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Preface to the
eighth edition

In this eighth edition, the aim has been to build on the broad ethos established
in the first edition and maintained throughout all subsequent editions. The
purpose of the book is to present the basic principles of fluid mechanics and
to illustrate them by application to a variety of problems in different branches
of engineering. The book contains material appropriate to an honours degree
course in mechanical engineering, and there is also much that is relevant to
undergraduate courses in aeronautical, civil and chemical engineering.

It is a book for engineers rather than mathematicians. Particular emphasis
is laid on explaining the physics underlying aspects of fluid flow. Whilst
mathematics has an important part to play in this book, specialized
mathematical techniques are deliberately avoided. Experience shows that
fluid mechanics is one of the more difficult and challenging subjects studied
by the undergraduate engineer. With this in mind the presentation has been
made as user-friendly as possible. Students are introduced to the subject in
a systematic way, the text moving from the simple to the complex, from the
familiar to the unfamiliar.

Two changes relating to the use of SI units appear in this eighth edition and
are worthy of comment. First, in recognition of modern developments, the
representation of derived SI units is different from that of previous editions.
Until recently, two forms of unit symbol were in common use and both are
still accepted within SI. However, in recent years, in the interests of clarity,
there has been a strong movement in favour of a third form. The half-high
dot (also known as the middle dot) is now widely used in scientific work in
the construction of derived units. This eight edition has standardized on the
use of the half-high dot to express SI units. The second change is as follows:
for the first time SI units are used throughout. In particular, in dealing with
rotational motion, priority is given to the use of the SI unit of angular velocity
(rad · s−1 supplanting rev/s).

The broad structure of the book remains the same, with thirteen chapters.
However, in updating the previous edition, many small revisions and a
number of more significant changes have been made. New material has
been introduced, some text has been recast, certain sections of text have
been moved between chapters, and some material contained in earlier
editions has been omitted. Amongst the principal changes, Chapter 1
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has been substantially revised and expanded. Its purpose is to provide
a broad introduction to fluid mechanics, as a foundation for the more
detailed discussion of specific topics contained in the remaining chapters.
Fluid properties, units and dimensions, terminology, the different types of
fluid flow of interest to engineers, and the roles of experimentation and
mathematical theory are all touched on here. The treatment of dimensional
analysis (Chapter 5) has been revised. A number of topics are covered for the
first time, including the losses arising from the flow through nozzles, orifice
meters, gauzes and screens (Chapter 7). The concept of the friction velo-
city has been brought in to Chapter 8, and the theory of functions of a
complex variable and its application to inviscid flows is set down in
Chapter 9. A discussion of the physics of tsunamis has been added to
Chapter 10. In Chapter 11, changes include the addition of material on
the mass flow parameters in compressible flow. Finally, in Chapter 13, the
treatment of dimensionless groups has been changed to reflect the use of
SI units, and new material on the selection of pumps and fans has been
introduced.

Footnotes, references and suggestions for further reading, which were
included in earlier editions, have been removed. The availability of
information retrieval systems and search engines on the internet has enabled
the above changes to be introduced in this edition. It is important that
students become proficient at using these new resources. Searching by
keyword, author or subject index, the student has access to a vast fund
of knowledge to supplement the contents of this book, which is intended to
be essentially self-contained.

It remains to thank those, including reviewers and readers of previous
editions, whose suggestions have helped shape this book.

February 2005



Fundamental concepts 1
The aim of Chapter 1 is to provide a broad introduction to fluid mechanics,
as a foundation for the more detailed discussion of specific topics contained
in Chapters 2–13. We start by considering the characteristics of liquids and
gases, and what it is that distinguishes them from solids. The ability to
measure and quantify fluid and flow properties is of fundamental import-
ance in engineering, and so at an early stage the related topics of units and
dimensions are introduced. We move on to consider the properties of fluids,
such as density, pressure, compressibility and viscosity. This is followed
by a discussion of the terminology used to describe different flow patterns
and types of fluid motion of interest to engineers. The chapter concludes by
briefly reviewing the roles of experimentation and mathematical theory in
the study of fluid mechanics.

1.1 THE CHARACTERISTICS OF FLUIDS

A fluid is defined as a substance that deforms continuously whilst acted
upon by any force tangential to the area on which it acts. Such a force
is termed a shear force, and the ratio of the shear force to the area on
which it acts is known as the shear stress. Hence when a fluid is at rest
neither shear forces nor shear stresses exist in it. A solid, on the other hand,
can resist a shear force while at rest. In a solid, the shear force may cause
some initial displacement of one layer over another, but the material does
not continue to move indefinitely and a position of stable equilibrium is
reached. In a fluid, however, shear forces are possible only while relative
movement between layers is taking place. A fluid is further distinguished
from a solid in that a given amount of it owes its shape at any time to
that of the vessel containing it, or to forces that in some way restrain its
movement.

The distinction between solids and fluids is usually clear, but there are
some substances not easily classified. Some fluids, for example, do not
flow easily: thick tar or pitch may at times appear to behave like a solid.
A block of such a substance may be placed on the ground, and, although
its flow would take place very slowly, over a period of time – perhaps sev-
eral days – it would spread over the ground by the action of gravity. On
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the other hand, certain solids may be made to ‘flow’ when a sufficiently
large force is applied; these are known as plastic solids. Nevertheless, these
examples are rather exceptional and outside the scope of mainstream fluid
mechanics.

The essential difference between solids and fluids remains. Any fluid, no
matter how thick or viscous it is, flows under the action of a net shear
force. A solid, however, no matter how plastic it is, does not flow unless
the net shear force on it exceeds a certain value. For forces less than this
value the layers of the solid move over one another only by a certain
amount. The more the layers are displaced from their original relative pos-
itions, the greater are the internal forces within the material that resist the
displacement. Thus, if a steady external force is applied, a state will be
reached in which the internal forces resisting the movement of one layer
over another come into balance with the external applied force and so no
further movement occurs. If the applied force is then removed, the resisting
forces within the material will tend to restore the solid body to its original
shape.

In a fluid, however, the forces opposing the movement of one layer
over another exist only while the movement is taking place, and so static
equilibrium between applied force and resistance to shear never occurs.
Deformation of the fluid takes place continuously so long as a shear force is
applied. But if this applied force is removed the shearing movement subsides
and, as there are then no forces tending to return the particles of fluid to
their original relative positions, the fluid keeps its new shape.

Fluids may be sub-divided into liquids and gases. A fixed amount of a liquidLiquid
has a definite volume which varies only slightly with temperature and pres-
sure. If the capacity of the containing vessel is greater than this definite
volume, the liquid occupies only part of the container, and it forms an inter-
face separating it from its own vapour, the atmosphere or any other gas
present.

A fixed amount of a gas, by itself in a closed container, will always expandGas
until its volume equals that of the container. Only then can it be in equi-
librium. In the analysis of the behaviour of fluids an important difference
between liquids and gases is that, whereas under ordinary conditions liquids
are so difficult to compress that they may for most purposes be regarded
as incompressible, gases may be compressed much more readily. Where
conditions are such that an amount of gas undergoes a negligible change
of volume, its behaviour is similar to that of a liquid and it may then be
regarded as incompressible. If, however, the change in volume is not negli-
gible, the compressibility of the gas must be taken into account in examining
its behaviour.

A second important difference between liquids and gases is that liquids
have much greater densities than gases. As a consequence, when considering
forces and pressures that occur in fluid mechanics, the weight of a liquid has
an important role to play. Conversely, effects due to weight can usually be
ignored when gases are considered.
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1.1.1 Molecular structure

The different characteristics of solids, liquids and gases result from differ-
ences in their molecular structure. All substances consist of vast numbers of
molecules separated by empty space. The molecules have an attraction for
one another, but when the distance between them becomes very small (of
the order of the diameter of a molecule) there is a force of repulsion between
them which prevents them all gathering together as a solid lump.

The molecules are in continual movement, and when two molecules come
very close to one another the force of repulsion pushes them vigorously apart,
just as though they had collided like two billiard balls. In solids and liquids
the molecules are much closer together than in a gas. A given volume of
a solid or a liquid therefore contains a much larger number of molecules
than an equal volume of a gas, so solids and liquids have a greater density
(i.e. mass divided by volume).

In a solid, the movement of individual molecules is slight – just a vibration
of small amplitude – and they do not readily move relative to one another.
In a liquid the movement of the molecules is greater, but they continually
attract and repel one another so that they move in curved, wavy paths rather
than in straight lines. The force of attraction between the molecules is suffi-
cient to keep the liquid together in a definite volume although, because the
molecules can move past one another, the substance is not rigid. In a gas
the molecular movement is very much greater; the number of molecules in a
given space is much less, and so any molecule travels a much greater distance
before meeting another. The forces of attraction between molecules – being
inversely proportional to the square of the distance between them – are, in
general, negligible and so molecules are free to travel away from one another
until they are stopped by a solid or liquid boundary.

The activity of the molecules increases as the temperature of the sub-
stance is raised. Indeed, the temperature of a substance may be regarded as
a measure of the average kinetic energy of the molecules.

When an external force is applied to a substance the molecules tend to
move relative to one another. A solid may be deformed to some extent as the
molecules change position, but the strong forces between molecules remain,
and they bring the solid back to its original shape when the external force is
removed. Only when the external force is very large is one molecule wrenched
away from its neighbours; removal of the external force does not then result
in a return to the original shape, and the substance is said to have been
deformed beyond its elastic limit.

In a liquid, although the forces of attraction between molecules cause it to
hold together, the molecules can move past one another and find new neigh-
bours. Thus a force applied to an unconfined liquid causes the molecules to
slip past one another until the force is removed.

If a liquid is in a confined space and is compressed it exhibits elastic
properties like a solid in compression. Because of the close spacing of the
molecules, however, the resistance to compression is great. A gas, on the
other hand, with its molecules much farther apart, offers much less resistance
to compression.
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1.1.2 The continuum

An absolutely complete analysis of the behaviour of a fluid would have to
account for the action of each individual molecule. In most engineering
applications, however, interest centres on the average conditions of velo-
city, pressure, temperature, density and so on. Therefore, instead of the
actual conglomeration of separate molecules, we regard the fluid as a con-
tinuum, that is a continuous distribution of matter with no empty space.
This assumption is normally justifiable because the number of molecules
involved in the situation is so vast and the distances between them are so
small. The assumption fails, of course, when these conditions are not satis-
fied as, for example, in a gas at extremely low pressure. The average distance
between molecules may then be appreciable in comparison with the smallest
significant length in the fluid boundaries. However, as this situation is well
outside the range of normal engineering work, we shall in this book regard
a fluid as a continuum. Although it is often necessary to postulate a small
element or particle of fluid, this is supposed large enough to contain very
many molecules.

The properties of a fluid, although molecular in origin, may be adequately
accounted for in their overall effect by ascribing to the continuum such
attributes as temperature, pressure, viscosity and so on. Quantities such
as velocity, acceleration and the properties of the fluid are assumed to vary
continuously (or remain constant) from one point to another in the fluid.

The new field of nanotechnology is concerned with the design and fabric-
ation of products at the molecular level, but this topic is outside the scope
of this text.

1.1.3 Mechanics of fluids

The mechanics of fluids is the field of study in which the fundamental prin-
ciples of general mechanics are applied to liquids and gases. These principles
are those of the conservation of matter, the conservation of energy and
Newton’s laws of motion. In extending the study to compressible fluids,
we also need to consider the laws of thermodynamics. By the use of these
principles, we are not only able to explain observed phenomena, but also to
predict the behaviour of fluids under specified conditions. The study of the
mechanics of fluids can be further sub-divided. For fluids at rest the study is
known as fluid statics, whereas if the fluid is in motion, the study is called
fluid dynamics.

1.2 NOTATION, DIMENSIONS, UNITS AND
RELATED MATTERS

Calculations are an important part of engineering fluid mechanics. Fluid
and flow properties need to be quantified. The overall designs of aircraft
and dams, just to take two examples, depend on many calculations, and
if errors are made at any stage then human lives are put at risk. It is vital,
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therefore, to have in place systems of measurement and calculation which are
consistent, straightforward to use, minimize the risk of introducing errors,
and allow checks to be made. These are the sorts of issues that we consider
in detail here.

1.2.1 Definitions, conventions and rules

In the physical sciences, the word quantity is used to identify any physical
attribute capable of representation by measurement. For example, mass,
weight, volume, distance, time and velocity are all quantities, according to
the sense in which the word is used in the scientific world. The value of a
quantity is defined as the magnitude of the quantity expressed as the product
of a number and a unit. The number multiplying the unit is the numerical
value of the quantity expressed in that unit. (The numerical value is some-
times referred to as the numeric.) A unit is no more than a particular way
of attaching a numerical value to the quantity, and it is part of a wider
scene involving a system of units. Units within a system of units are of two
kinds. First, there are the base units (or primary units), which are mutually
independent. Taken together, the base units define the system of units. Then
there are the derived units (or secondary units) which can be determined
from the definitions of the base units.

Each quantity has a quantity name, which is spelt out in full, or it can
be represented by a quantity symbol. Similarly, each unit has a unit name,
which is spelt out in full, or it can be abbreviated and represented by a
unit symbol. The use of symbols saves much space, particularly when set-
ting down equations. Quantity symbols and unit symbols are mathematical
entities and, since they are not like ordinary words or abbreviations, they
have their own sets of rules. To avoid confusion, symbols for quantities
and units are represented differently. Symbols for quantities are shown in
italic type using letters from the Roman or Greek alphabets. Examples of
quantity symbols are F, which is used to represent force, mmass, and so on.
The definitions of the quantity symbols used throughout this book are given
in Appendix 4. Symbols for units are not italicized, and are shown in Roman
type. Subscripts or superscripts follow the same rules. Arabic numerals are
used to express the numerical value of quantities.

In order to introduce some of the basic ideas relating to dimensions and
units, consider the following example. Suppose that a velocity is reported as
30 m · s−1. In this statement, the number 30 is described as the numeric and
m · s−1 are the units of measurement. The notation m · s−1 is an abbreviated
form of the ratio metre divided by second. There are 1000 m in 1 km, and
3600 s in 1 h. Hence, a velocity of 30 m · s−1 is equivalent to 108 km · h−1.
In the latter case, the numeric is 108 and the units are km · h−1. Thus, for
defined units, the numeric is a measure of the magnitude of the velocity.
The magnitude of a quantity is seen to depend on the units in which it is
expressed.

Consider the variables: distance, depth, height, width, thickness.
These variables have different meanings, but they all have one feature in
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common – they have the dimensions of length. They can all be measured
in the same units, for example metres. From these introductory consid-
erations, we can move on to deal with general principles relating to the
use of dimensions and units in an engineering context. The dimension of a
variable is a fundamental statement of the physical nature of that variable.
Variables with particular physical characteristics in common have the same
dimensions; variables with different physical qualities have different dimen-
sions. Altogether, there are seven primary dimensions but, in engineering
fluid mechanics, just four of the primary dimensions – mass, length, time
and temperature – are required. A unit of measurement provides a means
of quantifying a variable. Systems of units are essentially arbitrary, and rely
upon agreement about the definition of the primary units. This book is based
on the use of SI units.

1.2.2 Units of the Système International d’Unités (SI units)

This system of units is an internationally agreed version of the metric
system; since it was established in 1960 it has experienced a process of
fine-tuning and consolidation. It is now employed throughout most of the
world and will no doubt eventually come into universal use. An extens-
ive and up-to-date guide, which has influenced the treatment of SI units
throughout this book, is: Barry N. Taylor (2004). Guide for the Use
of the International System of Units (SI) (version 2.2). [Online] Avail-
able: http://physics.nist.gov/Pubs/SP811/contents.html [2004, August 28].
National Institute of Standards and Technology, Gaithersburg, MD.

The seven primary SI units, their names and symbols are given in Table 1.1.
In engineering fluid mechanics, the four primary units are: kilogram,
metre, second and kelvin. These may be expressed in abbreviated form.
For example, kilogram is represented by kg, metre by m, second by s and
kelvin by K.

From these base or primary units, all other units, known as derived or
secondary units, are constructed (e.g. m · s−1 as a unit of velocity). Over
the years, the way in which these derived units are written has changed.
Until recently, two abbreviated forms of notation were in common use.
For example, metre/second could be abbreviated to m/s or m s−1 where, in
the second example, a space separates the m and s. In recent years, there

Table 1.1 Primary SI units

Quantity Unit Symbol

length metre m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K (formerly ◦K)
luminous intensity candela cd
amount of substance mole mol
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has been a strong movement in favour of a third form of notation, which
has the benefit of clarity, and the avoidance of ambiguity. The half-high
dot (also known as the middle dot) is now widely used in scientific work in
the construction of derived units. Using the half-high dot, metre/second is
expressed as m · s−1. The style based on the half-high dot is used throughout
this book to represent SI units. (Note that where reference is made in this
book to units which are outside the SI, such as in the discussion of conversion
factors, the half-high dot notation will not be applied to non-SI units. Hence,
SI units can be readily distinguished from non-SI units.)

Certain secondary units, derived from combinations of the primary units,
are given internationally agreed special names. Table 1.2 lists those used
in this book. Some other special names have been proposed and may be
adopted in the future.

Although strictly outside the SI, there are a number of units that are
accepted for use with SI. These are set out in Table 1.3.

The SI possesses the special property of coherence. A system of units is
said to be coherent with respect to a system of quantities and equations if the
system of units satisfies the condition that the equations between numerical
values have exactly the same form as the corresponding equations between
the quantities. In such a coherent system only the number 1 ever occurs as a
numerical factor in the expressions for the derived units in terms of the base
units.

Table 1.2 Names of some derived units

Quantity Unit Symbol Equivalent combination
of primary units

force Newton N kg · m · s−2

pressure and stress pascal Pa N · m−2 (≡ kg · m−1 · s−2)

work, energy, quantity of heat joule J N · m (≡ kg · m2 · s−2)

power watt W J · s−1 (≡ kg · m2 · s−3)

frequency hertz Hz s−1

plane angle radian rad
solid angle steradian sr

Table 1.3 Units accepted for use with the SI

Name Quantity Symbol Value in SI units

minute time min 1 min = 60 s
hour time h 1 h = 60 min = 3600 s
day time d 1 d = 24 h = 86 400 s
degree plane angle ◦ 1◦ = (π/180) rad
minute plane angle ′ 1′ = (1/60)◦ = (π/10 800) rad
second plane angle ′′ 1′′ = (1/60)′ = (π/648 000) rad
litre volume L 1 L = 1 dm3 = 10−3 m3

metric ton or tonne mass t 1 t = 103 kg
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1.2.3 Prefixes

To avoid inconveniently large or small numbers, prefixes may be put
in front of the unit names (see Table 1.4). Especially recommended are
prefixes that refer to factors of 103n, where n is a positive or negative
integer.

Care is needed in using these prefixes. The symbol for a prefix should
always be written close to the symbol of the unit it qualifies, for example,
kilometre (km), megawatt (MW), microsecond (µs). Only one prefix at
a time may be applied to a unit; thus 10−6 kg is 1 milligram (mg), not
1 microkilogram.

The symbol ‘m’ stands both for the basic unit ‘metre’ and for the pre-
fix ‘milli’, so care is needed in using it. The introduction of the half-high
dot has eliminated the risk of certain ambiguities associated with earlier
representations of derived units.

When a unit with a prefix is raised to a power, the exponent applies to
the whole multiple and not just to the original unit. Thus 1 mm2 means
1(mm)2 = (10−3 m)2 = 10−6 m2, and not 1 m(m2) = 10−3 m2.

The symbols for units refer not only to the singular but also to the plural.
For instance, the symbol for kilometres is km, not kms.

Capital or lower case (small) letters are used strictly in accordance with
the definitions, no matter in what combination the letters may appear.

Table 1.4 Prefixes for multiples and submultiples of SI
units

Prefix Symbol Factor by which unit is multiplied

yotta Y 1024

zetta Z 1021

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deca da 10
deci d 10−1

centi c 10−2

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

atto a 10−18

zepto z 10−21

yocto y 10−24
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1.2.4 Comments on some quantities and units

In everyday life, temperatures are conventionally expressed using the Celsius Temperature
temperature scale (formerly known as Centigrade temperature scale). The
symbol ◦C is used to express Celsius temperature. The Celsius temperature
(symbol t) is related to the thermodynamic temperature (symbol T) by the
equation

t = T − T0

where T0 = 273.15 K by definition. For many purposes, 273.15 can be
rounded off to 273 without significant loss of accuracy. The thermodynamic
temperature T0 is exactly 0.01 K below the triple-point of water.

Note that 1 newton is the net force required to give a body of mass 1 kg an Force
acceleration of 1 m · s−2.

The weight W and mass m of a body are related by Gravitational
acceleration

W = mg

The quantity represented by the symbol g is variously described as the grav-
itational acceleration, the acceleration of gravity, weight per unit mass, the
acceleration of free fall and other terms. Each term has its merits and weak-
nesses, which we shall not discuss in detail here. Suffice it to say that we
shall use the first two terms. As an acceleration, the units of g are usually
represented in the natural form m · s−2, but it is sometimes convenient to
express them in the alternative form N · kg−1, a form which follows from
the definition of the newton.

Note that 1 pascal is the pressure induced by a force of 1 N acting on an Pressure and stress
area of 1 m2. The pascal, Pa, is small for most purposes, and thus multiples
are often used. The bar, equal to 105 Pa, has been in use for many years, but
as it breaks the 103n convention it is not an SI unit.

In the measurement of fluids the name litre is commonly given to 10−3 m3. Volume
Both l and L are internationally accepted symbols for the litre. However, as
the letter l is easily mistaken for 1 (one), the symbol L is now recommended
and is used in this book.

The SI unit for plane angle is the radian. Consequently, angular velocity has Angular velocity
the SI unit rad · s−1. Hence, as SI units are used throughout this text, angular
velocity, denoted by the symbol ω, is specified with the units rad · s−1.

Another measure of plane angle, the revolution, equal to 360◦, is not part
of the SI, nor is it a unit accepted for use with SI (unlike the units degree,
minute and second, see Table 1.3). The revolution, here abbreviated to rev,
is easy to measure. In consequence rotational speed is widely reported in
industry in the units rev/s. (We avoid using the half-high dot to demonstrate
that the unit is not part of the SI.) It would be unrealistic to ignore the
popularity of this unit of measure and so, where appropriate, supplementary



10 Fundamental concepts

information on rotational speed is provided in the units rev/s. To distinguish
the two sets of units, we retain the symbol ω for use when the angular
velocity is measured in rad · s−1, and use the symbol N when the units are
rev/s. Thus N is related to ω by the expression N = ω/2π .

1.2.5 Conversion factors

This book is based on the use of SI units. However, other systems of units
are still in use; on occasions it is necessary to convert data into SI units
from these other systems of units, and vice versa. This may be done by using
conversion factors which relate the sizes of different units of the same kind.

As an example, consider the identity

1 inch ≡ 25.4 mm

(The use of three lines (≡), instead of the two lines of the usual equals sign,
indicates not simply that one inch equals or is equivalent to 25.4 mm but
that one inch is 25.4 mm. At all times and in all places one inch and 25.4 mm
are precisely the same.) The identity may be rewritten as

1 ≡ 25.4 mm
1 inch

and this ratio equal to unity is a conversion factor. Moreover, as the recip-
rocal of unity is also unity, any conversion factor may be used in reciprocal
form when the desired result requires it.

This simple example illustrates how a measurement expressed in one set
of units can be converted into another. The principle may be extended
indefinitely. A number of conversion factors are set out in Appendix 1.

If magnitudes are expressed on scales with different zeros (e.g. the
Fahrenheit and Celsius scales of temperature) then unity conversion factors
may be used only for differences of the quantity, not for individual points
on a scale. For instance, a temperature difference of 36 ◦F = 36 ◦F ×
(1 ◦C/1.8 ◦F) = 20 ◦C, but a temperature of 36 ◦F corresponds to 2.22 ◦C,
not 20 ◦C.

1.2.6 Orders of magnitude

There are circumstances where great precision is not required and just a
general indication of magnitude is sufficient. In such cases we refer to
the order of magnitude of a quantity. To give meaning to the term, con-
sider the following statements concerning examples taken from everyday
life: the thickness of the human hair is of the order 10−4 m; the length
of the human thumb nail is of order 10−2 m; the height of a human is of
order 1 m; the height of a typical two-storey house is of order 10 m; the
cruise altitude of a subsonic civil aircraft is of order 104 m. These examples
cover a range of 8 orders of magnitude. The height of a human is typic-
ally 4 orders of magnitude larger than the thickness of the human hair. The
cruise altitude of an airliner exceeds the height of a human by 4 orders of
magnitude. In this context, it is unimportant that the height of most humans
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is nearer 2 m, rather than 1 m. Here we are simply saying that the height
of a human is closer to 1 m rather than 10 m, the next nearest order of
magnitude.

As an example of the usefulness of order of magnitude considerations, let
us return to the concept of the continuum; we can explain why the continuum
concept is valid for the analysis of practical problems of fluid mechanics. For
most gases, the mean free path – that is the distance that on average a gas
molecule travels before colliding with another molecule – is of the order
of 10−7 m and the average distance between the centres of neighbouring
molecules is about 10−9 m. In liquids, the average spacing of the molecules
is of the order 10−10 m. In contrast, the diameter of a hot-wire anemometer
(see Chapter 7), which is representative of the smallest lengths at the mac-
roscopic level, is of the order 10−4 m. The molecular scale is seen to be
several (3 or more) orders smaller than the macroscopic scale of concern in
engineering.

Arguments based on a comparison of the order of magnitude of quantities
are of immense importance in engineering. Where such considerations are
relevant – for example, when analysing situations, events or processes –
factors which have a minor influence can be disregarded, allowing attention
to be focused on the factors which really matter. Consequently, the physics
is easier to understand and mathematical equations describing the physics
can be simplified.

1.2.7 Dimensional formulae

The notation for the four primary dimensions is as follows: mass [M],
length [L], time [T] and temperature [�]. The brackets form part of the
notation. The dimensions, or to give them their full title the dimensional for-
mulae, of all other variables of interest in fluid mechanics can be expressed
in terms of the four dimensions [M], [L], [T] and [�].

To introduce this notation, and the rules that operate, we consider a num-
ber of simple shapes. The area of a square, with sides of length l, is l2, and
the dimensions of the square are [L] × [L] = [L × L], which can be abbrevi-
ated to [L2]. The area of a square, with sides of length 2l, is 4l2. However,
although the area of the second square is four times larger than that of the
first square, the second square again has the dimensions [L2]. A rectangle,
with sides of length a and b, has an area ab, with dimensions of [L2]. The
area of a circle, with radius r, is πr2, with dimensions of [L2]. While these
figures are of various shapes and sizes, there is a common feature linking
them all: they enclose a defined area. We can say that [L2] is the dimensional
formula for area or, more simply, area has the dimensions [L2].

Let us consider a second example. If a body traverses a distance l in a
time t, then the average velocity of the body over the distance is l/t. Since
the dimensions of distance are [L], and those of time are [T], the dimen-
sions of velocity are derived as [L/T], which can also be written as [LT−1].
By extending the argument a stage further, it follows that the dimensions of
acceleration are [LT−2].
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Since force can be expressed as the product of mass and acceleration the
dimensions of force are given by [M] × [LT−2] = [MLT−2]. By similar
reasoning, the dimensions of any quantity can be quickly established.

1.2.8 Dimensional homogeneity

For a given choice of reference magnitudes, quantities of the same kind
have magnitudes with the same dimensional formulae. (The converse, how-
ever, is not necessarily true: identical dimensional formulae are no guarantee
that the corresponding quantities are of the same kind.) Since adding, sub-
tracting or equating magnitudes makes sense only if the magnitudes refer to
quantities of the same kind, it follows that all terms added, subtracted or
equated must have identical dimensional formulae; that is; an equation must
be dimensionally homogeneous.

In addition to the variables of major interest, equations in physical algebra
may contain constants. These may be numerical values, like the 1

2 in Kinetic
energy = 1

2 mu
2, and they are therefore dimensionless. However, in general

they are not dimensionless; their dimensional formulae are determined from
those of the other magnitudes in the equation, so that dimensional homo-
geneity is achieved. For instance, in Newton’s Law of Universal Gravitation,
F = Gm1m2/r2, the constant G must have the same dimensional formula
as Fr2/m1m2, that is, [MLT−2][L2]/[M][M] ≡ [L3M−1T−2], otherwise the
equation would not be dimensionally homogeneous. The fact that G is a
universal constant is beside the point: dimensions are associated with it, and
in analysing the equation they must be accounted for.

1.3 PROPERTIES OF FLUIDS

1.3.1 Density

The basic definition of the density of a substance is the ratio of the mass of
a given amount of the substance to the volume it occupies. For liquids, this
definition is generally satisfactory. However, since gases are compressible,
further clarification is required.

The mean density is the ratio of the mass of a given amount of a substanceMean density
to the volume that this amount occupies. If the mean density in all parts of
a substance is the same then the density is said to be uniform.

The density at a point is the limit to which the mean density tends as theDensity at a point
volume considered is indefinitely reduced, that is limv→0(m/V). As a math-
ematical definition this is satisfactory; since, however, all matter actually
consists of separate molecules, we should think of the volume reduced not
absolutely to zero, but to an exceedingly small amount that is nevertheless
large enough to contain a considerable number of molecules. The concept
of a continuum is thus implicit in the definition of density at a point.
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The relative density is the ratio of the density of a substance to some standard Relative density
density. The standard density chosen for comparison with the density of a
solid or a liquid is invariably that of water at 4 ◦C. For a gas, the standard
density may be that of air or that of hydrogen, although for gases the term
is little used. (The term specific gravity has also been used for the relative
density of a solid or a liquid, but relative density is much to be preferred.)
As relative density is the ratio of two magnitudes of the same kind it is merely
a numeric without units.

1.3.2 Pressure

A fluid always has pressure. As a result of innumerable molecular collisions, Pressure
any part of the fluid must experience forces exerted on it by adjoining fluid
or by adjoining solid boundaries. If, therefore, part of the fluid is arbitrarily
divided from the rest by an imaginary plane, there will be forces that may
be considered as acting at that plane.

Pressure cannot be measured directly; all instruments said to measure it Gauge pressure
in fact indicate a difference of pressure. This difference is frequently that
between the pressure of the fluid under consideration and the pressure of the
surrounding atmosphere. The pressure of the atmosphere is therefore com-
monly used as the reference or datum pressure that is the starting point of the
scale of measurement. The difference in pressure recorded by the measuring
instrument is then termed the gauge pressure.

The absolute pressure, that is the pressure considered relative to that of a Absolute pressure
perfect vacuum, is then given by pabs = pgauge + patm. (See also Section 2.3.)

The pressure of the atmosphere is not constant. For many engineering
purposes the variation of atmospheric pressure (and therefore the variation
of absolute pressure for a given gauge pressure, or vice versa) is of no con-
sequence. In other cases, however – especially for the flow of gases – it is
necessary to consider absolute pressures rather than gauge pressures, and
a knowledge of the pressure of the atmosphere is then required.

Pressure is determined from a calculation of the form (force divided by
area), and so has the dimensions [F]/[L2] = [MLT−2]/[L2] = [ML−1T−2].
Now although the force has direction, the pressure has not. The direction of
the force also specifies the direction of the imaginary plane surface, since the
latter is defined by the direction of a line perpendicular to, or normal to, the
surface. Here, then, the force and the surface have the same direction and
so in the equation

−−−→
Force = Pressure × Area

−−−−−→
of plane surface

pressure must be a scalar quantity. Pressure is a property of the fluid at the
point in question. Similarly, temperature and density are properties of the
fluid and it is just as illogical to speak of ‘downward pressure’, for example,
as of ‘downward temperature’ or ‘downward density’. To say that pressure
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acts in any direction, or even in all directions, is meaningless; pressure is
a scalar quantity.

The SI unit of pressure is N · m−2, now termed pascal, with the abbrevi-
ation Pa. Pressures of large magnitude are often expressed in atmospheres
(abbreviated to atm). For precise definition, one atmosphere is taken as
1.01325 × 105 Pa. A pressure of 105 Pa is called 1 bar. The thousandth
part of this unit, called a millibar (abbreviated to mbar), is commonly used
by meteorologists. It should be noted that, although they are widely used,
neither the atmosphere nor the bar are accepted for use with SI units.

For pressures less than that of the atmosphere the units normally used
are millimetres of mercury vacuum. These units refer to the difference
between the height of a vertical column of mercury supported by the pressure
considered, and the height of one supported by the atmosphere.

In the absence of shear forces, the direction of the plane over which the
force due to the pressure acts has no effect on the magnitude of the pressure at
a point. The fluid may even be accelerating in a particular direction provided
that shear forces are absent – a condition that requires no relative motion
between different particles of fluid.

Consider a small prism, with plane faces and triangular section. Figure 1.1
shows one endABC of the prism; a parallel end faceA′B′C′ is at a perpendic-
ular distance l from ABC. The rectangular face ABB′A′ is assumed vertical
and the rectangular face BCC′B′ horizontal, but the face ACC′A′ is at any
angle. We denote the angle BAC by A and the angle ACB by C. The mean
density of the fluid inside the prism is � and the average pressures at each
face are p1,p2 and p3, respectively.

If there is no relative motion between particles of the fluid, the forces on
the end faces ABC and A′B′C′ act only perpendicular to those faces. The net
force towards the right is given by resolving horizontally (and parallel to the
plane ABC):

p1ABl− p3ACl cosA = (p1 − p3)ABl

since AC cosA = AB. By Newton’s Second Law, this net force equals the
product of the mass of the fluid and its means acceleration (say ax) in that
direction:

(p1 − p3)ABl = 1
2BC ABl�ax

Fig. 1.1
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that is,

p1 − p3 = 1
2BC �ax (1.1)

If the prism is made exceedingly small it shrinks to a point, the right-hand
side of eqn 1.1 tends to zero and so, at the point considered,

p1 = p3 (1.2)

The weight of the fluid in the prism is g times its mass, so the net force
vertically downwards is

p3ACl cosC + 1
2BCABl �g − p2BCl

= BCl
(
p3 + 1

2AB �g − p2

)
since AC cosC = BC.

Again by Newton’s Second Law, this net force equals the product of the
mass of the fluid and its mean acceleration vertically downwards (say ay):

BCl
(
p3 + 1

2AB �g − p2

)
= 1

2BCABl �ay

or, after division by BCl and rearrangement:

p3 − p2 = 1
2AB�(ay − g)

If the size of the prism is reduced AB → 0 and, at the point considered,

p3 = p2 (1.3)

So, combining eqns 1.2 and 1.3, we have

p1 = p2 = p3 (1.4)

We remember that the direction of the face ACC′A′ was not specified at
all, and so the result is valid for any value of the angle ACB. Moreover, the
planeABB′A′ may face any point of the compass and therefore the pressure is
quite independent of the direction of the surface used to define it. This result
is frequently known as Pascal’s Law after the French philosopher Blaise
Pascal (1623–62), although the principle had previously been deduced by
G. B. Benedetti (1530–90) and Simon Stevin (1548–1620) in about 1586.
The only restrictions are that the fluid is a continuum, that is, the prism,
even when made very small, contains a large number of molecules, and that,
if it is moving, there is no relative motion between adjacent particles.

If, however, there is relative motion between adjacent layers in the fluid,
then shear stresses are set up and eqn 1.4 is not strictly true. The ratio of a
force perpendicular to (or normal to) an area divided by that area is known
as the normal stress. When shear stresses are present, the magnitude of the
quantity referred to as the pressure at a point is taken as the mean of the
normal stresses on three mutually perpendicular planes. Experience shows
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that, even when shear stresses are present, Pascal’s Law is very close to the
truth.

1.3.3 Vapour pressure

All liquids tend to evaporate (or vaporize). This is because there is at the
free surface a continual movement of molecules out of the liquid. Some of
these molecules return to the liquid, so there is, in fact, an interchange of
molecules between the liquid and the space above it. If the space above the
surface is enclosed, the number of liquid molecules in the space will – if the
quantity of liquid is sufficient – increase until the rate at which molecules
escape from the liquid is balanced by the rate at which they return to it.

Just above the liquid surface the molecules returning to the liquid create aSaturation pressure
pressure known as the partial pressure of the vapour. This partial pressure
and the partial pressures of other gases above the liquid together make up
the total pressure there. Molecules leaving the liquid give rise to the vapour
pressure, the magnitude of which depends upon the rate at which molecules
escape from the surface. When the vapour pressure equals the partial pressure
of the vapour above the surface, the rates at which molecules leave and enter
the liquid are the same, and the gas above the surface is then said to be
saturated with the vapour. The value of the vapour pressure for which this
is so is the saturation pressure.

Since the velocity of the molecules, and hence their ability to escape
through the liquid surface, increases with temperature, so does the vapour
pressure. If the total pressure of the gas above the liquid becomes less than
the saturation pressure, molecules escape from the liquid very rapidly in the
phenomenon known as boiling. Bubbles of vapour are formed in the liquid
itself and then rise to the surface. For pure water the saturation pressure at
100 ◦C is approximately 105 Pa, which is the total pressure of the atmo-
sphere at sea level, so water subject to this atmospheric pressure boils at this
temperature. If, however, the external pressure to which the liquid is sub-
jected is lower, then boiling commences at a lower value of the saturation
pressure, that is at a lower temperature. Water therefore boils even at room
temperature if the pressure is reduced to the value of the saturation vapour
pressure at that temperature (for numerical data see Appendix 2).

Effects very similar to boiling occur if a liquid contains dissolved gases.Cavitation
When the pressure of the liquid is sufficiently reduced the dissolved gases are
liberated in the form of bubbles; a smaller reduction of pressure is, however,
required for the release of dissolved gases than for the boiling of the liquid.
A subsequent increase of pressure may cause bubbles, whether of vapour
or of other gases, to collapse; very high impact forces may then result. The
latter phenomenon is known as cavitation, and has serious consequences in
fluid machinery. (See Section 13.3.6.)

There is a wide variation in vapour pressure among liquids, as shown in
Appendix 2. These figures clearly indicate that it is not only its high density
that makes mercury valuable in a barometer; the vapour pressure is so low
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that there is an almost perfect vacuum above the liquid column. It will also
be seen why a liquid such as petrol evaporates much more readily than water
at the same temperature.

1.4 THE PERFECT GAS: EQUATION OF STATE

The assumed properties of a perfect gas are closely matched by those of
actual gases in many circumstances, although no actual gas is perfect. The
molecules of a perfect gas would behave like tiny, perfectly elastic spheres in
random motion, and would influence one another only when they collided.
Their total volume would be negligible in comparison with the space in which
they moved. From these hypotheses the kinetic theory of gases indicates that,
for equilibrium conditions, the absolute pressure p, the volume V occupied
by mass m, and the absolute temperature Tare related by the expression

pV = mRT

that is,

p = �RT (1.5)

where � represents the density and R the gas constant, the value of which
depends on the gas concerned.

Any equation that relates p, � and T is known as an equation of state and Equation of state
eqn 1.5 is therefore termed the equation of state of a perfect gas. Most gases,
if at temperatures and pressures well away both from the liquid phase and
from dissociation, obey this relation closely and so their pressure, density
and (absolute) temperature may, to a good approximation, be related by
eqn 1.5. For example, air at normal temperatures and pressures behaves
closely in accordance with the equation. But gases near to liquefaction –
which are then usually termed vapours – depart markedly from the behaviour
of a perfect gas. Equation 1.5 therefore does not apply to substances such
as non-superheated steam and the vapours used in refrigerating plants. For
such substances, corresponding values of pressure, temperature and density
must be obtained from tables or charts.

A gas for which Thermally perfect gas

p/�T = R = constant

is said to be thermally perfect.
It is usually assumed that the equation of state is valid not only when the

fluid is in mechanical equilibrium and neither giving nor receiving heat, but
also when it is not in mechanical or thermal equilibrium. This assumption
seems justified because deductions based on it have been found to agree with
experimental results.
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It should be noted that R is defined by eqn 1.5 as p/�T: its dimensional
formula is therefore

[
F
L2

]/[
M
L3

�

]
= [FL]

[M�]

where [F] is the dimensional symbol for force and [�] that for temperature.
For air the value of R is 287 J · kg−1 · K−1. Some writers define the gas
constant as p/wT, where w represents the weight divided by volume; this
form has the dimensional formula

[F/L2] ÷ [F�/L3] = [L/�]

The dependence of a gas constant on the weight of a given volume of gas
rather than on its mass is illogical, and eqn 1.5 – used throughout this book –
is the preferred form of the equation of state for a perfect gas.

�

Example 1.1 A mass of air, at a pressure of 200 kPa and a
temperature of 300 K, occupies a volume of 3 m3. Determine:

(a) the density of the air;
(b) its mass.

Solution

(a) � = p
RT

= 2 × 105 N · m−2

287 J · kg−1 · K−1 × 300 K
= 2.32 kg · m−3

(b) m = �V = 2.32 kg · m−3 × 3 m3 = 6.96 kg

For a given temperature and pressure eqn 1.5 indicates that �R = constant.Universal gas constant
By Avogadro’s hypothesis, all pure gases at the same temperature and pres-
sure have the same number of molecules in a specified volume. The density
is proportional to the mass of an individual molecule and so the product of
R and the relative molecular mass M is constant for all perfect gases. This
product MR is known as the universal gas constant, R0; for real gases it
is not strictly constant but for monatomic and diatomic gases its variation is
slight. If M is the ratio of the mass of the molecule to the mass of a normal
hydrogen atom, MR = 8314 J · kg−1 · K−1.

A gas for which the specific heat capacity at constant volume, cv, isCalorically perfect gas
a constant is said to be calorically perfect. The term perfect gas, used
without qualification, generally refers to a gas that is both thermally and
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calorically perfect. (Some writers use semi-perfect as a synonym for thermally
perfect.)

Example 1.2 Find the gas constant for the following gases: CO, CO2,
NO, N2O. The relative atomic masses are: C = 12, N = 14, O = 16.

Solution
For CO, the relative molecular mass M = 12 + 16 = 28.

Hence, for CO

R = R0

M
= MR
M

= 8314 J · kg−1 · K−1

28
= 297 J · kg−1 · K−1

Similarly
For CO2, M = 12 + (2 × 16) = 44 and

R = 8314/44 = 189 J · kg−1 · K−1

For NO, M = 14 + 16 = 30 and

R = 8314/30 = 277 J · kg−1 · K−1

For N2O, M= (2 × 14) + 16 = 44 and

R = 8314/44 = 189 J · kg−1 · K−1

1.4.1 Changes of state

�

A change of density may be achieved both by a change of pressure and by a Isothermal process
change of temperature. If the process is one in which the temperature is held
constant, it is known as isothermal.

On the other hand, the pressure may be held constant while the temperature Adiabatic process
is changed. In either of these two cases there must be a transfer of heat to
or from the gas so as to maintain the prescribed conditions. If the density
change occurs with no heat transfer to or from the gas, the process is said
to be adiabatic.

If, in addition, no heat is generated within the gas (e.g. by friction) then Isentropic process
the process is described as isentropic, and the absolute pressure and dens-
ity of a perfect gas are related by the additional expression (developed in
Section 11.2):

p/�γ = constant (1.6)

where γ = cp/cv and cp and cv represent the specific heat capacities at con-
stant pressure and constant volume respectively. For air and other diatomic
gases in the usual ranges of temperature and pressure γ = 1.4.
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1.5 COMPRESSIBILITY

All matter is to some extent compressible. That is to say, a change in the
pressure applied to a certain amount of a substance always produces some
change in its volume. Although the compressibility of different substances
varies widely, the proportionate change in volume of a particular material
that does not change its phase (e.g. from liquid to solid) during the compres-
sion is directly related to the change in the pressure.

The degree of compressibility of a substance is characterized by the bulkBulk modulus of
elasticity modulus of elasticity, K, which is defined by the equation

K = − δp
δV/V

(1.7)

Here δp represents a small increase in pressure applied to the material and
δV the corresponding small increase in the original volume V . Since a rise in
pressure always causes a decrease in volume, δV is always negative, and the
minus sign is included in the equation to give a positive value of K. As δV/V
is simply a ratio of two volumes it is dimensionless and thus K has the same
dimensional formula as pressure. In the limit, as δp → 0, eqn 1.7 becomes
K = −V(∂p/∂V). As the density � is given by mass/volume = m/V

d� = d(m/V) = − m
V2

dV = −�
dV
V

so K may also be expressed as

K = �(∂p/∂�) (1.8)

The reciprocal of bulk modulus is sometimes termed the compressibility.Compressibility
The value of the bulk modulus, K, depends on the relation between pres-

sure and density applicable to the conditions under which the compression
takes place. Two sets of conditions are especially important. If the com-
pression occurs while the temperature is kept constant, the value of K is
the isothermal bulk modulus. On the other hand, if no heat is added to or
taken from the fluid during the compression, and there is no friction, the
corresponding value of K is the isentropic bulk modulus. The ratio of the
isentropic to the isothermal bulk modulus is γ , the ratio of the specific heat
capacity at constant pressure to that at constant volume. For liquids the
value of γ is practically unity, so the isentropic and isothermal bulk mod-
uli are almost identical. Except in work of high accuracy it is not usual to
distinguish between the bulk moduli of a liquid.

For liquids the bulk modulus is very high, so the change of density with
increase of pressure is very small even for the largest pressure changes
encountered. Accordingly, the density of a liquid can normally be regarded as
constant, and the analysis of problems involving liquids is thereby simplified.
In circumstances where changes of pressure are either very large or very sud-
den, however – as in water hammer (see Section 12.3) – the compressibility
of liquids must be taken into account.
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As a liquid is compressed its molecules become closer together, so its
resistance to further compression increases, that is, K increases. The bulk
modulus of water, for example, roughly doubles as the pressure is raised
from 105 Pa (1 atm) to 3.5 × 108 Pa (3500 atm). There is also a decrease of
K with increase of temperature.

Unlike liquids, gases are easily compressible. In considering the flow of
gases, rather than using K, it is convenient to work in terms of the Mach
number, M , defined by the relation

M = u/a

where u is the local velocity and a is the speed of sound. For gases, compress-
ibility effects are important if the magnitude of u approaches or exceeds that
of a. On the other hand, compressibility effects may be ignored, if every-
where within a flow, the criterion 1

2M
2 � 1 is satisfied; in practice, this

is usually taken as M < 0.3. For example, in ventilation systems, gases
undergo only small changes of density, and the effects of compressibility
may be disregarded.

1.6 VISCOSITY

All fluids offer resistance to any force tending to cause one layer to move over
another. Viscosity is the fluid property responsible for this resistance. Since
relative motion between layers requires the application of shearing forces,
that is, forces parallel to the surfaces over which they act, the resisting forces
must be in exactly the opposite direction to the applied shear forces and so
they too are parallel to the surfaces.

It is a matter of common experience that, under particular conditions, one
fluid offers greater resistance to flow than another. Such liquids as tar, treacle
and glycerine cannot be rapidly poured or easily stirred, and are commonly
spoken of as thick; on the other hand, so-called thin liquids such as water,
petrol and paraffin flow much more readily. (Lubricating oils with small
viscosity are sometimes referred to as light, and those with large viscosity as
heavy; but viscosity is not related to density.)

Gases as well as liquids have viscosity, although the viscosity of gases is
less evident in everyday life.

1.6.1 Quantitative definition of viscosity

Consider the motion of fluid illustrated in Fig. 1.2. All particles are moving
in the same direction, but different layers of the fluid move with differ-
ent velocities (as indicated here by the lengths of the arrows). Thus one
layer moves relative to another. We assume for the moment that the paral-
lel movements of the layers are in straight lines. A particular small portion
of the fluid will be deformed from its original rectangular shape PQRS to
P′Q′R′S′ as it moves along. However, it is not the displacement of P′Q′
relative to S′R′ that is important, so much as the angle α. The right-hand
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Fig. 1.2

Fig. 1.3

diagram of Fig. 1.3 represents a smaller degree of deformation than does the
left-hand diagram, although the relative movement between top and bottom
of the portion considered is the same in each case. The linear displacement is
a matter of the difference of velocity between the two planes PQ and SR but
the angular displacement depends also on the distance between the planes.
Thus the important factor is the velocity gradient, that is, the rate at which
the velocity changes with the distance across the flow.

Fig. 1.4

Suppose that, within a flowing fluid, the velocity u of the fluid varies
with distance y measured from some fixed reference plane, in such a man-
ner as in Fig. 1.4. Such a curve is termed the velocity profile. The velocity
gradient is given by δu/δy or, in the limit as δy → 0, by ∂u/∂y. The
partial derivative ∂u/∂y is used because in general the velocity varies also
in other directions. Only the velocity gradient in the y direction concerns
us here.

Figure 1.5 represents two adjoining layers of the fluid, although they are
shown slightly separated for the sake of clarity. The upper layer, supposed
the faster of the two, tends to draw the lower one along with it by means of
a force F on the lower layer. At the same time, the lower layer (by Newton’s
Third Law) tends to retard the faster, upper, one by an equal and opposite
force acting on that. If the force F acts over an area of contact A the shear
stress τ is given by F/A.

Newton (1642–1727) postulated that, for the straight and parallel motion
of a given fluid, the tangential stress between two adjoining layers is pro-
portional to the velocity gradient in a direction perpendicular to the layers.
That is

τ = F/A ∝ ∂u/∂y
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Fig. 1.5

or

τ = µ
∂u
∂y

(1.9)

where µ is a constant for a particular fluid at a particular temperature.
This coefficient of proportionality µ is now known by a number of names.
The preferred term is dynamic viscosity – to distinguish it from kinematic
viscosity (Section 1.6.4) – but some writers use the alternative terms absolute
viscosity or coefficient of viscosity. The symbols µ and η are both widely used
for dynamic viscosity; in this book µ will be used. The restriction of eqn 1.9
to straight and parallel flow is necessary because only in these circumstances
does the increment of velocity δu necessarily represent the rate at which one
layer of fluid slides over another.

It is important to note that eqn 1.9 strictly concerns the velocity gradient
and the stress at a point: the change of velocity considered is that occurring
over an infinitesimal thickness and the stress is given by the force acting over
an infinitesimal area. The relation τ = µ�u/�y, where �u represents the
change of velocity occurring over a larger, finite distance �y, is only true for
a velocity profile with a linear velocity gradient.

To remove the restriction to straight and parallel flow, we may substitute
‘the rate of relative movement between adjoining layers of the fluid’ for δu,
and ‘rate of shear’ for ‘velocity gradient’. As will be shown in Section 6.6.4,
if angular velocity is involved then the rate of shear and the velocity gradient
are not necessarily identical; in general, the rate of shear represents only
part of the velocity gradient. With this modification, eqn 1.9 may be used
to define viscosity as the shear stress, at any point in a flow, divided by the
rate of shear at the point in the direction perpendicular to the surface over
which the stress acts.

The dynamic viscosity µ is a property of the fluid and a scalar quantity.
The other terms in eqn 1.9, however, refer to vector quantities, and it is
important to relate their directions. We have already seen that the surface
over which the stress τ acts is (for straight and parallel flow) perpendicular
to the direction of the velocity gradient. (With the notation of eqn 1.9 the
surface is perpendicular to the y coordinate or, in other words, parallel to the
x–z plane.) We have seen too that the line of action of the force F is parallel
to the velocity component u. Yet what of the sense of this force? In Fig. 1.5,
to which of the two forces each labelled F does eqn 1.9 strictly apply?

If the velocity u increases with y, then ∂u/∂y is positive and eqn 1.9 gives
a positive value of τ . For simplicity the positive sense of the force or stress
is defined as being the same as the positive sense of velocity. Thus, referring
again to Fig. 1.5, the value of τ given by the equation refers to the stress acting
on the lower layer. In other words, both velocity and stress are considered
positive in the direction of increase of the coordinate parallel to them; and
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the stress given by eqn 1.9 acts over the surface facing the direction in which
the perpendicular coordinate (e.g. y) increases.

For many fluids the magnitude of the viscosity is independent of the rate
of shear, and although it may vary considerably with temperature it may
be regarded as a constant for a particular fluid and temperature. Such fluids
are known as Newtonian fluids. Those fluids that behave differently are
discussed in Section 1.6.5.

Equation 1.9 shows that, irrespective of the magnitude of µ, the stress is
zero when there is no relative motion between adjoining layers. Moreover,
it is clear from the equation that ∂u/∂y must nowhere be infinite, since
such a value would cause an infinite stress and this is physically impossible.
Consequently, if the velocity varies across the flow, it must do so continu-
ously and not change by abrupt steps between adjoining elements of the fluid.
This condition of continuous variation must be met also at a solid boundary;
the fluid immediately in contact with the boundary does not move relative
to it because such motion would constitute an abrupt change. In a viscous
fluid, then, a condition that must always be satisfied is that there should be
no slipping at solid boundaries. This condition is commonly referred to as
the no-slip condition.

It will be seen that there is a certain similarity between the dynamic viscos-
ity in a fluid and the shear modulus of elasticity in a solid. Whereas, however,
a solid continues to deform only until equilibrium is reached between the
internal resistance to shear and the external force producing it, a fluid con-
tinues to deform indefinitely, provided that the external force remains in
action. In a fluid it is the rate of deformation, not the deformation itself,
that provides the criterion for equilibrium of force.

To maintain relative motion between adjoining layers of a fluid, work
must be done continuously against the viscous forces of resistance. In other
words, energy must be continuously supplied. Whenever a fluid flows there
is a loss of mechanical energy, often ascribed to fluid friction, which is used
to overcome the viscous forces. The energy is dissipated as heat, and for
practical purposes may usually be regarded as lost forever.

1.6.2 The causes of viscosity

For one possible cause of viscosity we may consider the forces of attrac-
tion between molecules. Yet there is evidently also some other explanation,
because gases have by no means negligible viscosity although their molecules
are in general so far apart that no appreciable inter-molecular force exists.
We know, however, that the individual molecules of a fluid are continu-
ously in motion and this motion makes possible a process of exchange of
momentum between different layers of the fluid. Suppose that, in straight
and parallel flow, a layer aa (Fig. 1.6) in the fluid is moving more rapidly
than an adjacent layer bb. Some molecules from the layer aa, in the course
of their continuous thermal agitation, migrate into the layer bb, taking with
them the momentum they have as a result of the overall velocity of layer
aa. By collisions with other molecules already in layer bb this momentum is
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Fig. 1.6

shared among the occupants of bb, and thus layer bb as a whole is speeded
up. Similarly, molecules from the slower layer bb cross to aa and tend to
retard the layer aa. Every such migration of molecules, then, causes forces
of acceleration or deceleration in such directions as to tend to eliminate the
differences of velocity between the layers.

In gases this interchange of molecules forms the principal cause of viscos-
ity, and the kinetic theory of gases (which deals with the random motions
of the molecules) allows the predictions – borne out by experimental obser-
vations – that (a) the viscosity of a gas is independent of its pressure (except
at very high or very low pressure) and (b) because the molecular motion
increases with a rise of temperature, the viscosity also increases with a rise
of temperature (unless the gas is so highly compressed that the kinetic theory
is invalid).

The process of momentum exchange also occurs in liquids. There is, how-
ever, a second mechanism at play. The molecules of a liquid are sufficiently
close together for there to be appreciable forces between them. Relative
movement of layers in a liquid modifies these inter-molecular forces, thereby
causing a net shear force which resists the relative movement. Consequently,
the viscosity of a liquid is the resultant of two mechanisms, each of which
depends on temperature, and so the variation of viscosity with temperature
is much more complex than for a gas. The viscosity of nearly all liquids
decreases with rise of temperature, but the rate of decrease also falls. Except
at very high pressures, however, the viscosity of a liquid is independent of
pressure.

The variation with temperature of the viscosity of a few common fluids is
given in Appendix 2.

1.6.3 The dimensional formula and units of dynamic viscosity

Dynamic viscosity is defined as the ratio of a shear stress to a velocity gradi-
ent. Since stress is defined as the ratio of a force to the area over which it
acts, its dimensional formula is [FL−2]. Velocity gradient is defined as the
ratio of increase of velocity to the distance across which the increase occurs,
thus giving the dimensional formula [L/T]/[L] ≡ [T−1]. Consequently the
dimensional formula of dynamic viscosity is [FL−2]/[T−1] ≡ [FTL−2]. Since
[F] ≡ [MLT−2], the expression is equivalent to [ML−1T−1].

The SI unit of dynamic viscosity is Pa · s, or kg · m−1 · s−1, but no special
name for it has yet found international agreement. (The name poiseuille,
abbreviated Pl, has been used in France but must be carefully distinguished
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from poise – see below. 1 Pl = 10 poise.) Water at 20 ◦C has a dynamic
viscosity of almost exactly 10−3 Pa · s.

(Data for dynamic viscosity are still commonly expressed in units from the
c.g.s. system, namely the poise (abbreviated P) in honour of J. L. M. Poiseuille
(1799–1869). Smaller units, the centipoise, cP, that is, 10−2 poise, the
millipoise, mP (10−3 poise) and the micropoise, µP(10−6 poise) are also
used.)

1.6.4 Kinematic viscosity and its units

In fluid dynamics, many problems involving viscosity are concerned with the
magnitude of the viscous forces compared with the magnitude of the inertia
forces, that is, those forces causing acceleration of particles of the fluid. Since
the viscous forces are proportional to the dynamic viscosity µ and the inertia
forces are proportional to the density �, the ratio µ/� is frequently involved.
The ratio of dynamic viscosity to density is known as the kinematic viscosity
and is denoted by the symbol ν so that

ν = µ

�
(1.10)

(Care should be taken in writing the symbol ν: it is easily confused with υ.)
The dimensional formula for ν is given by [ML−1T−1]/[ML−3] ≡

[L2T−1]. It will be noticed that [M] cancels and so ν is independent of the
units of mass. Only magnitudes of length and time are involved. Kinematics
is defined as the study of motion without regard to the causes of the motion,
and so involves the dimensions of length and time only, but not mass. That
is why the name kinematic viscosity, now in universal use, has been given to
the ratio µ/�.

The SI unit for kinematic viscosity is m2 · s−1, but this is too large for
most purposes so the mm2 · s−1 (= 10−6m2 · s−1) is generally employed.
Water has a kinematic viscosity of exactly = 10−6m2 · s−1 at 20.2 ◦C.

(The c.g.s. unit, cm2/s, termed the stokes (abbreviated S or St), honours
the Cambridge physicist, Sir George Stokes (1819–1903), who contributed
much to the theory of viscous fluids. This unit is rather large, but – although
not part of the SI – data are sometimes still expressed using the centistokes
(cSt). Thus 1 cSt = 10−2 St = 10−6m2 · s−1.)

As Appendix 2 shows, the dynamic viscosity of air at ordinary temperat-
ures is only about one-sixtieth that of water. Yet because of its much smaller
density its kinematic viscosity is 13 times greater than that of water.

Measurement of dynamic and kinematic viscosities is discussed in
Chapter 6.

1.6.5 Non-Newtonian liquids

For most fluids the dynamic viscosity is independent of the velocity gradient
in straight and parallel flow, so Newton’s hypothesis is fulfilled. Equation 1.9
indicates that a graph of stress against rate of shear is a straight line through
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Fig. 1.7

the origin with slope equal to µ (Fig. 1.7). There is, however, a fairly large
category of liquids for which the viscosity is not independent of the rate of
shear, and these liquids are referred to as non-Newtonian. Solutions (par-
ticularly of colloids) often have a reduced viscosity when the rate of shear
is large, and such liquids are said to be pseudo-plastic. Gelatine, clay, milk,
blood and liquid cement come in this category.

A few liquids exhibit the converse property of dilatancy; that is, their
effective viscosity increaseswith increasing rate of shear. Concentrated solu-
tions of sugar in water and aqueous suspensions of rice starch (in certain
concentrations) are examples.

Additional types of non-Newtonian behaviour may arise if the apparent
viscosity changes with the time for which the shearing forces are applied.
Liquids for which the apparent viscosity increases with the duration of the
stress are termed rheopectic; those for which the apparent viscosity decreases
with the duration are termed thixotropic.

A number of materials have the property of plasticity. Metals when
strained beyond their elastic limit or when close to their melting points
can deform continuously under the action of a constant force, and thus
in some degree behave like liquids of high viscosity. Their behaviour, how-
ever, is non-Newtonian, and most of the methods of mechanics of fluids are
therefore inapplicable to them.
Viscoelastic materials possess both viscous and elastic properties; bitu-

men, nylon and flour dough are examples. In steady flow, that is, flow not
changing with time, the rate of shear is constant and may well be given by
τ/µ where µ represents a constant dynamic viscosity as in a Newtonian fluid.
Elasticity becomes evident when the shear stress is changed. A rapid increase
of stress from τ to τ + δτ causes the material to be sheared through an addi-
tional angle δτ /G whereG represents an elastic modulus; the corresponding
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rate of shear is (1/G)∂τ/∂t so the total rate of shear in the material is
(τ/µ) + (1/G)∂τ/∂t.

The fluids with which engineers most often have to deal are Newtonian,
that is, their viscosity is not dependent on either the rate of shear or its
duration, and the term mechanics of fluids is generally regarded as referring
only to Newtonian fluids. The study of non-Newtonian liquids is termed
rheology.

1.6.6 Inviscid fluid

An important field of theoretical fluid mechanics involves the investigation
of the motion of a hypothetical fluid having zero viscosity. Such a fluid is
sometimes referred to as an ideal fluid. Although commonly adopted in the
past, the use of this term is now discouraged as imprecise. A more meaningful
term for a fluid of zero viscosity is inviscid fluid.

1.7 SURFACE TENSION

Surface tension arises from the forces between the molecules of a liquid and
the forces (generally of a different magnitude) between the liquid molecules
and those of any adjacent substance. The symbol for surface tension is γ and
it has the dimensions [MT−2].

Water in contact with air has a surface tension of about 0.073 N · m−1 at
usual ambient temperatures; most organic liquids have values between 0.020
and 0.030 N · m−1 and mercury about 0.48 N · m−1, the liquid in each case
being in contact with air. For all liquids the surface tension decreases as
the temperature rises. The surface tension of water may be considerably
reduced by the addition of small quantities of organic solutes such as soap
and detergents. Salts such as sodium chloride in solution raise the surface
tension of water. That tension which exists in the surface separating two
immiscible liquids is usually known as interfacial tension.

As a consequence of surface tension effects a drop of liquid, free from all
other forces, takes on a spherical form.

The molecules of a liquid are bound to one another by forces of molecular
attraction, and it is these forces that give rise to cohesion, that is, the tendency
of the liquid to remain as one assemblage of particles rather than to behave
as a gas and fill the entire space within which it is confined. Forces between
the molecules of a fluid and the molecules of a solid boundary surface give
rise to adhesion between the fluid and the boundary.

If the forces of adhesion between the molecules of a particular liquid and
a particular solid are greater than the forces of cohesion among the liquid
molecules themselves, the liquid molecules tend to crowd towards the solid
surface, and the area of contact between liquid and solid tends to increase.
Given the opportunity, the liquid then spreads over the solid surface and
‘wets’ it. Water will wet clean glass, but mercury will not. Water, however,
will not wet wax or a greasy surface.
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The interplay of these various forces explains the capillary rise or
depression that occurs when a free liquid surface meets a solid boundary.
Unless the attraction between molecules of the liquid exactly equals that
between molecules of the liquid and molecules of the solid, the surface near
the boundary becomes curved. Now if the surface of a liquid is curved the
surface tension forces have a resultant towards the concave side. For equi-
librium this resultant must be balanced by a greater pressure at the concave
side of the surface. It may readily be shown that if the surface has radii of
curvature R1 and R2 in two perpendicular planes the pressure at the concave
side of the surface is greater than that at the convex side by

γ

(
1
R1

+ 1
R2

)
(1.11)

Inside a spherical drop, for instance, the pressure exceeds that outside by
2γ /R (since here R1 = R2 = R). However, the excess pressure inside a soap
bubble is 4γ /R; this is because the very thin soap film has two surfaces, an
inner and an outer, each in contact with air. Applying expression 1.11 and
the principles of statics to the rise of a liquid in a vertical capillary tube yields

h = 4γ cos θ

�gd
(1.12)

where h represents the capillary rise of the liquid surface (see Fig. 1.8), θ rep-
resents the angle of contact between the wall of the tube and the interface
between the liquid and air, � the density of the liquid, g the gravitational
acceleration, and d the diameter of the tube. (For two liquids in contact
γ represents the interfacial tension, and � the difference of their densities.)
However, the assumption of a spherical interface between the liquid and air
(and other approximations) restricts the application of the formula to tubes
of small bore, say less than 3 mm. Moreover, although for pure water in a
completely clean glass tube θ = 0, the value may well be different in engin-
eering practice, where cleanliness of a high order is seldom found, or with

Fig. 1.8
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tubes of other materials. Equation 1.12 therefore overestimates the actual
capillary rise. Mercury, which has an angle of contact with clean glass of
about 130◦ in air, and therefore a negative value of cos θ , experiences a
capillary depression.

Surface tension becomes important when solid boundaries of a liquid
surface are close together or when the surface separating two immiscible
fluids has a very small radius of curvature. The forces due to surface tension
then become comparable with other forces and so may appreciably affect
the behaviour of the liquid. Such conditions may occur, for example, in
small-scale models of rivers or harbours. The surface tension forces may be
relatively much more significant in the model than in the full-size structure;
consequently a simple scaling-up of measurements made on the model may
not yield results accurately corresponding to the full-size situation.

In apparatus of small size the forces due to surface tension can completely
stop the motion of a liquid if they exceed the other forces acting on it. It is
well known, for example, that a cup or tumbler may be carefully filled until
the liquid surface is perhaps 3 mm above the rim before overflowing begins.
Among other instances in which surface tension plays an important role are
the formation of bubbles, the break-up of liquid jets and the formation of
drops, the rise of water in soil above the level of the water table, and the
flow of thin sheets of liquid over a solid surface.

In most engineering problems, the distances between boundaries are
sufficient for surface tension forces to be negligible compared with the
other forces involved. The consequent customary neglect of the surface
tension forces should not, however, lead us to forget their importance in
small-scale work.

1.8 BASIC CHARACTERISTICS OF FLUIDS IN MOTION

1.8.1 Variation of flow parameters in space and time

In general, quantities such as velocity, pressure and density, which describe
the behaviour or state of a fluid, vary with respect to both space and time.
The location of a point in space can be defined using a coordinate system,
examples of which are the Cartesian system, with the variables x, y, z or the
cylindrical polar coordinates, with variables x, r, θ . Defining time by t and
using Cartesian coordinates x, y, z to define positions in space then, as an
example, the velocity u is a function of x, y, z and t. Mathematically, we
write u = u(x, y, z, t), and this is called the velocity field of the flow. Sim-
ilarly, p = p(x, y, z, t) is the pressure field. If we wish to discuss the flow
within a region or domain in a general way, without reference to any par-
ticular flow or fluid properties, then we refer to the flow field.

If, at a particular instant, the various quantities do not change from pointUniform flow
to point over a specified region, then the flow is said to be uniform over that
region. If however, changes do occur from one point to another, the flow is
said to be non-uniform. These changes with position may be found in the
direction of the flow or in directions perpendicular to it. This latter kind of
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non-uniformity is always encountered near solid boundaries past which the
fluid is flowing. This is because of the effects of viscosity, which reduces
the relative velocity to zero at a solid boundary. In a river, for example,
the velocity of the water close to the sides and the base is less than in the
centre of the cross-section. Nevertheless it may be possible to treat the flow
as uniform over a cross-section, provided that only a region well removed
from the boundaries is considered.

1.8.2 Describing the patterns of flow

For a particular instant of time we may consider in the fluid an imaginary Streamline
curve across which, at that instant, no fluid is flowing. Such a line is called
a streamline (sometimes also known as a flow line or line of flow). At that
instant, therefore, the direction of the velocity of every particle on the line
is along the line. If a number of streamlines is considered at a particular
instant, the pattern they form gives a good indication of the flow then occur-
ring. For steady flow the pattern is unchanging, but for unsteady flow it
changes with time. Consequently, streamlines must be thought of as instant-
aneous, and the pattern they form may be regarded as corresponding to an
instantaneous photograph of the flow.

The boundaries of the flow are always composed of streamlines because
there is no flow across them. Provided that the flow is continuous, every
streamline must be a continuous line, either extending to infinity both
upstream and downstream or forming a closed curve.

A bundle of neighbouring streamlines may be imagined which form a passage Stream-tube
through which the fluid flows (Fig. 1.9), and this passage (not necessarily cir-
cular) is known as a stream-tube. A stream-tube with a cross-section small
enough for the variation of velocity over it to be negligible is sometimes
termed a stream filament. Since the stream-tube is bounded on all sides by
streamlines and since, by definition, there can be no velocity across a stream-
line, no fluid may enter or leave a stream-tube except through its ends. The
entire flow may be imagined to be composed of a collection of stream-tubes
arranged in some arbitrary pattern.

An individual particle of fluid does not necessarily follow a streamline, but Path-line
traces out a path-line. In distinction to a streamline, a path-line may be
likened, not to an instantaneous photograph of a procession of particles,
but to a time exposure showing the direction taken by the same particle at
successive instants of time.

Fig. 1.9 A stream-tube.
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In experimental work a dye or some other indicator is often injected into theStreak-line
flow, and the resulting stream of colour is known as a streak-line or filament
line. It gives an instantaneous picture of the positions of all particles which
have passed through the point of injection.

In general, the patterns of streamlines, path-lines and streak-lines for a
given flow differ; apart from a few special cases it is only for steady flow
that all three patterns coincide.

1.8.3 One-, two- and three-dimensional flow

In general, fluid flow is three-dimensional in the sense that the flow paramet-Three-dimensional flow
ers – velocity, pressure and so on – vary in all three coordinate directions.
Considerable simplification in analysis may often be achieved, however, by
selecting the coordinate directions so that appreciable variation of the para-
meters occurs in only two directions, or even in only one.

The so-called one-dimensional flow is that in which all the flow parametersOne-dimensional flow
may be expressed as functions of time and one space coordinate only. This
single space coordinate is usually the distance measured along the centre-
line (not necessarily straight) of some conduit in which the fluid is flowing.
For instance, the flow in a pipe is frequently considered one-dimensional:
variations of pressure, velocity and so on may occur along the length of the
pipe, but any variation over the cross-section is assumed negligible. In reality
flow is never truly one-dimensional because viscosity causes the velocity to
decrease to zero at the boundaries. Figure 1.10 compares the hypothetical
one-dimensional flow with a diagrammatic representation of flow subject
to the no-slip condition in, say, a pipe or between plates. If, however, the
non-uniformity of the actual flow is not too great, valuable results may often
be obtained from a one-dimensional analysis. In this the average values of
the parameters at any given section (perpendicular to the flow) are assumed
to apply to the entire flow at the section.

In two-dimensional flow, the flow parameters are functions of time and twoTwo-dimensional flow
rectangular space coordinates (say x and y) only. There is no variation in the

Fig. 1.10
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z direction and therefore the same streamline pattern could at any instant be
found in all planes in the fluid perpendicular to the z direction. The flow past
a wing of uniform cross-section and infinite span, for instance, is the same in
all planes perpendicular to its span. Water flow over a weir of uniform cross-
section and infinite width is likewise two-dimensional. In practice, where
the width is not infinite it may be satisfactory to assume two-dimensional
flow over most of the wing or weir, that is, to consider flow in a single
plane; the results may then be modified by end corrections accounting for
the three-dimensional flow at the ends.

Axi-symmetric flow, although not two-dimensional in the sense just
defined, may be analysed more simply with the use of two cylindrical
coordinates (x and r).

1.9 CLASSIFICATION AND DESCRIPTION OF FLUID FLOW

It is helpful to the understanding of fluid mechanics to broadly classify
certain different types of fluid flow, and here we introduce some of the
terminology used.

1.9.1 Internal and external flows

The distinction between internal and external flows often needs to be made.
When the motion of a fluid is between bounding surfaces the flow is described
as internal flow. Airflow management systems are widely used to control the
quality of air within buildings and vehicles; the movement of air within the
ducting which forms part of such a system is an example of an internal flow.
Conversely, when a body is surrounded by a fluid in motion, the flow around
the immersed body is described as external flow. Examples of external flows
are the flows surrounding an aircraft wing, around an entire aircraft, around
a road vehicle such as a car or lorry or around a building.

1.9.2 Laminar and turbulent flows

From about 1840, it had been realized that the flow of a fluid could be
of two different kinds. The distinction between them is most easily under-
stood by reference to the work undertaken in the early 1880s by Osborne
Reynolds (1842–1912), Professor of Engineering at Manchester University.
The apparatus used by Reynolds was as shown in Fig. 1.11. A straight length
of circular glass tube with a smoothly rounded, flared inlet was placed in
a large glass-walled tank full of water. The other end of the tube passed
through the end of the tank. Water from the tank could thus flow out along
the tube at a rate controlled by a valve at the outlet end. A fine nozzle con-
nected to a small reservoir of a liquid dye discharged a coloured filament
into the inlet of the glass tube. By observing the behaviour of the stream of
dye, Reynolds was able to study the way in which the water was flowing
along the glass tube.
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Fig. 1.11

Fig. 1.12

If the velocity of the water remained low and especially if the water in the
tank had previously been allowed to settle for some time so as to eliminate
all disturbances as far as possible, the filament of dye would pass down the
tube without mixing with the water, and often so steadily as almost to seem
stationary (Fig. 1.12a). As the valve was opened further and the velocity of
the water thereby increased, this type of flow would persist until the velocity
reached a value at which the stream of dye began to waver (Fig. 1.12b).
Further increase in the velocity of the water made the fluctuations in the
stream of dye more intense, particularly towards the outlet end of tube,
until a state was reached, quite suddenly, in which the dye mixed more or
less completely with the water in the tube. Thus, except for a region near
the inlet, the water in the tube became evenly coloured by the dye. Still
further increases of velocity caused no more alteration in the type of flow,
but the dye mixed even more readily with the water and complete mixing was
achieved nearer the inlet of the tube. The original type of flow, in which the
dye remained as a distinct streak, could be restored by reducing the velocity.

It is of particular interest that the disturbed flow always began far from
the inlet (in Reynold’s tests, usually at a length from the inlet equal to about
30 times the diameter of the tube); also that the complete mixing occurred
suddenly.
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Although Reynolds used water in his original tests, subsequent
experiments have shown that the phenomenon is exhibited by all fluids,
gases as well as liquids. Moreover, the two types of flow are to be found
whatever the shape of the solid boundaries: there is no restriction to circular
tubes.

In the first kind of flow, that occurring at the lower velocities, the particles of Laminar flow
fluid are evidently moving entirely in straight lines even though the velocity
with which particles move along one line is not necessarily the same as that
along another line. Since the fluid may therefore be considered as moving
in layers, or laminae (in this example, parallel to the axis of the glass tube),
this kind of flow is now called laminar flow.

The second type of flow is known as turbulent flow. As indicated in Turbulent flow
Fig. 1.13a, the paths of individual particles of fluid are no longer everywhere
straight but are sinuous, intertwining and crossing one another in a dis-
orderly manner so that a thorough mixing of the fluid takes place. When tur-
bulent flow occurs in a cylindrical tube, for example, only the averagemotion
of the fluid is parallel to the axis of the tube. Turbulent flow, in short, is char-
acterized by the fact that superimposed on the principal motion of the fluid
are countless, irregular, haphazard secondary components. A single particle
would thus follow an erratic path involving movements in three dimensions
(Fig. 1.13b).

In engineering practice, fluid flow is nearly always turbulent. There are,
however, some important instances of wholly laminar flow, for example in
lubrication, and there are also many instances in which part of the flow is
laminar.

As will be discussed in much greater detail in Chapter 5, whether the
flow is laminar or turbulent depends on the magnitude of the quantity
�ul/µ, where l and u represent a characteristic length and velocity, and
� and µ represent the density and dynamic viscosity of the fluid. The
ratio �ul/µ is a fundamental characteristic of the flow, and is now uni-
versally known as the Reynolds number, commonly denoted by the symbol
Re. For flow in a circular pipe, in evaluating the Reynolds number, the
characteristic length is conventionally taken as the pipe diameter d and
the representative velocity is the mean velocity over the cross section (i.e.
volume flow rate divided by cross-sectional area). Under normal engineer-
ing conditions, flow through pipes at a Reynolds number �ud/µ below 2000
may be regarded as laminar, and flows for Re > 4000 may be taken as
turbulent.

Fig. 1.13
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Example 1.3 Water, at 20 ◦C, flows through a pipe of diameter 4 mm
at 3 m · s−1. Determine whether the flow is laminar or turbulent.

Solution
From Appendix 2, at 20 ◦C, water has a density of 103 kg · m−3 and
a dynamic viscosity µ = 1 × 10−3 kg · m−1 · s−1. Hence

Re = �ud
µ

= 103 kg · m−3 × 3 m · s−1 × 0.004 m
10−3 kg · m−1 · s−1

= 12 000

The Reynolds number is well in excess of 4000, so the flow is turbulent.�

1.9.3 Steady and unsteady flows

Steady flow is defined as that in which the various parameters at any point
do not change with time. Flow in which changes with time do occur is
termed unsteady or non-steady. In practice, absolutely steady flow is the
exception rather than the rule, but many problems may be studied effectively
by assuming that the flow is steady.

A particular flow may appear steady to one observer but unsteady to
another. This is because all movement is relative; any motion of one body
can be described only by reference to another body, often a set of coordinate
axes. For example, the movement of water past the sides of a motor boat
travelling at constant velocity would (apart from small fluctuations) appear
steady to an observer in the boat. Such an observer would compare the water
flow with an imaginary set of reference axes fixed to the boat. To someone
on a bridge, however, the same flow would appear to change with time as
the boat passed beneath the bridge. This observer would be comparing the
flow with respect to reference axes fixed relative to the bridge.

Since steady flow is usually much easier to analyse than unsteady flow,
reference axes are chosen, wherever possible, so that flow with respect to
them is steady. It should be remembered, however, that Newton’s Laws of
Motion are valid only if any movement of the coordinate axes takes place
at constant velocity in a straight line.

The great majority of flows may be analysed assuming the fluid motion is
steady. There are, however, three cases where unsteady effects are import-
ant. In no particular order, they are as follows. First, waves formed on free
surfaces (see Chapter 10) display oscillatory effects, and therefore aspects
of their motion are unsteady. A second important topic is that of liquid
flows rapidly brought to rest. Such unsteady flows can generate very large
pressure surges, and this topic is considered in Chapter 12. There is a third
class of unsteady flows. In this type of flow, the boundary conditions of
the flow may be steady, but the flow itself is inherently unstable. The
classical example of such a case involves the flow of fluid past a circular
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cylinder. For a certain range of Reynolds numbers, although the velocity
of the flow approaching the cylinder is steady and uniform, large eddies
are shed alternately and continuously from the two sides of the cylinder to
form what is known as a Karman vortex street. This topic is considered in
Chapter 8.

It is useful to refer to another class of flows which are described as quasi-
steady. This term is applied to flows when the variables are changing slowly
with time. In these situations the fundamental fluid dynamics are essentially
the same as for steady flow, but account has to be taken of overall changes
taking place over a period of time. An example of a quasi-steady flow is the
flow that results when a large tank is drained through a small outlet pipe.
Over time the lowering of the head in the tank results in a reduced flow rate
from the tank.

Finally, a comment about turbulent flow is relevant. It has already been
shown that turbulent flows consist of irregular motions of the fluid particles,
with the effect that the instantaneous velocity at a point constantly changes
with time. Turbulent flows are usually considered to be steady by using time-
averaged values of velocity at a point. In this way they can be regarded as
steady-in-the-mean.

1.9.4 Viscous and inviscid flows

A question worth considering is: for internal and external flows, are the
effects of viscosity equally important everywhere within the flow, or are the
effects more important in some parts of the flow than in others? To answer
the question we proceed along the following lines. In Section 1.6, it has been
shown that the magnitude of the viscous shear stress depends on the velocity
gradient at right angles to the general direction of flow. In other words, the
manifestation of a fluid’s viscous properties anywhere within a flow depends
upon the local magnitude of transverse velocity gradients. Where transverse
velocity gradients are large, the effects of viscosity have an important bearing
on the characteristics of the flow. Conversely, where these velocity gradients
are small, viscosity has a much smaller influence on the behaviour of the flow.
In both internal and external flows, at high Reynolds numbers, the largest
transverse velocity gradients occur close to a bounding surface, due to the
need to satisfy the no-slip condition at the surface. Pursuing this line of
argument it is evident that in some circumstances a complex flow field can
be simplified by dividing the flow field into two regions. In parts of the flow
close to a boundary wall, analysis of the flow region must account for the
viscous properties of the fluid. But away from the immediate influence of
the boundary wall, the characteristics of the flow might not be significantly
affected by viscosity, and the flow can then be analysed assuming the fluid
is inviscid, with great advantage. The well-defined regions where viscous
effects dominate in high Reynolds number flows are known as boundary
layers and these, together with other shear layers, are the topic addressed in
Chapter 8. The region outside the shear layer can be analysed by the methods
of inviscid flow (see Chapter 9).
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1.9.5 Incompressible and compressible flows

In most cases, liquids behave as though they are incompressible, and
can be analysed on that assumption. As we have already seen, the one
important exception to this rule is when a liquid flow is brought to rest
abruptly.

For gaseous flows, the situation is rather more complicated. At low speeds,
gases essentially behave as though they are incompressible. But above a Mach
number of about 0.3, compressibility effects become important. At speeds
approaching that of sound, new phenomena, not found under conditions of
incompressible flow, occur.

The major difference between compressible and incompressible flows is
that in the former the fluid density varies throughout the flow, whereas in
the latter it is everywhere constant. Incompressible flows can be analysed by
invoking the laws relating to conservation of mass, conservation of energy
and Newton’s Laws of Motion. These fundamental laws apply equally to
compressible flows which, however, are more complex because their study
also involves the laws of thermodynamics.

1.10 THE ROLES OF EXPERIMENTATION AND THEORY
IN FLUID MECHANICS

We conclude this introductory chapter with a few, brief remarks on the
roles of experimentation and mathematical analysis in the study of fluid
mechanics.

Data derived from experimental and mathematical studies have both had
a vital influence on the development of fluid mechanics. It can be argued
that, of the two, experimentation is rather more important, for the follow-
ing reason. A mathematical theory is only as good as its ability to predict
what happens in practice; experimentation is designed to reveal what hap-
pens in the real world (although it is necessary to point out that this aim
is achieved only if the experiments are planned, conducted and interpreted
with care). Nevertheless, the role of mathematics is of major importance. For
example, it provides structure where, without it, the study of fluid mechan-
ics would be excessively fragmented and uncoordinated. Whether by explicit
design or otherwise, the layout of most introductory texts on fluid mechan-
ics, including the present volume, leans heavily on the framework provided
by mathematical analysis.

1.10.1 The role of experimentation

The ways in which viscosity and compressibility affect fluid motion can often
be very complex and, to gain an understanding of the behaviour of fluids,
engineers frequently have to resort to experimentation. The detailed geo-
metry of the shape through which, or about which, the fluid flows has an
important bearing on how elaborate the testing must be. Over the years,
a vast amount of information has been gathered from tests on the external
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flow about basic shapes, such as flat plates, circular cylinders and so on.
Similarly, in the field of internal flow, straight pipes and other compon-
ents such as flow-metering devices, bends, diffusers etc. have been widely
tested. This information forms an important database for the study of fluid
mechanics, and will be referred to extensively throughout this book. But for
more complicated geometries, to gain an understanding of the fluid mech-
anics, it is often necessary to carry out tests using purpose-made models or
test rigs.

Experiments can be of various kinds. They can be full-scale or can involve
scale models. They can involve the measurement of various quantities, such
as velocity or pressure, either at a specified point in a flow or to determine
profiles in the form of velocity or pressure distributions. Alternatively, using
flow visualization techniques, experiments may be designed to show up the
patterns of flow. Various kinds of special facilities are used. The wind tunnel
is an important tool in the investigation of the flow of air around aircraft,
vehicles and buildings. Water tanks and water tables are used to study the
hydrodynamics of ships and the flow about bridges, respectively.

1.10.2 Mathematical modelling and the equations
of fluid dynamics

We have seen that information about the behaviour of flowing fluids can
be obtained from experiments, using observation and measurement. Math-
ematics also has an essential role to play in furthering our understanding of
fluid mechanics. It is important for the student new to fluid mechanics to
appreciate a fundamental difference between experimental and theoretical
data. A result from a carefully conducted experiment is (with minor quali-
fication) unique; in contrast, a theoretical value is not. The outcome from a
theoretical study of the flow through or about a specified geometry depends
upon the assumptions on which the mathematical analysis is based. If the
assumptions are sound, the theoretical results will closely match the corres-
ponding experimental data. If the theory is incomplete, unduly simplified
or unsoundly based, then the theoretical results will differ from the experi-
mental data. It follows that to refer, without qualification, to the so-called
theoretical value of a quantity is meaningless.

In whatever way we choose to represent a flow mathematically, the fun-
damental laws of fluid mechanics, and in the case of compressible flow of
thermodynamics, must be satisfied. The equations of fluid mechanics can be
expressed in two fundamentally different ways. The differential equations of
motion are a set of equations which result when attention is focused on an
infinitesimally small element of fluid. Information on the detailed variation
in time and space of flow properties, such as velocity and pressure, results
from the solution of these equations. When information on the overall
characteristics of a flow, such as mass flow rate through a pipe system, is
required then the integral forms of the equations of motion are relevant.

The representation of any physical system by means of a set of mathemat-
ical equations is referred to as mathematical modelling. We have seen that, to
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a greater or lesser extent, fluid flows are influenced by the effects of viscosity,
by compressibility effects, by unsteadiness and, depending upon geometry,
variations in space of flow and fluid properties, which can extend over three
dimensions. In principle, all these factors can be taken into account simul-
taneously by using an appropriate, but necessarily complex, mathematical
model. In practice, the modelling of laminar flows is more straightforward
than that of turbulent flows, due to the inherent difficulties of providing
adequate representations of turbulence. Few problems of fluid mechan-
ics yield exact analytical solutions, and these are for laminar flow in or
about simple geometries. Most analytical solutions are obtained only after
the introduction of simplifying assumptions. In advanced fluid mechanics,
complex models of fluid flows, which attempt to represent viscous and com-
pressibility effects, are now routinely analysed by replacing the governing
equations by equivalent numerical equations. The power of modern com-
puters is exploited to solve such equations, and this field of study is known as
Computational Fluid Mechanics (CFD). This activity has advanced rapidly
in recent years but is beyond the scope of this book.

However, the student of fluid mechanics should be reassured. It is not
necessary to begin the study of fluid mechanics by looking at complex flow
situations. Much can be learned using simple mathematical models. In the
great majority of flows, not all of the complicating factors such as viscosity
and compressibility are of equal importance, just one or two factors often
tending to dominate. In such circumstances, the use of simple flow models
allows the role of specific factors to be investigated, thereby illuminating the
relationship between these factors and particular features of the flow. In the
next few paragraphs we shall quote several examples of the value of these
simple mathematical models.

Perhaps the simplest flow model of all is one that assumes a flow is steady
and one-dimensional, and ignores the effects of compressibility and viscosity.
When this model is applied to the flow through pipes of variable cross-
sectional area, the relationship between cross-sectional area, average flow
velocity and pressure at any cross section is revealed. Amongst other applic-
ations, this simple flow model provides an explanation of the principles of
operation of an important class of devices used for flow rate measurement,
namely the pressure differential flow-metering devices (Chapter 3).

We have already seen that low Reynolds number flows occur when velo-
cities and/or the characteristic length are small, or the fluid viscosity is large.
In such flows viscous forces dominate inertia forces over the entire flow field,
and the flow is laminar. Two-dimensional, steady, viscous flow models may
be applied to certain simple geometries, such as the flow through small-bore
tubes, and between small gaps such as occur within bearings. Laminar flows
of these kinds are considered in Chapter 6.

The constraints of the one-dimensional flow model considered in
Chapter 3 can be relaxed to allow for changes in two dimensions, yield-
ing new insights. The model of steady, two-dimensional, incompressible,
inviscid flow is considered in Chapter 9. Velocity and pressure distributions
derived using this flow model, as well as analytical techniques suited to the
flow model, are discussed there.
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A flow model which assumes steady, one-dimensional flow, but allows for
compressibility effects is considered in Chapter 11. This model highlights the
fundamental differences between flow situations in which compressibility
effects are important and the corresponding flows for which compressibility
effects are insignificant.

All of the preceding flow models assume steady flow conditions. Unsteady
flow conditions are introduced in Chapter 12.

1.11 SUMMARY

This Chapter has introduced several concepts fundamental to an understand-
ing of fluid mechanics. Some key points are:

1. we have learnt how fluids differ from solids;
2. fluid properties, such as viscosity, have been introduced;
3. units and dimensions relevant to fluid mechanics have been introduced;
4. some flow patterns and flow behaviours, together with relevant termino-

logy, have been introduced;
5. experimentation and mathematical analysis have been introduced as

important sources of information on fluid mechanics;
6. we have learnt that, although fluid flows are often complex, studying

simple mathematical models of fluid flow can lead to important results.

With this background, we are now in a position to embark on a more
detailed study of fluid mechanics which follows in the remaining chapters of
this book.

PROBLEMS

1.1 A hydrogen-filled balloon is to expand to a sphere 20 m diameter
at a height of 30 km where the absolute pressure is 1100 Pa
and the temperature −40 ◦C. If there is to be no stress in the
fabric of the balloon what volume of hydrogen must be added
at ground level where the absolute pressure is 101.3 kPa and the
temperature 15 ◦C?

1.2 Calculate the density of air when the absolute pressure and
the temperature are respectively 140 kPa and 50 ◦C and R =
287 J · kg−1 · K−1.

1.3 Eight kilometres below the surface of the ocean the pressure is
81.7 MPa. Determine the density of sea-water at this depth if
the density at the surface is 1025 kg · m−3 and the average bulk
modulus of elasticity is 2.34 GPa.

1.4 At an absolute pressure of 101.3 kPa and temperature of 20 ◦C
the dynamic viscosity of a certain diatomic gas is 2 × 10−5 Pa · s
and its kinematic viscosity is 15 mm2 · s−1. Taking the universal
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gas constant as 8310 J · kg−1 · K−1 and assuming the gas to be
perfect, calculate its approximate relative molecular mass.

1.5 A hydraulic ram 200 mm in diameter and 1.2 m long moves
wholly within a concentric cylinder 200.2 mm in diameter, and
the annular clearance is filled with oil of relative density 0.85
and kinematic viscosity 400 mm2 · s−1. What is the viscous force
resisting the motion when the ram moves at 120 mm · s−1?

1.6 The space between two large flat and parallel walls 25 mm apart
is filled with a liquid of dynamic viscosity 0.7 Pa · s. Within this
space a thin flat plate 250 mm × 250 mm is towed at a velocity
of 150 mm · s−1 at a distance of 6 mm from one wall, the plate
and its movement being parallel to the walls. Assuming linear
variations of velocity between the plate and the walls, determine
the force exerted by the liquid on the plate.

1.7 A uniform film of oil 0.13 mm thick separates two discs, each
of 200 mm diameter, mounted co-axially. Ignoring edge effects,
calculate the torque necessary to rotate one disc relative to the
other at a speed of 44 rad · s−1 (7 rev/s) if the oil has a dynamic
viscosity of 0.14 Pa · s.

1.8 By how much does the pressure in a cylindrical jet of water 4 mm
in diameter exceed the pressure of the surrounding atmosphere
if the surface tension of water is 0.073 N · m−1?

1.9 What is the approximate capillary rise of water in contact with
air (surface tension 0.073 N · m−1) in a clean glass tube 5 mm in
diameter?

1.10 What is the approximate capillary rise of mercury (relative dens-
ity 13.56, interfacial tension 0.377 N · m−1, angle of contact
approximately 140◦) in contact with water in a clean glass tube
6 mm in diameter? (Note: As the mercury moves it displaces
water, the density of which is not negligible.)

1.11 Calculate the Reynolds number for a fluid of density 900 kg · m−3

and dynamic viscosity 0.038 Pa · s flowing in a 50 mm diameter
pipe at the rate of 2.5 L · s−1. Estimate the mean velocity above
which laminar flow would be unlikely.

1.12 A liquid of kinematic viscosity 370 mm2 · s−1 flows through an
80 mm diameter pipe at 0.01 m3 · s−1. What type of flow is to
be expected?



Fluid statics 2
2.1 INTRODUCTION

Fluid statics is that branch of mechanics of fluids that deals primarily with
fluids at rest. Problems in fluid statics are much simpler than those associated
with the motion of fluids, and exact analytical solutions are possible. Since
individual elements of fluid do not move relative to one another, shear forces
are not involved and all forces due to the pressure of the fluid are normal to
the surfaces on which they act. Fluid statics may thus be extended to cover
instances in which elements of the fluid do not move relative to one another
even though the fluid as a whole may be moving. With no relative movement
between the elements, the viscosity of the fluid is of no concern.

In this chapter we shall first examine the variation of pressure throughout
an expanse of fluid. We shall then study the forces caused by pressure on solid
surfaces in contact with the fluid, and also the effects (such as buoyancy) of
these forces in certain circumstances.

2.2 VARIATION OF PRESSURE WITH POSITION IN A FLUID

Consider a small cylinder of fluid PQ as illustrated in Fig. 2.1. If the fluid
is at rest, the cylinder must be in equilibrium and the only forces acting on
it are those on its various faces (due to pressure), and gravity. The cross-
sectional area δA is very small and the variation of pressure over it therefore
negligible. Let the pressure at the end P be p and that at the endQ be p+ δp

Fig. 2.1
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where δpmay be positive or negative. The force on the end P is therefore pδA
and the force on the end Q is (p + δp)δA. If the length of the cylinder is δl
its volume is δAδl and its weight �gδAδl where � represents the density and
g the acceleration due to gravity. Since no shear forces are involved in a fluid
at rest, the only forces acting on the sides of the cylinder are perpendicular
to them and therefore have no component along the axis.

For equilibrium, the algebraic sum of the forces in any direction must be
zero. Resolving in the direction QP:

(p+ δp)δA− pδA+ �gδAδl cos θ = 0 (2.1)

Now if P is at a height z above some suitable horizontal datum plane andQ
is at height z + δz, then the vertical difference in level between the ends of
the cylinder is δz and δl cos θ = δz. Equation 2.1 therefore simplifies to

δp+ �gδz = 0

and in the limit as δz → 0

∂p
∂z

= −�g (2.2)

The minus sign indicates that the pressure decreases in the direction in which
z increases, that is, upwards.

If P andQ are in the same horizontal plane, then δz = 0, and consequently
δp is also zero whatever the value of �. The argument may readily be extended
to cover any two points in the same horizontal plane by considering a series
of cylinders of fluid, PQ, QR, RS, etc. Then, in any fluid in equilibrium,
the pressure is the same at any two points in the same horizontal plane,
provided that they can be connected by a line in that plane and wholly
in the fluid. In other words, a surface of equal pressure (an isobar) is a
horizontal plane. More precisely, the surface is everywhere perpendicular to
the direction of gravity and so is approximately a spherical surface concentric
with the earth. Our concern is usually only with very small portions of that
surface, however, and they may therefore be considered plane.

A further deduction is possible from eqn 2.2. If everywhere in a certain
horizontal plane the pressure is p, then in another horizontal plane, also
in the fluid and at a distance δz above, the pressure will be p + (∂p/∂z)δz.
Since this pressure also must be constant throughout a horizontal plane, it
follows that there is no horizontal variation in ∂p/∂z, and so, by eqn 2.2,
neither does �g vary horizontally. For a homogeneous incompressible fluid
this is an obvious truth because the density is the same everywhere and g does
not vary horizontally. But the result tells us that a condition for equilibrium
of any fluid is that the density as well as the pressure must be constant over
any horizontal plane. This is why immiscible fluids of different densities have
a horizontal interface when they are in equilibrium (except very close to solid
boundaries where surface tension usually causes curvature of the interface).

There are, then, three conditions for equilibrium of any fluid:

1. the pressure must be the same over any horizontal plane;
2. the density must be the same over any horizontal plane;
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3. dp/dz = −�g. (Since the pressure varies only in the vertical (z) direction,
the partial derivative in eqn 2.2 may give way to the full derivative.)

To determine the pressure at any point in a fluid in equilibrium, eqn 2.2
must be integrated:

p =
∫

−�gdz

Evaluation of the integral is not possible, however, unless the variation of �

with z known.

2.2.1 The equilibrium of a fluid of constant density

Since for all practical differences in height the variation of g is negligible,
integration of eqn 2.2 for a homogeneous fluid of constant density gives

p+ �gz = constant (2.3)

This result is valid throughout a continuous expanse of the same fluid since,
in deriving eqn 2.2, no restriction at all was placed on the value of θ .
The value of the constant in eqn 2.3 is determined by the value of p at a
point where z is specified. If the fluid is a liquid with a horizontal free sur-
face at which the pressure is atmospheric (pa) this free surface may be taken
as the datum level z = 0. For equilibrium of the surface the pressure imme-
diately below it must equal that immediately above it, and so the pressure
in the liquid at the surface is pa. Then, for a point at a depth h below the
surface, h = −z (since h is measured downwards whereas z is measured
upwards) and, from eqn 2.3,

p = pa + �gh (2.4)

The pressure therefore increases linearly with the depth, whatever the shape
of any solid boundaries may be.

Fig. 2.2

Equation 2.4 shows that the pressure at a point in a liquid in equilibrium
is due partly to the weight of the liquid. Thus atmospheric pressure is usually
effective, even if indirectly, on all surfaces, and over the differences of height
normally encountered it is sensibly constant. Consequently it is often simpler
to regard atmospheric pressure as the zero of the pressure scale. A pressure
expressed relative to atmospheric pressure is known as a gauge pressure.
Equation 2.4 then reduces to p = �gh. As we shall see in Section 2.3, this
relation forms the basis of a number of methods of measuring pressure.

The direct proportionality between gauge pressure and h for a fluid of
constant density enables the pressure to be simply visualized in terms of
the vertical distance h = p/�g. The quotient p/�g is termed the pressure
head corresponding to p. So useful is the concept of pressure head that it
is employed whether or not an actual free surface exists above the point
in question. For a liquid without a free surface, as for example in a closed
pipe, p/�g corresponds to the height above the pipe to which a free surface
would rise if a small vertical tube of sufficient length and open to atmo-
sphere – known as a piezometer tube – were connected to the pipe (Fig. 2.2).
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Fig. 2.3

Provided that � is constant, all pressures may be expressed as heads. Thus
pressures are sometimes quoted in terms of millimetres of mercury or metres
of water.

Equation 2.3 may be divided by �g to give (p/�g) + z = constant. That is,Piezometric pressure
the sum of the pressure head and the elevation above the chosen horizontal
datum plane is constant. This constant is known as the piezometric head
and corresponds to the height of the free surface above the datum plane.
The quantity p+ �gz is termed the piezometric pressure.

The fact that an increase of pressure in any part of a confined fluid is
transmitted uniformly throughout the fluid is utilized in such devices as the
hydraulic press and the hydraulic jack. A large force F may be produced on
a piston of area A by subjecting it to a pressure p = F/A. This pressure p,
however, may be produced by applying a smaller force f to a smaller
piston of area a (see Fig. 2.3). If the pistons move very slowly viscous
and inertia forces may be neglected, and, if the pistons are at the same
level, the pressure at one equals that at the other. Then F/A = f /a, that
is, F = fA/a. By a suitable choice of piston areas a considerable mul-
tiplication of the force may be achieved. The work done by each force,
however, is the same (apart from the effects of friction); since the compress-
ibility of the liquid used is extremely small its volume remains practically
unchanged, so the smaller force moves through a correspondingly greater
distance.

2.2.2 The equilibrium of the atmosphere

Equation 2.2 expresses the condition for equilibrium of any fluid. For a com-
pressible fluid, however, the density varies with the pressure, so, unless the
manner of this variation is known, the equation cannot be integrated to give
the value of the pressure at a particular position. Density variations within
the atmosphere are relevant to aeronautics and meteorology; in oceano-
graphy similar considerations apply to sea-water, since at great depths there
is a small increase in the density.

Let us consider the atmosphere, with air behaving as a perfect gas.
The density may be obtained from the equation of state p = �RT (in which
p represents the absolute pressure). Then, from eqn 2.2,

dp
dz

= −�g = − pg
RT
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that is,

dp
p

= − g
R

dz
T

(2.5)

Since the value of g decreases by only about 0.03% for a 1000 m increase
in altitude it may be assumed constant. If conditions are isothermal, T =
constant, and eqn 2.5 may be integrated to give

ln
(
p
p0

)
= − g

RT
(z − 0)

where p0 represents the (absolute) pressure when z = 0. That is,

p/p0 = exp(−gz/RT) (2.6)

However, in the atmosphere the temperature varies with altitude. For the
first 11 km above the ground there is a uniform decrease, that is, ∂T/∂z =
constant = −λ where λ is known as the temperature lapse rate. The observed
value of λ in this region is about 0.0065 K · m−1. From 11 km to 20 km the
temperature is constant at −56.5 ◦C and then beyond 20 km the temperature
rises again.

If the temperature lapse rate is constant, T = T0 − λz where T0 repres-
ents the temperature at z = 0. Substituting this relation into eqn 2.5 and
integrating we obtain

ln
(
p
p0

)
= g
Rλ

ln
(
T0 − λz
T0

)
that is, (

p
p0

)
=

(
1 − λz

T0

)g/Rλ

(2.7)

If the right-hand sides if eqns 2.6 and 2.7 are expanded in series form and
then, for small values of z, all but the first two terms are neglected, the result
in each case is

p
p0

= 1 − gz
RT0

that is,

p = p0 − p0

RT0
gz = p0 − �0gz

This corresponds to the relation p+ �gz = constant (eqn 2.3) for a fluid of
constant density. Thus, for small differences of height (less than, say, 300 m
in air), sufficient accuracy is usually obtained by considering the fluid to be
of constant density. If changes of z are appreciable, however, the full relation
(eqn 2.6 or 2.7) is required.

Certain values of p0, T0 and λ are used to define a standard atmosphere
which provides a set of data reasonably representative of the actual atmo-
sphere. Aircraft instruments and performance are related to these standard
conditions, and figures are subject to error if the actual conditions differ
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appreciably from the standard. A knowledge of λ is important in practice, not
only for predicting conditions in the atmosphere at various altitudes, but also
for the calibration of altimeters which depend on the atmospheric pressure
for their operation. Information on the International Standard Atmosphere
is contained in Appendix 2.

In fact, however, the atmosphere is not in perfect equilibrium. The lower
part is continually being mixed by convection and winds and there are vary-
ing amounts of water vapour in it. A little more about the equilibrium of the
atmosphere will be said in Section 2.7.3.

�

Example 2.1 A spherical balloon, of diameter 1.5 m and total mass
1.2 kg, is released in the atmosphere. Assuming that the balloon does
not expand and that the temperature lapse rate in the atmosphere is
0.0065 K · m−1, determine the height above sea-level to which the
balloon will rise. Atmospheric temperature and pressure at sea-level
are 15 ◦C and 101 kPa respectively; for air, R = 287 J · kg−1 · K−1.

Solution
Density of balloon = 1.2 kg

/π

6
= (1.5 m)3 = 0.679 kg · m−3

∴ Balloon rises until atmospheric density = 0.679 kg · m−3

By eqn 2.7

ln
(
p
p0

)
= g
Rλ

ln
T0 − λz
T0

∴ Since � = p/RT

ln
�

�0
= ln

p
p0

− ln
T
T0

=
( g
Rλ

− 1
)

ln
(
T0 − λz
T0

)

�0 = 101 × 103 kg
287 × 288.15 m3

= 1.221 kg · m−3

∴ ln
0.679
1.221

=
(

9.81
287 × 0.0065

− 1
)

ln
(

288.15 − 0.0065z
288.15

)
Whence z = 5708 m

2.3 THE MEASUREMENT OF PRESSURE

In practice, pressure is always measured by the determination of a pressure
difference. If the difference is that between the pressure of the fluid in ques-
tion and that of a vacuum then the result is known as the absolute pressure of
the fluid. More usually, however, the difference determined is that between
the pressure of the fluid concerned and the pressure of the surrounding atmo-
sphere. This is the difference normally recorded by pressure gauges and so
is known as gauge pressure. If the pressure of the fluid is below that of the
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Fig. 2.4

atmosphere it is termed vacuum or suction (see Fig. 2.4). (The term high
vacuum refers to a low value of the absolute pressure.) The absolute pres-
sure is always positive but gauge pressures are positive if they are greater
than atmospheric and negative if less than atmospheric.

Most of the properties of a gas are functions of its absolute pressure and
consequently values of the absolute pressure are usually required in problems
concerning gases. Frequently it is the gauge pressure that is measured and the
atmospheric pressure must be added to this to give the value of the absolute
pressure. The properties of liquids, on the other hand, are little affected by
pressure and the pressure of a liquid is therefore usually expressed as a gauge
value. The absolute pressure of a liquid may, however, be of concern when
the liquid is on the point of vaporizing. In this book, values of pressure will
be understood to be gauge pressures unless there is a specific statement that
they are absolute values.

We now consider some of the means of measuring pressure.

2.3.1 The barometer

We have already seen that there is a simple relation (eqn 2.3) between the
height of a column of liquid and the pressure at its base. Indeed, if the
pressure of a liquid is only slightly greater than that of the atmosphere a
simple way of measuring it is to determine the height of the free surface in
a piezometer tube as illustrated in Fig. 2.2. (The diameter of the tube must
be large enough for the effect of surface tension to be negligible.) If such
a piezometer tube of sufficient length were closed at the top and the space
above the liquid surface were a perfect vacuum the height of the column
would then correspond to the absolute pressure of the liquid at the base.
This principle is used in the well-known mercury barometer.

Mercury is employed because its density is sufficiently high for a fairly
short column to be obtained, and also because it has, at normal temperatures,
a very small vapour pressure. A perfect vacuum at the top of the tube is not in
practice possible; even when no air is present the space is occupied by vapour
given off from the surface of the liquid. The mercury barometer was invented
in 1643 by the Italian Evangelista Torricelli (1608–47) and the near-vacuum
above the mercury is often known as the Torricellian vacuum. All air and
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other foreign matter is removed from the mercury, and a glass tube full of it
is then inverted with its open end submerged in pure mercury. The pressure
at A (Fig. 2.5) equals that at B (atmospheric because the surface curvature
is here negligible) since these points are at the same level and connected by
a path wholly in the mercury. Therefore, by eqn 2.3

pa = pv + �gh

where pa represents the absolute pressure of the atmosphere, � the density
of the mercury and h the height of the column above A. The pressure of
the mercury vapour in the space at the top of the tube is represented by pv.
However, at 20 ◦C, pv is only 0.16 Pa and so may normally be neglected
in comparison with pa, which is usually about 105 Pa at sea level. Thus,
atmospheric pressure is represented by a mercury column, the height of
which is typically about

h = pa/�g = 105 N · m−2

(13 560 kg · m−3)(9.81 N · kg−1
)

= 0.752 m

For accurate work small corrections are necessary to allow for the variation
of � with temperature, the thermal expansion of the (usually brass) scale,
and surface-tension effects.

Fig. 2.5

If water were used instead of mercury the corresponding height of the
column would be about 10.4 m provided that a perfect vacuum could be
achieved above the water. However, the vapour pressure of water at ordinary
temperatures is appreciable and so the actual height at, say, 15 ◦C would
be about 180 mm less than this value. With a tube smaller in diameter than
about 15 mm, surface-tension effects become significant.

In the aneroid barometer, a metal bellows containing a near-perfect
vacuum is expanded or contracted according to variations in the pressure
of the atmosphere outside it. This movement is transmitted by a suitable
mechanical linkage to a pointer moving over a calibrated scale.

2.3.2 Manometers

Manometers are devices in which columns of a suitable liquid are used to
measure the difference in pressure between a certain point and the atmo-
sphere, or between two points neither of which is necessarily at atmospheric
pressure. For measuring small gauge pressures of liquids simple piezometer
tubes (Fig. 2.2) may be adequate, but for larger pressures some modification
is necessary. A common type of manometer is that employing a transparent
U-tube set in a vertical plane as shown in Fig. 2.6. This is connected to the
pipe or other container in which is the fluid (A) whose pressure is to be meas-
ured. The lower part of the U-tube contains a liquid (B) immiscible with A
and of greater density. Within a continuous expanse of the same fluid the
pressure is the same at any two points in a horizontal plane when equilibrium
is achieved. Therefore, since points P andQ are in the same horizontal plane
and are joined by a continuous expanse of liquid B, the pressures at P and
Q are equal when the system is in equilibrium. Let the pressure in the pipe
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Fig. 2.6

Fig. 2.7

at its centreline be p. Then, provided that the fluid A is of constant density,
the pressure at P is p+�Agy (from eqn 2.3), where �A represents the density
of fluid A. If the other side of the U-tube is open to atmosphere the (gauge)
pressure at Q is �Bgx where �B represents the density of liquid B.

Therefore

p+ �Agy = �Bgx

and if �A and �B are known and y and x are measured, the value of p
may be calculated. If A is a gas, �A is negligible compared with �B, and
then p = �Bgx. The arrangement is suitable for measuring pressures below
atmospheric as illustrated in Fig. 2.7. Application of the same principles then
gives p+ �Agy+ �Bgx = 0.

U-tube manometers are also frequently used for measuring the difference
between two unknown pressures, say p1 and p2. Figure 2.8 shows such an
arrangement for measuring the pressure difference across a restriction in a
horizontal pipe. (When fluid is flowing past the connections to a manometer
it is very important for the axis of each connecting tube to be perpendicular
to the direction of flow and also for the edges of the connections to be
smooth, flush with the main surface and free from burrs. To reduce the
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Fig. 2.8

risk of errors resulting from imperfect connections several openings round
the periphery of the pipe are often used, all connected to the manometer
via a common annulus; an average pressure is thus obtained in which the
individual, probably random, errors tend to cancel.) Again applying the
principle that pressures at P and Q must be equal for equilibrium, we have

p1 + (y+ x)�Ag = p2 + �Agy+ �Bgx

∴ p1 − p2 = (�B − �A)gx (2.8)

If it is desired to express this pressure difference as a head difference for
fluid A, then

h1 − h2 = p1 − p2

�Ag
=

(
�B

�A
− 1

)
x (2.9)

If, for example, fluid A is water and B is mercury, then a difference x in
manometer levels corresponds to a difference in head of water = (13.56−1)x.
A common error is to use simply �B/�A instead of {(�B/�A)−1} in eqn 2.9. It
should not be forgotten that the pressure at P includes a contribution made
by the column of fluid A above it. More generally, it may be shown that
a differential manometer such as this records the difference of piezometric
pressure p∗ = p + �gz: only when points (1) and (2) are at the same level,
as in Fig. 2.8, does the manometer reading correspond to the difference of
actual pressure p.

Many modifications of the U-tube manometer have developed for partic-
ular purposes. A common modification is to make one limb of the ‘U’ very
much greater in cross-section than the other. When a pressure difference
is applied across the manometer the movement of the liquid surface in the
wider limb is practically negligible compared with that occurring in the nar-
row limb. If the level of the surface in the wide limb is assumed constant the
height of the meniscus in only the narrow limb need be measured, and only
this limb need therefore be transparent.

For accurate measurements reasonable values of x are desirable. For small
pressure differences such values may be obtained by selecting liquid B so
that the ratio �B/�A is close to unity. If fluid A is a gas, however, this is not
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Fig. 2.9

Fig. 2.10

possible, and a sloping manometer may then be used. For example, if the
transparent tube of a manometer is set not vertically, but at an angle θ to the
horizontal, then a pressure difference corresponding to a vertical difference
of levels x gives a movement s = x/sin θ along the slope (see Fig. 2.9). If θ is
small, a considerable magnification of the movement of the meniscus may be
achieved. Angles less than 5◦, however, are not usually satisfactory, because
the exact position of the meniscus is difficult to determine, and also small
changes in the surface tension forces, arising from imperfect cleanliness of
the walls of the tube, may considerably affect the accuracy.

When large pressure differences are to be measured a number of U-tube
manometers may be connected in series. The required pressure difference
can be calculated by the application of the basic principles: (1) the pressure
within a continuous expanse of the same fluid in equilibrium is the same at
any two points in a horizontal plane; (2) the hydrostatic equation p+�gz =
constant for a homogeneous fluid of constant density.

For the measurement of small pressure differences in liquids an inverted
U-tube manometer, as illustrated in Fig. 2.10, is often suitable. Here �B < �A
and it is the upper fluid which is in equilibrium. The horizontal line PQ is
therefore taken at the level of the higher meniscus. By equating the pressures
at P and Q it may readily be shown that, for a manometer in a vertical
plane, p∗

1 − p∗
2 = (�A − �B)gx where p∗ represents the piezometric pressure

p+ �Agz. If �A − �B is sufficiently small a large value of x may be obtained
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for a small value of p∗
1 − p∗

2 The interface between liquids of closely similar
densities, however is very sensitive to changes in surface tension and therefore
to traces of grease and other impurities. Air may be used as fluid B: it may
be pumped through the valve V at the top of the manometer until the liquid
menisci are at a suitable level. Then, of course, �B is negligible compared
with �A.

Certain practical considerations arise in the use of manometers. (1) Since
the densities of liquids depend on temperature the temperature of the liquids
should be known for accurate results. (2) Some liquids, otherwise suitable
for use in manometers, give ill-defined menisci. (3) Fluctuations of men-
isci reduce accuracy; such movements may be reduced by restrictions in the
manometer connections (e.g. lengths of small-diameter pipe) which, under
equilibrium conditions, do not affect the pressure. (4) The density of the
fluid in the connecting tubes must be uniform; for example, water must not
contain air bubbles, nor must air contain ‘blobs’ of water. The layout of
the connecting tubes should be such as to minimize the possibility of trap-
ping air bubbles, and means should be provided for flushing the connecting
tubes through before the manometer is used. A valve by which the pres-
sure difference may be reduced to zero and the zero reading thus checked
is also desirable. (5) In tubes of less than about 15 mm diameter surface
tension effects may be appreciable and the meniscus is either raised above
or lowered below its ‘correct’ position. For example, for pure water in a
clean, vertical, glass tube, 6 mm diameter, the capillary rise is about 5 mm.
The corresponding depression for mercury is about 1.25 mm. Because of
the uncertain degree of cleanliness of tubes used in practice, however, it is
difficult to allow for surface tension effects. Fortunately these effects can be
nullified, for example in a U-tube manometer where the limbs are of equal
diameter and cleanliness, or where measurements are made of the movement
of a single meniscus in a uniform tube. Alcohol, being a solvent of grease, is
less sensitive to the cleanliness of the tube and so is frequently preferred to
water in manometers.

For measuring very small pressure differences, a wide variety of specialMicro-manometers
manometers has been developed. Several devices may be used to increase
the accuracy of a reading. For example, a meniscus may be observed
through a small telescope containing a horizontal cross-wire, and the
assembly may be raised or lowered by a slow-motion screw with a micro-
meter scale. Or a scale floating on the surface of a liquid may be optically
magnified.

When an additional gauge liquid is used in a U-tube a large differ-
ence of meniscus level may be produced by a small pressure difference.
One arrangement is illustrated in Fig. 2.11. The appropriate equilibrium
equation is

p1 + �Ag(h+ �z) + �Bg
(
z − �z + y

2

)
= p2 + �Ag(h− �z) + �Bg

(
z + �z − y

2

)
+ �Cgy (2.10)
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Fig. 2.11

The amount of liquid B on each side remains constant. Therefore

a1�z = a2
y
2

(2.11)

Substituting for �z in eqn 2.10 we obtain

p1 − p2 = gy
{
�C − �B

(
1 − a2

a1

)
− �A

a2

a1

}
Since a2 is usually very small compared with a1, p1 − p2 � (�C − �B)gy, so
when �C and �B are closely similar a reasonable value of y may be achieved
for a small pressure difference.

In several micro-manometers the pressure difference to be measured is
balanced by the slight raising or lowering (on a micrometer screw) of one
arm of the manometer whereby a meniscus is brought back to its original
position. Well-known micro-manometers of this type are those invented by
Chattock, Small and Krell. They suffer from the disadvantage that an appre-
ciable time is required to make a reading and they are therefore suitable only
for completely steady pressures.

2.3.3 The Bourdon gauge

Where high precision is not required a pressure difference may be indicated
by the deformation of an elastic solid. For example, in an engine indicator
the pressure to be measured acts at one side of a small piston, the other side
being subject to atmospheric pressure. The difference between these pres-
sures is then indicated by the movement of the piston against the resistance
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Fig. 2.12

of a calibrated spring. The principle of the aneroid barometer (Section 2.3.1)
may also be adapted for the measurement of pressures other than atmo-
spheric. The most common type of pressure gauge – compact, reasonably
robust and simple to use – is that invented by Eugène Bourdon (1808–84).
A curved tube of elliptical cross-section is closed at one end; this end is
free to move, but the other end – through which the fluid enters – is rigidly
fixed to the frame as shown in Fig. 2.12. When the pressure inside the tube
exceeds that outside (which is usually atmospheric) the cross-section tends
to become circular, thus causing the tube to uncurl slightly. The movement
of the free end of the tube is transmitted by a suitable mechanical linkage
to a pointer moving over a scale. Zero reading is of course obtained when
the pressure inside the tube equals the local atmospheric pressure. By using
tubes of appropriate stiffness, gauges for a wide range of pressures may be
made. If, however, a pressure higher than the intended maximum is applied
to the tube, even only momentarily, the tube may be strained beyond its
elastic limit and the calibration invalidated.

All gauges depending on the elastic properties of a solid require calibration.
For small pressures this may be done by using a column of mercury; for
higher pressures the standard, calibrating, pressure is produced by weights
of known magnitude exerting a downward force on a piston of known area.

2.3.4 Other types of pressure gauge

For very high pressures, piezo-electric gauges may be used in which a
crystal of quartz or other material, when subjected to the pressure of the
fluid, produces across itself a small but measurable difference of electrical
potential. Other gauges utilize the increase of electrical resistance exhib-
ited by metals under very high pressures. As there are no moving parts
these electrical gauges respond practically instantaneously to changes of
pressure.
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In a pressure transducer the pressure of the fluid acts at one side of a thin
diaphragm; movements of the diaphragm caused by changes of pressure are
indicated by an electrical strain gauge on the diaphragm. Alternatively, the
change of electrical capacitance between the moving diaphragm and a fixed
plate may be measured.

2.4 FIRST AND SECOND MOMENTS OF AREA

In the calculation of hydrostatic thrusts on submerged surfaces, first and
second moments of area are of fundamental importance. These topics will
be addressed prior to the discussion of hydrostatic thrusts.

2.4.1 First moments and centroids

Figure 2.13 shows a plane area A of which an infinitesimal element is δA.
The first moment of the elemental area δA about an axis in the plane is
defined as the product of δA and its perpendicular distance from that axis.
Consequently the first moment of the elemental area about the y-axis is given
by xδA and the first moment of the entire area about the y-axis is therefore
∫A xdA. (The symbol ∫A indicates that the integration is performed over
the entire area.) Since individual values of x may be positive or negative
according as the element is to the right or left of the y-axis, so the integral
may be positive or negative or zero. The first moment of area about an axis
at x = k is ∫A(x− k)dA = ∫A xdA− kA. This moment is zero when

k = 1
A

∫
A
xdA = x (2.12)

and the axis is then known as a centroidal axis.
Similarly, moments may be taken about the x-axis, and another centroidal

axis is then found at

y = y = 1
A

∫
A
ydA (2.13)

Fig. 2.13
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The intersection C of these two centroidal axes is known as the centroid of
the area, and it may be shown that the first moment of the area is zero about
any axis through the centroid. An axis of symmetry is evidently a centroidal
axis since for every element on one side of the axis and contributing xδA to
the total moment there is an element on the other side contributing −xδA.
Equations 2.12 and 2.13 show that the first moment of an area about any axis
may be written as Az where z is the perpendicular distance of the centroid
from that axis. Both the area and the axis must of course be specified.

The position of the centroid of a volume may be determined similarly.
For example, the x coordinate of the centroid is found by summing moments
in which x is the perpendicular distance of the element δV from the yz plane.
Then

x = 1
V

∫
V
xdV

Or the first moment of mass of a body about the yz plane may be calculated
as, ∫M xdM, and the x coordinate of the centre of mass is then given by

1
M

∫
M
xdM

By taking elements of weight δ(Mg), rather than of mass, we may determine
the position of the centre of gravity. For bodies small compared with the
earth, however, the variations of g are negligible and thus the centre of
gravity and the centre of mass coincide.

All the moments just considered are termed first moments because each
element of area, volume and so on is multiplied by the first power of the
appropriate distance.

2.4.2 Second moment of area

The second moment of the plane area illustrated in Fig. 2.13 about the
y-axis is ∫A x2dA. Similarly, the second moment of the area about the x-axis
is ∫A y2dA. A second moment of area may alternatively be written as Ak2 (a
suitable suffix being used to indicate the axis concerned), so in (Ak2)Oy, for
example, k2 represents the mean value of x2. The dimensional formula of a
second moment of area is evidently [L4] and a suitable unit is m4.

The value of a second moment of area about a particular axis may always
be found by performing the appropriate integration, but a more direct
method is often possible when the second moment about another axis is
known. Consider an axis through the centroid of the area and parallel to the
given axis (say Oy in Fig. 2.13). The second moment of the area about this
new axis is

(Ak2)C =
∫
A
(x− x)2dA =

∫
A
x2dA− 2x

∫
A
xdA+ x2

∫
A

dA

= (Ak2)Oy − 2x(Ax) + Ax2 = (Ak2)Oy − Ax2
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where the suffixes C and Oy indicate the axes used. Therefore

(Ak2)Oy = (Ak2)C + Ax2

The direction of the y-axis was arbitrary; hence it may be said that the
second moment of a plane area about any axis equals the sum of the second
moment about a parallel axis through the centroid and the product of
the area and the square of the perpendicular distance between the axes.
This result is frequently known as the parallel axes theorem. Moreover, by
definition,

(Ak2)Oy + (Ak2)Ox =
∫
A
x2dA+

∫
A
y2dA

=
∫
A
(x2 + y2)dA =

∫
A
r2dA

The last term corresponds to the second moment of the area about an axis
perpendicular to the plane of the area at the origin. Since the origin was arbit-
rarily chosen we have the perpendicular axes theorem: the second moment of
a plane area about an axis meeting the plane perpendicularly at any point P
equals the sum of the second moments of that area about two axes in the
plane that intersect perpendicularly at P.

The second moment of mass about a particular axis is ∫M z2dM, where z
represents the perpendicular distance of an element from the axis in ques-
tion. If the mean value of z2 is represented by k2, the second moment of
mass may alternatively be written Mk2. The second moment of mass is also
known as the moment of inertia, and k is termed the radius of gyration.
The dimensional formula of moment of inertia is [ML2] and a suitable unit
is kg · m2.

Unfortunately the second moment of area is sometimes referred to wrongly
as moment of inertia. Inertia is a property of matter and has nothing to do
with area. Second moment of area Ak2, a purely geometric quantity, and
moment of inertiaMk2 are fundamentally different. In this book we use Ak2

as the symbol for second moment of area, a suitable suffix indicating the axis
about which the moment is taken.

Examples of second moments about centroidal axes are given in Fig. 2.14.

2.5 HYDROSTATIC THRUSTS ON SUBMERGED SURFACES

The pressure of a fluid causes a thrust to be exerted on every part of any
surface with which the fluid is in contact. The individual forces distributed
over the area have a resultant, and determination of the magnitude, direction
and position of this resultant force is frequently important. For a plane
horizontal surface at which the fluid is in equilibrium the matter is simple:
the pressure does not vary over the plane and the total force is given by the
product of the pressure and the area. Its direction is perpendicular to the
plane – downwards on the upper face, upwards on the lower face – and its
position is at the centroid of the plane. But if the surface is not horizontal the
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Fig. 2.14 Second moments about centroidal axes.

Fig. 2.15

pressure varies from one point of the surface to another and the calculation
of the total thrust is a little less simple.

2.5.1 Thrust on a plane surface

Figure 2.15 shows a plane surface of arbitrary shape, wholly submerged
in a liquid in equilibrium. The plane of the surface makes an angle θ with
the horizontal, and the intersection of this plane with the plane of the free
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surface (where the pressure is atmospheric) is taken as the x-axis. The y-axis
is taken down the sloping plane. Every element of the area is subjected to
a force due to the pressure of the liquid. At any element of area δA, at a
depth h below the free surface, the (gauge) pressure is p = �gh and the
corresponding force is

δF = pδA = �ghδA = �gy sin θδA (2.14)

As the fluid is not moving relative to the plane there are no shear stresses.
Thus the force is perpendicular to the element, and since the surface is plane
all the elemental forces are parallel. The total force on one side of the plane
is therefore

F =
∫
A

�gy sin θdA = �g sin θ

∫
A
ydA

But ∫A ydA is the first moment of the area about the x-axis and may be
represented by Ay where A represents the total area and (x, y) is the position
of its centroid C. Therefore

F = �g sin θAy = �gAh (2.15)

Now �gh is the pressure at the centroid, so, whatever the slope of the plane,
the total force exerted on it by the static fluid is given by the product of
the area and the pressure at the centroid. Whether the fluid actually has a
free surface in contact with the atmosphere is of no consequence: for a fluid
of uniform density in equilibrium the result is true however the pressure is
produced.

In addition to the magnitude of the total force we need to know its line of Centre of pressure for a
plane surfaceaction. Since all the elemental forces are perpendicular to the plane, their

total is also perpendicular to the plane. It remains to determine the point at
which its line of action meets the plane. This point is known as the centre of
pressure (although centre of thrust might be a better term).

For the resultant force to be equivalent to all the individual forces its
moment about any axis must be the same as the sum of the moments of the
individual forces about the axis. The x- and y-axes are most suitable to our
purpose. From eqn 2.14 the force on an element of the area is �gy sin θδA
and the moment of this force about Ox is therefore �gy2 sin θδA. Let the
centre of pressure P be at (x′,y′). Then the total moment about Ox is

Fy′ =
∫
A

�gy2 sin θdA

Substituting for the total force F from eqn 2.15 we obtain

y′ = �g sin θ
∫
A y

2dA
�g sin θAy

= (Ak2)Ox

Ay
(2.16)

where (Ak2)Ox is the second moment of the area aboutOx. In other words,
the slant depth (i.e. measured down the plane) of the centre of pressure equals
the second moment of the area about the intersection of its plane with that
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of the free (i.e. atmospheric) surface divided by the first moment of the area
about the intersection of its plane with that of the free surface.

The centre of pressure is always lower than the centroid (except when the
surface is horizontal) as the following calculation demonstrates.

From the parallel axes theorem:

(Ak2)Ox = (Ak2)C + Ay2

so eqn 2.16 becomes

y′ = (Ak2)C + Ay2

Ay
= y+ (Ak2)C/Ay (2.17)

Since a second moment of area is always positive it follows that y′ > y. QED.
We see also that the more deeply the surface is submerged, that is, the

greater the value of y, the smaller is the contribution made by the last term
in eqn 2.17 and the closer is the centre of pressure to the centroid. This
is because, as the pressure becomes greater with increasing depth, its vari-
ation over a given area becomes proportionately smaller, so making the
distribution of pressure more uniform. Thus where the variation of pressure
is negligible the centre of pressure may be taken as approximately at the
centroid. This is justifiable in gases, because in them the pressure changes
very little with depth, and also in liquids provided the depth is very large
and the area small.

The expressions 2.16 and 2.17, it is re-emphasized, give the distance to
the centre of pressure measured down the plane from the level of the free
surface and not vertically.

The x-coordinate of the centre of pressure may be determined by taking
moments about Oy. Then the moment of δF is �gy sin θδAx and the total
moment is

Fx′ =
∫
A

�gxy sin θdA = �g sin θ

∫
A
xydA

so

x′ =
∫
A xydA
Ay

(2.18)

When the area has an axis of symmetry in the y direction, this axis may
be taken as Oy and then

∫
A xydA is zero, that is, the centre of pressure lies

on the axis of symmetry. It will be noted from eqns 2.16 and 2.18 that the
position of the centre of pressure is independent of the angle θ and of the
density of the fluid. However, a constant value of � was used; the relations
are therefore valid only for a single homogeneous fluid.

For the plane lamina of negligible thickness illustrated in Fig. 2.15, the
force on one face would exactly balance the force on the other if both faces
were in contact with the fluid. In most cases of practical interest, however,
there is no continuous path in the fluid from one face of the plane to the
other and therefore the pressures at corresponding points on the two faces
are not necessarily the same. For example, the surface may be that of a plate
covering a submerged opening in the wall of a reservoir, or a canal lock-gate
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which has different depths of water on the two sides. The surface may extend
up through the liquid and into the atmosphere; only the part below the free
surface then has a net hydrostatic thrust exerted on it.

The pressures we have considered have been expressed as gauge pressures.
It is unnecessary to use absolute pressures because the effect of atmospheric
pressure at the free surface is to provide a uniform addition to the gauge
pressure throughout the liquid, and therefore to the force on any surface
in contact with the liquid. Normally atmospheric pressure also provides a
uniform force on the other face of the plane, and so it has no effect on either
the magnitude or position of the resultant net force.

It should be particularly noted that, although the total force acts at the
centre of pressure, its magnitude is given by the product of the area and the
pressure at the centroid.

Example 2.2 A cylindrical tank 2 m diameter and 4 m long, with
its axis horizontal, is half filled with water and half filled with oil of
density 880 kg · m−3. Determine the magnitude and position of the net
hydrostatic force on one end of the tank.

Solution
We assume that the tank is only just filled, that is, the pressure in
the fluids is due only to their weight, and thus the (gauge) pressure
at the top is zero. Since two immiscible fluids are involved we must
consider each separately. In equilibrium conditions the oil covers the
upper semicircular half of the end wall.

Since the centroid of a semicircle of radius a is on the central
radius and 4a/3π from the bounding diameter, the centroid Co of
the upper semicircle is 4(1 m)/3π = 0.4244 m above the centre of

the tank, that is, (1 − 0.4244) m = 0.5756 m from the top. The
pressure of the oil at this point is

�gh = (880 kg · m−3)(9.81 N · kg−1
)(0.5756 m) = 4969 Pa
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and thus the force exerted by the oil on the upper half of the wall

= 4969 Pa ×
(

1
2

π12
)

m2 = 7805 N

By eqn 2.17 the centre of pressure is (AK2)C/Ay below the centroid.
Now Ak2 about the bounding diameter = πa4/8 (see Fig. 2.14). So,
by the parallel axes theorem, for a horizontal axis through Co,

(AK2)C = πa4

8
−

(
1
2

πa2
)(

4a
3π

)2

= a4
(

π

8
− 8

9π

)
= 0.1098 m4

Therefore, the centre of pressure Po is 0.1098 m4/1
2π(1 m)2 ×

(0.5756 m) = 0.1214 m below the centroid, that is, (0.5756 +
0.1214) m = 0.6970 m below the top.

For the lower semicircle, in contract with water, the centroid Cw is
0.4244 m below the central diameter. The pressure here is that due to
1 m of oil together with 0.4244 m of water, that is,

(800 kg · m−3)(9.81 N · kg−1
)(1 m)

+ (1000 kg · m−3)(9.81 N · kg−1
)(0.4244 m) = 12, 796 Pa

Thus the force on the lower semicircle is (12 796 Pa)
(

1
2π12m2

)
=

20 100 N.
(AK2)C is again 0.1098 m4 but we must be very careful in calcul-

ating y since there is not a single fluid between this centroid and
the zero-pressure position. However, conditions in the water are
the same as if the pressure at the oil–water interface [(880 kg · m−3)

(9.81 N · kg−1
)(1 m)] were produced instead by 0.88 m of water

[(1000 kg · m−3)(9.81 N · kg−1
)(0.88 m)]. In that case the vertical

distance from the centroid Cw to the zero-pressure position would be
0.4244 m + 0.88 m = 1.3044 m.

∴ Centre of pressure Pw for lower semicircle is

0.1098 m4
/(

1
2

π12 m2 × 1.3044 m
)

= 0.0536 m below the centroid Cw,

that is, (1 + 0.4244 + 0.0536) m = 1.478 m below top of cylinder.
The total force on the circular end is (7805+20 100) N = 27 905 N,

acting horizontally. Its position may be determined by taking moments
about, for example, a horizontal axis at the top of the cylinder:

(7805 N)(0.697 m) + (20 100 N)(1.478 m) = (27 905 N)x

where x = distance of line of action of total force from top of cylinder

= 1.260 m
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By symmetry, the centre of pressure is on the vertical diameter of the
circle.

An alternative, though algebraically more tiresome, technique
would be to consider horizontal strips of the surface of vertical thick-
ness, say, δy; and then to integrate, over each semicircle, expressions
for forces on the strips and their moments about a horizontal axis at,
say, the top of the cylinder. However, there is no escape from dealing
separately with the surfaces in contact with each fluid. �

2.5.2 Hydrostatic thrusts on curved surfaces

On a curved surface the forces pδA on individual elements differ in direc-
tion, so a simple summation of them may not be made. Instead, the resultant
thrusts in certain directions may be determined, and these forces may then
be combined vectorially. It is simplest to calculate horizontal and vertical
components of the total thrust.

Any curved surface may be projected on to a vertical plane. Take, for Horizontal component
example, the curved surface illustrated in Fig. 2.16. Its projection on to
the vertical plane shown is represented by the trace MN and the horizontal
projection lines may be supposed in the x-direction. Let Fx represent the
component in this direction of the total thrust exerted by the fluid on the
curved surface. By Newton’s Third Law the surface exerts a force −Fx on
the fluid. Consider the fluid enclosed by the curved surface, the projection
lines and the vertical plane. For this fluid to be in equilibrium the force −Fx
must be equal in magnitude to the force F on the fluid at the vertical plane.
Also the two forces must be in line, that is, −Fx must act through the centre
of pressure of the vertical projection.

In any given direction, therefore, the horizontal force on any surface equals
the force on the projection of that surface on a vertical plane perpendicular
to the given direction. The line of action of the horizontal force on the curved
surface is the same as that of the force on the vertical projection.

Fig. 2.16
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Fig. 2.17

The vertical component of the force on a curved surface may be determinedVertical component
by considering the fluid enclosed by the curved surface and vertical projection
lines extending to the free surface (see Fig. 2.17). (We assume for the moment
that a free surface does exist above the curved surface in question.) As the
sides of this volume are vertical the forces acting on them must everywhere
be horizontal if the fluid is in equilibrium. If the pressure at the free surface
is taken as zero then there are only two vertical forces acting on the fluid
in the space considered: (1) its own weight W ; (2) the reaction −Fy to the
vertical component Fy of the total force exerted on the curved surface. Hence
W = Fy. Moreover, W acts at G, the centre of gravity of the fluid in that
space, and for equilibrium the line of action of Fy must also pass through
G.Thus the vertical force acting on any surface equals the weight of the fluid
extending above that surface to the free (zero-pressure) surface, and it acts
through the centre of gravity of that fluid.

In some instances it is the underside of a curved surface that is subjected
to the hydrostatic pressure, whereas the upper side is not. The vertical com-
ponent of the thrust on the surface then acts upwards and equals the weight
of an imaginary amount of fluid extending from the surface up to the level of
the free (zero-pressure) surface. This is because, if the imaginary fluid were
in fact present, pressures at the two sides of the surface would be identical
and the net force reduced to zero.

If a free surface does not actually exist, an imaginary free surface may
be considered at a height p/�g above any point at which the pressure p is
known. The density of the imaginary fluid must, of course, be supposed the
same as that of the actual fluid so that the variation of pressure over the sur-
face is correctly represented. The vertical component of the total force is then
equal to the weight of the imaginary fluid vertically above the curved surface.

In general the components of the total force must be considered in threeResultant thrust
mutually perpendicular directions, two horizontal and one vertical. These
three components need not meet at a single point, so there is, in general, no
single resultant force. In many instances, however, two forces lie in the same
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plane and may then be combined into a single resultant by the parallelogram
of forces. If there is a vertical plane on which the surface has no projec-
tion (e.g. the plane perpendicular to the horizontal axis of a cylindrical
surface) there is no component of hydrostatic force perpendicular to that
plane. The only horizontal component then needing consideration is the one
parallel to that plane.

When the two sides of a surface are wholly in contact with a single fluid
of uniform density but the level of the free (atmospheric) surface on one side
is different from that on the other, the net effective pressure at any point
depends only on the difference in free surface levels. The effective pressure is
therefore uniform over the area and so the components of the resultant force
then pass through the centroids of the vertical and horizontal projections
respectively.

Example 2.3 A sector gate, of radius 4 m and length 5 m, controls the
flow of water in a horizontal channel. For the (equilibrium) conditions
shown in Fig. 2.18, determine the total thrust on the gate.

Solution
Since the curved surface of the gate is part of a cylinder, the water
exerts no thrust along its length, so we consider the horizontal and
vertical components in the plane of the diagram.

The horizontal component is the thrust that would be exerted by the
water on a vertical projection of the curved surface. The depth d of this
projection is 4 sin 30◦ m = 2 m and its centroid is 1 m +d/2 = 2 m
below the free surface. Therefore

Horizontal force = �ghA

= 1000 kg · m−3 × 9.81 N · kg−1 × 2 m(5 × 2) m2

= 1.962 × 105 N

Fig. 2.18
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Its line of action passes through the centre of pressure of the vertical
projection, that is, at a distance (Ak2)0/Ah below the free surface,
given by:

(Ak2)0

Ah
= (Ak2)c + Ah2

Ah
= bd3/12

bdh
+ h

=
{

(2 m)2

12

/
2 m

}
+ 2 m = 2.167 m

The vertical component of the total thrust = weight of imaginary
water ABC. AB = (4 − 4 cos 30◦) m = 0.536 m

Vertical force = �gV

= 1000 kg · m−3 × 9.81 N · kg−1 × 5 m
{
(0.536 × 1)

+ π × 42 × 30
360

− 1
2

× 2 × 4 cos 30◦
}

m2

= 6.18 × 104 N

The centre of gravity of the imaginary fluid ABC may be found by
taking moments about BC. It is 0.237 m to the left of BC.

The horizontal and vertical components are co-planar and therefore
combine to give a single resultant force of magnitude{

(1.962 × 105)2 + (6.18 × 104)2
}1/2

N = 2.057 × 105 N

at an angle arctan (61 800/196 200) � 17.5◦ to the horizontal.
It is instructive to obtain the result in an alternative way. Consider

an element of the area of the gate subtending a small angle δθ at O.
Then the thrust on this element = �ghδA, and the horizontal com-
ponent of this thrust = �ghδA cos θ where θ is the angle between the
horizontal and the radius to the element. Now h = (1+4 sin θ) m and
δA = (4δθ × 5) m2 = 20δθ m2, so the total horizontal component =
�g

∫
h cos θdA =

1000 kg · m−3 × 9.81 N · kg−1 × 20 m2
∫ π/6

0
(1 + 4 sin θ) cos θdθ m

= 1.962 × 105 N

as before.
The vertical component of the thrust on an element is �ghδA sin θ

and the total vertical component = �g
∫
h sin θdA =

1000 kg · m−3 × 9.81 N · kg−1 × 20 m2
∫ π/6

0
(1 + 4 sin θ) sin θdθ m

= 6.18 × 104 N

as before.
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Since all the elemental thrusts are perpendicular to the surface their
lines of action all pass through O and that of the resultant force
therefore also passes through �O.

When variations of pressure with depth may be neglected – for example,
when the fluid is gas – the magnitude of the force exerted on a curved surface
in any direction is given by the product of the (uniform) pressure and the
projected area of the surface perpendicular to that direction.

2.6 BUOYANCY

Because the pressure in a fluid in equilibrium increases with depth, the fluid
exerts a resultant upward force on any body wholly or partly immersed in
it. This force is known as the buoyancy and it may be determined by the
methods of Section 2.5.

The buoyancy has no horizontal component, because the horizontal thrust
in any direction is the same as on a vertical projection of the surface of the
body perpendicular to that direction, and the thrusts on the two faces of such
a vertical projection exactly balance. Consider the body PQRS of Fig. 2.19.
The upward thrust on the lower surface PSR corresponds to the weight of
the fluid, real or imaginary, vertically above that surface, that is, the weight
corresponding to the volume PSRNM. The downward thrust on the upper
surface PQR equals the weight of the fluid PQRNM. The resultant upward
force exerted by the fluid on the body is therefore

weight of fluid
correspond to
PSRNM

−
weight of fluid

corresponding to
PQRNM

=
weight of fluid

corresponding to
PQRS.

It may be noted that in this case there is no restriction to a fluid of uniform
density.

Since the fluid is in equilibrium we may imagine the body removed and
its place occupied by an equal volume of the fluid. This extra fluid would
be in equilibrium under the action of its own weight and the thrusts exerted
by the surrounding fluid. The resultant of these thrusts (the buoyancy) must
therefore be equal and opposite to the weight of the fluid taking the place

Fig. 2.19
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Fig. 2.20

Fig. 2.21

Fig. 2.22

of the body, and must also pass through the centre of gravity of that fluid.
This point, which corresponds to the centroid of the volume if the fluid is of
uniform density, is known as the centre of buoyancy. Its position depends on
the shape of the volume considered and it should be carefully distinguished
from the centre of gravity of the body which depends on the way in which
the weight of the body is distributed.

For a body only partly immersed in the fluid (as in Fig. 2.20) similar
considerations show that the buoyancy corresponds to the weight of fluid
equal in volume to PRQ. In general, then, the buoyancy is the resultant
upward force exerted by the fluid on the body, and is equal in magnitude to
�gV where � represents the mean density of the fluid and V the immersed
volume of the body. This result is often known as the Principle of Archimedes
(c.287–212 bc). Incidentally, in calculating V for a partly immersed body,
any meniscus due to surface tension must be disregarded. Except for very
small bodies the vertical force directly due to surface tension is negligible.

The buoyancy is not related to – and indeed may even exceed – the weight
of fluid actually present. For example, the mirrors of astronomical telescopes
are sometimes floated in mercury; the buoyancy corresponds to the weight
of mercury having a volume equal to PQRS (Fig. 2.21) and this may be many
times greater than the volume of mercury present, PQRLMN.

A body may be partly immersed in each of two immiscible fluids, as shown
in Fig. 2.22. The total buoyancy is then �1gV1 +�2gV2. In general, however,
the centres of buoyancy of the volumesV1 andV2 are not on the same vertical
line and the total buoyancy force then does not pass through the centroid
of the entire volume. Where the lower fluid is a liquid and the upper a gas,
the buoyancy provided by the gas may, except in very accurate work, be
neglected and the total buoyancy assumed to be �2gV2 only, acting at the
centroid of the volume V2. Buoyancy due to the atmosphere is also usually
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neglected when a body is weighed on a balance in air, although in very
accurate work a correction is applied to account for it.

If a body is otherwise unsupported it is in equilibrium in the fluid only
when its buoyancy balances its weight. If the buoyancy exceeds the weight –
as for a balloon in air or an air bubble in water – the body rises until its
average density equals that of the surrounding fluid. If the body is more
compressible than the surrounding fluid its own average density decreases
faster than that of the fluid and, unless the height of the fluid has a definite
limit, the body rises indefinitely.

For a floating body to be in vertical equilibrium, the volume immersed in
the liquid must be such as to provide a buoyancy force exactly equal to the
weight of the body.

2.7 THE STABILITY OF BODIES IN FLUIDS

2.7.1 The stability of submerged bodies

For a body not otherwise restrained it is important to know not only whether
it will rise or fall in the fluid, but also whether an originally vertical axis in the
body will remain vertical. We are not here concerned with effects of a fluid
in motion but with states of equilibrium. We must, however, distinguish
three types of equilibrium. A body in stable equilibrium will, if given a
small displacement and then released, return to its original position. If, on
the other hand, the equilibrium is unstable the body will not return to its
original position but will move further from it. In neutral equilibrium, the
body, having been given a small displacement and then released, will neither
return to its original position nor increase its displacement; it will simply
adopt its new position.

For a body wholly immersed in a single fluid – as, for example the
balloon and gondola illustrated in Fig. 2.23 – the conditions for stability

Fig. 2.23
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of equilibrium are simple. An angular displacement from the normal
position (a) brings into action the couple Wx which tends to restore the
system to position (a). This, then, is a stable arrangement. If, however, the
centre of gravity G were above the centre of buoyancy B the couple arising
from a small angular displacement would be such as to cause the assembly to
topple over. So for a completely immersed body the condition for stability
is simply that G be below B. If B and G coincide, neutral equilibrium is
obtained.

2.7.2 The stability of floating bodies

The condition for angular stability of a body floating in a liquid is a little
more complicated. This is because, when the body undergoes an angular
displacement about a horizontal axis, the shape of the immersed volume in
general changes, so the centre of buoyancy moves relative to the body. As a
result stable equilibrium can be achieved even when G is above B.

Figure 2.24a illustrates a floating body – a boat, for example – in its
equilibrium position. The net force is zero, so the buoyancy is equal in
magnitude to the weight W of the body. There must be no moment on the
body, so the weight acting vertically downwards through the centre of gravity
G must be in line with the buoyancy acting vertically upwards through the
centre of buoyancy B. Figure 2.24b shows the situation after the body has
undergone a small angular displacement or angle of heel, θ . It is assumed
that the position of the centre of gravityG remains unchanged relative to the
body. (This is not always a justifiable assumption for a ship since some of the
cargo may shift during an angular displacement.) The centre of buoyancy B,
however, does not remain fixed relative to the body. During the movement,
the volume immersed on the right-hand side increases while that on the
left-hand side decreases, so the centre of buoyancy (i.e. the centroid of the
immersed volume) moves to a new positionB′. Suppose that the line of action
of the buoyancy (which is always vertical) intersects the axis BG at M. For
small values of θ , the pointM is practically constant in position and is known
as the metacentre. For the body shown in the figure, M is above G, and the

Fig. 2.24
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Fig. 2.25

couple acting on the body in its displaced position is a restoring couple, that
is, it tends to restore the body to its original position. IfM were belowG the
couple would be an overturning couple and the original equilibrium would
have been unstable.

The distance of the metacentre aboveG is known as themetacentric height,
and for stability of the body it must be positive (i.e. M above G). Neutral
equilibrium is of course obtained when the metacentric height is zero andG
andM coincide. For a floating body, then, stability is not determined simply
by the relative positions of B and G.

The magnitude of the restoring couple isW(GM) sin θ and the magnitude
of GM therefore serves as a measure of the stability of a floating body.
A simple experiment may be conducted to determine GM. Suppose that
for the boat illustrated in Fig. 2.25 the metacentric height corresponding to
roll about the longitudinal axis is required. If a body of weight P is moved
transversely across the deck (which is initially horizontal) the boat moves
through a small angle θ – which may be measured by the movement of a
plumb line over a scale – and comes to rest in a new position of equilibrium.
The centres of gravity and buoyancy are therefore again vertically in line.
Now the movement of the weight P through a distance x causes a parallel
shift of the total centre of gravity (i.e. the centre of gravity of the whole boat
including P) fromG toG′ such that Px = W(GG′),W being the total weight
including P. But (GG′) = (GM) tan θ , so

(GM) = Px
W

cot θ (2.19)

Since the point M corresponds to the metacentre for small angles of heel
only, the true metacentric height is the limiting value of GM as θ → 0. This
may be determined from a graph of nominal values of GM calculated from
eqn 2.19 for various values of θ (positive and negative).

It is desirable, however, to be able to determine the position of the meta-
centre and the metacentric height before a boat is constructed. Fortunately
this may be done simply by considering the shape of the hull. Figure 2.26
shows that cross-section, perpendicular to the axis of rotation, in which the
centre of buoyancy B lies. At (a) is shown the equilibrium position: after dis-
placement through a small angle θ (here exaggerated for the sake of clarity)
the body has the position shown at (b). The section on the left, indicated
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Fig. 2.26

by cross-hatching, has emerged from the liquid whereas the cross-hatched
section on the right has moved down into the liquid. We assume that there is
no overall vertical movement; thus the vertical equilibrium is undisturbed. As
the total weight of the body remains unaltered so does the volume immersed,
and therefore the volumes corresponding to the cross-hatched sections are
equal. This is so if the planes of flotation for the equilibrium and displaced
positions intersect along the centroidal axes of the planes.

We choose coordinate axes through O as origin: Ox is perpendicular to
the plane of diagrams (a) and (b), Oy lies in the original plane of flotation
and Oz is vertically downwards in the equilibrium position. As the body is
displaced the axes move with it. (The axisOxmay move sideways during the
rotation: thusOx is not necessarily the axis of rotation.) The entire immersed
volumeV may be supposed to be made up of elements like that shown – each
underneath an area δA in the plane of flotation. Now the centre of buoyancy
B by definition corresponds to the centroid of the immersed volume (the
liquid being assumed homogeneous). Its y-coordinate (y0) may therefore be
determined by taking moments of volume about the xz plane:

Vy0 =
∫

(zdA)y (2.20)

(For a symmetrical body y0 = 0.) After displacement the centre of buoyancy
is at B′ whose y-coordinate is y. (For ships rotating about a longitudinal
axis the centre of buoyancy may not remain in the plane shown in Fig. 2.26a
because the underwater contour is not, in general, symmetrical about a trans-
verse section. One should therefore regard B′ as a projection of the new
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centre of buoyancy on to the transverse plane represented in the diagram.)
The depth of each element of volume is now z + y tan θ , so

Vy =
∫
y(z + y tan θ)dA (2.21)

Subtraction of eqn 2.20 from eqn 2.21 gives

V(y− y0) =
∫
y2 tan θdA = tan θ(Ak2)Ox

where (Ak2)Ox represents the second moment of area of the plane of flotation
about the axis Ox (see Fig. 2.26c).

But, for small angular displacements, y− y0 = (BM) tan θ and therefore

V(BM) = (Ak2)Ox

or

(BM) = (Ak2)Ox

V
(2.22)

The length BM, sometimes known as the metacentric radius, is therefore
equal to the second moment of the plane of flotation about the centroidal
axis perpendicular to the plane of rotation divided by the immersed volume.
BM must not be confused with the metacentric height GM.

For rolling (i.e. side to side) movements of a ship the centroidal axis about
which the second moment is taken is the longitudinal one. Stability in this
direction is normally by far the most important. For pitching movements (i.e.
stern up, bow down or vice versa) the appropriate axis is the transverse one.
The metacentres corresponding to different axes of rotation in general have
different positions. The position of B can be calculated since the contours of
the hull at various levels are normally known, and hence the position of the
metacentre may be determined from eqn 2.22.

The equation strictly applies only to very small angular displacements,
and this limitation is more important if the body does not have vertical sides
(although for ships the sides are usually approximately vertical at the water-
line). The result may legitimately be used to indicate the initial stability of the
body. It is nevertheless sufficiently accurate for most calculations involving
angles up to about 8◦.

The value of BM for a ship is of course affected by change of loading
whereby the immersed volume alters. If the sides are not vertical at the
water-line the value of Ak2 may also change as the vessel rises or falls in
the water. Naval architects must design vessels so that they are stable under
all conditions of loading and movement. Wide ships are stable in rolling
movements because (Ak2)Ox is then large and the metacentre high.
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Example 2.4 A uniform, closed cylindrical buoy, 1.5 m high, 1.0 m
diameter and of mass 80 kg is to float with its axis vertical in sea-
water of density 1026 kg · m−3. A body of mass 10 kg is attached to
the centre of the top surface of the buoy. Show that, if the buoy floats
freely, initial instability will occur.

Solution
Moments of mass about horizontal axis through O:

(10 kg)(1.5 m) + (80 kg)

(
1.5
2

m
)

= {(80 + 10) kg}(OG)

∴ OG = 0.8333 m

For vertical equilibrium, buoyancy = weight.

∴ π

4
(1 m)2h× 1026 kg · m−3g = (80 + 10) kg g

whence h = 0.1117 m.
From Fig. 2.14 Ak2 of a circle about a centroidal axis = πd4/64.

∴ BM = Ak2/V = π

64
d4/

π

4
d2h = d2

16h

= 12

16 × 0.1117
m = 0.560 m

and

GM = OB+ BM −OG =
(

0.1117
2

+ 0.560 − 0.8333
)

m

= −0.2175 m

Since this is negative (i.e. M is below G) buoy is unstable.�

If a floating body carries liquid with a free surface, this contained liquidFloating bodies
containing a liquid will move in an attempt to keep its free surface horizontal when the body

undergoes angular displacement. Thus not only does the centre of buoyancy
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move, but also the centre of gravity of the floating body and its contents.
The movement of G is in the same direction as the movement of B and
consequently the stability of the body is reduced. For this reason a liquid
(e.g. oil) which has to be carried in a ship is put into a number of separate
compartments so as to minimize its movement within the ship. It may be
shown that, for small angular movements, the effective metacentric height
is reduced by an amount �i(Ak2)′/�V for each compartment, where (Ak2)′
represents the second moment of area of the free surface of the liquid in
the compartment about its centroidal axis parallel to the axis of rotation,
�i represents the density of the liquid in the compartment and �V the total
mass of the vessel and its cargo.

As we have seen, the restoring couple caused by the hydrostatic forces acting Period of oscillation
on a floating body displaced from its equilibrium position is W(GM) sin θ

(see Fig. 2.24). Since torque equals moment of inertia (i.e. second moment
of mass) multiplied by angular acceleration we may write

W(GM) sin θ = −(Mk2)R
d2θ

dt2

if we assume that the torque caused by the hydrostatic forces is the only one
acting on the body. (In practice a certain amount of liquid moves with the
body, but the effect of this is slight.) Here (Mk2)R represents the moment
of inertia of the body about its axis of rotation. The minus sign arises
because the torque acts so as to decrease θ , that is, the angular acceleration
d2θ/dt2 is negative. Thus for small angular movements sin θ is proportional
to −d2θ/dt2 as for a simple pendulum. If there is no relative movement
(e.g. of liquid) within the body (Mk2)R is constant and if θ is small so
that sin θ � θ (in radian measure) the equation may be integrated to give
2πkR/{g(GM)}1/2 as the time of a complete oscillation from one side to the
other and back again.

If the only forces acting are the weight of the body and the buoyancy – both
of which are vertical – thenG does not move horizontally. The instantaneous
axis of rotation therefore lies in a horizontal plane throughG. Moreover, for
a body symmetrical about the axis Ox (of Fig. 2.26) the instantaneous axis
of rotation must lie in a vertical plane throughOx so thatOx does not move
vertically out of the free surface. For small angular displacements, however,
the line of intersection of these horizontal and vertical planes is very close
to G, so the axis of rotation is considered to pass through G. The moment
of inertia is consequently calculated for an axis through G.

The oscillation of the body results in some flow of the liquid round it
and this flow has been disregarded here. Reasonable agreement between
theoretical and experimental values of the period of oscillation has been
found for the rolling motion of ships but the agreement is less good for
pitching movements. In practice, of course, viscosity in the water introduces
a damping action which quickly suppresses the oscillation unless further
disturbances such as waves cause new angular displacements.

The metacentric height of ocean-going vessels is, for rotation about a
longitudinal axis, usually of the order of 300 mm to 1.2 m. Increasing the
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metacentric height gives greater stability but reduces the period of roll, so
the vessel is less comfortable for passengers and is subjected to strains which
may damage its structure. In cargo vessels, the metacentric height varies with
the loading although some control of its value is possible by adjusting the
position of the cargo. Some control of the period of roll is also possible:
if the cargo is placed further from the centre-line the moment of inertia of
the vessel, and consequently the period, may be increased with little sac-
rifice of stability. On the other hand, in warships and racing yachts, for
examples, stability is more important than comfort, and such vessels have
larger metacentric heights.

2.7.3 Stability of a body subject to an additional force

When an unconstrained body is in equilibrium in a fluid the only forces
relevant to its stability are the weight of the body and its buoyancy. If,
however, an additional force is provided – by, for example, an anchor chain –
stability is determined by the lines of action of the buoyancy and the resultant
downward force.

Example 2.5 For the buoy considered in example 2.4, calculate the
least vertical downward force applied at the centre of the base that
would just keep the buoy upright. What would then be the depth of
immersion?

Solution
A vertically downward force F applied at O increases the total down-
ward force fromW (the total weight of the buoy) toW+F. To maintain
vertical equilibrium the buoyancy too is increased to W + F, and so
the new depth of immersion h′ is given by

�g
π

4
d2h′ = W + F

Taking moments of forces about a horizontal axis throughO gives the
requirement for the restoring couple to be just zero:
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W(OG) = (W + F)(OB+ BM) = �g
π

4
d2h′

(
h′

2
+ d2

16h′

)

that is,

(90 kg)g(0.8333 m) = (1026 kg · m−3)g
π

4
(1 m)2

{
(h′)2

2
+ (1 m)2

16

}

whence

h′ = 0.2473 m

and

F = �g
π

4
d2h′ −W =

(
1026 × 9.81

π

4
12 × 0.2473 − 90 × 9.81

)
N

= 1072 N �

2.7.4 Stability of a fluid itself

In the preceding sections we have considered the stability of separate, iden-
tifiable, bodies wholly or partly immersed in a fluid. We now turn attention
to the stability of parts of the fluid itself which, perhaps because of uneven
heating or cooling, have a density slightly different from that of neighbouring
fluid. These differences of density are the cause of fluid motion known as
convection currents which are frequently encountered in both liquids and
gases.

If, for example, only the lower layers of a certain bulk of fluid are heated,
an unstable condition results. This is because if some of the warmer fluid is
displaced upwards it finds itself surrounded by cooler, and therefore denser,
fluid. The buoyancy force exerted on the warmer fluid by its surroundings
is equal in magnitude to the weight of an equal volume of the surround-
ing denser fluid. As this buoyancy is greater than the weight of the newly
arrived fluid there is a net upward force on the warmer fluid which therefore
continues to rise. Heavier fluid then flows downwards to take the place
of the less dense fluid which has moved up and thus free convection is
started.

If, however, the lower layers of fluid are cooled the conditions are stable.
Fluid displaced downwards would be surrounded by cooler, denser, fluid;
it would therefore experience a buoyancy force greater than its own weight
and would return upwards to its original position.

Such movements occur on a large scale in the atmosphere. The lower
part of the atmosphere is continually being mixed by convection which is
largely due to the unequal heating of the earth’s surface. When air is heated
more in one locality than in another, it rises and then, as its pressure falls
with increase of altitude, it cools. Because air is a poor conductor of heat
the cooling takes place approximately adiabatically according to eqn 1.6.
The adiabatic temperature lapse rate in a dry atmosphere is approximately
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0.01 K · m−1 whereas the temperature change normally found in nature is
of the order of 0.0065 K · m−1. Rising air, cooling adiabatically, therefore
becomes cooler and denser than its surroundings and tends to fall back to
its original level. Normally, then, the atmosphere is stable. If, however,
the natural temperature lapse rate exceeds the adiabatic, the equilibrium is
unstable – a condition frequently responsible for thunderstorms.

2.8 EQUILIBRIUM OF MOVING FLUIDS

In certain instances the methods of hydrostatics may be used to study the
behaviour of fluids in motion. For example, if all the fluid concerned moves
uniformly in a straight line, there is no acceleration and there are no shear
forces. Thus no force acts on the fluid as a result of the motion and, in these
circumstances, the hydrostatic equations apply without change.

If all the fluid concerned is undergoing uniform acceleration in a straight
line, no layer moves relative to another, so there are still no shear forces.
There is, however, an additional force acting to cause the acceleration. Nev-
ertheless, provided that due allowance is made for this additional force the
system may be studied by the methods of hydrostatics. Fluids in such motion
are said to be in relative equilibrium.

Consider the small rectangular element of fluid of size δx× δy× δz shown
in Fig. 2.27 (δy being measured perpendicularly to the paper). The pressure at
the centre is p, so the mean pressure over the left-hand face is p−(∂p/∂x)1

2δx
and the mean pressure over the right-hand face p+ (∂p/∂x)1

2δx. If the fluid
is in relative equilibrium there are no shear forces. The net force in the
(horizontal) x direction is therefore

{(
p− ∂p

∂x
1
2

δx
)

−
(
p+ ∂p

∂x
1
2

δx
)}

δyδz = −∂p
∂x

δxδyδz

which by Newton’s Second Law is equal to �δxδyδzax, where � represents the
mean density of the fluid in the element and ax the component of acceleration
in the x direction. Therefore the pressure gradient in the x direction, ∂p/∂x,

Fig. 2.27
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is given by

∂p
∂x

= −�ax (2.23)

Similarly, the net force in the (vertical) z direction due to pressure is
given by

−∂p
∂z

δxδyδz

The weight of the element acting vertically downwards is �gδxδyδz, so

−∂p
∂z

δxδyδz − �gδxδyδz = �δxδyδzaz

∴ ∂p
∂z

= −�(g + az)
(2.24)

In general there would also be a component of acceleration in the y direc-
tion and a corresponding pressure gradient in the y direction ∂p/∂y = −�ay.
For simplicity, however, we shall consider the total acceleration to be in the
x–z plane.

From eqns 2.23 and 2.24 the pressure variation throughout the fluid may
be determined. A surface of constant pressure in the fluid is one along which

dp = ∂p
∂x

dx+ ∂p
∂z

dz = 0

that is, along which

dz
dx

= −∂p/∂x
∂p/∂z

= −ax
g + az (2.25)

For constant acceleration, therefore, dz/dx is constant and a surface of con-
stant pressure has a constant slope relative to the x direction of −ax/(g+az).
One such surface is a free surface; other constant pressure planes are parallel
to it.

For example, consider the tank illustrated in Fig. 2.28. It contains a liquid
and is given a uniform horizontal acceleration ax (the vertical acceleration
az is zero). Once the liquid has adjusted itself to uniform conditions the free
surface settles at a slope as shown. (During the period when the liquid is
moving into its new position shear forces are involved, so the methods of
hydrostatics do not then apply.) Here tan θ = dz/dx = −ax/g.

If, however, the acceleration is only in the vertical direction eqn 2.25 shows
that dz/dx = 0, so planes of constant pressure are horizontal. The variation
of pressure through the fluid is then given simply by eqn 2.24. A tank of fluid
allowed to fall freely would have an acceleration in the z direction (upwards)
of −g and thus uniform pressure would be obtained throughout the fluid.
But if a tank of liquid were accelerated upwards the hydrostatic pressure
variation would be intensified.

Fluid completely filling a closed tank would have no free surface, but
planes of constant pressure would still be inclined to the x direction at an



82 Fluid statics

Fig. 2.28

Fig. 2.29

angle of arctan {−ax/(g+az)}. Pressures at particular points in the fluid may
be determined by integrating eqns 2.23 and 2.24:

p =
∫

dp =
∫

∂p
∂x

dx+
∫

∂p
∂z

dz

= −�axx− �(g + az)z + constant (2.26)

for a constant-density fluid. The integration constant is determined by the
conditions of the problem – for example, that p = patm at a free surface.

All the foregoing results refer only to a horizontal x- (and y-) axis and
a vertical z-axis; it should be remembered too that z is measured upwards
from a suitable horizontal datum.

Once the direction of the constant-pressure planes is known, alternative
expressions may be obtained by considering, say, ξ and η axes, respectively
parallel to and perpendicular to the constant-pressure planes (see Fig. 2.29).
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Then ∂p/∂ξ = 0 by definition of ξ but

∂p
∂η

= ∂p
∂x

/
∂η

∂x
= −�ax

sin θ
= −�

{
a2
x + (g + az)2

}1/2 = dp
dη

since p depends only on η. Comparison with dp/dz = −�g, the equi-
librium equation for zero acceleration, shows that pressures for relative
equilibrium may be calculated by hydrostatic principles provided that{
a2
x + (g + az)2}1/2

takes the place of g; and η the place of z. However,
it is usually simpler and certainly safer to work with horizontal and vertical
axes only.

Example 2.6 A thin-walled, open-topped tank in the form of a cube
of 500 mm side is initially full of oil of relative density 0.88. It is
accelerated uniformly at 5 m · s−2 up a long straight slope at arctan
(1/4) to the horizontal, the base of the tank remaining parallel to the
slope, and the two side faces remaining parallel to the direction of
motion. Calculate (a) the volume of oil left in the tank when no more
spilling occurs, and (b) the pressure at the lowest corners of the tank.

Solution
The forward acceleration causes the free surface to slope at angle
(180◦ − θ) to the forward horizontal, and the oil therefore spills over
the corner B until conditions are as shown in the diagram.

Horizontal component of acceleration

= ax = a cos φ = (5 m · s−2) × 4/
√

17

Vertical component of acceleration

= az = a sin φ = (5 m · s−2) × 1/
√

17

From eqn 2.25

tan(180◦ − θ) = − ax
az + g
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that is,

tan θ = ax
az + g = 20/

√
17

(5/
√

17) + 9.81
= 0.440

(a) ∴ tan(φ + θ) = tan φ + tan θ

1 − tan φ tan θ
= 0.25 + 0.440

1 − 0.25 × 0.440
= 0.775

∴ c = 0.5 m × 0.775 = 0.3875 m

Then volume of oil left = 0.5
(

0.52 − 1
2

0.5 × 0.3875
)

m3

= 0.765 m3 = 76.5 L

(b) From eqn 2.26 p = −�axx− �(az + g)z + constant
Pressure at B is atmospheric and if B is at (0,0) then constant = 0
Point A will be at [(0.5 m) sin φ, −(0.5 m) cos φ]
∴ pA = −�a cos φ(0.5 m) sin φ + �(a sin φ + g)(0.5 m) cos φ

= �g(0.5 m) cos φ = 880 kg · m−39.81 N · kg−10.5 m
4√
17

= 4190 Pa�

PROBLEMS

2.1 To what head of carbon tetrachloride (relative density 1.59) is
a pressure of 200 kPa equivalent?

2.2 A tank 3.5 m long and 2.5 m wide contains alcohol of relative
density 0.82 to a depth of 3 m. A 50 mm diameter pipe leads
from the bottom of the tank. What will be the reading on a
gauge calibrated in Pa connected at a point (a) 150 mm above
the bottom of the tank; (b) in the 50 mm diameter pipe, 2 m
below the bottom of the tank; (c) at the upper end of a 25 mm
diameter pipe, connected to the 50 mm pipe 2 m below the
bottom of the tank, sloping upwards at 30◦ to the horizontal
for 1.2 m and then rising vertically for 600 mm? What is the
load on the bottom of the tank?

2.3 To what head of air (R = 287 J · kg−1 · K−1) at an absolute
pressure of 101.3 kPa and temperature of 15 ◦C is a pressure
of 75 mm of water equivalent?

2.4 A spherical air bubble rises in water. At a depth of 9 m its
diameter is 4 mm. What is its diameter just as it reaches the
free surface where the absolute pressure is 101.3 kPa? (Surface
tension effects are negligible.)
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2.5 Two small vessels are connected to a U-tube manometer
containing mercury (relative density 13.56) and the connect-
ing tubes are filled with alcohol (relative density 0.82). The
vessel at the higher pressure is 2 m lower in elevation than the
other. What is the pressure difference between the vessels when
the steady difference in level of the mercury menisci is 225 mm?
What is the difference of piezometric head? If an inverted U-tube
manometer containing a liquid of relative density 0.74 were
used instead, what would be the manometer reading for the
same pressure difference?

