circuit can be drawn as shown in Fig. P.13.21(b).

0.2 m 0.2 m

0.2 m

1 2

3

Eb1 Eb2

J1 J2

1 – 
1

A1 1

1 – 
2

A2 2


1

A F1 1 – 2

(a) (b)

Fig. P.13.21. (a, b)

 Q = σ( )T T
R

1
4

2
4−

Σ
 = 5.67 (84 – 44)/ 

1 0 6
0 6 0 2 1

1
0 2 1 0 5

1 0 4
0 4 0 2 1

−
× ×

+
× ×

+ −
× ×

F
HG

I
KJ

.
. . . .

.
. .  = 1045 W

(ii) If reradiating surface is added the equivalent circuit is as shown in Fig.P.13.21(c, d)
The equivalent resistance is 17.5 (calculate)
∴ q = 5.67 (84 – 44)/17.5 = 1244.4 W for one m length.

Eb1 Eb2

A F2 2 – 3

11
A F1 1 – 3

1
A F1 1 – 2

1 – 
1

A1 1


1 – 
2

A2 2


J1 J2

J3

(c)

Eb1 Eb2

10

10 10

1 – 0.6
0.2 × 0.6

1 – 0.4
0.2 × 0.4

(d)

Fig. P.13. 21 (c, d)
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Problem 13.22: In problem 13.21 if the surface 3 was open and facing a room at 300 K, determine
the net heat flow from surface 1 and 2. Consider the room to be black.
Solution: The equivalent circuit is shown in Fig P.13.22. As the room surface is considered
black, there is no surface resistance for Eb3. So J3 = Eb3

Eb1 Eb2

J1 J2

J = E3 b3

3.333 7.510

10 10

Fig. P.13.22

The values J1 and J2 are solved for by considering net flow into the nodes and using
values of Eb1, Eb2 and Eb3

Node J1:
E J

R
J J

R
E J

R
b b1 1

1

2 1

2

3 1

5

−
+

−
+

−  = 0

R1 = 3.333, R2 = 10, R5 = 10, R3 = 10, Eb1 = 23224, Eb3 = 459 = J3
Substituting we get

70132 – 5 J1 + J2 = 0. ...(A)
Node J2:

 E J
R

J J
R

E J
R

b b2 2

3

1 2

2

3 2

4

−
+

−
+

−  = 0

R3 = 7.5, R2 = R4 = 10, Eb2 = 1452
Substituting we get

2395 + J1 – 3.33 J2 = 0. ...(B)
Solving for J1 and J2 using equation (A) and (B)

J1 = 15074 W/m2, J2 = 5240 W/m2

Net Heat flow from surface 1

q1 = E J
R

b1 1

1

−  = 23224 15074
3 333

−
.  = 2445 W

Heat flow from surface 1 to 3 (room)

 q1–3 = J J
R

1 3

5

−  = 
15074 459

10
−

 = 1462 W

Heat flow across J1, J2

q1–2 = 
15074 5240

10
−

 = 983 W
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Check:  1462 + 983 = 2445 W
Net Heat flow to surface 2

 q2 = 5240 1452
7 5
−
.  = 505 W

Heat flow from J2 to surface 3

q2–3 = 5240 459
10

−  = 478 W

Check: 505 + 478 = 983 W
Heat received by room = 1462 + 478 = 1940 W.

Problem 13.23: A spherical container with 0.9 m dia stores cryogenic fluid at – 178°C. The
surface emissivity is 0.03. It is enclosed by another concentric sphere of 1 m dia with a surface
emissivity of 0.04. The  interspace is evacuated. The outside surface is at 10°C. Determine the
rate of heat leakage.
Solution: As the interface is evacuated only radiation is to be considered. The resistances are
the two surface resistances and the space resistance. Shape factor F1–2 = 1 (from inner outer).

 Q = 5.67 283
100

95
100

1 0 03
0 03 4 0 45

4 4

2
F
HG
I
KJ − FHG

I
KJ

L
N
MM

O
Q
PP

−
× ×

L
NM

.
. .π

+ 
1

4 0 45 1
1 0 04

0 04 4 0 52 2π π× ×
+ −

× ×
O
QP.

.
. .  = 17.65 W

If the latent heat of evaporation is about 213 kJ/kg, the evaporation rate will be
17 65

213000
.  kg/s or 17 65 3600 24

213000
. × ×  kg/day i.e. 7.16 kg/day.

Problem 13.24: A surface at 100 K with emissivity of 0.10 is protected from a radiation flux of
1250 W/m2 by a shield with emissivity of 0.05. Determine the percentage cut off and the shield
temperature.
Solution: We have to assume a shape factor of one. As flux is given it is to be taken as radiosity
J.

The equivalent circuit is shown in Fig. 13.14 (b). Assuming unit area.

1250 W/m
2

100 K


 = 0.05


 = 0.1

Surface

Shield

Eb2
J1 Js

1 – 
s

As s

1 – 
2

A2 2


Ebs

1 – 
s

As s

1

A Fs s – 2

J2

Radiation

(a) (b)

Fig. P.13.24 (a, b)
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q = 1250 5 67 1
1 0 05
1 0 05

1 0 05
1 0 05

1
1

1 0 1
0 1

4− ×
−
×

+ −
×

+ + −
.

.

.
.
.

.
.

 = 25.92 W/m2

If the shield was not present heat flow will be (as only the surface resistance exits)

= 1250 5 67
9
− .  = 138.26 W/m2

Percentage cut off = 100(138.26 – 25.92)/138.26 = 81.25%
Shield temperature can be determined using (considering surface resistance)

25.92 = 1250
19

− Es ∴ Es = 757.52

∴  Ts = 340 K or 67°C

Check: Q = 
E E

19 1 9
2s −

+ +
= −757 52 5 67

29
. .

 = 25.93 W, checks.

Problem 13.25: Two large parallel planes with emissivity value of 0.8 are exchanging heat by
radiation. It is desired to interpose a radiation sheild with emissivity value of εs on both sides,
so that the heat exchange will be reduced to 1/10 of the original value. Estimate the emissivity
requirement.
Solution : The thermal resistance should be increased to 10 times the original value to achieve
the heat reduction.

The thermal resistance without the shield.

= 1 0 8
0 8

1 1 0 8
0 8

− + + −.
.

.
.

 = 1.5

The resistance with shield should be 10 × 1.5 = 15

= 1 0 8
0 8

1 1 1 1 1 0 8
0 8

− + +
−

+
−

+ + −.
.

.
.

ε
ε

ε
ε

s

s

s

s
 = 15

Solving: εεεεεx = 0.137931

Check: 0.25 + 1 + 1 0 137931
0 137931

1 0 137931
0 137931

− + −.
.

.
.

 + 1 + 0.25

= 0.25 + 1 + 6.25 + 6.25 + 1 + 0.25 = 15 checks.

Problem 13.26: Two large parallel palnes with emissivity of 0.8 are at 1000K and 400 K. A
shield with one side treated and having an emissivity of 0.05 while the emissivity on the other
untreated side was 0.6 was proposed to be used. The designer wanted the low emissivity side to
face the hotter plane. During installation by mistake the side with higher emissivity was placed
facing the hot side. Investigate the change in performance if any.
Solution: Considering unit area and using equivalent circuit approach, for the original proposal:

Q = E E

A A F A A A F A

b b

S

s

s s

s

s s s s

1 2

1

1 1 1

1

1

2

2 2

2

2 2

1 1 1 1 1 1
−

− + + − + − + + −L
NM

O
QP−

ε
ε

ε
ε

ε
ε

ε
ε1
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A1 = As = A2 = 1 and F1–s = Fs–2 = 1

 Q = 5 67 10 4
1 0 8

0 8
1 1 0 05

0 05
1 0 6

0 6
1 1 0 8

0 8

4 4. [ ]
.

.
.

.
.

.
.

.

−
− + + − + − + + −

 = 2492.41 W

The shield temperature can be determined using

 2492.41 = E E

F

b bs

s

s

1
1

1 1 2

1 1 1
−

− + + −

−

ε
ε

ε
ε

 = 5 67 10 100
1 0 8

0 8
1 1 0 05

0 05

4 4. [ ( / ) ]
.

.
.

.

−
− + + −

Ts

∴ Ts = 575.7 K
After the wrong installation, the total resistance remains the same as the resistances

only shift their location. However the temperature of the shield will be different. It is determined
using the relation.

 2492.41 = 
5 67

100
1 0 8

0 8 1 1 0 6
0 6

4
4

.

.
.

.
.

10 − FHG
I
KJ

F
HG

I
KJ

− + + −

Ts

∴ Ts = 978.2 K
The shield temperature is much nigher due to the wrong installation.

Problem 13.27: A cryogenic fluid is carried in a pipe of 10 mm OD at a temperature of 100
K. The pipe is surrounded coaxially by another pipe of OD 13 mm with the space between the
pipes evacuated. The other pipe is at 5°C. The emissivity for both surfaces is 0.22. Determine the
radiant heat flow for 3 m length. If a shield of emissivity of 0.05 and of dia 11.5 mm is placed
between the pipes determine the percentage reduction in heat flow.
Solution: Considering 3 m length, the pipe areas are:

Inside pipe: π × 0.01 × 3 = 0.0942 m2

Shield pipe: π × 0.0115 × 3 = 0.1084 m2

Outside pipe: π × 0.013 × 3 = 0.1225 m2

The heat flow without shield is calculated using the equivalent circuit method.

Q = E E

A A F A

b b1 2

1

1 1 1 2

2

2

1 1 1
−

− + + −

−

ε
ε

ε
ε1 2

 = 5 67 2 78
1 0 22

0 0942 0 22
1

0 0942 1
1 0 22

0 22 0 1225

4 4. ( . )
.

. . .
.

. .

−
−

×
+

×
+ −

×

1  = 4.315 W

with shield

Q = 5 67 2 78
1 0 22

0 0942 0 22
1

0 0942 1
1 0 05

01084 0 05
1 0 05

0 1084 0 05
1

0 1084 1
1 0 22

0 22 0 1225

4. ( . )
.

. . .
.

.
.

. . .
.

. .

−
−

×
+

×
+ −

×
+ −

×
+

×
+ −

×

1

= 0.762 W.
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 Percentage reduction = 4 315 0 762
4 315

. .
.
−  × 100 = 82.34%.

Problem 13.28: Show that if surfaces of equal emissivities are used as shields between parallel
planes of large size, the heat flow will be reduced to 1/(n + 1) of heat flow without shield, where
n is the number of shields.
Solution: Resistance when no shield is present using unit area, denoting the surface resistance
(1 – ε)/ε as Rs and the space resistance 1/F1–2 as R

Resistance = 2 Rs + R
When 1 shield is present
Resistance = 4Rs + 2R = 2(2Rs + R) (Draw the circuit and verify)
When 2 shields are present:
Resistance = 6 Rs + 3R = 3(2Rs + R)

and so on. So obviously the resistance increases n + 1 times and hence the heat flow will
become 1/(n + 1) time, provided all emissivities are the same.
Problem 13.29 : Two circular disks of 1 m dia are placed coaxially, parallely and symmetrically
at a distance of 1 m. The disks have an emissivity of 0.6 and are at 1000 K and 500 K. Determine
the reduction in radiant heat flow due to the introduction of a shield of equal diameter midway
between the two. The shield has an emissivity of 0.1 on both sides. (neglect interactions to the
outside space).
Solution : In this case, the shape factors will change. These are found using charts.

Shape factor between the plates: 0.18, (D/x = 1)
Shape factor between plate and shield: 0.39, (D/x = 2)
without shield

Q = E E

A A F A

b b1 2
1

1 1 1 1 2

2

2 2

1 1 1
−

− −

−

ε
ε

ε
ε

+ +

= 5 67 10 5
1 0 6 4

0 6 1 1
1 4

1 1 0 18
1 0 6 4

0 6 1 1

4 4. ( )
( . )
. .

( . )
.

−
− ×
× × ×

+ ×
× × ×

+ − ×
× × ×π π π

 = 6060 W.

with shield

Q = 5 67 10 5
1 0 6 4

0 6 1 1
1 4

1 1 0 39
1 0 1 4

1 1
1 0 1 4

0 1 1 1
1 4

1 1 0 39
1 0 6 4

0 6 1 1

4 4. ( )
( . )
. .

( . ) ( . )
. .

( . )
.

−
−
× × ×

+ ×
× × ×

+ −
× × ×

+ − ×
× × ×

+ ×
× × ×

+ −
× × ×π π π π π π0.1

= 1707 W

Percentage reduction = 
6060 1707

6060
−

 × 100 = 71.83%

Shield temperature = 853.7 K (check)
When limited size planes are considered, these will also exchange heat through the

interspace with surroundings. Hence the assumption.
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Problem 13.30: Show that for two black parallel planes of equal area symmetrically placed,
the shape factor with reradiation by enclosure will be (1 + F1–2)/2 where F1–2 is the shape factor
without reradiation.
Solution: Considering the planes as 1 and 2 and the enclosure as 3, F1–2 = 1 – F1–3 as the
radiation from 1 is intercepted completely by plane 2 and the enclosure, 3

Also by symmetry A1 F1–3 = A2 F2–3
Using the equivalent circuit shown in Fig. P.13.30, as surfaces are black and absorb

incident radiation completely.

Eb1 Eb2

A F2 2 – 3

11
A F1 1 – 3

1
A F1 1 – 2

Eb3 (Enclosure)

Fig. P.13.30

Total flow of heat by radiation from surface 1 considering the direct path and path
through Eb3.

= (Eb1 – Eb2) A1 F1–2 + (E Eb b1 2
2
− )  A1 F1–3

Denoting the total shape factor as F1–2
 Q = A1 F1–2 (Eb1 – Eb2)

By similarity  F2–3 = F1–3 and F1–3 = (1 – F1–2)
Substituting,

(Eb1 – Eb2) A1F1–2 + (E Eb b1 2
2
− )  A1 (1 – F1–2) = A1 F1–2 (Eb1 – Eb2)

Cancelling (Eb1 – Eb2) A1

 F1–2 = F1–2 + 
1

2
1 2− −F

 = 1 2
1 2+ −F , proved.

Conceptually F1–2 = F1–2 + 
1

2
1 2− −F

,

means that out of the energy from surface 1, F1–2 directly reaches surface 2, half of the energy
from surface 1 intercepted by surface 3 also reaches surface 2 by reradiation (the other half
reaching surface 1 itself).
Problem 13. 31: Show that the temperature of the reradiating enclosure 3 between  surface 1
and 2 at T1 and T2 is given by

T3 = A F T A F T
A F A F

1 1 3 1
4

2 2 3 2
4

1 1 2 2 2 3

0.25
− −

− −

+
+

L
NMM

O
QPP
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Solution: Using the Fig. P.13.30, J3 is solved for by using the node 3
 A1F1–3 (Eb1 – J3) = (J3 – Eb2) A2F2–3

Rearranging
A1F1–3Eb1 + A2F2–3Eb2 = J3(A1F1–3 + A2 F2–3)

or  A1F1–3 σT1
4 + A2F2–3 σT2

4 = σ T3
4 (A1F1–3 + A2F2–3)

Cancelling σ, T3 = {[A1F1–3 T1
4 + A2F2–3T2

4]/[A1F1–2 + A2F2–3]}0.25.
Problem 13.32: A tetrahedron has each face of area 3 m2. The surface 4 is insulated and acts
a non absorbing reradiating surface. The emissivities of surface 1, 2 and 3 are all equal to 1/3.
Calculate the net heat flow from each of the surfaces 1, 2 and 3 if the emissive powers of surfaces
1, 2 and 3 are 12000, 3000 and 750 W/m2.
Solution: The shape factor by similarity will each equal 1/3.
i.e. F1–2 = F2–1 = F1–3 = F3–1 = F2–3 = F3–2 = F3–4 ... = 1/3.

The surface 4 acts as reradiating. The equivalent circuit is shown in Fig. P.13.32.

Eb1 Eb3

A F2 3 – 4

11
A F1 1 – 2

1
A F1 1 – 3

A F3 3 – 2

1

1
A F1 1 – 4

J1 J3

J2 J4

A F2 2 – 4

1

A3 3

1 – 
3

A1 1

1 – 
1

A2 2

1 – 
2

Eb2

Fig. P.13.32

The surface resistance are all equal to 
1 1 3
1 3 3

−
×
/

( / )  = 2/3

The space resistances are all equal to = 
1

3 1 3× /  = 1

Now considering nodes J1, J2, J3 and J4

Node J1:
3 12000

2 1 1 1
1 3 1 4 1 2 1( )−

+
−

+
−

+
−J J J J J J J  = 0

18000 – 4.5 J1 + J2 + J3 + J4 = 0

Node J2:  3
2 1 1 1

2 1 2 3 2 4 2(3000 )−
+

−
+

−
+

−J J J J J J J  = 0

or  4500 + J1 – 4.5 J2 + J3 + J4 = 0.
for Node J3:  1125 + J1 + J2 – 4.5 J3 + J4 = 0
for Node J4: J1 + J2 + J3 – 3J4 = 0;
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This set of equations can be solved using any of the methods to solve the matrix

−
−

−
−

L

N

MMM

O

Q

PPP

L

N

MMM

O

Q

PPP
=

L

N

MMM

O

Q

PPP

4 5 1 1 1
1 4 5 1 1
1 1 4 5 1
1 1 1 3

18000
4500
1125

0

1
2
3
4

.
.

.

J
J
J
J

The answer is J1 = 7041 W/m2, J2 = 4636 W/m2

J3 = 4023 W/m2, J4 = 5250 W/m2

Q1 = 
E Jb1 1

2 3
−
/  , Q2 = 

E Jb2 2
2 3

−
/

Q3 = E Jb3 3
2 3

−
/

 solve and check. (7363, – 2454, – 4909).

Problem 13.33 : A cylindrical  shaped furnace is 1 m dia and 1 m high. The top surface having
an emissivity of 0.7 emit a uniform heat flux of 7 kW/m2. The bottom surface with an emissivity
of 0.4 is maintained at 350 K. The sides are insulated and function as reradiating surfaces.
Determine the heat transfer to bottom surface and also the temperatures of the top and sides.

In this case the heat flux at the top is given and not its emissive power. So the flux is to be
taken as radiosity of the surface. The equivalent circuit is as shown in Fig. P.13.33.

Eb1 Eb2

A F2 2 – 3

11
A F1 1 – 3

1
A F1 1 – 2

1 – 
1

A1 1


1 – 
2

A2 2


J = 7000 W/m1
2

J2

J3

1

2

3

Fig. P.13.33

Solution: Designating top as 1 bottom as 2 and sides as 3. The shape factor between the base
and top

 F1–2 = 0.18 = F2–1 (parallel disks)
∴  F1–3 = 1 – 0.18 = 0.82 F1–3 = F2–3 as A1 = A2

 
1

1

− ε
ε

1

1A  = 
( . )

.
1 0 7 4
1 1 0 7
−

× × ×π  = 0.5457

 1
2

− ε
ε

2

2A  = 
( )

.
1 04 4
1 1 0 4
−

× × ×π  = 1.91, 1
1A F1 2−

 = 
1 4

1 1 0 18
×

× × ×π .  = 7.074

 1
1A F1 3−

 = 1 4
1 1 0 82

×
× × ×π .  = 1.5527 = 1

2A F2 3−
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Considering node J1

Eb1 7000
0 5457

−
.  + J J3 2−

+
−7000

1.5527
7000

7.074  = 0

 1.8325 Eb1 + 0.644 J3 + 0.1414 J2 – 18325 = 0 ...(A)

Considering Node J2
7000 J

7.074
2−  + J J E Jb3 2 2 2−

+
−

1.5527 1.91  = 0

989.54 + 0.644 J3 – 1.309 J2 + 0.5236 × 5.67 × 3.54 = 0
or 0.644 J3 – 1.309 J2 + 1435.05 = 0 ...(B)

Considering node J3
7000

1.5527 1.5527
−

+
−J J J3 2 3  = 0

∴  0.644 J2 – 1.288 J3 + 4508.3 = 0
Solving Eb1 = 7825 W/m2, ∴ T1 = 609.5 K

J2 = 3738 W/m2

J3 = 5389 W/m2 T3 = 554.7 K
To determine the heat flow :

From surface 1 :  Q1 = E J
A

b1 1

1 1 11
7825 7000

05457
−

−
= −

( )/ .ε ε
 = 1512 W

From surface 2  Q2 = 5369 5 67 3 5
191

4− ×. .
.

 = 1512 W(J2 to Eb2)

Check :

Through J1 – J3  
7000 5369

15527
−

.  = 1051 W

Through J1 – J2
7000 3738

7 074
−

.  = 461 W

The sum of these two = 1512 W. So checks.
Also through J3 – J2, (5369 – 3738)/1.5527 = 1050.4 so checks.
Note. If flux is specified, then it has to be taken as radiocity.

Problem 13.34. A thermocouple is used to measure the temperature of air flowing in a large
duct, the walls of which are at 500 K. The thermocouple indicates 400 K.The heat transfer
coefficient over the surface of the thermocouple is 40 W/m2K. Determine the true gas temperature
if the emissivity of the thermocouple surface is 0.51.
Solution. Consider the thermocouple to have an area of A. The heat balance for the
thermocouple gives.

 σAε (Tw
4 – T1

4) = hA(Tt – Ta),
Where Tw is the wall temperature. Tt is the thermocouple temperature and Ta is the air

temperature. Substituting the values.
5.67 × 0.51(54 – 44) = 40(400 – Ta)

Solving Ta = 373.3 K
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Higher wall temperature compared to gas temperature will lead to higher
reading of the thermocouple and vice versa.
Problem 13.35: On clear nights there is radiation from earths surface to the space.On such a
night, the water particles on plant leaves radiate to the sky whose temperature may be taken as
– 70°C. The water particles receive heat from air surrounding it by convection, the convection
heat transfer coefficient having a value of 28 W/m2 K. If the water should not freeze, determine
the air temperature.
Solution: For water just to freeze, its temperature has to be 0°C or 273 K. A heat balance,
assuming water surface to be black gives,

5.67A(2.734 – 2.034) = 28A(Ta – 273)
Solving Ta = 280.8 K or 7.8°C
Any air temperature lower than this value will cause frost or freezing on the surfaces.

Problem 13.36: A thermocouple of 3 mm dia with emissivity of 0.6 is used to measure the
temperature of gasses in an electrically heated furnace, with heaters fixed on the walls. The
thermometer showed 750° C when the gas temperature was 650° C. Estimate the wall temperature
if the convection coefficient has a value of 40 W/m2 K.

Note. Absolute units of temperature should be used.
Solution: A heat balance will give

0.6 × 5.67 ( / )Tw 100 750 273
100

4
4

− +F
HG

I
KJ

L
N
MM

O
Q
PP
 = 40[(750 + 273) – (650 + 273)]

Solving,  Tw = 1049.4 K of 776.4°C
If the emissivity was 0.05 in the above case what will be the reading shown by the

thermocouple.
A heat balance gives

0.05 × 5.67[10.4944 – (Tt/100)4] = 40(Tt – 923)
This equation has to be solved by trial

0.2835[Tt/100]4 + 40Tt – 40358 = 0
or (Tt /100)4 + 141.09 Tt – 142356.3 = 0

Solving T = 951 K or 678°C (an error of 28°C compared to 100°C with higher emissivity).
Problem 13.37. A flat heater of 1 m dia is covered by a hemisphere of 4 m dia, the surface of
which is maintained at 400 K. The emissivity of the surface is 0.8. The heater surface is
maintained at 1000 K. The remaining base area is open to surroundings at 300 K. The
surroundings may be considered as blak. The emissivity of the heater surface is 0.8. Determine
the heat exchange from the heater to the hemisphere and to the surroundings.
Solution. The model and the equivalent circuit are shown in Fig. P.13.37. The heater is
designated as surface 1, the hemisphere as surface 2 and the remaining base area as surface 3.
The shape factor between surface 1 and 3 is zero as they are on the same plane. So J1 and Eb3
are not connected. Only the heat reflected and emitted by area 2 passing through area 3 reaches
the surroundings. So this surface can be considered for all practical purposes for the
determination of heat flow to surroundings.
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Eb1 Eb2

A F2 2 – 3

1

1
A F1 1 – 2

1 – �1

A1 1�

1 – �2

A2 2�

J1 J2

Eb3

1

2

3
1 m�

4 m
Hemisphere

�

Fig. P.13.37

Heat flows from heater to the hemisphere, part of which flows from the hemisphere to
the surroundings with no direct connection between the heater and surroundings. Part of heat
emitted by area 2 also reaches the surroundings. As surrounding is black, surface resistance is
zero.

