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PREFACE

Mechanics is the body of knowledge that deals with the relationships between forces and the motion of points through 
space, including the material space. Material science is the body of knowledge that deals with the properties of materials, 
including their mechanical properties. Mechanics is very deductive—having defined some variables and given some basic 
premises, one can logically deduce relationships between the variables. Material science is very empirical—having defined 
some variables one establishes the relationships between the variables experimentally. Mechanics of materials synthesizes 
the empirical relationships of materials into the logical framework of mechanics, to produce formulas for use in the design 
of structures and other solid bodies.

There has been, and continues to be, a tremendous growth in mechanics, material science, and in new applications of 
mechanics of materials. Techniques such as the finite-element method and Moiré interferometry were research topics in 
mechanics, but today these techniques are used routinely in engineering design and analysis. Wood and metal were the pre-
ferred materials in engineering design, but today machine components and structures may be made of plastics, ceramics, poly-
mer composites, and metal-matrix composites. Mechanics of materials was primarily used for structural analysis in aerospace, 
civil, and mechanical engineering, but today mechanics of materials is used in electronic packaging, medical implants, the 
explanation of geological movements, and the manufacturing of wood products to meet specific strength requirements. 
Though the principles in mechanics of materials have not changed in the past hundred years, the presentation of these princi-
ples must evolve to provide the students with a foundation that will permit them to readily incorporate the growing body of 
knowledge as an extension of the fundamental principles and not as something added on, and vaguely connected to what they 
already know. This has been my primary motivation for writing this book.

Often one hears arguments that seem to suggest that intuitive development comes at the cost of mathematical logic and 
rigor, or the generalization of a mathematical approach comes at the expense of intuitive understanding. Yet the icons in the 
field of mechanics of materials, such as Cauchy, Euler, and Saint-Venant, were individuals who successfully gave physical 
meaning to the mathematics they used. Accounting of shear stress in the bending of beams is a beautiful demonstration of 
how the combination of intuition and experimental observations can point the way when self-consistent logic does not. Intui-
tive understanding is a must—not only for creative engineering design but also for choosing the marching path of a mathemat-
ical development. By the same token, it is not the heuristic-based arguments of the older books, but the logical development of 
arguments and ideas that provides students with the skills and principles necessary to organize the deluge of information in 
modern engineering. Building a complementary connection between intuition, experimental observations, and mathematical 
generalization is central to the design of this book.

Learning the course content is not an end in itself, but a part of an educational process. Some of the serendipitous devel-
opment of theories in mechanics of materials, the mistakes made and the controversies that arose from these mistakes, are all 
part of the human drama that has many educational values, including learning from others’ mistakes, the struggle in under-
standing difficult concepts, and the fruits of perseverance. The connection of ideas and concepts discussed in a chapter to 
advanced modern techniques also has educational value, including continuity and integration of subject material, a starting 
reference point in a literature search, an alternative perspective, and an application of the subject material. Triumphs and trag-
edies in engineering that arose from proper or improper applications of mechanics of materials concepts have emotive impact 
that helps in learning and retention of concepts according to neuroscience and education research. Incorporating educational 
values from history, advanced topics, and mechanics of materials in action or inaction, without distracting the student from the 
central ideas and concepts is an important complementary objective of this book.

The achievement of these educational objectives is intricately tied to the degree to which the book satisfies the pedagogi-
cal needs of the students. The Note to Students describes some of the features that address their pedagogical needs. The Note 
to the Instructor outlines the design and format of the book to meet the described objectives. 

I welcome any comments, suggestions, concerns, or corrections you may have that will help me improve the book. My e-
mail address is mavable@mtu.edu.
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A NOTE TO STUDENTS

Some of the features that should help you meet the learning objectives of this book are summarized here briefly.

• A course in statics is a prerequisite for this course. Appendix A reviews the concepts of statics from the perspective of 
this course. If you had statics a few terms ago, then you may need to review your statics textbook before the brevity of 
presentation in Appendix A serves you adequately. If you feel comfortable with your knowledge of statics, then you 
can assess for yourself what you need to review by using the Statics Review Exams given in Appendix A.

• All internal forces and moments are printed in bold italics. This is to emphasize that the internal forces and moments 
must be determined by making an imaginary cut, drawing a free-body diagram, and using equilibrium equations or by 
using methods that are derived from this approach. 

• Every chapter starts by listing the major learning objective(s) and a brief description of the motivation for studying the 
chapter.

• Every chapter ends with Points and Formulas to Remember, a one-page synopsis of non-optional topics. This brings 
greater focus to the material that must be learned. 

• Every Example problem starts with a Plan and ends with Comments, both of which are specially set off to emphasize 
the importance of these two features. Developing a plan before solving a problem is essential for the development of 
analysis skills. Comments are observations deduced from the example, highlighting concepts discussed in the text pre-
ceding the example, or observations that suggest the direction of development of concepts in the text following the 
example.

• Quick Tests with solutions are designed to help you diagnose your understanding of the text material. To get the maxi-
mum benefit from these tests, take them only after you feel comfortable with your understanding of the text material.

• After a major topic you will see a box called Consolidate Your Knowledge. It will suggest that you either write a 
synopsis or derive a formula. Consolidate Your Knowledge is a learning device that is based on the observation that 
it is easy to follow someone else’s reasoning but significantly more difficult to develop one’s own reasoning. By 
deriving a formula with the book closed or by writing a synopsis of the text, you force yourself to think of details 
you would not otherwise. When you know your material well, writing will be easy and will not take much time.

• Every chapter has at least one module called MoM in Action, describing a triumph or a tragedy in engineering or 
nature. These modules describe briefly the social impact and the phenomenological explanation of the triumph or trag-
edy using mechanics of materials concept.

• Every chapter has a section called Concept Connector, where connections of the chapter material to historical develop-
ment and advanced topics are made. History shows that concepts are not an outcome of linear logical thinking, but 
rather a struggle in the dark in which mistakes were often made but the perseverance of pioneers has left us with a rich 
inheritance. Connection to advanced topics is an extrapolation of the concepts studied. Other reference material that 
may be helpful in the future can be found in problems labeled “Stretch yourself.”

• Every chapter ends with Chapter Connector, which serves as a connecting link to the topics in subsequent chapters. Of 
particular importance are chapter connector sections in Chapters 3 and 7, as these are the two links connecting together 
three major parts of the book.

• A glossary of all the important concepts is given in Appendix C.7 for easy reference.Chapters number are identified 
and in the chapter the corresponding word is highlighted in bold.

• At the end is a Formula Sheet for easy reference. Only equations of non-optional topics are listed. There are no expla-
nations of the variables or the equations in order to give your instructor the option of permitting the use of the formula 
sheet in an exam.
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A NOTE TO THE INSTRUCTOR

The best way I can show you how the presentation of this book meets the objectives stated in the Preface is by drawing 
your attention to certain specific features. Described hereafter are the underlying design and motivation of presentation in 
the context of the development of theories of one-dimensional structural elements and the concept of stress. The same 
design philosophy and motivation permeate the rest of the book. 

Figure 3.15 (page 93) depicts the logic relating displacements—strains—stresses—internal forces and moments—exter-
nal forces and moments. The logic is intrinsically very modular—equations relating the fundamental variables are indepen-
dent of each other. Hence, complexity can be added at any point without affecting the other equations. This is brought to the 
attention of the reader in Example 3.5, where the stated problem is to determine the force exerted on a car carrier by a stretch 
cord holding a canoe in place. The problem is first solved as a straightforward application of the logic shown in Figure 3.15. 
Then, in comments following the example, it is shown how different complexities (in this case nonlinearities) can be added to 
improve the accuracy of the analysis. Associated with each complexity are post-text problems (numbers written in parenthe-
ses) under the headings “Stretch yourself ” or “Computer problems,” which are well within the scope of students willing to 
stretch themselves. Thus the central focus in Example 3.5 is on learning the logic of Figure 3.15, which is fundamental to 
mechanics of materials. But the student can appreciate how complexities can be added to simplified analysis, even if no 
“Stretch yourself ” problems are solved. 

This philosophy, used in Example 3.5, is also used in developing the simplified theories of axial members, torsion of 
shafts, and bending of beams. The development of the theory for structural elements is done rigorously, with assumptions 
identified at each step. Footnotes and comments associated with an assumption directs the reader to examples, optional sec-
tions, and “Stretch yourself ” problems, where the specific assumption is violated. Thus in Section 5.2 on the theory of the tor-
sion of shafts, Assumption 5 of linearly elastic material has a footnote directing the reader to see “Stretch yourself ” problem 
5.52 for nonlinear material behavior; Assumption 7 of material homogeneity across a cross section has a footnote directing the 
reader to see the optional “Stretch yourself ” problem 5.49 on composite shafts; and Assumption 9 of untapered shafts is fol-
lowed by statements directing the reader to Example 5.9 on tapered shafts. Table 7.1 gives a synopsis of all three theories 
(axial, torsion, and bending) on a single page to show the underlying pattern in all theories in mechanics of materials that the 
students have seen three times. The central focus in all three cases remains the simplified basic theory, but the presentation in 
this book should help the students develop an appreciation of how different complexities can be added to the theory, even if no 
“Stretch yourself ” problems are solved or optional topics covered in class. 

Compact organization of information seems to some engineering students like an abstract reason for learning theory. 
Some students have difficulty visualizing a continuum as an assembly of infinitesimal elements whose behavior can be 
approximated or deduced. There are two features in the book that address these difficulties. I have included sections called 
Prelude to Theory in ‘Axial Members’, ‘Torsion of Circular Shafts’ and ‘Symmetric Bending of Beams.’ Here numerical 
problems are presented in which discrete bars welded to rigid plates are considered. The rigid plates are subjected to displace-
ments that simulate the kinematic behavior of cross sections in axial, torsion or bending. Using the logic of Figure 3.15, the 
problems are solved—effectively developing the theory in a very intuitive manner. Then the section on theory consists essen-
tially of formalizing the observations of the numerical problems in the prelude to theory. The second feature are actual photo-
graphs showing nondeformed and deformed grids due to axial, torsion, and bending loads. Seeing is believing is better than 
accepting on faith that a drawn deformed geometry represents an actual situation. In this manner the complementary connec-
tion between intuition, observations, and mathematical generalization is achieved in the context of one-dimensional structural 
elements. 

Double subscripts1 are used with all stresses and strains. The use of double subscripts has three distinct benefits. (i) It pro-
vides students with a procedural way to compute the direction of a stress component which they calculate from a stress for-
mula. The procedure of using subscripts is explained in Section 1.3 and elaborated in Example 1.8. This procedural 
determination of the direction of a stress component on a surface can help many students overcome any shortcomings in intu-

1Many authors use double subscripts with shear stress but not for normal stress. Hence they do not adequately elaborate the use of these sub-
scripts when determining the direction of stress on a surface from the sign of the stress components.
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itive ability. (ii) Computer programs, such as the finite-element method or those that reduce full-field experimental data, pro-
duce stress and strain values in a specific coordinate system that must be properly interpreted, which is possible if students 
know how to use subscripts in determining the direction of stress on a surface. (iii) It is consistent with what the student will 
see in more advanced courses such as those on composites, where the material behavior can challenge many intuitive expecta-
tions. 

But it must be emphasized that the use of subscripts is to complement not substitute an intuitive determination of stress 
direction. Procedures for determining the direction of a stress component by inspection and by subscripts are briefly described 
at the end of each theory section of structural elements. Examples such as 4.3 on axial members, 5.6 and 5.9 on torsional shear 
stress, and 6.8 on bending normal stress emphasize both approaches. Similarly there are sets of problems in which the stress 
direction must be determined by inspection as there are no numbers given—problems such as 5.23 through 5.26 on the direc-
tion of torsional shear stress; 6.35 through 6.40 on the tensile and compressive nature of bending normal stress; and 8.1
through 8.9 on the direction of normal and shear stresses on an inclined plane. If subscripts are to be used successfully in 
determining the direction of a stress component obtained from a formula, then the sign conventions for drawing internal 
forces and moments on free-body diagrams must be followed. Hence there are examples (such as 6.6) and problems (such as 
6.32 to 6.34) in which the signs of internal quantities are to be determined by sign conventions. Thus, once more, the comple-
mentary connection between intuition and mathematical generalization is enhanced by using double subscripts for stresses 
and strains.

Other features that you may find useful are described briefly. 
All optional topics and examples are marked by an asterisk (*) to account for instructor interest and pace. Skipping these 

topics can at most affect the student’s ability to solve some post-text problems in subsequent chapters, and these problems are 
easily identifiable.

Concept Connector is an optional section in all chapters. In some examples and post-text problems, reference is made to 
a topic that is described under concept connector. The only purpose of this reference is to draw attention to the topic, but 
knowledge about the topic is not needed for solving the problem. 

The topics of stress and strain transformation can be moved before the discussion of structural elements (Chapter 4). I 
strived to eliminate confusion regarding maximum normal and shear stress at a point with the maximum values of stress com-
ponents calculated from the formulas developed for structural elements.

The post-text problems are categorized for ease of selection for discussion and assignments. Generally speaking, the 
starting problems in each problem set are single-concept problems. This is particularly true in the later chapters, where prob-
lems are designed to be solved by inspection to encourage the development of intuitive ability. Design problems involve the 
sizing of members, selection of materials (later chapters) to minimize weight, determination of maximum allowable load to 
fulfill one or more limitations on stress or deformation, and construction and use of failure envelopes in optimum design 
(Chapter 10)—and are in color. “Stretch yourself ” problems are optional problems for motivating and challenging students 
who have spent time and effort understanding the theory. These problems often involve an extension of the theory to include 
added complexities. “Computer” problems are also optional problems and require a knowledge of spreadsheets, or of simple 
numerical methods such as numerical integration, roots of a nonlinear equation in some design variable, or use of the least-
squares method. Additional categories such as “Stress concentration factor,” “Fatigue,” and “Transmission of power” prob-
lems are chapter-specific optional problems associated with optional text sections.
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CHAPTER ONE

STRESS

Learning objectives
1. Understanding the concept of stress. 
2. Understanding the two-step analysis of relating stresses to external forces and moments.

_______________________________________________

On January 16th, 1943 a World War II tanker S.S. Schenectady, while tied to the pier on Swan Island in Oregon, fractured just 
aft of the bridge and broke in two, as shown in Figure 1.1. The fracture started as a small crack in a weld and propagated rapidly 
overcoming the strength of the material. But what exactly is the strength? How do we analyze it? To answer these questions, we 
introduce the concept of stress. Defining this variable is the first step toward developing formulas that can be used in strength 
analysis and the design of structural members.

Figure 1.2 shows two links of the logic that will be fully developed in Section 3.2. What motivates the construction of 
these two links is an idea introduced in Statics—analysis is simpler if any distributed forces in the free-body diagram are 
replaced by equivalent forces and moments before writing equilibrium equations (see Appendix A.6). Formulas developed in 
mechanics of materials relate stresses to internal forces and moments. Free-body diagrams are used to relate internal forces 
and moments to external forces and moments.

 Figure 1.1 Failure of S.S. Schenectady.

  Figure 1.2 Two-step process of relating stresses to external forces and moments.

Static
equivalency Equilibrium
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1.1 STRESS ON A SURFACE

The stress on a surface is an internally distributed force system that can be resolved into two components: normal (perpendicu-
lar) to the imaginary cut surface, called normal stress, and tangent (parallel) to the imaginary cut surface, called shear stress. 

1.1.1 Normal Stress

In Figure 1.3, the cable of the chandelier and the columns supporting the building must be strong enough to support the weight 
of the chandelier and the weight of the building, respectively. If we make an imaginary cut and draw the free-body diagrams, 
we see that forces normal to the imaginary cut are needed to balance the weight. The internal normal force N divided by the 
area of the cross section A exposed by the imaginary cut gives us the average intensity of an internal normal force distribution, 
which we call the average normal stress:

(1.1)

where σ is the Greek letter sigma used to designate normal stress and the subscript av emphasizes that the normal stress is 
an average value. We may view σav as a uniformly distributed normal force, as shown in Figure 1.3, which can be replaced 
by a statically equivalent internal normal force. We will develop this viewpoint further in Section 1.1.4. Notice that N is in 
boldface italics, as are all internal forces (and moments) in this book. 

Equation (1.1) is consistent with our intuitive understanding of strength. Consider the following two observations. (i) We 
know that if we keep increasing the force on a body, then the body will eventually break. Thus we expect the quantifier for 
strength (stress) to increase in value with the increase of force until it reaches a critical value. In other words, we expect stress 
to be directly proportional to force, as in Equation (1.1). (ii) If we compare two bodies that are identical in all respects except 
that one is thicker than the other, then we expect that the thicker body is stronger. Thus, for a given force, as the body gets 
thicker (larger cross-sectional area), we move away from the critical breaking value, and the value of the quantifier of strength 
should decrease. In other words, stress should vary inversely with the cross-sectional area, as in Equation (1.1).

Equation (1.1) shows that the unit of stress is force per unit area. Table 1.1 lists the various units of stress used in this 
book. It should be noted that 1 psi is equal to 6.895 kPa, or approximately 7 kPa. Alternatively, 1 kPa is equal to 0.145 psi, or 

σav
N
A
----=

Tensile Normal Force

Compressive Normal Force

Imaginary Cut

Chandelier Weight

Building Weight

Imaginary Cut

Chandelier Weight

Tensile Normal Stress

Building Weight

Compressive Normal Stress

N

N N N

σavg

σavg σavg σavg

 Figure 1.3 Examples of normal stress distribution.



1  3

Pr
in

te
d 

fr
om

: h
ttp

://
w

w
w

.m
e.

m
tu

.e
du

/~
m

av
ab

le
/M

oM
2n

d

Mechanics of Materials: StressM. Vable

January, 2010

approximately 0.15 psi. Normal stress that pulls the imaginary surface away from the material is called tensile stress, as 
shown on the cable of the chandelier in Figure 1.3. Normal stress that pushes the imaginary surface into the material is called 
compressive stress, as shown on the column. In other words, tensile stress acts in the direction of the outward normal whereas 
compressive stress is opposite to the direction of the outward normal to the imaginary surface. Normal stress is usually 
reported as tensile or compressive and not as positive or negative. Thus σ = 100 MPa (T) or σ = 10 ksi (C) are the preferred 
ways of reporting tensile or compressive normal stresses.

The normal stress acting in the direction of the axis of a slender member (rod, cable, bar, column) is called axial stress. 
The compressive normal stress that is produced when one real surface presses against another is called the bearing stress. 
Thus, the stress that exist between the base of the column and the floor is a bearing stress but the compressive stress inside the 
column is not a bearing stress.

An important consideration in all analyses is to know whether the calculated values of the variables are reasonable. A sim-
ple mistake, such as forgetting to convert feet to inches or millimeters to meters, can result in values of stress that are incorrect 
by orders of magnitude. Less dramatic errors can also be caught if one has a sense of the limiting stress values for a material. 
Table 1.2 shows fracture stress values for a few common materials. Fracture stress is the experimentally measured value at 
which a material breaks. The numbers are approximate, and + indicates variations of the stress values in each class of material. 
The order of magnitude and the relative strength with respect to wood are shown to help you in acquiring a feel for the numbers.

TABLE 1.1 Units of stress

Abbreviation Units Basic Units

psi Pounds per square inch lb/in.2

ksi Kilopounds (kips) per square inch 103 lb/in.2

Pa Pascal N/m2

kPa Kilopascal 103 N/m2 

MPa Megapascal 106 N/m2

GPa Gigapascal 109 N/m2

TABLE 1.2  Fracture stress magnitudes

Material ksi MPa Relative to Wood

Metals 90 + 90% 630 + 90% 7.0

Granite 30 + 60% 210 + 60% 2.5

Wood 12 + 25% 84 + 25% 1.0

Glass 9 + 90% 63 + 90% 0.89

Nylon 8 + 10% 56 + 10% 0.67

Rubber 2.7 + 20% 19 + 20% 0.18

Bones 2 + 25% 14 + 25% 0.16

Concrete 6 + 90% 42 + 90% 0.03

Adhesives 0.3 + 60% 2.1 + 60% 0.02
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EXAMPLE 1.1
A girl whose mass is 40 kg is using a swing set. The diameter of the wire used for constructing the links of the chain is 5 mm. Determine 
the average normal stress in the links at the bottom of the swing, assuming that the inertial forces can be neglected.

PLAN
We make an imaginary cut through the chains, draw a free-body diagram, and find the tension T in each chain. The link is cut at two 
imaginary surfaces, and hence the internal normal force N is equal to T/2 from which we obtain the average normal stress.

SOLUTION 
The cross-sectional area and the weight of the girl can be found as 

(E1)

Figure 1.5 shows the free body diagram after an imaginary cut is made through the chains. The tension in the chain and the normal force 
at each surface of the link can be found as shown in Equations (E2) and (E3).

(E2)

(E3)

The average normal stress can be found as shown in Equation (E4).

(E4)

ANS.  

COMMENTS

1. The stress calculations had two steps. First, we found the internal force by equilibrium; and second we calculated the stress from it. 

2. An alternative view is to think that the total material area of the link in each chain is  The internal normal 

force in each chain is T = 196.2 N thus the average normal stress is  as before.

1.1.2 Shear Stress

In Figure 1.6a the double-sided tape used for sticking a hook on the wall must have sufficient bonding strength to support the 
weight of the clothes hung from the hook. The free-body diagram shown is created by making an imaginary cut at the wall sur-

  Figure 1.4 Girl in a swing, Example 1.2.

A πd2

4
--------- π 0.005 m( )2

4
------------------------------- 19.6 10 6–( ) m2= = = W 40 kg( ) 9.81 m/s2( ) 392.4 N= =

T 2N=

2T 392.4 N= or 4N 392.4 N= or N 98.1 N=

 Figure 1.5 Free-body diagram of swing.

NN

T

T T

W

σav
N
A
---- 98.1 N

19.6 10× 6–  m2
( )
------------------------------------------ 4.996 106×  N/m2= = =

σav 5.0 MPa (T)=

2A 39.2 10× 6– m2.=

σav
T

2A
------- = 196.2 39.2 10 6–×⁄( ) 5 106×  N/m2,= =
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face. In Figure 1.6b the paper in the ring binder will tear out if the pull of the hand overcomes the strength of the paper. The 
free-body diagram shown is created by making an imaginary cut along the path of the rings as the paper is torn out. In both free-
body diagrams the internal force necessary for equilibrium is parallel (tangent) to the imaginary cut surface. The internal shear 
force V divided by the cross sectional area A exposed by the imaginary cut gives us the average intensity of the internal shear 
force distribution, which we call the average shear stress:

(1.2)

where τ is the Greek letter tau used to designate shear stress and the subscript av emphasizes that the shear stress is an average 
value. We may view τav as a uniformly distributed shear force, which can be replaced by a statically equivalent internal normal 
force V. We will develop this viewpoint further in Section 1.1.4.

1.1.3 Pins

Pins are one of the most common example of a structural member in which shear stress is assumed uniform on the imag-
inary surface perpendicular to the pin axis. Bolts, screws, nails, and rivets are often approximated as pins if the primary func-
tion of these mechanical fasteners is the transfer of shear forces from one member to another. However, if the primary
function of these mechanical fasteners is to press two solid bodies into each other (seals) then these fasteners cannot be 
approximated as pins as the forces transferred are normal forces. 

Shear pins are mechanical fuses designed to break in shear when the force being transferred exceeds a level that would 
damage a critical component. In a lawn mower shear pins attach the blades to the transmission shaft and break if the blades hit 
a large rock that may bend the transmission shaft.

τav
V
A
----=

Weight
of the
ClothesImaginary cut

between the wall
and the tape

V

Weight
of the
Clothes

τ

τ

Imaginary cut
along the possible path 
of the edge of the ring.

Pull
of the
hand

Pull
of the
hand

Pull
of the
hand

τ

τ

τ

V

V

V

Mwall

Mwall
Weight
of the
Clothes

 Figure 1.6 Examples of shear stress distribution.

(a) (b)
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Figure 1.7 shows magnified views of two types of connections at a support. Figure 1.7a shows pin in single shear as a sin-
gle cut between the support and the member will break the connection. Figure 1.7b shows a pin in double shear as two cuts are 
needed to break the connection. For the same reaction force, the pin in double shear has a smaller shear stress.

When more than two members (forces) are acting on a pin, it is important to visualize the imaginary surface on which the 
shear stress is to be calculated. Figure 1.8a shows a magnified view of a pin connection between three members. The shear 
stress on the imaginary cut surface 1 will be different from that on the imaginary cut surface 2, as shown by the free-body dia-
grams in Figure 1.8b.  

EXAMPLE 1.2
Two possible configurations for the assembly of a joint in a machine are to be evaluated. The magnified view of the two configurations 
with the forces in the members are shown in Figure 1.9. The diameter of the pin is 1 in. Determine which joint assembly is preferred by 
calculating the maximum shear stress in the pin for each case.

PLAN
We make imaginary cuts between individual members for the two configurations and draw free-body diagrams to determine the shear 
force at each cut. We calculate and compare the shear stresses to determine the maximum shear stress in each configuration.

F F

V

(a) Figure 1.7 Pins in (a) single and (b) double shear.
(b)

F

V

V

F

  Figure 1.8 Multiple forces on a pin.

NBN
VBV

NC

VBV

VDV

(b)

Cut 1

(a)

NC

NDN

NBN
Cut 2

NDN

VDV

Configuration 1 Configuration 2

NC = 20 kips NC = 20 kips

NB = 15 kips

NA=15 kips NB = 15 kips

ND = 20 kips ND = 20 kips

NB = 15 kips
A

B

C D
B

C
D

A

  Figure 1.9 Forces on a joint and different joining configurations.
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SOLUTION 
The area of the pin is . Making imaginary cuts between members we can draw the free-body diagrams 
and calculate the internal shear force at the imaginary cut, as shown in Figure 1.10. 

Configuration 1: From the free-body diagrams in Figure 1.10a 
(E1)

We see that the maximum shear force exists between members C and D. Thus the maximum shear stress is
 (E2)

Configuration 2: From the free-body diagrams in Figure 1.10b 

(E3)

The maximum shear force exists the between C and B. Thus the maximum shear stress is 
(E4)

Comparing Equations (E2) and (E3) we conclude 

ANS. 

COMMENTS 

1. Once more note the two steps: we first calculated the internal shear force by equilibrium and then calculated the shear stress from it.
2. The problem emphasizes the importance of visualizing the imaginary cut surface in the calculation of stresses.
3. A simple change in an assembly sequence can cause a joint to fail. This observation is true any time more than two members are 

joined together. Gusset plates are often used at the joints such as in bridge shown in Figure 1.11 to eliminate the problems associated 
with an assembly sequence.

A π 0.5 in.( )2 0.7854 in.2= =

Imaginary cut between members A and B

NA= 15 kips
V1

Imaginary cut between members B and C

NB = 15 kips

NA= 15 kips

V2

Imaginary cut between members C and D

ND = 20 kips

V3

Imaginary cut between members A and C

Imaginary cut between members C and B

Imaginary cut between members B and D

V1 NA= 15 kips

NC = 20 kips

NA= 15 kips

(V2)y

(V2)x

ND = 20 kips

V3

A

A A

D

A

A

D

B

C

  Figure 1.10 Free-body diagrams. (a) Configuration 1. (b) Configuration 2.

(a)
(b)

V1 15 kips= V2 0= V3 20 kips=

τmax = V3 A =⁄  25.46 ksi.

V1 15 kips= V2( )x 15 kips= V2( )y 20 kips= V2 152 202+ 25 kips.= = V3 20 kips=

τmax V2 A⁄ 31.8 ksi.= =

The configuration 1 is preferred, as it will result in smaller shear stres

  Figure 1.11 Use of gusset plates at joints in a bridge truss.

Gusset plate
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EXAMPLE 1.3
All members of the truss shown in Figure 1.12 have a cross-sectional area of 500 mm2 and all pins have a diameter of 20 mm. Determine: 
(a) The axial stresses in members BC and DE, (b) The shear stress in the pin at A, assuming the pin is in double shear. 

PLAN
(a) The free-body diagram of joint D can be used to find the internal axial force in member DE. The free body diagram drawn after an 
imaginary cut through BC, CF, and EF can be used to find the internal force in member BC. (b) The free-body diagram of the entire truss 
can be used to find the support reaction at A, from which the shear stress in the pin at A can be found. 

SOLUTION 
The cross-sectional areas of pins and members can be calculated as in Equation (E1)

(E1)

(a) Figure 1.13a shows the free-body diagram of joint D. The internal axial force NDE can be found using equilibrium equations as shown 
in Equation (E3).

(E2)

(E3)

The axial stress in member DE can be found as shown in Equation (E4).

(E4)

ANS.   
Figure 1.13b shows the free-body diagram after an imaginary cut is made through members CB, CF, and EF. By taking the moment 
about point F we can find the internal axial force in member CB as shown in Equation (E5).

(E5)

The axial stress in member CB can be found as shown in Equation (E6). 

(E6)

ANS.  
(b) Figure 1.13c shows the free-body diagram of the entire truss. 
By moment equilibrium about point G we obtain 

(E7)

The shear force in the pin will be half the force of NAB as it is in double shear. We obtain the shear stress in the pin as

(E8)

ANS.  

P � 21 kN

A B

F E DG

C

2 m 2 m 2 m

G

2 m

  Figure 1.12 Truss.

Ap
π 0.02 m( )2

4
---------------------------- 314.2 10 6–( )m2= = Am 500 10 6–( )m2=

NDC 45o sin  21 kN– 0=       or NDC 29.7 kN=

21 kN

NDE

NDC

D

45°

  Figure 1.13 Free-body diagrams. 
21 kN

NEFN

NCF
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GxG
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NAB
(a)

(b) (c)

N– DE NDC 45o 0=cos– or NDE 21–  kN=

σDE
NDE
Am

----------- 21 103( ) N–[ ]

500 10 6–( ) m2[ ] 
----------------------------------------- 42– 106( ) N/m2= = =

σDE  42 MPa (C)=

NCB 2 m( )  21 kN( )– 4 m( ) 0=  or NCB 42 kN=

σCB
NCB
Am

---------- 84 106( ) N/m2 = =

σCD 84 MPa (T)=

NAB 2 m( ) 21 kN 6 m( ) 0=– or NAB 63 kN=

τA
NAB 2⁄

Ap
----------------- 31.5 103( ) N

314.2 10 6–( )m2
------------------------------------- 100 106( ) N/m2= = =

τA 100 MPa=
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COMMENTS

1. We calculated the internal forces in each member before calculating the axial stresses, emphasizing the two steps Figure 1.2 of relat-
ing stresses to external forces.

2. In part (a) we could have solved for the force in BC by noting that EC is a zero force member and by drawing the free-body diagram 
of joint C.

PROBLEM SET 1.1

Tensile stress

1.1  In a tug of war, each person shown in Figure P1.1 exerts a force of 200 lb. If the effective diameter of the rope is  determine the axial 

stress in the rope. 

1.2  A weight is being raised using a cable and a pulley, as shown in Figure P1.2. If the weight W = 200 lb, determine the axial stress assuming: 

(a) the cable diameter is  (b) the cable diameter is 

1.3  The cable in Figure P1.2 has a diameter of  If the maximum stress in the cable must be limited to 4 ksi (T), what is the maximum 

weight that can be lifted?

1.4  The weight W = 250 lb in Figure P1.2. If the maximum stress in the cable must be limited to 5 ksi (T), determine the minimum diameter of 

the cable to the nearest  

1.5  A 6-kg light shown in Figure P1.5 is hanging from the ceiling by wires of 0.75-mm diameter. Determine the tensile stress in wires AB and 
BC.

1.6  An 8-kg light shown in Figure P1.5 is hanging from the ceiling by wires. If the tensile stress in the wires cannot exceed 50 MPa, determine 
the minimum diameter of the wire, to the nearest tenth of a millimeter.

1
2
--- in.,

  Figure P1.1 

1
8
--- in. 1

4
--- in.

W

 Figure P1.2 

1
5
---  in.

1
16
------ in.

2 m

Light

A A

B

C

2.
5 

m

2.5 m

  Figure P1.5 
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1.7  Wires of 0.5-mm diameter are to be used for hanging lights such as the one shown in Figure P1.5. If the tensile stress in the wires cannot 
exceed 80 MPa, determine the maximum mass of the light that can be hung using these wires.

1.8  A 3 kg picture is hung using a wire of 3 mm diameter, as shown in Figure P1.8. What is the average normal stress in the wires?

1.9  A 5 kg picture is hung using a wire, as shown in Figure P1.8. If the tensile stress in the wires cannot exceed 10MPa, determine the minimum 
required diameter of the wire to the nearest millimeter.

1.10  Wires of 16-mil diameter are used for hanging a picture, as shown in Figure P1.8. If the tensile stress in the wire cannot exceed 750 psi, 

determine the maximum weight of the picture that can be hung using these wires. 1 mil = 

1.11  A board is raised to lean against the left wall using a cable and pulley, as shown in Figure P1.11. Determine the axial stress in the 
cable in terms of the length L of the board, the specific weight γ per unit length of the board, the cable diameter d, and the angles θ and α,
shown in Figure P1.11.

Compressive and bearing stresses
1.12  A hollow circular column supporting a building is attached to a metal plate and bolted into the concrete foundation, as shown in Figure 
P1.12. The column outside diameter is 100 mm and an inside diameter is 75 mm. The metal plate dimensions are 200 mm × 200 mm × 10 mm. The 
load P is estimated at 800 kN. Determine: (a) the compressive stress in the column; (b) the average bearing stress between the metal plate and the 
concrete.

1.13  A hollow circular column supporting a building is attached to a metal plate and bolted into the concrete foundation, as shown in Figure 
P1.12. The column outside diameter is 4 in. and an inside diameter is 3.5 in. The metal plate dimensions are 10 in. × 10 in. × 0.75 in. If the allow-
able average compressive stress in the column is 30 ksi and the allowable average bearing stress in concrete is 2 ksi, determine the maximum load 
P that can be applied to the column.

54o

  Figure P1.8 

1
1000
------------ in.

�

�

Board

  Figure P1.11 

Metal
Con

cre
te

P

  Figure P1.12 
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1.14  A hollow square column supporting a building is attached to a metal plate and bolted into the concrete foundation, as shown in Figure 
P1.14. The column has outside dimensions of 120 mm × 120 mm and a thickness of 10 mm. The load P is estimated at 600 kN. The metal plate 
dimensions are 250 mm × 250 mm × 15 mm. Determine: (a) the compressive stress in  the column; (b) the average bearing stress between the 
metal plate and the concrete.

1.15  A column with the cross section shown in Figure P1.15 supports a building. The column is attached to a metal plate and bolted into the 
concrete foundation. The load P is estimated at 750 kN. The metal plate dimensions are 300 mm × 300 mm × 20 mm. Determine: (a) the com-
pressive stress in the column; (b) the average bearing stress between the metal plate and the concrete 

1.16  A 70-kg person is standing on a bathroom scale that has dimensions of 150 mm × 100 mm × 40 mm (Figures P1.16). Determine the bear-
ing stress between the scale and the floor. Assume the weight of the scale is negligible.

1.17  A 30-ft-tall brick chimney has an outside diameter of 3 ft and a wall thickness of 4 in. (Figure P1.17). If the specific weight of the bricks is 
80 lb/ft3, determine the average bearing stress at the base of the chimney. 

Metal
Con

cre
te

P

  Figure P1.14 

Con
cre

te

16
0 m

m

Metal

P

10 mm10 mm

10 mm10 mm 160 mm

  Figure P1.15 

  Figure P1.16 

  Figure P1.17 

30 ft
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1.18  Determine the average bearing stress at the bottom of the block shown in Figure P1.18 in terms of the specific weight γ and the length dimen-
sions a and h.

1.19  The Washington Monument is an obelisk with a hollow rectangular cross section that tapers along its length. An approximation of the 
monument geometry is shown in Figure P1.19. The thickness at the base is 4.5 m and at top it is 2.5 m. The monument is constructed from marble 
and granite. Using a specific weight of 28 kN/m3 for these materials, determine the average bearing stress at the base of the monument.

1.20  Show that the average compressive stress due to weight on a cross section at a distance x from the top of the wall in Figure P1.20b is half 
that of wall in Figure P1.20a, thus confirming the wisdom of ancient Egyptians in building inward-sloping walls for the pyramids. (Hint: Using γ 
the specific weight of wall material, H the height of the wall, t the thickness of the wall, and L the length of the wall, calculate the average com-
pressive stress at any cross section at a distance x from the top for the two walls.).

1.21  The Great pyramid of Giza shown in Figure 1.14c has a base of 757.7 ft x 757.7 ft and a height of 480.9 ft. Assume an average specific 
weight of γ = 75 lb/ft3. Determine (a) the bearing stress at the base of the pyramid. (b) the average compressive stress at mid height.

1.22  The Bent pyramid shown in Figure 1.14b has a base of 188 m x 188 m. The initial slopes of the sides is 54o27’44”. After a certain height 
the slope is 43o22’. The total height of the pyramid is 105 m. Assume an average mass density of 1200 kg/ m3. Determine the bearing stress at the 
base of the pyramid.

1.23  A steel bolt of 25 mm diameter passes through an aluminum sleeve of thickness 4 mm and outside diameter of 48 mm as shown in Figure 

h

a

100a

10h

  Figure P1.18 

10 m

17 m

169 m

10
 m

17
 m

  Figure P1.19 

 Figure P1.20 (a) Straight wall (b) Inward sloping tapered wall.

(a)
(b)

H
x

H

t

t

x

L L
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P1.23. Determine the average normal stress in the sleeve if in the assembled position the bolt has an average normal stress of 100 MPa (T). 

Shear stress
1.24  The device shown in Figure P1.24 is used for determining the shear strength of the wood. The dimensions of the wood block are 
6 in. × 8 in. × 2 in. If the force required to break the wood block is 15 kips, determine the average shear strength of the wood.

1.25  The dimensions of the wood block in Figure P1.24 are 6 in. × 8 in. × 1.5 in. Estimate the force P that should be applied to break the block 
if the average shear strength of the wood is 1.2 ksi.

1.26  The punch and die arrangement shown schematically in Figure P1.26 is used to punch out thin plate objects of different shapes. The cross 
section of the punch and die shown in Figure P1.26 is a circle of 1-in. diameter. A force P = 6 kips is applied to the punch. If the plate thickness 

t =  determine the average shear stress in the plate along the path of the punch.

1.27  The cross section of the punch and die shown in Figure P1.26 is a square of 10 mm × 10 mm. The plate shown has a thickness t = 3 mm 
and an average shear strength of 200 MPa. Determine the average force P needed to drive the punch through the plate. 

1.28  The schematic of a punch and die for punching washers is shown in Figure P1.28. Determine the force P needed to punch out washers, in 
terms of the plate thickness t, the average plate shear strength τ, and the inner and outer diameters of the washers di and do 

  Figure P1.23 

Sleeve
Rigid washers

300 mm
25 mm 25 mm

P

6 in 2 in

6 in

 Figure P1.24 

1
8
--- in.,

P

Plate

Punch

Die Die

t

  Figure P1.26 

di

dod

P

Punch

Die Die

t

  Figure P1.28 
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1.29  The magnified view of a pin joint in a truss are shown in Figure P1.29. The diameter of the pin is 25 mm. Determine the maximum trans-
verse shear stress in the pin. 

Normal and shear stresses

1.30  A weight W = 200 lb. is being raised using a cable and a pulley, as shown in Figure P1.30. The cable effective diameter is and 

the pin in the pulley has a diameter of  Determine the axial stress in the cable and the shear stress in the pin, assuming the pin is in dou-

ble shear.

1.31  The cable in Figure P1.30 has a diameter of  and the pin in the pulley has a diameter of  If the maximum normal stress in the 

cable must be limited to 4 ksi (T) and the maximum shear stress in the pin is to be limited to 2 ksi, determine the maximum weight that can be 
lifted to the nearest lb. The pin is in double shear.

1.32  The manufacturer of the plastic carrier for drywall panels shown in Figure P1.32 prescribes a maximum load P of 200 lb. If the cross-sec-
tional areas at sections AA and BB are 1.3 in.2 and 0.3 in.2, respectively, determine the average shear stress at section AA and the average normal 
stress at section BB at the maximum load P.

1.33  A bolt passing through a piece of wood is shown in Figure P1.33. Determine: (a) the axial stress in the bolt; (b) the average shear stress in 
the bolt head; (c) the average bearing stress between the bolt head and the wood; (d) the average shear stress in the wood.

40 kN

30 kN

50 kN

36.9°

  Figure P1.29 

1
4
--- in.

3
8
---  in.

55°

W

  Figure P1.30 

1
5
---  in. 3

8
---  in.

  Figure P1.32 

P

A

A

B B

P � 1.5 kips

3
8

i

in3
4

in1
2  Figure P1.33 
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1.34  A load of P = 10 kips is transferred by the riveted joint shown in Figure P1.34. Determine (a) the average shear stress in the rivet. (b) the 
largest average normal stress in the members attached (c) the largest average bearing stress between the pins and members.

1.35  A joint in a wooden structure is shown in Figure P1.35. The dimension  and  Determine the average normal stress 

on plane BEF and average shear stress on plane BCD. Assume plane BEF and the horizontal plane at AB are a smooth surfaces. 

1.36   A metal plate welded to an I-beam is securely fastened to the foundation wall using four bolts of 1/2 in. diameter as shown in Figure 
P1.36. If P = 12 kips determine the normal and shear stress in each bolt. Assume the load is equally distributed among the four bolts.

1.37  A metal plate welded to an I-beam is securely fastened to the foundation wall using four bolts as shown Figure P1.36. The allowable nor-
mal stress in the bolts is 100 MPa and the allowable shear stress is 70 MPa. Assume the load is equally distributed among the four bolts. If the 
beam load P= 50 kN, determine the minimum diameter to the nearest millimeter of the bolts. 

1.38  A metal plate welded to an I-beam is securely fastened to the foundation wall using four bolts of 1/2 in. diameter as shown Figure P1.36. 
The allowable normal stress in the bolts is 15 ksi and the allowable shear stress is 12 ksi. Assume the load is equally distributed among the four 
bolts. Determine the maximum load P to the nearest pound the beam can support.

1.39  An adhesively bonded joint in wood is fabricated as shown in Figure P1.39. The length of the overlap is L= 4 in. and the thickness of the 
wood is 3/8 in. Determine the average shear stress in the adhesive..

  Figure P1.34 

1 in.1 in.P P2 in.

0.5 in.

0.5 in.

0.5 in.

0.5 in. PP

h 43
8
---  in.= d 11

8
--- in.=

E

4 in

F
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30�

h
d

A

B
C

D

  Figure P1.35 

  Figure P1.36 

P

60o

  Figure P1.39 



1  16

Pr
in

te
d 

fr
om

: h
ttp

://
w

w
w

.m
e.

m
tu

.e
du

/~
m

av
ab

le
/M

oM
2n

d

Mechanics of Materials: StressM. Vable

January, 2010

1.40  A double lap joint adhesively bonds three pieces of wood as shown in Figure P1.40. The joints transmits a force of P= 20 kips and has the 
following dimensions: L = 3 in., a = 8 in. and h = 2 in. Determine the maximum average normal stress in the wood and the average shear stress in 
the adhesive. 

1.41  The wood in the double lap joint of Figure P1.40 has a strength of 15 MPa in tension and the strength of the adhesive in shear is 2 MPa. 
The joint has the following dimensions: L = 75 mm, a =200 mm, and h = 50 mm. Determine the maximum force P the joint can transfer.

1.42   A wooden dowel of diameter d = 20 mm is used for constructing the double lap joint in Figure P1.42. The wooden members have a 
strength of 10 MPa in tension, the bearing stress between the dowel and the members is to be limited to 18 MPa, the shear strength of the dowel is 
25 MPa. The joint has the following dimensions: L = 75 mm, a =200 mm, and h = 50 mm. Determine the maximum force P the joint can transfer.

1.43  A couple is using the chair lift shown in Figure P1.43 to see the Fall colors in Michigan’s Upper Peninsula. The pipes of the chair frame are 
1/16 in. thick. Assuming each person weighs 180 lb, determine the average normal stress at section AA and BB and average shear stress at section 
CC assuming the chair is moving at a constant speed.

1.44  The axial force P = 12 kips acts on a rectangular member, as shown in Figure P1.44. Determine the average normal and shear stresses on 
the inclined plane AA.

  Figure P1.40 
h/2

h/2

P

L

a

h

P/2
P/2

  Figure P1.42 

h/2

h/2

P

L

a

h

P/2
P/2

d

  Figure P1.43 
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  Figure P1.44 
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1.45  A wooden axial member has a cross section of 2 in.× 4 in. The member was glued along line AA and transmits a force of P = ,80 kips as 
shown in Figure P1.45. Determine the average normal and shear stress on plane AA.

1.46  Two rectangular bars of 10-mm thickness are loaded as shown in Figure P1.46. If the normal stress on plane AA is 180 MPa (C), determine 
the force F1 and the normal and shear stresses on plane BB.

1.47  A butt joint is created by welding two plates to transmits a force of P = 250 kN as shown in Figure P1.47. Determine the average normal 
and shear stress on the plane AA of the weld.

1.48  A square tube of 1/4 in thickness is welded along the seam and used for transmitting a force of P = 20 kips as shown in Figure P1.48. 
Determine average normal and shear stress on the plane AA of the weld.

1.49  (a) In terms of P, a, b, and θ determine the average normal and shear stresses on the inclined plane AA shown in Figure P1.49. (b) Plot the 
normal and shear stresses as a function of θ and determine the maximum values of the normal and shear stresses. (c) At what angles of the inclined 
plane do the maximum normal and maximum shear stresses occurs.

  Figure P1.45 

A

A
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  Figure P1.46 
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  Figure P1.47 

A

A

  Figure P1.48 
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1.50  An axial load is applied to a 1-in-diameter circular rod (Figure P1.50). The shear stress on section AA was found to be 20 ksi. The section 
AA is at 45o to the axis of the rod. Determine the applied force P and the average normal stress acting on section AA.

1.51  A simplified model of a child’s arm lifting a weight is shown in Figure P1.51. The cross-sectional area of the biceps muscle is estimated as 
2 in2. Determine the average normal stress in the muscle and the average shear force at the elbow joint A.

1.52  Figure P1.52 shows a truss and the sequence of assembly of members at pins H, G, and F. All members of the truss have cross-sectional 
areas of 250 mm2 and all pins have diameters of 15 mm. Determine (a) the axial stresses in members HA, HB, HG, and HC. (b) the maximum 
shear stress in pin H.

1.53  Figure P1.52 shows a truss and the sequence of assembly of members at pins H, G, and F. All members of the truss have cross-sectional 
areas of 250 mm2 and all pins have diameters of 15 mm. Determine (a) the axial stresses in members FG, FC, FD, and FE. (b) the maximum shear 
stress in pin F.

1.54  Figure P1.52 shows a truss and the sequence of assembly of members at pins H, G, and F. All members of the truss have cross-sectional 
areas of 200 mm2 and all pins have diameters of 10 mm. Determine (a) the axial stresses in members GH, GC, and GF of the truss shown in Fig-
ure P1.52. (b) the maximum shear stress in pin G

1.55  The pin at C in Figure P1.55 is has a diameter of in. and is in double shear. The cross-sectional areas of members AB and BC are 2 in.2

and 2.5 in.2, respectively. Determine the axial stress in member AB and the shear stress in pin C.

P P
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A

  Figure P1.50 
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1.56  All pins shown in Figure P1.56 are in single shear and have diameters of 40 mm. All members have square cross sections and the surface 
at E is smooth. Determine the maximum shear stresses in the pins and the axial stress in member BD.

1.57  A student athlete is lifting weight W = 36 lbs as shown in Figure P1.57a. The weight of the athlete is WA = 140 lb. A model of the student 
pelvis and legs is shown in Figure P1.57b. The weight of legs and pelvis WL = 32 lb acts at the center of gravity G. Determine the normal stress in 
the erector spinae muscle that supports the trunk if the average muscle area at the time of lifting the weight is 1.75 in2. 

1.58  A student is exercising his shoulder muscles using a  W = 15 lb dumbbell as shown in Figure P1.58a. The model of the student arm is 
shown in Figure P1.58b. The weight of the arm of WA = 9 lb acts at the center of gravity G. Determine the average normal stress in the deltoid 
muscle if the average area of the muscle is 0.75 in2 at the time the weight is in the horizontal position. 

Design problems
1.59  The bottom screw in the hook shown in Figure P1.59 supports 60% of the load P while the remaining 40% of P is carried by the top screw. 
The shear strength of the screws is 50 MPa. Develop a table for the maximum load P that the hook can support for screw diameters that vary from 
1 mm to 5 mm in steps of 1 mm. 

B
A
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2.5 m
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  Figure P1.56 

  Figure P1.57 
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1.60  Determine the maximum force P that can be transferred by the riveted joint shown in Figure P1.34 if the limits apply: maximum normal 
stress in the attached members can be 30 ksi., maximum bearing stress between the pins and members can be 15 ksi, and the maximum shear 
stress in the rivet can be 20 ksi.

1.61  A tire swing is suspended using three chains, as shown in Figure P1.61. Each chain makes an angle of 12o with the vertical. The chain is 
made from links as shown. For design purposes assume that more than one person may use the swing, and hence the swing is to be designed to 

carry a weight of 500 lb. If the maximum average normal stress in the links is not to exceed 10 ksi, determine to the nearest  the diameter of 

the wire that should be used for constructing the links. 

1.62  Two cast-iron pipes are held together by a bolt, as shown in Figure P1.62. The outer diameters of the two pipes are 50 mm and 70 mm and the 
wall thickness of each pipe is 10 mm. The diameter of the bolt is 15 mm. What is the maximum force P this assembly can transmit if the maximum 
permissible stresses in the bolt and the cast iron are 200 MPa in shear and 150 MPa in tension, respectively. 

1.63  A normal stress of 20 ksi is to be transferred from one plate to another by riveting a plate on top, as shown in Figure P1.63. The shear 

strength of the in. rivets used is 40 ksi. Assuming all rivets carry equal shear stress, determine the minimum even number of rivets that must be 

used. 

1.64  Two possible joining configurations are to be evaluated. The forces on joint in a truss were calculated and a magnified view is shown Figure 
P1.64. The pin diameter is 20 mm. Determine which joint assembly is better by calculating the maximum shear stress in the pin for each case. 

1
16
------  in.

  Figure P1.61 

12o

P P

  Figure P1.62 

1
2
---

� � 20 ksi

1 in � � 20 ksi6 in

8 
in

1 in

1 in  Figure P1.63 

ND= 30 kN
ND= 30 kN

NB = 67.32 kN

NB = 67.32 kN

NC = 50 kN

NC = 50 kN

NA = 32.68 kN
NA = 32.68 kN

30o

30o

30o

30o

Configuration 1 Configuration 2  Figure P1.64 
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1.65  Truss analysis showed the forces at joint A given in Figure P1.65. Determine the sequence in which the three members at joint A should be 
assembled so that the shear stress in the pin is minimum.

1.66  An 8 in × 8 in reinforced concrete bar needs to be designed to carry a compressive axial force of 235 kips. The reinforcement is done using 

round steel bars. Assuming the normal stress in concrete to be a uniform maximum value of 3 ksi and in steel bars to be a uniform value of 20 ksi, 

determine the minimum number of iron bars that are needed.

1.67  A wooden axial member has a cross section of 2 in. × 4 in. The member was glued along line AA, as shown in Figure P1.45. Determine the 
maximum force P that can be applied to the repaired axial member if the maximum normal stress in the glue cannot exceed 800 psi and the maxi-
mum shear stress in the glue cannot exceed 350 psi.

1.68  An adhesively bonded joint in wood is fabricated as shown in Figure P1.68. The length of the bonded region L = 5 in. Determine the maxi-
mum force P the joint can support if the shear strength of the adhesive is 300 psi and the   wood strength is 6 ksi in tension.

1.69  The joint in Figure P1.68 is to support a force P = 25 kips. What should be the length L of the bonded region if the adhesive strength in 
shear is 300 psi?

1.70  The normal stress in the members of the truss shown in Figure P1.70 is to be limited to 160 MPa in tension or compression. All members have 
circular cross sections. The shear stress in the pins is to be limited to 250 MPa. Determine (a) the minimum diameters to the nearest millimeter of 
members ED, EG, and EF. (b) the minimum diameter of pin E to the nearest millimeter and the sequence of assembly of members ED, EG, and EF. 

1.71  The normal stress in the members of the truss shown in Figure P1.70 is to be limited to 160 MPa in tension or compression. All members have 
circular cross sections. The shear stress in the pins is to be limited to 250 MPa. Determine (a) the minimum diameters to the nearest millimeter of 
members CG, CD, and CB. (b) the minimum diameter of pin C to the nearest millimeter and the sequence of assembly of members CG, CD, and CB.

Stretch yourself
1.72  Truss analysis showed the forces at joint A given in Figure P1.72. Determine the sequence in which the four members at joint A should be 
assembled to minimize the shear stress in the pin. 

NC � 40 kips

NB � 32.77 kips
35�

ND � 22.94 kips

A
  Figure P1.65 
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H
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  Figure P1.70 

A

65�

ND � 25 kipsNC � 27.58 kips
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  Figure P1.72 
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MoM in Action: Pyramids

The pyramids of Egypt are a remarkable engineering feat. The size, grandeur, and age of the pyramids 
excites the human imagination. Science fiction authors create stories about aliens building them. Pyramid 
design, however, is a story about human engineering in a design process that incorporates an intuitive under-
standing of material strength.

Before pyramids were built, Egyptians kings and nobles were buried in tombs called mastaba (Figure 
1.14a). Mastaba have underground chambers that are blocked off by dropping heavy stones down vertical 
shafts. On top of these underground burial chambers are rectangular structures with inward-sloping, tapered 
brick mud walls. The ancient Egyptians had learned by experience that inward-sloping walls that taper 
towards the top do not crumble as quickly as straight walls of uniform thickness (see problem 1.20).

Imhotep, the world’s first renowned engineer-architect, took many of the design elements of mastaba to 
a very large scale in building the world’s first Step pyramid (Figure 1.14b) for his pharaoh Djozer (2667-
2648 BCE). By building it on a bedrock, Imhotep intuitively understood the importance of bearing stresses 
which were not properly accounted for in building of the leaning tower of Pisa 4000 years later. The Step 
pyramid rose in six steps to a height of 197 ft with a base of 397 ft x 358 ft. A 92-ft deep central shaft was 
dug beneath the base for the granite burial chamber. The slopes of the faces of the Step pyramid varied from 
72o to 78o. Several pharaohs after Djozer tried to build their own step pyramids but were unsuccessful. 

The next development in pyramid design took place in the reign of pharaoh Sneferu (2613-2589 BCE). 
Sneferu architects started by building a step pyramid but abandoned it because he wanted a pyramid with 
smooth sides. The pyramid shown in Figure 1.14c was started with a base of 617 ft x 617 ft and an initial 
slope of approximately 54o. Signs of structural problem convinced the builders to change the slope to 43o

resulting in the unique bent shape seen in Figure 1.14c (see problem 1.22). Sneferu then ordered a third pyr-
amid built. This pyramid had an initial slope of 43o, stood on a base of 722 ft x722 ft, rose to a height of 
345 ft, and had smooth sides. This experience was used by architects in the reign of Khufu (2589-2566 BCE) 
to build the largest pyramid in the world called the Great pyramid of Giza (Figure 1.14d). The Great Pyramid 
(see problem 1.21) stands on a base of 756.7 ft x 756.7 ft and has a height of 481 ft. 

The ancient Egyptians did not have a formal definition of stress, but they had an intuitive understanding 
of the concept of strength. As happens often in engineering design they were able to design and construct 
pyramids through trial and error. Modern engineering can reduce this costly and time consuming process by 
developing rigorous methodologies and formulas. In this book we will be developing formulas for strength 
and stiffness design of structures and machine elements.

  Figure 1.14 Pyramids of Egypt (a) Mastaba (b) Step pyramid (c) Bent pyramid (d) Great pyramid of Giza.

(a) (b)

(c) (d)
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1.1.4 Internally Distributed Force Systems

In Sections 1.1.1 and 1.1.2 the normal stress and the shear stress were introduced as the average intensity of an internal normal 
and shear force distribution, respectively. But what if there are internal moments at a cross section? Would there be normal and 
shear stresses at such sections? How are the normal and shear stresses related to internal moments? To answer these questions 
and to get a better understanding of the character of normal stress and shear stress, we now consider an alternative and more 
fundamental view.

The forces of attraction and repulsion between two particles (atoms or molecules) in a body are assumed to act along the 
line that joins the two particles.1 The forces vary inversely as an exponent of the radial distance separating the two particles. 
Thus every particle exerts a force on every other particle, as shown symbolically in Figure 1.15a on an imaginary surface of a 
body. These forces between particles hold the body together and are referred to as internal forces. The shape of the body 
changes when we apply external forces thus changing distance between particles and hence changing the forces between the 
particles (internal forces). The body breaks when the change in the internal forces exceeds some characteristic material value. 
Thus the strength of the material can be characterized by the measure of change in the intensity of internal forces. This mea-
sure of change in the intensity of internal forces is what we call stress.

In Figure 1.15b we replace all forces that are exerted on any single particle by the resultants of these forces on that parti-
cle. The magnitude and direction of these resultant forces will vary with the location of the particle (point) implying that this 
is an internal distributed force system. The intensity of internally distributed forces on an imaginary cut surface of a body is 
called the stress on the surface. The internally distributed forces (stress on a surface) can be resolved into normal (perpendic-
ular to the surface) and tangential (parallel to the surface) distribution. The intensity of an internally distributed force that is 
normal to the surface of an imaginary cut is called the normal stress on the surface. The intensity of an internally distributed 
force that is parallel to the surface of an imaginary cut surface is called the shear stress on the surface.

Normal stress on a surface may be viewed as the internal forces that develop due to the material resistance to the pulling 
apart or pushing together of two adjoining planes of an imaginary cut. Like pressure, normal stress is always perpendicular to 
the surface of the imaginary cut. But unlike pressure, which can only be compressive, normal stress can be tensile.

1Forces that act along the line joining two particles are called central forces. The concept of central forces started with Newton’s universal gravitation law, which states: “the force 
between two particles is inversely proportional to the square of the radial distance between two particles and acts along the line joining the two particles.” At atomic levels the cen-
tral forces do not vary with the square of the radial distance but with an exponent, which is a power of 8 or 10.

A

B C D

E

(a)

F

�A

Normal to plane

(a)

FB

FC

FE

FD

FA�A

�A

B

E

D
C

A

Tangent in plane

(b)

Normal to plane

  Figure 1.15 Internal forces between particles on two sides of an imaginary cut. (a) Forces between particles in a body, shown on par-
ticle A. (b) Resultant force on each particle.
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Shear stress on a surface may be viewed as the internal forces that develop due to the material resistance to the sliding of 
two adjoining planes along the imaginary cut. Like friction, shear stresses act tangent to the plane in the direction opposite to 
the impending motion of the surface. But unlike friction, shear stress is not related to the normal forces (stresses).

Now that we have established that the stress on a surface is an internally distributed force system, we are in a position to 
answer the questions raised at the beginning of the section. If the normal and shear stresses are constant in magnitude and 
direction across the cross section, as shown in Figure 1.16a and b, then these can be replaced by statically equivalent normal 
and shear forces. [We obtain the equivalent forms of Equations (1.1) and (1.2).] But if either the magnitude or the direction of 
the normal and shear stresses changes across the cross section, then internal bending moments My , Mz and the internal torque 
T may be necessary for static equivalency, as shown in Figure 1.16c, d, and e. Figure 1.16 shows some of the stress distribu-
tions we will see in this book. But how do we deduce the variation of stress on a surface when stress is an internal quantity 
that cannot be measured directly? The theories in this book that answer this question were developed over a long period of 
time using experimental observations, intuition, and logical deduction in an iterative manner. Assumptions have to be made 
regarding loading, geometry, and material properties of the structural member in the development of the theory. If the theoret-
ical predictions do not conform to experimental observations, then assumptions have to be modified to include added com-
plexities until the theoretical predictions are consistent with experimental observations. In Section 3.2, we will see the logic 
whose two links are shown in Figure 1.2. This logic with assumptions regarding loading, geometry, and material properties 
will be used to develop the simplified theories in Chapters 4 through 6. 

EXAMPLE 1.4
Figure 1.17 shows a fiber pull-out test that is conducted to determine the shear strength of the interface between the fiber and the resin 
matrix in a composite material (see Section 3.12.3). Assuming a uniform shear stress τ at the interface, derive a formula for the shear 
stress in terms of the applied force P, the length of fiber L, and the fiber diameter D.

PLAN
The shear stress is acting on the cylindrical surface area of the embedded fiber. The shear stress is uniform and hence can be replaced by 
an equivalent shear force V, which we can equate to P.

(a) (b) (c) (d) (e)

  Figure 1.16 Static equivalency.
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  Figure 1.17 Fiber pull-out test.
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SOLUTION 
Figure 1.18a shows the cylindrical surface of the fiber with the uniform shear stress on the surface. The surface area A is equal to the cir-
cumference multiplied by the fiber length L as shown by the Equation (E1). 

 (E1)

The shear force is the shear stress multiplied by the surface area, 
(E2)

By equilibrium of forces in Figure 1.18b
 (E3)

ANS.  

COMMENTS

1. First, we replaced an internal distributed force system (shear stress) by an equivalent shear force. Second, we related the internal 
shear force to external force by equilibrium.

2. In the preceding test it is implicitly assumed that the strength of the fiber is greater than the interface strength. Otherwise the fiber would 
break before it gets pulled out.

3. In a test the force P is increased slowly until the fiber is pulled out. The pull-out force is recorded, and the shear strength can be calcu-
lated.

4. Suppose we have determined the shear strength from our formula for specific dimensions D and L of the fiber. Now we should be able 
to predict the force P that a fiber with different dimensions would support. If on conducting the test the experimental value of P is sig-
nificantly different from the value predicted, then our assumption of uniform shear stress in the interface is most likely incorrect.

EXAMPLE 1.5
Figure 1.19 shows a test to determine the shear strength of an adhesive. A torque (a moment along the axis) is applied to two thin cylin-
ders joined together with the adhesive. Assuming a uniform shear stress τ in the adhesive, develop a formula for the adhesive shear stress 
τ in terms of the applied torque Text, the cylinder radius R, and the cylinder thickness t.

PLAN
A free body diagram can be constructed after making an imaginary cut through the adhesive layer. On a differential area the internal 
shear force can be found and the moment from the internal shear force on the differential area obtained. By integrating we can find the 
total internal moment acting on the adhesive, which we can equate to the applied external moment Text. 

A πDL=
P

D

L

 Figure 1.18 Free body diagrams of the fiber in Example 1.4 (a) with shear stresses, 
(b) with equivalent internal shear force.

P

V

(a) (b)

V τA πDL( )τ= =

V P= or πDL( )τ P=

τ P πDL( )⁄=

R

T

T

t

Adhesive

 Figure 1.19 Adhesive shear strength test.

Text

Text
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SOLUTION 
We make an imaginary cut through the adhesive and draw the shear stress in the tangential direction, as shown in Figure 1.20a. 

The differential area is the differential arc length ds multiplied by the thickness t.
The differential tangential shear force dV is the shear stress multiplied by the differential area. 
The differential internal torque (moment) is the moment arm R multiplied by dV, that is, 
Noting that , we obtain the total internal torque by integrating over the entire circumference.

(E1)

By equilibrium of moment in Figure 1.20b 

(E2)

ANS.  

COMMENTS

1. By recording the value of the torque at which the top half of the cylinder separates from the bottom half, we can calculate the shear 
strength of the adhesive.

2. The assumption of uniform shear stress can only be justified for thin cylinders. In Chapter 5 we will see that shear stress for thicker cyl-
inders varies linearly in the radial direction.

3. First, we replaced an internal distributed force system (shear stress) by an equivalent internal torque. Second, we related the internal 
torque to external torque by equilibrium.

EXAMPLE 1.6
Figure 1.21 shows a drill being used to make a L = 12-in.-deep hole for placing explosive charges in a granite rock. The shear strength of 
the granite is τ = 5 ksi. Determine the minimum torque T that must be applied to a drill of radius R = 1-in., assuming a uniform shear 
stress along the length of the drill. Neglect the taper at the end.

dV �( ) ds

t

T

�

�

�dsss

  Figure 1.20 Free-body diagrams in Example 1.5 (a) with shear stress, (b) with equivalent internal torque.

Text
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Text
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dT RdV Rτtds= =
ds R dθ=[ ]

T R dV∫ R τt( )R θd∫ τtR2 θ τtR2 2π( )=d
0

2π

∫= = =

T Text= or 2πR2tτ Text=

τ
Text

2πR2t
---------------=

  Figure 1.21 Torque on a drill.
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PLAN
The imaginary cut surface is the surface of the hole in the granite. The shear stress on the surface of the hole would act like a distributed 
frictional force on the cylindrical surface of the drill bit. We can find the moment from this frictional force and relate it to the applied 
torque.

SOLUTION 
The shear stress acts tangential to the cylindrical surface of the drill bit, as shown in Figure 1.22a. 

Multiplying the shear stress by the differential surface area ds dx we obtain the differential tangential shear force dV. 
Multiplying dV by the moment arm R, we obtain the internal torque , which is due to the shear stress over the 
differential surface area. 
Integrating over the circumference  and the length of the drill, we obtain the total internal torque.

 or

(E1)
By equilibrium of moment in Figure 1.22b

(E2)

ANS.  

COMMENTS

1. In this example and in Example 1.4 shear stress acted on the outside cylindrical surface. In Example 1.4 we replaced the shear stresses 
by just an internal shear force, whereas in this example we replaced the shear stresses by an internal torque. The difference comes 
from the direction of the shear stress.

2. In Example 1.5 and in this example the surfaces on which the shear stresses are acting are different. Yet in both examples we replaced the 
shear stresses by the equivalent internal torque. 

3. The two preceding comments emphasize that before we can define which internal force or which internal moment is statically equiv-
alent to the internal stress distribution, we must specify the direction of stress and the orientation of the surface on which the stress is 
acting. We shall develop this concept further in Section 1.2.

T

A

dx

ds

x

R

�

dV � � dx ds

  Figure 1.22 Free body diagram of drill bit in Example 1.6 (a) with shear stress, (b) with equivalent internal torque.

Text

(a) (b)

x

A

T

Text

dT RdV Rτdsdx= =

ds R dθ=

T R dV∫ R τ( )R θd  dx
0

2π

∫
0

L

∫ τR2 θd  dx
0

2π

∫
0

L

∫ τR2 2π xd
0

L

∫ 2π 2πτR2L= = = = = =

T 2π 5 ksi( ) 1 in.( )2 12 in.( ) 120π  in.· kips= =

Text T=

Text 377 in.· kips=

Consolidate your  knowledge

1.  In your own words describe stress on a surface.



1  28

Pr
in

te
d 

fr
om

: h
ttp

://
w

w
w

.m
e.

m
tu

.e
du

/~
m

av
ab

le
/M

oM
2n

d

Mechanics of Materials: StressM. Vable

January, 2010

PROBLEM SET 1.2

Internally Distributed Force Systems

1.73  The post shown in Figure P1.73 has a rectangular cross section of 2 in. × 4 in. The length L of the post buried in the ground is 12 in. and the 
average shear strength of the soil is 2 psi. Determine the force P needed to pull the post out of the ground.

1.74  The post shown in Figure P1.73 has a circular cross section of 100-mm diameter. The length L of the post buried in the ground is 400 mm. 
It took a force of 1250 N to pull the post out of the ground. What was the average shear strength of the soil?

1.75  The cross section of the post shown in Figure P1.73 is an equilateral triangle with each side of dimension a. If the average shear strength of 
the soil is τ, determine the force P needed to pull the post out of the ground in terms of τ, L, and a.

QUICK TEST 1.1 Time: 15 minutes Total: 20 points

Answer true or false and justify each answer in one sentence. Grade yourself with the answers given in Appendix E. 
Give yourself one point for each correct answer (true or false) and one point for every correct explanation.

1. You can measure stress directly with an instrument the way you measure temperature with a thermometer.
2. There can be only one normal stress component acting on the surface of an imaginary cut.
3. If a shear stress component on the left surface of an imaginary cut is upward, then on the right surface it will be 

downward.
4. If a normal stress component puts the left surface of an imaginary cut in tension, then the right surface will be 

in compression.
5. The correct way of reporting shear stress is τ = 70 kips.
6. The correct way of reporting positive axial stress is σ = +15 MPa.
7. 1 GPa equals 106 Pa.
8. 1 psi is approximately equal to 7 Pa.
9. A common failure stress value for metals is 10,000 Pa.
10. Stress on a surface is the same as pressure on a surface as both quantities have the same units.

P

Ground

Po
st

L

  Figure P1.73 
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1.76  A force P = 10 lb is applied to the handle of a hammer in an effort to pull a nail out of the wood, as shown in Figure P1.76. The nail has a 

diameter of  and is buried  in wood to a depth of 2 in. Determine the average shear stress acting on the nail.

1.77  Two cast-iron pipes are adhesively bonded together over a length of 200 mm as shown in Figure P1.77. The outer diameters of the two 
pipes are 50 mm and 70 mm, and the wall thickness of each pipe is 10 mm. The two pipes separated while transmitting a force of 100 kN. What 
was the average shear stress in the adhesive just before the two pipes separated? 

1.78  Two cast-iron pipes are adhesively bonded together over a length of 200 mm (Figure P1.78). The outer diameters of the two pipes are 50 
mm and 70 mm, and the wall thickness of each pipe is 10 mm. The two pipes separated while transmitting a torque of  What was the aver-
age shear stress in the adhesive just before the two pipes separated?  

1.79  Two cast-iron pipes are held together by a bolt, as shown in Figure P1.79. The outer diameters of the two pipes are 50 mm and 70 mm, and 
the wall thickness of each pipe is 10 mm. The diameter of the bolt is 15 mm. The bolt broke while transmitting a torque of  On what sur-
face(s) did the bolt break? What was the average shear stress in the bolt on the surface where it broke? 

1.80  The can lid in Figure P1.80a gets punched on two sides AB and AC of an equilateral triangle ABC. Figure P1.80b is the top view showing 
relative location of the points. The thickness of the lid is t = 1/64 in. and the lid material can at most support a shear stress of 1800 psi. Assume a 
uniform shear stress during punching and point D acts like a pin joint. Use a= 1/2 in., b = 3 in. and c =1/4 in. Determine the minimum force F that 
must be applied to the can opener. 

1
8
---  in.

  Figure P1.76 
2 in.

P

12 in.

P P

  Figure P1.77 

2 kN m.⋅

T T

  Figure P1.78 

2 kN·m.

T T

  Figure P1.79 

  Figure P1.80 
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1.81  It is proposed to use  diameter bolts in a 10-in.-diameter coupling for transferring a torque of 100 in. · kips from one 4-in.-diameter 

shaft onto another (Figure P1.81). The maximum average shear stress in the bolts is to be limited to 20 ksi. How many bolts are needed, and at 
what radius should the bolts be placed on the coupling? (Note there are multiple answers.) 

1.82  A human hand can comfortably apply a torsional moment of 15 in.·lb (Figure P1.82). (a) What should be the breaking shear strength of a 

seal between the lid and the bottle, assuming the lid has a diameter of  in. and a height of in.? (b) If the same sealing strength as in part (a) is 

used on a lid that is 1 in. in diameter and in. in height, what would be the torque needed to open the bottle?

1.83  The hand exerts a force F on the handle of a bottle opener shown in Figure P1.83. Assume the average shear strength of the bond between 
the lid and the bottle is 10 psi. Determine the minimum force needed to open the bottle. Use t = 3/8 in. d = 2 1/2 in. and a = 4 in.

1.2 STRESS AT A POINT

The breaking of a structure starts at the point where the internal force intensity—that is, where stress exceeds some material 
characteristic value. This implies that we need to refine our definition of stress on a surface to that of Stress at a Point. But an 
infinite number of planes (surfaces) can pass through a point. Which imaginary surface do we shrink to zero? And when we 
shrink the surface area to zero, which equation should we use, (1.1) or (1.2)? Both difficulties can be addressed by assigning an 
orientation to the imaginary surface and to the internal force on this surface. We label these directions with subscripts for the 
stress components, in the same way that subscripts x, y, and z describe the components of vectors. 

Figure 1.23 shows a body cut by an imaginary plane that has an outward normal in the i direction. On this surface we 
have a differential area Δ Ai on which a resultant force acts. Δ Fj is the component of the force in the j direction. A component 
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of average stress is Δ Fj /Δ Ai. If we shrink ΔAi to zero we get the definition of a stress component at a point as shown by the 
Equation (1.3).

(1.3)

Now when we look at a stress component, the first subscript tells us the orientation of the imaginary surface and the second the 
direction of the internal force.

In three dimensions each subscript i and j can refer to an x, y, or z direction. In other words, there are nine possible com-
binations of the two subscripts. This is shown in the stress matrix in Equation (1.4). The diagonal elements in the stress matrix 
are the normal stresses and all off-diagonal elements represent the shear stresses.

(1.4)

To specify the stress at a point, we need a magnitude and two directions. In three dimensions we need nine components of 
stress, and in two dimensions we need four components of stress to completely define stress at a point. Table 1.3 shows the 
number of components needed to specify a scalar, a vector, and stress. Now force, moment, velocity, and acceleration are all 
different quantities, but they all are called vectors. In a similar manner, stress belongs to a category called tensors. More spe-
cifically, stress is a second-order tensor,2 where ‘second order’ refers to the exponent in the last row. In this terminology, a 
vector is a tensor of order 1, and a scalar is a tensor of order 0. 

1.2.1 Sign convention

To obtain the sign of a stress component in Equation (1.3) we establish the following sign convention.
Sign Convention: Differential area Δ Ai will be considered positive if the outward normal to the surface is in the 
positive i direction. If the outward normal is in the negative i direction, then Δ Ai will be considered negative. 

We can now deduce the sign for stress. A stress component can be positive in two ways. Both the numerator and the denomina-
tor are positive or both the numerator and the denominator are negative in Equation (1.3). Alternatively, if numerator and the 

2To be labeled as tensor, a quantity must also satisfy certain coordinate transformation properties, which will be discussed briefly in Chapter 8.

TABLE 1.3  Comparison of number of components

Quantity One Dimension Two Dimensions Three Dimensions

Scalar 1 = 10 1 = 20     1 = 30

Vector 1 = 11 2 = 21     3 = 31

Stress 1 = 12 4 = 22     9 = 32

σij
ΔFj
ΔAi
---------⎝ ⎠

⎛ ⎞
ΔAi 0→

lim=

direction of
outward normal to
imaginary cut surface

direction of  
internal force component

i

�Ai

�Fj

Internal force

Outward normal

  Figure 1.23 Stress at a point.
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denominator in Equation (1.3) have: the same sign the stress component is positive; if they have opposite signs the stress com-
ponent is negative.

We conclude this section with the following points to remember.

• Stress is an internal quantity that has units of force per unit area. 
• A stress component at a point is specified by a magnitude and two directions. Stress at a point is a second-order tensor. 
• Stress on a surface is specified by a magnitude and only one direction. Stress on a surface thus is a vector. 
• The first subscript on stress gives the direction of the outward normal of the imaginary cut surface. The second sub-

script gives the direction of the internal force. 
• The sign of a stress component is determined from the direction of the internal force and the direction of the outward 

normal to the imaginary cut surface.

1.3 STRESS ELEMENTS

The previous section showed that stress at a point is an abstract quantity. Stress on a surface, however, is easier to visualize as 
the intensity of a distributed force on a surface. A stress element is an imaginary object that helps us visualize stress at a point 
by constructing surfaces that have outward normals in the coordinate directions. In Cartesian coordinates the stress element is a 
cube; in cylindrical or a spherical coordinates the stress element is a fragment of a cylinder or a sphere, respectively. We start 
our discussion with the construction of a stress element in Cartesian coordinates to emphasize the basic construction principles. 
We can use a similar process to draw stress elements in cylindrical and spherical coordinate systems as demonstrated in Exam-
ple 1.9.

1.3.1 Construction of a Stress Element for Axial Stress

Suppose we wish to visualize a positive stress component σxx at a point that may be generated in an bar under axial forces 
shown in Figure 1.24a. Around this point imagine an object that has sides with outward normals in the coordinate direction. 
The cube has six surfaces with outward normals that are either in the positive or in the negative coordinate direction, as shown 
in Figure 1.24. The first subscript of σxx tells us it must be on the surface that has an outward normal in the x direction. Thus, 
the two surfaces on which σxx will be shown are at A and B. 

The direction of the outward normal on surface A is in the positive x direction [the denominator is positive in Equation 
(1.3)]. For the stress component to be positive on surface A, the force must be in the positive x direction [the numerator must 
be positive in Equation (1.3)], as shown in Figure 1.24b. 

The direction of the outward normal on surface B is in the negative x direction [the denominator is negative in Equation 
(1.3)]. For the stress component to be positive on surface B, the force must be in the negative x direction [the numerator must 
be negative in Equation (1.3)], as shown in Figure 1.24b.

The positive stress component σxx are pulling the cube in opposite directions; that is, the cube is in tension due to a posi-
tive normal stress component. We can use this information to draw normal stresses in place of subscripts. A tensile normal 
stress will pull the surface away from the interior of the element and a compressive normal stress will push the surface into the 
element. As mentioned earlier, normal stresses are usually reported as tension or compression and not as positive or negative. 

It should be emphasized that the single arrow used to show the stress component does not imply that the stress component 
is a force. Showing the stress components as distributed forces on surfaces A and B as in Figure 1.25 is visually more accurate 

  Figure 1.24 (a) Axial bar. (b) Stress element for axial stress.
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but very tedious to draw every time we need to visualize stress. We will show stress components using single arrows as in Fig-
ure 1.24, but visualize them as shown in Figure 1.25.

1.3.2 Construction of a Stress Element for Plane Stress

Plane stress is one of the two types of two-dimensional simplifications used in mechanics of materials. In Chapter 2 we will 
study the other type, plane strain. In Chapter 3 we will study the difference between the two types. By two dimensional we 
imply that one of the coordinates does not play a role in the description of the problem. If we choose z to be the coordinate, we 
set all stresses with subscript z to zero to get

(1.5)

We assume that the stress components in Equation (1.5) are positive. Let us consider the first row. The first subscript 
gives us the direction of the outward normal, which is the x direction. Surfaces A and B in Figure 1.26a have outward normals 
in the x direction, and it is on these surfaces that the stress component of the first row will be shown. 

The direction of the outward normal on surface A is in the positive x direction [the denominator is positive in Equation 
(1.3)]. For the stress component to be positive on surface A, the force must be in the positive direction [the numerator must be 
positive in Equation (1.3)], as shown in Figure 1.26a. 

The direction of the outward normal on surface B is in the negative x direction [the denominator is negative in Equation 
(1.3)]. For the stress component to be positive on surface B, the force must be in the negative direction [the numerator must be 
negative in Equation (1.3)], as shown in Figure 1.26a.

Now consider row 2 in the stress matrix in Equation (1.5). From the first subscript we know that the normal to the surface 
is in the y direction. Surface C has an outward normal in the positive y direction, therefore all forces on surface C are in the 
positive direction of the second subscript, as shown in Figure 1.26a. Surface D has an outward normal in the negative y direc-
tion, therefore all forces on surface D are in the negative direction of the second subscript, as shown in Figure 1.26a. 

We note that the plane with outward normal in the z direction is stress-free. Stress-free surfaces are also called free sur-
faces, and these surfaces play an important role in stress analysis.

Figure 1.26b shows the two-dimensional representation of the stress element that will be seen looking down the z axis.

y

 Figure 1.25 Stress components are distributed forces on a surface.
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  Figure 1.26 Plane stress: (a) 3-dimensional element (b) 2-dimensional element.
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1.4 SYMMETRIC SHEAR STRESSES

If a body is in equilibrium, then all points on the body are in equilibrium. Is the stress element that represents a point on the 
body in equilibrium? To answer this question we need to convert the stresses into forces by multiplying by the surface area. We 
take a simple problem of plane stress and assume that the cube in Figure 1.26 has lengths of dx, dy, and dz in the coordinate 
directions. We draw a two-dimensional picture of the stress cube after multiplying each stress component by the surface area 
and get the force diagram of Figure 1.27.3

In Figure 1.27 we note that the equations of force equilibrium are satisfied by the assumed state of stress at a point. We 
consider the moment about point O and obtain 

 (1.6)

We cancel the differential volume (dx dy dz) on both sides to obtain

(1.7a)

In a similar manner we can show that

(1.7b)

(1.7c)

Equations (1.7a) through (1.7c) emphasize that shear stress is symmetric. The symmetry of shear stress implies that in three 
dimensions there are only six independent stress components out of the nine components necessary to specify stress at a point. 
In two dimensions there are only three independent stress components out of the four components necessary to specify stress at 
a point. In Figure 1.26 notice that the shear stress components τxy and τyx point either toward the corners or away from the cor-
ners. This observation can be used in drawing the symmetric pair of shear stresses after drawing the shear stress on one of the 
surfaces of the stress cube.

EXAMPLE 1.7
Show the non-zero stress components on the surfaces of the two cubes shown in different coordinate systems in Figure 1.28.

PLAN
We can identify the surface with the outward normal in the direction of the first subscript. Using the sign convention and Equation (1.3)
we draw the force in the direction of the second subscript.

3Figure 1.27 is only valid if we assume that the stresses are varying very slowly with the x and y coordinates. If this were not true, we would have to account for the increase in 
stresses over a differential element. But a more rigorous analysis will also reveal that shear stresses are symmetric, see Problem 1.105.

  Figure 1.27 Force diagram for plane stress.
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SOLUTION
Cube 1: The first subscript of σxx and τxy  shows that the outward normal is in the x direction; hence these components will be shown on 
surfaces C and D in Figure 1.29a. 

The outward normal on surface C is in the negative x direction; hence the denominator in Equation (1.3) is negative. Therefore on Figure 1.29a: 
• The internal force has to be in the negative x direction to produce a positive (tensile) σxx.
• The internal force has to be in the negative y direction to produce a positive τxy .

The outward normal on surface D is in the positive x direction; hence the denominator in Equation (1.3) is positive. Therefore on Figure 1.29a: 
• The internal force has to be in the positive x direction to produce a positive (tensile) σxx.
• The internal force has to be in the positive y direction to produce a positive τxy .

The first subscript of τyx and σyy shows that the outward normal is in the y direction; hence this component will be shown on surfaces A and B. 
The outward normal on surface A is in the positive y direction; hence the denominator in Equation (1.3) is positive. Therefore on Figure 1.29a:

• The internal force has to be in the positive x direction to produce a positive τyx.
• The internal force has to be in the negative y direction to produce a negative (compressive) σyy.

The outward normal on surface B is in the negative y direction; hence the denominator in Equation (1.3) is negative. Therefore on Figure 1.29a:
• The internal force has to be in the negative x direction to produce a positive τyx.
• The internal force has to be in the positive y direction to produce a negative (compressive) σyy.

Cube 2: The first subscript of σxx and τxy  shows that the outward normal is in the x direction; hence these components will be shown on 
surfaces E and F. 
The outward normal on surface E is in the negative x direction; hence the denominator in Equation (1.3) is negative. Therefore on Figure 1.29a: 

• The internal force has to be in the negative x direction to produce a positive (tensile) σxx.
• The internal force has to be in the negative y direction to produce a positive τxy .

The outward normal on surface F is in the positive x direction; hence the denominator in Equation (1.3) is positive. Therefore on Figure 1.29a: 
• The internal force has to be in the positive x direction to produce a positive (tensile) σxx.
• The internal force has to be in the positive y direction to produce a positive τxy .

The first subscript of τyx and σyy shows that the outward normal is in the y direction; hence this component will be shown on surfaces A and B. 
The outward normal on surface A is in the negative y direction; hence the denominator in Equation (1.3) is negative. Therefore on Figure 1.29a:

• The internal force has to be in the negative x direction to produce a positive τyx.
• The internal force has to be in the positive y direction to produce a negative (compressive) σyy.

The outward normal on surface B is in the positive y direction; hence the denominator in Equation (1.3) is positive. Therefore on Figure 1.29a:
• The internal force has to be in the positive x direction to produce a positive τyx.
• The internal force has to be in the negative y direction to produce a negative (compressive) σyy.

COMMENTS

1. Figure 1.30 shows the two-dimensional representations of stress cubes shown in Figure 1.29. These two-dimensional representations 
are easier to draw but it must be kept in mind that the point is in three-dimensional space with surfaces with outward normals in the z
direction being stress free. 

  Figure 1.29 Solution of Example 1.7.(a) Cube 1. (b) Cube 2.
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  Figure 1.30 Two-dimensional depiction of the solution of Example 1.7.(a) Cube 1. (b) Cube 2.
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2. We note that σxx pulls the surfaces outwards and σyy pushes the surfaces inwards in Figures 1.29 and 1.30 as these are tensile and com-
pressive stresses, respectively. Hence, we can use this information to draw these stress components without using the subscripts.

3. The shear stress τxx and τyx either point towards the corner or away from the corner as seen in Figures 1.29 and 1.30. Using this infor-
mation we can draw the shear stress on the appropriate surfaces after obtaining the direction on one surface using subscripts.

1.5* CONSTRUCTION OF A STRESS ELEMENT IN 3-DIMENSION

We once more visualize a cube with outward normals in the coordinate direction around the point we wish to show our stress 
components. The cube has six surfaces with outward normals that are either in the positive or in the negative coordinate direc-
tion, as shown in Figure 1.31. In other words, we have now accounted for the first subscript in our stress definition. We know 
that force is in the positive or negative direction of the second subscript. We use our sign convention to show the stress in the 
direction of the force on each of the six surfaces.

To demonstrate the construction of the stress element we will assume that all nine stress components in the stress matrix 
shown in Figure 1.31a are positive. Let us consider the first row. The first subscript gives us the direction of the outward nor-
mal, which is the x direction. Surfaces A and B in Figure 1.31b have outward normals in the x direction, and it is on these sur-
faces that the stress component of the first row will be shown. 

The direction of the outward normal on surface A is in the positive x direction [the denominator is positive in Equation 
(1.3)]. For the stress component to be positive on surface A, the force must be in the positive direction [the numerator must be 
positive in Equation (1.3)], as shown in Figure 1.31b. 

The direction of the outward normal on surface B is in the negative x direction [the denominator is negative in Equation 
(1.3)]. For the stress component to be positive on surface B, the force must be in the negative direction [the numerator must be 
negative in Equation (1.3)], as shown in Figure 1.31b.

Now consider row 2 in the stress matrix in Figure 1.31a. From the first subscript we know that the normal to the surface 
is in the y direction. Surface C has an outward normal in the positive y direction, therefore all forces on surface C are in the 
positive direction of the second subscript, as shown in Figure 1.31b. Surface D has an outward normal in the negative y direc-
tion, therefore all forces on surface D are in the negative direction of the second subscript, as shown in Figure 1.31b. 

By the same logic, the components of row 3 in the stress matrix are shown on surfaces E and F in Figure 1.31b.
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 Figure 1.31 Stress cube showing all positive stress components in three dimensions.
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EXAMPLE 1.8
Show the nonzero stress components on surfaces A, B, and C of the two cubes shown in different coordinate systems in Figure 1.32. 

PLAN
We can identify the surface with the outward normal in the direction of the first subscript. Using the sign convention and Equation (1.3)
we draw the force in the direction of the second subscript.

SOLUTION
Cube 1: The first subscript of σxx, τxy , and τxz shows that the outward normal is in the x direction; hence these components will be shown 
on surface C. The outward normal on surface C is in the negative x direction; hence the denominator in Equation (1.3) is negative. There-
fore on Figure 1.33a: 

• The internal force has to be in the negative x direction to produce a positive (tensile) σxx.
• The internal force has to be in the negative y direction to produce a positive τxy .
• The internal force has to be in the positive z direction to produce a negative τxz.

The first subscript of τyx shows that the outward normal is in the y direction; hence this component will be shown on surface B. The out-
ward normal on surface B is in the positive y direction; hence the denominator in Equation (1.3) is positive. Therefore on Figure 1.33a:

• The internal force has to be in the positive x direction to produce a positive τyx.
The first subscript of τzx, σzz shows that the outward normal is in the z direction; hence these components will be shown on surface A. The 
outward normal on surface A is in the positive z direction; hence the denominator in Equation (1.3) is positive. Therefore on Figure 
1.33a:

• The internal force has to be in the negative x direction to produce a negative τzx.
• The internal force has to be in the negative z direction to produce a negative (compressive) σzz.

Cube 2: The first subscript of σxx , τxy , and τxz shows that the outward normal is in the x direction; hence these components will be shown 
on surface A. The outward normal on surface A is in the negative x direction; hence the denominator in Equation (1.3) is negative. There-
fore in Figure 1.33b:

• The internal force has to be in the negative x direction to produce a positive (tensile) σxx.
• The internal force has to be in the negative y direction to produce a positive τxy.
• The internal force has to be in the positive z direction to produce a negative τxz.

The first subscript of τyx shows that the outward normal is in the y direction; hence this component will be shown on surface B. The out-
ward normal on surface B is in the negative y direction; hence the denominator in Equation (1.3) is negative. Therefore in Figure 1.33b:

• The internal force has to be in the negative y direction to produce a positive τyx.
The first subscript of τzx, σzz shows that the outward normal is in the z direction; hence these components will be shown on surface C. The 
outward normal on surface C is in the positive z direction; hence the denominator in Equation (1.3) is positive. Therefore in Figure 
1.33b:

• The internal force has to be in the negative x direction to produce a negative τzx.
• The internal force has to be in the negative z direction to produce a negative (compressive) σzz.

COMMENTS

1. In drawing the normal stresses we could have made use of the fact that σxx is tensile and hence pulls the surface outward. σzz is com-
pressive and hence pushes the surface inward. This is a quicker way of getting the directions of these stress components than the argu-
ments based on signs and subscripts.

Cube 1

z x

yA
B

C

  Figure 1.32 Cubes in different coordinate systems.
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(a)  Figure 1.33 Solution of Example 1.8.
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2. Once we have drawn τxy and τxz using the subscripts, we could draw τyx and τzx using the observation that the pair of symmetric shear 
stresses point towards or away from the corner formed by the two adjoining surfaces, thus saving some effort in the construction of the 
stress element.

EXAMPLE 1.9
Show the following positive stress components on a stress element drawn in the spherical coordinate system shown in Figure 1.34.

PLAN
We construct a stress element with surfaces that have outward normals in the r, θ, and φ directions. The first subscript will identify the 
surface on which the row of stress components is to be shown. The second subscript then will show the direction of the stress component 
on the surface.

SOLUTION 
We draw a stress element with lines in the directions of r, θ, and φ, as shown in Figure 1.35.

The stresses  σrr, τrθ, and τrφ will be on surface A in Figure 1.35. The outward normal on surface A is in the positive r direction. Thus 
the forces have to be in the positive r, θ, and φ directions to result in positive σrr, τrθ, and τrφ.

The stresses τθr, σθθ, and τθφ will be on surface B in Figure 1.35. The outward normal on surface B is in the negative θ direction. 
Thus the forces have to be in the negative r, θ, and φ directions to result in positive τθr, σθθ, and τθφ.

The stresses τφr, τφθ, and σφφ will be on surface C in Figure 1.35. The outward normal on surface C is in the positive φ direction. 
Thus the forces have to be in the positive r, θ, and φ directions to result in positive τφr, τφθ, and σφφ.

COMMENT

1. This example demonstrates that use of subscripts in determining the direction of stress components follows the same procedure as in 
cartesian coordinates even though the stress element is a fragment of a sphere.

z
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�

  Figure 1.34 Stresses in spherical coordinates.
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τφr τφθ σφφ

r

�

�

��

����

���� r

����

  Figure 1.35 Stress element in spherical coordinates.

Consolidate your  knowledge
1.  In your own words describe stress at a point and how it differs from stress on a surface
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PROBLEM SET 1.3

Plane Stress: Cartesian Coordinates
1.84  Show the stress components of a point in plane stress on the square in Figure P1.84.

1.85  Show the stress components of a point in plane stress on the square in Figure P1.85.

1.86  Show the stress components of a point in plane stress on the square in Figure P1.86.

1.87  Show the stress components of a point in plane stress on the square in Figure P1.87.

QUICK TEST 1.2 Time: 15 minutes/Total: 20 points

Answer true or false and justify each answer in one sentence. Grade yourself with the answers given in Appendix E. Give 
yourself one point for every correct answer (true or false) and one point for every correct explanation. 

1. Stress at a point is a vector like stress on a surface.
2. In three dimensions stress has nine components.
3. In three dimensions stress has six independent components.
4. At a point in plane stress there are three independent stress components.
5. At a point in plane stress there are always six zero stress components.
6. If the shear stress on the left surface of an imaginary cut is upward and defined as positive, then on the right 

surface of the imaginary cut it is downward and negative.
7. A stress element can be drawn to any scale.
8. A stress element can be drawn at any orientation.
9. Stress components are opposite in direction on the two surfaces of an imaginary cut.
10. Stress components have opposite signs on the two surfaces of an imaginary cut.

y

x
  Figure P1.84 

σxx 100 MPa (T) τxy 75 MPa–==

τyx 75–  MPa σyy 85 MPa (T)==

y

x
  Figure P1.85 

σxx 85 MPa (C) τxy 75 MPa==

τyx 75 MPa σyy 100 MPa (T)==

y

x Figure P1.86 

σxx 27 ksi (C) τxy 18 ksi==

τyx 18 ksi  σyy 85 ksi (T)==

y

x

  Figure P1.87 

σxx 27 ksi (C) τxy 18 ksi==

τyx 18 ksi  σyy 85 ksi (T)==
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1.88  Show the nonzero stress components on the A, B, and C faces of the cube in Figure P1.88.

1.89  Show the nonzero stress components on the A, B, and C faces of the cube in Figure P1.89.

Plane Stress: Polar Coordinates
1.90  Show the stress components of a point in plane stress on the stress element in polar coordinates in Figure P1.90.

1.91  Show the stress components of a point in plane stress on the stress element in polar coordinates in Figure P1.91.

1.92  Show the stress components of a point in plane stress on the stress element in polar coordinates in Figure P1.92.

1.93  Show the stress components of a point in plane stress on the stress element in polar coordinates in Figure P1.93.

z x

yA
B

C

  Figure P1.88 

σxx 70 MPa (T) τxy 40–  MPa  τxz 0===

τyx 40–  MPa    σyy 85 MPa (C) τyz 0===

τzx 0    τzy 0 σzz 0 ===

x y

zA
B

C

  Figure P1.89 

σxx 70 MPa (T) τxy 40–  MPa τxz 0===

τyx 40–  MPa  σyy 85 MPa (C) τyz 0===

τzx 0  τzy 0 σzz 0===

�

y

r

x  Figure P1.90 

σrr 125 MPa (T) τrθ 65 MPa–==

τθr 65–  MPa σθθ 90 MPa (C)==

�

y

r

x

 Figure P1.91 

σrr 125 MPa (T) τrθ 65 MPa–==

τθr 65–  MPa σθθ 90 MPa (C)==

�

y

r

x Figure P1.92 

σrr 18 ksi (T) τrθ 12–  ksi==

τθr 12–  ksi σθθ 25 ksi (C)==

�

y

r

x

 Figure P1.93 

σrr 25 ksi (C) τrθ 12 ksi==

τθr 12 ksi σθθ 18 ksi (T)==
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Stress Element in 3-dimensions
1.94  Show the nonzero stress components on the A, B, and C faces of the cube in Figure P1.94.

1.95  Show the nonzero stress components on the A, B, and C faces of the cube in Figure P1.95.

1.96  Show the nonzero stress components on the A, B, and C faces of the cube in Figure P1.96.

1.97  Show the nonzero stress components on the A, B, and C faces of the cube in Figure P1.97.

1.98  Show the nonzero stress components in the r, θ, and x cylindrical coordinate system on the A, B, and C faces of the stress elements shown 
in Figures P1.98.

z

y

xA
B

C

 Figure P1.94 

σxx 100 MPa (T) τxy 200 MPa=      τxz 125 MPa–==

τyx 200 MPa         σyy 175 MPa (C)= τyz 225 MPa==

 τzx 125–  MPa     τzy 225 MPa   σzz 150 MPa (T)===

y

x

zA
B

C

  Figure P1.95 

σxx 90 MPa (T) τxy 200 MPa τxz 0===

 τyx 200 MPa  σyy 175 MPa (T) τyz 225–  MPa===

 τzx 0 τzy 225–  MPa σzz 150 MPa (C)===

z
y

x A
B

C

  Figure P1.96 

σxx 0 τxy 15ksi    τxz 0===

τyx 15 ksi σyy 10 ksi (T) τyz 25–  ksi===

τzx 0 τzy 25–  ksi     σzz 20 ksi  (C)===

x
z

y A
B

C

  Figure P1.97 

σxx 0 τxy 15–  ksi   τxz 0===

τyx 15–  ksi σyy 10 ksi (C) τyz 25 ksi===

τzx 0  τzy 25 ksi  σzz 20 ksi (T)===

A

B

C

�
r

x

  Figure P1.98 

σrr 150 MPa (T) τrθ 100–  MPa τrx 125 MPa===

τθr 100–  MPa  σθθ 160 MPa (C) τθx 165 MPa===

τxr 125 MPa  τxθ 165 MPa   σxx 145 MPa (C) ===
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1.99  Show the nonzero stress components in the r, θ, and x cylindrical coordinate system on the A, B, and C faces of the stress elements shown 
in P1.99.

1.100  Show the nonzero stress components in the r, θ, and φ spherical coordinate system on the A, B, and C faces of the stress elements shown 
in Figure P1.100.

1.101  Show the nonzero stress components in the r, θ, and φ spherical coordinate system on the A, B, and C faces of the stress elements shown 
in P1.101.

Stretch yourself
1.102  Show that the normal stress σxx on a surface can be replaced by the equivalent internal normal force N and internal bending moments My

and Mz as shown in Figure P1.102 and given by the equations (1.8a) through (1.8c).

r

x

CCC

A

  Figure P1.99 

σrr 10 ksi (C) τrθ 22 ksi τrx 32 ksi===

τθr 22 ksi  σθθ 0  τθx 25 ksi===

τxr 32 ksi   τxθ 25 ksi σxx 20 ksi (T) ===

z

r

y

x

AAA  Figure P1.100 

σrr 150 MPa (T) τrθ 100 MPa  τrφ 125 MPa===

τθr 100 MPa  σθθ 160 MPa (C) τθφ 175–  MPa===

τφr 125 MPa  τφθ 175–  MPa  σφφ 135 MPa (C)===

z

r

y

x

AB  Figure P1.101 

σrr 0 τrθ 18–  ksi τrφ 0 ===

τθr 18–  ksi σθθ 10 ksi (C) τθφ 25 ksi===

τφr 0 τφθ 25 ksi σφφ 20 ksi (T) ===

y

z

x

O

Mz

My

N

  Figure P1.102 

(1.8a)

(1.8b)

(1.8c)

N σxx  Ad
A

∫=

My zσxx Ad
A

∫–=

Mz yσxx Ad
A

∫–=
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1.103  The normal stress on a cross section is given by σxx = a + by, where y is measured from the centroid of the cross section. If A is the cross-
sectional area, Izz is the area moment of inertia about the z axis, and N and Mz are the internal axial force and the internal bending moment given 
by Equations (1.8a) and (1.8c), respectively, prove the result in Equation (1.8).

