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Preface

This book is a deliberate departure from conventional texts on fluid mechanics!
Historically, fluid mechanics at first had been the province of the civil en-
gineering community. Later it was joined by the field of mechanical engineer-
ing, which dealt with the process industries, power plants, materials transfer,
ete., and finally it expanded to the compressible fluid fraternity, whose chief
concern was aerodynamics, aerospace, jet propulsion, etc.

It stands to reason, then, that early text material on fluid mechanics was
heavily oriented toward hydrology, civil engineering applications, water works,
sewerage systems, and flow in open channels. At this stage of development fluid
mechanics was synonomous with “hydraulics.” And hydraulics meant civil
engineering hydraulics. To this day, introductory fluid mechanics courses in
most engineering colleges are either taught by the civil engineering department
or followed by patterns established by them.

With the evolution of the aireraft industry and its related technology, a
second school of thought evolved around compressible fluid mechanics in con-
junction with problems of aircraft in flight or aerodynamics. Compressible fluid
mechanics, which had been the province of the thermodynamicists, moved into
the field of fluid mechanics and became of equal moment with the earlier “hy-
draulics.”

We now had two major schools of thought in fluid mechanies: (1) hydraulics,
which encompassed the area of incompressible fluids or liquids, and (2) compress-
ible fluids or gases, which included aerodynamics but did not necessarily restrict
itself thereto. Things have been going along this way for some time now.

It is inevitable that when engineers think they have things nicely under con-
trol, a new area in technology emerges to challenge old alliances. The upstart
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in this case 13 fluid power Flwd power 1s the technology of the transmission,
control, and storage of energy by means of a pressurized fluid in a closed system.
In the two earlier cases, the fluid atself, or its effect on an object immersed in 1t
s an environment, was the primary concern In the case of fluid power, the trans-
mssion of energy 1s the major concern, and the fluid enters the picture only as
the means of accomphshing 1t. Flud propertics and behavior are of importance
only as they affect transmission phenomena

Matersal in current flnd mechames texts follows this general pattern of
evolution Either the texts use bastcally the civil engineering approach to hy-
draulies with 1 ref to hydraulic hinery, or they follow the
newer and more generalized approach with heavy emphasis on compressible
flad flow.

Although some of these texts are excellent, they still leave something to be
desired from the pomt of view of fluid power In some instances the books are
so heavily oriented toward the eivil d tine that the h 1
engineering student must sift out the matenal he is concerned with. In other
cases, the authors have tried to be all things to all people! They have mcluded
so much material that frequently on such a level 1t 13 1mpossible to do more than
survey the subject matter in a one-semester introductory course i flwd me-
chanies Perhaps these authors had intended their books to be used for several
courses—a series n fnd mechanies. However, most schools require only one
bastc course in fluid mechanies Thus an suthor cannot expect the student to
receive more than a one-semester exposure to his work. For these reasons T have
decided to produce this text on fluid mechames from a different pomt of view
from that of my colleagues,

My premuse 1s that flind mechanics has become 56 large an area of technology
that 1t cannot be covered in its entirety 1n a one-semester introductory course.
A large number of engineers and engineering techmeians will go into industry to
work m the productive segment of our economy. For the most part, these
people will have been disciphned in the mechamesl and electnical engineering
O L A CT
a

g
a8 related to transfer of flmds within these industries

If this book 15 to be something more than just another title on the slready
large hist of good texts on flid mechanics, 1t must meet the specific need implhed
above, That 1s, 1t must be onented toward the needs of the manufacturning and
process industries and must place particular emphasis on fluid mechanics related
to flusd power. Tt must contamn enough fundamental fluid mechanics to fulfill the
requirements of the mdividuals who may later work with fld machinery or m
the process industries.

A further consideration 1s that the text 15 designed to give a presentation of
fiuid mechanics within the usual one-semester, three-credit-hour course  Students
requinng more work m fluid mechanics must seek it 1n elective courses or duning
graduate work. Such is the situation as it sctually exists.

Since this is, supposedly, the first fluid power mechames text, another con-
sideration 1n 1ts structure 13 that 1t must fill a wade spectrum of situations of
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educational application. The material presented has been classroom-proven to
be useful both in ECPD-type of engineering technology curricula and as the
introductory course in the four-year baccalaureate engineering curricula. Evi-
dence of the veracity of this claim is the fact that my students have even used
ray lecture notes—from which this book is drawn—to pass the fluid mechanics
work in the P. E. examination. I have found that in introducing a new field to
students, the concepts, not the level of execution, cause the greatest difficulty.
Of course, variation in the level of presentation can be made at the discretion of
the teacher.

One last consideration—and to me the most important one—is to make the
introduction to fluid mechanics as palatable for the student as possible. I do
not see the merit in making something unnecessarily difficult. In this respect I
take exception to the approach of generalizing everything on the presumption
that the student will then be able to make the necessary transition to the specific
case. It has been my observation that the beginning student does not retain
enough of the abstract generalization to be able to attack the specific. He cannot
relate the two because he does not have enough experience to formulate a frame
of reference from which to work. Thus I prefer to start with a specific physical
system which the student can visualize and understand, and, where necessary, to
work back to the generalization from that vantage point. The role of the educa-
tor, after all, is to educate.
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CHAPTER 1

An intfroduction

to fluid mechanics

Fig. 1-1
The hydraulic servo-system used in a typical missile application.
Most rockets and missiles—including the Mercury, Gemini, and Apollo
series shots—make wide use of fluid power. The supporting equipment on
the ground is almost in the same position as construetion equipment.
It is hard to visualize how some of the jobs could be done by any means
other than fluid power.

1



2 An introduction to fluid mechanics
What Is Fluid Mechanics?

We are about to mndulge m an educstional experience. The value of that
experience to the reader will depend 1n great measure on his attitude toward
the subject to be explored—fuwud mechancs.

Fluid mechanics is the study of the physical behavior of fluids and flurd systems
and the laws describing this behavior,

The top1c 1s not unduly difficult. In general, the behavior of fluids follows
laws similar to those which deseribe the behavior of sobd bodies and which
are familiar to you from other courses, such as statics or dynamics. The
major difference lies in the interpretation which must be placed on the laws
due to the nature of the substance with which we are dealing One of the
most exeiting areas of application of fliud mechanics is 1n the aerospace
technology. Figure 1-1 illustrates a typieal missile application

What Is A Fluid?
Let us begin by defining a fluid-

A Fluid is o substance which has definite mass and volume but has no definite shape;
a fvid cannot sustain o shear stress under equilibrium conditions,

To be more precise there 1s one minor addition which must be made to the
above definition to cover all possible cases. We should say that a fluid has
defimte mass and volume at constant temperaturc and pressure. More
about this later

There are two basic classes of fluids—liquids and gases. As students
of engineering technology, we must develop discipline in our thinking
Contrary to general usage, we must include both classes when we speak of
flwads.

Liquids are fluids which have definite volumes independent of the shape of the
contaner.

Under conditions of constant temperature and pressure, liquids will assume
the shape of the container and fill a part of 1t which is equal 1n volume to
the quantity of liquid. Liquids are generally thought of as being incom-
pressible; that is, their volume doesn’t change with change in pressure.
Within the changes in temperature normally encountered in fluid power
engineering, the volume can be thought of as being constant with regard to
temperature. (Variations from these “ideal” properties will be discussed
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later.) Liquids, when exposed to atmospheric pressure, for example,
have a free surface, such as the surface of a lake or a pail of water.

Gases are fluids which are compressible; gases will vary in volume to fill the vessel
containing them,

Unlike liquids, which have a definite volume for a given mass of the liquid,
the volume of a given mass of gas will change to fill the container. This
behavior is described by the gas laws, which we will discuss in Chapter 17.
Gases cannot have the free surface which liquids display. We will see later
that there are certain conditions under which gases can also be considered
incompressible, but these relate to fluid systems and not to the substance
itself.

Without sacrificing accuracy, we can establish some useful relation-
ships and develop our thinking about fluid mechanics by considering what
we will call an “ideal liquid.” An ideal liquid is completely incompressible;
its volume does not change with temperature; and it exhibits no losses due
to friction, ete., when it flows in a system. Now we know perfectly well
that real liquids do not have this perfect behavior. We can, however,
develop many useful relationships on this basis and then insert the above
factors as corrections. In the meantime we have not cluttered up our
minds with these fine points while we are developing broad, basic principles.
Until further notice, then, we will be dealing with our “ideal liquid.”

1387/ —)—
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Fig. 1-2 \/ Fig. 1-3

Some Characteristics of Fluids

We have spoken about liquids having definite volume but having no shape.
To visualize this, we note that the solid of Fig. 1-2 has a volume of 1 cubic
fool (ft‘sv) because it measures 1 {t on each edge. If we have a container, or
vessel, which measures 1 ft on each inside edge and if we fill it with a liqtiid

there will be 1 ft3 of liquid in the container. If we have a cylindrical tanlé
(Fig. 1-3) of about 13 in. in diameter (an area of about 1 ft2) and 2 ft
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high and if we pour the liquid from the squarc vessel to the cylindrical
tank, how high will the liquid rise? Well, we started out with I {t? of

hquid.
Volume = Area X Height;

0 the liquid will rise to o height of 11t3 <+ 1{t% = 1ft. If the arca of the
base of the cylindrical tank had been % {t2, the height of the liquid would
have been 2 {t; the volume, you see, remains constant.

F,

i
!
/
I
7
i
i
i
i
/

Fig. 14

Figure 14 illustrates how our solid having a volume of 1 ft* would
react to tangential forces applicd in opposite directions at the top and
bottom surfaces. Such forees would induce shear stresses in the solid,

such that

F F
5= e T wa
I we could imagine an isolated “block” of fluid similar to the sohid shownin
Tig 14, we would find that the fluid could not sustain these two forees in
cquilibrium. If it could, it would be possible to pour the cubic foot of
liquid out onto the table top and it would retain its shape. The fact that
it would quickly spread out over the table top and sech a common level is
evidence of the fact that it cannot sustain a shear stress. Note that even
while it is runtung all over the table top, the total volume of liquid involved
iy still just 14t% All that has happened is that the shape of the container
hav changed
et us return 1o our solid block of Fig. 1-4  If it were an 1ron block,
it would weigh about 490 Ih. Since it is a 1-ft* block, its weight density
would be 190 Ib/ft3,
If we take water as our liquid having a volume of 1 17, its weight
density would be 62,1 1b/f1>, It is general practice to call this quantity the

specific weight; that is,

T = Specific weight == Weight density = Weight/unit volume.
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The Greek letter gamma, v, is used as the symbol for specific weight. For
water: ¥ = 62.4 Ib/ft® = 0.0361 lb/in3.*
You are undoubtedly familiar with the relationship

M= W/g.

That is,
mass = weight/acceleration due to gravity.

If we use the specific weight, 7, in this equation, M is the density:
Density = Mass/unit volume = Y/g = p.

The Greek letter rho, p, is used as the symbol for density, and g is the
symbol for the acceleration due to gravity, which is taken to be 32.2 feet
per second per second (ft/sec?). To distinguish between mass density and
weight density, we shall hereafter refer to the former as density and the
latter as specific weight.

Let us recall Newton’s second law, which can be written in the form
F = Ma. We can rewrite this as W = Mg, where W is the weight in
pounds (force due to the acceleration of gravity), M is the mass expressed
in slugs, and g is the acceleration due to gravity (32.2 ft/sec®). All units are
expressed in the English system. If we further reduce this to unit volume
base, the expression becomes ¥ = pg.

What Is Pressure?

Suppose, now, that we take the cubic-foot block of iron weighing 490 1b and
support it on a steel bar with a cross sectional area of 1 in?, as shown in
Tig. 1-5. What will be the reaction on the bar? It is obvious that it will be
the weight of the block (490 1b). How is the reaction distributed over the
steel bar? It is the weight divided by the cross-sectional area; that is, 490
Ib/in? = 490 psi. If the block were supported on 4 rods each of cross
section 1 in? the distributed reaction would be 490/4 = 122.5 psi. Let us
suppose that the block is just resting on a surface, such as the floor of a
room. The weight (reaction) of the block is then distributed over the whole
surface which is in contact with it. Since this is a 1-ft3 block, the surface
of any one face is 1 ft2. Thus the distributed reaction (pressure) of the

weight of the block over this surface is 490 1b/144 in%? = 3.4 1b/in® =
3.4 psi.

* See Appendix B for tables of properties for other fluids.
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important in checking out the units, as we did in the example above.
Keeping units consistent, particularily in the English system, is one of the
more difficult tasks in solving problems in fluid mechanics.

Returning to Fig. 1-6, we now find that we have determined the total
weight of water to be W = YAl Ib.. The pressure at the bottom surface,
the distributed reaction, will be the total weight divided by the surface
area, or P = W/A = YAh/A = vh Ib/unit area. If we are working in
units of pounds and feet, the unit of P will be pounds per square foot, or psf.
If we are working in inches and pounds, the unit of P will be pounds per
square inch, or psi. Again take note of the fact that psi really means
1b/in? and, when you check dimensionals, psi must be written in this form
in the equation.

Suppose that the fluid we are considering is not water. This brings
into play a factor termed specific gravity, S,.*

Specific gravity is the dimensionless ratio of the weight of a given volume of a
substance to the weight of an equal volume of water.

It is, as you can see, the ratio of their specific weights, or densities, as well.
For example, we know that the specific weight of water is 62.4 Ib/ft3, and
the specific weight of gasoline is 42 1b/ft3. From the above definition, we
can find the specific gravity of gasoline:

_ 421b/f8®
Sa —_ m —_ 0-675.
Tor the iron block:
490 Ib/ft°
Sg = m = 7.86.

Specific gravity need not be less than one. If you know the weight of the
liquid (other than water) you do not need to use S, in the calculation of
pressure, as in Fig. 1-6. If you don’t know it, then the relationship
Y1 = Yy X S, can be used.

So far we have been considering an isolated “block” of water. It is
practical to do so only when we include the container which holds the water.
On the other hand, it is possible to mentally “isolate” our block of water in
a large mass of liquid, such as a reservoir or lake. Figure 1-7 illustrates
this concept.

If our block is located such that its top surface is at the level with the
surface of the lake, A, it can be considered the same as the isolated block
of Fig. 1-4. The block of water is supported now by the water beneath it.

* See Appendix B for a table of specific gravities of commonly encountered fluids.
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This water below must push upward with a force equal to the weight of om
1solated block pushing down  Thus, if we imagine a than surface separating
the bottom of our block from the water beneath it, the pressure {dis-
tisbuted reaction) pushing down on ths surface would be the same as the
pressure pushing up aganst it 9

In defiming a fluid catlier, we smd that 1t was a substance which could
not sustain a shear stress  What, then, keeps our “block” from “spreading
out” along this imagmary surfuee in much the same way that 1t would if
1t wele poured out on a sohd surface? After all, we have established that
there 1s a pressute distribution across the “surface " The fact 15 that the
water adjacent to the sides of our block pushes on the sides 1 mucl the
same way as the water below pushes up sgamst it Thus at any pont on
any side of our 1maginary block there is o pressure pushmg out and a like
one pushing i—action and 1eaction  This Jeads us to a very impor-
tant principle, one which 1 basic to the operation of flid power systems

27/ pipe

Pascal’s faw

Pascal's law tells us that the pressule at wuny pont in a fluid, say pomt ¢
in Fig 1-7, 1 equal in all directions.

The pressure in a static flsid s the same in oll directions, pressure applied to a fluid
is transmitted undiminished throughou? the fvid,

Lot us take a look at our imaginary block at point B in Fig. 1-7. Heic the
surface of the block 1s no longer coincident, with the surface of the lake. We
cstablished earlier that P = vk, Inour submerged block we must consider
not ouly kg, the height of our block, but also A4, the depth of the block
beneath the surface of the lake. Thus the pressure on the top surface of our
block would be P, = vh; That at the bottom surface would be Py =
Y(hp + hg). The difference 1n pressure between the top and the bottom
surfaces would be the same as before: Yhy = Y(hp + hs) — Yhs Thuswe
have reaffirmed the statement made earlier that the pressure at any point
in a fluid is a function of its depth (and the density of the flmd). If point €
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in Fig. 1-7 were at the same level as the bottom of our block, the pressure
would be P. This can be expanded to include all the points in the lake:
the pressure at any point on the same level is the same. Or we could say that
we have constant pressure at constant depth A.

Let us suppos’ that we push a pipe 2 in. in diameter down into the lake
so that its lower end is at the same level as the bottom of our imaginary
block of water. What would be the pressure in the end of the pipe? 1t
would be A

Powlocy = Popipey = Y(hp =+ ha).

If we had a piece of pipe of length equal to hp + hq, and if we filled it with
water, would the pressure still be P,? Of course it would. Figure 1-8
depicts our lake with a pipe leading from it at the same depth as the bottom
of our block. The 2-in. pipe is connected to the horizontal pipe outside the
lake. As determined before, the pressure at this level is P;. According to
Pascal’s law, the pressure in the horizontal pipe leading from the lake will
be Py. How high will the water rise in the vertical 2-in. pipe? From the
relationship P, = Y(hp + ha), we derive

Dy

hp + kg = - = hp.

Pressure Head

The height of water, hp, is given a special name pressure head. Pressure
head is the vertical height, in feet or inches, to which a given pressure will
elevate a column of fluid. For every pressure level there is a corollary
pressure head. In a massive body of fluid, such as a lake or the atmosphere,
depth in the fluid and pressure head are synonymous. For a piped system
operating at any pressure, pressure head is the height to which the column
of liquid could be raised. Note the difference in units between pressure
(psi) and pressure head (in.).

IMPORTANT TERMS

A fluid is a substance which cannot sustain a shear stress under equilibrium
conditions,

Liquids and gases are classes of fluids.
Pressure is force per unit area:

P = T ib/in? (or Ib/862).
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Specific weight is the weight per unit volume:
W .3 s
Y= Vlb/m (or Ib/ft°).
Density is the mass pa1 unit volume:

o= Z‘V! = l‘I;,Aislugs/in:‘ (or stugs/ft3).
Specific gravity is the dimensiontess ratio of the weight of a substance to the
weight of the same volume of water.
Pascal's law: pressure is transmitted undiminished throughout a flnd.
Pressure head is the vertical height to which a given pressure will clevate
column of fluid. It is expressed 1n units of feet or mnches,

PROBLEMS

1-1 What 13 the dafference hetween a flusd and a sold?

1-2 What differentiates liquads from gases”

1-3 What 15 the difference between specyfic weight and specific gravity?

1-4 1f an ol has a specific weight of 0.0300 1b/in?, what 15 1ts speesfic gravity ?

1-5 What is the difference between specific weight and density?

1-6 What is the density of the o1l of Problem 1-4?

1-7 If we have a flmd of S, = 1.15, what is 1t density?

1-8 What height would a column of mineral ol have to be to exert the same
pressure at 1ts base as an 18-in. column of mercury?

1~9 In the system shown in Fig. 1-8, assume that the 1ron block 1s frictionless
1 the standpipe and that no leakage oceurs Caleulate the pressures at
the different levels,

Fig. 1-9

Water column,
3507 hugh

Tron block,
-2 hugh

il colum, R

100° high Fig. 1-10




1-10

1-14

1-18

1-20

1-21
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Using the principles developed in this chapter, prove the following expres-
sions: (a) P = 0.433 X S, X k, where P is pressure (psi), S, is the specific
gravity of a liquid, and & is the head (ft). (b) h = (2.32 X P)/S,, with
the same units.

A skin diver descends 20 ft into the ocean. The specific weight, S, of salt
water is 1.03. What is the pressure, in psi, to which he is subjected?

A tank is shaped like the frustum of a cone. It is 5 ft in diameter at»the
bottom, 2 ft in diameter at the top, and 10 ft deep. If it contains glycerine
(S, = 1.260) to a depth of 8 ft, what is the pressure, in psi, on the bottom?

Pressure in a given liquid varies according to the expression P = 7Vh.
Draw a plot of the variation in pressure from the surface of a lake to the
bottom.

A 100-ft pipe rests on the side of a hill at a 30° angle with the horizontal.
If it is filled with benzene, S, = 0.899, what is the pressure at the base of
the pipe?

Pressure in a 12-in. water main is 150 psi. The main is buried 15 ft below
street level. How high above street level can water be delivered?

Describe how the principle of pressure head might be used to measure
pressure in a pipe when a tube is inserted into the wall of the pipe.

A cylindrical tank 100 ft in diameter and 50 {t deep stands on top of a hill
75 ft high. The tank filled with water supplies water mains buried 15 ft
below the base of the hill. What will the pressure be at water valves on the
second floor of a manufacturing plant which is 20 ft above the base of the
hill?

A drain pipe is located in the side of a tank 15 ft from the top. Its inside
diameter is 6 in. The fluid in the tank is water. A workman must hold a
flat cover flange over the end of the pipe while it is bolted in place. How
hard will he have to push to hold it?

In Problem 1~17, what pressure must pumps develop to pump water into

the storage tank from a pit in the pump house which is 20 £t below the base
of the hill?

A submarine is cruising at a depth of 320 ft off the Florida coast. The

captain wishes to pump out the ballast tanks. What pressure must the
pumps develop?

A typical storage tank is shown in Fig. 1-10. The pump is delivering oil,
Sy = 0.81, into the tank. A careless workman allows the tank to fil

completely and lets the pressure, Pj, at the base of the tank build up to
12 psi. What force is exerted on the top of the tank?



CHAPTER 2

Pressure, head, force

fig. 2-1
Pressure Head and the Piezometer Tube

The device illustrated in Fig. 2-1 1s ealled a piezometer tube and 1s used to
indicate pressure n a conductor. The liquid will rse 1n the tube to a height
equal to the pressure head; h = P/, wherehisin ft {orin., ete.), Pisn psf
(or psi), and 7 is i 1b/ft? (or Ib/in®). Check this relationship dimensionally:

b b b ft® i3
MO = o R

This technique of dimensional checking is an invaluable tool to Jearn to use

The piezometer tube can be used to measure relatively low, positve
pressures It also serves as an excellent illustration of the equivalency of
pressure and pressure head,

In Problem 1-1, we derived a rule of thumb relationship for the caleu-
Iation of head or pressure and used the more familiar units' psi for
pressure, and ft'for head. Thus
232P

S

P = 0433S;2  and conversely A=

12
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Absolute and Gage Pressure

We stated above that a piezometer tube could best be used to indicate
positive pressure. One might well ask what other kind of pressure therg is
and from a purely algebraic sense would arrive at the conclusion, negative
pressure. Since we defined pressure as force per unit area, a force of some-
thing less than nothing may be a little difficult to envision. Tigure 2.—2
depicts the method by which we may have either positive or negative
pressures. The earth is enclosed in an environment of air, the atmosphere.
We cannot do anything on the surface of the earth without it being done
relative to this environment. It is somewhat analogous to our being at
point C in Fig. 1-6; we are surrounded by a “lake” of air. The atmosphere
has a depth just as assuredly as does the lake of Fig. 1-6. This depth is the
same as the pressure head. In other words, the atmosphere has weight, and
the distributed reaction of this weight on the earth’s surface is what we call
atmospheric pressure. It is well known that this pressure is about 14.7 psi
at sea level.

Press.ure,? (_-{:)psxg
si .
) P . (+)psia Gage
0 psig=14.7 psia { ref.

3 Vacuum
(~Jpsig ? region

H;)?Sii"- Absolute

0 psia ref. Fig. 2-2

Tt is impossible to make a pressure measurement on the earth’s surface
unless it is made relative to atmospheric pressure. Therefore a reference
can be established at the atmospheric pressure level, as indicated in
Tig. 2-2. If the pressure we wish to measure is at the same level, there will
be zero pressure relative to atmospheric. Pressure gages, piezometers, and
other pressure-measuring devices indicate pressures called gage pressures.
Atmospheric pressure is 0 psi gage, often abbreviated psig. Gage pressures
are positive if they are greater in magnitude than atmospheric, and are
negative if less than atmospheric and measured down from the atmospheric
reference. Negative pressures are also called vacuums.

If we had a negative pressure of —14.7 psig, it is obvious that we
would have no pressure at all. We know that atmospheric pressure is 14.7
psi at sea level. Then 14.7 — 14.7 = 0. This condition of no pressure at
allis called absolute zero. It is analogous to absolute zero temperature in the
measurement of temperature. Thus we have a second reference from which
pressure can be measured, absolute zero or 0 psia. We can see now that
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atmospheric pressure is actually 147 psia = 0 psig. Vacuums can be
expressed in either absolute or gage terms. For example, in Fig. 2-2, we
see that —5 psig = 9.7 psia. It is general practice to mean “gage pressure”
when using the abbreviation psi. It is necessary to use the term “psia”
when absolute pressure is being expressed.

Fig. 2-3

Pressure Head and the Manometer

It is now apparent why the piezometer can best measure positive pressures

If 2 negative pressure existed in the pipe, atmospheric pressure would push
down into the pipe. In many industrial applications such aeration is
intolerable.

The piezometer with a U-tube, as shown in Fig 2-3, overcomes part
of this problem, The reference 1s at the opening into the pipe positive
pressure would result in a head measured above the reference, vacuums
would result in a head below.

He 8,=130

Fig. 2-4
i)

A manomeler is o pressure-measuring device which has a gage liqud
different from that in the pipe. Mereury is most frequently used; water
finds application when low pressures are being measured Figure 24
shows a typical manometer configuration. When the pressure in the pipe
is 0 psi, the mercury in the U-tube seeks its own level and the two legs are
of equal length, as shown in Fig. 2-4(a). When pressure, assuming 1t is
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positive, is applied in the pipe, the force on the left-hand leg pushes the
mercury up in the right-hand leg, as shown in Fig. 2-4(b). Note that the
reference is again taken at the level where the manometer tube enters the
pipe. Tor the system to be in equilibrium, the weight of the column of
liquid in the right side must equal the weight of the column of liquid in
the left side.

In other words, the pressure at any level in the righi-hand leg must be
the same as the pressure at the same level in the left-hand leg. A convenient
point is the interface between the two fluids, point 4 in Fig. 2-4(b).
Then, considering the left leg of the manometer, we have

Py, = Py + Vi,
and in the right leg,
Pal = Yqhs.

If equilibrium exists, that is, if the manometer isn’t moving, we have
P, = Pg;, and hence

Pl -+ 'Ylhl = 'Yzhg, or P1 = 72’)2 — 'Ylhl-

If the specific gravities of the fluids are known, the above equation can be
rewritien as follows:

Py = Yu(Sghe — Sgly),

where 7,, is the specific weight of water.
Manometers are used in accurate determination of relatively low

pressures. Ior example, even a manometer 10 ft high would be capable of
measuring only

P = 7h = S;¥,h = 13.6 X 62.4 Ib/ft3 X 10 ft
= 8486.4 psf = 58.9 psi.

Note that 1 in. of mercury is approximately equivalent to 0.49 psi; that is,
P = vh = (138.6 X 0.0361) X 1in. = 0.49 psi.

From this simple relationship we can also determine the height of the
column of mercury which can be supported by atmospheric pressure:
h= P/vy = 14.7 psia/0.49 ~ 30 in. Hg. It is a commonly recognized
fact that atmospheric pressure will support about a 30-in. column of

mercury. Note that this is in reality the pressure head expressed in terms
of inches of mercury.
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Ty Fig. 2-5

The Differential Manomeler

The mercury manometer of Fig. 2-4 is used to measure absolute pressures
relative to the atmospheric environment. The differential manometer,
illustrated in Fig, 2-5, 18 used to measure the pressure (head) difference
between two reference points in fluid media; most frequently between two
pipes as shown. In contrast to the simple manometer of Fig. 24, the
differential manometer cannof indicate absolute pressure; 1t can register
only the difference between the two pressures Solving for the pressure
difference as indicated by the differential manometer is an excellent
exercise for equating pressure and head. It is important to recogmze that
when the manometer has stopped fluctuating the various fluids within the
system are in equbbrium. We can set up a chart of pressures (or equivalent
heads) on the right side of the manometer and on the left side.

LEFT SIDE RIGHT SIDE
point pressure point pressure
4 Pa B Pg
1 Pg+Yaky
2 Pa+ Yahy + Yothe — h1) 4 Py~ Yoha
3 Pa+ Yaht + Yotha + ha — k) 3 P+ Yshe+ Yok

We can see that the two expressions for the pressure at point 3 must
be equal. Thus

Pyt Vahy + Yolho + ks — k1) = Py + Yphe + Yoha
The expression Ygh3 can be eliminated from the equation, leaving

Py Yahy +Yy(hza — ki) = Py - Y5k,
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from which
P4 — Pp = Yghy — Vahy — Yg(ha — hy)
but hy — h; = difference in Hg head = hg. Then
P4 — Pg = Yghs — Yahy — Yghq

is the final expression for the pressure difference between the two pipes.

In fluid power systems used in industry, operating pressures in the
range of 1000 to 5000 psi are quite common. If we tapped a piezometer
tube into a pipe carrying water at 1000 psi, how high would the water rise
in the tube shown in Fig. 2-6? We know that

P =h or h = P/v;
then

, — 1000 Ib/in® _ 27,700 in

= 00361 Ib/ind 12

= 2320 ft.

Thus we see that the pressure head for 1000 psi pressure is 9320 ft of water.
Let’s look at the dimensional check of the above solutions:
h = b b _ ______lb-in3 = in
T in2 " ind3 ~ lb-in2 " T
If we look at it another way, we find that the distributed reaction of a
column of water 2320 ft high would be a pressure of 1000 psi.

vy

PZANNIESTIN

Fig. 2-7

:

Force Multiplication Via Pressure and Area

You will recall that Pascal’s law told us that pressure is transmitted
undiminished throughout a fluid. Figure 2-7 shows a device which for its
function depends upon the application of Pascal’s law. We have repre-
sented here two cylindrical containers and two circular pistons fitted closely
to the walls of the cylinders. They are not unlike the pistonsin the cylinders
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Fig. 2-8
Hydrauleally powered forming press such as is used
Y P (2 At

application of Pascal’s law.
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of a car engine. Cylinder A is of different cross-sectional area from cylinder
B. The two are connected by a pipe so that fluid could flow between them
or, according to Pascal, that pressure could be transmitted from one to the
other. '

If we exert a force, F'1, on the first piston, the reaction of this force will
be distributed over the area of the piston, 4;. Thus, 'y = P X A; or
P = F,/A,. The pressure generated is the distributed reaction of the force
over the area. Since this pressure is transmitted undiminished through the
liquid, a force Fo = P X A could be exerted by the second piston. This
principle is the basis for all fluid power technology involving the trans-
mission of energy by means of pressurized fluids. Typical applications
with which we are familiar include hydraulic brakes on cars and hydraulic
jacks, where a relatively small force applied to a small area generates a
pressure. This pressure is then transmitted undiminished to o large area,
where a huge force can be developed. Figure 2-8 illustrates how this idea
is put to work in modern production industry.

We can solve the two expressions above for P and equaie them as
follows:

Fy, T

=—f1—1= A2 or F1A2=F2A1.
This shows that the force is inversely proportional to the area on which the
pressure acts. Even more important, it points up that there can be no
pressure generated if one of the forces or reactions is zero. Thus pressure is
not generaled as a function of the input but as a function of the output
reaction or resistance. Such a function is frequently called the load. Thus,
in the example above, if we consider F to be the input, then F5 is the load
reaction. This is basie to fluid power systems.

} L, | Ly
L 7O |

’/////,/////7///>///4, Fig. 2-9

. An interesting analogy can be drawn between the fluid system of
Fig. 2-7 and the mechanical lever system shown in Fig. 2-9. In the familiar
lever system, we know that the product of a force and its lever (moment)
arm must equal the product of the opposite force and its lever arm. That is
Fy X Ly = Fy X Ly for equilibrium {0 obtain. Note that the lever arms’
h?l‘e play the same role as the arcas of the pistons in the fluid system of
Fig. 2-7. The lever itself functions as does the fluid; they both transmit the
force but do not play an active part, per se, in the force balance which
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Fig. 2-10
Typieal double-acting eylinder (Courtesy of Tomphins-Johnson Co )

ensues One might consider the fluid as a “flextble lever” capable of trans-
mitting the force (via pressure) independently of the geometry of the
system itself.

The Fiuid Power Cylinder

Cyhnders, such as we have been considering, play a major roll in industrial
fluid power applications. A typical design is illustrated 1n Fig. 2-10
Cylinders are used on machine tools, agricultural equipment, construction
machwnery, aweraft and missiles, and ships; hardly an area of industry
exists that doesn’t make use of cylinders in some way

" o Load

.. =- - Teaction

=il - Fig. 2-T1

Tigure 2-11 shows a simple single-acting cylinder design. 'This means
that pressurized flud is admitted only at one end. Thus the eylinder can
move in only one direction under power. If the area of the piston is A p,
and the load resistance is Fz, the equation Fr, = P X Ap, desenibes the
equilibrium condition for the cylinder. If any two of the vaiables are
Lnown, the third can be caleulated
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EXAMPLE

Suppose we wish to move a 100,000-1b load. We have a pump which can
deliver a maximum pressure of 1000 psi. What diameter cylinder (bore)
shall we use?

Step 1. From Fr, = P X Ap,
Ap = Fr/P = 100,000 1b/1000 Ib/in? = 100 in®.
Step 2. Ap = w/4 D%, D = /4Ap/T = +/400/7 ~ 11.25 in.

The cylinder configuration of Fig. 2-12 is called a regenerative cylinder.
There is a pipe, or conductor, connecting the rod end of the cylinder with
the blank end. Let the area of the piston be A p. The area of the rod is A 5.

{UEEEa— -
[

WS
3%
=

7] Fig. 2-12

It first appears as though the cylinder would be hydraulically locked up
and could not move; however, a close analysis shows the forces acting on
the piston with an inlet pressure, P, due to a load resistance, Fr. Thus

ZF:::=0; PIXAP'_FR_PZX(AP_AE)=O;

but Py = P, (Pascal’s law), and the two ends of the cylinder are con-
nected. Then

P1XAP—FR—P1XAP+P1XAR==O,

and
Fp=P; X Ap.

Tll}ls we see that the cylinder is actually capable of overcoming a load
resistance equal to the product of the pressure and the area of the pision

rod.. Or, more accurately, the pressure developed will be equal to the load
resistance divided by the area of the piston rod.
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IMPORTANT TERMS

Piezometer tube is a single column or tube inserted into a pressure pipe to
measurc the pressure head.

Gage pressure is pressure measured relative to the earth’s atmospheric
pressure, the latter being considered 0 psig.

Absolute pressure is pressure measured relative to an absolute zero scale.
1t corresponds to no pressure whatsoever, atmospheric pressure is 14.7 psia
ot standard conditions.

Vacuum is the existence of a pressure level below atmospherie.

Manometer is a double-legged tube which utihzes a different gage fluid from
the working fluid in a pipe to measurc the pressure head

Puscol's faw States that the pressure 1n a fimd 1 transmitied undmrished
in all directions.

Cylinder is a fld-power component used for gencrating linear forces as 2
function of fluid pressure,

Regenerative cylinder is a cylinder in which both ends of the cylinder are
connected in parallel. The intent is to increase the velocity of the piston
rod.

PROBLEMS

2-1 A column of water 1s measured and found to be 1160 ft igh  What 15 the
pressure at the bottom of the column?

2-2 If the column of Problem 2-1 is & prpe 6 m. n diameter, what 13 the force
on the basc of the column?

2-3 If the base of the column of water of Problem 2-1 lies at sea level, n what
units 18 the pressure expressed? What other units of pressure might you use
and how would you convert from one to the other?

2-4 If the fluid of Problem 2-1 was sea water instead of fresh water, what would
the absolute pressure be at the base of the column?

2-5 1f we substituted hydraulic oil* for the water, what would the pressure be
at the base of the column?

2-6 How high a column of mercury would we need to give the same pressure as
observed 1n Problem 2-1? If the mercury column were changed from a
6 in. pipe to a 3 in pipe, how would the pressure be affected at the base of
the column?

* Refer to Table B~1, p 219. Use “mineral oil.”
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27 Describe the effect of specific gravity on pressure observed at the base of a
column of fluid.

2-8 A pipe carries hydraulic oil at a pressure of 500 psi. If a piezometer tube
were to be used to measure the pressure head, how long would it have to be?
2-9 In Problems 2-1 through 2-6, what is the pressure head for each of the
pressures observed or calculated?
2-10 A pipe in a fluid-power system carries a fluid pressure of —3 psi. What is
the absolute pressure? What term is applied to pressures in this region?
9-11 Calculate the vacuum in inches of mercury equivalent to the pressure of
Problem 2-10.
2-12 Sketch a mercury manometer which might be used to measure the vacuum
of Problem 2-10.

2-13 In the manometer shown in Fig. 2-13, fluid A is benzene, and fluid B is
mercury. What is pressure P1?

Fig. 2-13 . Fig. 2~14

B datum

2-14 With the same fluids as in Problem 2-13, what will the pressure P; be in
the manometer in Fig, 2-147

2-15 In Fig. 2-15, fluid 4 is water, and fluid B is mercury. What is pressure Py?

2-16 In the manometer of Problem 2-15, if fluid A is air and fluid B is water,
what is the pressure P;?

iy Fig. 2-16

2-17 .In the inclined piezometer in Fig. 2-16 the length L is 574 in. If the fluid
1s water, what is the pressure P;?

2-18 By means of a sketch, show how the principle of Problem 2-17 could be
apphed‘ to a manometer to measure low gas pressures. What advantage
would it have over a vertical manometer?
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9-19 In the differential manometer in Fig. 2-17, fluid .1 is water, fluid B s
hydraulic oil, gage fluid is mercury, by = 10in., k2 = 40in., k3 = 4in,,
hs = 32in. What is the pressure difference, P4 — Pp?

Fig. 2-17

2-20 In the differential manometer of Problem 2-19, if fluid 4 1s water, flud B
is water, gage flwid 13 an immiseible hydraulic o, k1 = 51n, hz = 201,
ks = 21, hg = 11 10, then what 1s the pressure difference, P, — Pg?

2-21 A differential manometer, such as that of Problem 2-19, has oil for flud .1,
benzene for flurd B, and mercury as the gage lud If Ay = 10m, hs =
20, and Pg — P, = 100 ps1, what 1s the height £2?

Blank end Rod end
S
Py |
I —
| Ttod

T
Barrel
Piston

Fig. 2-18 Fip. 2-19

2-22 In Fig,2-18, which demonstrates Pascal’s law, if /1 = 10001b, 4y = 10102,
and Az = 2.5 in?, what is the value of Fp?

2-23 (a) In Fig. 2-18,1f Fy = 2001b and Fg = 500 lb, what is the ratio of the
areas? (b) If 41 = 4in?, what is A2?

2-24 In Problem 2-23, if piston Az moves 2 in. mn the cyhinder, how far wil
piston .11 move?

2-25 If we neglect losses 1n Problem 2-24, how much work will be done by
Fy and F2?

2-26 Figure 2-19 shows a typical cylinder which is used in flud power applica-
tions to produce a hinear force by introducing hydraulie pressure behind the
piston, If the pressure Py = 1000 psi, and the piston area 4y = 15in?
what load force, Fy, can the cylinder exert?

2-27 For the eylindér in Fig 2-19, suppose & load exerts a reaction, —Fyz, on the
piston rod of 25,000 1b. 1f the piston area Ay = 12.5 in?, what pressure
would be necessary to just balance the load reaction?

2-28 The load reaction of 25,000 Ib 1n Problem 2-27 1s imposed on the piston rod
A maximum pressure of 4000 psi is avalable. What must the size of
piston Az be?
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2-29 In Tig. 2-20 two cylinders are shown connected in series. If 4y = 10 in?,
As = 4in2, As = 6in? and F2 = 3000 lb, what force, F1, is required to
bring the system into equilibrium when P; = 1000 psi?

7 Ay
P 1 _ I 11<—>
1 h J——J T F,
Vent
?i— _fL‘L
PolA sk }—
2|3 — A
Fig. 2-20 Fig. 2-21

2-30 Using Fig. 2-20, let us assume that F; = 1000 lb, F2 = 2000 Ib, A; =
8in%, Ay = 3in? Az = 5in% What pressure, P1, is needed to bring the
system into equilibrium?

2-31 A regenerative cylinder is shown in Fig. 2-21. If Ay = 10in2 4z = 4in?,
and Py = 1000 psi, what will F, be?

2-32 Given a regenerative cylinder, such as illustrated in Fig. 2-21, in which
P; = 1500 psi and Fr = 7500 Ib, determine 41 and Ag.

Fig. 2-22

2-33 The device in Fig. 2-22 is a fluid power component used to produce a
rotational output analogous to the linear output of a cylinder. It is called a
rotary actuator. A rectangular vane is attached to a shaft, which is supported
on bearings. A separator divides the cylindrical housing into two sections,
one on either side of the vane. When pressurized fluid is introduced into one
section, an unbalanced hydraulic force is developed against the vane.

Since the vane is off center relative to the shaft, a torque is produced by this
hydraulic force. Let

R = outside radius of the vane,

7 = inner radius of the vane,

w = width of the vane,

P = hydraulic pressure applied to the vane,
Ts = output torque.
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Develop the expression for output torque as z function of the above
parameters,

2-31 Guven a rotary actuator, as shown in Fig. 2-22, the inside diameter of the
housing = 10 in, the shaft diameter = 2 in,, width of the vane = 41n,
pressure =
actuator.