     F1–2 = 1 as all the heat from A1 is intercepted by the hemisphere surface 2.
  F3–2 = 1 for similar reason

  A1F1–2 = A2F2–1 ∴ F2–1 = A
A

1

2
 . 1  = π

π
× ×
× × ×

0.5 0.5
2 2 2  = 0.03125

  A3F3–2 = A2F2-3

∴ F2–3 = 
A
A

3

2

2 22 0 5
2 2 2

× −
× ×

π
π

( . )
 × 1 = 0.46875

∴ F2–2 = 1 – 0.46875 – 0.03125 = 0.5 (checks as the shape factor for hemisphere to itself
is 0.5)

The resistance are :
1 1 0 8

0 5 0 5 0 8
1

1 1

−
= −

× × ×
ε
ε πA

.
. . .  = 0.3183

1 1
0 5 0 5 11 2A F1 −

=
× × ×π . .  = 1.273

1 1 0 8
2 2 2 0 8

2

2 2

−
= −

× × ×
ε
ε πA

.
.

 = 9.947 × 10–3

 
1 1

2 2 2 0 468752 2 3A F −
=

× × ×π .  = 0.08488

Eb1 = 5.67 × 104 = 56700
Eb2 = 5.67 × 44 = 1451.52
Eb3 = 5.6 × 34 = 459.27

Considering node J1

 E J
A

b1 1

1 1 11
−

−( )/ε ε
 = J J

A F
1 2

1 1 21
−

−/
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∴  
56700

0.3183
− J1  = 

J J1 2−
1.273

Rearranging
5J1 – J2 + 226800 = 0 ...(A)

Considering node J2

J E
A

J E
A F

b b2 2

2 2 2

2 3

2 2 31 1
−

−
+

−

−( )/ε ε /  = J J
A F
1 2

1 1 21
−

−/

substituting the values
J J1 2−
1.273  = J2

3
1451.52

9.9472 10
−

× −  + 
J2 459.27

0.08488
−

Rearranging J1 – 144 J2 + 192683.61 = 0. ...(B)
Multiplying eqn. (B) by 5 and subtracting and solving,

J1 = 45691 W/m2, J2 = 1655.4 W/m2

Heat flow from surface 1 is given by

Q1 = (Eb1 – J1)/{(1 – ε1)/A1ε1} = 56700 45691
03183

−
.  = 34586 W

To surface 2, Q2 = J E
A

2 b2−
−( )/1 2 2 2ε ε

 = 
1655 4 145152

9 9472 10 3
. .

.
−

× −  = 20494 W

To outside, Q3 = J E
A F

b2 3

2 2 31
−

−/  = 1655 4 459 27
0 08488
. .
.

−  = 14092 W

A check can be made as Q1 should equal Q2 and Q3

34586 = 20494 + 14092 = 34586 checks.

Problem 13.38: In the case of the above problem if surface 3 is insulated and acts as a
reradiating surface, determine the heat flow from heater surface to the hemispherical surface.

In this case, the node J3 connects with node J2 and Eb2, providing a parallel path between
J2 and Eb2.
Solution: Heat flow Q1–2 is given by

Q1–2 = E E

A A F
R

b b1 2
1

1 1

1
−

− + +ε
ε1 12

eq
1  , Req = 9.3966 × 10–3

= 
56700 145152

0 3183 1273 9 3966 10 3
−

+ + × −
.

. . .  = 34515 W.

The heat received by surface 2 increases from 20494 W to 35060 W. The temperature of
the reradiating surface can be determined by determining J2.
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34515 = 56700
0.3183 1.273

2−
+

J
∴ J2 = 1776 W/m2

∴ J3 = 1614, ∴ T3 = 411 K.

Eb1

Eb2

A F2 2 – 3

1

1
A F1 1 – 2

1 – �1

A1 1�

1 – �2

A2 2�

J1 J2

Eb3

1

2

3
1 m�

4 m
Hemisphere

�

1 – �2

A2 2�

Fig. P.13.38

Problems 13.39: Two coaxial cylinders of 0.4 m dia and 1 m dia are 1 m long. The annular top
and bottom surfaces are well insulated and act as reradiating surfaces. The inner surface is at
1000 K and has an emissivity of 0.6. The outer surface is maintained at 400 K. The emissivity
of the surface is 0.4.

(i) Determine the heat exchange between the surfaces.
(ii) If the annular base surfaces are open to black surroundings at 300 K, determine the

radiant heat exchange.
Solution: These are short cylinders. The shape factor values are determined using Data Book.
The outer surface is designated as 2 and the inner as 1. The parameters are r1/r2 and L/r2. The
chart provides shape factor from outside cylinder to the inside and to itself.

The parameter values here are 0.4 and 1. Reading from chart
F2–1 = 0.25, F2–2 = 0.27

considering both the annular closing surfaces as 3 (This will not make any difference with
total heat flow, see Fig. P.13.20)

 F2–3 = (1 – 0.25 – 0.27) = 0.48

 A1 F1–2 = A2 F2–1 ∴ F1–2 = F2–1 . 
A
A

2

1
 = 0.25 × 1

0 4.  = 0.625

 F1–3 = 1 – 0.625 = 0.375
Eb1 = 56700. Eb2 = 1451.52, Eb3 = 459.27 W/m2.

The equivalent circuit for case 1 is given in Fig. P.13.39
The resistances are

1 1

1

− ε
εA1

 = 
1 0 6

0 4 1 0 6
−

× × ×
.

. .π  = 0.5305

1 2

2

− ε
εA2

 = 
1 0 4
1 1 0 4

−
× × ×

.
.π  = 0.4775
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1

1 1 2A F −
 = 

1
0 4 1 0 625π × × ×. .  = 1.2732

 
1

1 1 3A F −
 = 

1
0 4 1 0 375π × × ×. .  = 2.1221

1
2 2 3A F −

 = 
1

1 1 0 48π × × × .  = 0.6631.

Eb1 Eb2

A F2 2 – 3

11
A F1 1 – 3

1
A F1 1 – 2

1 – �1

A1 1�

1 – �2

A2 2�

J1 J2

J3 = Eb3

Fig. 13. P. 39

Considering node J1

56700
0.5305

− J1  + J J2 1−
1.2732  + J J3 1−

2.1221  = 0

Simplifying
– 1.6667 J1 + 0.4167 J2 + 0.25 J3 + 56700 = 0 ...(A)

Considering node J2

J J1 2−
1.2732  + 1451.52

0.4775 0.6631
2−

+
−J J J3 2  = 0

Simplifying
 0.375 J1 – 2.095 J2 + 0.72 J3 + 1451.52 = 0 ...(B)

Considering node J3  J J J J1 3 2 3−
+

−
2.1221 0.6631  = 0

Simplifying  J1 + 3.2 J2 – 4.2 J3 = 0 ...(C)
Solving: J1 = 41123 W/m2 J2 = 15468 W/m2

J3 = 21575 W/m2

This gives a heat flow about 29360 W from inner to outer surface.
(ii) In this case J3 = Eb3 = 459.27 W/m2. Forming nodal equations and
Solving   J1 = 35908.6 J2 = 7278.23

Q1 = 39191 W, Q2 = 12203 W, Q1 – Q2 = 26988 W
Calculating Q3 by using J1, J3 and J2 – J3,

 Q3 = 16705 + 10283 = 26988 W. The values agree.
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Problems 13.40: Determine the shape factors in the following cases between the heater and
roof.

(i) A heater of 15 cm square placed in the centre of the floor of a furnace of 4 m × 4 m size
and 2 m height.

(ii) The heater placed in the corner of the floor
(iii) The heater placed on one of the corner of one of the vertical walls.
(iv) A spherical heater of 15 cm dia placed in the centre of the floor.
(v) The heater placed in one corner.

Solution: These situations are solved for using charts: (symbols as in charts, Fig. 13.16.)
(i) This has to be a sum of four shape factors, dividing the roof into four parts.

 
D
L

1

1
 = 2

1  = 2 ∴
D
L

2

2
 = 2

1  = 2 ∴ chart value = 0.06

∴  F1–2 = 4 × 0.06 = 0.24

(ii)
D
L

1

1
 = 2

4  ,
D
L

2

2
 = 2

4  = 0.5 ∴ F1–2 = 0.208

(iii)  b
a

c
a

= = 4
2  = 0.5 ∴ F1–2 = 0.07

(iv)
b
a

c
a

= = 1
2  = 0.5   F1–2 = 0.018 × 4 = 0.072

(v)  
b
a

c
a

= = 4
2  = 2 F1–2 = 0.07

The closer the plane, and larger the plane, higher will be the value of shape factor.
Problem 13.41: Two rows of water tubes of 5 cm dia are placed at 10 cm pitch in front of a
radiating plane and is backed by insulating wall. The tubes are staggered. Determine the shape
factor to (i) direct to row 1 (ii) direct to row 2 (iii) Total including reradiation to row 1 (iv) Total
to row 2 (v) Total to both 1 and 2 without reradiation (vi) Total with reradiation.
Solution: A chart is available which uses the nomenclature as in Fig. P.13.41 here P/D = 2,
Refer chart Fig. 13.20.

P

Row 2

Row 1

Reradiating surface

Radiating plane

Tubes,
dia d

0.98

0.7

0.65

0.28

0.2

F

Total to rows 1 and 2

Total to row 1

Direct to row 1

Total to row 2

Direct to row 2

2.0

P/d

Fig. P.13.41
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(i) Direct to row 1 = 0.65 (ii) Direct to row 2 = 0.2
(iii) Total to row 1 = 0.7 (iv) Total to row 2 = 0.28
(v) Total to 1 and 2 = 0.98
The heat picked up by first row will be more than double that picked up by row 2.

Problem 13.42: Determine the shape factor values between two short coaxial cylinders of
diameters 0.5 m and 1 m of length 1 m and also between the cylinder to each end anuular
surface.
Solution: The outer cylinder is designated as 2 and the inner as 1 and ends as 3 and 3′.

Here  r2 = 0.5 m, r1 = 0.25 m L = 1 m
The parameters are:

r1/r2 = 0.5 L/R2 = 1/0.5 = 2
Reading from chart in data book
∴ F2–1 (outer to inner) = 0.44, F2–2 = 0.32

A2F2–1 = A1F1–2 ∴ F1–2 = 0.44 × 
A
A

2

1
 = 0.44 × 2 = 0.88

∴ F1–3′ = F1–3 = 0.12/2 = 0.06
 F2–3 = F2–3′ = (1 – 0.44 – 0.32)/2 = 0.12

A1F1–3 = A3F3–1 ∴ F3–1 = 
A
A

1

3
 × 0.06

F3′–1 = 0.06 × π × 0.5 × 1 × 4 1
1 0 52 2π ( . )−

 = 0.16

F3′′′′′–1 = F3–1 = 0.16

 F3–2 = 
A
A

2

3
 = 0.12 = 

π
π

× ×
−

0 51 4
1 0 52 2

.
( . )  = 0.64

 F3–2 = 0.64
∴ F3′′′′′–3 = 1 – 0.16 – 0.64 = 0.2
This is the shape factor between annular disks placed coaxially opposite each other.

(refer P. 13.20 also).

OBJECTIVE QUESTIONS

Choose the correct statement in all cases:
13.1 The monochromatic emissive power of a black body with increasing wavelength.

(a) decreases (b) increases
(c) decreases, reaches a minimum and then increases
(d) Increases, reaches a maximum and then decreases.

13.2 A gray surface is one for which
(a) reflectivity equals emissivity (b) emissivity equals transmissivity
(c) emissivity is constant (d) Absorptivity equals reflectivity.
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13.3 As the source temperature increases the wavelength at which the monochromatic emissive power
is maximum
(a) decreases continuously (b) decreases and then increases
(c) lncreases continuously (d) increases and then decreases.

13.4 The directional emissivity for metallic surfaces is
(a) constant all over the angles from normal
(b) More near the normal and less near the tengential direction
(c) More near tangential direction compared to normal direction
(d) The distribution is affected more by temperature than by direction.

13.5 For non metallic insulating materials directional emissivity
(a) is constant all over the angles
(b) more at near normal directions than at tangential direction
(c) Less at near normal directions compared to tengential directions
(d) Can be as case b or c depending on surface preparation.

13.6 Selective surfaces
(a) do not follow Kirchhoff’s law (b) absorb only at definite wavelengths
(c) emit only at definite wave bands (d) all of these.

13.7 Glasses are
(a) opaque for high temperature radiation (b) opaque for low temperature radiation
(c) Transparent at short wavelengths (d) Transparent at long wavelengths
(e) opaque for low temperature radiation Transparent at long wavelengths.

13.8 For solar collectors the required surface characteristics combination is
(a) high emissivity and low absorptivity (b) high emissivity and high reflectivity
(c) high reflectivity and high absorptivity (d) low emissivity and high absorptivity.

13.9 Emissivity of gas body of a given composition depends on
(a) shape and temperature (b) partial pressure and shape
(c) partial pressure and temperature (d) All of these.

13.10 For a given shape, partial pressure and temperature the emissivity of
(a) O2 is higher than that of N2 (b) N2 is higher than that of N2
(c) O2 is higher than that of CO2 (d) CO2 is higher than that of O2.

13.11 The combination which will give the highest gas emissivity is
(a) low partial pressure, higher temperature and larger thickness
(b) higher partial pressure, higher temperature and larger thickness
(c) higher partial pressure, lower temperature and larger thickness
(d) lower partial pressure, lower temperature and larger thickness.

13.12 The value of shape factor will be highest when
(a) the surfaces are farther apart (b) the surfaces are closer
(c) the surfaces are smaller and closer (d) the surfaces are larger and closer.

13.13 A radiation shield should have
(a) high emissivity (b) high absorptivity
(c) high reflectivity (d) high emissive power.

13.14 Choose the correct statement or statements
(a) Highly reflecting surface is suitable for solar heat collection through flat plates.
(b) The emissivity of smooth surface is higher compared to a rough surface of the same material
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(c) For a given gas body, the emissivity will decrease with increase in temperature.
(d) Snow has high emissivity.

13.15 Choose the correct statement or statements
(a) The shape factor of samll enclosed body with respect to the enclosing surface is zero
(b) The shape factor of small enclosed body with respect to the enclosing surface is unity
(c) A small opening from a large enclosure at constant temperature will provide black body

radiation.
(d) Black paint is an example of block body.

13.16 The reciprocity theorem states
(a) F1–2 = F2–1 (b) A1 F1–2 = A2 F2–1
(c) A2 F1–2 = A1 F2–1 (d) ε1 F1–2 = ε2 F2–1.

13.17 Choose the correct statement or statements
(a) F1–2,3 = F1–2 + F1–3 (b) A1 F1–2,3 = A2 F2–1 + A3 F3–1
(c) F1,2–3 = F1–3 + F2–3 (d) A1,2 F1,2–3,4 = A1 F1,2–3,4 + A2F1,2–3,4.

13.18 Choose the correct statement or statements
(a) Radiosity is another name for emisive power
(b) Radiation intensity is the flux per unit area
(c) Radiation intensity is the radiant energy per unit solid angle
(d) Irradiation is the total radiant energy incident on a surface.

13.19 Choose the correct statement or statements
(a) Convex surface have positive value for shape factor with themselves
(b) Concave surface have positive value for shape factor with themselves
(c) Flat surfaces have positive value for shape factor with  themselves
(d) Irregular surfaces have possitive value for shape factor with themselves.

13.20 If A1 = 4 and A2 = 2 and F1–2 = 0.2 then
(a) F2–1 = 0.2 (b) F2–1 = 0.8 (c) F2–1 = 0.4 (d) F2–1 = 0.1.

Answers
1. (d) 2. (c) 3. (a) 4. (c) 5. (b) 6. (d)
7. (c) 8. (d) 9. (d) 10. (d) 11. (c) 12. (d)

13. (c) 14. (c), (d) 15. (b), (c) 16. (b) 17. (a), (b) 18. (c), (d)
19. (b), (d) 20. (c).

EXERCISE PROBLEMS

13.1 Determine the wavelength at which monochromatic emissive power is maximum for the follow-
ing surface temperatures. Also determine the value of the monochromatic emissive power at
these wavelengths.
(i) 600 K (ii) 2000 K and (iii) 5500 K.

13.2 Using Plancks equation derive the Stefan-Boltzmann equation for emissive power of a black
surface.

13.3 Determine the fraction of radiant energy emitted up to the wavelength at which monochromatic
emissive power is maximum for the following surface temperatures.
(i) 600 K (ii) 2000 K (iii) 5000 K.
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13.4 Determine the wavelength up to which the black body radiation at 2000 K will equal.
(i) 25% (ii) 50%

(iii) 75% of the emissive power.
13.5 A glass was found to let in 85% of the radiation from the sun at 5800 K. If its transmissivity was

0.9 upto wavelength λ and zero beyond this value determine the value of λ.
13.6 Mylar sheets have a transimissivity of 0.95 upto wavelength of 3 micrometer and zero beyond

this value. Determine its total transmissivity for radiation for source at (i) 600 K (ii) 2000 K and
(iii) 5800 K.

13.7 Green house effect is nothing but trapping of radiation by letting in radiation of short wave-
length and shutting out radiation of long wavelength. A green house has a roof area of 100 m2

perpendicular to the solar inclination. The material has a transmissivity of 0.9 up to a wave-
length of 4 µm and zero beyond. The solar flux has a value of 800 W/m2. The total wall area is 600
m2. It the inside is to be maintained at 22°C while the outside is at – 5°C, determine the maxi-
mum value of overall heat transfer coefficient for heat flow through the walls. The temperature
of solar radiation may be taken as 5000 K.

13.8 A surface is found to have an absorptivity of 0.8 for wavelengths upto 3 µm and 0.2 beyond this
value. If the surface is exposed to sunlight with a source temperature of 5000 K, and a flux of 800
W/m2, determine the rate of heat gain when the surface is at (i) 400 K (ii) 900 K. Assume only
radiant heat flow.

13.9 A 40 W incandecent lamp has a filament area of 1 cm2 and is at 2800 K. Determine the efficiency
of the lamp. Lamp efficiency is defined as the fraction of radiant energy emitted in the wave-
length band of 0.4 to 0.7 µm. to the power input.

13.10 If in problem 13.9, if the temperature is increased to 3000 K, determine the improvement in the
efficiency.

13.11 A surface has an absorptivity of 0.8 in the wavelength range of 0 to 4 µm and 0.2 beyond. Deter-
mine the total emissivity of the surface at temperature (i) 400 K (ii) 900 K (iii) 2000 K and (iv)
3000 K.

13.12 A surface has an emissivity of 0.5 in the wavelength band of 1.15 to 10 µm and  0.8 above this
wavelength. The emissivity is zero below 1.15 µm. Determine the total absorptivity of this sur-
face to radiation from a source at 2000 K.

13.13 A furnace with an emissive power of 3.72 × 105 W/m2 is used to calibrate a guage for measuring
radiation flux the aperture used is 2 cm in dia. The guage has an effective area of 1.6 × 10–5 m2.
What should be the distance at which the guage should be placed so that the flux is 1000 W/m2.

13.14 An opaque surface having reflectivity values as shown in Fig 13.14 (a) receives irradiation as
indicated in Fig. 13.14 (b). Determine the radiant flux absorbed by the surface.

0.4 4 10 	 
m,

0.8

0.4

�	

0 	 
m,

0.5

�	

5 10 20

Fig. E.13.14 (a, b)
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13.15 Determine the total emissivity of two surfaces with the following directional characteristics;
(i) Emissivity is 0.3 from normal to 60° and is 0.8 from 60° to 90°

(ii) Emissivity is 0.8 from normal to 60° and is 0.3 from 60° to 90°.
13.16 Estimate the equilibrium temperature of a plate in space when exposed solar flux of 1352 W/m2

(from source at 5800 K) if it has an emissivity of 0.9 upto 3 µm and 0.05 beyond.
13.17 Determine the shape factor F1–2 in the following configurations shown in Fig. E.13.17.

2

1

R

1
0.5 m
sphere

�

2

Fig. E.13.17. (a, b)

13.18 Determine the shape factor F1–2 in the following cases.

3 m

3 m

1

2
45°

1

2 0.2 m�

0.2 m

1

2

R

(a) Long shelter of (b) Long cylindrical (c) Cylindrical
cylindrical shape groove cavity

13.19 Determine the shape factors F1–2 for the following configurations

1 m

A2

A1

2 m

A2

A1

1 m

2 m

1 m

2 m

1 m

1 m

1 m

A2

A1

2 m

1 m
1 m

2 m

(a) (b) (c)

Fig. E.13.19. (a), (b), (c)
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13.20 Determine the shape factor F1–2 in the following cases:

A2

A1

1 m
1 m 1 m

1 m

1 m

1 m

1 m

1 m

1 m

A1

1 m

1 m

A2

1 m

1 m

Fig. E.13.20. (a, b)

13.21 Determine the shape factor F1–2 for the following configurations

2 m

A1

A2

2 m

2 m

2 m

2 m
2 m

2 m

A1

A2

2 m

2 m

2 m

2 m
2 m

2 m

A1

2 m

4 m4 m A2

A1

A2 (All surface)

Hexagonal
cavity

2 m

Fig. E.13.21. (a), (b), (c), (d)

13.22 Determine the emissivity of water vapour in a spherical gas body of 2 m dia when the partial
pressure of water vapour is 0.05 atm and the temperature of the mixture is 1000 K. The total
pressure is 1 atm.

13.23 Determine the emissivity in the situation of problem 13.22 if the (i) total pressure is 1 atm and
partial pressure is 0.1 atm (ii) if the total pressure is 2.5 atm and partial pressure is 0.05 atm.

13.24 Determine the emissivity of a gas body at 1500 K and 1 atm contained in a cubical furnace of 2 m
side if the partial pressure of CO2 is 0.1 atm in tha gas mixture. Also determine the emissivity if
the total pressure is 4 atm while partial pressure is still 0.1 atm.

13.25 An oil heated furnace is of 2 m × 2 m × 3 m size and contains gases at 1600 K. The partial
pressure of CO2 is 0.12 atm and that of H2O is 0.14 atm. Determine the emissivity of the gas body
and also the heat exchange if the surface is at 1000 K. Total pressure = 1 atm.

13.26 A gas turbine combustion chamber is cylindrical and is 0.4 m dia and 0.8 m length. The gas is at
1700 K. The flame tube is at 500 K. The gas is at 6 atm. The partial pressure of CO2 is 0.12 atm
and that of water vapour is 0.1 atm. Determine the radiation exchange between the flame tube
and the gas body.

13.27 Pure CO2 at 1 atm passes through a cylindrical heater of 0.2 m dia and 0.3 m length with surface
maintained at 1600 K. The average gas temeprature is 800 K. Determine the rate of radiation
heat exchange.