(1.8)

We will encounter Equation (1.8) in combined axial and symmetric bending problems in later Chapter 10.

1.104  The normal stress on a cross section is given by σxx = a + by + cz, where y and z are measured from the centroid of the cross section. Using 
Equations (1.8a), (1.8b), and (1.8c) prove the result of Equation (1.9).

(1.9)

where Iyy, Izz, and Iyz are the area moment of inertias. Equation (1.9) is used in the unsymmetrical bending of beams. Note that if either y or z is 

an axis of symmetry, then Iyz = 0. In such a case Equation (1.9) simplifies considerably.

1.105  An infinitesimal element in plane stress is shown in Figure P1.105. Fx and Fy are the body forces acting at the point and have the dimen-
sions of force per unit volume. By converting stresses into forces and writing equilibrium equations obtain the results in Equations (1.10a) through 
(1.10c).

1.6* CONCEPT CONNECTOR

Formulating the concept of stress took 500 years of struggle, briefly described in Section 1.6.1. In hindsight, the long evolution 
of quantifier of the strength is not surprising, because stress is not a single idea. It is a package of ideas that may be repackaged 
in many ways, depending on the needs of the analysis. Our chapter dealt with only one such package, called Cauchy’s stress,
which is used most in engineering design and analysis.

1.6.1 History: The Concept of Stress

The first formal treatment of strength is seen in the notes of the inventor and artist Leonardo da Vinci (1452–1519). 
Leonardo conducted several experiments on the strength of structural materials. His notes on “testing the strength of iron 
wires of various lengths” includes a sketch of how to measure the strength of wire experimentally. We now recognize that the 
dependence of the strength of a material on its length is due to the variations in manufacturing defects along the length.

The first indication of a concept of stress is found in Galileo Galilei (1564 –1642). Galileo was born in Pisa and became a 
professor of mathematics at the age of twenty-five. For his belief in the Copernican theory on the motion of planets, which 
contradicted the interpretation of scriptures at that time, Galileo was put under house arrest for the last eight years of his life. 
During that period he wrote Two New Sciences, which lays out his contributions to the field of mechanics. Here he discusses 
the strength of a cantilever beam bending under the action of its own weight. Galileo viewed strength as the resistance to frac-
ture, concluding that the strength of a bar depends on its cross-sectional area but is independent of its length. We will discuss 
Galileo’s work on beam bending in Section 6.7.

The first person to differentiate between normal stress and shear stress was Charles-Augustin Coulomb (1736–1806) born 
in Angoulême. He was honored by the French Academy of Sciences in 1781 for his memoir Theorie des machines simples, in 

σxx
N
A
----

Mz
Izz
-------⎝ ⎠

⎛ ⎞ y–=

σxx
N
A
----

MzIyy  My– Iyz

IyyIzz  Iyz
2–

------------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

y–
MyIzz  Mz– Iyz

IyyIzz  Iyz
2–

-----------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

z–=

O

Fx

�yx

�xy

�xx

�yy

Fy

dx

dy

dy
��yy

�y�yy � dy
��yx

�y�yx �

dx
��xy

�x�xy �

dx
��xx
�x�xx �

  Figure P1.105 

(1.10a)

(1.10b)

(1.10c)

∂σxx
∂x

-----------
∂τyx

∂y
---------- Fx+ + 0=

∂τxy
∂x

----------
∂σyy

∂y
----------- Fy+ + 0=

τxy τyx=
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which he discussed friction between bodies. The theory of dry friction is named after him. Given the similarities between 
shear stress and friction, it seems only natural that Coulomb would be the first to differentiate between normal and shear 
stress. We will see other works of Coulomb when we come to failure theory and on the torsion of circular shafts. 

Claude Louis Navier (1785–1857) initiated the mathematical development of the concept of stress starting with Newton’s 
concept of a central force—one that acts along a line between two particles. His approach led to a controversy that took eighty 
years to resolve, as we shall see in Section 3.12.

Augustin Cauchy (1789–1857) brought the concept of stress to the form we studied it in this chapter (Figure 1.36). 
Forced to leave Paris, his birthplace, during the French Revolution, he took refuge in the village of Arcueil along with many 
other mathematicians and scientists of the period. At the age of twenty-one Cauchy worked engineering at the port of Cher-
bourg, which must have enhanced his understanding of the hydrodynamic concept of pressure. Pressure acts always normal to 
a surface, but Cauchy assumed that on an internal surface it acts at an angle hence he reasoned it can be resolved into compo-
nents, the normal stress and shear stress. Combining this idea with his natural mathematical abilities, Cauchy developed what 
is now called Cauchy’s stress. We shall see Cauchy’s genius again in chapters on strain, material properties, and stress and 
strain transformation.

We have seen that unlike force, which is indivisible into more elementary ideas, stress is a package of ideas. Other pack-
ages will contain related but different elementary ideas. If instead of the cross-sectional area of an undeformed body, we use 
the cross-sectional area of a deformed body, then we get true stress. If we use the cross-sectional area of a deformed body and 
take the component of this area in the undeformed configuration, then we get Kirchhoff’s stress. Still other stress measures are 
used in nonlinear analysis. 

The English physicist James Clerk Maxwell (1831–1879) recognized the fact that the symmetry of shear stress given by 
Equations (1.7a) through (1.7c) is a consequence of there being no body moments. If a body moment is present, as in electro-
magnetic fields, then shear stresses will not be symmetric. 

In Figure 1.15 we replaced the internal forces on a particle by a resultant force but no moment, because we assumed a 
central force between two particles. Woldemar Voigt (1850–1919), a German scientist who worked extensively with crystals 
is credited with introducing the stress tensor. Voigt recognized that in some cases a couple vector should be included when 
representing the interaction between particles by equivalent internal loads. If stress analysis is conducted at a very small scale, 
as the frontier research in nanostructures, then the moment transmitted by bonds between molecules may need to be included. 
The term couple stress is sometimes used to indicate the presence of a couple vector. 

As history makes clear, stress has many definition. We choose the definition depending on the problem at hand and the 
information we are seeking. Most engineering analysis is linear and deals with large bodies, for which Cauchy’s stress gives 
very good results. Cauchy’s stress is thus sometimes referred to as engineering stress. Unless stated otherwise, stress always 
means Cauchy’s stress in mechanics of materials and in this book.

1.7 CHAPTER CONNECTOR

In this chapter we have established the linkage between stresses, internal forces and moments, and external forces and 
moments. We have seen that to replace stresses by internal forces and internal moments requires knowledge of how the stress 
varies at each point on the surface. Although we can deduce simple stress behavior on a cross section, we would like to have 
other alternatives, in particular ones in which the danger of assuming physically impossible deformations is eliminated. This 
can be achieved if we can establish a relationship between stresses and deformations. Before we can discuss this relationship 
we need to understand the measure of deformation, which is the subject of Chapter 2. We will relate stresses and strains in 

 Figure 1.36 Pioneers of stress concept. Augustin Cauchy.Claude Louis Navier
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Chapter 3. In Section 3.2 we will synthesize the links introduced in Chapters 1, 2, and 3 into a logic that is used in mechanics of 
materials. We will use the logic to obtain simplified theories of one-dimensional structure members in Chapters 4, 5, 6, and 7. 

All analyses in mechanics are conducted in a coordinate system, which is chosen for simplification whenever possible. 
Thus the stresses we obtain are in a given coordinate system. Now, our motivation for learning about stress is to define a mea-
sure of strength. Thus we can conclude that a material will fail when the stress at a point reaches some critical maximum 
value. There is no reason to expect that the stresses will be maximum in the arbitrarily chosen coordinate system. To deter-
mine the maximum stress at a point thus implies that we establish a relationship between stresses in different coordinate sys-
tems, as we shall do in Chapter 8.

We have seen that the concept of stress is a difficult one. If this concept is to be internalized so that an intuitive under-
standing is developed, then it is imperative that a discipline be developed to visualize the imaginary surface on which the 
stress is being considered.
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POINTS AND FORMULAS TO REMEMBER

• Stress is an internal quantity. 
• The internally distributed force on an imaginary cut surface of a body is called stress on a surface.
• Stress has units of force per unit area.
• 1 psi is equal to 6.95 kPa, or approximately 7 kPa. 1 kPa is equal to 0.145 psi, or approximately 0.15 psi.
• The internally distributed force that is normal (perpendicular) to the surface of an imaginary cut is called normal stress on 

a surface.
• Normal stress is usually reported as tensile or compressive and not as positive or negative.
• Average stress on a surface:

•  (1.1)   (1.2)

• where σav is the average normal stress, τav is the average shear stress, N is the internal normal force, V is the internal shear 
force, and A is the cross-sectional area of the imaginary cut on which N and V act.

• The relationship of external forces (and moments) to internal forces and the relationship of internal forces to stress distri-
butions are two distinct ideas.

• Stress at a point:

•  (1.3)

• where i is the direction of the outward normal to the imaginary cut surface, and j is the outward normal to the direction of 
the internal force.

• Stress at a point needs a magnitude and two directions to specify it, i.e., stress at a point is a second-order tensor. 
• The first subscript on stress denotes the direction of the outward normal of the imaginary cut surface. The second sub-

script denotes the direction of the internal force.
• The sign of a stress component is determined from the direction of the internal force and the direction of the outward nor-

mal to the imaginary cut surface.
• Stress element is an imaginary object that helps us visualize stress at a point by constructing surfaces that have outward 

normals in the coordinate directions.

•  (1.7a)   (1.7b)   (1.7c)

• Shear stress is symmetric.
• In three dimensions there are nine stress components, but only six are independent.
• In two dimensions there are four stress components, but only three are independent.
• The pair of symmetric shear stress components point either toward the corner or away from the corner on a stress ele-

ment.
• A point on a free surface is said to be in plane stress.

σav N A⁄= τav V A⁄=

σij

ΔFj

ΔAi
---------⎝ ⎠

⎛ ⎞
ΔAi 0→

lim=

τxy τyx= τyz τzy= τzx τxz=
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CHAPTER TWO

STRAIN

Learning objectives
1. Understand the concept of strain.
2. Understand the use of approximate deformed shapes for calculating strains from displacements.

_______________________________________________

How much should the drive belts (Figure 2.1a) stretch when installed? How much should the nuts in the turnbuckles (Figure 
2.1b) be tightened when wires are attached to a traffic gate? Intuitively, the belts and the wires must stretch to produce the 
required tension. As we see in this chapter strain is a measure of the intensity of deformation used in the design against deforma-
tion failures.

A change in shape can be described by the displacements of points on the structure. The relationship of strain to displace-
ment depicted in Figure 2.2 is thus a problem in geometry—or, since displacements involve motion, a problem in kinematics. 
This relationship shown in Figure 2.2 is a link in the logical chain by which we shall relate displacements to external forces as 
discussed in Section 3.2. The primary tool for relating displacements and strains is drawing the body’s approximate deformed 
shape. This is analogous to drawing a free-body diagram to obtain forces. 

2.1 DISPLACEMENT AND DEFORMATION

Motion of due to applied forces is of two types. (i) In rigid-body motion, the body as a whole moves without changing shape. (ii) In 
motion due to deformation, the body shape change. But, how do we decide if a moving body is undergoing deformation? 

In rigid body, by definition, the distance between any two points does not change. In translation, for example, any two 
points on a rigid body will trace parallel trajectories. If the distance between the trajectories of two points changes, then the 

  Figure 2.1 (a) Belt Drives (Courtesy Sozi). (b) Turnbuckles.

(a) (b)

  Figure 2.2 Strains and displacements.

Kinematics
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body is deforming. In addition to translation, a body can also rotate. On rigid bodies all lines rotate by equal amounts. If the 
angle between two lines on the body changes, then the body is deforming. 

Whether it is the distance between two points or the angle between two lines that is changing, deformation is described in 
terms of the relative movements of points on the body. Displacement is the absolute movement of a point with respect to a 
fixed reference frame. Deformation is the relative movement with respect to another point on the same body. Several exam-
ples and problems in this chapter will emphasize the distinction between deformation and displacement.

2.2 LAGRANGIAN AND EULERIAN STRAIN

A handbook cost L0 = $100 a year ago. Today it costs Lf = $125. What is the percentage change in the price of the handbook? 
Either of the two answers is correct. (i) The book costs 25% more than what it cost a year ago. (ii) The book cost 20% less a year 
ago than what it costs today. The first answer treats the original value as a reference:  The 
second answer uses the final value as the reference:  The two arguments emphasize the neces-
sity to specify the reference value from which change is calculated. 

In the contexts of deformation and strain, this leads to the following definition: Lagrangian strain is computed by using 
the original undeformed geometry as a reference. Eulerian strain is computed using the final deformed geometry as a refer-
ence. The Lagrangian description is usually used in solid mechanics. The Eulerian description is usually used in fluid mechan-
ics. When a material undergoes very large deformations, such as in soft rubber or projectile penetration of metals, then either 
description may be used, depending on the need of the analysis. We will use Lagrangian strain in this book, except in a few 
“stretch yourself ” problems.

2.3 AVERAGE STRAIN

In Section 2.1 we saw that to differentiate the motion of a point due to translation from deformation, we need to measure changes 
in length. To differentiate the motion of a point due to rotation from deformation, we need to measure changes in angle. In this 
section we discuss normal strain and shear strain, which are measures of changes in length and angle, respectively. 

2.3.1 Normal Strain 

Figure 2.3 shows a line on the surface of a balloon that grows from its original length L0 to its final length Lf as the balloon 
expands. The change in length Lf − L0 represents the deformation of the line. Average normal strain is the intensity of deforma-
tion defined as a ratio of deformation to original length.

(2.1)

where ε is the Greek symbol epsilon used to designate normal strain and the subscript av emphasizes that the normal strain is an 
average value. The following sign convention follows from Equation (2.1). Elongations (Lf > L0) result in positive normal 
strains. Contractions (Lf < L0) result in negative normal strains.

An alternative form of Equation (2.1) is:

(2.2)

change Lf  L0–( ) L0⁄[ ] 100× .=
change L0 Lf–( ) Lf⁄[ ] 100.×=

εav
Lf  L0–

L0
------------------=

  Figure 2.3 Normal strain and change in length.

A B

Lo Lf

A B

εav
δ
L0
-----=
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where the Greek letter delta (δ ) designates deformation of the line and is equal to Lf − L0.

We now consider a special case in which the displacements are in the direction of a straight line. Consider two points A
and B on a line in the x direction, as shown in Figure 2.4. Points A and B move to A1 and B1, respectively. The coordinates of 
the point change from xA and xB to xA + uA and xB + uB, respectively. From Figure 2.4 we see that  and 

. From Equation (2.1) we obtain

(2.3)

where uA and uB are the displacements of points A and B, respectively. Hence uB − uA is the relative displacement, that is, it is the 
deformation of the line.

2.3.2 Shear Strain

Figure 2.5 shows an elastic band with a grid attached to two wooden bars using masking tape. The top wooden bar is slid to the 
right, causing the grid to deform. As can be seen, the angle between lines ABC changes. The measure of this change of angle is 
defined by shear strain, usually designated by the Greek letter gamma (γ ). The average Lagrangian shear strain is defined as the 
change of angle from a right angle:

(2.4)

where the Greek letter alpha (α) designates the final angle measured in radians (rad), and the Greek letter pi (π) equals 3.14159 
rad. Decreases in angle (α < π / 2) result in positive shear strains. Increases in angle (α > π / 2) result in negative shear 
strains.

2.3.3 Units of Average Strain

Equation (2.1) shows that normal strain is dimensionless, and hence should have no units. However, to differentiate average strain 
and strain at a point (discussed in Section 2.5), average normal strains are reported in units of length, such as in/in, cm/cm, or m/
m. Radians are used in reporting average shear strains.

A percentage change is used for strains in reporting large deformations. Thus a normal strain of 0.5% is equal to a strain 
of 0.005. The Greek letter mu (μ) representing micro (μ = 10–6), is used in reporting small strains. Thus a strain of 1000 μ in/
in is the same as a normal strain of 0.001 in/in.

A B
xA xB

A1 B1

(xA+uA) (xB+uB)

Lf

Lo

L0 xB xA–=
Lf xB uB+( ) xA uA+( )– Lo uB uA–( )+= =

x

 Figure 2.4 Normal strain and displacement.

x

L0 xB xA–=

Lf  L0– uB uA–=

εav
uB uA–
xB xA–
------------------=

γav
π
2
--- α–=

 Figure 2.5 Shear strain and angle changes. (a) Undeformed grid. (b) Deformed grid.

π/2

A

B C

Wooden Bar with Masking Tape

Wooden Bar with Masking Tape

α

γ

A1

CB

A

Wooden Bar with Masking Tape

Wooden Bar with Masking Tape

(a) (b)
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EXAMPLE 2.1 

The displacements in the x direction of the rigid plates in Figure 2.6 due to a set of axial forces were observed as given. Determine the 
axial strains in the rods in sections AB, BC, and CD.

PLAN
We first calculate the relative movement of rigid plates in each section. From this we can calculate the normal strains using Equation 
(2.3).

SOLUTION
The strains in each section can be found as shown in Equations (E1) through (E3).

(E1)

ANS.  

(E2)

ANS.  

(E3)

ANS.  

COMMENT
1. This example brings out the difference between the displacements, which were given, and the deformations, which we calculated 

before finding the strains.

EXAMPLE 2.2 

A bar of hard rubber is attached to a rigid bar, which is moved to the right relative to fixed base A as shown in Figure 2.7. Determine the 
average shear strain at point A.

PLAN
The rectangle will become a parallelogram as the rigid bar moves. We can draw an approximate deformed shape and calculate the 
change of angle to determine the shear strain.

SOLUTION 
Point B moves to point B1, as shown in Figure 2.8. The shear strain represented by the angle between BAB1 is:

 (E1)

F4�2

F4�2

F3�2

F3�2

A

F1�2

F1�2

F2�2

F2�2

B C D

36 in 36 in50 in

x

y

  Figure 2.6 Axial displacements in Example 2.1.

uA 0.0100 in.–= uB 0.0080 in.=

uC 0.0045 in.–= uD 0.0075 in.=

εAB
uB uA–
xB xA–
------------------ 0.018 in.

36 in.
--------------------- 0.0005 in.

 in.
-------= = =

εAB 500 μin.  in.⁄=

εBC
uC uB–
xC xB–
------------------ 0.0125 in.–

50 in.
--------------------------- 0.00025  in.

 in.
-------–= = =

εBC 250– μin.  in.⁄=

εCD
uD uC–
xD xC–
------------------ = 0.012 in.

36 in.
--------------------- 0.0003333 in.

 in.
-------= =

εCD 333.3 μin.  in.⁄=

L � 100 mm

�u � 0.5 mm

Rubber

Rigid

A  Figure 2.7 Geometry in Example 2.2.

γ
BB1
AB
----------⎝ ⎠

⎛ ⎞
1–

tan 0.5 mm
100 mm
--------------------⎝ ⎠

⎛ ⎞1–
tan 0.005 rad= = =
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ANS.  .

COMMENTS
1. We assumed that line AB remained straight during the deformation in Figure 2.8. If this assumption were not valid, then the shear 

strain would vary in the vertical direction. To determine the varying shear strain, we would need additional information. Thus our 
assumption of line AB remaining straight is the simplest assumption that accounts for the given information.

2. The values of γ and tan   γ are roughly the same when the argument of the tangent function is small. Thus for small shear strains the 
tangent function can be approximated by its argument.

EXAMPLE 2.3 

A thin ruler, 12 in. long, is deformed into a circular arc with a radius of 30 in. that subtends an angle of 23° at the center. Determine the 
average normal strain in the ruler.

PLAN
The final length is the length of a circular arc and original length is given. The normal strain can be obtained using Equation (2.1).

SOLUTION 
The original length  The angle subtended by the circular arc shown in Figure 2.9 can be found in terms of radians:

 (E1)

The length of the arc is:
(E2)

and average normal strain is

(E3)

ANS.  

COMMENTS
1. In Example 2.1 the normal strain was generated by the displacements in the axial direction. In this example the normal strain is being 

generated by bending.
2. In Chapter 6 on the symmetric bending of beams we shall consider a beam made up of lines that will bend like the ruler and calculate 

the normal strain due to bending as we calculated it in this example.

γ 5000μrad=

L
 �

 1
00

 m
m

0.5 mm

A

�

B B1

  Figure 2.8 Exaggerated deformed shape.

L0 12 in.=

Δθ 23o( )π

180o
----------------- 0.4014 rads= =

Lf

�� � 23� R
 �

 3
0 

in
  Figure 2.9 Deformed geometry in Example 2.3.

Lf RΔθ 12.04277 in.= =

εav
Lf L0–

L0
---------------- 0.04277 in.

12 in.
--------------------------- 3.564 10 3–( ) in.

 in.
-------= = =

εav 3564 μin.  in.⁄=
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EXAMPLE 2.4 

A belt and a pulley system in a VCR has the dimensions shown in Figure 2.10. To ensure adequate but not excessive tension in the belts, 
the average normal strain in the belt must be a minimum of 0.019 mm/mm and a maximum of 0.034 mm/mm. What should be the mini-
mum and maximum undeformed lengths of the belt to the nearest millimeter? 

PLAN
The belt must be tangent at the point where it comes in contact with the pulley. The deformed length of the belt is the length of belt 
between the tangent points on the pulleys, plus the length of belt wrapped around the pulleys. Once we calculate the deformed length of 
the belt using geometry, we can find the original length using Equation (2.1) and the given limits on normal strain.

SOLUTION 
We draw radial lines from the center to the tangent points A and B, as shown in Figure 2.11. The radial lines O1A and O2B must be per-
pendicular to the belt AB, hence both lines are parallel and at the same angle θ with the horizontal. We can draw a line parallel to AB
through point O2 to get line CO2. Noting that CA is equal to O2B, we can obtain CO1 as the difference between the two radii. 

Triangle O1CO2 in Figure 2.11 is a right triangle, so we can find side CO2 and the angle θ as:

(E1)

(E2)

The deformed length Lf of the belt is the sum of arcs AA and BB and twice the length AB:

(E3)
(E4)
(E5)

We are given that . From Equation (2.1) we obtain the limits on the original length: 

 (E6)

(E7)

To satisfy Equations (E6) and (E7) to the nearest millimeter, we obtain the following limits on the original length L0:

ANS.  

COMMENTS
1. We rounded upward in Equation (E6) and downwards in Equation (E7) to ensure the inequalities. 

30 mm
6.25 mm12.5 mm

O1 O2

 Figure 2.10 Belt and pulley in a VCR.

O1 O2

�

B

B

A

A

C

��
�

6.25 mm

6.25 mm

30 mm

  Figure 2.11 Analysis of geometry.

AB CO2 30 mm( )2 6.25 mm( )2– 29.342 mm= = =

θcos
CO1
O1O2
-------------- 6.25 mm

30 mm
---------------------= = or θ 0.2083( )1–cos 1.3609 rad= =

AA 12.5 mm( ) 2π 2θ–( ) 44.517 mm= =
BB 6.25 mm( ) 2π 2θ–( ) 22.258 mm= =

Lf 2 AB( ) AA BB+ += 125.46 mm=

0.019 ε 0.034≤ ≤

ε
Lf L0–

L0
---------------- 0.034≤= or         L0

125.46
1 0.034+
---------------------- mm        ≥ or L0 121.33 mm≥

ε
Lf L0–

L0
---------------- 0.019≥= or           L0

125.46
1 0.019+
---------------------- mm≤ or L0 123.1 mm≤

122 mm L0 123 mm≤ ≤
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2. Tolerances in dimensions must be specified for manufacturing. Here we have a tolerance range of 1 mm.
3. The difficulty in this example is in the analysis of the geometry rather than in the concept of strain. This again emphasizes that the 

analysis of deformation and strain is a problem in geometry. Drawing the approximate deformed shape is essential.

2.4 SMALL-STRAIN APPROXIMATION

In many engineering problems, a body undergoes only small deformations. A significant simplification can then be achieved by 
approximation of small strains, as demonstrated by the simple example shown in Figure 2.12. Due to a force acting on the bar, 
point P moves by an amount D at an angle θ to the direction of the bar. From the cosine rule in triangle APP1, the length Lf can 
be found in terms of L0, D, and θ:

From Equation (2.1) we obtain the average normal strain in bar AP:

(2.5)

Equation (2.5) is valid regardless of the magnitude of the deformation D. Now suppose that D / L0 is small. In such a case 
we can neglect the (D / L0)2 term and expand the radical by binomial1 expansion:

 

Neglecting the higher-order terms, we obtain an approximation for small strain in Equation (2.6).

(2.6)

In Equation (2.6) the deformation D and strain are linearly related, whereas in Equation (2.5) deformation and strain are 
nonlinearly related. This implies that small-strain calculations require only a linear analysis, a significant simplification. 

Equation (2.6) implies that in small-strain calculations only the component of deformation in the direction of the original 
line element is used. We will make significant use of this observation. Another way of looking at small-strain approximation 
is to say that the deformed length AP1 is approximated by the length AP2.

What is small strain? To answer this question we compare strains from Equation (2.6) to those from Equation (2.5). For 
different values of small strain and for θ = 45°, the ratio of D/L is found from Equation (2.6), and the strain from Equation 

1For small d, binomial expansion is (1 + d  )1/2 = 1 + d / 2 + terms of d2 and higher order.

TABLE 2.1 Small-strain approximation

εsmall, [Equation (2.6)] ε, [Equation (2.5)] % Error, 

1.000 1.23607 19.1
0.500 0.58114 14.0
0.100 0.10454 4.3
0.050 0.00512 2.32
0.010 0.01005 0.49
0.005 0.00501 0.25
0.001 0.00100 0.05

D

P
P2

P1

�

A
L0

Lf

  Figure 2.12 Small normal-strain calculations.

Lf L0
2 D2 2L0D θcos+ + L0 1 D

L0
-----⎝ ⎠

⎛ ⎞ 2
2 D

L0
-----⎝ ⎠

⎛ ⎞ θcos+ += =

ε
Lf  L0–

L0
------------------ 1 D

L0
-----⎝ ⎠

⎛ ⎞ 2
2 D

L0
-----⎝ ⎠

⎛ ⎞ θcos+ +   1–= =

ε 1 D
L0
----- θcos … …+ + +⎝ ⎠

⎛ ⎞   1–≈

εsmall
D θcos

L0
----------------=

ε εsmall–
ε

---------------------⎝ ⎠
⎛ ⎞ 100×
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(2.5) is calculated as shown in Table 2.1. Equation (2.6) is an approximation of Equation (2.5), and the error in the approxima-
tion is shown in the third column of Table 2.1. It is seen from Table 2.1 that when the strain is less than 0.01, then the error is 
less than 1%, which is acceptable for most engineering analyses.

We conclude this section with summary of our observations.

1. Small-strain approximation may be used for strains less than 0.01. 
2. Small-strain calculations result in linear deformation analysis. 
3. Small normal strains are calculated by using the deformation component in the original direction of the line element, 

regardless of the orientation of the deformed line element. 
4. In small shear strain (γ ) calculations the following approximations may be used for the trigonometric functions: tan γ

  ≈ γ, sin γ   ≈ γ, and cos γ   ≈ 1.

EXAMPLE 2.5 

Two bars are connected to a roller that slides in a slot, as shown in Figure 2.13. Determine the strains in bar AP by: (a) Finding the 
deformed length of AP without small-strain approximation. (b) Using Equation (2.6). (c) Using Equation (2.7).

PLAN
(a) An exaggerated deformed shape of the two bars can be drawn and the deformed length of bar AP found using geometry. (b) The 
deformation of bar AP can be found by dropping a perpendicular from the final position of point P onto the original direction of bar AP
and using geometry. (c) The deformation of bar AP can be found by taking the dot product of the unit vector in the direction of AP and 
the displacement vector of point P. 

SOLUTION 
The length AP used in all three methods can be found as AP = (200 mm) / cos 35o = 244.155 mm.

(a) Let point P move to point P1, as shown in Figure 2.14. The angle APP1 is 145°. From the triangle APP1 we can find the length AP1 

using the cosine formula and find the strain using Equation (2.1).

(E1)

(E2)

ANS.  
(b) We drop a perpendicular from P1 onto the line in direction of AP as shown in Figure 2.14. By the small-strain approximation, the 
strain in AP is then

(E3)

(E4)

P

A

B
200 mm

35�
�P � 0.2 mm

  Figure 2.13 Small-strain calculations.

35� 0.2 mm
35�

145�

P
P1

B

C

�AP

A

  Figure 2.14 Exaggerated deformed shape.

AP1 AP2 PP1
2 2 AP( ) PP1( ) 145°cos–+ 244.3188 mm= =

εAP
AP1 AP–

AP
----------------------- 244.3188 mm 244.155 mm–

244.155 mm
---------------------------------------------------------------------- 0.67112 10 3–( ) mm/mm= = =

εAP 671.12 μmm/mm=

δAP 0.2 35°cos 0.1638 mm= =

εAP
δAP
AP
--------- 0.1638 mm

244.155 mm
------------------------------ 0.67101 10 3–( )  mm/mm= = =
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ANS.  

(c) Let the unit vectors in the x and y directions be given by  and . The unit vector in direction of AP and the deformation vector  
can be written as

(E5)
The strain in AP can be found using Equation (2.7):

(E6)

(E7)

ANS.  

COMMENTS

1. The calculations for parts (b) and (c) are identical, since there is no difference in the approximation between the two approaches. The 
strain value for part (a) differs from that in parts (b) and (c) by 0.016%, which is insignificant in engineering calculations.

2. To a small-strain approximation the final length AP1 is being approximated by length AC.
3. If we do not carry many significant figures in part (a) we may get a prediction of zero strain as the first three significant figures sub-

tract out. 

EXAMPLE 2.6 

A gap of 0.18 mm exists between the rigid plate and bar B before the load P is applied on the system shown in Figure 2.15. After load P
is applied, the axial strain in rod B is – 2500 μm/m. Determine the axial strain in rods A.

PLAN  
The deformation of bar B can be found from the given strain and related to the displacement of the rigid plate by drawing an approximate 
deformed shape. We can then relate the displacement of the rigid plate to the deformation of bar A using small-strain approximation.

SOLUTION 
From the given strain of bar B we can find the deformation of bar B: 

(E1)

εAP 671.01μmm/mm=

i j D

i AP 35°i  + sin 35°j , Dcos 0.2i ,= =

δAP D i AP⋅ 0.2 mm( ) 35cos 0.1638 mm= = =

εAP
δAP
AP
--------- 0.1638 mm

244.155 mm
------------------------------ 0.67101 10 3–( )  mm/mm= = =

εAP 671.01 μmm/mm=

O

A

P
A

O

0.18 mm

60�60� C

2 mB

3 
m

Rigid

  Figure 2.15 Undeformed geometry in Example 2.6.

δB εBLB 2500( ) 10 6–( ) 2 m( ) 0.005 m contraction= = =

60�60�

A

ED

A

60�

B

F E1

D1D1

�E
�A

�D �B �D

O O

  Figure 2.16 Deformed geometry.
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Let points D and E be points on the rigid plate. Let the position of these points be D1 and E1 after the load P has been applied, as shown 
in Figure 2.16. 
From Figure 2.16 the displacement of point E is 

 (E2)
As the rigid plate moves downward horizontally without rotation, the displacements of points D and E are the same:

(E3)
We can drop a perpendicular from D1 to the line in the original direction OD and relate the deformation of bar A to the displacement of 
point D:

(E4)
The normal strain in A is then

(E5)

ANS.  

COMMENTS
1. Equation (E3) is the relationship of points on the rigid bar, whereas Equations (E2) and (E4) are the relationship between the move-

ment of points on the rigid bar and the deformation of the bar. This two-step process simplifies deformation analysis as it reduces the 
possibility of mistakes in the calculations. 

2. We dropped the perpendicular from D1 to OD and not from D to OD1 because OD is the original direction, and not OD1.

EXAMPLE 2.7 

Two bars of hard rubber are attached to a rigid disk of radius 20 mm as shown in Figure 2.17. The rotation of the rigid disk by an angle 
Δφ causes a shear strain at point A of 2000 μ rad. Determine the rotation Δφ and the shear strain at point C. 

PLAN
The displacement of point B can be related to shear strain at point A as in Example 2.2. All radial lines rotate by equal amounts of Δφ on 
the rigid disk. We can find Δφ by relating displacement of point B to Δφ assuming small strains. We repeat the calculation for the bar at C
to find the strain at C.

SOLUTION 
The shear strain at A is . We draw the approximated deformed shape of the two bars as shown in Figure 

2.18a. The displacement of point B is approximately equal to the arc length BB1, which is related to the rotation of the disk, as shown in 
Figure 2.18a and b and given as

δE δB 0.00018 m+ 0.00518 m= =

δD δE 0.00518 m= =

δA δD 60°sin 0.00518 m( ) 60°sin 0.004486 m= = =

εA
δA
LA
------ 0.004486 m

3 m
----------------------------- 1.49539 10 3–( )  m/m= = =

εA 1495 μ  m/m=

B

C

A Figure 2.17 Geometry in Example 2.7.

γA 2000 μrad 0.002 rad= =

.
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(E1)

The displacement of point B can also be related to the shear strain at A, and we can find Δφ   as

(E2)

(E3)

ANS.   
The displacement of point D can be found and the shear strain at C obtained from

(E4)

ANS.  

COMMENTS

1. We approximated the arc BB1 by a straight line, which is valid only if the deformations are small.
2. The shear strain was found from the change in angle formed by the tangent line AE and the axial line AB.
3. In Chapter 5, on the torsion of circular shafts, we will consider a shaft made up of bars and calculate the shear strain due to torsion as 

in this example.

2.4.1 Vector Approach to Small-Strain Approximation

To calculate strains from known displacements of the pins in truss problems is difficult using the small-strain approximation 
given by Equation (2.6). Similar algebraic difficulties are encountered in three-dimension. A vector approach helps address these 
difficulties. 

The deformation of the bar in Equation (2.6) is given by δ = D  cos θ and can be written in vector form using the dot prod-
uct:

(2.7)

where  is the deformation vector of the bar AP and is the unit vector in the original direction of bar AP. With point A 
fixed in Figure 2.12 the vector is also the displacement vector of point P. If point A is also displaced, then the deformation 
vector is obtained by taking the difference between the displacement vectors of point P and point A. If points A and P have coor-
dinates (xA,   yA,   zA) and (xP , yP , zP), respectively, and are displaced by amounts (uA, vA, wA) and (uP , vP , wP) in the x, y, and z
directions, respectively, then the deformation vector  and the unit vector can be written as

(2.8)

where , and  are the unit vectors in the x, y, and z directions, respectively. The important point to remember about the cal-
culation of DAP and  is that the same reference point (A) must be used in calculating deformation vector and the unit vector. 

ΔuB 20 mm( ) Δφ( )=

D

B1

E

�uD � r ��
�uB � r ��

B

C

A

��

O

 Figure 2.18 (a) Deformed geometry in Example 2.7. (b) Top view of disc. (c) Side view of bar.

B1B

A

γA

(a) (b) (c)

O

B
B1

r

rΔφ

Δφ

γA γA
BB1
AB
----------=≈tan

ΔuB
AB
---------- 20Δφ( ) mm

180 mm
----------------------------- Δφ

9
-------= = =

Δφ 9γA 9( ) 0.002( ) 0.018 rad= = =

Δφ 0.018 rad=

γC
ΔuD
CD
---------- 20Δφ

180
------------- 20 mm( ) 0.018 rad( )

180 mm
-------------------------------------------------- 0.002 rad= = = =

γC 2000 μrad=

δ DAP i AP⋅=

DAP i AP
DAP

DAP i AP

DAP uP uA–( )i  + vP vA–( )j  + wP wA–( )k =

i AP xP xA–( )i  + yP yA–( )j zP zA–( )k +=

i j , k
i AP
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EXAMPLE 2.8*

The displacements of pins of the truss shown Figure 2.19 were computed by the finite-element method (see Section 4.8) and are given 
below. u and v are the pin displacement x and y directions, respectively. Determine the axial strains in members BC, HB, HC, and HG.

 

PLAN
The deformation vectors for each bar can be found from the given displacements. The unit vectors in directions of the bars BC, HB, 
HC, and HG can be determined. The deformation of each bar can be found using Equation (2.7) from which we can find the strains.

SOLUTION
Let the unit vectors in the x and y directions be given by  and  respectively. The deformation vectors for each bar can be found for 
the given displacement as

(E1)

The unit vectors in the directions of bars BC, HB, and HG can be found by inspection as these bars are horizontal or vertical:

(E2)

The position vector from point H to C is . Dividing the position vector by its magnitude we obtain the unit vector in 
the  direction of bar HC:

 (E3)

We can find the deformation of each bar from Equation (2.7): 

(E4)

Finally, Equation (2.2) gives the strains in each bar:

(E5)

ANS.   

COMMENTS

1. The zero strain in HB is not surprising. By looking at joint B, we can see that HB is a zero-force member. Though we have yet to 
establish the relationship between internal forces and deformation, we know intuitively that internal forces will develop if a body 
deforms.

2. We took a very procedural approach in solving the problem and, as a consequence, did several additional computations. For horizon-
tal bars BC and HG we could have found the deformation by simply subtracting the u components, and for the vertical bar HB we can 
find the deformation by subtracting the v component. But care must be exercised in determining whether the bar is in extension or in 
contraction, for otherwise an error in sign can occur.

3. In Figure 2.20 point H is held fixed (reference point), and an exaggerated relative movement of point C is shown by the vector  
The calculation of the deformation of bar HC is shown graphically.

A B C D E

H G FP2

P1

3 m

4 m

3 m 3 m 3 m
x

y

  Figure 2.19 Truss in Example 2.8.

uB 2.700 mm= vB 9.025 mm–=

uC 5.400 mm= vC 14.000 mm–=

uG 8.000 mm= vG 14.000 mm–=

uH 9.200 mm= vH 9.025 mm–=

i j ,

DBC uC uB–( ) i vC vB–( ) j+ 2.7 i 4.975 j–( ) mm= =

DHC uC uH–( ) i vC vH–( ) j+ 3.8– i  4.975 j–( ) mm= =

DHB uB uH–( ) i  vB vH–( ) j+ 6.5– i ( ) mm= =

DHG uG uH–( )i vG vH–( ) j+ 1.2– ii 4.975 j–( ) mm= =

 iBC  i          iHB  j          iHG–  i= = =

HC 3 i 4 j–=

 i HC
HC
HC
----------- 3 mm( ) i 4 mm( ) j–

3 mm( )2 4 mm( )+
2

----------------------------------------------------- 0.6 i 0.8 j–= = =

δHC DBC  iBC⋅ 2.7 mm= =

δHB DHB  iHB⋅ 0= =

δHG DHG  iHG⋅ 1.2 mm–= =

δHC DHC  iHC⋅ 0.6 mm( ) 3.8–( ) 4.975 mm–( ) 0.8–( )+ 1.7 mm= = =

εBC
δBC
LBC
--------- 2.7 mm

3 10× 3 mm
----------------------------- 0.9 10 3–  mm mm⁄×= = =

εHB
δHB
LHB
---------- 0= =

εHG
δHG
LHG
---------- 1.2 mm–

3 10× 3 mm
----------------------------- 0.4 10 3–  mm mm⁄×–= = =

εHC
δHC
LHC
---------- 1.7 mm

3 10× 3 mm
----------------------------- 0.340 10 3–×   mm mm⁄= = =

εBC 900 μmm mm⁄= εHG 400– μmm mm⁄= εHB 0= εHC 340 μmm mm⁄=

DHC.
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4. Suppose that instead of finding the relative movement of point C with respect to H, we had used point C as our reference point and 
found the relative movement of point H. The deformation vector would be  which is equal to  But the unit vector direc-

tion would also reverse, that is, we would use  which is equal to  Thus the dot product to find the deformation would 
yield the same number and the same sign. The result independent of the reference point is true only for small strains, which we have 
implicitly assumed.

PROBLEM SET 2.1

Average normal strains
2.1  An 80-cm stretch cord is used to tie the rear of a canoe to the car hook, as shown in Figure P2.1. In the stretched position the cord forms the side 
AB of the triangle shown. Determine the average normal strain in the stretch cord.

2.2  The diameter of a spherical balloon shown in Figure P2.2 changes from 250 mm to 252 mm. Determine the change in the average circumferential 
normal strain.

2.3  Two rubber bands are used for packing an air mattress for camping as shown in Figure P2.3. The undeformed length of a rubber band is 7 in. 
Determine the average normal strain in the rubber bands if the diameter of the mattress is 4.1 in. at the section where the rubber bands are on the mattress.

H

C

�HC

vC � vH 
DHC

uC � uH

  Figure 2.20 Visualization of the deformation vector for bar HC.

DCH, DHC.–

i CH, i HC– .

  Figure P2.1 

A

B C

132 cm

80 cm

A

B

  Figure P2.2 

  Figure P2.3 
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2.4  A canoe on top of a car is tied down using rubber stretch cords, as shown in Figure P2.4a. The undeformed length of the stretch cord is 
40 in. Determine the average normal strain in the stretch cord assuming that the path of the stretch cord over the canoe can be approximated as 
shown in Figure P2.4b. 

2.5  The cable between two poles shown in Figure P2.5 is taut before the two traffic lights are hung on it. The lights are placed symmetrically at 
1/3 the distance between the poles. Due to the weight of the traffic lights the cable sags as shown. Determine the average normal strain in the cable.

2.6  The displacements of the rigid plates in x direction due to the application of the forces in Figure P2.6 are uB  = −1.8 mm, uC = 0.7 mm, and 
uD = 3.7 mm. Determine the axial strains in the rods in sections AB, BC, and CD. 

2.7  The average normal strains in the bars due to the application of the forces in Figure P2.6 are εAB = −800 μ, εBC = 600 μ, and εCD = 1100 μ. 
Determine the movement of point D with respect to the left wall.

2.8  Due to the application of the forces, the rigid plate in Figure P2.8 moves 0.0236 in to the right. Determine the average normal strains in 
bars A and B. 

2.9  The average normal strain in bar A due to the application of the forces in Figure P2.8, was found to be 2500 μ in./in. Determine the nor-
mal strain in bar B.

2.10  The average normal strain in bar B due to the application of the forces in Figure P2.8 was found to be -4000 μ in./in. Determine the nor-
mal strain in bar A.

2.11  Due to the application of force P, point B in Figure P2.11 moves upward by 0.06 in. If the length of bar A is 24 in., determine the average 
normal strain in bar A.

18 in

12 i
17 in

A

B
C

A

B

C

6 in

B

A

 Figure P2.4 

(a) (b)

27 ft

15 in.

  Figure P2.5 

F1 F2 F3

F3F2F1

x

DCBA

1.5 m 2.5 m 2 m
  Figure P2.6 

Bar A Bar B

Rigid plate

0.02 in

P

P
60 in 24 in Figure P2.8 

C
D

Rigid
B

125 in 25 in

A

P

  Figure P2.11 
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2.12  The average normal strain in bar A due to the application of force P in Figure P2.11 was found to be –6000  μ in./in. If the length of bar A
is 36 in., determine the movement of point B. 

2.13  Due to the application of force P, point B in Figure P2.13 moves upward by 0.06 in. If the length of bar A is 24 in., determine the average nor-
mal strain in bar A. 

2.14  The average normal strain in bar A due to the application of force P in Figure P2.13 was found to be –6000  μ in./in. If the length of bar A
is 36 in., determine the movement of point B.

2.15  Due to the application of force P, point B in Figure P2.15 moves upward by 0.06 in. If the lengths of bars A and F are 24 in., determine 
the average normal strain in bars A and F. 

2.16  The average normal strain in bar A due to the application of force P in Figure P2.15 was found to be –5000  μ in./in. If the lengths of bars A
and F are 36 in., determine the movement of point B and the average normal strain in bar F.

2.17  The average normal strain in bar F due to the application of force P, in Figure P2.15 was found to be -2000 μ in./in. If the lengths of bars A and 
F are 36 in., determine the movement of point B and the average normal strain in bar A.

2.18  Due to the application of force P, point B in Figure P2.18 moves left by 0.75 mm. If the length of bar A is 1.2 m, determine the average nor-
mal strain in bar A. 

2.19  The average normal strain in bar A due to the application of force P in Figure P2.18 was found to be –2000 μ m /m. If the length of bar A
is 2 m, determine the movement of point B.

2.20  Due to the application of force P, point B in Figure P2.20 moves left by 0.75 mm. If the length of bar A is 1.2 m, determine the average 
normal strain in bar A. 

0.04 in

CD

Rigid

P

B

125 in 25 in

A  Figure P2.13 

0.04 in

CD

Rigid

P

B

125 in

25 in

30 in

A

E

F  Figure P2.15 

Rigid

2.5 m

1.25 m

A

D

B
P

C

  Figure P2.18 

Rigid

2.5 m
1 mm

1.25 m

A

D

P
B

C

  Figure P2.20 
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2.21  The average normal strain in bar A due to the application of force P in Figure P2.20 was found to be –2000 μ m/m. If the length of bar A
is 2 m, determine the movement of point B.

2.22  Due to the application of force P, point B in Figure P2.22 moves left by 0.75 mm. If the lengths of bars A and F are 1.2 m, determine the 
average normal strains in bars A and F. 

2.23  The average normal strain in bar A due to the application of force P in Figure P2.22 was found to be –2500 μ m/m. Bars A and F are 2 m 
long. Determine the movement of point B and the average normal strain in bar F.

2.24  The average normal strain in bar F due to the application of force P in Figure P2.22 was found to be 1000 μ m/m. Bars A and F are 2 m 
long. Determine the movement of point B and the average normal strain in bar A.

2.25  Two bars of equal lengths of 400 mm are welded to rigid plates at right angles. The right angles between the bars and the plates are pre-
served as the rigid plates are rotated by an angle of ψ as shown in Figure P2.25. The distance between the bars is h =  50 mm. The average nor-
mal strains in bars AB and CD were determined as -2500 μ mm/mm and 3500 μ mm/mm, respectively. Determine the radius of curvature R 
and the angle ψ. 

2.26  Two bars of equal lengths of 30 in. are welded to rigid plates at right angles. The right angles between the bars and the plates are pre-
served as the rigid plates are rotated by an angle of ψ= 1.25o as shown in Figure P2.25. The distance between the bars is h =  2 in. If the average 
normal strain in bar AB is -1500 μ in./in., determine the strain in bar CD.

2.27  Two bars of equal lengths of 48 in. are welded to rigid plates at right angles. The right angles between the bars and the plates are pre-
served as the rigid plates are rotated by an angle of ψ as shown in Figure P2.27. The average normal strains in bars AB and CD were determined 
as -2000 μ in./in. and 1500 μ in./in., respectively. Determine the location h of a third bar EF that should be placed such that it has zero normal 
strain. 

Rigid

2.5 m
A

E
F

C

P

0.8 m

0.45 m

1 mm D

B

  Figure P2.22 

ψ ψ
A B

C D

h

  Figure P2.25 

R

ψ ψ

A B

C D

4 in.

  Figure P2.27 

h

E F
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Average shear strains
2.28  A rectangular plastic plate deforms into a shaded shape, as shown in Figure P2.28. Determine the average shear strain at point A.

2.29  A rectangular plastic plate deforms into a shaded shape, as shown in Figure P2.29. Determine the average shear strain at point A.

2.30  A rectangular plastic plate deforms into a shaded shape, as shown in Figure P2.30. Determine the average shear strain at point A.

2.31  A rectangular plastic plate deforms into a shaded shape, as shown in Figure P2.31. Determine the average shear strain at point A.

2.32  A rectangular plastic plate deforms into a shaded shape, as shown in Figure P2.32. Determine the average shear strain at point A.

2.33  A rectangular plastic plate deforms into a shaded shape, as shown in Figure P2.33. Determine the average shear strain at point A.

A   

  

0.84 mm0.84 mm

600 mm

350 mm

  Figure P2.28 

A

  

0.0051 in  

0.0051 in 

3.5 in

1.7 in

  Figure P2.29 

A
3.0 in

1.4 in

0.007 in0.007 in

  Figure P2.30 

  Figure P2.31 A

  

450 mm

0.65 mm

0.65 mm

250 mm

A 3.0 in
0.0042 in

0.0056 in

1.4 in

  Figure P2.32 

  Figure P2.33 A

350 mm

0.6 mm

0.6 mm
600 mm
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2.34  A thin triangular plate ABC forms a right angle at point A, as shown in Figure P2.34. During deformation, point A moves vertically 
down by δA = 0.005 in. Determine the average shear strains at point A. 

2.35  A thin triangular plate ABC forms a right angle at point A, as shown in Figure P2.35. During deformation, point A moves vertically 
down by δA = 0.006 in. Determine the average shear strains at point A.

2.36  A thin triangular plate ABC forms a right angle at point A, as shown in Figure P2.36. During deformation, point A moves vertically 
down by δA = 0.75 mm. Determine the average shear strains at point A. 

2.37  A thin triangular plate ABC forms a right angle at point A. During deformation, point A moves horizontally by δA =0.005 in., as shown 
in Figure P2.37. Determine the average shear strains at point A.

2.38  A thin triangular plate ABC forms a right angle at point A. During deformation, point A moves horizontally by δA =0.008 in., as shown 
in Figure P2.38. Determine the average shear strains at point A. 

2.39  A thin triangular plate ABC forms a right angle at point A. During deformation, point A moves horizontally by δA =0.90 mm, as shown 
in Figure P2.39. Determine the average shear strains at point A. 

25� 65�

A

CB

�A

8 in

 Figure P2.34 

A

CB

�A

5 in

3 
in

 Figure P2.35 

A

CB

�A

1300 mm

500 m
m

  Figure P2.36 

25° 65°

A

CB

�A

8 in

  Figure P2.37 

A

CB

�A

5 in

3 
in

  Figure P2.38 

A

CB

�A

1300 mm

50
0 

m
m

  Figure P2.39 
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2.40  Bar AB is bolted to a plate along the diagonal as shown in Figure P2.40. The plate experiences an average strain in the x direction 
. Determine the average normal strain in the bar AB. 

2.41  Bar AB is bolted to a plate along the diagonal as shown in Figure P2.40. The plate experiences an average strain in the y direction 
. Determine the average normal strain in the bar AB. 

2.42  A right angle bar ABC is welded to a plate as shown in Figure P2.42. Points B are fixed. The plate experiences an average strain in the 
x direction . Determine the average normal strain in AB.

2.43  A right angle bar ABC is welded to a plate as shown in Figure P2.42. Points B are fixed. The plate experiences an average strain in the 
x direction . Determine the average normal strain in BC.

2.44  A right angle bar ABC is welded to a plate as shown in Figure P2.42. Points B are fixed. The plate experiences an average strain in the 
x direction . Determine the average shear strain at point B in the bar.

ε 500 μin.  in.⁄=

10 in.

5 in.

x

y

  Figure P2.40 
A

B

ε 1200 μ– mm mm⁄=

100 mm

45 mm

x

y

  Figure P2.41 A

B

ε 1000– μmm mm⁄=

150 mm

300 mm

x

y

A C

B

 Figure P2.42 
450 mm

B

ε 700 μmm mm⁄=

ε 800– μmm mm⁄=
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2.45  A right angle bar ABC is welded to a plate as shown in Figure P2.45. Points B are fixed. The plate experiences an average strain in the 
y direction  Determine the average normal strain in AB.

2.46  A right angle bar ABC is welded to a plate as shown in Figure P2.45. Points B are fixed. The plate experiences an average strain in the 
y direction  Determine the average normal strain in BC.

2.47  A right angle bar ABC is welded to a plate as shown in Figure P2.45. Points B are fixed. The plate experiences an average strain in the 
y direction  Determine the average shear strain at B in the bar.

2.48  The diagonals of two squares form a right angle at point A in Figure P2.48. The two rectangles are pulled horizontally to a deformed 
shape, shown by colored lines. The displacements of points A and B are δA = 0.4 mm and δB = 0.8 mm. Determine the average shear strain at 
point A.

2.49  The diagonals of two squares form a right angle at point A in Figure P2.48. The two rectangles are pulled horizontally to a deformed 
shape, shown by colored lines. The displacements of points A and B are δΑ = 0.3 mm and δB = 0.9 mm. Determine the average shear strain at 
point A δΑ = 0.3 mm and δB = 0.9 mm.

Small-strain approximations
2.50  The roller at P slides in the slot by the given amount shown in Figure P2.50. Determine the strains in bar AP by (a) finding the 
deformed length of AP without the small-strain approximation, (b) using Equation (2.6), and (c) using Equation (2.7). 

2.51  The roller at P slides in the slot by the given amount shown in Figure P2.51. Determine the strains in bar AP by (a) finding the 
deformed length of AP without small-strain approximation, (b) using Equation (2.6), and (c) using Equation (2.7).

ε 800 μin.  in.⁄=

1.0 in.

2 in.

x

y

A

C

B

  Figure P2.45 

3.0 in.

B

ε 500– μin.  in.⁄=

ε 600 μin.  in.⁄=

B B1A A1
�A �B

300 mm

300 mm 300 mm

  Figure P2.48 

�P � 0.25 mm

20
0 

m
m

50°

P

A  Figure P2.50 

�P � 0.25 mm

50°

30°P

A

20
0 

m
m

  Figure P2.51 
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2.52  The roller at P slides in a slot by the amount shown in Figure P2.52. Determine the deformation in bars AP and BP using the small-
strain approximation.

2.53  The roller at P slides in a slot by the amount shown in Figure P2.53. Determine the deformation in bars AP and BP using the small-
strain approximation. 

2.54  The roller at P slides in a slot by the amount shown in Figure P2.54. Determine the deformation in bars AP and BP using the small-
strain approximation. 

2.55  The roller at P slides in a slot by the amount shown in Figure P2.55. Determine the deformation in bars AP and BP using the small-
strain approximation.

2.56  The roller at P slides in a slot by the amount shown in Figure P2.56. Determine the deformation in bars AP and BP using the small-
strain approximation.

�P � 0.25 mm

110°
A

P

B

  Figure P2.52 

  Figure P2.53 
�P � 0.25 mm

60°A
P

B

�P � 0.25 mm

75°
30°

A
P

B

  Figure P2.54 

�P � 0.02 in

110�

40�PA

B  Figure P2.55 

�P � 0.01 in

25°25°
A

P

B B

  Figure P2.56 
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2.57  The roller at P slides in a slot by the amount shown in Figure P2.57. Determine the deformation in bars AP and BP using the small-
strain approximation.

2.58  A gap of 0.004 in. exists between the rigid bar and bar A before the load P is applied in Figure P2.58. The rigid bar is hinged at point C. 
The strain in bar A due to force P was found to be –600 μ in./in. Determine the strain in bar B. The lengths of bars A and B are 30 in. and 50 in., 
respectively.

2.59  A gap of 0.004 in. exists between the rigid bar and bar A before the load P is applied in Figure P2.58. The rigid bar is hinged at point C. 
The strain in bar B due to force P was found to be 1500 μ in./in. Determine the strain in bar A. The lengths of bars A and B are 30 in. and 50 in., 
respectively.

Vector approach to small-strain approximation
2.60  The pin displacements of the truss in Figure P2.60 were computed by the finite-element method. The displacements in x and y direc-
tions given by u and v are given in Table P2.60. Determine the axial strains in members AB, BF, FG, and GB.

2.61  The pin displacements of the truss in Figure P2.60 were computed by the finite-element method. The displacements in x and y direc-
tions given by u and v are given in Table P2.60. Determine the axial strains in members BC, CF, and FE.

2.62  The pin displacements of the truss in Figure P2.60 were computed by the finite-element method. The displacements in x and y direc-
tions given by u and v are given in Table P2.60. Determine the axial strains in members ED, DC, and CE.

�P � 0.02 in

60�

50�

20�

P

B

A

  Figure P2.57 

B

A

C

P 24 in
36 in 60 in

75°

  Figure P2.58 

P

A B

F E DG

C

2 m

2 m

2 m 2 m

x

y
  Figure P2.60 

TABLE P2.60   

uB 12.6 mm= vB 24.48 mm–=

uC 21.0 mm= vC 69.97 mm–=

uD 16.8– mm= vD 119.65 mm–=

uE 12.6– mm= vE 69.97 mm–=

uF 8.4– mm= vF 28.68 mm–=
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2.63  The pin displacements of the truss in Figure P2.63 were computed by the finite-element method. The displacements in x and y direc-
tions given by u and v are given in Table P2.63. Determine the axial strains in members AB, BG, GA, and AH.

2.64  The pin displacements of the truss in Figure P2.63 were computed by the finite-element method. The displacements in x and y direc-
tions given by u and v are given in Table P2.63.Determine the axial strains in members BC, CG, GB, and CD.

2.65  The pin displacements of the truss in Figure P2.63 were computed by the finite-element method. The displacements in x and y direc-
tions given by u and v are given in Table P2.63.Determine the axial strains in members GF, FE, EG, and DE.

2.66  Three poles are pin connected to a ring at P and to the supports on the ground. The ring slides on a vertical rigid pole by 2 in, as shown 
in Figure P2.66. The coordinates of the four points are as given. Determine the normal strain in each bar due to the movement of the ring. 

  Figure P2.63 

4 m 4 m

3 m

3 m

A

B

C
D

E

P1

P2

F
G

H

TABLE P2.63   

uB 7.00 mm=

uC 17.55 mm=

uD 20.22 mm=

uE 22.88 mm=

uF 9.00 mm=

uG 7.00 mm=

uH 0=

vB 1.500 mm=

vC 3.000 mm=

vD 4.125– mm=

vE 32.250 mm–=

vF 33.750 mm–=

vG 4.125 mm–=

vH 0=

P (0.0, 0.0, 6.0) ft 

A
(5.0, 0.0, 0.0) ft 

B 
(�4.0, 6.0, 0.0) ft

C
(�2.0, �3.0, 0.0) ft    

�P � 2 in

y

z

x
  Figure P2.66 
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MoM in Action: Challenger Disaster
On January 28th, 1986, the space shuttle Challenger (Figure 2.21a) exploded just 73 seconds into the flight, killing 

seven astronauts. The flight was to have been the first trip for a civilian, the school-teacher Christa McAuliffe. Classrooms 

across the USA were preparing for the first science class ever taught from space. The explosion shocked millions watching 

the takeoff and a presidential commission was convened to investigate the cause. Shuttle flights were suspended for nearly 

two years.

The Presidential commission established that combustible gases from the solid rocket boosters had ignited, causing the 

explosion. These gases had leaked through the joint between the two lower segments of the boosters on the space shuttle’s 

right side. The boosters of the Challenger, like those of the shuttle Atlantis (Figure 2.21b), were assembled using the O-ring 

joints illustrated in Figure 2.21c. When the gap between the two segments is 0.004 in. or less, the rubber O-rings are in con-

tact with the joining surfaces and there is no chance of leak. At the time of launch, however, the gap was estimated to have 

exceeded 0.017 in. 

But why? Apparently, prior launches had permanently enlarged diameter of the segments at some places, so that they 

were no longer round. Launch forces caused the segments to move further apart. Furthermore, the O-rings could not return 

to their uncompressed shape, because the material behavior alters dramatically with temperature. A compressed rubber O-

ring at 78o F is five times more responsive in returning to its uncompressed shape than an O-ring at 30o F. The temperature 

around the joint varied from approximately 28o F on the cold shady side to 50o F in the sun. 

Two engineers at Morton Thiokol, a contractor of NASA, had seen gas escape at a previous launch and had recom-

mended against launching the shuttle when the outside air temperature is below 50o F. Thiokol management initially backed 

their engineer’s recommendation but capitulated to desire to please their main customer, NASA. The NASA managers felt 

under political pressure to establish the space shuttle as a regular, reliable means of conducting scientific and commercial 

missions in space. Roger Boisjoly, one of the Thiokol engineers was awarded the Prize for Scientific Freedom and Respon-

sibility by American Association for the Advancement of Science for his professional integrity and his belief in engineer’s 

rights and responsibilities.

The accident came about because the deformation at launch was in excess of the design’s allowable deformation. An 

administrative misjudgment of risk assessment and the potential benefits had overruled the engineers.

 Figure 2.21 (a) Challenger explosion during flight (b) Shuttle Atlantis (c) O-ring joint.

(a) (b)
(c)

O-rings

gap
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2.5 STRAIN COMPONENTS

Let u, v, and w be the displacements in the x, y, and z directions, respectively. Figure 2.22 and Equations (2.9a) through (2.9i) define 
average engineering strain components:

(2.9a)

(2.9b)

(2.9c)

(2.9d)

(2.9e)

(2.9f)

(2.9g)

(2.9h)

(2.9i)

Equations (2.9a) through (2.9i) show that strain at a point has nine components in three dimensions, but only six are independent 
because of the symmetry of shear strain. The symmetry of shear strain makes intuitive sense. The change of angle between the x
and y directions is obviously the same as between the y and x directions. In Equations (2.9a) through (2.9i) the first subscript is 
the direction of displacement and the second the direction of the line element. But because of the symmetry of shear strain, the 

εxx
uΔ
xΔ

------=

εyy
vΔ
yΔ

------=

εzz
wΔ
zΔ

-------=

γxy
uΔ
yΔ

------ vΔ
xΔ

------+=

γyx
vΔ
xΔ

------ uΔ
yΔ

------+ γxy= =

γyz
vΔ
zΔ

------ wΔ
yΔ

-------+=

γzy
wΔ
yΔ

------- vΔ
zΔ

------+ γyz= =

γzx
wΔ
xΔ

------- uΔ
zΔ

------+=

γxz
uΔ
zΔ

------ wΔ
xΔ

-------+ γzx= =

(a)

�v

�w

�u

y

�y

�z
�x

x

z

�y

�v
�x

�u

�–
2 � �xy(        )

y

x

z

(b)

�v

�y

�z

�w

�–
2 � �yz(        )

z

x

y

(c)

�u

�x
�w�z

x

y

(d)

z

�–
2 � �zx(        )

Figure 2.22 (a) Normal strains. (b) Shear strain γxy. (c) Shear strain γyz. (d ) Shear strain γzx.
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order of the subscripts is immaterial. Equation (2.10) shows the components as an engineering strain matrix. The matrix is sym-
metric because of the symmetry of shear strain.

(2.10)

2.5.1 Plane Strain

Plane strain is one of two types of two-dimensional idealizations in mechanics of materials. In Chapter 1 we saw the other type, 
plane stress. We will see the difference between the two types of idealizations in Chapter 3. By two-dimensional we imply that one 
of the coordinates does not play a role in the solution of the problem. Choosing z to be that coordinate, we set all strains with 
subscript z to be zero, as shown in the strain matrix in Equation (2.11). Notice that in plane strain, four components of strain are 
needed though only three are independent because of the symmetry of shear strain.

(2.11)

The assumption of plane strain is often made in analyzing very thick bodies, such as points around tunnels, mine shafts in 
earth, or a point in the middle of a thick cylinder, such as a submarine hull. In thick bodies we can expect a point has to push a 
lot of material in the thickness direction to move. Hence the strains in the this direction should be small. It is not zero, but it is 
small enough to be neglected. Plane strain is a mathematical approximation made to simplify analysis.

EXAMPLE 2.9 

Displacements u and v in x and y directions, respectively, were measured at many points on a body by the geometric Moiré method (See 

Section 2.7). The displacements of four points on the body of Figure 2.23 are as given. Determine strains   and   at point A.

PLAN
We can use point A as our reference point and calculate the relative movement of points B and C and find the strains from Equations 
(2.9a), (2.9b), and (2.9d).

SOLUTION 
The relative movements of points B and C with respect to A are

(E1)

(E2)
The normal strains εxx and εyy can be calculated as

(E3)

(E4)

εxx  γxy  γxz

γyx  εyy  γyz

γzx  γzy  εzz  

εxx γxy 0

γyx εyy 0

0   0    0

εxx  , εyy, γxy

A B

C D

4 mm

2 
m

m

x

y

 Figure 2.23 Undeformed geometry in Example 2.9.

uA 0.0100 mm–= vA 0.0100 mm=

uB 0.0050 mm–= vB 0.0112–  mm=

uC 0.0050 mm=  vC 0.0068 mm=

uD 0.0100 mm= vD 0.0080 mm=

uB uA– 0.0050 mm= vB vA– 0.0212 mm–=

uC uA– 0.0150 mm= vB vA– 0.0032 mm–=

εxx
uB uA–
xB xA–
------------------ 0.0050 mm

4 mm
---------------------------- 0.00125 mm mm⁄  = = =

εyy
vC vA–
yC yA–
------------------ 0.0032 mm–

2 mm
------------------------------- 0.0016 mm mm⁄–= = =
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ANS.  
From Equation (2.9d)  the shear strain can be found as

(E5)

ANS. 

COMMENT

1. Figure 2.24 shows an exaggerated deformed shape of the rectangle. Point A moves to point A1; similarly, the other points move to B1, 
C1, and D1. By drawing the undeformed rectangle from point A, we can show the relative movements of the three points. We could 

have calculated the length of A1B from the Pythagorean theorem as  which 
would yield the following strain value:

 

The difference between the two calculations is 1.1%. We will have to perform similar tedious calculations to find the other two strains if 
we want to gain an additional accuracy of 1% or less. But notice the simplicity of the calculations that come from a small-strain approx-
imation.

2.6 STRAIN AT A POINT

In Section 2.5 the lengths Δx, Δy, and Δz were finite. If we shrink these lengths to zero in Equations (2.9a) through (2.9i), we 
obtain the definition of strain at a point. Because the limiting operation is in a given direction, we obtain partial derivatives and 
not the ordinary derivatives:

(2.12a)

(2.12b)

(2.12c)

(2.12d)

(2.12e)

(2.12f)

Equations (2.12a) through (2.12f) show that engineering strain has two subscripts, indicating both the direction of defor-
mation and the direction of the line element that is being deformed. Thus it would seem that engineering strain is also a sec-

εxx 1250 μmm mm⁄= εyy 1600 μmm mm⁄–=

γxy
vB vA–
xB xA–
------------------

uC uA–
yC yA–
------------------+ 0.0212 mm–

4 mm
------------------------------- 0.0150 mm

2 mm
----------------------------+ 0.0022 rad= = =

γxy 2200 μrads=

A1B1 4 0.005–( )2 0.0212–( )2+ 3.995056 mm,= =

εxx
A1B1 AB–

AB
-------------------------- 1236 μmm mm⁄ .= =

D1

vB � vA

v C
 �

 v
A

uB � uA

uC � uA

A1

x

y

C1

B1

  Figure 2.24 Elaboration of comment.

εxx
uΔ
xΔ

------⎝ ⎠
⎛ ⎞

xΔ 0→
lim u∂

x∂
-----= =

εyy
vΔ
yΔ

------⎝ ⎠
⎛ ⎞

yΔ 0→
lim v∂

y∂
-----= =

εzz
wΔ
zΔ

-------⎝ ⎠
⎛ ⎞

zΔ 0→
lim w∂

z∂
------= =

γxy γyx
uΔ
yΔ

------ vΔ
xΔ

------+⎝ ⎠
⎛ ⎞

xΔ 0→
yΔ 0→

lim u∂
y∂

----- v∂
x∂

-----+= = =

γyz γzy
vΔ
zΔ

------ wΔ
yΔ

-------+⎝ ⎠
⎛ ⎞

yΔ 0→
zΔ 0→

lim v∂
z∂

----- w∂
y∂

------+= = =

γzx γxz
wΔ
xΔ

------- uΔ
zΔ

------+⎝ ⎠
⎛ ⎞

xΔ 0→
zΔ 0→

lim w∂
x∂

------ u∂
z∂

-----+= = =
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ond-order tensor. However, unlike stress, engineering strain does not satisfy certain coordinate transformation laws, which we 
will study in Chapter 9. Hence it is not a second-order tensor but is related to it as follows:

In Chapter 9 we shall see that the factor 1 / 2, which changes engineering shear strain to tensor shear strain, plays an important 
role in strain transformation. 

2.6.1 Strain at a Point on a Line

In axial members we shall see that the displacement u is only a function of x. Hence the partial derivative in Equation (2.12a)
becomes an ordinary derivative, and we obtain

(2.13)

If the displacement is given as a function of x, then we can obtain the strain as a function of x by differentiating. If strain 
is given as a function of x, then by integrating we can obtain the deformation between two points —that is, the relative dis-
placement of two points. If we know the displacement of one of the points, then we can find the displacement of the other 
point. Alternatively stated, the integration of Equation (2.13) generates a constant of integration. To determine it, we need to 
know the displacement at a point on the line.

EXAMPLE 2.10 

Calculations using the finite-element method (see Section 4.8) show that the displacement in a quadratic axial element is given by 

Determine the normal strain εxx at x = 1 cm.

PLAN
We can find the strain by using Equation  at any x and obtain the final result by substituting the value of x = 1.

SOLUTION 
Differentiating the given displacement, we obtain the strain as shown in Equation (E1).

(E1)

ANS.   

EXAMPLE 2.11 

Figure 2.25 shows a bar that has axial strain  due to its own weight. K is a constant for a given material. Find the total 

extension of the bar in terms of K and L.

PLAN
The elongation of the bar corresponds to the displacement of point B. We start with Equation (2.13) and integrate to obtain the relative 
displacement of point B with respect to A. Knowing that the displacement at point A is zero, we obtain the displacement of point B.

tensor normal strains engineering normal strains;= tensor shear strains engineering shear strains
2

-----------------------------------------------------------=

εxx
du
dx
------ x( )=

u x( ) 125.0 x2 3x– 8+( )10 6–  cm,= 0 x 2 cm≤ ≤

εxx x 1=( ) xd
du

x 1=
125.0 2x 3–( )10 6–

x 1= 125 10 6–( )–= = =

εxx x 1=( ) 125 μ–=

εxx K L x–( )=

B

A

x

L

  Figure 2.25 Bar in Example 2.11.
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SOLUTION 
We substitute the given strain in Equation (2.13):

(E1)

Integrating Equation (E1) from point A to point B we obtain

(E2)

Since point A is fixed, the displacement uA = 0 and we obtain the displacement of point B.

ANS.   

COMMENTS
1. From strains we obtain deformation, that is relative displacement . To get the absolute displacement we choose a point on the 

body that did not move. 

2. We could integrate Equation (E1) to obtain . Using the condition that the displacement u at x = 0 is zero, 
we obtain the integration constant C1 = 0. We could then substitute x = L to obtain the displacement of point B. The integration con-
stant C1 represents rigid-body translation, which we eliminate by fixing the bar to the wall.

QUICK TEST 1.1 Time: 15 minutes/Total: 20 points

Grade yourself using the answers in Appendix E. Each problem is worth 2 points.

1. What is the difference between displacement and deformation?
2. What is the difference between Lagrangian and Eulerian strains?
3. In decimal form, what is the value of normal strain that is equal to 0.3%?
4. In decimal form, what is the value of normal strain that is equal to 2000 μ?
5. Does the right angle increase or decrease with positive shear strains?
6. If the left end of a rod moves more than the right end in the negative x direction, will the normal strain be neg-

ative or positive? Justify your answer.
7. Can a 5% change in length be considered to be small normal strain? Justify your answer.
8. How many nonzero strain components are there in three dimensions?
9. How many nonzero strain components are there in plane strain?
10. How many independent strain components are there in plane strain?

εxx
du
dx
------ K L x–( )= =

ud
uA

uB

∫ K L x–( ) xd
xA=0

xB=L

∫= or uB uA– K Lx x2

2
-----–⎝ ⎠

⎛ ⎞=
0

L

K L2 L2

2
-----–⎝ ⎠

⎛ ⎞=

uB KL2( ) 2⁄=

uB uA–

u x( ) =K Lx x2 2⁄–( ) + C1

Consolidate your  knowledge
1.  Explain in your own words deformation, strain, and their relationship without using equations.
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PROBLEM SET 2.2

Strain components

2.67  A rectangle deforms into the colored shape shown in Figure P2.67. Determine εxx, εyy  , and γxy at point A.

2.68  A rectangle deforms into the colored shape shown in Figure P2.68. Determine εxx, εyy  , and γxy at point A.

2.69  A rectangle deforms into the colored shape shown in Figure P2.69. Determine εxx, εyy  , and γxy at point A.

2.70  Displacements u and v in x and y directions, respectively, were measured by the Moiré interferometry method at many points on a body. 
The displacements of four points shown in Figure P2.70 are as give below. Determine the average values of the strain components εxx  , εyy  , and 
γxy at point A.

2.71  Displacements u and v in x and y directions, respectively, were measured by the Moiré interferometry method at many points on a body. 
The displacements of four points shown in Figure P2.70 are as given below. Determine the average values of the strain components εxx  , εyy  , and 
γxy at point A.

A

0.0042 in

0.0056 in
0.0042 in

1.4 in

0.0036 in

x

y

3.0 in  Figure P2.67 

A
0.65 mm

x

0.45 mm  

y

0.032 mm
250 mm

0.30 mm

45
0 

m
m

  Figure P2.68 

x

y

A

0.009 mm

0.024 mm

0.006 mm
0.033 mm

6 mm

3 mm

  Figure P2.69 

x

0.0005 mm

0.
00

05
 m

m

y

C D

A B

  Figure P2.70 

uA 0.500μmm=

uB 1.125μmm=

uC 0=

uD 0.750μmm=

vA 1.000– μmm=

vB 1.3125– μmm=

vC 1.5625– μmm=

vD 2.125– μmm=

uA 0.625μmm=

uB 1.500μmm=

uC 0.250μmm=

uD 1.250μmm=

vA 0.3125μmm–=

vB 0.5000μmm–=

vC 1.125– μmm=

vD 1.5625– μmm=
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2.72  Displacements u and v in x and y directions, respectively, were measured by the Moiré interferometry method at many points on a body. 
The displacements of four points shown in Figure P2.70 are as given below. Determine the average values of the strain components εxx  , εyy  , and 
γxy at point A. 

2.73  Displacements u and v in x and y directions, respectively, were measured by the Moiré interferometry method at many points on a body. 
The displacements of four points shown in Figure P2.70 are as given below. Determine the average values of the strain components εxx  , εyy  , and 
γxy at point A.

Strain at a point
2.74  In a tapered circular bar that is hanging vertically, the axial displacement due to its weight was found to be

Determine the axial strain εxx at x = 24 in.

2.75  In a tapered rectangular bar that is hanging vertically, the axial displacement due to its weight was found to be

Determine the axial strain εxx at x = 100 mm.

2.76  The axial displacement in the quadratic one-dimensional finite element shown in Figure P2.76 is given below. Determine the strain at 
node 2.

2.77  The strain in the tapered bar due to the applied load in Figure P2.77 was found to be εxx = 0.2/(40  −  x)2. Determine the extension of the 
bar.

2.78  The axial strain in a bar of length L was found to be 

where K is a constant for a given material, loading, and cross-sectional dimension. Determine the total extension in terms of K and L. 

uA 0.500– μmm=

uB 0.250μmm=

uC 1.250– μmm=

uD 0.375– μmm=

vA 0.5625– μmm=

vB 1.125– μmm=

vC 1.250– μmm=

vD 2.0625– μmm=

uA 0.250μmm=

uB 1.250μmm=

uC 0.375– μmm=

uD 0.750μmm=

vA 1.125– μmm=

vB 1.5625– μmm=

vC 2.0625– μmm=

vD 2.7500– μmm=

u x( ) 19.44– 1.44x 0.01x2– 933.12
72 x–
----------------⎠

⎞ 10 3–  in.–+⎝
⎛=

u x( ) 7.5 10 6–( )x2 25 10 6–( )x– 0.15 1 0.004x–( )ln–[ ] mm=

Node 3Node 2Node 1

x

x1 � 0 x2 � a x3 � 2a

  Figure P2.76 

u x( )
u1

2a2
-------- x a–( ) x 2a–( )

u2

a2
-----– x( ) x 2a–( )

u3

2a2
-------- x( ) x a–( )+=

P

20 in

x

  Figure P2.77 

εxx
KL

4L 3x–( )
-----------------------= 0 x L≤ ≤
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2.79  The axial strain in a bar of length L due to its own weight was found to be 

where K is a constant for a given material and cross-sectional dimension. Determine the total extension in terms of K and L.

2.80  A bar has a tapered and a uniform section securely fastened, as shown in Figure P2.80. Determine the total extension of the bar if the 
axial strain in each section is

Stretch yourself
2.81  N axial bars are securely fastened together. Determine the total extension of the composite bar shown in Figure P2.81 if the strain in the 
i th section is as given.

2.82  True strain εT is calculated from , where u is the deformation at any given instant and L0 is the original unde-
formed length. Thus the increment in true strain is the ratio of change in length at any instant to the length at that given instant. If ε represents 
engineering strain, show that at any instant the relationship between true strain and engineering strain is given by the following equation:

(2.14)

2.83  The displacements in a body are given by 

Determine strains εxx  , εyy , and γxy at x = 5 mm and y = 7 mm.

2.84  A metal strip is to be pulled and bent to conform to a rigid surface such that the length of the strip OA fits the arc OB of the surface 

shown in Figure P2.84. The equation of the surface is  and the length OA = 9 in. Determine the average normal strain in 
the metal strip.

2.85  A metal strip is to be pulled and bent to conform to a rigid surface such that the length of the strip OA fits the arc OB of the surface 

shown in Figure P2.84. The equation of the surface is  and the length OA = 200 mm. Determine the average normal 
strain in the metal strip. 

Computer problems
2.86  A metal strip is to be pulled and bent to conform to a rigid surface such that the length of the strip OA fits the arc OB of the surface 

shown in Figure P2.84. The equation of the surface is  and the length OA = 9 in. Determine the average nor-
mal strain in the metal strip. Use numerical integration.

2.87  Measurements made along the path of the stretch cord that is stretched over the canoe in Problem 2.4 (Figure P2.87) are shown in 
Table P2.87. The y coordinate was measured to the closest in. Between points A and B the cord path can be approximated by a straight 

εxx K 4L 2x– 8L3

4L 2x–( )2
--------------------------–= 0 x L,≤ ≤

P

750 mm 500 mm

x

  Figure P2.80 

ε 1500 103×
1875 x–

-------------------------- μ 0 x 750 mm

ε

≤ ≤,

1500 μ 750 mm x 1250 mm≤ ≤,

=

=

Px
i N � 1

xi�1
xi

1 2 N

  Figure P2.81 

εi ai xi 1– x xi≤ ≤,=

dεT du L0 u+( )⁄=

εT 1 ε+( )ln=

u 0.5 x2 y2–( ) 0.5xy+[ ] 10 3–( ) mm= v 0.25 x2 y2–( ) xy–[ ] 10 3–( ) mm=

f x( ) 0.04x3 2⁄  in.=

A

B

O

 

y

y � f(x)

x  Figure P2.84 

f x( ) 625x3 2⁄= μmm

f x( ) 0.04x3 2⁄ 0.005x–( )  in.=

1
32
------
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line. Determine the average strain in the stretch cord if its original length it is 40 in. Use a spread sheet and approximate each 2-in. x interval 
by a straight line.   

2.7* CONCEPT CONNECTOR

Like stress there are several definitions of strains. But unlike stress which evolved from intuitive understanding of 
strength to a mathematical definition, the development of concept of strain was mostly mathematical as described briefly in 
Section 2.7.1. 

Displacements at different points on a solid body can be measured or analyzed by a variety of methods. One modern 
experimental technique is Moiré Fringe Method discussed briefly in Section 2.7.2.

2.7.1 History: The Concept of Strain

Normal strain, as a ratio of deformation over length, appears in experiments conducted as far back as the thirteenth century. Tho-
mas Young (1773–1829) was the first to consider shear as an elastic strain, which he called detrusion. Augustin Cauchy (1789–
1857), who introduced the concept of stress we use in this book (see Section 1.6.1), also introduced the mathematical definition 
of engineering strain given by Equations (2.12a) through (2.12f). The nonlinear Lagrangian strain written in tensor form was 
introduced by the English mathematician and physicist George Green (1793–1841) and is today called Green’s strain tensor. The 
nonlinear Eulerian strain tensor, introduced in 1911 by E. Almansi, is also called Almansi’s strain tensor. Green’s and Almansi’s 
strain tensors are often referred to as strain tensors in Lagrangian and Eulerian coordinates, respectively.

2.7.2 Moiré Fringe Method

Moiré fringe method is an experimental technique of measuring displacements that uses light interference produced by two equally 
spaced gratings. Figure 2.26 shows equally spaced parallel bars in two gratings. The spacing between the bars is called the pitch. 
Suppose initially the bars in the grating on the right overlap the spacings of the left. An observer on the right will be in a dark region, 
since no light ray can pass through both gratings. Now suppose that left grating moves, with a displacement less than the spacing 
between the bars. We will then have space between each pair of bars, resulting in regions of dark and light. These lines of light and 
dark lines are called fringes. When the left grating has moved through one pitch, the observer will once more be in the dark. By 
counting the number of times the regions of light and dark (i.e., the number of fringes passing this point) and multiplying by the 
pitch, we can obtain the displacement. 

Note that any motion of the left grating parallel to the direction of the bars will not change light intensity. Hence displace-
ments calculated from Moiré fringes are always perpendicular to the lines in the grating. We will need a grid of perpendicular lines 
to find the two components of displacements in a two-dimensional problem. 

xi

yi

17 in

A

C

B

18 in

12 in

  Figure P2.87 

TABLE P2.87  

xi yi

 0 17

 2 16

 4 16

 6 16

 8 16

10 15

12 14

14 13

xB = 16   yB = 12

xA = 18  yA = 0

30
32
------

29
32
------

19
32
------

3
32
------

16
32
------

24
32
------

28
32
------
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The left grating may be cemented, etched, printed, photographed, stamped, or scribed onto a specimen. Clearly, the order 
of displacement that can be measured depends on the number of lines in each grating. The right grating is referred to as the 
reference grating. 

Figure 2.26 illustrates light interference produced mechanical and is called geometric Moiré method. This method is used 
for displacement measurements in the range of 1 mm to as small as 10 μm, which corresponds to a grid of 1 to 100 lines per 
millimeter. In U.S. customary units the range is from 0.1 in. to as small as 0.001 in., corresponding to grids having from 10 to 
1000 lines per inch. 

Light interference can also be produced optically and techniques based on optical light interference are termed optical 
interferometry. Consider two light rays of the same frequency arriving at a point, as shown in Figure 2.27. The amplitude of 
the resulting light wave is the sum of the two amplitudes. If the crest of one light wave falls on the trough of another light 
wave, then the resulting amplitude will be zero, and we will have darkness at that point. If the crests of two waves arrive at the 
same time, then we will have light brighter than either of the two waves alone. This addition and subtraction, called construc-
tive and destructive interference, is used in interferometry for measurements in a variety of ways. 

In Moiré interferometry, for example, a reference grid may be created by the reflection of light from a grid fixed to the 
specimen, using two identical light sources. As the grid on the specimen moves, the reflective light and the incident light 
interfere constructively and destructively to produce Moiré fringes. Displacements as small as 10–5 in., corresponding to 
100,000 lines per inch, can be measured. In the metric system, the order of displacements is 25 × 10–5 mm, which corresponds 
to 4000 lines per millimeter.

Reference grating

Light rays

Displacement � (pitch)(number of fringes)

Pitch Observer

  Figure 2.26 Destructive light interference by two equally spaced gratings.

A1 � A2

Amplitude

Time

Light wave 2

Light wave 1

Resulting light wave

A2

A1

  Figure 2.27 Superposition of two light waves.
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In an experiment to study mechanically fastened composites, load was applied on one end of the joint and equilibrated by 
applying a load on the lower hole, as shown in Figure 2.28a. Moiré fringes parallel to the applied load on the top plate are 
shown in Figure 2.28b.

2.8 CHAPTER CONNECTOR

In this chapter we saw that the relation between displacement and strains is derived by studying the geometry of the deformed 
body. However, whenever we approximate a deformed body, we make assumptions regarding the displacements of points on the 
body. The simplest approach is to assume that each component of displacement is either a constant in the direction of coordinate 
axis, or else a linear function of the coordinate. From the displacements we can then obtain the strains. 

The strain–displacement relation is independent of material properties. In the next chapter we shall introduce material 
properties and the relationship between stresses and strains. Thus, from displacements we first deduce the strains. From these 
we will deduce stress variations, from which we can find the internal forces. Finally, we relate the internal forces to external 
forces, as we did in Chapter 1. We shall see the complete logic in Chapter 3. 

We will study strains again in Chapter 9, on strain transformation which relates strains in different coordinate systems. 
This is important as both experimental measurements and strains analyses are usually performed in a coordinate system cho-
sen to simplify calculations. Developing a discipline of drawing deformed shapes has the same importance as drawing a free-
body diagrams for calculating forces. These drawing provide an intuitive understanding of deformation and strain, as well as 
reduce mistakes in calculations.

(a) (b)

  Figure 2.28 Deformation of a grid obtained from optical Moiré interferometry.
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POINTS AND FORMULAS TO REMEMBER

• The total movement of a point with respect to a fixed reference coordinate is called displacement.
• The relative movement of a point with respect to another point on the body is called deformation.
• The displacement of a point is the sum of rigid body motion and motion due to deformation.
• Lagrangian strain is computed from deformation by using the original undeformed geometry as the reference geometry.
• Eulerian strain is computed from deformation by using the final deformed geometry as the reference geometry.

•   (2.1)   (2.2)   (2.3)

• where ε is the average normal strain, L0 is the original length of a line, Lf  is the final length of a line, δ  is the deformation 
of the line, and uA and uB are displacements of points xA and xB, respectively. 

• Elongations result in positive normal strains. Contractions result in negative normal strains.
•  (2.4)

where α is the final angle measured in radians and  is the original right angle.

• Decreases in angle result in positive shear strain. Increases in angle result in negative shear strain.
• Small-strain approximation may be used for strains less than 0.01. 
• Small-strain calculations result in linear deformation analysis.
• Small normal strains are calculated by using the deformation component in the original direction of the line element, 

regardless of the orientation of the deformed line element.
• In small shear strain (γ   ) calculations the following approximation may be used for the trigonometric functions:
•
• In small strain,

•  (2.7)
• where DAP is the deformation vector of the bar AP and iAP is the unit vector in the original direction of the bar AP. 
• The same reference point must be used in the calculations of the deformation vector and the unit vector. 

•     

• where u, v, and w are the displacements of a point in the x, y, and z directions, respectively. 
• Shear strain is symmetric.
• In three dimensions there are nine strain components but only six are independent.
• In two dimensions there are four strain components but only three are independent.
• If u is only a function of x,

 (2.13)

ε
Lf L0–

L0
----------------= ε δ

L0
-----= ε

uB uA–
xB xA–
------------------=

γ π 2⁄ α–=

π 2⁄

γtan γ≈ γsin γ≈ γcos 1≈

δ DAP i AP⋅=

εxx
Δu
Δx
-------= γxy γyx

Δu
Δy
------- Δv

Δx
-------+= =

εyy
Δv
Δy
-------= γyz γzy

Δv
Δz
------- Δw

Δy
--------+= =

εzz
Δw
Δz
--------= γzx γxz

Δw
Δx
-------- Δu

Δz
-------+= =

Average strain

(2.9a)
through
(2.9i)

εxx x∂
∂u= γxy γyx y∂

∂u
x∂

∂v+= =

εyy y∂
∂v= γyz γzy z∂

∂v
y∂

∂w+= =

εzz z∂
∂w= γzx γxz x∂

∂w
z∂

∂u+= =

Strain at a point

(2.12a)
through
(2.12f)

εxx
du x( )

dx
--------------=
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CHAPTER THREE

MECHANICAL PROPERTIES 
OF MATERIALS

Learning objectives
1. Understand the qualitative and quantitative descriptions of mechanical properties of materials. 
2. Learn the logic of relating deformation to external forces.

_______________________________________________

The ordinary wire and rubber stretch cord in Figure 3.1 have the same undeformed length and are subjected to the same loads.
Yet the rubber deforms significantly more, which is why we use rubber cords to tie luggage on top of a car. As the example
shows, before we can relate deformation to applied forces, we must first describe the mechanical properties of materials.

In engineering, adjectives such as elastic, ductile, or tough have very specific meanings. These terms will be our qualita-
tive description of materials. Our quantitative descriptions will be the equations relating stresses and strains. Together, these
description form the material model (Figure 3.2). The parameters in the material models are determined by the least-square
method (see Appendix B.3) to fit the best curve through experimental observations. In this chapter, we develop a simple
model and learn the logic relating deformation to forces. In later chapters, we shall apply this logic to axial members, shafts,
and beams and obtain formulas for stresses and deformations. 

3.1 MATERIALS CHARACTERIZATION

The American Society for Testing and Materials (ASTM) specifies test procedures for determining the various properties of a
material. These descriptions are guidelines used by experimentalists to obtain reproducible results for material properties. In
this section, we study the tension and compression tests, which allow us to determine many parameters relating stresses and
strains. 

  Figure 3.1 Material impact on deformation.

  Figure 3.2 Relationship of stresses and strains.

Material models
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3.1.1 Tension Test

In the tension test, standard specimen are placed in a tension-test machine, where they are gripped at each end and pulled in
the axial direction. Figure 3.3 shows two types of standard geometry: a specimen with a rectangular cross-section and speci-
men with a circular cross-section. 

Two marks are made in the central region, separated by the gage length L0. The deformation δ is movement of the two
marks. For metals, such as aluminum or steel, ASTM recommends a gage length L0 = 2 in. and diameter d0 = 0.5 in. The nor-
mal strain ε is the deformation δ divided by L0. 

The tightness of the grip, the symmetry of the grip, friction, and other local effects are assumed and are observed to die
out rapidly with the increase in distance from the ends. This dissipation of local effects is further facilitated by the gradual

  Figure 3.3 Tension test machine and specimen. (Courtesy Professor I. Miskioglu.)
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 Figure 3.4 Stress–strain curve.
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change in the cross-section. The specimen is designed so that its central region is in a uniform state of axial stress. The normal
stress is calculated by dividing the applied force P by the area of cross section A0, which can be found from the specimen’s
width or diameter.

The tension test may be conducted by controlling the force P and measuring the corresponding deformation δ. Alterna-
tively, we may control the deformation δ by the movement of the grips and measuring the corresponding force P. The values
of force P and deformation δ are recorded, from which normal stress σ and normal strain ε are calculated. Figure 3.4 shows a
typical stress–strain (σ -ε) curve for metal.

As the force is applied, initially a straight line (OA) is obtained. The end of this linear region is called the proportional
limit. For some metals, the stress may then decrease slightly (the region AB), before increasing once again. The largest stress
(point D on the curve) is called the ultimate stress. In a force-controlled experiment, the specimen will suddenly break at the
ultimate stress. In a displacement-controlled experiment we will see a decrease in stress (region DE). The stress at breaking
point E is called fracture or rupture stress.

Elastic and plastic regions 
If we load the specimen up to any point along line OA—or even a bit beyond—and then start unloading, we find that we
retrace the stress–strain curve and return to point O. In this elastic region, the material regains its original shape when the
applied force is removed. 

If we start unloading only after reaching point C, however, then we will come down the straight line FC, which will be
parallel to line OA. At point F, the stress is zero, but the strain is nonzero. C thus lies in the plastic region of the stress-strain
curve, in which the material is deformed permanently, and the permanent strain at point F is the plastic strain. The region in
which the material deforms permanently is called plastic region. The total strain at point C is sum the plastic strain (OF) and
an additional elastic strain (FG)

The point demarcating the elastic from the plastic region is called the yield point. The stress at yield point is called the
yield stress. In practice, the yield point may lie anywhere in the region AB, although for most metals it is close to the propor-
tional limit. For many materials it may not even be clearly defined. For such materials, we mark a prescribed value of offset strain
recommended by ASTM to get point H in Figure 3.4. Starting from H we draw a line (HI) parallel to the linear part (OA) of
the stress–strain curve. Offset yield stress would correspond to a plastic strain at point I. Usually the offset strain is given as a
percentage. A strain of 0.2% equals ε = 0.002 (as described in Chapter 2). 

It should be emphasized that elastic and linear are two distinct material descriptions. Figure 3.5a shows the stress–strain
curve for a soft rubber that can stretch several times its original length and still return to its original geometry. Soft rubber is
thus elastic but nonlinear material.

Ductile and brittle materials 
Ductile materials, such as aluminum and copper, can undergo large plastic deformations before fracture. (Soft rubber can
undergo large deformations but it is not a ductile material.) Glass, on the other hand, is brittle: it exhibits little or no plastic
deformation as shown in Figure 3.5b. A material’s ductility is usually described as percent elongation before rupture. The
elongation values of 17% for aluminum and 35% for copper before rupture reflect the large plastic strains these materials
undergo before rupture, although they show small elastic deformation as well.

Recognizing ductile and brittle material is important in design, in order to characterize failure as we shall see in Chapters
8 and 10. A ductile material usually yields when the maximum shear stress exceeds the yield shear stress. A brittle material
usually ruptures when the maximum tensile normal stress exceeds the ultimate tensile stress. 

(a)

�

�

(b)

�

�

 Figure 3.5 Examples of nonlinear and brittle materials. (a) Soft rubber. (b) Glass.
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Hard and soft materials 
A material hardness is its resistance to scratches and indentation (not its strength). In Rockwell test, the most common hard-
ness test, a hard indenter of standard shape is pressed into the material using a specified load. The depth of indentation is mea-
sured and assigned a numerical scale for comparing hardness of different materials. 

A soft material can be made harder by gradually increasing its yield point by strain hardening. As we have seen, at point
C in Figure 3.4 the material has a permanent deformation even after unloading. If the material now is reloaded, point C
becomes the new yield point, as additional plastic strain will be observed only after stress exceeds this point. Strain hardening
is used, for example, to make aluminum pots and pans more durable. In the manufacturing process, known as deep drawing,
the aluminum undergoes large plastic deformation. Of course, as the yield point increases, the remaining plastic deformation
before fracture decreases, so the material becomes more brittle. 

True stress and true strain 
We noted that stress decreases with increasing strain between the ultimate stress and rupture (region DE in Figure 3.4). How-
ever, this decrease is seen only if we plot Cauchy’s stress versus engineering strain. (Recall that Cauchy’s stress is the load P
divided by the original undeformed cross-sectional area.) An alternative is to plot true stress versus true strain, calculated
using the actual, deformed cross-section and length (Section 1.6 and Problem 2.82). In such a plot, the stress in region DE
continues to increase with increasing strain and just as in region BD.

Past ultimate stress a specimen also undergoes a sudden decease in cross-sectional area called necking. Figure 3.6 shows
necking in a broken specimen from a tension test. 

3.1.2 Material Constants

Hooke’s law give the relationship between normal stress and normal strain for the linear region: 

(3.1)

where E is called modulus of elasticity or Young’s modulus. It represents the slope of the straight line in a stress–strain curve,
as shown in Figure 3.7. Table 3.1 shows the moduli of elasticity of some typical engineering materials, with wood as a basis of
comparison.

In the nonlinear regions, the stress–strain curve is approximated by a variety of equations as described in Section 3.11. The
choice of approximation depends on the need of the analysis being performed. The two constants that are often used are
shown in Figure 3.7. The slope of the tangent drawn to the stress–strain curve at a given stress value is called the tangent
modulus. The slope of the line that joins the origin to the point on the stress–strain curve at a given stress value is called the
secant modulus.

  Figure 3.6 Specimen showing necking. (Courtesy Professor J. B. Ligon.)
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  Figure 3.7 Different material moduli.
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Figure 3.8 shows that the elongation of a cylindrical specimen in the longitudinal direction (direction of load) causes
contraction in the lateral (perpendicular to load) direction and vice versa. The ratio of the two normal strains is a material con-
stant called the Poisson’s ratio, designated by the Greek letter ν (nu):

 (3.2)

Poisson’s ratio is a dimensionless quantity that has a value between 0 and  for most materials, although some composite
materials can have negative values for ν . The theoretical range for Poisson’s ration is –1 ≤ ν ≤ .

To establish the relationship between shear stress and shear strain, a torsion test is conducted using a machine of the type
shown in Figure 3.9. On a plot of shear stress τ versus shear strain γ, we obtain a curve similar to that shown in Figure 3.4. In
the linear region 

(3.3)

where G is the shear modulus of elasticity or modulus of rigidity.

TABLE 3.1 Comparison of moduli of elasticity for typical materials

Material
 Modulus of Elasticity 

(103 ksi)
Modulus Relative 

to Wood

Rubber 0.12 0.06
Nylon 0.60 0.30
Adhesives 1.10 0.55
Soil 1.00 0.50
Bones 1.86 0.93
Wood 2.00 1.00
Concrete 4.60 2.30
Granite 8.70 4.40
Glass 10.00 5.00
Aluminum 10.00 5.00
Steel 30.00 15.00

ν
εlateral

εlongitudinal
--------------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

–=

1
2
---

1
2
---

Longitudinal elongation 
Lateral contraction

P

P Longitudinal contraction
Lateral elongation

P

P

  Figure 3.8 Poisson effect.

τ Gγ=

 Figure 3.9 Torsion testing machine. (Courtesy Professor I. Miskioglu.)
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3.1.3 Compression Test

We can greatly simplify analysis by assuming material behavior to be the same in tension and compression. This assumption
of similar tension and compression properties works well for the values of material constants (such as E and ν). Hence the
stress and deformation formulas developed in this book can be applied to members in tension and in compression. However,
the compressive strength of many brittle materials can be very different from its tensile strength. In ductile materials as well
the stress reversal from tension to compression in the plastic region can cause failure. 

Figure 3.10a shows the stress–strain diagrams of two brittle materials. Notice the moduli of elasticity (the slopes of the
lines) is the same in tension and compression. However, the compressive strength of cast iron is four times its tensile strength,
while concrete can carry compressive stresses up to 5 ksi but has negligible tensile strength. Reinforcing concrete with steel
bars can help, because the bars carry most of the tensile stresses. 

Figure 3.10b shows the stress–strain diagrams for a ductile material such as mild steel. If compression test is conducted
without unloading, then behavior under tension and compression is nearly identical: modulus of elasticity, yield stress, and
ultimate stress are much the same. However, if material is loaded past the yield stress (point A), up to point B and then unloaded,
the stress-strain diagram starts to curve after point C in the compressive region

Suppose we once more reverse loading direction, but starting at point D, which is at least 2σyield below point B, and end-
ing at point F, where there is no applied load. The plastic strain is now less than that at point C. In fact, it is conceivable that
the loading–unloading cycles can return the material to point O with no plastic strain. Does that mean we have the same mate-
rial as the one we started with? No! The internal structure of the material has been altered significantly. Breaking of the mate-
rial below the ultimate stress by load cycle reversal in the plastic region is called the Bauschinger effect. Design therefore
usually precludes cyclic loading into the plastic region. Even in the elastic region, cyclic loading can cause failure due to
fatigue (see Section 3.10).

  Figure 3.10 Differences in tension and compression. (a) Brittle material. (b) Ductile material.
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EXAMPLE 3.1 

A tension test was conducted on a circular specimen of titanium alloy. The gage length of the specimen was 2 in. and the diameter in the test
region before loading was 0.5 in. Some of the data from the tension test are given in Table 3.2, where P is the applied load and δ is the corre-
sponding deformation. Calculate the following quantities: (a) Stress at proportional limit. (b) Ultimate stress. (c) Yield stress at offset strain
of 0.4%. (d) Modulus of elasticity. (e) Tangent and secant moduli of elasticity at a stress of 136 ksi. (f) Plastic strain at a stress of 136 ksi.