3000 ps1. Neglecting losses, calculate the output torque of the

Fig. 2-23

2-35 Some rotary actuators are similar to the double-vane types shown m Fig
2-23 Using the same parameters as 1n Problem 2-34, ealeulate the output
torque for a double-vane rotary actuator
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Buoyancy, force

on submerged surfaces
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Hydrostatic Pressure

Hydrostatic pressure is the term frequently applied to the distributed
reaction of (a) a mass of fluid on a surface or (b) an applied force trans-
mitted through a fluid according to Pascal’s law. The connotation is one of
pressure due to a fluid at rest, or nearly at rest; it will be contrasted with
hydrodynamic reaction in Chapter 11.
It has been established that a column of incompressible fluid of height,
I will generate a pressure (force per unit area) due to the weight of the
fluid in the column. This is illustrated in Fig. 3-1. The pressure gage will
indicate a pressure P = vk, where P, h, and ¥ must be expressed in a
consistent set of units. If we change the configuration of the column to
that of Fig. 3-2(a), we do not alter the relationship in any way. According
to Pascal’s Jaw, the pressure distribution on the wall of the pipe will be as
shown in Fig. 3-2(b). Since by definition a fluid in equilibrium cannot
27
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7Z

Fig. 3-3 vzt

sustain a shear stress, the pressure must act perpendicular to the wall of
the pipe This can be extended to the following generalization

Pressure always acts perpendicular fo the surface ining the fluid

In our example, the pressure can be considered to be constant through-
out the pipe so long as the pipe diameter 1s small compared with the head &
If the pipe diameter were large relative to the head, there would be a
variation in pressure from top to bottom of the pipe which could not be
neglected

Let us suppose that we wsert 2 flat plate mnto the pipe (Fig 3-3).
Since the pressure in the pipe is constant and acts perpendicular to the
surface, the pressure reaction would be as shown by the arrows 1 the
illustration

Let us now move from a pipe and column of fluid to an open reservorr,
or lake, as shown in Fig 3-4 Pick any reference point, say Pownt 1, at
some depth, &, 1n the lake The pressure at this point would be Py = 7h,
which is 1dentical to that at the base of a column of the same hqud of
lieight & Thus we find that the head 15 independent of the size and shape
of the liquid column  Pressure 1s independent only upon the head & or the
height (depth) of hquid above the point of observation, and upon the
density of the fluid,

Fig. 3-5

In Fig. 3-5, we take a close look at the reference pomnt, Pomt 1 The
pressure is constant 1n all directions about the point, that is, the pressure
is transmitted undimimshed 1n all directions. All points at the same depth
in a static hqud have the same head and are therefore at the same
pressure
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Pressure Distribution with Changing Head

A flat plate is inserted into the lake, as shown in Fig. 3-6. If we allow our
reference point to coincide with the center of gravity of the plate, the
depth remains hy. The distance to the top of the plate is &, while that to
the bottom is hy. We now have a different problem from that of the point
reference; we have a surface of significant area. In determining the pressure
reaction on the plate we cannot neglect the variation in head from top to
bottom of the plate. The nature of the resulting pressure distribution is
shown in Fig. 3-7. We reference head from the surface, considering the
downward direction as positive. We can now take increments of depth Ah.
Then the pressure at a depth of Ahis P = v Ah;thatat 2 Ahis P = 27 Ah;
ete. We see that pressure variation with depth for an incompressible fluid
islinear, This gives us what is called a triangular pressure distribution with
depth. Figure 3-8 illustrates how this pressure distribution applies to the
submerged plate of our example. If the top edge of the plate were at the
surface, i, = 0 and P, = O psi. When h = 0, as in Fig. 3-8, P, = vi,;
obviously, P, = 7h,.

Forces on Submerged Surfaces

What will be the total pressure force on a submerged plate? It will be the
sum of all the point pressures acting on all the points of the area of the plate.
Mathematically this can be expressed as F = JP dA. Solution of this
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expression® yields the following result F = P x A, where

F = total pressure force,

P = pressure at the centroid of the surface,

A = total area of the surface

Suppose the sutface 1s not perpendicular but makes an angle, 8, with the
horizontal (Iig 3-9). Smce the pressure acts perpendicular to the plate,
F = [yun@yda But we can sec that sin 8F = &, and Y& = P, so that
the result is F = 5 X A, as before Thus the total force on a submerged
plate, due to pressure, 1s the moduct of the piessurc at the centioid of the
surface and the total area

EXAMPLE

Suppose a flat plate 5 ft Jong and 10 {t wide 15 submerged 1n water The
face of the plate makes an angle of 60° with the horizontal The top edge
of the plate 1s 5 ft below the surface of the water What 1s the total pressure
foree acting on the plate?

Solution.

Step 1. Determme the head at the centrod-

ko= hy+ $sin60° = 51t + 25 X 0866 = 7.1G ft.
Step 2. Calculate the pressuie at the centroid

7= 7k = 624 Ib/ft® X 716 ft = 447 psf = 3.1 psy,
or

7 =0433 X 8, x k= 0433 X 7.16ft = 31 psi.

* The more advanced student 1s referred to the complete solution in Appendrs A.
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Step 3. Calculate the area of the plate:
A=1Xw=>5ftX10ft = 50 ft® = 7200 in®.
Step 4. Calculate total pressure force:

= P X A = 447 psf X 50 {t*> = 2235 Ib,

or

F=7XA=31x7200 = 22351

While the total force due to pressure on a flat surface is equal to the product
of the pressure at the centroid and the area, this total force does not act at
the centroid. It acts at a point called the center of pressure, which lies
below the centroid. The distance from the surface of the liquid to the center
of pressure is

yp = I/(A X 7),"
where

I = the moment of inertia of the area about an axis
through point S in Fig. 3-9,

A = area of the surface,

7 = distance from S to the centroid.

A simplified form of this relationship is:
yp — 7 = k°/7,

where & = radius of gyration of the plane surface. The difference, y, — 7,
is the distance from the centroid of the plane surface to the center of
pressure.

EXAMPLE

Use the previous example for total force and find the location of the center
of pressure.

Step 1. Calculate 7:

__ 51t
g 5ft, 5t

2 m = 2.5 ft + 577 ft = 827 ftv.

Step 2. For a rectangle of depth d, k¥ = 0.289d. Thus
k= 0.289 X 5 = 1.442, and %2 = 2.074.

* Refer to Appendix A.



32 Buoyancy, force on submerged surfaces

Step 3.y, — T = K%/8.27 = 2.074/8.27 = 0.252ft.
Step 4, yp = 8.27ft 4 0252 ft = 8.522 .

Step 5. hp = ypsin § = 8.522 X 0.866 = 7.4 ft. Note how this
compares to & previously caleulated (£ = 7.16 it).

Buoyancy

Another phenomenon related to static pressure is buoyancy. By definition,
buoyant force is the resultant static pressure force exerted on a body wholly
or partially submerged in a fluid. About 250 B ¢, Archimedes discovered
the principle which bears his name; that 1s,

The buoyant ferce Is equal to the weight of the fluid displaced.

In Fig. 3-10, we observe an object submerged 1n & fluid. We have already
established that the pressure at any point 1n the fluid s a function of the
depth h and the density of the fluid; that is, p = ¥ - h. The arrows in
Fig 3-10 represent pressure vectors acting against the surface of the sub-
merged body. It can be demonstrated that 3F, = 0 and that 3JF, » 0
The net force in the y-direction is the buoyant force. It is apparent that the
sum of forces acting in the z-direction must be zcro; otherwise, the body
would move sideways,

Fig. 3=-10

Since pressure is a function of the depth and weight density (specific
weight) of the fluid, the actual pressure acting at any point on the body in
Fig 3~10 does not depend upon the body itself. Thus the pressure condi-
tion at any point would not change 1f a body made of  different material
were substituted for the original submerged body. Suppose now that sucl a
substitute body were made of the same fluid as the one in which we are
immersing 1t This substitute body would not move, because its weight is
exactly counterbalanced by another force—the weight of the fluid it would
displace, If we now switch back to the original body, we would find thatt
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Fig. 3~11

The ship is a practical application of the buoyancy
principles discussed in this chapter. Vessels

utilize fluid power to drive and control machinery such
as the crane winches, anchor winches, hatch doors, ete.
These are applications of Pascal’s law and other
principles to be covered in later chapters.

would be subject to the same buoyant force, that is, equal to the weight
of the fluid displaced. Note that the depth of the submerged object below
the surface of the fluid is of no importance here.

When the weight of the fluid displaced equals the weight of the
object, the object will float in the fluid. A brief analysis will show that this
can only occur when the specific gravity of the immersed object is equal to
or less than that of the fluid. If the body’s specific gravity is greater than
that of the fluid, the weight of the fluid displaced can never equal or exceed
the weight of the body. One of the most meaningful applications of the
principles of buoyancy is shown in Fig. 3-11.

EXAMPLE

A cast-iron cylinder 12 in. in diameter and 12 in. long is immersed in sea,
water. What is the buoyant force the sea water exerts on the cylinder?

Solution,
We proceed step by step as follows.
Step 1. Calculate the volume of the cylinder:

V=m?Xh=1o1X6%X12 = 4207 in® = 1318 in3.
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Step 2. Determine the weight of an equal volume of sca water:

1318 in®

. —_ 3 _ieioi
W= %V = 108X 624 1/16° X o= o7

= 491b.
{Note the dimensional check )

Step 3. The buoyant force will be equal to this weight of sea water,
or Fy = 49 1b.

If the body had been made of wood, with a speeific gravity of 0.75 and
with % = 0027 Ib/in®, What would be the buoyant force in this case?

Step 1. If the entire body were submerged, 1t would displace 1318 n®
of sea water weighing 49 1b

Step 2. But the piece of wood only weighs
Wy = 1318 in* X 0027 Ib/in® = 35.8 Ib.

Step 3. Thus the greatest amount of sea water 1t can displace 15 35 8
Ib  Obviously, the wooden body must float and be only partally
submerged. Hence we have to add the following two steps.

a) Caleulate the volume of sea water cqual to 358 1b

3581b

r — - i3
V= g ojm: — 90
b) Caleulate the depth which the wooden cyhnder must sink to dis-
place this much water (assume that the cylinder remains vertical)

964 in® .
4= 1gg7 2 = 850

IMPORTANT TERMS

Stotic pressure is the distributed reaction of a mass of fluud on a surface or
the force per unit arca transmitted through a fiuid.

Pressure oction is always perpendicular to the surface restraiming the flud

Head is independent of the shape of the fluid column (container).

Pressure dutribution of a fluid of constant density on a submerged surface 13
hinear with depth,
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Total pressure force on a submerged surface is equal to the product of the
pressure at the centroid and the area of the surface; that is, 'y = 7 X 4.

Center of pressure is the point at which the total pressure force appears to
act; that is, it is the point of application of the resultant pressure force.

Buoyant force is the resultant static pressure force exerted on a body wholly
or partially submerged in a fluid. It is equal in magnitude to the weight of
the fluid displaced by the body.

PROBLEMS

3-1 What is the pressure at a depth of 100 {t in Lake Michigan?
3-2 What is the pressure at a depth of 150 ft in Long Island Sound?

3-3 In Fig. 3-12, a sluice gate 15 ft long and 10 ft high in a dam is holding
back waters on an inland river. Calculate the total force on the gate.

Fig. 3-12

3~4 Given the gate of Problem 3-3, what would be the total force if it were
15 ft high and 20 ft long? What is the maximum pressure on the gate?

3-5 A plate covers a clean-out hole in the side of a reservoir, as shown in
Fig. 3-13. What is the force on the plate if it is 10 ft wide?

3-6 A rectangular tank filled with hydraulic oil, is 5 ft wide, 3 ft deep, and 10 ft
long. Calculate the total force on the sides, ends, and bottom.

3~7 A triangular tank is 15 ft long. The width at the top is 4 ft and the depth is
3 ft. The fank is filled with water. Calculate the forces on the sides and
ends.

3-8 A tank 20 ft long has a semicircular vertical cross section of 9.817 ft2.
Calculate the hydraulic forces when the tank is filled with water.

3-9 A closed rectangular tank is 15 ft long, 4 ft wide, and 5 ft deep. It contains
water to a depth of 2 ft and oil to a depth of 2 ft. Calculate the hydraulic
forces on the ends, sides, and bottom.

3-10 If t}.le tank in Problem 3-9 is pressurized to 2 psi by introducing compressed
air into the space above the oil, what will be the forces on the ends, sides,
top, and bottom?
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3-11 A closed rectangular tank is § ft? and 3 ft deep. It has 2 pipe 2 in, in
diameter projecting from the top to a height of 15 ft. The tank is filled
with water. Hydraulic o1l is poured into the pipe to a height of 12 ft,
Caleulate the pressure forces on the sides, top, and bottom of the tank.

Fig. 3-14 Fig 3-15

3-12 At what depth of water, A, will the hinged gate m Fig. 3-14 open?

3-13 The dam i Fig 3-1513 10 ft wide {a) Is there a depth of water at which
the dam gate will open due to pressure forces? (b) What 1s the force on the
Iip of the dam when the water level 1s at the top of the gate?

3-14 Aniron casting weighs 150 1b 1a atr and 85 1b in water. What 1s the volume
of the casting?

3-15 A slab of building stone weighs 350 1b in air and 215 Ib in water. What is
the volume of the slab and the specific gravaty of the stone?

3-16 A hollow cylinder made of steel plate is 20 in. in diameter and 10 {t long.
If it is made from %-1n. steel (weight = 10.2 Ib/ft2), will 1t float 1 water?
If so, to what depth will it sink?

3-17 A barge is 1n essence = rectangular box made of 1-m, steel plate It is
20 ft wide, 10 ft deep, and 100 ft long. Assume that the stiffening structure
adds 109, to the weight of the steel “skin ” If mimimum free board (pro-
jection of the sides out of the water) 1s 2 ft, how many tons of coal (S, = 1 5)
can the barge carry? If the load 1s changed to wet sand (S, = 2.0), what
would be the load in the barge?

3-18 A submarine is a steel tank 25 ft in diameter and 300 ft long. Assume that
the outer hull 13 made of 3-in. steel plate and that the weight of the mner
hull and machinery is 250% of the weight of the outer hull What would
the capacity of the ballast tanks have to be in order for the submarine to
submerge in the ocean? What, if any, additional capacity would have to be
provided to ensure submersion 1 Lake Michigan?
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3-19 Figure 3-16 shows a spherical weight 10 in. in diameter which is used to
sense liquid level in a tank. The sphere is made of 24-gage stainless steel
(weight = 1.051b/ft2). If the scale is calibrated for water level in the tank,
what error would be introduced if the device were used with hydraulic 0il?

3-20 As shown in Fig. 8-17, a cylindrical “can” acts as a valve to close off a
drain line. It is made of 20-gage steel sheet (weight = 1.656 1b/ft%). The
cylinder is 12 in. in diameter. What is the relationship between the height y
of the cylinder; the depth A of any fluid of specific gravity S,; z the height
of the lip; and ds the diameter of the seal which will cause the valve to open?



CHAPTER 4

Displacement, flow rate,
continuity of flow,

flow velocity, horsepower

&

Cylinder Characteristics

Having developed the concept of pressure as the distributed reaction of the
load resistance across the area of the piston in the ecylinder, 1t should have
become obvious that if this piston 1s to move down the length of the
cylinder, fluid must be injected 1nto the eylinder. In flud power systems,
the device which mjects the flud into the eyhinder is called 2 pump, such is
the case n hydraulic systems, In pneumatic systems the device 1s 2
compressor

This distance which the piston moves within the cylinder 1s the stroke,
which 1s labeled 8 in Fig 4-1 When a piston of area A, moves through 2
stroke S, the volume swept out in the eylinder is

Va= A, %x 8,

where V is called the displacement volume of the cyhnder It has beett
38
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general practice in industry to express displacement volumes in units of
cubic inches. Thus the area must be in square inches and the stroke in
inches.

If it takes a time ¢ for the piston to move through its stroke, the rate of
displacement will be Vq/t = A, X S/t. Since S/t = velocity v, then
Va/t = A, X v. We can also think of this as the rate at which fluid must
flow into the cylinder. Flow rate is designated as @:

Q = lzi = Ap X v.

Note that displacement is a finite volume, or quantity, of fluid, which
is expressed in units of cubic feet or cubic inches in the English system of
measurement; cubic centimeters are generally used in the metric system.

On the other hand, flow rate is a time-based quantity—a rate. Its
usual units are cubic feet per second (cfs) or cubic inches per second (cis)
in the English system, and cubic centimeters per second (ccs) or liters per
second in the metric system.

Because of the confusion of units in the IEnglish system, it has become
general usage in industry to state displacement in cubic inches or cubic feet
and flow rate in gallons per minute (gpm). The following conversions will
be of value in future problem solving:

1 gal = 231 in® = 8.345 1b (water),
1t® = 7.48 gal = 62.4 Ib (water).

Flow Velocity

If we look again at the piston in the cylinder of Fig. 4-1, we can consider it
as a surface of area 4, moving along the cylinder bore with a velocity
v = §/t. In order for the incoming fluid to push the piston along at this
velocity, the fluid itself must have an average velocity equal to ». The flow
rate equation, @ = A, X v, expresses the relationship between flow rate,
the area through which the flow is occurring, and the average velocity.
When we solve this equation for flow velocity, we get the expression
v=Q/4,.

Let us consider the pipe through which the fluid must flow in order to
get to the cylinder. Suppose the pipe has a cross-sectional area of A,
Square units (inches or feet). An important point here is that the flow rate
n the pipe must be the same as the flow rate in the cylinder itself. This
follows from the acknowledgement of the fact that unless fluid is taken
away or added to the flowing system, the rate of flow for incompressible
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Fig. 4-2

flow conditions 15 canstant throughout the system Thus the flow ratein the
connecting pipe would be @ == Ay X vg, where rq 15 the average velocity
in the pipe.

Since Q is constant we can equate the two expressions

Q= A, Xv= 49Xy (4-1)

We sce that the velocities are not equal but are inversely proportional to
the cross-sectional area of the flud conductor This expression is a simple
statement of the principle of continuaty of flow. The iltustration of Fig 4-2
may make 1t easier to visualize continuity of flow. The area at section 1is
larger than that at section 2 The continuity equationQ = Ayvy = Az
tells us that v, < v, beenuse Ay > A

EXAMPLE

In a pipe with an area of 4 1n?, water 1s flowing at a rate of 20 gpm The
pipe makes a transition to one of cross-sectional aren equal to 1.5 in%
What is the flow velocity in each of the sections?

Solution.
Step 1. Convert flow rate to units cansistent with the areas-
20 gpm X 231 in%/gal = 4620 in®/min.

Step 2. From the continuity ecquation @ = Agp; = Agvg, Solve
for the velocities.

_ 0 _ 4620in*/min

v = i = T = 1155 in./min,
) Q 4620 in®/min . .
rg = 1 = TEmt = 3080 in /min

Let us not lowe sight of the fact that we have been developing these ideas
on the basis of our “ideal liquid,” as defined in Chapter 1.
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Mass Flow Rate

So far we have dealt with flow rate in terms of volume per unit time. It is
also possible to consider it from the viewpoint of weight per unit time or
mass per unit time. In this latter light we speak of the mass flow rate.
In normal usage, when we speak of flow rate we mean volume flow rate; we
use the term mass flow rate to denote the rate of mass transfer through the
conductor.

Thus if Q is the symbol for the volume flow rate, then Y@ is the weight
flow rate, where 7 is the specific weight, and p@ is the mass flow rate, where
p is the density.

Units for 7@ are pounds per unit time (seconds or minutes) ; units for
pQ are slugs per unit time, provided @ is expressed in the same basic unit of
volume as is ¥ or p.

Work Done in Pumping a Fluid

Now that we have established the concepts of equivalency of flow rate,
mass flow rate, and pressure and head, we are in a position to consider the
work done in transferring a liquid through a conductor under a change in
pressure. We all know intuitively or by observation that it takes power to
pump a liquid. An electric motor or internal combustion engine drives a
pump. Liquid enters the pump on the inlet side at a pressure approximat-
ing atmospheric pressure (0 psig) and exits from the pump on the outlet
side at some elevated discharge pressure Py. Something occurs in the pump
which results in work being done on the fluid. The occurrence depends on
the equivalency of the mass flow rate and of pressure and head. See
Fig. 3-2. Pumping a liquid through a pump at a rate of YQ Ib/min across a
pressure differential of Py — 0 psig requires the same amount of work done
on the liquid as raising a weight of liquid equal to YQ Ib to a height of

h = Py/7 ft (or in.).
The result in either case is ft-Ib of work being done.

EXAMPLE

A'ssume a pump is supplying water to a cylinder at a rate of 1 gpm. The
discharge pressure is 1000 psi. How much work is done in one minute?

Solution.

231 in ¥gal

728 3 fig < 024 Ib/ft?® = 8.35 1b/min.

Step 1. Q = 1gpm =
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— Do _ 1000 psi X 144 in®/f?
Ty 62 1 1b/ft3

Step 3. Work = G = 8351 Ib X 2320 ft = 19,300 ft-lb.

Step 2. = 2320 ft of head,

To ensuie consistency of umts in these ealeulations, observe the responsibil-
ity placed on the student by the Enghish system of measmes Only a
dimensional cheek will assure the proper answer

Horsepower Required to Pump Fluids

The development of the hydiaulic horsepower foimula 15 an extension of
the ideas diseussed above

Horsepower is the rate of doing work or the rate of energy transfer.

1hp = 550 ft-Ib/sec = 33,000 ft-Ib/min
42.44 Btu/min = 745.7 watts (=1 014 met1ic hp)

In the cxample above, the flow rate @ was given 1n gpm and the pressuie in
psi. Inorder to develop a hydraulic horsepower formula, 1t 15 necessary to
1educe these quantaties to units which when multiplied will yield ft-1b/time
Thus

231 in®/; gal

CQeom X {75803/ 105

X 624 1b/1t?

yields 1b/min, and

144 in?/ft?

>
Lo X Ga 10T

vields {4 of head; then

231 2.
PxQ= QX 231 X 624 X p X 141 ft-Ih/min,

1728 X 624
b = @X 231X 624X P X 144 1
P 1728 X (23 33,000
_rxaq o
bp = 54 2

whete Pis in p-i and @ iz in gpm, The hot~epowcr ealeulated by the above
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Fig. 4-3

The principles of displacement, flow rate, force, velocity, and hydraulic
horsepower, covered in this and previous chapters, are all part of the
problems which face the engineer when he attempts the design of a modern,
complex construction machine, such as this single-pass paving machine. It
has been stated that the construction equipment industry, as we know it
today, owes its existence to fluid power. In no other way would it be
practical to transmit the high power required by these machines to the
remote paris of the vehicle. Control is also greatly simplified.

formula would represent the rate of energy transfer corresponding to a rate
of fluid flow, @, through a pressure difference P. '

If we consider a cylinder which has a piston area 4, in® and a pressure
P psi acting on the piston, the force pushing on the piston rod will be
Fp= P X A, Ib. See TFig. 4-1. The rod will move through a stroke
S in. (or ft). Thus the work done by the cylinder is G = F, X S in.-lb
(or ft-1b).

If the cylinder moves through the stroke in time ¢, the rate of doing
work is

F. % (8/1) in-Ib/sec or min (or ft-Ib/scc or min).

If we divide the above expression by 550 ft-Ib/sec/hp when ¢ is in seconds,
or by 33,000 ft-Ib/min/hp when ¢ is in minutes, we will determine the
cy]inder’s horsepower. Assuming, for the moment, 1009, efliciency, this
cylinder horsepower will equal the hydraulic horsepower calculated by
Eq: (4-2). Figure 4-3 illustrates a piece of modern construction equipment
which makes use of the principles outlined in this chapter.
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IMPORTANT TERMS

Stroke is the distance through which the piston-rod assembly of a eylinder
moves

Displacement volume for a cylinder is the product of the area of the piston
and the strokes Vg = A4, X S.

Flow rate (volume flow rate) is the quantity (volume measure) of fluid which
passes a reference point per unit time  Afass flow rafe is the quantity (mass)
of fluid which passes a point per unit time, the umts are expressed in
slugs/sec or min - Weight flow rate is the quantity (weight) of flud passing
a point in umt time; units are expressed 1n Ib/see or min

Flow velocity 13 the velocity of the fluid stream passing a given point
Average velocity is equal to the flow rate Q divided by the cross-sectional
arca of the flowing stream A, namely, b = Q/A ips or fps.

Continuity of flow 15 the principle which states that the flow rate in a con-
tinuous stream is constant: Q = Aw; = Ay, = K.

Work is the product of a force and the distance through which it moves
It represents o change in energy condition of a system.

Hydraulic horsepower is the horsepower required to move a fluid through a
pressure difference P, at a flow rate Q. hp = P X Q/1714 wherc P = psj,
Q = gpm )

PROBLEMS

4-1 In the edlinder 1n Fig. 4~4, A1 = 15107 and the stroke S = 30in, What
is the displacement on the blank end?

1

I-—-—<———-i

Fig. 4-4 Fig. 4-5

4-2 1 .ty = 201n%in Fig. 44, what1s the displacement (blank end) per inch
of stroke? How many pallons would the cylinder hold if § = 22 in.?

4-3 I the rod area .1 p = 5in?1n Fig, 44, what is the displacement of the rod
enid of the eylinder?
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4-4 How do you account for the difference between the answers to Problems
4-1 and 4-3?

4-5 Figure 4-5 shows two cylinders in series: 41 = 20 in2, As = 5 in?
Az = 12in2. If 8; = 30in., what would the maximum distance be for S2?

4-6 In Fig. 4-5, assume that we push on the piston rod of the second cylinder
with a force Fo. If we move the second piston through a distance (S2 =
—20 in.), how far (S1) will the first piston move?

4-7 How might the system of Fig. 4-5 be designed so that both pistons moved
the same distance when the first piston was extended? Under these condi-
tions, would they both retract the same distance when Iz pushed the second
piston back into its cylinder barrel?

4-8 Under the conditions of Problem 4-1, assume that it takes 5 sec for the
piston to move through its stroke. At what rate would fluid have to flow
into the blank end of the cylinder to keep it filled?

4-9 We know from practical experience that under sufficient pressure to over-
come the load on the rod, it is the fluid flowing into the cylinder which
causes the piston to move. Using the data of Problems 4-1 and 4-8,
calculate the piston velocity in the cylinder. How would this relate to the
fluid velocity in the cylinder?

4-10 Under the conditions of Problem 4-8, assume that the fluid is flowing to the
eylinder through a tube 1 in. in diameter. What is the fluid velocity in the
tube?

4-11 Why is the velocity calculated in Problem 4-9 different from that calculated
in Problem 4-10? What principle describes this phenomenon? Write the
mathematical expression for this principle.

4-12 Applying the principle described in the answer to Problem 4-11, use the
series cylinder system of Problem 4-5. Assume that piston 1 moves through
stroke 83 in 3 sec. Fluid enters cylinder 1 through a nominal commercial
pipe 2 in. in diameter. Cylinders 1 and 2 are connected by tubing having a
1-in. internal diameter. Calculate the flow rates and flow velocities in all
parts of the system.

4-13 In Problem 4-12, suppose that the cylinders are connected by a 1Z-in.
commercial pipe. Whatare the flow rate and flow velocity in the 11-in, pipe?

Ap

1 4
]

=

Fig. 4-6

FP’. B
4-14 Figure 4~6 shows a regenerative cylinder, as described in Chapter 2.
Assume that A; = 25in% Ap = 7in2, 8; = 36 in. If it takes 3 sec to
move the piston through the full stroke, what must the input flow rate @
be? {Hint: Take the sum of the flows into the junction at B and equate thenz:
to the sum of the flows leaving the junction.]
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4-15 Water is flowing through a pipe 6 in 1 diameter at a flow veloaity of
20 ft/sec The pipe drameter reduces to 3 11, What are the flow rate and
the flow velocity in the reduced section?

4-16 Oil flows through a pipe 1 in. in diameter at a rate of 20 gpm A 1ahe
placed m the pipe has a passage in 1t of § 10 1n diameter What are the
flow velocities in the pipe and through the valve?

4-17 The cylinder 1n Fig. 4-7 15 called “double acting”, that 15, fluid can be
mtroduced at efther end to move the piston rod m erther direction, Use the
flow Tate ealculated m Problem 4-8 (let Az = 7 wm?), but introduce the
flmd into the rod end instead of the blank end What 1s the flow rate Quu.
of flurd out of the port 1n the blank end”

0
-
1Qn. Fig. 47 Qn I‘ Fig. 4-8

4-18 Fluid 15 introdueed into the pump in Fig. 4-8 through a 13-in. pipe port,
and discharged through a 1-n pipe port. If the discharge flow rate Qous
15 40 gpm, what are the flow velocities 1n the inlet and outlet ports?

4-19 In the cylinder of Problem 4-1, how much work 15 done by the cylinder
(neglect losses) if the pressure 1n the blank end 15 1000 psi?

4-20 In the regenerative cylinder of Problem 4-14, how much work 15 done if the
pressure 1s 2000 ps1? How much harsepower 1s developed?

4-21 Use the ¢ylinder system in Fig. 4-5. Assume that Fp = 6000 1b. If the
pressure n the blank end of cylinder 1 is Py = 1500 pst, how much work
is done by the system when 81 = 20in ?

4-22 Under the conditions of Problems 4-12 and 4-21, calculate the hydraulic
horsepower which would have to be delivered by the pump supplying fluid
to the system.

4-23 1f the discharge pressure of the pump 1 Problem 4-18 1s 1500 pst, caleulate
the hydraulic horsepower delivered to the system.

4-24 A standpipe 50 ft high rests on the top of a hill 135 ft above the level of &
pumping station. The pump sits in 2 pit 10 ft below floor level If it
delivers 10,000 gpm to the standpipe, what 1s the efficiency of the pump i1t
must be driven by an electric motor of 600 hp?

4-25 The ballast pumps 1n 2 submarine submerged at a depth of 250 ft discharge
35,000 gpm of sea water Neglecting losses, determine the horsepower
required to drive the pumps

4-26 The fuel pumps in a ballistic missile deliver 3000 Ib/min of hquid fuel
{8; = 1.47) to the rachet engine nozzles at a pressure of 250 pst  What
horsepower must be delivered to the pumps?



CHAPTER 5

Conservation of energy,

Bernoulli's equation
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Energy Relationships in Fluid Systems

You are undoubtedly familiar with the fact that there are two basic energy
states for Newtonian systems, that is, systems which are massive enough
to obey Newton’s laws of motion.

The first, of these states is potential energy, which is regarded as stored
energy or, in a system, as the ability to do work. Simple examples are
given in Iig. 5-1. Figure 5-1(a) shows a weight W at an elevation h
relative to a reference. The weight has potential energy W - I in relation
to the reference plane. Figure 5-1(b) shows a spring with a spring constant,
k(Ib/in). When the spring is compressed a distance s in., the potential
cuergy stored in the spring is & X s/2.

The second energy state is kinetic energy, which is determined by the
motion or velocity of a body:

KE = 1°

where A7 is the mass of the body and v is its velocity.
a7
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In o Newtonian system, the principle of conservation of energy
states that the total energy in the system remains constant. Thus a change
in potentinl energy level presumes a corresponding change in Kinetie
cneigy: APE == AKE  Or, as potential (stored) energy passes from the
stored state to a condition of domng work, it is converted to kinetic energy.
Thus, if the weight shown in Fig. 5-1(a) were to fall from its elevation &,
all of 1ts potential encrgy, W« k, would be converted to kinetic energy,
3Mv?, by the time the weight reached the reference plane.

Z T
| it
| Ref
TH T T TR T TRt e 7 Fige 5-2

Consider now Fig. 5-2. At point 1 we have a quantity of a flud,
W 1b, which is moving at an average velocity vy, has been rased to a
pressure Py psi, and is at an elevation Z, relative to the reference plane.
The total energy content of the flmd quantity at point 115

E, = PE(elevation) + PE(pressure) 4 KE

. 1 Wk
wz, + wh 7t+3

Note that the units for each factor are foot-pounds or inch-pounds, which
you will recognize as the usual energy units for the Englsh system of
measure.

At point 2 in Fig. 5-2, the quantity of fluid has a different elevation,
pressure, and velocity, indicating that it has undergone some changes 1n
condition between point 1 and point 2 The expression for total energy at
point 2 becomes

LW, 2

Ez—"Zg+W +§ i 3

Bernoulli's Equation

The principle of energy conservation tells us that for ideal fluids, the total
energy in the system is constant. Thus we can equate these two expressions
for energy:

WZy + WPy /Y + () (Wol/g) = WZz 4+ WPy/v 4 ) (Wed/g)
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The units for each term are foot-pounds (or inch-pounds). Note that W,
the weight of our hypothetical quantity of fluid, is common to each term.
We can divide by W (Ib), and arrive at the following expression:

Zy+ Pyv +v3/2g = Zg + P2/7 + v3/2g, (5-1)

where each term in Eq. (5-1) represents the energy, in foot pounds or inch
pounds, per pound of fluid flowing. Note that the units for each term are
now feet or inches.

Fig. 5-3

Since all terms in (5-1) are given in units of head, feet or inches, they
are called, respectively, elevation head, pressure head, and wvelocily head.
Elevation head and pressure head are related to the potential energy of
the stream, while velocity head is a function of the kinetic energy of the
flowing stream.

Equation (5-1) is known as Bernoulli’s equation and is one of the
concepts fundamental to the fluid mechanics of incompressible fluids.

It is perhaps a little difficult to visualize abstractly a quantity of fluid in
space, such as is illustrated in Fig. 5-2. If we superimpose a conductor, or
pipe (Fig. 5-3), the picture becomes more realistic. We can now think of
the quantity as a unit volume of fluid at point 1. At some time later the
same unit has moved along the pipe to point 2. The energy components will
be the same as they were previously, and Bernoulli's equation can be

derived in a similar manner. This concept is basic to our study of fluid
mechanics,

EXAMPLE

Consider a simple flow system (I'ig. 5-4) consisting of a conductor, or pipe,
of varying cross-sectional area. Assume that the flow rate @ = 1000 gpm,
Py = 1000 psi, 4, = 2in?%, and 4, = 1in% What is Py?

; From the principle of flow continuity, we recognize that Q is constant,
1t is:

= Ay, = Ag,.

The next step will be to write Bernoulli’s equation and determine the known
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Fig. 5-4

and unknown quantities
Py/Y + v}/2g + Z1 = Po/Y +13/29 + 2
Substituting, we obtam
1000(Ih/1n2) /0 0361 (Ib/in®) + 03 /772 = p,/0 0361(lb/m)* + +3/772

Notethat Z, = Z, for a horizontal pipe, as shown in Fig 5—4. Wesee that
we must determine the velocities 1n order to find the desired unkuown, Py
Thus

v, — @ _ 1000 zal/ran X 231 in®/gal
, = & _ 1000 gal/min X 231 ' /gal

Ay 2 in2 X 60 sec/min
= 1925 1ps,
and
vy — @ _ 1000 gal/tmn X 231 in®/gal
L P 1 m? X 60 sec/mn
= 3850 1ps

Note that the veloeity calculations were made to the time base of seconds
sinee the acceleration due to gravity, g, 1s based on seconds. Substituting,
we find

1000 , (1025 Py +(3850)2
00361 772 00361 77z

from which

Py = 470 psi.

Ideal Flow Versus Actual Flow Conditions

The above cxample points out some facts of mterest

1) Tor a constant flow rate Q, when the crow-sectional area of the con-
ductor deereases from one point to another, the flow veloeity increases,
and vice versa,
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2) The velocity head varies as the square of the flow velocity.

3) When the flow velocity increases, there is a corresponding decrease in
pressure; conversely, when there is a decrease in velocity, there is an
increase in pressure.

In Chapter 1, we stated that initially we would discuss only ideal
fluids, and that the losses which occur in actual (nonideal) fluids would be
considered later as “corrections” to the ideal case. It is still premature to

- discuss the caleulation of such losses, but we must recognize their existence
now in order to make Bernoulli’s equation completely correct. < :

1
{ l— 4 2
Q—h ‘ Pump "Q“
L, 2

Tor this purpose, all losses in a flow system will be combined in one
head loss which we will designate as Hz. Furthermore we must recognize
that it is possible to add energy to a system between the two reference
points, for example, by means of a pump. (See Fig. 5-5.) The energy so
added will be potential energy in the form of increased pressure head.
Such head additions will be lumped into one pump head term, H,. The
complete form of Bernoulli’s equation will then be

Py 5
—;}%-}—%—}-Zl—{—Hp:%-{—%-{—Zz‘FHL- (5-2)

'Note that the head increase due to a pump placed between points 1 and 2
1s always added to the left-hand side of the equation. The head loss, Hy, is
always added to the right-hand side of the equation, as shown in Eq. (5-2).

Energy Diagram

The reason for the procedure deseribed above can be illustrated graphically
by means of an energy diagram (see Fig. 5-6). The vertical line, labeled 1
on the diagram, represents reference point 1 in the flowing stream. (See
Fig. 5-4.) The various heads (pressure, velocity, elevation) representing
cnergy are plotted vertically along this line.

The vertical line to the right side of the diagram, labeled 2, represents

reference point 2 in the flowing stream. As was the case at point 1 , the heads
are plotted along this line.

Bis i< vi

.’_“.—,ﬁ =N
- 1§ =20
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We have established that there will be some energy losses in this
flowing stream. Since the velocities must obey the principle of flow
continuity, the loss cannot show up as a loss in velocity head. Since the
pipe in our example is horizontal, there is no change in elevation head.
Therefore it follows that the loss must be a loss in pressure Thus the
pressure head, P,/7, will actually be less than what we would have ealeu-
lated for the ideal case, using Eq. (5-1). The difference1s Hy, and is plotted
at point 2 on our diagram to bring the total energy content up to the
constant energy line. When we write the right-hand side of Bernoutl’’s
equation, corresponding to point 2, we include all the terms, meluding H,,
plotted at point 2; thus Pz2/Y + v3/2g + Z2 + Hy.

Constant energy line

a

7Ref  Fig. 56

We stated that energy was to be added to the system by means of o
pump placed between reference points 1 and 2 (Fig. 5-5). The effect of this
step is to raise the level of the constant energy line beyond point 1 The
head corresponding to this increase in energy, H,, must be added to the
left-hand side, or at point 1, in order to bring the sum of the energy compo-
nents up to the new constant line for the diagram. Thus

Py, o2
Y +§§+Zx+ﬂp~

Note that when we write Bernoulli’s equation we consider two refer-
ence points only. With the exception of a pump head addition, there are
no terms in the equation resulting from intermediate points. Head loss
always occurs in the direction of flow, that is, from the upstream point
{point 1) to the downstream point (point 2).

Bernoulli’s equation is basic to the analysis of many of the flud
systems and devices which we will consider Jater, Typical of these is the
articulated arm shown in Fig, 5-7.
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Fig. 5-7

The articulated arm for servicing overhead
equipment is a familiar sight today.
Because of the flexibility of fluid power,
the arm can be operated from either the
ground or within the bucket. High power
density of hydraulic equipment achieves the
necessary operating forces with small
actuators.
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IMPORTANT TERMS
Potential energy in a fluid system has two components: (1) potential energy
due to elevation; (2) potential energy due to pressure.

Kinetic energy 1n a fluid system is o function of the mass flow rate and the
velocity of the flowing stream of flmd.

Bernoulli's equation is the mathematicsl expression of the principle that the
energy content of a flowing fluid system 1s constant:

P/t +03/2g + Zy + Hp = Pp/Y +03/20 + Z> + Hy

Head loss, Hy, is the reduction in pressure head 1n a flud system due to
viscous, throttling, and turbulent losses induced by the motion of the flud

Head added by a pump, H,, is the increase in pressure head due to the
energy added to the system

PROBLEMS

5-1 A section of a pipe system 18 shown in Fig 5-8, in which @ = 600 gpm of
water. (a) What is the kinetic energy at sections 1-1 and 2-2° (b) Whatare
the velocity heads at 1-1 and 2-27 (¢) What 15 the pressure differential
between seetions 1-1 and 2-2?

Llevation
6307

7

Eleyation

Fig. 58 ~0\) 300" Fig. 5-9

5-2 In a flow conductor similar to that of Problem 5-1, the diameter at section
'1—1 = 41in, and the diameter at 2-2 = 2 in. The pressure at section 1-1
is 150 ps1; @ = 200 gpm of hydraulic oil * Calculate the pressure at sec-
tion 2-2

5-3 In the conductor in Fig 5-9 the cross-sectional area at pomt I 1s 10 m?,
and that at pomnt 2 is 4 in?. The flow rate @ = 150 gpm of sea water
What is the pressure difference between points 1 and 2?

5-4 In Problem 5-3, if the head loss between points 1 and 2 1s 30 ft, what 1s the
pressure difference?

5-5 In 8 system sumilar to that of Problem 5-4, a pump 1s placed 1n the line
between points 1 and 2 at an elevation of 500 ft. What horsepower would

* Refer to Table B-1, p. 219 Use “mineral oil ”
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the pump have to deliver for the pressure at point 2 to equal the pressure
at point 1?
5-6 What is the significance of each term in the Bernoulli equation?

5-7 In the pump in Fig. 510, Qous = 35gpm. What is Qin? Whatis the pres-
sure difference between points A and B? Assume fluid is water.