13.28 Determine the heat exchange per m2 of area A1 between the surface specified below if surface 1
is at 1000 K while surface 2 is at 400 K. All  surfaces are black.
(i) large parallel planes (ii) long coaxial cylinders of 0.5 m and 1 m dia with inner cylinder hotter.
(iii) concentric spheres of 1 m and 2 m dia with inner surface hotter. (iv) parallel planes of 2 m ×
2 m size placed symmetrically 1 m apart.
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13.29 Determine the heat exchange per m2 of Area A1 in the following cases if A1 is at 1000 K and A2 is
at 400 K, both surfaces being black.
(i) Perpendicular planes 2 m × 1 m size with 2 m being the common edge

(ii) perpendicular planes of 2 m × 1 with 1 m being the common edge.
(iii) equal coaxial parallel disks of 1 m dia, placed 1 m apart
(iv) same as in (iii) but placed 0.5 m apart.
(v) concentric circular disks of 1 m dia and 0.5 m dia placed 0.5 m apart with the smaller one as

surface A1.
13.30 Determine the heat exchange between the following surfaces with the smaller surface as surface

1 and at 1000 K while the larger surface is at 400 K, both surfaces being black.
(i) a small square of 0.15 m side and a large parallel plane of 2 m square size with its corner

along the centre of the small area and 1 m apart.
(ii) a small square of 0.15 m side and a large plane of 2 m square kept parallel and centres of both

along the same line and 1 m apart.
(iii) a small circular disk of 0.15 m dia and large disk of 1 m dia at a distance of 1 m with centres

along the same line and planes parallel to each other.
(iv) A small plane of 0.15 m square and a large plane of 2 m square at a distance of 1 m. The small

plane is below one corner of the large plane and kept perpendicular to it.
(v) A small sphere of 0.1 m dia and a large plane of 1.5 m square, with the sphere kept 1 m below

a corner of the large plane.
13.31 Determine the reduction in radiant transfer between two large parallel planes at 1000 K and

500 K when a shield surface with emissivity of 0.1 and 0.6 on either side is placed between them.
The emissivity of the surface are 0.6 and 0.8 respectively. Also determine the shield temperature
when higher emissivity side of the shield (i) faces the hotplane (ii) faces the cooler, plane.

13.32 Determine the heat exchange between two long coaxial cylinders of diameter 0.5 m and 0.7 m
when the outer is at 100 K and inner at 500 K. The surface emissivities are 0.4 and 0.6 for the
outer and inner surfaces.

13.33 A spherical container of 1 m dia storing liquid nitrogen at – 120°C is covered by high reflecting
coating with reflectivity of 0.96. If it is exposed to surroundings at 20°C, determine the heat flow
in due to radiation.
If a concentric spherical surface with equal reflectivity on either side of 0.96 and a diameter of
1.2 m is used over the surface, determine the reduction in the heat flow by radiation, when
exposed to the same surroundings.

13.34 Two large parallel planes are at – 10°C and 22°C. The emissivity values are 0.6 and 0.75. If the
radiant heat flow is to be reduced by 90% determine the reflectivity of a shield to be placed in
between.

13.35 A long cylinder of diameter 0.4 m is at 1000 K and has an emissivity of 0.4. A coaxial cylinder of
1 m dia having surface emissivity of 0.6 maintained at 400°C surrounds the smaller cylinder. It
is proposed to use a shield having an emissivity of 0.1. Compare the heat reduction if the shield
diameter is (i) 0.6 m and (ii) 0.8 m based on 1 m2 of surface used.

13.36 Determine the heat flow between the roof and floor of 4 × 3 m size of a furnace of 4 m × 4 m × 3
m size when the roof is at 1200 K and the floor is maintained at 600 K, with the other surfaces
nonabsorbing and reradiating. The surface emissivity of the hotter surface is 0.8 and that of the
cooler surface 0.6.

13.37 Two symmetrically placed parallel rectangular surface of 4 m × 3 m size kept at 2 m distance are
at 1000 K and 600 K. The emissivities are 0.6 and 0.5. The sides are exposed to black surround-
ings at 300 K. Determine the heat flow from the surfaces.
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13.38 Two side walls and the roof of a furnace are maintaind at 600 K and 1200 K respectively, their
emissivities being 0.75 and 0.6. The furnace is cubical with sides of 2 m length. The other sur-
faces are nonabsorbing and reradiating. Determine the heat flow between side walls and the
roof,

13.39 If in problem 13.38 the other sides are open to black surroundings at 500 K, determine the heat
exchange.

13.40 In a cylinderical furnace of 1.5 m dia and 2 m length the curved surface is maintained at 1400 K,
its emissivity being 0.7. The two ends are maintained at 800 K and 600 K. The emissivities are
0.65 and 0.55. Determine the heat flow to each of the surfaces by radiation.

13.41 A furnace is in the shape of a frustum of a cone with base diameter of 2 m and top diameter of 1
m and height 1.5 m. The curved surface having an emissivity of 0.65 is maintained at 1600 K
while the base and top are maintained at 700 K and 1200 K, their emissivities being 0.6 and 0.7
Determine the heat flow by radiation from each surface.

13.42 If in problem 13.41, the top surface acts as reradiating surface, with other conditions unchanged
determine the heat flow between the bottom and curved surface and the temperature of reradiating
surface.

13.43 If in problem 13.41, the curved surface acts as reradiating surface, determine the heat flow and
also the temperature of the curved surface.

13.44 A four surface enclosure is in the shape of a tetrahedron of 2 m edge length. The surfaces are at
1400, 1200, 1000 and 800 K respectively with emissivities of 0.8,  0.7, 0.6 and 0.5. Determine the
radiant heat flow from each face.

13.45 A thermocouple with an emissivity of 0.8 is used to measure the temperature of air in an enclo-
sure where the walls are at 300 K. The thermometer shows 600 K for a true temperature of 655
K. Determine the value of convection coefficient over the thermocouple surface.

13.46 A thermocouple with an emissivity of 0.9 is used to measure the temperature of air flowing in a
duct. The duct walls are at 280 K. The true air temperature is 350 K. Determine the temperature
indicated if (i) h = 150 W/m2K (ii) h = 50 W/m2K and (iii) h = 300 W/m2K.

13.47 A shielded thermocouple shows 600 K for hot gases in a duct whose walls are at 400 K. The
shield are is large compared to that of the thermocouple. The emissivity of the shield if 0.05. The
emissivity of the thermocouple is 0.8. Determine the true temperature of the gas. The convective
heat transfer coefficient has a value of 300 W/m2K.
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MASS TRANSFER

14

14.0

Mass transfer is different from the flow of fluid which was discussed in previous chapters.
Mass transfer is the flow of molecules from one body to another when these bodies are in
contact or within a system consisting of two components when the distribution of materials is
not uniform. When a copper plate is placed on a steel plate, some molecules from either side
will diffuse into the otherside. When salt is placed in a glass and water poured over it, after
sufficient time the salt molecules will diffuse into the water body.  A more common example is
drying of clothes or the evaporation of water spilled on the floor when water molecules diffuse
into the air surrounding it. Usually mass transfer takes place from a location where the
particular component is proportionately high to a location where the component is
proportionately low. Mass transfer may also take place due to potentials other than
concentration difference. But in this chapter only transfer due to concentration gradient is
discussed.

14.1 PROPERTIES OF MIXTURE

In a mixture consisting of two or more materials the mass per unit volume of any component is
called mass concentration of that component. If there are two components A and B, then the
mass concentration of A is

ma = mass of  in the mixture
volume of the mixture

A

and concentration of B,

mb = mass of  in the mixture
volume of the mixture

B .

The total mass concentration is ma + mb, which is also the density of the mixture.
Mass concentration can also be expressed in terms of individual and total densities of

the mixture i.e.,

ma = ρ
ρ
A

where ρa is the density of A in the mixture and ρ is the density of the mixture.
It is more convenient to express the concentration in terms of the molecular weight of

the component.
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Mole fraction Na can be expressed as

Na = Number of moles of component 
Total number of moles in the mixture

A .

Number of Mole = mass/molecular weight

For gases as  ρi = 
P

R Ti

or Ni = P
T
i

ℜ
where ℜ is universal gas constant.

At the temperature T of the mixture then
Ni ∝ Pi

where Ca = N
Nt

P
P

a a

T
=

where Pa is the partial pressure of  A in the mixture  and PT is the total pressure of the
mixture. Ca is the mole concentration of A in the mixture.

Also Ca + Cb = 1 for a two component mixture.

14.2 DIFFUSION MASS TRANSFER

Diffusion mass transfer occurs without macroscopic mass motion or mixing. A lump of sugar
dropped into a cup of tea will dissolve by diffusion even if left unstirred. But it will take a long
time for the sugar to reach all of the volume in the cup. However it will diffuse into the volume
by and by. Consider a chamber in which two different gases at the same pressure and
temperature are kept separated by a thin barrier. When the barrier is removed, the gases will
begin to diffuse into each others volume. After some time a steady condition of uniform mixture
would be reached. This type of diffusion can occur in solids also. The rate in solids will be extre-
mely slow. Diffusion in these situations occurs at the molecular level and the governing equations
are similar to those in heat conduction where energy transfer occurs at the molecular level.

The basic law governing mass transfer at the molecular diffusion level is known as
Fick’s law. This is similar to the Fourier heat conduction law.

In Mass transfer, molal quantities are more convenient to use as compared to mass
units, because mass transfer is due to the movement of molecules as discrete quantities. Hence
it is convenient to use number of moles, or molar concentration instead of density etc.

14.3 FICK’S LAW OF DIFFUSION

The Fick’s law can be stated as

Na = – Dab 
dC
dx

a ...(14.1)

Where Na— > number of moles of ‘a’ diffusing perpendicular to area A, moles/m2 sec
Dab— > Diffusion coefficient or mass diffusivity, m2/s, a into b
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Ca — > mole concentration of ‘a’ moles/m3

x — > diffusion direction
The diffusion coefficient is similar to thermal diffusivity, α and momentum diffusivity v.
Number of moles multiplied by the molecular mass (or more popularly known as

molecular weight) will provide the value of mass transfer in kg/s.
Equation (14.1) can also be written as

m
A

D d
dx

a
ab

a= – . ρ ...(14.2)

but this form is not as popular as the more convenient equation (14.1). The conduction equation
similar to this is

Q
A

k
c

d cT
dx

=
F
HG
I
KJ– . ( )

ρ
ρ ...(14.3)

k/ρc is thermal diffusivity α and ρc is the heat capacity (energy density) for unit volume.
The derivation of the general mass diffusion equation is similar to that of the general heat
conduction equation with Ca

 replacing T and D replacing k/ρc.
The general mass diffusion equation for the species A under steady state condition is

given by equation (14.4)

∂
+

∂
∂

+
∂
∂

=
∂
∂τ

2

2

2

2

2

2
1C

dx
C
y

C
z D

Ca a a a ...(14.4)

Generation of mass of the species ‘A’ by chemical reaction is not considered in the equation.
However an additive term Na/D on the LHS will take care of this similar to heat generation
term q/k.

The solutions for this equation are also similar to the solutions of the general conduction
equation. However there exist some differences. These are

(i) While heat flow is in one direction, the mass of one species flows opposite to the flow
of the other component of the mixture. (here two component mixture is considered).

(ii) Even while one component alone diffuses under certain circumstances, a bulk flow
has to be generated as otherwise a density gradient will be created spontaneously,
which is not possible. For example when water evaporates into an air body over
water surface, an equal quantity of air cannot enter the water phase. The density
gradient created is dispersed by some mixture moving away from the surface main-
taining a balance. This is termed as bulk flow.

The value of Dab for certain combinations of components are available in literature. It
can be proved that Dab= Dba. When one molecule of ‘A’ moves in the x direction, one molecule of
‘B’ has to move in the opposite direction. Otherwise a macroscopic density gradient will develop,
which is not sustainable, (A is area)

  N
A

D dC
dx

a
ab

a= –

N
A

D dC
dx

b
ba

b= –  = – Dba 
d C

dx
a( – )1  = Dba 

dC
dx

a
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as  N
A

N
A

a b= –  and so Dab = Dba

14.4 EQUIMOLAL COUNTER DIFFUSION

The total pressure is constant all through the mixture. Hence the difference in partial pressures
will be equal. The Fick’s equation when integrated for a larger plane volume of thickness L
will give

N
A

D C C
L

a
ab

a a=
( – )1 2 ...(14.5)

N
A

D C C
L

b
ba

b b=
( – )2 1

as  N
A

N
A

b a= – , and (Ca1 – Ca2) = (Cb2 – Cb1),

Dab equals Dba
Where Ca1

 and Cb1 are the mole concentrations at face 1 and Ca2 and Cb2 are mole concentrations
at face 2 which is at a distance L from the first face.

When applied to gases,

N
A

D
T

P P
x x

a a a=
ℜ

. —
( – )

1 2

2 1
...(14.6)

Where Pa1 and Pa2 are partial pressures of component ‘A’ at x1 and x2 and ℜ is the universal gas
constant in J/kg mol K. T is the temperature in absolute units. The distance should be expressed
in metre.

The partial pressure variation and diffusion directions are shown in Fig 14.1.

Pa1

Pb1

Pa2

Pb2

Pa

Pb

B

A

1 2

Total Pressure = P + Pa b

P

X

Fig. 14.1. Partial Pressure variation of components in equimolal counter diffusion.

Example 14.1: In order to avoid pressure build up ammonia gas at atmospheric pressure in a
pipe is vented to atmosphere through a pipe of 3 mm dia and 20 m length. Determine the mass
of ammonia diffusing out and mass of air diffusing in per hour.
Assume  D = 0.28 × 10–4 m2/s, M = 17 kg/kg mole



VED

c-4\n-demo\damo14-1

660 FUNDAMENTALS OF HEAT AND MASS TRANSFER

Solution: PNH3
 in pipe = 1 atm.

PNH3  at the outlet = 0

m D A
T

P P
L

MNH
NH NH

3
3 3=

ℜ
×. . —1 2

 = 0.28 × 10–4 × π
4

0 003 1013 10 0
20

3600 172
5

( . ) ( . – )× × × × /8315

 = 7.38 × 10–6 kg/hr.
       mair, NB = – NA = – 7.38 × 10–6 × 28.97/17

 = – 1.26 × 10–5 kg/hr.
Mair = 28.97 kg/kg mole.

14.5 STATIONARY MEDIA WITH SPECIFIED SURFACE CONCENTRATION

In the diffusion of gas from containers, there is diffusion of gas from inside to the outside
without the metal molecules diffusing into the gas. In these cases the concentration of gas at
the surfaces should be known. The solubility of the gas in the surface determines the
concentration at the surface.

These cases are similar  to conduction through the medium.
In these cases the temperature potential in conduction is replaced by concentration

potential (Ca1 – Ca2) for component A.
The flow rate can be obtained as in the case of conduction.

Na = (Ca1 – Ca2)/R.
Where R is the resistance of diffusion. The resistance in the case of plane wall is

Rp = 
L

D Aab
...(14.7)

For hollow cylindrical configuration.

Rcyl = ln( / )r r
D Lab

2 1
2π

...(14.8)

For hollow sphere, Rsp = 
1

4
1 1
1 2πD r rab

–L
NM

O
QP ...(14.9)

These equations can be derived from the general equation in Cartesian, cylindrical and
spherical coordinate systems.
Example 14.2: Hydrogen stored in a vessel diffuses through the steel wall of 20 mm thickness.
The molar concentration at the inner surface is 2 kg mol/m3. At the other surface it is zero.
Assuming plane wall condition and Dab = 0.26 × 10–12 m2/s, determine the mass of hydrogen
diffused per 1 m2.

Solution:  Na = – Dab
 . 

C C
L

D C C
L

D C
L

a a
ab

a a
ab

a2 1 1 2 1– . – .= =
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= 0.26 × 10–12 × 2
0 02.  = 2.6 × 10–11 kg mol/s m2.

For H2, molecular weight is 2.
∴  mass diffused = 2 × 2.6 × 10–11 = 5.2 × 10–11 kg/m2s.

Example 14.3: Hydrogen gas is maintained at 4 bar and 1 bar on the opposite sides of a
membrane of 0.5 mm thickness. At this temperature the diffusion coefficient is  8.7 × 10–8 m2/s.
The solubility of hydrogen in the material which depends on the pressure is 1.5 × 10–3 m2/s bar.

Determine the mass diffusion rate of hydrogen through the membrane.
Solution: C1 = 1.5 × 10–3 × 4 = 6 × 10–3 kg mol/m3

C2 = 1.5 × 10–3 × 1 = 1.5 × 10–3 kg mol/m3

Considering plane wall condition

R = 
L

DA
=

× ×
0 0005

8 7 10 1
.

. –8

∴ Mole flux = ( – ) .
.

–3 –3
–86 10 5 10 0 0005

8 7 10 1
× ×

× ×
1.

 = 7.83 × 10–7 kg mol/m2s.
 Mass flux = 2 × 7.83 × 10–7 kg/m2s = 1.566 × 10–6 kg/m2s.

14.6 DIFFUSION OF ONE COMPONENT INTO A STATIONARYCOMPONENT
OR UNIDIRECTIONAL DIFFUSION

In this case one of the components diffuses while the other is stationary. For steady conditions
the mass diffused should be absorbed continuously at the boundary. In certain cases this is not
possible. The popular example is water evaporating into air. In this case, as mentioned earlier,
a bulk motion replaces the air tending to accumulate at the interface without being absorbed,
causing an increase in the diffusion rate. The diffusion equation for gases can be derived as
(with ‘a’ as the diffusing medium and P = total pressure) (Refer solved problem 16, page 671 for
derivation)

N
A

P
T

D
x x

P – P
P – P

a a

a
=

F
HG

I
KJR

.
( – )

.
2 1

ln 2

1
...(14.10)

For liquids (considering ‘a’ as diffusing medium)

N
A

D C
x x

C – C
C – C

a a

a
=

F
HG

I
KJ

.
( – )

.
2 1

ln 2

1
...(14.11)

14.7 UNSTEADY DIFFUSION

The equation for one dimensional unsteady diffusion is

∂
∂

=
∂
∂τ

2

2
1C

x D
Ca a. ...(14.12)
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This is similar to heat conduction equation with Ca and D replaced by T and α. All the
solutions for various boundary conditions for unsteady conduction are applicable for mass
transfer, except that the parameters are different. Heisler charts can also be used, properly
recognising the parameters to be used.

Conduction parameters Equivalent Mass Transfer
parameters

T T
T Ti

–
–

∞

∞

C C
C C

a as

ai as

–
–

Fo = ατ/L2 Fom = 
Dt
L2

Bi = 
hL
k Bim = h L

D
m

x
2 ατ

x
D2 τ

Refer solved problem No. 24 for example.

14.8 CONVECTIVE MASS TRANSFER

When a medium deficient in a component flows over a medium having an abundance of the
component, then the component will diffuse into the flowing medium. Diffusion in the opposite
direction will occur if the mass concentration levels of the component are interchanged.

In this case a boundary layer develops and at the interface mass transfer occurs by
molecular diffusion (In heat flow at the interface, heat transfer is by conduction).

Velocity boundary layer is used to determine wall friction. Thermal boundary layer is
used to determine convective heat transfer. Similarly concentration boundary layer is used to
determine convective mass transfer.

The Fig. 14.2 shows the flow of a mixture of components A and B with a specified constant
concentration over a surface rich in component A. A concentration boundary layer develops.
The concentration gradient varies from the surface to the free stream. At the surface the mass
transfer is by diffusion. Convective mass transfer coefficient hm is defined by the equation,
where hm has a unit of m/s.


c Ca

Ca, �
Ca, �

Ca, s


c (x)Free stream

Concentration
boundary

layer

y

x

Mixture
of A + B

u�

Fig. 14.2. Species concentration boundary layer development on a flat plate.
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Mole flow = hm(Cas – Ca∞)
The condition for diffusion at the surface is given by

Mole flow = – Dab 
∂
∂ =

C
y
a

y 0

∴  hm = 
– .

–

D C
y

C C

ab
a

y

as a

∂
∂

=

∞

0 ...(14.13)

In the above case, if mass flow is to be used then

 hm = 
– .

–

D
yab
a

y

as a

∂ρ
∂

=

∞

0

ρ ρ
...(14.14)

Similar to the momentum and energy equation, the mass concentration equation can be
obtained as below:

u u
x

v u
y

v u
y

∂
∂

+ ∂
∂

= ∂
∂

.
2

2

u T
x

v T
y

T
y

∂
∂

+ ∂
∂

= ∂
∂

α
2

2

u C
x

v C
y

D C
y

a a
ab

a∂
∂

+
∂
∂

=
∂
∂

2

2 ...(14.15)

By similarity the solutions for boundary layer thickness for connective mass transfer
can be obtained. This is similar to the heat transfer by analogy. In this case, in the place of
Prandtl number Schmidt number defined by

Sc = v/Dab ...(14.16)
Nondimensionalising the equation leads to the condition as below:

  δm = f(Re, Sc) ...(14.17)
Sh = f(Re, Sc) ...(14.18)

where Sherwood number Sh is defined as

 Sh = h x
D

m

ab
.

In the laminar region flow over plate :

    δmx = 5
1/2

3x
xRe

. –1/Sc ...(14.19)

Shx = 
h x
D
mx

ab
 = 0.332 Rex

1/2 Sc1/3 ...(14.20)

Sh L
m

ab

h L
D

=  = 0.664 Re2
1/2 Sc1/3 ...(14.21)
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In the turbulent region Re > 5 × 105,
δm

 = δv ...(14.22)
Shx = 0.0296 Rex

0.8 Sc1/3 ...(14.23)
 Sh L  = 0.037 ReL

0.8 Sc1/3 ...(14.24)
For flow through tubes,
In the laminar region, Re < 2000
For uniform wall mass concentration,

Sh = 3.66 ...(14.25)
For uniform wall mass flux

Sh = 4.36 ...(14.26)
For turbulent region,

Sh = 0.023 Re0.83 Sc1/3 ...(14.27)

14.9 SIMILARITY BETWEEN HEAT AND MASS TRANSFER

It is possible from similarity between the heat convection equation and mass convection equation
to obtain value of hm. (i.e., called as Lewis number)

h
hm

 = ρCp / Le2/3 ...(14.28)

where Le = α
D ...(14.29)

Many of the correlation in heat transfer can be applied to mass transfer under similar
condition, by replacing Nusselt number by Sherwood number and Prandtl number by Schmidt
number.

SOLVED PROBLEMS

Example 14.01: A tank contains a mixture of CO2 and N2 in the mole proportions of 0.2 and
0.8 at 1 bar and 290 K. It is connected by a duct of sectional area 0.1 m2 to another tank
containing a mixture of CO2 and N2 in the molal proportion of 0.8 and 0.2. The duct is 0.5 m
long. Determine the diffusion of CO2 and N2. D = 0.16 × 10–4 m2/s.
Solution:  This is a situation of equimolal counter diffusion. The partial pressures have to be
used  as the diffusing components are gases. The partial pressures are directly proportional to
the mole concentration. Denoting CO2 by a and N2 by b

Pa1 = 0.2 bar Pa2 = 0.8 bar, Pb1 = 0.8 bar and Pb2 = 0.2 bar
The value of gas constant should be obtained in terms of atm pressure or the pressures

should be used in N/m2 in case the following value is used.
 R = 8315 J/kg mol K.

 
N
A

D
RT

P P
x x

a a a= . –
–

,2 1

2 1
 
N
A

a =
× ×

× ×
0 16 10 0 8 0 2 10

8315 290 0 5
5. ( . – . )

.
,

–4
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N
A

a  = 7.9623 × 10–7 kg mol/m2s, area = 0.1 m2

∴  Na = 7.9623 × 10–8 kg mol/s, ma = 3.5 × 10–6 kg/s of CO2
As the diffusion is equimolal counter diffusion

 Nb = 7.9623 × 10–8 kg mol/s, mb = 2.23 × 10–6 kg/s N2.
Example 14.02: A pipe carrying ammonia at 1 bar and 40°C is vented to a large tank containing
dry air at 1 bar and 40°C to avoid pressure build up. The pipe is 5 mm in dia and 5 m long.
Determine the rate of diffusion of air into the ammonia stream. D = 0.28 × 10–4 m2/s.
Solution: The partial pressure of air at the end of pipe is 1 bar and at the connection with
ammonia tank it is zero.

 Na = 
π ×

× ×
×
×

0 005
4

10 0
5

0 28 10
8315 313

2 5. ( – ) . –4

= 4.225 × 0–12 kg mol/s
or in terms of mass Na × Ma gives 1.263 × 10–10 kg/s.
Example 14.03: A well is 40 m deep and 9 m dia and the atmospheric temperature is 25°C. The
air at the top is having a relative humidity of 50%. Determine the rate of diffusion of water
vapour through the well D = 2.58 × 10–5 m2/s.
Solution: This is a situation of diffusion into a stationary medium. The partial pressure is
equal to saturation pressure at 25°C = 0.03169 bar. At the top RH = 50%.