PLAN
We can divide the column of load P by the cross-sectional area to get the values of stress. We can divide the column of deformation δ by the
gage length of 2 in. to get strain. We can plot the values to obtain the stress–strain curve and calculate the quantities, as described in Section 3.1. 

SOLUTION
We divide the load column by the cross-sectional area A = π (0.5 in.)2/4 = 0.1964 in.2 to obtain stress σ, and the deformation column by the
gage length of 2 in. to obtain strain ε, as shown in Table 3.3, which is obtained using a spread sheet. Figure 3.11 shows the corresponding
stress–strain curve. 

(a) Point A is the proportional limit in Figure 3.11. The stress at point A is:
ANS.

(b) The stress at point B in Figure 3.11 is the ultimate as it is largest stress on the stress–strain curve. 
ANS.

(c) The offset strain of 0.004 (or 0.4%) corresponds to point C. We can draw a line parallel to OA from point C, which intersects the
stress–strain curve at point D. The stress at point D is the offset yield stress 

ANS.

TABLE 3.2 Tension test data in Example 3.1

#
P

(kips)
δ

(10–3 in.)

1 0.0 0.0
2 5.0 3.2
3 15.0 9.5
4 20.0 12.7
5 24.0 15.3
6 24.5 15.6
7 25.0 15.9
8 25.2 16.9
9 25.4 19.7

10 26.0 28.5
11 26.5 36.9
12 27.0 46.5
13 27.5 58.3
14 28.0 75.2
15 28.2 87.1
16 28.3 100.0
17 28.2 112.9
18 28.0 124.8

TABLE 3.3 Stress and strain in Example 3.1

# σ (ksi) ε (10−3)

1 0.0 0.0
2 25.5 1.6
3 76.4 4.8
4 101.9 6.4
5 122.2 7.6
6 124.8 7.8
7 127.3 8.0
8 128.3 8.5
9 129.9 10.5
10 132.4 14.3
11 135.0 18.4
12 137.5 23.3
13 140.1 29.1
14 142.6 37.6
15 143.6 43.5
16 144.0 50.0
17 143.6 56.5
18 142.6 62.4
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 Figure 3.11 Stress–strain curve for Example 3.1.

σprop 128 ksi.=

σult 144 ksi.=

σyield 132 ksi.=
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(d) The modulus of elasticity E is the slope of line OA. Using the triangle at point I we can find E,

(E1)

ANS.
(e) At point F the stress is 136 ksi. We can find the tangent modulus by finding the slope of the tangent at F, 

(E2)

ANS.
(f) We can use triangle OFG to calculate the slope of OF to obtain secant modulus of elasticity at 136 ksi. 

(E3)

ANS.
(g) To find the plastic strain at 136 ksi, we draw a line parallel to OA through point F. Following the description in Figure 3.4, OH rep-

resents the plastic strain. We know that the value of plastic strain will be between 0.01 and 0.012. We can do a more accurate calcu-
lation by noting that the plastic strain OH is the total strain OG minus the elastic strain HG. We find the elastic strain by dividing the
stress at F (136 ksi) by the modulus of elasticity E:

(E4)

ANS.

3.1.4* Strain Energy

In the design of springs and dampers, the energy stored or dissipated is as significant as the stress and deformation. In design-
ing automobile structures for crash worthiness, for example, we must consider how much kinetic energy is dissipated through
plastic deformation. Some failure theories too, are based on energy rather than on maximum stress or strain. Minimum-energy
principles are thus an important alternative to equilibrium equations and can often simplify our calculation.

The energy stored in a body due to deformation is the strain energy, U, and the strain energy per unit volume is the
strain energy density, U0:

(3.4)

where V is the volume of the body. Geometrically, U0 is the area underneath the stress–strain curve up to the point of deforma-
tion. From Figure 3.12, 

(3.5)

E 96 ksi 64 ksi–
0.006 0.004–
----------------------------------- 16 103( ) ksi= =

E 16,000 ksi=

Et
140 ksi 132 ksi–

0.026 0.014–
----------------------------------------- 666.67 ksi= =

Et 666.7 ksi=

Es
136 ksi 0–

0.02 0–
-------------------------- 6800 ksi= =

Es 6800 ksi=

εplastic εtotal εelastic– 0.02 136 ksi
16 000 ksi,
-------------------------– 0.0115= = =

εplastic 11,500 μ=

U U0 Vd
V∫

=

U0 σ εd
0

ε

∫=

d�

O

�

d�

�

U0 � Strain energy density

dU0 � � d�

dU0 � � d�

A

U0 � Complementary strain energy density

  Figure 3.12 Energy densities.
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The strain energy density has the same dimensions as stress since strain is dimensionless, but the units of strain energy density
are different —  Figure 3.12 also shows the complementary strain energy density

 defined as

(3.6)

The strain energy density at the yield point is called modulus of resilience (Figure 3.13a). This property is a measure of
the recoverable (elastic) energy per unit volume that can be stored in a material. Since a spring is designed to operate in the
elastic range, the higher the modulus of resilience, the more energy it can store. 

The strain energy density at rupture is called modulus of toughness. This property is a measure of the energy per unit
volume that can be absorbed by a material without breaking and is important in resistance to cracks and crack propagation.
Whereas a strong material has high ultimate stress, a tough material has large area under the stress–strain curve, as seen in
Figure 3.13c. It should be noted that strain energy density, complementary strain energy density, modulus of resilience, and
modulus of toughness all have units of energy per unit volume. 

Linear Strain Energy Density
Most engineering structures are designed to function without permanent deformation. Thus most of the problems we will
work with involve linear–elastic material. Normal stress and strain in the linear region are related by Hooke’s law. Substitut-
ing  in Equation (3.5) and integrating, we obtain , which, again using Hooke’s law, can be
rewritten as

(3.7)

Equation (3.7) reflects that the strain energy density is equal to the area of the triangle underneath the stress–strain curve in the
linear region. Similarly, Equation (3.8) can be written using the shear stress–strain curve:

(3.8)

Strain energy, and hence strain energy density, is a scalar quantity. We can add the strain energy density due to the individual
stress and strain components to obtain

(3.9)

EXAMPLE 3.2 

For the titanium alloy in Example 3.1, determine: (a) The modulus of resilience. Use proportional limit as an approximation for yield
point. (b) Strain energy density at a stress level of 136 ksi. (c) Complementary strain energy density at a stress level of 136 ksi. (d) Mod-
ulus of toughness.

N m/m3, J/m3, in. lb/in.3 or ft lb/ft3.⋅,⋅⋅
U0,

U0 ε σd
0

σ

∫=

  Figure 3.13 Energy-related moduli.

Stronger material

Tougher material

�

�

�

�

�

�

Modulus of
resilience

Modulus of
toughness

Yield
point

Ultimate
stress

(a) (b) (c)

Rupture
Stress

σ Eε= U0 Eε εd
0

ε

∫ Eε
2 2⁄= =

U0
1
2
---σε=

U0
1
2
---τγ=

U0
1
2
--- σxxεxx σyyεyy σzzεzz τxyγxy τyzγyz τzxγzx+ + + + +[ ]=
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PLAN

We can identify the proportional limit, the point on curve with stress of 136 ksi and the rupture point and calculate the areas under the
curve to obtain the quantities of interest.

SOLUTION

Figure 3.11 is redrawn as Figure 3.14.
Point A is the proportional limit we can use to approximate the yield point in Figure 3.14. The area of the triangle OAA1 can be calculated
as shown in Equation (E1) and equated to modulus of resilience.

(E1)

ANS.  The modulus of resilience is 0.512 in.·kips/in.3.

Point B in Figure 3.14 is at 136 ksi. The strain energy density at point B is the area AOA1 plus the area AA1BB1. The area AA1BB1 can be
approximated as the area of a trapezoid and found as 

(E2)

The strain energy density at B (136 ksi) is 

ANS.

The complementary strain energy density at B can be found by subtracting UB from the area of the rectangle OB2BB1. Thus,

.

ANS.
The rupture stress corresponds to point G on the graph. The area underneath the curve in Figure 3.14 can be calculated by approximating
the curve as a series of straight lines AB, BC, CD, DF, and FG.

(E3)

(E4)

(E5)

(E6)

The total area is the sum of the areas given by Equations (E1) through (E6), or 8.032. 
ANS. The modulus of toughness is 8.03 in.·kips/in.3.

COMMENTS

1. Approximation of the curve by a straight line for the purpose of finding areas is the same as using the trapezoidal rule of integration. 

  Figure 3.14 Area under curve in Example 3.2.

AOA1
128 0.008×

2
---------------------------- 0.512= =

160.00

140.00

120.00

100.00

80.00

60.00

40.00

20.00

0.00
0.00 0.01 0.02 0.03

Strain

St
re

ss
 (

ks
i)

0.04 0.05 0.06 0.07

BB2

A1 B1 C1 D1 F1

C D F

A

O

G

G1

AA1BB1
128 136+( ) 0.012

2
-------------------------------------------- 1.584= =

UB 0.512 1.584+=

UB 2.1 in. kips/in.3⋅=

UB 136 0.02× 2.1–=

UB 0.62 in. kips/in.3⋅=

BB1CC1
136 140+( ) 0.010

2
--------------------------------------------- 1.38= =

CC1DD1
140 142+( ) 0.010

2
--------------------------------------------- 1.41= =

DD1FF1
142 144+( ) 0.010

2
--------------------------------------------- 1.43= =

FF1GG1
144 142+( ) 0.012

2
--------------------------------------------- 1.716= =
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2. In Table 3.3, there were many data points between the points shown by letters A through G in Figure 3.14. We can obtain more accu-
rate results if we approximate the curve between two data points by a straight line. This would become tedious unless we use a spread
sheet as discussed in Appendix B.1.

3.2 THE LOGIC OF THE MECHANICS OF MATERIALS

We now have all the pieces in place for constructing the logic that is used for constructing theories and obtain formulas for the
simplest one-dimensional structural members, such as in this book, to linear or nonlinear structural members of plates and
shells seen in graduate courses. In Chapter 1 we studied the two steps of relating stresses to internal forces and relating inter-
nal forces to external forces. In Chapter 2 we studied the relationship of strains and displacements. Finally, in Section 3.1 we
studied the relationship of stresses and strains. In this section we integrate all these concepts, to show the logic of structural
analysis.

Figure 3.15 shows how we relate displacements to external forces. It is possible to start at any point and move either
clockwise (shown by the filled arrows ) or counterclockwise (shown by the hollow arrows ). No one arrow
directly relates displacement to external forces, because we cannot relate the two without imposing limitations and making
assumptions regarding the geometry of the body, material behavior, and external loading.

The starting point in the logical progression depends on the information we have or can deduce about a particular vari-
able. If the material model is simple, then it is possible to deduce the behavior of stresses, as we did in Chapter 1. But as the
complexity in material models grows, so does the complexity of stress distributions, and deducing stress distribution becomes
increasingly difficult. Unlike stresses, displacements can be measured directly or observed or deduced from geometric consid-
erations. Later chapters will develop theories for axial rods, torsion of shafts, and bending of beams by approximating dis-
placements and relating these displacements to external forces and moments using the logic shown in Figure 3.15. 

Examples 3.3 and 3.4 demonstrate logic of problem solving shown in Figure 3.15. Its modular character permits the addi-
tion of complexities without changing the logical progression of derivation, as demonstrated by Example 3.5. 

  Figure 3.15 Logic in structural analysis.
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EXAMPLE 3.3 

A rigid plate is attached to two 10 mm × 10 mm square bars (Figure 3.16). The bars are made of hard rubber with a shear modulus G
= 1.0 MPa. The rigid plate is constrained to move horizontally due to action of the force F. If the horizontal movement of the plate is
0.5 mm, determine the force F assuming uniform shear strain in each bar.

PLAN
We can draw an approximate deformed shape and calculate the shear strain in each bar. Using Hooke’s law we can find the shear stress
in each bar. By multiplying the shear stress by the area we can find the equivalent internal shear force. By drawing the free-body diagram
of the rigid plate we can relate the internal shear force to the external force F and determine F. 

SOLUTION
1. Strain calculation: Figure 3.17a shows an approximate deformed shape. Assuming small strain we can find the shear strain in each

bar:

(E1)

(E2)

2. Stress calculation: From Hooke’s law  we can find the shear stress in each bar:

(E3)

(E4)

3. Internal force calculation: The cross-sectional area of the bar is  Assuming uniform shear stress,
we can find the shear force in each bar:

(E5)

(E6)
4. External force calculation: We can make imaginary cuts on either side of the rigid plate and draw the free-body diagram as shown in

Figure 3.17b. From equilibrium of the rigid plate we can obtain the external force F as 

(E7)

ANS. 

F

10 mm

L � 50 mm

L � 100 mm

  Figure 3.16 Geometry in Example 3.3.

γABtan γAB≈ 0.5 mm
100 mm
-------------------- 5000 μrad==

γCDtan γCD≈ 0.5 mm
50 mm
------------------ 10,000 μrad= =

L � 50 mm

L � 100 mm

D

A

C

�CD

�AB

C1

B B1

  Figure 3.17 (a) Deformed geometry. (b) Free-body diagram.

F
VCD

VAB

(a) (b)

τ Gγ=

τAB 106 N/m2( ) 5000( ) 10 6–( ) 5000 N/m2= =

τCD 106 N/m2( ) 10,000( ) 10 6–( ) 10,000 N/m2= =

A 100 mm2 100 10 6–( ) m2.= =

VAB τAB A 5000 N/m2( ) 100( ) 10 6–( ) m2 0.5 N== =

VCD τCD A 10,000 N/m2( ) 100( ) 10 6–( ) m2 1.0 N== =

F VAB VCD+ 1.5 N= =

F 1.5 N=
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EXAMPLE 3.4* 

The steel bars (E = 200 GPa) in the truss shown in Figure 3.18 have cross-sectional area of 100 mm2. Determine the forces F1 and F2 if
the displacements u and v of the pins in the x and y directions, respectively, are as given below.

PLAN
We can find strains using small-strain approximation as in Example 2.8. Following the logic in Figure 3.15 we can find stresses and then
the internal force in each member. We can then draw free-body diagrams of joints C and D to find the forces F1 and F2.

SOLUTION
1. Strain calculations: The strains in the horizontal and vertical members can be found directly from the displacements,

(E1)

For the inclined member AD we first find the relative displacement vector DAD and then take a dot product with the unit vector  to
obtain the deformation of AD as

(E2)

(E3)

The length of AD is  we obtain the strain in AD as

(E4)

Similarly for member CD we obtain

(E5)

(E6)

The length of CD is  and we obtain the strain in CD as

(E7)

2. Stress calculations: From Hooke’s law , we can find stresses in each member: 

(E8)

3. Internal force calculations: The internal normal force can be found from  where the cross-sectional area is A = 100 × 10−6

m2. This yields the following internal forces:

F1

F2

E

A B
C

D

2 m

2 m 2 m
x

y

  Figure 3.18 Pin displacements in Example 3.4.

uB 0.5– 00 mm=

uC 1.000–  mm=

uD 1.300 mm  =

vB 2.714 mm–=

vC 6.428 mm–=

vD 2.714 mm–=

εAB
uB uA–

LAB
------------------ 0.250 10 3–( ) m /m–= =

εED
uD uE–

LED
------------------ 0.650 10 3–( ) m /m= =

εBC
uC uB–

LBC
------------------ 0.250– 10 3–( ) m /m= =

εBD
vD vB–

LBD
------------------ 0= =

iAD,

DAD uD i vD j+( ) uA i vA j+( )– 1.3 i 2.714 j–( ) mm= =

i AD 45cos  i 45sin  j+ 0.707 i 0.707 j+= =

δAD DAD iAD⋅ 1.3 mm( ) 0.707( ) 2.714 mm–( ) 0.707( )+ 1.000–  mm= = =

LAD 2.828 m=

εAD
δAD

LAD
--------- 1.000 10 3–( ) m–

2.828 m
--------------------------------------- 0.3535 10 3–( ) m /m–= = =

DCD uDi vDj+( ) uCi vCj+( )– 2.3 i 3.714j+( ) mm= =

iCD 45cos–  i 45sin  j+ 0.707– i 0.707j+= =

δCD DCD i CD⋅ 2.3 mm( ) 0.707–( ) 3.714 mm( ) 0.707( )+ 1.000 mm= = =

LCD 2.828 m=

εCD
δCD

LCD
--------- 1.000 10 3–( ) m

2.828 m
------------------------------------ 0.3535 10 3–( ) m /m= = =

σ Eε=

σAB 200 109× N/m2( ) 0.250– 10 3–×( ) 50=  MPa C( )=

σBC 200 109× N/m2( ) 0.250– 10 3–×( ) 50=  MPa C( )=

σED 200 109× N/m2( ) 0.650 10 3–×( ) 130 MPa T( )==

σBD 200 109× N/m2( ) 0.000 10 3–×( )  = 0=

σAD 200 109× N/m2( ) 0.3535– 10 3–×( ) 70.7 MPa C( )==

σCD 200 109× N/m2( ) 0.3535 10 3–×( )  = 70.7 MPa T( )=

N σA,=
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(E9)

4. External forces: We draw free-body diagrams of pins C and D as shown in Figure 3.19.

 

By equilibrium of forces in y direction in Figure 3.19a
(E10)

ANS.
By equilibrium of forces in x direction in Figure 3.19b 

(E11)

ANS.

COMMENTS
1. Notice the direction of the internal forces. Forces that are pointed into the joint are compressive and the forces pointed away from the

joint are tensile.
2. We used force equilibrium in only one direction to determine the external forces. We can use the equilibrium in the other direction to

check our results. By equilibrium of forces in the x-direction in Figure 3.19a we obtain:
 

which checks with the value we calculated. The forces in the y direction in Figure 3.19b must also be in equilibrium. With NBD equal to
zero we obtain NAD should be equal to NCD , which checks with the values calculated.

EXAMPLE 3.5 

A canoe on top of a car is tied down using rubber stretch cords, as shown in Figure 3.20a. The undeformed length of the stretch cord is
40 in. The initial diameter of the cord is d = 0.5 in. and the modulus of elasticity of the cord is E = 510 psi. Assume that the path of the
stretch cord over the canoe can be approximated as shown in Figure 3.20b. Determine the approximate force exerted by the cord on the
carrier of the car.

PLAN
We can find the stretched length Lf of the cord from geometry. Knowing Lf and L0 = 40 in., we can find the average normal strain in the
cord from Equation (2.1). Using the modulus of elasticity, we can find the average normal stress in the cord from Hooke’s law, given by
Equation (3.1). Knowing the diameter of the cord, we can find the cross-sectional area of the cord and multiply it by the normal stress to
obtain the tension in the cord. If we make an imaginary cut in the cord just above A, we see that the tension in the cord is the force
exerted on the carrier.

SOLUTION
1. Strain calculations: We can find the length BC using Figure 3.21a from the Pythagorean theorem:

NAB 5 kN C( )=

NED 13.0 kN T( )=

NAD 7.07 kN C( )=

      
NBC 5 kN C( )=

NBD 0=

NCD 7.07 kN T( )=

45�

NBC

F1

NCD

C

  Figure 3.19 Free-body diagram of joint (a) C (b) D.

45� 45�
NAD

NED

NBD

NCD

F2
D(a) (b)

NCD 45°sin F1– 0=

F1 5 kN=

F2 NCD 45°sin NAD 45° NED–sin+ + 0=

F2 3 kN=

NBC = NCD  45°cos 7.07 kN  45°cos 5 kN= = =

  Figure 3.20 Approximation of stretch cord path on top of canoe in Example 3.5.
36 in.

12 in.
17 in.

A

B

C

B

A

(a)

(b)
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(E1)
Noting the symmetry, we can find the total length Lf of the stretched cord and the average normal strain:

(E2)

(E3)

2. Stress calculation: From Hooke’s law we can find the stress as
(E4)

3. Internal force calculations: We can find the cross-sectional area from the given diameter d = 0.5 in. and multiply it with the stress to
obtain the internal tension, 

(E5)

(E6)
4. Reaction force calculation: We can make a cut just above A and draw the free-body diagram as shown in Figure 3.21b to calculate the

force R exerted on the carrier,

(E7)
ANS.

COMMENTS
1. Unlike in the previous two examples, where relatively accurate solutions would be obtained, in this example we have large strains and

several other approximations, as elaborated in the next comment. The only thing we can say with some confidence is that the answer
has the right order of magnitude.

2. The following approximations were made in this example: 
(a) The path of the cord should have been an inclined straight line between the carrier rail and the point of contact on the canoe, and then

the path should have been the contour of the canoe. 
(b) The strain along the cord is nonuniform, which we approximated by a uniform average strain. 
(c) The stress–strain curve of the rubber cord is nonlinear. Thus as the strain changes along the length, so does the modulus of elasticity

E, and we need to account for this variation of E in the calculation of stress. 
(d) The cross-sectional area for rubber will change significantly with strain and must be accounted for in the calculation of the internal

tension. 
3. Depending on the need of our accuracy, we can include additional complexities to address the error from the preceding approxima-

tions. 
(a) Suppose we did a better approximation of the path as described in part (2a) but made no other changes. In such a case the only

change would be in the calculation of Lf in Equation (E2) (see Problem 2.87), but the rest of the equations would remain the same. 
(b) Suppose we make marks on the cord every 2 in. before we stretch it over the canoe. We can then measure the distance between two

consecutive marks when the cord is stretched. Now we have Lf for each segment and can repeat the calculation for each segment (see
Problem 3.68).

(c) Suppose, in addition to the above two changes, we have the stress–strain curve of the stretch cord material. Now we can use the tan-
gent modulus in Hooke’s law for each segment, and hence we can get more accurate stresses in each segment. We can then calculate
the internal force as before (see Problem 3.69). 

(d) Rubber has a Poisson’s ratio of 0.5. Knowing the longitudinal strain from Equation (E3) for each segment, we can compute the trans-
verse strain in each segment and find the diameter of the cord in the stretched position in each segment. This will give us a more
accurate area of cross section, and hence a more accurate value of internal tension in the cord (see Problem 3.70). 

4. These comments demonstrate how complexities can be added one at a time to improve the accuracy of a solution. In a similar manner,
we shall derive theories for axial members, shafts, and beams in Chapters 4 through 6, to which complexities can be added as asked
of you in “Stretch yourself” problems. Which complexity to include depends on the individual case and our need for accuracy.

BC 5 in.( )2 18 in.( )2+ 18.68 in.= =

Lf 2 AB BC+( ) 61.36 in.= =

ε
Lf L0–

L0
---------------- 61.36 in. 40 in.–

40 in.
----------------------------------------- 0.5341 in. in.⁄= = =

C

D
B

5

18  Figure 3.21 Calculations in Example 3.5 of (a) length (b) reaction force

T

R

(b)(a)

σ Eε 510 psi( ) 0.5341( ) 272.38 psi= = =

A πd2

4
--------- π 0.5 in.( )2

4
--------------------------- 0.1963 in.2= = =

T σA 0.1963 in.2( ) 272.38 psi( ) 53.5 lb= = =

R T=
T 53.5 lb=

Consolidate your  knowledge
1. In your own words, describe the tension test and the quantities that can be calculated from the experiment.
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3.3 FAILURE AND FACTOR OF SAFETY

There are many types of failures. The breaking of the ship S.S. Schenectady (Chapter 1) was a failure of strength, whereas the
failure of the O-ring joints in the shuttle Challenger (Chapter 2) was due to excessive deformation. Failure implies that a
component or a structure does not perform the function for which it was designed. 

A machine component may interfere with other moving parts because of excessive deformation; a chair may feel rickety
because of poor joint design; a gasket seal leaks because of insufficient deformation of the gasket at some points; lock wash-
ers may not deform enough to provide the spring force needed to keep bolted joints from becoming loose; a building undergo-
ing excessive deformation may become aesthetically displeasing. These are examples of failure caused by too little or too
much deformation. 

The stiffness of a structural element depends on the modulus of elasticity of the material as well as on the geometric prop-
erties of the member, such as cross-sectional area, area moments of inertia, polar moments of inertia, and the length of the
components. The use of carpenter’s glue in the joints of a chair to prevent a rickety feeling is a simple example of increasing
joint and structure stiffness by using adhesives.

Prevention of a component fracture is an obvious design objective based on strength. At other times, our design objective
may be avoid to making a component too strong. The adhesive bond between the lid and a sauce bottle must break so that the
bottle may be opened by hand; shear pins must break before critical components get damaged; the steering column of an auto-
mobile must collapse rather than impale the passenger in a crash. Ultimate normal stress is used for assessing failure due to
breaking or rupture particularly for brittle materials.

Permanent deformation rather than rupture is another stress-based failure. Dents or stress lines in the body of an automo-
bile; locking up of bolts and screws because of permanent deformation of threads; slackening of tension wires holding a struc-
ture in place—in each of these examples, plastic deformation is the cause of failure. Yield stress is used for assessing failure
due to plastic deformation, particularly for ductile materials.

A support in a bridge may fail, but the bridge can still carry traffic. In other words, the failure of a component does not
imply failure of the entire structure. Thus the strength of a structure, or the deflection of the entire structure, may depend on a
large number of variables. In such cases loads on the structure are used to characterize failure. Failure loads may be based on
the stiffness, the strength, or both.

A margin of safety must be built into any design to account for uncertainties or a lack of knowledge, lack of control over
the environment, and the simplifying assumptions made to obtain results. The measure of this margin of safety is the factor of
safety Ksafety  defined as 

(3.10)

QUICK TEST 3.1 Time: 15 minutes/Total: 20 points

Grade yourself using the answers given in Appendix E. Each question is worth two points.

1. What are the typical units of modulus of elasticity and Poisson’s ratio in the metric system?
2. Define offset yield stress.
3. What is strain hardening?
4. What is necking?
5. What is the difference between proportional limit and yield point?
6. What is the difference between a brittle material and a ductile material?
7. What is the difference between linear material behavior and elastic material behavior?
8. What is the difference between strain energy and strain energy density?
9. What is the difference between modulus of resilience and modulus of toughness?
10. What is the difference between a strong material and a tough material?

Ksafety
failure-producing value

computed (allowable) value
-------------------------------------------------------------------=
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Equation (3.10) implies that the factor of safety must always be greater than 1. The numerator could be the failure deflection,
failure stress, or failure load and is assumed known. In analysis, the denominator is determined, and from it the factor of
safety is found. In design, the factor of safety is specified, and the variables affecting the denominator are determined such
that the denominator value is not exceeded. Thus in design the denominator is often referred to as the allowable value. 

Several issues must be considered in determining the appropriate factor of safety in design. No single issue dictates the
choice. The value chosen is a compromise among various issues and is arrived at from experience.

Material or operating costs are the primary reason for using a low factor of safety, whereas liability cost considerations
push for a greater factor of safety. A large fixed cost could be due to expensive material, or due to large quantity of material
used to meet a given factor of safety. Greater weight may result in higher fuel costs. In the aerospace industries the operating
costs supersede material costs. Material costs dominate the furniture industry. The automobile industry seeks a compromise
between fixed and running costs. Though liability is a consideration in all design, the building industry is most conscious of it
in determining the factor of safety. 

Lack of control or lack of knowledge of the operating environment also push for higher factors of safety. Uncertainties in
predicting earthquakes, cyclones, or tornadoes, for examples, require higher safety factors for the design of buildings located
in regions prone to these natural calamities. A large scatter in material properties, as usually seen with newer materials, is
another uncertainty pushing for higher factor of safety.

Human safety considerations not only push the factor of safety higher but often result in government regulations of the
factors of safety, as in building codes.

This list of issues affecting the factor of safety is by no means complete, but is an indication of the subjectivity that goes
into the choice of the factor of safety. The factors of safety that may be recommended for most applications range from 1.1 to 6.

EXAMPLE 3.6 

In the leaf spring design in Figure 3.22 the formulas for the maximum stress σ and deflection δ given in Equation (3.11) are derived from
theory of bending of beams (see Example 7.4):

(3.11)

where P is the load supported by the spring, L is the length of the spring, n is the number of leaves b is the width of each leaf, t is the
thickness of each leaf, and E is the modulus of elasticity. A spring has the following data: L = 20 in., b = 2 in., t = 0.25 in., and
E = 30,000 ksi. The failure stress is σfailure = 120 ksi, and the failure deflection is δfailure = 0.5 in. The spring is estimated to carry a max-
imum force P = 250 lb and is to have a factor of safety of Ksafety = 4. (a) Determine the minimum number of leaves. (b) For the answer in
part (a) what is the real factor of safety? 

PLAN
(a) The allowable stress and allowable deflection can be found from Equation (3.10) using the factor of safety of 4. Equation (3.11) can
be used with two values of n to ensure that the allowable values of stress and deflection are not exceeded. The higher of the two values of
n is the minimum number of leaves in the spring design. (b) Substituting n in Equation (3.11), we can compute the maximum stress and
deflection and obtain the two factors of safety from Equation (3.10). The lower value is the real factor of safety.

SOLUTION
(a)  The allowable values for stress and deflection can be found from Equation (3.10) as:

σ 3PL
nbt2
----------= δ 3PL3

4Enbt3
------------------=

 Figure 3.22 Leaf spring in Example 3.6.

Simplified model

P

t

L/2

Leaf spring Leaf Spring
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(E1)

(E2)

Substituting the given values of the variables in the stress formula in Equation (3.11), we obtain the maximum stress, which should be
less than the allowable stress. From this we can obtain one limitation on n:

(E3)

(E4)
Substituting the given values in the deflection formula, in Equation (3.11), we obtain the maximum deflection, which should be less than
the allowable stress we thus obtain one limitation on n:

(E5)

(E6)
The minimum number of leaves that will satisfy Equations (E4) and (E6) is our answer.

ANS.
(b) Substituting n = 13 in Equations (E3) and (E5) we find the computed values of stress and deflection and the factors of safety from
Equation (3.10).

(E7)

(E8)

The factor of safety for the system is governed by the lowest factor of safety, which in our case is given by Equation (E8). 
ANS.  

COMMENTS
1. This problem demonstrates the difference between the allowable values, which are used in design decisions based on a specified fac-

tor of safety, and computed values, which are used in analysis for finding the factor of safety.
2. For purposes of design, formulas are initially obtained based on simplified models, as shown in Figure 3.22. Once the preliminary

relationship between variables has been established, then complexities are often incorporated by using factors determined experimen-
tally. Thus the deflection of the spring, accounting for curvature, end support, variation of thickness, and so on is given by δ =
K(3PL3/ 4Enbt3), where K is determined experimentally as function of the complexities not accounted for in the simplified model.
This comment highlights how the mechanics of materials provides a guide to developing formulas for complex realities.

PROBLEM SET 3.1

Stress–strain curves
3.1 -3.5 A tensile test specimen having a diameter of 10 mm and a gage length of 50 mm was tested to fracture. The stress–strain curve from the
tension test is shown in Figure P3.3. The lower plot is the expanded region OAB and associated with the strain values given on the lower scale.
Solve Problems 3.1 through 3.5.

3.1 Determine (a) the ultimate stress; (b) the fracture stress; (c) the modulus of elasticity; (d) the proportional limit; (e) the offset yield
stress at 0.2%; (f) the tangent modulus at stress level of 420 MPa; (g) the secant modulus at stress level of 420 MPa.

3.2 Determine the axial force acting on the specimen when it is extended by (a) 0.2 mm; (b) 4.0 mm.

3.3 Determine the extension of the specimen when the axial force on the specimen is 33 kN.

σallow
σfailure
Ksafety
------------------ 120 ksi

4
----------------- 30 ksi= = =

δallow
δfailure
Ksafety
----------------- 0.5 in.

4
--------------- 0.125 in.= = =

σ 3PL
nbt2
---------- 3 250 lb( ) 20 in.( )

n 2 in.( ) 0.25 in.( )2
--------------------------------------------- 120 103( ) psi

n
------------------------------- 30 103( ) psi≤= = = or

n 4≥

δ 3PL3

4Enbt3
------------------ 3 250 lb( ) 20 in.( )3

4 30 106×  psi( ) n( ) 2 in.( ) 0.25 in.( )3
---------------------------------------------------------------------------------------- 1.6 in.

n
--------------- 0.125 in.≤= = = or

n 12.8≥

n 13=

σcomp
120 103( ) psi

13 psi
------------------------------- 9.23 103( ) psi= = Kσ

σfailure
σcomp

------------------ 120 103( ) psi
9.23 103( ) psi
--------------------------------- 13= = =

δcomp
1.6 in.

13
--------------- 0.1232 in   = = Kδ

δfailure
δcomp

----------------- 0.5 in.
0.1232 in.
------------------------ 4.06= = =

Kδ 4.06=
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3.4 Determine the total strain, the elastic strain, and the plastic strain when the axial force on the specimen is 33 kN.

3.5 After the axial load was removed, the specimen was observed to have a length of 54 mm. What was the maximum axial load applied
to the specimen?

3.6—3.10 A tensile test specimen having a diameter of in. and a gage length of 2 in. was tested to fracture. The stress–strain curve from the tension
test is shown in Figure P3.6. The lower plot is the expanded region OAB and associated with the strain values given on the lower scale. Solve Prob-
lems 3.6 through 3.10 using this graph.

3.6 Determine (a) the ultimate stress; (b) the fracture stress; (c) the modulus of elasticity; (d) the proportional limit.(e)the offset yield
stress at 0.1%; (f) the tangent modulus at the stress level of 72 kips; (g) the secant modulus at the stress level of 72 kips.

3.7 Determine the axial force acting on the specimen when it is extended by (a) 0.006 in.; (b) 0.120 in.

3.8 Determine the extension of the specimen when the axial force on the specimen is 20 kips.

3.9 Determine the total strain, the elastic strain, and the plastic strain when the axial force on the specimen is 20 kips. 

3.10 After the axial load was removed, the specimen was observed to have a length of 2.12 in. What was the maximum axial load applied
to the specimen?

3.11 A typical stress-strain graph for cortical bone is shown in Figure P3.11. Determine (a) the modulus of elasticity; (b) the proportional
limit; (c) the yield stress at 0.15% offset; (d) the secant modulus at stress level of 130 MPa; (d) the tangent modulus at stress level of
130 MPa; (e) the permanent strain at stress level of 130MPa. (f) If the shear modulus of the bone is 6.6 GPa, determine Poisson’s ratio
assuming the bone is isotropic. (g) Assuming the bone specimen was 200 mm long and had a material cross-sectional area of 250 mm2, what
is the elongation of the bone when a 20-kN force is applied? 
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O
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M
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3.12 A 12 mm × 12 mm square metal alloy having a gage length of 50 mm was tested in tension. The results are given in Table P3.12.
Draw the stress–strain curve and calculate the following quantities. (a) the modulus of elasticity. (b) the proportional limit. (c) the yield
stress at 0.2% offset. (d) the tangent modulus at a stress level of 1400 MPa. (e) the secant modulus at a stress level of 1400 MPa. (f) the plas-
tic strain at a stress level of 1400 MPa. (Use of a spreadsheet is recommended.)

3.13 A mild steel specimen of 0.5 in. diameter and a gage length of 2 in. was tested in tension. The test results are reported Table P3.13.
Draw the stress–strain curve and calculate the following quantities: (a) the modulus of elasticity; (b) the proportional limit; (c) the yield
stress at 0.05% offset; (d) the tangent modulus at a stress level of 50 ksi; (e) the secant modulus at a stress level of 50 ksi; (f) the plastic
strain at a stress level of 50 ksi. (Use of a spreadsheet is recommended.)

TABLE P3.12

Load (kN) Change in Length (mm) Load (kN) Change in Length (mm)

0.00 0.00 200.01 5.80

17.32 0.02 204.65 7.15
60.62 0.07 209.99 8.88

112.58 0.13 212.06 9.99
147.22 0.17 212.17 11.01
161.18 0.53 208.64 11.63
168.27 1.10 204.99 12.03
176.03 1.96 199.34 12.31
182.80 2.79 192.15 12.47
190.75 4.00 185.46 12.63
193.29 4.71 Break

TABLE P3.13

Load (103 lb) Change in Length (10–3 in.) Load (103 lb) Change in Length (10–3 in.)

0.00 0.00 11.18 112.10

3.11 1.28 11.72 140.40
7.24 2.96 11.99 161.21
7.50 3.06 12.27 192.65
7.70 8.76 12.41 214.22
7.90 19.05 12.55 245.93
8.16 28.70 12.70 283.47
8.46 37.73 12.77 316.36
8.82 47.18 12.84 363.10
9.32 59.06 12.04 385.34
9.86 70.85 11.44 396.03

10.40 84.23 10.71 406.42
10.82 97.85 9.96 414.72

Break

  Figure P3.11 Strain
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3.14 A rigid bar AB of negligible weight is supported by cable of diameter 1/4 in, as shown in Figure P3.14. The cable is made from a
material that has a stress- strain curve shown in Figure P3.6. (a) Determine the extension of the cable when P = 2 kips. (b) What is the per-
manent deformation in BC when the load P is removed? 

3.15 A rigid bar AB of negligible weight is supported by cable of diameter 1/4 in., as shown in Figure P3.14. The cable is made from a
material that has a stress-strain curve shown in Figure P3.6. (a) Determine the extension of the cable when P =4.25 kips. (b) What is the per-
manent deformation in the cable when the load P is removed?

Material constants

3.16 A rectangular bar has a cross-sectional area of 2 in.2 and an undeformed length of 5 in., as shown in Figure 3.18. When a load P =
50,000 lb is applied, the bar deforms to a position shown by the colored shape. Determine the modulus of elasticity and the Poisson’s ratio
of the material.

3.17 A force P = 20 kips is applied to a rigid plate that is attached to a square bar, as shown in Figure P3.24. If the plate moves a dis-
tance of 0.005 in., determine the modulus of elasticity. 

3.18 A force P = 20 kips is applied to a rigid plate that is attached to a square bar, as shown in Figure P3.25. If the plate moves a dis-
tance of 0.0125 in, determine the shear modulus of elasticity. Assume line AB remains straight.

A

C

5 ft

40o

B

P

  Figure P3.14

P P
2 in 1.9996 in

5.005 in

5 in  Figure 3.23

P

10 in

2 in

2 in

  Figure 3.24

PB

10 in0 

2 in

2 in

  Figure 3.25
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3.19 Two rubber blocks of length L and cross section dimension a x b are bonded to rigid plates as shown in Figure P3.19. Point A was
observed to move downwards by 0.02 in. when the weight W = 900 lb was hung from the middle plate. Determine the shear modulus of
elasticity using small strain approximation. Use L= 12 in., a = 3 in., and b = 2 in. 

3.20 Two rubber blocks with a shear modulus of 1.0 MPa and length L and of cross section dimensions a x b are bonded to rigid plates as
shown in Figure P3.19. Using the small-strain approximation, determine the displacement of point A, if a weight of 500 N is hung from the
middle plate. Use L = 200 mm, a = 45 mm, and b = 60 mm.

3.21 Two rubber blocks with a shear modulus of 750 psi and length L and cross section dimension a x b are bonded to rigid plates as
shown in Figure P3.19. If the allowable shear stress in the rubber is 15 psi, and allowable deflection is 0.03 in., determine the maximum
weight W that can be hung from the middle plate using small strain approximation. Use L = 12 in., a = 2 in., and b = 3 in.

3.22 Two rubber blocks with a shear modulus of G, length L and cross section of dimensions a x b are bonded to rigid plates as shown in
Figure P3.19. Obtain the shear stress in the rubber block and the displacement of point A in terms of G, L, W, a, and b.

3.23 A circular bar of 200-mm length and 20-mm diameter is subjected to a tension test. Due to an axial force of 77 kN, the bar is seen to
elongate by 4.5 mm and the diameter is seen to reduce by 0.162 mm. Determine the modulus of elasticity and the shear modulus of elastic-
ity. 

3.24 A circular bar of 6-in. length and 1-in. diameter is made from a material with a modulus of elasticity E = 30,000 ksi and a Poisson’s

ratio  Determine the change in length and diameter of the bar when a force of 20 kips is applied to the bar.

3.25 A circular bar of 400 mm length and 20 mm diameter is made from a material with a modulus of elasticity E = 180 GPa and a Pois-
son’s ratio ν = 0.32. Due to a force the bar is seen to elongate by 0.5 mm. Determine the change in diameter and the applied force.

3.26 A 25 mm × 25 mm square bar is 500 mm long and is made from a material that has a Poisson’s ratio of  In a tension test, the bar is

seen to elongate by 0.75 mm. Determine the percentage change in volume of the bar.

3.27 A circular bar of 50 in. length and 1 in. diameter is made from a material with a modulus of elasticity E = 28,000 ksi and a Poisson’s
ratio ν = 0.32. Determine the percentage change in volume of the bar when an axial force of 20 kips is applied.

3.28 An aluminum rectangular bar has a cross section of 25 mm × 50 mm and a length of 500 mm. The modulus of elasticity E = 70 GPa
and the Poisson’s ratio ν = 0.25. Determine the percentage change in the volume of the bar when an axial force of 300 kN is applied.

3.29 A circular bar of length L and diameter d is made from a material with a modulus of elasticity E and a Poisson’s ratio ν. Assuming
small strain, show that the percentage change in the volume of the bar when an axial force P is applied and given as 400P(1 − 2ν) /(Eπd 2).
Note the percentage change is zero when ν = 0.5.

W

L

a a
  Figure P3.19

A

ν 1
3
--- .=

1
3
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3.30 A rectangular bar has a cross-sectional dimensions a × b and a length L. The bar material has a modulus of elasticity E and a Poisson’s
ratio ν. Assuming small strain, show that the percentage change in the volume of the bar when an axial force P is applied given by 100P(1 −
2ν) /Eab. Note the percentage change is zero when ν = 0.5.

Strain energy
3.31 What is the strain energy in the bar of Problem 3.16.? 

3.32 What is the strain energy in the bar of Problem 3.17?

3.33 What is the strain energy in the bar of Problem 3.18?

3.34 A circular bar of length L and diameter of d is made from a material with a modulus of elasticity E and a Poisson’s ratio ν. In terms of
the given variables, what is the linear strain energy in the bar when axial load P is applied to the bar?

3.35 A rectangular bar has a cross-sectional dimensions a × b and a length L. The bar material has a modulus of elasticity E and a Pois-
son’s ratio ν. In terms of the given variables, what is the linear strain energy in the bar when axial load P is applied to the bar?

3.36 For the material having the stress–strain curve shown in Figure P3.3, determine (a) the modulus of resilience (using the proportional
limit to approximate the yield point); (b) the strain energy density at a stress level of 420 MPa; (c) the complementary strain energy density
at a stress level of 420 MPa; (d) the modulus of toughness.

3.37 For the material having the stress–strain curve shown in Figure P3.6, determine (a) the modulus of resilience (using the proportional
limit to approximate the yield point); (b) the strain energy density at a stress level of 72 ksi; (c) the complementary strain energy density at a
stress level of 72 ksi; (d) the modulus of toughness.

3.38 For the metal alloy given in Problem 3.12, determine (a) the modulus of resilience (using the proportional limit to approximate the
yield point); (b) the strain energy density at a stress level of 1400 MPa; (c) the complementary strain energy density at a stress level of
1400 MPa; (d) the modulus of toughness.

3.39 For the mild steel given in Problem 3.13, determine (a) the modulus of resilience (using the proportional limit to approximate the
yield point); (b) the strain energy density at a stress level of 50 ksi; (c) the complementary strain energy density at a stress level of 50 ksi; (d)
the modulus of toughness.

Logic in mechanics

3.40 The roller at P slides in the slot by an amount δP = 0.25 mm due to the force F, as shown in Figure P3.40. Member AP has a cross-

sectional area A = 100 mm2 and a modulus of elasticity E = 200 GPa. Determine the force applied F.

3.41 The roller at P slides in the slot by an amount δP = 0.25 mm due to the force F, as shown in Figure P3.41. Member AP has a cross-

sectional area A = 100 mm2 and a modulus of elasticity E = 200 GPa. Determine the applied force F.

F

20
0 

m
m

50°

P

A  Figure P3.40
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3.42 A roller slides in a slot by the amount δP = 0.01 in. in the direction of the force F, as shown in Figure P3.42. Each bar has a cross-

sectional area A = 100 in.2 and a modulus of elasticity E = 30,000 ksi. Bars AP and BP have lengths LAP = 8 in. and LBP = 10 in., respec-
tively. Determine the applied force F.

3.43 A roller slides in a slot by the amount δP = 0.25 mm in the direction of the force F, as shown in Figure P3.43. Each bar has a cross-

sectional area A = 100 mm2 and a modulus of elasticity E = 200 GPa. Bars AP and BP have lengths LAP = 200 mm and LBP = 250 mm,
respectively. Determine the applied force F.

3.44 A roller slides in a slot by the amount δP = 0.25 mm in the direction of the force F as shown in Figure P3.44. Each bar has a cross-

sectional area A = 100 mm2 and a modulus of elasticity E = 200 GPa. Bars AP and BP have lengths LAP = 200 mm and LBP = 250 mm,
respectively. Determine the applied force F.

3.45 A little boy shoots paper darts at his friends using a rubber band that has an unstretched length of 7 in. The piece of rubber band
between points A and B is pulled to form the two sides AC and CB of a triangle, as shown in Figure P3.45. Assume the same normal strain

in AC and CB, and the rubber band around the thumb and forefinger is a total of 1 in. The cross-sectional area of the band is , and

the rubber has a modulus of elasticity E = 150 psi. Determine the approximate force F and the angle θ at which the paper dart leaves the
boy’s hand.

  Figure P3.41
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3.46 Three poles are pin connected to a ring at P and to the supports on the ground. The coordinates of the four points are given in Figure
P3.46. All poles have cross-sectional areas A = 1 in.2 and a modulus of elasticity E = 10,000 ksi. If under the action of force F the ring at P
moves vertically by the distance δP = 2 in., determine the force F.

3.47 A gap of 0.004 in. exists between a rigid bar and bar A before a force F is applied (Figure P3.47). The rigid bar is hinged at point C.
Due to force F the strain in bar A was found to be −500 μin/in. The lengths of bars A and B are 30 in. and 50 in., respectively. Both bars have
cross-sectional areas A = 1 in.2 and a modulus of elasticity E = 30,000 ksi. Determine the applied force F.

3.48 The cable between two poles shown in Figure P3.48 is taut before the two traffic lights are hung on it. The lights are placed symmet-
rically at 1/3 the distance between the poles. The cable has a diameter of 1/16 in. and a modulus of elasticity of 28,000 ksi. Determine the
weight of the traffic lights if the cable sags as shown. 

3.49 A steel bolt (Es= 200 GPa) of 25 mm diameter passes through an aluminum (Eal = 70 GPa) sleeve of thickness 4 mm and outside
diameter of 48 mm as shown in Figure P3.49. Due to the tightening of the nut the rigid washers move towards each other by 0.75 mm. (a)
Determine the average normal stress in the sleeve and the bolt. (b) What is the extension of the bolt?

A
B

C
A

B

C
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in

.
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θ
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  Figure P3.45
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3.50 The pins in the truss shown in Figure P3.50 are displaced by u and v in the x and y directions, respectively, as shown in Table P3.50.
All rods in the truss have cross-sectional areas A = 100 mm2 and a modulus of elasticity E = 200 GPa. Determine the external forces P1 and
P2 in the truss. 

3.51 The pins in the truss shown in Figure P3.50 are displaced by u and v in the x and y directions, respectively, as shown in Table P3.50. All
rods in the truss have cross-sectional areas A = 100 mm2 and a modulus of elasticity E = 200 GPa. Determine the external force P3 in the truss.

3.52 The pins in the truss shown in Figure P3.50 are displaced by u and v in the x and y directions, respectively, as shown in Table P3.50. All rods
in the truss have cross-sectional areas A = 100 mm2 and a modulus of elasticity E = 200 GPa. Determine the external forces P4 and P5 in the truss.

Factor of safety
3.53 A joint in a wooden structure shown in Figure P3.53 is to be designed for a factor of safety of 3. If the average failure stress in shear
on the surface BCD is 1.5 ksi and the average failure bearing stress on the surface BEF is 6 ksi, determine the smallest dimensions h and d

to the nearest  in.

Sleeve
Rigid washers

300 mm
25 mm 25 mm

  Figure P3.49

P1

P2

P3

P4

P5

x

y

A
B C D

E
F

G

H

30° 30°

3 m 3 m 3 m 3 m  Figure P3.50

TABLE P3.50

uA 4.6765–  mm= vA 0=

uB 3.3775–  mm= vB 8.8793 mm–=

uC 2.0785–  mm= vC 9.7657 mm–=

uD 1.0392–  mm= vD 8.4118 mm–=

uE 0.0000 mm= vE 0.0000 mm=

uF 3.260– 0 mm= vF 8.4118 mm–=

uG 2.5382–  mm= vG 9.2461 mm–=

uH 1.5500–  mm= vH 8.8793 mm–=

1
16
------

E

4 in

F

10 kips

30�

h
d

A

B
C

D

  Figure P3.53
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3.54 A 125 kg light is hanging from a ceiling by a chain as shown in Figure P3.54. The links of the chain are loops made from a thick
wire. Determine the minimum diameter of the wire to the nearest millimeter for a factor of safety of 3. The normal failure stress for the wire
is 180 MPa.

3.55 A light is hanging from a ceiling by a chain as shown in Figure P3.54. The links of the chain are loops made from a thick wire with a

diameter of in. The normal failure stress for the wire is 25 ksi. For a factor of safety of 4, determine the maximum weight of the light to

the nearest pound. 

3.56 Determine the maximum weight W that can be suspended using cables, as shown in Figure P3.56, for a factor of safety of 1.2. The
cable’s fracture stress is 200 MPa, and its diameter is 10 mm.

3.57 The cable in Figure P3.56 has a fracture stress of 30 ksi and is used for suspending the weight W = 2500 lb. For a factor of safety of

1.25, determine the minimum diameter of the cables to the nearest in. that can be used. 

3.58 An adhesively bonded joint in wood is fabricated as shown in Figure P3.58. For a factor of safety of 1.25, determine the minimum

overlap length L and dimension h to the nearest in. The shear strength of the adhesive is 400 psi and the wood strength is 6 ksi in tension.

3.59 A joint in a truss has the configuration shown in Figure P3.59. Determine the minimum diameter of the pin to the nearest millimeter
for a factor of safety of 2.0. The pin’s failure stress in shear is 300 MPa. 

  Figure P3.54

1
8
---

W

22�37�

  Figure P3.56

1
16
------

1
8
---

  Figure P3.58

30�

NA � 32.68 kN
NB � 67.32 kN

NC � 50 kN

ND � 30 kN

30�
  Figure P3.59
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3.60 The shear stress on the cross section of the wire of a helical spring (Figure P3.60) is given by τ = K(8PC /πd2), where P is the force
on the spring, d is the diameter of the wire from which the spring is constructed, C is called the spring index, given by the ratio C = D/d, D
is the diameter of the coiled spring, and K is called the Wahl factor, as given below.

The spring is to be designed to resist a maximum force of 1200 N and must have a factor of safety of 1.1 in yield. The shear stress in yield is 
350 MPa. Make a table listing admissible values of C and d for 4 mm ≤ d ≤ 16 mm in steps of 2 mm.

3.61 Two cast-iron pipes are held together by a steel bolt, as shown in Figure P3.61. The outer diameters of the two pipes are 2 in. and
2 in., and the wall thickness of each pipe is 1/4 in. The diameter of the bolt is 1/2 in. The yield strength of cast iron is 25 ksi in tension
and steel is 15 ksi in shear. What is the maximum force P to the nearest pound this assembly can transmit for a factor of safety of 1.2?

3.62 A coupling of diameter 250-mm is assembled using 6 bolts of diameter 12.5 mm as shown in Figure P3.62. The holes for the bolts are
drilled with center on a circle of diameter 200 mm. A factor of safety of 1.5 for the assembly is desired. If the shear strength of the bolts is
300 MPa, determine the maximum torque that can be transferred by the coupling.

Stretch yourself

3.63 A circular rod of 15-mm diameter is acted upon by a distributed force p(x) that has the units of kN/m, as shown in Figure P3.63. The
modulus of elasticity of the rod is 70 GPa. Determine the distributed force p(x) if the displacement u(x) in x direction is

 with x is measured in meters.

3.64 A circular rod of 15-mm diameter is acted upon by a distributed force p(x) that has the units of kN/m, as shown in Figure P3.63. The
modulus of elasticity of the rod is 70 GPa. Determine the distributed force p(x) if the displacement u(x) in x direction is

 with x is measured in meters.

P

P

d
D

  Figure P3.60

K 4C 1–
4C 4–
---------------- 0.615

C
-------------+=

3 4⁄

P P

  Figure P3.61

T T

  Figure P3.62

u x( ) 30 x x2–( )10 6–  m=

p(x)

x
  Figure P3.63

u x( ) 50 x2 2x3–( )10 6–  m=
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3.65 Consider the beam shown in Figure P3.65. The displacement in the x direction due to the action of the forces, was found to be

 The modulus of elasticity of the beam is 30,000 ksi. Determine the statically equivalent internal
normal force N and the internal bending moment Mz acting at point O at a section at x = 20 in. Assume an unknown shear stress is acting on
the cross-section.

Computer problems

3.66 Assume that the stress–strain curve after yield stress in Problem 3.12 is described by the quadratic equation σ = a + bε + cε2. (a)
Determine the coefficients a, b, and c by the least-squares method. (b) Find the tangent modulus of elasticity at a stress level of 1400 MPa.

3.67 Assume that the stress–strain curve after yield stress in Problem 3.13 is described by the quadratic equation σ = a + bε + cε2. (a)
Determine the coefficients a, b, and c by the least-squares method. (b) Find the tangent modulus of elasticity at a stress level of 50 ksi.

3.68 Marks were made on the cord used for tying the canoe on top of the car in Example 3.5. These marks were made every 2 in. to pro-
duce a total of 20 segments. The stretch cord is symmetric with respect to the top of the canoe. The starting point of the first segment is on
the carrier rail of the car and the end point of the tenth segment is on the top of the canoe. The measured length of each segment is as shown
in Table 3.68. Determine (a) the tension in the cord of each segment; (b) the force exerted by the cord on the carrier of the car. Use the mod-
ulus of elasticity E = 510 psi and the diameter of the stretch cord as 1/2 in.

3.69 Marks were made on the cord used for tying the canoe on top of the car in Example 3.5. These marks were made every 2 in. to pro-
duce a total of 20 segments. The stretch cord is symmetric with respect to the top of the canoe. The starting point of the first segment is on
the carrier rail of the car and the end point of the tenth segment is on the top of the canoe. The measured length of each segment is as shown
in Table 3.68. Determine (a) the tension in the cord of each segment; (b) the force exerted by the cord on the carrier of the car. Use the diam-
eter of the stretch cord as 1/2 in. and the following equation for the stress–strain curve:

3.70 Marks were made on the cord used for tying the canoe on top of the car in Example 3.5. These marks were made every 2 in. to pro-
duce a total of 20 segments. The stretch cord is symmetric with respect to the top of the canoe. The starting point of the first segment is on
the carrier rail of the car and the end point of the tenth segment is on the top of the canoe. The measured length of each segment is as shown

TABLE P3.68

Segment
Number

Deformed Length
(inches)

1 3.4
2 3.4
3 3.4
4 3.4
5 3.4
6 3.4
7 3.1
8 2.7
9 2.3

10 2.2

u 60x 80xy x2y–+( ) 180⁄[ ]= 10 3–  in.

P1 lb

20 in 20 in

P2 lb

x

y

z  Figure P3.65
Cross section

y

z
O

3 in

2 in

σ
1020ε 1020ε2 psi– ε 0.5<
255  psi ε 0.5≥

⎩
⎪
⎨
⎪
⎧

=



Mechanics of Materials: Mechanical Properties of Materials
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

3 112M. Vable

January, 2010

in Table 3.68. Determine: (a) the tension in the cord of each segment; (b) the force exerted by the cord on the carrier of the car. Use the Pois-

son’s ratio ν =  and the initial diameter of 1/2 in. and calculate the diameter in the deformed position for each segment. Use the stress–

strain relationship given in Problem 3.69.

3.4 ISOTROPY AND HOMOGENEITY

The description of a material as isotropic or homogeneous are acquiring greater significance with the development of new
materials. In composites (See Section 3.12.3) two or more materials are combined together to produce a stronger or stiffer
material. Both material descriptions are approximations influenced by several factors. As will be seen in this section four pos-
sible descriptions are: Isotropic–homogeneous; anisotropic–homogeneous; isotropic–nonhomogeneous; and anisotropic–non-
homogeneous.

The number of material constants that need to be measured depends on the material model we want to incorporate into
our analysis. Any material model is the relationship between stresses and strains—the simplest model, a linear relationship.
With no additional assumptions, the linear relationship of the six strain components to six stress components can be written

(3.12)

Equation (3.12) implies that we need 36 material constants to describe the most general linear relationship between stress and
strain. However, it can be shown that the matrix formed by the constants Cij is symmetric (i.e., Cij = Cji, where i and j can be
any number from 1 to 6). This symmetry is due to the requirement that the strain energy always be positive, but the proof is
beyond the scope of this book. The symmetry reduces the maximum number of independent constants to 21 for the most gen-
eral linear relationship between stress and strain. (Section 3.12.1 describes the controversy over the number of independent
constants required in a linear stress–strain relationship.)

Equation (3.12) presupposes that the relation between stress and strain in the x direction is different from the relation in
the y or z direction. Alternatively, Equation (3.12) implies that if we apply a force (stress) in the x direction and observe the
deformation (strain), then this deformation will differ from the deformation produced if we apply the same force in the y
direction. This phenomenon is not observable by the naked eye for most metals, but if we were to look at the metals at the
crystal-size level, then the number of constants needed to describe the stress–strain relationship depends on the crystal struc-
ture. Thus we need to ask at what level we are conducting the analysis—eye level or crystal size? If we average the impact of
the crystal structure at the eye level, then we have defined the simplest material. An isotropic material has stress–strain rela-
tionships that are independent of the orientation of the coordinate system at a point.

An anisotropic material is a material that is not isotropic. The most general anisotropic material requires 21 independent
material constants to describe a linear stress–strain relationships. An isotropic body requires only two independent material
constants to describe a linear stress–strain relationships (See Example 9.8 and Problem 9.81). Between the isotropic material
and the most general anisotropic material lie several types of materials, which are discussed briefly in Section 3.11.2. The
degree of difference in material properties with orientation, the scale at which the analysis is being conducted, and the kind of
information that is desired from the analysis are some of the factors that influence whether we treat a material as isotropic or
anisotropic. 

There are many constants used to describe relate stresses and strains (see Problems 3.97 and 3.109), but for isotropic
materials only two are independent. That is, all other constants can be found if any two constants are known. The three con-
stants that we shall encounter most in this book are the modulus of elasticity E, the shear modulus of elasticity G, and the Pois-
son’s ratio ν. In Example 9.8 we shall show that for isotropic materials

1
2
---

εxx C11σxx C12σyy C13σzz C14τyz C15τzx C16τxy+ + + + +=

εyy C21σxx C22σyy C23σzz C24τyz C25τzx C26τxy+ + + + +=

εzz C31σxx C32σyy C33σzz C34τyz C35τzx C36τxy+ + + + +=

γyz C41σxx C42σyy C43σzz C44τyz C45τzx C46τxy+ + + + +=

γzx C51σxx C52σyy C53σzz C54τyz C55τzx C56τxy+ + + + +=

γxy C61σxx C62σyy C63σzz C64τyz C65τzx C66τxy+ + + + +=
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(3.13)

Homogeneity is another approximation that is often used to describe a material behavior. A homogeneous material has
same the material properties at all points in the body. Alternatively, if the material constants Cij are functions of the coordi-
nates x, y, or z, then the material is called nonhomogeneous. 

Most materials at the atomic level, the crystalline level, or the grain-size level are nonhomogeneous. The treatment of a
material as homogeneous or nonhomogeneous depends once more on the type of information that is to be obtained from the
analysis. Homogenization of material properties is a process of averaging different material properties by an overall material
property. Any body can be treated as a homogeneous body if the scale at which the analysis is conducted is made sufficiently
large.

3.5 GENERALIZED HOOKE’S LAW FOR ISOTROPIC MATERIALS

The equations relating stresses and strains at a point in three dimensions are called the generalized Hooke’s law. The
generalized Hooke’s law can be developed from the definitions of the three material constants E, ν, and G and the assumption
of isotropy. No assumption of homogeneity needs to be made, as the generalized Hooke’s law is a stress–strain relationship at
a point. In Figure 3.26 normal stresses are applied one at a time. From the definition of the modulus of elasticity we can obtain
the strain in the direction of the applied stress, which then is used to get the strains in the perpendicular direction by using the
definition of Poisson’s ratio. From Figure (3.26a), (3.26b), and (3.26c) we obtain

The use of the same E and ν to relate stresses and strains in different directions implicitly assumes isotropy. Notice that no
change occurs in the right angles from the application of normal stresses. Thus no shear strain is produced due to normal
stresses in a fixed coordinate system for an isotropic material. 

Assuming the material is linearly elastic, we can use the principle of superposition to obtain the total strain
 as shown in Equations (3.14a) through (3.14c). From the definition of shear modulus given in Equa-

tion (3.3), we obtain Equations (3.14d) through (3.14f).

G E
2 1 ν+( )
--------------------=

εxx
1( ) σxx

E
--------= εyy

1( ) νεxx
1( )– ν

σxx
E

--------⎝ ⎠
⎛ ⎞–= = εzz

1( ) νεxx
1( ) ν

σxx
E

--------⎝ ⎠
⎛ ⎞–=–=

εxx
2( ) νεyy

2( )– ν
σyy
E

--------⎝ ⎠
⎛ ⎞–= = εyy

2( ) σyy
E

--------= εzz
2( ) νεyy

2( )– ν
σyy
E

--------⎝ ⎠
⎛ ⎞–= =

εxx
3( ) νεzz

3( )– ν
σzz
E

--------⎝ ⎠
⎛ ⎞–= = εyy

3( ) νεzz
3( )– ν

σzz
E

--------⎝ ⎠
⎛ ⎞–= = εzz

3( ) σzz
E

--------=

 Figure 3.26 Derivation of the generalized Hooke’s law.

�xx�

x

y

�xx�

Due to �yy�(1)

(1)

Due to �xx�(1)

Due to �zzz

(a)

�yy��

�yy��

Due to �yy�

Due to �xx�

Due to �zz

(2)

(2)

(2)

(b)

�zz�

�zz�

Due to �(3)

Due to �zz
(3)

Due to �xx� (3)

(c)

εii εii
1( ) εii

2( ) εii
3( ),+ +=
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The equations are valid for nonhomogeneous material. The nonhomogeneity will make the material constants E, ν, and G
functions of the spatial coordinates. The use of Poisson’s ratio to relate strains in perpendicular directions is valid not only for
Cartesian coordinates but for any orthogonal coordinate system. Thus the generalized Hooke’s law may be written for any
orthogonal coordinate system, such as spherical and polar coordinate systems.

An alternative form1 for Equations (3.14a) through (3.14c), which may be easier to remember, is the matrix form 

(3.15)

3.6 PLANE STRESS AND PLANE STRAIN

In Chapters 1 and 2 two-dimensional problems of plane stress and plane strain, respectively. Taking the two definitions and
using Equations (3.14a), (3.14b), (3.14c), and (3.14f), we obtain the matrices shown in Figure 3.27. The difference between
the two idealizations of material behavior is in the zero and nonzero values of the normal strain and normal stress in the z
direction. In plane stress  which from Equation (3.14c) implies that the normal strain in the z direction is

 In plane strain  which from Equation (3.14c) implies that the normal stress in the z direc-
tion is .

Figure 3.28 shows two plates on which only compressive normal stresses in the x and y directions are applied. The top
and bottom surfaces on the plate in Figure 3.28a are free surfaces (plane stress), but because the plate is free to expand, the
deformation (strain) in the z direction is not zero. The plate in Figure 3.28b is constrained from expanding in the z direction by

1Another alternative is  where .

Generalized Hooke’s law:

(3.14a)

(3.14b)

(3.14c)

(3.14d)

(3.14e)

(3.14f)

εxx
σxx ν σyy σzz+( )–

E
-----------------------------------------------=

εyy
σyy ν σzz σxx+( )–

E
-----------------------------------------------=

εzz
σzz ν σxx σyy+( )–

E
-----------------------------------------------=

γxy
τxy
G

-------=

γyz
τyz
G

-------=

γzx
τzx
G

-------=

εii 1 ν+( )σii νI1–[ ] E⁄ ,= I1 σxx σyy σzz+ +=

εxx
εyy
εzz

⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

1
E
---

1 ν– ν –
 ν– 1     ν–
 ν–  ν– 1

σxx
σyy
σzz⎩ ⎭

⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

σzz 0,=
εzz ν σxx σyy+( )– E⁄ .= εzz 0,=

σzz ν σxx σyy+( ).=

 Figure 3.27 Stress and strain matrices in plane stress and plane strain.

Plane stress

Plane strain

Generalizedσxx τxy 0

τyx σyy 0

0 0 0

εxx γxy 0

γyx εyy 0

0 0 εzz
ν
E
--- σxx σyy+( )–=

εxx γxy 0

γyx εyy 0

0 0 0

σxx τxy 0

τyx σyy 0

0 0 σzz ν σxx σyy+( )=

Hooke’s law

Generalized
Hooke’s law
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the rigid surfaces. As the material pushes on the plate, a reaction force develops, and this reaction force results in a nonzero
value of normal stress in the z direction. Plane stress or plane strain are often approximations to simplify analysis. Plane stress
approximation is often made for thin bodies, such as the metal skin of an aircraft. Plane strain approximation is often made for
thick bodies, such as the hull of a submarine.

It should be recognized that in plane strain and plane stress conditions there are only three independent quantities, even
though the nonzero quantities number more than 3. For example, if we know σxx, σyy, and τxy, then we can calculate εxx, εyy,
γxy, εzz, and σzz for plane stress and plane strain. Similarly, if we know εxx, εyy, and γxy, then we can calculate σxx, σyy, τxy, σzz,
and εzz for plane stress and plane strain. Thus in both plane stress and plane strain the number of independent stress or strain
components is 3, although the number of nonzero components is greater than 3. Examples 3.7 and 3.8 elaborate on the differ-
ence between plane stress and plane strain conditions and the difference between nonzero and independent quantities.

EXAMPLE 3.7 

The stresses at a point on steel were found to be σxx = 15 ksi (T), σyy = 30 ksi (C), and τxy = 25 ksi. Using E = 30,000 ksi and G = 12,000
ksi, determine the strains εxx , εyy, γxy, εzz and the stress σzz assuming (a) the point is in a state of plane stress. (b) the point is in a state of
plane strain.

PLAN

In both cases the shear strain is the same and can be calculated using Equation (3.14d). (a) For plane stress  and the strains εxx,

εyy, and εzz can be found from Equations (3.14a), (3.14b), and (3.14c), respectively. (b) For plane strain  and Equation (3.14c)
can be used to find σzz. The stresses σxx, σyy, and σzz can be substituted into Equations (3.14a) and (3.14b) to calculate the normal strains
εxx and εyy.

SOLUTION
From Equation (3.14d)

(E1)

ANS.
The Poisson’s ratio can be found from Equation (3.13),

(E2)

(a) Plane stress: The normal strains in the x, y, and z directions are found from Equations (3.14a), (3.14b), and (3.14c), respectively.

(E3)

(E4)

(E5)

ANS.
(b) Plane strain: From Equation (3.14c), we have

  Figure 3.28 (a) Plane stress. (b) Plane strain.

Reaction force (�zz� � 0)
Rigid surface (�zz � 0)(�zz � 0)Free surface (�zz� � 0)

Free surface (�zz� � 0)

�

(a) (b)

Rigid surface (�zz � 0) �zz� � 0)

σzz 0=

εzz 0=

γxy
τxy
G

------- 25 ksi
12 000 ksi,
-------------------------- 0.002083= = =

γxy 2083 μ=

G E
2 1 ν+( )
--------------------= or 12,000 ksi 30,000 ksi

2 1 ν+( )
--------------------------= or ν 0.25=

εxx
σxx ν σyy σzz+( )–

E
--------------------------------------------- 15 ksi 0.25 30 ksi–( )–

30 000 ksi,
------------------------------------------------------ 750 10 6–( )= = =

εyy
σyy ν σzz σxx+( )–

E
--------------------------------------------- 30 ksi  0.25 15 ksi( )––

30,000 ksi
------------------------------------------------------- 1125 10 6–( )–= = =

εzz
σzz ν σxx σyy+( )–

E
--------------------------------------------- 0 0.25 15 ksi 30 ksi–( )–

30 000 ksi,
------------------------------------------------------------ 125 10 6–( )= = =

εxx 750 μ= εyy 1125–  μ= εzz 125 μ=
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(E6)

ANS.
The normal strains in the x and y directions are found from Equations (3.14a) and (3.14b),

(E7)

(E8)

ANS.

COMMENTS
1. The three independent quantities in this problem were σxx, σyy, and τxy. Knowing these we were able to find all the strains in plane

stress and plane strain. 
2. The difference in the values of the strains came from the zero value of σzz in plane stress and a value of -3.75 ksi in plane strain.

EXAMPLE 3.8 

The strains at a point on aluminum (E = 70 GPa, G = 28 GPa, and ν = 0.25) were found to be   and

. Determine the stresses σxx , σyy , and τxy and the strain εzz assuming the point is in plane stress. 

PLAN

The shear strain can be calculated using Equation (3.14d). If we note that  and the strains εxx and εyy are given, the stresses σxx

and σyy can be found by solving Equations (3.14a) and (3.14b) simultaneously. The strain εzz can then be found from Equation (3.14c). 

SOLUTION
From Equation (3.14d),

(E1)

ANS.
Equations (3.14a) and (3.14b) can be rewritten with σzz = 0, 

or (E2)

(E3)

or (E4)

(E5)
Solving Equations (E3) and (E5) we obtain σxx and σyy.

ANS.
From Equation (3.14c) we obtain 

(E6)

ANS.

COMMENTS
1. Equations (E3) and (E5) have a very distinct structure. If we multiply either equation by ν and add the product to the other equation,

the result will be to eliminate one of the unknowns. Equation (3.17) in Problem 3.104 is developed in this manner and can be used for
solving this problem. But this would imply remembering one more formula. We can avoid this by remembering the defined structure
of Hooke’s law, which is applicable to all types of problems and not just plane stress. 

2. Equation (3.18) in Problem 3.105 gives εzz = −[ν/(1 − ν)](εxx + εyy). Substituting ν = 0.25 and εxx = 650 μ, εyy = 300 μ, we obtain εzz = −
(0.25/0.75)(650 + 300) = 316.7 μ, as before. This formula is useful if we do not need to calculate stresses, and we will use it in Chapter 9.

εzz
[σzz ν(σxx σyy ) ]+–

E
-------------------------------------------------- 0= = or σzz ν σxx σyy+( ) 0.25 15 ksi 30 ksi–( ) 3.75ksi–= = =

σzz 3.75 ksi (C)=

εxx
σxx ν σyy σzz+( )–

E
--------------------------------------------- 15 ksi 0.25 30 ksi 3.75 ksi––( )–

30 000 ksi,
-------------------------------------------------------------------------------- 781.2 10 6–( )= = =

εyy
σyy ν σzz σxx+( )–

E
--------------------------------------------- 30 ksi–  0.25 15 ksi 3.75 ksi–( )–

30,000 ksi
------------------------------------------------------------------------------- 1094 10 6–( )–= = =

εxx 781.2 μ= εyy 1094–  μ=

εxx 650 μ,= εyy 300 μ,=

γxy 750 μ.=

σzz 0=

τxy Gγxy 28 109× N m2⁄( ) 750 10 6–×( )= 21 106( ) N m2⁄= =

τxy 21 MPa=

σxx νσyy– Eεxx 70 109×  N/m2( ) 650 10 6–×( )= =

σxx νσyy 45.5 MPa=–

σyy  – νσxx Eεyy 70 109×  N/m2( ) 300 10 6–×( )= =

σyy 0.25σxx 21 MPa=–

σxx 54.1 MPa (T) σyy 34.5 MPa (T)= =

εzz
σzz ν σxx σyy+( )–

E
--------------------------------------------- 0 0.25 54.13 34.53+( )106–

70 109×
------------------------------------------------------------------- 317 10 6–( )–= = =

εzz 317 μ–=
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PROBLEM SET 3.2

3.71 Write the generalized Hooke’s law for isotropic material in cylindrical coordinates (r, θ, z).

3.72 Write the generalized Hooke’s law for isotropic material in spherical coordinates (r, θ, φ).

In problems 3.73 through 3.78 two material constants and the stress components in the x, y plane are given. Calculate εxx , εyy, γxy, εzz , and σzz
(a) assuming plane stress; (b) assuming plane strain. 

In problems 3.79 through 3.84 two material constants and the strain components in the x, y plane are given. Calculate σxx , σyy, τxy, σzz , and εzz
assuming the point is in plane stress. 

3.85 The cross section of the wooden piece that is visible in Figure P3.85 is 40 mm × 25 mm. The clamped length of the wooden piece in
the vice is 125 mm. The modulus of elasticity of wood is E = 14 GPa and the Poisson’s ratio ν = 0.3. The jaws of the vice exert a uniform
pressure of 3.2 MPa on the wood. Determine the average change of length of the wood.

QUICK TEST 3.2 Time: 15 minutes/Total: 20 points

Grade yourself using the answers given in Appendix E. Each question is worth two points.

1. What is the difference between an isotropic and a homogeneous material?
2. What is the number of independent material constants needed in a linear stress–strain relationship for an iso-

tropic material?
3. What is the number of independent material constants needed in a linear stress–strain relationship for the most

general anisotropic materials?
4. What is the number of independent stress components in plane stress problems?
5. What is the number of independent strain components in plane stress problems?
6. How many nonzero strain components are there in plane stress problems?
7. What is the number of independent strain components in plane strain problems?
8. What is the number of independent stress components in plane strain problems?
9. How many nonzero stress components are there in plane strain problems?
10. Is the value of E always greater than G, less than G, or does it depend on the material? Justify your answer.

3.73 E = 200 GPa ν = 0.32 σxx = 100 MPa (T) σyy = 150 MPa (T) τxy = −125 MPa
3.74 E = 70 GPa G = 28 GPa σxx = 225 MPa (C) σyy = 125 MPa (T) τxy = 150 MPa
3.75 E = 30,000 ksi ν = 0.3 σxx = 22 ksi (C) σyy = 25 ksi (C) τxy = −15 ksi
3.76 E = 10,000 ksi G = 3900 ksi σxx = 15 ksi (T) σyy = 12 ksi (C) τxy = −10 ksi
3.77 G = 15 GPa ν = 0.2 σxx = 300 MPa (C) σyy = 300 MPa (T) τxy = 150 MPa
3.78 E = 2000 psi G = 800 psi σxx = 100 psi (C) σyy = 150psi (T) τxy = 100 psi

3.79 E = 200 GPa ν = 0.32 εxx = 500 μ εyy = 400 μ γxy = −300 μ
3.80 E = 70 GPa G = 28 GPa εxx = 2000 μ εyy = -1000 μ γxy = 1500μ
3.81 E = 30,000 ksi ν = 0.3 εxx = −800 μ εyy = −1000 μ γxy = −500 μ
3.82 E = 10,000 ksi G = 3900 ksi εxx = 1500 μ εyy = −1200 μ) γxy = −1000 μ
3.83 G = 15 GPa ν = 0.2 εxx = −2000 μ εyy = 2000 μ γxy = 1200 μ
3.84 E = 2000 psi G = 800 psi εxx = 50 μ εyy = 75 μ γxy = −25 μ
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3.86 A thin plate (E = 30,000 ksi, ν = 0.25) under the action of uniform forces deforms to the shaded position, as shown in Figure P3.86.
Assuming plane stress, determine the average normal stresses in the x and y directions. 

3.87 A thin plate (E=30,000 ksi, ν = 0.25) is subjected to a uniform stress σ = 10 ksi as shown in Figure P3.87. Assuming plane stress,
determine (a) the average normal stress in y direction; (b) the contraction of the plate in x direction.

3.88 A rubber (ER=300 psi and νR = 0.5) rod of diameter dR =4 in. is placed in a steel (rigid) tube dS =4.1 in. as shown in Figure P3.88.
What is the smallest value of P that can be applied so that the space between the rubber rod and the steel tube would close.

3.89 A rubber (ER= 2.1GPa and νR = 0.5) rod of diameter dR = 200 mm is placed in a steel (rigid) tube dS = 204 mm as shown in Figure
P3.88. If the applied force is P = 10 kN, determine the average normal stress in the y and z direction.

3.90 A 2 in. × 2 in. square with a circle inscribed is stressed as shown Figure P3.90. The plate material has a modulus of elasticity
E = 10,000 ksi and a Poisson’s ratio ν = 0.25. Assuming plane stress, determine the major and minor axes of the ellipse formed due to defor-
mation.

40 mm

  Figure P3.85

x

5 in

10 in

0.005 iny

  Figure P3.86

10 in.

5 in.

x

y

σ

  Figure P3.87

  Figure P3.88
dS

dR

P
x

y

z
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3.91 A 2 in. × 2 in. square with a circle inscribed is stressed as shown Figure P3.91. The plate material has a modulus of elasticity E = 10,000 ksi
and a Poisson’s ratio ν = 0.25. Assuming plane stress, determine the major and minor axes of the ellipse formed due to deformation.

3.92 A 50 mm × 50 mm square with a circle inscribed is stressed as shown Figure P3.92. The plate material has a modulus of elasticity
E = 70 GPa and a Poisson’s ratio ν = 0.25. Assuming plane stress, determine the major and minor axes of the ellipse formed due to deformation.

3.93 A rectangle inscribed on an aluminum (10,000 ksi, ν = 0.25) plate is observed to deform into the colored shape shown in Figure
P3.93. Determine the average stress components .

3.94 A rectangle inscribed on an steel (E = 210 GPa, ν = 0.28) plate is observed to deform into the colored shape shown in Figure P3.94.
Determine the average stress components .

10 ksi

20 ksi

  Figure P3.90

10 ksi

20 ksi

  Figure P3.91

280 MPa

154 MPa

  Figure P3.92

σxx, σyy, and τxy

A
3.0 in.

1.4 in. 0.0048 in.

0.0042 in.
0.0035 in.

0.0036 in.

x

y

  Figure P3.93

σxx, σyy, and τxy

A

45
0

m
m

250 mm

0.1 mm x

0.075 mm

0.09 mm0.06 mm

y

  Figure P3.94
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3.95 A 5 ft mean diameter spherical steel (E = 30,000 ksi, ν = 0.28) tank has a wall thickness of 3/4 in. Determine the increase in the mean
diameter when the gas pressure inside the tank is 600 psi.

3.96 A steel (E = 210 GPa ν = 0.28) cylinder of mean diameter of 1 m and wall thickness of 10 mm has gas at 250 kPa. Determine the
increase in the mean diameter due to gas pressure.

3.97 Derive the following relations of normal stresses in terms of normal strain from the generalized Hooke’s law:

(3.16)

An alternative form that is easier to remember is σii = 2Gεii + λ(I1), where i can be x, y, or z; I1 = εxx + εyy + εzz; G is the shear modulus; and 
λ = 2Gν/(1 − 2ν) is called Lame’s constant, after G. Lame (1795–1870).

3.98 For a point in plane stress show that

(3.17)

3.99 For a point in plane stress show that

(3.18)

3.100 Using Equations (3.17) and (3.18), solve for σxx, σyy, and εzz in Problem 3.79.

3.101 Using Equations (3.17) and (3.18), solve for σxx, σyy, and εzz in Problem 3.80.

3.102 Using Equations (3.17) and (3.18), solve for σxx, σyy, and εzz in Problem 3.81.

3.103 Using Equations (3.17) and (3.18), solve for σxx, σyy, and εzz in Problem 3.82.

3.104 Using Equations (3.17) and (3.18), solve for σxx, σyy, and εzz in Problem 3.83.

3.105 Using Equations (3.17) and (3.18), solve for σxx, σyy, and εzz in Problem 3.84.

3.106 For a point in plane strain show that

(3.19)

3.107 For a point in plane strain show that

(3.20)

σxx 1 ν–( )εxx νεyy νεzz+ +[ ] E
1 2ν–( ) 1 ν+( )

--------------------------------------=

σyy 1 ν–( )εyy νεzz νεxx+ +[ ] E
1 2ν–( ) 1 ν+( )

--------------------------------------=

σzz 1 ν–( )εzz νεxx νεyy+ +[ ] E
1 2ν–( ) 1 ν+( )

--------------------------------------=

σxx εxx νεyy+( ) E
1 ν2–
--------------= σyy εyy νεxx+( ) E

1 ν2–
--------------=

εzz
ν

1 ν–
------------⎝ ⎠

⎛ ⎞ εxx εyy+( )–=

εxx 1 ν–( )σxx νσyy–[ ]1 ν+
E

------------= εyy 1 ν–( )σyy νσxx–[ ]1 ν+
E

------------=

σxx 1 ν–( )εxx νεyy+[ ] E
1 2ν–( ) 1 ν+( )

--------------------------------------= σyy 1 ν–( )εyy νεxx+[ ] E
1 2ν–( ) 1 ν+( )

--------------------------------------=
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3.108 A differential element subjected to only normal strains is shown in Figure P3.108. The ratio of change in a volume ΔV to the origi-
nal volume V is called the volumetric strain εV, or dilation. 

For small strain prove

(3.21)

3.109 Prove

(3.22)

where K is the bulk modulus and p is the hydrostatic pressure because at a point in a fluid the normal stresses in all directions are equal to −
p. Note that at ν =  there is no change in volume, regardless of the value of the stresses. Such materials are called incompressible materials.

Stretch yourself
An orthotropic material (Section 3.12.3) has the following stress–strain relationship at a point in plane stress:

(3.23)

Use Equations (3.23) to solve Problems 3.110  through 3.117 .
The stresses at a point on a free surface of an orthotropic material are given in Problems 3.110  through 3.113 . Also given are the material
constants. Using Equations (3.23) solve for the strains εxx, εyy, and γxy. 

The strains at a point on a free surface of an orthotropic material are given in Problems 3.114  through 3.117 . Also given are the material
constants. Using Equation (3.23) solve for the stresses σxx, σyy, and τxy. 

3.118 Using Equation (3.23), show that on a free surface of an orthotropic material 

(3.24)

Problem σxx σyy τxy Ex Ey νxy Gxy

3.110 5 ksi (C) 8 ksi (T) 6 ksi 7500 ksi 2500 ksi 0.3 1250 ksi
3.111 25 ksi (C) 5 ksi (C) −8 ksi 25,000 ksi 2000 ksi 0.32 1500 ksi
3.112 200 MPa (C) 80 MPa (C) –54 MPa 53 GPa 18 GPa 0.25 9 GPa
3.113 300 MPa (T) 50 MPa (T) 60 MPa 180 GPa 15 GPa 0.28 11 GPa

Problem εxx εyy γxy Ex Ey νxy Gxy

3.114 −1000 μ 500 μ −250 μ 7500 ksi 2500 ksi 0.3 1250 ksi
3.115 −750 μ −250 μ 400 μ 25,000 ksi 2000 ksi 0.32 1500 ksi
3.116 1500 μ 800 μ 600 μ 53 GPa 18 GPa 0.25 9 GPa
3.117 1500 μ −750 μ −450 μ 180 GPa 15 GPa 0.28 11 GPa

  Figure P3.108

y

�y

�z
�x

x

z

(1 � �xx) �x

(1 � �zz) �z

(1 � �yy) �y

εV
ΔV
V

------- εxx εyy εzz+ += =

p KεV p–
σxx σyy σzz+ +

3
-------------------------------------⎝ ⎠

⎛ ⎞–= = K E
3 1 2ν–( )
-----------------------=

1
2
---

εxx
σxx
Ex
--------

νyx
Ey
-------σyy εyy

σyy
Ey
--------

νxy
Ex
-------σxx–=–= γxy

τxy
Gxy
---------       

νyx
Ey
-------

νxy
Ex
-------==

σxx
Ex εxx νyxεyy+( )

1 νyxνxy–
---------------------------------------- σyy

Ey εyy νxyεxx+( )
1 νyxνxy–

----------------------------------------==
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3.7* STRESS CONCENTRATION

Large stress gradients in a small region are called stress concentration. These large gradients could be due to sudden
changes in geometry, material properties, or loading. We can use our theoretical models to calculate stress away from the
regions of large stress concentration according to Saint-Venant’s principle, which will be discussed in the next section. These
stress values predicted by the theoretical models away from regions of stress concentration are called nominal stresses. Fig-
ure 3.29 shows photoelastic pictures (see Section 8.4.1) of two structural members under uniaxial tension. Large stress gradi-
ents near the circular cutout boundaries cause fringes to be formed. Each color boundary represents a fringe order that can be
used in the calculation of the stresses.

Stress concentration factor is an engineering concept that permits us to extrapolate the results of our elementary theory
into the region of large stress concentration where the assumptions on which the theory is based are violated. The stress con-
centration factor Kconc is defined as

(3.25)

The stress concentration factor Kconc is found from charts, tables, or formulas that have been determined experimentally,
numerically, analytically, or from a combination of the three. Section C.4 in Appendix shows several graphs that can be used
in the calculation of stress concentration factors for problems in this book. Additional graphs can be found in handbooks
describing different situations. Knowing the nominal stress and the stress concentration factor, the maximum stress can be
estimated and used in design or to estimate the factor of safety. Example 3.9 demonstrates the use of the stress concentration
factor.

3.8* SAINT-VENANT’S PRINCIPLE

Theories in mechanics of materials are constructed by making assumptions regarding load, geometry, and material varia-
tions. These assumptions are usually not valid near concentrated forces or moments, near supports, near corners or holes, near
interfaces of two materials, and in flaws such as cracks. Fortunately, however, disturbance in the stress and displacement
fields dissipates rapidly as one moves away from the regions where the assumptions of the theory are violated. Saint-Venant’s
principle states

Consider the two statically equivalent load systems shown in Figure 3.30. By Saint-Venant’s principle the stress at a distance W
away from the loads will be nearly uniform. In the region at a distance less than W the stress distribution will be different, and

σNominal σNominal σNominalσNominal

Figure 3.29 Photoelastic pictures showing stress concentration. (Courtesy Professor I. Miskioglu.)

Kconc
maximum stress
nominal stress

---------------------------------------=

Two statically equivalent load systems produce nearly the same stress in regions at a distance that is at
least equal to the largest dimension in the loaded region.

  Figure 3.30 Stress due to two statically equivalent load systems.
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it is possible that there are also shear stress components present. In a similar manner, changes in geometry and materials have
local effects that can be ignored at distances. We have considered the effect of changes in geometry and an engineering solu-
tion to the problem in Section 3.7 on stress concentration.

The importance of Saint-Venant’s principle is that we can develop our theories with reasonable confidence away from the
regions of stress concentration. These theories provide us with formulas for the calculation of nominal stress. We can then use
the stress concentration factor to obtain maximum stress in regions of stress concentration where our theories are not valid.

EXAMPLE 3.9 

Finite-element analysis (see Section 4.8) shows that a long structural component in Figure 3.31 carries a uniform axial stress of
σnominal = 35 MPa (T). A hole in the center needs to be drilled for passing cables through the structural component. The yield stress of the
material is σyield = 200 MPa. If failure due to yielding is to be avoided, determine the maximum diameter of the hole that can be drilled
using a factor of safety of Ksafety =1.6.

PLAN
We can compute the allowable (maximum) stress for factor of safety of 1.6 from Equation (3.10). From Equation (3.25) we can find the
permissible stress concentration factor. From the plot of Kgross in Figure A.13 of Appendix C we can estimate the ratio of d / H. Knowing
that H = 100 mm, we can find the maximum diameter d of the hole.

SOLUTION
From Equation (3.10) we obtain the allowable stress:

(E1)

From Equation (3.25) we calculate the permissible stress concentration factor:

(E2)

From Figure A.13 of Appendix C we estimate the ratio of d /H as 0.367. Substituting H = 100 mm we obtain

(E3)

For the maximum permissible diameter to the nearest millimeter we round downward.
ANS. 

COMMENTS
1. The value of d /H = 0.367 was found from linear interpolation between the value of d /H = 0.34, where the stress concentration fac-

tor is 0.35, and the value of d / H = 0.4, where the stress concentration factor is 0.375. These points were used as they are easily read
from the graph. Because we are rounding downward in Equation (E3), any value between 0.36 and 0.37 is acceptable. In other words,
the third place of the decimal value is immaterial.

2. As we used the maximum diameter of 36 mm instead of 36.7 mm, the effective factor of safety will be slightly higher than the speci-
fied value of 1.6, which makes this design a conservative design. 

3. Creating the hole will change the stress around its. By per Saint-Venant’s principle, the stress field far from the hole will not be signif-
icantly affected. This justifies the use of nominal stress without the hole in our calculation.

10 mm

H � 100 mm

d  Figure 3.31 Component geometry in Example 3.9.

σallow
σyield
Ksafety
---------------- 200 MPa

1.6
---------------------- 125 MPa= = =

Kconc
σallow

σnominal
---------------------≤ 125 MPa

35 MPa
---------------------- 3.57= =

d
100 mm
-------------------- 0.367 or d 36.7 mm≤ ≤

dmax 36 mm=
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3.9* THE EFFECT OF TEMPERATURE

A material expands with an increase in temperature and contracts with a decrease in temperature. If the change in temperature
is uniform, and if the material is isotropic and homogeneous, then all lines on the material will change dimensions by equal
amounts. This will result in a normal strain, but there will be no change in the angles between any two lines, and hence there
will be no shear strain produced. Experimental observations confirm this deduction. Experiments also show that the change in
temperature ΔT is related to the thermal normal strain εT ,

εT = α ΔT (3.26)

where the Greek letter alpha α is the linear coefficient of thermal expansion. The linear relationship given by Equation (3.26)
is valid for metals at temperatures well below the melting point. In this linear region the strains for most metals are small and
the usual units for α are μ/ºF or μ/ºC, where μ = 10-6. Throughout the discussion in this section it is assumed that the material
is in the linear region.

The tension test described in Section 3.1 is conducted at some ambient temperature. We expect the stress–strain curve to
have the same character at two different ambient temperatures. If we raise the temperature by a small amount before we start
the tension test then the expansion of specimen will result in a thermal strain, but there will be no stresses shifting the stress–
strain curve from point O to point O1, as shown in Figure 3.32. The total strain at any point is the sum of mechanical strain and
thermal strains:

(3.27)

Equation (3.27) and Figure 3.32 are valid only for small temperature changes well below the melting point. Material non-
homogeneity, material anisotropy, nonuniform temperature distribution, or reaction forces from body constraints are the rea-
sons for the generation of stresses from temperature changes. Alternatively, no thermal stresses are produced in a
homogeneous, isotropic, unconstrained body due to uniform temperature changes.

The generalized Hooke’s law relates mechanical strains to stresses. The total normal strain, as seen from Equation (3.27),
is the sum of mechanical and thermal strains. For isotropic materials undergoing small changes in temperature, the general-
ized Hooke’s law is written as shown in Equations (3.28a) through (3.28f).

Homogeneity of the material or the uniformity of the temperature change are irrelevant as Hooke’s law is written for a point
and not for the whole body. 

ε σ
E
--- α ΔT+=

Figure 3.32 Effect of temperature on stress–strain curve.
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�

� �T

O O1

E
�

(3.28a)

(3.28b)

(3.28c)

(3.28d)

(3.28e)

(3.28f)

εxx
σxx ν σyy σzz+( )–

E
----------------------------------------------- α ΔT+=

εyy
σyy ν σzz σxx+( )–

E
----------------------------------------------- α ΔT+=

εzz
σzz ν σxx σyy+( )–

E
----------------------------------------------- α ΔT+=

γxy τxy G⁄=

γyz τyz G⁄=

γzx τzx G⁄=

Mechanical Strain Thermal Strain
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EXAMPLE 3.10 

A circular bar (E = 200 GPa, ν = 0.32, and α = 11.7 μ/°C) has a diameter of 100 mm. The bar is built into a rigid wall on the left, and a
gap of 0.5 mm exists between the right wall and the bar prior to an increase in temperature, as shown in Figure 3.33.The temperature of
the bar is increased uniformly by 80°C. Determine the average axial stress and the change in the diameter of the bar. 

METHOD 1:  PLAN
A reaction force in the axial direction will be generated to prevent an expansion greater than the gap. This would generate σxx. As there
are no forces in the y or z direction, the other normal stresses σyy and σzz can be approximated to zero in Equation (3.28a). The total
deformation is the gap, from which the total average axial strain for the bar can be found. The thermal strain can be calculated from the
change in the given temperature. Thus in Equation (3.28a) the only unknown is σxx. Once σxx has been calculated, the strain εyy can be
found from Equation (3.28b) and the change in diameter calculated.

SOLUTION
The total axial strain is the total deformation (gap) divided by the length of the bar,

(E1)

(E2)
Because σyy and σzz are zero, Equation (3.28a) can be written as  from which we can obtain σxx,

(E3)

ANS.
From Equation (3.28b) we can obtain εyy and calculate the change in diameter,

(E4)

(E5)

ANS.

COMMENTS
1. If α ΔT were less than εxx, then σxx would come out as tension and our assumption that the gap closes would be invalid. In such a case

there would be no stress σxx generated. 
2. The increase in diameter is due partly to Poisson’s effect and partly to thermal strain in the y direction.

METHOD 2:  PLAN
We can think of the problem in two steps: (i) Find the thermal expansion δT initially ignoring the restraining effect of the right wall. (ii)
Apply the force P to bring the bar back to the restraint position due to the right wall and compute the corresponding stress.

SOLUTION

We draw an approximate deformed shape of the bar, assuming there is no right wall to restrain the deformation as shown in Figure
3.34.The thermal expansion δT  is the thermal strain multiplied by the length of the bar,

0.5 mm
2 m

x

 Figure 3.33 Bar in Example 3.10.

εxx
0.5 10 3–×  m

2 m
------------------------------- 250 10 6–×  = =

α ΔT 11.7 10 6–× 80× 936 10 6–×= =
εxx σxx/E α ΔT,+=

σxx E εxx α ΔT–( ) 200 109×  N/m2( ) 250 936–( )10 6– 137.2 106× N/m2–= = =

σxx 137.2 MPa (C)=

εyy ν–
σxx
E

-------- α ΔT+ 0.25 137.2 106×–  N/m2

200 109×  N/m2
----------------------------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

– 936 10 6–×+ 1.107 10 3–×= = =

ΔD εyyD 1.107 10 3–× 100× mm= =

ΔD 0.1107 mm increase=

�P

�T

P

0.5 mm
L � 2 m

x

 Figure 3.34 Approximate deformed shape of the bar in Example 3.10.
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 (E6)
We obtain the contraction δP to satisfy the restraint imposed by the right wall by subtracting the gap from the thermal expansion. 

(E7)
We can then find the mechanical strain and compute the corresponding stress:

(E8)

(E9)

ANS.
The change in diameter can be found as in Method 1.

COMMENT
In Method 1 we ignored the intermediate steps and conducted the analysis at equilibrium. We implicitly recognized that for a linear sys-
tem the process of reaching equilibrium is immaterial. In Method 2 we conducted the thermal and mechanical strain calculations sepa-
rately. Method 1 is more procedural. Method 2 is more intuitive.

EXAMPLE 3.11 

Solve Example 3.8 with a temperature increase of 20ºC. Use α = 23 μ/ºC.

PLAN
Shear stress is unaffected by temperature change and its value is the same as in Example 3.8. Hence τxy = 21 MPa. In Equations 3.28a
and 3.28b σzz = 0, εxx = 650 μ, and εyy = 300 μ are known and α ΔT can be found and substituted to generate two equations in the two
unknown stresses σxx and σyy, which are found by solving the equations simultaneously. Then from Equation (3.28c), the normal strain εzz

can be found. 

SOLUTION
We can find the thermal strain as ΔT = 20 and αΔT = 460 × 10−6. Equations 3.28a and 3.28b and can be rewritten with σzz = 0,

(E1)

 (E2)
By solving Equations (E1) and (E2) we obtain σxx and σyy.

ANS.  
From Equation (3.28c) with σzz = 0 we obtain 

(E3)

ANS.

COMMENT
1. Equations (E1) and (E2) once more have the same structure as in Example 3.8. The only difference is that in Example 3.8 we were

given the mechanical strain and in this example we obtained the mechanical strain by subtracting the thermal strain from the total
strain.

δT α ΔT( )L 11.7 10 6–× 80× 2 m× 1.872 10 3–×  m= = =

δP δT 0.5 10 3–×  m– 1.372 10 3–×  m= =

εP
δP
L
------ 1.372 10 3–×  m

2 m
------------------------------------- 0.686 10 3–×= = =

σP EεP 200 109×  N/m2( ) 0.686× 10 3–× 137.2 106× N/m2= = =

σP 137.2 MPa C( )=

σxx νσyy– E εxx αΔT–( ) 70 109×  N/m2( ) 650 460–( )10 6–= = or

σxx 0.25σyy– 13.3 MPa=

σyy νσxx– E εyy αΔT–( ) 70 109×  N/m2( ) 300 460–( )10 6–= = or

σyy 0.25σxx– 11.2–  MPa=

σxx 11.2 MPa T( )= σyy 8.4 MPa C( )=

εzz
ν σxx σyy+( )–

E
---------------------------------- α ΔT 0.25 11.2 8.4–( ) 106( ) N/m2–

70 109×  N/m2( )
----------------------------------------------------------------------- 460 10 6–×+=+=

εzz 460 μ=
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PROBLEM SET 3.3

Stress concentration
3.119 A steel bar is axially loaded, as shown in Figure P3.119. Determine the factor of safety for the bar if yielding is to be avoided. The
normal yield stress for steel is 30 ksi. Use the stress concentration factor chart in Section C.4 in Appendix.

3.120 The stress concentration factor for a stepped flat tension bar with shoulder fillets shown in Figure P3.120 was determined as given
by the equation below. The equation is valid only if H / d > 1 + 2r / d and L / H > 5.784 − 1.89r / d. The nominal stress is P/dt. Make a chart
for the stress concentration factor versus H / d for the following values of r / d: 0.2, 0.4, 0.6, 0.8, 1.0. (Use of a spreadsheet is
recommended.)

3.121 Determine the maximum normal stress in the stepped flat tension bar shown in Figure P3.120 for the following data: P = 9 kips,
H = 8 in, d = 3 in, t = 0.125 in, and r = 0.625 in.

3.122 An aluminum stepped tension bar is to carry a load P = 56 kN. The normal yield stress of aluminum is 160 MPa. The bar in Figure
P3.120 has H = 300 mm, d = 100 mm, and t = 10 mm. For a factor of safety of 1.6, determine the minimum value r of the fillet radius if
yielding is to be avoided. 

3.123 The stress concentration factor for a flat tension bar with U-shaped notches shown in Figure P3.123 was determined as given by the
equation below. The nominal stress is P / Ht. Make a chart for the stress concentration factor vs. r / d for the following values of H/d: 1.25,
1.50, 1.75, 2.0. (Use of a spreadsheet is recommended.)

3.124 Determine the maximum normal stress in the flat tension bar shown in Figure P3.123 for the following data: P = 150 kN,
H = 300 mm, r = 15 mm, and t = 5 mm.

3.125 A steel tension bar with U-shaped notches of the type shown in Figure P3.123 is to carry a load P = 18 kips. The normal yield stress
of steel is 30 ksi. The bar has H = 9 in., d = 6 in. and t = 0.25 in. For a factor of safety of 1.4, determine the value of r if yielding is to be
avoided.

