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Preface To The English Edition

The first English edition of this book corresponds to the third Portuguese
edition. Since the translation has been done by the author, a complete review
of the text has been carried out simultaneously. As a result, small improve-
ments have been made, especially by explaining the introductory parts of some
Chapters and sections in more detail.

The Portuguese academic environment has distinguished this book, since
its first edition, with an excellent level of acceptance. In fact, only a small
fraction of the copies published has been absorbed by the school for which it
was originally designed — the Department of Civil Engineering of the Univer-
sity of Coimbra. This fact justifies the continuous effort made by the author to
improve and complement its contents, and, indeed, requires it of him. Thus,
the 423 pages of the first Portuguese edition have now grown to 478 in the
present version. This increment is due to the inclusion of more solved and pro-
posed exercises and also of additional subjects, such as an introduction to the
fatigue failure of materials, an analysis of torsion of circular cross-sections in
the elasto-plastic regime, an introduction to the study of the effect of the plas-
tification of deformable elements of a structure on its post-critical behaviour,
and a demonstration of the theorem of virtual forces.

The author would like to thank all the colleagues and students of Engi-
neering who have used the first two Portuguese editions for their comments
about the text and for their help in the detection of misprints. This has greatly
contributed to improving the quality and the precision of the explanations.

The author also thanks Springer-Verlag for agreeing to publish this book
and also for their kind cooperation in the whole publishing process.

Coimbra V. Dias da Silva
March 2005



Preface to the First Portuguese Edition

The motivation for writing this book came from an awareness of the lack of
a treatise, written in European Portuguese, which contains the theoretical
material taught in the disciplines of the Mechanics of Solid Materials and
the Strength of Materials, and explained with a degree of depth appropriate
to Engineering courses in Portuguese universities, with special reference to
the University of Coimbra. In fact, this book is the result of the theoretical
texts and exercises prepared and improved on by the author between 1989-94,
for the disciplines of Applied Mechanics IT (Introduction to the Mechanics of
Materials) and Strength of Materials, taught by the author in the Civil Engi-
neering course and also in the Geological Engineering, Materials Engineering
and Architecture courses at the University of Coimbra.

A physical approach has been favoured when explaining topics, sometimes
rejecting the more elaborate mathematical formulations, since the physical
understanding of the phenomena is of crucial importance for the student of
Engineering. In fact, in this way, we are able to develop in future Engineers
the intuition which will allow them, in their professional activity, to recognize
the difference between a bad and a good structural solution more readily and
rapidly.

The book is divided into two parts. In the first one the Mechanics of
Materials is introduced on the basis of Continuum Mechanics, while the second
one deals with basic concepts about the behaviour of materials and structures,
as well as the Theory of Slender Members, in the form which is usually called
Strength of Materials.

The introduction to the Mechanics of Materials is described in the first
four chapters. The first chapter has an introductory character and explains
fundamental physical notions, such as continuity and rheological behaviour.
It also explains why the topics that compose Solid Continuum Mechanics
are divided into three chapters: the stress theory, the strain theory and the
constitutive law. The second chapter contains the stress theory. This theory is
expounded almost exclusively by exploring the balance conditions inside the
body, gradually introducing the mathematical notion of tensor. As this notion
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is also used in the theory of strain, which is dealt with in the third chapter,
the explanation of this theory may be restricted to the essential physical
aspects of the deformation, since the merely tensorial conclusions may be
drawn by analogy with the stress tensor. In this chapter, the physical approach
adopted allows the introduction of notions whose mathematical description
would be too complex and lengthy to be included in an elementary book.
The finite strains and the integral conditions of compatibility in multiply-
connected bodies are examples of such notions. In the fourth chapter the
basic phenomena which determine the relations between stresses and strains
are explained with the help of physical models, and the constitutive laws in
the simplest three-dimensional cases are deduced. The most usual theories
for predicting the yielding and rupture of isotropic materials complete the
chapter on the constitutive law of materials.

In the remaining chapters, the topics traditionally included in the Strength
of Materials discipline are expounded. Chapter five describes the basic notions
and general principles which are needed for the analysis and safety evaluation
of structures. Chapters six to eleven contain the theory of slender members.
The way this is explained is innovative in some aspects. As an example, an al-
ternative Lagrangian formulation for the computation of displacements caused
by bending, and the analysis of the error introduced by the assumption of in-
finitesimal rotations when the usual methods are applied to problems where
the rotations are not small, may be mentioned. The comparison of the usual
methods for computing the deflections caused by the shear force, clarifying
some confusion in the traditional literature about the way as this deformation
should be computed, is another example. Chapter twelve contains theorems
about the energy associated with the deformation of solid bodies with appli-
cations to framed structures. This chapter includes a physical demonstration
of the theorems of virtual displacements and virtual forces, based on con-
siderations of energy conservation, instead of these theorems being presented
without demonstration, as is usual in books on the Strength of Materials and
Structural Analysis, or else with a lengthy mathematical demonstration.

Although this book is the result of the author working practically alone,
including the typesetting and the pictures (which were drawn using a self-
developed computer program), the author must nevertheless acknowledge the
important contribution of his former students of Strength of Materials for
their help in identifying parts in the texts that preceded this treatise that
were not as clear as they might be, allowing their gradual improvement. The
author must also thank Rui Cardoso for his meticulous work on the search for
misprints and for the resolution of proposed exercises, and other colleagues,
especially Rogério Martins of the University of Porto, for their comments
on the preceding texts and for their encouragement for the laborious task of
writing a technical book.

This book is also a belated tribute to the great Engineer and designer of
large dams, Professor Joaquim Laginha Serafim, who the Civil Engineering
Department of the University of Coimbra had the honour to have as Professor
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of Strength of Materials. It is to him that the author owes the first and most
determined encouragement for the preparation of a book on this subject.

Coimbra V. Dias da Silva
July 1995
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Part 1

Introduction to the Mechanics of Materials



I

Introduction

I.1 General Considerations

Materials are of a discrete nature, since they are made of atoms and molecules,
in the case of liquids and gases, or, in the case of solid materials, also of
fibres, crystals, granules, associations of different materials, etc. The physical
interactions between these constituent elements determine the behaviour of
the materials. Of the different facets of a material’s behaviour, rheological
behaviour is needed for the Mechanics of Materials. It may be defined as the
way the material deforms under the action of forces.

The influence of those interactions on macroscopic material behaviour is
studied by sciences like the Physics of Solid State, and has mostly been clar-
ified, at least from a qualitative point of view. However, due to the extreme
complexity of the phenomena that influence material behaviour, the quanti-
tative description based on these elementary interactions is still a relatively
young field of scientific activity. For this reason, the deductive quantification
of the rheological behaviour of materials has only been successfully applied
to somecomposite materials — associations of two or more materials — whose
rheological behaviour may be deduced from the behaviour of the individual
materials, in the cases where the precise layout of each material is known,
such as plastics reinforced with glass or carbon fibres, or reinforced concrete.

In all other materials rheological behaviour is idealized by means of phys-
ical or mathematical models which reproduce the most important features
observed in experimental tests. This is the so-called phenomenological ap-
proach.

From these considerations we conclude that, in Mechanics of Materials,
a phenomenological approach must almost always be used to quantify the
rheological behaviour of a solid, a liquid or a gas. Furthermore, as the consid-
eration of the discontinuities that are always present in the internal structure
of materials (for example the interface between two crystals or two granules,
micro-cracks, etc.), substantially increases the degree of complexity of the
problem, we assume, whenever possible, that the material is continuous.
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From a mathematical point of view, the hypothesis of continuity may be
expressed by stating that the functions which describe the forces inside the
material, the displacements, the deformations, etc., are continuous functions
of space and time.

From a physical point of view, this hypothesis corresponds to assuming
that the macroscopically observed material behaviour does not change with
the dimensions of the piece of material considered, especially when they tend
to zero. This is equivalent to accepting that the material is a mass of points
with zero dimensions and all with the same properties.

The validity of this hypothesis is fundamentally related to the size of the
smallest geometrical dimension that must be analysed, as compared with the
maximum dimension of the discontinuities actually present in the material.

Thus, in a liquid, the maximum dimension of the discontinuities is the
size of a molecule, which is almost always much smaller than the smallest
geometrical dimension that must be analysed. This is why, in liquids, the
hypothesis of continuity may almost always be used without restrictions.

On the other side, in solid materials, the validity of this hypothesis must
be analysed more carefully. In fact, although in a metal the size of the crystals
is usually much smaller than the smallest geometrical dimension that must
be analysed, in other materials like concrete, for example, the minimum di-
mension that must be analysed is often of the same order of magnitude as
the maximum size of the discontinuities, which may be represented by the
maximum dimension of the aggregates or by the distance between cracks.

In gases, the maximum dimension of the discontinuities may be represented
by the distance between molecules. Thus, in very rarefied gases the hypothesis
of continuity may not be acceptable.

In the theory expounded in the first part of this book the validity of the
hypothesis of continuity is always accepted. This allows the material behaviour
to be defined independently of the geometrical dimensions of the solid body
of the liquid mass under consideration. For this reason, the matters studied
here are integrated into Continuum Mechanics.

1.2 Fundamental Definitions

In the Theory of Structures, actions on the structural elements are defined as
everything which may cause forces inside the material, deformations, acceler-
ations, etc., or change its mechanical properties or its internal structure. In
accordance with this definition, examples of actions are the forces acting on
a body, the imposed displacements, the temperature variations, the chemical
aggressions, the time (in the sense that is causes aging and that it is involved in
viscous deformations), etc. In the theory expounded here we consider mainly
the effects of applied forces, imposed displacements and temperature.

Some basic concepts are used frequently throughout this book, so it is
worthwhile defining them at the beginning. Thus, we define:
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— Internal force — Force exerted by a part of a body or of a liquid mass on
another part. These forces may act on imaginary surfaces defined in the
interior of the material, or on its mass. Examples of the first kind are axial
and shear forces and bending and torsional moments which act on the cross-
sections of slender members (bars). Examples of the second kind would be
gravitational attraction or electromagnetic forces between two parts of the
body. However, the second kind does not play a significant role in the current
applications of the Mechanics of Materials to Engineering problems, and so
the designation internal force usually corresponds to the first kind (internal
surface forces).

— FExternal forces — Forces exerted by external entities on a solid body or
liquid mass. The forces may also be sub-divided into surface external forces
and mass external forces. The corresponding definitions are:

— Eaxternal surface forces — External forces acting on the boundary surface
of a body. Examples of these include the weight of non-structural parts
of a building, equipment, etc., acting on its structure, wind loads on
a building, a bridge, or other Civil Engineering structure, aerodynamic
pressures in the fuselage and wings of a plane, hydrostatic pressure on
the upstream face of a dam or on a ship hull, the reaction forces on the
supports of a structure, etc.

— FEaxternal mass forces — External forces acting on the mass of a solid body
or liquid. Examples of external mass forces are: the weight of the material
a structure is made of (earth gravity force), the inertial forces caused
by an earthquake or by other kinds of accelerations, such as impact,
vibrations, traction, braking and curve acceleration in vehicles and planes,
and external electromagnetic forces.

— Rigid body motion — displacement of the points of a body which do not
change the distances between the points inside the body.

— Deformation — Variation of the distance between any two points inside the
solid body or the liquid mass.

These definitions are general and valid independently of assuming that the
material is continuous or not. In the case of continuous materials two other
very useful concepts may be defined:

— Stress — Physical entity which allows the definition of internal forces in a
way that is independent of the dimensions and geometry of a solid body or
a liquid mass. There are several definitions for stress. The simplest one is
used in this book, which states that stress is the internal force per surface
unit.

— Strain — Physical entity which allows the definition of deformations in a
way that is independent of the dimensions and geometry of a solid body or
a liquid mass. As with stress, there also are several definitions for strain.
The simplest one states that strain is the variation of the distance between
two points divided by the original distance (longitudinal strain), or half the
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variation of a right angle caused by the deformation (shearing strain). This
strain definition is used throughout this book.

1.3 Subdivisions of the Mechanics of Materials

The Mechanics of Materials aims to find relations between the four main
physical entities defined above (external and internal forces, displacements
and deformations). Schematically, we may state that, in a solid body which
is deformed as a consequence of the action of external forces, or in a flowing
liquid under the action gravity, inertial, or other external forces, the following
relations may be established

External Internal

forces = | forces
Displacements Deformations
(velocities, < > (deformation
accelerations) rates)

When the validity of the hypothesis of continuity is accepted, these rela-
tions may be grouped into three distinct sets

force <9> stress <@> strain @ displacement

1 — Force-stress relations — Group of relations based on force equilibrium
conditions. Defines the mathematical entity which describes the stress —
the stress tensor — and relates its components with the external forces. This
set of relations defines the theory of stresses. This theory is completely
independent of the properties of the material the body is made of, except
that the continuity hypothesis must be acceptable (otherwise stress could
not be defined).

2 — Displacement-strain relations — Group of relations based on kinematic
compatibility conditions. Defines the strain tensor and relates its compo-
nents to the functions describing the displacement of the points of the body.
This set of relations defines the theory of strain. It is also independent of
the rheological behaviour of material. In the form explained in more detail
in Chap. III, the theory of strain is only valid if the deformations and the
rotations are small enough to be treated as infinitesimal quantities.
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3 — Constitutive law — Defines the rheological behaviour of the material, that
is, it establishes the relations between the stress and strain tensors. As men-
tioned above, the material rheology is determined by the complex physical
phenomena that occur in the internal structure of the material, at the level
of atom, molecule, crystal, etc. Since, as a consequence of this complexity,
the material behaviour still cannot be quantified by deductive means, a
phenomenological approach, based on experimental observation, must used
in the definition of the constitutive law. To this end, given forces are ap-
plied to a specimen of the material and the corresponding deformations are
measured, or vice versa. These experimentally obtained force-displacement
relations are then used to characterize the rheological behaviour of the ma-
terial.

The constitutive law is the potentially most complex element in the chain
that links forces to displacements, since it may be conditioned by several
factors, like plasticity, viscosity, anisotropy, non-linear behaviour, etc. For this
reason, the definition of adequate constitutive laws to describe the rheological
behaviour of materials is one of the most extensive research fields inside Solid
Mechanics.



I1

The Stress Tensor

I1.1 Introduction

Some physical quantities, like the mass of a body, its volume, its surface,
etc., are mathematically represented by a scalar, which means that only one
parameter is necessary to define them. Others, like forces, displacements, ve-
locities, etc., are vectorial entities, which need three quantities to be defined
in a three-dimensional space, or two in the case of a two-dimensional space.
Other physical entities, like the states of stress and strain around a material
point inside a body under internal forces, are tensorial quantities, which may
be described by nine components in a three-dimensional space, or by four in
a two-dimensional space.

In a more general and systematic way, a scalar may be defined as a tensor
of order zero with 3° = 1 components, and a vector as a first order tensor
with 3! = 3 components. A second order tensor, or simply, tensor, has 32 = 9
components. Higher order tensors may also be defined. An n'" order tensor will
have 3" components in a three-dimensional space (or 2" in a two-dimensional
space). As will be seen later, the tensor components are not necessarily all
independent.

Below, the stress tensor is defined and some of its properties are analysed.

I1.2 General Considerations

Consider a solid body under a system of self-equilibrating forces, as shown
in Fig. 1-a. Imagine that the body is divided in two parts by the section
represented in the same Figure. Internal forces act in the left surface of the
section, representing the action of the right part of the body on the left part.
Similarly, as a consequence of the equilibrium condition, in the right surface
forces act with the same magnitude and in opposite directions, as shown
in Fig. 1-b. The force F' and the moment M represent the resultant of the
internal forces distributed in the section, which generally vary from point to
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point. However, by considering an infinitesimal area, d(2, in the surface (Fig.
2-a), we may consider a homogeneous distribution of the internal force in this
area. Dividing the infinitesimal force dF’, which acts in the infinitesimal area
dQ2, we get the internal force per unit of area or stress.

dF
- = (1)

(b)

Fig. 1. Internal forces in a solid body under a self-equilibrating system of forces

T

S
]

n, N

Fig. 2. Stress in an infinitesimal surface (facet)

The orientation of the infinitesimal surface of area dQ2 (facet) in a rectan-
gular Cartesian reference frame zyz may be defined by a unit vector 77, which
is perpendicular to the facet and points to the outside direction in relation to
the part of the body considered (Fig. 2-b). This vector 7, is the semi-normal
of the facet and, as a unit vector, its components are the cosines of the angles
between the vector and the coordinate axes — the direction cosines of the facet

ng =cos (n,z) =1
ny =cos(n,y) =m
n, =cos(n,z) =n.

As the vector has a unit length, we have
P+m?4+n?=1. (2)

The stress acting on the facet may be decomposed into two components: a
normal one, with the direction of the semi-normal of the facet ¢ = T cosa,
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and a tangential or shearing component 7 = T'sin«a, where « is the angle
between the semi-normal 7 and the total stress vector T' (Fig. 2-b).

In the right surface of the section we may define a facet, which is coincident
with the left one, but has an opposite semi-normal with direction cosines
—Il,—m, —n and stresses ¢ and 7 with the same magnitude as in the left facet,
but opposite directions. In the case of a facet which is perpendicular to a
coordinate axis, it will be a positive facet if its semi-normal has the same
direction as the axis to which it is parallel, and it will be negative in the
opposite case. As the normal stress ¢ in these facets is parallel to one of the
coordinate axes, the shearing stress 7 may be decomposed in the directions of
the other two coordinate axes.

In the presentation that follows the Von-Karman convention will be used
for the stresses. According to this convention, the stresses are positive if they
have the same direction as the coordinate axis to which they are parallel, in
the case of a positive facet. In the case of a negative facet, the stresses will be
positive, if they have the direction opposite to the corresponding coordinate
axis. We will denote the normal stresses parallel to the axes x, y and z by o, oy
and o, respectively. The shearing stresses are represented by the notation 7,
where the first index represents the direction of the semi-normal of the facet
and the second one the direction of the shearing stress vector. For example 7,
denotes the shearing stress component which is parallel to the z coordinate
axis and acts in a facet whose semi-normal is parallel to the y axis.

External force components are positive if they have the same direction as
the coordinate axes to which they are parallel.

Figure 3 shows the stresses acting in a rectangular parallelepiped defined
by three pairs of facets, which are perpendicular to the three coordinate axis
and are located in an infinitesimal neighborhood of point P.

Fig. 3. Positive normal and shearing stresses
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11.3 Equilibrium Conditions

Stresses and external forces must obey static and dynamic equilibrium condi-
tions. Using these conditions, some relations may be established in the interior
of the body, as well as in its boundary. These fundamental relations are de-
duced in the following two sub-sections.

I1.3.a Equilibrium in the Interior of the Body

The static equilibrium of a body, or a part of it, under the action of a system of
forces demands that both its resulting force and its resulting moment vanish.
If the resulting moment is zero, we have rotation equilibrium; if the resulting
force is zero, equilibrium of translation is attained.

The forces acting in the rectangular parallelepiped defined by the three
pairs of facets in Fig. 3 are in equilibrium of translation, since the stress
vectors in each pair of facets are equal (more precisely, the difference between
them is infinitesimal) and have opposite directions. The external body forces
are therefore equilibrated by the infinitesimal difference between the stresses
in the negative and positive facets of the pair. The corresponding expressions
are presented later. We will first analyse the rotation equilibrium conditions.

Equilibrium of Rotation

Assuming that the translation equilibrium is guaranteed, the resulting mo-
ment will be zero or a couple. The latter will vanish if the moments of the
forces in relation to three axes, which have a common point, are non-parallel
and do not lie along to the same plane, are zero. For simplicity, we consider
axes, which are parallel to the reference system and contain the geometrical
center of the infinitesimal parallelepiped (Fig. 3). Considering, for example,
the axis x’ parallel to z, the only forces which have a non-zero moment in
relation to this axis are the resultants of 7, and 7., as it can be confirmed
by looking at Fig. 3 and as represented in Fig. 4.

The condition of zero moment of the forces which result from the stresses
represented in Fig. 4, around the axis 2/, may be expressed by the equation

d d
2 (Tyz dx dz 2:1/) -2 (sz dx dy ;) =0 =Ty =". (3)

The conditions which express the equilibrium of rotation around the axes g’
and 2’, parallel to the global axes y and z, respectively lead to the conclusion
that 7,y = 7y, and 7., = 7,. These expressions, together with expression 3,
represent the so-called reciprocity of shearing stresses in perpendicular facets.
Since the reference axes may have any spatial orientation, the reciprocity may
be expressed in the following way, which is independent of reference axes:
considering two perpendicular facets, the components of the shearing stresses
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Fig. 4. Equilibrium of rotation around axis z’

which are perpendicular to the common edge of the two facets have the same
magnitude and either both point to that edge or both diverge from it.!

Equilibrium of Translation

As stated above, the translation equilibrium, in terms of the forces, which
act on the faces of the infinitesimal parallelepiped (Fig. 3) is verified. These
forces are infinitesimal quantities of the second order: for example, the force
corresponding to the stress oy is 0, dz dz. The body forces acting in the par-
allelepiped are infinitesimal quantities of the third order: for example, the
force corresponding to the body force per unit of volume in the direction x,
X, is Xdz dydz. For these reasons, the body forces can be related to the
forces corresponding to the variation of the stress, which are also infinitesimal
quantities of third order. Since o, ..., 7;, are the mean values of the stresses
in the facet, it is only necessary to compute the variation of the stress in the
direction of the coordinate corresponding to the semi-normal of the facet, on
which the stress acts. Figure 5 displays the forces acting on the infinitesi-
mal parallelepiped, including the body forces and the variations of the stress
functions.

The condition of equilibrium of the forces acting in direction z leads to
the expression

doy dydz + d7yy dz dz + drpp dzdy + Xdzdydz =0. (4)

'If the external loading were to include moments Mx, My, Mz, distributed in
the volume of the body, instead of equation (3) we would obtain the expression
Tyz — Tzy + Mx = 0 and there would be no reciprocity of the shearing stresses.
However, this kind of loading does not usually have physical significance, except in
problems which are beyond the scope of this text, such as the case of the influence
of a strong magnetic field on the stress distribution in a magnetized body. For this
reason, in the discussion below, the reciprocity of the shearing stresses will will
always be considered valid.
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Tyz + d7yz doy= 32/1 dy

do, = 8;; dz
O T
dTy= ;;y dx

|~ Tay + dTay Ty
dryz= 3?; dy

Toy + Aoy~

Oy
oz + doy drez= "p7" d
dre= 852; dz

1}
Toz + Aoz dTyZZ ;ZZ dy

o
dey= gzzy dz

o, + do.

Tea + dToa —

Tyz v Tyz

Fig. 5. Forces acting on the infinitesimal parallelepiped

By substituting the stress variations with their values as defined in Fig. 5
and eliminating the product dz dy dz, which appears in every element of the
resulting expression, we get the first of the differential equations of equilibrium,

which are
0oy,  OTye O

Ein e

Tay oy Tey

T L T v

S Gl Y =0 (5)
0Ty n 07y n Oo, L Z—0

Ox Oy 0z -

The last two expressions are obviously obtained from the conditions of equi-
librium of translation in directions y and z, respectively.

Expressions 5 have been obtained by using the equilibrium conditions in
a solid body in static equilibrium or in uniform motion. But it is very easy to
generalize them to solids or liquids in non-uniform motion, by including the
inertial forces in the body forces.

To this end, let us consider the situation represented in Fig. 5, for the case
of no static balance. In this case, the resulting force is not zero, but induces
an acceleration, which, in the most general case, has components in the three
coordinate axes. Taking the direction z, for example, instead of expression 4,
the fundamental equation of dynamics yields the relation

do, dy dz + dryp dx dz + drp do dy + X do dy dz

force
acceleration 9 9 9
=~ Oz Tyx Tzx
=pdxdydz “a, = + = 4+ + X —pa; =0, (6)
—_— ox Jy 0z ——

mass X

where a, represents the acceleration component in direction x and p is the
density of the material. If we define the inertial forces
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X; = —pay
Y = —pay
Z’L' = _Paz 9

these may be treated as body forces in a body in static equilibrium, as stated
by expression 6.

I1.3.b Equilibrium at the Boundary

The balance conditions of the forces acting in the infinitesimal neighborhood
of a point belonging to the boundary of the body may be established by
considering an infinitesimal tetrahedron defined by three facets, whose semi-
normals are parallel to the coordinate axes and by a facet on the boundary.
Figure 6 shows this tetrahedron and the stresses and boundary forces per area
unit (X, Y, Z) acting on its faces. Since stresses and boundary forces may be
considered as uniformly distributed, their resultants act on the centroids of

the facets.

/

x

e ——
Qy = Qcos(n,y) = mQ

(a) (b)
Fig. 6. Infinitesimal tetrahedron defined at the boundary of a body

The conditions expressing the rotation equilibrium around the axis of X, Y
and Z confirm the reciprocity of the shearing stresses, since the moments of the
body forces acting on the tetrahedron do not need to be considered, because
they are infinitesimal quantities of the fourth order, while the moments of
the stress resultants are infinitesimal quantities of the third order (note that
boundary forces and normal stresses are on the same lines).
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The balance equation for the translation in direction x yields the expres-
sion (Fig. 6-a)

XQ— 0,0 — 7y — 720 =0, (7)
where €, €, Q,, 1 represent the areas of the triangles obc, oac, oab, abc,
respectively. Denoting the direction cosines of the semi-normal of the facet
abe by I, m, n, the following relations are easily stated (cf. Fig. 6-b)

Q=10 Q,=mQ Q. =nQ.

By substituting these relations in equation (7), we get the first of the boundary
balance equations, which are

log + mTyy + 7y =

(8)

ITey +moy + N7y =

NI <]

1o, + M1y, + 10, =

The last two equations are obviously obtained from the conditions of equi-
librium in the directions y and z, respectively. Expressions 8 are also valid
in presence of inertial forces, since these, as body forces, lead to infinitesimal
quantities of the higher order in the balance equations, so that they do not
need to be considered.

I1.4 Stresses in an Inclined Facet

The stresses acting on an inclined facet (a facet whose semi-normal is not
parallel to any of the coordinate axes) may be obtained from the balance
equations of the forces acting in an infinitesimal tetrahedron similar to the
one in Fig. 6, with the difference that the triangle abc represents the inclined
facet inside the body (Fig. 7-a).

(b)

Fig. 7. Stresses in an inclined facet

Denoting by T, Ty, T, the components in the reference directions of the
stress vector acting on the facet abc and by [, m and n the direction cosines
of its semi-normal, expression 8 directly gives the Cauchy equations
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Ty =log + M7y + 0T
Ty = Ty + Moy + N7,y (9)

T, = 1z, + M7y, +no, .

Using matrix notation, we may write

T, O Tyz Tzx l
Ty p=|Tay Oy Ty m . (10)
T, Tez Tyz O n
—_—— ————
{T} [o] {1}

We may conclude that the elements of matrix [o] are sufficient to compute the
stress in any inclined facet around point o, which means that they completely
define the state of stress around point o. This matrix therefore defines the
stress tensor. As a consequence of the reciprocity of the shearing stresses, only
six of its nine components are independent, which means that six quantities
are generally necessary (and sufficient) to define the stress state around a
point.

The normal stress component is the projection of vector T in the direction
of the semi-normal to the facet. Taking into consideration the reciprocity of
the shearing stresses (Toy = Typ, Taz = Tip and 7, = 7y), We get

o =1T, +mT, +nT,

= 1?0, + m20y +n20, + 2lmyy + 2inTy, + 2mnTy, . (11)

The magnitude of the shearing stress may be found by means of Pythago-
ras’ theorem, 72 = T2 — o2 (Fig. 7-b). The components 7, 7, and 7, of the
shearing stress in the reference directions may be obtained by subtracting the
components of the normal stress o to the components of the total stress T
yielding

=T, —lo

1, =Ty, —mo (12)

n=T1,—no.

I1.5 Transposition of the Reference Axes

Rotating the reference axes obviously causes a change in the components of the
stress tensor. These are the stresses that act in facets, which are perpendicular
to the new reference axes as shown in Fig. 8. Next we develop an expression
to compute the new components of the tensor when the Cartesian rectangular
reference system rotates.

Let us first consider the stress T/, which acts on the facets with a semi-
normal z’ and has the components T}/, T,y and Ty, in the original reference
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Y

Fig. 8. Transposition of the reference axes

system (zyz). Changing the notation used for the direction cosines, expres-
sions 10 give

I =(,2) Ty Or Tyz Te (2, x)
m =@ y) =  Twy ¢ = | Ty Oy Tay (', y)
n = (a,2) T, Toz Ty O (', 2)

Proceeding in the same way in relation to the stresses acting in the facets
with semi-normals ¥’ and 2/, we get, in matrix notation

Tac/ar Ty’x Tz’x Ox  Tyr T (1‘/737) (ylvx) (2171,)

Tory Tyy Toy| =Ty oy 7y |x|@y) @y (L)

Ta:’z Ty’z Tz’z Tez  Tyz Oz (xlv Z) (y/a Z) (ZI7 Z)
(T] [o] [1]

(13)
The elements of matrix [T'] are the stresses acting in the new facets (semi-
normals 2/, y" and 2’), but still represented by their components in the original
xyz reference system. The components of the tensor in the new reference
system z'y’z" are the projections of the stresses [T'] in the directions z'y’z’.
These components may be obtained by the matrix operation

Oy’ Ty'z  Tzim! (LL'I, iC) (x/, y) (iC/7 Z) Tx’x Ty/z Tz/z
Ty Oy Ty | = (yl’ .Z') (y/a y) (y/7 Z) X Ta:’y Ty’y Tz’y
Tarz! Ty'z! Oz (Zlv 37) (Z/a y) (Z/7 Z) Tm'z Ty’z Tz’z
[o] U [T]=[o][1]
(14)

Combining expressions 13 and 14, we get

[o']= 111" [o]11] - (15)

As the vectors in matrix [[] are orthogonal and have unit length and since
the scalar product of orthogonal vectors is zero, we get
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[ == = [e]=[11o111], (16)

where [ I'] represents the identity matrix.

I1.6 Principal Stresses and Principal Directions

The stress tensor [o] may be seen as a linear operator, which transforms the
unit vector represented by the semi-normal of the facet, with components I,
m and n, in the vector of components T, T, T, (the stress on the facet), as
described by expression 10.

Since it is a symmetrical linear operator, it is known from the linear Alge-
bra that it can always be diagonalized, that the three roots of its characteristic
equation are all real and, if they are all different, its eigenvectors are orthog-
onal. Transposing these conclusions to the stress state around a point, this
means that there are always three facets, perpendicular to each other, where
the stress vector has the same direction as the normal to the facet. As a con-
sequence, the shearing stress vanishes. The stresses in those principal facets
are the principal stresses and their normals are the principal directions of the
stress state.

In the following exposition, these notions are analysed and expressions for
their computation from the components of the stress tensor in a rectangular
Cartesian system are deduced. As far as possible, a physical analysis of the
stress state will be preferred to a mathematical analysis of the linear operator
[o], since, for the student of engineering, the physical understanding of the
underlying phenomena is of crucial importance.

Let us consider a principal facet. The stress acting on it has only the
normal component o, so that the components of the stress vector are T,, = lo,
Ty = mo and T, = no. Substituting these values in expression 10, we get the
homogeneous system of linear equations

Oy — O Toy Tz l 0
Tay oy — 0 Tyz mp=+<03 . (17)
Tyz Tyz 0, — 0O n 0
[C]

Such a system of equations has the trivial solution | = m = n = 0, and
has other non-zero solutions only if there is a linear dependency between the
equations, that is, if the determinant of the system matrix, [ C'], vanishes. The
direction cosines [, m and n cannot be zero simultaneously, since they are the
components of a unit vector. Thus, the second possibility (zero determinant)
must yield, as expressed by the condition

Op—0 Ty Toz
Toy Oy—0 Ty |=—0 410 —Tho+I3=0. (18)
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In this expression the quantities I, Is and I3 take the values

I =0, +0y+o0,

Oy Tx Or Tz 0, Tyz
12 = Y + + Yy Y
Toy Oy Ter O Tys O
_ 2 2 2
= Oz0y + 00, + OyO0z = Ty = Toz — Tyz
Ox  Tey Txz
— _ 2 2 2
Is=|Tuy 0y Tyo|=0u0,0: + 2TuyTueTye — OuTy, — OyTy, — OuTyy -
Tez Tyz Oz

The roots of equation (18) are the stresses, which satisfy equation (17), with
non-simultaneous zero direction cosines I, m and n.2 They represent the nor-
mal stresses in facets, where the shearing stress is zero, which means that they
are principal stresses. The direction cosines of the normals to these facets —
the principal directions — may be computed by substituting in Expression 17
o for one of the roots of equation (18) and considering the supplementary
condition 1% +m? + n? = 1, since, with that substitution, equations (17) be-
come linearly dependent (|C| = 0). Usually the principal stresses are denoted
by 0y, 05 and o5 with 0y > 05 > 05 (cf. example I1.1).

The roots of equation (18) must not vary when the reference system is
rotated, since they represent the principal stresses, which are intrinsic values
of the stress state and therefore must not depend on the particular reference
system used to describe the stress tensor. For this reason, equation (18) is
designated as the characteristic equation of the stress tensor. The roots of
this equation will be independent of the reference system if the coeflicients I,
Iy, I3 are insensitive to coordinate changes. These coefficients are therefore
invariants of the stress tensor.

Sometimes (for example in elasto-plastic computations) it is more conve-
nient to define the invariants in the following way

3
J=Y oi=1I
=1

1 G 1
Jy = 5 Z 03035 = 5112 — I
=1 j=1
ENERE 1
Js=3 YN oijojkon = gff — Ll + 13, (19)
i=1 j=1 k=1

where 01y = 0y, 09y = 0y, 033 = 0, O = Oy = Ty, Oy3 = 031 = Tz, and
O3 = O3y = Ty,. These relations may be verified by direct substitution. The
last verification is, however, rather time-consuming. Obviously, if I;, I and
I3 are invariant, Jy, Jo and J3 will also be.

2As components of a unit vector these direction cosines must obey the condition
P+m?2+n?=1.
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I1.6.a The Roots of the Characteristic Equation

The characteristic equation always has three real roots. In order to prove
this statement, let us first remember that a third order polynomial equation
always has at least one real root, since an odd-degree polynomial may take
arbitrary high values, positive or negative, by assigning sufficiently high pos-
itive or negative values to the variable. Now, let us assume that one of the
reference axes (for example axis z) is parallel to the principal direction, which
corresponds to that real root. For simplicity, we will consider o, = o (in this
section we abandon the convention o; > 0, > 03). In this case, the shearing
stresses 7, and 7, will vanish and expression 17 takes the form

Oy — O Toy 0 l 0
Ty Oy — O 0 mp=<0,. (20)
0 0 0, — O n 0

The characteristic equation is therefore

Oy — O Tay
Tay oy — 0O

(0, —0) =0

= (0. —0) [zoy — (0w + 0y) 0 + o? — Tfy] =0. (21)
One of the roots is obviously o = 0, = 03, as expected, since z is a principal
direction. The other two roots may be obtained by solving the second degree
equation

— (0p +0y) 0o+ (Uwa —Tﬁy) =0.

The solution of this equation may be written as follows

Ugﬁ—oryi
2
Oz + 0y

1
==t 5\/(% —0,)% +472, . (22)
— ————

1
5\/05 + 20,0, + 02 — 40,0, + 472,

>0

The roots of this equation are always real, since the binomial under the square
root cannot take negative values. Therefore, there are always three real roots
of the characteristic equation. The roots can, however, be double or even
triple. For example, if the binomial is zero, we have for any pair of reference
axes x,y of a plane perpendicular to axis z

2 2 _ Oz = O
(0 —0y)" +477., =0 = {Txyzél
:>01202:%T+Uy:oz:ay. (23)

From this expression the conclusion may be drawn that, if two roots are
equal (double root) and the third is different, then all the normal stresses of
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the plane, which is perpendicular to the principal direction corresponding to
the third root (in this case the direction z and the plane z,y, respectively),
are principal stresses and take the same value, since oy = 0, = 0, = 0, and
Ty = 0. We have, in this case, a stress state, which is axis-symmetric, i.e.
symmetric in relation to an axis (the z axis, in this case).

If the three roots are equal (triple root), the shearing stress vanishes in
every facet, as a similar analysis in any plane containing the z axis easily
shows. Furthermore, the normal stress has the same value in every facet. Since
the stresses do not vary with the orientation of the facet, we have an isotropic
stress state. The components of this stress tensor are ¢, = 0, = 0, = ¢ and
Tey = Toz = Ty. = 0, regardless of the orientation of the reference system.

I1.6.b Orthogonality of the Principal Directions

In the case of three different principal stresses, the corresponding principal
directions are perpendicular to each other. This has already been implicitly
demonstrated in the previous considerations, since the plane zy is perpendic-
ular to direction z, which coincides with one of the principal directions. The
orthogonality may, however be proved more clearly from expression 20.

The last equation in this expression is linearly independent of the other
two, unless ¢ = 0, = 05. In this last case, we must have

Op — O Tay
Ty oy — 0

#0,

since the value of o, for which this determinant vanishes, is different from oy
(cf. (21)). Thus, the direction cosines must take the values | = m = 0 and
n = 1, to obey equations (20). These are the direction cosines of direction z,
as expected.

In the case of o # oy, equations (20) are satisfied only if

Oy —0 T,
n=20 and * wo1l=0,

Try Oy — O

since, in this case, 12 + m? = 1. As n = 0, the principal directions corre-
sponding to the principal stresses oy and o, are in the plane xy, i.e. they are
perpendicular to z. As axis z is parallel any of the three principal directions,
they must be all be perpendicular to each other.

I1.6.c Lamé’s Ellipsoid

In the previous section we have demonstrated that there are always three
orthogonal principal directions in a stress state. It is therefore always possible
to choose a rectangular Cartesian reference system which coincides with the
three principal directions. In this case, the shearing components of the stress
tensor vanish and it takes the form
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Ox =07 Ty = 0 o1 0 0
o, =0, and Twe =0=1[o]=]0 o 0] . (24)
0z = 0-3 Tyz - O O 0 03

In an inclined facet, with a semi-normal defined by the direction cosines I, m, n,
the relation between the components of the stress vector and the principal
stresses may be deduced from expression 9, yielding

T
=2
o
T1: lO’l T;
To=mo, = { m= — (25)
T3= noy 122
n= -2
03

Since the direction cosines must obey the condition I24m?4n? = 1, expression
25 gives

T2 T2 T2
S+ =2+2=1. (26)
oj 03 03

If we consider a Cartesian reference system Ty, To, T3, this expression rep-
resents the equation of an ellipsoid, whose principal axes are the reference
system and where the points on the ellipsoid are the tips P of the stress vec-
tors OP (Ty, Tz, T3) acting in facets containing the point with the stress state
defined by expression 24 (point O, Fig. 9)

i 1=0= 2+ 7 =1
i %;a;;;;’;',s' s
W” n_0:>Tf+T22_l
WW 4 0'12 0'22
OA=o
T2 T2 1
_0:>a'i2+0'33’2:1 OBZO'Z
OC = o5.

T

Fig. 9. Lamé’s Ellipsoid or stress ellipsoid

This ellipsoid is a complete representation of the magnitudes of the stress
vectors in facets around point O. It allows an important conclusion about the
stress state: the magnitude of the stress in any facet takes a value between the
maximum principal stress o; and the minimum principal stress o5. It must be
mentioned here that this conclusion is only valid for the absolute value of the
stress, since in expression 26 only the squares of the stresses are considered.
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From Fig. 9 we conclude immediately that if the absolute values of two
principal stresses are equal the ellipsoid takes a shape of revolution around
the third principal direction and if the three principal stresses have the same
absolute value the ellipsoid becomes a sphere.

In the first case, the stress T acting in facets, which are parallel to the
third principal direction have the same absolute value. Besides, if these two
principal stresses have the same sign, we have an axisymmetric stress state,
as concluded in Sect. 11.6.a. .

In the second case (|oy| = |o5| = |o3|), the stress T has the same magnitude
in all facets. Furthermore, if 0; = 0, = 03, we have an isotropic stress state
(cf. Sect. I1.6.a).

I1.7 Isotropic and Deviatoric Components
of the Stress Tensor

The stress tensor may be considered as a system of forces in equilibrium,
acting on an infinitesimal parallelepiped. Such a system may be decomposed
in subsystems of forces in equilibrium.

When applying the stress theory to isotropic materials it is often neces-
sary to separate the component of the stress tensor, which induces only volume
changes in the material, from the component, which causes distortions. For
example, as will be seen later in the study of the strain tensor and the con-
stitutive law, the volume change in an isotropic material depends only on the
isotropic component of the stress tensor

Om 0 0 I
0 on 0| with op=2tWTo_n (27)
0 0 3 3

Om

The decomposition of the stress tensor may be described by the expression

Oz Tyx Tzx Om 0 0 Ox — Om Tyax Tzx

Toy Oy Ty | =0 on 0|+ Tay Oy — Om Tay

Tez Tyz O 0 0 o, Tz Tyz Oy — Om,
isotropic tensor deviatoric tensor
component component

(28)
In isotropic materials the deviatoric component of the stress tensor does not
cause volume change, as will be seen later. In this tensor component the first
invariant vanishes (I = o, 4+ 0, + 0, — 30,, = 0), which means that J) = —1}
and J} = I} (cf. (19)).
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I1.8 Octahedral Stresses

Octahedral stresses are stresses acting in facets which are equally inclined
in relation to the principal directions. Considering a reference system, where
the axes lie in the principal directions of the stress state, the semi-normals of
these facets have direction cosines with equal absolute values. Since there are
eight facets obeying this condition (one in each of the eight trihedrons), they
define one octahedron, which is symmetrical in relation to the principal planes
(Fig. 10).

Fig. 10. Octahedron defined by equally inclined facets in relation to the principal
directions 1, 2, 3

The direction cosines of the octahedral semi-normals take the values

l= %+

|l = |m[ = |n|

=4
l2+mQ+nQ:1:> m

-5l 5

V3
As the reference system is a principal one, the shearing components of the

stress tensor vanish. Therefore, the Cauchy equations (9) furnish the stress
components

n= =+

O-
T, = loy =+t
1 \/3

%2
V3

o
3
T, = noy=+—%=.

V3

Ty =moy, = %
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The normal component of the octahedral stress is then

Opct = Ty +mTy +nT, =120, + m?0, + n’oy
_01—1—02—1—03_5_%—1-%—1-02 (29)

3 3 3

This stress coincides with the isotropic stress (cf. (27)).
The magnitude of the shearing component of the octahedral stress may be
computed by using Pythagoras’ theorem (cf. Sect. I1.4), yielding

Tout = Toet = Ooet = Ty + Ty + T2 — 0pey = 20 +m?03 + 005 — 00y
1 7 2
=5 (of+od o)~ =5 (17 -3D) . (30)

N—————
I12-2I,

As the quantities I; and I are insensitive to changes in the reference coordi-
nates, the octahedral shearing stress may be expressed directly as a function
of the components of the stress tensor in any rectangular Cartesian reference
system xyz
V2

Toct =

3
2
= %\/(ax +oy + 0.)? -3 (040 + 020. + 0y0. — T2, — T2 — T2)

12— 31,

= é\/(am - Jy)2 + (oy — O’z)2 + (0, — O’Z)2 +6 (TTZy + 72 + TyQZ) .

(31)

By substituting in the last expression o,, o, and o, for o, — oy, 0y — 0,, and

0, — Om, respectively, we conclude immediately that the octahedral shearing

stresses of the complete stress tensor and of its deviatoric component (28) are

equal. As we shall see later (Sect. IV.7.b.v), the octahedral shearing stress
plays an important role in one of the plastic yielding theories.

An even more simple expression of the octahedral shearing stress in terms

of the invariants (cf. (30)) may be obtained by considering only the deviatoric

tensor. For this purpose, we establish a relation between the second invariant

of the deviatoric tensor, I, and the two first invariants of the complete stress
tensor I; and Iy (cf. (28))

Ié _ Or — Om Txy 4 Oz Om Trz =+ Oy — Om Tyz
Try Uy Om, Tez Oz Om, Tyz 0z — Om
Oz Txy Oz Txz Oy Ty
= + +
Try Oy Tez 0y Tyz (o

Jrafn — (0p + 0y) Om Jrafn —(0x + 02) O +072n —(oy +02) Om

_ 302
3072,
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I2
= Ié:]z—gl & I} — 31, = —3I, .
Substituting in Expression 30, we get
2
7—02015 = _gjé . (32)

From this expression we conclude that the second invariant of the deviatoric
stress tensor always takes a negative value.

The third invariant of the deviatoric stress tensor, I, may also be ex-
pressed in terms of the invariants of the complete tensor, as follows

Or — Om, Txy Txz O Ty Txz
;) - _
I3 = Tay Oy — Om Tyz =Ty Oy Ty
Txz Tyz Oz — Om Tez Tyz Oz
2 2 2 2 3
_ (O'yO'Z + 0.0, + 000y — T, — To — Tﬁy) Om + (0y + 0y + 0,) 07, — 03,
—_——
I 3om,

= I3 — Iyo,, + 20’,,3;1 =13 — %Ilfz + %If’ .

11.9 Two-Dimensional Analysis of the Stress Tensor

I1.9.a Introduction

In many applications of the stress theory, one of the principal directions is
known. As examples, we may refer the stress state at the surface of a body
(in the very common case of no tangential surface loads), the stress state in
a thin plate under in-plane forces, the stress states induced by the normal
and shear forces and by the bending and torsion moments in bars, etc. In
many cases, the principal stress, which corresponds to the known principal
direction, is zero, as in the referred case of the thin plate, or in the surface
of a body, where there are no external forces applied. In this case we have a
plane stress state.

In any of these cases, a two-dimensional analysis of the stress tensor is
enough to compute the remaining two principal stresses and directions. Since
the three principal directions are perpendicular to each other, the remaining
two principal directions act in facets, which are parallel to the known principal
direction. Therefore, only this family of facets needs to be considered. As this
two-dimensional analysis is considerably simpler than a three-dimensional one,
a deeper insight into the stress state is possible.

The two-dimensional analysis could be performed by particularizing the
expressions developed for the three-dimensional case and by developing them
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further in the simplified two-dimensional form. However, in the following ac-
count, the two-dimensional expressions will be deduced from scratch, i.e. with-
out using the three-dimensional framework described in the previous sections.
This option is useful because it allows the two-dimensional case to be under-
stood, without first having to learn the more demanding three-dimensional
one. As a side effect, some of the conclusions obtained in the general case will
be repeated in the two-dimensional analysis, although they are obtained in a
different way.

For simplicity, we will consider that the known principal direction is direc-
tion 3, and that that direction coincides with axis z. Thus the two-dimensional
analysis is performed in plane xy, by considering facets which are perpen-
dicular to this plane, and in which there are no shearing stresses with a z-
component, since z is a principal direction.

I1.9.b Stresses on an Inclined Facet

Let us consider a triangular prism, where two of the lateral faces are per-
pendicular to the coordinate axes z and y and the third lateral face has
an orientation defined by the angle 6 between its semi-normal and axis .
Figure 11 illustrates this prism and the stresses acting in its facets.

The equilibrium condition of the forces acting in direction 6 yields

ogdzds = o,dz dy cos 0 + o,dz dz sin 0 + 7,,,dz dy sin 6 + 7, dz dzx cos 0 ,
or, as dr = dssinf and dy = ds cos¥,
0y = 0, cos> 0 + o, sin® O + 27, sinf cos 6 . (33)

Similarly, the equilibrium condition in the perpendicular direction (6 & %)
yields the relation

Tydz ds + 0, dz dy sin @ + 7, dz dx sinf = 7, dz dy cos 0 + o, dz dzx cos 0 .
Simplifying, we get
7y = (0y — 0,) sinf cos 0 + 7, (cos® 6 — sin®6) . (34)

Expressions 33 to 34 show that the stresses o, 0, and 7., allow the computa-
tion of the stresses in an arbitrary facet, whose orientation is defined by angle
f. They thus fully define the two-dimensional stress state around point P
(Fig. 11). These stresses are the components of the stress tensor in the refer-
ence system xy.

The expressions 33 and 34 may be given another form, if we take into
account the trigonometric relations

in 20 1-— 20 1 20
sin @ cos§ = s sin? 6 = % cos?f = H% .
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Fig. 11. Infinitesimal prism used in the two-dimensional analysis of the stress state

Substituting these relations in expression 33, we get

Oy + 0y Oy —
2 2

In the same way, expression 34 becomes

0y = % cos 20 + Ty S0 20 (35)

Ty = —% sin 20 + 7, cos 20 . (36)

I1.9.c Principal Stresses and Directions

Expressions 35 and 36 furnish the normal and shearing components of the
stress acting in facet 6, as functions of the stress tensor components o, o,
and 7,,. With these expressions, the evolution of o, and 7, with the facet
orientation 6 may be analysed. Differentiating expression 35 in relation to
and equating to zero gives

0
% = — (0, — 0y)sin 20 + 27, cos 20 = 0 an
27, 1 27,
- tan20 = 2 — 9 — - arctan — Y |
Oy — Oy 2 Oy — Oy

Expression 37 yields two values of 6 (61 and 62 = 01 + 7), which correspond to
a maximum and a minimum of 0,. By substituting expression 37 in expression
36, we get 7, = 0. This means that, in a two-dimensional stress state, there
are always two orthogonal directions which define facets where the shearing
stress takes a zero value and where the normal stress takes its minimum and
maximum values. These directions are the principal directions and the corre-
sponding values of the stress are the principal stresses. Usually, the maximum
principal stress is denoted by o, and the minimum by 7.3

3As we have seen in the three-dimensional analysis of the stress state, there is a
third principal stress in a parallel facet to the plane zy. A descending ordering of the
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These stresses may be computed by substituting in Expression 35 6 with
the values of 67 and 5 given by (37). To this end, the following trigonometric
relations are used

cos 260 = ; sin 260 = tan 26

+v/1 + tan? 26 +v/1 + tan2260

By substituting the last but one of Equations 37 in these expressions and the
result in Expression 35, after some manipulation we get

(=)o

It should be noted here that o; does not necessarily corresponds to the direc-
tion of 01, as defined above, since in Equation 38 the convention oy > o, is
used. These values are not known when the directions 8; and 65 are obtained
from Expression 37.

The value of 8, which corresponds to each of the principal stresses given
by expression 38 may, however, be computed easily by using a relation which
is deduced directly from the equilibrium condition, in direction x or y, of the
forces acting in the prism shown in Fig. 11. By considering § = 6, and, as
a consequence, 0, = op and 7, = 0, the equilibrium condition in direction x
yields

dy
—_—N— . oy Oy
o,ds cos 0y = 0, ds cos 0y + Ty dssinf; = tanf; =
——— Ty
dz
The equilibrium condition in direction y gives the relation tan; = UTfyU .
1 Y

If the reference system coincides with the principal directions, the shearing
stress is zero and the normal and shearing stresses acting on an arbitrary facet

are
op+toy  04—0y

oy = o o= 5 + 5 cos 2«
oy =0y = (39)
Toy =0 - :—JI;UZSiHZOz,

where « is the angle between the principal direction 1 and the semi-normal
to the facet, as shown in Fig. 11 (with the principal direction 1 in the place
of axis z).

principal stresses could demand a different ordering (for example, 0, = 0y or 0. = 0y
instead of o, = 03). However, for the sake of simplicity, in the two-dimensional case
we adopt the descending order only for the principal stresses lying in the plane zy.
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I1.9.d Mohr’s Circle

In the last two sections we have implicitly adopted a sign convention for the
shearing stresses, where a positive stress corresponds to the y-direction in a
referential system, which is obtained by a rotation € in the direct direction
(counterclockwise), of the zy referential system represented in Fig. 11. This
means that a positive shearing stress in the inclined facet corresponds to a
rotation, in the direct direction, around point P.

If we adopt the opposite convention — the shearing stress is positive, when
it defines a clockwise rotation — the negative sign in the second of Expressions
39 disappears. In this case, these expressions are the parametric equations of a
circle in a rectangular Cartesian reference system o-7. This circle can be used
to represent the whole stress state graphically, since each point in the circle
represents the stress vector in a facet, whose orientation is defined by angle «
(cf. (39)). This representation of the stress tensor was developed by the end of
the 19*" century by Otto Mohr and it still remains very popular, despite the
decline of the graphic methods with the emergence of computational tools,
because of its simplicity and capacity for visualizing the whole stress state.

Representing the normal stresses in the axis of abscissas (horizontal direc-
tion), and the shearing stress in the axis of ordinates (with the second sign
convention defined above) Expressions 39 define a circle with radius 252,
whose center is the point of abscissa 01'50"‘ and zero ordinate, as shown in
Fig. 12. Point A represents the facet with a semi-normal, whose orientation
is defined by an angle o measured from the principal direction 1, positive in
the counterclockwise direction. (Fig. 11, with § = «). Orthogonal facets are
represented by opposite points in the Mohr’s circle, since an a-rotation of the
facet corresponds to a 2a-rotation of its representation.

From a quick glance at Fig. 12, the following conclusions may immediately
be drawn:

— the maximum value of the shearing stress is Tipax = % (radius of the
Mohr’s circle);

— the maximum shearing stress occurs in facets with a 45°-orientation, in
relation to the principal directions (2ac = 90° — point B — and 2« = 270° —
point C);

— in the facets where the normal stress attains its extreme values the shearing
stress takes a zero value (points on the axis of abscissas).

Irradiation Poles

The irradiation poles enable a graphic relation to be established between the
Mohr’s circle and the facet representation (Fig. 11). Irradiation poles for the
facets and for the normals to the facets may be defined. Figure 13 presents
the graphical construction leading to the facet irradiation pole.
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T oy +oy

91792

2

91

¢ J
>| Ty

) !

Fig. 12. Mohr’s representation for the two-dimensional stress state

In this figure, the position of the facet irradiation pole I is first obtained
by drawing a parallel line to facet a, which contains the point representing this
facet in the Mohr’s circle (obviously, facet b could also be used). The point
representing the generic facet ¢ on the Mohr’s circle may then be obtained by
drawing a line passing by the irradiation pole Iy, which is parallel to facet c.
This line intersects the Mohr’s circle in the point which represents facet c: o,
and 7. are the normal and shearing stresses acting on facet c. The rightness
of this procedure is easily demonstrated: as the angle between facets a and
¢ is 3, their representations on the Mohr’s circle (a and ¢ on the circle, Fig.
13) are at the distance defined by the central angle 2. As a consequence, the
circumferential angle (a, If, ¢) measures 3, since it must take half the value of
203. Thus, if the line @ is parallel to the facet a, then the line @ is parallel
to facet c.

If the direction of the normals to the facets is used instead of the facet
direction, the irradiation pole of the normals, Iy, is obtained (Fig. 13). Most
times, the irradiation pole of the facets is used. For simplicity, it is usually
denoted by I.

The principal directions may be obtained directly from the irradiation
poles:

— if the irradiation pole of the facets is used, the line joining this point with
the one representing the facet where the principal stress o; acts (point B),
is parallel to this facet; thus, it corresponds to principal direction 2; in the
same way the line Iy A gives the principal direction 1;
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Fig. 13. Irradiation poles

— if the irradiation pole of the normals is used, as principal direction 1 is the
normal to the facet, where o, acts (point B), then the line I,, B is parallel
to the principal direction 1.

I1.10 Three-Dimensional Mohr’s Circles

If a two-dimensional analysis is performed in each of the principal planes
(planes defined by the principal directions), it is easily concluded that the
stresses in the three families of facets that are parallel to each of the three
principal directions may be represented in the Mohr’s plane by the three circles
defined by the three pairs of principal stresses, as shown in Fig. 14.

The facets which are not parallel to any of the principal directions are
represented by points contained in the shaded area of Fig. 14.* The demon-

stration of this statement is based on the solution of the system of equations
(cf. (2), (11) and (12))

P4+m?2+n?=1 111 12 1
oy +mPoy +no5 =0 < | 01 03 O3 m? 3 = o

2 2 2
2o + m?03 + n%0f = 02 + 72 of 0} o3 n oo +T

4Only the upper half is considered, since it is not possible to make a general
distinction between positive and negative shearing stresses in an inclined facet in a
three-dimensional space.
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-facets parallel to o,
facets parallel to o,

facets parallel to oy

Fig. 14. Mohr’s representation of the stress state in the three-dimensional case

The solution of this system may be obtained by means of determinants, yield-
ing

1 1 1
p_l| o o o3| _ TP+ (0 —0y) (0 —0y)
" D|o*+T o g (op —03) (0 — 03)
1 1 1
s 1oy o o3 24+ (0 —0y) (00— 03)
m :5 2 2 2 2| =
o 0" +71" 03 (03 —01) (03 — 03)
1 1 1
ng_l o 0 o TPt (o —0y) (0 —0y)
Dot o5 o°+71° (053 —0y) (03 —0p)

where D = (07 — 0y) (05 — 03) (05 — 07) is the system’s determinant (Expr.
40). After some algebraic manipulations, these expressions may be given the
forms (cf. e.g. [1])

oyt 03\’ oyt 03\’ oy — 05\

2 2 T 03 2 T 03 2 2~ 03 2

c—2178) (g 22173 27 1—

’ ( 2 > (1 2 >l ( 2 ) (1-F)
01 + 03 ’ 01+ 03 ’ 2 01— 03 ’ 2

2

T+(a—2> —_(02— 5 ) m+<2> (1—m)

2 0y + 0y 2_ o +0,)\ 2 o =0\ 2
S e R R (A T

(41)
Considering the first of these equations, for example, we easily confirm that
it represents, in the (o, 7)-plane, a family of circles with center in the point
of coordinates o = % and 7 = 0. The radius of each circle depends on the
value of {2, which varies between 0 and 1. As this equation depends linearly on
12, the extreme values of the radius are % and o — %% respectively for
12 = 0 and [?2 = 1. The other two equations represent the other two families

of circles, as shown in Fig. 15.
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Fig. 15. Families of circles described by Expressions 41 in the Mohr’s plane

The normal and shearing stresses, o and 7, in a facet, whose semi-normal
has an orientation defined by the direction cosines I, m and n in a principal
reference system (axes parallel to the principal directions o the stress tensor),
must obey the three Expressions 41. As we have, simultaneously,

0<’<1  0<m?<1  0<n?*<1, (42)

the points representing facets of the stress state defined by o, 0y and o5 in the
Mohr’s plane must be on the surface containing the points whose coordinates
obey the conditions 41 and 42. They are therefore on the shaded area of
Fig. 14, which corresponds to the triple shaded area in Fig. 15.