2.6 A manometer consists of two tubes A and B, with vertical
axes and uniform cross-sectional areas 500 mm2 and 800 mm2

respectively, connected by a U-tube C of cross-sectional area
70 mm2 throughout. Tube A contains a liquid of relative dens-
ity 0.8; tube B contains one of relative density 0.9. The surface
of separation between the two liquids is in the vertical side of C
connected to tube A. What additional pressure, applied to the
tube B, would cause the surface of separation to rise 60 mm in
the tube C?

2.7 Assuming that atmospheric temperature decreases with increas-
ing altitude at a uniform rate of 0.0065 K · m−1, determine the
atmospheric pressure at an altitude of 7.5 km if the temperature
and pressure at sea level are 15 ◦C and 101.5 kPa respectively.
(R = 287 J · kg−1 · K−1.)

2.8 At the top a mountain the temperature is −5 ◦C and a mercury
barometer reads 566 mm, whereas the reading at the foot of
the mountain is 749 mm. Assuming a temperature lapse rate of
0.0065 K · m−1 and R = 287 J · kg−1 · K−1, calculate the height
of the mountain. (Neglect thermal expansion of mercury.)

2.9 A rectangular plane, 1.2 m by 1.8 m is submerged in water and
makes an angle of 30◦ with the horizontal, the 1.2 m sides being
horizontal. Calculate the magnitude of the net force on one face
and the position of the centre of pressure when the top edge of
the plane is (a) at the free surface, (b) 500 mm below the free
surface, (c) 30 m below the free surface.

2.10 What is the position of the centre of pressure for a vertical semi-
circular plane submerged in a homogeneous liquid and with its
diameter d at the free surface?

2.11 An open channel has a cross-section in the form of an equilateral
triangle with 2.5 m sides and a vertical axis of symmetry. Its
end is closed by a triangular vertical gate, also with 2.5 m sides,
supported at each corner. Calculate the horizontal thrust on
each support when the channel is brim-full of water.

2.12 A circular opening 1.2 m in diameter in the vertical side of a
reservoir is closed by a disc which just fits the opening and is
pivoted on a shaft along its horizontal diameter. Show that, if
the water level in the reservoir is above the top of the disc, the
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turning moment on the shaft required to hold the disc vertical
is independent of the head of water. Calculate the amount of
this moment.

2.13 A square aperture in the vertical side of a tank has one diagonal
vertical and is completely covered by a plane plate hinged along
one of the upper sides of the aperture. The diagonals of the
aperture are 2 m long and the tank contains a liquid of relative
density 1.15. The centre of the aperture is 1.5 m below the
free surface. Calculate the net hydrostatic thrust on the plate,
the moment of this thrust about the hinge and the position of
the centre of pressure.

2.14 A canal lock is 6 m wide and has two vertical gates which make
an angle of 120◦ with each other. The depths of water on the
two sides of the gates are 9 m and 2.7 m respectively. Each
gate is supported on two hinges, the lower one being 600 mm
above the bottom of the lock. Neglecting the weight of the gates
themselves, calculate the thrust between the gates and the height
of the upper hinges if the forces on them are to be half those on
the lower hinges.

2.15 The profile of the inner face of a dam takes the form of a para-
bola with the equation 18y = x2, where ym is the height above
the base and x m is the horizontal distance of the face from
the vertical reference plane. The water level is 27 m above the
base. Determine the thrust on the dam (per metre width) due to
the water pressure, its inclination to the vertical and the point
where the line of action of this force intersects the free water
surface.

2.16 A tank with vertical sides contains water to a depth of 1.2 m and
a layer of oil 800 mm deep which rests on top of the water. The
relative density of the oil is 0.85 and above the oil is air at atmo-
spheric pressure. In one side of the tank, extending through its
full height, is a protrusion in the form of a segment of a vertical
circular cylinder. This is of radius 700 mm and is riveted across
an opening 500 mm wide in the plane wall of the tank. Calcu-
late the total horizontal thrust tending to force the protrusion
away from the rest of the tank and the height of the line of
action of this thrust above the base of the tank.

2.17 A vertical partition in a tank has a square aperture of side a,
the upper and lower edges of which are horizontal. The aper-
ture is completely closed by a thin diaphragm. On one side on
the diaphragm there is water with a free surface at a distance
b (> a/2) above the centre-line of the diaphragm. On the other
side there is water in contact with the lower half of the dia-
phragm, and this is surmounted by a layer of oil of thickness
c and relative density σ . The free surfaces on each side of the
partition are in contact with the atmosphere. If there is no net
force on the diaphragm, determine the relation between b and
c, and the position of the axis of the couple on the diaphragm.
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2.18 In the vertical end of an oil tank is a plane rectangular inspection
door 600 mm wide and 400 mm deep which closely fits an
aperture of the same size. The door can open about one ver-
tical edge by means of two hinges, respectively 125 mm above
and below the horizontal centre-line, and at the centre of the
opposite vertical edge is a locking lever. Determine the forces
exerted on each hinge and on the locking lever when the tank
contains an oil of relative density 0.9 to a depth of 1m above
the centre of the door and the air above the oil surface is at
a gauge pressure of 15 kPa.

2.19 A vessel of water of total mass 5 kg stands on a parcel balance.
An iron block of mass 2.7 kg and relative density 7.5 is suspen-
ded by a fine wire from a spring balance and is lowered into the
water until it is completely immersed. What are the readings on
the two balances?

2.20 A cylindrical tank of diameter 3d contains water in which a
solid circular cylinder of length l and diameter d floats with its
axis vertical. Oil is poured into the tank so that the length of
the float finally protruding above the oil surface is l/20. What
vertical movement of the float has taken place? (Relative density
of oil 0.8, of cylinder 0.9.)

2.21 A hollow cylinder with closed ends is 300 mm diameter and
450 mm high, has a mass of 27 kg and has a small hole in the
base. It is lowered into water so that its axis remains vertical.
Calculate the depth to which it will sink, the height to which
the water will rise inside it and the air pressure inside it. Dis-
regard the effect of the thickness of the walls but assume that
it is uniform and that the compression of the air is isothermal.
(Atmospheric pressure = 101.3 kPa.)

2.22 A spherical, helium-filled balloon of diameter 800 mm is to
be used to carry meteorological instruments to a height of
6000 m above sea level. The instruments have a mass of
60 g and negligible volume, and the balloon itself has a
mass of 100 g. Assuming that the balloon does not expand
and that atmospheric temperature decreases with increasing
altitude at a uniform rate of 0.0065 K · m−1, determine the
mass of helium required. Atmospheric pressure and temper-
ature at sea level are 15 ◦C and 101 kPa respectively; for air,
R = 287 J · kg−1 · K−1.

2.23 A uniform wooden cylinder has a relative density of 0.6.
Determine the ratio of diameter to length so that it will just
float upright in water.

2.24 A rectangular pontoon 6 m by 3 m in plan, floating in water,
has a uniform depth of immersion of 900 mm and is subjected
to a torque of 7600 N · m about the longitudinal axis. If the
centre of gravity is 700 mm up from the bottom, estimate the
angle of heel.
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2.25 A solid uniform cylinder of length 150 mm and diameter 75 mm
is to float upright in water. Between what limits must its
mass be?

2.26 A sea-going vessel, containing a quantity of ballast, has its
centre of gravity 300 mm, and its centre of buoyancy 1.6 m,
below the water line. The total displacement is 80 MN and
the reaction of the screw causes a heel of 0.53◦ when the shaft
speed is 8.8 rad · s−1 (1.4 rev/s) and the shaft power is 3.34 MW.
After the removal of 400 Mg of ballast, resulting in the centre
of buoyancy being lowered by 75 mm relative to the boat? (The
sides of the vessel may be assumed vertical at the water line.)

2.27 A buoy, floating in sea-water of density 1025 kg · m−3, is conical
in shape with a diameter across the top of 1.2 m and a vertex
angle of 60◦. Its mass is 300 kg and its centre of gravity is
750 mm from the vertex. A flashing beacon is to be fitted to
the top of the buoy. If this unit is of mass 55 kg what is the
maximum height of its centre of gravity above the top of the
buoy if the whole assembly is not be unstable? (The centroid of
a cone of height h is at 3h/4 from the vertex.)

2.28 A solid cylinder, 1 m diameter and 800 mm high, is of uni-
form relative density 0.85 and floats with its axis vertical in still
water. Calculate the periodic time of small angular oscillations
about a horizontal axis.

2.29 An open-topped tank, in the form of a cube of 900 mm side, has
a mass of 340 kg. It contains 0.405 m3 of oil of relative density
0.85 and is accelerated uniformly up a long slope at arctan (1/3)
to the horizontal. The base of the tank remains parallel to the
slope, and the side faces are parallel to the direction of motion.
Neglecting the thickness of the walls of the tank, estimate the
net force (parallel of the slope) accelerating the tank if the oil is
just on the point of spilling.

2.30 A test vehicle contains a U-tube manometer for measuring dif-
ferences of air pressure. The manometer is so mounted that,
when the vehicle is on level ground, the plane of the U is vertical
and in the fore-and-aft direction. The arms of the U are 60 mm
apart, and contain alcohol of relative density 0.79. When the
vehicle is accelerated forwards down an incline at 20◦ to the
horizontal at 2 m · s−2 the difference in alcohol levels (meas-
ured parallel to the arms of the U) is 73 mm, that nearer the
front of the vehicle being the higher. What is the difference of
air pressure to which this reading corresponds?



The principles governing
fluids in motion 3

3.1 INTRODUCTION

In this chapter we lay the foundations of the analysis of fluid flow by
considering first the description of motion in terms of displacement, velocity
and acceleration but without regard to the forces causing it. The Principle of
Conservation of Mass is introduced; then the inter-relation between differ-
ent forms of energy associated with the fluid flow is examined; and finally
some simple applications of these results are considered.

3.2 ACCELERATION OF A FLUID PARTICLE

In general, the velocity of a fluid particle is a function both of position and
of time. As the particle moves from, say, point A to point B, its velocity
changes for two reasons. One is that particles at B have a velocity different
from particles at A, even at the same instant of time; the other reason is
that during the time the given particle moves from A to B the velocity at B
changes. If B is at only a small distance δs from A the particle’s total increase
of velocity δu is the sum of the increase due to its change of position and the
increase due to the passing of a time interval δt:

δu = ∂u
∂s

δs+ ∂u
∂t

δt

and so, in the limit, as δt → 0, the acceleration as in the direction of flow is
given by:

as = du
dt

= ∂u
∂s

ds
dt

+ ∂u
∂t

or, since ds/dt = u,

as = du
dt

= u
∂u
∂s

+ ∂u
∂t

(3.1)

The full rate of increase du/dt for a given particle is often termed the
substantial acceleration. The term ∂u/∂t represents only the local or tem-
poral acceleration, that is, the rate of increase of velocity with respect to
time at a particular point in the flow. The term u(∂u/∂s) is known as the
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convective acceleration, that is, the rate of increase of velocity due to the
particle’s change of position. Although in steady flow ∂u/∂t is zero, the con-
vective acceleration is not necessarily zero, so the substantial acceleration is
not necessarily zero.

A particle may also have an acceleration in a direction perpendicular to
the direction of flow. When a particle moves in a curved path, it changes
direction and so has an acceleration towards the centre of curvature of
the path, whether or not the magnitude of the velocity is changing. If the
radius of the path-line is rp the particle’s acceleration towards the centre of
curvature is u2/rp. Alternatively, if the streamline has a radius of curvature rs,
the particle’s acceleration an towards the centre of curvature of the stream-
line has in general a convective part u2/rs and a temporal part ∂un/∂t, where
un represents the component of velocity of the particle towards the centre
of curvature. Although, at that moment, un is zero it is, unless the flow is
steady, increasing at the rate ∂un/∂t. Thus

an = u2

rs
+ ∂un

∂t
(3.2)

3.3 THE CONTINUITY EQUATION

The principle of the conservation of mass expresses the fact that matter can
neither be created nor destroyed. The continuity equation is a mathematical
statement of that principle. Applying the principle to a fixed region within
a fluid, see Fig. 3.1, we can write:

The rate at which mass enters the region

= The rate at which mass leaves the region

+ The rate of accumulation of mass in the region

If the flow is steady (i.e. unchanging with time) the rate at which mass is
accumulated within the region is zero. The expression then reduces to:

The rate at which mass enters the region

= The rate at which mass leaves the region

This relation may now be applied to a stream-tube whose cross-section
is small enough for there to be no significant variation of velocity over it.
A length δs of the stream-tube is considered between the cross-sectional

Fig. 3.1
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Fig. 3.2

planes B and C (Fig. 3.2), δs being so small that any variation in the cross-
sectional area �A along that length is negligible. Then, the volume of fluid
contained in that small piece of the stream-tube is (�A)δs. (We recall that
cross-section by definition is perpendicular to the length.) If the fluid initially
between planesB andC passes through the planeC in a short time interval δt,
then the rate at which fluid volume passes through C is (�A)δs/δt, or in
the limit (�A)ds/dt. But ds/dt is the linear velocity there, say u, so the
rate of volume flow is (�A)u. As in calculating a volume a length must
be multiplied by the area of a surface perpendicular to that length, so in
calculating the rate of volume flow (frequently termed the discharge and
represented by the symbol Q) the velocity must be multiplied by the area of
a surface perpendicular to it. The rate of mass flow is given by the product
of the discharge and the density.

The rate at which a mass of fluid enters a selected portion of a stream
tube – where the cross-sectional area is �A1, the velocity of the fluid u1
and its density �1 – is therefore �1(�A1)u1. For steady flow there is no
accumulation of mass within the stream-tube, so the same mass must pass
through all cross-sections of the tube in unit time. Thus

�1(�A1)u1 = �2(�A2)u2 = . . . = constant (3.3)

For the entire collection of stream-tubes occupying the cross-section of a
passage through which the fluid flows, eqn 3.3 may be integrated to give∫

A
�udA = constant (3.4)

where u is everywhere perpendicular to the elemental area δA. If � and u are
constant over the entire cross-section the equation becomes

�Au = constant (3.5)

For a fluid of constant density the continuity relation reduces to∫
A
udA = constant

which may be written

Au = constant = Q

where u represents the mean velocity, and Q is the volumetric flow rate.
For the flow of an incompressible fluid along a stream-tube, eqn 3.3 indic-

ates that u�A = constant, so as the cross-sectional area �A decreases,
the velocity increases, and vice versa. This fact at once allows a partial
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interpretation of the pattern formed by streamlines in steady flow: in regions
where the streamlines are close together the velocity is high, but where the
same streamlines are more widely spaced the velocity is lower. This conclu-
sion, which applies to incompressible fluids, does not necessarily apply to
the flow of compressible fluids in which large density changes occur.

3.4 BERNOULLI’S EQUATION

The velocity of a fluid in general varies from one point to another even in the
direction of flow. Since, by Newton’s First Law, a change of velocity must
be associated with a force, it is to be expected that the pressure of the fluid
also changes from point to point.

The relation between these changes may be studied by applying Newton’s
Second Law to a small element of the fluid over which the changes of velocity
and pressure are very small. The element is so chosen that it occupies part of
a stream-tube of small cross-section (see Fig. 3.3). The ends of the element
are plane and perpendicular to the central streamline, but may be of any
geometrical shape.

The forces under investigation are those due to the pressure of the fluid all
round the element, and to gravity. Other forces, such as those due to viscos-
ity, surface tension, electricity, magnetism, chemical or nuclear reactions are
assumed negligibly small. Even the assumption of negligible viscosity is less
restrictive than it may at first seem. The fluids more frequently encountered
have small values of viscosity, and except when eddies are present viscous
forces are significant only very close to solid boundaries. The behaviour of

Fig. 3.3



Bernoulli’s equation 93

an actual fluid is thus often remarkably similar to that of an ideal, inviscid
one. In the absence of shearing forces, any force acting on a surface is per-
pendicular to it, whether the surface is that of a solid boundary or that of
an element of fluid.

It is also assumed that the flow is steady.
The element is of length δs where s represents the distance measured

along the stream-tube in the direction of flow. The length δs is so small
that curvature of the streamlines over this distance may be neglected.

The pressure, velocity and so on will (in general) vary with s, but, as
the flow is steady, quantities at a particular point do not change with time
and so, for the stream-tube considered, each variable may be regarded as
a function of s only.

At the upstream end of the element the pressure is p, and at the downstream
end p+ δp (where δp may of course be negative). At the sides of the element
the pressure varies along the length, but a mean value of p + kδp may be
assumed where k is a fraction less than unity. The pressure at the upstream
end (where the cross-sectional area is A) results in a force pA on the element
in the direction of flow; the pressure at the downstream end (where the cross-
sectional area is A+ δA) causes a force (p+ δp)(A+ δA) on the element in
the opposite direction.

Unless the element is cylindrical, the forces due to the pressure at its sides
also have a component in the flow direction. Since the force in any direction
is given by the product of the pressure and the projected area perpendicular
to that direction, the net axial force downstream due to the pressure at the
sides of the element is (p+ kδp)δA since δA is the net area perpendicular to
the flow direction.

The weight of the element, W , equals �gAδs (the second order of small
quantities being neglected) and its component in the direction of motion is
−�gA δs cos θ where � represents the density of the fluid and θ the angle
shown between the vertical and the direction of motion. Thus in the absence
of other forces, such as those due to viscosity, the total force acting on the
element in the direction of flow is

pA− (p+ δp)(A+ δA) + (p+ kδp)δA− �gAδs cos θ

When the second order of small quantities is neglected, this reduces to

−Aδp− �gAδs cos θ (3.6)

Since the mass of the element is constant, this net force must, by Newton’s
Second Law, equal the mass multiplied by the acceleration in the direction
of the force, that is, �Aδs× (du/dt).

We may write δs cos θ as δz where z represents height above some con-
venient horizontal datum plane and δz the increase in level along the length
of the element. Then dividing by �Aδs and taking the limit δs → 0 we obtain

1
�

dp
ds

+ du
dt

+ gdz
ds

= 0 (3.7)
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From eqn 3.1

du
dt

= u
∂u
∂s

+ ∂u
∂t

However for steady flow the local acceleration ∂u/∂t = 0 and so du/dt =
u(du/ds) (the full derivative now taking the place of the partial because for
this stream-tube u is a function of s only). We then have

1
�

dp
ds

+ udu
ds

+ gdz
ds

= 0 (3.8)

as the required equation in differential form. This is often referred to as
Euler’s equation, after the Swiss mathematician Leonhard Euler (1707–83).
It cannot be completely integrated with respect to s unless � is either constant
or a known function of p. For a fluid of constant density, however, the result
of integration is

p
�

+ u2

2
+ gz = constant (3.9)

or, if we divide by g,

p
�g

+ u2

2g
+ z = constant (3.10)

This result (in either form) is usually known as Bernoulli’s equation or
the Bernoulli equation in honour of another Swiss mathematician, Daniel
Bernoulli (1700–82) who in 1738 published one of the first books on fluid
flow. (Equations 3.9 and 3.10, however, were not developed until some
years later.)

The quantity z represents the elevation above some horizontal plane arbit-
rarily chosen as a base of measurement. The level of this plane is of no
consequence: if it were moved, say, one metre higher all the values of z for
the stream-tube considered would be reduced by 1 m, so the sum of the three
quantities in eqn 3.10 would still be constant.

The assumption that the flow is steady must not be forgotten; the result
does not apply to unsteady motion. Moreover, in the limit the cross-sectional
area of the stream-tube considered tends to zero and the tube becomes a
single streamline. Thus the sum of the three terms is constant along a single
streamline but, in general, the constant on the right-hand side of either
eqn 3.9 or eqn 3.10 has different values for different streamlines. For those
special cases in which all the streamlines start from, or pass through, the same
conditions of pressure, velocity and elevation, the constants for the several
streamlines are of course equal, but not every example of fluid motion meets
these conditions.

To sum up, the conditions to which Bernoulli’s equation applies are: the
fluid must be frictionless (inviscid) and of constant density; the flow must be
steady, and the relation holds in general only for a single streamline.

For liquids, especially when there is a free surface somewhere in the system
considered, eqn 3.10 is usually the most suitable form of the expression. The
equation may be applied to gases in those circumstances where changes of
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density are small. Then eqn 3.9 has certain advantages. Simplification of
the equation is frequently possible for describing the behaviour of gases in
such conditions; because the density of gases is small, changes in the values
of z from one point to another in the flow may well have negligible effect
compared with the term p/� in eqn 3.9, and so the gz term may be omitted
without appreciable error. The equation for the flow of gases with small
density changes then becomes

p
�

+ u2

2
= constant

or, in the form more usually employed,

p+ 1
2

�u2 = constant (3.11)

3.4.1 The significance of the terms in Bernoulli’s equation

The derivation of Bernoulli’s equation in Section 3.4 is based on the applic-
ation of Newton’s Second Law of Motion, which relates the rate of change
of momentum of a body to the sum of the applied forces. However, as noted
previously, the analysis incorporates a number of important simplifications.
It is assumed that the fluid is inviscid and incompressible, that the flow is
steady, and the relations have been derived along a single streamline. If, in
addition, there is no heat transfer along the streamline and no shaft work is
done (say, by a pump or turbine), then, as we shall show in Section 3.5, the
equation takes on exactly the same form as the corresponding energy equa-
tion. In these specific circumstances, the terms of the Bernoulli equation can
be interpreted as contributions in an energy balance.

Equation 3.9 states that the sum of three quantities is constant. Con-
sequently the separate quantities must be interchangeable and thus of the
same kind. The second term, u2/2, represents the kinetic energy of a small
element of the fluid divided by the mass of the element. The third term, gz,
also represents energy/mass and corresponds to the work that would be done
on the fluid element in raising it from datum level to the height z divided by
the mass of the fluid element.

Similarly, the term p/� must also represent an amount of work divided by
the mass of the fluid. We see from the expression 3.6 that the contribution
of the pressure forces to the net force acting on the element is −Aδp in the
direction of motion. Therefore, the work done by this force on the element
as it moves a distance δs (i.e. from a point where the pressure is p to a point
where it is p+ δp) is given by (−Aδp)δs. But the mass of the element is �Aδs,
so the work done by the force divided by the mass of fluid is

−Aδpδs/�Aδs = −δp/�

If the element moves from a point where the pressure is p1 to one where
the pressure is p2, then the work done by the pressure forces divided by the
mass of fluid is

∫ p2
p1 −dp/�, that is, if � is constant, (p1 − p2)/�. The term

p/� in Bernoulli’s equation therefore corresponds to the work that would be
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Fig. 3.4

done by pressure forces if the fluid moved from a point where the pressure
was p to one where the pressure was zero, divided by the mass of the fluid.
The work is done simply because the fluid moves. Consequently it is often
known as the flow work or displacement work.

Thus each of the terms p/�, u2/2 and gz represents energy/mass. In the
alternative form, eqn 3.10, each term represents energy/weight and so has
the dimensional formula [ML2/T2] ÷ [ML/T2] = [L]. The quantities in
eqn 3.10 are therefore usually referred to respectively as pressure head
(or static head), velocity head and gravity head or elevation, and their
sum as the total head. In eqn 3.11 each term corresponds to energy/
volume.

The quantity p/� is sometimes misleadingly termed pressure energy. It has,
however, nothing to do with the elastic energy given to a fluid when it is
compressed – even when it is easily compressible. The fluid in fact does not
even possess the pressure energy (as it possesses kinetic energy, for example).
A transmission belt transmits energy between two pulleys simply because it
is under stress; the transmission of energy is in fact in the opposite direction
to the movement of the belt (see Fig. 3.4) and so it is clearly absurd to
regard the energy as being carried along in the belt. Likewise, a fluid under
pressure can transmit energy without necessarily possessing it. The terms
in Bernoulli’s equation, then, do not represent energy stored in a mass of
fluid but rather the total mechanical energy transmitted by this amount of
fluid. The equation may be likened to the cash-book of an honest treasurer
keeping account of the mechanical energy transactions of a small mass of
fluid, during its steady, frictionless travel along a streamline without change
density.

3.5 GENERAL ENERGY EQUATION FOR STEADY
FLOW OF ANY FLUID

The application of Newton’s Second Law of Motion to an element of fluid
yields eqn 3.8 which may be integrated to relate the pressure, velocity and
elevation of the fluid. This result, it will be remembered, is subject to a
number of restrictions, of which one is that there are no viscous forces in the
fluid. In many instances, however, viscous forces are appreciable. Moreover,
transfers of energy to or from the fluid may occur. These situations are
investigated by a general energy equation which we shall develop from the
First Law of Thermodynamics.
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3.5.1 The First Law of Thermodynamics

One of the fundamental generalizations of science is that, in the absence of
nuclear reaction, energy can be neither created nor destroyed. The First Law
of Thermodynamics expresses this principle thus:

For any mass system (i.e. any identified and unchanging collection of
matter) the net heat supplied to the system equals the increase in energy
of the system plus all the energy that leaves the system as work is done.

Or, in algebraic terms,

�Q = �E+ �W (3.12)

where E represents the energy of the system, �Q the heat transferred to the
system and �W the work done by the system while the change �E occurs.

The energy content of the system consists of:

1. Energy which may be ascribed to the substance considered as a con-
tinuum: that is, kinetic energy associated with its motion and potential
energy associated with its position in fields of external forces. The latter
is usually gravitational energy, but may also be electrical or magnetic.
Although arising from intermolecular forces, free surface energy and
elastic energy may also conveniently be included in this category.

2. Internal energy. This consists of the kinetic and potential energies of
individual molecules and atoms and is thus, in general, a function of tem-
perature and density. For a perfect gas, however, the potential energy
arising from the attractive forces between molecules is assumed zero and
the internal energy is then a function of temperature only. In any case,
the internal energy depends only on the internal state of the matter con-
stituting the system and not on the position or velocity of the system as
a whole relative to a set of coordinate axes.

The First Law of Thermodynamics, as applied to the flow of fluids, keeps
account of the various interchanges of energy that occur.

3.5.2 Derivation of the Steady-Flow Energy Equation

Let us consider the steady flow of a fluid through the device illustrated in
Fig. 3.5. Energy in the form of heat is supplied steadily to this device and
mechanical work is done by it, for example by means of a rotating shaft. This
external mechanical work is usually termed shaft work whether or not the
mechanism actually involves a rotating shaft. The arrangement might be, say,
a steam engine or turbine. (In practice, most machines involve reciprocating
parts or rotating blades, close to which the fluid flow cannot be strictly
steady. However, we assume that such unsteadiness, if present, is only local
and is simply a series of small fluctuations superimposed on steady mean
flow.) We assume that the heat is supplied at a constant net rate, the shaft
work is performed at a constant net rate, and the mass flow rate of the fluid
entering is constant and equal to that leaving. Fluid at pressure p1 and with
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Fig. 3.5

velocity u1 enters at a section where the (average) elevation is z1 and leaves
with pressure p2 and velocity u2 where the (average) elevation is z2.

As the fluid moves from inlet to outlet, its properties, in general, change
from one point to another. However, we assume they do not change
with time.

We fix attention on the body of fluid bounded originally by the device
itself and the planes A (at entry) and C (at exit). After a short time inter-
val δt this fluid has moved forward, and is then bounded by the device
itself, entry plane B and exit plane D. During this time interval an ele-
mental mass δm (originally between planes A and B) enters the devices and,
by the principle of continuity, a mass δm also leaves to occupy the space
between planes C and D. The elements are assumed small enough for their
properties to be uniform. The element at entry has internal energy δme1
(where e represents internal energy/mass), kinetic energy 1

2δmu2
1 and gravita-

tional energy δmgz1. Changes of electrical, chemical, nuclear or free surface
energy are disregarded here. If the energy of the fluid in the device itself
(i.e. between B and C) totals E then the energy of the fluid between A and
C is E+ δm(e1 + 1

2u
2
1 + gz1).

After this fluid has moved to the position between B and D its energy is
that of the fluid between B and C plus that of the element between C andD.
In other words the total is E+δm(e2 + 1

2u
2
2 +gz2). Consequently the increase

in energy which this particular body of fluid receives is{
E+ δm

(
e2 + 1

2
u2

2 + gz2
)}

−
{
E+ δm

(
e1 + 1

2
u2

1 + gz1
)}

= δm
{
(e2 − e1) + 1

2

(
u2

2 − u2
1

)
+ g(z2 − z1)

}
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During this same interval of time a net amount of heat δQ is supplied
to the system and a net amount of work δW is done by the fluid on, for
example, a rotating shaft. (If the fluid were at a higher temperature than its
surroundings heat would be transferred from the fluid to the surroundings
and so this heat would be regarded as negative. Also, δW , would be negative
if work were done on the fluid, e.g. by a pump.) The work δW , however, is
not the only work done by the fluid. In moving from its position between A
and C to that between B and D the fluid does work against the forces due
to pressure. At the outlet, where the cross-sectional area is A2, the fluid we
are considering exerts a force p2A2 on the material in front of it. During
the short time interval δt, this end of the fluid system moves from C to D, a
distance δs2. The force, in moving in its own direction through the distance
δs2, therefore does work p2A2δs2. Similarly, the force p1A1 at the inlet does
work −p1A1δs1. (The minus sign arises because the force p1A1 exerted by
this body of fluid is in the opposite direction to the displacement δs1.) The
total work done by the fluid considered is therefore

δW + p2A2δs2 − p1A1δs1

Substitution into eqn 3.12 now yields

δQ = δm
{
(e2 − e1) + 1

2

(
u2

2 − u2
1

)
+ g(z2 − z1)

}
+ δW + p2A2δs2 − p1A1δs1

Now �1A1δs1 = δm = �2A2δs2 and so division by δm gives

δQ
δm

= (e2 − e1) + 1
2

(
u2

2 − u2
1

)
+ g(z2 − z1) + δW

δm
+ p2

�2
− p1

�1
,

or

q =
(
p2

�2
+ 1

2
u2

2 + gz2
)

−
(
p1

�1
+ 1

2
u2

1 + gz1
)

+ e2 − e1 +w (3.13)

where q represents the net heat transferred to the fluid divided by mass, and
w represents the net shaft work done by the fluid divided by mass.

The relation 3.13 is known as the steady-flow energy equation. It is often
capitalized to Steady-Flow Energy Equation and referred to by the initials
SFEE. It may be expressed in words as follows:

In steady flow through any region the net heat transferred to the fluid
equals the net shaft work performed by the fluid plus the increase in flow
work, kinetic energy, gravitational energy and internal energy.

We recall that, apart from the First Law of Thermodynamics, the result is
based on the following assumptions:

1. The flow is steady and continuous, that is, the rate at which mass enters
the region considered equals that at which mass leaves the region and
neither varies with time.

2. Conditions at any point between the inlet and outlet sections 1 and 2 do
not vary with time.
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3. Heat and shaft work are transferred to or from the fluid at a constant
net rate.

4. Quantities are uniform over the inlet and outlet cross-sections 1 and 2.
5. Energy due to electricity, magnetism, surface tension or nuclear reaction

is absent. If energy due to any of these phenomena is, in fact, involved
appropriate additional terms will appear in the equations.

No assumptions are made about details of the flow pattern between inlet
and outlet and no assumption is made about the presence or absence of fric-
tion between inlet and outlet. The restrictions of assumptions 1 and 2 may in
practice be slightly relaxed. Fluctuations in conditions are permissible if they
occur through a definite cycle so that identical conditions are again reached
periodically. This happens in fluid machinery operating at constant speed
and torque. Flow in the neighbourhood of the moving blades or pistons of
the machine is cyclic rather than absolutely steady. In other words, the con-
ditions at any particular point in the fluid vary with time in a manner, which
is regularly repeated at a certain frequency. In such a case the equation may
be used to relate values of the quantities averaged over a time considerably
longer than the period of one cycle.

In practice, assumption 4 is never completely justified since viscous forces
cause the velocity to fall rapidly to zero at a solid boundary. Thermodynamic
properties may also vary somewhat over the cross-section. To allow for these
effects, appropriate correction factors may be introduced – for example, the
kinetic energy correction factor α we shall mention in Section 3.5.3. How-
ever, the use of mean values of the velocity and other quantities normally
yields results of sufficient accuracy.

3.5.3 The kinetic energy correction factor

In investigating many problems of fluid dynamics it is frequently assumed
that the flow is one-dimensional; in other words, all the fluid is regarded
as being within a single large stream-tube in which the velocity is uniform
over the cross-section. The value of the kinetic energy divided by mass is
then calculated as u2/2 where u represents the mean velocity, that is, the
total discharge divided by the cross-sectional area of the flow. The only
situation in which use of this mean velocity would be completely justified is
that represented by the relation:(∑

m
)
u2 =

∑
(mu2)

where m represents the mass and u the velocity of fluid in a short length of
a small individual stream-tube while u represents the mean velocity over the
entire cross-section of the flow (= ∑

(mu)/
∑
m).

This equation, it may be shown, is satisfied only when all the us are equal,
a condition never reached in practice because of the action of viscosity.
The error involved in using the mean velocity to calculate the kinetic energy
divided by mass may be estimated as follows.

Instead of the entire cross-section, consider first a small element of it whose
area δA is small enough for there to be no appreciable variation of velocity
u over it. The discharge through this small element is therefore uδA and
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the mass flow rate �uδA. The rate at which kinetic energy passes through
the element is 1

2 (�uδA)u2 and consequently the rate at which kinetic energy
passes through the whole cross-section is

∫ 1
2�u3dA.

We may also integrate the mass flow rate through an element of cross-
section so as to obtain the total mass flow rate = ∫

�udA. The rate at which
kinetic energy passes through the element divided by the rate of mass flow
is then: ∫ 1

2�u3dA∫
�udA

For a fluid of constant density this reduces to∫
u3dA

2
∫
udA

(3.14)

Now unless u is constant over the entire cross-section this expression does
not correspond to u2/2.

The factor by which the term u2/2 should be multiplied to give the true
rate at which kinetic energy passes through the element divided by the rate
of mass flow is often known as the kinetic energy correction factor, α. Hence
for a fluid of constant density we may write

α = 1
A

∫
A

(u
u

)3
dA

The value of α can never be less than unity because the mean of different
cubes is always greater than the cube of the mean.

Example 3.1 Consider fully developed turbulent flow in a circular
pipe (to be discussed more fully in Chapter 7). The velocity over
the cross-section of the pipe varies approximately in accordance with
Prandtl’s one-seventh power law

u
umax

=
( y
R

)1/7
(3.15)

where R represents the radius of the pipe and u the velocity of the
fluid at a distance y from the wall of the pipe. The maximum velocity
umax occurs at the centre of the pipe where y=R. Calculate the kinetic
energy divided by mass.

Solution
Assuming the variation of density over the cross-section is negligible,
the integrals in the expression 3.14 may be evaluated by the use of
eqn 3.15. Because of axial symmetry the element of area δA may be
taken as an annulus of radius r and area 2πrδr (see Fig. 3.6). Then∫

u3dA =
∫
u3

max

( y
R

)3/7
dA = u3

max

R3/7

∫ R

0
y3/72πrdr
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An increase δr of r corresponds to a decrease (−δy) of y. With r = R−y
the integral becomes

u3
max

R3/7

∫ 0

R
y3/72π(R− y)(−dy) =2πu3

max

R3/7

∫ R

0
(Ry3/7 − y10/7)dy

= 2πu3
max

R3/7

[
7
10
Ry10/7 − 7

17
y17/7

]R
0

= 98
170

πR2u3
max

Fig. 3.6

Similarly∫
udA =

∫ R

0
umax

( y
R

)1/7
2πrdr = 2πumax

R1/7

∫ 0

R
y1/7(R− y)(−dy)

= 2πumax

R1/7

∫ R

0
(Ry1/7 − y8/7)dy

= 2πumax

R1/7

[
7
8
Ry8/7 − 7

15
y15/7

]R
0

= 49
60

πR2umax

The mean velocity

u = Total discharge
Area

=
∫
udA

πR2
= 49

60
umax

whence

umax = 60
49
u

Hence

�

kinetic energy divided by mass

=
∫
u3dA

2
∫
udA

=
98

170
πR2u3

max

2 × 49
60

πR2umax

= 12
17
u2

max

2
= 12

17

(
60
49

)2 u2

2
= 1.058

u2

2
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With this particular distribution of velocity over the cross-section the term Further discussion of
Example 3.1u2/2 is therefore about 6% too low to represent the mean kinetic energy

divided by mass. It is usual, however, to disregard such discrepancy except
where great accuracy is required. In any case, the exact value of the correction
to be applied is much influenced by conditions upstream and is scarcely ever
known. The correction should nevertheless be remembered if the Steady-
Flow Energy Equation is applied to fully developed laminar flow in a circular
pipe (see Chapter 6), for then the mean kinetic energy divided by mass =
2u2/2. Even so, as laminar flow is generally associated only with very low
velocities the kinetic energy term would in these circumstances probably be
negligible.

3.5.4 The Steady-Flow Energy Equation in practice

The Steady-Flow Energy Equation (SFEE) applies to liquids, gases and
vapours, and accounts for viscous effects. In many applications it is consid-
erably simplified because some of the terms are zero or cancel with others.
If no heat energy is supplied to the fluid from outside the boundaries, and
if the temperature of the fluid and that of its surroundings are practically
identical (or if the boundaries are well insulated) q may be taken as zero.
If there is no machine between sections (1) and (2) the shaft work divided
by mass w is zero. And for fluids of constant density �1 = �2.

If an incompressible fluid with zero viscosity flows in a stream-tube across
which there is no transfer of heat or work, the temperature of the fluid
remains constant. Therefore the internal energy is also constant and the
equation reduces to

0 =
(
p2

�2
+ 1

2
u2

2 + gz2
)

−
(
p1

�1
+ 1

2
u2

1 + gz1
)

This is seen to be identical with Bernoulli’s equation (3.9).
Real fluids have viscosity, and the work done in overcoming the viscous

forces corresponds to the so-called fluid friction. The energy required to
overcome the friction is transformed into thermal energy. The temperature
of the fluid rises above the value for frictionless flow; the internal energy
increases and, in general, the heat transferred from the fluid to its surround-
ings is increased. The increase of temperature, and consequently of internal
energy, is generally of no worth (the temperature rise is normally only a very
small fraction of a degree) and thus corresponds to a loss of useful energy.
Moreover, as we have defined q as the heat transferred to the fluid divided
by the mass of the fluid, a loss of heat from the system is represented by −q
and so the total loss (divided by the mass of the fluid) is e2 − e1 − q. For
a fluid of constant density it is usual to express this loss of useful energy,
resulting from friction, as head loss due to friction, hf . Therefore

hf = (e2 − e1 − q)/g
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Then for a constant-density fluid with no other heat transfer and no shaft
work performed the Steady-Flow Energy Equation reduces to

p1

�g
+ u2

1

2g
+ z1 − hf = p2

�g
+ u2

2

2g
+ z2 (3.16)

Here u1 and u2 represent mean velocities over the cross-sections (1) and (2)
respectively and the kinetic energy correction factor α is taken as unity. If
we assume further that the flow occurs in a horizontal pipe of uniform cross-
section then u1 = u2 and z1 = z2 and so (p1 − p2)/�g = hf . That is, the
displacement work done on the fluid in the pipe is entirely used in overcoming
friction.

For an incompressible fluid the values of (e2−e1) and the heat transfer res-
ulting from friction are in themselves rarely of interest, and so combining the
magnitudes of these quantities into the single term hf is a useful simplifica-
tion. We can see that the head loss hf represents, not the entire disappearance
of an amount of energy, but the conversion of mechanical energy into thermal
energy. This thermal energy, however, cannot normally be recovered as
mechanical energy, and so hf refers to a loss of useful energy. For a com-
pressible fluid, on the other hand, that statement would not, in general, be
true since the internal energy is then included in the total of useful energy.

We shall consider the flow of compressible fluids in more detail in
Chapter 11. For the moment we look more particularly at the behaviour
of incompressible fluids.

Example 3.2 A pump delivers water through a pipe 150 mm in dia-
meter. At the pump inlet A, which is 225 mm diameter, the mean
velocity is 1.35 m · s−1 and the pressure 150 mmHg vacuum. The
pump outlet B is 600 mm above A and is 150 mm diameter. At a
section C of the pipe, 5 m above B, the gauge pressure is 35 kPa. If
friction in the pipe BC dissipates energy at the rate of 2.5 kW and the
power required to drive the pump is 12.7 kW, calculate the overall
efficiency of the pump. (Relative density of mercury = 13.56)

Solution
Mean velocity at A = uA = 1.35 m · s−1

∴ by continuity,

uB = uC = uA × (Area)A

(Area)B,C

= 1.35
(

225
150

)2

m · s−1 = 3.038 m · s−1

Steady-Flow Energy Equation:

pA
�

+ 1
2
u2
A + gzA + Energy added by pump/time

Mass/time
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− Energy loss to friction/time
Mass/time

= pC
�

+ 1
2
u2
C + gzC

∴ Energy added by pump
Time

= Mass
Time

{
pC − pA

�
+ u2

C − u2
A

2
+ g(zC − zA)

}

+ Energy loss to friction
Time

= Volume
Time

{
pC − pA + 1

2
�
(
u2
C − u2

A

)
+ �g(zC − zA)

}

+ Energy loss to friction
Time

= π

4
(0.225 m)21.35 m · s−1

{
35 000 − [13560 × 9.81(−0.150)]

+ 1
2

× 1000(3.0382 − 1.352) + 1000 × 9.81 × 5.6
}

N · m−2

+ 2.5 kW

= π

4
(0.225)21.35{35 000 + 19 950 + 3702 + 54 900} N · m · s−1

+ 2.5 kW = 8.6 kW

∴ Overall efficiency of pump = 8.6/12.7 = 67.7%

Notice that pA, a vacuum pressure, is negative. �

3.5.5 Energy transformation in a constant-density fluid

The concept of head, that is, energy divided by weight of a constant-density
fluid, is of great value in allowing a geometrical representation of energy
changes. We recall from Section 2.2.1 that steady pressures not greatly in
excess of atmospheric pressure may be measured by the rise of liquid in a
glass tube. We may therefore imagine, for example, the system depicted in
Fig. 3.7, in which such piezometer tubes are connected at certain points to
a pipe conveying liquid from a large reservoir. At a point where the (gauge)
pressure in the pipe is p the liquid will rise in the piezometer tube to a
height p/�g.

At points in the reservoir far from the outlet the velocity of the liquid is
so small as to be negligible. At such a point 1 at a depth h1 below the free
surface, the pressure is therefore given by the hydrostatic relation p1 = �gh1,
so the sum of the three terms in Bernoulli’s expression is

�gh1/�g + 02/2g + z1 = h1 + z1 = H
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Fig. 3.7

Thus H is the total head for the streamline on which the point 1 lies.
If no energy is dissipated by friction the total head H is constant along
that streamline and may therefore be represented by a line parallel to the
datum plane.

At a point 2 in the pipe the pressure is indicated by the rise p2/�g of the
liquid in the piezometer tube. (For reasons that will become apparent in
Section 3.6, there should be no appreciable curvature of the streamlines at
positions 2 and 3.) The amount by which the sum of p2/�g and z2 falls short
of the total head corresponds to the velocity head u2

2/2g for the streamline
considered. There is a similar state of affairs at point 3, although here the
cross-section of the pipe is smaller and so the mean velocity is greater than
at 2 by virtue of the continuity equation Au = constant.

In practice, friction leads to a loss of mechanical energy, so the total head
line (sometimes known as the total energy line) does not remain horizontal,
but drops. The height of any point on this line above the datum plane always
represents the total head (p/�g) + (u2/2g) + z of the fluid at the point in
question. Another line that may be drawn is that representing the sum of
the pressure head and elevation only: (p/�g) + z. This line, which would
pass through the surface levels in the piezometer tubes of Fig. 3.7, is known
as the pressure line or hydraulic grade line and is always a distance u2/2g
vertically below the total head line. The geometrical representation that these
lines afford is frequently useful, and it is therefore important to distinguish
clearly between them.

Strictly speaking, each streamline has it own total head and pressure lines.
When one-dimensional flow is assumed, however, it is usual to consider
only the streamline in the centre of the pipe, so that the z measurements
are taken to the centre line and the static head p/�g is measured upwards
from there. The mean total head line is then a distance αu2/2g vertically
above the pressure line. Other conventional assumptions about these lines
are mentioned is Section 7.7.

The one-dimensional continuity relation shows that, for a fluid of con-
stant density, a reduction in the cross-sectional area causes an increase in
the mean velocity, and the energy equation (3.16) indicates that unless addi-
tional energy is given to the fluid an increase of velocity is accompanied by
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a decrease of pressure (provided that the change of elevation z is small).
Conversely, an increase of cross-sectional area of the flow gives rise to a
decrease of velocity and an increase of pressure.

The energy equation 3.16 further indicates, however, that for a given
elevation, the velocity cannot be increased indefinitely by reducing the cross-
sectional area. Apart from exceptional circumstances, not encountered in
normal engineering practice, the absolute pressure can never become less
than zero; thus a maximum velocity is reached when the pressure has been
reduced to zero. Any further reduction of the cross-sectional area would not
bring about an increase of velocity, and therefore the discharge (i.e. area ×
mean velocity) would be reduced. There would then be a consequent decrease
in the velocity at other sections. This phenomenon is known as choking.

With liquids, however, difficulties arise before the pressure becomes zero.
At low pressures liquids vaporize and pockets of vapour may thus be formed
where the pressure is sufficiently low. These pockets may suddenly collapse –
either because they are carried along by the liquid until they arrive at a region
of higher pressure, or because the pressure increases again at the point in
question. The forces then exerted by the liquid rushing into the cavities
cause very high localized pressures, which can lead to serious erosion of the
boundary surfaces. This action is known as cavitation. Furthermore, the
flow may be considerably disturbed when cavitation occurs.

In ordinary circumstances, liquids contain some dissolved air. The air is
released as the pressure is reduced, and it too may form pockets in the liquid
which are often known as air locks. To avoid these undesirable effects, the
absolute pressure head in water, for example, should not be allowed to fall
below about 2 m (equivalent to about 20 kPa).

Choking is important in the study of the flow of compressible fluids and
will be considered further in Chapter 11.

3.6 PRESSURE VARIATION PERPENDICULAR
TO STREAMLINES

Euler’s equation 3.8 (or, for a constant-density fluid, Bernoulli’s equation)
expresses the way in which pressure varies along a streamline in steady flow
with no friction. Now although, from the definition of a streamline, fluid
particles have no velocity component perpendicular to it, an acceleration
perpendicular to a streamline is possible if the streamline is curved. Since
any acceleration requires a net force in the same direction it follows that a
variation of pressure (other than the hydrostatic one) occurs across curved
streamlines.

Consider two streamlines sufficiently close together to be regarded as hav-
ing the same centre of curvature (Fig. 3.8). Between them is a small cylindrical
element of fluid of length δr normal to the streamlines, cross-sectional area
δA, and therefore weightW = �gδAδr. At radius r the pressure is p; at radius
r+δr the pressure is p+δp. As in the development of Euler’s equation, forces
other than those due to pressure and gravity are neglected. In any case, for
steady flow viscous forces have no components perpendicular to the stream-
lines. The net force on the element acting inwards along the streamline radius
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Fig. 3.8

is therefore

(p+ δp)δA− pδA+W cos θ = δpδA+ �gδAδr cos θ

where θ is the angle between the radius and the vertical.
By Newton’s Second Law this force equals the product of the mass of

the element and its centripetal acceleration, an. Noting that δr cos θ = δz,
z being measured vertically upwards from a suitable datum level, and using
eqn 3.2, we then have

δpδA+ �gδAδz = �δAδran = �δAδr

(
u2

r
+ ∂un

∂t

)

Dividing by δAδr and taking the limit as δr → 0 now gives

∂p
∂r

+ �g
∂z
∂r

= �

(
u2

r
+ ∂un

∂t

)
(3.17)

If the streamlines are straight and not changing direction with time, the
right-hand side of eqn 3.17 is zero since r = ∞ while un = 0 and is not
changing. For a constant-density fluid, integration in the direction r then
gives p+�gz = constant, that is, the piezometric pressure is constant normal
to the streamlines. Where r is not infinite the exact manner in which p varies
across the streamlines, even for steady flow, depends on the way in which u
varies with r. Two special cases, the free and forced vortex, are discussed in
Section 9.6.4 and 9.6.5.

An important consequence of the pressure variation perpendicular to
curved streamlines is the tendency of a jet of fluid to attach itself to a convex
solid body. This is known as the Coanda effect, after the Romanian engin-
eer Henri Coanda (1885–1972) who made use of it in various aeronautical
applications. It may be simply demonstrated by using a solid cylinder (e.g. a
finger) to deflect the flow from a water tap (Fig. 3.9). The curvature of
the streamlines between sections AA′ and BB′ requires a net force towards
the centre of curvature, and, as the outer edge of the stream is at atmo-
spheric pressure, the pressure at the surface of the cylinder must be below
atmospheric. Consequently the flow does not continue vertically downwards
from BB′, but bends towards the cylinder. The sub-atmospheric pressure
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Fig. 3.9

in the neighbourhood of B results in a net force F on the cylinder (as
may be demonstrated by suspending the cylinder on strings so that it can
move freely).

The deflection of a jet because of a pressure difference across the stream-
lines can also arise in another way. When a jet goes into fluid of the same
kind (e.g. when an air jet escapes into the atmosphere), nearby particles of
fluid are dragged along with the jet. This is a process called entrainment.
If, however, one side of the jet is close to a large solid surface, the supply
of particles for entrainment there is restricted. Thus, particularly if the flow
pattern is essentially two-dimensional, a partial vacuum is created between
the jet and the surface, so the jet tends to attach itself to the surface.

3.7 SIMPLE APPLICATIONS OF BERNOULLI’S EQUATION

The applications of Bernoulli’s equation described in this section are of two
kinds. In the first category – the applications to the Pitot tube and the Pitot-
static tube – the Bernoulli equation is used in its original, unamended form. In
the second category, the Bernoulli equation is used in a rather different way,
forming the basis of simple mathematical models which are used to analyse
the flow through a number of devices, including orifices, nozzles and ven-
turi tubes, and over weirs. These devices are widely used for flow-metering
purposes. As a consequence of the assumptions underlying the derivation of
Bernoulli’s equation, the flow models used here ignore viscous effects and
do not properly represent the three-dimensional nature of velocity profiles
found in real flows. Nevertheless, the models provide a useful introduction
to the principles of operation of several flow-metering devices used under
conditions of incompressible, turbulent flow at high Reynolds numbers. To
yield an outcome which is applicable to real flow conditions, the results of
the analysis using the idealized flow model are adjusted by the introduction
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Fig. 3.10

of the so-called discharge coefficient. This dimensionless quantity is further
discussed in Chapter 5.

3.7.1 The Pitot tube and the Pitot-static tube

A point in a fluid stream where the velocity is reduced to zero is known as aStagnation point
stagnation point. Any non-rotating obstacle placed in the stream produces
a stagnation point next to its upstream surface. Consider the symmetrical
object illustrated in Fig. 3.10 as an example. On each side of the central
streamline OX the flow is deflected round the object. The divergence of the
streamlines indicates that the velocity along the central streamline decreases
as the point X is approached. The contour of the body itself, however, con-
sists of streamlines (since no fluid crosses it) and the fluid originally moving
along the streamlineOX cannot turn both left and right on reaching X. The
velocity at X is therefore zero: X is a stagnation point.

By Bernoulli’s equation 3.9 the quantity p+ 1
2�u2 + �gz is constant along aStagnation pressure

streamline for the steady frictionless flow of a fluid of constant density. Con-
sequently, if the velocity u at a particular point is brought to zero the pressure
there is increased from p to p+ 1

2�u2. For a constant-density fluid the quant-
ity p+ 1

2�u2 is therefore known as the stagnation pressure of that streamline.

That part of the stagnation pressure due to the motion, 1
2�u2, is termed theDynamic pressure

dynamic pressure. (If heads rather than pressures are used the term total head
is often preferred to stagnation head.) A manometer connected to the point
X would record the stagnation pressure, and if the static pressure p were
also known 1

2�u2 could be obtained by subtraction, and hence u calculated.
Henri Pitot (1695–1771) adopted this principle in 1732 for measuring

velocities in the River Seine, and Fig. 3.11 shows the sort of device he used.
A right-angled glass tube, large enough for capillary effects to be negligible,
has one end (A) facing the flow. When equilibrium is attained the fluid at
A is stationary and the pressure in the tube exceeds that of the surrounding
stream by 1

2�u2. The liquid is forced up the vertical part of the tube to
a height

h = �p/�g = 1
2�u2/�g = u2/2g

above the surrounding free surface. Measurement of h therefore enables
u to be calculated.

Such a tube is termed a Pitot tube and provides one of the most accurate
means of measuring the velocity of a fluid. For an open stream of liquid
only this single tube is necessary, since the difference between stagnation
and static pressures (or heads) is measured directly. (In practice, however,
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Fig. 3.11 Simple Pitot tube.

Fig. 3.12

it is difficult to measure the height h above the surface of a moving liquid.)
But for an enclosed stream of liquid, or for a gas, the Pitot tube indicates
simply the stagnation pressure and so the static pressure must be measured
separately.

Measurement of the static pressure may be made at the boundary of the
flow, as illustrated in Fig. 3.12a, provided that the axis of the piezometer is
perpendicular to the boundary and the connection is free from burrs, that the
boundary is smooth and that the streamlines adjacent to it are not curved.
A tube projecting into the flow (as at Fig. 3.12c) does not give a satisfactory
reading because the fluid is accelerating round the end of the tube. The Pitot
tube and that recording the static pressure may be connected to a suitable
differential manometer: piezometer tubes are shown in Fig. 3.12 only for the
sake of illustration.

The tubes recording static pressure and stagnation pressure are frequently
combined into one instrument known as a Pitot-static tube (Fig. 3.13).
The static tube surrounds the total head tube and two or more small holes
are drilled radially through the outer wall into the annular space. The pos-
ition of these static holes is important. Downstream of the nose N the flow
is accelerated somewhat with consequent reduction of static pressure; in
front of the supporting stem there is a reduction of velocity and increase
of pressure; the static holes should therefore be at the position where these
two opposing effects are counterbalanced and the reading corresponds to
the undisturbed static pressure. Standard proportions of Pitot-static tubes
have been determined that give very accurate results. If other proportions
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Fig. 3.13 Pitot-static tube.

are used, a correction factor C, determined by calibration, has to be intro-
duced: u = C

√
(2�p/�). Misalignment of the tube with the flow leads to

error: fortunately, however, since total head and static readings are both
reduced, their difference is less seriously affected, and refinements of design
reduce the sensitivity to changes of direction. A good Pitot-static tube gives
errors less than 1% in velocity for misalignments up to about 15◦.

When the flow is highly turbulent, individual particles of the fluid have
velocities that fluctuate both in magnitude and direction. In such cir-
cumstances, a Pitot tube records a value of �p rather higher than that
corresponding to the time-average component of velocity in the direction
of the tube axis. This is partly because the mean pressure difference cor-
responds to the mean value of u2 rather than to the square of the mean
velocity. Although these errors are not large they should not be overlooked
in accurate work.

An adaptation of the Pitot-static tube is the so-called Pitometer (Fig. 3.14).
The static tube faces backwards into the wake behind the instrument, where
the pressure is usually somewhat lower than the undisturbed static pressure.
Such an instrument therefore requires calibration to determine the correction
factor C (which may not be constant over more than a limited range of
velocities), but it has the advantages of cheapness and compactness.

Fig. 3.14
The use of a Pitot tube in the flow of a compressible fluid is discussed in

Section 11.7.

3.7.2 Flow through a sharp-edged orifice

An orifice is an aperture through which fluid passes and its thickness (in the
direction of flow) is very small in comparison with its other measurements.
An orifice used for flow-metering purposes has a sharp edge (the bevelled side
facing downstream as in Fig. 3.15) so that there is the minimum contact with
the fluid. If a sharp edge is not provided, the local flow pattern in the orifice
depends on the thickness of the orifice and the roughness of its boundary
surface.
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Fig. 3.15

The diagram illustrates an orifice in one side of an open reservoir contain-
ing a liquid. The reservoir and the free surface are so large in comparison
with the orifice that the velocity of the fluid at the free surface is negligibly
small. The liquid issues from the orifice as a free jet, that is, a jet unimpeded
by other liquid, and therefore under the influence of gravity.

Fluid approaching the orifice converges towards it. Because an instantan-
eous change of direction is impossible, the streamlines continue to converge
beyond the orifice until they become parallel at the section cc. Parallel flow
is attained at only a short distance (about half the diameter if the orifice is
circular) from the orifice. The jet may diverge again beyond section cc, so
this is then the section of minimum area. It is termed the vena contracta
(Latin: contracted vein).

At low velocities some curvature of the streamlines results from the down-
ward deflection of the jet by gravity and the vena contracta may be ill defined.
The curvature, however, is generally negligible close to the orifice. When a
jet of liquid is discharged vertically downwards, gravity causes further accel-
eration of the liquid and so, by the principle of continuity �Au = constant,
a further reduction of the cross-sectional area; the vena contracta is then
defined as the section at which marked contraction from the orifice ceases.

Since the streamlines are parallel and, we assume, sensibly straight at
the vena contracta, the pressure in the jet there is uniform. (A non-uniform
pressure over the section would cause accelerations perpendicular to the axis,
and thus curved or non-parallel streamlines.) The pressure in the jet at the
vena contracta therefore equals that of the fluid – usually the atmosphere –
surrounding the jet, any small difference due to surface tension being ignored.
The vena contracta is the only section of the jet at which the pressure is
completely known.

If the flow is steady and frictional effects are negligible Bernoulli’s equation
may be applied between two points on a particular streamline. Taking a
horizontal plane through the centre of the orifice as the datum level and
considering the points (1) and (2) in Fig. 3.15, we have

p1

�g
+ u2

1

2g
+ z1 = patm

�g
+ u2

2

2g
+ 0

We suppose that the reservoir is sufficiently large and the point (1) sufficiently
far from the orifice for the velocity u1 to be negligible. Subject to this proviso
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the actual position of the point (1) is immaterial. Then, since hydrostatic
conditions prevail there, p1 corresponds to the depth of point (1) below the
free surface. With patm taken as zero (its variation from the free surface of
the reservoir to the orifice being negligible) p1 = �g(h − z1). Consequently
(p1/�g) + z1 = h

∴ h = u2
2

2g
i.e. u2 =

√
(2gh) (3.18)

If the diameter of the orifice is small in comparison with h, the velocity
of the jet is uniform across the vena contracta. Evangelista Torricelli (1608–
47), a pupil of Galileo, demonstrated experimentally in 1643 that the velo-
city with which a jet of liquid escapes from a small orifice is proportional
to the square root of the head above the orifice, so eqn 3.18 is often known
as Torricelli’s formula. The equation refers to the velocity at the vena con-
tracta: in the plane of the orifice itself neither the pressure nor the velocity
is uniform and the average velocity is less than that at the vena contracta.

In the foregoing analysis friction and surface tension have been neglected,Coefficient of velocity
so the velocity corresponding to eqn 3.18 is referred to as the ideal velocity.
The velocity actually attained at the vena contracta is slightly less, and a
coefficient of velocity Cv is defined as the ratio of the actual (mean) velocity
to the ideal. In other words, the actual mean velocity = Cv

√
(2gh).

The coefficient of contraction Cc is defined as the ratio of the area of theCoefficient of
contraction vena contracta to the area of the orifice itself.

Because of the two effects of friction and contraction the discharge fromCoefficient of discharge
the orifice is less than the ideal value and the coefficient of discharge Cd is
defined as the ratio of the actual discharge to the ideal value.

Cd = Actual discharge
Ideal discharge

= Area of vena contracta × Actual velocity there
Ideal cross-sectional area × Ideal velocity

= Area of vena contracta × Actual velocity
Area of orifice × Ideal velocity

= Cc × Cv (3.19)

For a large vertical orifice the velocity in the plane of the vena contracta
varies with the depth below the level of the free surface in the reservoir. The
total discharge is therefore not calculated simply asAcu (whereAc represents
the area of the vena contracta) but has to be determined by integrating the
discharges through small elements of the area.

Consider, for example, a large, vertical, rectangular orifice of breadth b
and depth d discharging into the atmosphere. A vena contracta of breadth
bc and depth dc is formed as shown in Fig. 3.16. The streamlines here are
parallel and practically straight; thus the pressure at any point in the plane of
the vena contracta is atmospheric and for steady conditions the velocity at a
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Fig. 3.16

depth h below the free surface in the reservoir is Cv
√

(2gh). Through a small
element of the vena contracta at this depth, the discharge equals velocity ×
area, which equals Cv

√
(2gh)bcδh. Therefore if Hc represents the depth at

the centre of the vena contracta, the total discharge is:

Q = Cvbc
√

(2g)
∫ Hc+dc/2

Hc−dc/2
h1/2dh

= 2
3
Cvbc

√
(2g)

{(
Hc + dc

2

)3/2

−
(
Hc − dc

2

)3/2
}

(The value of Cv may not be exactly the same for all streamlines; the value
in the equation must therefore be regarded as an average one.)

The difficulty now arises of determining the values of bc, dc andHc. They
vary with the corresponding values of b, d, and H for the orifice itself, but
the relation is not a simple one. To circumvent the difficulty we may write
b, d and H respectively in place of bc, dc and Hc and introduce a coefficient
of contraction Cc. Then

Q = 2
3
CcCvb

√
(2g)

{(
H + d

2

)3/2

−
(
H − d

2

)3/2
}

= 2
3
Cdb

√
(2g)

{(
H + d

2

)3/2

−
(
H − d

2

)3/2
}

It is important to note that the integration is performed, not across the plane
of the orifice, but across the plane of the vena contracta. The latter is the only
plane across which the pressure is sensibly uniform and the velocity at every
point known. WhenH > d, however, the orifice may usually be regarded as
small so that the ideal velocity at the vena contracta has the uniform value√

(2gH). The simpler formula

Q = Cdbd
√

(2gH)

then gives an error of less than 1%.
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Of the three coefficients the one most easily determined is the coefficient
of discharge. For a liquid the amount emerging from the orifice in a known
time interval may be determined by weighing or by direct measurement of
volume, and the discharge then compared with the ideal value. The coeffi-
cient of contraction may be determined by direct measurement of the jet with
calipers, although the accuracy is not usually high. One way of determining
the actual velocity of a small jet is to allow it to describe a trajectory in the
atmosphere, under the influence of gravity. If air resistance is negligible the
horizontal component ux of the jet velocity remains unchanged, and after a
time t a particle leaving the vena contracta has travelled a horizontal distance
x = uxt. Since there is a uniform downward acceleration g, and the vertical
component of velocity is initially zero for horizontal discharge, the vertical
distance y travelled in the same time is 1

2gt
2. Elimination of t from these

expressions gives ux = u = x(g/2y)1/2 and so u may be determined from
the coordinates of a point in the trajectory (which is a parabola). Although
this result does not account for air resistance or for the possible influence of
one particle on the trajectory of another, it is sufficiently near the truth for
most purposes.

Example 3.3 Water flows through a sharp-edged orifice in the side
of a tank and discharges as a jet into the atmosphere.

h Tank

x

yJet

(a) The free surface in the tank is a height h above the centre of the
orifice. The jet of water, on leaving the tank, strikes a surface
distance y vertically below and at a horizontal distance x from the
orifice. Derive an expression for the coefficient of velocity in terms
of x, y and h.

(b) Water discharges through a sharp-edged orifice of diameter 11 mm
into a pond, the surface of which is 0.6 m below the centre of the
orifice. The jet strikes the surface at a horizontal distance of 2 m
from the orifice. At the vena contracta plane the diameter of the
jet is 8.6 mm. If the free surface in the tank is 1.75 m above the
orifice, determine the rate of discharge.
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Solution
(a) We consider first the horizontal and vertical components of the
motion of the fluid in the jet. Assuming no effects of air resistance the
trajectory is parabolic. Hence

x = u2t and y = 1
2
gt2

which can be combined on eliminating t to yield

u2 = x
√
g
2y

On substitution of this relation in the definition of coefficient of
velocity there results

Cv = u2√
2gh

= x
√
g
2y

1√
2gh

= x

2
√
yh

(b) From the definition of the coefficient of contraction

Cc =
(

8.6
11

)2

= 0.611

The coefficient of velocity is evaluated from the equation derived in
part (a). Thus

Cv = 2 m

2
√

0.6 m × 1.75 m
= 0.976

Hence the coefficient of discharge is

Cd = Cv × Cc = 0.976 × 0.611 = 0.596

The flow rate is calculated as

Q = CdA2

√
2gh = 0.596 × π

4
(0.011 m)2

√
2 × 9.81 m · s−2 × 1.75 m

= 3.32 × 10−4 m3 · s−1

�

Equation 3.18 strictly applies only to a fluid of constant density. It may,
however, be used for a gas, provided that the drop in pressure across the
orifice is small compared with the absolute pressure, so that the change of
density is small. For h we may substitute p/�g and then

u =
√(

2p
�

)
(3.20)

The values of the coefficients must be determined experimentally. For Values of orifice
coefficientswell-made, sharp-edged, circular orifices producing free jets, the coeffi-

cient of velocity is usually in the range 0.97–0.99, although slightly smaller
values may be obtained with small orifices and low heads. For orifices not
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Fig. 3.17

Fig. 3.18

sharp-edged nor of negligible thickness the coefficient may be markedly
lower.

The coefficient of contraction for a circular sharp-edged orifice is about
0.61–0.66. For low heads and for very small orifices, however, the effects
of surface tension may raise the value to as much as 0.72. If the orifice is
near the corner of a tank, for example, or if there are obstructions that pre-
vent the full convergence of the streamlines approaching the orifice, then the
coefficient is increased. Roughness of the walls near the orifice may reduce the
velocity of the fluid approaching it and so curtail the contraction. The con-
traction after the orifice can be eliminated almost entirely by a bell-mouthed
approach to the orifice (Fig. 3.17) or the provision of a short length with
uniform diameter immediately before the final exit. But although the coeffi-
cient of contraction is then unity, friction materially reduces the coefficient
of velocity. It also reduces the velocity at the edge of the jet, and so the
velocity over the cross-section is non-uniform.

The coefficient of discharge for a small sharp-edged orifice is usually in
the range 0.6–0.65.

For a particular orifice and a particular fluid the coefficients are practic-
ally constant above a certain value of the head (the coefficients are in fact
functions of Reynolds number). A good deal of information about the coeffi-
cients has been obtained and may be found in various hydraulics handbooks.

A submerged orifice is one that discharges a jet into fluid of the same kind.Submerged orifice
The orifice illustrated in Fig. 3.18, for example, discharges liquid into more
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of the same liquid. A vena contracta again forms, and the pressure there
corresponds to the head h2. Application of Bernoulli’s equation between
points 1 and 2 gives

p1

�g
+ z1 + u2

1

2g
= h1 + 0

2g
= p2

�g
+ z2 + u2

2

2g
= h2 + 0 + u2

2

2g

so the ideal velocity u2 = √{2g(h1 − h2)}. In other words, Torricelli’s
formula is still applicable provided that h refers to the difference of head
across the orifice. Except for very small orifices, the coefficients for a sub-
merged orifice are little different from those for an orifice producing a
free jet.

The kinetic energy of a submerged jet is usually dissipated in turbulence
in the receiving fluid.

The use of Bernoulli’s equation is strictly permissible only for steady flow. Quasi-steady flow
through an orificeUnless the reservoir of Fig. 3.15, for example, is continuously replenished,

the level of the free surface falls as fluid escapes through the orifice. Provided
that the free surface is large compared with the orifice, however, the rate
at which it falls is small, and the error involved in applying Bernoulli’s
equation is negligible. Such conditions may be termed quasi-steady. But an
assumption of quasi-steady flow should always be checked to see whether
the rate of change of h is negligible in comparison with the velocity of
the jet.

Quasi-steady flow will be further considered in Section 7.10. Flow through
an orifice for which the upstream velocity is not negligible will be discussed
in Section 3.7.4.

3.7.3 The venturi-meter

The principle of the venturi-meter was demonstrated in 1797 by the Italian
Giovanni Battista Venturi (1746–1822) but it was not until 1887 that the
principle was applied, by the American Clemens Herschel (1842–1930),
to a practical instrument for measuring the rate of flow of a fluid. The
device consists essentially of a convergence in a pipe-line, followed by a
short parallel-sided throat and then a divergence (see Fig. 3.19) known as a
diffuser. Continuity requires a greater velocity at the throat than at the inlet;
there is consequently a difference of pressure between inlet and throat, and
measurement of this pressure difference enables the rate of flow through the
meter to be calculated.

We suppose for the moment that the fluid is inviscid (so that no energy
is dissipated by friction) and that the velocities u1 at the inlet and u2 at the
throat are uniform and parallel over the cross-sections (which have areas A1
and A2 respectively). For the steady flow of a constant-density fluid we may
apply Bernoulli’s equation to a streamline along the axis between sections 1
and 2. Into this equation values of u1 and u2 may be substituted from the
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Fig. 3.19

continuity relation Q = A1u1 = A2u2 to give

p1

�g
+ Q2

2gA2
1

+ z1 = p2

�g
+ Q2

2gA2
2

+ z2 (3.21)

Hence the ideal discharge is given by

Qideal =
[

2g{(p1/�g + z1) − (p2/�g + z2)}
(1/A2

2) − (1/A2
1)

]1/2

= A1

[
2g�h

(A1/A2)2 − 1

]1/2

(3.22)

The change in piezometric head {p1/�g + z1) − (p2/�g + z2)} = �h may
be measure directly by a differential manometer. It will be recalled from
Section 2.3.2 that the difference of levels in the manometer is directly pro-
portional to the difference of piezometric head, regardless of the difference
of level between the manometer connections.

In practice, friction between sections 1 and 2, although small, causes p2
to be slightly less than for the assumed inviscid fluid and so �h is slightly
greater. As the use of this value of �h in eqn 3.22 would give too high a
value of Q a coefficient of discharge Cd is introduced. The actual discharge
is then given by

Q = CdA1

{
2g�h

(A1/A2)2 − 1

}1/2

= CdA1A2

(A2
1 − A2

2)1/2
(2g�h)1/2 (3.23)

(Remember that �h is the difference of piezometric head of the fluid in the
meter, not the difference of levels of the manometer liquid.)

The coefficient of discharge also accounts for effects of non-uniformity of
velocity over sections 1 and 2. Although Cd varies somewhat with the rate
of flow, the viscosity of the fluid and the surface roughness, a value of about
0.98 is usual with fluids of low viscosity.
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To ensure that the pressure measured at each section is the average,
connections to the manometer are made via a number of holes into an annu-
lar ring. The holes are situated where the walls are parallel so that there
is no variation of piezometric pressure across the flow. To discourage the
formation of eddies, sharp corners at the joins between the conical and the
parallel-sided sections are avoided.

Rapidly converging flow, as between the inlet and throat of a
venturi-meter, causes the velocity to become more uniform over the cross-
section. Over the short length involved the loss of head to friction, hf ,
is negligible in comparison with (p1 − p2)/�g. For a single streamline
Bernoulli’s equation then gives

u2
2 = u2

1 + 2g
(
p∗

1 − p∗
2

�g

)
where p∗ represents the piezometric pressure p+�gz. On a nearby streamline,
slightly different values u1+δu1 and u2+δu2 may be found instead of u1 and
u2. If the streamlines are straight and parallel at these sections, however, no
difference of piezometric pressure across the flow can be sustained and so all
streamlines have the same values of p∗

1 and of p∗
2. Subtracting the Bernoulli

equations for the two streamlines therefore gives

(u2 + δu2)2 − u2
2 = (u1 + δu1)2 − u2

1

Hence 2u2δu2 = 2u1δu1, higher orders of the small quantities being
neglected.

∴ δu2

u2
=

(
u1

u2

)2
δu1

u1

Since u1 < u2,

|δu2|
u2

<
|δu1|
u1

in other words, the proportionate variation of velocity is less after the con-
traction than before it. This is why a rapid contraction is placed before the
working section of a wind tunnel or water tunnel, where a uniform velocity
is especially important.

In a few extreme cases, where friction between inlet and throat of a venturi-
meter is very small, the uniformity of velocity may be so much improved at
the throat as to outweigh the effect of friction and give a value of Cd slightly
greater than unity. (A Cd greater than unity may also result from faulty
manometer connections.) For accurate and predictable results, it is desirable
that the venturi-meter be approached by a sufficient length of straight pipe
for the flow to be reasonably uniform and to be free from large eddies and
similar disturbances, caused by fittings upstream of the flow-meter.

The function of the diverging part of the meter is to reduce the velocity
gradually, with the aim of restoring the pressure as nearly as possible to its
original value. In a rapidly diverging tube complete pressure recovery is not
possible as the flow tends to separate from the walls, eddies are formed and
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Fig. 3.20

energy is dissipated as heat. The greater the angle of divergence the greater
this dissipation of energy. On the other hand, a small angle results in a
large overall length and therefore a large loss by ‘ordinary’ friction at the
walls. The best compromise has been found for a total angle of divergence
about 6◦ (see Section 7.6.3). Larger angles have, however, been used, with
a consequent reduction in overall length (and cost). Only 80–90% of the
drop in pressure between inlet and throat is recovered in the diverging part.

A common ratio of diameters d2/d1 is 0.5. (Thus A2/A1 = 0.25 and
u2/u1 = 4.) Although a smaller throat area gives a greater and more accur-
ately measured difference of pressure, the subsequent dissipation of energy
in the diverging part is greater. Moreover, the pressure at the throat may
become low enough for dissolved gases to be liberated from the liquid, or
even for vaporization to occur.

To save expense, large venturi-meters are sometimes made by welding a
plate of sheet metal to the inside of a pipe, thus producing a D-shaped throat
(Fig. 3.20).

Example 3.4 A horizontal venturi tube, 280 mm diameter at the
entrance and 140 mm diameter at the throat, has a discharge coef-
ficient of 0.97. A differential U-tube manometer, using mercury as
the manometric fluid, is connected between pressure tappings at the
entrance and at the throat. The venturi tube is used to measure the
flow of water, which fills the leads to the U-tube and is in contact
with the mercury. Calculate the flow rate when the difference in the
mercury level is 50 mm. Take the densities of water and mercury as
103 kg · m−3 and 13.6 × 103 kg · m−3 respectively.

Solution
Denote conditions at the entrance and in the throat by suffixes 1
and 2, respectively, and the difference in levels in the manometer by
x. Also represent the densities of the water and mercury by �w and
�m respectively.

Considering the pressure balance in the two limbs of the manometer
(see Section 2.3.2) it follows that

p1 + �wxg = p2 + �mxg

Hence

p1 − p2 = 9.81 m · s−2 × 50 mm
1000 mm/m

× 103 kg · m−3 × (13.6 − 1)

= 6180 N · m−2
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Since

�h = p1 − p2

�wg

the flow rate is obtained by substituting in the relation

Q = CdA1

{
2g�h

(A1/A2)2 − 1

}1/2

= 0.97 × π

4

(
280
1000

m
)2

{
2 × 6180 N · m−2

103 kg · m−3 × [(28/14)4 − 1]

}1/2

= 0.0542 m3 · s−1
�

3.7.4 The flow nozzle and orifice meter

The nozzle meter or flow nozzle illustrated in Fig. 3.21 is essentially a venturi-
meter with the divergent part omitted, and the basic equations are the same
as those for the venturi-meter. The dissipation of energy downstream of
the throat is greater than for a venturi-meter but this disadvantage is often
offset by the lower cost of manufacturing the nozzle. The pressure in the
manometer connection in the wall of the pipe at section 2 may not be that at
the throat of the nozzle because of non-uniformities in the region of separated
flow surrounding the jet from the nozzle. Nor may the upstream connection
be made at a point sufficiently far from the nozzle for the flow to be uniform.
These deviations, however, are allowed for in values of Cd. The coefficient
depends on the shape of the nozzle, the diameter ratio d2/d1, the Reynolds

Fig. 3.21
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Fig. 3.22

number of the flow, and the location of the wall pressure tappings, but, as
it does not depend on what happens beyond the throat, it is little different
from that for a venturi-meter.

A still simpler and cheaper arrangement is a sharp-edged orifice fitted
concentrically in the pipe (Fig. 3.22). Application of Bernoulli’s equation
between a point 1 upstream of the orifice and the vena contracta (2) gives,
for an inviscid fluid and uniform velocity distribution:

u2
2

2g
= p∗

1

�g
− p∗

2

�g
+ u2

1

2g
= �h+ u2

1

2g

For a real fluid we introduce a coefficient of velocity:

u2 = Cv{2g(�h+ u2
1/2g)}1/2 (3.24)

We now put u1 = Q/A1 and u2 = Q/Ac = Q/CcAo where Q represents
the discharge, Ac the cross-sectional area of the vena contracta, Ao the area
of the orifice itself and Cc the coefficient of contraction. Then

Q = CvCcAoA1

(A2
1 − C2

vC2
cA2

o)1/2
(2g�h)1/2 = CdAo(2g�h)1/2

{1 − C2
d(Ao/A1)2}1/2

since CvCc = Cd (eqn 3.19).
The discharge coefficient C may be introduced by writing

C = Cd

{
1 − (Ao/A1)2

1 − C2
d(Ao/A1)2

}1/2

so that finally

Q = CAo(2g�h)1/2

{1 − (Ao/A1)2}1/2
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For consistency with the mathematical model, the downstream manometer
connection should strictly be made to the section where the vena contracta
occurs, but this is not feasible as the vena contracta is somewhat vari-
able in position. In practice, various positions are used for the manometer
connections and C is thereby affected.

Much of the kinetic energy of the jet from either a flow nozzle or an orifice
is dissipated downstream of the device and so the overall loss of useful energy
(see Section 7.6.6) is considerably larger than for a venturi-meter.

The accuracy of any measuring device may be affected by swirling motion
or non-uniformity of the flow approaching it. Therefore if pipe-bends, valves
and so on which cause such disturbances are not at least 50 times the pipe dia-
meter upstream, straightening grids are often fitted in front of the metering
device.

The use of differential-pressure flow-metering devices for flow rate
measurement is widespread, particularly at high Reynolds numbers,
and national and International Standards have been published. These
Standards are based on certain specific designs of orifice plates, ven-
turi tubes and nozzles, for which (a) the geometry is precisely defined;
and (b) the flow characteristics have been established through extensive
testing.

Example 3.5 A fluid of relative density 0.86 flows through a pipe of
diameter 120 mm. The flow rate is measured using a 6 cm diameter
orifice plate with corner tappings, which are connected to the two
limbs of a differential U-tube manometer using mercury as the mano-
metric fluid. The discharge coefficient is 0.62. Calculate the mass
flow rate when the difference in the mercury levels in the U-tube
is 100 mm.

Solution
Denote conditions at the measurement points upstream and down-
stream of the orifice plate by suffixes 1 and 2, respectively, and
the difference in levels in the manometer by x. Also represent
the densities of the flowing fluid and mercury by �f and �m
respectively.

Considering the pressure balance in the two limbs of the manometer
(see Section 2.3.2) it follows that

p1 + �fxg = p2 + �mxg

Hence

p1 − p2 = 9.81 m · s−2 × 100 mm
1000 mm/m

× 103 kg · m−3 × (13.6 − 0.86)

= 12 500 N · m−2
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Since

�h = p1 − p2

�fg

the volumetric flow rate is obtained by substituting in the relation

Q = CA0

{
2g�h

1 − (Ao/A1)2

}1/2

= 0.62 × π

4

(
6

100
m

)2
{

2 × 12 500 N · m−2

0.86 × 103 kg · m−3 × [1 − (6/12)4]

}1/2

= 0.00976 m3 · s−1

Hence

m = �fQ = 0.86 × 103 kg · m−3 × 0.00976 m3 · s−1 = 8.39 kg · s−1
�

3.7.5 Notches and sharp-crested weirs

A notch may be defined as a sharp-edged obstruction over which flow of a
liquid occurs. As the depth of flow above the base of the notch is related to
the discharge, the notch forms a useful measuring device. It is formed in a
smooth, plane, vertical plate and its edges are bevelled on the downstream
side so as to give minimum contact with the fluid. The area of flow is most
commonly either rectangular or V-shaped. A large rectangular notch is more
often termed a sharp-crested weir.

The pattern of flow over a notch is quite complex. Owing to the curvature
of the streamlines (Fig. 3.23) there is no cross-section of the flow over which
the pressure is uniform. Any attempt, therefore, to discover analytically
the relation between the rate of flow and the depth at the notch can be
based only on drastic simplifying assumptions. It is nevertheless useful in

Fig. 3.23
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showing the essential form of the relation between depth and discharge even
though the formula so obtained will have to be modified by an experimentally
determined coefficient.

The sheet of liquid escaping over the notch or weir is known as the nappe.
If the pressure underneath it is atmospheric, the nappe (except at very low
rates of flow) springs clear of the notch plate. For a notch extending across
the entire width of a channel, atmospheric air may not be able to get under
the nappe, and the liquid then clings to the downstream side of the notch
plate and the discharge is unpredictable. So to obtain flow of a predictable
and consistent nature, the space underneath the nappe must be ventilated, if
necessary by providing an air vent as shown in Fig. 3.23.

Consider a sharp-edged, rectangular notch as shown in Fig. 3.24. The crest
is horizontal and normal to the general direction of flow. The classical ana-
lysis, usually ascribed to the German engineer Julius Weisbach (1806–71),
requires these assumptions:

1. Upstream of the notch, the velocities of particles in the stream are uniform
and parallel; thus the pressure there varies according to the hydrostatic
equation p = �gh. (In practice it is often necessary to install baffles to
achieve reasonably steady and uniform conditions.)

2. The free surface remains horizontal as far as the plane of the notch, and all
particles passing through the notch move horizontally, and perpendicular
to its plane.

3. The pressure throughout the nappe is atmospheric.
4. The effects of viscosity and surface tension are negligible.

These assumptions give the idealized pattern of flow shown in Fig. 3.24.
At section 1, (p1/�g) + z1 = height H of the free surface. So for a typical
streamline Bernoulli’s equation gives

H + u2
1/2g= 0 + u2

2/2g + z2
∴ u2 = {2g(H − z2 + u2

1/2g)}1/2

This shows that u2 varies with z2. In the plane of the notch the discharge
through a horizontal element of depth δz2 is u2bδz2 and so the idealized

Fig. 3.24
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total discharge

Qideal = b
∫ H

0
u2dz2

(the datum of z2 being taken at the crest of the notch). Hence

Qideal = b
√

(2g)
∫ H

0
(H − z2 + u2

1/2g)1/2 dz2

= −2
3
b
√

(2g)
[
(H − z2 + u2

1/2g)3/2
]H

0

= 2
3
b
√

(2g)
{
(H + u2

1/2g)3/2 − (u2
1/2g)3/2

}
(3.25)

Since u1 depends onQ, solution of eqn 3.25 is troublesome except by trial
and error. However, u2

1/2g is frequently negligible in comparison with H
and then the equation becomes

Qideal = 2
3
b
√

(2g)H3/2

An experimentally determined coefficient of discharge now has to be inserted
to account for the simplifying assumptions used in the mathematical model.
The contraction of the nappe as it passes through the notch is a significant
factor and the coefficient is considerably less than unity. Its value depends
primarily on H and H/Z where Z is the height of the crest above the bed
of the approach channel. The effects of viscosity and surface tension are
appreciable only when H is small.

A suppressed weir is one for which the breadth b is the same as the width
of the approach channel. The nappe then contracts in the vertical direction
only and not horizontally (see Fig. 3.25).

When the notch is symmetrically placed in the width of a channel and
has the proportions shown in Fig. 3.26, full contraction of the nappe takes
place in the horizontal direction. The contraction at each side of the nappe
is about H/10; thus the width of the nappe and consequently the coefficient
of discharge vary with H.

The V notch scores over the rectangular notch in producing a nappe with
the same shape whatever the value of H, and thus, it has a less variable
discharge coefficient.

Fig. 3.25 Suppressed weir.
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Fig. 3.26

Fig. 3.27

With the same assumptions used in deriving the expression for the
discharge through a rectangular notch, we have

u2 = {2g(H − z2 + u2
1/2g)}1/2

For a V notch, however, the cross-sectional area of the approach channel is
usually so much greater than that of the notch that u2

1/2g may be neglected.
The idealized discharge through an element of the notch (as in Fig. 3.27) is
therefore bδz2{2g(H− z2)}1/2 and, if each side makes an angle θ/2 with the
vertical, b = 2z2 tan(θ/2). The total idealized discharge is therefore

Qideal = 2 tan
θ

2

√
(2g)

∫ H

0
z2(H − z2)1/2dz2

= 2 tan
θ

2

√
(2g)

∫ H

0
(H − h)h1/2dh

where h = H− z2. Hence

Qideal = 2 tan
θ

2

√
(2g)

[
2
3
Hh3/2 − 2

5
h5/2

]H
0

= 8
15

tan
θ

2

√
(2g)H5/2 (3.26)

The actual discharge Q is therefore

Q = 8
15
Cd tan

θ

2

√
(2g)H5/2

The angle θ is seldom outside the range 30◦–90◦. If the headH is sufficient
for the nappe to spring clear of the notch plate and the width of the approach
channel is at least four times the maximum width of the nappe, Cd is about
0.59 for water flow. As a result of viscosity and surface tension effects the
value increases somewhat as the head falls.
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The classical notch formulae 3.25 and 3.26 are the result of a simple, but
imperfect, mathematical model of the flow. In practice the head H is not
the depth of flow over the crest but the upstream level of the free surface
measured relative to the crest. As the liquid approaches the notch the free
surface level falls appreciably. (This does not, however, affect the result of
the integration markedly since H − z2 + u2

1/2g is small when z2 approaches
H.) The head should be measured at a point upstream before the fall of the
surface has begun and ideally where the velocity of the stream is negligible.
When this ideal is not possible, allowance must be made for the velocity at
the point of measurement. As a first approximation u2

1/2g, the head cor-
responding to the velocity of approach, is assumed negligible and a value
of Q obtained. From this approximate value of Q, u1 is calculated as Q
divided by the cross-sectional area of flow at the point whereH is measured.
Hence u2

1/2g is calculated and, for a rectangular notch for example, may
be substituted in eqn 3.25 to determine a more accurate value of Q. Since
u2

1/2g is small in comparison with H, (H + u2
1/2g)3/2 is often used rather

than (H + u2
1/2g)3/2 − (u2

1/2g)3/2. The formula is in any case based on the
assumption of a uniform value of u1 although in fact the discharge over the
notch can be appreciably affected by non-uniform conditions upstream. In
comparison with such indeterminate errors the omission of (u2

1/2g)3/2 is of
no account.

Example 3.6 Water flows over a sharp-crested weir 600 mm wide.
The measured head (relative to the crest) is 155 mm at a point where the
cross-sectional area of the stream is 0.26 m2 (see Fig. 3.28). Calculate
the discharge, assuming that Cd = 0.61.

Fig. 3.28

Solution
As a first approximation,

Q = 2
3
Cd

√
(2g)bH3/2

= 2
3

0.61
√

(19.62 m · s−2)0.6 m(0.155 m)3/2

= 0.0660 m3 · s−1
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∴ Velocity of approach = 0.0660 m3 · s−1

0.26 m2
= 0.254 m · s−1

u2
1

2g
= (0.254 m · s−1)

2

19.62 m · s−2
= 3.28 × 10−3 m

∴ H + u2
1/2g = (0.155 + 0.00328) m = 0.1583 m

Second approximation: Q = 2
30.61

√
(19.62)0.6(0.1583)3/2 m3 · s−1

= 0.0681 m3 · s−1

Further refinement of the value could be obtained by a new calcula-
tion of u1(0.0681 m3 · s−1 ÷0.26 m2), a new calculation ofH+u2

1/2g
and so on. One correction is usually sufficient, however, to give a value
of Q acceptable to three significant figures. �

PROBLEMS

3.1 A pipe carrying water tapers from a cross-section of 0.3 m2 at
A to 0.15 m2 at B which is 6 m above the level of A. At A
the velocity, assumed uniform, is 1.8 m · s−1 and the pressure
117 kPa gauge. If frictional effects are negligible, determine the
pressure at B.

3.2 A long bridge with piers 1.5 m wide, spaced 8 m between
centres, crosses a river. The depth of water before the bridge is
1.6 m and that between the piers is 1.45 m. Calculate the volume
rate of flow under one arch assuming that the bed of the river is
horizontal, that its banks are parallel and that frictional effects
are negligible.

3.3 A pipe takes water from a reservoir where the temperature is
12 ◦C to a hydro-electric plant 600 m below. At the 1.2 m
diameter inlet to the power house the gauge pressure of the
water is 5.5 MPa and its mean velocity 2 m · s−1. If its tem-
perature there is 13.8 ◦C at what rate has heat passed into
the pipe as a result of hot sunshine? (Note: The change of
atmospheric pressure over 600 m must be accounted for: mean
atmospheric density = 1.225 kg · m−3. Specific heat capacity of
water = 4.187 kJ · kg−1 · K−1.)

3.4 In an open rectangular channel the velocity, although uniform
across the width, varies linearly with depth, the value at the free
surface being twice that at the base. Show that the value of the
kinetic energy correction factor is 10/9.

3.5 From a point 20 m away from a vertical wall a fireman directs
a jet of water through a window in the wall at a height of
15 m above the level of the nozzle. Neglecting air resistance
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determine the angle at which the nozzle must be held when the
supply pressure at the nozzle is only just sufficient, and calculate
this minimum pressure ifCv for the nozzle is 0.95. (The velocity
head in the hose may be neglected.)

3.6 The air supply to an oil-engine is measured by being taken
directly from the atmosphere into a large reservoir through a
sharp-edged orifice 50 mm diameter. The pressure difference
across the orifice is measured by an alcohol manometer set at
a slope of arcsin 0.1 to the horizontal. Calculate the volume
flow rate of air if the manometer reading is 271 mm, the rel-
ative density of alcohol is 0.80, the coefficient of discharge for
the orifice is 0.602 and atmospheric pressure and temperature
are respectively 755 mm Hg and 15.8 ◦C. (You may assume
R = 287 J · kg−1 · K−1.)

3.7 Oil of relative density 0.85 issues from a 50 mm diameter orifice
under a pressure of 100 kPa (gauge). The diameter of the vena
contracta is 39.5 mm and the discharge is 18 L · s−1. What is
the coefficient of velocity?

3.8 A submarine, submerged in sea-water, travels at 16 km · h−1.
Calculate the pressure at the front stagnation point situ-
ated 15 m below the surface. (Density of sea-water =
1026 kg · m−3.)

3.9 A vertical venturi-meter carries a liquid of relative density 0.8
and has inlet and throat diameters of 150 mm and 75 mm
respectively. The pressure connection at the throat is 150 mm
above that at the inlet. If the actual rate of flow is 40 L · s−1

and the coefficient of discharge is 0.96, calculate (a) the pres-
sure difference between inlet and throat, and (b) the difference
of levels in a vertical U-tube mercury manometer connected
between these points, the tubes above the mercury being full of
the liquid. (Relative density of mercury = 13.56.)

3.10 A servo-mechanism is to make use of a venturi contraction in
a horizontal 350 mm diameter pipe carrying a liquid of relat-
ive density 0.95. The upper end of a vertical cylinder 100 mm
diameter is connected by a pipe to the throat of the venturi
and the lower end of the cylinder is connected to the inlet.
A piston in the cylinder is to be lifted when the flow rate
through the venturi exceeds 0.15 m3 · s−1. The piston rod is
20 mm diameter and passes through both ends of the cyl-
inder. Neglecting friction, calculate the required diameter of
the venturi throat if the gross effective load on the piston rod
is 180 N.

3.11 A sharp-edged notch is in the form of a symmetrical trapezium.
The horizontal base is 100 mm wide, the top is 500 mm wide
and the depth is 300 mm. Develop a formula relating the dis-
charge to the upstream water level, and estimate the discharge
when the upstream water surface is 228 mm above the level
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of the base of the notch. Assume that Cd = 0.6 and that the
velocity of approach is negligible.

3.12 The head upstream of a rectangular weir 1.8 m wide is 80 mm.
If Cd = 0.6 and the cross-sectional area of the upstream flow
is 0.3 m2, estimate, to a first approximation, the discharge
allowing for the velocity of approach.



4 The momentum
equation

4.1 INTRODUCTION

It is often important to determine the force produced on a solid body by
fluid flowing steadily over or through it. For example, there is the force
exerted on a solid surface by a jet of fluid impinging on it; there are also
the aerodynamic forces (lift and drag) on an aircraft wing, the force on a
pipe-bend caused by the fluid flowing within it, the thrust on a propeller and
so on. All these forces are associated with a change in the momentum of the
fluid.

The magnitude of such a force is determined essentially by Newton’s
Second Law. However, the law usually needs to be expressed in a form par-
ticularly suited to the steady flow of a fluid: this form is commonly known as
the steady-flow momentum equation and may be applied to the whole bulk
of fluid within a prescribed space. Only forces acting at the boundaries of
this fluid concern us; any force within this fluid is involved only as one half
of an action-and-reaction pair and so does not affect the overall behaviour.
Moreover, the fluid may be compressible or incompressible, and the flow
with or without friction.

4.2 THE MOMENTUM EQUATION FOR STEADY FLOW

In its most general form, Newton’s Second Law states that the net force
acting on a body in any fixed direction is equal to the rate of increase of
momentum of the body in that direction. Since force and momentum are
both vector quantities it is essential to specify the direction. Where we are
concerned with a collection of bodies (which we shall here term a system)
the law may be applied (for a given direction) to each body individually. If the
resulting equations are added, the total force in the given fixed direction
corresponds to the net force acting in that direction at the boundaries of
the system. Only these external, boundary forces are involved because any
internal forces between the separate bodies occur in pairs of action and
reaction and therefore cancel in the total. For a fluid, which is continuum
of particles, the same result applies: the net force in any fixed direction on a
certain defined amount of fluid equals the total rate of increase of momentum
of that fluid in that direction.
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Fig. 4.1

Our aim now is to derive a relation by which force may be related to the
fluid within a given space. We begin by applying Newton’s Second Law to a
small element in a stream-tube (shown in Fig. 4.1) The flow is steady and so
the stream-tube remains stationary with respect to the fixed coordinate axes.
The cross-section of this stream-tube is sufficiently small for the velocity to be
considered uniform over the plane AB and over the plane CD. After a short
interval of time δt the fluid that formerly occupied the spaceABCDwill have
moved forward to occupy the space A′B′C′D′. In general, its momentum
changes during this short time interval.

If ux represents the component of velocity in the x direction then the
element (of mass δm) has a component of momentum in the x direction
equal to uxδm. The total x-momentum of the fluid in the space ABCD at the
beginning of the time interval δt is therefore

∑
ABCD

uxδm

The same fluid at a time δt later will have a total x-momentum

∑
A′B′C′D′

uxδm

The last expression may be expanded as

∑
ABCD

uxδm−
∑
ABB′A′

uxδm+
∑

DCC′D′
uxδm

The net increase of x-momentum during the time interval δt is therefore

( ∑
A′B′C′D′

uxδm

)
after δt

−
( ∑
ABCD

uxδm

)
before δt
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=
( ∑
ABCD

uxδm−
∑
ABB′A′

uxδm+
∑

DCC′D′
uxδm

)
after δt

−
( ∑
ABCD

uxδm

)
before δt

=
( ∑
DCC′D′

uxδm−
∑
ABB′A′

uxδm

)
after δt

since, as the flow is assumed steady,
(∑

uxδm
)
ABCD is the same after δt as

before δt. Thus, during the time intereval δt, the increase of x-momentum
of the batch of fluid considered is equal to the x-momentum leaving the
stream-tube in that time minus the x-momentum entering in that time:( ∑

DCC′D′
uxδm

)
−

( ∑
ABB′A′

uxδm

)

For a very small value of δt the distances AA′,BB′ are very small, so
the values of ux, for all the particles in the space ABB′A′ are substantially
the same. Similarly, all particles in the space DCC′D′ have substantially the
same value of ux, although this may differ considerably from the value for
particles in ABB′A′. The ux terms may consequently be taken outside the
summations.

Therefore the increase of x-momentum during the interval δt is(
ux

∑
δm

)
DCC′D′ −

(
ux

∑
δm

)
ABB′A′ (4.1)

Now
(∑

δm
)
DCC′D′ is the mass of fluid which has crossed the plane CD

during the interval δt and so is expressed by ṁδt, where ṁ denotes the rate
of mass flow. Since the flow is steady,

(∑
δm

)
ABB′A′ also equals ṁδt. Thus

expression 4.1 may be written ṁ(ux2 − ux1)δt, where suffix 1 refers to the
inlet section of the stream-tube, suffix 2 to the outlet section. The rate of
increase of x-momentum is obtained by dividing by δt, and the result, by
Newton’s Second Law, equals the net force Fx on the fluid in the x direction

Fx = ṁ(ux2 − ux1) (4.2)

The corresponding force in the x direction exerted by the fluid on its
surroundings is, by Newton’s Third Law, −Fx.

A similar analysis for the relation between force and rate of increase of
momentum in the y direction gives

Fy = ṁ(uy2 − uy1) (4.3)

In steady flow ṁ is constant and so ṁ = �1A1u1 = �2A2u2 where � repres-
ents the density of the fluid and A the cross-sectional area of the stream-tube
(A being perpendicular to u).

We have so far considered only a single stream-tube with a cross-sectional
area so small that the velocity over each end face (AB,CD) may be considered
uniform. Let us now consider a bundle of adjacent stream-tubes, each of
cross-sectional area δA, which together carry all the flow being examined.
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The velocity, in general, varies from one stream-tube to another. The space
enclosing all these stream-tubes is often known as the control volume and it
is to the boundaries of this volume that the external forces are applied. For
one stream-tube the ‘x-force’ is given by

δFx = ṁ(ux2 − ux1) = �2δA2u2ux2 − �1δA1u1ux1

The total force in the x direction is therefore

Fx =
∫

dFx =
∫

�2u2ux2dA2 −
∫

�1u1ux1dA1 (4.4a)

(The elements of area δA must everywhere be perpendicular to the
velocities u.) Similarly

Fy =
∫

�2u2uy2dA2 −
∫

�1u1uy1dA1 (4.4b)

and

Fz =
∫

�2u2uz2dA2 −
∫

�1u1uz1dA1 (4.4c)

These equations are required whenever the force exerted on a flowing fluid
has to be calculated. They express the fact that for steady flow the net force
on the fluid in the control volume equals the net rate at which momentum
flows out of the control volume, the force and the momentum having the
same direction. It will be noticed that conditions only at inlet 1 and outlet 2
are involved. The details of the flow between positions 1 and 2 therefore do
not concern us for this purpose. Such matters as friction between inlet and
outlet, however, may alter the magnitudes of quantities at outlet.

It will also be noticed that eqns 4.4 take account of variation of � and
so are just as applicable to the flow of compressible fluids as to the flow of
incompressible ones.

The integration of the terms on the right-hand side of the eqns 4.4 requires
information about the velocity profile at sections 1 and 2. By judicious choice
of the control volume, however, it is often possible to use sections 1 and 2
over which �,u,ux and so on do not vary significantly, and then the equations
reduce to one-dimensional forms such as:

Fx = �2u2A2ux2 − �1u1A1ux1 = ṁ(ux2 − ux1)

It should never be forgotten, however, that this simplified form involves
the assumption of uniform values of the quantities over the inlet and outlet
cross-sections of the control volume: the validity of these assumptions should
therefore always be checked. (See Section 4.2.1.)

A further assumption is frequently involved in the calculation of F.
A contribution to the total force acting at the boundaries of the control
volume comes from the force due to the pressure of the fluid at a cross-section
of the flow. If the streamlines at this cross-section are sensibly straight and
parallel, the pressure over the section varies uniformly with depth as for a
static fluid; in other words, p∗ = p+�gz is constant. If, however, the stream-
lines are not straight and parallel, there are accelerations perpendicular to
them and consequent variations of p∗. Ideally, then, the control volume
should be so selected that at the sections where fluid enters or leaves it the
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streamlines are sensibly straight and parallel and, for simplicity, the density
and the velocity (in both magnitude and direction) should be uniform over
the cross-section.

Newton’s Laws of Motion, we remember, are limited to describing
motions with respect to coordinate axes that are not themselves acceler-
ating. Consequently the momentum relations for fluids, being derived from
these Laws, are subject to the same limitation. That is to say, the coordinate
axes used must either be at rest or moving with uniform velocity in a straight
line.

Here we have developed relations only for steady flow in a stream-tube.
More general expressions are beyond the scope of this book.

4.2.1 Momentum correction factor

By methods analogous to those of Section 3.5.3 it may be shown that
where the velocity of a constant-density fluid is not uniform (although
essentially parallel) over a cross-section, the true rate of momentum flow
perpendicular to the cross-section is not �u2A but �

∫
u2dA= β�u2A. Here

u = (1/A)
∫
udA, the mean velocity over the cross-section, and β is the

momentum correction factor. Hence

β = 1
A

∫
A

(u
u

)2
dA

It should be noted that the velocity u must always be perpendicular to the
element of area dA. With constant �, the value of β for the velocity distribu-
tion postulated in Section 3.5.3 is 100/98 = 1.02 which for most purposes
differs negligibly from unity. Disturbances upstream, however, may give a
markedly higher value. For fully developed laminar flow in a circular pipe
(see Section 6.2) β = 4/3. For a given velocity profile β is always less than α,
the kinetic energy correction factor.

4.3 APPLICATIONS OF THE MOMENTUM EQUATION

4.3.1 The force caused by a jet striking a surface

When a steady jet strikes a solid surface it does not rebound from the sur-
face as a rubber ball would rebound. Instead, a stream of fluid is formed
which moves over the surface until the boundaries are reached, and the fluid
then leaves the surface tangentially. (It is assumed that the surface is large
compared with the cross-sectional area of the jet.)

Consider a jet striking a large plane surface as shown in Fig. 4.2. A suit-
able control volume is that indicated by dotted lines on the diagram. If the x
direction is taken perpendicular to the plane, the fluid, after passing over the
surface, will have no component of velocity and therefore no momentum in
the x direction. (It is true that the thickness of the stream changes as the fluid
moves over the surface, but this change of thickness corresponds to a negli-
gible movement in the x direction.) The rate at which x-momentum enters
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Fig. 4.2

the control volume is
∫

�1u1ux1dA1 = cos θ
∫

�1u2
1dA1 and so the rate of

increase of x-momentum is − cos θ
∫

�1u2
1dA1 and this equals the net force on

the fluid in the x direction. If the fluid on the solid surface were stationary and
at atmospheric pressure there would of course be a force between the fluid
and the surface due simply to the static (atmospheric) pressure of the fluid.
However, the change of fluid momentum is produced by a fluid-dynamic
force additional to this static force. By regarding atmospheric pressure as
zero we can determine the fluid-dynamic force directly.

Since the pressure is atmospheric both where the fluid enters the con-
trol volume and where it leaves, the fluid-dynamic force on the fluid can
be provided only by the solid surface (effects of gravity being neglected).
The fluid-dynamic force exerted by the fluid on the surface is equal and
opposite to this and is thus cos θ

∫
�1u2

1dA1 in the x direction. If the jet has
uniform density and velocity over its cross-section the integral becomes

�1u
2
1 cos θ

∫
dA1 = �1Q1u1 cos θ

(where Q1 is the volume flow rate at inlet).
The rate at which y-momentum enters the control volume is equal to

sin θ
∫

�1u2
1dA1. For this component to undergo a change, a net force in

the y direction would have to be applied to the fluid. Such a force, being
parallel to the surface, would be a shear force exerted by the surface on the
fluid. For an inviscid fluid moving over a smooth surface no shear force is
possible, so the component sin θ

∫
�1u2

1dA1 would be unchanged and equal
to the rate at which y-momentum leaves the control volume. Except when
θ = 0, the spreading of the jet over the surface is not symmetrical, and for
a real fluid the rate at which y-momentum leaves the control volume differs
from the rate at which it enters. In general, the force in the y direction may be
calculated if the final velocity of the fluid is known. This, however, requires
further experimental data.

When the fluid flows over a curved surface, similar techniques of
calculation may be used as the following example will show.
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Example 4.1 A jet of water flows smoothly on to a stationary curved
vane which turns it through 60◦. The initial jet is 50 mm in diameter,
and the velocity, which is uniform, is 36 m · s−1. As a result of friction,
the velocity of the water leaving the surface is 30 m · s−1. Neglecting
gravity effects, calculate the hydrodynamic force on the vane.

Solution
Taking the x direction as parallel to the initial velocity (Fig. 4.3) and
assuming that the final velocity is uniform, we have

Force on fluid in x direction

= Rate of increase of x-momentum

= �Qu2 cos 60◦ − �Qu1

= (1000 kg · m−3)
{π

4
(0.05)2 m2 × 36 m · s−1

}
× (30 cos 60◦ m · s−1 − 36 m · s−1)

= −1484 N

Similarly, force on fluid in y direction

= �Qu2 sin 60◦ − 0

=
{
1000

π

4
(0.05)236 kg · s−1

}
(30 sin 60◦m · s−1)

= 1836 N

Fig. 4.3

The resultant force on the fluid is therefore
√

(14842 + 18362) N
= 2361 N acting in a direction arctan {1836/(−1484)} = 180◦ −
51.05◦ to the x direction. Since the pressure is atmospheric both where
the fluid enters the control volume and where it leaves, the force on
the fluid can be provided only by the vane. The force exerted by the
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fluid on the vane is opposite to the force exerted by the vane on the
fluid.

Therefore the fluid-dynamic force F on the vane acts in the direction
shown on the diagram. �

If the vane is moving with a uniform velocity in a straight line the problem
is not essentially different. To meet the condition of steady flow (and only to
this does the equation apply) coordinate axes moving with the vane must be
selected. Therefore the velocities concerned in the calculation are velocities
relative to these axes, that is, relative to the vane. The volume flow rate Q
must also be measured relative to the vane. As a simple example we may
suppose the vane to be moving at velocity c in the same direction as the jet.
If c is greater than u1, that is, if the vane is receding from the orifice faster than
the fluid is, no fluid can act on the vane at all. If, however, c is less than u1,
the mass of fluid reaching the vane in unit time is given by �A(u1 − c) where
A represents the cross-sectional area of the jet, and uniform jet velocity and
density are assumed. (Use of the relative incoming velocity u1 − c may also
be justified thus. In a time interval δt the vane moves a distance cδt, so the
jet lengthens by the same amount; as the mass of fluid in the jet increases by
�Acδt the mass actually reaching the vane is only �Au1δt − �Acδt that is,
the rate at which the fluid reaches the vane is �A(u1 − c).) The direction of
the exit edge of the vane corresponds to the direction of the velocity of the
fluid there relative to the vane.

The action of a stream of fluid on a single body moving in a straight
line has little practical application. To make effective use of the principle
a number of similar vanes may be mounted round the circumference of a
wheel so that they are successively acted on by the fluid. In this case, the
system of vanes as a whole is considered. No longer does the question arise
of the jet lengthening so that not all the fluid from the orifice meets a vane;
the entire mass flow rate �Au1, from the orifice is intercepted by the system
of vanes. Such a device is known as a turbine, and we shall consider it further
in Chapter 13.

4.3.2 Force caused by flow round a pipe-bend

When the flow is confined within a pipe the static pressure may vary from
point to point and forces due to differences of static pressure must be taken
into account. Consider the pipe-bend illustrated in Fig. 4.4 in which not
only the direction of flow but also the cross-sectional area is changed. The
control volume selected is that bounded by the inner surface of the pipe and
sections 1 and 2. For simplicity we here assume that the axis of the bend is in
the horizontal plane: changes of elevation are thus negligible; moreover, the
weights of the pipe and fluid act in a direction perpendicular to this plane and
so do not affect the changes of momentum. We assume too that conditions
at sections 1 and 2 are uniform and that the streamlines there are straight
and parallel.
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Fig. 4.4

If the mean pressure and cross-sectional area at section 1 are p1 and A1
respectively, the fluid adjacent to this cross-section exerts a force p1A1 on
the fluid in the control volume. Similarly, there is a force p2A2 acting at
section 2 on the fluid in the control volume. Let the pipe-bend exert a force F
on the fluid, with components Fx and Fy, in the x and y directions indicated.
The force F is the resultant of all forces acting over the inner surface of
the bend. Then the total force in the x direction on the fluid in the control
volume is

p1A1 − p2A2 cos θ + Fx
This total ‘x-force’ must equal the rate of increase of x-momentum

�Q(u2 cos θ − u1)

Equating these two expressions enables Fx to be calculated.
Similarly, the total y-force acting on the fluid in the control volume is

−p2A2 sin θ + Fy = �Q(u2 sin θ − 0)

and Fy may thus be determined. From the components Fx and Fy the mag-
nitude and direction of the total force exerted by the bend on the fluid can
readily be calculated. The force exerted by the fluid on the bend is equal and
opposite to this.

If the bend were empty (except for atmospheric air at rest) there would
be a force exerted by the atmosphere on the inside surfaces of the bend.
In practice we are concerned with the amount by which the force exerted
by the moving fluid exceeds the force that would be exerted by a stationary
atmosphere. Thus we use gauge values for the pressures p1 and p2 in the
above equations. The force due to the atmospheric part of the pressure is
counterbalanced by the atmosphere surrounding the bend: if absolute values
were used for p1 and p2 separate account would have to be taken of the force,
due to atmospheric pressure, on the outer surface.

Where only one of the pressure p1 and p2 is included in the data of the
problem, the other may be deduced from the energy equation.

Particular care is needed in determining the signs of the various terms in
the momentum equation. It is again emphasized that the principle used is
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that the resultant force on the fluid in a particular direction is equal to the
rate of increase of momentum in that direction.

The force on a bend tends to move it and a restraint must be applied
if movement is to be prevented. In many cases the joints are sufficiently
strong for that purpose, but for large pipes (e.g. those used in hydroelectric
installations) large concrete anchorages are usually employed to keep the
pipe-bends in place.

The force F includes any contribution made by friction forces on the
boundaries. Although it is not necessary to consider friction forces separately
they do influence the final result, because they affect the relation between p1
and p2.

Example 4.2 A 45◦ reducing pipe-bend (in a horizontal plane) tapers
from 600 mm diameter at inlet to 300 mm diameter at outlet (see
Fig. 4.5). The gauge pressure at inlet is 140 kPa and the rate of flow of
water through the bend is 0.425 m3 · s−1. Neglecting friction, calculate
the net resultant horizontal force exerted by the water on the bend.

Solution
Assuming uniform conditions with straight and parallel streamlines at
inlet and outlet, we have:

u1 = 0.45 m3 · s−1

π

4
(0.6 m)2

= 1.503 m · s−1

u2 = 0.425 m3 · s−1

π

4
(0.3 m)2

= 6.01 m · s−1

By the energy equation

p2 = p1 + 1
2�

(
u2

1 − u2
2

)
= 1.4 × 105 Pa + 500 kg · m−3(1.5032 − 6.012) m2 · s−2

= 1.231 × 105 Pa

Fig. 4.5
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In the x direction, force on water in control volume

= p1A1 − p2A2 cos 45◦ + Fx = �Q(u2 cos 45◦ − u1)

= Rate of increase of x-momentum

where Fx represents x-component of force exerted by bend on water.
Therefore

1.4 × 105 Pa
π

4
0.62 m2 − 1.231 × 105 Pa

π

4
0.32 m2 cos 45◦ + Fx

= 1000 kg · m−30.425 m3 · s−1(6.01 cos 45◦ − 1.503) m · s−1

that is (39 580 − 6150) N + Fx = 1168 N whence Fx = −32 260 N.
In the y direction, force on water in control volume

= −p2A2 sin 45◦ + Fy = �Q(u2 sin 45◦ − 0)

= Rate of increase of y-momentum, whence

Fy = 1000 × 0.425(60.1 sin 45◦) N + 1.231 × 105 π

4
0.32 sin 45◦ N

= 7960 N

Therefore total net force exerted on water = √
(32 2602 + 79602) N =

33 230 N acting in direction arctan {7960/(−32 260)} = 180◦ −
13.86◦ to the x direction.

Force F exerted on bend is equal and opposite to this, that is, in the
direction shown on Fig. 4.5.�

For a pipe-bend with a centre-line not entirely in the horizontal plane the
weight of the fluid in the control volume contributes to the force causing the
momentum change. It will be noted, however, that detailed information is
not required about the shape of the bend or the conditions between the inlet
and outlet sections.

4.3.3 Force at a nozzle and reaction of a jet

As a special case of the foregoing we may consider the horizontal nozzle
illustrated in Fig. 4.6. Assuming uniform conditions with streamlines straight
and parallel at the sections 1 and 2 we have:

Force exerted in the x direction on the fluid between planes 1 and 2

= p1A1 − p2A2 + Fx = �Q(u2 − u1)

If a small jet issues from a reservoir large enough for the velocity within it
to be negligible (except close to the orifice) then the velocity of the fluid
is increased from zero in the reservoir to u at the vena contracta (see
Fig. 4.7). Consequently the force exerted on the fluid to cause this change is
�Q(u− 0) = �QCv

√
(2gh). An equal and opposite reaction force is therefore

exerted by the jet on the reservoir.
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Fig. 4.6

Fig. 4.7

The existence of the reaction may be explained in this way. At the vena
contracta the pressure of the fluid is reduced to that of the surrounding atmo-
sphere and there is also a smaller reduction of pressure in the neighbourhood
of the orifice, where the velocity of the fluid becomes appreciable. On the
opposite side of the reservoir, however, and at the same depth, the pressure
is expressed by �gh and the difference of pressure between the two sides of
the reservoir gives rise to the reaction force.

Such a reaction force may be used to propel a craft – aircraft, rocket, ship
or submarine – to which the nozzle is attached. The jet may be formed
by the combustion of gases within the craft or by the pumping of fluid
through it. For the steady motion of such a craft in a straight line the pro-
pelling force may be calculated from the momentum equation. For steady
flow the reference axes must move with the craft, so all velocities are meas-
ured relative to the craft. If fluid (e.g. air) is taken in at the front of the craft
with a uniform velocity c and spent fluid (e.g. air plus fuel) is ejected at the
rear with a velocity ur then, for a control volume closely surrounding the
craft,

The net rate of increase of fluid momentum backwards (relative to the
craft) is ∫

�u2
r dA2 −

∫
�c2dA1 (4.5)

where A1,A2 represent the cross-sectional areas of the entry and exit ori-
fices respectively. (In some jet-propelled boats the intake faces downwards
in the bottom of the craft, rather than being at the front. This, however,
does not affect the application of the momentum equation since, wherever
the water is taken in, the rate of increase of momentum relative to the
boat is �Qc. Nevertheless, a slightly better efficiency can be expected with
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a forward-facing inlet because the pressure there is increased – as in a Pitot
tube – so the pump has to do less work to produce a given outlet jet velocity.)

Equation 4.5 is restricted to a craft moving steadily in a straight line
because Newton’s Second Law is valid only for a non-accelerating set of
reference axes.

In practice the evaluation of the integrals in eqn 4.5 is not readily accom-
plished because the assumption of a uniform velocity – particularly over
the area A2 – is seldom justified. Moreover, the tail pipe is not infre-
quently of diverging form and thus the velocity of the fluid is not everywhere
perpendicular to the cross-section.

In a jet-propelled aircraft the spent gases are ejected to the surroundings
at high velocity – usually greater than the velocity of sound in the fluid.
Consequently (as we shall see in Chapter 11) the pressure of the gases at
discharge does not necessarily fall immediately to the ambient pressure. If
the mean pressure p2 at discharge is greater than the ambient pressure pa
then a force (p2 − pa)A2 contributes to the propulsion of the aircraft.

The relation 4.5 represents the propulsive force exerted by the engine on
the fluid in the backward direction. There is a corresponding forward force
exerted by the fluid on the engine, and the total thrust available for propelling
the aircraft at uniform velocity is therefore

(p2 − pa)A2 +
∫

�u2
r dA2 −

∫
�c2dA1 (4.6)

It might appear from this expression that, to obtain a high value of the total
thrust, a high value of p2 is desirable. When the gases are not fully expanded
(see Chapter 11), however, that is, when p2 > pa, the exit velocity ur relative
to the aircraft is reduced and the total thrust is in fact decreased. This is a
matter about which the momentum equation itself gives no information and
further principles must be drawn upon to decide the optimum design of a
jet-propulsion unit.

A rocket is driven forward by the reaction of its jet. The gases constituting
the jet are produced by the combustion of a fuel and appropriate oxidant;
no air is required, so a rocket can operate satisfactorily in a vacuum. The

Rocket propulsion

penalty of this independence of the atmosphere, however, is that a large
quantity of oxidant has to be carried along with the rocket. At the start of
a journey the fuel and oxidant together form a large proportion of the total
load carried by the rocket. Work done in raising the fuel and oxidant to a
great height before they are burnt is wasted. Therefore the most efficient use
of the materials is achieved by accelerating the rocket to a high velocity in a
short distance. It is this period during which the rocket is accelerating that is
of principal interest. We note that the simple relation F = ma is not directly
applicable here because, as fuel and oxidant are being consumed, the mass
of the rocket is not constant.

In examining the behaviour of an accelerating rocket particular care is
needed in selecting the coordinate axes to which measurements of velocities
are referred. We here consider our reference axes fixed to the earth and all
velocities must be expressed with respect to these axes. We may not consider
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our reference axes attached to the rocket, because the rocket is accelerating
and Newton’s Laws of Motion are applicable only when the reference axes
are not accelerating.

If Newton’s Second Law is applied to all the particles in a system and the
resulting equations are added, the result is:

Rate of increase of total momentum of the system of particles

= Vector sum of the external forces

(When the vector sum of the external forces is zero, the total momentum
of the system of particles is consequently constant: this is the Principle of
Conservation of Linear Momentum.) The system must be so defined that,
whatever changes occur, it always consists of the same collection of particles.
Here the system comprises the rocket and its fuel and oxidant at a particular
time t.

If, at time t, the total mass of rocket, fuel and oxidant = M and the
velocity of the rocket (relative to the earth) = v, then the total momentum
of the system = Mv. Let the spent gases be discharged from the rocket at a
rate ṁ (mass/time). Then, at a time δt later (δt being very small) a mass ṁδt
of spent gases has left the rocket. These gases then have an average velocity
u relative to the earth, and therefore momentum ṁδtu. For consistency u is
considered positive in the same direction as v, that is, forwards.

At time t+ δt the velocity of the rocket has become v+ δv, so the
momentum of the whole system (relative to the earth) is now

(M − ṁδt)(v + δv) + ṁδtu

Since all velocities are in the same (unchanging) direction the momentum
has increased by an amount

(M − ṁδt)(v + δv) + ṁδdtu−Mv = Mδv + ṁδt(u− v − δv)

This increase has occurred in a time interval δt, so the rate of increase =
M(δv/δt) + ṁ(u− v− δv) which, in the limit as δt and δv both tend to zero,
becomes

M
dv
dt

+ ṁ(u− v) (4.7)

But, when δt → 0, u represents the (mean) absolute velocity of the gases
at the moment they leave the rocket. So u − v is the difference between the
absolute velocity of the jet and the absolute velocity of the rocket, both being
considered positive in the forward direction. Therefore u− v = the velocity
of the jet relative to the rocket (forwards) = −ur, where ur is the (mean)
rearward velocity of the jet relative to the rocket. We may usefully express
the relation 4.7 in terms of ur: though not necessarily constant, it is, for a
given fuel and oxidant and shape of nozzle, a quantity normally known to
rocket designers. The rate of increase of momentum is equal to the vector
sum of the external forces on the system (in the forward direction), and hence

M
dv
dt

−mur =
∑

F (4.8)
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Now the vector sum of the external forces on the system is not the same as
the net force on the rocket. The system, we recall, consists of the rocket plus
the gases that escape from it. The jet reaction on the rocket and the force
exerted on the escaping gases constitute an action-and-reaction pair and
their sum therefore cancels in the total. The propulsive force may readily be
deduced, however. The force (forwards) applied to the spent gases to change
their momentum from ṁδtv to ṁδtu is ṁδt(u− v)/δt = ṁ(u− v) = −ṁur.
Therefore the corresponding reaction (forwards) on the rocket = ṁur.
In addition, however, a contribution to the propulsive force is made by
(p2 −pa)A2, where p2 represents the mean pressure of the gases at discharge,
pa the ambient pressure and A2 the cross-sectional area of the discharge
orifice. The total propulsive force is therefore ṁur + (p2 − pa)A2. In the
absence of gravity, air or other resistance, (p2 − pa)A2 is the sole external
force. In these circumstances eqn 4.8 shows that the propulsive force is
ṁur + ∑

F = M(dv/dt).
Since M represents the mass of the rocket and the remaining fuel and

oxidant at the time t it is a function of t. Consequently the rocket
acceleration is not constant even if ṁ, ur and the propulsive force are
constant.

This method of analysis is not the only one possible, but of the correct
methods it is probably the most simple, direct and general. It is incorrect
to argue that force equals rate of increase of momentum = (d/dt)Mv =
M(dv/dt) + v(dM/dt), where M and v refer to the mass and velocity
of the rocket. This is wrong because the system to which the argument
is applied (the rocket) does not always consist of the same collection of
particles.

4.3.4 Force on a solid body in a flowing fluid

The momentum equation may be used to determine the fluid-dynamic force
exerted on a solid body by fluid flowing past it. The equal and opposite force
exerted by the body on the fluid corresponds to a change in the momentum
of the fluid.

Figure 4.8 shows a stationary body immersed in a fluid stream that is oth-
erwise undisturbed. The steady uniform velocity well upstream of the body
is U∞. A wake forms downstream of the body and there the velocity in gen-
eral differs from U∞ and is no longer uniform. We consider, for simplicity,
a body round which the flow is two-dimensional, that is, the flow pattern
is the same in all planes parallel to that of the diagram. A suitable control
volume is one with an inner boundary on the solid body and an outer rect-
angular boundary ABCD, where AD and BC are parallel to the direction of
U∞ and where each of the planes AB, BC, AD is far enough from the body
for the flow at these planes to be unaffected by the presence of the body.
If ux, the component of velocity in the x direction (i.e. parallel to U∞), is
measured at the plane CD then the mass flow rate through an element of
that plane, of thickness δy and of unit breadth, is �uxδy. The rate of increase
of x-momentum of this fluid is therefore �uxδy(ux −U∞) and the total rate
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Fig. 4.8

of increase of x-momentum is∫ D

C
�ux(ux −U∞)dy

By the momentum equation the rate of increase of x-momentum of the
fluid equals the sum all the forces acting on it in the x direction between
the upstream plane AB and the plane CD. The forces concerned are Fx the
x-component of the force exerted by the body directly on the fluid, and also
any force resulting from the pressure p in the plane CD being different from
the upstream pressure p∞. (Another force might be gravity, but this need
not be considered separately if we use piezometric pressure p∗ = p + �gz
in place of p.) The pressure downstream of a body is frequently less than
the upstream pressure because of the turbulence in the wake. At the plane
CD, the total pressure force on the fluid in the control volume is

∫ D
C pdy

(per unit breadth) acting upstream whereas at plane AB the total force
is

∫ A
B p∞dy acting downstream. The net pressure force in the x direction

(i.e. downstream) is therefore∫ A

B
p∞dy−

∫ D

C
pdy =

∫ D

C
(p∞ − p)dy

since AB = DC. Thus the momentum equation is

Fx +
∫ D

C
(p∞ − p)dy =

∫ D

C
�ux (ux −U∞) dy

Beyond C and D, however, ux = U∞ and p = p∞ and so we may put −∞
and +∞ as limits of integration instead of C andD since the regions beyond
C and D would make no contribution to the integrals. Hence

Fx =
∫ ∞

−∞
{
�ux(ux −U∞) − (p∞ − p)}dy (4.9)
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If the body is not symmetrical about an axis parallel to U∞ there may be
a change of momentum in the y direction and consequently a component of
force in that direction. Originally the fluid had no component of momentum
in the y direction. If the stream is deflected by the body so that a component
of velocity uy is produced, the corresponding rate at which y-momentum
passes through an element in the plane CD is �uxδyuy and the total rate
of increase of y-momentum experienced by the fluid is

∫ ∞
−∞ �uxuydy. This

equals the component of force on the fluid in the y direction.
PlanesAD andBC are far enough from the body for the (piezometric) pres-

sures at them to be equal and so there is no net pressure force on the control
volume in the y direction. The rate of increase of y-momentum therefore
directly equals the component of force on the body in the −y direction.

The fluid-dynamic force on a body in a stream of fluid may thus be deduced
from measurements of velocity and pressure in the wake downstream of the
body. In many cases, of course, the force on a body can be determined by
direct measurement. In other instances, however, the direct method may
be impracticable because of the size of the body. It may even be ruled out
because the fluid would exert a force not only on the body itself, but on
the members supporting it from the measuring balance, and this latter force
might falsify the result. Nevertheless, measurements of velocity and pressure
downstream of the body are not without difficulties. For example, close
to the body the flow is frequently highly turbulent, so to obtain accurate
values of the magnitude and direction of the velocity the plane CD should
be chosen at a location downstream of the body where the wake has become
more settled.

4.3.5 Momentum theory of a propeller

A propeller uses the torque of a shaft to produce axial thrust. This it does by
increasing the momentum of the fluid in which it is submerged: the reaction
to the force on the fluid provides a forward force on the propeller itself, and
this force is used for propulsion. Besides the momentum and energy equa-
tions further information is needed for the complete design of a propeller.
Nevertheless, the application of these equations produces some illuminating
results, and we shall here make a simple analysis of the problem assuming
one-dimensional flow.

Figure 4.9 shows a propeller and its slipstream (i.e. the fluid on which
it directly acts) and we assume that it is unconfined (i.e. not in a duct, for
example). So that we can consider the flow steady, we shall assume the pro-
peller is in a fixed position while fluid flows past it. Far upstream the flow
is undisturbed as at section 1 where the pressure is p1 and the velocity u1.
Just in front of the propeller, at section 2, the pressure is p2 and the mean
axial velocity u2. Across the propeller the pressure increases to p3. Down-
stream of the propeller the axial velocity of the fluid increases further, and for
a constant-density fluid, continuity therefore requires that the cross-section
of the slipstream be reduced. At section 4 the streamlines are again straight
and parallel; there is thus no variation in piezometric pressure across them
and the pressure is again that of the surrounding undisturbed fluid.
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Fig. 4.9

This is a simplified picture of what happens. For one thing, it suggests that
the boundary of the slipstream is a surface across which there is a discontinu-
ity of pressure and velocity. In reality the pressure and velocity at the edge
of the slipstream tail off into the values outside it. In practice too, there is
some interaction between the propeller and the craft to which it is attached,
but this is not amenable to simple analysis and allowance is usually made
for it by empirical corrections.

The fluid in the vicinity of the propeller has rotary motion about the pro-
peller axis, in addition to its axial motion. The rotary motion, however, has
no contribution to make to the propulsion of the craft and represents a waste
of energy. It may be eliminated by the use of guide vanes placed downstream
of the propeller or by the use of a pair of contra-rotating propellers.

Certain assumptions are made for the purpose of analysis. In place of the real
propeller we imagine an ideal one termed an actuator disc. This is assumed to
have the same diameter as the actual propeller; it gives the fluid its rearward

Actuator disc

increase of momentum but does so without imparting any rotational motion.
Conditions over each side of the disc are assumed uniform. This means, for
example, that all elements of fluid passing through the disc undergo an equal
increase of pressure. (This assumption could be realized in practice only if the
propeller had an infinite number of blades.) It is also assumed that changes of
pressure do not significantly alter the density and that the disc has negligible
thickness in the axial direction. Consequently the cross-sectional areas of the
slipstream on each side of the disc are equal and so u2 = u3 by continuity.
(At the disc the fluid has a small component of velocity radially inwards
but this is small enough to be neglected and all fluid velocities are assumed
axial.) The fluid is assumed frictionless.

Consider the space enclosed by the slipstream boundary and planes 1 and 4
as a control volume. The pressure all round this volume is the same, and,
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for the frictionless fluid assumed, shear forces are absent. Consequently the
only net force F on the fluid in the axial direction is that produced by the
actuator disc. Therefore, for steady flow,

F = �Q (u4 − u1) (4.10)

This is equal in magnitude to the net force on the disc. Since there is no
change of velocity across the disc this force is given by (p3 −p2)A. Equating
this to eqn 4.10 and puttingQ = Au2, whereA represents the cross-sectional
area of the disc, we obtain

p3 − p2 = �u2 (u4 − u1) (4.11)

Applying Bernoulli’s equation between sections 1 and 2 gives

p1 + 1
2�u2

1 = p2 + 1
2�u2

2 (4.12)

the axis being assumed horizontal for simplicity. Similarly, between
sections 3 and 4:

p3 + 1
2�u2

3 = p4 + 1
2�u2

4 (4.13)

Now u2 = u3 and also p1 = p4 = pressure of undisturbed fluid. Therefore,
adding eqns 4.12 and 4.13 and rearranging gives

p3 − p2 = 1
2�

(
u2

4 − u2
1

)
(4.14)

Eliminating p3 − p2 from eqns 4.11 and 4.14 we obtain

u2 = u1 + u4

2
(4.15)

The velocity through the disc is the arithmetic mean of the upstream and
downstream velocities; in other words, half the change of velocity occurs
before the disc and half after it (as shown in Fig. 4.9). This result, known
as Froude’s theorem after William Froude (1810–79), is one of the principal
assumptions in propeller design.

If the undisturbed fluid be considered stationary, the propeller advances
through it at velocity u1. The rate at which useful work is done by the
propeller is given by the product of the thrust and the velocity:

Power output =Fu1 = �Q (u4 − u1)u1 (4.16)

In addition to the useful work, kinetic energy is given to the slipstream which
is wasted. Consequently the power input is

�Q (u4 − u1)u1 + 1
2�Q (u4 − u1)2 (4.17)
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since u4 −u1 is the velocity of the downstream fluid relative to the earth. The
ratio of the expressions 4.16 and 4.17 is sometimes known as the Froude
efficiency:

ηFr = Power output
Power input

= u1

u1 + 1
2 (u4 − u1)

(4.18)

This efficiency, it should be noted, does not account for friction or for the
effects of the rotational motion imparted to the fluid. A propulsive force
requires a non-zero value of u4 −u1 (see eqn 4.10) and so even for a friction-
less fluid a Froude efficiency of 100% could not be achieved. Equation 4.18
in fact represents an upper limit to the efficiency. It does, however, show that
a higher efficiency may be expected as the velocity increase u4 −u1 becomes
smaller. The actual efficiency of an aircraft propeller is, under optimum
conditions, about 0.85 to 0.9 times the value given by eqn 4.18. At speeds
above about 650 km · h−1, however, effects of compressibility of the air (at
the tips of the blades where the relative velocity is highest) cause the effi-
ciency to decline. Ships’ propellers are usually less efficient, mainly because
of restrictions in diameter, and interference from the hull of the ship.

The thrust of a propeller is often expressed in terms of a dimensionless
thrust coefficient CT = F/1

2�u2
1A. It may readily be shown that

ηFr = 2

1 + √
(1 + CT)

Since the derivation of eqn 4.18 depends only on eqns 4.10, 4.16 and 4.17
no assumption about the form of the actuator is involved. Equation 4.18
may therefore be applied to any form of propulsion unit that works by
giving momentum to the fluid surrounding it. The general conclusion may
be drawn that the best efficiency is obtained by imparting a relatively small
increase of velocity to a large quantity of fluid. A large velocity (u4 − u1)

given to the fluid by the actuator evidently produces a poor efficiency if u1,
the forward velocity of the craft relative to the undisturbed fluid, is small.
This is why jet propulsion for aircraft is inefficient at low speeds.

For a stationary propeller, as on an aircraft before take-off, the approach
velocity u1 is zero and the Froude efficiency is therefore zero. This is also
true for helicopter rotors when the machine is hovering. No effective work
is being done on the machine and its load, yet there must be a continuous
input of energy to maintain the machine at constant height. With u1 = 0,
eqn 4.15 gives u2 = 1

2u4 and eqn 4.10 becomes F = �Qu4 = �Au2 × 2u2.
From eqn 4.17, power input = 1

2�Qu2
4 = 1

2Fu4 = Fu2 = √
(F3/2�A). This

result shows that, for a helicopter rotor to support a given load, the larger the
area of the rotor, the smaller is the power required. The weight of the rotor
itself, however, increases rapidly with its area, and so the rotor diameter is,
in practice, limited.

The foregoing analysis of the behaviour of propellers is due to
W. J. M. Rankine (1820–72) and William Froude. Although it provides
a valuable picture of the way in which velocity changes occur in the slip-
stream, and indicates an upper limit to the propulsive efficiency, the basic
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assumptions – particularly those of lack of rotary motion of the fluid and the
uniformity of conditions over the cross-section – lead to inaccuracy when
applied to actual propellers. To investigate the performance of an actual
propeller having a limited number of blades, a more detailed analysis is
needed. This, however, is outside the scope of the present book.

4.3.6 Momentum theory of a wind turbine

A wind turbine is similar to a propeller but it takes energy from the fluid
instead of giving energy to it. Whereas the thrust on a propeller is made as
large as possible, that on a wind turbine is, for structural reasons, ideally
small. The flow pattern for the wind turbine is the opposite of that for the
propeller: the slipstream widens as it passes the disc. Again, however, a one-
dimensional flow analysis can be used and it is found that u2 = 1

2 (u1 + u4).
The rate of loss of kinetic energy by the air = 1

2�Q
(
u2

1 − u2
4

)
and, for a

frictionless machine, this would equal the output of the wind turbine. The
efficiency η is customarily defined as the ratio of this output to the power in
the wind that would pass through the area A if the disc were not present.
Hence

∴ η =
1
2�Q

(
u2

1 − u2
4

)
1
2� (Au1)u2

1

= Au2
(
u2

1 − u2
4

)
Au3

1

= (u1 + u4)
(
u2

1 − u2
4

)
2u3

1

This expression has a maximum value when u4/u1 = 1/3 and the efficiency
η then = 16/27 = 59.3% and provides a useful upper limit to achievable
efficiency. Efficiencies achieved in practice are less than this. Since the wind
is a resource which is widely available, the use of wind turbines to generate
electricity is of considerable current interest. These modern wind turbines are
designed using more advanced theory than that set out here, and the blades
are constructed with aerofoil profiles. In contrast, the traditional windmill
used for milling corn has sails of simple design and construction, and the
efficiency of these machines can be as low as 5%.

Example 4.3

(a) Using actuator disc theory, show that half the change of velocity
of the wind passing through a wind turbine occurs upstream and
half in the wake of the turbine.

(b) A wind turbine, 12 m in diameter, operates at sea level in a wind
of 20 m · s−1. The wake velocity is measured as 8 m · s−1. Estimate
the thrust on the turbine.

(c) Calculate the power being generated by the turbine.
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(1)
(2) (3) (4)

u

u

1

4

Assume a sea level air density of 1.2 kg · m−3.

Solution
(a) Applying Bernoulli’s equation upstream of the turbine, between
sections 1 and 2

p1 + 1
2�u2

1 = p2 + 1
2�u2

2

Applying Bernoulli’s equation downstream of the turbine, between
sections 3 and 4

p3 + 1
2�u2

3 = p4 + 1
2�u2

4

Since u2 = u3 and p1 = p4 = atmospheric pressure, these two
equations can be combined to yield

p2 − p3 = 1
2�

(
u2

1 − u2
4

)
Loss of momentum between sections 1 and 4 is equal to the thrust on
the wind turbine. Thus

F = �Q (u1 − u4) = �Au2 (u1 − u4)

But the thrust can also be expressed as

F = (p2 − p3)A

So, from the two expressions for F

F/A = p2 − p3 = �u2 (u1 − u4)

Equating the two expressions for (p2 − p3)

1
2�

(
u2

1 − u2
4

)
= �u2 (u1 − u4)

from which it follows that

u2 = (u1 + u4)

2
QED
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(b) F = �Au2 (u1 − u4) = �A
(u1 + u4)

2
(u1 − u4)

= 1.2 kg · m−3 × π

4
× (12 m)2 × (20 + 8) m · s−1

2
× 12 m · s−1

= 22.8 × 103 N

(c) P = �Q

(
u2

1

2
− u2

4

2

)
= �Au2

(
u2

1

2
− u2

4

2

)

= �A
(u1 + u4)

2

(
u2

1

2
− u2

4

2

)

= 1.2 kg · m−3 × π

4
(12 m)2 × (20 + 8) m · s−1

2

×
((

20 m · s−1)2

2
−

(
8 m · s−1)2

2

)

= 319 000 W = 319 kW�

PROBLEMS

4.1 A stationary curved vane deflects a 50 mm diameter jet of water
through 150◦. Because of friction over the surface, the water
leaving the vane has only 80% of its original velocity. Calculate
the volume flow rate necessary to produce a fluid-dynamic force
of 2000 N on the vane.

4.2 The diameter of a pipe-bend is 300 mm at inlet and 150 mm at
outlet and the flow is turned through 120◦ in a vertical plane.
The axis at inlet is horizontal and the centre of the outlet section
is 1.4 m below the centre of the inlet section. The total volume
of fluid contained in the bend is 0.085 m3. Neglecting friction,
calculate the magnitude and direction of the net force exerted
on the bend by water flowing through it at 0.23 m3 · s−1 when
the inlet gauge pressure is 140 kPa.

4.3 Air at constant density 1.22 kg · m−3 flows in a duct of internal
diameter 600 mm and is discharged to atmosphere. At the outlet
end of the duct, and coaxial with it, is a cone with base diameter
750 mm and vertex angle 90◦. Flow in the duct is controlled
by moving the vertex of the cone into the duct, the air then
escaping along the sloping sides of the cone. The mean velocity
in the duct upstream of the cone is 15 m · s−1 and the air leaves
the cone (at the 750 mm diameter) with a mean velocity of
60 m · s−1 parallel to the sides. Assuming temperature changes
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and frictional effects to be negligible, calculate the net axial
force exerted by the air on the cone.

4.4 Two adjacent parallel and horizontal rectangular conduits A
and B, of cross-sectional areas 0.2 m2 and 0.4 m2 respec-
tively, discharge water axially into another conduit C of cross-
sectional area 0.6 m2 and of sufficient length for the individual
streams to become thoroughly mixed. The rates of flow through
A and B are 0.6 m3 · s−1 and 0.8 m3 · s−1 respectively and the
pressures there are 31 kPa and 30 kPa respectively. Neglecting
friction at the boundaries, determine the energy lost by each
entry stream (divided by mass) and the total power dissipated.

4.5 A boat is driven at constant velocity c (relative to the undis-
turbed water) by a jet-propulsion unit which takes in water
at the bow and pumps it astern, beneath the water surface,
at velocity u relative to the boat. Show that the efficiency of
the propulsion, if friction and other losses are neglected, is
2c/(c + u).

Such a boat moves steadily up a wide river at 8 m · s−1 (rela-
tive to the land). The river flows at 1.3 m · s−1. The resistance to
motion of the boat is 1500 N. If the velocity of the jet relative to
the boat is 17.5 m · s−1, and the overall efficiency of the pump
is 65%, determine the total area of the outlet nozzles, and the
engine power required.

4.6 A toy balloon of mass 86 g is filled with air of density
1.29 kg · m−3. The small filling tube of 6 mm bore is pointed
vertically downwards and the balloon is released. Neglecting
frictional effects calculate the rate at which the air escapes if
the initial acceleration of the balloon is 15 m · s−2.

4.7 A rocket sled of 2.5 Mg (tare) burns 90 kg of fuel a second
and the uniform exit velocity of the exhaust gases relative to
the rocket is 2.6 km · s−1. The total resistance to motion at the
track on which the sled rides and in the air equals KV, where
K = 1450 N · m−1 · s and V represents the velocity of the sled.
Assuming that the exhaust gases leave the rocket at atmospheric
pressure, calculate the quantity of fuel required if the sled is to
reach a maximum velocity of 150 m · s−1.

4.8 A boat travelling at 12 m · s−1 in fresh water has a 600 mm
diameter propeller which takes water at 4.25 m3 · s−1 between
its blades. Assuming that the effects of the propeller hub and the
boat hull on flow conditions are negligible, calculate the thrust
on the boat, the efficiency of the propulsion, and the power
input to the propeller.

4.9 To propel a light aircraft at an absolute velocity of 240 km · h−1

against a head wind of 48 km · h−1 a thrust of 10.3 kN is
required. Assuming an efficiency of 90% and a constant air
density of 1.2 kg · m−3 determine the diameter of ideal propeller
required and the power needed to drive it.
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4.10 An ideal wind turbine, 12 m diameter, operates at an efficiency
of 50% in a 14 m · s−1 wind. If the air density is 1.235 kg · m−3

determine the thrust on the wind turbine, the air velocity
through the disc, the mean pressures immediately in front of
and behind the disc, and the shaft power developed.



Physical similarity and
dimensional analysis 5

5.1 INTRODUCTION

In fluid mechanics the concept of physical similarity and the process of
dimensional analysis are closely intertwined. A large part of the progress
made in the study of fluid mechanics and its engineering applications has
come from experiments conducted on scale models. It is obvious enough that,
to obtain meaningful results from model tests, the model must be geomet-
rically similar to the full-scale version. Much less obvious are the similarity
conditions which must be satisfied within the flowing fluid to ensure that
the model tests replicate what happens at full-scale. Such considerations are
addressed in this chapter. Physical similarity in fluid mechanics is discussed,
important dimensionless groups are introduced, the methods of dimensional
analysis are considered and the chapter concludes with some applications of
similarity principles to model testing.

No aircraft is now built before exhaustive tests have been carried out on
small models in a wind-tunnel; the behaviour and power requirements of a
ship are calculated in advance from results of tests in which a small model of
the ship is towed through water. Flood control of rivers, spillways of dams,
harbour works and similar large-scale projects are studied in detail with
small models, and the performance of turbines, pumps, propellers and other
machines is investigated with smaller, model, machines. There are clearly
great economic advantages in testing and probably subsequently modifying
small-scale equipment; not only is expense saved, but also time. Tests can
be conducted with one fluid – water, perhaps – and the results applied to
situations in which another fluid – air, steam, oil, for example – is used.

In all these examples, results taken from tests performed under one set of
conditions are applied to another set of conditions. This procedure is made
possible and justifiable by the laws of similarity. By these laws, the behaviour
of a fluid in one set of circumstances may be related to the behaviour of
the same, or another, fluid in other sets of circumstances. Comparisons are
usually made between the prototype, that is, the full-size aircraft, ship, river,
turbine or other device, and the model apparatus. As already indicated, the
use of the same fluid with both prototype and model is not necessary. Nor is
the model necessarily smaller than the prototype. The flow of fluid through
an injection nozzle or a carburettor, for example, would be more easily
studied by using a model much larger than the prototype. So would the flow
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of gas between small turbine blades. Indeed, model and prototype may even
be of identical size, although the two may then differ in regard to other
factors, such as velocity and viscosity of the fluid.

For any comparison between prototype and model to be valid, the sets of
conditions associated with each must be physically similar. Physical similar-
ity is a general term covering several different kinds of similarity. We shall
first define physical similarity as a general proposition, and then consider
separately the various forms it may take.

Two systems are said to be physically similar in respect to certain specified
physical quantities when the ratio of corresponding magnitudes of these
quantities between the two systems is everywhere the same.

If the specified physical quantities are lengths, the similarity is called geo-
metric similarity. This is probably the type of similarity most commonly
encountered and, from the days of Euclid, most readily understood.

5.2 TYPES OF PHYSICAL SIMILARITY

5.2.1 Geometric similarity

Geometric similarity is similarity of shape. The characteristic property ofScale factor
geometrically similar systems, whether plane figures, solid bodies or patterns
of fluid flow, is that the ratio of any length in one system to the corresponding
length in the other system is everywhere the same. This ratio is usually known
as the scale factor.

Geometric similarity is perhaps the most obvious requirement in a model
system designed to correspond to a given prototype system. Yet perfect geo-
metric similarity is not always easy to attain. Not only must the overall shape
of the model be geometrically similar to that of the prototype, but the inev-
itable roughness of the surfaces should also be geometrically similar. For a
small model the surface roughness might not be reduced according to the
scale factor – unless the model surfaces can be made very much smoother
than those of the prototype. And in using a small model to study the move-
ment of sediment in rivers, for example, it might be impossible to find a
powder of sufficient fineness to represent accurately the properties of sand.

5.2.2 Kinematic similarity

Kinematic similarity is similarity of motion. This implies similarity of lengths
(i.e. geometric similarity) and, in addition, similarity of time intervals. Then,
since corresponding lengths in the two systems are in a fixed ratio and
corresponding time intervals are also in a fixed ratio, the velocities of cor-
responding particles must be in a fixed ratio of magnitude at corresponding
times. Moreover, accelerations of corresponding particles must be similar. If
the ratio of corresponding lengths is rl and the ratio of corresponding time
intervals is rt, then the magnitudes of corresponding velocities are in the
ratio rl/rt and the magnitudes of corresponding accelerations in the ratio
rl/r

2
t .
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A well-known example of kinematic similarity is found in a planetarium.
Here the heavens are reproduced in accordance with a certain length scale
factor, and in copying the motions of the planets a fixed ratio of time intervals
(and hence velocities and accelerations) is used.

When fluid motions are kinematically similar the patterns formed by
streamlines are geometrically similar (at corresponding times). Since the
boundaries consist of streamlines, kinematically similar flows are possible
only past geometrically similar boundaries. This condition, however, is not
sufficient to ensure geometric similarity of the stream-line patterns at a dis-
tance from the boundaries. Geometrically similar boundaries therefore do
not necessarily imply kinematically similar flows.

5.2.3 Dynamic similarity

Dynamic similarity is similarity of forces. If two systems are dynamically
similar then the magnitudes of forces at similarly located points in each sys-
tem are in a fixed ratio. Consequently the magnitude ratio of any two forces
in one system must be the same as the magnitude ratio of the corresponding
forces in the other system. In a system involving fluids, forces may be due
to many causes: viscosity, gravitational attraction, differences of pressure,
surface tension, elasticity and so on. For perfect dynamic similarity, there-
fore, there are many requirements to be met, and it is usually impossible to
satisfy all of them simultaneously. Fortunately, in many instances, some of
the forces do not apply at all, or have negligible effect, so it becomes possible
to concentrate on the similarity of the most important forces.

The justification for comparing results from one flow system with those for
another is that the behaviour of the fluid is similar in the two systems. As we
have seen, one necessary condition is that the boundaries be geometrically
similar. In addition, however, similarity of forces is necessary because the
direction taken by any fluid particle is determined by the resultant force act-
ing on it. Consequently, complete similarity of two flows can be achieved
only when corresponding fluid particles in the two flows are acted on by
resultant forces that have the same direction and are in a fixed ratio of
magnitude. Moreover, the same conditions apply to the components of
these resultant forces. The directions of component forces are determined
either by external circumstances (as for gravity forces, for example) or by
the flow pattern itself (as for viscous forces). In dynamically similar flows,
therefore, the force polygons for corresponding individual particles are geo-
metrically similar, and so the component forces too have the same ratio
of magnitude between the two flows. Dynamic similarity, then, produces
geometric similarity of the flow patterns. It should be noted, however, that
the existence of geometric similarity does not, in general, imply dynamic
similarity.

Before examining dynamic similarity in more detail we may note in passing
that we have not exhausted the list of types of similarity, even of fluids.
For example, some investigations may call for thermal similarity in which
differences of temperature are in fixed ratio between model and prototype.
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In chemical similarity there is a fixed ratio of concentrations of reactants at
corresponding points.

One important feature, common to all kinds of physical similarity, is that
for the two systems considered certain ratios of like magnitudes are fixed.
Geometric similarity requires a fixed ratio of lengths, kinematic similarity a
fixed ratio of velocities, dynamic similarity a fixed ratio of forces, and so on.
Whatever the quantities involved, however, the ratio of their magnitudes is
dimensionless. In the study of mechanics of fluids the type of similarity with
which we are almost always concerned is dynamic similarity. We now turn
our attention to some of the force ratios that enter that study.

5.3 RATIOS OF FORCES ARISING IN DYNAMIC SIMILARITY

Forces controlling the behaviour of fluids arise in several ways. Not every
kind of force enters every problem, but a list of the possible types is usefully
made at the outset of the discussion.

1. Forces due to differences of piezometric pressure between different points
in the fluid. The phrase ‘in the fluid’ is worth emphasis. Dynamic
similarity of flow does not necessarily require similarity of thrusts on
corresponding parts of the boundary surfaces and so the magnitude of
piezometric pressure relative to the surrounding is not important. For the
sake of brevity, the forces due to differences of piezometric pressure will
be termed pressure forces.

2. Forces resulting form the action of viscosity.
3. Forces acting from outside the fluid – gravity, for example.
4. Forces due to surface tension.
5. Elastic forces, that is, those due to the compressibility of the fluid.

Now any of these forces, acting in combination on a particle of fluid,
in general have a resultant, which, in accordance with Newton’s Second
Law, F = ma, causes an acceleration of the particle in the same direction
as the force. And the accelerations of individual particles together determ-
ine the pattern of the flow. Let us therefore examine a little further these
accelerations and the forces causing them.

If, in addition to the resultant force F, an extra force (−ma) were applied
to the particle in the same direction as F, the net force on the particle would
then be F −ma, that is, zero. With zero net force on it, the particle would,
of course, have zero acceleration. This hypothetical force (−ma), required
to bring the acceleration of the particle to zero, is termed the inertia force: it
represents the reluctance of the particle to be accelerated. The inertia force
is, however, in no way independent of the other forces on the particle; it
is, as we have seen, equal and opposite to their resultant, F. Nevertheless,
since our concern is primarily with the pattern of the flow, it is useful to add
inertia forces to our list as a separate item:

(6. Inertia forces.)

If the forces on any particle are represented by the sides of a force poly-
gon, then the inertia force corresponds to the side required to close the
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polygon. Now a polygon can be completely specified by the magnitude and
direction of all the sides except one. The remaining, unspecified, side is
fixed automatically by the condition that it must just close the polygon.
Consequently, if for any particular particle this hypothetical inertia force is
specified, one of the other forces may remain unspecified; it is fixed by the
condition that the force polygon must be completely closed, in other words,
that the addition of the inertia force would give zero resultant force.

For dynamic similarity between two systems, the forces on any fluid
particle in one system must bear the same ratios of magnitude to one another
as the forces on the corresponding particle in the other system. In most cases
several ratios of pairs of forces could be selected for consideration. But,
because the accelerations of particles (and hence the inertia forces) play an
important part in practically every problem of fluid motion, it has become
conventional to select for consideration the ratios between the magnitude of
the inertia force and that of each of the other forces in turn. For example,
in a problem such as that studied in Section 1.9.2, the only relevant forces
are inertia forces, viscous forces and the forces due to differences of pres-
sure. The ratio chosen for consideration in this instance is that of |Inertia
force| to |Net viscous force| and this ratio must be the same for correspond-
ing particles in the two systems if dynamic similarity between the systems is
to be realized. (There is no need to consider separately the ratio of |Inertia
force| to |Pressure force| since, once the inertia force and net viscous force are
fixed, the pressure force is determined automatically by the condition that
the resultant of all three must be zero.) In a case where the forces involved
are weight, pressure force and inertia force, the ratio chosen is |Inertia force|
to |Weight|.

We shall now consider the various force ratios in turn.

5.3.1 Dynamic similarity of flow with viscous forces acting

There are many instances of flow that is affected only by viscous, pressure
and inertia forces. If the fluid is in a full, completely closed conduit, gravity
cannot affect the flow pattern; surface tension has no effect since there is no
free surface, and if the velocity is well below the speed of sound in the fluid
the compressibility is of no consequence. These conditions are met also in the
flow of air past a low-speed aircraft and the flow of water past a submarine
deeply enough submerged to produce no waves on the surface.

Now for dynamic similarity between two systems, the magnitude ratio of
any two forces must be the same at corresponding points of the two systems
(and, if the flow is unsteady, at corresponding times also). There are three
possible pairs of forces of different kinds but, by convention, the ratio of
|Inertia force| to |Net viscous force| is chosen to be the same in each case.

The inertia force acting on a particle of fluid is equal in magnitude to
the mass of the particle multiplied by its acceleration. The mass is equal to
the density � times the volume (and the latter may be taken as proportional
to the cube of some length l which is characteristic of the geometry of the
system). The mass, then, is proportional to �l3. The acceleration of the
particle is the rate at which its velocity in that direction changes with time and
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so is proportional in magnitude to some particular velocity divided by some
particular interval of time, that is, to u/t, say. The time interval, however,
may be taken as proportional to the chosen characteristic length l divided
by the characteristic velocity, so that finally the acceleration may be set
proportional to u÷ (l/u) = u2/l. The magnitude of the inertia force is thus
proportional to �l3u2/l = �u2l2.

The shear stress resulting from viscosity is given by the product of viscosity
µ and the rate of shear; this product is proportional to µu/l. The magnitude
of the area over which the stress acts is proportional to l2 and thus the
magnitude of viscous force is proportional to (µu/l) × l2 = µul.

Consequently, the ratio

|Inertia force|
|Net viscous force| is proportional to

�l2u2

µul
= �ul

µ

The ratio �ul/µ is known as theReynolds number. For dynamic similarity ofReynolds number
two flows past geometrically similar boundaries and affected only by viscous,
pressure and inertia forces, the magnitude ratio of inertia and viscous forces
at corresponding points must be the same. Since this ratio is proportional
to Reynolds number, the condition for dynamic similarity is satisfied when
the Reynolds numbers based on corresponding characteristic lengths and
velocities are identical for the two flows.

The length l in the expression for Reynolds number may be any length that
is significant in determining the pattern of flow. For a circular pipe completely
full of the fluid the diameter is now invariably used – at least in Great Britain
and North America. (Except near the inlet and outlet of the pipe the length
along its axis is not relevant in determining the pattern of flow. Provided
that the cross-sectional area of the pipe is constant and that the effects of
compressibility are negligible, the flow pattern does not change along the
direction of flow – except near the ends as will be discussed in Section 7.9.)
Also by convention the mean velocity over the pipe cross-section is chosen
as the characteristic velocity u.

For flow past a flat plate, the length taken as characteristic of the flow
pattern is that measured along the plate from its leading edge, and the char-
acteristic velocity is that well upstream of the plate. The essential point is
that, in all comparisons between two systems, lengths similarly defined and
velocities similarly defined must be used.

5.3.2 Dynamic similarity of flow with gravity forces acting

We now consider flow in which the significant forces are gravity forces,
pressure forces and inertia forces. Motion of this type is found when a free
surface is present or when there is an interface between two immiscible fluids.
One example is the flow of a liquid in an open channel; another is the wave
motion caused by the passage of a ship through water. Other instances are
the flow over weirs and spillways and the flow of jets from orifices into the
atmosphere.
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The condition for dynamic similarity of flows of this type is that the
magnitude ratio of inertia to gravity forces should be the same at corres-
ponding points in the systems being compared. The pressure forces, as in
the previous case where viscous forces were involved, are taken care of by
the requirement that the force polygon must be closed. The magnitude of the
inertia force on a fluid particle is, as shown in Section 5.3.1, proportional
to �u2l2 where � represents the density of the fluid, l a characteristic length
and u a characteristic velocity. The gravity force on the particle is its weight,
that is, � (volume) g which is proportional to �l3g where g represents the
acceleration due to gravity. Consequently the ratio

|Inertia force|
|Gravity force| is proportional to

�l2u2

�l3g
= u2

lg

In practice it is often more convenient to use the square root of this ratio so
as to have the first power of the velocity. This is quite permissible: equality
of u/(lg)1/2 implies equality of u2/lg.

The ratio u/(lg)1/2 is known as the Froude number after William Froude Froude number
(1810–79), a pioneer in the study of naval architecture, who first introduced
it. Some writers have termed the square of this the Froude number, but the
definition Froude number = u/(lg)1/2 is now more usual.

Dynamic similarity between flows of this type is therefore obtained by
having values of Froude number (based on corresponding velocities and cor-
responding lengths) the same in each case. The boundaries for the flows must,
of course, be geometrically similar, and the geometric scale factor should be
applied also to depths of corresponding points below the free surface.

Gravity forces are important in any flow with a free surface. Since the
pressure at the surface is constant (usually atmospheric) only gravity forces
can under steady conditions cause flow. Moreover, any disturbance of the
free surface, such as wave motion, involves gravity forces because work must
be done in raising the liquid against its weight. The Froude number is thus a
significant parameter in determining that part of a ship’s resistance which is
due to the formation of surface waves.

5.3.3 Dynamic similarity of flow with surface tension forces acting

In most examples of flow occurring in engineering work, surface tension
forces are negligible compared with other forces present, and the engineer
is not often concerned with dynamic similarity in respect to surface tension.
However, surface tension forces are important in certain problems such as
those in which capillary waves appear, in the behaviour of small jets formed
under low heads, and in flow of a thin sheet of liquid over a solid surface.

Here the significant force ratio is that of |Inertia force| to |Surface tension
force|. Again, pressure forces, although present, need not be separately con-
sidered. The force due to surface tension is tangential to the surface and
has the same magnitude perpendicular to any line element along the surface.
If the line element is of length �l then the surface tension force is γ (�l)
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where γ represents the surface tension. Since inertia force is proportional to
�u2l2 (Section 5.3.1) and �l is proportional to the characteristic length l,
the ratio

|Inertia force|
|Surface tension force| is proportional to

�l2u2

γ l
= �lu2

γ

The square root of this ratio, u(�l/γ )1/2, is now usually known as theWeber number
Weber number after the German naval architect Moritz Weber (1871–1951)
who first suggested the use of the ratio as a relevant parameter. Sometimes,
however, the ratio (�lu2/γ ) and even its reciprocal are also given this name.

5.3.4 Dynamic similarity of flow with elastic forces acting

Where the compressibility of the fluid is important the elastic forces must
be considered along with the inertia and pressure forces, and the magnitude
ratio of inertia force to elastic force is the one considered for dynamic simil-
arity. Equation 1.7 shows that for a given degree of compression the increase
of pressure is proportional to the bulk modulus of elasticity, K. Therefore, if l
again represents a characteristic length of the system, the pressure increase
acts over an area of magnitude proportional to l2, and the magnitude of the
force is proportional to Kl2. Hence the ratio

|Inertia force|
|Elastic force| is proportional to

�l2u2

Kl2
= �u2

K

The parameter �u2/K is known as the Cauchy number, after the FrenchCauchy number
mathematician A. L. Cauchy (1789–1857). However, as we shall see in
Chapter 11, the velocity with which a sound wave is propagated through
the fluid (whether liquid or gas) is a = √

(Ks/�) where Ks represents the
isentropic bulk modulus. If we assume for the moment that the flow under
consideration is isentropic, the expression �u2/K becomes u2/a2.

In other words, dynamic similarity of two isentropic flows is achieved if,Mach number
along with the prerequisite of geometric similarity of the boundaries, u2/a2

is the same for corresponding points in the two flows. This condition is equi-
valent to the simpler one that u/amust be the same at corresponding points.
This latter ratio is known as the Mach number in honour of Ernst Mach
(1838–1916), the Austrian physicist and philosopher. It is very important in
the study of the flow of compressible fluids. It should be remembered that
a represents the local velocity of sound, which, for a given fluid, is determ-
ined by the values of absolute pressure and density at the point where u is
measured.

If the change of density is not small compared with the mean density,
then thermodynamic considerations arise. In particular, the ratio of principal
specific heat capacities γ must be the same in the two cases considered. Where
appreciable changes of temperature occur, the ways in which viscosity and
thermal conductivity vary with temperature may also be important. These
matters are outside the scope of this book, but it is well to remember that
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equality of the Mach numbers is not in every case a sufficient criterion for
dynamic similarity of the flow of compressible fluids.

Effects of compressibility usually become important in practice when the
Mach number exceeds about 0.3. Apart from its well-known significance
in connection with high-speed aircraft and missiles, the Mach number also
enters the study of propellers and rotary compressors.

5.4 THE PRINCIPAL DIMENSIONLESS GROUPS OF FLUID
DYNAMICS

It is appropriate at this point to summarize the principal dimension-
less groups to emerge from the considerations of dynamic similarity in
Section 5.3. These dimensionless groups are of fundamental importance in
fluid dynamics and are set out in Table 5.1. In every case l represents a
length that is characteristic of the flow pattern. It is always good practice to
be specific about the definition of l, even in the few cases where it is usually
determined by convention. Similarly, u represents a velocity that is charac-
teristic of the flow pattern and again it should be defined so as to remove
uncertainty. For example, for incompressible flow through circular pipes, l
is usually replaced by the pipe diameter d, and u is taken as the mean flow
velocity, defined as the volumetric flow rate divided by cross-sectional area.

5.5 OTHER DIMENSIONLESS GROUPS

We have already dealt in Section 5.4 with a small but important collection
of independent dimensionless groups, including Reynolds number, Mach
number, Froude number and Weber number. Besides these dimensionless
groups, there are numerous others that have their place in the study of fluid
mechanics. A number of these fall into one or other of three important
sub-sets expressing in a dimensionless form (i) differences in pressure (or
head); (ii) forces on bodies; or (iii) surface shear stresses (friction) resulting

Table 5.1 Principal dimensionless groups in fluid dynamics

Dimensionless
group

Name Represents
magnitude ratio of
these forces

Recommended
symbol

�ul/µ Reynolds number
|Inertia force|
|Viscous force| Re

u/(lg)1/2 Froude number
|Inertia force|
|Gravity force| Fr

u/(l�/γ )1/2 Weber number
|Inertia force|

|Surface tension force| We

u/a Mach number
|Inertia force|
|Elastic force| M
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from fluid motion. These can be broadly classified as pressure coefficients,
force coefficients and friction coefficients, respectively. Amongst the force
coefficients are the lift and drag coefficients, of fundamental importance
in aircraft aerodynamics. The friction coefficients include amongst their
number the friction factor associated with pipe flow, and the skin friction
coefficient used to describe in a dimensionless form the surface shear stresses
of external fluid flow. Examples of dimensionless groups which fall outside
these named categories are the Strouhal number, which arises in the treat-
ment of cyclical phenomena, and the mass flow parameter, which is a useful
concept when dealing with compressible flows in pipes. Apart from the pres-
sure coefficients, which will be discussed explicitly, albeit briefly, all other
dimensionless groups will be considered as they arise.

5.5.1 The pressure coefficient and related coefficients

Pressure forces are always present and are therefore represented in any
complete description of fluid flow. When expressed in dimensionless form,
the ratio of pressure forces to other types of forces appears. For example,
the ratio

|Pressure force|
|Inertia force| is proportional to

�p∗l2

�l2u2
= �p∗

�u2

where �p∗ represents the difference in piezometric pressure between two
points in the flow. In fluid dynamics, it has become normal practice to use
the ratio �p∗/1

2�u2, the 1
2 being inserted so that the denominator represents

kinetic energy divided by volume or, for an incompressible fluid, the dynamic
pressure of the stream (see Section 3.7.1). This latter form is usually known
as the pressure coefficient, denoted by the symbol Cp.

Several other similar coefficients are, in essence, variants of the pressure
coefficient. Amongst these are the static and total pressure loss coefficients,
widely used to describe the dissipation of mechanical energy that occurs in
internal fluid flows, and the pressure recovery coefficient more specifically
used to describe the properties of diffusers. Also in this category are the
corresponding head loss coefficients.

5.5.2 The discharge coefficient

The discharge coefficient is an important dimensionless parameter which
relates the flow rate through a differential-pressure flow-metering device,
such as an orifice plate, nozzle or venturi tube, to the pressure distribu-
tion the flow generates. It was first introduced in Chapter 3, where it was
used to adjust theoretical values of mass flow rate (or volumetric flow rate),
derived from simplistic mathematical models of fluid motion which ignored
the effects of viscosity, to yield improved comparisons with the behaviour
of real flows. The method of dimensional analysis provides a more rigorous
justification for the use of the discharge coefficient, since, from the outset,
the analysis takes full account of the viscous nature of real fluids.
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Consider the incompressible flow along a straight section of circular pipe
in which there is a constriction due to the presence of an orifice plate, nozzle
or venturi tube. Denote the diameter of the pipe byD and the diameter at the
minimum cross-sectional area by d. The pressure varies along the pipe partly
as a result of viscous effects but mainly as a consequence of the geometry
of the constriction, which causes the flow to accelerate. The difference in
piezometric pressure �p∗ measured between two arbitrary points along the
pipe, denoted by suffices a and b, depends on the positions at which the
pressures are measured. In the most general case, the position of each tapping
can be specified in terms of cylindrical polar coordinates x, r, θ . In practice,
for flow-metering, the pressure tappings are located at the circumference
of the pipe and efforts are made to ensure that the flow approaching the
device is axisymmetric. Hence the positions of the pressure tappings are
fully specified by the distance along the pipe axis, xa and xb, measured
from some arbitrary datum. The positions xa and xb are chosen so that the
measured pressure difference is a maximum, or close to a maximum, for a
given flow rate. In practice this requires an upstream tapping to be located
in the pipe upstream of the constriction, and the downstream tapping to be
at, or close to, the plane of minimum cross-section. Besides the effects of D,
d, xa and xb, the magnitude of �p∗ is determined by the mean velocity of
the flow in the pipe, u, and the fluid density, �, and dynamic viscosity, µ.
Hence, for a device of specified geometry, we may write

�p∗ = f (D,d,xa,xb,u, �, µ)

Dimensional analysis (see Section 5.6) yields the relation for the dimen-
sionless pressure coefficient

�p∗/(
1
2�u2

)
= f1(d/D,xa/D,xb/D, �uD/µ) (5.1)

Denote the cross-sectional area of the pipe by A1 and the minimum cross-
sectional area at the constriction by A2. The continuity equation, evaluated
in the upstream pipe, yieldsm = �A1u, which when substituted in equation 1
gives after rearrangement

m
/[
A1(2��p∗)1/2

]
= f2(d/D,xa/D,xb/D, �uD/µ) (5.2)

It has become established practice in flow-metering to use the throat area A2
rather than A1 as the reference cross-sectional area. Hence eqn 5.2 can be
replaced by

m
/[
A2(2��p∗)1/2

]
= f3(d/D,xa/D,xb/D, �uD/µ) (5.3)

The dimensionless groupm/
[
A2(2��p∗)1/2] is sometimes referred to as the

flow coefficient.
A universal practice in flow-metering is to use the discharge coefficient

Cd rather than the flow coefficient, although the two are closely related.
The discharge coefficient Cd is defined by the equation

Cd = m(1 − λ2)1/2

A2(2��p∗)1/2
(5.4)
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where λ = A2/A1 = (d/D)2 and the dimensionless quantity (1 − λ2)−1/2 is
known as the velocity of approach factor. A comparison of equations 5.3
and 5.4 shows that Cd can be expressed by the relation

Cd = f4(d/D,xa/D,xb/D, �uD/µ) (5.5)

In summary Cd is shown to depend on the area ratio of the constriction (as
well as on the basic geometry of the flow-metering device), the positions of
the two pressure tappings, and the Reynolds number.

The given derivation of eqn 5.5 applies to the flow through differential-
pressure flow-metering devices used in internal flow systems. Weirs and
notches are devices used for flow-rate measurement for fluid motion where a
free surface exists. An approach, starting with the appropriate independent
variables and again based on the methods of dimensional analysis, can be
used to derive relationships for the discharge coefficients for these devices.