1 Qout
B _J—
———
Qi Fig. 5-10

277 pipe

5-8 If the input to the pump in Problem 5-7 is 5 hp, what is the pressure
difference between points 1 and 22 What does this pressure difference
indicate?

5-0 A pumping system is shown in Fig. 5-11, in which Z; = 100 ft, Zs =
110 ft = Z3, and V3 = 20 fps. An electric motor delivers 25 hp to the
pump, which is 75%, efficient. Hp,_, = 2 ft; Hrz_, = 10 ft. To what
height, Z4, could water be pumped? What would the pressure be at point 27

5-10 In the system of Problem 5-9, assume that Z4 — Z3 = 22.2 ft, Hy,_, =

1ft. With other conditions the same as in 5-9, what would be the maximum
theoretical suction lift, Zo — 7,7

4

14/ pipe—ejop—

377 pipe

Fig. 5-11 Fig. 5-12

5-11 Figure 5-12 shows a flow conductor of variable cross-sectional area and
varying elevation along its length. TUsing work-energy relationships,
derive Bernoulli’s equation. [Hint: Consider that in the time interval dt,
t?le fluid will have moved from section 1-1 to 1’-1" with velocity vy, and
similarly from 2-2 to 2’-2" with velocity v2. Determine the pressure forces
and the distance through which the fluid moved in time dt = work done.
Furthermore, consider that, because of flow continuity, the volume of fluid
b’ounded by 1-1 and 1’1’ equals the volume of fluid bounded by 2-2 and
2'-2'. Thus the work done by gravity on an incremental mass is the product
of that mass and the difference in elevations between points 1 and 2. The
change in kinetic energy can be determined from the incremental mass and
change in velocity between points 1 and 2. Then equate work done to A KE.
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Applications of

Bernoulli's equation
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Fig. 6-1 Fig, 62

Torricelli's Equation

TFigure 6-1 shows a reservoir, or fluid container, with an opening in its side
A jet of fluid flows from the opening. The surface of the fluid is at a height &
above the centerline of the opening. We will consider a reference point (1}
at the surface of the reservoir, and a second reference point (2) in the jet just
beyond the opening—in the free jet, as it is called

We can write Bernoulli’s equation between these two points:

Py/Y +v3/2g + Zy = Pofv +08/29 + Zy + Hy.

By evaluating the parameters we may be able to solve for, or eliminate,
some of the terms in the equation.

If we use an atmospheric reference, then P; = 0 psig, and hence
Py/Yy =0,
If the surface ares of the reservoir is large relative to the ares of the
opening, and if & is constant, »; can be considered to be zero. Thus
20, —
vi/2y = 0.

56



pitsste

1 heighth

point M-
i e

imimt&

] bt

aftle

. The

Applications of Bernoulli's equation 5;

When the level Zs is used as the reference, then Z; = h. Also, unde
these conditions, Z5 = 0 ft or in.

In an ideal fluid condition, Hj is considered to be zero. Thu
Bernoulli’s equation reduces to

h = v3/2g;

solving for the jet velocity vg, we find

vy = \/2gh, (6-1
which is Torricellz’s theorem.

Torricelli’s theorem states that ideally the velocity of a free jet is equal t«
the square root of the product of two times the acceleration due to gravit;
times the head.

The Siphon

The familiar siphon is shown in Fig. 6-2. This is a continuous U-shape
tube with one end submerged beneath the surface of a liquid, the cross le;
of the U above the level of the liquid surface, and the free end below it
Let us consider a siphon filled with fluid. When the fluid is allowed to rw
out of the free end, then the siphon will continue to discharge it. We ca
analyze the flow through a siphon, using Bernoulli’s equation:

Pify 4 i/2 + Zy = Py/v + 03/29 + Z3 + Hy.

Evaluating some of the parameters, as we did for Torricelli’s equation, w
get

Py = 0 psig = Py;
thus

P P
71==—5,§== 0 ft of head.

Asbelore, vy, the surface velocity of the liquid, can be considered to be zerc
Thus 43/2g = 0. 1f Z, is used as the reference level, then Z; = h an
Z3 = 0. For ideal flow, Hy, ~ 0 ft.

When we substitute these values in Bernoulli’s equation, we find tha
duces to b = v3/2g; or solving for the velocity, we have

V3 = V/2gh,

which is the same as the previously derived Torricelli equation. Note tha

it re
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we did not include in Bernoulli’s equation any parameters from point 2,
at the apex of the siphon, Whenever we write Bernoulli’s equation, terms
are included only from the two points being considered and not from any
intermediate points!

Let us suppose next that we allow the head loss term, H, to assume a
value; that 1s, H # 0. Bernoull’s equation then reduces to

2
h=;~;+HL,

and
vy = V2g(h — Hy) 6-2)

We see that the effect of the head loss is to reduce the net head, causing
flow 1n the siphon; that 1s, the potential energy available to cause flow 15
reduced by the amount lost The mechanism producing the loss will be
considered later Here we need be concerned only with the fact that 1t
does exist.

Let’s turn to the high pomt of the siphon, pomnt 2. If we wnte
Bernoulii’s equation between pomts 1 and 2, we have

Po ok, P8}
T+ﬂ+Z1~ o +29+Z2+HL~

Evaluating parameters as before and taking Z, as the reference, we reduce
the equation to

Pofv = —v3/2% — (22 — Zy) — Hy;

that 13, a partial vacuum exists at point 2 This would be expected, since 2
reduced pressure would have to exist at point 2 in order for atmosphenc
pressure to cause the fluid to flow upward over the high point of the siphon
What 1s not so obvious is that the difference between atmospheric pressure
and that at point 2 must also be great enough to provide for the veloaty
head and any losses.

If the distance Z, — Z; is made equal to 34 ft (ideally) and if
Py = 0 paig (that is, if P, is atmospheric pressure), the siphon will not run
Atmospheric pressure will just suppoit a column of water 34 ft ligh If
point 2 is 34 ft above point 1, there is no potential energy left to provide for
v/2g or H;. We can see that the practical height limit 15 something less
than 34 ft for water, depending upon the losses and the velocity of flow.
The column height supported by atmospheric pressure head will, of course,
be different for flwids with specific gravities other than unity.
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Consider the siphon shown in Fig. 6-3. Using Bernoulli’s equation, we will
analyze the siphon in some detail; ideal flow (no losses) will be assumed.
Iri order to evaluate the factors at any point in the siphon, it is necessary
to know the velocity at that point as well as the pressure and elevation. To
calculate the velocity, we must consider the free jet emerging from the end
of the tube. We follow the step-by-step procedure outlined below.

[ 5’/ diameter pipe

E 3 ==5_"
w2 E %
o {:;‘ A 2¢ Total energy
/ line
== A
= ‘20,:[_'— — | Pressure s h %
" T—===—3 | gradient v \ g

line P
4o

T ¥ \;:;__/—‘vx}
gl 4 5 ~J
Ref. 3/ diameter jet \\‘

Fig. 6-3

Step 1. Write Bernoulli’s equation between points 1 and 5:
P\[Y +93/2g + Zy = Ps/v 4 v§/2g + Zs,

0404 20ft =0+ 0%/644 +0,
from which v5 = 35.82 fps.

Step 2. The siphon tube is of constant cross section, 5 in. in diameter.
The jet is 8 in. in diameter. Thus the velocity in the siphon tube can
be calculated:

Vs = %)21)5 = vy = vg = vq = 12.91 fps.
Step 3. We can now proceed with a point-to-point analysis:

Pi/y 4 43/2g +Zy = Po/v + v3/29 + 2o,
0+ 04 20 ft = Py/v + (12.91)%/64.4 -+ 20 ft;

Pofy = —167/64.4 = —2.582 ft
or .
Py = 0433 S;h = 0.433 X 1 X —2.582 = —1.12 psi.

tl‘}lis step calls attention to something which we should have felt intu-
tively—that a slight vacuum must exist just inside the entry to the siphon
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if the fluid 1s to flow. Flow always occurs from a point of higher potential
(pressure) toward one of lower potential We must lose some pressure
between points 1 and 2, because we have gained some velocity head.

Step 4. Thus
Pu/Y + v3/2g + Z1 = Pa/Y + v/29 + Zs,
0+ 0+ 20 ft = Pa/7 + (12.91)%/64.4 + 35 ft;
Py/y = —17.582 ft or P3= —76ps.
Step 5. Consider now points 1 and 4:
Py/v +03/2% 4 21 = Pufv + vi/20 + Za
04+ 0420 ft = Py/y + (1291)%/642 + 0 ft;
Pa/y = +17 418 ft. or P,=17.55psi
Note that the pressurc head at point 4 is reduced by the amount of
velocity head in the siphon tube.

1 2 3 Pressure
gradient

A H\ . J{@s

Pressure Gradient

The term “gradient” means the rate of change of some variable with respect
to another. In fluild mechanics we generally are interested in pressure
gradient, which reflects the change of potential energy from point to point
along a conductor Figure 64 depicts our meaning of pressure gradient.
‘We have a conductor of varying cross-sectional ares. From principles of
flow continuity we know that the velocity of flow will be greater in the
smaller cross section than in the larger area. If we were to write Bernoulli’s
equation between sections 1 and 2, we would see that the pressure would
drop as the velocity increased. Were piezometer tubes to be inserted at
sections L and 2, the flmnd would rise a distance equal to the pressure head,
asshownin the Fig. 6-4. Let’s move farther along the conductor to point 3.
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Total energy

- 29
Piezometric line %__»_ -+ =
(pressure gradient) v
Fig. 6~5

A piezometer tube inserted here will also measure the pressure head. Under
conditions of ideal flow, the height of the column of fluid in the piezometer
tube at points 2 and 3 would be identical. Actually, we would experience
some losses at point 2 due to the sudden change in cross section of the
conductor. Thus Py/v ¢ P3/v. If we now drew a line connecting the
menisci of the fluid columns in the piezometer tubes, we would graphically
construct the “pressure gradient or piezometric line” for this particular
flow system. Figure 6-5 shows the relationships between the various heads
and the gradient line in a system involving several basic elements we have
discussed. Pressure gradients are not a major concern in fluid power
systems because of the fact that operating pressures are quite high and
pressure losses are relatively lower than for other types of fluid systems.
Pressure gradient concepts are of importance in such civil engineering
applications as water distribution systems, sewerage systems, etc.

Another interesting point is illustrated in Fig. 6-6, which summarizes
some of the relationships between potential energy and kinetic energy;
pressure head and velocity head; and elevation, pressure head, and velocity
head. A column of fluid A units high represents a pressure head, h = P/7,
at the level of the centerline of the horizontal orifice. The same level is
maintained at the opening of the vertical orifice. If we assume that the level
of the fluid remains constant at h, then Torricelli’s theorem tells us that the
velocity of the jet issuing from the two orifices is v = +/2gh or h = v2/2g.
Thus the vertical free jet will rise to a height equal to h.

Fig. 6~6
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IMPORTANT TERMS

Torricelli's theorem states that the velocity of a free yet is equal to the square
root of the product of two times the acccleration due to gravity times the
net head causing flow: v = +/2¢h.

Siphon is a continuous U-shaped conductor in which the discharge end 15 at
4 lower level than the fluid surface at the mlet end  Once flow has started,
a siphon will continue to discharge due to the potential encrgy difference
between the inlet and discharge end levels.

Free jet is 2 jet of fluid which 1s discharging into the atmosphere

Pressure gradient 1s the rate of change of pressure along a conductor.
Piezometric line 1s a graphie plot of the pressure gradient.

PROBLEMS

6-1 A tank has1n its side a hole 2 in in diameter (see Fig 6-7) The depth of
water above the hole 15 36 ft Determine the velocity of the jet emergmng
from the hole

6-2 What will be the flow rate @, in the Jet of Problem 6-1?

G ¢ Teem- oot t . - . - - -

1 diameter, what 15 the velocity of the jet 1ssutng from 1t? What 1s the
theoretical flow rate? How high will the jet rise?

6-4 I the head loss across the unifice of Problem 6-315 Hy = 2 ft, what will be
the velocity of the jet” How high will 1t rise?
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49"

_— J]“ \r:——::: Fig. 6-9

6-5 A reservoir has a horizontal opening and a downward vertical opening, as
shown in Fig. 6-9. Calculate the jet velocity for both openings.

6-6 A standpipe filled with fluid has openings at the quarter lengths, as shown in
Fig. 6-10. Assuming that the fluid level remains constant, calculate the
points at which the jets of fluid will strike the ground at the level of the
base of the standpipe.

|
IS0y RPN PN IS

A ‘ 5 — Elevation
| — 100
Fig. 6-10

6-7 Calculate the flow rate of the fluid (water) issuing from the siphon shown in
Fig. 6-11.

6-8 In Fig. 6-11, if Hy, , = 2 ft and Hr, , = 1.5 ft, what would be the
flow rate?

Fig. 6~11

6-9 Calculate the absolute pressure at point 2 in the siphon in Fig. 6-11.

6-10 Figure 6-12 illustrates a siphon system in which Hz, , = 1.5ft, Hr, , =
0.5ft, Hr, , = 3ft. Calculate the flow rate of discharge of water. Calcu-

late flow velocities at points 2, 3, and 4. What are the pressures at points
2 and 3?

170/

Fig. 6-12
6-11 Supl)ose that we put a cover over the reservoir in Fig. 6~11, and let the
siphon tube pass through it. If we then pressurize the space in the reservoir
above the fluid surface to 5 psi, what will be the flow rate in the siphon?
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6-12 .\ sealed chamber 1s shown in Fig 6-13. A partition divides the chamber
1nto two sections, and a siphon passes through the partition. Pressuresand
elevations arc shown 1n the shetch. Caleulate the flow rate through the
siphon  What is the pressure at point 2? Oul is flowing from the left to the
right side of the chamber. At what height would the flow of oil stop?

Py=5 pu 2
4

T2

3 577
|

@

.
Log=08 1 Pi=8pst
"

Fig. 6=13

6-1

<

Denive the algebraic relationship involving pressure on the surface of the
flurd and the elevation difference Z -~ Z3, which causes the pressure at
pomnt 2 to become absolute zero. Use a typical siphon configuration as in
Fig. 6-11.



CHAPTER 7

More applications

of Bernoulli’'s equation

Y A A Fig. 7-1

Bernoulli’s equation is one of the basic relationships of fluid mechanics and
can be used to solve problems involving flow systems other than the two
simple examples treated in the previous chapter.

The Venturi

In earlier chapters we have discussed continuity of flow and conductors of
'Val')jing cross sectional area. Now let us examine the special case illustrated
m F_lg- 7~1, which shows a circular conductor with an area of reduced cross
section and a gradual transition from the large upstream area to the reduced
ared. The transition from the reduced area to the enlarged downstream
section is also gradual. Such a device is called a venturi. Application of
Bernoulli’s equation to the analysis of flow through the venturi will reveal
some of the interesting characteristics of this device. Assuming that point 1
65
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is in the large upstream area, and point 2 is in the reduced central ares,
called the throat, we can write

Pu/7 +13/2g + By = Po/Y + v3/20 + Zz + He.
Note that if we group all the kinetic energy terms on one side of the
equation and all the potential energy terms on the other, we have

13—l
29

= (P1/Y +Z1) — (P3/Y + Z2 + Hu). (-1
This relationship shows that in the flowing system

change in Linetic energy = change 1 potential cnergy
AKE = APE

Thus the increase in kinetic energy at the throat is equal to the decreasen
potential energy at the throat. From this “Ventur: principle” we would
expect to find a reduction in pressure at the throat, that 1s, p1 > p2

Fig. 7-2

Just how great this reduction in pressure will be can be determined by
solving Bernoulli’s equation for any given system Let us consider Fag 7-2,
which shows a venturi with & manometer connected between the upstrcam
section and the throat. This device is called a zenturt meter When properly
constructed and eakibrated, s ventur: meter can e used to meter {messure)
flow rate and/or to control flow processes. Since the ventur: meter of
T1g. 7-2 is horizontal (as is usually the ease), Z, = Z, For deal flow,
Hy, = 0. Then Bernoullt’s equation reduces to

Py/Y + v}/29 = Po/y + v3/2,
or

2
2w -y = ;. (7-2)
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From the principle of flow continuity, A;v; = Agvs, we can solve for
e = (A1/Ag)v1. Substituting this expression for vy in Eq. (7-2), we get
(Ay/Ag)] — vl _ Py — Py

2g Y

Solving for v, we obtain

_ 2g PI——Pg.
NEANUA)E — 1

(7-3)

Tor a given venturi, A; = const and A, = const. Thus we could set

1
NA/45)2 — 1~ K,

and Eq. (7-3) would reduce to

(P1— Py)

2)1=K 2g ¥

(7-4)
Note that this expression has the general form of the Torricelli equation.

From continuity of flow, we have @ = A,v;. Substituting v, by
Eq. (7-4) gives

Q= AK /2g ——————(PT; Pa). (7-5)

The manometer head difference Hy, when reduced to consistent units, is
equal to the pressure head difference. Thus Hy; = p; — ps/Y. And
substituting in (7-5), we have

Q= A:K\V2gHa,  where K1 = KV (S;,, — S4,)/S,,-

It can be seen that the manometer head difference, Hg, can be calibrated to
read in terms of units of flow rate, such as gpm, ft*/min, in®/min, etc. The

venturi, as such, finds applications as a flow rate meter or flow control
device.

EXAMPLE

Using a {ypical venturi, such as is shown in Fig. 7-2, assume that the diam-
eter of the conductor is 2 in. at point 1 and 1 in. at point 2. If the ma-
nometer is filled with mercury and the head difference is 21.43 in., what is
the approximate flow rate of water through the venturi? What is the
flow velocity at point 1 and at point 2 in the conductor?
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Solution.

Step 1. The head difference is given in inches of mercury. Since the
flowing fluid is water, the H; must be converted to an equivalent head
of water:

Hyppror = So X Happory = 13.6 X 2143 in = 292 in, of water.

Step 2. Trom Eq (7-2) we see that the pressure head difference 1s
equal to the velocity head difference and that these are both equal
to Ha:

2
v; — 111 PPy _

2g 4 =H
Then
2 2
v — 1 _ .
—2g = 202 in,
Step 3. Since neither vy nor »; is known, we must eliminate one of the
variables.

A4 A (D),
ve =0 and 4= (DaF
Then

42 _ 2
(DI/DZ; L L. 202;
g

[e/n* — 1sf _
Zx3/| 0%

from which

()
o= 2RI /TE050 — 1228 ips.

Step 4. Taleulate vy:

vz = (D1/D2)%; = 4 X 1228 = 490 ips.

Step 5. Calculate the flow rate from the principle of flow continuity:
Q = Awy = 3.1416 in® X 122.8 ips = 385 in%/scc

Conversion to gpm gives

1 gal = 231 in?,

Q = 385/231 X 60 = 100 gpm.
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Note that in the development of the preceding example, we have treated
only ideal flow. This approach will give results which are theoretically
correct but cannot be matched by actual performance. Practical and
theoretical performances do not agree because of the existence of flow
losses H;, and deviations from exact dimensions in the actual venturi meter
due to manufacturing tolerances. To take account of these unavoidable
deviations in actual instruments, each meter is calibrated after it has
been completed.

1
g
- 2
- _P1 L
E)L——T-l-gg-
= Bl —
w\=— === — e,
NS —7 _____\
— ’j Fig. 7-3

The Pitot Tube

The device shown in Fig. 7-3 is called a Pitot tube. Its function is to measure
the velocity of fluid flow. As shown in the figure, the Pitot tube is installed
in a closed conductor. It is a streamlined tube, with its axis parallel to the
direction of fluid flow, and with an opening in the tip on which the fluid
impinges. This section of the tube is connected to a head-sensing device
outside the conductor; in our illustration the device is a piezometer tube.
We can analyze the flow through a Pitol tube by writing Bernoulli’s
equation between point 1, which is in the conductor upstream from the
tube, and point 2, which is just inside the opening in the tip:

Pi/v +0}/2g + Zy = Po/v + v3/29 + Zs.

Since points 1 and 2 are at the same level, we find Z; = Z,. Also note that
there is no flow inside the Pitot tube; if there were, the tube would overflow.
Hence v; = 0. Bernoulli’s equation reduces to

Po/Y = Py/v + vi/2g.
Thus the height of the column of fluid in the piezometer tube (the head)

is equal to the sum of the pressure head and the velocity head inside the
conductor.
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Fig. 7-4

In order to determine the velocity, these two components of the head
must be separated  One way of doing this s to insert a second piezometer
tube into the wall of the conductor above point 1, as shown m Fig 7-4
This second tube indicates the pressure head at pomnt 1, P1/7 If the two
plezometer tubces are now connected across a manometer, the remaining
head difference will be the velocity head, since there 1s a component of
pressure head 1n each tube. Note that 1f we solve the difference relationship
for velocity between velocity head and manometer head, we get the
Torncellhan equation for velocity, v = +/2gha

Fig. 7-5

If o Pitot tube is introduced into a free jet which, unimhibited by a
conduetor, emerges into the atmosphere (as shownin Fig 7-3), the pressure
head 1n the jet is zero. The Pitot tube thus measures directly the jet
velocity head.

Onc of the best known applications of the Pitot tube is 1n the measure-
ment of air speed of airplanes Pitot tubes are also used to measure air flow
velocity in ducts, discharge velocity from fans, ete.

EXAMPLE

Assume that thereis a free jet (I'ig 7-5) and that a Pitot tube is placed
in the jet. The fluid rises to a height of 100 in. in the piezometer tube If
the fluid is water, what 13 the velocity of the jet? If the diameter of the
jet is 2in , what is the flow rate in gpm?
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Solution.

We proceed in two steps.

Step 1. Since the entire head measured by the Pitot tube in a free jet
is velocity head, the Torricelli equation applies:

v = V2gh = V2 X 386 X 100
= /77,200 = 278 ips or 23.2 fps.
Step 2. I'rom continuity of flow, @ = Aw:

2
Q= lf—u — 3.1416 X 278 = 873 in®/sec

Q = 813 X 60 = 227 gpm.

With the establishment of the idea of a Pitot tube, we can proceed to
Tig. 7-6, which is intended to summarize a number of the concepts dis-
cussed and centers around Bernoulli’s equation and conservation of energy.
The figure represents a conductor of nonuniform cross-sectional area. At
three random points along the conductor, points 1, 2, and 3, we want to
sample the condition of the various components of total energy. It is fairly
simple to measure the elevations of the three points: Z1, Z2, and Z3. These
represent potential energy (per pound of fluid flowing) due to elevation
above some datum level. By means of piezometer tubes inserted at the
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three reference points we can determine the pressure heads Py /7, P2/, and
P3/7. These, you will remember, represent potential energy (per pound of
fluid flowing) due to pressure.

To illustrate our next point, we must remember that we indjcated that
a Pitot tube inserted into a conductor measures both pressure and velocity
heads. For our purposes, we will assume that the Pitot tubes m Fig. 7-6
measure only velocity head. By doing this, we are able to visualize how the
veloeity head varies along the conductor as the cross section changes
Hence velocity heads v}/2g, 13/2g, and ¢3/2¢ represent the kinetic encrgy
{per pound of fluid flowing) due to the flow velocity at each point (Figure
7-4 shows what we nould actually have to do to see the veloeity head )

We have now graphically 1llustrated the three mojor components of
total energy in the flowing stream  Pressure energy provides the potentia]
needed to cause flow along the conductor It must supply the energy to
provide for any changes in elevation and hinetic energy due to changes in
flow velocity. Thus from point 1 to point 2, the elevation increases from
Z1 to Z2, and the velocity increases from vy to v because of the reductionn
cross section. The pressure head must decrease from Py/7 to Pa/7 to pro-
vide the energy for increases 1n elevation and kinetic energy, The same
analysis applies in going from point 2 to pomnt 3  Assuming 1deal flow, we
find that the sum of the heads at each point 15 constant; the heads will
always equal the total energy level.

IMPORTANT TERMS

Venturi is the name applied to the conductor configuration in which there1s
a gradual transition from the full diameter to a reduced diameter seetion,
called the throat, and subsequently a gradual return to the full diameter.

Venturi principle states that the increase in hinetie energy in the throat, due

to increased velocity, is equal to the decreace in potential energy (pressure)
in the throat,

Venturi meter is o venturi built and calibrated to measure the flow rate of
o fluid,

Pitot tube i a device which measures flow velocity by conversion of hinetie
energy of flow in the conductor to potential encrgy (head) in o connected
piczometer tube or similar device.
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PROBLEMS

A venturi consists of a pipe section 3 in. in diameter—and a throat section
of 11 in. in diameter. The upstream pressure is 50 psi, and the flow rate
(water) is 150 gpm. Calculate the pressure in the throat area.

A conductor is 2 in. in diameter. The pressure upstream from a reduced
section in the conductor is 80 psi, and the pressure at the reduced section is
60 psi. The flow rate of phosphate ester hydraulic fluid (S, = 1.1) is 80
gpm; caleulate the diameter of the reduced section.

A venturi with large-section diameter of 2 in. and throat diameter of 1 in.
passes 75 gpm of water-in-oil hydraulic fluid (S, = 0.9). Upstream
pressure is 150 psi. Assume that a piezometer tube is inserted in both
sections of the venturi. How high will the fluid rise in each piezometer tube?

If the piezometer tubes of Problem 7-3 were connected across the legs of a
mercury manometer, what would be the differential head displayed by the
manometer?

A venturi is 3 in. in diameter at the large section; pressure is 100 psi at the
3-in. section and 75 psi at the throat; 90 gpm of mineral base hydraulic
fluid (S, = 0.89) passes through the venturi. Calculate the diameter of
the throat.

Since the pressurc drop in a venturi between the full-size section and the
throat is a function of the flow rate through the venturi, the drop can be
used to indicate flow rate. Figure 7-2 illustrates a typical configuration for
a venturi meter. Assume that the diameter is 2 in. at point 1 and 1 in. at
point 2. Using water as the fluid, calculate the head differentials, H4, for a
mercury manometer over a range of flow rates. Plot a curve of head
differential H g vs. flow rate. Of what use might such a curve be in an actual
application of a venturi meter?

Suppose that in Problem 7-6 the fluid had been glycerine instead of water.
What would be the slope of the II4-vs.-Q curve? What is the difference in
percent between this curve and that of Problem 7-6? What does this
suggest as to the accuracy of metering flow rates of fluids other than the one
for which the venturi meter is calibrated?

What would be the effect of head losses in the venturi on the accuracy of
flow measurement? Since head losses are difficult to predict, how would one
go about calibrating an actual venturi meter?

Figure 7-3 illustrates a typical Pitot tube. If the pipe is 4 in. in diameter,
the pressure is 100 psi, and the flow rate is 250 gpm, how high in the Pltot
tube will the fluid rise? Assume that the fluid is sea water.

A typieal Pitot tube is inserted in a 2 in. pipe. The pressure is 20 psi. Water

rises to a height of 50 ft in the vertical leg of the tube. What is the flow
rate in the pipe?

T'he device shown in Fig. 7-7 is called an aspirator. The flow rate Q in the
main conductor eauses a reduction in pressure at point 2 in the secondary
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Fig. 7-7 Fig. 7-8

conductor. This reduction in pressure produces a secondary flow, Q.
Thus fluid ean be “pumped” by means of an aspirator. The pipe dizmeter
is 3 in. at pont 1 and 11n. at potnt 2. Caleunlate the pressure at point 2 when
Q = 120 gpm, and Py = 100 psi.

7-12 In Fig 7-8, the Pitot tube and piezometer tube installed m a pipe are
connected across a mercury manometer What quantity will the head
difference Hy, represent?

7-13 In Fig 7-8, the pipe diameter ts 31, The pressure at pomnt 115 25 pst, and
the flow rate is 200 gpm. What will be the head difference, Hg, if the gage
flwd 15 mercury and if the worlang Buid 13 & slcone fluid (S, = 103)7

7-14 Given an installatton similar to that shown in Fig 7-8 the pipeis 21n m
diameter, the fluid 15 water, the pressure at point 1 13 40 ps;, Hy = 3.661n,
Hg. Caleulste the flow rate 1n the pipe.

7-15 As in Fig. 7-8, a Pitot tube is installed 1n & pipe to measure flow rate of
water as a function of flow veloaty. In other words, it 15 used as a flow
meter. Using the parameters of Problem 7-12, caleulate the head difference
in the differential manometer for & range of flow rates FPlot & curve
Hg vs. Q. What 1s the sigmficance of this curve?

7-16 A Pitot tube is installed 1n o free jot of water, as shown m Fig, 7-5 If the
water rises to a height of 3 ft, what is the veloaity of the jet?

7-17 If the jet flow velacity in the Pitot tube of Problem 7-16 15 100 fps, how
high will the water nse 1n the vertical leg?

7-18 Afree jet emerges from 2 nozzle 2 in. n diameter. The flow rate through the
et is 100 gpm. How high will the fluid nse in the vertical leg of a Pitot tube
inserted 1nto the jet?

7-19 A Pitot tube is suspended from a boat traveling at 30 mph so that the tube
passes through the water at a shallow depth., How high will the water rise
in the vertical leg of the Pitot tube? How could this effect be used to
indicate the speed of the boat?

7-20 Pitot tubes are used to measure the air speed of airplanes, Dxplam how the
tubes might be applied to measure air speed.

7-21 A f of an ic t for biles uses a Pitot
tulfe positioned on the rim of a flywheel to sense rotational speed. Develop
a simple expression for the relationship between flywheel diameter, output
speed, velocity head, and pressure head in the Pitot tube
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Orifices
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What Is An Orifice?

In general terms, we might think of an orifice as a hole through which fluid
flows. Although we tend to think of orifices as being round, they can also
be square or triangular. As we shall demonstrate later, flow passages some-
what more complex than simple holes in relatively thin plates can sometimes
be characterized as orifices, and their behavior can be described in the same
general way.

Initially we shall consider round orifices in thin plates. By a thin plate
we mean one in which the thickness of the material is small relative to the
diameter of the opening. Figure 8-1 illustrates two conditions under which
such an orifice might exist. Iigure 8-1(a) shows a so-called round-edged
orifice; Fig. 8-1(b) illustrates a sharp-edged orifice.

Sharp-Edged Orifices

These orifices have some special characteristics which make them useful as

flow-measuring and control devices. Thus, for example, a true sharp-

edged orifice is viscosity insensitive: that is, its performance is not affected
75
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by changes in temperature of the fluid Hence the flow characteristics of an
orifice can be described 1n terms of dimensionless coefficients,

In practice, it is difficult to obtain a true sharp-edged orifice When
orifices are used as flow-metering devices, each one must be calibrated to
determine its actual performance under operating conditions

Fig. 8-2

Figure 8-2 shows a typical sharp-edged onifice under flow conditions
The curved lines in the illustration represent streamlines of fluid flowmg
through the orifice. Note that the fluid flowing adjacent to or near the
surface of the plate must undergo a much greater change of direction than
that flowing toward the center of the onfice Because of 1ts momentum,
the flowing fluid cannot make the sharp turn requured for it to exit from
the orifice at right angles to the plate. Thus the Jet 1ssuing from the orifice
contracts At some point downstream from the plane of the orifice opening,
the jet achieves a constant cross section and does not contract any more
This point, or section, is called the vena confracta It has been demonstrated
empirieally that the vena contracta occurs at a section D/2 downstream
from the planc of the opening (D is the diameter of the orifice opening).

We can define & coefficient of contraction, C.:

Co = A,/4,

where A, = cross-scctional area of the jet at the vena contracta, and
Ao = cross-sectional ares of the actual orifice opening

If we define o quantity v, as the actual mean velocity in the jet at the vena
contracta, we can then define a velocily coefficient as

Co = v,/vy
where v, = actual velecity in the jet, and
vy = theoretical or Toricellian velocity = +/2gh.
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Trom continuity of flow principles, we can write an expression for the flow
rate through the orifice:

Qo = Ajvj = CcAo . Cv\/ 2gh = CCCv' Ao'\/ 2gh.

If we define a discharge coefficient, Cq = C, - C, we can reduce the expres-
sion above to the general form for flow through a sharp-edged orifice:

Q = CaA.Vv2gh. (8-1)

BEquation (8-1) tells us that the flow rate through an orifice is equal to the
product of some empirically determined discharge coeflicient, the cross-
sectional area of the orifice, and the square root of the product of twice the
acceleration due to gravity and the net head causing flow. The important
point to note here is that the flow rate is a function of the square root of the
head—generally, the pressure head causing flow. This makes the flow
through an orifice nonlinear, a fact which causes some concern in applica-
tions of this device to fluid-power control devices. A further complication
is the virtual impossibility of making a flow-control orifice in a practi-
cal control device a true sharp-edged orifice. Thus these devices are sensi-
tive to changes in temperature and their effect on fluid properties.

Approximate values, empirically determined, for the sharp-edged
orifice coefficients are

C. = 0.60 to 0.62, ¢, = 0.98, Cqs = 0.60.

EXAMPLE

In the reservoir of Tig. 6-1, let A = 100 ft. What will be the discharge flow
rate issuing from a sharp-edged orifice 2 in. in diameter in the side of the
reservoir?

Solution.
We proceed in steps as follows.

Step 1. Write the equation for discharge from an orifice

Q = CaA ,V2gh.

Step 2. Substitute the given numerical values into above equation:

Q = 0.60 X 4,,/2 X 32.2 X 100.

Step 3. ISceping units consistent, solve for unknown parameters,
In this case the orifice areca:

do = mwd?/4 = (72%/4)(1/144) = 3.1416/144 = 0.0218 ft2.
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Step 4. Q@ = 060 X 00218 X V614 X 100 = 1 048 ft3/scc.
Step 5. Check dimensionally:

{t3/sce = dimensionless number X ft2 X /(ft/scc2y X ft
= ft2 x (ft/scc) = ft%/scc

Parpy

Fig. 8-3

Concept of Net Head

In the preceding discussion we have considered only the simple case of a
free jet issuing from an orifice with atmospheric pressure on the surface of
the fluid in the reservoir. Suppose that we have a case such as is <hown in
Fig. 8-3, where there is a pressure P, on the surface of the liquid and the
jet is discharging into an atmosphere at pressure Py, such that P, # Py

Writing Bernoulli's equation and solving for the volonty of the jet
yiclds an expression of the form

vy = 2glh + (Pa — P4)/7]

This is still in Torricellian form (Eq. 6-1), but the net kead 1s now expressed
in two terms instead of one. The first is due to the height of the column of
fluid above the onifice, 4, and the sccond is due to the difference i pressure
Lieads,

(e — P/

Concept of Approach Velocity

Tet s now connider a case in which the orifice at the end of a pipe (sce
Tig. 8-4), is sutch that the diameter of the pipe is not great compared to the
diameter of the orifice. In such cases we cannot neglect the approach
velocity of the flind flowing through the system as we did when conaidenng
flow from nn orifice in the wall of 8 reservoir, Now when we write Bernoully's
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equation and solve it for jet velocity, we get

vy = '\/29(P1/'Y + v1/29),

which is Torricellian in form. The net head now includes a term for the
pressure head, P;/7, and a term for the approach velocity head, v%/2g.

Fig. 8-4

We can write the discharge rate equation for Iig. 8-4 as follows:

Q = Cad,V 29(P1/7 + v2/29). (8-2)

Equation (8-2) contains a term which is a function of the flow rate. We
can eliminate this term and derive an expression entirely in system param-
cters as follows: From @ = A;v;, we have

-_9 .
wd2/4

v = Q/A,4

Substituting in (8-2), yields @ = CaA,V 2[P /v 4+ Q%/(wd3/4)%/2g], but
A, = md?/4. Substituting and squaring the above equation, we obtain

2 2 212
@ = 3 Q_r D?,) % {gv_l L@ /[(7r2/;>1>11 }

2\ 2 2\ 2 2
- P o)
\F)E) TECT) “\Genyar

from which

4

@ = uhroias + e (%)

2 Do 4 P
Q2[1 - C3 (D“1> ] = 2903437
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Solving for @, we have

£1-1/2

Q = Cad /BT [1 —c (%.) ] . &3
Note that Eq (8-2) 1s still in Torricelhan form but has an additional factor,
We nught think of this as a correction factor to accommodate the approach
veloeity head

To get this factor m a more usable form we can expand it by means of
the binom:al theorem, as follows

_ (DT _ .m—n‘2Do4
[1 Cd(T):)] =1"4+an-1 C,,(—Dl
N A\
+ﬁ(n2' ). - [03(3‘)] +
1 D.\*
=1+§'03(Fl) +

We can neglect the additional terms beyond the sccond to simphfy the
expression without introducing undue maccuracy The final equation for
the flow through an orifice where approach velocity 1s sigmficant is shown
m the following equation*

4
@ = catomEm |1+ 503 (Be) . (8-4)

Orifice in a Pipe

In Fig. 84 we dealt with the case of o free jet 1ssuing from the onfice at
the end of a conductor Figure 8-3 1llustrates an onfice placed within the
pipestself This 1s the usual application for an onfice used as a metering or
control device Smce we are still dealing with 1deal flow, we can approach
the onfice* from the point of view of Bernoullr’s equation In the ease of the
free jet, the pressure head causing flow was P, /7, here, however, flow 13
determned by the difierential pressure head, (P, — P2)/Y. Note that as
the jet 1ssues from the orifice, 1t causes turbulence beyond the orifice plate,
and further reduces the pressure at point 2 Equation (8—4) becomes

Q = CadoV29(Py — P2)/7 (1 + 3CH(Do/D1)Y] (8-5)
Since the onfice induces a pressure differential as a function of flow, 1t can

be used to measure flow 1 much the same manner as the venturt meter

* As a matter of fact, Fig 8-5 represents an onfice mvolving a submerged jet,
which 13 a tapic beyond the scope of this tet
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Fig. 8-5

discussed previously. Pressure taps can be placed in the conductor up-
stream and downstream from the orifice, and the pressure heads can be
impressed across a differential manometer measured at these two points.
The head difference can be calibrated to read in flow rate terms, such as
gal/min, ft3/sec, ete. See Iig. 8-6.

1T

Fig. 8~6

Orifice meters are casier to make and install than venturi meters;
however, they do cause a higher pressure loss in the system. Because of the
difficulty encountered in the analysis of systems involving orifices and
similar flow devices, much of the technology which has grown up around
them is based on empirical knowledge. A large quantity of experimental
data has been gathered to characterize orifices and establish such factors as
discharge coefficients, ete. In spite of this, to ensure its accuracy every
flow meter manufactured must be calibrated specifically for the conditions
under which it will be used.

Head Loss in an Orifice

In our carlier discussions we cstablished the idea of veloeity coefficient:

Co = vj/v,, or vy = Cy, = CyV2h,,

from which

1
hy, = — .22
n 5 ’
v
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where h, is the net head causing flow. The head remaining in the jet,
that is, the velocity head, is +?/2g. Then,
head loss = (initial head) — (remaining head),

or
2 v}z
m=5—3-2—g—§;=(@—l)g—g~ @6

Equation (8-6) gives the head loss 1n terms of velocity head remaming m
the jet and the velocity coefficient.

We can also express the head loss 1n terms of the mitial head From
Torrieellr’s equation, we have

1? /29 = Cihn.

Substitution yields
"y = E%-th,l — C%h,
Then
Hy = (1 = Chha (8-7)

Equation (8-7) is probably the more useful of the two expressions

EXAMPLE
Assume that we have an orifice installation similar to that shown in
Fig 8-5. The diameter of the pipe is 4 in ; that of the orifice 15 2 m,,
Cs = 0.60. A differential manometer is positioned across the orifice and
indicates o differential head of 12.43 in. Hg. What is the flow rate of water
through the onfice? Caleulate the head loss across the orifice if C, = 098,

Sclution.

Step 1. Define the parameters in consistent units

Ay = wdi/s = w(47/1) = 12.57 in?,

A, = wdif4 = 3.1416 in?,

dofdi =3 =4  ({dofd)' = D' =1

Cy4=06,

€3 = 0.36,

(Py — P2)/7 = 1243in. Hg X 13.6 = 169 in. H0.
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Step 2. Substitute in formula (8-5):

Q = Cado/2g(P1 — P2)/7 [1 + 3Ci(do/d1)"],

Q = 0.6 X 3.14164/772 X 169 (1 + (0.36/2) X %)
= 0.6 X 3.1416 X 27.8 X 13 X 1.011
= 688 in3/sec

688 X 1757 = 0.399 ft3/sec

0.399 X 7.49 gal/ft3 = 2.98 gps

= 2.98 gps X 60 sec/min = 179 gpm.

Ii

fi

Step 3. Using Eq. (8-7), calculate the head loss:
C,= 098, C2= 0.96,
H L= (1 - C )hm

ha = 1/2g + (P1 — P2)/7,
vy = Q/4; = 1150/12.57 = 91.5 ips,

v3 /29 = (91.5)2/772 = 10.85 in.,
Hy = (1 — 0.96)(10.85 + 169)
= 0.04 X 179.85 = 7.2 in. H,0.

This represents about (7.2/169) X 100 = 4.269, of the mdlcated
manometer head difference.

IMPORTANT TERMS

Orifice is an opening (with a closed perimeter) in an element of a flow
system. Although the usual shape is circular, orifices may take any form.

Round-edged orifice is one in which the upstream edge has a radius.
Sharp-edged orifice is one in which the upstream edge is a knife edge.