The point representing a facet defined by a set of direction cosines may be
found by the intersection of two of the three circles defined by Equations 41,
for the corresponding values of [, m and n. The three circles intersect in this
point, since the three Equations 41 must be satisfied simultaneously.

The position of this point can also be obtained graphically. However, as
the explanation of the corresponding procedure is relatively lengthy and the
importance of the quantitative graphical methods has substantially declined
since the appearance of the computer, this method is not described here. Quite
a detailed description of this procedure can be found in reference [1].

The actual importance of the Mohr’s representation of the stress tensor
resides in the fact, that it provides a simple global visualization of the stress
state, making some conclusions obvious whose demonstration would be more
difficult by other methods. From it we conclude, for example, that the maxi-
mum shearing stress occurs in facets which are parallel to the middle principal
direction (direction of 0,) and make a 45°-angle with the directions of the max-
imum and minimum principal stresses (point A in Fig. 14). In these facets the
normal and shearing stress take the values 01-503 and 2% respectively, as

2
shown in Fig. 14. We can also confirm the conclusion obtained by means of
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Lamé’s ellipsoid, that o; and o5 are the extreme values attained by the total
stress acting in the family of facets, passing through the point, whose stress
tensor has the principal stresses o;, 0, and o3.

I1.11 Conclusions

In the theory presented in this Chapter, we have mainly analysed the stress
state around a point, i.e.in an infinitesimal neighborhood of a point inside
or on the surface of a solid body, or of a liquid mass, under the action of
forces. This spatial restriction makes it possible to treat the stress state as
homogeneous, i.e., as if it would not vary from point to point.

The expressions defining the components of the stress tensor as functions of
the coordinates x, y and z were used only to develop the differential equations
of equilibrium (5). In the rest of the Chapter, only the elements of the stress
tensor at a given point were considered Those functions, however, play an
important role in the analytical solutions for the stress distribution inside a
body, which are obtained using the Theory of Elasticity (cf. e.g. Reference [4]).

In relation to the sign conventions used for the normal and shearing
stresses, it should be mentioned, that, while the same convention could al-
ways be retained for the normal stresses, in the case of the shearing stresses
it was necessary to abandon the initial convention (the Von-Karman conven-
tion), when studying the Mohr’s representation. This is a consequence of the
fact that the sign convention for the normal stresses is based on the physical
concept of the tensile force as a force which causes an increase of the distance
between two points, while such a physically grounded convention does not
exist for the shearing stresses. In fact, in the Von Karman convention the pos-
itive stress corresponds to the positive direction of the reference axes, which
have arbitrary directions; in the Mohr’s circle, the positive shearing stress is
defined by a direction of rotation, which depends on the observer’s position.
Finally, it is not possible to define a positive direction for the shearing stress
in a facet in the three-dimensional case. For these reasons, a physical distinc-
tion between positive and negative stresses only makes sense for the normal
stresses.

The validity of the theory expounded in this chapter is only limited by
the hypothesis of continuity. Thus, it is valid in a solid with small or large
deformations, in static equilibrium or in dynamic motion, or in a fluid in
steady or unsteady motion. However, in the case of a solid body under finite
deformations (deformations which are not small enough to be considered as
infinitesimal quantities), it should be noted, that the coordinates x, y, z of the
points of the body refer to the deformed configuration and not to the initial
geometry of the body.

There are, however, tensors which describe the stress state using the co-
ordinates corresponding to the undeformed geometry of the body, even in the
case of large deformations (Lagrange and Piola-Kirchhoff stress tensors, cf.,
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e.g. [2]). However, the deformations of the structures used in the engineering
problems, which are solved by means of the Solid Mechanics (Civil, Mechani-
cal, Aeronautical Engineering, etc. structures) are mostly small enough, to be
treated as infinitesimal quantities. Furthermore, as the study of these tensors
is rather involved and fairly abstract, they are not included in this introduc-
tion to the Mechanics of Materials.

11.12 Examples and Exercises

II.1. Using the theory described in Sects. I1.6 to II.8, derive expressions for
the direct computation of the principal stresses and directions.

Principal Stresses

Considering only the deviatoric component of the stress tensor, the corre-
sponding characteristic equation takes the form

o+ 1o’ — I, =0,

where I} < 0, as demonstrated in Sect. IL.8. As the three principal stresses
always exist (Sect.II.6.a), we can compute the roots of this equation using
the algorithm (cf., e.g. [5], Sect. 2.4.2.3, or [2], prob. 3.5)

o] = 2/acos 3

3
4 I
/ — 3 o = _—
05 = 2/acos (ﬁ + 5 ) with 97 ;
2 1 3
o5 = 2{/a cos (ﬂ—k;) ,6:§arccos (2&) .

« is always a real quantity, since I} < 0. The expression of parameter 3 shows
that it takes values between 0 and g, since 0 < 33 < w. With these limits, it
is easily verified that we always have

0.5<cosf <1

47
—0.5 < cos <ﬂ+3> <05 = cos 3 > cos (5+4;) > cos <6+2§) .

—1 < cos (ﬁ + 2;) < —-0.5

From this we conclude that of > o4 > 0.

The principal stresses of the total stress state may then be found by adding
the isotropic stress (mean normal stress) to the principal stress of the devia-
toric tensor component

Oy + 0y + 0,

3

It is obvious that o] > o4 > o4 implies oy > 0y, > 05.

o, = o] + with ¢=1,2,3.
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Principal Directions

An expression for the computation of the direction cosines of principal direc-
tion ¢ may be obtained by ascertaining that the values of [, m and n given
by

=KL m=KM n=KN,

where K is an arbitrary constant and L, M and N take the values

Tay Tyz Tey Oy — 0j

Tez Oz — 05

M= — N =

)

Txz Tyz

satisfy (17). This is easily confirmed, since the product of the first line of
matrix [C'] with this vector of direction cosines {l,m,n} corresponds to the
product of K with the determinant of matrix [ C'] computed by decomposition,
using the elements of the first line and their complementary minors. This
determinant vanishes, when o takes the value of a principal stress, as is the
case. The products of the second and third lines of matrix [C'] by the same
vector are zero as well, since they represent determinants of matrices with two
equal lines.

The value of K may then be computed by means of Expression 2, yielding

1
/L2 + M2 + N2~
The two vectors obtained in this way, corresponding to the two possible signs

of K, represent the two opposite senses of principal direction 1.
As an example, consider the stress state defined by the tensor

L’°K? + M?K? + N?K?=1= K =+

0, =30 oy=-40 0,=60 7 =-20 7, =25 7, =250.

Using the previously developed expressions on this tensor, the principal
stresses and directions are obtained

o, = 85.4719 l1 =0.294148 my1 = 0.312980 n; = 0.903062
0y = 33.3299 Iy =—-0.914713 my = 0.366114 mny = 0.171057
03 = —68.8017 I3 = 0.277086 mg = 0.876358 mn3 = —0.393978 .

The exactness of these values is easily verified by using (15). By transposing
the reference axes to the principal directions of the stress state, we get a
diagonal tensor with the principal stresses

ll mi1 Ny 30 =20 25 ll lQ lg 85.47 0 0
12 mo Mo | X —20 —40 50| x mi mo M3 | = 0 33.33 0
lg ms ns 25 50 60 ny Ng N3 0 0 —68.80

I1.2. Verify the differential equations of equilibrium in the stress field installed
in a still liquid under its own weight.
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Resolution

Considering a reference system with the origin on the free surface of the
liquid, whose axis y is vertical and points downwards, the stress field has the
components

Op =0y =0, = pYy and Toy = Toz = Ty =0,

where p represents the mass density of the liquid. Since the only body force
is the gravity force, we have

X=7=0 and Y=—p.

Substituting these values in Expressions 5, we immediately see that they are
satisfied.

I1.3. In a body under a plane stress state the body forces are zero and the
stresses have been approximated by the expressions (7, p, H and A are

constants)
x
%z@zﬁp(H—y—X) Toy = 0.
(a) Verify that these functions cannot represent the stress distribution
in the body.

(b) Determine the conditions which the body forces have to obey so that
these expressions can represent a possible stress distribution.



II1

The Strain Tensor

IT11.1 Introduction

When the material points inside a solid body or a liquid mass suffer a displace-
ment, this may be a consequence of a rigid body motion or of a deformation.
Forces are not necessarily involved in a rigid body motion, unless the dis-
placement is accompanied by acceleration. On the contrary, the deformation
is almost always a consequence of internal forces. Other causes may be a tem-
perature variation or similar phenomena, like the retraction of a concrete mass
during the curing process.

In Solid Mechanics consideration of the deformation associated with the
displacement field is generally unavoidable, since, unless the case under con-
sideration fits into the rare category of fully statically determinate problems,
the way the material deforms influences the way the internal forces are dis-
tributed inside the body.

When the validity of the continuum hypothesis is accepted, the internal
forces may be defined by the stress tensor, as explained in the previous chap-
ter. In the same way, as mentioned in Chap. I, the deformations of a continuous
material may be defined independently of the geometrical dimensions of the
continuum, by means of the strain definition. If these strains are defined ap-
propriately, they define a symmetrical second order tensor, with exactly the
same mathematical characteristics as the stress tensor. This chapter analyses
both the properties of this tensor and the relations of its components with the
functions that represent the displacement field describing the motion of the
material points.

I11.2 General Considerations

The deformation caused in a body by external forces or other actions gener-
ally varies from one point to another, i.e., it is not homogeneous. In fact, a
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homogeneous deformation is rare. It occurs, for example, in a body with iso-
static supports under a uniform temperature variation or in a slender member
under constant axial force.

A non-homogeneous deformation may by more clearly understood by imag-
ining small line segments in several places of the body, which, before the de-
formation, have the same infinitesimal length, ds, and are parallel. As a rule,
the deformation causes various rotations and elongations in the different line
segments, as represented schematically in Fig. 16.

(D TR

Fig. 16. Non-homogeneous deformation of a body

If the deformation is homogeneous, however, i.e., if it does not vary from
point to point, the elongation and the rotation are the same all along the line
segments, which means that two parallel straight lines of equal length (now not
necessarily infinitesimal) remain straight, parallel and with the same length
after the deformation. As a consequence, a homogeneous deformation trans-
forms triangles into triangles, rectangles into parallelograms, tetrahedra into
tetrahedra and rectangular parallelepipeds into, generally non-rectangular,
parallelepipeds (Fig. 17).

A — £
Fig. 17. Homogeneous deformation of a body

From these considerations we conclude that a homogeneous deformation
may be fully defined by the six quantities that are required to define the
shape and dimensions of a non-rectangular parallelepiped (e.g. the length of
the three sides and the three independent angles between non-parallel sides)
or of a tetrahedron (e.g. the length of its six sides). In the two-dimensional
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case the three quantities needed to define a parallelogram or a triangle, are
enough.

As mentioned above, the deformation is not usually homogeneous, but
varies from point to point. But it may be treated as such if we limit the defor-
mation analysis to an infinitesimal neighbourhood of a point. This statement
may be easily proved by developing in series the functions that define the
coordinates of the material points after the deformation [1].

A physical visualization is, however, more indicative. To this end, let us
consider the shapes which result from the non-homogeneous deformation of a
rectangle, a triangle and a rectangular parallelepiped (Fig. 18).

=
Frr

Fig. 18. Homogeneous deformation of an infinitesimal region

The non-homogeneous deformation results in the initially simple geomet-
rical shapes transforming into complex shapes, which cannot be described by
means of a reduced number of parameters. However, by subdividing the ini-
tial geometrical shapes into others of the same type, we find that the finer
the subdivision, the closer the deformation gets to a homogeneous deforma-
tion. Ultimately, when the dimensions of the smallest shape go to zero, the
deformation is homogeneous, since we can accept that the shaded rectangle
in Fig. 18-a has become a parallelogram, the shaded triangle in Fig. 18-b
remains a triangle and the rectangular parallelepiped with shaded faces in
Fig. 18-c changes into a (non-rectangular) parallelepiped. From these consid-
erations, we conclude that the definition of the state of deformation in an
infinitesimal neighbourhood around a point needs six parameters, and these
are the six quantities necessary to define a homogeneous deformation in the
three-dimensional case (or three, in the two-dimensional case).

The above considerations are valid irrespective of the size of the deforma-
tion. However, as will be seen later, the expressions which relate the func-
tions describing the displacement of the material points with the strain may
be greatly simplified if the deformations and rotations are sufficiently small
to be considered as infinitesimal quantities. Furthermore, the restriction on
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infinitesimal deformations and rotations allows the superposition of the strains
associated with different displacement fields.

I11.3 Components of the Strain Tensor

The general considerations discussed in the previous section will now be quan-
tified by using a rectangular Cartesian reference frame, zyz. It will be seen
later that, in this reference system, the strain tensor has components, which,
for infinitesimal deformations, correspond to the elongation per unit length of
line segments having the direction of the reference axes, and to half the angu-
lar variation of what were initially right-angles between these line segments
(three pairs). The three elongations — the longitudinal strains — and the three
angular variations — the shearing strains — are the six quantities necessary
(and sufficient) to define the state of deformation around a point.

z
Fig. 19. Displacement of a material point P inside a body: —— before the defor-
mation; ------ after the deformation

Then the initial position of the material points of the body is described by
the coordinates x, y, z of the generic point P and its displacement is defined by

vector ﬁ with components u, v, w in the reference directions x,y, z, respec-
tively (Fig. 19). The position of the point after the deformation is therefore
given by the coordinates = + u, y + v, z + w. If the material is continuous
before and after the deformation, the functions u(z,y, z), v(z,y, 2), w(z,y, )
are continuous functions of the position coordinates of the body before the
deformation, x,y, z.

Now, let us consider a straight line of infinitesimal length dxz, which is
parallel to axis x in the undeformed configuration and is defined by the two
close points Py(xo, Yo, 20) and Pj(xg + dx,yo, 20), as represented in Fig. 20.



I11.3 Components of the Strain Tensor 45

! Aot du= (14 5;) deo
yvo+wol
vol .
!
Loar

z

Fig. 20. Computation of the strain &,

After the deformation, these points will occupy the positions defined by the
coordinates Pj(xo+ug, Yo+ vo, 20 +wo) and Pj(xg+ da +u1, yo +v1, 20 +w1).
As point P is at an infinitesimal distance from Py and, in going from P, to
Py only the coordinate z suffers an increment dz (undeformed configuration),
we have

0
u1:u0+du:u0+—udx

ox
vlzvo—l—dv:vo—i—@dx
ox
0
wlzwo—&—dw:wo—l——wdx.
ox

The deformation transforms the line segment Py P; into the line segment P} P,
which is generally no longer parallel to axis  and suffers an elongation. The
projections of P/P] in the reference directions are then

0 or

U1

ov ov
y(]"‘”()"*‘%dx—(yo—f'vo):%dﬁ (43)
~—_———

vy

0 0
zo+wo+%dx—(zo+wo):a—:dx.

w1

xo—&—dx—kuo—l—a—udx—(xo—kuo): <1+8u) dz
———— T

T1

Defining longitudinal strain (or simply strain) as the elongation per unit
length, the strain in direction x (strain of the line segment dz) takes the
value

PP~ PP, PP —dz

. 17 = PP = (14¢&,)dzs . 44
2 POP1 dz 041 ( +E) €L ( )
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Using the Pythagorean theorem, the length PJP] may be computed from
its projections in the coordinate axes, yielding, from expressions 43 and 44

DI pr 2 2 2
(Rﬁﬂ) =(1+e)da
ou\’ o\’ ow\” 9
(+5) +Qn>*(m)]dm (45)
LS e 1o o\t (o
TS T "2 |\ Oz Oz '

In the same way, the expressions relating strains in the directions y and z to
the displacement functions may be established, yielding

s v 1[ouN o0\ (ow?
Y2 oy 2| \oy oy oy
S S VAN AN AN
2 09z 2|\ 0z 0z 0z ’
Let us consider now two straight lines of infinitesimal lengths, dz and dy,
which, in the undeformed configuration, are parallel to axes x and y and are
defined by points Py, P; and P, (Fig. 21). The deformation transforms these

straight lines into PJP; and PjPj;. Following the same line of reasoning as
above, these line segments have the components

du ou
g —d
<1 + ax) dz aya Y
BR—¢ 2y wd - FF— (14 50)
x
ow Ouw
ox y Y

In accordance with the definition of strain given earlier, the line segments P} P;
and PjPj have the lengths (14¢,)dz and (1+¢,)dy, respectively. The scalar

— —
product of vectors PjP{ and PjPj may be expressed by (cos (3 — 6) = sin6)

(1+4+¢;)dz (1+¢,) dy cos (g - 91y>

Ju ou v Ov ow ;| Ow
<1+8x> dx8—ydy+%dx <1+8y) dy+%dxa—ydy (47)

ou ov Ou Ou ov Ov Ow Ow
oy Tortocoy T azoy + oz oy

(I4+e)(14ey)

= sinf,, =

Angle 6, represents the decrease of the initially right-angle between the line
segments dx and dy. It therefore defines the distortion (double shearing
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Yy
dy +
x 1P
dy
12 Py
Py L
m-»k\ﬂ
dx “ dz + 9% dg

oz
z x

Fig. 21. Motion of the line segments de = PyP; and dy = PyP» during the
deformation (not considering the displacement of Py in direction z)

strain) of directions = and y after the deformation. In the same way, the
distortions 6,, and 6,, may be related to the derivatives of the displacement
functions, yielding

8u+ +au@+ayau+awaw

<ing... = oz ox 0z dx Oz Jx 0z
Tz —
(1+e)(1+e) I8
@+@+@au avav_i_aw@ ( )
. 0z oy Jy Oz Jy 0z oy 0z
sinf,, =

(14+¢e)(1+e)

The quantities e, €y, €., 05y, 0. and 8,,,, described by expressions 45, 46, 47
and 48, fully define the state of deformation around point P, since they are
enough to define the shape and dimensions of the generally non-rectangular
parallelepiped resulting from the homogeneous deformation of the rectangu-
lar parallelepiped, defined by the line segments dz,dy and dz, which are
parallel to the coordinate axes in the undeformed configuration. However, the
analytical treatment of these expressions is not simple, since they contain
those quantities implicitly.! Moreover, they are not linear.

In most problems of Solid Mechanics that arise in structural Engineer-
ing the longitudinal and shearing strains are small enough to be considered
as infinitesimal quantities, which allows the simplifications €2 + 2¢ ~ 2¢ and

IFor this reason, when the deformations are too large to be considered as in-
finitesimal, the strains are defined in a different way. Instead of considering the
elongation per unit length ¢ = &= l” , half the relative variation of the square of the

length F =

—12
% 52 is considered, Wthh considerably simplifies the expressions, since
0

we haveE:er%.
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sinf ~ 6 and makes it possible to disregard the strains in the denomina-
tors of expressions 47 and 48. The strains may therefore be defined by ex-
plicit expressions of the type (yl,y is the infinitesimal distortion of directions x

and y)
s ON ORI,

Oy Yoy 1 [au Ov Oudu Ovdv Ow 8w}
A= P ey =c |ttt |
2 2 2|0y Ox Oxdy Oxdy Oz Jy

Furthermore, if the rotations are sufficiently small to be considered as infini-
tesimal quantities, the squares and the products of the derivatives contained
in expressions 45 to 49 may be disregarded, since, with infinitesimal strains
and rotations, these derivatives will also be infinitesimal, as may easily be
concluded from Fig. 21. In this case, the strains may be defined by the linear
expressions?

_Ou oy _ 1 (0u Ov
ox 2 W 2\oy ' oz
v 1/0u 0
y dy and 5 Exz 5 (82 + 8x) (50)
ow
=5, Y _ o _L(0v, Ow
0z 2 _gyz_2(8z+8y>'

We shall now consider that the strain-displacement relations are defined by
these simple expressions. One of the most useful consequences of this simpli-
fication is that it makes it possible to superpose the deformations associated
with distinct displacement fields. This is quite evident if we consider the dis-
placements u1,v1,w; and ug, v, ws, with which the strains ‘e and % are
respectively associated. From expressions 50 we immediately conclude

~ O(ur +uz)  Oup | OQuy 9
fr = Ox 781:+8x7€z+5z
1[0t ot w) (51)
=9 0z Oy
71 oy Oow, 1 [ 0Ovg Ows 1 2
() () e

In the case of a flowing liquid (Fluid Mechanics), the deformations and rota-
tions in relation to the original configuration obviously cannot be considered

2Tt must, however, be pointed out that, as a consequence of the last simplifica-
tion (infinitesimal rotations), the force-displacement relations obtained from these
linearized strain-displacement relations (cf. Sect. 1.3) cannot capture instability phe-
nomena, in which sudden rotations of parts of the body occur.



II1.4 Pure Deformation and Rigid Body Motion 49

as infinitesimal. However, taking the position of the points constituting the
liquid mass in the instant ¢y as reference configuration, the rotations and
deformations in instant tg 4+ d¢ (d¢ is an infinitesimal time step) may be con-
sidered as infinitesimal and therefore expressions 50 may be used. Obviously,
this also holds in the case of large deformations of solid bodies.

Expressions 50 furnish the components of the strain tensor in a rectangular
Cartesian reference system for infinitesimal deformations and rotations. As
we shall see below (Sect. II1.6), the factor 3 in the expressions concerning
the shearing strains is necessary so that the quantities defining the state of
deformation, €;, €y, €., €xy, €z- and g, can form a tensor in the Cartesian
space xyz, in the mathematical sense of the term.? The main advantage of
having the deformation state defined as a tensor is that tensor mathematics
can be used in its analytical treatment, which is obviously the same, regardless
of the particular tensor under consideration: the stress tensor, the strain tensor
or any other symmetric second order tensor. This fact allows conclusions to be
drawn about the properties of the strain tensor, which are taken by analogy
with the stress tensor, as will be seen later.

111.4 Pure Deformation and Rigid Body Motion

In Sect. I11.3 we developed expressions to compute the elements of the strain
tensor from the displacement functions u, v, w. The infinitesimal neighbour-
hood around a point suffers not only pure deformation but a rigid body mo-
tion, too, due to the deformation of other regions of the body. In the case of
infinitesimal deformations and rotations, the motions associated with different
displacement fields may be superposed, which allows the rigid body motion
of the infinitesimal region around a point to be identified.

The motion of the infinitesimal region is fully defined by the quantities u,
v, w, %7 g—;} %v %, g—;, %, %, ‘?3—”“; and %—f. Quantities u, v and w obviously
represent the translation motion. The remaining nine quantities contain the
deformation and the rigid body rotation. In order to identify the latter, we
should point out that, in a rigid body motion, longitudinal and shearing strains
vanish, which means (cf. (50))

3Following the mathematical definition of a second order tensor, its components
transform as defined by expression 15 (stress tensor), when the reference system ro-
tates. As we have already seen, the state of deformation may be defined by any set
of six quantities, enabling the quantification of the deformation of the elementary
parallelepiped. However, only the six quantities defined as represented in expres-
sion 50 define the components of a symmetric second order tensor in the Cartesian
reference frame zyz.
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0
5@/:%:0 and ’sz:():‘%:*g%
Ez:aa%zo vyZ:0=>%:—%}.
A displacement field u,, v, w,, where we have 2% = _%ZT = Wy, P =
_855[ = Wy, and % = —aa“; = wy, thus describes a rigid body rotation of

the infinitesimal region, with w, ., w,. and w,, representing positive rotations
around the reference axes x, y and z, respectively. In this motion the pairs
of line segments (dy,dz), (dz,dz) and (dz,dy) rotate around axes x, y and z,
respectively, and remain perpendicular to each other.

If, in addition to the rigid body motion, the infinitesimal region suffers a
deformations, this does not take place anymore, as seen in Sect. I11.3. However,
we can define the rigid body rotations around the reference axes, under the
action of the deformation field u, v, w, as the mean rotations of the line
segments dx, dy, and dz around those azxes

L[ oy
T 2\oy 0z) TV
1 /0u OJw
(o0 oy _

Y2 =95\ ox Oy = Way -

By subtracting the rigid body rotation from the total motion of the infinites-
imal region, the pure deformation is obtained, which is defined by a motion
where the mean rotations of the three pairs of line segments vanish. Figure 22
illustrates these situations, with the example of the rotation around axis z.
Obviously this decomposition eliminates the rigid body rotation only in the
infinitesimal region under consideration, since it generally varies from point
to point.

We will see later (Sect. II1.6) that this definition of rigid body motion is
independent of the spatial orientation of the reference frame.

The additive decomposition of the strain tensor presented in this section
is only valid in the case of infinitesimal deformation, where the simplified lin-
ear form of the strain-displacement relations (50) can be used. However, it is
also possible to define a rigid body rotation in the case of large deformations
and rotations, by using the polar decomposition theorem, which is based on a
multiplicative decomposition of the deformation gradient (cf., e.g. [15]). Nev-
ertheless, in this case, the mean rotation of two orthogonal line segments (in
the initial configuration) does not define the rigid body rotation anymore. This
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Fig. 22. Decomposition of the motion of an infinitesimal region in pure deformation

and rigid body motion (infinitesimal deformations and rotations): &gy da +wqydz =
1 (au—i—g—;) dzx +%(%—g—:) dz = %dx ErydY — weydy = %(%-ﬁ-%) dy —
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theorem is not given here, since a deeper insight into the finite deformation
theory is beyond the scope of this introductory text.

111.5 Equations of Compatibility

As mentioned in the first chapter, we accept that the material is continuous
before the deformation and remains continuous after it. This continuity condi-
tion will be satisfied if the displacement functions u, v and w are continuous,
since the coordinates of the material points after the deformation are given
by the expressions 2’ = x +u, ¥ = y+v and 2’ = z+w. Therefore, if u, v and
w are continuous, two points, which lie at an infinitesimal distance from each
other before the deformation, will remain at an infinitesimal distance after it.

The question of the deformation’s compatibility arises when, given six
strain functions e,(z,y, 2),...,%,(2,y,2), we want to know if they repre-
sent a compatible deformation, i.e., a deformation where the material remains
continuous. It is expected that some conditions exist between the six strain
functions in a compatible deformation, as this is completely defined by the
three displacement functions, u, v and w, which means that the system of
equations formed by Expressions 50 has only three unknowns.

The existence of compatibility conditions may also be understood by
means of geometrical considerations. For this purpose, let us imagine the
continuum divided into very small parallelepipeds, so that the deformation of
each one may be considered as homogeneous. A compatible deformation will
be a deformation, in which the deformed parallelepipeds fit perfectly together.
An incompatible deformation, however, will lead either to gaps between the
parallelepipeds, or to other material discontinuities.
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The compatibility conditions are obtained by eliminating the displace-
ments u, v and w from the system formed by (50).

A first group is obtained from the relations between the longitudinal strains
€z, &y, €, and the displacement functions. Taking, for example, the longitudinal
strains in the xy-plane, we get

PPy O

oy 0xoy?

%y _ O _ D%e, N 0%y _ Yy
Ox2 0x20y oy2 = 0x2  Ox0y
5271.y B 3 n &3

0xdy  0xdy? = 0x20y

Proceeding in the same way with the other two pairs of reference directions,
x,z and y, z, two other similar equations are obtained.

Another group of three equations may be obtained by derivation of the
shearing strains with respect to the coordinate, which is absent from its in-
dexes, and combining the obtained relations as follows

iy 0% 92v

= +

0z Oydz  0z0z 9 Moy N M 0y

o o%u 2w dxr \ 0z dy or
Xz — i

Oy Oyoz + Oxdy 3u 0%,
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or  0x0z + 0xdy

Two other relations of this type are obtained by a similar process.

The complete set of conditions, to which the strain functions e, (z, y, 2), . . .,
Vyz (z,y, z) must obey, in order to define a compatible deformation, in the sense
that the deformed infinitesimal parallelepipeds fit perfectly together are then

Per + 0%y _ 82%1/ 0%eq _ ﬁ Ny + Mz _ e

Oy? 0x2  0zdy Oydz  Ox \ 0z Oy Ox
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These conditions are necessary to ensure deformation compatibility at the local
level, i.e., at the level of the infinitesimal neighbourhood of a point, since they
contain only derivatives of the strain functions.* However, these conditions are

4Using the model of the infinitesimal parallelepipeds, local compatibility means
that each parallelepiped fits perfectly with those in contact with it.
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sufficient only in the case of simply-connected bodies. In a multiply-connected
body supplementary conditions are needed to ensure compatibility. These are
the integral conditions of compatibility.

The mathematical demonstration of these considerations is rather long and
time-consuming, so it is not presented here (cf. e.g. [2]). However, a physical
explanation on the basis of geometrical considerations is substantially simpler
and more indicative.

A simply-connected body is a body where any closed line, fully contained
in the body, can be shrunk to a point without leaving the body. Thus a two-
dimensional region will be simply-connected if its boundary is defined by only
one closed line, i.e., if it has no holes. A three-dimensional body may have holes
and be simply-connected: for example a body defined by the space between
two concentric spheres (a hollow sphere) is simply-connected, since any closed
lined defined in it can shrink to a point without touching the boundaries of
the body. An o-ring (torus), on the contrary, is not simply-connected, since
a closed line around the hole cannot shrink to a point, without leaving the
body.

The degree of connection may be defined as the number of cuts required to
render the body simply-connected plus one (the intersection of the cut with
the boundary of the body must be a closed line). It can also be defined as the
maximum number of cuts which can be made without dividing the body into
two, plus one. Some examples of the determination of the degree of connection
are presented in Fig. 23.

The fact that the local compatibility conditions are sufficient to ensure
the continuity of a simply-connected body after the deformation may be eas-
ily understood with the help of the two-dimensional example presented in
Fig. 24-a. Clearly, if the deformed parallelepipeds fit perfectly with the neigh-
bouring ones, i.e., if the local compatibility conditions are satisfied, the de-
formed body will be continuous.
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Fig. 23. Cuts required to render a body simply-connected Degrees of connection:
(a) 4, (b) 7, (c) 6
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On the other side, in the doubly-connected example presented in Fig. 24-
b, despite the fact that in every point the local compatibility conditions are
satisfied (the line a'd’ fits perfectly with line a”’b”, so that every infinites-
imal parallelepiped fits with the neighbouring ones), the deformation is not
compatible, since the deformed body displays a discontinuity in the points be-
longing to line ab. This is only possible, because the hole exists, i.e., because
the degree of connection is superior to one.
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Fig. 24. Local compatibility conditions: (a) simply-connected body: necessary and
sufficient condition; (b) doubly-connected body: necessary, but not sufficient condi-
tion

The expressions corresponding to the integral conditions of compatibility
are not shown here. They will be studied in the second part (Strength of
Materials), in the particular case of the computation of internal forces in
hyperstatic (statically indeterminate) frames.

I11.6 Deformation in an Arbitrary Direction

In the preceding sections the deformations of line segments, which are parallel
to the reference axes in the undeformed configurations have been analysed.
These deformations define the elements of the strain tensor, so they there-
fore allow the computation of the longitudinal and shearing deformations in
arbitrary directions.

To this end, let us consider a line segment with infinitesimal unit length,
whose orientation in relation to the coordinate axes is defined by the direc-
tion cosines [, m,n, which simultaneously define the components of vector

OP. Figure 25 illustrates the motion of the infinitesimal region around the
line segment. Excluding the translations, this motion may be defined by the

displacement PP of the tip P of the unit vector OP (Fig. 25-a). The projec-
tion in the zy-plane of the non rectangular parallelepiped, which resulted from
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Fig. 25. Motion of the infinitesimal region around a point

the initial rectangular parallelepiped defined by the vector O—P), is depicted in
Fig. 25-b.

. . . g

The components in directions x and y of the displacement vector PP’

may be obtained directly from Fig. 25-b. The projection of the deformed

parallelepiped in the yz or in the zz plane would show the three contributions

—
of the displacement in direction z. The components of vector PP’ are then.

TR ou 0w ou
Y0 Jy 0z 0r Oy 0z
SN o KRN
v 0 dy 0 5Z or Oy 0z n
00 ou 0w o
? ox dy 0z | Ox Oy Oz |

(54)
These expressions could also be obtained by simple differentiation of the dis-
placement functions u, v and w, since the displacements ¢, d, and 6., rep-
resent the difference between the displacements of points O and P in the
reference directions, and I, m and n are the increments of coordinates x, y
and z from point O to point P.

Since vector OP has unit length and only infinitesimal deformations and
rotations are considered, the longitudinal strain in its direction may by ob-

— _
tained by the projection of vector PP’ in the direction OP, yielding
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€ =10, + mdy +né,

+Im @—&-@ +in @—i—afw +mn @_ﬁ_@iw
oy O dz O 0z 0Oy
—_——

’wa:2azy Yoz =2€az ’Yy2:25yz

=%, + m2€y +n’e, + 2lmegy + 2lne,. + 2mne,, . (55)

This expression is perfectly analogous to Expr. 11, which, in the stress state
around a point, gives the normal stress in a facet whose semi-normal has the
direction cosines [ m and n. This analogy arises, because the elements of the
strain tensor have been used to define the homogeneous deformation of the
infinitesimal region around point O.

—
The transversal component §; of vector PP’ gives the rotation of vector

OP. This rotation generally has a rigid body rotation and a shearing strain
component. The rigid body rotation may be eliminated by considering, instead
of the total displacements u, v and w, the displacements associated with the
pure deformation of the infinitesimal region under consideration v/, v' and w'.
In this case we have (cf. Sect. III.4, Expr. 52 and Fig. 22)

ou o
—_— = — = £
oy Oz Y
ou  ouw'
w$:wyzwz:O:> E:%:&m
oV ouw'
= =g .
0z y v
With this modification Expr. 55 does not change, since %“;/ = Epy..., % +
%7“; = 7,. and Expr. 54 takes the symmetrical form
(5; Ex  Exy CExz !
6; — gwy gy gyz m . (56)
(S; Erz Eyz &z n
{67} ] {3

This expression is perfectly analogous to Expr. 10 of the strain tensor, with
the difference that it contains the elements of the strain tensor instead of the
elements of the stress tensor. As a matter of fact, the operations performed in
the analysis of the stress tensor after Expr. 10 are solely tensorial operations
on a second order symmetric tensor (note that no equilibrium conditions were
used in that development). These operations are therefore also valid in the
case of the deformation state, since it is also described by a symmetrical
second order tensor, although with different physical quantities. In this sense,
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Expr. 12, which furnishes the shearing stress in an arbitrary oriented facet,
is analogous to the expression of the transversal displacement in the pure

deformation displacement field d;, which is given by(57 =ec+4d)
te =0, —le

_
ty =0, —me

/A
0, =6, —ne.

This analogy and the reciprocity of the shearing stresses allow the conclusion,
—

that the rotation of a line segment OQ, which has the same direction as J;, in

the plane defined by vectors OP and (5 ,is equal and has the opposite direction

—_— . —_—  —

to the rotation of vector OP. In fact, if OQ) is a unit vector, then |OQ|=|OP]|

and, as a consequence of the analogy, d;p = 51/5/Q (cf. Fig. 26). Therefore, 4,

actually represents the maximum shearing strain between direction OP and
orthogonal directions, i.e., 0; = 2 = \/5;2 +0,2 + 02 — €2

This fact leads to the conclusion that the definition of pure deformation,

which was stated in Sect. II1.4 for a reference system x,y, z, is independent

of the coordinate axes, since, once the rigid body rotation is eliminated for
those directions, it is also eliminated for all other directions.

Fig. 26. Analogy between the reciprocity of the shearing stresses and the rotation
of two orthogonal directions in the pure deformation

The complete analogy between the tensor operations on the stress and
strain tensors, represented by the analogy between Expressions 10 and 56,
allows some immediate conclusions to be drawn about the strain tensor rep-
resenting a deformation state, as follows:

— The reference axes of the strain tensor may be transposed by means of the
matrix operation
['] = [U'[ell], (57)

— where [¢'] contains the tensor components in the new reference axes and the
orthogonal matrix [I] contains the same direction cosines as in Expr. 15.
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— In the deformation state around a point there are at least three orthogonal
directions which do not undergo shearing strain, i.e., where 6; = 0. These
are the principal directions of the deformation state. The (longitudinal)
strains in these directions are the principal strains, €, €5 and 3; as a rule,
a descending order is adopted, £; > €5 > 5.

— The characteristic equation of the strain tensor is given by the expression

—€3+11€2—125+13:0,

— where Iy, Is and I3 are the invariants of the strain tensor and take the
values given by

I =&, +ey+e.

S [
1—2 _ T Ty

Ery &y
Ex Ery Exz
I3 = ey & €y
Exz Eyz €z

— A Lamé’s ellipsoid may be drawn for the strain tensor, in the same way as
for the stress tensor (Fig. 9, with principal semi-axes OA = &;, OB = &,
and OC = g3).

— The strain tensor may be decomposed into isotropic and deviatoric (distor-

. ExtEy+e
tional) components (g, = %)
Ex 5903/ Exz Em O O Ex —Em sacy Exz
Ery Ey Eyz | = 0 g, O + Exy Ey—Em Eyz
€rz Eyz Ez 0 0 en Exz Eyz €z —Em
isotropic tensor component distortional tensor component

— The octahedral longitudinal and shearing strains are defined by the expres-
sions (cf. (29) and (31))

Ex t &yt
Eoct = f

Voct 1 2 2 2
2t:§\/(5z—£y) +(ez—&)" + (ey — &) +6(5§y+agz+sgz).

— A Mohr’s representation of the strain tensor, similar to that displayed in

Fig. 14 for the stress tensor, may be made, with the longitudinal strains ¢

in the axis of abscissas and the shearing strain 3 in the axis of ordinates.

I11.7 Volumetric Strain

The deformation usually causes a volume change. We define volumetric strain
as the volume change per unit of initial volume. Since, at this point, only
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small deformations are considered, the changes to the initially right angles of
the infinitesimal parallelepiped, v, = 2e4y, 7, = 26y, and 7,, = 2¢&;,, may
be considered as infinitesimal quantities and, therefore, they do not cause
volume change. Thus, the volume V of the generally non-rectangular paral-
lelepiped, which results from the initial rectangular parallelepiped defined by
the infinitesimal distances dz, dy and dz, may be computed as though it were
rectangular, yielding (Vo = da dy dz is the initial volume of the infinitesimal
parallelepiped)

V=(01+¢)de (1+¢)dy (1+e,)dz
= (1+5x)(1+5y)(1+5z)vo~

Bearing in mind, that the longitudinal strains are also infinitesimal quantities,
the products of these strains are infinitesimal quantities of higher order, so
they may be disregarded. Thus, the volumetric strain is given by

V%
Vo
Reg+ey+e,=11. (58)

I =ep + eyt &, FxEy +ExEs +EyE, +ExEyE,

We may conclude that, in the case of small deformations, the first invariant
of the strain tensor takes the value of the volumetric strain.

IT1.8 Two-Dimensional Analysis of the Strain Tensor

I11.8.a Introduction

In the same way as in the case of the stress tensor, a two-dimensional analysis
of the strain tensor can also be performed, if one of the principal directions is
known. If the principal strain associated with this direction is zero, we have
a state of plane strain.

As noted in Sect. I1.9, for the plane state of stress, the two-dimensional
analysis of the strain tensor could be performed by particularizing the ex-
pressions developed for the general three-dimensional case to the stresses con-
tained in the plane defined by two principal directions. However, for the same
reasons as explained in that section, an independent development of the two-
dimensional expressions is preferable.

Only the general considerations presented in Sects. III.1 and II1.2 are
needed to understand the following explanation. The expressions developed
here are only valid in the linear case, where both the deformations and the
rotations take infinitesimal values. For simplicity, we consider that the known
principal direction is direction z, so that the two-dimensional analysis is per-
formed in the xy plane.
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IT1.8.b Components of the Strain Tensor

As discussed in Sect. I11.2, the homogeneous deformation of a rectangle may be
defined by the elongation of its sides and by the variation of the initially right-
angle between two sides. These three quantities (and the initial dimensions)
define the parallelogram, which results from the rectangle.

Let us now consider an infinitesimal rectangle, whose sides are parallel to
the Cartesian reference axes x,y and have the infinitesimal lengths dz and
dy. The elongation of its sides, Adz and Ady, divided by the initial lengths,
gives the longitudinal strains ¢, = Adix and ¢, = Addy The variation of the
initially right-angle between dz and dy, 7,,, = 24y, deﬁnes the double shearing
strain or distortion. These three dimensionless quantities, &, €, and ,,, fully
define the state of deformation around a point in the two-dimensional case,
since they allow the computation of the strain in any arbitrary direction of
plane zy, as will be seen in the following Sub-section.

As in the three-dimensional case, a sign convention is used, in which a
positive longitudinal strain corresponds to an increase in length and a positive
shearing strain corresponds to a decrease in the angle defined by the positive
directions of the reference axes (cf. Fig. 27).

Ly Ads

Fig. 27. Components of the deformation of a line segment with arbitrary direction

IT1.8.c Strain in an Arbitrary Direction

Let us consider an infinitesimal line segment with infinitesimal length ds and
orientation defined by the angle 6, measured from axis x in the positive di-
rection (from x to y), as represented in Fig. 27. As a consequence of the
longitudinal and shearing strains ¢, ¢, and =, this line segment undergoes a
longitudinal strain and a rotation. Denoting the rotations of the line segments
dr = dscosf and dy = dssinf by ~, and ~,, respectively, positive if they
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lead to a decrease in the angle between the positive semi-axes x and y, the
geometrical considerations depicted in Fig. 27 may be established.

In the displacements represented in this Figure the products of longitudinal
and shearing strains have been disregarded, since they are infinitesimal quanti-
ties of higher order, because only infinitesimal deformations and rotations are
considered (for example, we have considered ~, (dz + ¢, dz) =~ 7, dz). Fur-
thermore, as all the rotations are infinitesimal the simplifications cosvy ~ 1
and sin~y & tan~y &~ v have been made.

The displacement § of the tip of vector ds may be defined by its compo-
nents (cf. Fig. 27)

0y = epda + v, dy
{ 5, = eydy + . dz . (59)

The projection of 6, and d, in the direction of ds gives the elongation of this
line segment

Ads = 05 cosf + 6, sinb , (60)
or, substituting (59) in (60) and dividing by the initial length ds
Ads dz dy dy . dz .
=g — s cosf + Wgs cosf + s sin 6 + g sin@ .

Taking into consideration that % = cosf and ‘;—"; = sinf, we get
g = €, 08> 0 + g, sin20+2% sinf cos @ , (61)

since 7, + 7, = 7. This expression is analogous to Expr. 33, which furnishes
the stress in a facet, whose orientation is defined by angle 6 (cf. Fig.11). By
projecting ¢, and J, on the normal direction to ds, the transversal displace-
ment J; of the tip of ds is obtained

0 = —0z 8in6 + 6, cos b .

In this expression, the displacement d; is considered positive if it corresponds
to a rotation of ds in the counterclockwise direction. By dividing by ds and
taking (59) into consideration, as well as the relations dz = dscosf and
dy = ds sin#, the rotation 8 (cf. Fig. 27) is obtained

_ % (ey — &x)sinf cos ) + 7, cos® § — Yy sin® 6 . (62)

e

The rotation ' of a line segment ds’, which makes a right-angle, in the pos-
itive (counterclockwise) direction, with ds (cf. Fig. 27) may be computed by
substituting 6 by 6 + 7 in (62), yielding

B = —(gy — &x)sinf cosf + 7, sin® § — Yy cos® 0,
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since sin (# + §) = cos# and cos(f + §) = —sin 6. The double shearing strain
75 between the directions defined by the angles § and ¢ + 5 is then given by
(cf. Fig. 27).

Y=0—pB = (e, — &) 2sinfcosd + (7, +,) (cos® 6 — sin” ) . (63)
—_———
e

Taking into consideration that an infinitesimal rotation of the reference axes
causes only infinitesimal changes in the components of the strain tensor (this
may be easily verified by substituting in (61) 8 by d = ¢, =~ &, or by
5+df = ¢y ~ g, and in (63) 6 by df = 4, ~ 7). Therefore, we may consider
in Fig. 27 and in (62) that v, =, = T n this case, (62) immediately gives

5
the shearing strain % in the orthogonal directions 6 and 6 + 7, yielding®

= = 2
x — ly T o
2 | v (6)
= f=-0 :5:(6y—£,;)s1n90089+7(cos f —sin® ) .

Equation (64) is formally analogous to (34). By transforming (61) and (64)
in the same way as (33) and (34) were transformed in Subsect. I1.9.b, we get,
from (61)

€9 = EI—;-Q, fo ;gy COSQQ—I—%SHIQ@ : (65)
In the same way, we get from (64)
%:—%sin%—l—%@cos%. (66)

These two expressions (65 and 66) are formally analogous to those obtained
in the two-dimensional analysis of the stress tensor for the normal and shear-
ing stresses in an arbitrary oriented facet ((35) and (36), respectively). As
the further developments based on these expressions were based solely on
mathematical considerations, they are also valid for the strain tensor, if we
substitute o, o, and 7y by &, €, and ey = 7%, respectively. The following
conclusions may therefore be drawn:

— There are two orthogonal directions, which do not suffer shearing strain
during the deformation. These are the principal directions of the strain
tensor and may be computed by an expression analogous to (37)

1
0 — = arctan — % (67)
2 Ex — &y

5This conclusion confirms the considerations established in Sects. IT11.4 and I11.6
about the decomposition of the motion of the material points in an infinitesimal
region in pure deformation and rigid body rotation. The infinitesimal rotation of
the reference axes, so that -, = 1, is equivalent to the elimination of the rigid body
motion.
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— The longitudinal strain € reaches extreme values (maximum and minimum)
in the principal directions. These are the principal strains, which may be
computed by the expression

(2= ()

— A Mohr’s circle may be drawn for the two-dimensional strain tensor, where
the axis of abscissas contains the longitudinal strains and the axis of ordi-
nates the shearing strains.

I11.9 Conclusions

In this chapter we have mainly analysed the physical aspects of the defor-
mation. This has been possible because the conclusion that the state of de-
formation, as the state of stress, may be described by a symmetric second
order tensor, allows a full analogy between the purely mathematical tensor
transformations in the two cases. Thus, we have concluded that the tensorial
operations described in Sects. I1.5 to I1.8 for the stress tensor are also valid
in the case of the strain tensor.

As in Chap. II for the stress theory, the analysis is mainly performed in
an infinitesimal neighbourhood around a point. The functions describing the
evolution of the elements of the strain tensor in the continuum were taken
into consideration only for developing the equations of compatibility. Here it
should be noted that, while the six elements of the strain tensor are completely
independent of each other, the six functions defining the elements of the strain
tensor must obey the compatibility conditions.®

The two restrictions used in the development of the mathematical expres-
sions for the deformation state are of completely different nature.

The first — restriction of the analysis to an infinitesimal neighbourhood
around a point, so that the deformation may be considered as homogeneous
— has consequences on the level of the mathematical tools used: the simplifi-
cations made possible by the consideration of a a homogeneous deformation
impose the use of integral and differential calculus.”

The second — consideration of infinitesimal deformations and rotations —
has consequences on the level of the problem’s physics. As a consequence,
no matter how good the mathematical or numerical tools used are, an error

5The same conclusion may be drawn in relation to the functions defining the
stresses in the continuum: the six elements of the stress tensor are independent of
each other, but the six functions, which define the same stresses as functions of the
coordinates z,y, z must obey the differential equations of equilibrium (5).

"The corresponding restriction in the stress state is the consideration of infini-
tesimal facets. The consequences of this restriction are, as in the deformation state,
only on the level of the mathematical formulation of the problem.
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is always present, and this becomes larger when deformations and rotations
grow. As mentioned in Footnote 6, the restriction to small rotations even
excludes the capacity to consider structural instability phenomena. For this
reason, the analysis of the buckling of slender members (Chap. XI) is based
on the bending theory, where, as Chap. VII will show, the validity of the
relation between the motion of cross sections and strains is not limited to
small rotations.

I111.10 Examples and Exercises

II1.1. Displacements were measured in a deformed body, which may be ap-
proximated by the expressions

w =522 4+ 3xy + 4 + 4y% + 3yz
v =6y +4y® + 54 222
w = 4wz + 2y + 3y + 622 .

Knowing that both deformations and rotations are sufficiently small to
be considered as infinitesimal, determine the functions describing the
strains and the rotations in the body.

II1.2. Displacements were measured in the deformation of a body, which may
be approximated by the expressions (A, B, ..., H are constants)

u = Az3 + By? + Cyz
v = D2%y + Ey® + Fy?z
w = Gxz® + Hyz? .

Knowing that, although the rotations are of considerable magnitude,
the deformations are sufficiently small to be considered as infinitesimal,
compute the longitudinal strain of an infinitesimal line segment which
is parallel to axis = and located in an infinitesimal neighbourhood of
the point of coordinates (2,-3,5).

I11.3. What are the degrees of connection of the following bodies:
(a) a body composed by six bars linked like the edges of a tetrahedron;
(b) a prism with a square base and an interior cavity, which intersects

the four side faces and does not intersect the top and bottom faces;

(¢) aring with a tubular cross section.

II1.4. Write a computation sequence to verify the reciprocity of the rotations
in a pure deformation (cf. Fig. 26).

Resolution

Given data: elements of the strain tensor, €, €y, €, €4y, €2 and g,,; direction
cosines of direction OP, [, m and n.
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Computation Sequence

1. components of the displacement of the tip of vector OP:

52,95 = leg + megy + negs

[A—
Opy = leay +mey + ney,

51'% = leg. + mey, + ne; ;
. longitudinal strain in direction OP:
ep = 10, +md,,, +nd,_;

pz

. transversal displacement of the tip of vector OP:

O = [0+ 07 + 02 — <
. . . . . =4 e
. direction cosines of direction OQ (OQ||)dy,;

! / !
0pe — lep 0y, —mey Op. — NEp
J; ’

= n, =
/ q ! q
6tp 6tp tp

lg =
. . =4
. components of the displacement of the tip of vector OQ):
6(/11 = lqu + MgExy + NgEqz
5/
ay

! .
Ogz = lg€az + Myys + ngEs;

= lg€ay + MgEy + Mgy

. longitudinal strain in direction OQ:

g = lg00y + mg0y, 4 ngdy.;

. components of the transversal displacement of the tip of vector O_Q>:

Y
- 6qw - lng

VAR r_ s .
tqx - 5qy MqEq tqz 5qz Nq€q;

!
tqy
. projection of d;, in direction OP:

51, = 15}

tqx + mé, + nézqz;

tqy

. verification:

"o s/
tqg — 6tp'

65



IV

Constitutive Law

IV.1 Introduction

In the last two chapters the relations between the external forces and the
stresses and between the displacements and the strains have been analysed.
The constitutive law is the third element of the chain which links the external
forces with the displacements they cause in a continuous body, as described
in Sect. 1.3.

In this element of the chain the rheological behaviour of the material plays
the central role, since the relations between the internal forces and deforma-
tions (described by the stress and strain tensors, respectively) must be estab-
lished.

The constitutive law may be described by a tensor, as the internal forces
and deformations. This is actually a fourth order tensor, since it describes the
relations between two second order tensors. However, in the explanation that
follows, the tensor mathematics will not be used to define the constitutive
law. In fact, although the mathematical approach offers more systematization
possibilities, the other approach — the physical evidence, with adequate jus-
tification — allows a better physical understanding of the conclusions arrived
at, which is of crucial importance in the first stages of the study of Mechanics
of Materials.

IV.2 General Considerations

As was made clear in the first chapter (Sect. I.1), a phenomenological approach
must be used in order to quantify the rheological behaviour of materials.
In this approach the results of experimental tests are used as a basis for
the typification and quantification of the rheological behaviour. This process
always uses behaviour models. The oldest and simplest of these models is the
one defined by Robert Hooke in 1678 (Hooke’s law) [2], which states that strain
is proportional to stress. In this case the mathematical model of proportionality
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is used in the definition of the material behaviour. Physical models may also
be used: for example, the influence of viscosity on the material’s behaviour
may be understood by analogy with the deformation of the dashpot in a shock
absorber device, such as a car damper. The dashpot is in this case the physical
model. Some of these models are analysed in Sect. IV.3. Some commonly used
concepts are now defined:

— Isotropic material — material with the same rheological characteristics in
every direction, or, in other words, material with rheological properties,
which are symmetrical in relation to any plane containing the material
point under consideration. Steel and concrete — the materials most used
in civil engineering structures — are examples of materials which may be
considered as isotropic.

— Monotropic material — material with symmetrical properties in relation to
planes, which are parallel or perpendicular to a particular direction: the
direction of monotropy of the material. Wood is an example of a material,
which may be considered as monotropic, with the fibres defining direction
of monotropy, since it displays symmetrical properties in relation to planes
parallel or perpendicular to the fibres’ direction. Other examples include
all fibre-reinforced isotropic materials whose fibres are in one direction, and
materials composed by alternate layers of two or more isotropic materials,
if the thickness of the layers is sufficiently small to consider the material
as continuous in the direction perpendicular to the layers. This direction
describes the direction of monotropy. The monotropic material is also called
transversal isotropic material, since it displays isotropic properties in the
plane perpendicular to the monotropy direction.

— Orthotropic material — material with symmetrical properties in relation to
three orthogonal planes. An example would be an isotropic material rein-
forced by fibres placed in orthogonal directions, or in such a way that three
orthogonal planes of symmetry are obtained. Composites made of carbon
or glass fibre reinforced plastics are mostly orthotropic (cf. example IV.12).

— Flastic deformation — recoverable deformation which occurs at the same
time as the loading which causes it. Furthermore, the stress-strain relation
is the same in the loading and unloading phases. If this relation is linear, a
linear-elastic behaviour is obtained.

— Plastic deformation — non-recoverable deformation, which occurs at the
same time as the loading. Usually, the plastic deformation takes place only
if the stress reaches a certain threshold value. In some metals, such as mild
steel, a significant part of the plastic deformation occurs suddenly, when
the stress reaches a value called the yielding stress of the material.

— Viscous deformation — time-dependent deformation, in which the rate of de-
formation is a function of the stresses. This deformation takes place while
the material is under loading, i.e., it increases with the time, even with con-
stant internal forces. In the special case of linear viscosity the deformation
rate is proportional to the stress.
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— Ductile material — material, which is able to undergo a substantial amount
of plastic deformation, generally much larger than the elastic deformation,
before rupture.

— Brittle material — material, which attains rupture with very little non-elastic
deformation, i.e., with elastic behaviour practically until rupture.

— Creep — increase of deformation with the time without loading change. This
rheological behaviour may be explained as a combination of elastic and
viscous behaviour (visco-elastic deformation, recoverable), plastic and vis-
cous behaviour (visco-plastic deformation, non-recoverable) or even a com-
bination of the three fundamental deformation types: elastic, plastic and
viscous (elasto-visco-plastic behaviour). Usually the deformation rate de-
creases with time.

— Relazxation — Decrease of the internal forces with time, without variation of
the deformation. This phenomenon may also be explained as a consequence
of visco-elastic, visco-plastic or elasto-visco-plastic rheological behaviour.
Usually the rate of decay of the internal forces decreases with time.

— Liquid — from a rheological point of view, a liquid is a material, in which
only isotropic stress states are possible, unless the deformation varies with
time and the material displays viscosity. As a consequence, in a non-flowing
liquid there are no shearing stresses at all.

— Solid — in contrast to a liquid, from a rheological point of view, a solid is
a material, in which non-isotropic stress states are possible, even when the
deformation rate vanishes in every region of the body.

IV.3 Ideal Rheological Behaviour — Physical Models

The formerly defined basic types of material behaviour may be understood
with the help physical models. Physical modelling, although not absolutely
necessary, does facilitate the understanding of the possible mechanisms of the
material structure, which determine its rheology and, if consistently followed,
it avoids the development of rheological models, which do not obey funda-
mental laws, such as the second law of thermodynamics (law of increasing
entropy, or of energy dissipation).

Elastic behaviour may be easily understood by imagining a spring under
the action of a force. When the force is applied, the spring deforms, if the force
is increased the deformation increases, if the force remains unchanged, the
deformation does not change and if the force is withdrawn, the spring recovers
its initial dimensions. The relation between the force and the deformation is
the same, either when the force is increasing (loading) or when the force
is decreasing (unloading), i.e., the rheological behaviour is the same in the
loading and unloading phases. If the force is proportional to the deformation
the constitutive law of the model reads (K is a constant)

F=K} = o = FEes (Hooke’s law) .

These considerations are summarized in Fig. 28.
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Fig. 28. Physical model for the elastic behaviour: (a) linear; (b) non-linear

The plastic deformation has force-displacement and energy dissipation fea-
tures, which may be understood by analogy with the displacement of a body
under its own weight, lying on a horizontal surface, when a horizontal force
is applied, as represented in Fig. 29: the force causes a displacement of the
body only if its intensity reaches the value corresponding to the friction force
between the body and the surface. After this, the displacement may be in-
creased without variation in the force, and the body does not go back to
the initial position when the horizontal force disappears. The deformation is
therefore not recoverable (unless a force with the opposite direction is ap-
plied), which means that the work done by the horizontal force is dissipated:
it is transformed in heat in the contact surface.

The viscous deformation may be modelled by a cylinder with a liquid,
where a piston with a small perforation moves, as represented in Fig. 30. When
a force P is applied to the piston, the liquid flows through the perforation with
a flow volume which depends on the pressure under the piston. The higher
the intensity of the force P, the higher this pressure will be. Thus the rate
of displacement of the piston § = ‘;—f may be directly related to the force
P. In terms of stresses and strains linear viscosity may be expressed by the
constitutive law (7 is the viscosity modulus)

. de
é—

g
%7 (68)
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Fig. 29. Physical model for the plastic behaviour: FF < Fo = =00 <0y =>e=0
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Fig. 30. Physical model for the viscous deformation: (a) physical model: dashpot
(b) schematic representation (c) linear viscosity (d) non-linear viscosity

£

Fig. 31. Rheological model for the elastic, perfectly plastic behaviour

By connecting together the base models presented in Figs. 28, 29 and
30, more elaborate models may be constructed. For example, connecting the
elastic and the plastic model in a series, an elastic, perfectly plastic behaviour
is modelled, as depicted in Fig. 31.