Temperature effects
3.126 An iron rim (α = 6.5 μ/°F) of 35.98-in diameter is to be placed on a wooden cask of 36-in. diameter. Determine the minimum tem-
perature increase needed to slip the rim onto the cask.

10 kips

0.5 in

5 in

1 in

10 kips

  Figure P3.119

L

t

d H

r

r
P

P  Figure P3.120
Kconc 1.970 0.384 2r

H
-----⎝ ⎠

⎛ ⎞– 1.018 2r
H
-----⎝ ⎠

⎛ ⎞ 2
– 0.430 2r

H
-----⎝ ⎠

⎛ ⎞ 3
+=

2r

d

2r

H
PP

2r

t

  Figure P3.123

Kconc 3.857 5.066 4r
H
-----⎝ ⎠

⎛ ⎞– 2.469 4r
H
-----⎝ ⎠

⎛ ⎞ 2
0.258 4r

H
-----⎝ ⎠

⎛ ⎞ 3
–+=
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3.127 The temperature is increased by 60°C in both steel (Es = 200 GPa, αs = 12.0 μ/°C) and aluminum (E = 72 GPa, α = 23.0 μ/°C).
Determine the angle by which the pointer rotates from the vertical position (Figure P3.127).

3.128 Solve Problem 3.73 if the temperature decrease is 25°C. Use α = 11.7 μ/°C.

3.129 Solve Problem 3.74 if the temperature increase is 50°C. Use α = 23.6 μ/°C.

3.130 Solve Problem 3.81 if the temperature increase is 40°F. Use α = 6.5 μ/°F.

3.131 Solve Problem 3.82 if the temperature decrease is 100°F. Use α = 12.8 μ/°F. 

3.132 Solve Problem 3.83 if the temperature decrease is 75°C. Use α = 26.0 μ/°C.

3.133 A plate (E = 30,000 ksi, ν = 0.25, α = 6.5 × 10-6/°F) cannot expand in the y direction and can expand at most by 0.005 in. in the x
direction, as shown in Figure P3.133. Assuming plane stress, determine the average normal stresses in the x and y directions due to a uni-
form temperature increase of 100°F.

3.134 Derive the following relations of normal stresses in terms of normal strains from Equations (3.28a), (3.28b), and (3.28c):

(3.29)

3.135 For a point in plane stress show that

(3.30)

3.136 For a point in plane stress show that

(3.31)

Aluminum

Steel

50 mm

450 mm
 Figure P3.127

x

5 in

10 in
0.005 in

y

 Figure P3.133

σxx 1 ν–( )εxx νεyy νεzz+ +[ ] E
1 2ν–( ) 1 ν+( )

-------------------------------------- Eα ΔT
1 2ν–
-----------------–=

σyy 1 ν–( )εyy νεzz νεxx+ +[ ] E
1 2ν–( ) 1 ν+( )

-------------------------------------- Eα ΔT
1 2ν–
-----------------–=

σzz 1 ν–( )εzz νεxx νεyy+ +[ ] E
1 2ν–( ) 1 ν+( )

-------------------------------------- Eα ΔT
1 2ν–
-----------------–=

σxx εxx νεyy+( ) E
1 ν2–
-------------- Eα ΔT

1 ν–
-----------------–= σyy εyy νεxx+( ) E

1 ν2–
-------------- Eα ΔT

1 ν–
-----------------–=

εzz
ν

1 ν–
------------⎝ ⎠

⎛ ⎞– εxx εyy+( ) 1 ν+
1 ν–
------------⎝ ⎠

⎛ ⎞ α ΔT+=
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3.10* FATIGUE

Try to break a piece of wire (such as a paper clip) by pulling on it by hand. You will not be able to break because you would
need to exceed the ultimate stress of the material. Next take the same piece of wire and bend it one way and then the other a
few times, and you will find that it breaks easily. The difference is the phenomena of fatigue.

All materials are assumed to have microcracks. These small crack length are not critical and are averaged as ultimate
strength for the bulk material in a tension test. However, if the material is subjected to cyclic loading, these microcracks can
grow until a crack reaches some critical length, at which time the remaining material breaks. The stress value at rupture in a
cyclic loading is significantly lower than the ultimate stress of the material. Failure due to cyclic loading at stress levels sig-
nificantly lower than the static ultimate stress is called fatigue.

Failure due to fatigue is like a brittle failure, irrespective of whether the material is brittle or ductile. There are two phases
of failure. In the first phase the microcracks grow. These regions of crack growth can be identified by striation marks, also
called beach marks, as shown in Figure 3.35. On examination of a fractured surface, this region of microcrack growth shows
only small deformation. In phase 2, which is after the critical crack length has been reached, the failure surface of the region
shows significant deformation. 

The following strategy is used in design to account for fatigue failure. Experiments are conducted at different magnitude
levels of cyclic stress, and the number of cycles at which the material fails is recorded. There is always significant scatter in
the data. At low level of stress the failure may occur in millions and, at times, billions of cycles. To accommodate this large
scale, a log scale is used for the number of cycles. A plot is made of stress versus the number of cycles to failure called the S–
N curve as shown in Figure 3.36. Notice that the curve approaches a stress level asymtotically, implying that if stresses are
kept below this level, then the material would not fail under cyclic loading. The highest stress level for which the material
would not fail under cyclic loading is called endurance limit or fatigue strength.

It should be emphasized that a particular S–N curve for a material depends on many factors, such as manufacturing pro-
cess, machining process, surface preparation, and operating environment. Thus two specimens made from the same steel
alloys, but with a different history, will result in different S–N curves. Care must be taken to use an S–N curve that corre-
sponds as closely as possible to the actual situation.

In a typical preliminary design, static stress analysis would be conducted using the peak load of the cyclic loading. Using
an appropriate S–N curve, the number of cycles to failure for the peak stress value is calculated. This number of cycles to fail-
ure is the predicted life of the structural component. If the predicted life is unacceptable, then the component will be rede-
signed to lower the peak stress level and hence increase the number of cycles to failure.

  Figure 3.35 Failure of lead solder due to fatigue. (Courtesy Professor I. Miskioglu.)
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  Figure 3.36 S–N curves. 104
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EXAMPLE 3.12 

The steel plate shown in Figure 3.37 has the S–N curve given in Figure 3.36. (a) Determine the maximum diameter of the hole to the
nearest millimeter if the predicted life of one-half million cycles is desired for a uniform far-field stress σ = 75 MPa. (b) For the hole
radius in part (a), what percentage reduction in far-field stress must occur if the predicted life is to increase to 1 million cycles?

PLAN
(a) From Figure 3.36 we can find the maximum stress that the material can carry for one-half million cycles. From Equation (3.25) the
gross stress concentration factor Kgross can be found. From the plot of Kgross in Figure A.13 of Appendix C we can estimate the ratio d/H
and find the diameter d of the hole. (b) The percentage reduction in the gross nominal stress σ is the same as that in the maximum stress
values in Figure 3.36, from one million cycles to one-half million cycles.

SOLUTION
(a) From Figure 3.36 the maximum allowable stress for one-half million cycles is estimated as 273 MPa. From Equation (3.25) the gross
stress concentration factor is 

(E1)

From Figure A.13 of Appendix C the value of the ratio d/H corresponding to Kgross = 3.64 is 0.374. 
(E2)

The maximum permissible diameter to the nearest millimeter can be obtained by rounding downward.
ANS.

(b) From Figure 3.36 the maximum allowable stress for one million cycles is estimated as 259 MPa. Thus the percentage reduction in
maximum allowable stress is [(273MPa − 259 MPa)/273 MPa](100) = 5.13%. As the geometry is the same as in part (a), the percentage
reduction in far-field stress should be the same as in the maximum allowable stress.

ANS. The percentage reduction required is 5.13%.

COMMENT
1. A 5.13% reduction in peak stress value causes the predicted life cycle to double. Many factors can cause small changes in stress val-

ues, resulting in a very wide range of predictive life cycles. Examples include our estimates of the allowable stress in Figure 3.36, of
the ratio d/H from Figure A.13 of Appendix C, of the far-field stress σ; and the tolerances of drilling the hole. Each is factor that can
significantly affect our life prediction of the component. This emphasizes that the data used in predicting life cycles and failure due to
fatigue must be of much higher accuracy than in traditional engineering analysis. 

�� 170 mm

d  Figure 3.37 Uniaxially loaded plate with a hole in Example 3.12.

Kgross
σmax

σnominal
--------------------- 273 MPa

75 MPa
---------------------- 3.64= = =

d 0.374 H× 0.374 170 mm× 63.58 mm= = =

dmax 63 mm=
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MoM in Action: The Comet / High Speed Train Accident

On January 10, 1954, the de Havilland Comet failed in midair near the Italian island Elba, killing all 35 people on 
board. On June 3, 1998, near the village of Eschede in Germany, a high-speed train traveling at nearly 200 km/h derailed, 
killing 101 people and injuring another 88. The events are a cautionary tale about the inherent dangers of new technologies 
and the high price of knowledge. 

The Comet represented state-of-the-art technology. Passengers had a pressurized air cabin and slightly rounded 
square windows (Figure 1.39a) to look outside. The world’s first commercial jet airliner flew 50% faster than the piston-
engine aircrafts of that time, reducing flight times. It also flew higher, above adverse weather, for greater fuel efficiency 
and fewer vibrations. Its advanced aluminum alloy was postcard thin, to reduce weight, and adhesively bonded, lowering 
the risk of cracks spreading from rivets. Stress cycling due to pressurizing and depressurizing on plane that flies to 36,000 
feet and returns to ground was simulated on a design prototype using a water tank. The plane was deemed safe for at least 
16,000 flights. 

On January 22, 1952, the Comet received a certificate of airworthiness. It crashed less than two years later after 
only 1290 flights, and the initial investigation failed to determine why. Flights resumed March 23, 1954, but on April 8, a 
second Comet crashed near Naples on its way from Rome to Cairo – after only 900 flights. Once more flights were 
grounded, while pressurizing and depressurizing testing was conducted on a plane that had gone through 1221 flights. It 
failed the tests after 1836 additional simulations. 

Why did the initial testing on the prototype give such misleading results? Stresses near the window corners were 
far in excess of expectations, resulting in shorter fatigue life. Unlike static, fatigue test results should be used with great 
caution in extrapolating to field conditions. Passenger windows were made elliptical in shape, for a lower stress concentra-
tion. With this and other design improvements, Comets were used by many airlines for the next 30 years.

The high-speed intercity express (ICE) was the pride of the German railways. The first generation of these trains 
had single-cast wheels. At cruising speed, wheels deformation was causing vibrations. The wheels were redesigned with a 
rubber damping strip with a metal rim, as shown in Figure 1.39b. This design, already in use in streetcars, resolved the 
vibrations. However, the metal rims were failing earlier then predicted by design. The railway authority had noticed the 
problem long before the accident, but decided to merely replace the wheels more often. The decision proved disastrous. 

Six kilometers from Eschede, the wheel rim from one axle peeled and punctured the floor. The train derailed in 
minutes. And investigation established that the rims become thinner owing to wear, and fatigue-induced cracks can cause 
failure earlier than the design prediction. The wheel design is now once more single cast, and alternative solutions to the 
vibration problems were found. Today the high-speed ICE is used for much of Germany. 

No laboratory test can accurately predict fatigue life cycles under field conditions. Regular inspection of planes and 
high-speed train wheels for fatigue cracks is now standard practice. 

(a) 

  Figure 3.38 (a) de Havilland Comet 1 (b) Cross-section of high speed train wheel.

(b) 

wheel

Metal rim

rubber
strip
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3.11* NONLINEAR MATERIAL MODELS

Rubber, plastics, muscles, and other organic tissues exhibit nonlinearity in the stress–strain relationship, even at small strains.
Metals also exhibit nonlinearity after yield stress. In this section we consider various nonlinear material models— the equa-
tions that represent the stress–strain nonlinear relationship. The material constants in the equations are found by least-squares
fit of the stress–strain equation to the experimental data. For the sake of simplicity we shall assume that the material behavior
is the same in tension and in compression.

We will consider three material models that are used in analytical and numerical analysis:

1. The elastic–perfectly plastic model, in which the nonlinearity is approximated by a constant. 
2. The linear strain-hardening (or bilinear) model, in which the nonlinearity is approximated by a linear function.
3. The power law model, in which the nonlinearity is approximated by a one-term nonlinear function.

Other material models are described in the problems. The choice of material model depends not only on the material
stress–strain curve, but also on the need for accuracy and the resulting complexity of analysis.

3.11.1 Elastic–Perfectly Plastic Material Model

Figure 3.39 shows the stress–strain curves describing an elastic–perfectly plastic behavior of a material. It is assumed that the
material has the same behavior in tension and in compression. Similarly, for shear stress–strain, the material behavior is the
same for positive and negative stresses and strains.

Before yield stress the stress–strain relationship is given by Hooke’s law. After yield stress the stress is a constant. The
elastic–perfectly plastic material behavior is a simplifying approximation2 used to conduct an elastic–plastic analysis. The
approximation is conservative in that it ignores the material capacity to carry higher stresses than the yield stress. The stress–
strain curve are given by

(3.32)

(3.33)

The set of points forming the boundary between the elastic and plastic regions on a body is called elastic–plastic bound-
ary. Determining the location of the elastic–plastic boundary is one of the critical issues in elastic–plastic analysis. The exam-
ples will show, the location of the elastic–plastic boundary is determined using two observations:

2Limit analysis is a technique based on elastic-plastic material behavior. It can be used to predict the maximum load a complex structure like a truss can support.

  Figure 3.39 Elastic–perfectly plastic material behavior.

�

�

�yield

�yield

�yield

�yield

� � ��yield

� � �yield

�
 �

 E
�

�

�

�yield

�yield

�yield

�yield

� � ��yield

� � �yield

� 
�

 G
�

σ

σyield,

Eε,
σyield,–

ε εyield≥

εyield– ε εyield≤ ≤

ε εyield–≤
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

τ

τyield,

Gγ,
τyield,–

γ γyield≥

  γyield– γ γyield≤ ≤

    γ γyield–≤
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=



Mechanics of Materials: Mechanical Properties of Materials
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

3 133M. Vable

January, 2010

1. On the elastic–plastic boundary, the strain must be equal to the yield strain, and stress equal to yield stress. Deformations
and strains are continuous at all points, including points at the elastic–plastic boundary.

2. If deformation is not continuous, then it is implied that holes or cracks are being formed in the material. If strains,
which are derivative displacements, are not continuous, then corners are being formed during deformation.

3.11.2 Linear Strain-Hardening Material Model

Figure 3.40 shows the stress–strain curve for a linear strain-hardening model, also referred to as bilinear material3 model. It is
assumed that the material has the same behavior in tension and in compression. Similarly, for shear stress and strain, the mate-
rial behavior is the same for positive and negative stresses and strains.

This is another conservative, simplifying approximation of material behavior: we once more ignore the material ability to
carry higher stresses than shown by straight lines. The location of the elastic–plastic boundary is once more a critical issue in
the analysis, and it is determined as in the previous section.

The stress–strain curves are given by 

(3.34)

(3.35)

3.11.3 Power-Law Model

Figure 3.41 shows a power-law representation of a nonlinear stress–strain curve. It is assumed that the material has the same
behavior in tension and in compression. Similarly for shear stress and strain; the material behavior is the same for positive and
negative stresses and strains. The stress–strain curve are given by 

(3.36)

3Incremental plasticity is a numerical technique that approximated the non-linear stress-strain curve by series of straight lines over small intervals. 

  Figure 3.40 Linear strain-hardening model.
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The constants E and G are the strength coefficients, and n is the strain-hardening coefficient. They are determined by least-
squares fit to the experimental stress–strain curve. Materials such as most metals in plastic region or most plastics are repre-
sented by the solid curve with the strain-hardening coefficient less than one. Materials like soft rubber, muscles and other
organic materials are represented by the dashed line with a strain-hardening coefficient greater than one. 

From Equation (3.36) we note that when strain is negative, the term in parentheses becomes positive, permitting evalua-
tion of the number to fractional powers. Furthermore with negative strain we obtain negative stress, as we should.

In Section 3.11.2 we saw that the stress–strain relationship could be written using different equations for different stress
levels. We could, in a similar manner, combine a linear equation for the linear part and a nonlinear equation for the nonlinear
part, or we could combine two nonlinear equations, thus creating additional material models. Other material models are con-
sidered in the problems.

EXAMPLE 3.13 

Aluminum has a yield stress σyield = 40 ksi in tension, a yield strain εyield = 0.004, an ultimate stress σult = 45 ksi, and the corresponding
ultimate strain εult = 0.17. Determine the material constants and plot the corresponding stress–strain curves for the following models: (a)
the elastic–perfectly plastic model. (b) the linear strain-hardening model. (c) the nonlinear power-law model. 

PLAN
We have coordinates of three points on the curve: P0 (σ0 = 0.00, ε0 = 0.000), P1 (σ1 = 40.0, ε1 = 0.004), and P2 (σ2 = 45.0, ε2 = 0.017).
Using these data we can find the various constants in the material models.

SOLUTION
(a) The modulus of elasticity E is the slope between points P0 and P1. After yield stress, the stress is a constant. The stress–strain behav-
ior can be written as

(E1)

ANS. (E2)

(b) In the linear strain-hardening model the slope of the straight line before yield stress is as calculated in part (a). After the yield stress,
the slope of the line can be found from the coordinates of points P1 and P2. The stress–strain behavior can be written as

(E3)

ANS. (E4)

(c) The two constants E and n in  can be found by substituting the coordinates of the two point P1 and P2, to generate 

  Figure 3.41 Nonlinear stress–strain curves.
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(E5)

(E6)
Dividing Equation (E6) by Equation (E5) and taking the logarithm of both sides, we solve for n:

(E7)

Substituting Equation (E7) into Equation (E5), we obtain the value of E:

(E8)
We can now write the stress-strain equations for the power law model.

ANS. (E9)

Stresses at different strains can be found using Equations (E2), (E4), and (E9) and plotted as shown in Figure 3.42.

EXAMPLE 3.14 

On a cross-section of a hollow circular shaft shown in Figure 3.43, the shear strain in polar coordinates was found to be

, where ρ is the radial coordinate measured in inches. Write expressions for τxθ as a function of ρ, and plot the shear
strain γxq and shear stress τxq distributions across the cross section. Assume the shaft is made from elastic–perfectly plastic material that
has a yield stress τyield = 24 ksi and a shear modulus G = 6000 ksi. 

PLAN
The yield strain in shear γyield can be found from the yield stress τyield and the shear modulus G. The location of the elastic–plastic bound-
ary ρy can be determined at  which the given shear strain reaches the value of γyield. The shear stress at points before ρy can be found
from Hooke’s law, and after ρy it will be the yield stress.

40 E 0.004( )n=

45 E 0.017( )n=

0.017
0.004
-------------⎝ ⎠

⎛ ⎞ n
ln 45

40
------⎝ ⎠

⎛ ⎞ln= or n 4.25( )ln 1.125( )ln= or n 0.0814=

E 40 ksi( ) 0.004( )0.0814⁄ 62.7 ksi= =

σ
62.7ε0.0814 ksi

62.7 ε–( )0.0814– ksi⎩
⎨
⎧

=
ε 0≥
ε 0<

  Figure 3.42 Stress–strain curves for different models in Example 3.13.
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 Figure 3.43 Hollow shaft in Example 3.14.
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SOLUTION
The location of the elastic–plastic boundary can be found as

(E1)

Up to ρy stress and strain are related by Hooke’s law, and hence

(E2)
After ρy the stress is equal to τy, and the shear stress can be written as

ANS. (E3)

The shear strain and shear stress distributions across the cross section are shown in Figure 3.44.

COMMENT
1. In this problem we knew the strain distribution and hence could locate the elastic–plastic boundary easily. In most problems we do

not know the strains due to a load, and finding the elastic–plastic boundary is significantly more difficult.

EXAMPLE 3.15 

Resolve Example 3.14 assuming the shaft material has a stress–strain relationship given by τ = 450γ 0.75 ksi.

PLAN
Substituting the strain expression into the stress–strain equation we can obtain stress as a function of ρ and plot it.

SOLUTION
Substituting the strain distribution into the stress–strain relation we obtain

 (E1)

ANS.
The shear stress can be found at several points and plotted as shown in Figure 3.45.

  Figure 3.45 Strain and stress distributions in Example 3.15
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 Figure 3.44 Strain and stress distributions.
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COMMENT
1. We see that although the strain distribution is linear across the cross section, the stress distribution is nonlinear due to material nonlin-

earity. Deducing the stress distribution across the cross section would be difficult, but deducing a linear strain distribution is possible
from geometric considerations, as will be seen in Chapter 5 for the torsion of circular shafts.

EXAMPLE 3.16 

At a cross section of a beam shown in Figure 3.46, the normal strain due to bending about the z axis was found to vary as εxx = −0.0125y,
with y measured in meters. Write the expressions for normal stress σxx  as a function of y and plot the σxx  distribution across the cross
section. Assume the beam is made from elastic–perfectly plastic material that has a yield stress σyield = 250 MPa and a modulus of elas-
ticity E = 200 GPa.

PLAN 
Points furthest from the origin will be the most strained, and the plastic zone will start from the top and bottom and move inward sym-
metrically. We can determine the yield strain εyield from the given yield stress σyield and the modulus of elasticity E. We can then find the
location of the elastic–plastic boundary by finding yy at which the normal strain reaches the value of εyield. The normal stress before yy can
be found from Hooke’s law, and after yy it will be the yield stress.

SOLUTION
The location of the elastic–plastic boundary is given by

(E1)

Up to the elastic–plastic boundary, i.e., yy,  the material is in the linear range and Hooke’s law applies. Thus, 

(E2)
The normal stress as a function of y can be written as

ANS. (E3)

z
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y

  Figure 3.46 Beam cross section in Example 3.16.

εyield
σyield

E
------------- 250 106×±( ) N/m2

200 109×  N/m2
----------------------------------------------- 1.25 10 3–×± 0.0125yy–= = = = or

yy
1.25 10 3–×±

0.0125–
------------------------------- 0.1 m+−= =

σxx 200 109×  N/m2( ) 0.0125y–( ) 2500y MPa y 0.1 m≤–= =

σxx

250 MPa,–
2500y MPa,–

250 MPa,⎩
⎪
⎨
⎪
⎧

 
0.1 m y 0.3 m≤ ≤
0.1 m– y 0.1 m≤ ≤
0.3 m– y 0.1 m–≤ ≤

=



Mechanics of Materials: Mechanical Properties of Materials
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

3 138M. Vable

January, 2010

The normal strain and stress as a function of y can be plotted as shown in Figure 3.47

COMMENTS
1. To better appreciate the stress distribution we can plot it across the entire cross section, as shown in Figure 3.48.

2. Once more we see that the stress distribution across the cross section will be difficult to deduce, but as will be seen in Chapter 6 for
the symmetric bending of beams, we can deduce the approximate strain distribution from geometric considerations.

EXAMPLE 3.17 

Resolve Example 3.16 assuming that the stress–strain relationship is given by σ = 9000ε0.6 MPa in tension and in compression.

PLAN
We substitute the strain value in Equations (3.36) and obtain the equation for stress in terms of y. 

SOLUTION
Substituting the strains in the stress–strain relation in Equations (3.36), we obtain

ANS. (E4)

y (m) y (m)

0.1

0.3

0.1

0.3

1250 3750
�xx (
) �xx (MPa)

250 MPa

12503750
0.1

0.3

0.1

0.3
250 

  Figure 3.47 Strain and stress distributions in Example 3.16
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 Figure 3.48 Stress distribution across cross section in Example 3.16
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The strains and stresses can be found at different values of y and plotted as shown in Figure 3.49.

COMMENT
1. To better appreciate the stress distribution we can plot it across the entire cross section, as shown in Figure 3.50.

PROBLEM SET 3.4

Fatigue
3.137 A machine component is made from a steel alloy that has an S–N curve as shown in Figure 3.36. Estimate the service life of the
component if the peak stress is reversed at the rates shown. (a) 40 ksi at 200 cycles per minute. (b) 36 ksi at 250 cycles per minute. (c) 32 ksi
at 300 cycles per minute.

3.138 A machine component is made from an aluminum alloy that has an S–N curve as shown in Figure 3.36. What should be the maxi-
mum permissible peak stress in MPa for the following situations: (a) 17 hours of service at 100 cycles per minute. (b) 40 hours of service at
50 cycles per minute. (c) 80 hours of service at 20 cycles per minute.

3.139 A uniaxial stress acts on an aluminum plate with a hole is shown in Figure P3.139. The aluminum has an S–N curve as shown in
Figure 3.36. Predict the number of cycles the plate could be used if d = 3.2 in. and the far-field stress σ = 6 ksi.
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163247283315
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0.2
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0.3

3125375025001250

0.1

0.3

0.2
0.25

  Figure 3.49 Strain and stress distributions in Example 3.17.

  Figure 3.50 Stress distribution across cross section in Example 3.17.
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3.140 A uniaxial stress acts on an aluminum plate with a hole is shown in Figure P3.139. The aluminum has an S–N curve as shown in

Figure 3.36. Determine the maximum diameter of the hole to the nearest in., if the predicted service life of one-half million cycles is

desired for a uniform far-field stress σ = 6 ksi. 

3.141 A uniaxial stress acts on an aluminum plate with a hole is shown in Figure P3.139. The aluminum has an S–N curve as shown in
Figure 3.36. Determine the maximum far-field stress σ if the diameter of the hole is 2.4 in. and a predicted service life of three-quarters of a
million cycles is desired.

Nonlinear material models
3.142 Bronze has a yield stress σyield = 18 ksi in tension, a yield strain εyield = 0.0012, ultimate stress σult = 50 ksi, and the corresponding
ultimate strain εult = 0.50. Determine the material constants and plot the resulting stress–strain curve for (a) the elastic–perfectly plastic
model. (b) the linear strain-hardening model. (c) the nonlinear power-law model.

3.143 Cast iron has a yield stress σyield = 220 MPa in tension, a yield strain εyield = 0.00125, ultimate stress σult = 340 MPa, and the corre-
sponding ultimate strain εult = 0.20. Determine the material constants and plot the resulting stress–strain curve for: (a) the elastic–perfectly
plastic model. (b) the linear strain-hardening model. (c) the nonlinear power-law model.

3.144 A solid circular shaft of 3-in. diameter has a shear strain at a section in polar coordinates of γxθ = 2ρ × 10-3, where ρ is the radial
coordinate measured in inches. The shaft is made from an elastic–perfectly plastic material, which has a yield stress τyield = 18 ksi and a
shear modulus G = 12,000 ksi. Write the expressions for τxθ as a function of ρ and plot the shear strain γxθ and shear stress τxθ distributions
across the cross section.

3.145 A solid circular shaft of 3-in. diameter has a shear strain at a section in polar coordinates of γxθ = 2ρ × 10-3, where ρ is the radial
coordinate measured in inches.The shaft is made form a bilinear material as shown in Figure 3.40. The material has a yield stress τyield = 18
ksi and shear moduli G1 = 12,000 ksi and G2 = 4800 ksi. Write the expressions for τxθ as a function of ρ and plot the shear strain γxθ and
shear stress τxθ distributions across the cross section.

3.146 A solid circular shaft of 3-in. diameter has a shear strain at a section in polar coordinates of γxθ = 2ρ × 10-3, where ρ is the radial
coordinate measured in inches.The shaft material has a stress–strain relationship given by τ = 243γ 0 .4 ksi. Write the expressions for τxθ as a
function of ρ and plot the shear strain γxθ and shear stress τxθ distributions across the cross section.

3.147 A solid circular shaft of 3-in diameter has a shear strain at a section in polar coordinates of γxθ = 2ρ × 10-3, where ρ is the radial
coordinate measured in inches. The shaft material has a stress–strain relationship given by τ = 12,000γ − 120,000γ2 ksi. Write the expres-
sions for τxθ as a function of ρ and plot the shear strain γxθ and shear stress τxq distributions across the cross section.

3.148 A hollow circular shaft has an inner diameter of 50 mm and an outside diameter of 100 mm. The shear strain at a section in polar
coordinates was found to be γ xθ = 0.2ρ, where ρ is the radial coordinate measured in meters.The shaft is made from an elastic–perfectly plas-
tic material that has a shear yield stress τyield = 175 MPa and a shear modulus G = 26 GPa. Write the expressions for τxq as a function of ρ and
plot the shear strain γxq and shear stress τxq distributions across the cross section.

3.149 A hollow circular shaft has an inner diameter of 50 mm and an outside diameter of 100 mm. The shear strain at a section in polar
coordinates was found to be γ xθ = 0.2ρ, where ρ is the radial coordinate measured in meters. The shaft is made from a bilinear material as
shown in Figure 3.40. The material has a shear yield stress τyield = 175 MPa and shear moduli G1 = 26 GPa and G2 = 14 GPa. Write the
expressions for τxq as a function of ρ and plot the shear strain γxq and shear stress τxq distributions across the cross section.

1
8
---
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3.150 A hollow circular shaft has an inner diameter of 50 mm and an outside diameter of 100 mm. The shear strain at a section in polar
coordinates was found to be γ xθ = 0.2ρ, where ρ is the radial coordinate measured in meters. The shaft material has a stress–strain relationship
given by τ = 3435γ 0.6 MPa. Write the expressions for τxq as a function of ρ and plot the shear strain γxq and shear stress τxq distributions across
the cross section.

3.151 A hollow circular shaft has an inner diameter of 50 mm and an outside diameter of 100 mm. The shear strain at a section in polar
coordinates was found to be γ xθ = 0.2ρ, where ρ is the radial coordinate measured in meters. The shaft material has a stress–strain relationship
given by τ = 26,000γ − 208,000γ2 MPa. Write the expressions for τxq as a function of ρ and plot the shear strain γxq and shear stress τxq distri-
butions across the cross section.

3.152 A rectangular beam has the dimensions shown in Figure P3.152. The normal strain due to bending about the z axis was found to
vary as εxx = −0.01y, with y measured in meters. The beam is made from an elastic–perfectly plastic material that has a yield stress
σyield = 250 MPa and a modulus of elasticity E = 200 GPa. Write the expressions for normal stress σxx as a function of y and plot the σxx  dis-
tribution across the cross section. Assume similar material behavior in tension and compression

3.153 A rectangular beam has the dimensions shown in Figure P3.152. The normal strain due to bending about the z axis was found to
vary as εxx = −0.01y, with y measured in meters. The beam is made from a bilinear material as shown in Figure 3.40. The material has a
yield stress σyield = 250 MPa and moduli of elasticity E1 = 200 GPa and E2 = 80 GPa. Write the expressions for normal stress σxx as a func-
tion of y and plot the σxx  distribution across the cross section. Assume similar material behavior in tension and compression.

3.154 A rectangular beam has the dimensions shown in Figure P3.152. The normal strain due to bending about the z axis was found to
vary as εxx = −0.01y, with y measured in meters. The beam material has a stress–strain relationship given by σ = 952ε0.2 MPa. Write the
expressions for normal stress σxx as a function of y and plot the σxx  distribution across the cross section. Assume similar material behavior
in tension and compression.

3.155 A rectangular beam has the dimensions shown in Figure P3.152. The normal strain due to bending about the z axis was found to
vary as εxx = −0.01y, with y measured in meters. The beam material has a stress–strain relationship given by σ = 200ε − 2000ε2 MPa. Write
the expressions for normal stress σxx as a function of y and plot the σxx  distribution across the cross section. Assume similar material behav-
ior in tension and compression.

3.12* CONCEPT CONNECTOR

Several pioneers concluded that formulas in the mechanics of materials depend on quantities that must be measured experi-
mentally yet Thomas Young is given credit for discovering the modulus of elasticity. History also shows that there was a great
controversy over the minimum number of independent constants needed to describe the linear relationship between stress and
strain. The controversy took 80 years to resolve. Experimental data were repeatedly explained away when they did not sup-
port the prevalent theories at that time. Section 3.12.1 describes the vagaries of history in giving credit and the controversy
over material constants. 

Composite structural members are a growing area of application of mechanics of materials. Fishing rods, bicycle frames,
the wings and control surfaces of aircrafts, tennis racquets, boat hulls, storage tanks, reinforced concrete bars, wooden beams
stiffened with steel, laminated shafts, and fiberglass automobile bodies are just some examples. Section 3.12.2 discusses
material grouping as a prelude to the discussion of composites in Section 3.12.3 

150 mm

150 mm

100 mm

z

y

100 mm

  Figure P3.152
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3.12.1 History: Material Constants

Even as a child, Robert Hooke (1635-1703) took an interest in mechanical toys and drawings. In 1662 he was appointed
curator of experiments for the Royal Society in England, thanks to his inventive abilities and his willingness to design
apparatus in pursuit of ideas from other Society fellow as well as his own. A skilled architect and surveyor, he assisted
Christopher Wren on the city that rose up again after the Great Fire of London. He left his mark as well in optics, astronomy,
and biology, and indeed he coined the word cell. Among his many works are experiments on springs and elastic bodies. In
1678 he published his results, including the linear relationship between force and deformation now known as Hooke’s law. In
his words, “Ut tensio sic vis”: as the extension, so is the force. (In 1680 in France, while conducting experiments with beams,
Edme Mariotte arrived at the same linear relationship independently.) In acknowledgment of his work on elastic bodies, the
stress–strain relation of Equation (3.1) is also called Hooke’s law. 

Leonard Euler (1707-1783), in his mathematical studies on beam buckling published in 1757, also used Hooke’s law and
introduced what he called the moment of stiffness. He suggested that this moment of stiffness could be determined experimen-
tally. This moment of stiffness is the bending rigidity, which we will study in Chapter 6 on beam bending. It was Giordano
Ricardi who proposed the idea that material constant must be determined experimentally. In 1782 he described the first six
modes of vibration for chimes of brass and steel, giving values for the modulus of elasticity. Credit for defining and measur-
ing the modulus of elasticity, however, is given to Thomas Young (1773-1829), and is often referred to as Young’s modulus.

After Young resigned in 1803 from the Royal Institute in England, where he had been professor of natural philosophy, he
published his course material. Here he defines the modulus of elasticity in terms of the pressure produced at the base of a col-
umn of given cross-sectional area due to its own weight. This definition includes the area of cross section, which is like the
axial rigidity we will study in chapter 4 on axial members. The definition of the modulus of elasticity as purely a material
property—independent of geometry—is a later development. 

Poisson’s ratio is part of a controversy that raged over most of the 19th century. The molecular theory of stress, initiated
by the French engineer and physicist Claude-Louis Navier (1785-1836), is based on the central-force concept described in the
Section 1.5. Navier himself derived the equilibrium equations, in terms of displacement, using this theory, but with only one
independent material constant for isotropic bodies. In 1839 George Green started from the alternative viewpoint that at
equilibrium the potential energy must be minimum. Green came to the conclusion that there must be two independent
constants for the isotropic stress–strain relationship. From his own independent analysis, also using Navier’s molecular theory
of stress, Poisson had concluded that the Poisson’s ratio must be 1/4. With this value of Poisson’s ratio, the equilibrium
equations of Green and Navier become identical. While Guillaume Wertheim’s experiments on glass and brass in 1848 did
not support this value, Wertheim continued to believe that only one independent material constant was needed. 

Believers in the existence of one independent material constant dismissed experimental results on the basis that the mate-
rials on which the experiment was conducted were not truly isotropic. In the case of anisotropic material, Cauchy and Poisson
(using Navier’s molecular theory of stress) concluded that there were fifteen independent material constants, whereas Green’s
analysis showed that twenty-one independent material constants relate stress to strain. The two viewpoints could be resolved
if there were six relationships between the material constants. Woldemar Voigt’s experiments between 1887 and 1889 on sin-
gle crystals with known anisotropic properties showed that the six relationships between the material constants were untena-
ble. Nearly half a century after the deaths of Navier, Poisson, Cauchy, and Green, his experimental results finally resolved the
controversy. Today we accept that isotropic materials have two independent constants in the general linear stress–strain rela-
tionship, whereas anisotropic materials have twenty-one.

 Figure 3.51 Constants named for these pioneers. Thomas Young Simeon Poisson
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3.12.2 Material Groups

There are thirty-one types of crystals. Bodies made up of these crystals can be grouped into classes, based on the independent
material constants in the linear stress–strain relationship. The most general anisotropic material, which requires twenty-one
independent constants, is also called triclinic material. Three other important nonisotropic material groups are monoclinic,
orthotropic, and transversely isotropic materials.

• Monoclinic materials require thirteen independent material constants. Here the z plane is the plane of symmetry. This
implies that the stress–strain relationships are the same in the positive and negative z directions. 

• Orthotropic materials require nine independent constants. Orthotropic materials have two orthogonal planes of symmetry.
In other words, if we rotate the material by 90° about the x or the y axis, we obtain the same stress–strain relationships. 

• Transversely isotropic materials require five independent material constants. Transversely isotropic materials are isotro-
pic in a plane. In other words, rotation by an arbitrary angle about the z axis does not change the stress–strain relationship,
and the material is isotropic in the xy plane. 

• Isotropic materials require only two independent material constants. Rotation about the x, y, or z axis by any arbitrary
angle results in the same stress–strain relationship. 

3.12.3 Composite Materials

A body made from more than one material can be called a composite. The ancient Egyptians made composite bricks for build-
ing the pyramids by mixing straw and mud. The resulting brick was stronger than the brick made from mud alone. Modern
polymer composites rely on the same phenomenological effect in mixing fibers and epoxies to get high strength and high stiff-
ness per unit weight.

Fibers are inherently stiffer and stronger than bulk material. Bulk glass such as in window panes has a breaking strength
of a few thousand psi. Glass fibers, however, have a breaking strength on the order of one-half million psi. The increase in
strength and stiffness is due to a reduction of defects and the alignment of crystals along the fiber axis. The plastic epoxy
holds these high-strength and high-stiffness fibers together.

In long or continuous-fiber composites, a lamina is constructed by laying the fibers in a given direction and pouring
epoxy on top. Clearly each lamina will have different mechanical properties in the direction of the fibers and in the direction
perpendicular to the fibers. If the properties of the fibers and the epoxies are averaged (or homogenized), then each lamina can
be regarded as an orthotropic material. Laminae with different fiber orientations are then put together to create a laminate, as
shown in Figure 3.52. The overall properties of the laminate can be controlled by the orientation of the fibers and the stacking
sequence of the laminae. The designer thus has additional design variables, and material properties can thus be tailored to the
design requirements. Continuous-fiber composite technology is still very expensive compared to that of metals, but a signifi-
cant weight reduction justifies its use in the aerospace industry and in specialty sports equipment.

One way of producing short-fiber composites is to spray fibers onto epoxy and cure the mixture. The random orientation
of the fibers results in an overall transversely isotropic material whose properties depend on the ratio of the volume of fibers
to the volume of epoxy. Chopped fibers are cheaper to produce than the continuous-fiber composites and are finding increas-
ing use in automobile and marine industries for designing secondary structures, such as body panels.

  Figure 3.52 Laminate construction.

Lamina
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3.13 CHAPTER CONNECTOR

In this chapter we studied the many ways to describe material behavior and established the empirical relationships between
stress and strain. We saw that the number of material constants needed depends on the material model we wish to incorporate
into our analysis. The simplest material model is the linear, elastic, isotropic material that requires only two material
constants. 

We also studied how material models can be integrated into a logic by which we can relate displacements to external
forces. A more complex material model changes the stress distribution across the cross section, but not the key equations—the
relationships between displacements and strains or between stresses and internal forces and moments. Similarly, we can add
complexity to the relationship between displacements and strains without changing the material model. Thus the modular
structure of the logic permits us to add complexities at several points, then carry the complexity forward into the equations
that are otherwise unchanged. 

Chapters 4 through 7 will extend the logic shown in Figure 3.15 to axial members, torsion of circular shafts, and
symmetric bending of beams. The idea is to develop the simplest possible theories for these structural members. To do so, we
shall impose limitations and make assumptions regarding loading, material behavior, and geometry. The difference between
limitations and assumptions is in the degree to which the theory must be modified when a limitation or assumption is not
valid. An entire theory must be redeveloped if a limitation is to be overcome. In contrast, assumptions are points where
complexities can be added, and the derivation path that was established for the simplified theory can then be repeated.
Examples, problems, and optional sections will demonstrate the addition of complexities to the simplified theories.

All these theories will have certain limitations in common:

1. The length of the member is significantly (approximately 10 times) greater than the greatest dimension in the cross sec-
tion. Approximations across the cross section are now possible, as the region of approximation is small. We will deduce
constant or linear approximations of deformation across the cross section and confirm the validity of an approximation
from photographs of deformed shapes.

2. We are away from regions of stress concentration, where displacements and stresses can be three-dimensional. The
results from the simplified theories can be extrapolated into the region of stress concentration, as described in Section
3.7. 

3. The variation of external loads or change in cross-sectional area is gradual, except in regions of stress concentration.
The theory of elasticity shows that this limitation is necessary; otherwise the approximations across the cross section
would be untenable.

4. The external loads are such that axial, torsion, and bending can be studied individually. This requires not only that the
applied loads be in a given direction, but also that the loads pass through a specific point on the cross section. 

Often reality is more complex than even the most sophisticated theory can explain, and the relationship between variables
must be modified empirically. These empirically modified formulas of mechanics of materials form the basis of most struc-
tural and machine design.
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POINTS AND FORMULAS TO REMEMBER

• The point up to which stress and strain are linearly related is called proportional limit.
• The largest stress in the stress–strain curve is called ultimate stress.
• The sudden decrease in the cross-sectional area after ultimate stress is called necking.
• The stress at the point of rupture is called fracture or rupture stress.
• The region of the stress–strain curve in which the material returns to the undeformed state when applied forces are

removed is called elastic region.
• The region in which the material deforms permanently is called plastic region.
• The point demarcating the elastic from the plastic region is called yield point. 
• The stress at yield point is called yield stress.
• The permanent strain when stresses are zero is called plastic strain. 
• The offset yield stress is a stress that would produce a plastic strain corresponding to the specified offset strain.
• A material that can undergo large plastic deformation before fracture is called ductile material.
• A material that exhibits little or no plastic deformation at failure is called brittle material. 
• Hardness is the resistance to indentation. 
• Raising the yield point with increasing strain is called strain hardening.
• A ductile material usually yields when the maximum shear stress exceeds the yield shear stress of the material.
• A brittle material usually ruptures when the maximum tensile normal stress exceeds the ultimate tensile stress of the

material.

• σ = Eε (3.1) (3.2) τ = Gγ (3.3)

• where E is the modulus of elasticity, ν is Poisson’s ratio, and G is the shear modulus of elasticity.
• The slope of the tangent to the stress–strain curve at a given stress value is called tangent modulus. 
• The slope of the line that joins the origin to the given stress value is called secant modulus.
• Failure implies that a component or a structure does not perform the function for which it was designed. 
• Failure could be due to too little or too much deformation or strength.

• Factor of safety: (3.10)

• The factor of safety must always be greater than 1.
• The failure-producing value could be the value of deformation, yield stress, ultimate stress, or loads on a structure.
• An isotropic material has a stress–strain relation that is independent of the orientation of the coordinate system.
• In a homogeneous material the material constants do not change with the coordinates x, y, or z of a point. 
• There are only two independent material constants in a linear stress–strain relationship for an isotropic material, but there

can be 21 independent material constants in an anisotropic material.
• Generalized Hooke’s law for isotropic materials:

•   (3.14a) through (3.14f)

ν
εlateral

εlongitudinal
----------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

–=

Ksafety
failure-producing value

computed (allowable) value
-------------------------------------------------------------------=

εxx σxx ν σyy σzz+( )–[ ] E⁄=

εyy σyy ν σzz σxx+( )–[ ] E⁄=

εzz σzz ν σxx σyy+( )–[ ] E⁄=

γxy τxy G⁄=

γyz τyz G⁄=

γzx τzx G⁄=

G E
2 1 ν+( )
--------------------=
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CHAPTER FOUR

AXIAL MEMBERS

Learning objectives 

1. Understand the theory, its limitations, and its applications for the design and analysis of axial members. 
2. Develop the discipline to draw free-body diagrams and approximate deformed shapes in the design and analysis of struc-

tures.

_______________________________________________

The tensile forces supporting the weight of the Mackinaw bridge (Figure 4.1a) act along the longitudinal axis of each cable. The
compressive forces raising the weight of the dump on a truck act along the axis of the hydraulic cylinders. The cables and
hydraulic cylinders are axial members, long straight bodies on which the forces are applied along the longitudinal axis.
Connecting rods in an engine, struts in aircraft engine mounts, members of a truss representing a bridge or a building, spokes
in bicycle wheels, columns in a building—all are examples of axial members

This chapter develops the simplest theory for axial members, following the logic shown in Figure 3.15 but subject to the
limitations described in Section 3,13. We can then apply the formulas to statically determinate and indeterminate structures.
The two most important tools in our analysis will be free-body diagrams and approximate deformed shapes. 

4.1 PRELUDE TO THEORY

As a prelude to theory, we consider two numerical examples solved using the logic discussed in Section 3.2. Their solution
will highlight conclusions and observations that will be formalized in the development of the theory in Section 4.2.

  Figure 4.1  Axial members: (a) Cables of Mackinaw bridge. (b) Hydraulic cylinders in a dump truck.

(a) (b)
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EXAMPLE 4.1 

Two thin bars are securely attached to a rigid plate, as shown in Figure 4.2. The cross-sectional area of each bar is 20 mm2. The force F
is to be placed such that the rigid plate moves only horizontally by 0.05 mm without rotating. Determine the force F and its location h for
the following two cases: (a) Both bars are made from steel with a modulus of elasticity E = 200 GPa. (b) Bar 1 is made of steel
(E = 200 GPa) and bar 2 is made of aluminum (E = 70 GPa).

PLAN
The relative displacement of point B with respect to A is 0.05 mm, from which we can find the axial strain. By multiplying the axial
strain by the modulus of elasticity, we can obtain the axial stress. By multiplying the axial stress by the cross-sectional area, we can
obtain the internal axial force in each bar. We can draw the free-body diagram of the rigid plate and by equilibrium obtain the force F and
its location h. 

SOLUTION
1. Strain calculations: The displacement of B is uB = 0.05 mm. Point A is built into the wall and hence has zero displacement. The normal

strain is the same in both rods: 

(E1)

2. Stress calculations: From Hooke’s law σ = Eε, we can find the normal stress in each bar for the two cases.
Case (a): Because E and ε1 are the same for both bars, the stress is the same in both bars. We obtain 

(E2)
Case (b): Because E is different for the two bars, the stress is different in each bar

(E3)

(E4)
3. Internal forces: Assuming that the normal stress is uniform in each bar, we can find the internal normal force from N = σA, where

A = 20 mm2 = 20 × 10–6 m2. 
Case (a): Both bars have the same internal force since stress and cross-sectional area are the same,

(E5)
Case (b): The equivalent internal force is different for each bar as stresses are different.

(E6)

(E7)
4. External force: We make an imaginary cut through the bars, show the internal axial forces as tensile, and obtain free-body diagram

shown in Figure 4.3. By equilibrium of forces in x direction we obtain 
(E8)

By equilibrium of moment point O in Figure 4.3, we obtain
(E9)

(E10)

Case (a): Substituting Equation (E5) into Equations (E8) and (E10), we obtain F and h: 

ANS. F = 2000 N h = 10 mm

Case (b): Substituting Equations (E6) and (E7) into Equations (E8) and (E10), we obtain F and h:

200 mm

Bar 1

Bar 2

A

x

B

F
h 20 mm

  Figure 4.2 Axial bars in Example 4.1.

ε1 ε2
uB uA–
xB xA–
------------------ 0.05 mm

200 mm
--------------------- 250 μmm/mm= = = =

σ1 σ2 200 109×  N/m2( ) 250× 10 6–× 50 106×  N/m2(T )= = =

σ1 E1ε1 200 109×  N/m2( ) 250× 10 6–× 50 106×  N/m2(T )= = =

σ2 E2ε2 70 109× 250 10 6–×× 17.5 106×  N/m2(T )= = =

N1 N2 50 106×  N/m2( ) 20 10 6–×  m2( ) 1000 N (T )= = =

N1 σ1A1 50 10× 6 N/m2( ) 20 10 6–×  m2( ) 1000 N (T )= = =

N2 σ2A2 17.5 10× 6 N/m2( ) 20 10 6–×  m2( ) 350 N (T )= = =

F N1 N2+=

N1 20 h–( ) N2h– 0=

h
20N1

N1 N2+
--------------------=

FN1

N2NN

O
h 20 mm

  Figure 4.3 Free-body diagram in Example 4.1.

F 1000 N 1000 N+ 2000 N= = h 20 mm 1000 N×
1000 N 1000 N+( )

----------------------------------------------- 10 mm= =
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ANS. F = 1350 N h = 14.81 mm

COMMENTS
1. Both bars, irrespective of the material, were subjected to the same axial strain. This is the fundamental kinematic assumption in the

development of the theory for axial members, discussed in Section 4.2.

2. The sum on the right in Equation (E8) can be written  where σi is the normal stress in the ith bar, ΔAi is the cross-sec-

tional area of the ith bar, and n = 2 reflects that we have two bars in this problem. If we had n bars attached to the rigid plate, then the
total axial force would be given by summation over n bars. As we increase the number of bars n to infinity, the cross-sectional area
ΔAi tends to zero (or infinitesimal area dA) as we try to fit an infinite number of bars on the same plate, resulting in a continuous
body. The sum then becomes an integral, as discussed in Section 4.1.1.

3. If the external force were located at any point other than that given by the value of h, then the plate would rotate. Thus, for pure axial
problems with no bending, a point on the cross section must be found such that the internal moment from the axial stress distribution

is zero. To emphasize this, consider the left side of Equation (E9), which can be written as  where yi is the coordinate

of the ith rod’s centroid. The summation is an expression of the internal moment that is needed for static equivalency. This internal
moment must equal zero if the problem is of pure axial deformation, as discussed in Section 4.1.1.

4. Even though the strains in both bars were the same in both cases, the stresses were different when E changed. Case (a) corresponds to
a homogeneous cross section, whereas case (b) is analogous to a laminated bar in which the non-homogeneity affects the stress distri-
bution.

4.1.1 Internal Axial Force

In this section we formalize the key observation made in Example 4.1: the normal stress σxx can be replaced by an equiva-
lent internal axial force using an integral over the cross-sectional area. Figure 4.4 shows the statically equivalent systems. The
axial force on a differential area σxx dA can be integrated over the entire cross section to obtain 

(4.1)

If the normal stress distribution σxx is to be replaced by only an axial force at the origin, then the internal moments My and
Mz must be zero at the origin, and from Figure 4.4 we obtain 

(4.2a)

(4.2b)

Equations (4.1), (4.2a), and (4.2b) are independent of the material models because they represent static equivalency
between the normal stress on the cross section and internal axial force. If we were to consider a laminated cross section or nonlin-
ear material, then it would affect the value and distribution of σxx across the cross section, but Equation (4.1) relating σxx and N
would remain unchanged, and so would the zero moment condition of Equations (4.2a) and (4.2b). Equations (4.2a) and (4.2b) are
used to determine the location at which the internal and external forces have to act for pure axial problem without bending, as dis-
cussed in Section 4.2.6. 

F 1000 N 350 N+ 1350 N= = h 20 mm 1000 N×
1000 N 350 N+( )

-------------------------------------------- 14.81 mm= =

σi ΔAi,i=1
n=2

∑

yiσi ΔAi,i=1
n

∑

N σxx Ad
A

∫=

x

y

y

dN dd � �xx�  dAx

O

z

  Figure 4.4 Statically equivalent internal axial force.

O
x

y

N

yσxx Ad
A

∫ 0=

zσxx dA 0=
A

∫
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EXAMPLE 4.2 

Figure 4.5 shows a homogeneous wooden cross section and a cross section in which the wood is reinforced with steel. The normal strain
for both cross sections is uniform, εxx = −200 μ. The moduli of elasticity for steel and wood are Esteel = 30,000 ksi and Ewood = 8000 ksi.
(a) Plot the σxx  distribution for each of the two cross sections shown. (b) Calculate the equivalent internal axial force N for each cross
section using Equation (4.1).

PLAN
(a) Using Hooke’s law we can find the stress values in each material. Noting that the stress is uniform in each material, we can plot it
across the cross section. (b) For the homogeneous cross section we can perform the integration in Equation (4.1) directly. For the nonhomo-
geneous cross section we can write the integral in Equation (4.1) as the sum of the integrals over steel and wood and then perform the integra-
tion to find N.

SOLUTION
(a) From Hooke’s law we can write 

(E1)

(E2)

For the homogeneous cross section the stress distribution is as given in Equation (E1), but for the laminated case it switches to Equation
(E2), depending on the location of the point where the stress is being evaluated, as shown in Figure 4.6.

(b) Homogeneous cross section: Substituting the stress distribution for the homogeneous cross section in Equation (4.1) and integrat-
ing, we obtain the equivalent internal axial force,

(E3)

ANS. N = 4.8 kips (C)

Laminated cross section: The stress value changes as we move across the cross section. Let Asb and Ast represent the cross-sectional
areas of steel at the bottom and the top. Let Aw represent the cross-sectional area of wood. We can write the integral in Equation (4.1) as
the sum of three integrals, substitute the stress values of Equations (E1) and (E2), and perform the integration:

 or (E4)

 or (E5)

(E6)

ANS. N = 9.2 kips (C)

  Figure 4.5 Cross sections in Example 4.2. (a) Homogeneous. (b) Laminated.

y

z

2 in.

11
2
--- in.Wood Steel

Wood

2 in.

Wood

Steel

Steel

y

z
1 in.

1/4 in.

1/4 in.

(a) (b)

σxx( )wood 8000 ksi( ) 200–( )10 6– 1.6 ksi–= =

σxx( )steel 30000 ksi( ) 200–( )10 6– 6 ksi–= =

(a)

6 ksi

(b)

6 ksi

1.6 ksi

 Figure 4.6 Stress distributions in Example 4.2. (a) Homogeneous cross section. (b) Laminated cross section.

N σxx( )wood Ad
A

∫ σxx( )woodA 1.6 ksi–( ) 2 in.( ) 1.5 in.( ) 4.8–  kips= = = =

N σxx A σxx A σxx Ad
Ast

∫+d
Aw

∫+d
Asb

∫ σxx( )steel A σxx( )wood A σxx( )steel Ad
Ast

∫+d
Aw

∫+d
Asb

∫= =

N σxx( )steelAsb σxx( )woodAw σxx( )steelAst+ +=

N 6 ksi–( ) 2 in.( ) 1
4
--- in.⎝ ⎠

⎛ ⎞ 1.6 ksi–( ) 1 in.( ) 2 in.( ) 6 ksi–( ) 2 in.( ) 1
4
--- in.⎝ ⎠

⎛ ⎞+ + 9.2–  kips= =
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COMMENTS
1. Writing the integral in the internal axial force as the sum of integrals over each material, as in Equation (E4), is equivalent to calculat-

ing the internal force carried by each material and then summing, as shown in Figure 4.7.

2. The cross section is geometrically as well as materially symmetric. Thus we can locate the origin on the line of symmetry. If the lower
steel strip is not present, then we will have to determine the location of the equivalent force.

3. The example demonstrates that although the strain is uniform across the cross section, the stress is not. We considered material non-
homogeneity in this example. In a similar manner we can consider other models, such as elastic–perfectly plastic or material models
that have nonlinear stress–strain curves.

PROBLEM SET 4.1

4.1 Aluminum bars (E = 30,000 ksi) are welded to rigid plates, as shown in Figure P4.1. All bars have a cross-sectional area of 0.5 in2. Due
to the applied forces the rigid plates at A, B, C, and D are displaced in x direction without rotating by the following amounts: uA = −0.0100 in., uB

= 0.0080 in., uC = −0.0045 in., and uD = 0.0075 in. Determine the applied forces F1, F2, F3, and F4. 

4.2 Brass bars between sections A and B, aluminum bars between sections B and C, and steel bars between sections C and D are welded to
rigid plates, as shown in Figure P4.2. The rigid plates are displaced in the x direction without rotating by the following amounts: uB = −1.8 mm,
uC = 0.7 mm, and uD = 3.7 mm. Determine the external forces F1, F2, and F3 using the properties given in Table P4.2

4.3 The ends of four circular steel bars (E = 200 GPa) are welded to a rigid plate, as shown in Figure P4.3. The other ends of the bars are
built into walls. Owing to the action of the external force F, the rigid plate moves to the right by 0.1 mm without rotating. If the bars have a
diameter of 10 mm, determine the applied force F.

4.4 Rigid plates are securely fastened to bars A and B, as shown in Figure P4.4. A gap of 0.02 in. exists between the rigid plates before the
forces are applied. After application of the forces the normal strain in bar A was found to be 500 μ. The cross-sectional area and the modulus of

 Figure 4.7 Statically equivalent internal force in Example 4.2 for laminated cross section.

6 ksi

6 ksi

F1 F4F

x

36 in 50 in 36 in

F2FF F3FF

F1 F4FF2FF F3FF

A B C D

  Figure P4.1

F1 F2FF
F3FF

F3FF
F2FFF1

x

DCBA

1.5 m 2.5 m 2 m  Figure P4.2

TABLE P4.2

Brass Aluminum Steel

Modulus of elasticity 70 GPa 100 GPa 200 GPa

Diameter 30 mm 25 mm 20 mm

1.5 m
F

F

2.5 m

Rigid plate

  Figure P4.3
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elasticity for each bar are as follows: AA = 1 in.2, EA = 10,000 ksi, AB = 0.5 in.2, and EB = 30,000 ksi. Determine the applied forces F, assuming
that the rigid plates do not rotate.

4.5 The strain at a cross section shown in Figure P4.5 of an axial rod is assumed to have the uniform value εxx = 200 μ. (a) Plot the stress dis-
tribution across the laminated cross section. (b) Determine the equivalent internal axial force N and its location from the bottom of the cross
section. Use Ealu = 100 GPa, Ewood = 10 GPa, and Esteel = 200 GPa.

4.6 A reinforced concrete bar shown in Figure P4.6 is constructed by embedding 2-in. × 2-in. square iron rods. Assuming a uniform strain
εxx = −1500 μ in the cross section, (a) plot the stress distribution across the cross section; (b) determine the equivalent internal axial force N. Use
Eiron = 25,000 ksi and Econc = 3000 ksi.

4.2 THEORY OF AXIAL MEMBERS

In this section we will follow the procedure in Section 4.1 with variables in place of numbers to develop formulas for axial
deformation and stress. The theory will be developed subject to the following limitations:

1. The length of the member is significantly greater than the greatest dimension in the cross section. 
2. We are away from the regions of stress concentration. 
3. The variation of external loads or changes in the cross-sectional areas is gradual, except in regions of stress concentra-

tion. 
4. The axial load is applied such that there is no bending. 
5. The external forces are not functions of time that is, we have a static problem. (See Problems 4.37, 4.38, and 4.39 for

dynamic problems.) 

Figure 4.8 shows an externally distributed force per unit length p(x) and external forces F1 and F2 acting at each end of an
axial bar. The cross-sectional area A(x) can be of any shape and could be a function of x. 

Sign convention: The displacement u is considered positive in the positive x direction. The internal axial 
force N is considered positive in tension negative in compression.

Bar A
Bar B

Bar A Bar B

in

0.02 in

F

F

60 in

Rigid plates

  Figure P4.4

 Figure P4.5

80 mm

100 mm

10 mm
Aluminum

10 mm
Steel

Wood
z

x

y

z

x

y 4 i

4 i

4 in 4 in  Figure P4.6
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The theory has two objectives:

1. To obtain a formula for the relative displacements u2 − u1 in terms of the internal axial force N. 
2. To obtain a formula for the axial stress σxx in terms of the internal axial force N. 

We will take Δx = x2 − x1 as an infinitesimal distance so that the gradually varying distributed load p(x) and the cross-sec-
tional area A(x) can be treated as constants. We then approximate the deformation across the cross section and apply the logic
shown in Figure 4.9. The assumptions identified as we move from each step are also points at which complexities can later be
added, as discussed in examples and “Stretch Yourself” problems. 

4.2.1 Kinematics

Figure 4.10 shows a grid on an elastic band that is pulled in the axial direction. The vertical lines remain approximately vertical, but
the horizontal distance between the vertical lines changes. Thus all points on a vertical line are displaced by equal amounts. If this
surface observation is also true in the interior of an axial member, then all points on a cross-section displace by equal amounts, but
each cross-section can displace in the x direction by a different amount, leading to Assumption 1.

  Figure 4.8 Segment of an axial bar.

u2
u1

x

y

z

x1

F2FF

x2

  Figure 4.9 Logic in mechanics of materials.

x
y

(a) (b)

  Figure 4.10 Axial deformation: (a) original grid; (b) deformed grid. (c) u is constant in y direction.

(c)
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Assumption 1 Plane sections remain plane and parallel.

Assumption 1 implies that u cannot be a function of y but can be a function of x 

(4.3)

As an alternative perspective, because the cross section is significantly smaller than the length, we can approximate a function
such as u by a constant treating it as uniform over a cross section. In Chapter 6, on beam bending, we shall approximate u as a linear
function of y. 

4.2.2 Strain Distribution

Assumption 2 Strains are small.1

If points x2 and x1 are close in Figure 4.8, then the strain at any point x can be calculated as

 or

(4.4)

Equation (4.4) emphasizes that the axial strain is uniform across the cross section and is only a function of x. In deriving Equa-
tion (4.4) we made no statement regarding material behavior. In other words, Equation (4.4) does not depend on the material
model if Assumptions 1 and 2 are valid. But clearly if the material or loading is such that Assumptions 1 and 2 are not tenable,
then Equation (4.4) will not be valid.

4.2.3 Material Model

Our motivation is to develop a simple theory for axial deformation. Thus we make assumptions regarding material behavior that
will permit us to use the simplest material model given by Hooke’s law.
Assumption 3 Material is isotropic.

Assumption 4 Material is linearly elastic.2

Assumption 5 There are no inelastic strains.3

Substituting Equation (4.4) into Hooke’s law, that is,  we obtain 

(4.5)

Though the strain does not depend on y or z, we cannot say the same for the stress in Equation (4.5) since E could change across the
cross section, as in laminated or composite bars.

4.2.4 Formulas for Axial Members

Substituting σxx from Equation (4.5) into Equation (4.1) and noting that du/dx is a function of x only, whereas the integration
is with respect to y and z (dA = dy dz), we obtain 

(4.6)

1See Problem 4.40 for large strains.
2See Problem 4.36 for nonlinear material behavior.
3Inelastic strains could be due to temperature, humidity, plasticity, viscoelasticity, and so on. We shall consider inelastic strains due to tem-
perature in Section 4.5.

u u x( )=

εxx  
Δx 0→
lim

u2 u1–
x2 x1–
-----------------⎝ ⎠

⎛ ⎞  
Δx 0→
lim Δu

Δx
-------⎝ ⎠

⎛ ⎞= =

εxx
du
dx
------ x( )=

σxx E εxx,=

σxx E du
dx
------=

N E du
dx
------ Ad

A
∫

du
dx
------ E dA

A
∫= =
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Consistent with the motivation for the simplest possible formulas, E should not change across the cross section as implied in
Assumption 6. We can take E outside the integral.
Assumption 6 Material is homogeneous across the cross section.

With material homogeneity, we then obtain 

 or

(4.7)

The higher the value of EA, the smaller will be the deformation for a given value of the internal force. Thus the rigidity of
the bar increases with the increase in EA. This implies that an axial bar can be made more rigid by either choosing a stiffer mate-
rial (a higher value of E) or increasing the cross-sectional area, or both. Example 4.5 brings out the importance of axial rigidity
in design. The quantity EA is called axial rigidity. 

Substituting Equation (4.7) into Equation (4.5), we obtain 

(4.8)

In Equation (4.8), N and A do not change across the cross section and hence axial stress is uniform across the cross section.
We have used Equation (4.8) in Chapters 1 and 3, but this equation is valid only if all the limitations are imposed, and if Assump-
tions 1 through 6 are valid.

We can integrate Equation (4.7) to obtain the deformation between two points:

(4.9)

where u1 and u2 are the displacements of sections at x1 and x2, respectively. To obtain a simple formula we would like to take the
three quantities N, E, and A outside the integral, which means these quantities should not change with x. To achieve this simplicity,
we make the following assumptions: 
Assumption 7 The material is homogeneous between x1 and x2. (E is constant)

Assumption 8 The bar is not tapered between x1 and x2. (A is constant)

Assumption 9 The external (hence internal) axial force does not change with x between x1 and x2. (N is constant)

If Assumptions 7 through 9 are valid, then N, E, and A are constant between x1 and x2, and we obtain 

(4.10)

In Equation (4.10), points x1 and x2 must be chosen such that neither N, E, nor A changes between these points. 

4.2.5 Sign Convention for Internal Axial Force

The axial stress σxx was replaced by a statically equivalent internal axial force N. Figure 4.11 shows the sign convention for
the positive axial force as tension. 

N is an internal axial force that has to be determined by making an imaginary cut and drawing a free-body diagram. In what
direction should N be drawn on the free-body diagram? There are two possibilities:

1. N is always drawn in tension on the imaginary cut as per our sign convention. The equilibrium equation then gives a
positive or a negative value for N. A positive value of σxx obtained from Equation (4.8) is tensile and a negative value is

N E 
xd

du Ad
A

∫ EA 
xd

du= =

xd
du N

EA
-------=

σxx
N
A
----=

u2 u1– ud
u1

u2

∫ N
EA
-------

x1

 x2

∫  dx= =

u2 u1–
N x2 x1–( )

EA
--------------------------=

�N  Figure 4.11 Sign convention for positive internal axial force.
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compressive. Similarly, the relative deformation obtained from Equation (4.10) is extension for positive values and con-
traction for negative values. The displacement u will be positive in the positive x direction.

2. N is drawn on the imaginary cut in a direction to equilibrate the external forces. Since inspection is being used in
determining the direction of N, tensile and compressive σxx and extension or contraction for the relative deformation
must also be determined by inspection. 

4.2.6 Location of Axial Force on the Cross Section

For pure axial deformation the internal bending moments must be zero. Equations (4.2a) and (4.2b) can then be used to deter-
mine the location of the point where the internal axial force and hence the external forces must pass for pure axial problems.
Substituting Equation (4.5) into Equations (4.2a) and (4.2b) and noting that du/dx is a function of x only, whereas the integration
is with respect to y and z (dA = dy dz), we obtain 

 or

(4.11a)

 or

(4.11b)

Equations (4.11a) and (4.11b) can be used to determine the location of internal axial force for composite materials. If the
cross section is homogenous (Assumption 6), then E is constant across the cross section and can be taken out side the integral:

(4.12a)

(4.12b)

Equations (4.12a) and (4.12b) are satisfied if y and z are measured from the centroid. (See Appendix A.4.) We will have pure
axial deformation if the external and internal forces are colinear and passing through the centroid of a homogenous cross sec-
tion. This assumes implicitly that the centroids of all cross sections must lie on a straight line. This eliminates curved but not
tapered bars. 

4.2.7 Axial Stresses and Strains

In the Cartesian coordinate system all stress components except σxx are assumed zero. From the generalized Hooke’s law for iso-
tropic materials, given by Equations (3.14a) through (3.14c), we obtain the normal strains for axial members:

(4.13)

where ν is the Poisson’s ratio. In Equation (4.13), the normal strains in y and z directions are due to Poisson’s effect. Assumption 1,
that plane sections remain plane and parallel implies that no right angle would change during deformation, and hence the assumed
deformation implies that shear strains in axial members are zero. Alternatively, if shear stresses are zero, then by Hooke’s law shear
strains are zero.

yσxx Ad
A

∫ yE du
dx
------ Ad

A
∫

du
dx
------ yE  Ad

A
∫ 0= = =

yE  Ad
A

∫ 0=

zσxx dA zE du
dx
------ Ad

A
∫=

A
∫

du
dx
------ zE  Ad

A
∫ 0= =

zE  Ad
A

∫ 0=

y Ad
A

∫ 0=

z Ad
A

∫ 0=

εxx
σxx
E

-------- εyy
νσxx

E
-----------–= νεxx εzz

νσxx
E

-----------–=– νεxx–= = =
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EXAMPLE 4.3 

Solid circular bars of brass (Ebr = 100 GPa, νbr = 0.34) and aluminum (Eal = 70 GPa, νal = 0.33) having 200 mm diameter are attached to
a steel tube (Est = 210 GPa, νst = 0.3) of the same outer diameter, as shown in Figure 4.12. For the loading shown determine: (a) The
movement of the plate at C with respect to the plate at A. (b) The change in diameter of the brass cylinder. (c) The maximum inner diam-
eter to the nearest millimeter in the steel tube if the factor of safety with respect to failure due to yielding is to be at least 1.2. The yield
stress for steel is 250 MPa in tension. 

PLAN
(a) We make imaginary cuts in each segment and determine the internal axial forces by equilibrium. Using Equation (4.10) we can find
the relative movements of the cross sections at B with respect to A and at C with respect to B and add these two relative displacements to
obtain the relative movement of the cross section at C with respect to the section at A. (b) The normal stress σxx in AB can be obtained
from Equation (4.8) and the strain εyy found using Equation (4.13). Multiplying the strain by the diameter we obtain the change in diam-
eter. (c) We can calculate the allowable axial stress in steel from the given failure values and factor of safety. Knowing the internal force in
CD we can find the cross-sectional area from which we can calculate the internal diameter. 

SOLUTION
(a) The cross-sectional areas of segment AB and BC are

(E1)

We make imaginary cuts in segments AB, BC, and CD and draw the free-body diagrams as shown in Figure 4.13. By equilibrium of
forces we obtain the internal axial forces 

(E2)

We can find the relative movement of point B with respect to point A, and C with respect to B using Equation (4.10):

 (E3)

 (E4)

Adding Equations (E3) and (E4) we obtain the relative movement of point C with respect to A:

(E5)
ANS. uC − uA = 0.7845 mm contraction

(b) We can find the axial stress σxx in AB using Equation (4.8):

(E6)

Substituting σxx, Ebr = 100 GPa, νbr = 0.34 in Equation (4.13), we can find εyy. Multiplying εyy by the diameter of 200 mm, we then obtain
the change in diameter Δd,

(E7)

ANS. Δd = −0.032 mm

(c) The axial stress in segment CD is

  Figure 4.12 Axial member in Example 4.3.

2000 kN

2000 kN

2750 kN

2750 kN

1500 kN

1500 kN

750 kN

750 kN

A
x

0.5 m 1.5 m 0.6 m

AAB ABC
π
4
--- 0.2 m( )2 31.41 10× 3–  m2= = =

NAB 1500 kN= NBC 1500 kN 3000 kN–  1500 kN–= = NCD  4000 kN= =

750 kN

750 kN

NABN

Figure 4.13 Free body diagrams in Example 4.3.
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uB uA
NAB xB xA–( )

EABAAB
---------------------------------=– 1500 103×  N( ) 0.5 m( )

100 109×  N/m2( ) 31.41 10× 3–  m2( )
----------------------------------------------------------------------------------------- 0.2388 10 3–×  m= =

uC uB–
NBC xC xB–( )

EBCABC
--------------------------------- 1500– 10× 3 N( ) 1.5 m( )

70 10× 9 N/m2( ) 31.41 10× 3–  m2( )
-------------------------------------------------------------------------------------- 1.0233 10 3–×–  m= = =

uC uA– uC uB–( ) uB uA–( )+ 0.2388 m 1.0233 m–( )10 3– 0.7845 10 3–×  m–= = =

σxx
NAB
AAB
---------- 1500 10× 3 N

31.41 10× 3–  m2( )
--------------------------------------------- 47.8 10× 6 N/m2= = =

εyy
νbrσxx

Ebr
---------------– 0.34 47.8 10× 6 N/m2( )

100 10× 9 N/m2
--------------------------------------------------------– 0.162 10× 3––= = Δd

200 mm
--------------------= =
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(E8)

Using the given factor of safety, we determine the value of Di :

 or

(E9)
To the nearest millimeter, the diameter that satisfies the inequality in Equation (E9) is 124 mm.

ANS. Di = 124 mm

COMMENTS
1. On a free-body diagram some may prefer to show N in a direction that counterbalances the external forces, as shown in Figure 4.14.

In such cases the sign convention is not being followed. 
We note that uB− uA = 0.2388 (10−3) m is extension and uC − uB = 1.0233 (10−3) m is contraction. To calculate uC − uA we must now manu-
ally subtract uC − uB from uB− uA . 

2. An alternative way of calculating of uC − uA is 

or, written more compactly,

(4.14)

where n is the number of segments on which the summation is performed, which in our case is 2. Equation (4.14) can be used only if the
sign convention for the internal force N is followed.
3. Note that NBC − NAB = −3000 kN and the magnitude of the applied external force at the section at B is 3000 kN. Similarly, NCD − NBC

= 5500 kN, which is the magnitude of the applied external force at the section at C. In other words, the internal axial force jumps by
the value of the external force as one crosses the external force from left to right. We will make use of this observation in the next sec-
tion, when we develop a graphical technique for finding the internal axial force.

4.2.8 Axial Force Diagram

In Example 4.3 we constructed several free-body diagrams to determine the internal axial force in different segments of the axial
member. An axial force diagram is a graphical technique for determining internal axial forces, which avoids the repetition of
drawing free-body diagrams. 

An axial force diagram is a plot of the internal axial force N versus x. To construct an axial force diagram we create a small
template to guide us in which direction the internal axial force will jump, as shown in Figure 4.15a and Figure 4.15b. An axial
template is a free-body diagram of a small segment of an axial bar created by making an imaginary cut just before and just after
the section where the external force is applied. 

σCD
NCD
ACD
----------- 4000 103×  N

π 4⁄( ) 0.2 m( )2 Di
2–[ ]

------------------------------------------------------ 16,000 103×

π 0.22 Di
2–( )[ ]

------------------------------------ N/m2= = =

K
σyield
σCD
-------------

250 106 π 0.22 Di
2–( )[ ]××

16,000 103×
------------------------------------------------------------------ 49.09 0.22 Di

2–( ) 1.2≥= = =

Di
2 0.22 24.45 10 3–×–≤ or Di 124.7 10 3–× m≤

NBCN

1500 kN

1500 kN

750 kN

750 kN

(b)

NABN

750 kN

750 kN

(a)
  Figure 4.14 Alternative free body diagrams in Example 4.3. 

uC uA– N
EA
------- dx

xA

 xC

∫
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Δu  
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∑=
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2

  Figure 4.15 Axial bar templates. N2 = N1 − Fext
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Template Equations
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The external force Fext on the template can be drawn either to the left or to the right. The ends represent the imaginary cut
just to the left and just to the right of the applied external force. On these cuts the internal axial forces are drawn in tension. An
equilibrium equation—that is, the template equation—is written as shown in Figure 4.15 If the external force on the axial bar is
in the direction of the assumed external force on the template, then the value of N2 is calculated according to the template equa-
tion. If the external force on the axial bar is opposite to the direction shown on the template, then N2 is calculated by changing
the sign of Fext in the template equation. Example 4.4 demonstrates the use of templates in constructing axial force diagrams.

EXAMPLE 4.4 

Draw the axial force diagram for the axial member shown in Example 4.3 and calculate the movement of the section at C with respect to
the section at A.

PLAN
We can start the process by considering an imaginary extension on the left. In the imaginary extension the internal axial force is zero.
Using the template in Figure 4.15a to guide us, we can draw the axial force diagram. Using Equation (4.14), we can find the relative dis-
placement of the section at C with respect to the section at A.

SOLUTION
Let LA be an imaginary extension on the left of the shaft, as shown in Figure 4.16a. Clearly the internal axial force in the imaginary segment
LA is zero. As one crosses the section at A, the internal force must jump by the applied axial force of 1500 kN. Because the forces at A are in the
opposite direction to the force Fext shown on the template in Figure 4.15a, we must use opposite signs in the template equation. The internal
force just after the section at A will be +1500 kN. This is the starting value in the internal axial force diagram.

We approach the section at B with an internal force value of +1500 kN. The force at B is in the same direction as the force shown on the
template in Figure 4.15a. Hence we subtract 3000 as per the template equation, to obtain a value of −1500 kN, as shown in Figure 4.16b. 
We now approach the section at C with an internal force value of −1500 kN and note that the forces at C are opposite to those on the tem-
plate in Figure 4.15a. Hence we add 5500 to obtain +4000 kN. 
The force at D is in the same direction as that on the template in Figure 4.15a, and after subtracting we obtain a zero value in the imagi-
nary extended bar DR. The return to zero value must always occur because the bar is in equilibrium. 
From Figure 4.16b the internal axial forces in segments AB and BC are NAB = 1500 kN and NBC = −1500 kN. The crosssectional areas as calcu-

lated in Example 4.3 are  and modulas of elasticity for the two sections are EAB = 100 GPa and EBC= 70
GPa. Substituting these values into Equation (4.14) we obtain the relative deformation of the section at C with respect to the section at A,

(E1)

 or (E2)

ANS. uC − uA = 0.7845 mm contraction

COMMENT
1. We could have used the template in Figure 4.15b to create the axial force diagram.We approach the section at A and note that the +1500

kN is in the same direction as that shown on the template of Figure 4.15b. As per the template equation we add. Thus our starting value
is +1500 kN, as shown in Figure 4.16. As we approach the section at B, the internal force N1 is +1500 kN, and the applied force of 3000
kN is in the opposite direction to the template of Figure 4.15b, so we subtract to obtain N2 as –1500 kN. We approach the section at C
and note that the applied force is in the same direction as the applied force on the template of Figure 4.15b. Hence we add 5500 kN to
obtain +4000 kN. The force at section D is opposite to that shown on the template of Figure 4.15b, so we subtract 4000 to get a zero
value in the extended portion DR. The example shows that the direction of the external force Fext on the template is immaterial.

2000 kN

2000 kN

2750 kN

2750 kN

1500 kN

1500 kN

750 kN

750 kN

A
L R

0.5 m 1.5 m 0.6 m

  Figure 4.16 (a) Extending the axial bar for an axial force diagram. (b) Axial force diagram.
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---------------------------------+= =

uC uA– 1500 10× 3 N( ) 0.5 m( )
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----------------------------------------------------------------------------------------- 1500– 10× 3 N( ) 1.5 m( )
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EXAMPLE 4.5 

A 1-m-long hollow rod is to transmit an axial force of 60 kN. Figure 4.17 shows that the inner diameter of the rod must be 15 mm to fit
existing attachments. The elongation of the rod is limited to 2.0 mm. The shaft can be made of titanium alloy or aluminum. The modulus
of elasticity E, the allowable normal stress σallow, and the density γ for the two materials is given in Table 4.1. Determine the minimum
outer diameter to the nearest millimeter of the lightest rod that can be used for transmitting the axial force.

PLAN
The change in radius affects only the cross-sectional area A and no other quantity in Equations (4.8) and (4.10). For each material we can
find the minimum cross-sectional area A needed to satisfy the stiffness and strength requirements. Knowing the minimum A for each
material, we can find the minimum outer radius. We can then find the volume and hence the mass of each material and make our decision
on the lighter bar.

SOLUTION
We note that for both materials x2 – x1 = 1 m. From Equations (4.8) and (4.10) we obtain for titanium alloy the following limits on ATi:

(E1)

(E2)

Using similar calculations for the aluminum shaft, we obtain the following limits on AAl:

(E3)

(E4)

Thus if , it will meet both conditions in Equations (E1) and (E2). Similarly if , it will
meet both conditions in Equations (E3) and (E4). The external diameters DTi and DAl are then 

(E5)

(E6)

Rounding upward to the closest millimeter, we obtain 

(E7)
We can find the mass of each material by taking the product of the material density and the volume of a hollow cylinder, 

(E8)

(E9)

From Equations (E8) and (E9) we see that the titanium alloy shaft is lighter.
ANS. A titanium alloy shaft with an outside diameter of 25 mm should be used.

COMMENTS
1. For both materials the stiffness limitation dictated the calculation of the external diameter, as can be seen from Equations (E1) and

(E3).

1 m
15 mm

 Figure 4.17 Cylindrical rod in Example 4.5.

TABLE 4.1 Material properties in Example 4.4

Material
E

(GPa)
σallow

(MPa)
γ 

(mg/m3)

Titanium alloy 96 400 4.4

Aluminum 70 200 2.8

Δu( )Ti
60 10× 3 N( ) 1 m( )

96 10× 9 N/m2( )ATi
------------------------------------------------- 2 10 3–  m×≤= or ATi 0.313 10× 3–  m2≥

σmax( )Ti
60 10× 3 N( )

ATi
------------------------------- 400 10× 6 N/m2≤= or ATi 0.150 10× 3–  m2≥

Δu( )Al
60 10× 3 N( ) 1×

28 10× 9 N/m2( )AAl
------------------------------------------------- 2 10× 3–  m≤= or AAl 1.071 10× 3–  m2≥

σmax( )Al
60 10× 3 N( )

AAl
------------------------------- 200 10× 6 N/m2≤= or AAl 0.300 10× 3–  m2≥

ATi 0.313 10× 3–  m2≥ AAl 1.071 10 3–×  m2≥

ATi
π
4
--- DTi

2 0.0152–( ) 0.313 10× 3–≥= DTi 24.97 10× 3–  m≤

AAl
π
4
--- DAl

2 0.0152–( ) 1.071 10× 3–≥= DAl 39.86 10 3–×  m≤

DTi 25 10 3–( ) m= DAl 40 10 3–( ) m=

mTi 4.4 10× 6 g/m3( ) π
4
--- 0.0252 0.0152–( ) m2

⎩ ⎭
⎨ ⎬
⎧ ⎫

1 m( ) 1382 g= =

mAl 2.8 106×  g/m3( ) π
4
--- 0.0402 0.0152–( ) m2

⎩ ⎭
⎨ ⎬
⎧ ⎫

1 m( ) 3024 g= =
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2. Even though the density of aluminum is lower than that of titanium alloy, the mass of titanium is less. Because of the higher modulus
of elasticity of titanium alloy, we can meet the stiffness requirement using less material than with aluminum. 

3. The answer may change if cost is a consideration. The cost of titanium per kilogram is significantly higher than that of aluminum.
Thus based on material cost we may choose aluminum. However, if the weight affects the running cost, then economic analysis is
needed to determine whether the material cost or the running cost is higher. 

4. If in Equation (E5) we had 24.05 × 10–3 m on the right-hand side, our answer for DTi would still be 25 mm because we have to round
upward to ensure meeting the greater-than sign requirement in Equation (E5). 

EXAMPLE 4.6 

A rectangular aluminum bar (Eal = 10,000 ksi, ν = 0.25) of -in. thickness consists of a uniform and tapered cross section, as shown in

Figure 4.18. The depth in the tapered section varies as h(x) = (2 − 0.02x) in. Determine: (a) The elongation of the bar under the applied
loads. (b) The change in dimension in the y direction in section BC.

PLAN
(a) We can use Equation (4.10) to find uC − uB. Noting that cross-sectional area is changing with x in segment AB, we integrate Equation
(4.7) to obtain uB − uA. We add the two relative displacements to obtain uC − uA and noting that uA = 0 we obtain the extension as uC. (b)
Once the axial stress in BC is found, the normal strain in the y direction can be found using Equation (4.13). Multiplying by 2 in., the
original length in the y direction, we then find the change in depth.

SOLUTION
The cross-sectional areas of AB and BC are 

(E1)

(a) We can make an imaginary cuts in segment AB and BC, to obtain the free-body diagrams in Figure 4.19. By force equilibrium we
obtain the internal forces, 

(E2)
The relative movement of point C with respect to point B is

(E3)

Equation (4.7) for segment AB can be written as 

(E4)

Integrating Equation (E4), we obtain the relative displacement of B with respect to A:

 or

(E5)

We obtain the relative displacement of C with respect to A by adding Equations (E3) and (E5):

(E6)
We note that point A is fixed to the wall, and thus uA = 0. 

ANS. uC = 0.036 in. elongation

(b) The axial stress in BC is σAB = NBC /ABC = 10/1.5 = 6.667 ksi. From Equation (4.13) the normal strain in y direction can be found, 

3
4
---

y

P

50 in 20 in

3
4 in

4 in

  Figure 4.18 Axial member in Example 4.6.

ABC
3
4
--- in.⎝ ⎠

⎛ ⎞ 2 in.( ) 1.5 in.2= = AAB
3
4
--- in.⎝ ⎠

⎛ ⎞ 2h in.( ) 1.5 2 0.02x–( ) in.2= =

10 kipsNBCN
 Figure 4.19 Free-body diagrams in Example 4.6.

10 kipsNABN

NAB 10 kips= NBC 10 kips=

uC uB–
NBC xC xB–( )

EBCABC
--------------------------------- 10 kips( ) 20 in.( )

10,000 ksi( ) 1.5 in.2( )
------------------------------------------------------ 13.33 10 3–×  in.= = =

xd
du

⎝ ⎠
⎛ ⎞

AB

NAB
EABAAB
-------------------- 10 kips

10,000 ksi( ) 1.5 2 0.02x–( ) in.2[ ]
---------------------------------------------------------------------------------= =

du
uA

uB

∫
10 3–

1.5 2 0.02x–( )
----------------------------------- dx

xA=0

xB=50

∫ in.=

uB uA– 10 3–

1.5
----------- 1

0.02–( )
------------------ 2 0.02x–( )ln

0

50 10 3–

0.03
----------- 1( ) 2( )ln–ln[ ] in.– 23.1 10× 3– in.= = =

uC uA– 13.33 10 3–× 23.1 10× 3–+ 36.43 10 3–×  in.= =
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(E7)

The change in dimension in the y direction Δv can be found as

(E8)
ANS. Δv = 0.3333 × 10−3 in. contraction

COMMENT
1. An alternative approach is to integrate Equation (E4):

(E9)

To find constant of integration c, we note that at x = 0 the displacement u = 0. Hence, c = (10−3/0.03) ln (2). Substituting the value, we
obtain

(E10)

Knowing u at all x, we can obtain the extension by substituting x = 50 to get the displacement at C.

EXAMPLE 4.7 

The radius of a circular truncated cone in Figure 4.20 varies with x as R(x) = (r/L)(5L − 4x). Determine the extension of the truncated cone
due to its own weight in terms of E, L, r, and γ, where E and γ are the modulus of elasticity and the specific weight of the material,
respectively.

PLAN
We make an imaginary cut at location x and take the lower part of the truncated cone as the free-body diagram. In the free-body diagram
we can find the volume of the truncated cone as a function of x. Multiplying the volume by the specific weight, we can obtain the weight
of the truncated cone and equate it to the internal axial force, thus obtaining the internal force as a function of x. We then integrate Equa-
tion (4.7) to obtain the relative displacement of B with respect to A.

SOLUTION

Figure 4.21 shows the free-body diagram after making a cut at some location x. We can find the volume V of the truncated cone by sub-
tracting the volumes of two complete cones between C and D and between B and D. We obtain the location of point D, 

(E1)

The volume of the truncated cone is 

(E2)

By equilibrium of forces in Figure 4.21 we obtain the internal axial force:

εyy
νABσAB

EΑΒ
-------------------– 0.25 6.667 ksi( )×

10,000 ksi( )
--------------------------------------------– 0.1667 10× 3––= = =

Δv εyy 2 in.( ) 0.3333 10× 3–  in.–= =

u x( ) 10 3–

0.03
----------- 2 0.02x–( ) c+ln–=

u x( ) 10 3–

0.03
----------- 2 0.02x–

2
----------------------⎝ ⎠

⎛ ⎞ln–=

R(x)
x

B

A

r

L

  Figure 4.20 Truncated cone in Example 4.7.

D

N
R x)

(L � x)

h
  Figure 4.21 Free-body diagram of truncated cone in Example 4.7.

R x L h+=( ) r
L
--- 5L 4 L h+( )–[ ] 0= = or h L 4⁄=

V 1
3
---πR2 L x– L

4
---+⎝ ⎠

⎛ ⎞ 1
3
---πr2L

4
---– π

12
------ r2

L2
----- 5L 4x–( )3 r2L–= =
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(E3)

The cross-sectional area at location x (point C) is

 (E4)

Equation (4.7) can be written as 

(E5)

Integrating Equation (E5) from point A to point B, we obtain the relative movement of point B with respect to point A:

 or

(E6)

Point A is built into the wall, hence uA = 0. We obtain the extension of the bar as displacement of point B.
ANS.

COMMENTS
1. Dimension check: We write O( ) to represent the dimension of a quantity. F has dimensions of force and L of length. Thus, the modu-

lus of elasticity E, which has dimensions of force per unit area, is represented as O(F/L2). The dimensional consistency of our answer
is then checked as 

2. An alternative approach to determining the volume of the truncated cone in Figure 4.21 is to find first the volume of the infinitesimal
disc shown in Figure 4.22. We then integrate from point C to point B:

(E7)

3. On substituting the limits we obtain the volume given by (E2), as before:

4. The advantage of the approach in comment 2 is that it can be used for any complex function representation of R(x), such as given in
Problems 4.27 and 4.28, whereas the approach used in solving the example problem is only valid for a linear representation of R(x).

4.2.9* General Approach to Distributed Axial Forces

Distributed axial forces are usually due to inertial forces, gravitational forces, or frictional forces acting on the surface of the axial bar.
The internal axial force N becomes a function of x when an axial bar is subjected to a distributed axial force p(x), as seen in Example
4.7. If p(x) is a simple function, then we can find N as a function of x by drawing a free-body diagram, as we did in Example 4.7.
However, if the distributed force p(x) is a complex function, it may be easier to use the alternative described in this section. 

Consider an infinitesimal axial element created by making two imaginary cuts at a distance dx from each other, as shown in
Figure 4.23. By equilibrium of forces in the x direction we obtain:  or

(4.15)

N W γV γπr2

12L2
------------ 5L 4x–( )3 L3–[ ]= = =

A πR2 π r2

L2
------ 5L 4x–( )2= =

xd
du N

EA
-------

γπr2

12L2
------------ 5L 4x–( )3 L3–[ ]

Eπ r2

L2
----- 5L 4x–( )2

-------------------------------------------------------= =

du
uA

uB

∫
γ

12E
---------- 5L 4x–( ) L3

5L 4x–( )2
--------------------------– dx

xA=0

xB=L

∫=

uB uA–  = γ
12E
---------- 5Lx 2x2– L3

4 5L 4x–( )
--------------------------–

0

L
γL2

12E
---------- 5 2– 1

4
---– 1

20
------+⎝ ⎠

⎛ ⎞ 7γL2

30E
------------= =

uB
7γL2

30E
------------⎝ ⎠

⎛ ⎞=  downward

γ O F
L3
-----⎝ ⎠

⎛ ⎞→ L O L( )→ E O F
L2
-----⎝ ⎠

⎛ ⎞→ u O L( )→ γL2

E
-------- O F L3⁄( )L2

F L2⁄
------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

O L( ) checks→→→

V Vd
x

L

∫ πR2 xd
x

L

∫ π r2

L2
----- 5L 4x–( )2 xd

x

L

∫ π r 2

L2
----- 5L 4x–( )3

3 4–( )
--------------------------

x

L

–= = = =

R(x)

  Figure 4.22 Alternative approach to finding volume of truncated cone.

N � dNddN

dx
  Figure 4.23 Equilibrium of an axial element.

N dN+( ) p x( )dx N–+ 0=

dN
dx
------- p x( )+ 0=
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Equation (4.15) assumes that p(x) is positive in the positive x direction. If p(x) is zero in a segment of the axial bar, then the internal
force N is a constant in that segment.

Equation (4.15) can be integrated to obtain the internal force N. The integration constant can be found by knowing the value
of the internal force N at either end of the bar. To obtain the value of N at the end of the shaft (say, point A), a free-body diagram
is constructed after making an imaginary cut at an infinitesimal distance Δx from the end as shown in Figure 4.24) and writing
the equilibrium equation as 

This equation shows that the distributed axial force does not affect the boundary condition on the internal axial force. The
value of the internal axial force N at the end of an axial bar is equal to the concentrated external axial force applied at the end.

Suppose the weight per unit volume, or, the specific weight of a bar, is γ. By multiplying the specific weight by the cross-
sectional area A, we would obtain the weight per unit length. Thus p(x) is equal to γA in magnitude. If x coordinate is chosen in
the direction of gravity, then p(x) is positive: [ p(x) = +γΑ]. If it is opposite to the direction of gravity, then p(x) is
negative:[ p(x) = −γΑ].

EXAMPLE 4.8 

Determine the internal force N in Example 4.7 using the approach outlined in Section 4.2.9.

PLAN
The distributed force p(x) per unit length is the product of the specific weight times the area of cross section. We can integrate Equation
(4.15) and use the condition that the value of the internal force at the free end is zero to obtain the internal force as a function of x.

SOLUTION
The distributed force p(x) is the weight per unit length and is equal to the specific weight times the area of cross section A = πR2 = π(r2/
L2)(5L – 4x)2:

(E1)

We note that point B (x = L) is on a free surface and hence the internal force at B is zero. We integrate Equation (4.15) from L to x after
substituting p(x) from Equation (E1) and obtain N as a function of x, 

(E2)

ANS.

COMMENT
1. An alternative approach is to substitute (E1) into Equation (4.15) and integrate to obtain

(E3)

To determine the integration constant, we use the boundary condition that at N (x = L) = 0, which yields . Substi-
tuting this value into Equation (E3), we obtain N as before.

FextFFNAN

�  Figure 4.24 Boundary condition on internal axial force. Δx

Δx

Fext NA p xA( )Δx––[ ]
Δx 0→

lim 0= NA Fext=

p x( ) γA γπ r2

L2
----- 5L 4x–( )2= =

Nd
NB=0

N

∫ p x( ) xd
xB=L

x

∫– γ π r2

L2
----- 5L 4x–( )2 xd

L

x

∫– γ π r2

L2
-----⎝ ⎠

⎛ ⎞– 5L 4x–( )3

4– 3×
--------------------------

L

x

= = =

N γπr2

12L2
------------ 5L 4x–( )3 L3–[ ]=

N x( ) γπr2

12L2
------------ 5L 4x–( )3 c1+=

c1 γπr2 12L2⁄( )– L3=

Consolidate your  knowledge
1. Identity five examples of axial members from your daily life.
2. With the book closed, derive Equation (4.10), listing all the assumptions as you go along.
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PROBLEM SET 4.2

4.7 A crane is lifting a mass of 1000-kg, as shown in Figure P4.7. The weight of the iron ball at B is 25 kg. A single cable having a diameter of
25 mm runs between A and B. Two cables run between B and C, each having a diameter of 10 mm. Determine the axial stresses in the cables.

4.8 The counterweight in a lift bridge has 12 cables on the left and 12 cables on the right, as shown in Figure P4.8. Each cable has an effec-
tive diameter of 0.75 in, a length of 50 ft, a modulus of elasticity of 30,000 ksi, and an ultimate strength of 60 ksi. (a) If the counterweight is
100 kips, determine the factor of safety for the cable. (b) What is the extension of each cable when the bridge is being lifted?

QUICK TEST 4.1 Time: 20 minutes/Total: 20 points

Answer true or false and justify each answer in one sentence. Grade yourself with the answers given in Appendix E.

1. Axial strain is uniform across a nonhomogeneous cross section. 
2. Axial stress is uniform across a nonhomogeneous cross section. 
3. The formula  can be used for finding the stress on a cross section of a tapered axial member.
4. The formula  can be used for finding the deformation of a segment of a tapered axial

member.
5. The formula  can be used for finding the stress on a cross section of an axial member subjected to

distributed forces.
6. The formula  can be used for finding the deformation of a segment of an axial member sub-

jected to distributed forces.
7. The equation  cannot be used for nonlinear materials.

8. The equation  can be used for a nonhomogeneous cross section.

9. External axial forces must be collinear and pass through the centroid of a homogeneous cross section for no
bending to occur.

10. Internal axial forces jump by the value of the concentrated external axial force at a section.

σxx N A⁄=

u2 u1– N x2 x1–( ) EA⁄=

σxx N A⁄=

u2 u1– N x2 x1–( ) EA⁄=

N σxx Ad
A

∫=

N σxx Ad
A

∫=

A

B

C  Figure P4.7
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4.9 (a) Draw the axial force diagram for the axial member shown in Figure P4.9. (b) Check your results for part a by finding the internal
forces in segments AB, BC, and CD by making imaginary cuts and drawing free-body diagrams. (c) The axial rigidity of the bar is EA = 8000
kips. Determine the movement of the section at D with respect to the section at A.

4.10 (a) Draw the axial force diagram for the axial member shown in Figure P4.10. (b) Check your results for part a by finding the internal
forces in segments AB, BC, and CD by making imaginary cuts and drawing free-body diagrams. (c) The axial rigidity of the bar is
EA = 80,000 kN. Determine the movement of the section at C.

4.11 (a) Draw the axial force diagram for the axial member shown in Figure P4.11. (b) Check your results for part a by finding the internal
forces in segments AB, BC, and CD by making imaginary cuts and drawing free-body diagrams. (c) The axial rigidity of the bar is EA = 2000
kips. Determine the movement of the section at B.

4.12 (a) Draw the axial force diagram for the axial member shown in Figure P4.12. (b) Check your results for part a by finding the internal
forces in segments AB, BC, and CD by making imaginary cuts and drawing free-body diagrams. (c) The axial rigidity of the bar is
EA = 50,000 kN. Determine the movement of the section at D with respect to the section at A.

  Figure P4.8

Set of 12 Cables

Counter-weight

25 kips 30 kips

25 kips

10 kips 20 kips

30 kips

50 in
20 in 20 in

  Figure P4.9

75 kN 45 kN

75 kN

70 kN

45 kN

0.5 m
0.25 m 0.25 m

  Figure P4.10

2 kips 4 kips

2 kips

1.5 kipsp

4 kips

60 in
25 in 20 in

  Figure P4.11

60 kN 90 kN

60 kN

100 kN 200 kN

90 kN

0.6 m
0.4 m 0.4 m  Figure P4.12



4  166Mechanics of Materials: Axial MembersM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

4.13 Three segments of 4-in. × 2-in. rectangular wooden bars (E = 1600 ksi) are secured together with rigid plates and subjected to axial
forces, as shown in Figure P4.13. Determine: (a) the movement of the rigid plate at D with respect to the plate at A; (b) the maximum axial stress.

4.14 Aluminum bars (E = 30,000 ksi) are welded to rigid plates, as shown in Figure P4.1. All bars have a cross-sectional area of 0.5 in2. The
applied forces are F1 = 8 kips, F2 = 12 kips, and F3= 9 kips. Determine (a) the displacement of the rigid plate at D with respect to the rigid plate
at A. (b) the maximum axial stress in the assembly.

4.15 Brass bars between sections A and B, aluminum bars between sections B and C, and steel bars between sections C and D are welded to
rigid plates, as shown in Figure P4.2. The properties of the bars are given in Table 4.2 The applied forces are F1 = 90 kN, F2 = 40 kN, and
F3= 70 kN. Determine (a) the displacement of the rigid plate at D.(b) the maximum axial stress in the assembly.

4.16 A solid circular steel (Es = 30,000 ksi) rod BC is securely attached to two hollow steel rods AB and CD as shown. Determine (a) the
angle of displacement of section at D with respect to section at A; (b) the maximum axial stress in the axial member.