Vena contracta is that part of the section where the jet issuing from an

orifice ccases to contract; or where, in theory, the jet becomes of constant
cross-sectional area.

Coefficient of contraction is the dimensionless ratio of the area of the jet at
the vena contracta to the area of the orifice opening.

Coefficient of velocity is the dimensionless ratio of the actual velocity in the
let to the theoretical velocity, as calculated by the Torricelli equation.

Discharge coefficient is & dimensionless number obtained from the product
of the coefficient of contraction and the velocity coefficient. It is the
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constant of proportionality in the expression for calculating the flow
through an orifice,

Approach velocity relative to an onfice 1s the mean veloeity of the flud
flowing in the conductor upstream from the orifice

Orifice meter is a device applied to an orifice so that the pressure drop
induced as a function of flow is impressed across 2 manometer which is
calibrated to read in flow rate terms

PROBLEMS

8-1 Water flons through n sharp-edged orifice 2 in 1 diameter, as shown n
Fig 8-7 If the head s 100 ft, what 1s the flow rate? Neglect losses

8-2 Given a sharp-edged orfice, such asin Fig. 8-7 The head 1550t Calculate
the theoretical and actual velocities.

Fig. 8-8

8-3 In a sharp-edged onfice, stmilar to that i Fig. 8-7, the head 1s 64 ft.
‘The flow rate, @, 15 measured and found to be 846 gpm  Calculate the
diameter of the orifice, the jet diameter at the vena contracta, and the
location of the vena contracta

8-4 In actual onfice applications a phenomenon known as “wire-drawing”
oceurs, Dasteally, this is the weanng anay of the metal at the sharp edge,
due to the shrasive action of fluid flowing across the edge What effect do
you think this phenomenon would have on the sharp-edged characteristics
of the onifice® How would this affect the onifice coefficients and the accuracy
of flow measurements made with such an onfice?

8-5 Discuss the sigmificance of the vena contracta relative to the flow rate
through an onfice. What effect does the fluid head have on the vena
contracta?

8-6 Consider a flow system simular to that shown in Fig 8-3, The pressure
Pa = 5 psi; the height & = 36 {t, the jet issues into the atmosphere
through an orifice 2 in in diameter. Caleulate the flow rate of water
through the orifice. Neglect losses.

8-7 In a flow system smvlar to that of Problem 8-6, b = 49 ft, the ornfice
diameter is 2 in, and 6 25 gpm of water flons through the onfice 1nto the
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atmosphere. What is Po? Calculate the actual and theoretical velocities.
What is the diameter at the vena contracta and where is its approximate
location?

8-8 Under the conditions of Problem 8-7, what would be the flow rate if the
fluid were hydraulic oil? sea water?

8-9 Using the flow system of Problem 8-6, calculate the flow rate of phosphate
ester hydraulic fluid into an ambient pressure, Py = 2 psi.

8-10 Consider a flow system such as is shown in Fig. 8-4. The pressure at point
1 is 75 psi; an orifice 3 in. in diameter is located at the end of a 5-in. pipe.
Calculate the flow rate of glycerine discharging through the orifice into the
atmosphere.

8-11 Consider a flow system similar to that of Problem 8-10; 8 gpm of sea water
is flowing through a sharp-edged orifice (diameter 2 in.) in the end of a
pipe 4 in. in diameter. Calculate the height to which the fluid will rise in
the piezometer tube shown in Fig. 8-4.

8-12 Gasoline flows through a 13-in. orifice inserted in a 4-in. pipe, as shown in
Tig. 8-5. The flow rate is 12 gpm. Calculate the approximate pressure drop
across the orifice.

8-13 If a manometer were placed across the orifice of Problem 8-12, what would
be the differential head, Hq, when mercury is the gage fluid?

8-14 Returning to Problem 8-1, calculate the head loss across the orifice. Now
recalculate the flow rate incorporating this loss in the equation. What
percent of error in the flow rate calculation was introduced by neglecting
the head loss in Problem 8-17

8-15 Repeat the procedure of Problem 8-14 for the conditions of Problem 8-2.
What is the percent of ervor with respect to the velocity calculations?

8-16 Calculate the head loss which would actually be encountered in Problem
8-10. Recalculate the flow rate and determine the percent of error intro-
duced by neglecting the head loss.

8-17 Using the conditions of Problem 8-13, make a number of calculations of
Hy for several flow rates and plot a curve of Hy vs. Q. If the orifice of
Problem 8-13 were to be used a$ a flow meter, what would be the signifi-
cance of this curve? How would the neglect of head loss across the orifice
affect the accuracy of this characteristic curve?

8-18 Consider the orifice meter of Problem 8~17. Discuss the effect on aceuracy
of using the meter for a fluid other than that for which it was calibrated.

8-19 Figgure 8-8 shows a technique used in industry for control purposes. An
orifice is placed in a flow line. A pressure drop is developed across the
orii.ice by the flowing fluid. This drop is impressed across a piston in a
cylinder to provide a control force, F, proportional to the flow rate, Q2.
In the illustration, the pipe is 2 in. in diameter, the orifice is 1 in. in diame-
ter, and the fluid is water-glycol hydraulic fluid. Calculate P, — P for

Zeveraplvvalues of Q between 1 and 20 gpm, and plot a characteristic curve of
vs, F,



CHAPTER 9

Nozzles, tubes,

and similar flow devices

Qur discussion of orifices and orifice flow eharacteristics n Chapter 8 can
be extended to other types of flow devices.

Standard Short Tube

The standard short tube is illustrated in Fig 9-1. It is a circular conduit
2% times its dtameter in length and has a square cornered cntrance edge.

Consider what happens when flow 1s started suddenly. The fluid may
spring clear of the wall of the short tube, 1n which ease the tube will act ihe
a sharp-cdged orifice. This is shown in Tig 9-1. On the other hand, if flow
starts more gradually, the jet will undergo o contraction similar to that
observed in an onifice. A short distance downstream the jet will reexpand
to the full diameter of the tube Thus the coefficient of contraction for &
short tube running full is C, = 1.00 It has been determined that the
velocity coefficient for such a short tube 15 ¢, = 0 82. Since the discharge
coefficient is the product of the two, we have Oy = 1 X 082 = 082
Thus the flow discharged by a standard short tube 1s about one-third
greater than that discharged by a sharp-edged orifice of the same diameter

8
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(Cy = 0.60). Tigure 9-2 illustrates a short tube running full. It has been
demonstrated that the pressure head at the vena contracta is

P/ = —0.82h,,

If the fluid is water, P;/Y cannot be less than —34 ft. Thus A, cannot be
greater than 41.5 ft if the tube is to run full.

_ =

3 -
- ' Fig. 9-2 Fig. 9-3
Head Loss

The head loss can be calculated using the same form as Eq. (8-6):
_ (L v’
= (c,% - 1)2"9‘
When €, = 0.82 is substituted, we have
v2
Hy = 0.50 % (9-1)

One of the most significant points is that the entrance to a pipe set flush
with the wall of a reservoir acts like a standard short tube with respect to
the fluid entering the pipe.

Reentrant Tubes

Rather than being flush with the surface, as is the case with a standard
Sbort tube, a reentrant tube projects into the reservoir, as shown in
Tig. 9-3. Flow characteristics are similar to those encountered in the short
tube, except for the fact that the jet contracts more. When the reentrant
tube is running full, C, = 1. TFor a reentrant tube, C, = 0.75. Thus
Ca = 0.75. The head loss for a reentrant tube can be calculated as above:

Hy, = 0.8(v%/2g). (9-2)
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Barda's Mouthpiece

A Borda mouthpiece is a specal case of a reentrant tube in which a very
thin-walled tube projeets back into a reservoir a length equal to the
diameter of the tube (I 8-1). It can be demonstrated analytically that
under ideal conditions

Co=1 and C.=030

Under practical conditions when , = 088, then €. = 052

Fig. 94

Converging and Diverging Tubes

A converging tube 1s one whose cross feetion is not constant throughout its
length but is giadually reduced from a larger opening at the reservoir wall
to a smaller opeming at the free end (I'ig 9-5).

The flow charactenstics of a converging tube are a function of the
included angle, & As # increases, C, decrcases; the imiting value is 0.61
when § = 180°, that is, for an orifice Similanly, C, decreases as 8 deereases
Because the value of 8 can range from 0° to 180°, the reader should consult
a suitable handbook to find the corresponding coefficient values. A di-
verging tube is the opposite of a converging tube  As shown in Tig 9-6,
tht v1oss seetional nrea of a diverging tabe increases as the tube proceeds

Fig. &1
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outward from the wall of a reservoir. Since a sharp edge is not practical for
a diverging tube, the entrance is rounded.

The flow characteristics of diverging tubes are based on empirical data.,
It has been shown that the greatest flow rate can be attained with an
included angle 8 = 5° and a length equal to nine times the throat diameter.

Nozzles
To increase the velocity of the fluid a nozzle, which is a “converging tube,”
is attached to the end of a pipe. The velocity increases in accordance with
the principle of flow continuity for an incompressible fluid: @ = A;v; =
Agvg = -+« See Fig. 9-7. During this process some of the potential
energy due to pressure is converted to kinetic energy. Thus the increase in
veloeity is accompanied by a decrease in pressure.

Fig. 9-7

The head loss in a nozzle can be calculated by means of Eq. (8-6),
where the specific value of €, will have been empirically determined for the
nozzle configuration under consideration. Such values may be found in
suitable handbooks.

Diffusers

A diffuser is the converse of a nozzle. It is essentially a “diverging tube,”
whose purpose is to increase the pressure in a fluid stream by reducing the
ﬁf)w velocity (Iig. 9-8). When the fluid stream is slowed down, some of the
kinetic energy in the stream is converted to potential (pressure) energy.

—
——— /}
Q ———— — —t
—— ———e] ———— —
——— T —_—
\
————

/ Fig. 9-8
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The pressure recovery in a practical diffuser will not quite reach that
calculated by means of Bernoulli’s equation alone, since there are some
Josses in the nonideal case. The efficiency of a diffuser can be approximated
by the formula

Py — P,

1l — (41/42)7

where P, = pressure at section 1,

(9-3)

€4 =

P, = pressure at section 2,
p = density of fluid, slugs,
vy = velocity at section 1,
A, = cross-sectional area at section 1,
Ao = cross-sectional area at section 2.

Flow and Control Devices

Many of the characteristics of fluid power and process flow control or
measurement mechanisms, for applications like those of Fig. 9-9, can be
determined by approximation to orifices, tubes, nozzles, or combinations of
these basic devices. As is so often the case in engineering practice, quantita-
tive data can only be obtained empirically. Thus much of the following
information is a summary of data obtained by testing the various devices.
Table 9-1 summarizes the basic equations of flow and pressure drop for
simple orifices and nozzles. The curves in Table 9-2 represent values of
Cq for the various types of orifices and nozzles.

TABLE 9-1¥
Flow Pressure Flow Pressure drop
drop {(measured across flow device)

it I e 2 2

. Q = d.Cav/HL 438 X 10 Hp = ——5.21 X 107
old

1bs . 2 . w2

sce b8t W = d,Ca/YAP 5.25 X 10~ P = ———3.63

d,CaY

gom  psi ¢ = &Ca/BP/7 236X 160 P =2 185 1070

oCa

*
Courtesy of Product Engineering and Crane Company.
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TABLE 9-2*

Square-edged Thin-plite
o onfice
o D

Yty e for 202000 7” UV o0t 20000 5
13 B Nozl
1o E um;e-?dged onfice] ] AR
. %z os A >
St ! \ 07
Z10 - =
& - 506
kel f—— [ 2
Pp— SE
g 0]
z 08§ 05 ] .
207
=
ol T Vot s —
08 |
10 107 5 10 00 108
Reynolds number, Rt based on d;
Orifices and nozzles
18 |
[ —— 16
Lo KL 2
1 2 Kr 7
———e—
= AN
R 04 1
Y reritls e et BT "
o
F 05 10 15 30

Long holes

e

1

—_—

K=Ky+Kp+Ey+Ky

U R 2 29
bz

Pipe diameter change (long hole)

* Courtesy of Product Engineering and Lowms Dodge,

Consulting Engineer.
 Refer to Reynolds Number, p 136. & Lo
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TABLE 9~2 (cont.)

1 |

1

onr R;<2.5X105
i ‘ N Snh S 8

NG

L1 T
For R,>2.5X10° |
[— {

[ T  Tor Re<2.5X105
7% T~/

if
i
i

2

01 02 03 04 05 06 07 08 09 1.0
a,/ay or d2/d}
Pipe diameter change (orifice)

The head loss, H 1, across a flow device, such as an orifice, nozzle valve,
ete., can be expressed in the form Hz, = K»?/2g, that is, as a function of
the velocity head multiplied by some characteristic constant K. These K-
values are determined empirically for the particular flow device in question.
'ljhe velocity » is the average velocity just before and just after the restric-
tion. For orifices and holes, except sharp-edged orifices and nozzles, the
velocity is that which is determined from the principles of flow conti-
f“lity, Q@ = Av. For valves and slots, v is the approach velocity at the
Inlet port area. Some cases involve a so-called friction factor considered
In Chapter 14 on pipe flow. Table 9-3 lists characteristic K-values
for a number of flow devices frequently encountered in industry.
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TABLE 9-3*
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K 2 1 |ns]o2]0l
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t]o o300 |mfe 0]

KTt (ra|is]a fizlasfrasfanfa -t

N T/ B0
Butterfty vabe

ﬁ‘ 3 ’0] nl,) sl lm ) o
E%E I{Io [113]:(;}:‘.'}ls%.‘:l}’.’ll”llnr%‘kwwl

fiall valee

SUCteny o f Praticg Enginerrieg and Loa Dedge, Consulting | ngineer



Nozzles, tubes, and similar flow devices 95

TABLE 9-3 (cont.)

:=2Rx
A;=A, when z=R/2
- Wetted perimeter: Ly,=4R
; Resistance coefficient:
—?\ K=1.340.2(45/42)?

z Disc valve

. :—j"xr— Orifice area:

Az=m (2Rz tan % — a2 tan? g)

Az=0, when =0

Ly=2r (2R——x tan g—)

4 2
K=0.5+0.15 (ZE) , when
x.

0.104,<A4z<4p

Needle valve

1 Ca Valve
I e I .l f — / spool

K=3 to 5.5 when valve is fully open

Tank — p, in Tank Four-way valve

szl.5R1rx

A is valid when r=1.3R
Ly~A47R

K ~0.54-0.15(4p/42)*

Simple ball valve

50 — T
For R,<2000 |
45 )
% 40 Slotted |
8 \ L// port
g 35 "
g 30 2887
2 !
2 25
& 20 X \ {Round
x \\ } port
=15 »
,&{ 10 \i\\ Az //
A
5 ~
0 \\\\
Round port 0 02 04 06 08 10
Ar/4,

Typical ports
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TABLE 9-3 {cont)

dem§y?, ¢ in mdians

y=rtna when { = §
T

1= VEztan®a N=number of notches

Wetted penimeter

Lo=my S+ 2

K~ "\‘v)[‘: when Ag<150 (Reynolds number

10

I\'g\R

025 when 150-< Yg <2000

Notches 1 plunger

Ae= AR eos) BoZ

—(R—1)VaRr—1?

1;=3R¥f—sn ), ¢ raduns
¢ Ly=R(p+2an f)
K same as curves under
x “Typreal ports” above

Partial orifice

K same as slotted port curve
under “Typieal ports” above

Ramp slot

Ar=Nuwx N =number of <lots

Le=2V(w+1)

K sime as <lotted port eurve
under “Typmeal ports™ nbove

Slotted slecve

K xume as round port cunve
undcr_“Typieal ports” sbave

Intersecting holes
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TABLE 9-3 f{cont.)

fo— W —] Notch section height:

‘ r=Vel+ R2—-2R cosa— I
x — 5 = L
l =0 when cos « 5%
Q .t

/ / l\:OECl/l
ANN_{
@

257

Area: Ar=wg w=2 (t.'m %) x

K: same as “Notches in plungers” above

Rotary notch

Ay=Rw

Ly=2(R{+w)

K: same as slotted port curve
under “Typical ports” above

Rotary slot

Ay=110(1—cos o}l cot 8
Lyp=2(x+w)
x=R cot (1 —cos )
K same as slotted port curve
under ‘“Typical ports” above

Rotary wedge

12Qi° uml
AP = ———
P Crad® dmm

Annular clearance

']l _ Qmaﬂl
———————g—————.d AP = S5 E X 4075

Capillary tubing

Ahelieal conductance path machined AP= Qindul 3

Wto the periphery of a cylindrical a? where a=w-y
lg'lﬁlgber, then pressed into a cylindri- w=width of groove
al Dore,

y=depth

Screw path

A sintered or otherwise porous ma-

terial placed in a fluid conductor to AP=CQin® L
produce a pressure drop. Qi a2

Porous plug
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Flow Coefticient

Some manufacturers of fluid-power control valves use a coefficient, C,, to
describe flow characteristics of valves The relationship Qmm = CiV/p
describes how the flow coefficient 1s used The relationship between
K-factor and C, 1s K = 1460a%/C%, where a 1s the flow area, 1n2.

The preceding discussion has covered factors deseribmg flow charac-
teristics of the devices most frequently used in industrial controllers and
fluid-power mechanisms Also illustrated 1s the apphication of the basic
orifice equation to special cases

IMPORTANT TERMS

Standard short fube is a tube in which the length is 24 times the diameter

Reentrant fube is a tube which, rather than projecting outward from the
reservoir, projects back mto it.

Borda’s mouthpiece is a special case of reentrant tube, in which a very thin
tube projects back into the reservoir over a length equal to the diameter
of the tube.

Converging tube 15 a tubular conductor in which the cross-sectional area
diminishes from the entrance to the exit section of the tube.

Diverging tube is a tube 1n which the cross-sectional area increases from the
entrance to the exit section,

Nozzle is & flow device which is a converging tube attached to the end of 2
pipe.

Diffuser is essentially & diverging tube mtended to the p ofa
fluid by reducing the stream velocity.

K-factor is used mn characterizing flow through various devices. It 18
considered to be the constant of proportionality between the head loss
(pressure drop) across the flow device and the velocity head of the stream

PROBLEMS

9-1 Water discharges through a standard short tube 3 m. in diameter, a8
illustrated in Fig. 9-1. If the tube 1s running full, what 15 the flow rate
under 100 ft of head? Neglect losses.

9-2 Repeat Problem 9-1, but include the head loss  What percent of error was
introduced by neglecting the loss originally ?
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9-3 Ethyl alcohol discharges through a reentrant tube similar to that shown in
Fig. 9-3. The tube is 1% in. in diameter and under 49 ft of head. Calculate
the flow rate for fully developed flow (a) neglecting losses, (b) including
losses. What is the obvious implication?

9-4 Water issues from a nozzle such as that shown in Fig. 9-7. The diameter at
section 1-1 is 4 in.; at 2-2 it is 1% in. If the pressure at 1-1 is 150 psi, what
is the velocity of the free jet? If @ = 35 gpm; what is the velocity?
Assume 8 = 5°,

9-5 Consider a diffuser as illustrated in Fig. 9-8. Let 4; = 0.7854 in2 and
As = 7.07 in2. Water flows at a rate of 15 gpm. Pressure at point 1 is
100 psi. Using Bernoulli’s equation, calculate the pressure at point 2.

9-6 Calculate the efficiency of the diffuser in Problem 9-5, if the pressure at p2
is 100.2 psi. What percent of error would be introduced by using Bernoulli’s
equation alone?

9-7 A water-in-oil emulsion fluid flows at 10 gpm through a single poppet-type
relief valve with an inlet port diameter d = §in. The poppet lifts a
distance A = 0.1125 in. off its seat. Calculate the pressure drop across
the valve,

9-8 A gate valve has an inlet diameter of 2 in. It is open a distance C = 0.8 in.
If MIL-5606 hydraulic fluid flows through the valve at a rate of 80 gpm,
what is the pressure drop across the valve?

9-9 How much pumping horsepower would be needed to overcome the loss
across the valve of Problem 9-8?

9-10 A disk valve has an inlet port diameter of 1% in. When 75 gpm of hydraulic
oil pass through the valve, it opens {5 in. Calculate the pressure drop
across the valve and the added pumping horsepower required to overcome it.

9-11 The relationship of horsepower consumed to heat generated is 1 hp =
42.44 Btu/min. How much heat would be generated under the conditions
of Problem 9-9? How much heat would be generated under the conditions
of Problem 9-10?

9-12 Tl.xe specific heat of a substance is defined as the number of Btu required to
raise the temperature of 1 Ib of the substance 1°F. The specific heat of
MIL-5606 is about 0.465 Btu/Ib/°F; that of a typical mineral-base hy-
draulic oil is about the same. Using the calculations of Problem 9-11 and
a§suming that all the heat generated is used to raise the temperature of the
oil, determine the temperature rise of the hydraulic fluids passing through
the valves,

9-13 A’ typical application of a four-way (direction-control) valve is shown in
Fig. 9-10. Hydraulic fluid flows in through the port Pi, to the cylinder
port C1 and then to the cylinder. The return flow comes from the rod end
of the cylinder, passes through C2, and out through the tank port. Assume
that. the port Pj, is 2 in. in diameter and that 30 gpm of hydraulic oil is
flowing in. Assume an average K-factor. Calculate the pressure drop across
the.v.alve from P, to €1, and from C2 to the tank. What would be the
anticipated temperature rise of the fluid?
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Fig. 9-10

In Chapter 8, we developed an equation relating the characteristics of an
orifice, flow rate, and pressure (or head) drop across the orifice by

Q = CadoV/2ghn = CadV/29(AP/T). Y]
For a given onfice this could be written in the form
@ = Ko/AP. @

In this chapter we discussed the calculation of head loss (pressure drop)
across various flow devices, using an expression of the form

¥ _ AP
Hy =K 2 ¥
Note the similarity of the two expressions. What function of AP 1s the flow
rate Q through an orifice? Using corsiderations of flow contmnuty, convert
Eq. {2) 1nto one, 1n Q and AP, of the form of Eq. (1) (for orifice flow)
In this new equation, what funetion of AP 15 Q7 What1s the significance of
these relationships of AP and Q?

From your solution to Problem 9-14, it should be apparent that many of
the orifice-like flow devices discussed mn Chapter @ are used to controf flow
rate 23 a function of AP, This 1s accomplished by varymng the “orifice”
opening to control AP and thereby @ The needle valve1sa typical example.
Consider one with an mlet port diameter (2R) of 3 m. The ncluded angle
of the cone, @ = 10° and z = +1n If the pressure drop across the needle
valve is 250 psi, what 1s the flow rate @ of hydraulic ol through the valve?
The rotary notch is widely used in fluid-power flow-control valves as an
orifice of variable area. The port diameter1s 3w , B = 3m,e = 10,
a« = 30% ¢ = 45°% Tf the pressure drop across the omfice 15 500 ps,
what 1s the flow rate Q?



CHAPTER 10

Flow under conditions

of changing head

Fig. 10-1

Concept of Falling Head

In our previous discussions of flow we have assumed that a constant head
provides the energy required to cause fluid flow. Thus, when we derived
the expression for Torricelli’s equation in Chapter 7, we used a constant
head, .

It is obvious that many flow systems do exhibit this condition.

qu*ever, in practice, we frequently begin with a full reservoir and let the
ﬁu!d run out through an orifice or similar flow device. Thus the level of
fluid in the reservoir falls and the head goes with it. We must find a method
for coping with this situation.
) A typical case is illustrated in Fig. 10-1. We have a reservoir contain-
ng an incompressible fluid and an orifice in the bottom of the reservoir
through which the fluid is flowing. At some time ¢y, we measure the level
of the surface of the fluid above the orifice, that is, the head on the orifice,
and determine that it is h;.

There are several phenomena which we might wish to evaluate.
(1) We might want {0 find the flow rate at time {1; or (2) we might want to
know the rate at which the surface of the fluid is falling in the reservoir;

101
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or (3) we might want to calculate the time it would take for the liquid level
to fall from the initial height of A, to some sccond level, ko, As a matter of
fact, the latter condition is the one which usually is of interest to us

The method of attacking the problem consists of writing equations for
flow rate and volume discharged during a given period of time, and solving
them for that time

Step 1. At any intermediate head & between & and ks, the equation
for flow through the orifice would be

Q = Cad 2k

Step 2. In the time increment dt, the volume discharged at the above
flow rate would be
dV = Qdi = CaA,\/2gh dt (10-1)

Step 3. In the same tume increment dt, the level (or head) will have
dropped by an increment dh.

Step 4. We can write a second equation for the discharged volume,
using the drop in head, dh, and the area of the surface of the liquid at
that time, 4, (Note that A4, must not be confused with A,, the area
of the orifice) Thus

aV = A, dh. (10-2)

Step 5. Equating these two expressions for the volumetric inerement,
we have

dV = A,dh = C44,V/2ghdt.
Step 6. Solving for time, we obtamn
dt = A, dh/CaAN/2gh.

Step 7. In order to evaluate this expression, the surface area must be
expressed as a function of the head h, 4, = f(h), and this expression
must be integrated between the limts of &y and hy:
hy

JWdh
b2 CaAN2gh
Equation (10-3) gives the basic form of the solution to the problem of

flow under a fallmg head As you can sce, the problem now becomes onc
of expressing the surface area in terms of head and evaluating the mtegral

- (10-3)
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EXAMPLE

Consider a cylindrical tank, one of the most common types of reservoirs
encountered in engineering work. (See Fig. 10-2.) Fluid is discharged
through an orifice in the bottom of the reservoir. Determine an expression
for the time required to lower the head from h; to hs.

Solution.

Step 1. The flow rate through the orifice is
Q = CaA,V2gh.
Step 2. The incremental volume is

AV = A, dh = Cqd/2gh dt.

Step 3. Equating and solving for ¢, we get

' rh
ha Cad oV 2gh (0FY: IRV, 2g Jhe

In this particular case, 4, is constant.

Step 4. Thus we have

24
= 2028 (+/ — A/ —.
cho\/Z(}( i ha). (10-4)

Fig. 10~2

Flow In and Out

In some applications encountered in industry, there may be an inflow of

!‘qlll'd at the same time that outflow oceurs through the orifice, as shown
In Fig, 10-3.
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IMPORTANT TERMS

Constont head is that condition in a rescrvorr where the height of liqud
above the discharging onfice remains constant

Falling head is that condition in a reservoir in which the height of liqud
above the orifice is droppmg because of the outflow of hquid through an
orifice

PROBLEMS

10-1 Consider a cylindrieal tank simar to that shown in Fig 10-2 If the head
on a 3n, orifice 1s held constant at 49 ft, what 1s the flow rate through
the ortfice?

10-2 A cyhndrical tank 1s 10 ft 1 diameter. With no nflow, caleulate the time
required to lower the head of water in the tank from 36 ft to 0 it through
a 3-1n, orifice. Determine the average flow rate, Qa

10-3 In the «ystem of Problem 10-2, what inflow rate would be required to
maintain the head constant at 36 {t?

10-4 The initial head on an onfice was 16 ft and the final head was 4 {t. Caleu-
1ate the constant head h under which the same onfice would discharge the
same volume of fluid in an equal time interval

10-5 Given o tank which is shaped Iike the frustum of a eone (Fig 10-1).
Let hy be 15 1t, the diameter at the top surface be 10 ft, and that of the
bottom be 5 ft. Determine the size of the ehanpeedged onfice 1 the
bottom which will cause the tank to cinpty i 10 min. |{fmt Express the
surface arca as a function of the head & Alvo note that the total ime
equals f dt.]

10-6 A rectangular tank 5 ft wide 1s divided a9 ehown in Iig 10-4 A sharp-
edzed orifice 6 in. in dameter is Jocated as indicated  How Jong will it
take for the water surfaces to levcl out? [#int- The difference i lovel at
any gren time on the onficc 13 b\ drop in Tevel on the left ede 15 1¢
Intedd to 8 rise on the pght sude by the ratio of the sreas of the 190
surfaces]

10-7 .\ exhinudrical tank 10 ft n diameter 14 conneeted near the bottom to 8
recond € kindrical tank § (i diamcter by a pipe which acts eseentially 8%
a short tube  If the pipe (short tube) 13 § 10 in dameter and the 54t
tank i« flled sith ol (S, = 05) to a herght of 20 [t aboy e the connect:ex
pire, how long il 1t take for the ol Irved to cqualize 1n the two tanke’
At what beght above the pipe will ot equalize?
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5/—]

Fig. 10-4

10-8 The 8.S. Milwaukee is an oil tanker with bunkers (tanks) having trape-
zoidal cross sections. The bunkers are 100 ft across at the top, 60 ft across
at the bottom, 40 ft high and 40 ft long. Each tank is connected to its
neighbor by a 12-in. pipe which is equipped with a gate valve to isolate
the tanks. Assume that bunker 1 is filled to £ of its depth with oil
(S, = 0.85). Bunker 2 is empty. Now the 12-in. gate valve is opened
halfway. How long will it take for the oil level to equalize in the two tanks?

10-9 Set up the equation to determine inflow rate required to double the time
caleulated in Problem 10-2 to lower the head from 36 ft to 9 ft.

10-10 Given a cylindrical standpipe 5 {t in diameter, with a 2-in. orifice in the
bottom, set up the equation to determine inflow rate required to razse the
head of water from 5 ft to 10 ft in 20 sec.



CHAPTER 11

Introduction to

hydrodynamics

So far we have developed some pts of fluid mechanies which are some-

what isolated from the environments in which they are actually apphed
We can legitimately do this during the development stage, but at some time
we must attempt to relate these flow systems to their surroundings In
this and the following chapters we will move from the “ideal” situation
referred to in Chapter 1 to a broader and more generalized appheation of
the principles discussed earlier.

Impulse and Momentum

A fluid stream, particulanly a liquid, is a sys’ 2m mvolving a moving mass
From our carlier discussions, we recall the simple expression for flow rate
Q= A-v. If A and v are given in units of linear measure, Q evolves as
volumetric flow rate  If we multiply @ by the density p, we get the mass
flow rate.

Since we have a moving mass which is undergoing changes i velocity,
Newton’s second law of motion deseribes the situation:

F = ma.
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This expression indicates that when a constant force is applied to a mass
it will be uniformly accelerated; F is pounds force when m is given in slugs
and a is given in ft/sec2. Conversely, when a mass is uniformly accelerated
it exerts a force against that body which causes the motion.

If we let the acceleration a equal the final velocity minus the initial
velocity divided by the time interval over which the velocity change took
place, the equation takes the form

F= m(iz—j—”—ll (11-1)

where

vy = initial velocity, vs = final velocity, and { = time.
The above equation can be written in the form

It = m(vg — vy),

where the product Ft is called the impulse, and the product mwv is the
momentum. The relationship states that the smpulse equals the change in
momenium. This concept will be used later in the development of the expres-
sion for the reaction of a jet of fluid on a surface, such as a turbine blade.
Equation (11-1) could also be written in the following form:

m
"= (g — ).
We can sec that the quantity m/f is the mass flow rate. If we define a
quantity 47, such that M; = m/t, Eq. (11-1) can be rewritten as
F =M@ — v),

which represents the reaction force a surface would have on the fluid stream
by virtue of a, change in velocity, v — v;. Conversely, the fluid jet would
9xel‘t a force on the surface of equal magnitude, but opposite in sense, that
18, —F. Thus the equation for the force of a jet impinging on a surface is

F =20, — vy). (11-2)

Velocity

\"_"IOCi_t)’ is a vector quantity, that is, one which has both magnitude and
dll‘CCthl.). Thus the change in velocity indicated in Eq. (11-2) can be a
change in magnitude, as shown in Fig. 11-1(a), or it can be a change in
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Fig. -1

direction with magnitude remamning constant, as in Fig 11-1(b), or 1t
could be both. Note that 1n the second case, the change m direction
actually encompasses a veloerty change 1 two directions In the z-direction
Av1s vy — tycos 8 In the y-direction Av 15 vy sin 8, since there was no
1nitial veloeity component in the y-direction

We can measure veloaty in two modes
1) relative to some absolute reference, such as the earth’s surface (at least
for us on the earth), in which case we have what 1s called ebsolute velocuty
2) with reference to some other moving object, 1n which case we speak of
relative velocity

This is illustrated schematically in Fig 11-2. Objects 4 and B both have
absolute velocity with respect to the earth. They also have relative velocity
with respect to each other, such that

uU=14 — vz

whete u = relative velocity.

Fluid Jet Impingement, Moving Object

We arc going to consider an important coneept involving the reaction
(foree) of a jet of fluid impinging on a surface. A “pedagogical fantasy” will
be used to make the explanation easier to follow Assume that we have &
single vane moving in a straight line through space with a velocity t., 28
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Vane

Uy

Nozzle

'

’ll=Uj“'l)v

(b)

Fig. 11-3

shown in Fig. 11-3(a). This is an absolute velocity. Now assume that we
also have a nozzle from which a jet of liquid is issuing into space with a jet
velocity of v;(absolute). The path of the vane and the jet are parallel, as
shown in Fig. 11-3(b). We can sec that the relative velocity between the
vane and the jet is u = »; — v,. At some instant in time, {5, we move the
nozzle up so that the jet impinges on the vane, as shown in Fig. 11-3(c).
The velocity of the jet of fluid moving over the surface of the vane is , the
l‘Glﬂtvi.Vc velocity. If we assume a frictionless flow of fluid over the vane, this
vclocfty will remain constant. At some intermediate point on the vane, the
velocity relationship will look like that shown in Fig. 11-3(d). At each
such point the jet will have a new absolute velocity, vj, which will be the
vector sum of u and »,. Figure 11-3(e) shows the relationship as the jet

leaves the vane. The jet will be tangent to the surface and will therefore
have an exit angle 4.
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The final velocity 1n the z-dwrection is % cos §. Frnal velocity in the
y-direction is u sin 8. Thus the change m veloaity in the z-direction is the
initial velocity # minus the final velocity, or

Av, = u — ucos # = u{l — cosf).
Similarily, the change m velocity n the y-direction 13

Avy = 0 — usinf = —usin ¢

Apparent Flow Rate

It would appear as though all we had to do would be to substitute these
values mto Eq (11-2) and caleulate the reaction force However, such a
procedure would give an erroneous answer. We must first consider the
aetual A, the mass flow rate per unit time. If we go back to Fig
11-3(b), we can ascertain that the mass flow rate 1ssuing from the nozzle 13
Qm = pd,v, Butisths the flow rate per unit time which the vane “sees”?
No, it is not! Recall that the velocaty of the jet relative to the vane 1s %,
not ;. Therefore the flow rate which the vane experiences 1s

Q= Apup.
Or, if we wnite density in terms of the speeific weight and g, we have
Q = Ayuv/g = M.

Now we can preceed with Eq (11-2).

2,
Fp=Midv, = fl—fqulu(l — cos8) = ﬁ;;—‘Y(l — cos )
)2
= “’L(”g—“)(l — cos ). (11-9)
Also
— )2
Fy= —Mp, = — M?__ﬂlsin 3 (114

1t is obvious that the vane of our illustration could not remain in straight-
line motion in space with these two forces acting on it. However, if w¢
picture the vane as onc on the periphery of a turbine wheel, the explanation
becomes more plausible. In such a case, the z-reaction would be that which
causes the turbine to revolve, while the y-reaction would show up as 3
thrust Joad on the wheel, which would have to be absorbed by the turbine
bearings
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Work Done

We are interested in the work done on the vane by the impinging jet.
Recall that work done can be calculated by taking the product of the force
and the distance through which it moves:

G=TFXd.
Thus
- 2
G, = Aﬁ’(”Jg ) (1 — cos f)v, per unit time.

It can be seen that the distance per unit time is
d=uvt=1v,-1=0,

We can determine the conditions under which the maximum amount
of work can be done by differentiating the above expression and setting it
equal to zero. Then finding the roots, we have

dG/dvy = Y4;(1 — cos 6)
g

(v,z- — dv0, + 31)%) = 0,
from which
v=1v; and v, = v;/3.

Since no work is done at all when », = »;, the maximum work would be
done on the vane by the jet when v, = v;/3.

Nozzle

=l =\ IS ——
7 =

<" Turbine \\
wheel \

\ Fig. 11-4

.Since the concept of a single vane in space is an imaginary device used
to simplify the discussion of jet reaction, the above calculation of work has
ho real significance other than for purposes of demonstrating the method.
Let us consider a fluid turbine containing a series of vanes arranged around
U}O I'Jeriphery of the wheel in such a way that the entire jet is always im-
pinging on one or more vanes (Fig. 11-4). In this case the actual jet flow
rate would also be the relative flow rate, and 37, = ¥4 i/9.
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Then

F,= 'y—l:fﬂ (v, — vo)(1 — cos 8),
and

G = Z% (v, — vs)(1 — cos 6)

By 2 method similar to that above, we can show that the maximum worh
done when v, = 1,/2

EXAMPLE

A vane moves through space with a veloeity of 30 fps A nozzle 2.
diameter delivers a jet with a velocity of 50 fps such that it impinges on the
vane, The oxit angle of the vane is 60°. The flud 15 oil with & speafic
gravity of 08. Caleulate the reaction forces on the vane due to the jet.

Solution.

Step 1. From the previous derivation we know that the reaction
foree i the z-direction will be

O {1 — cos8)

Fy = 22 = 07
g

Step 2. Evaluate parameters:

8) A, = md*/(144 X 1) = 7w/144 = 00218 {t°,
b) 7 = 624 Ib/ft3 X 0.8 = 50 Ib/ft?,

¢) g = 32.2 ft/scc/rec,

d) (v; — v) = (50 — 30) = 20 fps = u,

e) 1 —cosf=1—cos60°=1— 05 =05

Step 3. Substitute and caleulate:

P, = S0Ih/IE7 X 00218 ft? X 20%%/sec”
d 32.2 ft/scc?

05
6761

]

Step 4. Chieek dimensionally:

= bX ft! X sec® -

b
ft* % sec?
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Step 5. Similarly:

—A;Y(v; — vv)z
g

—0.0218 X 50 X 400 X 0.866
32.2 o

Fy = sin 6

—11.7 1b.

Jet Impingement, Stationary Object

Note that when the jet impinges on a stationary vane, then v, = 0, and
the relative velocity is

U= v; — vy = V.

Tigure 11-5 shows a jet impinging on a stationary flat plate at an angle 6
with the horizontal. If surface friction between the plate and the jet of
fluid is neglected, the total change in momentum of the jet is perpendicular
to the plate. Thisis true in spite of the fact that the jet splits into two parts,
one moving up along the plate and the other moving down. Thus:

F = Mv;sin 6. (11-5)

It can be seen that v; sin 6 is the velocity change and that 3, is, as before,
the mass flow rate.

/

v; sin 6

Ar{perpendicular to plate) =vj sin § — 0=1v; sin 6 Fig. 11-5

Equation (11-5) is based on the previous derivations predicated on
conservation of momentum. That is, under ideal flow conditions, the
momentum of the flowing stream prior to the change in direction is equal to
the momentum of the stream after the change. If we denote by @, the part
of tl}e stream flowing up along the surface of the plate and by Qg the part
flowing downward along the plate, then it follows from the principle of flow
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continuity that the flow of the jet impinging on the plate, @,, equals the
sum of the split flows, or

0 =0Qu+0Qu

Because there is no foree in the direction parallel to the surface of the plate,
there is no change 1 momentum in that direction  Thus the fluid momen-
tum in the original jet equals the fluid momentum along the plate, or

My, cos 8 = Qupry, — Qupr,,
or, since M, = Q,p,

@Q,pr, cos 8 = Qupr, — Qupry,

from wiich
Qu={(Q,/2)(1 + cos6), Qu= (Q,/2)(1 — cos ).

EXAMPLE

A jet of oil (S, = 0.8) flowing at a rate of 5 gpm from a nozzle 1 1 in
diameter impinges on a plate inclined at 60° to the horizontal (see Fig.
11-5). What is the force reacting on the plate and what are the flows along
the surface of the plate?

Solution,

Step 1. Reduce the parameters to common umits*

a) 5gpm X 231 in%/gal = 1155 in%/min = 19,25 in%/sec,

b) v = Q/A, = 10.25/0 78531 in? = 245 ips,

¢) sin 60% = 08066, cos00° = 0.500,

08X 00; 3 R
Q) My = p0, = %’;8‘(’“—3%1‘;/& % 1925 in®/see

= 000144 = 14.4 X 10~%,
where ¥ = 08 X 00361 Ib/in®,
p ="/,
g = 322 ft/sec?,
= 386 in/scc?.

Step 2.

F = Mp,sing =144 X 107* X 215 x 0.866 = 3.05 X 10721b
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Step 3.
Qu = (@;/2)(1 + cos 6) = (19.25/2)(1 + 0.500) = 14.43 in3/sec.
Step 4.

Qu = (Q;/2)(1 — cos 8) = (19.25/2)(1 — 0.500) = 4.82 in®/sec.

IMPORTANT TERMS

Impulse is the product of a force and the time through which it acts, F' - ¢.
Momentum is the product of the mass and-its velocity, m - v.

Velocity is a vector quantity which describes the rate of change of position of
a body, and gives both its magnitude (speed) and direction.

Relative velocity is the velocity of one body measured with respect to a
second body.

Absolute velocity is the velocity of a body measured with respect to a fixed
reference, such as the earth’s surface.

Apparent flow rate is the rate at which fluid flows relative to some moving
body rather than to an absolute reference.