The visco-elastic behaviour of a solid material may be modelled by the
Kelvin solid, which consists of a parallel association of a spring and a dash-
pot.! The constitutive law of this model may be obtained by taking into
consideration that the total stress is the sum of the stresses in the spring and
the dashpot, yielding

o= FEe+né. (69)

If the strain is prescribed, this expression furnishes the corresponding stress
directly. However, if the stress is prescribed, it is necessary to solve the dif-
ferential equation 69, to compute the corresponding strain. For example, if
a stress o, is applied to the model at the time tp and if the stress remains
unchanged, the corresponding deformation is given by (a particular integral

of the complete equation is € = %9 and C' is an integration constant)

'In the parallel associations it is assumed that all elements suffer the same de-
formation.
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O'O _Ey
e=—=+Ce
E oo B % [1 - e—%“—to)] . (70)
E
t=ty = =0

This expression represents a strain which tends asymptotically to the value
%’. This deformation has the characteristics of a creep deformation, since it
increases without variation of stress and the deformation rate decays with
time. At time instant ¢; the deformation takes the value

=t = e=¢ = % [1 — e*%(“*to)} .

If the model is unloaded at time ¢1, the rheological behaviour may be com-
puted by solving (69) again, yielding

E(t—t1) _

{020:>E€+77€:0 = Czsle%tl = ec=¢ge 7

t=1 = e=¢

We can see that, although the dashpot dissipates energy, the deformation is
recoverable, since it tends asymptotically to zero.

Figure 32 illustrates the considerations about the Kelvin solid established
here.

T o o
oyt

52 o

¢ o to t1 t

Fig. 32. Deformation and recovery of the Kelvin solid under constant stress

The shape of the creep curves may be easily explained, taking into account
that the dashpot does not deform instantaneously, since an infinite strain rate
would demand an infinite stress (cf. (68)). Thus, at the moment the stress
is applied (instant tg) the load is totally supported by the dashpot, since
the spring is undeformed and therefore its stress is zero. As the deformation
increases with time, the stress in the spring increases and, as a consequence,
it decreases in the dashpot, which causes a fall in its (and in the model’s)
deformation rate. This rate vanishes when all the stress is transferred to the
spring, which theoretically only happens for ¢ = co, when € = %’

The deformation recovery after t = ¢; proceeds in a similar way. Immedi-
ately after the stress is released, the installed deformation causes a stress in
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the spring, which must now be balanced by an opposite stress in the dash-
pot, since the total stress is zero. This stress, which causes the deformation
recovery, decreases as the strain in the model decreases, which causes a reduc-
tion in the recovery rate. Theoretically, the deformation in the Kelvin model
disappears completely (¢ = 0) only for ¢ = co.

The quantity % defines the reaction time of the model and is usually called
the creep modulus or retardation coefficient of the model. Its inverse % has
time dimensions and is known as the retardation time.

A serial association of a spring and a dashpot defines the Mazwell model
.2 The rate of deformation of this model is the sum of the rates of deforma-
tion in the spring and in the dashpot. Its constitutive law may therefore be
represented by the expression (cf. (68))

. 0 O
=7 + o (71)

Contrary to the Kelvin model, in the Maxwell model the computation of
the strain for given stress is immediate (cf. Fig. 33-a), while the computation
of the stress for given strains demands the solution of the differential equation
represented by (71), when the stress is unknown. Imposing to the rheologi-
cal model a strain g, at the time ¢, and keeping it constant, the stress at
once takes the value E¢, and relaxes as the dashpot deforms. The interaction
between the deformation in the dashpot and the stress in the model leads to a
stress-time relation represented by an exponential law which tends asymptot-
ically to zero, as represented in Fig. 33-b. This relation takes the form

o o
0= — 42 =0
c E 7 = o= Beye o (10) (72)

t:t0:>0':E€O

This expression is obtained by solving (71) for constant ¢, with an initial stress
o = Feg, for t = tp.

Figure 33 summarizes the considerations about the Maxwell model estab-
lished here.

The shape of the relaxation curve may be physically explained by similar
considerations to those for the creep deformation of the Kelvin model under
constant stress. As mentioned previously, since the dashpot does not deform
instantaneously, the imposed deformation is at first completely transmitted
to the spring, which causes the initial stress o = E¢,. This stress decays with
time, as the dashpot deforms, since this deformation causes a reduction of
the strain in the spring (the total strain remains constant). The rate of decay

2If the stress acting on the model belongs to the deviatoric component of the
stress tensor, the model represents the rheological behaviour of a liquid, since the
stress is different from zero, only if the rate of deformation of the dashpot does not
vanish, which is in accordance with the definition of liquid given in Sect. IV.2.
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Fig. 33. Maxwell liquid: (a) creep; (b) relaxation

decreases with time, since the stress relaxation causes a fall in the deformation
rate on the dashpot.

The reaction time of the model is determined by the quantity % (cf. (72)).
This relation is usually called relazation modulus and its inverse L is the
relazation time.

Although the rheological behaviour observed experimentally in actual ma-
terials may be qualitatively described by the simple rheological models of
Kelvin and Maxwell, a quantitative approximation with a sufficient degree of
precision demands generally more sophisticated models. These usually have
a larger number of base elements. The development and description of these
models is beyond the scope of this text. However, it may be pointed out that,
for visco-elastic materials, two main families of models are generally used: the
Kelvin chain, composed of a serial association of Kelvin elements (Fig. 32),
where the computation of the strain for a given stress history is relatively sim-
ple, since the stress is the same in all elements, and the generalized Mazwell
model, composed of a parallel association of Maxwell elements (Fig. 33), where
the computation of the stress for a given strain history is simple, since the
deformation is the same in all elements.

If the viscosity and elasticity moduli,  and F, are constant, we have linear
visco-elasticity, since the effects of different stress or strain histories imposed
in visco-elastic materials may be superposed, as is easily confirmed in the
example of the equations representing the constitutive laws of the models of
Kelvin and Maxwell analysed above. Thus, we get from (69)

Eey +néy = oy FEeg+nés = E (e +&) +n( +&)
Eey+néy =0, = = Fe; +né; + Eeg +1néy =05 . (73)
—_— Y
€ T & =¢&3 o y

From this expression we verify that the effects of the strains ¢; and &,, which
correspond to the stresses o; and o, may be superposed. This proof also works
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in the inverse problem, i.e., starting from a stress o3 = 0y + 0y, (73) shows
that the corresponding strain is €3 = €; +&,. The same line of reasoning could
also be applied to the constitutive law of the Maxwell model (71).

In the case of the plastic model presented in Fig. 29, the effects of stresses
and strains can not be superposed. This can easily be verified by considering
two values for the stress, whose sum exceeds the yielding stress o, with each
stress being inferior to this value. If only one of these stresses is acting, there is
no deformation, while the two stresses acting simultaneously cause an infinite
deformation.

IV.4 Generalized Hooke’s Law

IV.4.a Introduction

In the previous section some considerations about the fundamental types of
rheological behaviour were established and a physical interpretation of these
phenomena has been made with the help of one-dimensional models.

However, in the problems arising in the practical application of the Me-
chanics of Materials the stress and strain states are frequently two- or three-
dimensional, so that the generalization of the one-dimensional models to
two or three dimensions is necessary. In this section, we will study three-
dimensional constitutive laws in the linear case (i.e., when the stresses and
strains are related by linear functions), considering isotropic, monotropic and
orthotropic materials.

IV.4.b Isotropic Materials

As defined in Sect. IV.2, isotropic materials display symmetrical features in
relation to any plane. Therefore, the three planes define by the reference axes
in any rectangular Cartesian reference system are symmetry planes in relation
to the rheological behaviour of the material.

Let us first consider the isolated action of the normal stress o, as rep-
resented in Fig. 34. Since this stress pair describes a symmetrical system of
forces in relation to the symmetry planes of the elementary parallelepiped,
which are also symmetry planes of the rheological properties of the material,
the deformation must also be symmetric in relation to those planes. As a con-
sequence, after the deformation the parallelepiped remains rectangular and
only changes in the lengths of its sides take place. Besides, as the directions y
and z are in the same conditions in relation to axis x, its strain must be the
same. Consequently, the parallelepiped’s deformation is completely defined by
the longitudinal strains in directions x and y or z. The transversal strains (y
and z) are usually negative (length reduction), when the longitudinal one (z
in this case) is positive (length increase). Furthermore, as only linear elastic
behaviour is considered, all the deformations are proportional to the stress
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Fig. 34. Deformation caused by the isolated actuation of oy: ------ original configu-
ration; —— deformed configuration

05, which means that the transversal strains are proportional to the strain in
longitudinal direction z.

The relation between the normal stress (in this case o) and the longitu-
dinal strain in the same direction (in this case &;) is called the longitudinal
modulus of elasticity or Young’s modulus of the material. The relation be-
tween the transversal and longitudinal strains, multiplied by —1, is known as
the Poisson’s coefficient of the material (v). The strains caused by the stress
o, are then (cf. Fig. 34)

Oz
[
E
L=yl =2,
Oy — Y T E T
v
e, = vl =——0, .

E

If only infinitesimal deformations are considered, we can accept that the par-
allelepiped’s geometry remains unchanged, when the effects of o, and o, are
considered. Since the stress-strain relation is linear, it does not change with
the actuation of o,. Thus, if the stresses o, or o, are applied after o, they
cause the same deformations that would occur under the isolated action of
each of them. The total strains may therefore be computed by adding the
strains, which would be produced by the isolated action of each stress. This
conclusion describes the so-called superposition principle, which is valid for
all solid bodies if the deformations are small and if the material has a linear
constitutive law. This principle is described in more detail in Sect. V.8.
The isolated actions of o, and o, would cause the strains

14

2 v 3
Ex = *Egy Ex = *EUZ
1 3 v
2 . —
Oy — § &y Vol o —§ Cy B
v 1
2 3
=T TR =T B

The superposition principle allows the computation of the total strain by
adding the strains caused by the isolated actions of the stresses o, o, and o,
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Fig. 35. Deformation caused by the shearing stress 7;y: ------ original configuration;
— deformed configuration

yielding
1
€r = ep + Tp + %y = Zlow —v(oy +02)]
- 1
ey =gy + %y + %y = o) [oy — v (00 + 02)] (74)
1 2 3 1
€, = €+ €+ &, = E[O'Z—Z/(O'x—FO'y)] .

These expressions were obtained from symmetry considerations and relate the
normal stresses with the longitudinal strains. The same symmetry consider-
ations lead to the conclusion that the shearing strains cause distortions only
in their plane, since the deformed parallelepiped must remain symmetrical
in relation to the plane containing the shearing stresses, as represented in
Fig. 35. The constant of proportionality between the shearing stress and the
shearing strain is known as the shear modulus of the material (G), also called
the transversal modulus of elasticity. The constitutive law of an isotropic ma-
terial, defined in terms of normal stresses and longitudinal strains by (74), is
completed by the relations between shearing stresses and shearing strains

1

VYoy = 2€Iy = ETIQ
1

Vor = 2622 = a'rmz (75)
1

Yy = 26y = é’]’yz .

These expressions show that the shearing strain vanishes if the shearing
stresses have zero values. Taking as reference system axes which are parallel
to the principal directions of the stress tensor, a strain tensor with non-zero
elements only in the diagonal is obtained, which means that in an isotropic
material the principal directions of the stress and strain tensors coincide.
Among the three rheological parameters defined until now (E, v, G), only
two are independent, since a relation between them can be established. This
relation may be obtained by considering a two-dimensional stress state with
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Fig. 36. Purely deviatoric plane stress state and corresponding Mohr’s circle

0y = 0, 0y = —0 and 7, = 0. This stress state and the corresponding Mohr’s
circle are represented in Fig. 36.3 From the Mohr’s circle, we verify that,
in facets at an angle of 45°, in relation to the principal directions x and vy,
the normal stress vanishes and the shearing stress takes the value 7 = o.
Considering the deformation of the square defined by the two pairs of facets
inclined 45°, a and b (cf. Fig. 36), we get for the deformation of its semi-
diagonals, which have the initial length [,

Al, =le, = lé (0, —voy) = lﬂa
1+v

E

As a consequence of these deformations, the angle between facet a and axis x

suffers a decrease 7, which represents the shearing strain between directions

a and b. After the deformation we have, therefore

g .

1
Aly =lgy = IE (oy —vog) =—I1

(76)

tan(z—l) _ tan%—tan% _ I+ Al _ l—lHTVO' .
4 2 l+tanftand [+ Al, l—‘rlHTVO'

As only small deformations are considered here, angle v may be considered an
infinitesimal quantity, which allows the simplification tan 3 ~ 3. Furthermore,
as ¢ = 7, we conclude that the shear modulus is related to the Young’s

modulus and to the Poisson’s coefficient by the expression

1-3 1-r 5y 1+

2
= = =7=G
1+2 1+ 2 B 7777

(77)
ith G E
wi =—".
2(1+v)
By drawing the Mohr circle of the state of deformation corresponding to
the purely deviatoric plane state of stress (e, = H?VO', &y = —H_TVO‘ and

3This is the only purely deviatoric stress state possible in the plane stress case.
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Yy = 0), we can immediately confirm that in the direction of facets a and b
the longitudinal strain is zero. This confirms that the shearing stress causes
shearing strain alone, in the directions in which it acts. The relation between
G, E and v, expressed by (77), could also be obtained without using the
trigonometric relation contained in (76), by considering the shearing strain in
a direction at 45° to the principal axes, using the Mohr’s circle of the strain
tensor or (66) (cf. example IV.1).

The volumetric strain is caused only by the normal stresses, since, in
isotropic materials, the longitudinal strains in the reference directions depend
only on these stresses, as stated by (74). By substituting these relations in
(58), we get
1-2v 3(1—2v) Om

E (0 + 0y +0.) = Om = 7=

Ey =€z t&yte, = 5 K

. (79)

ith K=-—— .
b 3(1—2v)

The constant of proportionality K between the mean normal stress o, and
the volumetric strain e, is called the volumetric modulus of elasticity or bulk
modulus of the material.

Expressions to compute the stress for given strains may be obtained by
solving (74) and (75), yielding

E [(1 )ex + vy + ve,]
Op = —————————~ —V)Eg 1% Ve,
E
%= Trmi—2) [vez + (1 —v)ey +ve.]  and Tor = 2Ge,
E =2 .
%= A o) Ve e T (-] Ty = 26y
(79)

Expressions (74) and (79) may be given another form by defining the constant
quantities

e =&y + &y +¢, = I, (first invariant of the strain tensor)

0 = 0y + 0y + 0, = I1; (first invariant of the stress tensor) (80)

E
A= (14_1)/(—12) (Lamé’s constant) ,
v)(1—2v

which leads to the more simple expressions

1

& = g (1 +v)o, —vl] op = e + 2Ge,
1

&y = % (L +v)oy — vé] oy = e+ 2Gey (81)
1 -

o= E[(1+V) ) o, = Ae + 2Ge, .
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From these expressions we conclude immediately that, if o, > o, > 03,
then e, > g, > ¢,. Furthermore, in a purely deviatoric stress state (e = 0),
each element of the stress tensor is proportional to the correspondent element
of the strain tensor, with the quantity 2G as proportionality constant (last
expressions in (79) and (81)).

xsxs The quantities F, G and K must take positive values. In fact the work
done by one force applied to a body must be positive, which requires that a
displacement of the point of application of the force has a component with the
same direction as the force itself.* This condition leads to the limiting values
for the Poisson’s coefficient

G>0= 1+v>0=v>-1
= —-1<rv<0.5.

K>0=1-2v>0=r<05

Usually this coefficient takes positive values, so that the limits 0 < v <
0.5 are generally accepted. The maximum value v = 0.5 corresponds to an
incompressible material, since it leads to an infinite value of the bulk modulus
(1-2vr=0= K = ).

IV.4.c Monotropic Materials

While in isotropic materials any rectangular reference system defines sym-
metry planes in relation to the rheological properties of the material, in a
monotropic material this happens only if one of the reference axes is parallel
to the direction of monotropy of the material (cf. Fig. 37).

=1

Fig. 37. Reference direction for the definition of the constitutive law of a monotropic
material: [ — monotropy direction

The constitutive law presented here is developed from symmetry consid-
erations. Therefore, it is only valid for a reference frame, which obeys the

41f the force and the displacement were to have opposite directions, the principle
of energy conservation would not be satisfied, since both the potential energy of
the force and the elastic potential energy stored by the body would increase. These
topics are expounded in Sect. IV.6 and in Chap. XII.
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above referred symmetry conditions. Thus, it may only be used for stress and
strain tensors represented by its components in a Cartesian rectangular refer-
ence frame with one of its axes parallel to the direction of monotropy of the
material.

In order to develop the constitutive law of monotropic materials with lin-
ear elastic behaviour, let us consider a Cartesian rectangular reference frame
x,1y,z with the z-axis parallel to the direction of monotropy. Axes y and z
therefore define the transversal isotropy plane (cf. Fig. 37). Defining the rheo-
logical parameters (v;; — Poisson’s coeflicient, when the stress acts in direction
i and the deformation is measured in direction j):

1. E; — longitudinal modulus of elasticity in the monotropy direction;

2. E; — longitudinal modulus of elasticity in one direction of the transversal
isotropy plane (y, z-plane);

3. Vgy = Uy, = v, — Poisson’s coefficient for a normal stress acting in the
monotropy direction x =1 (0,,);

4. vyz = V., — Poisson’s coefficient for the longitudinal strain in direction z,
when the stress acts in a transversal direction (y, z-plane);

5. Vy, = Vyy = v, — Poisson’s coefficient in the isotropy plane yz;

6. Gy = G5, = Gt — shear modulus for shearing stresses, which are parallel
to the monotropy direction z =1 (7, and 7.);

7. Gy, = 2(1]3#) — shear modulus for shearing stresses contained in the
t

transversal isotropy plane yz(7,.).

The seventh rheological parameter is defined in terms of the second and
fifth ones. The remaining six parameters are not completely independent ei-
ther, since, as consequence of a theorem on the energy of deformation in
materials with linear elastic behaviour — the theorem of Maxwell, a relation
may be established between parameters I, E; and v,,. This theorem, whose
demonstration is presented in Chap. XII, allows the following conclusion: a
stress o applied in direction z causes a strain (g, = —ZLg) in direction y,

E,
which is equal to the strain caused in direction x by a stress with the same

magnitude o, applied in direction y (e, = —“%*0), which means®
Vyx Vyx v
Vye _ Ver _ Vi 82
E: B E (82)

The number of independent parameters needed to describe the rheological be-
haviour of a monotropic material is therefore reduced to five. This constitutive
law may then be expressed by the relation (x — direction of monotropy)

5This relation is also demonstrated in a particular form in Subsect. IV.6.b. This
demonstration is also valid for Expressions 84.
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E; Ey By
. Ty , _ Taz ) _2(1+yt)7_
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In this case the five rheological parameters used are Ej, Ey, v, v, and G;.

IV.4.d Orthotropic Materials

In orthotropic materials the symmetry conditions of the rheological properties
of the material are satisfied only in relation to the planes defined by the
orthotropy directions of the material. The axes of the rectangular reference
frame must therefore be parallel to the material orthotropy directions, if the
symmetry conditions are to be used in the development of the constitutive
law. Thus, the obtained expressions are valid only for this reference frame.

As the reference directions are symmetry directions, the normal stresses
do not cause shearing strain and the shearing stresses cause distortions only in
the plane in which they are contained. T'welve elastic material parameters may
thus be defined: three longitudinal moduli of elasticity (E,, E, and E,), three
shear moduli (Gyy, G- and G,.) and six Poisson’s coefficients (vay, Vyz, Vs,
Vsz, Vy» and v,,). Of these twelve constants only nine are independent, since
the theorem of Maxwell, applied to the three pairs of orthotropy directions,
yields the relations (cf. Footnote 16)

The constitutive law of an orthotropic material with linear elastic behaviour,
which is valid only for the reference axes parallel to the orthotropy directions,
is then

1 Yyz . Vay _ Viz _ _ Vi
E, Ey Ey E, x
Ex Oz
_ | Ve 1 _Vay __ Vyz
& ¢ = Eq B, E. — E, Oy
&z (2P
_ Vg __by= 1 (85)
E, E, E.
Ny = Ty N, = Tz N, = Tyz
Ty — Tz T yz T N
Gmy Gz Gyz

Here it should be noted that in orthotropic as in monotropic materials (and
generally in anisotropic materials), the principal directions of the stress and
strain tensors are generally not the same, unless they are parallel to the
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monotropy or orthotropy directions of the material, or in the case of other
particular stress tensors, as, for example, a purely deviatoric stress tensor
where 0, =0y =0, =Ty, = Ty, = 0 and 7,y #0 (see example TV .4).

IV.4.e Isotropic Material with Linear Visco-Elastic Behaviour

The one-dimensional stress-strain relations for materials with constant elastic
and viscous rheological parameters (linear visco-elastic behaviour), as, for
example, (69) and (71), may easily be generalized to the isotropic three-
dimensional case, if the Poisson’s coefficient is considered constant. For this
purpose, let us note that the three-dimensional Hooke’s law of an isotropic
material may be put in a form, in which the Young’s modulus (or its inverse)
appears as a factor applied to all relations, as is easily verified by writing (74)
and (75) as follows

Ex 1 —v —v 0 0 0 O
Ey -v 1 —v 0 0 0 oy
e\ _1|-v —v 1 0 0 0 0,
ey ([ E| O 0 0 14+v 0 0 Tay (86)
Exz O O O 0 1 + v 0 Trz
Eyz 0 0 0 0 0 1+v Tyz

As seen in Sect. IV.3, in a linear visco-elastic material stresses and strains
may be superposed. Thus, the loading history may be defined by small stress
or strain impulses, which are applied at given time instants and kept indefi-
nitely constant. Unloading is represented by negative impulses, as presented
schematically in Fig. 38.

oce
} \%da,—ds
y A
LA NG
do, de f o~
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Fig. 38. Loading history of a visco-elastic material represented by impulses

The strain corresponding to a stress impulse or the stress corresponding to
a strain impulse depends on the time elapsed since the onset of the impulse.
These relations are of the type described by (70) and (72) for the Kelvin
solid and the Maxwell liquid, respectively. Since the elasticity modulus is the
relation between the stress and the corresponding strain, equivalent elasticity
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moduli may be defined from those equations. These moduli therefore depend
on the time elapsed between the instant of application of the stress impulse
and the time at which the strain is computed, or vice versa

d 1 1
7d§ =% 1— e_%(t_t‘))} = 70 (Kelvin solid) .
d

CTZ = Be 7 (710 = p(t) (Maxwell’s liquid) .

By substituting in (86) E by E’(t), the one-dimensional linear visco-elastic
model under consideration is generalized to the three-dimensional case. If
more elaborate rheological models, like Kelvin chains or generalized Maxwell
models, are used, the procedure is similar to the one represented by (87). In
other words, the equivalent elasticity modulus is computed by means of the
creep relation between a constant stress and the corresponding strain in the
Kelvin chain, or, in the generalized Maxwell model, by means of the relaxation
relation between a constant strain and the corresponding stress decay.

IV.5 Newtonian Liquid

Liquids are isotropic materials, since their rheological properties are indepen-
dent of the direction considered. When a stress field is applied to a liquid,
its effect has two distinct components: the isotropic component of the stress
tensor — the pressure — causes a volumetric strain, if the liquid is compressible,
or has no effect vis-a-vis the deformation, if the liquid may be considered as
incompressible; the deviatoric component, to which shearing stresses are al-
ways associated, causes distortional deformation rates. These latter depend on
the viscosity, since, by definition, a non-flowing liquid does not resist shearing
stresses. The volumetric deformation has the characteristics of an elastic defor-
mation, since it does not depend on the time and since the plasticity is mostly
associated with the deviatoric (distortional) component of the deformation,
even in solid materials. The deformation associated with the deviatoric stress
component is a viscous deformation, as concluded above.

A perfect liquid is defined as an incompressible liquid without viscosity.
Thus, in this material there are no shearing stresses at all, since even when
the liquid is flowing, those stresses cannot be resisted. For this reason, in a
perfect liquid, the body forces (including inertial forces) are balanced only by
the variation of the isotropic stress, as required by the differential equations
of equilibrium (cf. (5) and (6)).

Actual liquids are compressible and have non-zero viscosity, which means
that shearing stresses are generally present when the liquid is flowing. The
relation between the stresses in the deviatoric component of the stress tensor
and the viscous deformation rates associated with the distortional deforma-
tion, and the relation between the isotropic stress and the volumetric strain
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define the constitutive law of the liquid. In most liquids these relations may
be accepted as linear. In that case we have a Newtonian liquid.

The constitutive law of a Newtonian liquid could be established by means
of symmetry considerations, similar to those described in Sect. IV.4.b for solid
isotropic materials. However, precisely because the symmetry considerations
are the same for isotropic solids and isotropic liquids, an analogy with Hooke’s
law may be used to find the constitutive equations of the Newtonian liquid
more quickly. Thus, from Expressions 77, 78 and 80 we can easily conclude
that the Lamé’s constant A\ may be related with the shear and bulk moduli,
G and K, respectively. This relation is

E 2 E _ UE

31—-2v) 320+v) (1+v)(1-2v)

2
K—-G=
3

By substituting this expression in the second of (81), we get

Or —Om = _%Ge + 2G€z

2
de = Ke —gGe = 4§ 0y —0m = —2Ge + 2Ge, (88)
om Oy —Opm = —%Ge + 2Ge,, .

This expression relates the normal components of the deviatoric stress tensor
with the components of the strain tensor. The second of (79) contains the
remaining (shearing) components of the deviatoric stress tensor. The only
rheological parameter in these relations is the shear modulus G.

Now, it should be noted that, in a viscous flow, the viscosity modulus,
usually denoted as p in Fluid Mechanics, plays the same role in the relation
between the rate of shear deformation and the shearing stresses as the shear
modulus G in the relation between shearing stress and shearing strain in an
elastic solid, since we have

T = uy (Newtonian viscous flow)

T =Gy (linear elastic solid) ,

where 4 = % represents the rate of distortion (shear deformation). These
considerations are summarized in Fig. 39 (v, is the velocity of the liquid
particles in direction x).

Since the symmetry considerations used in the development of (88) are
also valid in the case of the Newtonian liquid, and since the deformation rate
and the viscosity modulus play the same roles as the deformation and the
shear modulus in the solid material, we can substitute in (88) and in the
second of (79) the strains by the strain rates and the shear modulus by the
viscosity modulus, which yields the constitutive law of the Newtonian liquid,
in relation to viscous deformations®

SExample IV.2 gives the development of these expressions directly from the re-
lation 7 = u4y.
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(vg + dvg ) dt

—_—> T —_—

v =5dt

vy dt

t=to t=to+ dt
(a) (b)
Fig. 39. Analogy between the shear modulus in the linear elastic deformation of a
solid and the viscosity modulus in the linear viscous rate of deformation of a liquid:

(a) istortion caused in the solid by the shearing stress 7; (b) distortion caused in
the liquid by 7 in the infinitesimal time interval d¢

2 . . . .
Op = Om — o (Ex + &y + €2) + 208,

3 Toy = u"ymy
2 . . . .

Oy = Om — S (G + &y +E:) + 20, Toz = W (89)
2 = uA

Oz =0m — Z M1 (893 + Ey + EZ) + 21“’52 v M’sz .

3

The only rheological parameter present in these expressions is the viscosity
modulus p. The linear elastic relation between the isotropic stress o, and
the volumetric strain e,, defined by the bulk modulus (78), completes the
constitutive law of the Newtonian liquid. We conclude that its rheological be-
haviour, as in the case of linear elastic isotropic solids, is completely described
by only two rheological parameters: u and K.

IV.6 Deformation Energy

IV.6.a General Considerations

When a material deforms under the action of internal stresses, these lose
potential energy and do work, which is either transformed into heat and dis-
sipated, as a consequence of certain phenomena which may be interpreted as
internal friction, or else it is stored as elastic potential energy. This energy
corresponds to the work done by the stresses in the unloading, i.e., when the
stresses are progressively reduced until they vanish.”

"The work done by the external forces may also be stored as kinetic energy,
which is associated with the speed of a moving mass. This energy is not taken
in account, since only the energy associated with the deformation is analysed here.
Furthermore, dynamic effects, i.e., inertial forces in accelerated motions, do not need
to be considered in an infinitesimal region around a point, since the work done by



IV.6 Deformation Energy 87

In a slow elastic deformation (i.e., without dynamic effects) the work
done by the external forces is totally stored as elastic potential energy, since
the stress-strain relation is the same in the loading and unloading processes.
Which means that the work done in the loading phase is completely recovered
in the unloading.

These considerations may be more easily understood, by considering the
relation between the stress o, and the strain €, caused by it in an infinitesimal
parallelepiped made of an elastic material (Fig. 40).

q >

,‘d\*/ ﬁz

xT

O "H‘f Ef g
de

Fig. 40. Work done in the deformation e, caused by the stress oy

The work done by the force resulting from the stress o, = o during the
displacement which corresponds to the strain increment de is given by the area
of rectangle o de multiplied by the volume of the infinitesimal parallelepiped,
as it is easily confirmed by the expression

displacement
—~N
ddW =odydz dzde =odedV . (90)
~——
force

The total work done, when the strain ¢, varies from zero until the final value
gy is given by the shaded area in Fig. 40, since we have

dw :/fadst. (91)
0

If the stress is proportional to the strain (linear behaviour), the curve OA
becomes a straight line and the shaded area takes the value

1

The work done by this stress is stored as elastic potential energy. The amount
of this energy stored by volume unit, U, takes the value

these body forces is an infinitesimal quantity of higher order, when compared with
the work done by the stresses.
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1
dW = dUy = U = ((11—[‘]/? = 50¢5f - (92)
In the plastic and viscous deformations the potential energy lost by the
stresses, when they do the deformation work as the body deforms, is trans-
formed into heat by internal friction and dissipated, since in both cases the
deformation remains after the force which caused it is removed. Which means
that the internal forces do not do work in the unloading process.

In the deformation of actual materials, elastic, plastic and viscous defor-
mations occur simultaneously. As a consequence, one part of the work done by
the external forces is dissipated, while other part is stored as elastic potential
energy which is recovered in the unloading. Figure 41 illustrates the stored
and dissipated parts of the deformation energy in a one-dimensional stress
state.

(a) (b)

Fig. 41. Elastic potential energy (U.) and dissipated energy (Ug): (a) general case;
(b) elastic perfectly plastic material

The above considerations are also completely valid for shearing stresses
and the corresponding shearing strains. This fact may easily be understood
by considering the deformation represented in Fig. 35. By means of a rigid
body motion, in which no work is done, as the stresses are in balance, we
may consider that the bottom face of the parallelepiped remains horizontal.
Under these conditions only the resultant of the shearing stress acting in the
upper face, Tye, (7ye do dz) does work when it suffers the displacement Yoy dY -
The equations expressing the work done by the shearing stress therefore take
the following forms, which are perfectly similar to the corresponding forms
for the normal stresses ((90) and (91))

displacement
— = U
ddW =g7dzxdz dydy = dW :/ TdydV .
~—— 0

force
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IV.6.b Superposition of Deformation Energy
in the Linear Elastic Case

Deformation energy does not depend linearly on the stress, even if the stress-
strain relation is linear, as is easily confirmed by substituting €, by %f in (92).
For this reason, it is not generally possible to add the energies of deformation
associated with two different states of stress, unless the second state does
not have stresses in the directions where the deformations caused by the first
occur, and vice versa.

However, if the material has linear elastic behaviour, the deformation
caused by a given stress state is always the same, i.e., it does not depend on
other stress states previously applied to the material. This is because the de-
formation is proportional to the stress and the deformations are small enough
to be considered as infinitesimal, so that the deformed geometry may be con-
sidered the same as the undeformed one. For this reason, the deformations
corresponding to different stress states may be computed separately and su-
perposed (added), as described earlier in Sect. IV.4.b. In addition, the elastic
potential energy stored by a linear elastic material only depends on the stresses
and deformations installed inside it. Thus, elastic potential energy may always
be computed as if the forces were applied simultaneously.®

With the help of these considerations the symmetry of the constitutive law
of monotropic and isotropic materials may easily be demonstrated. For this
purpose, let us consider that in a monotropic material (Fig. 37), first a stress
is applied in the monotropy direction o, = 0; = o, followed by a second stress
in a transversal direction o, = 0, = 0. The evolution of the stored elastic
potential energy in these two loading phases is (cf. 92):

1. application of 0; = o
1 102

U1 = io-lgl = ifl,

2. application of o, = ¢

1

U=U,+ 018 + ogl
93
102 n 1o? vy, o (93)
2E,  2E; E
In the second of these expressions the last element (o, = — Uéf o?) represents
the work done by the stress in the monotropy direction o, = 0; = o, during
the deformation ¢ = —”];i:’a caused in this direction by the stress in the
transversal direction y, 0, = 0 = o. During this deformation the stress o,
remains constant. For this reason, this element does not contain the factor %

Inverting the loading order (first the stress o;), the evolution of the elastic

potential energy is given by the expressions:

8This conclusion is a particular form of Clapeyron’s theorem, which will be stud-
ied in Chap. XII.
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1. application of 0, = ¢

1 102
U2 = §O't€t = 55,

2. application of 0} = ¢

1
U:U2+§al€l+ats£
4
1o N 2 (9)
—— o
2F,  2E, E

2

Expressions 93 and 94 must yield the same result, since the final deformations
do not depend on the order of application of the stresses and the elastic
potential energy depends only on the final stresses and deformations. This
means that Vy: = EL , which confirms the indication presented without the
demonstration in Sect. IV.4.c (82). The same line of reasoning is obviously also
applicable to orthotropic materials, and, more generally, to any material with

linear elastic behaviour. Thus, these considerations also demonstrate (84).

IV.6.c Deformation Energy in Materials
with Linear Elastic Behaviour

General Case

As discussed earlier, in a material with linear elastic behaviour, isotropic or
non-isotropic, the elastic potential energy may be computed as if the loads
were applied simultaneously. Thus, in a body region under the action of a
stress tensor described by its components in a rectangular Cartesian reference
frame xyz, the elastic potential energy per volume unit may be expressed by

1
U= 3 (axgm + oyey + 0262 + Toy Yoy + Taz Ve + Tyz’)/yz) . (95)
By using the constitutive law of the material under consideration, the elastic
potential energy may be represented either in terms of the elements of the
stress tensor, or only in terms of the elements of the strain tensor. For an
orthotropic material, for example, with the constitutive law defined by (85),
we get

02 0'2

1 Vgy v,
U al 7= = = — 0z zyz
2E+Ey+EZ < UyE + =0, El+y Ey>

2 2 2
T, T, T,
+ xy + Tz + Yz :| , 96

Gacy Gﬁcz Gyz ( )

where z, y and z are the material orthotropy directions.
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Isotropic materials

In isotropic materials (96) becomes simplified taking the form
1

1
U= 35 [0:3 + 05 +02 -2 (0x0y + 0p0, + O'yO'Z)] + Yel (Tfy + 72+ sz) )
(97)

As an alternative, the elastic potential energy may be expressed in terms of the
elements of the strain tensor. The corresponding expression may be obtained
by substituting the second of (81) in (95), yielding

1 1
U= 5/\62 +G(2+e2+2) + 5C (2 +7% +2) - (98)

From the last two expressions we conclude immediately that

ou ou

80’1‘ i d 851- :Ae—’_QGgi:ai b 7 =T,Y,z
oU an oU wit S
T =% S =T J=2,Y,% .
87;7- a%j

The elastic potential energy may also be expressed as functions of the invari-
ants of the stress and strain tensors. The corresponding expressions may be
obtained more easily by taking the principal directions of the stress and strain
tensors as reference system. In this case, we get from (97) (11, I2; are the first
and second invariants of the stress tensor)

: Y, 1+v
U= E[Uf + 022 + 032 —2v (0704 + 0905 + 0503)] = ﬁ _ TI%
12, —2I5; Tot (99)
_ I I
2F  2G°

Similarly, from (98) we get (1, 2. are the first and second invariants of the
strain tensor)

U:%Mﬁ+GUﬁ—y%y

In an isotropic material the isotropic component of the stress tensor does not
cause distortional deformation (deviatoric strain tensor) and the deviatoric
stress component does not cause isotropic deformation, i.e., volumetric strain.
This fact may be understood more clearly by means of the octahedral stresses
(cf. Sect. IL.8, Fig. 10).

In fact, since in the octahedral facets the normal stress is the mean stress,
if the isotropic stress component vanishes only shearing stresses act in those
facets. These stresses do not cause elongation in the direction of the normals
to the octahedral facets, because, in an isotropic material with linear elastic
behaviour, the octahedral strain ¢,.,, = % vanishes when the isotropic stress
om becomes zero, as can be easily confirmed by looking at (78).
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As the isotropic stress does not induce any shearing strains, these con-
siderations allow the conclusion that neither the deviatoric stress does work
in the isotropic deformation, nor the isotropic tensor does work in the defor-
mation caused by the deviatoric component of the stress tensor. Under these
particular conditions, we may decompose the elastic potential energy into two
independent components, one related to the volumetric deformation and the
other related to the purely deviatoric deformation.

The expression of the first component may be obtained by particularizing

2
(99) for oy = 0y = 03 = 0y, = oy = 302, = %, yielding

S R 1-2w ., 1-2

o 2
"S35 oG- 6B M= g (=tote)

By subtracting this value from (99) the energy associated with the purely
deviatoric deformation Uy is obtained

B, Lt 1- 1 3 1
Ur=U-U,=-t 2 - _""12 — _ ([2 _3[)=—712, =2
d v=ap 26 or T g dn 3 = ggme = Tag

g‘rgct
(100)

This expression can also be obtained by analysing of the deformation energy
per volume unit in the octahedron under the action of the octahedral shearing
stress Toet (cf. Fig. 10 and Example IV.3).

IV.7 Yielding and Rupture Laws

IV.7.a General Considerations

Many ductile materials, especially metallic materials, display a rheological
behavior which, until a certain point, may be considered as elastic perfectly
plastic. As seen in Sect. IV.3, this ideal behaviour is characterized by a yielding
stress which defines the onset of the plastic deformation in a one-dimensional
stress state. This stress may easily be obtained by means of an experimental
test, by submitting a prismatic specimen of the material under consideration
to a tensile axial force and plotting the measured force-elongation relation.
In two- or three-dimensional stress states the experimental determination of
the full spectrum of stress states corresponding to the beginning of the plastic
deformation is not feasible any more, since there are infinite stress states
which cause plastic deformation. Furthermore, the execution of two- or three-
dimensional experimental tests is much more difficult and expensive than
one-dimensional tests.

For these reasons, auxiliary theories had to be developed in order to predict
the yielding conditions of ductile materials under two- or three-dimensional
stress states, on the basis of the information furnished by one-dimensional
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experimental tests. From these theories several yielding criteria are obtained,
some of which are described below.

In brittle materials the problem is posed in a similar way: once the con-
ditions which cause rupture under a tensile or compressive one-dimensional
stress are known,? it is necessary to foresee the conditions under which rupture
occurs in two- or three-dimensional stress states. The corresponding theories
lead to the so-called rupture criteria, only one of which will be analysed in
the present text.

In the following discussion only isotropic materials are considered, whose
rheological behaviour may considered as linear until yielding (ductile materi-
als) or rupture (brittle materials). As the behaviour of isotropic materials is
the same in any direction, the principal directions of the stress and strain ten-
sors may always be used as Cartesian rectangular reference directions, which
considerably simplifies the development of the expressions defining the differ-
ent yielding or rupture laws.

The considerations set forth in this section complete the constitutive laws
of ductile solid isotropic materials with elastic perfectly plastic behaviour
and of brittle materials with linear elastic behaviour until rupture, whose
constitutive law in the elastic phase is explained in Sect. IV.4.b, because
the way the material yields or breaks is an important part of its rheological
behaviour.

IV.7.b Yielding Criteria
IV.7.b.i Theory of Maximum Normal Stress

A first attempt to extend the results of one-dimensional experimental tests
to the prediction of the yielding point in three-dimensional stress states was
made by Rankine. This scientist postulated that yielding takes place when the
largest principal stress attains the value corresponding to the yielding stress
measured in one-dimensional experimental tests. According to this criterion,
plastic strains will not occur while the maximum and minimum principal
stresses obey the conditions (oy: yielding stress in a one-dimensional test;

oy > 0y > 03)
o, < oy
101
{03 > —0y . ( )

This theory is not accordance with the results observed in several cases, such
as in isotropic compression, for example, where values of pressure much higher
than oy can be applied without any plastic deformation. Also, in the case of

We will see later (Chap. V) that, while ductile materials usually display the
same behaviour in tensile and compressive experimental tests, in brittle materials
this does not happen. Generally, these materials display higher strength and stiffness
for compressive loading states than for tensile ones.
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pure shear (o; = —oy, = 7, cf. Fig. 36), this theory diverges from the ex-
perimental observation, since the theory indicates that yielding occurs for a
shearing stress 7 = o0y, while the measured shearing yielding stress is lower

(ry <oy).

IV.7.b.ii Theory of Maximum Longitudinal Deformation

Rankine’s theory, in fact, does not make a distinction between one-dimensional
and two- or three-dimensional stress states, since it only takes the maximum
normal stress into consideration. However, experimental tests show that a
transversal tensile stress increases the longitudinal tensile yielding stress, while
a transversal compressive stress causes a decrease on the same longitudinal
yielding stress. This experimental observation shows that the interaction be-
tween the principal stresses does influence the yielding behaviour.

In order to take this interaction into account, Saint-Venant postulated that
the yielding is determined by the maximum longitudinal strain. From Hooke’s
law for isotropic materials (74), we conclude that, according to this criterion,
the material remains in the elastic phase as long as the following conditions
are satisfied (o, > 0y > 03 = &, > &y > &)

€ =
{ €3 =
This theory yields better results than the Rankine criterion, but it, too, is not
confirmed by experimental results in several cases. For example, in the plane
state of stress defined by oy = 0, = ¢ and 03 = 0, yielding occurs for ¢ = oy
and not for the higher value given by (102): o(1 —v) = 0y = 0 = 2.
This is a consequence of the fact that the transversal stress is not complete,
since it acts only in one direction (o, = o, 05 = 0). In the case of isotropic
compression, too, this theory leads to a yielding stress o = —%, but the
experimental observation shows that much higher values of the pressure may
be applied without plastic deformation.

(102)

w= =

[olfu(02+a3)]<%’ :>{01V(02+03)<JY

[or3—1/(cr1—|—cr2)]>—‘%Y o3 —V(0oy + 09) > —0y .

IV.7.b.iii Theory of Maximum Deformation Energy

Another theory which considers the contributions of the three principal
stresses on the onset of plastic deformations has been presented by Beltrami.
This theory is based on the postulate that yielding is determined by the
amount of deformation energy stored per volume unit in the material. Ac-
cording to this criterion yielding does not take place while the stress tensor
obeys the condition (Uyy: elastic potential energy stored per unit volume in
the one-dimensional stress state defined by oy = oy and 0, = 05 = 0, cf. (97))
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U Uy
1 1
2 2 2 2
T [0f + 05 + 05 — 2v (0,05 + 0105 + 0305)] < S50 (103)
= ol +03 +07 —2v (0,05 + 0,05+ 0y05) <0y .
In isotropic compression o, = 0, = 03 = —p this criterion indicates that
yielding occurs when pressure attains the value p = —2—. This value is,

v 3(1-2v)

however, even smaller than the one given by the Saint-Venant criterion, being
exceeded by a large amount in experimental tests without yielding.

IV.7.b.iv Theory of Maximum Shearing Stress

The experimental observations that the isotropic stress component of the
stress tensor practically does not influence the yielding point, and that in a
prismatic specimen under axial tensile loading the plastic deformation starts
in the facets where the shearing stress attains a maximum!? led Tresca to
postulate, in 1865 [3], that yielding is determined by the maximum shearing
stress. These stresses, as mentioned in Sect. I1.10, occur in facets at a 45° an-
gle to the directions of the maximum (o;) and minimum (o3) principal stresses
and take the value 7. = % Since in the one-dimensional experimental
test we have mpax = %, Tresca’s criterion postulates that no yielding will
occur, while the following condition is satisfied (o > 0y > 03)

oy — 03 < 0y . (104)

Experimental tests carried out later (1903) by Guest have supported this
theory, which is also known as the Tresca-Guest criterion.

Equation (104) is very simple and gives good results. For this reason it is
still frequently used in practice.

IV.7.b.v Theory of Maximum Distortion Energy

In year 1913 the German scientist von Mises presented another theory stating
that yielding is determined by the second invariant of the purely deviatoric
component of the stress tensor, which is equivalent to the statement that
yielding is attained when the deformation energy associated with the devia-
toric (distortional) component of the strain tensor reaches a given value. Both
of these quantities are proportional to the square of the octahedral stress, as
(32) and (100) show (Hencky 1924).

This theory shares with Tresca’s criterion the feature of not considering
the isotropic component of the stress tensor and gives results which are close
to the ones furnished by that criterion, as will be seen later.

°The one-dimensional tensile test of a ductile material, such as mild steel, is
described in greater detail in Sect. V.2.
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The energy associated with the distortional deformation may be expressed
as a function of the principal stresses. From (100) and (31) we get

3 5 1+v

Uy = Gt T 6E [(01 - 02)2 + (09 — 03)2

2
+ (03 — 03)

In a one-dimensional stress state with o; = oy this expression takes the value
U = 13+E” o%. Thus, according to this criterion, no plastic deformations will
occur, while the following condition is satisfied

1
Uf < 3—;]/0)2/
| (105)
= —=\/ (o — 02)2 + (0y — 03)2 + (0 — 03)2 = —=Toct < Oy -

V2 V2

The results given by this criterion are the closest to the experimental observa-
tions, so that von Mises’s criterion may be considered as the standard theory
for the prediction of yielding in ductile materials.

IV.7.b.vi Comparison of Yielding Criteria

The several theories described above for predicting the yielding stress state in
ductile materials lead obviously to different results, since they are based on
different postulates. In order to get an idea about these differences, a graphical
analysis of the yielding conditions is presented below. In a two-dimensional
case (plane stress state) the five theories are analysed, while in the three-
dimensional case only the two more important ones (Tresca and Von Mises’s
criteria) are considered.

Plane Stress States

By particularizing the expressions defining the different yielding criteria to
the plane stress case (03 = 0), we get the equations which relate the princi-
pal stresses o; and o, to the one-dimensional yielding stress oy.. Considering
a rectangular Cartesian reference system with the principal stresses plotted
on its axes, those equations define curves which delimit a zone containing
the points which represent elastic stress states. Figure 42 shows the curves
corresponding the five yielding theories studied.

As, by definition, every criterion is based on the yielding stress measured
in one-dimensional tensile or compressive experimental tests, all the curves
representing the different criteria contain the points corresponding to those
stress states (points b, d, f and h). In the biaxial case (o; # 0 and o, # 0)
the different criteria are represented by:

— Rankine: this criterion is represented by the square aceg, which means that,
while the point representing the plane stress state (coordinates oy, 05) is
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Fig. 42. Comparison of yielding criteria

inside the square (|omax| < 0y) the material remains in the elastic state.
The points outside the square do not represent possible stress states in an
elastic perfectly plastic material. After yielding, further deformation causes
only a displacement of the point representing the stress state, along the
border of the elastic zone.

Saint- Venant: this criterion is represented by the rhombus ijkl. In a plane
stress state (102) takes the form (note that the convention oy > 0, > 03 is
not used here)

{ —0y < 0] —V0y < Oy
—0y < 0y —V0] < Oy .

The border of the domain defined by these inequalities is defined by the
equations

0y — VO, = —0y (line segment i)
0y — VO, = 0y (line segment jk)
Oy — Vo) = —0y (line segment k)
Oy — VO] = Oy (line segment %) .

We may easily verify that the coordinates of the vertexes of this rhombus
take the values

Iy Ty Ty Iy
- 1+4+v 1—v 1+v T 1—v
Iy Iy Iy Iy
1+v 1—v - 1+v T 1w

In the case of a vanishing Poisson’s coefficient (v = 0), this criterion coin-
cides with the Rankine square.

Beltrami: in the plane stress case the expression defining this criterion (103)
takes the form given by the inequality

ot 4 0% — 2wo,0, < 0% .
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In accordance with this expression, yielding takes place when the point
representing the stress state reaches the ellipse defined by the equation

ot 4 0% — o0, = 0% .

This ellipse (mnpyq, cf. Fig. 42) has principal axes which make angles of 45°
with the reference axes and its vertexes have the coordinates

__ 9% _ 9%
2(1+v) V2(1-v)
m — n —
__ % __9%
2(1+v) V2(1-v)
(106)
__ 9% _ 9%
2(14v) V2(1-v)
p— q—
Iy 9y

- V201w - VR0
In the case of a vanishing Poisson’s coefficient (v = 0), the ellipse transforms
into a circle with a radius oy.
Tresca: this criterion is represented by the hexagon bedfgh. In fact, when
0, and o0, have the same sign this criterion coincides with the Rankine’s
criterion, since the maximum principal stress is determined by the stress
o3 = 0 and by the stress with the maximum absolute value in the plane
of oy and o,. The straight lines bh and df (oy0, < 0) are described by the
equations o; — 0, = —0y and 0; — 0y = 0y, respectively.
Von Mises: in the plane stress case the criterion of the maximum distortion
energy may be represented by the inequality

[ 52 2
of + 05 — 0105 < 0y .

The von Mises criterion states, therefore, that the material remains in the
elastic phase if the point representing the plane state of stress is inside the
region limited by the ellipse represented by the equation

2 2 2
oy + 03 — 0109 = 0y .

This ellipse contains the points ¢ and g, i.e., it gives the same values as the
Tresca’s criterion if o7 = 0,, as it is easily verified by performing oy = 0y =
o = 0 = oy (cf. Fig. 42). In a purely deviatoric state of stress (points r and
s, Fig. 42) yielding occurs for a value of the shearing stress given by

o =Ty _ 9%

oy = —1y = Ty = % ~ 0.5770y .

For the same stress state Tresca’s criterion gives 7, = 0.50y-. If the Poisson
coefficient takes the value v = 0.5 (incompressible material), the von Mises
and Beltrami criteria coincide, since there is no isotropic deformation and,
as a consequence, the distortion energy coincides with the total energy. This
fact may be easily verified by making v = 0.5 in (106).
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Three-Dimensional Stress State

In the three-dimensional case the yielding criteria may be represented in the
space defined by the principal stresses by means of yielding surfaces. These
surfaces delimit the region of that space which contains the points whose
coordinates are the principal stresses of elastic stress states.!'! The equations
which define those surfaces are given by the expressions defining the different
criteria (101-105), if we substitute in these expressions “<” by “=". In the
two most important of these criteria the yielding surfaces have the shapes:

— Tresca: considering any values for the principal stresses (i.e., abandoning
the convention oy > 0, > 03), the criterion of the maximum shearing stress
indicates that yielding takes place when the point representing the stress
state in the principal stress space is on one of the six planes, whose equations
are

01 — 0y = =0y 0p — 0y = Oy (Il o3)
01 — 03 = — 0y 0y — 03 = 0y (Il o2) (107)
Oy — 03 = — 0Oy Oy — 03 = Oy (Il oy) -

These planes are all parallel to the direction whose direction cosines take
the valuesl =m =n = %, as can be verified by considering the equation of
a straight line with this direction and containing the origin of the reference
axes, o, = 0y = 0. It is easily verified that none of the points contained
in the planes defined by (107) obeys this condition, which means that this
straight line does not intersect any of these planes. The three pairs of planes
(each pair is parallel to one of the reference axes and to this straight line)
define, therefore, a regular hexagonal prism, whose axis is equally inclined
in relation to the three principal directions 07,0, and o5 (Fig. 43). The
points inside the prism represent the possible states of stress in the elastic
perfectly plastic material.

The intersection of this yielding surface with the plane oy, 0, defines the
hexagon bedfgh represented in Fig. 42.

— wvon Mises: the equation representing the yielding surface corresponding to
the theory of maximum distortion energy may be obtained from Expr. 105,
yielding

(01 = 03) + (01 — 03)* + (0 — 03)* = 20 .

The equation of a cylinder with a radius r, with its axis containing the
origin of the rectangular Cartesian reference frame zyz, and being equally

11n an elastic perfectly plastic material it is not possible to have stresses with
a higher value than oy, since, once this value is attained, the material deforms
without an increase in the stress. However, many ductile materials resist higher
stresses than those causing the first plastic deformations. In these materials the
plastic deformation changes the rheological behaviour, since in subsequent loadings
(after unloading) the stresses necessary to initiate the plastic deformation are higher
than in the first loading. This phenomenon, called hardening, is briefly described in
Sects. V.2 to V.5.
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inclined in relation to those axes, takes the form

1
3 [(z—y)P+(x—2)°+@y—2)?%=r".
From these two expressions, we conclude that the yielding surface of the
von Mises criterion is a cylinder, which is equally inclined in relation to the

2
gay.

The ellipse corresponding to the two-dimensional case (csgr, Fig. 42) results
from the intersection of this cylinder with the plane oy, o5.

principal stresses and has the radius

In Figure 43 the yielding surfaces corresponding to the criteria of Tresca
and von Mises are represented.

Fig. 43. Yielding surfaces describing the Tresca’s and von Mises’s criteria

IV.7.b.vii Conclusions About the Yielding Theories

From the considerations described in this subsection in relation to the dif-
ferent yielding theories, we may conclude that plastic deformation is caused
mainly by the deviatoric component of the stress tensor. In fact, the two the-
ories, whose predictions are closer to the experimentally observed material
behaviour — Tresca and von Mises — postulate that an isotropic tensile or
compressive stress do not cause yielding, no matter how high these stresses
are.

These conclusions, arrived at from a phenomenological approach, are phys-
ically explained by the observation that the macroscopically observed plastic
deformation corresponds to shear deformations inside the microscopic crys-
tal structure of the material, caused mainly by the shearing stresses. These
stresses do not exist in an isotropic stress state, as seen in Chap. II. Another
indication of the importance of the role played by the shearing stresses in the
plastic deformation is given by the fact that the experimentally observed ten-
sile and compressive yielding stresses have the same absolute values: although
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tensile and compressive normal stresses are physically different, the shearing
stresses take the same value in the two cases, as can be easily confirmed by
drawing the corresponding Mohr circles (see the considerations about the sign
conventions in the normal and shearing stresses in Sect. I1.11).

IV.7.c Mohr’s Rupture Theory for Brittle Materials

As stated earlier (Sect. IV.2) brittle materials rupture, practically without
plastic deformation. To predict the stress conditions under which rupture
occurs in three-dimensional stress states, the most widely-accepted theory
is the Mohr criterion. This theory is based on the intrinsic strength curve
of the material. This curve is defined as the envelope of the Mohr circles
defined by the maximum and minimum principal stress (o; and o3) of the
stress states which cause rupture. These circles may be obtained by two- or
three-dimensional experimental tests, by gradually increasing one or more of
the principal stresses, until rupture takes place. The Mohr circle defined by
the principal stresses o; and o5 at the moment of rupture is tangent to the
intrinsic strength curve. By repeating this procedure for several values of the
relations between oy, 0, and o3, a sufficient number of rupture circles to define
the intrinsic strength curve may be obtained. Figure 44 shows this curve.

Fig. 44. Intrinsic strength curve of a brittle material

It is obvious that this curve does not fully define the conditions under
which rupture takes place, unless the value of the middle principal stress does
not play a significant role, since it is not considered in the definition of the
intrinsic reference curve. Experimental investigations have shown that this
hypothesis may be accepted without introducing a significant error.

Once the material’s intrinsic strength curve is obtained, it may easily be
verified if a given stress state would cause rupture or not, by drawing the
Mohr circle corresponding to the maximum and minimum principal stress
and confirming if it intersects that curve or not.
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In order to simplify the use of this method, Mohr admitted that the in-
trinsic curve may be approximated with sufficient precision by two straight
lines. With this assumption, that curve can be obtained from one-dimensional
tensile and compressive experimental tests, as represented in Fig. 45.

At the rupture, the Mohr’s circle corresponding to the maximum and min-
imum principal stresses, o; and o3, is tangent to the intrinsic curve. These
stresses may be related to the rupture stresses measured in experimental ten-
sile and compressive tests, o, and o, (in this analysis the yielding stress o, is
considered to have a positive value). To this end, the following conditions are
considered (cf. Fig. 45)

O, O — O, Oy

A == _ % AE =24+ 2
2 2 2 T2

oy — O 0, — o, o)+ o
ch =2t "8 _ =t CE =2t_21173

2 2 2 2
By means of triangle similarity considerations in Fig. 45, we easily conclude
that the Mohr circle defined by the principal stresses o; and o5 does not
intersect the intrinsic strength curve, i.e., the material does not rupture, as
long as the following condition is satisfied

AB CD O, —0, 04— 03—0
— > = = > .
AE CE o.+o0, o0,—0 —04

(108)

If the three principal stresses are tensile stresses, the Mohr criterion yields
results which are no longer confirmed by experimental observations. This is
a consequence of the fact that the approximation of the intrinsic curve by
two straight lines displays the vertex V' (Fig. 45), which does not appear in
the real intrinsic strength curve (Fig. 44). In these cases, the Saint-Venant
criterion (maximum normal stress) shall be used instead, i.e., the following
condition should be satisfied (o7 > 05 > 03)

o, <o0;.

Since the material does not resist tensile stress with a value superior to o,
(07 < 0;) and (108) only gives good results for o3 < 0, the quantity o, — oy — o4
takes always positive values. Under these conditions, the inequality 108 is
equivalent to the condition
DB (109)
o, O
This expression represents the Mohr criterion for the prediction of rupture in
brittle materials.