4.17 Two circular steel bars (Es = 30,000 ksi, νs = 0.3) of 2-in. diameter are securely connected to an aluminum bar (Ea1 = 10,000 ksi, νal =
0.33) of 1.5-in. diameter, as shown in Figure P4.17. Determine (a) the displacement of the section at C with respect to the wall; (b) the maxi-
mum change in the diameter of the bars.

4.18 Two cast-iron pipes (E = 100 GPa) are adhesively bonded together, as shown in Figure P4.18. The outer diameters of the two pipes are
50 mm and 70 mm and the wall thickness of each pipe is 10 mm. Determine the displacement of end B with respect to end A.

Tapered axial members
4.19 The tapered bar shown in Figure P4.19 has a cross-sectional area that varies as A = K(2L − 0.25 x)2. Determine the elongation of the bar
in terms of P, L, E, and K.

p p

kips

50 in
30 in 30 in

  Figure P4.13

 Figure P4.16

60 kips

A B C4 in. 2 in.

24 in.36 in.24 in.

D

60 kips

210 kips

100 kips

100 kips

210 kips

50 kips

50 kips

25 kips

Aluminum

5 kips 17.5 kips

5 kips 17.5 kips

40 in
15 in

25 in  Figure P4.17

500 mm

20 kN

150 mm

A
B

20 kN

  Figure P4.18

L
  Figure P4.19
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4.20 The tapered bar shown in Figure P4.19 has a cross-sectional area that varies as . Determine the elongation of the bar
in terms of P, L, E, and K. 

4.21 A tapered and an untapered solid circular steel bar (E = 30,000 ksi) are securely fastened to a solid circular aluminum bar (E = 10,000
ksi), as shown in Figure P4.21. The untapered steel bar has a diameter of 2 in. The aluminum bar has a diameter of 1.5 in. The diameter of the
tapered bars varies from 1.5 in to 2 in. Determine (a) the displacement of the section at C with respect to the section at A; (b) the maximum
axial stress in the bar.

Distributed axial force
4.22 The column shown in Figure P4.22 has a length L, modulus of elasticity E, and specific weight γ. The cross section is a circle of radius
a. Determine the contraction of each column in terms of L, E, γ, and a.

4.23 The column shown in Figure P4.23 has a length L, modulus of elasticity E, and specific weight γ. The cross section is an equilateral tri-
angle of side a.Determine the contraction of each column in terms of L, E, γ, and a. 

4.24 The column shown in Figure P4.24 has a length L, modulus of elasticity E, and specific weight γ. The cross-sectional area is A. Deter-
mine the contraction of each column in terms of L, E, γ, and A.

4.25 On the truncated cone of Example 4.7 a force P = γ πr2L/5 is also applied, as shown in Figure P4.25. Determine the total elongation of
the cone due to its weight and the applied force. (Hint: Use superposition.)

A K 4L 3x–( )=

10 kips 20 kips

10 kips

60 kips40 kips

20 kips

40 in
15 in

60 in

Aluminum

  Figure P4.21

  Figure P4.22

  Figure P4.23

 Figure P4.24

P

L

5r

  Figure P4.25
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4.26 A 20-ft-tall thin, hollow tapered tube of a uniform wall thickness of  is used for a light pole in a parking lot, as shown in Figure P4.26. The

mean diameter at the bottom is 8 in., and at the top it is 2 in. The weight of the lights on top of the pole is 80 lb. The pole is made of aluminum alloy with
a specific weight of 0.1 lb/in3, a modulus of elasticity E = 11,000 ksi, and a shear modulus of rigidity G = 4000 ksi. Determine (a) the maximum axial
stress; (b) the contraction of the pole. (Hint: Approximate the cross-sectional area of the thin-walled tube by the product of circumference and thickness.)

4.27 Determine the contraction of a column shown in Figure P4.27 due to its own weight. The specific weight is γ = 0.28 lb/in.3, the modu-

lus of elasticity is E = 3600 ksi, the length is L = 120 in., and the radius is  where R and x are in inches.

4.28 Determine the contraction of a column shown in Figure P4.27 due to its own weight. The specific weight is γ= 24 kN/m3 the modulus
of elasticity is E = 25 GPa, the length is L = 10 m and the radius is R = 0.5e−0.07x, where R and x are in meters.

4.29 The frictional force per unit length on a cast-iron pipe being pulled from the ground varies as a quadratic function, as shown in Figure
P4.29. Determine the force F needed to pull the pipe out of the ground and the elongation of the pipe before the pipe slips, in terms of the mod-
ulus of elasticity E, the cross-sectional area A, the length L, and the maximum value of the frictional force fmax.

Design problems
4.30 The spare wheel in an automobile is stored under the vehicle and raised and lowered by a cable, as shown in Figure P4.30. The wheel
has a mass of 25 kg. The ultimate strength of the cable is 300 MPa, and it has an effective modulus of elasticity E = 180 GPa. At maximum
extension the cable length is 36 cm. (a) For a factor of safety of 4, determine to the nearest millimeter the minimum diameter of the cable if fail-
ure due to rupture is to be avoided. (b) What is the maximum extension of the cable for the answer in part (a)?

1
8
---  in.

  Figure P4.26

Tapered pole

R 240 x– ,=

L

  Figure P4.27

x

f � fmaxff
L2
x2

F

 Figure P4.29

  Figure P4.30
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4.31 An adhesively bonded joint in wood (E = 1800 ksi) is fabricated as shown in Figure P4.31. If the total elongation of the joint between A
and D is to be limited to 0.05 in., determine the maximum axial force F that can be applied.

4.32 A 5-ft-long hollow rod is to transmit an axial force of 30 kips. The outer diameter of the rod must be 6 in. to fit existing attachments.
The relative displacement of the two ends of the shaft is limited to 0.027 in. The axial rod can be made of steel or aluminum. The modulus of
elasticity E, the allowable axial stress σallow, and the specific weight γ are given in Table 4.32. Determine the maximum inner diameter in incre-

ments of  of the lightest rod that can be used for transmitting the axial force and the corresponding weight.

4.33 A hitch for an automobile is to be designed for pulling a maximum load of 3600 lb. A solid square bar fits into a square tube and is held
in place by a pin, as shown in Figure P4.33. The allowable axial stress in the bar is 6 ksi, the allowable shear stress in the pin is 10 ksi, and the

allowable axial stress in the steel tube is 12 ksi. To the nearest in., determine the minimum cross-sectional dimensions of the pin, the bar, and

the tube. (Hint: The pin is in double shear.)

Stretch yourself
4.34 An axial rod has a constant axial rigidity EA and is acted upon by a distributed axial force p(x). If at the section at A the internal axial
force is zero, show that the relative displacement of the section at B with respect to the displacement of the section at A is given by

(4.16)

5

4.35 A composite laminated bar made from n materials is shown in Figure P4.35. Ei and Ai are the modulus of elasticity and cross sectional
area of the ith material. (a) If Assumptions from 1 through 5 are valid, show that the stress  in the ith material is given Equation (4.17a),

where N is the total internal force at a cross section. (b) If Assumptions 7 through 9 are valid, show that relative deformation  is given

by Equation (4.17b). (c) Show that for E1=E2=E3....=En=E Equations (4.17a) and (4.17b) give the same results as Equations (4.8) and (4.10).

TABLE P4.32 Material properties

Material
E 

(ksi)
σallow 
(ksi)

γ 
(lb/in.3)

Steel 30,000 24 0.285

Aluminum 10,000 14 0.100

5 in
36 in36 in Figure P4.31

1
8
--- in.

1
16
------

Pin

Square 
Bar

Square 
Tube

  Figure P4.33
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σxx( )i

u2 u1–

1
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  Figure P4.35

(4.17a)

(4.17b)

σxx( )i

NEi

Ej Aj
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n

∑
--------------------------=
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Ej Aj
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n
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4.36 The stress–strain relationship for a nonlinear material is given by the power law σ = Eεn. If all assumptions except Hooke’s law are
valid, show that

(4.17)

and the axial stress σxx is given by (4.8).

4.37 Determine the elongation of a rotating bar in terms of the rotating speed ω, density γ, length L, modulus of elasticity E, and cross-sec-
tional area A (Figure P4.37). (Hint: The body force per unit volume is ρω2x.)

4.38 Consider the dynamic equilibrium of the differential elements shown in Figure P4.38, where N is the internal force, γ is the density, A

is the cross-sectional area, and  is acceleration. By substituting for N from Equation (4.7) into the dynamic equilibrium equation,
derive the wave equation:

(4.18)

The material constant c is the velocity of propagation of sound in the material.

4.39 Show by substitution that the functions f(x − ct) and g(x + ct) satisfy the wave equation, Equation (4.18).

4.40 The strain displacement relationship for large axial strain is given by 

(4.19)

where we recognize that as u is only a function of x, the strain from (4.19) is uniform across the cross section. For a linear, elastic, homoge-
neous material show that

(4.20)

The axial stress σxx is given by (4.8).

Computer problems
4.41 Table P4.41 gives the measured radii at several points along the axis of the solid tapered rod shown in Figure P4.41. The rod is made of
aluminum (E = 100 GPa) and has a length of 1.5 m. Determine (a) the elongation of the rod using numerical integration; (b) the maximum axial
stress in the rod.

u2 u1– N
EA
-------⎝ ⎠

⎛ ⎞ 1/n
x2 x1–( )=

L
x

�

  Figure P4.37

∂2u ∂t2⁄

∂2u
∂t2
-------- c2 ∂2u

∂x2
--------= where c E

γ
---=

εxx
du
dx
------ 1

2
--- du

dx
------⎝ ⎠

⎛ ⎞ 2
+=

du
dx
------ 1 2N

EA
-------+ 1–=

x

0 kN

  Figure P4.41

TABLE P4.41

x
(m)

R(x)
(mm)

x
(m)

R(x)
(mm)

0.0 100.6 0.8 60.1

0.1 92.7 0.9 60.3

0.2 82.6 1.0 59.1

0.3 79.6 1.1 54.0

0.4 75.9 1.2 54.8

0.5 68.8 1.3 54.1

0.6 68.0 1.4 49.4

0.7 65.9 1.5 50.6
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4.42 Let the radius of the tapered rod in Problem 4.41 be represented by the equation R(x) = a + bx. Using the data in Table P4.41 determine
constants a and b by the least-squares method and then find the elongation of the rod by analytical integration.

4.43 Table 4.43 shows the values of the distributed axial force at several points along the axis of the hollow steel rod (E = 30,000 ksi) shown in
Figure P4.43. The rod has a length of 36 in., an outside diameter of 1 in., and an inside diameter of 0.875 in. Determine (a) the displacement of
end A using numerical integration; (b) the maximum axial stress in the rod.

4.44 Let the distributed force p(x) in Problem 4.43 be represented by the equation  Using the data in Table P4.43
determine constants a, b, and c by the least-squares method and then find the displacement of the section at A by analytical integration.

4.3 STRUCTURAL ANALYSIS

Structures are usually an assembly of axial bars in different orientations. Equation (4.10) assumes that the bar lies in x direction,
and hence in structural analysis the form of Equation (4.21) is preferred over Equation (4.10).

(4.21)

where L= x2 − x1 and δ =u2 – u1 in Equation (4.10). L represents the original length of the bar and δ represents deformation of the bar
in the original direction irrespective of the movement of points on the bar. It should also be recognized that L, E, and A are positive.
Hence the sign of δ is the same as that of N:

• If N is a tensile force, then δ is elongation. 
• If N is a compressive force, then δ is contraction.

4.3.1 Statically Indeterminate Structures

Statically indeterminate structures arise when there are more supports than needed to hold a structure in place. These extra sup-
ports are included for safety or to increase the stiffness of the structures. Each extra support introduces additional unknown reac-
tions, and hence the total number of unknown reactions exceeds the number of static equilibrium equations. The degree of static
redundancy is the number of unknown reactions minus the number of equilibrium equations. If the degree of static redundancy
is zero, then we have a statically determinate structure and all unknowns can be found from equilibrium equations. If the degree
of static redundancy is not zero, then we need additional equations to determine the unknown reactions. These additional equa-
tions are the relationships between the deformations of bars. Compatibility equations are geometric relationships between the
deformations of bars that are derived from the deformed shapes of the structure. The number of compatibility equations needed is
always equal to the degree of static redundancy.

Drawing the approximate deformed shape of a structure for obtaining compatibility equations is as important as drawing a
free-body diagram for writing equilibrium equations. The deformations shown in the deformed shape of the structure must be
consistent with the direction of forces drawn on the free-body diagram. Tensile (compressive) force on a bar on free body dia-
gram must correspond to extension (contraction) of the bar shown in deformed shape.

A x

  Figure P4.43

TABLE P4.43

x 
(inches)

p(x)
(lb/in.)

x
(in.)

p(x)
(lb/in.)

0 260 21 −471

3 106 24 −598

6 32 27 −645

9 40 30 −880

12 −142 33 −1035

15 −243 36 −1108

18 −262

p x( ) cx2 bx a.+ +=

δ NL
EA
--------=
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In many structures there are gaps between structural members. These gaps may be by design to permit expansion due to temper-
ature changes, or they may be inadvertent due to improper accounting for manufacturing tolerances. We shall make use of the obser-
vation that for a linear system it does not matter how we reach the final equilibrium state. We therefore shall start by assuming that
at the final equilibrium state the gap is closed. At the end of analysis we will check if our assumption of gap closure is correct or incor-
rect and make corrections as needed. 

Displacement, strain, stress, and internal force are all related as depicted by the logic shown in Figure 4.9 and incorporated
in the formulas developed in Section 4.2. If one of these quantities is found, then the rest could be found for an axial member.
Thus theoretically, in structural analysis, any of the four quantities could be treated as an unknown variable. Analysis however,
is traditionally conducted using either forces (internal or reaction) or displacements as the unknown variables, as described in the
two methods that follow. 

4.3.2 Force Method, or Flexibility Method

In this method internal forces or reaction forces are treated as the unknowns. The coefficient L/EA, multiplying the internal
unknown force in Equation (4.21), is called the flexibility coefficient. If the unknowns are internal forces (rather than reaction
forces), as is usually the case in large structures, then the matrix in the simultaneous equations is called the flexibility matrix.
Reaction forces are often preferred in hand calculations because the number of unknown reactions (degree of static redundancy)
is either equal to or less than the total number of unknown internal forces.

4.3.3 Displacement Method, or Stiffness Method

In this method the displacements of points are treated as the unknowns. The minimum number of displacements that are neces-
sary to describe the deformed geometry is called degree of freedom. The coefficient multiplying the deformation EA/L is called
the stiffness coefficient. Using small-strain approximation, the relationship between the displacement of points and the defor-
mation of the bars is found from the deformed shape and substituted in the compatibility equations. Using Equation (4.21) and
equilibrium equations, the displacement and the external forces are related. The matrix multiplying the unknown displacements
in a set of algebraic equations is called the stiffness matrix.

4.3.4 General Procedure for Indeterminate Structure

The procedure outlined can be used for solving statically indeterminate structure problems by either the force method or by the
displacement method.

1. If there is a gap, assume it will close at equilibrium.
2. Draw free-body diagrams, noting the tensile and compressive nature of internal forces. Write equilibrium equations

relating internal forces to each other.
or
3. Write equilibrium equations in which the internal forces are written in terms of reaction forces, if the force method is

to be used.
4. Draw an exaggerated approximate deformed shape, ensuring that the deformation is consistent with the free body dia-

grams of step 2. Write compatibility equations relating deformation of the bars to each other.
or
5. Write compatibility equations in terms of unknown displacements of points on the structure, if displacement method is

to be used.
6. Write internal forces in terms of deformations using Equation (4.21).
7. Solve the equations of steps 2, 3, and 4 simultaneously for the unknown forces (for force method) or for the unknown

displacements (for displacement method).
8. Check whether the assumption of gap closure in step 1 is correct.

Both the force method and the displacement method are used in Examples 4.10 and 4.11 to demonstrate the similarities and
differences in the two methods.
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EXAMPLE 4.9 

The three bars in Figure 4.25 are made of steel (E = 30,000 ksi) and have cross-sectional areas of 1 in2. Determine the displacement of
point D

PLAN
The displacement of point D with respect to point C can be found using Equation (4.21). The deformation of rod AC or BC can also be
found from Equation (4.21) and related to the displacement of point C using small-strain approximation. 

SOLUTION
Figure 4.26 shows the free body diagrams. By equilibrium of forces in Figure 4.26a, we obtain 

(E1)
By equilibrium of forces in Figure 4.26b, we obtain 

(E2)

 (E3)
Substituting for θ from Figure 4.26c and solving Equations (E2) and (E3), we obtain 

(E4)

From Equation (4.21) we obtain the relative displacement of D with respect to C as shown in Equation (E5) and deformation of bar AC
in Equation (E6). 

(E5)

(E6)

Figure 4.26d shows the exaggerated deformed geometry of the two bars AC and BC. The displacement of point C can be found by 

(E7)

Adding Equations (E5) and (E7) we obtain the displacement of point D, 
uD = (4.5 + 3.52)10−3 in.

ANS.  uD = 0.008 in

COMMENT
1. This was a statically determinate problem as we could find the internal forces in all members by static equilibrium.

EXAMPLE 4.10 

3 in

4 in

5 in

P � 27 kips

A

C D

B

3 in

  Figure 4.25 Geometry in Example 4.9

NCD 27 kips=

NCA NCB=

NCA θcos NCB θcos+ 27 kips=

2NCA
4
5
---⎝ ⎠

⎛ ⎞ 27 kips= or NCA NCB 16.875 kips= =

3
5

P � 27 kips

uC

NCA

NCB

uD

C

�
� D

P � 27 kipsNCD
(a) (b)

(c)

(c)

θ
3

4

5

A

C
�

�

B

uC

�AC

(d)

  Figure 4.26 Free-body diagrams and deformed geometry in Example 4.9.

δCD uD uC–
NCDLCD
ECDACD
---------------------- 27 kips( ) 5 in.( )

30,000 ksi( ) 1 in.2( )
-------------------------------------------------= = 4.5 10 3–×  in.= =

δAC
NCALCA
ECAACA
-------------------- 16.875 kips( ) 5 in.( )

30,000 ksi( ) 1 in.2( )
------------------------------------------------- 2.8125 10 3–  in.×= = =

uC
δAC

θcos
------------ 3.52 10 3–×  in.= =
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An aluminum rod (Eal = 70 GPa) is securely fastened to a rigid plate that does not rotate during the application of load P is shown in Fig-
ure 4.27. A gap of 0.5 mm exists between the rigid plate and the steel rod (Est = 210 GPa) before the load is applied. The aluminum rod has
a diameter of 20 mm and the steel rod has a diameter of 10 mm. Determine (a) the movement of the rigid plate; (b) the axial stress in steel.

FORCE METHOD: PLAN
We assume that the force P is sufficient to close the gap at equilibrium. The two unknown wall reactions minus one equilibrium equation
results in 1 degree of static redundancy. We follow the procedure outlined in Section 4.3.4 to solve the problem.

SOLUTION
Step 1 Assume force P is sufficient to close the gap. If this assumption is correct, then steel will be in compression and aluminum will
be in tension.
Step 2 The degree of static redundancy is 1. Thus we use one unknown reaction to formulate our equilibrium equations. We make
imaginary cuts at the equilibrium position and obtain the free-body diagrams in Figure 4.28. By equilibrium of forces we can obtain the
internal forces in terms of the wall reactions,

(E1)

Step 3 Figure 4.29 shows the exaggerated deformed shape. The deformation of aluminum is extension and steel in contraction, to
ensure consistency with the tensile and compressive axial forces shown on the free-body diagrams in Figure 4.28. The compatibility
equation can be written

(E2)

Step 4 The radius of the aluminum rod is 0.01 m, and the radius of the steel rod is 0.005 m. We can write the deformation of aluminum
and steel in terms of the internal forces,

(E3)

(E4)

Step 5 Substituting Equation (E1) into Equations (E3) and (E4), we obtain deformation in terms of the unknown reactions,

(E5)

(E6)
Substituting Equations (E5) and (E6) into Equation (E2), we can solve for RL.

1455.4 − 0.07277RL = 0.04547RL − 500 or RL = 16,538 N (E7)
Substituting Equation (E7) into Equations (E1) and (E1) we obtain the internal forces, 

Nal = 16,538 N Nst = 3462 N (E8)
Step 6 The positive value of the force in steel confirms that it is compressive and the assumption of the gap being closed is correct.

1 m 1.2 m

P � 10 kN

P � 10 kN
  Figure 4.27 Geometry in Example 4.10.

Nal RL= NS 20 103( ) RL–=

Equilibrium position

Tensile

NalRL

P � 10 kN

P � 10 kN

RL RR

Compressive

P � 10 kN

P � 10 kN

NstRL

 Figure 4.28 Free-body diagrams in Example 4.10.

δst δal 0.0005–( ) m=

0.0005 m

uP

�st ContractionExtension �al

  Figure 4.29 Approximate deformed shape in Example 4.10.

δal
NalLal
EalAal
---------------

Nal 1 m( )

70 10× 9 N/m2( ) π 0.01 m( )2[ ]
-------------------------------------------------------------------------- 0.04547Nal 10× 6–  m= = =

δst
NstLst
EstAst
--------------

Nst 1.2 m( )

210 109×  N/m2( ) π 0.005 m( )2[ ]
-------------------------------------------------------------------------------- 0.07277Nst 10× 6–  m= ==

δal 0.04547RL 10 6–  m×=

δst 0.07277 20 10× 3 RL–( )10 6–  m 1455.4 0.07277RL–( )= 10 6–  m=
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(a) Substituting Equation (E7) into Equation (E5), we obtain the deformation of aluminum, which is equal to the movement of the rigid plate uP:
uP = δal = (0.04547) (16,538) 10−6 = 0.752 (10−3) m

ANS. uP = 0.752 mm

(b) The normal stress in steel can be found from Equation (4.8).

(E9)

ANS. σst = 44.1 MPa (C)

COMMENTS
1. The assumption about gap closure is correct because movement of plate uP = 0.752 mm is greater than the gap. 
2. An alternative approach is to use internal forces as the unknowns. We can make a cut on either side of the rigid plate at the equilib-

rium position and draw the free-body diagram, as shown in Figure 4.30a. We can then write the equilibrium equation, 
Nst + Nal = 20 × 103 N (E10)

Substituting Equations (E3) and (E4) into (E2), we obtain 
0.04547Nal − 0.07277Nst = 500 N (E11)

Equations (E10) and (E11) can be written in matrix form as
[F]  {N}  {P}

The matrix [F] is called the flexibility matrix.
3. With internal forces as unknowns we had to solve two equations simultaneously, as elaborated in comment 2. With the reaction force

as the unknown we had only one unknown, which is the number of degrees of static redundancy. Thus for hand calculations the reac-
tion forces as unknowns are preferred when using the force method. But in computer programs the process of substitution in step 5 is
difficult to implement compared to constructing the equilibrium and compatibility equations in terms of internal forces. Thus in com-
puter methods internal forces are treated as unknowns in force methods.

4. Suppose we had started with the direction of the force in steel as tension as shown in Figure 4.30b. Then we would get the following
equilibrium equation:

−Nst + Nal = 20 × 103 N (E12)
Suppose we incorrectly do not make any changes in Equation (E2) or Equation (E6)—that is, we continue to use the deformation in steel
as contraction even though the assumed force is tensile, we then solve Equations (E12) and (E11), we obtain Nal = 34996 N and Nst =
14996 N. These answers demonstrate how a simple error in sign produces dramatically different results. 

DISPLACEMENT METHOD: PLAN 
Let the plate move to the right by the amount uP and assume that the gap is closed. We follow the procedure outlined in Section 4.3.4 to
solve the problem.

SOLUTION
Step 1 Assume the gap is closed. 
Step 2 We can substitute (E1) into (E1) to eliminate RL and obtain the equilibrium equation, 

Nst + Nal = 20 × 103 N (E13)
We could also obtain this equation from the free-body diagram shown in Figure 4.30.
Step 3 We draw the exaggerated deformed shape, as shown in Figure 4.29, and obtain the deformation of the bars in terms of the plate
displacement uP as

δal = uP (E14)
δ st = uP − 0.0005 m (E15)

Step 4 We can write the internal forces in terms of deformation,

(E16)

σst
Nst
Ast
------- 3462 N

π 0.005 m( )2
------------------------------- 44.1 106( ) N/m2= = =

P � 10 kN

P � 10 kN

NstNal

Tensile
force

Compressive
force

  Figure 4.30 (a) Alternative free-body diagram in Example 4.10. (b) Tensile forces in free-body diagram in Example 4.10.

P � 10 kN

P � 10 kN

NstNal

Tensile
force

Tensile
force

(a) (b)

1 1
0.04547 0.07277–

Nat
Nst⎩ ⎭

⎨ ⎬
⎧ ⎫ 20 103×

500⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Nal δal
EalAal

Lal
--------------⎝ ⎠

⎛ ⎞ 21.99 106( )δal N= =
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(E17)

Step 5 We can substitute Equations (E14) and (E15) into Equations (E16) and (E17) to obtain the internal forces in terms of uP.
Nal = 21.99 (106) uP N (E18)

Nst = 13.74 (uP − 0.0005)(106) N (E19)
Substituting Equations (E18) and (E19) into (E13) we obtain the displacement uP.

(E20)
ANS. uP = 0.752 mm

Step 6 As uP > 0.0005 m, the assumption of gap closing is correct. 
Substituting uP into Equation (E19), we obtain Nst = 3423.2 N, which implies that the steel is in compression, as expected. We can now
find the axial stress in steel, as before.

COMMENT
1. In the force method as well as in the displacement method the number of unknowns was 1 as the degree of redundancy and the num-

ber of degrees of freedom were 1. This is not always the case. In the next example the number of degrees of freedom is less than the
degree of redundancy, and hence the displacement method will be easier to implement.

EXAMPLE 4.11 

Three steel bars A, B, and C (E = 200 GPa) have lengths LA = 4 m, LB = 3 m, and LC = 2 m, as shown in Figure 4.31. All bars have the
same cross-sectional area of 500 mm2. Determine (a) the elongation in bar B; (b) the normal stress in bar C.

DISPLACEMENT METHOD: PLAN
Assume that the gap is closed. We follow the procedure outlined in Section 4.3.4 to solve the problem.

SOLUTION
Step 1 We assume that the force P is sufficient to close the gap. 

Step 2 We draw the free-body diagram of the rigid bar in Figure 4.32a with bars A and B in tension and bar C in compression. By equi-
librium of moment at point O we obtain the equilibrium equation shown in Equation (E1).

(E1)
Step 3 Figure 4.32b shows an exaggerated deformed shape with bars A and B as extension and bar C as contraction to be consistent with
the forces drawn in Figure 4.32a. Noting that the gap is 0.0009 m, we can write the compatibility equations relating the deformations of
bars B and C in terms of the displacement of pin E,

(E2)

(E3)
Using similar triangles in Figure 4.32b we relate the displacements of point D and E,

Nst δst
EstAst

Lst
--------------⎝ ⎠

⎛ ⎞ 13.74 106( )δst N= =

21.99uP 13.74 uP 0.0005–( )+ 20 10 3–( )= or uP 0.752 10 3–( ) m=

A

50�

5 m

4 m 3 m

0.9 mm
D E

C

B

P � 150 kN

O F
Rigid

  Figure 4.31 Geometry in Example 4.11.

Tensile forceTensile force

Compressive
force

50�

P � 150 kN
5 m

4 m 3 m

D

NAN

Oy
Ox

NBN

NC

E
F

Rigid

  Figure 4.32 (a) Free-body diagram. (b) Exaggerated deformed shape.

(a)

O
E

50�

Extension
5 m 4 m

�D �A �E �C �B

Extension

Contraction

50�

(b)

NA 50 5( )sin NB 9( ) NC 9( ) P– 12( )+ + 0= or 3.83NA 9NB 9NC+ + 1800 103( )=

δB δE=

δC δE 0.0009 m–=
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 (E4)

Using small-strain approximation we can relate the deformation of bar A to the displacement of point D,

(E5)

Substituting Equation (E5) into Equation (E4), we obtain 

(E6)

Step 4 The axial rigidity of all bars is EA = [200 (109) N/m2] [500 (10−6) m2] = 100 × 106 N. Using Equation (4.21) we can write,

(E7)

(E8)

(E9)

Step 5 Substituting Equations (E6), (E2), and (E3) into Equations (E7), (E8), and (E9), we obtain 

(E10)

(E11)

(E12)
Substituting Equations (E10), (E11), and (E12) into Equation (E1) we obtain the displacement of pin E,

ANS. δE = 2.8 mm

Step 6 The assumption of gap closure is correct as δE = 2.8 mm whereas the gap is only 0.9 mm.
From Equation (12) we obtain the internal axial force in bar C, from which we obtain the axial stress in bar C,

(E13)

ANS. σC = 189 MPa (C)

COMMENTS
1. Equation (E4) is a relationship of points on the rigid bar. Equations (E2), (E3), and (E5) relate the motion of points on the rigid bar to

the deformation of the rods. This two-step process helps break the complexity into simpler steps.
2. The degree of freedom for this system is 1. In place of δE as an unknown, we could have used the displacement of any point on the

rigid bar or the rotation angle of the bar, as all of these quantities are related.

FORCE METHOD: PLAN
We assume that the force P is sufficient to close the gap. If this assumption is correct, then bar C will be in compression. We follow the
procedure outlined in Section 4.3.4 to solve the problem.

SOLUTION
Step 1 Assume that the gap closes.
Step 2 Figure 4.32a shows the free-body diagram of the rigid bar. By equilibrium we obtain Equation (E1), rewritten here for conve-
nience.

(E14)
Equation (14) has three unknowns, hence the degree of redundancy is 2. We will need two compatibility equations.
Step 3 We draw the deformed shape, as shown in Figure 4.32b, and obtain relationships between points on the rigid bar and the defor-
mation of the bars. Then by eliminating δE from Equations (E3) and (E6) and using Equation (E2) we obtain the compatibility equations, 

(E15)

(E16)

δD
5 m
---------

δE
9 m
---------=

δD
δA

50sin
-------------=

δA 50sin⁄( )
5 m

----------------------------
δE

9 m
---------  or δA 0.4256δE= =

NA
100 106( )

4
----------------------δA N 25 106( )δA N= =

NB
100 106( )

3
----------------------δB 33.33 106( )δB N==

NC
100 106( )

2
----------------------δC 50.00 106( )δC N= =

NA 25 10( )6 0.4256δE( ) 10.64 106( )δE N= =

NB 33.33 106( )δE 33.33 106( )δE N==

NC 50.00 106( ) δE 0.0009–( ) 50.00 106( )δE 45 103( )–[ ] N==

3.83 10.64( ) 106( )δE 9 33.33( ) 106( )δE 9 50.00 106( )δE 45 103( )–[ ]+ + 1800 103( )= or δE 2.788 10 3–( ) m=

NC 50.00 106( ) 2.788 10 3–( )[ ] 45 103( )– 94.4 103( )= =

σC
NC
AC
------- 94.4 103( ) N

500 10 6–( ) m2
---------------------------------- 188.8 106×  N/m2== =

3.83NA 9NB 9NC+ + 1800 103( ) N=

δC δB 0.0009 m–=

δA 0.4256δB=
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Step 4 We write the deformations of the bars in terms of the internal forces for each member, 

(E17)

(E18)

(E19)

Step 5 Substituting Equations (E17), (E18), and (E19) into Equations (E15) and (E16), we obtain
(E20)

(E21)
Solving Equations (E14), (E20), and (E21), we obtain the internal forces:

(E22)
Step 6 The positive value of NC confirms it is compressive and the assumption of the gap being closed is valid. 
Substituting NB from Equation (E22) into Equation (E18), we find the deformation of bar B, which is the same as the displacement of pin
E,

(E23)
ANS.

The calculation for the normal stress in bar C is as before.

COMMENT
1. Equations (E14), (E20), and (E21) represent three equations in three unknowns. Had we used the reaction forces Ox and Oy in Figure

4.32 as the unknowns, we could have generated two equations in two unknowns, consistent with the fact that this system has a degree
of redundancy of 2. But as we saw, the displacement method required only one unknown. Thus our choice of method of solution
should be dictated by the number of degrees of freedom and the number of degrees of static redundancy. For fewer degrees of free-
dom we should use the displacement method; for fewer degrees of static redundancy we should use the force method.

PROBLEM SET 4.3

4.45 A rigid bar is hinged at C as shown in Figure P4.45. The modulus of elasticity of bar A is E = 30,000 ksi, the cross-sectional area is
A = 1.25 in.2, and the length is 24 in. Determine the applied force F if point B moves upward by 0.002 in.

4.46 A rigid bar is hinged at C as shown in Figure P4.46. The modulus of elasticity of bar A is E = 30,000 ksi, the cross-sectional area is
A = 1.25 in.2, and the length is 24 in. Determine the applied force F if point B moves upward by 0.002 in.

δA
NALA
EAAA
--------------

NA 4 m( )

100 106( ) N
---------------------------- 0.04NA 10 6–( ) m= = =

δB
NBLB
EBAB
--------------

NB 3 m( )

100 106( ) N
---------------------------- 0.03NB 10 6–( ) m= = =

δC
NCLC
ECAC
--------------

NC 2 m( )

100 106( ) N
---------------------------- 0.02NC 10 6–( ) m= = =

0.02 NC 0.03 NB 900 N–= or NC 1.5NB 45 103( ) N–=

0.04 NA 0.4256 0.03 NB( )= or NA 0.3192 NB=

NA 29.67 103( ) N= NB 92.95 103( ) N= NC 94.43 103( ) N=

δE δB 0.03 92.95 103( )[ ] 10 6–( ) 2.788 103( ) m= = =
δE 2.8 mm=

Consolidate your  knowledge
1. With the book closed, write a procedure for solving a statically indeterminate problem by the force method.
2. With the book closed, write a procedure for solving a statically indeterminate problem by the displacement method.

125 in
25 in

D

A

C
B

F

Rigid

  Figure P4.45

0.004 in

125 in
25 in

D

A

C
B

F

Rigid

 Figure P4.46
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4.47 A rigid bar is hinged at C as shown in Figure P4.47. The modulus of elasticity of bar A is E = 100 GPa, the cross-sectional area is
A = 15 mm2, and the length is 1.2 m. Determine the applied force F if point B moves to the left by 0.75 mm.

4.48 A rigid bar is hinged at C as shown in Figure P4.48. The modulus of elasticity of bar A is E = 100 GPa, the cross-sectional area is
A = 15 mm2, and the length is 1.2 m. Determine the applied force F if point B moves to the left by 0.75 mm.

4.49 The roller at P in Figure P4.49 slides in the slot due to the force F = 20 kN. Member AP has a cross-sectional area A = 100 mm2 and a
modulus of elasticity E = 200 GPa. Determine the displacement of the roller.

4.50 The roller at P in Figure P4.50 slides in the slot due to the force F = 20 kN. Member AP has a cross-sectional area A = 100 mm2 and a
modulus of elasticity E = 200 GPa. Determine the displacement of the roller.

4.51 A rigid bar is hinged at C as shown in Figure P4.51. The modulus of elasticity of bar A is E = 30,000 ksi, the cross-sectional area is
A = 1.25 in.2, and the length is 24 in. Determine the axial stress in bar A and the displacement of point D on the rigid bar.

Rigid
1.25 m

D

B

C

F

A

2.5 m

  Figure P4.47

1 mm

Rigid

1.25 m

D

B

C

F

A
2.5 m

  Figure P4.48

20
0 

m
m

50°AA

F

P

 Figure P4.49

30°

F
P

20
0 

m
m

50°AA
  Figure P4.50

F � 50 kips
0.004 in

125 in
25 in

D

A

C
B

Rigid

  Figure P4.51
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4.52 A rigid bar is hinged at C as shown in Figure P4.52. The modulus of elasticity of bar A is E = 30,000 ksi, the cross-sectional area is
A = 1.25 in.2, and the length is 24 in. Determine the axial stress in bar A and the displacement of point D on the rigid bar.  

4.53 A steel (E = 30,000 ksi, ν = 0.28) rod passes through a copper ( E = 15,000 ksi, ν = 0.35) tube as shown in Figure P4.53. The steel rod
has a diameter of 1/2 in., and the tube has an inside diameter of 3/4 in. and a thickness of 1/8 in. If the applied load is P = 2.5 kips, determine
(a) the movement of point A (b) the change in diameter of the steel rod.

4.54 A rigid bar ABC is supported by two aluminum cables (E = 10,000 ksi) with a diameter of 1/2 in. as shown in Figure P4.54. The bar is
horizontal before the force is applied. Determine the angle of rotation of the bar from the horizontal when a force P= 5 kips is applied.

4.55 Two rigid beams are supported by four axial steel (E = 210 GPa) rods of diameter 10 mm, as shown in Figure P4.55. Determine the
angle of rotation of the bars from the horizontal no load position when a force of P = 5 kN is applied. 

4.56 Two rigid beams are supported by four axial steel rods (E = 210 GPa, σyield = 210 MPa) of diameter 20 mm, as shown in Figure P4.55.
For a factor of safety of 1.5, determine the maximum value of force F that can be applied without causing any rod to yield.

M � �kips

0.004 in
125 in

25 in

D

A

C
B

Rigid

  Figure P4.52

P

  Figure P4.53

A B

C

24 in.

16 in.

5 ft
P

3 ft 5 ft
  Figure P4.54

A B C

C

2 m

A B2 m

1.2 m

4 m

1.6 m

1.2 m D

1.2m

P

  Figure P4.55
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4.57 A rigid bar ABC is supported by two aluminum cables (E = 10,000 ksi) with a diameter of 1/2 in., as shown in Figure P4.57. Determine
the extensions of cables CE and BD when a force P= 5 kips is applied.

4.58 A rigid bar ABC is supported by two aluminum cables (E = 10,000 ksi) as shown in Figure P4.57. The yield stress of aluminum is
40 ksi. If the applied force P = 10 kips, determine the minimum diameter of cables CE and BD to the nearest 1/16 in.

4.59 A rigid bar ABC is supported by two aluminum cables (E = 10,000 ksi) with a diameter of 1/2 in. as shown in Figure P4.57. The yield
stress of aluminum is 40 ksi. Determine the maximum force P to the nearest pound that can be applied. 

4.60 A force F = 20 kN is applied to the roller that slides inside a slot as shown in Figure P4.60. Both bars have a cross-sectional area
A = 100 mm2 and a modulus of elasticity E = 200 GPa. Bars AP and BP have lengths LAP = 200 mm and LBP = 250 mm. Determine the dis-
placement of the roller and the axial stress in bar AP. 

4.61 A force F = 20 kN is applied to the roller that slides inside a slot as shown in Figure P4.61. Both bars have a cross-sectional area
A = 100 mm2 and a modulus of elasticity E = 200 GPa. Bars AP and BP have lengths LAP = 200 mm and LBP = 250 mm. Determine the dis-
placement of the roller and the axial stress in bar AP. 

4.62 A force F = 20 kN is applied to the roller that slides inside a slot as shown in Figure P4.62. Both bars have a cross-sectional area
A = 100 mm2 and a modulus of elasticity E = 200 GPa. Bars AP and BP have lengths LAP = 200 mm and LBP = 250 mm. Determine the dis-
placement of the roller and the axial stress in bar AP.

A

D

E

5 ft

5 ft

40o

B

C

P

  Figure P4.57

F

110°

P

B

A

  Figure P4.60

60°

30°

F

P

B

A
  Figure P4.61

F

75°
30°

A

P

B

  Figure P4.62
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4.63 An aluminum (E = 70 GPa, σyield = 280 MPa, ν = 0.28) wire of diameter 0.5 mm is to hang two flower pots of equal mass as shown in
Figure P4.63. (a) Determine the maximum mass of the pots to the nearest gram that can be hung if yielding is to be avoided in all wires. (b) For
the maximum mass what is the percentage change in the diameter of the wire BC.

4.64 An aluminum (E = 70 GPa, σyield = 280 MPa, ν = 0.28) wire is to hang two flower pots of equal mass of 5 kg as shown in Figure P4.63.
Determine the minimum diameter of the wires to the nearest 1/10 of a millimeter if yielding is to be avoided in all wires.

4.65 An aluminum hollow cylinder (Eal = 10,000 ksi, νal = 0.25) and a steel hollow cylinder (Est = 30,000 ksi, νst = 0.28) are securely fas-

tened to a rigid plate, as shown in Figure P4.65. Both cylinders are made from -in. thickness sheet metal. The outer diameters of the alumi-

num and steel cylinders are 4 in. and 3 in., respectively. For an applied load of P = 20 kips determine (a) the displacement of the rigid plate; (b)
the change in diameter of each cylinder.

4.66 An aluminum hollow cylinder (Eal = 10,000 ksi, νal = 0.25) and a steel hollow cylinder (Est = 30,000 ksi, νst = 0.28) are securely fas-

tened to a rigid plate, as shown in Figure P4.65. Both cylinders are made from -in. thickness sheet metal. The outer diameters of the alumi-

num and steel cylinders are 4 in. and 3 in., respectively. The allowable stresses in aluminum and steel are 10 ksi and 25 ksi, respectively.
Determine the maximum force P that can be applied to the assembly.

4.67 A gap of 0.004 inch exists between the rigid bar and bar A before the force F is applied as shown in Figure P4.67. The rigid bar is
hinged at point C. The lengths of bars A and B are 30 and 50 inches respectively. Both bars have an area of cross-section A = 1 in.2 and modulus
of elasticity E = 30,000 ksi. Determine the axial stresses in bars A and B if P = 100 kips.

4.68 A gap of 0.004 inch exists between the rigid bar and bar A before the force F is applied as shown in Figure P4.67. The rigid bar is
hinged at point C. The lengths of bars A and B are 30 in. and 50 in. respectively. Both bars have an area of cross-section A = 1 in.2 and modulus
of elasticity E = 30,000 ksi. If the allowable normal stress in the bars is 20 ksi in tension or compression, determine the maximum force P that
can be applied. 

225 mm 600 mm
A

200 mm
340 mm

  Figure P4.63

Flower
Pot

Flower
Pot

1
8
---

Aluminum

Steel

PP
40 in

30 in

  Figure P4.65

1
8
---

B

A

C

P 24 in
36 in 60 in

75°

  Figure P4.67
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4.69 In Figure P4.69 a gap exists between the rigid bar and rod A before force F is applied. The rigid bar is hinged at point C. The lengths of
bars A and B are 1 m and 1.5 m, and the diameters are 50 mm and 30 mm, respectively. The bars are made of steel with a modulus of elasticity
E = 200 GPa and Poisson’s ratio ν = 0.28. If F = 75 kN determine (a) the deformation of the two bars; (b) the change in the diameters of the two
bars.

4.70 In Figure P4.69 a gap exists between the rigid bar and rod A before force F is applied. The rigid bar is hinged at point C. The lengths of
bars A and B are 1 m and 1.5 m, and the diameters are 50 mm and 30 mm, respectively. The bars are made of steel with a modulus of elasticity
E = 200 GPa and Poisson’s ratio ν = 0.28. If the allowable axial stresses in bars A and B are 110 MPa and 125 MPa, respectively, determine the
maximum force F that can be applied.

4.71 A rectangular aluminum bar (E = 10,000 ksi), a steel bar (E = 30,000 ksi), and a brass bar (E = 15,000 ksi) are assembled as shown in Fig-
ure P4.71. All bars have the same thickness of 0.5 in. A gap of 0.02 in. exists before the load P is applied to the rigid plate. Assume that the rigid
plate does not rotate. If P = 15 kips determine (a) the axial stress in steel; (b) the displacement of the rigid plate with respect to the right wall.

4.72 A rectangular aluminum bar (E = 10,000 ksi), a steel bar (E = 30,000 ksi), and a brass bar (E = 15,000 ksi) are assembled as shown in
Figure P4.71. All bars have the same thickness of 0.5 in. A gap of 0.02 in. exists before the load P is applied to the rigid plate. Assume that the
rigid plate does not rotate. If the allowable axial stresses in brass, steel, and aluminum are 8 ksi, 15 ksi, and 10 ksi, respectively, determine the
maximum load P.

4.73 In Figure P4.73 bars A and B have cross-sectional areas of 400 mm2 and a modulus of elasticity E = 200 GPa. A gap exists between bar
A and the rigid bar before the force F is applied. If the applied force F = 10 kN determine: (a) the axial stress in bar B; (b) the deformation of
bar A.

4.74 In Figure P4.73 bars A and B have cross-sectional areas of 400 mm2 and a modulus of elasticity E = 200 GPa. A gap exists between bar
A and the rigid bar before the force F is applied.Determine the maximum force F that can be applied if the allowable stress in member B is
120 MPa (C) and the allowable deformation of bar A is 0.25 mm.

4.75 A rectangular steel bar (E = 30,000 ksi, ν = 0.25) of 0.5 in. thickness has a gap of 0.01 in. between the section at D and a rigid wall
before the forces are applied as shown in Figure P4.75. Assuming that the applied forces are sufficient to close the gap, determine (a) the move-
ment of rigid plate at C with respect to the left wall; (b) the change in the depth d of segment CD.

40�Rigid
P

F

B

C

A

0.0002 m
0.4 m 0.9 m

  Figure P4.69

30 in

6 in

60 in

2 in

0.02 in

P

P
2 in

  Figure P4.71

0.0005 m

F

2 m

5 m

3 m

C

A

B

1.5 m

2 m  Figure P4.73
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4.76 Three plastic members of equal cross sections are shown in Figure P4.76. Member B is smaller than members A by 0.5 mm. A distrib-
uted force is applied to the rigid plate, which moves downward without rotating. The moduli of elasticity for members A and B are 1.5 GPa and
2.0 GPa, respectively. Determine the axial stress in each member if the distributed force W = 20 MPa.

4.77 Three plastic members of equal cross sections are shown in Figure P4.76. Member B is smaller than members A by 0.5 mm. A distrib-
uted force is applied to the rigid plate, which moves downward without rotating. The moduli of elasticity for members A and B are 1.5 GPa and
2.0 GPa, respectively. Determine the maximum intensity of the distributed force that can be applied to the rigid plate if the allowable stresses in
members A and B are 50 MPa and 30 MPa. 

4.78 Figure P4.78 shows an aluminum rod (E = 70 GPa, ν = 0.25) inside a steel tube (E = 210 GPa, ν = 0.28). The aluminium rod is slightly
longer than the steel tube and has a diameter of 40 mm. The steel tube has an inside diameter of 50 mm and is 10 mm thick. If the applied load
P =  200 kN, determine (a) the axial stresses in aluminium rod and steel tube; (b) the change in diameter of aluminium.

4.79 Figure P4.78 shows an aluminium rod (E = 70 GPa, σyield = 280 MPa) inside a steel tube (E = 210 GPa, σyield = 210 MPa). The alumin-
ium rod is slightly longer than the steel tube and has a diameter of 40 mm. The steel tube has an inside diameter of 50 mm and is 10 mm thick.
What is the maximum force P that can be applied without yielding either material.

4.80 A rigid bar ABCD hinged at one end and is supported by two aluminum cables (E = 10,000 ksi) with a diameter of 1/4 in. as shown in
Figure P4.80. The bar is horizontal before the force is applied. Determine the angle of rotation of the bar from the horizontal when a force
P= 10kips is applied. 

A B
12.5 kips 17.5 kips

17.5 kips

C D

18 in

d � 3 in

24 in 36 in
0.01 in

  Figure P4.75

W20 mm

 Figure P4.76

0.15 mm

250 mm

A
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m
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P

  Figure P4.78
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4.81 A suspended walkway is modelled as a rigid bar and supported by steel rods (E =30,000 ksi) as shown in Figure P4.81. The rods have a
diameter of 2 in., and the nut has a contact area with the bottom of the walkway is 4 in.2 The weight of the walk per unit length is w = 725lb/ft.
Determine (a) the axial stress in the steel rods; (b) the average bearing stress between the nuts at A and D and the walkway.

4.82 An aluminum circular bar (Eal = 70 GPa) and a steel tapered circular bar (Est = 200 GPa) are securely attached to a rigid plate on which
axial forces are applied, as shown in Figure P4.82. Determine (a) the displacement of the rigid plate; (b) the maximum axial stress in steel

Design problems
4.83 A rigid bar hinged at point O has a force P applied to it, as shown in Figure P4.83. Bars A and B are made of steel (E = 30,000 ksi). The
cross-sectional areas of bars A and B are AA = 1 in.2 and AB = 2 in.2. If the allowable deflection at point C is 0.01 in. and the allowable stress in
the bars is 25 ksi, determine the maximum force P that can be applied

4.84 The structure at the base of a crane is modeled by the pin-connected structure shown in Figure P4.84. The allowable axial stresses in
members AC and BC are 15 ksi, and the modulus of elasticity is 30,000 ksi. To ensure adequate stiffness at the base, the displacement of pin C
in the vertical direction is to be limited to 0.1 in. Determine the minimum cross-sectional areas for members AC and BC.

4.85 The landing wheel of a plane is modeled as shown in Figure P4.85. The pin at C is in double shear and has an allowable shear stress of
12 ksi. The allowable axial stress for link BC is 30 ksi. Determine the diameter of pin C and the effective cross-sectional area of link BC. (Note:

  Figure P4.81

w

10 ft 20 ft 10 ft

36 ft

Ceiling

A

B C

D

2.0 m0.5 m

50 kN

50 kN

50 mm
100 mm

Aluminum SteelB CA

  Figure P4.82

P

C O

B

A

30 in 42 in

0.005 in

48 in

36 in

Rigid

  Figure P4.83

52o
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F = 75 kips

12 ft

A B

C
C

BA  Figure P4.84
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Attachments at A and B are approximated by pins to simplify analysis. There are two links represented by BC, one on either side of the hydraulic cylinder,
which we are modeling as a single link with an effective cross-sectional area that is to be determined so that the free-body diagram is two-dimensional.).

Stress concentration
4.86 The allowable shear stress in the stepped axial rod shown in Figure P4.86 is 20 ksi. If F = 10 kips, determine the smallest fillet radius
that can be used at section B. Use the stress concentration graphs given in Section C.4.2.

4.87 The fillet radius in the stepped circular rod shown in Figure P4.87 is 6 mm. Determine the maximum axial force F that can act on the
rigid wheel if the allowable axial stress is 120 MPa and the modulus of elasticity is 70 GPa. Use the stress concentration graphs given in Sec-
tion C.4.2.

Fatigue
4.88 The fillet radius is 0.2 mm in the stepped steel circular rod shown in Figure P4.86. What should be the peak value of the cyclic load F to
ensure a service life of one-half million cycles? Use the S–N curve shown in Figure 3.36

4.89 The aluminum axial rod in Figure P4.87 is subjected to a cyclic load F. Determine the peak value of F to ensure a service life of one
million cycles. Use the S–N curves shown in Figure 3.36 and modulus of elasticity E = 70 GPa. 

A B

C

D

36.5o

A B

C

D

32 in.

2 in.

12 in.

18 kips

  Figure P4.85 20o

B

2 in

C

F

  Figure P4.86

60 mm

0.9 m 0.75 m 1.0 m
  Figure P4.87
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MoM in Action: Kansas City Walkway Disaster

On July 17, 1981, nearly 2000 people had gathered to watch a dance competition in the atrium of the Hyatt 
Regency Hotel in Kansas City, Missouri. At 7:05 P.M. a loud, sharp sound was heard throughout the building. Within min-
utes, the second- and fourth floor walkways crashed to the ground, killing 114 people and injuring over 200 others. The 
worst structural failure in the history of United States had taken place. It is a tragic story of multiple design failures – and 
of failure in professional ethics as well.

Three suspended walkways spanned the hotel atrium, a large open area of approximately 117 ft by 145 ft and 50 ft 
high. The fourth- floor walkway was directly above the second-floor walkway, while the third-floor walkway (Figure 
4.33a) was offset 15 ft from the plane of the other two. Each walkway was 120 ft long and 8.6 ft wide, with four 30-ft 
intervals between support steel rods of diameter 1.25 in.   A square box beam was constructed by welding two channel 
beams, and a hole was drilled through for the supporting axial rods, as shown in Figure 4.33b. In the original design (Fig-
ure 4.33b), a single continuous steel axial rod passed through the second- and fourth-floor walkways and was attached to 
the ceiling truss. This design required that the axial rod between the walkways be threaded so that the nuts underneath the 
box beams could be installed. As designed, the fourth-floor connection had to support only loads from the fourth-floor 
walkway, while the ceiling truss would support the total load of the second- and fourth-floor walkways together. 

The first failure in design was that the box-beam connection could support only 60% of the load specified by the 
Kansas City building code. Haven’s Steel Co. did not want to thread the length of the axial rod between second and fourth 
floor, so the design was changed to that shown in Figure 4.33c in which only the ends of the axial rod were threaded. The 
change was approved over the phone, with no recalculation of the new design. This transferred the load of the second floor 
to the box beams of the fourth floor, which thus supported the loads of both walkways at once. This revised design could 
support only 30% of the load specified by code. Further compounding the design failure, the axial rod passed through the 
weld, the weakest structural point in the box beam. Close inspection of the connections would have shown the 
overstressing of the box beam, as was in fact observed in the third-floor walkway (which did not collapse). This inspection 
was not done. 

On that fatal night people stood on the walkways watching the dance competition, with still more spectators on the 
ground floor. The loud noise preceding the crash was the nut punching though the box beam of the fourth-floor walkway. 
First one walkway crashed into the other beneath it, and then the two fell to the ground upon the people below.

Engineers Duncan and Gillium were charged with gross negligence, misconduct, and unprofessional conduct, and 
both their license and their firm’s license to practice were revoked in the states of Missouri and Kansas. The tragedy has 
become a model for the study of engineering design errors and ethics.

  Figure 4.33  Kansas City Hyatt Regency walkways. (a) 3rd floor walkway (Courtesy Dr. Lee Lowery Jr.)(b) Original design connection (c) 
Fabricated design connection.

(a)
4th floor walkway To ceiling

To 2nd floor
walkway

4th floor walkway To ceiling

To 2nd floor
walkway

(b) 
(c) 

Supporting axial rods.
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4.4* INITIAL STRESS OR STRAIN

Members in a statically indeterminate structure may have an initial stress or strain before the loads are applied. These initial
stresses or strains may be intentional or unintentional and can be caused by several factors. A good design must account for these
factors by calculating the acceptable levels of prestress. 

Nuts on a bolt are usually finger-tightened to hold an assembly in place. At this stage the assembly is usually stress free. The
nuts are then given additional turns to pretension the bolts. When a nut is tightened by one full rotation, the distance it moves is
called the pitch. Alternatively, pitch is the distance between two adjoining peaks on the threads. One reason for pretensioning is
to prevent the nuts from becoming loose and falling off. Another reason is to introduce an initial stress that will be opposite in
sign to the stress that will be generated by the loads. For example, a cable in a bridge may be pretensioned by tightening the nut
and bolt systems to counter the slackening in the cable that may be caused due to wind or seasonal temperature changes.

If during assembly a member is shorter than required, then it will be forced to stretch, thus putting the entire structure into a
prestress. Tolerances for the manufacture of members must be prescribed to ensure that the structure is not excessively pre-
stressed.

In prestressed concrete, metal bars are initially stretched by applying tensile forces, and then concrete is poured over these
bars. After the concrete has set, the applied tensile forces are removed. The initial prestress in the bars is redistributed, putting
the concrete in compression. Concrete has good compressive strength but poor tensile strength. After prestressing, the concrete
can be used in situations where it may be subjected to tensile stresses.

EXAMPLE 4.12 

Bars A and B in the assembly shown in Figure 4.34 are made of steel with a modulus of elasticity E = 200 GPa, a cross-sectional area
A = 100 mm2, and a length L = 2.5 m. Bar A is pulled by 3 mm to fill the gap before the force F is applied. (a) Determine the initial axial
stress in both bars. (b) If the applied force F = 10 kN, determine the total axial stress in both bars.

PLAN
(a) We can use the force method to solve the problem. After the gap has been closed, the two bars will be in tension. The degree of static
redundancy for this problem is 1. We can write one compatibility equation and one equilibrium equation of the moment about C and
solve the problem. (b) We can consider calculating the internal forces with just F, assuming the gap has closed and the system is stress
free before F is applied. Bar B will be in compression and bar A will be in tension due to the force F. The internal forces in the bars can
be found as in part (a). The initial stresses in part (a) can be superposed on the stresses due to solely F, to obtain the total axial stresses.

SOLUTION

(a) We draw the free-body diagram of the rigid bars with both bars in tension as shown in Figure 4.35a. By moment equilibrium about
point C we obtain Equation (E1).

1234 (E1)

3 mm
A

1.5 m

C

B

F

2.0 m 3.0 m

  Figure 4.34 Two-bar mechanism in Example 4.12.

NAN
Tensile force

NBN

CxC

CyCC

Tensile force

1.5 m
2.0 m 3.0 m

  Figure 4.35 (a) Free-body diagram (b) Deformed geometry in Example 4.12 part a.

A

B

�B

�A

�D
Extension

Extension

3.0 m

0.0003 m

2.0 mC E D

(a) (b)

NA 5 m( ) NB 2 m( )=
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Figure 4.35b shows the approximate deformed shape. The movement of point E is equal to the deformation of bar B. The movements of
points E and D on the rigid bar can be related by similar triangles to obtain:

(E2)

The sum of extension of bar A and the movement of point D are then equal to the gap:
(E3)

From Equations (E2) and (E3) we obtain
(E4)

The deformation of bars A and B can be written as 

(E5)

(E6)

Substituting Equations (E5) and (E6) into (E4) we obtain 

(E7)
Solving Equations (E1) and (E7), we obtain the internal forces, 

(E8)
The stresses in A and B can now be found:

(E9)

ANS.   

(b) In the calculations that follow, the purpose of the overbars is to distinguish the variables from those in part a. We draw the free-body
diagram of the rigid bars in Figure 4.36a, with bars A in tension and bar B in compression, and by moment equilibrium about point C
obtain 

(E10)

We draw the approximate deformed shape as shown in Figure 4.36b. For this part of the problem the movements of points D and E are
equal to the deformation of the bar. By similar triangles we obtain

(E11)

The relation between deformation and internal forces is as before, as shown in Equations (E5) and (E6). Substituting Equations (E5) and
(E6) into Equation (E11), we obtain

(E12)
Solving Equations (E10) and (E12), we obtain 

(E13)
The stresses in A and B are then

(E14)

The total axial stress can now be obtained by superposing the stresses in Equations (E9) and (E14).
ANS. 

COMMENTS

δD
5 m
---------

δB
2 m
---------=

δD δA+ 0.003 m=

2.5δB δA+ 0.003 m=

δA
NALA
EAAA
--------------

NA 2.5 m( )

200 109( ) N/m2[ ] 100 10 6–( ) m2[ ]
---------------------------------------------------------------------------------- 0.125NA 10 6–( ) m== =

δB
NBLB
EBAB
--------------

NB 2.5 m( )

200 109( ) N/m2[ ] 100 10 6–( ) m2[ ]
---------------------------------------------------------------------------------- 0.125NB 10 6–( ) m== =

2.5 0.125NB 10 6–( ) m( ) 0.125NA 10 6–( ) m+ 0.003 m= or 2.5NB NA+ 24,000=

NA 3310.3 N= NB 8275.9 N=

σA
NA
AA
------- 33.1 106( ) N/m2= = σB

NB
AB
------- 82.7 106( ) N/m2= =

σA = 33.1 MPa T( ) σB = 82.7 MPa T( )

F 6.5 m( ) NA 5 m( )– NB 2 m( )– 0= or 5NA 2NB+ 65 000 N,=

N
–

AN

N
–

BN

Tensile force
CxC

CyCC

Compressive force

1.5 m

F

2.0 m 3.0 m

  Figure 4.36 (a) Free-body diagram; (b) Deformed geometry for part b.

A

B

C E D

�B

�A

Extension

Contraction

3.0 m2.0 m

(a) (b)

δ A
5 m
---------

δ B
2 m
---------=

0.125NB 10 6–( ) 0.4 0.125NA( ) 10 6–( )= or NB 0.4NA=

NA 11.20 103( ) N= NB 4.48 103( ) N=

σ A
NA
AA
------- 112 MPa T( )= = σ B

NB
AB
------- 44.8 MPa C( )= =

σA( )total 145.1 MPa T( )= σB( )total 37.9 MPa T( )=



4  190Mechanics of Materials: Axial MembersM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

1. We solved the problem twice, to incorporate the initial stress (strain) due to misfit and then to account for the external load. Since the
problem is linear, it should not matter how we reach the final equilibrium position. In the next section we will see that it is possible to
solve the problem only once, but it would require an understanding of how initial strain is accounted for in the theory.

2. Consider a slightly different problem. In Figure 4.37, after the nut is finger-tight, it is given an additional quarter turn before the force
F is applied. The pitch of the threads is 12 mm. We are required to find the initial axial stress in both bars and the total axial stress.
The nut moves by pitch times the number of turns—that is, 3 mm. If we initially ignore the force F and bar B, then the movement of
the nut forces the rigid bar to move by the same amount as the gap in Figure 4.34. The mechanisms of introducing the initial strains
are different for the problems in Figures 4.34 and 4.37, but the results of the two problems will be identical at equilibrium. The strain
due to the tightening of a nut may be hard to visualize, but the analogous problem of strain due to misfit can be visualized and used as
an alternative visualization aid.

4.5* TEMPERATURE EFFECTS

Length changes due to temperature variations introduce stresses caused by the constraining effects of other members in a stati-
cally indeterminate structure. There are a number of similarities for the purpose of analysis between initial strain and thermal
strain. Thus we shall rederive our theory to incorporate initial strain. We once more assume that plane sections remain plane and
parallel and we have small strain; that is, Assumptions 1 and 2 are valid. Hence the total strain at any cross section is uniform
and only a function of x, as in Equation (4.4). We further assume that the material is isotropic and linearly elastic—that is,
Assumptions 3 and 4 are valid. We drop Assumption 5 to account for initial strain ε0 at a point and write the stress–strain rela-
tionship as 

(4.22)

Substituting Equation (4.22) into Equation (4.1), assuming that the material is homogeneous and the initial strain ε0 is uniform
across the cross section, we have 

 or (4.23)

(4.24)

Substituting Equation (4.24) into Equation (4.22), we obtain a familiar relationship:

(4.25)

If Assumptions 7 through 9 are valid, and if ε0 does not change with x, then all quantities on the right-hand side of Equation
(4.25) are constant between x1 and x2, and by integration we obtain 

(4.26)

or alternatively,

 Figure 4.37 Problem similar to Example 4.12.

C

A

B

F

DE

εxx xd
du σxx

E
-------- ε0+= =

N E 
xd

du Eε0–⎝ ⎠
⎛ ⎞ Ad

A
∫=

xd
du= E Ad

A
∫ Eε0 Ad

A
∫–

xd
duEA EAε0–=

xd
du N

EA
------- ε0+=

σxx
N
A
----=

u2 u1–
N x2 x1–( )

EA
--------------------------= ε0 x2 x1–( )+
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(4.27)

Equations (4.25) and (4.27) imply that the initial strain affects the deformation but does not affect the stresses. This seemingly para-
doxical result has different explanations for the thermal strains and for strains due to misfits or to pretensioning of the bolts.

First we consider the strain ε0 due to temperature changes. If a body is homogeneous and unconstrained, then no stresses are
generated due to temperature changes, as observed in Section 3.9. This observation is equally true for statically determinate
structures. The determinate structure simply expands or adjusts to account for the temperature changes. But in an indeterminate
structure, the deformation of various members must satisfy the compatibility equations. The compatibility constraints cause the
internal forces to be generated, which in turn affects the stresses.

In thermal analysis  An increase in temperature corresponds to extension, whereas a decrease in temperature cor-

responds to contraction. Equation (4.27) assumes that N is positive in tension, and hence extensions due to ε0 are positive and con-
tractions are negative. However, if on the free-body diagram N is shown as a compressive force, then δ is shown as contraction in
the deformed shape. Consistency requires that contraction due to ε0 be treated as positive and extension as negative in Equation
(4.27). The sign of ε0L due to temperature changes must be consistent with the force N shown on the free-body diagram.

We now consider the issue of initial strains caused by factors discussed in Section 4.4. If we start our analysis with the unde-
formed geometry even when there is an initial strain or stress, then the implication is that we have imposed a strain that is oppo-
site in sign to the actual initial strain before imposing external loads. To elaborate this issue of sign, we put δ = 0 in Equation
(4.27) to correspond to the undeformed state. Also note that N and ε0 must have opposite signs for the two terms on the right-
hand side to combine, yielding a result of zero. But strain and internal forces must have the same sign. For example, if a member
is short and has to be pulled to overcome a gap due misfit, then at the undeformed state the bar has been extended and is in ten-
sion before external loads are applied. The problem can be corrected only if we think of ε0 as negative to the actual initial strain.
Thus prestrains (stresses) can be analyzed by using ε0 as negative to the actual initial strain in Equation (4.27). 

If we have external forces in addition to the initial strain, then we can solve the problem in two ways. We can find the stresses
and the deformation due to initial strain and due to external forces individually, as we did in Section 4.4, and superpose the solution.
The advantage of such an approach is that we have a good intuitive feel for the solution process. The disadvantage is that we have to
solve the problem twice. Alternatively we could use Equation (4.27) and solve the problem once, but we need to be careful with our
signs, and the approach is less intuitive and more mathematical.

EXAMPLE 4.13 

Bars A and B in the mechanism shown in Figure 4.38 are made of steel with a modulus of elasticity E = 200 GPa, a coefficient of thermal
expansion α = 12 μ/°C, a cross-sectional area A = 100 mm2, and a length L = 2.5 m. If the applied force F = 10 kN and the temperature
of bar A is decreased by 100°C, find the total axial stress in both bars.

PLAN
We can use the force method to solve this problem. The problem has 1 degree of redundancy. We can write one compatibility equation
and, using (4.27), get one equation relating the internal forces. By taking the moment about point C in the free-body diagram of the rigid
bar, we can obtain the remaining equation and solve the problem.

SOLUTION
The axial rigidity and the thermal strain are 

δ NL
EA
-------- ε0L+=

ε0 α ΔT.=

1.5 m

C

A

B

F

2.0 m 3.0 m

  Figure 4.38 Two-bar mechanism in Example 4.13.
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(E1)

 (E2)
We draw the free-body diagram of the rigid bar with bar A in tension and bar B in compression as shown in Figure 4.39a. By moment
equilibrium about point C we obtain 

(E3)
We draw the approximate deformed shape in Figure 4.39b. Noting that the movements of points D and E are equal to the deformation of
the bars we obtain from similar triangles

(E4)

The deformations of bars A and B can be written as 

(E5)

(E6)

Substituting Equations (E5) and (E6) into Equation (E4), we obtain 

(E7)
Solving Equations (E3) and (E7), we obtain 

(E8)
Noting that we assumed that bar B is in compression, the sign of NB in Equation (E8) implies that it is in tension. The stresses in A and B
can now be found by dividing the internal forces by the cross-sectional areas.

ANS.

COMMENTS

1. In Figure 4.34 the prestrain in member A is 0.0003 /2.5 = 1200 × 10−6 extension. This means that  Substituting
this value we obtain Equation (E5). Nor will any other equation in this example change for problems represented by Figures 4.34 and
4.37. Thus it is not surprising that the results of this example are identical to those of Example 4.12. But unlike Example 4.12, we
solved the problem only once.

2. It would be hard to guess intuitively that bar B will be in tension, because the initial strain is greater than the strain caused by the
external force F. But this observation is obvious in the two solutions obtained in Example 4.12. 

3. To calculate the initial strain using the method in this example, it is recommended that the problem be formulated initially in terms of
the force F. Then to calculate initial strain, substitute F = 0. This recommendation avoids some of the confusion that will be caused by
a change of the sign of ε0 in the initial strain calculations.

EA 200 109( ) N/m2[ ] 100 10 6–( ) m2[ ] 20 106( ) N==

ε0 α ΔT 12 10 6–( ) 100–( ) -1200 10 6–( )== =

F 6.5 m( ) NA 5 m( )– NB 2 m( )– 0= or 5NA 2NB+ 65 103( ) N=

δA
5 m
---------

δB
2 m
---------=

N
–

AN

N
–

BN

Tensile force
CxC

CyCC

Compressive force

1.5 m

F

2.0 m 3.0 m

 Figure 4.39 Free-body diagram in Example 4.13.

A

B

C E D

�B

�A

Extension

Contraction

3.0 m2.0 m

(a) (b)

δA
NALA
EAAA
-------------- ε0LA+

NA 2.5 m( )

20 106( ) 
-------------------------- 1200 2.5 m( ) 10 6–( )– 0.125NA 3000–( )10 6–  m= = =

δB
NBLB
EBAB
--------------

NB 2.5 m( )

20 106( )
-------------------------- 0.125NB 10 6–( ) m= = =

0.125NB 10 6–( ) m 0.4 0.125NA 3000–( )10 6–  m= or NB 0.4NA 9600–=

NA 14.51 103( ) N= NB 3.79– 103( ) N=

σA 145.1 MPa=  T( ) σB 37.9 MPa=  T( )

ε0 1200– 10× 6– .=
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PROBLEM SET 4.4

Initial strains
4.90 During assembly of a structure, a misfit between bar A and the attachment of the rigid bar was found, as shown in Figure P4.90. If bar
A is pulled and attached, determine the initial stress introduced due to the misfit. The modulus of elasticity of the circular bars A and B is E =
10,000 ksi and the diameter is 1 in.

4.91 Bar A was manufactured 2 mm shorter than bar B due to an error. The attachment of these bars to the rigid bar would cause a misfit of
2 mm. Calculate the initial stress for each assembly, shown in Figure P4.91. Which of the two assembly configurations would you recommend?
Use a modulus of elasticity E = 70 GPa and a diameter of 25 mm for the circular bars.

4.92 A steel bolt is passed through an aluminum sleeve as shown in Figure P4.92. After assembling the unit by finger-tightening (no deforma-

tion) the nut is given a  turn. If the pitch of the threads is 3.0 mm, determine the initial axial stress developed in the sleeve and the bolt. The mod-

uli of elasticity for steel and aluminum are Est = 200 GPa and Eal = 70 GPa and the cross-sectional areas are Ast = 500 mm2 and Aal = 1100 mm2.

4.93 The rigid bar shown in Figure P4.93 is horizontal when the unit is put together by finger-tightening the nut. The pitch of the threads is
0.125 in. The properties of the bars are listed in Table 4.93. Develop a table in steps of quarter turns of the nut that can be used for prescribing
the pretension in bar B. The maximum number of quarter turns is limited by the yield stress. 

40 in

A

C

B

0.05 in
60 in

60 in 80 in

  Figure P4.90

(a)

A B 2 m

2 mm

1.5 m 1.5 m

C

  Figure P4.91

C

(b)

AB2 m

2 mm

1.5 m 1.5 m

1
4
---

  Figure P4.92

Sleeve
Rigid washers

300 mm
25 mm 25 mm

A B

Rigid

5 in 15 in

50 in

 Figure P4.93

TABLE P4.93 Material properties

Bar A Bar B

Modulus of elasticity 10,000 ksi 30,000 ksi

Yield stress 24 ksi 30 ksi

Cross-sectional area 0.5 in2 0.75 in2
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Temperature effects

4.94 The temperature for the bar in Figure P4.94 increases as a function of x: . Determine the axial stress and the movement

of a point at x = L / 2 in terms of the length L, the modulus of elasticity E, the cross-sectional area A, the coefficient of thermal expansion α, and
the increase in temperature at the end TL. 

4.95 The temperature for the bar in Figure P4.95 increases as a function of x: . Determine the axial stress and the movement

of a point at x = L / 2 in terms of the length L, the modulus of elasticity E, the cross-sectional area A, the coefficient of thermal expansion α, and
the increase in temperature at the end TL.

4.96 The tapered bar shown in Figure P4.96 has a cross-sectional area that varies with x as  If the temperature of the bar

increases as  determine the axial stress at midpoint in terms of the length L, the modulus of elasticity E, the cross-sectional

area A, the parameter K, the coefficient of thermal expansion α, and the increase in temperature at the end TL.

4.97 Three metallic rods are attached to a rigid plate, as shown in Figure P4.97. The temperature of the rods is lowered by 100°F after the
forces are applied. Assuming the rigid plate does not rotate, determine the movement of the rigid plate. The material properties are listed in
Table 4.98.

4.98 Solve Problem 4.92 assuming that in addition to turning the nut, the temperature of the assembled unit is raised by 40°C. The coeffi-
cients of thermal expansion for steel and aluminum are αst = 12 μ/ °C and αal = 22.5 μ / °C.

4.99 Determine the axial stress in bar A of Problem 4.93 assuming that the nut is turned 1 full turn and the temperature of bar A is decreased
by 80°F. The coefficient of thermal expansion for bar A is αst = 22.5 μ / °F.

4.6* STRESS APPROXIMATION

Many applications are based on strength design. As was demonstrated in Examples 1.4 and 1.5, we can obtain stress formulas
starting with a stress approximation across the cross section and use these in strength design. But how do we deduce a stress
behavior across the cross section? In this section we consider the clues that we can use to deduce approximate stress behavior.

TABLE P4.98 Material properties

Area 
(in.2)

E
(ksi)

α 
(10–6/°F)

Aluminum 4 10,000 12.5

Steel 1 4 30,000 6.6

Steel 2 12 30,000 6.6

ΔT TLx2 L2⁄=

L  Figure P4.94

ΔT TLx2 L2⁄=

L  Figure P4.95

A K L 0.5x–( )2.=

ΔT TLx2 L2⁄ ,=

x

L  Figure P4.96

6500 lb

6500 lb
100 in 100 in

  Figure P4.97
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In Section 4.7 we will show how to apply these ideas to thin-walled pressure vessels. Section 5.4 on the torsion of thin-walled
tubes is another application of the same ideas. 

Think of each stress component as a mathematical function to be approximated. The simplest approximation of a function
(the stress component) is to assume it to be a constant, as was done in Figure 1.16a and b. The next level of complexity is to
assume a stress component as a linear function, as was done in Figure 1.16c and d. If we continued this line of thinking, we
would next assume a quadratic or higher-order polynomial. The choice of a polynomial for approximating a stress component is
dictated by several factors, some of which are discussed in this section.

4.6.1 Free Surface

A segment of a body that has no forces acting on the surface is shown in Figure 4.40. If we consider a point on the surface
and draw a stress cube, then the surface with the outward normal in the z direction will have no stresses, and we have a sit-
uation of plane stress at that point. Because the points on which no forces are acting can be identified by inspection, these
points provide us with a clue to making assumptions regarding stress behavior, as will be demonstrated next.

The drill shown in Figure 4.41 has point A located just outside the material that is being drilled. Point A is on a free surface,
hence all stress components on this surface, including the shear stress, must go to zero. Point B is at the tip of the drill, the point
at which the material is being sheared off, that is, at point B the shear stress must be equal to the shear strength of the material.
Now we have two points of observation. The simplest curve that can be fitted through two points is a straight line. A linear
approximation of shear stress, as shown in Figure 4.41, is a better approximation than the uniform behavior we assumed in
Example 1.6. It can be confirmed that with linear shear stress behavior, the minimum torque will be 188.5 in. · kips, which is half
of what we obtained in Example 1.6. Only experiment can confirm whether the stress approximation in Figure 4.41 is correct. If
it is not, then the experimental results would suggest other equations to consider. 

4.6.2 Thin Bodies

The smaller the region of approximation, the better is the accuracy of the analytical model. If the dimensions of a cross sec-
tion are small compared to the length of the body, then assuming a constant or a linear stress distribution across the cross section
will introduce small errors in the calculation of internal forces and moments, such as in pins discussed in Section 1.1.2. We now

xxxx

zzzz

  Figure 4.40 Free surface and plane stress.

TT

Free surface

�

ksik

 Figure 4.41 Using free surface to guide stress approximation.
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consider another small region of approximation, termed thin bodies. A body is called thin if its thickness is an order of magni-
tude (factor of 10) smaller than the other dimensions. 

Figure 4.42 shows a segment of a plate with loads in the x and y directions. The top and bottom surfaces of the plate are free
surfaces, that is, plane stress exists on both surfaces. This does not imply that a point in the middle of the two surfaces is also in
a state of plane stress, but if the plate is thin compared to its other dimensions then to simplify analysis, it is reasonable to
assume that the entire plate is in plane stress. The other stress components are usually assumed uniform or linear in the thickness
direction in thin bodies.

The assumption of plane stress is made in thin bodies even when there are forces acting on one of the surfaces in the thick-
ness direction. The assumption is justified if the maximum stresses in the xy plane turn out to be an order of magnitude greater
than the applied distributed load. But the validity of the assumption can be checked only after the stress formula has been devel-
oped. Some examples of thin bodies are the skin of an aircraft, the floors and ceilings of buildings, and thin-walled cylindrical or
spherical pressure vessels. 

4.6.3 Axisymmetric Bodies

A body whose geometry, material properties, and loading are symmetric with respect to an axis is called an axisymmetric body.
The stress components which are produced cannot depend upon the angular location in an axisymmetric body. In other words,
the stress components must also be symmetric with respect to the axis. By using this argument of axisymmetry in thin bodies, we
can get good stress approximation, as will be demonstrated by a simple example below and further elaborated in Section 4.7.

Consider all the stress components acting in the adhesive layer between two thin cylinders subjected to a torque, as shown
in Figure 4.43. The shear stress in the radial direction τxr is assumed to be zero because the symmetric counterpart of this shear
stress, τrx, has to be zero on the inside and outside free surfaces of this thin body. Because the problem is axisymmetric, the nor-
mal stress σxx and the tangential shear stress τxθ cannot depend on the angular coordinate. But a uniform axial stress σxx would
produce an internal axial force. Because no external axial force exists, we approximate the axial stress as zero. Because of thin-
ness, the tangential shear stress τxθ is assumed to be constant in the radial direction. In Example 1.6 we developed the stress for-
mula relating τxθ to the applied torque. In Section 5.4, in a similar manner, we shall deduce the behavior of the shear stress
distribution in thin-walled cylindrical bodies of arbitrary cross sections.

4.6.4 Limitations

All analytical models depend on assumptions and are approximations. They are mathematical representations of nature and have
errors in their predictions. Whether the approximation is acceptable depends on the accuracy needed and the experimental results. If
all we are seeking is an order-of-magnitude value for stresses, then assuming a uniform stress behavior in most cases will give us an

x

z

y

Free surface

Free surface  Figure 4.42 Plane stress assumption in thin plates.

Adhesive

R

T

T

t
stress

�x� �
Free surface, �rx � 0 Zero normal stress �xx� ,

no axial force

Zero shear stress �xr�
because of body

�xr� � �rx

�rx � 0

T

  Figure 4.43 Deducing stress behavior in adhesively bonded thin cylinders.
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adequate answer. But constructing sophisticated models based on stress approximation alone is difficult, if not impossible. Further,
an assumed stress distribution may correspond to a material deformation that is physically impossible. For example, the approxima-
tion might require holes or corners to form inside the material. Another difficulty is validating the assumption. We need to approxi-
mate six independent stress components, which are difficult to visualize and, being internal, cannot be measured directly. These
difficulties can be overcome by approximating not the stress but the displacement that can be observed experimentally as discussed
in Section 3.2.

We conclude this section with the following observations:

1. A point is in plane stress on a free surface.
2. Some of the stress components must tend to zero as the point approaches the free surface.
3. A state of plane stress may be assumed for thin bodies.
4. Stress components may be approximated as uniform or linear in the thickness direction for thin bodies.
5. A body that has geometry, material properties, and loads that are symmetric about an axis must have stresses that are

also symmetric about the axis.

4.7* THIN-WALLED PRESSURE VESSELS

Cylindrical and spherical pressure vessels are used for storage, as shown in Figure 4.44, and for the transportation of fluids and
gases. The inherent symmetry and the assumption of thinness make it possible to deduce the behavior of stresses to a first
approximation. The argument of symmetry implies that stresses cannot depend on the angular location. By limiting ourselves to
thin walls, we can assume uniform radial stresses in the thickness direction. The net effect is that all shear stresses in cylindrical
or spherical coordinates are zero, the radial normal stress can be neglected, and the two remaining normal stresses in the radial
and circumferential directions are constant. The two unknown stress components can be related to pressure by static equilibrium.

The “thin-wall” limitation implies that the ratio of the mean radius R to the wall thickness t is greater than 10. The higher the
ratio of R /t, the better is the prediction of our analysis.

4.7.1 Cylindrical Vessels

Figure 4.45 shows a thin cylinder subjected to a pressure of p. The stress element on the right in Figure 4.45 shows the stress
components in the cylindrical coordinate system (r, θ, x) on four surfaces. The outer surface of the cylinder is stress free. Hence
the shear stresses τrθ and τrx and the normal stress σrr are all zero on the outer surface (at A). On the inner surface (at B) there is
only a radial force due to pressure p, but there are no tangential forces. Hence on the inner surface the shear stresses τrθ and τrx

are zero. Since the wall is thin, we can assume that the shear stresses τrθ and τrx are zero across the thickness. The radial normal
stress varies from a zero value on the outer surface to a value of the pressure on the inner surface. At the end of our derivation
we will justify that the radial stress σrr can be neglected as it is an order of magnitude less than the other two normal stresses σxx

and σθθ,. A nonzero value of τθx will either result in a torque or movement of points the θ direction. Since there is no applied

(a) (b)
  Figure 4.44 Gas storage tanks.
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torque, and the movement of a point cannot depend on the angular location because of symmetry, we conclude that the shear
stress τθx is zero.

Thus all shear stresses are zero, while the radial normal stress is neglected.The axial stress σxx and the hoop stress σθθ

are assumed uniform across the thickness and across the circumference, as these cannot depend upon angular location. Fig-
ure 4.67a shows this state of stress. We could start with a differential element and find the internal forces by integrating σxx

and σθθ over appropriate areas. But as these two stresses are uniform across the entire circumference, we can reach the
same conclusions by considering two free-body diagrams shown in Figure 4.46b and c.
By equilibrium of forces on the free-body diagram in Figure 4.46b, we obtain  or

(4.28)

By equilibrium of forces on the free-body diagram in Figure 4.46c we obtain  or

(4.29)

With R/t > 10 the stresses σxx and σθθ are greater than the maximum value of radial stress σrr (=p) by factors of at least 5 and 10,
respectively. This justifies our assumption of neglecting the radial stress in our analysis.

The axial stress σxx and the hoop stress σθθ are always tensile under internal pressure. The formulas may be used for small
applied external pressure but with the following caution. External pressure causes compressive normal stresses that can
cause the cylinder to fail due to buckling. The buckling phenomenon is discussed in Chapter 11.

Although the normal stresses are assumed not to vary in the circumferential or thickness direction, our analysis does not
preclude variations in the axial direction (x direction). But the variations in the x direction must be gradual. If the variations are
very rapid, then our assumption that stresses are uniform across the thickness will not be valid, as can be shown by a more rigor-
ous three-dimensional elasticity analysis.

�r � � � 0

x

D

B �x� �
��� r

� x

xx

�xr�

����

�rr

Free surface,
�rr � 0; rx � 0; �r� � 0

Zero because of thin body
and �xr� � �rx

Zero because of
axisymmetry and
no torque

� x � �x� �

Zero because

�r �r�r  Figure 4.45 Stress element in cylindrical coordinates.

2σθθ t dx( ) p 2R( ) dx,=

σθθ
pR
t

-------=

σxx 2πR( ) t( ) p πR2( ),=

σxx
pR
2t
-------=

�

����

r

x

dx

t

2R

���� (t) dx

p(2R) dx

���� (t) dx

�xx� (2�� )(t)

p(�R�� 2)

(a) (b) (c)

  Figure 4.46 Stress analysis in thin cylindrical pressure vessels.
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4.7.2 Spherical Vessels

We use the spherical coordinate system (r, θ, φ) for our analysis, as shown in Figure 4.47a. Proceeding in a manner similar
to the analysis of cylindrical vessels, we deduce the following:

1. All shear stresses are zero:

(4.30)

2. Normal radial stress σrr varies from a zero value on the outside to the value of the pressure on the inside. We will once
more neglect the radial stress in our analysis and justify it posterior.

3. The normal stresses σθθ and σφφ are equal and are constant over the entire vessel. We set 

As all imaginary cuts through the center are the same, we consider the free-body diagram shown in Figure 4.47b. By
equilibrium of forces we obtain  pπR2, or

(4.31)

With R/t > 10 the normal stress σ is greater than the maximum value of radial stress σrr (= p) by a factor of at least 5. This justi-
fies our assumption of neglecting the radial stress in our analysis. At each and every point the normal stress in any circumferen-
tial direction is the same for thin spherical pressure vessels.

EXAMPLE 4.14 

The lid is bolted to the tank in Figure 4.48 along the flanges using 1-in.-diameter bolts. The tank is made from sheet metal that is  in.

thick and can sustain a maximum hoop stress of 24 ksi in tension. The normal stress in the bolts is to be limited to 60 ksi in tension. A
manufacturer can make tanks of diameters from 2 ft to 8 ft in steps of 1 ft. Develop a table that the manufacturer can use to advise cus-
tomers of the size of tank and the number of bolts per lid needed to hold a desired gas pressure.

PLAN
Using Equation (4.28) we can establish a relationship between the pressure p and the radius R (or diameter D) of the tank through the
limiting value on hoop stress. We can relate the number of bolts needed by noting that the force due to pressure on the lid is carried
equally by the bolts.

τrφ τφr 0= = τrθ τθr 0= = τθφ τφθ 0= =

σθθ σφφ σ.= =

�(2�� )(t)

(a) (b)

x

y

z

p(�R�� 2)

t

22RR

 Figure 4.47 Stress analysis in thin spherical coordinates.

σ 2πR( ) t( ) =

σ pR
2t
-------=

1
2
---

  Figure 4.48 Cylindrical tank in Example 4.14.
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SOLUTION
The area of the bolts can be found as shown in (E1).

 (E1)
From Equation (4.28) we obtain (E2).

(E2)

Figure 4.49 shows the free-body diagram of the lid. By equilibrium of forces we obtain (E3). 

(E3)

Substituting (E3) into (E2) we obtain (E4).

(E4)

We consider the values of D from 24 in to 96 in. in steps of 12 in and calculate the values of p and n from Equations (E2) and (E4). We
report the values of p by rounding downward to the nearest integer that is a factor of 5, and the values of n are reported by rounding
upward to the nearest integer, as given in Table 4.2.

COMMENT
1. We rounded downwards for p and upwards for n to satisfy the inequalities of Equations (E2) and (E4). Intuitively we know that

smaller pressure and more bolts will result is a safer pressure tank.

PROBLEM SET 4.5

Thin-walled pressure vessels
4.100 Fifty rivets of 10-mm diameter are used for attaching caps at each end on a 1000-mm mean diameter cylinder, as shown in Figure
P4.100. The wall of the cylinder is 10 mm thick and the gas pressure is 200 kPa. Determine the hoop stress and the axial stress in the cylinder
and the shear stress in each rivet.

TABLE 4.2 Results of Example 4.14

Tank Diameter D
(ft)

Maximum Pressure p
(psi)

Minimum Number 
of Bolts n

2 1000 10

3 665 15

4 500 20

5 400 24

6 330 30

7 280 34

8 250 39

Abolt π 1 in.( )2 4⁄ π 4⁄( ) in.2==

σθθ
pR

1 2⁄
---------- 24,000 psi≤= or p 24 000,

D
------------------ psi≤

nNbolt Nlid= or nσbolt
π
4
---⎝ ⎠

⎛ ⎞ p πR2( )= or σbolt
4pR2

n
------------≤ or σbolt

pD2

n
---------- 60,000≤=

NboltNN � �bolt�� (A(( bolt) � ��bolt�4��

NN � (�R�� 2)

  Figure 4.49 Relating forces in bolts and lid in Example 4.14.

24 000D,
n

---------------------- 60,000≤ or n 0.4D≥

  Figure P4.100
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4.101 A pressure tank 15 ft long and with a mean diameter of 40 in is to be fabricated from a -in.-thick sheet. A 15-ft-long, 8-in.-wide, -in.-

thick plate is bonded onto the tank to seal the gap, as shown in Figure P4.101. What is the shear stress in the adhesive when the pressure in the
tank is 75 psi? Assume uniform shear stress over the entire inner surface of the attaching plate.

Design problems

4.102 A 5-ft mean diameter spherical tank has a wall thickness of  in. If the maximum normal stress is not to exceed 10 ksi, determine the

maximum permissible pressure.

4.103 In a spherical tank having a 500-mm mean radius and a thickness of 40 mm, a hole of 50-mm diameter is drilled and then plugged
using adhesive of 1.2-MPa shear strength to form a safety pressure release mechanism (Figure P4.103). Determine the maximum allowable
pressure and the corresponding hoop stress in the tank material.

4.104 A 20-in. mean diameter pressure cooker is to be designed for a 15-psi pressure (Figure P4.104). The allowable normal stress in the

cylindrical pressure cooker is to be limited to 3 ksi. Determine the minimum wall thickness of the pressure cooker. A -lb weight on top of the

nozzle is used to control the pressure in the cooker. Determine the diameter d of the nozzle.

4.105 The cylindrical gas tank shown in Figure P4.105 is made from 8-mm-thick sheet metal and must be designed to sustain a maximum
normal stress of 100 MPa. Develop a table of maximum permissible gas pressures and the corresponding mean diameters of the tank in steps of
100 mm between diameter values of 400 mm and 900 mm.

4.106 A pressure tank 15 ft long and a mean diameter of 40 in. is to be fabricated from a -in.-thick sheet. A 15-ft-long, 8-in.-wide, -in.-thick

plate is to be used for sealing the gap by using two rows of 90 rivets each. If the shear strength of the rivets is 36 ksi and the normal stress in the
tank is to be limited to 20 ksi, determine the maximum pressure and the minimum diameter of the rivets that can be used.

1
2
--- 1

2
---

  Figure P4.101

3
4
---

  Figure P4.103

1
2
---

  Figure P4.104

  Figure P4.105

1
2
--- 1

2
---

 Figure P4.106
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4.107 A pressure tank 5 m long and a mean diameter of 1 m is to be fabricated from a 10 mm thick sheet as shown in Figure P4.106. A 5 m-long,
200 mm wide, 10-mm-thick plate is to be used for sealing the gap by using two rows of 100 rivets each. The shear strength of the rivets is
300 MPa and the yield strength of the tank material is 200 MPa. Determine the maximum pressure and the minimum diameter of the rivets to
the nearest millimeter that can be used for a factor of safety of 2.

4.8* CONCEPT CONNECTOR

The finite-element method (FEM) is a popular numerical technique for the stress and deformation analysis of planes, ships, auto-
mobiles, buildings, bridges, machines, and medical implants, as well as for earthquakes predictions. It is used in both static and
dynamic analysis and both linear and nonlinear analysis as well. A whole industry is devoted to developing FEM software, and
many commercial packages are already available, including software modules in computer-aided design (CAD), computer-aided
manufacturing (CAM), and computer-aided engineering (CAE). This section briefly describes the main ideas behind one version
of FEM.

4.8.1 The Finite Element Method

In the stiffness method FEM is based on the displacement method, while in the flexibility method it is based on the force
method. Most commercial FEM software is based on the displacement method.

In the displacement method, the unknowns are the displacements of points called nodes, and a set of linear equations rep-
resents the force equilibrium at the nodes. For example, the unknowns could be the displacements of pins in a truss, and the
linear equations could be the equilibrium equations at each joint written in terms of the displacements. In FEM, however, the
equilibrium equations are derived by requiring that the nodal displacements minimize the potential energy of the structure.
First equations are created for small, finite elements whose assembly represents the body, and these lead to equations for the
entire body. It is assumed that the displacement in an element can be described by a polynomial. Figure 4.50 shows the linear
and quadratic displacements in a one-dimensional rod.

The constants ai in the polynomials can be found in terms of the nodal displacement values ui and nodal coordinates xi as
shown in Figure 4.50. The polynomial functions φi that multiply the nodal displacements are called interpolation functions,
because we can now interpolate the displacement values from the nodal values. Sometimes the same polynomial functions are
also used for representing the shapes of the elements. Then the interpolation functions are also referred to as shape functions.
When the same polynomials represent the displacement and the shape of an element, then the element is called an
isoparametric element.

Quadratic element

Node 1 Node 2 Node 3

x

Node 1

Linear element

x

Node 2

u x( ) a0 a1x+=

u x( ) u1

x x2–
x1 x2–
----------------

⎝ ⎠
⎛ ⎞ u2

x x1–
x2 x1–
----------------

⎝ ⎠
⎛ ⎞+=

u x( ) u1φ1 x( ) u2φ2 x( )+=

u x( ) a0 a1x+= a2x2+

u x( ) u1

x x2–
x1 x2–
----------------

⎝ ⎠
⎛ ⎞

x x3–
x1 x3–
----------------

⎝ ⎠
⎛ ⎞ u2

x x1–
x2 x1–
----------------

⎝ ⎠
⎛ ⎞

x x3–
x2 x3–
----------------

⎝ ⎠
⎛ ⎞+=

u+ 3

x x1–
x3 x1–
----------------

⎝ ⎠
⎛ ⎞

x x2–
x3 x2–
----------------

⎝ ⎠
⎛ ⎞

u x( ) u1φ1 x( ) u2φ2 x( )+= u3φ3 x( )+
  Figure 4.50

Linear triangular element

u(x, y) a0 � a x � a2y22

Bilinear rectangular element

u(x, y) a0 � a1x a22 � 3xy

Brick element

u(x, , z) �
a 7xyz

Isoparametric triangular element

u(x, y) a0 a1 � a2y22 a3x2 a44 � a5y2

Figure 4.51 Examples of elements in finite-element method.
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Figure 4.51 shows some popular elements in two and three dimensions. Strains from the displacements can be found by
using Equations (2.9a) through (2.9i). The strains are substituted into potential energy, which is then minimized to generate the
algebraic equations. 

A FEM program consists of three major modules: 

1. In first module, called the pre-processor, the user: creates the geometry; creates a mesh which the discretized geometry
of elements; applies loads; and applies the boundary conditions. Figure 4.52 shows a finite-element mesh for a bracket
constructed using three-dimensional tetrahedron elements. The bottom of the bracket is welded to another member.
The load that is transferred through the bolt must be measured or estimated before a solution can be found. The bottom
of the bracket is then modeled as points with zero displacements. 

2. In the second module called solver the algebraic equations are created and solved. Once the nodal displacements
solved are know then stresses are obtained.

3. In the third module called the post-processor the results of displacements and stresses are displayed in a variety of
forms that are specified by the user.

4.9 CHAPTER CONNECTOR

In this chapter we established formulas for deformations and stresses in axial members. We saw that the calculation of stresses
and relative deformations requires the calculation of the internal axial force at a section. For statically determinate axial
members, the internal axial force can be calculated either (1) by making an imaginary cut and drawing an appropriate free-
body diagram or (2) by drawing an axial force diagram.

In statically indeterminate structures there are more unknowns than there are equilibrium equations. Compatibility
equations have to be generated from approximate deformed shapes to solve a statically indeterminate problem. In the
displacement method the equilibrium and compatibility equations are written either in terms of the deformation of axial
members or in terms of the displacements of points on the structure, and the set of equations is solved. In the force method the
equilibrium and compatibility equations are written either in terms of internal forces in the axial members or in terms of the
reactions at the support of the structure, and the set of equations is again solved.

In Chapter 8, on stress transformation, we shall consider problems in which we first find the axial stress using the stress
formula in this chapter and then find stresses on inclined planes, including planes with maximum shear stress. In Chapter 9,
on strain transformation, we shall find the axial strain and the strains in the transverse direction due to Poisson’s effect. We
will then consider strains in different coordinate systems, including coordinate systems in which shear strain is a maximum. In
Section 10.1 we shall consider the combined loading problems of axial, torsion, and bending and the design of simple struc-
tures that may be determinate or indeterminate.

  Figure 4.52 Finite-element mesh of bracket. (Courtesy Professor C. R. Vilmann.)

Load transfer 
through a bolt.

Welded to a member
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POINTS AND FORMULAS TO REMEMBER

• Theory is limited to (i) slender members, (ii) regions away from regions of stress concentration, (iii) members in which 
the variation in cross-sectional areas and external loads is gradual, (iv) members on which axial load is applied such that 
there is no bending.

• (4.1) (4.3) Small strain (4.4)

• where u is the axial displacement, which is positive in the positive x direction, εxx is the axial strain, σxx is the axial stress,
and N is the internal axial force over cross section A.

• Axial strain εxx is uniform across the cross section.
• Equations (4.1), (4.3), and (4.4) do not change with material model.
• Formulas below are valid for material that is linear, elastic, isotropic, with no inelastic strains:
• Homogeneous cross-section:

• (4.7) (4.8) (4.10)

• where EA is the axial rigidity of the cross section. 
• If N, E, or A change with x, then find deformation by integration of Equation (4.7).
• If N, E, and A do not change between x1 and x2, then use Equation (4.10) to find deformation.
• For homogeneous cross sections all external loads must be applied at the centroid of the cross section, and centroids of all

cross sections must lie on a straight line.

•Structural analysis: (4.21)

• where δ is the deformation in the original direction of the axial bar.
• If N is a tensile force, then δ is elongation. If N is a compressive force, then δ is contraction. 
• Degree of static redundancy is the number of unknown reactions minus the number of equilibrium equations.
• If degree of static redundancy is not zero, then we have a statically indeterminate structure.
• Compatibility equations are a geometric relationship between the deformation of bars derived from the deformed shapes

of the structure.
• The number of compatibility equations in the analysis of statically indeterminate structures is always equal to the degree

of redundancy.
• The direction of forces drawn on the free-body diagram must be consistent with the deformation shown in the deformed

shape of the structure.
• The variables necessary to describe the deformed geometry are called degrees of freedom.
• In the displacement method, the displacements of points are treated as unknowns. The number of unknowns is equal to

the degrees of freedom.
• In the force method, reaction forces are the unknowns. The number of unknowns is equal to the degrees of redundancy.

N σxx Ad
A

∫= u u x( )= εxx
du x( )

dx
--------------=

xd
du N

EA
-------= σxx

N
A
----= u2 u1–

N x2 x1–( )
EA

--------------------------=

δ NL
EA
--------=
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CHAPTER FIVE

TORSION OF SHAFTS

Learning objectives

1. Understand the theory, its limitations, and its applications in design and analysis of torsion of circular shafts.
2. Visualize the direction of torsional shear stress and the surface on which it acts.

_______________________________________________

When you ride a bicycle, you transfer power from your legs to the pedals, and through shaft and chain to the rear wheel. In a car,
power is transferred from the engine to the wheel requiring many shafts that form the drive train such as shown in Figure 5.1a. A
shaft also transfers torque to the rotor blades of a helicopter, as shown in Figure 5.1b. Lawn mowers, blenders, circular saws, drills—
in fact, just about any equipment in which there is circular motion has shafts.

Any structural member that transmits torque from one plane to another is called a shaft. This chapter develops the simplest
theory for torsion in circular shafts, following the logic shown in Figure 3.15, but subject to the limitations described in Section
3.13. We then apply the formulas to the design and analysis of statically determinate and indeterminate shafts.

5.1 PRELUDE TO THEORY

As a prelude to theory, we consider several numerical examples solved using the logic discussed in Section 3.2. Their solution
will highlight conclusions and observations that will be formalized in the development of the theory in Section 5.2.

• Example 5.1 shows the kinematics of shear strain in torsion. We apply the logic described in Figure 3.15, for the case of
discrete bars attached to a rigid plate.