5.5.3 Cavitation number

In some instances of liquid flow the pressure at certain points may become
so low that vapour cavities form – this is the phenomenon of cavitation
(see Section 13.3.6). Pressures are then usefully expressed relative to pv,
the vapour pressure of the liquid at the temperature in question. A signi-
ficant dimensionless parameter is the cavitation number, (p − pv)/

1
2� u2

(which may be regarded as a special case of the pressure coefficient). For
fluid machines a special definition due to D. Thoma is more often used (see
Section 13.3.6).

Ratios involving electrical and magnetic forces may arise if the fluid is per-
meable to electrical and magnetic fields. These topics, however, are outside
the scope of this book.

5.6 DIMENSIONAL ANALYSIS

When used effectively, dimensional analysis has a vital role to play in the
field of fluid mechanics. It can be used to reduce theoretical equations to
dimensionless forms, but the most important application is in relation to
experimental work. In the latter application, dimensional analysis is the tool
which enables the principles of physical similarity to be applied to solve
practical problems. Dimensional analysis alone can never give the complete
solution of a problem. However, the efficient use of dimensional analysis
assists all aspects of experimentation, including the planning and execution
stages, and the interpretation of results.

5.6.1 Introduction to dimensional analysis

As a starting point for the discussion of dimensional analysis we select a
familiar equation from the world of applied mechanics. Consider a body
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moving in a straight line with constant acceleration a. If the body has an
initial velocity u, then after time t the distance s travelled is given by

s = ut + 1
2at

2 (5.6)

where we have taken s = 0 at t = 0. Using the terminology of mathematics,
in eqn 5.6 s is described as the dependent variable and t, u and a are the
independent variables. The fact that s depends upon t, u and a can be written
in the mathematical form

s = φ(t,u, a) (5.7)

where the symbol φ( ) simply stands for ‘some function of’.
Suppose that we know the general functional relationship (5.7) but do

not know the precise form of eqn 5.6. We could, in principle, investigate the
relation by means of experiment. We could systematically vary t, holding u
and a constant, then vary u, holding t and a constant, and finally vary a,
holding t and u constant. In this way we could build up a picture of how s
varied with t, u and a. Clearly this would be a time-consuming task, and if we
wished to plot the results they would occupy many charts. The tests would
reveal that s depended linearly on u and a, and that the relationship between
s and t was quadratic. It would still require some ingenuity to combine the
results to yield eqn 5.6.

The quantities s, t, u and a, respectively, have the dimensions [L], [T],
[LT−1] and [LT−2]. By inspection, it is easily verified that the quantities s, ut
and at2 which appear in eqn 5.6 all have the dimensions [L], demonstrating
that the equation satisfies the requirement of dimensional homogeneity (see
Section 1.2.7).

The equation can be written in a dimensionless form by dividing all terms
in eqn 5.6 by ut, yielding

s
ut

= 1 + at
2u

(5.8)

Alternatively, eqn 5.8 can be written in functional form as

s
ut

= φ

(
at
u

)
(5.9)

The quantities s/ut and at/u are said to be dimensionless or non-dimensional.
Equation 5.8 is equivalent to eqn 5.6 but now, instead of having the four
variables of eqn 5.6 – that is s, t, u and a – we have just two, s/ut and at/u.
Expressing the relation in dimensionless form, the number of variables has
effectively been reduced by two.

At this stage we must take stock. To derive the two dimensionless groups
s/ut and at/u, we have taken advantage of the fact that we knew the ori-
ginal relationship, eqn 5.6, between s, t, u and a. When we first come to
investigate a new problem in fluid mechanics, such detailed information is
not generally available. But, in fluid mechanics, it is always possible to write
down functional relations similar to the functional relation (5.7), which can
be established from a careful assessment of the physical processes at play.
So, we need a technique which, starting from the functional relation (5.7),
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allows us to derive the corresponding dimensionless relation (5.9). This is
the province of dimensional analysis. Underlying this technique is the fact
that, where a number of independent variables affect a dependent variable,
all the variables relate to each other, not in a haphazard manner, but in a
highly structured way.

Using the methods of dimensional analysis shortly to be set out in
Section 5.6.2, the dimensionless functional relation (5.9) is easily obtained
from eqn 5.7. The precise relationship between s/ut and at/u can be
established by experiment using a few simple tests. Because the individual
variables within a dimensionless group must behave exactly as the whole
group, it is only necessary to vary one of the dependent variables system-
atically. For example, if t is varied while u and a are held constant, the
distance s travelled in time t can be measured, and the four quantities s, t,
u and a recorded. The quantities s/ut and at/u can then be evaluated, the
simple linear eqn 5.8 is readily found by plotting these values, and eqn 5.1
can be obtained by multiplying eqn 5.8 throughout by ut.

The above example involves kinematic similarity (the dimensions L and T
alone were involved). It illustrates some of the terminology used in dimen-
sional analysis and demonstrates the benefits that emerge from the use of
dimensionless groups. As has been shown earlier in this chapter, for flowing
fluids geometric similarity and dynamic similarity (involving the dimensions
M, L and T) are of particular importance.

5.6.2 The process of analysis

There are a number of different techniques that can be used to perform
a dimensional analysis. The method set out here is based on the so-called
Buckingham Pi Theorem. This has a number of virtues in that it is com-
paratively straightforward and logical, and is therefore easy to understand.
The Buckingham Pi Theorem gets its name from the fact that the analysis
yields products of variables, each of which in the original formulation of the
theorem was denoted by the symbol �, the capital Greek Pi, the mathemat-
ical notation for a product of variables. Here, instead of emphasizing that
dimensional analysis leads to products of variables, we choose to emphas-
ize the fact that it involves dimensionless groups. So instead of using the
symbol �, we shall use N to denote a non-dimensional quantity or num-
ber. The process of dimensional analysis is most easily handled by using a
routine which moves through a sequence of steps. These will be set out first
and then, to illustrate the process of analysis, an example will be worked
through in detail. Comments on various aspects of dimensional analysis
follow in Section 5.6.3.

The process of dimensional analysis is as follows:

Step 0 Ensure that the objectives and scope of the investigation are clearly
defined.

Step 1 Set down the dependent variable to be investigated, and all the
relevant independent variables that have an effect on the depend-
ent variable. In many respects, this is the most important stage
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of the analysis, and its correct implementation requires a clear
understanding of the physics of the problem under investigation.

Step 2 Set down the dimensions of all of the variables, including the
dependent and independent variables.

Step 3 Denote the total number of variables (dependent plus independent)
by n. Denote the number of base dimensions [M, L, T, �] appearing
at Step 2 by j, where j will, depending upon the investigation in
question, be equal to 2, 3 or 4. For most problems in incompressible
fluid dynamics j = 3.

Step 4 From among the independent variables, select j repeating variables, so
that all the base dimensions identified at Steps 2 and 3 are represented
amongst the repeating variables. The choice of repeating variables is
to some extent flexible, but experience shows that analysis is simpli-
fied if variables with uncomplicated dimensional formulae are chosen
as repeating variables.

Step 5 Using the j repeating variables, employ each of the remaining (n− j)
variables in turn to form k dimensionless groups.

Step 6 The final functional relation for the dimensionless groups is obtained
by expressing the dimensionless group incorporating the dependent
variable as a function of the remaining (k− 1) dimensionless groups.
At this stage the dimensional analysis is complete. However, it is
helpful to carry out a check calculation.

Step 7 Calculate (n − k) = m. Then m is usually equal to j. (In a few quite
exceptional cases m is less than j.)

Example 5.1 An experiment to determine the force arising from the
steady low-speed flow past a smooth sphere is planned. Assume the
sphere is immersed in the fluid so that free surface effects are absent.
Carry out a dimensional analysis.

Solution
Step 1

F = φ(d,u, �, µ)

where F = force on sphere, d = diameter of sphere, u = fluid
velocity, � = fluid density, and µ = dynamic viscosity.

Step 2

F d u � µ

MLT−2 L LT−1 ML−3 ML−1T−1

Step 3 Evaluate n = 5; j = 3
Step 4 Select j = 3 repeating variables which, between them involve

M, L and T.

First choose d [L]. Then choose u, since this brings in the dimension [T].
Finally, we can choose either � or µ to introduce the dimension [M].
On the grounds of simplicity, choose �.
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Step 5 Form a dimensionless group involving F and the three repeating
variables.

As a starting point, assume

N1 = F
dαuβ�γ

where α, β and γ are to be evaluated.
For N1 to be dimensionless the indices must satisfy [MLT−2] =

[L]α[LT−1]β [ML−3]γ
Equating the indices of [L] we obtain

1 = α + β − 3γ

Equating the indices of [T] we obtain

−2 = −β

Equating the indices of [M] we obtain

1 = γ

Solving β = 2, γ = 1 and hence α = 2, yielding

N1 = F
d2u2�

which is conventionally written in the form

N1 = F
�u2d2

We next form a dimensionless group involving µ and the three
repeating variables. Using a similar analysis to that set out previously,
we write

N2 = µ

dαuβ�γ

Hence

[ML−1T−1] = [L]α[LT−1]β [ML−3]γ
which is solved, as before, to yield

N2 = µ

d u �

Step 6 Hence

N1 = φ1(N2) or
F

�u2d2
= φ1

(
µ

du�

)
Finally, since µ/(du�) is recognised as the reciprocal of Reynolds
number, we can write the relation between the non-dimensional
quantities in the final form

F
�u2d2

= φ2

(
�ud
µ

)
= φ2(Re)
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Note: a suffix has been attached to the symbols φ1( ) and φ2( ) to
clarify the fact that they are different mathematical functions.

Step 7 Check calculation. Since n = 5, j = 3 and k = 2, then (n−k) =
3 which is equal to j. QED.

The reader is encouraged to go through Steps 4 to 7 again, using as
repeating variables:

(a) d, u and µ resulting in the relation F/µud = φ3(Re),
(b) d, � and µ resulting in the relation F�/µ2 = φ4(Re) and
(c) u, � and µ resulting in the relation F�/µ2 = φ4(Re) �

5.6.3 Some comments on dimensional analysis

One of the more difficult tasks for the inexperienced analyst is to decide Drawing up the list of
independent variableswhich independent variables to include in the dimensional analysis and

which to exclude. It is important to include in the list of variables all quant-
ities that influence the fundamental physics of the problem. On the other
hand, there is no virtue in bringing in quantities that have no bearing on the
situation. Here the discussion of the different kinds of dynamic similarity in
Section 5.3 provides guidance on the variables that might require consider-
ation in the field of fluid mechanics. In the context of dimensional analysis,
the term independent variable sometimes needs to be interpreted broadly.
This is because, in some experimental environments, it is not possible to vary
particular quantities, despite the fact that they have a fundamental influence
on an experiment. This is particularly so for problems in which gravity plays
a fundamental role. Some students new to dimensional analysis omit g from
the list of variables in a study where it in fact plays a fundamental role,
simply because it is a physical quantity that cannot be varied in the labor-
atory. In deciding whether or not g should be included amongst the list of
independent variables, it is often helpful to consider whether the dependent
variable would be affected if the experiment were performed on the surface
of the moon, where g differs from the value on the surface of the earth.

Temperature is another quantity that causes difficulties, because physical
properties, such as dynamic viscosity, vary significantly with temperature.
Again, in fluid mechanics, it is sufficient to consider the question of dynamic
similarity, to appreciate that the physical property, but not temperature,
should be included in the list of variables. In problems of heat transmission,
which are outside the scope of this book, temperature levels are important
and must be included in the list of variables.

There are circumstances where, in specifying the list of independent vari-
ables, a choice has to be made between a number of equally valid options.
For example, when considering problems of internal flow, the flow rate can
be represented by one of three variables, namely a representative mean velo-
city u[LT−1], volumetric flow rate Q[L3T−1] or mass flow rate m[MT−1].
The case for any one of these can be argued but, by convention, velocity is
generally used. However, there are circumstances when the use of eitherm or
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Q has the advantage of convenience. Another example arises when account
is taken of viscous effects, in both internal and external flows. Then, either
dynamic viscosity µ[ML−1T−1] or kinematic viscosity ν[L2T−1] can be used.
Again by convention µ is usually chosen.

The functional relation that emerges from a dimensional analysis is notAlternative functional
forms unique. Depending upon the choice of repeating variables, the outcome can

take a number of alternative, but equivalent, forms.
In the case discussed in Section 5.6.1, the functional relationship in

dimensionless form was:

s
ut

= φ

(
at
u

)
(5.10)

However, we could have found the functional relation by dividing
equation 5.6 throughout by at2 to obtain

s
at2

= ψ
( u
at

)
(5.11)

where

u/at = (at/u)−1 (5.12)

We note that the functional relation (5.11) can be obtained directly
from (5.10) simply by multiplying both sides of (5.10) by the dimensionless
group (at/u)−1 to yield( s

ut

)(
at
u

)−1

= s
at2

=
(
at
u

)−1

φ

(
at
u

)
= ψ

( u
at

)
This case illustrates the important point that, even though the physical law
underlying any phenomenon is unique (as exemplified here by eqn 5.6),
the description of the phenomenon by means of a functional expression
involving dimensionless groups does not lead to a single unique relation.

In the case of Example 5.1 three alternative functional forms emerged:

F/(�u2d2) = φ2(Re) (5.13)

F/µud = φ3(Re) (5.14)

F�/µ2 = φ4(Re) (5.15)

Define the non-dimensional groups

N1 = F
�u2d2

; N3 = F
µud

; N4 = F�
µ2

Since Re = (�ud/µ), and it is dimensionless, it follows by inspection that

N3 = N1 ·Re and N4 = N1 · (Re)2

Also φ3(Re) = (Re) · φ2(Re) and φ4(Re) = (Re)2 · φ2(Re).
The two cases just discussed illustrate the fact that, in functional relation-

ships, a phenomenon can be expressed non-dimensionally in a variety of
different but equivalent ways. The choice amongst the alternatives should
be mainly governed by two criteria. The first of these is convenience.
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For example, the parameter F�/µ2 is independent of d, and u, so
experimental results in which either d, or u, are varied can be analysed in a
very straightforward way by plotting F against d, or u. At the interpretation
stage the grounds of convenience can again be invoked. Experience shows
that F/(�u2d2) varies only slowly with Re at large values of Re, and so the
functional form (5.13) should be used at high Reynolds numbers. At low
values of Re, the parameter F/µud is constant or varies only slightly with
Re, and so the form (5.14) is the obvious choice at low Reynolds numbers.
The second consideration is to use what are regarded as traditional forms of
dimensionless groups. For example, the dimensionless group µ/(du�) often
arises from the process of dimensional analysis. This should be recognised
as the reciprocal of Reynolds number, by which it should be replaced.

We conclude this Section by noting that it is sometimes desirable to
reformulate a dimensional analysis to eliminate a specific variable from a
dimensionless group, often the one containing the dependent variable. This
can be done by creating an alternative dimensionless group. Consider the
dimensionless groups NA and NB related by the expression NA = φ(NB). If
there is a variable common to NA and NB, then that variable can be elimin-
ated betweenNA andNB by creating a new dimensionless groupNC. Writing
NC = NA · (NB)δ, the value of δ can be selected to eliminate the chosen vari-
able, resulting in the functional relation NC = ψ(NB). As an example of
this process, define NA = F/(�u2d2) and NB = �ud/µ, and assume that
we wish to eliminate the variable �. WriteNC = (F/(�u2d2)) · (�ud/µ)δ. By
inspection δ = 1 and hence NC = F/µud.

Example 5.2 The flow rate through differential-pressure flow-
metering devices, such as venturi and orifice-plate meters, can be
calculated when the value of the discharge coefficient is known.
Information on the discharge coefficient is conventionally presented
as a function of the Reynolds number.

(a) Shown that this method of presenting the data is inconvenient for
many purposes.

(b) By using different dimensionless parameters, show that these
difficulties can be avoided.

Solution
Define the mean velocities in the pipe and at the throat by u1 and
u2, and the upstream pipe diameter and throat diameter by D and d,
respectively.

(a) Reference to Chapter 3 shows that the discharge coefficient, C,
is defined as

C = Q
E(π/4)d2

√
1

2g�h
= Q
E(π/4)d2

√
�

2�p

where E = {1 − (d/D)4}−1/2.
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The Reynolds number can be defined in terms of conditions in the
pipe or at the throat, so that

ReD = �u1D
µ

and Red = �u2d
µ

Data are usually presented in the form

C = function(β,Re) or α = function (β,Re),

where α = CE and β = d/D.
Whether Red or ReD is used is unimportant in the context of the

present arguments.
In order to evaluate the flow rate Q corresponding to a measured

differential pressure or head, the value of C must first be established.
But C is, in general, a function of Re, and Re itself depends upon the
value of Q, since, from the continuity condition,

u1 = 4Q
πD2

and u2 = 4Q
πd2

Hence it is demonstrated that it is not possible to determine � directly
from this method of presentation of the data, whether in chart or
equation form. In this situation, the use of a process of successive
approximations to determineQ is often recommended, but it is rather
cumbersome and is, in any event, unnecessary.

(b) A presentation which allows a direct approach to the calculation
of the flow rate is to define a new non-dimensional parameter, based
on the known value �h or �p, rather than the unknown u1 or u2.

Define

Npd = (��p)1/2d
µ

= (�2g�h)1/2d
µ

and

NpD = (��p)1/2D
µ

= (�2g�h)1/2D
µ

These new variables are related to Re by

Npd = Red√
2α

and NpD = ReD√
2αβ2

A plot or correlating equation, with C as the dependent variable, and
β and Npd (or NpD) as independent variables, allows the flow rate
to be determined directly from measurements of differential pressure
or head. The method is as follows: First, β and Npd (or NpD) are
evaluated. Second, C is now determined. Finally,Q is calculated from
the

�

equation

Q = C(π/4)d2(2g�h)1/2

(1 − β4)1/2
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If, after performing a dimensional analysis, experimental data are plotted Scatter
in dimensionless form and they do not exhibit any obvious trends there
are a number of possible explanations. First check that the test equipment
and instrumentation are functioning correctly. Next check that the dimen-
sional analysis has been processed correctly and that the derived quantities
are indeed dimensionless. If these conditions are satisfied, the next stage
is to check that the experiments are being implemented correctly. Each
test should investigate the effect on the dependent dimensionless group
of just one of the other dimensionless groups, whilst the remainder are
all held constant. Without careful attention to detail, it is all too easy
to overlook the fact that a dependent variable may appear in more than
one dimensionless group, and so when its value is changed, it affects
several dimensionless groups simultaneously. The cure here is either to
test the effect of an alternative parameter, or to reformulate the dimen-
sional analysis. Finally, if the scatter cannot be eliminated by action on
these fronts, the explanation is probably that a factor that has a funda-
mental influence on the experiment has been omitted from the original
dimensional analysis. In this case it is necessary to start from square one
again.

5.7 THE APPLICATION OF DYNAMIC SIMILARITY

We have already seen that, for the solution of many problems in the mechan-
ics of fluids, experimental work is required, and that such work is frequently
done with models of the prototype. To take a well-known example, the
development of an aircraft is based on experiments made with small models
of the aircraft held in a wind-tunnel. Not only would tests and subsequent
modifications on an actual aircraft prove too costly: there could be consid-
erable danger to human life. The tests on the model, however, will have
little relevance to the prototype unless they are carried out under conditions
in which the flow of air round the model is dynamically similar to the flow
round the prototype.

Consider the testing of an aircraft model in a wind-tunnel in order to
find the force F on the prototype. Here the force F might represent the
overall force on the aircraft, or it might represent either the lift force,
L, or drag force, D, which are components of F. The model and proto-
type are, of course, geometrically similar. Viscous and inertia forces are
involved; gravity forces, however, may be disregarded. This is because the
fluid concerned – air – is of small density, and the work done by grav-
ity on the moving air is negligible. Surface tension does not concern us
because there is no interface between a liquid and another fluid, and we
shall assume that the aircraft is a low-speed type so that effects of com-
pressibility are negligible. Apart from the inevitable pressure forces, then,
only viscous and inertia forces are involved, and thus the relevant dimen-
sionless parameter appearing as an independent variable is the Reynolds
number. The usual processes of dimensional analysis, in fact, yield the
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result

F
�u2l2

= φ

(
�ul
µ

)
= φ(Re) (5.16)

where � and µ respectively represent the density and dynamic viscosity of the
fluid used, u represents the relative velocity between the aircraft (prototype
or model) and the fluid at some distance from it, and l some characteristic
length – the wing span, for instance.

Now eqn 5.16 is true for both model and prototype. For true dynamic
similarity between model and prototype, however, the ratio of force mag-
nitudes at corresponding points must be the same for both, and so, for this
case, the Reynolds number must be the same. Consequently, the function
φ(Re) has the same value for both prototype and model and so F/�u2l2 is
the same in each case. Using suffix m for the model and suffix p for the
prototype, we may write

Fp

�pu2
pl2p

= Fm

�mu2
ml2m

(5.17)

This result is valid only if the test on the model is carried out under such
conditions that the Reynolds number is the same as for the prototype. Then

�mumlm
µm

= �puplp
µp

and so um = up

(
lp
lm

)(
�p

�m

)(
µm

µp

)
(5.18)

The velocity um for which this is true is known as the corresponding velocity.
Only when the model is tested at the corresponding velocity are the flow
patterns about the model and prototype exactly similar.

Although the corresponding velocity um must be determined by equating
the Reynolds number (or other relevant parameter) for model and prototype,
there may be other considerations that limit the range of um. When a model
aircraft is tested, the size of the model is naturally less than that of the
prototype. In other words, lp/lm > 1.0. If the model is tested in the same fluid
(atmospheric air) as is used for the prototype we have �m = �p and µm = µp
Thus, from eqn 5.18, um = up(lp/lm) and since lp/lm > 1, um is larger than
up. Even for a prototype intended to fly at only 300 km · h−1, for example,
a model constructed to one-fifth scale would have to be tested with an air
speed of 300 × 5 = 1500 km · h−1. At velocities as high as this, the effects
of the compressibility of air become very important and the pattern of flow
round the model will be quite different from that round the prototype, even
though the Reynolds number is kept the same. With present-day high-speed
aircraft, such difficulties in the testing of models are of course accentuated,
and special wind tunnels have been built to address the problem.

One way of obtaining a sufficiently high Reynolds number without using
inconveniently high velocities is to test the model in air of higher density.
In the example just considered, if the air were compressed to a density five
times that of the atmosphere, then um = up(5)(1/5)(1/1) = up, that is,
model and prototype could be tested at the same relative air velocity. (Since
the temperature of the compressed air would not depart greatly from that of
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atmospheric air, the dynamic viscosity µ would not be significantly different
for model and prototype. The sonic velocity a = √

(γp/�) = √
(γRT)

would also be unchanged. Undesirable compressibility effects could thus
be avoided.) Such a procedure of course involves much more complicated
apparatus than a wind-tunnel using atmospheric air. If such a test facility
is not available, complete similarity has to be sacrificed and a compromise
solution sought. It is in fact possible in this instance to extrapolate the results
of a test at moderate velocity to the higher Reynolds number encountered
with the prototype. The basis of the extrapolation is that the relationship
between the Reynolds number and the forces involved has been obtained
from experiments in which other models have been compared with their
prototypes.

For dynamic similarity in cases where the effects of compressibility are
important for the prototype (as for a higher-speed aircraft, for example)
the Mach numbers also must be identical (Section 5.3.4). For complete
similarity, therefore, we require

�mumlm
µm

= �puplp
µp

(equality of Reynolds number)

and
um

am
= up

ap
(equality of Mach number)

For both conditions to be satisfied simultaneously(
lp
lm

)(
�p

�m

)(
µm

µp

)
= um

up
= am

ap
=

(
Km/�m

Kp/�p

)1/2

Unfortunately, the range of values of �, µ andK for available fluids is limited,
and no worthwhile size ratio (lp/lm) can be achieved. The compressibility
phenomena, however, may readily be made similar by using the same Mach
number for both model and prototype. This condition imposes no restriction
on the scale of the model, since no characteristic length is involved in the
Mach number. If the same fluid at the same temperature and pressure is used
for both model and prototype, then Km = Kp and �m = �p (at correspond-
ing points) and so am = ap and um = up. Thus the model has to be tested at
the same speed as the prototype no matter what its size. In a test carried out
under these conditions the Reynolds number would not be equal to that for
the prototype, and the viscous forces would consequently be out of scale.
Fortunately, in the circumstances considered here, the viscous forces may be
regarded as having only a secondary effect, and may be allowed to deviate
from the values required for complete similarity. It has been found in practice
that, for most purposes, eqn 5.17 is an adequate approximation, even though
um is not the corresponding velocity giving equality of Reynolds number.

The important point is this. If forces of only one kind are significant,
apart from inertia and pressure forces, then complete dynamic similarity
is achieved simply by making the values of the appropriate dimensionless
parameter (Reynolds, Froude, Weber or Mach number) the same for model
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and prototype. Where more than one such parameter is relevant it may
still be possible to achieve complete similarity, but it is usually necessary to
depart from it. It is essential that these departures be justified. For example,
those forces for which dynamic similarity is not achieved must be known to
have only a small influence, or an influence that does not change markedly
with an alteration in the value of the appropriate dimensionless parameter.
If possible, corrections to compensate for these departures from complete
similarity should be made. An example of such a procedure will be given in
Section 5.8.

One further precaution in connection with the testing of models should
not be overlooked. It may happen that forces having a negligible effect on
the prototype do materially affect the behaviour of the model. For example,
surface tension has a negligible effect on the flow in rivers, but if a model
of a river is of small scale the surface tension forces may have a marked
effect. In other words, the Weber number may have significance for the
model although it may safely be disregarded for the prototype. The result
of this kind of departure from complete similarity – an effect negligible for
the prototype being significant in the model (or vice versa) – is known as a
scale effect. The roughness of the surface of solid boundaries frequently gives
rise to another scale effect. Even more serious is a discrepancy of Reynolds
number whereby laminar flow exists in the model system although the flow
in the prototype is turbulent. Scale effects are minimized by using models
that do not differ in size from the prototype more than necessary.

5.8 SHIP RESISTANCE

We now turn our attention to a particularly important and interesting
example of model testing in which complete similarity is impossible to
achieve, and we shall examine the methods by which the difficulty has been
surmounted. The testing of models is the only way at present known of
obtaining a reliable indication of the power required to drive a ship at a
particular speed, and also other important information.

Any solid body moving through a fluid experiences a drag, that is, a resist-
ance to its motion. Part of the drag results directly from the viscosity of the
fluid: at the surface of the body the fluid moves at the same velocity as the
surface (the condition of no slip at a boundary) and thus shear stresses are set
up between layers of fluid there and those farther away. This part of the total
drag due to resolved components of surface shear stresses is usually termed
skin friction drag. In addition, viscous effects cause the distribution of pres-
sure round the body to be different from that to be expected in an inviscid
fluid, so providing another contribution to the total drag force. This second
component of drag – due to the resolved components of normal pressure –
is usually known in an aeronautical context (see Section 8.8) as form drag,
but in the nautical world is often referred to as eddy-making resistance.

These two types of resistance – the skin friction and eddy-making resist-
ance – are experienced by any solid body moving through any fluid. A ship,
however, is only partly immersed in a liquid, and its motion through liquid
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gives rise to waves on the surface. The formation of these waves requires
energy, and, since this energy must be derived from the motion, the ship
experiences an increased resistance to its passage through the liquid.

Waves on the surface of a liquid may be of two kinds. Those of the first
type are due to surface tension forces, and are known as capillary waves or
ripples; they are of little importance except for bodies that are small in size
compared with the waves. In the case of ship resistance it is waves of the
second type that are important. These result from the action of gravity on
the water that tends to accumulate around the sides of the hull. Usually two
main sets of waves are produced, one originating at the bow and the other
at the stern of the ship. These both diverge from each side of the hull, and
there are also smaller waves whose crests are perpendicular to the direction
of motion.

In the formation of waves, some water is raised above the mean level, while
some falls below it. When particles are raised work must be done against their
weight, so gravity, as well as viscosity, plays a part in the resistance to motion
of a ship. In a dimensional analysis of the situation the quantities considered
must therefore include the gravitational acceleration g. The complete list of
relevant quantities is therefore the total resistance force F, the velocity of the
ship u, the dynamic viscosity of the liquid µ, its density �, some characteristic
length l to specify the size of the ship (the overall length, for example) and g.
As already indicated, surface tension forces are negligible (except for models
so small as to be most suitable as children’s bath-time toys). We assume that
the shape is specified, so that quoting a single length is sufficient to indicate
all other lengths for a particular design. The geometric similarity of a model
should extend to the relative roughness of the surfaces if complete similarity
is to be achieved. (Usually the depth of water is sufficiently large compared
with the size of the ship not to affect the resistance. Where this is not so,
however, the depth of the water must be included among the lengths that
have to satisfy geometric similarity. Likewise, the distance from a boundary,
such as a canal bank, might have to be considered.) The most suitable form
of the result of dimensional analysis is

F = �u2l2φ

{
�ul
µ

,
u2

lg

}

that is

F = �u2l2φ{Re, (Fr)2} (5.19)

The total resistance therefore depends in some way both on the Reynolds
number and on the Froude number. We remember that dimensional analysis
tells us nothing about either the form of the function φ{ }, or how Re and
Fr are related within it. For complete similarity between a prototype and its
model the Reynolds number must be the same for each, that is

�puplp
µp

= �mumlm
µm

(5.20)
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and also the Froude number must be the same, that is,

up

(lpgp)1/2
= um

(lmgm)1/2
(5.21)

Equation 5.20 gives um/up = (lp/lm)(νm/νp) where ν = µ/�, and eqn 5.21
gives um/up = (lm/lp)1/2 since, in practice, gm cannot be significantly dif-
ferent from gp. For testing small models these conditions are incompatible;
together they require (lp/lm)3/2 = νm/νp and, since, both model and proto-
type must operate in water, lm cannot be less than lp. (There is no practicable
liquid that would enable νm to be much less than νp.) Thus similarity of vis-
cous forces (represented by Reynolds number) and similarity of gravity forces
(represented by Froude number) cannot be achieved simultaneously between
model and prototype.

The way out of the difficulty is basically that suggested by Froude. The
assumption is made that the total resistance is the sum of three distinct
parts: (a) the wave-making resistance; (b) skin friction; (c) the eddy-making
resistance. It is then further assumed that part (a) is uninfluenced by viscosity
and is therefore independent of the Reynolds number; also that (b) depends
only on Reynolds number. Item (c) cannot be readily estimated, but in most
cases it is only a small proportion of the total resistance, and varies little
with Reynolds number. Therefore it is usual to lump (c) together with (a).

These assumptions amount to expressing the function of Re and Fr in
eqn 5.19 as the sum of two separate functions, φ1(Re) + φ2(Fr). Now the
skin friction, (b), may be estimated by assuming that it has the same value
as that for a thin flat plate, with the same length and wetted surface area,
moving end-on through the water at the same velocity. Froude and others
have obtained experimental data for the drag on flat plates, and this inform-
ation has been systematized by boundary-layer theory (see Chapter 8). The
difference between the result for skin friction so obtained and the total res-
istance must then be the resistance due to wave-making and eddies. Since
the part of the resistance that depends on the Reynolds number is separately
determined, the test on the model is conducted at the corresponding velocity
giving equality of the Froude number between model and prototype; thus
dynamic similarity for the wave-making resistance is obtained.

Example 5.3 A ship 125 m long (at the water-line) and having a
wetted surface of 3500 m2 is to be driven at 10 m · s−1 in sea-water.
A model ship of 1/25th scale is to be tested to determine its resistance.

Solution
The velocity at which the model must be tested is that which gives
dynamic similarity of the wave-making resistance. That is, the Froude
number of prototype and model must be the same.

um

(glm)1/2
= up

(glp)1/2
∴ um = up

(
lm
lp

)1/2

= 10 m · s−1
√

25
= 2 m · s−1
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To be tested, the model must therefore be towed through water at
2 m · s−1. There will then be a pattern of waves geometrically similar
to that with the prototype.

Suppose that, at this velocity, the total resistance of the model (in
fresh water) is 54.2 N and that its skin friction is given by 1

2�u2
mAm ×

CF, where Am represents the wetted surface area of the model and CF
its mean skin-friction coefficient which is given by

CF = 0.075
(log10 Re− 2)2

This is a widely used empirical formula for ships with smooth surfaces.
(Model ships are usually constructed of, for example, polyurethane so
that modifications to the shape may easily be made.)

The Reynolds number Re in the formula is based on the water-
line length, which for the model is (125/25)m = 5 m. The kinematic
viscosity of fresh water at, say, 12 ◦C is 1.235 mm2 · s−1 and so Re for
the model is

2 m · s−1 × 5 m
1.235 × 10−6 m2 · s−1

= 8.10 × 106

Hence

CF = 0.075
(4.9085)2

= 3.113 × 10−3

and the skin-friction resistance is

1
2

× 1000 kg · m−2(2 m · s−1)2

(
3500 m2

252

)
3.113 × 10−3 = 34.87 N

However, the total resistance was 54.2 N, so (54.2 − 34.87) N =
19.33 N must be the wave resistance + eddy-making resistance of the
model. This quantity is usually known as the residual resistance.

Now if the residual resistance is a function of Froude number but
not of Reynolds number, eqn 5.19 becomes, for the residual resistance
only, Fresid = �u2l2φ(Fr). Therefore

(Fresid)p

(Fresid)m
= �pu2

pl
2
p

�mu2
ml2m

(Since Fr is the same for both model and prototype the function φ(Fr)
cancels.)

Hence

(Fresid)p = (Fresid)m

(
�p

�m

)(
up

um

)2 (
lp
lm

)2

= (Fresid)m

(
�p

�m

)(
lp
lm

)(
lp
lm

)2

= 19.33
(

1025
1000

)
253 N = 3.096 × 105 N
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For the prototype ship Re is 10 m · s−1 × 125 m/(1.188 ×
10−6 m2 · s−1) = 1.025 × 109 (using a value of kinematic viscosity
for sea-water of standard temperature and salinity). For the proto-
type, which, even in new condition, has a rougher surface than the
model, CF is given by

0.075
(log10 Re− 2)2

+ 0.0004 = 0.075
(7.0220)2

+ 0.0004 = 1.921 × 10−3

However, the magnitude of the skin friction is not easy to determine
accurately for the prototype ship because the condition of the surface
is seldom known exactly. The surface of a new hull is quite smooth,
but after some time in service it becomes encrusted with barnacles and
coated with slime, so the roughness is rather indeterminate. The naval
architect has to make allowance for these things as far as possible. For,
say, six months in average conditions CF would be increased by about
45%. Taking CF in the present example as 1.45 × 1.921 × 10−3 =
2.785 × 10−3 we then find that the ship’s frictional resistance is
1
2�pu2

pApCF = 1
2 × 1025 kg · m−3(10 m · s−1)23500 m2 × 2.785 × 10−3

= 5.00 × 105 N

The total resistance of the prototype is therefore (3.096 +
5.00)105 N = 810 kN.�

Example 5.4 A production torpedo has a maximum speed of
11 m · s−1 as originally designed. By introducing a series of design
changes, the following improvements were achieved:

1. the cross-sectional area was reduced by 12%;
2. the overall drag coefficient was reduced by 15%;
3. the propulsion power was increased by 20%.

What was the maximum speed of the redesigned torpedo?

Solution
Use suffix 1 to denote the original design, and suffix 2 to denote the
revised design. Then

A2 = A1 − 0.12A1 = 0.88A1

CD2 = CD1 − 0.15CD1 = 0.85CD1

P2 = P1 + 0.20P1 = 1.20P1

Since

P = DV and D = 1
2�V2ACD
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it follows that

P2

P1
= D2V2

D1V1
=

(
1
2�V2ACD

)
2
V2(

1
2�V2ACD

)
1
V1

=
(
V2

V1

)3 (
A2

A1

)(
CD2

CD1

)

Hence

V2

V1
=

(
P2A1CD1

P1A2CD2

)1/3

and V2 = 11 m · s−1 ×
(

1.2
(0.88)(0.85)

)1/3

V2 = 12.88 m · s−1
�

We may note that, for a submarine travelling at a sufficient depth below
the surface that no surface waves are formed, the total resistance is that due
only to skin friction and eddy-making.

Details of methods used for calculating the skin friction vary somewhat,
but all methods are in essence based on the assumption that the drag is equal
to that for a flat plate of the same length and wetted area as the hull, and
moving, parallel to its own length, at the same velocity. This assumption
cannot be precisely true: the fact that eddy resistance is present indicates
that the flow breaks away from the surface towards the stern of the vessel,
and thus there must be some discrepancy between the skin friction of the
hull and that of a flat plate. Indeed, the entire method is based on a number
of assumptions, all of which involve a certain simplification of the true state
of affairs.

In particular, the complete independence of skin friction and wave-making
resistance is, we recall, an assumption. The wave-making resistance is in fact
affected by the viscous flow round the hull, which in turn is dependent on the
Reynolds number. Moreover, the formation of eddies influences the waves
generated near the stern of the vessel. We may note in passing that the wave-
making resistance of a ship bears no simple relation to the Froude number
(and thus to the speed). At some speeds the waves generated from the bow
of the ship reinforce those produced near the stern. At other speeds, however,
the effect of one series of waves may almost cancel that of the other because

Fig. 5.1
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the crests of one series are superimposed on the troughs of the other. As a
result the graph of wave-making resistance against speed often has a sinuous
form similar to that of Fig. 5.1. Nevertheless, the overall error introduced by
the assumptions is sufficiently small to make the testing of models extremely
valuable in the design of ships.

PROBLEMS

5.1 A pipe of 40 mm bore conveys air at a mean velocity of
21.5 m · s−1. The density of the air is 1.225 kg · m−3 and its
dynamic viscosity is 1.8 × 10−5 Pa · s. Calculate that volume
flow rate of water through the pipe which would correspond
to the same value of friction factor f if the dynamic viscosity of
water is 1.12 × 10−3 Pa · s. Compare the piezometric pressure
gradient in the two cases.

5.2 Derive an expression for the volume flow rate of a liquid (of
dynamic viscosity µ, density � and surface tension γ ) over a V
notch of given angle θ . Experiments show that for water flowing
over a 60◦ V notch a useful practical formula isQ = 0.762 h2.47

for metre-second units. What limitation would you expect in
the validity of this formula? Determine the head over a similar
notch when a liquid with a kinematic viscosity 8 times that of
water flows over it at the rate of 20 L · s−1.

5.3 A disc of diameter D immersed in a fluid of density � and vis-
cosity µ has a constant rotational speed ω. The power required
to drive the disc is P. Show that P = �ω3D5φ(�ωD2/µ). A
disc 225 mm diameter rotating at 144.5 rad · s−1 (23 rev/s)
in water requires a driving torque of 1.1 N · m. Calculate the
corresponding speed and the torque required to drive a sim-
ilar disc 675 mm diameter rotating in air. (Dynamic viscosities:
air 1.86 × 10−5 Pa · s; water 1.01 × 10−3 Pa · s. Densities: air
1.20 kg · m−3; water 1000 kg · m−3.)

5.4 The flow through a closed, circular-sectioned pipe may be
metered by measuring the speed of rotation of a propeller
having its axis along the pipe centre-line. Derive a relation
between the volume flow rate and the rotational speed of the
propeller, in terms of the diameters of the pipe and the pro-
peller and of the density and viscosity of the fluid. A propeller
of 75 mm diameter, installed in a 150 mm pipe carrying water
at 42.5 L · s−1, was found to rotate at 130 rad · s−1 (20.7 rev/s).
If a geometrically similar propeller of 375 mm diameter rotates
at 64.5 rad · s−1 (10.9 rev/s) in air flow through a pipe of
750 mm diameter, estimate the volume flow rate of the air.
The density of the air is 1.28 kg · m−3 and its dynamic vis-
cosity 1.93 × 10−5 Pa · s. The dynamic viscosity of water is
1.145 × 10−3 Pa · s.
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5.5 A torpedo-shaped object 900 mm diameter is to move in air at
60 m · s−1 and its drag is to be estimated from tests in water
on a half-scale model. Determine the necessary speed of the
model and the drag of the full-scale object if that of the model
is 1140 N. (Fluid properties as in Problem 5.3.)

5.6 What types of force (acting on particles of fluid) would you
expect to influence the torque needed to operate the rudder of
a deeply submerged mini-submarine? To investigate the oper-
ation of such a rudder, tests are conducted on a quarter-scale
model in a fresh-water tunnel. If, for the relevant temperat-
ures, the density of sea water is 2.5% greater than that of fresh
water, and the dynamic viscosity 7% greater, what velocity
should be used in the water tunnel to correspond to a velocity
of 3.5 m · s−1 for the prototype submarine? If the measured
torque on the model rudder is 20.6 N · m, what would be the
corresponding torque on the full-size rudder?

5.7 Show that, for flow governed only by gravity, inertia and pres-
sure forces, the ratio of volume flow rates in two dynamically
similar systems equals the 5/2 power of the length ratio.

5.8 The drag on a stationary hemispherical shell with its open, con-
cave side towards an oncoming airstream is to be investigated
by experiments on a half-scale model in water. For a steady
air velocity of 30 m · s−1 determine the corresponding velocity
of the water relative to the model, and the drag on the proto-
type shell if that on the model is 152 N. (Fluid properties as in
Problem 5.3.)

5.9 The flow rate over a spillway is 120 m3 · s−1. What is the max-
imum length scale factor for a dynamically similar model if a
flow rate of 0.75 m3 · s−1 is available in the laboratory? On a
part of such a model a force of 2.8 N is measured. What is the
corresponding force on the prototype spillway? (Viscosity and
surface tension effects are here negligible.)

5.10 An aircraft is to fly at a height of 9 km (where the temper-
ature and pressure are −45 ◦C and 30.2 kPa respectively) at
400 m · s−1. A 1/20th-scale model is tested in a pressurized
wind tunnel in which the air is at 15 ◦C. For complete dynamic
similarity what pressure and velocity should be used in the
wind-tunnel? (For air at T K, µ ∝ T3/2/(T + 117).)

5.11 In a 1/100th-scale model of a harbour what length of time
should correspond to the prototype tidal period of 12.4 hours?

5.12 Cavitation is expected in an overflow siphon where the
head is −7 m, the water temperature 10 ◦C and the rate
of flow 7 m3 · s−1. The conditions are to be reproduced
on a 1/12th-scale model operating in a vacuum chamber
with water at 20 ◦C. If viscous and surface tension effects
may be neglected, calculate the pressure required in the
vacuum chamber and the rate of flow in the model (Hint:
In the absence of friction the velocity in the siphon is
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determined only by the overall head difference, and the
pressure at a point by the fluid velocity and the eleva-
tion of the point. Saturated vapour pressure of water =
1230 Pa at 10 ◦C; 2340 Pa at 20 ◦C.)

5.13 A ship has a length of 100 m and a wetted area of 1200 m2. A
model of this ship of length 4 m is towed through fresh water
at 1.5 m · s−1 and has a total resistance of 15.5 N. For the
model the skin friction resistance/wetted area is 14.5 N · m−2

at 3 m · s−1, and the skin friction resistance is proportional
to (velocity)1.9. The prototype ship in sea-water has a skin
friction resistance of 43 N · m−2 at 3 m · s−1 and a velocity
exponent of 1.85. Calculate the speed and total resistance of
the prototype ship in conditions corresponding to the model
speed of 1.5 m · s−1. The relative density of sea-water is 1.026.



Laminar flow between
solid boundaries 6

6.1 INTRODUCTION

In laminar flow, individual particles of fluid follow paths that do not cross
those of neighbouring particles. There is nevertheless a velocity gradient
across the flow, and so laminar flow is not normally found except in the
neighbourhood of a solid boundary, the retarding effect of which causes the
transverse velocity gradient. Laminar flow occurs at velocities low enough
for forces due to viscosity to predominate over inertia forces, and thus, if any
individual particle attempts to stray from its prescribed path, viscosity firmly
restrains it, and the orderly procession of fluid particles continues.

We recall from Section 1.6.1 that viscous stresses are set up whenever
there is relative movement between adjacent particles of fluid and that these
stresses tend to eliminate the relative movement. The basic law of viscous
resistance was described by Newton in 1687:

τ = µ
∂u
∂y

(6.1)

Here ∂u/∂y is the rate at which the velocity u (in straight and parallel flow)
increases with coordinate y perpendicular to the velocity, µ represents the
dynamic viscosity and τ the resulting shear stress on a surface perpendicular
to, and facing the direction of increase of y. The partial derivative ∂u/∂y is
used because u may vary not only with y but also in other directions.

We now consider a number of cases of laminar flow which are of particular
interest.

6.2 STEADY LAMINAR FLOW IN CIRCULAR PIPES:
THE HAGEN–POISEUILLE LAW

The law governing laminar flow in circular pipes was one of the first examples
to be studied. About 1840, experimental investigations of flow in straight
pipes of circular cross-section were carried out independently by two men.
The first results, published in 1839, were the work of the German engineer
G. H. L. Hagen (1797–1884). He had experimented with the flow of water
through small brass tubes, and his figures showed that the loss of head
experienced by the water as it flowed through a given length of the tube
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was directly proportional to the rate of flow, and inversely proportional to
the fourth power of the diameter of the tube.

At the same time a French physician, J. L. M. Poiseuille (1799–1869) was
engaged in a long series of careful and accurate experiments with the object
of studying the flow of blood through veins. In his experiments he used water
in fine glass capillary tubes and arrived at the same conclusions as Hagen
(although the reason for an apparent discrepancy found with very short tubes
escaped him). His first results were made public in 1840. Subsequently the
law governing laminar flow in circular pipes was derived theoretically. It is
of interest to note that, invaluable though Poiseuille’s results have been in
pointing the way to the theory of laminar flow in circular tubes, they are
not really applicable to the flow of blood in veins; for one thing the walls of
veins are not rigid, and also blood is not a Newtonian fluid, that is, it does
not have a constant viscosity, even at a fixed temperature.

Figure 6.1 shows, on the left, a side view of a straight pipe of constant
internal radiusR. On the right is shown the circular cross-section. We assume
that the part of the pipe considered is far enough from the inlet for condi-
tions to have become settled, or, to use the technical term, fully developed.
When the flow is fully developed the velocity profile is constant along the
pipe axis. In laminar flow, the paths of individual particles of fluid do not
cross, and so the pattern of flow may be imagined as a number of thin, con-
centric cylinders which slide over one another like the tubes of a pocket
telescope. The diagram shows a cylinder, of radius r, moving from left
to right with velocity u inside a slightly larger cylinder, of radius r + δr
moving in the same direction with velocity u + δu. (δu may, of course, be
negative.)

The difference of velocity between the two cylinders brings viscosity into
play, and thus there is a stress along the interface between the two layers of
fluid so as to oppose the relative motion. The force balance on the cylinder
of radius r and length δx is given by p∗πr2 − (p∗ + δp∗)πr2 + τ2πrδx = 0.
Hence in the limit δx → 0, for steady flow, the shear stress τ at radius r is
given by

τ = r
2

dp∗

dx

where p∗ = p + ρgz the piezometric pressure. In laminar flow the stress τ

is due entirely to viscous action and so is given by eqn 6.1, in which r takes

Fig. 6.1
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the place of y:

τ = µ
∂u
∂r

As the flow is steady and fully developed the velocity varies only with the
radius. Consequently, in place of the partial derivative ∂u/∂r we may write
the full derivative du/dr. Hence

µ
du
dr

= r
2

dp∗

dx
that is

du
dr

= r
2µ

dp∗

dx
(6.2)

If µ is constant, integration with respect to r gives

u = r2

4µ

dp∗

dx
+ A (6.3)

Now the constant of integration A is determined from the boundary con-
ditions. As there is no slip at the wall of the pipe, u = 0 where r = R.
Consequently A = −(R2/4µ)(dp∗/dx), so the velocity at any point is
given by

u = − 1
4µ

(
dp∗

dx

)
(R2 − r2) (6.4)

(Since p∗ falls in the direction of flow, dp∗/dx is negative.)
From eqn 6.4 it is clear that the maximum velocity occurs at the centre

of the pipe, where r = 0. The distribution of velocity over the cross-section
may be represented graphically by plotting u against r as in Fig. 6.2. The
shape of the graph is parabolic; in other words, the velocity profile has the
shape of a paraboloid of revolution.

Equation 6.4 by itself is of limited application. Of far more interest than
the velocity at a particular point in the pipe is the total discharge through
it. Now the discharge δQ through the annular space between radii r and
r+ δr is (velocity × perpendicular area) = u2πrδr. Using eqn. 6.4 this may
be written:

δQ = − 1
4µ

(
dp∗

dx

)
(R2 − r2)2πr δr = − π

2µ

(
dp∗

dx

)
(R2r− r3)δr (6.5)

Fig. 6.2
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The discharge through the entire cross-section is therefore

Q = − π

2µ

(
dp∗

dx

)∫ R

0
(R2r− r3)dr

= − π

2µ

(
dp∗

dx

)(
R2R

2

2
− R4

4

)
= −πR4

8µ

(
dp∗

dx

)
(6.6)

This equation is known usually as Poiseuille’s formula and sometimes as
the Hagen–Poiseuille formula, although neither Hagen nor Poiseuille derived
an equation in this form. (The first complete theoretical derivation appears
to have been made by G. H. Wiedermann (1826–99) in 1856.) For a length l
of the pipe over which the piezometric pressure drops from p∗

1 to p∗
2 the

equation may be written

Q = πR4

8µl
(p∗

1 − p∗
2) (6.7)

An expression in terms of diameter d rather than radius is often more
suitable, and eqns 6.6 and 6.7 may be written

Q = − πd4

128µ

dp∗

dx
= πd4

128µl
(p∗

1 − p∗
2) (6.8)

Equation 6.6 applies to both incompressible and compressible fluids since it
concerns only an infinitesimal length δx of the pipe and any change of density
of the fluid in this distance would be negligible. When a compressible fluid
flows through an appreciable length of pipe, however, the density changes
as the pressure changes and so, although the total mass flow rate m = ρQ
is constant, the volume flow rate Q is not constant. (The laminar flow of
compressible fluids will be discussed in Section 11.10.3.) Thus eqn 6.7 is
strictly applicable only to the laminar flow of constant-density fluids.

A further restriction on these equations is that they apply only to condi-
tions in which the laminar flow is fully developed. From the entrance to the
pipe the fluid has to traverse a certain distance before the parabolic pattern
of velocity distribution depicted in Fig. 6.2 is established.

If the fluid enters the pipe from a much larger section, for example, the
velocity is at first practically uniform (as atA in Fig. 6.3). The retarding effect
of the walls, where the velocity must always be zero, at once operates, so
that at B more of the layers nearer the walls are slowed down. As the cross-
sectional area of the pipe is constant the mean velocity over the whole section
must remain unchanged so as to satisfy the equation of continuity; thus, to

Fig. 6.3
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compensate for the reduction in velocity experienced by the fluid near the
walls, that near the centre must be accelerated. Not until the position C
is reached, however, is the full parabolic distribution established. It is this
final, fully developed form to which the equations we have derived apply.

The parabolic velocity profile is theoretically reached only after an infinite
distance; but it is usual to regard the so-called entry length as the distance
along the pipe to the point at which the maximum velocity is only 1% differ-
ent from the final value. The way in which the flow thus settles down in the
entry length is discussed in greater detail in Section 7.9. It may, however, be
said here that except in short pipes (i.e. with a length up to about 200 times
the diameter) the different conditions at the inlet to the pipe do not signi-
ficantly affect the change of pressure over the whole length. No significant
deviation from the parabolic profile occurs at the outlet end.

From eqn 6.6 the mean velocity of the fluid may be calculated.

Mean velocity = Q
Area

= −πR4

8µ

dp∗

dx

/
πR2 = −R

2

8µ

dp∗

dx
(6.9)

From eqn 6.4 we see that the maximum velocity occurs in the centre of the
pipe, where r = 0.

∴ umax = −dp∗

dx

(
R2

4µ

)
(6.10)

Thus, for fully developed laminar flow, the mean velocity is 1
2umax.

The Hagen–Poiseuille formula has been amply verified by experiment and
it is interesting to note that this agreement between theory and experimental
results is perhaps the principal justification for the assumption that a fluid
continuum does not slip past a solid boundary. The integration constant in
eqn 6.3 had to be determined from the conditions at the wall: if a velocity
other than zero had been assumed, say u0, the value of Q given by eqn 6.6
would be increased by an amount πR2u0. It is only when u0 is zero that
agreement between theory and experiment is obtained. Newton’s hypothesis
(eqn 6.1) is also of course vindicated by the agreement with experimental
results.

Another result which the Hagen–Poiseuille formula verifies is that in lam-
inar flow the drop in piezometric pressure is proportional directly to the
mean velocity. Moreover, the formula is completely determined by our ana-
lysis and does not involve any additional coefficients that have to be obtained
experimentally – or estimated – for a particular pipe. Thus we should expect
moderate roughness of the walls of the pipe not to affect laminar flow, and
this conclusion too is confirmed by experiment.

The Hagen–Poiseuille formula was developed on the assumption that
the centre-line of the pipe was straight. Slight curvature of the centre-line,
in other words, a radius of curvature large compared with the radius of
the pipe, does not appreciably affect the flow through the pipe. For smal-
ler radii of curvature, however, the flow is not accurately described by the
Hagen–Poiseuille formula.



196 Laminar flow between solid boundaries

Example 6.1 Oil, of relative density 0.83 and dynamic viscosity
0.08 kg · m−1 · s−1, passes through a circular pipe of 12 mm diameter
with a mean velocity of 2.3 m · s−1. Determine:

(a) the Reynolds number;
(b) the maximum velocity;
(c) the volumetric flow rate;
(d) the pressure gradient along the pipe.

Solution
Denote the mean velocity by u.

(a) Re = ρud
µ

= 0.83 × 1000 kg · m−3 × 2.3 m · s−1 × 12 mm
0.08 kg · m−1 · s−1 × 1000 mm/m

= 286

This value of Reynolds number is well within the laminar range, so
the relations for laminar flow may be used throughout the remainder
of the question.

(b) umax = 2u = 2 × 2.3 m · s−1 = 4.6 m · s−1

(c) Q = π

4
d2u = π

4

(
12
103

m
)2

× 2.3 m · s−1 = 260 × 10−6 m3 · s−1

(d)
dp∗

dx
= −128Qµ

πd4

−128 × (260 × 10−6) m3 · s−1× 0.08 kg · m−1 · s−1× (103 mm/m)4

π × 124 mm4

= −40.9 × 103 kg · m−2 · s−2 = −40.9 × 103 Pa · m−1

The negative pressure gradient indicates that the pressure decreases
with distance along the pipe axis.�

6.2.1 Laminar flow of a non-Newtonian liquid in a circular pipe

Results corresponding to those in Section 6.2 may be obtained for a non-
Newtonian liquid. We again consider steady flow and thus suppose that the
rate of shear is a function of τ only, say f (τ ). Then, for fully developed flow
in a circular pipe,

du
dr

= f (τ ) (6.11)
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The expression for the total discharge may be integrated by parts:

Q =
∫ R

0
u2πrdr = π

∫ r=R

r=0
ud(r2) = π

[
ur2 −

∫
r2du

]r=R
r=0

= −π

∫ 0

umax

r2 du

since, with no slip at the walls, u = 0 when r = R. Define τ = τ0, when
r = R. It will be shown, eqn 7.11, that r = Rτ/τ0. Substituting du = f (τ )dr
from eqn 6.11 then gives

Q = −π

∫ R

0
r2f (τ )dr = −πR3

τ3
0

∫ τ0

0
τ2f (τ )dτ (6.12)

Hence Q/πR3 is a function of τ0 and since τ0 = (R/2)(dp∗/dx), eqn 7.9,
the relation between Q/πR3 and τ0 may be determined experimentally.

For many pseudo-plastic and dilatant liquids the relation between the mag-
nitudes of shear stress and rate of shear (see Fig. 1.7) may be represented to
an acceptable degree of approximation by a power law

|τ | = k(A|∂u/∂y|)n
where k,A and n are constants (though possibly dependent on pressure and
temperature). For a pseudo-plastic liquid n < 1; for a dilatant liquid n > 1.
Noting that τ0 is negative because dp∗/dx is negative and substituting∣∣∣∣dudy

∣∣∣∣ = f (τ ) = 1
A

( |τ |
k

)1/n

into eqn 6.12, we obtain

Q = πR3

|τ0|3
∫ τ0

0

|τ |(2n+1)/n

Ak1/n
dτ

= πR3

|τ0|3Ak1/n

(
n

3n+ 1

)[
|τ |(3n+1)/n

]τ0

0

= nπR3

A(3n+ 1)

( |τ0|
k

)1/n

= nπR3

A(3n+ 1)

(
−Rdp∗

2kdx

)1/n

(6.13)

The constants in the power-law relation may thus be determined from
measurement of Q and dp∗/dx for a circular pipe.

For a Newtonian fluid n = 1 and eqn 6.13 then reduces to eqn 6.6.
For a Bingham plastic (see Fig 1.7) the relation between shear stress and

rate of shear is

τ = τy + µp
∂u
∂y

when |τ | > |τy|

and
∂u
∂y

= 0 when |τ | < |τy|
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Here τy represents the yield stress of the material and µp the slope of the
graph of stress against rate of shear when |τ | > |τy|. Therefore

∂u/∂y = f (τ ) = (τ − τy)/µp for |τ | > |τy|
and

f (τ ) = 0 for |τ | < |τy|
In the central region of the pipe, for all radii where the sheer stress is

smaller in magnitude than the yield value, the substance moves as a solid
plug. Splitting the integration range of eqn 6.12 into two parts and then
making the appropriate substitutions for f (τ ) we obtain

Q = −πR3

τ3
0

∫ τy

0
τ2f (τ )dτ − πR3

τ3
0

∫ τ0

τy

τ2f (τ )dτ

= 0 − πR3

µpτ3
0

∫ τ0

τy

τ2(τ − τy)dτ = − πR3

µpτ3
0

[
τ4

4
− τ3τy

3

]τ0

τy

= − πR3

µpτ3
0

[
τ4

0

4
− τ3

0 τy

3
+ τ4

y

12

]

= −πR3τ0

µp

[
1
4

− 1
3

(
τy

τ0

)
+ 1

12

(
τy

τ0

)4
]

(6.14)

The substitution τ0 = (R/2)(dp∗/dx) may again be made and the equation
reduces to that for a Newtonian fluid when τy = 0.

A solution for Q is obtainable directly from eqn 6.14, but when Q is
known and τ0 (and hence dp∗/dx) is to be determined we are faced with a
fourth-order equation. However, the equation may be put in the form

m = B− 1
3m3

(6.15)

where

m = τ0/τy and B = 4Qµp

πR3|τy| + 4
3

With m = B as a first approximation in the right-hand side of eqn 6.15, a
value ofmmay be calculated which is then used for a second approximation,
and so on. Sufficient accuracy is usually attained after three or four such
steps.

6.3 STEADY LAMINAR FLOW THROUGH AN ANNULUS

The analysis developed for the steady laminar flow of a Newtonian fluid in
circular pipes can be readily extended to flow through an annulus of inner
radius R1 and outer radius R2.

Fig. 6.4
Between the concentric boundary surfaces of radiiR1 andR2 (see Fig. 6.4)

an annular shell of thickness δr is considered, and the axial force on this,
due to the difference of piezometric pressure, is equated to the difference
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between the resisting viscous forces on the inner and outer surfaces of the
shell. The subsequent development follows the pattern already used for flow
in a circular pipe: the integration constants are determined from the bound-
ary conditions, and then the discharge through an elemental ring can be
integrated to give the total discharge. Thus the result

Q = π

8µl

(
p∗

1 − p∗
2

)(
R2

2 − R2
1

){
R2

2 + R2
1 − R2

2 − R2
1

ln(R2/R1)

}

is obtained. It will be seen, however, that as the value of R1 approaches that
of R2 the last term in the bracket,

(
R2

2 − R2
1

)
/ln(R2/R1), becomes difficult

to determine accurately (and the simpler formula of eqn 6.22 is then far
better).

6.4 STEADY LAMINAR FLOW BETWEEN PARALLEL PLANES

Another example of laminar flow that may be studied quite simply is that
in which fluid is forced to flow between parallel plane solid boundaries.
Figure 6.5 represents a cross-section viewed in a direction perpendicular to
the flow. The boundary planes are assumed to extend to a great distance,
both in the direction left to right across the page and in that perpendicular
to the page. This assumption is necessary in order that end effects may be
neglected; in other words, the edges of the planes are so far distant from the
portion of the fluid being considered that they have no effect on its behaviour.

The flow is caused by a difference of piezometric pressure between the
two ends of the system. As the flow is laminar, there is no movement of fluid
in any direction perpendicular to the flow, and thus p∗ varies only in the
direction of flow.

As the origin of coordinates we may select a point on the lower plane in
Fig. 6.5 and take the x axis along the plane parallel to the flow, and the y
axis perpendicular to the plane. Let the distance separating the planes be c.

The requirement of no slip at each boundary produces a variation of velo-
city in the y direction. Viscous stresses are set up, and these may be related
to the forces due to the difference of piezometric pressure by considering a
small rectangular element of the fluid, with sides parallel to the coordinate
axes, as shown in Fig. 6.5. Let the lower face of the element be a distance y
from the lower plane and here let the velocity be u. At the upper face of the
element, a distance y+ δy from the lower plane, the velocity is u+ δu.

If δu is positive, the faster-moving fluid just above the element exerts a
forward force on the upper face. Similarly, the slower-moving fluid adjacent
to the lower face tends to retard the element. Thus there are stresses of

Fig. 6.5
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Fig. 6.6

magnitude τ on the lower face and τ + δτ , say, on the upper face in the
directions shown in Fig. 6.6. (The indicated directions of the stresses follow
the convention mentioned in Section 1.6.1 by which a stress in the x direction
acts on the surface facing the direction of increase of y.) Let the piezometric
pressure be p∗ at the left-hand end face, and p∗ + δp∗ at the right-hand
end face.

Then, if the width of the element in the direction perpendicular to the page
is δz, the total force acting on the element towards the right is

{p∗ − (p∗ + δp∗)}δyδz + {(τ + δτ) − τ }δxδz
But for steady, fully developed flow there is no acceleration and so this total
force must be zero.

∴ −δp∗δy+ δτδx = 0

Dividing by δxδy and proceeding to the limit δy → 0, we get

δp∗

δx
= ∂τ

∂y
(6.16)

For laminar flow of a Newtonian fluid the stress τ = µ∂u/∂y. Hence eqn 6.16
becomes

δp∗

δx
= ∂

∂y

(
µ

∂u
∂y

)
(6.17)

As p∗ nowhere varies in the y direction, δp∗/δx is independent of y and
eqn 6.17 may be integrated with respect to y :

δp∗

δx
y = µ

∂u
∂y

+ A

If µ is constant, a further integration with respect to y gives(
δp∗

δx

)
y2

2
= µu+ Ay+ B (6.18)

Since the portion of fluid studied is very far from the edges of the planes,
A and B are constants, independent of both x and z.

To determine these constants the boundary conditions must be considered.
If both the planes are stationary the velocity of the fluid in contact with each



Steady laminar flow between parallel planes 201

Fig. 6.7

must be zero so as to meet the requirement of no slip. Thus u = 0 at the
lower plane where y = 0, and substituting these values in eqn 6.18 gives
B = 0. Further, u = 0 at the upper plane where y = c and the substitution
of these values gives

A =
(

δp∗

δx

)
c
2

Inserting the values of A and B in eqn 6.18 and rearranging gives the value
of u at any distance y from the lower plane:

u = 1
2µ

(
δp∗

δx

)
(y2 − cy) (6.19)

As shown in Fig. 6.7, the velocity profile is in the form of a parabola with
its vertex (corresponding to the maximum velocity) mid-way between the
planes as is to be expected from symmetry. Putting y = c/2 in eqn 6.19
gives the maximum velocity as −(c2/8µ)(δp∗/δx), the minus sign indicating,
not that the fluid flows backwards, but that (δp∗/δx) is negative, that is,
p∗ decreases in the direction of flow.

The total volume flow rate between the two planes may readily be cal-
culated. Consider an elemental strip, of thickness δy and fixed breadth b,
perpendicular to the page. The breadth b is assumed very large so that end
effects associated with it are negligible. In other words, there is a region,
at each end of the strip, in which the velocity u may be somewhat different
from the velocity in the centre; if b is sufficiently large this region is small
compared with the total breadth, and the velocity umay then fairly be taken
as the average velocity across the breadth. With this proviso, the discharge
through the strip is ub δy and the total discharge is:

Q =
∫ c

0
ubdy = b

∫ c

0

1
2µ

(
δp∗

δx

)
(y2 − cy)dy

= b
2µ

(
δp∗

δx

)[
y3

3
− cy2

2

]c
0

= − bc
3

12µ

(
∂p∗

∂x

)
(6.20)

Dividing this result by the area of the cross-section bc gives the mean velocity
as −c2(δp∗/δx)/12µ which is two-thirds of the maximum value.
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Equation 6.20 shows that, provided the width b and the density and
viscosity of the fluid are constant, the term δp∗/δx is independent of x. Thus
where the piezometric pressure changes from p∗

1 to p∗
2 over a finite length l in

the direction of flow, δp∗/δxmay be replaced by −(
p∗

2 − p∗
1

)
/l = (

p∗
1 − p∗

2

)
/l

and eqn 6.20 then becomes

Q =
(
p∗

1 − p∗
2

)
bc3

12µl
(6.21)

(Corresponding results for non-Newtonian liquids may be derived by
methods similar to those used in Section 6.2.1.)

The formula applies strictly only to conditions in which the flow is fully
developed. In practice, just as for laminar flow in circular tubes, there is
an entry length, in which the pattern of flow differs from that described
by the formula. If the length of the flow passage is small the effect of this
modified flow on the overall change of piezometric pressure

(
p∗

1 − p∗
2

)
may

be significant.
Equation 6.21 is often called on in discussing problems of the leakage

of a fluid through small gaps. An example frequently encountered is the
leakage occurring between a piston and a concentric cylinder. Here the
space through which the fluid passes is in the form of a narrow annu-
lus (see Fig. 6.8) and it may be regarded as the space between parallel
planes which have been bent round a circle, the breadth b previously con-
sidered having become the circumference πD. This supposition of planes
bent round is legitimate if the clearance c is considerably less than the dia-
meter D so that there is a negligible difference between the inner and outer
circumferences.

Fig. 6.8

The requirement that the breadth b should be so large that end effects are
negligible is here happily met. As b now represents the circumference of a
circle there are no ends and thus no end effects. (Nevertheless there may still
be end effects in the direction of l.) Substituting πD for b in eqn 6.21 we get

Q = (
p∗

1 − p∗
2

)
πDc3/12µl (6.22)

This result, it should be emphasized, applies to situations where c is small
compared with D. If this is not so, the analysis for flow through an annulus
can be used.

The importance of the concentricity of the piston and the cylinder should
not be overlooked, for these formulae apply to those instances in which the
clearance c is constant. Even a slight degree of eccentricity between the two
boundaries can affect the rate of flow considerably. Indeed it may be shown
that in the extreme case depicted in Fig. 6.9, where there is a point of contact
between the two surfaces, the flow rate is about 2.5 times the value when
the same two surfaces are concentric with a constant clearance c.

Fig. 6.9

This result explains the difficulty of making a reliable control device in
which the flow rate is determined by the position of an adjustable tapered
needle: a small amount of sideways movement of the needle may cause a
considerable alteration in the flow rate.
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Example 6.2 Two stationary, parallel, concentric discs of external
radius R2 are a distance c apart. Oil is supplied at a gauge pres-
sure p∗

1 from a central source of radius R1 in the lower disc. From
there it spreads radially outwards between the two discs and escapes
to atmosphere. Assume the flow is laminar.

(a) Starting from the equation for flow between fixed surfaces

u = 1
2µ

(
dp∗

dx

)
(y2 − cy)

show that the pressure distribution gives rise to a vertical force F
on the upper disc given by

F = πp∗
1

[
R2

1 + 2
∫ R2

R1

x
(

1 − loge(x/R1)

loge(R2/R1)

)
dx

]

(b) Calculate the rate at which oil of viscosity 0.6 kg · m−1 · s−1 must
be supplied to maintain a pressure p∗

1 of 15 kPa when R2/R1 = 6
and the clearance c is 1 mm.

Solution
(a)

Q =
∫ c

0
2πxudy =

∫ c

0
2πx

1
2µ

(
dp∗

dx

)
(y2 − cy)dy = −πxc3

6µ

(
dp∗

dx

)
Hence

dp∗ = −6µQ
πc3

dx
x

Integrating with respect to x:

p∗ = −6µQ
πc3

loge x+ A
The boundary conditions are

p∗ = p∗
1, x = R1; p∗ = 0, x = R2

So

A = p∗
1 + 6µQ

πc3
loge R1 and A = 6µQ

πc3
loge R2

Combining these expressions we obtain

p∗ − p∗
1 = −6µQ

πc3
loge

x
R1

and p∗
1 = 6µQ

πc3
loge

R2

R1

Eliminating (6µQ)/(πc3) between these two relations produces

p∗ = p∗
1 − p∗

1
loge(x/R1)

loge(R2/R1)
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F = πR2
1p

∗
1 +

∫ R2

R1

2πxp∗ dx

= πR2
1p

∗
1 + 2π

∫ R2

R1

(
p∗

1 − p∗
1

loge(x/R1)

loge(R2/R1)

)
xdx

= πp∗
1

[
R2

1 + 2
∫ R2

R1

x
(

1 − loge(x/R1)

loge(R2/R1)

)
dx

]

(b) From the above analysis

p∗
1 = −6µQ

πc3
loge

R2

R1

So

Q = πc3p∗
1

6µ loge(R2/R1)

= π × 1 mm3 × 15 × 103 Pa
6 × 0.6 kg · m−1 · s−1 × 1.792 × (103 mm/m)3

Q = 7.3 × 10−6 m3 · s−1�

6.5 STEADY LAMINAR FLOW BETWEEN PARALLEL
PLANES, ONE OF WHICH IS MOVING

We now consider steady laminar flow between plane boundaries that move
relative to one another while still remaining parallel and the same dis-
tance apart. We may conveniently assume that one of the boundaries is
stationary and that the other moves with a velocity V in the direction of
flow. Even if both are moving, this assumption still serves: all velocities
are considered relative to one of the boundaries which is then supposed
at rest.

Here we may assume the lower plane in Fig. 6.5 to be the stationary
one. Again we may consider the flow from left to right and, for consist-
ency, we consider the velocity of the upper plane as positive from left to
right. The analysis proceeds as before, and again we arrive at eqn 6.18. The
boundary conditions, however, are now different. The velocity at the lower
plane where y = 0 is again zero and hence B = 0. But the fluid at y = c
must have the velocity V of the upper plane. Hence, substituting the values
in eqn 6.18:

(
δp∗

δx

)
c2

2
= µV + Ac and so A =

(
δp∗

δx

)
c
2

− µV
c
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Thus for any value of y the velocity of the fluid may now be expressed by

u =
(

δp∗

δx

)
y2

2µ
− y

µ

{(
δp∗

δx

)
c
2

− µV
c

}

=
(

δp∗

δx

)
1

2µ
(y2 − cy) + Vy

c

For a fixed breadth b perpendicular to the page, and with provisos as before
concerning end effects, the total volume flow rate Q may be calculated by
the same method as before.

Q =
∫ c

0
ubdy = b

[(
δp∗

δx

)
1

2µ

(
y3

3
− cy2

2

)
+ Vy2

2c

]c
0

= b

[
−
(

δp∗

δx

)
c3

12µ
+ Vc

2

]
(6.23)

It is important to remind ourselves here that V must be measured in the
same direction as the flow. If the movement of the boundary is in fact oppos-
ite to the direction of flow, then, in eqn 6.23, V is negative. The velocity
profile (Fig. 6.10) is modified by the movement of one of the boundary sur-
faces and the maximum velocity no longer occurs in the centre of the section.
Indeed, ifV is sufficiently large the greatest velocity may occur at the moving
surface as in Fig. 6.11.

Equation 6.23 shows that flow may occur even without a difference of Couette flow
piezometric pressure provided that one boundary is moving. In these cir-
cumstances δp∗/δx is zero and Q = 1

2bVc. Such flow, caused only by the
movement of a boundary, is known as Couette flow (after M. F. A. Couette
(1858–1943)). Couette flow, however, is not necessarily laminar.

Fig. 6.10

Fig. 6.11
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Just as eqn 6.21 may be adapted to apply to laminar flow in a narrow
annular space when both boundaries are stationary, so may eqn 6.23 be
adapted for instances where one boundary is moving. As an example in
Section 6.5.1 we will consider the application of the result to describe the
operation of a simple cylindrical dashpot.

Example 6.3

The diagram shows a pad and moving belt lubricated by oil supplied
at a gauge pressure of 12 kPa at one end of the pad. The oil flows
through the space between the two surfaces, emerging at atmospheric
pressure. The pad is 120 mm long and the gap between the two surfaces
is 0.18 mm. If the belt speed is 5 m · s−1 and assuming the flow may
be taken as two-dimensional, estimate (per unit span of pad):

(a) the load the pad will support
(b) the rate at which oil of viscosity 0.5 kg · m−1 · s−1 must be supplied.

Solution
(a) dp∗/dx is constant and independent of x. Hence the average pressure

of 6 kPa is applied over an area of 0.12 m2 per unit span, giving
f = F/b = 6 × 103 Pa × 0.12 m = 720 N · m−1.

(b) q = Q
b

=
[
−

(
dp∗

dx

)
c3

12µ

]
+ Vc

2

=
[(

12 × 103 N · m−2

0.12 m

)
× (0.183) mm3 × (10−3 m/mm)3

12 × 0.5 kg · m−1 · s−1

]

+ 5 m · s−1 × (0.18 × 10−3) m
2

= 4.5 × 10−4 m2 · s−1
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In this example, almost the entire flow is generated by the movement
of the belt. The flow due to the pressure gradient (the bracketed term)
is insignificant. �

6.5.1 The simple cylindrical dashpot

A dashpot is essentially a device for damping vibrations of machines, or rapid
reciprocating motions. This aim may readily be achieved by making use of
a fluid of fairly high viscosity. A dashpot of the simplest kind is illustrated
in Fig. 6.12. A piston P, connected to the mechanism whose movement
is to be restrained, may move in a concentric cylinder C, the diameter of
which is only slightly greater than that of the piston. The cylinder contains
a viscous oil, and the quantity of oil should be sufficient to cover the top
of the piston. If the piston is caused to move downwards, oil is displaced
from underneath it. This displaced oil must move to the space above the
piston and its only route is through the small annular clearance between
the piston and the wall of the cylinder. If the viscosity of the oil is great
enough, its flow upwards through the clearance space is laminar and occurs
simply as a result of the pressure developed underneath the piston. The
more viscous the oil and the smaller the clearance between the piston and
the cylinder, the greater is the pressure required to produce a particular
movement of oil; thus the greater is the resistance to the motion of the
piston.

For an upward movement of the piston, oil must flow downwards through
the clearance space, otherwise a void will form underneath the piston. That
is to say, an upward movement of the piston reduces the pressure underneath
it, and the resulting difference of piezometric pressure between the top and
bottom of the piston causes the flow of oil.

In applying eqn 6.23 we may consider the downward movement of the
piston. The oil flow is therefore upwards through the clearance space, so

Fig. 6.12
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upward velocities are suitably taken as positive. The velocity of the piston,
which here forms one of the boundaries of the flow, is then negative and may
be written −Vp. The planes between which the flow represented by eqn 6.23
takes place may be regarded as bent round a circle: one becomes the surface
of the piston, the other the inner wall of the cylinder; the breadth b becomes
the circumferential length πD.

The expression for the steady rate of flow of oil becomes

Q = πD

{
−
(

δp∗

δx

)
c3

12µ
− Vpc

2

}

and this must exactly equal the rate at which oil is being displaced by the
piston, (πD2/4)Vp. If end effects are neglected (−δp∗/δx) may be considered
constant for a passage of uniform cross-section and may be written �p∗/l,
where �p∗ represents the difference of piezometric pressure from bottom to
top of the piston.

∴ πD

[
�p∗

l
c3

12µ
− Vpc

2

]
= π

4
D2Vp

whence

Vp

(
D
2

+ c
)

= �p∗c3/6µl (6.24)

The pressure underneath the piston exceeds that above it by �p; thus there
is an upward force of �p(πD2/4) on it. There is also an upward force on
the piston as a result of the oil flowing past it in the clearance space. The
shear stress in a viscous fluid is given by µ(∂u/∂y). Here y is the coordinate
perpendicular to the flow and so may be supplanted by r. By taking the
value of µ∂u/∂r at the moving boundary, the shear stress on the piston
surface may be calculated, and thus the upward shear force exerted by the
oil on the piston. It may be shown, however, that this shear force is usually
negligible compared with the other forces.

For steady, that is, non-accelerating, movement, the sum of the forces on
the piston must be zero.

∴ �p
π

4
D2 − F −W = 0 (6.25)

whereW denotes the weight of the piston and F the downward force exerted
on it by the mechanism to which it is connected.

Now p∗ = p+ ρgz and so

p∗
1 − p∗

2 = p1 − p2 + ρg(z1 − z2)

= �p+ ρg(−l)
The minus sign appears in front of the l because zmust be measured upwards
(see Fig. 6.12). Substituting for �p from eqn 6.25 and then putting the result
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in eqn 6.24 we obtain

Vp

(
D
2

+ c
)

= c3

6µl

(
F +W
πD2/4

− ρgl
)

(6.26)

The clearance c is normally small compared with the radius of the pistonD/2,
so the left-hand side of eqn 6.26 may be simplified toVpD/2. Rearrangement
then gives

F +W − ρglπD2/4 = 3
4

πµl
(
D
c

)3

Vp (6.27)

The term ρglπD2/4 represents the buoyancy of the piston, and in some
instances this is negligible compared with F. This, however, is not always so
and the buoyancy term should not be omitted without investigation.

For upward movement of the piston the signs of F and Vp are of course
changed.

Equation 6.27 is a formula commonly used, but even for steady conditions
it is only approximate. The clearance c has been assumed small in compar-
ison with the radius of the piston; the shear force on the piston has been
neglected; the circumferences of piston and cylinder are not exactly equal;
end effects have been neglected. It may be shown, however, that the accuracy
is much improved if the mean diameter 2(D/2 + c/2) = (D + c) is used in
eqn 6.27 in place of the piston diameter D.

In a dashpot of this kind the piston has to be maintained concentric with
the cylinder by external means. If it is free to move laterally the piston tends
to move to one side of the cylinder and, having once touched the side of the
cylinder, is reluctant to leave it. Under such conditions the relation between
the load on the piston and the rate at which oil flows through the clearance
space is drastically altered and the effectiveness of the dashpot in restraining
the movement of the piston is greatly reduced. Three buttons, equally spaced
round the circumference of the piston, are sometimes used to maintain its
concentricity with the cylinder.

Many other forms of dashpot are in use, but an account of these is beyond
the scope of this book.

Example 6.4 A simple dashpot consists of a piston of diameter
50 mm and length 130 mm positioned concentrically in a cylinder of
50.4 mm diameter. If the dashpot contains oil of specific gravity 0.87
and kinematic viscosity 10−4 m2 · s−1, determine the velocity of the
dashpot if the difference in pressures �p∗ is 1.4 MPa.

Solution
Clearance: c = (50.4 − 50)/2 = 0.2 mm
Dynamic viscosity:

µ = ρν = (0.87 × 103) kg · m−3 × 10−4 m2 · s−1

= 0.087 kg · m−1 · s−1
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From equation 6.24:

Vp = �p∗c3

6µl(D/2 + c)

= 1.4 × 106 Pa × (0.2 × 10−3)3 m3

6 × 0.087 kg · m−1 · s−1 × 0.13 m × (25 + 0.2) × 10−3 m

= 6.55 × 10−3 m · s−1 = 6.55 mm · s−1
�

6.6 THE MEASUREMENT OF VISCOSITY

The viscosity of a fluid cannot be measured directly, but its value can be
calculated from an appropriate equation relating it to quantities that are
directly measurable. A piece of apparatus specially suitable for the necessary
measurements is known as a viscosimeter or, more usually, a viscometer and
the study of methods of determining viscosity is known as viscometry.

In an ideal viscometer, the flow of the fluid under test would be completely
determined by its viscosity. For practical viscometers, however, it is always
necessary to introduce into the equations corrections to account for other
effects or to calibrate the instrument with a fluid whose viscosity is already
accurately known.

A few methods used in determining viscosity will be mentioned here but
for details of these and other techniques more specialist works should be
consulted.

6.6.1 Transpiration methods

Many types of viscometer involve laminar flow through a circular tube.
Poiseuille’s Law (eqn 6.8), rearranged as

µ = π(p∗
1 − p∗

2)d4

128Ql

is therefore called upon. The difference of piezometric pressure between
the ends of a capillary tube of known length and diameter, connecting two
constant-level reservoirs, may be measured by a manometer. When the fluid
under test is a liquid the volume rate of flow,Q, may be determined simply by
collecting and measuring the quantity passing through the tube in a certain
time. For gases, however, special arrangements must be made for measuring
the flow.

Fig. 6.13

An adaptation of this method is used in the Ostwald viscometer (invented
by Wilhelm Ostwald (1853–1932)). The instrument (Fig. 6.13) is mounted
vertically, a fixed volume of liquid is placed in it and drawn up into the
upper bulb B and beyond the mark M1. It is then allowed to flow back
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and the passage of the liquid level between two marks M1 and M2 is timed.
It is difficult to determine accurately the dimensions of the capillary section
and there are, moreover, surface tension effects and end effects that are
not negligible: this viscometer must therefore be calibrated with a liquid of
known viscosity.

6.6.2 Industrial viscometers

Several instruments are in industrial and technical use for measuring viscos-
ity – particularly the viscosity of oils – and most require the measurement
of the time taken by a certain quantity of the liquid to flow through a short
capillary tube. In many viscometers this capillary tube is so short that it is
more like an orifice, and in any case fully developed laminar flow is scarcely
achieved before the liquid reaches the end of the capillary. Thus Poiseuille’s
formula does not strictly apply. The rate of flow does not bear a simple
relation to the viscosity and so such a viscometer requires calibration with
a liquid of known viscosity.

In Great Britain the Redwood viscometer is widely used; America favours
the Saybolt viscometer; Germany and other Continental countries the Engler.
These instruments differ in detail but not in principle and it is sufficient
to refer to the Redwood instrument – invented by Sir Boverton Redwood
(1846–1919) – as typical of its kind.

Fig. 6.14 Redwood No. 1
viscometer.
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The liquid under test is placed in the containerA (Fig. 6.14) and may escape
through a capillary tube in the block of agate J, except when prevented by
the valveV which fits the concave upper surface of J. The surrounding water
bath B serves to control the temperature; heat may be applied to the side
tube S (or by an electrical immersion heater) and the water may be stirred
by the paddles P. A hook H indicates the correct starting level of the test
liquid and the time is recorded for a defined volume of liquid to escape into
a flask.

If Poiseuille’s formula is assumed valid here, at least approximately, the
rate of flow for a particular value of the head h (i.e. the level of the free surface
in A above the outlet of J) is given by substituting ρgh for the difference of
piezometric pressure in eqn 6.8:

Q = πρghd4

128µl

The rate of flow is thus inversely proportional to the kinematic viscosity
µ/ρ = ν. As the liquid runs out, h, and therefore Q, decreases; the propor-
tionality between Q and 1/ν, however, remains, and so the time required
for a fixed volume of liquid to escape is directly proportional to ν.

In practice this proportionality is only approximate. The difference of
piezometric pressure between the ends of the tube is used not only to over-
come the viscous resistance represented by Poiseuille’s formula, but also to
give the liquid its kinetic energy as it flows through the tube. Moreover,
at the entrance to the tube the pressure gradient ∂p∗/∂x is somewhat greater
than indicated by Poiseuille’s formula because the flow there has not yet
taken the fully developed laminar form. Because of these additional effects
the relation between the kinematic viscosity ν and the time t taken by the
standard volume of liquid to run out is better expressed by a formula of
the type ν = At − B/t where A and B are constants for the instrument con-
cerned. Conversion tables relating ‘Redwood seconds’ to kinematic viscosity
are published by the Institute of Petroleum.

For liquids with a kinematic viscosity greater than about 500 mm2 · s−1

the time of efflux from a Redwood No. 1 viscometer would be more than
half an hour. A Redwood No. 2 instrument is then more suitable because
it has a capillary tube of greater diameter and so a much reduced time of
efflux.

6.6.3 The falling sphere method

Transpiration methods (i.e. those requiring the flow of the fluid through a
tube) are not suitable for fluids of high viscosity because of the very low
rate of flow. For liquids of high viscosity, such as treacle, a more satisfact-
ory method makes use of Stokes’s Law, which describes the steady motion
of a sphere through a large expanse of a fluid at conditions of very low
Reynolds number. An expression for the force exerted by the fluid on the
sphere as a result of such motion was first obtained by Sir George G. Stokes
(1819–1903). Although the mathematical details are beyond the scope of
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this book, it is important to give attention to the fundamental assumptions
on which the solution is based.

First, it is assumed that the motion is such that the inertia forces on the
particles of fluid (i.e. the forces required to accelerate or decelerate them)
may be neglected in comparison with the forces due to viscosity. As we have
seen, the ratio of inertia forces to viscous forces is represented by Reynolds
number, and so this condition is met if the Reynolds number of the flow is
very small.

Other assumptions are that no other boundary surface is sufficiently near Stokes’s law
to affect the flow round the sphere, that the sphere is rigid, that the motion
is steady and that there is no slip between the fluid and the sphere. Using
these hypotheses, Stokes found that the drag force opposing the motion
equals 3πµud, where µ represents the dynamic viscosity, u the velocity of
the sphere relative to the undisturbed fluid and d the diameter of the sphere.
This result is now known as Stokes’s Law. It has been found that, to obtain
good agreement with experimental results, the Reynolds number (expressed
as ρud/µ) must be less than about 0.1. The result of this restriction is that, for
ordinary fluids such as water or air, the sphere must be almost microscopic in
size. If Stokes’s Law is to be valid for larger spheres, then either the viscosity
must be very large or the velocity exceedingly small.

If a small solid particle is falling through a fluid under its own weight, the
particle accelerates until the net downward force on it is zero. No further
acceleration is then possible and the particle is said to have reached its ter-
minal velocity. This may be calculated for a small sphere on the assumption
that the Reynolds number is small enough for Stokes’s Law to be valid. If the
density of the fluid is ρ and the mean density of the sphere is ρs, then, when
the terminal velocity has been reached, the force balance on the sphere may
be stated as

Downward force = Weight of sphere − Buoyancy − Drag force on sphere

= π

6
d3ρsg − π

6
d3ρg − 3πµud = 0

whence

u = d2(ρs − ρ)g
18µ

(6.28)

For the determination of viscosity, a small solid sphere of known weight is
allowed to fall vertically down the centre of a cylinder containing the liquid
under test. The velocity with which the sphere falls is measured; it does not,
however, quite coincide with the terminal velocity as given by eqn 6.28. In
practice the liquid cannot be of infinite extent as assumed in the derivation
of Stokes’s Law, so corrections are necessary to allow for the effect of the
walls of the cylinder. (For this effect to be negligible, the diameter of the
cylinder must be more than about 100 times the diameter of the sphere.)
Moreover, the measurement of velocity must not be begun until the sphere
has reached its terminal velocity, and should not be continued when the
sphere nears the base of the cylinder since this influences the rate of fall of
objects in its vicinity.
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Example 6.5 The viscosity of an oil is to be measured using the falling
sphere method. The oil, of relative density 0.88, is contained in a
vertical tube of diameter D = 19 mm. A sphere of relative density
1.151 and diameter d = 4.75 mm is dropped into the oil along the axis
of the tube and reaches a terminal velocity of 6 mm · s−1. For d/D =
0.25, the viscous drag force acting on the sphere may be taken as 1.80
times the value in a fluid of infinite extent. Determine:

(a) the dynamic and kinematic viscosities of the oil
(b) the Reynolds number of the sphere.

Solution
(a) Denote the viscous drag force acting on the sphere by F. Then the
force balance on the sphere yields

F = π

6
d3g(ρs − ρ)

Hence

F = π

6
× (4.75 mm)3 × (10−3 m/mm)3 × 9.81 m · s−2

× (1.151 − 0.88) × 103 kg · m−3

= 149 × 10−6 N

Also for d/D = 0.25, F/F0 = 1.80, where F0 = 3πµud. So:

µ = F
1.8 × 3πud

= 149 × 10−6 N
1.8 × 3π × (6 × 10−3 m · s−1) × (4.75 × 10−3 m)

= 0.308 kg · m−1 · s−1

and

ν = µ

ρ
= 0.308 kg · m−1 · s−1

0.88 × 103 kg · m−3
= 3.50 × 10−4 m2 · s−1

(b) Reynolds number:

Re = ρud
µ

= 880 kg · m−3 × (6 × 10−3 m · s−1) × (4.75 × 10−3 m)

0.308 kg · m−1 · s−1

= 0.08

The Reynolds number is below the upper limit for the application of
this method of measuring viscosity, and experience shows that reliable
results are� obtained.
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6.6.4 Rotary viscometers

Fig. 6.15

Fig. 6.16

A simple method of applying a known rate of shear to a fluid and of meas-
uring the viscous stress thus produced is illustrated in Fig. 6.15. The annular
gap between two concentric cylinders is filled with the fluid under test. If one
cylinder is rotated at a constant, known, angular velocity the fluid tends to
rotate at the same angular velocity and thus exerts a torque on the other
cylinder. The balancing couple necessary to keep the second cylinder at rest
may be measured, and the viscosity of the fluid then calculated. If the inner
cylinder is the stationary one, the torque may be effectively determined by
measuring the torsion in a wire suspending the cylinder.

If there is no slip at either boundary surface, the fluid in contact with
the rotating cylinder has the same velocity as the periphery of the cylinder,
and the fluid in contact with the stationary cylinder is at rest. The resulting
velocity gradient across the layer of fluid brings the viscous forces into play.

It is perhaps worth developing in detail a formula applicable to such a
viscometer, if only because formulae are not infrequently produced that are
in error. More important, analysis of the problem illustrates the application
of Newton’s formula for viscosity when angular velocity is involved.

If the speed of rotation is not so high that turbulence is generated, the
fluid in the annular space rotates in layers concentric with the cylinders.
We may consider a small element of fluid, between two such layers distance
δr apart and subtending an angle δθ at the centre of rotation (see Fig. 6.16:
the rotation is considered in the plane of the paper). As a result of the rel-
ative movement of fluid particles at different radii, a stress is exerted at the
interface between adjacent layers at radius r. Similarly, there is a stress τ +δτ

at radius r+ δr. Since, in the absence of turbulence, the fluid moves in a tan-
gential direction only, and not radially, there are no forces due to viscosity
on the end faces of the element.

At radius r the area over which the stress acts is hrδθ , where h is the
distance measured perpendicular to the plane of the paper. Therefore the
force on this area is τhrδθ and the corresponding torque τhr2δθ . Similarly
the viscous forces on the other side of the element produce a torque of (τ +
δτ)h(r+ δr)2 δθ . The forces on the two sides of the element are in opposite
directions: if, for example, the angular velocity increases with radius then
the force on the outer face of the element tends to accelerate it, while the
force on the inner face tends to retard it. Thus the net torque on the element
is (τ + δτ)h(r+ δr)2δθ − τhr2δθ .

Under steady conditions the element does not undergo angular accelera-
tion, so the net torque on it is zero. Forces due to pressure do not contribute
to the torque because they are identical at the two ends of the element and
thus balance each other in the tangential direction.

Therefore

(τ + δτ)(r+ δr)2 − τ r2 = 0

that is,

2τ rδr+ r2δτ = 0
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higher orders of small quantities being neglected. Dividing by τ r2 we obtain

δτ

τ
= −2

δr
r

which may be integrated to give

τ = A/r2 (6.29)

where A is a constant.
We now have to evaluate τ in terms of the dynamic viscosity µ. Since

we are here concerned with the viscous stress over an area perpendicular
to the radius, the velocity gradient must be calculated along the radius.
The tangential velocity at radius r is given by ωr where ω represents the
angular velocity of the fluid, and the full velocity gradient is therefore

∂u
∂r

= ∂

∂r
(ωr) = ω + r∂ω

∂r

In this expression, however, only the second term contributes to relative
motion between particles. Suppose that the angular velocity of the fluid
does not vary with the radius. Then ∂ω/∂r is zero and ∂u/∂r reduces to ω.
In this case there is no relative motion between the particles of fluid, even
though ∂u/∂r is not zero; the entire quantity of fluid rotates as if it were a
solid block. (One may imagine a cylinder of liquid placed on a gramophone
turntable: when conditions are steady the liquid will have the same angu-
lar velocity as the turntable and there will be no relative motion between
particles at different radii, even though the peripheral velocity increases
with radius.) Therefore the rate of shear, which represents relative motion
between particles, is simply r∂ω/∂r and so the stress τ is given by µr∂ω/∂r.

∴ µ
∂ω

∂r
= τ

r
= A
r3

(6.30)

(from eqn 6.29). Since ω is here a function of r alone, eqn 6.30 may be
integrated to give

µω = − A
2r2

+ B where B is a constant (6.31)

Now if the rotating cylinder has radius a and angular velocity � and the
stationary cylinder has radius b, the condition of no slip at a boundary
requires ω to be zero when r = b. Substituting these simultaneous values in
eqn 6.31 gives B = A/2b2. The same no slip requirement makes ω = � at
r = a, and these values substituted in eqn 6.31 give

µ� = − A
2a2

+ A
2b2

= A(a2 − b2)

2a2b2

whence

A = 2a2b2µ�

a2 − b2
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The torque T on the cylinder of radius b

= stress × area × radius

= (µr∂ω/∂r)r=b × 2πbh× b
where h represents the height of the cylinder in contact with the fluid, and
end effects are assumed negligible.

∴ T = 2πµb3h
(

∂ω

∂r

)
r=b

= 2πµb3h
(
A

µb3

)
(from eqn 6.30)

= 2πhA = 4πha2b2µ�

a2 − b2
= kµ� (6.32)

where k is a constant for any given apparatus.
It may readily be shown that the torque on the rotating cylinder is the

same. Equation 6.32 applies whether the inner cylinder is stationary while
the outer one rotates, or the outer cylinder is stationary while the inner one
rotates.

In the derivation of eqn 6.32 it was assumed that h was large enough to
render negligible any special effects at the ends. In practice, however, the
cylinders are of moderate length and some account must therefore be taken
of effects produced by the ends. The end effects are very similar to that of
an additional length of the cylinder in contact with the fluid, in other words
(h + l) rather than h would arise in eqn 6.32. By using two, or preferably
more, values of the liquid depth, and therefore of h, simultaneous equations
are obtained from which l may be eliminated.

If the radii of the two cylinders are closely similar eqn 6.32 may be slightly
simplified. Putting the annular clearance c = a− b and (a+ b) = 2 × (mean
radius) = mean diameter = D, we obtain

T = 4πhµ�
a2b2

(a+ b)(a− b) = 4πhµ�

(
D+ c

2

)2(D− c
2

)2/
Dc

= πhµ�

4Dc
(D2 − c2)2

Then neglecting c2 in comparison with D2, we have

T = πhµ�D3

4c
(6.33)

A simple laboratory viscometer of this type is that devised by G. F. C. Searle
(1864–1954).

It is important to remember that neither eqn 6.32 nor eqn 6.33 is applicable
if the motion of the fluid is turbulent. Moreover, the assumption has been
made throughout that the two cylinders are concentric. The formulae are
therefore not applicable (except in very rare instances) to journal bearings,
for, as we shall see in Section 6.7.3, a journal bearing supports a load only
if the journal and bearing are not concentric.
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The rotary type of viscometer may be modified so that the moving cylinder
is allowed to oscillate about a mean position instead of rotating steadily.
Measurements are then taken of the damping imposed by the fluid. However,
the number of methods of determining viscosity is legion and for details of
them reference must be made to specialist works.

In any method of measuring viscosity it is important to maintain the fluid
at a constant and known temperature. The viscosity of both liquids and
gases varies markedly with temperature and, indeed, the relevant temper-
ature should always be quoted alongside any value for the viscosity of a
fluid.

Example 6.6 In a rotary viscometer the gap between two concentric
cylinders is filled with a fluid under test, as shown in the diagram.
The outer cylinder is rotated with constant angular velocity � and the
torque T required to hold the inner cylinder at rest is measured.
The fluid motion is everywhere laminar.

The torque T consists of two components Ta and Tb. The torque
Ta is due to the flow in the annular clearance c, where c � D. The
torque Tb is due to the fluid motion generated in the clearance t at the
base of the viscometer.

(a) Show that the torque T is related to D by an equation of the
form

T = Ta + Tb = (k1D
3 + K2D

4)µ�

where K1 and K2 are constants of the viscometer. Derive expressions
for K1 and K2.
(b) The dimensions of the viscometer are D = 120 mm, h = 80 mm,
c = 1 mm, t = 18.75 mm. Evaluate the viscosity of the liquid if
a torque of 4 × 10−3 N · m is required to hold the inner cylinder
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stationary when the outer cylinder is rotated at 65 revolutions per
minute.

Solution
(a) In the annular clearance c the torque Ta is given by the analysis
leading to eqn 6.33. Thus

Ta = πhµ�D3

4c

The torque Tb due to the fluid motion in the gap t at the base of the
viscometer is determined as follows.

At radius r the velocity of the outer cylinder is �r. The shear stress
on the inner cylinder at radius r is given by

τb = µ
du
dy

= µ
�r
t

At radius r the area of an element in 2πrdr, the shear force on the
element is

2πrτbdr = 2πµ�

t
r2dr

and the torque due to the elemental shear force is

2πµ�

t
r3dr

Hence torque

Tb =
∫ D/2

0

2πµ�

t
r3dr = πµ�D4

32t

and total torque

T = Ta + Tb =
(

πh
4c
D3 + π

32t
D4

)
µ�

Writing

K1 = πh
4c

, K2 = π

32t

we have

T = Ta + Tb = (K1D
3 + K2D

4)µ�. QED

(b) Substituting in this equation, with T = 4 × 10−3 N · m, and

(K1D
3 + K2D

4) =
(

π

4
80 mm
1 mm

× (120 mm)3 + π

32 × 18.75 mm

×(120 mm)4
)

× 1
(103 mm/m)3
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µ� = 65 rev/min × 2π rad/rev
60 s/min

µ

µ is evaluated as µ = 5.36 × 10−3 Pa · s.
The calculations show that, for the particular design of viscometer

considered here, if the contribution from Tb is ignored, a 1% error is
incurred in the magnitude of µ.�

6.7 FUNDAMENTALS OF THE THEORY OF
HYDRODYNAMIC LUBRICATION

Another important application of laminar flow arises in the lubrication of
various types of bearings. Although high velocities may be involved, the
thickness of the lubricant film is usually small. Hence the Reynolds number
is low enough for laminar motion to be assumed.

The primary function of the lubricant is to separate the bearing surfaces,
and so long as the lubrication is effective there is no direct contact between
properly finished surfaces. If the film of lubricant is to keep the bearing sur-
faces apart it must be capable of sustaining a load. One way of achieving
this is to supply the fluid lubricant to the space between the surfaces at a
sufficiently high pressure from some external source. This provides hydro-
static lubrication. But in many instances a high pressure may be more readily
produced in the lubricant as a result of the shape and relative motion of the
bearing surfaces themselves. This action gives hydrodynamic lubrication.
The theory of it can give rise to considerable mathematical complexity and
no attempt will be made here to consider more than very simple examples.
Nevertheless, we shall see how the clearances that must be allowed between
the surfaces may be determined; also the degree of smoothness to which they
must be finished, the viscosity and the rate of flow of the lubricant necessary
to prevent the bearing surfaces coming into direct contact.

The simplest form of bearing is the slipper or slide-block moving over
a horizontal plane surface as illustrated in Fig. 6.17. For the purpose of
our analysis we shall assume that the bearing plate is infinite in extent
and that the slipper is infinitely wide in the horizontal direction perpen-
dicular to its motion (i.e. perpendicular to the diagram). Thus the flow
of the lubricant may be considered two-dimensional; in other words,
there is no component of velocity in the direction perpendicular to the
diagram.

Fig. 6.17
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If the further assumption is made that the surfaces of the slipper and
bearing plate are parallel, the behaviour of the lubricant corresponds to
laminar flow between parallel boundaries, one of which is moving. Assuming
steady conditions and a constant viscosity, we may therefore use eqn 6.23:

Q
b

= −δp∗

δx
c3

12µ
+ Vc

2

In view of the negligible differences of elevation within the lubricant film, the
asterisk may be dropped from p∗, Then, with the volume flow rate divided
by width Q/b written as q, the equation may be rearranged to give (in the
limit as δx → 0)

dp
dx

= 12µ

c3

(
Vc
2

− q
)

(6.34)

We have assumed c constant, and from the principle of continuity and
the assumption of two-dimensional constant-density flow, q is constant.
So, from eqn 6.34, dp/dx = constant. But this constant must be zero because
the pressure has the same value at each end of the slipper, say p0 (usually
atmospheric). In other words, there is no variation of pressure through-
out the space between slipper and plate. The same pressure, p0, also acts
uniformly over the outer surface of the slipper and on the exposed part of
the lubricant film, so the lubricant exerts no resultant force normal to the
boundaries. We are therefore led to conclude that the bearing surfaces are
incapable of supporting any load – except when they actually touch each
other, but such contact of course defeats the purpose of lubrication.

This conclusion, however, depends on the assumptions of constant density
and viscosity. If a film of lubricant could in fact be maintained between the
slipper and the plate, the energy needed to overcome the viscous resistance
would be dissipated as heat, and the temperature of the lubricant would
increase in the direction of flow. Consequently there would be not only a
variation of viscosity but also a decrease of density in the flow direction
and thus an increase of q. (We may disregard any variation of temperature,
and therefore viscosity, across the very small clearance c, and, for a liquid
lubricant, the effect of pressure on density may also be neglected.) In such
circumstances a parallel slider bearing could in fact support a load. This
would require the pressure in the lubricant to increase from the ambient
value p0 at one end of the slipper, pass through a maximum, and return to
p0 at the other end of the slipper, as shown in Fig. 6.18. At the peak value
dp/dx = 0 and there, by eqn 6.34, q = Vc/2; negative; but downstream of
this position q would be greater, thereby making dp/dx negative, whereas
upstream dp/dx would be positive. (Although the derivation of eqn 6.34
involves the assumption of constant density, a small, non-zero, value of
δp/δx has a negligible effect on that equation, and does not undermine the
present argument.) In addition, the small clearance c might not remain uni-
form even for surfaces initially parallel. Significant variations of c may be
caused by quite tiny distortions of the surfaces, particularly as a result of
temperature changes.
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Fig. 6.18

Fig. 6.19

Thus any ability of a parallel bearing to support a load depends on the
wasteful dissipation of energy as heat! A much more economical and reliable
way of obtaining a pressure graph like Fig. 6.18 is to make the clearance c
vary in some suitable way with x.

6.7.1 The inclined slipper bearing

The simplest form of bearing in which the clearance varies with x is one in
which the two surfaces are plane but inclined to one another in the direction
of motion. A bearing of this type is illustrated in Fig. 6.19. The slipper is at
an angle, arctan δ, to the bearing plate. (In practice, this angle is very small
and it is greatly exaggerated in the diagram.) It is again assumed that the
bearing plate is infinite in extent, and that the slipper has an infinite width so
that the flow may be considered two-dimensional. To give steady conditions,
the slipper is considered fixed and the bearing plate moving. The origin of
coordinates is chosen so that the left-hand end of the slipper is at x = 0,
and the bearing plate moves relative to the slipper with constant velocity V
in the x direction. The clearance between slipper and plate at a distance x
from the origin is h, and the plane of the slipper surface intersects that of the
bearing plate at a distance a from the origin.
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Over a small length δx the clearance h may be assumed unchanged, and
from eqn 6.34 we have

dp
dx

= 12µ

(
V

2h2
− q
h3

)
(6.35)

Equation 6.35 involves two noteworthy assumptions: first, that the vari-
ation of velocity with y is the same as if the boundaries were parallel; second,
that the acceleration of the fluid as h decreases requires inertia forces that are
negligible compared with the viscous forces. For the usual very small inclina-
tion of the slipper, these assumptions are justified. Furthermore, components
of velocity in the y direction are negligible.

If µ is assumed constant throughout, and (a − x)δ is substituted for h,
eqn 6.35 may be integrated:

p = 12µ

{
V

2(a− x)δ2
− q

2(a− x)2δ3

}
+ A

The integration constant A may be determined from the condition that
p = p0, the ambient pressure, when x = 0.

The discharge divided by width, q, still remains to be determined. How-
ever, p again equals p0 when x = l, and inserting this condition into the
equation enables q to be calculated. After simplification the final result is

p = p0 + 6µVx(l − x)
δ2(a− x)2(2a− l) (6.36)

This equation expresses the relation between p, the pressure in the lub-
ricant, and x. Since, under the slipper, x is always less than l and l is less
than 2a, the last term of eqn 6.36 is positive; p is thus greater than p0 and
the bearing can sustain a load. If the distance a approaches infinity, that is,
if the surfaces become parallel, then p = p0 for all values of x− as we found
in Section 6.7. The inclination of the slipper must be such that the fluid is
forced into a passage of decreasing cross-section: ifV , and therefore the fluid
velocity, were reversed the last term of eqn 6.36 would be made negative,
p would become less than p0 and the bearing would collapse.

Thus the fluid is, as it were, used as a wedge. This wedge principle is, in
fact, one of the fundamental features of any hydrodynamically lubricated
bearing, whether plane or not.

The load that such a bearing can support is determined by the total net
thrust which the fluid exerts on either bearing surface.

The net thrust divided by the width of the bearing is obtained from the
integral ∫ l

0
(p− p0)dx (6.37)

Substituting from eqn 6.36 we have

Net thrust divided by width = T = 6µV
δ2(2a− l)

∫ l

0

x(l − x)
(a− x)2

dx
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and the result after simplifying is

T = 6µV
δ2

(
ln

a
a− l − 2l

2a− l
)

(6.38)

The position of the centre of pressure (i.e. the point of application of
this resultant force) may be determined by calculating the total moment of
the distributed force over the slipper about some convenient axis and then
dividing the result by the total force. The axis x = 0, y = 0 is a suitable one
about which to take moments. Thus if the centre of pressure is at x = xp,

Txp =
∫ l

0
(p− p0)xdx = 6µV

δ2(2a− l)
∫ l

0

x2(l − x)
(a− x)2

dx (6.39)

After carrying out the integration and substituting the value of T from
eqn 6.38 we finally obtain

xp = a(3a− 2l) ln{a/(a− l)} − l{3a− (l/2)}
(2a− l) ln{a/(a− l)} − 2l

(6.40)

This, it may be shown, is always greater than l/2; that is, the centre of
pressure is always behind the geometrical centre of the slipper. When the
plates are parallel, a is infinite, and the centre of pressure and the geometrical
centre coincide. As the inclination of the slipper is increased the centre of
pressure moves back. At the maximum possible inclination, the heel of the
slipper touches the bearing plate; thus a = l and the centre of pressure
is at the heel. Equation 6.36 shows that the pressure at this point is then
infinite. However, under these conditions flow between the slipper and plate
is impossible, and so this limiting case has no physical significance.

It will be noted from eqn 6.40 that the position of the centre of pressure
in no way depends on the value of T, µ or V . It depends in fact only on
the geometry of the slipper. Since a given small angle is difficult to maintain
accurately in practice, it is usual to pivot the slipper on its support, the axis
of the pivot being towards the rear of the slipper. The slipper then so adjusts
its inclination that the line of action of the resultant force passes through the
pivot axis.

Since the centre of pressure moves towards the rear of the slipper as the
inclination is increased, the arrangement is stable; if the inclination increases,
the point of application of the force moves back beyond the axis of the pivot,
and so provides a restoring moment to reduce the inclination again. Con-
versely, a reduction of the inclination brings the centre of pressure forward
and so produces the necessary restoring moment.

The pivoted plane slipper bearing is sometimes known as Michell bearing
after the Australian engineer A. G. M. Michell (1870–1959). (The prin-
ciple was discovered independently by the US engineer Albert Kingsbury
(1862–1943), so in North America such bearings are more often termed
Kingsbury bearings.)

Although the theory suggests that the pivot axis should be nearer the rear
of the bearing, centrally pivoted slippers have been found to work satis-
factorily. This is in part explained by the fact that the energy required to
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overcome the viscous resistance is dissipated as heat, and the consequent
variations in the viscosity and density of the lubricant cause the centre of
pressure to move forward. A centrally pivoted slipper is of course suitable
for movement in either direction.

We have seen that the heel of the slipper should not touch the bearing
plate because lubrication would then break down entirely. In practice there
is a lower limit, greater than zero, to the clearance at the heel. This limit is
largely governed by the inevitable lack of perfect smoothness of the surfaces
and the probable size of solid particles (e.g. grit) in the lubricant. If these
particles are unable to escape under the heel of the bearing, they collect at
this point and score the surfaces.

The tangential force (i.e. the resistance to the relative movement between
the slipper and the bearing plate) may also be calculated. The viscous shear-
ing stress at any point in the film of lubricant is given by τ = µ(∂u/∂y). The
velocity u is given by eqn 6.18(

δp∗

δx

)
y2

2
= µu+ Ay+ B

It is again permissible to drop the asterisk from the symbol p∗ since we con-
sider a horizontal slipper bearing, and again the inclination of the slipper is
assumed so small that any component of velocity in the vertical direction is
negligible. Since the rate of change of pressure with x is not constant, the
differential dp/dx must be used instead of the ratio δp/δx. The integration
constantsA andB are determined by the conditions at the boundaries. Refer-
ring to Fig. 6.19, the velocity of the lubricant must equal the velocity of the
bearing plate when y = 0. Substituting u = V and y = 0 gives B = −µV .
If the clearance is h at a particular value of x, the other boundary condition
is that u = 0 when y = h (since the slipper is considered stationary).

∴ dp
dx
h2

2
= 0 + Ah− µV whence A = dp

dx
h
2

+ µ

h
V

Thus the expression for velocity at any point becomes

dp
dx
y2

2
= µu+ dp

dx
h
2
y+ µ

h
Vy− µV

and differentiation with respect to y then gives an expression for the viscous
stress in the x direction at any value of y

µ
∂u
∂y

= −dp
dx

(
h
2

− y
)

− µV
h

(6.41)

The stress at the bearing plate is given by the value of this expression when
y = 0, that is, −(dp/dx)(h/2)−µV/h. (The sign convention for stress shows
that the stress on the bearing plate is given by µ(∂u/∂y) since the plate faces
the direction of increase of y.) Thus the total tangential force on the bearing
plate divided by the width of the plate is

−
∫ l

0

(
dp
dx
h
2

+ µV
h

)
dx
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Substituting (a− x)δ for h, we have

Total tangential force divided by width = Fp

= − δ

2

∫ l

0
(a− x)dp

dx
dx− µV

δ

∫ l

0

dx
a− x

To evaluate the first of these integrals we may obtain an expression for dp/dx
by differentiating eqn 6.36. It is simpler, however, to integrate by parts

Fp = − δ

2

{
[(a− x)p]l0 −

∫ l

0
p

d
dx

(a− x)dx
}

+ µV
δ

ln
(
a− l
a

)

= − δ

2

{
(a− l)p0 − ap0 +

∫ l

0
pdx

}
+ µV

δ
ln

(
a− l
a

)

But since T = ∫ l
0 (p− p0)dx (eqn 6.37) the term

∫ l

0
pdx = T+

∫ l

0
p0dx = T + p0l

Thus the total tangential force divided by width of bearing plate

Fp = − δ

2
(−p0l + T + p0l) + µV

δ
ln

(
a− l
a

)

= −Tδ

2
+ µV

δ
ln

(
h2

h1

)

= −
{
Tδ

2
+ µV

δ
ln

(
h1

h2

)}
(6.42)

where h1,h2 are the clearances under the toe and heel of the slipper respect-
ively (h1 > h2). The minus sign indicates that the force acts in the direction
opposite to x, that is, towards the left in Fig. 6.19.

To calculate the horizontal force on the slipper we may proceed similarly.
The viscous stress in the lubricant at the surface of the slipper is given by
putting y = h in eqn 6.41. The stress on the boundary is given by −µ∂u/∂y
for y = h. The minus sign here arises from the sign convention for stress: the
surface in question faces the direction opposite to that in which y increases.
The stress on the surface of the slipper is therefore

−dp
dx
h
2

+ µV
h

The total horizontal force divided by width arising from the viscous stress is,
since the inclination of the slipper is again assumed to be exceedingly small,∫ l

0

(
−dp

dx
h
2

+ µV
h

)
dx
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Fig. 6.20

This expression may be integrated like the corresponding one for the bearing
plate, and the result is

−Tδ

2
+ µV

δ
ln

(
h1

h2

)

In addition, however, the normal force on the slipper has a component
Tδ which helps to resist the motion. If the total normal force on the slipper
is F, then F has a component, towards the right of Fig. 6.20, equal to F sin θ .
But if the separating force is T (perpendicular to the bearing plate) then,
resolving vertically, we see that T = F cos θ . Thus the component towards
the right becomes (T/ cos θ) sin θ = T tan θ = Tδ. Hence the total force
resisting the movement of the slipper is

Fs = −Tδ

2
+ µV

δ
ln

(
h1

h2

)
+ Tδ = Tδ

2
+ µV

δ
ln

(
h1

h2

)
(6.43)

Comparison of the expression 6.42 and 6.43 shows that Fp = −Fs. This, of
course, is to be expected from Newton’s Third Law.

A further point of interest is this. In the case of friction between dry solid
surfaces the coefficient of friction, that is, the ratio of the friction force to the
normal force, is largely independent of the load and speed of sliding. This is
not so for lubricated surfaces, as eqns 6.42 and 6.43 show.

The load that such a bearing can support is determined by the inclination
of the slipper. Using the geometrical relations

δ = (h1 − h2)/l and a/l = h1/(h1 − h2)

eqn 6.38 may be written in the alternative form

T = 6µVl2

(h1 − h2)2

{
ln

(
h1

h2

)
− 2

(
h1 − h2

h1 + h2

)}
(6.44)

For given values of l and h2, the condition for T to be a maximum is
h1/h2 = 2.189. Then T = 0.1602µVl2/h2

2 and Fs = −Fp = 0.754µVl/h2.
For these conditions the ratio T/Fs, which may be regarded as a measure
of the efficiency of the bearing, is 0.212l/h2 and since h2 may be very small
(0.02 mm perhaps) this ratio may be very large.

The theory of the simple slider bearing, as here developed, is broadly that
first put forward by Osborne Reynolds in 1886. Considerable extensions of
the theory have since been made, but these further developments are beyond
the scope of the present volume. It should, however, be realized that in the
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foregoing analysis the problem has been idealized in a number of respects.
In practice the slipper would not be infinite in width: there would thus be
some loss of lubricant from the sides of the bearing and, as a result, the
pressure in the film of lubricant would be reduced. The flow, moreover,
would not be truly two-dimensional.

A further complication is that the energy required to overcome the viscous
resistance in the bearing is dissipated as heat. Some of this heat is taken up
by the lubricant, with the result that its temperature rises and its viscosity
falls. Indeed, in a number of applications the lubricant is used as much for
cooling as for supporting a load. The variation of viscosity is accounted for –
at least approximately – in some of the more advanced theories.

6.7.2 The Rayleigh step

An analysis by Lord Rayleigh (1842–1919) suggested that a greater load-
carrying capacity would be obtained with a fixed pad providing two constant
clearances h1 and h2 (Fig. 6.21). If we again assume steady conditions,
constant density and viscosity, and an infinite width (perpendicular to the
diagram), eqn 6.34 shows that in each part of the bearing the volume rate
of flow of lubricant divided by width is

q = Vc
2

− c3

12µ

dp
dx

(6.45)

Since q is independent of x, so too is dp/dx if the clearance is constant; that
is, the pressure varies linearly with x in each part of the bearing, and hence(

dp
dx

)
1

= ps

l1
and

(
dp
dx

)
2

= −ps

l2

where ps represents the pressure at the step and the ambient pressure is for
simplicity taken as zero. Using eqn 6.45 to equate the values of q for each

Fig. 6.21
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part of the bearing then gives

Vh1

2
− h3

1

12µ

ps

l1
= Vh2

2
− h3

2

12µ

(
−ps

l2

)

whence

ps

6µV
= h1 − h2(

h3
1/l1

)
+

(
h3

2/l2
) (6.46)

Since ps must be positive, V(h1 − h2) must be positive; that is, the lubric-
ant must flow from the larger clearance to the smaller. The load carried
divided by the width of the bearing corresponds to the area of the pressure
graph (Fig. 6.21)

∫ l

0
pdx = 1

2
psl

where l = l1 + l2. The maximum load is determined by the maximum value
of the expression 6.46 and this occurs when h1/h2 = 1+√

3/2 = 1.866 and
l1/l2 = (5 + 3

√
3)/4 = 2.549. The maximum load divided by width is then

4
9

(2
√

3 − 3)µVl2/h2
2 = 0.2063µVl2/h2

2

an appreciable increase above the maximum value, 0.1602µVl2/h2
2,

obtained with the inclined-plane type of bearing. Unfortunately, for bearings
that are not infinite in width, sideways leakage is greater with a Rayleigh step,
and thus in practice its superiority in load-carrying is lessened. Refinements
have been devised, however, to improve the performance.

Example 6.7 Consider a step bearing of breadth b, with the step
centrally positioned.

(a) Show that the volumetric flow rate Q through the bearing is
given by

Q = V(1 +H2)

2(1 +H3)
bh1

where H = h1/h2.
(b) A bearing has the following dimensions: h1 = 0.5 mm, h2 =

0.25 mm, l = 100 mm, b = 100 mm. The bearing is used in
conjunction with an oil of relative density 0.87 and kinematic vis-
cosity 2×10−4 m2 · s−1. The relative velocity between the bearing
surfaces is 10 m · s−1. Determine the volumetric flow rate of oil.

(c) Determine the load supported by the bearing.
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Solution

(a) Since Q = qb, and (dp/dx)1 = −(dp/dx)2 we may write(
V
2

− Q
bh1

)
12µ

h2
1

= −
(
V
2

− Q
bh2

)
12µ

h2
2

or (
V
2

− Q
bHh2

)
12µ

H2h2
2

= −
(
V
2

− Q
bh2

)
12µ

h2
2

which may be written as

Q = V
2

(1 +H2)

(1 +H3)
bHh2 = V

2
(1 +H2)

(1 +H3)
bh1 QED.

(b) Q = V
2

(1 +H2)

(1 +H3)
bh1

= 10 m · s−1

2
× (1 + 4)

(1 + 8)
× 0.1 m × (0.5 × 10−3 m)

= 139 × 10−6 m3 · s−1

(c) The load F supported by the bearing is given by

F =
(

dp
dx

)
1

L
2
L
2
b = V

2

(
1 − (1 +H2)

(1 +H3)

)
12µ

h2
1

L2

4
b

= 10 m · s−1

2

(
1 − (1 + 4)

(1 + 8)

)
12 × 870 kg · m−3 × (2 × 10−4) m2 · s−1

(0.5 mm)2 × (10−3 m/mm)2

× (0.1 m)2

4
× 0.1 m

= 4640 N�

6.7.3 Journal bearings

The basic wedge principle again applies in a journal bearing on a rotating
shaft. This can carry a transverse load only if the journal (i.e. the part of
the shaft within the bearing) and the bush (i.e. the lining of the bearing) are
not exactly coaxial. Under load, the journal (centre C in Fig. 6.22) takes up
an eccentric position in the bush (centre O). The distance CO between the
centres is known as the eccentricity, e, and the ratio of this to the average
clearance c (= Rb − R) is termed the eccentricity ratio, ε. The thickness h
of the lubricant film (greatly exaggerated in the diagram: in practice c is of
order 0.001 R) varies with the angle θ which is measured, in the direction of
shaft rotation, from the line CO. (The magnitude and direction of CO will
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Fig. 6.22

be determined by our analysis.) From Fig. 6.22

R+ h = e cos θ + Rb cos ξ

but, because e is exceedingly small (compared with Rb), so is the angle ξ ,
and we can take cos ξ = 1. Then

h = Rb − R+ e cos θ = c + e cos θ = c(1 + ε cos θ) (6.47)

We consider first a bearing of infinite length, so that the lubricant flow may be Bearing of infinite length
taken as two-dimensional (in the plane of the diagram). We assume also that
conditions are steady, that the viscosity and density are constant throughout,
and that the axes of journal and bush are exactly straight and parallel. As
the film thickness h is so small compared with the radii, the fact that the
film is curved may be neglected, and, for a small length δx in the direction
of flow, the flow is governed essentially by eqn 6.35. Hence

dp
dx

= 12µ

h3

(
�Rh

2
− q

)
= 6µ�R

h3
(h− h0) (6.48)

where h0 = 2q/�R which, for steady conditions, is constant and may be
regarded as representing the value of h at which dp/dx = 0. By putting
x = Rθ and h = c(1 + ε cos θ) we transform eqn 6.48 to

1
R

dp
dθ

= 6µ�R
c2

{
1

(1 + ε cos θ)2
− h0

c(1 + ε cos θ)3

}
(6.49)

The pressure pmay now be determined by integrating eqn 6.49 with respect
to θ . This may be achieved by using a new variable α such that

1 + ε cos θ = 1 − ε2

1 − ε cos α
(6.50)

and thus dθ = (1 − ε2)1/2dα/(1 − ε cos α). Then pc2/6µ�R2 = Cp, say, so
that

Cp = α − ε sin α

(1 − ε2)3/2
− h0

c(1 − ε2)5/2

×
{

α

(
1 + ε2

2

)
− 2ε sin α + ε2

4
sin 2α

}
+ C0 (6.51)

where C0 is an integration constant.
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Now if the lubricant occupies the entire space between journal and bush,
eqn 6.51 must give the same value for p at the maximum clearance whether
we set θ = 0 or 2π , that is, α = 0 or 2π . Hence

0 + C0 = 2π

(1 − ε2)3/2
− h0

c(1 − ε2)5/2

{
2π

(
1 + ε2

2

)}
+ C0

and so

h0 = c(1 − ε2)

1 + ε2/2
(6.52)

Substituting this relation in eqn 6.51 we obtain

Cp = ε(2 − ε2 − ε cos α) sin α

(1 + ε2)3/2(2 + ε2)
+ C0

= ε(2 + ε cos θ) sin θ

(2 + ε2)(1 + ε cos θ)2
+ C0 (6.53)

This expression is plotted in Fig. 6.23, which shows that when θ is
between π and 2π , the pressure drops considerably below the value at
θ = π . The result was first obtained by the German physicist Arnold
Sommerfeld (1868–1951), and so the existence of these symmetrical high-
and low-pressure sections of the graph is termed the Sommerfeld boundary
condition.

The condition frequently cannot be achieved in practice because a film of
liquid lubricant will break when the pressure falls below the vapour pressure
of the liquid. The bearing will then behave largely as though no lubricant
were present in the low pressure region. In any case, appreciable quantities
of dissolved air are likely to be released as soon as the pressure falls much
below atmospheric. A continuous film of lubricant can of course be preserved
if the value of the constant C0 in eqn 6.53 is sufficiently large. Normally the
lubricant is introduced under pressure through a small hole at some point in
the bush, and eventually leaves via the ends of the bearing. For any position
of the inlet hole, C0 could be increased by raising the supply pressure, but, as
this would often require unacceptably high values, a better means (in theory)
of maintaining continuity of the lubricant film would be to locate the inlet
hole at the position of minimum pressure. Unfortunately, since this position
depends on ε and thus on the load, it is seldom accurately known in practice,

Fig. 6.23
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and, to ensure that the inlet hole is not in the high pressure region (θ < π),
the hole is for safety’s sake placed beyond the expected position of minimum
pressure.

However, if we assume that a continuous film of lubricant can in fact be
achieved, the friction torque and the load carried by the bearing may be
calculated by using the full Sommerfeld boundary condition. From eqn 6.41
the shear stress at the surface of the journal is

τ0 = µ

(
∂u
∂y

)
y=0

= −dp
dx

(
h
2

)
− µ�R

h

= −3µ�R
h2

(h− h0) − µ�R
h

= µ�R
h2

(3h0 − 4h) (6.54)

in which substitution for dp/dxwas made from eqn 6.48. The torque divided
by the length of the journal is given by∫ 2π

0
Rτ0(Rdθ) = µ�R3

∫ 2π

0

(
3h0 − 4h
h2

)
dθ

= µ�R3

c

∫ 2π

0

{
3h0

c(1 + ε cos θ)2
− 4

1 + ε cos θ

}
dθ

Again using the substitution 6.50, we may evaluate the integral and obtain

Torque divided by length = − 4πµ�R3(1 + 2ε2)

c(1 − ε2)1/2(2 + ε2)
(6.55)

By the sign convention for viscous stress (see Section 1.6.1), the direction
of this torque is that of increasing θ , that is, the direction of the journal’s
rotation. The minus sign eqn 6.55 thus indicates that the torque opposes the
rotation. It will be noticed that for very small eccentricity ratios eqn 6.55
reduces to eqn 6.33, sometimes known as Petroff’s Law. (The name – that
of the Russian engineer Nikolai Pavlovich Petroff (1836–1920) – is also
sometimes written as Petrov.)

The load that the journal will bear may be determined by calculating its
components perpendicular and parallel to OC. On a small element of the
journal surface subtending an angle δθ at the centre C, the force in the
direction perpendicular to OC divided by the length of the bearing is

pRδθ sin θ + τ0Rδθ cos θ

and hence the total force divided by length is

F⊥oc = R
∫ 2π

0
p sin θ dθ + R

∫ 2π

0
τ0 cos θ dθ

= R[−p cos θ ]2π
0 − R

∫ 2π

0
(− cos θ)

dp
dθ

dθ + R
∫ 2π

0
τ0 cos θ dθ



234 Laminar flow between solid boundaries

Since the first term has identical values at both limits we have

F⊥oc = R
∫ 2π

0

(
dp
dθ

+ τ0

)
cos θ dθ (6.56)

However, it may be shown that the contribution of τ0 is less than c/R
times that of dp/dθ and so for simplicity we may justifiably neglect τ0 in
the expression 6.56. Obtaining dp/dθ from eqn 6.49 and again using the
substitution 6.50, we finally arrive at

F⊥oc = 12πµ�R3ε

c2(1 − ε2)1/2(2 + ε2)
(6.57)

Similarly, the total force parallel to OC divided by length is

R
∫ 2π

0
p cos θ dθ + R

∫ 2π

0
τ0 sin θ dθ

= R[p sin θ ]2π
0 + R

∫ 2π

0

(
τ0 − dp

dθ

)
sin θ dθ

but this may be shown to be exactly zero. Consequently the attitude angle
(i.e. the angle between OC and the direction of the load) is 90◦, and the
total load is given by eqn 6.57. (The attitude angle is often known simply as
attitude. In America, however, attitude sometimes refers to the eccentricity
ratio ε.) It is more usual to put eqn 6.57 in dimensionless form:

Fc2

µ�R3
= 12πε

(1 − ε2)1/2(2 + ε2)
(6.58)

where F represents the total load divided by the length of the bearing. The
left-hand side of eqn 6.58 is often termed the Sommerfeld number but unfor-
tunately various modified forms are sometimes given the same name. It is
therefore essential to check the definition a writer uses.

Equation 6.58 is plotted in Fig. 6.24, from which it will be seen that the
greater the load the greater the eccentricity. For a heavily loaded bearing,
ε approaches 1.0 and the minimum clearance = c(1 − ε) becomes extremely
small: unless the surfaces are very well finished and the lubricant is com-
pletely free from solid particles, it may not then be possible to maintain the
film of lubricant. (Designers commonly aim at ε � 0.6.)

There are two important limitations to this analysis. One is that the value
of the constant C0 in eqn 6.51 may not be sufficient to ensure a continuous
film of lubricant throughout the bearing and the limits 0 and 2π applied to
the various integrals are then not appropriate. Many assumptions about the
extent of the film have been suggested, none entirely satisfactory, but for
discussion of these reference must be made to more specialized works.

The other principal limitation is that the bearing is assumed to be infinitely
long so that there is no flow in the axial direction. For lengths more than
about four times the diameter the assumption is not unreasonable but in
practice it is rare for journal bearings to have lengths that much exceed the
diameter. To account for axial flow in addition to that already considered
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Fig. 6.24

Fig. 6.25

involves great mathematical complexity, but we can readily investigate the
behaviour, under steady conditions, of a very short bearing.

Here there is, in general, a large pressure gradient in the axial (z) direction. Very short bearing
Again, because the clearance is very small compared with the radius, the
curvature of the lubricant film may be neglected, and at a particular position
within it we consider a small box-like element over an area δx × δz of the
journal surface where the clearance is h (Fig. 6.25). In the circumferential (x)
direction we denote the volume rate of flow by Qx within a space δz wide,
and so the net rate at which fluid flows out of the box in this direction is

(
Qx + ∂Qx

∂x
δx

)
−Qx = ∂Qx

∂x
δx
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Similarly there is a net outflow (∂Qz/∂z)δz from the box in the z direction.
If, at the particular position considered, h does not vary with time (i.e. if
both the speed and the load are steady), the total net outflow of lubricant
from the box must be zero.

∴ ∂Qx
∂x

δx+ ∂Qz
∂z

δz = 0 (6.59)

To obtain ∂Qx/∂x we make appropriate substitutions in eqn 6.23:

∂Qx
∂x

= ∂

∂x

[
δz

{
−∂p

∂x
h3

12µ
+ �Rh

2

}]

=
{

�R
2

∂h
∂x

− 1
12

∂

∂x

(
h3

µ

∂p
∂x

)}
δz (6.60)

where the negligible changes of elevation allow us to drop the asterisk from
p∗ and δz takes the place of b. The corresponding equation for the z (axial)
direction, in which there is no relative velocity between journal and bush, is

∂Qz
∂z

= − 1
12

∂

∂z

(
h3

µ

∂p
∂z

)
δx (6.61)

Substituting eqn 6.60 and 6.61 into eqn 6.59, we obtain

�R
2

∂h
∂x

δxδz − 1
12

∂

∂x

(
h3

µ

∂

∂x

)
δxδz − 1

12
∂

∂z

(
h3

µ

∂p
∂z

)
δxδz = 0

If the axes of journal bush are parallel, h will be independent of z, and
dependent only on x. With µ again assumed constant throughout, the
equation thus becomes

6µ�R
dh
dx

− ∂

∂x

(
h3 ∂p

∂x

)
− h3 ∂2p

∂z2
= 0 (6.62)

The position z = 0 may be taken mid-way between the ends of the bearing;
for a given value of x, the pressure varies from, say, pc at z = 0 to atmos-
pheric at each end of the bearing (where z = ±L/2). That is, p/pc varies
symmetrically along the length of the bearing from zero to 1 and back to zero.
It is reasonable to assume that the form of this variation is the same whatever
the value of x; that is, that f = p/pc is a function of z only. (We shall show
later that for a short bearing this assumption is justified.) Substituting pc for
p in eqn 6.62 gives

6µ�R
dh
dx

− d
dx

(
h3 dpc

dx

)
f − h3pc

d2f
dz2

= 0 (6.63)

and division by h3pc then yields

a− b2f − d2f
dz2

= 0 (6.64)
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where

a = 6µ�R
h3pc

dh
dx

and b2 = 1
h3pc

d
dx

(
h3 dpc

dx

)
Both a and b are independent of z and so the solution of eqn 6.64 is

f = a
b2

+ A sin(bz + B)

Symmetry requires df /dz = Ab cos(bz + B) to be zero when z = 0; hence
cosB = 0. Consequently sin(bz + B) = ± cosbz and

f = a
b2

+ (±A) cosbz

Putting f = 0 at z = ±L/2 then gives ±A = −(a/b2) sec(bL/2), and so

f = a
b2

{
1 − sec

(
bL
2

)
cosbz

}
(6.65)

Moreover, f = 1 when z = 0; thus a/b2 = {1 − sec(bL/2)}−1 and so

f = 1 − sec(bL/2) cosbz
1 − sec(bL/2)

= cos(bL/2) − cosbz
cos(bL/2) − 1

For small values of L (and thus of z), expansion of the cosines yields f =
1 − 4z2/L2 when higher orders of the small quantities are neglected. This
confirms our hypothesis that, for a short bearing, f is independent of x.
(In parts of the bearing b2 may be negative, but the solution is no less valid
when b is imaginary.)

Substituting for a in eqn 6.65 we now obtain

p = pcf = pc
6µ�R
h3pc

dh
dx

1
b2

{
1 − sec

(
bL
2

)
cosbz

}
which, for small values of L, becomes

p = 3µ�R
h3

dh
dx

(
z2 − L2

4

)
(6.66)

We now put x = Rθ and h = c(1 + ε cos θ) (eqn 6.47) whence

p = 3µ�

c2

(
L2

4
− z2

)
ε sin θ

(1 + ε cos θ)3

This result indicates that the pressure is negative between θ = π and
θ = 2π . Unless the bearing is so lightly loaded that ε is very small, the reduc-
tion of pressure below atmospheric is sufficient to cause the film to break in
this region. Then only the lubricant between θ = 0 and θ = π is effective in
sustaining a load. (This is known as the half Sommerfeld condition.)

Again the contribution of the shear stress τ0 to supporting a load is negli-
gible, and the force resulting from pressure at a small element Rδθδz of the
journal surface is pRδθδz with components pR cos θδθδz and pR sin θδθδz
respectively parallel and perpendicular to OC. These expressions may be
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integrated with respect to z between the limits z = −L/2 and z = L/2, and
(with the help of the substitution 6.50) with respect to θ between the limits
θ = 0 and θ = π . Then

Force parallel to OC = − µ�RL3ε2

c2(1 − ε2)2

Force perpendicular to OC = µ�RL3πε

4c2(1 − ε2)3/2

The resultant of these two components is

πµ�RL3ε

4c2(1 − ε2)2

{
16ε2

π2
+ (1 − ε2)

}1/2

= πµ�RL3ε

4c2(1 − ε2)2

{(
16
π2

− 1
)

ε2 + 1
}1/2

This resultant force exerted by the lubricant on the journal is equal and
opposite to the load F which the journal supports. The attitude angle ψ

(Fig. 6.26) is given by the ratio of the components

tan ψ = π(1 − ε2)

4ε

1/2

Under steady conditions the rate at which lubricant must be supplied to
the bearing equals the rate at which it escapes from the sides. According
to the theory of the very short bearing, pressure is positive only between
θ = 0 and θ = π , so lubricant escapes only from this half of the bearing. (In
practice, some which has escaped may then be drawn back into the other
half and thus recirculated, but this amount is likely to be small.) By eqn 6.20
the volume flow rate in the z (axial) direction for a short element dx of the
circumference is

−∂p
∂z

h3

12µ
dx

which, on substitution from eqn 6.66, becomes

−6µ�R
h3

dh
dx
z
h3

12µ
dx = −�Rz

2
dh

Fig. 6.26
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Integrating this between θ = 0 and θ = π , that is, from h = c(1 + ε)

to h = c(1 − ε), gives a total volume flow rate �Rεcz. Consequently, at
one end of the bearing, where z = L/2, the lubricant escapes at the rate
�RεcL/2; a similar amount escapes at the other end, and thus the total
volumetric supply rate is �RεcL.

In conclusion we may remark that the hydrodynamics of lubrication is
not, in any event, the whole story. Two oils may have the same viscosity yet
not be equally effective as lubricants in a particular application. There are
other characteristics – mainly in the field of physical chemistry – that are of
great importance. Also, conditions of low speed or high load may reduce the
thickness of the lubricant film to only a few molecules and it may then take
on properties different from those of the normal fluid. And, the dissipation
of energy as heat may not only result in non-uniform viscosity of the fluid,
but may also cause distortion of the journal and the bush. For these further
aspects of the subject, more specialist works should be consulted.

6.8 LAMINAR FLOW THROUGH POROUS MEDIA

There are many important instances of the flow of fluids through porous
materials. For example, the movement of water, oil and natural gas through
the ground, seepage underneath dams and large buildings, flow through
packed towers in some chemical processes, filtration – all these depend on this
type of flow. The velocity is usually so small and the flow passages so narrow
that the flow may be assumed to be laminar without hesitation. Rigorous
analysis of the flow is not possible because the shape of the individual flow
passages is so varied and so complex. Several approximate theories have,
however, been formulated, and we shall briefly examine the principal ones.

In 1856 the French engineer Henri Darcy (1803–58) published exper-
imental results from which he deduced what is now known as Darcy’s
Law:

u = −C ∂p∗

∂x
(6.67)

In this expression x refers to the average direction of flow, u and ∂p∗/∂x
represents respectively the steady mean velocity and the rate of increase of
piezometric pressure in this direction, and C is a constant at a given tem-
perature for a particular fluid (free from suspended solid particles) and for
the piece of porous medium concerned. To calculate the mean velocity we
consider a cross-sectional area �A (perpendicular to the x direction) through
which a volumetric flow rate of fluid is �Q. Then, if �A is large enough
to contain several flow passages, u = �Q/�A. The minus sign appears in
eqn 6.67 because p∗ decreases in the mean flow direction, that is, ∂p∗/∂x is
negative. The direct proportionality between the mean velocity and ∂p∗/∂x is
characteristic of steady laminar flow. Further experiments on porous media
have shown that, for a Newtonian fluid, the mean velocity is inversely pro-
portional to the dynamic viscosity µ, and this result too is characteristic of
steady laminar flow.
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The value of C in eqn 6.67 depends not only on the viscosity of the fluid
but also on the size and geometrical arrangement of the solid particles in the
porous material. It is thus difficult to predict the value of C appropriate to a
particular set of conditions. One of many attempts to obtain a more precise
expression is that made by the Austrian Josef Kozeny (1889–1967) in 1927.
He considered the porous material to be made up of separate small solid
particles, and the flow to be, broadly speaking, in one direction only: thus,
although the fluid follows a somewhat tortuous path through the material,
there is no net flow across the block of material in any direction other than
(say) the x direction. Whatever the actual shape of the individual flow pas-
sages the overall result is the same as if, in place of the porous material, there
were a large number of parallel, identical, capillary tubes with their axes in
the x direction. Kozeny then reasoned that, since the resistance to flow res-
ults from the requirement of no slip at any solid boundary, the capillary
tubes and the porous medium would be truly equivalent only if, for a given
volume occupied by the fluid, the total surface area of the solid boundaries
were the same in each case.

In the porous medium the ratio of the volume of voids (i.e. the spaces
between the solid particles) to the total volume is known as the voidage or
porosity, ε. That is

ε = Volume of voids
Volume of voids + Volume of solids

= Vv

Vv + Vs

whence

Vv = Vsε

1 − ε
(6.68)

Therefore

Volume of voids
Total surface area

= Vv

S
= Vsε

(1 − ε)S
(6.69)

The corresponding value for a capillary tube of internal diameter d and
length l is (π/4)d2l/πdl = d/4. Thus if the set of capillary tubes is to be
equivalent to the porous medium then each must have an internal diameter

d = 4Vsε

(1 − ε)S
(6.70)

Now if all the flow passages in the porous material were entirely in the xKozeny–Carman
equation direction, the mean velocity of the fluid in them would be u/ε (because only

a fraction ε of the total cross-section is available for flow). The actual paths,
however, are sinuous and have an average length le which is greater than l,
the thickness of the porous material. Philip C. Carman pointed out that the
mean velocity in the passages is therefore greater than if the passages were
straight, and is given by (u/ε)(le/l). Flow at this mean velocity in capillary
tubes of length le would require a drop of piezometric pressure �p∗ given
by Poiseuille’s equation (6.8)

�p∗

le
= 32µ

d2

Q
πd2/4

= 32µ

d2

u
ε

le
l

(6.71)
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Rearrangement of eqn 6.71 and substitution from eqn 6.70 yields

u = �p∗

le

εd2

32µ

l
le

= �p∗

l
ε2

(1 − ε)2

V2
s

2µS2

l2

l2e

= �p∗

l
ε3

(1 − ε)2

1
µk(S/Vs)2

(6.72)

where k = 2(le/l)2. Equation 6.72 is known as the Kozeny–Carman
equation, and k as the Kozeny constant or Kozeny function.

The porosity ε is seen to be an important factor in determining the
mean velocity of flow and small changes in ε markedly affect the value of
ε3/(1 − ε)2. However, for given particles randomly packed, ε is approxim-
ately constant. Most granular materials have values between 0.3 and 0.5,
but values as high as 0.9 may be obtained with specially designed packings
such as rings. For packings of spheres of similar size ε is usually between 0.4
and 0.55. An increase in the size range of the particles generally reduces the
porosity, and in the neighbourhood of solid boundaries ε is usually increased
because the boundaries prevent the close interlocking of particles.

Kozeny’s function k depends to some extent on ε and it depends also on
the arrangement of particles, their shape and their size range. Nevertheless,
experiment shows that for many materials k ranges only between about 4.0
and 6.0, and a mean value of 5.0 is commonly adopted.

Because the solid particles touch one another, part of the total surface area
S is ineffective in causing resistance to flow – especially if there are flat-sided
particles. Moreover, any re-entrant parts of the surface make little, if any,
contribution to the resistance. Consequently Swould be better defined as the
effective surface area. In practice, however, the difference between the total
and the effective surface area is absorbed into the experimentally determined
value of k.

The concept of flow paths of average length le is not quite so simple as
may at first appear because individual paths are interconnected in a complex
way and there may be numerous abrupt changes in cross-section at which
additional pressure drops can occur. Also, as the flow paths are not straight
there are accelerations and thus inertia forces which do not arise in flow
through straight capillary tubes.

Yet in spite of such uncertainties in its derivation, the Kozeny–Carman
equation is quite well supported by experiment. For particles of given specific
surface S/Vs, randomly packed, similar values of k are obtained in different
ranges of ε. The equation becomes unreliable, however, if the packing of
particles is not random, if the porosity is very high (ε → 1), or if local
values of the ratio given by eqn 6.69 vary widely from the mean.

6.8.1 Fluidization

The force (other than buoyancy) exerted by a fluid on the solid particles in
a porous medium increases as the velocity of the fluid increases. Thus, if
flow occurs upwards through a stationary bed of solid particles, a condition
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may be reached in which the upward force on the particles equals their
weight. The particles are then supported by the fluid and the bed is said to
be fluidized.

If ρs and ρ represent the density of the solid particles and the fluid respect-
ively and ε the porosity, then, for a thickness l if the bed, the effective
weight of the particles (i.e. actual weight minus buoyancy) divided by the
cross-sectional area is (ρs −ρ)gl(1−ε). This must be exactly balanced, when
fluidization begins, by the drop in piezometric pressure through the bed as
given by eqn 6.72. Hence the minimum fluidizing velocity is given by

uf = (ρs − ρ)gε3

(1 − ε)µk(S/Vs)2

If the velocity is increased beyond this value, there is little further change
in the pressure drop (although some fluctuation may occur as fluidization
begins because movement of the particles produces non-uniform porosity).
When ρs and ρ are not widely different the bed expands uniformly; this is
known as particulate fluidization. For a large density difference, as with a
gas, bubbles of fluid, mostly devoid of solid particles, may rise through the
bed; the upper surface then looks rather like that of a boiling liquid. This type
of fluidization is called aggregative and the bed is described as a boiling bed.

When the fluid velocity exceeds the settling velocity for a particle the
particle is carried away. Where the particles are not of uniform size, this
process is of course gradual, the smaller particles being removed at lower
velocities.

Fluidization is a valuable method for handling solids such as grain and pul-
verized coal: also, because it allows the maximum area of contact between
solid and fluid, it finds wide application in catalytic and heat transfer
processes in the chemical industry.

PROBLEMS

6.1 Glycerin (relative density 1.26, dynamic viscosity 0.9 Pa · s) is
pumped at 20 L · s−1 through a straight, 100 mm diameter pipe,
45 m long, inclined at 15◦ to the horizontal. The gauge pressure
at the lower, inlet, end of the pipe is 590 kPa. Verify that the
flow is laminar and, neglecting end effects, calculate the pres-
sure at the outlet end of the pipe and the average shear stress at
the wall.

6.2 Show that when laminar flow occurs with mean velocity um
between extensive stationary flat plates the mean kinetic energy
divided by mass of the fluid is 1.543 u2

m/2.
6.3 A Bingham plastic with a yield stress of 120 Pa and apparent

viscosity 1.6 Pa · s is to be pumped through a horizontal pipe,
100 mm diameter and 15 m long at 10 L · s−1. Neglecting end
effects and assuming that the flow is laminar, determine the
pressure difference required.
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6.4 A cylindrical drum of length l and radius r can rotate inside
a fixed concentric cylindrical casing, the clearance space c
between the drum and the casing being very small and filled
with liquid of dynamic viscosity µ. To rotate the drum with
angular velocity ω requires the same power as to pump the
liquid axially through the clearance space while the drum is
stationary, and the pressure difference between the ends of the
drum is p. The motion in both cases is laminar. Neglecting end
effects, show that

p = 2µlrω
√

3
c2

6.5 Two circular plane discs of radius R2 have their axes vertical
and in line. They are separated by an oil film of uniform thick-
ness. The oil is supplied continuously at a pressure p1 to a well
of radius R1 placed centrally in the lower disc, from where it
flows radially outwards and escapes to atmosphere. The depth
of the well is large compared with the clearance between the
discs. Show that the total force tending to lift the upper disc is
given by

πp1(R2
2 − R2

1)

2 ln(R2/R1)

and determine the clearance when the dynamic viscosity of the
oil is 0.008 Pa · s, the flow 0.85 L · s−1, p1 = 550 kPa, R1 =
12.5 mm and R2 = 50 mm. Assume laminar flow and neglect
end effects.

6.6 Two coaxial flat discs of radius a are separated by a small dis-
tance h. The space between them is filled with fluid, of dynamic
viscosity µ, which is in direct contact with a large volume of
the same fluid at atmospheric pressure at the periphery of the
discs. Working from first principles for the theory of laminar
flow between stationary flat plates of indefinite extent, show
that the force necessary to separate the discs in the axial direc-
tion is given by (3πµa4/2h3)(dh/dt), where (dh/dt) represents
the rate of separation of the discs.

6.7 A piston 113 mm diameter and 150 mm long has a mass of 9 kg.
It is placed in a vertical cylinder 115 mm diameter containing
oil of dynamic viscosity 0.12 Pa · s and relative density 0.9 and
it falls under its own weight. Assuming that piston and cylinder
are concentric, calculate the time taken for the piston to fall
steadily through 75 mm.

6.8 What is the maximum diameter of a spherical particle of dust
of density 2500 kg · m−3 which will settle in the atmosphere
(density 1.225 kg · m−3, kinematic viscosity 14.9 mm2 · s−1) in
good agreement with Stokes’s Law? What is its settling velocity?

6.9 A steel sphere, 1.5 mm diameter and of mass 13.7 mg, falls
steadily in oil through a vertical distance of 500 mm in 56 s.
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The oil has a density of 950 kg · m−3 and is contained in a drum
so large that any wall effects are negligible. What is the viscosity
of the oil? Verify any assumptions made.

6.10 In a rotary viscometer the radii of the cylinders are respectively
50 mm and 50.5 mm, and the outer cylinder is rotated steadily
at 30 rad · s−1. For a certain liquid the torque is 0.45 N · m when
the depth of the liquid is 50 mm and the torque is 0.81 N · m
when the depth is 100 mm. Estimate the dynamic viscosity of
the liquid.

6.11 A plane bearing plate is traversed by a very wide, 150 mm
long, plane inclined slipper moving at 1.5 m · s−1. The clearance
between slipper and bearing plate is 0.075 mm at the toe and
0.025 mm at the heel. If the load to be sustained by the bearing
divided by the width is 500 kN · m−1, determine the viscosity
of the lubricant required, the power consumed divided by the
width of the bearing, the maximum pressure in the lubricant
and the position of the centre of pressure.

6.12 In a wide slipper bearing length l the clearance is given by
h = h1 exp(−x/l) in which h1 denotes the clearance at the inlet
(where x = 0). Assuming constant density and viscosity of the
lubricant, determine the position of the maximum pressure in
the bearing.

6.13 A journal bearing of length 60 mm is to support a steady load
of 20 kN. The journal, of diameter 50 mm, runs at 10 rev/s.
Assuming c/R = 0.001 and ε = 0.6, determine a suitable vis-
cosity of the oil, using the theory of (a) the very long bearing
with the full Sommerfeld condition, (b) the very short bear-
ing with the half Sommerfeld condition. For (a) determine the
power required to overcome friction, and the best position for
the oil supply hole relative to the load line. Would this position
also be suitable according to theory (b)?



Flow and losses in
pipes and fittings 7

7.1 INTRODUCTION

The main concern of this chapter will be to introduce experimental data
relating to flow in pipes and fittings. We shall confine our attention to fluids
of constant viscosity and constant density. The results are applicable to gases
provided that density changes are small. Aspects of fluid flow through pipes
are discussed elsewhere in this book. Consideration has already been given to
laminar flow through straight circular pipes and annuli in Chapter 6. A more
detailed analysis of turbulent flow in straight pipes requires boundary-layer
theory, and some consideration will be given to this in Chapter 8. Pipes or
conduits that are not completely full of flowing fluid (e.g. sewers and culverts)
are in effect open channels and these are treated separately in Chapter 10.
The flow of compressible fluids is discussed in Chapter 11.

7.2 FLOW IN PIPES OF CIRCULAR CROSS SECTION

7.2.1 Aspects of laminar and turbulent flow in pipes

The differences between laminar and turbulent flow have been introduced
in Chapter 1, and the theory of laminar flow in a straight pipe has been
developed in Chapter 6. Here we take the opportunity to expand upon vari-
ous features of laminar and turbulent pipe flow. As we have seen, the nature
of the flow is determined by the magnitude of the Reynolds number. For a
circular pipe it is usual to take the diameter d as the linear measurement rep-
resentative of the flow pattern. Thus the Reynolds number for flow through
a circular pipe may be written as �ud/µ or ud/ν where d represents the pipe
diameter, u the mean velocity (volume flow rate divided by cross-sectional
area), µ the dynamic viscosity, and ν denotes the kinematic viscosity µ/�.

Laminar flow occurs at low velocities and therefore low values of Reynolds
number, Re, whereas turbulent flow takes place at high values of Re. Thus
in laminar flow the viscous forces (which exert a stabilizing influence) are
predominant, but in turbulent flow it is the inertia forces that prevail.

Further, the fact that when the velocity is increased eddies begin sud-
denly rather than gradually indicates that laminar flow is then unstable and
so only a slight disturbance is sufficient to bring on fully turbulent flow.
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The critical velocity at which turbulence begins is very sensitive to any initial
disturbances. Vibration of the apparatus, insufficient stilling of the fluid
before the flow enters the pipe, an insufficiently smooth bell-mouth at the
pipe inlet, or sudden adjustment – especially partial closing – of a valve,
all tend to reduce the critical velocity.

Under normal engineering conditions, however, where disturbances are
always present, the transition of laminar to turbulent flow occurs at values
of Reynolds number between 2000 and 4000. By taking extreme precautions
to avoid disturbances of any kind, investigators have achieved laminar flow
in pipes at values of Re much higher than these figures. There is, then,
apparently no precise upper limit to the value of Re at which the change
from laminar flow to turbulent flow occurs. There is, however, a definite
lower limit. When Re is less than this lower limit any disturbances in the
flow are damped out by the viscous forces.

As flow rate is reduced, the technique using a stream of dye (see
Section 1.9.2) is not suitable for demonstrating the change from turbulent
to laminar flow. The law governing the resistance to fluid flow, which is
different for the two kinds of flow, provides an alternative approach. The
apparatus illustrated in Fig. 7.1 is suitable for such tests. The velocity of water
through a uniform horizontal pipe is controlled by a valve at its downstream
end, and for various values of the mean velocity, the drop in pressure over
a given length of the pipe is measured by a differential manometer. The first
manometer connection is situated at a great distance from the inlet to the pipe
so that any disturbances from the inlet are removed and a fully developed
flow pattern is reached. Figure 7.2 illustrates the result obtainable from such
an experiment. Here values of the drop in (piezometric) pressure �p divided
by the length l over which it occurs are plotted against values of the mean
velocity on log scales. For the lower velocities, which correspond to laminar
flow, a straight line is obtained with a slope of one. This result shows that
in laminar flow the pressure drop divided by length is directly proportional
to the velocity, as predicted by the theory of laminar flow (Chapter 6).

As the velocity is slowly increased, however, an abrupt increase in the
pressure drop is found (point B on the diagram). This point corresponds to
the breakdown of laminar flow. There is a region in which it is difficult to dis-
cern any simple law connecting the two variables, and then another line (CD
on the diagram), which has a slope greater than the first. The slope of such
lines as CD varies from test to test. For pipes with very smooth walls it may
be as low as 1.7; as the roughness of the walls increases the slope approaches

Fig. 7.1
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Fig. 7.2

a maximum value of 2.0. The line CD may be only approximately straight;
that is, the slope may alter to some extent as u increases.

If, however, the velocity is carefully reduced, the previous route is not
exactly retraced. The line DC is followed but, instead of the path CB
being taken, the line CA is traced out. Then, from the point A, the line
corresponding to laminar flow is followed.

These results clearly confirm that there are two critical velocities: one, cor-
responding to the change from laminar to turbulent flow, is known as the
upper or higher critical velocity (point B); the other (point A) is known
as the lower critical velocity, where the flow changes from turbulent to
laminar. The critical velocities may be determined from the graph and the
corresponding critical Reynolds numbers then calculated.

It is the lower critical value which is of greater interest and importance
because above this point laminar flow becomes unstable. It is usual to refer
to this lower critical value simply as the critical Reynolds number. The
experiments of Reynolds, and later, more detailed ones of Ludwig Schiller
(1882–1961) have shown that for very smooth, straight, uniform circular
pipes this lower critical value of Reynolds number is about 2300. The value
is slightly lower for pipes with the usual degree of roughness of the walls,
and for ordinary purposes it is usual to take it as 2000.

One or two calculations will help to illustrate the conditions under which
the two types of flow may be expected in uniform, straight, circular pipes.
First we consider the sort of flow perhaps most frequently encountered by the
engineer, that of water at about 15 ◦C. At this temperature the kinematic
viscosity of water is about 1.15 mm2 · s−1. Since Re = ud/ν, the velocity
is given by νRe/d and the critical velocity by ν(Recrit) /d. Thus for a pipe
25 mm in diameter

ucrit = 1.15 × 2000
25

mm · s−1 = 99 mm · s−1
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Such a low velocity is seldom of interest in practice. A critical velocity 10
times as great would require a diameter 10 times smaller, that is, 2.5 mm.
This, too, is a figure outside normal engineering practice. The velocity of
water is generally far greater than the critical value and so the flow is nor-
mally fully turbulent. This is not to say that laminar flow of water may not
be found in laboratory experiments or other small-scale work. Indeed, in the
testing of small-scale models of hydraulic structures, the presence of laminar
flow that does not correspond to the flow occurring in the full-size prototype
may constitute a considerable difficulty.

Water, however, has a low viscosity. Oil having a kinematic viscosity of,
say, 200 times that of water would, in a pipe of 25 mm diameter, have a
critical velocity of 200 × 0.092 m · s−1 = 18.4 m · s−1. This velocity is far in
excess of any that one would expect in practice, so it would be necessary to
treat the flow of such oil as laminar. Even in a pipe of 250 mm diameter, a
mean velocity of 1.84 m · s−1 could be reached without the flow becoming
turbulent.

By similar considerations we may see that the wholly laminar flow of air
or steam in a pipe does not often occur.

7.2.2 Head lost to friction

One of the most important items of information the engineer needs is the
pressure difference, or difference of piezometric head, required to induce
fluid to flow at a certain steady rate through a pipe. About the middle of
the nineteenth century, therefore, many experimenters devoted attention to
this topic. Among them was the French engineer Henri Darcy (1803–58)
who investigated the flow of water, under turbulent conditions, in long,
unobstructed, straight pipes of uniform diameter. The fall of piezomet-
ric head in the direction of flow is caused by the dissipation of energy by
fluid friction. If the pipe is of uniform cross-section and roughness, and
the flow is fully developed, that is if it is sufficiently far from the inlet
of the pipe for conditions to have become settled, the piezometric head
falls uniformly. Darcy’s results suggest the formula (now commonly named
after him):

hf = �p∗

�g
= 4f l

d
u2

2g
(7.1)

In eqn 7.1, hf represents the head lost to friction, corresponding (in steady
flow) to the drop �p∗ of piezometric pressure over length l of the pipe, �

represents the density of the fluid, u the mean velocity (i.e. discharge divided
by cross-sectional area), f is a coefficient, g the gravitational acceleration
and d the pipe diameter.

The coefficient f in eqn 7.1 is usually known as the friction factor. Compar-Friction factor
ison of the dimensional formulae of the two sides of eqn 7.1 shows that f is
simply a numeric without units. Observations show that its value depends on
the Reynolds number of the flow and on the roughness of the pipe surface. In
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America the friction factor commonly used is equal to 4 times that defined by
eqn 7.1. Although the use of the symbol λ for 4f is now encouraged (giving
hf = λlu2/2gd) the symbol f is unfortunately most often employed and care
should therefore be taken to check whether f is that defined by eqn 7.1 or 4
times that value. In this book f always denotes the value defined by eqn 7.1.

The value of f is simply related to the shear stress τ0 at the wall of the
pipe. Over a short length δx the change in head is δhf . For fully developed
flow, the head falls linearly with x, so δhf /δx = dhf /dx = hf /l. We shall
show in Section 7.4 that τ0 and dp∗/dx are related by the expression

τ0 = A
P

dp∗

dx
= d

4
dp∗

dx

The drop in piezometric pressure −δp∗ = �gδhf and so

dhf
dx

= − 1
�g

dp∗

dx
(7.2)

and so, using eqn 7.1

f = − |τ0|
1
2�u2

= − τ0
1
2�u2

(7.3)

(The minus sign is eqn 7.3 arises because we define it as a forward stress
on the fluid, whereas it is actually in the opposite direction. It is usual to
consider only the magnitude of τ0.)

As we have said, the value of f depends on the roughness of the walls of
the pipe. Many attempts have therefore been made to express the roughness
quantitatively. All surfaces, no matter how well polished, are to some extent
rough. The irregularities of the surface usually vary greatly in shape, size
and spacing. To specify the roughness quantitatively is therefore extremely
difficult. Nevertheless, one feature that may be expected to influence the flow
appreciably is the average height of the ‘bumps’ on the surface. However, it
is evidently not the absolute size of the bumps that is significant, but their
size in relation to some other characteristic length of the system. It is to be
expected, then, that it is the relative roughness that affects the flow. For a
circular pipe, the relative roughness may be suitably expressed as the ratio
of the average height k of the surface irregularities to the pipe diameter d.

Dimensional analysis may be used to show that f is a function both of
Reynolds number and of the relative roughness k/d. Other features of the
roughness, such as the spacing of the bumps, may influence the flow. Yet the
use of k/d as a simple measure of the relative roughness has made possible
notable progress towards the solution and understanding of a very complex
problem.

7.3 VARIATION OF FRICTION FACTOR

Since f is a function of Reynolds number and of the relative roughness k/d,
experimental data on friction in pipes may be represented diagrammatically
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Fig. 7.3

in the form shown in Fig. 7.3. One of the first to present results in this way
was Sir Thomas E. Stanton (1865–1931) who, with J. R. Pannell, conducted
experiments on a number of pipes of various diameters and materials, and
with various fluids. Figure 7.3 is based on results obtained by the German
engineer Johann Nikuradse using circular pipes that had been artificially
roughened using sand grains.

At the left-hand side of the diagram is a single line corresponding to
Reynolds numbers ud/v less than 2000. In this range the flow is laminar and
is governed by Poiseuille’s equation (6.7). A rearrangement of that equation
gives

hf = �p∗

�g
= 8Qlµ

πR4�g
= 8ulµ
R2�g

since the mean velocity u = Q/πR2. But a rearrangement of eqn 7.1 gives
f = (2gd/4lu2)hf and so, for laminar flow,

f = 2gd

4lu2

8ulµ
(d/2)2�g

= 16µ

ud�
= 16
Re

(7.4)

With the logarithmic scales used in Fig. 7.3, eqn 7.4 is represented by a
straight line. Experimental results confirm the equation and the fact that
laminar flow is independent of the roughness of the pipe walls (unless the
roughness is so great that the irregularities constitute an appreciable change
of diameter).

For Reynolds numbers greater than about 2000, that is, for turbulent flow,
the flow does depend on the roughness of the pipe, and different curves are
obtained for different values of the relative roughness. In Nikuradse’s exper-
iments, grains of sand of uniform size were glued to the walls of pipes of
various diameters, which were initially very smooth. Thus a value of the
relative roughness was readily deduced since k could be said to correspond
to the diameter of the sand grains. Such uniform artificial roughness is, of



Variation of friction factor 251

course, quite different from the roughness of ordinary commercial pipes,
which is random is both size and spacing. Sand grains, however, do provide
a definite, measurable value of k which serves as a reliable basis for gauging
the effect of this uniform surface roughness on the flow. Values of the rel-
ative roughness in Nikuradse’s experiments are marked against each curve
in Fig. 7.3. It will be noticed that close to the critical Reynolds number, all
the curves coincide, but for successively higher Reynolds numbers the curves
separate in sequence from the curve for smooth pipes, and the greater the
relative roughness the sooner the corresponding curve branches off. Eventu-
ally, each curve flattens out to a straight line parallel to the Reynolds number
axis, indicating that f has become independent of Re.

Nikuradse’s results confirm the significance of relative rather than absolute
roughness: the same value of k/d was obtained with different values of k
and d individually, and yet points for the same value of k/d lie on a single
curve.

For moderate degrees of roughness a pipe acts as a smooth pipe up to
that value of Re at which its curve separates from the smooth-pipe line. The
region in which the curve is coincident with the smooth-pipe line is known
as the turbulent smooth zone of flow. Where the curve becomes horizontal,
showing that f is independent of Re, the flow is said to be in the turbulent
rough zone and the region between the two is known as the transition or
intermediate zone. The position and extent of these zones depends on the
relative roughness of the pipe.

This behaviour may be explained by reference to the viscous sub-layer
(see Section 8.2). The random movements of fluid particles perpendicular
to the pipe axis, which occur in turbulent flow, must die out as the wall
of the pipe is approached, so even for the most highly turbulent flow there
is inevitably a very thin layer, immediately adjacent to the wall, in which
these random motions are negligible. The higher the Reynolds number,
the more intense are the secondary motions that constitute the turbulence,
and the closer they approach to the boundary. So the very small thick-
ness of the viscous sub-layer becomes smaller still as the Reynolds number
increases.

In the turbulent smooth zone of flow the viscous sub-layer is thick enough
to cover completely the irregularities of the surface. Consequently the size of
the irregularities has no effect on the main flow (just as when the entire flow
is laminar) and all the curves for the smooth zone coincide. With increasing
Reynolds number, however, the thickness of the sub-layer decreases and
so the surface bumps can protrude through it. The rougher the pipe, the
lower the value of Re at which this occurs. In the turbulent rough zone of
flow the thickness of the sub-layer is negligible compared with the height of
the surface irregularities. The turbulent flow round each bump then generates
a wake of eddies giving rise to a resistance force known as form drag (see
Chapter 8). Energy is dissipated by the continual production of these eddies;
their kinetic energy is proportional to the square of their velocities, and
these, in turn, are proportional to the general velocity. Form drag is thus
proportional to the square of the mean velocity of flow. In the complete
turbulence of the rough zone of flow simple viscous effects are negligible
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and so hf ∝ u2 and (from eqn 7.1) f is constant. In the transition zone
the surface bumps partly protrude through the viscous sub-layer. Thus form
drag and viscous effects are both present to some extent.

The forgoing explanation is somewhat simplified. For one thing, there is
no sharp demarcation between the viscous sub-layer and the rest of the flow.
Moreover, a bump on the surface can affect the flow to some degree before
the peak emerges from the sub-layer. Nevertheless, this idealized picture of
the way in which the surface irregularities influence the flow provides a useful
qualitative explanation of the phenomena. It also permits the definition of
a fluid-dynamically smooth surface as one on which the protuberances are
so far submerged in the viscous sub-layer as to have no effect on the flow.
(Thus a surface that is smooth at low values of Re may be rough at higher
values of Re.)

Nikuradse’s results were obtained for uniform roughness – not for that
of pipes encountered in practice, which have roughness elements of varying
height and distribution. Even though the average height of the irregularit-
ies on commercial pipe surfaces may be determined, Nikuradse’s diagram
(Fig. 7.3) is not suitable for actual pipes. Because the surface irregularities
of commercial pipes are of various heights they begin to protrude through
the viscous sub-layer at differing values of Re, and the transition zones of
Nikuradse’s curves do not correspond at all well to those for commercial
pipes. However, at a high enough Reynolds number the friction factor of
many industrial pipes becomes independent of Re, and under these condi-
tions a comparison of the value of f with Nikuradse’s results enables an
equivalent uniform size of sand grain k to be specified for the pipe. For
instance, uncoated cast iron has an equivalent grain size of about 0.25 mm,
galvanized steel 0.15 mm and drawn brass 0.0015 mm. Using these equival-
ent grain sizes – which, in the present state of knowledge, cannot be deduced
from direct measurements of the actual roughness – the American engineer
Lewis F. Moody (1880–1953) prepared a modified diagram (Fig. 7.4) for
use with ordinary commercial pipes. (The diagram is based largely on the
results of C. F. Colebrook, discussed in Section 8.12.3.)

Moody’s diagram is now widely employed, and is the best means at present
available for predicting values of f applicable to commercial pipes. Never-
theless, the concept of an equivalent grain size is open to serious objection.
For instance, it implies that only the height of surface irregularities signific-
antly affects the flow. There is evidence, however, that in the rough zone
of flow the spacing of the irregularities is also of great importance. If the
irregularities are far apart the wake of eddies formed by one bump may die
away before the fluid encounters the next bump. When the bumps are closer,
however, the wake from one may interfere with the flow round the next. And
if they are exceptionally close together the flow may largely skim over the
peaks while eddies are trapped in the valleys. In Nikuradse’s experiments
the sand grains were closely packed, and so the spacing may be supposed
approximately equal to the grain diameter. His results could therefore just
as validly be taken to demonstrate that f depends on s/d where s repres-
ents the average spacing of the grains. The equivalent grain size, moreover,
takes no account of the shape of the irregularities. Another factor that may
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appreciably affect the value of f in large pipes is waviness of the surface,
that is, the presence of transverse ridges on a larger scale than the normal
roughness.

These and other arguments indicate that Moody’s diagram is at best an
approximation. In addition, the roughness of many materials is very variable
and it frequently increases with age, particularly if the surface becomes dirty
or corroded. (In pipes of small diameter the effective bore may be altered by
dirt and corrosion.) Accurate prediction of friction losses is thus difficult to
achieve.