In some applications of this criterion, especially in the fields of Soil and
Rock Mechanics, the material parameters used to characterize the rupture
are the internal friction angle ¢ and the shearing rupture stress ¢ (cohesion),
instead of 0. and o, (Fig. 45). Angle ¢ is a measure of the increase of shear
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Fig. 45. Mohr’s rupture criterion

strength in a facet, when a compressive normal stress acts on it. The cohesion
c represents the shear strength in the same facet, when the normal stress
is zero. The expression of Mohr’s criterion as a function of these rheological

9y

parameters may be obtained from the relations between the radii FF = =

and AG = % and the parameters ¢ and ¢. From Fig. 45 we easily obtain the
relations

. - 2ccos ¢
% 1 % i = cconp = = 20
2

By substituting these expressions of o, and o, in (109), we get the expression
of the Mohr criterion as a function of ¢ and ¢. Thus, according to this criterion,
rupture will not occur while the following condition is satisfied

o, (14sing) — o5 (1 —sing) < 2ccos ¢ . (110)

A graphical representation of this criterion in the two-dimensional space de-
fined by the principal stresses oy and o0, with o, = 0 (plane stress) is presented
in Fig. 46-a. The Mohr criterion reduces to the Tresca criterion when the ten-
sile and compressive rupture stresses are equal (0. = o).

In the space of the principal stresses oy, 0, and o3 the Mohr criterion is
represented by a pyramid with an irregular hexagonal cross-section, whose
lateral faces are the six planes defined by the equations (Fig. 46-b)

01 02 Oy 01

= —==1 (>03>0) ———=1 (0y>0>0)

oy O¢ (on Oc

(o5} O3 03 01

A > 0y > 0 - - —==1 > 09 >

o, o (07 > 0y > 03) 5 o (03 > 0y > 09) (111)
% _ % _ %

= —-—==1 (0y>0,>03)

=1 (o3>0 >0).
ot O¢ 0y Oc
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%2 %2
=m=n
o. o 0,
2 1 t
5, " os = 1 Drucker-Prager
Mohr
—0s
o o
1 _ % 1
o, o
Lo,

(a) (b)

Fig. 46. Graphical representation of Mohr’s criterion in the principal stress space:
(a) two-dimensional case; (b) three-dimensional case

The vertex of the pyramid is on the straight line with the equation oy =
0, = 05 and its coordinates are given by the expression

00 ¢

S0 S g
as it may be easily verified by performing o, = 0, = 05 = ¢ in (110) and
(111).

There is an approximation to Mohr’s criterion which was proposed by
Drucker and Prager in 1952 [6]. This criterion is represented by a cone with
a circular cross-section, which touches the Mohr pyramid in three of its six
longitudinal edges, as represented in Fig. 45-b), in the same way as the von
Mises cylinder touches the Tresca prism (Fig 43). The Drucker-Prager crite-
rion has the advantage of a simpler computational implementation, since it
is described by only one equation (instead of the six equations (111)) [6] and
does not have the edges of the Mohr yielding surface.!? However, the results
yielded by the Drucker-Prager criterion are not as close to the experimentally
observed failure conditions as the predictions of the Mohr criterion.

It is, however, also possible to obtain single analytical expressions for the
Tresca and Mohr criteria, by expressing them as functions of the invariants of
the stress tensor. To this end, the maximum and minimum principal stresses,
oy and o3, in (104) and (109), may be expressed in terms of the invariants,
by using, for example, the algorithm presented in Example II.1. Even though,
the analytical and numerical treatment of the smooth surfaces (von Mises and
Drucker-Prager) is simpler.

If there are no tensile stresses in the material, which happens when the
three principal stresses are negative, the rupture criteria may be used as yield-

2T the modelling of structures where plastic deformations take place (elasto-
plastic structural analysis) the normal direction to the yielding surface must be
computed. It is obvious that this normal cannot be defined uniquely at an angle
point.
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ing criteria, even in the case of a brittle material. In fact, the surfaces where
material failure has occurred still resist compressive normal stresses and shear-
ing stresses, whose values depend on the friction angle and on the compressive
stress. This rupture has the same nature as yielding, since the material loading
capacity does not disappear. For this reason, it is possible to perform elasto-
plastic structural analysis in soil materials, rocks and concrete, although they
are brittle materials.

As footnote 20 explains, most brittle materials display larger rupture
stresses in compressive than in tensile stress states, since the internal fric-
tion angle means that a compressive normal stress acting on a facet increases
its shearing strength. In ductile materials, however, the normal stresses do
not influence shear strength. This difference between the behaviour of ductile
and brittle materials may be explained by the fact that in the latter, it is
mainly the cohesion and friction forces between the particles that oppose de-
formation and rupture, while in plastic deformation the inter-atomic forces in
the crystal structure play the most important role in shear deformation. Since
those forces are not affected by the normal stresses, the yielding behaviour is
the same for tensile and compressive internal forces.

IV.8 Concluding Remarks

From the considerations set forth in this chapter, we conclude that the experi-
mentally observed rheological behaviour of materials may be explained as the
combination of three basic types of stress-strain relations; elasticity, plasticity
and viscosity. If the relations between these elementary types of deformation
and the stresses causing them are linear, the constitutive laws take especially
simple forms and, with exception of plastic deformation, the effects of different
stresses or strains may be superposed.

When the material behaviour under two- or three-dimensional stress states
is analysed, the concept of isotropy plays a fundamental role. In fact, we have
concluded that in an isotropic material the principal directions of the stress
and strain tensors always coincide. Furthermore, in an isotropic material the
constitutive laws described in this chapter are valid for any rectangular Carte-
sian reference system, while for monotropic and orthotropic materials only the
particular cases of reference systems coinciding with material monotropy or
orthotropy directions have been considered. By means of tensorial transfor-
mations in the fourth order tensor, which defines the constitutive relation,
these relations may be generalized to reference systems with arbitrary spacial
orientation. These transformations, however, have not been studied in this
text, because it is easier (and always possible) to transform the second order
tensors describing the stress and strain states to reference systems coincid-
ing with the material symmetry directions. These transformations have been
described in Chaps. IT and IIT (15) and (57).
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In an anisotropic material with linear elastic rheological behaviour, Hooke’s
law has a maximum number of 21 independent elastic constants. These con-
stants may be obtained experimentally by measuring the six strains corre-
sponding to each of the six elements of the stress tensor. Of the 36 measured
values only 21 are independent, since the constitutive law must be symmetric,
as shown in Sect. IV.6.b (see, e.g., [1]).

The yield and rupture theories studied in Sect. IV.7 are valid only for
isotropic materials. The first three (Rankine’s, Saint-Venant’s and Beltrami’s
yielding postulates) have a merely historical value, since their predictions are
not confirmed by experimental tests. The yielding and rupture theories for
non-isotropic materials, which have a more involved formulation than the
isotropic case, have not been presented here, since they are beyond the scope
of this introductory text to the Mechanics of Materials (see, e.g., [2]).

IV.9 Examples and Exercises

IV.1. Find the relation between G, E and v (77) by means of:
(a) the Mohr’s circle of the stress state;
(b) Equation (66).

Resolution

Considering the stress state depicted in Fig. 36, 0, = ¢ and 0, = —o, the
corresponding strains are

1 1+v
E(UI—VO'y) = TO-

1+v
E

Ex =

gy = — (0y —voy) = — 0.

1
E
(a) The Mohr’s circle of this strain state has the centre at the origin of the £,3

reference frame and its radius takes the value 1;5”0. Thus, the shearing

strain 7 in the pair of orthogonal directions at 45° angles to the principal

directions x and y takes the value

2" E T E 7

vy 1+v  1+w

where 7 is the shearing stress acting on the facets a and b (Fig. 36). The
double shearing strain « in the pair of orthogonal directions a and b may
then be related to the corresponding shearing stress by the expression

2(1+v) 7 _E
B oG Y% aayey
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(b) As an alternative, the double shearing strain v in the pair of orthogonal
directions a and b (Fig. 36) may be obtained from (66), yielding

v E&—g  1+v 14w

:—40 1 1 —_ = = =
0 5° (direction a) = 5 5 7 7 7
2(1+v) T E
R it TR

IV.2. Find the three-dimensional constitutive law of a Newtonian liquid, di-
rectly from the relations 7 = p* and o,,, = Ke,, i.e., without using the
analogy with the constitutive law of the isotropic linear elastic solid.

Resolution

Considering the stress state defined by its components in a rectangular Carte-
sian reference frame x,y, z, the deformations caused by them may be com-
puted by considering the normal and shearing stresses separately. Thus, the
relation between the shearing stresses and the shearing strain rates results
directly from the first relation, yielding

Toy = :ufyxy Tez = N”sz Tyz = :U”yyz :

The relation between the normal stresses and the corresponding longitudi-
nal strains may be obtained by considering the stress state described only by
the normal stresses o, 0y and o,. As, in this stress tensor, o, 0, and o, are
principal stresses, the maximum shearing stresses in the planes x,y, x,z and y,2
are, respectively, Tmaz—ay = “5%s Tmaz—zz = Z5o= and Tnag—y: = 5.
These shearing stresses cause the shearing strain rates ¥,,,, s, = €z — &y,
Vmaz—wz = €z — €2 and Y45y, = €y — €2, Tespectively, as may be easily ver-
ified by a two-dimensional analysis of the strain tensor in each of the three
planes defined by the reference axes ((66) with ~,, = 0 and 6 = 45°). Thus,

we have

Tmaz—zy = Wmaz—ay = &r — &y = 2,U

. . . Oy — Oz
Tmaz—zz = Mmag—zz = €x — €z = 2%

. . . Uy — 0z
Tmaz—yz = Mmaz—yz = &y — &z = 2

These three equations are not linearly independent. Therefore, a supplemen-
tary condition is needed, in order to determine &, €, and &,. This condition
is provided by the relation between the isotropic stress o, and the volumetric
strain e,, 0, = K¢,. Thus, we get from the first two expressions and from the
condition 4,, = K&,
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. ) 1
€x — &y = — (0p —0y) ) G
21 Ey = —
) . 1 3K
51_5227(0—1_0—2) = .
2p _ Om
Om T 3K

Eyzaw—l—ay—i—az:?

Oy 1
on G\t
3om
Oy — Om,
2u

Expressions for €, and €, may be obtained in the same way.
The strain rates induced in the liquid by the stresses oy, 0y, 02, Tay, Tz
and 7, may, therefore, be computed by the expressions

. Um Ox — Om,
€x = =0
3K 20
. am Oy — Om
= — d
Ey 3K 2‘LL an
. O’fm 0z — Om
=3k T o

Ty
Vo

Yy

Expressions 89 follow immediately from these, since

Féy+E).

Tey

I

TI z

I

Tyz

L

we have &, = K(&,

IV.3. Find the expression of the elastic potential energy per volume unit,
associated with the purely deviatoric component of the stress tensor,
as a function of the octahedral shearing stress (100), directly from the
deformation caused by 7.+ on the octahedron (Fig. 10).

Resolution

If the isotropic component of the stress tensor is zero, only the octahedral
shearing stress acts on the faces of the octahedron. The work done by the
forces resulting from these stresses in the octahedron’s deformation, divided
by its volume, yields that energy. Considering a unit length the distance of
the origin of the reference frame to each of the octahedron’s faces, measured
in the normal direction to the face — line segment OP in Fig. IV.3 — we get
the dimensions indicated in that figure. The required expression may then be

deduced as follows.
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1. Area of each face (equilateral triangle with a /6 side length):

V3

1
0= 5\/6‘>< V65in 60° = 37 )

2. Tangential force resulting from the stress 7., in each octahedron’s face

3
F= ToctQ = 3§Toct .

3. Displacement of each of the tangential forces F':

Yoct Toct
6 = 1 = .
2 2G

4. Work done by the eight forces F':

3v3 oc ;
f Toct :3\/§Toct

1
= —Fd=4X — Ty — .
w 8><2 1) X 2TOCt2G G

5. Octahedron’s volume:
1 2
V=2xzx (\/6) x V3 =4V3.

6. Elastic potential energy stored by volume unit:

w 372
Uzizioct.
'~V 4G

IV.4. Consider a monotropic material with linear elastic behaviour under a
stress state, whose principal stresses take the values 0, = 20, 05 = 0 and
03 = —40. The direction of monotropy is contained in the plane defined
by the principal directions 1 and 2 of the stress tensor and makes a 45°
angle with each of them, as represented in Fig. IV.4. The constitutive
law of the material is defined by the rheological parameters E; = 3F,
E,=F,v, =025 v, =04 and G; = 2F. Find:

Fig. IV.4
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(a) the components of the strain tensor in the reference system defined
by the directions 1, 2 and 3 (Fig. IV.4);
(b) the orientation of the principal directions of the strain tensor.

Resolution

(a) The constitutive law for monotropic materials (83) is only valid if one
of the reference directions is the monotropy direction. Thus it is first
necessary to find the components of the stress tensor in a reference frame
which obeys this condition. The easiest way to express the stress tensor
in such a reference frame is to consider that reference axis x coincides
with the monotropy direction and z coincides with principal direction 3
(Fig. IV 4).

The components of the stress tensor in this reference system may be
obtained by means of a two-dimensional analysis of the stress state in the
plane defined by the principal directions 1 and 2. Thus, we get from (39)

20+0 20—0 o 9

o=0, = 2 5 cos 90 250
a=45° = 5 1

T =Ty = — 7 %4in90° = — =0

2
o 3
a = —45° = o=0y=50.
The components of the stress tensor are then
3 3
Op =50, Oy=350, 0= —40, Ty = —5° and T, =7, =0.

By substituting these values in (83), we get the components of the strain
tensor in the x,y, z reference system

- 1 0.25 0.25 E
. 358 ~ap om0 35 0.7083
0.25 1 0.4
K %5 ® ~— & 0 o | 5| 2975
c = = —
z 0.25 0.4 1 E
35 —&5 w VU —4g —4.725
Yoy .
1 2
L 0 0 0 L —0.25

The components of the strain tensor in the reference system defined by
2/ =1,y =2 and z = 3 may be computed by means of a two-dimensional
analysis of the strain tensor in plane z,y. Thus, we get from (65) and (66)
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p = ey = §[0T08842.975 | 0.T083-2.975 co(—g0°)

+ 0,22 sin(-90°)| = 1.96675

0 = —45° =
¥ _lw o [ _ 0.7083-2.975 iy, _gge)
+ =025 cos(—90)°} = 113332
=y = 2 [0.7083;2.975 | 0.T083-2.975 ¢ 90r)
0 =45° =

+

=025 5in(90°)| = 1.7167% .
The strain tensor, represented by its components in the original reference
system 1,23, is then

5 [ 19667 —1.1333 0
€)= | 11333 L7167 0
0 0  —4.725

(b) The orientation of the two principal directions of the strain tensor which
are in the plane x,y, may be computed directly from (67), yielding

1 S 1 —9.9667
0, — - arctan — =¥ — = arctan — =000 _ _ 4] 853°
L e T 2 M 9667 — 17167

O = 01 +90° = 48.147° .

0, and 0 are the angles between the principal directions of the strain
tensor and principal direction 1 of the stress tensor. We confirm, therefore,
that the principal direction of the stress tensor which is in the isotropy
plane — direction 3 = z — is also a principal direction of the strain tensor,
while the principal directions which are not in this plane are different in
the stress and strain tensors.

IV.5. The stress state in an orthotropic material is defined by its components
in a reference system x,y, z. One of the material orthotropy directions
makes 60° angles with axes x and y and other makes a 45° angle with
direction z.

(a) Compute the direction cosines of the orthotropy directions in the
reference system x, vy, z.

(b) Write a computation sequence to evaluate the components of the
strain tensor in the reference system z,y, z.

Resolution

(a) Denoting by z’,4’, 2’ the material orthotropy directions, we get for the
first one (z') the direction cosines
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1
Iy = cos(2',x) = cos60° = 3
1

my = cos (z',y) = =

2

1 1’ X 2 !

Ngr = —| = =—.

The direction cosines of the second orthotropy direction (y’) may be ob-
tained by solving the system of equations

1
lx/ly/ + MprMyr + NgrNyy = 0 (.T/ 1L y,) ly/ = —5
2 2 2 _
Ly +my +ny =1 = {my :_%
1
Ny = cos45° = — 1

NG nylzﬁ.

The vector product of the unit vectors defining directions =’ and /', yields
the components of the unit vector defining the monotropy direction 2’

1
lz/ = mx/ny/ — my/nx/ = ﬁ
1

mz/ = —Zx/ny/ —|— ly/’l’Lz/ = —

S

Ny = lymy —lymg =0.

(b) Since the constitutive law for orthotropic materials described by (85) is
only valid for a reference frame, whose axes are parallel to the material
orthotropy directions, it is necessary to compute the components of the
stress tensor in the reference system z’,4’, z’. The operation to transpose
the reference axes may by performed by means of (15). Matrix [I] contains
the direction cosines

1 1 1
bor by L 3 T3~
11— I R S
[l]=|my my mua|=|3 3 7
R

Mo Ny Nz vz 2

The computation sequence is therefore:

1. transposition of the stress tensor to the reference axes z’,%/, 2’
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2. computation of the elements of the strain tensor in the reference system
'y, 2 (85)

'] — [€'];

3. transposition of the strain tensor, in order to find its components in the
original reference system x,y, z (16, with the strain tensor [&'] in the place
of the stress tensor [o’])

IV.6. A material has a one-dimensional constitutive law which, in the loading
phase, may be described by the expression o = ac — 12a<2. The unload-
ing follows the linear law described by a straight line which is parallel
to the tangent to the loading curve at the origin (Ey, Fig. IV.6).

(a) Compute the dissipated energy and the elastic potential energy per
volume unit, in the longitudinal deformation of the material until
a strain value € = 0.04.

(b) What kind of deformation corresponds to the dissipated energy?

o = ae — 12ae?

[ e A

Eo
0.04

Erec

Fig. IV.6

Resolution

(a) From (90) we verify immediately that the work done by the stresses in
the deformation of a volume unit of the material — the energy consumed
in the loading process — is given by the expression

0.04
U= / (ac — 12ae®) de = 0.000544a .
0

In order to compute the part of this energy which is stored as elastic
potential energy, the following quantities must be computed (Fig. IV.6)

£ =0.04 = 0= 0max = a(0.04 — 12 x 0.04*) = 0.0208a

d
Et:d—::a—%as; e=0= E,=FEy=a.
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The deformation recovered in the unloading is therefore given by the
expression (Fig. IV.6)

Omax
rec = = 0.0208 .
& EO

The elastic potential energy (U, ) and the dissipated energy (Uy) are then

U. = %O’maxz’:}ec = %0.0QOES&0.0?OS = 0.00021632a

Us =U — U, = 0.000544a — 0.00021632a = 0.00032768a .

The deformation corresponding to the dissipated energy is of the plastic
type, since the given constitutive law does not depend on the time (energy
is dissipated in plastic deformation and in the viscous deformation; if the
stress-strain relation does not depend on the time, there is no viscous
deformation).

IV.7. Consider a spherical surface defined in the interior of a undeformed

monotropic material. What shape does this surface take, when the
material is subjected to an isotropic state of stress?
Answer the same question, supposing that the material is orthotropic.

IV.8. Deduce expressions for the computation of the volumetric strain as a

function of the elements of the stress tensor, in
(a) orthotropic materials with linear elastic behaviour;
(b) monotropic materials with linear elastic behaviour.

IV.9. An axisymmetric stress state which is defined by the principal stresses

o, = 0y = 0 and 0, = 20 acts in a linear elastic monotropic mater-
ial. Axis x coincides with the material monotropy direction. Imagine
a spherical surface with a radius R inside the undeformed material.
Define the shape and dimensions of this surface after the deformation.
The material’s constitutive law is defined by the parameters:

E,=3E E,=2E 1,=03 1,=02 G,=15E.

IV.10. Compute the energy dissipated in the dashpot of a Maxwell element

(Fig. 33) in each of the following loading sequences:

(a) a stress of intensity oy is applied, kept constant and removed after
the time interval At;

(b) a strain of intensity ¢, is applied and kept constant until the re-
laxation reduces to half the stress installed immediately after the
application of gy; at this instant the stress is removed.

IV.11. Consider an isotropic state of deformation in a monotropic material.

What kind of stress state could cause this deformation?
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A composite material is composed of successive layers of fibres arranged
as indicated in the following figure, embedded in an isotropic matrix

material.
— 600
1%t layer 2nd ayer 374 layer 4th layer
5t layer 6" layer 7t layer 8" layer
9" layer 10" layer 11" layer 12t7 layer
etc. etc. etc. etc.

The fibres are all equal and the distance between them is the same
in all layers. The composite material has linear elastic behaviour and
may be considered as continuous.

How many parameters are necessary to define the constitutive law of
this material?

Deduce expressions for the volumetric strain caused by an isotropic
stress state in

(a) an orthotropic material with linear elastic behaviour;

(b) a monotropic material with linear elastic behaviour.

In an orthotropic material a stress state is installed whose principal
stresses take the values oy, 0, and o;. The orientations of the principal
directions in relation to the material orthotropy directions, x, y and z,
are defined by the direction cosines

L l2 l3
dir. 1 — ¢ mq dir. 2 — ¢ mgo dir. 3 — ¢ mg3
ny n2 n3

The material has linear elastic behaviour. Describe computation se-

quences to obtain:

(a) the volumetric strain;

(b) the strain tensor represented by its components in a reference
frame whose axes are parallel to the principal directions of the
stress tensor.

What is the shape of the relaxation curve of a model composed by a

parallel association of a Maxwell-element (Fig. 33) with a spring, when

it is instantaneously deformed and this deformation is kept constant
indefinitely?

What are the principal directions of the strain tensor induced by an

isotropic stress tensor in

(a) a monotropic material;

(b) an orthotropic material.
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IV.19.

IV Constitutive Law

Deduce an expression for the elastic potential energy stored per unit
volume in a monotropic material with linear elastic behaviour, as a
function of the elements of the stress tensor.

A material has a one-dimensional constitutive law which, in the loading
phase, may be described by the expression ¢ = o, (1 — e~*¢). The
unloading follows a linear law represented by a straight line which is
parallel to the tangent to the loading curve at the origin (similar to
Fig. IV.6). Find the dissipated and the stored energy components per
volume unit in the one-dimensional deformation of a specimen of this
material until a strain € = 0.01.

Compute the dissipated energy and the elastic potential energy in the
deformation of a Kelvin model (Fig. 32) at a constant strain rate € =

%, during a time interval At.
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Strength of Materials
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Fundamental Concepts of Strength of Materials

V.1 Introduction

In Chaps. I to IV expressions were developed for the mathematical description
of the relations between external forces, stresses, strains and displacements in
a body made of a material which may be considered as continuous. The com-
putation of the stresses and strains induced in the body by a given system of
external forces, or by imposed displacements, demands the direct or indirect
computation of the solution of systems of equations based on those expres-
sions. Generally, we deal with differential equations (note that many of the
main expressions presented in Chaps. I to IV are in differential form) with
a degree of complexity which depends on the geometry of the body, on the
rheological behaviour of the materials it is made of and on the magnitude
of the deformations and rotations. For these reasons, analytical solutions are
obtained only for those cases where deformations and rotations are sufficiently
small to be considered as infinitesimal, the material is isotropic and has lin-
ear elastic behaviour and the geometry of the body has a simple analytical
description.
Traditionally the solutions were obtained in two ways:

— Theory of Elasticity — this science mainly uses mathematical tools to get
analytical solutions for the problems of the Mechanics of Materials. Since
the differential equations describing those problems generally have a high
degree of complexity, only the simpler problems could be solved. Thus,
solutions have been obtained for two-dimensional problems with a simple
description for the body geometry and for the loading distribution, in rec-
tangular coordinates (bodies with a rectangular or right triangular border
under concentrated and uniformly or linearly distributed external forces),
or in polar coordinates (bodies with a circular and/or radial border, prob-
lems with some axisymmetry conditions in the stress distribution, etc.).
Solutions have also been obtained for some three-dimensional problems, by
using rectangular, cylindrical and spherical coordinates [4].
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The great advantage of the Theory of Elasticity is that it gives analytical
solutions, which allow, for example, a simple investigation about the way a
solution changes when the parameters included in it change, which cannot
be achieved directly with numerical solutions.

The bigger disadvantage is that it yields solutions only for the simplest
cases under ideal conditions. Furthermore, as a consequence of the math-
ematical approach employed, it is not easy to use physical considerations
to get approximate generalizations of its solutions for cases where those
conditions do not apply exactly (for example, a slight non-linearity of the
material constitutive law).

— Strength of Materials — this science favours a more physically grounded,
phenomenological and praxis oriented approach. Traditionally, its focus has
been on the computation of stresses and deformations in the special case of
slender members, although other kinds of structures are also analysed. In
fact, these cases belong to the class of problems which can be solved with-
out exaggerated use of mathematical formalism and their solutions were
developed prior the appearance of powerful numerical tools. The phenom-
enological approach and the relatively simple geometry of the problems
allow the treatment of a broader spectrum of constitutive laws, as some
particular cases of non-linear elasticity, plasticity, etc., the consideration of
some material discontinuities, as, for example, slender members made of
two or more materials and even non-infinitesimal rotations.

Summarizing, we can make the highly simplified statement that the Theory
of Elasticity furnishes mathematical solutions for problems whose geometry is
relatively complex (two- or three-dimensional problems), but whose material
behaviour is the simplest possible, while the Strength of Materials yields phys-
ical solutions for problems with a simpler geometry (slender members), but
with some incursions into more complex aspects of material behaviour and
non-infinitesimal displacements and rotations. These two sciences are comple-
mentary. In fact, the first frequently starts from solutions obtained by means of
the second, to develop analytical solutions, and the Strength of Materials often
uses solutions obtained by the Theory of Elasticity for particular problems,
either for testing a simplifying hypothesis, or to investigate the possibility of
generalizing some solutions to problems where the starting conditions are only
approximately satisfied.

With the appearance of machines for automatic computation — the com-
puter — it became possible to solve algebraic systems of equations with a large
number of unknowns, which made the development of a third method possi-
ble: the numerical simulation of structures. This method, by discretizing the
continuum and thus allowing the transformation of the differential equations
into algebraic equations, took only a few decades to become the most powerful
tool for solving problems of Solid Mechanics and, more generally, all contin-
uum problems. Of all the computational tools, the Finite Element Method
deserves a special reference, since its flexibility and modularity has allowed it
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to be successfully applied to practically all kinds of problems of Continuum
Mechanics.

This second part of the book introduces structural analysis and the theory
of slender members, using the approach which is traditionally called Strength
of Materials. In fact, despite of the success of numerical analysis, this subject
is still a core part of the Engineering Sciences that deal with Solid Mechanics,
since it yields a large number of directly applicable expressions for practical
problems. These expressions concern the computation of the effects of the
axial and shear forces and of the bending and torsion moments in slender
members. Furthermore, as a consequence of the physical approach and of the
large number of simple exercises which are solved, it develops in the student
a greater capacity for intuitively evaluating the way as a structure behaves.

The notions of stress, strain and rheological behaviour are explained again
at the beginning of this chapter. This is because the subjects are introduced
differently for the Strength of Materials, compared with Solid Mechanics, and
because its is intended that the reader of the second part is able to under-
stand it, without a deep study of the subjects dealt with in the first chap-
ters. However, the reader should already have some knowledge about the two-
dimensional analysis of a second order tensor, at least, especially in relation
to the transposition of reference axes and Mohr’s circle, and the computation
of reaction forces in statically determinate structures and internal forces in
slender members.

V.2 Ductile and Brittle Material Behaviour

The main characteristics of the rheological behaviour of materials are usu-
ally investigated by means of simple experimental tests, in which the rela-
tions between forces and deformations in a body with appropriate geometry,
made of the material to be studied (test specimen) are measured. The one-
dimensional tensile test is the most widely used way to study the behaviour of
current structural materials, such as metals. This test determines the relation
between an axial force N and the corresponding elongation Al, as represented
schematically in Fig. 47-a.

Consider a prismatic specimen with a doubly symmetric cross-section
made of mild steel. If the elongation Al is gradually increased from zero until
the value which causes the rupture of the specimen, and the corresponding
axial force IV is measured, a relation between these two quantities is obtained.
This relation may be represented by a diagram, like that in Fig. 47.1

The diagram is typical for a ductile material and is characterized by a zone
of purely deformation plastic (irreversible) or yielding zone, where deformation

' The test is carried out with displacement control, i.e., by defining a value for the
elongation and measuring the corresponding value of the axial force. If force control
is used instead, the shape of the diagram in the descending zone, where the value of
force decreases as the deformation increases (softening), is not correctly captured.
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suddenly increases, without a significant increase of the axial force N (line
BC(C). In this diagram distinct zones may be identified. The first corresponds
to the straight line OA, where the elongation Al is completely recoverable
and proportional to the axial loading N. Since recoverable deformations are
defined as elastic, this region is called the linear elastic zone. Usually, the
deformations of structural materials are in this zone under service loads.

N.
_ N,

l Ny
Np
(elastic deformation exaggerated)
y Ly
AV
l ¥
N
(&) ob—— o z

Fig. 47. Force-elongation diagram of mild steel, obtained by means of a one-
dimensional tensile test

In the region AB the deformation is still elastic, but there is no propor-
tionality between forces and deformations anymore. Axial force IV, indicates
the transition from the linear elastic to the non-linear elastic deformations
and is therefore called the limit of proportionality. When the loading attains
the value Ny, yielding starts. Region BC' is the yielding zone defined above
and Ny is the yielding force. Between these two values (N, and Ny) an elas-
ticity limit N, may be defined. This value indicates the maximum value of
N, which causes purely elastic deformation, i.e., the maximum value that NV
can reach, so that the N-Al diagrams in the loading and unloading phases
coincide. In practical terms, the difference between N, and Ny is very small
so they may be considered to take the same value. In point C' the hardening
of the material starts. In region DE a decrease of the axial force with defor-
mation increase (softening) takes place. This softening is only apparent, since
it is a consequence of a reduction of the cross-section (necking) which takes
place prior to rupture: in fact, the force per area unit in the necking cross-
section increases until rupture (cf. Sect. V.3). If the loading process is stopped
at any stage after point B and the axial force is reduced until zero, the N-Al
relation follows a linear path, with the same angle as the initial straight line
OA, and a residual deformation remains, as represented by the line B'B”. In
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a subsequent reloading the N-Al diagram follows the path B” B'CDE. If the
unloading occurs when the load is already in the hardening region (point C”),
the material behaviour is the same: the unloading is linear (line C’C"") and the
reloading follows the path C”C’DE. This means that, in the reloading, the
first plastic deformations appear for a higher value of the axial force than in
the first loading. This is why the curve CC’D is called the hardening region.

If, instead of a tensile force IV, a compressive one is applied, the obtained
N-Al diagram is approximately the same until point C’. Since no necking
occurs in compression, the hardening continues indefinitely and no rupture
takes place, even for very large deformations. The proportionality and yielding
forces take the same value as in the tensile test. This behaviour is characteristic
of ductile materials.

In the case of brittle materials as cast iron, concrete, glass, rock, ceramic
materials, etc., the obtained force-elongation diagram takes a form of the
type represented in Fig. 48. The main differences between the diagrams for
brittle and ductile materials are: the linear elastic zone is less defined, i.e., the
tangent to the curve decreases steadily until rupture, which occurs with little
plastic deformations, and the behaviour under tensile and compressive forces is
different. Generally, these materials display more stiffness and strength under
compressive loading.

Nrt

Al

Nre

Fig. 48. Force-elongation diagram in a brittle material

In many materials, especially metallic materials, ductility changes with
temperature, with less ductility for low temperatures.

V.3 Stress and Strain

In the previous section the relation between axial force and elongation was
described. This relation obviously depends on the dimensions of the test
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specimen. To be more specific, the larger the cross-section area and the smaller
the specimen’s length, the smaller the elongation will be, for the same axial
force N. It is, however, more convenient to express the material properties
independently of the specimen’s dimensions. This objective may be achieved
by means of the stress and strain definitions. Thus, we may define stress o

as the force per cross-section unit Q, o = %2 and strain ¢ as the elongation
per unit length [, ¢ = %. It is evident that the stress-strain relation has

the same shape as the N-Al diagram if €2 and [ are approximately constant,
which happens while the specimen’s deformation is small. This is true in the
diagrams presented above, with exception of the necking zone (curve DE) in
Fig. 47. In the necking cross-section, although the axial force decreases with
the deformation, the stress increases.

The coefficient of proportionality E between stress and strain in the linear
elastic region (line OA, Fig. 47) is a rheological parameter of the material and
is called the longitudinal modulus of elasticity or Young’s modulus. In all kinds
of steel this parameter takes the value £ = 206 x 10°N/m?2. In the curved
regions of the o-¢ diagram the stress is no longer proportional to the strain. In
this case a tangent elasticity modulus may be defined: F; = ‘(ii—‘;. A longitudinal
elongation is usually accompanied by a reduction of the transversal dimensions
and vice versa. The relation v between the the transversal and longitudinal
strains, g and e, respectively, multiplied by —1 (¢, = —ve), defines another
rheological parameter and is called the Poisson’s coefficient of the material.
In steel, as in most metals, this parameter takes a value of 0.3 in elastic
deformations and 0.5 in plastic deformations.

If we now consider an inclined section at an angle  with the cross-section,
we can define a stress T = QLL (Qine is the area of the inclined section). This
stress must have the direction of the axial force IV, in order to be able to bal-
ance it, as represented in Fig. 49. Thus, this stress has a normal component o,
(to the inclined section) and a tangential or shearing component 7,. Denoting
the cross-section area by €2, we get

Q N

Qine = —— T= = —cos¥f.
cos 6 = Qine Q €08

The normal and shearing components are then, respectively,

N N 1N
0y =Tcosf = —cos’0 and 7, =Tsinh = —~sinfcosh =~ —sin20 .
0 Q 0 Q 2Q
The maximum value of g, clearly occurs for § = 0 (cross-section). The shearing
stress attains its maximum value in an inclined section at a 45° angle with
the cross-section, as may be easily verified?

2In this expression a uniform distribution of the stress in the cross-section is
assumed. This hypothesis will be proved in Sect. VI.1).
3These conclusions may also be drawn by means of the Mohr circle or from (35)

and (36) (0x = &, 0y = Tay = 0, 6 = 45°).



V.4 Work of Deformation. Resilience and Tenacity 125

Fig. 49. Stresses in an inclined section

%:%0052920:9:%.

If, in the one-dimensional experimental test of a ductile material, a specimen
with a flat and polished lateral surface is used, careful observation shows lines
at a 45° angle with the longitudinal direction, when yielding takes place. These
lines, called Liider-Hartman’s lines, have the directions corresponding to the
maximum shearing stress and indicate that the plastic deformation is mainly
a shearing deformation. This explains the same material behaviour observed
in tensile and compressive experiments, especially for the yielding stress oy, =
%. In fact, there is no physical difference between the shearing deformation in
compressive and tensile tests. In brittle materials deformation and rupture are
mainly influenced by cohesion, contact and friction forces between the material
particles. These forces are obviously different under tensile and compressive
loadings. Concrete is one example. In this material the tensile strength is
mainly influenced by the cohesion properties of the cement paste, while in
compression the properties of the aggregates play an important role, because
of the contact and friction forces between the rock particles.

V.4 Work of Deformation. Resilience and Tenacity

When a body deforms under the action of external forces, their points of
application suffer displacements and the forces do work. Physics defines the
work of a constant force in a straight displacement as the scalar product of
the vectors defining the force and the displacement of its point of application.

In the example of the prismatic steel bar under a tensile axial force
(Fig. 47-a) the work Wy done by force N, for a given elongation Al;, may
be given by the expression

Al;
Wo = N (Al) d(Al) . (112)
0

The integral is necessary because the force N is not constant, but varies during
the deformation as a function of Al, as shown in Fig. 47. In fact, the definition
of work given above is valid only for an infinitesimal displacement d (Al). By
introducing the definitions of stress and strain into (112), the work W done
per volume unit may be obtained
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where V' = Q) represents the volume of the bar. This quantity takes the same
value as the area under the stress-strain diagram, as represented in Fig. 50.
From Physics we know that for the production of a given amount of work
an equal amount of energy U must be spent. If the strain ¢; is in the elastic
region of the stress-strain diagram, this energy is totally stored by the de-
formed material as elastic potential energy. This energy is recovered during
unloading. However, if the strain is larger than the value corresponding to the
elasticity limit, the energy is partly dissipated (transformed in heat) during
the plastic deformation. In this case, the elastic potential energy is only a
fraction of the work done in the deformation and is given by the expression

UEZ/IO'/(E)dE,

r

where ¢, is the residual strain and ¢’ (¢) is the stress corresponding to the
strain ¢ in the unloading. As stated above, in the unloading of a steel bar the
stress-strain relation is linear, even when the stress is larger than the propor-
tionality limit. The dissipated and potential elastic parts of the deformation
energy per volume unit (energy density) are represented in Fig. 51.

The amount of energy per volume unit needed to start plastic deforma-
tion, is called resilience. The amount of energy per volume unit needed to
cause rupture is called tenacity. These quantities play important roles in the
shock-absorbing capacity of a structure. Ductile materials have high tenacity,
as opposed to brittle materials, which display low tenacity. In a ductile mate-
rial the tenacity is much larger than the resilience, while in brittle materials
these quantities are similar since the plastic deformations are small. Ductile
materials usually have a much higher tenacity than brittle materials.
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Fig. 51. Dissipated energy (Uy) and elastic potential energy (Ue) in the deformation

of a steel bar

V.5 High-Strength Steel

As described in Sect. V.2, if a mild steel is deformed until the strain reaches
the hardening zone and the loading is subsequently removed, this steel displays
a higher elasticity limit in a later reloading, i.e., a larger linear elastic region
in the stress-strain diagram. Since the elasticity limit is usually considered
as the limit load under service conditions, the loading capacity of a steel
may be increased in this way. This method of increasing the elasticity limit
of a steel by means of pre-deformation, with the objective of increasing the
admissible stress, is called strain hardening. Obviously this process causes a
loss of tenacity, since part of the energy dissipation capacity of the material
is consumed by the pre-deformation in the hardening process. Conversely, the
resilience is increased since the elasticity limit is higher and the elasticity

modulus remains unchanged, as depicted in Fig. 52.

o
R resilience
V.7 tenacity

€

Fig. 52. Resilience and tenacity of a mild steel and of a high strength steel
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Fig. 53. Variation of the stress-strain diagram with the carbon percentage

The hardened steel is therefore more brittle. Furthermore, the yielding
stress for a compressive axial force decreases in a steel bar that is hardened
by means of a tensile axial force. This is why the strain hardened bars used
in reinforced concrete are pre-deformed by torsion, which increases the tensile
and compressive limits of elasticity to the same extent.

The elasticity limit of steel can also be increased by increasing the quantity
of carbon added during the metallurgical process of steel production. This
process, called natural hardening, has the advantage of not disturbing the
isotropy of the material. Just as in the strain hardening process, the capacity
of plastic deformation (ductility) decreases as the elastic limit increases, as
indicated in Fig. 53.

High strength steels do not have a yielding zone where only plastic defor-
mations take place (cf. Figs. 52 and 53). As a consequence, the onset of the
plastic deformation is not clearly shown by the stress-strain diagram. For this
reason, the elastic limit is defined with the help of a convention, which states
that the elastic limit is the stress which causes an unrecoverable strain with
the value 0.2% = 0.002 (o 5, Fig. 54).

V.6 Fatigue Failure

In structural elements subjected to rapidly changing internal forces, such as
bridge elements under vibration loads caused by traffic or wind loads, machine
parts performing cyclic motions, aircraft structural elements, etc., fatigue fail-
ure may occur. This kind of failure usually takes place for substantially lower
stresses than in a monotonically increasing loading, as in the experimental
tests described in Sect. V.2.

The behaviour of structural materials under the action of loads varying
with great frequency is investigated by means of fatigue tests. In these tests a
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Fig. 54. Conventional elastic limit

specimen undergoes a generally one-dimensional loading which causes stresses
varying cyclically between two given values, usually a compressive and a ten-
sile stress. The loading cycles are repeated a large number of times until
rupture takes place. The higher the given stress values are, the smaller is the
number of cycles needed to cause rupture. In the simplest and commonest of
these experimental tests equal compressive and tensile stresses (Omin = —0max)
are cyclically applied.

If, for example, several specimens of steel are tested under the same stress
level, the results are generally found to be widely dispersed, i.e., the number
of cycles necessary to cause rupture varies substantially from one test to an-
other. However, if the number of tests is sufficiently high and the experiments
are performed for different stress levels, results are obtained which may be ap-
proximated by a curve with the shape depicted in Fig. 55 [3]. This curve tends
asymptotically for a stress value o, which means that for a sufficiently low
stress no fatigue failure occurs, irrespective of the number of loading cycles.
This stress value is called fatigue limit stress. In iron-carbon steel this stress
is approximately half the rupture stress, which is lower than the elastic limit
stress. In other more ductile materials like lead, copper, zinc or pure iron the
fatigue limit stress is higher then the elastic limit [3].

The value of the fatigue failure stress depends strongly on the specimen’s
surface, with a higher failure stress obtained when the surface is polished. This
is a consequence of the fact that rupture is initiated by a crack. The crack
starts at the surface and propagates to the interior of the specimen as the
cyclic loading goes on, until the uncracked part of the specimen’s cross-section
becomes too small to carry the applied loading and failure takes place. The
crack starts at a lower stress in the unpolished surface, since its imperfections
cause higher stress concentration, as will be seen later (Sect. VI.9). This crack
initiation mechanism explains the above-mentioned dispersion of the number
of cycles required to cause fatigue failure for the same stress level. It is also due
to the sensitivity to the imperfections that fatigue failure takes place for fewer
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Fig. 55. Relation between the maximum stress o and the number of loading cycles
needed to cause rupture in fatigue tests with omin = —Omax

cycles (or lower stresses) in the case of corrosive environments, since corrosion
initially affects the surface of the material and causes larger imperfections.

From these considerations we conclude that fatigue failure has the same
character as brittle failure, since it takes place without being preceded by
large plastic deformations. It is a dangerous kind of failure, since there are no
visible signs of the fatigue crack before rupture. Sensitivity to imperfections
is also a characteristic of brittle failure. As will be seen later (Sect. VL5),
ductile structures are safer than structures made of brittle materials, since
the capacity for plastic deformation allows a redistribution of internal forces,
which automatically optimizes the distribution of internal forces until failure
occurs. However, if there is a risk of fatigue failure, the advantages of struc-
tures made of ductile materials are lost, since fatigue-induced rupture is of a
brittle nature, even when it occurs in ductile materials.

V.7 Saint-Venant’s Principle

Saint-Venant’s principle states that in a body under the action of a system of
forces which are applied in a limited region of its boundary, the stresses and
strains induced by those forces in another region of the body, located at a large
distance from the region where the forces are applied, do not depend on the
particular way the forces are applied, but only on their resultant. This “large
distance” may be considered, in most cases, as the largest dimension of the
region where the forces are applied.

This principle does not have a formal, general and exact demonstration
as yet, but it has been verified in so many cases, both experimentally and
numerically, that it is accepted as valid by the generality of authors on this
subject. It is a very useful principle, since complex force systems may be
reduced to their resultants, which substantially simplifies and reduces the
computation effort in practical problems. Besides, it is a very helpful tool in
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Fig. 56. Stress distribution in different cross-sections of a prismatic bar, caused by
three force systems with the same resultant

the theoretical development of solutions for problems in Theory of Elasticity
and Strength of Materials, as will be seen later.

As an example, let us consider the prismatic bar represented in Fig. 56
under the action of three systems of forces with equal resultants: the stresses
at a grater distance than the transversal dimension 2b from the upper end of
the bar may be accepted as equal in the three cases.

This principle is also valid in the cases of non-isotropic materials, non-
linear material behaviour, plastic and viscous deformations and material het-
erogeneity. Furthermore, the validity of this principle is not limited to small
deformations.

V.8 Principle of Superposition

In structures where the applied loading causes deformations and rotations
which are sufficiently small to be considered as infinitesimal and where the
rheological behavior of the material is linear (i.e., the proportionality limit
stress is not exceeded), the relation between the intensity of a force and the
effects it causes (stresses, strains, displacements) is linear, i.e., the effects are
proportional to the intensity of the force which causes them.

The increase of displacement corresponding to the increase of the force
which causes it is therefore independent of the intensity of the force before
the increment. Furthermore, as the geometry of the structure, after the appli-
cation of loading, is only infinitesimally different from the undeformed config-
uration, the initial geometry of the structure may always be used, regardless
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of the existence or not of other previously applied loads (geometrical linear-
ity). Under these conditions (material and geometrical linearity) the Principle
of Superposition is valid: the effect of the application of a force to a structure
is independent of the existence or not of other forces applied to the struc-
ture. As a consequence, the effects of applying different loading systems to
the structure may be computed separately and added.

This principle has a simple analytical demonstration. To this end, it suf-
fices to take into consideration that, in the case of infinitesimal deformations
and rotations, all the conditions relating applied forces, stresses, strains and
displacements are linear. These conditions are:

the differential equations of equilibrium (5),

— boundary balance equations (8),

— the relations between strains and displacements (50),

the local (53) and integral conditions of compatibility (the integration of
strains is a linear operation),

— the constitutive law (74), (75), (79), (81), (83) and (85).

As a consequence, the sum of two sets of forces, stresses, strains and displace-
ments also obeys these conditions.

A temperature variation is also a kind of loading whose effect is gener-
ally defined by a linear law: the strain induced by a temperature variation is
generally proportional to the value of that variation, with the thermal expan-
sion coefficient playing the role of the proportionality constant. The effect of
the temperature variation may be quantified by adding another element to
the expressions, allowing the computation of the longitudinal strains for given
stresses (e.g., (74)). Taking, for example, the longitudinal strain in direction z,
we have g, = % [0x — v (0y + 0,)] + AT, where « is the coefficient of thermal
expansion.

From a physical (and practical) point of view we may make the simplified
statement that the effect of the application of a force to a supported body
depends only on two components: the constitutive law of the material and the
geometry of the body.

If the constitutive law is linear and if we can admit that its rheological
behaviour does not depend on temperature, the first component does not
change with the application of forces or with a temperature variation.

If, in addition, the deformations are small enough for it to be acceptable
that the geometry of the body does not change, the second component does
not change either. Thus, the effect of the force is independent of the previ-
ous application of forces and of temperature variations, which leads to the
principle of superposition as stated above.*

41t must be noted that possible interactions between the deformations and the
internal forces caused by the external loads are not taken into account in these
considerations. This interaction may occur in presence of infinitesimal deformations
and cause structural instability. As it will be seen later (Chap. XI), in the analysis
of this phenomenon the principle of superposition is not valid.
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This principle has many useful applications, both from a practical point of
view, since it allows the separate consideration of single loading cases and any
linear combination of their effects, and in theoretical analysis, as, for example,
in the demonstration of energy theorems for linear elastic structures. It must,
however, be noted that it is only valid for structures with linear elastic force-
displacement behaviour.

V.9 Structural Reliability and Safety

V.9.a Introduction

A structure must resist all the loadings that will act on it, in its expected life
and conditions of use. In the context of structural reliability “resist” means
that the structure must be able to carry out safely all the functions for which
it is designed.

We consider that the structure ceases to be able to carry out those func-
tions when a limit state occurs. Two kinds of limit states are usually consid-
ered: ultimate limit states and serviceability limit states.

The first are associated with the rupture, collapse or failure of the entire
structure or parts of it, such as failure of structural elements caused by ma-
terial rupture, structural instability of compressed members, fatigue failure,
displacements leading to loss of supports, etc.

The serviceability limit states include everything that may cause struc-
tural malfunction, although not inducing collapse. Examples of serviceability
limit states in Civil Engineering structures include: excessive deformation of a
structural frame which may cause cracking in non-structural walls, excessive
vibration of a pedestrian bridge which may cause discomfort to the users, too
large cracks in reinforced concrete members which may lead to corrosion of
the reinforcing steel bars, etc.

V.9.b Uncertainties Affecting the Verification
of Structural Reliability

When verifying the reliability of a structure it is not possible to use a to-
tally deterministic approach, since the quantification of the problem data —
the different kinds of loading (actions) and the rheological properties of the
materials — is always affected by some uncertainty, which makes it impossible
to define exact values. The main sources of uncertainty are:

— uncertainty in the value of the actions: all actions are characterized by a
smaller or larger dispersion in relation to their mean value; besides, it is
often impossible to define limiting values. Examples of loadings are those
caused by wind, snow, temperature variation, earthquakes, etc. Further-
more, it is generally not economically defensible to use the limiting values
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of the actions, when they exist, since the probability of their occurrence is
generally very small;

— statistical dispersion of the rheological properties of structural materials,
especially rupture stress, elasticity modulus, resilience, tenacity, etc.;

— uncertainty introduced by the dimensional tolerance of pre-moulded struc-
tural elements;

— execution imperfections, especially in Civil Engineering structures as in
concrete elements for example, introduce uncertainty into the geometri-
cal dimensions, on the position of the reinforcing bars, the verticalness of
columns, etc.;

— uncertainty introduced by the methods of analysis and computation, since
they are always based on idealized models, resulting from simplifying hy-
potheses, like the consideration of a linear stress-strain relation and of the
undeformed geometry of the structure, non-consideration of time-dependent
effects, such as viscous deformation, etc.

As a consequence of these random factors, the verification of structural re-
liability necessarily has a probabilistic basis, since a zero probability of failure
can never be guaranteed. The criteria of dimensioning and safety evaluation
are based on the definition of a sufficiently low probability for the structure to
reach a limit state. For ordinary Civil Engineering constructions the following
values are considered acceptable [3]:

— serviceability limit states < 5 x 1072;
— ultimate limit states < 107°.

In the case of structures with special safety requirements, like large dams
or nuclear power plants, the maximum values of these parameters are much
lower.

The above considerations lead to the conclusion, that a structure is safe if
the probability of it reaching a limit state is sufficiently low.

V.9.c Probabilistic Approach

The probabilistic approach consists of the direct computation of the proba-
bility that the structure reaches a limit state. Thus, from a theoretical point
of view, we can accept that either the actions and the resistance properties
of the structure (strength) may be represented by parameters A and R which
are described by probabilistic density curves f,(A) and fr(R), as represented
in Fig. 57.

The probability of the simultaneous occurrence of a value of the action A
within the interval dA and of a value of the strength R within the interval dR
(dA and dR are infinitesimal quantities) is given by

d(dPs) = fodAfrdR .

The probability of strength R taking a lower value than action A, or, more
precisely, of having the action in the interval dA and inferior values of the
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fa, fr
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Fig. 57. Probabilistic density curves for action A and for strength R

strength R, may be obtained by integrating the previous expression for all
values of R < A, which yields

A
dP; = f,dA frdR .
R=0

By integrating this expression for all possible values of the action, we get

9] 9] A

Py :/ dPy :/ fa frdRdA .
A=0 A=0 R=0

This expression represents the probability of the action exceeding the strength,

that is, the probability of the structure reaching a limit state.

Using this methodology to verify the reliability of a structure is, however,
not easy in practice, since it is generally very difficult and laborious to define
and combine the multiple laws of probabilistic distribution for actions and
strength parameters for a particular structure. In the practical verification of
the reliability of ordinary structures, therefore, a semi-probabilistic approach
is used instead, as described in the next sub-section.

V.9.d Semi-Probabilistic Approach

The semi-probabilistic approach is based on the definition, with a probabilistic
basis, of nominal values for the actions and strength parameters, so that a
sufficiently low probability of failure is guaranteed, without the need for the
explicit computation of this probability.

The first step consists of defining characteristic values for the actions and
strength parameters.
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For actions these values are defined as values with a very low probability
of being exceeded (upper quantile of the probabilistic density curve), except
in the case of permanent actions with an advantageous effect on the safety of
the structure. In the latter case the lower quantiles are used (values which are
exceeded with a very high probability). However, in the case of permanent
actions with low dispersion values, i.e., actions with close upper and lower
quantiles, as the self-weight of structural materials, the mean value may be
used. This considerably simplifies reliability verification, since it is not nec-
essary to distinguish between permanent actions with beneficial and adverse
effects on the structural safety.

For the strength parameters only the inferior quantiles of the probabilistic
density curve are used as a rule (values which are exceeded with a very high
probability). However, cases may be imagined where the failure of a structural
element might be beneficial for the global failure safety. For these elements
the use of the upper quantiles would be the logical choice.

Common values for the probabilities corresponding to the lower and upper
quantiles are 5% and 95%, respectively. Generally, the values corresponding
to these quantiles are defined in the official standards relating to the different
types of structures and structural materials.

The second step consists of defining nominal values which are obtained
from the characteristic values by multiplying them by partial factors.

In the case of actions, these factors take into account the probability of the
characteristic values being exceeded, the reduced probability of all the actions
present in a given loading case simultaneously reaching their characteristic
values, the probability that the distribution of external forces resulting from
a particular action (wind, for example) may be different from the assumed
distribution, etc.

In the case of the strength parameters, the partial factors are intended
to cover the reduction of the material’s strength due to accidental mater-
ial defects, the reduction of the strength parameters with the time (aging),
small time-dependent deformations, the simplifying hypotheses used in the
definition of the material’s constitutive law, etc.

V.9.e Safety Stresses

Traditionally, the structural safety, used to be verified on the basis of safety
stresses, especially in the fields of Civil and Mechanical Engineering. This
method has been gradually abandoned and replaced by the semi-probabilistic
approach. However, a short description of it is entirely justified, both for
historical reasons and because it is still used.

The safety stress method has the same probabilistic basis as the semi-
probabilistic approach, since the safety stresses are defined on the basis of the
same characteristic values for the material strength parameters. The safety
verification is performed by computing the stresses induced by the same char-
acteristic values of the actions, which must not exceed the characteristic value



V.10 Slender Members 137

of the strength (the yield stress in ductile metals), multiplied by a safety coeffi-
cient. This parameter plays the same role as the partial factors for the actions
and strength parameters, simultaneously, in the semi-probabilistic approach.

Obviously, this method leads to the same degree of safety as the semi-
probabilistic approach only if the structure behaves linearly until it reaches the
limit states: in this case, multiplying the actions by a factor leads to the same
result as dividing the allowable stress by the same factor. However, as seen
earlier, a linear stress-strain relation is generally only acceptable in the initial
loading phase and not until the limit states. For this reason, the results yielded
by the semi-probabilistic approach are generally better, since the increase
in safety due to multiplying the actions by a factor, whose objective is to
guarantee that the structure resists a larger loading than that expected, is not
”distorted” by the non-linear character of the relation between the external
forces and the stresses in a close to the limit state loading situation.

Furthermore, treating the different actions separately allows different fac-
tors to be considered for each one, in accordance with the degree of uncertainty
associated with it. As an example, let us consider two actions: the self-weight
of the structure of a building and the wind acting on it. The uncertainty as-
sociated with the self-weight is very low, since, once the characteristic value
of the density of the material has been defined, the computation of the corre-
sponding internal forces is not affected by significant uncertainties. In the case
of the wind action, on the other hand, the probabilistic analysis leading to the
characteristic value takes only the statistical dispersion of the wind velocity
into account, with a large degree of uncertainty remaining in relation to the
distribution of pressures caused by a wind with that velocity on the surface
of the building. This is why it is advisable to use a larger partial factor for
the wind than for the self-weight.

V.10 Slender Members

V.10.a Introduction

As mentioned in Sect. V.1, the relations between external forces, stresses,
strains and displacements are generally complex. The degree of complexity
depends on two components: the rheological behaviour of the structural ma-
terial and the geometry of the structure. For this reason, analytical solutions
for these relations are only possible if both components have particularly
simple forms, such as isotropy and linearity of the constitutive law, and a
geometry (and loading) with a simple description in a given reference system
(rectangular, spherical, cylindrical or polar coordinates). If the structure, or
structural component, does not obey these conditions, the solution must be
obtained numerically using, for example, the finite element method.

Slender members are an exception, since in these structural elements it
is possible to find relatively simple analytical relations between the internal



138 V Fundamental Concepts of Strength of Materials

forces which act symmetrically in relation to the cross-sections (constant axial
force and bending moment) and the corresponding stresses, especially if the
stress-strain relation is linear. For the shear force and torsional moment this
relation is not so simple, except for particular cross-section shapes: thin-walled
sections under shear force and closed thin-walled and circular sections under
torsion.

In Chaps. VI to VIII and X, these cases, where the solution may be con-
sidered as exact, are analysed and approximate solutions for other cases are
indicated: cross-sections with a symmetry axis under shear force and rectan-
gular and open thin-walled cross-sections under torsion.

Slender members are very often used as structural elements in the fields of
Civil Engineering (structures in buildings and bridges contain very often slen-
der members), Mechanical Engineering (many machine parts may be analysed
as slender members) and Aeronautical Engineering (the wings of gliders and
low speed airplanes, for example, may be considered as slender members).
Structures made of slender members are called framed structures.

V.10.b Definition of Slender Member

A slender member is a bar-shaped body, i.e., a three-dimensional body, in
which one dimension (the length of the bar) is considerably larger than any
of the other two (at least five times). More precisely, a slender member may
be understood as a solid body generated by a plane geometrical figure, when
it moves along a straight line (or a curved line with a large curvature radius,
in comparison to the dimensions of the figure), remaining perpendicular to
that line. The shape and dimensions of the plane figure — which represents
the cross-section of the slender member — may change during that motion,
but only gradually. The discontinuities corresponding to a sudden change of
the cross-section, or to a corner of the longitudinal line may be regarded as
a link between two slender members. The theory of slender members is not
valid in the region around these singularities.

Only prismatic bars are considered in the development of the theory of
slender members. The generalization of the theory to curved bars or to mem-
bers with a variable cross-section is only possible for bars with a large curva-
ture radius (as compared with the dimensions of the cross-section), or for a
gradually varying cross-section (cf. Sects. V1.7, VIL.8 and VIIL5).

V.10.c Comnservation of Plane Sections

The cross-sections of prismatic bars under the action of a constant axial force
and a constant bending moment remain plane and perpendicular to the axis
of the bar during the deformation. In order to demonstrate this statement,
let us consider a piece of the bar, whose ends are sufficiently far from the
ends of the bar and from the sections where the external forces are applied
for Saint-Venant’s principle to be valid (Fig. 58).
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Fig. 58. Symmetrical internal force resultants in a piece of a prismatic bar

Plane 7 (Fig. 58) is a symmetry plane, both in relation to the geometry
of the piece, and in relation to the applied forces (N and M). If, in addition,
the material is isotropic, or has, at least, a rheological plane of symmetry
parallel to plane 7, then the problem is completely symmetric in relation to
that plane.