• Examples 5.2 and 5.3 extend the of calculation of shear strain to continuous circular shafts. 
• Example 5.4 shows how the choice of a material model affects the calculation of internal torque. As we shall see the

choice affects only the stress distribution, leaving all other equations unchanged. Thus the strain distribution, which is
a kinematic relationship, is unaffected. So is static equivalency between shear stress and internal torque, and so are the
equilibrium equations relating internal torques to external torques. Though we shall develop the simplest theory using
Hooke’s law, most of the equations here apply to more complex models as well.

(a) (b)

 Figure 5.1 Transfer of torques between planes.
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EXAMPLE 5.1 

The two thin bars of hard rubber shown in Figure 5.2 have shear modulus G = 280 MPa and cross-sectional area of 20 mm2. The bars are
attached to a rigid disc of 20-mm radius. The rigid disc is observed to rotate about its axis by an angle of 0.04 rad due to the applied
torque Text. Determine the applied torque Text.

PLAN
We can relate the rotation (Δφ = 0.04) of the disc, the radius (r = 0.02 m) of the disc, and the length (0.2 m) of the bars to the shear strain
in the bars as we did in Example 2.7. Using Hooke’s law, we can find the shear stress in each bar. By assuming uniform shear stress in
each bar, we can find the shear force. By drawing the free-body diagram of the rigid disc, we can find the applied torque Text.

SOLUTION
1. Strain calculations: Figure 5.3 shows an approximate deformed shape of the two bars. By symmetry the shear strain in bar C will be

same as that in bar A. The shear strain in the bars can be calculated as in Example 2.7:

(E1)

(E2)

2. Stress calculations: From Hooke’s law we can find the shear stresses as

(E3)

(E4)
3. Internal forces: We obtain the shear forces by multiplying the shear stresses by the cross-sectional area :

(E5)

(E6)

4. External torque: We draw the free-body diagram by making imaginary cuts through the bars, as shown in Figure 5.4. By equilibrium
of moment about the axis of the disc through O, we obtain Equation (E7).

B

20 mm

C

A

T

200 mm

  Figure 5.2 Geometry in Example 5.1.

ext

BB1 0.02 m( )  Δφ 0.0008 m= =  γAtan γA≈
BB1

AB
---------- 0.004 rad==

γC γA 0.004 rad= =

D

B1

r ��

r ��

B

C

A

��

O

�A

E

  Figure 5.3 Exaggerated deformed geometry: (a) 3-D; (b) Top view; (c) Side view.

(a)
(b)

(c)

O

B
B1

r

rΔφ

Δφ

B1B

A

γA

τA GAγA 280 106( ) N/m2[ ] 0.004( ) 1.12 106( )   N/m2= = =

τC GCγC 280 106( )  N/m2[ ] 0.004( ) 1.12 106( )   N/m2= = =

A 20 10 6–×  m2=

VA AAτA 1.12 106( )   N/m2[ ] 20 10 6–( )  m2[ ] 22.4 N= = =

VC ACτC 1.12 106( )   N/m2[ ] 20 10 6–( )  m2[ ] 22.4 N= = =

VA
VC

r � 0.02 m

r � 0.02 m

T

  Figure 5.4 Free-body diagram: (a) 3-D; (b) Top view.

ext

O

Text

VA

VC

(a)
(b)

r
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(E7)
ANS. Text = 0.896 N · m

COMMENTS
1. In Figure 5.3 we approximated the arc BB1 by a straight line, and we approximated the tangent function by its argument in Equation (E1).

These approximations are valid only for small deformations and small strains. The net consequence of these approximations is that the
shear strain along length AB1 is uniform, as can be seen by the angle between any vertical line and line AB1 at any point along the line. 

2. The shear stress is assumed uniform across the cross section because of thin bars, but it is also uniform along the length because of the
approximations described in comment 1.

3. The shear stress acts on a surface with outward normal in the direction of the length of the bar, which is also the axis of the disc. The
shear force acts in the tangent direction to the circle of radius r. If we label the direction of the axis x, and the tangent direction θ, then
the shear stress is represented by τxθ, as in Section 1.2

4. The sum in Equation (E7) can be rewritten as , where τ is the shear stress acting at the radius r, and ΔAi is the cross-sec-

tional area of the i th bar. If we had n bars attached to the disc at the same radius, then the total torque would be given by 

As we increase the number of bars n to infinity, the assembly approaches a continuos body. The cross-sectional area ΔAi becomes the
infinitesimal area dA, and the summation is replaced by an integral. We will formalize the observations in Section 5.1.1.

5. In this example we visualized a circular shaft as an assembly of bars. The next two examples further develop this idea.

EXAMPLE 5.2 

A rigid disc of 20-mm diameter is attached to a circular shaft made of hard rubber, as shown in Figure 5.5. The left end of the shaft is
fixed into a rigid wall. The rigid disc was rotated counterclockwise by 3.25°. Determine the average shear strain at point A.

PLAN
We can visualize the shaft as made up of infinitesimally thick bars of the type shown in Example 5.1. We relate the shear strain in the bar
to the rotation of the disc, as we did in Example 5.1.

SOLUTION
We consider one line on the bar, as shown in Figure 5.6. Point B moves to point B1. The right angle between AB and AC changes, and the
change represents the shear strain γ. As in Example 5.1, we obtain the shear strain shown in Equation (E2):

(E1)

(E2)

ANS.

COMMENTS
1. As in Example 5.1, we assumed that the line AB remains straight. If the assumption were not valid, then the shear strain would vary in

the axial direction.
2. The change of right angle that is being measured by the shear strain is the angle between a line in the axial direction and the tangent at

any point. If we designate the axial direction x and the tangent direction θ (i.e., use polar coordinates), then the shear strain with sub-
scripts will be γxθ.

Text rVA rVC+ 0.02 m( ) 22.4 N( ) 0.02 m( ) 22.4 N( )+= =

rτ  ΔAii=1

2
∑

rτ ΔAi .i=1

n
∑

�� � 3.25�

200 mm

A

  Figure 5.5 Geometry in Example 5.2.

Δφ 3.25°π
180°

----------------- 0.05672 rad= = BB1 r  Δφ 10 mm( )  Δφ 0.5672 mm= = =

 γtan γ
BB1

AB
---------- 0.5672 mm

200 mm
---------------------------= 0.002836 rad= = =

γ 2836 μrad=

200 mm

A

C

B

B1

r � 10 mm

��

�

  Figure 5.6 Deformed shape: (a) 3-D; (b) End view.

OB

B1

Δφ

r

rΔφ

(a) (b)
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3. The value of the shear strain does not depend on the angular position as the problem is axisymmetric.
4. If we start with a rectangular grid overlaid on the shaft, as shown in Figure 5.7a, then each rectangle will deform by the same amount,

as shown in Figure 5.7b. Based on the argument of axisymmetry, we will deduce this deformation for any circular shaft under torsion
in the next section.

EXAMPLE 5.3 

Three cylindrical shafts made from hard rubber are securely fastened to rigid discs, as shown in Figure 5.8. The radii of the shaft sections
are rAB = 20 mm, rCD = 15 mm, and rEF = 10 mm. If the rigid discs are twisted by the angles shown, determine the average shear strain in
each section assuming the lines AB, CD, and EF remain straight.

METHOD 1: PLAN
Each section of the shaft will undergo the deformation pattern shown in Figure 5.6, but now we need to account for the rotation of the
disc at each end. We can analyze each section as we did in Example 5.2. In each section we can calculate the change of angle between the
tangent and a line drawn in the axial direction at the point where we want to know the shear strain. We can then determine the sign of the
shear strain using the definition of shear strain in Chapter 3.

SOLUTION
Label the left most disc as disc 1 and the rightmost disc, disc 4. The rotation of each disc in radians is as follows: 

(E1)

Figure 5.9 shows approximate deformed shapes of the three segments,

Using Figure 5.9a we can find the shear strain in AB as 
(E2)

(E3)

The shear strain is positive as the angle γAB represents a decrease of angle from right angle. 
ANS.

Using Figure 5.9b we can find the shear strain in CD as 

  Figure 5.7 Deformation in torsion of (a) an un-deformed shaft. (b) a deformed shaft.

(a) (b)

200 mm 160 mm
120 mm

2.5�
1.5�

1.5�
3.25�

A B C D E F

  Figure 5.8 Shaft geometry in Example 5.3.

φ1
2.5°

180°
----------- 3.142 rad( ) 0.0436 rad= = φ2

1.5°

180°
----------- 3.142 rad( ) 0.0262 rad= =

φ3
1.5°

180°
----------- 3.142 rad( ) 0.0262 rad= = φ4

3.25°

180°
------------ 3.142 rad( ) 0.0567 rad= =

200 mm

A
B

B1

A1
�AB

�AB

  Figure 5.9 Approximate deformed shapes for Method 1 in Example 5.3 of segments (a) AB, (b) CD, and (c) EF.

B1

B

C1

C
D

160 mm

�CD

�CD

D1

F

120 mm

�EFE1

ED

D1
�EF

F1
(a) (b) (c)

AA1 rABφ1 20 mm( ) 0.0436( ) 0.872 mm= = = BB1 rABφ2 20 mm( ) 0.0262( ) 0.524 mm= = =

γABtan γAB≈
AA1 BB1+

AB
-------------------------- 0.872 mm 0.524 mm+

200 mm
--------------------------------------------------------= =

γAB 6980 μrad=
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(E4)

(E5)

The shear strain is negative as the angle γCD represents an increase of angle from right angle.
ANS.

Using Figure 5.9c we can find the shear strain in EF as 
(E6)

(E7)

The shear strain is negative as the angle γEF represents an increase of angle from right angle.
ANS.

METHOD 2: PLAN 
We assign a sign to the direction of rotation, calculate the relative deformation of the right disc with respect to the left disc, and analyze
the entire shaft. 

We draw an approximate deformed shape of the entire shaft, as shown in Figure 5.10. Let the counterclockwise rotation with respect to
the x axis be positive and write each angle with the correct sign,

(E8)

We compute the relative rotation in each section and multiply the result by the corresponding section radius to obtain the relative move-
ment of two points in a section. We then divide by the length of the section as we did in Example 5.2.

(E9)

(E10)

(E11)

ANS. 

COMMENTS
1. Method 1 is easier to visualize, but the repetitive calculations can be tedious. Method 2 is more mathematical and procedural, but the

repetitive calculations are easier. By solving the problems by method 2 but spending time visualizing the deformation as in method 1,
we can reap the benefits of both.

2. We note that the shear strain in each section is directly proportional to the radius and the relative rotation of the shaft and inversely
proportional to its length. 

5.1.1 Internal Torque

Example 5.1 showed that the shear stress τxθ can be replaced by an equivalent torque using an integral over the cross-sectional
area. In this section we formalize that observation.

Figure 5.11 shows the shear stress distribution τxθ that is to be replaced by an equivalent internal torque T. Let ρ represent the
radial coordinate, that is, the radius of the circle at which the shear stress acts. The moment at the center due to the shear stress
on the differential area is . By integrating over the entire area we obtain the total internal torque at the cross section.

CC1 rCDφ2 15 mm( ) 0.0262( ) 0.393 mm= = = DD1 rCDφ3 15 mm( ) 0.0262( ) 0.393 mm= = =

γCDtan γCD≈
CC1 DD1+

CD
---------------------------- 0.393 mm 0.393 mm+

160 mm
--------------------------------------------------------= =

γCD 4913–  μrad=

EE1 rEFφ3 10 mm( ) 0.0262( ) 0.262 mm= = = FF1 rEFφ4 10 mm( ) 0.0567( ) 0.567 mm= = =

γEFtan γEF≈
FF1  E– E1

EF
--------------------------- 0.567 mm 0.262 mm–

120 mm
-------------------------------------------------------= =

γEF 2542–  μrad=

φ1 0.0436–  rad= φ2 0.0262 rad= φ3 0.0262–  rad= φ4 0.0567–  rad=

�EF
Positive �

x

�1
�2

A1

B1
C1

D1�AB

�CD

A B C D

�3
�4

E F

  Figure 5.10 Shear strain calculation by Method 2 in Example 5.3.

ΔφAB φ2 φ1– 0.0698= = γAB
rAB ΔφAB

AB
----------------------- 20 mm( )  0.0698( )

200 mm( )
--------------------------------------------- 0.00698 rad= = =

ΔφCD φ3 φ2– 0.0524–= =  γCD
rCD  ΔφCD

CD
------------------------ 15 mm( )  0.0524–( )

160 mm
------------------------------------------------- 0.004913 rad–= = =

ΔφEF φ4 φ3– 0.0305–= = γEF
rEF  ΔφEF

EF
----------------------- 10 mm( )  0.0305–( )

120 mm
------------------------------------------------- 0.002542 rad–= = =

γAB 6980 μrad=  γCD 4913 μrad–= γEF 2542 μrad–=

ρτxθ dA
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(5.1)

Equation (5.1) is independent of the material model as it represents static equivalency between the shear stress on the entire
cross section and the internal torque. If we were to consider a composite shaft cross section or nonlinear material behavior, then
it would affect the value and distribution of τxθ across the cross section. But Equation (5.1), relating τxθ and T, would remain
unchanged. Examples 5.4 will clarify the discussion in this paragraph.

EXAMPLE 5.4 

A homogeneous cross section made of brass and a composite cross section of brass and steel are shown in Figure 5.12. The shear moduli
of elasticity for brass and steel are GB = 40 GPa and GS = 80 GPa, respectively. The shear strain in polar coordinates at the cross section
was found to be , where ρ is in meters. (a)Write expressions for τxθ as a function of ρ and plot the shear strain and shear
stress distributions across both cross sections. (b) For each of the cross sections determine the statically equivalent internal torques.

PLAN
(a) Using Hooke’s law we can find the shear stress distribution as a function of ρ in each material. (b) Each of the shear stress distribu-
tions can be substituted into Equation (5.1) and the equivalent internal torque obtained by integration. 

SOLUTION
(a) From Hooke’s law we can write the stresses as 

(E1)

(E2)

For the homogeneous cross section the stress distribution is as given in Equation (E1), but for the composite section it switches between
Equation (E2) and Equation (E1), depending on the value of ρ. We can write the shear stress distribution for both cross sections as a
function of ρ, as shown below.
Homogeneous cross section:

(E3)

T ρ Vd
A

∫ ρτxθ Ad
A

∫= =

x

�dV � �x� dA
T

  Figure 5.11 Statically equivalent internal torque.

γxθ 0.08ρ=

�

120 mm 80 mm

120 mm

x

�

�

x

�

  Figure 5.12 Homogeneous and composite cross sections in Example 5.4.

τxθ( )brass 40 109( )  N/m2[ ] 0.08ρ( ) 3200ρ  MPa= =

τxθ( )steel 80 109( )  N/m2[ ] 0.08ρ( ) 6400ρ  MPa= =

τxθ 3200ρ  MPa 0.00 ρ 0.06<≤=

�

�x�� � (	)

44

(a)

�

�x� � (MPa)

2566

(c)

�

�x� � (MPa)

(b)

  Figure 5.13 Shear strain and shear stress distributions in Example 5.4: (a) shear strain distribution; (b) shear stress distri-
bution in homogeneous cross section; (c) shear stress distribution in composite cross section.
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Composite cross section:

(E4)

The shear strain and the shear stress can now be plotted as a function of ρ, as shown in Figure 5.13(b). The differential area dA is the area
of a ring of radius ρ and thickness dρ, that is, . Equation (5.1) can be written as 

(E5)

Homogeneous cross section: Substituting Equation (E3) into Equation (E5) and integrating, we obtain the equivalent internal torque.

(E6)

ANS.
Composite cross section:  Writing the integral in Equation (E5) as a sum of two integrals and substituting Equation (E3) we obtain the
equivalent internal torque. 

(E7)

(E8)

(E9)

(E10)

ANS.

COMMENTS
1. The example demonstrates that although the shear strain varies linearly across the cross section, the shear stress may not. In this

example we considered material non homogeneity. In a similar manner we can consider other models, such as elastic–perfectly plas-
tic, or material models that have nonlinear stress–strain curves. 

2. The material models dictate the shear stress distribution across the cross section, but once the stress distribution is known, Equation
(5.1) can be used to find the equivalent internal torque, emphasizing that Equation (5.1) does not depend on the material model.

PROBLEM SET 5.1

5.1 A pair of 48-in. long bars and a pair of 60-in. long bars are symmetrically attached to a rigid disc at a radius of 2 in. at one end and
built into the wall at the other end, as shown in Figure P5.1. The shear strain at point A due to a twist of the rigid disc was found to be 3000
μrad. Determine the magnitude of shear strain at point D.

5.2 If the four bars in Problem 5.1 are made from a material that has a shear modulus of 12,000 ksi, determine the applied torque T on the
rigid disc. The cross sectional areas of all bars are 0.25 in.2.

5.3 If bars AB in Problem 5.1 are made of aluminum with a shear modulus Gal = 4000 ksi and bars CD are made of bronze with a shear
modulus Gbr = 6500 ksi, determine the applied torque T on the rigid disc. The cross-sectional areas of all bars are 0.25 in.2.

τxθ
6400ρ MPa 0.00 ρ 0.04 m<≤

3200ρ MPa 0.04 m ρ< 0.06 m≤⎩
⎨
⎧

=

dA 2πρ dρ=

T ρτxθ 2πρ dρ( )
0

0.06

∫=

T ρ 3200ρ 106( ) [ ] 2πρ  dρ( )
0

0.06

∫ 6400π 106( )[ ]
ρ4

4
-----⎝ ⎠

⎛ ⎞
0

0.06

65.1 103( )  N m⋅= = =

T 65.1=  kN·m

T ρτxθ  2πρ  dρ( )
0

0.06

∫ ρτxθ 2πρ  dρ( )
0

0.04

∫ ρτxθ 2πρ dρ( )
0.04

0.06

∫+= =

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

Tsteel Tbrass

Tsteel ρ 6400ρ 106( )[ ] 2πρ  dρ( )   12800π( ) 106( ) ρ4

4
-----⎝ ⎠

⎛ ⎞=
0

0.04

0

0.04

∫ 25.7 103( )  N m⋅ 25.7 kN·m= = =

Tbrass ρ 3200ρ 106( )[ ] 2πρ dρ( )   6400π( )= 106( ) ρ4

4
-----⎝ ⎠

⎛ ⎞
0.04

0.06

0.04

0.06

∫ 52.3 103( )  N m⋅ 52.3 kN·m= = =

T Tsteel Tbrass+ 25.7 kN·m 52.3 kN·m+= =

T 78 kN·m=

B

T

48 in 60 in

C

  Figure P5.1



5 212Mechanics of Materials: Torsion of ShaftsM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

5.4 Three pairs of bars are symmetrically attached to rigid discs at the radii shown in Figure P5.4. The discs were observed to rotate by
angles   and  in the direction of the applied torques T1, T2, and T3, respectively. The shear modulus of the

bars is 40 ksi and cross-sectional area is 0.04 in.2. Determine the applied torques.

5.5 A circular shaft of radius r and length Δx has two rigid discs attached at each end, as shown in Figure P5.5. If the rigid discs are
rotated as shown, determine the shear strain γ at point A in terms of r, Δx, and Δφ, assuming that line AB remains straight, where

5.6 A hollow circular shaft made from hard rubber has an outer diameter of 4 in and an inner diameter of 1.5 in. The shaft is fixed to the
wall on the left end and the rigid disc on the right hand is twisted, as shown in Figure P5.6. The shear strain at point A, which is on the out-
side surface, was found to be 4000 μrad. Determine the shear strain at point C, which is on the inside surface, and the angle of rotation.
Assume that lines AB and CD remain straight during deformation.

5.7 The magnitude of shear strains in the segments of the stepped shaft in Figure P5.7 was found to be γAB = 3000 μrad, γCD = 2500 μrad,
and γEF = 6000 μrad. The radius of section AB is 150 mm, of section CD 70 mm, and of section EF 60 mm.Determine the angle by which
each of the rigid discs was rotated.

5.8 Figure P5.8 shows the cross section of a hollow aluminum (G= 26 GPa) shaft. The shear strain γxθ in polar coordinates at the section
is , where ρ is in meters. Determine the equivalent internal torque acting at the cross-section. Use di= 30 mm and do = 50 mm.

φ1 1.5° ,= φ2 3.0° ,= φ3 2.5°=

B

B
C

T2TT
T3TT

T1

40 in25 in 30 in

C

D

D
F

E F

1.5 in

  Figure P5.4

Δφ φ2 φ1.–=

�x

�2�1

  Figure P5.5

36 in

�

  Figure P5.6

�1

�3
�2

2 m 1.8 m 1.2 m  Figure P5.7

γxθ 0.06ρ–=

do

di

x

θ
ρ

  Figure P5.8
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5.9 Figure P5.8 shows the cross section of a hollow aluminum (G = 26 GPa) shaft. The shear strain γxθ in polar coordinates at the section
is , where ρ is in meters. Determine the equivalent internal torque acting at the cross-section. Use di= 40 mm and do = 120 mm.

5.10 A hollow brass shaft (GB = 6500 ksi) and a solid steel shaft (GS = 13,000 ksi) are securely fastened to form a composite shaft, as
shown in Figure P5.10.The shear strain in polar coordinates at the section is , where ρ is in inches. Determine the equivalent
internal torque acting at the cross section. Use dB = 4 in. and dS = 2 in. 

5.11 A hollow brass shaft (GB = 6500 ksi) and a solid steel shaft (GS = 13,000 ksi) are securely fastened to form a composite shaft, as
shown in Figure P5.10.The shear strain in polar coordinates at the section is , where ρ is in inches. Determine the equiva-
lent internal torque acting at the cross section. Use dB = 6 in. and dS = 4 in.

5.12 A hollow brass shaft (GB = 6500 ksi) and a solid steel shaft (GS = 13,000 ksi) are securely fastened to form a composite shaft, as
shown in Figure P5.10.The shear strain in polar coordinates at the section is , where ρ is in inches. Determine the equivalent
internal torque acting at the cross section. Use dB = 3 in. and dS = 1 in.

5.13 A hollow titanium shaft (GTi = 36 GPa) and a hollow aluminum shaft (GAl = 26 GPa) are securely fastened to form a composite
shaft shown in Figure P5.13. The shear strain in polar coordinates at the section is  where ρ is in meters. Determine the equiv-
alent internal torque acting at the cross section. Use di = 50 mm, dAl = 90 mm, and dTi = 100 mm.

Stretch Yourself
5.14 A circular shaft made from elastic - perfectly plastic material has a torsional shear stress distribution across the cross section shown
in Figure P5.14. Determine the equivalent internal torque.

5.15 A solid circular shaft of 3-in. diameter has a shear strain at a section in polar coordinates of γxθ = 2ρ (10-3), where ρ is the radial coor-
dinate measured in inches. The shaft is made from an elastic–perfectly plastic material, which has a yield stress τyield = 18 ksi and a shear
modulus G = 12,000 ksi. Determine the equivalent internal torque. (See Problem 3.144).

γxθ 0.05ρ=

γxθ 0.001ρ=

  Figure P5.10
dB

dS

x

θ

ρ

Brass

Steel

γxθ 0.0005ρ–=

γxθ 0.002ρ=

γxθ 0.04ρ ,=

  Figure P5.13

d Ti

d Al

x

θ

d i

Titanium Aluminum

ρ

τxθ

ρ

24 ksi

0.3 in.  Figure P5.14 0.3 in.



5 214Mechanics of Materials: Torsion of ShaftsM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

5.16 A solid circular shaft of 3-in. diameter has a shear strain at a section in polar coordinates of γxθ = 2ρ (10-3), where ρ is the radial coor-
dinate measured in inches.The shaft is made form a bilinear material as shown in Figure 3.40. The material has a yield stress τyield = 18 ksi
and shear moduli G1 = 12,000 ksi and G2 = 4800 ksi. Determine the equivalent internal torque.(See Problem 3.145). 

5.17 A solid circular shaft of 3-in. diameter has a shear strain at a section in polar coordinates of γxθ = 2ρ (10-3), where ρ is the radial coor-
dinate measured in inches.The shaft material has a stress–strain relationship given by τ = 243γ 0 .4 ksi. Determine the equivalent internal
torque. (See Problem 3.146).

5.18 A solid circular shaft of 3-in diameter has a shear strain at a section in polar coordinates of γxθ = 2ρ (10-3), where ρ is the radial coor-
dinate measured in inches. The shaft material has a stress–strain relationship given by τ = 12,000γ − 120,000γ2 ksi. Determine the equiva-
lent internal torque. (See Problem 3.147).

5.2 THEORY OF TORSION OF CIRCULAR SHAFTS

In this section we develop formulas for deformation and stress in a circular shaft. We will follow the procedure in Section 5.1
but now with variables in place of numbers. The theory will be developed subject to the following limitations:

1. The length of the member is significantly greater than the greatest dimension in the cross section.
2. We are away from the regions of stress concentration. 
3. The variation of external torque or change in cross-sectional areas is gradual except in regions of stress concentration. 
4. External torques are not functions of time; that is, we have a static problem. (See Problems 5.55 and 5.56 for dynamic

problems.)
5. The cross section is circular. This permits us to use arguments of axisymmetry in deducing deformation.

Figure 5.14 shows a circular shaft that is loaded by external torques T1 and T2 at each end and an external distributed torque
t(x), which has units of torque per unit length. The radius of the shaft R(x) varies as a function of x. We expect that the internal
torque T will be a function of x. φ1 and φ2 are the angles of rotation of the imaginary cross sections at x1 and x2, respectively.

The objectives of the theory are:

1. To obtain a formula for the relative rotation φ2 – φ1 in terms of the internal torque T.
2. To obtain a formula for the shear stress τxθ in terms of the internal torque T.

To account for the variations in t(x) and R(x) we will take Δx = x2 − x1 as an infinitesimal distance in which these quantities
can be treated as constants. The deformation behavior across the cross section will be approximated. The logic shown in Figure
5.15 and discussed in Section 3.2 will be used to develop the simplest theory for the torsion of circular shafts members. Assump-
tions will be identified as we move from one step to the next. These assumptions are the points at which complexities can be
added to the theory, as discussed in the examples and Stretch Yourself problems.

  Figure 5.14 Circular shaft.
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5.2.1 Kinematics

In Example 5.1 the shear strain in a bar was related to the rotation of the disc that was attached to it. In Example 5.2 we remarked
that a shaft could be viewed as an assembly of bars. Three assumptions let us simulate the behavior of a cross section as a rotat-
ing rigid plate:

Assumption 1 Plane sections perpendicular to the axis remain plane during deformation.

Assumption 2 On a cross section, all radial lines rotate by equal angles during deformation.

Assumption 3 Radial lines remain straight during deformation.

Figure 5.16 shows a circular rubber shaft with a grid on the surface that is twisted by hand. The edges of the circles remain
vertical lines during deformation. This observation confirms the validity of Assumption 1. Axial deformation due to torsional
loads is called warping. Thus, circular shafts do not warp. Shafts with noncircular cross section warp, and this additional defor-
mation leads to additional complexities. (See Problem 5.53).

 Figure 5.15 The logic of the mechanics of materials.

 Figure 5.16 Torsional deformation: (a) original grid; (b) deformed grid. (Courtesy of Professor J. B. Ligon.)

(a)

(b)
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The axisymmetry of the problem implies that deformation must be independent of the angular rotation. Thus, all radials
lines must behave in exactly the same manner irrespective of their angular position, thus, Assumptions 2 and 3 are valid for cir-
cular shafts. Figure 5.17 shows that all radial lines rotate by the same angle of twist φ. We note that if all lines rotate by equal
amounts on the cross section, then φ does not change across the cross section and hence can only be a function of x

(5.2)
Sign Convention: φ is considered positive counterclockwise with respect to the x axis.

The shear strain of interest to us is the measure of the angle change between the axial direction and the tangent to the circle
in Figure 5.16. If we use polar coordinates, then we are interested in the change in angle which is between the x and θ direc-
tions— in other words, γxθ.

Assumptions 1 through 3 are analogous to viewing each cross section in the shaft as a rigid disc that rotates about its own
axis. We can then calculate the shear strain as in Example 5.2, provided we have small deformation and strain.

Assumption 4 Strains are small.

We consider a shaft with radius ρ and length Δx in which the right section with respect to the left section is rotated by an angle
Δφ, as shown in Figure 5.18a. Using geometry we obtain the shear strain expression.

 or 

(5.3)

where ρ is the radial coordinate of a point on the cross section. The subscripts x and θ emphasize that the change in angle is
between the axial and tangent directions, as shown in Figure 5.18a. The quantity is called the rate of twist. It is a func-
tion of x only, because φ is a function of x only.

Equation (5.3) was derived from purely geometric considerations. If Assumptions 1 through 4 are valid, then Equation (5.3)
is independent of the material. Equation (5.3) shows that the shear strain is a linear function of the radial coordinate ρ and
reaches the maximum value γmax at the outer surface (ρ = ρmax = R), as shown in Figure 5.18a. Equation (5.4), an alternative
form for shear strain, can be derived using similar triangles.

(5.4)

5.2.2 Material Model

Our motivation is to develop a simple theory for torsion of circular shafts. Thus we make assumptions regarding material behav-
ior that will permit us to use the simplest material model given by Hooke’s law.

φ φ x( )=

������ �

  Figure 5.17 Equal rotation of all radial lines.

A1

B1Ao
BoAo,Bo —Initial position

A1,B1 —Deformed position

�

�x

z

y

�

  Figure 5.18 Shear strain in torsion. (a) Deformed shape. (b) Linear variation of shear strain.

�x�� �
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�max��
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�

(a) (b)

γxθ γxθ≈tan  
AB 0→
lim

BB1

AB
---------⎝ ⎠

⎛ ⎞  
Δx 0→
lim ρΔφ

Δx
----------⎝ ⎠

⎛ ⎞= =

γxθ ρ
xd

dφ=

dφ d⁄ x

γxθ
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Assumption 5 The material is linearly elastic.1

Assumption 6 The material is isotropic.

Substituting Equation (5.3) into Hooke’s law, that is,  we obtain 

(5.5)

Noting that θ is positive in the counterclockwise direction with respect to the x axis, we can represent the shear stress due to tor-
sion on a stress element as shown in Figure 5.19. Also shown in Figure 5.19 are aluminum and wooden shafts that broke in tor-
sion. The shear stress component that exceeds the shear strength in aluminum is τxθ. The shear strength of wood is weaker along
the surface parallel to the grain, which for shafts is in the longitudinal direction. Thus τθx causes the failure in wooden shafts. The
two failure surfaces highlight the importance of visualizing the torsional shear stress element.

5.2.3 Torsion Formulas

Substituting Equation (5.5) into Equation (5.1) and noting that  is a function of x only, we obtain 

(5.6)

To simplify further, we would like to take G outside the integral, which implies that G cannot change across the cross section. 

Assumption 7 The material is homogeneous across the cross section.2

From Equation (5.6) we obtain 

(5.7)

where J is the polar moment of inertia for the cross section. As shown in Example 5.5, J for a circular cross section of radius R
or diameter D is given by 

(5.8)

Equation (5.7) can be written as

(5.9)

The higher the value of GJ, the smaller will be the deformation φ for a given value of the internal torque. Thus the rigidity
of the shaft increases with the increase in GJ. A shaft may be made more rigid either by choosing a stiffer material (higher value
of G) or by increasing the polar moment of inertia. The quantity GJ is called torsional rigidity. 

Substituting Equation (5.9) into Equation (5.5), we obtain 

1See Problems 5.50 through 5.52 for nonlinear material behavior.
2In Problem. 5.49 this assumption is not valid.

τ Gγ,=

τxθ Gρ
xd

dφ=

Failure surface in wooden shaft due to ��� x

Failure surface in aluminum shaft due to �x� �

x

Failure surface in wooden shaft due to  τθx
Figure 5.19 Stress element showing torsional shear stress.

Failure surface in aluminum shaft due to τxθ

dφ dx⁄

T Gρ2 
xd
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xd

dφ Gρ2 Ad
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∫= =

T G 
xd

dφ ρ2 Ad
A

∫ GJ 
xd

dφ= =

J ρ2 Ad
A

∫
π
2
--- R4 π

32
------D4= = =

xd
dφ T
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(5.10)

The quantities T and J do not vary across the cross section. Thus the shear stress varies linearly across the cross section with ρ as
shown in Figure 5.20. For a solid shaft, it is zero at the center where ρ = 0 and reaches a maximum value on the outer surface of
the shaft where ρ = R,. 

Let the angle of rotation of the cross section at x1 and x2 be φ1 and  φ2, respectively. By integrating Equation (5.9) we can obtain the
relative rotation as:

(5.11)

To obtain a simple formula we would like to take the three quantities T, G, and J outside the integral, which means that these
quantities should not change with x. To achieve this simplicity we make the following assumptions: 

Assumption 8 The material is homogeneous between x1 and x2. (G is constant) 

Assumption 9 The shaft is not tapered between x1 and x2. (J is constant) 

Assumption 10 The external (and hence also the internal) torque does not change with x between x1 and x2. (T is constant) 

If Assumptions 8 through 10 are valid, then T, G, and J are constant between x1 and x2, and from Equation (5.11) we obtain 

(5.12)

In Equation (5.12) points x1 and x2 must be chosen such that neither T, G, nor J change between these points. 

5.2.4 Sign Convention for Internal Torque 

The shear stress was replaced by a statically equivalent internal torque using Equation (5.1). The shear stress τxθ is positive
on two surfaces. Hence the equivalent internal torque is positive on two surfaces, as shown in Figure 5.21. When we make the
imaginary cut to draw the free-body diagram, then the internal torque must be drawn in the positive direction if we want the for-
mulas to give the correct signs.

Sign Convention: Internal torque is considered positive counterclockwise with respect to the outward normal to the 
imaginary cut surface.

T may be found in either of two ways, as described next and elaborated further in Example 5.6. 

1. T is always drawn counterclockwise with respect to the outward normal of the imaginary cut, as per our sign convention.
The equilibrium equation is then used to get a positive or negative value for T. The sign for relative rotation obtained from
Equation (5.12) is positive counterclockwise with respect to the x axis. The direction of shear stress can be determined
using the subscripts, as in Section 1.3.

τxθ
Tρ
J

-------=

�x�� �

�

�max��

  Figure 5.20 Linear variation of torsional shear stress.

R

φ2 φ1– φd
φ1

φ2

∫
T

GJ
------- xd

x1

x2

∫= =

φ2 φ1–
T x2 x1–( )

GJ
------------------------=

x

Positive �x� �

Outward
normal

Outward
normal

Positive �x� �

Positive T

Positive T

Figure 5.21 Sign convention for positive internal torque.
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2. T is drawn at the imaginary cut to equilibrate the external torques. Since inspection is used to determine the direction
of T, the direction of relative rotation in Equation (5.12) and the direction of shear stress τxθ in Equation (5.10) must
also be determined by inspection. 

5.2.5 Direction of Torsional Stresses by Inspection.

The significant shear stress in the torsion of circular shafts is τxθ. All other stress components can be neglected provided the ratio
of the length of the shaft to its diameter is on the order of 10 or more. 

Figure 5.22a shows a segment of a shaft under torsion containing point A. We visualize point A on the left segment and con-
sider the stress element on the left segment. The left segment rotates clockwise in relation to the right segment. This implies that
point A, which is part of the left segment, is moving upward on the shaded surface. Hence the shear stress, like friction, on the
shaded surface will be downward. We know that a pair of symmetric shear stress components points toward or away from the
corner. From the symmetry, the shear stresses on the rest of the surfaces can be drawn as shown.

Suppose we had considered point A on the right segment of the shaft. In such a case we consider the stress element as part of the
right segment, as shown in Figure 5.22b. The right segment rotates counterclockwise in relation to the left segment. This implies that
point A, which is part of the right segment, is moving down on the shaded surface. Hence the shear stress, like friction, will be upward.
Once more using the symmetry of shear stress components, the shear stress on the remaining surfaces can be drawn as shown.

In visualizing the stress surface, we need not draw the shaft segments in Figure 5.22. But care must be taken to identify the
surface on which the shear stress is being considered. The shear stress on the adjoining imaginary surfaces have opposite direc-
tion. However, irrespective of the shaft segment on which we visualize the stress element, we obtain the same stress element, as
shown in Figure 5.22. This is because the two stress elements shown represent the same point A.

An alternative way of visualizing torsional shear stress is to think of a coupling at an imaginary section and to visualize the
shear stress directions on the bolt surfaces, as shown in Figure 5.23. Once the direction of the shear stress on the bolt surface is
visualized, the remaining stress elements can be completed using the symmetry of shear stresses

After having obtained the torsional shear stress, either by using subscripts or by inspection, we can examine the shear
stresses in Cartesian coordinates and obtain the stress components with correct signs, as shown in Figure 5.23b. This process of
obtaining stress components in Cartesian coordinates will be important when we consider stress and strain transformation equa-
tions in Chapters 8 and 9, where we will relate stresses and strains in different coordinate systems. 

The shear strain can be obtained by dividing the shear stress by G, the shear modulus of elasticity.

(a)

T

T

(b)

T

T

  Figure 5.22 Direction of shear stress by inspection.

(a) (b)

T

T

z
x

y

���

T

�xy� � ��x� �

� � �x� �

�x� �

�xz� � ��x� �

  Figure 5.23 Torsional shear stresses. 

Consolidate your  knowledge
1. Identify five examples of circular shafts from your daily life.
2. With the book closed, derive Equations 5.10 and 5.12, listing all the assumptions as you go along. 
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EXAMPLE 5.5 

The two shafts shown in Figure 5.24 are of the same material and have the same amount of material cross-sectional areas A. Show that
the hollow shaft has a larger polar moment of inertia than the solid shaft.

PLAN
We can find the values of RH and RS in terms of the cross-sectional area A. We can then substitute these radii in the formulas for polar
area moment to obtain the polar area moments in terms of A.

SOLUTION
We can calculate the radii RH and RS in terms of the cross sectional area A as 

(E1)

The polar area moment of inertia for a hollow shaft with inside radius Ri and outside radius Ro can be obtained as 

(E2)

For the hollow shaft Ro = 2RH and Ri = RH, whereas for the solid shaft Ro = RS and Ri = 0. Substituting these values into Equation (E2), we
obtain the two polar area moments.

(E3)

Dividing JH by JS we obtain 

(E4)

ANS. As  the polar moment for the hollow shaft is greater than that of the solid shaft for the same amount of material.

COMMENT
1. The hollow shaft has a polar moment of inertia of 1.67 times that of the solid shaft for the same amount of material. Alternatively, a

hollow shaft will require less material (lighter in weight) to obtain the same polar moment of inertia. This reduction in weight is the
primary reason why metal shafts are made hollow. Wooden shafts, however, are usually solid as the machining cost does not justify
the small saving in weight. 

EXAMPLE 5.6 
A solid circular steel shaft (Gs = 12,000 ksi) of variable diameter is acted upon by torques as shown in Figure 5.25. The diameter of the
shaft between wheels A and B and wheels C and D is 2 in., and the diameter of the shaft between wheels B and C is 4 in. Determine: (a)
the rotation of wheel D with respect to wheel A; (b) the magnitude of maximum torsional shear stress in the shaft; (c) the shear stress at
point E. Show it on a stress cube.

RH

2RH

RS

  Figure 5.24 Hollow and solid shafts of Example 5.5.
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∫
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2
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⎛ ⎞
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Figure 5.25 Geometry of shaft and loading in Example 5.6.

24 in.
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PLAN
By making imaginary cuts in sections AB, BC, and CD and drawing the free-body diagrams we can find the internal torques in each sec-
tion. (a) We find the relative rotation in each section using Equation (5.12). Summing the relative rotations we can obtain φD – φA. (b) We
find the maximum shear stress in each section using Equation (5.10), then by comparison find the maximum shear stress τmax in the shaft.
(c) In part (b) we found the shear stress in section BC. We obtain the direction of the shear stress either using the subscript or intuitively.

SOLUTION
The polar moment of inertias for each segment can be obtained as 

(E1)

We make an imaginary cuts, draw internal torques as per our sign convention and obtain the free body diagrams as shown in Figure 5.25.
We obtain the internal torques in each segment by equilibrium of moment about shaft axis:

(E2)

(E3)

(E4)

(a) From Equation (5.12), we obtain the relative rotations of the end of segments as 

(E5)

(E6)

(E7)

Adding Equations (E5), (E6), and (E7), we obtain the relative rotation of the section at D with respect to the section at A:

(E8)

ANS.
(b) The maximum torsional shear stress in section AB and CD will exist at ρ = 1 and in BC it will exist at ρ = 2. From Equation (5.10) we
can obtain the maximum shear stress in each segment:

(E9)

(E10)

(E11)

From Equations (E9), (E10), and (E11) we see that the magnitude of maximum torsional shear stress is in segment CD.
ANS.

(c) The direction of shear stress at point E can be determined as described below.
Shear stress direction using subscripts: In Figure 5.27a we note that τxθ in segment BC is +1.5 ksi. The outward normal is in the positive
x direction and the force has to be pointed in the positive θ direction (tangent direction), which at point E is downward. 
Shear stress direction determined intuitively: Figure 5.27b shows a schematic of segment BC. Consider an imaginary section through E
in segment BC. Segment BE tends to rotate clockwise with respect to segment EC. The shear stress will oppose the imaginary clockwise
motion of segment BE; hence the direction will be counterclockwise, as shown. 

JAB JCD
π
32
------ 2 in.( )4 π

2
---  in.4= = = JBC

π
32
------ 4 in.( )4 8π in.4= =

TAB 2π in. · kips+ 0= or TAB 2π  in.– · kips=

TBC 2π  in. · kips 8π  in. · kips–+ 0= or TBC 6π    in. · kips=

TCD 2.5π in. · kips+ 0= or TCD 2.5π   in.– · kips=

2
 in�kips

A

TAB

  Figure 5.26 Free-body diagrams in Example 5.6 after an imaginary cut in segment (a) AB, (b) BC, and (c) CD.
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We complete the rest of the stress cube using the fact that a pair of symmetric shear stresses points either toward the corner or away from
the corner, as shown in Figure 5.27c.

COMMENTS
1. Suppose that we do not follow the sign convention for internal torque. Instead, we show the internal torque in a direction that counter-

balances the external torque as shown in Figure 5.28. Then in the calculation of the addition and subtraction must be done
manually to account for clockwise and counterclockwise rotation. Also, the shear stress direction must now be determined
intuitively.

2. An alternative perspective of the calculation of  is as follows:

or, written compactly,

(5.13)

3. Note that TBC − TAB = 8π is the magnitude of the applied external torque at the section at B. Similarly TCD − TBC = −8.5π, which is the
magnitude of the applied external torque at the section at C. In other words, the internal torques jump by the value of the external
torque as one crosses the external torque from left to right. We will make use of this observation in the next section when plotting the
torque diagram.

5.2.6 Torque Diagram

A torque diagram is a plot of the internal torque across the entire shaft. To construct torque diagrams we create a small torsion
template to guide us in which direction the internal torque will jump. A torsion template is an infinitesimal segment of the shaft
constructed by making imaginary cuts on either side of a supposed external torque.

Figure 5.29 shows torsion templates. The external torque can be drawn either clockwise or counterclockwise. The ends of the tor-
sion templates represent the imaginary cuts just to the left and just to the right of the applied external torque. The internal torques on
these cuts are drawn according to the sign convention. An equilibrium equation is written, which we will call the template equation

8
 in�kips

(a)

1.5 ksi
x

�

(b)

B

E
C

8
 in�kips

8.5
 in�kips
1.5 ksi

y

x

(c)

( )

  Figure 5.27 Direction of shear stress in Example 5.6.

φD φA–

TCD

TBC

2.5
 in�kips

D

2
 in�kips

A

B

2
 in�kips

TAB

�B � �A � 8 � 10�3 rad cw �C � �B � 3.75 � 10�3 rad ccw �D � �C � 12.5 � 10�3 rad cw

8
 in�kips

  Figure 5.28 Intuitive analysis in Example 5.6.
φD φA–

φD φA–  T
GJ
-------  xd

xA

xD

∫  
TAB

GABJAB
------------------  xd

xA

xB

∫  
TBC

GBCJBC
-------------------  xd

xB

xC

∫   
TCD

GCDJCD
-------------------  xd

xC

xD

∫+ += =

Δφ
Ti  Δxi

GiJi
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i
∑=

T2TT

T1

TextTT

 Figure 5.29 Torsion templates and equations. T2 T1 Text–=

(a) (b)

T1

T2TT

TextTT

T2 T1 Text+=Template Equations
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If the external torque on the shaft is in the direction of the assumed torque shown on the template, then the value of T2 is cal-
culated according to the template equation. If the external torque on the shaft is opposite to the direction shown, then T2 is calcu-
lated by changing the sign of Text in the template equation. Moving across the shaft using the template equation, we can then
draw the torque diagram, as demonstrated in the next example.

EXAMPLE 5.7 

Calculate the rotation of the section at D with respect to the section at A by drawing the torque diagram using the template shown in Figure 5.29.

PLAN
We can start the process by considering an imaginary extension on the left end. In the imaginary extension the internal torque is zero.
Using the template in Figure 5.29a to guide us, we can draw the torque diagram.

SOLUTION  
Let LA be an imaginary extension on the left side of the shaft, as shown in Figure 5.30. Clearly the internal torque in the imaginary sec-
tion LA is zero, that is, T1 = 0. The torque at A is in the same direction as the torque Text shown on the template in Figure 5.29a. Using the
template equation, we subtract the value of the applied torque to obtain a value of –2π in.·kips for the internal torque T2 just after wheel
A. This is the starting value in the internal torque diagram.

We approach wheel B with an internal torque value of –2π in.·kips, that is, T1 = –2π in.·kips. The torque at B is in the opposite direction to the
torque shown on the template in Figure 5.29a we add 8π in·kips to obtain a value of +6π in.·kips for the internal torque just after wheel B.

We approach wheel C with a value of 6π in.·kips and note that the torque at C is in the same direction as that shown on the template in Fig-
ure 5.29a. Hence we subtract 8.5π in.·kips as per the template equation to obtain –2.5π in.·kips for the internal torque just after wheel C. 
The torque at D is in the same direction as that on the template, and on adding we obtain a zero value in the imaginary extended bar DR
as expected, for the shaft is in equilibrium.
From Figure 5.31 the internal torque values in the segments are 

(E1)
To obtain the relative rotation of wheel D with respect to wheel A, we substitute the torque values in Equation (E1) into Equation (5.13): 

 or

(E2)

ANS.

COMMENT
1. We could have created the torque diagram using the template shown in Figure 5.29b and the template equation. It may be verified that

we obtain the same torque diagram. This shows that the direction of the applied torque Text on the template is immaterial. 

2
 in�kips

A

L

8
 in�kips

D R

B

C

8.5
 in�kips

2.5
 in�kips

 Figure 5.30 Imaginary extensions of the shaft in Example 5.7.

T2TT � 1 � T

T1

T2TT

T
T

A

6


2
 2
 2.5
 2.5


6


B C D
x

ext

  Figure 5.31 Torque diagram in Example 5.7.

TAB 2π  in.· kips TBC 6π  in.· kips TCD 2.5π in.· kips–==–=

φD φA   –
TAB xB xA–( )

GABJAB
-------------------------------

TBC xC xB–( )
GBCJBC

-------------------------------
TCD xD xC–( )

GCDJCD
--------------------------------+ +=

φD φA   – 2π  in.· kips–( ) 24 in.( )

12 000 ksi,( ) π 2 in.4⁄( )
-------------------------------------------------------- 6π in.· kips( ) 60 in.( )

12 000 ksi,( ) 8π  in.4( )
----------------------------------------------------- 2.5π in.· kips–( ) 30 in.( )

12 000 ksi,( ) π 2 in.4⁄( )
------------------------------------------------------------  + + 16.75 10 3–( ) rad= =

φD φA  – 0.01675 rad cw=
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EXAMPLE 5.8 

A 1-m-long hollow shaft in Figure 5.32 is to transmit a torque of 400 N·m. The shaft can be made of either titanium alloy or aluminum.
The shear modulus of rigidity G, the allowable shear stress τallow, and the density γ are given in Table 5.1. The outer diameter of the shaft
must be 25 mm to fit existing attachments. The relative rotation of the two ends of the shaft is limited to 0.375 rad. Determine the inner
radius to the nearest millimeter of the lightest shaft that can be used for transmitting the torque.

PLAN
The change in inner radius affects only the polar moment J and no other quantity in Equations 5.10 and 5.12. For each material we can
find the minimum polar moment J needed to satisfy the stiffness and strength requirements. Knowing the minimum J for each material
we can find the maximum inner radius. We can then find the volume and hence the mass of each material and make our decision on the
lighter shaft.

SOLUTION
We note that for both materials ρmax = 0.0125 m and x2 – x1 = 1 m. From Equations 5.10 and 5.12 for titanium alloy we obtain limits on
JTi shown below.

(E1)

(E2)

Using similar calculations for the aluminum shaft we obtain the limits on JAl:

(E3)

(E4)

Thus if , it will meet both conditions in Equations (E1) and (E2). Similarly if , it will meet
both conditions in Equations (E3) and (E4). The internal diameters DTi and DAl can be found as follows:

(E5)

(E6)

Rounding downward to the closest millimeter, we obtain

(E7)
We can find the mass of each material from the material density as 

(E8)

(E9)

From Equations (E8) and (E9) we see that the titanium alloy shaft is lighter. 
ANS. A titanium alloy shaft should be used with an inside diameter of 17 mm.

COMMENTS
1. For both materials the stiffness limitation dictated the calculation of the internal diameter, as can be seen from Equations (E1) and (E3).
2. Even though the density of aluminum is lower than that titanium alloy, the mass of titanium is less. Because of the higher modulus of

rigidity of titanium alloy we can meet the stiffness requirement using less material than for aluminum.

1 m
25 mm

  Figure 5.32 Shaft in Example 5.8.

TABLE 5.1 Material properties in Example 5.8

Material
G

(GPa)
τallow

(MPa)
γ

(Mg/m3)

Titanium alloy 36 450 4.4
Aluminum 28 150 2.8

Δφ( )Ti
400 N m⋅( ) 1 m( )

36 109( )  N/m2[ ]JTi
---------------------------------------------- 0.375 rad≤= or JTi 29.63 10 9–( )  m4≥

τmax( )Ti
400 N m⋅( ) 0.0125 m( )

JTi
--------------------------------------------------------- 450 106( )  N/m2≤= or JTi 11.11 10 9–( )  m4≥

Δφ( )Al
400 N m⋅( ) 1 m( )

28 109( )  N/m2[ ] J× Al
---------------------------------------------------- 0.375 rad≤= or JAl 38.10 10 9–( )  m4≥

τmax( )Al
400 N m⋅( ) 0.0125 m( )

JAl
--------------------------------------------------------- 150 106( )  N/m2≤= or JAl 33.33 10 9–( ) m4≥

JTi 29.63 10 9–( ) m4≥ JAl 38.10 10 9–( ) m4≥

JTi
π
32
------ 0.0254 DTi

4–( ) 29.63 10 9–( ) DTi 17.3 10 3–( )  m≤≥=

JAl
π
32
------ 0.0254 DAl

4–( ) 38.10 10 9–( ) DAl 7.1 10 3–( )  m≤≥=

DTi 17 10 3–( )  m= DAl 7 10 3–( )  m=

MTi 4.4 106( ) g/m3[ ] π
4
--- 0.0252 0.0172–( )  m2 1 m( ) 1161 g= =

MAl 2.8 106( )  g/m3[ ] π
4
--- 0.0252 0.0072–( )  m2 1 m( ) 1267 g= =
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3. If in Equation (E5) we had 17.95(10–3) m on the right side, our answer for DTi would still be 17 mm because we have to round down-
ward to ensure meeting the less-than sign requirement in Equation (E5).

EXAMPLE 5.9 

The radius of a tapered circular shaft varies from 4r units to r units over a length of 40r units, as shown in Figure 5.33. The radius of the
uniform shaft shown is r units. Determine (a) the angle of twist of wheel C with respect to the fixed end in terms of T, r, and G; (b) the
maximum shear stress in the shaft.

PLAN
(a) We can find the relative rotation of wheel C with respect to wheel B using Equation (5.12). For section AB we obtain the polar
moment J as a function of x and integrate Equation (5.9) to obtain the relative rotation of B with respect to A. We add the two relative
rotations and obtain the relative rotation of C with respect to A. (b) As per Equation (5.10), the maximum shear stress will exist where the
shaft radius is minimum (J is minimum) and T is maximum. Thus by inspection, the maximum shear stress will exist on a section just left
of B.

SOLUTION
We note that R is a linear function of x and can be written as . Noting that at x = 0 the radius  we obtain .
Noting that  the radius  we obtain . The radius R can be written as 

(E1)
Figure 5.34 shows the free body diagrams after imaginary cuts have been made and internal torques drawn as per our sign convention.
By equilibrium of moment about the shaft axis we obtain the internal torques:

(E2)

(E3)

The polar moment of inertias can be written as

(E4)

(a) We can find the relative rotation of the section at C with respect to the section at B using Equation (5.12):

(E5)

Substituting Equations (E3) and (E4) into Equation (5.9) and integrating from point A to point B, we can find the relative rotation at the
section at B with respect to the section at A:

 or

(E6)

Adding Equations (E5) and (E6), we obtain 

(E7)

  Figure 5.33 Shaft geometry in Example 5.9

2.5 T T

40 r
A

B C
x

10 r

R x( ) a bx+= R 4r= a 4r=
x 40r= R r= b 3– r 40r( )⁄ 0.075–= =

R x( ) 4r 0.075x–=

TBC T=

TAB 2.5T T–+ 0= or TAB 1.5T–=

C

T
TBCT

  Figure 5.34 Free-body diagrams in Example 5.9 after imaginary cut in segment (a) BC (b) AB

2.5T

B
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C

T(a) (b)

JBC
π
2
---r4= JAB

π
2
---R4 π

2
--- 4r 0.075x–( )4= =

φC φB–
TBC xC xB–( )

GBCJBC
------------------------------- T 10r( )

G π 2⁄( )r4
------------------------- 6.366T

Gr3
-----------------= = =

xd
dφ

⎝ ⎠
⎛ ⎞

AB

TAB

GABJAB
------------------ 1.5T–

G π 2⁄( ) 4r 0.075x–( )4
--------------------------------------------------------= = or dφ

φA

φB

∫  3T
Gπ 4r 0.075x–( )4
--------------------------------------------  – dx

xA

xB

∫=

φB φA– 3T
Gπ
--------–  1

3–
------  1

0.075–
----------------  1

4r 0.075x–( )3
-----------------------------------

0

40r T
0.075Gπ
----------------------– 1

r3
---- 1

4r( )3
-------------– 4.178 T

Gr3
---------–= = =

φC φA– T
Gr3
--------- 6.366 4.178–( )=
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ANS.

(b) Just left of the section at B we have JAB = πr4/2 and ρmax = r. Substituting these values into Equation (5.10), we obtain the maximum
torsional shear stress in the shaft as 

(E8)

ANS.

Dimension check: The dimensional consistency3 of the answer is checked as follows:

COMMENT
1. The direction of the shear stress can be determined using subscripts or intuitively, as shown in Figure 5.35.

EXAMPLE 5.10 

A uniformly distributed torque of q in.·lb/in. is applied to an entire shaft, as shown in Figure 5.36. In addition to the distributed torque a con-
centrated torque of T = 3qL in.·lb is applied at section B. Let the shear modulus be G and the radius of the shaft r. In terms of q, L, G, and r,
determine: (a) The rotation of the section at C. (b) The maximum shear stress in the shaft.

PLAN
(a) The internal torque in segments AB and BC as a function of x must be determined first. Then the relative rotation in each section is
found by integrating Equation (5.9). (b) Since J and ρmax are constant over the entire shaft, the maximum shear stress will exist on a sec-
tion where the internal torque is maximum. By plotting the internal torque as a function of x we can determine its maximum value.

Figure 5.37 shows the free body diagrams after imaginary cuts are made at x distance from A and internal torques drawn as per our sign
convention. We replace the distributed torque by an equivalent torque that is equal to the distributed torque intensity multiplied by the
length of the cut shaft (the rectangular area). From equilibrium of moment about the shaft axis in Figure 5.37 we obtain the internal
torques:

(E1)

(E2)

3O( ) represents the dimension of the quantity on the left. F represents dimension for the force. L represents the dimension for length. Thus
shear modulus, which has dimension of force (F) per unit area (L2), is represented as O(F/L2).

φC φA– 2.2 T
Gr3
---------  ccw=

τmax
1.5T– r

πr4 2⁄
----------------- 0.955T

r3
-----------------–= =

τmax 0.955 T r3⁄( )=

T O FL( ) r O L( ) G O F
L2
-----⎝ ⎠

⎛ ⎞→→→ φ O  ( ) T
Gr3
--------- O

FL
F
L2
-----L3
------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

O  ( ) checks→ → → →

τ O F
L2
-----⎝ ⎠

⎛ ⎞ T
r3
---- O FL

L3
-------⎝ ⎠

⎛ ⎞ O F
L2
-----⎝ ⎠

⎛ ⎞ checks→ →→→

B

Shear stress opposing
counterclockwise
motion of left segment

x
��

Negative �x�

(a) (b)

 Figure 5.35 Direction of shear stress in Example 5.9: (a) by subscripts; (b) by inspection.

T � 3qL inL �lb q in�lb	in		

C

L 2L  Figure 5.36 Shaft and loading in Example 5.10.

TAB 3qL q 3L x–( )–+ 0= or TAB q– x=

TBC q 3L x–( )– 0= or TBC q 3L x–( )=
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Integrating Equation (5.9) for each segment we obtain the relative rotations of segment ends as 

(E3)

 or

(E4)

(a) Adding Equations (E3) and (E4), we obtain the rotation of the section at C with respect to the section at A:

(E5)

ANS.

(b) Figure 5.38 shows the plot of the internal torque as a function of x using Equations (E1) and (E2). The maximum torque will occur on
a section just to the right of B. From Equation (5.10) the maximum torsional shear stress is

(E6)

ANS.

Dimension check: The dimensional consistency (see footnote 12) of our answers is checked as follows:

 

COMMENT
1. A common mistake is to write the incorrect length of the shaft as a function of x in the free-body diagrams. It should be remembered

that the location of the cut is defined by the variable x, which is measured from the common origin for all segments. Each cut pro-
duces two parts, and we are free to choose either part.

T � 3qL inL �lb

TABT

3L � x

q in� 	in		
T � 3qL inL �lb q(3L x)

C

TABT
3L � x

C

  Figure 5.37 Free-body diagrams in Example 5.10 after imaginary cut in segment (a) AB, and (b) BC.

TBCT
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q in�lb	in		
q(3L � x)
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(a)

(b)
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⎛ ⎞
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GABJAB
------------------= q– x

Gπr4 2⁄
--------------------= or dφ

φA

φB

∫
2qx

Gπr4
-------------  dx

xA=0

xB= L

∫–= or φB φA– qx2

Gπr4
------------–

0

L qL2

Gπr4
------------–= =

xd
dφ

⎝ ⎠
⎛ ⎞

BC

TBC

GBCJBC
-----------------= q 3L x–( )

Gπr4 2⁄
-----------------------  = or dφ

φB

φC

∫
2q 3L x–( )

Gπr4
-------------------------- dx

xB=L

xC=3L

∫=

φC φB– 2q
Gπr4
------------- 3Lx x2

2
----–⎝ ⎠

⎛ ⎞
L

3L
2q

Gπr4
------------- 9L2 3L( )2

2
-------------– 3L2– L2

2
-----+ 4qL2

Gπr4
-------------= = =

φC φA– qL2

Gπr4
------------– 4qL2

Gπr4
-------------+=

φC φA– 3qL2

Gπr4
-------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

= ccw=

τmax
Tmaxρmax

J
---------------------- 2qL( ) r( )

πr4 2⁄
----------------------= =

τmax   4qL
πr3
----------=

T

2qL

A B
L 3L

C

qL

x
  Figure 5.38 Torque diagram in Example 5.10.
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5.2.7* General Approach to Distributed Torque

Distributed torques are usually due to inertial forces or frictional forces acting on the surface of the shaft. The internal torque T
becomes a function of x when a shaft is subjected to a distributed external torque, as seen in Example 5.10. If t(x) is a simple
function, then we can find T as a function of x by drawing a free-body diagram, as we did in Example 5.10. However, if the dis-
tributed torque t(x) is a complex function (see Problems 5.39, 5.61, and 5.62), it may be easier to use the alternative solution
method described in this section.

Consider an infinitesimal shaft element that is created by making two imaginary cuts at a distance dx from each other, as
shown in Figure 5.39a.

By equilibrium moments about the axis of the shaft, we obtain  or

(5.14)

Equation (5.14) represents the equilibrium equation at any section x. It assumes that t(x) is positive counterclockwise with respect
to the x axis. The sign of T obtained from Equation (5.14) corresponds to the direction defined by the sign convention. If t (x) is
zero in a segment of a shaft, then the internal torque is constant in that segment.

Equation (5.14) can be integrated to obtain the internal torque T. The integration constant can be found by knowing the value
of the internal torque T at either end of the shaft. To obtain the value of T at the end of the shaft (say, point A), a free-body dia-
gram is constructed after making an imaginary cut at an infinitesimal distance ε from the end, as shown in Figure 5.39b.We then
write the equilibrium equation as

 (5.15)

Equation (5.15) shows that the distributed torque does not affect the boundary condition on the internal torque. The value of the
internal torque T at the end of the shaft is equal to the concentrated external torque applied at the end. Equation (5.14) is a differ-
ential equation. Equation (5.15) is a boundary condition. A differential equation and all the conditions necessary to solve it is
called the boundary value problem. 

EXAMPLE 5.11 

The external torque on a drill bit varies linearly to a maximum intensity of q in.·lb/in., as shown in Figure 5.40. If the drill bit diameter is
d, its length L, and the modulus of rigidity G, determine the relative rotation of the end of the drill bit with respect to the chuck.

PLAN 
The relative rotation of section B with respect to section A has to be found. We can substitute the given distributed torque in Equation
(5.14) and integrate to find the internal torque as a function of x. We can find the integration constant by using the condition that at sec-
tion B the internal torque will be zero. We can substitute the internal torque expression into Equation (5.9) and integrate from point A to
point B to find the relative rotation of section B with respect to section A. 

dx

T T � dT

t(x) dx

  Figure 5.39 (a) Equilibrium of an infinitesimal shaft element. (b) Boundary condition on internal torque.

TextTTTAT

t(xAx )


�

(a) (b)

T dT+( ) t x( ) dx T–+ 0=

xd
dT t x( )+ 0=

Text TA– t xA( )ε–[ ]
ε 0→
lim 0 or TA Text==

  Figure 5.40 Distributed torque on a drill bit in Example 5.11.
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q x
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SOLUTION
The distributed torque on the drill bit is counterclockwise with respect to the x axis. Thus we can substitute t(x) = q(x/L) into Equation
(5.14) to obtain the differential equation shown as Equation (E1). At point B, that is, at x = L, the internal torque should be zero as there
is no concentrated applied torque at B.The boundary condition is shown as Equation (E2). The boundary value problem statement is

• Differential Equation

(E1)

• Boundary Condition

(E2)
Integrating Equation (E1) we obtain

(E3)

Substituting Equation (E2) into Equation (E3) we obtain the integration constant c as 

(E4)

Substituting Equation (E4) into Equation (E3) we obtain internal torque as

(E5)

Substituting Equation (E5) into Equation (5.9) and integrating we obtain the relative rotation of the section at B with respect to the section
at A as 

(E6)

ANS.

Dimension check: The dimensional consistency (see footnote 12) of our answer is checked as follows:

 

COMMENTS
1. No free-body diagram was needed to find the internal torque because Equation (5.14) is an equilibrium equation. It is therefore valid

at each and every section of the shaft.
2. We could have obtained the internal torque by integrating Equation (5.14) from L to x as follows:

3. The internal torque can also be found using a free-body diagram. We can make an imaginary cut at some location x and draw the free-
body diagram of the right side. The distributed torque represented by  is the area of the trapezoid BCDE, and this observation
can be used in drawing a statically equivalent diagram, as shown in Figure 5.41. Equilibrium then gives us the value of the internal
torque as before. We can find the internal torque as shown.

4. The free-body diagram approach in Figure 5.41 is intuitive but more tedious and difficult than the use of Equation (5.14). As the func-
tion representing the distributed torque grows in complexity, the attractiveness of the mathematical approach of Equation (5.14)
grows correspondingly.
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  Figure 5.41 Internal torque by free-body diagram in Example 5.11.
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MoM in Action: Drill, the Incredible Tool

Drills have been in use for almost as long as humans have used tools. Early humans knew from experience that friction 

generated by torquing a wooden shaft could start a fire—a technique still taught in survivalist camps. Archeologists in 

Pakistan have found teeth perhaps 9000 years old showing the concentric marks of a flint stone drill. The Chinese used 

larger drills in the 3rd B.C.E. to extract water and oil from earth. The basic design—a chuck that delivers torque to the drill 

bit—has not changed, but their myriad uses to make holes from the very small to the very large continues to grow. 

Early development of the drill was driven by the technology of delivering power to the drill bit. In 1728, French dentist 

Pierre Fauchard (Figure 5.42a) described how catgut twisted around a cylinder could power the rotary movement as a bow 

moved back and forth. However, hand drills like these operated at only about 15 rpm. George F. Harrington introduced the 

first motor-driven drill in 1864, powered by the spring action of a clock. George Green, an American dentist, introduced a 

pedal-operated pneumatic drill just four years later—and, in 1875, an electric drill. By 1914 dental drills could operate at 

3000 rpm. 

Other improvements took better understanding of the relationship between power, torsion, and shear stress in the drill bit 

(problems 5.45—5.47) and the material being drilled: 

• The sharper the drill tip, the higher the shear stresses at the point, and the greater the amount of material that can be 

sheared. For most household jobs the angle of the drill tip is 118o. For soft materials such as plastic, the angle is sharper, 
while for harder material such as steel the angle is shallower. 

• For harder materials low speeds can prolong the life of drill bit. However, in dentistry higher speeds, of up to 500,000 
rpm, reduce a patient’s pain. 

• Slower speeds are also used to shear a large amount of material. Tunnel boring machines (TBM) shown in Figure 5.42b 
may operate at 1 to 10 rpm. The world’s largest TBM, with a diameter of 14.2 m, was used to drill the Elbe Tunnel in 
Hamburg, Germany. Eleven TBM’s drilled the three pipes of the English Channel, removing 10.5 million cubic yards of 
earth in seven years. 

• Drill bits can be made of steel, tungsten carbide, polycrystalline diamonds, titanium nitrate, and diamond powder. The 
choice is dictated by the material to be drilled as well as the cost. Even household drills have different bits for wood, 
metal, or masonry. 
Delivery and control of power to the drill bit are engineering challenges. So is removal of sheared material, not only to 

prevent the hole from plugging, but also because the material carries away heat, improving the strength and life of a drill bit. 

Yet the fundamental function of a drill remains: shearing through torsion. 

  Figure 5.42 (a) Pierre Fauchard drill. (b) Tunnel boring machine Matilda (Courtesy Erikt9).

(a) (b)
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PROBLEM SET 5.2

5.19 The torsional shear stress at point A on a solid circular homogenous cross-section was found to be τA= 120 MPa. Determine the
maximum torsional shear stress on the cross-section. 

5.20 The torsional shear strain at point A on a homogenous circular section shown in Figure P5.20 was found to be 900 μ rads. Using a
shear modulus of elasticity of 4000 ksi, determine the torsional shear stress at point B.

5.21 An aluminum shaft (Gal= 28 GPa) and a steel shaft (GS=82 GPa) are securely fastened to form composite shaft with a cross section
shown in Figure P5.21. If the maximum torsional shear strain in aluminum is 1500 μ rads, determine the maximum torsional shear strain in steel. 

5.22 An aluminum shaft (Gal= 28 GPa) and a steel shaft (GS=82 GPa) are securely fastened to form composite shaft with a cross section
shown in Figure P5.21. If the maximum torsional shear stress in aluminum is 21 MPa, determine the maximum torsional shear stress in steel.

5.23 Determine the direction of torsional shear stress at points A and B in Figure P5.23 (a) by inspection; (b) by using the sign convention
for internal torque and the subscripts. Report your answer as a positive or negative τxy. 

60 mm

100 mm

A

300

 Figure P5.19

1.5 in.

2.5 in.

A

300 550

B

  Figure P5.20

60 mm

100 mm

Steel

  Figure P5.21

Aluminum

y

T

x

A

x

B

  Figure P5.23
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5.24 Determine the direction of torsional shear stress at points A and B in Figure P5.24 (a) by inspection; (b) by using the sign convention
for internal torque and the subscripts. Report your answer as a positive or negative τxy

5.25 Determine the direction of torsional shear stress at points A and B in Figure P5.25 (a) by inspection; (b) by using the sign convention
for internal torque and the subscripts. Report your answer as a positive or negative τxy.

5.26 Determine the direction of torsional shear stress at points A and B in Figure P5.26 (a) by inspection; (b) by using the sign convention
for internal torque and the subscripts. Report your answer as a positive or negative τxy.

5.27 The two shafts shown in Figure P5.27 have the same cross sectional areas A. Show that the ratio of the polar moment of inertia of the
hollow shaft to that of the solid shaft is given by the equation below.:

5.28 Show that for a thin tube of thickness t and center-line radius R the polar moment of inertia can be approximated by  By
thin tube we imply 

5.29 (a) Draw the torque diagram in Figure P5.29. (b) Check the values of internal torque by making imaginary cuts and drawing free-
body diagrams. (c) Determine the rotation of the rigid wheel D with respect to the rigid wheel A if the torsional rigidity of the shaft is 90,000
kips·in.2.

x

x
y

T

B

A

  Figure P5.24

T

y

x
B

x
A

  Figure P5.25

T

x

x

y

A

B  Figure P5.26

RH

�RH

RS

  Figure P5.27

Jhollow

Jsolid
-------------- α2 1+

α2 1–
---------------=

J 2πR3t .=
t R 10⁄ .<
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5.30 (a) Draw the torque diagram in Figure P5.30. (b) Check the values of internal torque by making imaginary cuts and drawing free-
body diagrams. (c) Determine the rotation of the rigid wheel D with respect to the rigid wheel A if the torsional rigidity of the shaft is 1270
kN·m2.

5.31 The shaft in Figure P5.31 is made of steel (G = 80 GPa) and has a diameter of 150 mm. Determine (a) the rotation of the rigid wheel
D; (b) the magnitude of the torsional shear stress at point E and show it on a stress cube (Point E is on the top surface of the shaft.); (c) the
magnitude of maximum torsional shear strain in the shaft. 

5.32 The shaft in Figure P5.32 is made of aluminum (G = 4000 ksi) and has a diameter of 4 in. Determine (a) the rotation of the rigid
wheel D; (b) the magnitude of the torsional shear stress at point E and show it on a stress cube (Point E is on the bottom surface of the
shaft.); (c) the magnitude of maximum torsional shear strain in the shaft.

5.33 Two circular steel shafts (G =12,000 ksi) of diameter 2 in. are securely connected to an aluminum shaft (G =4,000 ksi) of diameter
1.5 in. as shown in Figure P5.33. Determine (a) the rotation of section at D with respect to the wall, and (b) the maximum shear stress in the
shaft.

60 in�kips

�kips

36

30 in

10 in�kips

�kips

 Figure P5.29

10 kN

12 kN�m

0.5 m

1.0 m

18 kN
20 kN�m

  Figure P5.30

90 kN�m

N�m

0.25 m

0.5 m

0.3 m

70 kN�m

E

 Figure P5.31

25 in

n

20 in

80 in�

40 in�kips

15 in�kips

  Figure P5.32

40 in. 15 in. 25 in.

B
steel

12 in.-kips 25 in.-kips 15 in.-kips

  Figure P5.33

steelaluminum DCA
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5.34 A solid circular steel shaft BC (Gs = 12,000 ksi) is securely attached to two hollow steel shafts AB and CD, as shown in Figure
P5.34. Determine (a) the angle of rotation of the section at D with respect to the section at A; (b) the magnitude of maximum torsional
shear stress in the shaft; (c) the torsional shear stress at point E and show it on a stress cube. (Point E is on the inside bottom surface of CD.) 

5.35 A steel shaft (G = 80 GPa) is subjected to the torques shown in Figure P5.35. Determine (a) the rotation of section A with respect to
the no-load position; (b) the torsional shear stress at point E and show it on a stress cube. (Point E is on the surface of the shaft.)

Tapered shafts
5.36 The radius of the tapered circular shaft shown in Figure P5.36 varies from 200 mm at A to 50 mm at B. The shaft between B and C
has a constant radius of 50 mm. The shear modulus of the material is G = 40 GPa. Determine (a) the angle of rotation of wheel C with
respect to the fixed end; (b) the maximum shear strain in the shaft

5.37 The radius of the tapered shaft in Figure P5.37 varies as . Determine the rotation of the section at B in terms of the
applied torque Text, length L, shear modulus of elasticity G, and geometric parameters K and a. 

5.38 The radius of the tapered shaft shown in Figure P5.37 varies as . In terms of Text, L, G, and r, determine (a) the
rotation of the section at B; (b) the magnitude of maximum torsional shear stress in the shaft.

Distributed torques
5.39 The external torque on a drill bit varies as a quadratic function to a maximum intensity of q in.·lb/in., as shown in Figure P5.39. If
the drill bit diameter is d, its length L, and its modulus of rigidity G, determine (a) the maximum torsional shear stress on the drill bit; (b) the
relative rotation of the end of the drill bit with respect to the chuck. 

24 in 24 in

2 in

100 in�kips200 in�kips420 in�kips120 in�kips

36 in  Figure P5.34

2.0 m

A

2.5 m

160 kN�m

120 kN�m
80 kN�m

  Figure P5.35

7.5 m
A B Cx

2 m

10 kN m⋅ 2.5 kN m⋅

  Figure P5.36
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q x2

L2
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⎝ ⎠
⎜ ⎟
⎛ ⎞

 in. lb/in.⋅

x

  Figure P5.39
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5.40 A circular solid shaft is acted upon by torques, as shown in Figure P5.40. Determine the rotation of the rigid wheel A with respect to
the fixed end C in terms of q, L, G, and J.

Design problems

5.41 A thin steel tube (G = 12,000 ksi) of -in. thickness has a mean diameter of 6 in. and a length of 36 in. What is the maximum torque
the tube can transmit if the allowable torsional shear stress is 10 ksi and the allowable relative rotation of the two ends is 0.015 rad? 

5.42 Determine the maximum torque that can be applied on a 2-in. diameter solid aluminum shaft (G = 4000 ksi) if the allowable tor-
sional shear stress is 18 ksi and the relative rotation over 4 ft of the shaft is to be limited to 0.2 rad.

5.43 A hollow steel shaft (G = 80 GPa) with an outside radius of 30 mm is to transmit a torque of 2700 N·m. The allowable torsional
shear stress is 120 MPa and the allowable relative rotation over 1 m is 0.1 rad. Determine the maximum permissible inner radius to the near-
est millimeter.

5.44 A 5-ft-long hollow shaft is to transmit a torque of 200 in.·kips. The outer diameter of the shaft must be 6 in. to fit existing attach-
ments. The relative rotation of the two ends of the shaft is limited to 0.05 rad. The shaft can be made of steel or aluminum. The shear mod-
ulus of elasticity G, the allowable shear stress τallow, and the specific weight γ are given in Table P5.44. Determine the maximum inner
diameter to the nearest  in. of the lightest shaft that can be used for transmitting the torque and the corresponding weight.

Transmission of power

Power P is the rate at which work  is done; and work W done by a constant torque is equal to the product of torque T and angle of rota-
tion φ. Noting that , we obtain 

(5.16)
where T is the torque transmitted, ω is the rotational speed in radians per second, and f is the frequency of rotation in hertz (Hz). Power is reported
in units of horsepower in U.S. customary units or in watts. 1 horsepower (hp) is equal to 550 ft·lb/s = 6600 in·lb/s and 1 watt (W) is equal to 1
N·m/s. Use Equation (5.16) to solve Problems 5.38 through 5.40.

5.45 A 100-hp motor is driving a pulley and belt system, as shown in Figure P5.45. If the system is to operate at 3600 rpm, determine the
minimum diameter of the solid shaft AB to the nearest  in. if the allowable stress in the shaft is 10 ksi.

5.46 The bolts used in the coupling for transferring power in Problem 5.45 have an allowable strength of 12 ksi. Determine the minimum
number (> 4) of -in. diameter bolts that must be placed at a radius of  in.

5.47 A 20-kW motor drives three gears, which are rotating at a frequency of 20 Hz. Gear A next to the motor transfers 8 kW of power.
Gear B, which is in the middle, transfers 7 kW of power. Gear C, which is at the far end from the motor, transfers the remaining 5 kW of
power. A single solid steel shaft connecting the motors to all three gears is to be used. The steel used has a yield strength in shear of 145

TABLE P5.44

Material
G

(ksi)
τallow
(ksi)

γ
(lb/in.3)

Steel 12,000 18 0.285
Aluminum 4,000 10 0.100

AAAA B

0.5 L 0.5 L

q in�
TBT in�TAT 2qL in�lb

  Figure P5.40

1
8
---

1
8
---

dW dt⁄
ω dφ dt⁄=

P Tω 2πf T= =

1
8
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  Figure P5.45

1
4
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8
---



5 236Mechanics of Materials: Torsion of ShaftsM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

MPa. Assuming a factor of safety of 1.5, what is the minimum diameter of the shaft to the nearest millimeter that can be used if failure due
to yielding is to be avoided? What is the magnitude of maximum torsional stress in the segment between gears A and B?

Stretch yourself

5.48 A circular shaft has a constant torsional rigidity GJ and is acted upon by a distributed torque t(x). If at section A the internal torque is
zero, show that the relative rotation of the section at B with respect to the rotation of the section at A is given by

(5.17)

5.49 A composite shaft made from n materials is shown in Figure P5.49. Gi and Ji are the shear modulus of elasticity and polar moment
of inertia of the ith material. (a) If Assumptions from 1 through 6 are valid, show that the stress  in the ith material is given Equation
(5.18a), where T is the total internal torque at a cross section. (b) If Assumptions 8 through 10 are valid, show that relative rotation 
is given by Equation (5.18b). (c) Show that for G1=G2=G3....=Gn=G Equations (5.18a) and (5.18b) give the same results as Equations (5.10)
and (5.12). 

5.50 A circular solid shaft of radius R is made from a nonlinear material that has a shear stress-shear strain relationship given by τ = Gγ0.5.
Assume that the kinematic assumptions are valid and shear strain varies linearly with the radial distance across the cross-section. Determine
the maximum shear stress and the rotation of section at B in terms of external torque Text, radius R, material constant G, and length L.

5.51 A hollow circular shaft is made from a non-linear materials that has the following shear stress--shear strain relation τ = Gγ2. Assume
that the kinematic assumptions are valid and shear strain varies linearly with the radial distance across the cross-section. In terms of internal
torque T, material constant G, and R, obtain formulas for (a) the maximum shear stress  and (b) the relative rotation  of two
cross-sections at x1 and x2. 

5.52 A solid circular shaft of radius R and length L is twisted by an applied torque T. The stress–strain relationship for a nonlinear mate-
rial is given by the power law . If Assumptions 1 through 4 are applicable, show that the maximum shear stress in the shaft and the
relative rotation of the two ends are as follows:

Substitute n = 1 in the formulas and show that we obtain the same results as from Equations 5.10 and 5.12.

φB φA– 1
GJ
------- x xB–( )t x( ) dx

xA

xB

∫=

τxθ( )i
φ2 φ1–

  Figure P5.49

(5.18a)

(5.18b)

τxθ( )i
GiρT

GjJjj=1

n

∑
-----------------------=

φ2 φ1–
T x2 x1–( )

GjJjj=1

n

∑
------------------------=
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L

B

  Figure P5.50

A
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2R  Figure P5.51
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5.53 The internal torque T and the displacements of a point on a cross section of a noncircular shaft shown in Figure P5.53 are given by
the equations below

where u, v, and w are the displacements in the x, y, and z directions, respectively;  is the rate of twist and is considered constant.
 is called the warping function4 and describes the movement of points out of the plane of cross section. Using Equations (2.12d) and

(2.12f) and Hooke’s law, show that the shear stresses for a noncircular shaft are given by

(5.21)

5.54 Show that for circular shafts,  the equations in Problem 5.53 reduce to Equation (5.9). 

5.55 Consider the dynamic equilibrium of the differential element shown in Figure P5.55, where T is the internal torque, γ is the material
density, J is the polar area moment of inertia, and  is the angular acceleration. Show that dynamic equilibrium results in Equation
(5.22)

5.56 Show by substitution that the solution of Equation (5.23) satisfies Equation (5.22):

(5.23)

where A, B, C, and D are constants that are determined from the boundary conditions and the initial conditions and ω is the frequency of
vibration.

Computer problems 

5.57 A hollow aluminum shaft of 5 ft in length is to carry a torque of 200 in.·kips. The inner radius of the shaft is 1 in. If the maximum
torsional shear stress in the shaft is to be limited to 10 ksi, determine the minimum outer radius to the nearest  in.

5.58 A 4-ft-long hollow shaft is to transmit a torque of 100 in.·kips. The relative rotation of the two ends of the shaft is limited to
0.06 rad. The shaft can be made of steel or aluminum. The shear modulus of rigidity G, the allowable shear stress τallow, and the specific
weight γ are given in Table P5.58. The inner radius of the shaft is 1 in. Determine the outer radius of the lightest shaft that can be used for trans-
mitting the torque and the corresponding weight. 

5.59 Table P5.59 shows the measured radii of the solid tapered shaft shown in Figure P5.59, at several points along the axis of the shaft.
The shaft is made of aluminum (G = 28 GPa) and has a length of 1.5 m. Determine: (a) the rotation of the free end with respect to the wall
using numerical integration; (b) the maximum shear stress in the shaft. 

4Equations of elasticity show that the warping function satisfies the Laplace equation, 

TABLE P5.58

Material G (ksi) τallow (ksi) γ (lb/in.3)

Steel 12,000 18 0.285
Aluminum 4000 10 0.100

y

x

z

dVyVV �xy� dAdd

dV

T

y

x

  Figure P5.53 Torsion of noncircular shafts.

(5.19a)

(5.19b)

(5.19c)

(5.20)
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  Figure P5.55 Dynamic equilibrium.
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5.60 Let the radius of the tapered shaft in Problem 5.59 be represented by the equation R(x) = a + bx. Using the data in Table P5.59 deter-
mine the constants a and b by the least-squares method and then find the rotation of the section at B by analytical integration. 

5.61 Table P5.61 shows the values of distributed torque at several points along the axis of the solid steel shaft (G = 12,000 ksi) shown in
Figure P5.61. The shaft has a length of 36 in. and a diameter of 1 in. Determine (a) the rotation of end A with respect to the wall using numer-
ical integration; (b) the maximum shear stress in the shaft.

5.62 Let the distributed torque t(x) in Problem 5.61 be represented by the equation t(x) = a + bx + cx2. Using the data in Table P5.61
determine the constants a, b, and c by the least-squares method and then find the rotation of the section at B by analytical integration.

QUICK TEST 5.1 Time: 20 minutes/Total: 20 points 

�m

x

 Figure P5.59

TABLE P5.59

x 
(m)

R(x) 
(mm)

0.0 100.6
0.1 92.7
0.2 82.6
0.3 79.6
0.4 75.9
0.5 68.8
0.6 68.0
0.7 65.9

0.8 60.1
0.9 60.3
1.0 59.1
1.1 54.0
1.2 54.8
1.3 54.1
1.4 49.4
1.5 50.6

TABLE P5.59

x 
(m)

R(x) 
(mm)

T 35 kN m⋅=

TABLE P5.61

x
(in.)

t(x)
(in.·lb/in.)

0 93.0
3 146.0
6 214.1
9 260.4

12 335.0
15 424.7
18 492.6

21 588.8
24 700.1
27 789.6
30 907.4
33 1040.3
36 1151.4

TABLE P5.61

x
(in.)

t(x)
(in.·lb/in.)
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5.3 STATICALLY INDETERMINATE SHAFTS

In Chapter 4 we saw the solution of statically indeterminate axial problems require equilibrium equations and compatibility
equations. This is equally true for statically indeterminate shafts. The primary focus in this section will be on the solution of stat-
ically indeterminate shafts that are on a single axis. However, equilibrium equations and compatibility equations can also be
used for solution of shafts with composite cross section, as will be demonstrated in Example 5.14. The use of equilibrium equa-
tions and compatibility equations to shafts on multiple axis is left as exercises in Problem Set 5.3.

Figure 5.43 shows a statically indeterminate shaft. In statically indeterminate shafts we have two reaction torques, one at the
left and the other at the right end of the shaft. But we have only one static equilibrium equation, the sum of all torques in the x
direction should be zero. Thus the degree of static redundancy is 1 and we need to generate 1 compatibility equation. We shall
use the continuity of φ and the fact that the sections at the left and right walls have zero rotation. The compatibility equation state
that the relative rotation of the right wall with respect to the left wall is zero. Once more we can use either the displacement
method or the force method:

1. In the displacement method, we can use the rotation of the sections as the unknowns. If torque is applied at several
sections along the shaft, then the rotation of each of the sections is treated as an unknown.

2. In the force method, we can use either the reaction torque as the unknown or the internal torques in the sections as the
unknowns. Since the degree of static redundancy is 1, the simplest approach is often to take the left wall (or the right
wall) reaction as the unknown variable. We can then apply the compatibility equation, as outlined next.

5.3.1 General Procedure for Statically Indeterminate Shafts.

Step 1 Make an imaginary cut in each segment and draw free-body diagrams by taking the left (or right) part if the left
(right) wall reaction is carried as the unknown in the problem. Alternatively, draw the torque diagram in terms of the reaction
torque.

Step 2 Write the internal torque in terms of the reaction torque.
Step 3 Using Equation (5.12) write the relative rotation of each segment ends in terms of the reaction torque.

Answer true or false and justify each answer in one sentence. Grade yourself with the answers given in Appendix E.

1. Torsional shear strain varies linearly across a homogeneous cross section. 
2. Torsional shear strain is a maximum at the outermost radius for a homogeneous and a nonhomogeneous cross section. 
3. Torsional shear stress is a maximum at the outermost radius for a homogeneous and a nonhomogeneous cross section.
4. The formula  can be used to find the shear stress on a cross section of a tapered shaft. 
5. The formula  can be used to find the relative rotation of a segment of a tapered shaft.
6. The formula  can be used to find the shear stress on a cross section of a shaft subjected to distributed

torques.
7. The formula  can be used to find the relative rotation of a segment of a shaft subjected to dis-

tributed torques.
8. The equation  cannot be used for nonlinear materials.

9. The equation  can be used for a nonhomogeneous cross section.

10.Internal torques jump by the value of the concentrated external torque at a section.

τxθ Tρ J⁄=
φ2 φ1– T x2 x1–( ) G⁄ J=
τxθ Tρ J⁄=

φ2 φ1– T x2 x1–( ) G⁄ J=

T ρτxθ  Ad
A∫=

T ρτxθ  Ad
A∫=

B

TT

  Figure 5.43 Statically indeterminate shaft.
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Step 4 Add all the relative rotations. Obtain the rotation of the right wall with respect to the left wall and set it equal to
zero to obtain the reaction torque. 

Step 5  The internal torques can be found from equations obtained in Step 2, and angle of rotation and stresses calculated.

EXAMPLE 5.12 

A solid circular steel shaft (Gs = 12,000 ksi, Es = 30,000 ksi) of 4-in. diameter is loaded as shown in Figure 5.62. Determine the maxi-
mum shear stress in the shaft.

PLAN 
We follow the procedure outlined in Section 5.3.1 to determine the reaction torque TA. For the uniform cross-section the maximum shear
stress will occur in the segment that has the maximum internal torque.

SOLUTION
The polar moment of inertia and the torsional rigidity for the shaft can be found as

(E1)

Step 1: We draw the reaction torques TA and TD as shown in Figure 5.44a. By making imaginary cuts in sections AB, BC, and CD and tak-
ing the left part we obtain the free body diagrams shown in Figures 5.44 b, c, and d. 

Step 2: By equilibrium of moments in Figures 5.44 b, c, and d. or from Figure 5.45b we obtain the internal torques as 
(E2)

Step 3: Using Equation (5.12), the relative rotation in each segment ends can be written as 

(E3)

(E4)

(E5)

Step 4: We obtain  by adding Equations (E3), (E4), and (E5), which we equate to zero to obtain TA: 

 or

(E6)

Step 5: We obtain the internal torques by substituting Equation (E6) into Equation (E2):
(E7)

For the uniform cross-section, the maximum shear stress will occur in segment BC and can be found using Equation (5.10):

(E8)

ANS.

90 in�kips 240 in�kips

CB DA x

3 ft 4 ft 7 ft  Figure P5.62 Shaft in Example 5.12.

J π 4 in.( )2

32
---------------------- 25.13 in.4= = GJ 12000 ksi( ) 25.13 in.4( ) 301.6 103( )  kips·in.2= =

90 in�kips 240 in�kips

CB DA x

3 ft 4 ft 7 ft

TAT
90 in�kips

BA

TAT

90 in�kips

BA

240 in�kips

C

TABT � �TAT TBC T � �TAT � 90 TCD � �TAT � 150

A

TAT TABT TBCT TCD

(a) (b) (c) (d)

  Figure 5.44 Free body diagrams of (a) entire shaft; (b) section AB; (c) section BC; (d) section CD. 

TA
TD

TAB TA–= TBC -TA 90 +( )in.· kips= TCD -TA 150 –( )in.· kips=

φB φA–
TAB xB xA–( )

GABJAB
-------------------------------

TA 36( )–

301.6 103( ) 
----------------------------- 0.1194 10 3–( )– TA= = =

φC φB–
TBC xC xB–( )

GBCJBC
-------------------------------

-TA 90+( )48

301.6 103×
-------------------------------- -0.1592TA 14.32+( ) 10 3–( )= = =

φD φC–
TCD xD xC–( )

GCDJCD
--------------------------------

-TA 150–( )84

301.6 103×
---------------------------------- -0.2785TA 41.78–( ) 10 3–( )= = =

φD φA.–

φD φA– 0.1194TA– 0.1592TA– 14.32 0.2785TA– 41.78–+( ) 0= =

TA
14.32 41.78–

0.1194 0.1592 0.2785+ +
-------------------------------------------------------------- 49.28–  in.·kips= =

TAB 49.28 in.·kips= TBC 139.28 in.·kips= TCD 100.72–  in.·kips=

τmax
TBC ρBC( )max

JBC
------------------------------- 139.3 in.· kips( ) 2 in.( )

25.13 in.4
--------------------------------------------------------= =

τmax 11.1 ksi=
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COMMENTS
1. We could have found the internal torques in terms of TA using the template shown in Figure 5.45a and drawing the torque diagram in

Figure 5.45b.

2. We can find the reaction torque at D from equilibrium of moment in the free body diagram shown in Figure 5.44d as: 

3. Because the applied torque at C is bigger than that at B, the reaction torques at A and D will be opposite in direction to the torque at C.
In other words, the reaction torques at A and D should by clockwise with respect to the x axis. The sign of TA and TD confirms this
intuitive reasoning. 

EXAMPLE 5.13 

A solid aluminum shaft (Gal = 27 GPa) and a solid bronze shaft (Gbr = 45 GPa) are securely connected to a rigid wheel, as shown in
Figure 5.46. The shaft has a diameter of 75 mm. The allowable shear stresses in aluminum and bronze are 100 MPa and 120 MPa,
respectively. Determine the maximum torque that can be applied to wheel B.

PLAN
We will follow the procedure of Section 5.3.1 and solve for the maximum shear stress in aluminum and bronze in terms of T. We will
obtain the two limiting values on T to meet the limitations on maximum shear stress and determine the maximum permissible value of T.

SOLUTION
We can find the polar moment of inertia and the torsional rigidities as 

(E1)
Step 1: Let TA, the reaction torque at A, be clockwise with respect to the x axis. We can make imaginary cuts in AB and BC and draw the
free-body diagrams as shown in Figure 5.47. 

Step 2: From equilibrium of moment about shaft axis in Figure 5.47 we obtain the internal torques in terms of TA and T.

 (E2)
Step 3: Using Equation (5.12), we obtain the relative rotation in each segment ends as 

(E3)

(E4)

Step 4: We obtain  by adding Equations (E3) and (E4) and equate it to zero to find TA in terms of T:

(E5)

(a) (b)

T

TAT

90 � TAT

�150 � TAT

A B C D

T2TT � T1 � T

T1 T2TT

T

 Figure 5.45 Template and torque diagram in Example 5.12.

TD 90 240– TA– 60.72 in.·kips–= =

Aluminum

T

B CA
x

0.75 m

Bronze

2 m  Figure 5.46 Shaft in Example 5.13.

J π 0.075 m( )4 32⁄ 3.106 10× 6–  m4= = GABJAB 83.87 103( )  N·m2= GBCJBC 139.8 103( )  N·m2=

A

TAT TABT

A

T

B

TBCTTAT

  Figure 5.47 Free-body diagrams in Example 5.13.

TAB TA= TBC TA T–=

φB φA–
TAB xB xA–( )

GABJAB
-------------------------------

TA 0.75( )

83.87 103( )
--------------------------- 8.942 10 6–( )TA= = =

φC φB–
TBC xC xB–( )

GBCJBC
-------------------------------

TA T–( ) 2( )

139.8 103( )
---------------------------- 14.31TA 14.31T–( ) 10 6–( )= = =

φC φA–

φC φA– 8.942TA 14.31TA 14.31T–+( ) 10 6–( ) 0= = or TA
14.31T

8.942 14.31+
--------------------------------- 0.6154T= =
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Step 5: We obtain the internal torques in terms of T by substituting Equation (E5) into Equation (E2):
(E6)

The maximum shear stress in segment AB and BC can be found in terms of T using Equation (5.10) and noting that ρmax = 0.0375 mm.
Using the limits on shear stress we obtain the limits on T as 

(E7)

(E8)

The value of T that satisfies Equations (E7) and (E8) is the maximum value we seek.
ANS. 

COMMENTS
1. The maximum torque is limited by the maximum shear stress in bronze. If we had a limitation on the rotation of the wheel, then we

could easily incorporate it by calculating φB from Equation (E3) in terms of T. 
2. We could have solved this problem by the displacement method. In that case we would carry the rotation of the wheel φB as the

unknown. 
3. We could have solved the problem by initially assuming that one of the materials reaches its limiting stress value, say aluminum. We

can then do our calculations and find the maximum stress in bronze, which would exceed the limiting value of 120 MPa. We would
then resolve the problem. The process, though correct, can become tedious as the number of limitations increases. Instead put off
deciding which limitation dictates the maximum value of the torque toward the end. In this way we need to solve the problem only
once, irrespective of the number of limitations. 

EXAMPLE 5.14 

A solid steel (G = 80 GPa) shaft is securely fastened to a hollow bronze (G = 40 GPa) shaft as shown in Figure 5.48. Determine the max-
imum value of shear stress in the shaft and the rotation of the right end with respect to the wall. 

PLAN
The steel shaft and the bronze shaft can be viewed as two independent shafts. At equilibrium the sum of the internal torques on each
material is equal to the applied torque. The compatibility equation follows from the condition that a radial line on steel and bronze will
rotate by the same amount. Hence, the relative rotation is the same for each length segment. Solving the equilibrium equation and the
compatibility equation we obtain the internal torques in each material, from which the desired quantities can be found.

SOLUTION
We can find the polar moments and torsional rigidities as

(E1)

(E2)

TAB 0.6154T= TBC 0.3846T–=

τAB( )max
TAB ρAB( )max

JAB
------------------------------

0.6154T( ) 0.0375 m( )

3.106 10 6–( ) m4
----------------------------------------------------- 100 106( )  N/m2= = = or T 13.46 103( )  N·m≤

τBC( )max
TBC ρBC( )max

JBC
------------------------------

0.3846T( ) 0.0375 m( )

3.106 10 6–( ) m4
----------------------------------------------------- 120 106( )  N/m2= = = or T 25.84 103( )  N·m≤

Tmax 13.4 kN·m.=

 Figure 5.48 Composite shaft in Example 5.14.

75 kN-m

80 mm

120 mm

A

B

2 m

JS
π
32
------ 0.08 m( )4 4.02 10 6–( )  m4= = JBr

π
32
------ 0.12 m( )4 0.08 m( )4–[ ] 16.33 10 6–( )  m4= =

GSJS 321.6 103( ) N m2⋅= GBrJBr 653.2 103( ) N m2⋅=
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Figure 5.49a shows the free body diagram after making an imaginary cut in AB. Figure 5.49b shows the decomposition of a composite
shaft as two homogenous shafts. 

From Figure 5.49 we obtain the equilibrium equation,

(E3)
Using Equation (5.12) we can write the relative rotation of section at B with respect to A for the two material as

(E4)

(E5)

Equating Equations (E4) and (E5) we obtain
(E6)

Solving Equations (E3) and (E4) for the internal torques give

 (E7)
Substituting Equation (7) into Equation (4), we find 

(E8)

ANS.   
The maximum torsional shear stress in each material can be found using Equation (5.10):

(E9)

(E10)

The maximum torsional shear stress is the larger of the two.
ANS. 

COMMENT
1. The kinematic condition that all radial lines must rotate by equal amount for a circular shaft had to be explicitly enforced to obtain

Equations (E6). We could also have implicitly assumed this kinematic condition and developed formulas for composite shafts (see Problem
5.49) as we did for homogenous shaft. We can then use these formulas to solve statically determinate and indeterminate problems (see Problem
5.82) as we have done for homogenous shafts.

PROBLEM SET 5.3

Statically indeterminate shafts

5.63 A steel shaft (Gst = 12,000 ksi) and a bronze shaft (Gbr = 5600 ksi) are securely connected at B, as shown in Figure P5.63. Determine
the maximum torsional shear stress in the shaft and the rotation of the section at B if the applied torque T = 50 in.·kips. 

Δφ Δφ

Δφ

TAB Ts TBr

  Figure 5.49 (a) Free body diagram (b) Composite shaft as two homogenous shafts in Example 5.14.

75 kN-m

B

TAB
(a) (b)

TAB Ts TBr+ 75 kN m⋅ 75 103( ) N m⋅= = =

Δφ φB φA–
Ts xB xA–( )

GsJs
---------------------------

Ts 2( )

321.6 103( )
--------------------------- 6.219 10 6–( )Ts  rad= = = =

Δφ φB φA–
TBr 2( )

653.2 103( )
--------------------------- 3.0619 10 6–( )TBr  rad= = =

Ts 2.03TBr=

Ts 24.75 103( )  N m⋅= TBr 50.25 103( ) N m⋅=

φB φA– 6.219 10 6–( ) 24.75( ) 103( ) 0.1538 rad= =

φB φA– 0.1538 rad ccw=

τs( )max

Ts ρs( )max

Js
----------------------- 24.75 103( )  N m⋅[ ] 0.04 m( )

4.02 10 6–( )  m4
--------------------------------------------------------------------- 246.3 106( )  N/m2= = =

τBr( )max

TBr ρBr( )max

JBr
----------------------------- 50.25 103( )  N m⋅[ ] 0.06 m( )

16.33 10 6–( )  m4
--------------------------------------------------------------------- 184.6 106( )  N/m2= = =

τmax 246.3 MPa=

T

4 ft  Figure P5.63
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5.64 A steel shaft (Gst = 12,000 ksi) and a bronze shaft (Gbr = 5600 ksi) are securely connected at B, as shown in Figure P5.63. Determine
the maximum torsional shear strain and the applied torque T if the section at B rotates by an amount of 0.02 rad.