PROBLEMS

-1 A jet of water issues from a nozzle 2 in. in diameter, as shown in Fig. 11-5.
The flow rate is 200 gpm. The jet impinges on a stationary flat plate
inclined at an angle of 45° to the centerline of the jet. What force is
exerted on the plate by the jet?

11-2 A jet of water from a nozzle 1 in. in diameter flows at a rate of 60 gpm.
It impinges on a flat plate perpendicular to the centerline of the jet.
What is the reaction force of the jet on the plate?

11-3 A curved vane similar to that in Fig. 11-3 is held stationary. The exit
angle of the vane is 60°. A jet of sea water issues from a nozzle 2 in. in
diameter at a rate of 150 gpm. Determine the reaction forces on the
structure holding the vane, due to impingement of the jet.

11-4' A curved vane (Fig. 11-3) moves in a straight line with an absolute
velocity of 15 fps. The exit angle is 45°. A jet of alcohol issues from a
n0z7ile (diameter 1 in.) at a rate of 90 gpm in a direction parallel to the
motion of the vane so as to impinge on it. Calculate the reaction of the
fluid jet on the vane.
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11-5 A jet of hydraulic o1l 1ssues from a nozzle (diameter 1 in.). A pitot tube
is placed in the free Jet, and the o1l rises to a height of 1 55 ft in the vertseal
leg of the tube. The jet impinges on a curved vane moving at an absolute
veloaity of 5fps The exit angle 1s 60° Calculate the reaction of the flud
jet on the vane.

11-6 A water jet 1ssues from a nozzle (1 in. in diameter) at a rate of 48 9 gpm
A pitot tube 1s placed 1n the free et, and the water nses to a height of
74% in, in the tube, The jet impinges on a eurved vane with an exit angle
of 45°. A force transducer measures the reaction force, which 1s found to
be 596 Ib 1n the direction of the jet Determine the absolute veloaity of
the vane.

11-7 A curved vane moves linearly with an absolute velocity of 12 ft/sec
A jet of sea water 1ssues from a nozzle and rmpmges on the vane A pitot
tube 13 placed 1n the free jet, and the sea water rises to a height of 47.8
in the vertical leg. The exit angle of the vane 1s 60° The measured
reaction on the vane is 0 545 Ib 1n the direction of motion. Determine the
exit diameter of the nozzle What is the flow rate of the sea water?

11-8 A jet of water strikes the fixed surface shown n Fig. 11-6 in such a way
that it flows at a rate of 2 ft3/sec along each surface. The imtial jet
velocity 1s 60 ft/sec. Neglecting surface friction, determine the 2~ and
y-components of the reaction force.

Fig. 11-6 Fig. 11-7

11-9 Assume that the surface of Problem 11-8 1s moving in the z-direction with
a velocity of 20 ft/sec. Determine the reaction-force components under
this new condution.

11-10 A jet of sea water impinges on & fixed curved vane which deflects the jet
through a 135° angle, as shown 1 Fig 11-7. The jet euts from a nozzle
2 in. in diameter at a rate of 300 gpm. Determune the reaction-force
components in the z- and y-directions,

1111 In the example of Problem 11-10, assume that the vane 1s moving 1o the
z-direction at a velocity of 15 6 ft/sec Calculate the z- and y-components
of the reaction force under these new conditions.

11-12 Consider the system of Problem 11-5, but replace the 1-in. nozzle with &
sharp-edged orifice 2 in. in diameter. Using average omfice coefficients
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where applicable, calculate the reaction force on the vane, the theoretical
jet velocity, and the net head required on the orifice to produce the
reaction force and the velocity.

Replace the 1-in. nozzle of Problem 11-6 with a sharp-edged orifice
1 in. in diameter. All other conditions remain the same. Determine the
vane velocity. What is the theoretical jet velocity? What head is required
on the orifice to produce this flow condition? How does the change from a
nozzle to an orifice affect the flow system?

Calculate the work done by the alcohol jet on the vane of Problem 11-4.

Determine the work done by the hydraulic oil jet on the vane of Problem
11-5.

Calculate the work done by the water jet on the surface of Problem 11-9.
How much work is done by the fluid jet on the curved vane of Problem
11-10?

Assume the conditions of Problem 11-4, except that the jet impinges on a
series of such vanes located on the periphery of a turbine wheel 24 in. in
diameter. Calculate the theoretical torque on the wheel and the work
done by the jet.

Repeat Problem 11-18, using the conditions of Problem 11-5.

—= Nozzle Fig. 11-8

11-20 The flapper nozzle shown in Fig. 11-8 is a control device used in fluid-

power systems to produce signals which cause valves, ete., to close, open,
and so forth. A jet of oil issues from the nozzle and impinges on the
flapper. Derive an expression for the force ¥ which would be necessary to
hold the flapper in equilibrium against the jet reaction. Let d, = nozzle
diameter, and P, = pressure in nozzle.



CHAPTER 12

Some further considerations

of hydrodynamics

+Fr

When fluid flows in a conductor, such as a pipe, 1t 15 subject to the same
fundamental laws as a free jet Any difference 1 action between the two 15
a result of the constraint exerted by the conductor on the flud stream
Thus, if we have a nozzle, as shown in Fig 12-1, there will be one compo-
nent of reaction on the pipe due to static pressure, and another due to the
effects of change in momentum. We can ealculate the net reaction on the
pipe by summing forees along the centerline of the flow path:

SP=F,+F,+xF =0

The static pressure force is F, = P- A;. The jet reactron force 1s
Fy= My~ vo)

as determined in the previous chapter. Thus

- P, L NS
120
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where pQ/g = mass flow rate, and » = Q/A. The reason for the “plus or
minus” in front of the reaction symbol F, is that it cannot be determined in
which direction the net reaction will occur until the particular system in
question is evaluated. If the pressure force is the larger of the two compo-
nents, the net reaction will be to the right. Conversely, if the jet reaction
force is greater, the net reaction will be to the left.

Pipe Bend

The pipe bend shown in Fig. 12-2 is subject to reaction forces due to pres-
sure and momentum phenomena. The flow rate of the fluid in the pipe is @.
According to the principle of flow continuity, the velocity will bev = @/ A.

Summing forces in the y-direction, we determine the following:
1) There is a pressure force: F wp = P1- AL
2) The reaction force due to change in momentum is

Fy; = My(vs — vy),

where M, = vQ/g = Yv1A1/g, v; is calculated from @/4,, and vs = 0
because there is no y-component beyond the bend. Thus

—Fy, = vAw ,
g
“"hel'e the minus sign means that the reaction is opposite in sense to the
direction of flow. However, Fy; represents the reaction of the pipe wall on
the ﬂ‘}id, so that the reaction of the fluid on the pipe wall would have the
Opposite sense. Thus the sum of the forces in the y-direction is

Fy= P4, + vApi/g.

?_incq the bend is symmetrical, the sum of the reaction forces in the z-direc-
1on 1s of the same magnitude. The total reaction on the pipe due to flow
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around the bend will be
Fe=+2F,

where the directton is at 45° to the centerline of the pipe and toward the
“outside” of the bend (Sce Fig 12-3)

Fig. 12-3

Note that the above solution implies no losses. If we consider the
pressure loss which would actually occur, then P; > P; Thus Fy # Fi,
and each of the reactions would have to be calculated independently and
combined afterward.

EXAMPLE

Guven a pipe bend similar to that of Fig 12-2 m which 80 gpm of hydraulic
oil (S; = 0.8) is flowing. The pipe 15 2 in 10 diameter. The pressure at
point 1 is 100 psi, and theie is a head drop of 14.5 ft between pomts 1 and 2
Determine the reaction of the o1l on the pipe bend

Solution,
Step 1. Evaluate the parameters and put into consstent umts-

2) 80 gpm = 80 X 23155 = 308 m’/sce,

_ Q _ 308:n°/sec
b) o= = FTdie et
= 98 in/sec,

where .1 is the eross-sectional ares for a 2-tn diameter,
¢) Pp=Py— Pp =100~ 5= 95psi,
where Py, = 0.433 S;hy, = 0433 X 0.8 X 145 = 5 psy,

d) v = 08 x 00361 Ib/in® = 00293 Ib/in%.



Some further considerations of hydrodynamics 123

Step 2. Calculate the pressure forces:

a) Fp, = 100 X 3.1416 = 314.16 b,
b) Fp, = 95 X 3.1416 = 298.2 Ib.

Step 3. Calculate the hydrodynamic forces:

308 X 0.0293

386 (0 — 98)

Fy= M@z — v;) =
= 2291b = F,,

since the bend is symmetrical and the pipe is of constant cross-sec-
tional area.

Step 4. Sum forces in the z- and y-directions:

a) F, = 298.21b + 2.291b = 300.49 1b
b) F, = 314.16 1b + 2.29 b = 316.45 1b

¢) F, = /300492 + 316.452 = 435 Ib at an angle of 47°44' to
the horizontal.

Fig. 12-4

It is apparent that if the pipe bend is not symmetrical and/or of constant
cross-sectional area, the hydrodynamic forces in the z- and y-directions
will not be the same. As shown in Fig. 124, there will be an z- and a
Y-component of exit velocity. There will also be a change in flow velocity
due _to the change in section. This follows from considerations of flow
continuity:Q = A,y; = Av,. And finally, the pressure forces will not be

:?’mlr)netrical because of the different areas and the pressure drop through
¢ bend,
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Fig. 12-5
The Pure-Fluid Amplifier*

The device illustrated m Fig 12-5 represents a typical momentum-
exchange mechamsm, known as a pureflusd amphfier Based on the
principles of momentum conservation just discussed, this concept has
opened the door to a new area mn control technology The device consists of
a mam or power jet 1ssuing from a central nozzle Two control jets are
positioned at nght angles to the power Jet, one on each side of the power
stream. So long as no control signal (2 jet of flud) 1ssues from either the
nght-hand or left-hand control jet, the main jet issues straight from the
nozzle and exits through the neutral port, N If a control Jet 1ssues from
the left-hand control jet, as shown m Fig 12-6, the main power jet will be
deflected toward the right. If the nght control sends forth a jet, the power
jet wall be deflected toward the left The angle of deflection of the power Jet

Fig. 12-6

:A new ‘t’echnolagy based on this and similar devices 15 evolving It 1s called
Fluidics” and deals with logical control using flurd devices.
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Fig. 12~7. Plastic models of jet-type fluid amplifiers.

isa function of the momenta of the control jets. This type of fluid amp.liﬁer
is called a proportional amplifier, since the main jet deflection i.s plToportlo.nal
to the strength of the control signal. Figure 12-7 shows a jet interaction
type of fluid amplifier molded of clear plastic.

EXAMPLE

The above discussion can be illustrated mathematically as follows:
Step 1. The momentum of the main (power) jet is myvp.

Step 2. The momentum of one control jet is m,, where m = mass
and v = velocity.

Step 3. Then tan § = v,/v,, where

Mele Mplp
Vy = ———— =

1nc+mp’ va—mc‘Fmp-
Step 4. From step 3, it follows that
MeCo
Mplp

tan § =

Step 5. Note that mp = pAdw = pAv>

Step 6. Thus assuming p, = p,, Wwe have

2
tan § — Pedeve
Prd vy
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Step 7. From Torricelli’s equation: v = Cn/2gh, v* = K- P.
Siep 8. Thus the equation for the tangent of the angle of deflection
could be wnitten in the form

tan @ = KP./KPy;

that is, the angle of deflection is that angle whose tangent is the ratio
of the cantrol pressure to the power pressure

The power jet impinges on the spliter between the neutral port and one
of the outlet ports The passages of the outlet ports function as daffusers,
reconverting the kinetic energy of the jet to pressurc energy. The degree
of pressure recovery is indicative of the efficiency of the device. It can be
seen that the greater the deflection of the main jet toward an outlet port,
the greater the amount of energy recovered.

The study of these pure-fld devices is rapidly becoming & branch of
fluid mechanies in 1ts own nght This brief introduction 13 presented here
only to alert the student to the existence of this new field.

Fluids Under Acceleration

Let us recall our definition of a flud as being a substance which cannot
sustain a shear stress under equilibrium conditions Thus, 1f a tank of
hquid is accelerated (sce Fig 12-8), the surface of the liquid will be “trlted”
with respect to the horizontal The angle will be

—-1a
6= tan"'=,

where a is the linear acceleration of the tank and g is the acceleration
due to gravity. The pressure at any point in the fluid being accelerated
vertically 1s given by the following expressions:

Pa = Yh(l -+ a/g)
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when the acceleration is upward, and
P, = 7h(1l — a/g)

when the acceleration is downward.

EXAMPLE

We have a rectangular tank, 3 ft X 10 ft X 4 ft (see Iig. 12-9). It is filled
with water to a depth of 2 ft. The tank is accelerated horizontally at
6 ft/sec2. Compute the total force acting on each end of the tank and show
that the difference between these two forces equals the unbalanced force
needed to accelerate the mass of the liquid.

Solution.
Step 1. tan 6 = a/g = 6/32.2 = 0.1862; 6 = 10°33".

Step 2. The depth of the water at the right end is equal to the original
depth (2 ft) minus the drop in head due to acceleration:

e—h=2ft— (5tan ) = 2 ft — (5 X 0.1862)
= 2 — 0.93 = 1.07 ft.

|
o]

Fig. 12-9

X

i‘_ 10/

Step 3. The depth of the water at the left end is equal to the original
depth plus the rise in head due to the acceleration:

¢+ H =2t + (5tan 0) = 2 ft 1 (5 X 0.1862) = 2.93 ft.

Step 4. The total force on the left end (based on F = P X 4) is
O —Fg= (YH/2)(H - 4) = 62.4 X (2.93/2) X 2.93 X 4 = 1072 Ib.
Step 5. The total force on the right end is

@ —Fy = (vh/2)(h-4) = 62.4 X (1.07/2) X 1.07 X 4 = 144 1b.

Step 6. The force difference equals the unbalanced force necessary to
accelerate the mass of liquid:

8) Py —Fy=M.a, 10721b — 144 1b = 928 Ib.
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2
by AXIXEX R 56— o301,

which checks within shde rule accuracy.

Rotating Body of Fluid

The shape of the surface of a free fluid in & rotating reservorr 1s that of 8
paraboloid of revolution, as shown 1n Fig 12-10  The equation of the
resultant paraboloid 1s
2
y= %Iz

This formula can be verified as follows.
1) On any point mass A in the surface of the flmd at a distance x from the
axis of rotation, there are three forces acting:
a) The weight of the element, 17,
b) The inertia force, (W/g)w?z, which acts radwlly away from the
axs of rotation, and

¢) A resultant force F due to the action of surrounding fluid particles,
which acts normal to the surface at A.

[ WI Fig. 12-10
H
2) These three forces are in equilibrium  Thus

a) Fsing = (W/pwor,
b) Fcosf = 1.

3]

Dividing (a) by (b), we have

tan 6 = zw?/y.
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4) Note that tan 6 is also the slope of the curve at point 4:
A = dy/dx.

5) Thus
T -

6) Whenz = Oand y = 0, then C; = 0. Thusy = »®x?/2g.

The pressure in a closed reservoir will be increased by rotation of the
reservoir. The increase in pressure between a point on the axis of rotation
and a point & units away from the axis is given by

Similarly, the increase in pressure head is
P/y = w??/2g = .

Note that this is the same as the expression developed above.

IMPORTANT TERMS

Reaction force of a fluid on a conductor is the force developed due to the
change in momentum of the fluid stream.

Pure-fluid amplifier is a new class of fluid devices in which relatively large
amounts of energy are controlled by small amounts.

PROBLEMS

12-1 Consider a nozzle similar to that shown in Fig. 12-1. Let the area at
1-1 be 3.1416 in2 and that at 2-2 be 0.7854 in2. The pressure at 1-1 is
75 psi. The fluid is water. Its flow rate is 50 gpm. Determine the magni-
tude and direction of the restraining force required to hold the nozzle in
equilibrium.



130 Soms further considerations of hydrodynamics

12-2 A nozzle with an exit diameter of 1 n. is located at the end of a 2-in,
(diameter) pipe. The pressure in the pipe is 50 a1 1f 1t takes force of 500
Ib to restrain the pipe, what is the flow rate of MIL-5606 through the pipe?

12-3 A nozzle with an euit chameter of 14 1n. 13 located at the end of a 4-tn. pipe
1f 400 gpm of =ea water flow through the system and the restraining force
required to hold the pipe in equilibrium 13 600 Ib, what 13 the pressure in
the pipe?

12-4 Anenfice 2in, 1n duameter is located in the end of a 51 pipe, as shown in
T, 12-11, The pressure in the pipe 1s 100 pa The fluid s glycerne
The flow rate 1s 350 gpm  Caleulate the restramming force required to
mamntain the pipe 1n cquilibrium

Fig. 12-11

12-5 One arm of a rotating lawn sprinkler is shown in Fig 1212 Lach nozzle
is  in. in diameter and the flow rate of the water passing through the
sprinkler is 20 gpm. The tangental velocity at the tip of the sprinkler
arms is 6 ft/see. Determine the net torque due to the nater flow through
the two arms of the sprinkler.

)
2l

Fig. 12-12

12-6 A jet flows through an orifice 1n the side of & tank  Denve the expression
for the reaction produced by the jet on the tank

127 Asswrmng no fnetion (€. = 1), prove that €, = 0% for the Borda
mouthpece discussed 1n Chapter 9.

12-8 The illustration 1n Fig. 12-13 shows a jet pipe, a fluid control device used
1 industry to produce output pressures proportional to a control signat
The jet pipe pivots about & vertical centerline through a small angle 6
As 1t pivots, the jet of fluid issuing from the nozzle at the end of the pipe s
split between the receiver ports in proportion to the angle 8. In the center
positton the jet sphts evenly and both ports 1 and 2 develop the same
output pressure. Assume that the jet pipe has a drameter of 4 1n. and that
the nozzle at its end has a diameter of § 1n The supply pressure to the jet
pipe is 500 psi The fluid is hydraulic oil, and the flow rate 1s 11 gpm.
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Calculate the reaction on the pivot due to the jet. Determine the theoreti-
cal pressure signal in each receiver port when the jet is centered.

Receiver

A J:'—
| Pivot Receiverl ll Fig. 12-13

1 Outlet
Supply port

12-9 Assume that the jet pipe of Problem 12-8 is rotated through an angle such
that the jet splits three parts to port 1 and one part to port 2. The ports
are connected to a hydraulic cylinder with a blank end area of 10 in and a
rod area of 2 in?. What is the maximum force the cylinder can exert if
port 1 is connected to the blank end port?

12-10 A conductor of varying cross section is shown in Fig. 12-14. Demonstrate
that the net reaction force Fr is expressed by the following equation:

Fr = Ao(P2+ pov3) — Ay(P1 -+ p1vd).

Fig. 12-14 Fig. 12-15

12-11 A typical air-breathing jet engine is shown in Fig. 12-15. At section 1-1,
the velocity is flight velocity. The velocity at section 4-4 is exit gas
velocity. Prove that the equation for thrust is
Ft _ “7exitv4 lel

B e—— L,

12-12 The engine of Problem 12-11 is being bench-tested in the laboratory. The
engine consumes air at the rate of 75 Ib/sec and burns 1.0 Ib/sec of fuel.
:I‘he exit gas velocity is 2000 fps. Calculate the static thrust of the engine
if entrance velocity is 1000 fps.

12-13 If the engine of Problem 12-12 is operated at 600 mph in flight, what is the

exit gas velocity required to generate the same thrust as in Problem
12-12?
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12-14 Consider a 90° pipe bend similar to that in Iig 12-2. The pipe is 2m. in
diameter, the flow rate of water 1s 250 gpm. The pressure at section 1-1
15 150 psi. Calculate the reaction on the pipe due to the change in direction
of the flmd.

12-15 A 90° prpe bend has the changing-section configuration shownm Fig 12-4
The small seetion at the mlet is 3 1 10 diameter, which smoothly trans-
forms o & G-in diameter at the outlet section The flurd 1s gasoline, and
the flow rate 1s 400 gpm at an 1nlet pressure of 100 psi. Calculate the
magnitude and direction of the reaction on the pipe due to the change n
the direction of the flud.

12-16 Assume that we have a pipe bend similar 1n specifications to that of
Problem 12-15 except that the bend angle 1s 60° imstead of 90° Calculate
the reaction under these conditions

12-17 A rectangular tank (see Fig 12-8) 15 6 ft lugh, 10 ft long, and 4 it wide
It contains water to a depth of 4 ft If 1t 1s accelerated honzontally at
9 ft/sec?, what 15 the depth of water at each end and the total force on
each end?

12-18 A rectangular open tank 15 earried on a truck The tank 1s 3 ft high,
5 it wide, and 12 ft long. It carries 8 97 gal of hydraulic oil What is the
maximum acceleration to which the truck can be subjected without spilling
any ol?

12-19 A can 10 1n 1 dismeter and 12 1n. lugh 1s filled with turpentine It 15
placed 1n an elevator which accelerates upward at 15 ft/secZ. What s the
pressure on the bottom of the can?

12-20 A cylindrical tank 18 m in diameter and 24 1n. high 1s half-filled with
phosphate ester hydraulic flid  If 1t 1s rotated about 1ts vertical axis, at
what epeed will the fluid reach the top of the tank?

12-21 In the system of Problem 12-20, what will be the maximum pressure?

12-22 An open cylindrieal tank 5 ft high snd 3 £t m diameter 1s filled with water
to a height of 3 ft. At what constant angular velocity can 1t be rotated
without spilling any water?

12-23 A closed cylindrical tank 4 {t high and 2 ft 1 diameter 1s filled with glyc-
erine to a height of 3 ft. It 1s rotated at a speed of 145 rpm. How much of
the bottom of the tank will be uneovered?

12-2¢ A pipe 2 m 1 dameter and 6 ft long 1s filled with ol (S, = 08) and
rotated about an aws perpendicular to the centerline of the pipe at &
speed of 150 rpm (see Fig 12-16). Calculate the pressure on the eap at the
end of the pipe

*5'—‘—-] Fig. 12-16
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CHAPTER 13

Flow of fluid

in pipes

The material covered so far in our discussions has been based, for the mos?
part, on the so-called ideal fluid. Where losses, such as head loss, efc., had
{o be considered, we introduced them as additonal factors in an equation,
for example, Hz, in Bernoulli’s equation. This loss factor made the ideal
situation conform with reality. We can justify our approach on the grounds
that fluid mechanics is to a large extent an empirical science.

The topic of pipe flow, which we are about to discuss, is perhaps one of
{he most empirical areas of fluid mechanies.

e

3

|
j Fig. 13-1

Types of Flow

When fluids flow in conductors, they can flow in one of two modes: (1) lami-

nar flow, (2) turbulent flow. In laminar flow, the fluid moves in parallel

layers, or lamina, as illustrated in Fig. 13-1. The flow streams are parallel

;lli t}(;e fluid moves through the conductor. In turbulent flow, on the other

nd, there are irregular motions. Velocity fluctuations are superimposed
133
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L 7\
Q E‘

v 7
on the mam or average flow, as shown in Fig 13-2  Tius swirhng flow
results i increased losses as energy is dissipated by the mteraction of the
fluid. An interesting way of demonstrating turbulent flow 1s to observe the
smoke column given off by a cigarette or snuffed-out candle The smohe
will rise in & smooth even column for some distance  The column wilt then

break up into a swirling, eddying motion. laminar has changed to tur-
bulent flow

Fig. 13-2

Critical Velocity

The term crafacal velocity is applied to the velocity at which the transition
from laminar to turbulent flow occurs. This transition cannot be pm-
pomnted precisely, as can be seen in Fig. 13-3. Let us suppose that we
observe laminar flow under a given set of conditions. As the flow velouty
increases, as shown in the figure, 1t reaches a critical value above which the
flow will be turbulent. This is called the upper crafical velocity. Agam, let us
suppose that we observe turbulent flow The flow velocity decreases
continuously until it reaches some value below which the flow changes to
laminar flow. This is termed the lower crifical velocity.

The region between the lower and upper eritical velocities is a transi-
tion region The flow conditions and the side of eritical velocity (upper or
lower) from which we are approaching determine whether we will encounter
laminar or turbulent flow in this region,

Tuchulent region. @

Trper
i entieat

'y Lower
entieal

FLamunar flow regron———
"Lamnar fiow region——

_ Fig. 13-3



Flow of fluid in pipes 135

Note that this phenomenon reflects the tendency of all natural systems
to remain just as long as possible in the state in which they currently exist.
Laminar flow tries to remain laminar until it reaches velocity levels which
preclude this possibility ; the same holds true for turbulent flow.

Laminar flow (no control jet) Turbulent, flow
Nozzle Receiver Nozzle Receiver
Control jet Control jet

Fig. 13-4
Flow-Mode Amplifier

In Chapter 12, we discussed the pure-fluid amplifier, a device based on the
momentum exchange between two interacting jets of fluids. There is
flnother class of fluid-control devices based on the phenomenon we have
Just discussed, that is, the change of the flow mode from laminar to turbu-
lent under certain conditions. This flow-mode device, illustrated in Fig.
13-4, is called a turbulence amplifier. When the velocity of the jet issuing
from the nozzle is below the threshold value required for laminar flow, we
!mvc a uniform stream between the nozzle and the receiver. If the velocity
is t9o high or, if a disturbance is introduced (the method used in the
deviee), the flow will switch to turbulent. Figure 13-5 shows a pressure-
recovery curve for a typical amplifier. Under laminar flow conditions the
pressure recovery is & maximum. As the turbulence increases, recovery
lesse'ns until full turbulent flow results in minimum values of pressure at the
Tecewver. In utilizing this device in fluid logic applications, the higher

Receiver <Laminar flow
pressure

in. 1,0

Turbulent {low

Fig. 13-5




136 Flow of fluid in pipes

pressure can be considered to be an “on” signal, and the very low pressure
an “off” signal, A threshold pressure, below which the system with the
amplifier will not work, is set above (dashed line) this lower pressure Thus
the device will provide true on-off switching

Reynolds Number

Because of the large number of varables encountered fx? i)klpe flow systems,
1t is 1mpractical to attempt an analytical solution Current practice uses
empirical metheds to solve pipe flow problems.

Among the more inportant empirical enteria estabhshed for pipe flow
15 the Reynolds number This is the eniterion which tells us whether we will
experience lammnar or turbulent flow

Ny=D2e_ D
» v
where = pipe diameter,

= velocity,

D

v

p = flud density,
= absolute viscosity,
14

= kinematic viscosity

Since the Reynolds number is a dimensionless ratio, all umits must be
consistent in the above expression. The Reynolds numbers relates the
basic flow factors pipe diameter, average velocity of flow in the pipe, and
the viscosity of the flmd.

For pipe flow, it has been determined that average Reynolds-number
values of less than 2000 indicate laminar flow. This corresponds to the
lower entical velocity. When the Reynolds number is above 3000, the flow
will be turbulent. This would correspond to upper critical velocity. Since
s0 many factors such as cntrance conditions, pipe roughness, initial
disturbances, etc., determine the z\ctual state of flurd flow, these values of
Reynolds bers are only app!

This discussion of the Reynolds number has ntroduced a new term,
viscosity, which was not encountered hcrctofore

Viscosity

At the ousact of the study of fluid mechanies, we defined a flind as a sub-
stance which could not sustain a shear stress under cquilibrium conditions
We alwo agreed to approach the early part of our study of fllnd mechanics
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from the point of view of an ideal fluid, in which we ignored losses. We
subsequently included losses in a flowing system as a correction factor, Hy.
Ttishere, in the concept of viscosity, that we face head-on the idea of losses
in fluid flow.

Viscosity is that.property of a fluid by which it offers resistance to shear stresses.

This is not incor ~tent with our definition of fluid, since the conditions
mder which we encounter viscous forces, or shearing forces, are not
equilibrium conditions.

In developing a picture of the nature of viscosity, we must consider
three basic premises:

1) Fluid in contact with a surface has the same velocity as that surface.

2 As we move away from the surface, the rate of change of velocity is
uniform. :

3) The shearing stress in the fluid is proportional to the rate of change of
velocity.

zzzze

These assumptions are illustrated in Fig. 13-6, in which we show two
f{fm‘?"l plateS. Sel?al‘ated by a finite distance. The lower plate is stational.‘y;
Qollnselts Vel,omty is zero. The upper plate moves relative .to the lower with
hui q velocity . f}ccording to the first premise, the velocity of the layer of
of ﬂuliI:i contact with f:he lower plate is zero, while the velocity of tI}e layer
veloci 1(’11 CO_Dta(’:t with the top plate is ». By the secpnd premise, .the

his i Bi’ll istribution between the plates is uniform, that is, a s?ralght. line.
"ecto: llstrate(.i by the triangle in Fig. 13-6: the basec of the triangle is the
trian Ir(il_)resentmg the velocity of the upper plate, v, and the apex of the
gfe 1es at the fixed lower plate where the velocity is zero.
position“;)e take a strip of fluid of incremental width dz at any random
strip will etween the plates, z;, then the velocity at the lowe}' border of the
PWillbe ;. That at the upper boundary of the strip will be v; + Av.

Fig. 13-6
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According to the second assumption, the velocity change will be uniform,
Thus the change in velocity for a change of distance, dz, is dv. By similar
triangles, v/z = dv/dz. The third premise states that the shear stress is
proportional to the rate of change of velocity, dv/dz Thus

T = pdv/dz,

where 7 is shear stress in umts of force per unit area and u 1s the constant
of proportionality. Since v/x = dv/dz, T = w/z, and p = T2/

If the system is adjusted so that the plates are a unit distance apart,
z = 1, and if the upper plate has unit velocity, v =1, then 7 =4
In this case, p is called the absolule or dynamic viscosily

Absolute viscosity is defined os the force required to move a fiat plate of unit

area at ymt distance from a fixed plate with unit relative velocity when the space

between the plates is filled with the fluid whose viscosity is being measured.

Units of absolute viscosity are as follows:

1) In the foot-pound-second system:
T =Ib/ft?, z=1ft, = ft/sec;
_Tz_ (b/ft%) X ft _ 1b-sec
v ft/sec g2
2) In the metric system

7 = dyne/em?, z = em, v = em/sec;

(dyne/em®) X em _ dyne- sec
cm/sec 7 em?

T .
p=T= = poise.
The poise turns out to be a relatively large umt; hence the centipoise 18
generally used. 1 centipoise = 1 poise/100
3) At 68°F (20°C), the experimentally determined value of absolute
viscosity of wafer is one centipoise.
4) Relative viscosity is the ratio of the absolute viscosity of any flud to that
of water at G8°F.

Kinematic Viscosity
The ratio of the absolute viscosity of a fluid to its mass density 1s called the

kz_'ncmulx'c viscosity. The symbol v is generally used to represent kinematic
viscosity: v = u/p.
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Units of kinematic viscosity are as follows:
1) In the foot-pound-second system:

_lb-sec/ft>  ft?

yo ko s/t 1
p 1b-sec?/ftt sec

2) In the metric system:

P 2
g _ dyne-sec/em” _ cm” _ stoke,

¥ = o~ dyne-sec?/cm®  sec
. 1 stoke
1 centistoke = 100

Conversion from English to Metric Systems of Measure

One of the aggravating aspects of fluid mechanics, at least here in the
United States, is the necessity of handling the units of the English system
of measure. When we must convert units from the English to the metric
system, the problems become even more pronounced. Since most sources of
viscosity data give the values in metric units, the following conversion data
will prove useful.

1) Absolute viscosity:

b= Ib - sec - 453.6 gm/lb X 980.665 dynes/gm
ft2 (30.48 cm/ft)?

= 478.8 dyne - sec/cm? (poise) = 47,880 centipoise,

p= lb-sec  453.6 gm/Ib X 980.665 dynes/gm
in2 (2.54 cm/in)?

= 68,948 poise = 6.8948 X 10° centipoise;

2) Kinematic Viscosity:

ft? 2 2
y= 1t = BB em/T _ g5 0390 (ohoke)
sec sec

= 92,903 centistokes.

EXAMPLE

'I}‘wo parallel plates are positioned 4 in. apart in a manner similar to that
S'.lown. n Fig. 13-6. The space is filled with an oil which has an absolute
Viscosity of 3160 x 10~5(Ib - sec)/ft. If the upper plate moves with a
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velocity of 8 ft/sec and the lower one is stationary, what is the shear stress
in the oil?

=gt = 3160 % 1052
z

0.5/12
= 606 Ib/ft2
f Laquid |
sample
[ Constant-
 water |
— bath [}

Fig. 13-7

Viscosity: Saybolt Secands Universal

Because the determunation of absolute viscosity is a matter for the Jabora-
tory, the Amernican Society for Testing Materals has adopted the Saybolt
v imeter for quick determinations of the viscosity of fluids. A schematic
drawing of this device is shown in Fig. 13-7 Basically it consists of 2
temperature-controlled bath into which is placed a sample of the fluid to
be tested. A standard orifice 1s positioned in the bottom of the apparatus.
A sample of 60 cc of the hquid 1s collected, and the time required for 1t to
flow through the metering orifice into the container is measured This time

TABLE 13-1
Viscosity range, SSU
SAE
o, at O°F at 210°F
Minimum Mazimum Mimmum Mazemum

5W - <4,000 - -
10W 6,000 12,000 - -
20W 12,000 48,000 - -
20 - - 45 Less than 58
30 - - 58 Less than 70
40 - - 70 Less than 85

5 - - 85 Less than 110
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is then the measure‘ of the viscosity in Saybolt Seconds Universal, SSU.
The relationship between viscosity and kinematic viscosity is shown below.

1) When (SSU) ¢ < 100 sec: v = 0.226t — 195/t centistokes.
2) Whent > 100 sec: v = 0.220t — 135/t centistokes.

The viscosity numbers tabulated by the Society of Automotive Engineers
(SAE) are related to viscosities given in SSU. SAE viscosity numbers with
a suffix “W” are based on oil viscosities at 0°F. SAE numbers without the
“W?” are based on viscosities at 210°F. Table 13-1 summarizes the SAE-
recommended practice.

Viscosity Index

The change in viscosity with change in temperature is an important char-
acteristic of lubricating oils, hydraulic oils, ete. The viscosity index is an
empirical criterion which represents this fluid characteristic, critical to
equipment which must operate in widely varying temperature environ-
ments, like the machine shown in Fig. 13-8. Oils of low viscosity index
exhibit a large change in viscosity with temperature change. Oils of high
viscosity index exhibit a small change in viscosity with change in temperature.

Fig. 13-8

Typical of a broad market for small construction equipment

is t}xe al_l-hydraulic backhoe shown in the illustration above.
This unit demonstrates, as well as any, one of the major
advantage.s from the geometry of the vehicle or machine. Can
you conceive of transmitting the power to that bucket on the
end of the boom by some other method?
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The formula for caleulating the viscosity index is

L—U
L—H

VI= X 100,

where L = viscosity at 100°F of an oil of zero VI (a reference oil),
which has the same viscosity at 210°F as the sample oil,

U = viscosity of the sample o1l at 100°F; and

H = viscosity at 100°F of an o1l of 100 VI (a reference oil),
which has the same viscostty at 210°F as the sample ol

IMPORTANT TERMS

Laminar flow is fluid flow in which motion proceeds in parallel layers, or
lamina,

Turbulent flow is fluid flow which does not proceed in parallel layers, but
exhibits an irregular intermixing motion.

Critical velocity is that flow velocity at which the mode of fluid flow changes
{from laminar to turbulent, or vice versa

Reynolds number is a dimensionless ratio which 1s the cnitenion determining
the mode of flow that will prevail:

D-v-p D.»

I v

Ng=

Viscosity 18 that property of a fluid by which it resists & shear stress

Absolute viscosity (1) 15 the force required to move a flat plate of umt area at
unit distance from a fixed plate with unit relative velocity when the space
between the plates is filled wath the fluid.

Kinematic viscosity () 1s the ratio of the absolute viscosity to the mass
density of the fluid.

SSU, Saybolt Seconds Universal, 15 an empirical measure of the viscosity of a
fluid,

Viscosity index is an empirical measure indicating the change n viscosity
with change in temperature.



Flow of fluid in pipes 143

PROBLEMS

13-1 What is the kinematic viscosity, in fps units, of hydraulic oil at 70°F?
90°F? 120°F?

13-2 Determine the kinematic viscosity, in metric units, under the conditions
of Problem 13-1.

13-3 The kinematic viscosity of a fluid is 0.3 ft2/sec and the specific gravity is
0.9. Determine the absolute (or dynamic) viscosity.

13-4 A liquid (S, = 1.02) has a dynamic viscosity of 1.70 centipoise. Deter-
mine the dynamic and kinematic viscosities in foot-pound-second units.
What is the kinematic viscosity in stokes?

13-5 The viscosity of water at 68°F is 1.008 X 10~2 poise. What is the absolute
viscosity in foot-pound-second units? Water at 68°F has S, = 0.998.
Caleulate the kinematic viscosity in foot-pound-second units. What is
p in the metric system?

13-6 Convert a viscosity of 480 SSU to kinematic viscosity in foot-pound-
second units.

13-7 Convert a viscosity of 200 SSU to kinematic viscosity.
13-8 Convert 2 viscosity of 75 SSU to kinematic viscosity.
13-9 Sea water flows at 10 gpm in a £-in. pipe. Calculate the Reynolds number.

13-10 Phosphate ester hydraulic fluid flows in a 1-in. pipe at 40 gpm. Determine
the Reynolds number. -Is the flow laminar or turbulent?

13-11 The flow rate of a water-glycol hydraulic fluid is 50 gpm in a 1-in. (diame-
ter) pipe. Will the flow be laminar or turbulent?

13-12 Using a 1-in. pipe, calculate and compare the maximum flow rates for
l'fiminar flow conditions, for each of the basic types of hydraulic fluids
listed in the Appendix.

13-13 'What would be the significance of designing for laminar or turbulent flow
In a fluid power system?

13-14 Two flat plates are parallel to each other as shown in Fig. 13-5. The
plates are 1 in. apart; the top one moves with a velocity of 6 ft/sec, while
the bottom one is stationary. If the space between them is filled with
hydraulic oil at 80°F, what is the shear stress in the oil?

13-15 vao flat parallel plates are % in. apart. They move relative to each other
with a velocity of 10 fps. If the space between them is filled with phosphate
ester, what is the shear stress in the fluid?
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13-16 A vertical cylinder 4 in. in diameter rotates within a fixed sleeve or tube
having an inside diameter of 4.002in The uniform annular space between
the cylinder and sleeve is filled with hydraulic oil at 60°F. What is the
resistance to rotation if the cylinder is 10 in. Jong and rotates at 30 rpm?

13-17 For Problem 13-16, determine the resistance to rotation, given that the
fluid is gasoline instead of hydraulic oil.

13-18 It is desired to select an oil of a viscosity mndex switable for use 1n an ofi-
the-highway truck which will operate in summer and winter What kind
of VI charactenistic would you specify and why?
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Flow of fluids

in pipes (continued)

U

Fig. 14-1

Velocity Distribution in Pipe Flow

In the development of the concept of viscosity in the preceding chapter,
one of the criteria was that the layer, or stratum, of fluid in contact with the
surface had the velocity of the surface. This seems to indicate that when
fluid flows between the walls of a conductor there are layers which have
zero veloeity.,
On the other hand, when we discussed the concept of flow continuity,
Q= Ay, = Ay, velocity appeared as a unique quantity, » fps or ips.
) The two concepts seem incompatible. Actually there is a velocity
distribution across any conductor of fluid. The fluid velocity at the wall <s
zero, The velocity varies in a parabolic manner, as shown in Fig. 14-1,
With maximum velocity occurring at the center of the conductor. The
Velocity used in the flow-continuity relationship is really the average
velocity in the conductor. If laminar flow takes place between two parallel

Plates, the average velocity is two-thirds the maximum velocity occurring
at the center, that is

¥ = 2y,

145
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Fig. 14-2

If the fluid conductor is 2 pipe of circular cross section, the average velocity
is one half the maximum velocity; under laminar flow conditions,

A useful method for visualizing flmd flow in a pipe 1s ilustrated in
Fig 14-2. If flow is lammar, each flud stratum 1s moving parallel to the
others Each stratum, or layer, is moving with a shightly different veloaity
from those adjoining it. We can visualize this fluid motion as a series of
telescoping tubes, each one sliding within the other with a parabole velocity
distribution.

- S
——
Q R
— 9, B
S—
)
a ——7  Fig. 14-3

If the flow is turbulent, the parabolic velocity distribution 1s destroyed.
Turbulence tends to flatten out the velocity distribution curve (Fig, 14-3).
The average velocity can no longer be determined analytically, as it wasin
the laminar case.

The velocity distribution in a curved pipe will be modified by the
radius of curvature and its variation across the pipe section Because we
must conserve momentum and because the tangential velocity is a function
of the mdius, the distribution will look like that shown in Fig 144 A
secondary flow, ealled cirenlation, will be set up, as shown by the large
arrow in the figure. A full discussion of the phenomena is beyond the
scope of this book,

Fig. 14-4
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{
T 7 00707 2 7 Fig. 14-5

Boundary Layer

When we talked about the criteria for defining viscosity, we considered the
fact that the layer of fluid in contact with a surface has the same velocity as
that surface. We noticed in Fig. 14-1 how this affected the velocity profile
in a fluid conductor. The relatively thin layer of fluid in contact with a
surface is called the boundary layer, which is illustrated in Fig. 14-5. The
boundary layer is considered to be the layer of fluid adjacent to the wail of
the conductor in which the velocity is 99% or less of the maximum velocity
of the fluid. This region is shown from A to B in Fig. 14-5. Note that
velocity vectors are numbered 1 through 10. At 0 the fluid velocity is zero;
at 10 the velocity would be equal to maximum. Between 0 and 10 the
distribution is parabolic, and a velocity gradient exists.