Using the symmetry principle, we conclude that the deformation of the
piece must also be symmetric in relation to plane w. Thus, the points of the
piece which are on the plane 7, will remain there after the deformation, which
means, that this cross-section remains plane. The symmetry of the deforma-
tion also leads to the conclusion that, in an infinitesimal neighbourhood of
the plane, the bar axis (and any longitudinal axis parallel to it) remains per-
pendicular to plane 7. Furthermore, by choosing the piece of prismatic bar
properly, any cross-section may be considered as the middle section of a piece.
Thus, the above conclusions are valid for any cross-section which is sufficiently
far from the above-mentioned singularities. Therefore, the following conclu-
sion may be drawn: in a prismatic bar under constant axial force and constant
bending moment, the cross-sections remain plane and perpendicular to the axis
of the bar during the deformation.

This statement was formulated as an hypothesis by J. Bernoulli in 1705,
[3], for the case of bending and is still known by his name in the literature
on Strength of Materials. With the demonstration above, it may be consid-
ered as a law, which is valid independently of any considerations about the
material properties, with the exception of the symmetry considerations. It is
also independent of the size of the deformation. However, it not valid for
non-symmetrical internal force resultants, such as the shear force, torsional
moment and varying axial force and bending moment.
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Axially Loaded Members

VI.1 Introduction

A slender member which has a straight axis in the undeformed configuration,
is said to be under purely axial loading if that axis remains a straight line
after deformation, which may be caused by a constant axial force or other
symmetrical actions, such as a uniform temperature variation. According to
this definition and to the law of conservation of plane sections, in a prismatic
bar under purely axial loading, any two cross-sections remain parallel after
the deformation, i.e., only the distance between them varies.

Considering, in a prismatic bar under purely axial loading, two cross-
sections at a distance [ from each other in the undeformed bar, this distance
will change to a value I’ after the deformation and the strain defined by the
variation of that distance is given by the expression

-1

e=—. (113)

This strain is constant in the cross-section. Therefore, if the bar is homoge-
neous, i.e., if it is made of a material with the same rheological properties
in the whole member, the stress ¢ will also be constant. The position of the
resultant of the system of forces defined by the stresses acting in the cross-
section may be obtained by computing the moment of the stresses in relation
to any axis of the cross-section’s plane, which must be equal to the moment of
the resultant in relation to the same axis (Fig. 59). The moment of the force
acting in the infinitesimal area d2, dN = odf, is dM = dNz = cdQz.
Integrating this expression to the whole area 2 of the cross-section gives the
moment of the stresses. This moment must be equal to the moment of the re-
sultant axial force N = ¢ €2, which takes the value N d = o Qd. The distance
d of the resultant to the reference axis r (Fig. 59) is then

JozdQ

a (114)

/deﬁzaﬂdid:
Q
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Fig. 59. Determination of the position of the stress resultant in the cross section of
a slender member under purely axial loading

Equation (114) is also the expression used to compute the position of the
center of gravity or centroid of a plane area 2. Thus, we may conclude that
in a homogeneous prismatic bar under purely azial loading the line of action
of the resultant of the applied forces contains the centroid of the cross-section.

VI.2 Dimensioning of Members Under Axial Loading

If the axial force is tensile, the cross-section area ) must be given dimensions
which lead to a nominal value of the acting stress o, that is smaller than
the nominal value of the material’s resisting stress (allowable stress) o,;,. This
condition may be expressed by the inequality
UEd:MSUan:‘QZ@a (115)
Q Tall
where Npgg represents the nominal value of the axial force. In the following
exposition the indices “Ed”of the acting forces and stresses are omitted, i.e.,
the values of internal or external forces and stresses written without indices
are nominal values.

In compressed members (115) is a necessary but not a sufficient condition,
since the phenomenon of buckling may occur. This kind of problems is analysed
in Chap. XI. In this chapter we consider that the stability of the compressed
member is guaranteed.

V1.3 Axial Deformations

As seen above, in a bar under pure axial loading the stress state may be
considered as uniform, irrespective of how the forces are applied, provided
that the material points under consideration are not close to the region of
the member where the forces are applied (Saint-Venant’s principle). In axially
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loaded slender members these regions are generally a small part of the mem-
ber, so that a uniform distribution of the stresses may be accepted when the
elongation of the bar is computed.

In the case of a material with linear elastic rheological behaviour the elon-
gation Al is given by the expression (cf. (113))

, o NI
Al =1 lfeleleQ, (116)
where [ and I’ represent the length of the bar, before and after the deformation,
respectively. The quantity ES) represents the axial stiffness, since the larger
this value, the smaller the member’s deformation caused by the axial force.
If, in addition to the axial force a uniform temperature variation AT oc-
curs, the total elongation may be computed by the expression

N
===+ 11

where « represents the coefficient of thermal expansion of the material.

V1.4 Statically Indeterminate Structures

VI1.4.a Introduction

Statically determinate structures are freely deformable, in the sense that
their supports and internal connections do not restrict the deformations. This
means that a small change in the geometry or size of the structural elements
does not change the distribution of internal forces. For example, if the length
of the left bar of the plane truss represented in Fig. 60-a increases Al (e.g.,
due to a temperature increase), the truss adapts its geometry without the
need of internal forces.

In the statically indeterminate structure represented in Fig. 60-b, however,
there can be no change in the length of one of the bars without altering the

YA Z

(a) (b) (c)

Fig. 60. Examples of structures with the same degree of kinematic indeterminacy
and different degrees of statical indeterminacy
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lengths of the other two: if, for example, the middle bar suffers a temper-
ature increase, the three bars can only remain connected if the middle bar
is compressed and the lateral bars are stretched, which requires tensile axial
forces.

A statically determinate structure only has internal forces if external forces
are applied, which means that they are insensitive to temperature change, ma-
terial retraction, or any other actions that alter the dimensions of structural
elements. Statically indeterminate structures, on the other hand, may have
internal forces in the absence of external forces, as seen in the example above.
Nevertheless, in these structures the release of a connection (for example, by
the yielding or rupture of one bar) does not necessarily imply structural col-
lapse, as statically indeterminate structures have a number of connections,
which is greater than the minimum necessary to guarantee the static equilib-
rium.

VI.4.b Computation of Internal Forces

Since in statically indeterminate structures the internal forces are not inde-
pendent of the deformation of structural elements, conditions of compatibility
of the deformations must be taken in account in order to compute the internal
forces. There are two main general methods to establish these conditions:

— Direct, by first releasing a number of connections equal to the degree of sta-
tical indeterminacy, and then computing the displacements which appear
in the released connections (these displacements are zero in the real struc-
ture) and the forces necessary to eliminate these displacements. Taking as
an example the truss represented in Fig. 60-b, the vertical restriction of the
middle support, for example, may be released. The vertical displacement
of the upper end of the middle bar (caused by external forces, temper-
ature, etc.) is then computed. The force needed to cause a displacement
in the opposite direction, i.e., to bring the upper end of the middle bar
back to the initial position, corresponds to the vertical reaction force of the
middle support. This force is the hyperstatic unknown or redundant force.
Once this force is computed, the remaining reaction and internal forces may
be obtained by means of static equilibrium considerations. This method is
known as the force method, since the unknowns are the forces acting on the
connections which were released in the first computation step.

— Indirect, taking as unknowns the displacements necessary to define fully
the deformed configuration of the structure. These displacements — the kine-
matic unknowns — are computed by establishing the relations between them
and the resultants of the internal forces in a deformed configuration. The
conditions of equilibrium between these resultants and the external forces
gives a system of equations, whose solution yields the unknown displace-
ments. Once these displacements are known, all the internal forces may
be computed. This method is known as the displacement method, as the
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unknowns are displacements. The displacement method is more easily gen-
eralized to structures with non-linear behaviour than the force method.

The number of equations to be solved corresponds to the degree of static
indeterminacy for the force method and to the degree of kinematic indeter-
minacy in the case of the displacement method. These two quantities are not
related. For example, all the three trusses represented in Fig. 60 have a degree
of kinematic indeterminacy of two (the two components of the displacement
vector in the connection node of the bars) and degrees of static indeterminacy
of zero, one and five, respectively. The detailed study of these two methods
and their systematization belong to the scope of the Theory of Structures.
Here they are only applied to simple structures in a general form.

VI1.4.c Elasto-Plastic Analysis

The rheological behaviour of materials which display a well-defined yielding
zone, such as mild steel, may be approximated by the idealized constitutive
law represented in Fig. 61, provided that the the strain does not reach the
hardening zone (cf. Fig. 47). As seen in Sect. IV.3, such a rheological behaviour
is called elastic, perfectly plastic.
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Fig. 61. Elastic, perfectly plastic rheological behaviour

The strain fraction corresponding to the yielding zone is generally much
larger than the maximum elastic strain ey-. In mild steel, for example, yielding
starts with a strain of approximately 0.1% and hardening starts with e ~ 1.5%.
The yielding zone in this case is 14 times the maximum elastic strain. Thus, in
a structure made of a ductile material with a yielding zone, we usually admit
that in the structural elements where the yielding stress is first attained the
stress keeps this value until collapse, unless there is a decrease in deformation,
as defined by the constitutive law represented in Fig. 61.

Despite these simplifying assumptions, the computation of structures in
the elasto-plastic range is substantially more complex than in the linear case.
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The superposition principle is not valid any longer and the order of application
of the external forces must be taken into account, as well as the different
material behaviour when the strain changes from the elastic to the plastic
range or vice versa.

To illustrate these considerations the elasto-plastic behaviour of the hyper-
static truss represented in Fig. 62 is described in detail. In order to keep the
description as simple as possible, we assume that the three bars have equal
cross-section areas ) and that the material behaviour follows the simplest
elasto-plastic constitutive law, as represented in Fig. 61. The displacement
method is used for the analysis.

The conditions of static equilibrium are valid in any range (elastic, elasto-
plastic or plastic). As a consequence of the symmetry of geometry and loading,
only the vertical condition of equilibrium needs to be considered, yielding the
relation

P =N;+2Nyc0s60° = P=N;+ Ny. (118)

The deformation’s conditions of compatibility, when expressed in terms of
displacements and strains are also valid in any range. In the present case the
degree of kinematic indeterminacy is one, since the deformed configuration
of the structure is completely defined by the vertical displacement of the
point of application of load P. Denoting this displacement by ¢ (Fig. 62)
and considering that it is sufficiently small to be considered as infinitesimal,
the relation between § and the strains in the bars is given by (119) (the
dashed lines represent the deformed configuration with largely exaggerated
displacements)
l

€2 cos60°

0= Al
! cos 60°

cos60° = gl = = g =4&,, (119)

Al
since, in the case of infinitesimal rotations, the arcs of circumference used to
draw the undeformed length of bars 2 on the dashed lines may be substituted
by the normals to those lines (Fig. 62). ¢; and &, represent the strains in bars
1 and 2, respectively.

If the deformations are caused only by the axial force, i.e., in absence of
plastic deformations, temperature variation, residual strains, etc., the condi-
tion of compatibility may be expressed in terms of the axial forces, N7 and

N1

\\/ﬁlg = § cos 60° P
P

Fig. 62. Conditions of equilibrium and compatibility
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Ny, by the equation

Nl Nol _
Next the internal forces and the displacement ¢ in the different loading

stages are analysed.

— FElastic phase. In this stage the axial forces may be computed by solving the
system of two equations described by (118) and (120), yielding

legp
4 1 oP 5 EQ
. T 0Tsmat T Mg T 0
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where K; represents the structural stiffness corresponding to the displace-
ment §.

Since the strain ¢, is always superior to the strain in bar 2 (119), bar
1 reaches the yielding strain at first. The values of the loading P and dis-
placement § corresponding to the yielding of bar 1 may be obtained from
(121) and (120), taking the values

O =0y = N1:N1y:QO'Y
5 oyl (122)
= P=P ="Qoy = =0 = — .
LT 'TE
— FElasto-plastic phase. When the load P exceeds the value Py, the axial force
in bar 1 remains constant, with the value Ny, since the strain is in the
yielding zone. As this internal force is known, the structure becomes stati-
cally determinate. Thus, the axial force Ny may be obtained directly from

the equilibrium condition (118), yielding
P:N1Y+N2:>N2:P—QO'Y with P> P; . (123)

Taking in consideration that the lateral bars are still in the elastic range,
the first of (120) may be used to compute the displacement and stiffness in
the elasto-plastic phase, yielding

4Nsl 4] oP 1EQ 1
0= Tpa P Qvgg v Re=gr =g =5k (2
The structure collapses (yielding of the three bars) when the lateral bars
reach the yielding strain. From (123), (122) and (124) we get

Ny = Noy = QO’Y = ol 54 5 (125)
§ =0y = 4% = 46,
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At the moment of collapse the strain in bar 1 is therefore four times the

yielding strain of the material, &,, = 2%, and the corresponding load Py is %

times the maximum load in in elastic ]iange. Assuming the structure is made
of mild steel, bar 1 is still at the beginning of the yielding zone when the
structure collapses.

If the structure is unloaded in the elasto-plastic phase, the middle bar,
which has already suffered some plastic deformation, has an elastic behaviour
in the unloading, but has a residual strain €, = €, — % (€1max 1S the
maximum value of the strain in the loading phase), as represented in Fig. 61
(dashed line). Let us now analyse the behaviour of the structure, as a function
of this residual strain. The strain in bar 1 is now given by

Ny

T EQ

+ &1 -

From this relation and the compatibility condition (119), we get

N N2
Ba T T Ve
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This expression and the equilibrium condition (118) define a system of
equations which allows the computation of the axial forces N; and N, yielding

4 1 No 4 1 4
N1 = gP — 5EQ€1T 5 = 4€2l = 4@1 = gmp‘i’ 51517,
11 - oP 5 EQ (126)
No = —-P + -EQe, .. Ko=—=-—— =K.
2=l ey = M= oy T 1 !

From this expression we verify that, in the unloading, the stiffness of the
structure is equal to the stiffness in the initial elastic phase. This is a conse-
quence of having all bars in the elastic phase.

Equation (126) remain valid while the middle bar has the residual strain
€1, and the lateral bars are in the elastic phase. This situation changes only
if P exceeds the value which caused the the residual strain ¢, in the loading
phase (P = Ppax, Fig. 63), or if bar 1 attains the compressive yielding stress
(¢ = —oy, Fig. 61). The value of P corresponding to the last situation may be
computed by means of the axial force in the middle bar, expressed as a function
of the maximum value of P in the loading phase Ppax (P1 < Pmax < Py).
From (124) we get

1) Prax — Qo
_ Ymax 4 max Y
€1max 1 EQ

Oy Prax Oy
= =4 —5—=. (127

= €1r = €lmax —

Substituting this value of €, in the first of (126), we get

4
Ni = Qoy — = (Puax = P) - (128)
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Bar 1 attains the compressive yielding stress, when the axial force N;
reaches the value Ny = —Qoy. From this condition and from (128) we get,
considering the value of P; given by (122),

5
Ni = —Q0y = P =Py = Py — 50y = Puax — 2P1 . (129)

If the maximum value of P in the loading phase is P;, the middle bar
yields in compression for P, = —Pj, as might be expected, since no residual
deformations were caused in the loading phase and the material has the same
behaviour for tensile and compressive stresses. However, if a tensile plastic
deformation takes place in bar 1, which happens in the above-described elasto-
plastic phase (P < Ppax < Py), there is a residual elongation of bar 1. As a
consequence, the structural behaviour for the positive and negative values of
P becomes different (P, # —P;).

The behaviour of the structure in the different loading stages analysed
above may be summarized by the force-displacement (P-4) diagram presented
in Fig. 63. In this diagram the line OABC' represents the load-displacement
relation in a first loading. Line O A represents the elastic phase, line AB the
elasto-plastic phase (the middle bar is in the yielding zone and the lateral
bars are still in linear-elastic regime) and line BC the plastic stage (structural
yielding or collapse). Line OGH I represents the structural behaviour in a first
loading with negative values of the force P.
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Pmax Y

A B K1 =tana
/ Ko =tanf3
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2P
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B
G 1

7 H —Py]

Fig. 63. Load-displacement diagram of the truss represented in Fig. 62

The structural behavior in the unloading from a load Ppa.x in the elasto-
plastic phase is described by the line DE which is parallel to line OA, as seen
above (same structural stiffness: K5 = Kj, (126)). If, after unloading from
Prax (point E), a negative load is applied (reversed force P), the structure
behaves elastically until point F', which represents the yielding of the middle
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bar in compression (129). Yielding of the lateral bars under compression takes
place for a displacement 6 = —dy (point H), since the load Pyax did not cause
yielding of these bars, which means that its behaviour is the same as in a first
compressive loading (line OGHTI).

In the reloading from any point of line F'D the structure follows the line
EDBC, since at point D the structure re-enters in the elasto-plastic phase,
with a strain in the middle bar of &, = ¢;,. + % ((127) and Fig. 61, point B).

In comparison with the first loading, the behaviour of the structure in
the reloading, which is represented by lines EDBC' and EFGHI for positive
and negative values of P, respectively, shows an increase of the elastic load-
ing capacity (hardening: Ppax > Pp) for positive values of P (line ED) and
softening (reduction of the elastic loading capacity: |Ps| < |Py|) for negative
values (line EF).

The hardening for positive loads is accompanied by a reduction of the
deformation capacity. Conversely, for negative P-values, softening and increase
of the deformation capacity took place (horizontal projection of EFGHI).

There is an analogy between the behaviour of this structure and the strain
hardening process of steel described in Sect. V.5. In fact, in both cases the pre-
deformation introduced by tensile forces increases the tensile elasticity limit
and the deformation capacity in compression and vice versa for a compressive
pre-deformation. The structure represented in Fig. 62 may therefore be seen as
a physical model for the strain hardening process of ductile materials. Figure 64
gives two other models. The second one includes a yielding zone. In this figure
the numbered corners in the diagrams represent a starting yielding of the
corresponding bars. In unloading followed by a reloading, model a follows the
dashed line which is parallel to line 01. Model b also has an elastic behaviour
in the unloading, which, however, is more complex than in the case of model
a. The analysis of the unloading in model b is left as an exercise for the reader.

V1.5 An Introduction to the Prestressing Technique

Let us consider now that the truss represented in Fig. 62 is made of a brittle
material with linear elastic behaviour until rupture, which occurs when the
stress attains the value o,. In order to make the comparisons easier, let us
consider o, = oy.. Expressions 121 are still valid for representing the load-
displacement relation, since, in the elastic phase, the only material parameter
needed is the elasticity modulus E. However, when P reaches the value which
causes the rupture of the middle bar, P = P, = 2Qo, = 3N, ((122); N, is
the rupture load of a bar), the structure collapses totally. In fact, the loading
capacity of the lateral bars alone is not sufficient to sustain the load P,, as
can be easily verified by the condition of equilibrium

P =2N5c0860° = Ny =P, = ZNT > N, .
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(2) (b)

Fig. 64. Physical models for the behaviour of a ductile material with hardening (a)
without yielding zone; (b) with yielding zone

This example shows that the strength reserves of a ductile structure, in
relation to the load causing the first plastic deformations (Py > P; in the
ductile truss, Fig. 63), may not exist if the structure is made of a brittle
material.

However, the loading capacity of the brittle structure may also be in-
creased, by introducing prestressing residual forces. In order to introduce this
technique, let us assume that the undeformed middle bar does not have ex-
actly the length [, but is slightly longer, with a length [ + [,.. Under these
conditions the three bars can only be connected, if the middle bar is com-
pressed, which introduces tensile axial forces in the lateral bars. This means
that the structure will have residual internal forces, i.e., the internal forces will
not be zero, when the external forces vanish. In the analysis of the structure I,
may be treated as a residual elongation. Thus, the structural behaviour may
be defined by (126), if &, is substituted by %, yielding

v 4, 1EOL

1= I

50 5 1 40 4 oP 5 EQ
s=2lpid o =20 _0EY

v vpa, 0T 5EQ TN 26 11 0 1Y

250 T

The maximum loading capacity of the structure is achieved if the three
bars reach the rupture stress simultaneously, as may be easily concluded from
the equilibrium condition (118). This means that, at the collapse, we have
N; = Ny = Qo,.. Introducing this condition in the first of (130), we get
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éP_lEer :Q(TT P:2QO'T
5 5 1
= ; (131)
L, 1EQL ;. Blor
- - = Qo, = .
55 75 1 E
From this result we conclude that the optimal prestressing is obtained
by a residual elongation [, = 315, which increases the loading capacity of

the structure from gQar to 2Q0,.. The displacement ¢ just before the collapse,
taking as reference configuration the structure without prestressing, i.e., when
the vertical distance between the connection node and the middle support is
exactly [, may be obtained from the elongation of the lateral bars, since they
have a zero axial force for § = 0 (reference configuration). Thus, we obtain
from (119)

We conclude that, if the brittle and ductile structures have the same elas-
ticity modulus E and ultimate stress o, = oy, the deformation of the brittle
structure at the rupture takes the same value as the deformation of the ductile
structure when yielding starts (dy, (125)).

The initial internal forces caused by the prestressing may be obtained from
(130), by taking P = 0 and I, = 31%, yielding

N1 = —N2 = gQO’T = %NT .

In this case the initial axial forces are lower than the loading capacity of
the bars. However, it very often happens that minimum loads are required in
prestressed structures, in order to prevent the initial loads causing failure of
structural elements (cf. Example VI.10).

These two examples (ductile and brittle structure of Fig. 62) illustrate the
fundamental differences in the behaviour of structures made of ductile and
brittle materials:

— In ductile structures, a redistribution of the internal forces takes place au-
tomatically, which alters the relations between the internal forces in the
different elements and allows the most strained elements to keep their load-
ing capacity until the structure collapses. In the example, the middle bar
keeps its loading capacity until the lateral bars reach the yielding axial
force.!

— In brittle structures, the full loading capacity of the structural elements
can only be used by means of prestressing residual forces. The prestress-
ing technique must be implemented in a carefully controlled way, since
small changes in the prestressing parameters (in the example parameter
l), caused by temperature differences, creep, shrinkage, etc., may cause

'If the ductile structure is prestressed with I, = 2= (131) the three bars reach
the yielding strain simultaneously.
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substantial changes in the loading capacity of the structure. Furthermore,
the increase of loading capacity only takes place for the loading case under
consideration: in the example, the prestressing considered causes a decrease
in the compressive loading capacity of the structure. The above-mentioned
minimum loads may also be a drawback of prestressed structures.

From the above considerations we may conclude that ductile structures
are safer, since their capacity for internal force redistribution makes them
less sensitive to imperfections and construction errors, and also because their
failure does not happen unannounced, since it is usually preceded by large
plastic deformations.

V1.6 Composite Members

VI1.6.a Introduction

In prismatic bars made of two or more materials, with a constant cross-section,
the law of conservation of plane sections remains valid, since the symmetry
conditions in relation to the cross-section’s plane still hold (Fig. 58). As a
consequence, in the case of purely axial loading, the strain is constant in the
cross-section. However, as the material is not the same throughout the cross-
section, the stresses will not be constant and will depend on the rheological
properties of the materials. We therefore have a statically indeterminate prob-
lem, which means that we may have internal forces without external loads,
caused, for example, by a temperature variation. The degree of static inde-
terminacy is equal to the number of materials minus one. The forces in the
connections between the different materials may be considered as the hyper-
static unknowns. The degree of kinematic indeterminacy is one, regardless of
the number of materials. The strain in the cross-section may be taken as the
kinematic unknown, since, once it is known, the stresses in all materials may
be computed directly.

In the present analysis the displacement method will be used. For the sake
of simplicity, members made of two linear elastic materials are considered. The
generalization of the analysis to any number of materials is straightforward
(cf. Example VI.14)

VI1.6.b Position of the Stress Resultant

In a prismatic bar under purely axial loading the strain € is constant in the
cross-section, as shown above. The stresses in materials a and b are then
0, = Eqe and o, = Eye,? where E, and E, represent the Young’s moduli
of materials a and b, respectively. By using the same line of reasoning as

2If the Poisson’s coefficients in the two materials are different, the axial loading
will generally cause stresses in longitudinal facets, since the transversal deforma-
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for homogeneous members (Fig. 59) and denoting by €, and €, the areas
occupied by the two materials in the cross-section, we get

f th .
moment of the stresses moment of the axial force

—_—
/ o,z d, +/ opxdQy = (000 + 0, 2)d
Qo Qp
E, xdQ, + F zd)
_ g Belo b Jo, 706 (132)
EaQu + Eptl

Thus, the axial force will not cause bending, i.e., the axis of the bar will remain
a straight line, if its line of action contains the point defined by two distances
d, computed by means of (132), considering two non-parallel reference axes
of the cross-section’s plane. This expression also defines the position of the
section’s centroid, if the area occupied by each material is weighted with its
Young’s modulus. A fundamental difference between this expression and (114)
is that the latter does not depend on the material behaviour, as opposed to
this one, which is only valid for materials with linear elastic behaviour.

VI1.6.c Stresses and Strains Caused by the Axial Force

As explained in Sect. VI.6.a, the determination of stresses in composite mem-
bers is a statically indeterminate problem, since a condition of deformation
compatibility must be taken into account. In the case of purely axial loading
that condition is represented by the relation ¢, = ¢, = g—‘; = g—i, as seen in
the previous section. The last of these relations and the equilibrium condition
N = 0,8, + 0,82 define a system of two equations, whose solution yields the

stresses in the two materials

B N . N
O = EaQa + Ebe ¢ T = Qa + maQb
= (133)
B N . N
% T Bl + Bty o e T

In the last expressions m, = g—: and my = %‘; are called homogenizing coeffi-
cients, which allow the computation of the stresses in almost the same way, as
in the case of homogeneous sections. For example, the stress in material ¢ may
be obtained by considering the cross-section area obtained by multiplying the

tions of the two materials will be different, which means that additional conditions
of compatibility would be necessary. The same happens in the case of a temper-
ature variation, if the coefficients of thermal expansion of the two materials are
different. However, it can be shown that these stresses are sufficiently small to be
ignored, which allows the use of the constitutive law in this one-dimensional form.
Section VII.6 gives an analysis of the error introduced by this approximation in the
case of axial force and bending.
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area of material b by the homogenizing coefficient of material b in material a,
Mg.

The elongation of a bar of length [ may be computed from the stress in
any material, since the strain is constant, yielding

e=Jo _ % L Aj—g = Zoy = Ty N

= — 134
E, E K, Ey E.Qq + Ep$Yy (134)

V1.6.d Effects of Temperature Variations

As shown in Sect. VI.6.a, a temperature variation introduces stresses in a pris-
matic bar made of two materials with different thermal expansion coefficients.
Generally, even a uniform temperature variation causes bending, i.e., the axis
of the bar does not remain a straight line, as in the example given in Fig. 65
(g and oy are the coefficients of thermal expansion of materials a and b).

material a
material b

(g < ap)
T ="1To T =Ty + AT

Fig. 65. Effect of a uniform temperature variation on a composite bar

The study of the stresses generated by that bending requires the bending
theory which is explained in Chap. VII. However, if the cross section has
two symmetry axes, i.e., if the prismatic bar has two longitudinal symmetry
planes, its axis must remain a straight line, which means that the deformation
is purely axial.3

In order to analyse the internal forces in the connection between the two
materials, let us analyse the whole bar and not just a cross-section. The sym-
metry principle (Fig. 58) only permits the conclusion that the middle section
of the bar remains plane in the deformation. Thus, the strain is constant in
this section, which allows the computation of the stresses in the two materials,
using the same equilibrium and compatibility conditions as in the case of the
axial force, yielding

EaEanQb Ap — Qg

Oq gy, =
= ETI + a, AT = fb + ap AT . Oq E.Q, + Bl Q.
N = UaQa + g'be =0 o, = EaEanQb ATOéa — O
EoQa + EpfYp 97

(135)

3The double symmetry of the cross-section is a sufficient condition for purely
axial deformation. This condition may, however, not be necessary (see examples
VI.20 and VI.21).
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If an axial force is also acting, the total stresses may be computed by
adding the stresses given by (133) and (135), since the superposition principle
may be applied in the case of temperature variation (cf. Sect. V.8).

The cross-sections located near by the ends of the bar can not remain
plane. In fact, if the end cross-sections remain plain, the stresses given by
(135) act on them. This is not possible, since no external forces are applied.
In order to clarify this issue, let us consider a rigid block connected to each end
of the bar, as represented in Fig. 66-a. In this case, all cross-sections remain
plain and (135) is valid for the whole bar.*

—0,
1]
LAY
= [ + -
%I
- \
material a
(a) material b (b) (©)

Fig. 66. Transmission of internal forces between the two materials in a composite
member under a uniform temperature variation (AT > 0 and a, > ap or AT < 0
and aq < )

The real stress distribution in the bar may be obtained by the superposi-
tion principle. To this end, let us superpose upon the situation corresponding
to Fig. 66-a the loading situation illustrated in Fig. 66-b, where no tempera-
ture variation takes place and only end distributed loads act, corresponding to
the stress distribution given by (135) with reversed direction. These stresses
have a vanishing resultant (N = 0, cf. (135)). Thus, the Saint-Venant’s prin-
ciple leads to the conclusion that its effect is restricted to the region of the
bar around its ends. The stress distribution in this region depends on the
shape of the cross-section and cannot be obtained by means of the theory
of slender members. However, a qualitative analysis of Fig. 66-b leads to the
conclusion that shearing stresses 7 must appear in the interface between the
two materials. By superposing the stresses corresponding to the loading situa-

4This conclusion is easily arrived at by symmetry considerations: considering the
part of the bar defined by the end and the central cross sections, we conclude that
the middle section of this piece (the quarter length cross-section) remains plane.
Further sub-division leads to the conclusion that every section must remain plane.
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tions represented in Figs. 66-a and 66-b, we may conclude that these shearing
stresses transmit the internal forces from one material to the other (Fig. 66-c).
This analysis allows the conclusion that, irrespective of the member’s length,
these shearing stresses appear only near by the ends of the bar. Furthermore,
they do not depend on the length of the bar.

V1.7 Non-Prismatic Members

VI1.7.a Introduction

In the development of the expressions presented in the previous sections for
the stresses in members under axial loading, only prismatic bars were con-
sidered, since the symmetry conditions leading to the law of conservation of
plane sections are only valid for this special kind of slender members. How-
ever, these expressions are generally used for non-prismatic members, i.e. bars
with a curved axis or with a non-constant cross-section. This leads to errors,
since those expressions are only exact for prismatic bars. The magnitude of
these errors depends on the relation between the curvature radius and the
cross-section’s dimension in the direction of that radius, in the case of curved
members, and on the rate of variation of the cross-section’s dimensions, in the
case of a non-constant cross-section. In order to get an idea of the importance
of these errors, we can compare approximate solutions obtained by means of
the theory of prismatic bars with the exact results furnished by the Theory
of Elasticity in particular cases.

VI1.7.b Slender Members with Curved Axis

As an example of a slender member with a curved axis, we may take a ring
defined by a slice of length b of a tube with constant wall thickness under an
internal pressure p. The tube’s dimensions are defined by the thickness e and
the mean radius r,,, as shown in Fig. 67.

The mean stress acting on the tube’s wall oy,q may be obtained by equi-
librium considerations on a half ring (Fig. 67)

. d:P(Tm—S):p<1_1>
p2(rm—§)b=2amedeb - | e a 2] (136)

This stress coincides with the solution obtained by considering the ring as
a slender member, since, according to the theory of prismatic members, the
stress is constant in the cross-section.

This problem is solved by Theory of Elasticity (Lamé’s problem [4]) using
polar coordinates. The solution is described by radial and circumferential
stresses. The latter coincide with the stresses in the cross-section of the ring.
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Fig. 67. Forces acting on a tube under internal pressure

The maximum circumferential stress occurs at the inner surface of the tube
(Omax, Fig. 67), taking the value

2
P «
max = — |1+ — ] .
Oma a<+4>

The relation between the maximum and mean stress (136) is given by

2
a
Umax_1+T

-
Omed 1- b}

The following table gives the error of the approximate solution furnished by
the theory of prismatic members, as a function of parameter «.®

a=ce/rm 0.01 0.02 0.05 0.1 0.2
Omax/Omea 1.0051 1.0102 1.0263 1.0553 1.1222
Error 0.51% 1.02% 2.63% 5.53% 12.22%

If the value of 5% is accepted as the maximum admissible error, we con-
clude, generalizing to other cases of curved bars under axial force, that the
theory of prismatic bars does not introduce a significant error, while the di-
mension of the cross-section in the curvature plane is less than 0.1 times the
dimension of the mean radius of the member.

The cross-sections of the ring still remain plane, although the bar is not
prismatic, since the plane containing any cross-section of the ring is a sym-
metry plane. The inner pressure causes a diameter increase in the tube. If

5Equation (136), although similar, is not the same as the well known formula for
the computation of the mean stress in a thin-walled tube under internal pressure
Omed = prm/e. This expression is obtained in the same way as (136), with the
difference that the mean radius ry, is used in place of the inner radius 7, —e/2. If this
expression is used instead of (136), the error on the computation of the maximum
stress will be significantly lower. For example, for & = 0.2 an error of about 1%
is obtained. This expression was not used here, however, since the purpose of the
analysis is to investigate the error introduced by the use of the theory of prismatic
bars in curved members and not to compute the stresses in tubes.
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the deformation caused by the radial stresses is ignored, the elongation at the
inner and outer sides of the wall is equal. However, as the undeformed dis-
tance between two cross-sections is smaller at the inner side, the strain and,
consequently, the stress is larger there.

VI1.7.c Slender Members with Variable Cross-Section

As a simple example of a member with variable cross-section, with an exact
solution furnished by the Theory of Elasticity, the wedge shaped element
represented in Fig. 68 is considered.

b

P

Fig. 68. Stresses in a slender member with variable cross-section

The solution of Theory of Elasticity is obtained for this problem by means
of polar coordinates [4] and indicates that in a cylindrical section (AA’,
Fig. 68) the tangential (shearing) stress vanishes and the radial stress o is
given by the expression below (r and ¢ are the polar coordinates)

2 Pcosp

o= -
a+sina  br
For a given value of r, this normal stress reaches its maximum for ¢ = 0,
taking the value

0= 2 P
= 0 =O0max = — - 7 -
¢ o+ sino br

The theory of prismatic bars yields for the stress in the cross-section BB’

the value
P P

Omed = = = ——— .
med 70 T 2brtan g
The error affecting the last solution may be expressed by the relation

between o,.x and omed

a
Omax _ 4 tan 5

Omed O +sina

This relation depends only on angle o and takes the values
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o 10° 20° 30° 45° 60°
Omax/0med 1.0051 1.0206 1.0471 1.1101 1.2071
Error 0.51% 2.06% 4.71% 11.01% 20.71%

We conclude that for small values of angle «, which expresses in this case
the rate of variation of the cross-section’s dimensions, the error is very small.

VI.8 Non-Constant Axial Force — Self-Weight

The symmetry considerations used to demonstrate the law of conservation of
plane sections are not satisfied in the case of a non-constant axial axial force,
caused, for example, by the self-weight in non-horizontal bars, which means
that there is no guarantee that the cross-sections remain plane. Furthermore,
experimental observation shows that in the deformation caused by self-weight
the sections do not remain plane (Fig. 69).

KKRKRARRKRKRXRRXRXXXAXKARRKARRKKRXKXXXXXXRKRAKARRKAKRXKR

Fig. 69. Deformation of a prism of jelly under its self-weight

However, the solution of the Theory of Elasticity for a vertical homoge-
neous prism under its self-weight, shows that the stress is constant in the cross-
section, although it does not remain plane (see example VI.12).% Although the
generalization of this solution to other cases is not straightforward, it shows
that a uniform distribution of the stress in the cross-section is possible, even
without the conservation of plane sections. Besides, the self-weight of axially
loaded structural members usually causes only a very small fraction of the to-
tal axial force, so that only a very small loss of symmetry occurs in the forces
acting in a piece of the prismatic bar. For these reasons, the elongation Al of
a bar with length [, caused by a variable axial force N(z), may be computed
by the expression

5The law of conservation of plane sections is a sufficient condition to have a
constant stress in the cross-section of a bar under purely axial force. This condition
may, however, not be necessary, as the solution referred to shows.
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N 1 [N
dAl = —dz = Al=—= | —dz, 137
QY E /0 T (137)
where z is a coordinate with the direction of the bar’s axis. This expression is
also valid in the case of a non-constant cross-section, provided that the rate
of variation is small, as seen in Sect. VI.7.

V1.9 Stress Concentrations

In the neighbourhood of discontinuities in the bar, such as holes, notches,
sudden changes of the cross-section, etc., the theory of prismatic bars is no
longer valid, the cross-sections do not remain plane and the stress distribution
is not uniform, which means that the maximum stress is larger than the mean
value furnished by the theory of prismatic members. In the example depicted
in Fig. 70 of a bar of constant thickness with two small semi-circular cuts
(r < b), the maximum stress in the cross-section which contains the centers
of the cuts is approximately twice the mean stress. We have in this case a
stress concentration factor of 2.

[ep

Omax ~ 20

I

Fig. 70. Example of stress concentration caused by two semi-circular cuts (r < b).
,,,,, redistribution of stresses in the case of a ductile material by plastic deformation

The consideration of the stress concentrations in the safety evaluation is
especially important in the case of brittle materials, since in this case there
is no possibility of stress redistribution. The rupture process is similar to the
one described in Sect. V.6: a crack starts at the points of stress concentration
and propagates immediately to the rest of the cross-section, since the stress
concentration at the tip of the crack is even larger, as will be seen later.

In the case of a ductile material, stress redistribution takes place, since the
zones where the yielding strain is attained at first retain the loading capacity
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Fig. 71. Examples of stress concentration

described by the yielding stress oy, until the whole cross-section yields, as
indicated by the dashed line in Fig. 70. This is why the stress concentration is
often not considered in the case of ductile materials. However, if the member
is under cyclically varying loads, the stress concentration must be taken into
account, due to the risk of fatigue failure, as seen in Sect. V.6.

In Fig. 71 two other examples of stress concentration are presented. In the
first one (Fig. 71-a) a bar with a rectangular cross-section and a small thickness
has an elliptical hole, with one of the ellipse’s principal axes coinciding with
the axis of the bar. The Theory of Elasticity furnishes a solution for the stress
distribution in this case. The maximum stress takes the value [4]

Omax = (1 +23> o,
b

provided that the transversal dimension of the hole is very small, as compared
with the width of the bar (a < e). From this expression we conclude that for
a = b (circular hole) the stress concentration factor is 3 (omax = 30). The
stress concentration increases if the larger axis has the transversal direction
(a > b) and decreases in the opposite case. In particular, for a = 0 (a crack
parallel to the axis of the bar) there will be no stress concentration. In the
opposite case b = 0 (perpendicular crack in relation to axial force) we have
an infinite stress concentration factor: opax = oo !!! Obviously this value is
a purely theoretical one, since it is computed by considering that the mate-
rial is perfectly continuous and has a linear elastic behaviour. However, the
continuity hypothesis ceases to be acceptable when b takes a value similar to
the dimension of the metal crystals or other material particles. Besides, the
material does not retain linear elastic behaviour for large stress. It can be
proved that a very small plastic deformation substantially reduces the stress
concentration. Nevertheless, this example illustrates the danger of a transver-
sal crack to the safety of a structure, in the case of brittle material, or cyclic
loads (fatigue failure).
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In Fig.71-b an example of a suddenly changing cross-section is pre-
sented, where the transition is made by means of circular fillets. The stress
concentration increases as the difference between the two cross-sections in-
creases and as the radius of the fillet decreases.

VI.10 Examples and Exercises

VI.1. The truss described in Fig. VI.1-a is made of a material with linear
elastic behaviour with a modulus of elasticity FE.

(a) Considering a nominal strength o, and knowing that buckling is

prevented, determine the minimum cross-section area of bars AB

and BC.
(b) Considering these cross-section areas compute the displacement of
point B.
A
Nap
o
3 Ph v
Cp lB Noo
P
| L | *
(b)
(a)
Fig. VI.1
Resolution

(a) The axial forces in the bars may be computed by means of the vertical
and horizontal equilibrium conditions of the forces acting in node B (Fig.
VI.1-b), yielding

P .
- Npc = —— (compression) .
sin o tan a

Equation (115) gives the minimum areas of the cross-sections

Nap P Npc P
QAB = == " and QBC = = t .
Oall O SIL & Oall Oy tanl &

(b) The displacement of point B is caused by the changes in the length of the
two bars. The corresponding values may be computed by means of (116),
yielding
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P l
AZAB — NABZAB _ sinacosa _ laall
P
EQap E%u o Ecosa
and p
_ NBCZBC _ tanozl _ lgall
AlEC = Fpe ~ B~ B
BC o, tan o

As a consequence of the bars’ variations in length, the position of point B
changes to the intersection of the two circumference arcs, whose centers
are points A and C' and whose radii are the lengths of the deformed
bars. Since the deformations are very small, as compared with the truss’
dimensions, the rotation of the bars will also be very small, which allows
the substitution of the circumference arcs by straight lines, as shown in the
graphic construction presented in Fig. VI.1-c. In this Figure the elongation
of bar AB is represented by the line segment BB, the length reduction
of bar BC is BB5 and the circumference axes are approximated by the
line segments By B’ and By B’. The intersection of these segments (point
B'’) defines the position of point B after the deformation.
The horizontal component of the displacement is then

N lo,
6h:BB2:AZBC:?a“.

The vertical component may be computed by means of the auxiliary dis-

tance BB3 f}f{i = %;‘g , yielding
BoB; Alpe +48le 4 1 1
K :W: 23 — BC cosa __ all .
v tan o tan a E tana  sinacosa

VI.2. The truss represented in Fig. VI.2-a is made of a material with an elas-

ticity modulus F and a thermal expansion coefficient «. Determine the
expressions required to compute the displacement of point B, caused
by the force P and by a temperature increase AT

Resolution

The axial forces in the bars may be computed by means of the equilibrium
conditions of the forces acting in node B, which are represented by the system
of equations (Fig. VI.2-b)

Ni cosay = Njcos as
Nisinag + Nosinag = P .
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(a) (b)
Fig. VI.2

The deformation of the bars under the axial forces and the temperature vari-
ation may be computed by means of (117), yielding

Ny l Ny l
Al = AT Aly = AT .
h <E(21 ta ) sin o and f2 (EQQ ta ) sin g

The horizontal and vertical components of the displacement of point B (dp
and J,) may be computed by means of the graphical construction presented
in Fig. VI.2-c. From this Figure the following relations may be established.

0y = dq cos g + Alj sinaq = do cos ag + Aly sin ap

O0p = Aljcosag — dy sinag = dg sin g — Aly cos ag .
By solving the system formed by the second equalities of each one of these
expressions the distances d; and do may be obtained. After this, §, and dy,

are immediately obtained. As an alternative, the projections of §, and §;, on
the directions of Al; and Als yield the following system of equations

{ 0y sinag + 0p cosap = Aly

0y sin aig — Oy cos ag = Als
whose solution directly gives d,, and Jp,.

VI.3. Consider a bar of cross-section area €2, with built-in supports in both
ends, made of a material with an elasticity modulus £ and a thermal
expansion coefficient «. Using the force and the displacement methods,
compute the axial force introduced into the bar by a uniform tempera-
ture reduction AT, in relation to the construction temperature.

Resolution
Force method

Since it is known that all internal forces, except the axial force, vanish, the
degree of static indeterminacy is one, although the bar has twelve external
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connections (six at each end) and only six are necessary to guarantee the
static equilibrium.

If we suppose that one of the supports of the bar is removed, it becomes
statically determined and, as a consequence, the temperature variation does
not cause internal forces, but only a length reduction with the value

Al = aATI,

where [ represents the bar’s length. The axial force in the bar with the two
supports is the force needed to prevent the length reduction. In other words,
it is the force which causes an elongation with the same value as the length
reduction caused by the temperature variation. Using (116) and this condition,

we get

NI
ATl = — N = EQaAT .
! EQ:> o

Displacement Method

The degree of kinematic indeterminacy of this structure is zero, since the dis-
placement of any cross-section is zero. We easily reach this conclusion by sym-
metry considerations: the middle cross-section has zero displacement; taking
half the bar, we conclude that its middle section (the quarter length section)
does not move, and so on. As a consequence, the total strain caused by the
axial force and by the temperature variation is also zero. From (117) we get,
since the temperature variation is negative (AT < 0)

€:$:%7QAT:0 = N = EQaAT .

VI.4. Consider the bar represented in Fig. VI.4, which is made of a material
with elasticity modulus F and thermal expansion coefficient « and has
three zones with different cross-section areas. Using the force and the
displacement methods, compute the axial force introduced into the bar
by a uniform temperature reduction AT, in relation to the construction
temperature.
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Resolution
Force Method

Using the same reasoning as in example VI.3, we conclude immediately that
the degree of static indeterminacy is one. The axial force may be computed
in the same way. The length reduction caused by the temperature variation

takes the value
Al = 3aATI .

The elongation caused by the axial force is the sum of the elongations in the
three zones. Since this elongation must compensate for the length reduction
Al, we have

Alap = 555
o NI /1 1 18
AZBC:% = 30(ATZZEQ(3+2+1) = N:ﬁEQOZAT
__ NI
Alcp = 55

Displacement Method

Resolving this problem by means of the displacement method is a little more
lengthy than by using the force method, since the degree of kinematic indeter-
minacy is two. In fact, if the displacements of points B and C' are known, the
strains and stresses in each zone may be immediately computed. Denoting by
01 and J9 the displacements of sections B and C, respectively, considered as
positive from left to right, we get from (117), taking into consideration that
the axial force N is the same in the whole bar

NI EQ

AZAB = (51 = ﬁ — aATI = N= T (361 + SaATl)
NI EQ
N EQ

By eliminating N from these equations we get a system of two equations,
which allows the computation of §; and ds, yielding

{351 + 3aATl = 2 (55 — §1) + 2aATI {51 = —2aATI
=

361 + 3aATl = =03 + aATI 6y = —5aATl.

Any of the three relations between the axial force N and the displacements
01 and §5 allows the computation of N. Using the first, for example, we get

EQ EQ
N:3 3 ( )

18
T)=——|——+1 Tl=— T.
i (01 + aATI) i 11+ )aA l HEQaA
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VL.5. The bar represented in Fig. VI.5 is made of a material with an elasticity
modulus F and a thermal expansion coefficient «. The bar has a rec-
tangular cross-section with a constant thickness a. Determine the axial
force caused by a uniform temperature reduction AT

Yq_ % ok
3a” 4 E
1Y 7 —F
~20a ™ 200 ™ 20a

Fig. VL5

Resolution

The resolution of this problem by the displacement method requires the prior
computation of the relation between the axial force and the elongation in a
bar with variable cross-section. The problem is, however, easily solved by the
force method. The statically determinate base structure may be obtained by
removing the right support, for example. In this situation the temperature
variation causes the length reduction

Alr = ol AT = a60aAT .

The axial force N must cause an elongation which compensates for this length
reduction. Considering a coordinate z with its origin on the left support, with
increasing values from left to right, we may express the cross-section area as
a function of z. For values of z between 0 and 20a we get

a
Qz) =3a> — —z.
(2) =3a 5%
As the middle section of the bar is in a symmetry plane, the total elongation
caused by the axial force N is given by

l 20a 20a
N N N
Aly = | ==dz =2 7dz+/ —dz
N /OEQ o E(3a®—&2) o 2Ea?

N[ 20 a \1%* 10N 3 N
E [ a n(3a 20'2)]0 * Ea [ 0 n<2> * 0} Ea

The equality Al = Al describes the condition of deformation compatibility.
The solution of this equation yields the value of the axial force

60aEAT a?

—————— ~2.28845 aEATd” .
40In (3) +10

Al =Aly = N =

VIL.6. The bar AB of the structure represented in Fig. VI.6-a has a sufficiently
high stiffness to be considered as rigid. The three suspension cables



VI.10 Examples and Exercises 169

D B B
21 @) ©) ®
A} B
/P
Fig. VI.6-a

Fig. VI.6-b

have the same cross-section area 2 and are made of a material with an
elasticity modulus FE.

Compute the axial forces in the cables using:
(a) the force method;
(b) the displacement method.

Resolution

(a) The structure has a degree of static indeterminacy of two. Thus, the stati-
cally determinate base structure is obtained by releasing two connections.
In this case, the vertical connections on the top of bars 1 and 2 are re-
leased (Fig. VI.6-b). Under these conditions the axial force in bar 3 takes
the value P. The corresponding elongation and the displacements of the
top ends of bars 1 and 2 are

1 2 P

5= ~Aly = 2

P2l 1= 378 7 3EqQ
No=F=ab=75g = 2 4 Pl
02 =38l =35q -

The displacements caused by axial forces in bars 1 and 2, N7 and N», in the
released connections of the statically determinate base structure, §; and
04 (Fig. VI.6-c), must compensate for the displacements d; and dy caused
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by force P. The axial compressive force in bar 3 and the corresponding
length reduction A’ls (Fig. VI.6-c) take the values

Ni2l_2 1
EQ ~ 3EQ

1 2
N; = §N1 + §N2 Als = Ni+2N,) .

The displacements d; and d5 are caused by the rotation of the rigid bar
AB and by the elongations in bars 1 and 2, respectively

1 Ny 21 l 20 4
5 = gAllg + . < Ny + NQ)

£Q - EQ 9

, 2, N2l L (4. 26
YN SN+ TN )

n=38L+Ea =g\t g

The conditions of compatibility of the deformations in the released con-
nections define a system of two equations, whose solution gives the values
of N; and Ny

°oPl 1 (20 4 3

_ s N+ =N. _3
61 =0y 3EQ  EQ ( L+ 9 2> Ny 14P

Vim0 %\ 6

5y = 0 4rl 26 _6
’ 3 EQ EQ( N+ ]%> No=qF-

The axial force in bar 3 may now be obtained by equilibrium consider-
ations. The condition of equilibrium of moments in relation to point A
gives
1 2 9
Nyl 4+ N2l + N33l = P3l = Ngzp—gNl—gNQ 14P

The solution of the problem by means of the displacement method is
substantially easier, since the degree of kinematic indeterminacy is one.
In fact, once the rotation of the rigid bar AB is known, the elongation
of the bars is defined, which allows the immediate computation of the
axial forces. Taking as kinematic parameter the displacement § = Alg of
point B (Fig. VI.6-d), we get the following values for the axial forces in
the three bars

N121 1 EQ

Al17E97§5§N17ﬁ67
Ny2l 2 EQ

= pq =307 Ne =0
N2 EQ

Aly = —h Ny = 5
l3 EQ 0= 3 ol 0

The condition of equilibrium of moments in relation to point A furnishes
a relation between P and 9§, yielding
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g e

N3
\
Al IAZ
3
\ hE
Fig. VL6-d Yp

18 PI

T MEQ

1 2
P3l = N1l + N2l + N33l = (6+3+2>EQ(5 = 0

Substitution of this value in the relations above, yields the same values of
Ny, Ny and N3, as obtained by the force method.

VL.7. In the structure represented in Fig. VI.7-a the bar AB may be con-
sidered as rigid. The suspension bars are made of an elastic, perfectly
plastic material with a modulus of elasticity F and a yielding stress oy.
(a) Determine the sequence of yielding of the bars, when the load P
varies from zero to the value which causes the collapse of the struc-
ture.

(b) Compute the value of P which causes the yielding of the structure
and the displacement of point C' just before the collapse.

(c) Compute the values of the loads and displacements corresponding
to the yielding of the remaining bars.

Fig. VL.7-a

Resolution

(a) The degree of kinematic indeterminacy is one, since the symmetry of the
structure leads to the conclusion that both the horizontal displacement
and the rotation of bar AB are zero. Choosing as kinematic parameter
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the vertical displacement ¢ of the rigid bar, we may express the strains in
the bars as functions of J, obtaining (Fig. VI.7-b)

Al =Alg=94§ N 5
; =ga=0=¢& =¢&5=—
L —l=a 1=& 1 =8 =7
Aly = dcosa 1 5
s Aly =gyl = ¢ a =dcosa=e, = —cos’ad =05=
Il = 2 cos a a
Aly = dcosf a 1 5
Al =gyly =e,—— =06cosf =, = —cos? 36 = 0.64— .
Iy = g cos 3 a a

Since we have ¢, = &3 > ¢, > &,, we conclude that bars 1 and 3 yield at
first and are followed by bars 4. Bars 2 yield last, leading to the collapse
of the structure.

Fig. VI.7-b Fig. VL.7-c

(b) The structural collapse occurs when all suspension bars yield. At this
moment the stresses in all bars take the value of the yielding stress oy .
The corresponding value of P may be computed by means of the con-
dition of vertical equilibrium of the forces acting on the rigid bar AB
(Fig. VI.7-c), yielding

N
P = 71+Ngcosa+N3+N4cosﬂ

= Qoy + 4Q0oy cos a + Qoy + 5oy cos § = 8.82840Q0y .

As bars 2 yield last, the displacement of point C' just before the collapse
is the value of § corresponding to &, = &,-. Thus, we have
oy 1 aoy
=—==—Vy = by =2——.

2T E 2w T TTE
(c) When bars 1 and 3 start yielding, the kinematic parameter J takes
the value corresponding to the yielding strain in these bars, which is
0 =aey, = % The axial forces in the remaining bars may be obtained
from the relations between the strains and the displacement §. The corre-
sponding value of P is then obtained by means of the vertical equilibrium
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condition. This computation sequence is summarized by the following ex-

pressions
N1 = QQUY
5 oy Ny = 4QFEe, = 4QF L cos? a d = 200y
=a0— =
E N3 = Qoy = P =5.9742Q0, .

Ny, =50F¢, = 5QE% cos? 36 = 3.2Q0y

Yielding of bars 4 takes place for § = =¥ = 1.5625°2-. At this stage
bars 1 and 3 are already over the yielding strain. Only bars 2 are still in

the elastic range. The axial force in these bars takes the value
1
Ny = 4QE - cos? a 1.5625‘1% = 3.125Q0, .
a

The vertical equilibrium condition is then used to compute the corre-
sponding value of P, yielding P = 8.2097Q0,.

We conclude therefore that the load-displacement (P-¢) diagram of this
structure has 4 straight line segments. The coordinates of the three corners,
which correspond to the yielding of the different bars, are the (P,J) pairs
(5.9742Q0y, “2X), (8.2097Q0y, 1.5625°2) and (8.82840,,, 2°7°).

VIL.8. In the structure represented in Fig. VI.8-a bars AB and BC may be
considered as rigid. The wires BD, EF and AC are made of a duc-
tile material with elastic, perfectly plastic behaviour, with an elasticity
modulus ¥ and a yielding stress oy.. Determine the yielding sequence of
the three wires, when the value of force P is gradually increased from
zero until the value which causes the collapse of the structure.

Fig. V1.8-a Fig. VI.8-b

Resolution

The degree of kinematic indeterminacy of the structure is one, since once the
horizontal displacement of the support C' is known, for example, the deformed
configuration of the structure is completely defined.
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Taking the rotation 6 (Fig. VI.8-b) as the kinematic parameter, we get the
elongations given below for the wires BD, EF and AC

Alpp =6 x d = 0 x 2asin (arctan 22) = 2sin (arctan 0.5) af
Algr = 20 X a = 2a0
Algc = 20 x 2a = 4ab .
The undeformed lengths of these bars are
lep=2V5a lgr=2a lac=4a.
The corresponding strains are then

25sin (arctan 0.5) ad 2a6 4a0
EBp = 2\/5a :029 EEF:EZQ EAC:E:
We conclude that the wires EF and AC yield at the same time for a value

0=¢y = % Yielding of bar DB takes place only for § = 5e,,.

VI.9. In the structure represented in Fig. VI.9-a the horizontal bar may be
considered as rigid. The inclined bars have different cross-section areas
and are made of a material with elastic, perfectly plastic behaviour.
Determine the yielding sequence of the inclined bars when the value of
force P is gradually increased from zero until the value which causes
the collapse of the structure.

Resolution

As in example V1.8, we have a structure with a degree of kinetic indeterminacy
one, so that the elongation in each inclined bar may be directly related to the
kinematic parameter. The cross-section areas do not play any role in that
relation nor, as a consequence, in the bars’ yielding sequence.

COS &

3a
o \//f\lsina
b
0l 0
gt g g H<g =g Hfﬁ
Fig. VI.9-a Fig. VI.9-b

Taking the rotation 6 (Fig. VI.9-b) as kinematic parameter, the strain in a
generic bar whose position is defined by the distance [ from the support takes
the value
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0l sin v . sin 2«
e = ; =fsinacosa = >
COSs &

Particularizing this expression for each of the five inclined bars, we get

bar1: = a = a:arctang—a = e=0.30
a

bar 2: [ =204 = « :arctang—a = ¢~ 0.461540
a

bar 3: l:3a:>a=arctan3—z e=0.50

=
3a
bar 4: | =4a = a:arctanz = £=0.4860
a
=

bar 5: [ =5a = a= arctang—a e~ 0.441180 .

a

The yielding sequence of the inclined bars is defined by the descending
order of these strains, i.e., 3 -4 —2 —5 — 1.

VI.10. The bar AB of the structure represented in Fig. VI.10 is sufficiently
stiff to be considered as rigid. The vertical bars are made of a brit-
tle material with linear elastic behaviour until rupture defined by a
Young’s modulus F and a rupture stress ..

@T% Iz
'

Fig. VL.10

(a) Determine the value of P which causes the collapse of the struc-
ture.

(b) Determine the increase in loading capacity that can be obtained
by prestressing the structure, so that the two vertical bars reach
the rupture stress simultaneously.

(¢) Assuming that the prestressing is achieved by fabricating bar 1
with a length which is slightly different from the design length
3l and denoting by 3l + [, the undeformed length of this bar,
determine the value of [, which maximizes the loading capacity of
the structure.

(d) Ascertain whether the structure resists the initial internal forces
(P = 0) caused by the prestressing. If it does not resist, compute
the minimum value of force P.
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Resolution

The equilibrium condition of moments in relation to point A yields the relation

N
61P = 3IN; +6INy = P = 71+N2 .
Since the degree of kinematic indeterminacy is one, an infinitesimal ro-
tation of the rigid bar around point A yields the condition of deformation
compatibility of the vertical bars

A
Allz%:@:&sl.