∴ Partial pressure = 0.5 × 0.03169 bar.
If mass is to be calculated use the gas constant for the gas instead of universal gas

constant.

 ma = A . DP
R T x x

P P
P Pa

b

b( – )
. –

–2 1

2

1
ln

 Ra = 8315
18  J/kgK, T = 298 K., x2 – x1 = 40 m

A = π × 9
4

2
, P = 105 N/m2

∴  ma = π × × × ×
× ×

× ×9
4

2 58 10 18
8315 298 40

10 10 1 0 5 0 03169
10 1 0 03169

2
5

5

5
. . ( – . . )

( – . )

–5
ln

= 4.84 × 10–7 kg/s (low because of large depth).
Example 14.04: Gaseous hydrogen diffuses through a steel wall of 3 mm thickness. The molar
concentration of hydrogen at the interface is 1.5 kg mol/m3 and it is zero on the outer face.
Determine the diffusion rate of hydrogen.
Solution:  D = 0.3 × 10–12 m2/s

In this case we can use the one dimensional diffusion equation.

N = D . C C
L

a a1 2 0 3 10 15
0 003

– . .
.

–12
= × ×

= 1.5 × 10–10 kg mole/ sm2.
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Example 14.05: Benzene liquid at 25°C is in a cylindrical glass jar of 5 cm dia at the bottom.
Air column is 30 cm above the liquid. The air in the jar is stationary. Sufficient movement
exists at the top of remove the diffused vapour so that the partial pressure of vapour at the top
can be assumed as zero. Determine the diffusion rate. The partial pressure at the interface is
0.1 bar.
Solution: D = 0.0962 × 10–4 m2/s R = 8315/78, as C6H6 has a molecular mass of 78.

This is a situation of diffusion into a stationary medium.

ma = A D
R T

P
x x

P P
P Pa

a

a

. .
–

ln –
–2 1

1

2

∴ ma = π ×
×

× ×
×

×
0 05
4

10 0 0962 10
0 3

78
8315 298

10
0 9

2 5. .
.

. .
.

–4
ln

 = 2.088 × 10–8 kg/s.
Example 14.06: In a solar pond salt is placed at the bottom of the pond 1.5 m deep. The surface
is flushed constantly so that the concentration of salt at the top layer is zero. The salt concentration
at the bottom layer is 5 kg mole/m3. Determine the rate at which salt is washed off at the top at
steady state conditions per m2.  D = 1.24 × 10–9 m2/s.
Solution: This is also diffusion of one component into a stationary component.

 N = D
L

C C C
C C

ab a

a
. –

–
ln 1

2

 C = 1000/18 kg mole/m3 (This is approximate), Ca1 = 0

∴  N = 
124 10

15
1000
18

1000 18
1000
18

5

.
.

. ln ( / )

–

–9× × F
HG
I
KJ

 = 4.33 × 10–9 mole/m2s, over a month, 0.0113 kg mole/m2

mass = 58.5 × 0.0113 = 0.656 kg/month/m2.
Example 14.07:  Air at 25°C and 50% RH flows over water surface measuring 12 m × 6 m at a
velocity of 2 m/s. Determine the water loss per day considering flow direction is along the 12 m
side. DAB = 0.26 × 10–4 m2/s, Sc = 0.60, ν = 15.7 × 10–6 m2/s.
Solution: The density of water vapour at 25°C at saturated condition, from steam tables =
0.023 kg/m3

Re = U L∞

ν
 = 2 12

15 7 10
×
×. –6  = 1.53 × 106 ∴ flow is turbulent

 Sh  = (0.037 Re0.8 – 871) Sc0.333

 =  {0.037 × (1.53 × 106)0.8 – 871} 0.60.333 = 2032.
The mass transfer coefficient

 hm = Sh 
D
L
abF
HG
I
KJ  = 2032 × 0 26 10

12
. –4×  = 4.1 × 10–3 m/s
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Mass transfer rate = A hm(ρaw – ρam)
= 12 × 6 × 4.4 × 10–3 (0.023 – 0.023 × 0.5) × 3600 × 24 = 314.8 kg/day.

Example 14.08: Air at 25°C and 20% RH flows through a pipe of 25 mm ID with a velocity of
5.2 m/s. The inside surface is constantly wetted with water and a thin water film is maintained
throughout. Determine the water evaporated per m2 surface area.
Solution: From tables  v = 15.7 × 10–6 m2/s, Sc = 0.60

Dab = 0.26 × 10–4 m2/s.
Density of water vapour at saturation = 0.023 kg/m3

Re = 5 2 0 025
15 7 10 6

. .
.

×
× −  = 8280 ∴ Turbulent

Sh = 0.023 . Re0.83 Sc1/3 = 0.023 × 82800.83 × 0.61/3 = 34.65

hm = 34 65 0 26 10
0 025

. .
.

–4× ×  = 0.036 m/s

∴  mass flow = 0.036 × (0.023 – 0.023 × 0.20) kg/s m2

= 6.22 × 10–4 kg/m2s or 4.886 × 10–5 kg/s per m length
(1 m2 will equal 1/π × 0.025 = 12.73 m length of pipe).

Example 14.09: A thermometer whose bulb is covered by a wetted cloth reads 20°C when dry
air is blown over it. Determine the temperature of the air.
Solution: Heat is removed from the air by convection and is used for the evaporation of water
over the bulb.

The energy balance is obtained as heat transfer by convection = heat used for the
evaporation

h A(Ta – Tt) = m . hfg
where h is the convection coefficient, A is the surface area, Ta

 is the temperature of air, Tt is
the thermometer reading, m is the rate of evaporation and hfg is the enthalpy of evaporation.

The mass evaporated is given by
hm A(Ct – Ca)

where hm is the mass transfer coefficient, Ct
 is the concentration of water vapour in air over

the thermometer surface and Ca is the concentration of water vapour in air.
In this case  Ca = 0
∴ h(Ta – Tt) = hm Ct hfg
The air over the thermometer is saturated at 20°C
∴ Ct

 = 1/57.791 kg/m3 (steam tables) hfg = 2454.1 kJ/kg

As (h/hm) = ρ . cp α
D
F
HG
I
KJ

2 3/

α
D

Sc
Pr

=  = 0.790, ρ = 1.205 kg/m3.

From property tables for air
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α = 0.2142 × 10–4, D = 2.712 × 10–5

h
hm

 = 1.205 × 1005 × 
0 2142 10
2 712 10

0.666
.
.

–4

–5
×

×
F
HG

I
KJ  = 1034.65

∴ Ta = Tt + 1
h h

C h
m

t fg/
F
HG
I
KJ  = 20 + 

1
1034 65

1
57 791. .

×  × 2.4541 × 106

= 61°C.
This can be checked using psychrometric chart moving along 20°C wet bulb line going to

zero specific humidity.
Example 14.10: If air at 30°C flows over a wet bulb thermometer, which reads 22°C, determine
the relative humidity of the air.
Solution: The property values for air are read at 26°C (mean temperature, usual units)

ρ = 1.181   c = 1005,  α = 0.2228 × 10–4 Dab = 2.583 × 10–5 m2/s
At 22°C Ct = 1/51.447 = 0.01944, hfg = 2449.4 × 103 J/kg
A heat balance as in example 14.09 will yield

 Ta – Tt = h
h

C C hm
t a fg( – ) ...(A)

h
h

c
Dm

= FHG
I
KJρ α 2 3/

 = 1.181 × 1005 × 
0 2228 10
2 583 10

0.666
.
.

–4

–5
×

×
F
HG

I
KJ = 1075.5

Substituting in A

 (30 – 22) = 1
1075 5

2 4494 10 0 01946
.

. ( . – )× × Ca ∴ Ca = 0.01593

Ct = at saturation at 30°C = 1
32 894.  = 0.0304

∴ RH = 0.01593/0.0304 = 0.524
or  RH = 52.4%

From Psychrometric chart 50% checks reasonably.
(51.447 and 32.894 are specific volumes of steam at 22°C and 30°C used to calculate Ct).

Example 14.11: Determine the value of diffusion coefficient for the given pairs at a total pressure
of 101.3 kPa. (i) Hydrogen and air at 0°C, (ii) Water and air at 8°C, and (iii) Oxygen and air at
0°C. (Note. Molecular volumes should be specified)
Solution: Molecular volume V for some gases are tabulated below :

Gas V Gas V

Air 29.9 O2 7.4
CO2 34.0 O2 with S 8.3
H2 14.3 S 25.6
Nitrogen 15.6 Water 18.8
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For this problem the required values are given below :

Gas Volume, V Molecular weight, M

Air 29.9 28.9
Hydrogen 14.3 2.0
Oxygen 7.4 32.0
Water 18.8 18.0

The applicable equation (from references)

Dab = {0.04357 × T15) × [( / ) ( / )]1 1 0.5 1/3 1/3 2
M M P V Va b a b+ × +RST

UVWe j  m2/s

Note. Pressure P in N/m2 and temperature T in K.
(i) Hydrogen and air at 0°C or 273 K

Dab
 = {(0.04357 × 2731.5) × [(1/2) + (1/28.9)]0.5}/ {101.3 × 103

× (14.31/3 + 29.91/3)2} m2/s
= 46.36 × 10–6 m2/s [Data Book value 54.7 × 10–6]

(ii) Water and air at 8°C or 281 K
Dab = {(0.04357 × 2811.5) × [(1/18) + (1/28.9)]0.5}/ {101.3 × 103

× (18.81/3 + 29.91/3)2} m2/s
= 18.32 × 10–6 m2/s [Data Book value: 20.5 × 10–6]

(iii) Oxygen and air at 0°C or 273 K
Dab = {(0.04357 × 2731.5) × [(1/32) + (1/28.9)]0.5}/ {101.3 × 103

× (7.41/3 + 29.91/3)2} m2/s
= 19.5 × 10–6 m2/s [Data Book value : 15.3 × 10–6]

Example 14.12: Estimate the value of diffusivity for ethanol vapour (C2H5OH) diffusing into
air at 0°C.
Solution: Diffusivity is determined also in terms of collision function and energy of molecular
attraction. In this method the equation to be used for the determination of diffusivity Dab is,

Dab = {10–4 (1.084 – 0.249 × A) × T1.5 × A}/{P ×r2 × B}
where  A = {(1/Ma) + (1/Mb)}0.5

 B = collision function, f(kT/εab), available from charts,
k = Boltzmann constant,

εab = energy of molecular attraction = (εa × εb)0.5

 r = molecular separation at collision = (ra + rb)/2, in nm,
M = molecular weight, P = total pressure in Pa, (N/m2)
T = temperature in K

The value of r is determined from molecular volume. (k/ε) is determined using boiling
temperature.

For the problem in hand T = 273 K, P = 1.013 × 105 Pa, Ma = 46,
Mb = 29, A = 0.237, r = 0.416, B = 0.595 (reference)
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Note. Obtaining values for r and B for various combination of materials is the crux of the problem.
Substituting the above values

Dab = {10–4(1.084 – 0.249 × 0.237) × 2731.5 × 0.237}/
{1.013 × 105 × 0.4162 × 0.595}

= 10.5 × 10–6 m2/s, (tables value = 10.2 × 10–6 m2/s).
Example 14.13: Estimate the value of diffusivity of mannitol liquid (C6H14O6) for diffusion in
dilute solution of water at 20°C.
Solution: The equation applicable for diffusivity of liquid a in very dilute solution in solvent b
is (references)

 Dab = 117.3 × 10–18 (φ × Mb)0.5 × T/{µ × Va
0.6]

where µ = solution visocosity in kg/ms,
φ = association factor for solvent, [2.26 for water, 1.9 for methanol, 1.5 for ethanol,

 1.0 for benzene, ethyl, ether]
va = solute molal volume, values rather scarce to obtain,

The values of parameters for this problem are
va = 0.185, Mb = 18, φ = 2.26, µ = 1.005 × 10–3 kg/ms,

Substituting the values
Dab = 117.3 × 10–18 × (2.26 × 18)0.5 × 293/{1.005 × 10–3 × 0.1850.6}

= 0.601 × 10–9 m2/s , [tables value 0.56 × 10–9 m2/s]
Example 14.14: Determine the diffusivity of liquid mannitol in dilute water solution at
70°C(C6H14O6).
Solution: Examining the various parameters in the equation in problem 14.13 only the viscosity
is found to be dependent on temperature. So the value of diffusivity at 20°C is used to solve
this problem.

(Dab1
 × µ1/T1) = (Dab2

 × µ2/T2)
Substituting the values, at 70°C = 0.4061 × 10–3 kg/ms

(Dab2
 × 0.4061 × 10–3/343) = (0.601 × 10–9 × 1.005 × 10–3/293)

Dab2 = 1.741 × 10–9 m2/s, [tables value 1.56 × 10–9 m2/s]
Example 14.15: Derive the expression for equimolal counter diffusion of gases a and b.
Solution: Fick’s law applied to one dimensional steady state diffusion gives the mass flux of a as

ma/A = – Dab × (dCa/dx) = – Dab(dρa/dx) ...(A)
Ca = mass concentration of component a per unit volume in kg/m3 or the density ρa of

the particular component, Dab is the diffusion coefficient and A is the area and x is the diffusion
direction.

For gases  ρ = P/RT, R = gas constant
At constant temperature, dρa = [1(Ra × T)dPa
Substituting in equation A

(ma/A) = [– Dab/(Ra × T)] × (dPa/dx)
Integrating between sections x1 and x2

(ma/A) = [– Dab/(Ra × T)] × [(Pa1 – Pa2)/(x2 – x1)
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Note. In place of Ra, the ratio
universal gas constant/molecular weight of a, may be used.

If number of moles diffusing is needed then Na = ma/Ma
 Na/A = [Dab/(Ma × Ra × T) × (Pa1 – Pa2)/(x2 – x1)]

Note. Na = – NB to maintain uniform pressure.
  Ma × Ra = universal gas constant = 8315 J/kg K.

Example 14.16: Derive an expression for the diffusion of one component into a non diffusing
(stationary) component.
Solution: Refer Fig. P.14.16 : Let w be the diffusing component and a is the non-diffusing
(stationery) component.

The diffusion of component a into w is given by
ma = [– Daw × A/(Ra × T)] × (dPa /dx)

But this material diffusing is not absorbed into component w. So a bulk flow of the
mixture is necessary to balance the diffusion of component a. Let the bulk flow velocity be u.

ρa × A × u = – [Pa/(Ra × T)] × A × u
Solving for u from the above two equations,

u = [Daw/Pa] × [dPa/dx]
Mass diffusion of component w

mwd = {(– Dwa × A)/(Rw × T} × {dPw/dx} ...(A)
Flow of component w with the bulk flow

ρw × A × u = {Pw/(Rw × T)} × A × u

P

Bulk flow, a

W

Pa

Pw

w

x1 x2

a

Fig. P.14.16

Substituting for u, the flow of w with bulk flow
mwb = {Pw × A × Dwa)/(Rw × T × Pa)} × {dPa/dx} ...(B)

Total mass transport of component mw total = mwd + mwb
mw total = {(– Dwa × A)/Rw × T} × {dPw/dx} + {(Pw × A × Dwa)/(Rw × T × Pa)}

× {dPa /dx}
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As the total pressure P = Pa + Pw is a constant
we get dPa/dx = – dPw/dx

mtotal = {(– Dwa × A)/(Rw × T)} × {1 + Pw/Pa)} × (dPw/dx)
= {(– Dwa × A)/(Rw × T)} {P/(P – Pw)} × (dPw/dx)

Cross multiplying and integrating (note Dwa = Daw)

m dxz  = {– Dwa × A × P)/(Rw × T)} z (dPw)/(P – Pw)

mwtotal = {(– D × A × P)/[(Rw × T) × (x2 – x1)]} × ln[P – Pw2)/(P – Pw1)]
As  P – Pw2  = Pa2 and P – Pw1 = Pa1
ln (Pa2/Pa1) can be used in place of ln[(P – Pw2)/(P – Pw1)]

Example 14.17: Oxygen diffuses through a layer of 3 mm thickness of a mixture of hydrogen
and methane in equal volumes. The total pressure is 1 bar and the temperature is 0°C. The
partial pressure of oxygen at the two surfaces are 10000 Pa and 5000 Pa. Determine the rate of
diffusion of oxygen. The diffusivity of O2 into H2 is 69.9 × 10–6 m2/s and the diffusivity of oxygen
into methane is 18.6 × 10–6 m2/s.
Solution: The diffusivity into a mixture is obtained by the relation

(1/Dtotal) = (C1/D1) + (C2 /D2)
where C is the volume fraction or molal fraction.

Substituting the values
1/Dtotal = (0.5/69.9 × 10–6) + (0.5/18.6 × 10–6)

Dtotal = 29.38 × 10–6 m2/s
The diffusion rate of oxygen is obtained by

(ma/A) = [– Dab/(Ra × T)] × [(Pa – Pa2)/(x2 – x1)]
Substituting the values

(ma/A) = [(– 29.38 × 10–6 × 32)/(8315 × 273)] × [(5000 × 10000)/(0.003)]
= 0.746 × 10–3 kg/sm2 or 23.32 × 10–6 kg mole/sm2

Example 14.18: Ethyl alcohol (C2H6O) is at the bottom of a glass jar of 30 mm dia at a depth
of 80 mm from the top. Air flows at the top and the concentration of alcohol in the air is zero.
The total pressure is 1.013 bar and the temperature is 25°C. The partial pressure of alcohol at
this temperature is 0.08 bar. Determine the diffusion rate.
Solution: Diffusion coefficient, D = 11.9 × 10–6 m2/s. Molecular weight = 46, Rb = 8315/46
= 180.76 J/kg K.

This is a situation of one component b (alcohol) diffusing into a stationary component
(air).

 mb = {(D × P × A)/[Rb × T) × (x1 – x2)] {ln(P – Pb2)/(P – Pb1)}
Pb2 = 0, (Top surface), Pb1 = 0.08 bar (interface)
 mb = {11.9 × 10–6 × 1.013 × 105 × π × 0.0152)/

(180.76 × 288 × 0.08)} × {ln(1.013 – 0.0)/(1.013 – 0.08)]}
= 16.83 × 10–9 kg/s or 60.59 × 10–6 kg/hr.
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Example 14.19: Liquid water diffuses steadily into stationary liquid ethanol layer of 8 mm
thickness at 16°C. The concentration of water at the interface is 2 kg mole/m3. At the top of the
ethanol layer the concentration is 0.5 kg mol/m3. Determine the rate of diffusion per m2. M =
46, D = 0.9 × 10–9 m2/s. The total concentration at the interface is 19.6 kgmole/m3.
Solution: This is a situation where a liquid component (water) diffuses into another stationary
liquid component (ethanol).

The equation applicable is
Na/A = [(D × C)/(x2 – x1) × {ln[C – Ca2)/(C – Ca1)]}

= {(9 × 10–10 × 19.6)/0.008} × {ln(19.6 – 0.5)/(19.6 – 2)]}
= 0.18 × 10–6 kg mol/s m2, Multiplying by molecular weight

ma/A = 3.24 × 10–6 kg/sm2 or 0.03 kg/m2 hr.
Example 14.20: Acetic acid diffuses into a nondiffusing film of water of 1 mm thickness. The
concentration of acid on the opposite sides of the film are 9 and 3% of acid by weight. The
diffusivity at this temperature is 0.95 × 10–9 m2/s. Determine the rate of diffusion of acid. The
molecular weight of the acid is 60. The density of the solution with 9% acid is 1012 kg/m3 and
for the 3% solution it is 1003.2 kg/m3.
Solution: The equation applicable is

Na/A = [(D × C)/(x2 – x1)] × {ln[(C – Ca2)/(C – Ca1)]}
Ca1 = (0.09/60)/{(0.09/60) + (0.91/18)} = 0.0288 (mole fraction)

C – Ca1 = 0.9712.
Considering 1 kg of solution

the number of moles = (0.09/60) + (0.91/18) = 0.052
Mmixture = 1/0.052 = 19.21

Number of moles per m3 = 1012/19.21 = 52.7 kg mol/m3.
Ca2 = (0.03/60)/{(0.03/60) + (0.97/18)} = 0.0092

 C – Ca2 = 0.9908
Considering 1 kg of solution the number of moles

= (0.03/60) + (0.97/18) = 0.0543
  Mmixture = 1/0.0543 = 18.4,

Number of moles per m3 = 1003.2/18.4 = 54.5 kg mol/m3.
Average mole concentration, C = (52.7 + 54.2)/2 = 53.6
Substituting the values

Na/A = [(0.95 × 10–9 × 53.6)/(0.001)] × {In(0.9908/0.9712}
= 1.07 × 10–6 kg/m2s.

Example 14.21: A steel tank storing hydrogen has a wall thickness of 12 mm. Determine the
leakage rate of hydrogen through the wall by diffusion. D = 0.26 × 10–12 m2/s. At the inner
surface the molar concentration of Hydrogen is 1.2 kg mole/m3. At the outside the concentration
is 0.2 kg mole/m3.
Solution: Hydrogen diffuses through the steel plate. The tank wall is considered as a flat plate.

 Na/A = – D(Ca2 – Ca1) (x2 – x1) = 0.26 × 10–12(1.2 – 0.2)/0.012
= 21.67 × 10–12 kg mol/sm2

ma = 43.33 × 10–12 kg/sm2 or 1.37 g/m2 year.
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Example 14.22: A spherical tank of 0.18 m radius made of fused silica has a wall thickness of
2.5 mm. It is originally filled with helium at 6 bar gauge and 0°C. Determine the rate of pressure
drop with time at this condition due to gas diffusion.

D = 0.04 × 10–12 m2/s, the density of gas at the solid surface is given by 18 × 10–9 kg/m3

Pa. (also termed solubility)
Solution: The wall is approximated as a flat plate.

Gas mass in the container = m = (PV/RT)
As the pressure drop due to diffusion is slow, constant temperature can be assumed. As

the vessel is rigid constant volume can be assumed. Hence
 dm/dτ = (V/RT) × (dp/dτ)

This rate of change of mass will equal the mass diffusing through the wall of thickness
L. As ρa2 is equal to zero.

 dm/dτ = A × Dab × ρa1/L
where ρa1 is the density of the gas within the solid at the interface

(V/RT) × (dp/dτ) = (A × Dab/L) × ρa1
or  dp/dτ = {(R × T × A × Dab)/(V × L) × ρ1

 R = 8315/4, T = 273K, L = 0.0025 m,
A/V = (4r2)/{(4/3)r2} = 3/r = 3/0.18

 ρa = solubility × (Pi – Po) = 18 × 10–9 × 6 × 105 kg/m3

Substituting
dp/dτ = {8315 × 273 × 3 × 0.04 × 10–12 × 18 × 10–9 × 6 × 105}/

{4 × 0.0025 × 0.18)}
= 1.634 × 10–6 N/m2 per second.

This rate will decrease with time as the pressure drops.
Example 14.23: Oxygen gas is maintained at a pressure of 4 bar and 1.1 bar on opposite sides
of a membrane at 25°C. The plastic membrane is 0.4 mm thick. D = 0.21 × 10–9 m2/s. The
solubility of oxygen in the membrane material is 9.984 × 10–7 kg/m3 Pa. Determine the mass
flow of oxygen through the membrane.
Solution: This is a case of diffusion through a stationary medium.

 m/A = D × M × (ρa1 – ρa2)L
= 0.21 × 10–9 × 32 × 9.984 × 10–7 × (4 – 1.1) × 105/0.0004
= 4.864 × 10–6 kg/s.