A number of empirical formulae have been put forward to describe certain
parts of Fig. 7.4. There is, for example, Blasisus’s formula for the turbulent
smooth-pipe curve:

f = 0.079(Re)−1/4 (7.5)

which agrees closely with experimental results for Reynolds number between
4000 and 105. Many formulae have been proposed so that f can be calculated
directly for the entire range of k/d andRe. The best yet produced is probably
that by S. E. Haaland

1√
f

= −3.6 log10

{
6.9
Re

+
(

k
3.71d

)1.11
}

It combines reasonable simplicity with acceptable accuracy (within about
1.5%) and is useful if an algebraic expression is required.

A fuller discussion of friction factor relationships for flow in smooth or
rough pipes is to be found in Section 8.12.

A common practical problem is to determine the head lost to friction for a
given mean velocity in a pipe of given diameter. From these data the appro-
priate Reynolds number may be calculated and a value of f taken from
Fig. 7.4. The head loss is then determined from eqn 7.1. If, however, the
velocity or the diameter is unknown the Reynolds number is also unknown.
Nevertheless, since the value of f changes but slowly with Reynolds number,
assumed values of Re and f may be used for a first trial. Better approxima-
tions to these values can then be obtained from the trial results. This iterative
approach lends itself to solutions using the computer.

For restricted ranges of Reynolds number and pipe diameter, f is suf-
ficiently constant for tables of values to have been compiled for use in
engineering calculations. Although the use of such values often allows prob-
lems to be solved more simply, limitation of the values to a particular range
of conditions should never be forgotten.

The graph of f as a function of Re and k/d is a convenient presentation
when it is desired to calculate head loss or pressure drop. In the case of inverse
problems, in which the head loss is known and it is required to evaluate some
other variable, such as pipe diameter, flow velocity or volume flow rate
this type of presentation has its drawbacks. The methods of dimensional
analysis provide the answer to these difficulties. Alternative dimensionless
groups can be derived which allow the inverse problems to be solved in a
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straightforward manner without iteration. Specially prepared charts, based
on these alternative dimensionless groups, are available.

From here onwards u represents the mean velocity over the cross-section,
and for simplicity the bar over the u is omitted.

Example 7.1 Determine the head lost to friction when water
flows through 300 m of 150 mm diameter galvanized steel pipe
at 50 L · s−1.

Solution
For water at, say, 15 ◦C, ν = 1.14 mm2 · s−1.

u = 50 × 10−3m3 · s−1

(π/4)(0.15)2m2
= 2.83 m · s−1

Re = ud
ν

= 2.83 m · s−1 × 0.15 m
1.14 × 10−6 m2 · s−1

= 3.72 × 105

For galvanized steel k = 0.15 mm, say. ∴ k/d = 0.001
From Fig. 7.4 f = 0.00515 so

hf = 4 × 0.00515 × 300 m
0.15 m

(2.83 m · s−1)2

19.62 m · s−2
= 16.81 m, say 17 m �

Example 7.2 Calculate the steady rate at which oil (ν =
10−5 m2 · s−1) will flow through a cast-iron pipe 100 mm diameter
and 120 m long under a head difference of 5 m.

Solution
As yet Re is unknown since the velocity is unknown. For cast iron (in
new condition) k = 0.25 mm, say. Hence k/d = 0.0025 and Fig. 7.4
suggests f = 0.0065 as a first trial. Then from eqn 7.1

5 m = 4 × 0.0065 × 120 m
0.10 m

u2

19.62 m · s−2

whence u = 1.773 m · s−1. Therefore

Re = 1.773 m · s−1 × 0.10 m
10−5 m2 · s−1

= 1.773 × 104

These values of Re and k/d give f = 0.0079 from Fig. 7.4. A recal-
culation of u gives 1.608 m · s−1, hence Re = 1.608 × 104. The
corresponding change of f is insignificant. The value u = 1.608 m · s−1
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is accepted and

Q = 1.608 m · s−1 × (π/4)(0.10)2 m2 = 0.01263 m3 · s−1

Alternatively, use may be made of the expression

Q = −π

2
d5/2

(
2ghf
l

)1/2

log

{
k

3.71d
+ 2.51ν

d3/2
(
2ghf/l

)1/2

}

which

�

is derived from the formula (eqn 8.56) on which Fig. 7.4 is
based. In this example

Q = −π

2
(0.10 m)5/2

(
19.62 × 5

120
m
s2

)1/2

× log

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.0025
3.71

+ 2.51 × 10−5 m2 · s−1

(0.10 m)3/2

(
19.62 × 5 m

120 s2

)1/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 0.01262 m3 · s−1

Example 7.3 Determine the size of galvanized steel pipe needed to
carry water a distance of 180 m at 85 L · s−1 with a head loss of 9 m.

Solution

hf = 9 m = 4f (180 m)

d

(
0.085 m3 · s−1

πd2/4

)2
1

19.62 m · s−2

whence d5 = 0.0078f m5.
Again taking ν = 1.14 mm2 · s−1 for water at 15 ◦C,

Re = ud
ν

= 0.085 m3 · s−1

πd2/4
d

1.14 × 10−6 m2 · s−1

= 9.49 × 104 m
d

k = 0.15 mm

Try f = 0.006. Then the foregoing expressions successively give d =
0.1956 m, Re = 4.85 × 105 and k/d = 0.00077. These figures give
f = 0.00475 from Fig. 7.4. From this value d = 0.1867 m, Re =
5.08 × 105 and k/d = 0.00080. Then f = 0.0048, which differs
negligibly from the previous value.
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The calculated diameter = 0.1867 m, but the nearest pipe size avail-
able is probably 200 mm (nominal). In view of this discrepancy of
diameters it can be seen that great accuracy in the calculations is not
warranted. �

7.4 DISTRIBUTION OF SHEAR STRESS IN A CIRCULAR PIPE

If fluid passes with steady velocity along a pipe, the loss of mechanical energy
brought about by viscosity results in a decrease of the piezometric pressure
p+�gz. This decrease in piezometric pressure is related directly to the shear
stresses at the boundaries of the flow. Consider flow within a straight, com-
pletely closed conduit, such as a pipe, which the fluid fills entirely. Figure 7.5
depicts a short length δx of this conduit of uniform cross-sectional area A.
The mean pressure at section 1 is p; that at section 2 is p + δp. (Where the
flow is turbulent there are small fluctuations of pressure at any point in the
fluid just as there are small fluctuations of velocity, but time-average values
are here considered.) The weight of the fluid between sections 1 and 2 is
�gAδx, where � represents the density of the fluid. Hence the net force on
the fluid in the direction of flow is given by

pA− (p+ δp)A− �gAδx cos θ + τ0Pδx (7.6)

where P represents the perimeter of the section in contact with the fluid and
τ0 the mean shear stress on the fluid at the boundary. If the flow is steady
and fully developed there is no increase of momentum in the x direction and
therefore the net force is zero. Setting the expression 7.6 equal to zero and
putting δx cos θ = δz, where z is measured vertically upwards from some
horizontal datum, we obtain

τ0Pδx = A(δp+ �gδz)

For a fluid of constant density the right-hand side may be writtenAδp∗ where
p∗ = p+ �gz. Then, in the limit as δx → 0,

τ0 = A
P

dp∗

dx
(7.7)

Fig. 7.5
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The piezometric pressure p∗ is constant over the cross-section. If differ-
ences of p∗ between different parts of the cross-section did exist they would
give rise to movements of the fluid perpendicular to the main flow. Even in
turbulent motion, however, there is no net flow perpendicular to the main
flow.

Equation 7.7 is substantially true even for a gas, because when τ0 is large
enough to be of interest �gδz is negligible compared with δp and the asterisk
may be dropped from p∗ anyway.

In practice the boundary stress resists flow, that is, it acts on the fluid in
the direction opposite to that shown in Fig. 7.5. Consequently both τ0 and
dp∗/dx are negative, so p∗ decreases in the direction of flow.

Equation 7.7 applies to any shape of cross-section provided that its area
does not change along the length, and to any sort of steady flow. We note
that τ0 is an average stress; for cross-sections other than circular, the stress
varies in magnitude round the perimeter. For a circular section, however, the
symmetry of a circle requires the stress to have the same value at all points
on the circumference (if the roughness of the surface is uniform) and we
may then drop the bar from the symbol τ0. For a pipe of radius R, eqn 7.7
becomes

τ0 = πR2

2πR
dp∗

dx
= R

2
dp∗

dx
(7.8)

Similar reasoning can also be applied to a smaller, concentric, cylinder of
fluid having radius r. Again for fully developed steady flow, the net force on
the fluid is zero and the result

τ = r
2

dp∗

dx
(7.9)

is obtained.
Thus τ the internal shear stress in the axial direction varies with r, the

distance from the centre-line of the pipe. Dividing eqn 7.9 by eqn 7.8 gives
τ

τ0
= r
R

, that is, τ = τ0
r
R

(7.10)

Consequently τ varies linearly with r from a value of zero at the centre-
line of the pipe, where r = 0, to a maximum at the wall, where r = R.
This distribution of stress is represented graphically at the right-hand side of
Fig. 7.6.

For steady, fully developed flow, the law of linear distribution of shear
stress over a circular section, represented by eqn 7.10, holds whether the
flow in the pipe is laminar or turbulent.

Fig. 7.6
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7.5 FRICTION IN NON-CIRCULAR CONDUITS

The majority of closed conduits used in engineering practice are of circular
cross-section, but the friction loss in non-circular passages – for example,
rectangular air ducts – quite often has to be estimated. Experiment shows
that for many shapes the relations developed for turbulent flow in circular
sections may be applied to non-circular shapes if an alternative variable
is used in place of the diameter of the circle. The variable m, termed the
hydraulic mean depth, is defined as the ratio of the cross-sectional area of
the flow, A, to the perimeter, P, in contact with the fluid.

For a circular section flowing full

m = A
P

= (π/4)d2

πd
= d

4

For non-circular sections, eqn 7.1 may be generalized to

hf = f l
m
u2

2g
(7.11)

The introduction of m involves the assumption that the mean shear stress
at the boundary is the same as for a circular section. For the circular section
the stress is uniform (unless the roughness varies round the circumference)
but for non-circular sections it is not. Contours of equal velocity are entirely
parallel to the perimeter only in the circular section (see Fig. 7.7); in a
rectangular section, for example, the velocity gradient is highest at the
mid-point of a side, and least in the corners, and the shear stress varies
accordingly. It is therefore to be expected that the less the shape deviates
from a circle the more reliable will be the use of the hydraulic mean depth.
The assumptions may be quite invalid for odd-shaped sections, but reas-
onable results are usually obtained with ovals, triangles and rectangles (if
the longer side is not greater than about 8 times the shorter). For annuli
between concentric cylinders the larger diameter must be at least 3 times the
smaller. (Note that for an annulus the relevant perimeter used in determ-
ining the hydraulic mean depth is the total for inner and outer surfaces
together.) The concept of hydraulic mean depth is not applicable at all to
laminar flow.

Fig. 7.7 Contours of equal
velocity.
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The method outlined here for dealing with non-circular pipes and based
on the hydraulic mean depth, is sometimes expressed in terms of alternat-
ive variables such as equivalent diameter, hydraulic diameter or hydraulic
radius.

7.6 OTHER LOSSES IN PIPES

Not only is there a loss of head or pressure caused by friction in a uni-
form straight pipe, but additional losses may be incurred at changes in the
cross-section, bends, valves and fittings of all kinds. In systems involving
long runs of straight pipe, these extra losses – often termed minor or sec-
ondary losses – may, without serious error, be neglected in comparison
with the straight-pipe friction loss. However, in pipe systems involving
short runs of straight pipe, these additional losses may actually outweigh
the ordinary friction loss, and in that context the term minor losses is
inappropriate.

The additional loss associated with the presence of a component in a pipe
system is largely concentrated in a very short length of the pipe, but the
disturbance to the velocity distribution may persist for a considerable dis-
tance downstream. For the purposes of analysis, however, it is convenient
to assume that the effects of ordinary friction and of the additional losses
caused by the presence of the component can be separated, and that the
additional loss is concentrated at the device causing it. The total head lost
in a pipe may then be calculated as the sum of the normal friction for the
length of pipe considered and the additional losses associated with other
components in the pipe system.

Determination of the additional losses using theoretical methods is not
always possible, and so experimentally determined figures must then be
called on. In engineering practice, the flow is almost always turbulent, and
so information here will be restricted to such conditions. For turbulent flow,
the losses have been found to vary as the square of the mean velocity. Hence
the loss of total head hl is given by

hl = k
u2

2g
(7.12)

The quantity k is known as the total head loss coefficient and for high
Reynolds numbers its value is practically constant.

When a change of cross-sectional area occurs across a component, such as
a sudden expansion or sudden contraction, the mean velocities at inlet and
outlet differ. In defining hl it is then important to specify the cross section at
which u is evaluated.

7.6.1 Loss at abrupt enlargement

The loss that occurs at an abrupt enlargement of the cross-section (also
known as a sudden expansion), such as that illustrated in Fig. 7.8, can be
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Fig. 7.8

estimated by simple theory. The pipes run full and the flow is assumed steady.
Fluid emerging from the smaller pipe is unable to follow the abrupt deviation
of the boundary; consequently the flow separates and turbulent eddies form
in the corners and result in the dissipation of energy as heat. By means of
a few simplifying assumptions, an estimate of the head lost may be made.

For the high values of Reynolds number usually found in practice, the
velocity in the smaller pipe may be assumed sensibly uniform over the cross-
section. At section 1 the streamlines are straight and parallel and so the
piezometric pressure here is uniform. Downstream of the enlargement the
vigorous mixing caused by the turbulence helps to even out the velocity and
it is assumed that at a section 2 sufficiently far from the enlargement (about
8 times the larger diameter) the velocity (like the piezometric pressure) is
again reasonably uniform over the cross-section. Hence the equations of
one-dimensional flow may be applied at sections 1 and 2. For simplicity the
axes of the pipes are assumed horizontal. Continuity requires the velocity u2
to be less than u1 and the corresponding momentum change requires a net
force to act on the fluid between sections 1 and 2. On the fluid in the control
volume BCDEFG the net force acting towards the right is

p1A1 + p′(A2 − A1) − p2A2

where p′ represents the mean pressure of the eddying fluid over the annular
faceGD. (Shear forces on the boundaries over the short length between sec-
tions 1 and 2 are neglected.) Since radial accelerations over the annular face
GD are very small, we assume (with the support of experimental evidence)
that p′ is sensibly equal to p1. The net force on the fluids is thus (p1 −p2)A2.
From the steady-flow momentum equation (see Section 4.2) this force equals
the rate of increase of momentum in the same direction:

(p1 − p2)A2 = �Q(u2 − u1)

where � represents the density and Q the volume flow rate.

∴ p1 − p2 = �
Q
A2

(u2 − u1) = �u2(u2 − u1) (7.13)
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From the energy equation for a constant density fluid we have

p1

�g
+ u2

1

2g
+ z − hl = p2

�g
+ u2

2

2g
+ z

where hl represents the loss of total head between sections 1 and 2.

∴ hl = p1 − p2

�g
+ u2

1 − u2
2

2g

and substitution from eqn 7.13 gives

hl = u2(u2 − u1)

g
+ u2

1 − u2
2

2g
= (u1 − u2)2

2g
(7.14)

Since by continuity A1u1 = A2u2 eqn 7.14 may be alternatively written

hl = u2
1

2g

(
1 − A1

A2

)2

= u2
2

2g

(
A2

A1
− 1

)2

(7.15)

This result was first obtained by J.-C. Borda (1733–99) and
L. M. N. Carnot (1753–1823) and is sometimes known as the Borda–Carnot
head loss. In view of the assumptions made, eqns 7.14 and 7.15 are subject
to some inaccuracy, but experiments show that for coaxial pipes they are
within only a few per cent off the truth.

IfA2 → ∞, then eqn 7.15 shows that the head loss at an abrupt enlargementExit loss
tends to u2

1/2g. This happens at the submerged outlet of a pipe dischar-
ging into a large reservoir, for example (Fig. 7.9), or for a duct discharging
to atmosphere. The velocity head in the pipe, corresponding to the kin-
etic energy of the fluid divided by weight, is thus lost in turbulence in the
reservoir. In such circumstances the loss is usually termed the exit loss for
the pipe.

7.6.2 Loss at abrupt contraction

Although an abrupt contraction (Fig. 7.10) is geometrically the reverse of an
abrupt enlargement it is not possible to apply the momentum equation to a
control volume between sections 1 and 2. This is because, just upstream of

Fig. 7.9
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Fig. 7.10

the junction, the curvature of the streamlines and the acceleration of the fluid
cause the pressure at the annular face to vary in an unknown way. However,
immediately downstream of the junction a vena contracta is formed, after
which the stream widens again to fill the pipe. A region of separated flow is
formed between the vena contracta and the wall of the pipe, and this causes
practically all the dissipation of energy. Between the vena contracta plane
and the downstream section 2 – where the velocity has again become sensibly
uniform – the flow pattern is similar to that after an abrupt enlargement, and
so the loss of head is assumed to be given by eqn 7.15:

hl = u2
2

2g

(
A2

Ac
− 1

)2

= u2
2

2g

(
1
Cc

− 1
)2

(7.16)

where Ac represents the cross-sectional area of the vena contracta, and the
coefficient of contraction Cc = Ac/A2.

Although the area A1 is not explicitly involved in eqn 7.16, the value of
Cc depends on the ratio A2/A1. For coaxial circular pipes and fairly high
Reynolds numbers Table 7.1 gives representative values of the coefficient k
in the formula

hl = ku2
2

2g
(7.17)

As A1 → ∞ the value of k in eqn 7.17 tends to 0.5, and this limiting Entry loss
case corresponds to the flow from a large reservoir into a sharp-edged pipe,
provided that the end of the pipe does not protrude in to the reservoir (see
Fig. 7.11a). A protruding pipe, as in Fig. 7.11b, causes a greater loss of head.
For a non-protruding, sharp-edged pipe the loss 0.5u2

2/2g is known as the
entry loss. If the inlet to the pipe is well rounded, as in Fig. 7.11c, the fluid
can follow the boundary without separating from it, and the entry loss is

Table 7.1 Loss coefficient k for abrupt
contraction

d2/d1 0 0.2 0.4 0.6 0.8 1.0

k 0.5 0.45 0.38 0.28 0.14 0
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Fig. 7.11

much reduced. A tapered entry, as in Fig. 7.11d, also gives a much lower
loss than the abrupt entry.

7.6.3 Diffusers

The head lost at an abrupt enlargement (or at the exit from a pipe) can be
considerably reduced by the substitution of a gradual, tapered, enlargement
usually known as a diffuser. Two features of flow in a diffuser follow from an
examination of the one-dimensional equations of continuity and mechanical
energy. The basic geometrical property of a diffuser is that its cross-sectional
area increases from the entry plane to the exit. Hence, from the continu-
ity principle, for incompressible flow, the mean velocity at outlet is lower
than that at inlet. Consequently, provided the dissipation of mechanical
energy within the diffuser is not excessive, there is a corresponding increase
in the piezometric pressure between the inlet and outlet planes. The flow
in a diffuser is therefore subject to an adverse pressure gradient (see also
Section 8.8.1).

Diffusers possess other distinct characteristics and on these matters one-
dimensional considerations are of no help. The first feature is the tendency
for non-uniformities in the velocity profile at entry to be maintained or even
to be progressively magnified as the flow passes through the diffuser. In
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particular, the performance of a diffuser is seriously compromised if the flow
separates, and so geometries in which separation is avoided are of special
interest. Second, the level of turbulent velocity fluctuations increases with
distance downstream, resulting in some cases in inherently unsteady patterns
of flow being established within the diffuser.

The loss of head in a diffuser may be expressed as

hl = k
(u1 − u2)2

2g
= k

(
1 − A1

A2

)2 u2
1

2g
(7.18)

where A1,A2 represent the cross-sectional areas at inlet and outlet respect-
ively and u1,u2 the corresponding mean velocities. Values of the factor k
for conical diffusers are indicated in Fig. 7.12 where it will be noted that
for angles greater than about 40◦ the total loss exceeds that for an abrupt
enlargement (for which θ = 180◦) and the maximum loss occurs at about
θ = 60◦. For θ = 180◦, k � 1.0, and eqn 7.18 then corresponds to eqn 7.14
for an abrupt enlargement. There is an optimum angle for which the loss is
minimum and, for a conical diffuser with a smooth surface, the optimum
value of the total angle is about 6◦.

Diffusers are commonly used to obtain an increase of pressure in the dir-
ection of flow. In a perfect diffuser there would be a rise of piezometric
pressure, or pressure recovery, given by Bernoulli’s equation:

p∗
2 − p∗

1 = 1
2

�
(
u2

1 − u2
2

)
= 1

2
�u2

1

{
1 −

(
A1

A2

)2
}

(7.19)

if steady flow and uniform conditions over inlet and outlet cross-sections are
assumed. Because of the energy losses, however, the actual rise in pressure
(pressure recovery) is less than this.

The dissipation of energy in diverging flow is always greater than that
in converging flow. Indeed, a gradual contraction without sharp corners
causes a loss so small that it may usually be neglected. In other words, the

Fig. 7.12 Loss of head in
conical diffuser.
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conversion of velocity head to piezometric head is inherently a less efficient
process than the conversion of piezometric head to velocity head.

Much research has been devoted to the design of efficient diffusers.
Examples of diffusers are the downstream geometry of venturi tubes, the out-
lets from wind tunnels and water tunnels, the volutes of centrifugal pumps
and the draft tubes of water turbines.

7.6.4 Losses in bends

Energy losses occur when flow in a pipe is caused to change its direction.
Consider the pipe bend illustrated in Fig. 7.13. Now whenever fluid flows in
a curved path there must be a force acting radially inwards on the fluid to
provide the inward acceleration. There is thus an increase of pressure near
the outer wall of the bend, starting at point A and rising to a maximum at B.
There is also a reduction of pressure near the inner wall giving a minimum
pressure at C and a subsequent rise from C to D. Between A and B and
betweenC andD the fluid therefore experiences an adverse pressure gradient,
that is, the pressure increases in the direction of the flow.

These conditions are similar to those in a diffuser and, unless the radius of
curvature of the bend is very large, they can lead to localised flow separation
with consequent energy losses. The magnitude of these losses depends mainly
on the radius of curvature of the bend.

Energy losses also arise from secondary flow. This phenomenon may most
easily be explained by reference to a pipe of rectangular cross-section as
shown in Fig. 7.14. Adjacent to the upper and lower walls the velocity is
reduced by the viscous action in the boundary layers there and, as a result, the
increase in pressure from the inner to the outer radius is less in the boundary
layers (PU and RS) than along the centre lineQT. Since the pressure at T is
greater than atU and S and the pressure atQ less than at P andR a secondary
flow in the radial plane takes place as indicated in the figure. Similar twin
eddies are produced in circular pipes. In association with the main flow,
the secondary flow produces a double spiral motion which may persist for
a distance downstream as much as 50 to 75 times the pipe diameter. The
spiralling of the fluid increases the local velocity, so the loss to friction is
greater than for the same rate of flow without the secondary motion.

Fig. 7.13
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Fig. 7.14

Fig. 7.15

A pipe bend thus causes a loss of head additional to that which would
occur if the pipe were of the same total length but straight. This extra loss is
conveniently expressed as ku2/2g. The value of k depends on the total angle
of the bend and on the relative radius of curvature R/d, where R represents
the radius of curvature of the pipe centre-line and d the diameter of the pipe.
The factor k varies only slightly with Reynolds number in the usual range
and increases with surface roughness. Where space does not permit a bend
of large radius a so-called mitre bend with R/d = 0 may have to be used.
Then k is approximately 1.1. If, however, a series of well-designed curved
guide vanes (known as a cascade) is installed (see Fig. 7.15) much of the
separation and secondary flow that would otherwise occur is prevented, and
the loss is greatly reduced, even though the total boundary surface is thereby
increased.

7.6.5 Losses in pipe fittings

All pipe fittings – valves, couplings and so on – cause additional losses of
head and, in general, the more intricate the passage through which the fluid
has to pass the greater the head loss. For turbulent flow the head lost may be
represented by ku2/2g where u represents the mean velocity in the pipe. Val-
ues of the factor kdepend critically on the exact shape of the flow passages.
A few typical values are given in Table 7.2 but these should be regarded as
very approximate.

Because the flow disturbance generated by fittings persists for some dis-
tance downstream, the total loss of head caused by two fittings close together
is not necessarily the same as the sum of the losses that each alone would
cause. The total loss is sometimes less, sometimes more, than the sum
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Table 7.2 Approximate loss coefficient k
for commercial pipe fittings

Globe valve, wide open 10
Gate valve

Wide open 0.2
Three-quarters open 1.15
Half-open 5.6
Quarter open 24

Pump foot valve 1.5
90◦ elbow (threaded) 0.9
45◦ elbow (threaded) 0.4
Side outlet of T junction 1.8

of the individual losses, depending upon whether the components interact
favourably or unfavourably.

The losses are sometimes expressed in terms of an equivalent length of
unobstructed straight pipe in which an equal loss would occur. That is

ku2

2g
= 4f le

d
u2

2g

where le represents the equivalent length for the fitting. Where f is known,
le can be expressed as ‘n diameters’, that is, n = le/d. The value of le thus
depends on the value of f , and therefore on the Reynolds number and the
roughness of the pipe, but the error made by considering n and k constant for
a particular fitting is usually small in comparison with other uncertainties.
Adding the equivalent length to the actual length gives the effective length of
the pipe concerned, and the effective length can be used in eqn 7.1 to obtain
the expression relating hf , u and d.

7.6.6 Losses in flow nozzles and orifice meters

The use of nozzles and orifice plates to measure the flow rate through pipe
systems has been considered in Section 3.7.4. To recapitulate, for flow-
metering purposes the region of the flow of interest is from upstream of the
device to the plane where the cross-section of the flow is a minimum, that
is the outlet plane of the nozzle, or the vena contracta plane downstream
of the orifice plate. In this region of the flow the pressure falls continuously
and the dissipation of energy is insignificant.

Here, we shall proceed to consider the irrecoverable losses that occur as a
result of turbulent flow through these flow-metering devices. The geometries
of the nozzle and orifice plate meters are illustrated in Figs 3.21 and 3.22
respectively. Regions of recirculating or separated flow form downstream
of the nozzle and the orifice plate. That for the orifice plate is shown
schematically in Fig. 3.22. Conditions in the pipe upstream of the flow-
metering device are denoted by suffix 1 and at the minimum cross-section
by 2. From plane 2 the throughflow must expand to again occupy the full
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cross-sectional area available in the pipe-line. This is achieved downstream
of the plane where the shear layer that separates the throughflow from
the recirculating flow reattaches to the pipe, some 8 pipe diameters down-
stream from the flow-metering device. We shall denote by suffix 3 the plane
where recovery takes place and the velocity profile is once again reasonably
uniform.

It is evident that the flow between planes 2 and 3 of the flow-metering
devices is analogous to that in an abrupt expansion of cross-section, Fig. 7.8.
Hence we can apply the analysis of the flow through a sudden expansion
(Section 7.6.2) to that through the two flow-metering devices, noting that
planes 2 and 3 of these devices correspond to planes 1 and 2 of the abrupt
expansion, respectively. On order of magnitude grounds, we ignore surface
friction effects and ascribe the entire loss to the effect of the abrupt expansion
on the flow.

We consider the analysis of the flow through the nozzle and orifice plate
separately.

First, we proceed with the analysis of the flow through the nozzle. Since
A1 = A3, from the one-dimensional continuity equation, u1 = u3. Using
eqn 7.15, we may write the head loss in the nozzle as

hl = u2
3

2g

(
A3

A2
− 1

)2

= u2
1

2g

(
A1

A2
− 1

)2

This result can be written in a non-dimensional form. Define

λ = A2

A1
= A2

A3

where λ is in the range 0 < λ < 1. Then, using eqn 7.12, the head loss
coefficient k for a nozzle is given by

k = hl
u2

1/2g
=

(
1 − λ

λ

)2

For the orifice plate, the one-dimensional continuity equation yields

u1A1 = u2CcA0 = u3A3

where Cc is the coefficient of contraction, A0 is the area of the orifice and
A1 = A3. Using eqn 7.15, the head loss is given by

hl = u2
3

2g

(
A3

CcA0
− 1

)2

= u2
1

2g

(
A1

CcA0
− 1

)2

This relation can be expressed in non-dimensional form as follows. Define

λ = A0

A1
= A0

A3

Then the head loss coefficient k for an orifice meter is given by

k = hl
u2

1/2g
=

(
1 − Ccλ
Ccλ

)2

(7.20)
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Experimental results show that Cc = 0.6 for λ in the range 0 < λ < 0.2, and
as λ increases so Cc increases progressively until at λ = 0.6,Cc = 0.7.

7.6.7 Round-wire gauzes and screens

Under turbulent flow conditions, the losses in the fittings considered in
Section 7.6.5 are only weakly dependent on the Reynolds number of the
flow. Round-wire gauzes and screens are more sensitive to Reynolds number
and will be considered here.

We denote the wire mesh, that is, number of wires divided by length, bym.
The porosity λ is the ratio of the projected free area of the wire gauze to the
cross-sectional area of the duct in which the gauze is situated. If a woven
screen is composed of wire strands of diameter D, then we have

λ = (1 −mD)2 (7.21)

Instead of using porosity, an alternative measure of the geometry of the gauze
is provided by the solidity s which is given by

s = 1 − λ

Tests have shown that the head loss coefficient k can be expressed in the
form

k = k(λ,ReD) (7.22)

The Reynolds number ReD is based on the wire diameter and the mean
velocity of the flow approaching the screen. Thus

ReD = uD
ν

(7.23)

For wire screens, this Reynolds number based on wire diameter is more
significant than that based on pipe diameter. Even so, for values of ReD
above about 1000, k is found to be independent of ReD.

To a first approximation, the losses due to wire gauzes and screens can be
treated in a similar way to the flow through a sudden expansion. An even
closer analogy is provided by the flow through an orifice plate. In passing
through the screen the flow detaches to form a jet which forms a vena
contracta and then subsequently expands to fill the cross-section available
downstream. Thus, based on the analysis of the orifice plate meter, the head
loss coefficient k for a wire gauze or screen is given approximately by

k = hl
u2

1/2g
=

(
1 − Ccλ

Ccλ

)2

(7.20)

where Cc represents the coefficient of contraction. However, there is an
important difference in the geometry of the orifices formed in the gauze and
that in an orifice plate. In an orifice plate, the surface from which the jet
detaches is confined to a single plane. Wire gauzes are woven and so the
detachment surface within the small orifices is not confined to a single plane.
Hence, although the general form of eqn 7.20 has proved a useful basis for
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Fig. 7.16 Influence of
Reynolds number on
pressure drop across woven
screens.

correlating experimental data on the losses through gauzes and screens, it is
convenient to replace Cc by an alternative parameter φ.

Correlations of experimental data have demonstrated that k can be pre-
dicted with good accuracy in the ranges 0.3 < λ < 0.9 and 10 < ReD < 104

using the formula

k = k∞
k
k∞

(7.24)

where

k∞ =
(

1 − φλ

φλ

)2

and φ = 1.09 − 0.35λ.

The ratio k/k∞ is given in Fig. 7.16. A mean line is shown, together with
envelopes which enclose the majority of experimental data.

7.7 TOTAL HEAD AND PRESSURE LINES

In the study of the steady flow in pipe systems involving long runs of straight
pipe the concepts of the total head line and the pressure line are often useful.
The quantity (p/�g)+(u2/2g) at any point in the pipe may be represented by
a vertical ordinate above the centre-line of the pipe. One-dimensional flow
conditions are assumed. The line linking the tops of such ordinates is termed
the total head line or energy line, and its height above a horizontal datum
represents the total head of the fluid relative to that datum. (In a diagram
it is usual to plot the total head as ordinate against length along the pipe
as abscissa.) At an open reservoir of still liquid the total head line coincides
with the free surface; where there is a uniform dissipation of energy (such
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as that due to friction in a long uniform pipe) the total head line slopes
uniformly downwards in the direction of flow; where there is a concentrated
dissipation of energy (as at an abrupt change of section) there is an abrupt
step downwards in the total head line. If mechanical energy is added to the
fluid – by means of a pump, for example – the total head line has a step
up. A turbine, on the other hand, which takes energy from the fluid, causes
a step down in the total head line.

In drawing a total head line certain conventional approximations are
made. We have already noted (Section 7.6) that the losses of head arising
from changes of section, bends or other fittings in a pipe are in reality not
concentrated at one point. Nevertheless it is customary to represent the
loss by an abrupt step in the total head line. Also the velocity distribution
across the pipe, which is appropriate to the Reynolds number of the flow
and to the surface roughness, is not achieved immediately the fluid enters the
pipe. The entry length in which the normal pattern of velocity is developed
is often about 50 times the pipe diameter (see Section 7.9) and over this
length the friction factor varies somewhat. For long pipe systems, however,
the entry length is a small proportion of the total length; little error is thus
involved by the usual assumption that the slope of the total head line is
uniform for the entire length of a uniform pipe.

The pressure line (sometimes known as the piezometric line and more
usually in America as the hydraulic grade line) is obtained by plotting values
of p/�g vertically above the pipe centre-line. It is therefore a distance u2/2g
below the total head line. If the pressure line and the axis of the pipe itself
coincide at any point then the gauge pressure in the pipe is zero, that is,
atmospheric. A pipe that rises above its pressure line has a sub-atmospheric
pressure within it and is known as a siphon. The gauge pressure in any event
cannot fall below −100 kPa (if the atmospheric pressure is 100 kPa) because
that limit would correspond to a perfect vacuum and the flow would stop.
However, the flow of a liquid in a pipe would almost certainly stop before the
pressure fell to this value because dissolved air or other gases would come out
of solution and collect in the highest part of the siphon in sufficient quantity
to form an airlock. Even if the liquid contained no dissolved gases, it would
itself vaporize when the pressure fell to the vapour pressure of the liquid
at that temperature. For these reasons the pressure of water in a pipe-line
should not fall below about −75 kPa gauge. This suggests that the pressure
line should not be more than about

75 000 N · m−2

1000 kg · m−3 9.81 N · kg−1
= 7.64 m

below the pipe, but siphons with somewhat lower pressure lines are pos-
sible because the emerging gas bubbles reduce the mean density of the
liquid.

The air in a siphon must of course be extracted by some means in order to
start the flow of liquid, and air subsequently collecting at the highest point
must be removed if flow is to continue. Automatic float valves may be used
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Fig. 7.17

to do this. But sub-atmospheric pressure in pipe-lines should where possible
be avoided by improving the design of the system.

Figure 7.17 illustrates the total head and pressure lines for the steady flow
of a liquid in a pipe-line connecting two reservoirs. All the junctions are
supposed abrupt. Thus if u1 represents the mean velocity in pipe 1, there is
a head loss of approximately 0.5u2

1/2g at the inlet (see Section 7.6.2) and
this is represented by the step down in the total head line at that point.
Along pipe 1, supposed uniform, head is lost to friction at a uniform rate
and the total head line therefore has a constant downward slope. At the
abrupt enlargement (see Section 7.6.1) the loss (u1 − u2)2/2g is represented
(conventionally) by an abrupt step down in the total head line. Uniform
head loss to friction in pipe 2 is represented by the uniform downward slope
of the corresponding part of the total head line and, finally, the exit loss
u2

2/2g (see Section 7.6.1) is represented by an abrupt step down at the end of
the line.

The pressure line is everywhere a distance u2/2g below the total head line.
A step up in the pressure line occurs at the abrupt enlargement because, by
the energy equation,

p1 − p2

�g
= u2

2 − u2
1

2g
+ hl = 1

2g

{
u2

2 − u2
1 + (u1 − u2)2

}
= u2

g
(u2 − u1)

and, since this expression is negative, p2 exceeds p1.
The diagram shows that the difference in reservoir levels equals the sum

of all the head losses along the pipe-line. The rate of flow so adjusts itself
that this balance is achieved. In the example just considered the total head
losses are

0.5
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Entry Friction in Abrupt Friction in Exit

loss pipe 1 enlargement pipe 2 loss

This total equals H and, since u1 and u2 are related by the continuity con-
dition A1u1 = A2u2, either u1 or u2 (and hence the discharge Q) may be
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determined if H and the pipe lengths, diameters and friction factors are
known. It may be noted that, provided that the outlet is submerged, the
result is independent of the position of either end of the pipe; the head
determining the flow is simply the difference of the two reservoir levels.

Once the rate of flow is known the pressure at any point along the pipe may
be determined by applying the energy equation between the upper reservoir
and the point in question. At pointX, for example, the pressure px is given by

zA −
(

0.5
u2

1

2g
+ 4f1x

d1

u2
1

2g

)
︸ ︷︷ ︸

losses up to X

= px
�g

+ u2
1

2g
+ zx

If the fluid discharges freely into the atmosphere from the outlet end of
the pipe, the pressure at that end must be atmospheric and in steady flow the
sum of the head losses (including the exit velocity head u2

e/2g) equals the
vertical difference in level between the pipe outlet and the free surface in
the inlet reservoir (Fig. 7.18). This is readily verified by applying the energy
equation between the reservoir and the pipe outlet.

Further examples of total head and pressure lines are given in Fig. 7.19.
In cases where the Reynolds number of the flow cannot be directly determ-

ined from the data of a problem (because u or d is unknown) a solution is
generally obtainable only by iteration because of the variation of f with
Reynolds number. Many problems in engineering, however, involve flow
at high Reynolds numbers in rough pipes and so f is sensibly constant (see
Fig. 7.4). In any case, since the inexact determination of relative rough-
ness leads to uncertainty in the value of f , solutions with great arithmetical
accuracy are not warranted.

For pipes of reasonable length (say, more than 1000 times the diameter) the
additional losses due to fittings may often be neglected and the calculations
thereby simplified. It should, however, be checked that such simplification
is justifiable. For example, a valve which may constitute a negligible minor
loss when fully open may, when partly closed, provide the largest head loss
in the system. And since the function of the nozzle illustrated in Fig. 7.18 is
to produce a high velocity jet the exit loss u2

e/2g here may well be more than
the friction loss along the entire pipe.

Fig. 7.18
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Fig. 7.19

For systems comprising only short runs of straight pipe together with
other components, the flow is altogether more complicated and the above
approach to the estimation of overall system loss may lead to inaccurate
results. For such designs it is often necessary to resort to model tests to
investigate the system performance.

Example 7.4

(a) Derive an expression for the power P required to pump a volu-
metric flow rate Q through a horizontal pipe-line of constant
diameterD, length l and friction factor f . Assume that the friction
in the pipe-line is the only source of dissipation, other than that
within the pump itself.

(b) For the purpose of project calculations the total cost of moving a
fluid over a distance by pipe-line at a steady flow rate, Q, can be
broken down into two items. First, the manufacture, laying and
maintenance of the pipe-line, including interest charges, are repres-
ented by the costC1, which is proportional toD3. The second item,
C2, depends solely upon the energy required to pump the fluid.

A preliminary design study for a particular project showed that the
total cost was a minimum forD = 600 mm. If fuel prices are increased
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by 150%, and assuming only C2 is affected, make a revised estimate
of the optimum pipe diameter.

Solution

(a) Power required, P = Q�p∗

η
where η = pump efficiency and from eqn 7.1

�p∗ = 4f l
D

1
2

�u2

From the continuity equation

u = Q

(π/4)D2

Eliminating u and substituting for �p∗ the relation for P becomes

P = 32f l�Q3

π2ηD5

(b) From part (a), C2 ∝ D−5. Hence

C = C1 + C2 = aD3 + bD−5

where a and b are constant coefficients.
C is a minimum at dC/dD = 0, and for initial fuel costs write

b = b1,D = D1.

dC
dD

= 3aD2 − 5bD−6 = 0

Hence

D8 = 5b
3a

or D = 8

√
5b
3a

The diameter of the original pipe is given by

D1 = 8

√
5b1

3a

and the diameter of the new pipe, D2, corresponding to b = b2, is
given by

D2 = 8

√
5b2

3a
= 8

√
(5)(2.5)b1

3a

Hence� D2 = 8√2.5D1 = 8√2.5 × 600 mm = 673 mm.
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7.8 PIPES IN COMBINATION

7.8.1 Pipes in series

If two or more pipes are connected in series, that is, end to end (as in
Fig. 7.17), the same flow passes through each in turn and, as the total head
line shows, the total head loss is the sum of the losses in all the individual
pipes and fittings.

7.8.2 Pipes in parallel

When two or more pipes are connected as shown in Fig. 7.20, so that the
flow divides and subsequently comes together again, the pipes are said to be
in parallel. Referring to the figure, the continuity equation is

Q = QA +QB
Now at any point there can be only one value of the total head. So all

the fluid passing point 1 has the same total head (p1/�g) + (u2
1/2g) + z1.

Similarly, at point 2, after passing through the parallel pipes, all the fluid
must have the same total head (p2/�g)+ (u2

2/2g)+ z2 no matter which path
it took between points 1 and 2. Therefore, whatever changes occur in the
total head lines for pipes A and B, these lines must join common ones at
sections 1 and 2 because there cannot be more than one total head line for
the single pipe upstream or downstream of the junctions.

The one-dimensional steady-flow energy equation may be written

p1

�g
+ u2

1

2g
+ z1 − hl = p2

�g
+ u2

2

2g
+ z2

Consequently all the fluid must suffer the same loss of head hl whether it
goes via pipe A or pipe B. Flow takes place in pipes A and B as a result of
the difference of head between sections 1 and 2 and, once steady conditions
are established, the velocities must be such as to give

(hl)A = (hl)B

Fig. 7.20
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If, as is often the case, minor losses are negligible compared with ordinary
pipe friction, then

hl = 4fAlA
dA

u2
A

2g
= 4fBlB

dB

u2
B

2g

In a parallel-pipe system, therefore, the total flow rate is the sum of the flow
rates through the individual pipes, but the overall head loss is the same as
that through any one of the individual pipes. (A similarity with d.c. electrical
circuits will be noted. The total current through resistors in parallel is the
sum of the currents through the individual resistors whereas the drop in
potential is the same as that across any one resistor.)

Simultaneous solution of the continuity and head loss equations enables
the distribution of the total flow rate Q between the individual pipes to be
determined.

Problems involving parallel pipes require for their solution an estimate
of the value of f for each pipe. From the results of the trial solution, the
Reynolds number of the flow in each pipe may be calculated and the assumed
values of f checked; if necessary new values of f may be used for an improved
solution. In view of the approximate nature of the data usually available,
however, the variation of f with Reynolds number is commonly neglected
and the velocity head u2/2g is also neglected in comparison with the friction
loss 4f lu2/2gd. (Thus the total head line and the pressure line are assumed
to coincide.)

7.8.3 Branched pipes

When a pipe system consists of a number of pipes meeting at a junction (as in
the simple example illustrated in Fig. 7.21) the basic principles which must
be satisfied are:

1. Continuity. At any junction the total mass flow rate towards the junction
must equal the total mass flow rate away from it.

Fig. 7.21
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2. There can be only one value of head at any point.
3. The friction equation (e.g. Darcy’s) must be satisfied for each pipe.

Minor losses and the velocity head are usually negligible in comparison
with the pipe friction but a difficulty which remains is that formulae for
friction loss take no account of the direction of flow. The total head always
falls in the direction of flow and yet Darcy’s formula, for example, gives a
positive value, of hf whether u is positive or negative. It follows that the
direction of flow must be specified separately. The direction of flow in a pipe
is not often in doubt. When, however, it is unknown it must be assumed and
if that assumption yields no physically possible solution the assumption has
to be revised.

This is illustrated by the system shown in Fig. 7.21. Three points A,B,C
are connected to a common junction J by pipes 1, 2, 3 in which the head
losses are respectively hf1, hf2, hf3. The heads at A,B,C are known and
may be suitably represented by the surface levels in open reservoirs. Details
of the pipes are known and the flow rate in each has to be determined. The
head at J is unknown, although its value is evidently between z1and z3.

Since the head at A is the highest and that at C the lowest the direction
of flow in pipes 1 and 3 is as indicated by the arrows. The direction of
flow in pipe 2, however, is not immediately evident. If hJ, the head at J, is
intermediate between the heads at A and B then flow occurs from J to B and
for steady conditions the following equations apply:

z1 − hJ = hf1
hJ − z2 = hf2
hJ − z3 = hf3
Q1 = Q2 +Q3

⎫⎪⎪⎬
⎪⎪⎭ (7.25)

Since hf is a function ofQ, these four equations involve the four unknowns
hJ, Q1, Q2, Q3. Even when f is assumed constant and minor losses are
neglected so that

hf = 4f l
d

Q2(
πd2/4

)2 2g
= 32f lQ2

π2gd5

algebraic solution is tedious (and for more than four pipes impossible). Trial
values of hJ substituted in the first three equations, however, yield values of
Q1,Q2,Q3 to be checked in the fourth equation. If the calculated value of
Q1, exceedsQ2 +Q3, for example, the flow rate towards J is too great and a
larger trial value of hJ is required. Values ofQ1 − (Q2 +Q3) may be plotted
against hJ as in Fig. 7.22 and the value of hJ for whichQ1 − (Q2 +Q3) = 0
readily found. If, however, the direction of flow in pipe 2 was incorrectly
assumed no solution is obtainable.

For the opposite direction of flow in pipe 2 the equations are:

z1 − hJ = hf1
z2 − hJ = hf2
hJ − z3 = hf3
Q1 +Q2 = Q3

⎫⎪⎪⎬
⎪⎪⎭ (7.26)
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Fig. 7.22

It will be noticed that the two sets of equations, 7.25 and 7.26, become
identical when z2 = hJ and Q2 = 0. A preliminary trial with hJ = z2 may
therefore be used to determine the direction of flow in pipe 2. If the trial
value of Q1 is greater than that of Q3 that is, if the flow rate towards J
exceeds that leaving J, then a greater value of hJ is required to restore the
balance. On the other hand, if Q1 < Q3 when hJ is set equal to z2, then hJ
is actually less than z2.

Similar trial-and-error methods are used for more complex branched pipe
problems. An assumption is made for the value of one of the variables
and the other quantities are then calculated in turn from that assumption.
Adjustments of the initial trial value are made as necessary.

7.8.4 Pipe networks

Complicated problems are posed by pipe networks such as are used for muni-
cipal water distribution systems. Here, in addition to a large number of pipes
connected in a variety of ways, there may be pumps, check valves to prevent
reverse flow, pressure-reducing valves to obviate excessive pressures in the
lower parts of the network, and other devices. Nevertheless, the fundamental
principles of continuity and uniqueness of the head at any point are again
the basis of solution. (As a result of the second principle, the net head loss
round any closed loop in the network must be zero.) To solve these sorts of
problems highly specialized techniques of calculation have been developed
to exploit the use of computers, but they are outside the scope of this book.

Some simplification for the purposes of analysis may often be obtained by
substituting equivalent single pipes for sets of pipes effectively in series or
parallel. For example, for two pipes in series, with negligible minor losses
and constant and equal friction factors,

hf = 4f
2g

(
l1u2

1

d1
+ l2u2

2

d2

)
= 32fQ2

π2g

(
l1
d5

1

+ l2
d5

2

)

An equivalent pipe of length l1 + l2 would therefore have a diameter d
such that

l1 + l2
d5 = l1

d5
1

+ l2
d5

2
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For two pipes in parallel, and similar assumptions,

hf = 32fQ2
1l1

π2gd5
1

= 32fQ2
2l2

π2gd5
2

So

Q1 +Q2 =
(

π2ghf

32f

)1/2
⎧⎨
⎩
(
d5

1

l1

)1/2

+
(
d5

2

l2

)1/2
⎫⎬
⎭

=
(

π2ghf

32f

)1/2 (
d5

l

)1/2

for the equivalent pipe.
For a first approximation, pipes in which the flow rate is obviously small

may be supposed closed.

7.8.5 Pipe with side tappings

Fluid may be withdrawn from a pipe by side tappings (or laterals) along
its length. Thus, for a constant diameter, the velocity, and hence the slope
of the total head line, varies along the length. If the side tappings are very
close together the loss of head over a given length of the main pipe may be
obtained by integration of the equation

dhf = 4f
dl
d
u2

2g
(7.27)

between appropriate limits. In the general case, integration might require,
for example, a graphical or numerical method in which values of 4fu2/2gd
are expressed as a function of l. However, if the tappings are uniformly
and closely spaced and are assumed to remove fluid at a uniform rate q with
respect to the distance along the main pipe, the volume flow rate at a distance
l from the inlet isQ0 −ql, whereQ0 denotes the initial value. For a uniform
cross-sectional are A:

Q0

u0
= A = Q0 − ql

u
so

u =
(

1 − ql
Q0

)
u0

Substitution for u in eqn 7.27 and integration from l = 0 to l = l gives

hf = 4f
d

u2
0

2g
Q0

3q

{
1 −

(
1 − ql

Q0

)3
}

(7.28)

where f is assumed constant.
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If the end of the pipe is closed so that Qo − ql is then zero, eqn 7.28
becomes

hf = 4f
d

u2
0

2g
l
3

(7.29)

That is, the total loss of head is one-third what it would be if the inlet flow
rate Qo were the same but no fluid were drawn off along the length.

Example 7.5 A horizontal water main is 10 cm diameter and 4.5 km
long. Supplies are taken uniformly from the main at the rate of
10−6 m2 · s−1 with respect to distance along the pipe.

Calculate the difference in pressure between the point where the feed
enters the main and the remotest point of supply, when the feed is:

(a) at the end of the main
(b) at the centre of the main.

Assume the friction factor f is constant throughout at 0.006.

Solution
(a) Total water supply Q0 = 10−6 m2 · s−1 × (4.5 × 103) m =
0.0045 m3 · s−1. Hence

u0 = Q0

(π/4)d2
= 0.0045 m3 · s−1

(π/4)(0.1 m)2
= 0.573 m · s−1

From eqn 7.23

hf = 4f
d

u2
0

2g
l
3

= 4 × 0.006
0.1 m

× (0.573 m · s−1)2

2 × 9.81 m · s−2
× (4.5 × 103) m

3

= 6.024 m

Hence

�p∗ = hf�g = 6.024 m × 103 kg · m−3 × 9.81 m · s−2

= 59 × 103 N · m−2.

(b) Q0 = 0.00225 m3 · s−1 and l = 2.25 km.
The problem may now be solved as in part (a). Alternatively it can

be solved by noting

�

that

(Q0)b = (Q0)a/2, (u0)b = (u0)a/2 and lb = la/2. Hence

(�p∗)b = (u2
0)b

(u2
0)a

lb
la

(�p∗)a = 1
4

1
2

(59 × 103) N · m−2

= 7.4 × 103 N · m−2
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7.9 CONDITIONS NEAR THE PIPE ENTRY

The formulae for the head loss to friction considered in the preceding
sections are all applicable, strictly, only to the fully developed flow found
some distance downstream from the entry to the pipe or from other causes
of disturbance to the flow. Near the entry to the pipe the variation of
velocity across the section differs from the fully developed pattern, and
gradually changes until the final form is achieved.

Suppose that fluid from a large reservoir steadily enters a circular pipe
through a smooth, bell-mouthed entry as indicated in Fig.7.23. At first all the
particles – expect those in contact with the wall – flow with the same velocity.
That is, the velocity profile is practically uniform across the diameter as
shown at the left of the diagram. The effect of friction at the wall, however,
is to slow down more and more of the fluid near the wall, so forming the
boundary layer which increases in thickness until, ultimately, it extends to
the axis of the pipe. Since the total flow rate through any section of the pipe is
the same, the velocity of the fluid near the axis must increase to compensate
for the retardation of fluid near the walls. The shape of the velocity profile
thus changes until its final fully developed form – for laminar or turbulent
flow according to the Reynolds number – is achieved.

Theoretically, an infinite distance is required for the final profile to be
attained, but it is usual to regard the flow as fully developed when the velocity
on the axis of the pipe is within 1% of its ultimate value. Figures given
for the entry length required to establish fully developed laminar flow vary
somewhat, but a simple expression derived by H. L. Langhaar is 0.057(Re)d,
whereRe = ud/ν and u = mean velocityQ/A. So forRe = 2000, the highest
value at which laminar flow can be counted on, the entry length is about 114
times the diameter. For turbulent flow the final state is reached sooner, the
entry length is less dependent on Reynolds number and a value of about 50
times the diameter is common for smooth pipes. If, however, the entry is

Fig. 7.23 Growth of
boundary layer in a pipe
(not to scale). (a) Laminar
flow. (b) Turbulent flow.
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sharp-edged or there are other factors producing turbulence at the inlet, the
entry length is reduced.

For both laminar and turbulent flow the velocity gradient ∂u/∂r at the wall
is higher in the entry length than for fully developed flow and so the shear
stress at the wall is greater. The value of dhf/dl is also greater, so the total
head lost is somewhat larger than if the flow were fully developed along the
whole length of the pipe. If, however, the total length of the pipes is more
than about 125 times its diameter the error is negligible in comparison with
the uncertainty in the value of f .

7.10 QUASI-STEADY FLOW IN PIPES

Only steady flow in pipes has so far been considered. Chapter 12 will treat
some problems of unsteady flow in which the acceleration (positive or negat-
ive) of the fluid is of considerable importance. There are, however, instances
in which the rate of flow varies continuously with time – that is, the flow is
strictly unsteady – and yet the acceleration of the fluid and the forces caus-
ing it are negligible. In these circumstances, the steady-flow energy equation
applies with sufficient accuracy and the flow may be termed quasi-steady.

As an example, consider an open reservoir with a drain pipe of uniform
diameter as illustrated in Fig. 7.24. The area A of the free surface in the
reservoir is very large compared with the cross-sectional area a of the pipe,
so the level in the reservoir and therefore the rate of flow through the pipe
change only slowly. Moreover, the velocity in the reservoir is so small that
friction there is negligible. The drain pipe discharges freely to atmosphere.
At a time when the free surface in the reservoir is at a height h above the
outlet of the pipe and conditions are quasi-steady

h =
(

4f l
d

+ k
)
u2

2g
(7.30)

Fig. 7.24
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where u denotes the mean velocity in the pipe and k is a factor representing
the sum of the minor losses in the pipe. In a time interval δt the level of the
free surface falls by an amount −δh. (Remember that δhmeans ‘a very small
increase of h’ and so a decrease of h requires a minus sign.) The velocity of
the free surface is therefore −dh/dt and continuity then requires that

A(−dh/dt) = au (7.31)

From eqn. 7.30 u may be expressed in terms of h, and substitution for u
allows the integration of eqn 7.31:

t =
∫ t

0
dt =

∫ h2

h1

−Adh
au

=
∫ h2

h1

−Adh
anh1/2

(7.32)

where

n =
{

2g
(4f l/d) + k

}1/2

(7.33)

Thus the time taken for the liquid level to fall from h1 to h2 (measured
above the pipe outlet) may be determined. If A varies with h evaluation of
the integral may not be possible by algebraic methods and recourse must be
had to a graphical or numerical technique.

It is true that, as h decrease, u decreases and f changes. (Indeed, if the
flow is laminar, the substitution for u in eqn 7.32 must be from the Hagen–
Poiseuille formula, eqn 6.9.) If necessary, a succession of integrations could
be performed, each over a small range of h and u, an appropriate mean
value of f being used in each. Usually, however, it may be assumed that
f is practically constant over the whole range of u involved. If eqn 7.32 is
used to determine the time required to empty the reservoir completely, some
inaccuracy also arises because conditions in the reservoir change significantly
as the depth of liquid becomes very small. For example, if the pipe is con-
nected to the base of the reservoir, a vortex may form at its entrance. The
effective head is then altered and the swirling motion in the pipe results in
a smaller mean axial velocity for given loss of head. Unless the initial depth
in the reservoir is small, however, these different conditions at the end of
the emptying period occupy only a small proportion of the total emptying
time t.

If flow into the reservoir (Qin) occurs at the same time as the outflow,
then the net volume flow rate out of the reservoir is au−Qin, the continuity
equation becomes

A(−dh/dt) = au−Qin

and the expression for t is accordingly

t =
∫ h2

h1

−Adh
anh1/2 −Qin

(7.34)

Quasi-steady flow from a reservoir to atmosphere via an orifice is similarly
treated. Then the continuity equation is

A(−dh/dt) = Cda
√

(2gh) −Qin
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Fig. 7.25

where a represents the cross-sectional area of the orifice and h the head above
it. Again A is much greater than a. The orifice size and the Reynolds number
of the flow are both usually large enough for Cd to be assumed constant.
For the special case of a reservoir with constant cross-section and with no
inflow

t =
∫ t

0
dt =

∫ h2

h1

−Adh

Cda
√

(2g)h
= 2A

Cda
√

(2g)
(h1/2

1 − h1/2
2 ) (7.35)

If two reservoirs are joined by a pipe, both ends of which are submerged
(Fig. 7.25), the rate of flow between them is determined by the difference in
the reservoir surface levels. As one surface falls, the other rises, so

A1

(
−dz1

dt

)
= Q = A2

dz2
dt

The rate at which the difference of levels changes is

dh
dt

= d
dt

(z1 − z2) = dz1
dt

− A1

A2

(
−dz1

dt

)
= dz1

dt

(
1 + A1

A2

)
(7.36)

The continuity equation gives

A1

(
−dz1

dt

)
= au = anh1/2 (from eqn 7.33)

Substitution from eqn 7.36 gives

−A1

1 + (A1/A2)

dh
dt

= anh1/2

The relation now has a single head variable h and may be integrated in the
usual manner.

In any problem containing more than one head variable, care should be
taken to distinguish between them, and integration should not be attempted
until the principle of continuity has been used to express all heads (and
differentials of heads) in terms of a single variable.

Example 7.6 Two vertical cylindrical water tanks, each open to
atmosphere and of diameters 3 m and 2 m respectively, are connected
by two pipes in parallel, each 50 mm diameter and 75 m long. Initially
the water level in the larger tank is 1.8 m above that in the smaller.
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Assuming that entry and exit losses for each pipe total 1.5 times the
velocity head, that the pipes are always full of water, and that f for
each pipe has the constant value 0.007, determine the change in level
in the larger tank in 15 minutes.

Solution
If the plan areas of the tanks are respectively A1 and A2, then from
eqn 7.36,

dh
dt

= dz1
dt

(
1 + A1

A2

)
= dz1

dt

(
1 + 32

22

)
= 13

4
dz1
dt

Therefore the total volume flow rate

Q = −A1
dz1
dt

= − 4
13
A1

dh
dt

(7.37)

Although there are two pipes in parallel, the head lost is that in only
one. So, at any instant,

h =
(

4f l
d

+ 1.5
)
u2

2g
=

(
4 × 0.007 × 75

0.05
+ 1.5

)
u2

2g

= 43.5
19.62 m · s−2

(Q/2)2(
π
4 × 0.052 m2

)2
= 1.438 × 105 Q2 s2 · m−5

Substituting for Q and A1 in eqn 7.32 and rearranging, we get

dt = − 4
13

(π

4
32 m2

)(1.438 × 105

h
s2

m5

)1/2

dh

= −
(
824.7

s
m1/2

)
h−1/2dh

Integrating this equation from t = 0 to t = 900 s and from h = 1.8 m
to h = H gives

t = 900 s = 2 × 824.7
s

m1/2

{
(1.8 m)1/2 − H1/2

}
whence H = 0.6336 m. The change in h is therefore (1.8 −
0.6336) m = 1.1664 m and the change in z1 is (4/13) × 1.1664 m =
0.359 m. �

7.11 FLOW MEASUREMENT

Methods of measuring various quantities such as pressure and viscosity have
been mentioned in the other parts of this book in connection with the theory
on which they are based. Here brief reference will be made to the prin-
ciples of some other techniques; constructional details of instruments will,
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however, be omitted and no attempt will be made to mention every form of
measurement.

7.11.1 Measurement of velocity

Among instruments for velocity measurement, other than the Pitot and
Pitot-static tubes mentioned in Chapters 3 and 11, is the hot-wire anemo-
meter, which depends on the facts that the electrical resistance of a wire
is a function of its temperature; that this temperature depends on the heat
transfer to the surroundings; and that the heat transfer is a function of the
velocity of fluid past the wire. A fine platinum, nickel or tungsten wire,
heated electrically, is held between the ends of two pointed prongs so as to
be perpendicular to the direction of flow. The current through the wire may
be adjusted to keep its temperature and therefore its resistance constant,
the current being measured; or the current may be kept constant and the
change in resistance determined by measuring the potential difference across
the wire; or the potential difference may be held constant and the current
measured. Whichever method of measurement is used, frequent calibration
of the instrument against a known velocity is required. The rate of heat
transfer depends also on the density and other properties of the fluid and so
calibration should be carried out in the same fluid as that whose velocity is
to be measured.

Because of its small size – the wire is seldom more than about 6 mm
long or more than 0.15 mm diameter – the instrument may be used where
velocity gradients are large, for example in boundary layers. For the same
reason it responds very rapidly to fluctuations of velocity, and therefore it
has found wide use in measuring the intensity of turbulence. As a single
wire responds principally to fluctuations parallel to the mean a single wire
responds principally to fluctuation parallel to the mean velocity, turbulence
is usually investigated by using more than one wire.

The hot-wire anemometer is used mainly for measuring the velocity of
gases. It has proved less successful in liquids because bubbles and small solid
particles tend to collect on the wire and spoil the calibration. More recently
a hot-film anemometer has been developed, in which a thin platinum film
fused to a glass support takes the place of the hot wire. Although inferior in
frequency response to the hot-wire type, it finds application where the use
of a hot wire is precluded by its limited mechanical strength.

Mechanical devices embodying some form of rotating element may also
be used for velocity measurement. For use in liquids these are called current
meters; for use in gases, anemometers. In one type, hollow hemispheres or
cones are mounted on spokes so as to rotate about a shaft perpendicular
to the direction of flow (see Fig. 7.26). The drag on a hollow hemisphere
or cone is greater when its open side faces a flow of given velocity, and so
there is a net torque on the assembly when flow comes from any direction
in the plane of rotation. The magnitude of the fluid velocity (but not its
direction) determines the speed of rotation; on an anemometer this is usually
indicated by a mechanical counter, and on a current meter by the number
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Fig. 7.26 (a) Current
meter used in water.
(b) Anemometer used in air.

of one-per-revolution electrical contacts made in a known time interval. For
higher velocities a propeller is used having its axis parallel to the fluid flow.
This type is sensitive to the direction of flow particularly if the propeller is
surrounded by a shielding cylinder. Each type requires calibration, usually
either in a wind tunnel or by towing the instrument at known speed through
still liquid.

An expensive but accurate instrument suitable for very wide range of
velocities is the laser–Doppler anemometer. This utilizes the Doppler effect
by which waves from a given source reach an observer with an increased
frequency if the source approaches him (or he approaches the source) and
a reduced frequency if source and observer recede from one another. The
phenomenon is most often noticed with sound waves: to a stationary listener
the sound emitted by, for example, an express train appears to drop in
pitch as the source of sound approaches, passes and then recedes from him.
For light waves the effect is seldom directly observable because the velo-
city of light is so large compared with that of any moving object that the
proportional change in frequency is barely detectable by ordinary spectro-
scopic techniques. However, if light that has undergone a Doppler frequency
change is caused to beat with light at the original frequency, the change may
be accurately measured and the velocity of the moving object thus deduced.

In the most common form of laser–Doppler anemometer the intense mono-
chromatic light from a laser is split into two beams which are deflected by
mirrors or lenses so as to intersect in a small region of the fluid. The reference
beam passes directly to a photo-detector; small particles in the fluid cause
some of the light in the other beam to be scattered in the same direction as
the reference beam, and thus to mix with it in the photo-detector. The beat
frequency between the direct and the scattered light is determined by feeding
the electrical output of the photo-detector into a wave analyser.

The expression for the beat frequency may be simply obtained by con-
sidering the interference fringes formed where the beams intersect: the
distance d between successive fringes is λ/{2 sin(θ/2)} where λ represents
the wavelength of the light and θ the acute angle between the two beams. A
particle in the fluid – small compared with d – moving at velocity u in the
plane of the two beams and perpendicular to the bisector of the angle θ will
scatter light in moving through the bright regions between fringes and thus
the scattered light will be modulated with a frequency u/d−2(u/λ) sin(θ/2).
By measuring this frequency, u may be determined.
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In practice there are often sufficient impurities in the fluid to make any spe-
cial addition of particles unnecessary. Particular advantages of the technique
are that no obstructions need be inserted into the fluid and no flow calibration
is needed.

Among special techniques used in rivers and large water pipe-lines is the
salt-velocity method, in which a quantity of a concentrated solution of salt is
suddenly injected into the water. At each of two downstream cross-sections a
pair of electrodes is inserted, the two pairs being connected in parallel. When
the salt-enriched water passes between a pair of electrodes its higher conduct-
ivity causes the electric current to rise briefly to a peak. The mean velocity
of the stream is determined from the distance between the two electrode
assemblies and the time interval between the appearances of the two current
peaks. Rather elaborate apparatus is needed for the automatic recording
of data.

7.11.2 Measurement of discharge

Reference is also made to orifices, nozzles, venturi-meters and weirs in
Chapters 3 and 10.

Since the drag on a submerged body depends on the velocity of flow past
it, a number of meters have been devised in which the velocity (and thus,
in suitable arrangements, the discharge) is indicated by a measurement of
the drag force. For example, the deflection of a vane against a spring may
be measured. In the rotameter (Fig. 7.27) flow occurs upwards through a
transparent tube tapering outwards towards the top. A float is carried up to
the level where the velocity in the annular space between float and tube is
such that the drag on the float just balances its weight minus its buoyancy.
Slanting grooves cut into the circumference of the float cause it to rotate
and thus to remain central in the tube. For a given homogeneous fluid the
(steady) rate of flow may be read directly from a calibrated scale on the tube.

The bend-meter or elbow-meter depends on the fact that a pressure
difference exists between the outer and inner walls of a pipe bend. Use of
a suitable manometer allows the measurement of this pressure difference
which is a function of the rate of flow. As the bend is usually already part

Fig. 7.27 Rotameter.
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of the piping system, this meter is simple and inexpensive, and after careful
calibration in situ it is accurate.

Many patterns of discharge meter have been made that are in effect
propeller-type current meters enclosed in a pipe of fixed cross-sectional area,
the total discharge being indicated by a mechanical revolution counter.

Various forms of positive displacement meter are in use: some form of
piston or partition is moved by the flow of fluid, and each movement cor-
responds to a certain volume. Such meters may be regarded as positive
displacement pumps in reverse.

For rivers or large pipe-lines in which thorough mixing of the liquid occurs
the salt-dilution method may be used. A concentrated solution of salt is fed
into the stream at a known, steady, volume flow rate q, preferably from a
number of points distributed over the cross-section. The concentration of salt
is measured some distance downstream after the salt has become thoroughly
diffused throughout the liquid. Let the mass of salt divided by the volume
of the original stream be s0, the mass of salt divided by the volume of the
added solution be s1 and the mass of salt divided by the volume measured
downstream be s2. If the volume flow rate of the stream is Q then, when
steady conditions have been attained, the mass flow rate of salt reaching the
downstream sampling point is given by Qs0 + qs1 = (Q+ q)s2 whence

Q = q
(
s1 − s2
s2 − s0

)
The concentrations may be determined by chemical titration or by electrical
conductivity measurements.
Electro-magnetic meters have been developed in which fluid with a suf-

ficiently high electrical conductivity flows through a non-conducting tube
across a magnetic field. Electrodes embedded in the walls enable the induced
e.m.f. to be measured. As in all electro-magnetic generators the e.m.f. is pro-
portional to the number of magnetic flux lines cut by the conductor in unit
time, and therefore to the mean velocity of the fluid. This instrument offers
no obstruction whatever to the flow, and thus no additional head loss; the
e.m.f. is independent of the density and viscosity of the fluid and is insens-
itive to velocity variations over the cross-section. The fluid, however, must
be conductive.

7.11.3 Measurement of flow direction

An instrument to measure the direction of flow is termed a yaw meter. One
simple type uses a pivoted vane and operates like the well-known weather-
cock; for a complete indication of direction two vanes are required, their
pivot axes being (preferably) perpendicular.

Many designs of differential-pressure yaw meters exist but their common
principle may be illustrated by the cylindrical type depicted in Fig. 7.28.
A circular cylinder has its axis perpendicular to the plane of two-dimensional
flow, and two small pressure tapping P1 and P2 normal to the surface of
the cylinder are connected to the two sides of a manometer. The cylinder
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Fig. 7.28

is rotated about its axis until the stagnation point S is mid-way between
P1 and P2: the pressures at P1 and P2 are then equal as indicated by a null
reading on the manometer. The flow direction is then the bisector of the angle
P1OP2. According to inviscid flow theory, the pressure recorded at P1 or
P2 would be the static pressure of the undisturbed stream if P1 and P2 were
each 30◦ from S (from eqn 9.27). Frictional effects, however, make the angle
θ about 391

4
◦

in practice. Thus if the angle P1OP2 is 781
2

◦
the instrument

may be used also to measure static pressure and, when turned through 391
4

◦
,

the stagnation pressure. The angles are larger when compressibility effects
become significant. In other designs small Pitot tubes are used in place of
pressure tappings on a cylinder.

For three-dimensional flow a sphere may be employed in place of the cylin-
der: three pressure tappings are then situated at the vertices of an equilateral
triangle, and the pressures at all three points are equal when the flow is
parallel to the radius to the centroid of the triangle.

The hot-wire anemometer can be adapted as a yaw meter for two-
dimensional flow by incorporating two similar wires placed in the plane of
flow at an angle to each other. A position is found in which the heat losses
from the wires are equal; the flow direction is then that which bisects the
angle between the wires. For three-dimensional flow three wires are required,
arranged as adjoining edges of a regular tetrahedron.

PROBLEMS

7.1 Calculate the power required to pump sulphuric acid (dynamic
viscosity 0.04 Pa · s, relative density 1.83) at 45 L · s−1 from a
supply tank through a glass-lined 150 mm diameter pipe, 18 m
long, into a storage tank. The liquid level in the storage tank is
6 m above that in the supply tank. For laminar flow f = 16/Re;
for turbulent flow f = 0.0014(1 + 100Re−1/3) if Re < 107.
Take all losses into account.

7.2 In a heat exchanger there are 200 tubes each 3.65 m long and
30 mm outside diameter and 25 mm bore. They are arranged
axially in a cylinder of 750 mm diameter and are equally spaced
from one another. A liquid of relative density 0.9 flows at a
mean velocity of 2.5 m · s−1 through the tubes and water flows
at 2.5 m · s−1 between the tubes in the opposite direction. For
all surfaces f may be taken as 0.01. Neglecting entry and exit
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losses, calculate (a) the total power required to overcome fluid
friction in the exchanger and (b) the saving in power if the two
liquids exchanged places but the system remained otherwise
unaltered.

7.3 A hose pipe of 75 mm bore and length 450 m is supplied with
water at 1.4 MPa. A nozzle at the outlet end of the pipe is 3 m
above the level of the inlet end. If the jet from the nozzle is to
reach a height of 35 m calculate the maximum diameter of the
nozzle assuming that f = 0.01 and that losses at inlet and in
the nozzle are negligible. If the efficiency of the supply pump is
70% determine the power required to drive it.

7.4 A straight smooth pipe 100 mm diameter and 60 m long is
inclined at 10◦ to the horizontal. A liquid of relative density 0.9
and kinematic viscosity 120 mm2 · s−1 is to be pumped through
it into a reservoir at the upper end where the gauge pressure is
120 kPa. The pipe friction factor f is given by 16/Re for laminar
flow and by 0.08(Re)−1/4 for turbulent flow when Re < 105.
Determine (a) the maximum pressure at the lower, inlet, end of
the pipe if the mean shear stress at the pipe wall is not to exceed
200 Pa; (b) the corresponding rate flow.

7.5 A trailer pump is to supply a hose 40 m long and fitted with a
50 mm diameter nozzle capable of throwing a jet of water to a
height 40 m above the pump level. If the power lost in friction in
the hose is not to exceed 15% of the available hydraulic power,
determine the diameter of hose required. Friction in the nozzle
may be neglected and f for the hose assumed to be in the range
0.007–0.01.

7.6 A pipe 900 m long and 200 mm diameter discharges water
to atmosphere at a point 10 m below the level of the inlet.
With a pressure at inlet of 40 kPa above atmospheric the steady
discharge from the end of the pipe is 49 L · s−1. At a point half
way along the pipe a tapping is then made from which water
is to be drawn off at a rate of 18 L · s−1. If conditions are such
that the pipe is always full, to what value must the inlet pressure
be raised so as to provide an unaltered discharge from the end
of the pipe? (The friction factor may be assumed unaltered.)

7.7 Two water reservoirs, the surface levels of which differ by 1.5 m,
are connected by a pipe system consisting of a sloping pipe at
each end, 7.5 m long and 75 mm diameter, joined by a hori-
zontal pipe 300 mm diameter and 60 m long. Taking entry
head losses as 0.5u2/2g and f = 0.005(1 + 25/d) where d mm
is the pipe diameter, calculate the steady rate of flow through
the pipe.

7.8 Kerosene of relative density 0.82 and kinematic viscosity
2.3 mm2 · s−1 is to be pumped through 185 m of galvanized
iron pipe (k = 0.15 mm) at 40 L · s−1 into a storage tank. The
pressure at the inlet end of the pipe is 370 kPa and the liquid
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level in the storage tank is 20 m above that of the pump. Neg-
lecting losses other than those due to pipe friction determine
the size of pipe necessary.

7.9 Calculate the volume flow rate of the kerosene in Problem 7.8
if the pipe were 75 mm diameter.

7.10 A liquid of relative density 1.2 flows from a 50 mm diameter
pipe A into a 100 mm diameter pipe B, the enlargement from A
to B being abrupt. Some distance downstream of the junction
is a total-head tube facing the oncoming flow; this is connec-
ted to one limb of a U-tube manometer containing mercury
(relative density 13.6). The other limb of the manometer is con-
nected to a tapping in the side of pipe A. Calculate the mass
flow rate of the liquid when the difference of mercury levels
is 50 mm.

7.11 A single uniform pipe joins two reservoirs. Calculate the per-
centage increase of flow rate obtainable if, from the mid-point
of this pipe, another of the same diameter is added in parallel to
it. Neglect all losses except pipe friction and assume a constant
and equal f for both pipes.

7.12 Two reservoirs are joined by a sharp-ended flexible pipe
100 mm diameter and 36 m long. The ends of the pipe dif-
fer in level by 4 m; the surface level in the upper reservoir is
1.8 m above the pipe inlet while that in the lower reservoir is
1.2 m above the pipe outlet. At a position 7.5 m horizontally
from the upper reservoir the pipe is required to pass over a bar-
rier. Assuming that the pipe is straight between its inlet and
the barrier and that f = 0.01 determine the greatest height to
which the pipe may rise at the barrier if the absolute pressure in
the pipe is not to be less than 40 kPa. Additional losses at bends
may be neglected. (Take atmospheric pressure = 101.3 kPa.)

7.13 Between the connecting flanges of two pipes A and B is bolted
a plate containing a sharp-edged orifice C for which Cc = 0.62.
The pipes and the orifice are coaxial and the diameters of A,
B and C are respectively 150 mm, 200 mm and 100 mm.
Water flows from A into B at the rate of 42.5 L · s−1. Neglect-
ing shear stresses at boundaries, determine (a) the difference of
static head between sections in A and B at which the velocity is
uniform, (b) the power dissipated.

7.14 Petrol of kinematic viscosity 0.6 mm2 · s−1 is to be pumped at
the rate of 0.8 m3 · s−1 through a horizontal pipe 500 mm dia-
meter. However, to reduce pumping costs a pipe of different
diameter is suggested. Assuming that the absolute roughness of
the walls would be the same for a pipe of slightly different dia-
meter, and that, for Re > 106, f is approximately proportional
to the cube root of the roughness, determine the diameter of
pipe for which the pumping costs would be halved. Neglect all
head losses other than pipe friction.
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How are the running costs altered if n pipes of equal diameter
are used in parallel to give the same total flow rate at the same
Reynolds number as for a single pipe?

7.15 A pump delivers water through two pipes laid in parallel. One
pipe is 100 mm diameter and 45 m long and discharges to atmo-
sphere at a level 6 m above the pump outlet. The other pipe,
150 mm diameter and 60 m long, discharges to atmosphere at
a level 8 m above the pump outlet. The two pipes are connec-
ted to a junction immediately adjacent to the pump and both
have f = 0.008. The inlet to the pump is 600 mm below the
level of the outlet. Taking the datum level as that of the pump
inlet, determine the total head at the pump outlet if the flow rate
through it is 0.037 m3 · s−1. Losses at the pipe junction may be
neglected.

7.16 A reservoir A, the free water surface of which is at an elevation
of 275 m, supplies water to reservoirs B and C with water
surfaces at 180 m and 150 m elevation respectively. From A to
junctionD there is a common pipe 300 mm diameter and 16 km
long. The pipe from D to B is 200 mm diameter and 9.5 km
long while that fromD toC is 150 mm diameter and 8 km long.
The ends of all pipes are submerged. Calculate the rates of flow
to B andC, neglecting losses other than pipe friction and taking
f = 0.01 for all pipes.

7.17 A reservoir A feeds two lower reservoirs B and C through a
single pipe 10 km long, 750 mm diameter, having a downward
slope of 2.2 × 10−3. This pipe then divides into two branch
pipes, one 5.5 km long laid with a downward slope of 2.75 ×
10−3 (going toB), the other 3 km long having a downward slope
of 3.2 × 10−3 (going to C). Calculate the necessary diameters
of the branch pipes so that the steady flow rate in each shall be
0.24 m3 · s−1 when the level in each reservoir is 3 m above the
end of the corresponding pipe. Neglect all losses except pipe
friction and take f = 0.006 throughout.

7.18 A pipe 600 mm diameter and 1 km long with f = 0.008
connects two reservoirs having a difference in water surface
level of 30 m. Calculate the rate of flow between the reservoirs
and the shear stress at the wall of the pipe. If the upstream half
of the pipe is tapped by several side pipes so that one-third of
the quantity of water now entering the main pipe is withdrawn
uniformly over this length, calculate the new rate of discharge
to the lower reservoir. Neglect all losses other than those due
to pipe friction.

7.19 A rectangular swimming bath 18 m long and 9 m wide has a
depth uniformly increasing from 1 m at one end to 2 m at the
other. Calculate the time required to empty the bath through
two 150 mm diameter outlets for which Cd = 0.9, assuming
that all condition hold to the last.
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7.20 A large tank with vertical sides is divided by a vertical parti-
tion into two sections A and B, with plan areas of 1.5 m2 and
7.5 m2 respectively. The partition contains a 25 mm diameter
orifice (Cd = 0.6) at a height of 300 mm above the base. Initially
sectionA contains water to a depth of 2.15 m and sectionB con-
tains water to a depth of 950 mm. Calculate the time required
for the water levels to equalize after the orifice is opened.

7.21 Two vertical cylindrical tanks, of diameters 2.5 m and 1.5 m
respectively, are connected by a 50 mm diameter pipe, 75 m
long for which f may be assumed constant at 0.01. Both tanks
contain water and are open to atmosphere. Initially the level
of water in the larger tank is 1 m above that in the smaller
tank. Assuming that entry and exit losses for the pipe together
amount to 1.5 times the velocity head, calculate the fall in level
in the larger tank during 20 minutes. (The pipe is so placed that
it is always full of water.)

7.22 A tank 1.5 m high is 1.2 m in diameter at its upper end and
tapers uniformly to 900 mm diameter at its base (its axis being
vertical). It is to be emptied through a pipe 36 m long connected
to its base and the outlet of the pipe is to be 1.5 m below the
bottom of the tank. Determine a suitable diameter for the pipe
if the depth of water in the tank is to be reduced from 1.3 m to
200 mm in not more than 10 minutes. Losses at entry and exit
may be neglected and f assumed constant at 0.008.

7.23 The diameter of an open tank, 1.5 m high, increases uniformly
from 4.25 m at the base to 6 m at the top. Discharge takes
place through 3 m of 75 mm diameter pipe which opens to
atmosphere 1.5 m below the base of the tank. Initially the level
in the tank is steady, water entering and leaving at a constant
rate of 17 L · s−1. If the rate of flow into the tank is suddenly
doubled, calculate the time required to fill it completely. Assume
that the pipe has a bell-mouthed entry with negligible loss and
the f is constant at 0.01. A numerical or graphical integration
is recommended.

7.24 A tank of plan area 5 m2, open to atmosphere at the top, is
supplied through a pipe 50 mm diameter and 40 m long which
enters the base of the tank. A pump, providing a constant gauge
pressure of 500 kPa, feeds water to the inlet of the pipe which
is at a level 3 m below that of the base of the tank. Taking f
for the pipe as 0.008, calculate the time required to increase the
depth of water in the tank from 0.2 m to 2.5 m. If the combined
overall efficiency of pump and driving motor is 52%, determine
(in kW · h) the total amount of electricity used in this pumping
operation.

7.25 A water main with a constant gauge pressure of 300 kPa is to
supply water through a pipe 35 m long to a tank of uniform
plan area 6 m2, open to atmosphere at the top. The pipe is to
enter the base of the tank at a level 2.9 m above that of the
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main. The depth of water in the tank is to be increased from
0.1 m to 2.7 m in not more than 15 minutes. Assuming that f
has the constant value 0.007, and neglecting energy losses other
than pipe friction, determine the diameter of pipe required.

7.26 A viscometer consists essentially of two reservoirs joined by a
length of capillary tubing. The instrument is filled with liquid
so that the free surfaces in the reservoirs are where the walls
are in the form of vertical circular cylinders, each of diameter
20 mm. The capillary tube is 1 mm diameter and 400 mm long.
Initially the difference in the free surface levels is 40 mm, and,
for a particular liquid of relative density 0.84, the time taken
for the higher level to fall by 15 mm is 478 s. Neglecting end
effects in the capillary tube and energy losses other than those
due directly to viscosity, determine the viscosity of the liquid.

7.27 Water flows at a steady mean velocity of 1.5 m · s−1 through a
50 mm diameter pipe sloping upwards at 45◦ to the horizontal.
At a section some distance downstream of the inlet the pressure
is 700 kPa and at a section 30 m further along the pipe the
pressure is 462 kPa. Determine the average shear stress at the
wall of the pipe and at a radius of 10 mm.

7.28 A fluid of constant density � enters a horizontal pipe of radius
R with uniform velocity V and pressure p1. At a downstream
section the pressure is p2 and the velocity varies with radius
r according to the equation u = 2V{1 − (r2/R2)}. Show that
the friction force at the pipe walls from the inlet to the section
considered is given by πR2(p1 − p2 − �V2/3).



8 Boundary layers, wakes
and other shear layers

8.1 INTRODUCTION

The flow of a real fluid (except at extremely low pressures) has two
fundamental characteristics. One is that there is no discontinuity of velo-
city; the second is that, at a solid surface, the velocity of the fluid relative to
the surface is zero, the so-called no-slip condition. As a result there is, close
to the surface, a region in which the velocity increases rapidly from zero
and approaches the velocity of the main stream. This region is known as the
boundary layer. It is usually very thin, but may sometimes be observed with
the naked eye: close to the sides of a ship, for example, is a narrow band
of water with a velocity relative to the ship clearly less than that of water
further away.

The increase of velocity with increasing distance from the solid surface indic-Boundary layer
ates that shear stresses are present. Since the layer is usually very thin the
velocity gradient – that is, the rate of increase of velocity with increasing
distance from the surface – is high, and the shear stresses are therefore
important. In 1904 the German engineer Ludwig Prandtl (1875–1953)
suggested that an external flow may be considered in two parts: (1) that
in the boundary layer where the shear stresses are of prime importance and
(2) that beyond the boundary layer where (in general) velocity gradients are
small and so the effect of viscosity is negligible. In this second part the flow
is thus essentially that of an inviscid fluid.

With increasing distance from the solid surface the velocity approaches
that of the main stream asymptotically, and there is no sharp dividing
line between the boundary layer and the rest of the flow. Nevertheless,
Prandtl’s concept of the boundary layer, where the influence of viscosity
is concentrated, has bridged the gap between classical hydrodynamics
(in which an inviscid fluid is postulated) and the observed behaviour of
real fluids. The rapid advances in the understanding of fluid mechanics
throughout the twentieth century were largely due to this important
concept.

Our principal concern in this chapter will be to examine the flow in the
boundary layer and its influence on the main flow. For simplicity, steady,
two-dimensional flow of a constant-density fluid will be assumed. Some of
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the features of boundary layer flow are common to the velocity profiles
that occur in fully developed flow through pipes, a topic that will also be
considered in this chapter.

8.2 DESCRIPTION OF THE BOUNDARY LAYER

The simplest boundary layer to study is that formed in the flow along one
side of a thin, smooth, flat plate parallel to the direction of the oncom-
ing fluid (Fig. 8.1). No other solid surface is near, and the pressure of the
fluid is uniform. If the fluid were inviscid no velocity gradient would, in this
instance, arise. The velocity gradients in a real fluid are therefore entirely
due to viscous action near the surface.

The fluid, originally having velocity u∞ in the direction of the plate, is Transition region
retarded in the neighbourhood of the surface, and the boundary layer begins
at the leading edge of the plate. As more and more of the fluid is slowed
down the thickness of the layer increases. We have already noted that the
boundary layer merges into the main flow with no sharp line of demarca-
tion but, for convenience, the thickness of the layer may be taken as that
distance from the surface at which the velocity reaches 99% of the velocity
of the main stream. The flow in the first part of the boundary layer (close
to the leading edge of the plate) is entirely laminar. With increasing thick-
ness, however, the laminar layer becomes unstable, and the motion within
it becomes disturbed. The irregularities of the flow develop into turbulence,
and the thickness of the layer increases more rapidly. The changes from lam-
inar to turbulent flow take place over a short length known as the transition
region. Downstream of the transition region the boundary layer is almost
entirely turbulent, and its thickness increases further. For a plane surface over
which the pressure is uniform the increase of thickness continues indefinitely.
It should be noted that the y scale of Fig. 8.1 is greatly enlarged. At any
distance x from the leading edge of the plate the boundary layer thickness δ

is very small compared with x.

Fig. 8.1 Boundary layer on
flat plate (y scale greatly
enlarged).
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Fig. 8.2 Typical velocity
distributions in laminar
and turbulent boundary
layers on a flat plate.

The random fluctuations of turbulent flow must die out very close to theViscous sub-layer
surface and so beneath the turbulent boundary layer an even thinner viscous
sub-layer is formed in which the flow is basically laminar.

In a turbulent layer there is more intermingling of fluid particles and there-
fore a more nearly uniform velocity than in a laminar layer (Fig. 8.2). As a
result the turbulent layer usually has a greater velocity gradient at the surface.
Because of the essentially laminar flow immediately adjacent to the surface
the shear stress there, τ0, is given by

τ0 = µ

(
∂u
∂y

)
y=0

and thus the shear stress associated with a turbulent boundary layer is usually
greater than that for a wholly laminar one. Moreover, there is a more ready
interchange of fluid particles between a turbulent layer and the main flow,
and this explains the more rapid increase in thickness of a turbulent layer.
Whereas the thickness of a laminar boundary layer increases as x0.5 (when
the pressure is uniform) a turbulent layer thickens approximately as x0.8.

The point at which a laminar boundary layer becomes unstable depends
on a number of factors. Roughness of the surface hastens the transition
to turbulence, as does the intensity of turbulence in the main stream. The
predominant factor, however, is the Reynolds number of the flow in the
boundary layer. This is usually expressed as u∞x/ν, where u∞ represents
the velocity of the oncoming flow far upstream, ν the kinematic viscosity
of the fluid and x the distance from the leading edge (where the boundary
layer starts) to the point in question. This Reynolds number is given the
symbol Rex, the suffix x indicating that it is calculated with the distance x
as the characteristic length. For values of Rex = u∞x/ν below about 105

the laminar layer is very stable. However, as the value increases, transition
is more and more easily induced and when Rex > 2 × 106 it is difficult
to prevent transition occurring even when the surface is smooth and there
is no turbulence in the main stream. If the pressure p is not uniform over
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the surface other considerations arise, which are discussed in Section 8.8.
In general, if ∂p/∂x is positive the critical value of Rex at which transition
occurs is lower; if ∂p/∂x is negative the critical Rex is higher.

For long plates the boundary layer may be laminar over only a relatively
short distance from the leading edge and then it is often assumed – with
sufficient accuracy – that the layer is turbulent over its entire length.

8.3 THE THICKNESS OF THE BOUNDARY LAYER

Because the velocity within the boundary layer approaches the velocity of
the main stream asymptotically, some arbitrary convention must be adopted
to define the thickness of the layer. One possible definition of thickness is
that distance from the solid surface at which the velocity reaches 99% of the
velocity um of the main stream. The figure of 99% is an arbitrary choice:
the thickness so defined is that distance from the surface beyond which in
general we are prepared to neglect the viscous stresses. But if, for example,
greater accuracy were desired a greater thickness would have to be specified.

Other so-called thicknesses are lengths, precisely defined by mathematical Displacement thickness
expressions, which are measures of the effect of the boundary layer on the
flow. One of these is the displacement thickness, δ∗. If u represents the
velocity parallel to the surface and at a perpendicular distance y from it, as
shown in Fig. 8.3, the volume flow rate divided by width through an element
of thickness δy in two-dimensional flow is uδy. If, however, there had been
no boundary layer the value would have been umδy. The total reduction of
volume flow rate caused by the boundary layer is therefore

∫ ∞
0 (um − u)dy

(represented by the shaded area on the diagram) and this may be equated to
umδ∗. In other words, to reduce the total volume flow rate of a frictionless
fluid by the same amount, the surface would have to be displaced outwards
a distance δ∗.

∴ δ∗ = 1
um

∫ ∞

0
(um − u)dy =

∫ ∞

0

(
1 − u

um

)
dy (8.1)

Fig. 8.3
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The concept of displacement thickness often allows us to consider the main
flow as that of a frictionless fluid past a displaced surface instead of the actual
flow past the actual surface.

Similarly amomentum thickness θ may be defined. The fluid passing throughMomentum thickness
an element of the boundary layer carries momentum divided by width
at a rate (�uδy)u, whereas in frictionless flow the same amount of fluid
would have momentum �uδyum. For constant density, the total reduction
in momentum flow rate

∫ ∞
0 �(um − u)udy equals the momentum flow rate

under frictionless conditions through a thickness θ . Therefore

(�umθ)um =
∫ ∞

0
�(um − u)udy

whence

θ =
∫ ∞

0

u
um

(
1 − u

um

)
dy (8.2)

The quantity θ is, therefore, a measure of the deficit of momentum flux
caused by the presence of the boundary layer and for this reason is sometimes
referred to as the momentum deficit thickness.

Example 8.1 Under conditions of zero pressure gradient, the velocity
profile in a laminar boundary may be represented by the approxima-
tion relation

u
um

= 2
(y

δ

)
−

(y
δ

)2

where δ represents the thickness of the boundary layer. Calculate the
displacement thickness, δ∗, and the momentum thickness, θ , when the
boundary layer thickness is 0.6 mm.

Solution
We can use eqns 8.1 and 8.2, replacing the upper limit of integration
by δ. Hence

δ∗ =
∫ δ

0

(
1 − u

um

)
dy =

∫ δ

0

(
1 − 2

y
δ

+
(y

δ

)2
)

dy

=
[
y− y2

δ
+ y3

3δ2

]δ

0

= δ

[
1 − 1 + 1

3

]
= δ

3



The momentum equation applied to the boundary layer 303

and

θ =
∫ δ

0

u
um

(
1 − u

um

)
dy =

∫ δ

0

(
2
y
δ

−
(y

δ

)2
)(

1 − 2
y
δ

+
(y

δ

)2
)

dy

=
∫ δ

0

(
2
y
δ

− 5
(y

δ

)2 + 4
(y

δ

)3 −
(y

δ

)4
)

dy

=
[
y2

δ
− 5

3
y3

δ2
+ y4

δ3
− 1

5
y5

δ4

]δ

0

= δ

[
1 − 5

3
+ 1 − 1

5

]
= 2

15
δ

Summarizing:

δ∗ = δ

3
and θ = 2

15
δ

so, substituting δ = 0.60 mm, δ∗ = 0.20 mm and θ = 0.08 mm. �

8.4 THE MOMENTUM EQUATION APPLIED TO THE
BOUNDARY LAYER

The Hungarian–American engineer Theodore von Kármán (1881–1963)
obtained very useful results for the flow in boundary layers by approximate
mathematical methods based on the steady-flow momentum equation. As
an example of his technique we shall apply the momentum equation to the
steady flow in a boundary layer on a flat plate over which there may be a
variation of pressure in the direction of flow.

Figure 8.4 shows a small length AE (= δx) of the plate. The width of
the surface (perpendicular to the plane of the diagram) is assumed large
so that edge effects are negligible, and the flow is assumed wholly two-
dimensional. The boundary layer is of thickness δ, and its outer edge is
represented by BD. This line is not a streamline because with increasing
distance x more fluid continually enters the boundary layer. Let C be the
point on AB produced that is on the same streamline as D. No fluid of
course crosses the streamline CD. We may take ACDE as a suitable control
volume.

We suppose the (piezometric) pressure over the face AC to have the mean
value p. (For simplicity we omit the asterisk from p∗ in this section.) Then
over the face ED the mean pressure is p+ (∂p/∂x)δx. In the following ana-
lysis we divide all terms by the width perpendicular to the diagram. The
pressure distribution on the control volume produces a force (divided by
width) in the x direction equal to:

p AC −
(
p+ ∂p

∂x
δx

)
ED+

(
p+ 1

2
∂p
∂x

δx
)

(ED− AC) (8.3)
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Fig. 8.4

where p + 1
2 (∂p/∂x)δx is the mean value of the pressure over the surface

CD. The expression 8.3 reduces to −1
2 (∂p/∂x)δx(ED + AC) and since, as

δx → 0, AC → ED in magnitude, the expression becomes −(∂p/∂x)δxED.
The total x-force on the control volume is therefore

−τ0δx− ∂p
∂x

δx ED (8.4)

where τ0 represents the shear stress at the boundary. By the steady-flow
momentum equation this force equals the net rate of increase of x-momentum
of the fluid passing through the control volume.

Through an elementary strip in the plane AB, distance y from the surface,
of thickness δy, the mass flow rate (divided by width) is �uδy. The rate at
which x-momentum is carried through the strip is therefore �u2δy, and for
the entire boundary layer the rate is

∫ δ

0 �u2dy. The corresponding value for
the section ED is ∫ δ

0
�u2dy+ ∂

∂x

(∫ δ

0
�u2dy

)
δx

Thus the net rate of increase of x-momentum of the fluid passing through
the control volume ACDE is

Flow rate of x-momentum through ED

− (flow rate of x-momentum through AB

+ flow rate of x-momentum through BC)

=
[∫ δ

0
�u2dy+ ∂

∂x

(∫ δ

0
�u2dy

)
δx

]
−

[∫ δ

0
�u2dy+ �u2

m(BC)

]

= ∂

∂x

(∫ δ

0
�u2dy

)
δx− �u2

m(BC) (8.5)

where um represents the velocity (in the x direction) of the main stream
outside the boundary at section AB. If p is a function of x, so is um, and thus
um is not necessarily equal to the velocity far upstream.
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The magnitude of BC is readily determined by the continuity principle.
As the flow is steady:

Mass flow rate across AC = Mass flow rate across ED

that is,

Mass flow rate across BC = �um(BC)

= Mass flow rate across ED− Mass flow rate across AB

= ∂

∂x

(∫ δ

0
�udy

)
δx

∴ �u2
m(BC) = um

∂

∂x

(∫ δ

0
�udy

)
δx

and substitution into eqn 8.5 gives

Rate of increase of x-momentum

= ∂

∂x

(∫ δ

0
�u2 dy

)
δx− um

∂

∂x

(∫ δ

0
�udy

)
δx

Equating this to the total x-force on the control volume (eqn 8.4) and dividing
by −δx gives:

τ0 + ∂p
∂x

(ED) = um
∂

∂x

∫ δ

0
�udy− ∂

∂x

∫ δ

0
�u2 dy (8.6)

The acceleration of the fluid perpendicular to the surface is very small com-
pared with that parallel to it, since δ is very small compared with x. (At
the point where the boundary layer begins, i.e. at the leading edge of the
plate, the acceleration perpendicular to the plate may be comparable in
magnitude with that parallel to it. But this is so only for a short distance
and, except for extremely low Reynolds numbers, the perpendicular acceler-
ation may be assumed negligible compared with that parallel to the surface.)
Consequently, for a flat plate the variation of pressure with y is negligible,
and the pressure in the boundary layer may be taken to be the same as
that outside it. Outside the boundary layer the influence of viscosity is
negligible. Hence, the flow there may be assumed to satisfy Bernoulli’s equa-
tion p + 1

2�u2
m = constant (again, for simplicity, p represents piezometric

pressure), which on differentiating with respect to x yields

∂p
∂x

+ �um
∂um

∂x
= 0 (8.7)

From this, substitution for ∂p/∂xmay be made in eqn 8.6. Then, noting that
ED = δ = ∫ δ

0 dy and that � is constant, we have

τ0 − �um
∂um

∂x

∫ δ

0
dy = �um

∂

∂x

∫ δ

0
udy− �

∂

∂x

∫ δ

0
u2 dy (8.8)

Since

um
∂u
∂x

= ∂

∂x
(umu) − u∂um

∂x
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eqn 8.8 becomes

τ0 = �
∂

∂x

∫ δ

0
umudy− �

∂um

∂x

∫ δ

0
udy− �

∂

∂x

∫ δ

0
u2 dy+ �

∂um

∂x

∫ δ

0
um dy

= �
∂

∂x

∫ δ

0
(um − u)udy+ �

∂um

∂x

∫ δ

0
(um − u)dy (8.9)

Since um − u becomes zero at the outer edge of the boundary layer the
upper limit of the last two integrals may be changed to ∞. Then, from the
definitions of displacement thickness and momentum thickness (eqns 8.1
and 8.2), eqn 8.9 simplifies to

τ0 = �
d

dx
(u2

mθ) + �
dum

dx
umδ∗ (8.10)

The partial derivatives have given way to full derivatives since the quantities
vary only with x.

Equation 8.10 is the form in which the momentum integral equation of theMomentum integral
equation boundary layer is usually expressed, although it may be written in alternative

forms. It forms the basis of many approximate solutions of boundary-layer
problems and is applicable to laminar, turbulent or transition flow in the
boundary layer. Some information about the way in which u varies with
y is necessary, however, in order that the displacement and momentum
thicknesses may be evaluated, and the equation solved.

It may be noted that if ∂p/∂x = 0 then eqn 8.7 shows that ∂um/∂x = 0
and eqn 8.10 reduces to

τ0

�u2
m

= dθ

dx
(8.11)

8.5 THE LAMINAR BOUNDARY LAYER ON A FLAT
PLATE WITH ZERO PRESSURE GRADIENT

In all laminar flow the shear stress τ = µ∂u/∂y (where y is measured in
a direction perpendicular to u). Thus, if y is measured outwards from the
boundary, τo is given by µ(∂u/∂y)y=0. Together with the assumption that
the pressure gradient ∂p/∂x is zero, so that ∂um/∂x = 0, substitution for τo
in eqn 8.9 gives

µ

(
∂u
∂y

)
y=0

= �
∂

∂x

∫ δ

0
(um − u)udy (8.12)

The boundary-layer thickness δ varies with x. However, the increase of
u, from zero at the boundary to (very nearly) um at y = δ, is the same at
any value of x, apart from the scale of the y coordinates. That is, if η = y/δ
so that η always varies from 0 at the boundary to 1 at y = δ, then u/um
is always the same function of η – for example, that depicted in Fig. 8.5 –
so long as the boundary layer remains laminar. This scaling law has been
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1

1

=
yη
δ

u um/ =f (   )η Fig. 8.5

verified experimentally. Substituting y = ηδ and u = umf (η) in eqn 8.12
gives

µ

δ
um

[
∂f (η)

∂η

]
η=0

= �
∂

∂x

[
u2

mδ

∫ 1

0
{1 − f (η)}f (η)dη

]

Since f(η) is assumed independent of x, the integral
∫ 1

0 {1 − f (η)}f (η)dη may
be written as constant A and [∂f (η)/∂η]η=0 as constant B. Then

τ0 = µ

δ
umB = �

∂

∂x
(u2

mAδ) = �u2
mA

dδ

dx
(8.13)

Multiplying by δ/um and integrating with respect to x gives

µBx = �umA
δ2

2
+ constant (8.14)

If x is measured from the leading edge of the plate, δ = 0 when x = 0, and
so the constant in eqn 8.14 is zero.

∴ δ =
(

2µBx
�umA

)1/2

(8.15)

Also, from eqns 8.13 and 8.15

τ0 = �u2
mA

dδ

dx
= �u2

mA
(

2µB
�umA

)1/2 1
2
x−1/2 (8.16)

The total friction force between x = 0 and x = 1 divided by the width, on
one side of the plate, is

F =
∫ l

0
τ0dx = [�u2

mAδ]l0 = �u2
mθl = (2ABµ�u3

ml)
1/2 (8.17)

It is useful to define dimensionless skin friction coefficients. The mean skin Skin friction coefficients
friction coefficient CF is defined by

CF = Mean Friction Stress
1
2�u2

m

= F
1
2�u2

ml
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which, from eqn 8.17, is given by

CF = 2
(

2ABµ

�uml

)1/2

= 2(2AB)1/2Re−1/2
l (8.18)

where Rel = �uml/µ.
The local skin friction coefficient Cf is defined as

Cf = τ0
1
2�u2

m

which using eqn 8.16 yields

cf = (2AB)1/2Re−1/2
x

Equation 8.15 shows that the thickness of a laminar boundary layer on a
flat plate with zero pressure gradient is proportional to the square root of
the distance from the leading edge, and inversely proportional to the square
root of the velocity of the main flow relative to the plate.

In order to evaluate δ from eqn 8.15, we must calculate A and B, and we
therefore require the form of the function f (η). Referring to Fig. 8.5, the
function f (η) must satisfy the following conditions:

(I)
u
um

= 0 when η = 0

(II)
u
um

= 1 when η = 1

(III)
d(u/um)

dη
= 0 when η = 1

(IV)
d(u/um)

dη
�= 0 when η = 0

The fourth condition follows because τ0 is finite and

τ0 = µ

(
∂u
∂y

)
y=0

= µum

δ

(
d(u/um)

dη

)
y=0

The above four conditions must be satisfied by any equation describing the
velocity profile within the laminar boundary layer on a flat plate with zero
pressure gradient. A number of simple but approximate relations have been
proposed. Some of these are considered in examples 8.2 to 8.4. The German
engineer P. R. H. Blasius (1883–1970) developed an exact solution of the
laminar boundary layer equations for the flow on a flat plate with zero
pressure gradient. It is therefore possible to compare results obtained by the
approximate methods with the exact results of Blasius (see Table 8.1).
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Table 8.1 Comparison of results for various approximate velocity distributions in
a laminar boundary layer with the Blasius’s exact solution

u
um

δ
√

(Rex)
x

δ∗√
(Rex)
x

θ
√

(Rex)
x

= cf
√

(Rex)

(
τ0

�u2
m

)
√

(Rex)

2η − η2 5.48 1.826 0.730 0.365
3
2η − 1

2η3 4.64 1.740 0.646 0.323
2η − 2η3 + η4 5.84 1.751 0.685 0.343
sin(πη/2) 4.80 1.743 0.655 0.328
Blasius’s — 1.721 0.664 0.332
exact solution

Example 8.2 Which of the following expressions describes better the
velocity distribution for a laminar boundary layer on a flat plate in the
absence of a streamwise pressure gradient?

(a)
u
um

= 3
2

(y
δ

)
− 1

2

(y
δ

)3

(b)
u
um

= 3
2

(y
δ

)
− 1

2

(y
δ

)2

Give the reasons for your decision.

Solution
Write η = y/δ.

(a)
u
um

= 3
2

η − 1
2

η3 (b)
u
um

= 3
2

η − 1
2

η2

u
um

= 0 when η = 0
u
um

= 0 when η = 0

u
um

= 1 when η = 1
u
um

= 1 when η = 1

d(u/um)

dη
= 3

2
− 3

2
η2 d(u/um)

dη
= 3

2
− η

d(u/um)

dη
= 3

2
when η = 0

d(u/um)

dη
= 3

2
when η = 0

d(u/um)

dη
= 0 when η = 1

d(u/um)

dη
= 1

2
when η = 1

Velocity profile (a) is the better of the two, as it satisfies all four of the
required boundary conditions, whereas profile (b) fails condition III. �
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Example 8.3 An approximate relation for the velocity profile in the
laminar boundary layer subject to zero pressure gradient is

u
um

= a1η + a2η2

(a) Determine the values of the constants a1 and a2.
(b) Evaluate the constants A and B.
(c) Derive relations for the development of δ, δ∗ and θ with x.

Solution
(a) Conditions I and II can be tested by substituting for η in the velocity
profile equation

u
um

= a1η + a2η2

Condition I: When η = 0,
u
um

= 0

Thus the no-slip condition is satisfied automatically by the expression.

Condition II: When η = 1,
u
um

= a1 + a2 = 1

Differentiating

d(u/um)

dη
= a1 + 2a2η

Condition III: When η = 1,
d(u/um)

dη
= a1 + 2a2 = 0

Hence we require

a1 + a2 = 1

and

a1 + 2a2 = 0

These simultaneous equations are readily solved to yield

a1 = 2 and a2 = −1

so

f (η) = u
um

= 2η − η2

We can confirm that this relation also satisfies condition IV.

When η = 0,
d(u/um)

dη
= a1 = 2 so

d(u/um)

dη
�= 0 QED.

(b) A =
∫ 1

0
{1 − f (η)}f (η)dη
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and

B =
[
∂f (η)

∂η

]
η=0

A =
∫ 1

0
{1 − (2η − η2)}(2η − η2)dη

=
∫ 1

0
(2η − 5η2 + 4η3 − η4)dη

=
[
η2 − 5

3
η3 + η4 − 1

5
η5

]1

0
= 2

15

B =
[

∂

∂η
(2η − η2)

]
η=0

= [2 − 2η]η=0 = 2

(c) From eqn 8.15,

δ =
{

4
2/15

(
µx
�um

)}1/2

= 5.48x√
(Rex)

(8.19)

where Rex = �umx/µ and may be termed the local Reynolds number.
Equation 8.19 may be used to determine displacement and

momentum thickness. Returning to eqn 8.1 and amending the upper
limit of integration to suit our assumed velocity distribution, we have,
with y = ηδ,

δ∗ = δ

∫ 1

0
{1 − f (η)}dη = δ

∫ 1

0
(1 − 2η + η2)dη

= δ

[
η − η2 + η3

3

]1

0

= δ/3

Thus the displacement thickness is

1
3

× 5.48x√
(Rex)

= 1.826x√
(Rex)

The momentum thickness can be determined from eqn 8.2:

θ = δ

∫ 1

0
f (η){1 − f (η)}dη = Aδ = 2

15
× 5.48x√

(Rex)
= 0.730x√

(Rex)

From eqn 8.16, the boundary shear stress is 0.365 �u2
m/

√
(Rex). �

The thickness of a laminar boundary layer is very small. For example,
the maximum thickness of the layer (say, when Rex = 106) is only about
0.75 mm in air at 100 m · s−1, and the layer then extends for about 150 mm
from the leading edge of the plate. Measurement of boundary layer thickness
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is therefore difficult, and an experimental check on theoretical results is
more easily obtained by measurements of the drag force exerted by the
fluid on the plate. Table 8.1 shows, however, that results do not vary
widely when different assumptions are used for the velocity distribution
within the boundary layer. The usefulness of the approximate method is
thus further demonstrated. Because of the asymptotic approach to the main-
stream velocity, Blasius’s solution does not give a finite value of the boundary
layer thickness, but the value of y at which the velocity is 0.99um is about
4.91x/

√
(Rex), and u = 0.999um at y � 6.01x/

√
(Rex).

Example 8.4 Air of density 1.21 kg · m−3 and kinematic viscosity
1.5 × 10−5 m2 · s−1 passes over a thin flat plate, of dimensions 1.2 m
×1.2 m, parallel to the airstream. If transition takes place at the trailing
edge of the plate, determine

(a) the velocity of the airstream
(b) the frictional drag of the plate, DF.

Assume that transition takes place at Ret = 5 × 105 and the velocity
profile is given by

u
um

= 3
2

(y
δ

)
− 1

2

(y
δ

)3

Solution
At the trailing edge x = xt = xl ; Rex = Ret = Rel ; θ = θl .

(a) Ret = umxt
ν

so

um = νRet
xt

= (1.5 × 10−5) m2 · s−1 × (5 × 10−5)

1.2 m
= 6.25 m · s−1

(b) From Table 8.1

θ
√
Rex
x

= cf
√
Rex = 0.646

Hence

θ = 0.646x√
Rex

= 0.646 × 1.2 m√
(5)(105)

= 1.096 × 10−3 m
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From equation 8.17, the frictional drag divided by width on one side
of the plate, F, is given by

F = �u2
mθl = 1.21 kg · m−3 × (6.25 m · s−1)2 × (1.096 × 10−3) m

= 5.18 × 10−2 N · m−1

Hence, for width b = 1.2 m, and summing the contributions on the
two sides of the plate,DF = 2Fb = 2×(5.18×10−2) N · m−1×1.2 m =
0.124 N. �

8.6 THE TURBULENT BOUNDARY LAYER ON A SMOOTH
FLAT PLATE WITH ZERO PRESSURE GRADIENT

The study of turbulent boundary layers is particularly important, because
most of the boundary layers encountered in practice are turbulent for most
of their length. The analysis of flow in a turbulent layer depends more heav-
ily on experimental data than does that for a laminar layer. Experimental
information about turbulent flow in pipes can be used in the study of tur-
bulent boundary layers on flat plates, on the grounds that the boundary
layers in the two cases are essentially the same. In a pipe the thickness of the
boundary layer in fully developed flow equals the radius, and the maximum
velocity (along the axis) corresponds to the velocity um of the main stream
past a flat plate.

For moderate values of Reynolds number a simple expression for the shear
stress τ0 at the boundary may be obtained from Blasius’s formula for fluid-
dynamically smooth pipes (eqn 7.5) since, by eqn 7.3, |τ0|/�u2 = f /2. Then,
for a pipe of radius R,

|τ0| = 1
2

�u20.079
( ν

u2R

)1/4 = const × �u2
max

(
ν

umaxR

)1/4

(8.20)

since, for any particular velocity profile, the mean velocity u is a particular
fraction of the maximum value umax (on the pipe axis). The value of the
constant on the right of eqn 8.20 need not concern us because the essential
features of a turbulent boundary layer may be deduced without specifying
the velocity profile. If R is now assumed equivalent to the boundary layer
thickness δ on the flat plate, we have

τ0 = const × �u2
m

(
ν

umδ

)1/4

(8.21)

If ∂p/∂x = 0 so that ∂um/∂x = 0, substituting eqn 8.21 into eqn 8.9 gives

const × �u2
m

(
ν

umδ

)1/4

= �
∂

∂x

∫ δ

0
(um − u)udy

= �u2
m

∂

∂x

{
δ

∫ 1

0

(
1 − u

um

)
u
um

dη

}
(8.22)
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where η = y/δ. The integral in the final term of eqn 8.22 involves only
dimensionless magnitudes and so its value is simply a number. Rearranging
the equation then gives

δ1/4 dδ

dx
= const

(
ν

um

)1/4

the partial derivative giving place to the full derivative since δ varies only
with x. Integrating with respect to x yields

4
5

δ5/4 = const
(

ν

um

)1/4

x+ C (8.23)

Determination of the integration constant C presents a problem. The tur-
bulent boundary layer begins after the transition from the laminar layer, that
is, at a non-zero value of x, and its initial thickness is unknown. For long
plates the laminar part of the boundary layer is only a small proportion of
the total length, and so can be set equal to zero with no appreciable error.
In experimental work, near the leading edge of the plate, turbulence is often
induced in the boundary layer by a roughened surface or by trip wires. The
length of the laminar part is then greatly reduced. It has to be admitted, how-
ever, that attempts to generate a turbulent layer from x = 0 are unrealistic
and apt to produce unwanted effects: the boundary layer is often thickened,
and it may temporarily separate from the surface. In cases where the laminar
portion is not negligible, results for the laminar and turbulent portions may
be combined as shown in Section 8.7.

From eqn 8.23, with C = 0, we obtain

δ = const
(

ν

um

)1/5

x4/5 (8.24)

The total drag force F divided by width on one side of the plate (of length l) =∫ l
0 τ0dx, and substituting from eqn 8.24 into eqn 8.21 gives

F =
∫ l

0
const × �u2

m

(
ν

um

)1/4
{

const
(

ν

um

)1/5

x4/5

}−1/4

dx

= const × �u2
m

(
ν

um

)1/5 ∫ l

0
x−1/5dx = const × �u2

m

(
ν

um

)1/5

l4/5

The corresponding mean skin-friction coefficient CF = (F/l) ÷ 1
2�u2

m

= const
(

ν

uml

)1/5

= const(Rel)
−1/5

where Rel = uml/ν, the Reynolds number based on the total length l of the
plate. Measurements of drag force indicate that the value of CF is in fact
well represented by

CF = 0.074(Rel)
−1/5 (8.25)



The turbulent boundary layer on a smooth flat plate 315

Fig. 8.6 Drag coefficients
for a smooth flat plate.

In Fig. 8.6 comparison may be made with the corresponding expression for
a laminar boundary layer.

The relations just obtained are valid only for a limited range of Reynolds
number since Blasius’s relation (eqn 7.5) is valid only for values of ud/ν (the
pipe Reynolds number) less than 105. Moreover, the relation between u/um
and η changes somewhat with Reynolds number. The expressions for the
turbulent boundary layer on a flat plate are thus applicable only in the range
Rex = 5×105 to 107. (Below Rex = 5×105 the boundary layer is normally
laminar.)

Basically similar analyses may be made using equations for pipe flow with
a greater range of validity than Blasius’s, but the mathematical detail is then
rather tedious.

For values of Rex between 107 and 109, H. Schlichting assumed a velo-
city varying with the logarithm of the distance from the boundary (as in
Section 8.12), and obtained the semi-empirical relation

CF = 0.455
(log10 Rel)2.58

= 3.913
(lnRel)2.58

(8.26)

It should be remembered that the whole of the analysis so far has applied
exclusively to smooth plates. Appreciably different results are obtained for
rough plates – as might be expected from results for flow in rough pipes.
The relative roughness for a plate, however, varies with the boundary-layer
thickness. The values of k/δ, where k represents the average height of the
bumps on the surface, is very large at the front of the plate, and then decreases
as δ increases. More complicated expressions for τ0 (which may be deduced
from those for the pipe friction factor f ) are therefore required in the analysis
of boundary layers on rough plates. The calculations are too lengthy and
complex, however, to be reproduced here.

Also, we have considered only the case of zero pressure gradient along
the plate. In many instances the pressure gradient is not zero, and if the
pressure increases in the direction of flow, separation of the boundary layer
is possible. This will be discussed in Section 8.8.
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To sum up, the principal characteristics of the turbulent boundary layer
on a flat plate with zero pressure gradient and moderate Reynolds number
are these:

1. The thickness of the boundary layer increases approximately as the 4
5

power of the distance from the leading edge (compared with the power
1
2 for a laminar layer).

2. The shear stress τ0 at the boundary is approximately inversely propor-
tional to the fifth root of the local Reynolds number (compared with the
square root for a laminar layer).

3. The total friction drag is approximately proportional to 9
5 power of the

velocity of the main flow and 4
5 power of the length (compared with 3

2
and 1

2 powers respectively for the laminar layer).

Example 8.5 A train is 100 m long, 2.8 m wide and 2.75 m high.
The train travels at 180 km · h−1 through air of density 1.2 kg · m−3

and kinematic viscosity 1.5 × 10−5 m2 · s−1. You may assume that
the frictional drag of the train is equivalent to the drag of a turbulent
boundary layer on one side of a flat plate of length l = 100 m and
breadth b = 8.3 m. Taking the constant in equation 8.24 equal to
0.37, calculate

(a) the boundary layer thickness at the rear of the train
(b) the frictional drag acting on the train, DF
(c) the power required to overcome the frictional drag.

Solution

(a) um = 180 km · h−1 × 103 m · km−1

3600 s · h−1
50 m · s−1

Substituting in equation 8.24, with x = l

δ = 0.37
(

ν

um

)1/5

l4/5 = (0.37)

(
(1.5 × 10−5) m2 · s−1

50 m · s−1

)1/5

(100 m)4/5

= 0.73 m

(b) Rel = uml
ν

= 50 m · s−1 × 100 m
(1.5 × 10−5) m2 · s−1

= 3.333 × 108

From equation 8.25

CF = 2F
�u2

ml
= 0.074(Rel)

−1/5
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Hence

F = 0.037�u2
ml(Rel)

−1/5

= 0.037 × 1.2 kg · m−3 × (50 m · s−1)2 × 100 m × (3.333 × 108)−1/5

= 219 N · m−1

and

DF = F × b = 219 N · m−1 × 8.3 m = 1819 N

(c) Power = DF × um = 1819 N × 50 m · s−1

= 9.09 × 104 W = 90.9 kW. �

8.7 FRICTION DRAG FOR LAMINAR AND TURBULENT
BOUNDARY LAYERS TOGETHER

In Section 8.5 and 8.6 we discussed separately the properties of the laminar
and turbulent boundary layers on a flat plate. When the plate is of such
a length that the boundary layer changes from laminar to turbulent, and
both portions make an appreciable contribution to the total frictional force,
combined relations are required.

The transition from laminar to turbulent flow in the boundary layer
depends, among other things, on the local Reynolds number, Rex, but
the critical value at which the laminar layer becomes unstable is much less
well-defined than the critical Reynolds number (ud/ν) in pipe flow. Usually,
however, transition occurs at a value ofRex between 3×105 and 5×105. At
the transition point, there must be no discontinuity of the friction force (nor
consequently of the momentum thickness θ ) otherwise the shear stress there
would be infinite. For zero pressure gradient the value of θ at the transition
points is therefore that given by Blasius’s solution (Table 8.1) for the laminar
boundary layer:

θt = 0.664xt

(umxt

ν

)−1/2
(8.27)

where suffix t refers to the transition point.
As the transition region is extremely short we may suppose that the layer

becomes fully turbulent at the point where the laminar layer breaks down.
We suppose also that the shape of the turbulent layer is such that it could
have started from a hypothetical leading edge at x = x0 (Fig. 8.7). Using
eqn 8.11, for constant um and any type of boundary layer, we proceed
as follows.
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Fig. 8.7

Over the length x from the leading edge, the total friction force divided
by width

= 1
2

�u2
mCFx =

∫ x

0
τ0dx = [�u2

mθ ]x0 = �u2
mθ

and thus θ/x = CF/2.
So for the turbulent layer starting form x = x0 and for Rex < 107,

θ

x− x0
= 1

2
× 0.074

{
(x− x0)um

ν

}−1/5

(8.28)

(using eqn 8.25).
At x = xt, θ = θt and so

xt − x0 = θ
5/4
t u1/4

m

0.0375/4ν1/4

Substitution for θt from eqn 8.27 gives

xt − x0 = 0.6645/4ν3/8x5/8
t

0.0375/4um3/8
= 36.9

(
ν

umxt

)3/8

xt (8.29)

Example 8.6 A boundary layer develops on a flat plate at zero
pressure gradient. If the Reynolds number Rel at the trailing edge
of the plate is 5 × 106 and transition from laminar to turbulent flow
occurs at the Reynolds number Ret = 5 × 105, determine

(a) the proportion of the plate occupied by the laminar boundary layer
(b) the skin friction coefficient CF evaluated at the trailing edge.

Solution
(a) Since

Rel = uml
ν

and Ret = umxt
ν

it follows that

xt
l

= Ret
Rel

= 5 × 105

5 × 106
= 0.1
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From eqn 8.29

xt − x0

xt
= 36.9

(
1
Ret

)3/8

= 36.9
(5 × 105)3/8

= 0.269

Hence
x0

xt
= 1 − 0.269 = 0.731

and
x0

l
= x0

xt

xt

l
= 0.731 × 0.1 = 0.0731

At the trailing edge x = l, so 7.31% of the plate is occupied by a
laminar boundary layer. The remaining 92.69% is turbulent.

(b) From equation 8.28

θl

l − x0
= 0.037

{
(l − x0)um

ν

}−1/5

Since CF and θ are related by the general expression CF = 2θ/x, we
can determine CF at the trailing edge substituting x = l and θ = θt.
Thus

CF = 2θl

l
= 2 × 0.037 × (l − x0)4/5ν1/5

lu1/5
m

= 0.074

Re1/5
l

(
1 − x0

l

)4/5 = 0.00318

This result compares with CF = 0.074(Rel)
−1/5 = 0.00338 evaluated

using eqn 8.25 for an entirely turbulent boundary layer. �

All our discussion has so far been based on the assumption that the bound-
ary surface is smooth, and for such conditions results may be represented
graphically as in Fig. 8.6. Transition from a laminar boundary layer to a
turbulent one, however, occurs sooner on a rougher surface, and the critical
height of roughness elements causing a laminar layer to change prematurely
to a turbulent one is given by

kc = Nν

uk

whereN is a numerical factor practically independent of all variables except
the shape of the roughness element, and uk represents the velocity that would
be found at y = k if the roughness element were not there. For a small
roughness element uk � k(∂u/∂y)y=0, so

kc � Nν

kc(∂u/∂y)0
= Nνµ

kcτ0
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whence, for a flat plate with zero pressure gradient,

kc � ν

√(
N

τ0/�

)
= N1/2ν(

0.332u2
m Re

−1/2
x

)1/2
= 1.74N1/2ν

um
Re1/4
x (8.30)

Thus kc increases as x1/4. That is, as the distance from the leading edge
increases and the boundary layer grows thicker, a greater roughness is needed
to upset its stability. When the transition Reynolds number is reached, how-
ever, the laminar layer becomes turbulent whatever the roughness of the
surface. Since the frictional force is less with a laminar boundary layer than
with a turbulent one, the transition should be delayed as long as possible
if minimum friction drag is to be achieved. Therefore the surface should be
as smooth as possible near the leading edge, where the boundary layer is
thinnest, although greater roughness may be tolerated further downstream.

8.8 EFFECT OF PRESSURE GRADIENT

8.8.1 Separation and flow over curved surfaces

We have so far considered flow in which the pressure outside the boundary
layer is constant. If, however, the pressure varies in the direction of flow, the
behaviour of the fluid may be greatly affected.

Let us consider flows over a curved surface as illustrated in Fig. 8.8. (TheFavourable pressure
gradient radius of curvature is everywhere large compared with the boundary-layer

thickness.) As the fluid is deflected round the surface it is accelerated over the
left-hand section until at position C the velocity just outside the boundary
layer is a maximum. Here the pressure is a minimum, as shown by the graph
below the surface. Thus from A to C the pressure gradient ∂p/∂x is negative
and the net pressure force on an element in the boundary layer is in the for-
ward direction. (For the curved surface, x is a curvilinear coordinate along
the surface and y is perpendicular to it.) Such a pressure gradient is said to
be favourable: it counteracts to some extent the ‘slowing down’ effect of the
boundary on the fluid, and so the rate at which the boundary layer thickens
is less than for a flat plate with zero pressure gradient ( at a corresponding
value of Rex).

Beyond C, however, the pressure increases, and so the net pressure forceSeparation
on an element in the boundary layer opposes the forward flow. Although
the pressure gradient ∂p/∂x has practically the same value throughout the
cross-section of the boundary layer, its most significant effect is on the fluid
closest to the surface. This is because the fluid there has less momentum than
fluid further out, and so when its momentum is reduced still more by the
net pressure force the fluid near the surface is soon brought to a standstill.
The value of ∂u/∂y at the surface is then zero as at D. Further downstream,
for example, at E, the flow close to the surface has actually been reversed.
The fluid, no longer able to follow the contour of the surface, breaks away
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Fig. 8.8

from it. This breakaway before the end of the surface is reached is termed
separation and it first occurs at the separation point where (∂u/∂y)y=0
becomes zero.

Separation is caused by the reduction of velocity in the boundary layer, Adverse pressure
gradientcombined with a positive pressure gradient (known as an adverse pressure

gradient since it opposes the flow). Separation can therefore occur only when
an adverse pressure gradient exists; flow over a flat plate with zero or negat-
ive pressure gradient will never separate before reaching the end of the plate,
no matter how long the plate. (In an inviscid fluid, separation from a con-
tinuous surface would never occur, even with a positive pressure gradient,
because there would be no friction to produce a boundary layer along the
surface.)

The line of zero velocity dividing the forward and reverse flow leaves the Separation streamline
surface at the separation point, and is known as the separation streamline.
As a result of the reverse flow, large irregular eddies are formed in which
much energy is dissipated as heat. The separated boundary layer tends to curl
up in the reversed flow, and the region of disturbed fluid usually extends for
some distance downstream. Since the energy of the eddies is dissipated as
heat the pressure downstream remains approximately the same as at the
separation point.

Separation occurs with both laminar and turbulent boundary layers, and
for the same reasons, but laminar layers are much more prone to separa-
tion than turbulent ones. This is because in a laminar layer the increase of
velocity with distance from the surface is less rapid and the adverse pressure
gradient can more readily halt the slow-moving fluid close to the surface.
A turbulent layer can survive an adverse pressure gradient for some distance
before separating. For any boundary layer, however, the greater the adverse
pressure gradient, the sooner separation occurs. The layer thickens rapidly
in an adverse pressure gradient, and the assumption that δ is small may no
longer be valid.

A surface need not, of course, be curved to produce a pressure gradi-
ent. An adverse pressure gradient is, for example, found in a diffuser
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(see Section 7.6.3) and is the cause of the flow separation which occurs
there unless the angle of divergence is very small.

Separation of the boundary layer greatly affects the flow as a whole. In par-
ticular the formation of a wake of disturbed fluid downstream, in which the
pressure is approximately constant, radically alters the pattern of flow. The
effective boundary of the flow is then not the solid surface but an unknown
shape which includes the zone of separation. Because of the change in the
pattern of flow the position of minimum pressure may be altered, and the
separation point may move upstream from where the pressure was originally
a minimum (e.g. point C in Fig. 8.8).

Once a laminar layer has separated from the boundary it may become
turbulent. The mixing of fluid particles which then occurs may, in some
circumstances, cause the layer to re-attach itself to the solid boundary so
that the separation zone is an isolated bubble on the surface. Although not
a common occurrence this does sometimes happen at the leading edge of a
surface where excessive roughness causes separation of the laminar layer,
which is followed by a turbulent layer downstream.

8.8.2 Predicting separation in a laminar boundary layer

Predicting the position at which separation may be expected is clearly import-
ant yet there is at present no exact theory by which this may readily be done.
However, the momentum eqn 8.10 allows some valuable approximate res-
ults to be obtained, especially for laminar boundary layers. One method,
due to the English mathematician Sir Bryan Thwaites (1923–), is simple to
use yet remarkably accurate.

Expanding the first term on the right of eqn 8.10 and then isolating the
term containing dθ/dx we get

�u2
m

dθ

dx
= τ0 − 2�um

dum

dx
θ − �

dum

dx
umδ∗

From this, multiplication by 2θ/µum gives

um

ν

d
dx

(θ2) = 2θτ0

µum
− 2

(
2 + δ∗

θ

)
θ2

ν

dum

dx
(8.31)

To integrate eqn 8.31 we need to be able to correlate τ0/µum and δ∗ with
the momentum thickness θ . For a laminar layer τ0/µ = (∂u/∂y)y=0 and
so is obtainable from the velocity distribution. Thwaites examined many
exact and approximate solutions for velocity distribution in laminar layers
under various values of pressure gradient. His analysis showed that the right-
hand side of eqn 8.31 is to a close approximation simply a function of the
dimensionless quantity (θ2/ν)dum/dx = λ say. Moreover the function is
given very nearly by the linear relation 0.45 − 6λ, the range of choice for
each numerical coefficient being only about 2% of its value. Substituting
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this expression into eqn 8.31 we get

um

ν

d
dx

(θ2) = 0.45 − 6θ2

ν

dum

dx

Multiplication by νu5
m and rearrangement then gives

u6
m

d
dx

(θ2) + 6u5
m

dum

dx
θ2 = d

dx

(
u6

mθ2
)

= 0.45νu5
m

which can be integrated between x = 0 and x = x to yield

θ2 = θ2
0 + 0.45ν

u6
m

∫ x

0
u5

mdx (8.32)

Here θ0 denotes the momentum thickness at x = 0 but if, as is usual, x is
measured from the upstream stagnation point, then θ0 = 0. Hence for a given
pressure gradient and therefore variation of um with x, θ can be determined.

For the special case of zero pressure gradient it is interesting to compare
eqn 8.32 with Blasius’s solution. When um = constant eqn 8.32 integrates to
θ2 = 0.45νx/um = 0.45x2/Rex, whence θ/x = 0.671/Re1/2

x which is only
1% different from Blasius’s exact result in Table 8.1.

From the results Thwaites analysed he also correlated (in tabular form)
τ0θ/µum and δ∗/θ with λ, thus giving all the main parameters of a laminar
boundary layer. In particular he found that separation (i.e. τ0 = 0 occurs
when λ � −0.082. Additional data that have since become available suggest,
however, that a better average value for λsep might be nearer to −0.09.

Equation 8.32 always gives θ to within ±3%, but the prediction of other
parameters is less good, particularly in adverse pressure gradients. Although
improvement in the results is possible with modifications to the correlations,
this is unfortunately at the cost of greater complication.

For determining θ and the position of separation, however, Thwaites’s
original method gives satisfactory accuracy with very little calculation.

Example 8.7 If x denotes the distance along the boundary surface
from the front stagnation point and the main-stream velocity is given
by um = a(1 + bx)−1, where a and b are positive constants, determine
whether the boundary layer will separate and, if so, where.

Solution
Since

dum

dx
= −ab

(1 + bx)2

is negative, dp/dx is positive (from eqn 8.7), that is, adverse. Therefore
the boundary layer will separate.

Let us assume that the Reynolds number is such that the separation
occurs before the layer becomes turbulent. Then, taking θ0 = 0 since



324 Boundary layers, wakes and other shear layers

x is measured from the stagnation point, we have, from eqn 8.32

θ2 = 0.45ν

a6(1 + bx)−6

∫ x

0
a5(1 + bx)−5dx

= −0.45ν

4a(1 + bx)−6b
{(1 + bx)−4 − 1}

= 0.45ν

4ab
{(1 + bx)6 − (1 + bx2)}

Also

λ = θ2

ν

dum

dx
= −θ2

ν

ab
(1 + bx)2

Hence, at separation where λ � −0.09 say,

0.09ν(1 + bx)2

ab
= θ2 = 0.45v

4ab

{
(1 + bx)6 − (1 + bx)2

}
∴ (1 + bx)4 = 1.8 and x = 0.1583/b

An exact computer solution for this example gives xsep = 0.159/b.�

8.8.3 Components of drag

When flow occurs past a plane surface aligned with the direction of the freeNormal pressure drag
and form drag stream, the fluid exerts a drag force on the surface as a direct result of viscous

action. The resultant frictional force in the downstream direction is usually
known as the skin friction drag, and the factors on which its magnitude
depends have been discussed in the preceding sections. But when flow occurs
past a body which is not generating a lift force and which has a surface
not everywhere parallel to the main stream, there is in that direction an
additional drag force resulting from differences of pressure over the surface.
This force is known as the normal pressure drag. Since the magnitude of the
normal pressure drag depends on the form (i.e. the shape) of the boundary,
it is also referred to as form drag. Thus, whereas the skin-friction drag is
the resultant of resolved components of forces tangential to the surface,
the normal pressure drag is the resultant of resolved components of forces
normal to the surface.

The sum of the skin friction drag and the normal pressure drag is termed
the profile drag, and this represents the total drag of a non-lifting body.

A body producing a lift force, such as the wing of an aircraft, experiences
an additional component of drag known as vortex drag (see Section 9.10.4).
The vortex drag is manifested as a component of normal pressure drag.
For a lifting body, the normal pressure drag is equal to the sum of form
drag plus vortex drag. The total drag experienced by a lifting body can be
represented as the sum of the normal pressure drag and the skin-friction drag
or, alternatively, as the sum of the profile drag and vortex drag.
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When, for example, a ship moves through water or wind blows over the Wake
surface of a building, a region of disturbed fluid is created downstream of
the body. This region of disturbed fluid is known as awake. The flow proper-
ties within the wake are very dependent on how smoothly, or otherwise, the
fluid passes over the body – whether the flow remains attached or whether
separation occurs.

If the shape of a body is such that separation is entirely avoided or occurs only Streamlined body
well towards the rear, the wake is consequently small, the normal pressure
drag is also small, and it is skin-friction that makes the major contribution
to the total drag. Such a body is termed a streamlined body.

On the other hand, if the shape of the body causes substantial flow separ- Bluff body
ation, the wake is large and the normal pressure drag is much greater than
the skin friction, then the body is known as a bluff body.

It is usually the total drag that is of interest, and this is expressed in terms Drag coefficient
of a dimensionless drag coefficient CD defined as

CD = Total drag force
1
2�u2∞A

where � represents the density of the fluid and u∞ the velocity (far upstream)
with which the fluid approaches the body. Except for lifting surfaces such
as a wing or hydrofoil, A usually represents the frontal area of the body
(i.e. the projected area perpendicular to the oncoming flow). For a thin flat
plate parallel to the oncoming flow, the drag is entirely due to skin-friction
and the area used is that of both sides of the plate, as for the skin-friction
coefficient CF. In the case of a wing, A represents the product of the span
and the mean chord (see Section 9.10). The area used in the definition of CD
for a particular body should therefore be specified. The denominator of the
coefficient is the product of the dynamic pressure of the undisturbed flow,
1
2�u2∞, and the specified area. Being therefore a ratio of two forces, the
coefficient is the same for two dynamically similar flows (see Section 5.2.3),
so CD is independent of the size of the body (but not of its shape) and is a
function of Reynolds number. For velocities comparable with the speed of
sound in the fluid it is a function also of the Mach number, and if an interface
between two fluids is concerned (as in the motion of a ship for example) CD
depends also on the Froude number (see Section 5.3).

Examples of streamlined and bluff bodies are shown in Fig. 8.9. The body
of maximum bluffness is a thin flat plate normal to the flow (Fig. 8.9c).
Skin-friction has no component in the downstream direction (apart from
an infinitesimal contribution across the very thin edges) and so the entire
drag is the normal pressure drag. The importance of normal pressure drag
may be judged from the fact that the drag on a square-shaped plate held
perpendicular to a given stream may be 100 times the drag exerted when the
plate is held parallel to that stream.
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Fig. 8.9

The flow pattern in the wake depends on the Reynolds number of the
flow. For two-dimensional flow, we may consider as an example the flow
past an infinitely long, circular cylinder of diameter d, with its axis perpen-
dicular to the flow. We suppose other solid surfaces to be far enough from
the cylinder not to affect the flow near it. For very low values ofRe = u∞d/ν
(say Re < 0.5) the inertia forces are negligible, and the streamlines come
together behind the cylinder as indicated in Fig. 8.10a. If Re is increased
to the range 2 to 30 the boundary layer separates symmetrically from the
two sides at the positions S, S (Fig. 8.10b) and two eddies are formed which
rotate in opposite directions. At these Reynolds numbers the eddies remain
unchanged in position, their energy being maintained by the flow from the
separated boundary layer. Behind the eddies, however, the main streamlines
come together, and the length of the wake is limited. With increase of Re
the eddies elongate as shown in Fig. 8.10c but the arrangement is unstable
and for Re in the approximate range from 40 to 70 (for a circular cylinder)
a periodic oscillation of the wake is observed. Then, at a certain limiting
value of Re (usually about 90 for a circular cylinder in unconfined flow), the
eddies break off from each side of the cylinder alternately and are washed
downstream. This limiting value of Re depends on the turbulence of the
oncoming flow, on the shape of the cylinder (which, in general, may not be
circular) and on the nearness of other solid surfaces.

In a certain range of Re above the limiting value, eddies are continuouslyVortex street
shed alternately from the two sides of the cylinder and, as a result, they form
two rows of vortices in its wake, the centre of a vortex in one row being
opposite the point midway between the centres of consecutive vortices in the
other row (Fig. 8.11). This arrangement of vortices is known as a Kármán
vortex street. The energy of the vortices is, of course, ultimately consumed
by viscosity, and beyond a certain distance from the cylinder the regular
pattern disappears. Von Kármán considered the vortex street as a series of
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Fig. 8.10 Development of
a wake behind a cylinder.

Fig. 8.11 Vortex street.

separate vortices in an inviscid fluid, and deduced that the only pattern stable
to small disturbances is that indicated in Fig. 8.11, and then only if

h
l

= 1
π

arcsinh 1 = 0.281

a value later confirmed experimentally. (In a real fluid h is not strictly
constant, and the two rows of vortices tend to diverge slightly.)

Each time a vortex is shed from the cylinder, the lateral symmetry of the
flow pattern, and hence the pressure distribution round the cylinder, are
disturbed. The shedding of vortices alternately from the two sides of the
cylinder therefore produces alternating lateral forces and these may cause a
forced vibration of the cylinder at the same frequency. This is the cause of
the ‘singing’ of telephone or power wires in the wind, for example, when
the frequency of vortex shedding is close to the natural frequency of the
wires. For the same reason, wind passing between the slats of a Venetian
blind can cause them to flutter. Vibrations set up in this way can affect
chimneys and submarine periscopes, and they have also been responsible for
the destruction of suspension bridges in high winds. The frequency, ω, with
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which vortices are shed from an infinitely long circular cylinder, is given by
the empirical formula

ωd
u∞

= 0.198
(

1 − 19.7
Re

)
(8.33)

for 250 < Re < 2 × 105.

The dimensionless parameter ωd/u∞ is known as the Strouhal numberStrouhal number
after the Czech physicist Vincenz Strouhal (1850–1922) who, in 1878, first
investigated the singing of wires.

If the cylinder itself oscillates, the vortices are shed when, or nearly when,
the points of maximum displacement are reached, and h is thus increased
by twice the amplitude. Consequently both the width of the wake and the
pressure drag are increased, the lateral force is increased and ω decreased.

At high Reynolds numbers, the large angular velocities and rates of shear
associated with the individual vortices cause these to disintegrate into ran-
dom turbulence close to the cylinder, and a regular vortex street can no longer
be observed. The undesirable vibration of a cylindrical body may be elimin-
ated by attaching a longitudinal fin to the downstream side. If the length of
the fin is not less than the diameter of the cylinder, interaction between the
vortices is prevented; they thus remain in position and are not shed from the
cylinder. For similar reasons, tall chimneys sometimes have helical projec-
tions, like large screw threads, which cause unsymmetrical three-dimensional
flow and so discourage alternate vortex shedding.

The width of the wake evidently depends on the positions of separation
S, S (Fig. 8.12). We recall that a turbulent boundary layer is better able
to withstand an adverse pressure gradient than is a laminar layer. For a
turbulent layer, therefore, separation occurs further towards the rear of the
cylinder, and the wake is thus narrower. As on a flat plate, the boundary
layer becomes turbulent at a critical value of the Reynolds number (defined
by u∞s/ν, in which s represents the distance measured along the surface from
the front stagnation point, where the boundary layer starts). That is, trans-
ition occurs where s = νRet/u∞. For low values of u∞ the boundary layer is
wholly laminar until it separates, but as u∞ increases, the transition value of
s decreases, and when it becomes less than the distance to the separation posi-
tion the layer becomes turbulent. The separation position then moves further
downstream, the wake becomes narrower and the drag coefficient less.

Fig. 8.12
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8.8.4 Profile drag of two-dimensional bodies

We recall that the skin friction and normal pressure drag together constitute
the profile drag and that this may be expressed in terms of the dimensionless
drag coefficient CD = Profile Drag ÷ 1

2�u2∞A, where A is – usually – the
projected area of the body perpendicular to the oncoming flow. Both skin-
friction and normal pressure drag depend on Reynolds number, so CD is a
function of Re. (Its value is also affected to some extent by the roughness of
the surface and the degree of turbulence in the oncoming fluid.)

Figure 8.13 shows the variation ofCD with Reynolds number for a smooth,
infinitely long, circular cylinder with its axis perpendicular to the flow. At
very low values of Re (say <0.5) inertia forces are negligible compared with
the viscous forces, and the drag is almost directly proportional to u∞. In
other words, CD is approximately inversely proportional to Re, as indicated
by the straight-line part of the graph. Skin-friction here accounts for a large
part of the total drag: in the limit, asRe → 0, skin-friction drag is two-thirds
of the total. When separation of the boundary layer occurs, normal pressure
drag makes a proportionately larger contribution, and the slope of the (total)
CD curve becomes less steep. By Re = 200 the Kármán vortex street is
well established, and normal pressure drag then accounts for nearly 90%
of the total. The drag coefficient reaches a minimum value of about 0.9 at
Re � 2000 and there is then a slight rise to 1.2 forRe � 3×104. One reason
for this rise is the increasing turbulence in the wake; in addition, however, the
position of separation gradually advances upstream. This is because, once
separation occurs, the pattern of flow outside the boundary layer changes,
and the position of separation moves upstream somewhat. This shift in turn
brings about a further change in the pattern of the surrounding flow, and yet
another move of the separation position. A stable position is approached,
however – which may be upstream from where the minimum pressure of an
inviscid fluid would be found (Fig. 8.8) – and the width of the wake is then
constant so long as the boundary layer remains laminar. Normal pressure
drag is now responsible for almost all the profile drag, the contribution of
skin friction being insignificant.

At Re � 2 × 105 the boundary layer, hitherto entirely laminar, becomes
turbulent before separation. It is then better able to withstand the adverse
pressure gradient, and so the separation position moves further downstream
and the wake narrows. In consequence, the drag falls markedly. Results for
Reynolds numbers above 5 × 105 are limited, but it appears likely that after
the sharp drop in CD to about 0.3 there is a rise to about 0.7, occurring
over the approximate range 5 × 105 <Re< 4 × 106. Thereafter, since vis-
cous effects are now relatively small, it is probable that CD is practically
independent of Re. It has been suggested that the minimum CD occurs when
the laminar layer separates, becomes turbulent, re-attaches to the surface
and then separates again, whereas at higher Reynolds numbers the separa-
tion is of the turbulent layer only. More experimental evidence is needed,
however, to confirm this hypothesis.

The critical value ofRe at which the large drop ofCD occurs is smaller both
for a greater degree of turbulence in the main flow and for greater roughness
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Fig. 8.13 Drag coefficient for two-dimensional bodies.

of the surface upstream of the separation position. If a small roughness
element such as a wire is placed on the surface of the cylinder upstream of the
separation position, the transition from a laminar to a turbulent boundary
layer occurs at a smaller Reynolds number. Paradoxically, therefore, the
drag may be significantly reduced by increasing the surface roughness if the
Reynolds number is such that a wholly laminar layer can by this means be
made turbulent. The additional skin friction is of small importance.

For comparison, Fig. 8.13 also shows values of CD for other two-
dimensional shapes. We clearly see the effect of streamlining by which the
separation position is moved as far towards the rear as possible. The shape of
the rear of a body is much more important than that of the front in determin-
ing the position of separation. Lengthening the body, however, increases the
skin-friction, and the optimum amount of streamlining is that which makes
the sum of skin-friction and pressure drag a minimum.

For bluff bodies, such as a thin flat plate held perpendicular to the flow,
the skin friction is negligible compared with the normal pressure drag, and
so the effects of inertia forces become predominant at much lower values
of Reynolds number than for a circular cylinder. Moreover, for the flat
plate, except at low Reynolds numbers (say less than 100), separation of the
boundary layer always occurs at the same place – the sharp edge of the plate –
whatever the Reynolds number. The total drag is therefore proportional to
the square of the velocity, and CD is independent of Re.

It should be remembered that the results discussed in this section apply
only to two-dimensional flow, that is, to a cylinder so long that end effects
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are negligible. With reduction in the length, however, an increasing deviation
from these results is found because – unless it is prevented – flow round the
ends tends to reduce the pressure at the front of the body and increase it at
the rear. The value of CD therefore decreases as the length is reduced and
these end effects become more significant. This is demonstrated by the drag
coefficient of a thin, flat plate held perpendicular to the flow. The coefficient,
although sensibly independent of Reynolds number for Re > 1000, varies
markedly with the ratio of length to breadth of the plate:

Length/Breadth 1 2 4 10 18 ∞
CD 1.10 1.15 1.19 1.29 1.40 2.01

8.8.5 Profile drag of three-dimensional bodies

The drag coefficient for a three-dimensional body varies in a similar way
to that for a two-dimensional body. However, for a sphere or other body
with axial symmetry, the vortex street and the associated alternating forces
observed with a two-dimensional body do not occur. Instead of a pair of
vortices, a vortex ring is produced. This first forms at Re � 10 (for a sphere)
and moves further from the body as Re increases. For 200 < Re < 2000, the
vortex ring may be unstable and move downstream, its place immediately
being taken by a new ring. Such movements, however, do not occur at a
definite frequency, and the body does not vibrate.

Flow round bodies at very small Reynolds numbers (so-called creeping
motion) is of interest in connection with the sedimentation of small particles.
Separation does not occur and there is no disturbed wake. For a sphere past
which fluid of infinite extent flows in entirely laminar conditions, Sir George
G. Stokes (1819–1903) developed a mathematical solution in which the iner-
tia forces were assumed negligible compared with the viscous forces. In his
result, the total drag force is 3πdµu∞, of which two-third is contributed by
skin friction. Here d represents the diameter of the sphere, µ the dynamic
viscosity of the fluid and u∞ the velocity of the undisturbed fluid relative to
the sphere. Division by 1

2�u2∞ × πd2/4 gives

CD = 24
Re

where Re = u∞d/ν, a result that, because of the neglect of the inertia terms,
agrees closely with experiment only for Re < 0.1. The Swedish physicist
Carl Wilhelm Oseen (1879–1944) improved the solution by accounting in
part for the inertia terms that Stokes had omitted. Oseen’s solution, valid
for Re < 1, is

CD = 24
Re

(
1 + 3

16
Re

)
(8.34)

An empirical relation, acceptable up to about Re = 100, is

CD = 24
Re

(
1 + 3

16
Re

)1/2

(8.35)
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It is interesting to note that in Stokes’s solution the pressure at the upstream
stagnation point exceeds the ambient pressure by 3µu∞/d, that is, 6/Re
times the value of 1

2�u2∞ found in frictionless flow (Section 3.7.1). At the
downstream stagnation point the pressure is 3µu∞/d less than the ambient
pressure, whereas for an inviscid fluid the pressures at the two stagnation
points would be equal.

It will be recalled from Section 6.6.3 that, provided that Re is sufficiently
small, Stokes’s Law may be used to calculate the terminal velocity of a falling
sphere, and it therefore forms the basis of a method for determining the vis-
cosity of the fluid. However, if the diameter is so small that it is comparable
to the mean free path of the fluid molecules, the sphere will be affected by
Brownian movement, and the assumption of a fluid continuum is no longer
valid.

At the Reynolds numbers for which Stokes’s Law is valid the influence of
viscosity extends far beyond the sphere. With increasing Reynolds numbers,
however, viscosity’s region of influence becomes sufficiently thin to merit
the term boundary-layer. Separation of the layer begins at the downstream
stagnation point and moves further forward as Re increases, until when
Re � 1000 a stable separation position is achieved at about 80◦ from the
front stagnation point. Pressure drag increasingly takes precedence over skin
friction, andCD gradually becomes independent ofRe, as shown in Fig. 8.14.
At Re � 3 × 105, however, the boundary layer becomes turbulent before
separation, and so the separation position is moved further downstream, the
wake becomes smaller, and the value of CD drops sharply from about 0.5 to
below 0.1. Measurements made on small spheres towed through the atmo-
sphere by aircraft have indicated a critical value of Re = 3.9 × 105. Since
atmospheric eddies are large in comparison with such a sphere these condi-
tions correspond to a turbulence-free main stream. When the main stream
is turbulent, however, the critical Reynolds number is reduced. Indeed, the
sphere may be used as a turbulence indicator. The value of Re at which CD
for a smooth sphere is 0.3 (a value near the middle of the sudden drop) is
quite a reliable measure of the intensity of turbulence.

The critical Reynolds number also depends on the surface roughness (see
Fig. 8.14): the reduction of drag obtained when the boundary layer becomes
turbulent is the reason why golf balls have a dimpled surface.

The study of flow past a sphere is the basis of the subject of particle
mechanics which arises in problems of particle separation, sedimentation,
filtration, elutriation, pneumatic transport and so on. Although in practice
most particles are not spheres, results are usually related to those for a sphere
since that has the simplest shape and is thus most easily examined both
theoretically and experimentally.

For a sphere freely moving vertically through a fluid under steady (i.e.
non-accelerating) conditions the drag force equals the difference between
the weight and the buoyancy force, that is

CD
π

4
d2 × 1

2
�u2

T = π

6
d3(��)g
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Fig. 8.14 Drag coefficients of smooth, axially symmetric bodies.

Here uT represents the terminal velocity, that is, the velocity of the sphere
relative to the undisturbed fluid when steady conditions have been achieved,
and �� the difference between the mean density of the sphere and the density
of the fluid. Under these conditions, then,

CD = 4d(��)g/3�u2
T (8.36)

Thus CD, like Re, is a function of both diameter and terminal velocity.
Consequently, if either d or uT is initially unknown, neither CD nor Re
can be directly determined, and so the use of Fig. 8.14 would involve a
trial-and-error technique.

(There is some experimental evidence, as yet inconclusive, that at moderate
Reynolds numbers the apparent value of CD for a falling sphere is slightly
more than that for a fixed sphere. This might be because the falling sphere
tends to oscillate from side to side instead of following an exactly vertical
path. However, we shall here assume that a falling sphere has the same CD
as a fixed sphere for a given value of Re.)

For problems concerning terminal velocity the information about CD
is better presented as curves of (4Re/3CD)1/3 and {3

4CD(Re)2}1/3 as in
Fig. 8.15. If we need to determine the diameter for a given terminal
velocity, we may calculate (4Re/3CD)1/3, which for these conditions
equals uT{�2/gµ(��)}1/3 and so is independent of the unknown d. Then
from Fig. 8.15 the corresponding value of Re is taken and used to
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Fig. 8.15 Drag relations for
isolated smooth spheres.

calculate d. On the other hand, if uT is initially unknown we may determ-
ine {3

4CD(Re)2}1/3 = d{�(��)g/µ2}1/3 and then obtain uT from the
corresponding value of Re.

It will be noted, however, that for a given value of {3
4CD(Re)2}1/3 in

the approximate range 2.3 × 105 <Re< 3.8 × 105 there appear to be three
possible values of Re, and therefore of velocity. The kink in the graph here
is of course a consequence of the abrupt fall in CD that occurs when the
boundary layer becomes turbulent. The middle one of these three values
of velocity represents an unstable condition because over the section AB of
the curve a small increase of velocity leads to a reduction of drag and thus
to further acceleration; therefore steady conditions cannot be maintained.
Although both the outer values are stable, it is normally the lower one that
is attained in practice, unless it is very close to the peak A or there is some
pronounced unsteadiness in the fluid itself such as upward gusts of air if the
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sphere is falling through the atmosphere. This is of practical importance for
some meteorological balloons and large hailstones.

As we have seen, for very small values of Re (say less than 0.1) Stokes’s
Law applies to the motion of a sphere. Then CD = 24/Re and eqn 8.36
yields

uT = d2(��)g
18µ

from which either uT or d may be obtained algebraically.
It should be remembered that Fig. 8.15 applies only to spheres well away

from other particles or solid boundaries. The sphere also is assumed rigid: if
the sphere itself consists of fluid (e.g. a raindrop in the atmosphere or a gas
bubble in a liquid) its motion may be modified by flow inside it. The effect
of such internal flow is, however, not usually significant for small spheres.

Results for some other bodies of revolution are shown in Fig. 8.14, and
it will be noted that the decrease in CD when the boundary layer becomes
turbulent is somewhat more gradual for the more streamlined bodies than for
the sphere. This is because of the smaller contribution made by pressure drag
to the total drag of the streamlined bodies. For the circular disc, the body
of maximum ‘bluffness’, there is no reduction in CD because, except at low
Reynolds numbers, CD is independent of viscous effects, and the position of
separation is fixed at the sharp edge of the disc. (It may be recalled that losses
due to separation at the abrupt changes of section in pipe-lines (Section 7.6)
are also practically independent of Reynolds number.)

8.8.6 Separation from an aerofoil

If fluid flowing past a body produces a lift force on it (i.e. a force
perpendicular to the direction of the oncoming fluid), then any separa-
tion of the flow from the surface of the body not only increases the drag
but also affects the lift. We here consider the two-dimensional flow about
a section of an aircraft wing (see Section 9.10 for definitions of aero-
nautical terms). The angle of attack is defined as the angle between the
direction of the oncoming fluid and a longitudinal reference line in the cross-
section. As we shall show in Section 9.10.2, an increase in the angle of
attack causes the lift force on the aerofoil to increase – at least in the
absence of boundary-layer effects. The adverse pressure gradient along the
rear part of the upper (lower pressure) surface is thereby intensified until,
at a particular value of the angle of attack, the boundary layer separ-
ates from the upper surface, and a turbulent wake is formed. At fairly
small angles of attack the position of separation may be quite close to
the trailing (rear) edge of the aerofoil. As the angle increases further, the
position of separation moves forward, the wake becomes wider, and there
is a marked increase of drag. In addition the main flow round the aero-
foil is disrupted, and the lift no longer increases (Fig. 8.16). Figure 8.17
shows these variations of lift and drag – for a particular wing section
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Fig. 8.16 Stalled flow
above an aerofoil.

Fig. 8.17

at a given Reynolds number – in terms of the respective dimensionless
coefficientsCL andCD. Each coefficient is defined as the corresponding force
divided by the product of 1

2�u2∞ and the plan area of the wing. (Note that
they are plotted to different scales; CL is much larger than CD.) As we
have mentioned, the angle of attack α is measured from some reference
line in the aerofoil section, but, as this is chosen simply for geometrical
convenience, the position α = 0 has, in general, no particular significance.



Effect of pressure gradient 337

Fig. 8.18

At high Reynolds numbers, the variation of CL is seen to be nearly linear
for a range of about 15◦. Because the ratio of lift to drag is a measure of the
efficiency of the aerofoil, the ratio CL/CD is usually plotted also.

The value of α at which CL reaches its maximum value is known as the
stalling angle, and the condition in which the flow separates from practically
the whole of the upper surface is known as stall. As in the case of flow round
other bodies, such as circular cylinders, separation can be delayed if the
boundary layer is made turbulent. Higher values of α and CL can then be
attained before stall occurs.

When the angle of attack is small – so that there is little, if any, separation
of the flow – the results obtained from the Kutta–Joukowski law of invis-
cid fluid flow theory (Section 9.8.6) agree reasonably well with experiment.
With increasing angles, however, the discrepancy widens. Even without sep-
aration, the existence of boundary layers reduces the lift below the inviscid
value. Since the lift results from a smaller average pressure over the upper
surface than over the lower, the adverse pressure gradient towards the rear of
the upper surface exceeds that on the lower surface. Consequently, towards
the trailing edge, the boundary-layer thickness increases more rapidly on the
upper surface and, in spite of the larger main-stream velocity over this sur-
face, the displacement thickness of the layer at the trailing edge is, in general,
greater on the upper surface than on the lower. Thus the effective shape of
the aerofoil is modified, and the effective trailing edge T ′ (Fig. 8.18) is higher
than the true trailing edge T by 1

2 (δ∗
u−δ∗

l ). In other words, the effective angle
of attack is reduced. There is also a decrease in the effective camber (i.e. the
curvature, concave downwards, of the aerofoil centre line).

As shown in Fig. 8.17, both CL and CD depend on Reynolds number
(calculated as u∞c/ν where c represents the chord length of the aerofoil).
For larger Reynolds numbers (e.g. of the order of 106) the variation of each
coefficient with Re is reduced.

Another means of showing the variations of the coefficients is by the single
curve known as the polar diagram (Fig. 8.19) in which CL is plotted against
CD. Angles of attack are represented by points along the curve. The ratio of
lift to drag is given by the slope of a line drawn from the origin to a point
on the curve, and the maximum value of the ratio occurs when this line is
tangential to the curve.

(If the wing is not of infinite span, the flow past it is not entirely
two-dimensional. Near the wing tips there are components of velocity per-
pendicular to the plane of the cross-section and these give rise, even with an
inviscid fluid, to vortex drag (see Section 9.10.4). This may then be a major
portion of the total drag.)
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Fig. 8.19 Polar diagram for
aerofoil.

Fig. 8.20 Flap increasing
lift coefficient.

Under normal conditions the lift L for high-speed aircraft may be obtained
with only moderate values of CL since L = 1

2�u2∞ACL where A = plan area
and u∞ is large. To achieve low landing and take-off speeds, however, a
means of temporarily increasing CL is required, even if CD is also increased
thereby. For this purpose flaps at the trailing edge are employed (Fig. 8.20).
With the flap lowered, the effective curvature of the wing, and hence the lift,
is increased. Many different designs of flap have been proposed. To further
augment the lifting capability of a wing, slats located at the leading edge are
also sometimes used.

8.9 BOUNDARY LAYER CONTROL

As we have seen, the drag on a body depends greatly on whether the bound-
ary layer is laminar or turbulent, and on the position at which separation
occurs. The reduction of drag is of the greatest importance in aircraft design.
Much effort has been devoted both to reducing skin friction by delaying the
transition from laminar to turbulent flow in the boundary layer, and also
to delaying separation. Much may be done, by careful shaping of the body,
to avoid small radii of curvature, particularly at its downstream end, but
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Fig. 8.21 Slotted wing.

Fig. 8.22

this does not prevent the continual thickening of the boundary layer, and
where adverse pressure gradients are encountered it is difficult to prevent
separation unless other means are adopted.

Separation may be prevented by accelerating the boundary layer in the
direction of flow. Increased turbulence produced by artificial roughening of
the surface will achieve this to some degree, but it is more effective either to
inject fluid at high velocity from small backward-facing slots in the bound-
ary surface or to extract slow-moving fluid by suction. A disadvantage of
injecting extra fluid is that, if the layer is laminar, this process provokes tur-
bulence, which itself increases the skin-friction. The slotted wing (Fig. 8.21),
which has been used for the control of separation on aircraft, rejuvenates the
boundary layer on the upper surface with fast-moving air brought through
a tapered slot. It is particularly effective at large angles of attack, for which
separation would otherwise occur early in the boundary layer’s journey, and
therefore it also helps to increase lift (Section 8.8.6). A cowl (Fig. 8.22) can
similarly reduce the drag of a blunt body (such as an aircraft engine).

One of the most successful methods of control is the removal of slow-
moving fluid in the boundary layer by suction through slots or through a
porous surface. Downstream of the suction position the boundary layer is
thinner and faster and so better able to withstand an adverse pressure gradi-
ent. Suction also greatly delays the transition from laminar to turbulent flow
in the boundary layer, and so reduces skin-friction. It must be admitted,
however, that the structural and mechanical complications are such that the
incorporation of boundary-layer control in aircraft wings is impractical.

On the upper surface of swept-back aircraft wings the boundary layer
tends to move sideways towards the wing tips, thus thickening the layer
there, and inducing early separation. To prevent the sideways movement,
boundary-layer fences – small flat plates parallel to the direction of flight –
have been used with success.
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8.10 EFFECT OF COMPRESSIBILITY ON DRAG

Our study of drag has so far been concerned only with flow of a fluid in
which the density is constant throughout, and the drag coefficient has been a
function of Reynolds number only. However, when the velocity approaches
that of sound in the fluid, the drag coefficient becomes a function also of
Mach number, that is, the ratio of the fluid velocity (relative to the body) to
the velocity of sound in the fluid.

Drag is always the result of shear forces and pressure differences, but
when compressibility effects are significant the distribution of these quant-
ities round a given body differs appreciably from that in flow at constant
density. The abrupt rise of pressure that occurs across a shock wave (see
Section 11.5) is particularly important. This is not simply because the differ-
ence of pressure between front and rear of the body is thereby affected. The
adverse pressure gradient produced by the shock wave thickens the bound-
ary layer on the surface, and encourages separation. The problem, however,
is complicated by the interaction between shock waves and the boundary
layer. Pressure changes cannot be propagated upstream in supersonic flow;
in the boundary layer, however, velocities close to the surface are subsonic,
so the pressure change across the shock wave can be conveyed upstream
through the boundary layer. The result is to make the changes in quantities
at the surface less abrupt. At high Mach numbers, heat dissipation as a result
of skin friction causes serious rises of temperature and further complication
of the problem.

At high values of Mach number the Reynolds number may be high enough
for viscous effects to be relatively unimportant. But although a valuable
simplification of problems is achieved if effects of either compressibility or
viscosity may be neglected, it must be remembered that there is no velocity at
which the effects of compressibility begin or those of viscosity cease, and in
many situations the effects governed by Reynolds number and Mach number
are of comparable significance.

With a completely non-viscous fluid (which would produce no skin-
friction and no separation of the flow from the boundary) there would be (in
the absence of lift) zero drag in subsonic flow. In supersonic flow, however,
the change of pressure across a shock wave would produce a drag even with
a non-viscous fluid. This drag is known as wave drag.

The drag coefficient of a given body rises sharply as the Mach number M
of the oncoming flow approaches 1.0 (Fig. 8.23). For a blunt body, for which
the position of separation is fixed by its shape, the skin-friction is small, and
CD continues to rise beyond M = 1, as a result of shock wave effects at or
near the front of the body. These effects make the largest contribution to the
total drag, so, for supersonic flow, streamlining the rear of such a body has
little effect on the total drag. The greatest reduction of drag is achieved by
making the nose of the body a sharp point (see Fig. 8.23).

For other bodies the position of separation is closely associated with the
shock phenomena. A shock wave first appears on the surface at the position
of maximum velocity, and separation occurs close behind it. There is thus
a sharp rise of CD. An increase of Mach number, however, shifts the shock
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Fig. 8.23 Drag coefficients
for bodies of revolution.

wave further downstream, the position of separation moves similarly and
the width of the wake is thereby reduced. Thus, although wave drag is
intensified with increasing velocity, CD rises less than for a blunt body. With
further increase of Mach numberCD decreases towards an asymptotic value.
The contribution of the wake to the total drag is clearly limited because the
absolute pressure in the wake cannot fall below zero.

For minimum drag in supersonic flow, the body should have a sharp
forward edge, or conical nose, and the shape of the rear is of secondary
importance. This requirement is the reverse of those at Mach numbers well
below unity, for then the drag is least for a body well tapered at the rear and
rounded at the front. A body well streamlined for subsonic velocities may
thus be poorly shaped for supersonic velocities, and vice versa.

8.11 EDDY VISCOSITY AND THE MIXING LENGTH
HYPOTHESIS

Turbulence involves entirely haphazard motions of small fluid particles in all
directions, and it is impossible to follow the adventures of every individual
particle. By considering average motions, however, attempts have been made
to obtain mathematical relationships appropriate to turbulent flow, and in
this section we shall briefly review some of these attempts.

It will be recalled from Section 1.6.1 that when adjacent layers of a fluid
move at different velocities the interchange of molecules and the associated
transfer of momentum between the layers tend to accelerate the slower one
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and to slow down the faster one. This action, resulting in a shear stress at the
interface, is, at least in part, responsible for the phenomenon of viscosity.
In turbulent flow, however, there is a continuous interchange not only of
molecules over short distances but also of larger fluid particles over larger dis-
tances. These particles may be regarded as taking increments of momentum
(positive or negative) from one part of the fluid to another, and just as the
interchange of molecules gives rise to a shear stress wherever relative motion
exists, so does the interchange of these larger particles. If the general motion
of the fluid is in straight and parallel lines, a turbulent shear stress due to the
interchange of particles may consequently be defined as

τxz = η
∂u
∂y

(8.37)

The bar over the u indicates that the velocity is the average velocity (in the
x direction) at the point in question over an appreciable period of time. The
symbol η denotes what is usually now called the eddy viscosity.

Equation 8.37 was the suggestion (in 1877) of the French mathematician
J. Boussinesq (1842–1929). Unlike the dynamic viscosity µ, the eddy viscos-
ity is not a property of the fluid but depends on the degree of turbulence of
the flow and on the location of the point considered. When viscous action is
also included the total shear stress in the xz plane is given by

τxz = µ
∂u
∂y

+ η
∂u
∂y

= (µ + η)
∂u
∂y

(8.38)

The magnitude of η may vary from zero (if the flow is laminar) to several
thousand times that of µ. Its value depends on the momentum carried by the
migrating particles and thus on the density of the fluid; it may be argued
therefore that a kinematic eddy viscosity ε = η/� is entirely independent
of the properties of the fluid and so characteristic only of the flow. (Many
writers use the symbol ε where we have used η. Moreover, not infrequently,
the term eddy viscosity is used for the quantity (µ + η) in eqn 8.38, not for
η alone.) Since values of η or ε cannot be predicted, eqn 8.37 is, however,
of limited use.

Reynolds, in 1886, showed that expressions for the momentum inter-
change may be derived by considering that at a given point the instantaneous
velocity u parallel to the x axis consists of the time-average value u plus a
fluctuating component u′. In the y direction the fluctuating component is
v′. Consider a surface perpendicular to the y direction and separating two
adjacent fluid layers. Through a small element of this surface of area δA ,
the rate at which mass is transferred from one layer to the other is �(δA)v′,
and the rate at which x-momentum is carried is �(δA)v′u = �(δA)v′(u+u′).
Although the time-average value of v is zero, that of u′v′ is not necessarily
zero, so the time-average value of the x-momentum carried in unit time
reduces to �δAu′v′ where u′v′ represents the time-average value of the
product u′υ ′. An accelerating force on the lower layer of Fig. 8.24 would be
produced, for example, by a positive value of u′ and a negative value of v′
and so, to agree with the sign convention mentioned in Section 1.6.1, a minus
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Fig. 8.24

sign is introduced, thus giving the time-average of the turbulent shear stress
on an x–z plane as

τxz = Force
Area

= −�u′v′ (8.39)

The stress represented by this expression is usually termed a Reynolds stress.
Similar equations are of course obtained for Reynolds stresses on other
planes.