[ 1 T T 7
e
— —
o ] l——
. >/ e
b
| | i ’
A B ¢ Fig. 14-6

In laminar pipe flow, as illustrated in Fig. 14-6, fluid flow approaching
the entrance to the pipe has a flat velocity profile, A. As the fluid moves
down the pipe, as at B in Fig. 14-6, the boundary layer effect begins to
Appear and the velocity profile starts to develop. At this point the fluid
Tesembles that shown for turbulent flow in Tig. 14-3. By the time the fluid
reaches C in the conductor the parabolic profile has developed. At this
pomt the flow is said to be “fully developed.” We can see that in order for
the velocity distribution found in the boundary layer to exist, adjacent
layers of fluid must be slipping past each other; that is, shearing of the fluid
must oceur. Since this is related to viscosity of the fluid, it can be seen that
the viscous flow losses incurred in pipe flow occur in the boundary layer.
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Whether or not flow in the boundary layer is laminar or turbulent
depends upon the Reynolds number. It is interesting to note that in flow
past a flat plate, as shown in Fig 147, the initial flow is always laminsr in
the boundary layer. It may undergo a transition to turbulent flow at some
point downstream from the leading edge of the plate. If this occurs, &
discontinuity in the velocity profile 13 evident.

|z s sy A Y N Fig. 14-7

The Reynolds number for a flat plate is given by the expression

Ng, = ”_vx (14-1)
where v = flow velocity,
z = distance from leading edge of the plate, and
¥ = kinematic viscosity.
Boundary-layer flow will be laminar for a Reynolds number up to about

500,000. Under laminar flow conditions the mean drag coefficient can be
approximated by the relationshi

Cs = 1.328/v/Nr. (14-2)

The boundary layer thickness at any distance from the leading edge can be
determined from

A/z = 520/v/Nz, (14-3)
where A == thickness,

z = distance from the leading edge, and
Nr, = Reynolds number at distance z from the leading edge.

If the flow past the plate is turbulent, the drag coefficient equation will
have the form

Cq = 0074/N%2° (14-40)
when the Reynolds number lies between 2 X 10° and 107, or
Ca = 04553/ (logyo N )58 (14-4b)
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when the Reynolds number lies between 10° and 10°. Under turbulent flow
conditions the boundary layer thickness is approximately

Afz = 0.38/N g %2° (14-52)
when the Reynolds number lies between 5 X 10* and 109, or
Alz = 0.22/Ng % 1°7 (14-5b)

when the Reynolds number lies between 10% and 5 X 108,

.

Fig. 14-8

The concept of boundary-layer effect can be extended to shapes other
than flat surfaces. Thus the phenomenon has been an area of intensive
study on the part of aerodynamicists because it is, in large measure,
responsible for aerodynamic drag on aircraft and missiles. Figure 14-8
shows fluid flowing past a cylinder. Note that the streamlines must
separate and pass around the cylinder. A boundary layer will develop along
the surface of the cylinder as the fluid flows past it. At some point around
th? circumference of the cylinder the boundary layer lifts off the surface;
this process is called separation. Many of the aerodynamic drag phenomena
are related to this action.
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In general, the drag exerted on a submerged body by fluid flowing past
it 15 a function of the square of the velocity and the density of the fluid:
d = f(p,v?). A constant of proportionality C; changes this to the
equation

Drag = d = CypAr?/2, (14-6)

where Cz 15 an empirically determined drag coefficient which varies for
each shape, Typical drag coefficients for a flat plate are given in Fig 14-9.

Flow Losses in Pipes

There are five general causes of loss of potential energy by a flowing stream
as it passes through a conductor One of them is considered the major loss;
the other four are minor losses
1) Major Loss
a) Due to viscous-friction (shearing) effects associated with the flow of
fluid through a pipe.
2) Minor Losses
a) Due to the effects of a sudden contraction of cross section of the
pipe
b) Due to a sudden expansion of cross section.
¢) Due to obstructions, such as pipe fittings, valves, etc
d) Due to curves and bends in pipe lines
As a result of a great deal of experimental work on viscous losses in
pipe flow, empirical expressions have been developed for calculating the
magnitude of the losses which could be aniticipated in o given flow system
The general form of these equations is
L
=12 — 4-7
=13 5" (14-7)
where  hy = head loss, in feet or inches,
L = length of conductor, in feet or inches,
D = diameter of pipe, in feet or inches,
v = velocity of flow,
J = a friction factor,

Note that this equation shows that the viscous losses in o pipe are a fune-
tion of the velocity head. Thus flow losses are a function of the square of
the velocity, and f is an empirically determined dimensionless friction
factor. DMany factors go into the determination of f; the major consider-
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ation is whether the flow is laminar or turbulent. Equation (14-7), using
an empirically determined friction factor f, is for turbulent flow and is
called the Darcy-Weisbach formula.

For flow velocities usually encountered in pipe flow, the friction factor
f depends on two factors:

1) The Reynolds number.

2) The geometry or condition of the surface of the conductor.

Fig. 14-10

The condition of the surface can be expressed by a parameter called the
relative roughness, ¢/D. Figure 14-10 illustrates the significance of this
parameter, which may be thought of as the ratio between the height of the
surface irregularities, €, which is called the absolute roughness, and the
diameter of the pipe.

It has been demonstrated experimentally that for laminar flows,
le, Reynolds number less than 2000, f = 64/Ng. The expression for
viscous losses then becomes

== L v (14-8)

¥n this form, Eq. (14-8) is known as the Hagan-Poiseville formula, which
indicates that for laminar flow, viscous losses are independent of surface
Toughness. Thus pipes of different surface conditions have the same losses
for the same Reynolds number. The chart of Fig. 14-11 provides a means
for egtimating friction factors for flows at various Reynolds numbers as a
function of relative roughness. The data presented in Fig. 14-12 describe
ﬂbsol.ute and relative roughness information for various types of com-
mercial pipe,

A number of empirical formulas for calculating friction factors have
been proposed:

1) Tor turbulent flow in smooth and rough pipes:

f=8ro/pr?, 74 = shear stress at pipe wall.
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Fig. 14-12, [From L. F. Moody, “Friction Factors for Pipe Flow,”
ASME Trans. 66, 8 (Nov. 1944) ]
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2) The Blasius equation for smooth pipes with Reynolds numbers between
3000 and 100,000: f = 0.316/N%%.

3) For smooth pipes at Reynolds numbers up to 3,000,000:
1
— = 2log (Nrv/7) — 08.
Vi
4) For rough pipes:
1
210g + 1.74.
V7
5) Colebrook equation for all pipes:

%f= *21°g[37d+155\1[}

EXAMPLE

A hydraulic oil with a specific gravity of 0,95 flows through a horizontal
commercial steel pipe 2 in. in diameter It is delivered by a pump at the
rate of 3960 gpm. The temperature is 120°F, Calculate the pressure drop
per 100 ft of pipe.

Solution.

Step 1. From Eq. (14-2) or (14-3) we can determine the parameters
necessary to make this caleulation These are: Reynolds number,
flow veloaity (average), length of pipe, diameter of pipe.

All of the above must be expressed in consistent units

Step 2. Reynolds number,

we="2,
_ 8 _ 3960 gal/min X 231in®/gal _
VAT TaDAnE X 60 sec/min = 4870 1ws,
D=2in v = 169 X 1072 (from fluid data) ft2/sec;
Np = 4870 m/sec X 2in

1.69 X 102 fti/sec
This does not check out dimensionally.

Np = [(4870 in/sec)/12 in/ft] X [2 in/(12 in/ft)]
B 1.60 X 10-2 ft2/sec

This expression docs check out dimensionally.

= 4000.
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Step 3. Since the Reynolds number is over 3000 (upper critical ve-
Jocity), we know that we will have turbulent flow. We must, there-
fore, determine a friction factor for use in the Darcy-Weisbach
equation.

a) From the data of Fig. 14-12, we know that the relative roughness
is about 0.0009.

b) From the chart of Fig. 14-11, we can determine that for a relative
roughness of 0.0009 and a Reynolds number of 4000, the friction
factor f is 0.04.

2 2
2 100 £t (4870/12)
37 = 00 X S5 X 5033 fi Jsec?

= 61,500 ft of head/100 ft of pipe.

Step 4. hy = f%

Step 5. p = 0.433 S,h = 0.433 X 0.95 X 61,500 = 2560 psi drop.

Fig. 14-13
Conductors of Noncircular Cross Section

The above discussions on pipe flow have assumed a uniform circular cross
section for the flow conductor. In some instances, the cross section for the
flow conductor is nonuniform and /or noncircular in section. The parameter
used to define the configuration of the noncircular conductor is called the
hydraulic radius, This parameter depends, in turn, on one called the
welled perimeter, which is the line of intersection of the wetted surface of a
tonductor and a cross-sectional plane, as shown in Fig. 14-13. The
hydraulie radius is then defined as

R, = 2rea of the cross section
wetted perimeter

In terms of the hydraulic radius, the Reynolds number is expressed by

Np = @. (14-9)
For'a pipe flowing full, the wetted perimeter is 7d, and the hydraulic
radius i /4, ‘
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IMPORTANT TERMS

Velocity profile is a plot of the variation in velocity across the section of a
fluid conductor.

Average velocity is the mathematical average of all velocity vectors across
the section of the conductor; it is the velocity implied in the continuity of
flow equation

Boundary layer is the layer of fluid in contact with the surface of a conductor
such that the velocity in the Iayer is 99%, or less, of the maximum velocity
in the flowing stream,

Drag 15 the force exerted on an immersed body by a fluid flowing past it, by
virtue of the viscous shear effects of the fluid.

Flow losses are those losses of potential energy (head loss or pressure drop)
resulting from the properties of flowing fluids and their interaction with the
conducting system.

Darcy-Weisbach formula (or equation) is an empirically determued
expression for calculating approximately the loss in potential energy.

Hagen-Poiseville equation is an empirical equation similar to the Darcy-
Weisbach one, except that it is used to ealculate losses for lammnar flow
conditions. (The Hagen-Poiseville equation can be analytically derived.)

Absolute roughness, €, is the actual height of roughness projections on the
surface of a pipe wall.

Relative roughness is the ratio of the absolut h to the diameter of
the pipe. It is dimensionless

Wetted perimeter is the length of the line of intersection of the cross section
of the conductor and the wetted surface.

Hydraulic radius is the ratio of the cro: tional area of the conductor and
the wetted perimeter.

PROBLEMS

14-1 If laminar flow occurs between two flat parallel plates at an average flow
velocity of 20 fps, what is the maximum velocity?

14-2 :I'he maximum flow velocity in a 1-in pipe in which lammar flow exsts
is 25fps. Determine the flow rate of hiquid in the pipe If flow were
turbulent, would you be able to answer this question?
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14-3 Two-dimensional laminar flow exists between two fixed flat parallel
plates spaced 8 in. apart. The maximum velocity is 30 fps. If the fluid is
water, what is the pressure drop in the direction of flow for a length of 50 ft?

14-4 A flat plate 2 ft X 17 ft moves through water with a velocity of 35 fps.
Caleulate the drag on the plate.

14~5 The drag on a flat plate 4 ft X 32 ft moving through water in a direction
parallel to its length is found to be 2000 1Ib. Calculate the velocity.

14-6 The plate of Problem 14-5 is moving through water at a velocity of 5 fps.
Assuming that the boundary-layer flow is initially laminar, calculate the
point at which the transition to turbulent flow takes place.

14-7 In the system of Problem 14-6, what is the thickness of the boundary
layer at the point calculated?

14-8 Calculate the drag on the plate of Problem 14-6.

14-9 Calculate the critical velocity (lower) for hydraulic oil flowing through
(8) & 3-in. pipe; (b) a Z-in. pipe; (c) a 1-in. pipe; (d) a 2-in. pipe; (e) 4-in.
tubing; (f) 2-in. tubing; (g) 1-in. tubing.

14-10 To ensure laminar flow conditions, what size pipe must be used to transfer
50 gpm of phosphate ester fluid?

14-11 A rule of thumb of fluid power practice says to keep flow velocity to a
maximum of 4-5 fps in the suction line of a pump, and about 20-25 fps
in the discharge line. For water-in-oil emulsion fluid, calculate the pipe
size required to ensure laminar flow in each line. If a pipe of the same
size were used for both suction and discharge lines, would the flow remain
laminar in the discharge pipe?

14-12 Caleulate the friction factors for the conductors of Problem 14-9.

14-13 Hydraulic oil at 100°F flows through a 1-in. pipe at a rate of 40 gpm.
Calculate the head loss per 100 ft of pipe.

14-14 A cast iron pipe 6 in. in diameter carries water (60°F) at a rate of 800 gpm.
Caleulate the head loss in 1000 ft of the pipe.

14-15 Water flows through a 400-ft length of 14-in. commercial steel pipe at a
rate of 65 gpm. The downstream end of the pipe is 75 ft higher than the
upstream end. Calculate the pressure difference between inlet and outlet.

14-16 A 12-in. steel pipe conducts water to a standpipe (water tower) in a
municipal water system. The vertical height to the bottom of the storage
tank is 120 ft. Determine the horsepower required to pump in water
atla rate of 3000 gpm. If the pump is 70% efficient, what must be the
drive-motor horsepower rating?

W17 pil lines at an unloading dock are steel pipes 8 in. in diameter. Fuel oil
18 loaded into tankers at a flow rate of 1200 gpm. The distance from the
storage tanks to the side of the tanker is 3000 ft. The vertical lift to deck
level is 50 ft. If the pumps are located at the storage tanks, what pumping
horsepower would be required ? .
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14-18 Ballast tanks on a submarine are located 50 ft apart at the same level
in the hull. To trim the ship, sea water transfer pumps are located at each
tank to transfer water from one to the other. If the subrarine is listing
15° to port, what horsepower would be required to transfer 1000 gpm
through a 6-in steel tube to the starboard tank?

14-19 A fluid power pump delivers 100 gpm muneral-base hydraulic oil (120°F)
through a 2-in. commercial pipe 75 ft long. What 1s the pressure drop
through the pipe? What is the rate of heat generation?

14~20 Caleulate the head loss for hydraulic ol (100°F) flowing through a -
commercial steel pipe (a) at the lower cntical velocity, (b) at the upper
enitical veloeity. What is the percentage difference between the two?
Discuss the smignificance of this difference relative to pressure drop and
heat generation mn a flud-power system.



CHAPTER 15

Flow losses

in pipes

Pipe Flow Losses

In Chapter 14, we described five sources of loss in potential energy in a
fluid system. These losses show up as head losses or pressure drops, which
ﬂre.the two methods of expressing the same potential energy loss. The
Tnajor loss is due to viscous shear effects as the fluid flows through the
Pipe and can be calculated by the Darcy-Weisbach or Hagen-Poiseville
tquation. A modification of the Reynolds-number formula allows us to
Use the parameters in the dimensional units in which they are most often
tncountered. This is

Np= E}”—Q, (15-1)
where

v = velocity, ft/sec,
D = pipe diameter, in.,
v = kinematic viscosity, centistokes.

A modification of the Darcy-Weisbach equation gives the loss directly in
Pressure drop, psi, rather than in feet of head loss. In fluid power systems
159
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the p! drop is more meaningful than the head loss. This modifica-
tion is

P = 00808/ 5 v*S, psi,

where J = friction factor,
L = length of conductor (ft),
D = diameter of conductor (in.),
v = average velocity of flow (fps),
8, = specific gravity of fluid.

—_
i

1
1 Fig. 15-1

2

Minor Losses

The loss due to the sudden enlargement of a pipe cross section is shown in
Fig. 15-1. When there is such & sudden enlargement, the fluid, because of
its cannot diately make the sudden change in direction
needed for the larger pipe diameter to be filled. Thus turbulence is devel~
oped in the “corners” of the enlarged section. It can be shown that in this
case the head loss is a function of the velocity head:

2 2
= (ﬁf 1) 2 (15-9)

The loss due to a sudden reduction of a cross section (Fig. 15-2) can be
expressed a3

hy = K’i (15-4)

s 2
Remember that in Chapter 9 we indicated that a standard short tube
behaved in a manner similar to the entrance to a pipe. The value of the
constant K depends on the ratio of the pipe diameter at the large section
to that at the small section. The K-values are empirically determined. We
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Fig. 15-2

1

list below several typical values of K for a number of ratios of d;/ds:

di/dy 4 35 30 25 20 15 125 11 10
K 045 043 042 037 028 019 010 O

Losses in pipe fittings, bends, etc., may also be expressed in the general
form hy = K(»2/2g). That is, the loss is a function of the velocity head.
Values of X are empirically determined for the particular device under
consideration. (The reader is also referred to the loss and flow calculations
for various flow control devices given in Chapter 9.) Table 15-1 gives
typical values of K for a number of such devices.

TABLE 15-1

Flow device K Flow device K
Globe valve, wide open 10.0 Return bend 2.2
Angle valve, wide open 5.0 standard tee 1.8
Gate valve, wide open 0.19 standard elbow 0.9
Gate valve, 1 closed 1.15 medium sweep elbow 0.75
Gate valve, 1 closed 5.6 long sweep elbow 0.60
Gate valve, £ closed 24.0 45° elbow 0.42

Equivalent Length

The expression for head loss in a pipe due to fluid friction contains .the
length of the conductor as one of the parameters. It would be convenient

We could express all components in the conducting system in terms of
Ie“f?’th; the results obtained could then be used directly in the Darcy-

\ ellsh ach or Hagen-Poiseville equation. This is essentially what equivalent
€nglh is,
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Fig. 15-3

Let us consider a flow device, such as a valve of a given size, See
Fig. 15-3(a) A pressure gage is inserted at point 1 1n the inlet to the valve,
and a sccond one is placed at point 2 at the outlet. When a flud flows
through the valve, a pressure drop will be evidenced by the difference i
readings between the two pressure gages Now let us suppose that we have
» length of pipe of the same nominal size as the valve. See Fig 15-3(b).
At point 1%, just opposite point 1 in Fig 15-3{a), we insert a pressure gage.
Suppose that we take a second pressure gage and insert 1t anywhere along
the length of the pipe beyond point 2. We will find some point 2’ in the
pipe where the reading of the second gage will be the same as that down-
stream from the velve. Thus the pressure drop through that length of pipe
between points 17 and 2 will be the same as the pressure drop across the
valve, The distance between points 1’ and 2, L, is the equivalent length
of the valve in Fig. 15-3(a). If the equivalent length 15 substituted in the
Darcy-Weisbach formula, the head loss calculated would be the same a3
that which we would observe across the valve. As a practical matter, of
course, we cannot go the route of trying to find experimentally the pipe
length which will yield a pressure drop equal to that of & flow device.
However, the following expression, based on empirically determined

lent

constants or K-factors, can be used to calculate an approximate cqf
length:

L= %D if Dis in feet, (15-52)
or

L, = lf\- % if D is in inches. (15-5b)

Note that the friction factor, which was previously discussed in reference
to the Darcy-Weisbach cquation, as well as the pipe diameter and the
K-factor, is part of this expression.
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EXAMPLE

Assuming that a hydraulic oil of specific gravity 0.95 flows through a
2-n. steel pipe at a rate of 66 gpm, determine the equivalent length for a
globe valve placed in the line.

Solution.

Step 1. From Eq. (15-5), that is, L, = K/f X D/12, we know that
to evaluate the equivalent length, we must find the K-factor, the
friction factor, and the diameter.

Step 2. From Fig. 15-3, we see that the K-factor for a globe valve is
10 when the valve is wide open.

Step 3. Let us find the friction factor f:

3 Np= D _ 405 X 2/12

> = T.60 x 102 — 4000;

thus the flow is turbulent.

b) From Fig. 14-12, the relative roughness for the commercial steel
pipe is 0.0009 = e¢/D.

¢) From Fig. 14-11, we determine that the friction factor is about

0.04 for a Reynolds number of 4000 and a relative roughness of
0.0009.

d) Thus

L. = (10/0.04) x & = 41.6 ft.

Fig. 15-4

Flow In Branched-Pipe Systems

Cfo‘l‘],mder a simple parallel pipe system, such as that shown in Fig. 15-4.
poin: ;)Iace 2 pressure gage in the system at point 1 and another gage at
acrogs ;’dthe bressure difference, P, — P, will represent the pressure drop
impc;rt 1€ system. The drop will be a function of thsa flow rate Q. More
ra hant, note that the same pressure drop will be imposed across poth

nehes of the parallel piping system; that is, the potential energy differ-
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ence across branch 1 will be the same as the potential energy difference
across branch 2 We have here a situation which is analogous to a parallel
electrical circwit, If we impose a certain potential difference across such an
electrical circuit, a current will flow through each branch as a function of
the resistances of the branches In the case of fluids we have, 1n effect, a
potential difference existing across the fluid cireuit. Because of the resist-
ance of the conductors in the piping circuit to fluid flow, a certain flow rate,
@y, will pass through branch 1, and a second flow rate, Q;, will exist in the
other branch The total flow into the branched errcuit must be equal to the
total outflow, thus @ = @, -+ @2 From our discussions of orifice flow and
flow through orifice-like devices, we remember that the general form of the
flow equation is @ = AK¢v/AP, where Ky = 4/2g/7 Since the flow rate
is a funetion of the physical parameters of the system and the square root
of the pressure difference, we have

Q= A1KoVAP;,  and @ = ApKgVAP,.

But APy = AP,. Solving the above ex for AP and empl
flow-continuity principles and Eq. (15-2), we obtain the following expres-
ston for pressure drop across the parallel network:

ANGd: Y 2
=] —FF—"— AP = ¢ v,
‘ <A1\/ ¢2 -+ A2V ¢1> ‘
where
#1 = 00808 21 1S, 6= 00308 1’;—:fzs,. (15-6)

To solve for the individual branch flows, it therefore becomes necessary to
know the parameters of the two branches, calculate the pressure drop, and
Tesort to one of the expresslons utilizing pressure drop to compute flow rate.
When thisis a pted an diate problem will become evident. The
Reynolds number must be caleulated, but we do not know the flow veloeity.
Since the Reynolds number is a dimensionless ratio expressing the relation-
ship of a number of factors related to flnd flow, there ought to be other
such ratios which could be found by dimensional analysis, There are two
such useful ratios: one does not involve the velocity, and the other does not
use the diameter. The first is

5= QD (5 o

The second is

_ @@p/moh's _
2 -

% 8xiYs, (15-8)
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Note that the quantity of p/L is equal to the pressure gradient or the
change in pressure per unit length of pipe. To utilize these expressions,
we must plot sets of curves of constant .S or T as a function of Nz and f.
Then S or T for the pipe system at hand can be calculated, and a corre-
sponding N can be determined from the above curves.

In general, the procedure for solving branched-pipe flow systems
requires the writing of the necessary number of simultaneous equations or
employing empirically determined modifications of the Darcy-Weisbach
equation in which the coefficient depends upon only relative roughness of
the pipe. Several such formulas have been devised by Manning, Schoder,
Scobey, Hazen-Williams, etc., and will be found in the more detailed
literature on pipe-flow systems.

IMPORTANT TERMS

Major loss in a pipe-flow system is that due to viscous-friction effects
because of the flow of the fluid through the pipe.

Minor losses in a pipe system are those due to sudden enlargement or
reduction in cross section, and to bends, elbows, and fittings, ete.

Kvolve i the experimentally determined constant of proportionality
between the head loss in a fluid system and the velocity head.

Equivalent length of a fitting, valve, bend, or other device contributing to

0w losses is the length of a piece of pipe of the same nominal size which,
under the same flow conditions, would have the same head loss or pressure
loss as that observed in the flow-resisting device.

Branched pipe is g piping system consisting of one pipe split into two or more
Parallel branches through which the fluid can flow.

PROBLEMS
15-1 What is the head logs through a 2-in. 90° ell when water flows through it
at a rate of 200 gpm?
15 .
2 What is the head loss through a 1-in. angle valve at a flow rate of 60 gpm?

I
58 Caleulate the head loss through a standard 13-in. tee at a flow rate
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15-4 A conductor of drameter D1 = 2in, is connected to & reservoir wall as
shown in Fig. 15-5 The conductor expands to a diameter of D = 4in.
Ly = 1504t, Ly = 100ft. Water flows out of the reservoir at a rate of
250 gpm. (a) Caleulate the entrance loss to the 2-in, commercial pipe.
(b) Calculate the loss due to sudden expansion of the conductor. (c)
Calculate the pressure drop through the system.

Fig. 15-5

15-5 If Dy = lin, D2 = 3in., and Q@ = 60 gpm mn Frg. 15-5, what 1s the loss
due to sudden enl: ? What is the Toss?

15-6 What would be the entrance loss and loss due to sudden eontracton of the
conductor in Fig. 15-5if Dy = 4in., D2 = 2in,, and @ = 200 gpm?

15-7 A globe valve is placed in a 100-ft run of 1-in. commercial steel pipe of
standard weight Water flows through at a rate of 55 gpm, What s the
equivalent length of the pipe and valve? What 1s the head loss?

15-8 A pipe run consists of 20 ft of $-in. commercial steel pipe, a 45° elbow,
a 40-ft run of -in. pipe, another 45° elbow, & half-open gate valve, and
10 {t of $-in. pipe. What are the equivalent length and the pressure drop
1 the run if hydraulic oil flows through it at a rate of 35 gpm?

15-9 In Problem 15-8, how much horsepower would be required to compensate
for the loss? How many Btu (heat) would be generated?

1510 A 6-in. steel pape hine in an oil tank farm is 500 {t long It contains three
90° elbows, two tees, two 45° elbows and two half-closed gate valves The
flow rate 15 1000 gpm  Determine the pumping horsepower required to
move the o1l through the line. How many Btu/min are generated? Where
does this heat go?

15-11 If the pump of Problem 15-10 is 80% efficient, what size drive motor
s reqoired?

15-12 A compound pipe system is made up of 1000 ft of 2-in steel pipe and 3000
ft of 4-in steel pipe in series. The fluid is water. Its flow rate is 250 gpm.
Calculate the pressure drop across the 4000 ft of the system,

15-13 A compound piping system 1s made up of 1500 ft of 2-n. cast wron pipe
with a standard tee and contains a wide-open globe valve This system
is connected in series with 2000 ft of 3-1n. cast 1ron pipe (two 45° elbows}
and 4000 ft of 4-in. pipe with a standard tee and another globe valve.
Q = 100 gpm of water. Calculate the head loss across the entire system.
What would be the pumping horsepower required to overcome these
losses? How many Btu/min (heat units) would be generated?
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15-14 Consider a branched-pipe system like that shown in Fig. 15-4. If each
branch in the parallel circuit consists of 20 ft of -in. steel tube, what is
the pressure drop across the system for hydraulic oil flowing at a rate of
18 gpm? Inlet and outlet conductors are made of $-in. steel tubing.

15-15 The Hagen-Williams formula is frequently used to solve pipe flow prob-
lems. It is expressed as

v = 1.318C R0-6380-54

where v = flow velocity, fps,
R = hydraulic radius,
S = slope of the hydraulic gradient (piezometric line),
C1 = Hagen-Williams coefficient of relative roughness.

1t can be seen that the solution is not a simple one; this is why most of
the parameters are tabulated in handbooks for simplified calculations.
Assume that we have 1000 ft of 8-in. pipe. From the tables given in
handbooks we find that C; = 100. A head loss of 481t is observed.
Calculate the flow rate through the pipe.



CHAPTER 16

An example illustrating the
calculation of pipe losses

_“ r_«,r r—zo’——’l 6 diameter

5’7 diameter
o ff (=
— 1

Reservoir ¥ ( 457 ells
J i I
— £ ], [+ Tee

J To reservorr
b1 (379

Fig. 161
Sample Fluid Power Circuit

Figure 16-1 illustrates a typical flad power circuit for which calculations of
pressure loss will be made. The positive-displacement gear pump is
frequently used 1n fluid power applications, The pump is driven by a 15-hp
electric motor and has an overall efficiency of 75%. The discharge pressure
of the pump is 1000 psi. Oil of 2 viscosity of 110 centistokes at 120°F
{S; = 0.88) is being used in the system, We procced as follows.

Step 1. Since the prime mover is a 15-hp electric motor and the pump

is 756% efficient, the hydraulic horsepower delivered to the system

equals 15 X 0.75 = 11.25 hp.

168
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Step 2. Next we determine the flow rate. From Eq. 4-2 for hydraulic
horsepower, we obtain

bp = PQ/1714,
0= 1714hp,/P = 1714 X (11.25/1000) = 19.3 gpm.

Step 3. From the principle of flow continuity, @ = Av or v = Q/A4,
we have
(gpm) (in®/gal) 19.3 X 231

! = T/t (sec/min) (nF) — 12X 60 X 177 — 502 fb/sec.

Step 4. Next we determine Reynolds number:
Np="T77409D/v = 7740 X 38.32 X (1.5/110) = 350,

Thus the flow will be laminar.

Step 5. We see that the flow will be laminar since Reynolds number
falls below the critical value of 2000. With laminar flow, the friction
factor f = 64/Np = 64/350 = 0.183.

Weshould mention at this point that it has been common practice in fluid
power technology to try to keep flow velocities in the inlet lines to pumps to
amaximum of 4 or 5 ft/sec, because it is desirable to maintain laminar flow
I the suction or inlet to the pump.

Step 6. Our next step is the calculation of losses. We begin with the
losses on the suction line, and we determine first the equivalent lengths
of the various parts of the line.

8) Suction line:

1) Pipe entrance loss:

2) 90° elbow:

ST 5= Gig3 1g = 0615t X 2 = 1.33ft.

8) Straight pipe. The equivalent length of pipe is, of course,
the actual length: 1 4- 2 - 3 = 6 ft.

4) The total equivalent length of the suction line is the sum of (1)
through (3)

Le=0342 4 133 4 6 = 7.672 .
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5) Pressure drop:

2
P,—OOSOSfL 2S 00808>(7672X(3§2) X 088 X 0.183
= 0.735 psi;
ky = 2.32P;/8, = 2.32 X 0.735/0.88 = 1.94 ft of head

6) It may be interesting to write Bernoulli’s equation from the
reservoir to the inlet port of the pump to determine the actual
pressure at the inlet:

2
Beprm=fen +H;+HL,
0+0+0= P2/7+ l1+2ﬂ;+ 1.04 ft,
Poft = —14.94ft, Py = —5.17 psi.

This brings out another aspect of fluid power practice The distance
through which the fluid is raised, as well as the flow veloeity in the pipe, is
limited If the suction head (distance through which we try to raise the
fluid plus the velocity head plus the head loss in the pipe) is high enough to
reduce the suction pressure below the vapor pressure of the fluid or to a
level where dissolved gases come out of solution, then a phenomenon known
as camialion can result. This is very damaging to pumps.
b) The calculations of losses for the other sections of the line in the
circuit are made in a manner sumilar to that shown for the suction hne.
The reader should proceed with these calculations and complete the
problem on his own,
¢) Losses in direction control valves. Fluid power control valving,
such as the direction-control (or circuit-switching) valve shown in
Fig 16-1, consists of devices having complex flow paths In some
simpler cases, the relationships of Chapter 9 may be used to approxi-
mate the losses through valves, ete. For more complex components,
the manufacturer must furnish information on AP versus Q For
tic valves, as with hydraulic valves, it
frequently specify a C, factor such that Q@ = f(C,, \/- ) In enher
case, the pressure drop across the valve is determined as a function of
flow rate through it and contributes to the total Josses (or drops) in
the system.

tractod

Another important consideration is the action of the ram (cyhnder
with large-diameter rod) used in the circuit, As shown in Fig 16-2, 2
differential area exists across the piston from the blank end (no piston rod}
to the rod end. Thus when oil is ported to the blank end at the rate of
18 3 gpm, as previously calculated, the return flow of oil from the rod end is
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relatively small; that is, the return flow equals the area ratio times the
incoming flow rate, or (8.7/28.3) X 19.3 = 5.92 gpm. If the pipe lines
running to both the blank and rod ends of the cylinder are of the same size,
then the flow velocity in the return line is only about one-third that in the
inlet line. The flow losses would be about one-ninth as great.

Blankend . . ... _..Rodend

i

‘| 4p=28.27 in2 A;=19.64 in2

- : Fig. 16-2

On the other hand, when the direction control valve is switched so as
to reverse the direction of flow, the 28.3 gpm is then ported to the rod end.
Thus the fluid enters the smaller volume at the same rate at which it
entered the larger volume on the blank end. The rate at which the return
fluid is displaced from the blank end under these conditions is again a
function of the area ratio, in this case, however, it is the inverse area ratio.
The return flow rate will now be (28.3/8.7) X 19.3 = 63 gpm. The flow
velocity in the return line will be three times the velocity of the flow from
the pump, and the losses will be about nine times as great.

Branch Lines

a? The lines leading from the direction control valve to the rams are £.in.
pipes. They branch into two parallel lines where the tee is inserted to route
oil to each of the rams.

b) Branching equations have been developed which show that the velocity

in one branch can be calculated on the basis of the parameters of the
system. Thus

— V- Lz <A _ v- Ll <A
(AZLi/4y) + LAy P27 (A3La/A) + Lids

where quantities with subscript 1 refer to branch 1; those with subscript 2,

to branch 2; and those with no subscript refer to the inlet or feeder line to
the branches,

1 H (16—1)

c? If the pipe sizes are the same, as is usually the case in fluid power
Glreutts, then 4 = A, = A,. In this case, the expressions in (b) reduce to

o=-2l2_ _ oLy 16-2
L1+L2 vz—Ll—i—Lg ( )
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d) We must caleulate the flow velocity in the pipe as follows-

¥ = 13 (n/ft) X 60 (scc/min) % 043 in?

€) Once we have determined the flow velocity we can calculate Reynolds

19 3 (zpm) % 231 (in®/gal)

= 141fps.

number:

Np=T77140 X 141 X (0.75/110) = 742, lamnar flow exists

f) Next we can caleulate the friction factor

f = 04/Np = 64/742 = 0086

g) In order to proceed with the analysis of the losses n the cirewit, we
must determine the equivalent lengths of each of the branches, Before
we can do this, flow velocities and Reynolds number must be determined for

each branch

1) We can use Eq. (16-2) to calculate the flow velocity:

2

3

p-2

= 0X 14.1

_4x141
10 =

10

n = 846 fps, vy = 561 fps

Next we calculate Reynolds number for each branch.

Np = 7740 X 846 X 075
B 1i0
I 7740 X 5.64 X 0.75

Bm=—— = 298; laminar flow exists.

= 446, lamnar flow exists;

We can calculate the equivalent length of Branch 1
Step 1, Caleulate the friction factor:

f = 04/Np = 64/446 = 0.143,

Step 2. Calculate equivalent length of the 45° elbows

042 X 075
0143 X 12

= 0.1835 X 2 = 0367 ft.

K =042, L,= (K/f)-(D/12) =

Step 3. An equivalent length for the exit loss is calculated next’

K=t L= 1X07

=03 x1Z— 0437 ft.
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Step 4. The equivalent length of the straight pipe is the same as the
actual length of pipe:

L = 41t

Step 5. The total equivalent length is the sum of the equivalent
lengths calculated above:

4 4+ 0.367 + 0.437 = 4.804 ft.

We can calculate the equivalent length of Branch 2.

Step 1. Calculate the friction factor:

f= 64/208 = 0.214

Step 2. Calculate equivalent length of the 90° elbows:

_ 1.8 X075

K=18 Lo=g5iix1s

= 0.526 ft.

Step 3. An equivalent length for the exit loss is calculated next:

K=1 1, - LX05

Step 4. The equivalent length of the straight pipe is the same as the
actual length of pipe:

L =6 ft.

Step 5. The total equivalent length is the sum of the equivalent
lengths calculated above:

e = 6+ 0.526 - 0.292 = 6.818.

5) It is important, to note that the equivalent lengths we have just

caloulated will have an affect on the actual flow velocities. We must

recajlculate flow velocities using Eq. (16-2) but substituting the
tquivalent lengths of each branch for the actual lengths used previously.

(@) The flow velocity in branch 1 can be calculated using Eq.
(16-2) and the equivalent length of branch 1:

o = S8I8X 14.1

L6 — 8.25 fps.
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(b) The flow velocity for branch 2 can be calculated using Eq.
(16-2) and the equivalent length of branch 2:

4.802 X 14.1

V2 = —7d02 = 582 fps

(c) Next we must determine Reynolds number for the branches
using the revised flow velocities ealeulated above

Ng, = ZEOX%?OAS = 835; lamnar flow exists;

Np, = M}i?fOLW 307; laminar flow exists.

{d) We can calculate the friction factor for each of the branches
of the circuit:

J1 = 64/835 = 00767,
f2 = 64/307 = 0200.

6) We can calculate the pressure drop in the branched circuit using the
branching equations.
(a) The first step is to determine the value of ¢, for branch 1 and
¢2 for branch 2:

_ Li, o _ 4802
1 = 00808 L /15, = 0.0808 X 5 X 00767 X 0.88
= 0.0349,
6818
¢ = 00808 2 X f2 X 85 = 00808 X 55 X 0209 X 088

= 0135.

(b) Using the velues for ¢, and ¢2 we can caleulate ¢, for the
branched cireuit:

_[_#1¢s T _ 00340 x 0.135) _
$e= [m -+ ¢z] = [0 0320 + 0 135] = 0.0168.

(¢} Then py = ¢; X v = 00168 X 14.1 = 0237 psi

The techniques discussed in this chapter are applcable to pipe flow
systems in general As has been previously indicated 1n this book, much
of the application of the principles of fluid mechanics to actual practice is
empirical; that is, it is based on experimentally verified equations and
constants evaluated by tests One of the reasons for this is the large
number of variables encountered in even the most elementary systems,



An example illustrating the calculation of pipe losses 175

which places an exhaustive dissertation on pipe flow beyond the scope of
this text. The reader who desires more detailed information is referred to
the literature in the field of fluid mechanics.

IMPORTANT TERMS

Positive displacement pump is a pump design in which the fluid is allowed to
enter the pump through an inlet port, is picked up by the pumping element,
and carried through a cycle during the course of which it is momentarily
isolated from the outside environment, and is finally forcibly ejected from
the pump into the discharge pipe. Energy transfer occurs via potential
energy change, rather than kinetic energy change.

Direction control valves are fluid power components whose functions are to
direct, or switch, the fluid to the pipe lines through which it is to pass.

Cylinder or ram is a type of fluid power motor in which the mechanical
output is a linear thrust, whose length—usually the piston-rod—cylinder-
barrel length—is limited by the design of the unit.

PROBLEMS

16-1 Figure 16-3 is the fluid power circuit schematic of Fig. 16-1 of the text.
The drawing uses the graphic symbols for fluid power systems developed
by the American Standard Association. Using the same flow parameters
8s in the example problem in the text, carry out a complete analysis of the
system illustrated in the above diagram,

Pump Control valve Cylinder
167 of 17/ I- -

pipe |63 of 3’/ pipe —;{,

T e

—— 20/ Of %/I 3 . N 5/

< pipe 5% of 37/ pipe]

i ui
U\T «
(tank) 387 l7£E— 67/ rod

of 117/ pipe 87/ piston
LR Fig. 16-3

16-2 Ty . .
6-2 Figure 164 illustrates a circuit diagram for a simple fluid power system.
% 25‘hI_) e!ectric motor drives a fluid power pump which is 80% ei.’ﬁment.
he fluid is a typical mineral-base hydraulic oil. Analyze the circuit from
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See Chapter 9 for value of K
67/ piston 27 rod

iy
N 207 of §7 pipe 30000 Ib
_— 257 of 37/ pipe
e 307 of ¥/ pipe
27 of i 5

177 pipe] Rehet
valve

LI I Iy R Fig. 164

the point of view of pressure loss in the system. Determine the heat
generation rate. Consdering the results of the analyms, do you beheve
that it is possible for the system to perform against the 30,000-1b load
reaction indieated, if the piston velocity is 0,36 {ps? If not, what load
could 1t sustain?

Pressure
Varisble  gage 207 of 3/ pipe 5%/ piston 47 rod

pump,
» [
y, —— L 307 of §/ pipe
357 of 37 pipe
27 of 13 pipe ¥ o
l_L_| L LYy
K=10

[,

Strawner 1n tank
3 Fig. 165

16-3 Figure 16-5 shows a cwrcuit disgram involving a regenerative cylinder
(see Chapter 2). Assume that a 25-hp electric motor drives an 85%
efficient fluid power pump, Mineral-base fluid 13 used. The pump discharge
pressure is 1200 psi. Analyze system losses, determine the rate of heat
generation, and calculate the load reaction, Fr, which could be handled
by this system. At what constant velocity could the load be moved by
the cylinder?

16-4 Itepeat the analyss of Problem 16-2, assuming that the control valve is
shifted and flow goes to the end of the cylinder which is opposite to that
selected in Problem 16-2, What percent difference in losses do you observe?
What part of the system contributes most to the change in losses with
direction of flow through the valve?