(a) The axial forces in the vertical bars may be computed from the previous
two conditions. The relations between the axial forces and the strains in
the two vertical bars are

Ny d No
= 11 = — .
T ma 2~ EQ
Substituting these values in the compatibility relation, we get
5
N1 == ENQ .

This equation and the equilibrium condition define a system of two equa-
tions, whose solution yields the axial forces and the stresses

10 N, 2P
Ny =—P S
ST T 170
12 - N 12 P
Ny=—P. =222
ST 270 T 1ma
The rupture of bar 2 occurs at first and takes place when force P reaches

the value 17
=0, P=—0c, .
0y = 0p = 12 0

The rupture of this bar does not cause the collapse of the structure, since
bar 1 alone is able to support this value of P, as may be easily verified
from the equilibrium condition with Ny =0
34 Ny 17

N1:2P:EQO}- = 0'1:579:%0'7~<0}~.
(The dynamic effects associated with the shock caused by the rupture of
a bar on the other structural elements is not considered here. The study
of this kind of problem is introduced in Chap. XII). The value of P which
causes the rupture of bar 1 and, as a consequence, the structural failure
is then

5
= Op — < — Op PZ*QT:2QT
0 =0, :>5Q o = 5 o, 5Q0,
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The loading corresponding to the simultaneous rupture of the two bars in
the prestressed structure may be obtained directly from the equilibrium
condition and takes the value

{ N 1= 5907«

= P= 159@ + Qo, = 3.500, .
N2 = QO’T 2

We find that, prestressing the structure, its loading capacity may be in-
creased by 40%.

The value of [, which introduces the optimum residual forces may be
obtained by considering it as a residual deformation in the constitutive
law of the material of bar 1. Under these conditions, the stress-strain
relation in this bar takes the form

l, o

3l

Substituting this value in the condition of compatibility in terms of strains
and considering oy = 0, = 0, we get

Iy - 5 loy,
62—6€1j0—6< +0->le_ J.

51:

E 3l 2 E

We conclude that, in order to have a simultaneous rupture of the two
bars, the undeformed length of bar 1 must be [y = 3] — 2.5%.

The axial forces in the vertical bars under the actions of the prestressing
internal forces and load P may be computed by introducing the value of
[, into the compatibility condition, which yields

N2 . < N1 510'7« 1

6
20~ 9\ Ema _2E3l) = 5= Nz =500,

62 :651 =

Solving the system formed by this equation and the equilibrium condition,
we get the axial forces

10 24 50
N1 T?P—'— QO’T and N2 = 3*4P — @QO’T .

The residual stresses are the stresses corresponding to P = 0, taking the
values

50 Ny 10
N1 = —Qo, 0 =—= = —=0r
17 5Q 17
F=0= 50 N 50
Ny = ——Qo, 2 _ Yo )
2 3 o, 0y Q 34@ 1.470,

We conclude that bar 2 does not resist the initial internal forces, since for
P = 0 the stress exceeds the rupture stress. The minimum load necessary
for the internal force in bar 2 not to exceed its strength, is then

24 50 2
0y =—0, = Ny = 3—4P — ﬂQO’T =—Qo, => P = gQUr ~ 0.19Pax -
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VI.11. In the symmetrical structure depicted in Fig. VI.11-a the bending stiff-
ness of the horizontal bar is sufficiently high to consider the bar as
rigid. The vertical bars are cables made of a material with linear elas-
tic behaviour until rupture, defined by a modulus of elasticity £ and
a rupture stress o,. In order to optimize the loading capacity of the
structure, the middle cable is slightly longer than the design length [.
Compute the exact undeformed length of this cable, so that the three
cables reach rupture stress at the same time.

P P

Fig. VI.11-a

Fig. VI.11-b

Resolution

As the cables are made of the same material, they must have the same strain
g, = % at the moment of structural collapse. The lateral cables reach the
rupture strain, when the vertical displacement of the rigid bar attains the
value

Or
= 2le, =21~ .
6= 2le, =2l
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The situation of simultaneous rupture of the three cables is depicted in
Fig. VI.11-b. Denoting the undeformed length of the middle cable by I, this
value may be obtained by the following equation

1+2%

0 =2e. =lg+lpe, — 1 = 102@

VI.12. Consider a homogeneous vertical prismatic bar supported in its bottom
cross-section, under its self-weight. The bar has height h and is made
of an isotropic material with linear elastic behaviour. Disregarding
the end effect introduced by the support, i.e., considering only the
part of the bar which is sufficiently far from the support to accept
the validity of Saint-Venant’s principle, show that a uniform stress
distribution in the cross-sections obeys every condition of equilibrium
and compatibility.

Resolution

Considering a reference frame with the axes  and y in the horizontal plane
containing the upper cross-section of the bar and axis z pointing from top to
bottom, the assumed stress distribution corresponds to the following compo-
nents of the stress tensor

Op =0y = Tpy = Tpy = Ty, =0 and 0, = —qz,

where ¢ represents the weight of the material per unit of volume.

We conclude at once that the differential equations of equilibrium (5) are
satisfied, since the only body force is Z = gq.

We also easily verify that the conditions of equilibrium at the boundary
(8) are satisfied at the upper cross-section (in this section both the stresses
and the boundary forces vanish) and at the lateral boundary (in this surface
we have o, # 0 but also n = 0, so that the product no, vanishes). At the
bottom cross-section, however, the conditions of equilibrium at the boundary
(Z = 0., (8) with I = m = 0 and n = 1) are only satisfied if the reaction force
is uniformly distributed on the contact surface (Z = —qh). Generally this does
not happen, since in order to have this stress distribution, the support would
have to deform in the same way as the bar at the bottom cross-section with
the assumed stress distribution (it may be shown that the cross-sections take
a spherical shape). However, in accordance with Saint-Venant’s principle, we
may assume a uniform stress distribution if we consider only points which are
not close to this section.

With respect to the equations of strain compatibility, only (53) have to
be considered if the bar is simply-connected, i.e., if the cross-section does not
have holes. From Hooke’s law for isotropic materials (74) and (75) we get the
strain functions in the bar, which take the forms

v vq 1

q
595:52:_EUZ:EZ 82:EUZZ_EZ rywy:’YwZ:’yyz:O'
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We conclude immediately that the equations of strain compatibility are
satisfied, since these expressions are linear, which means that their second
derivatives are zero (74) and (75) contain only second derivatives of the strain
functions).

Since the bar is statically determinate, in terms of the way as it is sup-
ported, it is not necessary to verify whether the displacements are compatible
with the support conditions (which would be an integral condition of com-
patibility). Thus, the assumed stress distribution obeys all conditions of equi-
librium and compatibility. According to the Theorem of Uniqueness (cf. e.g.
[2]) the linear problems of Continuum Solid Mechanics (materials obeying the
Hooke’s law and linear strain displacement relations) admit only one solution.
This means that the assumed stress distribution is the actual solution of the
problem.

VI1.13. Obtain Expression 133 by means of the force method.

Resolution

Let us first consider that, in order to get a statically determined base structure,
the connection between the two materials is released and that the axial force
N is a tensile one and is applied to the part of the bar made of material a.
Under these conditions, only the part of the bar which is made of material a
is deformed. The corresponding elongation takes the value

NI

A =
: E.Q,

where [ represents the length of the bar. This deformation introduces a dis-
continuity in the cross-sections of the bar, which must be eliminated. To this
end, let us consider a tensile axial force N’ acting on the part of the bar made
of material b and a compressive axial force with the same value N’ acting on
the part of the bar made of material a. Since this pair of forces has a zero
resultant, it does not affect the total axial force considered in the first step.
The pair of axial forces N’, which represents the hyperstatic unknown, causes
the deformations

N'l . , N
.0, (shortening) and Al = B

Al = (elongation) .

The discontinuity in the cross-sections of the bar is eliminated if Al +
Al = Al. This condition defines an equation, from which the value of the
hyperstatic unknown may be obtained, yielding

NI _ NN, NES,
EaQa B EaQa Ebe B EaQa +Ebe )

Al = Al + Al =

The stresses in each material are then
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N — N’ NE, N’ NE,
= = and Opy = — = ——— .
Q. E.Qq + EpYy Qp E,Qq + EpYy

The axial force N’ is the resultant of the tangential stresses appearing in
the connection between the two materials, when the axial force is applied in
only one of the them. By means of the Saint-Venant’s principle, it can be
easily proved that these stresses appear only near to the cross-section where
the external forces are applied and that they are independent of the length of
the bar.

VI.14. Generalize (133) to a composite prismatic bar made of n materials.

Resolution

Since the degree of static indeterminacy is n — 1 and the degree of kinematic
indeterminacy is 1, it is more convenient to use the displacement method.
As the strain is the same in all materials, the stresses in each of them may
be expressed as functions of the stress in one of them. Thus, we have
g; gj agj

f=—m=-2L = g =

E  E E,

The condition of static equilibrium requires that the resultant of the
stresses is equal to the axial force. Thus, we must have

N:ZUiQi .

=1

Expressing all the stresses o; as functions of the stress o; and substituting
in the previous expression, we get the stress in material j

0 — NE,
N=2N"EQ, =0 = ——2L .
E; ; T By

VI.15. Figure VI.15-a represents the cross-section of a bar made of two mate-
rials, whose constitutive laws are defined by the stress-strain diagrams
presented in Fig. VI.15-b.

(a) Compute the maximum axial force that may be applied to the bar
with the two materials in the elastic regime.

(b) Compute the axial force which causes yielding of the bar.

(¢) In order to maximize the tensile loading capacity of the bar with
both materials in the elastic regime, the bar is prestressed, by
applying a tensile axial force to the interior part of the bar (mate-
rial a) before the connection between the two materials is estab-
lished. This force is removed after the connection’s bonding.

Compute the value of the prestressing axial force, which leads to
the simultaneous yielding of the two materials.
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g
c7 b 30, /—a
a
200 b

4c

¥

C

Y

=t 4c v €0 de, €
Fig. VI1.15-a Fig. V1.15-b
Resolution

The areas occupied by each material in the cross-section and the elasticity
moduli of the two materials take the values
30, 20,

Qo = (4¢)? = 16¢%; Q= (6¢)* — 16¢* = 20c*; E,= 2, EB,=—".
4e, €

(a) The maximum strain with both materials in the elastic regime is the
yielding strain of material b, € = ¢, as is easily concluded from the stress-
strain diagrams (Fig. VI.15-b). The stresses corresponding to this strain
in the two materials are

0, = gy = 190 and oy, = 20y .

The axial force resulting from these stresses is then
3 2 2 2
N = 0,04 + 0,2 = 100 x 16¢* + 20 x 20c” = 520yc” .

(b) When the bar yields, the stresses in the two materials are the correspond-
ing yielding stresses. Thus the yielding axial force of this bar takes the
value

N = 0,94 + 0, = 30y x 16¢* + 20, x 20c* = 880,c” .

(¢) The prestressing force must take a value that leads to a strain in material
b with the value €, = g, when the strain in material a takes the value
€qo = 4gy. As at the moment of application of the prestressing force we
have 0, = 0 = g, = 0, the strain needed in material a at the same time is

€a =36y = 04 = Eueq = X 3gg = —0p -

30
4 g, 4

The force which introduces the required prestressing is then
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10c

Fig. VI.16

9
N =0,0, = 100 % 16¢? = 360,c> .

This prestressing force raises the maximum load in the elastic regime from

520,c?

to the yielding stress of the bar (880,c?).

VI.16. Figure VI.16 shows the cross-section of a prismatic bar made of two
materials, a and b, with linear elastic behaviour until rupture. The
elasticity moduli and the rupture stresses of the two materials take

the

(a)
(b)

()
(d)

Resolution

values

{Ea = 30F {am = 1500,

EbZE Orp = Op .

Disregarding dynamic effects compute the value of the tensile axial
force which causes the rupture of each material.
In order to maximize the tensile axial loading capacity, the bar
is prestressed. The prestressing residual forces are introduced by
applying a tensile axial force to each of the bars of material a before
the connection between the two materials is established. These
forces are removed after the two materials are bonded together.
Compute the force to be applied to each bar of material a, in
order to obtain a simultaneous rupture of the two materials under
a tensile axial force applied to the composite bar.
Under the conditions specified in question b), compute the value
of the tensile axial force which causes the rupture of the bar.
Under the conditions specified in question b), compute the stresses
in the two materials, when the axial force is zero.

(a) The areas occupied by each material and the corresponding rupture
strains take the values

0, 0,
Q, = 7c? Qp = (100 — ) & Era = 557" Erp = Er .
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Since the strain is constant in the cross-section, material b reaches the
rupture strain at first. This rupture takes place when the stresses take
the values

0, = E,e = 30E% = 300,
Ezgé{ B

gr __
o, = Eye=FE%E =0, .

The axial force which causes rupture of material b is then

N = 0,Qq + 0, = 300, 7¢* 4 0, (100 — 7) c2
= (297 4 100) ¢?0, ~ 191.106 c*0, .

Since dynamic effects may be ignored, this axial force does not cause the
rupture of the bar. In fact, when the value of the axial force exceeds this
value, material b ceases to contribute to the resistance of the bar, but
material a only attains its rupture stress, when the axial force reaches the
value

N = Q40,4 = 7c*1500, ~ 471.239 %0, .

In order to achieve the simultaneous rupture of the two materials, material
a must already have a strain ¢, = 4%, when the strain in material b is
zero. In this way, when the strain in the cross-section increases €., = %,
we will have ¢, = % and &, = 5% = £,4. The force needed to introduce
the required prestressing, i.e. to introduce the strain ¢, = 4% into a bar

of material a, then takes the value

Q 0, wc?
N =¢,E,—* = 4—-30E—— = 30nc’0, ~ 94.248 0, .
4 E 4
Since, under the conditions defined in the previous answer, the rupture
of both materials occurs for the same strain, the tensile axial force to
rupture the bar takes the value

N = UraQa + erQb
= 1500, 7c¢* + 0, (100 — 7) ¢* = (100 + 1497) o, ~ 568.097¢%a,. .

We conclude that the residual forces introduced by the prestressing pro-
cedure increase the tensile loading capacity of the bar from 471.239 g,
to 568.097¢20,..

Taking as reference the strain in material b, the constitutive laws of the
two materials are defined by the expressions below (note that, when the
strain in material b is zero, the stress in material a is 0, = 4%30E =
1200,.)

0, = 1200, 4+ 30E¢ and o, = Ec .

The strain corresponding to a zero axial force may be computed from the
condition
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N = 0,04 + Q% =0 = (1200, + 30Ee) c* + Ee (100 — 1) ¢ = 0
120m o,

T ET 004297 E

The stresses corresponding to this strain in each material are then

120r o,

— E,e = 1200, El-——=" ") ~60.82
Oa W€ 0o, 4+ 30 ( 100+297TE> 60.820 o,
120m o,
—Be=FE(-—" ")~ 1. .
% = e (100+297TE) T30

These stresses could also be computed by means of the superposition
principle, taking the stresses acting in the situation defined in question
b) (0, = 1200, and g, = 0) and adding to them the stresses caused
by the elimination of the axial force, i.e., by a compressive axial force
N = —0,0, = —1207c%0,. These stresses could be computed by means
of (133).

Note that the absolute value of the initial strain obtained for material b
exceeds its tensile strength. If the material has the same rupture stress for
tensile and compressive forces, it will be necessary to have a minimum tensile
axial force, in order to prevent this material from failing under the action of
the prestressing forces. However, brittle materials usually have a much higher
strength in compression than under tensile forces.

This example describes a prestressing technique widely used in prefabri-
cated concrete structural elements called pre-tensioning. Another technique
called post-tensioning is more used in on-site prestressing, once the structure
is built. In this technique channels are left in the concrete element, where the
prestressing steel wires are introduced later. The prestressing forces in these
wires are usually introduced by means of hydraulic jacks which are supported
by the concrete element to be prestressed itself. In this situation the reaction
forces of the jacks are transmitted to the concrete element, so that the total
axial force is zero. In this situation, the axial force to be applied to the pre-
stressing wire is lower, corresponding to the stress computed in answer d). In
the present example, the force to be applied in each bar of material a would
be N = 60.82 0, = = 47.768 20,..

VI.17. Determine the displacement of the cross-sections of a vertical cable
with length [ and cross-section area 2, supported in its upper end,
under the action of its self-weight and of a downwards vertical force P
applied in its bottom cross-section.

Resolution

Let us consider a vertical coordinate z originating in the bottom end of the
cable and pointing upwards. Denoting by ¢ the self-weight of the cable per
unit length, the distribution of the axial force is defined by the expression
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N=P+qz.

The displacement of the cross-section at the distance z from the bottom
end may be computed by integrating the elongation of the infinitesimal pieces
of length dz’ (2 = z), between that section and the upper end (137), yielding

1 /! P q
Al(z) = — [ (P Ndz' = — (1 — —(I* - 2%).
1(2) EQ/Z( +g2')dz EQ(Z z)+2EQ(l 2%)
The displacement of the bottom end of the cable is then

1 ql?
= Azi P_i .
z=0= Al EQ( l 2)

VI.18. Determine the longitudinal shape of a bar with square cross-section,
with a vertical axis, under the action of a force P and of its self-weight
q per volume unit, as represented in Fig. VI.18-a, in order to have the
same stress ¢ in the whole bar.

Fig. VL.18-a Fig. VL.18-b

Resolution

The condition of equilibrium of the vertical forces acting in a piece of bar with
an infinitesimal length dz (Fig. VI.18-b, Q = b?) yields the equation

oQ+qQdz = o(Q+ dQ)
= odQ) = ¢Q2dz

dQ
:>0‘? =qdz .

This differential equation is easily integrated, yielding
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gz +C
o

c
-

= Q=C'e" with ' =e

clnQ=qgz+C=mQ=

As the bottom cross-section (z = 0) only has to resist to the load P, this
cross-section has the area
P

z=0= Q=—.
o

The integration constant and the value of b as function of z are then

oL o L L y_va- /Bt
o o o

We find that the cross-section area grows exponentially with the length
of the bar (Fig. VI.18-a). However, the growth rate is very low for the usual
structural materials, since the number representing g is generally much smaller
than the number representing o, so that the numerical value of e% is remains
very close to 1, even for significant values of the length of the bar. This means
that it is perfectly correct to apply the theory of prismatic members to this
bar, with variable cross-section.

VI.19. Compute the axial forces in the column represented in Fig. VI.19.

VI.20. Figure VI.20 represents the cross-section of a prismatic bar made of two
materials with linear elastic behaviour. The materials, a and b, have
elasticity moduli F, = 2F and E, = 5F and coeflicients of thermal
expansion o, = 3a and o = «, respectively.

21
2c
3l
2c
41
Fig. VI.19 Fig. VI.20 Fig. VI.21

Determine the stresses induced in this cross-section by a temperature
rise AT. Justify the analytical methodology used.
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VI.21. Figure VI.21 represents the cross-section of a prismatic bar made of two
materials, ¢ and b, which have different thermal expansion coefficients.
Determine the value of the thickness e, so that a temperature variation
does not introduce curvature in the bar.



VII

Bending Moment

VII.1 Introduction

As mentioned in Subsect. V.10.c, a prismatic bar under a constant bending
moment is a symmetric problem in relation to any plane containing a cross-
section and, as a consequence, the law of conservation of plane sections is
valid. Therefore, although the axis of a bar under a bending moment does
not remain a straight line — it acquires curvature — the cross-sections remain
plane and perpendicular to the bar axis, provided that the bending moment
is constant.

In the case of a varying bending moment the symmetry is lost not only
because the moments acting in both ends of a piece of bar are different, but
also due to the appearance of a shear force, which is equal to the derivative of
the function describing the bending moment, in relation to a coordinate with
the direction of the bar axis.

However, the stresses induced in a slender member by a constant bend-
ing moment, are not changed if a constant shear force is applied, and are
a very close approximation to the actual stress distribution caused by the
bending moment in the case of a non-constant shear force, as will be seen
later (Sect. VIL.7 and Chap. VIII). For these reasons, the stresses induced by
bending are studied by considering a zero shear force, which means a constant
bending moment.

It is usual to distinguish between the following types of bending:

— Pure or circular bending. This type of bending occurs when the only internal
force in the bar is a constant bending moment, i.e., the axial (N) and
shear (V') forces and the torsional moment (7') are zero. The designation
of circular bending is suggested by the fact that the deformed axis of the
initially prismatic bar is an arc of circumference, when the bending moment
is constant (a constant moment implies a constant curvature).
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— Non-uniform bending. This designation is normally used for a loading caus-
ing bending moment and shear force, that is, for a non-constant bending
moment. The axial force and the torsional moment are zero.

— Composed bending. This designation is used in this book for a loading caus-
ing bending moment and axial force. The bending moment may be constant
(circular composed bending: M # 0, N # 0, V = 0, T = 0) or variable
(non-uniform composed bending: M #0, N #0,V #0, T =0).

Each of these three types of bending may be sub-divided into plane and
inclined bending. In the first case the plane containing the deformed bar is
parallel to the plane containing the couple of forces which defines the bending
moment. In the second case, the first plane is inclined in relation to the second
one.

VII.2 General Considerations

When a bar is under the action of symmetrical internal forces (constant axial
force and bending moment) the symmetry of the problem leads to the conclu-
sion that the cross-sections remain plane and perpendicular to the bar’s axis,
as seen before. The same symmetry conditions allow the conclusion that the
shearing stress in the cross-section vanishes.! We may also easily demonstrate
that, if Poisson’s coefficient is constant, the normal and shearing stresses
acting in facets which are perpendicular to the cross-section’s plane vanish
(cf. Sect. VIL.6). Here we are considering the geometry of the member de-
fined in relation to a rectangular Cartesian reference frame z,y, z, with axis
z parallel to the bar’s axis. In accordance with these considerations, we will
have a one-dimensional stress state, i.e., a stress tensor with the components
Op = Oy = Tyy = Tpz = Ty, = 0 and o, # 0.

The analysis of the normal stresses in the cross-section (o, # 0) may
be carried out directly from the law of conservation of plane sections and
equilibrium considerations. To this end, let us consider two cross-sections of
a prismatic bar at an infinitesimal distance [y from each other. Considering
a reference system with its origin in the centroid of the left cross-section,
the position of the points pertaining to the right section in the deformed
configuration may be defined by the equation of an inclined plane (Fig. 72)

z(z,y) =lo+amz+by+a .

In fact, it is easily demonstrated that, as [y is an infinitesimal distance, the
displacements in the plane (z,y) are infinitesimal quantities of higher order,
as compared with the displacements in direction z, so they may be neglected.

'If there were any shearing stresses, they would be represented by vectors with
opposite directions in the end sections of a small piece of bar, which is not compatible
with the complete symmetry of the problem in relation to the middle cross-section
of any piece of the bar.
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The strain €, at the point of the cross-section defined by the coordinates
x and y is then
| — lo z — lo aq bl C1

(2,y) = — — A4+ 138
e (,y) I I l0w+loy+lo (138)

The validity of this expression does not depend on the rheological be-
haviour of the material of which the bar is made, since it depends directly
on the law of conservation of plane sections. The application of the law of
conservation of plane sections reduces to three (aj, by and ¢;) the number
of parameters needed to define completely the relative motion of two cross-
sections at an infinitesimal distance from each other. As this is exactly the
number of equilibrium conditions which may be established for a system of
parallel forces in a three-dimensional space (the stresses o,) the problem of
computation of the stresses induced by the bending moment becomes stati-
cally determinate. If the bar is homogeneous and is made of a material with

Y

Fig. 72. Relative motion of two cross-sections in the bending deformation: ______
original configuration; —— deformed configuration

linear elastic behaviour, we have o, = 0, = 0, as mentioned above. Therefore,
the normal stress in the cross-section, o,, may be obtained by means of the
one-dimensional Hooke’s law, o = Ee?

a:%E
lo
o=o0,=FEe, =axr+by+c with b:ll)iE
0
C1
=—F.
c o

The constants a, b and ¢ may be obtained by means of the aforementioned
equilibrium conditions. Considering the components M, and M, of the bend-
ing moment as positive when they take the direction defined by a positive
(tensile) stress acting in a point with positive z and y coordinates, we get

2In this expression and in the following account the index z is omitted (0 =02),
since o, is the only normal stress which needs to be considered in the theory of
bending.



192 VII Bending Moment
N = [,0dQ = [, (az +by+c) dQ = Q
M, = [,oydQ = [, (azy + by? + cy) dQ = alyy + bI, (139)
M, = [ oxdQ = [, (cwc2 + bxy + c:c) dQ = al, + bl,, .

The first area moments fQ xdQ and fQ yd€) vanish, since the axes x and y
pass through the centroid of the cross-section. The quantities I, = fQ y?dQ,
I, = [,2?dQ and I, = [, xydQ are the moments and the product of inertia
with respect to the central z and y axes. Solving this system of equations, we
get

_ MyI, — MyIy
LI, - 12,
b _ Mmfy — Myfzy - Mwa - Mwlwym + Mo;Iy - Mylxy E ]
LI, —I2, L1, - I2, ILI,-12, Q
N
‘Ta

(140)
This expression furnishes the stresses induced in the cross-section of a homoge-
neous prismatic member, made of a material with a linear elastic constitutive
law, under the action of a bending moment and an axial force. It is important
to note that the validity of this expression is not restricted to infinitesimal
relative rotations of the cross-sections (i.e., to an infinitesimal curvature of
the deformed member), since it was not necessary to use this approximation
to deduce (140).

The analysis of the different types of bending referred to in Sect. VII.1
could be performed from (140), by particularizing it to the different cases,
namely pure or composed and plane or inclined bending. However, in order
to make the physical understanding easier, we expound the bending theory
in the opposite sequence, i.e., we start with the most simple case (pure plane
bending) and progressively generalize the conclusions to more complex cases.
Equation (140) will however still be used for some particular problems. The
last part of this chapter contains some problems where (140) is not valid:
prismatic members made of two materials with linear elastic behaviour, and
members made of materials with nonlinear behaviour in particularly simple
cases.

In order to systematize the exposition of the theory of bending, some
frequently used concepts are first defined:

— action azis of the bending moment: axis defined in the plane of the cross-
section which is perpendicular to the vector representation of the bending
moment (moments are usually represented by double-headed arrows); an
equivalent definition is the intersection of the cross-section plane with the
plane containing the couple of forces which defines the bending moment;
this axis is simply called action axis, if it is not necessary to distinguish it
from the action axis of the shear force;
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— action axis of the shear force: line of action of the shear force acting on the
cross-section;3

— fibre: prism with an infinitesimal cross-section area (d2) with its axis par-
allel to the axis of the slender member;

— neutral azis: axis of rotation of a cross-section in relation to another, in-
finitesimally close, cross-section, in the deformation caused by the bending
moment (and by the axial force in the case of composed bending); this name
(neutral) comes from the fact, that the normal stress vanishes in the points
of the cross-section belonging to this axis, since there is no elongation of
the fibres passing through it; if the axial force is zero, or takes a sufficiently
small value, the neutral axis divides the cross-section in compression and
tension zones;

— neutral surface: surface defined by the points contained in the neutral axes
of the cross-sections in the deformed member; it is also the surface defined
by the fibres which do not suffer elongation or shortening (neutral fibres);

— deflection curve: line defining the shape of the bar’s axis after the deforma-
tion; it may or may not be contained in a plane;

— deflection plane: plane containing the deflection curve; if this curve is not
contained in a plane, the deflection plane varies along the deflection curve
and is defined in an infinitesimal axis’ length; this plane is perpendicular to
the neutral axis.

VII.3 Pure Plane Bending

A prismatic bar is said to be under pure plane bending if the bending moment
is constant and there is no axial force (pure bending) and the deflection plane is
perpendicular to the vector representing the bending moment (plane bending).
In this case, the cross-section rotates around an axis parallel to this vector,
which means that the action axis of the bending moment is perpendicular to
the neutral axis. This kind of bending takes place, for example, in a bar whose
cross-section has a symmetry axis, if the action axis coincides with that axis,
as represented in Fig. 73.

In the deformation of the bar, the neutral fibre AB did not change its
length I. As the bending moment is constant, the curvature of the deflec-
tion curve is also constant, which means that this curve has the shape of
a circumference arc. The angle ¢, defining the relative rotation of the end
cross-sections, may be related to the curvature radius p by the expression

l
p@zl:gpz;. (141)

3If the forces causing the non-uniform bending are all in the same plane and are
perpendicular to the axis of the bar, this plane may be called plane of actions. In
this case, the action axes of the bending moment and the shear force coincide with
the intersection of the plane of actions and the cross-section plane.
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Fibre C'D, located at a distance y from the neutral axis, suffers a strain, which
may be related to the curvature % by the expression (Fig. 73)

Al:@(ﬂ+y)—<ﬁp=<ﬁy=iy:>€=All=[1)y- (142)
This relation between the curvature * and the strain at the point defined by
coordinate y has been obtained directly by means of geometrical considera-
tions based of the law of conservation of plane sections. It is therefore valid
independently of the rheological properties of the material of the bar. Nor is
its validity limited by the size of the deformations.

Symmetry plane a.a. (action axis)

ah

o ma. (neutral axis)

<
Q
SE

l 1

Fig. 73. Plane circular bending of a bar with a symmetric cross-section

If the bar is homogeneous and is made of a material with linear elastic
behaviour, the stress may be found using the one-dimensional Hooke’s law

_ By
o

The position of the neutral axis is obtained by the condition of equilibrium
of the normal forces to the cross-section. As the axial force is zero, the resultant
of the normal stresses must vanish. This condition yields

/JdQ:0:>/@dQ:0:>/de:O. (144)
Q Q P Q

o=FEe (143)

This integral represents the first area moment of the cross-section with
respect to the neutral axis (the distance y is defined in relation to this axis).
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As this moment is zero, the neutral axis must pass through the centroid of
the cross-section.

The resulting moment of the stresses acting in the cross-section must be
equal to the bending moment M. From this condition, a relation between the
curvature and the bending moment may be obtained

E 1 M
M:/ade:—/gﬂdQ = — = — with I:/deQ. (145)
Q P Ja p EI Q

In this expression I represents the moment of inertia of the cross-section in
relation to the neutral axis. The quantity EI = % is called the bending

stiffness, since it relates the amount of bending deformation (the curvature)
to the internal force causing it (the bending moment).
By substituting (145) in (143), we get a relation between the stress and
the bending moment
My
T
It is obvious from (143) or (146), that the stress attains its maximum value
at the most distant point from the neutral axis. Denoting this distance by v
(v = |Y|max), We get, for the maximum absolute value of the stress in the
cross-section,

(146)

o =

(o =
max (%)

(147)

The quantity (%), which directly relates the bending moment to the max-
imum stress is called the section modulus. It depends only on the geometry
of the cross-section and allows the direct design of it from a given bending
moment and a given nominal value for strength of the used material.* If the
maximum allowable stress is the nominal strength of the material, o,;, the
section modulus must obey the design condition

I M
Omax SO = (=) 2 — -
v Gall
For two reasons the part of the cross-section which is close to the neutral
axis plays a very small role in the resistance to the bending moment:

— the stress at a given point of the cross-section is proportional to the distance
to the neutral axis (146); if the highest allowable stress is installed in the
farthest fibres, in the points which are close to the neutral axis the stress
will be proportionally lower, which means that the material is only used in
a small part of its loading capacity;

4Usually the design problem is indeterminate, i.e., there is an infinite number of
solutions which obey the design condition represented by the maximum acting stress.
In the present case (as in the case of the axial force) the geometrical component of
the cross-section’s strength may be defined by only one parameter, which means
that it may be directly computed from this design condition.
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— the contribution of a given stress to the resistance to the bending moment
depends on the distance to the neutral axis, since the moment of the stress
increases with the distance to that axis; in fact, if the distance between the
lines of action of the tensile and compressive stress resultants increases, the
moment of the couple formed by these two forces also increases.’

For these reasons, from the point of view of economizing material, it is bet-
ter if the cross-section has a shape with as little material as possible placed
in the neighbourhood of the neutral axis. This may be achieved by increasing
the height of the cross-section (taken as the dimension perpendicular to the
neutral axis) or by giving it an appropriate form, such as an I-shape. In the
first case the height increase may be limited by a maximum allowable size (for
architectural reasons for example, in the case of Civil Engineering construc-
tions), or by the possibility of structural instability caused by the compressive
stresses (lateral buckling), if the width/height ratio is too small. In the second
case, the minimum thickness of the vertical element of the I-shaped section
(the web) may be imposed for stability reasons in the compressed zone as
well, or by the shearing stresses caused by a shear force, as it will be seen
later (Chap. VIII). Considering, for example, a rectangular cross-section and
an I-beam, the section moduli, expressed in terms of the section’s height h
and the cross-section’s area ) are, respectively, (see example VIL5)

2
<I> _ O 0a670n and <I) ~ 0.330h .
v 6 v

We conclude that, for the same area and the same height, the bending
strength of the beam with the I-shaped cross-section is approximately twice
the strength of the beam with rectangular cross-section.

VII.4 Pure Inclined Bending

In the general case of an action axis which is not a symmetry axis of the
cross-section the angle between the neutral axis and the action axis is not
known a priori. In order to analyse this more general case, let us consider the
cross-section represented in Fig. 74, under the action of a bending moment M
with a vertical action axis.

The law of conservation of plane sections leads to the conclusion that, in
exactly the same way, as in the case of plane bending, the stress is proportional
to the distance to the neutral axis, as defined by (143). The condition of
equilibrium of the forces acting in the axial direction (z), used in the plane

5This conclusion becomes more obvious, if the stress does not vary with the
distance to the neutral axis, as happens in the case of materials with elastic perfectly
plastic behaviour, when the yielding strain is exceeded. This kind of problems is
introduced in Sect. VIL.10.c (see example VII.26).
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n.a

M sin 6

Fig. 74. Inclined bending of a bar without symmetry axes

bending case, is valid in exactly the same way for inclined bending, leading
to the conclusion that the neutral axis passes through the centroid C of the
cross-section (Fig. 74), as expressed by (144).

As in plane bending, we may establish a relation between the curvature
of the deformed bar and the bending moment by means of the equilibrium
condition of the moments around the neutral axis. This condition and (143)
yield

EI, 1 M I,

M sinf = dQ=—" = - = — ith I, = —"
i /Qay p p EIl W 7 sing’

(148)
where I,, represents the moment of inertia of the cross-section in relation to
the neutral axis. The curvature may be eliminated from this expression by
substituting (148) in (143), yielding
M
=22 (149)
Iy
The orientation of the neutral axis i.e., the angle 6 between the action and
neutral axes, is still unknown. In order to define it, the condition of equilibrium
of moments around the action axis may be used. Since the moment of the
stresses in relation to this axis must vanish, using (143) we get

E
/J%dQZOé*/CEdeZOéImy:O,
Q P Ja

where I, = fQ xyd€ is the product of inertia with respect to the action and
neutral axes. The condition I, = 0 means that those axes are conjugate in
relation to the ellipse of inertia of the point defined by its intersection.

If the action axis is displaced, remaining parallel to the original position,
the product of inertia does not change. In fact, denoting the translation of the
axis by a, the product of inertia considering the new position of the action
axis is given by
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/Q(x—i—a)de: ey +aS, =0,

where S,, = [,ydQ. This integral represents the first area moment of the
cross-section in relation to the neutral axis. This quantity vanishes, since the
neutral axis passes through the section’s centroid. As the product of inertia
with respect to the neutral axis and any axis parallel to the action axis is zero,
we may conclude that the action and neutral axis are conjugate in relation to
the centroidal ellipse of inertia.

The conjugate of a principal axis of inertia is the other principal axis.
Thus, we may conclude that bending will be plane, if the action axis is parallel
to a principal centroidal azis. If the two principal moments of inertia have the
same value, any axis passing through the centroid of the cross-section is a
principal axis, which means that in bars with such cross-sections the bending
is always plane. A square cross-section is an example of this kind of section.”

The angle 6 could be obtained from the equation defined by I, = 0, by ex-
pressing I, as a function of 8. However, in most cases the principal moments
of inertia and the corresponding principal directions are easily computed or
may be obtained from tables with the geometrical characteristics of current
cross-sections. For this reason, the inclined bending is usually analysed by de-
composing the vector representing the bending moment (the moment vector)
in the centroidal principal directions of inertia, as represented in Fig. 75. In
this way, the inclined bending may be analysed as the superposition of two
cases of plane bending. In fact, as the moment vector is perpendicular to the
action axis, the bending will be plane, if this vector has the direction of a cen-
troidal principal direction of inertia. Another possibility for the computation
of the stresses in inclined bending is the use of non-principal reference axes
(140).

Considering the separate action of the principal bending moments M, and
M,, the stress acting in the point defined by the coordinate pair (x,y) is given
by the expression

6

L 77,

M, M cos o sin
My My ( x) . (150)

The minus sign appearing in the stress caused by M, results from the
fact, that a bending moment M,, positive when it has the same direction as

SPrincipal axes are two perpendicular axes, in respect of which the product of
inertia is zero. Principal axes and principal directions of the inertial tensor are
computed in the same way as the principal stresses and directions of the stress
tensor, in the two-dimensional case. If the cross-section has a symmetry axis, it is
one of the principal centroidal axes.

"These considerations are only valid if the material has a linear elastic behaviour.
However, if the cross-section is symmetric in relation to the action axis, the bending
will be plane, regardless of the linearity or nonlinearity of the material behaviour.
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Fig. 75. Decomposition of inclined bending in two cases of plane bending

axis y, causes compression (negative stresses) in the points with a positive
x-coordinate.® Since in the points belonging to the neutral axis the stress
vanishes, the condition ¢ = 0 may be used to obtain its position, yielding

JzOéy:xI—mtana:xtanﬂ with tanﬁ:I—mtana. (151)
I, I,

From this expression we see that, if I, > I, then 8 > «, i.e., in the
inclined bending the neutral axis deviates from the perpendicular direction to
the action axis, rotating in the direction of the principal axis with the smallest
moment of inertia. In other words, the neutral axis is between the moment
vector M and the principal axis with the smallest moment of inertia.

The maximum stress obviously occurs in the farthest point from the neu-
tral axis. In many usual cross-sections, such as I-beams, C-channels, rectan-
gular sections, etc., it is possible to identify those points without having to
compute the orientation of the neutral axis. These cross-sections are particu-
lar cases of shapes with a rectangular convex contour and a symmetry axis.
In this kind of sections, the farthest point from the neutral axis is one of
the corners, which is also one of the farthest points in the two possible cases
of plane bending (M = M, and M = M,). In these cases, the maximum
absolute value of the normal stress may be obtained directly from the two
section moduli in plane bending, i.e., by adding the maximum stresses caused
by M, and M,

| M, |

| My|
‘O'|max = + -
(%),

~ -
8This expression may also be obtained be particularizing (140) for pure bending
(N = 0) and the principal axes of inertia (I, = 0). In this case, the minus sign does

not appear, since, in the sign convention used in Sect. VII.2, the positive direction
of M, coincides with the negative direction of axis y.

(152)

v
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In other types of cross-section, such as a curved contour or polygonal
sections with a larger number of sides, the position of the farthest point is
often not obvious, which means that the orientation of the neutral axis must
be computed, in order to identify the farthest point from the neutral axis
(151).

The total deformation may also be computed by superposing the curva-
tures around the principal axes x and y. Considering two sections located at
an infinitesimal distance di from each other, their relative rotations around
axes x and y are (cf. (141) and (145))

M, dl

M, di
dp, = Ty
Yr =Rl

EI,

and doy = (153)

These rotations are infinitesimal (even for a large curvature), which mean
that they may be treated as vectors with the directions of axes = and y,
respectively. The resultant vector takes the direction of the neutral axis, as
may be easily confirmed (cf. Fig. 75 and (151))

dey _ LMy, I
de. I, M, 1,

tana =tanf .
The curvature of the bar is then given by the expression

1 de M [cos?a = sin® M
do = dop? dp? =L = _ = —. 154
PoVE TS T LS T BTz T TR (154)

The last equality of this expression results from the two obtained expres-
sions for the curvature, (148) and (154). The analytical proof of this equality
is relatively lengthy, and so it is not presented here (see example VIL.9).

As the quantities M, My, E, I, and I, contained in (153) do not vary
along the axis of the bar, the integration of dip in a length [ is straightforward,
yielding the relative rotation of two sections located at a distance [ from each

other
_[q 7% cos2a+sin2aiﬂ
T T EN Z Bl

It should be stressed that the validity of this expression is not restricted
to infinitesimal rotations, i.e., it is valid for any value of the rotation ¢.

VIIL.5 Composed Circular Bending

Let us consider a prismatic bar under the action of forces whose resultant
is parallel to the axis of the bar. As seen in Sect. VI.1, if the line of action
of this resultant passes through the centroid of the cross-section, the axis of
the bar remains a straight line, which means that the bar is under pure axial
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Fig. 76. Bending moments caused by an eccentric tensile axial force

loading. If that does not happen, additional bending takes place. The bending
moment is given by the product of the axial force and the distance of its line
of action to the centroid of the cross-section. The action axis is in this case
the line joining the centroid to the point where the line of action of the axial
force intersects the cross-section’s plane. In the following description this point
is called the pressure centre. We therefore have circular composed bending,
since M #0, N #0, V =0 and T = 0. This problem is usually analysed by
superposition of the effects of the bending moment and the axial force. In the
case of inclined bending the moment is decomposed in the principal axes of
inertia of the cross-section, as shown in Fig. 76.

The stress acting in a point with coordinates (x,y) may be obtained by
adding the stresses caused by the axial force N and by the bending moments
M, = Nyo and M, = —Nuzy (Fig. 76). Taking (150) into consideration, we
get9

O = — =+ = —

oI, I, Q@

N N N N
_ Yoy ToT (1 Yoy 56013) , (155)
where 7, and i, represent the radii of gyration with respect to the principal
axis z and y (I, = Q2 and I, = Qi2). The position of the neutral axis may
be obtained by the condition of zero stresses, yielding

P
r=0=y=y =—=
Tox
=0 = 1ML TT g o @ (156)
2= vy y=0=r=x1=—2.

The position of the neutral axis may be defined by the coordinates of the
points where it intersects the principal axes of inertia (0,y;) and (z1,0).

9This expression may also be determined by particularizing (140) to principal
axes of inertia (I, = 0). The sign convention used for the bending moments does
not play any role, since the eccentric axial force F' is directly related to the stress.
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VII.5.a The Core of a Cross-Section

In composed bending the neutral axis does not pass through the centroid,
since there the stress corresponding to the axial force N is installed, as may
easily be confirmed by making z = y = 0 in (155). From (156) we con-
clude that the distance of the neutral axis to the centroid increases when
the coordinates of the pressure centre, xg and yo decrease, and vice versa.
In the limit case, zp = 0 and yy = 0, which corresponds to M = 0, that
distance is infinite. These considerations are illustrated in the example in
Fig. 77.

When the pressure centre is sufficiently close to the centroid, the neutral
axis does not intersect the cross-section, which means the the stresses are all
tensile, or all compressive. This region around the centroid, where the pressure
centre is located, when the neutral axis does not intersect the cross-section,
is called the core of the cross-section. If the pressure centre is on the core’s
border, the neutral axis is tangent to the cross-section, as in example 3 of
Fig. 77.

The determination of the cross-section core is important in the cases where
a single linear elastic constitutive law for tensile and compressive stresses is
not acceptable. This happens frequently with brittle materials, as for example,
concrete, stone, soil, etc., and also in contact interfaces which are only resistant
to compressive stresses. In these cases, (155) is only valid if the pressure centre
is in the core of the cross-section, since otherwise tensile and compressive
stresses will appear. This also applies to the material, whose constitutive law
is shown in Fig. 78.

The core’s limits may be directly computed from (156), by determining
the position of the pressure centre which corresponds to a neutral axis that
is tangent to the cross-section, and repeating this procedure for a sufficiently

Fig. 77. Stress distribution in the cross-section of a prismatic bar, for different
values of the eccentricity of the axial force V
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g

Fig. 78. Material with different linear elastic behaviour for tensile and compressive
stresses

high number of pressure centres to define the core with acceptable precision.
This technique is useful in the case of a cross-section with a curved boundary.

In the case of a polygonal border, it is more convenient to use another
technique, which is based on the reciprocity of (155) in relation to the coor-
dinates of the pressure centre (zg,yo) and of a generic point (z,y). In fact,
we see immediately from (155) that applying an axial force N on the point
with the coordinates (zg, o), we get in the point with coordinates (z,y) the
same stress that would be caused on point (xg,yo) by the same axial force
applied on point (z,y), since the interchange of the roles of z with zy and
of y with 3y does not change the result.'® Therefore, if the axial force is at
first applied on (zg, yop) and the position of the corresponding neutral axis is
computed and, subsequently, the load is applied on different points of this
axis, neutral axes will be obtained, which will contain point (zg, yo). Thus, we
may conclude that the displacement of the pressure centre along a straight
line causes a rotation of the corresponding neutral axis around a point. This
point corresponds to the pressure centre, whose neutral axis is that straight
line.

The core of a polygonal cross-section may be determined by considering
a pressure centre on a corner of the cross-section contour and computing
the position of the corresponding neutral axis. Pressure centres located on a
segment of this axis correspond to neutral axes passing through the corner
of the cross-section contour, which do not intersect the cross-section. That
line segment is therefore on the limit of the core. By repeating this procedure
for all corners the complete core is obtained (Fig. 79-a). Another possibility
consists of using the inverse procedure: given a neutral axis joining two corners
of the section’s contour, the corresponding pressure centre is a corner of the
core.

It is obvious that, in the case of a cross-section whose boundary is not
completely convex, the tangents to the boundary at the concavities cannot be
used to define the core, since they intersect the cross-section. In this kind of

10This is a particular case of the Theorem of Maxwell, which is studied in
Chap. XII.
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(a) b

Fig. 79. Determination of the core of a cross-section: (a) polygonal cross-section
boundary; (b) curved cross-section boundary

section the shape of the core is defined by the shape of the convex contour, as
represented in Fig. 79-b. The corner A corresponds to the straight part of the
convex contour (line @a). For this reason, the core of an I-beam has the same
shape (but not the same dimensions) as a rectangular cross-section (Fig. 80).

S

AN

Fig. 80. Core shapes of some usual cross-sections

VII.6 Deformation in the Cross-Section Plane

In order to study the deformation of a cross-section in its plane, let us consider
a piece of a prismatic bar whose end sections are sufficiently far from the
points of application of the loading to accept the validity of the Saint-Venant
principle. If the bar is under circular bending (with or without axial force),
the strain distribution in the cross-section is defined by (142), i.e., it is linear,
as represented in Fig. 81. Since the validity of what follows is not limited to
materials with linear elastic behaviour, we may consider the more general case
of a nonlinear stress distribution (Fig. 81).

If we now consider the cross-section divided in narrow strips which are
perpendicular to the neutral axis and have an infinitesimal width, these strips
may be considered as rectangles under composed circular plane bending. We
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Fig. 81. Piece of a prismatic bar under composed circular bending

should now stress the fact that the division of the cross-section into strips
does not change the bending analysis presented above. The only additional
consideration is that the stresses o, 0, and 7, which are admitted to vanish,
without this being demonstrated (Sect. VIL.1), are actually zero in the cross-
section divided into strips, since no stresses are applied in its lateral faces,
and in the facets parallel to the neutral surface the normal stresses are like-
wise zero, as there are no lateral forces applied in the piece of the bar under
consideration.!!

The transversal strain of a strip €, may be related to the longitudinal strain
in the fibre’s direction € by means of the Poisson coefficient v, yielding

v
g =-—vE=——y.

During the deformation the sides of the strips remain straight, but not
parallel, since the transversal strain is proportional to the distance to the
neutral axis, provided that the Poisson’s coefficient is constant. The angle o
between the sides of the strip may be related to the curvature of the bar
%. The previous expression and the geometrical considerations depicted in
Fig. 82 yield the expression

_ldx{-:t
=5

a v
@ = Zde . 1
5 e pdz (157)

The displacement d, of the points of the strip in the direction perpendic-
ular to the neutral axis may also be obtained from ¢,, and are given by the

expression
y 1/y2
] :/ gdy = ——=.
Yy ) b2

HThere will be normal stresses in these facets, in the case of a large curvature
introduced by bending. These stresses are the radial stresses which equilibrate the
longitudinal stresses acting on the fibres when they acquire curvature. These stresses
may, however, be neglected for small values of the curvature.
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Since the sides of the strip remain straight and since the displacement &,
only depends on the distance y (this means that J, is equal on both sides
of the line dividing two contiguous strips), the strips may be assembled after
the deformation, reconstructing the bar without any kind of discontinuities,
which means that the deformations represented by the previous expressions
are compatible. We may therefore conclude that the stresses oy, oy and 7,
also vanish in the undivided bar.

—> AT |
Pt
Yy L
7:‘ “: d:l?(l + z’;‘t)
L [

dx

Fig. 82. Transversal deformation of a strip of infinitesimal width and perpendicular
to the neutral axis

From Fig. 82 we conclude that, on assembling the deformed strips, the
neutral axis is transformed into a circumference arc, whose curvature pl may

be obtained from (157), yielding t

1 «a 1
po=dr == —=—=—v—.
Pt dz P
The neutral surface therefore has an anticlastic shape, i.e., it has opposite
curvatures in the cross-section plane and in the deflection plane (saddle shape),
as represented in Fig. 83 for a bar with rectangular cross-section.

The considerations established in the present section are based only on
the law of conservation of plane sections and on a constant value for Poisson’s
coefficient. Thus, we may consider as demonstrated the statement made in
Sect. VII.2 without demonstration that the normal and shearing stresses act-
ing in facets which are perpendicular to the cross-section plane vanish if the
Poisson coefficient is constant. If this coefficient is not constant, as happens
in prismatic bars made of two or more materials, or when plastic deforma-
tions take place (cf. Sect. V.3), compatibility conditions for the transversal
deformations should be taken into account in the computation of stresses and
deformations.

However, these compatibility conditions are usually not considered in the
bending analysis of bars with a non-constant Poisson’s coefficient. In order to
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-neutral surface

ot

Fig. 83. Deformation caused by a positive bending moment in a bar with rectangular
cross-section

get an idea about the importance of the error introduced by this approxima-
tion, let us consider the bending of the composite bar represented in Fig. 84.
This bar is made of alternate thin layers of two isotropic materials, a and b,
which have the same modulus of elasticity F, but different Poisson’s coeffi-
cients, v, and v,. The layers all have the same thickness.

MM material a

1 material b

Fig. 84. Composite bar made of two isotropic materials

As the elasticity moduli of the two materials are equal, the solution ob-
tained for the pure plane bending of homogeneous materials is valid, if the
transversal compatibility conditions are not considered (143) and (145)

%:% = aaz:boz:@.

If the thickness of the layers is very small in relation to the section’s
dimensions, we may accept that the strain e, is the same in both materials.
Besides, as the thickness is the same in all layers, the condition of equilibrium
in direction y leads to the conclusion that the stresses o, are equal and have
opposite signs in the two materials ( %, = — %,). For simplicity, only the
extreme case of having the minimum value of the Poisson coefficient in one
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material (v, = 0) and the maximum value in the other (v, = 0.5), is analysed
here. The stress-strain relations in the two materials are then (cf. (74))

LoV (B
p E o
a =9 . (158)
5y:7y oy = Eeg,
E
for material a, and
1 4FEy 2
Ez:y:(baz_1b0y> bo.z*§7 gEy
p FE 2
=
2 F 4
I 1, by — 22 o
Ey_E<Uy_2‘7Z) v 3 +3 Y

for material b.
The strain €, may be obtained from these expressions and the equilibrium

condition in direction y, yielding the stress %, as function of the curvature

2 8 E
aUy:*bUy = €y:**g = bUz:*l~ (159)
7p
The moment-curvature relation may be obtained from the condition of
equilibrium of moments and from the expressions relating the stresses in the

two materials with the curvature (158) and (159), yielding

M:/ aozde+/ Yo,y dQ
Q Q

Ey? : 8 Ey? 1 14M (160)
:/ —deJr/ S 40 = - =
2 p o7 p p 15 FEI
Substituting this value in (158) and (159), we get
14 My My b 16 My My
b, = — 9 ~0.9337Y =27 vr0672Y . (161
o= 209387 and o= 2 067 (161)

From (160) and (161) we conclude that an error of about 6.7% is intro-
duced into both the computation of the stresses and into the curvature, if
the conditions of deformation compatibility in the cross-section plane are not
taken into account. However, it should be remembered that this analysis was
made for an extreme case (v, = 0, v, = 0.5). In current materials the error
will be smaller. Taking the more usual values v, = 0.15 and v, = 0.30, for
example, a similar analysis shows that the values of the errors decrease to
0.6% in the computation of the curvature and to 1.8% in the computation of
the stresses.!?

2Tn the development of (133) and (134) (stresses induced by the axial force in
composite bars) the compatibility conditions of the deformations in the cross-section
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VII.7 Influence of a Non-Constant Shear Force

As referred in Sect. VII.1, the stresses computed for the case of pure bending
are not changed if a constant shear force is applied. However, in the case of
a non-uniform shear force distribution, the stresses computed assuming pure
bending are no more an exact description of the actual stress distribution.

In order to get an idea about the importance of the error affecting the com-
putation of the normal stresses, when the expressions developed for circular
bending are applied to a bar under a non-constant shear force, we compare
the results obtained thereby, with the exact solution of a simple problem,
given by the Theory of Elasticity. Let us therefore consider the prismatic bar
with a rectangular cross-section, under a uniformly distributed loading p, as
represented in Fig. 85. The cross-section has a height h and a width b, which
is small compared with h, so that the stress distribution may be assumed as
plane. The solution of this problem is given by the functions describing the
elements of the stress tensor in plane yz [4]

_pll=2)y p (25 I
%= I+21<3y 107
__p (L M 1s
VT (3 RANTL (162)

_ (L N A
T2 =P\5 7% )91\ '

In the expression of o, the first term coincides with the solution given in
(146), since M = w. Therefore, the second term, which depends only on
1y, represents the error introduced when the stress is computed by means of
(146). It may be easily demonstrated, by making % =0 and %L; = 0, that
the maximum value of o, occurs in the extreme fibres of the cross-section
(z =4, y==21),if | > V0.4h. From the first of (162) we get

_ h
y=3

ph3 [ a? 1 . l
= 0 = Oz—max = - - th = —. 163
p=L T T T <16+60 W=y (163)
The error introduced by (146) (Omax—approx = % = #‘1’—2), may then

be expressed by the relation between 6—10 and ‘f—;. This relation depends only
on the value of a. In slender members we usually have [ > 10h. For a = 10
the second term is only 0.27% of the first one. We conclude therefore that the
error introduced by (146) is negligible in this case.

plane were also not considered, so that an error with the same order of magnitude
should be expected (see Footnote 29).
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Y l

Fig. 85. Beam under a uniformly distributed load

VII.8 Non-Prismatic Members

VII.8.a Introduction

In the same way as in the study of the axial force, the error introduced, when
the expressions developed for prismatic members are applied to bars with
a non-constant cross-section or with a curved axis, is here investigated by
comparing exact solutions given by the Theory of Elasticity with the approxi-
mate solutions obtained from the theory of prismatic members in very simple
examples.

VII.8.b Slender Members with Variable Cross-Section

As an example of a bar with a non-constant cross-section, the wedge-shaped
element with a rectangular cross-section (Fig. 68) is considered again. The
force P is now perpendicular to the bar’s axis (Fig. 86), so that it causes a
bending moment Pr in the cross-section at the distance r of the point of
application of the load.

The solution of the Theory of Elasticity is obtained by using polar coor-
dinates (r and 6, Fig. 86) and it shows that in a cylindrical section at the

Fig. 86. Stresses caused by bending in a wedge shaped bar
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distance r from the vertex the shearing stress vanishes and the radial stress'3

is given by the expression [4]

2 Psin6

a—sina  br

op = . (164)
The maximum stress for a given value of r occurs for the maximum value
of §, 0 = 5. The theory of prismatic members gives, for the same points, the

stress Omax—p (cross-section AA’ — h = 2rsin§, M = Prcos §, (147))

I_bh2_22_2a M

*—T—gbr Sin 5 égmaxfp—?—f*

The error affecting this approximate expression may be defined by the re-

lation between the maximum stress obtained from (164), 6, —max, and Omax—p,
which leads to

3 a
Or _max _ % S 2
= i —.
Omax—p 3 (@ —sina)cos g

We verify that the error depends only only « and takes the value

a 10° 20° 30° 45° 60°
Oy max/Fmax—p | 10015 | 1.0062 | 1.0141 | 1.0331 | 1.0622
error 015% | 062% | 141% | 3.31% | 6.22%

We conclude that, for low values of angle «, the error is very small.

The Theory of Elasticity yields also a solution, if the force P is substituted
by a moment M. In this case, the stress distribution is not purely radial, since
the shearing stress 7,9 does not vanish. The solution is given by the expressions
(M has a counterclockwise direction)

2M sin 260
Op = — 2
sina — acosa br
0'0 = 0
M cos 260 — cos o
Trg = .

sin o — a cos o br2

We verify that the shearing stress attains a maximum for # = 0 and that,
for values of fpax under 45° (a < 90°), the maximum normal stress occurs at
the fibres farthest from the neutral axis and takes the value

1 2M sin M 2
br2sina —acosa br2 1l —

(67
Hzemaxza = Op = Opr—max = )

tan o

(165)

13Tt may easily be verified, by evaluating the integral f_%g o-brsin 0d@, that the
2

vertical component of the radial stress balances the load P.
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This is the maximum principal stress of the stress tensor in point A (7,9 = 0
for 0 = 5 ). The solution of the theory of prismatic members for the same point
is

M M 1
Omax—p — m = 75

br? % sin? S
In the same way as in the previous case, the error introduced by the
approximate solution omax—p may be expressed by the relation

2«

O _max _ é S 2
- __a
Umaxfp 31 tan o

As in the previous case, the error depends only on « and takes the values

« 10° 20° 30° 45° 60°
Ur_max/amax_p 0.9954 0.9818 0.9594 0.9099 0.8430
error 0.46% 1.82% 4.06% 9.01% 15.70%

The error is larger than in the case of the bending moment introduced by
the load P but it is also small for low values of «. Besides, as in this case the
approximate solution overestimates the actual value of the stress, the error is
advantageous for the safety of the structure.