In 1925 the German engineer Ludwig Prandtl (1875–1953) introduced the Mixing length
concept of a mixing length, that is, the average distance l, perpendicular to
the mean flow direction, in which a small particle, moving towards slower
layers, loses its extra momentum and takes on the mean velocity of its new
surroundings. The idea is thus somewhat similar to the mean free path in
molecular theory. In practice the particle does not move a distance l and
then suddenly change velocity, but undergoes a gradual change. Never-
theless, on the assumption that the change in velocity �u experienced by the
particle in moving a distance l in the y direction is l∂u/∂y, the average shear
stress τxz is �v′l∂u/∂y. Prandtl then supposed that v′ is proportional to �u,
that is, to l∂u/∂y, and hence τxz ∝ �l2(∂u/∂y)2. The coefficient of pro-
portionality, being merely a number, may be absorbed into the (unknown)
l2 and, accounting for the change of sign of τxz with that of ∂u/∂y, one
obtains:

τxz = �l2
∣∣∣∣∂u∂y

∣∣∣∣ ∂u
∂y

(8.40)

The superiority of this equation over eqn 8.37 lies in plausible guesses being
possible about the variation of l in certain parts of the flow. Close to a solid
boundary, for example, Prandtl assumed l to be proportional to the distance
from the boundary. From similarity considerations T. von Kármán (1881–
1963) suggested that l = k(∂u/∂y)/(∂2u/∂y2) where k was thought to be a
universal constant equal to 0.40. Later experimental results, however, have
shown variations of k, as well as other inconsistencies. For example, the
Prandtl–von Kármán theory indicates that for flow in a circular pipe l is
apparently independent of the pipe diameter and zero at the centre where
∂u/∂y = 0 (by symmetry), whereas mixing is there most intense! Even so
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the idea of mixing length permitted useful progress in the investigation of
turbulent flow. Similar results are, however, obtainable by more rigorous
methods, and the concept is now largely outmoded.

8.12 VELOCITY DISTRIBUTION IN TURBULENT FLOW

It was Prandtl who first deduced an acceptable expression for the variation
of velocity in turbulent flow past a flat plate and in a circular pipe. He
used his mixing length concept (Section 8.11) together with some intuitive
assumptions about its variation with distance from the boundary. Using
somewhat different assumptions, von Kármán and others obtained the same
basic result. The expressions are all semi-empirical in that the values of
the constant terms have to be determined by experiment but the forms of
the expressions are derived theoretically.

However, the same results may be obtained from dimensional analysis
without the hypothesis of mixing length and in fact with less far-reaching
assumptions. We shall here use this more general method based on dimen-
sional analysis.

For fully developed turbulent flow in a circular pipe we require primar-
ily to know the way in which the time-average value of the velocity varies
with position in the cross-section. If the flow is steady – in the sense that the
time-average value at a given point does not change with time – then consid-
erations of symmetry indicate that this velocity u is the same at all points at
the same distance from the pipe axis. The independent variables that affect
the value of u are the density � and dynamic viscosity µ of the fluid, the
radius R of the pipe, the position of the point (distance y from the pipe wall,
or radius r = R − y from the axis), the roughness of the pipe wall – which
may be represented by some characteristic height k of the surface bumps (as
in Section 7.3), and the shear stress τ0 at the wall. (The pressure drop divided
by length could be used as a variable in place of τ0, as it is simply related
to τ0, but τ0 – here taken as positive – is more convenient for our purpose.)
Application of the principles of dimensional analysis suggests the following
relation:

u
(τ0/�)1/2

= φ1

{
R
ν

(
τ0

�

)1/2

,
y
R

,
k
R

}
(8.41)

where ν = µ/� and φ{ } means ‘some function of’. (Suffixes on the φ symbols
will be used to distinguish one function from another, but in general the form
of the function will not be known.)

Noting that (τ0/�)1/2 has the same dimensions as velocity, it is convenient
to make the substitution

uτ =
(

τ0

�

)1/2

where uτ is known as the friction velocity. Its introduction allows velocity
distribution equations to be expressed in simpler and more compact forms.
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It is to be expected that the effect of viscosity on the flow will be appreciable Velocity defect law
only near the walls, where the velocity gradient is large, and that its effect
near the axis of the pipe will be slight. Similarly, although the roughness of
the walls affects the value of (τ0/�)1/2 for a given rate of flow, it has little
influence on the flow near the axis. Consequently, it may be argued that for
the central part of the flow the velocity defect, that is, the difference um − u
between the maximum velocity um at the centre of the pipe and the velocity
u elsewhere, depends on y/R only. That is

um − u
(τ0/�)1/2

= φ2(η) (8.42)

where η = y/R. Eqn 8.42 is known as the velocity defect law.
This hypothesis was first corroborated experimentally by Sir Thomas E.

Stanton in 1914. Later Nikuradse and others obtained curves of u(τ0/�)−1/2

against η for a wide range of wall roughness, and when the points of max-
imum velocity were superposed the curves were coincident for much of the
pipe cross-section. Only for a narrow region close to the wall did the curves
differ. Equation 8.42 may therefore be regarded as universal relation valid
from η = �1, say, to the centre of the pipe where η = 1.

It may be noted that the smaller the value of the friction factor f and thus
of τ0, the smaller is um − u, and therefore the more nearly uniform is the
velocity over the section.

8.12.1 Velocity distribution in smooth pipes and over smooth plates

For a smooth pipe, that is one in which the projections on the wall do not
affect the flow, eqn 8.41 becomes

u
uτ

= φ1(ξ , η) for all values of η (8.43)

where (τ0/�)1/2 has been replaced by uτ and

ξ = (R/v)(τ0/�)1/2 = Ruτ /ν

In particular,

um

uτ

= φ1(ξ , 1) = φ3(ξ) for η = 1 (8.44)

Adding eqns 8.42 and 8.43 gives

um

uτ

= φ3(ξ) = φ1(ξ , η) + φ2(η) for �1 < η ≤ 1 (8.45)

We now consider a very thin layer of the flow close to the wall. Since the The law of the wall
radius of the pipe is large compared with the thickness of this layer the flow in
it will be hardly affected by the fact that the wall of a circular pipe is curved.
In other words, the radius of the pipe has negligible effect on the velocity
near the wall. This supposition that the velocity near the wall depends on
the distance from the wall but not on the pipe radius was put forward by
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Prandtl and is well supported by experimental evidence. For positions close
to the wall, that is, for 0 < η < �2, say, the function, φ1(ξ , η) in eqn 8.43
becomes φ4(ξ , η) since ξη = yuτ /ν which is independent of R.

∴ u
uτ

= φ4(ξη) for 0 < η < �2 (8.46)

This relation is termed the law of the wall or the inner velocity law.

Experimental results suggest that �2 > �1; that is, there is a region whereOverlap region
eqns 8.42 and 8.46 are equally valid. This region is known as the overlap
region. For this region where �1 < η < �2 and both equations apply, they
may be added to give

φ2(η) + φ4(ξη) = um

uτ

= φ3(ξ) (8.47)

(from eqn 8.44).
Differentiation of eqn 8.47 with respect to ξ gives

ηφ′
4(ξη) = φ′

3(ξ) (8.48)

where φ′(x) means (∂/∂x)φ(x). Differentiating eqn 8.48 with respect to η

gives

φ′
4(ξη) + ξηφ′′

4(ξη) = 0 (8.49)

Equation 8.49 involves only the combined variable ξη. Integrating with
respect to ξη yields

ξηφ′
4(ξη) = constant = A

Hence φ′
4(ξη) = A/ξη, and further integration gives

φ4(ξη) = A ln(ξη) + B
where B = constant. That is

u
uτ

= A ln
{yuτ

ν

}
+ B (8.50)

Similar arguments may be used in considering turbulent flow between two
parallel smooth plates separated by a distance 2h. The expressions obtained
differ from those above only in having h in place of R, and the final result
(eqn 8.50) is independent of either h or R. Equation 8.50 applies also of
course to turbulent flow over a single smooth flat plate (h = ∞).

Because of its mathematical form, eqn 8.50 is generally known as the logar-Logarithmic law
ithmic law. It is of wide application and has been confirmed by experiment.
If measurements of u are made at various distances y from a flat plate, for
example, a graph of u against ln{y(τ0/�)1/2/ν} is indeed a straight line for a
considerable range of values. We recall, however, from the derivation of the
result, that it can be expected to apply over only a certain range of values of
y. For one thing, the velocity does not in practice increase indefinitely with
y as the equation suggests, but tends to the velocity of the main stream. And
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Fig. 8.25

then, although at very small values of y it is difficult to obtain reliable exper-
imental values of u, the equation clearly fails when y → 0 since it predicts
an infinite negative velocity at the boundary. This failure is hardly surprising
in view of the existence of the viscous sub-layer: as turbulence is suppressed
immediately next to the boundary the equation can apply only outside the
sub-layer.

When experimental results for a circular pipe are plotted as a graph of
u(τ0/�)−1/2 against ln{y(τ0/�)1/2/ν} a very good straight line is obtained
over a remarkably wide range (Fig. 8.25). Even so, the logarithmic law
cannot be expected to be valid as far as the centre of the pipe because the
hypothesis that the velocity is independent of the pipe radius there breaks
down. Moreover, symmetry requires ∂u/∂y[= R−1(τ0/�)1/2∂φ1/∂η] to be
zero at the axis and this condition is not met.

Figure 8.25 suggest that for large Reynolds numbers, and therefore large
values of ξ , eqn 8.50 is valid except close to the pipe axis and close to the
wall. The equation fails for very small values of η because of the presence of
the viscous sub-layer. From eqn 7.10 τ = τ0r/R = τ0{1− (y/R)}. Within the
viscous sub-layer, however, y/R = η is so small that τ differs negligibly from
τ0. That is, the stress in the sub-layer may be considered constant. Integrating
the laminar stress equation τ = µ(∂u/∂y) and setting the integration constant
to zero so that u = 0 when y = 0 we have u = τ0y/µ. Rearranged, this
becomes

u
(τo/�)1/2

= y
ν

(
τo

�

)1/2

= ξη or
u
uτ

= yuτ

ν

This relation is plotted at the left-hand side of Fig. 8.25. The viscous
sub-layer, however, has no definite edge where viscous effects end and
appreciable turbulence begins, and so experimental points make a gradual
transition between the two curves of Fig. 8.25.
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Nikuradse made many detailed measurements of the velocity distribution
in turbulent flow for a wide range of Reynolds number, and his results suggest
that A = 2.5 and B = 5.5. Substitution in eqn 8.50 gives

u
uτ

= 2.5 ln
{yuτ

ν

}
+ 5.5 = 5.75 log10

{yuτ

ν

}
+ 5.5

This equation closely represents the velocity distribution in smooth pipes at
fairly high Reynolds numbers. Points follow the viscous line up to

yuτ

ν
� 8

and the logarithmic law from a value of about 30. The thickness δl of the
viscous sub-layer is therefore given by

δluτ

ν
� 8

and since f = |τ0|/1
2�u2 we have

δl

d
� 8ν

duτ

= 8v
du(f /2)1/2

= 8
√

2

Re
√
f

where d represents the pipe diameter, u = Q÷ (πd2/4) and Re = ud/ν.

8.12.2 Friction factor for smooth pipes

The parameter uτ = (τ0/�)1/2 is related to the friction factor f by eqn 7.3.
Hence

|τ0|
�u2

= u2
τ

u2
= f

2
or

u
uτ

=
√

2
f

We therefore use the relation for velocity distribution (eqn 8.50) to obtain an
expression for the mean velocity u. It is true that eqn 8.50 is not valid over
the entire cross-section, but experimental results such as those represented
in Fig. 8.25 show that �1, the value of η at which the equation ceases to
apply, is small, especially at high Reynolds numbers. As an approximation
we therefore suppose that eqn 8.50 is valid for all values of η. Multiplying
the equation by 2πrdr, integrating between the limits r = 0 and r = R, and
then dividing the result by πR2 we obtain

u
τ0/�1/2

= u
uτ

= 1
πR2

∫ R

0

{
A ln(ξη) + B}2πrdr

=
∫ 0

1

{
A ln(ξη) + B}2(1 − η)(−dη)

= A ln ξ − 3
2
A+ B (8.51)

This integration neglects the fact the eqn 8.50 does not correctly describe the
velocity profile close to the axis, but as this inaccuracy is appreciable only
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as η → 1 and (1 − η) is then small, the effect on the value of the integral is
not significant. Then, substituting for u(τ0/�)−1/2 from eqn 7.3, we have(

2
f

)1/2

= A ln ξ − 3
2
A+ B

Noting that

ξ = R
ν

(
τ0

�

)1/2

= d
2ν
u
(
f
2

)1/2

= Re
(
f
8

)1/2

we have

f−1/2 = 1√
2

{
A ln(Re f 1/2) − A ln

√
8 − 3

2
A+ B

}

Substituting Nikuradse’s values of A and B and converting ln to log10 then
gives

f−1/2 = 4.07 log10(Re f 1/2) − 0.6

In view of the approximations made it would be surprising if this equation
exactly represented experimental results, especially as the last term is a dif-
ference between relatively large quantities. Good agreement with experiment
is, however, obtained if the coefficients are adjusted to give

f−1/2 = 4 log10(Re f 1/2) − 0.4 (8.52)[
Or λ−1/2 = 2 log10(Re λ1/2) − 0.8 where λ = 4f .

]
This expression has been verified by Nikuradse for Reynolds numbers

from 5000 to 3 × 106. For Reynolds numbers up to 105, however, Blasius’s
equation (7.5) provides results of equal accuracy and is easier to use since
eqn 8.52 has to be solved for f by trial.

8.12.3 Velocity distribution and friction factor for rough pipes

From Section 7.3 we recall that a pipe which is fluid-dynamically smooth
is one in which the roughness projections on the wall are small enough to
be submerged within the viscous sub-layer and to have no influence on the
flow outside it. Since the sub-layer thickness is determined by the value of the
parameter y(τ0/�)1/2/ν, the maximum height k of roughness elements which
will not affect the flow is governed by the value of k(τ0/�)1/2/ν. Nikuradse’s
results for pipes artificially roughened with uniform grains of sand indicate
that the roughness has no effect on the friction factor when k(τ0/�)1/2/ν < 4
(approximately). On the other hand, if k(τ0/�)1/2/ν > 70 (approximately) f
becomes independent of Re, and this suggests that the effect of the roughness
projections then quite overshadows viscous effects. For this rough zone of
flow the sub-layer is completely disrupted, and viscous effects are negligible.
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Equation 8.41 may then be written

u
(τ0/�)1/2

= u
uτ

= φ

(
y
R

,
k
R

)
= φ5

(
η,
R
k

)
Here k may be regarded as some magnitude suitably characterizing the
roughness size; it is not necessarily the average height of the projections.

By similar reasoning to that used for smooth pipes (except that R/k here
takes the place of ξ ) the equation for velocity distribution may be shown to
take the form

u
uτ

= A ln
(y
k

)
+ C (8.53)

A similar expression may be deduced for flow over rough plates; η then
represents y/δ.

The constant A in eqn 8.53 is the same as that for smooth pipes. The
constant C, however, differs from B. Equation 8.53 fails to give ∂u/∂y = 0
on the pipe axis, but, over most of the cross-section, experimental results
are well described by the equation

u
uτ

= 5.75 log10(y/k) + 8.48 (8.54)

It will be noted that the equation is independent of the relative roughness
k/R: experimental points for a wide range of k/R all conform to straight
line when u/uτ is plotted against log10(y/k).

Reasoning similar to that used in the previous section (8.12.2) leads to a
relation for the friction factor:

f−1/2 = 4.07 log10(R/k) + 3.34

Slight adjustment of the coefficients to achieve better agreement with
experiment gives

f−1/2 = 4 log10(R/k) + 3.48 = 4 log10(d/k) + 2.28 (8.55)

where d represents the diameter of the pipe.
All these relations apply only to fully developed turbulent flow (and

not, therefore, to the entrance length of a pipe) and to Reynold numbers
sufficiently high for f to be independent of Re (see Fig. 7.4).

Equation 8.55 is valid for values of k(τ0/�)1/2/ν > 70 whereas the appro-
priate equation for smooth pipes (8.52) is valid for k(τ0/�)1/2/ν < 4. For
the range 4 to 70, f is dependent on both Reynolds number and the rela-
tive roughness. If 4 log10(d/k) is subtracted from both sides of eqns 8.52
and 8.55, we obtain

f−1/2 − 4 log10(d/k) = 4 log10(Re f 1/2k/d) − 0.4

for smooth pipes and

f−1/2 − 4 log10(d/k) = 2.28

for fully rough pipes.
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Fig. 8.26

When f−1/2 −4 log10(d/k) is plotted against log10(Re f 1/2k/d), as shown
in Fig. 8.26, two straight lines result – one for smooth pipes and one for fully
rough pipes. For commercial pipes, in which the roughness is not uniform,
an equivalent roughness size k may be deduced from the (constant) value of
f at high Reynolds number. C. F. Colebrook measured values of f for new
commercial pipes and found that when the results were plotted in the form
of Fig. 8.26, the points were closely clustered about a curve joining the two
straight lines and having the equation

f−1/2 − 4 log10(d/k) = 2.28 − 4 log10

{
1 + 4.67d

Re kf 1/2

}
or, in rearranged form,

f−1/2 = −4 log10

{
k

3.71d
+ 1.26
Re f 1/2

}
(8.56)

(It may readily be shown that as k → 0 the expression approaches the
smooth pipe eqn 8.52, and that when Re → ∞ it approaches the fully rough
eqn 8.55).

The rather remarkable fact that the points for these commercial pipes all
quite closely fit a single curve suggests that their random roughness may be
described by a single parameter k. The curve, however, differs significantly
from that for uniform sand roughness (as the reasoning of Section 7.3 would
lead us to expect).

Since f appears on both sides of Colebrook’s equation it is awkward to use,
so L. F. Moody constructed his chart for friction factor (Fig. 7.4). Although
eqn 8.56 and Moody’s chart permit f to be determined when k and Re
are known, there remains the problem of specifying the equivalent sand
roughness size k for a particular pipe. In principle this is done by conducting
an experiment on the pipe at a sufficiently high Reynolds number that the
constant value of f may be determined and k then deduced from eqn 8.55.
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8.12.4 Universal features of the velocity distribution
in turbulent flow

Finally, a few general points are worthy of note. In the expressions developed
in the preceding analyses the factor A is common and so appears to be
a universal constant. Although 2.5 is the usually accepted value, different
workers have obtained somewhat different figures, and the value could well
depend slightly on Reynolds number. For flow over flat plates the values
A = 2.4 and B = 5.84 in eqn 8.50 have been found to give better agreement
with experiment.

The velocity defect law is independent of both Reynolds number and
roughness. Thus if, as in the integration leading to eqn 8.51, this law is
assumed to apply with sufficient accuracy over the entire cross section, integ-
ration of the appropriate expressions based on the law enables values of the
kinetic energy correction factor α and the momentum correction factor β to
be evaluated. Hence we obtain

α = 1 + 15
8
A2f − 9

4
A3

(
f
2

)3/2

= 1 + 11.72f − 12.43f 3/2 (8.57)

and

β = 1 + 5
8
A2f = 1 + 3.91f (8.58)

for all values of roughness and Reynolds number. For fully developed tur-
bulent flow the maximum values in practice are thus about 1.1 and 1.04,
respectively, but considerably higher values may be realized if the flow is
subject to other disturbances.

If transfer of heat takes place across the boundary surface, variations of
temperature and other properties, especially viscosity, with distance from the
boundary may affect the results appreciably. Consideration of these matters
is beyond the scope of the present book, and for further information reference
should be made to works on convective heat transfer.

8.13 FREE TURBULENCE

Turbulence occurs not only when fluid flows past a solid boundary, but also
when two fluid streams flow past each other with different velocities. Tur-
bulent mixing then takes place between the streams so as to equalize their
velocities. This free turbulence – that is, turbulence not bounded by solid
walls – occurs, for example, when a jet issues from a drowned orifice into
a large expanse of stationary fluid, or in the wake behind a body moving
through a fluid otherwise at rest. The flow conditions are broadly similar to
those in a turbulent boundary layer with a large velocity gradient in a dir-
ection perpendicular to the main flow. Because solid boundaries are absent,
however, the effect of viscosity is negligible.

When a jet encounters stationary fluid it sets some of this in motion (see
Fig. 8.27), a process known as entrainment. Unless the velocity of the fluid is
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Fig. 8.27

comparable with the velocity of sound propagation, the pressure is substan-
tially uniform through the jet and the surrounding fluid. Thus the net force
on the jet is zero and the momentum in the axial direction remains constant,
even though the amount of fluid in motion increases. The average velocity
therefore decreases. For a jet of circular cross-section the rate of momentum
flow is ∫ R

0
�u22πr dr = 2π�u2

mR
2
∫ 1

0

(
u
um

)2

ηdη (8.59)

where um represents the maximum velocity (on the axis), η = r/R and R
represents the radius to the edge of the jet (beyond which the velocity is
zero). The edge of the jet, however, like the edge of a boundary layer, is
ill-defined. It is reasonable to assume that, except close to the orifice, the
velocity profile over the cross-section is similar for all axial positions. That
is, u/um is a function of η only, so

∫ 1
0 (u/um)2ηdη is a constant. Since the

rate of momentum flow is constant it follows from eqn 8.59 that u2
mR

2 is
constant.

Dimensional analysis suggests that the width of the jet increases linearly
with the axial distance x, and so the velocity on the axis is given by um =
constant/x for a jet of circular cross-section. Experiment shows this rule
to be closely followed. The angle of divergence is between 20◦ and 25◦
for a circular cross-section and about 5◦ greater for a jet issuing from a
rectangular slit.

The methods used for studying the flow in turbulent boundary layers may
be used also for free turbulence.

8.14 COMPUTATIONAL FLUID DYNAMICS

Our knowledge of classical fluid dynamics is based on experiment and the-
oretical analysis. In recent years a new branch of knowledge – known as
computational fluid dynamics and denoted by the initials CFD – has emerged
to provide engineers and applied mathematicians with a third and exception-
ally powerful tool. Here we can do no more than set down a few words of
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introduction to this rapidly expanding subject, which has already developed
a large literature in its own right.

The classical analysis of fluid flow problems involves the initial represent-
ation of the fluid motion by a physical model. This physical model is then
interpreted as a mathematical model by setting down the conservation equa-
tions which the flow satisfies. These governing equations are then subject to
analysis leading to closed-form solutions with the dependent variables, such
as the velocity components and pressure, varying continuously throughout
the flow field. Much of the content of this book consists of analytical solu-
tions of this kind. This general approach and the closed-form solutions which
result provide powerful insights into many important fluid flow problems,
including the effects of changes in geometry and flow parameters such as
Reynolds number. However, there are many circumstances where it is not
possible to derive analytical solutions while at the same time retaining a
mathematical model which displays all the essential features of the physics
underlying the flow. Here the limitations of the analytical approach become
evident. By way of contrast, CFD is capable of delivering solutions to the
governing equations which fully describe all aspects of the physics of the flow
(while still being subject to the limitations of our current understanding of
turbulence).

The essential basis of CFD is as follows. The starting point is the spe-
cification of the governing equations of fluid dynamics – the equations of
continuity, momentum and energy. These equations are then replaced by
equivalent numerical descriptions which are solved by numerical techniques
to yield information on the dependent variables – for example, the velocity
components and pressure – at discrete locations in the flow field. The con-
tinuity, momentum and energy equations can be set down in a variety of
different, but equivalent, forms and the choice of the appropriate form(s) is
an important aspect of successfully obtaining numerical solutions.

8.14.1 The differential equations of fluid dynamics

The system of equations known as the Navier–Stokes equations takes
account of the full three-dimensional, viscous nature of fluid motion. Deriv-
ations of these equations are given in many textbooks and we shall simply set
down the more important results. It is worth noting that these equations for
the instantaneous motion are equally valid in laminar and turbulent flows.

The equation of continuity expresses the principle of conversation of mat-
ter. The differential form of the equation is obtained by considering the flow
into and out of an elementary control volume. For the rectangular Cartesian
coordinate system, with coordinates x, y, z measured relative to a station-
ary frame of reference, and corresponding velocity components u, v,w the
continuity equation is

∂�

∂t
+ ∂(�u)

∂x
+ ∂(�v)

∂y
+ ∂(�w)

∂z
= 0 (8.60)

where � is the fluid density.
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The x, y and z components of the momentum equation are obtained
by applying Newton’s second law to an elementary volume of fluid. The
resulting three equations for the rectangular Cartesian coordinate system are
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(8.61a)
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(8.61c)

Equations 8.61a–c, in which the symbols X, Y, Z represent the components
of a body force, were first derived, independently, by Sir George Stokes
and the French engineer, Louis Navier, and consequently the equations are
known collectively as the Navier–Stokes equations.

The differential energy equation, which expresses the principle that energy
is conserved is
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(8.62)
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where e is the internal energy, λ is the bulk viscosity, q is the heat addition
divided by mass and k is the thermal conductivity.

Historically, only the momentum eqns 8.61a–c were referred to as the
Navier–Stokes equations, but there appears to be an increasing tendency
towards labelling the continuity, momentum and energy equations collect-
ively as the Navier–Stokes equations. As noted previously, eqns 8.60–8.62
can be expressed in numerous alternative forms. The forms chosen here are
the so-called conservation forms, which have particular advantages in the
context of CFD.

8.14.2 Numerical procedures for solving the Navier–Stokes equations

There are two principal types of methods used for solving the governing
flow equations. These are the finite-difference methods (FDM) and the finite-
element methods (FEM). Two further approaches – the boundary-element
method (BEM) and the finite-volume methods (FVM) – are also available.

The principle underlying FDM is the replacement of the partial derivatives inFinite-difference
methods the differential eqns 8.60–8.62 by corresponding algebraic difference quo-

tients. As a consequence the partial differential equations can be replaced by
a system of algebraic equations, and these can be solved either by iterative
methods or matrix inversion to yield the magnitude of the flow variables at
discrete points in the flow field, known as grid points.

To illustrate some basic aspects of the FDM, refer to Fig. 8.28, which
shows a regular grid pattern set out in the x–y plane. The grid points are
identified by a suffix notation, the subscript i denoting the x direction, and
suffix j the y direction. Suppose we wish to replace the pressure gradient
term ∂p/∂x in eqn 8.61a by a finite-difference quotient computed at the grid
point i, j; then the following options are available:

(
∂p
∂x

)
i,j

= pi,j+1 − pi,j
�x

Forward difference

(
∂p
∂x

)
i,j

= pi,j − pi,j−1

�x
Backward difference

(
∂p
∂x

)
i,j

= pi,j+1 − pi,j−1

2�x
Central difference

Corresponding relations are easily derived for the other terms appearing
in the partial differential equations. In establishing the algebraic equations,
decisions have to be made from the choice of finite-difference formulations
available. Although the process is straightforward in principle, in practice
there are two particular aspects of the numerical procedures that require
attention, namely the treatment of errors and stability. Errors can be of
two kinds: round-off errors and discretization errors. Round-off errors arise
during iteration as a consequence of the fact that calculations can only be
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Fig. 8.28

performed to a finite number of significant figures. At any grid point, the dis-
cretization error is the difference between the exact analytical solution of the
partial differential equations and the solution derived from the correspond-
ing algebraic equations, assumed free from round-off errors. Discretization
errors depend in part upon the fineness or coarseness of the grid constructed
throughout the flow field, in part upon the rapidity with which flow variables
change with respect to time and space, and also upon the sophistication of
the relationships chosen to represent the difference quotients. The issue of
stability arises in the following way. The ultimate goal of iterative numerical
methods is to find the exact solution of the algebraic equations at all the
grid points in the flow field. This goal is achieved in principle by moving to
it, by a process of repetitive calculations, from a situation where the values
of the flow variables at the grid points do not exactly satisfy the algebraic
equations. Indeed to start the computation the assumed distribution of flow
properties might only be a very rough approximation to the required final
distribution. If the computational procedures give results which converge in
a consistent way on the exact solution the numerical technique is described
as stable. To achieve such desirable results certain stability criteria have to be
satisfied. Otherwise the computation might diverge from the exact solution
or might oscillate without convergence. In practice the goal of an exact solu-
tion to the finite-difference equations is an ideal that is rarely achievable, and
a satisfactory solution is one that approximates to the exact solution within
a specified level of accuracy.

The FEM is another numerical technique for solving the governing partial Finite element method
differential equations, but instead of working with the differential equations
directly, it is based upon integral formulations, using weighting functions,
of the differential equations. The flow field is divided into cells, known as
elements, to form a grid. The elements can be of triangular or quadrilateral
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shape, and the sides of the elements can be straight or curved. The objective
of FEM is to determine the flow variables at selected points associated with
each element. These selected points are known as nodes, and may be posi-
tioned at the corners, at the mid-side or at the centre of the element. Whereas
the FDM requires an orderly, structured grid, with the FEM the grid need
not be structured. The use of an unstructured grid allows complex geomet-
rical shapes to be handled without undue complication, and in this regard
provides FEM with a clear advantage over FDM. Another advantage of FEM
over FDM is in regard to its robust and rigorous mathematical foundations,
which embrace more precise definitions of accuracy than are inherent in
FDM. Perhaps the main drawback of FEM is that it is intellectually much
more demanding; in particular, with FDMs the relationship between the
derived algebraic equations and the partial differential equations they replace
are much more self-evident than is the case of FEM.

The defining feature of the BEM for solving numerically the partial differ-Boundary element
method ential equations is that all nodes are positioned on the boundary of the flow

field, and there are no interior elements.

The starting point for the FVM is the discretization of the integral forms ofFinite-volume method
the flow equations. This approach is particularly suited to the solution of
flow fields containing discontinuities, such as a shock wave in a compressible
flow field. The flow field is divided into cells, and the conservation equations
are solved numerically to determine the magnitude of the flow variables
at the nodes defined for each cell. The FVM shares the advantage of the
FEM of accommodating an unstructured grid. Advocates of FVM claim
that it combines the best feature of the FEM, namely its ability to handle
complex geometries readily, with the virtue of the FDM, the simple and
self-evident relationships between the finite-difference formulations and the
partial differentials they replace.

PROBLEMS

8.1 Determine the ratios of displacement and momentum thick-
ness to the boundary layer thickness when the velocity profile
is represented by u/um = sin(πη/2) where η = y/δ.

8.2 A smooth flat plate 2.4 m long and 900 mm wide moves
lengthways at 6 m · s−1 through still atmospheric air of density
1.21 kg · m−3 and kinematic viscosity 14.9 mm2 · s−1. Assum-
ing the boundary layer to be entirely laminar, calculate the
boundary layer thickness (i.e. the position at which the velocity
is 0.99 times the free-stream velocity) at the trailing edge of the
plate, the shear stress half-way along and the power required to
move the plate. What power would be required if the boundary
layer were made turbulent at the leading edge?

8.3 A smooth flat plate, 2.5 m long and 0.8 m wide, moves length
ways at 3 m · s−1 through still water. The plate is assumed to
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be completely covered by a turbulent boundary layer in which
the velocity distribution is given by 1−(u/U) = (y/δ)1/7 and the
shear stress by τ = 0.023�U2(ν/Uδ)1/4 where U denotes the
steady velocity of the plate, u the velocity in the boundary layer
at distance y from the plate, δ the thickness of the boundary
layer, and � and ν the density and kinematic viscosity of the
water respectively. If ν = 10−6 m2 · s−1, calculate the total drag
on the plate and the power required to move it.

8.4 Air (of kinematic viscosity 15 mm2 · s−1) flows at 10.5 m · s−1

past a smooth, rectangular, flat plate 300 mm × 3 m in size.
Assuming that the turbulence level in the oncoming stream is
low and that transition occurs atRe = 5×105 calculate the ratio
of the total drag force when the flow is parallel to the length of
the plate to the value when the flow is parallel to the width.

8.5 A streamlined train is 110 m long, 2.75 m wide and with sides
2.75 m high. Assuming that the skin friction drag on the sides
and top equals that on one side of a flat plate 110 m long and
8.25 m wide, calculate the power required to overcome the skin
friction when the train moves at 160 km · h−1 through air of
density 1.22 kg · m−3 and dynamic viscosity 1.76×10−5 Pa · s.
How far is the laminar boundary layer likely to extend?

8.6 Air of constant density 1.2 kg · m−3 and kinematic viscosity
14.5 mm2 · s−1 flows at 29 m · s−1 past a flat plate 3 m long.
At a distance 0.5 m from the leading edge a fine trip wire
attached to the surface and set perpendicular to the flow induces
abrupt transition in the boundary layer at that position and also
an abrupt 15% increase in momentum thickness θ . Assuming
steady two-dimensional flow at constant pressure, determine
the drag coefficient for one side of the plate. For the laminar
boundary layer θ = 0.664x(Rex)−1/2 and for the turbulent
layer θ = 0.037x(Rex)−1/5.

8.7 A honeycomb type of flow straightener is formed from perpen-
dicular flat metal strips to give 25 mm square passages, 150 mm
long. Water of kinematic viscosity 1.21 mm2 · s−1 approaches
the straightener at 1.8 m · s−1. Neglecting the thickness of the
metal, the effects of the small pressure gradient and of three-
dimensional flow in the corners of the passages, calculate the
displacement thickness of the boundary layer and the velocity
of the main stream at the outlet end of the straightener. Apply-
ing Bernoulli’s equation to the main stream deduce the pressure
drop through the straightener.

8.8 What frequency of oscillation may be expected when air of
kinematic viscosity 15 mm2 · s−1 flows at 22 m · s−1 past a
3 mm diameter telephone wire which is perpendicular to the
air stream?

8.9 The axis of a long circular cylinder is perpendicular to the undis-
turbed velocity of an unconfined air stream. For an inviscid
fluid the velocity adjacent to the surface of the cylinder would
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be 2U sin θ , where U denotes the velocity far upstream and
θ the angle between the radius and the initial flow direction.
Neglecting changes of elevation and assuming that the pressure
in the wake is sensibly uniform and that there are no discon-
tinuities of pressure anywhere, estimate the position at which
the boundary layer separates if the measured drag coefficient is
1.24. Why will this estimate be somewhat in error?

8.10 If, for the cylinder and air flow mentioned in Problem 8.9,
the boundary layer is entirely laminar, use Thwaites’s method
(with λ = −0.09 at separation) to show that the position of
separation is at θ � 103.1◦.

8.11 Air of kinematic viscosity 15 mm2 · s−1 and density
1.21 kg · m−3 flows past a smooth 150 mm diameter sphere at
60 m · s−1. Determine the drag force. What would be the drag
force on a 150 mm diameter circular disc held perpendicular
to this air stream?

8.12 Calculate the diameter of a parachute (in the form of a
hemispherical shell) to be used for dropping a small object
of mass 90 kg so that it touches the earth at a velocity no
greater than 6 m · s−1. The drag coefficient for a hemispherical
shell with its concave side upstream is approximately 1.32 for
Re > 103. (Air density = 1.22 kg · m−3.)

8.13 Determine the diameter of a sphere of density 2800 kg · m−3

which would just be lifted by an air-stream flowing vertically
upward at 10 m · s−1. What would be the terminal velocity
of this sphere falling through an infinite expanse of water?
(Densities: air 1.21 kg · m−3; water 1000 kg · m−3. Dynamic
viscosities: air 18.0 µPa · s; water 1.0 mPa · s.)

8.14 When water (kinematic viscosity 1.2 mm2 · s−1) flows steadily
at the rate of 18.5 L · s−1 through 25 m of a 100 mm diameter
pipe, the head loss is 1.89 m. Estimate the relative roughness,
the velocity on the axis of the pipe and the shear stress at
the wall.

8.15 Gas is pumped through a smooth pipe, 250 mm in diameter,
with a pressure drop of 50 mm H2O per kilometre of pipe.
The gas density is 0.7 kg · m−3 and the kinematic viscosity is
18 mm2 · s−1. Use eqn 8.52 to determine the rate of flow and
the shear stress at the wall of the pipe.



The flow of an
inviscid fluid 9

9.1 INTRODUCTION

The theory presented in this chapter closely follows aspects from the classical
hydrodynamics, developed by eighteenth-century scientists, who studied the
motion of fluids using mathematical models which assumed that the fluid
had no viscosity and was incompressible.

All real fluids possess viscosity, and are, to some degree, compress-
ible. Nevertheless there are many instances in which the behaviour of real
fluids quite closely approaches that of an inviscid fluid. It has already been
remarked that the flow of a real fluid may frequently be subdivided into two
regions: one, adjacent to the solid boundaries of the flow, is a thin layer in
which viscosity has a considerable effect; in the other region, constituting the
remainder of the flow, the viscous effects are negligible. In this latter region
the flow is essentially similar to that of an inviscid fluid. As for compressibil-
ity, its effects are negligible, even for the flow of a gas, unless the velocity of
flow is comparable with the speed with which sound is propagated through
the fluid, or accelerations are very large. Consequently, relations describing
the flow of an inviscid fluid may frequently be used to indicate the behaviour
of a real fluid away from the boundaries. The results so obtained may be
only an approximation to the truth because of the simplifying assumptions
made, although in certain instances the theoretical results are very close to the
actual ones. In any event, they give valuable insight to the actual behaviour
of the fluid.

In this chapter we shall attempt no more than an introduction to classical
hydrodynamics and its application to a few simple examples of flow. Atten-
tion will be confined almost entirely to steady two-dimensional plane flow.
In two-dimensional flow, two conditions are fulfilled: (a) a plane may be
specified in which there is at no point any component of velocity perpendic-
ular to the plane, and (b) the motion in that plane is exactly reproduced in
all other planes parallel to it. Coordinate axes Ox, Oy, may be considered
in the reference plane, and the velocity of any particle there may be specified
completely by its components parallel to these axes. We shall use the follow-
ing notation: u = component of velocity parallel to Ox; v = component of
velocity parallel to Oy; q2 = u2 + v2.

The condition for continuity of the flow may readily be obtained.
Figure 9.1 shows a small element of volume, δx × δy in section, through
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Fig. 9.1

which the fluid flows. The average velocities across each face of the element
are as shown. For an incompressible fluid, volume flow rate into the element
equals volume flow rate out; thus for unit thickness perpendicular to the
diagram

uδy+ vδx =
(
u+ ∂u

∂x
δx

)
δy+

(
v + ∂v

∂y
δy

)
δx

whence, as the size of the element becomes vanishingly small, we have in the
limit the partial differential equation

∂u
∂x

+ ∂v
∂y

= 0 (9.1)

9.2 THE STREAM FUNCTION

Figure 9.2 illustrates two-dimensional plane flow. It is useful to imagine a
transparent plane, parallel to the paper and unit distance away from it; the
lines in the diagram should then be regarded as surfaces seen edge on, and
the points as lines seen end on. A is a fixed point but P is any point in the
plane. The points A and P are joined by the arbitrary lines AQP, ARP. For
an incompressible fluid flowing across the region shown, the volume rate of
flow across AQP into the space AQPRA must equal that out across ARP.
Whatever the shape of the curve ARP, the rate of flow across it is the same
as that across AQP; in other words, the rate of flow across the curve ARP
depends only on the end points A and P. Since A is fixed, the rate of flow
across ARP is a function only of the position of P. This function is known as
the stream function, ψ . The value of ψ at P therefore represents the volume
flow rate across any line joining P to A at which point ψ is arbitrarily zero.
(A may be at the origin of coordinates, but this is not necessary.)

If a curve joiningA to P′ is considered (Fig. 9.3), PP′ being along a stream-
line, then the rate of flow across AP′ must be the same as across AP since,
by the definition of a streamline, there is no flow across PP′. The value of
ψ is thus the same at P′ as at P and, since P′ was taken as any point on the
streamline through P, it follows that ψ is constant along a streamline. Thus
the flow may be represented by a series of streamlines at equal increments
of ψ , like the contour lines on a map.
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Fig. 9.2

Fig. 9.3

Now consider another point P′′ in the plane, such that PP′′ is a small
distance δn perpendicular to the streamline through P, and AP′′ > AP. The
volume flow rate across the line AP′′ is greater than that across AP by the
increment δψ across PP′′. If the average velocity perpendicular to PP′′ (i.e. in
the direction of the streamline at P) is q, then δψ = qδn and, as δn → 0,

q = ∂ψ/∂n (9.2)

Equation 9.2 indicates that the closer the streamlines for equal increments
of ψ , the higher the velocity. It also shows that the position ofA is immaterial.
Any constant may be added to ψ without affecting the value of the velocity.
Thus the equation ψ = 0 may be assigned to any convenient streamline. To
determine in which direction the velocity is to be considered positive a sign
convention is needed. The usual convention is that a velocity is considered
positive if, across the line drawn outwards from the fixed point A, the flow
is from right to left. Thus the positive direction of a velocity normal to a line
is obtained by turning 90◦ anticlockwise from the direction in which the line
increases in length (Fig. 9.4).

The partial derivative of the stream function with respect to any direction
gives, by eqn 9.2, the component of velocity at 90o anticlockwise to that
direction. Thus we may obtain expressions for the velocity components u
and v:

u = −∂ψ

∂y
; v = +∂ψ

∂x
(9.3)
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Fig. 9.4

An observer standing on the y-axis and facing the direction of increase of y
would see the component u, which is parallel toOx, crossing the y-axis from
left to right. That is why the minus sign appears in the expression for u. On
the other hand, an observer standing on the x-axis and facing the direction
of increase of x would see the component v crossing the x-axis from right to
left. Hence v has a plus sign. (Some writers use the opposite convention.)

The above definition of ψ comes solely from kinematic considerations
(together with the assumed incompressibility of the fluid). Whatever assump-
tion may be made about the form of the function ψ , eqn 9.3 will truly
describe the fluid motion. Whether such a motion is possible under steady
conditions, however, is another matter and this depends on dynamic
considerations (Section 9.6.4).

9.3 CIRCULATION AND VORTICITY

Across any line AP in the fluid the volume flow rate = ∫ P
A qnds where dsCirculation

represents the length of an infinitesimal element of the curve joining A and
P, and qn the component of the velocity perpendicular to it. Similarly we may
consider the integral

∫ P
A qsds where qs represents the component of velocity

along an element of the curve AP wholly in the fluid. If the integration is
performed round a fixed closed circuit, that is,

∮
qsds, the anticlockwise

direction by convention being considered positive, the result is termed the
circulation of that circuit. The circle on the integral sign indicates that the
integration is performed once round the circuit in the anticlockwise direction.
The word circulation is here used in a special sense which is strictly defined by
the integral

∮
qsds; it should not be thought that any fluid element necessarily

circulates round the circuit – after all, the velocity may be zero at some parts
of the circuit.

The symbols � and K are both used for circulation: we shall use �.
The circulation round a large circuit equals the sum of the circulations

round component small circuits contained within the large circuit (provided
that the boundaries of all circuits are wholly in the fluid). This is readily
demonstrated by Fig. 9.5. Suppose that a large circuit is subdivided into any
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Fig. 9.5

Fig. 9.6

number of smaller ones of which M and N are typical. Suppose that along
the common boundary of circuits M and N the velocity is in the direction
shown. Then the integral

∫ B
A qsds along this common boundary makes an

anti-clockwise (i.e. positive) contribution to the circulation round circuit M
but a clockwise (i.e. negative) contribution to that round circuit N. All such
contributions from common boundaries therefore cancel when computing
the total, which then consists only of the circulation round the periphery.

As an example of an elementary circuit arising from the subdivision of a
larger one we consider the elementary rectangle, δx× δy in size, of Fig. 9.6.
The velocities along the sides have the directions and average values shown.
Starting at the lower left-hand corner we may add together the products
of velocity and distance along each side, remembering that circulation is
considered positive anticlockwise.

Circulation, � = uδx+
(
v + ∂v

∂x
δx

)
δy−

(
u+ ∂u

∂y
δy

)
δx− vδy

= ∂v
∂x

δxδy− ∂u
∂y

δyδx (9.4)

Now the vorticity at a point is defined as the ratio of the circulation round an Vorticity
infinitesimal circuit to the area of that circuit (in the case of two-dimensional
plane flow) Thus, from eqn 9.4,

Vorticity, ζ = Circulation
Area

= ∂v
∂x

− ∂u
∂y

(9.5)
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(In the more general case of three-dimensional flow the expression 9.5
represents only a component of the vorticity. Vorticity is a vector quant-
ity whose direction is perpendicular to the plane of the small circuit round
which the circulation is measured.)

Consider alternatively a small circular circuit of radius r (Fig. 9.7):

� =
∮
qsds =

∮
ωr rdθ = r2

∮
ωdθ = r2ω2π

where ω is the mean value of the angular velocity ω about the centre for all
particles on the circle.

ζ = �

Area
= r2ω2π

πr2
= 2ω (9.6)

That is, the vorticity at a point is twice the mean angular velocity of particles
at that point.

Fig. 9.7

If the vorticity is zero at all points in a region of a flow (except certainIrrotational flow
special points, called singular points, where the velocity or the acceleration
is theoretically zero or infinite) then the flow in that region is said to be
irrotational. Flow in regions where the vorticity is other than zero is said to
be rotational. In practice there may be rotational motion in one part of a
flow field and irrotational motion in another part.

The concept of irrotational flow lies behind much of what follows and we
pause here to consider its physical interpretation. Irrotational flow is flow
in which each element of the moving fluid undergoes no net rotation (with
respect to chosen coordinate axes) from one instant to another. A well-
known example of irrotational motion is that of the carriages of the Big
(Ferris) Wheel in a fairground: although each carriage follows a circular
path as the wheel revolves, it does not rotate with respect to the earth – the
passengers remain upright and continue to face in the same direction.

Two examples of fluid flow are depicted in Fig. 9.8. A small element of fluid
is here represented by a quadrilateral with axes AB and CD. At (a) the axis
AB rotates clockwise as the element moves along, but CD rotates an equal
amount anticlockwise so that the net rotation is zero. Although undergoing

Fig. 9.8
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Fig. 9.9

distortion, the element is thus not rotating; the flow is irrotational. At (b),
however, both axes rotate in the same direction: there is in this case rotation
but little distortion.

For an axis in the element originally parallel to Ox and of length δx,
the angular velocity (anti-clockwise) is given by (∂v/∂x)δx ÷ δx = ∂v/∂x.
Similarly the angular velocity (anti-clockwise) of an axis originally parallel
to Oy and of length δy is given by −∂u/∂y. The average angular velocity is
therefore 1

2 {(∂v/∂x)−(∂u/∂y)} which, from eqn 9.5, equals half the vorticity.
The vorticity may in fact be alternatively defined as the algebraic sum of
the angular velocities of two (momentarily) perpendicular line elements that
move with the fluid and intersect at the point in question.

Rotation of a fluid particle can be caused only by a torque applied by shear
forces on the sides of the particle. Such forces, however, are impossible in an
inviscid fluid and so the flow of an inviscid fluid is necessarily irrotational.
Where viscous forces are active, rotation of particles is, with one exception,
inevitable. (The only possible instance of irrotational flow in the presence
of viscous forces is the circulating flow round a circular cylinder rotating
in an infinite expanse of fluid.) For example, in two-dimensional parallel
shear flow, as illustrated in Fig. 9.9, the velocity over the cross-section is
non-uniform. The movement of a fluid element then involves both its distor-
tion and its rotation – although the fluid as a whole is not whirling about a
fixed centre.

Fig. 9.10

9.4 VELOCITY POTENTIAL

When the flow is irrotational the value of the integral
∫ P
A qsds (where qs rep-

resents the component of velocity along an element ds of the curve AP)
is independent of the path between A and P. For example, the circula-
tion round the circuit AQPRA of Fig. 9.10, wholly occupied by the fluid,
equals

∫ P
↑
Q
↑
A

qsds+
∫ A

↑
R
↑
P

qsds =
∫ P

↑
Q
↑
A

qsds−
∫ P

↑
R
↑
A

qsds
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For irrotational flow the circulation is zero and so∫ P
↑
Q
↑
A

qsds =
∫ P

↑
R
↑
A

qsds

In other words, the value of the integral depends only on the position of P
relative to A.

Putting

−φ =
∫ P

A
qsds (9.7)

we have δφ = −qsδs or qs = −∂φ/∂s. (The reason for the minus sign will
appear in a moment.) The function φ is termed the velocity potential. If the
line element, of length δs, is perpendicular to a streamline, then qs = 0
and so δφ = 0. Thus the velocity potential is constant along lines perpen-
dicular to streamlines. These lines of constant velocity potential are known
as equipotential lines. The velocity potential provides an alternative means
of expressing the velocity components parallel to the coordinate axes in
irrotational flow:

u = −∂φ

∂x
; v = −∂φ

∂y
(9.8)

The minus signs in these equations arise from the convention that the velo-
city potential decreases in the direction of flow just as electrical potential
decreases in the direction in which current flows. (Some writers adhere to the
opposite convention by which δφ = qsδs.) The analogy with electrical poten-
tial should not, however, be pushed further than this. Velocity potential is
simply a quantity defined mathematically by eqn 9.7. It is not a physical
quantity that can be directly measured. Its zero position, like that of the
stream function, may be arbitrarily chosen.

Whereas the stream function applies to both rotational and irrotational flow,Potential flow
the velocity potential only has meaning in irrotational flow. This is because
it is only in irrotational flow that the value of

∫ P
A qsds is independent of the

path traversed fromA and P. For this reason irrotational flow is often termed
potential flow.

If the expressions for u and v from eqn 9.8 are substituted into the
continuity relation 9.1 we obtain

∂2φ

∂x2
+ ∂2φ

∂y2
= 0 (9.9)

This is the two-dimensional form of Laplace’s equation which finds applica-
tion in many branches of science. All flows that conform to the principle of
continuity therefore satisfy Laplace’s equation if they are irrotational.

Similar substitutions in the expression for vorticity (9.5) yield

ζ = ∂

∂x

(
−∂φ

∂y

)
− ∂

∂y

(
−∂φ

∂x

)
= − ∂2φ

∂x∂y
+ ∂2φ

∂y∂x
= 0

The vorticity is shown to be zero when a velocity potential φ exists.
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Any function φ that satisfies Laplace’s equation (9.9) is a velocity potential
of a possible flow. There is, however, an infinite number of solutions of
Laplace’s equation, and the actual φ for a particular flow is determined
by the condition that at stationary boundaries the velocity normal to the
surface must be zero. (For an inviscid fluid there is no restriction on the
velocity tangential to the surface.)

For irrotational flow the stream function ψ also satisfies Laplace’s equa-
tion as may be seen by substituting the expressions 9.3 into the expression
for vorticity (9.5) and equating to zero. Flows that satisfy Laplace’s equation
in ψ are irrotational ones; those that do not are rotational. The fact that for
irrotational flow both ψ and φ satisfy Laplace’s equation indicates that the
ψ and φ of one pattern of flow could be interchanged to give φ and ψ of
another pattern.

Example 9.1 In a two-dimensional flow field, the velocity compon-
ents are given by u = A(x2 − y2), and v = 4xy where A is a
constant.

(a) Determine the value of A.
(b) Find the stream function of the flow.
(c) Show that the flow is irrotational, and hence find the velocity

potential.

Solution
(a)

∂u
∂x

= ∂

∂x
[A(x2 − y2)] = 2Ax and

∂v
∂y

= ∂

∂y
(4xy) = 4x

The continuity condition must be satisfied. Hence

∂u
∂x

+ ∂v
∂y

= 0

Substituting:

2Ax+ 4x = 0, ∴ A = −2

(b)

u = −∂ψ

∂y
and v = ∂ψ

∂x

Integrating each expression in turn:

ψ = −
∫
udy+ f1(x) = −

∫ [
−2(x2 − y2)

]
dy+ f1(x)

= 2(x2y− y3/3) + f1(x)

and

ψ =
∫
vdx+ f2(y) =

∫
4xydx+ f2(y) = 2x2y+ f2(y)
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These two relations for ψ must be identical so we deduce that

ψ = 2x2y− 2
3y

3 + const

(c)

∂v
∂x

= ∂

∂x
(4xy) = 4y and

∂u
∂y

= ∂

∂y

[
−2(x2 − y2)

]
= 4y

For irrotational flow
∂v
∂x

− ∂u
∂y

= 0

Substituting:

4y− 4y = 0 QED

u = −∂φ

∂x
Hence

φ = −
∫
udx+ f3(y) = 2x3/3 − 2y2x+ f3(y)

and

v = −∂φ

∂y

Hence

φ = −
∫
vdy+ f4(x) = −2xy2 + f4(x)

Comparing these relations, we deduce

φ = 2
3x

3 − 2xy2 + const�

9.5 FLOW NETS

For any two-dimensional irrotational flow of an inviscid fluid, two series of
lines may be drawn: (1) lines along which ψ is constant, that is, streamlines
and (2) lines along which φ is constant (equipotential lines). The latter, as we
have seen, are perpendicular to the streamlines; thus lines of constant ψ and
lines of constant φ together form a grid of quadrilaterals having 90◦ corners.
This grid arrangement is known as a flow net and it provides a simple yet
valuable indication of the flow pattern.

It is customary to draw the streamlines at equal increments of ψ and the
equipotential lines at equal increments of φ. Then, since q = ∂ψ/∂n, the
higher the velocity the closer the streamlines. Also, since q = −∂φ/∂s,
the higher the velocity the closer the equipotential lines. If �s is made equal
to �n (Fig. 9.11) then in the limit as �s = �n → 0 the quadrilaterals
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Fig. 9.11 Elements of a
flow net.

become perfect squares – except where q is zero or (theoretically) infinity.
For increasing velocities the quadrilaterals become smaller; for decreasing
velocities they become larger.

A flow net may be drawn for any region of a two-dimensional flow.
Fixed solid boundaries, since they have no flow across them, cor-
respond to streamlines and, between these, other streamlines can be
constructed. A set of smooth equipotential lines is then drawn so as
to intersect the streamlines (including the fixed boundaries) perpendicu-
larly and so spaced as to form approximate squares throughout the entire
network.

For high accuracy a computer is used, but a simple graphical technique
is often valuable for obtaining approximate results quickly. Practice in the
art of drawing flow nets enables good results to be achieved more rapidly,
although even the most expert make much use of an eraser. Large-scale
diagrams on thick paper are clearly an advantage.

For a given set of boundary conditions there is only one possible pattern
of the flow of an inviscid fluid, and a correctly drawn flow net satisfying
these conditions will represent this pattern. Velocities at any point may be
deduced by the spacing of the streamlines; pressure variations may then be
calculated from Bernoulli’s equation. A few examples of flow nets are shown
in Fig. 9.12.
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Fig. 9.12 Flow nets.

Fig. 9.13

9.5.1 Flow nets and real fluids

A flow net may be drawn for any arrangement of boundaries, assuming the
flow is everywhere irrotational. In practice, regions of rotational motion
will always exist, to a greater or lesser extent, due to the viscous properties
of fluids. A particular manifestation of viscous action is the appearance of
regions of flow separation in real flows. Two examples of separation are
indicated in Fig. 9.13. At point A the boundary abruptly turns towards the
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Fig. 9.14

fluid, and the flow net indicates that the spacing of the streamlines would
remain finite at this point even if the spacing elsewhere were infinitesimal.
In other words, the velocity at A would be zero, and the point is therefore
known as a stagnation point.

At point B, on the other hand, where the boundary abruptly turns away
from the flow, the spacing of the streamlines would tend to zero while the
spacing elsewhere was still finite. That is, the velocity would be theoretic-
ally infinite. Such a condition is physically impossible, and in fact the flow
separates from the boundary so that a finite velocity may prevail.

An abrupt convex corner (i.e., one with zero radius of curvature) would
thus cause the flow of even an inviscid fluid to leave the boundary. In a
real fluid, as we saw in Section 8.8, the flow tends to leave a boundary
whenever divergence of the streamlines is appreciable (as at the approach
to a stagnation point or following a convex turn of the boundary). When
separation occurs in practice, zones exist in which the fluid particles move
about within the confines of the separation region and make no contribution
to the main flow. Here, then the assumption of irrotational flow on which
the flow net is based is no longer valid.

If a flow net is used to examine conditions in which the velocity adja-
cent to the boundary tends to increase in the streamwise direction and the
streamlines therefore converge, it will provide a good approximation to
the actual pattern of flow. Conversely, where a flow net suggests that the
velocity should decrease along the boundary, the flow net provides a poor
representation of actual flow conditions because viscous effects would be
important here.

For example, the flow net of Fig. 9.14 describes the flow from left to
right with reasonable accuracy. If, however, the flow were from right to
left the same flow net pattern would be obtained but the streamlines would
then diverge, not converge, and the computed streamline pattern would be
unrepresentative of that found in practice.

9.6 BASIC PATTERNS OF FLOW

We shall now investigate a few examples of simple flow patterns. We shall
mostly use the stream function ψ , but it should be remembered that for
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Fig. 9.15

irrotational flows the velocity potential φ could be used for the same
purpose.

9.6.1 Rectilinear flow

For uniform flow with velocity q at an angle α to the x-axis (as in Fig. 9.15),
u = q cos α and v = q sin α, the angle being considered positive in the
anticlockwise direction from Ox.

ψ =
∫

∂ψ

∂x
dx+

∫
∂ψ

∂y
dy

=
∫
vdx+

∫
(−u)dy (from eqn 9.3)

= vx− uy+ C (since u and v are here constant)

The integration constant C may take any convenient value. For uniform
flow parallel to Ox, the streamline along Ox may be designated ψ = 0 and
then, since v = 0 and C = 0, the flow is described by the equation

ψ = −uy (9.10)

or, expressed in polar coordinates where y = r sin θ ,

ψ = −ur sin θ (9.11)

Equation 9.10 is that of the streamline at a distance y above the x-axis and
−uy is the volume rate of flow (for unit distance perpendicular to the x–y
plane) between that streamline and the x-axis where ψ = 0. If the integration
constantCwere not taken as zero this result would be unaffected: at distance
y aboveOx the value of ψ would be −uy+C and along Ox ψ would be C;
the difference would still be −uy. We shall therefore usually set integration
constants equal to zero in subsequent integrations of dψ .

Similarly, if the flow is irrotational

φ =
∫

∂φ

∂x
dx+

∫
∂φ

∂y
dy = −

∫
udx−

∫
v dy = −ux− vy+ C

and where v = 0 and C = 0, φ = −ux.
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Fig. 9.16

9.6.2 Flow from a line source

A source is a point from which fluid issues uniformly in all directions. If, for
two-dimensional flow, the flow pattern consists of streamlines uniformly
spaced and directed radially outwards from one point in the reference plane
(as in Fig. 9.16), the flow is said to emerge from a line source. (We remember
that for two-dimensional flow what appears on the diagram as a point is to
be regarded as a line seen end on.) The strength m of a source is the total
volume rate of flow from it, the line source of two-dimensional flow being
considered of unit length. The velocity q at radius r is given by

Volume rate of flow ÷ Area perpendicular to velocity = m/2πr

for unit depth, since the velocity is entirely in the radial direction. As r → 0,
q → ∞ and so no exact counterpart of a source is found in practice. How-
ever, except at the singular point r = 0, a similar flow pattern would be
achieved by the uniform expansion of a circular cylinder forcing fluid away
from it, or, more approximately, by the uniform emission of fluid through
the walls of a porous cylinder. Nevertheless, the concept of a source has its
chief value in providing a basic mathematical pattern of flow which, as we
shall see, can be combined with other simple patterns so as to describe flows
closely resembling those found in practice.

In cases such as this, where circular symmetry is involved, polar coordin-
ates are more suitable. The velocity qr radially outwards = ∂ψ/∂n =
−∂ψ/r∂θ . The minus sign arises from the ‘right-to-left’ convention and the
fact that the angle θ is considered positive anti-clockwise; the length ∫ rdθ of
a circumferential line therefore increases in the anti-clockwise direction, and
to an observer on this line and facing that direction, the radially outward
flow would appear to move from left to right, that is, in the negative direc-
tion. A tangential velocity qt is given by ∂ψ/∂r; if one looked outwards along
the radius one would see a positive (i.e. anticlockwise) tangential velocity
coming from one’s right and so the sign here is positive.
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For flow from a source at the origin

qt = ∂ψ/∂r = 0 and qr = −(∂ψ/r∂θ) = m/2πr

whence ψ = −mθ/(2π) where θ is in radian measure and taken in the range
0 ≤ θ < 2π . Also −∂φ/∂r = qr = m/2πr and −∂φ/r∂θ = qt = 0, so

φ = −(m/2π) ln(r/C)

where the constant of integration C can be omitted. The streamlines are thus
lines of constant θ , that is, radii, and for irrotational flow, the φ lines are
concentric circles.

9.6.3 Flow to a line sink

A sink, the exact opposite of a source, is a point to which the fluid converges
uniformly and from which fluid is continuously removed. The strength of a
sink is considered negative, and the expressions for velocities and the func-
tions ψ and φ are therefore the same as those for a source but with the signs
reversed.

9.6.4 Irrotational vortex

A flow pattern in which the streamlines are concentric circles is known as aFree vortex
plane circular vortex. The particles of fluid moving in these concentric circles
may, or may not, rotate on their own axes. If they do not, that is, if the flow
is irrotational, the vortex is known as an irrotational or free vortex. We
shall therefore examine the conditions under which flow in a circular path
is irrotational.

Figure 9.17 shows a small element in the reference plane bounded by two
streamlines and two radii. The velocities, considered positive anti-clockwise,
are q and q+ δq along the streamlines as shown, the velocity perpendicular
to the streamlines of course being zero. The circulation � (positive anti-
clockwise) round this small element is therefore

(q+ δq)(R+ δR)δθ − qRδθ = (Rδq+ qδR)δθ

Fig. 9.17
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higher orders of small magnitudes being neglected. Therefore the vorticity

ζ = Circulation
Area

= (Rδq+ qδR)δθ

RδθδR
= q
R

+ δq
δR

= q
R

+ ∂q
∂R

as δR → 0 (9.12)

In this expression for vorticity, R represents the radius of curvature of the
streamlines, not necessarily the polar coordinate.

For irrotational flow,

q
R

+ ∂q
∂R

= 0 (9.13)

Now for a circular vortex, since the streamlines are concentric circles, the
cross-sectional area of a stream-tube is invariant along its length. Continuity
therefore requires the velocity q to be constant along each streamline. In
other words, the velocity varies only with R. The partial derivative ∂q/∂R
is then equal to the full derivative dq/dR and eqn 9.13 may then be written
dq/dR = −q/R which on integration gives

qR = constant (9.14)

This equation describes the variation of velocity with radius in a free, that
is, irrotational, vortex. As R → 0,q → ∞ which in practice is impossible.
In a real fluid, friction becomes dominant as R = 0 is approached, and so
fluid in this central region tends to rotate like a solid body, that is, with
velocity proportional to radius, and eqn 9.14 does not then apply. (Another
possibility is that the centre may be occupied by a solid body or another fluid.)
This discrepancy as R → 0 does not render the theory of the irrotational
vortex useless, however, for in most practical problems our concern is with
conditions away from the central core.

The circulation round a circuit corresponding to a streamline of an irrota-
tional vortex = � = q×2πR. Since qR = constant (eqn 9.14) the circulation
is also constant for the entire vortex. Thus the circulation round an infinites-
imal circuit about the centre is this same non-zero constant, and the vorticity
at the centre is therefore not zero. The free vortex, then, although irrota-
tional everywhere else, has a rotational core at the centre. The centre is a
special, singular, point at which the velocity is theoretically infinite and so
the equations do not necessarily apply there.

For a free vortex centred at the origin of coordinates,

ψ =
∫

∂ψ

∂r
dr+

∫
∂ψ

∂θ
dθ =

∫
qdr+ 0 =

∫
�

2πr
dr = �

2π
ln

(
r
r0

)
(9.15)

where r0 represents the radius at which (arbitrarily) ψ = 0. The constant �

is known as the vortex strength.
We may note in passing that if the streamlines and equipotential lines for

a source (Fig. 9.16) are interchanged, the flow pattern for an irrotational
vortex is obtained, the ψ lines of one flow becoming the φ lines of the other.

At this point a further property of irrotational flow may be considered.
The equation of motion will be derived for the small element of fluid between
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Fig. 9.18

two streamlines shown in Fig. 9.18, the flow being assumed steady. At radius
R from the centre of curvature the pressure is p, at radius R+ δR it is p+ δp;
consequently there is a net thrust on the element, towards the centre of
curvature, equal to

(p+ δp)(R+ δR)δθ − pRδθ − 2
(
p+ δp

2

)
δR sin

δθ

2

(for unit thickness perpendicular to the diagram). As δθ → 0, sin(δθ/2) →
δθ/2 and, with higher orders of small magnitudes neglected, the thrust
reduces to Rδpδθ . (Shear forces, even if present, have no component
perpendicular to the streamlines.)

The component of the weight acting radially inwards

= RδθδR�g (δz/δR) = R�g δθ δz

where δz is the vertical projection of δR so that arccos (δz/δR) is the angle
between the radius and the vertical. Thus the total inward force is

Rδpδθ + R�gδθδz = Mass × Centripetal acceleration

= �RδθδR(q2/R)

Division by R�gδθ gives

δp
�g

+ δz = q2

R
δR
g

(9.16)

Now, by Bernoulli’s theorem for steady flow of a frictionless fluid:

p
�g

+ q2

2g
+ z = H

where H is a constant along a streamline (although it may differ from one
streamline to another). Differentiation gives

δp
�g

+ 2qδq
2g

+ δz = δH (9.17)
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Combining eqns 9.16 and 9.17 we obtain

δH = qδq
g

+ q2δR
Rg

= q
g

(
δq
δR

+ q
R

)
δR

But qδR = δψ and from eqn 9.12

δq
δR

+ q
R

= ζ

∴ δH = ζ
δψ

g
(9.18)

Since bothH and ψ are constant along any streamline, the space between
two adjacent streamlines corresponds to fixed values of δH and δψ . By
eqn 9.18 the vorticity ζ must also have a fixed value between the two stream-
lines and thus, in the limit, it is constant along a streamline. This, then, is the
condition for steady motion: the particles retain their vorticity unchanged
as they move along the streamline.

If in addition the motion is irrotational, then ζ = 0 and hence δH = 0.
That is, if steady flow is also irrotational, H is constant not only along a
single streamline but over the whole region of flow.

The net force on any element of fluid in a vortex towards the axis requires a
decrease of piezometric pressure in that direction. This has consequences that
can often be seen. There is, for example, the fall in the liquid surface when
a vortex forms at the outlet of a bath. A similar effect occurs in whirlpools.
The vortices shed from the wing tips of aircraft have a reduced temperature
at the centre in addition to a lower pressure (since air is a compressible fluid),
and, under favourable atmospheric conditions, water vapour condenses in
sufficient quantity to form a visible vapour trail. A large irrotational vortex
in the atmosphere is known as a tornado: over land the low pressure at the
centre causes the lifting of roofs of buildings and other damage; over water it
produces a waterspout. In practice, the reduction of piezometric pressure at
the centre usually causes some radial flow in addition. This is so, of course,
for the drain-hole vortex (see Section 9.8.8).

In an inviscid fluid an irrotational vortex is permanent and indestructible.
Tangential motion can be given to the fluid only by a tangential force, and
this is impossible. Thus a complete irrotational vortex (i.e. one in which the
streamlines are complete circles) could not be brought into being, although
if it could once be established it could not then be stopped because that too
would require a tangential force. In a real fluid, however, vortices are formed
as a consequence of viscosity, and are eventually dissipated by viscosity. In
an inviscid fluid, a vortex cannot have a free end in the fluid because that
would involve a discontinuity of pressure. This is a consequence of Stokes’s
Theorem. It must either terminate at a solid boundary or a free surface
(like that of the drain-hole vortex), or form a closed loop (like a smoke
ring).
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Example 9.2 A ventilating duct, of square section with 200 mm sides,
includes a 90◦ bend in which the centre-line of the duct follows a
circular arc of radius 300 mm. Assuming that frictional effects are
negligible and that upstream of the bend the air flow is completely uni-
form, determine the way in which the velocity varies with radius in the
bend. Taking the air density as constant at 1.22 kg · m−3, determine
the mass flow rate when a water U-tube manometer connected between
the mid-points of the outer and inner walls of the bend reads 11.5 mm.

Solution
If the upstream flow is uniform, all streamlines have the same Bernoulli
constant and if friction is negligible all streamlines retain the same
Bernoulli constant.

∴ ∂

∂R

(
p∗ + 1

2
�q2

)
= 0

∴ �q
∂q
∂R

= −∂p∗

∂R
= −�q2

R
(by eqn 9.16)

∴ dq
q

= −dR
R

which on integration gives qR = constant = C, the equation for a free
vortex.

∂p∗

∂R
= �q2

R
= �C2

R3

and integration gives

p∗
A − p∗

B = −1
2

�C2

(
1

R2
A

− 1

R2
B

)

1000kg · m−3 × 9.81N · kg−1 × 0.0115 m

= −1
2

× 1.22kg · m−3C2
(

1
0.42

− 1
0.22

)
m−2

whence

�

C = 3.141 m2 · s−1.

∴ Mass flow rate = �Q = �(0.2 m)

∫ 0.4m

0.2m
qdR

= �C(0.2 m)

∫ 0.4m

0.2m

dR
R

= �C(0.2 m) ln 2

= 1.22 kg · m−33.141 m2 · s−10.2 m × ln 2

= 0.531 kg · s−1
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9.6.5 Forced (rotational) vortex

This type of motion is obtained when all particles of the fluid have the same
angular velocity about some fixed axis. That is, the fluid rotates about that
axis like a solid body. Because an external torque is required to start the
motion, the term ‘forced vortex’ has been used, although ‘rigid-body rota-
tion’ might be preferable. Such motion may be produced by rotating about
its axis a cylinder containing the fluid. Alternatively, rotation of a paddle in
the fluid will produce forced vortex motion within its periphery (although
beyond the periphery conditions are more nearly those of an irrotational
vortex). Once steady conditions are established, there is no relative motion
between the fluid particles and thus no shear forces exist, even in a real fluid.
The velocity at radius R from the centre is given by ωR where ω represents
the (uniform) angular velocity. Substituting q = ωR in the centripetal force
equation (9.16) gives

δp
�g

+ δz = ω2R
δR
g

from which integration yields

p
�g

+ z = ω2R2

2g
+ constant

that is, p∗ = �ω2R2

2
+ constant (9.19)

where p∗ = p+ �gz.
Thus the piezometric pressure p∗ increases with radius. Fluid may be sup-

plied to the centre of a forced vortex and then ejected at the periphery at a
much higher pressure. This principle is the basis of operation of the centrifu-
gal pump, which will be considered in Chapter 13. When the discharge valve
of the pump is closed, the blades of the impeller cause the fluid to rotate with
substantially the same angular velocity ω as the pump shaft, and the increase
of piezometric pressure from the inlet to outlet radius is given by

p∗
2 − p∗

1 = �ω2

2

(
R2

2 − R2
1

)
If a forced vortex is produced in a liquid in an open container, the pressure

at the free surface of the liquid is atmospheric and therefore constant. Thus,
for the free surface, z = ω2R2/2g+ constant. If z = z0 when R = 0 then

z − z0 = ω2R2/2g

and ifR is perpendicular to z (i.e. if the axis of rotation is vertical) the surface
is a paraboloid of revolution (Fig. 9.19).

That the forced vortex is rotational is readily seen from the general expres-
sion (9.12) for vorticity where q/R + (∂q/∂R) = ω + ω = 2ω which is not
zero. The fluid particles rotate about their own axes. Consequently, although
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Fig. 9.19 Forced vortex
about vertical axis formed
in liquid in open container.

the Bernoulli constantH is fixed for any particular streamline, it varies from
one streamline to another. Bernoulli’s equation could therefore be applied
between points on the same streamline, but not between points on different
streamlines.

Example 9.3 The axis of a closed cylindrical drum is vertical and its
internal dimensions are: diameter 400 mm, height 560 mm. A small
vertical filling tube (open to atmosphere) is connected to the centre
of the top of the drum and the drum is filled entirely with an oil of
density 900 kg · m−3 to a point in the filling tube 40 mm above the
inner surface of the top of the drum. Inside the drum and concentric
with it is a set of paddles 200 mm diameter. What is the maximum
speed at which the paddles may rotate about their vertical axis if the
pressure in the oil is nowhere to exceed 150 kPa (gauge)? It may be
assumed that all the oil within the central 200 mm diameter rotates as
a forced vortex and that the remainder moves as a free vortex.

Solution
Since ∂p∗/∂r is always >0, maximum p∗ is at greatest radius and max-
imum p is at greatest depth. Let ω = angular velocity of paddles. Then
in the central forced vortex

p∗ = 1
2�ω2R2 + C (eqn 9.19)

Let z = 0 on bottom of drum. Then, at R = 0 on bottom

p= �gh= 900 kg · m−39.81 N · kg−1
(0.56 + 0.04) m = 5297 Pa =C

∴ At z = 0 and R = 0.1 m (the outer edge of forced vortex)

p = 1
2

× 900 kg · m−3ω2(0.1 m)2 + 5297 Pa

= (4.5 kg · m−1)ω2 + 5297 Pa



Combining flow patterns 383

For a free vortex qR = constant = K but there can be no discontinuity
of velocity and so at R = 0.1 m velocities in forced and free vortices
are the same.

∴ K = (ω0.1 m)0.1 m = (0.01 m2)ω

For any type of fluid motion in a circular path

∂p∗

∂R
= �

q2

R
(eqn 9.16)

∴ In this free vortex

∂p∗

∂R
= �

K2

R3

whence p∗ = −�K2/(2R2) +D where D = constant.
Where forced and free vortices join there can be no discontinuity of

pressure. Hence at z = 0 and R = 0.1 m.

p = (4.5 kg · m−1)ω2 + 5297 Pa = −900 kg · m−3 (0.01 m2)2ω2

2(0.1 m)2
+D

whence D = (9.0 kg · m−1)ω2 + 5297 Pa.
So, at z = 0 and R = 0.2 m (outer edge of drum)

p = D− �K2

2R2

= (9.0 kg · m−1)ω2 + 5297 Pa − 900 kg · m−3 (0.01 m2)2ω2

2(0.2 m)2

= 150 000 Pa

∴ ω = 135.6 rad · s−1 (i.e. 21.57 rev/s)

In practice the free vortex in the outer part of the motion would be
modified because the velocity of a real fluid would have to be zero at
the wall of the drum. �

9.7 COMBINING FLOW PATTERNS

If two or more flow patterns are combined, the resultant flow pattern is
described by a stream function that at any point is the algebraic sum of
the stream functions of the constituent flows at that point. By this principle
complicated motions may be regarded as combinations of simpler ones.

Figure 9.20 shows two sets of streamlines, ψ1 etc. and ψ2 etc., with inter-
sections at P,Q,R, S etc. Consider the same arbitrary increment �ψ between
successive streamlines of each set. Then, if A is some suitable reference point
at which both stream functions are zero, the volume flow rate across any
line AP is, by the definition of stream function, ψ1 +�ψ +ψ2. Similarly, the
volume flow rate across any line AQ is ψ1 + ψ2 + �ψ . Consequently, both
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Fig. 9.20

P and Q lie on the resultant streamline ψ1 + ψ2 + �ψ (here shown dotted).
The points R and S likewise lie on the resultant line ψ1 + ψ2 + 2�ψ .

The resultant flow pattern may therefore be constructed graphically simply
by joining the points for which the total stream function has the same value.
Care is necessary, however, in observing the sign convention: flow is con-
sidered positive when it crosses a line such as AP from right to left (from the
point of view of an observer looking from A towards P and each �ψ must
be an increment, not a decrement. Thus, if facing downstream, one would
always see ψ increasing towards one’s right.

This method was first described by W. J. M. Rankine (1820–72). The
velocity components of the resultant motion are given by the algebraic sums
of those for the constituent motions:

u = − ∂

∂y
(ψ1 + ψ2) = −∂ψ1

∂y
− ∂ψ2

∂y
= u1 + u2 and similarly for v.

For irrotational flows the velocity potentials are similarly additive: since
Laplace’s equation is linear in φ, then if φ1 and φ2 are each solutions of the
equation, (φ1 + φ2) is also a solution.

9.8 COMBINATIONS OF BASIC FLOW PATTERNS

9.8.1 Uniform rectilinear flow and line source

For simplicity we take a source (of strength m) at the origin of coordinates
and combine its flow pattern with that of uniform flow of velocityU parallel
to the line θ = 0. The fluid is assumed to extend to infinity in all directions.
The resulting streamline pattern is that of Fig. 9.21. From the source, the
velocity radially outwards, m/(2πr), decreases with increasing radius. So at
some point to the left of O this velocity is exactly equal and opposite to
that of the uniform stream on which it is superimposed. Hence the resultant
velocity there is zero and the point (S) is consequently a stagnation point.
At this point m/(2πr) = U, whence r = m/(2πU). Fluid issuing from the
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Fig. 9.21

source is unable to move to the left beyond S, and so it diverges from the
axis θ = π and is carried to the right.

In two-dimensional flow a streamline represents a surface (viewed edge
on) along which the velocity must everywhere be tangential; hence there can
be no flow perpendicular to the surface. So, for steady two-dimensional flow
of a frictionless fluid, any streamline may be replaced by a thin, solid barrier.
In particular, the resultant streamline diverging from S may be considered
the barrier dividing the previously uniform stream from the source flow.
Since, however, the flows on the two sides of this barrier do not interact, the
pattern of streamlines outside the barrier is identical with that which would
be obtained if the barrier were the contour of a solid body with no flow
inside it. Thus the source is simply a hypothetical device for obtaining the
form of the contour of the body deflecting the originally uniform flow.

Adding the stream functions for the uniform flow and the source we
obtain, for the resultant flow,

ψ = −Uy+
(

−mθ

2π

)
= −Ur sin θ − mθ

2π

At the stagnation point, θ = π ; thus the value of ψ there is −m/2 and this
value must be that everywhere along the streamline corresponding to the
contour of the body. The contour is therefore defined by the equation

−Uy− mθ

2π
= −m

2

It extends to infinity towards the right, the asymptotic value of y being given
by m/2U (when θ → 0) or −m/2U (when θ → 2π ).

The velocity components at any point in the flow are given by

qt = ∂ψ/∂r = −U sin θ
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and

qr = −∂ψ/r∂θ = +U cos θ + (m/2πr)

with q2 = q2
t + q2

r pressures may then be calculated form Bernoulli’s
equation.

The body whose contour is formed by the combination of uniform rectilin-
ear flow and a source is known as a half body, since it has a nose but no tail.
It is a useful concept in studying the flow at the upstream end of symmetrical
bodies long in comparison with their width – such as struts and bridge piers.
The shape of the half body may be altered by adjusting the strength of the
(imaginary) source in relation to U or, more generally, by the use of sources
of various strengths at other positions along the axis to produce a contour
with the desired equation. The upper part of the pattern could be regarded
as representing the flow of liquid in a channel over a rise in the bed, the
flow of wind over a hillside, or the flow past a side contraction in a wide
channel.

Example 9.4 Air flowing past a wall encounters a step of height h =
10 mm, the leading edge of which is profiled to avoid sharp changes
of flow direction, as shown. The flow may be represented by the upper
half-plane of a uniform flow of velocity U parallel to the x-axis and a
line source of strength m. If the velocity of the airstream is 40 m · s−1

determine

(a) the strength of the line source
(b) the distance s the line source is located behind the leading edge of

the step
(c) the horizontal and vertical velocity components at a point on the

step 5 mm above the initial wall surface.

U
h

Solution
By reference to Fig. 9.21, the step may be modelled by the streamline
passing through S, which is given by ψ = −m/2. From the text of
Section 9.8.1, the stream function of the flow is

ψ = −Uy− mθ

2π
= −Ur sin θ − mθ

2π

and the surface of the step is defined by

−Uy− mθ

2π
= −m

2
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Also we note that the source is positioned at the origin of the coordinate
system.
(a) The thickness of the step is defined at θ = 0, where y = h. Hence

−Uh = −m
2

or m = 2Uh = 2 × 40 m · s−1 × 0.01 m

= 0.8 m2 · s−1

(b)

s = m
2πU

= 0.8 m2 · s−1

2π × 40 m · s−1
= 3.18 × 10−3 m = 3.18 mm

(c) The streamline defining the step is

ψ = −Uy− mθ

2π
= −Uh = −m

2

At y = h/2

−Uh
2

− mθ

2π
= −Uh or −Uh

2
− 2Uhθ

2π
= −Uh

which simplifies to θ = π/2, for which x = 0.

u = −∂ψ

∂y
= − ∂

∂y

(
−Uy− mθ

2π

)
= − ∂

∂y

(
−Uy− m arctan(y/x)

2π

)

= U + m
2π

x
x2 + y2

= 40 m · s−1 + 0.8 m2 · s−1

2π

0 m
0 m2 + (0.005 m)2

= 40 m · s−1

v = ∂ψ

∂x
= ∂

∂x

(
−Uy− mθ

2π

)
= ∂

∂x

(
−Uy− m arctan(y/x)

2π

)

= m
2π

y
x2 + y2

= 0.8 m2 · s−1

2π

0.005 m
0 m2 + (0.005 m)2

= 25.5 m · s−1
�

9.8.2 Source and sink of numerically equal strength

The streamline pattern formed by this combination is shown in Fig. 9.22,
the assumption again being made that the fluid extends to infinity in all
directions. If the strength of the source (at A) ism and that of the sink (at B)
is −m, then the stream function of the combined flow is

ψ = −mθ1

2π
+ mθ2

2π
= m

2π
(θ2 − θ1) (9.20)

For any point P in the flow |θ2 − θ1| = ∠APB. Lines of constant ψ (i.e.
streamlines) are therefore curves along which ∠APB is constant, in other
words, circular arcs of which AB is the base chord.

If A is at (−b, 0) and B at (b, 0) then

tan θ1 = y/(x+ b) and tan θ2 = y/(x− b)
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Fig. 9.22

∴ tan(θ2 − θ1) = tan θ2 − tan θ1

1 + tan θ2 tan θ1
= y/(x− b) − y/(x+ b)

1 + {y2/(x2 − b2)}
= 2by
x2 − b2 + y2

and hence (from eqn 9.20)

ψ = m
2π

arctan
2by

x2 − b2 + y2
(9.21)

The angle is between 0 and π if y > 0, or between 0 and −π if y < 0.

9.8.3 Source and sink of numerically equal strength, combined
with uniform rectilinear flow

Uniform rectilinear flow with velocity U parallel to the line θ = 0 may now
be added to the source and sink combination of Section 9.8.2. The resultant
stream function is

ψ = −Uy+ m
2π

(θ2 − θ1) = −Uy+ m
2π

arctan
2by

x2 − b2 + y2

With the source to the left of the origin a stagnation point arises upstream
of the source (as for the half body, Section 9.8.1) and there is a second
stagnation point downstream of the sink. If a stagnation point is at a distance
s from O along the x-axis the velocity there is

U − m
2π(s− b) + m

2π(s+ b) = 0

whence

s = ±b
√(

1 + m
πUb

)

At the stagnation points, y = 0 and θ2 − θ1 = 0 and so there ψ = 0. TheyRankine oval
therefore lie on the line ψ = 0 which is symmetrical about both axes and,
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Fig. 9.23

as shown in Fig. 9.23, encloses all the streamlines running from the source
to the skin. The shape defined by the line ψ = 0 is usually known as the
Rankine oval after W. J. M. Rankine (1820–72) who first developed the
technique of combining flow patterns. (N.B. The Rankine oval is not an
ellipse.) Although ψ = 0 along this line, the velocity is not zero throughout
its length. However, for frictionless flow, the contour of a solid body may be
put in place of this dividing streamline; the flow pattern outside the dividing
streamline is therefore that of an originally uniform stream deflected by a
solid body with the shape of the Rankine oval.

The shape of the solid boundary may be altered by varying the distance
between source and sink or by varying the value of m relative to U – the
source and sink are, after all, quite hypothetical. Other shapes may be
obtained by the introduction of additional sources and sinks along the x-axis,
although the total strength of these must remain zero. Rankine developed
ship contours in this way.

Example 9.5 A Rankine oval of length L and breadth B is produced
in an otherwise uniform stream of velocity 5 m · s−1, by a source and
sink 75 mm apart. Determine L if B = 125 mm.

Solution
The surface of the Rankine oval is defined by ψ = 0. As the oval is
symmetrically disposed about the y-axis its maximum thickness occurs
when x = 0. Write t = B/2. Hence

0 = −Ut + m
2π

arctan
2tb

−b2 + t2
which can be written

2πUt
m

= arctan
2tb

t2 − b2
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Substituting, b = 37.5 mm, t = 62.5 mm,U = 5 m · s−1. Hence

m = 2πUt/arctan
2bt

t2 − b2
= 2π × 5 m · s−1 × 0.0625 m

1.081

= 1.816 m2 · s−1

L = 2s = 2b
(

1 + m
πUb

)1/2

= 2 × 37.5 mm ×
(

1 + 1.816 m2 · s−1

π × 5 m · s−1 × (3.75 × 10−2 m)

)1/2

= 152 mm�

9.8.4 The doublet

If, in the pattern illustrated in Fig. 9.22 the source and sink are moved
indefinitely closer together but the product m× 2b is maintained finite and
constant, the resulting pattern is said to correspond to a doublet or dipole.
The angle APB becomes zero and the streamlines become circles tangential
to the x-axis. (This line, joining source and sink, is known as the axis of the
doublet and is considered positive in the direction sink to source.)

Form eqn 9.21, as 2b → 0,

ψ → m
2π

(
2by

x2 − b2 + y2

)
→ Cy
x2 + y2

= Cr sin θ

r2
= C sin θ

r
(9.22)

where C = constant = mb/π and r, θ are polar coordinates.

9.8.5 Doublet and uniform rectilinear flow

If a doublet at the origin with its axis in the −x direction is combined with
uniform rectilinear flow in the +x direction, the resultant stream function is

ψ = −Uy+ C sin θ

r
= −Ur sin θ + C sin θ

r
(9.23)

This is a limiting case of the combination discussed in Section 9.8.3: when the
source and sink merge to form a doublet the Rankine oval becomes a circle.
Equation 9.23 shows that the streamline ψ = 0 is found when θ = 0, θ = π

or C = Ur2. In other words, ψ = 0 along the x-axis and where

r = √
(C/U) = constant.

With the substitution

C/U = a2 (9.24)
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Fig. 9.24

eqn 9.23 becomes

ψ = −U
(
r− a2

r

)
sin θ (9.25)

For a two-dimensional inviscid flow, eqn 9.25 represents the pattern formed
when, a uniform steady flow, parallel to the x-axis, flows past a circular
cylinder of radius a with its axis at the origin (Fig. 9.24). The velocity at
any point in the flow may be expressed in terms of its radial and tangential
components:

qr = −1
r

∂ψ

∂θ
= U

(
1 − a2

r2

)
cos θ

qt = ∂ψ

∂r
= −U

(
1 + a2

r2

)
sin θ

In particular, at the surface of the cylinder r = a, so qr = 0 and

qt = −2U sin θ (9.26)

Stagnation points (S, S) occur at θ = 0 and θ = π and the velocity at the
surface has a maximum magnitude at θ = π/2 and θ = 3π/2.

The distribution of pressure round the cylinder may also be determined.
For the frictionless, irrotational flow considered, Bernoulli’s equation gives

p∗∞ + 1
2�U2 = p∗ + 1

2�q2

Here p∗∞ represents the piezometric pressure far upstream where the flow is
unaffected by the presence of the cylinder. So, substituting from eqn 9.26,
we obtain

p∗ = p∗∞ + 1
2�U2 − 2�U2 sin2 θ (9.27)

This expression is independent of the sign of sin θ and so the variation of
p∗ with θ is symmetrical about both x- and y-axes. Consequently, the net
force exerted by the fluid on the cylinder in any direction is zero (apart from
a possible buoyancy force corresponding to the �gz part of �∗). This result
is to be expected from the symmetry of the flow pattern. Although the fluid
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exerts a thrust on the upstream half of the cylinder, it exerts an equal and
opposite force on the downstream half. As the fluid is assumed to be inviscid,
no tangential forces can be exerted, and so the net force on the cylinder is
zero. Indeed, by more complicated mathematics, it may be shown that an
inviscid fluid exerts zero net force (apart from buoyancy) on a body of any
shape wholly immersed in it.

This result conflicts with practical experience, and the contradiction isd’ Alembert’s Paradox
known as d’ Alembert’s Paradox after J. R. d’ Alembert (1717–83) who
first obtained the mathematical result. It constituted, for a long time, a great
stumbling-block in the development of classical hydrodynamics. As we have
seen (Section 8.8.3), in a real fluid flowing past a circular cylinder, viscous
action causes the flow to separate from the downstream surface of the cylin-
der to form a wake. Consequently, the pressure on the surface of the cylinder
differs from that of the present inviscid theory, as shown in Fig. 9.25.

The flow pattern shown in Fig. 9.24 is the steady one which would be seenVirtual mass
by an observer at rest relative to the cylinder. A cylinder moving through
fluid otherwise at rest would present the same steady pattern to an observer
moving with the cylinder, but a different, unsteady, one to an observer at
rest. This latter pattern may be deduced by superimposing on the former a
uniform velocity of −U. The relative velocities and the pressures, of course,
remain unchanged. The uniform flow ingredient of the steady pattern is
thereby removed, and there remains simply that part of the doublet pattern
outside the cylinder (i.e. for r > a)

Now for this doublet pattern

ψ = C sin θ

r
= Ua2

r
sin θ (from eqns 9.22 and 9.24)

qr = −1
r

∂ψ

∂θ
= −Ua

2

r2
cos θ and qt = ∂ψ

∂r
= −Ua

2

r2
sin θ

∴ q2 = q2
r + q2

t = U2a4/r4

Fig. 9.25

Inviscid flow theoryInviscid flow theory
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Thus the magnitude of the velocity varies only with r. In an annular
element of radius r and width δr, the kinetic energy divided by the axial
length of the cylinder is 1

2 (2πrδr�)U2a4/r4. The total kinetic energy divided
by length in the whole pattern is therefore∫ ∞

a
π�U2a4 dr

r3
= 1

2
π�U2a2 = 1

2
M′U2 (9.28)

whereM′ = �πa2. When the cylinder is set in motion it has to be given kinetic
energy but, in addition, the fluid that it displaces by its movement has to be
given an amount of kinetic energy 1

2M
′U2. The work done in accelerating

the cylinder is therefore greater than if only the cylinder itself had to be
moved, and the result is the same as if the mass of the cylinder were greater
by an amount M′. This amount M′ is known as the added mass or induced
mass or hydrodynamic mass of the cylinder, and the sum of the actual mass
and the added mass is known as the virtual mass. For the circular cylinder
in unrestricted two-dimensional flow the added mass equals the mass of the
fluid displaced by the cylinder, but this is not a general result applicable
to bodies of any shape. For a sphere in unrestricted three-dimensional flow
the added mass is half the mass of the fluid displaced by the sphere. For
bodies not completely symmetrical the added mass depends on the direction
of motion. Moreover, as the added mass depends on the flow pattern, it is
affected by the presence of other boundaries.

Even where the flow pattern for a real fluid closely approximates to that
of irrotational motion, this pattern is not attained immediately when the
velocity of the body changes. Owing to viscosity, bodies accelerated in real
fluids experience other effects, and measured values of virtual mass differ
somewhat from those predicted by inviscid flow theory. Nevertheless, added
mass is frequently apparent in practice. For aircraft its effects are small
because of the relatively small mass of the air displaced, but in the docking
and mooring of balloons or ships it is important. And in walking through
water one notices the greater force needed to accelerate one’s legs.

9.8.6 Doublet, uniform rectilinear flow and irrotational vortex

A particularly useful combination of flow patterns is obtained when, to the
pattern of Section 9.8.5, is added that of an irrotational vortex with its centre
at the doublet. Since the streamlines of the vortex are concentric circles about
the doublet they do not cut the cylindrical surface, and so their superposition
on the flow pattern round the cylinder is valid. Adding the stream function
for the irrotational vortex (eqn 9.15) to eqn 9.25 we obtain

ψ = −U
(
r− a2

r

)
sin θ + �

2π
ln

(
r
r0

)
(9.29)

as the stream function of the combined flow. (We recall that the value of r0
is quite arbitrary: it simply determines the position of the line ψ = 0 for the
vortex.)
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Whereas the flow past the cylinder without the vortex motion is
symmetrical (Fig. 9.24), the addition of the vortex increases the magnitude
of the velocity on one side of the cylinder and reduces it on the other. The
pattern is no longer completely symmetrical; in consequence, the distri-
bution of pressure round the cylinder is not symmetrical, and there is a
net transverse force. Different flow patterns arise (Fig. 9.26) depending on
the magnitude of the parameter �/(4πaU). We shall now determine the
velocity distribution, and from that the pressure distribution and the net
force.

The tangential velocity qt = ∂ψ/∂r = −U{1 + (a2/r2)} sin θ + �/(2πr)
and at the surface of the cylinder, where the radial component is necessarily
zero,

(qt)r=a = −2U sin θ + �

2πa

Fig. 9.26
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At a stagnation point, qt = 0 and therefore sin θ = �/(4πaU). For
anticlockwise vortex motion, � is positive and, provided that �/(4πaU) < 1,
the two stagnation points are moved above the x-axis, although symmetry
about the y-axis is maintained as shown in Fig. 9.26a. When �/(4πaU) = 1
the two stagnation points merge at θ = π/2 (Fig. 9.26b).

If �/(4πaU) > 1,qt cannot be zero anywhere on the cylinder, and the
stagnation point moves along the y-axis out into the flow (Fig. 9.26c).

On the cylinder surface the velocity must be wholly tangential. The
pressure is then given by Bernoulli’s equation:

p = constant − 1
2�(qt)2

r=a
(If buoyancy is disregarded the z terms may be ignored.) Therefore

p = constant − 1
2

�

(
4U2 sin2 θ − 2U� sin θ

πa

)
the term independent of θ being incorporated in the constant. The first term
in the bracket has the same value for θ as for (π − θ ) and only the second
term can contribute to the net force on the cylinder.

The force radially inwards on a small element of surface area divided by
the length of the cylinder is paδθ . The components of the total force are:

Fx =
∫ 2π

0
pa cos θdθ

Fy = −
∫ 2π

0
pa sin θdθ

The x-component is zero, as the symmetry of the flow pattern about the
y-axis suggests. Remembering that only the last term in the expression for p
will be effective in the integration, we obtain the component of total force
divided by the length of cylinder,

Fy = −�U�

π

∫ 2π

0
sin2 θdθ = −�U� (9.30)

The minus sign is a consequence of our sign conventions for U and �.
For instance, if the main flow is from left to right in a vertical plane (i.e. U
is positive) and � is positive (i.e. anti-clockwise), then Fy is negative, that
is, downwards. This is to be expected: the flow patterns combine to give a
higher velocity below the cylinder than above it and consequently a lower
pressure below than above, and a net downward force.

The phenomenon giving rise to the transverse force is known as theMagnus Magnus effect
effect after the German physicist H. G. Magnus (1802–70) who invest-
igated it experimentally in 1852. For a given value of the circulation �,
the force is independent of the radius a. Indeed, it was later shown by
the German, M. Wilhelm Kutta (1867–1944) and the Russian, Nikolai
E. Joukowski (1847–1921), independently, that for a body of any shape
in two-dimensional flow, the transverse force divided by length is −�U� in
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the plane of flow and it is perpendicular to the direction of U. The result is
therefore known as the Kutta–Joukowski law. It is one of the most useful
results of inviscid flow theory.

The Magnus effect is in no way dependent on viscosity. However, with aRobins effect
real fluid, a circulatory flow near the cylinder surface can be produced by
rotation of the cylinder, since the latter drags a layer of fluid round with it
by viscous action. This kind of effect is largely responsible for the deflec-
tion of golf or tennis balls that are cut or sliced and therefore have a spin
about a vertical axis – a phenomenon remarked on by Newton in 1672.
(For spheres the phenomenon is now sometimes known as the Robins effect,
after Benjamin Robins (1707–51) who in 1742 demonstrated the deflection
of spinning musket balls.) The flow of air round balls is three-dimensional, so
the expression 9.30 does not apply; moreover, viscous action to some degree
invalidates Bernoulli’s equation used in the derivation of the formula. The
transverse force may also be modified by an unsymmetrical wake behind
the ball. There is however, no doubt of the reality of the Magnus effect. It
may be simply demonstrated by holding the free end of a length of cotton
coiled round a long cylinder of paper; when the cylinder is allowed to fall
the resulting rotation produces a Magnus effect which causes the cylinder to
be deflected from a vertical path, as shown in Fig. 9.27.

Fig. 9.27

Experimental results for the transverse force on a rotating cylinder are
different from that given by eqn 9.30. Especially is this so if the cylinder is
relatively short (with a length less than, say, 10 times the diameter). Then
the flow across the ends from the high-pressure side to the low-pressure side
has a considerable effect. This end flow may be largely eliminated by fitting
flat discs, of about twice the cylinder diameter, to the ends. This does not
completely solve the problem because, in a real fluid, the discs introduce
other end effects. In any event, the viscosity of a real fluid alters the flow
pattern from that of an inviscid fluid, so the effective circulation produced
by the surface drag of a rotating cylinder is rarely more than half the value
derived assuming inviscid flow theory.

The transverse force on a rotating cylinder has been used as a form of
ship propulsion. The rotor-ship designed by Anton Flettner (1885–1961)
in about 1924 had large vertical cylinders on the deck. These were rapidly
rotated and, being acted on by the natural wind, took the place of sails. How-
ever, although technically successful, the rotor-ship proved uneconomic. By
far the most important application of the Kutta–Joukowski law is in the the-
ory of the lift force produced by aircraft wings and the blades of propellers,
turbines and so on. The law shows that, for a transverse force to be pro-
duced, a circulation round the body is always required. Some aspects of the
application to aerofoils will be considered in Section 9.10.

9.8.7 Vortex pair

Two irrotational vortices with strengths equal in magnitude but opposite in
sign (i.e. turning in opposite directions) constitute a vortex pair. The stream
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Fig. 9.28

function of the combined flow is given by:

ψ = (−�)

2π
ln
r1
r0

+ �

2π
ln
r2
r0

= �

2π
ln
r2
r1

This equation yields the symmetrical pattern shown in Fig. 9.28a, where the
vortex centres are distance 2b apart.

Each vortex is affected by the movement of the fluid due to the other, and
each therefore moves in a direction perpendicular to the line joining their
centres. From eqn 9.15 the velocity of each centre is given by �/(4πb).
Figure 9.28a represents the pattern seen instantaneously by a stationary
observer. However, an observer moving with the velocity of the vortex
centres (�/4πb) would see the pattern of Fig 9.28b.

To bring the vortex centres to rest relative to the observer, a uniform velo-
city of magnitude �/4πbmay be superimposed on the pattern in the opposite
direction to the observer’s motion. More generally, uniform rectilinear flow,
at velocity V parallel to the y-axis, combined with the vortex pair gives the
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stream function

ψ = �

2π
ln
r2
r1

+ Vx = �

2π
ln

{
(x− b)2 + y2

(x+ b)2 + y2

}1/2

+ Vx

It may readily be shown that, provided V < �/πb, two stagnation points
are formed on the y axis, and a closed curve analogous to a Rankine oval
(Section 9.8.3) is obtained. At those stagnation points, x = 0 and hence
ψ = 0; thus the oval contour has the equation ψ = 0. This curve always
encloses the same particles of fluid which move with the vortex pair.

A vortex pair may be seen when a flat blade such as a knife is held ver-
tically in standing water and moved for a short distance perpendicular to its
breadth. If it is then rapidly withdrawn from the water, a vortex pair, pro-
duced by friction at the blade edges, advances as described above. A small
dimple in the water surface marks the position of each vortex.

In Fig. 9.28b the central streamline along the y-axis may be regarded as a
solid boundary without the pattern on either side being affected. Therefore a
single irrotational vortex close to a plane wall moves along it just as though
another vortex were mirrored in the surface.

The action of one vortex on another is seen in a smoke ring: each element
of the ring is affected by the velocity field of the other elements, and so the
ring advances with uniform velocity as shown in Fig. 9.29.

9.8.8 Irrotational vortex and line source (spiral vortex)

This combination gives a resultant pattern in which flow moves outwards in
a spiral path. The stream function is

ψ = �

2π
ln
r
r0

− mθ

2π

For any streamline, ψ = constant (say C/2π ), whence ln(r/r0) = (C+mθ)/�

which is the equation of a logarithmic spiral. This pattern of flow (Fig. 9.30)
is of considerable practical importance in fluid machinery – for example, in
the volutes of centrifugal pumps.

The converse combination of irrotational vortex and line sink describes the
flow approaching the outlet in the base of a container (the drain hole vortex)

Fig. 9.29
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Fig. 9.30

or, more approximately, that between the guide vanes and the runner of a
Francis turbine.

9.9 FUNCTIONS OF A COMPLEX VARIABLE

We have already shown (Section 9.4) that, in two-dimensional, incompress-
ible, irrotational flow, both φ and ψ satisfy Laplace’s equation. This fact
gives rise to a particularly powerful method of analysing such flows, based
on the properties of functions of a complex variable. We proceed as follows,
using the notation i = √−1.

Consider the function f (x+ iy) of the complex variable

z = x+ iy (9.31)

Then f (x+ iy) has real and imaginary parts given by

f (x+ iy) = α(x, y) + iβ(x, y) (9.32)

where α and β are called conjugate functions. Partial differentiation of
eqn 9.32 with respect to x and y yields

∂f
∂x

= ∂α

∂x
+ i ∂β

∂x
= df

dz
∂z
∂x

= df
dz

(9.33)
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and

∂f
∂y

= ∂α

∂y
+ i ∂β

∂y
= df

dz
∂z
∂y

= i
df
dz

Hence

i
df
dz

= i
∂α

∂x
− ∂β

∂x
= ∂α

∂y
+ i ∂β

∂y

Thus
∂α

∂x
= ∂β

∂y
and

∂α

∂y
= −∂β

∂x
(9.34)

These are the so-called Cauchy–Riemann equations.
Partial differentiation of eqns 9.34 with respect to x and y gives

∂2α

∂x∂y
= ∂2β

∂y2
= −∂2β

∂x2

and

∂2β

∂x∂y
= ∂2α

∂x2
= −∂2α

∂y2

Hence

∂2α

∂x2
+ ∂2α

∂y2
= 0 and

∂2β

∂y2
+ ∂2β

∂x2
= 0

and it is seen that both α and β satisfy Laplace’s equation.
By inspection we can substitute α = φ, β = ψ and we can replace f (x+ iy)

in eqn 9.32 by w, so that we may write

w = φ + iψ
where w is known as the complex potential of the motion and, by virtue of
eqn 9.31, it is a function of the single complex variable z.

From eqn 9.33

dw
dz

= d(φ + iψ)

dz
= ∂φ

∂x
+ i ∂ψ

∂x
= −u+ iv (9.35)

Equation 9.35 shows that both components of the velocity can be obtained
directly by differentiation of the complex potential. It should be noted, how-
ever, that the complex quantity on the right-hand side of eqn 9.35 is not equal
to the velocity vector on account of the negative sign attached to u.

All of the basic patterns of flow considered in Section 9.6 can be formulated
in terms of the complex potential. Some of these are considered here.

9.9.1 Rectilinear flow

Write

w = −Uz (9.36)
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Then

dw
dz

= −U = −u+ iv

Hence u = U and v = 0, so eqn 9.36 represents uniform flow parallel to the
x-axis.
Next consider

w = iVz (9.37)

which on differentiation yields

dw
dz

= iV = −u+ iv

Hence u = 0 and v = V , so eqn 9.37 represents uniform flow parallel to the
y-axis.
Finally let

w = −qze−iα = z(−q cos α + iq sin α) (9.38)

From the preceding results, we see that u = q cos α and v = q sin α, showing
that eqn 9.38 represents a uniform flow with resultant velocity q inclined at
an angle α to the x-axis.

9.9.2 Flow from a line source

Let

w = − m
2π

ln z = − m
2π

ln(reiθ ) = − m
2π

ln r− i m
2π

θ (9.39)

Hence

φ = − m
2π

ln r and ψ = − m
2π

θ

showing that eqn 9.39 represents the complex potential of a line source.

9.9.3 Free vortex

Let

w = i
�

2π
ln z = − �

2π
θ + i �

2π
ln r (9.40)

Then

φ = − �

2π
θ and ψ = �

2π
ln r

which are respectively the velocity potential and stream function of a free
vortex.
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9.9.4 Doublet

Let

w = −Ua
2

z
= −U a2

x+ iy = −U a2

x2 + y2
(x− iy) (9.41)

Then

φ = −U a2x
x2 + y2

= −Ua
2

r
cos θ

and

ψ = U
a2y

x2 + y2
= U

a2

r
sin θ

9.9.5 Circular cylinder in a uniform stream

The complex potentials of the basic patterns of flow can be combined to
investigate other flows. We consider a single example, adding the complex
potentials of a uniform stream parallel to the x-axis to that for a doublet.
Hence we have

w = −Uz −Ua
2

z

By expansion, or inspection of the analyses in Sections 9.9.1 and 9.9.5,
we obtain

φ = −Ux−U a2x
x2 + y2

= −Ux−Ua
2

r
cos θ

and

ψ = −Uy+U a2y
x2 + y2

= −Uy+Ua
2

r
sin θ

The streamline ψ = 0 consists of the straight line y = 0 and the circle defined
by x2 + y2 = a2.

Example 9.6 What flow is represented by the complex potential
w = Uz2?

Solution
We expand the relation to yield

w = Uz2 = U(x+ iy)2 = U(x2 − y2) + 2iUxy

Hence

φ = U(x2 − y2) and ψ = 2Uxy

So the streamlines of the flow are given by the relation y = A/(2Ux)
where A is a constant that varies in magnitude from one streamline
to the next. This relation shows that the non-zero streamlines are
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hyperbolae. The streamlines ψ = 0 are given by x = 0 and y = 0,
and it is deduced that the complex potential represents the flow in a
right-angled corner.

The velocity components are given by

dw
dz

= −u+ iv = 2Uz = 2U(x+ iy)
so that u = −2Ux and v = 2Uy. �

9.10 AN INTRODUCTION TO ELEMENTARY
AEROFOIL THEORY

9.10.1 Definitions

It will be useful at this point to define a few terms commonly used in relation
to wings and aerofoils. To avoid complications, we restrict the definitions
and subsequent discussion to aircraft, and to wings of simple shapes.

Wing: A surface designed to produce aerodynamic lift.
Aerofoil: The cross-sectional shape revealed by a plane cut through a

wing. The plane is typically defined by axes in the vertical and streamwise
directions. (In the United States, the term airfoil is used.)
Chord line: A straight line in the plane of the aerofoil cross-section, which

serves as a datum. It is commonly taken as the line joining the centres
of curvature of the leading (i.e. front) edge and trailing (i.e. rear) edge.
(Although other definitions are sometimes used, this one is precise enough
for our present purpose.) It is not necessarily an axis of symmetry.
Chord, c: The length of the chord line produced to meet the leading and

trailing edges.
Angle of attack or Angle of incidence, α: (Angle of attack is the preferable

name, as angle of incidence is sometimes used with other meanings.) The
angle between the chord line and the freestream direction. More significantly,
zero angle of attack is sometimes defined as that for which the lift is zero.
Span, b: The overall length of the wing; that is the distance between the

wing tips.
Plan area, S: For a wing at zero angle of attack, the area of the projection

of the wing on to a horizontal plane. For a wing of rectangular planform,
plan area = Chord × Span.
Mean chord, c = S/b.
Aspect ratio, AR or A = Span/Mean chord = b/c = b2/S
Lift, L: That component of the total aerodynamic force on the wing, which

is perpendicular to the direction of the oncoming fluid. Lift is not necessarily
vertical.
Drag, D: That component of the total aerodynamic force on the wing,

which is parallel to the direction of the oncoming fluid.

Lift coefficient, CL = L/
(

1
2�U2S

)
.

Drag coefficient, CD = D/
(

1
2�U2S

)
.
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In these expressions, which are both dimensionless, U represents the
freestream velocity.

9.10.2 Wings of infinite span

We have already noted that the Kutta–Joukowski law (eqn 9.30) is applicable
to the two-dimensional flow of an inviscid fluid round a body of any shape.
Joukowski also showed that the flow pattern round a circular cylinder could
be used to deduce the flow pattern for a body of different (but mathematically
related) shape. The mathematical process by which this may be done is
known as conformal transformation. Although details of the technique are
outside the scope of this book, it may be said here that geometrical shapes
and patterns are transformed into other related shapes and patterns. Straight
lines are in general transformed into curves, but angles at intersections are
unchanged, and so are quantities such as circulation. The relevance of the
results for the circular cylinder, then, is that they form the starting point for
transformations to flow patterns for other important shapes.

Since the same basic principle governs the production of a transverse force
on any body – wing, hydrofoil, propeller blade, boat sail etc. – it is sufficient
to consider as an example the wing of an aircraft in level flight. We assume for
the moment that the wing is of infinite span; thus the flow at each section of
the wing may be considered as two-dimensional. Now, for the flow past a
circular cylinder without circulation, the stagnation points are at θ = 0 and
θ = π (Fig. 9.24). The corresponding transformation of this pattern to that
for an aerofoil is shown in Fig. 9.31a. The exact positions of the stagnation
points S1 and S2 on the aerofoil depend on the angle of attack of the aerofoil.
We note that the analysis assumes an inviscid fluid. But when a real fluid,
having flowed along the underside of the aerofoil, is called upon to turn the
sharp corner at the trailing edge in order to reach the stagnation point S2 it
cannot do so. This is because the adverse pressure gradient from the trailing
edge to S2 would cause the boundary layer to separate at the corner (as we
saw in Section 8.8.1).

In fact, for a real fluid the only stable position for the stagnation point S2
is at the trailing edge. A shift of the point S2 to the trailing edge corresponds
to a shift of the downstream stagnation point in Fig. 9.24 from θ = 0 to
θ < 0. To achieve this a negative (clockwise) circulation is required. As
Fig. 9.26a shows, the forward stagnation point moves similarly, and the
transformation of this revised pattern to that for the aerofoil shape is shown
in Fig. 9.31b. Thus, for stable conditions, a circulation has to be established

Fig. 9.31
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round the aerofoil, its magnitude being determined by the shift required to
bring the stagnation point S2 to the trailing edge.

This is Joukowski’s stagnation hypothesis. It tells us that a clockwise cir-
culation is required, but not how it is generated. In an inviscid fluid there
is no process by which circulation can be generated – nor, for that mat-
ter, any process by which circulation, once established, can be changed.
Frederick W. Lanchester (1878–1946) and Ludwig Prandtl (1875–1953) first
explained the production of circulation round an aerofoil as follows.

The initial separation of a real fluid at the trailing edge causes fluid on the Starting vortex
upper surface to move from the stagnation point S2 towards the trailing
edge. This flow is in the opposite direction to that of the inviscid fluid, and
consequently an eddy, known as the starting vortex, is formed, as shown in
Fig. 9.32. This starting vortex is rapidly washed away from the trailing edge
but, in leaving the aerofoil, it generates an equal and opposite circulation
round the aerofoil. The vortex which remains with the aerofoil is known as
the bound vortex. In this way, the net circulation round the dotted curve
in Fig. 9.32 remains zero. This must be so to satisfy a theorem by William
Thomson, later Lord Kelvin (1824–1907): in a frictionless fluid the circula-
tion, around a closed curve that moves with the fluid so as always to enclose
the same particles, does not change with time. (We recall that the viscosity of
a fluid is in evidence only where velocity gradients are appreciable, and that
elsewhere the mean motions of the fluid closely resemble the behaviour of
an inviscid fluid. The dotted curve lies in a region of essentially inviscid flow.)

The circulation round the aerofoil, produced as a reaction to the starting Kutta–Joukowski
conditionvortex, brings S2 to the trailing edge (Fig. 9.32c). The condition for the

circulation in inviscid flow to bring S2 to the trailing edge is known as the
Kutta–Joukowski condition. (In practice, the circulation required to give
stable conditions is slightly less than that for the Kutta–Joukowski condition
because the boundary layer slightly alters the effective shape of the aerofoil.)

Fig. 9.32
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Fig. 9.33 (Crown
Copyright. Reproduced by
permission of the
Controller of HMSO and
the Queen’s Printer for
Scotland.)

Experimental observations have amply confirmed the existence of starting
vortices (Fig. 9.33). Whenever conditions are changed, either by an alteration
in the upstream velocity U or in the angle of attack α, fresh vortices are
formed, and the circulation round the aerofoil takes on a new value. Once
they have left the aerofoil, the starting vortices have no further effect on the
flow round it, and they are ultimately dissipated by viscous action.

Although the viscosity of a real fluid causes the formation of a starting
vortex and thus the generation of circulation round the aerofoil, the trans-
verse force, lift, is not greatly affected by the magnitude of the viscosity.
If the angle of attack is small, so that flow does not separate appreciably
from the upper surface, and if two-dimensional conditions are fulfilled, the
measured lift forces for thin aerofoils agree remarkable will with the Kutta–
Joukowski law, lift divided by length = −�U�.

9.10.3 Wings of finite span

We have so far restricted our discussion to two-dimensional flow. This can
occur only if the wing has an infinite span or if it extends between parallel
frictionless end walls. If, however, the span of the wing is finite and the
ends do not meet walls, then motion of the fluid takes place in the span-wise
direction, and the effect of this additional motion is very important.

When a lift force is produced on the wing the pressure on the underside
is greater than that on the upper. (For the sake of clarity we again consider
the wing of an aircraft in level flight, the lift force then being upwards.)
Consequently fluid escapes round the ends, and on the underside there is
a flow outwards from the centre to the ends, while on the upper side flow
occurs from the ends towards the centre. These movements, superimposed
on the main flow, distort the overall pattern (Fig. 9.34). At the trailing edge,
the fluid from the upper surface forms a surface of discontinuity with that
from the underside. Vortices are set up, and the surface of discontinuity is a
sheet of vortices – each vortex acting like a roller bearing between the upper
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Fig. 9.34

and lower layers. Since the vortex sheet is unstable, however, the individual
vortices entwine to form two concentrated vortices trailing from the wing
close to the tips (Fig. 9.34). On an aircraft wing, the reduction of pressure at
the core of these tip vortices is accompanied by a reduction of temperature,
and, under certain conditions of humidity and ambient temperature, atmo-
spheric moisture condenses to form visible vapour trails extending several
kilometres across the sky. With ships’ propellers the reduction of pressure
at the tips of the blades may cause bubbles to form which are seen following
spiral paths downstream.

The formation of tip vortices does not violate Thomson’s theorem
(Section 9.10.2) because these are of equal but opposite magnitude and the
net circulation remains zero. Their existence in fact maintains the property
of a vortex that it cannot terminate in the fluid but only at a solid boundary.
The circulation round the aerofoil, which produces the lift, derives from the
bound vortex whose axis is along the span. There is no solid boundary at
the ends of the aerofoil and so the circulation cannot stop there. It continues
in the tip vortices. These, in turn, connect with the starting vortex down-
stream so that there is a complete vortex ring. In a real fluid, of course, the
starting vortex and the downstream ends of the tip vortices are extinguished
by viscous action, and only the bound vortex and the forward ends of the
tip vortices persist, forming a so-called horseshoe vortex.

The pressure difference between top and bottom of a wing of finite span
must decrease to zero at the wing tips; consequently the lift also decreases to
zero there. In practice, then, neither the lift nor the circulation is uniformly
distributed along the span, and the variation approximates to a semi-ellipse
(Fig. 9.35). The non-uniform circulation about the wing can be represented
by adding the effects of separate elemental vortices of different lengths, each
having its own pair of trailing vortices in the vortex sheet.

9.10.4 Vortex drag

The tip vortices induce a downward component of velocity, known as
the downwash velocity, in the fluid passing over the aerofoil. When the
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Fig. 9.35

Fig. 9.36

downwash velocity vi is combined with the velocity of the approaching fluid
the effective angle of attack is altered to αe as shown in Fig. 9.36. If the
wing is now treated as one of infinite span but set at the effective angle of
attack αe, the lift force divided by length in the spanwise direction is given
by Le = −�Ue�, and is perpendicular to Ue. The force Le may be resolved
into two perpendicular components: the useful lift L, normal to U, and a
component Di, parallel to U in the rearward direction, called the vortex
drag, formerly known as the induced drag.

In a real fluid, the drag force acting on a wing can be subdivided into
various components (see Section 8.3.3). Some are directly attributable to the
viscous nature of real fluids and affect wings of finite and infinite span. The
vortex drag experienced by a wing of finite span, however, is additional to
these and, as it depends entirely on the downwash velocity induced by the tip
vortices, it would occur in an inviscid fluid. That drag can occur in an inviscid
fluid may seem paradoxical. However, it can be explained by the fact that
the work done against the vortex drag appears as the kinetic energy of the
fluid in the tip vortices which are continuously shed behind the aircraft wing.

From similar triangles in Fig. 9.36

Di/Le = vi/Ue (9.42)

For a wing producing an elliptical distribution of lift (this is a useful approx-Elliptical lift distribution
imation for aircraft wings) (Fig. 9.35), the downwash velocity vi is constant
along the span and equal in magnitude to

−�0/2b (9.43)
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where �0 represents the circulation in the centre of the aerofoil of span b.
At a distance x from the centre the circulation � = �0{1 − (x/1

2b)
2}1/2.

∴ Le =
∫ b/2

−b/2
−�Ue�dx = −�Ue�0

∫ b/2

−b/2

{
1 −

(
x/1

2b
)2

}1/2

dx

= −�Ue�0bπ/4 (9.44)

Combining eqns 9.42, 9.43 and 9.44 we obtain

Di = viLe

Ue
= −�0Le

2bUe
= 4Le

�Uebπ
Le

2bUe
= 2

�πb2

(
Le

Ue

)2

= 2
�πb2

(
L
U

)2

Division by 1
2�U2S gives the result in terms of the dimensionless coefficients:

CDi = C2
L

/(
πb2

S

)
= C2

L/(πAR) (9.45)

The vortex drag is shown to decrease as the aspect ration AR of the wing
increases. It may also be shown that the elliptical distribution of lift here
assumed is the condition for the vortex drag to be a minimum for a given
value of the lift.

Equation 9.45 enables the effect of vortex drag to be separated from other
components of drag, and thus data obtained at one aspect ratio can be
converted for wings with the same aerofoil section but a different aspect
ratio. The change in the effective angle of attack is

arctan(vi/U) = arctan(Di/L) = arctan(CDi/CL) = arctan
(
CL

πAR

)

Phenomena associated with the viscous flow round wings are considered
in Section 8.8.6 and the effect of compressibility is briefly treated in
Section 11.11.

Example 9.7 A wing of span 10 m and mean chord 2 m has a lift
coefficient of 0.914 and a drag coefficient of 0.0588 for an angle of
attack of 6.5◦. If the distribution of lift over the span is elliptical, what
are the corresponding lift and drag coefficients for an aerofoil of the
same profile and effective angle of attack, but aspect ratio 8.0?

Solution
Aspect ratio = 10 m/2 m = 5

CDi = C2
L

πAR
= 0.9142/5π = 0.0532
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The effective angle of attack is less than the nominal value by

arctan
CL

πAR
= arctan

0.914
5π

= 3.33◦

that is, effective angle is 6.5◦ − 3.33◦ = 3.17◦. For AR = ∞ and so no
vortex drag, CD = 0.0588 − 0.0532 = 0.0056.

For AR = 8.0,L = Le cos ε ≈ Le since ε is small. Therefore if
the effective angle of attack is unchanged, the lift is not appreciably
different and CL = 0.914 again.

CDi = 0.9142

8π
= 0.0332 and CD = 0.0056 + 0.0332 = 0.0388

The value of ε is now arctan(CL/πAR) = arctan(0.914/8π) =
2.08◦, and so, if the effective angle of attack is to be unchanged, the
nominal angle must be 3.17◦ + 2.08◦ = 5.25◦.�

PROBLEMS

9.1 Is a flow for which u = 3 m · s−1, v = 8x s−1 possible in an
incompressible fluid? Can a potential function exist?

9.2 Which of the following functions could represent the velocity
potential for the two-dimensional flow of an inviscid fluid?
(a) x + 5y; (b) 3x2 − 4y2; (c) cos(x − y); (d) ln(x + y);
(e) arctan(x/y); (f) arccosec (x/y).

9.3 Show that the two-dimensional flow described (in metre-second
units) by the equation ψ = x+ 2x2 − 2y2 is irrotational. What
is the velocity potential of the flow? If the density of the fluid is
1.12 kg · m−3 and the piezometric pressure at the point (1, −2)
is 4.8 kPa, what is the piezometric pressure at the point (9, 6)?

9.4 Determine the two-dimensional stream function correspond-
ing to φ = A ln(r/r0) where A is a constant. What is the flow
pattern?

9.5 A two-dimensional source at the origin has a strength
(3π/2) m2 · s−1. If the density of the fluid is 800 kg · m−3 cal-
culate the velocity, the piezometric pressure gradient and the
acceleration at the point (1.5 m, 2 m).

9.6 An enclosed square duct of side s has a horizontal axis and
vertical sides. It runs full of water and at one position there is a
curved right-angled bend where the axis of the duct has radius r.
If the flow in the bend is assumed frictionless so that the velocity
distribution is that of a free vortex, show that the volume rate
of flow is related to �h, the difference of static head between
the inner and outer sides of the duct, by the expression

Q =
(
r2 − s2

4

)
(sg�h/r)1/2 ln

(
2r+ s
2r− s

)
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9.7 An open cylindrical vessel, having its axis vertical, is 100 mm
diameter and 150 mm deep and is exactly two-thirds full of
water. If the vessel is rotated about its axis, determine at what
steady angular velocity the water would just reach the rim of
the vessel.

9.8 A hollow cylindrical drum of internal diameter 250 mm is com-
pletely filled with an oil of relative density 0.9. At the centre of
the upper face is a small hole open to atmosphere. The drum
is rotated at 15 revolutions per second about its axis (which is
vertical). Determine the pressure of the oil at the circumference
of the drum and the net thrust on the upper circular face when
steady conditions have been attained.

9.9 Two radii r1 and r2, (r2 > r1), in the same horizontal plane
have the same values in a free vortex and in a forced vortex.
The tangential velocity at radius r1 is the same in both vortices.
Determine, in terms of r1, the radius r2 at which the pressure
difference between r1 and r2 in the forced vortex is twice that
in the free vortex.

9.10 A set of paddles of radius R is rotated with angular velocity ω

about a vertical axis in a liquid having an unlimited free surface.
Assuming that the paddles are close to the free surface and that
the fluid at radii greater than R moves as a free vortex, determ-
ine the difference in elevation between the surface at infinity
and that at the axis of rotation.

9.11 A closed cylindrical drum of diameter 500 mm has its axis ver-
tical and is completely full of water. In the drum and concentric
with it is a set of paddles 200 mm diameter which are rotated
at a steady speed of 15 revolutions per second. Assuming that
all the water within the central 200 mm diameter rotates as a
forced vortex and that the remainder moves as a free vortex,
determine the difference of piezometric pressure between the
two radii where the linear velocity is 6 m · s−1.

9.12 A hollow cylindrical drum has an internal diameter of 600 mm
and is full of oil of relative density 0.9. At the centre of the upper
face is a small hole open to atmosphere. Concentric with the
axis of the drum (which is vertical) is a set of paddles 300 mm
in diameter. Assuming that all the oil in the central 300 mm
diameter rotates as a forced vortex with the paddles and that
the oil outside this diameter moves as a free vortex, calculate the
additional force exerted by the oil on the top of the drum when
the paddles are steadily rotated at 8 revolutions per second.

9.13 In an infinite two-dimensional flow field a sink of strength
−3 m2 · s−1 is located at the origin and another of strength
−4 m2 · s−1 at (2 m, 0). What is the magnitude and direction of
the velocity at (0, 2 m)? Where is the stagnation point?

9.14 A tall cylindrical body having an oval cross-section with major
and minor dimensions 2X and 2Y respectively is to be placed in
an otherwise uniform, infinite, two-dimensional air stream of
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velocityU parallel to the major axis. Assuming irrotational flow
and a constant density, show that an appropriate flow pattern
round the body may be deduced by postulating a source and
sink each of strength |m| given by the simultaneous solution of
the equations

m/πU = (X2 − b2)/b and b/Y = tan(πUY/m)

Determine the maximum difference of pressure between points
on the surface.

9.15 To produce a Rankine oval of length 200 mm and breadth
100 mm in an otherwise uniform infinite two-dimensional
stream of velocity 3 m · s−1 (parallel to the length) what strength
and positions of source and sink are necessary? What is the
maximum velocity outside the oval?

9.16 The nose of a solid strut 100 mm wide is to be placed in an infin-
ite two-dimensional air stream of velocity 15 m · s−1 and density
1.23 kg · m−3 and is to be made in the shape of a half-body.
Determine the strength of the corresponding source, the dis-
tance between the stagnation point and the source, the equation
of the surface in rectangular coordinates based on the source as
origin, and the difference in pressure between the stagnation
point and the point on the strut where it is 50 mm wide.

9.17 To the two-dimensional infinite flow given by ψ = −Uy are
added two sources, each of strength m, placed at (0, a) and
(0, −a) respectively. Ifm > |2πUa|, determine the stream func-
tion of the combined flow and the position of any stagnation
points. Sketch the resulting body contour and determine the
velocity at the point where the contour cuts the y-axis.

9.18 Estimate the hydrodynamic force exerted on the upstream half
of a vertical, cylindrical bridge pier 1.8 m diameter in a wide
river 3 m deep which flows at a mean velocity of 1.2 m · s−1.

9.19 An empty cylinder with plane ends, 300 mm in external dia-
meter and 4 m long, is made entirely from sheet steel (relative
density 7.8) 6 mm thick. While completely submerged in water
it is accelerated from rest in a horizontal direction perpendicu-
lar to its axis. Neglecting end effects and effects due to viscosity,
calculate the ratio of the accelerating force required to the force
needed to give the cylinder the same acceleration from rest in air.

9.20 On a long circular cylinder with its axis perpendicular to an
otherwise uniform, infinite, two-dimensional stream, the stag-
nation points are at θ = 60◦ and θ = 120◦. What is the value
of the lift coefficient?

9.21 At a speed of 6 m · s−1 the resistance to motion of a rotor-ship
is 80 kN. It is propelled by two vertical cylindrical rotors, each
3 m diameter and 9 m high. If the actual circulation generated
by the rotors is 50% of that calculated when viscosity and end
effects are ignored, determine the magnitude and direction of
the rotational speed of the rotor necessary when the ship travels
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steadily south-east at 6 m · s−1 in a 14 m · s−1 north-east wind.
For these conditions use inviscid flow theory to determine the
positions of the stagnation points and the difference between
the maximum and minimum pressures. (Assume an air density
of 1.225 kg · m−3.)

9.22 Show that flow from a two-dimensional source of strength m
at (a, 0) deflected by an impervious wall along the y-axis is
described by

ψ = (−m/2π) arctan{2xy/(x2 − y2 − a2)}
9.23 Water leaves the guide passages of an inward-flow turbine at

a radius of 1.2 m. Its velocity is then 20 m · s−1 at an angle of
70◦ to the radius. It enters the runner at a radius of 900 mm.
Neglecting friction and assuming that the flow is entirely two-
dimensional, calculate the drop in piezometric pressure between
the guide passages and the entry to the runner.

9.24 A kite may be regarded as equivalent to a rectangular aerofoil
of 900 mm chord and 1.8 m span. When it faces a horizontal
wind of 13.5 m · s−1 at 12◦ to the horizontal the tension in
the guide rope is 102 N and the rope is at 7◦ to the vertical.
Calculate the lift and drag coefficients, assuming an air density
of 1.23 kg · m−3.

9.25 A rectangular aerofoil of 100 mm chord and 750 mm span is
tested in a wind-tunnel. When the air velocity is 30 m · s−1 and
the angle of attack 7◦ the lift and drag are 32.8 N and 1.68 N
respectively. Assuming an air density of 1.23 kg · m−3 and an
elliptical distribution of lift, calculate the coefficients of lift,
drag and vortex drag, the corresponding angle of attack for an
aerofoil of the same profile but aspect ratio 5.0, and the lift and
drag coefficients at this aspect ratio.



10 Flow with a free surface

10.1 INTRODUCTION

In previous chapters, a flowing fluid has usually been assumed to be bounded
on all sides by solid surfaces. For liquids, however, flow may take place when
the uppermost boundary is the free surface of the liquid itself. The cross-
section of the flow is not then determined entirely by the solid boundaries,
but is free to change. As a result, the conditions controlling the flow are
different from those governing flow that is entirely enclosed. Indeed, the
flow of a liquid with a free surface is, in general, much more complicated
than flow in pipes and other closed conduits.

If the liquid is bounded by side walls – such as the banks of a river or
canal – the flow is said to take place in an open channel. The free surface is
subjected (usually) only to atmospheric pressure and, since this pressure is
constant, the flow is caused by the weight of the fluid – or, more precisely,
a component of the weight. As in pipes, uniform flow is accompanied by a
drop in piezometric pressure, p+ �gz, but for an open channel it is only the
second term, �gz, that is significant, and uniform flow in an open channel is
always accompanied by a fall in the level of the surface.

Open channels are frequently encountered. Natural streams and rivers,
artificial canals, irrigation ditches and flumes are obvious examples; but
pipe-lines or tunnels that are not completely full of liquid also have the
essential features of open channels. Water is the liquid usually involved, and
practically all the experimental data for open channels relate to water at
ordinary temperatures.

Even when the flow is assumed to be steady and uniform, complete solu-
tions of problems of open channel flow are usually more difficult to obtain
than those for flow in pipes. For one thing there is a much wider range of con-
ditions than for pipes. Whereas most pipes are of circular cross-section, open
channels may have cross-sections ranging from simple geometrical shapes to
the quite irregular sections of natural streams. The state of the boundary
surfaces, too, varies much more widely – from smooth timber, for instance,
to the rough and uneven beds of rivers. The choice of a suitable friction
factor for an open channel is thus likely to be much more uncertain than a
similar choice for a pipe. Also the fact that the surface is free allows many
other phenomena to occur which can markedly affect the behaviour of the
fluid.
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10.2 TYPES OF FLOW IN OPEN CHANNELS

The flow in an open channel may be uniform or non-uniform, steady or
unsteady. It is said to be uniform if the velocity of the liquid does not change –
either in magnitude or direction – from one section to another in the part
of the channel under consideration. This condition is achieved only if the
cross-section of the flow does not change along the length of the channel,
and thus the depth of the liquid must be unchanged. Consequently, uniform
flow is characterized by the liquid surface being parallel to the base of the
channel. Constancy of the velocity across any one section of the stream is
not, however, required for uniformity in the sense just defined; it is sufficient
for the velocity profile to be the same at all cross-sections.

Flow in which the liquid surface is not parallel to the base of the channel
is said to be non-uniform, or, more usually, varied since the depth of the
liquid continuously varies from one section to another. The change in depth
may be rapid or gradual, and so it is common to speak of rapidly varied
flow and gradually varied flow. (These terms refer only to variations from
section to section along the channel – not to variations with time.) Uniform
flow may of course exist in one part of a channel while varied flow exists in
another part.

Flow is termed steady or unsteady according to whether the velocity, and
hence the depth, at a particular point in the channel varies with time. In
most problems concerned with open channels the flow is steady – at least
approximately. Problems of unsteady flow do arise, however; if there is a
surge wave, for example, the depth at a particular point changes suddenly
as the wave passes by.

The type of flow most easily treated analytically is steady uniform flow,
in which the depth of the liquid changes neither with distance along the
channel nor with time. The various types of flow are depicted in Fig. 10.1.
In these diagrams, as in most others in this chapter, the slope of the channels

Fig. 10.1
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is much exaggerated: most open channels have a very small slope, of the
order perhaps of 1 in 1000.

In practice, non-uniform, or varied, flow is found more frequently than
strictly uniform flow. Especially is this so in short channels because a certain
length of channel is required for the establishment of uniform flow. Never-
theless, much of the theory of flow in open channels is necessarily based on
the behaviour of the liquid in uniform flow.

In addition, the flow in an open channel, like that in a pipe, may be
either laminar or turbulent. Which of these types of flow exists depends
on the relative magnitude of viscous and inertia forces, the Reynolds num-
ber, ul/ν, again being used as the criterion. For the characteristic length l
it is customary to use the hydraulic mean depth, m (see Section 10.4), and
the lower critical value of Reynolds number is then about 600. However,
laminar flow in open channels seldom occurs in cases of practical interest;
it is perhaps most commonly observed in the small grooves in domestic
draining boards set at a small slope. In channels of engineering interest,
completely turbulent flow may invariably be assumed: the fact that the
surface of a flowing liquid occasionally appears smooth and glassy is no
indication that turbulent flow does not exist underneath. The inertia forces
usually far outweigh the viscous forces. Thus it is not ordinarily neces-
sary to consider in detail the effect of Reynolds number on the flow in a
channel.

A further important classification of open channel flow is derived from the
magnitude of the Froude number of the flow. The relation of this quantity
to the flow in open channels is discussed in later sections. It may, however,
be said here that when the velocity of the liquid is small it is possible for
a small disturbance in the flow to travel against the flow and thus affect
the conditions upstream. The Froude number (as defined in Section 10.9)
is then less than 1.0, and the flow is described as tranquil. If, on the other
hand, the velocity of the stream is so high that a small disturbance cannot be
propagated upstream but is washed downstream, then the Froude number is
greater than 1.0 and the flow is said to be rapid. When the Froude number
is exactly equal to 1.0, the flow is said to be critical.

To sum up, then, a complete description of the flow thus always consists
of four characteristics. The flow will be:

1. either uniform or non-uniform (varied);
2. either steady or unsteady;
3. either laminar or turbulent;
4. either tranquil or rapid.

10.3 THE STEADY-FLOW ENERGY EQUATION FOR
OPEN CHANNELS

In open channels we are concerned only with fluids of constant density,
and temperature changes are negligible. Therefore at any particular point
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the mechanical energy divided by weight is represented by the sum of three
terms:

p
�g

+ u2

2g
+ z

Now if the streamlines are sensibly straight and parallel – and even in gradu-
ally varied flow the curvature of streamlines is usually very slight – there is a
hydrostatic variation of pressure over the cross-section. In other words, the
pressure at any point in the stream is governed only by its depth below the
free surface. (Where there is appreciable curvature of the streamlines – as
in rapidly varied flow – there are accelerations perpendicular to them, and
consequently differences of pressure additional to the hydrostatic variation.
Also, if the slope of the channel is exceptionally large, say greater than 1 in
10, there is a modification of the hydrostatic pressure variation even when
the streamlines are straight and parallel. This is because lines perpendicu-
lar to the streamlines – along which the piezometric pressure is constant
(Section 3.6) – cannot then be considered vertical.)

When the pressure variation is hydrostatic, a point at which the (gauge)
pressure is p is at a depth p/�g below the surface, and so the sum (p/�g)+ z
(see Fig. 10.2) represents the height of the surface above datum level. The
expression for the mechanical energy divided by weight is thus simplified to

Height of surface above datum + u2/2g (10.1)

We see that the height of the individual streamline above datum has no place
in the expression. If it be further assumed that at the section considered the
velocity is the same along all streamlines, then the expression 10.1 has the
same value for the entire stream.

In practice, however, a uniform distribution of velocity over a section is
never achieved. The actual velocity distribution in an open channel is influ-
enced both by the solid boundaries (as in closed conduits such as pipes) and
by the free surface. Bends in the channel and irregularities in the boundaries
also have an effect. The irregularities in the boundaries of open channels
are usually so large, and occur in such a random manner, that each channel
has its own peculiar pattern of velocity distribution. Nevertheless, it may in
general be said that the maximum velocity usually occurs at a point slightly
below the free surface (at from 0.05 to 0.25 times the full depth) and that
the average velocity, which is usually of the order of 85% of the velocity at

Fig. 10.2
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the surface, occurs at about 0.6 of the full depth below the surface. A typical
pattern for a channel of rectangular section is shown in Fig. 10.3.

Fig. 10.3 Contours of
constant velocity in a
rectangular channel (figures
are proportions of mean
velocity).

As a result of this lack of uniformity of velocity over a cross-section, the
velocity head, u2/2g, representing the kinetic energy of the fluid divided
by weight, has too low a value if calculated from the average velocity u.
To compensate for the error αu2/2g may be used in place of u2/2g, where
α is the kinetic energy correction factor (Section 3.5.3). Experiments show
that the value of α varies from 1.03 to as much as 1.6 in irregular natural
streams, the higher values generally being found in small channels.

The calculation of the momentum of the stream is also affected by a non-
uniform distribution of velocity. The rate at which momentum is carried by
the fluid past a particular cross-section is given by βQ�u where Q repres-
ents the volume flow rate, � the density of the liquid and β the momentum
correction factor (Section 4.2.1). The value of β typically varies from 1.01
to about 1.2.

In straight channels of regular cross-section, however, the effects of a non-
uniform velocity distribution on the calculated velocity head and momentum
flow rate are not normally of importance. Indeed, other uncertainties in the
numerical data are usually of greater consequence. Unless accurate calcula-
tions are justified, therefore, it is usual to assume that the factors α and β

are insufficiently different from unity to warrant their inclusion in formulae.

10.3.1 Energy gradient

In practice, as the liquid flows from one section to another, friction causes
mechanical energy to be converted into heat, and thus lost. If the energy
loss divided by weight is denoted by hf , then for steady flow between two
sections (1) and (2)

(Height of surface)1 + u2
1

2g
− hf = (Height of surface)2 + u2

2

2g

With reference to Fig. 10.4, the equation may be written

h1 + z1 + u2
1/2g − hf = h2 + z2 + u2

2/2g (10.2)

Fig. 10.4
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where the hs represent vertical depths of liquid in the channel, and the zs
the heights of the channel bed above datum level. To take account of non-
uniformity of velocity over the cross-section, we may write

h1 + z1 + α1u
2
1/2g − hf = h2 + z2 + α2u

2
2/2g (10.3)

The rate at which mechanical energy is lost to friction may be expressed
by hf/l, where l represents the length of channel over which the head loss
hf takes place. This quantity hf/l may be termed the energy gradient since it
corresponds to the slope of a graph of the total mechanical energy divided
by weight plotted against distance along the channel. In the special case
of uniform flow, u1 = u2, α1 = α2 and h1 = h2 in eqn 10.3. Therefore
hf = z1 − z2. The energy gradient is thus the same as the actual, geomet-
rical, gradient of the channel bed and of the liquid surface. This, it must be
emphasized, is true only for uniform flow in open channels. In discussing
non-uniform flow it is important to take note of the differences between the
energy gradient, the slope of the free surface and the slope of the bed.

10.4 STEADY UNIFORM FLOW – THE CHÉZY EQUATION

Steady uniform flow is the simplest type of open channel flow to analyse,
although in practice it is not of such frequent occurrence as might at first be
supposed. Uniform conditions over a length of the channel are achieved only
if there are no influences to cause a change of depth, there is no alteration of
the cross-section of the stream, and there is no variation in the roughness of
the solid boundaries. Indeed, strictly uniform flow is scarcely ever achieved in
practice, and even approximately uniform conditions are more the exception
than the rule. Nevertheless, when uniform flow is obtained the free surface
is parallel to the bed of the channel (sometimes termed the invert) and the
depth from the surface to the bed is then termed the normal depth.

The basic formula describing uniform flow is due to the French engineer
Antoine de Chézy (1718–98). He deduced the equation from the results of
experiments conducted on canals and on the River Seine in 1769. Here,
however, we shall derive the expression analytically.

In steady uniform (or normal) flow there is no change of momentum, and
thus the net force on the liquid is zero. Figure 10.5 represents a stretch of
a channel in which these conditions are found. The slope of the channel
is constant, the length of channel between the planes 1 and 2 is l and the
(constant) cross-sectional area is A. It is assumed that the stretch of the
channel considered is sufficiently far from the inlet (or from a change of
slope or of other conditions) for the flow pattern to be fully developed.

Now the control volume of liquid between sections 1 and 2 is acted on by
hydrostatic forces F1 and F2 at the ends. However, since the cross-sections
at 1 and 2 are identical, F1 and F2 are equal in magnitude and have the
same line of action; they thus balance and have no effect on the motion of
the liquid. Hydrostatic forces acting on the sides and bottom of the control
volume are perpendicular to the motion, and so they too have no effect.
The only forces we need consider are those due to gravity and the resistance
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Fig. 10.5

Fig. 10.6

exerted by the bottom and sides of the channel. If the average stress at the
boundaries is τ0, the total resistance force is given by the product of τ0 and
the area over which it acts, that is, by τ0Pl where P represents the wetted
perimeter (Fig. 10.6).

It is important to notice that P does not represent the total perimeter of
the cross-section since the free surface is not included. Only that part of the
perimeter where the liquid is in contact with the solid boundary is relevant
here, for that is the only part where resistance to flow can be exerted. (The
effect of the air at the free surface on the resistance is negligible compared
with that of the sides and bottom of the channel.)

For zero net force in the direction of motion, the total resistance must
exactly balance the component of the weight W. That is

τ0Pl = W sin α = Al�g sin α

whence

τ0 = A
P

�g sin α (10.4)

For uniform flow, however, sin α = hf/l, the energy gradient defined in
Section 10.3.1. Denoting this by i we may therefore write τ0 = (A/P)�gi.

We now require an expression to substitute for the average stress at the
boundary, τ0. In almost all cases of practical interest, the Reynolds number
of the flow in an open channel is sufficiently high for conditions to correspond
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to the turbulent rough flow regime (see Fig. 7.4) in which the stress at the
boundary is proportional to the square of the mean velocity. By analogy
with eqn 7.3, we may therefore take τ0 = 1

2�u2f , where f is independent
of u. Substituting for τ0 in eqn 10.4 gives

1
2

�u2f = (A/P)�gi

whence

u2 = 2g
f
A
P
i = 2g

f
mi (10.5)

where m = A/P.
The quantity m is termed the hydraulic mean depth or hydraulic radius.

For the channel depicted in Fig. 10.6, for example, m would be calculated
by dividing the cross-sectional area ABCD by the wetted perimeter, that is,
the length ABCD only.

Taking square roots in eqn 10.5 and putting

C =
√

(2g/f ) (10.6)

we arrive at Chézy’s equation

u = C
√

(mi) (10.7)

Since u is the average velocity of flow over the cross-section, the discharge
through the channel is given by

Q = Au = AC
√

(mi) (10.8)

The factor C is usually known as Chézy’s coefficient. Its dimensional
formula is

[
g1/2] = [

L1/2T−1] since f is a dimensionless magnitude. Con-
sequently the expression for the magnitude of C depends on the system of
units adopted. It used to be thought thatCwas a constant for all sizes of chan-
nel, but it is now recognized that its value depends to some extent on the size
and shape of the channel section, as well as on the roughness of the bound-
aries. The study of flow in pipes has shown that the friction factor f depends
both on Reynolds number and on the relative roughness k/d. Thus Chézy’s
coefficient C may be expected to depend on Re and k/m (the hydraulic mean
depth, m, is used here as the most significant characteristic length of the sys-
tem), although for the flow conditions usually encountered in open channels
the dependence on Re is slight, and k/m is by far the more important factor.
Although open channels vary widely in the shape of their cross-sections the
use of the hydraulic mean depthm largely accounts for differences of shape.
Experience suggests that the shape of the cross-section has little effect on the
flow if the shear stress τ0 does not vary much round the wetted perimeter.
For the simpler cross-sectional shapes, therefore, the hydraulic mean depth
by itself may be regarded as adequate in describing the influence of the cross-
sectional form on the flow – at least as a first approximation. For channels
of unusual shape, however, the hydraulic mean depth should be used with
considerable caution.
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Many attempts have been made to correlate the large amount of available
experimental data and so enable the value of C for a particular channel to
be predicted. We shall here do no more than mention a few such formulae.
All are based on analyses of experimental results.

The simplest expression, and one that is very widely used, is that ascribed
to the Irish engineer Robert Manning (1816–97). This formula gives

C = m1/6/n

in other words, when combined with Chézy’s equation (10.7), Manning’s
expression becomes

u = m2/3i1/2/n (for metre-second units) (10.9)

(In Central Europe this is known as Strickler’s formula and 1/n as the
Strickler coefficient.)

The n in eqn 10.9 is often known as Manning’s roughness coefficient. For
the equation to be dimensionally homogeneous it appears that n should have
the dimensional formula [TL−1/3]. It is, however, illogical that an expression
for the roughness of the surface should involve dimensions in respect to time,
and it may be seen from comparison with eqn 10.6 that the formula would
be more logically written

u =
(
Ng1/2/n

)
m2/3i1/2

If N is regarded as a numeric, then n takes the dimensional formula
[
L1/6].

However, because g is not explicitly included, eqn 10.9 must be regarded
as a numerical formula, suitable only for a particular set of units. With the
figures usually quoted for n, the units are those based on the metre and the
second.

The expression may be adapted for use with foot-second units by changing
the numeric from 1.0 to 1.49. Then

u = (1.49/n)m2/3i1/2 (for foot-second units) (10.9a)

This change allows the same numbers for n to be used in either eqn 10.9
or eqn 10.9a. Table 10.1 gives a few representative values of n, but it
should be realized that they are subject to considerable variation. The

Table 10.1 Approximate values of Manning’s roughness
coefficient n for straight, uniform channels

Smooth cement, planed timber 0.010
Rough timber, canvas 0.012
Cast iron, good ashlar masonry, brick work 0.013
Vitrified clay, asphalt, good concrete 0.015
Rubble masonry 0.018
Firm gravel 0.020
Canals and rivers in good condition 0.025
Canals and rivers in bad condition 0.035

(For use with metre-second units in eqn 10.9 or foot-second units
in eqn 10.9a.)
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selection of an appropriate value requires much judgement and experience,
and for discussion of the factors affecting n, more specialist works must be
consulted.

Other empirically based formulae that have been used include those due to
Kutter, Bazin and Thijsse, but Manning’s remains much the most popular.
It should never be forgotten that the data available for the construction of
such formulae are the results of experiments in which water at ordinary
temperatures was used under conditions producing turbulent flow at high
values of Reynolds number. To apply formulae of this kind to conditions
not closely similar to those on which the formulae are based is, to say the
least, hazardous. It should be realized that flow in channels of small size or
at an unusually small velocity might well have a Reynolds number lower
than that for which the formulae are truly applicable.

The formulae, such as Chézy’s and Manning’s, that account for the friction
in an open channel have no connection with the Froude number and are thus
applicable to tranquil or rapid flow. It is, however, emphasized again that
they apply only to steady uniform flow.

Flow in open channels, like flow in pipes, is also subject to additional
losses resulting from the presence of abrupt changes of section, bends or
other disturbances to the flow. These additional energy losses are, how-
ever, normally negligible compared with the friction in the channel as a
whole.

10.5 THE BOUNDARY LAYER IN OPEN CHANNELS

We saw in Chapter 7 that the friction factor f , in pipe flow is closely related
to the relative roughness k/d. It is natural to expect that Chézy’s coefficient
C is closely related to the roughness of the boundaries of open channels;
indeed, the results of Nikuradse and others who have studied flow in pipes
may be expected to shed some light on the way in which friction influences
flow in open channels.

Whereas for a circular pipe the diameter is usually regarded as the
significant linear measurement, the hydraulic mean depth (with less justi-
fication) serves the same purpose for open channels. Since C = √

(2g/f )
(eqn 10.6), it is possible to re-plot Nikuradse’s data (Fig. 7.3) in the manner
of Fig. 10.7. Since the hydraulic mean depth of the circular section – with
which Nikuradse was concerned – is d/4, 4m has been substituted for d.

Figure 10.7 shows the way in which C may be expected to depend on
Reynolds number and the relative roughness k/m. In the rough zone of
the graph, C is constant for a particular value of k/m, and it is clearly
to these conditions that Manning’s roughness coefficient n, for example,
applies.

Even the simplest shapes of cross-section for open channels lack the axial
symmetry of a circular pipe, and Fig. 10.7 can be expected to represent open
channel flow only in a qualitative manner. Nevertheless, for the rough zone,
it is of interest to combine eqn 10.6 with eqn 8.55 which gives the friction
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Fig. 10.7

factor for turbulent flow in rough pipes.

C
(2g)1/2

= f−1/2 = 4 log10(d/k) + 2.28

Substituting m1/6/n for C (as in eqn 10.9), and 4m for d, then gives (with
metre-second units)

m1/6

(19.62)1/2n
= 4 log10(4m/k) + 2.28

whence

n = 0.0564m1/6

log10(14.86m/k)

Because an open channel lacks axial symmetry, if for no other reason, the
numerical factors in this expression are hardly trustworthy. Nevertheless the
expression does suggest that, with the logarithmic type of velocity profile
to be expected in turbulent flow, n is not very sensitive to changes in k,
and even less so to changes in m. Many attempts have been made to apply
theories developed for turbulent flow in pipes to that in open channels. The
difficulties, however, are great; in addition, the effects of the free surface and
of non-uniform shear stress round the wetted perimeter are uncertain; and
as yet no conclusive theory has emerged. Even so, the qualitative conclusions
drawn from Fig. 10.7 about the relation of C to the Reynolds number and
to the roughness size are valid – at least for rigid channel boundaries.

In alluvial channels, however, in which the surfaces are composed of mov-
able sand or gravel, the roughness elements are not permanent, but depend
on the flow. Ripples and dunes may form in the boundary material, and the
spacing of these humps may be much greater than the spacing of the irregu-
larities on the walls of pipes or on rigid boundaries of open channels. Under
such conditions as Nikuradse investigated – where the roughness projections
are close together – the wake behind one projection interferes with the flow
around those immediately downstream. The larger irregularities formed in
alluvial channels, however, have a different kind of effect, which, in turn,
results in a much larger friction loss than the size of the individual particles
alone would suggest.
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10.6 OPTIMUM SHAPE OF CROSS-SECTION

The Chézy formula and Manning formula (or any of the others describing
uniform flow in an open channel) show that, for any given value of slope,
surface roughness and cross-sectional area, the discharge Q increases with
increase in the hydraulic mean depth m. Therefore the discharge is a max-
imum when m is a maximum, that is, when, for a given area, the wetted
perimeter is a minimum (since m = A/P by definition). A cross-section hav-
ing such a shape that the wetted perimeter is a minimum is thus, from a
hydraulic point of view, the most efficient. Not only is it desirable to use
such a section for the sake of obtaining the maximum discharge for a given
cross-sectional area, but a minimum wetted perimeter requires a minimum
of lining material, and so the most efficient section tends also to be the least
expensive.

It may be shown that, of all sections whose sides do not slope inwards
towards the top, the semicircle has the maximum hydraulic mean depth.
This mathematical result, however, is not usually the only consideration.
Although semicircular channels are in fact built from prefabricated sec-
tions, for other forms of construction the semicircular shape is impractical.
Trapezoidal sections are very popular, but when the sides are made of
a loose granular material its angle of repose may limit the angle of the
sides.

Another point is this. The most efficient section will give the maximum
discharge for a given area and, conversely, the minimum area for a given
discharge. This does not, however, necessarily imply that such a channel, if
constructed below ground level, requires the minimum excavation. After all,
the surface of the liquid will not normally be exactly level with the tops of
the sides. Nevertheless the minimum excavation may, in certain instances, be
an overriding requirement. Factors other than the hydraulic efficiency may
thus determine the best cross-section to be used for an open channel.

However, when the hydraulic efficiency is the chief concern, determining
the most efficient shape of section for a given area is simply a matter of
obtaining an expression for the hydraulic mean depth, differentiating it and
equating to zero to obtain the condition for the maximum. For example, for
a channel section in the form of a symmetrical trapezium with horizontal
base (Fig. 10.8), the area A and wetted perimeter P are given by

A = bh+ h2 cot α and P = b+ 2h cosec α

Since b = (A/h) − h cot α,

m = A
P

= A
(A/h) − h cot α + 2h cosec α

For a given value of A, this expression is a maximum when its denominator
is a minimum, that is when

(−A/h2) − cot α + 2 cosec α = 0. (The second
derivative, 2A/h3, is clearly positive and so the condition is indeed that for
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Fig. 10.8

a minimum.) Thus

A = h2(2 cosec α − cot α) (10.10)

Substituting this value in the expression for m gives mmax = h/2. In other
words, for maximum efficiency a trapezoidal channel should be so propor-
tioned that its hydraulic mean depth is half the central depth of flow. Since
a rectangle is a special case of a trapezium (with α = 90◦) the optimum
proportions for a rectangular section are again given by m = h/2; taking
A = bh = 2h2 (from eqn 10.10) we get b = 2h.

A further exercise in differential calculus shows that, if α may be varied, a
minimum perimeter and therefore maximum m is obtained when α = 60◦.
This condition, taken in conjunction with the first, shows that the most
efficient of all trapezoidal sections is half a regular hexagon.

The concept of the most efficient section as considered here applies only
to channels with rigid boundaries. For channels with erodible boundaries,
for example, of sand, the design must take account of the maximum shear
stress, τ0, on the boundary. Such considerations as this, however, are outside
the scope of this book.

10.7 FLOW IN CLOSED CONDUITS ONLY PARTLY FULL

Closed conduits only partly full are frequently encountered in civil engineer-
ing practice, particularly as drains and sewers. Because the liquid has a free
surface its flow is governed by the same principles as if it were in a channel
completely open at the top. There are, however, special features resulting
from the convergence of the boundaries towards the top. For conduits of
circular section (see Fig 10.9) the area of the cross-section of the liquid is

r2θ − 2
(

1
2
r sin θr cos θ

)
= r2

(
θ − 1

2
sin 2θ

)
and the wetted perimeter = 2rθ . From an equation such as Manning’s
(eqn 10.9) the mean velocity and the discharge may then be calculated for
any value of θ and hence of h. Figure 10.10 shows these variations, the
variables, u, Q and h being expressed as proportions of their values when
the conduit is full. It will be seen that the maximum discharge and max-
imum mean velocity are both greater than the values for the full conduit.
Differentiation of the appropriate expressions shows that the maximum dis-
charge occurs when h/d is about 0.94, and the maximum velocity when h/d
is about 0.81. These figures are based on the assumption that Manning’s
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Fig. 10.9

Fig. 10.10

roughness coefficient n is independent of the depth of flow. In fact, n may
increase by as much as 25% as the depth is reduced from d to about d/4,
so depths for maximum discharge and maximum mean velocity are slightly
underestimated by the simple analysis. Although it might seem desirable to
design such a conduit to operate under the conditions giving maximum dis-
charge, the corresponding value of h/d is so near unity that in practice the
slightest obstruction or increase in frictional resistance beyond the design
figure would cause the conduit to flow completely full.

The circular shape is frequently modified in practice. For example, when
large fluctuations in discharge are encountered oval or egg-shaped sections
(Fig. 10.11) are commonly used. Thus at low discharges a velocity high
enough to prevent the deposition of sediment is maintained. On the other
hand, too large a velocity at full discharge is undesirable as this could lead
to excessive scouring of the lining material.

Fig. 10.11

10.8 SIMPLE WAVES AND SURGES IN OPEN CHANNELS

The flow in open channels may be modified by waves and surges of various
kinds which produce unsteady conditions. Any temporary disturbance of
the free surface produces waves: for example, a stone dropped into a pond
causes a series of small surface waves to travel radially outwards from the
point of the disturbance. If the flow along a channel is increased or decreased
by the removal or insertion of an obstruction – for example, by the sudden
opening or closing of a sluice gate – surge waves are formed and propagated
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Fig. 10.12

Fig. 10.13

upstream and downstream of the obstruction. In certain circumstances, tidal
action may cause a surge, known as a bore, in large estuaries and rivers,
for example, the River Severn. A positive wave is one that results in an
increase in the depth of the stream; a negative one causes a decrease in depth.

Let us consider the simple positive surge illustrated in Fig. 10.12. To avoid
too much algebraic complication we assume a straight channel of uniform
width whose cross-section is a rectangle with horizontal base. We suppose
also that the slope of the bed is zero (or so nearly zero that the weight of
the liquid has a negligible component in the direction of flow). Uniform
flow at velocity u1 and depth h1, as depicted at the left of the diagram,
is disturbed by, for example, the closing of a gate downstream so that a
positive surge travels upstream, with (constant) velocity c (relative to the
bed of the channel). A short distance downstream of the wave the flow has
again become uniform with velocity u2 and depth h2.

The change of velocity from u1 to u2 caused by the passage of the wave
is the result of a net force on the fluid, the magnitude of which is given by
the momentum equation. To apply the steady-flow momentum equation,
however, coordinate axes must be chosen that move with the wave. The
wave then appears stationary, conditions at any point fixed with respect
to those axes do not change with time, and the velocities are as shown in
Fig. 10.13. The net force acting on the fluid in the control volume indicated
is the difference between the horizontal thrusts at sections 1 and 2. These
sections are sufficiently near each other for friction at the boundaries of the
fluid to be negligible. If the streamlines at these two sections are substantially
straight and parallel then the variation of pressure is hydrostatic and the total
thrust on a vertical plane divided by the width of the channel is therefore
�g(h/2)h = �gh2/2. (As a rectangular section is assumed, in which the
velocities u1 and u2 are uniform across the width, it is sufficient to consider
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thrust divided by width of the channel.) With the further assumption that the
velocity is sufficiently uniform at cross-sections 1 and 2 for the momentum
correction factor to differ negligibly from unity, the steady-flow momentum
equation yields:

−→
Net force on fluid on control volume = �gh2

1

2
− �gh2

2

2

=
−→

Rate of increase of momentum = �Q(u2 − u1) (10.11)

By continuity, Q = (u1 + c)h1 = (u2 + c)h2 whence

u2 = (u1 + c)h1

h2
− c (10.12)

Substituting for Q and u2 in eqn 10.11 gives

�g
2

(
h2

1 − h2
2

)
= �(u1 + c)h1

{
(u1 + c)h1

h2
− c − u1

}

= �(u1 + c)2 h1

h2
(h1 − h2)

whence

u1 + c = (gh2)1/2
(

1 + h2/h1

2

)1/2

(10.13)

If the waves is of small height, that is h2 � h1 � h, then eqn 10.13 reduces
to u1 + c = (gh)1/2. In other words, the velocity of the wave relative to the
undisturbed liquid ahead of it is (gh)1/2. No restriction, it should be noted,
was placed on the values of u1 and u2: either may be zero or even negative,
but the analysis is still valid.

This derivation applies only to waves propagated in rectangular channels.
For a channel of any shape it may be shown that the velocity of propagation
of a small surface wave is (gh)1/2 relative to the undisturbed liquid where h
represents the mean depth as calculated from

Area of cross-section
Width of liquid surface

= A
B

(see Fig. 10.14)

Although (gh)1/2 represents the velocity of propagation of a very small
surge wave, it should not be forgotten that a larger positive wave will be

Fig. 10.14
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propagated with a higher velocity – as shown by eqn 10.13. Moreover, the
height of the wave does not remain constant over appreciable distances; fric-
tional effects, which in the above analysis were justifiably assumed negligible
in the short distance between sections 1 and 2, gradually reduce the height
of the wave.

In Fig. 10.12 the wave was shown with a more or less vertical front. For
a positive wave this is the stable form. If the wave originally had a sloping
front (as in Fig. 10.15) it could be regarded as the superposition of a number
of waves of smaller height. As the velocity of propagation of such smaller
waves is given by (gh)1/2, the velocity of the uppermost elements would be
somewhat greater than that of the lower ones. Thus the sloping front of the
waves would tend to become vertical.

The opposite, however, is true for a negative wave (Fig. 10.16). Since the
upper elements of the wave move more rapidly, the wave flattens and the
wave front soon degenerates into a train of tiny wavelets.

Small disturbances in a liquid may often cause waves of the shape shown
in Fig. 10.17. This sort of wave may simply be regarded as a positive wave
followed by a negative one and, provided that it is only of small height, its
velocity of propagation is (gh)1/2 as for the small surge wave.

Where the scale is small, as for example in small laboratory models,
another type of wave may be of significance. This is a capillary wave which
results from the influence of surface tension. In fact, the velocity of propaga-
tion of any surface wave is governed by both gravity forces and surface
tension forces. However, for the single surge wave in a large open chan-
nel of the size considered in civil engineering projects, the effect of surface
tension is negligible.

For waves on the surface of deep water, for example on the surface of the
sea, different considerations apply. This is largely because the assumption of
a uniform distribution of velocity over the entire depth is not valid for large
depths. Moreover, ocean waves appear as a succession or train of waves in

Fig. 10.15

Fig. 10.16

Fig. 10.17
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which the waves follow one another closely, so an individual wave cannot be
considered separately from those next to it. We shall give some consideration
to waves of this type in Section 10.13. For the moment our concern is with
the propagation of small disturbances in open channels of small depths.

10.9 SPECIFIC ENERGY AND ALTERNATIVE DEPTHS
OF FLOW

As we saw in Section 10.3, the total head (i.e. the total mechanical energy
divided by weight of liquid) is given by p/�g+u2/2g+ z in which z rep-
resents the height of the point in question above some arbitrary horizontal
datum plane. If the channel slope is small and the streamlines are straight
and parallel, so that the variation of pressure with depth is hydrostatic – and
this is a most important proviso – then the sum (p/�g)+z is equivalent to the
height of the free surface above the same datum. If, at a particular position,
the datum level coincides with the bed of the channel, then the local value
of the energy divided by weight is given by h + u2/2g, where h represents
the depth of flow at that position. (We consider channels in which the velo-
city distribution over the cross-section is sensibly uniform.) This quantity
h + u2/2g is usually termed the specific energy, E (or occasionally specific
head). The name, though in very wide use, is in many respects unsatisfactory,
particularly as specific energy has other meanings in other contexts. It should
here be regarded as no more than a useful shorthand label for h+ u2/2g.

The fact that the bed of the channel may not be precisely horizontal does
not matter: specific energy is essentially a local parameter, applied over a
short length of the channel in which any change of bed level is negligible.

From the form of the expression E = h + u2/2g we see that a particular
value of E could be composed of a small value of h and a large value of
u2/2g, or of large value of h and a small value of u2/2g, even when the
volume flow rate Q remains unaltered. Since the mean velocity u = Q/A,
where A represents the cross-sectional area of the stream at the position
considered, we may write

E = h+ 1
2g

(
Q
A

)2

(10.14)

Although, as we shall see later, the principles may be applied to channels with
any shape of cross-section, we may for the moment consider a wide channel
of rectangular cross-section so as to illustrate the fundamentals with the
minimum of mathematical complication. If the width of such a rectangular
section is b, then from eqn 10.14

E = h+ 1
2g

(
Q
bh

)2

= h+ 1
2g

(q
h

)2
(10.15)

where q = Q/b.
Equation 10.15 relates the specific energy E, the depth h and the discharge

divided by width q. In the most general case, of course, all three quantities
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Fig. 10.18

Fig. 10.19

vary, but particular interest attaches to those instances in which q is constant
while h and E vary, and those in which E is constant while h and q vary.

If q is kept constant Emay be plotted against h as in Fig. 10.18 (it is more
suitable to plot E along a horizontal than a vertical axis); alternatively, if E
is kept constant h may be plotted against q as in Fig. 10.19.

Let us first consider Fig. 10.18. This is usually known as the specific-energy
diagram. With q constant, a small value of h corresponds to a high velocity
and thus, as h tends to zero, u2/2g tends to infinity and so also does E.
Hence the specific energy curve is asymptotic to the E axis. Conversely, as h
increases, the velocity becomes smaller, the u2/2g term becomes insignificant
compared with h, and E tends to h. The upper part of the specific-energy
curve is thus asymptotic to the line E = h, which, if identical scales are
used on the two axes, has a slope of unity on the diagram. There is clearly a
minimum value of E between these two extremes. This minimum occurs at
a value of h known as the critical depth, hc.

For each value of E other than the minimum it is seen that there are two
possible values of h, one greater and one less than hc. (Although eqn 10.15
is a cubic in h, the third root is always negative and therefore physically
meaningless.) These two values are known as alternative depths. We shall
examine the significance of these a little later, but first we study the conditions
under which the critical depth is found.
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The conditions for the critical depth are those for minimum E, which, for
a channel of rectangular section, may be found by differentiating eqn 10.15
with respect to h and equating the result to zero.

∂E
∂h

= 1 + q2

2g

(
− 2
h3

)
This expression is zero when q2/gh3 = 1 that is, when h = (q2/g)1/3. This
value of h is the critical depth hc and so we may write

hc =
(
q2/g

)1/3
(10.16)

The corresponding minimum value of E is obtained by substituting the
value of q from eqn 10.16 in eqn 10.15:

Emin = hc + gh3
c/2gh2

c = 3
2
hc (10.17)

These relations, it must be emphasized, refer only to channels of rectangular
cross-section.

It is also of interest to examine the situation in which the specific energy
E is kept constant while h and q vary, as in Fig. 10.19. This curve shows
that q reaches a maximum value for a particular value of h. Equation 10.15
may be rearranged to give q2 = 2gh2(E− h). Differentiating with respect to
h gives 2q(∂q/∂h) = 2g(2Eh− 3h2) and so ∂q/∂h = 0 when

h = 2
3
E (10.18)

This, however, is identical with eqn 10.17 and so it may be said that at the
critical depth the discharge is a maximum for a given specific energy, or that
the specific energy is a minimum for a given discharge. Thus, if in a particular
channel the discharge is the maximum obtainable then somewhere along its
length the conditions must be critical. It is not surprising that the conditions
for maximum q and minimum E correspond: the curves of Figs 10.18 and
10.19 are plotted from the same equation.

Since u = Q/bh = q/h, the velocity corresponding to the critical depth
may be determined from eqn 10.16.

uc = q
hc

=
(
gh3

c
)1/2

hc
= (ghc)

1/2 (10.19)

The velocity uc, which occurs when the depth is at its critical value hc, is
known as the critical velocity. This velocity has no connection with the
critical velocity at which turbulent flow becomes laminar, and it is perhaps
unfortunate that the term has been duplicated.

Equation 10.19 is an expression for the critical velocity in a channel of rect-
angular section but the corresponding result for a channel with any shape of
section may be obtained simply. As before (eqn 10.14), for uniform velocity
the specific energy at a particular section is given by

E = h+Q2/2gA2
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Fig. 10.20

Differentiation with respect to h gives

∂E
∂h

= 1 + Q2

2g

(
− 2
A3

)
∂A
∂h

Now, from Fig. 10.20, the small increase of area δA, which corresponds to
a small increase δh in the depth, is given by Bδh where B is the breadth of
the surface. Hence, as δh → 0, δA/δh → ∂A/∂h = B.

∴ ∂E
∂h

= 1 − Q2

gA3
B

which is zero whenQ2 = gA3/B, that is, when gA/B = Q2/A2 = u2. If A/B
is regarded as the mean depth of the section and is represented by h then

uc = (gA/B)1/2 =
(
gh

)1/2
(10.20)

(This mean depth h must not be confused with the hydraulic mean
depth A/P.)

The great importance of the critical conditions is that they separate two
distinct types of flow: that in which the velocity is less than the critical value
and that in which the velocity exceeds the critical value. As we have seen in
Section 10.8, the critical velocity uc = (gh)1/2 corresponds to the velocity
of propagation (relative to the undisturbed liquid) of a small surface wave
in shallow liquid. Thus, when the velocity of flow is less than the critical
velocity, it is possible for a small surface wave to be propagated upstream
as well as downstream. Any small disturbance to the flow can cause a small
surface wave to be formed, and this wave may be regarded as carrying, to
the liquid further away, information about the disturbance. If the wave,
as messenger, can be propagated against the flow then the liquid upstream
will be informed of the disturbance and its behaviour will be influenced
accordingly. When the flow velocity is less than (gh)1/2, then the behaviour
of the liquid upstream can be influenced by events downstream.

If, on the other hand, the flow velocity is greater than the critical, the liquid
travels downstream faster than a small wave can be propagated upstream.
Information about events downstream cannot therefore be transmitted to
the liquid upstream, and so the behaviour of the liquid is not controlled
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by downstream conditions. In these circumstances small waves may be
propagated only in the downstream direction.