This solution is an estimate only as the concentration for diffusion for gas to membrane
and membrane to gas are based on different volumes namely unit volume of membrane and
unit volume of gas.
Example 14.24: A thick layer of water stands still over a slab of sodium chloride salt. The salt
diffuses into the water and the concentration of salt at the slab water interface is constant at
380 kg/m3. The water is initially pure. Determine the salt concentration at a distance of 10 mm
from the interface after 24 hours. Also determine the amount of  salt diffused into the water
during this time and the thickness of salt dissolved.
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Solution: D = 1.2 × 10–9 m2/s, density of salt = 2165 kg/m3.
This is a transient diffusion problem. As the salt solution is denser near the salt layer,

no bulk flow will occur. The density gradient will maintain a stable layer of water.
The method of solution is similar to that for transient conduction in semi-infinite solid

with surface temperature raised and maintained. Let a denote salt.
 {(ρa(x, τ) – ρas)/(ρai – ρas)} = erf{x/2(D × τ)0.5}

where ρa(x, τ) is the required value of salt concentration at x at time τ, ρas is the concentration at
the interface, and ρai is the initial concentration. In this case ρai is zero and so

   ρa(x, τ) = ρas × {1 – erf[x/2(D × τ)0.5]}
= 380 × {1 – erf[0.01/2(1.2 × 10–9 × 24 × 3600)0.5]}
= 380 × {1 – erf(0.491)} = 380 × {1 – 0.52048}
= 182.22 kg/m3

The diffusion rate at time τ at the interface is given by ρas × {D/πτ}0.5

The total mass m diffused up to time can be obtained by integrating this with respect to
time from zero to τ.

m = ρas × (D/π)0.5 
0

5τ
τ τz –0. d

= 2 × ρas{D × τ/π}0.5, substituting the values
 m = 2 × 380 × {1.2 × 10–9 × 24 × 3600/π}0.5 = 4.366 kg/m2

The thickness of salt that will be dissolved can be determined by dividing this quantity
by the density of salt.

Thickness dissolved,  L = 4.366/2165 = 0.0020166 m = 2.0166 mm.
Example 14.25: Pure water layer of 10 mm thickness stands over a salt slab. Determine the
salt concentration at the top after 12 hours. The concentration at the salt-water interface is
constant at 380 kg/m3. Diffusion coefficient D = 1.2 × 10–9 m2/s.
Solution: This process can be modeled similar to transient conduction in infinite slab with
surface temperature raised suddenly and maintained constant at this value, i.e., h = ∞.

The parameters are Dτ/L2 for constant surface temperature h = ∞. The layer at 0.01 m
from the interface can be considered as the center plane of the slab as there is no mass transfer
at this plane.

Dτ/L2 = 1.2 × 10–9 × 12 × 3600/0.012 = 0.5184
Reading from Heisler chart against this value (ref. example 6.7, Fig. 13(b), Chapter 6)
{ρa(0, τ) – ρas)/(ρai – ρas)} = 0.36

Substituting, ρai = 0.0 and ρas = 380
ρa(0, τ) = 243.2 kg/m3

The concentration will increase with time.
Example 14.26: Water flows down on the surface of a vertical plate at a rate of 0.05 kg/s over
a width of 1m. The water film is exposed to pure carbon dioxide. The pressure is 1.013 bar and
the temperature is 25°C. Water is essentially CO2 free initially. Determine the rate of absorption
of CO2. The molal concentration at this condition for CO2 in water at the surface is 0.0336 kgmol/
m3 of solution. D = 1.96 × 10–9 m2/s, solution density = 998 kg/m3, µ = 0.894 × 10–3 kg/ms,
G = 0.05 kg/ms, L = 1 m. The notation for convective mass transfer coefficient is hm.
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Solution: This is a situation where a flowing film of liquid absorbs the surrounding gas. In
this case first the film thickness has to be determined. This is done assuming a velocity profile
satisfying the boundary conditions. This results in the expression for δ as

 δ = {(3 × µ × G)/(ρ2 × g)}1/3 ...(A)
Reynolds number is given by Re = (4 × G)/µ ...(B)
The average value of convective mass transfer coefficient is

hm = {(6 × Dab × G)/(π × ρ × δ × L)}0.5 ...(C)
The average flow velocity in the film is obtained by

u = (G/δ × ρ) ...(D)
The bulk concentration in the film varies along the flow and so an average bulk

concentration is determined as the log-mean-difference. Let the bulk mean concentration at
entry be Ca0 and at L be CaL and at the film surface be Cai (at saturation).

Then the log mean concentration can be obtained as
{(Cai – Ca)}log mean = {(Cai – Ca0) – (Cai – CaL)/

ln{Cai – Cao)/(Cai – CaL)} ...(E)
The total mole diffused up  to length L can also be obtained by

Na/A = hm × (Cai
 – Ca)log mean ...(F)

The same can also be obtained by
Na/A = u × δ × (CaL – Cao) ...(H)

Using equations E, F and H, CaL can be solved by trial. Then equations F or H can be
used to determine the mole or mass diffused. For this problem

 δ = {(3 × µ × G)/(ρ2 × g)}1/3

= {(3 × 0.894 × 10–3 × 0.05)/(9982 × 9.81)}1/3

= 0.2396 × 10–3 m.
Re = (4 × 0.05)/0.894 × 10–3 = 203

Equation C can be used to calculate hm.
 hm = {(6 × Dab × G)/(π × ρ × δ  × L)}0.5

= {(6 × 1.96 × 10–9 × 0.05)/(π × 998 × 0.2396 × 10–3 × 1)}0.5

= 27.98 × 10–6 m/s
u = 0.05/(998 × 0.2396 × 10–3) = 0.209 m/s

Using equation E and F
0.209 × 0.2396 × 10–3 × (CaL – 0) = (27.98 × 10–6) × {(0.0336 – 0) – (0.0336 – CaL)}/

ln{(0.0336 – 0)/(0.0336 – CaL)}
Solving by trial CaL= 0.01438 kg mol/m3

Substituting in
 Na/A = u × δ × (CaL – Ca0)
Na/A = 0.209 × 0.2396 × 10–3 × (0.01438 – 0.0)

= 0.72 × 10–6 kg mol/s per m width.
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Example 14.27: Dry air at 30°C flows over a plate also at 30°C with the plate surface constantly
covered with a water film. The velocity of flow is 6 m/s. The plate is 1 m long. Determine the
average convective  mass transfer coefficient and also the mass of water evaporated per second.
Solution: The properties of air at 30°C are read as ρ = 1.165 kg/m3, kinematic viscosity = 16.0
× 10–6 m2/s, diffusion coefficient D = 2.6 × 10–6 m2/s, Sc = v/D = 0.615. The density of water
vapour at 30°C = 1/32.9 kg/m3, the density of water vapour in dry air is zero.

Re = (6 × 1)/16 × 10–6 = 3.75 × 105 < 5 × 105. So laminar.
The average value of Sherwood number is given by

 Sh = 0.664 × Re0.5 × Sc0.333 = 345.86
 Sh = hm × L/D, so hm = 8.99 × 10–3 m/s.

Mass of water evaporated per second,
 m = A × hm{ρa1 – ρa2} = 1 × 8.99 × 10–3/32.9

= 0.2733 × 10–3 kg/s 1 kg/hr.
Example 14.28: Pure water at 20°C flows over a slab of salt at a velocity of 1 m/s. At the
interface the concentration of salt is 380 kg/m3. Determine over a length of 1 m the average
convection coefficient for mass transfer and also the rate of diffusion of salt into the water.
Assume turbulent flow from the leading edge. D = 1.2 × 10–9 m2/s, density of water = 1000 kg/m3,
kinematic viscosity = 1.006 × 10–6 m2/s, Sc = 1.0006 × 10–6/1.2 × 10–9 = 838.33.
Solution: Re = 1 × 1/1.006 × 10–6 = 0.994 × 106. Flow is turbulent.

The average value of Sherwood number is given by
 Sh = 0.0228 × Re0.8 × Sc0.333 = 17052 = hm × L/D

Solving   hm = 20.46 × 10–6 m/s
m = hm × A × (ρa1 – ρa2), as ρa2 = 0.0

= 20.46 × 10–6 × 1 × 380 = 7.776 × 10–3 kg/s m2 or 28/kg/hr/m2.
Example 14.29: A square plate of side 1 m has one of its sides coated with napthalene and
stands vertically in still air at 53°C. Determine diffusion rate. M = 128, D = 6.11 × 10–6 m2/s,
kinematic visocity = 18.8 × 10–6, Sc = 3.077. The vapour pressure at 53°C is 1.333 × 10–3 bar. Rv
= 8315/128 = 64.91 J/kg K, T = 53 + 273 = 326 K.
Solution: Napthalene diffusing into the air makes the air denser near the surface and creates
a downward flow. This problem hence can be treated as a natural convection problem. For
mass transfer the equations applicable will be similar to those in natural convection heat
transfer. Grashof number for mass transfer is given by

 Grm = {g × (ρw – ρ∞) × L3}/{(ρ∞ × v2)}
ρw = density of the mixture at the wall surface.
ρ∞ = density of the mixture well removed from the surface.

Density of the mixture near the surface = density of air + density of vapour
= {Pa/(Ra × T)} + {Pv/(Rv × T)}

Pa = 1.013 × 105 N/m2, Pv = 1.333 × 102 N/m2,
 ρv = {(1.013 – 0.001333) × 105/(326 × 287)} + {0.001333 × 105/(326 × 64.91)}

= 1.0812 + 6.299 × 10–3 = 1.0875744 kg/m3

ρ∞ = {1.013 + 105/(326 × 287)} = 1.0827045 kg/m3
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 Grm = {9.81 × (1.0875744 – 1.827045) × 13}/{1.0827045 × (18.8 × 10–6)2}
= 0.12484 × 109

The equation applicable for this range is
 Sh = 0.555 × (Grm × Sc)0.25

= 0.555 ×(0.12484 × 109 × 3.077)0.25 = 77.7
hm = 77.7 × 6.11 × 10–6/1.0 = 0.4747 × 10–3 m/s
 m = 0.4747 × 10–3 × 6.29 × 10–3 = 2.9861 × 10–6 kg/s m2.

Example 14.30: Derive an expression for the surface temperature of water in evaporative cooling.
Solution: In evaporative cooling unsaturated air flowing over a wetted surface causes
evaporation of water so that the air will become saturated. Part of the sensible heat of air is
utilised for the enthalpy of evaporation and the air will get cooled in the process. Energy
balance for the process yields.

Heat transferred to the film of water by convection = ethalpy of evaporation of water
h × (T∞ – Ts) = hfg × hm × (ρs – ρ∞)

where  ρs and ρ∞ are the mass concentrations of water vapour at the film surface and in the
free steam.

 T∞ – Ts = {(hfg × hm)/h} × (ρs – ρ∞), as ρ = P/(R × T),
 T∞ – Ts = {(hfg × hm)/(h × R)} × {(Ps/Ts) – (P∞/T∞)}

hm/h = ρ × c × Le0.6667 and Le = α/D = Sc/Pr,
ρa × T = Pa/Ra

 T∞ – Ts = {(hfg × Ra)/(Rw × Pa × c × Le0.6667) × {Ps – P∞}
Ps and P∞ are obtained from the temperature values. A trial solution is necessary when moist
air is involved. If dry air is used P∞ will be zero and direct solution for Ts is obtained.
Example 14.31: The outlet of a desert cooler is 28°C and 80% RH. In the inlet air the partial
pressure of water vapour is 0.18 bar. Estimate the outside air temperature and the relative humidity.
Solution: D = 27.12 × 10–6 m2/s, α = 21.42 × 10–6 m2/s.

Saturation pressure of water at 28°C, P5 = 0.03782 bar.
The equation applicable is

 T∞ – Ts = {(hfg × Ra)/(Rw × ρ × c × Le0.6667)} × {Ps – P∞}
Ra/Rw = Mw/Ma = 18/28.9, hfg = 2435 × 103 J/kg

Le = α/D = 21.42 × 10–6/27.12 × 10–6 = 0.79, ρ = 1.205 kg/m3,
T∞ = 28 + {18 × 2435 × 103} × {0.03782 – 0.018}/

{28.9 × 1005 × 1.205 × (0.790.6667)} = 46°C
The saturation pressure at 46°C is 0.1009 bar. At the inlet
Relative Humidity = 0.018/0.1009 = 0.1784 or 17.84%.

Example 14.32: The convective heat transfer coefficient on a body exposed to air flow has a
value of 240 W/m2 K. If a film of water is maintained on the surface under similar conditions of
flow determine the value of convective mass transfer coefficient.
Solution: D = 112 × 10–6 m2/s, α = 21.4 × 10–6 m2/s, ρ = 1.205 kg/m3.

(h/hm) = ρ × c × Le0.6667, Le = α/D = 0.191
hm = 240/(1.205 × 1005 × 0.1910.6667) = 0.5974 m/s.
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Example 14.33: A one half scale model tested under heat transfer conditions is used to predict
the mass transfer performance of an object the plastic coating on which is to be dried. In the
heat transfer test the model was maintained at 100°C with air flow at 0°C.

The velocity of flow was 120 m/s. The temperature at a point near the model was measured
as 80°C.

In the drying process both the object and the air will be at 50°C and flow velocity is to be
60 m/s. In both model testing and drying the air pressure will be 1 bar. The molecular weight
of the plastic is 82 and the vapour pressure of the plastic at 50°C is 0.0323 bar. The diffusivity
of the vapour in air is 26 × 10–6 m2/s. The freestream does not contain any vapour. At 50°C
α = 25.72 × 10–6 m2/s. ρ = 1.093 kg/m3.

(i) Estimate the partial pressure of the vapor and the concentration that can be expected
at the corresponding point on the object where the temperature was measured on the model.

(ii) If the convection heat transfer coefficient in the model test was 20 W/m2 K estimate
mass flux in the drying process.
Solution: The mean temperature in both case is 50°C. The product of length and velocity is
also the same in both cases. Hence the value of Reynolds number will be same. So the
temperature and concentration profiles will be similar. The concentration and partial pressure
will be proportional to each other as the temperature is the same.

 {(Pay – Pas)/(Pa∞ – Pas)} = {(T – Ts)/(T∞ – Ts)}
 {(Pay – 0.0323)/(0.0 – 0.0323)} = {(80 – 100)/(0.0 – 100)}

Solving,  Pay = 0.02584 bar.
Mass concentration

   P/(R × T) = (82 × 0.02584 × 105)/(8315 × 323) = 0.07889 kg.m3

Mole concentration = 0.07889/82 = 0.9621 × 10–3 kg mol/m3.
  h/hm = ρ × c × Le0.6667 = 1090.63, hm = (20/1090.63) = 0.018338 m/s

 m = hm × A × ρas = 0.018338 × 0.0323 × 105 × 82/8315 = 0.5841 kg/m2.
Example 14.34: The partial pressure of diffusing vapour over a surface under steady  state of
mass transfer was measured and plotted against height above the surface. At the surface the
partial pressure was 0.1 bar and in the free stream the partial pressure was 0.02 bar. The
tangent to the concentration profile at the surface meets the x-axis at 2.2 mm. Determine the
convective mass transfer coefficient D = 28.8 × 10–6 m2/s.
Solution: The boundary layer concept leads to the condition that

mass convected = mass diffusion at the interface
mass convected = hmx × (ρas – ρa∞)

mass diffusing the surface = – Dab(dρa/dy)y=0
hmx × (ρas

 – ρa∞) = – Dab(dρa/dy)y=0
As  ρ = P/(R × T), dρ = (1/R × T)dP,
hmx × (Pas – Pa∞) = – Dab(dPa/dy)y=0

hmx = – Dab(dPa/dy)y=0/(Pas – Pa∞)
(dPa/dy)y=0 = (0.0 – 0.1)/(0.0022 – 0.0) = – 45.45 bar/m

hm = (– 28.8 × 10–3 × – 45.45)/(0.1 – 0.02) = 0.016362 m/s.
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EXERCISE PROBLEMS

14.01 Two ducts are carrying a mixture of Nitrogen and Ammonia one having ammonia 80% and N2
20% and the other 80% N2 and 20% ammonia at the same pressure and temperature. These are
connected by a pipe of 10 cm dia and 2 m length with no pressure difference between the ends.
The total pressure is 1 bar. Determine the diffusion rates.

14.02 Determine the diffusing rate of benzene standing in a glass jar of 5 cm dia. The air column over
it has a height of 60 cm. The air column is stationary. The pressure and temperature are 1 bar
and 0°C. The partial pressure of benzene at the interface is 0.01 bar.

14.03 Determine the diffusion rate of water from the floor in still air in a room at 30°C. The air is still
upto a height of 2 m and the RH at this height is 30%.

14.04 A thin layer of water is there in a circular pan of 20 cm dia and 10 cm deep. The top is exposed to
air at 30°C and 50% RH. Determine the diffusion rate.

14.05 A wet bulb thermometer when exposed to the flow of dry air at 1 bar reads 30°C. Determine the
dry bulb temperature.

14.06 Determine  the diffusion rate in a lake when wind is blowing at 20 kmph over the surface. The
air temperature is 30°C and the relative humidity is 40%. The total pressure is 1 bar. The lake is
1 km wide along the flow.

14.07 Dry air at 20°C and atmospheric pressure flows inside a 100 mm duct, the walls of which are
wetted constantly to maintain a film of water. The flow velocity is 5 m/s. Calculate the water
concentration at the exit of the pipe if it is 4 m long.

14.08 Estimate the values of diffusivities for the following pairs of gases (i) N2 and CO2 (ii) CO2 and H2,
(iii) H2O and O2 (iv) Cl2 and CO2. The molecular volumes are (i) hydrogen-15.6, (iii) CO2-34 (iv)
H2-15.6 (iv) water-18.8 (v) Cl2-24.6 (refer problem 14.11).

14.09 Estimate the values  of diffusivities for the liquid pairs given below: (i) ethanol if dilute solution
in water, Mb = 18, µ = 1.5 = 1.4 × 10–3 kg/ms, v = 0.0592.
(ii) methanol in dilute solution of water, Mb = 18, µ = 1.9 = 1.4 × 10–3 kg/ms, v = 0.037. (Refer
problem 14.13).

14.10 Hydrogen diffuses through a stagnant gas mixture of nitrogen and oxygen in the ratio 77 : 23 by
volume. The total pressure is 1 bar and the temperature is 10°C. The gas film is 0.5 mm thick.
The concentration of hydrogen at the surfaces of the gas film are 10% and 5% by volume. Deter-
mine the diffusion rate of hydrogen. Dh2–02 = 77.5 × 10–6 m2/s, Dh2–n2 = 73.89 × 10–6 m2/s (Refer
problem 14.17)

14.11 Hydrogen diffuses through a stagnant gas mixture of nitrogen and methane in the ratio 50 : 50
by volume. The total pressure is 1 bar and the temperature is 10°C. The gas film is 1.5 mm thick.
The concentration of hydrogen at the surfaces of the gas film are 11% and 3% by volume. Deter-
mine the diffusion rate of hydrogen. Dh2–ch4 = 62.5 × 10–6 m2/s, Dh2–n2 = 73.89 × 10–6 m2/s.

14.12 A cylinder made of napthalene is 600 mm long and its diameter is 75 mm. Pure CO2 at 100°C
flows across it at a velocity of 6 m/s. The total pressure is 1 bar. At this condition the partial
pressure of vapour at the interface is 1330 Pa. D = 5.15 × 10–6 m2/s. Determine the diffusion rate.

14.13 A mixture of oxygen and CO2 in a container is at 27°C. The partial pressure of oxygen is 0.8 bar
and that of CO2

 is 1.2 bar. Calculate the molar and mass concentration of each. Also calculate
the density of the mixture.

14.14 A spherical steel tank of 120 mm dia has a wall thickness of 2.2 mm and hydrogen gas is stored
in the tank at 4.6 bar. Determine the initial rate of mass leakage from the tank caused by the
diffusion of hydrogen. Also calculate the rate of pressure drop at this condition. Diffusion
coefficient is D = 0.26 × 10–12 m2/s. At the inside surface, the mass concentration of hydrogen is
3 kg/m3 and it is zero at the outside surface.
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14.15. The process of diffusion through a membrance is used to separate helium from a gas mixture.
The membrane is 0.8 mm thick. The mass concentration of helium at the inner and outer surface
of the membrane are 0.08 kg/m3 and 0.02 kg/m3. Diffusion coefficient = 10–9 m2/s. Calculate the
diffusion rate of helium/m2.

14.16 A rubber membrane of 0.6 mm thickness separates two chambers containing oxygen, one at 2.2
bar and the other as 1.1 bar. The system is at 25°C. Determine the diffusion rate of oxygen
through the membrane D = 0.21 × 109 m2/s.

14.17 The humidity level inside a room is such that the water vapour pressure is 0.03 bar. On the
outside the air is dry. Plaster board of 10 mm thickness separates the inside from outside. The
diffusion coefficient for water vapour into the wall material is about 10–9 m2/s. The solubility of
water vapour in the wall material is 0.142 kg/m3 for bar of water vapour pressure. Determine the
diffusion rate.

14.18 Helium  gas  at  a  pressure of 6.2 bar is stored in a fused silica container of spherical shape of
0.21 m diameter, the wall thickness being 2.6 mm. Calculate the mass of helium lost by diffusion.
D = 0.04 × 10–12 m2/s. The solubility of helium in the material = 1.8 × 10–3 kg/m3 bar.

14.19 In problem 14.18 if the shape of the container is a long cylinder of the same diameter, determine
the loss for 1 m length.

14.20 Two large tanks containing oxygen and nitrogen at 1 bar and 25°C are connected by a pipe of
0.05 m ID and 1.2 m long. The partial pressure of oxygen at one end of the tube is 0.2 bar and it
is 0.1 bar at the other end. Determine the diffusion rate of O2 through the tube assuming equimolal
counter diffusion. 0.05 MID and D = 0.18 × 10–4 m2/s.

14.21 The surface of a thick steel plate is packed with carbon and is heated to 1000°C and maintained
at this temperature to increase the concentration. The carbon concentration at the surface of the
plate is maintained at 30 kg/m3. Originally the carbon concentration in the plate is uniform at 8
kg/m3. Calculate the time required for the concentration to go upto 16 kg/m3 at a depth  of 1 mm.
D = 0.26 × 10–12 m2/s.

14.22 Atmospheric air at 26°C and 50% RH flows at a velocity of 20 m/s over a porous plate saturated
with water also at 26°C. The plate measures 1m × 1m. Estimate the amount of water diffusing
into the air stream. Use data book for property values.

14.23 The vapour pressure of napthalene at 100°C is 0.02666 bar. Air at 100°C flows over a plate
coated with napthalene at a velocity of 6 m/s. The mass diffusivity has a value of 8.258 × 10–6 m2/s.
Gas constant for the vapour = 64.91 J/kg K. The free stream air has no trace of napthalene.
Determine the diffusion flux.

14.24 Consider the water surface of a swimming pool of square shape of 10 m side as a flat plate.
Assuming still air conditions over the water and both water and air to be at 25°C, determine the
rate of diffusion of water. RH = 40%.

14.25 If in problem 14.24 air  flows parallel to the surface at an average velocity of 4 m/s, determine the
rate of diffusion of water.

14.26 The heat transfer correlation for a given convection situation  was obtained as
Nu = 0.43 Re0.8 Pr0.4

Dry air at 30°C is passed over a similar object of 1 m characteristic length at 10 m/s. Determine
the evaporation rate if at the liquid surface the mass concentration is 0.0077 kg/m3.

14.27 A horizontal cylinder of 90 mm dia and 1 m length made of napthalene is kept in still air at 53°C.
Estimate the weight loss in 60 minutes. The partial pressure of napthalene at this temperature
is 1.333 × 102 Pa. M = 128, D = 6.11 × 10–6 m2/s, Sc = 3.077.

14.28 A pond of 12 m × 24 m sides is full of water. Air at 25°C and 50% RH flows along the 12 m side at
a velocity of 2 m/s. Determine the evaporation loss for hour, D = 26 × 10–6 m2/s, Sc = 0.62.

14.29 Heat transfer studies in flow of air over a smooth body gave the value of convective heat transfer
coefficient as 17 W/m2 K.  Determine the value of convective mass transfer coefficient under
similar flow conditions D = 25.8 × 10–6 m2/s, Pr = 0.688.
ρ = 0.946ky/µ3, v = 23.13 × 10–6 m2./s, α = 33.64 × 10–6 m2/s.
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FILL IN THE BLANKS

1. Thermal conductivity of materials (k) generally varies with ____________ .
(Temperature)

2. With increase in temperature thermal conductivity of insulators will ____________ .
(increase)

3. With increase in temperature thermal conductivity of good conductors will ____________.
(decrease)

4. With increase in temperature thermal conductivity of many liquids will ____________ .
(decrease)

5. With increase in temperature thermal conductivity of water and glycerine will
___________ . (increase)

6. With increase in temperature thermal conductivity of gases in general will ____________
.
(increase)

7. Heat conduction in insulators is mainly by ____________ . (lattice vibration)
8. Heat conduction in good conductors is largely by ____________ . (free electron flow)
9. In the SI system, the unit for thermal conductivity is ____________ . (W/mK)
10. The unit for thermal resistance in the SI system is ____________ . (K/W)
11. The unit for convective heat transfer coefficient in the SI system is ____________ .