VII.8.c Slender Members with Curved Axis

The errors introduced by the theory of bending for prismatic members, when
this is applied to slender members with a curved axis, are studied by compar-
ing the approximate solution given by (147) with the exact solution furnished
by the Theory of Elasticity in a curved bar with a circular axis and rectangular
cross-section, under a constant bending moment, as represented in Fig. 87.

Fig. 87. Stresses introduced by bending in a curved bar
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The maximum stress occurs in the extreme fibres of the concave side (o,
Fig. 87) and takes the value [4] (b is the cross-section width)

6M 402 — 4023 (1—&—@—1—0‘;)
be? 332 (4— 202 + &%) — 1202

. o= Te
Omax = 0 with
8= ln2te

2—«

As the approximate solution given by (147) is in this case 0;_approx = %,

the error depends only on the relation « between the dimension e of the bar
and the mean radius of curvature r,,, and may be expressed by the relation

3 2 a?
o; 4o —4aﬁ<1+a+7>

Oj—approx - 3,82 (4 — 202 + %2) — 1202 ’

’)/:

The application of the theory of bending developed for prismatic bars to
this curved bar thus leads to the errors

o 0.01 0.05 0.1 0.2 0.3 0.4
0 1.00335 1.0170 1.0345 1.0717 1.112 1.155
error 0.335% 1.7% 3.45% 7.17% 11.2% 15.5%

Generalizing, we may conclude from these values that, for curved bars
where the dimension of the cross-section in the plane containing the axis
of the bar exceeds 0.1 times the mean radius of curvature of the bar, the
expressions developed for prismatic bars may lead to considerable errors in
the computation of bending stresses.

When the parameter « exceeds that value, a bending theory developed by
Winkler [8] for curved bars may be used. This theory, although it is based on
a simplifying hypothesis — it neglects the effect of the radial stresses (normal
stresses acting in facets perpendicular to the curvature radius) — gives results
which are very close to the solution furnished by the Theory of Elasticity. The
theory of Winkler is also based on the law of conservation of plane sections,
but, contrary to the theory of prismatic members, it considers the different
initial length of the fibers (the fibres close to the concave face are considerably
shorter than the outside fibres). As a consequence of this difference in the
initial length of the fibers, the strain and stress distribution is not linear, even
though the elongation is proportional to the distance to the neutral axis, but
takes a form which is similar to the diagram represented in Fig. 87.

VII.9 Bending of Composite Members

The stresses and deformations induced by a bending moment in a prismatic
bar made of more than one material (composite members) are analysed here
for the simplest case of a bar made of two materials with linear elastic be-
haviour. The deformation compatibility conditions in the cross-section plane
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are not taken into consideration. As a consequence, the theory described here
will lead to a small error in the computation of stresses and curvature if the
Poisson coefficients of the two materials are different, as seen in Sect. VII.6.
This error is not sufficiently high, however, to affect the practical application
of the theory.

The law of conservation of plane sections is still valid, since the symmetry
conditions used to demonstrate it (cf. Sect. V.10.c) are not affected by the fact
that the bar is not homogeneous, provided that the distribution of the two
materials in the cross-section is constant. The strain is therefore proportional
to the distance to the neutral axis and the strain-curvature relation is still
given by (142). Neglecting the stresses acting in facets perpendicular to the
cross-section (in accordance with the considerations above), the stresses in the
two materials may be related to the curvature of the bar by the expressions

_ Eay

y %o = "o
e=% = (166)

r Ub:%7

where E, and Ej are the elasticity moduli of the two materials and y is the
distance of the point under consideration to the neutral axis. We consider here
the more general case of inclined bending, as represented in Fig. 88.

As the axial force is zero, the resultant of the normal stresses must vanish.
This condition is expressed by the relation

/adQ:0:>Ea/ dea+Eb/ ydQ, =0. (167)
Q Qg Qp

This expression represents the first moment of the areas occupied by each
material in the cross-section, with the moment of each area weighted with the
modulus of elasticity of the corresponding material, in relation to the neutral
axis. Since this moment must vanish, we conclude that the neutral axis passes
through the centroid of the cross-section, computed by weighting the first area
moment of each material with the corresponding modulus of elasticity.

The moment of the stresses in relation to the neutral axis must be equal
to the applied bending moment. This condition leads to the expression

1
MsinHz/ade = ~J, with Jn:Ea/ y?dQ, —i—Eb/ y2dQy .
[9) p Q. Qp

(168)
Jp is the moment of inertia of the cross-section in relation to the neutral
axis, computed by weighting the moment of inertia of the area occupied by
each material with the corresponding elasticity modulus. The curvature and
the stresses introduced into the bar by the bending moment may be obtained
from (168) and (166), yielding
M Oa = %y Jn

pJo o, = MJ—;EI’y %~ sine

(169)
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Fig. 88. Circular inclined bending of a prismatic bar made of two materials

material b

The bending stiffness is obviously defined by Jy. The moment of the
stresses in relation to the action axis must vanish. This condition leads to
the relation

/crde =0 = Ea/ zydQ, +Eb/ zydQy =0. (170)
Q Q Q

This expression states that the weighted product of inertia with respect to
the action and neutral axes vanishes. From this, we conclude, by establishing
the same considerations as in the case of the inclined bending of homogeneous
bars (Sect. VII.4), that the action and neutral axes are conjugate in relation
to the central ellipse of inertia, if the centroid’s position and the moments and
product of inertia are computed weighting the areas of each material with the
corresponding modulus of elasticity. Thus, plane bending will take place if
the action axis is parallel to one of principal directions of inertia, computed
with weighting. In the same way as in the homogeneous bars, the moment
vector may be decomposed in the principal directions of inertia, allowing the
inclined bending to be treated as the superposition of two cases of plane
bending (Fig. 75).

In the practical applications we often deal with cross-sections with a sym-
metry axis and with a plane contact surface between the two materials that
is either parallel or perpendicular to the symmetry axis. In these cases the
concept of homogenization may be useful. This concept allows the composite
cross-section to be treated as homogeneous. In order to introduce it, let us
divide (167) by E, and put this quantity in evidence in the expression of J,
(168). For simplicity, let us assume plane bending (f = 90°). We get

ith:
[ ovaouem, [ yas =0 | g
Qa o8 My = — and
1 1 M
M=-E,I, = — = Ia:/ 2d9a+ma/ 249, ,
P P Ealha 4 Qay Qby b
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where m, is the homogenizing coefficient of material b in material a. Equa-
tions 171 show that, changing the cross-section’s shape and dimensions, so
that the area of material b is multiplied by a factor m,, without altering the
distances to the neutral axis, i.e., by multiplying the dimensions which are
parallel to the neutral axis by m,, the resulting cross-section may be analysed
as homogeneous and made of material a when computing the centroid’s posi-
tion and the curvature caused by the bending moment. The stress in material
a may also be computed using the same expression as in the case of a ho-
mogeneous bar. Only for the computation of the stress in material b must
the homogenizing coefficient be used, as we conclude from (169) (6 = 90° =
Jo = Jn)

ME, ME, My 1 ME,  ME, My
= = = an Oy = ——Y = = Mg .
Jn Y Ethay Iha b Jn 4 Ethay Iha

Oa

Obviously, the cross-section could also be homogenized in material b, as
depicted in Fig. 89. In the case of inclined bending, the geometry of the
homogenized section is different for the two principal directions, as exemplified
in Fig. 90.

As in the case of homogeneous cross-sections, principal directions of inertia
x and y may be defined whose orientation is computed from the weighted
moments of inertia and the weighted product of inertia with respect to two
orthogonal axes originating in the centroid of the weighted cross-section (see
example VIL.12). From (169) we easily conclude that the stresses in inclined
bending may be computed from the components of the bending moment in
the principal directions of inertia, M, and M, by the expressions

_ M,E,, ME.

Oa =775 Y Ty, v Jo =B, [, y*dQ + By fﬂb y2dsY,
_ M,E M, Ey with

G = mey— jy*w Jy:Ean xQan—i—Ebebede.

(172)
The curvature of the bar may be computed by superposition of the curva-
tures around the principal axes, as in the case of the homogeneous members

(154)
1 1\? 1\’ M2 M2
1_ \/() N () =M By (173)
p Pz Py JioJ;

The equation of the neutral axis may be obtained from any of the condi-
tions g, = 0 or ¢;, = 0, yielding y = % ]\1\2 T

VIIL.9.a Linear Analysis of Symmetrical Reinforced Concrete
Cross-Sections

When analysing reinforced concrete structural elements we generally neglect
the tensile strength, since concrete has a much higher resistance to compressive
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Fig. 89. Homogenization of a composite cross-section
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Fig. 90. Homogenization in inclined bending

than to tensile stresses, so that it is usually considered that these stresses are
resisted only by the steel bars. In the linear analysis of concrete structures, we
admit that the stress is proportional to the strain, as represented in Fig. 91.4
Looking at this diagram we can immediately see that the above theory for
composite bars is not directly applicable, since the stress-strain relation is
not defined by the same linear law in tension and compression. However, as
the internal tensile forces are supported by the steel bars, this difficulty may
be circumvented by considering only the compressed concrete as active. This
procedure raises the order of the equation to be solved to compute the position
of the section’s centroid. In the case of a cross-section that is symmetrical

MPractical design and safety evaluation of reinforced concrete slender members
are currently done by computing the failure bending moment. Under these condi-
tions, a linear stress-strain relation for the concrete is not admissible (see Subsect.
VII.10.d). Therefore, the present analysis is only intended to be an example of the
application of the theory of composite prismatic bars. However, in high strength
concrete, the stress-strain relation remains very close to a straight line almost until
rupture (Fig. 91), and so the better the concrete quality, the better the approxi-
mation of this analysis. The curvature of a bar under service loads may also be
computed, by considering a linear law.
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low strength
concrete

s
high strength
concrete

Fig. 91. Admitted stress-strain relation for concrete (solid line)

with respect to the action axis, the bending is always plane, regardless of
the material behaviour (see footnote 40). This means that the neutral axis
is perpendicular to the action axis and that the condition N = 0 suffices to
compute the position of the neutral axis.

In order to illustrate these considerations, the expressions needed to com-
pute the stresses and curvature caused by plane bending in a rectangular
cross-section are developed. The simplest case of having only one layer of
steel bars is considered (Fig. 92).

Denoting the areas of steel and concrete by €25 and €. respectively, the
position of the neutral axis may be obtained from 167, yielding

kh
EQ, (1 —k)h=E, bkh — = k*=2(1—-k)\
~~— 2

Qe 50 (174)
= k=-2A+VA2+2)\ with A:Esb—;.
C

The weighted moment of inertia of the cross-section in relation to the neutral
axis is given by the expression (cf. (168))

3
Jn=EQ, (1—k)*h? + Ecb(’;h) .

Using the first of (174), two other forms may be given to this expression

Jn = B,Q.h?* (1 — k) (1 - :1))1@)

1 1
=-Ebh’K* (1— -k .
In 2cbhk< 3/-:)

The stress in the steel and the maximum stress in the concrete may then
be obtained by substituting these values of J,, in (169)



VII.10 Nonlinear bending 219

Oc

IRC

o
e
gl

[

Yleeeoese

Os

)

Fig. 92. Reinforced concrete cross-section under a positive bending moment
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Z is the arm of the couple of forces defined by the resultant of the compressive
stresses in the concrete, R., and by the resultant of the tensile forces in the
steel, Rs, (Fig. 92). The curvature of the bar may be computed from any of
the above expressions given for .J,, since 1 = JM

The superposition principle may be apphed to this problem, only if the
active cross-section remains the same. Thus, the effects of two positive bending
moments with parallel action axes may be superposed, but not the effects of
a horizontal and a vertical bending moment. This is because of the lack of
complete linearity of the constitutive law considered for the concrete. As a
consequence, the analysis of inclined bending is more complicated and cannot
be performed on the basis of the bending theory for composite beams described
above.

VII.10 Nonlinear bending

VII.10.a Introduction

When the rheological behaviour of the material is not linear, there is no pro-
portionality of stresses and strains and the system of equations obtained from
the equilibrium conditions (139) is no longer linear, although the strain dis-
tribution remains linear owing to the law of conservation of plane sections
(138). In the most general case, the computation of the stresses caused by
a bending moment and an axial force in a prismatic bar made of a ma-
terial, whose one-dimensional constitutive law is described by the function
o = f(e) = f (ax + by + ¢)*® requires the solution of the system of equations

15We still assume that the stresses in facets perpendicular to the cross-section are
zero (see SectionVIL6).
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N:/Jdﬂ :/f(a:v+by+c) dQ
Q Q

Mx:/oydﬂ :/f(ax+by+c)yd(2 (175)
Q Q

My:/axdﬁz/f(ax+by+c)xd9.
Q Q

The degree of complexity of these equations depends on the shape of the
cross-section and on the function f (¢). The system of equations may admit
more than one set of solutions (a, b, ¢) or be impossible. On the other hand, the
computation of the set of internal forces, N, M, and M, which corresponds
to a given deformation, defined by a set of parameters a, b, and ¢, is always a
determinate problem, as (175) shows.16

From these considerations, we can see at once that nonlinear bending is
a very wide field. The detailed general analysis of this kind of problems goes
beyond the scope of this book, and so only some particularly simple cases are
explained.

VII.10.b Nonlinear Elastic Bending

As an example of bending in a nonlinear elastic regime, let us consider a rec-
tangular cross-section under pure plane bending (action axis coinciding with
a symmetry axis of the cross-section) made of a material with the constitutive
law which is schematically represented in Fig. 93.

Since the compressive and tensile stress-strain relations may be different,
the neutral axis generally does not pass through the centroid of the cross-
section. Its position may be determined from the condition N = 0, as in the
linear case, yielding (y; and ys are defined in absolute value, Fig. 94)

Y2

/ obdy =0 0 €
/ cdQ =0 = -y = / o(e) de = —/ o(g)de . (176)
Q y = pe & 0

From (176) we conclude that the neutral axis must take a position which
leads to equal compressive and tensile areas defined by the used region of the
stress-strain diagram (A; = As, Fig. 94). As the shape of this diagram may
not be the same in tension and compression, the position of the neutral axis is
not independent of the magnitude of the bending moment, i.e., it may change
as the moment increases.

16T his conclusion is valid for most of the problems of Solid Mechanics. The com-
putation of the internal forces corresponding to a given set of displacements is always
a determinate problem, while the inverse problem is often not determinate. For this
reason, the generalization of the displacement method to nonlinear problems is much
easier than in the case of the force method.
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Fig. 93. Nonlinear elastic behaviour

&

Y1

Yo %dy

€2
Fig. 94. Bending in nonlinear elastic regime

The bending moment corresponding to the curvature % = % (142) may be
computed in two steps: first y; and yo are obtained from the curvature, which
can be done by computing the difference between the maximum (tensile) and
minimum (compressive) strains

PP P

and computing the values of £; and &, which lead to A; = As; the correspond-
ing bending moment may then by computed by the expression

{y1 = —p5

Y2 = pey
Y2
= M= / oydQ = b/ oydy = A1b yagy + A2b Yoy = A1b (Ye1 + Ye2) -
Q —Y1

h
PN SN T

In this expression y,q and y., represent the distances from the neutral
axis of the centroids of the areas defined by the stress-strain diagram in com-
pression and in tension, respectively, as represented in Fig. 94.

VII.10.c Bending in Elasto-Plastic Regime

If the yielding strain of a ductile material is exceeded, the stress-strain relation
becomes non-linear, which means that the linear bending theory is not valid
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anymore. Furthermore the material behaviour becomes different for loading
and unloading. The analysis of this kind of problem is described in detail here
for the example of the elasto-plastic plane bending of a bar with a rectangular
cross-section, made of a material with elastic perfectly plastic behaviour (Fig.
61). In the last part of this Sub-section, the plastic analysis of cross-sections
with one or two symmetry axes under plane bending is described.

Considering the rectangular cross-section represented in Fig. 95, we con-
clude that the neutral axis divides the cross-section in two equal parts, since
the material behaviour is the same for compressive and tensile stresses.

€ — % — % — %

Oy

(a) (b) (c)

Fig. 95. Plane bending of a rectangular cross-section in the elasto-plastic regime

If the bending moment exceeds the value corresponding to the yielding
strain in the fibres farthest from the neutral axis (Fig.95-a), which is the
highest possible bending moment in the elastic phase, the fibres undergoing
more strain yield and the bar enters in the elasto-plastic regime (Fig. 95-b).
In this phase, the relation between the bending moment and the curvature
may be obtained from the strain in the fibres which are still under elastic
deformation. With h, being the height of the part of the section still under
elastic deformations (Fig. 95-b), this quantity may be related to the curvature
by the expression

he 1h, 2poy

y:5j52<€y:77:>h622p€y: E (177)

The moment of the stresses with respect to the neutral axis must be equal
to the bending moment. From this condition, a relation between the bending
moment M and h. may be obtained

b h2 3 1 /h\* bh?

(178)
Substituting, in (178), he with the value given by (177), the relation be-
tween the curvature and the bending moment is obtained
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1 2 1
S with M >DM.. (179)

M.

From this expression we conclude that the curvature % goes to infinity, as

the bending moment M goes to %Mc. The maximum bending moment sup-
ported by the bar is therefore 1.5 times the maximum bending moment in
the elastic regime M., i.e., M}, = 1.5M.. M), represents the yielding bending
moment. It corresponds to the limit case represented in Fig. 95-c, as may be
easily verified by making h, = 0 in (178). The relation between the yield-
ing bending moment M, and the maximum bending moment in the elastic
regime M, is called the shape factor of the cross-section ¢ = %’; Thus, in a
rectangular cross-section, we have ¢ = 1.5.

Let us now consider non-rectangular cross-sections with a symmetry axis.
If the action axis is parallel to this axis we will have plane bending. The same
happens if the action axis is perpendicular to the symmetry axis. In fact, as the
material has the same behaviour in tension and compression, the neutral axis
will be the symmetry axis, since, under these conditions, the moment of the
stresses in relation to the action axis will vanish, as required by the equilibrium
conditions (see Sect. VII.4). A general elasto-plastic analysis of any of these
cases is, however, substantially more complex than the rectangular case, since
the width of the cross-section is not constant.

Anyway, the most important issue in elasto-plastic analysis is the compu-
tation of the yielding bending moment M, also called the plastic moment.
This problem is substantially simpler than the computation of the moment-
curvature relation in the elasto-plastic phase, since only the limit case of
having a constant tensile or compressive stress oy (yielding stress) on each
side of the neutral axis needs to be analysed. Considering the symmetrical
cross-section represented in Fig. 96, the condition of equilibrium of the forces
acting in the direction of the bar’s axis leads to the relation

Q
Uygl_ongZO = Q1292:§ .
—oy
QQO’Y
-
. Yao inQ
‘% #91 iycn Y
Qo
Oy

Fig. 96. Fully plastified symmetrical cross-section
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Thus, the neutral axis divides the cross-section into two equal areas, which
means that it will generally not pass through the centroid, unless it is a
symmetry axis. The plastic moment M), is equal to the moment of the stresses
with respect to the neutral axis, taking the value below (y; and y, are the
distances from the centroids of the tensioned and compressed zones of the
cross-section to the neutral axis)

Q
M, = /QUde = UY/Q|iU|dQ =0y Yot 20y Ygo = 9 (Ye1 +Ya2) oy -
(180)

I;I 2 (yoq + Yao) depends only on the geometry of

The quantity Z = 2 = 3

Y
the cross-section and is called the plastic section modulus or simply plastic
modulus. The shape factor may be obtained from Z and the elastic section

modulus (%), P = % = (f%) In the following Table, the shape factors of

some current symmetrical cross-sections are indicated.

Cross-section shape factor — ¢
rectangle 1.5

isosceles triangle 2.343

rhombus 2

circle 1.7

I-beam ~1.15

channel ~1.2

From these examples we conclude that, the less specialized the section for
the resistance to the bending moment, the higher its shape factor. This is due
to the fact that such sections have more material in the region around the
centroid, whose contribution to the bending strength is not exhausted until
the cross-section is totally plastified.

Plastification is a gradual process which, from a theoretical point of view,
is only finished for an infinite curvature of the bar, as seen above. However,
when the height of the elastic zone is small, we may consider the cross-section
as totally plastified, since in that case the contribution of the elastic zone
to the resistance to the bending moment is very small. The curvature may
then be increased practically without any increase in the bending moment,
i.e., yielding of the entire cross-section takes place. In this case, we say that
a plastic hinge has been formed. In Fig. 97 the formation process of such a
hinge is schematically represented.

If the bar is unloaded after the maximum bending moment in the elas-
tic phase is exceeded, the internal stresses do not disappear totally, since the
material behaves elastically in the unloading process (Fig. 61) and some resid-
ual deformation is left in the fibres where the yielding strain was exceeded.
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Fig. 97. Formation of a plastic hinge: (a) elastic phase; (b) elasto-plastic phase;
(c) plastic phase

M ~M (M < 2M.)

Fig. 98. Residual stresses after unloading in the elasto-plastic regime

The unloading may be understood as the application of a bending moment
with the same magnitude and opposite direction. In terms of stresses, the
unloading corresponds to the superposition of a linear elastic diagram on the
elasto-plastic diagram resulting from the loading, as represented in Fig. 98.

The unloading bending moment will cause yielding of the fibres farthest
from the neutral axis, only if the bending moment in the elastic phase exceeds
twice the maximum bending moment in the elastic phase. In fact, after yielding
under a tensile stress, a stress decrease of 20y, is needed to cause yielding under
compressive stress and vice versa in compression (Fig. 61). Obviously, this is
only possible if the cross-section has a shape factor greater than 2, which does
not happen in cross-sections used currently to absorb bending moments, as
seen above.!”

17This line of reasoning is only accurate if there is no displacement of the neutral
axis in the elasto-plastic deformation, i.e., if the neutral axis is a symmetry axis. If
it is not, the stress may not decrease in the unloading in part of the fibres located
close to the neutral axis. However, in usual cross-sections the displacement of the
neutral axis is small and the stresses in the region where it occurs are low, so that the
error introduced by this procedure will be small, if any. Anyway, this error would be
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The residual curvature of the bar may be computed from the residual
stress in the fibres where yielding did not take place in the unloading. Thus,

we have
1 N 1 e 207
E = 7y _—_— - = .
p p Yy Ehe
As an alternative, if the curvature in the loading phase has been com-
puted, the residual curvature may be computed by superposing the curvature

recovered in the unloading on it. As the latter is elastic, we have

1 1 M
O O B
P/ residual P/ loading EI

It should be noted that this operation is valid regardless of the size of the
displacements and rotations caused by the deformation, since it is the addition
of two angles (the curvature is the relative rotation, measured in radians, of
two cross-sections at a unit distance from each other). In fact, the results
given by (181) and (182) are exactly the same (see example VII.13).

(181)

VII.10.d Ultimate Bending Strength
of Reinforced Concrete Members

As a final example of the application of the nonlinear bending theory, the
ultimate bending strength of a reinforced concrete member, with a rectan-
gular cross-section is computed. The cross-section of the bar is the same as
considered in Sect. VII.9. In this example, the rheological behaviour of steel
and concrete recommended in the Portuguese concrete norms is used: the
steel is considered as elastic perfectly plastic and to have a limit strain of
0.01; the one-dimensional constitutive law for the concrete is described by
a parabola for smaller strains (0 < € < 0.002), followed by a yielding zone
(0.002 < & < 0.0035), as represented in Fig. 99.18

The limit bending moment is reached when the steel reaches a strain of
0.01, or when the maximum strain in the concrete reaches 0.0035. In ac-
cordance with the above defined constitutive laws, there are four analytical

possibilities of ultimate bending strength, which are:'?

immediately detected, since it would lead to larger stresses than the yielding stress
Oy -
8n the recent European standards (Eurocode 2) different constitutive laws are
recommended. Among other differences, the limit strains both for the steel and for
the concrete vary with the type of material: for example, high strength concrete has
a lower limit strain. For the steel, either an elastic perfectly plastic or a hardening
elasto-plastic behaviour may be considered, with no limiting value for the strain in
the first case. The constitutive law for concrete is described by a unique curve, which
includes a softening zone.

19Tn these expressions and the ones that follow, we consider the compressive
stresses and strains in the concrete as positive.
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Fig. 99. Stress-strain diagram used in the computation of the ultimate strength of
concrete elements
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As an example, only the fourth possibility is analysed, i.e., the case of
having the ultimate strain in the concrete and the steel in the yielding zone.?°
Under these conditions, the tensile force borne by the steel is Ny = Qs0y,
where oy is the nominal value of the yielding stress and (), is the area of
steel in the cross-section. Representing the position of the neutral axis by its
distance from the upper side of the cross-section kh (with 0 < k < 1), from
the equilibrium condition of the stress resultants we get

N.23(rectangle)
2 1.5 17Q
,—bkho— ot obkho,, = Quoy = k= -2 Y
335 3.5 gty 21 bh o,
Ns
N..3(parabola)

The strain in the steel may then be computed from this value. The analysis
will be valid if

1—Fk
X <e, = 0.0035—— < 0.01. (183)

S

The ultimate bending moment may then be obtained by computing the
moment of the stresses with respect to the neutral axis

N; = Q0
M = Ns(1—kh)+ Ncl > k‘h + Ncg kh with Ng = %bkhorc
Ny = %bkha,.c .
20T the case of mild reinforcing steel, the yielding zone is about 1% of the total
range of strains considered in the stress-strain diagram. For this reason, with the

quantities of steel used in current members, the failure takes place under these
conditions.
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e— 0.035 Tpe
Tw ' 165 = Nf
kh o khI E Yy ”11
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h 1 kh
(1—k)h

— 2209288 40\“—1 1

2}/ 0.01 Oy N

Fig. 100. Limit state of a reinforced concrete rectangular cross-section

The other possibilities of failure may be physically grouped in two. One
occurs in members with a very low amount of reinforcing steel, where the
steel reaches the maximum strain e, = 0.01 before the concrete (g5, > 0.01
in (183)). The other possibility occurs in members with a very high amount
of steel, where the maximum strain in the concrete is attained with the steel
in the elastic phase (g5 < UE—YS) Members with this kind of failure should be
avoided, since the collapse is not preceded by plastic deformations, i.e., it is
a brittle failure, which is not desirable from the point of view of the safety,
as explained in Sect. VI.5. The other failure possibilities could be analysed in
the same way as the situation analysed above, by means of the equilibrium
conditions of the forces acting in the cross-section.

VII.11 Examples and Exercises

VII.1. Determine the bending strength of a bar with a square cross-section,
when the action axis is parallel to:
(a) one of the sides;
(b) one of the diagonals.

Resolution

(a) The moment of inertia of a rectangular cross-section with height h, with
respect to the symmetry axis which is parallel to the base b, is given by
the expression

bh?
I=—.
12
Since the maximum distance to the neutral axis is in this case §, the
section modulus takes the value (b =h = a)
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Denoting by o, the nominal value of the material’s resisting stress, the
resisting bending moment is

3
a
= —0, -
all 6 all

(b) If the action axis is parallel to one of the square’s diagonals, the neutral
axis is the other diagonal. The moment of inertia with respect to this axis
isalso I = % In fact, in a square, the moment of inertia is the same with
respect to any axis passing through the centroid, since the two principal
moments of inertia are equal. The maximum distance to the neutral axis
is, in this case, v = % Thus, the resisting bending moment takes the
value

b 1 % ad 1

My = —0u1 = % 0an = 701 =
11 11 = 11 6\/§ 11 \/i

VIL.2. A tree trunk with circular cross-section of diameter d is to be cut
to a rectangular cross-section of base b and height h. Determine the
dimensions b and h, in order to maximize:

—

M2y ~ 0.707MZ, .

(a) the bending stiffness;
(b) the bending strength.

Resolution

(a) The geometrical parameter which enters into the definition of the bending
stiffness is the moment of inertia. Since the diagonal of the rectangle
cannot exceed the diameter of the trunk d, the moment of inertia may be
expressed as a function of b, yielding (h? + b? = d?)

S b(@ =)’
C12 12

The value of b which maximizes I may be obtained from the condition of a
zero derivative in order to b, which gives

TR P
2

ar 5 2 B
E—O:>al 40°=0 = b=

(b) To obtain the maximum bending strength, the section modulus must be
maximized. The same procedure as before yields

2 b(d*—0?
L_whr bd=V) d<1)0;»d23b20

v 6 6 ’ b \v

d h:@d:%:ﬂzl.zﬂél.

BV BV

= b
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VII.3. Compare the section moduli of the three following rectangular cross-
sections with the same area ) = bh. The action axis is parallel to the
height h.
(a) Base b and height h.
(b) Base £ and height 2h.
(c) Base 2b and height 2

VII.4. Wire made of S 235 steel [10] with a circular cross-section of diameter
d is wound around a cylindrical drum for transportation. Determine
the minimum diameter D of the winding needed to avoid residual de-
formation, when the wire is unwound.

Resolution

The wire will not have a residual curvature, if the yielding strain is not ex-
ceeded during the winding process, i.e, if the curvature does not exceed the

value ((142), y = £)

gmalegggy = ESQEJ
p2 P d
The yielding stress of this steel and its modulus of elasticity are oy, = 235M Pa
and E = 206G Pa [10], respectively. Thus, the minimum diameter of the wind-
ing will be
d Ed 206 x 10°

D=2p=2 =20 2052 8774
P T oy 235 x 108

=D - 4.

The exact minimum diameter of the drum would be D 5

drum

VIL.5. Express the section modulus and the moment of inertia as functions of
the cross-section area {2 and the height / in the following cross-sections
(the action axis is parallel to the height h):

(a) rectangle of base b and height h;

(b) circle of radius r;

(¢) isosceles triangle of base b and height h;

(d) rhombus with a horizontal dimension b and height h;

(e) I-beam INP200 [9];

(f) I-beam HE200B [9].

Resolution
(a) Rectangle

bh3 I =
bhh2 725 h? ~ 0.0833Qh%; —
= v

1
12 12 —EQh~OJ&WQh.

SEII
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(b) Circle
ard (27“)2 1
I=—= 72 T TGth = 0.06250h2;
I I
= = =0.125Qh.
v
(¢) Triangle
bh® 1 bh 1
I=¢= TS?;R — EQh? ~ 0.055692h2%;
I I 1
~ =5 = —Qh~0.0833Qh.
v Zh 12
(d) Rhombus:
bh® 1 bh 1
I = T 2 = ﬂQh? ~ 0.0417Qh%;
I I 1
— = =—-Qh~0.0833Qh .
v 3 12

(e) I-beam INP200 ([9], 7.1.1):

I = 2140cm*
_ 2140 2 2
O 55 I mﬂh ~ 0.1597Qh
=33.5em® =
% = é ~ 0.3194Qh .
h = 20cm
(f) I-beam HE200B ([9], 7.1.3):
I = 5696cm4 o 5696 2 2
O 51 I mﬂh ~ 0.18230Qh
=78.1ecm°> =
% = % ~ 0.3647Qh .
h = 20cm 2

From these examples, we conclude that, by choosing cross-sections with less
material in the region around the neutral axis, like the I-beams, both the
bending stiffness and the bending strength are substantially increased, without
there being any need to increase the amount of material (represented by )
or the height of the cross-section.

VII.6. The bar with the square cross-section represented in Fig. VII.6 is made
of a brittle material with linear elastic behaviour until rupture. Deter-
mine the increase that can be obtained in bending strength by cutting
the bar as represented in the Figure.
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Resolution

Since the material is brittle, rupture takes place for tensile stresses, when
the rupture strain is attained, which causes a crack in a transversal direction
to the fibres. As a consequence of the stress concentration at the tip of the
crack (see Sect. VI.9), it propagates immediately to the whole cross-section
causing the failure of the bar. For this reason, the bending strength can only
be increased by improving the elastic loading capacity, i.e., by improving the
section modulus. The two small symmetrical cuts shown in the Figure reduce
the maximum distance to the neutral axis, v without a great reduction of the
moment of inertia I, which may increase the section modulus %

The moment of inertia of the cross-section with the cuts defined by kb, may
be computed from the expressions for the moment of inertia of a rhombus
I = %) and of a triangle (I = %) and from the parallel-axis theorem,
yielding (Fig. VIL.6)

3 3 2
7= 2@, | 2kb(KD) %Zkb kb (1 - ?))k) bQ]

48 36

1ok, 2\’ .,
_[3—9—% (1—3k>]b.

The section modulus takes the value

I I b1 k4 2 \?
- = = - —2k*(1-Zk .
v (1-kb 1-k|3 9 3
The value of k which maximizes this quantity may be computed by an-
alytical or numerical means, leading to the conclusion that, for k = %, the

section modulus attains the maximum value 0.35117b%. Comparing this value
with the section modulus of the original cross-section, we get

k=0 = L =1 -033333° I
(U)max

= (&), =ossumt (1)

v v

=1.0535 .

S~ S~

_ 1
k_§:
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We conclude that the cuts can increase the bending strength of the bar by
5.35%.

VIL.7. Figure VII.7 represents the cross-section of a bar supporting the indi-
cated bending moment M. Justifying the procedure used, determine
the variation of the failure bending moment, when the top and bottom
small rectangles (top: 2a x 4a; bottom: 2 x a X 4a) are removed, so that
an I-shaped cross-section is obtained, for:

(a) a brittle material with linear elastic behaviour and rupture stress o,;
(b) a ductile material with elastic perfectly plastic behaviour with yielding
stress oy,.

Resolution

(a) In the case of a brittle material with linear elastic behaviour until rupture,
the relation between the ultimate bending moments, with and without the
small rectangles, coincides with the relation between the section moduli
in the two situations. In the case of the original section (Fig. VIL.7), the
moment of inertia and the section modulus are given by the expressions

2a(36a)®  30a(28a)3 B 30a(20a)?
12 12 12

I 42656a* 21328
= () @ _ a® ~ 2369.784° .
v/, 18a 9

In the case of the cross-section without the small rectangles, the same
quantities take the values

I, = = 42656a*

;. _ 32a(28a)° _ 30a(20a)® _ 115616a’

= ~ 38538.67a*

12 12
I 115616a*
N () =3  ~2752.76a° .
V), 1l4a

The relation between the section moduli in the two situations is then
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—~

I

;7)2 ~ 1.16161 .
(5)1

We conclude that the removal of the small rectangles increases the ultimate

bending strength by 16%

(b) In the case of a ductile material with elastic perfectly plastic behaviour,
the relation between the ultimate bending moments is given by the rela-
tion between the plastic section moduli. In the original cross-section (Fig.
VII.7) this quantity takes the value

Z1 =2 x (18a x 2a x 9a + 30a x 4a x 12a) = 3528a> .

The removal of the small rectangles causes a fall in the plastic section modulus,
which corresponds to the first moment of the removed area

Zy =71 —2 x 2a x 4a x 16a = 3272a° .
The relation between the plastic section moduli in the two situations is then

Zy  3272a3
—= = ~ 0.92744
Zy  3528a3 092744,

which represents a reduction in the ultimate strength of 7.256%.

VIL.8. A bar with a rectangular cross-section with the dimensions b x 2b sup-
ports a bending moment whose action axis is vertical and makes an
angle of 45° with the symmetry axis of the rectangle. Determine:

a) the maximum stress in the cross-section;

b) the position of the neutral axis;

¢) the curvature of the bar.

d) Compare the answers to questions a) and c), with the corresponding quan-
tities obtained when the bar is rotated so that the action axis becomes
parallel to the larger sides of the rectangle.

(
(
(
(

Resolution

(a) Since we have a cross-section which has a rectangular convex contour with
a symmetry axis, (152) may be used to compute the maximum stress. To
this end, it is necessary to compute the following quantities (axis y is
parallel to the largest side of the rectangle)

I\ bk by 2, (1) R 1,
v), 6 6 3 v), 6 6 3

3 5
M, = Mcosa = gM M, = Msina = gM.
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Substituting these values in (152), we get

V2 V2
Omax — TM TM = 9\/5% ~ 3182% .
2p3 3 4 b b3
(b) The position of the neutral axis is defined by angle 3, which may be
obtained by means of (151), yielding

I b(2b)3
tan § = Il tan 45° 2})53 =4 = [ =arctan(4) ~ 75.96° .
Y 2bb°

We conclude that the deflection plane makes an angle of 75.96° — 45°
30.96° with the vertical plane

(¢) The curvature may be computed by means of (154), yielding

1 M 1 i M

- == ~4.373—— .
E 372 265\ 2 biE

NS

(d) If the cross-section is rotated so that the larger sides of the rectangle
become vertical, the maximum stress and the curvature take the values

Omax = ;Z?’ = 1.5bM3 <instead of 3.182%)
% = Ebjgg)s = 1.5% (instead of 4.373%) .
VIL.9. Demonstrate the last equality of (154).
Resolution
The last equality of (154) is equivalent to the expression
sin?f  cos’a  sin’a
12 z o (@)

since we have Iy = Sijge

(148). Equality (a) may be demonstrated on the basis
of the following expressions

tana = j—ytanﬁ (151) (b)

. 9 tan? o
sin“a = ———— ()
j 1+ tan“ «
m . 1
0 — 5 B+a (Fig.75) (c) cos? o =

— (f
1+ tan® o ®)
I, =I,cos’ B+ I,sin? 3 (d) sin (a 4+ b) = sinacosb + cosasinb

(g) -
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Substituting sin? a and cos? a in the second term of (a) by (e) and (f),
respectively, and using (b), we may establish the relation

cos?a  sin?a 1

I2 Iz I%COSQﬁ—‘rI;Sinzﬁ ()

By means of (g), we may express sinf as a function of angles « and £,
yielding

sinf = sin {(g —ﬁ) —i—a} = cos a (cos 3 + sin S tan )

I
= cosa (cosﬁ + sinﬁj—y tanﬁ) )

x

Using this expression, the first term of (a) may be transformed, so that it
is expressed in terms of I, I, and 3

2
sin2 0 (cos B+ sin ﬂ% tan ﬁ)
T2 = cosTa 2 z
2 2 . 4
cos” T, I: sin®* 3
—_———— 2 Y a2 Yy
- A cos ﬁ—i—ZIzsm B—I—I%(:OSQB
1+ %tanQﬁ b
‘ 2(a)
1 IZcos* B+ 21,1, sin® Bcos® B+ I sin* 3 1
2 I%cos2,6’+IyQSin2,6’ B I§C0526+I§sin26 )

This result coincides with (h), which shows that (a) is correct.

VII.10. Determine the shape and dimensions of the core of the following cross-
sections:
(a) rectangle with base b and height h;
(b) circle with radius r;
(¢) rhombus with symmetry axes b and h;
(d) equilateral triangle with side length a;
(e) ellipse with semi-axes lengths a and b.

VII.11. The cantilever beam represented in Fig. VII.11-a is made of two ma-
terials, a and b, with elasticity moduli £, = 2F and E, = 5E. The
beam supports a vertical loading p by surface unit and a horizontal
concentrated force P = 500pa?, as indicated in the Figure. Determine
the maximum normal stress in each of the materials.
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Resolution

Both the bending moments caused by the vertical and horizontal forces attain
maximum values at the built-in end, so that the maximum values of the normal
stress occur in that cross-section.

As the beam is made of two materials with linear elastic behaviour, it is
necessary to compute the centroid’s position, weighting the first area moments
with the elasticity moduli of the two materials, as given by (167). Since the
cross-section has a vertical axis of symmetry, the position of the centroid is
completely defined by the distance d (Fig. VII.11-b)

. Qudo By + Qdy By . 241

d— 2~ 7.08824

O, E, + WE, g4 @7~ 1-0882da
. d, = 10a Q, = 40a?
with {db — 45, {Qb — 18a2.

material a

material b-

Fig. VIL.11-a

The weighted moments of inertia of the cross-section with respect to the
principal axes x and y (Fig. VIL.11-b) take the values (172)
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A ‘My e.n.

Fig. VIL11-b

Jo = Ea [q, y*dQ, +Ep Jo, y?d,
—2F [% + 40a2(2.91176a)2}
+5E [% + 18a2(2.58824a)2]
~ 1915.34Ea*
Jy = E, an 22dQ, + Ey be 22dQy
=2 [22G30 ] 4 5B [ 20| ~ 2696.67Fa’ .

The bending moments at the left end cross-section (built-in end) take the
values

10pa (200a)*

M, = -
2

= —2x10°pa® M, = —500pa®(200a) = —1x10°pa® .

Since the neutral axis must be in the same quadrant as the resultant
bending moment (Fig. VII.11-b), points A and B are the farthest points from
the neutral axes in materials a and b, respectively. The stresses in these points
may be computed by means of (172), yielding

M,E,  M,E,
- x

Og—max — Jx Yy Jy
—2 x 10°pa’(2E) —1 x 10%pa®(2E)
1915.34a*E (=3.91176a) 2696.67dAE (10a) 958.59p,
MzEb MyEb
0; . = _ T
b—max Jx Jy

~ —2x10°pa®(5E)
T 1915.34a*E

—1 x 10°pa®(5FE)
2696.67a*E

(7.08824a) —

(—a) =~ —3886.18p .
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- a.a.

y 02 2
Fig. VII.12

VII.12. Consider the cross-section of a composite bar as depicted in Fig. VI.20.

The moduli of elasticity of materials a and b are, respectively, F, =

2F and E, = E.

(a) Determine the orientation of the principal axes of bending, i.e.,
the orientation of the action axes which cause plane bending.

(b) Determine the orientation of the neutral axes and the maximum
stresses in the two materials, caused by a bending moment M
with a vertical action axis.

Resolution

(a) The principal bending axes may be computed from the weighted moments
and the product of inertia with respect to the axes x and y represented
in Fig. VII.12. These quantities take the values (cf. (168) and (170))

T, _2E°(4C) +E°(4C) — 16Ec

Jy _ 2E2c(122c) +E2c(2c) _ 4EC4

Jpy = —2BS2 94 RO 9
= —2Ec*

The principal directions of bending may be determined by means of the
same expression that is used for the computation of the principal direc-
tions of inertia in homogeneous cross-sections, yielding

200, A 0, =9.22

tan20 = — -
o Jo—J, 16—4

=
0, = 99.22° .
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(b)

VII Bending Moment

The orientation of the neutral axis may be found by means of the ex-
pression resulting from the condition o, = 0 in (172), which yields
[ = arctan (% tan a), where 1 and 2 are the weighted principal directions
of inertia (the principal directions of bending), « is the angle between the
positive directions of the moment vector and axis 1 and 3 is the angle be-
tween the neutral axis and the positive direction of axis 1. The weighted
principal moments of inertia may be computed from the values of J;, J,
and J,, above, by means of the expressions of rotation of reference axes
of inertia

Ji = Jycos? 0, + J, sin® 0, — 2.J,, sin 6, cos 6, = 16.32E¢*

Jo = Jypcos? 0y + J, sin? 0, — 2.J,, sin 0, cos 0y = 3.675Ec* .

Since the position of the moment vector (direction z, Fig. VIL.12) is in
this case given by o = —9.22°, we get for angle 8 the value (Fig. VII.12)

(3 = arctan {jl tan(—9.22°)} = —35.79° .
2

The stresses could be obtained from (172). As an alternative, (169) may
be used. In order to use the second possibility, the moment of inertia with
respect to the neutral axis is needed

J,, = Jy cos? B+ Josin® 3 = 12.00E¢* .

From Fig. VII.12 we conclude that the angle between the action and
neutral axes is

0 =180° — (35.79° — 9.22°) — 90° = 63.43° .
The maximum distances to the neutral axis are

Vq = 2ccos (35.79° — 9.22°) = 1.789c

vp = 2¢cos (35.79° — 9.22°) + ¢sin (35.79° — 9.22°) = 2.236¢ ,

respectively for materials @ and b (points A and B, Fig. VII.12). The
maximum stresses in the two materials are then (169)

12.00E¢* \ Ta—max = 5 45pm 1-789c = 0.267 25
= —1342F
0= Gnezaze | owke =

Ob—max = T3 2-236c = 0.16724 .

VII.13. Consider a prismatic bar that has a rectangular cross-section with a

height h, made of a material with elastic perfectly plastic behaviour
characterized by the elasticity modulus & and the yielding stress oy..
A bending moment with an action axis parallel to the height h, with
the magnitude M = 1.3M, (M, is the maximum bending moment in
the elastic regime) is applied and subsequently removed. Determine:
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(a) the curvature of the bar in the loading phase;
(b) the residual curvature after unloading;
(c) the residual stresses.

Resolution

(a) The curvature in the loading phase is given directly by (179), yielding

ToZov L 5012 S ss
p hE\3—2x13 —~ hE T p.’

where p. is the curvature radius for M = M,.
(b) The deformation recovery in the unloading is elastic and proportional to
the removed bending moment. Thus, we have
1 1 1 1 1
- =-13— = - = (1.581 — 1.3) — = 0.281— .
P unload Pe P residual Pe Pe

(¢) To compute the residual stresses it is necessary to determine the height of
the cross-section which remains in the elastic regime in the loading phase
(he, Fig. 98). To this end, (178) may be used, yielding

3 1 (h\* M
M_Mel2_2<h)]ihe_Mh—\/OAhNOﬁS%.

According to Fig. 98, the stresses caused by unloading are 1.30y, and
V0.4 x 1.30y =~ 0.8220y,, respectively in the farthest fibers and in the
fibres at distance % from the neutral axis. Thus, the residual stresses
distribution takes the form represented in the last diagram of Fig. 98,
with a residual stress in the farthest fibres of 0.3y, while in the fibres
at distance % from the neutral axis the residual stress takes the value
oy — 0.8220y = 0.1780y-. The residual curvature may also be computed

from this last stress (181), yielding

1 2 x 0.1780y 20y 1
1 — 22 _h98127Y — 981 — .
P residual E > 0.632h Eh Pe

VIIL.14. Compute the shape factors of the I-beams INP200 and IPE200 [9].

Resolution

INP200

The plastic section modulus ((180) and following text) may be expressed as
a function of the first area moment of half cross-section with respect to the
neutral axis (S, [9], 7.1.1), i.e.,

S, = 125cm> = Z =25, = 250em? .
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The shape factor may be given by the relation between the plastic (Z) and
the elastic (%) section moduli, yielding

1 Z 250
Z=92Mdem® = p =" =" ~1.168.
v YT 1
IPE200
The same procedure gives the result ([9], 7.1.2)
Sy = 110cm®
2 x 110
= o= ~1.134.
; LT
~ = 194cm?
v

VII.15. Consider the cantilever beam with a rectangular cross-section and
variable height represented in Fig. VII.15. Compare the exact value
of the stress in point A, obtained from the solutions of the Theory
of Elasticity, with the approximate solution furnished by the bending
theory for the same stress. The cross-section has a constant width b.

2a

4a

Fig. VIL.15

Resolution

According to the theory of prismatic members, in cross-section AA’ we have
shear force and bending moment, which induces in point A the normal stress

M = T7Pa 7Pa p
= 0 = b(2 5a)2 = 672*{) .
AA = 25a == a

The solution of the Theory of Elasticity may be obtained by combining the
solutions presented in Sects. VI.7.c and VIL.8.b for the wedge shaped element.
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To this end, it is necessary to consider the system of forces, which is statically
equivalent to force P, but acting in point B. Force P is decomposed into two
components, one (N) in the direction of the wedge axis (segment BC), and
other (V) in the perpendicular direction. Thus, we have

M =2Pa V:PCOS% N:—Psin%.
In accordance with (165), the bending moment M causes the stress (a =
arccos 3, r = 5a)
2Pa 2 P
oy =——>—— ~2.2007— .
M b (5(1)2 1= taﬁa ab

The stress caused by the shear force V may be computed from (164),
yielding

P
2
~ 5.4425— .
«a —sina b5a ab

2 P cos § sin

oy =

The axial force N induces the stress (cf. Subsect. VI.7.c)

2 —Psin § cos 5 P
= ~ —0.0982— .
oN o+ sin« b5a ab

Thus, the total stress in point A is

oc=o0y +oy+oy :7.5455 .
ab

This value is about 12% larger than the solution of the bending theory,
which exceeds the predictions indicated in Subsect. VII.8.b. This is because
there, a perpendicular section to the wedge axis was considered. In fact, if we
consider, instead of section AA’, the section AA”, the solution of the bending
theory becomes substantially closer to the exact solution, exceeding it by
about 5%.

— P P
AA7 =2 x basin® = o= — L% _ 795661 |
2 b(lOsin %a) ab
6

VII.16. The prismatic bar with the cross-section depicted in Fig. VII.16-a is
made of two materials, a and b, and undergoes a uniform temperature
increase At. The materials have linear elastic behaviour defined by the
parameters

E,=F E, =2F Q, =« ap = 2a .

(a) Determine the elongation and the curvature introduced by At
(the bar has length [).
(b) Determine the distribution of stresses in the cross-section.
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e O 6
Ky % % EaAt
Ualcz 33
C a >
: Ty -30
¥ C
1 % 18
O'b1C2
C -
- e @ 18
(a) (b) (c)
Fig. VIL16
Resolution

(a)

The temperature variation causes bending in the bar, as explained in Sect.
VI.6.d (Fig. 65). In order to compute the corresponding curvature, let us
first suppose that the bending is prevented by applying adequate bending
moments at both ends of the bar. Under these conditions, the stresses
in the cross-section are given by (135), since the bar remains straight,
yielding (2, = Q, = ¢?)

2F2c4 « 2
= — At— = —FaAt
a1 Ec2 +2Ec2 ¢2 3 @
2F2c4 - 2
= — At— = ——FaAt.
b1 Ec? +2Ec? c? 3 @

The couple of forces corresponding to the stress distribution in the cross-
section (Fig. VII.16-b) is the bending moment needed to prevent bending.
This moment takes the value

2
M=o0,cxc= §C3E0éAt .

The elongation of the bar is not affected by this bending moment, and
so it may be computed from the stress in one of the materials. Using, for
example, g,,, we get from (117)

Al =1 (aAt + ‘g) =1 (aAt + gaAt) - gaAtl .
If a bending moment M’ = —M , is subsequently applied to the bar, the
total bending moment vanishes and only the temperature variation re-
mains. Thus, the curvature acquired by the bar in this second loading
phase is the curvature caused by the temperature variation. This curva-
ture may be obtained by the theory of bending of composite members
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described in Sect. VIL.9. To this end, the position of the neutral axis must
be computed ((167) and Fig. VII.16-a)

cz(g—i—d)E:cZ(%—d)QE:d:g.

The weighted moment of inertia takes the value (168)

ct c  c\2 ct c  c\2 11
L=E|S 2(7 7) 28 | & 2(777) - Bt
J [12+C 276 | T T\e TG 12°¢
The curvature is then (169, 8 = 90°)
1 M 3EEaAt 8 alt
o Jn Bt 11 e

(b) The stresses caused by the bending moment M’ may by computed by
means of (169), yielding

ME,  2AEaAtE 8 y
= = = —FaAt~
a2 Jn Y %Ec4 Y 11 @ c
ME,  3EaAR2E 16 y

= = = 7E At* .
b2 In 4 %Ec4 STttt

By superposing the stresses caused by the temperature variation in the
straight bar to the bending stresses, the total stresses are obtained

2 8
Oq = 0 + 0,9 = ( + y) EaAt

3 1lc
2 16
O'b = Ubl +Ub2 = (—3 + ]_]_:Z) EOéAt .

Particularizing these stresses for the upper fibres (y = — (¢ +d) = —%c),
to the interface between the two materials (y = —§) and to the bottom
fibres (y = c—d = %c), the stress distribution represented in Fig. VII.16-c
is obtained.

VII.17. Figure VII.17-a represents the cross-section of a beam made of a duc-
tile material with elastic perfectly plastic behaviour. The bending
moment M acts in the cross-section. Compute the shape factor of
this cross-section.

Resolution

The shape factor is the relation between the plastic moment M, and the
maximum moment in the elastic regime M., which is equivalent to the relation
between the plastic and elastic section moduli, Z and %, respectively
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Since the cross-section does not have a horizontal axis of symmetry, the
neutral axis does not have the same position in the elastic and plastic phase,
suffering a displacement during the elasto-plastic phase, from the centroid of
the cross-section, to a position which divides the cross-section into two equal

areas.
The centroid’s position may be defined by the distance d (Fig. VII.17-b),

which takes the value
_ 6a%% +3a*(3a+ Ja)

d— — %, .
1242 @

The moment of inertia, with respect to the elastic neutral axis, is

6a2 3\> a(3a)® 1\> 3a4 5 \°
I=—"+6d%(= 3a® [ = = 13¢%2 (2 = 36a* .
12+CL(2&)Jr 12 +a(2a)+12+“ 2¢ “

The elastic section modulus is then

I 36a*

v 3a

=12a>.

The plastic section modulus may be computed from (180), with the neutral
axis in the position indicated in Fig. VIL.17-b (plastic n.a.), yielding

Q a 3 7
Z = B) (Ya1 + Yaa) = 6a® (5) + 3a® <2a + 2a> = 18a% .

The shape factor is then
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Figure VII.18 represents the cross-section of a bar made of a mater-
ial with elastic perfectly plastic behaviour with a yielding stress oy .
Determine the maximum values of the bending moment which can
be applied to this cross-section in elastic and in elasto-plastic regime.
What is the shape factor of this cross-section?

e
3p iR 10

i :

Fig. VIL18 Fig. VIL.20 Fig. VIL22

A steel wire with a yielding stress ey, and rectangular cross-section
with dimensions ax 3a is wound around a cylindrical drum. Determine
the minimum diameter the drum can have in order to avoid permanent
deformations in the wire. enddescription

Figure VII.20 represents the cross-section of a bar made of two ma-

terials, a and b, which have elasticity moduli £, = 2F and E, = 3F

and coefficients of thermal expansion o, = 3a and «a; = 2a. The
bar undergoes a uniform temperature increase At and supports the
bending moment M. Determine:

(a) the elongation of the bar, knowing that it has an initial length I;

(b) the curvature of the bar;

(c) the distribution of stresses in the cross-section.

To the bar considered in example VI.15 a bending moment M is

applied, whose action axis makes a 30° angle with the vertical.

(a) Determine the curvature of the bar, if only elastic deformations
oceur.

(b) If M is gradually increased, which of the two materials yields at
first? Justify the answer and determine the relation between the
maximum stress in this material and moment M, considering only
elastic deformations.

Supposing that the bar with the cross-section represented in Fig.

VII.22 is made of a brittle material with linear elastic behaviour until

rupture, ascertain if it is possible to increase its bending strength by

removing the two small rectangles, so that a square cross-section ¢ X ¢
is obtained. Justify the answer.
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VII.23.

VII Bending Moment

Answer the same question, supposing now that the material is duc-
tile and that the bar does not undergo cyclic loading.
The bar with the cross-section represented in Fig. VII.23 is made of a
material with elastic perfectly plastic rheological behaviour, defined
by the yielding stress oy and by the elasticity modulus E. Determine:
(a) the bending moment which is needed to plastify the flanges, while

the web remains in the elastic regime;

(b) the residual stresses, when this bending moment is removed;
(c) the residual curvature of the bar.

e.a.

VII.24.

VII.25.

VII.26.

Fig. VIL23 Fig. VIL.24 Fig. VIL25

The bar whose cross-section is represented in Fig. VII.24 is made of
two materials, a and b, with linear elastic behaviour defined by the
elasticity moduli F, = 4F and E, = F, respectively. Determine the
maximum stresses in each material caused by a bending moment M
with a vertical action axis.

The cantilever beam AB (Fig. VII.25) is made of a material with lin-
ear elastic behaviour and is obtained by assembling four bars, so that
the cross-section represented in Fig. VII.25 is obtained. Determine the
distance d, so that the displacement of point B has the same direction
as the line of action of the force P. Justify the procedure used.
Determine and compare the plastic section moduli of the cross-section
depicted in Fig. VII.23 and of a rectangular cross-section with the
same area and the same height.

Resolution

The cross-section represented in Fig. VII.23 has a area € = 8a2. A rectangular
cross-section with the same area and the same height has a width 2a. The

plastic

moduli of the cross-section depicted in Fig. VIL.23 (Z;) and of the

rectangular cross-section (Z2) are, respectively
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3
Zi=2x (362 x 2a+a?x2) =104°
2 2
and
Zy =2 x 4a% x a = 8a® .

We confirm that, even in the case of constant tensile and compressive stresses,
the cross-section with less material in the region around the neutral axis has
a larger resisting moment, as mentioned in Sect. VIL.3 (see Footnote 38).

VII.27. Show that the solution obtained for the pure bending of a prismatic
bar made of a material with linear elastic behaviour obeys every con-
dition of equilibrium and compatibility.

Resolution

Considering a reference system, where axis x coincides with the neutral axis
and axis z is the centroidal axis of the bar, the solution of the problem may
be described by the expressions

_ By oy o 0 )
_7a€z_;,Ux—Jy—Txy—Tyz—Tmz—sm_sy_’ymy_’yyz_’yzz_ .

Oz

These expressions obey the constitutive law of the material (o = Fe).
Substituting them in the differential equations of equilibrium (5), we find at
once that they are satisfied (%"; = 0). The same happens with the conditions
of equilibrium at the lateral boundary (8, n = 0 = no, = 0). In the end
cross-sections we have n = 1, i.e., Z = no, = 0,, which means that the
equilibrium conditions are satisfied only if the bending moments are applied
by means of forces distributed as defined by the linear law defining o,. If this
does not happen, the solution is only valid for points which are sufficiently
far from the end cross-sections for Saint-Venant’s principle to be considered
valid.

The local conditions of strain compatibility (53) are automatically satis-
fied, since the only non-zero stress (o) is a linear function of coordinate y. In
the case of a multiply connected cross-section, the integral conditions of com-
patibility would have to be verified, which would require the analysis of the
displacement functions corresponding to the above strain distribution. This
analysis is, however, not presented here (see, e.g. [1] or [4]). We may also con-
clude that the integral conditions of compatibility are satisfied by the analysis
explained in Sect. VIL.6.