5.65 Two hollow aluminum shafts (G = 10,000 ksi) are securely fastened to a solid aluminum shaft and loaded as shown Figure P5.65. If
T = 300 in.·kips, determine (a) the rotation of the section at C with respect to the wall at A; (b) the shear strain at point E. Point E is on the
inner surface of the shaft. 

5.66 Two hollow aluminum shafts (G = 10,000 ksi) are securely fastened to a solid aluminum shaft and loaded as shown Figure P5.65.
The torsional shear strain at point E which is on the inner surface of the shaft is –250 μ. Determine the rotation of the section at C and the
applied torque T that produced this shear strain.

5.67 Two solid circular steel shafts (Gst = 80 GPa) and a solid circular bronze shaft (Gbr = 40 GPa) are securely connected by a coupling at
C as shown in Figure P5.67. A torque of T = 10 kN·m is applied to the rigid wheel B. If the coupling plates cannot rotate relative to one
another, determine the angle of rotation of wheel B due to the applied torque.

5.68 Two solid circular steel shafts (Gst = 80 GPa) and a solid circular bronze shaft (Gbr = 40 GPa) are connected by a coupling at C as
shown in Figure P5.67. A torque of T = 10 kN·m is applied to the rigid wheel B. If the coupling plates can rotate relative to one another by
0.5° before engaging, then what will be the angle of rotation of wheel B?

5.69 A solid steel shaft (G = 80 GPa) is securely fastened to a solid bronze shaft (G = 40 GPa) that is 2 m long, as shown in Figure P5.69.
If Text = 10 kN · m, determine (a) the magnitude of maximum torsional shear stress in the shaft; (b) the rotation of the section at 1 m from the
left wall. 

5.70 A solid steel shaft (G = 80 GPa) is securely fastened to a solid bronze shaft (G = 40 GPa) that is 2 m long, as shown in Figure P5.69.
If the section at B rotates by 0.05 rad, determine (a) the maximum torsional shear strain in the shaft; (b) the applied torque Text.

5.71 Two shafts with shear moduli G1 = G and G2 = 2G are securely fastened at section B, as shown in Figure P5.71. In terms of Text, L, G,
and d, find the magnitude of maximum torsional shear stress in the shaft and the rotation of the section at B.

24 in 24 in

T

36 in  Figure P5.65

T � 10 kN�m

5 m 3 m
  Figure P5.67

TextTT

2 m
1 m  Figure P5.69

AAAAA

TextTT

2.5L  Figure P5.71
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5.72 A uniformly distributed torque of q in.·lb/in. is applied to the entire shaft, as shown in Figure P5.72. In addition to the distributed
torque a concentrated torque of T = 3qL in.·lb is applied at section B. Let the shear modulus be G and the radius of the shaft r. In terms of q,
L, G, and r determine (a) the rotation of the section at B; (b) the magnitude of maximum torsional shear stress in the shaft.

Design problems

5.73 A steel shaft (Gst = 80 GPa) and a bronze shaft (Gbr = 40 GPa) are securely connected at B, as shown in Figure P5.69. The magnitude
of maximum torsional shear stresses in steel and bronze are to be limited to 160 MPa and 60 MPa, respectively. Determine the maximum
allowable torque Text to the nearest kN·m that can act on the shaft.

5.74 A steel shaft (Gst = 80 GPa) and a bronze shaft (Gbr = 40 GPa) are securely connected at B, as shown in Figure P5.74. The magnitude
of maximum torsional shear stresses in steel and bronze are to be limited to 160 MPa and 60 MPa, respectively, and the rotation of section B
is limited to 0.05 rad. (a) Determine the maximum allowable torque T to the nearest kN·m that can act on the shaft if the diameter of the
shaft is d = 100 mm. (b) What are the magnitude of maximum torsional shear stress and the maximum rotation in the shaft corresponding to
the answer in part (a)?

5.75 A steel shaft (Gst = 80 GPa) and a bronze shaft (Gbr = 40 GPa) are securely connected at B, as shown in Figure P5.74. The magnitude
of maximum torsional shear stresses in steel and bronze are to be limited to 160 MPa and 60 MPa, respectively, and the rotation of section B
is limited to 0.05 rad. (a) Determine the minimum diameter d of the shaft to the nearest millimeter if the applied torque T = 20 kN · m. (b)
What are the magnitude of maximum torsional shear stress and the maximum rotation in the shaft corresponding to the answer in part (a)?

5.76 The solid steel shaft shown in Figure P5.76 has a shear modulus of elasticity G = 80 GPa and an allowable torsional shear stress of
60 MPa. The allowable rotation of any section is 0.03 rad. The applied torques on the shaft are T1 = 10 kN·m and T2 = 25 kN· m. Determine
(a) the minimum diameter d of the shaft to the nearest millimeter; (b) the magnitude of maximum torsional shear stress in the shaft and the
maximum rotation of any section.

5.77 The diameter of the shaft shown in Figure P5.76 d = 80 mm. Determine the maximum values of the torques T1 and T2 to the nearest
kN·m that can be applied to the shaft.

Composite Shafts

5.78 An aluminum tube and a copper tube, each having a thickness of 5 mm, are securely fastened to two rigid bars, as shown in Figure
P5.78. The bars force the tubes to rotate by equal angles. The two tubes are 1.5 m long, and the mean diameters of the aluminum and copper
tubes are 125 mm and 50 mm, respectively. The shear moduli for aluminum and copper are Gal = 28 GPa and Gcu = 40 GPa. Under the

LL
B

22LL

q in�lb/in
3qL inL �lb

  Figure P5.72

TextTT

1.5 m
3 m  Figure P5.74

T1 T2TT

B C

d

2.5 m1.5 m
1 m

  Figure P5.76
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action of the applied couple section B of the two tubes rotates by an angle of 0.03 rad Determine (a) the magnitude of maximum torsional
shear stress in aluminum and copper; (b) the magnitude of the couple that produced the given rotation.

5.79 Solve Problem 5.78 using Equations (5.18a) and (5.18b). 

5.80 An aluminum tube and a copper tube, each having a thickness of 5 mm, are securely fastened to two rigid bars, as shown in Figure
P5.78. The bars force the tubes to rotate by equal angles. The two tubes are 1.5 m long and the mean diameters of the aluminum and copper
tubes are 125 mm and 50 mm, respectively. The shear moduli for aluminum and copper are Gal = 28 GPa and Gcu = 40 GPa. The applied cou-
ple on the tubes shown in Figure P5.78 is 10 kN·m. Determine (a) the magnitude of maximum torsional shear stress in aluminum and cop-
per; (b) the rotation of the section at B.

5.81 Solve Problem 5.80 using Equations (5.18a) and (5.18b). 

5.82 Solve Example 5.14 using Equations (5.18a) and (5.18b).

5.83 The composite shaft shown in Figure P5.83 is constructed from aluminum (Gal = 4000 ksi), bronze (Gbr = 6000 ksi), and steel
(Gst = 12,000 ksi). (a) Determine the rotation of the free end with respect to the wall. (b) Plot the torsional shear strain and the shear stress
across the cross section

5.84 Solve Problem 5.83 using Equations (5.18a) and (5.18b).

5.85 If T = 1500 N · m in Figure P5.85, determine (a) the magnitude of maximum torsional shear stress in cast iron and copper; (b) the
rotation of the section at D with respect to the section at A.

A

B

F

Aluminum

Copper

F

  Figure P5.78

25 in

30 in�kips

2 in1.5 in

Steel Bronze
Aluminum  Figure P5.83

500 mm 150 mm 400 mm

A B C
D

T
T

  Figure P5.85
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Shafts on multiple axis

5.86 Two steel (G = 80 GPa) shafts AB and CD of diameters 40 mm are connected with gears as shown in Figure P5.86. The radii of gears at B
and C are 250 mm and 200 mm, respectively. The bearings at E and F offer no torsional resistance to the shafts. If an input torque of Text = 1.5 kN.m
is applied at D, determine (a) the maximum torsional shear stress in AB; (b) the rotation of section at D with respect to the fixed section at A. 

5.87 Two steel (G = 80 GPa) shafts AB and CD of diameters 40 mm are connected with gears as shown in Figure P5.86. The radii of
gears at B and C are 250 mm and 200 mm, respectively. The bearings at E and F offer no torsional resistance to the shafts. The allowable
shear stress in the shafts is 120 MPa. Determine the maximum torque T that can be applied at section D. 

5.88 Two steel (G = 80 GPa) shafts AB and CDE of 1.5 in. diameters are connected with gears as shown in Figure P5.88. The radii of gears at B
and D are 9 in. and 5 in., respectively. The bearings at F, G, and H offer no torsional resistance to the shafts. If an input torque of Text = 800 ft.lb is
applied at D, determine (a) the maximum torsional shear stress in AB; (b) the rotation of section at E with respect to the fixed section at C.

5.89 Two steel (G = 80 GPa) shafts AB and CD of 60 mm diameters are connected with gears as shown in Figure P5.89. The radii of gears at B
and D are 175 mm and 125 mm, respectively. The bearings at E and F offer no torsional resistance to the shafts. If an input torque of Text = 2 kN.m
is applied, determine (a) the maximum torsional shear stress in AB; (b) the rotation of section at D with respect to the fixed section at C.

5.90 Two steel (G = 80 GPa) shafts AB and CD of 60 mm diameters are connected with gears as shown in Figure P5.89. The radii of
gears at B and D are 175 mm and 125 mm, respectively. The bearings at E and F offer no torsional resistance to the shafts. The allowable
shear stress in the shafts is 120 MPa. What is the maximum torque T that can be applied? 

5.91 Two steel (G = 80 GPa) shafts AB and CD of equal diameters d are connected with gears as shown in Figure P5.89. The radii of
gears at B and D are 175 mm and 125 mm, respectively. The bearings at E and F offer no torsional resistance to the shafts. The allowable
shear stress in the shafts is 120 MPa and the input torque is T = 2 kN.m. Determine the minimum diameter d to the nearest millimeter. 

  Figure P5.86

Text

D

A B

C E

F

1.2 m

1.5 m

  Figure P5.88

Text

E

A B

D H

F

4 ft

5 ft

C G

 Figure P5.89

Text

1.5 m

C F

A E B

D
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Stress concentration
5.92 The allowable shear stress in the stepped shaft shown Figure P5.92 is 17 ksi. Determine the smallest fillet radius that can be used at
section B. Use the stress concentration graphs given in Section C.4.3.

5.93 The fillet radius in the stepped shaft shown in Figure P5.93 is 6 mm. Determine the maximum torque that can act on the rigid wheel
if the allowable shear stress is 80 MPa and the modulus of rigidity is 28 GPa. Use the stress concentration graphs given in Section C.4.3.

5.4* TORSION OF THIN-WALLED TUBES

The sheet metal skin on a fuselage, the wing of an aircraft, and the shell of a tall building are examples in which a body can be
analyzed as a thin-walled tube. By thin wall we imply that the thickness t of the wall is smaller by a factor of at least 10 in com-
parison to the length b of the biggest line that can be drawn across two points on the cross section, as shown in Figure 5.50a. By
a tube we imply that the length L is at least 10 times that of the cross-sectional dimension b.
We assume that this thin-walled tube is subjected to only torsional moments.

The walls of the tube are bounded by two free surfaces, and hence by the symmetry of shear stresses the shear stress in the
normal direction τxn must go to zero on these bounding surfaces, as shown in Figure 5.50b.This does not imply that τxn is zero in
the interior. However, because the walls are thin, we approximate τxn as zero everywhere. The normal stress σxx would be equiv-
alent to an internal axial force or an internal bending moment. Since there is no external axial force or bending moment, we
approximate the value of σxx as zero.

Figure 5.50b shows that the only nonzero stress component is τxs. It can be assumed uniform in the n direction because the
tube is thin. Figure 5.50c shows a free-body diagram of a differential element with an imaginary cut through points A and B. By
equilibrium of forces in the x direction we obtain 

(5.24a)

(5.24b)

(5.24c)

  Figure P5.92
CBA

2 in

T � 2.5 in�kips

1 in

  Figure P5.93

60 mm

48 mm
T

0.9 m 0.75 m 1.0 m

L

b

T

T

 Figure 5.50 (a) Torsion of thin-walled tubes. (b) Deducing stress behavior in thin-walled tubes. (c) Deducing constant shear flow in 
thin-walled tubes.

b 10t>
L >10b

s

�xs�

Free surface,
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Zero because of
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(a) (b)
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AAAA
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The quantity  is called shear flow5 and has units of force per unit length. Equation (5.24c) shows that shear flow is uni-
form at a given cross section. 

We can replace the shear stresses (shear flow) by an equivalent internal torque, as shown in Figure 5.51. The line OC is per-
pendicular to the line of action of the force dV, which is in the tangent direction to the arc at that point. Noting that the shear flow
is a constant, we take it outside the integral sign,

(5.25)

We thus obtain

(5.26)

where T is the internal torque at the section containing the point at which the shear stress is to be calculated, AE is the area
enclosed by the centerline of the tube, and t is the thickness at the point where the shear stress is to be calculated.

The thickness t can vary with different points on the cross section provided the assumption of thin-walled is not violated. If
the thickness varies, then the shear stress will not be constant on the cross section, even though the shear flow is constant.

EXAMPLE 5.15 

A semicircular thin tube is subjected to torques as shown in Figure 5.52. Determine: (a) The maximum torsional shear stress in the tube.
(b) The torsional shear stress at point O. Show the results on a stress cube.

PLAN
From Equation 5.26 we know that the maximum torsional shear stress will exist in a section where the internal torque is maximum and
the thickness minimum. To determine the maximum internal torque, we make cuts in AB, BC, and CD and draw free-body diagrams by
taking the right part of each cut to avoid calculating the wall reaction. 

SOLUTION

5This terminology is from fluid mechanics, where an incompressible ideal fluid has a constant flow rate in a channel.

q τxst=

T  dT∫° q h ds( )∫° q 2 dAE∫° 2qAE= = = = or q T
2AE
---------=

τxs
T

2tAE
-----------=

h � perpendicular 
distance from
origin to force dF

Area enclosed AE

ddVV � q ds

dT � h dV � h(q ds)

OAB � dAE

dsB

CO O

dAE � (h ds)1
2
  

x x

T

A

  Figure 5.51 Equivalency of internal torque and shear stress (flow).

x

5 in

O

Cross section 

xA
B O

C
D

70
 in�kips
50
 in�kips

20
 in�kips

1 in
8

3 in
16

  Figure 5.52 Thin-walled tube in Example 5.15.
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Figure 5.53 shows the free-body diagrams after making an imaginary cut and taking the right part.

(a) The maximum torque is in AB and the minimum thickness is  The enclosed area is  From

Equation 5.26 we obtain 

(E1)

ANS.

(b) At point O the internal torque is TBC and t =  in. We obtain the shear stress at O as

(E2)

ANS.
Figure 5.54 shows part of the tube between sections B and C. Segment BO would rotate counterclockwise with respect to segment OC. The
shear stress must be opposite to this possible motion and hence in the clockwise direction, as shown. The direction on the other surfaces can
be drawn using the observation that the symmetric pair of shear stress components either point toward the corner or away from it.

COMMENT
1. The shear flow in the cross-section containing point O is a constant over the entire cross-section. The magnitude of torsional shear

stress at point O however will be two-thirds that of the value of the shear stress in the circular part of the cross-section because of the
variation in wall thickness.

PROBLEM SET 5.4

Torsion of thin-walled tubes

5.94 Calculate the magnitude of the maximum torsional shear stress if the cross section shown in Figure P5.94 is subjected to a torque
T = 100 in.·kips.

TABT � 50
 � 70
 � 20
 � 0

TABT � 40
 in�kips

TABT
70
 in
 �kips

50
 in
 �kips
20
 in
 �kips

T � 20
 � 0

TCD 20
 in�kips

TCD 20
 in
 �kips

�T � 50
 � 
 � 0

TBCT � 30
 in�kips

TBCT 50
 in
 �kips
20
 in
 �kips

  Figure 5.53 Internal torque calculations in Example 5.15.

1
8
--- in. AE π 5 in.( )2 2⁄ 12.5π  in.2.= =

τmax
40π  in.· kips( )

12.5π  in.2( ) 1
8
--- in.( )

---------------------------------------------=

τmax 25.6 ksi=
3

16
------

τO
30π  in.· kips( )

12.5π  in.2( ) 3
16
------  in.( )

-----------------------------------------------=

τO 12.8 ksi=

x

�O

B
C

70
 in�kips
50
 in�kips

O
�O

x  Figure 5.54 Direction of shear stress in Example 5.15.
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  Figure P5.94
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5.95 Calculate the magnitude of the maximum torsional shear stress if the cross section shown in Figure P5.95 is subjected to a torque
T = 900 N·m.

5.96 Calculate the magnitude of the maximum torsional shear stress if the cross section shown in Figure P5.96 is subjected to a torque
T = 15 kN·m.

5.97 A tube of uniform thickness t and cross section shown in Figure P5.97 has a torque T applied to it. Determine the maximum torsional
shear stress in terms of t, a, and T.

5.98 A tube of uniform thickness t and cross section shown in Figure P5.98 has a torque T applied to it. Determine the maximum torsional
shear stress in terms of t, a, and T.

5.99 A tube of uniform thickness t and cross section shown in Figure P5.99 has a torque T applied to it. Determine the maximum torsional
shear stress in terms of t, a, and T.

5.100 The tube of uniform thickness t shown in Figure P5.100 has a torque T applied to it. Determine the maximum torsional shear stress
in terms of t, a, b, and T.

  Figure P5.95

t � 3 mm

t � 5 mm

t � 6 mm

R � 50 mm

100 mm

  Figure P5.96

t � 6 mm

100 mm

100 mm

60�60�

a  Figure P5.97

a

a  Figure P5.98

a

  Figure P5.99

b

a

  Figure P5.100
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5.101 A hexagonal tube of uniform thickness is loaded as shown in Figure P5.101. Determine the magnitude of the maximum torsional
shear stress in the tube

5.102 A rectangular tube is loaded as shown in Figure P5.102. Determine the magnitude of the maximum torsional shear stress.

5.103 The three tubes shown in Problems 5.97 through 5.99 are to be compared for the maximum torque-carrying capability, assuming
that all tubes have the same thickness t, the maximum torsional shear stress in each tube can be τ, and the amount of material used in the
cross section of each tube is A. (a) Which shape would you use? (b) What is the percentage torque carried by the remaining two shapes in
terms of the most efficient structural shape?

5.5* CONCEPT CONNECTOR

Like so much of science, the theory of torsion in shafts has a history filled with twists and turns. Sometimes experiments led the
way; sometimes logic pointed to a solution. As so often, too, serendipity guided developments. The formulas were developed
empirically, to meet a need—but not in the mechanics of materials. Instead, a scientist had a problem to solve in electricity and
magnetism, and torsion helped him measure the forces. It was followed with an analytical development of the theory for circular
and non-circular shaft cross sections that stretched over a hundred years. The description of the history concludes with an experi-
mental technique used in the calculation of torsional rigidity, even for shafts of arbitrary shapes. 

5.5.1 History: Torsion of Shafts

It seems fitting that developments begin with Charles-Augustin Coulomb (Figure 5.55). Coulomb, who first
differentiated shear stress from normal stress (see Section 1.6.1), also studied torsion, in which shear stress is the dominant
component. In 1781 Coulomb started his research in electricity and magnetism. To measure the small forces involved, he
devised a very sensitive torsion balance. A weight was suspended by a wire, and a pointer attached to the weight indicated the
wire’s angular rotation. 

The design of this torsion balance led Coulomb to investigate the resistance of a wire in torsion. He assumed that the resis-
tance torque (or internal torque T) in a twisted wire is proportional to the angle of twist φ. To measure the changes, he twisted the

T4TT � �m
T3TT � �m

T2TT �m
T1  1000 N�m

100 mm

t � 4 mm
 Figure P5.101

 Figure P5.102

6 in

4 in

T4TT � 2 in�kips T3TT � 3 in�kips T1 � 2 in�kips

  Figure 5.55 Charles-Augustin Coulomb.
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wire by a small angle and set it free to oscillate, like a pendulum. After validating his formula experimentally, thus confirming
his assumption, he proceeded to conduct a parametric study with regard to the length L and the diameter D of the wire and devel-
oped the following formula , where μ is a material constant. If we substitute  and

 into Equation 5.9 and compare our result with Coulomb’s formula, we see that Coulomb’s material constant is
. 

Coulomb’s formula, although correct, was so far only an empirical relationship. The analytical development of the theory
for circular shafts is credited to Alphonse Duleau. Duleau, born in Paris the year of the French revolution, was commissioned
in 1811 to design a forged iron bridge over the Dordogne river, in the French city of Cubzac. Duleau had graduated from the
École Polytechnique, one of the early engineering schools. Founded in 1794, it had many pioneers in the mechanics of mate-
rials among its faculty and students. At the time, there was little or no data on the behavior of bars under the loading condi-
tions needed for bridge design. Duleau therefore conducted extensive experiments on tension, compression, flexure, torsion,
and elastic stability. He also compared bars of circular, triangular, elliptical, and rectangular cross section. In 1820 he pub-
lished his results. 

In this paper Duleau developed Coulomb’s torsion formula analytically, starting with our own Assumptions 1 and 3 (see
page 215), that is, cross sections remain planes and radial lines remain straight during small twists to circular bars. He also
established that these assumptions are not valid for noncircular shafts. 

Augustin-Louis Cauchy, whose contributions to the mechanics of materials we have encountered in several chapters, was
also interested in the torsion of rectangular bars. Cauchy showed that the cross section of a rectangular bar does not remain a
plane. Rather, it warps owing to torsional loads.

Jean Claude Saint-Venant proposed in 1855 the displacement behavior we encountered in Problem 5.53. Building on the
observations of Coulomb, Duleau, and Cauchy, he developed torsion formulas for a variety of shapes. Saint-Venant’s
assumed a displacement function that incorporates some features based on experience and empirical information but
containing sufficient unknown parameters to satisfy equations of elasticity, an approach now called Saint-Venant’s semi-
inverse method. 

Ludwig Prandtl (1875-1953) is best known for his work in aerodynamics, but the German physicist’s interests ranged widely
in engineering design. He originated boundary-layer theory in fluid mechanics. He also invented the wind tunnel and its use in
airplane design. In 1903 Prandtl was studying the differential equations that describe the equilibrium of a soap film, a thin-walled
membrane. He found that these are similar to torsion equations derived using Saint-Venant’s semi-inverse method. Today,
Prandtl’s membrane analogy is used to obtain torsional rigidities for complex cross sections simply from experiments on soap
films. Handbooks list torsional rigidities for variety of shapes, many of which were obtained from membrane analogy. 

We once more see that theory is the outcome of a serendipitous combination of experimental and analytical thinking.

5.6 CHAPTER CONNECTOR

In this chapter we established formulas for torsional deformation and stresses in circular shafts. We saw that the calculation of
stresses and relative deformation requires the calculation of the internal torque at a section. For statically determinate shafts, the
internal torque can be calculated in either of two ways. In the first, we make an imaginary cut and draw an appropriate free-body
diagram. In the second, we draw a torque diagram. In statically indeterminate single-axis shafts, the internal torque expression
contains an unknown reaction torque, which has to be determined using the compatibility equation. For single-axis shafts, the
relative rotation of a section at the right wall with respect to the rotation at the left wall is zero. This result is the compatibility
equation. 

We also saw that torsional shear stress should be drawn on a stress element. This approach will be important in studying
stress and strain transformation in future chapters. In Chapter 8, on stress transformation, we will first find torsional shear stress
using the stress formula from this chapter. We then find stresses on inclined planes, including planes with maximum normal
stress. In Chapter 9, on strain transformation, we will find the torsional shear strain and then consider strains in different coor-
dinate systems, including coordinate systems in which the normal strain is maximum. In Section 10.1, we will consider the
combined loading problems of axial, torsion, and bending. This will lead to the design of simple structures that may be either
determinate or indeterminate. 

T μD4 L⁄( )φ= dφ dx⁄ φ L⁄=
J πD4 32⁄=
μ πG 32⁄=



254     2 Torsion of ShaftsPOINTS AND FORMULAS TO REMEMBER

• Our theory describing the torsion of shafts is limited to: (1) slender shafts of circular cross sections; and (2) regions
away from the neighborhood of stress concentration. The variation in cross sections and external torques is gradual.

(5.1) (5.2) small strain (5.3)

• where T is the internal torque that is positive counterclockwise with respect to the outward normal to the imaginary
cut surface, φ is the angle of rotation of the cross section that is positive counterclockwise with respect to the x axis,
τxθ and γxθ are the torsional shear stress and strain in polar coordinates, and ρ is the radial coordinate of the point
where shear stress and shear strain are defined.

• Equations (5.1), (5.2), and (5.3) are independent of material model. 
• Torsional shear strain varies linearly with radial coordinate across the cross section.
• Torsional shear strain is maximum at the outer surface of the shaft.
• The formulas below are valid for shafts with material that is linear, elastic, and isotropic and has a homogeneous

cross section:

(5.9) (5.10) (5.12)

• where G is the shear modulus of elasticity, and J is the polar moment of the cross section given by
, Ro and Ri being the outer and inner radii of a hollow shaft.

• The quantity GJ is called torsional rigidity.
• If T, G, or J change with x, we find the relative rotation of a cross section by integration of Equation (5.9).
• If T, G, and J do not change between x1 and x2, we use Equation (5.12) to find the relative rotation of a cross section. 
• Torsional shear stress varies linearly with radial coordinate across the homogeneous cross section, reaching a maxi-

mum value on the outer surface of the shaft.

T ρτxθ Ad
A

∫= φ φ x( )= γxθ ρ
xd

dφ=

xd
dφ T

GJ
-------= τxθ

Tρ
J

-------= φ2 φ1–
T x2 x1–( )

GJ
------------------------=

J π 2⁄( ) Ro
4 Ri

4–( )=
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CHAPTER SIX

SYMMETRIC BENDING OF BEAMS

Learning objectives
1. Understand the theory of symmetric bending of beams, its limitations, and its applications for a strength-based design

and analysis.
2. Visualize the direction of normal and shear stresses and the surfaces on which they act in the symmetric bending of beams.

_______________________________________________

On April 29th, 2007 at 3:45 AM, a tanker truck crashed into a pylon on interstate 80 near Oakland, California, spilling 8600
gallons of fuel that ignited. Fortunately no one died. But the heat generated from the ignited fuel, severely reduced the
strength and stiffness of the steel beams of the interchange, causing it to collapse under its own weight (Figure 6.1a). In this
chapter we will study the stresses, hence strength of beams. In Chapter 7 we will discuss deflection, hence stiffness of the
beams. 

Which structural member can be called a beam? Figure 6.1b shows a bookshelf whose length is much greater than its 
width or thickness, and the weight of the books is perpendicular to its length. Girders, the long horizontal members in bridges 
and highways transmit the weight of the pavement and traffic to the columns anchored to the ground, and again the weight is 
perpendicular to the member. Bookshelves and girders can be modeled as beams—long structural member on which loads act 
perpendicular to the longitudinal axis. The mast of a ship, the pole of a sign post, the frame of a car, the bulkheads in an air-
craft, and the plank of a seesaw are among countless examples of beams. 

The simplest theory for symmetric bending of beams will be developed rigorously, following the logic described in Figure 
3.15, but subject to the limitations described in Section 3.13.

6.1 PRELUDE TO THEORY

As a prelude to theory, we consider several examples, all solved using the logic discussed in Section 3.2. They highlight
observations and conclusions that will be formalized in Section 6.2. 

• Example 6.1, discrete bars welded to a rigid plate, illustrates how to calculate the bending normal strains from geometry.
• Example 6.2 shows the similarity of Example 6.1 to the calculation of normal strains for a continuous beam.
• Example 6.3 applies the logic described in Figure 3.15 to beam bending.
• Example 6.4 shows how the choice of a material model alters the calculation of the internal bending moment. As we saw

in Chapter 5 for shafts, the material model affects only the stress distribution, leaving all other equations unaffected.
Thus, the kinematic equation describing strain distribution is not affected. Neither are the static equivalency equations

 Figure 6.1 (a) I-80 interchange collapse. (b) Beam example.

(b)(a)



6 255Mechanics of Materials: Symmetric Bending of BeamsM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

between stress and internal moment and the equilibrium equations relating internal forces and moments. Although we
shall develop the simplest theory using Hooke’s law, most of the equations will apply to complex material models as
well.

EXAMPLE 6.1

The left ends of three bars are built into a rigid wall, and the right ends are welded to a rigid plate, as shown in Figure 6.2. The unde-
formed bars are straight and perpendicular to the wall and the rigid plate. The rigid plate is observed to rotate due to the applied moment
by an angle of 3.5°. If the normal strain in bar 2 is zero, determine the normal strains in bars 1 and 3.

METHOD 1: PLAN
The tangent to a circular arc is perpendicular to the radial line. If the bars are approximated as circular arcs and the wall and the rigid
plate are in the radial direction, then the kinematic restriction of bars remaining perpendicular to the wall and plate is satisfied by the
deformed shape. We can relate the angle subtended by the arc to the length of arc formed by CD, as we did in Example 2.3. From the
deformed geometry, the strains of the remaining bars can be found.

SOLUTION
Figure 6.3 shows the deformed bars as circular arcs with the wall and the rigid plate in the radial direction. We know that the length of arc
CD1 is still 30 in., since it does not undergo any strain. We can relate the angle subtended by the arc to the length of arc formed by CD and
calculate the radius of the arc R as

(E1)

The arc length AB1 and EF1 can be found using Figure 6.3 and the strains in bars 1 and 3 calculated.

(E2)

ANS.

(E3)

ANS.

COMMENT
1. In developing the theory for beam bending, we will view the cross section as a rigid plate that rotates about the z axis but stays per-

pendicular to the longitudinal lines. The longitudinal lines will be analogous to the bars, and bending strains can be calculated as in
this example.

30 in

2 in

2 inBar 1

Bar 3

Bar 2

A

E

C

B

F

D

MextMM

x

y

z

  Figure 6.2 Geometry in Example 6.1.

E

C

A

R �
 2

R �
 2

R
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D1

F1

O

�

� � 3.5�

  Figure 6.3 Normal strain calculations in Example 6.1.

ψ 3.5°
180°
-----------⎝ ⎠

⎛ ⎞ 3.142 rad( ) 0.0611 rad= = CD1 Rψ 30 in.= = or R 491.1 in.=

AB1 R 2–( )ψ 29.8778 in.= = ε1
AB1 AB–

AB
----------------------- 0.1222 in.–

30 in.
-------------------------- 0.004073 in./in.–= = =

ε1 4073–  μin./in.=

EF1 R 2+( )ψ 30.1222 in.= = ε3
EF1 EF–

EF
----------------------- 0.1222 in.

30 in.
------------------------  =0.004073 in./in.= =

ε3 4073 μin./in.=
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METHOD 2: PLAN
We can use small-strain approximation and find the deformation component in the horizontal (original) direction for bars 1 and 3. The
normal strains can then be found.

SOLUTION
Figure 6.4 shows the rigid plate in the deformed position. The horizontal displacement of point D is zero as the strain in bar 2 is zero.
Points B, D, and F move to B1, D1, and F1 as shown. We can use point D1 to find the relative displacements of points B and F as shown
in Equations (E4) and (E5). We make use of small strain approximation to the sine function by its argument: 

(E4)

(E5)

The normal strains in the bars can be found as 

(E6)

ANS.

COMMENTS
1. Method 1 is intuitive and easier to visualize than method 2. But method 2 is computationally simpler. We will use both methods when

we develop the kinematics in beam bending in Section 6.2. 
2. Suppose that the normal strain of bar 2 was not zero but ε2 = 800 μin/in. What would be the normal strains in bars 1 and 3? We could

solve this new problem as in this example and obtain R = 491.5 in., ε1 = −3272 μin./in, and ε3 = 4872 μin./in. Alternatively, we view
the assembly was subjected to axial strain before the bending took place. We could then superpose the axial strain and bending strain
to obtain ε1 = −4073 + 800 = −3273 μin./in. and ε3 = 4073 + 800 = 4873 μin./in. The superposition principle can be used only for lin-
ear systems, which is a consequence of small strain approximation, as observed in Chapter 2. 

EXAMPLE 6.2

A beam made from hard rubber is built into a rigid wall at the left end and attached to a rigid plate at the right end, as shown in Figure 6.5.
After rotation of the rigid plate the strain in line CD at y = 0 is zero. Determine the strain in line AB in terms of y and R, where y is the dis-
tance of line AB from line CD, and R is the radius of curvature of line CD. 

PLAN
We visualize the beam as made up of bars, as in Example 6.1, but of infinitesimal thickness. We consider two such bars, AB and CD, and
analyze the deformations of these two bars as we did in Example 6.1. 

SOLUTION
Because of deformation, point B moves to point B1 and point D moves to point D1, as shown in Figure 6.6. We calculate the strain in AB:

(E1)

Δu3 DF2 D2F1 D1F1 ψ 2ψ≈sin 0.1222 in.= = = =

Δu1 B2D D3D1 B1D1 ψ 2ψ≈sin 0.1222 in.= = = =

2 in

2 in

u3
u1

B2

B1

D1D3

D2

F2

F1

D

�

�

�

 Figure 6.4 Alternate method for normal strain calculations in Example 6.1.

ε1
Δu1

30 in.
-------------- 0.1222 in.–

30 in.
--------------------------- 0.004073 in./in.–= = = ε3

Δu3

30 in.
-------------- 0.1222 in.

30 in.
------------------------ 0.004073 in./in.= = =

ε1 4073–  μin./in.= ε3 4073 μin./in.=

  Figure 6.5 Beam geometry in Example 6.2. ψ

L

C Dy
A B

εCD
CD1 CD–

CD
------------------------- 0= = or CD1 CD Rψ L  ψ L

R
---== = =
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(E2)

ANS.

COMMENTS
1. In Example 6.1, R = 491.1 and y = +2 for bar 3, and y = −2 for bar 1. On substituting these values into the preceding results, we obtain

the results of Example 6.1.
2. Suppose the strain in CD were εCD. Then the strain in AB can be calculated as in comment 2 of Method 2 in Example 6.1 to obtain εAB

= εCD − y/R. The strain εCD is the axial strain, and the remaining component is the normal strain due to bending.

EXAMPLE 6.3

The modulus of elasticity of the bars in Example 6.1 is 30,000 ksi. Each bar has a cross-sectional area A =  in.2. Determine the external

moment Mext that caused the strains in the bars in Example 6.1.

PLAN
Using Hooke’s law, determine the stresses from the strains calculated in Example 6.1. Replace the stresses by equivalent internal axial
forces. Draw the free-body diagram of the rigid plate and determine the moment Mext.

SOLUTION
1. Strain calculations: The strains in the three bars as calculated in Example 6.1 are

(E1)
2. Stress calculations: From Hooke’s law we obtain the stresses 

(E2)

(E3)

(E4)
3. Internal forces calculations: The internal normal forces in each bar can be found as

(E5)
4. External moment calculations: Figure 6.7 is the free body diagram of the rigid plate. By equilibrium of moment about point O we can

find Mz:

(E6)

ANS.

AB1 R y–( )ψ R y–( )L
R

--------------------= = εAB
AB1 AB–

AB
----------------------- R y–( )L R⁄ L–

L
-------------------------------------- L yL R⁄– L–

L
--------------------------------= = =

εAB
y–

R
-----=

C

A

B1

D1

O

�

�

R �
 y

R

  Figure 6.6 Exaggerated deformed geometry in Example 6.2.
C

A

B
D

1
2
---

ε1 4073–  μin./in.        ε2 0       ε3 4073 μin./in.===

σ1 Eε1 30,000 ksi( ) 4073–( ) 10 6–( )  122.19=  ksi C( )= =

σ2 Eε2 0==

σ3 Eε3 30,000 ksi( ) 4073( ) 10 6–( )  122.19=  ksi T( )= =

N1 σ1A 61.095 kips= =  C( ) N3 σ3A 61.095 kips T( )= =

Mz N1 y( ) N3 y( )+ 61.095 kips( ) 2 in.( ) 61.095 kips( ) 2 in.( )+= =

Mz 244.4 in.· kips=

y � 2

y � 2

N3

MzM
N1

O

  Figure 6.7 Free-body diagram in Example 6.3.
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COMMENTS

1. The sum in Equation (E6) can be rewritten  where σ is the normal stress acting at a distance y from the zero strain bar,

and ΔAi is the cross-sectional area of the ith bar. If we had n bars attached to the rigid plate, then the moment would be given by

 As we increase the number of bars n to infinity, the cross-sectional area ΔAi tends to zero, becoming the infinitesimal

area dA and the summation is replaced by an integral. In effect, we are fitting an infinite number of bars to the plate, resulting in a
continuous body. 

2. The total axial force in this example is zero because of symmetry. If this were not the case, then the axial force would be given by the

summation  As in comment 1, this summation would be replaced by an integral as n tends to infinity, as will be shown in

Section 6.1.1.

6.1.1 Internal Bending Moment

In this section we formalize the observation made in Example 6.3: that is, the normal stress σxx can be replaced by an equiva-
lent bending moment using an integral over the cross-sectional area. Figure 6.8 shows the normal stress distribution σxx to be
replaced by an equivalent internal bending moment Mz. Let y represent the coordinate at which the normal stress acts. Static
equivalency in Figure 6.8 results in 

(6.1)

Figure 6.8a suggests that for static equivalency there should be an axial force N and a bending moment about the y axis 
My. However, the requirement of symmetric bending implies that the normal stress σxx is symmetric about the axis of symme-
try—that is, the y axis. Thus My is implicitly zero owing to the limitation of symmetric bending. Our desire to study bending 
independent of axial loading requires that the stress distribution be such that the internal axial force N should be zero. Thus we 
must explicitly satisfy the condition 

(6.2)

Equation (6.2) implies that the stress distribution across the cross section must be such that there is no net axial force. That is,
the compressive force must equal the tensile force on a cross section in bending. If stress is to change from compression to
tension, then there must be a location of zero normal stress in bending. The line on the cross section where the bending normal
stress is zero is called neutral axis. 

Equations (6.1) and (6.2) are independent of the material model. That is because they represent static equivalency 
between the normal stress on the entire cross section and the internal moment. If we were to consider a composite beam cross 
section or a nonlinear material model, then the value and distribution of σxx would change across the cross section yet Equa-
tion (6.1) relating σxx to Mz would remain unchanged. Example 6.4 elaborates on this idea. The origin of the y coordinate is 
located at the neutral axis irrespective of the material model. Hence, determining the location of the neutral axis is critical in 
all bending problems. The location of the origin will be discussed in greater detail for a homogeneous, linearly elastic, isotro-
pic material in Section 6.2.4.

yσΔAi ,i=1

2
∑

yσΔAi .i=1

n
∑

σΔAi .i=1

n
∑

Mz yσxx Ad
A

∫–=

x

y

y

dN � �xx dA

z

z

Mz

x

y

z

(a) (b)
  Figure 6.8 Statically equivalent internal moment.

σxx Ad
A

∫ 0=
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EXAMPLE 6.4

Figure 6.9 shows a homogeneous wooden cross section and a cross section in which the wood is reinforced with steel. The normal strain
for both cross sections is found to vary as εxx = −200y μ. The moduli of elasticity for steel and wood are Esteel = 30,000 ksi and Ewood =
8000 ksi. (a) Write expressions for normal stress σxx  as a function of y, and plot the σxx  distribution for each of the two cross sections shown. (b)
Calculate the equivalent internal moment Mz for each cross section.

PLAN
(a) From the given strain distribution we can find the stress distribution by Hooke’s law. We note that the problem is symmetric and
stresses in each region will be linear in y. (b) The integral in Equation (6.1) can be written as twice the integral for the top half since the stress
distribution is symmetric about the center. After substituting the stress as a function of y in the integral, we can perform the integration to
obtain the equivalent internal moment. 

SOLUTION
(a) From Hooke’s law we can write the stress in each material as 

(E1)

(E2)
For the homogeneous cross section the stress distribution is given in Equation (E1), but for the laminated case it switches from Equation
(E1) to Equation (E2), depending on the value of y. We can write the stress distribution for both cross sections as a function of y. 
Homogeneous cross section:

(E3)
Laminated cross section:

(E4)

Using Equations (E3) and (E4) the strains and stresses can be plotted as a function of y, as shown in Figure 6.10.

(b) The thickness (dimension in the z direction) is 2 in. Hence we can write dA = 2dy. Noting that the stress distribution is symmetric, we
can write the integral in Equation (6.1) as 

(E5)

Homogeneous cross section: Substituting Equation (E3) into Equation (E5) and integrating, we obtain the equivalent internal moment.

y

z

2 in.

11
2
---  in.Wood Steel

Wood

2 in.

Wood

Steel

Steel

y

z
1 in.

1/4 in.

1/4 in.

(a) (b)

  Figure 6.9 Cross sections in Example 6.4. (a) Homogeneous. (b) Laminated.

σxx( )wood 8000 ksi( ) 200y–( )10 6– 1.6y  ksi–= =

σxx( )steel 30000 ksi( ) 200– y( )10 6– 6y  ksi–= =

σxx 1.6y  ksi– 0.75 in.– y 0.75 in.<≤=

σxx

6y  ksi 0.5 in. y 0.75 in.≤<–
1.6y  ksi 0.5 in. y 0.5 in.< <––
6y  ksi 0.75 in. y 0.5 in.–<≤––⎩

⎪
⎨
⎪
⎧

=

y (in)

0.5
0.75

100O 150
�xx (�)

100150

(a)

O

y (in)

0.5

0.75

0.8 1.2
�xx (ksi)

0.81.2

(b)

O

y (in)

0.5
0.75

0.8 3.0 4.5
�xx (ksi)

0.83.04.5

(c)

σxx

y (in.)

0.8 4.5
0.83.04.5

0.5
0.75

O (ksi)3.0

Figure 6.10 Strain and stress distributions in Example 6.4: (a) strain distribution; (b) stress distribution in homogeneous cross section;
(c) stress distribution in laminated cross section.

Mz yσxx 2 yd( )
0.75–

 0.75

∫– 2 yσxx 2 yd( )
0

 0.75

∫–= =
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(E6)

ANS.
Laminated cross section: Substituting Equation (E4) into Equation (E5) and integrating, we obtain the equivalent internal moment.

(E7)

ANS.

COMMENTS
1. As this example demonstrates, although the strain varies linearly across the cross section, the stress may not. In this example we con-

sidered material nonhomogeneity. In a similar manner we can consider other models, such as elastic–perfectly plastic model, or mate-
rial models that have nonlinear stress–strain curves.

2. Figure 6.11 shows the stress distribution on the surface. The symmetry of stresses about the center results in a zero axial force.

3. We can obtain the equivalent internal moment for a homogeneous cross section by replacing the triangular load by an equivalent load
at the centroid of each triangle. We then find the equivalent moment, as shown in Figure 6.12. This approach is very intuitive. How-
ever, as the stress distribution becomes more complex, such as in a laminated cross section, or for more complex cross-sectional
shapes, this intuitive approach becomes very tedious. The generalization represented by Equation (6.1) and the resulting formula can
then simplify the calculations.

4. The relationship between the internal moment and the external loads can be established by drawing the appropriate free-body diagram
for a particular problem. The relationship between internal and external moments depends on the free-body diagram and is indepen-
dent of the material homogeneity.

PROBLEM SET 6.1

6.1 The rigid plate that is welded to the two bars in Figure P6.1 is rotated about the z axis, causing the two bars to bend. The normal strains in
bars 1 and 2 were found to be ε1 = 2000 μin./in. and ε2 = −1500 μin./in. Determine the angle of rotation ψ.

Mz 2 y 1.6y  ksi–( ) 2 yd( )
0

 0.75

∫  6.4y3

3
----

0

0.75

6.40.753

3
------------==–=

Mz 0.9 in.· kips=

Mz 2 y 1.6y–( ) 2 yd( )
0

 0.5

∫ y 6y–( ) 2 yd( )
0.5

 0.75

∫+– 4 1.6 y3

3
----

0

0.5

6 y3

3
----

0.5

0.75

 +
⎝ ⎠
⎜ ⎟
⎛ ⎞

= =

Mz 2.64 in.· kips=

1.2 ksi

1.2 ksi

(a)

4.5 ksi

(a)

0.8 ksi

4.5 ksi

3 ksi

(b)
  Figure 6.11 Surface stress distributions in Example 6.4 for (a) homogeneous cross section; (b) laminated cross section.

2 in

0.75 in

0.75 in

(a)

0.5 in

0.5 in

y

N

Nz

(b)

N �    � 1.2 � 2 � 0.75 � 0.91
2

y

z

Mz

(c)

Mz � 2 � 0.5 � N � 0.9 in�kips1.2 ksi

1.2 ksi

Figure 6.12 Statically equivalent internal moment in Example 6.4.

48 in

Bar 2

Bar 1

4 inx

�

y

z

  Figure P6.1



6 261Mechanics of Materials: Symmetric Bending of BeamsM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

6.2 Determine the location h in Figure P6.2 at which a third bar in Problem 6.1 must be placed so that there is no normal strain in the third
bar.

6.3 The two rigid plates that are welded to six bars in Figure P6.3 are rotated about the z axis, causing the six bars to bend. The normal strains in bars
2 and 5 were found to be zero. What are the strains in the remaining bars?

6.4 The strains in bars 1 and 3 in Figure P6.4 were found to be ε1 = 800 μ and ε3 = 500 μ. Determine the strains in the remaining bars.

6.5 The rigid plate shown in Figure P6.5 was observed to rotate by 2° due to the action of the external moment Mext and force P, and the nor-

mal strain in bar 1 was found to be ε1 = 2000 μin./in. Both bars have a cross-sectional area  in.2 and a modulus of elasticity E = 30,000

ksi. Determine the applied moment Mext and force P.

6.6 The rigid plate shown in Figure P6.6 was observed to rotate 1.25° due to the action of the external moment Mext and the force P. All three bars
have a cross-sectional area A = 100 mm2 and a modulus of elasticity E = 200 GPa. If the strain in bar 2 was measured as zero, determine the external
moment Mext and the force P.

6.7 The rigid plates BD and EF in Figure P6.7 were observed to rotate by 2° and 3.5° in the direction of applied moments. All bars have a
cross-sectional area of A = 125 mm2. Bars 1 and 3 are made of steel ES = 200 GPa, and bars 2 and 4 are made of aluminum Eal = 70 GPa. If the
strains in bars 1 and 3 were found to be ε1 = 800 μ and ε3 = 500 μ determine the applied moment M1 and M2 and the forces P1 and P2 that act at
the center of the rigid plates.

48 in

Bar 2

Bar 1

4 inh
x

y

z
�  Figure P6.2

  Figure P6.3
3.0 m 2.5 m

25 mm

15 mm

Bar 1

Bar 3

Bar 4

Bar 2 Bar 5

1.25� 2.5�

Bar 6

x

y

z

  Figure P6.4 3.0 m

25 mm

2.5 m

Bar 2

Bar 1A B

C D

E

F
Bar 4

2.0� 3.5�

Bar 3

A 1
2
---=

  Figure P6.5 48 in

Bar 2

Bar 1

MzM
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P

x

y

z
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 Figure P6.6
Bar 1
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3.0 m
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MzM
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y

z
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  Figure P6.7
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6.8 Three wooden beams are glued to form a beam with the cross-section shown in Figure 6.8. The normal strain due to bending about the z
axis is εxx =  -0.012y, where y is measured in meters. The modulus of elasticity of wood is 10 GPa. Determine the equivalent internal moment
acting at the cross-section. Use tW =20 mm, h =250 mm, tF = 20 mm, and d= 125 mm.

6.9 Three wooden beams are glued to form a beam with the cross-section shown in Figure 6.8. The normal strain at the cross due to bending
about the z axis is εxx =  -0.015y, where y is measured in meters. The modulus of elasticity of wood is 10 GPa. Determine the equivalent inter-
nal moment acting at the cross-section. Use tW =10 mm, h =50 mm, tF = 10 mm, and d= 25 mm. 

6.10 Three wooden beams are glued to form a beam with the cross-section shown in Figure 6.8. The normal strain at the cross due to bend-
ing about the z axis is εxx =  0.02y, where y is measured in meters. The modulus of elasticity of wood is 10 GPa. Determine the equivalent inter-
nal moment acting at the cross-section. Use tW =15 mm, h =200 mm, tF = 20 mm, and d= 150 mm. 

6.11 Steel strips (ES = 30,000 ksi) are securely attached to wood (EW = 2000 ksi) to form a beam with the cross section shown in Figure
P6.11. The normal strain at the cross section due to bending about the z axis is εxx = −100y μ, where y is measured in inches. Determine the

equivalent internal moment Mz.. Use d = 2 in., hW = 4 in., and in.

6.12 Steel strips (ES = 30,000 ksi) are securely attached to wood (EW = 2000 ksi) to form a beam with the cross section shown in Figure
P6.11 . The normal strain at the cross section due to bending about the z axis is εxx = −50y μ, where y is measured in inches. Determine the

equivalent internal moment Mz. Use d = 1 in., hW = 6 in., and in.

6.13 Steel strips (ES = 30,000 ksi) are securely attached to wood (EW = 2000 ksi) to form a beam with the cross section shown in Figure
P6.11 . The normal strain at the cross section due to bending about the z axis is εxx = 200y μ, where y is measured in inches. Determine the equiva-

lent internal moment Mz. Use d = 1 in., hW = 2 in., and  in.

  Figure P6.8
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6.14 Steel strips (ES = 200 GPa) are securely attached to wood (EW = 10 GPa) to form a beam with the cross section shown in Figure P6.14.
The normal strain at the cross section due to bending about the z axis is εxx = 0.02y, where y is measured in meters. Determine the equivalent
internal moment Mz .Use tW = 15 mm, hW = 200 mm, tF = 20 mm, and dF = 150 mm.

Stretch Yourself
6.15 A beam of rectangular cross section shown in Figure 6.15 is made from elastic-perfectly plastic material. If the stress distribution across
the cross section is as shown determine the equivalent internal bending moment. 

6.16 A rectangular beam cross section has the dimensions shown in Figure 6.16. The normal strain due to bending about the z axis was
found to vary as , with y measured in meters. Determine the equivalent internal moment that produced the given state of strain.

The beam is made from elastic-perfectly plastic material that has a yield stress of σyield= 250 MPa and a modulus of elasticity E = 200 GPa.
Assume material that the behaves in a similar manner in tension and compression (see Problem 3.152) 

6.17 A rectangular beam cross section has the dimensions shown in Figure 6.16. The normal strain due to bending about the z axis was
found to vary as , with y measured in meters. Determine the equivalent internal moment that would produce the given strain.

The beam is made from a bi-linear material that has a yield stress of σyield= 200 MPa, modulus of elasticity E1 = 250 GPa, and E2= 80 GPa.
Assume that the material behaves in a similar manner in tension and compression (see Problem 3.153).

6.18 A rectangular beam cross section has the dimensions shown in Figure 6.16. The normal strain due to bending about the z axis was
found to vary as , with y measured in meters. Determine the equivalent internal moment that would produce the given strain.

The beam material has a stress strain relationship given by . Assume that the material behaves in a similar manner in tension
and compression (see Problem 3.154).

  Figure P6.14

dF 
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hW
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hW

tF

dF 
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  Figure P6.15
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 Figure P6.16
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6.2 THEORY OF SYMMETRIC BEAM BENDING

In this section we develop formulas for beam deformation and stress. We follow the procedure in Section 6.1 with variables in
place of numbers. The theory will be subject to the following limitations:

1. The length of the member is significantly greater than the greatest dimension in the cross section. 
2. We are away from the regions of stress concentration; 
3. The variation of external loads or changes in the cross-sectional areas are gradual except in regions of stress concen-

tration.
4. The cross section has a plane of symmetry. This limitation separates bending about the z axis from bending about the

y axis. (See Problem 6.135 for unsymmetric bending.)
5. The loads are in the plane of symmetry. Load P1 in Figure 6.13 would bend the beam as well as twist (rotate) the cross sec-

tion. Load P2, which lies in the plane of symmetry, will cause only bending. Thus, this limitation decouples the bending prob-
lem from the torsion problem1.

6. The load direction does not change with deformation. This limitation is required to obtain a linear theory and works well
as long as the deformations are small.

7. The external loads are not functions of time; that is, we have a static problem. (See Problems 7.50 and 7.51 for
dynamic problems.)

Figure 6.14 shows a segment of a beam with the x–y plane as the plane of symmetry. The beam is loaded by transverse 
forces P1 and P2 in the y direction, moments M1 and M2 about the z axis, and a transverse distributed force py(x). The distrib-
uted force py(x) has units of force per unit length and is considered positive in the positive y direction. Because of external 
loads, a line on the beam deflects by v in the y direction.

The objectives of the derivation are:

1. To obtain a formula for bending normal stress σxx and bending shear stress τxy in terms of the internal moment Mz and
the internal shear force Vy.

2. To obtain a formula for calculating the beam deflection v(x).

1The separation of torsion from bending requires that the load pass through the shear center, which always lies on the axis of symmetry. 

  Figure 6.13 Loading in plane of symmetry.

y
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Bending and torsionBending only
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z
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  Figure 6.14 Beam segment.
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To account for the gradual variation of py(x) and the cross-sectional dimensions, we will take Δx = x2 − x1 as infinitesimal 
distance in which these quantities can be treated as constants. The logic shown in Figure 6.15 and discussed in Section 3.2 
will be used to develop the simplest theory for the bending of beams. Assumptions will be identified as we move from one 
step to the next. The assumptions identified as we move from each step are also points at which complexities can later be 
added, as discussed in examples and Stretch Yourself problems.

6.2.1 Kinematics

In Example 6.1 we found the normal strains in bars welded to rigid plates rotating about the z axis. Here we state assumptions
that will let us simulate the behavior of a cross section like that of the rigid plate. We will consider the experimental evidence
justifying our assumptions and the impact of these assumptions on the theory.

Assumption 1: Squashing—that is, dimensional changes in the y direction—is significantly smaller than bending.
Assumption 2: Plane sections before deformation remain planes after deformation.
Assumption 3: Plane sections perpendicular to the beam axis remain nearly perpendicular after deformation.

Figure 6.16 shows a rubber beam with a grid on its surface that is bent by hand. Notice that the dimensional changes in 
the y direction are significantly smaller than those in the x direction, the basis of Assumption 1. The longer the beam, the bet-
ter is the validity of Assumption 1. Neglecting dimensional changes in the y direction implies that the normal strain in the y 
direction is small2 and can be neglected in the kinematic calculations; that is, εyy = ∂v/∂y ≈ 0. This implies that deflection of 
the beam v cannot be a function of y:

(6.3)
Equation (6.3) implies that if we know the curve of one longitudinal line on the beam, then we know how all other longi-

tudinal lines on the beam bend. The curve described by v(x), called the elastic curve, will be discussed in detail in the next 
chapter.

2It is accounted for as the Poisson effect. However the normal strain in the y direction is not an independent variable and hence is negligible in kinematics. 

 Figure 6.15 Logic in mechanics of materials.

v v x( )=
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Figure 6.16 shows that lines initially in the y direction continue to remain straight but rotate about the z axis, validating 
Assumption 2. This implies that the displacement u varies linearly, as shown in Figure 6.17. In other words, the equation for u 
is 

(6.4)

where u0 is the axial displacement at y = 0 and ψ is the slope of the plane. (We accounted for uniform axial displacement u0 in

Chapter 4.) In order to study each problem independently, we will assume u0 = 0. (See Problem 6.133 for .)

Figure 6.16 also shows that the right angle between the x and y directions is nearly preserved during bending, validating 
Assumption 3. This implies that the shear strain γxy is nearly zero. We cannot use this assumption in building theoretical mod-
els of beam bending if shear is important, such as in sandwich beams (see comment 3 in Example 6.7) and Timoshenko beams 
(see Problem 7.49). But Assumption 3 helps simplify the theory as it eliminates the variable ψ by imposing the constraint that 
the angle between the longitudinal direction and the cross section be always 90°. This is accomplished by relating ψ to v as 
described next.

The bending curve is defined by v(x). As shown in Figure 6.14, the angle of the tangent to the curve v(x) is equal to the 
rotation of the cross section when Assumption 3 is valid. For small strains, the tangent of an angle can be replaced by the 
angle itself, that is, tanψ ≈ ψ = dv/dx. Substituting ψ and u0 = 0 in Equation (6.4), we obtain 

(6.5)

6.2.2 Strain Distribution

Assumption 4: Strains are small.

Figure 6.18 shows the exaggerated deformed shape of a segment of the beam. The rotation of the right cross section is 
taken relative to the left. Thus, the left cross section is viewed as a fixed wall, as in Examples 6.1 and 6.2. We assume that line 
CD representing y = 0 has zero bending normal strain. The calculations of Example 6.2 show that the bending normal strain 
for line AB is given by 

Original Grid

x
y

z

Deformed Grid

  Figure 6.16 Deformation in bending. (Courtesy Professor J. B. Ligon.)

z

x
y

u u0  ψ– y=

u0 0≠

y
x

u0

�

  Figure 6.17 Linear variation of axial displacement u.

u y
xd

dv x( )–=
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 (6.6a)

We can also obtain the equation of bending normal strain by substituting Equation (6.5) into Equation (2.12a) to obtain 

 or

(6.6b)

Equations 6.6a and 6.6b show that the bending normal strain εxx varies linearly with y and has a maximum value at either the

top or the bottom of the beam. d2v/dx2 is the curvature of the beam, and its magnitude is equal to 1/R, where R is the radius
of curvature.

6.2.3 Material Model

In order to develop a simple theory for the bending of symmetric beams, we shall use the material model given by Hooke’s
law. We therefore make the following assumptions regarding the material behavior.

Assumption 5: The material is isotropic.
Assumption 6: The material is linearly elastic.3 
Assumption 7: There are no inelastic strains.4

Substituting Equation (6.6b) into Hooke’s law σxx = Eεxx, we obtain

 (6.7)

Though the strain is a linear function of y, we cannot say the same for stress. The modulus of elasticity E could change across
the cross section, as in laminated structures.

6.2.4 Location of Neutral Axis

Equation (6.7) shows that the stress σxx is a function of y, and its value must be zero at y = 0. That is, the origin of y must be at
the neutral axis. But where is the neutral axis on the cross section? Section 6.1.1 noted that the distribution of σxx is such that

the total tensile force equals the total compressive force on a cross section, given by Equation (6.2). d2v/dx2 is a function of x
only, whereas the integration is with respect to y and z (dA = dy dz). Substituting Equation (6.7) into Equation (6.2), we obtain 

3See Problems 6.57 and 6.58 for nonlinear material behavior.
4Inelastic strains could be due to temperature, humidity, plasticity, viscoelasticity, etc. See Problem 6.134 for including thermal strains.

εxx
y
R
---–=

C
A

y
B1

D1

O

��

��

R �
 y

R

  Figure 6.18 Normal strain calculations in symmetric bending.

εxx
u∂
x∂

-----
x∂

∂ y
xd

dv x( )–⎝ ⎠
⎛ ⎞= =

εxx yd2v
dx2
-------- x( )–=

σxx Eyd2v
dx2
--------–=
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(6.8a)

The integral in Equation (6.8a) must be zero as shown in Equation (6.8b), because a zero value of d2v/dx2  would imply that
there is no bending.

(6.8b)

Equation (6.8b) is used for determining the origin (and thus the neutral axis) in composite beams. Consistent with the motiva-
tion of developing the simplest possible formulas, we would like to take E outside the integral. In other words, E should not
change across the cross section, as implied in Assumption 8:

Assumption 8: The material is homogeneous across the cross section5 of a beam.

Equation (6.8b) can be written as

(6.8c)

In Equation (6.8c) either E or  must be zero. As E cannot be zero, we obtain

(6.9)

Equation (6.9) is satisfied if y is measured from the centroid of the cross section. That is, the origin must be at the centroid of 
the cross section of a linear, elastic, isotropic, and homogeneous material. Equation (6.9) is the same as Equation (4.12a) in axial 
members. However, in axial problems we required that the internal bending moment that generated Equation (4.12a) be zero. Here 
it is zero axial force that generates Equation (6.9). Thus by choosing the origin to be the centroid, we decouple the axial problem 
from the bending problem.

From Equations (6.7) and (6.9) two conclusion follow for cross sections constructed from linear, elastic, isotropic, and 
homogeneous material: 

• The bending normal stress σxx varies linearly with y.
• The bending normal stress σxx has maximum value at the point farthest from the centroid of the cross section. 

The point farthest from the centroid is the top surface or the bottom surface of the beam. Example 6.5 demonstrates the use of
our observations.

EXAMPLE 6.5

The maximum bending normal strain on a homogeneous steel (E = 30,000 ksi) cross section shown in Figure 6.19 was found to be εxx =
+1000 μ. Determine the bending normal stress at point A.

5See Problems 6.55 and 6.56 on composite beams for nonhomogeneous cross sections.

Eyd2v
dx2
-------- x( ) dA d2v

dx2
--------– x( ) Ey dA 0=

A
∫=

A
∫–

yE Ad
A

∫ 0=

E y Ad
A

∫ 0=

y Ad
A

∫

y Ad
A

∫ 0=

  Figure 6.19 T cross section in Example 6.5.

1 in.

10 in.

16 in.

1.5 in.

y

z C
A



6 269Mechanics of Materials: Symmetric Bending of BeamsM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

PLAN
The centroid C of the cross section can be found where the bending normal stress is zero. The maximum bending normal stress will be at
the point farthest from the centroid. Its value can be found from the given strain and Hooke’s law. Knowing the normal stress at two
points of a linear distribution, we can find the normal stress at point A.

SOLUTION
Figure 6.20a can be used to find the centroid ηc of the cross section.

(E1)

The maximum bending normal stress will be at point B, which is farthest from centroid, and its value can be found as 

(E2)

The linear distribution of bending normal stress across the cross section can be drawn as shown in Figure 6.20b. By similar triangles we
obtain 

(E3)

ANS.

COMMENT
1. The stress distribution in Figure 6.20b can be represented as σxx = −3.82y ksi. The equivalent internal moment can be found using

Equation (6.1).

6.2.5 Flexure Formulas

Note that d2v/dx2 is a function of x only, while integration is with respect to y and z (dA = dy dz). Substituting σxx from Equa-
tion (6.8b) into Equation (6.1), we therefore obtain 

(6.10)

With material homogeneity (Assumption 8), we can take E outside the integral in Equation (6.10) to obtain

 or

(6.11)

where  is the second area moment of inertia about the z axis passing through the centroid of the cross section.

The quantity EIzz is called the bending rigidity of a beam cross section. The higher the value of EIzz, the smaller will be the
deformation (curvature) of the beam; that is, the beam rigidity increase. A beam can be made more rigid either by choosing a
stiffer material (a higher value of E ) or by choosing a cross sectional shape that has a large area moment of inertia (see Exam-
ple 6.7). 

ηc

ηiAi
i

∑
Ai

i
∑

------------------- 5 in.( ) 10 in.( ) 1.5 in.( ) 10.5 in.( ) 16 in.( ) 1 in.( )+
10 in.( ) 1.5 in.( ) 16 in.( ) 1 in.( )+

-------------------------------------------------------------------------------------------------------------------------- 7.84 in.= = =

  Figure 6.20 (a) Centroid location (b) Linear stress distribution.
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(a) (b)

σB Eεmax 30,000 ksi( ) 1000( ) 10 6–( ) = 30 ksi= =

σA
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------------------ 30 ksi
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------------------=

σA 8.27 ksi C( )=

Mz Ey2 d
2v

dx2
-------- Ad

A
∫

d2v
dx2
-------- Ey2 Ad

A
∫= =

Mz Ed2v
dx2
-------- y2 Ad

A
∫=

Mz EIzz 
d2v
dx2
--------=

Izz y2 Ad
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Solving for d2v/dx2 in Equation (6.11) and substituting into Equation (6.7), we obtain the bending stress formula or flex-
ure stress formula:

(6.12)

The subscript z emphasizes that the bending occurs about the z axis. If bending occurs about the y axis, then y and z in 
Equation (6.12) are interchanged, as elaborated in Section 10.1 on combined loading.

6.2.6 Sign Conventions for Internal Moment and Shear Force

Equation (6.1) allowed us to replace the normal stress σxx by a statically equivalent internal bending moment. The normal
stress σxx is positive on two surfaces; hence the equivalent internal bending moment is positive on two surfaces, as shown in
Figure 6.21. If we want the formulas to give the correct signs, then we must follow a sign convention for the internal moment
when we draw a free body diagram: At the imaginary cut the internal bending moment must be drawn in the positive direc-
tion.

Sign Convention: The direction of positive internal moment Mz on a free-body diagram must be such that it puts a 
point in the positive y direction into compression.

Mz may be found in either of two possible ways as described next (see also Example 6.8).

1. In one method, on a free-body diagram Mz is always drawn according to the sign convention. The equilibrium equa-
tion is then used to get a positive or negative value for Mz. Positive values of stress σxx from Equation (6.12) are ten-
sile, and negative values of σxx are compressive. 

2. Alternatively, Mz is drawn at the imaginary cut in a direction that equilibrates the external loads. Since inspection is
being used in determining the direction of Mz, Equation (6.12) can determine only the magnitude. The tensile and
compressive nature of σxx must be determined by inspection.

Figure 6.22 shows a cantilever beam loaded with a transverse force P. An imaginary cut is made at section AA, and a free-
body diagram is drawn. For equilibrium it is clear that we need an internal shear force Vy, which is possible only if there is a 
nonzero shear stress τxy. By Hooke’s law this implies that the shear strain γxy cannot be zero. Assumption 3 implied that shear 
strain was small but not zero. In beam bending, a check on the validity of the analysis is to compare the maximum shear stress 
τxy to the maximum normal stress σxx for the entire beam. If the two stress components are comparable, then the shear strain 
cannot be neglected in kinematic considerations, and our theory is not valid. 

• The maximum normal stress σxx in the beam should be nearly an order of magnitude greater than the maximum shear stress
τxy.

σxx
Mzy
Izz

----------–=

y

z

Tensile �xx 

Compressive �xx 

Mz

y

z

y

z

Mz

y

z

(a) (b)

�Mz

y

x

  Figure 6.21 Sign convention for internal bending moment Mz.

  Figure 6.22 Internal forces and moment necessary for equilibrium.
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The internal shear force is defined as

(6.13)

In Section 1.3 we studied the use of subscripts to determine the direction of a stress component, which we can now use to 
determine the positive direction of τxy. According to this second sign convention, the equivalent shear force Vy is in the same 
direction as the shear stress τxy.

Sign Convention: The direction of positive internal shear force Vy on a free-body diagram is in the direction of the pos-
itive shear stress on the surface.6

Figure 6.23 shows the positive direction for the internal shear force Vy. The sign conventions for the internal bending moment
and the internal shear force are tied to the coordinate system because the sign convention for stresses is tied to the coordinate
system. But we are free to choose the directions for our coordinate system. Example 6.6 elaborates this comment further. 

EXAMPLE 6.6

Figure 6.24 shows a beam and loading in three different coordinate systems. Determine for the three cases the internal shear force and
bending moment at a section 36 in. from the free end using the sign conventions described in Figures 6.21 and 6.23.

PLAN
We make an imaginary cut at 36 in. from the free end and take the right-hand part in drawing the free-body diagram. We draw the shear
force and bending moment for each of the three cases as per our sign convention. By writing equilibrium equations we obtain the values
of the shear force and the bending moment.

SOLUTION
We draw three rectangles and the coordinate axes corresponding to each of the three cases, as shown in Figure 6.25. Point A is on the sur-
face that has an outward normal in the positive x direction, and hence the force will be in the positive y direction to produce a positive
shear stress. Point B is on the surface that has an outward normal in the negative x direction, and hence the force will be in the negative y
direction to produce a positive shear stress. Point C is on the surface where the y coordinate is positive. The moment direction is shown
to put this surface into compression.

6Some mechanics of materials books use an opposite direction for a positive shear force. This is possible because Equation (6.13) is a definition, and a minus
sign can be incorporated into the definition. Unfortunately positive shear force and positive shear stress are then opposite in direction, causing problems with
intuitive understanding.

Vy τxy Ad
A

∫=

 Figure 6.23 Sign convention for internal shear force Vy.
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  Figure 6.24 Example 6.6 on sign convention.
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Figure 6.26 shows the free body diagram for the three cases with the shear forces and bending moments drawn on the imaginary cut as
shown in Figure 6.25. By equilibrium of forces in the y direction we obtain the shear force values. By equilibrium of moment about point O
we obtain the bending moments for each of the three cases as shown in Table 6.1.

COMMENTS
1. In Figure 6.26 we drew the shear force and bending moment directions without consideration of the external force of 10 kips. The

equilibrium equations then gave us the correct signs. When we substitute these internal quantities, with the proper signs, into the
respective stress formulas, we will obtain the correct signs for the stresses. 

2. Suppose we draw the shear force and the bending moment in a direction such that it satisfies equilibrium. Then we shall always obtain
positive values for the shear force and the bending moment, irrespective of the coordinate system. In such cases the sign for the
stresses will have to be determined intuitively, and the stress formulas should be used only for the magnitude. To reap the benefit of
both approaches, the internal quantities should be drawn using the sign convention, and the answers should be checked intuitively.

3. All three cases show that the shear force acts upward and the bending moment is counterclockwise, which are the directions for equilibrium.

EXAMPLE 6.7

The two square beam cross sections shown in Figure 6.27 have the same material cross-sectional area A. Show that the hollow cross sec-
tion has a higher area moment of inertia about the z axis than the solid cross section.

PLAN
We can find dimensions aS and aH in terms of the cross-sectional area A. Then we can find the area moments of inertia in terms of A and compare.

SOLUTION
The dimensions aS and aH in terms of area can be found as

(E1)
Let IS and IH represent the area moments of inertia about the z axis for the solid cross section and the hollow cross section, respectively.
We can find IS and IH in terms of area A as 

(E2)

Dividing IH by IS we obtain 

(E3)

ANS. As  the area moment of inertia for the hollow beam is greater than that of the solid beam for the same amount of material. 
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Mz Mz Mz Mz Mz MzB A
C
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y
x
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Case 2
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Vy

y
x
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A BC

 Figure 6.25 Positive shear forces and bending moments in Example 6.6.
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36 in

Case 2

Vy

O
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  Figure 6.26 Free-body diagrams in Example 6.6.

TABLE 6.1  Results for Example 6.6.

Case 1 Case 2 Case 3

Vy = −10 kips Vy = 10 kips Vy = −10 kips
Mz = −360 in.·kips Mz = 360 in.· kips Mz = 360 in.·kips

z

y

z

y

aS 2aH

aS 2aH

aH

aH

  Figure 6.27 Cross sections in Example 6.7.
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COMMENTS
1. The hollow cross section has a higher area moment of inertia for the same cross-sectional area. From Equations (6.11) and (6.12) this

implies that the hollow cross section will have lower stresses and deformation. Alternatively, a hollow cross section will require less
material (and be lighter in weight) giving the same area moment of inertia. This observation plays a major role in the design of beam
shapes. Figure 6.28 shows some typical steel beam cross sections used in structures. Notice that in each case material from the region
near the centroid is removed. Cross sections so created are thin near the centroid. This thin region near the centroid is called the web,
while the wide material near the top or bottom is referred to as the flange. Section C.6 in Appendix has tables showing the geometric
properties of some structural steel members.

2. We know that the bending normal stress is zero at the centroid and maximum at the top or bottom surfaces. We take material near the
centroid, where it is not severely stressed, and move it to the top or bottom surface, where stress is maximum. In this way, we use
material where it does the most good in terms of carrying load. This phenomenological explanation is an alternative explanation for
the design of the cross sections shown in Figure 6.28. It is also the motivation in design of sandwich beams, in which two stiff panels
are separated by softer and lighter core material. Sandwich beams are common in the design of lightweight structures such as aircrafts
and boats. 

3. Wooden beams are usually rectangular as machining costs do not offset the saving in weight.

EXAMPLE 6.8

An S180 × 30 steel beam is loaded and supported as shown in Figure 6.29. Determine: (a) The bending normal stress at a point A that
is 20 mm above the bottom of the beam. (b) The maximum compressive bending normal stress in a section 0.5 m from the left end.

PLAN
From Section C.6 we can find the cross section, the centroid, and the moment of inertia. Using free body diagram for the entire beam, we
can find the reaction force at B. Making an imaginary cut through A and drawing the free body diagram, we can determine the internal
moment. Using Equation (6.12) we determine the bending normal stress at point A and the maximum bending normal stress in the sec-
tion. 

SOLUTION
From Section C.6 we obtain the cross section of S180 × 30 shown in Figure 6.30a and the area moment of inertia:

(E1)
The coordinates of point A can be found from Figure 6.30a, as shown in Equation (E2). The maximum bending normal stress will occur
at the top or at the bottom of the cross section.The y coordinates are 

 (E2)

We draw the free-body diagram of the entire beam with distributed load replaced by a statically equivalent load placed at the centroid of
the load as shown in Figure 6.31a. By equilibrium of moment about point D we obtain RB

(E3)

 Figure 6.28 Metal beam cross sections.
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  Figure 6.29 Beam in Example 6.8.
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Figure 6.30 (a) S180 x 30 cross section in Example 6.8. (b) Intensity of distributed force at point A in Example 6.8
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Figure 6.30b shows the variation of distributed load. The intensity of the distributed load acting on the beam at point A can be found
from similar triangles,

(E4)

We make an imaginary cut through point A in Figure 6.29 and draw the internal bending moment and the shear force using our sign con-
vention. We also replace that portion of the distributed load acting at left of A by an equivalent force to obtain the free-body diagram
shown in Figure 6.31b. By equilibrium of moment at point A we obtain the internal moment.

(E5)

(a) Using Equations (6.12) we obtain the bending normal stress at point A.

(E6)

ANS.
(b) We make an imaginary cut at 0.5 m from the left, draw the internal bending moment and the shear force using our sign convention to
obtain the free body diagram shown in Figure 6.30c. By equilibrium of moment we obtain 

(E7)

The maximum compressive bending normal stress will be at the bottom of the beam, where y = –88.9 (10−3) m. Its value can be calcu-
lated as 

(E8)

ANS.

COMMENT
1. For an intuitive check on the answer, we can draw an approximate deformed shape of the beam, as shown in Figure 6.32. We start by

drawing the approximate shape of the bottom surface (or the top surface). At the left end the beam deflects downward owing to the
applied moment. At the support point B the deflection must be zero. Since the slope of the beam must be continuous (otherwise a cor-
ner will be formed), the beam has to deflect upward as one crosses B. Now the externally distributed load pushes the beam downward.
Eventually the beam will deflect downward, and finally it must have zero deflection at the support point D. The top surface is drawn
parallel the bottom surface.

2. By inspection of Figure 6.32 we see that point A is in the region where the bottom surface is in tension and the top surface in compres-
sion. If point A were closer to the inflection point, then we would have greater difficulty in assessing the situation. This once more
emphasizes that intuitive checks are valuable but their conclusions must be viewed with caution.

RD

B D

RB

27 kN�m

F �  � 20 � 4.5 � 45 kN1
2

3.0 m 2.5 m

  Figure 6.31 Free-body diagrams in Example 6.8 for (a) entire beam (b) calculation of MA (c) calculation of M0.5.

(a) 

VA

MA
2
3

m

B A

RB � 25.36 kN

27 kN�m

F �  � pA � 2 � 8.89 kN
1
2

2 m

(b) (c) 

V0.5

M0.5

0.5 m

27 kN�m

pA

2 m
--------- 20 kN/m

4.5 m
-----------------------= or pA 8.89 kN/m=

MA 27 kN m⋅( ) 25.36 kN( ) 2 m( )– 8.89 kN( ) 2
3
---  m⎝ ⎠

⎛ ⎞+ + 0= or MA 17.8 kN m⋅=

σA
MAyA

Izz
-------------– 17.8 103( )  N m⋅[ ] 69– 10 3–( )  m[ ]

17.65 10 6–( )  m4
---------------------------------------------------------------------------------– 69.6 106( )  N/m2= = =

σA 69.6 MPa T( )=

M0.5 27 kN m⋅–=

σ0.5
27 103( )  N m⋅[ ]– 89– 10 3–( )  m[ ]

17.65 10 6–( ) m4
--------------------------------------------------------------------------------–=

σ0.5 136.1 MPa C( )=

B
A

D

Tension

Compression

Tension

Compression

  Figure 6.32 Approximate deformed shape of beam in Example 6.8.

Consolidate your  knowledge
1. Identity five examples of beams from your daily life.
2. With the book closed, derive Equations (6.11) and (6.12), listing all the assumptions as you go along.
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MoM in Action: Suspension Bridges
The Golden Gate Bridge (Figure 6.33a) opened May 27, 1937, spanning the opening of San Francisco Bay. More 

than 100,000 vehicles cross it every day, and more than 9 million visitors come to see it each year. The first bridge to span 
the Tacoma Narrows, between the Olympic peninsula and the Washington State mainland, opened just three years later, 
on July 1, 1940. It quickly acquired the name Galloping Gertie (Figure 6.33b) for its vertical undulations and twisting of 
the bridge deck in even moderate winds. Four months later, on November 7, it fell. The two suspension bridges, one 
famous, the other infamous, are a story of pushing design limits to cut cost.

Bridges today frequently have spans of up to 7000 ft and high clearances, for large ships to pass through. But sus-
pension bridges are as old as the vine and rope bridges (Figure 6.33c) used across the world to ford rivers and canyons. 
Simply walking on rope bridges can cause them to sway, which can be fun for a child on a playground but can make a 
traveler very uncomfortable crossing a deep canyon. In India in the 4th century C.E., cables were introduced – first of 
plaited bamboo and later iron chains – to increase rigidity and decrease swaying. But the modern form, in which a road-
way is suspended by cables, came about in the early nineteenth century in England, France, and America to bridge naviga-
ble streams. Still, early bridges were susceptible to stability and strength failures from wind, snow, and droves of cattle. 
John Augustus Roebling solved the problem, first in bridging Niagara Falls Gorge and again with his masterpiece—the 
Brooklyn Bridge, completed in 1883. Roebling increased rigidity and strength by adding on either side, a truss underneath 
the roadway.

Clearly engineers have long been aware of the impact of wind and traffic loads on the strength and motion of 
suspension bridges. Galloping Gertie was strong enough to withstanding bending stresses from winds of 120 mph. 
However, the cost of public works is always a serious consideration, and in case of Galloping Gertie it led to design 
decisions with disastrous consequences. The six-lane Golden Gate Bridge is 90 feet wide, has a bridge-deck depth of 25 
feet and a center-span length to width ratio of 47:1. Galloping Gertie’s two lanes were only 27 feet wide, a bridge-deck 
depth of only 8 feet, and center-span length to width ratio of 72:1. Thus, the bending rigidity (EI) and torsional rigidity 
(GJ) per unit length of Galloping Gertie were significantly less than the Golden Gate bridge. To further save on 
construction costs, the roadway was supported by solid I-beam girders, which unlike the open lattice of Golden Gate did 
not allow wind to pass through it but rather over and under it— that is, the roadway behaved like a wing of a plane. The 
bridge collapsed in a wind of 42 mph, and torsional and bending rigidity played a critical role. 

There are two kinds of aerodynamic forces: lift, which makes planes rise into air, and drag, a dissipative force that 
helps bring the plane back to the ground. Drag and lift forces depend strongly on the wind direction relative to the 
structure. If the structure twists, then the relative angle of the wind changes. The structure’s rigidity resists further 
deformation due to changes in torsional and bending loads. However, when winds reach the flutter speed, torsional and 
bending deformation couple, with forces and deformations feeding each other till the structure breaks. This aerodynamic 
instability, known as flutter, was not understood in bridge design in 1940. 

Today, wind-tunnel tests of bridge design are mandatory. A Tacoma Narrows Bridge with higher bending and tor-
sional rigidity and an open lattice roadway support was built in 1950. Suspension bridges are as popular as ever. The Pearl 
Bridge built in 1998, linking Kobe, Japan, with Awaji-shima island has the world’s longest center span at 6532 ft. Its mass 
dampers swing to counter earthquakes and wind. Galloping Gertie, however, will be remembered for the lesson it taught in 
design decisions that are penny wise but pound foolish.

(a) (b) (c)

 Figure 6.33 Suspension bridges: (a) Golden Gate (Courtesy Mr. Rich Niewiroski Jr.); (b) Galloping Gertie collapse; (c) Inca’s rope
bridge

http://commons.wikimedia.org/wiki/User:RichN
http://commons.wikimedia.org/wiki/User:RichN
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PROBLEM SET 6.2

Second area moments of inertia
6.19 A solid and a hollow square beam have the same cross-sectional area A, as shown in Figure P6.19. Show that the ratio of the second
area moment of inertia for the hollow beam IH to that of the solid beam IS is given by the equation below.

6.20 Figure P6.20a shows four separate wooden strips that bend independently about the neutral axis passing through the centroid of each
strip. Figure 6.15b shows the four strips glued together and bending as a unit about the centroid of the glued cross section. (a) Show that IG =
16IS, where IG is the area moment of inertia for the glued cross section and IS is the total area moment of inertia of the four separate beams. (b)
Also show that σG = σS /4, where σG and σS are the maximum bending normal stresses at any cross section for the glued and separate beams,
respectively.

6.21 The cross sections of the beams shown in Figure P6.21 is constructed from thin sheet metal of thickness t. Assume that the thickness
. Determine the second area moments of inertia about an axis passing through the centroid in terms of a and t.

6.22 The cross sections of the beams shown in Figure P6.22 is constructed from thin sheet metal of thickness t. Assume that the thickness
. Determine the second area moments of inertia about an axis passing through the centroid in terms of a and t.

6.23 The cross sections of the beams shown in Figure P6.23 is constructed from thin sheet metal of thickness t. Assume that the thickness
. Determine the second area moments of inertia about an axis passing through the centroid in terms of a and t.

z

y

aS

aS z

y
�aH aH

aH

�aH

IH

IS
----- α2 1+

α2 1–
---------------=

  Figure P6.19

Separate beams

b

P

a

(a)

Neutral axes

(b)

Glued beams

2b

2b

P

a

Neutral axis

  Figure P6.20

t a«

60�60�

a Figure P6.21

t a«

a

a Figure P6.22

t a«

a

  Figure P6.23
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6.24 The same amount of material is used for constructing the cross sections shown in Figures P6.21, P6.22, and P6.23. Let the maximum
bending normal stresses be σT, σS, and σC for the triangular, square, and circular cross sections, respectively. For the same moment-carrying
capability determine the proportional ratio of the maximum bending normal stresses; that is, σT : σS : σC . What is the proportional ratio of the
section moduli?

Normal stress and strain variations across a cross section
6.25 Due to bending about the z axis the normal strain at point A on the cross section shown in Figures P6.25 is εxx = 200 μ.  The modulus of
elasticity of the beam material is E = 8000 ksi. Determine the maximum tensile and compressive normal stress on the cross-section.

6.26 Due to bending about the z axis the maximum bending normal stress on the cross section shown in Figures P6.26 was found to be 40 ksi
(C). The modulus of elasticity of the beam material is E = 30,000 ksi. Determine (a) the bending normal strain at point A. (b) the maximum
bending tensile stress.

6.27 A composite beam cross section is shown in Figure 6.27. The bending normal strain at point A due to bending about the z axis was
found to be εxx = −200 μ. The modulus of elasticity of the two materials are E1 = 200 GPa, E2 = 70 GPa. Determine the maximum bending stress
in each of the two materials.

6.28 A composite beam cross section is shown in Figure 6.28. The bending normal strain at point A due to bending about the z axis was
found to be εxx = 300 μ. The modulus of elasticity of the two materials are E1 = 30,000 ksi, E2 = 20,000 ksi. Determine the maximum bending
stress in each of the two materials.

1 in

4 in

1 in

z C

A

y
4 in

  Figure P6.25

z

A

y

2 in
C

4 in

1

2
in 1

2
in

1

2
in2

  Figure P6.26

z

10 mm

50 mm

10 mm

10 mm

50 mm

  Figure P6.27
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E2E2

E1

z

y
4 in

2 in1.75 in
in1

2

1
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in 1
2

in  Figure P6.28
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6.29 The internal moment due to bending about the z axis, at a beam cross section shown in Figures P6.29 is Mz = 20 in.·kips. Determine the
bending normal stresses at points A, B, and D. 

6.30 The internal moment due to bending about the z axis, at a beam cross section shown in Figures P6.30 is Mz = 10 kN·m. Determine the
bending normal stresses at points A, B, and D.

6.31 The internal moment due to bending about the z axis, at a beam cross section shown in Figures P6.31 is Mz = –12 kN·m. Determine the
bending normal stresses at points A, B, and D.

Sign convention
6.32 A beam and loading in three different coordinate systems is shown in Figures P6.32. Determine the internal shear force and bending
moment at the section containing point A for the three cases shown using the sign convention described in Section 6.2.6.

6.33 A beam and loading in three different coordinate systems is shown in Figures P6.33. Determine the internal shear force and bending
moment at the section containing point A for the three cases shown using the sign convention described in Section 6.2.6. 

1 in

1.5 in

1 in

1 in
2.5 in

2 in

z C

B

y
4 in

D

A

  Figure P6.29

10 mm
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C
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y
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D  Figure P6.30

  Figure P6.31
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0.5 m 0.5 m

A x

y

Case 2

5 kN/m

0.5 m 0.5 m
A x

y

Case 3

5 kN/m

  Figure P6.32

  Figure P6.33
0.5 m 0.5 m

Ax

y

Case 1

20 kN�m

0.5 m 0.5 m

Ax

y

Case 2

0.5 m 0.5 m

Ax

y

Case 3

20 kN�m 20 kN�m



6 279Mechanics of Materials: Symmetric Bending of BeamsM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

6.34 A beam and loading in three different coordinate systems is shown in Figures P6.34. Determine the internal shear force and bending
moment at the section containing point A for the three cases shown using the sign convention described in Section 6.2.6. 

Sign of stress by inspection

6.35 Draw an approximate deformed shape of the beam for the beam and loading shown in Figure P6.35. By inspection determine whether
the bending normal stress is tensile or compressive at points A and B.

6.36 Draw an approximate deformed shape of the beam for the beam and loading shown in Figure P6.36. By inspection determine whether
the bending normal stress is tensile or compressive at points A and B. 

6.37 Draw an approximate deformed shape of the beam for the beam and loading shown in Figure P6.37. By inspection determine whether
the bending normal stress is tensile or compressive at points A and B.

6.38 Draw an approximate deformed shape of the beam for the beam and loading shown in Figure P6.38. By inspection determine whether
the bending normal stress is tensile or compressive at points A and B.

6.39 Draw an approximate deformed shape of the beam for the beam and loading shown in Figure P6.39. By inspection determine whether
the bending normal stress is tensile or compressive at points A and B.

6.40 Draw an approximate deformed shape of the beam for the beam and loading shown in Figure P6.40. By inspection determine whether
the bending normal stress is tensile or compressive at points A and B.

Bending normal stress and strain calculations
6.41 A W150 × 24 steel beam is simply supported over a length of 4 m and supports a distributed load of 2 kN/m. At the midsection of the
beam, determine (a) the bending normal stress at a point 40 mm above the bottom surface; (b) the maximum bending normal stress.

6.42 A W10 × 30 steel beam is simply supported over a length of 10 ft and supports a distributed load of 1.5 kips/ft. At the midsection of the
beam, determine (a) the bending normal stress at a point 3 in below the top surface; (b) the maximum bending normal stress.

  Figure P6.34
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B

  Figure P6.35
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6.43 An S12 × 35 steel cantilever beam has a length of 20 ft. At the free end a force of 3 kips acts downward. At the section near the built-in
end, determine (a) the bending normal stress at a point 2 in above the bottom surface; (b) the maximum bending normal stress.

6.44 An S250 × 52 steel cantilever beam has a length of 5 m. At the free end a force of 15 kN acts downward. At the section near the built-
in end, determine (a) the bending normal stress at a point 30 mm below the top surface; (b) the maximum bending normal stress.

6.45 Determine the bending normal stress at point A and the maximum bending normal stress in the section containing point A for the beam
and loading shown in Figure P6.45.

6.46 Determine the bending normal stress at point A and the maximum bending normal stress in the section containing point A for the beam
and loading shown in Figure P6.46.

6.47 Determine the bending normal stress at point A and the maximum bending normal stress in the section containing point A for the beam
and loading shown in Figure P6.47.

6.48 Determine the bending normal stress at point A and the maximum bending normal stress in the section containing point A for the beam
and loading shown in Figure P6.48.

6.49 Determine the bending normal stress at point A and the maximum bending normal stress in the section containing point A for the beam
and loading shown in Figure P6.49.
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  Figure P6.45
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6.50 Determine the bending normal stress at point A and the maximum bending normal stress in the section containing point A for the beam
and loading shown in Figure P6.50.

6.51 A wooden rectangular beam (E = 10 GPa), its loading, and its cross section are as shown in Figure P6.51. If the distributed force
w = 5 kN/m, determine the normal strain εxx at point A.

6.52 A wooden rectangular beam (E = 10 GPa), its loading, and its cross section are as shown in Figure P6.51. The normal strain at point A
was measured as εxx = −600 μ. Determine the distributed force w that is acting on the beam.

6.53 A wooden beam (E = 8000 ksi), its loading, and its cross section are as shown in Figure P6.53. If the applied load P = 6 kips, determine
the normal strain εxx at point A.

6.54 A wooden beam (E = 8000 ksi), its loading, and its cross section are as shown in Figure P6.53. The normal strain at point A was mea-
sured as εxx = −250 μ. Determine the load P.

Stretch Yourself
6.55 A composite beam made from n materials is shown in Figure 6.55.   If Assumptions 1 through 7 are valid, show that the location of neu-
tral axis ηc is given by Equation (6.14), where ηj, Ej, and Aj are location of the centroid, the modulus of elasticity, and cross sectional area of the
jth material. 
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  Figure P6.50

0.5 m 0.5 m

w kN/m

Ax

  Figure P6.51

100 mm

25 mm

y

1 in 1 in

4 ft4 ft
2 ft

A

p

z

x

y

  Figure P6.53

7 in6 in

2.6 in

z

y

8 in

Izz � 95.47 in4

1 in 1 in

1

x

y

z

y

z

ηc
Figure P6.55
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6.56 A composite beam made from n materials is shown in Figure 6.55.   If Assumptions 1 through 7 are valid, show that the moment curva-
ture relationship and the equation for bending normal stress  in the ith material are as given by

where Ej and (Izz)j are the modulus of elasticity and cross sectional area, and second area moment of inertia of the jth material. Show that if
E1=E2=...=En=E then Equations (6.15) and (6.16) reduce to Equations (6.11) and (6.12).

6.57 The stress–strain curve in tension for a material is given by σ = Kε0.5. For the rectangular cross section shown in Figure P6.57, show
that the bending normal stress is given by the equations below.

6.58 The hollow square beam shown in Figure P6.58 is made from a material that has a stress–strain relation given by σ = Kε0.4. Assume the
same behavior in tension and in compression. In terms of K, L, a, and Mext determine the bending normal strain and stress at point A.

6.3 SHEAR AND MOMENT BY EQUILIBRIUM

Equilibrium equations at a point on the beam are differential equations relating the distributed force py, the shear force Vy, and
the bending moment Mz. The differential equations can be integrated analytically or graphically to obtain Vy and Mz as a func-
tion of x. These in turn can be used to determine the maximum values of Vy and Mz, and hence the maximum values of the
bending normal stress from Equation (6.12) and the maximum bending shear stress, as discussed in Section 6.6. Mz as a func-
tion of x is also needed when integrating Equation (6.11) to find the deflection of the beam, as we will discuss in Chapter 7. 

Consider a differential element Δx of the beam shown at left in Figure 6.34. Recall that a positive distributed force py acts 
in the positive y direction, as shown in Figure 6.14. Internal shear forces and the internal moment change as one moves across 
the element, as shown in Figure 6.34. By replacing the distributed force by an equivalent force, we obtain the diagram on the 
right of Figure 6.34.

By equilibrium of forces in the y direction, we obtain

or

As  we obtain 

(6.17)

By equilibrium of moment in the z direction about an axis passing through the right side, we obtain

σxx( )i

(6.15)Mz
x2

2

d
d v Ej Izz( )j

j 1=

n

∑=
(6.16)σxx( )i E– iy
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∑

-------------------------------=
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  Figure P6.57
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  Figure P6.58

y

z

a

2 a a

2 a

A

Vy

Mz Mz � �Mz

Vy � �Vy�x

p

Vy

Mz Mz � �Mz

Vy � �Vy�x

p�xy y

 Figure 6.34 Differential beam element.
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or

As  we obtain 

(6.18)

Equations (6.17) and (6.18) are differential equilibrium equations that are applicable at every point on the beam, except where
Vy and Mz are discontinuous. In Example 6.10 we shall see that Vy and Mz are discontinuous at the points where concentrated
(point) external forces or moments are applied. We shall consider two methods for finding Vy and Mz as a function of x:

1. We can integrate Equation (6.17) to obtain Vy and then integrate Equation (6.18) to obtain Mz. The integration constants can
be found from the values of Vy and Mz at the end of the beam, as illustrated in Example 6.9. 

2. Alternatively, we can make an imaginary cut at some location defined by the variable x and draw the free-body dia-
gram. We then determine Vy and Mz in terms of x by writing equilibrium equations. We can check our results by substi-
tuting the expressions of Vy and Mz in Equations (6.17) and (6.18), respectively.

The first approach, by integration, is a general approach. This is particularly useful if py is represented by a complicated func-
tion. But for uniform and linear variations of py the free-body diagram method is simpler. Example 6.9 compares the two
methods, and Example 6.10 elaborates the use of the free-body diagram approach further.

EXAMPLE 6.9

Figure 6.35 shows two models of wind pressure on a light pole. Find Vy and Mz as a function of x for the two distributions shown.
Neglect the weights of the light and the pole.

PLAN
For uniform distribution we can find Vy and Mz as a function of x by making an imaginary cut at a distance x from the bottom and draw-
ing the free-body diagram of the top part. For the quadratic distribution we can first integrate Equation (6.17) to find Vy and then inte-
grate Equation (6.18) to find Mz. To find the integration constants, we can construct a free-body diagram of infinitesimal length at the top
(x = L) and obtain the boundary conditions on Vy and Mz. Using boundary conditions and integrated expressions, we can obtain Vy and
Mz as a function of x for the quadratic distribution. 

SOLUTION

M– z Mz ΔMz+( ) VyΔx pyΔx( )Δx
2

------++ + 0=
ΔMz

Δx
----------- pΔx

2
----------+ Vy–=

Δx 0,→

dMz

dx
---------- Vy–=

L

p0 p0

po
x2

L2
-----⎝ ⎠

⎛ ⎞

x

y

(a) (b) 

  Figure 6.35 Light pole in Example 6.9. (a) Uniform distribution. (b) Quadratic distribution.

(L � x)
p0(L � x)

L � x 
2

p0

Mz

Vy

Mz

Vy

 Figure 6.36 Shear force and bending moment by free-body diagram.
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Uniform distribution: We can make an imaginary cut at location x and draw the free-body diagram of the top part, as shown in Figure
6.36.We then replace the distributed load by an equivalent force and write the equilibrium equations.

(E1)

Check: Differentiating Equation (E1), we obtain 

 (E2)

Equation (E2) shows that the equilibrium Equations (6.17) and (6.18) are satisfied.

Quadratic distribution: Substituting  into Equation (6.17) and integrating, we obtain 

(E3)

Substituting Equation (E3) into Equation (6.18) and integrating, we obtain 

 (E4)

We make an imaginary cut at a distance Δx from the top and draw the free-body diagram shown in Figure 6.37.By equilibrium of forces in
the y direction and equilibrium of moment about point O and letting Δx tend to zero we obtain the boundary conditions:

(E5)

(E6)

Substituting x = L into Equation (E3) and using the condition Equation (E5), we obtain 

(E7)

Substituting Equation (E7) into Equation (E3), we obtain the shear force,

(E8)

ANS.

Substituting x = L into Equation (E4), and using Equations (E6) and (E7), we obtain 

(E9)

From Equation (E4) we obtain the moment 

(E10)

ANS.

COMMENTS
1. Suppose that for the uniform distribution we integrate Equation (6.17) after substituting py = p0. We would obtain . On

substituting this into Equation (6.18) and integrating, we would obtain  Substituting x = L in the expres-

sions of Vy and Mz and equating the results to zero, we obtain  and . Substituting these in the expressions of
Vy and Mz, we obtain Equation (E1).

2. The free-body diagram approach is simpler than the integration approach for uniform distribution for two reasons. First, we did not
have to perform any integration to obtain the equivalent load p0L or to determine its location when we constructed the free-body dia-
gram in Figure 6.36. Second, we do not have to impose zero boundary conditions on the shear force and bending moments at x = L,
because these conditions are implicitly included in the free-body diagram in Figure 6.36. 

Vy p0 L x–( )= Mz p0 L x–( ) L x–
2

------------⎝ ⎠
⎛ ⎞ p0

2
----- x2 2xL– L2+( )= =

dVy

dx
--------- p0– py–= =

dMz

dx
---------- p0 L x–( )– Vy–= =

py p0 x2 L2⁄( )=

Vy
p0

3L2
---------⎝ ⎠

⎛ ⎞ x3 C1+–=

Mz
p0

3L2
--------- x4

4
----⎝ ⎠

⎛ ⎞   C1– x C2+=

Vy x L=( ) pΔx+[ ]
Δx 0→
lim 0 or Vy x L=( ) 0==

Mz x L=( ) pΔx2

2
------------+

Δx 0→
lim 0 or Mz x L=( ) 0==

p� � x

O

Mz(x � L)

Vy(x � L)
  Figure 6.37 Boundary conditions on shear force and bending moments.

p0
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p0L

3
---------=

Vy
p0

3L2
--------- x3 p0L

3
---------+–=

Vy
p0

3L2
--------- L3 x3–( )=

p0

3L2
--------- L4

4
-----⎝ ⎠

⎛ ⎞   
p0L

3
---------– L( ) C2+ 0 or C2

p0L2

4
-----------==

Mz
p0x4

12L2
------------   

p0

3
-----xL–

p0L2

4
-----------+=

Mz
p0

12L2
------------ x4 4xL3– 3L4+( )=

Vy p0x– C3+=

Mz p0 x2 2⁄( ) C3x– C4.+=

C3 p0L= C4 p0L2 2⁄=
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3. The free-body diagram approach would present difficulties for the quadratic distribution, as we would need to find the equivalent load
and its location. Both involve the same integrals as obtained from Equations (6.17) and (6.18). Thus for simple distributions the free-
body diagram approach is preferred, whereas the integration approach is better for more complex loading.

EXAMPLE 6.10

(a) Write the equations for the internal shear force Vy and the internal bending moments Mz as a function of x for the entire beam shown
in Figure 6.38. (b) Determine the values of Vy and Mz just before and after point B.