(W/m2K)
12. Convection resistance over a given surface area A is ____________ . (1/hA)
13. Conduction resistance due to a plane wall of thickness L of material with thermal con-

ductivity k and area A is ____________ . (L/kA)
14. For a given amount of heat conducted, higher the value of thermal conductivity

____________ will be the temperature difference. (lower)
15. If heat flow across a plane in a given slab should increase the temperature gradient at

the plane should ____________ . (increase)
16. For a given material and temperature drop, if heat conducted is to be reduced the thick-

ness should be ____________ . (increased)
17. In steady conduction  for a material whose thermal conductivity increases with increase

in temperature, the temperature gradient at the high temperature side will be
____________ . (lower)

18. In steady conduction for a material whose thermal conductivity decreases with increase
in temperature, the temperature gradient at the low temperature side will be
____________ . (lower)

19. The temperature profile in a plane wall under steady conduction will be a straight line
if thermal conductivity is ____________ . (constant)

20. In the case of a hollow cylinder, the temperature profile along the radius will be
____________ . (logarithmic)
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21. In the case of a hollow sphere, the temperature profile along the radius will be a
____________ . (2nd degree curve)

22. When conductivity varies linearly with temperature the conductivity at the ____________
can be used in the calculation of heat flow using the general equations.

(mean temperature)
23. In radial heat conduction in a hollow sphere/cylinder, the temperature gradient at the

outer surface will be ____________ compared to the gradient at the inner surface.
(lower)

24. The pure metal whose thermal conductivity is highest at atmospheric temperatures is
____________. (Silver)

25. For super insulation, ____________ form will be suitable. (powder)
26. Thermal diffusivity of a material is indicative of  ____________ ____________ under tran-

sient conditions. (heat penetration)
27. When multilayers of insulation is used over a sphere, for a given volume, the material

with higher thermal conductivity should be applied ____________ the surface. (nearer)
28. In a conducting slab with uniform heat generation the temperature variation along the

thickness is ____________ . (parabolic)
29. In a heat conducting slab of given material, with uniform heat generation the difference

in temperature between the center plane and the surface is directly proportional to
____________ and ____________ . (square of thickness, heat generation rate)

30. In a heat conducting slab of given thickness, with uniform heat generation the differ-
ence in temperature between the center plane and surface is ____________ proportional
to the thermal conductivity of the material. (inversely)

31. In a heat conducting sphere with uniform heat generation the difference in temperature
between the center and surface is directly proportional to ____________ and ____________
and inversely proportional to ____________ . (heat generation rate, square of outer
radius, conductivity)

32. In heat generation, surface convection also controls  the ____________ temperature.
(center)

33. For a given heat flow, a fin of rectangular section will require ____________ volume as
compared to a fin of triangular section with the same base thickness. (more)

34. With the same cross section two fins each of length L will dissipate ____________ heat
compared to a single fin of length 2L. (more)

35. To reduce error in temperature measurement of flowing fluids, the thermometer well
length should be ____________ . (longer)

36. Fins may be modeled as ____________ ____________ system. (conduction-convection)
37. For given fin volume as the length of the fin is decreased the heat flow will ____________

and then ____________ (increase, decrease)
38. The ratio of heat flow by fin to the heat flow on the bare base areas is called ____________

of the fin. (effectiveness)
39. Fin effectiveness is generally ____________ than one. (greater)
40. For a given volume tapering fin will dissipate ____________ heat as compared to con-

stant area fin. (more)
41. Along the length of a constant area fin the temperature gradient ____________ .

(increases)
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42. In fins the temperature gradient is highest at the ____________ . (tip)
43. For a given fin configuration the heat flow is proportional to ____________ power of h

and k. (0.5)
44. In electronic components Gold is used to improve fin efficiency by reducing ____________

resistance. (contact)
45. In transient conduction lumped capacity model can be used if ____________ . (Bi < 0.1)
46. For lumped parameter model the surface resistance should be ____________ compared

to the internal resistance. (higher)
47. For lumped parameter model volume/Area ratio should be ____________ . (small)
48. For lumped parameter model heat capacity of the piece should be ____________ . (low)
49. For a given thermocouple if the response time should be shortened  then ____________

should be increased. (convection coefficient)
50. For lumped parameter model to be used the temperature gradient within the body should

be ____________ . (very small)
51. In transient conduction for the use of semi infinite solid model, the heat penetration

depth should be ____________ over the period considered. (small)
52. For the adoption of semi infinite solid model, the temperature at a depth should not

have ____________ in the time considered. (increased)
53. A thick concrete slab exposed to flames on one side can be analysed using ___________

model. (semi infinite solid)
54. For the same characteristic dimension, the shape of the object for shorter heating time

is ____________ . (sphere)
55. When Schmidt method is used for temperature calculations in transient conduction the

choice of nodal thickness x and time interval ∆τ should satisfy the condition.
(∆x2/α∆τ )= 2

56. In transient conduction, increasing and maintaining a surface at a temperature is equiva-
lent to Biot number being equal to ____________ . (infinite)

57. The electrical analogue element for the product of mass and specific heat is ____________.
(condenser)

58. In convection, temperature and velocity gradients vary only in the ____________ .
(boundary layer)

59. Along the thickness in the boundary layer velocity and temperature gradients
____________ . (decrease)

60. The thickness of the hydrodynamic boundary layer is defined as the distance from the
surface at which velocity  ____________ is nearly zero. (gradient)

61. In laminar flow, the average convection coefficient along the length will  ____________ .
(decrease)

62. In laminar flow the velocity at a location with respect to time is  ____________ .
(constant)

63. In turbulent flow the velocity at a point varies randomly about a ____________ velocity.
(mean)

64. In laminar flow momentum and heat transfer is mainly at the ____________ level.
(molecular)
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65. In laminar flow there is no ____________ mixing between layers. (macroscopic)
66. In turbulent flow momentum and heat transfer is due to ____________ mixing between

layers. (macroscopic)
67. If thermal deffusivity equals momentum diffusivity, then the ratio of thermal and veloc-

ity boundary layer thickness will be equal to ____________ . (one)
68. The ratio of momentum diffusivity to thermal diffusivity is called  ____________ number.

(Prandtl)
69. Flow transition is generally judged by ____________ number.  (Reynolds)
70. The thickness of hydrodynamic boundary layer at distance x in laminar flow over a

plate is ____________ .
5

0 5
x

Re .
F
HG
I
KJ

71. The thickness of hydrodynamic boundary layer in flow over plate in turbulent flow is
proportional to ____________ . (Rex

–0.2)
72. In liquid metal flow over a flate,  thermal  boundary layer will be ____________ than

hydrodynamic boundary layer. (thicker)
73. In viscous oil flow thermal boundary layer will be ____________ than hydrodynamic

boundary layer. (thinner)
74. In laminar flow over flat plates the convection coefficient will be proportional to the

distance raised to the power of ____________ . (– 0.5)
75. In turbulent flow over flat plate the convection coefficient will be proportional to the

distance raised to the power ____________ . (– 0.2)
76. In flow over a flat plate the temperature and velocity gradients above the boundary

layer is ____________ . (zero)
77. In the case of flow over flat plate the Reynolds number along the length will ____________

continuously. (increase)
78. The value of transition Reynolds number in the case of flow over flat plate is ____________.

(5 × 105)
79. Reynolds number expressed in terms of mass flux G in pipe flow is ____________ .

4Gd
µ
F
HG
I
KJ

80. In pipe flow the analogy method of convection analysis relates ____________  number to
friction factor. (Stanton)

81. In flow over a bank of tubes effective way to increase heat transfer rate is to ____________
the pitch along the flow direction. (reduce)

82. In flow over spheres, and cylinders the characteristic length used in the calculation of
dimensionless number is ____________  . (diameter)

83. Hydraulic mean diameter is defined as ____________  . (4A/P)
84. In flow through non circular sections ____________  replaces diameter.

(Hydraulic mean diameter)
85. In flow through pipes the type of flow is decided by the conditions at ____________  .

(entry)
86. In fully developed laminar flow through pipes the convection coefficient is  ____________.

(constant)
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87. In pipe flow, convection coefficient at entrance region will be ____________  compared to
the fully developed region. (higher)

88. In pipe flow under constant wall heat flux conditions the convection coefficient will be
____________  as compared to constant wall temperature condition. (higher)

89. In fully developed flow in a pipe under constant heat flux condition the temperature
difference between the wall and the fluid will be ____________  . (constant)

90. In turbulent flow in rough pipes the Stanton number is related to  ____________ .
(friction factor)

91. In the case of ____________  the flow in pipes can be considered as slug flow.
(liquid metals)

92. As compared to forced convection the additional force encountered in free convection
analysis is ____________  . (buoyant force)

93. At constant pressure the value of coefficient of cubical expansion for gases is ____________.
(1/T(K))

94. The velocity in the case of free convection boundary layer is zero at ____________  .
(wall and boundary layer thickness)

95. The velocity variation in the natural convection boundary layer can be expressed by
____________  order equation. (third)

96. The temperature variation in free convection in boundary layer can be expressed by
____________  order equation. (second)

97. The dimensionless number which replaces the Reynolds number in the case of free con-
vection is ____________  . (Grashof number)

98. The average value of convection coefficient upto length L in free convection is

____________  .
4
3

hL
F
HG
I
KJ

99. Reyleigh number is the product of  ____________  Number and ____________  number.
(Grashof, Prandtl)

100. In free convection the average value of h will be ____________  for short vertical plate as
compared to a longer vertical plate. (higher)

101. Graetz number is defined as the product of ____________  .(Reynolds, Prandtl and D/L)
102. Peclet number is the product of ____________  number and ____________  number.

(Reynolds, Prandtl)
103. In cooling of unattended equipments ____________  convection is more suitable. (free)
104. In some cases where both free convection and forced convection may contribute to heat

transfer, the criterion for the determination of predominance of either is the value of
____________  . (Gr/Re2)

105. In boiling excess temperature is the difference between ____________  and ____________
temperatures. (surface, saturation)

106. In film boiling main mode of heat transfer is ____________  . (radiation)
107. In boiling surface tension is an important parameter due to ____________  .

(bubble wettability)
108. In nucleate boiling at higher heat flux levels convection coefficient is proportional to the

____________  power of excess temperature. (third)
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109. In boiling the excess temperature at which maximum heat flux occurs is about
____________  . (15°C)

110. The shape of the heating surface ____________  affect boiling heat transfer. (does not)
111. The maximum heat flux in boiling of a fluid varies with the pressure ratio ____________.

(P/Pcritical)
112. In flow boiling h is maximum at ____________  flow. (annular)
113. Maximum heat flux without damage can be sustained only in ____________  boiling.

(nucleate)
114. Minimum heat flux occurs in stable ____________  boiling. (film)
115. In film boiling a ____________  exists between surface and liquid. (vapour film)
116. Flow boiling is encountered in ____________  water tubes. (Boiler)
117. In film boiling excess temperature will be ____________  . (high)
118. The important parameter  which controls heat flux in boiling is ____________ .

(excess temperature)
119. Temperature variation is assumed ____________  in condensate film. (linear)
120. Velocity  in condensate film varies along the film thickness as ____________  of thick-

ness. (second order)
121. Average value of convection coefficient in condensation up to distance L is ____________.

{(4/3)hL}
122. In film wise condensation the value of h will be ____________  compared to dropwise

condensation. (lower)
123. The surface should be ____________  for dropwise condensation. (non wetting)
124. As the vapour is in direct contact with more cooler surface the convection coefficient is

____________  in dropwise condensation. (higher)
125. The additional force encountered in condensation boundary layer analysis is

____________. (gravity force)
126. In condensation ‘h’ depends on the ____________  power of conductivity. (0.75)
127. In condensation ‘h’ depends on the ____________  power of density. (0.5)
128. In condensation ‘h’ depends on the ____________  power of latent heat. (0.25)
129. Condensation Reynolds number is defined in terms of mass flow G per unit width as

 ____________  . (4G/µ)
130. In condensation, convection coefficient over a single tube is ____________  compared to

condensation over a row of tubes. (higher)
131. Critical film Reynolds number in condensation is ____________ . (1800)
132. In freezing the conduction resistance is due to ____________  . (ice layer)
133. In the regenerator of a gas turbine the ____________  will be nearly equal.

(heat capacities)
134. The value Uo will be ____________  compared to value Ui in heat exchangers. (lower)
135. The product UoAo will equal ____________  . (UiAi)
136. During the life of heat exchanger the performance will deteriorate due to ____________.

(fouling)
137. In a shell and tube arrangement, the fluid that can be said to be mixed is the ___________

side fluid. (shell side)
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138. In a shell and tube arrangement, the fluid that can be said to be unmixed is the
____________  side fluid. (tube side)

139. A heat exchanger in which superheated fluid is cooled, condensed and undercooled,
using a cold fluid, the location at which minimum temperature difference occurs is called
____________  . (pinch point)

140. NTU is defined as ____________  . (UA/Cmin)
141. Capacity ratio when cold fluid is having lower heat capacity is defined in terms of termi-

nal temperatures as ____________  . (Th1 – Th2)/(Tc2 – Tc1)
142. The three main flow arrangement in heat exchangers are ____________ flow.

(Parallel, Counter, Cross)
143. Compact heat exchangers use ____________  tube bundles. (finned)
144. Thermodynamically the flow direction that will give minimum loss of available energy

is ____________ . (counter flow)
145. The flow direction does not affect the performance in the case of ____________  and

____________  . (condensers, evaporators)
146. Fouling resistance is due to ____________  of the heating surface during operation.

(deterioration)
147. Shell and tube arrangement is generally adopted because single tube type will be

____________. (too long)
148. The heat capacity of the fluid stream is the product of ____________ and ____________ .

(mass flow rate, specific heat)
149. If heat capacities are equal in a counter flow exchanger the slope of the hot and cold

fluid temperature lines at any point will be ____________ . (the same)
150. If heat capacities are equal in a parallel flow exchanger the slop of the temperature

lines at any point of flow will be ____________  but  ____________ .
(equal, of opposite sign)

151. LMTD method of analysis is suitable when ____________ ____________ are known.
(all four temperatures)

152. When inlet flow rates and temperatures for a heat exchanger are specified the easier
method of analysis ____________ . (NTU method)

153. For the performance evaluation over the whole operating range of a heat exchanger
____________ ____________ method is more suitable. (effectiveness-NTU)

154. When heat capacity ratio is zero, effectiveness is equal to ____________ . (1–e–NTU)
155. For a condenser/evaporator the effectiveness is ____________ . (1 – e–NTU)
156. If heat capacities are equal for the counter flow type the effectiveness is ____________ .

(N/(N + 1) + 1)
157. If heat capacities are equal for parallel flow type the effectiveness is ____________ .

(1 – e–2N)/2
158. Effectiveness of a heat exchanger is the ratio of ____________ and ____________ .

(actual heat flow/max possible heat flow)
159. For a given exchanger if the heat capacity ratio (Cmin/Cmax) increases the effectiveness

will ____________ . (decrease)
160. When effectiveness increases the total heat flow ____________ increase. (need not)
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161. Storage type heat exchanger is also called ____________ heat exchanger.
(regenerative)

162. Air preheaters in large thermal plants use ____________ of heat exchangers.
(regenerative type)

163. The overall heat transfer coefficient will generally be minimum in the case of ____________
exchangers. (gas to gas)

164. In a condenser the controlling resistance will be on the ____________ side. (cold/fluid)
165. In an evaporator the controlling resistance will be on the ____________ side. (hot fluid)
166. In a  gas to liquid heat exchangers the controlling resistance will be on the ____________

side. (gas)
167. In the various flow arrangements the one that may require largest area will be

____________ . (parallel flow)
168. The wave length range of thermal radiation is ____________ . (1 to 100 µm)
169. The wave length range for visual radiation is ____________ . (0.3 to 0.7 µm)
170. For a black body ____________ is maximum. (emissive power)
171. The radiant energy emitted per unit area and unit wave length called ____________ .

(monochromatic emissive power)
172. The equality of emissivity and absorptivity is postulated by ____________ law.

(Kirchhoff)
173. The statement that “the product of the temperature and the wavelength at which the

monochromatic emissive power is maximum is a constant” is due to ____________ law.
(Wien’s displacement)

174. At any temperature as wavelength increases the monochromatic emissive power
__________.

(increases and then decrease)
175. The ratio of emissive power of a body to the emissive power of a black body is defined as

____________ . (emissivity)
176. Radiation from a small opening from an isothermal enclosure can be considered as

____________. (black)
177. The relationship between emissive power E and intensity I is ____________ . (E = Π I)
178. The radiant energy per unit solid angle in a direction is known as ____________ of

radiation. (intensity)
179. The emissivity is constant in the case of a  ____________ (gray surface)
180. Gases are generally ____________ radiators. (band)
181. Suns radiation is mostly at ____________ wavelengths. (short, 0-4 µm)
182. Radiation at atmospheric temperature is at ____________ wave lengths. (longer)
183. Glasses generally transmit ____________ wavelength radiation. (short)
184. Green house effect is due to ____________ short wavelength radiation and ____________

long wavelength radiation. (transmitting, cutting off)
185. For real surfaces, the monochromatic emissive power does not vary in a ____________ .

(regular pattern)
186. The sum of emissivity, and reflectivity will be equal to ____________ in the case of opaque

surfaces. (one)
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187. For an opaque surface high reflectivity means ____________ emissivity. (low)
188. For selective surface the emissivity is dependent on ____________ and ____________ of

radiation. (temperature, wavelength)
189. Solar collector surfaces should have high absorptivity for ____________ wavelength ra-

diation and low emissivity at ____________ temperatures. (short, low)
190. In the case of solids/liquids radiation is a  ____________ phenomenon. (surface)
191. CO2 and water vapour are ____________ radiators. (band)
192. In the case of gases radiation is a ____________ phenomenon. (volume)
193. Diatomic gases are ____________ for radiation. (transparent)
194. The emissivity of a gas body depend on ____________, ____________, ____________ .

(pressure, characteristic length and temperature)
195. Beers law states that transmissivity of a gas body of length L with transmission coeffi-

cient a is ____________ (1– eaL)
196. Most of the real surfaces have emissivity  ____________ with angle from normal.

(varying)
197. Insulating materials have ____________ emissivity at angles near horizontal. (low)
198. Conducting materials have high emissivity at angles ____________ horizontal. (near)
199. The total radiant energy leaving a gray surface is known as ____________ .

(Radiosity)
200. The total radiant energy incident on a gray surface is known as ____________ .

(irradiation)
201. Radiosity include emissive power and ____________ . (reflected radiation)
202. Irradiation includes radiation from other surfaces and ____________ .

(reflected radiation by them)
203. The fraction of radiation emanating from surface 1 incident on surface 2 is called

____________ . (shape factor F1-2)
204. Shape factor will ____________ when surfaces are moved closer. (increase)
205. Shape factor will ____________ if the areas of the participating planes increase.

(increase)
206. Shape factor is ____________ of surface properties. (independent)
207. Shape factor of body with respect to a fully enclosing body is ____________ . (one)
208. Concave surfaces will have a shape factor with ____________ . (themselves)
209. The shape factor of a hemisphere to itself is ____________ . (0.5)
210. Shape factor of a hemispherical surface to its base is ____________ . (0.5)
211. Shape factor of the base of a cone to the curved surface is ____________ . (one)
212. If n radiation shields of equal emissivity as the parallel large planes are used the heat

flow will be reduced ____________ times. (1/n + 1)
213. Radiation shield should have ____________ reflectivity. (high)
214. Surface resistance is due to the ____________ of the surface. (emissivity)
215. Space resistance between two surfaces is due to the ____________ . (shape factor)
216. Reciprocity theorem for shape factor is ____________ . (A1F1–2 = A2F2–1)
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217. Well insulated surfaces enclosing surfaces exchanging heat by radiation are called
____________. (Non absorbing reradiating surfaces)

218. Reradiating enclosure  ____________ the effective shape factor. (improves)
219. Mass transfer is due to  ____________ gradient. (concentration)
220. The two types of mass transfer are  ____________ and  ____________ .

(diffusion, convective)
221. Mass transfer at molecular level can be likened to heat  ____________ . (conduction)
222. The unit of mass diffusivity is  ____________ . (m2/s)
223. The ratio of mass diffusivity to momentum diffusivity is called  ____________ .

(Schmidt number)
224. The two types of molecular diffusion are  ____________ and  ____________ .

(equimolal counter diffusion, Diffusion into a stationary medium)
225. For the same concentration gradient, diffusion, into a stationary component will give

____________ rate. (larger)
226. Use of kg mole in place of kg is more convenient mass transfer because of  ____________.

(diffusion as molecules)
227. If Dba < > Dab then spontaneous  ____________ build up will result. (pressure)
228. The unit of mass transfer coefficient hm is  ____________. (m/s)
229. Sherwood number is given by  ____________. (hmx/D)
230. By similarity h/hd

 is proportional to ____________ . (Le2/3)
231. Transient mass diffusion problems can be solved similar to  ____________ .

(Transient conduction problems)
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SHORT PROBLEMS

1. Hot air at 80°C flows over a surface of area 0.2 m2 at 60°C, the convection coefficient
being 25 W/m2K. The heat flow is ____________ . (100 W)

2. The surface temperatures of a slab conducting heat under steady conditions are 80°C
and 60°C. The thermal conductivity of the material of the slab is 25 W/mK. The heat
flow rate is 2500 W/m2. The thickness of the slab is  ____________ . (0.2 m)

3. A slab 0.2 m thick of thermal conductivity 25 W/mK conducting heat under steady con-
ditions at the rate of 2500 W/m2 has the hotter surface at 100°C. The temperature of the
other surface is ____________ . (80°C)

4. A slab of 0.2 m thickness has its surfaces at 120°C and 100°C. The heat conducted at
steady conditions is 250 W/m2. The conductivity of the material is ____________ .

(2.5 W/mK)
5. A slab conducts heat at a steady rate of 2500 W/m2. The thermal conductivity of the mate-

rial is 25 W/mK. The temperature gradient in the slab is ____________ . (– 100°C/m)
6. The temperature gradient in a slab at steady conduction is – 1000°C/m. The slab  con-

ducts heat at 250 W/m2. The conductivity of the material is ____________ .
(0.25 W/mK)

7. A slab conducts heat at 2500 W/m2 under steady conditions. The conductivity of the
material is 20 W/mK. If the thickness is reduced to half the value, maintaining the heat
flow rate, the temperature gradient will be ____________ . (– 125°C/m)

8. In a composite slab of two layers the temperature gradient in the first layer of thermal
conductivity 50 W/mK is – 50°C/m. If the conductivity of the material of the second layer
is 25 W/mK the temperature gradient in the second layer will be ____________ .

(– 100°C/m)
9. In a composite slab consisting of two layers of equal thickness the temperature drop in

the first layer is 40°C. If the conductivity of the material of the second layer is 1/4th of
that of the first layer the temperature drop in this layer will be ____________ . (160°C)

10. In a composite slab made of two layers of equal thickness the total temperature drop is
100°C. The conductivity of the first layer material is 1/4th of the conductivity of the
second layer material. The temperature drop in the first layer will be ____________.