VIII

Shear Force

VIII.1 General Considerations

Pure bending is a very rare loading condition. In fact, slender members are
very often under the action of shear forces caused by transversal loading or
by end moments. The presence of the shear force V' implies that the bending
moment cannot be constant, since V = % (non-uniform bending: M # 0
and V' # 0). The shear force is balanced by shearing stresses 7., and 7., acting
on the cross-section of the bar. Denoting by V,, and V, the components of the
shear force in the reference axes x and y, the shearing stress distribution in

the cross-section must obey the conditions

/ T dQ =V, and / Ty dQ =V, . (184)
Q Q

A supplementary condition is furnished by the reciprocity of shearing
stresses in perpendicular facets, which is also an equilibrium condition (see
Subsect. I1.3.a). According to this condition, if there are no shear forces with
a component in the longitudinal direction, applied in the lateral surface of the
bar, the shearing stress will be zero in that direction and, as a consequence,
in the points of the cross-section which are close to the boundary, the com-
ponent of the shearing stress which is perpendicular to it will also be zero
(Fig. 101). Thus, in the points of the cross-section at an infinitesimal distance
to its boundary, the shearing stress will be tangent to the border line.

It is obvious that there are infinite stress distributions which obey this
condition and also satisfy (184). We have, therefore, a problem with an infinite
degree of indeterminacy. The law of conservation of plane sections cannot be
used to solve the problem, since, as explained in Sects. V.10 and VII.1, the
shear force is not a symmetrical internal force. Besides, the superposition
principle cannot be used to analyse the effects of the bending moment and
of the shear force separately. In fact, this principle refers to distinct sets of
external loads and it is not possible to find a system of transversal forces
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e

Fig. 101. Shearing stress at the boundary of the cross-section

which causes shear force without introducing a bending moment, since M =
JVdz + C, although the opposite is possible, as seen in the analysis of the
bending moment.

For these reasons, the analysis of the effect of the shear force expounded
here is limited to prismatic bars made of materials with linear elastic be-
haviour. Furthermore, the following starting hypothesis must be considered
(Saint-Venant’s hypothesis): the normal stresses caused by the bending mo-
ment in the case of non-uniform bending may be computed by the expressions
developed for circular bending. The validity of this hypothesis will be discussed
later. First, it is used to develop the basic tool for the analysis of the effect
of the shear force acting on the cross-section: the expression for the computa-
tion of the longitudinal shear force, i.e., the shear force acting on longitudinal
cylindrical surfaces which are parallel to the bar’s axis.

VIIIL.2 The Longitudinal Shear Force

In a prismatic bar under non-uniform bending let us consider the piece defined
by two cross-sections at an infinitesimal distance dz from each other. In this
piece let us consider a longitudinal cylindrical surface, defined by the fibres
contained in a straight or curved line of the cross-section (Sect. VIL.2), as
represented in Fig. 102 (squared surface). That line divides the cross-section
into two distinct parts, which means that the longitudinal surface divides the
piece of bar into two distinct bodies. In order to simplify the development, we
first analyse only the case of plane bending.

The equilibrium conditions of the piece of bar as a whole yield the well-
known relations between the transversal load P, the shear force in the cross-
section V and the bending moment M. Using the sign conventions represented
by considering as positive the directions depicted in Fig. 102, we get

YNF, =0=P=-49

(185)

SM,=0= V=241
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Fig. 102. Longitudinal shear force in a prismatic bar under non-uniform bending

Let us now consider the equilibrium condition of the longitudinal forces
acting on the part of the bar defined by the hatched area €2, of the left and
right cross-sections, which is separated from the remaining bar by the squared
longitudinal surface. In the areas €2, of the left and right cross-sections, normal
stresses caused by the bending moment are acting. According to the Saint-
Venant’s hypothesis, the forces resulting from these stresses in the left and
right cross-sections are given by the expressions (Fig. 102)

My Na = fsza odQ, = %fszaydga = #

= (186)
i Ny + dN, = MM [0y dQ, = Ms 4 S

g

In these expressions S = fﬂa yd€), represents the first area moment of the
area (), with respect to the neutral axis. The resultant of these two opposite
forces — dN, — must be balanced by the longitudinal shear force dE, acting
on the contact surface between the two bodies (the squared surface). Thus,
this force takes the value (dM = Vdz, (185))

SdM VS

dE = N, + dN, — N, =
* I I

dz . (187)

If the equilibrium of the upper part were to be considered instead, an equal
force with opposite direction would be obtained, since the unbalanced force
dN, would have the opposite direction. The first area moment would be —S,
since the area moment of the whole cross-section in relation to the neutral
axis is zero. From (187) we can see that, of all possible longitudinal surfaces,
the neutral surface has the maximum longitudinal shear force, because the
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maximum absolute value of the first area moment S corresponds the whole
tensioned area (or to the whole compressed area) of the cross-section.!

The longitudinal shear force per unit length is called the longitudinal shear
flow and is given by the expression

_dE VS
I= dz T~

In the case of inclined bending, the longitudinal shear force may be com-
puted by superposing the forces corresponding to the decomposition of the
bending moment and the shear force in the principal axes of inertia, which
leads to the expression (cf.(150), dM, =V, dz and dM, = -V, dz)

_(VyS. VLS,

(188)

where S, = an ydQ, and S, = an xdQ, are the first area moments of
Q. with respect to the principal axes = and y, respectively. An alternative
expression for inclined bending is presented in Subsect. VIIL.3.f.

In order to illustrate the importance of this internal force caused by the
shear force V, let us consider the cantilever beam depicted in Fig. 103, which
is made of two bars with square cross-section b x b.

[l

—
o
Nag
N Y

[N

(b) P
2

Fig. 103. Non-uniform bending of a built-up beam: (a) without friction in the
contact surface; (b) bars perfectly connected together

If the contact surface between the two bars is lubricated, so that the friction
force between the bars is eliminated, each bar will bend independently and a

!The same holds in the case of inclined bending, since the maximum value of dE
corresponds to the difference between the resultants of the normal stresses acting
on the whole tensioned area (or on the whole compressed area) of the cross-section.
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relative sliding in the contact surface of the bars takes place, leading to the
deformation and stress distribution represented in Fig. 103-a. The maximum
stress caused by the bending moment, which occurs in the left end cross-
section, may be computed considering the force £ acting on one beam with

2
square cross-section b x b, yielding

In the same cross-section the curvature takes the value

U _ Mua _ 5 _ o PL
pa  FEI _E%_ Evt’

If the two bars are perfectly connected together, so that the above-
mentioned sliding is prevented, the two bars behave as a single unit with
a cross-section b x 2b. Thus, the deformation and the stress distribution take
the forms represented in Fig. 103-b. The maximum stress and curvature are
then given by

b Minax Pl 3Pl 1

a

Omax = T = b(20)2 5[)73 - io-max
— — v 6
M=Mux=Pl=19"1 oo Pl 6P 11
B EEE AR n

We conclude that, by preventing the sliding in the contact surface, the
bending stiffness is multiplied by four and the loading capacity of the beam
duplicates, since the maximum stress caused by a given load P is divided by
two, i.e., twice the load may be applied for the same maximum stress. In this
case, the connection between the two bars must resist the shear flow (188)

_dE VS Pb’3 3P
[=& =7 ~m =1y

In order to see how the cross-section deforms in the presence of a shear
force, let us consider a piece with infinitesimal length dz, of a bar with a
rectangular cross-section. The bar is under non-uniform plane bending with
the action axis parallel to height h, as represented in Fig. 104. The width b of
the cross-section is very small, compared with the height h, so the shearing
stresses in the cross-section may be considered as constant and parallel to the
sides of the cross-section in the whole width.

In the horizontal surface abcd the same shearing stress 7 as in the cross-
section is acting, as a consequence of the reciprocity of the shearing stresses.
In this surface, the stress distribution may be admitted as uniform, since
the dimension dz is infinitesimal. The resultant of this shearing stress is the
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Fig. 104. Shearing stresses caused by the shear force V' in a rectangular cross-section
with small width

longitudinal shear force given by (187). Thus, the shearing stress takes the
value

B Vs _ VS(y) V1w o,
deZ—dE—IdZ:>T(y>— 75 :>T(y)—12(4—y . (189)

This expression defines a parabolic stress distribution, as represented in
Fig. 104. The maximum value of the shearing stress occurs on the neutral axis
(y = 0) and takes the value pax = ‘g}z = %%

Since the shearing strain is proportional to the sharing stress (’y = é),
the cross-section must deform in such a way, that the shearing stress vanishes
in the fibres farthest from the neutral axis (y = % = 7 = 0) and attains a
maximum value on the neutral axis (y = 0 = 7 = 7ax). I the cross-section
were to remain plane, the shearing strain would be constant in the cross-
section (Fig. 105-a) and the distribution of shearing stresses would not be as
represented by (189). Thus, we conclude that, either the starting hypothesis
for the analysis of the effect of the shear force is wrong (the Saint-Venant
hypothesis), or the cross-section must deform as represented in Fig. 105-b.

However, by considering all pieces of infinitesimal length dz separately,
we verify that, provided that the shear force is constant, the same warping
in all cross-sections takes place. This means that the deformations of the
different pieces are compatible, i.e., that the deformed infinitesimal pieces fit
perfectly together. Thus, no additional normal stresses are needed to make
deformations compatible, which means that the strain distribution resulting
from Saint-Venant’s hypothesis obeys all conditions of compatibility.

This example shows that the cross-section may warp without the need to
change the length of the fibres (aa = a’d’, Fig. 105), provided that the shear
force does not vary along the axis of the bar. Since the deformation caused by
the shear force does not require changes in the fibres’ length, this force may be
resisted without altering the distribution of the normal stresses corresponding
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Fig. 105. Warping of a rectangular cross-section caused by the shear force V'

to circular bending, i.e., there is no objection to the validity of the Saint-
Venant hypothesis. This conclusion may be generalized to a cross-section of
any shape, since the shearing strains corresponding to any distribution of
shearing stresses may occur without the need to change the length of the
fibres, provided that the warping is the same in all cross-sections.

These considerations are not a complete proof of the validity of the Saint-
Venant hypothesis in the case of constant shear force. However, they do show
that this possibility exists and the solutions of the Theory of Elasticity for par-
ticular problems confirm that, if the shear force is constant, the distribution
of normal stresses caused by the bending moment is the same as in circular
bending, i.e., it is the same as when the cross-sections remain plane and per-
pendicular to the bar’s axis. This means that the law of conservation of plane
sections is a sufficient condition for a linear distribution of the longitudinal
strains in the cross-section, although it may not be necessary, as we conclude
from the above considerations.

In the case of a non-constant shear force, this is no longer valid. However,
as discussed in Sect. VII.7, the error affecting the computation of the normal
stresses and, as a consequence, the computation of the longitudinal shear force
by means of (187), is very small and may even vanish (see Sect. VIIL.6).

From a practical point of view, (187) may thus be considered exact. How-
ever, the computation of the shearing stress from the longitudinal shear force
always requires simplifying hypotheses, which introduce errors, whose impor-
tance depends on the shape of the cross-section. Thus, good approximations
for the shearing stress distribution are obtained for symmetrical cross-sections,
if the action axis of the shear force coincides with the symmetry axis and in the
cases of thin-walled cross-sections. In other cases it is generally not possible to
compute the shearing stresses by means of the elementary theory presented
in this book. These cases, as well as the errors introduced by the simplifying
hypotheses used are discussed below.
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Fig. 106. Shearing stress 7, in a rectangular cross-section: (a) real distribution;
(b) admitted distribution

VIII.3 Shearing Stresses Caused by the Shear Force

VIII.3.a Rectangular Cross-Sections

In rectangular cross-sections under plane bending the simplifying hypothesis
which consists of considering the shearing strain as constant in the width of
the cross-section is usually considered: that is, the stress varies only in the
direction parallel to the action axis of the shear force. This corresponds to
the generalization to rectangular sections with any width/height ratio of the
assumptions used in previous section for the small width case. In the case of
inclined non-uniform bending, the shear force is decomposed in the symmetry
axes. Thus, in a point defined by its coordinates x and y, the two components
of the shearing stress are ((189) and Fig. 104)

Vy 1 (h? 2 V, 3 2
Y 7572 (74_y> bilz|:72_6(%) :|

Ve 1 (b2 ]:2 Ve |3 z)2
ZT 71‘1,72 (74 - ) bh {72 —6 (5) :| :

The Theory of Elasticity provides a solution for this problem, which is
obtained without the simplifying hypothesis above. This solution indicates
that the shearing stress is not constant in the direction perpendicular to the
action axis of the shear force unless the Poisson’s coefficient vanishes, but
it has a maximum in the points close to the lateral sides, as represented in
Fig. 106-a.

The maximum value of the shearing stress, which occurs for x = :I:% and
y = 0, may be computed by the expression (cf. e.g. [4])

(190)

3T
Tmax = Q7

20

2 oo

v (h\’ ]2 4 1 (191)
ith  a=1+-—2—(2) |2-2 S —

v 1+v (b) l?) 2 n:lzii... n? cosh (nm2)
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The coeflicient « represents the correction to be applied to the maximum
stress obtained from (190), in the case of plane bending, nnax = %% This
coefficient depends on the height /width ratio (h/b) and on the Poisson coeffi-
cient of the material, v. The following table gives values of «, computed from
(191), for some cases.

o v=20]005| 01 | 015 | 02 | 025 | 0.3 0.4 0.5
h/b = 0.251.0000|1.2352|1.4491|1.6443|1.8233|1.9879|2.1399|2.4113|2.6466
0.50(1.0000{1.09441.1802{1.2585|1.3303|1.3964|1.4574|1.5663|1.6606
0.75]1.0000{1.0498|1.0951(1.1365|1.1744|1.2093|1.2415|1.2990{1.3488
1.00(1.0000{1.0301{1.0574{1.0823|1.1052|1.1263|1.1457|1.1804|1.2104
1.25/1.0000{1.0198|1.0379|1.0543|1.0694|1.0833(1.0961|1.1190|1.1388
1.50(1.0000{1.0140{1.0266|1.0382|1.0488|1.0586|1.0676|1.0837|1.0977
2.00{1.0000{1.0079|1.0151|1.0217{1.0277|1.0333|1.0384|1.0475|1.0554
4.00{1.0000{1.0020|1.0038{1.0054|1.0069|1.0083|1.0096(1.0119{1.0139

This table shows that the error of the solution furnished by (190) increases
with the value of the Poisson coefficient and decreases as the height/width ra-
tio increases. The dependence of the error on the relation % has greater practi-
cal relevance, since structural materials with a Poisson coefficient smaller than
0.05 are not common, while rectangular cross-sections with height/width ra-
tios superior to 2 are widely used.

VIIIL.3.b Symmetrical Cross-Sections

In practical applications cross-sections that are symmetrical with respect to
the action axis of the shear force are common. In these cases, the computation
of the shearing stresses may be carried out by considering two simplifying
hypotheses: the vertical component of the shearing stress 7., is constant in
the direction perpendicular to the symmetry axis; the total stress vectors 7 in
a line perpendicular to the symmetry axis have directions converging to the
point defined by the two tangents to the cross-section’s contour on that line,
as represented in Fig. 107.

The vertical component of the shearing stress may then be computed in
the same way as in the rectangular cross-section, taking the value

- _V5l)
v Io(y)

The horizontal component and the resultant stress may then be obtained
from this value and angle v, yielding

T Vs
e = Ty t & = /72 2 = -~ 193
K Tey tan T Teo + Ty cosy  Ibcosv (193)

(192)
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Fig. 107. Simplifying hypotheses for the computation of the shear force in a sym-
metrical cross-section

The maximum stress for a given value of y occurs clearly on the contour
of the cross-section, taking the value myax = %.

As an applied example let us consider a circular cross-section (Fig. 108).
The first area moment of the surface element defined by the central angle 3
is given by the expression (Fig. 108)

’

T dy’
/—/\/—/L/—g\ 3 . 9
dS =rsinf rdB sin 8 rcos 3 = r°sin“ fcos dS .
Integrating to the whole area defined by angle « (Fig. 108), we get

(e
2
S = r3sin? Bcos BdB = §T3 sin® o . (194)

—x

Fig. 108. Computation of the shearing stress in a circular cross-section
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The shearing stress 7., corresponding to the area moment S (194) is then
(b=2rsina)

) VS Virdsin*a 4V, 4V .,
Tpld) = — =—3_"" —— "~ " _sina=-—sin‘a.
v Ib ”TﬂQrsina 3 mr? 3Q

For a given value «, the maximum stress occurs at the boundary. From
(193) we get
-
=" = ,sz = —-—sina.
cosep sina  3Q

This expression attains a maximum for a = 7 (neutral axis), which means
that the maximum shear stress in the cross-section takes the value

. _ 4V
a=g = T=Toax =57 -

The solution given by the Theory of Elasticity for this problem indicates
that, unless the Poisson coefficient takes the value v = 0.5 (incompressible
material), the stress distribution is not uniform in the neutral axis. The max-
imum value occurs in the centre of the circle and takes the value [4]

4V ‘th _ 9+6v
Tmax_’ygﬁ wit 7_8(1+V) .

The error for the approximate solution vanishes for v = 0.5 (y = 1) and
takes the maximum value for a vanishing Poisson’s coefficient (y = 1.125).
For the mean value v = 0.25, we get v = 1.05. In the case of steel (v = 0.3)
the error is 3.8% (v = 1.038). We conclude that the error introduced by the
simplifying hypotheses is relatively small.

VIII.3.c Open Thin-Walled Cross-Sections

Many of the slender members currently used in structural engineering, espe-
cially in metallic constructions, have thin-walled cross-sections, i.e., cross-sec-
tions made of straight or curved elements with small thickness, in comparison
with the cross-section dimensions. Usual profile sections, such as I-beams,
channel beams, angle sections, Z-sections, T-beams, circular or rectangular
tubes, etc., are examples of this kind of member. In this Sub-section, we will
deal with open thin-walled cross-sections, i.e., simply-connected thin-walled
cross-sections.

As seen in the study of the shearing stresses in rectangular cross-sections,
if the width is small compared with the height, the simplifying hypothesis
of considering constant stresses in the thickness b is very close to the actual
distribution. The same happens in thin-walled cross-sections, like that rep-
resented in Fig. 109. Thus, by considering the longitudinal surface which is
perpendicular to the centre line of the cross-section wall and contains the
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point where the shearing stress is to be computed, the shearing stress may be
obtained from the longitudinal shear force dE. From (187) we get
VS dE VS
dE = d = — = ==,
Tees I 4 edz Ie
where e represents the wall thickness in the point where 7 is computed. The
computation of the area moment S of thin walls may be simplified if the area
is considered as concentrated on the centre line. Denoting by s a coordinate
which follows that line (Fig. 109), we get for the first area moment needed to
compute the shearing stress in the point defined by s>

(195)

Fig. 109. Longitudinal shear force in a thin-walled cross-section

S (s) = /OS e(sy(s')ds’ .

In order to illustrate these considerations, the shearing stress distribution in
the cross-section represented in Fig. 110, caused by a vertical shear force V is
analysed.

In the flange element AB the area moment corresponding to the point of
the centre line defined by the coordinate s; may be expressed by

h
S(s1) = s1e <4 + 821> .

The shearing stress in this point is then

VS(s1) V<h51+3%) .

() = T \1 2

Ie 1

2If the same approximation is made for the moment of inertia, a completely

consistent theory for thin-walled cross-sections with infinitesimal wall thickness is

obtained, in the sense that the computed resultant of the shearing stress exactly

balances the applied shear force. Otherwise, a discrepancy will appear, which is
introduced by the wall curvature or by angle points in the centre line.
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Fig. 110. Shearing stresses caused by a vertical positive shear force in a symmetrical
open thin-walled cross-section

The maximum stress occurs for the maximum value of s; (point B), taking
the value h 5 v
A
S1= 7 = T:TmaE:§h27.
In the flange element BC the area moment and the shearing stress may be
expressed in terms of coordinate so, yielding
S )*3h26+ hé ~V (h +3h2
T Ty TR T T T\ 5 )
In this wall segment the stress is a linear function of s, and takes the maximum

value in point C
pc 11 32 v

2T T T T max T T
Finally, in the web (wall segment C'D) the area moment may be expressed as
a function of coordinate ss, yielding

22 h s VvV /22 s2h 52
5(83):32]7,26—1-836(2—23) :>T:I<32h2+z_23> .

This expression represents a parabolic stress distribution. The maximum value
occurs on the neutral axis and takes the value

b 26,V
C 2
= s r=50=00
BT T T T max Tt T

The direction of the shearing stresses may be obtained from the direction
of the longitudinal shear force. For example, in order to get the stress direction
in the flange element AB, let us consider the balance of the longitudinal forces
acting on a piece of this flange element, as represented in Fig. 111.

Let us assume a positive shear force (downward direction). As the flange
element AB is above the neutral axis, it is in the compressed zone, if the
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N
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51
ds ﬂ N+ dN \
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N — dN
(a) (b)

Fig. 111. Determination of the direction of the shearing stresses in the flange
element AB (Fig. 110): (a) positive bending moment; (b) negative bending moment

bending moment is positive. A positive shear force will cause an increase in
the bending moment, as dM = V dz, which will cause an increase dN in the
compressive stress resultant N (Fig. 111-a). In the case of a negative bending
moment, the flange element AB will be in the tensioned zone. However, a
positive shear force will cause a decrease in the absolute value of the bending
moment (dM > 0 and M < 0) and, therefore, a decrease in the tensile stress
resultant N, as represented in Fig. 111-b. In both cases, the same direction is
obtained for the shearing stress 7, as expected, since this stress is caused by
the shear force, which is the same in the two cases.

The direction of the shearing stresses in the segments BC and CD could
be obtained in the same way. The symmetry of the cross-section leads to the
directions of the shearing stresses represented in Fig. 110.

An additional tool to obtain the direction of the shearing stresses is fur-
nished by the condition of constant shear flow in a point of convergence of two
or more centre lines of the cross-section walls, as points B and C (Fig. 110).
This condition may be obtained from the balance equation of the longitudinal

eif

/"

.dQ

3

dN +ddN

Fig. 112. Shear flow in a nodal point of a thin-walled cross-section
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forces acting on an infinitesimal neighbourhood of one of these points (nodal
points). In the case represented in Fig. 112, this equation takes the form

infinitesimal quantity of second order

(—Te1 — Toea + T3e3) dz + dod2 =0.

infinite simal quantity of third order (ddN)

The product edz is an infinitesimal quantity of second order, since the
thickness e is infinitesimal (cf. Footnote 55). Because d2 is also a second
order infinitesimal quantity, dod(2 will be an infinitesimal quantity of third
order. Thus, dodf2 is an infinitesimal quantity of higher order, which may be
neglected, yielding

ingoing shear flow

——
T1€1 +T2€2 = T3€3 . (196)
~~
outgoing shear flow

Generalizing (196) to a number n of centre lines converging to a nodal point,

we get
n
ZTiei =0.
i=1

Taking the reciprocity of shearing stresses into consideration, this expres-
sion means that the sum of the products 7e heading into the nodal point is
equal to the sum of the products 7e heading out. In other words, the shear
flow entering the node is equal to the shear flow leaving the node. For example,

in point C' (Fig. 110) the shear flow entering the node is 2 x % w}ze and the

22 Vh3e
327 T

outgoing flow is

VIII.3.d Closed Thin-Walled Cross-Sections

If the cross-section is doubly-connected, i.e., if the centre line of the wall
is a closed line, a longitudinal cut, like the one represented in Fig. 109, is
not enough to separate the cross-section into two distinct parts. This means
that two cuts must be made and that the longitudinal shear force dE, given
by (187), is the sum of the resultants of two different longitudinal shearing
stresses, 7, and 7,. The value of the shearing stress cannot be computed,
therefore, unless an additional relation between 7, and 7, is found. However,
in the case of a symmetrical cross-section, with respect to the action axis of
the shear force, these stresses will be equal, provided that the two cuts are
made in symmetrical points of the centre line, as represented in Fig. 118. In
this case, the shearing stress may be computed by the expression

VS VS

2Tedz:dE:sz = T=o7 (197)

where S is the first area moment of the shaded area in Fig. 113.
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v

Fig. 113. Computation of the shearing stress in a closed symmetrical thin-walled
cross section

If the cross-section is not symmetrical with respect to the action axis of the
shear force, the problem becomes a statically indeterminate one, whose solu-
tion may be computed by means of the force method. As seen in Sect. V1.4, this
method consists of releasing a sufficient number of connections to get a stati-
cally determinate problem, followed by the computation of the forces needed
to avoid displacements in the released connections. In the present problem,
the longitudinal connection in a point of the cross-section wall is released, so
that an open cross-section is obtained. Under the action of the shear force, the
two sides of the cut suffer a longitudinal relative displacement, as represented
in Fig. 114-a. This displacement must then be eliminated, by applying a pair
of shear forces dF to both sides of the cut (Fig. 114-b). The resulting stress in
any point of the cross-section may be obtained by the superposition principle,
by adding the stresses corresponding to the two situations (Fig. 114-c).

dz

(a) (b) (c)

Fig. 114. Computation of the shear stresses in a non-symmetrical closed thin-walled
cross-section
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The relative displacement in direction z of two points of the centre line,
located at an infinitesimal distance ds of each other, is dD = v,ds.? Thus, in
the open cross-section, the relative displacement D of both sides of the cut,
caused by the shear force V' (Fig. 114-a), may be computed by integrating
the shear strain <y, along the complete centre line of the wall, which yields

(70 = G) 1 v g
D:]{VOdSZE%TOdSZE]{EdS' (198)

In the situation depicted in Fig. 114-b, the shear flow f = 7 (s)e(s) is
constant along the whole centre line of the wall,* since there are no other
forces applied to the bar apart from the pair of forces dE. This conclusion is
easily drawn by establishing the balance condition of the longitudinal forces
acting on the piece defined by the longitudinal cut AA’ and by any other
longitudinal surface BB’ (Fig. 114-b). This condition immediately means that

the product 7e = ‘é—lj = f is constant, even if e varies along the centre line.
The longitudinal relative displacement D’ caused by the pair of forces dF, is
then (ry = %)
T f ds
D' = ds = ¢ Lds == ¢ — . 199
f\’yl S f G s G e ( )

The condition of compatibility requires that the displacement D’ eliminates
displacement D, which allows the computation of the shear flow f
Vé gds

;L B _f
D+D—O§f—*7§% :>Tl(5)7®.

The shearing stress in the closed cross-section (Fig. 114-¢) may then be com-
puted by adding the stresses 7, and 7;.

The closed line integrals appearing in the expressions above obviously refer
to the line limiting the closed part of the cross-section, that is, they do not
include simply-connected walls, as in the cross-section represented in Fig. 115.

The expressions above are valid for doubly-connected cross-sections, i.e.,
closed cross-sections with only one channel. In cross-sections with higher de-
grees of connection a number of longitudinal cuts equal to the degree of con-
nection minus one is necessary to get a statically determinate problem, i.e.,
an open cross-section. As a consequence, the conditions of compatibility of
the deformations in all the longitudinal cuts yield, instead of (200), a system

(200)

3This simple relation requires that the fibres remain parallel to each other in
the deformation caused by the shear force. This condition is satisfied if there is no
rotation of the cross-sections around a longitudinal axis of the prismatic bar, i.e., if
torsion does not take place (see example XIL.8).

4This shear flow defines a torsional moment (twisting moment or torque, see
Chap. X.3). This moment corresponds to the translation of the shear force, from the
shear centre of the open cross-section to the shear centre of the closed cross-section
(see Sect. VIII.4 and example VIII.12).
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Fig. 115. Line, to which the closed line integrals in (198), (199) and (200) are
referred (dashed line)

with a number of equations equal to the degree of connection minus one (see
example VIIL.7).

VIII.3.e Composite Members

In composite members the longitudinal shear force may be determined in the
same way as in the case of homogeneous bars (187). The normal stress is in
this case given by (169). Assuming, for simplicity, plane bending, as in the case
represented in Fig. 116, we get the following expression for the longitudinal
shear force (Fig. 116-b)

dM E,
do, = ="y dE = [, do, A + [;, do, d2
=
_ Vv
doy — df\j B = ¥ (Ba fo, 9% + By Jo, ya% ) dz .
! (201)
M. (D
HHM\ n.a. n.a.
:—Q Q(1.1
=
Qp1
Yv Yv

Fig. 116. Determination of the longitudinal shear force in composite members
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In composite members, the longitudinal shear force in the contact surface
between the two materials must usually be computed. In this particular case
(201) takes a simpler form and the longitudinal shear force may be computed
by any of the following expressions

Qal = Qa
dE VE,S, VS, .
— = th S, = dQ,
= e 7, T wi S /Qa y
le == 0
(202)
Q1 =0
dE  VE,S, VS, . /
B R A U s
Q1 =Wy

VIII.3.f Non-Principal Reference Axes

In some cross-sections it is easy to compute the moments and product of
inertia with respect to non-principal central axes, as well as distances and
area moments. In Fig. 117 two examples of this kind of cross-section are
represented.

In these cases it may be useful to compute the normal and shearing stresses
directly from these axes, especially if one of them is parallel to the action axis.

The normal stresses may by computed by means of (140). From this equa-
tion an expression for the computation of the longitudinal shear force may
then be developed. If the bending moment has only the M, component and
the axial force vanishes, the normal stress may be computed by the expression

Ly — I,z

— W STy,
T, —,

The same line of reasoning used to develop (186), leads to the following
expression for the longitudinal shear force (cf. Figs. 102 and 117)

Fig. 117. Computation of the longitudinal shear force with non-principal reference
axes
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dE = / I“’de a0, = v LS = LSy 4

Y I I, Igy
ny (203)
with Vy:T;, Sm:/ ydQ, and Sy:/ xdQ,

Qa Q

a

The shearing stresses may be computed from this expression, in the same way
as was done on the basis of (187) (see example VIIL.10).

VIII.4 The Shear Centre

When inclined circular bending was analysed (Sect. VII.4), we showed that a
parallel displacement of the action axis does not change the normal stresses
induced by the bending moment in the cross-section. However, if a shear
force is acting (non-uniform bending), the equilibrium condition requires that
the action axis of the shear force has a position which coincides with the
line of action of the resultant of the shearing stresses. The position of the
action axis of the shear force is therefore not arbitrary. There are two internal
forces introducing shearing stresses in the cross-section: the shear force and
the torsional moment. The expressions presented for the shearing stresses in
this Chapter only take the shear force into consideration, since they are all
based on the relation dM = Vdz (185). It is therefore assumed that the
torsional moment is zero. If it is not, additional shearing stresses will appear.
These stresses will be analysed in Chap. X.

Thus, to avoid torsion, the action axis of the shear stress must coincide with
the line of action of the resultant of the shearing stresses computed by means
of the expressions which were developed from (187) (longitudinal shear force
caused by the cross-sectional shear force). By considering two shear forces
with the directions of the principal central axes of inertia, and computing the
position of the line of action of the resultant of the shearing stresses in each
case, a point is defined by the intersection of these two lines, which has the
following property: if the line of action of the shear force passes through this
point, it will not induce torsion of the bar. This point is the shear centre of
the cross-section.

The shear centre plays the same role in relation to the transversal forces,
as the centroid in relation to the longitudinal (axial) forces: if the resultant
axial force passes through the centroid of the cross-section, it will not induce
bending; otherwise, composed bending will take place, with a bending moment
given by the product of the axial force and the distance of its line of action
to the centroid. In the same way, if the resultant of the forces acting on the
cross-section plane (the shear force) does not pass through the shear centre,
it will introduce a torsional moment, with a value given by the product of the
shear force and the distance of its line of action to the shear centre.

The computation of the torsional moment must thus be made in relation
to the shear centre, while the bending moment is computed with respect to the



VIII.4 The Shear Centre 271

centroid. In the case of a cross-section with a symmetry axis, the shear centre
is on this axis, since, for an action axis of the shear force coinciding with the
symmetry axis, the shearing stress distribution will also be symmetric, which
means that the line of action of its resultant coincides with the symmetry axis.
Thus, if the cross-section has two symmetry axes the centroid and the shear
centre will coincide. In other cases, these two points usually occupy different
positions in the cross-section’s plane.

We will demonstrate later (Chap. XII) that in prismatic bars made of
materials with linear elastic behaviour, the shear centre coincides with the
torsion centre, which is defined as the point around which the cross-section
rotates in the twisting deformation induced by the torsional moment. For this
reason, these two designations are sometimes indistinctly used.

While it is very easy to compute the position of the line of action of the re-
sultant of the normal stresses in the case of pure axial force, since these stresses
are constant in the cross-section, the computation of the line of action of the
resultant of the shearing stresses is often complex, since the distribution of
the stresses caused by the shear force is required. As seen in the previous sec-
tions, good approximations for these stresses are obtained only in the cases of
symmetrical cross-sections with respect to the action axis of the shear force
and in thin-walled cross-sections. In the first case, the position of the resultant
is known. In the case of non-symmetrical cross-sections which cannot be con-
sidered as thin-walled, the problem of computing the shear centre’s position
cannot be solved by the approach used in the Strength of Materials. But the
knowledge of the position of the shear centre is most important in the case of
open thin walled cross-sections, since this kind of member is very weak in tor-
sion, as will be seen in Chap. X. Fortunately, the stresses caused by the shear
force in these cross-sections are easily computed with good approximation, as
seen in Subsect. VIIL.3.c.

In order to illustrate these considerations, the position of the shear centre
of the channel cross-section represented in Fig. 118 is computed. As this cross-
section has a symmetry axis, the shear centre will be located on this axis.

Ry
H
— d
R, R,
D ——>
Ry
(a) (b) (c)

Fig. 118. Computation of the position of the shear centre in a thin-walled cross-
section
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Thus, in order to determine its position, it is enough to compute the distance
d from the line of action of the resultant of the shearing stresses, introduced
by a shear force perpendicular to the symmetry axis, to the centre line of the
web (Fig. 118-c).

As the example of (Fig. 110) shows, the shearing stress has a linear dis-
tribution in the wall segments which are parallel to the neutral axis, and
a parabolic distribution in the others. Besides, we know that the maximum
stress occurs on the neutral axis. For these reasons, in example of (Fig. 118)
the stress distribution is completely defined by the values in points B and C'.
For point B we get from (195)

h V bh
S—b6§ é7f73,

For point C the same expression yields the value

S—@_’.ﬁﬁ: —K bih_;’_hj
Ty T T T T\ 2% )

The resultants of the shearing stress in the web (R,) and in the flanges (Rp)
may be computed from the diagram areas in Fig. 118-b, multiplied by the
thickness e, yielding

V [bh 2 h2 V| ehd R\ 2
Ra_]<2he+38h€>_l 12+2Xb6<2) ~V
N——
I, Iy— b1E23 (204)

1V bh V b2h 3
Ry 57?()627 46% 3 hV
(3)" +63%

It must be remarked here that, as mentioned in Footnote 55, an exact
balance between the shear force and the resultant of the shearing stresses is
only achieved if the moment of inertia of the flange, with respect to is centre
line (%), is neglected.? The condition of equivalence of moments with respect
to point D (Fig. 118-c) allows the computation of the distance d, which defines

the position of the shear centre

Ryh= Rod = d= —>—. (205)

(3)" +6%

5From a mathematical point of view, the theory expounded for thin-walled cross-
sections is only valid if the thickness of the walls is infinitesimal, in comparison with

the cross-section dimensions. In this case, the moment of inertia of the flange with
3
respect to its centre line, %7 is an infinitesimal quantity of third order, which may

be neglected in presence of the infinitesimal quantity of first order resulting from
beh?
-

the parallel-axis theorem,
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Fig. 119. Shear centre in thin-walled cross-sections with concurrent and straight
wall elements

The thin-walled cross-sections with concurrent and straight wall elements,
like those represented in Fig. 119, are a particularly simple case of determi-
nation of the shear centre. In fact, as the resultants of the shearing stresses in
the different wall elements pass through the intersection of the centre lines,
the moment of the shearing stress in relation to this point vanishes, which
means that it is the shear centre.

VIII.5 Non-Prismatic Members

VIII1.5.a Introduction

The basic equation for the analysis of the effect of the shear force (187) has
been deduced for prismatic bars. So when the above expressions for the com-
putation of shearing stresses are applied to non-prismatic members, errors
are introduced. In order to get an idea of the importance of these errors, two
examples of non-prismatic members, which are simple enough for an exact
solution to be given by the Theory of Elasticity, are analysed.

VIIL.5.b Slender Members with Curved Axis

As explained in Sect. VIII.2, the expression obtained for the shearing stress
in a rectangular cross-section with a small thickness (189) coincides with the
exact solution of the Theory of Elasticity. Thus, in a bar with the same cross-
section, but with a curved axis, the discrepancies between the exact solution
and the results obtained using (187) may be attributed to the fact that the
bar’s axis is not a straight line.

The bar represented in Fig. 120 has a circular axis and a rectangular cross-
section with the dimensions b x h (b < h). The shear force in the cross-section
B defined by the angle 6 takes the value V = —P cos#.

The shearing stress in that cross-section may be expressed as a function of
the dimensionless coordinate 7, which, multiplied by the height of the cross-
section h, defines the distance to the centre line (—3 < n < 3, Fig. 120). The
exact solution obtained by the Theory of Elasticity for the shearing stress on
the cross-section defined by the angle § may be defined by the expression [4]
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Tmax

Fig. 120. Shearing stresses induced by the shear force in a bar with a curved axis

(1-2)"  2(+e7)

Pcost 1+n0+ o — —r. h
3 Pcos (bno)’ 1010 it a= = . (206)
2 bh 83— o (1+ ) ngEg rm

T =

~

In the limit case of a prismatic bar (a« = 0, # = 7) this solution yields the
same value as (190) (Tmax = %%)

When the relation a between the height of the cross-section and the cur-
vature radius of the centre line r,, increases, the difference between the dis-
tributions of shearing stresses given by (206) and by the expression developed
for prismatic bars increases also. This difference remains small, however, even
for larger curvatures, as may be easily confirmed by computing the values of
1 and « corresponding to the maximum shearing stress (7 =19 = ¥ = Ymax)
for some values of «

a |0.0000{0.1000{0.2500{0.5000{0.7500{1.0000{1.5000
1o 10.0000{0.0250|0.0626|0.1259|0.1905|0.2565|0.3885
Ymax |1.0000{1.0009|1.0056|1.0233|1.0573|1.1166|1.4402

VIIIL.5.c Slender Members with Variable Cross-Section

In bars with variable cross-section the expressions developed on the basis of
(187) may lead to completely erroneous results, at least in relation to the loca-
tion of the maximum stress in the cross-section. For example, in the problem
represented in Fig. 86, the exact solution shows that the shearing stress van-
ishes in the neutral axis and attains the maximum value in the farthest points
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from the neutral axis, as may be easily ascertained by a two-dimensional analy-
sis of the stress state in those points, which totally contradicts the solution
developed for prismatic bars.

Regarding the value of the maximum shearing stress in the cross-section,
significant errors may also be introduced by the theory of prismatic bars, as
may be easily verified by computing the maximum shearing stress in cross-
section AA’ (Fig. 86). From (164) we find that the maximum radial stress
occurs in point A and takes the value

o 2 P . «
YT T O T G T T e

A two-dimensional analysis of the stress state shows that the shearing

stress in a vertical facet takes the value

1 . e « 2sin2%cos%P
Tmax — Z0p_ SN =8N - COS =0, oy = — .
2 e 2 2 TTmax a—sina  br

The theory of prismatic bars yields the following value for the maximum
shearing stress in the same cross-section, %nax—p

h:2rsin%
L sv_ 3w

max_pinh74sin%br'
V=P

The relation between the exact value 7,.x and the value yield by the
theory of prismatic bars, fnax—p, depends only on angle a and may expressed
by parameter g
Trnax 8 sin® 5 cos g

8=

Tnax—p 3 a—sina

The following Table gives the values of 8 corresponding to some values of
angle a.

all° 10° |20° [30° |45° |60°
$11.999]1.988(1.952|1.892|1.764|1.593

This example shows that the actual value of the maximum shearing stress
in a slender member with a variable cross-section may be substantially higher
than the value given by the theory of prismatic bars.

VIII.6 Influence of a Non-Constant Shear Force

The solution of the Theory of Elasticity for the shearing stresses in the ex-
ample depicted in Fig. 85 (162) shows that (189) is exact (V = p (4 —2)),
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although the expression defining the normal stresses o, (162) is different from
the expression developed for the case of pure bending, on the basis of the law
of conservation of plane sections. The variation of the shear force thus affects
the distribution of normal stresses, but does not change the distribution of
shearing stresses. This is due to the fact that the second element of the ex-
pression of o, (which represents the correction to be added to (146), to take
the variation of the shearing stress into account) is independent of z, i.e., it
is constant in all cross-sections, so it does not introduce a longitudinal shear
force.

Also in the case of the example depicted in Fig. 120 the shear force is not
constant. However, the distribution of shearing stresses in the cross-section is
not altered by the variation of the shear force, since the exact solution (206)
shows that the shearing stress is proportional to the shear force V= — P cos 6.

Considering these examples and the fact that the normal stress computed
by means of the expressions developed on the basis of the Saint Venant hy-
pothesis are very close to the exact solution (Sect. VIL.7), we may conclude
that the variation of the shear force does not affect the validity of the funda-
mental expression for studying the effect of the shear force (187).

VIII.7 Stress State in Slender Members

Generally, in slender members, the stresses that act on perpendicular facets to
the cross-section plane and are parallel to it — o, 0, and 7., — either vanish, as
happens if there are no forces applied on the bar element under consideration
and the Poisson coefficient is constant, or are sufficiently small to be neglected
(see example VIIL.16). We thus have a plane stress state. Obviously, this
does not apply to the regions in the vicinity of sudden changes in the cross-
section dimensions, angle points of the bar’s axis or strongly concentrated
loads. However, in these cases the theory of prismatic bars is not valid.
According to these considerations, the stress state in a slender member un-
der non-uniform bending may be analysed in the plane perpendicular to the
cross-section which contains the shear force vector in the point under consid-
eration.® In thin-walled cross-sections this is the longitudinal plane containing
the wall centre line. In this kind of cross-section and also in rectangular sec-
tions under plane bending, the plane stress state may be visualized by means
of the principal stress trajectories. These lines represent, in each point, the
principal directions of the stress state. As the stress tensor only has a normal
and a shearing component, the maximum principal stress is always a tensile
one and the minimum principal stress is always compressive, as may be easily
verified by drawing the Mohr circles corresponding to tensile and compressive

5This conclusion remains valid if a torsional moment is also acting, since this
internal force only causes shearing stresses in the cross-section and not o, oy or 7y,
as will be seen in Chap. X.
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Fig. 121. Principal stress trajectories in a simply supported beam: —— tensile
trajectories; ______ compressive trajectories

normal stresses o, as represented in Fig. 121. The same Figure also shows
the principal stress trajectories in a simply supported beam under a uniformly
distributed load.

In the points on the neutral surface a purely deviatoric stress state is in-
stalled, since ¢ = 0. The principal direction are thus at 45° angles with the
cross-section plane. If there are no shearing loads applied on the surface of the
bar, one of the principal directions is perpendicular and the other is tangent to
the surface. However, in the right end cross-section the principal directions are
indeterminate, since there are no stresses in theses points. The principal stress
trajectories, with an inclination of 45°, appearing in the left end cross-section
result from the fact that the principal directions were computed by means of
the theory of prismatic bars, assuming that the left reaction force is applied as
a shear force acting on that cross-section. In the same way, the perturbation
introduced by the concentrated load corresponding to the reaction force on
the right support was not considered. Actually, in this region the compres-
sive trajectories converge to the support. Furthermore, this reaction force was
considered to be distributed over a small length, in order to avoid disconti-
nuities in the shearing stress distribution, which would introduce corners into
the principal stress trajectories.

The safety evaluation in bars under non-uniform bending usually includes
three points:

— verification of the maximum normal stress in the fibres farthest from the
neutral axis;

— verification of the maximum shearing stress, which usually occurs on the
neutral axis;

— verification of the two-dimensional stress state in the points where the shear-
ing and normal stresses simultaneously reach higher values. In these points,
a yielding or a rupture criterion must be used. In ductile materials the von
Mises criterion is generally used (see example VIII.17).
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The third verification is especially important in I-beams and channels, in
the points where web and flange connect, in the case of cross-sections where
both the bending moment and the shear force attain higher values, as in the
cross-sections which are close to the right support in the beam represented in
Fig. 121. In these points, the normal stress is not much lower than the max-
imum value, since they are close to the fibres farthest from the neutral axis.
The shearing stress is also close to the maximum value appearing on the neu-
tral axis, because the area moment of the flanges is not substantially smaller
than the area moment of half section. These considerations are summarized
in Fig. 122.

C ),

—
= —
C— = T

Fig. 122. Stress state (o, 7) in connection points between web and flange in a I-beam

VIII.8 Examples and Exercises

VIII.1. Figure VIII.1 shows the cross-section of a simply supported beam with
a span 100a, under a uniformly distributed load p. The beam is made
by connecting a bar with rectangular cross-section a x 3a and four
bars with square cross-section a x a. Determine the longitudinal shear
force acting in each connection.

| |
I al a ! a !

Fig. VIIL.1
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Resolution

The problem may be solved by directly applying (187). To this end, it is
necessary to compute the moment of inertia of the cross-section and the first
area moment S of one of the hatched areas in Fig. VIII.1 with respect to the
neutral axis. These quantities take the values

(3a)" 2axa® 79,

12 12 12

and S =a%,

respectively. The longitudinal shear force per unit length in each connection
is then

de VS ad 12V
dz I DBat T9a
Since the longitudinal shear force is proportional to the cross-sectional
shear force V', we conclude that it varies linearly between —%505“ = —%p

and %p (Vinax = 50pa).

VIII.2. Determine the maximum shearing stress in a cross-section with the
shape of an isosceles triangle of base b and height h, caused by a shear
force acting on the symmetry axis (Fig. VIII.2-a).

< b |
/o
3
h n.a. y
Y vti(3h-y)| \=Y L,
Y gh _ y
a.a.
Fig. VIIL2-a Fig. VIIL2-b
Resolution

Since the cross-section is symmetrical with respect to the action axis of the
shear force, the problem may be solved by means of the theory expounded in
Subsect. VIIL.3.b. The moment of inertia of the cross-section takes the value
I = % (Fig. VIII.2-a). The first area moment of the area defined by the
distance y (shaded area in Fig. VIII.2-b) is given by the expression

1, /2 1/2 , b (2
= — —N — — —-N — h /: — —h — .
S 2b <3h y) [y—i— 3 (3h y)} with b N <3h y)
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The vertical component of the shearing stress may obtained from (192), yield-
ing
vs V /1 2 1
=—=—|=h —h?——y?) .
Ty T (9 Vo7 Sy)

Differentiating this expression in relation to y and equating to zero, the value
of y corresponding to the maximum shearing stress is obtained

d 7y 1 2 h
=0= -h—-y=0=>y=—.
dy 9" 3Y Y= %
The maximum value of the vertical component of the shearing stress is then
h 1 Vh? 1 36 vV 3V
= — Ty — max:—iz—i h2: _— = = —
YT T S T 3w 20

Since angle ¢ (Fig. 107) is constant, we conclude that the maximum shearing
stress occurs at the sides of the cross-section at the distance y = % from the
neutral axis and takes the value (cf. (193))

Toy 3 Vv

Tmax = = —.
M cosp cos (arctan %) bh

As a rule, the maximum shearing stress occurs on the neutral axis. In this
case it does not take place, which is because the cross-section width is not
constant in the region around the neutral axis.

VIIL.3. Determine the distribution of shearing stresses induced by a verti-
cal shear force V' in the open thin-walled cross-section depicted in
Fig. VIII.3-a.

a.a.

Fig. VIIL3-a Fig. VIIL3-b Fig. VIIL3-c

Resolution

Using polar coordinates, we may define the position of a point on the centre
line by means of angle « (Fig. VIII.3-a). Denoting the integration variable by
¢, the first area moment of the shaded area defined by angle o takes the value
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[
dS =erd¢ xrsing = S(a) = er2/ sinde¢ = (1 — cosa)er?
0

The moment of inertia of the cross-section with respect to the neutral axis
may also be computed by integration along the centre line, yielding

27 27
I :/ (rsin¢>)2 x erd¢ = er3/ sin? ¢d¢ = mwer? .
0 0

The shearing stress is then defined by the expression

VS \%4
=—=—(1- .
T= 7o — (1 —cosa)
This stress distribution defines the diagram represented in Fig. VIII.3-b. The
direction of the shearing strain may be found, as described in Subsect. VIII.3.c

(Fig. 111), which leads to the directions represented in Fig. VIII.3-c.

VIII.4. Determine the distribution of shearing stresses in a thin-walled circu-
lar tube with a wall-thickness e and a radius of the center line r.

Y v

e.a.

Fig. VIII.4

Resolution

Since we have a symmetrical cross-section, (197) may be used to compute the
shearing stresses. Defining the position of the two symmetrical longitudinal
cuts by angle 3 (Fig. VII1.4), we get, for the first area moment of the hatched
area,

B
S(B) = 2/ rcos¢ x erdp = 2er’sin 3.
0
The shearing stress then takes the value

VS V., .
T—ﬁ—T’r smﬁ.
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VIIL5. Determine the distribution of shearing stresses in the cross-section
considered in example VIII.4 without using symmetry considerations.

Resolution

The open cross-section considered in example VIII.3 may be used as the stat-
ically determinate base problem. Denoting the moment of inertia of the cross-
section by I, the shearing stress in the open cross-section is given by the
expression

To = 77"2 (I -cosa) .

The closed line integrals contained in (200) are given by the expressions
S 2 d 2
?{—ds :/ r? (1 — cosa)rda = 27r® and g8 _

e 0 %,_/\d/ e e

S
e

Substituting these expressions into (200), we get

vV §2ds V 2mr3 V.,
— = =——7".

e §ds e 2 I

7-1 =

The shearing stress in the closed cross-section is then

Vo2
7'=7'O—|—7'1:—77‘ COos & .

This value coincides with the solution obtained in example VIII.4, since
sin # = cos . The difference in the sign results from the fact that in example
VIII.4 the shearing stress is considered positive when it has the direction of
progression of angle 3, while in example VIII.3 the direction of progression of
angle a is adopted as positive.

VIIL.6. Determine the distribution of shearing stresses in the thin-walled
cross-section represented in Fig. VIII.6-a. The cross-section wall has
a constant thickness e.

Fig. VIIIL.6-a Fig. VIIL.6-b
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Resolution

Since the cross-section is doubly-connected and the action axis of shear force
is not coincident with, or parallel to a symmetry axis, the shearing stress
must be computed by means of (198)—(200). As a statically determinate base
problem the open thin-walled cross-section represented in Fig. VIIL.6-b may
be used.

As in example VIIL.3, the coordinate o may be considered to define
the position of a point in the centre line of the curved part of the wall
(Fig. VIIL.6-b). Thus, the first area moment of the shaded area defined by
angle a may be computed by means of the expression

« «
S(a):/ rsin¢xerd¢>:er2/ sinpdg = (1 —cosa)er?.
0 0
The shearing stress corresponding to this area moment is, then,

VS V(1 -cosa)er* Vr?

To(a) = 7 Pe— 7 (1 —cosa) .

In the straight wall, the position of a point on the centre line may be

defined by coordinate s (Fig. VIIL.6-b). The first area moment and the corre-
sponding shearing stresses are then

2 2
—§(a=T C5) Coertpers—el A (=
S(s)—S(a— 2)+se (7“ 2) =er“+ers €3 To(8) = Fi (r +rs 2) .

Evaluating the integrals contained in (200), we get

d 1
78:*(7'(7“4-2’1")
e e
S % 1— 2 2r 2 9
j{gds:Q/o (CO+)€TT a+/0 <r2+rs—52)d3:(7r+3)r3.

ds

From (200) we get the shear flow

f=

V§Sds  V (r+3)r* | Ver?3m+2
I g4 Tl(ar42r) I 3n+6°

Since the wall thickness is constant, the shearing stress corresponding to this
shear flow is also constant and takes the value
I Vr2 3m +2

N=e™"1T 31+6"

The total shearing stress in the close thin-walled cross-section may be obtained
by adding the stresses in the statically determinate base problem (7;) to the
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stress 7;, which yields, respectively for the curved and straight walls, the
expressions

2 2 2
T(a) = 19(a) + 7 = VTT(I —cosa) — Yr®dr+2 = v <4 cosa>

I 3r+6 I \37+6
1% s 3m+2
(s) =7o(s) +m = 7 <'r2+T52 - 37T+6)

In Figs. VIIL.6-c a diagram showing the distribution of the shearing stress
values in the cross-section is presented. Figure VIII.6-d shows the direction of
the shearing stresses.

I 37r+6 ol
]
]
o v
0 V2 3414
I 6m+12 7*
]
V2 3n+2 ¥
I 37+6

$+

\ B .

T 37r+6 Qp = areeos g, ¢
Fig. VIIIL.6-c Fig. VIII.6-d

VIIL.7. Develop expressions allowing the computation of the shearing stress
caused by the shear force in a triply-connected thin-walled cross-
section.

Resolution

The degree of static indeterminacy is two, since it is necessary to cut the
cross-section wall in two points to get an open thin-walled cross-section. Let
us assume that the two cuts are made in the points ¢; and ¢, (Fig. VIIL7).
Denoting the coordinates along the centre line in the three walls by s;, sq
and ss, the relative displacement D; in cut ¢; may be obtained by applying
(198) to the channel defined by points a, b and ¢;, which yields, considering as
positive the coordinates which define a clockwise rotation around the channel

Vv [S vV ([s bs ‘s
Dl—m%eds—m(Lledsl—/aed83+/a 6d81>.

In the same way, we get for the relative displacement Dy in cut c,

S 28
Dy = e </ —ds, + / —dsg + d32> .
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€1

Co

Fig. VIIL7

The displacements Dy and Ds are eliminated by the shear flows f;, fo and
f3, corresponding to coordinates s, s, and sg, respectively (Fig. VIIL.7). Ap-
plying (199) to the two channels of the cross-section, we get
=L gt s fa [Mdsy N[ dsy
'YG) e G

o & a €3 GJlo e
oL fle Lt s
e e c, €2 a €3 GJ, e

The shear flows f1, fo and f3 are the unknowns of the problem, which may be
computed by solving the system of equations represented by the compatibility
conditions Dy + D] = 0 and Dy + D) = 0 and the condition of equilibrium of
the flows in node a or in node b, f1 + f35 = fo (Fig. 112).

VIIL.8. The beam represented in Fig. VIIL.8 is made of concrete and reinforced
with two steel plates, as shown. Assuming that the concrete does not
crack in the tensioned zone, determine the longitudinal shear force in
each steel-concrete connection. Consider Fgiee = 10E opcrete-

Resolution

The weighted moment of inertia of the cross-section takes the value (E; =
Esteel and Ec = Econorete)

3 2
ﬁ_f_g b+£
12 10 20

E.2
= b*F, {0.2207 + ES} = 0.2873b*F, .

S

b(2b)?

n=2
J 12

E; + E,

The first moment of the area occupied by a steel plate in the cross-section is
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P i
stee] —{HHRITTITTIITITIIIIT] b
TlO
I ’%ﬂ concrete 2b
[ >
T FPey 0.18277!
; T —
(T ”i b

dE steel —HH
d WW : ‘ T 10
b

Fig. VIIIL.8

b b .
Sa=bg <b+ 20) = 0.1056% .

Substituting the values of J,, and S, in the first of (202), we get the longitu-
dinal shear force per unit length
dE  VE,S, VE0.105b v

—_— = = = 0.3664— .
dz In 0.2873b*E 0365 b

This force attains the maximum value in the cross-sections over the supports,
taking the value (Fig. VIIL8)

pl dF pl
max = — —_— =0.1827— .
| > = <d3>max 0 87b

VIIL.9. In the cantilever beam considered in example VII.11 (Fig. VII.11-a),
determine the distribution of the longitudinal shear force per unit
length in the connection between the two materials.

Resolution

The horizontal shear force V,, does not cause a longitudinal shear force in the
surface between the two materials, since axis y (Fig. VII.11-b) is a symmetry
axis and that surface is perpendicular to this axis. The longitudinal shear
force introduced by the cross-sectional shear force V,, may be computed by
means of (202).

The weighted moment of inertia of the cross-section takes the value
J. = 1915.34Fa* (cf. example VIL.11). The moment of the area occupied
by material a, with respect to the neutral axis, is

S, = 40a? x 2.91176a ~ 116.470 a> .
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Considering a coordinate z with origin in the free end and pointing leftwards,
the shear force V), is defined by the expression

Vy(2) = 10paz .
The longitudinal shear force per unit length, as function of coordinate z, takes
then the value (202)

_dE  V,S.E, 10paz x 116.470 a® x 2F

(s = 3E ~1.21618 pz .
) =1 7, 1915.34Ea? 618p=

This force attains the maximum value in the built-in end, yielding

2= Zmax = 200a = E' = E] . = 243.236pa .

VIIIL.10. Determine the shearing stress in the point of connection between the
web and a flange in the cross-section represented in Fig. VIII.10.

S
¥

bi —————————— I/

il B [

Fig. VIIL.10

Resolution

The problem may be solved by means of (203). To this end, it is necessary to
compute the moments and the product of inertia in relation to axes x and y.

These quantities take the values

b (3h)° b (2)? 2
I, = 16 (30) +2 (5) +4b§ (1.5b+b> = 4.32633b"

12 12 10

bapy?® Ly 3b(L)°
Iy2<"( ) + 5 +M:3.73358b4

3 3 12

b b
Ly =4bx ¢ xbx (1.5b+10> x 2 = 2.56b" .

In order to get the shearing stress in the connection point between the web
and a flange, the first area moments of a flange, with respect to axes = and y
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must be computed. Considering the bottom flange, these quantities are given
by the expressions

b (3 b b
Sm—4bx5x<2b+10>—1.28b3 and Sy:4b><5><b:0.8b3.

The longitudinal shear force per unit length in this point is, then, (203)
dE 3.73358b% x 1.28b% — 2.56b* x 0.857

1%
—_— = -V = 0.28450— .
dz  4.32633b* x 3.73358b% — (2.56b%) b

Thus, the shearing stress in that point takes the value

dE 0.2845V v
= = T2 — o845
TTTd: 01 b b2

As an alternative, this stress could be determined by decomposing the shear
force in the two principal directions of inertia. However the volume of compu-
tation would be substantially larger, since it would be necessary to compute
the principal moments and directions of inertia and two shea