16-5 Repeat Problem 16-3, assuming that the control valve 15 shifted out of
the regenerative flow position and info the simple flow condition of pressure
oil to the rod end of the eylinder, with cap end oil returned to tank through
the control valve.



CHAPTER 17

Topics in compressiblie

fluid power systems

Introduction to Compressible Flow

The bulk of the material presented so far has been concerned with the
lnecl}ﬂnics of incompressible fluids. The emphasis has been on industrial
&pphcations of fluid mechanics and, in particular, on the newly emerging
fluid power technology.

The majority of introductory texts on fluid mechanics deal with
loncompressible flow, because the new concepts which must be mastered to
Under§ta11d fluid mechanics are more readily understood when they relate
to fluids which do not change. Thus we can consider the fluid to be a
tonstant medium and need only treat the effects of changes of conditions,
Suc‘h 28 pressure, velocity, acceleration, etc. We can develop the laws
Shich govern the reaction of the fluid and the reaction on other bodies
om the simplified frame of reference of a nonchanging fluid medium.
most 'hg prir}‘ﬁples.outlined so far in this text are those :»vhich are usc.ad in
i n:; ustrial engme:ering situations. We would be.rerfuss, however, if we
Stope ‘tit least mention the fact that fluid mechanics is 'mu.ch broader in
o Iiltn much more sophisticated in concept than is mdlcate.d by tl'le
mechmf"y Presentations contained in this volume. Theoretical ﬂUI({
3erod‘v 165 a5 deve.loped in recent years under the impetus .of the ‘Wol‘k of
fielg, 3H&Irnc1$ts,. let propulsion engineers, aerospace engineers in such

835 plasma jets and magnetohydrodynamics is among the most com-

177
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plex and sophisticated areas of our modern technology. Such work 1s far
beyond the scope of an introductory text, but we should be aware of its
existence

Another new area of activity which is gaining momentum in industry
is fluid power technology.

Fluid power technology deals with the transfer, control, and storage of energy by
means of a fivid in a closed system.

Note that the definition says fluid—not just liquid Thus m dealing with
fluid power systems we must be in & position to handle both hqud and
gaseous systems, since both are used in the process of transmitting energy.
We have concentrated on liquid fluid mechanics throughout most of
this text, for it is liquds which are idered to be
Under most conditions this premise is close enough to the truth to prove
satisfactory. In some fluid power systems we must recognize that hquids,
t00, are compressible to some small degree. It isfortunate that the mechan-
ics of compressible fluids—gases—ecan be idered from a
ible standpoint for much of the analytical work relating to fluid-power
systems This greatly simplifies the problems involved.

Gas laws

In Chapter 2, we developed the pt of absolute zero pressure, 1e., the
concept of no atmospheric pressure whatsoever, or the complete absence of
any pressure. We did this without going any deeper into what conditions
might have to be satisfied to arrive at such a state. In reality, the concept

of absolute zero p is only ingful when idered in relation to
the temperature of the fluid. In a gas, in particular, the state of absolute
zero a state of absolute zero b Absolute

zero temperature is equivalent to —273°C or —460°F, At that temperature,

there is theoretically no molecular energy. Since gas pressure is a function

of molecular energy, pressure ceases to exist when energy goes to zero.
To convert from the usual re scales to absolut:

we use the following formula:

T (absolute) = T + 460, where Ty = °F,

When dealing with the gas laws, we must use not only absolute tem-
perature but also absolute pressure. To convert from gage pressure to
absolute pressure, we use the formula

Py = P, + 147,

where Py = gage pressure in psi.
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The following discussion summarizes the basic gas laws which describe the
behavior of compressible fluids under changing conditions of pressure
and/or temperature.

Charles’ Law

1) If we hold the volume constant (by containing the gas), we have
Py/Py = T1/Ts. (17-1)

This law tells us that with constant volume the absolute pressure is directly
proportional to the absolute temperature.

2) If we hold the pressure constant and allow the volume to change,
we have

Vi/Vy = Ty/T,. (17-2)

Boyle's Law

I we hold the temperature constant (T = °K), we have
Vi/Vo=Py/Py  or PV, = P,Vy; (17-3)

that is, the volume is inversely proportional to the pressure.

General Gas Law

The mathematical statement of the general gas law is

where P = absolute pressure, psf,

V = volume, ft3,

M = mass of air,

T = absolute temperature,

R = universal gas constant = 53.3 Ib-ft/Ib,, X °F (for air).

The upj .
toh:avaemal gas constant represents the amount of work (ft-1b) required
'8¢ the temperature of one pound mass of air 1°F

B< 533/718.2 — 0.0686 Btu/lb,, - °F.
Vote: T volume of 11b of air at standard conditions is 12.39 ft*/1b = Va.]
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Compressors

The fluid power engineer in industry encounters an interesting division of
assignments, or interests. In hydraulic systems (those involving liquids),
the energy transfer mechanism (the pump) is a prime part of the assign-
ment for design or application. This 1s due to several reasons.

(1) Since hne losses are considered to be excessive for central hydraulic
systems, each machine has its own pump as an integral part of its hydraulic
system.

(2) Control of the pump often is part of the over-all machine control

This 1s not the case with pneumatic, or gas, fluid power systems.
The usual practice 1s to have a central compressor plant, somewhere mn the
vicinity of the factory Pressurized air 1s piped throughout the entire plant,
and the fluid power engineer merely makes a connection to one of these
distribution hnes m order to get his source of energy. The approach is
much the same as that for electrnicity. The engineer utilizing electric power
for machine dnve and control 15 generally not concerned with its
generation,

Thus the fluid power engineer is usually not an expert in the com-
pressor field He looks upon these devices as “infimite” energy sources and
Just utilizes the compressed air wherever he wishes m the plant

Pneumatic Fluid Power Systems

It 1s assumed that the central compressor facility will be capable of supply-
ing & continuous flow of air at some minimum pressure which is always
above that to be used at the machine. Figure 17-1 1llustrates a typical
pneumatic system connected into the air lines. A pressure regulalor 1s
almost 1nvanably interposed between the source (the air main) and the
machine on which the air is to be used A regulator is a throttling device
which maintains a relatively constant output pressure at some level lower
than the input pressure, Withm the hmitations of the device, we may
consider that the supply line to the machme 1tself 1s under constant pres-
sure Trom Boyle’s law, we know that in this case the specific volume
should remain constant also

machine

Fig. 17-1
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Even if we use the pressurized air to move a cylinder, the unit volume
will be constant so long as the pressure remains essentially constant.
Under these conditions we can treat the flow of the gas as noncompressible

flow.
EXAMPLE

A 10-in. bore eylinder is required to move a load resistance of 7060 lb
through a distance of 30 in. in 5 sec. What must be the capacity, in scfm,
of the air service to accomplish this work?

Solution,

Step 1. Determine the pressure:

P = load/area = 7060 1b/78.54 in? = 90 psi,

P (absolute) = 90 + 14.7 = 104.7 psia.

Step 2, Determine the flow rate:

) Vo= A, 8 = 78.54 in? X 30 in. = 2360 in®;
b) @ = V4/t = 2360 in3/5 sec = 472 in®/sec.
Step 3. Calculate the compression ratio:

Bo = P./P, = 104.7 psia/14.7 psia = 7.12 : 1.

ngp 4. Assuming that an isothermal (constant temperature) condition
exists, we obtain

Qs = 372 in%/sec X 7.12 = 3360 in®/sec of free air
= 1.945 X 60 = 116.6 scfm.

Thus the capacity of the air service must be 116.6 scfm.
_—

g(e)::i th‘}"]t in the a_bove example no consideration was given to any volu-
pressi(;)]c ang.re of air as a function of pressure. It was .treated as an incom-
compref fgmd, so long as the load resistance remained constant. The
e ﬂo‘;SI ility of the ﬁuid was recognized only when we convertefi from
o rat rafte of t.he fluid at operating pressure, 1'04:.7 psia, to equw.aler}t
necessaf ° vfree alr, that is, air at standard conditions. This calculation is
b Y when we relate the demand of the application to the capacity of
Mpressor system for delivering air.
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Air Flow Losses in Pipes

We have discussed at some length the factors contributing to the loss of
energy (head or pressure loss) in pipe flow involving liquid media. In
treating this material, we did not make any provision for flmd compress-
ibility, since liquids are generally considered incompressible at the normally
encountered pressures. The same comment might be made regarding
changes in temperature. We assume that an isothermal (constant tem-
perature) condition exists, since the thermal expansion characteristics of a
llqmd are very small by comparison to a gas Finally, since the pipe
fl d are based on empirical solutions to the
problems, vanations due to p or t: would be
taken into account by the empirical data used.

The approach to compressible fluid flow systems is not quite so simple.
In the first place, the volume of a gas varies inversely as the pressure and
directly as the temperature. Thus, since the flow losses themselves result in
a reduced pressure or a falling pressure gradient along the length of the
pipe, they contribute to a change in specific volume as the gas moves
through the pipe. We also know from thermodynamucs that the com-
pression of a gas is accompanied by the generation of heat, which must be
dissipated to prevent a rise in pressure. And the expansion of a gas s
accompsamed by the release of heat. As in the case of the incompressible
fluid, these effects introduce into the problem of flow-loss calculation
variables which are not so easily handled.

There is an empirically derived formula which ean be used in calculat-
ing approximate pressure drops due to the air flow in pipe systems This is
the Harris formula:

AN
Py = & (17-4)
where P, = pressure drop, ps,
L = length of pipe, ft,
r= pression ratio, 1n pipe/at heric p

Q = flow rate, {t3/sec (free air),

d = actual internal pipe diameter.
For commerecial pipe the coefficient is approximately
¢ = 0.1025/d%31,

Because of the lengthy calculations involved in obtaming the numerical
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solution of this and similar formulas, most fluid power engineers use pre-

cleulated and tabulated data to estimate the loss due to flow of air in

pipes. This information is available in handbooks treating pneumatics, etc.
Table 17-1 summarizes some of the data calculated by means of the

Harris formula. The value of the N-factor given in the table, when divided

by the compression ratio, yields the pressure loss per 1000 ft of pipe.
EXAMPLE

Assume that we have 450 ft of 24-in. pipe through which free air passes at
the rate of 575 ft3/min. The discharge pressure of the compressor is 120 psi.
What is the pressure drop in the line?

Solution,

Step 1. Using Table 17-1, we find that the N-factor of a 24-in. pipe
handling 575 cfm of air is 76.7.

Step 2. We need to calculate the compression ratio. Since (a) the
atmospheric pressure is 14.7 psia, it follows that (b) the final pressure is

120 + 14.7 = 134.7 psia.

Hence (c) the compression ratio is

134.7/147 = 9.15 : 1.

Step 3. 76.7/9.15 = 8.4 psi/1000 ft of pipe.
Step 4. 8.4 X 450/1000 = 3.77 psi drop.

————

'I_‘able 17-2 lists some calculated values of d%-33 for several commercial pipe
smes'_ Tl}ese data are used in the evaluation of the Harris formula for
Specific pipe systems.

EXAMPLE

gsre the same parameters as for the example above. Using the Harris
mula apd substituting the data given, we obtain

0.1 2 i
p=20BL Q7 0.1025 X 450 (575/60)° _ 5 i
v dssl 9.15 124

which e ; .
teh i5 in agreement with the value calculated above.
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TABLE 17-1

Topics In compressible fluld power systems

FLOW FACTORS OF COMPRESSED AIR PASSING THROUGH STANDARD WEIGHT

Nominal diameter, in.

Iree air,
ofm Y 3 1 13 | 13 13 23 |3
5 89 20 05| — —_ — | — |
10 354 80 2.2 051 — —_— = — |
15 797 | 179 4.9 11 —_ —_— ] — | —
20 142 318 8.7 20 0.9 —_— | — | —
25 | 221 497 136 3.2 14 7NN — | — | —
30 | 318 il 19.6 45 20 ) — ) — | -
35 | 434 975 266 6.2 2.7 14 — | — | —
40 | 567 127 348 8.1 3.6 19| — ) — | —
45 | 716 161 440 | 102 45 244 12| — | —
50 | 885 199 544 | 126 56 29| 15| — [ —
60 — 1 286 7831 182 80 42| 22| — [ —
70 390 106.6 | 247 | 109 57| 29| 11—
80 - | 510 139.2 [ 323 143 75| 38 15| —
90 — | 645 176.2 | 40.9 | 18.1 05| 48| 19| —
100 — | 796 2174 50.5 | 223 nr| 60| 23—
110 — | 963 263 611 27.0 4.1 72| 28| —
120 —_—f — | 318 727 322 168 86| 33—
130 | —— | 369 853 | 37.8 1907 | 101 39|12
140 — | — | 426 030 | 438 229117 46| 14
150 — | — j 4% 1136 | 503 263 | 134 2(18
160 — | — | 570 1203 572 299|153 | 59|19
170 — | — { 628 1458 | 646 | 337 | 176 | 67 [ 21
180 — | — | 705 1633 | 726 | 379|104 | 75| 24
190 — | — | 785 177 80.7 422 215 84| 26
200 — | — | 870 202 894 467 1 239 | 93|29
220 — | — | — | 244 1082 | 565 [ 289113 ] 35
240 —_ —{ — ] 201 1287 67.3 | 314 | 134 2
260 —_— ) — | — 3 151 790 | 403 { 157 | 49
250 —_— | — | — |39 175 016|468 { 182 57
300 —_—] | — | 454 201 105.1 | 537 | 209 | 66
2 23 3 3% 4 4% 5 6 8 |10
320 LI | 238 7.5 35| — | — =~ —|—|—
340 690 | 268 84 39 0f — | ~| —|—1—
360 773 | 3041 9.5 44 22| — | —| —|—|—
380 §6.1 335 10.5 49 28— | —| —}— | —
400 047 | 371 nz 5.4 20| — | —| —|—|—
420 1052 | 409 129 6.0 | — | —§j — ||
440 1155 | 4190 11 6.0 (4| — | —|— ||
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TABLE 171 (cont.)
STEEL PIPE. DATA BASED ON THE HARRIS FORMULA.
Free air, Nominal diameter, in.
fn 2 | 28| 3 | 3 | 4 |45 |6 |8]w
460 {1256 | 488 | 154 | 71| 37| 20| — | — | — |—
480 | 1376 | 534 | 168 | 78| 40| 22| — | — | —|__
50 |1500 | 580 | 183 | 85| 43| 24| — | — | — | —
525 |1650 | 642 | 202| 94| 48| 26| — | — | —|—
50 | 1815 | 702 | 221 102] 52 29| — | — | — |—
55 |197 | 767 | 242 112] 57| 31| — | — | — | —
600 |215 | 835 263 | 122) 62| 34| —| — | —|—
625 1233 | 927 | 285| 132| 68| 37| — | — | —
65 |253 | 98.0| 309 | 143| 73| 40| 22| — | —|—
675 |272 | 1057 | 333 | 154| 79| 43| 24| —|——|—
00 1294 1137 358 | 166| 85| 46| 26| — | — | —
780 1337 | 1305 | 411 190] 97| 53] 29| — | — | —
800 382 |148.4 | 467 | 217 111 61| 33| — | — |—
850 433 | 168 | 528 | 244 125| 68| 38| — | —|—
00 1468 | 188 | 59.1| 274 | 140 77| 42| — | —|—
950 | 541 12094 | 659 | 30.5| 157 | 86| 47| — | — |—
1000 1600 |2320| 73.0| 338| 17.3| 95| 52| 1.9|—|—
1050 1658 |256 | 80.5| 37.8| 19.1 104 58| 21 |—|—
100|723 | 280.6 | 88.4| 40.9| 210|115 63| 24| —|—
150 1790 | 3068 | 06.6 | 44.7| 22.9|125]| 69| 26| —|—
1200 | 850 | 344.0 | 105.2 | 488 | 250|137 | 75| 33| —|—
1800 | — 13920 | 1234 | 57.2| 203|160 88| 88| —|—
MO — | | 663 33.9|186]|102] 38— |—
W00 | — | | 761 39.0]21.3|118] 44| —|—
800\ — | | 866 443|242 134 51| — |—
o b — | g7 500|274 l150 ]| 57| —|—
B0 | — V| {100 561307169 64| —|—
Moo p— v | je2" | 627 {342)180| 7116 |—
W00 b — | 1135 | 69.3(37.9|209]| 78|18 |—
3;30 — | — | — | 140 | 76.4|408|230| 87|20 |—
2308 — | — | — 1166 | 83.6|458|25.3| 95|22 |—
g | | T | — [179 | 91.6|50.1 | 276|104 24| —
o0 | | T | —— | 195 | 99.8 |54.6|30.1|11.3 26 —
oy | | T | —— |22 |1083 50232612329 | —
g | | T | —— | 229 |117.2]649 353|133 31| —
s | | T | — |27 | 126 |69.1|38.1|143 |33 |—
o | | T | —— | 265 | 136 |74.3]41.0]|154]|36|—
“agp | 7| T | — | 285 | 146 |79.8|439 16539 —
T | — | — | 305 | 156 |85.2|47.0|17.7 |41 |—
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TABLE 17-2
CALCULATED VALUES OF d%33 FOR USE WITH THE HARRIS FORMULA

Pipe of Pipe of
Nominal size, in. d5 33 Nomnal size, 1n ¢533

g 00230 23 1240
1 00631 3 3050
Fe 03561 3% 8575

1 1291 4 1,6830

1} 5572 5 5,6270

14 12.68 6 14,9700

2 4808

The same technique can be used to calculate losses in branch lines.
First we must calculate the loss up to the entrance to the branch line.
Then we can use the new pressure as the initial pressure to the branch. The
loss in the run can be calculated by using the Harns formula, as shown in
the ple. Any variable specified in the Harris formula can be caleulated

if the other variables are known.

Control with Orifices

When we discussed orifices and orifice-hke devices in Chapters 8 and 9,
we idered only p ble fluids, i.e., liquids. The general form of
the orifice flow equation was @ = CzA4,+/2¢h. We found that values of Cy,
the discharge coefficient, could be experimentally determined and would
give fairly accurate results over a wide range of conditions.

In the case of compressible fluids, we run into the thermodynamic
problems associated with the expansion of a gas as it is throttled (ie, asit
undergoes a pressure reduction) across an onfice, and the treatment
becomes more complex than that for the hquid case.

As was pointed out in Chapter 9, most control devices for fluid power
systems behave in an onfice-like manner. Thus, to be able to exercise
control over an air system, we must be able to handle problems involving
air flow through orifices and orifice-like devices

It can be d trated that the massflow rate through an orifice is
infl d by the d when the drop across the
orifice is low enough for the velocity at the orifice throat to be subsonic. On
the other hand, when the expansion ratio across the onfice 1s high enough
to cause sonic or supersonac velocutzes at the orifice throat, the mass-flow rate
is independent of downstream pressure
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This eritical point is reached when the absolute pressure downstream
of the orifice reaches 539, of the absolute pressure upstream. When this
occurs, that is, when Py, = 0.53Py,, the throat velocity is equal to the
speed of sound in that air. When Py, > 0.53P,,, the following flow
equation is applicable:

_ 0595C-D*-Py [Py
Ty-V(n— 1/n) Py

<SGy Gy 1] o

where  Qn, = Ib air/min
¢ = discharge coefficient (about 0.65 for sharp-edged orifice,
0.96 to 0.99 for round-edged orifices),
diameter of orifice throat, in.,
P, = upstream pressure,
P, = downstream pressure,
T, = upstream temperature, °R (absolute temperature),

n = ratio of specific heats of air at constant pressure to con-
stant volume (n = 1.406 for dry air).

On

o
I

When Py, < 0.53P,,, the following expression is applicable:

= 05303 2 ¢ P1,, (17-6)
T,

where ¢ = areq, of orifice, in2. It is evident that the air case is more com-
p}ex than the liquid case. As in the instance of calculating losses in pipe
lm“:s_» data on air flow through orifices have been reduced to tabular form to
famh.tate practical calculations. Table 17-3 summarizes some of these data
for air floyy through orifices.

Air Control Valves

?rgiause of the complexities just discussed, most manufacturers of air con-
I Valve.s have adopted one or the other of several systems to rate their
poduct; Le,, they use for this purpose various factors, called C,-factor,
ﬂ;aictt{:r, “K‘faCtOr, ete. In essence this approach is based on the concgpt
0 ¢ “factor”, when multiplied by the pressure drop (or some function

Pressure dr 0p) across the valve, will give the mass-flow rate of air through

®Valve. A detailed discussion of these methods is beyond the scope
of this teyt, .
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Accumulators

Figure 17-2 illustrates a device which makes use of both incompressible and
compressible fluids. It is called an accumulator, because it accumulates, or
stores, energy. An interface is placed between the liquid and gas sides of the
device. In some designs the interface is a rubber bladder, as in Fig. 17-2;
in others, a piston is used. The interface is introduced to separate the two
fluid phases to prevent the dissolving of the gas in the liquid medium.
Initially, the accumulator is “precharged” by the introduction of gas
(usually nitrogen) under pressure. (See Fig. 17-3a.) When the system is
in operation, liquid is pumped into the accumulator by the pump. Since
the operating pressure of the system is greater than the precharge pressure
inthe accumulator, the gas is compressed to the new pressure, P,. Increas-
ing the pressure on the gas reduces its volume, so that liquid, usually oil in a
fuid power system, flows in to fill the void in the accumulator. (Fig.
17-3b). If, at any time, the system pressure drops below the pressure of the
g in the accumulator, the gas reexpands to match the reduced pressure.
Asaresult, some of the liquid is forced out of the accumulator and back into
the system. Thus an accumulator can be used to store energy over a long
pfzriod of time and release it, as a supplement to the pump, over short
time intervals, Accumulators, due to their ability to absorb energy, are also
used to reduce shock in hydraulic systems.

~Precharge valve

.‘:‘.\\

NN

ANANNAAS

 (+~Shell

/&1 Rubber
7 | interface

(a) (b) (c)
Fig. 17-2 Fig. 17-3

Etrigtllf ‘;'e Calc_lﬂated the volume-pressure relationships _in an acc.umu]ator
'Lsothefm clc ording to Boyle’s law, we would be presupposing the existence (?f
ot ey : (conStfmt temperature) conditions. Since we know that th1§ is

Retly true in practice, because heat is generated by the compression

0iagag . .
845 we would find our answers to be slightly in error.
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Boyle's law can be written in the form
PV} =P,Vi=K. 7-7)

For isothermal processes, n = 1; for adiabatic processes n = 14, In
practice, the process followed is polytropi, yielding n = 1.25

EXAMPLE

Determine the size of an accumulator (volume) capable of supplying
250 in® of oil with » pressure differential from 3000 psi (system) to 2000 psi
(system). Assume a precharge pressure of 1500 psi,

Isothermal Solution.

Step 1. Py = 3514.7 psia, P = 2014.7 psia, P3 = 3014 7 psia
Step 2. Vy = the required accumulator size,

Vs = V3 250in?,

Va= V; — 250in%.

Step 3. We determine V3, using Boyle’s law, p,Vz = p3V3 Sub-
stituting the values obtained in step 2, we have

2014.7 (V3 + 250) = 30147V3,
1000 V'3 = 503,000,
V3 = 503 in®

Step 4. Va = V3 -+ 250 = 753 in®. We now have all the quantities
needed to determine V5.

Step 5. P1Vy = P,V,. Hence
15147 V3 = 2014.7 X 753,

V1 = 1000 in3,
Adiabatic Solution.
Step 1. PyVi4 = PVl = PVt
Step 2.
Va = (P3/Py)*7H,

Va = (3014.7/2014.7)° 7'4(V, — 250) = 1.33 (V, — 250),
Va2 = 1000 in%.
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Step 3. ¥y = (2014.7/1514.7)%71% % 1000 = 1230 in®.

Note the percentage difference in size determined by the two methods
of calculation:

1230 — 1000
1230

= 18.7%.

Machine spindle

I

Constant load

(@)
F=K

Load, Ib
Load, b

Stroke, m ‘ Stroke, in.
{b) (0 Fig. 17-4

Pneumatic cylinders

From earlier chapters we recall that in calculations involving cylinders a
wnstant load reaction on the piston rod was assumed. Thus the pressure
Was easily calculated to be P = F/A. Even if the load reaction did vary,
ouly the pressure would change, for we were concerned only with incom-
Pressible fluids. This situation does not hold for compressible fluids.
llgure 174 illustrates what happens with pneumatic systems W.hen.the
e resction changes. Figure 17-4(a) shows a typical cylinder as 1t xgxght
Used in 2 machine tool application. The purpose of the cylinder is to
f:sh’. or feed, the work piece into the cutting tool. So long as the load
“imams constant, the pressure will be constant (Fig. 17-4b). Thus the gas
thave like an incompressible fluid.
pmSup pose that the load varies, as indicated in Fig. 17-4(c). As the
31;? vanes, the gas volume will change accordingly. Thus the gas n;
Varj yinder will undergo expansion or compression as & fun.ctxon of loa
2tion. Under these conditions it is impossible to maintain a constant
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piston rod velocity; that is, the feed rate will change. For this reason
pneumatic cylinders are rarely used in applications where constant veloc-
ities must be maintained, unless auxihary control devices are used

IMPORTANT TERMS

Charles’ law is a gas law which relates pressure, temperature, and volume of
2 gas as a function of temperature,

Boyle's law is a gas law relating pressure and volume, with temperature
held constant.

General gas law relates temperature, volume, and pressure as & function of
the universal gas constant,

Compressor is a mechanical device for transferring energy to compressible
fluids.

Pneumatic fluid power system is an energy transfer system in which the
transfer medium is a compressible fluid, usually air.

Harris formula is an empirical formula for the caleulation of flow losses of
air in pipes.

Compression ratio is the ratio of the absolute pressure of a gas at some pres-
sure level to the absolute pressure of gas under standard conditions.
Standard conditions exist when the atmospheric pressure of air is taken at
sea level at 68°F.

Critical pressure in orifice flow is the amount of downstream absolute
pressure which is equal to 53% of the absolute upstream pressure
Accunulator 18 & gas-liquid device used in fluid power systems to store
energy.

Pneumatic cylinder s & linear force-producing device, used in fluid power
systems, which utilizes pressurized gas to generate a force

PROBLEMS

17-1 Standard air enters a honizontal pipe 6 1n. in diameter with a veloaity of
370 ft/sec. The exit velocity is 45fps. Neglecting friction, calculate
exit pressure and temperature

17-2 Air enters an 8-in. pipe with an inlet pressure of 110 psi and a tempera-
ture of 90°F. The inlet velocity is 200fps Exit conditons include
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pressure of 70 psi and a temperature of 110°F. Calculate the friction
opposing motion.

17-3 A stream of oats and air is blown through a combine (an agricultural
machine used in harvesting grain). A sheet metal duct is used to guide
the flowing mixture. There is a bend in the duct which deflects the stream
through an angle of 120°. The duct has a uniform cross-sectional area of
12in. X 12in. The average inlet veloeity is 10 fps, and the average
specific weight of the mixture is 52 Ib/ft3. What force does the air-oats
mixture exert on the bend in the duct?

174 A 2-in. pipe 500 feet long handles free air at a rate of 500 ft3/min. The
inlet pressure is 110 psi. What is the outlet pressure?

17-5 The inlet pressure to a 1000-ft run of 13-in. pipe is 100 psi. If the outlet
pressure is 95 psi, what is the flow rate of air in sefm?

11-§ Air flows through a pipe 2 in. in diameter at the rate of 600 {t3/min.
The inlet pressure is 120 psi and the outlet pressure is 110 psi. How long
is the pipe run?

[-7 Given a }-in. sharp-edged orifice used to control air flow. The upstream
pressure is 120 psi, and the downstream pressure is 50 psi. The tempera-

ture at the orifice inlet is 95°F. Calculate, in scfm, the flow rate across
the orifice.

11-8 Given & #-in. round-edged orifice. Air is fed in at a temperature of
110°F and a pressure of 100 psi. The downstream pressure is 40 psi.
Caleulate the flow rate of air in scfm.

17-9 Air approaches a sharp-edged orifice % in. in diameter at 100°F and
95 psi. Downstream pressure is 55 psi. Calculate the flow rate in scfm.

I-10 Assume that we have a transfer cylinder which must raise a 100-lb
casting a distance of 12 in. (Fig. 17-5). With an air pressure of 90 psi
(at the cylinder), what size cylinder must we use? How much power is
consumed in raising the casting?

( Motor

VZ

— IPressure regulator Fig. 17-6
17- Ry . . .
11 Figure 17-6 shows an air-fed cylinder powering a drill-feed unit. If it
tak.es a f(_)rce of 2821b to push the drill through the casting, and the air
%linder is 90g, efficient, what must the regulator setting be for a 2-in.
| bore eylinder?
-1 )
?Ina transfer application, as shown in Fig. 17-7, a 500-1b load is to be
Moved over g set of ways. It has been determined that the coefficient
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‘ Fig. 17-7
of frictton between the table and ways is 015 Tests have also shown
that the cylinder has a static friction load equal to 10% of the maximum
rated load. Also, the cylinder is 90% efficient during operation With
air pressure of 65 psi available, what size should the cylinder be?
17-13 In Problem 17-11, it takes & force of 100 Ib to withdraw the drill from
the casting If the cylinder has a rod 1 in. n diameter, will the regulator
sefting, as calculated in Problem 17-11, be satisfactory?

Fig. 17-8

17-14 An amr-hy 1 fier is d to a 2 in? (eross section) hy-
draulic cylmder with a 10,000-Ib load on it. The intensifier rod has an
avea of % in%. The intensifier 15 92.7% efficient If the piston 1s 7 in. 10
diameter, what air pressure is required to drive 1t? If the stroke of the
intensifier is 2 in., what 1s the displacement of the hydraulic pump?
What is the displacement of the blank end of the air cylmder? What is
the displacement of the rod end? If the intensifier makes 1 stroke/sec,
what is the flow rate of oul from 1t? What is the free-air consumption,
in efm?

17-15 If the stroke m the cylinder of ¥ig. 17-7 is 30 in. and the load must be
moved in 5sec, what will be the speed (velocity) of the piston rod?
the volume of the cylinder? the flow rafe at 65 psi? the volume of free
a1r required? the consumption of free air?

17-16 What is the compression ratio in the cylinder of Fig. 17-77 What is
the approximate size of the orifice needed 1 the valve to give this
flow rate?

17-17 In Problem 17-12, what would be the recerver pressure if air were sup;
plied to the cylinder through 2000 ft of 3-in. pipe?

17-18 Assume that 1n Fig. 17-9 Py ~— Py (1 e, the pressure drop across the
orifice) is constant. If the operating pressure level is 50 psig, what is
the flow rate of free air 1n ¢fm across a #-in. onfice? If the operating
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— Fig. 17~9

pressure is changed to 70 psig and the pressure drop is 10 psig, what will
the new flow rate be? How does this result vary from what is observed
with an hydraulic fluid?

17-19 We have an arm 3 ft long supporting a 100-1b weight. An ajr cylinder
is pivoted a distance of 1 {t from the arm pivot. (a) Determine the vary-
ing load conditions on the eylinder. (b) What will happen to the cylinder
speed as the arm swings? (c) What will happen to the air consumption?
(See Fig. 17-10.)

Fig. 17~10

1-20 An accumulator is to supply 400 in® of oil with a maximum pressure of
3000 psi and a minimum system pressure of 1800 psi. The nitrogen
precharge pressure is 1200 psi. Caleulate the size of the accumulator.

(See TFig. 17-11.)
:\}cumulator

67/ dinmeter piston

Fr

Fig. 17-11

-2 G_iven that the accumulator of Problem 17-20 is driving the cylinder in
ig. 17-11, determine the variation in load which the cylinder would
be capable of handling over its entire stroke. What would be the stroke

of the cylinder if it used the entire output of the accumulator?

¥is .
~22 Tn the system of Problem 17-20 the load reaches a magnitude of 62,500
at is the stroke length at which this load would just balance the

Pressure in the accumulator? Could the cylinder stroke extend beyond
this point? Explain.
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17-23 An accumulator must supply 3 gal of fluid to a system The mavimum
system pressure 18 expected to be 2500 psi, and the minimum allowable
pressure is 1500 psi. The nitrogen precharge pressure i3 800 psi Cal-
culate the requred k suze. A
strength, determine what would happen if the actual system pressure
went to 3000 psi. Under these conditions, what would be the pressure
of the mtrogen in the accumulator?

*17-24 From what you know of pressure, load, and density relationships
and the gas laws, make the necessary calculations and a plot of the
variation of pressure and density of ar as a function of the altitude
sbove the earth’s surface,




CHAPTER 18

Applications

Energy Transfer Devices, Input

The mechanical devices which we know as pumps are actually devices for
ih‘f tfansfer of energy from some source, called the prime maver, fo the
ﬁ“'df“ asystem. In industrial applications, with which we are concerned
I this text, this encrgy transfer serves one of two basie reasons:

) to move or transport the fluid, as in & process plant, etc.; or
9 10 transfer energy to a mechanical load, as in a fluid power system.

Pumps

There g, .
1 )here are two basic modes in which energy can be transferred:
by means of kinetie energy, where KE = 3Mv?; or

‘) s
Ir); :5 means of potential energy, where PE = W(Py — P1)/7.
In H:e frst case, energy is transferred by increasing the velocity of the fluid.

b et . .
econd case, it is transferred by raising the pressure.

HYdrodynumic devices

1 indyetr . ineti

tm’}’q’?ug’“)’,.pal‘tlcularily in fluid power applications, the kmegc-energy

ra“;[zf devices are called hydrodynamic pumps. The potential-energy
T pumps are called hydrostatic pumps. The latter term is actually 2

197
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misnomer, because the fluid does flow and is not static. However, the
increase in potential energy of the fluid after it passes through the pump is
evidenced by an inerease in hydrostatic pressure, and thus we derive the
name.

Typical hydrodynamic devices cncountered in industry are the
centrifugal pump, turbine pump, fluid coupling, and torque converter.
It is interesting to note that even though energy in a hydrodynamic device
is transferred via kinetic energy, at some point in the device a diffuser
scction (see Chapter 12) must be employed to convert some of the kinetic
energy to potential energy {pressurc) in order to provide for line losscs,
lift, ete.

&) ®) Fig. 18-1

Figure 18-1 illustrates a typical impeller or "wheel” of a centrifugal
pump. The vector diagrams on the periphery of the impeller illustrate
velocity relationships In TFig. 18-1(a), the vector », represents the
velocity of a point on the impeller. 1i R is the radius of the impeller and w
is the angular velocity, v, = R - w. The vector u is the velocity of the fluid
relative to the impeller; v, the vector sum of % and v,, is the absolute
velocity of the fluid,

In Fig. 18-1(b), the components of v are shown" vg is the radml
component, and v, is the tangential component of the fluid velocity. From
our discussion in Chapters 11 and 12, we recall that momentum is defined as
the product of mass and velocity, or mv. We also showed that the product
of foree and the time during which it acts is equal to the change in momen-
{um, or

Fet=myy, — v).
Dividing through by ¢, we get
F = M2 t- 1) |

This result tells us that the force acting on a body is equal to the change in
momentum per unit time. In differential equation form, the above
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ppression becomes
d
= — (mv).
F= 3 ()

Thistells us that the force is equal to the time rate of change of momentum.
If we multiply both sides of the equation by R and use the tangential
wlity notation vy, we get

d
R= a (mRuu).

The product m Ry, is the angular momentum, and the expression now tells
wsthat the torque is equal to the time rate of change of angular momentum.
ltean be shown that the rotor of such a pump acts on the fluid to change its
wgular momentum: m(Ravy, — Ryvy,). Thus

T'= My(Rovu, — Ryvy,),

Were 3 is the mass flow rate. The torque is positive for a pump or
wmpressor and negative for a turbine runner.
The expression for power or rate of doing work is P = Tw. From the

#pression for torque in the development above, power could be expressed
N

P= Ml(Rgvuz _— Rlvul)w-

- T}{e discharge flow rate of a hydrodynamic pump of the type under
dxscusslon‘ is proportional to the radial velocity component, vg, and the

g}lnnz?r et ares. The impeller exit area would be equal to the product of
“ttumference of the impeller and the width of the opening:

Act WDO' b.

y A factor frequently mentioned in evaluations of hydrodynamic
“Aees s the specific speed:

¥, < ¥Veal/min

h3la !

¥ .

hzr:plgc;?imeasured_ in rpm, and % is the pump head per stage of the pump.
echaracct Speed gives an indication of the pump head, speed, and flow-

ydr()derlstlc.s that are possible and, perhaps, desirable. o

bat g most)’nfamm pumps are seldom found in fluid power appl_lcatfons,
is Sep&rat? ten used n fluid transfer or materials handling apphcatlons:

) high ¢ on of application areas is necessary for several reasons:

10Ugh pressures cannot be generated in one stage of the pump;
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(2) the discharge flow rates vary with the change in head; and (3) the pump
may “stall,” Here stalling means that some limiting pressure head at the
discharge port can be reached beyond which the pump cannot go. The
stalling occurs because the fluid is not forced out into the system mechani-
cally but depends for its flow on the change in velocity across a rotating
impeller; therefore the impeller will shear the fluid at its periphery. Under
these conditions, all the energy input to the pump is converted into head.
This stalling condition is inadmissible in a fluid power system On the
other hand, it has some advantages i power t using
hydrodynamic devices, such as torque converters and fluid couplings.

Hydrostatic devices

Because power transmission is the prime function of a fluid power system,
it is desirable Lo maintain a steady, controllable rate of energy flow through
the system. Figure 18-2 illustrates the difference between a mechamecal
transmission system, such as a belt dnve (part 2), and a fluid power
transmission system (part b). In a mechanical transmission system, power
15 transmitted by an input pulley to an output pulley by means of the
tension in the belt. In Fig. 18-2(b), a pump, instead of a pulley, is the
input device; pipes, instead of a belt, transmit energy; and a fluid motor,
instead of a second pulley, is the output device The flow of flund which
moves from the pump through the pipe to the motor, where the energy
18 extracted, and then back to the pump is analogous to the flow of energy
which travels from one pulley through the belt to the other pulley. We
may consider the pressure on the fluid in the pipe to be equivalent to the
tension in the belt.

(a)

From 1his qualitative deseription of n froid power systern, we van see
that we must have 2 continuous flow of fluid at some pressure in order to
transmit power. If the pump stopped forcing fluid into the pipe at some
pressure, the system would stop functioning. For this reason, we use
positive displacement pumps, rather than hydrodynamic pumps, 1 flud
power work.

Figure 18-3 illustrates the action of a positive displacement pump from
the viewpoint of the external cirewt. A PD pump will eject a relatively
fixed quantity of fluid into the system for every cycle of the pump. This
fixed quantity is called displacement and 1s a fimte volume, not o rate

Fig 18-2
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Itisillustrated, in Fig. 18-3(a), by using the symbol for a fluid power pump
and indicating that slugs of fluid, V4, are ejected into the pipe by the
pump. When the pipe is full, as in Fig. 18-3(b), the next slug of fluid will
cause the eylinder to push on the mechanical load. Neglecting line losses,
we find that the pressure developed by the pump will be a direct function
of the load resistance distributed across the face of the piston in the cylinder.
Thus we see that positive displacement pumps do nof pump pressure; they
transfer fluid into a system against a load resistance. The latter is respon-
sible for the generation of pressutre; no load, no pressure. As the PD
bump continues to transfer slugs of fluid into the line, the cylinder piston
15 pushed out farther, and the work is accomplished. All this occurs at
very high 3peed, of course, so that the action appears to be a steady flow
rather than a series of jerks and starts.

_ The design of fluid power pumps, or PD pumps, must provide for the
Infake of fluid through an inlet or suction port; its transport through the
Pumping mechanism in such a way that at some point in the pumping eycle
the fluid slug is momentarily isolated from the outside world; sufficient
energy transfer to the fluid to ensure that the pressure will be raised to that
required by the particular load; and forcible (positive) ejection of the fluid
Sh.lg mto the system. You cannot stall a positive displacement pump, for it
will continue to deliver fluid against a load resistance until either the prime
Mmover stalls or something breaks.

fl‘.he three most commonly used types of PD pumps are gear, vane,
Piston. A typical gear pump design is illustrated in Fig. 18-4. Two
O" more meshing spur gears are placed within an enclosure, which com-
f)lst?bl’ surroux}ds the gears and isolates them from the outside env.ironment.
- Inlet port is placed so as to connect with the gears on one §1de of the

mP. A second port provides for outlet or discharge of the fluid.

(0

and
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As the gears rotate, the teeth come out of mesh on one side and go into
mesh on the other. On the side where they come out of mesh the volume
expands, bringing about a reduction in pressure which causes the fluid to be
pushed into the. void by atmospheric pressure. This process is usually
called “suction.” The term, however, is a misnomer. On the side where the
teeth go into mesh the volume decreases between mating teeth. The
decreasing volume forcibly ejects the fluid from the tooth spaces and dis-
charges it into the outlet port of the pump. Because all the pumping action
oceurs in the region where the gears mesh, the fluid is picked up in the
spaces between the teeth and carried around the periphery of the gears.

The theoretical output from a gear pump can be closely approximated
from the following formula:

Vi= ’Zr (D? — d%)w, (18-1)

where  V; = displacement of the pump, in3/rev,
D = outer diameter of the gear,
d = gear root diameter,
w = width of gear.

Flow rate is @ = V- N, where N is given in rpm.