(80°C)
11. A hollow cylindrical insulation of ID 0.2 m and OD 0.4 m conducts heat radially. If

another layer of insulation of the same material of thickness of 0.4 m is added to the
heat flow will be changed by the ratio ____________  . (0.5)

12. A hollow spherical insulation of 0.2 m ID and 0.4 m OD conducts heat under steady
conditions. If another layer of insulation of the same material of thickness of 0.4 m is
added the heat flow will be reduced to ____________  of the original value. (2/3)

13. A hollow spherical insulation of ID 0.2 m and OD 0.4 m conducts heat at steady condi-
tions radially. The thickness of additional insulation of the same material needed to
reduce the heat flow to 75% of the original value is ____________  . (0.2 m)

14. To reduce the heat flow through a hollow cylinder to 1/nth the value of the original flow
the new value of the ratio of the radii should be the ____________  power of the original
radii ratio. (nth)
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15. In a hollow spherical insulation of radii ri and ro in order to reduce heat flow by fraction
c of the original flow additional insulation up to radius ro2 was added. Then the relation
between the new and old radii is ____________ . {1 – (ro/ri)} = c{1 – (ro2/ri)}

16. One end of two long rods of same radius of material A and B are in a furnace. The
temperature at 10 cm from the furnace in rod A was found equal to the temperature at
20 cm in rod B. The conductivity of material A was 10 W/mK. The conductivity of mate-
rial B will be ____________  . (40 W/mK)

17. Two long cylindrical rods A and B of the same material but of different diameters have
one of their ends placed in a furnace. The temperature measured at 10 cm from the
furnace in rod A was found equal to the temperature at 20 cm in rod B. The ratio of the
diameters of the larger to the smaller is ____________  . (4)

18. Two long rods of the same material of diameters 4 cm and 1 cm have one of their ends
placed in a furnace. The heat loss from the 4 cm diameter rod will be ____________
times the heat loss from the 1 cm diameter rod. (8 times)

19. A long rod has one of its ends in a furnace and has reached steady conditions. Suddenly
a fan is switched on and the convection coefficient over the surface increases four fold.
Under steady conditions the heat loss will increase by ____________  %. (100%)

20. A long rod has one of its end in a furnace and has reached steady conditions. The tem-
perature at 16 cm from the end was measured as T°C.  Suddenly a fan is switched on
and the convection coefficient over the surface  increases four fold. Under steady condi-
tions the location at which the temperature will equal T°C will be at ____________  from
the end. (8 cm)

21. A long rod of diameter d m has one of its ends in a furnace and has reached steady
conditions. The temperature at 10 cm from the end was measured as T°C. If a rod of 4d
m diameter is in a similar situation the location at which the temperature will equal
T°C will be at ____________ from the end. (20 cm)

22. In a heat treatment process a small component of good thermal conductivity is to be
cooled. For the same volume if the surface area is doubled the cooling time will be re-
duced to ____________ the original time. (half)

23. Two sets of spherical pieces are to be cooled in batch process. The diameter of one set is
20 mm and that of the other set is 10 mm. The batch time for the 20 mm shots was 8
min. If other conditions are the same then the batch time for the 10 mm shots will be
____________ . (4 min)

24. Steel shots of heat capacity 1000 J/K are cooled in a bath, the batch time being 6 min. If
similar sized shots of a different material with heat capacity of 1500 J/K are to be cooled
under similar conditions the batch time will be ____________ . (9 minutes)

25. A thermocouple of volume 1.5 × 10–8 m3 and area of 9 × 10–6 m2 with a specific heat of
500 J/kg K and density of 8000 kg/m3 is exposed to convection at 667 W/m2K. The time
constant is  ____________  . (10s)

26. A slab 16 cm thick generating heat at the rate of 5 MW/m3 when exposed on both sides
to convection has its center temperature 60°C above the surface temperature. If a long
cylinder of 8 cm diameter generating heat at the same rate is exposed to convection
under similar conditions its center temperature will be ____________ above the surface
temperature. (30°C)
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27. The center to surface temperature difference in a heat generating cylindrical rod of 8
cm dia was 30°C. Under similar conditions the center to surface temperature difference
in the case of a sphere of 8 cm dia will be ____________ . (20°C)

28. In a slab 0.2 m thick with a surface temperature of 200°C on both surfaces heat is
generated at a rate of 106 W/m3. The conductivity of the material is 50 W/mK. The
center temperature will be ____________ . (300°C)

29. In a long solid cylinder the heat generation rate is 106 J/m3. The conductivity is 50W/
mK. The surface temperature is 250°C. The center temperature is 300°C. The radius of
the cylinder is ____________ . (0.1 m)

30. In a solid sphere of 0.2 m dia, heat is generated at the rate of 1.2 × 106 W/m3. The center
temperature is  300°C. Conductivity is 50 W/mK. The surface temperature is ____________.

(260°C)
31. In a heat generating slab of 0.1 m half thickness the center to surface temperature

difference was 100°C. If the half thickness is increased to 0.15 m, the temperature dif-
ference will be ____________ . (225°C)

32. A cylindrical rod of 0.1 m radius generating heat has its radius increased to 0.2 m. The
center to surface temperature difference is ____________ times the original value.

(4 times)
33. A thermocouple has a time constant of 24 seconds, under a certain calibration conditions

to improve performance, the convection coefficient is doubled and the surface area is
also increased to 1.2 times the value keeping the volume unchanged. The new time
constant will be ____________ . (10 seconds)

34. Inside of a slab under transient conduction three planes 1, 2 and 3 are located at dis-
tance of 2 cm intervals. The thermal diffusivity of the material was 1 × 10–6 m2/s. The
temperatures at node 1 and 3 at a point of time was 300 and 200°C. After an interval of
____________ seconds temperature at node-2 will reach 250°C. (200 sec)

35. Under steady two dimensional conduction the temperatures at nodes (m + 1, n), (m, n),
(m, n + 1), (m, n –1) are respectively 600, 400, 350 and 325. The modes are equal spaced.
The temperature at the node (m – 1, n) i.e., Tm–1, n is ____________ . (325°C)

36. In a flow over a flat plate at a distance of 0.12 m, the Reynolds number is 14,400. The
hydro dynamic boundary layer thickness is ____________ (5 mm)

37. The boundary layer thickness at a point in flow over a plate, is 8 mm. The Reynolds
number is 25600. The distance from the leading edge is ____________ . (0.256 m)

38. The Reynolds number in air flow over a flat  plate at 8 m/s was 25000. The kinematic
viscosity was 64 × 10–6 m2/s. The distance from the leading edge is ____________ .

(0.2 m)
39. In a flow over a flat plate the distance from the leading edge for the flow to become

turbulent is ____________ . The free stream velocity is 20 m/s. Kinematic viscosity is
50 × 10–6 m2/s. (1.25 m)

40. In a flow over a flat plate the Reynolds number is 25600 and the Prandtl number is
0.834. The average Nusselt number is ____________ . (100)

41. The Nusselt number is 100. The location from leading edge is 0.5 m. k = 0.025 W/mK.
Convection coefficient is ____________ . (5 W/m2K)
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42. The temperature gradient at the wall in flow over a flat plate is – 4000°C/m. Conductiv-
ity is 0.025W/mK. Plate temperature is 80°C. Air temperature is  60°C. Convection
coefficient is ____________ . (5W/m2K)

43. In flow over a flat  plate Reynolds number at a location is 25600. The average friction
coefficient is ____________ . (8.3125 × 10–3)

44. In flow over a flat plate, in the laminar region, velocity boundary layer thickness is
0.009 m. Pr = 0.729. Thermal boundary layer thickness is ____________ . (10 mm)

45. When cubic velocity profile is assumed the hydro dynamic boundary layer thickness in
flow over a flat plate is given by ____________ . (4.64 x/Re0.5)

46. In flow through a pipe the Reynolds number is 1600. The friction factor is ____________.
(0.04)

47. In laminar flow through a pipe the friction factor is 0.032. The Reynolds number is
____________. (2000)

48. In fully developed laminar flow of water through a pipe of 0.15 m diameter with uniform
wall temperature the thermal conductivity at the condition  was 0.655 W/mK. The aver-
age convection coefficient is ____________ . (16 W/m2K)

49. Water flows at the rate of 0.08 kg/m2s through a 0.1 m diameter pipe the viscosity being
356 × 10–6 kg/ms. The Reynolds number is ____________ . (2861)

50. In fully developed laminar flow of water through a 0.15 m diameter pipe under constant
heat flux conditions the thermal conductivity at the bulk mean temperature was 0.6874
W/mK. The value of convection coefficient is ____________ . (20 W/m2K)

51. An equilateral triangular duct of side 0.1 m has air flowing through it. The hydraulic
mean diameter is ____________ . (0.0577 m)

52. The hydraulic mean diameter of a rectangular duct of 0.12 × 0.1 m sides is ____________.
(0.109 m)

53. In a convection situation both forced and free convections appear to contribute equally.
The Reynolds number is 4000. The range of value of Grashof number is ____________ .

(16 × 106)
54. In a flow the convection coefficient has a value of 2600 W/m2K. The thermal conductiv-

ity of the material is 0.64 W/mK. The temperature difference is 40°C. The value of tem-
perature gradient at the interface is ____________ . (– 162500°C/m)

55. In a flow across a tube bundle the tube OD is 0.75 m. The tube arrangement  is stag-
gered with a pitch of 0.15 m normal to the flow and 0.1 m pitch along the flow. The
entrance velocity is 10 m/s. The maximum velocity is ____________ . (20m/s)

56. In a heat exchanger the terminal temperatures of the hot fluid are 150 and 80°C. For
the cold fluid the terminal temperatures are 30 and 100°C. The flow arrangement is
____________ and the value of LMTD is ____________ . (counter flow, 70°C)

57. A clean heat exchanger under test gave a U value of 2000 W/m2K. After one year of
operation the value of U was determined as 1600 W/m2K. The fouling resistance is
____________ . (1.25 × 10–4 m2 K/W)

58. The inlet and outlet temperatures of the hot and cold fluids are 200, 40 and 180 and
100°C. The value of the LMTD for (i) counter flow and (ii) Parallel flow are ____________.

(118.88, 115.42)
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59. In a heat exchanger the hot fluid inlet and outlet temperatures are 200 and 180°C. For
the cold fluid the terminal  temperatures are 40 and 100°C. The capacity ratio is
____________ . (0.3333)

60. For a parallel flow heat exchanger the capacity ratio is 1.0 and the NTU value is 2.0.
The effectiveness is ____________ . (0.491)

61. For a counter flow heat exchanger the capacity ratio is 1.0 and NTU is 2.0. The effective-
ness is ____________ . (0.66666)

62. For a condenser the value of NTU is 1.5. The effectiveness is ____________ . (0.777)
63. For a condenser the effectiveness was found as 0.61. The value of NTU is ____________ .

(0.942)
64. For a counter flow heat exchanger with equal heat capacities the effectiveness was found

as 0.6. The value of NTU is ____________ . (1.5)
65. For an evaporator the effectiveness was 0.5. The value of NTU is ____________ . (0.693)
66. A heat exchanger with 10 m2 heat transfer area has an overall heat transfer coefficient

of 600 W/m2 K. The minimum heat capacity of the flow is 2100 W/K. The value of NTU
is ____________ . (2.86)

67. In an economiser of a large steam generator pressurised water flows at a rate of 20 kg/s.
The water temperature increases from 40°C to 160°C. The flue gas temperature drops
from 360°C to 190°C.  The heat capacity of the gas flow is ____________ .

(58984 W/K)
68. In an economiser water gets heated by 120°C while flue gases are cooled by 170°C. The

capacity ratio is ____________ . If the heat capacity of the gases is 58984 W/K the heat
capacity of water is ____________ . (0.706, 83561 W/K)

69. In a heat exchanger the LMTD was 26.2°C under certain flow conditions. The heat
transfer rate was 11000 W. Due to changes in surrounding conditions the inlet tempera-
ture alone had changed and the value of LMTD was found as 22.3°C. The heat flow rate
at this conditions will be ____________ . (9363 W)

70. In an evaporator due to a change in the heat capacity of the hot fluid the effectiveness
increased from 0.6 to 0.75. The overall heat transfer coefficient decreased by 20%. The
percentage change in the heat capacity is ____________ . (– 17.4%)

71. In a counter flow heat exchanger with equal heat capacities the flow rate changed equally
on both sides of flow. This changed the effectiveness from 0.6 to 0.75. If there  was no
change in the value of overall heat transfer coefficient the percentage change in the flow
rates is ____________ . (– 33.3%)

72. In a counter flow heat exchanger with equal heat capacities the effectiveness was 0.75.
If both the flow rates were doubled and if this increased the overall heat transfer coeffi-
cient by 20% the new effectiveness will be ____________ . (0.375)

73. In the case of parallel flow heat exchangers with equal heat capacities the limiting
value of effectiveness is ____________ . (0.5)

74. In a parallel flow heat exchanger the value of NTU is 2.0. The capacity ratio is 0.5. The
value of effectiveness is ____________ . (0.633)

75. In a parallel flow heat exchanger the heat capacities are equal. The hot and cold fluid
inlet temperatures are 200°C and 100°C. The limiting value of the exit temperature is
____________ . (150°C)



VED

c-4\n-demo\damo14-3

C
ha

pt
er

 1
4

76. In a counter flow heat exchanger with equal heat capacities the inlet temperatures are
100°C and 30°C. The hot fluid exit temperatures was 50°C. The cold fluid exit tempera-
ture will be ____________ . (80°C)

77. In a parallel flow heat exchanger the heat capacity of the hot fluid was 0.5 of the cold
fluid heat capacity. The entry temperatures are 200°C and 50°C. If the cold fluid leaves
at 100°C then the hot fluid will leave at ____________ . (100°C)

78. In a counter flow heat exchanger the hot fluid enters at 200°C and leaves at 100°C. The
cold fluid enters at 50°C and leaves at 200°C. The capacity ratio is ____________ .

(0.66667)
79. In a counter flow heat exchanger the cold fluid enters at 50°C and leaves at 100°C. The

capacity ratio is 0.3333. If the hot fluid enters at 200°C and if the hot fluid has the
minimum heat capacity it will leave at ____________ . (50°C)

80. The emissive power of a surface is 49000 W/m2. The intensity of radiation of that surface
will be ____________ . (15597 W/str)

81. A black surface is at 1000 K. The fraction of radiation upto a wave length of 5 m will be
____________ . (0.6337) Note : refer table.

82. The fraction of radiation emitted by a black surface upto a wave length of 10 m was
0.6337. The temperature of the surface will be ____________ .(500 K) Note : Refer table

83. If the fraction of radiation emitted by a black  surface in the wave band 0 to 4 m was
0.8563 then the surface temperature will be _________ . (2000 K)

84. At a temperature of 1000 K the monochromatic emissive power will be maximum at the
wave length ____________ . (2.8976 µm)

85. The maximum monochromatic emissive power of  a surface was found to occur at a wave
length of 2 µ m. The surface temperature should be ____________ . (1448.2 K)

86. When the surface temperature was increased from 500 K to 1000 K the wave length at
which the monochromatic emissive power is maximum will shift from _________ µ m to
_________ µ m. (5.7952, 2.8976)

87. The shape factor from a completely enclosing surface whose area is 8 m2 to the  enclosed
surface whose area is 4 m2 is ____________ . (0.5)

88. In a cylindrical furnace the shape factor from the base to the top is 0.31. The shape
factor from the top to the curved surface will be ____________ . (0.69)

89. The diameter and the height of a cylindrical furnace are both 2.0 m. The shape factor
from the base to the top is 0.18. The shape factor from the curved surface to itself will be
_____ . (0.59)

90. The shape factor from the hemispherical surface to half the area of the enclosing base
surface is ____________ . (0.25)

91. For a right  circular cone of slant length equal to the base diameter the shape factor to
itself is ____________ . (0.5)

92. Two long concentric cylinders are of 0.1 m and 0.2 m diameter. The shape factor from
the outer to the inner cylinder and to itself are ____________ . (0.5, 0.5)

93. A spherical vessel of 1.2 m diameter encloses another concentric spherical vessel of
diameter 1.0 m storing cryogenic liquid. The shape factor of the outer vessel to the inner
vessel and to itself are ____________ . (0.6944, 0.3056)
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94. Two large planes both having an emissivity  of 0.5 are parallel to each other. The resist-
ance for radiation heat exchange between them based on 1 m2 area is ____________ .

(3.0 K/W)
95. A radiation shield with emissivity of 0.05 on both sides is placed between two large

black parallel black planes. The thermal resistance is ____________ . (40 K/W)
96. The shape factor from a surface of 1 m2 area at 1000 K to another surface is 0.2. The

energy radiated by this surface reaching the other surface is ____________ . (11340 W)
97. The emissive power of a surface is 3543.75 W/m2. The radiosity of the surface is 1451.52

W/m2. If the emissivity of the surface was 0.5 then the heat flow out of the surface is
____________ . (2092.23 W)

98. The radiosity of surfaces 1 and 2 are 3543.75 and 1451.52 W/m2. The shape factor F1–2 is
0.5 and the area of the surface 1 is 2.0 m2. The heat transfer between the surfaces is
____________ . (2092.23 W)

99. The volume fraction of N2 and O2 at surfaces 0.1 m apart are 10% and 90% and 90% and
10% respectively. The diffusion coefficient is 20.6 × 10–6 m2/s. If the total pressure is 1
atm and temperature is 300 K then the diffusion rate of Oxygen and Nitrogen are
____________ . (2.11 × 10–10 kg/m2s, 1.85 × 10–10 kg/m2s)

100. In a flow involving both heat and mass transfer the convection coefficient was 20 W/
m2K. Lewis number is 0.85. cp = 1005 J/kgK. Density is 1.2 kg/m3. The value of mass
transfer coefficient is ____________ . (0.0185 m/s)
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STATE TRUE OR FALSE

1. Convection coefficient is a material property. (False)
2. Thermal conductivity is a material property. (True)
3. In good conductors lattice vibration contributes more for heat conduction. (False)
4. Thermal conductivity of water decreases with increase in temperature. (False)
5. For the same amount of heat conduction through a slab, as thickness increases the

temperature gradient should increase. (False)
6. Fins for the same flow should be longer if the thermal conductivity of the material is

increased. (False)
7. For identical fins of different materials the tip to base temperature difference will be

lower if the thermal conductivity is lower. (False)
8. In a hollow cylinder, the temperature variation with radius will be linear. (False)
9. The temperatures gradient at the inner surface will be steeper compared to that at the

outer surface in radial heat conduction in a hollow cylinder. (True)
10. Fins are more useful with liquids than with gases. (False)
11. Fins effectiveness is generally greater than one. (True)
12. In three dimensional steady state conduction with uniformly spaced nodes the tempera-

ture at a node will be one sixth of the sum of the adjacent nodal temperatures. (True)
13. Lumped capacity model can be used in the analysis of transient heat conduction if Biot

number is greater than one. (False, should be less than 0.1)
14. Lumped parameter model can be used if the internal conduction resistance is high com-

pared to the surface convection resistance. (False, should be low)
15. To reduce the time constant of a thermocouple, the convection coefficient over its sur-

face should be reduced. (False)
16. To reduce the time constant of a thermocouple its characteristic linear dimension (V/A)

should be reduced. (True)
17. A solid of poor conductivity exposed for a short period to surface convection can be ana-

lysed as semi infinite solid. (True)
18. A slab will cool the fastest compared to a long cylinder or sphere of the same character-

istic dimensions when exposed to the same convection conditions. (False)
19. Higher the value of Biot number slower will be the cooling of a solid. (True)
20. For transient conduction analysis of smaller objects product solution is used. (True)
21. In a slab conducting heat the surface temperatures are 200 and 100°C. The mid plane

temperature will be 150°C if k is constant. (True)
22. In a slab of material of variable thermal conductivity, with conductivity increasing with

temperature, the surface temperatures are 200°C and 100°C. The mid plane tempera-
ture will be greater than 150°C. (False)

23. In a slab material of variable conductivity with conductivity decreasing with tempera-
ture the surface  temperatures are 200°C and 100°C. The mid plane temperature will be
higher than 150°C. (True)

24. In a hollow cylinder with radial conduction the mid plane temperature will be lower
than the mean of surface temperatures. (True)

25. In a hollow sphere with radial conduction, the mid plane temperature will be higher
than the mean of surface temperatures. (False)
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26. With convection on the surface any amount of additional insulation cannot reduce the
heat flow through a hollow spherical insulation of the same material to half the original
flow rate. (True)

27. In the case of small hollow cylinders or spheres, with outside convection the thermal
resistance may decrease by the addition of insulation. (True)

28. Small electronic components may be kept cooler by encasing it in glass like material.
(True)

29. If Prandtl number is greater than one, the thermal boundary layer will be thicker com-
pared to hydrodynamic boundary layer. (False)

30. Liquid metal flow in pipes can be approximated to slug flow. (True)
31. The local value of convection coefficient in laminar flow over a flat place will decrease

along the length. (True)
32. In flow over a flat plate over length L the , average convection coefficient will be equal to

(4/3) hL. (False)
33. Other conditions remaining the same as viscosity increases the boundary layer thick-

ness will decrease. (False)
34. Momentum and displacement thickness will be more compared to boundary layer thick-

ness. (False)
35. In laminar flow Nusselt is a function of Re0.8. (False)
36. In turbulent flow the velocity at point varies about an average value. (True)
37. In turbulent flow in pipes Nusselt is proportional to Re0.8. (True)
38. In fully developed flow through a pipe, under laminar flow conditions, average Nussel

number is constant. (True)
39. The hydraulic mean diameter for an annulus is Do2 – D12. (False)
40. In flow-through tube banks of tubes closer pitch will lead to higher values of h. (True)
41. In free convection, Rayleigh number is similar to Paclet number in forced convection.

(True)
42. Gravity force rather than buoyant force plays a more important role in free convection.

(False)
43. Grashof number is the ratio between buoyant force and viscous force. (False)
44. Reynolds number is the ratio between viscous force and buoyant force. (False)
45. The value of convection coefficient for the same flow velocity will be lower in the case of

water as compared to air. (False)
46. Lower values of kinematic viscosity will lead to higher value of h both in free and forced

convection. (True)
47. In pipe flow for similar velocity conditions water will have a higher convection coeffi-

cient compared to liquid metal. (False)
48. In cases where both modes of convection may contribute the ratio Gr/Re2 is a measure of

the importance of either mode. (True)
49. As the excess temperature increases, the sustainable heat flux will continuously in-

crease in boiling. (False)
50. The excess temperature range for maximum flux in nucleate pool boiling is about 200°C.

(False)



VED

c-4\n-demo\damo14-4

C
ha

pt
er

 1
4

51. In stable film boiling as excess temperature increases sustainable heat flux will in-
crease. (True)

52. In flow boiling mist flow will sustain higher heat flux. (False)
53. In condensation film, linear temperature profile is generally assumed. (True)
54. Dropwise condensation is not sustainable over long periods. (True)
55. Counter flow is always preferable in heat exchanger design. (True)
56. For the same terminal temperatures, LMTD-parallel flow will be higher compared to

LMTD-counter flow. (False)
57. NTU method is preferred for the analysis of the complete performance of heat exchangers.

(True)
58. For the same NTU, as the capacity ratio increases the effectiveness will decrease.

(True)
59. For a given exchanger as the capacity ratio increases the final temperatures will in-

crease. (False)
60. As the capacity ratio in a given exchanger increases, the heat flow will increase.

(True)
61. When heat capacities of both fluids are equal, the temperature difference will be con-

stant for parallel flow arrangement. (False)
62. For condensers/evaporators, the flow direction does  not affect the heat flow. (True)
63. Capacity ratio is taken as zero for condensers and evaporators. (True)
64. Opaque Gray surfaces have constant reflectivity. (True)
65. Directional emissivity for metals will be lowest at the normal direction. (False)
66. Glasses generally transmit low frequency radiation. (False)
67. Copper dioxide coating can  produce selective surface. (True)
68. As temperature increases, the wavelength at which maximum monochromatic emissive

power occurs increases. (False)
69. Kirchhoff law states that reflectivity equals absorptivity. (False)
70. As temperature difference increases, radiation resistance will increase. (False)
71. As temperature increases, hr will increase. (True)
72. Convex surfaces will have shape factor with themselves. (False)
73. Between two surfaces if F1–2 > F2–1 then A1 > A2. (False)
74. Shape factor with enclosing surfaces will be one. (True)
75. Gases are truly gray radiators. (False)
76. Radidation from a gas body is a volume phenomenon. (True)
77. Emissivity of a gas body depends on the partial pressure, thickness and temperature.