When the flow is just at the critical velocity a relatively large change
of depth causes only a small change of specific energy (as is shown by
Fig. 10.18). Consequently small undulations on the surface are easily formed
under these conditions. A small wave that attempts to travel upstream,
however, makes no progress, and so is known as a standing wave. The
appearance of stationary waves on the surface of flowing liquid is therefore
an indication of critical flow conditions.

Thus we see that the behaviour of liquid flowing in an open channel
depends very largely on whether the velocity of flow is greater or less than
the critical velocity.

The ratio of the mean velocity of flow to the velocity of propagation of
a small disturbance is u/(gh)1/2 and this is seen to be of the same form as
the Froude number, the dimensionless parameter we met in Section 5.3.2.
If the mean depth h, defined as the cross-sectional area divided by the sur-
face width, is used as the characteristic length in the expression for Froude
number, and the mean velocity of flow for the characteristic velocity, then
u/(gh)1/2 = Fr. Thus for critical conditions u = (gh)1/2 and Fr = 1.
Alternatively it may be said that the critical Froude number is unity.

Uniform flow at the critical velocity may be produced in a long open
channel if the slope is suitable. The value of the slope for which critical
uniform flow is achieved is known as the critical slope. Using the Chézy
formula, we obtain uc = (gh)1/2 = C(mi)1/2. In uniform flow the energy
gradient i and the slope of the bed s are equal and so the critical slope sc is
defined by (gh)1/2 = C(msc)1/2. A slope less than the critical slope is known
as mild; a slope greater than the critical is steep. Since, however, the critical
slope is a function of the depth and therefore of the rate of flow, a given
channel may have a mild slope for one rate of flow but a steep slope for
another rate.

Flow in which the velocity is less than the critical velocity is referred
to as tranquil; flow in which the velocity is greater than the critical is
known as rapid or shooting. Other pairs of names are often used, the most
common alternatives probably being sub-critical and super-critical. These
last-mentioned terms, it should be noted, refer to the velocity; sub-critical
velocity, however, corresponds to a depth greater than the critical depth,
and super-critical velocity corresponds to a depth smaller than the critical
depth. The terms sub- and super-critical are thus apt to give rise to confusion.
The same criticism may be levelled at the terms subundal and superundal
(from Latin unda = a wave). In this book we shall use the terms tranquil and
rapid. Tranquil flow, then, has a velocity less than the critical velocity and
consequently a Froude number less than 1; rapid flow has a Froude number
greater than 1.

It will be noticed that – provided that the velocity is uniform over the
cross-section – the relations governing the critical conditions of flow involve
only the volume rate of flow and the shape of the cross-section. They do not
depend on the roughness of the boundaries.
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Example 10.1 The cross-section of a river is rectangular and the
width is 25 m. At a point where the river bed is horizontal the piers of
a bridge restrict the width to 20 m. A flood of 400 m3 · s−1 is to pass
under the bridge with the upstream depth a minimum. Given that this
occurs when the flow under the bridge is critical, determine:

(a) the depth of the water under the bridge
(b) the depth of water upstream.

Solution
Denote upstream conditions by suffix 1 and those under the bridge by
suffix 2. The flow under the bridge is critical. Hence, from Fig. 10.19,
h1 > h2. Also u2 = √

gh2. From continuity

Q = b2h2u2 = b2g
1/2h3/2

2

Hence

h2 =
(

Q
b2g1/2

)2/3

=
(

400 m3 · s−1

20 m × √
9.81 m · s−2

)2/3

= 3.44 m

Since energy is conserved

h1 + u2
1

2g
= h2 + u2

2

2g
= h2 + h2

2
= 3h2

2
or

h1 + 1
2g

(
Q
b1h1

)2

= 3h2

2

Substituting:

h1 + 1
2 × 9.81 m · s−2

(
400 m3 · s−1

25 m × h1 m

)2

= 3 × 3.44 m
2

which on multiplying throughout by h2
1 becomes

h3
1 − 5.16h2

1 + 13.05 = 0

This cubic equation is solved by trial-and-error to yield h1 = 4.52 m.�

10.9.1 The use of the specific-energy curve in dimensionless form

The specific-energy curve shown in Fig. 10.18 shows the relation between
the specific energy E and the depth h for a particular rate of flow. For a
different, yet still unvarying, rate of flow, the curve relating E and h would
be of similar shape but the value of E corresponding to each value of hwould
of course be different. A more general curve, applicable to any value of q,
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may be obtained by reducing eqn 10.15 to a dimensionless form. (A channel
of rectangular section is again taken as an example.) Dividing eqn 10.15 by
the critical depth hc and then substituting gh3

c for q2 from eqn 10.16 we
obtain

E
hc

= h
hc

+ 1
2

(
hc

h

)2

(10.21)

in which every term involves only a ratio of two lengths and is therefore
dimensionless. The discharge divided by width q no longer appears explicitly
in the equation, although q determines the value of hc. Figure 10.21 shows
the curve representing eqn 10.21. From such a diagram as this we may
determine the two possible values of h/hc (one greater than unity and one less
than unity), as indicated, for example, by the points A and B, corresponding
to particular value of E/hc. The depths corresponding to the points A and
B are the alternative depths.

Similarly Fig. 10.19, showing the relation between rate of flow and the
depth for a given specific energy, may be re-plotted in dimensionless form.
If eqn 10.15 is divided by q2

max = gh3
c , a relation is obtained between q/qmax

and h/hc.

E
gh3

c
= h
gh3

c
+ 1

2gh2

(
q
qmax

)2

∴ 2E
hc

(
h
hc

)2

= 2
(
h
hc

)3

+
(
q
qmax

)2

and, using eqn 10.18 for constant E,

(
q
qmax

)2

= 3
(
h
hc

)2

− 2
(
h
hc

)3

(10.22)

Fig. 10.21
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10.10 THE HYDRAULIC JUMP

In Section 10.8, attention was turned to the propagation of a surge wave
in an open channel. For a positive wave travelling upstream in a horizontal
channel of rectangular cross-section, eqn 10.13 relates the velocity of flow,
the velocity of propagation of the wave and the depths of flow before and
after the wave. It is clear that for a particular set of conditions the wave
velocity c may be zero, that is, the wave may be stationary relative to the
bed of the channel. Such a stationary surge wave, through which the depth
of flow increases, is known as a hydraulic jump. (The term standing wave
has also been used, but in modern usage this is reserved for a stationary wave
of very small height, whereas the depths before and after a hydraulic jump
are appreciably different.)

Equation 10.13 points at once to the essential features of a hydraulic jump.
Putting c = 0 in that equation we obtain

u1 = (
gh2

)1/2
(

1 + h2/h1

2

)1/2

= (
gh1

)1/2
(
h2

h1

)1/2 (
1 + h2/h1

2

)1/2

(10.23)

∴ u1/
(
gh1

)1/2 = Fr1 =
{(
h2

h1

)(
1 + h2/h1

2

)}1/2

Since h2 > h1 this expression is greater than unity. In other words, before a
hydraulic jump the Froude number is always greater than unity and the flow
is rapid.

What of the flow after the jump? From the continuity relation u1bh1 =
u1bh2 we have u2 = u1h1/h2.

∴ u2 = (
gh2

)1/2
(

1 + h2/h1

2

)1/2 (
h1

h2

)
and

Fr2 = u2(
gh2

)1/2
=

{
(h1/h2)2 + (h1/h2)

2

}1/2

which is less than 1. Hence the flow after a hydraulic jump is always tranquil.
(Although for mathematical simplicity we have here considered a channel of
rectangular section, the same conditions apply to sections of any shape.)

A hydraulic jump, then, is an abrupt change from rapid to tranquil flow:
the depth of the liquid is less than hc before the jump and greater than hc
after it. The rapid flow before the jump may arise in a number of ways. The
liquid may, for example, be released into the channel at high velocity from
under a sluice gate, or enter via a steep spillway. However, the rapid flow
thus produced cannot persist indefinitely in a channel where the slope of the
bed is insufficient to sustain it. For the particular rate of flow concerned,
the depth corresponding to uniform flow in the channel is determined by
the roughness of the boundaries and the slope of the bed. For a mild slope
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this depth is greater than the critical depth, that is, uniform flow would be
tranquil.

A gradual transition from rapid to tranquil flow is not possible. As the
depth of rapid flow increases, the lower limb of the specific-energy dia-
gram (Fig. 10.18) is followed from right to left, that is, the specific energy
decreases. If the increase of depth were to continue as far as the critical
value, an increase of specific energy would be required for a further increase
of depth to the value corresponding to uniform flow downstream. However,
in such circumstances an increase in specific energy is impossible. In uniform
flow the specific energy remains constant and the total energy decreases at
a rate exactly corresponding to the slope of the bed. For any depth less
than that for uniform flow the velocity is higher, and friction therefore con-
sumes energy at a greater rate than the loss of gravitational energy. That is,
the energy gradient is greater than the slope of the channel bed, and so, as
shown in Fig. 10.22, the specific energy must decrease.

Consequently, a hydraulic jump forms before the critical depth is reached
so that uniform flow can take place immediately after the jump. It represents
a discontinuity in which the simple specific-energy relation is temporarily
invalid (because the streamlines are then by no means straight and parallel).
The depth of the tranquil flow after the jump is determined by the resistance
offered to the flow, either by some obstruction such as a weir or by the
friction forces in a long channel. The jump causes much eddy formation
and turbulence. There is thus an appreciable loss of mechanical energy, and
both the total energy and the specific energy after the jump are less than
before.

Determining the change in depth that occurs at the hydraulic jump is
frequently important. Although a hydraulic jump may be formed in a channel
with any shape of cross-section, we shall again consider here only a channel
of uniform rectangular cross-section because the analysis for other sections
is mathematically complicated.

A rearrangement of eqn 10.23 gives

h2
2 + h1h2 − 2u2

1h1/g = 0

Fig. 10.22
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Putting u1 = q/h1, where q represents the discharge divided by width, we get

h1h
2
2 + h2

1h2 − 2q2/g = 0 (10.24)

whence

h2 = −h1

2
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g

)
(10.25)

(The negative sign for the radical is rejected because h2 cannot be negative.)
Equation 10.24 is symmetrical in respect of h1 and h2 and so a similar
solution for h1 in terms of h2 may be obtained by interchanging the suffixes.
The depths of flow on both sides of a hydraulic jump are termed the conjugate
depths for the jump.

We recall that the following assumptions have been made:

1. The bed is horizontal (or so nearly so that the component of weight in
the direction of flow may be neglected) and the rectangular cross-section
uniform (i.e. the channel is not tapered).

2. The velocity over each of the cross-sections considered is so nearly
uniform that mean velocities may be used without significant error.

3. The depth is uniform across the width.
4. Friction at the boundaries is negligible. This assumption is justifiable

because the jump occupies only a short length of the channel.
5. Surface tension effects are negligible.

The loss of mechanical energy that takes place in the jump may be readily
determined from the energy equation. If the head lost in the jump is hj then

hj =
(
h1 + u2

1

2g
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−
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which on substitution from eqn 10.24 yields
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h2 − h1

)3
/4h1h2 (10.26)

This amount is represented by the distance hj on Fig. 10.23b. This dissipation
of energy is a direct result of the considerable turbulence in the wave: friction
at the boundaries makes a negligible contribution to it. The frictional forces
in the wave are in the form of innumerable pairs of action and reaction and
so, by Newton’s Third Law, annul each other in the net force on the control
volume considered in deriving eqns 10.13 and 10.23. Fortunately then, the
exact form of the jump between sections 1 and 2 is of no consequence in our
analysis.
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Fig. 10.23

The dissipation of energy is by no means negligible. Indeed, the hydraulic
jump is a very effective means of reducing unwanted energy in a stream.
For example, if water from a steep spillway is fed into a channel, severe
scouring of the bed may well occur if the rapid flow is allowed to continue.
A hydraulic jump arranged to occur at the foot of the spillway, however,
dissipates much of the surplus energy, and the stream may then be safely
discharged as tranquil flow. Consequent upon the dissipation of energy, the
temperature of the liquid is raised by a small amount.

The position at which the jump occurs is always such that the momentum
relation is satisfied: the value of h2 is determined by conditions downstream
of the jump, and the rapid flow continues until h1 has reached the value which
fits eqn 10.25. The method of calculating the position will be indicated in
Section 10.12.1.

The turbulence in a jump may be sufficient to induce large quantities of
air into the liquid. The presence of bubbles of air reduces the effective dens-
ity of the liquid, and, as a result, the depth immediately after the jump
may be greater than that predicted by eqn 10.25. The great turbulence
in a hydraulic jump is sometimes put to advantage in mixing two liquids
thoroughly together.

Equation 10.26 tells us that a hydraulic jump is possible only from rapid
to tranquil flow and not vice versa. If h2 were less than h1 then hj would be
negative, that is, there would be a gain of energy. This would contravene the
Second Law of Thermodynamics. A hydraulic jump, then, is an irreversible
process.

It is instructive to write eqn 10.25 in the following dimensionless form:

h2

h1
= −1

2
+

√√√√(
1
4

+ 2u2
1

gh1

)
= −1

2
+

√{
1
4

+ 2(Fr1)2
}

(10.27)

Equation 10.27 emphasizes the importance of the Froude number as a para-
meter describing flow in open channels. We see that the ratio of the conjugate
depths, h2/h1, is a function of the initial Froude number only and that the
larger the initial Froude number the larger the ratio of the depths. When
Fr1 = 1,h2/h1 = 1 and the jump becomes a standing wave of infinitesimal
height.

For small jumps, that is, those in which h2/h1 is not greater than 2.0
(and consequently Fr1 for rectangular sections is not greater than

√
3), the

surface does not rise abruptly but passes through a series of undulations
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Fig. 10.24 Various types of
hydraulic jump in
rectangular channels.

Fig. 10.25

gradually diminishing in size. Such a jump is known as an undular jump (see
Fig. 10.24). For larger values of h2/h1 and Fr1, however, the jump is direct,
that is, the surface does rise fairly abruptly.

At the wave front there is a roller (rather like an ocean wave about to
break on the shore). This results from the upper layers of the wave tending
to spread over the oncoming rapid stream. The frictional drag of the rapid
stream penetrating underneath, and the transfer of momentum from the
lower layers by eddies, however, prevent the upper layers moving upstream.

When h2/h1 is between about 3.0 and 5.5, oscillations may be caused
which result in irregular waves being transmitted downstream. For values of
h2/h1 between 5.5 and 12 the jump is stable and a good dissipator of energy.
The length of the jump (i.e. the horizontal distance between the front of the
jump and a point just downstream of the roller) is usually of the order of
five times its height.

These figures refer only to channels of rectangular section. In other
channels the shape of the jump is often complicated additionally by
cross-currents.

10.10.1 The force applied to obstacles in a stream

The techniques used to study a hydraulic jump may also be used to cal-
culate the force experienced by an obstacle placed in a moving stream.
Such an obstacle may be a pier of a bridge, a large block placed on the
bed of the stream, a buoy or an anchored boat. If the obstacle illustrated
in Fig. 10.25 exerts of force F on the liquid (in the upstream direction)
then, with the assumptions of a horizontal bed, uniform velocity over
the cross-section, uniform depth across the width and negligible boundary
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friction, the steady-flow momentum equation is:

�gh1

2
h1 − F − �gh2

2
h2 = �q (u2 − u1) (10.28)

for unit width of a uniform rectangular channel.
This equation is true whatever the values of h1 and h2 in relation to the

critical depth: both h1 and h2 may be greater than hc, both may be less than
hc or one may be greater and one less than hc. It may, however, be shown
that if the initial flow is tranquil the effect of the applied force is to reduce
the depth of the stream (so that h2 < h1), although a limit is set at the critical
depth hc because the specific energy is then a minimum. A further increase
in the obstructing force F beyond the value giving h2 = hc merely raises the
upstream level. If, on the other hand, the initial flow is rapid, the depth is
increased by application of the force (i.e. h2 > h1). Indeed, if the force is
large enough – because, for example, the obstacle is large compared with the
cross-sectional area of the channel – the depth may be increased beyond the
critical value via a hydraulic jump. In all these cases eqn 10.28 holds and
the force F may thus be calculated.

10.11 THE OCCURRENCE OF CRITICAL CONDITIONS

In analysing problems of flow in open channels it is important to know at
the outset whether critical flow occurs anywhere and, if so, at which section
it is to be found, especially because these conditions impose a limitation on
the discharge (as indicated by Fig. 10.19).

Critical conditions are of course to be expected at a section where tranquil
flow changes to rapid flow. Such a situation is illustrated in Fig. 10.26. A long
channel of mild slope (i.e. s < sc) is connected to a long channel of steep
slope (i.e. s > sc). (The slopes are greatly exaggerated in the diagram.) At a
sufficiently large distance from the junction the depth in each channel is the
normal depth corresponding to the particular slope and rate of flow; that
is, in the channel of mild slope there is uniform tranquil flow, and in the
other channel there is uniform rapid flow. Between these two stretches of
uniform flow the flow is non-uniform, and at one position the depth must
pass through the critical value as defined, for example by eqn 10.19. This

Fig. 10.26
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Fig. 10.27

position is close to the junction of the slopes. If both channels have the
same constant shape of cross-section the critical depth remains unchanged
throughout, as shown by the dashed line on the diagram (the effect of the
difference in slopes being negligible). If the change of slope is abrupt (as
in the diagram) there is appreciable curvature of the streamlines near the
junction. The assumption of a hydrostatic variation of pressure with depth –
on which the concept of specific energy is based – is then not justified and the
specific-energy equation is only approximately valid. In these circumstances
the section at which the velocity is given by (gh)1/2 is not exactly at the
junction of the two slopes, but slightly upstream from it.

The discharge of liquid from a long channel of steep slope to a long channel
of mild slope requires the flow to change from rapid to tranquil (Fig. 10.27).
The rapid flow may persist for some distance downstream of the junction,
and the change to tranquil flow then takes place abruptly at a hydraulic
jump.

Critical flow, however, may be brought about without a change in the
slope of the channel bed. A raised part of the bed, or a contraction in width,
may in certain circumstances cause critical flow to occur. We shall now study
these conditions in Sections 10.11.1 to 10.11.4.

10.11.1 The broad-crested weir

We consider first the flow over a raised portion of the bed, which extends
across the full width of the stream. Such an obstruction is usually known
as a weir. Figure 10.28a depicts a weir with a broad horizontal crest, and
at a sufficient height above the channel bed for the cross-sectional area of
the flow approaching the weir to be large compared with the cross-sectional
area of the flow over the top of it. We assume that the approaching flow is
tranquil. The upstream edge of the weir is well rounded so as to avoid undue
eddy formation and thus loss of mechanical energy. We suppose that down-
stream of the weir there is no further obstruction (so that the rate of flow is
not limited except by the weir) and that the supply comes from a reservoir
sufficiently large for the surface level upstream of the weir to be constant.

Over the top of the weir the surface level falls to give a depth h there.
Moreover, provided that the channel width is constant, that the crest is
sufficiently broad (in the flow direction) and friction is negligible, the liquid
surface becomes parallel to the crest. To determine the value of the depth h
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Fig. 10.28 Notice that, for a channel of rectangular section and constant width,
the critical depth as shown by — - — - — is the same for a given rate of flow at
any point along the bed (apart from the slight deviations at the corners because the
streamlines are not parallel there).

we may imagine that downstream of the weir – or perhaps near the end of
it as indicated by the dotted lines in Fig. 10.28a – the flow is controlled by
a movable sluice gate. If, initially, the gate is completely closed, the liquid
is stationary and the surface level above the crest of the weir is the same
as the level in the reservoir. This level corresponds to the energy available
and H represents the specific energy for the liquid on the crest of the weir.
To correspond to these conditions we have the point A on the curve of h
against Q for the given specific energy (Fig. 10.28b). If the gate is raised
slightly to a position B, a small rate of flow QB takes place, as represented
by point B on the h−Q curve, and the depth is then hB. Further raising of the
gate brings the flow rate toQc, the maximum, and since the gate is then just
clear of the surface of the liquid, no additional raising has any effect on the
flow. With no other obstruction downstream the discharge is the maximum
possible for the specific energy available. That is, the flow is critical over the
crest of the weir and h = hc. Even if it were possible to reduce h below the
critical depth, the h − Q curve shows that the rate of flow would be less
than Qc, not greater.

If the channel is of rectangular cross-section, hc = (q2/g)1/3, where q
represents the discharge divided by width, Q/b. Thus q = g1/2h3/2

c . From
this equation it is evident that the rate of flow could be calculated simply
from a measurement of hc, and consequently the broad-crested weir is a
useful device for gauging the rate of flow. In practice, however, it is not easy
to obtain an accurate measurement of hc directly. When critical flow occurs
there are usually many ripples on the surface and so the depth seldom has a
steady value. It is thus more satisfactory to express the rate of flow in terms
of the specific energy. From eqn 10.18 (again for a channel of rectangular
section) hc = 2E/3, so

q = g1/2(2E/3)3/2

Therefore

Q = g1/2b
(

2E
3

)3/2

(10.29)

The specific energy E in eqn 10.29 is that over the crest of the weir, the
crest itself being the datum. If, however the velocity u of the liquid upstream
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Fig. 10.29

is so small that u2/2g is negligible, and if friction at the approach to the weir
is also negligible, the specific energy over the weir is given simply by the term
H. It should be particularly noted that H must be measured above the crest
as datum. It is not the full depth in the channel upstream. For a negligible
velocity of approach, therefore, eqn 10.29 becomes

Q = g1/2b
(

2H
3

)3/2

(10.30)

In the above analysis no account has been taken of friction which, in prac-
tice, is always present in some degree. The effect of friction over the crest,
and the curvature of the streamlines, is to reduce the value of the discharge
somewhat below the value given by eqn 10.30. If the crest of the weir is
insufficiently broad in comparison with the head H, the liquid surface may
not become parallel to the crest before the downstream edge is reached (see
Fig. 10.29). Although critical flow may still be obtained (in the sense that the
specific energy is a minimum for the particular discharge occurring) it takes
place at a section where the streamlines have appreciable curvature and so
the specific energy relation E = h + u2/2g does not strictly apply. In these
circumstances eqn 10.29 underestimates the true rate of flow. Even when
the crest is very broad, so that sensibly parallel flow is obtained, the truly
critical conditions, in which the specific energy is a minimum for the par-
ticular discharge, must, because of friction, occur at the downstream edge,
where the streamlines are curved. Appreciable departures from the value of
discharge given by eqn 10.30 are thus possible and especially for weirs hav-
ing cross-sections different from the more or less rectangular one shown in
Fig. 10.28a. If a broad-crested weir is to be used for reliable determination
of the rate of flow, calibration is therefore necessary. Since the development
of the venturi flume (Section 10.11.4) the use of broad-crested weirs for
measurement has in fact greatly declined.

A weir is sometimes used in a situation where the velocity of the stream
approaching it is not negligible. The height of the upstream surface level
above the crest of the weir is thus somewhat less than the specific energy
(H = E − u2/2g). The measured value of H may, however, be used as a
first approximation to E, and a value of Q calculated using this figure. The
velocity of approach may then be estimated from this value of Q and the
cross-sectional area of the channel at the section where the measurement
of H is made. From this value of velocity (say u1) the term u2

1/2g may be
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calculated, and then H + u2
1/2g may be taken as a closer approximation

to the specific energy so that another, more accurate, value of Q may be
determined.

As a measuring device the broad-crested weir has the advantages that
it is simple to construct and has no sharp edge which can wear and thus
alter the discharge characteristics with time. Moreover, it does not cause an
appreciable raising of the surface level upstream, and the results are little
affected by conditions downstream provided that critical flow occurs over
the crest. On the other hand, the limitations of the theoretical analysis make
it unwise to use, for any but approximate measurements, a weir that has not
been calibrated.

Example 10.2 A block 40 mm thick is placed across the bed of a
rectangular horizontal channel 400 mm wide to form a broad-crested
weir. The depth of liquid just upstream of the weir is 70 mm. Calculate
the rate of flow on the assumption that conditions over the block are
critical, and make one correction for the velocity of approach. The
effects of friction and of curvature of the streamlines may be assumed
negligible.

Solution
As a first approximation the velocity of approach is assumed neg-
ligible. Then the specific energy relative to the crest of the weir is
(70 − 40) mm = 30 mm.

Therefore, from eqn 10.30 the first approximation to Q is
1.705 bH3/2 m1/2 · s−1, the effects of friction and curvilinear motion
being neglected. That is

Q = 1.705 × 0.4 × (0.03)3/2 m3 · s−1 = 3.544 × 10−3 m3 · s−1

For this rate of flow the velocity of approach would be

3.544 × 10−3 m3 · s−1

0.070 × 0.4 m2
= 0.1266 m · s−1

∴ u2
1/2g = 0.000816 m = 0.816 mm

Consequently a closer approximation to the specific energy relative to
the crest of the weir would be (30 + 0.816) mm = 30.82 mm. Then

Q = 1.705 × 0.4 × (0.03082)3/2 m3 · s−1 = 3.689 × 10−3 m3 · s−1

If a further approximation were desired another, better, value of the
upstream velocity (say u2) could be calculated(

3.689 × 10−3 m3 · s−1

0.070 × 0.4 m2

)



448 Flow with a free surface

from which u2
2/2g could be determined and added on toH = 30 mm to

give the next approximation to the specific energy. One correction for
velocity of approach, however, gives sufficient accuracy. (A rigorous
solution of the problem is possible but the resulting expression is too
complicated for practical use. The method of successive approximation
given here is much simpler and entirely adequate: the final value of Q
in this problem is 3.703 × 10−3 m3 · s−1.)

The velocity of approach here is necessarily calculated as the mean
velocity over the whole cross-section of the approach channel. The dis-
tribution of velocity over this cross-section is never perfectly uniform
and so the extra term to be added to the measured value of H should,
strictly, be slightly greater than the calculated u2/2g. However, the
effect on the final results is so small that such refinements are of little
consequence.�

10.11.2 Drowned weir and free outfall

Critical flow does not always occur over a rise in the bed of a channel. The
maximum discharge takes place only in the absence of greater restrictions
downstream. If the depth downstream of the weir is sufficiently increased,
the flow over the weir may not be critical, and the weir is then said to be
drowned. For example, another obstruction placed downstream may serve to
increase the depth between itself and the weir, as shown in Fig. 10.30. In this
case the flow may be critical over the top of the downstream obstacle. Or the
channel may discharge into a reservoir in which the level is high enough to
maintain a depth greater than the critical over the weir (Fig. 10.31). In some

Fig. 10.30 Broad-crested weir ‘drowned’ by obstruction downstream (over
which flow is critical). For a channel of rectangular section and constant width,
hc − (q2/g)1/3 is constant, except where streamlines are not parallel.

Fig. 10.31 Broad-crested weir ‘drowned’ by high level in downstream reservoir.
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Fig. 10.32 If the depth of flow over a weir is already critical, raising the weir increases
the depth upstream, and flow over the weir remains critical.

Fig. 10.33 (Vertical scale
exaggerated.)

instances the friction in a long channel downstream of the weir may be
sufficient to prevent critical conditions occurring over the weir.

When a broad-crested weir is drowned a depression of the surface over
the crest still takes place, but it is not sufficient for the critical depth to be
reached. In no circumstances, indeed, can a depth less than the critical be
achieved: if a weir over which critical flow exists is raised still further above
the channel bed, the liquid surface rises by a corresponding amount so that
the depth over the crest is still the critical depth (Fig. 10.32).

Arguments similar to those used in discussing the broad-crested weir may
be applied to a free outfall (Fig. 10.33) from a long channel of mild slope.
The discharge is a maximum for the specific energy available, and the flow
must pass through the critical conditions in the vicinity of the brink. At the
brink the streamlines have a pronounced curvature and so the usual specific-
energy relation E = h + u2/2g is invalid. The depth immediately over the
brink is in fact less than the value given by the usual expression for critical
depth. For example, in a channel of uniform rectangular section, the depth
(q2/g)1/3 (eqn 10.16) is found a short distance upstream (between three and
four times (q2/g)1/3) and the depth at the brink itself is about 71% of this
depth.

10.11.3 Rapid flow approaching a weir or other obstruction

In sections 10.11.1 and 10.11.2 the flow approaching the weir has been
considered tranquil. Even in a channel of mild slope, however, rapid flow
may be produced. This may occur when the flow enters the channel down
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a spillway or from under a sluice gate. For a sufficient head upstream of
the sluice, the discharge through the aperture may be great enough for the
flow to be rapid. In a channel of rectangular cross-section, for example, if
the discharge divided by width is q, the critical depth is given by (q2/g)1/3,
and if this exceeds the height of the aperture the flow is necessarily rapid.
The velocity head upstream of the sluice is normally negligible, and so the
discharge is determined by the difference in head h0 – h1 across the sluice
opening (see Fig. 10.34). Thus

q = Cdh1

√
{2g(h0 − h1)} (10.31)

(The coefficient of dischargeCd is close to unity for a well-rounded aperture.)
If friction is negligible the total energy of the liquid remains unchanged.

But when the rapid flow reaches the raised part of the bed the specific energy
is reduced by an amount equal to the height of the weir, z. (We recall that
specific energy must always be calculated above the base of the flow at the
point in question.) Thus, for a moderate value of z, the appropriate point on
the specific-energy diagram (Fig. 10.35) moves from position 1 to position 2.
In such a case as that illustrated the flow remains rapid but the depth comes
closer to the critical depth hc.

For a larger value of z the specific energy may be reduced to the minimum
value and the conditions over the weir are then critical. The flow is not, how-
ever, controlled by the weir as it was when the approaching flow was tranquil

Fig. 10.34

Fig. 10.35
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(Section 10.11.1). Rapid flow can never be controlled by conditions down-
stream and in the present example the flow will already have been determined
by the difference of head across the sluice, and therefore by eqn 10.31.

If z is greater still, no further reduction in the specific energy is possible and
so the depth upstream of the weir is increased. The flow is therefore tranquil
instead of rapid. The critical depth hc still exists on the crest of the weir and
the conditions are closely similar to those investigated in Section 10.11.1.
The sluice is now drowned, that is, the liquid from it discharges into slower
moving liquid at a depth greater than the height of the aperture, as shown
in Fig. 10.36. The weir now does exercise control over the discharge, since
the approaching flow is at a depth greater than the critical. Much turbu-
lent, eddying motion develops where the liquid discharged from the sluice
encounters the slower moving liquid ahead of it. There is thus an appreciable
reduction in the specific energy over this part of the flow. Over the crest of
the weir however, there is little production of eddies since the flow here is
converging before becoming approximately parallel. (In this example there
would be no point in using the broad-crested weir as a metering device, since
the sluice itself, being simply a kind of orifice, could be so used.)

10.11.4 The venturi flume

Tranquil flow in an open channel may become critical not only by passing
over a raised portion of the bed (a broad-crested weir) but also by under-
going a contraction in width. Such an arrangement, shown in plan view in
Fig. 10.37, is usually known as a venturi flume, although its relation to a
venturi in a pipe is slight. As a device for measuring the rate of flow the ven-
turi flume has certain advantages over a broad-crested weir. The principal
ones are that the loss of head experienced by the liquid in passing through
the flume is much less than that in flowing over a broad-crested weir, and
that the operation of the flume is not affected by the deposition of silt. If the

Fig. 10.36

Fig. 10.37 Plan view of
a venturi flume.
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liquid surface downstream is not maintained at too high a level, maximum
discharge is achieved through the narrowest section, known as the throat,
for the same reasons that the discharge over a broad-crested weir reaches a
maximum in the absence of appreciable restrictions downstream. The flow
at the throat is therefore critical, and the flume is said to be under free dis-
charge conditions. For a rectangular section in which the streamlines are
straight and parallel the velocity at the throat is therefore given by

√
(gh2),

and the discharge by

Q = b2h2

√
(gh2) (10.32)

where b2 represents the width of the throat, and h2 the corresponding depth.
Measurements of b2 and h2 would therefore be sufficient for the calcu-

lation of the discharge. The exact position at which the critical conditions
exist, however, is not easy to determine, and measurement of h2 is thus
impracticable. If, however, there is negligible friction in the upstream, con-
verging, part of the flume and the slope of the bed is also negligible over this
distance, then

h1 + u2
1

2g
= h2 + u2

2

2g
= h2 + h2

2
= 3

2
h2 (10.33)

where suffix 1 refers to quantities upstream of the contraction.
Moreover

u1 = Q
b1h1

= b2h2
√

(gh2)

b1h1

and this expression substituted for u1 in eqn 10.33 gives

h1 + 1
2g

(
b2

b1

)2 h3
2

h2
1

g = 3
2
h2

that is,

(h1/h2)3 + 1
2

(b2/b1)2 = 3
2

(h1/h2)2 (10.34)

Equation 10.34 shows that, since the ratio b2/b1 is fixed for a particu-
lar flume, the ratio of depths h1/h2 is constant whatever the rate of flow,
provided that the discharge is free (i.e. the velocity at the throat is critical).
Therefore eqn 10.32 may be rewritten

Q = b2g
1/2h3/2

2 = b2g1/2h3/2
1

r3/2
(10.35)

where r = h1/h2, and the rate of flow through a given flume may be
determined by measuring the upstream depth h1.

Since b1 > b2, the discharge divided by width q1 < q2, and thus, as
Fig. 10.19 shows, h1 > h2 for tranquil flow upstream, that is, r > 1.

The value of r is, of course, given by the solution of eqn 10.34. Of the
three roots the only one meeting the requirement r > 1 is

r = 0.5 + cos(2θ/3)
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where 0 ≤ θ ≤ 90◦ and sin θ = b2/b1. If b1 is large compared with b2, r
becomes equal to 1.5 and eqn 10.35 may then be written

Q = b2g1/2h3/2
1

(1.5)3/2
(10.36)

This equation may be derived alternatively by substituting for h2 from
eqn 10.33 into eqn 10.32:

Q = b2g
1/2

(
2
3

)3/2
(
h1 + u2

1

2g

)3/2

(10.37)

when b1 is very large, u1 is small and u2
1/2g may be neglected. Even for

b2/b1 = 1/3, r = 1.474 and so the error involved in neglecting the velocity
of approach and using eqn 10.36 would be only 1.7% in r and 2.54% inQ.

Corrections for velocity of approach may be applied in the same manner
as for the broad-crested weir (Section 10.11.1). If u1 is at first neglected
in eqn 10.37 an approximate value of Q may be calculated from which
u1 = Q/b1h1 can be estimated for use in a second approximation. For a
flume that has already been calibrated, however, this arithmetical process is
not necessary as the cubic equation for r will have been solved once for all.

A coefficient of discharge Cd is required to account for the small amount
of friction between inlet and throat and for the effects of curvature of the
streamlines which the given theory ignores. In practice, values of Cd are
typically between 0.95 and 0.99.

All the foregoing applies to a flume under conditions of free discharge,
that is, where the liquid surface downstream is not maintained at too high a
level. The level in the outlet from the flume continues to fall and thus rapid
flow exists where the width of the passage again increases. If conditions
downstream of the flume are such that the velocity is greater than the critical,
the surface of the liquid issuing from the flume gradually merges into the
normal depth of flow in the downstream channel, and any excess energy
possessed by the liquid emerging from the flume is dissipated by friction.

On the other hand, if conditions downstream are such as to demand a
velocity less than the critical, the flow has to change from rapid to tranquil.
This change normally takes place through a hydraulic jump (Fig. 10.38). The
jump occurs at a point where the depth of the rapid flow is such as to give
the correct depth of subsequent tranquil flow (according to eqn 10.25 if the
section is rectangular). A limiting position is that in which the jump – then

Fig. 10.38 Flow through venturi flume. The critical depth at the throat is greater
because the narrowing of the channel increases the discharge divided by width q and
for rectangular section hc = (q2/g)1/3.
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shrunk to zero height – occurs at the throat itself. If the downstream level
is raised further (usually beyond about 80% of the depth upstream of the
flume) the velocity at the throat no longer reaches the critical and the flume
is said to be drowned. In these circumstances the ratio h1/h2 is no longer
constant and so the rate of flow cannot be determined from a measurement
of the upstream depth only. Determination of the discharge is still possible,
but only if the depth h2 at the throat is also measured. Flumes are usually
designed, however, to run free (i.e. not to be drowned) for all expected
conditions.

A number of modern flumes, intended to deal with a wide range of dis-
charge, have not only a contraction in width at the throat but also a hump
on the bed. The rise in the bed enables such flumes to run free with a higher
downstream level and yet avoids the use of an excessively small throat width
which would give rise to undue dissipation of energy at the large rates of
flow. (As for the broad-crested weir, the upstream head must then be meas-
ured relative to the top of the hump.) Flumes of more complex shapes are
also constructed but the fundamental principles of operations are identical
to those for the simple type considered here.

As a measuring device the venturi flume has the advantage that under
ideal conditions the loss of mechanical energy may be kept as low as 10%
in a good design. The hydraulic jump that is usually present downstream
is the cause of much of the dissipation of energy. Yet even if there is no
hydraulic jump the losses principally occur downstream of the throat since
eddies readily form where the section expands again. Like the broad-crested
weir, the flume is suitable for measurement only when the upstream flow is
tranquil.

Example 10.3 A venturi flume installed in a rectangular horizontal
channel 800 mm wide has a throat of width 300 mm. The depths
of water upstream and at the throat are 450 mm and 350 mm,
respectively. Calculate:

(a) the flow rate
(b) the Froude number at the throat.

Conditions downstream of the flume are now altered and a hydraulic
jump occurs, while the upstream depth is maintained at 450 mm.
Calculate:

(c) the depth of water at the throat
(d) the new flow rate.

Solution
For parts (a) and (b), from the way the question is posed it is not
known whether the flow through the flume is critical or not. In these
circumstances, it is important to use general flow relations, and not
the more restricted relations which are specific to critical flow.
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(a) The continuity equation is

Q = u1h1b1 = u2h2b2

The general energy equation is

h1 + u2
1

2g
= h2 + u2

2

2g

or

h1 + 1
2g

Q2

(h1b1)2
= h2 + 1

2g
Q2

(h2b2)2

Substituting

0.45 m + 1

2 × 9.81 m · s−2

Q2(m3 · s−1)2

(0.45 m × 0.8 m)2

= 0.35 m + 1
2 × 9.81 m · s−2

Q2(m3 · s−1)2

(0.35 m × 0.3 m)2

which is solved to give Q = 0.154 m3 · s−1.

(b) Fr2 = u2

(gh2)1/2
= Q

g1/2b2h
3/2
2

= 0.154 m3 · s−1

(9.81 m · s−2)1/2 × 0.3 m × (0.35 m)3/2
= 0.79

This calculation shows that the flow at the throat is sub-critical.
For parts (c) and (d) the fact that a hydraulic jump occurs down-

stream indicates that the flow in the throat is critical. Hence the
relations for critical flow may now be used.

(c) From equation 10.34(
h1

h2

)3

+ 1
2

(
b2

b1

)2

= 3
2

(
h1

h2

)2

or

3
2

(
h1

h2

)2

−
(
h1

h2

)3

= 1
2

(
b2

b1

)2

= 1
2

(
0.3 m
0.8 m

)2

= 0.0703

which has the solution

h1

h2
= 0.5 + cos

2 arcsin
(
b2/b1

)
3

= 0.5 + cos
2 arcsin(0.3/0.8)

3

= 1.467
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Hence

h2 = 0.45 m
1.467

= 0.307 m

(d) Q = g1/2b2h
3/2
2 = (9.81 m · s−2)1/2 × 0.3 m

× (0.307 m)3/2 = 0.160 m3 · s−1.�

10.12 GRADUALLY VARIED FLOW

Uniform flow, which we studied in Sections 10.4 to 10.7, is generally to
be found only in artificial channels because the condition requires a cross-
section constant in shape and area. Consequently the liquid surface must be
parallel to the bed of the channel, and this in turn demands that the slope of
the bed be constant. With a natural stream, such as a river, the shape and
size of cross-section and also the slope of the bed usually vary appreciably,
and true uniform flow is extremely rare. Indeed, even for artificial channels
uniform flow is a condition that is approached asymptotically and so, strictly
speaking, is never attained at all. The equations for uniform flow therefore
give results that are only approximations to the truth when applied to flow
in natural channels and, even so, care should be taken that they are not
applied to long lengths of the channels over which the conditions are not
even approximately constant.

For a particular shape of channel and for a given discharge and bed slope,
there is only one depth at which uniform flow can take place. This depth is
known as the normal depth. There are, however, innumerable ways in which
the same steady rate of flow can pass along the same channel in non-uniform
flow. The liquid surface is then not parallel to the bed, and takes the form
of a curve.

There are, broadly speaking, two kinds of steady, non-uniform flow. In
one the changes of depth and velocity take place over a long distance. Such
flow is termed gradually varied flow. In the other type of non-uniform flow
the changes of depth and velocity take place in only a short distance and
may, in fact, be quite abrupt (as in a hydraulic jump). This local non-uniform
flow is termed rapidly varied flow. There is in practice no rigid dividing line
between these two types, but for the purposes of analysis gradually varied
flow is regarded as that in which the changes occur slowly enough for the
effects of the acceleration of the liquid to be negligible. It is important to
realize this limitation of the analysis: formulae based on the assumption of
gradually varied flow should not be applied to flow in which the changes
take place more rapidly.

Gradually varied flow may result from a change in the geometry of the
channel – for example, a change in the shape of the cross-section, a change
of slope, or an obstruction – or from a change in the frictional forces at the
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Fig. 10.39

boundaries. It can occur when the flow is either tranquil or rapid but as we
have already seen, a change from tranquil to rapid flow or vice versa usually
occurs abruptly.

When, in tranquil flow, the depth is increased upstream of an obstruction
the resulting curve of the liquid surface is usually known as a backwater
curve. The converse effect – a fall in the surface as the liquid approaches a free
outfall from the end of the channel, for example – is termed a downdrop or
drawdown curve. Both curves are asymptotic to the surface of uniform flow
(Fig. 10.39). (Both are sometimes loosely referred to as backwater curves.)

10.12.1 The equations of gradually varied flow

It is frequently important in practice to be able to estimate the depth of
a stream at a particular point or to determine the distance over which
the effects of an obstruction such as a weir are transmitted upstream.
Such information is given by the equation representing the surface profile.
The depth at a particular section determines the area of the cross-section and
hence the mean velocity; consequently the surface profile defines the flow.
We need, then, to investigate the way in which the depth changes with dis-
tance along the channel. Since the changes in gradually varied flow occupy a
considerable distance, the effects of boundary friction are important. (This
is in distinction to rapidly varied flow, where the boundary friction is usually
neglected in comparison with the other forces involved.)

In developing the equations it is essential to distinguish between the slope
i of the energy line and the slope s of the channel bed. Whereas in uniform
flow they are identical, in non-uniform flow they are not.

Figure 10.40 depicts a short length δl of the channel in which the flow is
steady. Over this length the bed falls by an amount sδl, the depth of flow
increases from h to h+ δh and the mean velocity increases from u to u+ δu.
We assume that the increase in level δh is constant across the width of the
channel. (It is true that if the breadth of the channel is unaltered an increase
of u implies a reduction of h; but we recall that ‘δh’ means ‘a very small
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Fig. 10.40

increase of h’. If, in fact, h decreases, then δh is negative and will be seen to
be so in the final result.)

If it is assumed that the streamlines in the flow are sensibly straight and
parallel and that the slope of the bed is small so that the variation of pressure
with depth is hydrostatic, then the total head above the datum level is h +
sδl + αu2/2g at the first section. As in Section 10.3, α is the kinetic energy
correction factor accounting for non-uniformity of velocity over the cross-
section. Its value is not normally known: for simplicity we here assume that
it differs only slightly from unity so that, without appreciable error, it may
be omitted as a factor. Similarly, the total head above datum at the second
section is h + δh + (u + δu)2/2g. If the head loss gradient (i.e. the loss of
head in friction divided by the length along the channel) is i, then

h+ sδl + u2

2g
− iδl = h+ δh+ (u+ δu)2

2g
(10.38)

Rearrangement gives δh = (s−i)δl−u δu/g, the term in (δu)2 being neglected.
Therefore in the limit as δl → 0

dh
dl

= (s− i) − u
g

du
dl

(10.39)

To eliminate du/dl we make use of the one-dimensional continuity equation

Au = constant (10.40)

which, when differentiated with respect to l, yields

Adu/dl + udA/dl = 0

so

du
dl

= − u
A

dA
dl

(10.41)

To evaluate dA/dl we assume that, although the cross-section may be of any
shape whatever, the channel is prismatic, that is, its shape and alignment do
not vary with l. ThusA changes only as a result of a change in h. Figure 10.20
shows that δA then equals Bδh where B denotes the surface width of the
cross-section. So putting dA/dl = Bdh/dl in eqn 10.41 and then substituting
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into eqn 10.39 we obtain

dh
dl

= (s− i) + u2B
gA

dh
dl

whence

dh
dl

= s− i
1 − (u2B/gA)

= s− i
1 − (u2/gh)

(10.42)

where h= the mean depth A/B. This equation represents the slope of the
free surface with respect not to the horizontal but to the bed of the channel.

Examination of the equation shows that when i = s, dh/dl = 0 and there is
uniform flow. The term u2/ghwill be recognized as the square of the Froude
number; therefore when the flow is critical the denominator of the right-hand
side of eqn 10.42 is zero. We must not, however, jump to the conclusion that
dh/dl is therefore infinite and the liquid surface is perpendicular to the bed.
Such a conclusion is at odds with the initial assumption of gradually varied
flow and in such circumstances the equation is not valid. The equation may
nevertheless apply to critical flow if the numerator of the expression is also
zero, for there is then no mathematical necessity for dh/dl to be infinite.

In tranquil flow u <
√

(gh) and so the denominator of the expression is
positive. In rapid flow, on the other hand, the denominator is negative. Thus
if the slope of the bed is less than that corresponding to the rate of dissipation
of energy by friction, that is, if s < i, then dh/dl is negative for tranquil flow
and the depth decreases in the direction of flow. For rapid flow dh/dl is
positive in these circumstances. At critical conditions dh/dl changes sign;
this is why liquid flowing at the critical depth has an unstable, wavy surface
and exactly critical conditions are not maintained over a finite length of a
channel. The minor irregularities that are always present on the boundaries
cause small variations of h, and so dh/dl is then alternately positive and
negative, thus causing the wavy appearance.

Equation 10.42 can represent a number of different types of surface profile
and these will be considered briefly in Section 10.12.2. Our present concern,
however, is the integration of the equation. As i is a function of u (and of
other things) the equation cannot be integrated directly. To proceed fur-
ther the assumption is made that the value of i at a particular section is the
same as it would be for uniform flow having the same velocity and hydraulic
mean depth. That is to say, a formula for uniform flow, such as Chézy’s or
Manning’s, may be used to evaluate i, and the corresponding roughness coef-
ficient is also assumed applicable to the varied flow. The assumption is not
unreasonable, and it does give reliable results. Any error it introduces is
no doubt small compared with the uncertainties in selecting suitable values
of Chézy’s coefficient or Manning’s roughness coefficient. If Chézy’s for-
mula is used i = u2/(C2m)and if Manning’s formula is used i = n2u2/m4/3

for metre-second units. For a given steady discharge Q,u is a function of
h only and so the integration of eqn 10.42 is possible. Only in a few spe-
cial cases, however, is an algebraic integration possible, and even then the
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result is complicated. The solution is therefore normally obtained by either
a numerical or a graphical integration.

The problem under investigation is more often that of determining the
position in the channel at which a particular depth is reached, that is, l is
required for a particular value of h, so eqn 10.42 may be inverted. Then

l =
∫ h2

h1

1 − u2/gh
s− i dh (10.43)

The following example illustrates the general method of solution.

Example 10.4 A dam is built across a channel of rectangular cross-
section which carries water at the rate of 8.75 m3 · s−1. As a result the
depth just upstream of the dam is increased to 2.5 m. The channel is
5 m wide and the slope of the bed is 1 in 5000. The channel is lined
with concrete (Manning’s n = 0.015). How far upstream is the depth
within 100 mm of the normal depth?

Solution
To determine the normal depth h0 Manning’s formula is applied (with
metre-second units):

8.75 m3 · s−1

(5 × h0) m2
= u = m2/3i1/2

n
= 1

0.015

(
5h0

5 + 2h0

)2/3 (
1

5000

)1/2

Solution by trial gives h0 = 1.800 m. Since the channel is rectangular

in section the critical depth hc = (
q2/g

)1/3 = (
1.752/9.81

)1/3
m =

0.678 m. This value is considerably less than the actual depth and the
flow is therefore tranquil.

We require a solution of eqn 10.43 between the limits 2.5 m and
(1.800+0.100) m = 1.9 m. To illustrate a simple technique of numer-
ical integration it will be sufficient to divide the range of depth, 2.5–
1.9 m, into three equal parts. Then, starting at the dam (the position
where the depth is known) and proceeding upstream, the calculations
may be set out in tabular form (Table 10.2; Fig. 10.41).�

This method is well suited to computer programming and it may be applied
to channels of variable cross-section, roughness and slope by adopting suit-
able average values of these parameters over each increment of length �l.
Moreover, although the given example concerns a backwater curve in tran-
quil flow, the same technique may be used for any type of gradually varied
flow.

For example, it may be used in calculating the position of a hydraulic
jump. As we saw in Section 10.10 the depth h2 downstream of the jump is
determined by the conditions there (e.g. the normal depth appropriate to the
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Fig. 10.41

Table 10.2

h Average A P m u u2/gh 1 − u2/gh i × 104† (s− i)104 dl/dh �h �l
(m) h (m2) (m) (m) (m · s−1) (m) (m)

(m)

2.5–2.3 2.4 12 9.8 1.224 0.729 0.0226 0.9774 0.913 1.087 8990 0.2 1798
2.3–2.1 2.2 11 9.4 1.170 0.795 0.0293 0.9707 1.155 0.845 11480 0.2 2296
2.1–1.9 2.0 10 9.0 1.111 0.875 0.0390 0.9610 1.497 0.503 19100 0.2 3820

7914
Total length about 7.9 km

† From Manning’s formula i = n2u2/m4/3 = 2.25 × 10−4u2/m4/3 for metre-second units.

rate of flow and the slope of the bed). The momentum relation (eqn 10.25 if
the section is rectangular and uniform) then fixes the upstream depth h1. The
rapid flow upstream of the jump is of gradually increasing depth as energy is
quickly dissipated by friction, and the distance of the jump from the upstream
control section (e.g. a sluice gate), where the depth is known, is given by
eqn 10.43. The step-by-step integration proceeds from that upstream control
section towards the jump.

In all examples of gradually varied flow the accuracy of the results depends
largely on the magnitude of the steps in h because the actual surface curve is
in effect being approximated by a series of straight lines. However, there is
usually little point in seeking great accuracy because the value of n can only
be approximate; moreover, especially in natural channels, the discharge may
not be exactly constant and the roughness, the shape of the cross-section and
the slope may vary continuously from place to place.

10.12.2 Classification of surface profiles

Equation 10.42 applies to any type of gradually varied flow, subject to the
assumptions involved in its derivation. The surface profile may have a variety
of forms, depending on how the flow is controlled by weirs or other obstruc-
tions, changes in bed slope and so on. These different circumstances affect
the relative magnitudes of the quantities appearing in the equation and dh/dl
is accordingly positive or negative. It is helpful, therefore, to have a logical
system of classification of the different types of possible surface profile. All
problems of varied flow, no matter how complex, may be studied by consid-
ering separate lengths of the channel, in each of which the flow corresponds
to one of the various types of surface profile. The separate lengths may be
studied one by one until the entire problem has been covered.
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The primary classification refers to the slope of the bed. This may be:
adverse (A), that is, uphill or negative slope; zero, that is, the bed is horizontal
(H) and s = 0; mild (M), that is, s < sc; critical (C), that is, s = sc; or steep
(S), that is, s > sc. The profiles are further classified according to the depth
of the stream: the depth may be greater or less than the normal depth, and
greater or less than the critical depth. If the depth is greater than both the
normal depth (h0) and the critical depth (hc), the profile is of type 1; if the
actual depth is between h0 and hc the profile is of type 2; and if it is less than
both the profile is of type 3.

The twelve possible types are illustrated in Fig. 10.42 (where, for the sake
of clarity, the slopes are greatly exaggerated). Even a steep slope differs from
the horizontal by only a few degrees, so it is immaterial whether the depths
are measured vertically (as shown) or perpendicular to the bed. In prac-
tice, the longitudinal distances are usually so great that it is impossible to
distinguish between uniform and gradually varied flow with the naked eye.

With five letter categories (A, H, M, C, S) and three number categories (1,
2, 3) it might appear that 15 different types of profile can occur. However,
normal flow is impossible on either an adverse or a zero slope, so A1 and
H1 curves do not exist. Also, when the slope is critical, h0 and hc are the
same and thus a C2 curve cannot occur.

Certain general features are evident. All the type 1 curves approach a
horizontal asymptote as the velocity is progressively reduced with increasing
depth. Moreover, all curves (except the C curves) that approach the normal
depth line h = h0 do so asymptotically: this is because uniform flow takes
place at sections remote from any disturbances. The curves that cross the
critical depth line h = hc do so perpendicularly because at critical conditions
the denominator of eqn 10.42 is zero and dh/dl is thus (mathematically)
infinite. But, as we have seen, the assumptions underlying the theory are
then invalid, and so those parts of the curves are shown dotted. The C
curves are exceptions to these statements for then h0 is identical with hc and
a curve cannot approach a line asymptotically and perpendicularly at the
same time.

By way of example, the M curves may be briefly considered. On a mild
slope the normal, uniform flow is tranquil and so h0 > hc. For the M1 curve
h > h0, i < s and since the flow is tranquil the denominator of eqn 10.42 is
positive. Therefore dh/dl is positive and the depth increases in the direction
of flow. The M1 curve is the usual backwater curve caused by a dam or
weir. As h approaches h0, i approaches s and dh/dl → 0; thus the normal
depth is an asymptote at the upstream end of the curve. For the M2 curve,
h0 > h > hc. The numerator of the expression is now negative, although
the denominator is still positive. Therefore dh/dl is negative. This curve
represents accelerated flow and is the downdrop curve approaching a free
outfall at the end of a channel of mild slope. For the M3 curve h < hc,
the flow is rapid, the denominator becomes negative and so dh/dl is again
positive; thus the depth increases in the downstream direction as shown.
This curve results from an upstream control such as a sluice gate. Since the
bed slope is insufficient to sustain the rapid flow a hydraulic jump will form
at a point where the equation for the jump can be satisfied.
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Fig. 10.42 Types of
non-uniform flow (N.B. all
slopes exaggerated).

The slope of a given channel may, of course, be classified as mild for
one rate of flow, critical for another, and steep for a third. The qualitative
analysis of surface profiles is applicable to channels of any shape and rough-
ness, provided that local variations of slope, shape, roughness and so on are
properly taken into account.
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10.13 OSCILLATORY WAVES

Flows with a free surface have the opportunity to distort into a variety of
shapes. Here we consider disturbances moving over the free surface of a
liquid in a periodic manner – wind-generated ocean waves for example. At
any one position some liquid rises above the mean level and then subsides
below it, and in doing so appears to travel over the surface. But what actu-
ally travels over the surface is simply the form of the disturbance. There is
practically no net movement of the liquid itself: an object floating on the sur-
face moves forward with the crest of the wave but, in the succeeding trough,
returns to almost its original position. As wind-generated ocean waves move
into shallow water close to the shore, the regular wave motion is modified,
but even so there is no net flow of water towards the shore (apart from the
small amount produced by a rise or fall of the tide).

An analogous phenomenon is seen when wind passes over a field of grain:
waves travel across the upper surface although evidently the stalks are not
moved across the field but merely oscillate about a mean position.

The study of oscillatory waves is a vast one and has led to a good deal of
complex mathematical theory. Here we shall attempt only an outline of those
parts of the subject with wide practical application. First we shall determine
the velocity c with which a wave moves over the free surface.

10.13.1 The basic equations of motion

Observations show that wind-generated ocean waves are transmitted prac-
tically unchanged in size and shape over great distances and this indicates that
effects of viscosity are very small. Accordingly, we assume that the liquid is
essentially an inviscid fluid, and if we suppose that the motion was originally
generated from rest it can be regarded as irrotational (see Section 9.3).

Figure 10.43 depicts two-dimensional flow in the plane of the diagram,
the fluid being unlimited in the x (horizontal) direction. We assume a rigid
horizontal bed; any other fixed boundaries are vertical planes in the x

Fig. 10.43
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direction. The effect of any boundary layers is regarded as negligible. Shear
stresses between the liquid and the atmosphere above it are negligible too,
and as the density of air is so much less than that of the liquid, we also dis-
regard the effect of air being set in motion by the waves. The wavelength λ is
defined as the distance between corresponding points on consecutive waves,
for example, crest-to-crest or trough-to-trough.

If the wave shape is constant then so is its velocity c in the x direction;
hence to an observer also travelling in that direction at velocity c the flow
pattern would appear steady. The simplest assumption about this steady
flow pattern is that variations with x are sinusoidal. (This assumption is not,
in fact, restrictive since, by Fourier’s theorem, more complicated motions
can be described by combining sinusoidal variations.) For any point in the
liquid the stream function ψ (see Section 9.2) may thus be represented by

ψ = cz + f (z) sinmx (10.44)

where z denotes the vertically upwards coordinate, f (z) is a function of z
to be determined, and m = 2π/λ. The cz term accounts for the uniform
velocity −c applied to make the flow appear steady to the moving observer.

For irrotational motion, ψ must obey Laplace’s equation

∂2ψ

∂x2
+ ∂2ψ

∂z2
= 0

(see Section 9.4), so, substituting from eqn 10.44, we get

−m2f + d2f
dz2

= 0

the solution of which is

f = A sinh(B+mz)
where A and B are constants. Thus eqn 10.44 becomes

ψ = cz + A sinh(B+mz)sinmx
The free surface, where z = η say, must be composed of streamlines and

so there

ψ = constant = cη + A sinh(B+mη)sinmx (10.45)

So that dη/dx = 0 at the crest or trough the position x = 0 must be midway
between a trough and a crest. We may conveniently designate the free-surface
streamline ψ = 0; eqn 10.45 then shows that this line must cross x = 0
where z = 0 as shown in Fig. 10.43. Moreover, because the bed, where
z = −h, also consists of streamlines, ψ at the bed is independent of x, and
so sinh{B+m(−h)} = 0, that is, B = mh. Therefore, in general,

ψ = cz + A sinh
{
m

(
h+ z)}sinmx (10.46)
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In particular, at the free surface,

0 = cη + A sinh{m(h+ η)}sinmx (10.47)

Hence, if, as is usual for ocean waves (except when close to the shore), η is
small compared with both h and λ, the free surface has a sinusoidal form
given by

η �
(

−A
c

sinhmh
)

sinmx A (10.48)

(In what follows equations marked A are subject to the restrictions η �
h, η � λ.)

Since we are considering steady flow, the elevation η of the free surface
can be related to the velocity there by Bernoulli’s equation. We therefore
require expressions for velocity and pressure.

Using values for components of velocity from eqn 9.3 (with z in place of y)
and making use of eqn 10.46, we have

(Velocity)2 =
(

∂ψ

∂x

)2

+
(

−∂ψ

∂z

)2

= A2m2 sinh2{m(h+ z)}cos2mx

+ [−c − Am cosh{m(h+ z)}sinmx]2 (10.49)

Putting z = η gives the velocity at the free surface. Then substituting for
A from eqn 10.47 and neglecting terms in m2η2 (on the assumption that
η � h) we obtain

(Surface velocity )2 = c2[1 − 2mη coth{m(h+ η)}]
� c2(1 − 2mη cothmh

)
A (10.50)

The pressure above the surface is atmospheric but, because the surface
is not plane, the pressure in the liquid is, in general, modified by surface
tension (γ ). The surface tension force divided by the distance perpendicular
to the plane of Fig. 10.44 is γ and at the position P its vertical component
is γ sin θ . At Q the vertical component is

γ sin θ + d
dx

(γ sin θ)δx

Hence the net upwards surface tension force on PQ is

d
dx

(γ sin θ)δx

If a mean gauge pressure p acts over PR, the total upwards force on the fluid
in the control volume PQR

= d
dx

(γ sin θ)δx+ p δx

= Rate of increase of vertical momentum of the fluid through PQR
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Fig. 10.44

This momentum term, however, is proportional both to δx and to δη; so,
after dividing the equation by δx and letting δη → 0, the momentum term
vanishes and we obtain

Pressure immediately below the free surface

= p = − d
dx

(γ sin θ) = −γ
d

dx

[
dη/dx

{1 + (dη/dx)2}1/2

]
(10.51)

For a wave in which η is small compared with both h and λ, we have,
from eqn 10.48,

dη

dx
= −A

c
m sinhmh cosmx = mη cotmx A (10.52)

and, since this is everywhere small compared with unity, eqn 10.51 reduces
to p = −γ d2η/dx2. Substitution from eqn 10.52 then give p = γm2η.

Applying Bernoulli’s equation between the points η = η and η = 0 on the
free-surface streamline (or, strictly, a streamline in the liquid infinitesimally
close to the surface), and using eqn 10.50, we obtain

γm2η + 1
2

�c2(1 − 2mη cothmh) + �gη = 1
2

�c2 A (10.53)

whence

c2 =
(

γm
�

+ g
m

)
tanhmh =

(
2πγ

�λ
+ gλ

2π

)
tanh

(
2πh/λ

)
A (10.54)

Waves for which this result is true, that is, those for which η is every-
where small compared with both h and λ, are sometimes referred to as
Airy waves after Sir George B. Airy (1801–92), who first analysed them
mathematically.



468 Flow with a free surface

For waves not meeting these conditions the analysis is much more
complicated, and in what follows we shall therefore restrict ourselves almost
entirely to Airy waves. (The corresponding equations are those marked A.)
Although application of this theory may lead to some error in practice, this
is often tolerable in comparison with uncertainties in measurements.

The velocity c is known as the phase velocity because points of the same
phase (i.e. of equal η) move at this velocity, regardless of the shape of the
wave. Wave propagation is described as dispersive when the phase velocity
depends on the wavelength λ. This is because if a wave of general shape
were split into components of different wavelengths the components would
move at different velocities and thus become separated, that is, dispersed.
It is helpful to examine some specific results that can be deduced from the
generalized eqn 10.54.

Equation 10.54 shows that the effect of surface tension on the phase
velocity is negligible if

2πγ

�λ
� gλ

2π
that is, if λ � 2π

(
γ

�g

)1/2

For water this last quantity is about 17 mm, and so we can safely disregard
the effect of surface tension on ocean waves, for example.
Deep water waves are often regarded as those for which h > λ/2. Then

tanh(2πh/λ) differs from unity by less than 0.004 and we can take

c2 = 2πγ

�λ
+ gλ

2π
(10.54a)

This has a minimum value when λ = 2π(γ /�g1/2) (� 17 mm for a water);
then cmin = (4gλ/�)1/4 (� 0.23 m · s−1 for water).

10.13.2 Gravity waves

Waves whose properties are primarily determined by gravitational effects
are referred to as gravity waves. Surface tension effects can then be ignored
and eqn 10.54 reduces to

c2 = gλ
2π

tanh
(

2hπ
λ

)
(10.54b)

For long waves, in which λ � h, tanh(2πh/λ) → 2πh/λ. We then obtain

c = (gh)1/2 (10.54c)

as for the single surge wave (Section 10.8). Instead of the description long
wave, the term shallow-water wave is frequently used for waves which sat-
isfy the condition λ � h. However the term long wave is to be preferred,
because it more accurately reflects the fact that waves of long wavelength are
included, irrespective of whether the water is considered deep or shallow.
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With surface tension effects ignored, for deep water waves tanh(2πh/λ)

is approximately equal to 1 and there results

c2 = gλ
2π

(10.54d)

10.13.3 Capillary waves

Waves whose characteristics are governed principally by surface tension are
known as capillary waves. For waves of very short length, usually termed
ripples, the term in eqn 10.54 involving g becomes negligible. For ripples on
water with λ = 3 mm, say, gravity affects c by only 1.5%. When λ is small
compared with h then tanh(2πh/λ) → 1 and the velocity of capillary waves
→ (2πγ/�λ)1/2. The frequency, that is, the number of wave crests passing
a given fixed point divided by time interval, is c/λ which, for λ = 3 mm on
deep water, is 131 Hz. Thus capillary waves can be generated by a tuning
fork held in a liquid – although they rapidly decay and cannot be seen for
more than a few centimetres. Nevertheless, the measurement of the length
of waves produced by a tuning fork of known frequency is the basis of one
method of determining surface tension. (In practice, non-uniformity of the
value of γ caused by contamination of the surface can affect the results
somewhat for short waves.)

�

Example 10.5 Gravity waves on water with a mean depth of 4 m
have a period of 5 s. What is the wavelength?

Solution
From eqn 10.54

c2 = gλ
2π

tanh
2πh
λ

surface tension being neglected. But c = λ/T where T denotes the
period, that is, (frequency)−1

∴ λ = gT2

2π
tanh

2πh
λ

This equation will have to be solved for λ by trial. Since tanh x is zero
when x = 0 and then fairly rapidly approaches unity as x increases,
taking tanh(2πh/λ) = 0.75 say gives a reasonable first approximation.
Then λ = (9.81×52/2π)0.75 m = 29.27 m. The next value is (9.81×
52/2π) tanh(2π × 4/29.27) m = 27.15 m and similarly the following
one is 28.44 m. We could continue refining the result in this way but
as the approach to the solution evidently oscillates we can speed up
the process by using the average of the last two results for the next
trial. So here we take 1

2 (27.15 + 28.44) m = 27.80 m to calculate the
next value of λ as (9.81 × 52/2π) × tanh(8π/27.80) m = 28.04 m.
The final result is λ = 27.95 m.
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Example 10.6 Waves run up on a shore with a period of 12 s.
Determine their phase velocity and wavelength in deep water well away
from the shore.

Solution
For ocean waves, surface tension effects can be ignored. From
eqn 10.54, with γ = 0:

c2 = gλ
2π

tanh
(

2πh
λ

)
For deep water

tanh
(

2πh
λ

)
→ 1

Hence, at the limit

c =
(
gλ
2π

)1/2

which combines with c = λ/T to yield

c = gT
2π

= 9.81 m · s−2 × 12 s
2π

= 18.74 m · s−1

and

λ = cT = 18.74 m · s−1 × 12 s = 225 m�

10.13.4 Movement of individual particles

To describe the motion with respect to stationary axes we must remove the
velocity −c which was imposed to make the flow appear steady. As the
conditions at a particular point will then depend also on time t, we must use
x− ct in place of x: this is because conditions existing at time t and position
x are reproduced unchanged at time t + �t and position x + c�t. Using
eqn 10.46 we obtain, for any position (x, z),

Absolute horizontal velocity of particle =

c − ∂ψ

∂z
= −Am cosh{m(h+ z)} sin{m(x− ct)} (10.54)

Absolute vertical velocity of particle =
∂ψ

∂z
= Am sinh{m(h+ z)} cos{m(x− ct)} (10.55)

Integrating these expressions with respect to t gives displacements X,Z,
respectively, from the mean position. If the displacements are small (as they
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are for waves of small amplitude) we may approximate x and z by their
mean values x and z, and thus obtain

X = −A
c

cosh
{
m

(
h+ z)}cos{m(x− ct)}

Z = −A
c

sinh
{
m

(
h+ z)}sin{m (x− ct)}

Hence

X2(
A2/c2

)
cosh2{m (

h+ z)} + Z2(
A2/c2

)
sinh2{m (

h+ z)} = 1 A (10.57)

which is the equation of an ellipse with semi-axes∣∣∣∣Ac cosh
{
m

(
h+ z)}∣∣∣∣ horizontally and

∣∣∣∣Ac sinh
{
m

(
h+ z)}∣∣∣∣ vertically

Both axes decrease as the mean depth of the particle (−z) increases, the ver-
tical axis necessarily becoming zero when −z = −h. Figure 10.45 illustrates
the elliptical orbits of typical particles in shallow liquid; however, when
h � λ, tanhmh → 1, that is, coshmh → sinhmh and the orbits near the
free surface (where z → 0) become circles. If the depth h is much less than
λ, then m(h + z) is always much less than 1, thus cosh{m(h + z)} → 1
and the horizontal axis of an orbit is practically independent of z. The hori-
zontal component of velocity is also practically independent of z; the vertical
velocity, and therefore acceleration, is small and thus – in this particular
case – a hydrostatic variation of pressure may be assumed. The vertical dis-
placement Z increases practically linearly with z, that is, from the bed to the
free surface.

If the amplitude of a wave is not infinitesimal, as here assumed, the paths
followed by individual particles are not quite closed curves and the particles
in fact slowly advance with the wave.

Fig. 10.45 The diagram shows the instantaneous positions of particles on their
elliptical path lines. For a wave travelling from left to right the particles move
clockwise.
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10.13.5 Wave energy

The energy contained in a wave is the sum of contributions from gravita-
tional energy, kinetic energy and free surface energy.

For unit width perpendicular to the x direction, an element of fluid δx×δz inGravitational energy
size has gravitational energy (�gδxδz)z relative to the equilibrium level z = 0.
For a complete wavelength the total gravitational energy in a sinusoidal wave
is therefore ∫ λ

0

(∫ η

0
�gz dz

)
dx = 1

2
�g

∫ λ

0
η2dx

= 1
2
�ga2

∫ λ

0
sin2{m(x− ct)}dx

= 1
4

�ga2λ

where a represents the amplitude of the wave, that is, the maximum value
of η, and, as before, m = 2π/λ.

The kinetic energy (divided by width) for a complete wavelength can beKinetic energy
calculated from the velocity components for a particle (eqns 10.55 and
10.56):

KE = 1
2

�

∫ λ

0

(∫ η

−h

[
A2m2cosh2{m(h+ z)} sin2 {m (x− ct)}

+ A2m2sinh2 {m(h+ z)}cos2{m(x− ct)}
]

dz
)
dx

= 1
2

�A2m2
∫ λ

0

(∫ η

−h

[
cosh2{m(h+ z)} − cos2{m (x− ct)}

]
dz

)
dx

= 1
4

�A2m2
∫ λ

0

[
1

2m
sinh{2m(h+ η)} − (h+ η) cos {2m (x− ct)}

]
dx

Again assuming that η � h and mη � 1, we obtain

KE = 1
8

�A2mλ sinh 2mh

SubstitutingA = −ca cosechmh (eqn 10.48), and then for c2 from eqn 10.54
gives

KE = 1
4
a2λ

(
�g + γm2

)

If surface tension has a significant effect, we should also add γ (length of sur-Free surface energy
face −λ), which is the work done in stretching the surface in one wavelength
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when the wave was formed. The length of the surface is∫ λ

0
{1 + (dη/dx)2}1/2dx

which for small amplitude is∫ λ

0

[
1 + a2m2cos2{m(x− ct)}

]1/2
dx

≈
∫ λ

0

[
1 + 1

2
a2m2 cos2{m(x− ct)}

]
dx = λ + 1

4
a2m2λ

so the free surface energy over one wavelength is 1
4γ a2m2λ.

The total energy = gravitational energy + kinetic energy + free surface
energy.

Hence the total energy divided by the width of the wave, over one
wavelength

= 1
2
a2λ

(
�g + λm2

)
A (10.58)

Although we assumed that the bed is horizontal (h uniform) variations of
h have no appreciable effect on the result provided that h exceeds (say) λ/2.

10.13.6 Rate of energy transmission

Although the wave shape moves with velocity c this is not necessarily the
velocity with which energy is transmitted through the liquid. The energy is
carried by the particles of liquid and, as we have seen, these do not all move
at velocity c.

The quantity p∗ + 1
2�(u2 + v2) is a measure of the amount of energy

carried by a small element of liquid when it moves divided by the volume of
the element. Here p∗ denotes the piezometric pressure and u, v the horizontal
and vertical components of velocity. In any fixed vertical plane perpendicular
to the x direction the volume flow rate through a small element of height δz
and unit breadth is uδz and so the rate at which the total amount of energy
is transferred across that plane is given by∫ η

−h

{
p∗ + 1

2
�(u2 + v2)

}
udz (10.59)

Since the flow is assumed irrotational Bernoulli’s equation may be applied
between any two points in steady flow. One of these points may be taken on
the free surface at η = 0; then, for the steady conditions and waves of small
amplitude.

p∗ + 1
2

�
{
(u− c)2 + v2

}
= 1

2
�c2 A (10.60)
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(as in eqn 10.53). Hence p∗ + 1
2�

(
u2 + v2) = �uc, so the expression 10.59

becomes

�c
∫ η

−h
u2dz

Substitution from eqn 10.55 for u allows the rate of transfer of energy across
the plane to be evaluated as

1
2

�cA2m2
(
h+ 1

2m
sinh 2mh

)
sin2 {m(x− ct)} A (10.61)

where η has again been neglected in comparison with h.
Themean rate of energy transfer (for unit breadth) is obtained by integrat-

ing the expression 10.61 with respect to t for the passage of one wavelength
through the fixed plane, and then dividing by the corresponding period λ/c.
Substituting for A the value −ca cosechmh (from eqn 10.48) and then for
c2 from eqn 10.54 we obtain

Mean rate of energy transfer (for unit breadth)

= 1
4
ca2(1 + 2mh cosech 2mh)(�g + γm2)

From eqn 10.58, the mean total energy divided by the plan area is 1
2a

2(�g+
γm2). Hence dividing this quantity into the mean rate of energy transfer (for
unit breadth) gives the velocity of energy transmission

1
2
c(1 + 2mh cosech 2mh) A (10.62)

This, it will be seen, is always less than c.

10.13.7 Group velocity

If an otherwise still liquid is disturbed at a particular position – for example,
when a stone is thrown into a pond or when a boat moves through calm
water – a group of waves is produced that moves away from the point of
disturbance. It will often be noticed that the group advances at a velocity
less than that of the individual waves within it. Individual waves appear to
move forward through the group, grow to a maximum amplitude, and then
diminish before vanishing entirely at the front of the group.

This happens because the group has components that in general are of
slightly different wavelength (and therefore slightly different velocity). As
a simple example, let us consider two trains of waves A and B that com-
bine together as shown in Fig. 10.46. If trains A and B differ slightly in
wavelength, the total wave form resulting from their addition has a slowly
varying amplitude, giving the appearance of groups of waves alternating
with intervals of almost still liquid. (A similar phenomenon can occur in any
kind of wave motion, for example, the beats produced by the conjunction
of two trains of sound waves of nearly equal wavelength, or the amplitude
modulation of radio waves.)
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Fig. 10.46

At a particular instant the crests a and b coincide, so the maximum com-
bined amplitude for the group is at this position. A little later the faster waves
(B, say) will have gained a distance δλ relative to the slower waves (A) and
then crests a′ and b′ will coincide. Since the relative velocity between trains
A and B is δc, this takes a time δλ/δc. However, while the point where crests
coincide has moved back a distance λ (relative to A), A itself has in this time
interval δλ/δcmoved forward a distance c(δλ/δc). Thus the maximum com-
bined amplitude has moved forward a net distance cδλ/δc− λ. The velocity
with which it does so is therefore

cδλ/δc − λ

δλ/δc
= c − λ

δc
δλ

which, as δc and δλ both tend to zero, becomes

c − λ
dc
dλ

= c +m dc
dm

(10.63)

This is known as the group velocity cg, and clearly, unless the individual
wave velocity c is independent of the wavelength, the group velocity differs
from c.

Provided that there are only slight variations of c and λ, the result is true
for any number of waves of any type. But, in particular, eqn 10.63 shows
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that for small surface waves

cg = c +m dc
dm

= c
2

{
2 + m

c2

d
(
c2)

dm

}

= c
2

(
3γm2 + �g
γm2 + �g

+ 2mh
sinh 2mh

)
A (10.64)

If surface tension has a negligible effect, the first term in the final bracket
is unity; cg is then (by coincidence) the same as the velocity of energy trans-
mission (eqn 10.62) and it varies between c/2 (whenmh → ∞) and c (when
mh → 0). (This last condition is found close to a sloping beach, and this is
why we do not there see groups of waves moving more slowly than individual
waves.) However, for small waves in which surface tension is significant
the group velocity differs from the velocity of energy transmission and may
exceed the velocity of individual waves.

Example 10.7 Waves run up on a shore with a period of 12 s; see
Example 10.6.

(a) Estimate the time elapsed since the waves were generated in a storm
occurring 800 km out to sea.

(b) Estimate the depth at which the waves begin to be significantly
influenced by the sea bed as they approach the shore.

Solution
From Example 10.6, c = 18.74 m · s−1 and λ = 225 m.

(a) Waves travel over long distances at the group velocity cg. Denote
the distance and time by x and t respectively. Hence cg = x/t.
Noting that, for large h, cg = c/2, we obtain

t = x
cg

= 2x
c

= 2 × 800 km × 103 m · km−1

18.74 m · s−1
= 85.38 × 103 s

= 23.7 hours

(b) We can examine two alternative criteria.

Criterion I: h = λ

2
= 225 m

2
= 112.5 m

Criterion II: The influence of the sea bed is felt when the tanh(2πh/λ)

term gives a 1% change in λ:

tanh
(

2πh
λ

)
= 0.99 or

2πh
λ

= 2.65
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Hence

h = 2.65λ

2π
= 2.65 × 225 m

2π
= 94.9 m

The answers show that h lies in the range between about 95 m and
113 m, say 100 m. �

10.13.8 Waves moving into shallower liquid

We now consider what happens when waves move, for example, towards a
gradually sloping beach. Although the depth of liquid decreases, the wave
period T cannot change. This is because the number of waves passing a fixed
position in unit time interval is 1/T, and if this varied from one position to
another then the number of waves entering a given region would differ from
the number leaving, so the number of waves in the region would increase or
decrease indefinitely. By using the fundamental relation

λ = cT (10.65)

λ can be eliminated from eqn 10.54 and, with T constant, it is then readily
shown that dc/dh is always positive. Consequently a decrease of depth h
entails a reduction of velocity c. (It is true that eqn 10.54 is based on the
assumption h = constant, but the slope of the sea bed is usually so small
that the change of h is negligible over a single wavelength. This also means
that there will be a negligible reflection of a wave from the sloping bed.
We disregard too the effects of any additional currents there may be – for
example, close to the outlet of a river.)

This reduction of wave velocity may produce refraction effects similar to
those in optics. For example, a uniform train of waves approaching a beach
obliquely is deflected so that the wave crests become more nearly parallel to
the contour lines of the bed, as Fig. 10.47.

If refraction causes horizontal lines perpendicular to the wave crests to
converge, the wave energy is constricted to a passage of decreasing width

Fig. 10.47



478 Flow with a free surface

and thus the wave amplitude increases – sometimes quite dramatically. This
is why large waves are often found at headlands at the sides of a bay; and it
is an important consideration in the design of harbours.

When the depth becomes little more than the amplitude, the Airy the-
ory ceases to hold and the wave profile is increasingly distorted. The crests
become sharper and the troughs flatter. Moreover, the velocity of propaga-
tion of the upper part of the profile is greater than that of the lower part;
consequently the crests curl forwards and finally break. Breaking usually
occurs when a � 3

4h.

10.13.9 Standing waves

If two trains of waves of the same amplitude, wavelength and period, but
travelling in opposite directions, are combined, the result is a set of standing
(i.e. stationary) waves. This can happen when a series of waves is reflected
by a fixed solid boundary perpendicular to the direction of propagation: the
two individual wave trains are then formed of the incident waves travelling
with velocity c and the reflected waves with velocity −c. For example, if the
individual waves are small-amplitude sine waves, the equation of the free
surface for the resulting standing wave is

η = a sin{m(x− ct)} + a sin{m(x+ ct)} = 2a sinmx cosmct A (10.66)

That is, at any instant the free surface is a sine curve but its amplitude
2a cosmct varies continuously with time. The values of x that give η = 0
are independent of t and thus the wave profile does not travel over the
surface; instead it simply rises and falls as indicated by the dotted lines in
Fig. 10.48. The positions at which η is always zero are called nodes and
those of maximum vertical motion are called antinodes. Equation 10.66
shows that the wavelength λ = 2π/m is the same as for the original waves;
so too is the period λ/c.

From eqn 10.47 A = −ca cosech{m(h + a)} where a again denotes the
maximum value of η. Substituting this into eqn 10.55 we see that the hori-
zontal velocity of a particle in a single moving wave (not necessarily of small
amplitude) is

mca cosech
{
m(h+ a)}cosh

{
m(h+ z)}sin{m(x− ct)}

If we add to this the value for a wave of equal amplitude travelling with
velocity −c we obtain the horizontal velocity of a particle in a standing
wave:

mca cosech
{
m(h+ a)} cosh

{
m(h+ z)}

×[sin {m(x− ct)} − sin{m(x+ ct)}]
= −2mca cosech{m(h+ a)}cosh{m(h+ z)}cosmx sinmct

Similarly the vertical velocity may be shown to be

−2mca cosech
{
m(h+ a)}sinh

{
m

(
h+ z)} sinmx sinmct
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Fig. 10.48

As the ratio of these velocity components is independent of t, each particle –
if it does not move far from its mean position (x, z) – moves to and fro in a
straight line, the direction of which varies from vertical beneath the antinodes
(where cosmx = 0) to horizontal beneath the node (where sinmx = 0).

If the liquid is confined in a channel with completely closed vertical ends,
then only certain values of wavelength are possible. Because the horizontal
velocity at the closed ends must be zero, each end must coincide with an
antinode and so the length of the channel must be an integral number of
half-wavelengths. If, however, one end of the channel is closed but the other
is open, that is, connected with an infinite amount of liquid, then that end
must be a node (no vertical movement) and the length of the channel must
be an odd number of quarter-wavelengths. These standing wave oscillations
are thus seen to be analogous to the longitudinal vibrations of the air in an
organ pipe or other wind instrument. Once the motion is established it can
continue, even with large amplitudes, with very little dissipation of energy.

A bay may behave like a channel open at one end if waves or tides from
the open sea arrive with a frequency equal to that at which standing waves
oscillate. The water in the bay is then set into resonance and very high
amplitudes may occur at the inner shore even though there is only moderate
vertical movement at the mouth of the bay.

Lakes or harbours may act like channels with closed ends. For example,
wind action may move water towards one end, and, after the wind drops,
the water may oscillate for a considerable time. Such standing waves are
usually termed seiches (pronounced ‘saishes’). On the surface the horizontal
movement at the nodes may be several times the vertical movement at the
antinodes, and boats may thus be wrenched from their moorings.
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10.14 TSUNAMIS

Cyclical or wave motion in the seas is established in three broadly different
ways. Gravitational forces have a fundamental influence on all three, but
they are distinguished by the fact that certain features of the motion differ
by orders of magnitude. First, there are the tides. Tidal motion is the regular
raising and lowering of sea level, with a periodic time of approximately 12 h
to 12.5 h, caused principally by the gravitational pull of the moon, with
the sun and planets also making smaller contributions. Second, there are
surface waves. These are mainly generated by the movement of the winds
over the seas, although the motion of ships and other surface disturbances
also contribute to this form of wave motion. Aspects of the motion of surface
waves were covered extensively in Section 10.13. Third, there are tsunamis.
The tides and wind-generated waves are with us all the time, but tsunamis
only occur infrequently. Tsunamis will be discussed here, where, in order
to focus attention on their main characteristics, we shall neglect tidal action
and wind-generated wave motion.

The term tsunami is a Japanese word which means harbour wave. The
term tidal wave was formerly used to describe the phenomenon, but this
expression has been abandoned because it incorrectly attributes the waves
to the tides. A tsunami is a natural phenomenon, consisting of a series of
waves generated at sea as a result of a triggering event. Once these waves
have been set in motion they are very persistent, eventually arriving at a
coastline, and it is there that the full effect of a tsunami is manifested. No
two tsunamis are the same. A small tsunami, resulting for example from
an earth tremor, is scarcely perceptible and is only detectable with sensitive
measuring equipment. However, at the opposite extreme, a tsunami can
cause an enormous amount of damage to property, with associated human
casualties. This was vividly demonstrated by the South East Asian tsunami
of 26 December 2004, resulting from an earthquake of magnitude 9.0 on
the Richter scale, when some 300 000 lives were lost, mainly in Indonesia,
Sri Lanka and India.

There are four main ways in which tsunamis are initiated. Earthquakes are
the most frequent cause. Then, in descending order of occurrence, tsunamis
can also be generated by a major landslide, the eruption of a volcano or the
descent into the sea of an object, such as a meteorite or asteroid, from space.

Each tsunami is unique, depending in part on the details of the triggering
event, the distance from the origin to the neighbouring coastlines, and the
morphology of the coastline. We shall examine the broad characteristics of
a tsunami, in turn considering events at the location where it originates, the
movement of the waves over the deep ocean, and finally the arrival of the
waves in shallow water at the coastline.

We start our discussion of the origins of a tsunami by considering an
earthquake, which results from the relative movement of two tectonic plates
along a fault line, one plate passing beneath the other in a process known
as subduction. This movement causes the sudden release of an enormous
amount of strain energy, resulting in a substantial deformation of the sea bed,
some parts elevating, others subsiding. As a consequence, a large volume of
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water is impulsively displaced and the local equilibrium of the surface of
the sea is destroyed. When the sea floor lifts, the displaced mass of water
accumulates potential energy under the influence of gravity. In attempting
to establish a new equilibrium configuration, the potential energy is trans-
formed into kinetic energy and a system of waves is set in motion. In contrast
to wind-driven waves, for which there is virtually no net movement of the
water itself, a tsunami is associated with the movement of a large mass of
water. The wave front created in the early stages of a tsunami has, in gen-
eral, a complex geometry. If an earthquake were concentrated at a single
point beneath the surface of the sea, then the waves would radiate away
from the source across the surface of the sea in circles. But, the deforma-
tion of the sea bed occurs over a long narrow region, approximately linear
in form, so leading to an approximately two-dimensional wave pattern.
The overall wave pattern therefore combines features of these two separate
inputs.

In the deep water of the open sea, certain characteristics of a tsunami
are quite different from those of wind-generated waves. Whereas wind-
generated waves might typically have a wavelength λ between 100 m and
200 m, and a period T of from 5 s to 20 s, tsunamis can have a wavelength
of 100 km or more, and a period between 0.25 h and 2 h. The difference
in height between the crest and trough of a tsunami in the deep ocean is
quite small, of the order of 1 m, and – as it moves at high speed over
the surface of the sea – its passage is hardly detectable and is not felt by
ships. For tsunamis the condition λ � h is usually satisfied and so the
waves can be regarded as long waves (see Section 10.13.2), whether in
deep water or, as they approach a coastline, in shallow water. The rate
of advance of a tsunami is therefore given by c = (gh)1/2, where h is the
depth of the water and g is the acceleration due to gravity. For example, for
a depth h = 6000 m representative of the deep ocean, the wave advances
at 243 m · s−1, equivalent to 870 km · h−1, similar to the speed at which a
subsonic commercial airliner operates. The loss of energy in waves is pro-
portional to λ−1, and so the losses in a tsunami are very small and the
waves are capable of travelling over great distances. The Asian tsunami of
December 2004 yielded the following data. The earthquake was centred
about 225 km South West of Sumatra and the tsunami hit the Sumatra coast
some 15 minutes later. Further away, the tsunami arrived at the Maldives
after about 4 h and landed on the East African coastline some 7 h after the
earthquake.

As a tsunami approaches a coastline the character of the waves changes in
response to the diminishing depth h of the sea. The condition λ � h is still
satisfied, and so the velocity of the waves decreases in accordance with the
relation c = (gh)1/2. There is a corresponding increase in wave amplitude
a, that is the maximum height of the wave crest above the mean sea level.
The magnitude of a is principally determined by energy considerations. The
mean rate of energy transfer is approximately proportional to the product ca2

(see Section 10.13.4). Conservation of energy flux requires that ca2 remains
constant. Substituting for c we have ca2 = (gh)1/2a2 = constant, from
which it follows that ah1/4 = constant. Hence the wave height increases as
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the depth of the sea decreases according to the relationship

a = a0

(
h0

h

)1/4

where a0 and h0 are arbitrary datum values of a and h. Unlike wind-generated
waves, a tsunami does not break, but forms a front similar to a bore or
hydraulic jump.

The detailed morphology of the coastline has a considerable bearing on
the impact of the tsunami. A steep gradient of the sea bed, or coastal features
such as bays and headlands, afford some localities a measure of protection
against the most severe features of a tsunami. Conversely, the greatest dam-
age occurs where there is a gentle gradient to the sea bed. In the shallow
waters, and depending on the proximity to and the strength of the initiating
earthquake, the wave height can build to between 10 m and 20 m. In the
absence of features to dissipate the energy of the tsunami, it is capable of
running inland for up to 3 km, with devastating effect. Because the period
T of a tsunami is long, water associated with the crest of the leading wave
continues to move towards the shoreline for a long time, but eventually the
trough of the wave arrives. There then comes a stage when the waters run
back off the land and once again return to the sea. Thereafter, the sea with-
draws leaving exposed areas of the beach which had been under water prior
to the arrival of the tsunami. The cycle is then repeated with the arrival of
the next wave crest, of reduced amplitude. Over time the wave motion is
gradually damped out until after some 24 hours it finally disappears. Depar-
tures from the given description of a typical tsunami do seem to occur. An
initial retreat of the sea has been reported as a precursor to the arrival of a
large wave, and eye-witness accounts suggest that, occasionally, the second
wave is stronger than the first.

Besides the 2004 Asian tsunami another notable, but localized, event was
the tsunami in Lituya Bay, Alaska, in 1958, when giant waves rose to a
height of about 520 m. Looking ahead, scientists are predicting that, within
a few thousand years, a massive tsunami will occur as a consequence of a
giant landslide on the island of La Palma, in the Canaries. This event will
be triggered by a volcanic eruption and it is anticipated that the waves will
cross the Atlantic Ocean to affect the United States and Caribbean Islands.

10.15 CONCLUSION

In this chapter we have restricted our discussion of phenomena occurring in
flow with a free surface to the case of a liquid in contact with the atmosphere,
the density of the latter being negligible in comparison with that of the liquid.
Similar phenomena can, however, take place when the interface is between
two fluids whose densities are much more nearly equal. Consideration of
these further examples of free surface flow is beyond the scope of this book,
but it is worth remarking that the phenomena discussed in this chapter have
their counterparts in the atmosphere and in lakes and oceans whenever there
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is relative movement of one layer of fluid over another layer of slightly greater
density. Such a situation occurs in the atmosphere when a stream of cold air
flows under warmer air. Similarly, in a large bulk of liquid a current of cold
liquid may flow under warmer liquid; or salt water or sediment-laden water
may flow under fresh water. The effect of gravity on the situation is then
represented, not simply by g, but by {1 − (�1/�2)}g where �1/�2 represent
the densities of the two fluids, and �1/�2 < 1.

PROBLEMS

10.1 A channel of symmetrical trapezoidal section, 900 mm deep
and with top and bottom widths 1.8 m and 600 mm respect-
ively, carries water at a depth of 600 mm. If the channel slopes
uniformly at 1 in 2600 and Chézy’s coefficient is 60 m1/2 · s−1,
calculate the steady rate of flow in the channel.

10.2 An open channel of trapezoidal section, 2.5 m wide at the
base and having sides inclined at 60◦ to the horizontal, has a
bed slope of 1 in 500. It is found that when the rate of flow
is 1.24 m3 · s−1 the depth of water in the channel is 350 mm.
Assuming the validity of Manning’s formula, calculate the rate
of flow when the depth is 500 mm.

10.3 A long channel of trapezoidal section is constructed from
rubble masonry at a bed slope of 1 in 7000. The sides slope
at arctan 1.5 to the horizontal and the required flow rate is
2.8 m3 · s−1. Determine the base width of the channel if the
maximum depth is 1 m. (Use Table 10.1.)

10.4 A long concrete channel of trapezoidal section with sides that
slope at 60◦ to the horizontal is to carry water at 0.3 m3 · s−1.
Determine the optimum dimensions if the bed slope is 1 in
1800. (Use Table 10.1.)

10.5 A conduit 1 m diameter and 3.6 km long is laid at a uniform
slope of 1 in 1500 and connects two reservoirs. When the
reservoir levels are low the conduit runs partly full and when
the depth is 700 mm the steady rate of flow is 0.325 m3 · s−1.
The Chézy coefficient is given byKm1/6, whereK is a constant
and m represents the hydraulic mean depth. Neglecting losses
of head at entry and exit, calculateK and the rate of flow when
the conduit is full and the difference between reservoir levels
is 4.5 m.

10.6 A circular conduit is to satisfy the following conditions: capa-
city when flowing full, 0.13 m3 · s−1; velocity when the depth
is one quarter the diameter, not less than 0.6 m · s−1. Assuming
uniform flow, determine the diameter and the slope if Chézy’s
coefficient is 58 m1/2 · s−1.

10.7 Show that the surface of the liquid in a circular conduit under
conditions of maximum discharge subtends an angle of 302.4◦
at the centre. Determine the diameter of such a conduit at
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a slope of 1 in 104 and carrying a maximum discharge of
2.8 m3 · s−1. Assume that u = (80 m1/3 · s−1)m2/3i1/2.

10.8 A long horizontal channel has a base width of 1 m and sides
at 60◦ to the horizontal. When the flow in the channel is
0.85 m3 · s−1 the depth is 500 mm. The discharge is suddenly
reduced so that a surge wave of amplitude 150 mm is propag-
ated upstream. Determine the new rate of flow, the velocity of
the wave and the Froude numbers before and after the wave.

10.9 In a long rectangular channel 3 m wide the specific energy
is 1.8 m and the rate of flow is 12 m3 · s−1. Calculate two
possible depths of flow and the corresponding Froude num-
bers. If Manning’s n = 0.014 what is the critical slope for this
discharge?

10.10 The cross-section of a channel is a parabola with a vertical
axis. Determine the critical velocity and critical depth in terms
of the specific energy E.

10.11 The cross-section of a river 30 m wide is rectangular. At a point
where the bed is approximately horizontal the width is restric-
ted to 25 m by the piers of a bridge. If a flood of 450 m3 · s−1 is
to pass the bridge with the minimum upstream depth, describe
the flow past the piers and calculate the upstream depth.

10.12 A long, straight open channel has a base width of 1 m and
sides that slope outwards at 60◦ to the horizontal. The bed
has a uniform slope of 1 in 250 and the channel ends in a
free outfall. A small surface wave travelling slowly upstream
becomes stationary at a section where the boundary surface is
slightly smoother. If the normal depth of flow is 150 mm and
the Chézy coefficient is given byKm1/6, wherem represents the
hydraulic mean depth, estimate the value ofK for the smoother
surface and the mean shear stress on this surface.

10.13 Water flows at 5.4 m3 · s−1 under a wide sluice gate into a
rectangular prismatic channel 3.5 m wide. A hydraulic jump
is formed just downstream of a section where the depth is
380 mm. Calculate the depth downstream of the jump and
the power dissipated in it.

10.14 Water discharges at the rate of 8.5 m3 · s−1 from under a sluice
gate into a large rectangular channel 2.5 m wide which has a
slope of 0.002. A hydraulic jump is formed in which the ratio
of conjugate depths is 2.5. Estimate the value of Manning’s n
for the channel.

10.15 A sluice across a rectangular prismatic channel 6 m wide dis-
charges a stream 1.2 m deep. What is the flow rate when the
upstream depth is 6 m? The conditions downstream cause a
hydraulic jump to occur at a place where concrete blocks have
been placed on the bed. What is the force on the blocks if the
depth after the jump is 3.1 m?

10.16 Water flows at a depth of 1.2 m in a rectangular prismatic
channel 2.7 m wide. Over a smooth hump 200 mm high on
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the channel bed a drop of 150 mm in the water surface is
observed. Neglecting frictional effects, calculate the rate of
flow.

10.17 Uniform flow occurs with a depth of 900 mm in a rectangular
prismatic channel 2.5 m wide. If Manning’s n = 0.015 and the
bed slope is 1 in 1200 what is the minimum height of hump
in the bed over which critical flow will be produced?

10.18 A venturi flume of rectangular section, 1.2 m wide at inlet and
600 mm wide at the throat, has a horizontal base. Neglecting
frictional effects in the flume calculate the rate of flow if the
depths at inlet and throat are 600 mm and 560 mm respect-
ively. A hump of 200 mm is now installed at the throat so that
a standing wave is formed beyond the throat. Assuming the
same rate of flow as before, show that the increase in upstream
depth is about 67.4 mm.

10.19 A venturi flume installed in a horizontal rectangular channel
700 mm wide has a uniform throat width of 280 mm. When
water flows through the channel at 0.140 m3 · s−1, the depth
at a section upstream of the flume is 430 mm. Neglecting fric-
tion, calculate the depth of flow at the throat, the depth at
a section just downstream of the flume where the width is
again 700 mm, and the force exerted on the stream in passing
through the flume.

10.20 A rectangular prismatic channel 1.5 m wide has a slope of 1 in
1600 and ends in a free outfall. If Manning’s n is 0.015 how
far from the outlet is the depth 750 mm when the flow rate
is 1.25 m3 · s−1? (Use a tabular integration with three equal
steps.)

10.21 Water runs down a 50 m wide spillway at 280 m3 · s−1 on to a
long concrete apron (n = 0.015) having a uniform downward
slope of 1 in 2500. At the foot of the spillway the depth of the
flow is 600 mm. How far from the spillway will a hydraulic
jump occur? (For this very wide channel taking m = h gives
acceptable accuracy.)

10.22 A pressure gauge fixed 1 m above the sea bed at a posi-
tion where the mean water depth is 15 m records an average
maximum (gauge) pressure of 145 kPa and period 9 s. Determ-
ine the wavelength and height. (Density of sea-water =
1025 kg · m−3.)

10.23 A ripple tank contains liquid of density 875 kg · m−3 to a depth
of 4 mm. Waves of length 8.5 mm are produced by a reed
vibrating at 25 Hz. Determine the surface tension of the liquid,
the mean rate of energy transfer and the group velocity of the
waves.

10.24 In a rectangular wave-tank 4.5 m wide containing fresh water,
waves of total height (trough to crest) 0.5 m and period 5 s
are generated over a still-water depth of 4 m. Verifying the
assumptions made, determine the wave speed, wavelength,
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group velocity and total power. For a position midway
between a trough and a crest and at half the still-water depth
determine the velocity of a particle and the static pressure.
What are the semi-axes of a particle orbit at this position?

10.25 Ocean waves, with a period of 8 s and amplitude 0.6 m in deep
water, approach the shore in the normal direction. A device
80 m long for extracting power from the waves is installed
parallel to the shore in water 5 m deep. If there is negligible
dissipation of energy before the waves reach the device and its
efficiency is 50%, what power is produced? What is the amp-
litude of the waves immediately before this position? (Density
of sea-water = 1025 kg · m−3.)



Compressible flow
of gases 11

11.1 INTRODUCTION

Although all fluids are to some extent compressible, only gases show a
marked change of density with a change of pressure or temperature. Even
so, there are many examples of the flow of gases in which the density does
not change appreciably, and theory relating to constant-density fluids may
then adequately describe the phenomena of flow. In this chapter, however,
we turn our attention to the flow of gases in which changes of pressure and
velocity are associated with significant changes of density.

In general, significant changes of density are those greater than a few per
cent, although there is no sharp dividing line between flows in which the
density changes are important and those in which they are unimportant.
Significant density changes in a gas may be expected if the velocity (either
of the gas itself or of a body moving through it) approaches or exceeds
the speed of propagation of sound through the gas, if the gas is subject to
sudden accelerations or if there are very large changes in elevation. This last
condition is rarely encountered except in meteorology and so (apart from
the references in Chapter 2 to the equilibrium of the atmosphere) is not
considered in this book.

Because the density of a gas is related to both the pressure and the tem-
perature all changes of density involve thermodynamic effects. Account
therefore must be taken of changes in internal energy of the gas, and ther-
modynamic relations must be satisfied in addition to the laws of motion and
continuity. Furthermore, new physical phenomena are encountered. The
study of flow in which density varies is thus a good deal more complex than
that with constant density. At this stage it is assumed that the reader knows
something of thermodynamics, but in the next section a few brief reminders
of thermodynamic concepts are provided.

11.2 THERMODYNAMIC CONCEPTS

The density ρ of a gas is related to its absolute pressure p and absolute
temperature T by the equation of state. For a perfect gas this takes the form

p = ρRT (1.5)
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The conditions under which a gas may be assumed perfect are discussed
in Section 1.4 and attention is there drawn to the precise definition of the
constant R and to its dimensional formula.

From Section 3.5.1 we recall the First Law of Thermodynamics, from
which was derived the Steady-Flow Energy Equation (3.13). Since thermal
energy and mechanical energy are interchangeable, amounts of either may
be expressed in terms of the same SI units. The inclusion of the mechanical
equivalent of heat, J, in equations expressed in SI units is therefore unne-
cessary. It is in any case simply a conversion factor equal to unity and is
required only when data about heat and mechanical energy are expressed
with different units.

When the physical properties of a gas (e.g. its pressure, density and tem-
perature) are changed, it is said to undergo a process. The process is said
to be reversible if the gas and its surroundings could subsequently be com-
pletely restored to their initial conditions by transferring back to (or from)
the gas exactly the amounts of heat and work transferred from (or to) it dur-
ing the process. A reversible process is an ideal never achieved in practice.
Viscous effects and friction dissipate mechanical energy as heat which cannot
be converted back to mechanical energy without further changes occurring.
Also, heat passes by conduction from hotter to cooler parts of the system
considered, and heat flow in the reverse direction is not possible. In practice,
then, all processes are, in various degrees, irreversible. A process may be con-
sidered reversible, however, if velocity gradients and temperature gradients
are small, so that the effects of viscosity and heat conduction are negligible.

If, in the course of a process, no heat passes from the gas to its surroundings
or from the surroundings to the gas, then that process is said to be adiabatic.
During an adiabatic process the internal energy of the gas may change: the
gas may be in a thermally insulated container, and yet some of the kinetic
energy of particles may be converted to internal energy by viscous action.
An adiabatic process therefore is not necessarily reversible.

Work done on a fluid by its surroundings may compress it or increase its
kinetic energy (including the energy of eddies in turbulence) and potential
energy. During an infinitesimal reversible (i.e. frictionless) process the work
done on the fluid is therefore

p(−δV) + δ(KE) + δ(PE)

where p represents its absolute pressure, V its volume, and KE and PE
represent the kinetic energy and potential energy respectively. (The minus
sign appears because δ means ‘a very small increase of’.)

The First Law of Thermodynamics may be stated as:
Heat transferred to fluid + Work done on fluid = Increase in internal energy
+ Increase in Kinetic and Potential Energies

(In this statement all the terms have the dimensions [ML2T−2].)
Therefore

∴ δQrev + p(−δV) = δ(internal energy)

It is usual practice to express equations of thermodynamics which are
derived from or relate to the First Law of Thermodynamics in the form
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energy ÷ mass, so that the dimensions of each term take the form
[ML2T−2]/[M] = [L2T−2]. So, with reference to quantities divided by the
mass of the fluid, the previous equation takes the form

δqrev = δe+ pδ(1/ρ) R∗ (11.1)

At constant volume (δV = 0), the specific heat capacity cv is equal to

(δqrev/δT)v = (∂e/∂T)v as δT → 0.

At constant pressure δqrev = δe + pδ(1/ρ) = δe + δ(p/ρ) and for a
thermally perfect gas this becomes δqrev = δe+δ(RT). Therefore the specific
heat capacity at constant pressure cp = (δqrev/δT)p = (∂e/∂T)p + R. But
for a thermally perfect gas the internal energy, e, consists only of the energy
due to molecular activity. It is a function of T only and so(

∂e
∂T

)
v

= de
dT

=
(

∂e
∂T

)
p

Hence for a thermally perfect gas cv and cp are related by

cp – cv = R TPG (11.2)

For a given system, that is, a given collection of matter, specific entropy s Entropy
(i.e. entropy divided by mass) is defined by the relation δs = δqrev/T. For
the purposes of definition a reversible process is supposed, because between
two states (say 1 and 2) of the system the change of specific entropy

s2 − s1 =
∫ 2

1
ds

is then the same whatever the details of the process, that is, whatever the path
of the integral between states 1 and 2. The zero of the s scale is arbitrary, but,
once it has been fixed, a certain value of s corresponds to each state of the
system. Consequently, a difference of entropy between two states is a def-
inite amount in no way depending on whether the actual process is reversible.

A process in which the entropy does not change (δs = 0) is termed isentropic. Isentropic process
Constant entropy requires δqrev = 0, a condition achieved if no heat

passes between the system and its surroundings and no mechanical energy
is converted to thermal energy by friction. A frictionless, adiabatic process
is therefore isentropic. In practice such a process is closely approximated if
there is little friction and the changes occur rapidly enough for little transfer
of heat to take place across the boundaries.

In the absence of friction, the system considered gains as much thermal
energy as its surroundings lose, and the total change of entropy is zero. When
friction acts, the system gains more thermal energy than its surroundings

∗ Here and elsewhere in this chapter the main assumptions involved in each equation are noted
alongside: A = adiabatic conditions; B = Boyle’s Law; I = isentropic; NF = negligible friction;
PG = perfect gas; R = reversible process; SF = steady flow; TPG = thermally perfect gas (i.e.
R = constant).
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lose, so the total entropy increases. There is no process by which the total
entropy can decrease: for a reversible process the total entropy is constant;
for all other it increases.

An important relation may be deduced for a frictionless adiabatic process
in a gas. Referring throughout to quantities divided by the mass of gas, we
may write for a frictionless (i.e. reversible) process: δqrev = Tδs and so spe-
cific heat capacity = Tδs/δT. Hence cp = T(∂s/∂T)p and cv = T(∂s/∂T)v.
Now since entropy is a function of state (i.e. of absolute pressure p and
volume divided by mass v) we may write

δs =
(

∂s
∂v

)
p
δv +

(
∂s
∂p

)
v
δp

where a suffix indicates the quantity held constant. Temperature does not
appear as a separate variable since it is uniquely related to p and v by the
equation of state. Since the assumed process is isentropic, however, δs = 0
and so, as δp and δv both tend to zero,(

∂p
∂v

)
s
= − (∂s/∂v)p

(∂s/∂p)v
= − (∂s/∂T)p

(∂v/∂T)p

/
(∂s/∂T)v

(∂v/∂T)v

= −γ
(∂p/∂T)v

(∂v/∂T)p
A, R (11.3)

where γ = cp/cv.
If the gas obeys Boyle’s Law pv = f (T), where f (T) represents any

function of T, then(
∂p
∂T

)
v

= 1
v

df
dT

and
(

∂v
∂T

)
p

= 1
p

df
dT

These expressions substituted in eqn 11.3 give(
∂p
∂v

)
s
= −γp

v
A, R, B (11.4)

For a constant value of γ , integration then yields ln p = −γ ln v+ constant.
Thus

pvγ = constant = p/ργ A, R, B γ const (11.5)

The equation of state for a perfect gas satisfies Boyle’s Law. For a perfect
gas p/(ρT) = constant and the isentropic relation 11.5 may be alternatively
expressed

p(γ−1)γ

T
= constant A, R, PG i.e., I, PG (11.6)

The equation of state which relates p, ρ and T, strictly refers to con-
ditions of thermodynamic equilibrium. Experience shows, however, that
this equation, and others derived from it, may in practice be used for
non-equilibrium conditions except when the departure from equilibrium is
extreme (as in explosions).
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Certain combinations of fluid properties occur so frequently in Enthalpy
thermodynamic problems that they may usefully be given symbols of their
own. One such combination is E+pV = H, known as enthalpy. The specific
enthalpy (i.e enthalpy divided by mass) is given by h = e + pv = e + p/ρ.
For many vapours, values of h (as a function of temperature and pres-
sure) may be obtained from appropriate tables and charts. However, if
cp is constant, h is linearly related to temperature. This is because, for
constant pressure, δqrev = δe + δ(p/ρ) = δh from eqn 11.1. Consequently
cp = (∂qrev/∂T)p = (∂h/∂T)p and so, with cp constant and the zero of h
taken at the absolute zero of temperature,

h = cpT cp const (11.7)

11.3 ENERGY EQUATION WITH VARIABLE DENSITY:
STATIC AND STAGNATION TEMPERATURE

The general energy equation for the steady flow of any fluid was presented
in Section 3.5.2. This equation may be applied to any two points along a
streamline. If no heat is transferred to or from the fluid between these points
and no machine work done, we may set q = 0 and w = 0 and so obtain

0 =
(
p2

ρ2
+ u2

2

2
+ gz2

)
−

(
p1

ρ1
+ u2

1

2
+ gz1

)
+ e2 − e1 SF, A (11.8)

Since e + p/ρ may be written as specific enthalpy h, and as points 1 and 2
were arbitrarily chosen, eqn 11.8 may be expressed as

h+ 1
2
u2 + gz = constant along a streamline SF, A (11.9)

This is the general form of the equation for steady, adiabatic flow in which
the fluid (gas, liquid or vapour) neither does work on its surroundings nor
has work done on itself. If, however, cp is constant then, from eqn 11.7,

cpT + 1
2
u2 + gz = constant SF, A, PG (11.10)

Also, since for a perfect gas

cpT = cp
p
Rρ

=
(

cp
cp − cv

)
p
ρ

=
(

γ

γ − 1

)
p
ρ

another useful form of the energy equation is(
γ

γ − 1

)
p
ρ

+ 1
2
u2 + gz = constant SF, A, PG (11.11)

It will be noted that eqns 11.8–11.11 apply equally to flows with or without
friction. This is because the equations include internal as well as mechanical
energy. Friction merely involves the conversion of energy of one kind to an
equivalent amount of another kind which, for adiabatic conditions, remains
in the fluid, and so the total energy is unchanged.
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For gases the gz term in eqns 11.8–11.11 can be omitted as negligible
compared with the remaining terms because ρ is small and changes of z are
usually small also. (The concept of piezometric pressure p + ρgz cannot of
course be used where the density is variable.) Equation 11.9 may then be
reduced to

h+ 1
2
u2 = constant along a streamline SF, A (11.12)

It is clear from eqn 11.12 that in steady adiabatic flow an increase of
velocity must be accompanied by a decrease of enthalpy and a decrease
of velocity by an increase of enthalpy. For a given streamline the specific
enthalpy is a maximum when the velocity is zero (at a stagnation point), and
this maximum value is termed the stagnation enthalpy, h0. From eqn 11.7
the corresponding stagnation temperature T0 is h0/cp and so the energy
equation may be written

cpT + 1
2
u2 = cpT0 SF, A, PG (11.13)

If an attempt is made to measure the temperature of a flowing gas by placing
a thermometer or similar device in the stream, the temperature recorded will
be greater than T. Equation 11.13 shows that the stagnation temperature
exceeds T by u2/2cp. For air cp = 1005 J · kg−1 · K−1 and so the stagna-
tion temperature for an air stream at, say, 200 m · s−1 exceeds the ordinary
static temperature by about 20 K. And the nose cone of a rocket travelling
through air at, say, 2 km · s−1 must withstand a temperature rise approach-
ing 2000 K! For these extreme conditions the use of eqn 11.13 involves
some inaccuracy because of the variation of cp during the large increases
of temperature and pressure. However, although the stagnation tempera-
ture would be reached at the stagnation point on a thermometer bulb, the
temperature would rise less at other points on it, so the mean temperature
recorded by an ordinary thermometer would be somewhat less then the stag-
nation temperature. The static temperature cannot be directly measured by
any stationary instrument. (It could be measured only by a thermometer or
other instrument moving at the same velocity as the gas.)

Example 11.1 Air flows adiabatically through a pipe. At a plane,
denoted by suffix 1, the temperature is −2 ◦C, its pressure is 1.50 ×
105 N · m−2, and the air moves at a speed of 270 m · s−1. At plane 2 the
pressure is 1.20 × 105 N · m−2 and the speed of the air is 320 m · s−1.
Calculate the following properties of the air:

(a) the density at plane 1
(b) the stagnation temperature
(c) the temperature and density at plane 2.
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Solution
(a) From the equation of state

ρ1 = p1

RT1
= (1.5 × 105) N · m−2

287 J · kg−1 · K−1 × 271 K
= 1.93 kg · m−3

(b) From eqn 11.13, and using the value for cp from Appendix 2,

T0 = T1 + u2
1

2cp
= 271 K + (270 m · s−1)2

2 × 1005 J · kg−1 · K−1
= 307.3 K

(c) Since T0 is constant in adiabatic flow:

T2 = T0 − u2
2

2cp
= 307.3 K − (320 m · s−1)2

2 × 1005 J · kg−1 · K−1
= 256.4 K

and

ρ2 = p2

RT2
= (1.2 × 105) N · m−2

287 J · kg−1 · K−1 × 256.4 K
= 1.63 kg · m−3

�

11.4 THE SPEED OF SOUND

If the pressure at a point in a fluid is altered, the density is also altered –
even if only slightly – and in consequence individual particles undergo small
changes in position. To maintain a continuum, adjacent particles also change
position and thus the new pressure is progressively, yet rapidly, transmit-
ted throughout the rest of the fluid. Indeed, in a completely incompressible
fluid any disturbances would be propagated with infinite velocity because all
particles would have to change position simultaneously. Even in an actual
fluid, changes of pressure are transmitted so rapidly that the time neces-
sary for them to be spread throughout the fluid may often be negligible
compared with the time taken for the original change. Thus, in previous
chapters of this book we have assumed that pressure adjustments occur sim-
ultaneously throughout the fluid. But if the pressure at a point is suddenly
altered, or the fluid is moving with high velocity relative to some solid body,
then the exact speed with which pressure changes are transmitted is of great
importance. This speed is determined by the relation between changes of
pressure and changes of density, that is, by the elastic properties of the
fluid.

Consider an instant after a small change of pressure has been caused at
some point in a fluid. The change may have resulted from the movement
of a solid body, such as a piston, the breaking of a thin membrane across
which a pressure difference existed, or an electrical discharge such as light-
ning. Not all the fluid has yet experienced the pressure change and so at a
certain distance from the place where the change originated there is a more
or less abrupt discontinuity of pressure. This discontinuity is known as a
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Fig. 11.1

Fig. 11.2

pressure wave: ahead of it is the original pressure p; behind it is the new
pressure p+ δp. Figure 11.1 shows a part of the wave W , small enough to
be considered plane. (A wave produced by the movement of a plane piston
in a duct of constant cross-section would, in the absence of friction, remain
entirely plane but, even if the wave spreads as a spherical surface radially
outwards in all directions, a sufficiently small part may be considered plane.)
The wave is being propagated towards the right at velocity c.

The existence of the pressure difference δp across the wave indicates that
the layer of fluid immediately in front of the wave has an unbalanced force
acting on it and is consequently accelerated. As the wave proceeds other
layers are similarly accelerated. Once the full increase of pressure has been
established, however, no further acceleration of the fluid occurs. Thus the
component of the fluid’s velocity perpendicular to the wave changes from u
(which may be positive, negative or zero) to u+ δu.

Since the velocity of the fluid at a point changes as the wave passes
that point, the flow is not steady and so cannot be analysed by equations
developed for steady flow. However, from a set of coordinate axes moving
with velocity c the wave will appear stationary, and velocities measured with
respect to those axes will not change with time. So Fig. 11.2 shows the situa-
tion as seen by someone moving with the new axes, that is, as steady flow.
Continuity requires that, across an area �A of the wave,

(ρ + δρ)(u− c + δu)�A = ρ(u− c)�A
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whence

(c − u)δρ = (ρ + δρ)δu (11.14)

In view of the thinness of the wave frictional effects may be neglected.
Then for a control volume enclosing the area �A of the wave, the momentum
equation gives

Force towards right = (p+ δp)�A− p�A
= Rate of increase of momentum towards right

= ρ(u− c)�A(−δu)

whence

δp = ρ(c − u)δu NF (11.15)

Elimination of δu from eqns 11.14 and 11.15 gives

(c − u)2 =
(

ρ + δρ

ρ

)
δp
δρ

NF (11.16)

For a weak pressure wave, for which δp → 0 and δρ → 0, eqn 11.16
becomes

c − u = √
(∂p/∂ρ) NF (11.17)

Since the left-hand side of this equation represents the velocity of the pressure
wave relative to the fluid ahead of it, a small pressure change is propagated
at a velocity

√
(∂p/∂ρ) relative to the fluid.

Now for a weak pressure wave the changes in pressure, density and tem-
perature are exceedingly small. Not only is the friction resulting from the very
small change of velocity negligible, but the extreme smallness of the temper-
ature differences and the rapidity of the propagation together indicate that
transfer of heat across the wave is also extremely small. Consequently the
passage of the wave is a process which, to a close approximation, may be
considered both adiabatic and frictionless. That is, the process is isentropic
and we may write

a =
√(

∂p
∂ρ

)
s

I (11.18)

Where a = c− u. (It may be observed in passing that for an entirely incom-
pressible fluid δρ = 0 whatever the value of δp and so a would be infinite,
that is, changes of pressure would be transmitted instantaneously through
the fluid.) For any fluid the bulk modulus of elasticity K is defined by ρ∂p/∂ρ
(eqn 1.8), so a = √

(Ks/ρ). (For a mixture of a liquid and a gas, a is less than
for either the liquid or the gas separately. When a liquid contains gas bubbles
it is more compressible, so K is reduced, but ρ is little affected. When a gas
contains small drops of liquids K is little affected but ρ is increased. In each
case, therefore, a is reduced.)
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If the fluid is a gas obeying Boyle’s Law, then from eqn 11.4(
∂p
∂ρ

)
s
= dv

dρ

(
∂p
∂v

)
s
= pγ

ρ
since ρ = 1

v
B, I

The speed of propagation of a very small pressure wave (relative to the fluid)
is therefore

a = √
(pγ /ρ) B, I (11.19)

Alternatively, from the equation of state for a thermally perfect gas,

a = √
(γRT) TPG, I (11.20)

Sound is propagated by means of a succession of very small pressure wavesSonic velocity
in which δp is alternately positive and negative. (The faintest sound that
the human ear can detect unaided corresponds to a pressure fluctuation of
about 3 × 10−5 Pa; the loudest that can be tolerated without physical pain
corresponds to a fluctuation of about 100 Pa.) The velocity represented by
eqns 11.13–11.20 is therefore known as the speed of sound or velocity of
sound or sonic velocity or acoustic velocity in the gas. As it is a function of
temperature it varies in general from point to point in the fluid. The valid-
ity of the assumptions made in deriving the expressions is indicated by the
excellent agreement found with experimental determinations of the velocity
of sound. For air of moderate humidity γ = 1.4 and R = 287 J · kg−1 · K−1;
so at 15 ◦C

a =
√{

1.4 × 287 J · kg−1 · K−1
(273 + 15) K

}
= 340 m · s−1

The velocity of sound is appreciably less at high altitudes because of the
lower temperature there.

It is important to note that the preceding expressions refer only to waves
in which the change of pressure is very small compared with the pressure
itself. Waves in which a comparatively large pressure change occurs will
be considered in Section 11.5. The assumption of constant entropy is not
justified for these larger waves, and they move at velocities greater than that
of sound.

When the velocity of the fluid at a particular point is less than the velocity
of sound there, small pressure waves can be propagated both upstream and
downstream. When, however, the velocity of the fluid exceeds the local sonic
velocity a, a small pressure wave cannot be propagated upstream. A velocity
equal to a thus sharply divides two essentially different types of flow.

We have seen already in Sections 1.5 and 5.3.4 that it is useful to expressMach number
the velocity of a gaseous flow in relation to that of the sonic velocity. The
Mach number, M, is defined by the relation

M = u/a

where u is the local velocity and a is the speed of sound. Fluid velocities less
than the sonic velocity are known as subsonic (M < 1), those greater than
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the sonic velocity as supersonic (M > 1). For an entirely incompressible fluid
a would be infinite and M therefore always zero.

11.4.1 The Mach cone

Small elastic waves are the means by which ‘messages’ are transmitted from
one point in the fluid to another. Messages can be sent in a particular dir-
ection, however, only if the velocity of the fluid in the opposite direction is
less than the sonic velocity. It of course does not matter whether the origin
of the wave is at a fixed point in space and the fluid is moving, or the fluid
is stationary and the source of the wave is moving through the fluid.

To see how flow patterns are affected by such waves let us consider a small
solid body, such as a tiny projectile, moving in a straight line through fluid
which – except as it is disturbed by the passage of the body – is stationary.
We suppose first that the (steady) velocity u of the body is less than the local
sonic velocity a. The movement of the body generates pressure waves in the
fluid which are transmitted with velocity a radially in all directions. If the
body is at point A (Fig. 11.3) at time t = 0, then at a short time t later
the waves that originated from the body when it was at A will have grown
into the surface of a sphere of radius at. During that time the body itself
moves a distance AB = ut. Since u < a, the pressure waves in the forward
direction are able to travel ahead of the body and B is inside the sphere of
radius at (and also inside other spheres formed by pressure waves started at
intermediate times). The waves travelling ahead of the body inform the fluid
of the body’s approach, so the fluid has an opportunity to prepare for its
arrival.

The picture is very different when u > a. After a time t the body has
travelled a distance ut > at and is therefore outside the sphere formed
by the pressure waves sent out at time t = 0 (Fig. 11.4). That is, the body
travels faster than the message, and thus arrives at point B unannounced.
The unprepared fluid then has to move suddenly, thus producing the sharp
discontinuities known as shock waves (Section 11.5). The line CB is a com-
mon tangent to all the spheres formed by the waves, and so is the generator
of a cone having its axis in the direction of motion and its vertex at B, the

Fig. 11.3
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Fig. 11.4

instantaneous position of the body. The cone therefore advances with the
body into the undisturbed fluid.

The semi-vertex angle µ of the cone is given byMach angle

sin µ = at
ut

= 1
M

(11.21)

where M represents the Mach number u/a. The angle µ is known as the
Mach angle, the cone as theMach cone and a line such as CB as aMach line.

Outside the cone the fluid is completely unaffected by the waves, and thisZone of silence
region is often known as the zone of silence, whereas the space inside the
cone is termed the zone of action or region of influence. Across the surface
of the Mach cone there are abrupt changes of pressure and density.

It should be remembered that the discussion here has been restricted
to small waves and also to a body small enough to be considered as a
single point. The behaviour of larger bodies, such as aircraft, travelling at
supersonic velocities is similar to that discussed here, although close to the
body itself the pressure increases are more than infinitesimal and are thus
propagated with a velocity greater than a. Consequently the Mach cone of
an actual body travelling at supersonic velocity has a rounded apex (see
Section 11.5.2).

Changes of density in a gas give rise to small changes in its refractive
index and so, by suitable optical arrangements (see Section 11.13), abrupt
changes of density, as across the surface of a Mach cone, may be made
visible. Measurements of the Mach angle are then possible and the Mach
number may be deduced from eqn 11.21.

11.4.2 Propagation of finite waves

A finite change of pressure across a wave may be regarded as the sum of a
series of infinitesimal changes. Suppose that a compression wave (i.e. one
producing an increase of density) is caused by the motion of a piston, for
example. At the start of the motion an infinitesimal wave travels with sonic
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Fig. 11.5

velocity into the undisturbed fluid. A second tiny wave follows immediately,
but the fluid into which this second wave moves has already been traversed
by the first wave. That fluid is therefore at a slightly higher pressure, density
and temperature than formerly. If for simplicity a perfect gas is assumed
so that a = √

(γRT) (although the conclusion may be shown to apply to
any fluid) it is clear that the second wave travels slightly faster than the
first. Similarly the third wave is propagated with a slightly higher velocity
than the second and so on. The pressure distribution at a certain time might
be as shown in Fig. 11.5a, and a little while later would become like that
shown at b. In practice, separate small waves would not be distinguishable
but, instead, a gradual rise of pressure which becomes steeper as it advances.
Before long the wave front becomes infinitely steep and a sharp discontinuity
of pressure results. This is known as a shock wave, and it will be studied in
the next section.

A similar argument applied to a rarefaction wave shows that this becomes
less steep as shown in Figs. 11.5c and d. The foremost edge of the wave
proceeds into the undisturbed fluid with the sonic velocity in that fluid, but
all other parts of the wave have a lower velocity. Consequently no effect
of a pressure decrease, no matter how large or how sudden it is initially, is
propagated at more than the sonic velocity in the undisturbed fluid. A pres-
sure increase, on the other hand, may be propagated at a velocity greater
than that of sound.

11.5 SHOCK WAVES

Whereas in Section 11.4 we considered a pressure change of infinitesimal
size, we now turn attention to an abrupt finite pressure change known as a
shock. The possibility of such an abrupt change in a compressible fluid was
envisaged by the German mathematician G. F. Bernhard Riemann (1826–66)
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and the theory was developed in detail by W. J. M. Rankine (1820–72) and
the French physicist Henri Hugoniot (1851–87).

In practice a shock is not absolutely abrupt, but the distance over which it
occurs is of the order of only a few times the mean free path of the molecules
(about 0.3 µm in atmospheric air). For most purposes, therefore, the changes
in flow properties (pressure, density, velocity and so on) may be supposed
abrupt and discontinuous and to take place across a surface termed the
shock wave. (In photographs a thickness apparently greater than 0.3 µm
may be observed because the wave is seldom exactly plane or exactly par-
allel to the camera axis.) We shall not concern ourselves here with what
happens within the very narrow region of the shock itself, for such a study
is very complex and involves non-equilibrium thermodynamics. Moreover,
the analysis that follows will be restricted to a perfect gas because a gen-
eral solution is algebraically complicated and explicit results cannot usually
be obtained. Qualitatively, however, the phenomena discussed apply to
any gas.

11.5.1 Normal shock waves

We consider first a normal shock wave, that is one perpendicular to the
direction of flow. Such shocks may occur in the diverging section of a
convergent-divergent nozzle or in front of a blunt-nosed body. We shall
see that in every case the flow upstream of the shock is supersonic, while
that downstream is subsonic and at higher pressure. We shall see too that
the changes occurring in a shock are not reversible and so not isentropic.

Fig. 11.6 Normal shock.

Our first objective is to determine the relations between quantities
upstream and downstream of the shock. As shown in Fig. 11.6, quantit-
ies upstream are denoted by suffix 1 and those downstream by suffix 2. To
obtain steady flow we consider the shock stationary and so the velocities u1
and u2 are relative to it. As the shock region is so thin, any change in the
cross-sectional area of a stream-tube from one side of the shock to the other
is negligible, and so the continuity relation is simply

ρ1u1 = ρ2u2 (11.22)

If effects of boundary friction are negligible, the momentum equation for
a stream-tube of cross-sectional area A is

(p1 − p2)A = m(u2 − u1)

where m = ρAu is the mass flow rate. Thus

p1 − p2 = ρ2u
2
2 − ρ1u

2
1 (11.23)

Since a2 = pγ /ρ and Mach number M = u/a, eqn 11.23 may be written

p1 − p2 = p2γM2
2 − p1γM2

1
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whence

p2

p1
= 1 + γM2

1

1 + γM2
2

(11.24)

If there is no net heat transfer to or from the stream-tube considered, the
adiabatic energy equation (11.10) may be used. Hence

cpT1 + 1
2
u2

1 = cpT2 + 1
2
u2

2 (11.25)

Thus, if cp remains constant, the stagnation temperature (defined by
eqn 11.13) does not change across the shock. Putting u = aM = M

√
(γRT)

for a perfect gas we obtain

cpT1 + 1
2
M2

1γRT1 = cpT2 + 1
2
M2

2γRT2

whence

T2

T1
= cp + 1

2M
2
1γR

cp + 1
2M

2
2γR

= 1 + 1
2 (γ − 1)M2

1

1 + 1
2 (γ − 1)M2

2

(11.26)

From the equation of state and from eqn 11.22

T2

T1
= p2ρ1

p1ρ2
= p2u2

p1u1
= p2M2

p1M1

√(
γRT2

γRT1

)
(11.27)

whence

T2

T1
=

(
p2M2

p1M1

)2

Substitution from eqns 11.24 and 11.26 now gives

1 + 1
2 (γ − 1)M2

1

1 + 1
2 (γ − 1)M2

2

=
(

1 + γM2
1

1 + γM2
2

)2
M2

2

M2
1

(11.28)

An obvious and trivial solution of this equation is M2
1 = M2

2; that is,
conditions upstream and downstream are identical and no shock exists.
Simplification in which M2

1 −M2
2 is factored out, however, gives

M2
2 = 1 + [(γ − 1)/2]M2

1

γM2
1 − (γ − 1)/2

(11.29)

From this result the downstream Mach number may be calculated and the
ratios of pressure, temperature, density and velocity then obtained from
eqns 11.24, 11.26 and 11.27. Equation 11.29 shows that if M1 = 1 then
M2 = 1, and that if M1 > 1,M2 < 1.
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From the equations obtained above ρ2/ρ1 may be expressed in terms of
p2/p1:

ρ2

ρ1
= γ − 1 + (γ + 1)p2/p1

γ + 1 + (γ − 1)p2/p1
(11.30)

Equation 11.30 is known as the Rankine–Hugoniot relation. The fact that itRankine–Hugoniot
relation is not the same as that for an adiabatic reversible process (p/ργ = constant)

indicates that the changes occurring in a shock are not reversible and so
not isentropic. The greater the value of p2/p1 the more does the Rankine–
Hugoniot relation diverge from the isentropic: in air (γ = 1.4), for example,
when p2/p1 = 10 (i.e. M1 = 2.95) the density ratio across a normal shock
is 3.81, whereas for an isentropic compression the value 5.18 would be
obtained.

In the equations so far deduced no restriction has been placed on the value
of M1, and an abrupt rarefaction would seem just as possible as an abrupt
compression. Calculation of the entropy change across the shock shows,
however, that in steady flow a rarefaction shock – in which M2 > M1 and
p2 < p1 – is impossible. By the definition of entropy and eqn 11.1

s2 − s1 =
∫ 2

1

dqrev

T
= cv

∫ 2

1

dT
T

+
∫ 2

1

pd(1/ρ)

T

= cv ln(T2/T1) +
∫ 2

1
ρRd(1/ρ) = cv ln(T2/T1) − R ln(ρ2/ρ1)

Substitution for T2/T1, ρ2/ρ1 and then for M2 gives

s2 − s1 = cv ln

[
2γM2

1 − γ + 1

γ + 1

{
2 + (γ − 1)M2

1

(γ + 1)M2
1

}γ ]
(11.31)

This expression is positive ifM1 > 1 but negative ifM1 < 1. Since a decrease
of entropy in an adiabatic process is impossible, a shock can exist in steady
flow only when the upstream velocity is supersonic. This is in accord with the
conclusions drawn in Section 11.4.2: if a sudden rarefaction wave is formed
(e.g. by the collapse of an evacuated vessel) it is not stable and rapidly decays
into a gradual pressure change. The increase of entropy experienced by the
gas passing through a shock wave results principally from conduction of heat
across the wave, from the gas already compressed to that not yet compressed.

Expression 11.31 is plotted in Fig. 11.7 and it is seen that the slope of the
curve is zero atM1 = 1. Thus the flow through very weak shocks (such as the
sound waves considered in Section 11.4) may be regarded as isentropic to a
close approximation, and an infinitesimal rarefaction wave is just possible.

We have already noted that (for adiabatic conditions) the stagnation
temperature remains unchanged across a shock. However, because of the
dissipation of mechanical energy in the shock, the stagnation pressure is
reduced. From eqn 11.13, we have cpT + 1

2u
2 = cpT0 and so with the aid
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Fig. 11.7

of eqns 11.2 and 11.20

T0

T
= 1 + u2

2cpT
= 1 + M2γRT

2cpT
= 1 +

(
γ − 1

2

)
M2

Since stagnation pressure is defined as that pressure which would be
reached if the fluid were brought to rest by a reversible adiabatic, that is, an
isentropic, process, we have from eqn 11.6,

p0

p
=

(
T0

T

)γ /(γ−1)

=
{

1 +
(

γ − 1
2

)
M2

}γ /(γ−1)

(11.32)

The reduction of stagnation pressure across a shock is indicated by the ratio

(p0)2

(p0)1
= (p0)2

p2

p2

p1

p1

(p0)1

which, on substitution from eqns 11.32, 11.24 and 11.29, becomes

(p0)2

(p0)1
=

{
(γ + 1)M2

1

2 + (γ − 1)M2
1

}γ /(γ−1) {
γ + 1

2γM2
1 − γ + 1

}1/(γ−1)

(11.33)

The greater the departure from isentropic conditions the greater the loss
of stagnation pressure. This is illustrated in Fig. 11.8 where the expression
11.33 is plotted – together with M2 and the ratios of pressure, temperature
and density – against values of M1 for air (γ = 1.4). These functions are
also tabulated in Appendix 3, Table A3.1. It may be noted from eqn 11.29
that, as M1 → ∞,M2 → {(γ − 1)/2γ }1/2 = 0.378 for air; the density ratio
tends to (γ +1)/(γ −1) (= 6 for air) and the velocity ratio to (γ −1)/(γ +1)

(= 1/6 for air).
The equations may also be solved for u1 in terms of the pressure ratio:

u1 =
[
p1

2ρ1

{
γ − 1 + (γ + 1)

p2

p1

}]1/2
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Fig. 11.8 Curves for
normal shock (γ = 1.4).

Since u1 is the upstream velocity relative to the shock wave this result
expresses the velocity with which a moving shock advances into station-
ary fluid. For an infinitesimal pressure change p2/p1 = 1 and the expression
reduces to the velocity of sound

√
(p1γ /ρ1). For values of p2/p1 greater

than unity, the velocity of propagation is always greater than the velocity
of sound. Thus the shock waves produced by explosions, for example, are
propagated with velocities in excess of sonic velocity.

In practice, friction at boundaries and conduction of heat through the
gas cause the changes in flow properties across a shock to be slightly less
than those predicted by the foregoing analysis. Moreover, for strong shocks
(withM1 > 5, say) a variation of specific heat capacities is noticeable, and if
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Fig. 11.9

the temperature rises greatly (say above 250 ◦C) dissociation and ionization
phenomena may occur.

11.5.2 Oblique shock waves

An oblique shock wave is one that is not perpendicular to the flow. It arises,
for example, when supersonic flow is caused to change direction by a bound-
ary surface converging towards the flow. Figure 11.9 illustrates a (stationary)
oblique shock wave in two-dimensional flow. The portion of the wave con-
sidered is assumed plane and the velocities of the fluid on each side of the
shock may be split into components un and ut, respectively normal and
tangential to the wave. The pressure change across the shock causes a reduc-
tion in the normal velocity component but leaves the tangential component
unaltered. Consequently the flow is deflected away from the normal to the
wave. Although the normal component u2n downstream of the shock must
be subsonic, the total velocity

√
(u2

2n + u2
t ) may still be supersonic if u1 is

sufficiently large. In other words, M2 is always less thanM1 butM2 may be
greater or less than unity.

Changes of flow properties across the shock may be determined in the
same way as for the normal shock. The continuity and momentum relation
(corresponding to eqns 11.22 and 11.23 for the normal shock) are:

ρ1u1n = ρ2u2n (11.34)

and

p1 − p2 = ρ2u
2
2n − ρ1u

2
1n (11.35)

The energy equation for adiabatic conditions (11.10) may be written

constant = cpT + 1
2
u2 = cpT + 1

2
(u2

n + u2
t )

But since ut is unchanged across the shock the energy equation reduces to

cpT1 + 1
2
u2

1n = cpT2 + 1
2
u2

2n (11.36)
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Equations 11.34–11.36 differ from those for a normal shock only in using the
normal component of flow velocity in place of the full velocity. Therefore
the subsequent equations developed for the normal shock are applicable to
the oblique shock if u sin β is substituted for u, and M sin β for M.

The angles β1 and β2 of Fig. 11.9 are related by

tan β2

tan β1
= u2n

u1n
= ρ1

ρ2
= p1T2

p2T1

With the aid of eqns 11.24, 11.26 and 11.29 this expression becomes

tan β2

tan β1
= 2 + (γ − 1)M2

1 sin β1

(γ + 1)M2
1 sin2 β1

and elimination of β2 in favour of the angle of deflection (β1 – β2) then gives

tan (β1 − β2) = 2 cot β1(M2
1 sin2 β1 − 1)

M2
1(γ + cos 2β1) + 2

(11.37)

Equation 11.37 shows that β1 − β2 = 0 when β1 = 90◦ (a normal shock
wave) or whenM1 sin β1 = 1. This second condition is the limiting case when
the normal velocity component = a1 and the pressure rise is infinitesimal; β1
is then the Mach angle (Section 11.4.1).

Equation 11.37 is plotted in Fig. 11.10 from which it is seen that, for a
given value ofM1, the deflection has a maximum value, and that a particular
deflection below this maximum is given by two values of β1.

As an example we may consider a wedge-shaped solid body of semi-vertex
angle β1 − β2 placed symmetrically in a uniform supersonic flow of Mach
numberM1 (Fig. 11.11). On reaching the wedge the flow is deflected through
the angle β1 − β2 and if this is less than the maximum for the given value
of M1 an oblique shock wave is formed at the nose of the wedge as shown
in Fig. 11.11a. Now Fig. 11.10 shows that two values of β1 will satisfy
the oblique shock equations, and the question arises: which one occurs in
practice?

For the smaller value of β1 the normal component M1 sin β1 would be
smaller and so (as shown by Figs 11.7 and 11.8) the corresponding pres-
sure rise and entropy increase would also be smaller. The wave that has this
smaller value of β1 and is known as a weak, or ordinary, oblique shock
wave, is the one that usually appears. The strong, or extraordinary, wave,
corresponding to the larger value of β1, occurs only if the boundary condi-
tions of the flow are such as to require the greater pressure rise across the
strong wave.

Figure 11.10 also shows that for a given value of M1 there is a maximum
value of β1 − β2 for which an oblique shock wave is possible. This max-
imum increases from zero whenM1 = 1 to arccosec γ (= 45.6◦ for air) when
M1 = ∞. (This is a mathematical rather than physical result since forM1 = ∞
there would be infinite rises for pressure and temperature which would inval-
idate the assumption of a perfect gas.) Conversely it may be said that for a
specified deflection angle (less than arccosec γ ) an oblique shock wave is pos-
sible only ifM1 exceeds a certain minimum value. If the semi-vertex angle of
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Fig. 11.10 Oblique shock relations for γ = 1.4.

Fig. 11.11

the wedge is greater than the maximum value of β1 − β2 for the given Mach
number the shock wave cannot be attached to the wedge because that would
require the flow to turn through an angle greater than the maximum. In these
circumstances the required deflection can be achieved only if the flow first
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becomes subsonic and for this the shock wave must be detached from the
nose of the wedge as shown in Fig. 11.11b (The shock wave actually leaves
the wedge whenM2 just becomes unity, but this occurs when the semi-vertex
angle is only a fraction of a degree less than (β1 − β2)max.) Similar detached
waves are formed in front of blunt objects.

At a large distance from the wedge (or other solid body) the size of the
body may be considered negligible in comparison with the distance, and thus
the situation is similar to that discussed in Section 11.4.1. In other words,
with increasing distance from the body the shock wave must degenerate into
a Mach wave, that is, a wave of infinitesimal strength, at an angle arccosec
M1 to the oncoming flow. Consequently, whatever the shape of the body a
detached shock wave in front of it is always curved. At A the wave is normal
to the flow, and so subsonic conditions are necessarily produced in the region
between A and the nose of the body. With increasing distance from the axis,
however, the shock becomes weaker and its angle decreases towards that of
a Mach wave; thus the region of subsonic flow behind the wave extends only
to some position B. In the subsonic part of the flow the streamlines can of
course accommodate themselves to whatever change of direction is imposed
by the shape of the body.

Values of M1 or the deflection angle through an oblique shock wave can
be calculated directly from eqn 11.37. However, when β1 has to be deter-
mined from known values of M1 and (β1 − β2) solutions are most readily
obtained from a graph such as Fig. 11.10. Alternatively, an algebraic solution
is available if both numerator and denominator on the right of eqn 11.37
are multiplied by cosec2β1(= 1 + cot2 β1). The resulting cubic equation in
cot β1 may be solved by calculating

A = 1
3

(
1 + γ + 1

2
M2

1

)
tan(β1 − β2)

B = A2 + 1
3

(M2
1 − 1)

C = A3 + 1
3

(
γ + 1

4
M4

1 + γ − 1
2

M2
1 + 1

)
tan(β1 − β2)

θ = arccos(C/B3/2)

Then cot β1 = 2B1/2 sin(30◦ ± θ/3) − A where the positive alternat-
ive sign corresponds to the ordinary wave and the negative sign to the
extraordinary wave.

The equations and results referred to here apply only to two-dimensional
flow; similar effects, however, are obtained in three-dimensional flow,
although the values of limiting deflection angles and so on are somewhat
different.

Since the shock wave ahead of a solid body is curved, different streamlines
undergo different changes of direction and the flow properties downstream
are not uniform. In particular, the velocity is not uniform and so viscous
forces come into play. The analysis of flow behind a detached shock wave is
in fact very difficult, and complete solution has yet to be obtained. It is clear,
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however, that for a given upstream Mach number the pressure rise through
the central, nearly normal, part of a detached wave is greater than that
through an oblique wave. The drag force on a body moving at supersonic
velocity is therefore greater if the wave is detached from its nose, and that is
why small nose angles are desirable on supersonic aircraft and rockets.

Example 11.2 An airstream, at a temperature of 238 K, is moving at
a speed of 773 m · s−1 when it encounters an oblique shock wave. The
shock angle β1 is 38◦. Find

(a) the angle through which the airstream is deflected
(b) the final Mach number
(c) the pressure ratio across the wave.

Solution
(a) Upstream of the shock, the speed of sound is given by

a1 = (γRT1)1/2 = (1.4 × 287 J · kg−1 · K−1 × 238 K)1/2

= 309.2 m · s−1

M1 = u1/a1 = (773 m · s−1)/(309.2 m · s−1) = 2.5

tan β2 = tan β1

[
2 + (γ − 1)M2

1 sin2 β1

(γ + 1)M2
1 sin2 β1

]

= (0.7813)

[
2 + (0.4 × 6.25 × 0.379)

2.4 × 6.25 × 0.379

]
= 0.405

Hence

β2 = 22.05◦

The deflection angle is (β1 − β2) = 15.95◦.
(b) The tangential velocity component is given by

ut = u1 cos β1 = u2 cos β2

Hence

u2 = u1
cos β1

cos β2
= 773 m · s−1 × 0.788

0.927
= 657 m · s−1

Since cpT1 + 1
2
u2

1 = cpT2 + 1
2
u2

2

T2 = T1 + 1
2cp

(u2
1 − u2

2)

= 238 K + 1

2 × 1005 J · kg−1 · K−1

[
(773 m · s−1)2 − (657 m · s−1)2

]
= 320.5 K
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Hence

M2 = u2/a2 = u2/(γRT2)1/2

= (657 m · s−1)/(1.4 × 287 J · kg−1 · K−1 × 320.5 K)1/2

= 1.83

(c) Since

tan β2

tan β1
= p1

p2

T2

T1

p2

p1
= T2

T1

tan β1

tan β2
= 320.5

238
× 0.7813

0.405
= 2.60�

11.5.3 Reflection and intersection of oblique shock waves

When an oblique wave meets a solid boundary a reflection wave may be
formed. In the example shown in Fig. 11.12 the original flow is parallel to the
boundary; an oblique shock wave is produced, by the wedgeW for example,
and the flow downstream of this wave is therefore deflected towards the
boundary by the angle β1 − β2. If the flow downstream of the wave is still
supersonic, the flow can again become parallel to the boundary only through
another shock wave which counteracts the original deflection. The second
wave BC may thus be regarded as the reflection of the original wave AB at
the boundary.

Shock waves are not like light waves, and the angles of incidence and
reflection are in general not equal. For example, if the original flow has
Mach number 2.5 and the original wave makes an angle of 30◦ with the
boundary (see Fig. 11.13) then, for γ = 1.4, the deflection is 8.0◦ (from
Fig. 11.10 or eqn 11.37) and M2 = 2.17 (eqn 11.29). At the reflected wave
the deflection must be 8.0◦ in the opposite direction and this requires the
wave to be at 26.3◦ to the boundary – not 30◦. (As noted in Section 11.5.2,
of the two mathematically possible solutions only that corresponding to the
weaker shock is normally observed.)

Fig. 11.12
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Fig. 11.13

Fig. 11.14

The deflection through the first wave may be so large that it exceeds the
value obtainable from the intermediate Mach numberM2. If, in the example
just discussed, the initial wave angle were 45◦ instead of 30◦, the deflec-
tion would be 21.6◦ and M2 would be 1.569. But the maximum deflection
possible from an upstream Mach number 1.569 is only 13.9◦ and this is
insufficient to bring the flow again parallel to the boundary. The pattern
of waves then takes the form illustrated in Fig. 11.14 in which BB′ is an
approximately normal shock wave, so that downstream of it subsonic flow
is produced adjacent to the boundary. The pressures and directions of the
fluid streams passing though those parts ofBC andBB′ close toBmust be the
same, but their difference in velocity causes them to be separated by a vortex
sheet or slip surface BV (which, however, is soon diffused by turbulence).
This sort of reflection was first observed by Ernst Mach, and is therefore
known as a Mach reflection. (The analysis here is somewhat idealized: in
practice the reflection of an oblique shock wave from a wall is influenced by
the boundary layer there.)

If two oblique shock waves meet, and the flow downstream of each
remains supersonic, the result is the formation of another pair of waves
springing from the intersection, on the downstream side. There is also a
vortex sheet if the velocities after the second pair of waves are not equal
(Fig. 11.15a). As with the reflection of waves, however, the combination of
intermediate Mach number and wave angle may not be suitable, and then a
Mach intersection is formed (Fig. 11.15b).
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Fig. 11.15

Fig. 11.16

11.6 SUPERSONIC FLOW ROUND A CORNER

Figure 11.16 illustrates steady two-dimensional supersonic flow past a
boundary consisting of two plane surfaces which make an angle δθ with each
other. This angle, although greatly exaggerated for clarity in the diagram, is
infinitesimal. The flow approaching the corner is supposed uniform and so
far from other boundary surfaces as to be unaffected by them. We shall see
that if the corner is convex, as in the diagram, the gas undergoes an expan-
sion through an infinitesimal Mach wave which makes an acute angle µ with
the original direction of flow. It will be recalled from the consideration of
entropy change in Section 11.5.1 that only an infinitesimal expansion wave
is possible; this is why the present analysis must be restricted to an infinites-
imal angle of turn, δθ . The corner constitutes an infinitesimal disturbance to
the flow, so µ is the Mach angle of the flow. Since the upstream conditions
are uniform, the value of µ is the same for all streamlines: that is, the wave
is straight and the downstream conditions must all be uniform too.

Across the wave the velocity changes from u to u+ δu, but because there
is no pressure gradient along the wave the component of velocity parallel to
the wave remains unaltered. That is

u cos µ = (u+ δu) cos(µ + δθ)

= (u+ δu)(cos µ cos δθ − sin µ sin δθ)
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As δθ is very small, cos δθ → 1 and sin δθ → δθ . Hence

(u+ δu)δθ sin µ = (u+ δu− u) cos µ

giving

δθ = δu
u+ δu

cot µ → δu
u

cot µ = δu
u

(M2 − 1)1/2 (11.38)

since

sin µ = 1/M (11.21)

Equation 11.38 shows that, with positive δθ measured from the ori-
ginal direction in Fig. 11.16, δu is positive. In other words, the velocity
increases round a convex corner. As the component parallel to the Mach
wave remains unchanged the normal component must increase and, to satisfy
the continuity relation ρun = constant, the density must decrease.

If an initially uniform flow makes a succession of small turns, as in
Fig. 11.17, there will be a number of regions of uniform flow separated by
Mach waves emanating from the corners. If the straight portions between
the corners, and also the angles δθ1, δθ2 etc., are indefinitely decreased a
continuously curved surface is obtained, from which an infinite number of
Mach waves is generated.

Since opportunity for heat transfer at these high velocities is so slight the
process across each infinitesimal wave may be considered adiabatic. Then,
since changes of elevation are negligible, the energy equation (11.11) may
be written (

γ

γ − 1

)
p
ρ

+ 1
2
u2 = a2

γ − 1
+ 1

2
u2 = constant C

whence

1
(γ − 1)M2

+ 1
2

= C
u2

SF, A, PG (11.39)

Fig. 11.17



514 Compressible flow of gases

Differentiating and then substituting for C/u2 we obtain

− 2dM
(γ − 1)M3

= −2Cdu
u3

= −2du
u

{
1

(γ − 1)M2
+ 1

2

}
SF, A, PG (11.40)

Eliminating du/u from eqns 11.38 and 11.40 enables dθ to be expressed in
terms of the single parameter M :

dθ = (M2 − 1)1/2dM

(γ − 1)M3
{
1/((γ − 1)M2) + 1

2

} SF, A, PG (11.41)

Since M > 1, dM is positive when dθ is positive and so M increases round
a convex corner. Thus sin µ (= 1/M) decreases; that is, the Mach waves
make successively smaller angles with the oncoming streamlines, as shown
in Fig. 11.17. A particular case is that in which the individual Mach waves
all interest at a common point. Such flow is known as a centred expansion.
An important instance is that in which the common centre for the waves is
on the boundary itself, that is, at a corner of finite angle (Fig. 11.18). The
flow is unaffected up to the Mach wave A; in the fan-shaped region between
waves A and B the gas expands gradually and isentropically with a gradual
change in flow direction; beyond wave B uniform conditions again prevail
Although this results in a discontinuous change of properties from state 1
to state 2 at the corner itself (like a rarefaction ‘shock’), the discontinuity
is infinitesimal in extent and so the Second Law of Thermodynamics is not
violated.

Whether the expression is centred or not, the total change in condi-
tions through the series of Mach waves may be determined by integrating

Fig. 11.18
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eqn 11.41. Substituting M2 − 1 = x2 yields

dθ = 2x2dx
(x2 + 1){γ + 1 + (γ − 1)x2}
= (γ + 1)dx

γ + 1 + (γ − 1)x2
− dx
x2 + 1

which on integration gives

θ =
(

γ + 1
γ − 1

)1/2

arctan

{(
γ − 1
γ + 1

)1/2

x

}
− arctan x

=
(

γ + 1
γ − 1

)1/2

arctan

[{(
γ − 1
γ + 1

)
(M2 − 1)

}1/2
]

− arcsec M

SF, A, I, PG (11.42)

Since θ may be measured from an arbitrary datum direction the integration
constant has been set at zero (and thus θ = 0 when M = 1). The result –
tabulated in Appendix 3, Table A3.2 – was first obtained in 1907 by
L. Prandtl and Theodor Meyer; such flow round a convex corner is usu-
ally known as a Prandtl–Meyer expansion and θ is known as the Prandtl–
Meyer angle. It represents the angle through which a stream, initially at sonic
velocity, must be turned to reach the given Mach numberM. The change in
direction needed for the flow to expand from M1 to M2 may be determined
as the change of the Prandtl–Meyer angle between the limits M1 and M2.

�

Example 11.3 A uniform stream of air (γ = 1.4) at Mach number
1.8 and static pressure 50 kPa is expanded round a 10◦ convex bend.
What are the conditions after the bend?

Solution
From eqn 11.42 or Table A3.2, since M1 = 1.8, θ1 = 20.73◦

∴ θ2 = 30.73◦ and M2 = 2.162

For an isentropic process in a perfect gas

p2

p1
=

(
T2

T1

)γ /(γ−1)

=
[

1 + ((γ − 1)/2)M2
1

1 + ((γ − 1)/2)M2
2

]γ /(γ−1)

(from eqns 11.6 and 11.26)

∴ p2 = 50 kPa

(
1 + 0.2 × 1.82

1 + 0.2 × 2.1622

)3.5

= 28.5 kPa
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The maximum deflection theoretically possible would be that correspond-
ing to acceleration from M = 1 to M = ∞, that is

θmax =
{(

γ + 1
γ − 1

)1/2
π

2
− π

2

}
(in radian measure)

that is, 130.5◦ for γ = 1.4.
The gas would then have expanded to zero pressure and temperature. If the

boundary turned away from the flow by more then θmax a void would form
next to the boundary. In practice, however, the maximum deflection would
not be achieved because the temperature cannot fall to absolute zero without
liquefaction of the gas. Moreover, as the pressure approaches absolute zero
the assumption of a fluid continuum is no longer tenable.

11.6.1 Supersonic flow over a concave boundary

Uniform supersonic flow approaching an infinitesimal concave corner under-
goes a change of direction through a Mach wave; this change is described by
eqn 11.38 except that the sign of δθ is changed. Thus a compression results
instead of an expansion and the Mach angle µ increases. As a result, a series
of small concave corners produces Mach waves which converge and form an
envelope building up into an oblique shock wave (Fig. 11.19). Flow through
the shock wave, however, is not isentropic and so the Prandtl–Meyer rela-
tion does not hold there. For a sharp bend the shock wave forms at (or very
near to) the surface itself (as described in Section 11.5.2).

11.6.2 Supersonic flow between two boundaries

We have so far considered initially uniform flow past single boundaries suf-
ficiently far from other surfaces to be uninfluenced by them. A characteristic
of such flow is that the Mach waves are straight and flow conditions along
each wave are constant. If, however, supersonic flow occurs between two

Fig. 11.19
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Fig. 11.20 Families of
Mach waves between
curved boundaries.

Fig. 11.21

boundaries, both of which are curved, each generates a family of Mach
waves. Flow conditions along a Mach wave of one family are affected by
those of the other family, and so where two families intersect the waves are
no longer straight (Fig. 11.20). A number of special graphical, tabular and
computational techniques have been developed for dealing with problems
of flow between curved boundaries, but these are beyond the scope of this
book.

11.7 THE PITOT TUBE IN COMPRESSIBLE FLOW

When a Pitot-static tube is used to determine the velocity of a constant-
density fluid the stagnation pressure and static pressure need not be separ-
ately measured: it is sufficient to measure their difference. A high-velocity
gas stream, however, may undergo an appreciable change of density in being
brought to rest at the front of the Pitot-static tube, and in these circumstances
stagnation and static pressures must be separately measured. Moreover, if
the flow is initially supersonic, a shock wave is formed ahead of the tube,
and so results for supersonic flow differ essentially from those for subsonic
flow. We first consider the Pitot-static tube in uniform subsonic flow.

The process by which the fluid is brought to rest at the nose of the tube is
assumed to be frictionless and adiabatic. From the energy equation (11.13)
and from eqn 11.6 we therefore obtain

u2

2
= cp(T0 − T) = cpT0

{
1 −

(
p
p0

)(γ−1)/γ
}

SF, I, PG (11.43)

Suffix 0 refers to stagnation conditions (see Fig. 11.21), and T0 and p0 are
referred to as the stagnation temperature and stagnation pressure respect-
ively. The terms total temperature and total pressure are also sometimes used.
If T0 and the ratio of static to stagnation pressure are known the velocity of
the stream may then be determined from eqn 11.43.
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The influence of compressibility is best illustrated, however, by using
the Mach number. Rearranging eqn 11.13 and noting that a2 = γRT =
(γ − 1)cpT, we obtain

T0

T
= 1 + u2

2cpT
= 1 +

(
γ − 1

2

)
M2 SF, A, PG (11.44)

and then from eqn 11.6,

p0

p
=

{
1 +

(
γ − 1

2

)
M2

}γ /(γ−1)

SF, I, PG (11.45)

For subsonic flow (γ −1)M2/2 < 1 and so the right-hand side of eqn 11.45
may be expanded by the binomial theorem to give

p0

p
= 1 + γ

2
M2 + γ

8
M4 + γ (2 − γ )

48
M6 + · · ·

whence

p0 − p = pγM2

2

{
1 + M2

4
+

(
2 − γ

24

)
M4 + · · ·

}

= 1
2

ρu2

{
1 + M2

4
+

(
2 − γ

24

)
M4 + · · ·

}
SF, I, PG (11.46)

Comparing eqn 11.46 with the result for a fluid of constant density (Sec-
tion 3.7.1) we see that the bracketed quantity, sometimes known as the
compressibility factor, represents the effect of compressibility. Table 11.1
indicates the variation of the compressibility factor with M when γ = 1.4.

It is seen that for M < 0.2 compressibility affects the pressure difference
by less that 1%, and the simple formula for flow at constant density is then
sufficiently accurate. For larger values of M, however, the compressibility
must be taken into account.

Table 11.1 Variation of
the compressibility factor
for air

M
p0 − p
1
2ρu2

0.1 1.003
0.2 1.010
0.3 1.023
0.4 1.041
0.5 1.064
0.6 1.093
0.7 1.129
0.8 1.170
0.9 1.219
1.0 1.276
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Fig. 11.22

For supersonic flow eqn 11.45 is not valid because a shock wave forms
ahead of the Pitot tube (Fig. 11.22), so the fluid is not brought to rest entirely
isentropically. The nose of the tube is always so shaped (i.e. the semi-angle is
greater than the maximum deflection obtainable through an oblique shock –
see Section 11.5.2) that the shock wave is detached. If the axis of the tube
is parallel to the oncoming flow the wave may be assumed normal to the
streamline leading to the stagnation point. The pressure rise across the shock
is therefore given by eqn 11.24:

p2

p1
= 1 + γM2

1

1 + γM2
2

In the subsonic region downstream of the shock there is a gradual isentropic
pressure rise according to eqn 11.32 and so

(p0)2

p1
= (p0)2

p2

p2

p1
=

{
1 +

(
γ − 1

2

)
M2

2

}γ /(γ−1)
(

1 + γM2
1

1 + γM2
2

)

Using eqn 11.29 to express M2 in terms of M1 finally yields Rayleigh’s
formula:

(p0)2

p1
=

{
(γ + 1)γ+1

2γM2
1 − γ + 1

(
M2

1

2

)γ }1/(γ−1)

= 166.9M7
1

(7M2
1 − 1)2.5

when γ = 1.4 (11.47)

Values are tabulated in Appendix 3, Table A3.1.
Although a conventional Pitot-static tube gives satisfactory results at Mach

numbers low enough for no shock waves to form, it is unsuitable in super-
sonic flow because its static holes, being in the region downstream of the
shock, do not then register p1. Nor do they register p2 since this is found only
on the central streamline, immediately behind the normal part of the shock
wave. Consequently p1 is best determined independently – for example,
through an orifice in a boundary wall well upstream of the shock. (Such
measurements of static pressure close to the shock are unreliable because
the pressure rise through the shock can be transmitted upstream through
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the subsonic flow in the boundary layer.) Where independent measurement
of p1 is not possible, a special Pitot-static tube may be used in which the
static holes are much further back (about 10 times the outside diameter of
the tube) from the nose. The oblique shock wave on each side of the tube
has by then degenerated into a Mach wave across which the pressure rise is
very small.

When M1 = 1 the pressure rise across the shock is infinites-
imal, so eqns 11.45 and 11.47 both give p0/p1 = {(γ + 1)/2}γ /(γ−1)

(= 1.893 for γ = 1.4). A smaller value of p0/p therefore indicates subsonic
flow, a larger value supersonic flow.

Equation 11.47 enables the upstream Mach number to be calculated
from the ratio of stagnation to static pressure. Since (for a perfect gas) the
stagnation temperature does not change across a shock wave

cpT0 = cpT1 + u2
1

2
= cp

u2
1

γRM2
1

+ u2
1

2

Thus u1 also may be calculated if T0 is determined.

11.8 SOME GENERAL RELATIONS FOR ONE-DIMENSIONAL
FLOWS

We recall from Section 1.8.3 that the concept of one-dimensional flow in
any form of conduit is that all relevant quantities (velocity, pressure, density
and so on) are uniform over any cross-section of that conduit. Thus the flow
can be described in terms of only one coordinate (distance along the axis –
which is not necessarily straight) and time. The flow of a real fluid is never
strictly one-dimensional because of the presence of boundary layers, but the
assumption provides valuable insights into the behaviour of flows in which
the effects of compressibility are of particular importance.

Before proceeding further, it is useful to set down certain general flow
relations in terms of local flow properties. In all cases it is assumed that
the gas is perfect and the flow is one-dimensional and steady, but no other
restrictions are imposed. Hence the relations apply locally within adiabatic
flows, but also to flows subject to friction, heat exchange between the fluid
and its surrounding, or where shock waves occur. We start by reminding
ourselves of three equations that we have already derived.

The equation of state for a perfect gas is

p/ρ = RT (1.5)

The definition of Mach number is

M = u/a (1.9)

and a relation for the speed of sound is

a = (γRT)1/2 (11.20)
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Defining m as the mass flow rate and A the cross-sectional area, for one-
dimensional steady flow the equation of continuity is

ρAu = m = constant (11.48)

These four equations can be combined to yield the relation

m(RT)1/2

Ap
= γ 1/2M (11.49)

This equation is a restatement of the continuity equation in terms of the local
temperature and pressure within the flow. Both γ and M on the right-hand
side of this equation are dimensionless, and so the quantity on the left-hand
side is shown also to be dimensionless.

The concepts of stagnation temperature and stagnation pressure in isen-
tropic flow have already been introduced. We can extend the application of
these properties to any general flow, defining the local stagnation temperat-
ure (pressure) as the temperature (pressure) that would be attained if the flow
were brought to rest isentropically. Hence the local stagnation temperature
and local stagnation pressure are given by

T0 = T
{

1 + γ − 1
2

M2
}

(11.44)

and

p0 = p
{

1 + γ − 1
2

M2
}γ /(γ−1)

(11.45)

On substituting these relations in eqn 11.49 there results

m (RT0)1/2

Ap0
= γ 1/2M

{
1 + γ − 1

2
M2

}−(γ+1)/2(γ−1)

(11.50)

which again is a general relationship applicable at any cross section of the
flow. The parameter on the left-hand side of eqn 11.50 is dimensionless
and is known as the mass flow parameter based on stagnation temperat-
ure and stagnation pressure. This is the most widely used form of the mass
flow parameter, but another important form can be obtained by combin-
ing eqn 11.45 and eqn 11.50 to obtain the mass flow parameter based on
stagnation temperature and static pressure.

It is emphasized that in deriving eqns 11.49 and 11.50 no limitation has
been introduced and these relations therefore apply locally within any steady
one-dimensional flow of a perfect gas whether or not frictional effects are
present, whether or not heat exchange takes place or shock waves are present.
If the values of M,A,T0 and p0 (or p) are known at any section of the flow
then, for given values of γ and R, eqn 11.50 provides a convenient means of
evaluating the mass flow rate. Tables relating the mass flow parameter and
Mach number have been published.
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11.9 ONE-DIMENSIONAL FLOW THROUGH NOZZLES

11.9.1 Isentropic flow through a nozzle

For one-dimensional steady flow the equation of continuity is

ρAu = m = constant SF (11.48)

Differentiating and then dividing by ρAu gives

dρ

ρ
+ dA
A

+ du
u

= 0 SF (11.51)

If significant changes of cross-sectional area, and therefore of ρ and u, occur
over only a short length of the conduit, for example in a nozzle, frictional
effects may be neglected in comparison with these changes.

Then Euler’s equation for steady, frictionless flow (3.8) may be used (with
dz neglected):

dp
ρ

+ udu = 0 NF, SF (11.52)

If adiabatic conditions hold, then, in the absence of friction, the flow is
isentropic. So we may set

dp
ρ

=
(

∂p
∂ρ

)
s

dρ

ρ
= a2 dρ

ρ

(from eqn 11.18) where a represents the sonic velocity. Equation 11.52
becomes

a2 dρ

ρ
+ udu = 0 A, NF, SF (11.53)

and substitution for dρ/ρ from eqn 11.51 gives

dA
A

= du
u

(
u2

a2
− 1

)

or, since u/a = M,

dA
A

= du
u

(M2 − 1) A, NF, SF (11.54)

Several important conclusions may be drawn from eqn 11.54. For subsonic
velocities (M < 1), dA and dumust be opposite in sign. That is, an increase of
cross-sectional area causes a reduction of velocity and vice versa. This result
is familiar from studies of constant-density flow. For supersonic velocities,
however, M2 − 1 is positive and so dA and du are of the same sign. An
increase of cross-sectional area then causes an increase of velocity and a
reduction of cross-sectional area a reduction of velocity.

When u = a so that M = 1, dA must be zero and (since the second deriv-
ative is positive) A must be a minimum. If the velocity of flow equals the
sonic velocity anywhere it must therefore do so where the cross-section is of
minimum area. (Note, dA could also be zero when du = 0. At a position
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of minimum cross-section the velocity is therefore either equal to the sonic
velocity, or it is a maximum for subsonic flow or a minimum for super-
sonic flow.) We conclude that to accelerate an initially subsonic flow to
supersonic speeds the flow must pass through an area of minimum cross
section, known as the throat, where the flow is sonic.

To obtain the relation between pressure and velocity, eqn 11.52 must be
integrated. For a perfect gas under adiabatic frictionless conditions p/ργ =
constant (eqn 11.5), and using this to substitute for ρ enables us to integrate
eqn 11.52 to(

γ

γ − 1

)
p
ρ

+ 1
2
u2 = constant

=
(

γ

γ − 1

)
p0

ρ0
A, NF, PG, SF (11.55)

where suffix 0 denotes the stagnation conditions, that is, at zero velocity
(as in a large storage reservoir, for example). When the velocity u equals√

(pγ /ρ) we obtain(
γ

γ − 1

)
pc

ρc
+ 1

2
pcγ

ρc
=

(
γ

γ − 1

)
p0

ρ0
A, NF, PG, SF (11.56)

Here suffix c denotes the critical conditions at which the flow velocity equals
the local sonic velocity. (These critical conditions have no connection with
those referring to the liquefaction of gases under pressure.)

Therefore

pc

ρc
=

(
2

γ + 1

)
p0

ρ0
A, NF, PG, SF (11.57)

Application of these principles led the Swedish engineer Carl Gustaf Patrik
de Laval (1845–1913) to design a convergent-divergent nozzle to accelerate
steam to supersonic velocity in his high-speed steam turbine. The term de
Laval nozzle is now often used to describe nozzles of this general shape. Sim-
ilar convergent-divergent nozzles are used nowadays in jet propulsion units
and rocket motors. Initially the velocity is subsonic and acceleration occurs
in the converging portion (Fig. 11.23). The critical conditions described by
eqn 11.57 occur at the throat where the cross-section is a minimum and the
further acceleration in supersonic flow occurs in the diverging portion. (In
practice, owing to viscous effects, the position where u = a occurs slightly
downstream of the throat.)

Fig. 11.23
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By means of eqn 11.57, the critical pressure pc found at the throat may beCritical pressure ratio
expressed by the critical pressure ratio

pc

p0
= 2

γ + 1

(
ρc

ρ0

)
= 2

γ + 1

(
pc

p0

)1/γ

whence

pc

p0
=

(
2

γ + 1

)γ /(γ−1)

I, PG, SF (11.58)

For air (γ = 1.4) this critical pressure ratio is 0.528, whereas for superheated
steam (γ � 1.3) pc/p0 � 0.546. Besides applying to perfect gases, eqn 11.58
also applies to gases which satisfy Boyle’s Law. Although superheated steam
does not behave as a perfect gas (p/ρT is not independent of temperature)
it does obey Boyle’s Law fairly well over moderate ranges of pressure. If the
pressure of a vapour such as steam falls below the saturation pressure, how-
ever, liquid droplets may condense from it. When the drop in pressure occurs
rapidly the vapour may expand beyond the saturation pressure as a supersat-
urated vapour before condensing. Nevertheless, if condensation does occur
the vapour ceases to obey Boyle’s Law and γ also changes. Equation 11.58
is then no longer valid.