The second major class of positive displacement pumps used in fluid
power applications is the vane pump, illustrated in Fig. 18-5. This type of
bump uses a rotor carried on a shaft. The rotor has slots machined radially
into it around its periphery. A cam ring is placed around the rotor in such a

Rotor Cam ring
¢ ¢

Expanding

volume 90° Cam ring

R
Contractin 270°
volume E —ie

—— Rotor

(@) (b)
Fig. 18-5



204 Applications

position that the centerline of the cam ring is eccentric to the centerline of
the rotor shaft. Starting at § = 0°, where the rotor and cam rmng are
closest together, as indicated in Fig 18-5, the volume expands as the vanes
rotate toward the 180° position, The centrifugal force keeps the vanes out
against the surface of the cam ring. During the first 180° of rotation of the
shaft-rotor assembly, the resulting volume expansion causes the reduction
in pressure associated with the “suction” or induction process. Fluid flows
in to fill the void through porting designed into the pump. As the vanes
rotate through the second 180° the surface of the cam ring pushes them
back into their respective slots and the volume trapped between the vanes,
rotor surface, and cam surface is reduced, thus forcibly ejecting the
trapped flud through suitable ports. We see, then, that the conditions of
positive displacement are satisfied
A simphfied formula for the displacement of a vane pump is

V¢ = 2me Dw in®/rev, (18-2)

where e = eccentricity,
D = cam ring diameter,
w = width of rotor elements,

or Q = V4N in®/min, where N is given in rpm.



The third class of pumps used in fluid power applications is the piston
pump. A typical design is shown in Fig. 18-6. Piston pumps utilize several
cylindrical pumping elements, or pistons, placed in closely fitting bores in a
cylinder barrel. Various types of mechanisms are employed to make the
pistons reciprocate within the bore, When the piston is withdrawn from
the bore, the expanding volume within the cylinder causes the induction of
fluid through suitable valving (I'ig. 18-7a). As soon as the piston reaches
the end of the “suction” stroke, the inlet valve closes. The direction of
motion of the piston is then reversed, as indicated in Fig. 18-7(b). Asa
result, the fluid is pushed out ahead of the piston and through a discharge
valve into the system, as in Fig. 18-7(c). The displacement volume of one
piston is

de = AIJ : S:

where A, is the piston area, and § is the stroke of the piston. In conven-
tional fluid power piston pumps, the several pistons are arranged radially
around a shaft, as shown in Fig. 18-6. Thus the displacement of such a
pump would be the product of the displacements of each cylinder and the
flumber of cylinders in the pump. Because of the large number of variables
involved and the number of different designs in use, there is no simple
formula for the output of a piston pump.
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Positive displacement fluid power pumps are available in pressure
ratings up to 10,000 psi. Some arc capable of delivering 108-150 gpm.
For most applications, horsepower capability is currently in the range of 5
to 1000 hp. Components providing higher horsepower are available,

Sinee PD pumps are mechanical devices, their design must take mto
account clearances between mating mechanical parts, such as the gears
and housing in a gear pump, the pistons and cylinder bores in a piston
pump, etc. These clearances provide small but definite paths within the
pumps for the fluid to leak back from the pressure or discharge side of the
pump to the suction or inlet side of the pump Such internal leakage in & PD
pump is called slip leakage. Its existence means that less fluid is actually
delivered to the external circuit than would be expected from the theo-
retical displacement calculated by Eqgs. (18-1) or (18-2). This loss in
pumping capability due to internal leakage is reflected by the volumetric
efficiency, which is the ratio of the actual output from the pump to the
theoretical output, expressed in percent:

e = (Qa/Q)) X 100 = (Va/Va) X 100. (18-3)

Volumetnie efficiency is always less than 100%. For commercial gear pumps
it ranges from 70 to 90%, depending upon the quality and design of the
pump, For vane pumps, it is 80 < ¢, < 92%, again depending upon the
design of the unit, quality, and operating pressures. For piston pumps,
which have the highest performance of the three types, volumetric efficiency
should lie between 90 and 98%,.

Positive displacement pumps are also subject to mechanical losses,
and therefore a mechanieal efficiency factor 1s used to express the difference
between the theoretical input and the actual input torques:

o = theoretical input torque X 100%, ,
n- actual input torque

(18-4)

This holds true for any mechanical device; en is always less than 100%,.

The product of the volumetric efficiency and the mechanical efficicncy
is called the overall efficiency, and is used to describe the relative perfor-
mance of a positive displacement pump as an energy transfer device
a fluid power system.

Energy Transfer Devices, Output

Motors
Just as the pump performed the function of energy transfer to the fluid
system for transmission to some remote point, fluid motors extract the
energy from the fluid and convert it to a mechanical output to do some
useful work. The process is the direct opposite of the pumping proccss.
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There are three basie classes of fluid power motors. The first is related
to linear motors. The other two are rotary motors.

1) the hydraulic or pneumatic cylinders, with which we have dealt in
earlier chapters on pressure, area, and force relationships.

2) Limited rotation motors, which can be called rotary cylinders.

3) Continuous rotation motors, which are similar in design and con-
struction to the types of pumps just discussed, i.e., gear, vane, and piston.

The above types of output devices have been discussed in detail in Chap-
ters 2, 4, and 17. Rotary fluid motors that have the same design as pumps
have similar characteristics to those of pumps, except that pressurized
fluid enters the motor as spent fluid exits and is returned to the pump for
2 new charge of energy.

Energy control devices

During the course of our study of basic fluid mechanics, we have seen that
the level of energy transfer in a fluid power system is determined by the
pressure which we observe, We also know that energy is transferred via
changes in potential, rather than kinetic, energy in a fluid power system.
Purthermore, we know that the rate of energy transfer is dependent upon
the flow rate of fluid in the system.

If we now add the one additional function of switching the flow, or
directing the fluid from the pump to a selected loeation in the fluid power
circuit, we bave the three basic modes of control which we wish to exercise:

1) Direction control,
2) Pressure control,
3) Flow control.

Direction control valves

The fluid power components which perform the flow-switching function are
called direction control valves. 'This is an unfortunate choice of nomen-
clature, since the valves are actually fluid switches; but the term is the
current usage in industry.

In fluid power, particularly in the case of hydraulic systems, we are
dealing with an energy transfer medium, ie., a fluid which has definite
volume and mass. Thus any switching or control valve devices which we
use must have a provision for the passage of this relatively massive fluid
medium. Figure 18-8 illustrates the basic methods of achieving valving
action in fluid control devices. F igure 18-8(a) shows that flow can be
turned on or off by plugging a hole, or port, in the valve. A component of
this type is called a seating valve clement. Figure 18-8(b) shows that
another method of achieving control is by sliding something over a hole or
port. A component of this type is a slider or skiding element. In Fig.
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18-8(e) we have a rolating element. Flow is turned on or off by rotation of
the element which has a port. Figure 18-8(d) illustrates the most com-
monly used device, the spool element, which is moved back and forth in a
cylindrical bore. As it moves, the sections of reduced diameter come in
contact with ports i the valve body and not only can turn flow off or on
but also can switch it from one cireuit to another.

Although the funetion of the directional control devices is to switch
flow, they also cause flow losses in the system, since they function in an
“orifice-like” manner; that is, they introduce a restriction in the line.
In Chapter 9, we discussed some of these devices in more detail In spite of
the fact that pressure drops are developed across directional control valves,
therr primary function is not associated with controlling the pressure level
in the circuit. Figure 18-9 typifies 2 modern directional control valve
design.

Pressure control valves
In Chapters 8 and 9, we discussed orifices and the onfice-like devices.
We recall the general form of the equation describing flow through an
orifice is

Q = C.AV2gE,

which shows us that the flow rate is a function of the area of the onfice
opening, the head differential across the onﬁcc, the acceleration due to
gravity, and a ch istic disct t, We can rewrite this

equation in the form:

Q = K,VaP,
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where K, is a constant incorporating all the characteristics of a specific
orifice and AP is the pressure drop across the orifice, Now we can see that
the flow rate through a given orifice is a function of the design character-
istics of that orifice {or orifice-like device) and the square root of the
pressure drop. This suggests how we might design valves which would
control the level of pressure in a fluid power circuit

In most fluid power systems, we consider flow to be constant under a
given set of conditions; that is, the pump is capable of delivering a constant
flow rate Q. Thus if our pnimary interest is to control pressure, we can use
an orifice-like device which will give us a AP as a function of the flow rate
through it. Note that AP will vary as the square of the flow rate.

This is the technique used. There are four basic pressure control
valves:

1) Relief valves, 3) Sequence valves,
2) Pressure reducing valves, 4) TUnloading valves

d

A relief valve is used to limit the maximum p which will be i
on a system A reducing valve Is the p level in a circutt by
introducing a controlled pressure drop into the circuit. A sequence valve 1s
really a fluid switching device which operates on a pressure signal It
switches flow to 2 secondary circuit when pressure in the primary circuit
reaches a certain preset level. An unloading valve “unloads the pump,”
that is, bypasses its flow baclk to the reservoir (tank) All these classes of
valves work on the orifice principle previously discussed or are switched
when a certain pressure level is reached.

Flow control valves

From our previous discussion on orifice flow-pressure drop relationships, we
know that control over flow can be exercised as a function of pressure drop
Thus the funetion of flow control valves is the reverse of that of pressure
control In the latter, we used a fixed flow rate to give a pressure drop, and
thus we exercised control pressure mn the system downstream from the
valve. In the flow control case, we use a varable pressure drop across
ornifice-like devices to control the flow rate. There are many variations of
this basic concept which are beyond the scope of this discussion. The basic
principle underlying them all is a form of @ = CyA+\/2g%

Fluid power systems as energy transfer systems
We have discussed in great detail the concept that flud power is the
technology dealing with the transfer of energy by means of a fluud From
the point of view of the theoretical worker in fluid mechames, the applica-
tion of the techniques of fluid mechanics is subordinate to the techniques
themselves. However, to the engineer the application is of greater concern
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This 18 patticulaﬂy grue if one is an advocate of the definition which holds
thab engineer'mg consists of the solution of problems py means of the
app\ication of scientific knowledge- Thus the geientific knowledge itself, or
the g;enerat'mn thereof, does nob constitute engineering. Therefore, o the
fluid power engineer and engineering technician, he apphcaﬁon of the
techniques of flud mechanics to the transmission of energy is of prime
importance-

Tigure 18-10 illustrates schematicany the concepl of energy yransfer
in o fluid power gystem. Tluid enbers the pump at & subatmospheric
pressure, called the intet o¥ suction pressure. g it passes through the P
pump, its potential energy level 18 raised by means of energy yransfer from
the prime mover. This increase in the potential energy jevelis ev'xdenced by
an increase it fluid pressure. The fluid flows through the piping gystem and
undergoes line Josses; this W discussed in Chapters 14, 15, an 16. Thus
it has lost sOme of its energy by the time it enters the control vaive. In

undergoes & further energy Joss. This 18 evidenced by & pressure drop
across the valve Further line losses are incurred 28 the fluid flows through
the pipe from the valve to the motor or the output device: At the outpu®
device, which we can consider to be 2 mechanical interface petween the
“«nel’gY—Charged Auid system a0 the mechanica\ 10ad, the energy 18
transterred to the 1oad; that is, useful work is done- This completes the
simple cycle of energy ransfer in & fuid power gystem.

The details descriping wow all these functions 2re performed, the
analytical sechniques for describing these actions and the designs, Types
and functions of the various components which are used t0 implemen’o
these systems constitute the body of knowiedge of fluid power technology-
Within this text W have discussed the iundamentals of fluid mechanics O
which the technology 18 based.
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IMPORTANT TERMS

Hydrodynamic pumps are those types of pumps which transfer energy to a
fluid by means of kinetic energy.

Hydrostatic pumps are pumps which transfer energy to a fluid by means of
an increase in potential energy.

Positive displacement pump is a hydrostatic pump type in which a discrete
volume of fluid is forcibly ejected from the pump during each cycle of
operation.

Gear pump is a positive displacement pump using two or more gears in
mesh fo perform the pumping action

Vane pump is a positive displacement pump which utilizes radial, shding
vanes positioned in slots in a rotor to perform the pumping funetion.
Piston pump is a class of positive displacement pump which uses eylindrical
pistons reciprocating in cylinder bores to provide the pumping action.
Volumetric efficiency, expressed in percent, is the ratio of the actual dis-
placement of a PD pump to its theoretical displacement

Mechanical efficiency, expressed in percent, of a PD pump is the ratio of
theoretical torque necessary to operate it at any given operating pomnt to
the actual torque required to run it.

Overall efficiency is the product of the volumetric and the mechanical
efficiencies.

Direction control valves are fluid switching devices which route or switeh fiurd
from one pipe line to another,

Pressure control valve is a fluid power control device used to control pressure
level in a circuit or to perform some function related to pressure level.
Flow control valve is a fluid power control device which regulates flow rate in
a circuit downstream from the position of the valve,

PROBLEMS

18-1 The basic factors to be considered mn a pumpmg system are shown in
Fig 18-11. Neglecting losses, one can use Bernoull’s equation to char-
acterize the system. The pump is driven by & 10-hp electric motor. Pump
efficiency is 80%. P = —3psi, di (pipe) = 2in., d2 (mpe) =1%in,and
the suction hit is 5 ft. Assuming the motor is fully loaded, determmne the
height to which the water can be raised
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Zo=discharge
- head

i
— Py Zy=suction

P, I head
E—f FT—“j Fig. 18-11

18-2 A centrifugal water pump impeller 18 in. in diameter rotates at 1800 rpm.
Assuming no flow through the pump, determine the maximum pressure
developed at the discharge port.

18-3 A centrifugal pump operating at 2000 rpm develops a head of 180 ft at a
flow rate of 1000 gpm. What is its specific speed?

18-4 A gear-type pump is designed with gears having an outside diameter of
3 in. and a root diameter of 2 in. The gears are 2 in. long. Calculate the
displacement of a two-gear pump. At a prime mover speed of 1800 rpm,
determine the flow rate. The discharge pressure is 1200 psi. Calculate
the hydraulic horsepower. If the pump is 809, efficient, what size prime
mover must be used?

18-5 Repeat Problem 18-4, using a three-gear pump.

18-6 A vane pump has a cam ring diameter of 6 in. Eccentricity between the
cam and rotor is 0.250 in. Rotor elements are 1 in. wide. Calculate the
pump displacement. Plot the curve of the flow rate versus the speed of
the prime mover.

18-7 A piston pump has 9 pistons of -in. diameter arranged axially around the
shaft center. The stroke is a maximum of £ in. Neglecting losses, calculate
the displacement. What is the flow rate at 1200 rpm? If discharge
pressure is 3000 psi, what is the output horsepower? If the pump is 91%
efficient, determine the horsepower of the prime mover.

18-8 Consider the gear pump of Problem 18-4. If the volumetric efficiency is
88% and the mechanical efficiency is 85%, repeat the calculations of
18~4. At the 1800-rpm speed, what is the actual leakage or slip rate?

18-9 If the volumetric efficiency in the vane pump of Problem 18-6, is 90%
and the mechanical efficiency is 95%, repeat the calculations. N =
1800 rpm; P = 1500 psi.

18-10 If the volumetric efficiency is 95% and the mechanical efficiency is 93%,
recalculate the data for the piston pump of Problem 18-7.

18~11 If the pistons and cylinders of Problem 18-7 are placed on a 6-in. center-
line circle and mineral-based hydraulic oil is the fluid, what is the pressure
generated by centrifugal force due to the rotation at 1200 rpm? (See
Chapter 12.) What effect would this pressure have on the flow of oil into
the pump during the suction stroke?

18-12 What would be the centrifugal pressure force in the gear pump of Problem
18-4 and the vane pump of Problem 18-6?
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18-13 Consider a gear motor of the same design as the pump of Problem 18-4,
If o1l enters the motor at 1500 psi at & rate of 60 gpm and if we neglect
Josses, what would be the output speed of the motor? If 1t were actually
1700 rpm, what would be the volumetric efficiency of the motor?

18-14 Under the conditions of Problem 18-13, what was the horsepower de-
livered to the motor? What is the motor's output torque? What was the
actual output horsepower? Caleulate the motor's efficiency.

18-15 What are the basic methods for achieving valving action in direction
control valves?

18-16 What is the control techmique common to both pressure and flow control
valves? Explain how this same technique is used to achieve two different
control functtons,

18-17 What is the fund | diffe between d 1 control and
pressure or flow control valves?

18-18 Discuss the concept of a “Auid power system as an energy transfer system”
asyou see 1t, and relate the concept to the fundamentals of fluid mechames
which we have discussed in this text.




Appendix A

Derivation of Equations for Calculating
Hydrostatic Force on a Submerged Surface

Fig. A-1

Let us suppose that the submerged plate shown in Fig. A-1 is actually a
gate in a dam. What will be the total pressure force, Fp, acting on it?
Where will this resultant act? From

F'=P-A4, dF = PdA,

we have

F=/PdA, dA = w-dh, P =17h

hy
F= /’ Yhw dh,

H

F='wahbhdh—7 h—“b—y—w(hz—hz)
B =g, T 2 T e

215
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Note that
Area = w(hy — k),
F=lothp g
2
Thus
F = -,.("L;Lf).w(hb — k) =TP. A4,

where P is the pressurc at the centroid of the plate and A is the area of
the plate

Fig. A-2 Fig. A-3

Next let us suppose that the plate 1s not vertical (Fig A-2). Extend
the plane of the plate uatil it intersects the surface at S. The heads will
then be measured as the sin ¢ function of the distance y measured along the
plane of the plate. Then

F o= j”"nin oy dA,
13
Fy = 7Thd = P- A = resultant pressure force

[Rule: The total force on a submerged plane surface is the product of the
pressure at its centroid and the area of the surface ]

‘To determine the point of application of the resultant pressure force on
a submerged plane surface, consider the following:
a) Do not confuse the {olal force, as calculated above, with the pount of
application of the total force. Take the moment of forces about the surface
(See Fig. A~3.)
b) Ms= [ydF. AlsoMs = Fp-yp. ThenFp-yp = [ydF. Wehave
just shown that dF = 7 sin 6y dA. Then

Fp-yp= /’Ysinﬁysz,
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and hence

[vsingy®dd _ [y°d4
yp = = ]
Fr [yda

but
I= / y? dA, 7 = distance to center of gravity (c.g.).

So

1
‘/P_A'ﬂ

The moment of inertia of the plane area about the axis through the
point S can be written in the form

I= Ic.g. + 4. '-.1]2:
where I, .. is the moment of inertia about the axis through c.g. Then

_Ic.g.+A‘ﬂ2 _ Ic.g. Ay2
T Ay T Ayt Ay’

<2

since

[+
<

Nt T

A-g‘j=y’ and yp_y:A-i/"

which shows that the distance from the centroid to the center of pressure
(yp — ¥) equals the moment of inertia about c.g. divided by the moment

of the area about S. (See Fig. A—4.)

Fig. A-4

The radius of gyration of a plane area = +/I/4 = K such that
Iig. = K®. A. Then
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TABLE B-1 SOME PROPERTIES OF TYPICAL LIQUIDS
Absolute
Liguid 8y at F° Density 'f ! viscosity, Kinemalie
slug/ft W-sec/ft nscosuly
General fnds
Alcohol, ethyl 0 807 at 32° 1530 2.49 X 105 | 1.65 ft2/sec
Benzene 0.899 at 32° 1705 | 1.36 X 1073 | 8 X 105 ft%/sec
Carbon 5
tetrachloride 1.595 at 68° 3095 2x 10
1692 X 102
. -2
Castor otl 097 at 68° 1.88 2x10 1t2/sec
Gasoline 0.66-0.69 1.28-1.338 | 6.2 X 105 | 3 X 105 ft2/sec
Glycerine 1260 at 32° 2442 1.75 X 10~2 | 3 X 1072 ft2/sec
24 X 10~4
- -4
Kerosene 082 at 68° 159 38 X 10 142/sec
Lanseed ozl 0042 at 60° 1.812 2,92 X 10-2 | 38.6 ft¥/sec
Mercury 13546 at 68° [ 26282 | 8.28 X 10~5 | 1 X 105 ft2/sec
Turpentine 0.873 at 61° 1.601 33 X 10-5 | 1861t/sec
1.233 X 10-3
. -5
Water, potable 1 at 68° 1.938 236 X 10 112/se0
Water, sea 1.03 at 60° 1.996 315 88U 094 cs
SAE 100t 091at60° | 1762 - 1508 2006 e
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TABLE B~1 {Continued)
. Absolute ) .
Liquid S, at F° Density, ,f ! viscosity, K'mem.atzc
slug/ft Ib-sec/ft viscostty
General fluids
_ 9.62-12.94 cs
A o g ~3 !
SAE 30 oil 0.91 at 60 1762 | 1.4 X 10 210°F
. 16.77-22.68 cs
SAE ° — ’
50 ol 0.91 at 60 1.762 210°F
Hydraulic fluids
Mineral oil (use 200 150 cs, 60°F
(hydraulic oit)y | 0-89 1.727 SSU) 23 ¢s, 120°F
Water tn ol 365 SSU,
emulsion 0.90 1.744 100°F 165.63
\_—
Water-glycol 209 SSU 100 cs, 60°F
solution L1 (ave.) 2.134 100°F’ 27 cs, 120°F
Phosphat 200 cs, 60°F
Phate ester | 1.1 (ave.) 2.134 — 22 ¢s, 120°F
\
Chlorinated
aromatic 1.45 2.811 — Incs
\
MIL-56p 22 ¢s, 60°F
6 0.856 (ave) |  1.659 — 11 cs, 120°F
\
Silicone (- 43 ¢s, T7°F
(F-60) | 1.04 2,015 — 45 cs, 100°F
\
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TABLE B-2 PROPERTIES OF SOME GASES

Specific weight, . Kinemalie
Gas . at 68°F ? | Gas constant, | Adiabatic nscosity, v,
1 ;lm lb/flj3 R, fi/°R exponent, k | al 68°F, 1 atm,
4 J2/sec
Aar 00752 533 1.40 160 X 10—3
Ammonia 0.0448 895 132 165
Carbon diozide 0.1146 349 1.30 91
Methane 0.0416 96.3 132 19.3
Nitrogen 0.0726 551 140 17.1
Ozygen 00830 48.3 140 17.1
Sulfur diozide 0.1695 236 126 5.6
TABLE B-3 PROPERTIES OF AIR AT ATMOSPHERIC
PRESSURE AT DIFFERENT TEMPERATURES
Temperature, | Density, p, | Specific weight, If'zne{natlc pyna[mzc
o slug/j13 , lb/ﬂ3 vzscozmy, v, v2scos y,zu,
Jt2/sec Tb-sec/ft’
0 000268 0.0862 126X 1075 3.28 X 10~7
20 000257 0.0827 136 3.50
40 000247 0.0794 146 3.62
60 000237 00763 158 374
68 000233 0.0752 160 375
80 000228 00735 169 385
100 000220 00709 180 396
120 0.00215 00684 189 407
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TABLE B-4  FRICTIONAL FACTORS f FOR WATER ONLY
(Temperature range about 50°F to 70°F)
For old pipe — approximate range ¢ from 0.004 ft to 0.020 ft
For average pipe — approximate range € from 0.002 ft to 0.003 ft
For new pipe — approximate range € from 0.0005 ft to 0.0010 ft
(f = tabular valve X 10—4%)
Diameler Velocity, ft/sec
.| Type of pipe
. 1 2 3 4 5 6 8 10 15 20 30
Old, comm. 435 415 410 405 400 395 395 390 385 375 370
4 Average, comm. | 355 320 310 300 290 285 280 270 260 250 250
New pipe 300 265 250 240 230 225 220 210 200 190 185
Very smooth 240 205 190 180 170 165 155 150 140 130 120
0ld, comm. 425 410 405 400 395 395 390 385 380 375 365
6 Average, comm. | 335 310 300 285 280 275 265 260 250 240 235
New pipe 275 250 240 225 220 210 205 200 190 180 175
Very smooth 220 190 175 165 160 150 145 140 130 120 115
0ld, comm. 420 405 400 395 390 385 380 375 370 365 360
8 Average, comm. | 320 300 285 280 270 265 260 250 240 235 225
New pipe 265 240 225 220 210 205 200 190 185 175 170
Very smooth 205 180 165 155 150 140 135 130 120 115 110
0ld, comm. 415 405 400 395 390 385 380 375 370 365 360
10 Average, comm. | 315 295 280 270 265 260 255 245 240 230 225
New pipe 260 230 220 210 205 200 190 185 180 170 165
Very smooth 200 170 160 150 145 135 130 125 115 110 105
——————
Old, comm. 415 400 395 395 390 385 380 375 365 360 355
19 Average, comm. | 310 285 275 265 260 255 250 240 235 225 220
New pipe 250 225 210 205 200 195 190 180 175 165 160
Very smooth 190 165 150 140 140 135 125 120 115 110 105
\
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LIST OF SYMBOLS AND ABBREVIATIONS

Symbol Definition Dimensions Unts
a Linear acceleration Length/time2 in/sec?, ft/sec?
A Area Length? m?, ft?
Usually
c Vanous constants dimensionless,
otherwise as defined
Diameter (when used
with camtal D, 1t
a usually denotes nside Length m, ft, em, m
or smaller diameter)
Diameter, larger or
D outside, subscripts Length ., ft, em, m
sometimes used
Eccentricity of one
e centerhne relative to Length m,, ft, em, m
another
b Friction factor Dimensionless see Chaps 14, 15
pounds, ounces,
F Force Force dynes
Acceleration due to
g g:;fi:y Length/time? 1n./sec?, ft/sec?
{t-Ib, 1n-Ib
¢ Work Length force dym;- em '
hor H | Head Length i, ft, ete.
unit of rate of 550 ft-1b/sec/hp,
HP | Horsepower energy transfer 33,000 ft-lb/mn/hp
L gt - sec?
J Polar moment of inertia | force - length - time? ig X f:; 's::c;
Varlous constants, "
bor K usually associated with Usually
OF & { flow losses m pipe, dimensionless
numbers

fittings, valves, ete.

Linear distance

Length

in,, ft, em, m
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Symbol Definition Dimensions Units
L. | Equivalent length Length in., ft, em, m
: force - time? . qee2 /5t —
mor 'M Mass ~Tength g;,nze,cséig /cn:lug’
e | oo vt t0 Chaptor 11 |~ lovgth sug/seo = e
Nr | Reynolds number Dimenstonless
P Press'ure (distributed Force/length? Ib/in2, 1b/ft2,
reaction) (force/area) dyne/cm?
Power (rate of energy force - length ft-1b/sec,
P transfer) T time ft-1b/min
Volumetric:
length3/time ft8/min, in3/sec,
gal/time gpm or gps
gor@ | Flow rate (of fluid) Weight:
force/time Ib/sec, 1b/min
Mass:
. mass/time Ib - see/ft = slug
_’ﬂ Radius Length ft, in., cm, ete.
8\ Distance Length ft, in., cm, ete.
_L Stroke (of cylinder) Length ft, in., cm, ete.
L Specific gravity Dimensionless
‘\ Time Time Sec, min
T | Torque Force - length b - £, Ib - in.
u\ Relative velocity Length/time' ;Efﬁi’l’f;{;ﬁ;’n
“\ Absolute velocity Length/time iﬁ;fslcﬁ,f;{;i:n
V\ Volume Length3 in3, 3, cc or em3
V\O Displacement volume Length3 in?, t3, cc (cm®)
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LIST OF SYMBOLS AND ABBREVIATIONS (Continued)

Symbol Defimition Dimensions Unils
Weight (force on a mass
wor W | due to gravitational Force 1b, oz, g, ete.
aceeleration)
Generally used to
denote position or Depends on
z length along the abscissa | defimtion of abscissa
in a coordinate system
Generally used to
denote length or Depends on
y postion along ordinate § definition of
axis 1n a coordinate ordinate axis
system
Generally used to
denote length or Depends on
z position along an avis defimtion of
perpendicular to the ordinate axis
abscissa and ordinate
4 Elevation head Length in., ft, ete.

GREEK ALPHABET

A « Alpha N v Nu

B 8 Beta Z 4 Xi

T 4 Gamma o ° Ormicron

a 8 Delta i T Pi

E € Epsilon P P Rho

zZ Ie Zeta z -4 Sigma

H 7 Eta T T Tau

8 [ Theta T v Upsilon
1 t Iota & ¢, v Phi

K X Kappa X X Chi

A Y Lambda ¥ 12 Psi

M B Mu Q ] Omega
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GREEK SYMBOLS
Letter | Phonetic Description Dimenstons Units
o« | Alphs Angular acceleration Angle/time?2 | Rad/sec2
8 | Beta Bulk modulus Force/length? | 1b/in2
Absolute height of
€ Epsilon | roughness projection in Length in, ft, em, m
fluid conductor
Specific weight of a 3 | 1b/in3,
Y Gamma substance Force/length 1b/ft3
Del Increment in measurement | Depends on
b elta or variable use
] Theta Angular displacement degrees/rad
M In fluid mechanics, symbol | force - time 1b-sec/ft2,
# u for absolute velocity length? dyne-sec/cm?
In fluid mechanics, symbol 2 /e ft2/sec,
Y Nu for kinematic viscosity Length®/time em?/sec
. Ratio of circumference of a 3.14159 +
T | Pi . ce e _
circle to its diameter cee
Rho In fluid mechanics, force - time?2 slugs,
P density of a substance length 1b-sec?/ft
2. | Sigma Summation _—
In fluid mechanics, viscous o | Ib/in?,
| Tau shear stress force/length dynes/cm?
. ad/sec,
@ | Omega | Angular velocity rad/time rad/

rad/min
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ABBREVIATIONS

ofs  Cubic feet per second
cis  Cubic inches per second
cfm  Cubic feet per minute
eim  Cubic inches per minute
eps  Cycles per second

cs Centistokes (viscosity)
fps  Feet per second

fpm  Feet per minute

gpm  Gallons per minute

ips
ipm
psi
psf
psia
psfa
sefm
S8U

Inches per second

Inches per minute

Pounds per square inch, gage
Pounds per square foot, gage
Pounds per square inch, absolute
Pounds per square foot, absolute
Standard cubic feet per minute
Saybolt Seconds Universal (viscosity)

V.I. Viscosity index
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Abbreviations, table of, 228

Absolute pressure, 13, 22, 178

Absolute roughness, 151, 153, 156

Absolute temperature, 178

Absolute velocity, 110, 117

Absolute viscosity, 138, 142, 218-220

Acceleration, linear, 126-128
angular, 128-129

Accumulator, 189-192

Acoustic (sonic) velocity, 186-187

Action, pressure, 34

Actuator, linear, see Cylinder

Actuator, rotary, limited rotation,

25, 207

Adiabatic process, 190

Air flow in pipes, losses, 182-186

Amplifier, flow-mode, 135-136
pure-fluid, 124-126, 129
turbulence, 135

Apparent flow rate, 112, 117

Approach velocity, 78-80, 84

Archimedes’ principle, 32

Aspirator, 73-74

Atmospheric pressure, 13

Bernoulli’s equation, 48-50, 54, 56,
58, 66, 69
Blasius equation, 154
Borda’s mouthpiece, 88, 98
Boundary layer, 147-150, 156
thickness, 148
drag, 148
Boyle’s law, 179, 180, 184, 192
Branched pipe, 163-165, 171-175
Buoyaney, 32-34
Buoyant force, 32, 35

Cavitation, 170

Center of gravity, centroid, 217

Centgr of pressure, 35, 216-217

Centlpoise, 139

Centistoke, 139

Centroid of g surface, 30

Charles? law, 179, 192

Check valve, 168

Coefﬁcgent of contraction, 76, 83
‘oefficient of velocity, 76, 83
olebrook equation, 154

Commercial pipe, 182, 222-223
Commercial tube, seamless, 222-223
Compressible fluid flow, 177-179,
182-186
Compression ratio, 182, 192
Compressor, 180, 192
Conservation of momentum, 115,
124, 146
Constant head, 106
Continuity of flow, 40, 44, 67, 93,
121, 145
Contracta, vena, 76, 83
Converging tube, 88, 98
Critical pressure, 186-187, 192
Critical velocity, 134-135, 142,
186-187
C,-factor, 187
Cylinder, 20-22, 175
double-acting, 46
hydraulic, 206
pneumatic, 191-192
regenerative, 2122
rotary, 25, 207
single-acting, 20

Darcy-Weisbach formula, 150, 156
Density, 5, 10, 218-220

mass density, 5

weight density, 5
Differential manometer, 16-17
Diffuser, 89-91, 98
Direction control valve, 99, 175,

207208, 212

Discharge coefficient, 77, 83, 187
Displacement volume, 38-39, 44, 200
Distributed reaction, 5-9, 27
Distribution, pressure, 29, 34
Diverging tube, 89, 98
Double-acting cylinder, 46
Drag, 148, 150, 156
Drill-feed unit, air powered, 193

Efficiency, mechanical, 206, 212
overall, 206, 212
volumetric, 206, 212
Energy, control, 207-211
diagram, 51-52, 211
kinetic, 47, 54
potential, 47, 54, 189
storage via accumulator, 189
transfer, 197-198, 206-207
Equivalent length, 161-163, 165

229
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Falling head, 101-106
P-factor, 187
Flapper-nozzle device, 119
Flow, compressible, 177-179, 182-186
laminar, 133, 142
losses, 156
air flow in pipes, 182-186
bends, elbows, fittings, 150, 165
major, 150, 165
minor, 150, 160-161, 165
1n an orifice, 81-83
reduction in section, 150, 165
sudden enlargement, 150, 165
turbulent, 134, 142
Flow coeffictent, 98, 170
Flow continuity, 40, 44, 67, 93, 121,
145

Flow-control valve, 175, 207, 210, 212
Flow in elbows, 146, 161, 169
Flow-mode amphtfier, 135-136
Flow rate, apparent, 112, 117
discharge, hydrodynamic pump, 199
function of /AP, 209-210
mass, 41, 109
valves, 208
volume, 39, 44
weight, 41
Flow velocity, 39
Fld mechsnics, 2
Fluid power, 178, 210-211
energy diagram, 211
hydraulies, 198-212
pneumatic, 180-181, 192
Fluidlcs, 124, 135
Fluids, 2,
gas, 3 9
h)drauhc tnble, 218-220
hquids, 2,
table of pmper!ies, 220
Force, total pressure, 26-32, 35
bouyant, 32, 35
momentum, on pipe bends, 121-124
multiplication via pressure and
ares, 17-20
reaction, 129
Free air, 182-183
Free jet, 80
Friction factor (for pipe flow), 160,
162, 169
table for water, 221
Friction, viscous, see Viccosity

Gage pressure, 13, 22

Gas, 3,

Gas eonstant, universal, 179

Gas laws, 178-179

General gas law, 179, 192

Gradient, pressure, 60-62

Gravity forces, 5

Greek slphabet and symbology,
226-227

Harris formula, 182, 184-185, 192
Head, added (pumping), 51, 54

constant, 106

changing, 29, 101-106

elevation, 4849

falling, 101-106

loss, 51, 54

net, 78

pressure, 9-10, 14, 34, 49

veloeity, 49
Hagen-Poseville equation, 151, 156
Hagen-Williams formula, 167
Hydraulic fluid power systems, 198-

212

Hydrauhec fluds, 218-220
Hydraulic horsepower, 42—14
Hydraule radis, 155-156
Hydrodynamies, 108-134, 197-200
stall, pump, 197-200, 212
Hydrostatic pressure, 27, 34

Ideal flud, 3, 40, 50, 69, 108, 133
Tmpeller, 198-199

Impulse, 117
Impulse-momentum, 108-109
Intensifier, air-hydraulic, 194
Isothermal process, 189-190

Jet, free, 80
impingement, 110-112
moving surface, 110-115
stationary surface, 115-117
submerged, 80
Jet engine, 131
Jet pipe device, 130

K-faetor, 98, 160-161, 165, 187
Kinematic viscosity, 138-139, 142,
218-220

Kinetic energy, 47, 54



Laminar flow, 133, 142

Layer, boundary, see Boundary layer
Leakage, pump, 206

Line, piezometric, 62

Liquid, see Fluids

Losses, flow, 156, see also Flow, losses
Lost Head, see Head, loss

Manometer, 14, 22
differential, 1617
Mass density, 5
Mass flow rate, 41, 109
Mechanical efficiency, 206, 212
Meter, orifice, 84
venturi, 66, 72
Moment of inertia, 217
Momentum, 109, 117, 198
angular, 199
charge of, 115, 198-199
conservation of, 115, 124, 146
force on pipé bend, 121-124
Motors, fluid power, 206207

N-factor, for Harris formula, 183-185
Net head, 78

Newton’s second law, 5, 48

Nozzle, 89, 98

Orifice, 75-78, 83
control with, 186-188
device, orifice-like, 186-187, 208
meter, 84
in & pipe, 80-81
round-edged, 75, 83
sharp-edged, 75, 83
Overall efficiency, 206, 212

Pascal’s law, 8, 10, 22
Perimeter, wetted, 155-156
Piczometer, 12, 22
inclined, 23, 71
_piezometric line, 62
Pipe, see also Equivalent length
branched, 163-165, 171~175
_Commercial, 182, 222-923
Pistonrod, 21 -
Pitot tube, 6972
Plate, drag of, see Drag
Pneumatic fluid power system,
180-181, 192

Index 231

Poise, 139
Polytropic process, 190
Potential energy, 47, 54, 189
Power, hydraulic, 4244
hydrodynamic pump, 199
Precharge, accumulator, 189
Pressure, 5, 9
absolute, 13, 22, 178
action, 34
atmospheric, 13
center of, 35, 216-217
control valve, 175, 207-210
critical, 186-187, 192
distributed reaction, 5-9, 27
distribution, 29, 34
force, total, 29-32, 35
gage, 13, 22
gradient, 60-61, 62
head, 9-10, 14, 34, 49
height relationship, see Head
hydrodynamic, 108-134, 197-200
perpendicular action, 28
static, 27, 34
suction, 203, 204, 205
Pump, positive displacement, 175, 212
design formulae, 201-206
gear, 201-203, 212
hydrokinetic (hydrodynamic),
197-200, 212
hydrostatic, 197, 200-206, 212
piston, 204-206, 212
stall, 200
vane, 203-204, 212
Pump head, 51, 54

Radius of gyration, 217
Ram, see Cylinder
Reentant tube, 87, 98
Regenerative cylinder, 21-22
Regulator, pressure, 180
Relative velocity, 110, 117
Reynolds number, 136, 142, 151
flat plate, 148
hydraulic radius, 155
modified, 159
pipe flow, 136
Rotary eylinder, 25, 207
Roughness, absolute, 151, 153, 156
relative, 151, 153, 156
Round-edged orifice, 75, 83
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Saybolt Seconds Universal, 140-142

Sharp-edged orifice, 75, 83

Shear stress, viscous, 137-138

Single-acting cyhnder, 20

Siphon, 57-60, 62

Ship, pump leakage, 206

Sonic veloeity, 186

Specific gravity, 7, 10, 218-220

Spectfic heat, 99

Specific speed, 199

Specific volume, 180

Specific weight, 5, 10

Standard conditions, 192

Standard cubic feet per minute
(scfm), 181, 192

Standard short tube, 86-87, 98

Static pressure, 27, 34

Stoke, 139

Stroke, cylinder, 44

Submerged jet, 80

Sudden change 1n section, 150, 165

Supersonic velocity, 186

Symbols, table of, 224-226

Temperature, absolute, 178
Throat velocity, onfice, 186-187
Torricelll’s theorem, 56-57, 62, 67
Torque, to drive centrifugal pump,

Transition, 134
Tube, Borda’s mouthpiece, 88, 93
commercial, 222-223
converging, 88, 98
diverging, 89, 98
pitot, 69-72
reentant, 87, 93
standard short, 86-87, 98
Turbulent flow, 134, 142

Universal gas constant, 179

Vacuum, 13, 22
Valves, air (pneumatic), 187
Valves, designs, rotating, 208
seating, 207
shdmg, 207
spool, 208
Valves, flow rate, 208

Valves, functions, directional control,
99, 175, 207-208, 212
flow control, 175, 207, 210, 212
pressure control, 175, 207, 208-210
reducing valve, 210
relief valve, 210
sequence valve, 210
unloading valve, 210
Valves, hydraulie, 207-210
Valves, orifice-like devices, 186-187,
208

Veloaity, absolute, 110, 117
angular, 128, 198
approach, 78-80, 84
average, 145, 156
coefficient of, 76, 83
enitieal, 134-135, 142, 186-187
distnibution 1 pipe flow, 145-146
flow, 39
head, 49
profile, 156
radal, 198
relattve, 110, 117
sonic, 186
subsonic, 186
supersonic, 186
tangential, 198
throat, 186-187
vector quantity, 109-110, 198
Venturt, meter, 66, 72
principle, 65-66, 72
Vera contracta, 76, 83
Viscosity, 136-142
ahsolute, 138, 142, 218-220
conversion, English-metric, 139
kinematic 138-139, 142, 213-220
Saybolt Seconds Universal, 140-142
Viscosity index, 141, 142
Volume, 3—4
displacement, 38-39, 44, 200
flow rate, 44, 199
spectfic, 180
Volumetric efficiency, 206, 212

Weight, flow rate, 41
Weight density, 5
Wetted perimeter, 155-1566
Wire-drawing, 84
Work, 41-42, 44, 48

by impinging jet, 113
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