(True)
78. Gases are band radiators. (True)
79. Snow is a very good reflector. (False)
80. Lewis number is used to predict mass transfer rates using heat transfer rates at similar

conditions. (True)
81. Schmidt number replaces Nusselt number in convective mass transfer studies. (False)
82. In mass transfer studies the function of Sherwood number is similar to Prandtl number

in heat transfer studies. (False)
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SHORT  QUESTIONS

1. List the basic laws involved in heat transfer studies.
2. List the three modes of heat transfer and differentiate between them.
3. Describe the mechanism of heat transfer by conduction.
4. Describe the mechanism of convection mode of heat transfer.
5. Explain reasons for the involvement of more parameters in the analysis of convection.
6. Explain the importance of thermal conductivity of fluids in convection.
7. Describe the effect of flow velocity and viscosity on convection heat transfer coefficient.
8. Explain the essential conditions for radiation heat exchange.
9. Define steady state conduction giving examples.

10. State the Fourier law of heat conduction.
11. Giving examples explain the use of electrical analogy in heat transfer studies.
12. Define unsteady state conduction giving examples.
13. Explain how contact resistance develops in conduction ?
14. State the reason for the temperature gradient being steeper at the inside compared to

the outside in the case of radial heat conduction in a hollow cylinder/sphere.
15. Explain the term “critical thickness of insulation” with reference to insulation of hollow

cylinders and spheres with outside convection. Sketch the variation of total resistance
against insulation thickness in case of hollow cylinder.

16. Explain the concept of log mean area in the case of heat conduction in hollow cylinders.
17. Draw the equivalent circuit for conduction through a slab under steady state conduc-

tion with convection on both surfaces.
18. Sketch the temperature variation along the thickness of a slab under steady conduction

when (i) thermal conductivity increases with temperature and (ii) when thermal con-
ductivity decreases with temperature.

19. Sketch the temperature variation along the radius of a hollow cylinder/sphere under
steady radial conduction.

20. Discuss the desirability of tapering the section along the length of a fin exposed to
convection.

21. Discuss the conditions for extended surfaces (fins) to be beneficial.
22. Define fin efficiency and explain considering an example.
23. Define fin effectiveness and explain considering an example.
24. State the causes for errors in measurement of temperature of flowing fluids using ther-

mometer well.
25. Define Total fin efficiency and explain considering an example.
26. Sketch qualitatively the temperature variation along the length of fins in the following

conditions (i) copper fin and (ii) steel fin. Assume that similar outside conditions prevail
in both cases.

27. Two fins of identical sections and lengths are fixed on a surface for heat transfer
enhancement. One is of aluminium and the other is of steel. The tip temperature of
which fin will be higher and why ?

28. Explain why for a given volume of material a longer fin may not dissipate as much heat
as a shorter fin.
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29. Explain why circumferential fins are used in pipes and longitudinal fins are used on
motor bodies.

30. For a pin fin which type of shape will be more economical (i) constant area (ii) conical
(iii) convex parabolic and (iv) concave parabolic. Discuss the reasons.

31. Two rods of same section and length made of material A and B are inserted into a
furnace. The temperatures in the rods are found to be equal at lengths L and 1.5 L in
materials A and B. Indicate which material has the lower thermal conductivity.

32. Explain how thermal conductivity can be measured using fins.
33. Explain how convection coefficient can be measured using fins.
34. Discuss the effect of conductivity and convection coefficient on the heat dissipation ca-

pacity of a fin of a given shape and size.
35. A fin loses heat only by convection. If the same fin is to lose heat only by radiation, will

the heat loss (i) increase (ii) decrease or (iii) it cannot be predicted. Discuss.
36. A fin is exposed to a constant heat flux with the base temperature being lower. Sketch

the temperature variation along the length.
37. Write down the differential equation for steady two dimensional heat conduction and

indicate the method of solving the same.
38. A thin square slab conducting heat along two dimensions has three of its faces at say

400°C and the fourth side at 800°C. Sketch a few equal temperature lines.
39. A thin square slab conducts heat in two directions. Three of its sides are at 100°C and

the temperature on the fourth side has a sinusoidal variation with 100°C as minimum.
Sketch a few equal temperature lines.

40. List the various methods available for the solution of two dimensional steady conduction
problems.

41. Explain the advantages of numerical method in solving two dimensional conduction
problems.

42. Describe how a nodal equation can be formed for the temperature at a node in terms of
the adjacent nodal temperatures.

43. List the parameters that influence the use of Lumped capacity model in unsteady heat
conduction.

44. Explain the significance of Biot number in unsteady conduction.
45. Define “time constant” in the case of thermometer or any other probe used to measure

temperature of a flowing gas.
46. Explain the significance of Fourier number in unsteady conduction.
47. Sketch and explain the type of temperature variation with time in the case of a lumped

capacity system (i) when it cools and (ii) when it heats up.
48. Define “semi infinite solid” as used in transient conduction analysis ? Write the differ-

ential equation for the problem.
49. Cite some situations where semi infinite solid model can be applied. Give the possible

boundary conditions.
50. Explain the effect of thermal diffusivity in transient conduction.
51. In transient conduction sometimes the boundary is specified to be at constant tempera-

ture, when transferring heat. Explain how the physical situation can be achieved ?

SHORT QUESTIONS 703
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52. Equal sized spherical shots one of copper and the other of steel are heated in a furnace.
Sketch on the same diagram, the variation of temperature with time in these cases.

53. A solid in the shape of a short cylinder is heated in a furnace under convective condi-
tions. The value of Biot number is 0.6. Explain the method of determination of the center
temperature.

54. Sketch the temperature at various time periods along the thickness of a slab initially at
100°C suddenly exposed to convection at 800°C on both sides.

55. Sketch the temperature at various time periods along the thickness of a slab initially at
100°C if it suddenly has its surface raised to 800°C on both sides, and maintained at this
level.

56. Explain how a cube being heated can be analysed for temperature variation.
57. Differentiate between free and forced convection.
58. Explain the boundary layer concept and indicate its importance.
59. Differentiate between laminar and turbulent flow.
60. State the essential differences in the development of boundary layer in flow over sur-

faces and flow through ducts.
61. Explain the basic concept used in formulating the equations for the determination of

the value of convection coefficient.
62. Explain the significance of Nusselt number.
63. Explain the significance of Reynolds number.
64. Explain the significance of Prandtl number.
65. Explain the significance of “momentum thickness”.
66. Explain the significance of “displacement thickness”.
67. Explain how the wall temperature gradient at a location in flow over a surface is af-

fected by (i) velocity (ii) viscosity.
68. Distinguish between eddy diffusivity of heat/momentum and molecular diffusivity.
69. Define and explain the concept of Hydraulic mean diameter. Indicate the application of

Hydraulic mean diameter.
70. State the relation between friction coefficient Cf and friction factor f.
71. Define friction coefficient Cf.
72. Define friction factor f.
73. Explain the concept of Bulk mean temperature. Indicate where it is used.
74. Explain the concept of film temperature. Indicate where it is used.
75. Explain what is meant by fully developed flow in pipes.
76. Explain the advantage of the approximate integral method of analysis of boundary layer

flow.
77. Explain the use of analogy in heat and mass transfer studies.
78. Explain the advantages and limitations of dimensional analysis method used in convec-

tion studies.
79. Give two examples for the use of packed beds in heat transfer situations.
80. State Stefan-Boltzmann law.
81. State Wien’s displacement law in heat radiation.
82. State Lambert’s cosine law and indicate its uses.
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83. State Kirchhoff’s law of heat radiation and indicate its uses.
84. State Planck’s law of for heat radidation.
85. Distinguish between “total emissive power” and “monochromatic emissive power”.
86. Explain the concepts “black body” and “gray body”.
87. Explain the concept “intensity of radidation”. How does it relate to emissive power ?
88. Define the terms “absorptivity”, “reflectivity” and “transmissivity”. For a black surface

what are the values of each.
89. Explain what is meant by selective coating. Indicate the use of selectively coated sur-

faces.
90. With an example explain the concept “Band radiators”.
91. Explain the concepts “Radiosity” and “Irradiation” and indicate the application of these

concepts in the analysis of radiation heat exchange between gray surfaces.
92. Define the explain the concept “shape factor” in radidation heat exchange.
93. Discuss the effect of the following in the value of shape factor (i) area of surfaces (ii) distance

between surfaces (iii) enclosing insulated surfaces.
94. Explain what is meant by “green house effect”.
95. Describe how an ideal black radiation source can be created.
96. Explain how shields reduce heat transfer by radiation. Indicate the important require-

ment for shield effectiveness.
97. What is directional emittance ? Describe how directional emittance varies in the case of

conducting and insulating surfaces.
98. Describe giving an example the crossed string method  of determining shape factor.
99. State reciprocity theorem for shape factors.

100. Explain the concept and write down the expression for “surface resistance” and “space
resistance” in case of radiation heat exchange between gray surfaces.

101. Draw the equivalent circuit for radiation heat exchange between gray surfaces.
102. Explain the concept of “nonabsorbing-reradiating surface”.
103. Draw the equivalent circuit for heat exchange between two black surfaces connected by

a reradiating surface.
104. List the factors affecting the emissivity of a gas body.
105. Explain why glass cover is used in solar collectors of the flat plate type.
106. Explain how error in measurement of temperature using a bare thermometer is intro-

duced due to radiation.
107. Write the expression for the space resistance between surfaces separated by absorbing

gas body.
108. Define “excess temperature” and explain its importance in the study of boiling heat

transfer.
109. Describe the various regimes of boiling.
110. Differentiate between nucleate boiling and film boiling and indicate in which case maxi-

mum heat flux occurs. What is “burnout” in boiling ?
111. Explain the phenomenon of flow boiling and indicate the variation of flux that can be

sustained in various regimes in flow boiling.
112. Explain why surface tension becomes important in nucleate boiling.

SHORT QUESTIONS 705
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113. Distinguish between filmwise and dropwise condensation.
114. Describe the assumed variation of temperature in condensate film.
115. Distinguish between recuperative and regenerative heat exchangers.
116. List the classification of heat exchangers based on flow direction.
117. Compare parallel flow and counter flow exchanger in terms of area requirements.
118. Explain how a regenerative (storage type) heat exchanger can be made to work continu-

ously without cycling.
119. Explain why shell and tube arrangement is adopted extensively in heat exchanger con-

struction.
120. Define LMTD, NTU, capacity ratio and effectiveness of heat exchangers.
121. Explain the special advantages of NTU-effectiveness method of analysis of heat ex-

changer performance.
122. Explain the conditions under which the capacity ratio is taken as zero.
123. State how the ratio of temperature drop is affected by capacity ratio.
124. Explain why the fluid flow direction is not considered when capacity ratio is zero. Give

an example.
125. Explain the condition under which the slope of the hot and cold fluid temperature lines

will be equal. Indicate the effect of such condition in the case of counter flow exchangers.
126. Distinguish between “flow mixed” and “flow unmixed” in the case of heat exchangers.
127. What is fouling ? What are its effects on heat exchanger performance ?
128. Distinguish between diffusion mass transfer and convective mass transfer.
129. State the dimension for convective mass transfer coefficient. How does it differ from

convective heat transfer coefficient.
130. Explain the significance of Schmidt, Sherwood and Lewis numbers in mass transfer

analysis.
131. Describe giving examples “equimolal counter diffusion” and “one component diffus-

ing into a stationary component”.
132. Give an example for simultaneous heat and mass transfer.
133. Write down continuity equation for the boundary layer.
134. List the boundary conditions available for cubic curve fitting of velocity profile for a

forced convection boundary layer.
135. List the boundary conditions available for cubic curve fitting of velocity profile in free

convection boundary layer.
136. List the initial and boundary conditions in the case of infinite slab of thickness 2L exposed

on both sides to convection.
137. List the possible boundary conditions in the case of semi infinite slab under transient

conduction.
138. Define Radiosity and irradiation.



Appendix
Property Values of Metals at 20°C

Density Thermal Specific Thermal
Metal Diffusivity Heat Conductivity

ρ α × 106 c k
kg/m3 m2/s J/kgK W/mK

Aluminium, Pure 2707 94.44 896 204.2
Steel 0.5% carbon 7833 14.72 465 53.6
Nickel Steel 20% Ni 7983 5.28 461 19.1
Chrome Steel 20% Cr 7689 6.67 461 22.5
Constantan 60% Cu, 8922 6.11 410 22.7
Magnesium, pure 1746 96.94 1013 171.3
Nickel, pure 8906 22.78 444 90.0
Nickel Chrome 8666 4.44 444 17.2
Tungsten Steel 10%W 8313 13.61 419 48.5
Copper, pure 8954 12.22 381 386.0
Bronze 8666 8.61 343 25.9
Brass 8522 33.89 385 110.7
Silver, pure 10524 165.56 235 406.8
Tungsten 19350 62.78 134 162.7
Zinc, pure 7144 41.11 385 112.1
Tin, pure 7304 38.61 226 64.1
Cr Ni steel 7865 5.28 461 19.1
15%Cr 10%Ni

1W/mK = 0.86 kcal/m hr°C, 1 J/kgK = 238.9 × 10–6 kcal/kg°C.
Property Values of Elements at 20°C

Density Thermal Specific Thermal
Element Diffusivity Heat Condutivity

ρ α × 106 c k
kg/m3 m2/s J/kgK W/mK

Berylium 1840 50.97 1675 157
Boron 2500 10.90 1047 28.6
Cadmium 8660 46.67 230 93
Carbon (graphite) 1700 122.22 670 116.3

– 2300 – 174.5
Chromium 7150 218.06 448 69.8
Cobalt 8800 17.64 448 69.8
Gold 19300 127.00 129 317.0

(Contd.)
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Property Values of Elements at 20°C (Contd.)

Lithium 5340 40.28 3308 68.6
Molybdenum 10200 54.44 253 140.7
Platinum 21460 24.58 132 69.8
Potassium 870 155.56 737 100.0
Rhodium 12450 48.6 248 150.0
Sodium 975 94.44 1197 109.3
Silicon 2330 93.4 703 153
Thorium 11700 39.17 118 54.0
Uranium 19100 12.70 113 27.4
Vanadium 5900 11.94 496 34.9
Titanium 4540 6.22 532 15.12
Zirconium 6570 12.50 278 22.7

1W/mK = 0.86 kcal/m hr°C, 1 J/kgK = 238.9 × 10–6 kcal/kg°C
Property Values of Insulating Materials

Temp. Density Thermal Specific Thermal
Material erature Diffusivity Heat Condutivity

t ρ a × 106 c k × 103

°C kg/m3 m2/s J/kgK W/mK

Asbestos Fibre 50 470 0.29 816 1105
Asphalt 20 2110 0.16 2093 697.8
Chrome brick 200 3000 0.92 840 2320
Concrete 20 2300 0.49 1130 1279
Cork, plate 30 190 0.12 1884 41.9
Glass 20 2500 0.44 670 744.3
Glass wool 20 200 0.28 670 37.2
Ice 0 920 81.08 2261 2250
Magnesia 85% 100 216 – – 67.5
Mineral wool 50 200 0.25 921 46.5
Oak, across grain 20 800 0.15 1759 207.0
Porcelain 95 2400 0.40 1089 1035
Quartz, along grain 0 2500 – 2800 3.33 837 7211
Sheet asbestos 30 770 0.20 816 1163
Granite – 2630 1.37 775 2.79

1W/mK = 0.86 kcal/m hr°C, 1 J/kgK = 238.9 × 10–6 kcal/kg°C
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Property Values of Water in Saturated State

Temp- Density Kinematic Thermal Prandtl Specific Thermal
erature Viscosity Diffusivity Number Heat Conductivity

t v × 106 a × 106 Pr c k
°C kg/m3 m2/s m2/s J/kgK W/mK

0 1002 1.788 0.1308 13.600 4216 0.5524
20 1000 1.006 0.1431 7.020 4178 0.5978
40 995 0.657 0.1511 4.340 4178 0.6280
60 985 0.478 0.1553 3.020 4183 0.6513
80 974 0.364 0.1636 2.220 4195 0.6687

100 961 0.293 0.1681 1.740 4216 0.6804
120 945 0.247 0.1708 1.446 4250 0.6850
140 928 0.213 0.1725 1.241 4283 0.6838
160 909 0.189 0.1728 1.099 4342 0.6804
180 889 0.173 0.1725 1.044 4417 0.6757
200 867 0.160 0.1701 0.937 4505 0.6652
220 842 0.149 0.1681 0.891 4610 0.6524
240 815 0.143 0.1639 0.871 4756 0.6350
260 786 0.137 0.1578 0.874 4949 0.6106
280 752 0.135 0.1481 0.910 5208 0.5803
300 714 0.135 0.1325 1.019 5728 0.5390

β = (change in density/change in temp.) (1/density)
µ = density × kinematic viscosity
1W/mK = 0.86 kcal/m hr°C, 1J/kgK = 238.9 × 10–6 kcal/kg°C

Property Values of Dry Air at One Atm. Pressure

Temp- Density Coefficient Kinematic Thermal Prandtl Specific Thermal
erature of Viscosity Diffusivity Number Heat Conduc-

Viscosity tivity
t µ × 106 v × 106 α × 106 Pr c k

°C kg/m3 Ns/m2/s m2/s m2/s J/kgK W/mK

– 50 1.584 14.61 9.23 12.644 0.728 1013 0.02035
– 40 1.515 15.20 10.04 13.778 0.728 1013 0.02117
– 30 1.453 15.69 10.80 14.917 0.723 1013 0.02198
– 20 1.395 16.18 11.61 16.194 0.716 1009 0.02279
– 10 1.342 16.67 12.43 17.444 0.712 1009 0.02361

0 1.293 17.16 13.28 18.806 0.707 1005 0.02442
10 1.247 17.65 14.16 20.006 0.705 1005 0.02512
20 1.205 18.14 15.06 21.417 0.703 1005 0.02593
30 1.165 18.63 16.00 22.861 0.701 1005 0.02675

(Contd.)
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40 1.128 19.12 16.96 24.306 0.699 1005 0.02756
50 1.093 19.61 17.95 25.722 0.698 1005 0.02826
60 1.060 20.10 18.97 27.194 0.696 1005 0.02966
70 1.029 20.59 20.02 28.556 0.694 1009 0.03047
80 1.000 21.08 21.09 30.194 0.692 1009 0.03074
90 0.972 21.48 22.10 31.889 0.690 1009 0.03128

100 0.946 21.87 23.13 33.639 0.688 1009 0.03210
120 0.898 22.85 25.45 36.833 0.686 1009 0.03338
140 0.854 23.73 27.80 40.333 0.684 1013 0.03489
160 0.815 24.52 30.09 43.894 0.682 1017 0.03640
180 0.779 25.30 32.49 47.500 0.681 1022 0.03780
200 0.746 25.99 34.85 51.361 0680 1026 0.03931
250 0.674 27.36 40.61 58.500 0.677 1038 0.04268
300 0.615 29.71 48.20 71.556 0.674 1047 0.04605

1 W/mK = 0.86 kcal/mkg°C, 1 J/kgK = 238.9 × 10–6 kcal/kg°C

1 Ns/m2 = 0.102 kgf/m2, β = 
1
T , T in K

Values of Error Function

x erf(x) x erf(x) x erf(x) x erf(x) x erf(x) x erf(x) x erf(x)

0.00 0.00000 0.35 0.37938 0.70 0.67780 1.05 0.86244 1.40 0.95228 1.75 0.98667 2.20 0.998137
0.01 0.01128 0.36 0.38933 0.71 0.68467 1.06 0.86614 1.41 0.95385 1.76 0.98719 2.22 0.998308
0.02 0.02256 0.37 0.39921 0.72 0.69143 1.07 0.86977 1.42 0.95538 1.77 0.98769 2.24 0.998464
0.03 0.03384 0.38 0.40901 0.73 0.69810 1.08 0.87333 1.43 0.95686 1.78 0.98817 2.26 0.998607
0.04 0.04511 0.39 0.41874 0.74 0.70468 1.09 0.87680 1.44 0.95830 1.79 0.98864 2.28 0.998738

0.05 0.05637 0.40 0.42839 0.75 0.71116 1.10 0.88020 1.45 0.95970 1.80 0.98909 2.30 0.998857
0.06 0.06762 0.41 0.43797 0.76 0.71754 1.11 0.88353 1.46 0.96105 1.81 0.98952 2.32 0.998966
0.07 0.07886 0.42 0.44747 0.77 0.72382 1.12 0.88679 1.47 0.96237 1.82 0.98994 2.34 0.999065
0.08 0.09008 0.43 0.45689 0.78 0.73001 1.13 0.88997 1.48 0.96365 1.83 0.99035 2.36 0.999155
0.09 0.10128 0.44 0.46622 0.79 0.73610 1.14 0.89308 1.49 0.96490 1.84 0.99074 2.38 0.999237

0.10 0.11246 0.45 0.47548 0.80 0.74210 1.15 0.89612 1.50 0.96610 1.85 0.99111 2.40 0.999311
0.11 0.12362 0.46 0.48466 0.81 0.74800 1.16 0.89910 1.51 0.96728 1.86 0.99147 2.42 0.999379
0.12 0.13476 0.47 0.49374 0.82 0.75381 1.17 0.90200 1.52 0.96841 1.87 0.99182 2.44 0.999441
0.13 0.14587 0.48 0.50275 0.83 0.75952 1.18 0.90484 1.53 0.96952 1.88 0.99216 2.46 0.999497
0.14 0.15695 0.49 0.51167 0.84 0.76514 1.19 0.90761 1.54 0.97059 1.89 0.99248 2.48 0.999547

0.15 0.16800 0.50 0.52050 0.85 0.77067 1.20 0.91031 1.55 0.97162 1.90 0.99279 2.50 0.999593
0.16 0.17901 0.51 0.52924 0.86 0.77610 1.21 0.91296 1.56 0.97263 1.91 0.99309 2.55 0.999689
0.17 0.18999 0.52 0.53790 0.87 0.78144 1.22 0.91553 1.57 0.97360 1.92 0.99338 2.60 0.999764
0.18 0.20094 0.53 0.54646 0.88 0.78669 1.23 0.91805 1.58 0.97455 1.93 0.99366 2.65 0.999822
0.19 0.21184 0.54 0.55494 0.89 0.79184 1.24 0.92050 1.59 0.97546 1.94 0.99392 2.70 0.999866

(Contd...)
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0.20 0.22270 0.55 0.56332 0.90 0.79691 1.25 0.92290 1.60 0.97635 1.95 0.99418 2.75 0.999899
0.21 0.23352 0.56 0.57162 0.91 0.80188 1.26 0.92524 1.61 0.97721 1.96 0.99443 2.80 0.999925
0.22 0.24430 0.57 0.57982 0.92 0.80677 1.27 0.92751 1.62 0.97804 1.97 0.99466 2.85 0.999944
0.23 0.25502 0.58 0.58792 0.93 0.81156 1.28 0.92973 1.63 0.97884 1.98 0.99489 2.90 0.999959
0.24 0.26570 0.59 0.59594 0.94 0.81627 1.29 0.93190 1.64 0.97962 1.99 0.99511 2.95 0.999970

0.25 0.27633 0.60 0.60386 0.95 0.82089 1.30 0.93401 1.65 0.98038 2.00 0.995322 3.00 0.999978
0.26 0.28690 0.61 0.61168 0.96 0.82542 1.31 0.93606 1.66 0.98110 2.02 0.995720 3.20 0.999994
0.27 0.29742 0.62 0.61941 0.97 0.82987 1.32 0.93806 1.67 0.98181 2.04 0.996086 3.40 0.999998
0.28 0.30788 0.63 0.62705 0.98 0.83423 1.33 0.94002 1.68 0.98249 2.06 0.996424 3.60 1.000000
0.29 0.31828 0.64 0.63459 0.99 0.83851 1.34 0.94191 1.69 0.98315 2.08 0.996734

0.30 0.32863 0.65 0.64203 1.00 0.84270 1.35 0.94376 1.70 0.98379 2.10 0.997020
0.31 0.33891 0.66 0.64938 1.01 0.84681 1.36 0.94556 1.71 0.98441 2.12 0.997284
0.32 0.34913 0.67 0.65663 1.02 0.85084 1.37 0.94731 1.72 0.98500 2.14 0.997525
0.33 0.35928 0.68 0.66378 1.03 0.85478 1.38 0.94902 1.73 0.98558 2.16 0.997747
0.34 0.36936 0.69 0.67084 1.04 0.85865 1.39 0.95067 1.74 0.98613 2.18 0.997951
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