In the diverging part of the de Laval nozzle the velocity, now supersonic,
continues to increase and the pressure therefore drops further below the
critical value pc.

For a nozzle of given throat area At (or for any duct with minimum cross-
sectional area At) the mass rate of flow ρAu is a maximum when ρu at the
throat is a maximum, that is, when

d(ρu)
dp

= u
dρ

dp
+ ρ

du
dp

= 0

that is, when

dp
dρ

= −u
ρ

dp
du

From Euler’s equation (11.52), however, dp/du = −ρu and so the maximum
flow occurs when dp/dρ = u2; that is, for the assumed isentropic conditions,
when u = a. By means of eqns 11.5, 11.19 and 11.58, this maximum mass
flow rate may be written

mmax = At

{
p0ρ0γ

(
2

γ + 1

)(γ+1)/(γ−1)
}1/2

I, PG, SF (11.59)

11.9.2 Flow regimes in a convergent-divergent nozzle

Equation 11.59 shows that the maximum mass flow rate through a nozzle
is a function only of the stagnation conditions and the minimum cross-
sectional area At. No matter how much the pressure p2 at the downstream
end is reduced, or how the shape of the duct may be changed upstream or
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downstream of the minimum cross-section, this maximum flow rate cannot
be exceeded. Under such conditions the duct or nozzle is said to be choked. A
physical explanation of the phenomenon is that the ‘news’ of any reduction
of pressure downstream of the throat has to be transmitted in the form of a
rarefaction wave. But, as we have seen (Section 11.4.2), the fastest portion
of such a wave has a velocity that only just equals sonic velocity. Thus once
the velocity at the throat reaches the sonic velocity no ‘messages’ can be
transmitted upstream and so the fluid there is quite unaware of any further
reduction of pressure at the downstream end of the duct.

Example 11.4 Air flows through a convergent-divergent nozzle from
a reservoir in which the temperature is 291 K. At the nozzle exit the
pressure is 28×103 N · m−2 and the Mach number is 2.4. With γ = 1.4
and R = 287 J · kg−1 · K−1 and assuming isentropic flow conditions,
calculate:

(a) the pressures in the reservoir and at the nozzle throat
(b) the temperature and velocity of the air at the exit.

Solution
(a) From equation 11.45:

p0 = p
{

1 +
(

γ − 1
2

)
M2

}γ /(γ−1)

=
(
28 × 103

)
N · m−2 ×

{
1 + 0.2 × (2.4)2

}3.5

= 409 × 103 N · m−2

and

pc = p0

{
1 +

(
γ − 1

2

)
M2

}−γ /(γ−1)

=
(
409 × 103

)
N · m−2 ×

{
1 + 0.2 × (1)2

}−3.5

= 216 × 103 N · m−2

(b) From equation 11.44 at exit:

T0 = T
{

1 +
(

γ − 1
2

)
M2

}

Hence

T = T0

{
1 +

(
γ − 1

2

)
M2

}−1

= 291 K ×
{
1 + 0.2 × (2.4)2

}−1

= 135.2 K
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Also, M = u/a and a = (γRT)1/2.
Hence

u = M(γRT)1/2 = 2.4 × (1.4 × 287 J · kg−1 · K−1 × 135.2 K)1/2

u = 559.4 m · s−1
�

Figure 11.24 shows how in practice the pressure varies with distance along
a given nozzle, for various values of the pressure p2 beyond the nozzle. We
may consider the flow into the nozzle to come from a large reservoir in which
the velocity is always negligible so that the pressure there is the stagnation
pressure p0.

Assuming adiabatic, frictionless flow, combination of the eqns 11.5, 11.48
and 11.55 gives

(
p
p0

)2/γ

−
(
p
p0

)(γ+1)/γ

=
(

γ − 1
2γ

)
m2

A2p0ρ0
PG, I, SF (11.60)

Hence, for a particular mass flow rate and specified stagnation conditions,
isentropic flow conditions can only be sustained within a nozzle if the relation
between p and A defined by eqn 11.60 is satisfied.

We now suppose that p0 is fixed but that the external pressure p2 may
be varied at will. If p2 equals p0 there is no flow and the pressure is p0
throughout the nozzle, as represented by the lineOB in Fig. 11.24. Reduction
of p2, however, causes a reduction in the pressure at the end of the nozzle; as
the velocity has nowhere yet reached the sonic velocity this reduction can be

Fig. 11.24
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‘telegraphed’ upstream and a pressure graph such asODE is obtained. This
is seen to be similar in shape to that for the flow of a liquid in a venturi-meter.

Further decrease of the external pressure increases the velocity at the throat
of the nozzle and reduces the pressure there until p2 corresponds to the
point F. The velocity at the throat is then the critical value and the pressure
distribution is represented by OCF. If p2 is further reduced the conditions
in the convergent part of the nozzle remain unchanged and the upstream
pressure distribution follows the single curveOC. The nozzle is choked and
eqn 11.59 substituted in eqn 11.60 then gives

(
At
A

)2 (
2

γ + 1

)(γ+1)/(γ−1)

= 2
γ − 1

{(
p
p0

)2/γ

−
(
p
p0

)(γ+1)/γ
}

I, PG, SF (11.61)

If the external pressure corresponds exactly to point F there is an adiabatic
compression according to the curve CF and the velocity downstream of the
throat is entirely subsonic. Only this value of the external pressure, however,
allows a compression from the point C. On the other hand, a continuous
isentropic expansion at supersonic velocity is possible only according to the
curve CG (which represents the relation between p and A of eqn 11.61). In
a nozzle designed to produce supersonic flow the smooth expansion OCG
is the ideal. For this condition the flow is referred to as fully expanded
supersonic flow and the ratio p0/pG is known as the design pressure ratio
of the nozzle.

All parts of the flow corresponding to the outlet conditions B,E and G in
Fig. 11.24 satisfy the relations for isentropic flow.

It remains to consider what happens when p2 corresponds to neither F nor
G. For external pressures between F and G flow cannot take place without
the formation of a shock wave and consequent dissipation of energy. In such
circumstances the nozzle is said to be over-expanding. If p2 is reduced slightly
below F a normal shock wave is formed downstream of the throat. Since
eqn 11.61 holds only for isentropic flow it is valid only as far as the shock,
and so the curve CG is followed only as far as S1, say: there is an abrupt
rise of pressure through the shock (S1S2) and then subsonic deceleration of
the flow with rise of pressure to pH . The location of the shock is exactly
determined by the need for the subsequent compression (S2H) to lead to the
exit pressure pH . Downstream of the shock, the integrated Euler equation,
the isentropic relation p/ργ = constant, and the continuity equation together
provide a relation between pressure and cross-sectional area in terms of the
exit conditions (H). Upstream of the shock eqn 11.61 holds, and the shock
forms where the value of A is such as to give the appropriate pressure ratio
across the shock.

As the external pressure is lowered the shock moves further from the
throat until, when p2 = pK, the point S1 has moved to G and S2 to K. For
exit pressures less than pK the flow within the entire diverging part of the
nozzle is supersonic and follows the line CG; if p2 lies between K and G a
compression must occur outside the nozzle to raise the pressure from pG to
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Fig. 11.25 (Crown
Copyright. By permission
of the Controller of HMSO
and the Queen’s Printer for
Scotland.)

(b) pG/p2= 0.66. Nozzle still over-expanding but isentropic flow throughout 
nozzle; compression outside it through oblique shocks, formed at edges of 
nozzle exit. Simple intersection of oblique waves not possible, so Mach 
intersection results.

(a) External pressure greater than pressure for isentropic flow throughout 
nozzle (nozzle over-expanding). Normal shock wave just inside nozzle.

(c) pG/p2= 0.85. Nozzle still over-expanding; external pressure lower than in 
(b). Oblique shocks now weaker; they cross jet and are reflected from 
opposite surface of jet as fans of expansion waves. This is because boundary 
condition at edge of jet is not unchanged direction (as at a solid boundary) 
but unchanged pressure. Pressure rise through incident shock wave can be 
cancelled only by an expansion. Hence diamond pattern in which alternate 
compression and expansion continue until damped out by viscous action.

(d) pG/p2= 1.37. External pressure less than pressure inside nozzle (nozzle 
under-expanding). Fans of expansion waves formed at edges of nozzle exit, 
through which pressure is lowered to ambient value. Jet diverges and 
expansion waves are reflected from opposite surface as compression waves. 
Hence diamond pattern in which alternate expansion and compression 
continue until damped out by viscous action. 
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the external pressure. This compression involves oblique shock waves and
the subsequent events cannot be described in one-dimensional terms.

At the design conditions p2 = pG and the pressure in the exit plane of
the nozzle is the same as the external pressure. When the external pressure
is below pG the nozzle is said to be under-expanding and the expansion
to pressure p2 must be completed outside the nozzle. The curve CG is
followed and the exit velocity is that corresponding to pG; the additional
expansion then takes place through oblique expansion (Mach) waves. Here,
too, a one-dimensional description of events is not possible. An extreme
case of an under-expanding nozzle is one having no diverging portion
at all.

The foregoing is illustrated by the photographs of Fig. 11.25 which were
obtained by the use of the schlieren technique (see Section 11.13). The theory
agrees reasonably well with measurements of pressure within the nozzle if
the external pressure is only a little lower than pF. However, separation
of the boundary layer from the walls is greatly encouraged by the abrupt
pressure increase across a shock wave and, with lower values of the external
pressure, the normal shock wave may not fill the entire cross-section. Also,
oblique shock waves may be formed close to the wall.

Example 11.5 A convergent-divergent nozzle designed to give an exit
Mach number of 1.8 when used with helium (γ = 5/3) is used with
air (γ = 1.4) under conditions that produce a normal shock just inside
the nozzle. Determine the Mach number just before the shock and thus
the stagnation pressure at inlet if the absolute pressure beyond the exit
is 30 kPa.

Solution
What remains constant when the gas is changed is the geometry of the
nozzle. From eqn 11.59

Mass flow rate = ρAu = MA(pγρ)1/2

= At

{
p0ρ0γ

(
2

γ + 1

)(γ+1)/(γ−1)
}1/2

∴
(
A
At

)2

= p0ρ0γ

M2pγρ

(
2

γ + 1

)(γ+1)/(γ−1)

= 1
M2

(
p0

p

)(γ+1)/γ (
2

γ + 1

)(γ+1)/(γ−1)

=
(
1 + γ−1

2 M2
)(γ+1)/(γ−1)

M2

(
2

γ + 1

)(γ+1)/(γ−1)
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=
(
1 + 1

3 × 1.82
)4

1.82

(
3
4

)4

= 1.828 for helium

=
(
1 + 0.2M2)6

M2

1
1.26

for air, whence (by trial)

M = 1.715

Across the shock

p2

p1
= 2γM2

1 − (γ − 1)

γ + 1
(from eqns 11.24 and 11.29)

= 2.8 × 1.7152 − 0.4
2.4

= 3.265

∴ p1 = 30 kPa/3.265 = 9.19 kPa

From eqn 11.32,

p0,1

p1
=

(
1 + γ − 1

2
M2

1

)γ /(γ−1)

=
(
1 + 0.2 × 1.7152

)3.5 = 5.05

∴ p0,1 = 46.4 kPa�

11.10 COMPRESSIBLE FLOW IN PIPES OF CONSTANT
CROSS-SECTION

We have so far considered flow of a gas where friction may, at least to
a first approximation, be neglected. Friction must be accounted for, how-
ever, when flow takes place in pipe-lines and similar conduits. Here we
shall discuss steady flow in a pipe of constant cross-section and (except in
Section 11.10.3) we shall assume the velocity to be sufficiently uniform over
the section for the flow to be adequately described in one-dimensional terms.
Since the change of pressure resulting from friction gives rise to a change of
density, and thus of velocity, matters are more complicated than for an
incompressible fluid. The properties of the fluid are also affected by heat
transferred through the walls of the pipe. If the pipe is well insulated the
heat transfer may be negligible and the changes therefore adiabatic (but not,
of course, isentropic). In short pipes where no specific provision is made
for heat transfer the conditions may approximate to adiabatic. On the other
hand, for flow at low velocities in long, uninsulated pipes an appreciable
amount of heat may be transferred through the pipe walls, and if the temper-
atures inside and outside the pipe are similar the flow may be approximately
isothermal (i.e. at constant temperature). This is so, for example, in long
compressed-air pipe-lines and in low-velocity flows generally.
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Fig. 11.26

To account for the changes of fluid properties we must consider initially an
infinitesimal length of the pipe. For adiabatic flow the relation involving the
friction force may be integrated over a finite length of the pipe by introducing
the continuity equation and the energy equation. For isothermal conditions
integration is made possible by inserting the condition T = constant.

Applying the steady-flow momentum equation to an element with cross-
sectional area A, perimeter P and length δl (Fig. 11.26), we have

pA− (p+ δp)A− τ0Pδl − ρgAδl sin α = ρAuδu

Substituting τ0 = 1
2 fρu

2 (eqn 7.3), δl sin α = δz and dividing by ρgA we
obtain

−δz = δp
ρg

+ uδu
g

+ f δl
A/P

u2

2g
(11.62)

The final term corresponds to Darcy’s formula for head lost to friction.
Equation 11.62 applies to any steady one-dimensional flow where A is con-
stant, but, for integration, the relation between density and pressure must
be known and this depends on the degree of heat transfer. We consider first
the case of zero heat transfer.

11.10.1 Adiabatic flow in a pipe: Fanno flow

Before embarking on the integration of eqn 11.62 for adiabatic conditions it
will be instructive to look at the problem in general thermodynamic terms.
When no external work is done and changes of elevation may be neglected,
the steady-flow energy equation (11.12) and the continuity equation m =
ρAu together give

Constant h0 = h+ 1
2
u2 = h+ 1

2

(
m
ρA

)2

(11.63)

For given values of m,A and the stagnation enthalpy h0, curves of h against
ρ could be plotted from eqn 11.63. A more significant relation, however, is
that between h and specific entropy s. For any pure substance, s, like h and
ρ, is a function of state and so may be determined from values of h and ρ.
In particular, for a perfect gas s− s1 = cv ln(h/h1)(ρ1/ρ)γ−1. Starting from
a specified state (point 1 on Fig. 11.27) the curve of h against s traces the
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Fig. 11.27

states through which the substance must pass in an adiabatic process. Such a
curve is termed a Fanno curve in honour of Gino Fanno, the Italian engineer
who first studied its properties. All Fanno curves show a maximum value of
s. At this maximum

ds = 0 = 1
T

dqrev = 1
T

{
de+ pd

(
1
ρ

)}
(11.64)

Also, from the definition of specific enthalpy,

dh= d(e+ p/ρ) = de+ pd
(

1
ρ

)
+ 1

ρ
dp (11.65)

Equations 11.64 and 11.65 together give

dh = 1
ρ

dp (11.66)

Differentiation of eqn 11.63 gives 0 = dh−(m2/A2)(dρ/ρ3) and substitution
for dh from eqn 11.66 then shows that when s is a maximum

u2 = m2

A2ρ2
=

(
∂p
∂ρ

)
s
= a2 (from eqn 11.18)

That is, the specific entropy is a maximum when the Mach number is unity.
The upper branch of the curve in Fig. 11.27, which approaches the stagnation
enthalpy h0, thus corresponds to subsonic flow, and the lower branch to
supersonic flow. Since for adiabatic conditions the entropy cannot decrease,
friction acts to increase the Mach number in subsonic flow and to reduce the
Mach number in supersonic flow. Changes in other properties with distance
along the pipe may be deduced as shown in Table 11.2. Moreover, as friction
involves a continual increase of entropy, sonic velocity can be reached only
at the exit end of the pipe, if at all.

If sonic velocity is to be reached in a particular pipe then, for given inlet
conditions and exit pressure, a certain length is necessary. If the actual length
is less than this limiting value sonic conditions are not reached. If the length of
the pipe is increased beyond the limiting value an initially subsonic flow will
be choked; that is, the rate of flow will be reduced so as again to give sonic
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Table 11.2 Changes with distance along the pipe of properties
during adiabatic flow in a pipe of constant cross section

Property Subsonic flow Supersonic flow

Mach number M Increases Decreases
Specific enthalpy h Decreases Increases
Velocity u Increases (!) Decreases
Density ρ Decreases Increases
Temperature T Decreases Increases
Pressure p Decreases Increases (!)

Re = ρud
µ

= const.
µ

Increases Decreases

Stagnation temperature T0 Constant Constant

conditions at the outlet. An initially supersonic flow will also be adjusted to
give sonic conditions at exit: a normal shock will form near the end of the
pipe and the resulting subsonic flow will accelerate to sonic conditions at
the exit. Further increase of length would cause the shock to move towards
the inlet of the pipe and then into the nozzle producing the supersonic flow
so that the flow would become entirely subsonic in the pipe.

These conclusions are valid for all gases. To obtain explicit relations from
the integration of eqn 11.62, however, we assume the gas to be perfect. For
simplicity we also neglect the gravity term δz. Then in the limit as δl → 0

dp
ρ

+ udu+ fdl
A/P

u2

2
= 0 (11.67)

This equation can be integrated only when the number of variables is
reduced, and a solution is most conveniently obtained in terms of Mach
number. As the flow is not isentropic the temptation to use the relation
p/ργ = constant must, however, be resisted.

Differentiating the energy equation (11.13) gives cpdT + udu = 0 and
division by u2 = M2γRT then yields

cp
γRM2

dT
T

+ du
u

= 0 (11.68)

Also, differentiation of the expression u2 = M2γRT yields

2
du
u

= 2
dM
M

+ dT
T

(11.69)

Eliminating dT/T from eqns 11.68 and 11.69 and noting that cp/R =
γ /(γ − 1) we then obtain

du
u

= dM/M
1
2 (γ − 1)M2 + 1

(11.70)
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Successively using p = ρRT, ρu = constant (by continuity) and eqns 11.69
and 11.70, we have

dp
p

= dρ

ρ
+ dT
T

= −du
u

+ dT
T

= du
u

− 2
dM
M

= −
{

(γ − 1)M2 + 1
1
2 (γ − 1)M2 + 1

}
dM
M

(11.71)

If we divide the momentum equation 11.67 by u2 = M2γp/ρ and substitute
for du/u and dp/p from eqns 11.70 and 11.71, we obtain{

M2 − 1
1
2 (γ − 1)M2 + 1

}
dM
γM3

+ fdl
2A/P

= 0 (11.72)

We now have only two main variables, M and l, and these are separated.
But the friction factor f is a function of Reynolds number and this is not
constant, changing with distance along the pipe (see Table 11.2). Changes of
temperature are appreciable only at high velocities, and therefore in general
only at high Reynolds numbers. Fortunately, the higher the Reynolds number
the less f depends on it, especially for rough pipes. For fully developed flow
(i.e., at a distance greater than say 50 times the diameter from the pipe
entrance) the value of f is apparently uninfluenced by Mach number. The
boundary layer, however, is greatly affected by the oblique shock waves that
in supersonic flow form near the entrance, and so the apparent value of f is
then notably reduced below the value for subsonic flow at the same Reynolds
number. However, if we consider a mean value

f = 1
l

∫ 1

0
fdl

we may integrate eqn 11.72 between points 1 and 2 a distance l apart:

1
2γ

(
1

M2
2

− 1

M2
1

)
+ γ + 1

4γ
ln

{(
M2

M1

)2 (γ − 1)M2
1 + 2

(γ − 1)M2
2 + 2

}
+ f l

2A/P
= 0

(11.73)

We may note in passing that if dM/M is eliminated between eqns 11.71 and
11.72 and ρu2/γM2 substituted for p we obtain

dp
dl

= − f
2A/P

ρu2

{
1 + (γ − 1)M2

1 −M2

}

This expression reduces to Darcy’s formula as M → 0, so, if the Mach
number remains low, the fluid may, with small error, be treated as incom-
pressible. For air at M = 0.1, for example, the error in dp/dl is 1.41%.
When M is not small, however, solutions to problems require the use of
eqn 11.73 or its equivalent.
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Changes of Mach number along the pipe are readily related to changes
of other parameters, Substituting u = M

√
(γRT) in the energy equation we

obtain

cpT1 + 1
2
M2

1γRT1 = cpT2 + 1
2
M2

2γRT2

Whence

T1

T2
= 1 + 1

2 (γ − 1)M2
2

1 + 1
2 (γ − 1)M2

1

(11.74)

Moreover

u1

u2
= M1

M2

√
T1

T2
= M1

M2

{
1 + 1

2 (γ − 1)M2
2

1 + 1
2 (γ − 1)M2

1

}1/2

(11.75)

and, from the gas law and continuity,

p1

p2
= ρ1T1

ρ2T2
= u2

u1

T1

T2
= M2

M1

{
1 + 1

2 (γ − 1)M2
2

1 + 1
2 (γ − 1)M2

1

}1/2

(11.76)

The limiting conditions at which an initially subsonic flow is choked are
given by puttingM2 = 1. Then, using suffix c to denote properties evaluated
at M = 1, we have

T1

Tc
=

1
2 (γ + 1)

1 + 1
2 (γ − 1)M2

1

u1

uc
= M1

{
1
2 (γ + 1)

1 + 1
2 (γ − 1)M2

1

}1/2

p1

pc
= 1
M1

{
1
2 (γ + 1)

1 + 1
2 (γ − 1)M2

1

}1/2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.77)

Since Tc,uc, and pc are constants for a given flow they may be regarded as
convenient reference values for temperature, velocity and pressure. Values
of the ratios given by the relations 11.77 for various values ofM1 have been
tabulated (e.g. Appendix 3, Table A3.3) and because T2/T1 = (T2/Tc) ÷
(T1/Tc), for instance, they may be found useful also for non-choked flows.
(Notice, however, that Table A3.3 gives values of the pressure ratio in the
reciprocal form pc/p because that yields much greater accuracy when linear
interpolation is used.)
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From eqn 11.73 the limiting length (i.e. the length necessary for the Mach
number to change from M1 to unity) is given by

f γ lmax

A/P
= 1

M2
1

− 1 − γ + 1
2

ln

{
γ − 1
γ + 1

+ 2

M2
1(γ + 1)

}
(11.78)

Values of f lmaxP/A are tabulated (e.g. Table A3.3). For choked M1 can
therefore be calculated ( a value of f being assumed) and, from other known
data for position 1, u1 and the mass flow rate determined. If necessary,
a revised estimate of f can be obtained from the value of Reynolds number
at position 1 and new calculation made. For subsonic flow the variation of
f along the pipe is not usually large, and the use of the Reynolds number
for position 1 is sufficiently accurate. The tabulated values of f lmaxP/Amay
also be used for non-choked subsonic flow since a hypothetical extension
of the pipe can be assumed which would increase the Mach number from
M2 to unity. The actual length thus corresponds to the difference between
values obtained for M1 and for M2; that is,

l = (lmax)M1 − (lmax)M2

For a non-choked subsonic flow the pressure of the gas at exit must be
that of the surroundings, that is, a known quantity p2, say.

Now, since ρ = m/Au (where m represents the mass flow rate), we have
for any point in the pipe

p = m
Au
RT = m

AM
√

(γRT)
RT = m

AM

(
RT
γ

)1/2

p = m
AM

⎡
⎣ RT0

γ
{
1 + 1

2 (γ − 1)M2
}
⎤
⎦1/2

(11.79)

(use being made of the energy equation 11.44).
For a given pipe, mass flow rate and stagnation conditions, calculation of

either the upstream or the downstream pressure is quite straight-forward.
Suppose that p2 is required, p1 already being known. Equation 11.79 yields

M2 = 1
γ − 1

⎡
⎣−1 +

√{
1 + 2

(
γ − 1

γ

)
m2RT0

p2A2

}⎤
⎦ (11.80)

so M2
1 may be calculated. From eqn 11.73 M2 may then be determined by

iteration (a reasonable first approximation is often obtained by neglecting
the log term); alternatively, Table A3.3 may be used to obtain the value
of f lmaxP/A corresponding to M1; deducting flP/A, where l represents the
actual pipe length, gives the value of f lmaxP/A corresponding to M2; and
M2 may be read from the table. Equation 11.79 then gives p2. Or values
from the table may be used to give p2 = p1 × (pc/p1) ÷ (pc/p2).
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Determining the mass flow ratem is rather more troublesome. The known
values of p1 and p2 give the ratio p1/p2 = (pc/p2) ÷ (pc/p1). Data for
the pipe provide f lP/A = f (P/A)

{
(lmax)1 − (lmax)2

}
. From inspection of

Table A3.3 we find the pair of values M1 and M2 that give the required
pressure ratio and difference of length parameters. Then inserting either
inlet or outlet conditions in eqn 11.79 yields m. For example, with the data
l = 15 m, pipe diameter 50 mm, p1 = 100 kPa, p2 = 50 kPa, T0 = 300 K,
f = 0.008, γ = 1.4, and R = 287 J · kg−1 · K−1 we obtain p1/p2 = 2 and

f
A/P

{(lmax)1 − (lmax)2} = 0.008
(0.05 m/4)

{15 m} = 9.6

Since p1 > p2 the flow is subsonic (see Table 11.2).
Table A3.3 then shows that M1 � 0.22 and M2 � 0.42. In view of the

uncertainty in the value of f , it is hardly worth refining the values ofM1 and
M2 by interpolation. Using p1 = 100 kPa and M1 = 0.22 in eqn 11.79 we
obtain m = 0.175 kg · s−1.

If the pipe size has to be determined, obtaining a precise result will be
very tedious. Fortunately, however, only an approximate result is normally
needed and adequate accuracy may be obtained by assuming isothermal
conditions (see Section 11.10.2).

If the flow is from a large reservoir or from the atmosphere, the initial stag-
nation pressure (p0)1 may be known but not the initial pressure p1 in the pipe.
It is then necessary to assume that there is only a small drop in pressure as the
fluid enters the pipe; in other words, that to a first approximation (p0)1 and
p1 are identical. When a value ofM1 has been determined (from eqn 11.80)
the corresponding value of (p/p0)1 may be obtained from Table A3.2 on the
assumption that the drop in pressure at the pipe inlet arises solely because
the fluid acquires velocity, that is, that there is no entry loss giving rise to
additional turbulence and thus increase of entropy. Multiplying this value of
p/p0 by p0 provides a new value of p1 and the calculations are then repeated
for a second approximation.

Supersonic flow can be maintained only for short distances in pipes of con-
stant cross-section. Even if the initial Mach number were infinity, eqn 11.76
shows that the limiting length would be

A/P
f γ

{
γ + 1

2
ln

(
γ + 1
γ − 1

)
− 1

}

For γ = 1.4 and a circular pipe (A/P = d/4) with f as low as 0.0025
this length is only 82 times the diameter d. (As we have already remarked,
however, for supersonic flow the value of f is uncertain for lengths less than
about 50 times the diameter.) At these high velocities, the rate at which
friction dissipates mechanical energy is large, and supersonic flow in a pipe
is generally better avoided. If supersonic flow is subsequently required the
gas may be expanded in a convergent-divergent nozzle.



538 Compressible flow of gases

Example 11.6 A length of pipe of diameter 20 mm is connected to a
reservoir containing air, as shown in the diagram.

A B

12m

Two pressure gauges are connected to wall tapping at A and B,
which are 12 m apart. Tapping A is at the entrance plane to the pipe.

When the gauge pressure in the reservoir is 410 kPa, the gauge
pressures recorded at A and B are 400 kPa and 180 kPa, respectively,
Calculate:

(a) the value of the friction factor for the pipe
(b) the overall length of the pipe, L, if the flow exhausts to atmosphere
(c) the mass flow rate if the reservoir temperature is 294 K.

Assume atmospheric pressure is 100 kPa and treat the rounded entry
as isentropic.

Solution
Convert the gauge pressures to absolute pressures. Thus

p0 = 510 kPa pA = 500 kPa pB = 280 kPa

(a) At A, pA/p0 = 500/510 = 0.980. From the Isentropic Flow Tables
(Appendix 3),MA = 0.17. From the Fanno Flow Tables (Appendix 3)
for MA = 0.17 and γ = 1.4,pc/pA = 0.1556 and (f lmaxP/A)A =
21.37.

Hence

pc = pA × (pc/pA) = 500 kPa × 0.1556 = 778 kPa

and

pc/pB = 77.8/280 = 0.278
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From the Fanno Tables at pc/pB = 0.278,MB = 0.302 and
(f lmaxP/A)B = 5.21. For a circular pipe P/A = 4/d, so

(f lmaxP/A)A − (f lmaxP/A)B = f × 12 m × 4
0.02 m

= 21.37 − 5.21

yielding f = 0.00673
(b) At exit, pc/p = 77.8/100 = 0.778. From the Fanno Tables,
(f lmaxP/A) = 0.07. Hence

L m
12 m

= 21.37 − 0.07
21.37 − 5.21

yielding L = 15.82 m
(c) Rewriting eqn 11.79, and evaluating it at B:

m = ApM

[
γ

{
1 + (γ − 1)M2/2

}
RT0

]1/2

= π

4
(0.02 m)2 × (2.8 × 105) Pa × 0.302

×
[

1.4 × {
1 + 0.4 × (0.302)2/2

}
287 J · kg−1 · K−1 × 294 K

]1/2

= 0.109 kg · s−1
�

11.10.2 Isothermal flow in a pipe

In Section 11.10.1 we assumed that there was no heat transfer across the
walls of the pipe. In general, of course, any quantity of heat may be trans-
ferred to or from the fluid. This general case is too complicated to be
considered in this book, but a particular example of practical interest is
that in which the heat transfer is such as to keep the temperature of the
fluid constant, that is, in which the flow is isothermal. For gases such flow
is usually achieved at low velocities in long pipes not thermally insulated
because there is then opportunity for sufficient heat transfer through the
pipe walls to maintain the gas at (or near) the temperature of the surround-
ings. Although Mach numbers are usually low the assumption of constant
density is untenable because of the significant changes of pressure.

We again seek the integral of the momentum equation (11.67):

dp
ρ

+ udu+ fu2

2A/P
dl = 0

The heat transfer through the walls invalidates the energy equation (11.9)
but we introduce the condition T = constant. For a perfect gas the pres-
sure is then proportional to the density, so from the continuity relation



540 Compressible flow of gases

ρu = constant we obtain

du
u

= −dρ

ρ
= −dp

p
(11.81)

Dividing eqn 11.67 by u2, substituting for du/u from eqn 11.81 and
rearranging we obtain

fdl
2A/P

= − dp
ρu2

+ dp
p

(11.82)

and then, putting u = m/ρA and ρ = p/RT,

fdl
2A/P

= −A
2

m2

p
RT

dp+ dp
p

(11.83)

Now Reynolds number = ρud/µ = constant/µ and since µ (except at
extreme pressures) is a function of temperature alone the Reynolds number
is constant in isothermal flow. For uniform roughness along the length of the
pipe f is therefore constant. Equation 11.83 may consequently be integrated
directly between points 1 and 2 a distance l apart yielding, for a circular pipe

f l
2A/P

= A2

2m2RT

(
p2

1 − p2
2

)
− ln

p1

p2
= 2f l

d
(11.84)

Alternatively, since

p = ρRT = m
Au
RT = m

AM

√(
RT
γ

)

eqn 11.84 may be written

f l
2A/P

= 1
2γ

(
1

M2
1

− 1

M2
2

)
− ln

M2

M1
(11.85)

To obtain p1 or p2 from eqn 11.84 a solution by trial is necessary, but the
log term is often small compared with the others and so may be neglected in
a first approximation. The approximate result may then be used to calculate
ln (p1/p2) and a more accurate solution thus obtained.

It is clear from eqn 11.84 that not only ism zero when p2 = p1, butm → 0
as p2 → 0. Consequently, for some value p2 between p1 and zero, m must
reach a maximum. Differentiating eqn 11.84 with respect to p2 while p1 is
held constant yields

0 = − A2

m3RT
dm
dp2

(p2
1 − p2

2) − A2p2

m2RT
+ 1
p2

and the maximum value of m is given by setting dm/dp2 = 0. Then
m2 = A2p2

2/RT = A2ρ2
2RT. Hence u2

2 = m2/A2ρ2
2 = RT, so M2 =

u2/
√

(γRT) = √
(1/γ ).
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The reason why an outlet Mach number of
√

(1/γ ) corresponds to the
maximum mass flow rate is seen from eqn 11.82. This gives

dp
dl

= fρu2

2A/P

/(
ρu2

p
− 1

)
= fρu2

2A/P

/
(γM2 − 1) (11.86)

Thus when M = √
(1/γ ) (= 0.845 for air) the pressure gradient is infinite;

that is, there is a discontinuity of pressure (and also, by eqn 11.81, of density
and velocity).

For a given initial Mach number M1, there is thus a limiting length for
continuous isothermal flow, and this is given by setting M2 = √

(1/γ ) in
eqn 11.85:

f lmax

A/P
= 1

γM2
1

− 1 + ln(γM2
1)

If the actual length were made greater than lmax the rate of flow would adjust
itself so that M = √

(1/γ ) was not reached until the end of the pipe. Thus
it is seen that the phenomenon of choking may occur in isothermal flow but
that the limiting value of the Mach number is (theoretically)

√
(1/γ ) instead

of unity as in adiabatic flow.
In practice, however, isothermal flow at Mach numbers close to

√
(1/γ )

cannot be obtained. For a perfect gas under isothermal conditions both p/ρ
and the internal energy divided by mass e are constant, and so the steady-flow
energy equation (3.13) reduces to

q = 1
2
u2

2 − 1
2
u2

1 (11.87)

the gravity terms again being neglected. Hence, if points 1 and 2 are separated
by a distance δl, the heat transfer gradient dq/dl = udu/dl. Substitution from
eqns 11.81 and 11.86 then gives

dq
dl

= u
du
dl

= −u
2

p
dp
dl

= f γM2u2

2(1 − γM2)A/P

For conditions near to M
√

(1/γ ), and for large velocities generally, the
required high values of dq/dl are difficult to achieve and the flow becomes
more nearly adiabatic. Indeed, the limiting condition M = √

(1/γ ) cannot
be achieved at all because dq/dl would then have to be infinite.

Except for high Mach numbers, results for isothermal and adiabatic
flow do not in fact differ widely. This is because in adiabatic flow at low
Mach numbers there is little variation of temperature (see Table A3.3).
In isothermal flow

p2

p1
= ρ2

ρ1
= u1

u2
= M1

M2
(11.88)
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and comparing eqn 11.88 and 11.76 (for adiabatic flow) we obtain, for the
same values of p1,M1 and M2,

(p2)isoth.

(p2)adiab.
=

{
1 + 1

2 (γ − 1)M2
2

1 + 1
2 (γ − 1)M2

1

}1/2

Even in the extreme case where M1 = 0 and M2 = √
(1/γ ) this ratio is only

1.069 (for γ = 1.4).

Example 11.7 For flow at low Mach numbers, the general eqn 11.84
for flow through a pipe of diameter d simplifies to

A2

2m2RT

(
p2

1 − p2
2

)
= 2f l

d
or p2

1 − p2
2 = 4f l

d

(m
A

)2
RT

(a) Use this equation to calculate the diameter of pipe 145 m long
required to transmit air at 0.32 kg · s−1, if the inlet pressure and
temperature are, respectively, 800 × 103 N · m−2 and 288 K, and
the pressure drop is not to exceed 300 × 103 N · m−2. Take f =
0.006.

(b) Calculate the entry and exit Mach numbers.
(c) Determine the pressure halfway along the pipe.

Solution
(a) Since A = πd2/4,

(800 × 103 N · m−2)2 − (500 × 103 N · m−2)2

4 × 0.006 × 145 m
d(m)

×
(

0.32 kg · s−1 × 4
πd2

(
m2

)
)2

× 287 J · kg−1 · K−1

× 288 K

which yields d5 = 1.224 × 10−7m5 or d = 0.0415 m.
(b) From the continuity condition, m = ρAu. At entry

ρ = p
RT

=
(
800 × 103)N · m−2

287 J · kg−1 · K−1 × 288 K
= 9.679 kg · m−3

and

A = π (0.0415 m)2

4
= 0.00135 m2

Hence

u = m
ρA

= 0.32 kg · s−1

9.679 kg · m−3 × 0.00135 m2
= 24.5 m · s−1

The speed of sound is given by

a = (γRT)1/2 = (1.4 × 287 J · kg−1 · K−1 × 288 K)1/2 = 340 m · s−1
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Therefore

M1 = u1

a
= 24.5 m · s−1

340 m · s−1
= 0.072

and

M2 = p1

p2
M1 = 800

500
× 0.072 = 0.115

(c) The pressure distribution is of the form p2
1 − p2

2 = kl, where K is
a constant. Denoting the pressure at x = l/2 by px, it follows that
p2

1 − p2
x = kl/2. Hence

p2
1 − p2

2 = 2(p2
1 − p2

x)

or

px =
[(
p2

1 + p2
2

)
/2

]1/2

=
[((

8000 × 103 N · m−2
)2 +

(
500 × 103 N · m−2

)2
)/

2
]1/2

= 667 × 103 N · m−2
�

11.10.3 Laminar flow in a circular pipe

The parabolic distribution of velocity occurring with laminar flow in a
circular pipe invalidates the one-dimensional assumption on which the
momentum equation (11.62) is based. Since the velocity varies both with
radius and with axial distance the problem strictly involves a partial dif-
ferential equation. However, laminar flow is to be expected only at low
velocities; isothermal conditions are therefore likely and it may be shown that
the change of velocity in the axial direction has a negligible effect on the velo-
city distribution over the cross-section. So, with pressure, temperature and
density uniform over the cross-section, we may apply Poiseuille’s formula
(eqn 6.8) to a short length δl of the pipe. For a thermally perfect gas

m = ρQ = −πd4ρ

128µ

dp
dl

= − πd4

128µ

p
RT

dp
dl

TPG (11.89)

the gravity term again being neglected. Integration with T and µ constant
gives

m = πd4(p2
1 − p2

2)

256µRTl
TPG (11.90)

This is seen to correspond with Poiseuille’s formula, eqn 6.8, provided that
the mean density = 1

2 (p1 + p2) /RT is used.
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11.11 HIGH-SPEED FLOW PAST AN AEROFOIL

Compressibility effects of great importance arise when an aircraft flies at or
near the speed of sound. A full treatment of the subject would require a book
to itself, and in this section we shall merely consider in general terms what
happens when the velocity of flow past an aerofoil is gradually increased
from subsonic to supersonic. We shall consider only an aerofoil such as a
thin wing of large span and a section where the flow is uninfluenced by
fuselage, wing-tips or engine nacelles.

When M∞, the Mach number of the oncoming flow, is small the flow
pattern closely resembles that of an incompressible fluid (as discussed in
Section 9.10.2). As M∞ is increased, however, compressibility affects to
some extent the pressure p at points on the surface of the aerofoil, even
when the flow everywhere is subsonic. The difference between p and the
upstream pressure p∞ is usefully expressed as a dimensionless pressure coef-
ficient Cp = (p− p∞)/1

2ρ∞u2∞ where ρ∞ and u∞ represent respectively the
density and velocity upstream of the aerofoil. In particular Cp at the stagna-
tion point increases according to eqn 11.46. More generally, as was shown
by Prandtl and the English mathematician Hermann Glauert (1892–1934),
Cp is approximately proportional to (1 −M2∞)−1/2 (except near the leading
and trailing edges). As a result, the lift coefficient

CL = L
/

1
2ρ∞u2∞S

is affected similarly, provided that the angle of attack is unchanged.
The foregoing holds so long as the flow everywhere is subsonic. However,

at the point in the flow pattern where the velocity is greatest the temperature
(by eqn 11.13) is least. Therefore, at this point (usually above the aerofoil,
close to the section of maximum thickness) a = √

(γRT) is least andM = u/a
is greatest. Here, then, the flow may become supersonic well before the free-
stream Mach number M∞ reaches unity. This phenomenon characterizes
the important transonic range in which both subsonic and supersonic flows
occur in the flow pattern. The value of M∞ at which the transonic range
begins is generally known as the lower critical Mach numberMc. Supersonic
flow first appears, therefore, in a small region over the upper aerofoil surface,
where the velocity is a maximum (and the pressure a minimum). A return to
subsonic flow at a higher pressure must take place towards the trailing edge
and, as in a de Laval nozzle, this can happen only through a shock wave
as shown in Fig. 11.28a. This shock wave extends only a limited distance
from the aerofoil surface because the main flow is still subsonic. Also, of
course, the wave stops short of the surface because the velocity decreases
to zero in the boundary layer. Similar changes occur in the flow past the
underside of the aerofoil although, in order to produce lift, the reduction of
pressure and increase of velocity on this side are in general smaller, and the
formation of shock waves is thus somewhat delayed (Fig. 11.28b).

Now it will be recalled from Sections 8.8.1 and 8.8.6 that an adverse
pressure gradient promotes separation of the boundary layer, and that such
separation from the surface of an aerofoil markedly affects the lift and
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drag. The abrupt pressure rise through the shock has a similar effect even
though the angle of attack of the aerofoil is much below that ordinarily
causing stall. The boundary-layer separation induced by the shock, and the
consequent loss of lift and increase of drag are together termed shock stall.
The Prandtl–Glauert rule, which implies a rise of lift coefficient to infinity
as M∞ → 1, now of course breaks down.

In practice, matters are considerably complicated by interaction between
the shock wave and the boundary layer. For one thing, the subsonic flow
in the boundary layer permits the pressure rise to be transmitted upstream,
so the region of the shock is spread out near the surface. Also separation of
the boundary layer affects the formation of the shock wave. For our broad
outline, however, we may leave aside these complications and note that as
M∞ is further increased (although still less than unity) the supersonic region
spreads both fore and aft, and the shock wave moves towards the trailing
edge (Fig. 11.28c). The divergence of the streamlines beyond the thickest
part of the aerofoil causes an increase of velocity in supersonic flow; there is
thus a further reduction of pressure, and the shock becomes stronger so as
to provide the return to the required downstream pressure.

WhileM∞ is less than unity there is only a single shock wave on each side
of the aerofoil, but as soon as M∞ exceeds unity a new shock wave forms
upstream of the leading edge. The flow is then supersonic except for a small
region just behind the front wave (Fig. 11.28d). Two oblique shock waves

Fig. 11.28



546 Compressible flow of gases

Fig. 11.29 Effect of Mach
number on CL and CD for
thin aerofoil at constant
angle of attack. Points (a)
(b) (d) (e) correspond
approximately to similarly
lettered parts of Fig. 11.28.

spring from points close to the trailing edge, their obliquity increasing asM∞
increases. An increase of M∞ also reduces the size of the subsonic region,
and if the nose of the aerofoil is sufficiently pointed (see Section 11.5.2) the
frontal wave may attach itself to the aerofoil at high Mach numbers and an
entirely supersonic régime ensue (Fig. 11.28e).

Between the front and rear oblique shock waves, the supersonic flow over
the convex surfaces produces rarefaction waves through which the pressure
is successively reduced. These diverge from each other (see Section 11.6);
they thus meet the shock waves and so, with increasing distance from the
aerofoil, the latter are gradually reduced in strength and made more oblique
until they are entirely dissipated.

The effects of these phenomena on the lift and drag coefficients of a thin
aerofoil are illustrated in Fig. 11.29. (Reference to the effect of compressibil-
ity on drag is also made in Section 8.10.) For completely supersonic flow the
variation of CL is given by an approximate theory by J. Ackeret as propor-
tional to (M2∞ − 1)−1/2 for moderate values of M∞. In the transonic range,
however, the force on the aerofoil depends on the size and position of the
various regions of subsonic and supersonic flow, and therefore markedly on
the shape of the section and the angle of attack.

The formation of shock waves above and below the aerofoil alters the
position of its centre of pressure, and this, together with the phenomenon of
shock stall, presents considerable problems in the control of aircraft flying
in the transonic range.

11.12 ANALOGY BETWEEN COMPRESSIBLE FLOW AND
FLOW WITH A FREE SURFACE

In several respects the flow of gases is similar to the flow of liquids in
open channels. This is because similar equations of energy, momentum and
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continuity apply to the two types of flow. The behaviour of a gas depends sig-
nificantly on whether a small change of pressure can be propagated upstream,
that is, on whether the flow is subsonic or supersonic. As will be recalled
from Chapter 10, the behaviour of a liquid in an open channel depends
notably on whether a small surface wave can be propagated upstream, that
is, on whether the flow is tranquil or rapid. For gas flows the Mach num-
ber u/

√
(pγ /ρ) relates the velocity of flow to the velocity of propagation

of a small pressure wave through the fluid; for flow in an open channel the
corresponding ratio is the Froude number u/

√
(gh) where h represents the

mean depth given by cross-sectional area ÷ surface width, and
√

(gh) rep-
resents the velocity of propagation of a small surface wave relative to the
liquid. Sonic conditions in a gas (M = 1) correspond to critical conditions
in open-channel flow (Fr = 1). The choking phenomenon in gas flow in a
convergent-divergent nozzle, for example, corresponds to the attainment of
critical flow in the throat of a venturi flume or over the crest of a spillway.

Thermodynamic considerations have shown that, for steady conditions,
a change from supersonic to subsonic flow can take place only through the
discontinuity known as a shock. Likewise, in steady open-channel flow a
change from rapid to tranquil flow is possible only through a hydraulic
jump. A hydraulic jump, then, is the open-channel analogue of the shock.

Comparison of the continuity equations ρu = constant for gas flow of
constant cross-section and hu = constant for a rectangular open channel,
indicates that the gas density ρ and the liquid depth h are analogous, that is

ρ

ρ0
≡ h
h0

(11.91)

where ρ0 and h0 the stagnation conditions, are used as suitable reference
values. For frictionless open-channel flow in which vertical accelerations are
negligible compared with g (so that the pressure at a point depends only on
the depth below the free surface) the energy equation (10.1) may be written
u2 = 2g(h0 − h). The maximum possible velocity umax would occur when
h = 0 and so (u/umax)2 = (h0 − h)/h0. The corresponding equations for
flow of a perfect gas are u2 = 2cp(T0 − T) and (u/umax)2 = (T0 − T)/T0
with the result that

T
T0

≡ h
h0

(11.92)

For a perfect gas p/p0 = (ρ/ρ0)(T/T0) and thus from eqns 11.91 and 11.92

p
p0

≡
(
h
h0

)2

(11.93)

For isentropic gas flow, however, p/p0 = (ρ/ρ0)γ and, in the light of
eqns 11.91 and 11.93, the analogy can be exact only if γ = 2. Quantit-
ative results from the analogy, for any real gas (for which 1 < γ ≤ 5

3 ),
cannot therefore be expected, although, fortunately, the effect of a change
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of γ is seldom large. The analogy is thus chiefly useful in providing a simple
means of investigating phenomena qualitatively by visual observation.

Since flow through a shock wave is non-isentropic, quantitative agreement
with measurements on a hydraulic jump is even less close, but useful qualit-
ative results may still be obtained if the changes across the discontinuity are
not too great. For example, if a two-dimensional body is placed in an open
channel where the flow is rapid, waves are produced on the liquid surface,
and these are similar to the shock and expansion waves formed about a sim-
ilar body in two-dimensional supersonic gas flow. Surface tension effects can
cause difficulties in this technique, however, particularly in the formation of
capillary waves which may be mistaken for the analogues of the shock and
expansion waves. For this reason, the depth of liquid is usually between
about 3 mm and 10 mm.

11.13 FLOW VISUALIZATION

In a gas local changes of density, especially the abrupt changes occurring
across a shock wave, may be made visible because of an accompanying
change of refractive index n. (For values of n close to unity (n− 1)/ρ =
constant.) Of the three principal techniques utilizing this property the
shadowgraph method is the simplest. Light from a point source, or in a
parallel beam, passes through the gas flow and on to a screen (Fig. 11.30). If
the gas density is uniform the light rays, even if refracted, have an unchanged
spacing and so illuminate the screen uniformly. If, however, there is a sharp
density gradient (e.g. across a shock wave) in a direction normal to the light
beam, the rays either diverge or converge according to whether the density
gradient increases or decreases. Thus the position of a shock wave is indic-
ated on the screen by a brighter band (on the high density side where the
rays converge) next to a darker band (on the low density side where the rays
diverge). Since the method depends on the relative deflection of the rays, that

Fig. 11.30 Shadowgraph.
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Fig. 11.31 Schlieren
system.

is, on

∂2n
∂y2

+ ∂2n
∂z2

≈ constant

(
∂2ρ

∂y2
+ ∂2ρ

∂z2

)

it is best suited to the study of sharp rather than gradual changes of density.
The second method is the schlieren or Töpler system, invented by August

J. I. Töpler (1836–1912) in 1867. In the simplest version, monochromatic
light from a narrow, uniformly illuminated rectangular slit AB (Fig. 11.31)
is collimated by a lens L1, passes through the gas flow, is brought to a focus
by lens L2 and projected on to a screen (or photographic plate). At the
focal plane of L2 – where an image A′B′ of the slit AB is formed – a knife-
edge is introduced to cut off part of the light. If the gas density is uniform
the illumination on the screen, although reduced by the knife-edge, is also
uniform. If, however, in any part of the flow a density gradient exists in a
direction perpendicular both to the light beam and to the knife-edge, light
rays are refracted and, depending on the sign of the density gradient, more or
less light is intercepted by the knife-edge. Corresponding parts of the image
of the test section on the screen are therefore darker or brighter. The change
in brightness is proportional to the density gradient. Only density gradients
normal to the knife-edge are indicated, however, so two perpendicular knife-
edges may be required.

In modern practice concave mirrors, being less expensive, are usually
employed instead of lenses. If a white source is used with strips of coloured
glass in place of the knife-edge, the changes of density gradient may be
represented by changes of colour rather than of brightness. The method is
widely used to obtain qualitative results: although it is theoretically possible
to obtain quantitative estimates of density from schlieren photographs the
practical difficulties are considerable.

The third technique uses the interferometer, and the Mach–Zehnder
arrangement is that most widely employed (Fig. 11.32). A parallel
monochromatic light beam meets a half-silvered plate P1 so that part of
the beam is reflected, and part transmitted. By means of fully-silvered mir-
rorsM1,M2 the two part beams, only one of which passes through the flow
being investigated, are brought together again and recombined by a second
half-silvered plate P2. The apparatus may be so adjusted that, with no flow
in the test section, the two beams joining at P2 are in phase and so reinforce
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Fig. 11.32 Mach–Zehnder
interferometer.

each other, making the screen uniformly bright. The beam through the test
section may be retarded by an increase of density there; if this is sufficient
to put the beams out of phase by half a wavelength (or an odd multiple of
half a wavelength), so that the crests of waves in one beam coincide with
troughs in the other, the screen is uniformly dark. Lines of maximum and
minimum brightness therefore represent contours of constant density, and
the density increment between successive contours corresponds to a phase
shift of half a wavelength. Alternatively, the splitter plates P1 and P2 may be
slightly rotated from the position that gives uniform brightness of the screen
at no-flow conditions to one that gives a series of interference fringes parallel
to the axes of rotation. Non-uniform density in the test section then causes
local distortion of these otherwise equally spaced fringes, and measurement
of the fringe displacement permits calculation of the density at that point
relative to the density in an undisturbed part of the flow.

The interferometer is costly and demands very high accuracy of the
optical components and vibration-absorbing supports. It does, however,
yield quantitative information about the density throughout the flow, and
not just where the density changes rapidly.

In association with a heated wire shedding a filament of warmer, less
dense, gas these optical methods may also be used to indicate a filament line
in gas flow otherwise at constant density.

PROBLEMS

(For air take γ = 1.4,R= 287 J · kg−1 · K−1, cp = 1005 J · kg−1 · K−1.
All pressures quoted are absolute.)

11.1 Atmospheric air at 101.3 kPa and 15 ◦C is accelerated isen-
tropically. What are its velocity and density when the Mach
number becomes 1.0 and what is the maximum velocity theor-
etically obtainable? Why could this maximum not be achieved
in practice?

11.2 Air flows isentropically from atmosphere (pressure 101.5 kPa
and temperature 15 ◦C) to a 600 mm square duct where the
Mach number is 1.6. Calculate the static pressure, the velocity
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and the mass flow rate in the duct. What is the minimum
cross-sectional area upstream of this section?

11.3 A schlieren photograph of a bullet shows a Mach angle of
40◦. If the pressure and density of the undisturbed air are
respectively 101.3 kPa and 10 ◦C what is the approximate
temperature at the nose of the bullet?

11.4 A normal shock wave forms in front of a two-dimensional
blunt-nosed obstacle in a supersonic air stream. The pressure
at the nose of the obstacle is three times the static pressure
upstream of the shock wave. Determine the upstream Mach
number, the density ratio across the shock and the velocity
immediately after the shock if the upstream static temperature
is 10 ◦C. If the air were subsequently expanded isentropically
to its original pressure what would its temperature then be?

11.5 A supersonic air stream at 35 kPa is deflected by a wedge-
shaped two-dimensional obstacle of total angle 20◦ mounted
with its axis parallel to the oncoming flow. Shock waves are
observed coming from the apex at 40◦ to the original flow
direction. What is the initial Mach number and the pressure
rise through the shocks? If the stagnation temperature is 30 ◦C
what is the velocity immediately downstream of the shock
waves?

11.6 If the shocks in Problem 11.5 meet solid boundaries parallel to
the initial flow, determine the angle at which they are reflected
and the Mach number downstream of the reflected shocks.

11.7 Through what angle must a uniform air stream with Mach
number 1.5 be turned so that its static pressure is halved?

11.8 A Pitot-static tube in a wind-tunnel gives a static pressure
reading of 40.7 kPa and a stagnation pressure 98.0 kPa. The
stagnation temperature is 90 ◦C. Calculate the air velocity
upstream of the Pitot-static tube.

11.9 An aircraft flies at 8000 m altitude where the atmospheric
pressure and temperature are respectively 35.5 kPa and
−37 ◦C. An air-speed indicator (similar to a Pitot-static tube)
reads 740 km · h−1, but the instrument has been calibrated
for variable-density flow at sea-level conditions (101.3 kPa
and 15 ◦C). Calculate the true air speed and the stagnation
temperature.

11.10 Air from a large reservoir at 700 kPa and 40 ◦C flows through
a converging nozzle, the exit area of which is 650 mm2. Assu-
ming that frictional effects are negligible, determine the pres-
sure and temperature in the exit plane of the nozzle and the
mass flow rate when the ambient pressure is (a) 400 kPa,
(b) 100 kPa.

11.11 Air is to flow through a convergent-divergent nozzle at
1.2 kg · s−1 from a large reservoir in which the temperature is
20 ◦C. At the nozzle exit the pressure is to be 14 kPa and the
Mach number 2.8. Assuming isentropic flow, determine the
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throat and exit areas of the nozzle, the pressures in the reser-
voir and the nozzle throat and the temperature and velocity of
the air at exit.

11.12 A convergent-divergent nozzle originally designed to give an
exit Mach number of 1.8 with air is used with argon (γ = 5/3).
What is the ratio of the entry stagnation pressure to the exit
pressure when a normal shock is formed just inside the nozzle
exit?

11.13 The mass flow rate of superheated steam (γ = 1.3) is to be
measured by a venturi-meter having inlet and throat diameters
100 mm and 50 mm respectively. If the upstream stagnation
pressure and stagnation temperature are respectively 200 kPa
(absolute) and 150 ◦C, what is the maximum mass flow rate
that can be measured reliably in this way? Effects of friction
and heat transfer may be neglected. (Thermodynamic tables
will be needed.)

11.14 Superheated steam from a large reservoir in which the pressure
is 1 MPa flows adiabatically through a convergent-divergent
nozzle for which the cross-sectional area at exit is twice that at
the throat. The pressure beyond the exit is 700 kPa. Determine
the Mach number of the flow in the exit plane, the cross-
sectional area at the plane where a normal shock may be
expected in the nozzle, and the Mach number immediately
upstream of the shock. What ambient pressure at exit would
be necessary to produce isentropic supersonic flow without
shocks? What exit pressure would give the same mass flow
rate but with subsonic conditions throughout? Assume that
frictional effects are negligible, that γ for superheated steam =
1.3, and that the steam remains superheated and with constant
specific heat capacities throughout. (Hint: From eqn 11.59
substitute for m in eqn 11.60 to obtain p0 downstream of the
shock.)

11.15 Air flows adiabatically at the rate of 2.7 kg · s−1 through a
horizontal 100 mm diameter pipe for which a mean value f =
0.006 may be assumed. If the inlet pressure and temperature
are 180 kPa and 50 ◦C. What is the maximum length of the
pipe for which choking will not occur? What are then the
temperature and pressure at the exit end and half way along
the pipe?

11.16 Air enters a 150 mm diameter pipe (mean f = 0.006) at
730 kPa and 30 ◦C. For a flow rate of 2.3 kg · s−1. What is the
pressure 2 km from the inlet when the flow is (a) adiabatic,
(b) isothermal?

11.17 Calculate the diameter of a pipe 140 m long required to
transmit air at 0.32 kg · s−1 under isothermal conditions if the
inlet pressure and temperature are respectively 800 kPa and
15 ◦C and the pressure drop is not to exceed 200 kPa. Take
f = 0.006.
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11.18 Air flows isothermally at 15 ◦C through 45 m of 75 mm
diameter pipe (f = 0.008). Calculate the rate at which heat
is transferred to the surroundings if the pressures at inlet
and outlet are respectively 600 kPa and 240 kPa.

11.19 Determine the mass flow rate of air under adiabatic condi-
tions through a 50 mm diameter pipe 85 m long from a large
reservoir in which the pressure and temperature are 300 kPa
and 15 ◦C. The pressure at the outlet of the pipe is 120 kPa.
Assume a negligible pressure drop at the pipe inlet and a mean
value of 0.006 for f . To what value would the inlet pressure
need to be raised to increase the mass flow rate by 50%?



12 Unsteady flow

12.1 INTRODUCTION

Previous chapters of this book have been concerned almost exclusively with
steady flow – that is, flow in which the velocity, pressure, density and so on at
a particular point do not change with time. Admittedly, flow is rarely steady
in the strictest sense of the term: in turbulent flow, for example, countless
small variations of velocity are superimposed on the main velocity. But if the
values of velocity and of other quantities at any particular point are averaged
over a period of time and the resulting mean values are unchanging, then
steadiness of flow may be assumed.

In unsteady or non-steady flow, however, the mean values at a particular
point do vary with time. Such variations add considerably to the difficulties
of solving problems that involve unsteady flow. Indeed, the majority of
such problems are too complex for normal algebraic methods to yield a
solution. Nevertheless, certain problems of unsteady flow are amenable
to analytical solution, and two or three will be briefly considered in this
chapter.

Problems of unsteady flow may be put into one of three broad cat-
egories, according to the rate at which the change occurs. In the first
group are problems in which the changes of mean velocity, although sig-
nificant, take place slowly enough for the forces causing the temporal
acceleration to be negligible compared with other forces involved. An
example of this sort of problem is the continuous filling or emptying
of a reservoir, discussed in Section 7.10. The second category embraces
problems in which the flow changes rapidly enough for the forces produ-
cing temporal acceleration to be important: this happens in reciprocating
machinery, such as positive displacement pumps, and in hydraulic and
pneumatic servo-mechanisms. In the third group may be placed those
instances in which the flow is changed so quickly, as for example by
the sudden opening or closing of a valve, that elastic forces become
significant.

Oscillatory motions, in which certain cycles of events are repeated, are
also classified as unsteady. Examples of such motion are tidal movements,
the oscillation of liquids in U-tubes and other vessels, and the vibrations
encountered in acoustics.
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12.2 INERTIA PRESSURE

Any volume of fluid undergoing an acceleration, either positive or negative,
must be acted upon by a net external force. This force, distributed over
the boundaries of the volume, corresponds to a difference of piezometric
pressure, and this difference is commonly known as the inertia pressure. If
circumstances are such that not all elements of the fluid concerned undergo
the same acceleration, the inertia pressure may be difficult, if not impossible,
to calculate. Here, however, we shall restrict consideration to flow in a pipe,
of uniform cross-section and full of the fluid being accelerated. Changes of
density � will be assumed negligible.

For a stream-tube of negligible curvature and of constant cross-section,
the acceleration force is given by the product of the mass of fluid in the tube
and the acceleration. Thus, if the tube has a length l and cross-sectional
area A, the mass of the fluid concerned is �Al and the accelerating force is
�Al(∂u/∂t) where u denotes the instantaneous velocity of the fluid. (There is
no change of velocity along the length of the tube.) If this force arises because
the piezometric pressure at the upstream end exceeds that at the downstream
end by an amount pi, then

piA = �Al
∂u
∂t

The inertia pressure, pi, is thus equal to �l(∂u/∂t), and the corresponding
head, hi = pi/�g = (l/g)(∂u/∂t). For the bundle of stream-tubes filling a
pipe of uniform cross-section, the mean inertia pressure is �l(∂u/∂t) and the
corresponding mean inertia head

hi = l
g

∂u
∂t

(12.1)

where u represents the mean instantaneous velocity over the cross-section.
These expressions are of course positive or negative according to whether
the velocity is increasing or decreasing with time.

In some types of hydraulic machine the inertia pressure required to accel-
erate a column of liquid may be so large that the pressure at the downstream
end of the column falls to the vapour pressure of the liquid. As a result the
column of liquid breaks and leaves a pocket of vapour. Not only is the effi-
ciency of the machine thereby reduced but the subsequent collapse of this
vapour pocket may produce dangerously high impact pressures. This is very
important when a reciprocating pump has a long suction pipe: the speed of
the pump is usually limited by the need to keep the inertia pressure at the
beginning of the suction stroke to a moderate value.

The initiation of flow in a pipe-line is governed by inertia pressure. Let
us suppose that a pipe of uniform cross-section is to convey fluid from a
reservoir in which the piezometric pressure is constant. The pipe has at its
downstream end a valve which is initially closed, and the pressure beyond
the valve is constant (see Fig. 12.1). When the valve is opened, the differ-
ence of piezometric pressure between the ends of the pipe is applied to the
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Fig. 12.1

fluid within it, and the rate of flow increases from zero to the steady value
determined by the frictional and other losses in the pipe. Even if the valve
could be opened instantaneously the fluid would not reach its full velocity
instantaneously: its acceleration can never be greater than that corresponding
to the available difference of piezometric pressure.

The acceleration is a maximum immediately after the valve is opened
because the entire difference of piezometric pressure is then available for
accelerating the fluid. As the velocity increases, however, energy is dissipated
by friction; thus the piezometric pressure difference available for acceleration
decreases and the acceleration itself is reduced.

Let the loss of head to friction be given by ku2/2g. Here u represents the
mean velocity over the cross-section of the pipe and it is assumed the flow is
turbulent. The coefficient k has such a value that the term includes appro-
priate additional losses over and above that due to friction, (4f l/d)(u2/2g).
(Friction and other losses in unsteady flow are assumed – with the support of
experimental evidence – to be the same as in steady flow at the same instant-
aneous velocity.) Then at any instant the head available for accelerating the
fluid is h− ku2/2g. Thus, from eqn 12.1,

h− ku
2

2g
= l
g

∂u
∂t

The velocity u here varies only with the time and so the partial derivative may
be written as the full derivative du/dt. Rearrangement gives the differential
equation

dt = l
g

(
du

h− ku2/2g

)
(12.2)

Although the friction factor f , and consequently k, varies somewhat with
u, an approximate result may be obtained by assuming k to be constant.
When the maximum velocity umax has been attained h = ku2

max/2g. The
integration of eqn 12.2 therefore yields

t = l
g

2g
k

∫ u

0

du
u2

max − u2

= l
kumax

ln
(
umax + u
umax − u

)
(12.3)
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Equation 12.3 indicates that u becomes precisely equal to umax only after
an infinite time, but the velocity reaches, say, 99% of the maximum value
within quite a short period. In any event we have here idealized the prob-
lem by the assumption that the fluid is incompressible. In practice even the
slight compressibility of a liquid permits the propagation of elastic waves
(see Section 12.3) and the subsequent damping of these waves brings about
the equilibrium state sooner than eqn 12.3 suggests.

In the system depicted in Fig. 12.1 the rate of flow, once established, would
slowly decline because the reservoir would gradually empty. Under these
conditions, however, the change in velocity resulting from a change in overall
head hwould take place so slowly that the corresponding inertia head would
be negligible. This class of problem has been considered in Section 7.10. For
situations in which the temporal acceleration (either positive or negative) is
appreciable, a term for the inertia head must be included. Its introduction,
however, frequently renders the solution of the problem much more difficult.

N. R. Gibson’s inertia-pressure method, used for determining the mean
velocity of a liquid in a long pipe-line, involves rapidly closing a valve at the
downstream end of the pipe and recording a diagram of pressure p against
time t for a point immediately upstream of the valve. For a pipe of uniform
cross-section and length l, ∫

pdt = l�u

The value of the integral is determined graphically, and the original mean
velocity u may then be calculated.

Example 12.1 A pump draws water from a reservoir and delivers it
through a pipe 150 mm diameter, 90 m long, to a tank in which the free
surface level is 8 m higher than that in the reservoir. The flow rate is
steady at 0.05 m3 · s−1 until a power failure causes the pump to stop.
Neglecting minor losses in the pipe and in the pump, and assuming
that the pump stops instantaneously, determine for how long flow
into the tank continues after the power failure. The friction factor f
may be taken as constant at 0.007 and elastic effects in the water or
pipe material may be disregarded.

Solution
Before power failure, steady velocity in pipe

u1 = 0.05 m3 · s−1

(π/4) (0.15 m)2
= 2.829 m · s−1

After the power failure the static head of 8 m and the friction head
both oppose the flow.

∴ − (8 m) − 4f l
d
u2

2g
= l
g

du
dt
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whence

du
dt

= −(8 m)
g
l

− 2f
d
u2

∴ t = −
∫ 0

u1

du
(8 m)(g/l) + (2f /d)u2

= − d
2f

∫ 0

u1

du
gd/(f l)(4 m) + u2

= d
2f

√(
f l

gd(4 m)

)
arctan

{
u1

√(
f l

gd(4 m)

)}

Substituting u1 = 2.829 m · s−1 and the values of d, f , l and g we get
t = 2.618 s.�

12.3 PRESSURE TRANSIENTS

We now consider the third category of unsteady flow phenomena: those
in which the changes of velocity occur so rapidly that elastic forces are
important. As a result of the elasticity of the fluid – and also the lack of
perfect rigidity of solid boundaries – changes of pressure do not take place
instantaneously throughout the fluid, but are propagated by pressure waves.
A change of velocity at a particular point in a fluid always gives rise to a
change of pressure, and an important instance of such pressure changes is
the phenomenon commonly known aswater hammer in pipe-lines. The name
is perhaps a little unfortunate because not only water but any fluid – liquid
or gas – may be involved.

It is common experience that when a domestic water tap is turned off very
quickly a heavy knocking sound is heard and the entire pipe vibrates. These
effects follow from the rise in pressure brought about by the rapid decelera-
tion of the water in the pipe when the tap is turned off. A similar phenomenon
may occur in a pumping station owing to the slamming shut of non-return
valves when a pumping set is shut down. Not infrequently the increases of
pressure caused by water hammer are sufficient to fracture the pipes, and for
this reason alone the study of the phenomenon is of considerable practical
importance.

Consider the simple case of a fluid, originally flowing with a certain
velocity in a pipe, being brought to rest by the closing of a valve at the
downstream end of the pipe. If the fluid were entirely incompressible and
the walls of the pipe perfectly rigid, then all the particles in the entire column
of fluid would have to decelerate together. From Newton’s Second Law, the
more rapid the deceleration the greater would be the corresponding force,
and with an instantaneous closure of the valve all the fluid would be stopped
instantaneously and the force would be infinite. In fact, however, even a
liquid is to some extent compressible, so its constituent particles do not
decelerate uniformly. An instantaneous closure of the valve would not bring
the entire column of fluid to a halt instantaneously: only those particles of
fluid in contact with the valve would be stopped at once, and the others
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would come to rest later. Although an instantaneous closure of a valve is
not possible in practice, an extremely rapid closure may be made, and the
concept of instantaneous valve closure is valuable as an introduction to the
study of what actually happens.

When a domestic water tap is suddenly turned off, the knocking sound
produced can be heard not only at the tap but also – and often just as
strongly – elsewhere in the house; it is evident, then, that the disturbance
caused by the sudden closing of the tap must travel along the pipe to other
parts of the system. To understand how the disturbance is transmitted along
the pipe we may consider the instantaneous closing of a valve – the water
tap, for example – at the end of a pipe. Just before the closure the pipe is full
of fluid moving with a certain velocity (Fig. 12.2a). If the valve is suddenly
closed, the fluid immediately next to the valve is stopped (Fig. 12.2b). For
the time being, however, the fluid farther upstream continues to move as
though nothing had happened. Consequently the fluid next to the valve is
compressed slightly; its pressure is increased and the pipe (no longer assumed
perfectly rigid) expands slightly as a result of the rise in pressure. The next
element of fluid now finds an increased pressure in front of it; therefore it
too comes to rest, is itself compressed and expands the pipe slightly. Each
element of the fluid column thus stops the element following it until all the
fluid in the pipe has been brought to rest. At any instant after the closing
of the valve, but before all the fluid has stopped, there is a discontinuity

Fig. 12.2
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of conditions in the pipe – represented by the line XX in Fig. 12.2c. On the
valve side of XX the fluid has stopped and has been compressed; also, unless
it is perfectly rigid, the pipe is slightly expanded.

On the other side of XX, however, the fluid is still moving with its original
velocity, and the pressure and the pipe diameter still have their original
values. As each successive element of the fluid is halted, the discontinuity
XX moves farther away from the valve. In this way the change of velocity
is transmitted along the pipe: the closing of the valve directly stops only the
fluid that comes in contact with it; the remainder has to be brought to rest
by a ‘message’ passed along the pipe from one fluid particle to another, each
‘telling’ the next that it must stop. The travelling discontinuity, known as a
pressure wave or pressure transient, is in fact the message.

(Pressure waves are also transmitted through the material of the pipe
walls; their effect on pressure changes in the fluid, however, is almost always
negligible, so we may disregard them here.)

We now see that neglecting the compressibility of the fluid – in other words
assuming that all the fluid particles change velocity together – is legitimate
only if the time of travel of the pressure wave is negligibly small compared
with the time during which the change of velocity takes place.

When a fluid is suddenly stopped its behaviour is closely similar to that of
a train of loosely coupled railway wagons. If the locomotive suddenly stops,
the wagon immediately behind it compresses the buffer springs between itself
and the locomotive. The force in the buffer springs increases to a value
sufficient to stop the wagon. The second wagon then behaves likewise; it
is stopped by the compressive force in the springs between itself and the
first wagon. This process takes place successively along the whole length of
the train. The compression of the buffer springs in the train is analogous
to the compression of the fluid in the pipe-line. When a wagon has stopped,
the force in the buffer springs at the front must equal the force in the springs
at the rear (otherwise there would be a net force on the wagon and it would
move). Similarly, a pressure wave in a fluid suddenly alters the pressure as
it passes a particular point; but after that the pressure there stays at its new
value.

There are, incidentally, many other examples of the transmission of a
wave through an elastic material. Shock waves (considered in Chapter 11)
are transmitted through gases. A sharp blow applied to one end of a long,
weak coil spring causes a deflection of the coils that may be seen to travel to
the opposite end of the spring. A stretched rubber tube may behave similarly.
And if a series of similar, more gradual, disturbances occur regularly several
times a second, musical sounds may be produced as, for example, when a
succession of waves travels to and fro along the length of an organ pipe or
other wind instrument.

12.3.1 The velocity and magnitude of pressure waves

We now need to consider the rate at which a change of pressure is transmitted
through the fluid. Sections 11.4 and 11.5 dealt with the transmission of
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Fig. 12.3

a pressure wave in a gas; here we restrict the analysis to a liquid, and consider
also the effect on non-rigid boundaries.

Figure 12.3a illustrates a pipe in which liquid flowing from left to right at
velocity u is brought to rest by a pressure wave XX moving from right to
left. For the undisturbed liquid to the left of the diagram the pressure is p,
the density is �, and the cross-sectional area of the pipe is A. After the wave
has passed, these quantities have become respectively p+�p, �+δ�,A+δA.
(The change of density is small and so is the change of area – unless the pipe
is made of exceptionally distensible material, such as very thin rubber or
plastic – but the change of pressure �p is not necessarily small compared
with p.) For the time being we shall disregard frictional effects because the
friction head is usually small compared with the change of head caused by
the pressure wave. The velocity is considered uniform over the cross-section
and hence one-dimensional flow relations apply.

Let the pressure wave travel towards the left with a speed c relative to the
oncoming liquid. The speed of the wave relative to the pipe is therefore c−u.
The conditions will appear steady if we refer to coordinate axes moving with
the wave (as in Fig. 12.3b). The one-dimensional continuity relation across
the wave is then

m = �Ac = (� + δ�)(A+ δA)(c − u) (12.4)

The change of density is directly related to the change of pressure by the bulk
modulus of the liquid, K:

δ�

�
= �p
K

(from eqn 1.8)

The difference in pressure across the wave gives rise to a force −A�p
towards the right (if δA is negligible compared with A) and so, for the steady
flow conditions of Fig. 12.3b,

−A�p = m{(c − u) − c} = −�Acu



562 Unsteady flow

whence

u = �p/�c (12.5)

Dividing eqn 12.4 by �A and substituting for δ�/� and for u we obtain

c =
(

1 + �p
K

)(
1 + δA

A

)(
c − �p

�c

)

whence

�c2 =
�p

(
1 + δA

A

)(
1 + �p

K

)
�p
K

(
1 + δA

A

)
+ δA
A

(12.6)

Compared with �p the bulk modulus K of a liquid is always very large;
for example, the value for cold water at moderate pressure is about 2 GPa.
Therefore �p/K may be neglected in comparison with 1, and so may δA/A.
Equation 12.6 then simplifies to

�c2 = �p
�p/K + δA/A

(12.7)

The assumptions (�p/K) � 1 and (δA/A) � 1 together imply that u � c
as is evident from eqn 12.4. Hence it does not matter whether c in eqn 12.7
is regarded as representing a velocity relative to the liquid or to the pipe.

For a perfectly rigid pipe δA = 0 and eqn 12.7 then gives c = √
(K/�).

In other words, the velocity with which a wave is propagated relative to the
liquid in a rigid pipe is the same as the velocity of sound in an infinite expanse
of the liquid. (For pipes of very small diameter, frictional effects reduce this
value slightly.)

If the pipe is not perfectly rigid, however, the value of δA/A must be
determined. This depends on the material of the pipe and also on its freedom
of movement. We shall here consider only the case of a pipe so mounted that
there is no restriction of its longitudinal movement (it may be assumed to
have numerous frictionless expansion joints). An increase of pressure �p
in the pipe causes a hoop stress tending to burst the pipe. For a circular
pipe in the which the thickness t of the wall is small compared with the
diameter d, the hoop stress is given by (�p)d/2t and for elastic deformation
the corresponding hoop strain is thus (�p)d/2tE, where E represents the
elastic modulus of the material of the pipe.

This hoop strain gives rise to a longitudinal strain (which may be calculated
from the Poisson ratio). The longitudinal strain, however, does not enter the
present problem – the pipe merely ‘slides over’ the column of liquid inside it
and the pipe has no longitudinal stress. For a circular pipe, A is proportional
to d2 so δA/A = 2δd/d = 2 (hoop strain) = (�p)d/tE. Substitution of this
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value in eqn 12.7 gives

c =
√√√√{

1
�
(
1/K + d/(tE)

)
}

that is,

c =
√
K′
Q

where

1
K′ = 1

K
+ d
tE

(12.8)

Here K′ may be regarded as the effective bulk modulus of the liquid when
in the pipe. (As mentioned earlier, the transmission of elastic waves also
occurs through the material of the pipe walls, but the effect of these waves
is normally negligible.)

In cases where the longitudinal movement of the pipe is restrained, as
for example in the fuel-injection system of a diesel engine (where pressure
transients have particular significance), the effective bulk modulus of the
liquid is slightly different. It may be calculated by again determining the
appropriate value of δA/A. However, even if all longitudinal movement of
the pipe is prevented, the resulting wave velocity is little affected, and, for a
thin-walled pipe, eqn 12.8 is sufficiently accurate for most purposes.

A few figures will show the orders of magnitude. A representative value
of K for water is 2.05 GPa and so the wave velocity in a rigid pipe is√(

K
�

)
=

√(
2.05 × 109 N · m−2

103 kg · m−3

)
=

√
(2.05 × 106 m2 · s−2) = 1432 m · s−1

Other liquids give values of the same order.
For a steel pipe (E = 200 GPa) of, say, 75 mm diameter and 6 mm

thickness

1
K′ = 1

2.05 × 109 Pa
+ 75 mm

6 mm × 200 × 109 Pa

whence K′ = 1.817 × 109 Pa and so

c =
√(

1.817 × 109 N · m−2

103 kg · m−3

)
= 1348 m · s−1

Although c by its dependence of K varies slightly with pressure and temper-
ature, sufficient accuracy is usually obtained by regarding it as constant for a
particular pipe-line. (Gas bubbles in the liquid, however, appreciably reduce
the value of K and therefore of c.)

It is important to realize that the velocity of wave propagation is not a
velocity with which particles of matter are moving. For this reason the word
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celerity is sometimes used rather than velocity. It represents the rate at which
a message can be telegraphed through the fluid. As another example of a
message being sent through the fluid we may consider a pump delivering
fluid through a long pipe-line into a reservoir. If the power to the pump
suddenly fails, fluid continues to be discharged from the outlet end of the
pipe until the pressure wave produced by the stopping of the pump reaches
there: the pressure wave – this time a negative one – provides the only means
by which the fluid at the outlet end ‘knows’ that the input has failed.

The magnitude of the rise in pressure caused by reducing the velocity from
u to zero is given by eqn 12.5 as �cu. In a more general case the velocity would
be changed form u1 to u2. The analysis, however, would be modified only
in so far as the zero of the velocity scale would be altered; the corresponding
rise in pressure would be given by �c(u1 − u2) This may be expressed as a
change of head by dividing by �g (the change of �, we recall, is small):

h2 − h1 = c
g
(u1 − u2) i.e. �h = − c

g
�u (12.9)

Substituting in eqn 12.9 values appropriate for water shows that a reduction
of velocity of 3 m · s−1 corresponds to an increase of head of about 440 m
(about 4.3 MPa). Such an increase is too large to be neglected in the design
of a pipe system. The equation shows too that, just as a sudden reduction of
velocity gives rise to an increase of pressure, so a sudden increase of velocity
causes a reduction of pressure. It will be noticed also that the change of head
is independent of the length of the pipe – in distinction to eqn 12.1 for the
inertia head in an incompressible fluid.

The kinetic energy lost by the liquid when its velocity is reduced is conver-
ted entirely into strain energy by the compression of the liquid itself and the
stretching of the pipe (if there is no friction loss). No mechanical energy has
been lost: it is merely stored in the compressed material and may be released
when the strain is removed.

Not all pressure waves result from sudden changes of velocity or pres-
sure. A gradual change, however, may be regarded as the sum of a series of
small instantaneous changes. Thus the transmission of such a gradual pres-
sure wave along a pipe is similar to that of a sudden wave. Consequently,
for a pipe-line of unlimited length, any particular pattern of change at one
point will be reproduced at another point; there is, however, a time delay
corresponding to the time that the pressure wave takes to travel the distance
between the two points.

12.3.2 The reflection of waves

The problem is somewhat complicated if the pipe-line is not of unlimited
length. This is because a pressure wave, on reaching the end of the pipe,
is reflected; in other words, another wave is produced which returns along
the pipe to the starting point of the first wave. This reflected wave may
be larger or smaller than the first, according to the conditions at the end
where the reflection takes place. The simplest case is that for the horizontal
pipe illustrated in Fig. 12.4. Let us assume that flow towards the valve is
stopped by the instantaneous closing of the valve. Frictional effects are for
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Fig. 12.4 Pressure
diagrams showing
transmission and reflection
of individual waves.
(Friction and velocity heads
assumed negligible
compared with the changes
of static head).

the moment disregarded. An increase of pressure is caused just upstream of
the valve, and this is propagated with celerity c as a positive pressure wave
along the pipe towards the reservoir. At a time l/c later the wave reaches the
reservoir. All the fluid in the pipe-line has now been brought to rest; it has
been compressed and the pipe has been expanded slightly. (These conditions
are indicated on the third pressure diagram in Fig. 12.4.)



566 Unsteady flow

Although the fluid is at rest it is not in equilibrium. Let us assume that
the reservoir is very large in relation to the cross-sectional area of the pipe,
so that the velocity in the reservoir is always negligible and the pressure
therefore constant. There is now a discontinuity between the pipe and the
reservoir: the fluid in the pipe is at the increased pressure, whereas that in the
reservoir is at the original pressure and its velocity is already zero. As a result
of the discontinuity of pressure, fluid begins to flow from the pipe back into
the reservoir so as to equalize the pressures at that end of the pipe. In other
words, the discontinuity that constitutes the pressure wave now moves back
towards the valve. Because of the relation between the changes of pressure
and velocity (eqn 12.5), the velocity with which the fluid now moves towards
the reservoir is of magnitude u. The result is equivalent to the superposition
of a negative or unloading wave on the original positive one so as to nullify
it. In other words, the reflection of a wave at a completely open end (i.e. an
end connected to a reservoir of infinite extent) gives a second wave, equal in
magnitude to the first but opposite in sign. (See fourth pressure diagram in
Fig. 12.4.)

The reflected wave travels the length of the pipe in a time l/c, so it reaches
the valve at a time 2l/c after the closing of the valve. The pressure has now
been reduced everywhere to its original value, the fluid density and the pipe
diameter are back to their original values – but all the fluid is moving back
from the valve. This reverse movement decompresses the fluid immediately
next to the valve, with the result that there is a fall in pressure. The mag-
nitude of this pressure change is – ideally – the same as the magnitude of the
previous changes because the corresponding change of velocity is again u.
Therefore a negative wave is now propagated from the valve to the reser-
voir. This illustrates the nature of a reflection from a completely closed end:
the magnitude of the reflected wave equals that of the incident wave, and
the sign remains unchanged. When, after the next time interval of l/c, the
negative wave reaches the open, reservoir, end there is an unbalanced state,
with a higher pressure in the reservoir than in the pipe. Therefore fluid flows
from the reservoir into the pipe; in other words, reflection of the wave takes
place with a change of sign so that the existing negative wave is nullified
by a positive wave. This positive wave is propagated towards the valve and
reaches it at the end of the fourth time interval of l/c.

Conditions have now been reached that are identical with those existing at
the moment the valve was closed: all the fluid in the pipe is moving towards
the valve with velocity u, and the pressure is back to the original value. The
complete cycle of events (as illustrated in Fig. 12.4) is therefore repeated
and, in the absence of friction, would be repeated indefinitely, each cycle
occupying a period of time 4l/c. In practice, energy is gradually dissipated
by friction and imperfect elasticity, so the waves diminish in intensity and
die away.

The time needed for a pressure wave to make the round trip from valve to
reservoir and back again is 2l/c. Thus, for an instantaneous closing of the
valve, the excess pressure at a point immediately before the valve remains
constant for a time interval 2l/c; the pressure is then altered by the arrival of
the negative, unloading, wave. Similarly, the subsequent drop of pressure
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Fig. 12.5

at this point remains constant for the same length of time. A graph of
pressure against time for a point adjacent to the valve is therefore as shown
in Fig. 12.5a. At a distance x from the reservoir the time required for the
round trip to the reservoir and back is only 2x/c and so the duration of any
rise or fall of pressure from the original value there is 2x/c. Figure 12.5b
shows the pressure–time graph for a point half-way along the pipe (x = l/2).
When x → 0, near the reservoir, the rise or fall of pressure persists for a
very short time only (Fig. 12.5c).

If the negative wave has an amplitude greater than the original absolute
pressure of the liquid then the conditions represented by Fig. 12.5 are mod-
ified, since, in practice, the absolute pressure cannot fall below zero. In fact,
before the pressure reaches zero the liquid boils, and a cavity filled with the
vapour of the liquid is formed. (Air or other gases may also come out of
solution.) In such cases the lower part of the pressure diagrams is cut short
at the vapour pressure of the liquid, and the changes in pressure may then
follow a very complicated pattern.

Moreover, when a vapour cavity subsequently collapses, liquid may rush
into it at a velocity greater than that of the original flow. The sudden stopping
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Fig. 12.6 Effect of friction.
Variation of pressure next
to the valve with time after
complete valve closure.
Theoretical (no friction)
line shown dotted.

of this motion may then produce a positive pressure greater than that caused
by the initial valve closure. It is therefore important to avoid, if possible,
the vaporization of the liquid (or the release of substantial amounts of air or
other gases from solution).

The effects of friction losses are indicated in Fig. 12.6, which shows the
perhaps surprising fact that a greater rise of pressure may occur with fric-
tion than without it. When the velocity of the fluid is reduced, so is the head
lost to friction; the head available at the downstream end of the pipe con-
sequently rises somewhat as layer after layer of the fluid is slowed down. This
secondary effect is transmitted back from each layer in turn with celerity c,
and so the full effect is not felt at the valve until a time 2l/c after its closure.
In Fig. 12.6 this effect is indicated by the upward slope of the line ab. Dur-
ing the second time interval of 2l/c velocities and pressure amplitudes have
reversed signs, and thus the line de slopes slightly downwards. However,
energy is also dissipated by viscous forces during the small movements of
individual particles as the fluid is compressed and expanded. This dissipa-
tion of energy, known as damping, always tends to reduce the amplitude of
the pressure waves and so bring ab and de nearer to the horizontal. Indeed,
the effect of the damping may sometimes exceed that of the pipe friction, and
so the lines ab and de may even converge towards the equilibrium pressure
line (which, for complete closure of the valve, corresponds to the static pres-
sure line). Friction forces also oppose the flow of the fluid back towards the
reservoir, so the velocity of this flow is somewhat less in magnitude than the
original. Consequently the amplitude of a wave is reduced at each reflection
until the final equilibrium pressure is reached. Except in pipes of very small
diameter, friction does not appreciably affect the celerity with which waves
are propagated.

It is difficult in calculations to account accurately for friction. The neg-
lect of friction is often justified because the friction head is small compared
with the head produced by the water hammer. In all cases, however, values
‘on the safe side’ are obtained by assuming that the initial head at the valve
is the same as the head in the reservoir, and neglecting subsequent frictional
effects.
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In addition to the reflection of waves that takes place at open or closed
ends, partial reflections occur at changes of section in the pipe line, and at
junctions.

Our discussion so far has all been based on the concept of instantan-
eous closure of the valve. An absolutely instantaneous closure is physically
impossible, but if the valve movement is completed in a time less than 2l/c
the results are not essentially different. The pressure at the valve is gradually
built up as the valve is closed; the maximum pressure reached, however, is
the same as with instantaneous closure, because the conversion of kinetic
energy of the fluid to strain energy is completed before any reflected waves
have had time to reach the valve. If, on the other hand, the valve movement
is not finished within a time 2l/c, then not all of the kinetic energy has been
converted to strain energy before a reflected wave arrives to reduce the pres-
sure again. The maximum pressure rise thus depends on whether the time
during which valve movement occurs is greater or less than 2l/c. Movements
taking less than 2l/c are said to be rapid; those taking longer than 2l/c are
said to be slow. (When pressure changes are considered for a point between
the valve and the reservoir – at a distance x, say, from the reservoir – the
relevant time interval is 2x/c.)

Similar effects follow from a sudden opening of the valve, although the
primary result is a reduction of pressure behind the valve instead of a rise.

12.3.3 Slow closure of the valve

If the valve is closed in a time longer than 2l/c account must be taken of
waves returning to the valve from the reservoir. The subsequent changes of
pressure, as the waves travel to and fro in the pipe, may be very complex, and
determining the pressure fluctuations requires a detailed step-by-step analysis
of the situation. In this section we shall outline a simple, arithmetical, method
of solution so as to focus attention on the physical phenomena without the
distraction of too much mathematics. In Section 12.3.4 we shall look at the
mathematical basis of a more general technique.

The essential feature of the arithmetical method is the assumption that the
movement of the valve takes place, not continuously, but in a series of steps
occurring at equal intervals of 2l/c or a sub-multiple of 2l/c. The partial
closure represented by each step is equal in magnitude to that achieved by
the actual, continuous, movement during the time interval following the
step, and the valve movement for each step is assumed to be instantaneous.
Between the steps the valve is assumed stationary. Each of the instantaneous
partial closures generates its own particular wave – similar in form to those
depicted in Fig. 12.5 – which travels to and fro in the pipe until it is completely
dissipated by friction. The total effect of all these individual waves up to a
particular moment approximates fairly closely to the effect produced by the
actual, continuous, valve movement. (During any interval while the valve
is being closed, the pressure at the valve builds up to a maximum which
occurs at the end of the interval. If each interval is so chosen that a wave
sent off at the beginning does not return before the end of the interval, then
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a knowledge of the precise way in which the continuous valve movement
occurs is unnecessary: eqn 12.9 gives h2 − h1 for a reduction of velocity
from u1 to u2, regardless of the manner in which u changes with time.)

Let us suppose that the steady flow conditions before the valve closure
begins are represented by a head h0 at the valve and a velocity u0 in the pipe.
If at the end of the first chosen interval the head and velocity are respectively
h1 and u1 then these must be related by eqn 12.9:

h1 − h0 = c
g
(u0 − u1) (12.10)

Another relation between h1 and u1 is required if either is to be calculated.
For the simple case in which the valve discharges to atmosphere, the valve
may be regarded as similar to an orifice, and so

Au = Q = CdAv

√
(2gh) (12.11)

where A represents the cross-sectional area of the pipe in which the velocity
is u, Av the area of the valve opening and Cd the corresponding coefficient
of discharge. Putting Cd(Av/A)

√
(2g) = B in eqn 12.11 we have

u = B
√
h (12.12)

The factor B is usually known as the valve opening factor or area coefficient.
It should be noted that Cd is not necessarily constant, and the variation of B
with the valve setting usually has to be determined by experiment for each
design of valve. From eqn 12.12 u1 = B1

√
h1 and simultaneous solution of

this equation with eqn 12.10 gives corresponding values of h1 and u1.
Such a closure in which B varies linearly with time t, that is,

B=B0(1 − t/T), is frequently termed straight-line closure. It does not imply
uniform motion of the valve. With a gate valve (Fig. 12.7), for example, in
which the gate is moved uniformly, the rate of reduction of area is initially
small, but very much greater towards the end of the closure. It is therefore
common to arrange for such valves on long pipe-lines to close slowly during
the final stages of the movement.

Fig. 12.7 Gate valve.

A wave returning from the reservoir is negative in sign and it thus offsets –
partially at least – rises in pressure caused by further reductions of velocity.
A numerical example will show how allowance is made for the reflected
waves.

Example 12.2 A pipe carries water at a (mean) velocity of 2 m · s−1,
and discharges to atmosphere through a valve. The head at the valve
under steady flow conditions is 100 m (pipe friction being neglected).
Length of pipe = 2400 m; wave celerity c = 1200 m · s−1. The valve



Pressure transients 571

is closed so that the area coefficient B is reduced uniformly in 8 s.
Determine the maximum and minimum heads developed.

Solution
An interval 2l/c here is 2 × 2400 m/(1200 m · s−1) = 4 s, so the com-
plete closure occupies two intervals of 2l/c. We shall consider the valve
movement to take place in 10 steps, that is, each interval of 2l/c will
be subdivided into five parts, and we shall neglect friction.

The rise in head corresponding to any reduction of velocity is
given by

�h = − c
g
�u = −1200 m · s−1

9.81 m · s−2
�u = −(122.3 s)�u (12.13)

Initially 2 m · s−1 = B0
√

(100 m) , so B0 = 0.2 m1/2 · s−1. If the valve
is completely closed in ten steps the numerical values of B are

0.2, 0.18, 0.16, . . . 0.02, 0

It is helpful to draw a diagram of the pressure changes adjacent
to the valve which are caused by the separate instantaneous partial
closures. These diagrams (Fig. 12.8) show at a glance the sign of the
change corresponding to any wave at any moment.

Although the simultaneous solution of eqns 12.12 and 12.13 is pos-
sible algebraically, solution by trial is often quicker. The calculations
may be set out in tabular form as shown here.

B (m1/2 · s−1) Head at valve, h (m) u (m · s−1) �h (m)

0.2 100 2.00 —

These are the initial conditions. At the first step B is reduced from 0.2
to 0.18 m1/2 · s−1. Then, with metre-second units,

�h = 122.3(2.00 − u1) m and u1 = 0.18
√

(100 + �h) m · s−1

These equations are satisfied by u1 = 1.903 m · s−1 and �h =
11.82 m.

0.18 100 + 11.82 = 111.82 1.903 11.82

Similarly for the next step:

0.16 111.82 + 13.61 = 125.43 1.792 13.61
0.14 125.43 + 15.73 = 141.16 1.663 15.73
0.12 141.16 + 18.18 = 159.34 1.515 18.18
0.10 159.34 + 21.01 = 180.35 1.343 21.01



572 Unsteady flow

Fig. 12.8

The pressure diagrams, Fig. 12.8, show that for the next step – the
reduction of B from 0.10 to 0.08 – matters are slightly complicated
by the return of the first wave, that of magnitude 11.82 m. This rise
of pressure is cancelled as the wave returns (its sign was changed on
reflection from the reservoir) and the wave is then reflected from the
valve with the same (i.e. negative) sign. Consequently the +11.82 m is
dropped from the h column and a −11.82 m takes its place. The next
line of the table is therefore

B (m1/2 · s−1) Head at valve, h (m) u (m · s−1) �h (m)

0.08 100 − 11.82 + 13.61 + 15.73 1.094 30.41
+18.18 + 21.01 + 30.41

= 187.12

Since the closure of the valve is not yet completed, the returning
11.82 m wave does not meet an absolutely closed end. Its reflection is
therefore not complete; that is, its amplitude after reflection is some-
what less than 11.82 m. But the degree of completeness of reflection
happily does not concern us. The amplitude of the new wave (here
30.41 m) must be such as to give a total head (187.12 m) which satisfies
the equation u = 0.08

√
h. The new wave thus effectively incorporates

the loss by reflection of the wave that has just arrived and reversed.
(If the 11.82 m wave had not returned to the valve, �h would have
been 24.29 m. The extra 6.12 m accounts for the fact that only 5.70 m
of the 11.82 m is actually reflected. The total h is the same.) This is
why the interval between successive steps must be either 2l/c or a sub-
multiple of 2l/c: an ‘old’ wave is reflected from the valve at the same
moment as a new one sets off, and so the new wave can incorporate
the reflection loss of the old.
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The pressure diagrams show that for the next step (B changed
from 0.08 to 0.06) the 13.61 m wave returns and the corres-
ponding pressure rise at the valve changes sign. The table then
continues:

B (m1/2 · s−1) Head at valve, h (m) u (m · s−1) �h (m)

0.06 100 − 11.82 − 13.61 + 15.73
+ 18.18 + 21.01
+ 30.41 + 32.15

= 192.05

0.831 32.15

0.04 100 − 11.82 − 13.61 − 15.73
+ 18.18 + 21.01 + 30.41
+ 32.15 + 33.53

= 194.12

0.557 33.53

0.02 100 − 11.82 − 13.61 − 15.73
− 18.18 + 21.01
+ 30.41 + 32.15
+ 33.53 + 34.26

= 192.02

0.277 34.26

0 100 − 11.82 − 13.61 − 15.73
− 18.18 − 21.01 + 30.41
+ 32.15 + 33.53
+ 34.26 + 33.90

= 183.90

0 33.90

Although the valve is now closed the waves continue their movement,
and the pressure increments at the valve change sign according to
Fig.12.8. However, as the velocity at the valve is zero and must remain
zero, no new waves can be generated.

B (m1/2 · s−1) Head at valve, h (m) u (m · s−1) �h (m)

0 100+11.82−13.61−15.73
− 18.18 − 21.01 − 30.41
+ 32.15 + 33.53
+ 34.26 + 33.90

= 146.72

0 —

0 100+11.82+13.61−15.73
− 18.18 − 21.01 − 30.41
− 32.15 + 33.53
+ 34.26 + 33.90

= 109.64

0 —

0 100+11.82+13.61+15.73
− 18.18 − 21.01 − 30.41
− 32.15 − 33.53
+ 34.26 + 33.90

= 74.04

0 —

0 . . . = 41.88 0 —
0 . . . = 16.10 0 —
0 . . . = 53.28 0 —
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The table shows that a maximum head of about 194 m is reached
(almost twice the static head), and a minimum of about 16 m is reached
after the valve is closed. In this example, if the valve remained closed,
then, in the absence of friction, the waves would continue to travel to
and fro indefinitely. In practice, of course friction would fairly soon
damp out the waves. In some circumstances (a high initial velocity or
a low initial head at the valve) the minimum head reached might –
apparently – be substantially less than zero. The column of liquid
would then break, vaporization would occur, and the subsequent
behaviour would be unpredictable.�

The technique indicated here is applicable to the partial closure of a valve
and also to the opening of a valve. In the latter case, the opening causes a
drop of pressure at the valve, and thus an increase of velocity. The pressure
waves sent upstream from the valve are negative, and the velocity and head
at the valve usually approach their final values asymptotically. The pressure
drop is limited to the difference between the initial values on the two sides of
the valve, and there are no dangerous pressure changes as for valve closure.
The velocity of flow changes gradually, and the assumptions that the fluid is
incompressible and that the pipe is rigid usually give results (by the simpler
analysis of Section 12.2) to a satisfactory degree of accuracy.

Uniform opening or closing of a valve is seldom achieved in practice,
and so results based on the assumption of uniform movement can only be
approximations to the truth. It must be emphasized that we have here con-
sidered only the simple case of a valve discharging to atmosphere. In other
instances – for example, where a further length of pipe-line is connected to
the downstream side of the valve – the movement of the valve may cause
changes of pressure on the downstream side also, and these would affect the
rate of flow through the valve at any given moment. If the pipe-line leads
to a hydraulic turbine, and the changes of velocity of the fluid are brought
about by the governor mechanism, then the flow may depend on the speed
of the machine, the setting of the entry vanes and other factors. In pump-
ing systems the pressure rise resulting from water hammer may cause the
pump to operate as a turbine and to run in reverse at high speeds. Usually,
therefore, these systems incorporate devices to circumvent such trouble.

The arithmetical integration illustrated here shows the physical basis of
the water hammer phenomenon, but it neglects friction and any changes in
elevation of the pipe (which would cause changes of static pressure addi-
tional to the water hammer effects). Various graphical methods have been
developed from it, yielding results more quickly (though less accurately).
Some account can be taken of friction by assuming that the correspond-
ing head loss is concentrated at individual points rather than distributed
along the whole length of the pipe, but this adds considerably to the
complexity.

In the next section, therefore, we derive equations not subject to these
limitations and which are suitable for solution by computer.
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12.3.4 The method of characteristics

Since the velocity and pressure in a pipe subject to pressure transients are
continuous functions of position and time, they are described essentially
by partial differential equations. The method of characteristics is a general
technique in which such partial differential equations are converted into par-
ticular simultaneous total differential equations which, after being expressed
in finite-difference form, can be solved by computer. The effects of friction
and difference of elevation can be retained in the equations and complex
pipe system can be dealt with. This method is not the only one possible for
solving the equations but it is increasingly used for the study of problems
involving pressure transients, so we shall here derive the finite-difference
equations and outline the method to the point where a computer program
can be written.

Figure 12.9 shows a short length δx of the pipe through which a pressure The equation of motion
wave travels upstream. The velocity of the fluid is assumed uniform over
each cross-section and so the fluid in the length δx may be regarded as a
single particle to which Newton’s Second Law can be directly applied. Then
the force in the direction of flow

pA−
(
p+ ∂p

∂x
δx

)(
A+ ∂A

∂x
δx

)
+

(
p+ 1

2
∂p
∂x

δx
)

∂A
∂x

δx

−τ0Pδx−mg sin α

= Mass × Acceleration = m
(
u

∂u
∂x

+ ∂u
∂t

)
(12.14)

Here the third term on the left-hand side consists of the average pressure at
the sides of the element multiplied by the projected area of the sides perpen-
dicular to the flow direction. The term therefore represents the component in
the flow direction of the force exerted by the pipe walls on the fluid particle.

Fig. 12.9
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In the fourth term τ0 represents the mean frictional shear stress at the pipe
wall and P the mean perimeter. We assume that τ0 has the same value as
in steady flow at the same velocity and, from eqn 7.3, we can substitute
τ0 = 1

2 f�u
2. However, the friction force always opposes the motion, so to

ensure that the term changes sign as u changes sign, we put u|u| in place
of u2 (where |u| means the magnitude of u regardless of its sign). A vari-
ation of fwith u can be incorporated into the equation if desired and so can
additional losses.

On the right-hand side of the equation, the expression for acceleration is
taken from eqn 3.1. Neglecting higher orders of small quantities, we write
the mass m as �Aδx, and so, after division by −�Aδx, eqn 12.14 reduces to

1
�

∂p
∂x

+ 1
2
f
u|u|
A/P

+ g sin α + u∂u
∂x

+ ∂u
∂t

= 0 (12.15)

For the unsteady conditions being studied, the rate at which mass enters theThe continuity equation
volume of length δx is equal to the rate at which mass leaves the volume
plus the rate of increase of mass within the volume. This may be written in
mathematical form as

�Au =
{
�Au+ ∂

∂x
(�Au)δx

}
+ ∂

∂t
(�A δx)

∴ 0 = ∂

∂x
(�Au) + ∂

∂t
(�A)

= u
∂

∂x
(�A) + �A

∂u
∂x

+ ∂

∂t
(�A)

= u
∂p
∂x

d
dp

(�A) + �A
∂u
∂x

+ ∂p
∂t

d
dp

(�A) (12.16)

Dividing eqn 12.16 by d (�A)/dp and putting

A
(d/dp)(�A)

= c2 (12.17)

we obtain

u
∂p
∂x

+ �c2 ∂u
∂x

+ ∂p
∂t

= 0 (12.18)

The left-hand side of eqn 12.17 equals

A
A(d�/dp) + �(dA/dp)

= A
(A�/K) + �(dA/dp)

(from the definition of bulk modulus, eqn 1.8), so the result corresponds
to eqn 12.7. That is, c represents the celerity of a small wave for which
�p/K and δA/A are both small compared with unity (as assumed in the
derivation of eqn 12.7). However, eqn 12.17 is no more than a convenient
mathematical substitution and the method is not restricted to waves of small
amplitude.
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Multiplying the continuity eqn (12.18) by a factor λ and adding the result The characteristic
equationsto the equation of motion (12.15) yields

1
�

∂p
∂x

+ 1
2
f
u|u|
A/P

+ g sin α + u∂u
∂x

+ ∂u
∂t

+ λ

(
u

∂p
∂x

+ �c2 ∂u
∂x

+ ∂p
∂t

)
= 0

that is,{
(u+ λ�c2)

∂u
∂x

+ ∂u
∂t

}
+ λ

{(
u+ 1

λ�

)
∂p
∂x

+ ∂p
∂t

}
+ 1

2
f
u|u|
A/P

+ g sin α

= 0 (12.19)

For movement in the x direction the full derivative of velocity u is (as we
saw in Section 3.2)

du
dt

= ∂u
∂x

dx
dt

+ ∂u
∂t

Consequently the first main bracket {} in eqn 12.19 may be written du/dt
provided that

u+ λ�c2 = dx
dt

(12.20)

Similarly the second main bracket may be written dp/dt if

u+ 1
λ�

= dx
dt

(12.21)

The conditions 12.20 and 12.21 can be simultaneously satisfied only if

λ = ± 1
�c

, that is, if
dx
dt

= u± c (12.22)

Hence, for the positive alternative sign, ⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

du
dt

+ 1
�c

dp
dt

+ 1
2
f
u|u|
A/P

+ g sin α = 0 (12.23)

provided that

dx
dt

= u+ c (12.24)

and, for the negative sign, ⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

du
dt

− 1
�c

dp
dt

+ 1
2
f
u|u|
A/P

+ g sin α = 0 (12.25)

provided that

dx
dt

= u− c (12.26)
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Fig. 12.10

The original partial differential equations (12.15 and 12.18) have thus
been converted into total differential equations known as the characteristic
equations. It must be emphasized that these equations are not simultaneous.
However, the conditions under which they are separately applicable can be
visualized, as in Fig. 12.10, on a map where the independent variables x
and t are the coordinates. Equation 12.23 holds along a line such as AP for
which the slope dt/dx has the value (u+ c)−1 given by eqn 12.24. Similarly,
eqn 12.25 holds along a line such as BP with slope (u − c)−1 (eqn 12.26).
(The slope of BP is negative since c always exceeds u.) Lines such as AP, BP
are known as characteristics.

Suppose that the conditions for the point A(xA, tA,uA,pA) are all known.
If �x and �t are both small, conditions at point P will be only slightly
different and can be expressed by a finite-difference form of eqn 12.23.

uP − uA
�t

+ 1
�c

(pP − pA)

�t
+ 1

2
f
uA|uA|
A/P

+ g sin αA = 0 (12.27)

The friction term is evaluated by taking u equal to the known value atA, and
the value of α is assumed constant over the small distance (u + c)�t along
the pipe. Similarly, if conditions at B are also known we can use eqn 12.25
in finite-difference form:

uP − uB
�t

− 1
�c

(pP − pB)
�t

+ 1
2
f
uB|uB|
A/P

+ g sin αB = 0 (12.28)

Hence the particular values uP and pP can be determined by solving these
finite-difference equations simultaneously.

The technique can clearly be extended to cover a complete x− t map. We
suppose that the total length of a pipe is divided into an integral number of
short lengths, each �x, as shown in Fig. 12.11. If, at time t = 0, all pressures



Pressure transients 579

Fig. 12.11

and velocities are known, then for a time interval �t later, the conditions at
points such as P andQ in the next row of intersections of characteristics can
be calculated from the initial values respectively at A and B and at B and C.
(The value of �t must be �x/2c, as shown by the geometry of Fig. 12.10.)
Values for point R can then be established from those at P and Q, and
similarly for the whole x–t map.

If c is constant and large compared with u, the slopes of the characteristics
become 1/c and −1/c, respectively, and their intersections occur at regular
intervals of x and t over the whole map. Strictly, the velocity u changes with
both x and t (and c may change too if the liquid contains air or other gases
because K may then change with p). The characteristics are then curved
rather than straight and interpolation becomes necessary to obtain results
for the intersections.

At the upstream end of the pipe (x = 0) no positive-slope characteristic is
available for calculating conditions at a point such asN (Fig. 12.11). There-
fore the appropriate upstream boundary condition has to be used instead.
This may be, for example, a constant value of either u or p, or a specified
variation of one of them as a function of t, or an algebraically specified con-
nection between u and p as for flow through a valve. Similarly, the boundary
condition at the downstream end of the pipe (x = l) must be used there in
place of a negative-slope characteristic. (If u is not negligible compared with
c or if c is not constant, the characteristics with not necessarily intersect on
the boundary lines x = 0 and x = l. Interpolation then becomes necessary.)

At a junction of two or more pipes the equation of continuity must be
satisfied at every instant and (if any additional losses are disregarded) the
pressures where each pipe meets the junction must at every instant be the
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same. In each of the various finite-difference equations the same time interval
must of course be used; since �t = �x/2c and �x = l/n, where n is an
integer, the values of n for each pair of connecting pipes should ideally be
so chosen that

l1/n1c1 = l2/n2c2 (12.29)

If eqn 12.29 cannot be satisfied by fairly small values of n1 and n2, one
is faced either with excessive computing time (because large values of n
give large numbers of intervals �x and �t) or with using an interpolation
technique for one or more of the pipes because for a given value of �t the
intersections of characteristics do not exactly correspond to the intervals �x.
A compromise thus has to be reached between too much computing time and
too much complexity and loss of accuracy caused by interpolation.

Example 12.3 A centrifugal pump running at constant speed takes
kerosene from a large reservoir and feeds it through a non-return valve
to a horizontal 150 mm diameter steel pipe, 1035 m long, connected in
series to a 200 mm diameter steel pipe, 850 m long, laid at an upwards
slope of α = arcsin 0.1 (Fig. 12.12). The wall thickness of each pipe
is 10 mm. The 200 mm pipe discharges through a valve to a large
reservoir in which the pressure is atmospheric. Derive the equations
to determine the behaviour of the system when this valve is closed
uniformly in 7.5 s.

Fig. 12.12

Solution
For each pipe, the celerity of a small wave is given by eqn 12.8. Taking
K and � for kerosene as 1.36 GPa and 814 kg · m−3, respectively, and
E for steel as 200 GPa we get, for pipe 1

K′ =
(

1
1.36

+ 150
10 × 200

)−1

GPa = 1.234 GPa

and hence

c1 =
√(

1.234 × 109

814

)
m · s−1 = 1231 m · s−1
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For pipe 2,

K′ =
(

1
1.36

+ 200
10 × 200

)−1

GPa = 1.197 GPa

and hence

c2 =
√(

1.197 × 109

814

)
m · s−1 = 1213 m · s−1

In order to have the same finite time difference �t for each pipe l/nc
should be the same (eqn 12.29). That is,

n1

n2
= l1c2
l2c1

= 1035 × 1213
850 × 1231

= 1.199

so we can take n1 = 6, n2 = 5. (These values will give adequate
accuracy; higher values would be too expensive in computing time.)

∴ �x1 = 1035 m/6 = 172.5 m; �x2 = 850 m/5 = 170 m

and

�t = 172.5 m
2 × 1231 m · s−1

= 170 m
2 × 1213 m · s−1

= 0.0701 s

We now need values for the initial steady flow. By using Darcy’s
formula with an appropriate value of f for each pipe and data for
pressure drop through the valve, the total steady-flow head losses can
be calculated in terms of the volume flow rate Q. The sum of these
losses together with the gain in elevation (850 m × 0.1 = 85 m) must
equal the head provided by the pump under steady conditions. If this
pump head can be expressed as a polynomial, for example

H = C1 + C2Q+ C3Q
2 (12.30)

then the resulting equation can be solved to give the initial value ofQ.
From this the initial head H at the pump can be determined; subtrac-
tion of the head losses between the pump and any point in the pipe
system then enables us to calculate the head and therefore the pressure
at that point. In this way we obtain the initial values of velocity and
pressure at each subdivision point in the two pipes.

As an example, consider the second pipe. For interior points of this
pipe (i.e. points not at x = 0 or x = 850 m) the finite-difference
eqns 12.27 and 12.28 become

uP − uA
0.0701 s

+ pP − pA
814 kg · m−31213 m · s−10.0701 s

+ 1
2
f
uA|uA|

1
4 × 0.2 m

+ 9.81 × 0.1 m · s−2 = 0 (12.31)
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and

uP − uB

0.0701 s
+ pP − pB

814 kg · m−31213 m · s−10.0701 s
+ 1

2
f
uB |uB|

1
4 × 0.2 m

+ 9.81 × 0.1 m · s−2 = 0 (12.32)

Initially the velocities are positive and uA = uB. Simultaneous solu-
tion of these two equations gives the values uP and pP for an ‘interior’
point P after the first time interval of 0.0701 s.

For the outlet end of the pipe (x = 850 m) there is no negative-
slope characteristic bringing information about conditions at a time �t
earlier. Thus only the first of these two equations (12.31) is available,
and in place of the second we use the boundary condition given by the
valve area coefficient, for example:

uP = B
√
pP = B0

(
1 − t

7.5 s

)√
pP

for the straight-line closure assumed that t ≤ 7.5 s. Beyond t = 7.5 s
(i.e. after the 107th interval �t) the boundary condition changes to
that of a completely closed end, i.e. u2 = 0.

At the upstream boundary of pipe 2, the junction with pipe 1, only
eqn 12.32 is available, and this must be solved using the conditions
at the junction: (a) the pressures in the two pipes must be the same
(the head loss corresponding to the diameter change being neglected);
(b) continuity: u1 = (200/150)2u2. In other words, at the junction
a negative-slope characteristic for pipe 2 intersects a positive-slope
characteristic for pipe 1. If point A is in pipe 1, B in pipe 2 and P at the
junction, the simultaneous finite-difference equations are eqn 12.32,
in which, uP is the value for pipe 2, and

(u1)P − (u1)A

0.0701 s
+ pP − pA

814 × 1231 × 0.0701 kg · m−2

+ 1
2
f
(u1)A |(u1)A|
1
4 × 0.15 m

= 0 (12.33)

Also (u1)P = 16(u2)P/9 from continuity.
At the upstream, pump, end of pipe 1 the boundary condition that

must be used together with the negative-slope characteristic for pipe 1
is that given by the pump equation (12.30):

p = �gH = �g
(
C1 + C2Au+ C3A

2u2
)

provided that the non-return valve remains open. If at some stage
the flow in the pipe reverses, then the non-return valve will shut
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(instantaneously, we will assume) and the boundary condition there
becomes u1 = 0 until the liquid again moves in the +x direction.

Values of the friction factor f can be adjusted at each stage of the
calculation since f is a function of Reynolds number and therefore
of u. �

Pressure transients are important not only in long pipe-lines. The trans-
mission of elastic waves is of great significance in the pipes of diesel-engine
injection systems: here the compression of the fuel may exceed the volume
to be injected on each stroke. Analogous phenomena with a gas may be
encountered in ventilating ducts and in the exhaust systems of reciprocating
engines.

12.4 SURGE TANKS

Many of the problems associated with pressure transients may be circumven-
ted by the use of a surge tank. In hydro-electric installations, for example,
the turbines must frequently be supplied with water via a long pipe-line or
a tunnel cut through rock. If the electric power taken from the generators
is suddenly altered, the turbines tend to change speed. The governors must
counteract this tendency to change speed, by altering the flow rate to the
machines. The consequent acceleration or deceleration of water in the pipe-
line may give rise to water hammer. The minimizing of water hammer is
doubly desirable: not only may water hammer produce dangerously high
pressures within the pipe-line or tunnel, but the pressure changes impede the
governing.

Figure 12.13 shows the essential features of the arrangement. The simplest
type of surge tank is an open vertical cylinder of large diameter, as shown
at S. It may be constructed of steel, or tunnelled in rock. Owing to the
lie of the land it is seldom practicable for the entry to the surge tank to be
immediately next to the turbines, but it should be as close to them as possible.
The upstream pipe-line AB is of small slope and the top of the surge tank
S is higher than the water level in the reservoir. If the load on the turbines

Fig. 12.13
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Fig. 12.14

is suddenly reduced, the governing mechanism acts to decrease the rate of
flow of water to them. The rate of flow in the line AB cannot at once drop
to the required new value, and the temporary surplus of water goes into
the surge tank S. The rise of water here then provides a hydrostatic head
that decelerates the water in AB. If the required deceleration is exceptionally
great the water may be allowed to overflow from the top of the surge tank;
the maximum pressure in the pipe-line is then limited. The shorter length
of pipe BC is still subject to water-hammer effects and so must be strongly
enough constructed to withstand the increased pressures.

A no less important feature of a surge tank is that it provides a reserve
supply of water to make up a temporary deficiency of flow down AB when
the demand at the turbines is increased. In the absence of a surge tank the
drop in pressure at the turbines could be excessive when a sudden demand
required the acceleration of the water column in the supply pipe. As the
water level in the surge tank is drawn down, the difference of head along
AB is increased, and so the water there is accelerated until the rate of flow
in AB equals that required by the turbines.

Apart from the changes of sign, the analysis of what happens when the
flow rate is increased is essentially the same as that for reduction of flow
rate, and it will be sufficient here to consider the reduction of flow rate in
relation to a simple cylindrical surge tank. The section AB has in effect an
open reservoir at each end, and so water-hammer effects there are slight.
Consequently the compressibility of the liquid in AB may be neglected and
the deceleration of the flow treated as a simple inertia problem similar to
those discussed in Section 12.2. In BC, however, the flow is subject to water
hammer, and so the deceleration there must be analysed separately by the
methods already discussed.

We shall use the following notation (see also Fig. 12.14):

A= cross-sectional area of surge tank
a= cross-sectional area of upstream pipe-line (the cross-sectional area of

the section BC may be different: that is of no consequence)
u= mean velocity in upstream pipe-line at any instant
y= depth of level in surge tank at that instant below datum
hf = head lost to friction in the upstream pipe-line at that instant.
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The one-dimensional continuity relation is

au = A
(

−dy
dt

)
+Q (12.34)

whereQ represents the volume rate of flow continuing along the pipe BC to
the turbines.

A second relation is given by considering the deceleration of liquid in the
upstream pipe-line. We shall assume that A is so large compared with a
that the head required to decelerate the liquid in the surge tank is negligible
compared with that required to decelerate the liquid in the upstream pipe-
line. Velocity head, friction in the surge tank and entrance losses will also
be assumed negligible. The head at B is thus equal to the vertical distance
below the instantaneous water level in the surge tank.

Under steady conditions the level in the surge tank would be constant and
y would exactly equal hf . But, at any instant while the surge is taking place,
the level in the tank is higher than that corresponding to steady conditions.
An additional head of (hf − y) is thus available at the base of the tank to
decelerate the liquid in the upstream pipe. From the expression for inertia
head (eqn 12.1)

hf − y = l
g
(deceleration) = l

g

(
−du

dt

)
(12.35)

Even when Q = 0 (for complete shut-down of the turbines), an accur-
ate analytical integration of eqns 12.34 and 12.35 is impossible because of
the variation of the friction factor f with Reynolds number. However, the
substitution of finite increments for the differentials makes numerical integ-
ration possible, and in the course of this, allowance may be made for the
variation of f (and also, if need be, of Q).

Usually the problem is to determine the maximum height of the surge and
the time interval required for this maximum to be reached. If the initial,
steady, conditions are known, eqn 12.34 may be used to obtain dy/dt at
the beginning of the surge, and hence the value of y at the end of a small
time interval �t. This value of y substituted in eqn 12.35, gives the change
of velocity �u during the time interval �t and hence the value of u at the
end of that interval. These results are used as the starting point for sim-
ilar calculations for a subsequent time interval, and the process is repeated
as many times as necessary until the maximum height in the surge tank
(i.e. minimum value of y) is obtained.

(For the special caseQ = 0, the assumption of a constant value of f yields
the solution

u2 = 2gd
4f l

(
y+ ad

4fA

)
+ C exp

(
4 f Ay
ad

)
(12.36)

in which the constant C may be determined from the initial conditions. This
equation may be applied over ranges in which f varies little, and it is useful
in preliminary calculations for the entire range because it overestimates the
total change of y.)
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Steady conditions require the excess head (hf − y) to be zero, so the level
in the tank falls immediately after the maximum height has been reached.
The level then oscillates about the steady position where y = hf until the
movements are damped out by friction. The oscillations of the system may
be very important, particularly if the governing mechanism of the turbines
is sufficiently sensitive to operate in step with them. It is of course essential
that the maximum positive value of y should not be such as to empty the
surge tank and so allow air to enter the system.

The simple cylindrical surge tank considered here has certain disad-
vantages. A surge tank has two principal functions – first, to minimize
water-hammer effects and, second, to act as a reservoir either taking in
surplus water when the demand is reduced, or meeting an increased demand
while the water in the upstream pipe-line is accelerating. These two functions
are in no way separated in the simple cylindrical tank, and consequently
it is somewhat sluggish in operation. A number of different types of tank
have therefore been devised in attempts to improve the operating charac-
teristics for particular installations. The more complex tanks may have a
cross-section varying with height, have overflow devices or have damping
arrangements such as a restriction in the entrance. Compound tanks are
sometimes used, and occasionally – where a great difference of level between
the ends of the upstream pipe-line makes an open tank impossible – closed
tanks with compressed air above the water level are employed.

For further information on surge tanks and their operation, more
specialized works should be consulted.

Example 12.4
A reservoir supplies water at a steady mean velocity u to the turbine

of a power plant through a long pipe in which the friction loss may
be assumed to be proportional to u2. The system is protected against
high-pressure transients by means of a surge tank.
(a) If the flow to the turbine is stopped instantaneously, show that at
any time t the level y in the surge tank is related to u by an equation
of the form

2KY

[
u

d2u
dy2

+
(

du
dy

)2
]

− 2Ku
du
dy

+ 1 = 0

which has the solution

u2 = 1
K

(y+ Y) + C exp
(
y
Y

)
where C,K and Y are constants.

(b) Water from a reservoir is supplied to a power plant through
a pipe of diameter 0.75 m and length 1500 m at a steady flow rate
of 1.2 m3 · s−1. A surge tank of diameter 3 m is connected 100 m
upstream of the turbine. If the base of the surge tank is 20 m below
the free surface of the reservoir, estimate the height of tank required
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to accommodate instantaneous complete shut-down of the system
without overflowing. The friction factor may be assumed constant
and equal to 0.006.

Solution
(a) For Q = 0, the continuity equation is

au = A
(

−dy
dt

)
The inertia head relation is

hf − y = l
g

(
−du

dt

)
The head loss is given by

hf = 4f l
2gd

u2 = Ku2

where

K = 4f l
2gd

Differentiation of the expression for inertia head with respect to t gives

dhf

dt
− dy

dt
= − l

g
d2u
dt2

or
dhf

dt
+ a
A
u = − l

g
d2u
dt2

Differentiation of the head loss equation with respect to t yields

dhf

dt
= 2Ku

du
dt

which can be combined with the previous equation to give

2Ku
du
dt

+ a
A
u+ l

g
d2u
dt2

= 0

Since

d
dt

= d
dy

dy
dt

= − a
A
u

d
dy

we can operate on the previous relation to finally obtain

2KY

[
u

d2u
dy2

+
(

du
dy

)2
]

− 2Ku
du
dy

+ 1 = 0

where

2KY = la
gA



588 Unsteady flow

(b) K = 4f l
2gd

= 4 × 0.006 × (1500 − 100) m
2 × 9.81 m · s−2 × 0.75 m

= 2.283 s2 · m−1

2KY = la
gA

= 1400 m × (0.75 m)2

9.81 m · s−2 × (3 m)2
= 8.919 s2

Hence

Y = 2KY
2K

= 8.919 s2

2 × 2.283 s2 · m−1
= 1.953 m

When t = 0

y0 = hf0 = Ku2
0 = 2.283 s2 · m−1 ×

(
1.2 m3 · s−1 × 4

π(0.75 m)2

)2

= 16.844 m

At t = 0

u2
0 = 1

K
(y0 + Y) + C exp

(
y0

Y

)
which since y0 = Ku2

0, can be written as

Y
K

= −C exp
(
y0

Y

)
Substituting

1.953 m
2.283 s2 · m−1

= −C(m2 · s−2) exp
(

16.844 m
1.953 m

)
from which C = −1.537 × 10−4m2 · s−2.

To determine the height of the surge tank, we consider the condition
y = ymax when u = 0. Thus

0 = 1
K

(ymax + Y) + C exp
(
ymax

Y

)
or

1
2.283 s2 · m−1

(ymax + 1.953) m = 0.0001537 m2 · s−2 exp
(
ymax

1.953

)
The value of ymax is found by trial-and-error. A good first approxim-
ation is ymax = −Y. Solution: ymax = −1.95 m.

Hence the minimum height of the surge tank = (20 + 1.95) m =
21.95 m. The actual design height should exceed the minimum
required, say 23 m.�

PROBLEMS

12.1 Verify that the inertia head was justifiably neglected in
Problems 7.20 and 7.21.
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12.2 A turbine which normally operates under a net head of 300 m
is supplied with water at 2.5 m3 · s−1 through a pipe 1 m dia-
meter and 1.6 m long for which f = 0.005. During a test on the
turbine governor the flow to the turbine is gradually stopped
over an interval of 8 s, the retardation of the water being
proportional to t5/4, where t represents the time measured
from the beginning of the shut-down. Neglecting minor losses
and assuming an incompressible fluid in a rigid pipe with f
independent of Reynolds number, determine the head at the
turbine inlet and the velocity in the pipe at t = 6 s.

12.3 A valve at the outlet end of a pipe 1 m diameter and 600 m
long is rapidly opened. The pipe discharges to atmosphere and
the piezometric head at the inlet end of pipe is 23 m (relative
to the outlet level). The head loss through the open valve is 10
times the velocity head in the pipe, other minor losses amount
to twice the velocity head, and f is assumed constant at 0.005.
What velocity is reached after 12 s?

12.4 A pump draws water from a reservoir and delivers it at a steady
rate of 115 L · s−1 to a tank in which for free surface level
is 12 m higher than that in the reservoir. The pipe system
consists of 30 m of 225 mm diameter pipe (f = 0.007) and
100 m of 150 mm diameter pipe (f = 0.008) arranged in series.
Determine the flow rate 2 s after a failure of the power supply
to the pump, assuming that the pump stops instantaneously.
Neglect minor losses in the pipes and in the pump, and assume
an incompressible fluid in rigid pipes with f independent of
Reynolds number.

12.5 A hydraulic lift cage of mass 225 kg, carrying a load of 1 Mg,
is fixed on the vertical plunger of a hydraulic ram. It is coun-
terbalanced by a 180 kg weight on a cable over a pulley above
the plunger. Water from a mains supply at 2.75 MPa operates
the lift through a horizontal pipe 60 m long, 40 mm diameter,
f = 0.006. The gland friction at the plunger is 1.13 kN and the
initial upward acceleration of the cage is to be 1.5 m · s−2. Cal-
culate the plunger diameter and the maximum steady lifting
speed with the full load. Neglect minor losses in the pipe.

12.6 Determine the maximum time for rapid valve closure on a
pipe-line 600 mm diameter, 450 m long made of steel (E =
207 GPa) with a wall thickness of 12.5 mm. The pipe con-
tains benzene (relative density 0.88, K = 1.035 GPa) flowing at
0.85 m3 · s−1. It is not restricted longitudinally.

12.7 In a pipe of length 500 m and uniform circular cross-section,
water flows at a steady velocity of 2 m · s−1 and discharges
to atmosphere through a valve. Under steady conditions the
static head just before the valve is 300 m. Calculate the ratio
of internal diameter to wall thickness of the pipe so that, when
the valve is completely and instantaneously closed, the increase
in circumferential stress is limited to 20 MPa, and determine
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the maximum time for which the closure could be described
as rapid. The bulk modulus of water = 2 GPa, and the elastic
modulus of the pipe material = 200 GPa.

12.8 Oil of relative density 0.85 flows at 3 m · s−1 through a hori-
zontal pipe 3 km long. The normal pressure at a valve at the
outlet end of the pipe is 700 kPa and the effective bulk modulus
of the oil is 1.24 GPa. If the amplitude of any pressure wave
is not to exceed 300 kPa what is the maximum percentage
increase in the area of flow tolerable during a ‘rapid’ opening
of the valve? What is the meaning of rapid in this context?

12.9 A valve at the end of a horizontal pipe 750 m long is closed
in 10 equal steps each of 2l/c where c = 1200 m · s−1. The
initial head at the valve, which discharges to atmosphere, is
144 m and the initial velocity in the pipe 3.6 m · s−1. Neg-
lecting frictional effects, determine the head at the valve after
1.25, 2.50 and 3.75 s.

12.10 Show that, if the friction loss in a pipe-line is proportional to
the square of the velocity, the oscillatory motion of the level
in a simple, open, cylindrical surge tank following complete
shut-down of the turbines in a hydro-electric plant is given by
an equation of the form

d2H
dt2

+ α

(
dH
dt

)2

+ βH = 0

in which H represents the instantaneous height of the surge
tank level above the reservoir level, and α and β are constants,
α being positive or negative according as the flow along the
pipe-line is towards or away from the surge tank. Determine
α and β for a surge tank diameter 30 m, a pipe line diameter
4.5 m and a length of pipe-line from reservoir to surge tank
730 m. Immediately before the turbines are shut down the rate
of flow along the pipe-line is 42.5 m3 · s−1 and the level in the
surge tank is stationary and 1 m below the water level in the
reservoir.

12.11 An 800 mm diameter pipe 1200 m long supplies water at
1.1 m3 · s−1 to a power plant. A simple, open, cylindrical surge
tank 2.5 m in diameter is connected 120 m upstream of the
turbines. The base of the surge tank is 15 m below the water
level in the reservoir. Neglecting entrance and other losses in
the surge tank and taking f constant at 0.007, estimate the
height of tank required to cope with instantaneous complete
shut-down of the turbines without overflowing.



Fluid machines 13
13.1 INTRODUCTION

A fluid machine is a device either for converting the energy held by a fluid
into mechanical energy or vice versa. In this chapter the internal workings
of a number of different designs of fluid machine are described. We shall
not consider here every kind of machine that has been devised, nor describe
constructional details or the practical operation of machines. Our concern is
simply with the basic principles of mechanics of fluids that are brought into
play. The chapter starts by introducing the main categories of fluid machines.

13.1.1 Turbines and pumps

A machine in which energy from a fluid is converted directly to the mechan-
ical energy of a rotating shaft is known as a turbine (from the Latin turbo, a
circular motion). If, however, the initial mechanical movement is a reciproc-
ating one the term engine ormotor is used. A machine in which the converse
process – the transfer of energy from moving parts to the fluid – takes place
is given the general title of pump.

13.1.2 Compressors, fans and blowers

When the fluid concerned is a gas other terms may be used. If the primary
object is to increase the pressure of the gas, the machine is termed a com-
pressor. On the other hand, a machine used primarily for causing the
movement of a gas is known as a fan or blower. In this case the change in
pressure across the machine is quite small – usually sufficient only to over-
come the resistance to the motion – so the variation of density is negligible
and the fluid may be regarded as incompressible.

13.1.3 Positive-displacement machines

Although a great variety of fluid machines is to be found, any machine
may be placed in one of two categories: the positive-displacement group or
the rotodynamic group. The functioning of a positive-displacement machine
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derives essentially from changes of the volume occupied by the fluid within
the machine. This type is most commonly exemplified by those machines,
such as reciprocating pumps and engines, in which a piston moves to and fro
in a cylinder (a suitable arrangement of valves ensures that the fluid always
moves in the direction appropriate to either a pump or an engine). Also in this
category are diaphragm pumps, in which the change of volume is brought
about by the deformation of flexible boundary surfaces (an animal heart is an
example of this form of pump), and gear pumps in which two rotors similar
to gear wheels mesh together within a close-fitting housing. Although hydro-
dynamic effects may be associated with a positive-displacement machine, the
operation of the machine itself depends only on mechanical and hydrostatic
principles. This is not to say that such a machine is easy to design, but since
few principles of the mechanics of fluids are involved our consideration of
positive-displacement machines in this book will be very brief.

13.1.4 Rotodynamic machines

All rotodynamic machines have a rotor, that is, a rotating part through
which the fluid passes. In a turbine this rotor is called the runner, for a
pump the term impeller is more often used. The fluid has a component of
velocity and therefore of momentum in a direction tangential to the rotor,
and the rate at which this tangential momentum is changed corresponds
to a tangential force on the rotor. In a turbine there is a reduction of the
tangential momentum of the fluid in the direction of movement of the rotor;
thus energy is transferred from the fluid to the rotor and hence to the output
shaft. In a pump, energy from the rotor is used to increase the tangential
momentum of the fluid; subsequent deceleration of the fluid produces a rise
in pressure.

Rotodynamic machines have several advantages over the positive-
displacement type. The flow from most positive-displacement machines is
unsteady whereas, for normal conditions of operation, that from a roto-
dynamic machine is essentially steady. Most positive-displacement machines
require small clearances between moving and stationary parts, and so are
unsuited to handling fluids containing solid particles; in general, roto-
dynamic machines are not restricted in this way. If discharge from a
positive-displacement pump is prevented – for example, by the closing of
a valve – the pressure within the pump rises and either the pump stops or
some part of the casing bursts; if the discharge valve of a rotodynamic pump
is closed, however, the rotating impeller merely churns the fluid round, and
the energy consumed is converted to heat. Moreover, for dealing with a given
overall rate of flow a rotodynamic machine is usually less bulky than one of
positive-displacement type.

13.2 RECIPROCATING PUMPS

From the point of view of mechanics of fluids a positive-displacement
machine holds interest principally because of the unsteady nature of the
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Fig. 13.1

flow. By way of illustration we shall consider briefly a reciprocating pump
handling a liquid. The motion of the piston outwards (i.e. towards the right
in Fig. 13.1) causes a reduction of pressure in the cylinder, and thus fluid
flows into the cylinder through the inlet valve. The reverse movement of
the piston causes an increase of pressure in the cylinder; the inlet valve then
closes and the outlet valve opens so that fluid is discharged into the delivery
pipe. Usually the operation of the valves is automatic, being controlled by
the pressure in the cylinder. In other designs valves may give place to ports
(i.e. apertures) in the walls of the cylinder, and these ports are covered and
uncovered by the movement of the piston.

If p represents the pressure in the cylinder, and A the cross-sectional area
of the piston, then the axial force exerted by the fluid on the piston is pA.
If the piston moves through a small distance δx, the work done by the force
is therefore pA δx = pδV where δV represents the volume swept by the
piston movement. The total net work done by the pump is thus given by∫
pdV , calculated round the complete cycle, that is, by the area enclosed

by a graph of pressure against volume. For an incompressible fluid the ideal
form of the diagram would be a simple rectangle (as ABCD in Fig. 13.2).
In practice, however, the acceleration and deceleration of the piston give rise
to corresponding accelerations and decelerations of the fluid in the associated
pipe-lines. At the beginning of the suction (i.e. outward) stroke of the piston,
for example, the fluid in the suction (i.e. inlet) pipe has to be accelerated, and
an additional difference of pressure is required. As a result the pressure in
the cylinder falls by an amount corresponding to AE in Fig. 13.2. Denoting
the acceleration of the fluid in the suction pipe by as, inertia pressure by pi
and inertia head by hi, the magnitude of AE is given by eqn 12.1:

hi = ls
g
as or pi = �lsas



594 Fluid machines

Fig. 13.2

where ls represents the length of the suction pipe (not necessarily the same
as hs). Moreover, by continuity as = a×A/As where a represents the accel-
eration of the piston, A represents the cross-sectional area of the piston and
As the cross-sectional area of the suction pipe. To decelerate the liquid at
the end of the suction stroke, a corresponding rise of pressure in the cylinder
is needed, so, as a consequence of the inertia of the liquid in the suction
pipe, the base of the pressure–volume diagram is modified from AB to EMF.
(For simple harmonic motion of the piston, EMF is a straight line.) A fur-
ther modification of the diagram results from the effect of friction and other
losses in the suction pipe. These are zero at the ends of the stroke when
the velocity is zero, and a maximum at mid-stroke (again for simple har-
monic motion of the piston) when the velocity is at its maximum. The base
of the diagram therefore becomes ELF. Inertia and friction in the delivery
pipe cause similar modifications to the upper part of the diagram, and so the
actual shape is ELFGPK. The effects of inertia and friction in the cylinder
itself are normally negligible. It should be noted that maximum frictional
losses occur when the inertia head is zero (mid-stroke), and the maximum
inertia effect occurs when the frictional losses are zero (ends of stroke).

The speed of such a pump is usually restricted by the pressure corres-
ponding to the point E of the diagram. The higher the speed the greater the
accelerations during each stroke and the lower the pressure in the cylinder
at the beginning of the suction stroke. The pressure must not be allowed
to fall to the value at which dissolved gases are liberated from the liquid.
Under these conditions a cavity would form in the suction pipe and pump-
ing would temporarily cease. A more serious matter would be the collapse of
the cavity later in the stroke; the liquid would then rush towards the cylinder
with destructive violence. Water-hammer effects resulting from the sudden
movement of the valves may sometimes be of importance too.

The pulsations of the flow in either the suction or delivery pipe may be sub-
stantially eliminated by connecting a large, closed air-vessel to the pipe, at a
point near to the pump. Its action is analogous to that of the surge-tank dis-
cussed in Section 12.4. Such a vessel fitted to the suction pipe (see Fig. 13.3)
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Fig. 13.3 Air vessel fitted
to suction pipe.

Fig. 13.4

Fig. 13.5 Discharge from a
three-cylinder reciprocating
pump.

would obviate the changes of pressure in the cylinder due to the inertia of the
liquid in the suction pipe. With a practically steady velocity in the pipe the
friction loss would be constant and less than the previous maximum value.
The lower part of the pressure–volume diagram would therefore be modified
as shown in Fig. 13.4, AE′ corresponding to the steady friction loss based on
the steady mean velocity. Since the point E′ corresponds to a higher pressure
than E on Fig. 13.2, the restriction on speed is made much less severe by the
fitting of an air-vessel on the suction pipe.

In multi-cylinder pumps a number of cylinders are connected in parallel,
their cranks being equally spaced over 360◦. The fluctuating discharges from
the individual cylinders are thus added together as indicated in Fig. 13.5.
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The (approximately) simple harmonic variations of flow during the delivery
strokes of the individual cylinders here combine to produce only a ripple on
an otherwise steady total discharge. In the example illustrated, there are three
cylinders with cranks at 120◦ to one another. For 60◦ of rotation (between
90◦ and 150◦, for example) one cylinder gives nearly its maximum delivery
while the other two are open to suction. Then for the next 60◦ the falling
output of the first cylinder is augmented by the increasing output of one of
the others.

The benefits resulting from the much smaller fluctuations of velocity in
both delivery and suction pipes of a multi-cylinder pump are thus similar to
those derived from the use of a large air vessel, and so this is then unnecessary.

In practice the discharge for each working stroke of a reciprocating pump
differs slightly from the volume displaced by the piston movement. This is a
consequence of leakage and the imperfect operation of the valves. A coeffi-
cient of discharge is thus introduced (equal to the ratio of the actual discharge
per working stroke to the swept volume). The discrepancy is alternatively
expressed as a percentage slip where

% slip = (1 − Cd) × 100

Reciprocating pumps, and positive-displacement pumps generally, are
most suitable for low rates of flow and particularly for high pressures. For
greater rates of flow and lower pressures rotodynamic machines are usually
more satisfactory.

13.3 TURBINES

We now turn attention to those machines that are distinguished from
positive-displacement machines in requiring relative motion between the
fluid and the moving part of the machine. The latter consists of a rotor hav-
ing a number of vanes or blades, and there is a transfer of energy between
the fluid and the rotor. Whether the fluid does work on the rotor (as in a
turbine) or the rotor does work on the fluid (as in a pump), the machine may
be classified in the first instance according to the main direction of the fluid’s
path in the rotor. In a radial-flow machine the path is wholly or mainly in
the plane of rotation; the fluid enters the rotor at one radius and leaves it at
a different radius. Examples of this type of machine are the Francis turbine
and the centrifugal pump. If, however, the main flow direction is parallel
to the axis of rotation, so that any fluid particle passes through the rotor at
a practically constant radius, then the machine is said to be an axial-flow
machine. The Kaplan turbine and the axial-flow pump are examples of this
type. If the flow is partly radial and partly axial the termmixed-flowmachine
is used.

There are considerable similarities between turbines and pumps, and sev-
eral of the formulae we shall derive are applicable to both types of machine.
Indeed, a pump, for example, may be operated in reverse as a turbine;
dual-purpose machines having this facility are used in hydraulic pumped
storage schemes. (These are arrangements whereby, during periods of small
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demand for electric power – for example, at night – a dual-purpose machine
driven by an electric motor pumps water to a high-level reservoir. At periods
of peak demand the machine runs as a turbine and the electric motor as an
alternator so that power is fed back to the electricity supply.) In efficiency,
however, such dual-purpose machines are somewhat inferior to those inten-
ded only for one-way conversion of energy. We shall refer to the similarities
between turbines and pumps again but, for the sake of explicitness, we shall
fix attention first on turbines.

13.3.1 Types of turbine

As we have seen, one classification of turbines is based on the predominant
direction of the fluid flow through the runner. In addition, turbines may be
placed in one of two general categories: (a) impulse and (b) reaction. (These
names have little justification except long usage: they should be regarded
as no more than useful labels.) In both types the fluid passes through a
runner having blades. The momentum of the fluid in the tangential direction
is changed and so a tangential force on the runner is produced. The runner
therefore rotates and performs useful work, while the fluid leaves it with
reduced energy. The important feature of the impulse machine is that there
is no change of static pressure across the runner. In the reaction machine,
on the other hand, the static pressure decreases as the fluid passes through
the runner.

For any turbine the energy held by the fluid is initially in the form of
pressure. For a turbine in a hydro-electric scheme, water comes from a high-
level reservoir: in a mountainous region several hundred metres head may
thus be available, although water turbines are in operation in other situations
where the available head is as low as three metres or less. For a steam turbine,
the pressure of the working fluid is produced by the addition of heat in a
boiler; in a gas turbine pressure is produced by the chemical reaction of fuel
and air in a combustion chamber.

The impulse turbine has one or more fixed nozzles, in each of which the
pressure is converted to the kinetic energy of an unconfined jet. The jets
of fluid then impinge on the moving blades of the runner where they lose
practically all their kinetic energy and, ideally, the velocity of the fluid at
discharge is only just sufficient to enable it to move clear of the runner. As
already mentioned, the term impulse has little justification: constant pressure
would perhaps be better. In a reaction machine the change from pressure to
kinetic energy takes place gradually as the fluid moves through the runner,
and for this gradual change of pressure to be possible the runner must be
completely enclosed and the passages in it entirely full of the working fluid.

Machines in which the fluid undergoes an appreciable change of density
involve thermodynamic principles also, but in this book we shall confine our
attention to those using constant-density fluids and operating under steady
conditions. We shall deal first with impulse turbines since they are sufficiently
different from reaction machines to justify separate consideration, and are
in many ways simpler.
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13.3.2 The Pelton wheel

This is the only hydraulic turbine of the impulse type now in common use
and is named after Lester A. Pelton (1829–1908), the American engineer
who contributed much to its development in about 1880. It is an efficient
machine, particularly well suited to high heads.

The rotor consists of circular disc with several (seldom less than 15) spoon-
shaped buckets evenly spaced round its periphery (see Figs 13.6 and 13.7).
One or more nozzles are mounted so that each directs a jet along a tangent
to the circle through the centres of the buckets. Down the centre of each
bucket is a ‘splitter’ ridge, which divides the oncoming jet into two equal
portions and, after flowing round the smooth inner surface of the bucket,
the fluid leaves it with a relative velocity almost opposite in direction to
the original jet. The notch in the outer rim of each bucket (see Fig. 13.7)
prevents the jet to the preceding bucket being intercepted too soon; it also
avoids the deflection of the fluid towards the centre of the wheel as the bucket
first meets the jet. The maximum change of momentum of the fluid – and
hence the maximum force driving the wheel round – would be obtained if
the bucket could deflect the fluid through 180◦. In practice, however, the
deflection is limited to about 165◦ if the fluid leaving one bucket is not to
strike the back of the following one.

It should be noted that the flow only partly fills the buckets, and the fluid
remains in contact with the atmosphere. Thus, once the jet has been produced
by the nozzle, the static pressure of the fluid is atmospheric throughout the
machine.

As for all rotodynamic machinery, it is important to distinguish clearly
between so-called absolute velocities (i.e. velocities relative to the earth) and
the velocities of the fluid relative to the moving blades. Here, although the
fluid leaves the buckets with a high relative velocity, its absolute velocity is
usually small so that little kinetic energy is wasted.

Fig. 13.6 Single-jet Pelton
wheel.
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Fig. 13.7 Runner of Pelton
wheel. (By courtesy of
Biwater Industries Ltd.)
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Usually the shaft of a Pelton wheel is horizontal, and then not more
than two jets are used. If the wheel is mounted on a vertical shaft a lar-
ger number of jets (up to six) is possible. The nozzles, however, must
never be spaced so closely that the spent fluid from one jet interferes with
another jet. Because of the symmetry of the buckets, the side thrusts pro-
duced by the fluid in each half should balance – although it is usual for
small thrust bearings to be fitted on the shaft to cope with lapses from this
ideal.

The transfer of work from the fluid to the buckets takes place according
to the Momentum Equation, and so it is necessary to examine the rate at
which the momentum of the fluid is changed. Since momentum is a vector
quantity, the process may be indicated geometrically, the vector quantity
being represented by a line (the vector) whose length corresponds to the
magnitude of the quantity.

In the study of rotodynamic machinery the construction and interpretation
of vector diagrams are so important that a brief reminder of the principles
on which such diagrams are based will not be out of place. The sense of a
vector’s direction is suitably indicated by an arrow-head on the vector. Addi-
tion of quantities is then represented by placing the corresponding vectors
together nose to tail (see Fig. 13.8a). The resultant vector is equivalent to
the sum of the others because, from the same starting point, the same des-
tination is reached. It will be noticed (Fig. 13.8b) that the order in which the
individual vectors are placed is immaterial. The subtraction of vector quant-
ities may be represented by placing the vectors together nose to nose or tail
to tail. In Fig. 13.8, for example, the quantity B is the difference between
the resultant and the quantity A; diagram (a) shows the resultant vector and
vector A placed tail to tail, and diagram (b) shows them placed nose to nose.
It is only the arrow-heads that indicate whether vector quantities are being
added or subtracted, so it is essential to include the arrow-heads in every
vector diagram. To investigate the changes of momentum that concern us
here, we could draw diagrams in which the vectors represent amounts of
momentum. But under steady conditions the mass flow rate of fluid flowing
through the machine is constant, and if the velocities are sensibly uniform
over the appropriate cross-sections then we may simplify the analysis by
letting the vectors represent velocities. When a change of velocity has been

Fig. 13.8 The resultant in
(b) is the same as in (a)
although vectors A and B
are used in different order.
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determined, multiplication by the rate of mass flow through the machine
gives the corresponding rate of change of momentum.

The resultant force corresponding to the change of momentum of the fluid
may be in any direction, but only that component of it in the direction of
movement of the rotor causes the rotation, and only this component of the
total force does any work. We are principally concerned, then, with changes
of momentum in a direction tangential to the periphery of the rotor. This
direction is usually known as the direction of whirl, and the component of
the absolute velocity of the fluid in this direction is known as the velocity
of whirl.

To return to the Pelton wheel: Fig. 13.9 shows a section through a bucket
that is being acted on by a jet. The plane of section is parallel to the axis of
the wheel and contains the axis of the jet. The absolute velocity of the jet is
determined by the head available at the nozzle, that is, the gross head Hgr
minus the head loss hf due to friction in the pipe-line. The other symbols we
shall use are these:

v1 = absolute velocity of jet just before striking bucket
v2 = absolute velocity of fluid leaving bucket
ω = angular velocity of wheel
r= radius from axis of wheel to axis of jet striking bucket
u= absolute velocity of bucket at this radius = ωr
R1 = velocity of oncoming jet relative to bucket
R2 = velocity of fluid leaving bucket relative to bucket
θ = angle through which fluid is deflected by bucket
Cv = coefficient of velocity for the nozzle – usually between 0.97 and 0.99
Q= volume rate of flow from nozzle
� = density of fluid

The jet velocity v1 is given by Cv
√

(2gH) whereH represents the net head,
Hgr −hf . The velocity head of the fluid in the pipe-line is normally negligible
compared with H.

During the time that any one bucket is being acted on by the jet the wheel
turns through a few degrees and so the direction of motion of the bucket
changes slightly. The effect of this change, however, is small, and it is suffi-
cient here to regard the direction of the bucket velocity u as the same as that
of v1. Since the radius of the jet is small compared with that of the wheel, all

Fig. 13.9
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the fluid may be assumed to strike the bucket at radius r. It is also assumed
that all the fluid leaves the bucket at radius r and that the velocity of the fluid
is steady and uniform over sections 1 and 2 where the values v1 and v2 are
considered.

The relative velocity R1 at the moment when the fluid meets the bucket is
given by R1 = v1 − u. (Since v1 and u are collinear, the diagram of velocity
vectors is simply a straight line as in Fig. 13.10.) The relative velocityR2 with
which the fluid leaves the bucket is somewhat less than the initial relative
velocity R1. There are two reasons for this. First, although the inner surfaces
of the buckets are polished so as to minimize frictional losses as the fluid
flows over them, such losses cannot be entirely eliminated. Second, some
additional loss is inevitable as the fluid strikes the splitter ridge, because the
ridge cannot have zero thickness. These losses of mechanical energy reduce
the relative velocity between fluid and bucket. We therefore write R2 = kR1
where k is a fraction slightly less than unity.

As the bucket is symmetrical it is sufficient to consider only that part of the
flow which traverses one side of it. The diagram of velocity vectors at outlet
is therefore the triangle in Fig. 13.10. To obtain the absolute velocity of the
fluid at discharge from the bucket, we must add (vectorially) the relative
velocity R2 to the bucket velocity u. The velocity of whirl at outlet, vw2, is
the component of v2 in the direction of the bucket movement. Taking the
direction of u as positive, we have vw2 = u− R2 cos(π − θ).

At inlet the velocity of whirl is v1, so the change in the whirl component is

�vw = v1 − {u− R2 cos(π − θ)} = R1 + R2 cos(π − θ)

= R1(1 − k cos θ) (13.1)

The mass flow rate in the jet = Q� and so the rate of change of momentum
in the whirl direction = Q�(�vw). This corresponds to the force driving the
wheel round. The torque on the wheel is thereforeQ�(�vw)r and the power
output is Q�(�vw)rω = Q�(�vw)u.

The energy arriving at the wheel is in the form of kinetic energy of the jet,
and its rate of arrival is given by 1

2Q�v2
1. Therefore, the wheel efficiency,

ηw = Q�(�vw)u
1
2Q�v2

1

= 2u(�vw)

v2
1

Fig. 13.10
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Substituting for �vw from eqn 13.1 and putting R1 = v1 − u gives

ηw = 2u(v1 − u)(1 − k cos θ)

v2
1

(13.2)

which, if k is assumed constant, is a maximum when u/v1 = 1
2 .

The wheel efficiency represents the effectiveness of the wheel in convert-
ing the kinetic energy of the jet into mechanical energy of rotation. Not
all this energy of rotation is available at the output shaft of the machine,
because some is consumed in overcoming friction in the bearings and some
in overcoming the windage, that is the friction between the wheel and the
atmosphere in which it rotates. In addition to these losses there is a loss
in the nozzle (which is why Cv is less than unity). The overall efficiency
is therefore less than the wheel efficiency. Even so, an overall efficiency of
85–90% may usually be achieved in large machines. Moreover, as the losses
due to bearing friction and windage increase rapidly with speed, the peak of
overall efficiency occurs when the ratio u/v1 (often termed the speed ratio)
is slightly less than the value of 0.5; the figure usually obtained in practice is
about 0.46.

Equation 13.2 indicates that a graph of efficiency against bucket velocity
is parabolic in form, as illustrated in Fig. 13.11.

The foregoing analysis has been idealized in many respects. The behaviour
of the fluid is not strictly steady since, as the buckets successively come into
the jet, conditions on any one bucket are varying with time. Also there
is often considerable scattering and splashing of the fluid on leaving the
buckets. This simplified analysis, however, does show the essential features
of the functioning of this type of turbine.

A Pelton wheel is almost invariably used to drive an electrical generator
mounted on the same shaft. It is designed to operate at the conditions of
maximum efficiency, and the governing of the machine must be such as
to allow the efficiency to be maintained even when the power demand at
the shaft varies. No variation of the angular velocity, and hence of bucket

Fig. 13.11
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Fig. 13.12

velocity u, can normally be permitted (for this would alter the frequency
of the electrical output). The control must therefore be in the volume rate
of flow Q, and yet there must be no change in the jet velocity because that
would alter the speed ratio u/v1 from its optimum value of about 0.46. Since
Q = Av1 it follows that the control must be effected by a variation of the
cross-sectional area A of the jet. This is usually achieved by a spear valve in
the nozzle (Fig. 13.12a). Movement of the spear along the axis of the nozzle
increases or decreases the annular area between the spear and the housing.
The spear is so shaped, however, that the fluid coalesces into a circular jet
and the effect of the spear movement is to vary the diameter of the jet. Sudden
reduction of the rate of flow could result in serious water-hammer problems,
and so deflectors (Fig. 13.12b) are often used in association with the spear
valve. These plates temporarily deflect the jet so that not all of the fluid
reaches the buckets; the spear valve may then be moved slowly to its new
position and the rate of flow in the pipe-line reduced gradually. Diffusing
plates in the surface of the spear are sometimes used for the same purpose.

In the design of a Pelton wheel, two parameters are of particular impor-
tance: the ratio of the bucket width to the jet diameter, and the ratio of the
wheel diameter to the jet diameter. If the bucket width is too small in relation
to the jet diameter, the fluid is not smoothly deflected by the buckets and, in
consequence, much energy is dissipated in turbulence and the efficiency drops
considerably. On the other hand, if the buckets are unduly large, friction on
the surfaces is unnecessarily high. The optimum value of the ratio of bucket
width to jet diameter had been found to be between 4 and 5. The ratio of
wheel diameter to jet diameter has in practice a minimum value of about 10;
smaller values involve either too close a spacing of the buckets or too few
buckets for the whole jet to be used. There is no upper limit to the ratio,
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but the larger its value the more bulky is the entire installation; the smaller
ratios are thus usually desirable.

Since v1 = Cv
√

(2gH) the jet velocity is determined by the head available
at the nozzle, and the bucket velocity v for maximum efficiency is given as
approximately 0.46v1. Then, since u = ωr, the radius of the pitch circle of
the buckets may be calculated for a given shaft speed. The required power
output P determines the volume rate of flow Q since

P = Q�gHηo

where ηo represents the overall efficiency of the turbine. Then, with v1
already determined, the total cross-sectional area of the jets is given byQ/v1.
It is worth re-emphasizing here that H represents the head available at the
nozzles, that is, the gross head of the reservoir less the head lost to friction in
the supply pipe. The overall efficiency quoted for a machine always refers to
the ability of the machine itself to convert fluid energy to useful mechanical
energy: the efficiency thus accounts for losses in the machine but not for
losses that occur before the fluid reaches it.

Although the Pelton wheel is efficient and reliable when operating under
large heads, it is less suited to smaller heads. To develop a given output
power under a smaller head the rate of flow would need to be greater, with
a consequent increase in jet diameter. (A greater rate of flow can be achieved
by the use of more jets, but their number is usually limited to four – occasion-
ally six.) The increase of jet diameter in turn requires an increase of wheel
diameter. Since, moreover, the jet and bucket velocities are reduced as the
head is reduced, the machine becomes very bulky and slow-running. In fact,
for lower heads, turbines of the reaction type are more suitable.

13.3.3 Reaction turbines

The principal distinguishing features of a reaction turbine, we recall, are that
only part of the overall head is converted to velocity head before the runner
is reached, and that the working fluid, instead of engaging only one or two
blades at a time (as in an impulse machine), completely fills all the passages
in the runner. Thus the pressure of the fluid changes gradually as it passes
through the runner. Figure 13.13 illustrates a Francis turbine, a radial-flow
machine of the kind developed by the American engineer James B. Francis
(1815–92).

Although some smaller machines of this type have horizontal shafts, the
majority have vertical shafts as shown in the figure. The fluid enters a spiral
casing (called a volute or scroll case)which completely surrounds the runner.
The cross-sectional area of the volute decreases along the fluid path in such a
way as to keep the fluid velocity constant in magnitude. From the volute the
fluid passes between stationary guide vanes mounted all round the periphery
of the runner. The function of these guide vanes is to direct the fluid on to
the runner at the angle appropriate to the design. Each vane is pivoted and,
by a suitable mechanism, all may be turned in synchronism so as to alter
the flow rate through the machine, and hence the power output, as required
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Fig. 13.13 Radial-flow
(Francis) turbine. Large
turbines may also have a
‘stay ring’ of fixed vanes
outside the ring of guide
vanes. The main function
of the stay vanes is to act as
columns helping to support
the weight of the electrical
generator above the
turbine. They are so shaped
as to conform to the
streamlines of the flow
approaching the guide
vanes.

by the governing gear. These vanes are also known as wicket gates. In its
passage through the runner the fluid is deflected by the runner blades so that
its angular momentum is changed.

From the centre of the runner the fluid is turned into the axial direction
and flows to waste via the draft tube.The lower end of the draft tube must,
under all conditions of operation, be submerged below the level of the water
in the tail race, that is, the channel carrying the used water away. A carefully
designed draft tube is also of value in gradually reducing the velocity of the
discharged water so that the kinetic energy lost at the outlet is minimized.

The properties of the machine are such that, at the design point, the abso-
lute velocity of the fluid leaving the runner has little, if any, whirl component.
The Francis turbine is particularly suitable for medium heads (i.e. from about
15 m to 300 m) and overall efficiencies exceeding 90% have been achieved
for large machines.

An inward-flow turbine such as this has the valuable feature of being to
some extent self-governing. This is because a centrifugal head like that in a
forced vortex is developed in the fluid rotating with the runner. The centri-
fugal head balances part of the supply head. If for any reason the rotational
speed of the runner falls, the centrifugal head also falls, with the result that
a higher rate of flow through the machine is possible and the speed of the
runner rises again. The converse action results from an increase of speed.

The runner of a reaction turbine is always full of the working fluid, whereas
in an impulse machine only a few of the runner blades are in use at any one
moment. The reaction turbine is therefore able to deal with a larger quantity
of fluid for a given size of runner. For a runner of given diameter the greatest
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Fig. 13.14 Axial-flow
(propeller) turbine.

rate of flow possible is achieved when the flow is parallel to the axis. Such a
machine is known as an axial-flow reaction turbine or propeller turbine.

From Fig. 13.14 it will be seen that the arrangement of guide vanes for
a propeller turbine is (usually) similar to that for a Francis machine. The
function of the vanes is also similar: to give the fluid an initial motion in
the direction of whirl. Between the guide vanes and the runner, the fluid in
a propeller turbine turns through a right-angle into the axial direction and
then passes through the runner. The latter usually has four or six blades
and closely resembles a ship’s propeller. Apart from frictional effects, the
flow approaching the runner blades is that of a free vortex (whirl velocity
inversely proportional to radius) whereas the velocity of the blades them-
selves is directly proportional to radius. To cater for the varying relation
between the fluid velocity and the blade velocity as the radius increases, the
blades are twisted, the angle with the axis being greater at the tip than at the
hub. The blade angles may be fixed if the available head and the load are
both fairly constant, but where these quantities may vary a runner is used on
which the blades may be turned about their own axes while the machine is
running. When both guide-vane angle and runner-blade angle may thus be
varied, a high efficiency can be maintained over a wide range of operating
conditions. Such a turbine is known as a Kaplan turbine after its inventor,
the Austrian engineer Viktor Kaplan (1876–1934).

In addition to the Francis (radial-flow) turbine and the axial-flow type
are so-called mixed-flow machines in which the fluid enters the runner in a
radial direction and leaves it with a substantial axial component of velocity.
In such machines, radial and axial flow are combined in various degrees and
there is a continuous transition of runner design from radial-flow only to
axial-flow only.

The effective head across any turbine is the difference between the head at Net head across a
reaction turbineinlet to the machine and the head at outlet from it. As a reaction turbine must



608 Fluid machines

operate drowned, that is, completely full of the working fluid, a draft tube
is fitted, and so important is the function of the draft tube that it is usually
considered as part of the turbine. The kinetic energy of the fluid finally
discharged in to the tail race is wasted: the draft tube is therefore shaped
like a diffuser, with a divergent cross-section so as to reduce the velocity
at outlet to a minimum. The angle between the walls of the tube and the
axis is limited, however, to about 8◦ so that the flow does not separate from
the walls and thereby defeat the purpose of the increase in cross-sectional
area. Flow conditions within the draft tube may be studied by applying the
energy equation between any point in the tube and a point in the tail race.
The pressure at outlet from the runner is usually less than the atmospheric
pressure of the final discharge; the turbine should therefore not be set so high
above the tail water that the pressure at outlet from the runner falls to such
a low value that cavitation (see Section 13.3.6) occurs.

The net head across the machine corresponds, then, to the total difference
in level between the supply reservoir and the tail water, minus the losses
external to the machine (i.e. those due to pipe friction and the kinetic head
at outlet from the draft tube). Figure 13.15 indicates that the net head H
across the turbine is

H = pC

�g
+ v2

C

2g
+ zC − v2

E

2g
(13.3)

It will be noticed that, for a given difference between the levels of the
supply reservoir and the tail water, the net head across a reaction turbine
is greater than that for an impulse machine. The discharge from the runner
of an impulse machine is necessarily at atmospheric pressure, and so the
portion zC of the total difference of levels is not then available for use by

Fig. 13.15
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the turbine. For the high heads normally used by impulse turbines, however,
this loss is not of great importance.

13.3.4 Basis equations for rotodynamic machinery

No fundamentally new relations are required to study the flow through roto-
dynamic machines. The equation of continuity, the momentum equation
and the general energy equation are used, but certain special forms of these
relations may be developed. In particular an expression is required for the
transfer of energy between the fluid and the rotor, and consideration is here
restricted to steady conditions. The relation we shall obtain applies in prin-
ciple to any rotor whatever. For the sake of explicitness, however, Fig. 13.16
represents the runner of a Francis turbine in which the fluid velocities are
entirely in the plane of rotation.

We use the following symbols:

v= absolute velocity of fluid
u= peripheral velocity of blade at point considered
R= relative velocity between fluid and blade
vw = velocity of whirl, that is, component of absolute velocity of fluid in

direction tangential to runner circumference
r= radius from axis of runner
ω = angular velocity of runner

Suffix 1 refers to conditions at inlet to runner
Suffix 2 refers to conditions at outlet from runner.

The only movement of the runner blades is in the circumferential direc-
tion, and so only force components in this direction perform work. Our
present concern, therefore, is with changes of momentum of the fluid in

Fig. 13.16 Portion of a
Francis turbine runner.
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the circumferential direction: there may be changes of momentum in other
directions also but the corresponding forces have no moments about the axis
of rotation of the rotor.

At inlet, a small particle of fluid, of mass δm, has momentum δmvw1 in
the direction tangential to the rotor. Its angular momentum (i.e. moment
of momentum) is therefore δmvw1r1. Suppose that, of the total (constant)
mass flow rate ṁ, a part δṁ passes through a small element of the inlet cross-
section across which values of vw1 and r1 are uniform. Then the rate at which
angular momentum passes through that small element of inlet cross-section
is δṁvw1r1, and the total rate at which angular momentum enters the rotor
is

∫
vw1r1 dṁ, the integral being taken over the entire inlet cross-section.

Similarly, the total rate at which angular momentum leaves the rotor is∫
vw2r2 dṁ, this integral being evaluated for the entire outlet cross-section.

The rate of increase of angular momentum of the fluid is therefore∫
vw2r2 dṁ−

∫
vw1r1 dṁ

and this equals the torque exerted on the fluid. If there are no shear forces
at either the inlet or outlet cross-sections that have a moment about the axis
of the rotor, then this torque on the fluid must be exerted by the rotor. By
Newton’s Third Law, a change of sign gives the torque exerted on the rotor
by the fluid:

T =
∫
vw1r1 dṁ−

∫
vw2r2 dṁ (13.4)

Equation 13.4 was, in principle, first given by Leonhard Euler (1707–83)
and is sometimes known as Euler’s equation. It is a fundamental relation for
all forms of rotodynamic machinery – turbines, pumps, fans or compressors.
Although the equation has here been developed for a rotor, it applies also to
a stationary member (stator) through which the angular momentum of the
fluid is changed. A torque equal and opposite to T has to be applied to a
stator – usually by fixing bolts – to prevent its rotations.

It is worth emphasizing that eqn 13.4 is applicable regardless of changes of
density or components of velocity in other directions. Moreover, the shape of
the path taken by the fluid in moving from inlet to outlet is of no consequence:
the expression involves only conditions at inlet and outlet. In particular, it is
independent of losses by turbulence, friction between the fluid and the blades,
and changes of temperature. True, these factors may affect the velocity of
whirl at outlet: they do not, however, undermine the truth of eqn 13.4.

The torque available from the shaft of a turbine is somewhat less than that
given by eqn 13.4 because of friction in bearings and friction between the
runner and the fluid outside it.

For a rotor, the rate at which shaft work is done is

Tω =
∫
vw1ωr1 dṁ−

∫
vw2ωr2 dṁ

=
∫
u1vw1 dṁ−

∫
u2vw2 dṁ (13.5)

since u = ωr.
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The integrals in eqns 13.4 and 13.5 can in general be evaluated only if
it is known in what way the velocity varies over the inlet and outlet cross-
sections of the rotor. However, a simple result is obtained if the product
vwr is constant at each cross-section concerned. This may be so if there is
no significant variation of r at inlet or outlet (as in the rotor illustrated in
Fig. 13.16) and vw may be assumed uniform at each section. This assumption
would be realistic only if the number of vanes guiding the fluid on to the rotor
and also the number of blades in the rotor were large so that there would
be no significant variation of either inlet or outlet values of vw with angular
position. In such a case, eqn 13.5 becomes

Tω = u1vw1

∫
dṁ− u2vw2

∫
dṁ = ṁ(u1vw1 − u2vw2) (13.6)

Equation 13.6 is also obtained if the products vwr are constant both at
inlet and outlet, even though vw and r are not individually constant. Since the
relation vwr = constant is that describing the velocity distribution in a free
vortex (Section 9.6.4) fluid machines designed according to this condition
are frequently termed free-vortex machines. Although this design criterion
is widely used for axial-flow machines, it often has to be abandoned because
of space limitations, especially close to the hub.

The shaft work done by the fluid divided by the mass of fluid is denoted
by w and is obtained by dividing eqn 13.5 by the total mass flow rate ṁ.
Then if the products uvw are individually constant

w = u1vw1 − u2vw2 (13.7)

Dividing this expression by g gives work divided by weight, that is, head,
and that form is sometimes known as the Euler head or runner head.

To a turbine the energy available divided by mass of the fluid is gH where
H = the net head. If the products uvw are uniform the hydraulic efficiency
of the turbine η is thus

η = (u1vw1 − u2vw2)/gH

This represents the effectiveness with which energy is transferred from the
fluid to the runner. It should be distinguished from the overall efficiency of
the machine because, owing to such losses as friction in the bearings and
elsewhere, not all the energy received by the runner is available at the output
shaft.

Similar relations apply to a pump. There the transfer of energy is from
rotor to fluid instead of from fluid to rotor and so the expressions 13.4–13.7
have reversed signs.

Many machines are so constructed that uniformity of conditions at inlet
and outlet is impossible to achieve. In an axial-flow machine the blade velo-
city u and the blade angle β both vary along the blade; any velocity vector
diagram will therefore apply, in general, only to one radius. In mixed-flow
machines the fluid leaves the rotor at various radii. Even Francis turbines
usually have some mixed flow at the outlet; moreover, the inlet and outlet
edges of the blades are not always parallel to the axis of rotation. Thus the
expressions in which the products uvw are assumed uniform do not apply
exactly to the flow considered as a whole.
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In any case, the assumption that the velocities at inlet and outlet are uni-
form with respect to angular position is not fulfilled even for a rotor in
which all the flow is in the plane of rotation. Individual particles of fluid
may have different velocities. Since guide vanes and rotor blades are both
limited in number, the directions taken by individual fluid particles may dif-
fer appreciably from that indicated by the velocity diagram. Even the average
direction of the relative velocity may differ from that of the blade it is sup-
posed to follow. Thus the velocity diagrams and the expressions based on
them should be regarded as only a first approximation to the truth. In spite
of these defects, however, the simple theory is useful in indicating how the
performance of a machine varies with changes in the operating conditions,
and in what way the design of a machine should be altered in order to modify
its characteristics.

With the limitations of the theory in mind we may examine the velocity
diagrams further. Figure 13.16 shows the relative velocity of the fluid at
inlet in line with the inlet edge of the blade. This is the ideal condition,
in which the fluid enters the rotor smoothly. (A small angle of attack (see
Section 9.10.1) is generally desirable, but this rarely exceeds a few degrees.)
If there is an appreciable discrepancy between the direction of R1 and that
of the blade inlet, the fluid is forced to change direction suddenly on entering
the rotor. Violent eddies form, a good deal of energy is dissipated as useless
heat, and the efficiency of the machine is consequently lowered. For all
rotodynamic machines the correct alignment of blades with the velocities
relative to them is very important. For the inlet diagram of a turbine (as in
Fig. 13.16) the angle α1, defining the direction of the absolute velocity of the
fluid, is determined by the setting of guide vanes. Smooth entry conditions
can be achieved for a wide range of blade velocities and rates of flow by
adjustment of the guide vanes and therefore of the angle α1. For each value
of the angle α1 there is, however, only one shape of inlet velocity diagram
that gives the ideal conditions. The angle of R1 is then determined by the
geometry of the vector diagram. At outlet the direction of the relative velocity
R2 is determined by the outlet angle of the blade (β2) and the geometry of the
outlet diagram then determines the magnitude and direction of the absolute
velocity v2.

Not all the energy of the fluid is used by a turbine runner. That remaining
unused is principally in the form of kinetic energy and so, for high efficiency,
the kinetic energy of the fluid at outlet should be small. For a given rate of
flow the minimum value of v2 occurs when v2 is perpendicular to u2 in the
outlet vector diagram. The whirl component vw2 is then zero, the expres-
sion 13.7 for example becomes simply u1vw1 and the hydraulic efficiency
u1vw1/gH. Other losses in the machine do not necessarily reach their min-
imum values at the same conditions, however, and a small whirl component
is therefore sometimes allowed in practice. The ideal outlet vector diagram
is, in any case, not achieved under all conditions of operation. Neverthe-
less, a zero, or nearly zero, whirl component at outlet is taken as a basic
requirement in turbine design.

It is instructive to derive an alternative form of eqn 13.7. Assuming uni-
form velocities at inlet and outlet and referring again to the inlet vector
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diagram of Fig. 13.16 we have

R2
1 = u2

1 + v2
1 − 2u1v1 cos α1 = u2

1 + v2
1 − 2u1vw1

∴ u1vw1 = 1
2

(
u2

1 + v2
1 − R2

1

)
(13.8)

Similarly

u2vw2 = 1
2

(
u2

2 + v2
2 − R2

2

)
(13.9)

Substituting eqns 13.8 and 13.9 in eqn 13.7, we obtain a relation for the
work done by the fluid divided by mass

1
2

{(
v2

1 − v2
2

)
+

(
u2

1 − u2
2

)
−

(
R2

1 − R2
2

)}
(13.10)

In an axial-flow machine the fluid does not move radially, and so for a
particular radius u1 = u2 and the term (u2

1 −u2
2) is zero. In a radial or mixed-

flow machine, however, each of the terms in the expression is effective. For a
turbine, that is, a machine in which work is done by the fluid, the expression
13.10 must be positive. This is most easily achieved by the inward-flow
arrangement. Then u1 >u2 and, since the flow passages decrease rather than
increase in cross-sectional area, R2 usually exceeds R1. The contributions of
the second and third brackets to the work done by the fluid are thus positive.
By appropriate design, however, an outward-flow turbine, although seldom
desirable, is possible. An inward-flow machine has a number of advantages,
an important one being, as already mentioned, that it is to some extent
self-governing.

Conversely, in a pump work is done on the fluid and so the expres-
sion 13.10 then needs to be negative. Outward flow is thus more suitable
for a pump.

13.3.5 Similarity laws and power specific speed

We now consider the application of the principles of dynamic similarity
discussed in Chapter 5 to turbines. By the use of these principles it becomes
possible to predict the performance of one machine from the results of tests
on a geometrically similar machine, and also to predict the performance of
the same machine under conditions different from the test conditions.

Before we start the analysis, a comment on the treatment of rotational
speed is appropriate. We denote angular velocity by ω, for which the SI
units are rad · s−1. (Practising engineers often express rotational speed in the
units rev/s. We shall use the symbol N for rotational speed when reference
is made to the units rev/s. Note N = ω/2π ).

Denote the work done by the fluid divided by mass byw. Thenw is related
to the difference of head H across the machine by w = gH.

For a turbine whose geometry is specified, the work done can be expressed
in the functional form

w = gH = φ(D,Q, ω, �, µ)
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whereD is a characteristic diameter of the machine,Q is the volumetric flow
rate through the machine, ω is the angular velocity, � is the fluid density
and µ the dynamic viscosity of the fluid. Application of the principles of
dimensional analysis yields

gH
ω2D2

= φ1

(
Q

ωD3
,
�ωD2

µ

)
(13.11)

The quantity �ωD2/µ is essentially a Reynolds number for the machine.
Most applications of rotodynamic machines correspond to large values of
�ωD2/µ and under these conditions tests have shown the performance char-
acteristics of the machines to be insensitive to this dimensionless group. It is
therefore legitimate to simplify eqn 13.11 to the form

gH
ω2D2

= φ1

(
Q

ωD3

)
In a similar way the power P transferred between fluid and turbine can be
expressed in the form

P
�ω3D5

= φ2

(
Q

ωD3

)
It is often convenient to refer to the dimensionless parameters that have
arisen in the analysis as coefficients, defined as follows:

Flow coefficient CQ = Q
ωD3

Head coefficient CH = gH
ω2D2

Power coefficient CP = P
�ω3D5

For a turbine �gHQ represents the rate at which energy is given up by the
fluid in passing through the machine. Therefore, since P has been defined
as the power transferred between fluid and rotor, P/�gHQ represents the
hydraulic efficiency η of the turbine. Hence

η = P
�gHQ

= P
�ω3D5

× ω2D2

gH
× ωD3

Q
= φ3

(
Q

ωD3

)
(13.12)

Flow machines of different sizes but whose internal dimensions are such that
they are geometrically similar are said to be members of the same family of
machines. Another way of expressing the same fact is to say that the machines
are homologous, or form a homologous series.

If data obtained from tests on a model turbine are plotted so as to show
the variation of the dimensionless parameters CQ, CH , CP and η with one
another, then subject to the provisos already mentioned, the graphs are
applicable to any machine in the same homologous series. The curves for
other homologous series would naturally be different, but one set of curves
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would be sufficient to describe the performance of all the members of one
series.

Particularly useful in showing the characteristics of turbines are results
obtained under conditions of constant rotational speed and head. For a
particular machine and a particular incompressible fluid, D and � are
constant. Then gH/ω2D2 is constant. From eqn 13.12 η is then simply
a function of P, and the results may be presented in the forms shown
in Fig. 13.17.

For a turbine using a particular fluid the operating conditions are expressed
by values of ω, P andH. It is important to know the range of these conditions
which can be covered by a particular design (i.e. shape) of machine. Such
information enables us to select the type of machine best suited to a particular
application, and serves as a starting point in its design. We require, therefore,
a parameter characteristic of all the machines of a homologous series and
independent of the size represented by D. A parameter involving ω, P and
H but not D is the dimensionless speed parameter Cω defined by

Cω = C1/2
P

C5/4
H

= ωP1/2

�1/2(gH)5/4
(13.13)

For complete similarity of flow in machines of a homologous series, each
of the dimensionless parameters must be unchanged throughout the series.
Consequently the expression 13.13 must be unchanged. A particular value of
the speed coefficient therefore relates all the combinations of ω, �, P and H
for which the flow conditions are similar in the machines of that homologous
series.

Interest naturally centres on the conditions for which the efficiency is a
maximum, so, in calculating the value of the expression 13.13, it is custom-
ary to use values of ω, P and H that correspond to maximum efficiency.

Fig. 13.17 Typical
efficiency curves.
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There is in general only one pair of values of CP and CH for which the
efficiency is a maximum. For a given homologous series, therefore, we are
concerned with a unique set of flow conditions, and thus a unique value
of ωP1/2�−1/2(gH)−5/4, evaluated at η = ηmax, is obtained which we shall
denote by the symbol �P. Hence

�P =
(

ωP1/2

�1/2(gH)
5/4

)
η=ηmax

This dimensionless parameter, known as the power specific speed, has SI
units of radians. (We avoid the use of the unqualified term specific speed in
relation to turbines, since that term, defined in a different way, is used in the
context of pumps and fans.)

(If the rotational speed is specified in rev/s, denoted by the symbolN, then
the power specific speed, NP, is given by

NP =
(

NP1/2

�1/2(gH)5/4

)
η=ηmax

where NP has the units rev.)
Whatever the conditions of operation, provided only that they correspond

to maximum efficiency, the machines of a particular homologous series, that
is, of a particular shape, have a particular value of �P (or NP). Machines
of a different shape have, in general, a different value of �P (or NP). Con-
sequently, the value of �P (orNP) obtained from a set of values of ω (orN),
P and H indicates the shape of a machine that meets those conditions.

(Hitherto the only incompressible fluid used in practical turbines has been
cold water, and they have been operated only on the surface of the earth.
The values of � and g have therefore never been appreciably different from
1000 kg · m−3 and 9.81 m · s−2 respectively. Consequently a development
that took place was for engineers to omit from �P the constant � and g terms.
Also, the rotational speed was often expressed in non-SI units such as rev/s,
denoted by the symbol N. Hence it became common practice in industry to
work with values of NP1/2/H5/4. The quantity is not dimensionless and its
numerical value depends on the units with which the constituent magnitudes
are expressed. The use of dimensional parameters such asNP1/2/H5/4 is not
encouraged.)

When the site of the installation and the output required from a turbine are
known, the value of �P may be calculated and the type of machine best suited
to these conditions selected. For the principal types of turbine, experience
has shown the values in Table 13.1 most suitable.

Figure 13.18 indicates the variation of power specific speed with the shape
of the turbine runner. (The values quoted should be regarded as approximate



Turbines 617

Table 13.1

Type of turbine Approximate range of power
specific speed

�P = ωP1/2�−1/2(gH)−5/4(rad)

Pelton (if there is more than one jet, P 0.094–0.15
is taken as total power ÷ number of jets)

Francis (not for heads above about 370 m) 0.34–2.3
Kaplan (not for heads above about 60 m) 1.9–5

Note: The upper limits of �P decrease somewhat with increase of head.

Power specific speed 
(rad)

0.35

0.69

1.26

2.51

4.8

Fig. 13.18

because the shape of other parts of the turbine – for example, the volute, the
guide passages and the draft tube – affects the power specific speed to some
extent.) For given values of H and P, ω increases with �P. With the same
peripheral runner velocity, a larger value of ω implies a smaller value of D
and so, in general, lower cost. For this reason, where a choice lies between
two machines of different power specific speeds, the designer usually prefers
that with the higher value. Machines of high power specific speeds, however,
are limited to low heads because of cavitation – an important factor that we
shall discuss in the next section.

Example 13.1 A vertical-shaft Francis turbine of power specific
speed 0.565 rad rotates at 69.1 rad · s−1 and the internal pressure loss
through the machine is given by p1 = (1.19Q2 − 1.43Q+ 0.47) MPa
when the flow rate is Q (m3 · s−1). The output power at maximum
efficiency is 200 kW. At inlet the rotor has a diameter of 0.5 m, a
height of 60 mm, and the blades occupy 5% of the circumference.
The mean diameter at outlet from the rotor is 0.325 m and the radial
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velocities may be assumed equal at inlet and outlet. If the mechanical
efficiency is constant, calculate the hydraulic and overall efficiencies
of the turbine, the outlet angle of the guide vanes, and the rotor blade
angles at inlet and outlet if there is no whirl at outlet.

Solution
Maximum hydraulic efficiency occurs for minimum pressure loss, that
is, when

dp1

dQ
= 2.38Q− 1.43 = 0

∴ Qopt = 1.43/2.38 = 0.601 m3 · s−1

and minimum p1 = {1.19(0.601)2 − (1.43 × 0.601) + 0.47} MPa

= 40.4 kPa ≡ 40.4 × 103 Pa
1000 × 9.81 N · m−3

= 4.12 mH2O

Power specific speed refers to conditions of maximum overall effi-
ciency, that is, to maximum hydraulic efficiency if mechanical
efficiency is constant. Then

(gH)5/4 = ωP1/2

�1/2�P
= (69.1 rad · s−1)(200 × 103W)1/2

(1000 kg · m−3)1/20.565 rad

whence H = 39.67 m.
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∴ Hydraulic efficiency = 39.67 − 4.12
39.67

= 0.896

Overall efficiency = P
Q�gH

= 200 × 103

0.601 × 1000 × 9.81 × 39.67

= 0.855

Euler head = (39.67 − 4.12) m = 35.55 m

= u1vw1/g since vw2 = 0

u1 = 69.1 × 0.25 m · s−1 = 17.28 m · s−1

∴ vw1 = gH/u1 = (9.81 × 35.55/17.28) m · s−1 = 20.18 m · s−1

vr = Q/A = {0.601/(π × 0.5 × 0.06 × 0.95)} m · s−1

= 6.71 m · s−1

∴ α1 = arctan(vr/vw1) = arctan(6.71/20.18) = 18.4◦

and β1 = arctan vr/(vw1 − u1) = arctan(6.71/2.90) = 66.6◦

u2 = 69.1 × 0.325/2 m · s−1 = 11.23 m · s−1

∴ β2 = arctan(vr/u2) = arctan(6.71/11.23) = 30.9◦
�

13.3.6 Cavitation

Non-uniformity of flow in machines may cause the pressure, even in a given
cross-section, to vary widely. There may thus be, on the low-pressure side
of the rotor, regions in which the pressure falls to values considerably below
atmospheric. In a liquid, if the pressure at any point falls to the vapour
pressure (at the temperature concerned), the liquid boils and small bubbles
of vapour form in large numbers. These bubbles are carried along by the
flow, and on reaching a point where the pressure is higher they suddenly
collapse as the vapour condenses to liquid again. A cavity results and the
surrounding liquid rushes in to fill it. The liquid moving from all directions
collides at the centre of the cavity, thus giving rise to very high local pressures
(up to 1 GPa). Any solid surface in the vicinity is also subjected to these
intense pressures, because, even if the cavities are not actually at the solid
surface, the pressures are propagated from the cavities by pressure waves
similar to those encountered in water hammer. This alternate formation
and collapse of vapour bubbles may be repeated with a frequency of many
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thousand times a second. The intense pressures, even though acting for only
a very brief time over a tiny area can cause severe damage to the surface. The
material ultimately fails by fatigue, aided perhaps by corrosion, so the surface
becomes badly scored and pitted. Parts of the surface may even be torn
completely away. Associated with cavitating flow there may be considerable
vibration and noise; when cavitation occurs in a turbine or pump it may
sound as though gravel were passing through the machine.

Not only is cavitation destructive: the large pockets of vapour may so
disturb the flow that the efficiency of a machine is impaired. Everything
possible should therefore be done to eliminate cavitation in fluid machinery,
that is, to ensure that at every point the pressure of the liquid is above the
vapour pressure. When the liquid has air in solution this is released as the
pressure falls and so air cavitation also occurs. Although air cavitation is less
damaging to surfaces than vapour cavitation, it has a similar effect on the
efficiency of the machine.

Since cavitation begins when the pressure reaches too low a value, it is
likely to occur at points where the velocity or the elevation is high, and
particularly at those where high velocity and high elevation are combined.
In a reaction turbine the point of minimum pressure is usually at the outlet
end of a runner blade, on the leading side. For the flow between such a point
and the final discharge into the tail race (where the total head is atmospheric)
the energy equation may be written

pmin

�g
+ v2

2g
+ z − hf = patm

�g
(13.14)

Here hf represents the head lost to friction in the draft tube, and the pressures
are absolute.

Equation 13.14 incidentally shows a further reason why the outlet velocity
v of the fluid from the runner should be as small as possible: the larger the
value of v the smaller is the value of pmin and the more likely is cavitation.

Rearranging the equation gives

v2

2g
− hf = patm

�g
− pmin

�g
− z

For a particular design of machine operated under its design conditions, the
left-hand side of this relation may be regarded as a particular proportion,
say σc, of the net head H across the machine. Then

σc = patm/�g − pmin/�g − z
H

For cavitation not to occur pmin must be greater than the vapour pressure of
the liquid, pv, that is,

σ > σc where σ = patm/�g − pv/�g − z
H

(13.15)

The expression 13.15 is known as Thoma’s cavitation parameter, after the
German engineer Dietrich Thoma (1881–1944) who first advocated its use.
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If either z (the height of the turbine runner above the tail water surface) or
H is increased, σ is reduced. To determine whether cavitation is likely in a
particular installation, the value of σ may be calculated: if it is greater than
the tabulated (empirical) value of σc for that design of turbine, cavitation
should not be experienced.

In practice the expression is used to determine the maximum elevation
zmax of the turbine above the tail water surface for cavitation to be avoided:

zmax = patm/�g − pv/�g − σcH (13.16)

Equation 13.16 shows that the greater the net head H on which a given
turbine operates, the lower it must be placed relative to the tail water level.

Figure 13.19 shows the power specific speed in revolutions for a range
of different designs of turbine. To obtain the power specific speed in the SI
units of radians, the value obtained from Fig. 13.19 must be multiplied by 2π .
Figure 13.19 shows that turbines of high power specific speed have higher
values of σc and so they must be set at much lower elevations than those of
smaller power specific speed. For a high net head H it might be necessary to
place the turbine below the tail water surface, thus adding considerably to
the difficulties of construction and maintenance. This consideration restricts
the use of propeller turbines to low heads – to which, fortunately, they are
best suited in other ways. Figure 13.19, it should be realized, is no more
than a useful general guide; in practice the incidence of cavitation depends
very much on details of the design.

The general effect of cavitation on the efficiency of a turbine is indicated
by Fig. 13.20.

Power specific speed
(rev)

Fig. 13.19 Cavitation
limits for reaction turbines
(a) Francis, (b) fixed-blade
propeller and (c) Kaplan.
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Fig. 13.20

Cavitation is a phenomenon by no means confined to turbines. Wherever
it exists it is an additional factor to be considered if dynamic similarity is
sought between one situation and another. Similarity of cavitation requires
the cavitation number (p − pv)/

1
2�u2 (see Section 5.5.3) to be the same

at corresponding points. Experiments suggest, however, that similarity of
cavitation is difficult to achieve.

Example 13.2 A vertical-shaft Francis water turbine rotates at 6.25
revolutions per second under a net head of 27.5 m. The runner has,
at inlet, a diameter of 0.75 m, a flow area of 0.2 m2, and a blade
angle of 75◦. The guide-vane angle (at outlet) is 15◦. At the entrance
to the draft tube there is no whirl velocity and the absolute pressure is
35 kPa. Atmospheric pressure is 101.3 kPa. To design the draft tube,
the critical cavitation parameter σc, based on the minimum pressure in
the draft tube, is related to the power specific speed �P of the machine
by σc = 0.119(�P)1.84, where �P is in radians. Calculate the overall
efficiency of the turbine assuming that the mechanical efficiency is 0.97
and determine the limiting value for the height of the draft tube above
the surface of the tail race.

Solution

u1 = wr = πND = π6.25 × 0.75 m · s−1 = 14.73 m · s−1

v1 = u1 sin 105◦/ sin 60◦ = 16.42 m · s−1

vr1 = v1 sin 15◦ = 4.25 m · s−1

vw1 = v1 cos 15◦ = 15.87 m · s−1

vw2 = 0
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∴ Hydraulic efficiency = u1vw1/gH = 14.73 × 15.87/(9.81 ×
27.5) = 0.866 and overall efficiency = 0.97 × 0.866 = 0.840.

Q = A1vr1 = (0.2 m2)(4.25 m · s−1) = 0.850 m3 · s−1

P = η0Q�gH = 0.840(0.850 m3 · s−1)(1000 kg · m3)

× (9.81 N · kg−1
)(27.5 m)

= 192.7 × 103 W

�P = ω

(gH)5/4

(
P
�

)1/2

= 6.25 × 2π

(9.81 × 27.5)5/4

(
192.7 × 103

1000

)1/2

rad

= 0.5 rad

∴ σ > 0.119(0.5)1.84 = 0.0331

i.e.
(
patm − pmin

�g
− z0

)/
H > 0.0331

∴ (101.3 − 35)103

1000 × 9.81
m − z0 > 0.0331 × 27.5 m

whence z0 < 5.85 m. �

13.3.7 The performance characteristics of turbines

Although desirable, it is not always possible for a turbine to run at its
maximum efficiency. Interest therefore attaches to its performance under
conditions for which the efficiency is less than the maximum. In testing
model machines it is usual for the head to be kept constant (or approxim-
ately so) while the load, and consequently the speed, are varied. If the head
is constant then for each setting of the guide vane angle (or spear valve for a
Pelton wheel) the power output P, the efficiency η and the flow rate Q may
be plotted against the speed ω as the independent variable.

It is more useful, however, to plot dimensionless parameters as shown in
Fig. 13.21. These parameters may be deduced from eqns 13.11 and 13.12
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Fig. 13.21 v

Fig. 13.22

and are

P
�D2(gH)3/2

,
Q

D2(gH)1/2
,

ωD
(gH)1/2

Thus one set of curves is applicable not just to the conditions of the test, but
to any machine in the same homologous series, operating under any head.

(The � and g terms are sometimes dropped from these dimensionless forms.
Often the D terms are omitted also, ω is replaced by N, and the resulting
ratios P/H3/2,Q/H1/2,N/H1/2 are then referred to as unit power, unit flow
and unit speed. Their numerical values correspond respectively to the power,
volume flow rate and speed obtainable if the machine could be operated with
unchanged efficiency under one unit of head, for example, 1 m.)

Most turbines are required to run at constant speed so that the electrical
generators to which they are coupled provide a fixed frequency and voltage.
For an impulse machine at constant speed under a given head, the vector
diagrams are independent of the rate of flow. In theory, then, the hydraulic
efficiency should be unaffected by the load, although in practice there is a
small variation of the efficiency. For a reaction turbine, changes of load are
dealt with by alteration of the guide vane angle. (In principle, the power
output could be altered by throttling the flow through a partly closed valve
in the supply line. This process, however, would wastefully dissipate a large
part of the available energy in eddy formation at the valve.) Figure 13.22
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Fig. 13.23 Effect of change
of flow rate on outlet
vector triangle. (Full lines:
max. efficiency conditions;
dotted lines: altered
conditions.)

shows the general effect of change of guide vane angle for a machine of the
Francis type or fixed-blade propeller type. Only at the maximum efficiency
point does the direction of the relative velocity at inlet conform with that of
the inlet edges of the runner blades. At other conditions these directions do
not conform, and so the fluid does not flow smoothly into the passages in
the runner. Instead, it strikes either the front or back surfaces of the blades;
considerable eddy formation ensues and the consequent dissipation of energy
reduces the efficiency of the machine.

In the Kaplan turbine the runner blade angle may be altered in addition to
the guide vane angle. Thus it is possible to match the directions of the relative
velocity at inlet edges of the runner blades for a wide range of conditions. In
consequence, the part-load efficiency of the Kaplan machine is superior to
that of other types, as shown in Fig. 13.17.

A change of load also affects the conditions at outlet. A reduction in
the rate of flow through the machine results in a decreased value of R2.
Consequently, if the blade velocity u2 is unaltered, there is a departure from
the ideal right-angled vector triangle at outlet (see Fig. 13.23); the resulting
whirl component of velocity causes a spiral motion in the draft tube and
hence a reduction of the draft-tube efficiency. The possibility of cavitation
is also increased.

13.4 ROTODYNAMIC PUMPS

Like turbines, pumps are classified according to the direction of the fluid
path through them: there are thus radial flow (or centrifugal), axial-flow and
mixed-flow types. In general usage the word pump is applied to a machine
dealing with a liquid; a machine in which the working fluid is a gas is more
usually termed a fan, blower or compressor. In fans the change of pressure is
small and so changes of density may normally be neglected; this distinguishes
them from compressors, in which – as their name implies – the density of the
gas is considerably increased. The term blower is partly synonymous with
fan, but is used rather indiscriminately.

The density changes in compressors involve thermodynamic considera-
tions and we shall not touch on these here. Fans, however, deal essentially
with constant-density flow and so are very similar, both in construction and
operation, to pumps. In what follows, then, statements about pumps may



626 Fluid machines

be taken to apply also to fans, except where specific reference is made to a
liquid.

13.4.1 Centrifugal pumps

This type of pump is the converse of the radial-flow (Francis) turbine.
Whereas the flow in the turbine is inwards, the flow in the pump is outwards
(hence the term centrifugal). The rotor (usually called impeller) rotates inside
a spiral casing as shown in Fig. 13.24. The inlet pipe is axial, and fluid enters
the eye, that is, the centre, of the impeller with little, if any, whirl component
of velocity. From there it flows outwards in the direction of the blades, and,
having received energy from the impeller, is discharged with increased pres-
sure and velocity into the casing. It then has a considerable tangential (whirl)
component of velocity which is normally much greater than that required
in the discharge pipe. The kinetic energy of the fluid leaving the impeller is
largely dissipated unless arrangements are made to reduce the velocity gradu-
ally. Figure 13.24 illustrates the simplest sort of pump, the volute type. The
volute is a passage of gradually increasing section which serves to reduce the
velocity of the fluid and to convert some of the velocity head to static head. In
this function the volute is often supplemented by a diverging discharge pipe.

A higher efficiency may be obtained by fitting a set of fixed guide vanes
(a diffuser) round the outside of the impeller as shown in Fig. 13.25. These
fixed vanes provide more opportunity for the gradual reduction of the velo-
city of the fluid so that less energy is dissipated. However, unless the absolute
velocity of the fluid leaving the impeller is in line with the entry edges of the
diffuser blades, losses there will offset the gain in efficiency otherwise to be
obtained. Thus the diffuser yields an improved efficiency over only a limited
range of conditions for which the diffuser blade angles are approximately
correct. It is possible to fit diffuser blades having adjustable angles, but the
considerable extra complication is not normally warranted. The diffuser,
which adds appreciably to the cost and bulk of the pump, is therefore not

Fig. 13.24 Volute-type
centrifugal pump.
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Fig. 13.25 Diffuser-type
centrifugal pump.

an unmixed blessing and, except for large machines where running costs are
important, the gain in efficiency is not enough to justify its wide use.

The efficiency of a pump is in any case generally less than that of a turbine.
Although the energy losses in the two types of machine are of the same kind,
the flow passages of a pump are diverging, whereas those of a turbine are
converging. The flow in a pump may therefore more readily break away from
the boundaries with consequent dissipation of energy in eddies. A modern
diffuser pump (sometimes, unfortunately, called a turbine pump because
of its superficial resemblance to a reaction turbine) may have a maximum
overall efficiency of well over 80%; the usual figure for the simpler volute
pump is from 75% to 80%, although somewhat higher values are obtainable
for large machines.

There are many variations on the basic arrangement shown in Fig. 13.24.
This shows a single suction pump in which the fluid enters from one side
of the impeller. In a double suction pump fluid enters from both sides. The
impeller then often looks like two single suction impellers placed back to
back. The symmetry of this arrangement has the advantage that the thrusts
on each side, resulting from the change in direction of the flow, are balanced.
To produce high pressures a multistage pump may be used. Two or more
impellers may then be arranged on one shaft; these are connected in series,
the fluid discharged from one impeller being led to the inlet of the next, so
that the total head produced is the sum of the heads generated in each stage.

13.4.2 The basic equations applied to centrifugal pumps

The relations developed in Section 13.3.4 are applicable to pumps no less
than to turbines. The assumptions on which they are founded are equally
important and may be recalled here: we consider steady flow, with velocities
at inlet and outlet uniform both in magnitude and in the angle made with the
radius. The energy imparted to the fluid by the impeller is given by eqn 13.7
with the sign reversed since work is done on the fluid, not by it:

Work done on fluid divided by mass = u2vw2 − u1vw1 (13.17)
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Suffix 1 again refers to the inlet and suffix 2 to the outlet even though
r2 > r1 for a pump. This expression may be transformed, with the aid
of the trigonometric relations for the vector triangles, to the equivalent form
(corresponding to eqn 13.10). The relation so obtained for the work done
on the fluid divided by mass is

= 1
2

{
(v2

2 − v2
1) + (u2

2 − u2
1) − R2

2 − R2
1

}
(13.18)

A centrifugal pump rarely has any sort of guide vanes at inlet. The fluid
therefore approaches the impeller without appreciable whirl and so the inlet
angle of the blades is designed to produce a right-angled vector triangle at
inlet (as shown in Fig. 13.26). At conditions other than those for which the
impeller was designed – for example, a smaller flow rate at the same shaft
speed – the direction of the relative velocity R1 does not coincide with that
of a blade. Consequently the fluid changes direction abruptly on entering the
impeller, eddies are formed and energy is dissipated. In addition, the eddies
give rise to some back flow into the inlet pipe, thus causing the fluid to have
some whirl before entering the impeller. Moreover, particularly if the pump
is dealing with a fluid of high viscosity, some pre-whirl may be caused by
viscous drag between the impeller and the incoming fluid.

Whatever the immediate cause of such pre-whirl, however, it will have
come from the impeller. The initial angular momentum of the fluid may
therefore be taken as zero. (This argument is equivalent to considering the
inlet boundary of the control volume across the pump further upstream of
the impeller. Even in the enlarged control volume the impeller is the only
thing providing torque.) We may therefore set vw1 = 0 in the Euler relation
13.17 to give

Work done on fluid divided by mass = u2vw2 (13.19)

It may be noted that since u1 no longer enters the expression the work done
is independent of the inlet radius.

The increase of energy received by the fluid in passing through the pump
is most often expressed in terms of head H, that is, energy/weight. It should
not be forgotten that this quantity depends on g; indeed, a pump in an

Fig. 13.26
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orbiting space-craft, for example, where the fluid would be weightless, would
generate an infinite head! The use of energy/mass is therefore now sometimes
advocated, but ‘head’ still seems to be preferred, if only for the brevity of
the term.

The work done divided by weight is often termed the Euler head and is
obtained by dividing eqn 13.19 by g. The increase of total head across the
pump is less than this, however, because of the energy dissipated in eddies
and in friction. The gain in piezometric head, p∗/�g, across the pump is
known as the manometric head Hm: it is the difference of head that would
be recorded by a manometer connected between the inlet and outlet flanges
of the pump. (Accurate readings of inlet pressure, however, may be difficult
to obtain if there is any swirling motion in the inlet pipe.) The ratio of
the manometric head to the Euler head is gHm/u2vw2 (i.e. �p∗/�u2vw2)
and is known as the manometric efficiency: it represents the effectiveness of
the pump in producing pressure from the energy given to the fluid by the
impeller.

Except for fans, the velocity heads at inlet and outlet are usually similar,
and small compared with the manometric head; thus the manometric head
and the gain of total head are not greatly different. However, the overall
efficiency – that is, the ratio of the power given to the fluid (Q�gH, whereH
represents the difference of total head across the pump) to the shaft power – is
appreciably lower than the manometric efficiency. This is because additional
energy has to be supplied by the shaft to overcome friction in the bearings,
and in the fluid in the small clearances surrounding the impeller. The energy
required at the shaft divided by the mass of fluid thus exceeds u2vw2.

The performance of a pump depends (among other things) on the outlet
angle of the impeller blades. The blade outlet may face the direction of
rotation (i.e. forwards), be radial, or face backwards. The outlet blade angle
φ2 is usually defined as shown in Fig. 13.27. Thus for forward-facing blades
φ2 > 90◦ and for backward-facing blades φ2 < 90◦. (American practice
favours the definition of 180◦ − φ2 as the blade angle.)

Fig. 13.27
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We assume for the moment that there is no discrepancy between the direc-
tion of the relative velocity R2 and the outlet edge of a blade. Consequently
the blade outlet angle φ2 is identical with the angle β2 in the diagram.
Figure 13.27 shows the differences in the outlet vector diagrams of the
three types of impeller for the same blade velocity u2.

Ideally, that is, if the fluid were frictionless, the increase of total energy
across the pump divided by mass would be u2vw2. Now, from Fig. 13.27.
vw2 = u2 − vr2 cot β2 where vr represents the radial component of the fluid
velocity (sometimes termed velocity of flow). If Q represents the volume
rate of flow through the pump and A2 the outlet area perpendicular to vr2
(i.e., the peripheral area of the impeller less the small amount occupied by
the blades themselves) then for uniform conditions vr2 = Q/A2. The ideal
increase of energy divided by mass therefore equals

u2vw2 = u2(u2 − vr2 cot β2) = u2

(
u2 − Q

A2
cot β2

)
(13.20)

The blade velocity u2 is proportional to the rotational speed ω, so the ideal
energy increase gH equals

C1ω2 − C2ωQ

where C1 and C2 are constants. Thus for a fixed speed ω the variation of H
with Q is ideally linear as shown in Fig. 13.28.

In practice, however, energy losses occur and some of the assumptions
on which eqn 13.20 rests are not fulfilled. Consider the flow in the volute.
Apart from frictional effects, no torque is applied to a fluid particle once
it has left the impeller. The angular momentum of the particle is therefore
constant, that is it follows a path along which vwr = constant. Ideally, the
radial velocity from the impeller does not vary round the circumference. The
combination of uniform radial velocity with the free vortex (vwr = constant)
gives a pattern of spiral streamlines which should be matched by the shape
of the volute. The latter is thus an important feature of the design of the
pump. At maximum efficiency about 10% of the energy increase produced
by the impeller is commonly lost in the volute. Even a perfectly designed
volute, however, can conform to the ideal streamline pattern at the design
conditions only. At rates of flow greater or less than the optimum there are
increased losses in the volute (Fig. 13.29); in addition there are variations of
pressure and therefore of radial velocity vr2 round the impeller.

Fig. 13.28
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Fig. 13.29

Losses are also possible at the inlet to the impeller. At conditions differ-
ent from those of the design the fluid does not approach the blades in the
optimum direction. Consequently energy losses arise from the turbulence
generated by the impact of the fluid against the blades. These losses are –
within the industry – called shock losses, but the use of this term is discour-
aged, because it can cause confusion with shock waves which are a feature
of compressible flows. The energy (divided by mass) lost in this way may
be shown to be approximately proportional to (Q − Qideal)

2 for a given
rotational speed ω. Other, smaller, losses arise from friction between the
fluid and the boundaries; there is also the recirculation of a small quantity
of the fluid after leakage through the clearance spaces outside the impeller
(Fig. 13.30).

Fig. 13.30

All these effects modify the idealised linear relation illustrated in
Fig. 13.28. In practice, the relation between head and discharge, which is
often referred to as the pump characteristic, takes on the shape shown in
Fig. 13.31.

The pump, however, cannot be considered in isolation. The operating
point for a pump is found by matching the pump characteristic and the
characteristic of the system (i.e. the pipework, valves, and so on) to which
the pump is connected. For example, a pump may be used to lift a liquid
from a sump to a higher tank, the vertical distance involved being h. In
addition to supplying this static lift h, the pump must also provide sufficient
head to overcome pipe friction and other losses (such as those at valves).
As the flow is normally highly turbulent all these losses are proportional to
the square of the velocity and thus of Q2 (say aQ2). The head required is
therefore represented by the line H = h + aQ2 in Fig. 13.31. The point of
intersection of this system characteristic with the pump characteristic gives
the values of H and Q at which the pump operates under these conditions.
In other words, the pump offers one relation betweenH andQ, the external
system offers another; these two relations must be satisfied simultaneously
to determine the operating point.

Impellers with backward-facing blades are often preferred although they
give a smaller head for a given size and rate of flow. As shown in Fig. 13.27,
this type of impeller gives the fluid a smaller absolute velocity v2; thus the
dissipation of energy in the volute is less and the efficiency correspondingly
higher. Such impellers also have the advantage of a negative slope to the
characteristic curve for nearly all values of Q: this enables two machines to
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Fig. 13.31 Characteristic
curves for fixed rotational
speed N.

be used in parallel without instability. For liquids the primary function of
a pump is to increase the pressure, but fans are usually required to move
a large quantity of air or other gas without much change in pressure. The
volute is not then called upon to provide much conversion of velocity head
to static head, and for such applications an impeller with forward-facing
blades may be favoured.

13.4.3 The effects of non-uniform velocity distribution

The foregoing analysis has been based on the assumption that the velo-
cities at inlet and outlet of an impeller are uniform. This condition might
be approached if the volute were ideally matched to the impeller and if the
impeller had a very large number of blades. In practice, however, the number
of blades is limited, and the flow pattern in the passages between the blades
becomes distorted. One important cause of the distortion is this. The func-
tion of the blades is to impart a whirl component of velocity to the fluid:
this requires a force in the whirl direction to be exerted on the fluid by the
blades: consequently at a given distance along a blade the pressure at the
forward side (xx in Fig. 13.32) is greater than that at the other side yy. In
other words, the individual blades act similarly to aerofoils and, as we saw
in Section 9.10.2, a circulation is necessary to produce the transverse force.
This circulation round a blade (indicated by the dotted loop in Fig. 13.32),
when superimposed on the main flow, has the effect of reducing the velo-
city relative to the blade on the forward side, and increasing it on the other
side. Thus the velocity pattern indicated in the left-hand blade passage is
produced. In any diverging passage, rotating or not, there is a tendency for
flow to break away from the surface: in a pump impeller this tendency is
aggravated by the increased relative velocity at the back of the blades. Thus,
instead of following the direction of the blades, the fluid flows rather in the
direction of the dotted arrow in Fig. 13.32.

The inertia of the fluid particles also has an effect. The rotation of the
impeller requires a change of the (absolute) direction taken by the fluid
particles between two successive blades. But the particles, reluctant to do
the bidding of the impeller blades, try to lag behind the blade movement.
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Fig. 13.32

Fig. 13.33

Those particles next to the forward side of a blade have no choice but to
be hustled forward by it, but particles further from that side tend to deviate
backwards from the prescribed path.

As a result of these two effects – the more ready separation along the back
of a blade and the inertia of the fluid particles – the mean direction of the fluid
leaving the impeller is modified as shown in Fig. 13.33. The velocity vector
diagram that the outlet blade angle φ2 leads us to expect is shown in full: the
figure actually obtained is indicated by dotted lines. Conditions may vary
somewhat round the impeller circumference, but the height of the ‘average’
diagram corresponds to the average value of vr2 (i.e. Q/A2) and therefore,
for a given rate of flow, is unchanged. The backward deviation of R2 results
in a backward shift of the vertex, a reduction in the whirl component vw2
and a consequent reduction in the head produced by the pump.

Methods have suggested for estimating the deviation angle (φ2 − β2) –
which may be as high as 15◦ in some designs – but these are still semi-
empirical.

The greater the number of blades in the impeller the more uniform is the
flow direction, and for an infinite number of blades the deviation of R2 and
hence the whirl slip (see Fig. 13.33) would be zero. Frictional losses, how-
ever, become greater as the number of blades is increased, and the number
of blades used – from six to twelve if they are backward-facing – is a com-
promise between these two opposing considerations. Forward-facing blades,
having a convex real surface, greatly encourage the tendency of the flow to
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break away from that side. This type of impeller therefore usually has a
much greater number of blades (sometimes as many as 60 in large fans).

Deviation of the flow also occurs in turbine runners, but to a smaller
degree.

13.4.4 Axial- and mixed-flow pumps

The axial-flow or propeller pump is the converse of the propeller turbine and
is very similar in appearance to it. The impeller consists of a central boss
on which are mounted a number of blades. It rotates within a cylindrical
casing, ideally of sufficient length to allow uniform flow on each side of the
pump, and the clearance between blades and casing is as small as practicable.
On the outlet side of the impeller a set of stationary guide vanes is usually
fitted: these vanes are designed to remove the whirl component of velocity
which the fluid receives from the impeller (see Fig. 13.34). Guide vanes on
the inlet side also are sometimes provided but, except in applications where
appreciable tangential motion exists in the inlet pipe, they do not significantly
improve the pump’s performance and so are usually omitted. Modern axial-
flow pumps are often provided with impeller blades whose angle may be
altered during running so that a high efficiency is maintained over a wide
range of discharge.

The impeller of a mixed-flow pump is so shaped that the fluid enters axially
but leaves with a substantial radial component.

The general formulae 13.7–13.10 apply, with reservations, no less to axial-
flow machines than to centrifugal ones. In an axial machine a particle of fluid,
in general, enters and leaves the impeller at the same radius. That is, u1 = u2
and, if we assume that vw does not vary in the circumferential direction, the
equations reduce to

Work done on fluid divided by mass

= u(vw2 − vw1) = 1
2

{(
v2

2 − v2
1

)
−

(
R2

2 − R2
1

)}
(13.21)

Fig. 13.34



Rotodynamic pumps 635

It should be noted that the values of u, v, R and vw vary (in general) with
radius, and so the equations are applicable only to the fluid at a particular
radius.

Impellers are commonly of free vortex design; that is, the velocity of whirl
at the outlet varies according to the relation vw2r = constant. The product
uvw2 is then constant since u = ωr. With the further assumption that vw1 = 0,
eqn 13.21 then applies regardless of radius (except perhaps close to the hub,
where the free vortex design may be abandoned).

Since vw2 = u − va cot β2 and the axial component of velocity va is pro-
portional to the volume flow rate Q, eqn 13.21 indicates that, for a fixed
rotational speed and blade angle, the ideal, frictionless, head would decrease
linearly with Q.

Example 13.3 A pair of contra-rotating axial-flow fans draws air into
a duct from atmosphere, through a short entry section, and discharges
the air to a ventilating system. A manometer connected to a pressure
tapping in the duct wall just upstream of the first fan reads 11 mm H2O
below atmospheric pressure, and a manometer similarly connected just
downstream of the second fan reads 75 mm H2O above atmospheric
pressure. Both fans have tip and hub diameters of 0.75 m and 0.4 m
respectively, and each rotates at 25 revolutions per second. The total
power input to both fans is 6.5 kW and there is no whirl at entry to
the first fan. Both fans are of free vortex design. Calculate the total
efficiency and the inlet and outlet blade angles for each fan at the mean
radius. Density of air = 1.2 kg · m−3.

Solution

Static head upstream = −11 mm H2O ≡ −11 × 1000/1.2 mm air

= −9.167 m air

∴ Velocity upstream = (2 × 9.81 × 9.167)1/2 m · s−1 = 13.41 m · s−1

and volume flow rate = π

4
(0.75 m)213.41 m · s−1 = 5.925 m3 · s−1

Total head rise across fans = {75 − (−11)} mm H2O = 86 mm H2O
which is equivalent to 1000 × 9.81 × 0.086 Pa = 843.7 Pa.

Fan total efficiency = Q�p
Input power

= (5.925 m3 · s−1)(843.7 Pa)

6500 W

= 0.769
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For no whirl at inlet to fan A or outlet from fan B (which is why
contra-rotating fans are used) the ideal head across both fans at a
particular radius is

(
uvw2 − 0

g

)
A

+
(

0 − uvw1

g

)
B

But as fans will be close together |(vw2)A| = |(vw1)B| and as (vw1)B is
in opposite direction to uB it must be considered negative.

∴ Total ideal head = 2(uvw2)A/g and ideal pressure rise =
2�(uvw2)A. Since uvw = constant in free-vortex flow these expressions
are independent of radius.

But ideal pressure rise = 843.7 Pa/0.769 = 1097 Pa

and at mean radius u = πND = π25
(

0.75 + 0.4
2

)
m · s−1

= 45.16 m · s−1

So, at mean radius, (vw2)A = 1097 Pa
2(1.2 kg · m−3)(45.16 m · s−1)

= 10.12 m · s−1

Axial velocity through fans (assumed uniform)

= 5.925 m3 · s−1

π/4(0.752 − 0.42) m2

= 18.74 m · s−1
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∴ (β1)A = arctan(va/u) = arctan(18.74/45.16) = 22.5◦

(β2)A = arctan va/(u− vw2) = arctan{18.74/(45.16 − 10.12)}
= 28.1◦

(β1)B = arctan va/(u+ vw1) = arctan{18.74/(45.16 + 10.12)}
= 18.7◦

(β2)B = arctan(va/u) = 22.5◦
�

This simple analysis, however, is based on the assumption of uniform
conditions at inlet and outlet, which, as we have already noted, would
strictly hold only for blades of infinitesimal thickness with infinitesimal spa-
cing. As an axial-flow machine normally has only a small number of fairly
widely spaced blades, a better, though still simplified, analysis is often used
in which each blade is considered to act as an isolated aerofoil.

Let us consider an axial-flow rotor with only a few blades (Fig. 13.34) and Blade-element theory
focus attention on a thin element of a blade at radius r from the axis and
of thickness δr. We suppose for the moment that the flow past this ele-
ment is unaffected by the presence of other blades or by the flow past other
elements of the same blade (at different values of r). That is, we consider
two-dimensional flow past the blade section. The force exerted by the fluid
on this blade element depends on the magnitude and direction of the velo-
city R1 of the fluid relative to the blade, and this force has components
lift δL and drag δD, respectively perpendicular and parallel to the direction
of R1. The component of force acting on the blade element in the whirl
direction is

δFw = −δL sin β1 − δD cos β1

Expressing δL and δD in terms of lift and drag coefficients (Section 9.10),
we then have

δFw = 1
2�R2

1cδr(−CL sin β1 − CD cos β1) (13.22)

where c denotes the chord length of the aerofoil section.
The force in the whirl direction on the blade element contributes an

amount rδFw to the torque on the rotor. For the elements of n blades the
rate at which work is done is thus nωrδFw where ω represents the angular
velocity of the rotor. The work done (on the rotor) divided by the mass of
fluid passing the blade elements at radius r is therefore

nωrδFw

�va2πrδr
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where va denotes the axial component of velocity (assumed uniform)
upstream of the rotor. Substituting for δFw from eqn 13.22 and changing
signs gives

Work done on the fluid divided by mass

= nωr
va2πr

1
2
R2

1c(CLsin β1 + CD cos β1) = g(�H) (13.23)

where �H represents the increase of total head across the rotor at the radius
considered. If there is no whirl at inlet, va = v1 = ωr tan β1 and R1 =
ωr sec β1. Equation 13.23 then yields

�H = 1
2g

( nc
2πr

)
ω2r2(CL sec β1 + CD cosec β1) (13.24)

The quantity nc/2πr is termed the solidity. Since it equals
c÷ (circumferential distance between corresponding points on adjacent
blades) it is a measure of the proportion of the cross-section occupied by
the blades. In general, it varies along the length of the blades, usually being
larger at the hub than at the blade tips. Of course, the greater the solidity
the less trustworthy is the assumption that the flow past one blade does not
affect that past another.

Since eqn 13.24 applies in general only to a single value of r, an integration
along the blades must be performed to obtain results for the machine as a
whole. It is commonly assumed for design purposes that �H and va are
independent of r. Even so, analytical integration is not possible and a good
deal of empirical information based on previous experience is required.

The values of lift and drag coefficients are normally taken from data
obtained for a single aerofoil in two-dimensional flow at constant angle of
attack. The use of such values, however, is open to question. The relative
velocity R1 varies both in magnitude and direction along a blade; unless the
blade is twisted appropriately, the angle of attack also varies with radius;
in practice too there is some flow radially along the blade. Blade-element
theory is thus no more than an approximation to the truth.

Nevertheless, we can deduce from it the general shape of the pump char-
acteristic for a fixed-blade machine. For two-dimensional flow past isolated
aerofoils of small camber (i.e. curvature of the centre line) and thick-
ness at small angles of attack CL � 2π sin α. Here α denotes the angle
between the upstream flow direction and that giving zero lift. For a par-
ticular blade element in the rotor α = θ − β1, where θ denotes the (fixed)
angle between the zero-lift direction and the whirl direction. So substituting
CL = 2π sin(θ −β1) = 2π(sin θ cos β1 − cos θ sin β1) in eqn 13.24 we obtain

�H = 1
2g

( nc
2πr

)
ω2r2{2π(sin θ − cos θ tan β1) + CDcosecβ1}

If the flow rate, and therefore the axial velocity component, is increased
beyond the design value while the blade speed is kept constant, the angle β1
is increased (see Fig. 13.34). Hence α decreases, CD decreases (see Fig. 8.17)
and �H decreases. Conversely, a reduction of flow rate causes an increase
of �H. However, at a certain value of flow rate α will have been increased
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so much that the aerofoil stalls (as we recall from Section 8.8.6 the boundary
layer then separates from much of the low-pressure side of the aerofoil), CL
falls markedly and the increase in �H is curtailed. Stall may not occur at all
sections of the blades simultaneously, but when it is sufficiently widespread
the overall performance of the machine declines. These effects are illustrated
in Fig. 13.36c.

13.4.5 Similarity laws and specific speed for pumps

The analysis developed in Section 13.3.5 is equally applicable to pumps.
Just as the shape of a turbine is characterized by its power specific speed
for maximum efficiency conditions, so a corresponding relation can be set
down for a pump. For a pump, however, the quantities of interest are ω,
H and Q rather than ω, H and P and so the dimensionless group of special
interest for a pump, denoted by �s, is ωQ1/2/(gH)3/4 evaluated at η = ηmax.
This is simply known as the specific speed and has the SI units of radians.
(For rotational speed N, with units rev/s, the corresponding relation for
specific speed Ns is NQ1/2/(gH)3/4, evaluated at η = ηmax, which has the
units rev.)

(In the past, g – being practically constant – has often been disregarded.
The resulting expression ωQ1/2/H3/4 is thus not dimensionless. The problem
is made worse when, as is frequently done, N, in non-SI units, is substituted
for ω. Clearly, whenever this formulation is used it is essential that the units
be precisely stated. It is much to be hoped that this short-cut approach to
the practical implementation of dimensionless groups will fall out of fashion,
and that the full dimensionless form ωQ1/2/(gH)3/4, consistent with SI units,
will be universally adopted.)

The effect of the shape of the rotor on the specific speed is broadly similar
to that for turbines as indicated in Fig. 13.18. That is, radial-flow (i.e. cent-
rifugal) impellers have the lower values of �s and axial-flow designs have
the higher values. The impeller, however, is not the entire pump; variations
in the shape of the casing, especially of the volute in centrifugal pumps, may
appreciably affect the specific speed. Nevertheless, in general, centrifugal
pumps are best suited to providing high heads at moderate rates of flow,
while axial-flow pumps are favoured for large rates of flow at low heads. As
for turbines, the higher the specific speed the more compact the machine for
given requirements.

For multi-stage pumps the specific speed refers to a single stage. For
double-suction centrifugal impellers, half the discharge Q is generally used
in calculating �s.

Other useful results may be derived from the dimensionless parameters
(13.11). For dynamically similar conditions Q/ωD3, for example, must be
the same. Therefore if D is fixed, as in the same or an identical pump, Q is
proportional to ω so long as conditions are dynamically similar. With � and
g constant, it may be deduced that H ∝ ω2 and P ∝ ω3 while conditions
remain dynamically similar. If the flow conditions in the pump are similar
the ratio between hydraulic head losses and the Euler head is unaltered and
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Fig. 13.35 Effect of a
change of speed in (e.g.) a
centrifugal pump.

therefore the hydraulic efficiency remains unchanged. (The overall efficiency
is not necessarily unchanged, because this takes account of mechanical losses
such as bearing friction which may vary differently; these losses, however,
are usually small.)

The relationsQ ∝ ω,H ∝ ω2,P ∝ ω3 are often known as the affinity laws
for pumps. They allow the performance characteristics of a pump at one
speed to be predicted from the results of experiments carried out at a different
speed (see Fig. 13.35). They may thus also be used for correcting individual
experimental values ofQ,H and P obtained at speeds slightly different from
the intended one. Since, however, they apply only when dynamic similarity
is maintained, they do not describe all possible changes in performance with
a change of speed. For example,Q does not necessarily change in proportion
to ω if H is held constant.

When the range of speed is wide, the affinity laws are only approximately
true because the modifying effect of Reynolds number is neglected. It must
also be remembered that cavitation can play havoc with dynamic similarity
and so falsify the affinity laws.

Example 13.4 The results of tests on a water pump, 0.5 m in diameter
and operating at 750 rev/min, are given in the table.

Q (m3 · s−1) 0 0.006 0.012 0.018 0.024 0.030 0.036 0.042 0.052

H (m) 15 16 16.5 16.5 15.5 13.5 10.5 7 0

n (%) 0 30 55 70 76 70 57 38 0
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Use these data to deduce the pump characteristics when the speed is
increased to 900 rev/min.

Solution
We use the similarity laws, with the dimensionless parameters

CQ = Q
ωD3

and CH = gH
ω2D2

So that all units are expressed in SI units, and to make the quant-
ities truly dimensionless, the rotational speed must be converted to
rad · s−1.

CQ = Q750

ωD3
= Q750 (m3 · s−1)

(750 rev/min) × (2π rad/rev)

60 s/ min
× (0.5 m)3

Also

CQ = Q900

ωD3
= Q900 (m3 · s−1)

(900 rev/min) × (2π rad/rev)

60 s/min
× (0.5 m)3

Hence

Q900 = 900 rev/min
750 rev/min

×Q750 = 1.2Q750

Similarly

CH = gH750

ω2D2
= 9.81 m · s2 ×H750 (m)(

(750 rev/min) × (2π rad/rev)

60 s/min

)2

× (0.5 m)2

and

CH = gH900

ω2D2
= 9.81 m · s−2 ×H900 (m)(

(900 rev/min) × (2π rad/rev)

60 s/min

)2

× (0.5 m)2

which yields after simplification

H900 =
(

900
750

)2

×H750 = 1.44H750

Provided that the calculations are done carefully, it is seen that it is not
necessary to convert the rotational speeds from rev/min to rad · s−1, as
the conversion factors ultimately cancel out.
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The table for the pump characteristics at 900 rev/min can now be
drawn up.

Q (m3 · s−1) 0 0.0072 0.0144 0.0216 0.0288 0.036 0.0432 0.0504 0.0624

H (m) 21.6 23.0 23.8 23.8 22.3 19.4 15.1 10.1 0

η (%) 0 30 55 70 76 70 57 38 0
�

Example 13.5 Water is to be pumped at 0.04 m3 · s−1 upwards
through a vertical distance of 28 m. The suction and delivery pipes
will each be 150 mm diameter with a friction factor, f , of 0.006, and
the combined length will be 38 m. Losses at valves, etc. may be expec-
ted to total three times the velocity head in the pipes. The pump is
to be driven by a constant-speed a.c. electric motor on a 50 Hz sup-
ply and directly coupled to the shaft. Four single-stage, single-entry,
centrifugal pumps are available:

1. �s = ωQ1/2(gH)−3/4 = 0.427 rad, impeller diameter,D= 275 mm;
2. �s = 0.452 rad,D = 200 mm;
3. �s = 0.622 rad,D = 300 mm;
4. �s = 0.691 rad,D = 250 mm.

In each pump the blades are backward-facing at 30◦ to the tangent,
and the outlet width of the impeller passages is one-tenth of the dia-
meter. Neglecting the blade thickness and whirl slip, and assuming a
manometric efficiency of 75%, select the most suitable pump.

Solution
Velocity in pipes = 0.04 m3 · s−1 ÷ π/4(0.15 m)2 = 2.264 m · s−1

∴ Total head loss through pipes and valves

=
(

3 + 4 × 0.006 × 38
0.15

)
2.2642

19.62
m = 2.371 m

∴ Manometric head = (28 + 2.371) m = 30.37 m
ω = 2π(50/n) rad · s−1 where n = number of pairs of poles.

�s = ωQ1/2

(gH)3/4
= 2π × 50(0.04)1/2

n(9.81 × 30.37)3/4
rad = 0.876

n
rad

If n = 2, �s = 0.438 rad, which suggests pump 1 or 2, and ω =
157 rad · s−1. Outlet flow area = πD×D/10.

∴ vr2 = 0.04
πD2/10

m3 · s−1 = 0.1273
D2

m3 · s−1

u2 = ωD/2 = 78.54D s−1
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Manometric efficiency = 0.75 = gH/u2vw2.

∴ vw2 = 9.81 × 30.37
0.75 × 78.54D

m2 · s−1 = 5.06
D

m2 · s−1

tan 30◦ = vr2

u2 − vw2
= 0.1273
D2 (78.54D− 5.06/D)

∴ 78.54D3 − 5.06D = 0.1273 cot 30◦ = 0.2205 (in metre units)

As a first approximation, neglect the 0.2205.

Then D = (5.06/78.54)1/2 m = 0.2538 m

Next D3 = (0.2205 + 5.06 × 0.2538)/78.54, where D = 0.2678 m

Then D3 = (0.2205 + 5.06 × 0.2678)/78.54, whence D = 0.272 m

That’s near enough. So choose Pump 1. �

13.4.6 Cavitation in centrifugal pumps

Cavitation is likely to occur on the inlet side of a pump particularly if the
pump is situated at a level well above the surface of the liquid in the supply
reservoir. For the sake of good efficiency and the prevention of damage to
the impeller, cavitation should be avoided. A cavitation number for cent-
rifugal pumps may be derived in a manner similar to that for turbines (see
Section 13.3.6). Applying the energy equation between the surface of liquid
in the supply reservoir and the entry to the impeller (where the pressure is a
minimum) we have, for steady conditions,

p0

�g
− hf = pmin

�g
+ v2

1

2g
+ z1 (13.25)

where v1 represents the fluid velocity at the point where the static pressure
has its least value pmin, z1 is the elevation of this point above the surface
of the liquid in the reservoir, and p0 the pressure at that surface (usually,
but not necessarily, atmospheric). Strainers and non-return valves are com-
monly fitted to intake pipes. The term hf must therefore include the head
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loss occurring past these devices, in addition to losses caused by pipe friction
and by bends in the pipe.

For a given design of pump operating under specified conditions, v2
1/2g

may be taken as a particular proportion of the head developed by the pump,
say σcH. Then rearranging eqn 13.25, we have

σc = p0/�g − pmin/�g − z1 − hf

H

For cavitation not to occur pmin must be greater than pv, the vapour pressure
of the liquid that is, σ > σc where

σ = p0/�g − pv/�g − z1 − h1

H
(13.26)

and σc is the critical value of this parameter at which appreciable cavitation
begins. Experiments show the σc is related to the specific speed of the pump.

The numerator of the expression 13.26 is known as the Net Positive
Suction Head (NPSH). (Suction is here simply a synonym for inlet.)

In order that σ should be as large as possible, z1 must be as small as
possible. In some installations it may even be necessary to set the pump
below the reservoir level (i.e. with z1 negative) to avoid cavitation.

Conditions in axial-flow pumps are even more conducive to cavitation
than those in centrifugal pumps. Since, however, the liquid does not enter
an axial-flow machine at a single radius, the overall parameter of eqn 13.26
is not suitable for this type of pump, and more complicated analysis is neces-
sary. Cavitation in an axial-flow pump usually begins on the backs of the
blade-tips because that is where the pressure is least. However, breakaway
of the flow from a blade may induce cavitation at other radii.

Recently, super-cavitating machines have been developed in which the
minimum pressure is unusually low, so the cavitation takes the form, not of
small bubbles which collapse violently against the blade surfaces, but of large
bubbles which are carried away from the surfaces. Without the restriction
on speed that cavitation ordinarily imposes, a super-cavitating machine may
be made smaller for a given flow rate. Also, since a lower minimum pressure
is allowable, restrictions on the positioning of the machine are less severe.
On the other hand, for conditions under which a conventional machine
would be satisfactory, a super-cavitating one has a lower efficiency. Such
machines are thus likely to find favour only in specialized applications where
the advantages over-ride the reduction of efficiency.

13.4.7 The performance characteristics of pumps

Pumps are normally run at constant speed. Interest therefore attaches to
the variation of head H with discharge Q and also to the variations of effi-
ciency and power required with Q. The results of a particular test may
be made available for a different speed – or for a homologous pump of
different diameter – by plotting the results in dimensionless form, that
is, using the dimensionless parameters CQ = Q/ωD3, CH = gH/ω2D2
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Fig. 13.36

and CP = P/�ω3D5 in place of Q, H and P respectively. Typical pump
characteristics are shown in Fig. 13.36.

A curve of H against Q which has a peak is termed an unstable charac-
teristic. This is because the slope of the H−Q curve for an external system
is normally always positive (see the dashed line in Fig. 13.31). If part of
the pump characteristic also has a positive slope there is thus the possibil-
ity that, at the point of intersection, the pump characteristic could have a
greater slope than the other curve. Any slight increase of Q, for example,
would then result in the pump head rising more than the system head, and the
excess head at the pump would cause Q to increase still further. Moreover,
the two curves could intersect again at a second, higher, value of Q; if the
two intersections were fairly close together the pump would tend to hunt
or surge from one to the other. Such instability is undesirable and so an
unstable part of the characteristic should be outside the normal operating
range of the pump.

For pumps handling liquids, the increase of total head is little different
from the increase of piezometric head (i.e. the manometric head). For fans,
however, kinetic energy often forms a substantial part of the total energy
increase. Characteristic curves for fans are therefore normally based on the
total head (static plus kinetic). The operating conditions of a fan are set by
the intersection of its total head characteristic with the curve of the total
head required by the external system (i.e. the ducting and so on, to which
the fan is connected). The latter head, it should be remembered, consists not
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only of that needed to overcome frictional resistance but also of the velocity
head at the duct outlet.

Example 13.6 A pump draws water from a large open sump through
a short length of suction pipe. The water is delivered through a 21.1 m
length of 9 cm diameter pipe and via a submerged exit into an open
tank. A control valve is installed in the delivery pipe, for which f =
0.0085. Dissipation other than friction and the loss at the valve may
be ignored. The bottom of the tank is 10 m above the free surface of
the water in the sump.

(a) Express the head loss due to pipe friction in terms of flow rateQ.
The characteristics of the water pump. 0.5 m in diameter and

operating at 78.5 rad · s−1, are given in the table.

Q (m3 · s−1) 0 0.006 0.012 0.018 0.024 0.030 0.036 0.042 0.052

H (m) 15 16 16.5 16.5 15.5 13.5 10.5 7 0

η (%) 0 30 55 70 76 70 57 38 0

(b) Assuming the control valve is fully open, plot curves showing the
variation of H with Q and η with Q, and use them to determine the
discharge the pump will provide when the water in the delivery tank
is 1.5 m deep. What power will be required?

Solution
(a) Combination of the head loss and continuity relations

h1 = hf = 4f l
d
u2

2g
and Q = uA
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yields

h1 = hf = 4f l
d

16Q2

2π2d4g
= 32 × 0.0085 × 21.1 m

π2 × 9.81 m · s−2 × (0.09 m)5
Q2 (m3 · s−1)2

≈ (100Q)2 m

(b) Denote the total head at the free surfaces of the sump and tank
by H1 and H2. Then

H2 = H1 − hL + (H)pump

Now

H1 = p1

�g
+ u2

1

2g
+ z1 and H2 = p2

�g
+ u2

2g
+ z2

Since u1 ≈ u2 ≈ 0; p1 = p2; z2 − z1 = Hs, it follows that

H2 −H1 = Hs

and

(H)pump = Hs + hL = (H)pipe

The pipe system characteristic is

H = 10 + 1.5 + (100Q)2 m = 11.5 + (100Q)2 m

From the plot of the pump and pipe system characteristics, the
intersection is at

H = 16 m; Q = 0.021 m3 · s−1; η = 74%

Hence discharge Q = 0.021 m3 · s−1.
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The power P is given by

P = �gHQ
η

= 103 kg · m−3 × 9.81 m · s−2 × 16 m × 0.021 m3 · s−1

0.74

= 4450 W = 4.45 kW�

Example 13.7 The valve in Example 13.6 is now partially closed,
reducing the flow rate to 0.015 m3 · s−1.

(a) If the pump rotational speed and depth of water in the tank remain
unchanged, calculate:
(i) the power consumption of the pump
(ii) the power dissipated in the pump
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(iii) the power dissipated by pipe friction
(iv) the power dissipated in the valve.

(b) Calculate, also, the overall efficiency of the installation.

Solution
(a) The pump and pipe system characteristics now intersect at

H = 16.5 m; Q = 0.015 m3 · s−1; η = 63%

The frictional head loss is evaluated as hf = (100Q)2 = 2.25 m. Since

h1 = hf + hvalve and (H)pump = h1 +Hs = (H)pipe

we deduce that

hvalve = (H)pump −Hs − hf = (16.5 − 11.5 − 2.25) = 2.75 m

(i) The power P supplied to the pump is given by

P = �gHQ
η

= 103 kg · m−3 × 9.81 m · s−2 × 16.5 m × 0.015 m3 · s−1

0.63 × 103 W/kW

= 3.85 kW

(ii) The power dissipated in the pump = P(1 − η) = 3.85 × (1 −
0.63) kW = 1.42 kW.

(iii) The power lost by pipe friction =

�ghfQ = 103 kg · m−3 × 9.81 m · s−2 × 2.25 m × 0.015 m3 · s−1

103 W/kW

= 0.33 kW

(iv) The power lost in the valve

�ghvalveQ = 103 kg · m−3 × 9.81 m · s−2 × 2.75 m × 0.015 m3 · s−1

103 W/kW

= 0.40 kW

(b) The useful rate of working to raise water =

�gHsQ = 103 kg · m−3 × 9.81 m · s−2 × 11.5 m × 0.015 m3 · s−1

103 W/kW

= 1.69 kW
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At this stage we can check our working. The sum of the contributions
in (ii)–(iv) plus (b) should equal that of (i). Thus (1.42+0.33+0.40+
1.69) kW = 3.84 kW. The small difference between the two figures
is due to rounding errors. The overall efficiency of the installation =
(1.69)/(3.85) = 44%.�

13.4.8 Selection of pumps and fans

It is obviously desirable, where the freedom of choice exists, to employ in
an internal flow system the type of pump or fan most suited to the situation
under consideration. The problem can be stated as follows. Suppose the
design values ofQ andH are known for a flow system: what type of machine
should be selected for the duty, what should be its size, and what should be
the operating speed?

In making an initial response to these questions, we can state that it is
clearly desirable that the chosen machine should work at its peak efficiency,
ηmax or best efficiency point, as it is also known.

Both the parameters gH/ω2D2 and Q/ωD3 contain ω and D as variables
and so they are ill-suited to solving the stated problem.

In discussing the similarity laws for pumps in Section 13.4.5, we have
introduced the specific speed �s, which is given by ωQ1/2/(gH)3/4 evaluated
at maximum efficiency. This dimensionless group does not involve D.

We can rearrange eqn 13.11 to derive another parameter, this time one
which does not include ω. Thus(

gH
ω2D2

)1/4

×
(
Q

ωD3

)−1/2

= D(gh)1/4

Q1/2
= φ4

(
Q

ωD3

)
(13.27)

from which we define the specific diameterDS evaluated at η = ηmax. Hence

DS =
(
D(gh)1/4

Q1/2

)
η=ηmax

(13.28)

In SI units �s is expressed in radians and DS is dimensionless.
In Fig. 13.37, typical values of �s, with units in radians, are shown for a

variety of machines used for liquid and gaseous flows.

Fig. 13.37 Typical values
of the specific speed.
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Fig. 13.38 Relationship
between specific speed and
specific diameter.

Large numbers of test data for pumps and fans of axial, radial and mixed-
flow types have been plotted on a graph of �s against DS, and it has been
shown that a single curve can be drawn through the data with a scatter
band of about ±20 per cent. The relationship, which is entirely empirical, is
shown in Fig. 13.38.

Using Fig. 13.38, for any design specification, a range of flow machines
of differing sizes and corresponding rotational speeds can be investigated.
In practice there are usually other considerations, such as the possibility
of cavitation, which have a bearing on the design finally selected. Also, if
a suitable single-stage machine cannot be determined, alternatives – such
as multi-stage machines or banks of single-stage machines operating in
parallel – can be considered.

13.5 HYDRODYNAMIC TRANSMISSIONS

Fundamentally a hydrodynamic transmission consists of a pump and a tur-
bine connected in series. The fluid discharged from the pump drives the
turbine; the discharge from the turbine is returned to the inlet of the pump.
To minimize energy losses the pump and turbine rotors are enclosed in
a single casing. The pump element is known as the primary and receives
energy from a prime mover such as an internal-combustion engine. Energy
is delivered from the shaft of the turbine, or secondary element. The output
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characteristics of the transmission are naturally those of a turbine (i.e. the
torque increases as the speed falls), and they are of particular value in such
applications as vehicle and ship transmissions and machine tool drives.

There are two distinct types of hydrodynamic transmission – fluid
couplings and torque converters.

13.5.1 The fluid coupling

The essential features of the coupling are illustrated in Fig. 13.39. The
primary and secondary runners are the only elements involved. Fluid (usually
an oil of low viscosity) flows directly from one runner to the other without
passing through any intervening stationary passages. The casing is usually
fixed to one of the runners and rotates with it, but the two runners are oth-
erwise identical. Each has straight radial blades and so somewhat resembles
half a grapefruit with the pulp removed from the segments. The flow is
consequently radially outwards in the primary and radially inwards in the
secondary. Flow occurs in this direction because the speed of the primary
exceeds that of the secondary. The head produced in the primary is thus
greater than the centrifugal head resisting flow through the secondary. If the
two speeds were the same the heads would balance, and then no flow would
occur and no torque would be transmitted.

For steady conditions, the input torque T1 and output torque T2 must
be equal since there is no other member in the system to provide a torque
reaction. Since power = Tω, where ω represents angular velocity, the
efficiency of the coupling = T2ω2/T1ω1 = ω2/ω1 = 1 − s where s, the
slip= (ω1 − ω2)/ω1. The slip is usually expressed as a percentage, the value
at normal operating conditions being about 2% to 3%. There are two reas-
ons why the efficiency is less than 100%. One is that energy is dissipated
by friction as the fluid moves relative to the solid surfaces. Secondly, addi-
tional losses occur as the fluid from one runner strikes the blades of the other
runner moving at slightly different velocity. Although such losses could be

Fig. 13.39 Fluid coupling.
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reduced by rounding the inlet edges of the blades, such a refinement is not
worth the considerable extra expense.

The principal advantages of the coupling are found in unsteady operation.
Torsional vibrations in either the primary or secondary shaft are not trans-
mitted to the other; further, the full torque is developed only at full speed,
thus easing the starting load on an internal-combustion engine or an electric
motor. A so-called slip coupling may also be used as a slipping clutch, that
is, with ω2 much less than ω1: this is achieved by restricting the normal cir-
culation of fluid either by reducing the quantity of fluid in the coupling or
by throttling the flow. Although the efficiency suffers, the control of slip in
this way is a useful temporary facility.

The relations derived for pump and turbine rotors (e.g. 13.7, 13.10) apply
to the elements of a coupling – again with the provisos about uniformity of
conditions at inlet and outlet of runners. For example, from eqn 13.7, the
work done on the secondary runner divided by mass of fluid = u1vw1 −
u2vw2. If zero whirl slip is assumed, then, since radial blades are used in both
runners, the initial whirl component vw1 of the fluid entering the secondary
is identical with the blade velocity of the primary at that radius, that is,
ω1r0, where r0 is the relevant radius (see Fig. 13.40). Moreover, vw2 for the
secondary is identical with the blade velocity at outlet, u2 = ω2ri. Therefore

Work done on the secondary divided by mass of fluid

= ω2r0ω1r0 − ω2
2r

2
i = ω1ω2r

2
0 − ω2

2r
2
i (13.29)

Similarly it may be shown that the work done by the primary divided by
mass of fluid is

ω2
1r

2
0 − ω1ω2r

2
i (13.30)

The difference between the expressions 13.29 and 13.30 is the energy dis-
sipated divided by mass of fluid and, as the flow is highly turbulent, is
proportional to Q2, where Q represents the volume rate of flow round the
circuit.

Fig. 13.40
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In practice, however, there is a significant variation of radius, and there-
fore of blade velocity, across the inlet and outlet sections of both runners.
Moreover, the rate at which fluid passes from one runner to the other
varies with the radius in a manner not readily determined. Consequently,
the expressions 13.29 and 13.30 can be regarded as no better than first
approximations to the truth even if mean values are used for r0 and ri.

Dimensional analysis indicates that the torque coefficientCT of a coupling
is given by

CT = T

�ω2
1D

5
= φ

(
s,

�ω1D2

µ
,
V
D3

)

where V represents the volume of fluid in the coupling and D the diameter.
The term V/D3 is thus proportional to the ratio of the volume of fluid to
the total volume, and �ω1D2/µ corresponds to the Reynolds number of the
fluid flow. Since the flow is usually highly turbulent, however, the effect of
Reynolds number on the torque is small, and that of slip s is far greater.

A fluid coupling used in a motor-car transmission is normally incorporated
in the engine flywheel: it is then loosely known as a fluid flywheel. The general
characteristics of a coupling are illustrated in Fig. 13.40. The stall torque
is the torque transmitted when the secondary shaft is locked. The highest
speed at which the primary can rotate under these conditions is given by the
intersection of the two torque curves. For motor-car engines this speed is of
the order of 100 rad · s−1 (16 rev/s).

13.5.2 The torque converter

The essential difference between a fluid coupling and a torque converter is
that the latter has a set of stationary blades in addition to the primary and sec-
ondary runners. If the stationary blades are so designed that they change the
angular momentum of the fluid passing through them, a torque is exerted on
them: to prevent their rotation an opposing torque must be applied from the
housing. With this additional torque on the assembly as a whole, the torque
on the secondary runner no longer equals that on the primary. Appropriate
design of the stationary (reaction) blades allows the torque on the secondary
to be as much as five times the input torque at the primary. Since, however,
the reaction blades do not move, no work is done on them and the power
output from the secondary runner is equal to the power input at the primary
minus the power dissipated in turbulence. Many arrangements of the three
elements of a torque converter are possible; one for a single-stage converter
is shown in Fig. 13.41. For some purposes, particularly where a large torque
multiplication is required, more complicated arrangements are used having
two or even three turbine stages.

A greater torque on the turbine element than on the pump element requires
the fluid to undergo a greater change of angular momentum in the turbine ele-
ment. The reaction member is therefore so shaped as to increase the angular
momentum of the fluid: the pump impeller increases the angular momentum
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Fig. 13.41 Single-stage
torque converter.

Fig. 13.42

further: the turbine part then removes – for steady conditions – all the angu-
lar momentum gained in the other two members. The output torque is thus
the sum of the input torque and that on the reaction member:

T2 = T1 + Treac (13.31)

Figure 13.42 shows the way in which torque ratio and efficiency vary for
a typical converter.

The maximum efficiency of a converter is less than that of a fluid coupling
because of the more complicated flow conditions. If the speed ratio is changed
from that which gives maximum efficiency there is a corresponding change
of the vector diagrams for each transition from one element to another, and
much energy is dissipated in turbulence when the directions of the relative
velocities of the fluid do not conform with the inlet edges of the blades.

Figure 13.42 shows that, for a converter designed to give a large increase
of torque, the efficiency has a maximum value at a speed ratio much less
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than unity and falls off rapidly as the speed ratio approaches unity. This
characteristic is a serious disadvantage in many applications.

One way of meeting the difficulty is this. At the higher speed ratios T2/T1
falls below unity, that is, the reaction torque becomes negative (eqn 13.31).
If a ratchet device is fitted whereby the reaction member may rotate, but only
in a forward direction, the reaction blades automatically begin to turn as the
reaction torque changes sign. The entire device then behaves as a simple
coupling; the efficiency is equal to the speed ratio, and the torque ratio
remains at unity. Thus a combination of torque converter and coupling is
obtained in which each is used in its best operating range. An alternative
solution is to substitute a direct drive when the speed ratio reaches a certain
value; this is achieved by a clutch that is required to slip until the speeds of
the primary and secondary rotors are equalized.

The flow in torque converters may be studied by the use of the fundamental
relations derived for pumps and turbines. For further details, however, more
specialist works should be consulted.

13.6 THE EFFECT OF SIZE ON THE EFFICIENCY OF FLUID
MACHINES

If the requirements laid down in Section 13.3.5 were exactly satis-
fied, all fluid machines in the same homologous series would have the
same efficiency when running at dynamically similar conditions. In prac-
tice, however, small machines, no matter how well designed and made,
have lower efficiencies than larger members of the same homologous
series.

The main reason is that exact geometric similarity cannot be achieved. The
actual roughness of surfaces in a small machine may differ little from that in
a large machine; thus the relative roughness in the small machine is greater
and the frictional losses are consequently more significant. The blades in the
smaller machine may be relatively thicker. Clearances in the small machine
cannot be reduced in the same proportion as other length measurements, and
so leakage losses are relatively higher. Further departures from strict geo-
metric similarity may be found in commercial pump impellers of nominally
the same design.

All these effects reduce the hydraulic efficiency of the small machine.
The overall efficiency is often reduced still further because the mechanical
losses such as bearing friction and windage are relatively larger for the small
machine.

Not all types of machine are affected similarly by changes of size. For
example, a Pelton wheel does not suffer from leakage losses, so the effect of
a reduction in size for such a machine is somewhat less than for a reaction
machine.

When the results of tests on model machines are scaled up for the prototype
machine, empirical formulae are used to account for these differences of
efficiency. A simple formula is that proposed by L. F. Moody (1880–1953)
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for reaction turbines:

1 − η

1 − ηm
=

(
Dm

D

)n
Where η represents the efficiency, D the diameter; suffix m refers to the
model machine, and the exponent n is about 0.2.

PROBLEMS

13.1 A single-acting reciprocating water pump, with a bore
and stroke of 150 mm and 300 mm respectively, runs at
2.51 rad · s−1 (0.4 rev/s). Suction and delivery pipes are each
75 mm diameter. The former is 7.5 m long and the suction lift
is 3 m. There is no air vessel on the suction side. The delivery
pipe is 300 m long, the outlet (at atmospheric pressure) being
13.5 m above the level of the pump, and a large air vessel is
connected to the delivery pipe at a point 15 m from the pump.
Calculate the absolute pressure head in the cylinder at begin-
ning, middle and end of each stroke. Assume that the motion
of the piston is simple harmonic, that losses at inlet and out-
let of each pipe are negligible, that the slip is 2%, and that f
for both pipes is constant at 0.01. (Atmospheric pressure ≡
10.33 m water head.)

13.2 A reciprocating pump has two double-acting cylinders each
200 mm bore and 450 mm stroke, the cranks being at 90◦
to each other and rotating at 2.09 rad · s−1 (20 rev/min). The
delivery pipe is 100 mm diameter, 60 m long. There are no
air vessels. Assuming simple harmonic motion for the pis-
tons determine the maximum and mean water velocities in
the delivery pipe and the inertia pressure in the delivery pipe
near the cylinders at the instant of minimum water velocity in
the pipe.

13.3 In a hydro-electric scheme a number of Pelton wheels are
to be used under the following conditions: total output
required 30 MW; gross head 245 m; speed 39.27 rad · s−1

(6.25 rev/s); 2 jets per wheel; Cv of nozzles 0.97; maximum
overall efficiency (based on conditions immediately before the
nozzles) 81.5%; power specific speed for one jet not to exceed
0.138 rad (0.022 rev); head lost to friction in pipe-line not to
exceed 12 m. Calculate (a) the number of wheels required,
(b) the diameters of the jets and wheels, (c) the hydraulic
efficiency, if the blades deflect the water through 165◦ and
reduce its relative velocity by 15%, (d) the percentage of the
input power that remains as kinetic energy of the water at
discharge.

13.4 The blading of a single-jet Pelton wheel runs at its optimum
speed, 0.46 times the jet speed, with an overall efficiency of
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0.85. Show that the power specific speed is 1.21 d/D rad,
where d represents the jet diameter andD the wheel diameter.
For the nozzle Cv = 0.97.

13.5 The following data refer to a Pelton wheel. Maximum over-
all efficiency 79%, occurring at a speed ratio of 0.46; Cv
for nozzle = 0.97; jet turned through 165◦. Assuming that
the optimum speed ratio differs from 0.5 solely as a result of
losses to windage and bearing friction which are proportional
to the square of the rotational speed, obtain a formula for the
optimum speed ratio and hence estimate the ratio of the relat-
ive velocity at outlet from the buckets to the relative velocity
at inlet.

13.6 In a vertical-shaft inward-flow reaction turbine the sum of
the pressure and kinetic heads at entrance to the spiral cas-
ing is 120 m and the vertical distance between this section
and the tail-race level is 3 m. The peripheral velocity of
the runner at entry is 30 m · s−1, the radial velocity of the
water is constant at 9 m · s−1 and discharge from the run-
ner is without whirl. The estimated hydraulic losses are:
(1) between turbine entrance and exit from the guide vanes,
4.8 m (2) in the runner, 8.8 m, (3) in the draft tube, 790 mm,
(4) kinetic head rejected to the tail race, 460 mm. Cal-
culate the guide vane angle and the runner blade angle at
inlet and the pressure heads at entry to and exit from the
runner.

13.7 An inward-flow reaction turbine has an inlet guide vane angle
of 30◦ and the inlet edges of the runner blades are at 120◦ to
the direction of whirl. The breadth of the runner at inlet is
a quarter of the diameter at inlet and there is no velocity of
whirl at outlet. The overall head is 15 m and the rotational
speed 104.7 rad · s−1 (16.67 rev/s). The hydraulic and overall
efficiencies may be assumed to be 88% and 85% respect-
ively. Calculate the runner diameter at inlet and the power
developed. (The thickness of the blades may be neglected.)

13.8 A vertical-shaft Francis turbine, with an overall efficiency of
90%, runs at 44.86 rad · s−1 (7.14 rev/s) with a water dis-
charge of 15.5 m3 · s−1. The velocity at the inlet of the spiral
casing is 8.5 m · s−1 and the pressure head at this point is
240 m, the centre-line of the casing inlet being 3 m above the
tail-water level. The diameter of the runner at inlet is 2.23 m
and the width at inlet is 300 mm. The hydraulic efficiency is
93%. Determine (a) the output power, (b) the power specific
speed, (c) the guide vane angle, (d) the runner blade angle
at inlet, (e) the percentage of the net head which is kinetic at
entry to the runner. Assume that there is no whirl at outlet
from the runner and neglect the thickness of the blades.

13.9 The runner of a vertical-shaft Francis turbine is 450 mm dia-
meter and 50 mm wide at inlet and 300 mm diameter and
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75 mm wide at outlet. The blades occupy 8% of the circum-
ference. The guide vane angle is 24◦, the inlet angle of the
runner blades is 95◦ and the outlet angle is 30◦. The pressure
head at inlet to the machine is 55 m above that at exit from
the runner, and of this head hydraulic friction losses account
for 12% and mechanical friction 6%. Calculate the angular
velocity for which there is no loss at inlet, and the output
power.

13.10 A quarter-scale turbine model is tested under a head of 10.8 m.
The full-scale turbine is required to work under a head of 30 m
and to run at 44.86 rad · s−1 (7.14 rev/s). At what speed must
the model be run? If it develops 100 kW and uses water at
1.085 m3 · s−1 at this speed, what power will be obtained from
the full-scale turbine, its efficiency being 3% better than that
of the model? What is the power specific speed of the full-scale
turbine?

13.11 A vertical-shaft Francis turbine is to be installed in a situation
where a much longer draft tube than usual must be used. The
turbine runner is 760 mm diameter and the circumferential
area of flow at inlet is 0.2 m2. The overall operating head is
30 m and the speed 39.27 rad · s−1 (6.25 rev/s). The guide vane
angle is 15◦ and the inlet angle of the runner blades 75◦. At
outlet water leaves the runner without whirl. The axis of the
draft tube is vertical, its diameter at the upper end is 450 mm
and the (total) expansion angle of the tube is 16◦. For a flow
rate of Q(m3 · s−1) the friction loss in the tube (of length l) is
given by hf = 0.03Q2l. If the absolute pressure head at the
top of the tube is not to fall below 3.6 m of water, calculate
the hydraulic efficiency of the turbine and show that the max-
imum permissible length of draft tube above the level of the
tail water is about 5.36 m. (The length of the tube below tail-
water level may be neglected. Atmospheric pressure ≡ 10.33 m
water head.)

13.12 A Francis turbine develops 15 MW at 52.3 rad · s−1

(8.33 rev/s) under a head of 180 m. For a water barometer
height of 8.6 m estimate the maximum height of the bottom
of the turbine runner above the tail water. [Use Fig. 13.19]

13.13 The impeller of a centrifugal pump has an outer diameter
of 250 mm and runs at 157 rad · s−1 (25 rev/s). It has 10
blades each 5 mm thick; they are backward-facing at 30◦ to
the tangent and the breadth of the flow passages at outlet is
12.5 mm. Pressure gauges are fitted close to the pump cas-
ing on the suction and discharge pipes and both are 2.5 m
above the water level in the supply sump. The suction pipe
is 120 mm diameter. When the discharge is 0.026 m3 · s−1

the gauge readings are respectively 4 m vacuum and 16.5 m.
Assuming that there is no whirl at inlet and no whirl slip,
estimate the manometric efficiency of the pump and the losses



660 Fluid machines

in the impeller if 50% of the velocity head at outlet from the
impeller is recovered as static head in the volute.

13.14 The impeller of a centrifugal fan has an inner radius of 250 mm
and width of 187.5 mm; the values at exit are 375 mm and
125 mm respectively. There is no whirl at inlet, and at out-
let the blades are backward-facing at 70◦ to the tangent. In
the impeller there is a loss by friction of 0.4 times the kinetic
head corresponding to the relative outlet velocity, and in the
volute there is a gain equivalent to 0.5 times the kinetic head
corresponding to the absolute velocity at exit from the run-
ner. The discharge of air is 5.7 m3 · s−1 when the rotational
speed is 84.8 rad · s−1 (13.5 rev/s). Neglecting the thickness of
the blades and whirl slip, determine the head across the fan
and the power required to drive it if the density of the air is
sensibly constant at 1.25 kg · m−3 throughout and mechanical
losses account for 220 W.

13.15 A centrifugal fan, for which a number of interchangeable
impellers are available, is to supply air at 4.5 m3 · s−1 to
a ventilating duct at a head of 100 mm water gauge. For
all the impellers the outer diameter is 500 mm, the breadth
180 mm and the blade thickness negligible. The fan runs at
188.5 rad · s−1 (30 rev/s). Assuming that the conversion of
velocity head to pressure head in the volute is counterbal-
anced by the friction losses there and in the impeller, that
there is no whirl at inlet and that the air density is constant at
1.23 kg · m−3, determine the most suitable outlet angle of the
blades. (Neglect whirl slip.)

13.16 A centrifugal pump which runs at 104.3 rad · s−1 (16.6 rev/s) is
mounted so that its centre is 2.4 m above the water level in the
suction sump. It delivers water to a point 19 m above its centre.
For a flow rate of Q (m3 · s−1) the friction loss in the suction
pipe is 68Q2 m and that in the delivery pipe is 650Q2 m. The
impeller of the pump is 350 mm diameter and the width of
the blade passages at outlet is 18 mm. The blades themselves
occupy 5% of the circumference and are backward-facing
at 35◦ to the tangent. At inlet the flow is radial and the
radial component of velocity remains unchanged through the
impeller. Assuming that 50% of the velocity head of the water
leaving the impeller is converted to pressure head in the volute,
and that friction and other losses in the pump, the velocity
heads in the suction and delivery pipes and whirl slip are
all negligible, calculate the rate of flow and the manometric
efficiency of the pump.

13.17 A single-stage centrifugal pump is to be used to pump water
through a vertical distance of 30 m at the rate of 45 L · s−1.
Suction and delivery pipes will have a combined length of 36 m
and a friction factor f of 0.006. Both will be 150 mm diameter.



Problems 661

Losses at valves, etc. are estimated to total 2.4 times the velo-
city head in the pipes. The basic design of pump has a specific
speed of 0.465 rad (0.074 rev), forward-curved impeller blades
with an outlet angle of 125◦ to the tangent and a width of
impeller passages at outlet equal to one-tenth of the diameter.
The blades themselves occupy 5% of the circumference. If a
manometric efficiency (neglecting whirl slip) of 75% may be
expected, determine a suitable impeller diameter.

13.18 The impeller of a centrifugal pump has an outer diameter of
250 mm and an effective outlet area of 17 000 mm2. The
outlet blade angle is 32◦. The diameters of suction and dis-
charge openings are 150 mm and 125 mm respectively. At
152 rad · s−1 (24.2 rev/s) and discharge 0.03 m3 · s−1 the pres-
sure heads at suction and discharge openings were respectively
4.5 m below and 13.3 m above atmospheric pressure, the
measurement points being at the same level. The shaft power
was 7.76 kW. Water enters the impeller without shock or
whirl. Assuming that the true outlet whirl component is
70% of the ideal, determine the overall efficiency and the
manometric efficiency based on the true whirl component.

13.19 The following duties are to be performed by rotody-
namic pumps driven by electric synchronous motors, speed
100π/n rad · s−1 (= 50/n rev/s), where n is an integer:
(a) 14 m3 · s−1 of water against 1.5 m head; (b) oil (relative
density 0.80) at 11.3 L · s−1 against 70 kPa pressure; (c) water
at 5.25 L · s−1 against 5.5 MPa. Designs of pumps are avail-
able with specific speeds of 0.20, 0.60, 1.20, 2.83, 4.0 rad.
Which design and speed should be used for each duty?

13.20 During a laboratory test on a water pump appreciable cavit-
ation began when the pressure plus velocity head at inlet was
reduced to 3.26 m while the total head change across the
pump was 36.5 m and the discharge was 48 L · s−1. Baromet-
ric pressure was 750 mm Hg and the vapour pressure of water
1.8 kPa. What is the value of σc? If the pump is to give the
same total head and discharge in a location where the normal
atmospheric pressure is 622 mm Hg and the vapour pressure
of water 830 Pa, by how much must the height of the pump
above the supply level be reduced?

13.21 A large centrifugal pump is to have a specific speed of 1.15 rad
(0.183 rev) and is to discharge liquid at 2 L · s−1 against a
total head of 15 m. The kinematic viscosity of the liquid may
vary between 3 and 6 times that of water. Determine the
range of speeds and test heads for a one-quarter scale model
investigation of the full-size pump, the model using water.

13.22 A 500 mm diameter fluid coupling containing oil of rel-
ative density 0.85 has a slip of 3% and a torque coeffi-
cient of 0.0014. The speed of the primary is 104.7 rad · s−1
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(16.67 rev/s). What is the rate of heat dissipation when
equilibrium is attained?

13.23 A fluid coupling is to be used to transmit 150 kW between an
engine and a gear-box when the engine speed is 251.3 rad · s−1

(40 rev/s). The mean diameter at the outlet of the primary
member is 380 mm and the cross-sectional area of the flow
passage is constant at 0.026 m2. The relative density of the oil
is 0.85 and the efficiency of the coupling 96.5%. Assuming
that the shock losses under steady conditions are negligible
and that the friction loss round the fluid circuit is four times
the mean velocity head, calculate the mean diameter at inlet
to the primary member.
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factors 1

APPENDIX

Table A1.1 Prefixes for multiples and submultiples of SI units

Prefix Symbol Factor by which
unit is multiplied

yotta Y 1024

zetta Z 1021

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deca da 10
deci d 10−1

centi c 10−2

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

atto a 10−18

zepto z 10−21

yocto y 10−24

Table A1.2 SI Units with internationally agreed names

Quantity Unit Symbol Relationship

Force newton N 1 N = 1 kg · m · s−2

Pressure (and stress) pascal Pa 1 Pa = 1 N · m−2 = 1 kg · m−1 · s−2

Energy and work joule J 1 J = 1 N · m = 1 kg · m2 · s−2

Power watt W 1 W = 1 J · s−1 = 1 kg · m2 · s−3

Frequency hertz Hz 1 Hz = 1 s−1
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Table A1.3 Conversion factors for mass, length and time

Mass

1 ≡ 16 ozm
1 lbm

≡ 112 lbm
1 cwt

≡ 2240 lbm
1 tonm

≡ 2000 lbm
1 US tonm

≡ 0.4536 kg
1 lbm

≡ 1016 kg
1 tonm

≡ 32.17 lbm
1 slug

≡ 14.59 kg
1 slug

Length

1 ≡ 12 in
1 ft

≡ 25.4 mm
1 inch

≡ 304.8 mm
1 ft

≡ 914.4 mm
1 yd

≡ 5280 ft
1 mile

≡ 1.609 km
1 mile

≡ 1760 yd
1 mile

≡ 6080 ft
1 British nautical mile

≡ 1852 m
1 International nautical mile

Time

1 ≡ 60 s
1 min

≡ 60 min
1 h

≡ 3600 s
1 h

≡ 24 h
1 day

≡ 1440 min
1day

≡ 86 400 s
1 day

≡ 365.24 solar days
1 year

Table A1.4 Other conversion factors. Exact values are printed in bold type
Note: Only a limited number of the more important conversion factors are
given here. It is possible to derive large numbers of other conversion factors
from the information contained in Tables A1.1–A1.3

Area

1 ≡ 144 in2

1 ft2
≡ 0.0929 m2

1 ft2
≡ 645 mm2

1 inch2
≡ 0.836 m2

1 yd2
≡ 4840 yd2

1 acre
≡ 640 acre

1 mile2

≡ 0.4047 hectare
1 acre

≡ 4.047 × 103m2

1 acre

Angle (protractor measure only)

1 ≡ 60 minutes of arc
1 degree

≡ 60 seconds of arc
1 minute of arc

≡ 0.9 degree
1 grade

[For conversion between protractor measure and radian measure the
proportionality coefficient π /(180 deg) is required.]

Density

1 ≡ 16.02 kg · m−3

1 lbm/ft3
≡ 62.4 lbm/ft3

1000 kg · m−3
≡ 1000 kg · m−3

1 g · cm−3

Energy; Work

1 ≡ 1.356 J
1 ft lbf

≡ 10−7 J
1 erg

≡ 3.766 × 10−7 kW · h
1 ft lbf

≡ 3.6 × 106 J
1 kW · h

≡ 1055 J
1 Btu

≡ 2.931 × 10−4 kW · h
1 Btu

≡ 252.0 cal
1 Btu

≡ 1.8 Btu
1 CHU

≡ 105 Btu
1 therm

≡ 778 ft lbf
1 Btu

≡ 1401 ft lbf
1 CHU

≡ 4.187 J
1 cal

≡ 1.163 × 10−6 kW · h
1 cal

≡ 1.602 × 10−19 J
1 eV
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Table A1.4 (contd.)

Force

1 ≡ 32.17 pdl
1 lbf

≡ 10−5 N
1 dyne

≡ 0.1383 N
1 pdl

≡ 4.448 N
1 lbf

≡ 0.4536 kgf†
1 lbf

≡ 9.81 N
1 kgf†

≡ 9964 N
1 tonf

† Known in Germany and Eastern Europe as kilopond (kp).

Power

1 ≡ 1.356 W
1 ft lbf/s

≡ 550 ft lbf/s
1 hp

≡ 75 m kgf/s
1 CV (metric horsepower)

≡ 0.986 hp
1 CV(metric horsepower)

≡ 0.2931 W
1 Btu/h

≡ 746 W
1 hp

Pressure; Stress

1 ≡ 144 lbf/ft2

1 lbf/in2
≡ 6895 Pa

1 lbf/in2
≡ 0.0703 kgf/cm2

1 lbf/in2
≡ 1.544 × 107 Pa

1 ton/in2

≡ 1.013 × 105 Pa
1 atm

≡ 14.70 lbf/in2

1 atm
≡ 2116 lbf/ft2

1 atm
≡ 105 Pa

1 bar

≡ 2.036 in Hg‡

1 lbf/in2
≡ 29.92 in Hg‡

1 atm
≡ 7.50 × 10−3 mm Hg‡

1 Pa
≡ 0.491 lbf/in2

1 in Hg‡

≡ 3386 Pa
1 in Hg‡

≡ 133.3 Pa
1 mm Hg‡

≡ 2.307 ft water§

1 lbf/in2
≡ 249.1 Pa

1 in water§

≡ 0.03613 lbf/in2

1 in water§
≡ 2989 Pa

1 ft water§

‡ Strictly for mercury at 0 ◦C and 1 atm pressure.
§ Strictly for pure water at 4 ◦C and 1 atm pressure.

Velocity

1 ≡ 0.3048 m · s−1

1 ft/s
≡ 0.00508 m · s−1

1 ft/ min
≡ 1.467 ft/s

1 mile/h
≡ 88 ft/min

1 mile/h
≡ 1.609 km · h−1

1 mile/h

≡ 0.515 m · s−1

1 (British) knot
≡ 0.447 m · s−1

1 mile/h

Dynamic Viscosity

1 ≡ 47.9 Pa · s

1 lbf s/ft2
≡ 0.1 Pa · s

1 poise
≡ 1.488 Pa · s

1 pdl s/ft2

Kinematic Viscosity

1 ≡ 0.0929 m2 · s−1

1 ft2/s
≡ 10−4 m2 · s−1

1 stokes

continued overleaf
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Table A1.4 (contd.)

Volume; Modulus of section

1 ≡ 1728 in3

1 ft3
≡ 2.832 × 10−2 m3

1 ft3
≡ 28.32 L

1 ft3
≡ 27 ft3

1 yd3
≡ 1.639 × 10−5m3

1 in3

≡ 0.7646 m3

1 yd3
≡ 0.1605 ft3

1 Imperial gallon
≡ 4.546 × 10−3m3

1 Imperial gallon
≡ 231 in3

1 US gallon

≡ 3.785 × 10−3 m3

1 US gallon
≡ 0.833 Imperial gallon

1 US gallon

Volume flow rate

1 ≡ 28.32 × 10−3 m3 · s−1

1 ft3/s
≡ 101.9 m3 · h−1

1 ft3/s
≡ 373.7 Imperial gallon/ min

1 ft3/s

≡ 2.242 × 104 Imperial gallon / h

1 ft3/h
≡ 7.577 × 10−5m3 · s−1

1 Imperial gallon / min

≡ 2.676 × 10−3 ft3/s
1 Imperial gallon/ min
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APPENDIX

Table A2.1 Some basic physical constants and properties of fluids

Approximate values of some physical constants
Standard acceleration due to gravity g = 9.81 m · s−2

Universal gas constant R0 = 8314 J · kg−1 · K−1

Standard temperature and pressure (s.t.p.) 273.15 K and 1.013 × 105 Pa

Approximate properties of liquid water
Density 103 kg · m−3

Dynamic viscosity at 20 ◦C 10−3 Pa · s = 10−3 kg · m−1 · s−1

Specific heat capacity (at 15 ◦C) 4.19 kJ · kg−1 · K−1

Bulk modulus (for moderate pressures) 2.05 GPa

Approximate properties of air
Density at s.t.p. 1.29 kg · m−3

Dynamic viscosity at s.t.p 1.7 × 10−5 Pa · s
Specific heat capacity at constant pressure 1 J · kg−1 · K−1

Specific heat capacity at constant volume 715 J · kg−1 · K−1

Ratio of specific heat capacities 1.4
Gas constant (R = p/�T) 287 J · kg−1 · K−1

Density of mercury
Density at 15 ◦C 13.56 × 103 kg · m−3

Table A2.2 Saturation vapour pressure of water

Temperature (◦C) Saturation vapour pressure (Pa)

0 615
10 1230
20 2340
40 7400
60 20000
80 47400

100 101500

The figures refer to plane interfaces between liquid and vapour. They
are very slightly modified by curvature of the surface.
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Fig. A2.1 Dynamic
viscosity of fluids.
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Fig. A2.2 Kinematic
viscosity of fluids.
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Table A2.3 Saturation vapour pressures at 20 ◦C

Saturation vapour pressure (Pa)

Mercury 0.16
Water 2340
Kerosene 3300
Ethanol 5900
Benzene 10000
Methanol 12500
Petrol 30400

(Here, too, the values refer to plane interfaces between
liquid and vapour.)

Table A2.4 Properties of the international standard atmosphere

Altitude Temperature Temperature Pressure Density
z (m) T (K) t (◦C) p (Pa) � (kg · m−3)

0 288.15 15 101325 1.2252
1000 281.65 8.5 89875 1.1118
2000 275.15 2 79495 1.0067
3000 268.65 −4.5 70109 0.9093
4000 262.15 −11 61640 0.8193
5000 255.65 −17.5 54020 0.7362
6000 249.15 −24 47181 0.6598
7000 242.65 −30.5 41061 0.5896
8000 236.15 −37 35600 0.5252
9000 229.65 −43.5 30742 0.4664

10000 223.15 −50 26436 0.4127
11000 216.65 −56.5 22632 0.3639
12000 216.65 −56.5 19330 0.3108
13000 216.65 −56.5 16510 0.2655
14000 216.65 −56.5 14102 0.2268
15000 216.65 −56.5 12045 0.1937

Other values of atmospheric properties can be calculated as follows.

Range I: 0 ≤ z ≤ 11000 m

Defining sea level conditions:

T0 = 288.15 K; p0 = 1.01325 × 105 Pa; �0 = 1.2252 kg · m−3

At altitude z in metres:

Temperature T = (288.15 − 0.0065z) K

Pressure p = p0(T/T0)5.256

Density � = �0(T/T0)4.256
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Range II: 11 000 m ≤ z ≤ 20 000 m

Defining conditions at 11000 m:

T1 = 216.65 K; p1 = 22632 Pa; �1 = 0.3639 kg · m−3

At altitude z in metres:

Temperature T = 216.65 K

Pressure p = p1 exp[−0.0001577(z − 11000)]
Density � = �1 exp[−0.0001577(z − 11000)].



3 Tables of gas flow
functions

APPENDIX

The following tables are provided as an aid in solving the problems in
Chapter 11 and similar ones. Values of functions are therefore given only
to three- or four-figure accuracy, and at intervals in the main variable for
which simple linear interpolation is in general adequate. All are for a perfect
gas with γ = cp/cν = 1.4.

Table A3.1 Plane normal shock

M1 M2 p2/p1 �2/�1 = u1/u2 T2/T1 (p0)2/(p0)1 (p0)2/p1

1.00 1.000 1.000 1.000 1.000 1.000 1.893
1.02 0.981 1.047 1.033 1.013 1.000 1.938
1.04 0.962 1.095 1.067 1.026 1.000 1.984
1.06 0.944 1.144 1.101 1.039 1.000 2.032
1.08 0.928 1.194 1.135 1.052 0.999 2.082

1.10 0.912 1.245 1.169 1.065 0.999 2.133
1.12 0.897 1.297 1.203 1.078 0.998 2.185
1.14 0.882 1.350 1.238 1.090 0.997 2.239
1.16 0.868 1.403 1.272 1.103 0.996 2.294
1.18 0.855 1.458 1.307 1.115 0.995 2.350

1.20 0.842 1.513 1.342 1.128 0.993 2.407
1.22 0.830 1.570 1.376 1.141 0.991 2.466
1.24 0.818 1.627 1.411 1.153 0.988 2.526
1.26 0.807 1.686 1.446 1.166 0.986 2.588
1.28 0.796 1.745 1.481 1.178 0.983 2.650

1.30 0.786 1.805 1.516 1.191 0.979 2.714
1.32 0.776 1.866 1.551 1.204 0.976 2.778
1.34 0.766 1.928 1.585 1.216 0.972 2.844
1.36 0.757 1.991 1.620 1.229 0.968 2.912
1.38 0.748 2.055 1.655 1.242 0.963 2.980

1.40 0.740 2.120 1.690 1.255 0.958 3.049
1.42 0.731 2.186 1.724 1.268 0.953 3.120
1.44 0.723 2.253 1.759 1.281 0.948 3.191
1.46 0.716 2.320 1.793 1.294 0.942 3.264
1.48 0.708 2.389 1.828 1.307 0.936 3.338

1.50 0.701 2.458 1.862 1.320 0.930 3.413
1.52 0.694 2.529 1.896 1.334 0.923 3.489
1.54 0.687 2.600 1.930 1.347 0.917 3.567
1.56 0.681 2.673 1.964 1.361 0.910 3.645
1.58 0.675 2.746 1.998 1.374 0.903 3.724
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Table A3.1 (contd.)

M1 M2 p2/p1 �2/�1 = u1/u2 T2/T1 (p0)2/(p0)1 (p0)2/p1

1.60 0.668 2.820 2.032 1.388 0.895 3.805
1.62 0.663 2.895 2.065 1.402 0.888 3.887
1.64 0.657 2.971 2.099 1.416 0.880 3.969
1.66 0.651 3.048 2.132 1.430 0.872 4.05
1.68 0.646 3.126 2.165 1.444 0.864 4.14

1.70 0.641 3.205 2.198 1.458 0.856 4.22
1.72 0.635 3.285 2.230 1.473 0.847 4.31
1.74 0.631 3.366 2.263 1.487 0.839 4.40
1.76 0.626 3.447 2.295 1.502 0.830 4.49
1.78 0.621 3.530 2.327 1.517 0.822 4.58

1.80 0.617 3.613 2.359 1.532 0.813 4.67
1.82 0.612 3.698 2.391 1.547 0.804 4.76
1.84 0.608 3.783 2.422 1.562 0.795 4.86
1.86 0.604 3.870 2.454 1.577 0.786 4.95
1.88 0.600 3.957 2.485 1.592 0.777 5.05

1.90 0.596 4.045 2.516 1.608 0.767 5.14
1.92 0.592 4.13 2.546 1.624 0.758 5.24
1.94 0.588 4.22 2.577 1.639 0.749 5.34
1.96 0.584 4.32 2.607 1.655 0.740 5.44
1.98 0.581 4.41 2.637 1.671 0.730 5.54

2.00 0.577 4.50 2.667 1.688 0.721 5.64
2.02 0.574 4.59 2.696 1.704 0.712 5.74
2.04 0.571 4.69 2.725 1.720 0.702 5.85
2.06 0.567 4.78 2.755 1.737 0.693 5.95
2.08 0.564 4.88 2.783 1.754 0.684 6.06

2.10 0.561 4.98 2.812 1.770 0.674 6.17
2.12 0.558 5.08 2.840 1.787 0.665 6.27
2.14 0.555 5.18 2.868 1.805 0.656 6.38
2.16 0.553 5.28 2.896 1.822 0.646 6.49
2.18 0.550 5.38 2.924 1.839 0.637 6.60

2.20 0.547 5.48 2.951 1.857 0.628 6.72
2.22 0.544 5.58 2.978 1.875 0.619 6.83
2.24 0.542 5.69 3.005 1.892 0.610 6.94
2.26 0.539 5.79 3.032 1.910 0.601 7.06
2.28 0.537 5.90 3.058 1.929 0.592 7.18

2.30 0.534 6.01 3.085 1.947 0.583 7.29
2.32 0.532 6.11 3.110 1.965 0.575 7.41
2.34 0.530 6.22 3.136 1.984 0.566 7.53
2.36 0.527 6.33 3.162 2.002 0.557 7.65
2.38 0.525 6.44 3.187 2.021 0.549 7.77

2.40 0.523 6.55 3.212 2.040 0.540 7.90
2.42 0.521 6.67 3.237 2.059 0.532 8.02
2.44 0.519 6.78 3.261 2.079 0.523 8.15
2.46 0.517 6.89 3.285 2.098 0.515 8.27
2.48 0.515 7.01 3.310 2.118 0.507 8.40

continued overleaf
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Table A3.1 (contd.)

M1 M2 p2/p1 �2/�1 = u1/u2 T2/T1 (p0)2/(p0)1 (p0)2/p1

2.50 0.513 7.13 3.333 2.138 0.499 8.53
2.55 0.508 7.42 3.392 2.187 0.479 8.85
2.60 0.504 7.72 3.449 2.238 0.460 9.18
2.65 0.500 8.03 3.505 2.290 0.442 9.52
2.70 0.496 8.34 3.560 2.343 0.424 9.86

2.75 0.492 8.66 3.612 2.397 0.406 10.21
2.80 0.488 8.98 3.664 2.451 0.3895 10.57
2.85 0.485 9.31 3.714 2.507 0.3733 10.93
2.90 0.481 9.65 3.763 2.563 0.3577 11.30
2.95 0.478 9.99 3.811 2.621 0.3427 11.68

3.00 0.475 10.33 3.857 2.679 0.3283 12.06
3.10 0.470 11.05 3.947 2.799 0.3012 12.85
3.20 0.464 11.78 4.03 2.922 0.2762 13.65
3.30 0.460 12.54 4.11 3.049 0.2533 14.49
3.40 0.455 13.32 4.19 3.180 0.2322 15.35

3.50 0.451 14.13 4.26 3.315 0.2130 16.24
3.60 0.447 14.95 4.33 3.454 0.1953 17.16
3.70 0.444 15.81 4.39 3.596 0.1792 18.10
3.80 0.441 16.68 4.46 3.743 0.1645 19.06
3.90 0.438 17.58 4.52 3.893 0.1510 20.05

4.0 0.435 18.50 4.57 4.05 0.1388 21.07
4.5 0.424 23.46 4.81 4.88 0.0917 26.54
5.0 0.415 29.00 5.00 5.80 0.0617 32.65
∞ 0.378 ∞ 6.00 ∞ 0 ∞
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Table A3.2 Isentropic flow

M p/po �/�o T/To A/At Prandtl–Meyer angle
θ degrees

0 1.000 1.000 1.000 ∞
0.05 0.998 0.999 0.9995 11.59
0.10 0.993 0.995 0.998 5.82
0.15 0.984 0.989 0.996 3.91

0.20 0.973 0.980 0.992 2.964
0.25 0.957 0.969 0.988 2.403
0.30 0.939 0.956 0.982 2.035
0.35 0.919 0.941 0.976 1.778

0.40 0.896 0.924 0.969 1.590
0.42 0.886 0.917 0.966 1.529

N
ot

ap
pl
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fo
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0.44 0.876 0.909 0.963 1.474
0.46 0.865 0.902 0.959 1.425
0.48 0.854 0.893 0.956 1.380

0.50 0.843 0.885 0.952 1.340
0.52 0.832 0.877 0.949 1.303
0.54 0.820 0.868 0.945 1.270
0.56 0.808 0.859 0.941 1.240
0.58 0.796 0.850 0.937 1.213

0.60 0.784 0.840 0.933 1.188
0.62 0.772 0.831 0.929 1.166
0.64 0.759 0.821 0.924 1.145
0.66 0.746 0.812 0.920 1.127
0.68 0.734 0.802 0.915 1.110

0.70 0.721 0.792 0.911 1.094
0.72 0.708 0.781 0.906 1.081
0.74 0.695 0.771 0.901 1.068
0.76 0.682 0.761 0.896 1.057
0.78 0.669 0.750 0.892 1.047

0.80 0.656 0.740 0.887 1.038
0.82 0.643 0.729 0.881 1.030
0.84 0.630 0.719 0.876 1.024
0.86 0.617 0.708 0.871 1.018
0.88 0.604 0.698 0.866 1.013

0.90 0.591 0.687 0.861 1.009
0.92 0.578 0.676 0.855 1.006
0.94 0.566 0.666 0.850 1.003
0.96 0.553 0.655 0.844 1.001
0.98 0.541 0.645 0.839 1.000

continued overleaf

Where A/At varies rapidly, say up to M = 0.5, interpolation of reciprocals
is more satisfactory than linear interpolation. For example, for M = 0.23

At

A
= 1

2.964
+ 0.23 − 0.20

0.25 − 0.20

(
1

2.403
− 1

2.964

)
= 0.3846

and hence A/At = 1/0.3846 = 2.600.
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Table A3.2 (contd.)

M p/po �/�o T/To A/At Prandtl–Meyer angle
θ degrees

1.00 0.528 0.634 0.833 1.000 0
1.05 0.498 0.608 0.819 1.002 0.49
1.10 0.468 0.582 0.805 1.008 1.34
1.15 0.440 0.556 0.791 1.017 2.38
1.20 0.412 0.531 0.776 1.030 3.56

1.25 0.3861 0.507 0.762 1.047 4.83
1.30 0.3609 0.483 0.747 1.066 6.17
1.35 0.3370 0.460 0.733 1.089 7.56
1.40 0.3142 0.437 0.718 1.115 8.99
1.45 0.2927 0.416 0.704 1.144 10.44

1.50 0.2724 0.3950 0.690 1.176 11.91
1.55 0.2533 0.3750 0.675 1.212 13.38
1.60 0.2353 0.3557 0.661 1.250 14.86
1.65 0.2184 0.3373 0.647 1.292 16.34
1.70 0.2026 0.3197 0.634 1.338 17.81

1.75 0.1878 0.3029 0.620 1.386 19.27
1.80 0.1740 0.2868 0.607 1.439 20.73
1.85 0.1612 0.2715 0.594 1.495 22.16
1.90 0.1492 0.2570 0.581 1.555 23.59
1.95 0.1381 0.2432 0.568 1.619 24.99

2.00 0.1278 0.2301 0.556 1.687 26.38
2.05 0.1182 0.2176 0.543 1.760 27.75
2.10 0.1094 0.2058 0.531 1.837 29.10
2.15 0.1011 0.1946 0.520 1.919 30.43
2.20 0.0935 0.1841 0.508 2.005 31.73

2.25 0.0865 0.1740 0.497 2.096 33.02
2.30 0.0800 0.1646 0.486 2.193 34.28
2.35 0.0740 0.1556 0.475 2.295 35.53
2.40 0.0684 0.1472 0.465 2.403 36.75
2.45 0.0633 0.1392 0.454 2.517 37.95

2.5 0.0585 0.1317 0.444 2.637 39.12
2.6 0.0501 0.1179 0.425 2.896 41.41
2.7 0.0429 0.1056 0.407 3.183 43.62
2.8 0.03685 0.0946 0.3894 3.500 45.75
2.9 0.03165 0.0849 0.3729 3.850 47.79

3.0 0.02722 0.0762 0.3571 4.23 49.76
3.1 0.02345 0.0685 0.3422 4.66 51.65
3.2 0.02023 0.0617 0.3281 5.12 53.47
3.3 0.01748 0.0555 0.3147 5.63 55.22
3.4 0.01512 0.0501 0.3019 6.18 56.91
3.5 0.01311 0.0452 0.2899 6.79 58.53

4.0 0.00659 0.02766 0.2381 10.72 65.78
4.5 0.00346 0.01745 0.1980 16.56 71.83
5.0 0.00189 0.01134 0.1667 25.00 76.92
6.0 0.000633 0.00519 0.1220 53.18 84.96
8.0 0.000102 0.00141 0.0725 190.1 95.62

10.0 0.000024 0.00050 0.0476 536 102.31
∞ 0 0 0 ∞ 130.45
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Table A3.3 Adiabatic flow with friction in duct of constant
cross-section (Fanno flow)

M pc/p u/uc = �c � T/Tc flmaxP/A

0 0 0 1.200 ∞
0.02 0.01826 0.02191 1.200 1778
0.04 0.03652 0.0438 1.200 440
0.06 0.05479 0.0657 1.199 193.0
0.08 0.07308 0.0876 1.198 106.7

0.10 0.09138 0.1094 1.198 66.9
0.12 0.1097 0.1313 1.197 45.4
0.14 0.1281 0.1531 1.195 32.51
0.16 0.1464 0.1748 1.194 24.20
0.18 0.1648 0.1965 1.192 18.54

0.20 0.1833 0.2182 1.190 14.53
0.22 0.2018 0.2398 1.188 11.60
0.24 0.2203 0.2614 1.186 9.39
0.26 0.2389 0.2829 1.184 7.69
0.28 0.2576 0.3043 1.181 6.36

0.30 0.2763 0.3257 1.179 5.30
0.32 0.2951 0.3470 1.176 4.45
0.34 0.3139 0.3682 1.173 3.752
0.36 0.3329 0.3893 1.170 3.180
0.38 0.3519 0.410 1.166 2.705

0.40 0.3709 0.431 1.163 2.308
0.42 0.3901 0.452 1.159 1.974
0.44 0.4094 0.473 1.155 1.692
0.46 0.4287 0.494 1.151 1.451
0.48 0.4482 0.514 1.147 1.245

0.50 0.4677 0.535 1.143 1.069
0.52 0.4874 0.555 1.138 0.917
0.54 0.507 0.575 1.134 0.787
0.56 0.527 0.595 1.129 0.674
0.58 0.547 0.615 1.124 0.576

0.60 0.567 0.635 1.119 0.491
0.62 0.587 0.654 1.114 0.417
0.64 0.608 0.674 1.109 0.3533
0.66 0.628 0.693 1.104 0.2979
0.68 0.649 0.713 1.098 0.2498

continued overleaf

Where f lmaxP/A varies rapidly say up to M = 0.6 and above M = 3.0
linear interpolation is not satisfactory. To obtain the length parameter for
a given value of M, direct calculation from eqn 11.78 is probably simplest.
To obtain M from a given value of f lmaxP/A, inverse-square interpolation
is recommended; for example, when f lmaxP/A = 13,

1
M2

= 1
0.202

− 14.53 − 13
14.53 − 11.60

(
1

0.202
− 1

0.222

)
= 27.27

whence M = 0.2097.
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Table A3.3 (contd.)

M pc/p u/uc = �c � T/Tc flmaxP/A

0.70 0.670 0.732 1.093 0.2081
0.72 0.690 0.751 1.087 0.1722
0.74 0.712 0.770 1.082 0.1411
0.76 0.733 0.788 1.076 0.1145
0.78 0.754 0.807 1.070 0.0917
0.80 0.776 0.825 1.064 0.0723
0.82 0.797 0.843 1.058 0.0559
0.84 0.819 0.861 1.052 0.0423
0.86 0.841 0.879 1.045 0.03097
0.88 0.863 0.897 1.039 0.02180
0.90 0.886 0.915 1.033 0.01451
0.92 0.908 0.932 1.026 0.00892
0.94 0.931 0.949 1.020 0.00481
0.96 0.954 0.966 1.013 0.00206
0.98 0.977 0.983 1.007 0.00049
1.00 1.000 1.000 1.000 0
1.05 1.059 1.041 0.983 0.00271
1.10 1.119 1.081 0.966 0.00993
1.15 1.181 1.120 0.949 0.02053
1.20 1.243 1.158 0.932 0.03364
1.25 1.307 1.195 0.914 0.0486
1.30 1.373 1.231 0.897 0.0648
1.35 1.440 1.266 0.879 0.0820
1.40 1.508 1.300 0.862 0.0997
1.45 1.578 1.333 0.845 0.1178
1.50 1.649 1.365 0.828 0.1361
1.55 1.722 1.395 0.811 0.1543
1.60 1.796 1.425 0.794 0.1724
1.65 1.872 1.454 0.777 0.1902
1.70 1.949 1.482 0.760 0.2078
1.75 2.029 1.510 0.744 0.2250
1.80 2.109 1.536 0.728 0.2419
1.85 2.192 1.561 0.712 0.2583
1.90 2.276 1.586 0.697 0.2743
1.95 2.362 1.610 0.682 0.2899
2.0 2.449 1.633 0.667 0.3050
2.1 2.630 1.677 0.638 0.3339
2.2 2.817 1.718 0.610 0.3609
2.3 3.012 1.756 0.583 0.3862
2.4 3.214 1.792 0.558 0.410
2.5 3.423 1.826 0.533 0.432
2.6 3.640 1.857 0.510 0.453
2.7 3.864 1.887 0.488 0.472
2.8 4.096 1.914 0.467 0.490
2.9 4.335 1.940 0.447 0.507
3.0 4.583 1.964 0.429 0.522
3.5 5.935 2.064 0.3478 0.586
4.0 7.48 2.138 0.2857 0.633
5.0 11.18 2.236 0.2000 0.694
6.0 15.68 2.295 0.1463 0.730

∞ ∞ 2.449 0 0.822

Note: The pressure ratio is here given as pc/p, not p/pc.



Algebraic symbols 4
APPENDIX

Table A4.1 lists a number of the algebraic symbols used in this book. Since
the number of meanings exceeds the number of symbols available, even
from both the Roman and Greek alphabets, many symbols have more than
one meaning. Different meanings for the same symbol, however, occur in
different parts of the book and so little confusion should arise. Some symbols
used only once or twice are omitted from this general list.

Dimensional formulae are given in terms of the fundamental magnitudes
of length [L], mass [M], time [T] and temperature [�]. Numbers, that is,
dimensionless magnitudes, are indicated by [1]. For this purpose, angles and
angular velocities are assumed to be expressed in radian measure.

Table A4.1

Symbol Definition Dimensional
formula

A an area [L2]
Ak2 second moment of area [L4]
a an area [L2]
a linear acceleration [LT−2]
a radius of circular cylinder (Chapter 9) [L]
a maximum value of η for surface wave [L]
a sonic velocity [LT−1]
B width of liquid surface in open channel [L]
b breadth of weir, boundary plane, etc. [L]
b span of wing [L]
b base width of open channel [L]
C a constant
C Chézy’s coefficient [L1/2T−1]
Cc coefficient of contraction [1]
CD drag coefficient [1]
CDi vortex or induced drag coefficient [1]
Cd coefficient of discharge [1]
CF mean skin friction coefficient [1]
CL lift coefficient [1]
Cp pressure coefficient [1]
Cv coefficient of velocity [1]
c chord length of aerofoil [L]
c distance between parallel surfaces [L]

continued overleaf
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Table A4.1 (contd.)

Symbol Definition Dimensional
formula

c average clearance in journal bearing [L]
c velocity (celerity) of wave propagation [LT−1]
cf local skin friction coefficient [1]
cp specific heat capacity at constant

pressure
[L2T−2�−1]

cν specific heat capacity at constant
volume (i.e. at constant density)

[L2T−2�−1]

D drag force [MLT−2]
D diameter, especially of piston or rotor [L]
Di vortex or induced drag [MLT−2]
d diameter, especially of pipe [L]
E modulus of elasticity [ML−1T−2]
E energy of system [ML2T−2]
E specific energy in open channel,

h+ u2/2g
[L]

e internal energy divided by mass [L2T−2]
e eccentricity of journal bearing [L]
F a force [MLT−2]
F force divided by length in

two-dimensional flow
[MT−2]

Fr Froude number, u/(gl)1/2 [1]
f friction factor [1]
g gravitational acceleration [LT−2]
H total head [L]
H upstream surface level above crest of

notch or weir
[L]

Hm manometric head of pump [L]
h depth below free surface of liquid [L]
h head of liquid [L]
h clearance in bearing [L]
h depth of flow in open channel [L]
h specific enthalpy = e+ p/� [L2T−2]
hf head lost to friction [L]
hi inertia head [L]
hl head lost [L]
i energy gradient in open channel [1]
K a constant
K bulk modulus of elasticity [ML−1T−2]
K′ effective bulk modulus of fluid in elastic

pipe
[ML−1T−2]

Ks isentropic bulk modulus [ML−1T−2]
k a constant
k head loss coefficient [1]
k Kozeny function [1]
k radius of gyration [L]
k roughness size [L]
L length of journal bearing [L]
L lift force [MLT−2]
l a length [L]
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Table A4.1 (contd.)

Symbol Definition Dimensional
formula

M total mass [M]
M Mach number [1]
M relative molecular mass [1]
M′ virtual mass [M]
Mk2 moment of inertia [ML2]
m mass [M]
m mass flow rate (Chapter 11) [MT−1]
m hydraulic mean depth, A/P [L]
m strength of source or sink (two-dimensional

flow)
[L2T−1]

m 2π /wavelength [L−1]
N a dimensionless parameter [1]
N rotational speed in rev/s [T−1]
n a number [1]
n distance normal to streamline [L]
n Manning’s roughness coefficient (a number) [1]
P perimeter in contact with fluid [L]
P power [ML2T−3]
p pressure [ML−1T−2]
pa atmospheric pressure [ML−1T−2]
pi inertia pressure [ML−1T−2]
po stagnation pressure [ML−1T−2]
pv vapour pressure [ML−1T−2]
p∗ piezometric pressure, p+ �gz [ML−1T−2]
Q discharge (volume/time) [L3T−1]
Q heat added [ML2T−2]
q discharge divided by width, Q/b [L2T−1]
q velocity = (u2 + v2)1/2 (Chapter 9) [LT−1]
q heat added divided by mass of fluid [L2T−2]
R radius [L]
R gas constant, p/�T [L2T−2�−1]
R relative velocity in machines [LT−1]
Re Reynolds number, ul/v (suffixes l, t,x to

indicate l = l, l = transition length, l = x
respectively)

[1]

r radius [L]
S plan area of wing [L2]
S surface area of solid particle [L2]
s a distance, especially in direction of flow [L]
s bed slope of open channel [1]
s specific entropy [L2T−2�−1]
T torque [ML2T−2]
T thrust divided by width of bearing (Chapter 6) [MT−2]
T wave period (Chapter 10) [T]
T absolute temperature [�]
T0 stagnation temperature (absolute) [�]
t interval of time [T]

continued overleaf
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Table A4.1 (contd.)

Symbol Definition Dimensional
formula

t thickness of pipe wall [L]
U velocity unaffected by obstacle [LT−1]
u velocity [LT−1]
u velocity parallel to x-axis (Chapter 9) [LT−1]
u blade velocity (Chapter 13) [LT−1]
um main-stream velocity outside boundary layer [LT−1]
V a volume [L3]
V velocity of boundary plane [LT−1]
v velocity parallel to y-axis (Chapter 9) [LT−1]
v absolute velocity of fluid in machine [LT−1]
vi downwash velocity [LT−1]
vr radial component of velocity in machine [LT−1]
vw velocity of whirl, that is, circumferential

component of absolute velocity
[LT−1]

W weight [MLT−2]
W shaft work done by system [ML2T−2]
We Weber number, u

√
(�l/γ ) [1]

w shaft work done divided by mass of fluid [L2T−2]
x coordinate [L]
y coordinate, especially distance from solid

boundary
[L]

Z height of crest of notch above upstream
channel bed

[L]

z coordinate, especially axial distance in journal
bearing

[L]

z height above an arbitrary datum level [L]
AR aspect ratio of wing [1]

Greek Symbols
α (alpha) kinetic energy correction factor [1]
α an angle, especially angle of attack, angle

between absolute velocity of fluid and
circumference of rotor

[1]

β(beta) momentum correction factor [1]
β angle between fluid velocity and shock wave [1]
β angle between relative velocity and

circumference of rotor
[1]

� (capital gamma) circulation (in two-dimensional flow) [L2T−1]
γ (gamma) cp/cν [1]
γ surface tension [MT−2]
� (capital delta) a particular value of η = y/δ in boundary

layer or y/R in pipe
[1]

δ (delta) nominal thickness of boundary layer [L]
δ tangent of angle between slipper and bearing

plate
[1]

δ∗ displacement thickness of boundary layer [L]
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Table A4.1 (contd.)

Symbol Definition Dimensional
formula

ε (epsilon) kinematic eddy viscosity [L2T−1]
ε eccentricity ratio of journal bearing [1]
ε porosity [1]
ζ (zeta) vorticity (in two-dimensional flow) [T−1]
η (eta) a coordinate perpendicular to

constant-pressure plane
[L]

η eddy viscosity [ML−1T−1]
η y/δ in boundary layer, y/R in pipe, or

r/R in free jet
[1]

η height of point on surface wave above
equilibrium level

[L]

η efficiency of machine [1]
ηh hydraulic efficiency [1]
ηo overall efficiency [1]
θ (theta) an angle [1]
θ temperature (on arbitrary scale) [�]
θ momentum thickness of boundary layer [L]
λ (lambda) temperature lapse rate, −∂T/∂z [�L−1]
λ friction factor = 4f [1]
λ wavelength [L]
λ (θ2/ν)dum/dx for laminar boundary

layer
[1]

µ (mu) dynamic viscosity [ML−1T−1]
µ Mach angle [1]
ν (nu) kinematic viscosity, µ/� [L2T−1]
ξ (xi) a coordinate parallel to

constant-pressure plane
[L]

ξ dimensionless parameter R(τ0/�)1/2/v [1]
� (capital pi) a dimensionless parameter [1]
π (pi) 3.14159 . . . [1]
� (rho) density [ML−3]
σ (sigma) relative density [1]
σ cavitation parameter [1]
τ (tau) shear stress [ML−1T−2]
τ0 shear stress at boundary [ML−1T−2]
φ (phi) velocity potential [L2T−1]
φ angle between blade and circumference

of rotor
[1]

φ (x) a function of x
ψ (psi) stream function (in two-dimensional

flow)
[L2T−1]

� (capital omega) angular velocity of boundary surface [T−1]
�p power specific speed of turbine [1]
�s specific speed of pump [1]
ω (omega) angular velocity [T−1]
ω frequency of vortex shedding [T−1]

continued overleaf
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Table A4.1 (contd.)

Symbol Definition

Other Symbols
ln natural logarithm, that is, to base e
log10 logarithm to base 10
� (capital delta) an increment of (delta)
δ (delta) a very small increase of
∂ (‘curly d’ or ‘dif’) indicates partial derivative
� (capital sigma) summation
|x| the modulus of x, that is, the magnitude of x without

regard to its direction or sign
Superscript
bar the mean value of (e.g. x = mean value of x)

Suffixes
Suffixes are usually provided to meet particular needs but the following
general usages have been adopted.
c critical
s suction (Chapter 13)
x, y, z component of a vector quantity in x, y, z direction

respectively
0 stagnation conditions (Chapter 11)
1, 2 at inlet, at outlet of control volume or machine rotor
∞ at a large distance upstream from body



Answers to problems

1.1 56.2 m3

1.2 1.51 kg · m−3

1.3 1061 kg · m−3

1.4 32.06
1.5 307.6 N
1.6 1.439 N
1.7 7.44 N · m
1.8 36.5 Pa
1.9 5.95 mm
1.10 −1.563 mm
1.11 1508, 1.689 m · s−1

1.12 Laminar (Re = 430)

2.1 12.82 m
2.2 22.93 kPa, 40.2 kPa,

30.57 kPa, 211.2 kN
2.3 61.2 m
2.4 4.93 mm
2.5 44.2 kPa, 3.496 m, 35.83 m
2.6 171.1 Pa
2.7 38.3 kPa
2.8 2257 m
2.9 (a) 9.54 kN, 1.2 m from

upper edge
(b) 20.13 kN, 1.042 m
(c) 645 kN, 0.904 m

2.10 On centre line at depth
3πd/32

2.11 4.79 kN at each upper
corner, 9.58 kN at bottom

2.12 999 N · m
2.13 33.84 kN, 26.59 kN · m,

1.111 m from top of aperture

2.14 1.252 MN, 8.42 m above
base

2.15 5.29 MN · m−1, 42.57◦,
30.31 m from face

2.16 8870 N, 651 mm
2.17 b = σc + a(1 − σ)/8;

a2(3 + σ)/48b below
centre-line

2.18 1317 N, 1543 N, 2859 N
2.19 2.34 kg(f), 5.36 kg(f)
2.20 0.1778 l
2.21 398 mm, 16.05 mm,

3747 Pa (gauge)
2.22 16.25 g
2.23 1.386
2.24 4.70◦
2.25 0.641 kg and 0.663 kg
2.26 150 mm
2.27 1.308 m
2.28 3.822 s
2.29 3538 N
2.30 467 Pa

3.1 53.3 kPa gauge
3.2 23.9 m3 · s−1

3.3 16.20 MW
3.5 63.43◦ to horizontal,

217.4 kPa
3.6 0.02191 m3 · s−1

3.7 0.958
3.8 161.1 kPa gauge
3.9 34.53 kPa, 266.5 mm
3.10 162.2 mm
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3.11 0.0427 m3 · s−1

3.12 0.0762 m3 · s−1

4.1 0.0475 m3 · s−1

4.2 13.12 kN at 12.76◦ upwards
from inlet axis

4.3 440 N
4.4 2.22 m2·s−2, −1.278 m2·s−2;

311.1 W
4.5 0.01045 m2, 30.92 kW
4.6 8.82 g · s−1

4.7 447 kg
4.8 25.77 kN, 79.8%, 387 kW
4.9 2.63 m, 916 kW
4.10 8460 N, 11.33 m · s−1,

41.8 Pa, −32.99 Pa,
95.8 kW

5.1 2.059 L · s−1, 1:4.74
5.2 225.2 mm
5.3 246.4 rad · s−1, 0.933 N · m
5.4 2.797 m3 · s−1

5.5 7.82 m · s−1, 322 N
5.6 13.41 m · s−1, 92.0 N · m
5.8 3.91 m · s−1, 42.96 N
5.9 7.61, 1236 N
5.10 821 kPa, 450 m · s−1

5.11 1.24 h
5.12 10.68 kPa, 14.03 L · s−1

5.13 7.5 m · s−1, 410 kN

6.1 Re = 357, 116 kPa, 183.3 Pa
6.3 192.5 kPa
6.5 0.689 mm
6.7 62.8 s
6.8 27.13 µm, 0.0549 m · s−1

6.9 0.934 Pa · s, Re = 0.01362
6.10 0.1505 Pa · s
6.11 0.0626 Pa · s, 589 W,

5.63 MPa, 91.1 mm
from toe

6.12 x = 0.689 l
6.13 0.01771 Pa · s, 0.02895 Pa · s

30.02 W, 130.3◦ forward of
load line, yes – it is almost in
the centre of the reduced
pressure region

7.1 6.12 kW
7.2 10.08 kW, 157 W
7.3 25.06 mm, 25.85 kW
7.4 692 kPa, 0.0547 m3 · s−1

7.5 141.5 mm, say 150 mm
7.6 100 kPa
7.7 8.35 L · s−1

7.8 116.5 mm, say 120 mm
7.9 approx. 12.7 L · s−1

7.10 11.34 kg · s−1

7.11 26.5%
7.12 6.47 m above pipe inlet
7.13 2.571 m, 1.156 kW
7.14 569 mm, increased in

ratio n10/3

7.15 9.64 m
7.16 24.6 L · s−1, 16.0 L · s−1

7.17 dB = 512 mm,
dC = 488 mm

7.18 0.939 m3 · s−1, 44.1 Pa,
0.826 m3 · s−1

7.19 1719 s
7.20 2100 s
7.21 201.7 mm
7.22 40.4 mm, say 40 mm
7.23 about 1625 s
7.24 980 s, 3.072 kWh
7.25 >62.1 mm
7.26 1.110 mPa · s
7.27 12.46 Pa, 4.98 Pa

8.1 0.3634, 0.1366
8.2 11.99 mm, 0.0208 Pa,

0.763 W, 2.654 W
8.3 55.69 N, 167.1 W
8.4 1.192
8.5 87.9 kW, about 165 mm
8.6 0.00293
8.7 0.546 mm, 1.968 m · s−1,

317.2 Pa
8.8 1445 Hz
8.9 129.2◦, skin friction

neglected
8.11 approx. 3.08 N,

42.0 N (using Fig. 8.14)
8.12 6.23 m
8.13 about 1.71 mm, about

0.26 m · s−1
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8.14 0.002955, 2.866 m · s−1,
18.54 Pa

8.15 0.204 m3 · s−1,
0.03066 Pa

9.1 yes, no
9.2 (a), (e)
9.3 φ = −y− 4xy+ constant,

3.761 kPa
9.4 φ = Aθ + constant, flow to

a sink
9.5 0.3 m · s−1, 28.8 Pa · m−1,

−0.036 m · s−2

9.7 28.01 rad · s−1

9.8 62.5 kPa, 1533 N
9.9 r1

√
2

9.10 ω2R2/g
9.11 52.8 kPa
9.12 9250 N
9.13 0.429 m · s−1 at 291.8◦

(6/7 m, 0)

9.14
1
2

ρU2

(
X2 + Y2

Y2 + b2

)2

9.15 ±0.471 m2 · s−1, 156.2 mm
apart on long axis,
4.36 m · s−1

9.16 1.5 m2 · s−1, 15.9 2 mm,
x = −y cot(20πy) (m units),
194.5 Pa

9.17 ψ = −Uy

− m
2π

arctan
(

2xy

x2 − y2 + a2

)
,

⎛
⎝− m

2πU
−

{
m2

4π2U2
− a2

}1/2

, 0

⎞
⎠ ,

contour is a half-body,

U
{
1 + (4m4/π2)×

(m2 − 4U2a2)−2
}1/2

9.18 1296 N
9.19 2.580
9.20 2π

√
3

9.21 36.67 rad · s−1, clockwise,
3.69◦ E of N and 47.3◦ W
of N, 2058 Pa

9.23 155.6 kPa
9.24 0.558, 0.0685
9.25 0.790, 0.0405, 0.02650,

7.96◦, 0.790, 0.0537

10.1 0.3827 m3 · s−1

10.2 2.216 m3 · s−1

10.3 4.456 m
10.4 depth 520 mm, base width

601 mm
10.5 48.2 m1/3 ·s−1, 0.532 m3 ·s−1

10.6 460 mm, 0.001588
10.7 2.41 m
10.8 0.554 m3 · s−1, 1.185 m · s−1,

0.659, 0.277
10.9 1.027 m, 1.357 m, 1.226,

0.808, 0.00394
10.10 (gE/2)1/2, 3E/4
10.11 4.15 m
10.12 75.4 m1/3 · s−1, 4.75 Pa
10.13 956 mm, 6.97 kW
10.14 0.0168
10.15 71.3 m3 · s−1, 192.5 kN
10.16 5.58 m3 · s−1

10.17 222 mm
10.18 0.337 m3 · s−1

10.19 294 mm, 74.6 mm,
305.5 N

10.20 202 m
10.21 about 88 m
10.22 95.6 m, 1.281 m
10.23 0.038 N·m−1, 0.1096 m·s−1,

0.260 m · s−1

10.24 5.589 m · s−1, 27.95 m,
3.407 m · s−1, 7.71 kW,
0.1424 m · s−1, 19.66 kPa,
0.2688 m, 0.1136 m

10.25 452 kW, 0.614 m

11.1 310.6 m · s−1, 0.777 kg ·m−3,
761 m · s−1

11.2 23.88 kPa,
443 m · s−1, 69.6 kg · s−1,
0.288 m2

11.3 147 ◦C
11.4 1.386, 1.665,

280.7 m · s−1,
13.2 ◦C
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11.5 1.967, 24.43 kPa,
456 m · s−1

11.6 40.7◦ to wall, 1.250
11.7 13.34◦
11.8 404 m · s−1

11.9 1059 km · h−1, 6.1 ◦C
11.10 (a) 400 kPa, −6 ◦C,

1.035 kg · s−1

(b) 369.6 kPa,
−12.2 ◦C, 1.039 kg · s−1

11.11 1338 mm2,
4680 mm2, 380 kPa,
200.6 kPa, −159 ◦C,
600 m · s−1

11.12 1.692
11.13 0.60 kg · s−1

11.14 0.413, 1.535 times throat
area, 1.840, 106.3 kPa,
940 kPa

11.15 4.75 m, 9.2 ◦C, 82.7 kPa,
44.2 ◦C, 150.9 kPa

11.16 241.4 kPa, 240.8 kPa
11.17 44.1 mm
11.18 15.97 kW
11.19 0.292 kg · s−1,

435 kPa

12.2 415 m, 1.517 m · s−1

12.3 3.37 m · s−1

12.4 29.29 L · s−1

12.5 85.7 mm, 1.432 m · s−1

12.6 0.924 s
12.7 15.18, 0.759 s
12.8 45.2%, less than 4.97 s
12.9 162.9 m, 167.1 m,

167.7 m
12.10 0.0836 m−1, 3.024 ×

10−4 s−2

12.11 17.89 m

13.1 Suction: 4.43, 6.87, 10.23 m.
Delivery: 31.34, 26.47,
19.75 m

13.2 2.666 m · s−1, 2.40 m · s−1,
±236.9 kPa

13.3 5, 177 mm, 1.536 m, 85.1%,
1.35% – based on optimum
speed ratio 0.46

13.5 0.854
13.6 14.28◦, 59.2◦, 47.3 m,

−5.88 m
13.7 251 mm, 35.2 kW
13.8 33.76 MW, 0.486 rad,

9.31◦, 124.29◦, 42.9%
13.9 92 rad · s−1, 235.5 kW
13.10 107.6 rad · s−1, 7.66 MW,

3.22 rad
13.11 81.5%
13.12 1.94 m
13.13 71.2%, 3.05 m
13.14 58.1 mm water, 5.83 kW
13.15 backward-facing at 39.5◦
13.16 38.23 L · s−1, 78.6%
13.17 238 mm, say 250 mm
13.18 68.1%, 81.1%
13.19 (a) �s 4.0 rad at

8.05 rad · s−1

(b) �s 1.20 rad at
314 rad · s−1

(or �s 0.60 rad at
157 rad · s−1)

(c) �s 0.20 rad at
314 rad · s−1,
10 stages

13.20 0.0843, 1.637 m
13.21 91.6 to 183.2 rad · s−1, 6.67

to 26.67 m
13.22 1.282 kW
13.23 238.4 mm



Index

Absolute pressure 46
Absolute viscosity 24–6
Acceleration 81, 89

convective 90
of fluid particle 89–90
substantial 89
temporal 90

Acoustic velocity 493, 496
Actuator disc 151
Added mass 393
Adhesion 28
Adiabatic flow in pipe 531–7
Adiabatic frictionless

conditions 522
Adiabatic process 19, 488
Adiabatic temperature lapse

rate 79–80
Aerofoils 403–9

definitions 403
finite span 406–9
in high-speed flow 544–6
infinite span 404–6
separation 335–8
span of 403
vortex starting 405

Affinity laws for pumps 640
Air cavitation 620
Air locks 107
Airy waves 467
Alternative depths 432
Anemometer 288
Aneroid barometer 50
Angle of attack 403
Angle of heel 72
Angle of incidence 403
Angular velocity 9
Antinodes 478
Archimedes, Principle of 70
Area coefficient 580
Aspect ratio 403

Atmosphere
equilibrium of 46–8, 79
stability of 79
(unit) 14

Atmospheric properties
670–1

Attitude angle
(of bearing) 234

Avogadro’s hypothesis 18
Axial-flow machine 596
Axial-flow pumps 634–5
Axial-flow turbine 596, 607
Axi-symmetric flow 33

Backward difference 356
Backward-facing blades 629
Backwater curve 457, 462
Bar (unit) 9, 14
Barometer 49–50
Bearings

inclined slipper 222–8
of infinite length 231
journal 230–9
very short 235

Bend-meter 290
Bends, losses in 266–8
Bernoulli constant 381
Bernoulli’s equation 92–6,

107, 391
applications 109–30
significance of terms in

95–6
Bingham plastic 197
Blade element theory 637
Blasius’s formula (friction in

smooth pipes) 254
Blasius’s solution for laminar

boundary layer 308–9
Bluff body 325
Boiling 16

Borda–Carnot head loss 262
Bore 428, 482
Boundary-element method

(BEM) 356, 358
Boundary layer 298–352

control 338–9
definition 298
description of 299
displacement thickness

301
laminar 300, 306–9
momentum equation

303–6
momentum integral

equation 306
momentum thickness 302
in open channels 423–4
transition region 299
see also Laminar boundary
layer; Turbulent boundary
layer

Bourdon gauge 55–6
Boyle’s Law 490
Broad-crested weir 444–7
Bulk modulus of elasticity 20
Buoyancy 69–71

centre of 70, 72

Calorically perfect gas 18
Capillary depression,

capillary rise 29
Capillary waves 183, 469
Cascade 267
Cauchy number 166
Cauchy–Riemann equations

400
Cavitation 16, 107, 619–22

in centrifugal pumps
643–4

damage 619–20



690 Index

Cavitation limits for reaction
turbines 621

Cavitation number 170, 622
Celerity 563–4
Centipoise 26
Centistokes 26
Central difference 356
Centred expansion 514–5
Centre of buoyancy 70
Centre of pressure 61
Centrifugal pumps 626–7

basic equations 627–32
diffuser-type 627
volute-type 627

Centroid 57, 59
Centroidal axis 57
Changes of state 19–20
Characteristic curve (of

pump) 631, 646
Characteristic equations

577–8
Characteristics 578

method of 577–80
Chézy equation 419–23
Chézy’s coefficient 421, 459
Chézy’s formula 459
Choking 107, 525, 535, 541
Chord (of aerofoil) 403
Chord line 403
Circulation 364–7
Classical hydrodynamics 361
Closed conduits only partly

full 426–7
Coanda effect 108–9
Coefficient of contraction

114, 116
Coefficient of discharge 114,

168–70
for orifice 117
for venturi-meter 120

Coefficient of friction 227
Coefficient of velocity 114
Coefficient of viscosity 23
Cohesion 28
Colebrook’s equation 351
Complex potential 400
Complex variables 399–402
Compressibility (quantity) 20
Compressibility effects

aerofoils 544
drag 340–1
elastic forces 166

Compressibility factor 518
Compressible flow of gases

487–550
Compressible fluids 20,

487, 517

Compressor 591
Computational fluid

dynamics (CFD)
353–8

Conformal transformation
404

Conjugate depths 440
conjugate functions 399
Conservation of energy 95,

96–101
Conservation of matter 90
Continuity 90–2
Continuity equation 354,

458, 576
Continuum 4
Contraction, loss at abrupt

262–4
Control volume 139, 419
Convection, free 79
Convective acceleration 90
Convergent-divergent nozzle

522, 524–9
Conversion factors 663–6
Corresponding velocity 180
Couette flow 205
Creeping motion 331
Critical depth 432, 437
Critical flow 416

in open channel 432–5,
443–7

Critical pressure
ratio 524

Critical Reynolds number
247, 317

Critical slope 435, 462
Critical velocity

in open channel 435
Current meters 288

d’Alembert’s Paradox 392
Darcy’s equation 248, 531
Darcy’s Law (flow through

porous media) 239
Dashpot 207–9
Deflection angle 506, 508
de Laval nozzle 523–4
Density 12

at a point 12
Design pressure ratio 527
Deviation angle 633
Differential equations, of

fluid dynamics 354–6
Diffuser 264–5

in centrifugal pump 626
Diffuser pump 627
Dilatancy 27
Dilatant liquids 197

Dimensional analysis 170–9
application 179–82
methods 172
process 172–3

Dimensional formulae 11–2,
679–83

Dimensional
homogeneity 12

Dipole 390
Discharge 114, 123

measurement of 290–1
Discretization

errors 356–7
Dispersive waves 468
Displacement thickness of

boundary layer 301–2
Displacement work 95–6
Double suction machine 627
Doublet 390–1, 402
Downdrop curve 457
Downwash velocity 407
Draft tube 608
Drag 324–35

form 324
induced 408
normal pressure 324
profile 324
vortex 407–9
wave 340

Drag coefficient 325, 637
of bodies of revolution

341
effect of compressibility

544–6
of three-dimensional

bodies 331–5
of two-dimensional bodies

329–31
Drag force 290, 314, 325
Drain-hole vortex 379
Drowned weir 448–9
Dynamic pressure 110
Dynamic similarly 161–7

application 179–82
flow with elastic forces

acting 166–7
flow with gravity forces

acting 164–5
flow with surface tension

forces acting 165–6
flow with viscous forces

acting 163–4
principal ratios 167
ratios of forces arising in

162–7
Dynamic viscosity 23–6



Index 691

Eccentricity 230
Eccentricity ratio 230
Eddy-making resistance 182
Eddy viscosity 341–3
Effective surface area 241
Efficiency

of fluid machines, effect of
size 656–7

Froude, of propeller 153
hydraulic, of turbine 611
manometric, of pump 629
overall, of pump 629

Elastic forces 162, 166
Elastic waves 493–7
Elbow-meter 290
Electro-magnetic meters 291
Elliptical lift distribution

408–9
Energy equation, steady flow

91–100, 103
Energy gradient 418–9
Energy transformations, in

constant-density fluid
105–7

Energy transmission rate
473–4

Enlargement, loss at abrupt
260–2

Enthalpy 491
Entrainment 109, 352
Entropy, specific 489
Entry length 194, 283–4
Entry loss 263
Equation of motion

oscillatory waves 464–71
Equation of state 17, 487
Equilibrium, relative 80
Equilibrium of fluid 45

of constant density 45–6
Equilibrium of moving

fluids 80–3
Equipotential lines 368
Equivalent grain size 252
Euler head 629
Euler’s equation 94, 524

for steady, frictionless
flow 522

Euler’s equation (energy
transfer in
machines) 610

Exit loss 262

Falling sphere method 212–3
Fanno flow 531–7
Fans 591, 625, 650
Filament line 32

Finite-difference methods
356

Finite-element methods
357–8

Finite-volume methods 358
First Law of

Thermodynamics 97,
488

First moment of area 57–8
Floating bodies

containing a liquid 76–8
stability of 72–8

Flow
in closed conduits only

partly full 426–7
compressible 487–550
cross-section 530–43
with free surface 346–7,

414–83
of inviscid fluid 361–409
to line sink 376
from line source 375–6
with variable

density 346–7,
487–550

with variable density in
pipes of constant
530–43

Flow direction, measurement
291–2

Flow field 30
Flowline 31
Flow measurement 287–92
Flow nets 370–3

applied to real fluids
372–3

Flow nozzle 123–5
Flow parameters, variation in

time and space 30–1
Flow patterns 31–2

basic 373–82
combinations of basic

384–99
combining 383–4

Flow types 33–8
Reynold’s demonstration

33–5, 245–8
Flow visualization 548–50
Flow work 95–6
Fluid coupling 652–4
Fluid dynamics, differential

equations of 354–6
Fluid flow, basic

characteristics 30–3
Fluid flywheel 654
Fluidization 241–2

Fluid machines 591–657
effect of size on efficiency

656–7
Fluid motion, principles of

89–130
Fluid particle, acceleration of

89–90
Fluids

characteristics 1–4
definition 1–2
properties of 12–17, 667

Fluid statics 43–83
Force(s) 9

acting from outside fluid
162

applied to obstacles in
stream 442–3

caused by flow round
pipe–bend 141–4

caused by jet striking
surface 138–9

controlling behaviour of
fluids 162

due to surface tension 162
at nozzle and reaction

of jet 144–8
resulting from action of

viscosity 162
on solid body in flowing

fluid 148–50
Forced (rotational) vortex

381–2
Form drag 251, 324
Forward difference 356
Forward-facing blades 629
Fourier’s theorem 465
Francis turbine 596, 605–9
Free convection 79
Free discharge 452
Free jet 113
Free outfall 448–9
Free surface 45, 414–83
Free surface energy 472
Free turbulence 352–3
Free-vortex machines 611
Friction drag for laminar and

turbulent boundary
layers together
317–20

Friction factor 248–9, 534
for rough pipes 349–51
for smooth pipes 348–9
variation 249–55

Friction in non-circular
conduits 259–60

Friction losses 568
Friction velocity 344
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Froude efficiency of
propeller 153

Froude number 165, 167,
183, 416, 435

Froude’s theorem
(for propeller) 152

Fully developed flow 192,
246, 283

Gas constant 17–8
Gases

characteristics 2
compressible flow

487–548
Gas flow functions 672–9
Gate valve 570
Gauge pressure 13, 45
General energy equation,

with variable density
491–2

Geometric similarity 160
Gibson’s inertia-pressure

method 557
Gradually varied flow

456–63
equations 457–61

Gravitational energy 472
Gravity forces 164–5
Group velocity 474–6

Hagen–Poiseuille formula
191–4

Half body 386
Head, definition 45, 105
Head, manometric 629
Head losses in pipes 260–71
Head lost to friction 103,

248–9
Homologous series

(of machines) 614
Hot-film anemometer 288
Hot-wire anemometer 288
Hydraulic efficiency 611
Hydraulic grade line 106,

272
Hydraulic jumps 438–42

types in rectangular
channels 441–2

Hydraulic mean depth 259
Hydraulic radius 260
Hydrodynamic lubrication

220–39
Hydrodynamic mass 393
Hydrodynamic transmissions

651–6
Hydrostatic forces 419
Hydrostatic lubrication 220

Hydrostatic thrusts 60–7
on curved surfaces 65–7
horizontal component 65
on plane surface 60–3
resultant thrust 66–7
on submerged surfaces

59–69
vertical component 66

Ideal fluid 28
Impellers 592

free vortex design 635
mixed-flow pump 634

Impulse turbines 597
Inclined slipper

bearings 222–8
Incompressible fluid 38
Induced drag 408
Induced mass 393
Inertia force 162–3
Inertia head 555
Inertia pressure 555–7
Inertia-pressure method 557
Interfacial tension 28
Interferometer technique 549
International standard

atmosphere 670–1
Invert 419
Irrotational flow 366
Irrotational vortex 376–9,

401
Isentropic bulk modulus 20
Isentropic process 489, 522
Isobar 44
Isothermal bulk modulus 20
Isothermal flow in pipe

539–42
Isothermal process 19

Jet
force due to, striking

surface 138–41
free 352
reaction of 144–8

Jet propulsion 145–6
Journal bearing 230–9

Kaplan turbine 596, 607,
615

Kinematic eddy viscosity 342
Kinematic similarity 160–1
Kinematic viscosity 26, 669
Kinetic energy 472
Kinetic energy correction

factor 100, 352
Kingsbury bearing 224

Kozeny–Carman equation
241

Kozeny constant 241
Kutta–Joukowski condition

405
Kutta–Joukowski law 337,

396

Laminar boundary layer
approximate velocity

distributions 312
Blasius’s solution 308, 309
on flat plate with zero

pressure gradient
306–12

predicting separation in
322–3

thickness 309–11
Laminar flow 33–5

between parallel planes
199–209

between solid boundaries
191–242

in circular pipe 191–8,
543

distinguishing features 35
fully developed 193–5
non-Newtonian liquid in

circular pipe 196–8
in pipes 191–8
through circular annulus

198–9
through porous media

239–42
Laminar sub-layer 251, 300,

347
Laplace’s equation 368, 400
Laser–Doppler anemometer

289
Laval nozzle 523–4
Laws of thermodynamics

487–91
Lift 403
Lift coefficient 403, 544, 637
Line of flow 31
Line sink 376
Line source 375, 401
Liquids, characteristics 2
Local acceleration 89
Logarithmic profile 346–7
Lower critical Reynolds

number 247
Lower critical velocity 247
Lubrication

hydrodynamic 220–39
hydrostatic 220
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Mach angle 498
intersection 510–1
reflection 510

Mach cone 497–8
Mach line 498
Mach number 21, 166, 496,

501, 518
Mach waves 508
Mach–Zehnder

interferometer 550
Magnus effect 395
Manning’s formula 422–3
Manning’s roughness

coefficient 422
Manometers 50–5
Manometric efficiency 629

head 629
Mass flow parameter 521
Mean density 12
Mean steady flow 37
Metacentre 72
Metacentric height 73
Metacentric radius 75
Michell bearing 224
Micro-manometers 54
Micropoise 26
Mild slope 435
Millibar 14
Minor losses 260
Mixed-flow machines 596
Mixed-flow pump 634, 645
Mixing length 343
Molecular structure 3
Moment of inertia 59
Momentum correction factor

138
Momentum equation 134–54

applications 138–54
boundary layer 303–6

Momentum integral
equation, boundary
layer 306

Momentum theory
propeller 150–4
wind turbine 154

Momentum thickness of
boundary layer 302

Moody diagram 252
Moving fluids, equilibrium of

80–3
Multi-stage pumps 639

Nappe 126–7
Navier–Stokes equations

354–6
numerical procedures for

solving 356–8

Net Positive Suction Head
(NPSH) 644

Neutral equilibrium 71
Newtonian fluid 24
Newton’s First Law 92
Newton’s Law of Universal

Gravitation 12
Newton’s laws of motion

138
Newton’s Second Law 14,

95, 134
Newton’s Third Law 22,

136, 440
Nikuradse’s experiments

250–2
Nodes 478–9
Non-Newtonian liquids

26–7
laminar flow in circular

pipe 196–8
Non-uniform flow 30
Non-uniform velocity

distribution effects
100, 138,
632–4

Normal depth 419
Normal flow 419
Normal shock

waves 500–5
Notches 126–30

rectangular 127
V 129

Nozzle, force at 144–8
Numeric 5

Oblique shock waves
505–12

intersection 510–2
reflection 510–2

One-dimensional flow 32
with negligible friction

522–4
Open channels 414

boundary layer in 423–4
occurrence of

critical conditions
443–54

optimum cross-section
425–6

simple waves and
surges in 427–31

specific energy and
alternative depths of
flow 431–7

steady-flow energy
equation for 416–8

types of flow 415–6

Orifice
flow through sharp-edged

112–9, 268–9
quasi-steady flow through

119
submerged 118–9

Orifice meter 123–5
Oscillatory waves

see Waves
Oseen’s formula 331
Overturning couple 73

Parabolic velocity profile
193

Parallel axes theorem 59
Particle mechanics 332
Pascal (unit) 7, 9, 14
Pascal’s Law 15
Path-line 31
Pelton wheel 598–605
Percentage slip 596
Perfect gas 18, 489
Period of oscillation 77
Perpendicular axes

theorem 59
Petroff’s law 233
Phase velocity 468
Physical constants 667
Physical similarity 159–70
see also specific types

Piezo–electric gauges 56
Piezometer tube 45–6
Piezometric head 46
Piezometric pressure 46
Pipe bend

force caused by flow
round 141–4

head loss due to 266
Pipe fittings, losses in 267–8
Pipe networks 280–1
Pipe with side tappings

281–2
Pipes

branched 278–80
in parallel 277–8
in series 277

Pi theorem 172
Pitometer 112
Pitot-static tube 110–2, 519
Pitot tube 110–2

in flow with variable
density 517–20

Plasticity 27
Plastic solids 2
Poise 26
Poiseuille (unit) 25
Poiseuille’s equation 194
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Polar diagram 337
Porosity 239, 270
Positive-displacement

machines 591
Potential flow 368
Prandtl-Meyer angle 515
Prandtl-Meyer expansion

515
Prandtl-von Kármán theory

343
Pressure 13–6

absolute 13, 46, 49
centre of 61–3
gauge 13, 45, 49
measurement of 48–57
piezometric 46
variation with position in

fluid 43–8
Pressure coefficient 168
Pressure diagrams 565
Pressure drag 324
Pressure forces 162, 168
Pressure gauges 55–7
Pressure gradient 320–2

adverse 321
favourable 320–1

Pressure head 46
Pressure line 271–5
Pressure losses 245–55, 259,

260–71
Pressure transducer 57
Pressure transients 558–80
Pressure variation

perpendicular to
streamlines 107–8

Pressure waves 560
magnitude 560–4
velocity 560–4

Principle of conservation of
mass 90–2

Profile drag 324
three-dimensional bodies

331–5
two-dimensional bodies

329–31
Propeller, momentum theory

150–4
Propeller turbine 607
Pseudo-plastic liquids

27, 197
Pumps 591, 625–51

characteristic curves for
644–5

performance characteristics
644–6

selection 650–1

Quasi-steady flow
through orifice 119
through pipes 284–6

Radial blades 629
Radial-flow machine 596
Radial-flow turbine 605
Rankine–Hugoniot

relation 502
Rankine oval 389
Rapid flow 416

approaching weir 449–51
in open channel 435

Rapidly varied flow 456
Rate of shear 23
Rayleigh step 228–9
Reaction turbine 597

cavitation limits for 621
net head across 607–9

Reciprocating pump 592–6
Rectilinear flow 374, 400–1
Region of influence 497–8
Relative density 13
Relative equilibrium 80
Restoring couple 72
Reversible adiabatic process

503
Reversible process 488
Reynolds number 35

local 137
significance of 163–4

Reynolds stress 342–3
Rheology 28
Rheopectic liquids 27
Rigid-body rotation 381
Ripples 469
Robins effect 396
Rocket propulsion 146–8
Rotameter 303
Rotational flow 366, 381
Rotodynamic machines 592

basic equations 609–13
Rotodynamic pumps 625–51
Rotor 592
Rough zone of flow 251
Runner 592

Salt-dilution method 291
Salt-velocity method 290
Saturation pressure 16
Saturation vapour pressure

of water 667
Scale effect 182
Scale factor 160
Schlieren method 549

Secondary flow, losses due
to 266

Second Law of
Thermodynamics 441

Second moment of area 58–9
Seiches 479
Semi-perfect gas 19
Separation 320–1

from aerofoil 335–7
position of 339
predicting in laminar

boundary layer
322–3

Separation point 321
Separation streamline 321
Shadowgraph method 548
Shear rate 23
Shear stress 1, 22, 191

distribution in circular pipe
257–8

Ship resistance 182–8
Shock 499
Shock losses 631
Shock phenomena 340
Shock stall 546
Shock wave 499–511

definition 499–500
intersection of 510–12
normal 499–505
oblique 505–11
reflection of 510–12

Shooting flow 435
SI units 6

internationally agreed
names 6–7

prefixes for multiples and
submultiples 8

Similarity 160
chemical 162
dynamic 161–7
geometric 160
kinematic 160–1
of machines 639–40
physical 159–60
thermal 161

Similarity laws
pumps 639–40
turbines 613–7

Single suction pump 627
Singular point 375
Sink 376
Siphon 272
Skin friction 307
Skin-friction coefficient 168,

307–8
Slant depth 61



Index 695

Slip
in fluid couplings 652
in reciprocating pumps

596
Slip coupling 652
Slip surface 511
Slope 461–3
Smooth zone of flow 251
Solidity

of axial runner 628
of wire gauze 270

Sommerfeld boundary
condition 232–3

Sommerfeld condition, half
237

Sommerfeld number 234
Sonic velocity 493–6
Source 375–6, 401
Source and sink of

numerically equal
strength 387–9

Span (of aerofoil) 403
Specific-energy curve in

dimensionless form
436–7

Specific energy in open
channels 431–5

Specific entropy 489
Specific heat capacity 489
Specific gravity 13
Specific speed

power 616
pumps 639–40
turbines 616

Speed of sound 493–6
Speed ratio of Pelton wheel

603
Spiral vortex 398–9
Stability

of atmosphere 79
of bodies in fluids 71–8
of body subject to

additional force 78
of floating bodies 72–8
of fluid itself 79–80
of submerged bodies 71–2

Stable equilibrium 71
Stagnation enthalpy 492
Stagnation hypothesis 405
Stagnation point 110, 384,

517
Stagnation pressure 110, 503
Stagnation temperature 492,

502
Stall 337
Stalled flow 337
Stalling angle 337

Stall torque 654
Standing wave 478–9
Stanton diagram 250
Starting vortex 405
Steady flow 36
Steady-flow energy equation

derivation 97–100
for open channels 416–9
practical application

103–4
Steady-flow momentum

equation 134, 428
Steady uniform flow 415,

419–23
Steep slope 435, 462–3
Stokes (unit) 26
Stokes’s Law 212, 391
Straight-line closure 570
Streak-line 32
Stream filament 31
Stream function 362–4
Streamlined body 325
Streamlines 31, 362–3, 370

pressure variation
perpendicular to
107–9

Stream-tube 31
Strength of source 375
Strength of vortex 377
Stress 1, 9, 15
Strickler’s formula 422
Strouhal number 328
Submerged bodies,

stability of 71–2
Subsonic flow 522, 524,

526–7
Subsonic velocity 496
Substantial acceleration 89
Super-cavitating machines

644
Supersonic flow 502, 527

between two boundaries
516–7

over concave boundary
516

round corners 512–6
Supersonic velocity 497
Surface profiles 457, 459

classification 461–3
Surface tension 28–30, 469
Surface tension forces 165–6
Surface waves 464–9
Surge tanks 583–6
Surges in open channels

427–31
Système International

d’Unités (SI units) 6

Tail race 606
Temperature 9
Temperature difference 10
Temperature lapse rate 47
Temporal acceleration 89
Terminal velocity 213, 333
Thermally perfect gas 17–8,

489
Thermodynamic concepts

487–91
Thermodynamic effects 487
Thixotropic liquids 27
Thoma’s cavitation

parameter 620
Thomson’s theorem 407
Three-dimensional flow 32,

331–5
Thrust coefficient 153
Thwaites’s method 322–3
Töpler system 549
Torque coefficient 654
Torque converter 654–6
Torricellian vacuum 49
Torricelli’s formula 114
Total energy line 106,

271–5
Total head 96
Total head line 106, 271–5
Tranquil flow 416, 435
Transition region of

boundary layer 299
Transition zone of flow 251
Transpiration methods

210–1
Tsunamis 480–2
Turbines 591, 596–625

performance characteristics
623–5

types 596–7
Turbulence 35

free 352–3
Turbulent boundary layer, on

smooth flat plate with
zero pressure gradient
313–6

Turbulent flow 35
in pipes 246–8
velocity distribution in

344–52
Two-dimensional flow 32–3

Undular jump 441–2
Uniform flow 30
Uniform rectilinear flow

374, 384
Unit flow 624
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Unit power 624
Units 4–10

prefixes 8
Unit speed 624
Universal gas constant 18
Unstable equilibrium 71
Unsteady flow 36–7
Upper (or higher) critical

velocity 247
U-tube manometers 50–5

Vacuum 48–9
Valve closure 569–74
Valve opening factor 570
Vapour pressure 16
Varied flow 416
Velocity

of flow 630
of sound 496
of whirl 601

Velocity defect 345
Velocity defect law 345
Velocity diagrams 609–10,

612
Velocity distribution

in rough pipes 349–50
in smooth pipes and over

smooth plates
345–8

in turbulent flow 344–52
Velocity gradient 22
Velocity head 96
Velocity measurement

288–90
Velocity potential 367–9
Velocity profile 22
Vena contracta 113
Venturi flume 451–4
Venturi-meter 119–22
Virtual mass 392–3
Viscoelastic materials 27
Viscometer 211

Engler 211
Ostwald 211

Redwood 211
rotary 215–8
Saybolt 211
Searle 231

Viscometry 210
Viscosimeter see Viscometer
Viscosity 21–8

absolute 23
basic SI unit 25
causes of 24–5
dynamic 23, 668
eddy 341–2
influence on flow 37
kinematic 26, 669
measurement of 210
quantitative definition

21–4
variation with temperature

668–9
Viscous forces 163–4
Viscous resistance 191–2
Viscous stresses 199
Viscous sub-layer 251–2,

347
Voidage 240
Volute 605, 626
Vortex

forced 381–2
free 376–9
spiral 398–9
starting (on aerofoil) 405

Vortex drag 407–9
Vortex pair 396–8
Vortex shedding 328
Vortex sheet 511–2
Vortex street (or trail)

326–8
Vortex strength 377
Vorticity 365–6

Wake
definition 325
flow pattern 326
width 328

Water hammer 558
Wave drag 340
Wave energy 472–3
Wave formation 480
Wave-making resistance

182–3
Wave propagation, finite

waves 498–9
Waves

Airy 467–8
capillary 469
deep water 468
dispersive 468
elastic 493–7
gravity 468
moving into shallow water

477–8
in open channels 427–31
oscillatory 464–79
reflection 564–9
standing 478–9

Weber number 166–7
Weir

broad-crested 444–7
drowned 447–8
rapid flow approaching

449–51
sharp-crested 126–30
suppressed 128

Whirl 609
Whirl slip 633
Wicket gates 606
Windage 603
Wind turbine, momentum

theory 154
Wings, aerodynamics of

403–9, 544–6

Yaw meter 291
Yield stress 198

Zone of action 498
Zone of silence 498
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