PLAN
By considering the free-body diagram of the entire beam we can determine the reactions at supports A and D. (a) The loading changes at
points B and C. Thus shear force and bending moment will be represented by different functions in AB, BC, and CD. We draw free body
diagrams after making imaginary cuts in AB, BC, and CD and determine shear force and bending moment by equilibrium. We can use
Equations (6.17) and (6.18) to check our answers. (b) By substituting x = 2 m in the expressions for Vy and Mz in segment AB we can
find the values just before B, and by substituting x = 2 in segment BC we find the values just after B.

SOLUTION
(a) We replace the distributed loads by equivalent forces and draw the free-body diagram of the entire beam as shown in Figure 6.39.By
equilibrium of moment about point D and equilibrium of forces in the y direction we obtain the reaction forces.

(E1)

 (E2)

Segment AB, 0 ≤ x < 2: We make an imaginary cut at some location x in segment AB. We take the left part of the cut and draw the free-
body diagram after replacing the distributed force over the distance x by a statically equivalent force, as shown in Figure 6.40a. We write
the equilibrium equations to obtain Vy and Mz as a function of x.

(E3)

(E4)

ANS. 

Check: Differentiating the shear force and bending moment, we obtain

(E5)

Equation (E5) shows that Equations (6.17) and (6.18) are satisfied. 
Segment BC, 2 < x < 3: We make an imaginary cut at some location x in segment BC. We take the left part of the cut and draw the free-
body diagram after replacing the distributed force by a statically equivalent force, as shown in Figure 6.40b. We write the equilibrium
equations to obtain Vy and Mz as a function of x.

(E6)

12 kN�m 4 kN/m
5 kN

5 kN/m

xA C DB

y

2.0 m 1.0 m 3.0 m  Figure 6.38 Beam in Example 6.10.

RA 6 m( ) 10 kN( ) 5 m( ) 12 kN m⋅( )+– 5 kN( ) 4 m( ) 12 kN( ) 1.5 m( )+ + 0= or RA 0=

  Figure 6.39 Free-body diagram of entire beam in Example 6.10.

5 kN 12 kNRA

RD

10 kN

12 kN�m DCA B

1.5 m
4 m

5 m

RA 10 kN 5 kN– 12 kN– RD+ +– 0= or RD 7 kN=

Vy 5x+ 0= or Vy 5x  kN–=

Mz   5– x x
2
---⎝ ⎠

⎛ ⎞ 0= or Mz
5
2
---x2 kN·m=

Vy 5x  kN–= Mz
5
2
---x2 kN·m=

RA � 0

Vy

MzA O1

5x
x m

x
2

m

  Figure 6.40 Free body diagrams in Example 6.10 after imaginary cut in (a) AB (b) BC (c) CD.

RA � 0

Vy

Mz

A B O2

x m

12 kN�m

5 kN

10 kN
1.0 m1.0 m

O3

RD � 7 kN

Vy

Mz

(6 � x)�2 m

4(6 � x) kN

(6 � x) m

(a) (b) (c)

dVy

dx
--------- 5 – py ,–==

dMz

dx
---------- 5x Vy–= =

Vy 10 kN 5 kN–+ 0= or Vy 5 kN–=
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(E7)

ANS.
Check: Differentiating shear force and bending moment, we obtain 

 (E8)

Equation (E8) shows that Equations (6.17) and (6.18) are satisfied.
Segment CD, 3 < x < 6: We make an imaginary cut at some location x in segment CD. We take the right part of the cut and note that left
part is x m long and the right part hence is 6 − x m long. We draw the free-body diagram after replacing the distributed force by a stati-
cally equivalent force, as shown in Figure 6.40c.We write the equilibrium equations to obtain Vy and Mz as a function of x,

(E9)

(E10)

ANS.
Check: Differentiating shear force and bending moment, we obtain 

(E11)

Equation (E11) shows that Equations (6.17) and (6.18) are satisfied.
(b) Substituting x = 2 m into Equations (E3) and (E6) we obtain the values of Vy and Mz just before point B, 

ANS.
where the superscripts − refer to just before x = 2 m. Substituting x = 2 m into Equations (E4) and (E7) we obtain the values of Vy and Mz

just after point B,

ANS.
where the superscripts + refer to just after x = 2m.

COMMENTS
1. In Figures 6.40a and 6.40b the left part after the imaginary cut was taken and the distance from A was labeled x. In Figure 6.40c the

right part of the imaginary cut was taken, and the distance from the right end was labeled (6 – x). These free-body diagrams empha-
size that x defines the location of the imaginary cut, irrespective of the part used in drawing the free-body diagram. Furthermore, the
distance (coordinate) x is always measured from the same point in all free-body diagrams, which in this problem is point A.

2. We note that Vy(2+) – Vy(2–) = 5 kN, which is the magnitude of the applied external force at point B. Similarly, Mz(2+) – Mz(2–) =
–12 kN·m, which is the magnitude of the applied external moment at point B. This emphasizes that the external point force causes a jump
in internal shear force, and the external point moment causes a jump in the internal bending moment. We will make use of these observa-
tions in the next section in plotting the shear force—bending moment diagrams. 

3. We can obtain Vy and Mz in each segment by integrating Equations (6.17) and (6.18). Observe that the shear force and bending moment
jump by the value of applied force and moment, respectively causing additional difficulties in determining integration constants. Thus, the
free-body approach is easier then the method of integration in this case.

4. For beam deflection, Section 7.4* introduces a method based on the integration approach, that eliminates drawing free-body diagrams
for each segment to account for jumps in the loading. But that method requires an additional concept—discontinuity functions (also
called singularity functions).

6.4 SHEAR AND MOMENT DIAGRAMS

Shear and moment diagrams are plots of internal shear force and internal bending moment as a function of x. By looking at
these plots, we can immediately see the maximum values of the shear force and the bending moment, as well as the location of
these maximum values. One way of making these plots is to determine the shear force and bending moment as a function of x,
as in Section 6.3, and plot the results. However, for simple loadings there exists an easier alternative. We first discuss how the
distributed forces are accounted, then how to account for the point forces and moments. 

6.4.1 Distributed Force

The graphical technique described in this section is based on the interpretation of an integral as the area under a curve. The
minus signs7 in Equations (6.17) and (6.18) lead to positive areas being subtracted and negative areas being added. To over-

Mz   10 kN( ) x 1–( ) 12 kN m⋅( ) 5 kN( )+ +– x 2–( ) 0= or Mz 5x 12–( )  kN m⋅=

Vy 5 kN–= Mz 5x 12–( )  kN m⋅=

dVy

dx
--------- 0 py–= =

dMz

dx
---------- 5 Vy–= =

Vy 4( ) 6 x–( )  kN 7 kN( )–+ 0= or Vy 4x   17–( )  kN=

Mz 4 6 x–( )  kN[ ] 6 x–
2

-----------⎝ ⎠
⎛ ⎞ 7 kN( ) 6 x–( )–+ 0= or Mz 2x2– 17x 30–+( )  kN m⋅=

Vy 4x   17–( )  kN= Mz 2x2– 17x 30–+( )  kN m⋅=

dVy

dx
--------- 4 py

dMz

dx
---------- 4– x 17+ Vy–= =,–= =

Vy 2-( ) 10 kN Mz 2-( ),–= +10 kN·m=

Vy 2+( ) 5 kN Mz 2+( )  2 kN·m–=,–=
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come this problem of flip-flop of sign in the graphical procedure, we introduce V = −Vy. Let V1 and V2 be the values of V at x1

and x2, respectively. Let M1 and M2 be the of values of Mz at x1 and x2, respectively. Equations (6.17) and (6.18) can be written
in terms of V as dV/dx = py and dMz /dx = V. Integration then yields 

(6.19)

(6.20)

The key idea is to recognize that the values of the integrals in Equations (6.19) and (6.20) are the areas under the load curve py

and the curve defining V, respectively. If we know V1 and M1, then by adding or subtracting the areas under the respective
curves, we can find V2 and M2. We then move to point 2, where we now know the shear force and bending moment, and con-
sider it as point 1 for the next segment of the beam. Moving in this bootstrap manner, we go across the beam accounting for
the distributed forces. 

Shear force curve 
Recall that py is positive in the positive y direction. Thus in Figure 6.41a and b, py = +w, and from Equation (6.19) we obtain
V2 = V1 + w(x2 - x1 ). Similarly, in Figure 6.46c and d, py = -w, and from Equation (6.19) we obtain V2 = V1 - w(x2 - x1 ). The
term w(x2 - x1 ) is the area of the rectangle and represents the magnitude of the integral in Equation (6.19).The line joining the
values of V1 and V2 is a straight line because the integral of a constant function will result in a linear function.

Bending moment curve
The integral in Equation (6.20) represents the area under the curve defining V, that is, the areas of the trapezoids shown by
the shaded regions in Figure 6.41. In Figure 6.41a and c, V is positive and we add the area to M1 to get M2. In Figure
6.41b and d, V is negative and we subtract the area from M1 to get M2. As V is linear between x1 and x2, the integral in
Equation (6.20) will generate a quadratic function. But what would be the curvature of the moment curve, concave or
convex? To answer this question, we note that the derivative of the moment curve—that is, the slope of the tangent—is
equal to the value on the shear force diagram. To avoid some ambiguities associated with the sign8 of a slope, we consider
the inclination of the tangent to the moment curve, . If the magnitude of V is increasing, the inclination
of the tangent to the moment curve must increase, as shown in Figure 6.41a and d. If the magnitude of V is decreasing,
the inclination of the tangent to the moment curve must decrease, as shown in Figure 6.41b and c. 

7This is a consequence of trying to stay mathematically consistent while keeping the directions of shear force and shear stress the same. See footnote 6.
8We avoid statements such as “increasing negative slope,” which could mean more negative or less negative. “Decreasing negative slope.” is similarly ambiguous. 

V2 V1 py xd
x1

x2

∫+=

M2 M1 V xd
x1

x2

∫+=

  Figure 6.41 Shear and moment diagrams for uniformly distributed load.
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An alternative approach to getting the curvature of the moment curve is to note that if we substitute Equation (6.18) 
into Equation (6.17), we obtain . If py is positive, then the curvature of the moment curve is positive, and 
hence the curve is concave, as shown in Figure 6.41a and b. If py is negative, then the curvature of the moment curve is 
negative, and the curve is convex, as shown in Figure 6.41c and d. 

We call our conclusions the curvature rule for quadratic Mz curves:

6.4.2 Point Force and Moments

It was noted in Comment 2 of Example 6.10 that the values of the internal shear force and the bending moment jump as one
crosses an applied point force and moment, respectively. In Section 4.2.8 on axial force diagrams and in Section 5.2.6 on
torque diagrams we used a template to give us the correct direction of the jump. We use the same idea here. 

A template is a small segment (Δx tends to zero in Figure 6.42) of a beam on which the external moment Mext and an 
external force Fext are drawn. The directions of Fext and Mext are arbitrary. The ends at +Δx and –Δx from the applied external 
force and moment represent the imaginary cut just to the left and just to the right of the applied external forces and moments. 
On these cuts the internal shear force and the internal bending moment are drawn. Equilibrium equations are written for this 
2Δx segment of the beam to obtain the template equations. 

Shear force template 
Notice that the internal forces V1 and V2 are drawn opposite to the direction of positive internal shear forces, as per the defini-
tion V = −Vy , which is an additional artifact of the procedure to remember. To avoid this, we note that the sign of Fext is the
same as the direction in which V2 will move relative to V1. In the future we will not draw the shear force template but use the
following observation: 

• V will jump in the direction of the external point force.

Moment template 
On the moment template, the internal moments are drawn according to our sign convention, discussed in Section 6.2.6. Unlike
the observation about the jump in V, there is no single observation that is valid for all coordinate systems. Thus the moment
template must be drawn and the corresponding template equation used as follows.

If the external moment on the beam is in the direction of the assumed moment Mext on the template, then the value of M2 
is calculated according to the template equation. If the external moment on the beam is opposite to the direction of Mext on the 
template, then M2 is calculated by changing the sign of Mext in the template equation. 

6.4.3 Construction of Shear and Moment Diagrams

Figure 6.43 is used to elaborate the procedure for constructing shear and moment diagrams as we outline it next. 

d2Mz dx2⁄ py=

The curvature of the Mz curve must be such that the incline of the tangent to the Mz curve must increase 
(or decrease) as the magnitude of V increases (or decreases). 

or (6.21)
The curvature of the moment curve is concave if py is positive, and convex if py is negative.

V1 V2

Fext

�x �x

M2M1 Mext

� �

(a)
M2 M1 Mext+=Template Equations

M2M1 Mext

�x �x

(b)

V2 V1 Fext+=

(a) (b)

 Figure 6.42 Beam templates and equations for (a) Shear force (b) Moment.
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Step 1 Determine the reaction forces and moments. 

The free-body diagram for the entire beam is drawn, and the reaction forces and moments are calculated at the supports 
at A and B, as shown in Figure 6.43.

Step 2 Draw and label the vertical axes for V and Mz along with the units to be used. 

We show V = −Vy on the axis to remind ourselves that the positive and negative values read from the plots are for V, 
whereas the formula that will be developed in Section 6.6 for the bending shear stress will be in terms of Vy .

Step 3 Draw the beam with all forces and moments. At each change of loading draw a vertical line. 

The vertical lines define the segments of the beam between two points x1 and x2 where the values of shear force and 
moment will be calculated. The vertical lines also represent points where V and Mz values may jump, such as at point C 
in cases 2 and 3 in Figure 6.43.

Step 4 Consider imaginary extensions on the left and right ends of the beam. V and Mz are zero in these imaginary exten-
sions. 

In the imaginary left extension, LA at the beams shown in Figure 6.43, V1 and M1 are zero, and we can start our process 
at this segment. Point A (the start of the beam) can now be treated like any other point on the beam at which there is a 
point force and/or point moment. At the right imaginary extension BR, the values of the shear force and bending 
moment must return to zero, providing a check on our solution procedure.

Shear force diagram
Step 5 If there is a point force, then increase the value of V in the direction of the point force. 

Just before point A in Figure 6.43, V1 = 0 as we are in the imaginary extension. As we cross point A, the value of V 
jumps upward (positive) by the value of the reaction force RA, which is in the upward direction. 

At point C in case 2 we jump in the direction of P, which is pointed downward; that is, we subtract P from the value of 
V1. In other words, V2 = bP/L – P = (b – L)P/L = –aP/L just after point C, as shown.

The reaction force RB is upward in cases 1 and 2, so we add the value of RB to V1. In case 3 RB is downward, so we sub-
tract the value of RB from V1. As expected in all cases, we return to a zero value for force V in the imaginary extension 
BR. 

Step 6 Compute the area under the curve of the distributed load. Add the area to the value of V1 if py is positive, and subtract
it if py is negative, to obtain the value of V2.

L (ft)

L R L R

w (lb/ft)

CC C

L (in)
a (in) b (in)

P kips

RA � wL�2 RA � bP�LRB � wL�2 RB � aP�L

C

A B L R

M

L (m)
a (m) b (m)

M (kN�m)

RA � M�L RB � M�L

C

A B

V � �Vy V � �Vy
(kips)

V � �Vy
(kN)

Mz
(ft�lb)
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wL�2
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M

L
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  Figure 6.43 Construction of shear and moment diagrams.
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In case 1 the area under the distributed force is wL and py is negative. Therefore we subtract wL from the value of V just 
after A (+wL/2) to get the value of V just before B (–wL /2). 

Step 7 Repeat Steps 5 and 6 until the imaginary extension at the right of the beam is reached. If the value of V is not zero in
the imaginary extension, then check Steps 5 and 6 for each segment of the beam.

For the three simple cases considered in Figure 6.43, this step is not required.
Step 8 Draw additional vertical lines at any point where the value V is zero. Determine the location of these points by using
geometry.

The points where V is zero represent the location of the maximum or minimum values of the bending moment because 
 at these points. In case 1 V = 0 at point C. The location can be found by using similar triangles.

Step 9 Calculate the areas under the V curve and between two adjacent vertical lines.

Areas A1 and A2 can be found and recorded as shown in Figure 6.48. 

Moment diagram
Step 10 If there is a point moment, then use the moment template and the template equation to determine the direction of the
jump.

In case 3 there is a point moment at point C. Comparing the direction of the moment at C to that in the template in Fig-
ure 6.42, we conclude that Mext = – M. Just before C, M1 = aM /L. As per the template equation, M2 = aM /L – M = (a – 
L)M /L = –bM /L, which is the value just after C.
In all three cases there is no point moment at A, hence our starting value is zero. If there were a point moment at A, we 
would use the moment template and the template equation to determine the starting value as we move from the imagi-
nary segment to just right of A.

Step 11 To move from the right of one vertical line to the left of the next vertical line, add the areas under the V curve if V is
positive, and subtract the areas if V is negative. Draw the curve according to the curvature rule in Equation (6.21).

In all three cases the area A1 is positive and we add the value of the area to the value of the moment at point A to obtain 
the moment just before C. In cases 1 and 2 the area A2 is negative. Hence we subtract the value of A2 from the moment 
value just after C to get a zero value just before B. In case 3 A2 is positive and we add the value of A2 to the moment 
value just after C. 
In cases 2 and 3 the V curve is constant in each segment, and hence the Mz curve is linear in each segment. In case 1 the 
V curve is linear. Hence the Mz curve is quadratic and we need to determine the curvature of the curve. The inclination 
of the tangent to the Mz curve at A is nonzero, and it decreases to zero at C. Thus the inclination of the tangent 
decreases as the magnitude of V decreases. Similarly, as we move from C to B, the inclination of the tangent increases 
from zero to a nonzero value, consistent with the increasing magnitude of V.
Alternatively, in case 1 py = −w, and hence the curvature of the moment curve is convex.

Step 12 Repeat Steps 10 and 11 until you reach the imaginary extension on the right of the beam. If the value of Mz is not
zero in the imaginary extension, then check Steps 10 and 11 for each segment of the beam.

This procedure is applied and elaborated in Examples 6.11 and 6.12.

6.5 STRENGTH BEAM DESIGN 

This section addresses two issues. The first relates to choosing a standard, commonly manufactured beam cross section that
will be cheapest to use. The second issue relates to determining the maximum tensile or compressive bending normal stress. 

6.5.1 Section Modulus

In the design of steel beams, the tensile and compressive strength are usually assumed to be equal. We calculate the magnitude
of the maximum bending normal stress using Equation (6.12), which can be written as , where Mmax is the

magnitude of the maximum internal bending moment, and ymax the distance of the point farthest from the neutral axis. The
moment of inertia Izz and ymax depend on the geometry of the cross section. Thus, Equation (6.12) requires two variables to

dMz dx⁄ = 0

σmax = Mmaxymax Izz⁄
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determine the best geometric shape in a particular design. A variable called section modulus S, simplifies the equation for the
maximum bending normal stress

(6.22)

Section C.6 give the section modulus S for steel beams of standard shapes and Example 6.12 shows its use in design.

6.5.2 Maximum Tensile and Compressive 
Bending Normal Stresses

Section 3.1 observed that a brittle material usually ruptures when the maximum tensile normal stress exceeds the ultimate ten-
sile stress of the material. Cracks in materials propagate due to tensile stress. Adhesively bonded material debonds from ten-
sile normal stress called peel stress. Thus a structure designed for maximum normal stress may fail when the maximum tensile
stress is less in magnitude than the maximum compressive stress. Similarly, failure may occur when the maximum compres-
sive normal stress is less than the maximum tensile normal stress. This may happen because buckling, which is discussed in
Chapter 11. Proper beam design must take into account failure due to tensile or compressive normal stresses. 

To account for these stresses, it may be necessary to determine two stress values—the maximum tensile and compressive 
bending normal stress. These may differ when the top and the bottom of the beam are at different distances from the neutral 
axis of the cross section. Since both Mz and y affect the sign of the bending normal stress in Equation (6.12), stresses must be 
checked at four points: 

• On the top and bottom surfaces on the cross-section location where Mz is a maximum positive value. 
• On the top and bottom surfaces on the cross-section location where Mz is a maximum negative value.

Example 6.11 elaborates this issue. 

EXAMPLE 6.11

Figure 6.44 shows a loaded beam and cross section. (a) Draw the shear force and bending moment diagrams for the beam, and determine
the maximum shear force and bending moment. (b) Determine the maximum tensile and compressive bending normal stress in the beam.

PLAN
(a) We can determine the reaction force and moment at wall C and follow the procedure for drawing shear and moment diagrams
described in Section 6.4.3. (b) We can find σxx from Equation (6.12) at points E and F at those cross sections where the Mz value is max-
imum positive and maximum negative. From these four values we can find the maximum tensile and compressive bending normal
stresses.

SOLUTION
(a) We draw the shear force and bending moment diagram as per the procedure outlined in Section 6.4.3.
Step 1: From the free-body diagram shown in Figure 6.45 we can determine the value of the reaction force Rw by equilibrium of forces
in the y direction. By equilibrium of moment about point C, we can determine the reaction moment Mw. The values of these reactions are 

Rw = 10 kips (E1)
Mw  3 ft ⋅kips (E2)

S
Izz

ymax
---------= σmax

Mmax

S
------------=

3 ft 3 ft

M � 18 ft�kips x BA C

y

1 in

1 in

4 in

6 in
4.

4 
in

Izz � 47.7 in4

z

y

F

E

8 kips

6 kips/ft

  Figure 6.44 Beam and loading in Example 6.11.
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Step 2: We draw and label the axes for V and Mz and record the units.
Step 3: The beam is shown in Figure 6.45 with all forces and moments acting on it. Vertical lines at points A, B, and C are drawn as
shown.

Step 4: We draw imaginary extensions LA and CR to the beam.
Shear force diagram in Figure 6.45
Steps 5, 6, 7: In segment LA the shear force is zero, and hence V1 = 0. The 8-kips force at A is upward, so we jump to a value of
V2 = +8 kips just to the right of point A. py = 0 in segment AB, and hence the value of V remains at 8 kips just before B. Since there is no
point force at B, there is no jump in V at B. 

In segment BC the area under the distributed load is 18 kips. As py is negative, we subtract the area from 8 kips to get a value of −
10 kips just before C. We join it by a straight line as py is uniform in BC. 

The reaction force Rw is upward, so we add the value to −10 kips to get a zero value just after C, confirming the correctness of our
solution. 
Step 8: At point D, where V = 0, we draw another vertical line. To find the location of point D, we use the two similar triangles on either
side of point D to get the value of h in Equation (E3).

(E3)

Step 9: We calculate areas A1, A2, and A3 as

(E4)

Moment diagram in Figure 6.45
Steps 10, 11, 12: In segment LA the bending moment is zero, and hence M1 = 0. Comparing the 18-ft·kips couple at point A with Mext in
the moment template in Figure 6.47, we obtain Mext = –18 ft·kips. Hence from the template equation M2 = –18 ft·kips just to the right of
point A. 

The area A1 is positive, so we add its value to −18 ft·kips to obtain M2 = +6 ft·kips just before B. As V was constant in AB, we join
the moments at points A and B by a straight line, as shown. 

The area A2 is positive, so we add its value to +6 ft·kips to obtain M2 = +11.33 ft·kips just before D. As V is linear between B and
D, the integral will result in a quadratic function. The magnitude of the shear force is decreasing. Hence the incline of the tangent to the
moment curve must decrease as we move from point B toward point D, resulting in the convex curve shown between B and D. Alterna-
tively, since py is negative between B and D, the curve is convex.

The area A3 is negative, so we subtract its value from 11.33 ft·kips to obtain +3 ft·kips just before C. As V is linear between D and
C, the integral will result in a quadratic function. Since the magnitude of the shear force is increasing. Hence the incline of the tangent to
the moment curve must increase as we move from point D toward C, resulting in the convex curve shown between D and C.

Comparing the moment Mw at C with Mext in the template in Figure 6.42, we obtain Mext = –Mw = –3 ft·kips. Hence from the tem-
plate equation M2 = 0 just to the right of point C. That is, in the imaginary segment CR the moment is zero as expected, confirming the
correctness of our construction.

From Figure 6.45 we see that the maximum values of V and Mz are –10 kips and –18 ft ·kips, respectively. Recollect that, V = –
Vy. This gives us the maximum values of the shear force and the bending moment.

ANS. 

(b) The maximum positive moment occurs at D (MD = +11.33 ft·kips = 136 in·kips) and the maximum negative moment occurs at A
(MA = −18 ft·kips = −216 in.·kips). We can evaluate the bending normal stress at points E ( yE = +2.6 in) and F ( yF = −4.4 in.) on the
cross sections at A and D using Equation (6.12):

• On cross section A, at point E, the bending normal stress is

3 ft 3 ft

M � 18 ft�kips

x BA C

y

8 kips

6 kips/ft

h 3 � h
V � �Vy

(kips)

Mz
(ft�kips)

10

A1 A2
DxBxA

xC

Mw

Rw

xD
A3

18

11.33

3

88

6

L R

 Figure 6.45 Shear and moment diagrams in Example 6.11.

8 kips
h

-------------- = 10 kips
3 ft h–
----------------- or h = 1.333 ft

A1 = 8( ) 3( ) = 24 A2 = 1
2
--- 8( ) h( ) = 5.33 A3 = 1

2
---10 3 h–( ) = 8.33

Vy( )max 10 kips= Mz( )max 18–  ft ·kips=
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(E5)

• On cross section A, at point F, the bending normal stress is

(E6)

• On cross section D, at point E, the bending normal stress is

(E7)

• On cross section D, at point F, the bending normal stress is

(E8)

From the results in Equations (E5), (E6), (E7), and (E8), it is clear that the maximum tensile bending normal stress occurs at point F on
the cross section at D. The maximum compressive bending normal stress occurs instead at point F on the cross section at A.

ANS.

COMMENTS
1. In practice we need not write each step. Equations (E3) through (E4) suffice for drawing the shear and moment diagrams.
2. In Figure 6.45 we see that at point D, where shear force is zero, there is a local maximum in the bending moment. But the maximum

moment in the beam is at point A, where a point moment is applied.
3. If we were determining the magnitude of the maximum bending normal stress, then we need to evaluate stress one point only—where

the moment is a maximum (cross section A) and where y is also a maximum (point F). 
4. We could use the template shown in Figure 6.46 to determine the direction of the jump in the moment. It can be verified that the

moment jumps at A and C will be as before. This shows that the direction of Mext on the template is immaterial. Thus there is no need
to memorize the template, which can be drawn before starting on the shear and moment diagrams.

EXAMPLE 6.12

Consider the beam shown in Figure 6.38. Select the lightest W- or S-shaped beams from these given in Appendix E if the allowable
bending normal stress is 53 MPa in tension or compression. 

PLAN
We can draw the shear and moment diagrams using the procedure described in Section 6.4.3. From the moment diagram we can find the
maximum moment. Using the allowable bending normal stress of 53 MPa and Equation (6.22), we can find the minimum sectional mod-
ulus. Using Section C.6, we can make a list of the beams for which the sectional modulus is just above the one we determined and
choose the lightest beam we can use.

SOLUTION
Step 1: The reaction forces at points A and D were determined in Example 6.10.
Step 2: The beam with all forces and moments acting on it is shown in Figure 6.47. Vertical lines at points A, B, C, and D are shown as drawn.

Step 3: We draw imaginary extensions LA and DR to the beam.

σAE
216 in.· kips–( ) 2.6 in.( )

47.7 in.4
-----------------------------------------------------------– +11.8 ksi= =

σAF
216 in.· kips–( ) 4.4 in.–( )

47.7 in.4
--------------------------------------------------------------– 19.9 ksi–= =

σDE
136 in.· kips( ) 2.6 in.( )

47.7 in.4
--------------------------------------------------------– 7.4 ksi–= =

σDF
136 in.· kips( ) 4.4 in.–( )

47.7 in.4
-----------------------------------------------------------– +12.6 ksi= =

σDF  = 12.6 ksi T( )         σAF = 19.9 ksi C( )

M1 M2

Mext

�x �x
  Figure 6.46 Alternative template and equation.

M2 = M1 Mext–Template Equation:

12 kN�m 4 kN/m5 kN

5 kN/m

xA C DB

2.0 m 1.0 m 3.0 m

RA � 0

RD � 7 kN

E

10

5 5

7

10

2

3

6.125

h 3 � h

Vy � �V
(kN)

Mz
(kN�m)

xDxExCxBxA

A1 A2 A3

A4

L R

  Figure 6.47 Shear and moment diagrams in Example 6.12.
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Step 4: We label the axes for V and Mz and record the units. 
Shear force diagram in Figure 6.47
Steps 5, 6, 7: In segment LA, V1 = 0. Since RA is zero, there is no jump at A and we start our diagram at zero.

In segment AB, py = +5 kN/m. Hence we add the area of 5 × 2 = 10 kN to obtain V2 = 10 kN just before point B and draw a straight
line between the values of V at A and B, as shown in Figure 6.47. At B the point force of 5 kN is downward. Thus we jump downward by
5 kN to obtain V2 = 5 kN just after point B. 

In segment BC, py= 0; hence the value of V does not change until point C.
In segment CD, py = −4 kN/m. Hence we subtract the area of 4 × 3 = 12 kN to obtain V2 = −7 kN just before point D and draw a

straight line between the values of V at C and D, as shown in Figure 6.47. The reaction force at D is upward, so we jump upward by 7 kN
to obtain V2 = 0 kN just after point D. That is, in the imaginary segment DR the shear force is zero as expected, confirming the correctness
of our construction.
Step 8: At point E, where Vy = 0, we draw another vertical line. To find the location of point E, we use the two similar triangles on either
side of point E to obtain h:

 (E1)

Step 9: We calculate the areas A1 through A4 

(E2)

Bending moment diagram in Figure 6.47
Steps 10, 11, 12: In segment LA the bending moment is zero, and hence M1 = 0. As there is no point moment at A, we start our moment
diagram at zero.

As V is positive in segment AB, we add the area A1 to obtain M2 = +10 kN·m just before B. As V is linear in AB, the integral will
result in a quadratic function between A and B. As the magnitude of the shear force is increasing, the incline of the tangent to the moment
curve must increase as we move from point A toward point B, resulting in the concave curve shown between A and B. Alternatively,
since py is positive in AB, the moment curve is concave.

Comparing the moment 12 kN·m at B with Mext in the template in Figure 6.42, we obtain Mext = –12 kN·m. Hence from the tem-
plate equation M2 = 10 – 12 = –2 kN·m just to the right of point B. 

As V is positive in segment BC, we add the area A2 to obtain the value of M2 = +3 kN·m just before C. As V is constant between B
and C, the integral will result in a linear function, so we draw a straight line between B and C. 

As V is positive in segment CE, we add the area A3 to obtain the value of M2 = +6.125 kN·m just before E. As V is linear between
C and E, the integral will result in a quadratic function. As the magnitude of the shear force is decreasing, the incline of the tangent to the
moment curve must also decrease as we move from point C toward E, resulting in the convex curve between C and E, as shown. Alter-
natively, since py is negative in CE, the moment curve is convex.

As V is positive in ED, we add the area A4 to obtain the value of M2 = 0 just before D. As V is linear between E and D, the integral
will result in a quadratic function. As the magnitude of the shear force is increasing, the incline of the tangent to the moment curve must
also increase as we move from point E toward D, resulting in the convex curve between E and D, as shown. Alternatively, since py is
negative in ED, the moment curve is convex.

As there is no point moment at D, there will be no jump in the moment at D. Hence we obtain a zero value for the moment in the imag-
inary segment DR as expected, confirming the correctness of our construction.

From the moment diagram in Figure 6.47 the maximum moment is Mmax = 10 kN·m. Noting that the allowable bending normal
stress is 53 MPa, Equation (6.22) yields 

(E3)

From Section C.6 we obtain the following list of W- and S-shaped beams that have a section modulus close to that given in Equation (E3):

The lightest beam is W200 × 22.5 as it has a mass of only 22.5 kg/m. 
ANS. 

COMMENTS
1. This example demonstrate the use of the section modulus in selecting the beam cross section from a set of standard shapes. But the

section modulus can also be used with nonstandard shapes. 
2. The alternative template shown in Figure 6.46 could have been used in this example. It would result in the same jumps as shown in

Figure 6.47.
3. Again, only Equations (E1) through (E2) are needed to obtain the shear and moment diagrams. From here on, the shear and moment

diagrams will be drawn without additional explanations.

5 m
h

---------  7 m
3 m h–
------------------= or h 1.25 m=

A1
1
2
---10 2× 10= = A2 5 1× 5= = A3

1
2
---5h 3.125= = A4

1
2
---7 3 h–( ) 6.125= =

σmax
10 103( ) N

S
------------------------- 53 106( )  N/m2 or  S 188.7 103( ) mm3≥≤=

W150 29.8×
W200 22.5×

S 219 103×  mm3=

S 194.2 103×  mm3=
and

S200 27.4×
S180 30×

S 236 103×  mm3=

S 198.3 103×  mm3=

W200 22.5×
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PROBLEM SET 6.3

Equilibrium of shear force and bending moment 
6.59 (a) Write the equations for shear force and bending moments as a function of x for the entire beam shown in Figure P6.59; (b) show that
your results satisfy Equations (6.17) and (6.18). 

6.60 (a) Write the equations for shear force and bending moments as a function of x for the entire beam shown in Figure P6.60; (b) show that
your results satisfy Equations (6.17) and (6.18).

QUICK TEST 6.1 Time: 20 minutes/Total: 20 points

Answer true or false and justify each answer in one sentence. Grade yourself with the answers given in Appendix E.

Assume linear elastic, homogeneous material unless stated otherwise.

1. If you know the geometry of the cross section and the bending normal strain at one point on a cross section,

then the bending normal strain can be found at any point on the cross section.

2. If you know the geometry of the cross section and the maximum bending normal stress on a cross section, then

the bending normal stress at any point on the cross section can be found. 

3. A rectangular beam with a 2-in. × 4-in. cross section should be used with the 2-in. side parallel to the bending

(transverse) forces.

4. The best place to drill a hole in a beam is through the centroid.

5. In the formula , y is measured from the bottom of the beam.

6. The formula  can be used to find the normal stress on a cross section of a tapered beam.

7. The equations  and  cannot be used for nonlinear materials.

8. The equation  can be used for nonhomogeneous cross sections.

9. The internal shear force jumps by the value of the applied transverse force as one crosses it from left to right.

10. The internal bending moment jumps by the value of the applied concentrated moment as one crosses it from

left to right.

σxx Mzy Izz⁄–=

σxx Mzy Izz⁄–=

σxx  Ad  0=
A

∫ Mz yσxx Ad
A

∫–=

Mz yσxx  Ad
A

∫–=

  Figure P6.59

x

5 kN/m
y

3 m

  Figure P6.60

x

y

3 kips/in

72 in
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6.61 (a) Write the equations for shear force and bending moments as a function of x for the entire beam shown in Figure P6.61; (b) show that
your results satisfy Equations (6.17) and (6.18).

6.62 (a) Write the equations for shear force and bending moments as a function of x for the entire beam shown in Figure P6.62; (b) show that
your results satisfy Equations (6.17) and (6.18).

6.63 (a) Write the equations for shear force and bending moments as a function of x for the entire beam shown in Figure P6.63; (b) show that
your results satisfy Equations (6.17) and (6.18).

6.64 (a) Write the equations for shear force and bending moments as a function of x for the entire beam shown in Figure P6.64; (b) show that
your results satisfy Equations (6.17) and (6.18).

6.65 (a) Write the equations for shear force and bending moments as a function of x for the entire beam shown in Figure P6.65; (b) show that
your results satisfy Equations (6.17) and (6.18).

6.66 (a) Write the equations for shear force and bending moments as a function of x for the entire beam shown in Figure P6.66; (b) show that
your results satisfy Equations (6.17) and (6.18).

6.67 Consider the beam shown in Figure P6.67. (a) Write the shear force and moment equations as a function of x in segments AB and BC.
(b) Show that your results satisfy Equations (6.17) and (6.18). (c) What are the shear force and bending moment values just before and just after
point B?

  Figure P6.61

x

5 kN/m
y

3 m

5 kN/m

  Figure P6.62
x

y

72 in

3 kips/in
3 kips/in.

  Figure P6.63

x

y

0.5 m 0.5 m

5 kN/m

  Figure P6.64

x

y

wL2 (in�kips)

L (in)L (in)

w(kips/in.)

x

y

L (in)L L (in)L

w (kips/in)

  Figure P6.65

x

y

L (in) L (in)

w (kips/in)

  Figure P6.66

12 kN/m 12 kN10 kN�m

16 kN�m

12 kN/m
B E

C
A Dx

y

3 m 2 m 4 m 3 m  Figure P6.67
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6.68 Consider the beam shown in Figure P6.67. (a) Write the shear force and moment equations as a function of x in segments CD and DE.
(b) Show that your results satisfy Equations (6.17) and (6.18). (c) What are the shear force and bending moment values just before and just after
point D?

6.69 Consider the beam shown in Figure P6.69. (a) Write the shear force and moment equations as a function of x in segments AB and BC.
(b) Show that your results satisfy Equations (6.17) and (6.18). (c) What are the shear force and bending moment values just before and just after
point B?

6.70 Consider the beam shown in Figure P6.69. (a) Write the shear force and moment equations as a function of x in segments CD and DE.
(b) Show that your results satisfy Equations (6.17) and (6.18). (c) What are the shear force and bending moment values just before and just after
point D?

6.71 During skiing, the weight of a person is often all on one ski. The ground reaction is modeled as a distributed force p(x) and a concen-
trated fore P is modeled as shown in Figure P6.71. (a) Find shear force and bending moment as a function of x across the ski. (b) The ski is
50 mm wide and the thickness of the ski varies as shown. Determine the maximum bending normal stress. Use of spread sheet recommended. 

Shear and moment diagrams
6.72 Draw the shear and moment diagrams for the beam and loading shown in Figure P6.72.

6.73 Draw the shear and moment diagrams for the beam and loading shown in Figure P6.73.

6.74 For the beam shown in Figure P6.59, draw the shear force bending moment diagram. Determine the maximum values of shear force
and bending moment.

6.75 For the beam shown in Figure P6.60, draw the shear force bending moment diagram. Determine the maximum values of shear force
and bending moment.

6.76 A man whose mass is 80 kg is sitting in the middle of a flat bottom boat, as shown in Figure 6.76. The weight of the boat per unit length
between A and B is 130 N/m. To a first approximation assume the resisting water pressure acts between A and B and is uniform. Draw the shear
force and bending moment diagram between A and B. 

6 kN6 kN/m

10 kN

10 kN�m
6 kN/m

B CA D Ex

3 m 2 m 4 m 3 m Figure P6.69

 Figure P6.71

x

Thickness

792 N

25 mm7 mm 7 mm

p

0.9 m P1.5 m

x

y P P

L L L  Figure P6.72

x

y
M M

L L L  Figure P6.73

4.5 m
 Figure P6.76

A B
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6.77 Draw the shear and moment diagrams for the beam and loading shown in Figure P6.77. Determine the maximum values of shear force
and bending moment.

6.78 Draw the shear and moment diagrams for the beam and loading shown in Figure P6.78. Determine the maximum values of shear force
and bending moment.

6.79 Determine the maximum values of shear force and bending moment for the beam shown in Figure P6.67.

6.80 Determine the maximum values of shear force and bending moment for the beam shown in Figure P6.69.

6.81 Determine the maximum values of shear force and bending moment for the beam shown in Figure P6.81. 

6.82 Determine the maximum values of shear force and bending moment for the beam shown in Figure P6.82.

6.83 Determine the maximum values of shear force and bending moment. for the beam shown in Figure P6.83.

6.84 Determine the maximum values of shear force and bending moment for the beam shown in Figure P6.84.

6.85 Determine the maximum value of the shear force and bending moment for the beam shown in Figure 6.85.

x

y

L L L

w

  Figure P6.77

x
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L L L

w w

  Figure P6.78

3 kN/m
16 kN�m

8 kN�m

2 kN/m4 kN

x

4 m4 m3 m  Figure P6.81

  Figure P6.82

5 ft�kips

2 ft�kips

2 kips4 kips

2 kips/ft

4 ft3 ft2 ft

  Figure P6.83

3 kN/m
4.5 kN�m

4 kN/m

3 kN

x

4 m4 m3 m

75 kN�m

45 kN�m

90 kN40 kN

150 kN100 kN

20 kN/m
40 kN/m

2 m2 m 1 m1 m1 m

  Figure P6.84

2 kips/ft

1 ft 1 ft 1 ft1 ft 1 ft1 ft

4 kips

4 kips

 Figure P6.85

A B C D E



6 299Mechanics of Materials: Symmetric Bending of BeamsM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

6.86 Determine the maximum values of shear force and bending moment for the beam shown in Figure P6.86.

Maximum bending normal stress
6.87 A diver weighing 200 lb stands at the edge of the diving board, as shown in Figure 6.87. The diving board cross section is 16 in. x 1 in.
Determine the maximum bending normal stress in the diving board. 

6.88 A diver weighing 200 lb stands at the edge of the diving board, as shown in Figure 6.87. The diving board cross section is 16 in. x 1 in.
and has a weight of 60 lb. Model the weight of the diving board as a uniform distributed load of 0.5 lb/in. along the length. Determine the max-
imum bending normal stress in the diving board. 

6.89 The diving board shown in Figure 6.87 has a cross section of 18 in. x 1 in. The allowable bending normal stress 10 ksi. What is the
maximum force to the nearest pound that the board can sustain when the diver jumps on it before a dive. Neglect the weight of the diving board.

6.90 A father and his son are playing on a seesaw, as shown in Figure 6.90. The wooden plank of the see saw is 12 ft x 10 in. x 1.5 in. and is
hinged in the middle. The weights of the father and son are 225 lb and 80 lb, respectively. The mass of the father mF and mass of the son ms

times the acceleration a are the inertial forces acting on them at the time the plank is horizontal. Neglecting the weight of the plank, determine
the maximum bending normal stress. 

6.91 A mother and her daughter are on either side of the seesaw with the teenager son standing in the middle as shown in Figure 6.91. The
wooden plank of the seesaw is 3.5 m x 250 mm x 40 mm and is hinged in the middle. The mass of the mother, son, and daughter are
mm= 70 kg, ms= 80 kg, and md= 40 kg, respectively. At the time the plank is horizontal, inertial forces of mass times the acceleration a acts on
the mother and daughter. Neglecting the weight of the plank, determine the maximum bending normal stress. 

Design problems
6.92 A beam, its loading, and its cross section are as shown Figure P6.92. Determine the intensity w of the distributed load if the maximum
bending normal stress is limited to 10 ksi (C) and 6 ksi (T). The second area moment of inertia is Izz = 47.73 in.4.

  Figure P6.86 3 ft

2 ft�kips
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  Figure P6.87

64 in.
A
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6.93 Two pieces of lumber are glued together to form the beam shown in Figure P6.93. Determine the intensity w of the distributed load if the
maximum tensile bending normal stress in the glue is limited to 800 psi (T) and the maximum bending normal stress in wood is limited to 1200 psi.

6.94 The beam shown in Figure P6.64 has a load w = 25 lb/in. and L = 72 in. Select the lightest W- or S-shaped beam from Section C.6 if the
allowable bending normal stress is 21 ksi in tension and compression.

6.95 The beam shown in Figure P6.65 has a load w = 0.4 kips/in. and L = 48 in. Select the lightest W- or S-shaped beam from Section C.6 if
the allowable bending normal stress is 16 ksi in tension and compression.

6.96 The beam shown in Figure P6.66 has a load w = 0.15 kips/in. and L = 48 in. Select the lightest W- or S-shaped beams from Section C.6
if the allowable bending normal stress is 21 ksi in tension and compression.

6.97 Consider the beam shown in Figure P6.67. Select the lightest W- or S-shaped beam from Section C.6 if the allowable bending normal
stress is 180 MPa in tension and compression.

6.98 Consider the beam shown in Figure P6.69. Select the lightest W- or S-shaped beam from Section C.6 if the allowable bending normal
stress is 225 MPa in tension and compression.

6.99 The wind pressure on a signpost is approximated as a uniform pressure, as shown Figure P6.99. A similar signpost is to be designed
using a hollow square steel beam for the post. The outer dimension of the square is to be 12 in. If the allowable bending normal stress is 24 ksi

and the pressure p = 33 lb/ft2, determine the inner dimension of the lightest hollow beam to the nearest in. 

Stress concentration
6.100 The allowable bending normal stress in the stepped circular beam shown in Figure P6.100 is 200 MPa and P = 200 N. Determine the smallest
fillet radius that can be used at section B. Use stress concentration graphs given in Section C.4. 

6.101 The allowable bending normal stress in the stepped circular beam shown in Figure P6.101 is 48 ksi. Determine the maximum intensity of
the distributed load w assuming the fillet radius is: (a) 0.3 in.; (b) 0.5 in. Use stress concentration graphs given in Section C.4.

  Figure P6.93 1 in
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Fatigue 
6.102 The fillet radius is 5 mm in the stepped aluminum circular beam shown in Figure P6.100. What should be the peak value of the cyclic
load P to ensure a service life of one-half million cycles? Use the S–N curve shown in Figure 3.36.

6.103 The beam in Figure P6.101 is made from a steel alloy that has the S–N curve shown in Figure 3.36. The peak intensity of the cyclic dis-
tributed load is w = 80 lbs/in. and the fillet radius is 0.36 in. What is the predicted service life of the beam? 

Stretch Yourself
6.104 A simply supported 3-m-long beam has a uniformly distributed load of 10 kN/m over the entire length of the beam. If the beam has the com-
posite cross section shown in Figure P6.104, determine the maximum bending normal stress in each of the three materials. Use Eal = 70 GPa,
Ew = 10 GPa, and Es = 200 GPa. [Hint: Use Equations (6.14) and (6.16)].

6.105 A steel (Esteel = 200 GPa) tube of outside diameter of 240 mm is attached to a brass (Ebrass = 100 GPa) tube to form the cross section
shown in Figure P6.105. Determine the maximum bending normal stress in steel and brass. [Hint: Use Equation (6.16)] 

6.6 SHEAR STRESS IN THIN SYMMETRIC BEAMS

In Section 6.2.6 we observed that the maximum bending shear stress has to be nearly an order of magnitude less than the max-
imum bending normal stress for our theory to be valid. But shear stress plays an important role in bending, particularly when
beams are constructed by joining a number of beams together to increase stiffness. In this section we develop a theory that can
be used for calculating the bending shear stress.

Figure 6.48a and b shows the bending of four wooden strips that are separate and glued together, respectively. In Figure 
6.48a each wooden strip slides relative to the other in the longitudinal direction. But in Figure 6.48b the relative sliding is pre-
vented by the shear resistance of the glue—that is, the shear stress in the glue. One may thus hypothesize that in any beam 
there will be shear stresses on imaginary surfaces parallel to the axis of the beam.

Notice that the beam in Figure 6.48a has significantly more curvature (it bends more) than that in Figure 6.48b, even 
though the forces exerted in both cases are approximately the same. This phenomenon of increasing stiffness (see Problem 

  Figure P6.104

80 mm

100 mm

10 mm
Aluminum

10 mm
Steel

Wood
z

x

y

2 kN/m

3 kN/m

3 m 4 m 4 m

8 kN�m

160 mm
  Figure P6.105

Brass

Steel

240 mm
200 mm

160 mm

Relative sliding No relative sliding

(a) (b)

  Figure 6.48 Effect of shear stress in bending. (a) Separate beams. (b) Glued beams.
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6.20) at the expense of introducing shear stress is exploited in the design of lightweight structures. In metal beams, the flanges 
are designed for carrying most of the normal stress in bending, and the webs are designed for carrying most of the shear stress 
(see Figure 6.28). In sandwich beams two stiff panels are separated by a soft core material. The stiff panels are designed to 
carry the normal stress and the soft core is designed to carry the shear stress.

6.6.1 Shear Stress Direction

Before developing formulas, it is worthwhile to understand the character of the shear stresses in bending and to determine
their direction by inspection. 

Consider the beam in Figure 6.49a. The beam is constructed by gluing five pieces of wood together. From the evidence of 
the photographs in Figure 6.48, we know that shear stress will exist at each glued surface to resist the relative sliding of the 
wood strips. If we take a small element Δx of strips 3 and 5, we obtain Figure 6.49c and d. On the glued surface between 
wooden strips 2 and 3 there will be a shear stress τzx as the outward normal of the surface is in the z direction and the internal 
shear force is in the x direction. On the glued surface between wooden strips 4 and 5 there will be a shear stress τyx, as the out-
ward normal of the surface is in the y direction and the internal shear force is in the x direction. 

Because of the bending load P, a normal stress distribution across the cross section will develop as shown in Figure 6.49b. 
From Equation (6.12), we know the bending normal stress σxx will vary along the length of the beam as the moment Mz varies. 
The bending normal stress distribution is such that there is no resultant axial force over the entire cross section. But if we only 
take a part of the cross section, as in Figure 6.49b and c, then there will be an axial force generated that varies along the length 
as shown in Figure 6.49c and d.

On the small element Δx, the equivalent shear force from the bending shear stresses must balance the change in the equiv-
alent normal axial force, as shown Figure 6.54e and f. Thus in bending, the shear stress must balance the variations in the nor-
mal stress σxx along the length of the beam.9

The preceding shows that shear stress develops on surfaces cut parallel to the axis of the beam. But from the symmetry of 
shear stresses τxy = τyx and τxz = τzx. These stresses, τxy and τxz, are on the cross sections perpendicular to the axis of the beam. 

9From the field of elasticity it is known that in the absence of body forces, the equilibrium at a point requires  (see
Problem 1.105). Thus if σxx varies with x, then τyx (or τxy) must vary with y, and τzx (or τxz) must vary with z. See Problem 6.136 for additional details.

(a)

P

H 3

1 G

F

I

5

4

2

D
C

z

x

A

E

y

B

Normal stress distribution

(b)

�xx � d�xx

(d)

�xx

5

�yx

(c)

�xx � d�xx�xx

3

�zx

(f)

N5

V5 � �yx(tz) �x

N5 � dN55

�x
t z

(e)

N3 � dN3

V3 � �zx(ty) �x

N3 3

�x

ty

1

2

3

4

5

d d

d

d

d d

  Figure 6.49 Shear stress on different surfaces in bending.
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We know from Equation (6.10) that on the cross section of the beam the resultant of the shear stress τxy distribution is the shear 
force Vy. Thus the direction (sign) of τxy should be the same as that of Vy. But the shear force Vz that would be statically equiva-
lent to τxz must be zero, as there is no external force in the z direction. This means that τxz must reverse sign (and direction) on 
the cross section if the net force from it is zero. We also know that the y axis is the axis of symmetry, and the loading is in the 
plane of symmetry. Therefore all stresses including τxz must be symmetric about the y axis. In other words, the shear stress τxz 
will reverse its direction as one crosses the y axis on the cross section. This sometimes implies that the shear stress τxz will be 
zero at the y axis.

Consider now a circular cross section that is glued together from nine wooden strips, as shown in Figure 6.50a. Once 
more shear stresses will develop along each glued surface, to resist relative sliding between two adjoining wooden strips, and 
the shear stress value must balance the change in axial force due to the variation in σxx. The outward normal of the surface will 
be in a different direction for each glued surface on which we consider the shear stress. If we define a tangential coordinate s 
that is in the direction of the tangent to the center line of the cross section, then the outward normal to the glued surface will be 
in the s direction and the shear stress will be τsx. Once more by the symmetry of shear stresses, τxs = τsx. At a point if the s 
direction and the y direction are the same, then τxs will equal ±τxy. If the s direction and the z direction are the same at a point, 
then τxs will equal ±τxz.

It should be noted that in Figure 6.49e and f and in Figure 6.50b the shear force that balances the change in the axial force 
N is shown on only one surface. The surface on the other end of the free-body diagram is always assumed to be a free surface. 
That is, the shear stress is zero on these other surfaces. The origin of the s coordinate is chosen to be one of the free surfaces 
and will be used in the next section in developing shear stress formulas. In a beam cross section the top and bottom and the 
side surfaces are always assumed to be surfaces on which shear stress is zero.

In Figure 6.49e and f and in Figure 6.50b we notice that the shear force expression contains the product of the shear stress 
and the thickness t of the cross section at that point. This product is the shear flow q.

(6.23)

The units of the shear flow are force per unit length. The terminology is from fluid flow in channels, but it is used extensively
to discuss shear stresses in thin cross sections, probably because of the image of an actual flow helps in discussing shear stress
directions, as elaborated further in the next section and Example 6.13. 

6.6.2 Shear Flow Direction by Inspection

The shear flow and shear stress along the center line of the cross section are drawn in a direction that satisfies the following
rules:

1. The resultant force in the y direction is in the same direction as Vy.
2. The resultant force in the z direction is zero.
3. It is symmetric about the y axis. This requires that shear flow change direction as one crosses the y axis on the center

line. Sometimes this will imply that shear stress is zero at the point(s) where the center line intersects the y axis.

q = τxst
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 Figure 6.50 Shear stress in circular cross section.
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EXAMPLE 6.13

Assuming a positive shear force Vy , sketch the direction of the shear flow along the center line on the thin cross sections shown in Figure
6.51.

PLAN
With the outward normal of the cross section in the positive x direction, the positive shear force Vy will be in the positive y direction
according to the sign convention in Section 6.2.6. We can determine the direction of the flow in each cross section to satisfy the rules
described at the end of Section 6.6.2. 

SOLUTION
(a) On the cross section shown in Figure 6.52a the shear flow (shear stress) from C to A will be in the positive y direction, since Vy on
the cross section is in the positive y direction. At point A in the flange the flow will break in two and go in opposite directions, as shown
in Figure 6.52a. The resultant force due to shear flow from A to D will cancel the force due to shear flow from A to E, satisfying the con-
dition of zero resultant force in the z direction and the condition of symmetric flow about the y axis.
(b) On the cross section shown in Figure 6.52b, the shear flow from C to E and from D to F will be in the positive y direction. This sat-
isfies the condition of symmetry about the y axis and is consistent with direction of Vy. In the flange the two flows will approach point A
from opposite directions. The resultant force due to shear flow from A to E will cancel the force due to shear flow from A to F, satisfying
the condition of zero resultant force in the z direction and the condition of symmetric flow about the y axis.  

(c) On the cross section shown in Figure 6.52c the shear flows from points C and D will approach point A in opposite directions. This
ensures the condition of symmetry, and the condition of zero force in the z direction is met. 
(d) The shear flow from C to D and the shear flow from E to F have to be in the positive y direction to satisfy the condition of symmetry
about the y axis and to have the same direction as Vy. At points A and B the shear flows must change direction to ensure symmetric shear
flows about the y axis. The force from the shear flows in BC and DA will cancel the force from the shear flows in BE and FA, ensuring
the condition of a zero force in the z direction.

COMMENTS
1. The shear flow (shear stress) is zero at the following points because these points are on the free surface: points C, D, and E in Figure

6.52a; points C and D in Figure 6.52b and c. 
2. At point A in Figure 6.52b, c, and d the shear flow will be zero, but it will not be zero in Figure 6.52a as we can appreciate by analogy

to fluid flow. In Figure 6.52a the shear flows at point A in branches AD and AE add up to the value of shear flow at point A in branch
CA. With no other branch at point A in Figure 6.52b, c, and d the values of the shear flow are equal and opposite, which is possible
only if the value of shear flow is zero. 

3. The term flow invokes an image that helps in visualizing the direction of shear stress.
4. By examining the direction of the stress components in the Cartesian system, we can determine whether a stress component is posi-

tive or negative τxy or τxz, as shown in Figure 6.53. Note that τxy is positive in all cases, a consequence of positive shear force Vy. But
τxz can be positive or negative, depending on the location of the point.

z

A

(a)

yy

z
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(b) (c)

y
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B

(d)

y

z
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  Figure 6.51 Cross sections in Example 6.13.
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 Figure 6.52 Shear flow in Example 6.13.
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6.6.3 Bending Shear Stress Formula

The previous section and Example 6.13 highlight that the bending shear stress is τxy in the web and τxz in the flange, whereas
for symmetric curvilinear cross sections it depends on the location of the point. To develop a single formula applicable to all
situations, we define a tangential coordinate s in the direction of the tangent to the center line of the cross section, starting
from a free surface. In this section we derive the formula for bending shear stress τxs.

Consider a differential element of a wooden beam with circular cross section, as shown in Figure 6.54a. Consider the 
shear stress acting on the surface between wooden pieces 3 and 4. We can consider two possible free-body diagrams, shown in 
Figure 6.54b and c. The axial force Ns (or Ns*) acting on the part of cross section As (or As*) varies because of the variation of 
the bending stress σxx along the length of the beam. If the shear stress does not change across the thickness, the shear force V 
(or V*) is equal to the product of the shear stress multiplied by the area t dx, as shown. The assumption of constant shear stress 
in the thickness direction is a good approximation if the thickness is small. 

Assumption 9: The beam is thin perpendicular to the center line of the cross section.

By equilibrium of forces in Figure 6.54c, we obtain  or

(6.24)

 Figure 6.53 Directions and signs of stress components in Example 6.13.
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  Figure 6.54 Differential element of beam for shear stress calculations.
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Substituting Equation (6.12) into Equation (6.24) and noting that the moment Mz and the area moment of inertia Izz do not 
vary over the cross section, we obtain 

(6.25)

where Qz is referred to as the first moment of the area As and is defined as

(6.26)

Assumption 10: The beam is not tapered. 

Assumption 10 implies that Izz and Qz are not a function of x, and these quantities can be taken outside the derivative sign. 
We obtain 

Substituting Equation (6.18), we obtain the formula for bending shear stress:

(6.27)

In Equation (6.27) the shear force Vy can be found either by equilibrium or by drawing the shear force diagram. Also, t is the
thickness at the point where the shear stress is being found, and Izz is known from the geometry of the cross section. The direc-
tion of s, identification of the area As, and the calculation of Qz are the critical new elements. We record the following observa-
tions before discussing in detail the calculation of Qz. 

• Area As is the area between the free surface and the point where the shear stress is being evaluated.
• s is the direction from the free surface in the area As used in the calculation of Qz. 

6.6.4 Calculating Qz 

Figure 6.55 shows the area As between the top free surface and the point at which the shear stress is being found (line s–s).
From Equation (6.26) we note that Qz is the first moment of the area As about the z axis. The integral in Equation (6.26) is the
numerator in the definition of the centroid of the area As. Analogous to the moment due to a force, the first moment of an area
can be found by placing the area As at its centroid and finding the moment about the neutral axis. That is, Qz is the product of
area As and the distance of the centroid of the area As from the neutral axis, as shown in Figure 6.55. Alternatively, Qz can be
found by using the bottom surface as the free surface, shown as Qz* in Figure 6.55. 

At the top surface, which is a free surface, the value of Qz is zero, as the area As is zero. When we reach the bottom sur-
face after starting from the top, the value of Qz is once more zero because As = A, and from Equation (6.9), . If Qz 

starts with a zero value at the top and ends with a zero value at the bottom, then it must reach a maximum value somewhere on 
the cross section. 

To see where Qz reaches a maximum value, consider the change in Qz as the line s–s moves downward in Figure 6.55. 
Toward the neutral axis, the moment of the area Qz increases as we add the moments from the additional areas. When the line 
s–s crosses the neutral axis, then the new additional area below the axis produces a negative moment because the centroid of 
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  Figure 6.55 Calculation of Qz.

y Ad
A∫ 0=



6 307Mechanics of Materials: Symmetric Bending of BeamsM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

this area is in the negative y direction. In other words, Qz increases up to the neutral axis and then starts decreasing. Thus Qz is 
maximum at the neutral axis. From Equation (6.27), it follows that bending shear stress is maximum at the neutral axis of a 
cross section. In summary

• Qz is zero at the top and bottom surface.
• Qz is maximum at the neutral axis.
• The maximum bending shear stress on a cross section is at the neutral axis.
• The maximum bending shear stress in the beam will be at the neutral axis on a cross section where Vy is maximum. 

We can write A = As + As* in Equation (6.9) and write the integral as  to obtain . This

implies that Qz and Qz* will have the same magnitude but opposite signs. Thus, if we used Qz or Qz* in Equation (6.27), we

would get the same magnitude of the shear stress, but which would give the correct sign (or direction)?10 The answer is that
both will give the correct sign, provided the s direction in Equation (6.27) is measured from the free surface used in the calcu-
lation of Qz.

We can find the magnitude and the direction of the bending shear stress in two ways:

1. Use Equation (6.27) to find the magnitude of the shear stress. Use the rules described in Section 6.6.2 to determine the
direction of the shear stress.

2. Alternatively, follow the sign convention described in Section 6.2.6 to determine the shear force Vy . The shear stress is
found from Equation (6.27), and the direction of the shear stress is determined using the subscripts, as elaborated in
Section 1.3.

6.6.5 Shear Flow Formula

The formula for shear flow can be obtained by substituting Equation (6.27) into Equation (6.23) to get 

(6.28)

Equation (6.28) can be used in two ways. It can be used for finding the magnitude of the shear flow at a point, and the direc-
tion of shear flow can then be found by inspection following the rules described in Section 6.6.2. Alternatively, the sign con-
vention for the shear force Vy is followed and the shear flow is determined from Equation (6.28). A positive value of shear
flow implies that the flow is in the positive s direction, where s is measured from the free surface used in the calculation of Qz. 

One application of Equation (6.28) is the determination of the spacing between mechanical fasteners holding strips of 
beams together. Nails or screws are examples of mechanical fasteners used in wooden beams. Bolts or rivets are examples of 
mechanical fasteners used in metal beams. Figure 6.56 shows two strips of beams held together by a row of mechanical fasten-
ers. Suppose the fasteners are spaced at intervals Δs, and each fastener can support a shear force VF. Then the row of fasteners 
can support an average shear force per unit length of VF/Δs, which can be approximated as the shear flow in the beam, or, 

.

10In many textbooks the bending shear stress formula gives only the correct magnitude. The correct sign (or direction) has to be found by inspection. In this
book inspection as well as subscripts in the formulas will be used in determining the direction of shear stress.

y A +dAs∫ y AdAs∗∫ 0= Qz Qz∗+ 0=

q
VyQz

Izz
------------–=

q VF Δs⁄≈

�s

P

VF

q � VF ��s

�s

q � 2VF ��s

�s

VF

  Figure 6.56 Spacing in mechanically fastened beams.
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Thus once we know the shear flow from Equation (6.28), we can find the spacing in a row of fasteners as . If 
there is more than one row of fasteners holding two pieces of wood together, then each row of fasteners can carry an average 
shear flow of VF/Δs. Thus the total shear flow carried by two rows is 2VF /Δs, which is then approximated by the shear flow in 
the beam, . Thus once we know the shear flow from Equation (6.28), we can use it to determine the spacing 
between the fasteners, once the shear force that the fasteners can support is known. Alternatively, if the spacing is known, then 
we can find the shear force carried by each fastener. Example 6.18 further elaborates on this discussion.

6.6.6 Bending Stresses and Strains

In symmetric bending about the z axis, the significant stress components in Cartesian coordinates are σxx and τxy in the web and
σxx and τxz in the flange. We can find σxx from Equation (6.12), but from Equation (6.27) we get τxs. How do we get τxy or τxz

from τxs? There are two alternatives. 

1. Follow the sign convention for the shear force to determine Vy. Using Equation (6.27), get τxs. Note that the positive s
direction is from the free surface to the point where the shear stress is found. Draw the stress cube using the argument
of subscripts as described in Section 1.3. Now look at the shear stress in the Cartesian coordinates and determine the
direction and sign of the stress component (τxy or τxz). 

2. Alternatively, use Equation (6.27) to find the magnitude of τxs, and determine the direction of the shear stress by
inspection, as described in Section 6.6.1. Draw the stress cube. Now look at the shear stress in the Cartesian coordi-
nates and determine the direction and sign of the stress component (τxy or τxz).

In beam bending problems there are four possible stress elements, as shown in Figure 6.57. At the top and bottom sur-
faces of the beam the bending shear stress τxy is zero, and the bending normal stress σxx is maximum at a cross section. The 
state of stress at the top and bottom is shown on in Figure 6.57a. No arrows are shown in the figures, as the normal stress 
could be tensile or compressive. At the neutral axis σxx is zero and τxy is maximum in a cross section, as shown by the stress 
element in Figure 6.57b. At any point on the web σxx and τxy are nonzero, whereas at any point in the flange σxx and τxz are non-
zero, as shown in Figure 6.57c and d.

From the generalized Hooke’s law given by Equations (3.12a) through (3.12f), we obtain the strains 

(6.29)

The normal strains in the y and z directions are due to the Poisson effect. 

Δs VF q⁄≈

q = 2VF Δs⁄

  Figure 6.57 Stress elements in symmetric bending of beams: (a) top or bottom; (b) neutral axis; (c) any point on web. (d) any point on
flange.
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(b)
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(c)

y

x
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(d)

�yx��

�xy�

εxx
σxx

E
-------= εyy

νσxx

E
-----------– νεxx–= = εzz

νσxx

E
-----------– νεxx–= = γxy

τxy

G
------ γxz

τxz

G
------==

Consolidate your  knowledge
1. With the book closed, derive Equation (6.27).
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EXAMPLE 6.14

A positive shear force V acts on the thin rectangular cross section shown in Figure 6.58. Determine the shear stress τxs due to bending
about the z axis as a function of s and sketch it. 

PLAN
We can find Qz by taking the first moment of the area between the top surface and the surface located at an arbitrary point s. By substitut-
ing Qz as a function of s in Equation (6.27), we can obtain τxs as a function of s.

SOLUTION
We can draw the area As between the top surface and some arbitrary location s in Figure 6.59a and determine the first moment about the
z axis to find Qz.

 (E1)

Substituting Equation (E1) and the area moment of inertia  into Equation (6.27), we obtain 

(E2)

ANS. 

Suppose we take the positive x direction normal to this page. Since we obtain a negative sign for the shear stress, the direction of the
shear stress has to be in the negative s direction, as shown in Figure 6.59b.

COMMENTS
1. Figure 6.59b shows that the shear stress is zero at the top (s = 0) and the bottom (s = b) and is maximum at the neutral axis, as

expected. The maximum bending shear stress at a cross section can be written τmax = 1.5V/A, where A is the cross-sectional area.
2. The shear force is in the positive y direction. Hence the shear stress on the cross section should be in the positive direction, as shown

in Figure 6.59b.
3. Note that the s direction is in the negative y direction. Hence , which is confirmed by the direction of shear stress in Fig-

ure 6.59b.

4. Substituting  into Equation (6.13) and noting that dA = t ds, we obtain by integration

which once more confirms our results. 

t

z

s

y

b

  Figure 6.58 Cross section in Example 6.14.

Qz st b
2
--- s

2
---–⎝ ⎠

⎛ ⎞ st b s–( )
2

---------------------= =

Izz tb3/12=

τxs
Vst b s–( ) 2⁄

tb3 12⁄( ) t
--------------------------------–=

τxs
6Vs b s–( )–

b3t
------------------------------=

z

s b
2

 � 
b
2

s
2

  Figure 6.59 (a) Calculation of Qz in Example 6.14. (b) Shear stress distribution in Example 6.14

s
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3V
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(a) (b)

τxy τxs–=
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EXAMPLE 6.15

A positive shear force Vy = 30 kN acts on the thin cross sections shown in Figure 6.60 (not drawn to scale). Determine the shear stress at
points B, C, D, and E. Report the answers as τxy or τxz.

PLAN
Vy, Izz and t in Equation (6.27) are known. Hence the shear stress will be determined if Qz is determined at the given points. We make an
imaginary cut perpendicular to the center line, and we draw the area As between the bottom and the imaginary cut and calculate Qz. 

SOLUTION
Figure 6.61 shows the areas As that can be used for finding Qz at points B, C, D, and E. The distance from the centroid of the areas As to
the z axis can be found and multiplied by the area As to obtain Qz at each point:

(E1)

(E2)

 (E3)

(E4)

The shear stress at the points can be found from Equation (6.27): 

(E5)

(E6)

(E7)

(E8)

In Figure 6.61, the s direction is in the positive y direction at points B, C, and D and negative z direction at point E. Thus, the stress
results are

ANS. 

y

z

Izz � 2.35 � 106 mm4 Izz � 6.8 � 106 mm4

A E

O

C

D

( )

100 mm

10
0 

m
m

77
.5

 m
m

70
.6

 m
m

10 mm

10 mm 10 mm

(b)

10 mm

y

z

A
F

O

DC

E

100 mm

10
0 

m
m

10 mm

B

C

D E

50 mm

50 mm

  Figure 6.60 Cross sections in Example 6.15.

Qz( )B 0.05 m( ) 0.01 m( ) 0.0706 m 0.025 m–( )–[ ] 22.8 10 6–( ) m3–= =

Qz( )C 0.0706 m( ) 0.01 m( ) 0.0706 2⁄  m–[ ] 24.92 10 6–( ) m3–= =

Qz( )D 0.10 m( ) 0.01 m( ) 0.0706 m 0.05 m–( )–[ ] 20.6 10 6–( ) m3–= =

y

(a) (b) (c) (d)

 Figure 6.61 Area As for calculations of Qz in Example 6.15. 

s50 mm

y

z

70.6 mmB
s

z

70.6 mm

C

s

y

z

70.6 mm100 mm

D

y

z

70.6 mm

50 mm

E

s

100 mm

Qz( )E 0.10 m( ) 0.01 m( ) 0.0706 m 0.05 m–( )–[ ] 0.05 m( ) 0.01 m( ) 0.105 m 0.0706 m–( )+= or Qz( )E 3.4 10 6–( ) m3–=

τxs( )B

Vy Qz( )B

IzztB
--------------------–= 30 103( )  N[ ] 22.8– 10 6–( )  m3[ ]

6.8 10 6–( )  m4[ ] 0.01 m( )
--------------------------------------------------------------------------– 10.5 106( )  N/m2= =

τxs( )C

Vy Qz( )C

IzztC
--------------------–= 30 103( )  N[ ] 24.92– 10 6–( )  m3[ ]

6.8 10 6–( )  m4[ ] 0.01 m( )
-----------------------------------------------------------------------------– 10.99 106( )  N/m2= =

τxs( )D

Vy Qz( )D

IzztD
--------------------–= 30 103( )  N[ ] 20.6– 10 6–( )  m3[ ]

6.8 10 6–( )  m4[ ] 0.01 m( )
--------------------------------------------------------------------------– 9.09 106( ) N/m2= =

τxs( )E

Vy Qz( )E

IzztE
--------------------–= 30 103( )  N[ ] 3.4– 10 6–( )  m3[ ]

6.8 10 6–( )  m4[ ] 0.01 m( )
-----------------------------------------------------------------------– 1.5 106( )  N/m2= =

τxy( )B 10.5 MPa= τxy( )C 11.0 MPa= τxy( )D 9.1 MPa= τxy( )B 1.5– MPa=
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COMMENTS
1. The signs of the bending shear stress components in this example are consistent with those in Figure 6.53b where they were deter-

mined by inspection. 
2. In Equation (E4) we added the first moment of the area of the horizontal piece in Figure 6.61d to the (Qz)D calculated in Equation

(E3). We could also have written the integral over the entire area As as a sum of integrals over its parts. 
3. The maximum bending shear stress will occur at point C—that is, at the neutral axis.
4. The bending shear stress at A will be zero, because the shear flow will go in opposite direction at the axis of symmetry.

EXAMPLE 6.16

A positive shear force Vy = 30 N acts on the thin cross sections shown in Figure 6.62 (not drawn to scale). Determine the shear flow
along the center lines and sketch it.

PLAN
Vy and Izz are known in Equation (6.28). Hence the shear flow along the center line will be determined if Qz is determined along the cen-
terline. Noting that the cross section is symmetric about the y axis, the shear flow needs to be found only on one side of the y axis.

SOLUTION
(a) Figure 6.63 shows the areas As that can be used for finding the shear flows in DA and CA of the cross section in Figure 6.62a. The
parameters s1 and s2 are defined from the free surface to the point where the shear flow is to be found. The distance from the centroid of
the areas As to the z axis can be found and Qz calculated as 

(E1)

(E2)

Substituting Vy, Izz, and Equations (E1) and into Equation (6.28), we find the shear flow in DA and CA of the cross section in Figure
6.62a:

(E3)

(E4)

ANS. 

y

z

Izz � 2.35 � 106 mm4

A E

O

C

D

(a)

100 mm

10
0 

m
m

77
.5

 m
m

10 mm

10 mm

  Figure 6.62 Cross sections in Example 6.16.

Q1 s1 0.01 m( ) 0.105 m 0.0775 m–( ) 0.275s1 10 3–( )  m3==

y

z

0.105 � 0.0775

D

Free surface

O

0.01 m

s1

0.01 m

y

z

0.0775 � s2�2

Cs2�2
s2

Free surface

O

(a) (b)  Figure 6.63 Calculation of Qz in part (a) of Example 6.16.

Q2 s2 0.01 m( )( ) 0.0775 m s2 2⁄–( )–[ ] 0.775s2 5s2
2–( ) 10 3–( )–  m3= =

q1
30 N( ) 0.275s1 10 3–( )  m3[ ]

2.35 10 6–( )  m4
-----------------------------------------------------------------  – 3.51– s1 kN/m= =

q2
30 N( ) 0.775s2 5s2

2–( ) 10 3–( )–  m3[ ]

2.35 10 6–( )  m4
----------------------------------------------------------------------------------------  – 9.89s2 63.83s2

2–( ) kN/m= =

q1  3.51– s1 kN/m= q2 9.89s2 63.83s2
2–( ) kN/m=
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The shear flow q1 is negative, implying that the direction of the flow is opposite to the direction of s1. The values of q1 can be calculated
and plotted as shown in Figure 6.64a. By symmetry the flow in AE can also be plotted. The values of q2 are positive between C and A,
implying the flow is in the direction of s2. The values of q2 can be calculated from  and plotted as shown in Figure 6.64a.

COMMENTS
1. In Example 6.13 the direction of flow was determined by inspection, whereas in this example it was determined using formulas. A

comparison of Figures 6.64 and 6.52a shows the same results. Thus, inspection can be used to check our results. Alternatively, we
could calculate the magnitude of the shear flow (or stress) from formulas and then determine the direction of the shear flow by
inspection.

2. In Figure 6.64 the flow value at point A in CA is 351 N/m, which is the sum of the flows in AD and AE. Thus the behavior of shear
flow is similar to that of fluid flow in a channel.

3. Figure 6.64 shows that the shear flow in the flanges varies linearly. The shear flow in the web varies quadratically, and its maximum
value is at the neutral axis.

EXAMPLE 6.17

A beam is loaded as shown in Figure 6.65. The cross section of the beam is shown on the right and has an area moment of inertia
Izz = 40.83 in.4 (a) Determine the maximum bending normal and shear stresses. (b) Determine the bending normal and shear stresses at
point D on a section just to the right of support A. Point D is just below the flange. (c) Show the results of parts (a) and (b) on stress cubes.

PLAN
We can draw the shear force and bending moment diagrams and determine the maximum bending moment Mmax, the maximum shear
force (Vy)max, and the value of the bending moment MA and the shear force (Vy)A just to the right of support A. Using Equations (6.12)
and (6.27), we can determine the required stresses and show the results on a stress cube.

SOLUTION
By considering the free-body diagram of the entire beam, we can find the reaction forces at A and B and draw the shear force and bend-
ing moment diagrams in Figure 6.66. The areas under the shear force curve are 

(E1)
From Figure 6.66 we can find the maximum shear force and moment, as well as the values of shear force and moment just to the right of
support A:

(E2)

(a)

Intensity of
shear flow 

A

C

ED

O

Intensity of
shear flow

351 N/m

175.5 N/m

383.4
N

/m

  Figure 6.64 Shear flows on cross sections in Example 6.16.

500 lb 2200 lb

800 ft�lb
800 ft�lb

2100 ft�lbA B

z

x

y

(a) (b)

3 ft 3 ft 3 ft

y

z

E

DD

C

F

4 in

1 in

1 in

2 in

1 in

1.5 in

2.5 in

  Figure 6.65 Beam and loading in Example 6.17.

A1 500 3× 1500= = A2 1000 3× 3000= = A3 1200 3× 3600= =

Vy( )max 1200  lbs= Mmax 2300  ft· lbs= Vy( )A 1000–  lbs= MA 700–   ft· lbs=
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(a) Point F is the point farthest away from the neutral axis. Hence the maximum bending normal stress will occur at point F. Substituting
yF = –3.5 and Mmax into Equation (6.12), we obtain 

(E3)

ANS.
The maximum bending shear stress will occur at the neutral axis in the section where Vy is maximum. We can draw the area As between the
top surface and the neutral axis (NA) as shown in Figure 6.67 and determine the first moment about the z axis to find Qz, in Equation (E4)

(E4)
Substituting Vmax and Equation (E4) into Equation (6.27), we obtain 

(E5)

ANS.
(b) Substituting yD = 1.5 in.and MA into Equation (6.12), we obtain the value of the normal stress at point D on a section just right of A as

(E6)

ANS.
We can draw the area As between the free surface at the top and point D as shown in Figure 6.67b and find Qz at D.

(E7)
Substituting VD and Equation (E7) into Equation (6.27), we obtain the value of the shear stress at point D on a section just right of A as

(E8)

ANS.

V � �Vy
(lb)

Mz
(ft�lb) 800

700

2300
1500

2100

A2

x

x

A3
A1

500

1000

1200

500 lb 2200 lb

RA � 1500 RB � 1200

800 ft�lb

800 ft�lb

2100 ft�lbA B

3 ft 3 ft 3 ft

  Figure 6.66 Shear force and bending moment diagrams in Example 6.17.

σmax
2300( ) 12( ) in.· lbs[ ] 3.5 in.–( )

40.83 in.4
---------------------------------------------------------------------------– 2365.7 lbs/in.2= =

σmax 2366 psi T( )=

y

s

z

E

C

1 in

1 in

4 in

1.5 in
2 in

NA
  Figure 6.67 Calculation of Qz in Example 6.17 (a) at neutral axis (b) at D.

y

s

z

D

C

1 in

4 in

1.5 in
2 in

NA

(a) (b)

QNA 4 in.( ) 1 in.( ) 2 in.( ) 1.5 in.( ) 1 in.( ) 0.75 in.( )+ 9.125 in.3= =

τxs( )max
1200 lbs( ) 9.125 in.3( )

40.83 in.4( ) 1 in.( )
-------------------------------------------------------– 268.2 lbs/in.2–= =

τxs( )max 268–  psi=

σxx( )D
700–( ) 12( )  in.· lbs[ ] 1.5 in.( )

40.83 in.4( )
------------------------------------------------------------------------– 308.6 lbs/in.2= =

σxx( )D 309 psi (T)=

QD 4 in.( ) 1 in.( ) 2 in.( ) 8 in.3= =

τxs( )D
1000 lbs–( ) 8 in.3( )

40.83 in.4( ) 1 in.( )
-----------------------------------------------– 196 lbs/in.2= =

τxs( )D 196 psi=

2366 psi

x

y

(a)

268 psi

x

y

(b)

196 psi

309 psi

x

y

(c)

  Figure 6.68 Stress elements in Example 6.17. (a) Maximum bending normal stress. (b) Maximum bending shear stress. (c) Bending
and normal shear stresses at point D just to the right of A.
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(c) In Figures 6.67a and b the coordinate s is in the opposite direction to y at points D and the neutral axis. Hence at both these points
, and from Equations (E5) and (E8) we obtain 

ANS.
We can show these results along with the normal stress values on the stress elements in Figure 6.68.

COMMENTS
1. The maximum value of V is −1200 lbs but V = -Vy. Hence the maximum value of Vy is a positive value, as given in Equation (E2).
2. Vy is positive in Equation (E2), thus we expect (τxy)max to be positive. Just after support A the shear force Vy is negative, thus we expect

that (τxy)D will be negative, as shown in Figure 6.68. 
3. Note that the maximum bending shear stress in the beam given by Equation (E5) is nearly an order of magnitude smaller than the

maximum bending normal stress given by Equation (E3). This is consistent with the requirement for validity of our beam theory, as
was remarked in Section 6.2.6. If in some problem the maximum bending shear stress were nearly the same as the maximum bending
normal stress, then that would indicate that the assumptions of beam theory are not valid and the theory needs to be modified to
account for shear stress.

EXAMPLE 6.18

A wooden cantilever box beam is to be constructed by nailing four pieces of lumber in one of the two ways shown in Figure 6.69. The
allowable bending normal and shear stresses in the wood are 750 psi and 150 psi, respectively. The maximum force that the nails can
support is 100 lb. Determine the maximum value of load P to the nearest pound, the spacing of the nails to the nearest half inch, and the
preferred nailing method.

  Figure 6.69 Wooden beams in Example 6.18.

PLAN
The maximum bending normal and shear stresses for both beams can be found in terms of P. These maximum values can be compared to
the allowable stress values, and the limiting value on force P can be found. The shear flow at the junction of the wood pieces can be
found using Equation (6.28). The spacing of the nails for each joining method can be found by dividing the allowable force in the nail by
the shear flow. The method that gives the greater spacing between the nails is better as fewer nails will be needed.

SOLUTION
We can draw the shear force and bending moment diagrams for the beams as shown in Figure 6.70a and calculate the maximum shear
force and moment

(E1)

The area moment of inertia about the z axis can be found as 

(E2)

Substituting Equations (E1) and (E2) and ymax = ±3 in, we can find the magnitude of the maximum bending normal stress from Equation
(6.12) in terms of P. Using the allowable normal stress as 750 psi, we can obtain one limiting value on P, 

(E3)

τxy τxs–=

τxy( )max 268 psi= τxy( )D 196 psi–=

Joining method 1
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y P
s
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4 in
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y P
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1 in1 in
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z
s
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Vy( )max P– lb= Mmax 8– P  ft lb⋅ 96– P  in lb⋅= =

V � �VyVV
(lb)

MzMM
(ft�lb)

20P

x

x

P

 Figure 6.70 (a) Shear and moment diagrams. (b) Qz at neutral axis. (c) Qz at nails in joining method 1. (d) Qz at nails in joining method
2
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(b)(a) (b) (c) (d)

Izz
1
12
------ 6 in.( ) 6 in.( )3 1

12
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σmax
Mmaxymax

Izz
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96P( ) 3 in.( )
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------------------------------- 750 lbs/in.2≤= = or P 225.7 lbs≤



6 315Mechanics of Materials: Symmetric Bending of BeamsM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

Figure 6.70b shows the area As for the calculation of Qz at the neutral axis:

(E4)
We also note that at the neutral axis, the thickness perpendicular to the center line is t = 1 in. + 1 in. = 2 in. Substituting Equations (E1),
(E2), and (E4) and t = 2 in. into Equation (6.27), we can obtain the magnitude of the bending shear stress in terms of P. Using the allow-
able shear stress as 150 psi, we can obtain another limiting value on P.

(E5)

If the maximum value of P is determined from Equation (E3), then Equation (E5) will be satisfied. Rounding downward we determine the
maximum value of force P to the nearest pound. 

ANS. Pmax = 225 lbs
To find the shear flow on the surface joined by the nails, we make imaginary cuts through the nails and draw the area As, as shown in Fig-
ure 6.70c and d. We can then find Qz for each joining method: 

(E6)
From Equations (E1) and (E3) we obtain the shear force as Vy = –225 lb. Substituting this value along with Equations (E2) and (E6)
into Equation (6.28), we obtain the magnitude of the shear flow for each joining method, 

(E7)

(E8)

This shear flow is to be carried by two rows of nails for each of the joining methods. Thus each row resists half of the flow. Using this
fact, we can find the spacing between the nails,

(E9)

(E10)

As Δs2 > Δs1, fewer nails will be used in joining method 2. Rounding downward to the nearest half inch, we obtain the nail spacing. 
ANS. Use joining method 2 with a nail spacing of 7.5 in.

COMMENTS
1. In this particular example only, the magnitudes of the stresses were important; the sign did not play any role. This will not always be

the case, particularly in later chapters when we consider combined loading and stresses on different planes.
2. From visualizing the imaginary cut surface of the nails, we observe that the shear stress component in the nails is τyx in joining

method 1 and τzx in joining method 2.
3. In Section 6.6.1 we observed that the shear stresses in bending balance the changes in axial force due to σxx. The shear stresses in the

nails balance σxx, which acts on a greater area in joining method 1 (6 in. wide) than in joining method 2 (4 in. wide). This is reflected
in the higher value of Qz, which led to a higher value of shear flow for joining method 1 than for joining method 2, as shown by Equa-
tions (E7) and (E8).

4. The observations in comment 3 are valid as long as σxx is the same for both joining methods at any location. If Izz and ymax were different,
then it is possible to arrive at a different answer. See Problem 6.126

PROBLEM SET 6.4
Bending normal and shear stresses

6.106 For a positive shear force Vy, (a) sketch the direction of the shear flow along the center line on the thin cross sections shown in Figure
P6.106. (b) At points A, B, C, and D, determine whether the stress component is τxy or τxz and whether it is positive or negative.

QNA 6 in.( ) 1 in.( ) 2.5 in.( ) 2 2 in.( ) 1 in.( ) 1 in.( ) 19 in.3=+=

τmax
P 19 in.3( )

86.67 in.4( ) 2 in.( )
--------------------------------------------- 150 lbs/in.2    or     P 1368 lbs≤≤=

Q1 6 in.( ) 1 in.( ) 2.5 in.( ) 15 in.3== Q2 4 in.( ) 1 in.( ) 2.5 in.( ) 10 in.3==

q1
VyQ1

Izz
------------- 225 lbs( ) 15 in.3( )

86.67 in.4
--------------------------------------------- 39.94  lbs/in.= = =

q2
VyQ2

Izz
------------- 225 lbs( ) 10 in.3( )

86.67 in.4
-------------------------------------------- 26.96  lbs/in.= = =

100 lbs
Δs1

-----------------
q1

2
----- or Δs1

2 100 lbs( )
39.94 lbs/in.
------------------------------- 5.1 in.= ==

100
Δs2
---------

q2

2
----- or Δs2

2 100 lbs( )
26.96 lbs/in.
------------------------------ 7.7 in.= ==

  Figure P6.106
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6.107 For a positive shear force Vy, (a) sketch the direction of the shear flow along the center line on the thin cross sections shown in Figure
P6.107. (b) At points A, B, C, and D, determine whether the stress component is τxy or τxz and whether it is positive or negative

6.108 For a positive shear force Vy , (a) sketch the direction of the shear flow along the center line on the thin cross sections shown in Figure
P6.108. (b) At points A, B, C, and D, determine whether the stress component is τxy or τxz and whether it is positive or negative.

6.109 For a positive shear force Vy , (a) sketch the direction of the shear flow along the center line on the thin cross sections shown in Figure
P6.109. (b) At points A, B, C, and D, determine whether the stress component is τxy or τxz and whether it is positive or negative.

6.110 For a positive shear force Vy , (a) sketch the direction of the shear flow along the center line on the thin cross sections shown in Figure
P6.109. (b) At points A, B, C, and D, determine whether the stress component is τxy or τxz and whether it is positive or negative.

6.111 For a positive shear force Vy , (a) sketch the direction of the shear flow along the center line on the thin cross sections shown in Figure
P6.111. (b) At points A, B, C, and D, determine whether the stress component is τxy or τxz and whether it is positive or negative.

6.112 For a positive shear force Vy , (a) sketch the direction of the shear flow along the center line on the thin cross sections shown in Figure
P6.112. (b) At points A, B, C, and D, determine whether the stress component is τxy or τxz and whether it is positive or negative.

  Figure P6.107
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6.113 A cross section (not drawn to scale) of a beam that bends about the z axis is shown in Figure 6.113. The shear force acting at the cross
section is 5 kips. Determine the bending shear stress at points A, B, C, and D. Report your answers as positive or negative τxy or τxz. Point B is
just below the flange. 

6.114 A cross section (not drawn to scale) of a beam that bends about the z axis is shown in Figure 6.71. The shear force acting at the cross
section is -10 kN. Determine the bending shear stress at points A, B, C, and D Report your answers as positive or negative τxy or τxz. Point B is
just below the flange.

6.115 A cross section of a beam that bends about the z axis is shown in Figure 6.115. The internal bending moment and shear force acting at
the cross section are Mz = 50 in.-kips and Vy = 10 kips, respectively. Determine the bending normal and shear stress at points A, B, and C and
show it on stress cubes.Point B is just below the flange.

6.116 Determine the magnitude of the maximum bending normal stress and bending shear stress in the beam shown in Figure P6.116.

6.117 For the beam, loading, and cross section shown in Figure P6.117, determine (a) the magnitude of the maximum bending normal stress,
and shear stress; (b) the bending normal stress and the bending shear stress at point A. Point A is just below the flange on the cross section just
right of the 4 kN force. Show your result on a stress cube. The area moment of inertia for the beam was calculated to be Izz = 3.6 × 106 mm4.

  Figure P6.113
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6.118 For the beam, loading, and cross section shown in Figure P6.118, determine (a) the magnitude of the maximum bending normal stress
and shear stress; (b) the bending normal stress and the bending shear stress at point A. Point A is on the cross section 2 m from the right end.
Show your result on a stress cube. The area moment of inertia for the beam was calculated to be Izz = 453 (106) mm4.

6.119 Determine the maximum bending normal and shear stress in the beam shown in Figure 6.119a. The beam cross section is shown in
Figure 6.119b. 

6.120 Two pieces of lumber are nailed together as shown in Figure P6.120. The nails are uniformly spaced 10 in apart along the length.
Determine the average shear force in each nail in segments AB and BC. 

6.121 A cantilever beam is constructed by nailing three pieces of lumber, as shown in Figure P6.121. The nails are uniformly spaced at inter-
vals of 75 mm. Determine the average shear force in each nail.

6.122 A cantilever beam is constructed by nailing three pieces of lumber, as shown in Figure P6.122. The nails are uniformly spaced at inter-
vals of 75 mm. (a) Determine the shear force in each nail. (b) Which is the better nailing method, the one shown in Problem 6.99 or the one in
this problem?

  Figure P6.117
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Design problems
6.123 The planks in a park bench are made from recycled plastic and are bolted to concrete supports, as shown in Figure P6.123. For the
purpose of design the front plank is modeled as a simply supported beam that carries all the weight of two individuals. Assume that each person
has a mass 100 kg and the weight acts at one-third the length of the plank, as shown. The allowable bending normal stress for the recycled plas-
tic is 10 MPa and allowable bending shear stress is 2 MPa. The width d of the planks that can be manufactured is in increments of 2 cm, from
12 to 20 cm. To design the lightest bench, determine the corresponding values of the thickness t to the closest centimeter for the various values
of d.

6.124 Two pieces of wood are glued together to form a beam, as shown in Figure P6.124. The allowable bending normal and shear
stresses in wood are 3 ksi and 1 ksi, respectively. The allowable bending normal and shear stresses in the glue are 600 psi (T) and
250 psi, respectively. Determine the maximum moment Mext that can be applied to the beam.

6.125 A wooden cantilever beam is to be constructed by nailing two pieces of lumber together, as shown in Figure P6.125. The allowable
bending normal and shear stresses in the wood are 7 MPa and 1.5 MPa, respectively. The maximum force that the nail can support is 300 N.
Determine the maximum value of load P to the nearest Newton and the spacing of the nails to the nearest centimeter.

6.126 A wooden cantilever box beam is to be constructed by nailing four 1-in.× 6-in. pieces of lumber in one of the two ways shown in Figure
P6.126. The allowable bending normal and shear stresses in the wood are 750 psi and 150 psi, respectively. The maximum force that a nail can
support is 100 lb. Determine the maximum value of load P to the nearest pound, the spacing of the nails to the nearest half inch, and the preferred
nailing method

Historical problems
6.127 Leonardo da Vinci conducted experiments on simply supported beams and drew the following conclusion: “If a beam 2 braccia long
(L) supports 100 libbre (W), a beam 1 braccia long (L /2) will support 200 libbre (2W). As many times as the shorter length is contained in the

  Figure P6.123
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longer (L /α), so many times more weight (αW) will it support than the longer one.” Prove this statement to be true by considering the two sim-
ply supported beams in Figure P6.127 and showing that W2 = αW for the same allowable bending normal stress.

6.128 Galileo believed that the cantilever beam shown in Figure P6.128a would break at point B, which he considered to be a fulcrum point
of a lever, with AB and BC as the two arms. He believed that the material resistance (stress) was uniform across the cross section. Show that the
stress value σ that Galileo obtained from Figure P6.128b is three times smaller than the bending normal stress predicted by Equation (6.12).

6.129 Galileo concluded that the bending moment due to the beam’s weight increases as the square of the length at the built-in end of a canti-
lever beam. Show that Galileo’s statement is correct by deriving the bending moment at the built-in end in the cantilever beam in terms of specific
weight γ, cross-sectional area A, and beam length L.

6.130 In the simply supported beam shown in Figure P6.130. Galileo determined that the bending moment is maximum at the applied load
and its value is proportional to the product ab. He then concluded that to break the beam with the smallest load P, the load should be placed in
the middle. Prove Galileo’s conclusions by drawing the shear force and bending moment diagrams and finding the value of the maximum bend-
ing moment in terms of P, a, and b. Then show that this value is largest when a = b.

6.131 Mariotte, in an attempt to correct Galileo’s strength prediction, hypothesized that the stress varied in proportion to the distance from the
fulcrum, point B in Figure P6.128. That is, it varied linearly from point B. Show that the maximum bending stress value obtained by Mariotte is
twice that predicted by Equation (6.12).

Stretch Yourself
6.132 A beam is acted upon by a distributed load p(x). Let MA and VA represent the internal bending moment and the shear force at A. Show
that the internal moment at B is given by 

(6.30)

6.133 The displacement in the x direction in a beam cross section is given by u = u0(x) − y(dv/dx)(x). Assuming small strains and lin-
ear, elastic, isotropic, homogeneous material with no inelastic strains, show that

where yc is the y coordinate of the centroid of the cross section measured from some arbitrary origin, A is the cross-sectional area, Izz is the area
moment of inertia about the z axis, and N and Mz are the internal axial force and the internal bending moment. Note that if y is measured from
the centroid of the cross section, that is, if yc = 0, then the axial and bending problems decouple. In such a case show that σxx = N/A − Mzy/Izz.

6.134 Show that the bending normal stresses in a homogeneous, linearly elastic, isotropic symmetric beam subject to a temperature change
ΔT(x, y) is given by 

W

L

(a)
  Figure P6.127
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(6.31)

where  α is the coefficient of thermal expansion, and E is the modulus of elasticity.

6.135 In unsymmetrical bending of beams, under the assumption of plane sections remaining plane and perpendicular to the beam axis, the dis-
placement u in the x direction can be shown to be u = − y dv/dx − z dw/dx, where y and z are measured from the centroid of the cross section, and v and
w are the deflections of the beam in the y and z directions, respectively. Assume small strain, a linear, elastic, isotropic, homogeneous material, and no
inelastic strain. Using Equations (1.8b) and (1.8c), show that

(6.32)

Note that if either y or z is a plane of symmetry, then Iyz = 0. From Equation (6.32), this implies that the moment about the z axis causes defor-
mation in the y direction only and the moment about the y axis causes deformation in the z direction only. In other words, the bending problems
about the y and z axes are decoupled.

6.136 The equation ∂σxx/∂x + ∂τyx/∂y = 0 was derived in Problem 1.105. Into this equation, substitute Equations (6.12) and (6.18) and inte-
grate with y for beam cross section in Figure P6.136 and obtain the equation below.

Computer problems
6.137 A cantilever, hollow circular aluminum beam of 5-ft length is to support a load of 1200 lb. The inner radius of the beam is 1 in. If the

maximum bending normal stress is to be limited to 10 ksi, determine the minimum outer radius of the beam to nearest  in.

6.138 Table P6.138 shows the values of the distributed loads at several points along the axis of the rectangular beam shown in Figure
P6.138. Determine the maximum bending normal and shear stresses in the beam.

6.139 Let the distributed load p(x) in Problem 6.138 be represented by p(x) = a + bx + cx 2. Using the data in Table P6.138, determine the
constants a, b, and c by the least-squares method. Then find the maximum bending moment and the maximum shear force by analytical
integration and determine the maximum bending normal and shear stresses.

6.7* CONCEPT CONNECTOR

Historically, an understanding of the strength of materials began with the study of beams. It did not, however, follow a simple
course. Instead, much early work addressed mistakes, regarding the location of the neutral axis and the stress distribution
across the cross section. The predicted values for the fracture loads on a beam did not correlate well with experiment. To
make the pioneers’ struggle in the dark more difficult, near fracture the stress–strain relationship is nonlinear, which alters the
stress distribution and the location of the neutral axis. 

σxx
Mzy
Izz

----------–
MTy
Izz

---------- EαΔT x y,( )–+=
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⎝ ⎠
⎜ ⎟
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x
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  Figure P6.138

Table P6.138 Data for Problem 6.138

x 
(ft)

p(x) 
(lb/ft)

0 275
1 348
2 398
3 426
4 432
5 416

6 377
7 316
8 233
9 128
10 0

Table P6.138 Data for Problem 6.138

x 
(ft)

p(x) 
(lb/ft)
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6.7.1 History: Stresses in Beam Bending

The earliest known work on beams was by Leonardo da Vinci (1452–1519). In addition to his statements on simply sup-
ported beams, which are described in Problem 6.127, he correctly concluded that in a cantilevered, untapered beam the cross
section farthest from the built-in end deflects the most. But it was Galileo’s work that had the greatest early influence.

Galileo Galilei (1564–1642) (Figure 6.72) was born in Pisa. In 1581 he enrolled at the University of Pisa to study medi-
cine, but the work of Euclid, Archimedes, and Leonardo attracted him to mathematics and mechanics. In 1589 he became pro-
fessor of mathematics at the university, where he conducted his famous experiments on falling bodies, and the field of 
dynamics was born. He concluded that a heavier object takes the same time as a lighter object to fall through the same height, 
in complete disagreement with the popular Aristotelian mechanics. He paid the price for his views, for the proponents of Aris-
totelian mechanics made his stay at the university untenable, and he left in early 1592. 

Fortunately, by the end of 1592 he was appointed professor of mathematics at the University of Padua. During this period 
he discovered his interest in astronomy. Based on sketchy reports, he built himself a telescope. On seeing moons in orbit 
around Jupiter in 1610, he found evidence for the Copernican theory, which held that the Earth is not the center of the uni-
verse. In 1616 Copernicus was condemned by the Church, and the Inquisition warned Galileo to leave theology to the Church. 
In 1632, however, he published his views, under the mistaken belief that the new pope, Maffeo Barberini, who was Galileo’s 
admirer, would be more tolerant. Galileo was now condemned by the Inquisition and put under house arrest for the last eight 
years of his life. During this period he wrote Two New Sciences, in which he describes his work in mechanics, including the 
mechanics of materials. We have seen his contribution toward a concept of stress in Section 1.6. Here we discuss briefly his 
contributions on the bending of beams. 

Figure P6.128 shows Galileo’s illustration of the bending test. We described two of his insights in Problems 6.129 and 
6.130. Three other conclusions of his, too, have influenced the design of beams ever since. First, a beam whose width is greater 
than its thickness offers greater resistance standing on its edge than lying flat, because the area moment of inertia is then 
greater. Second, the resisting moment—and thus the strength of the beam—increases as the cube of the radius for circular 
beams. Thus, the section modulus increases as the cube of the radius. Finally, the cross-sectional dimensions must increase at 
a greater rate than the length for constant strength cantilever beam bending due to its own weight. However, as we saw in 
Problem 6.128, Galileo incorrectly predicted the load-carrying capacity of beams, because he misjudged the stress distribution 
and the location of the neutral axis. 

Credit for an important correction to the stress distribution goes to Edme Mariotte (1620–1684), who also discovered the 
eye’s blind spot. Mariotte became interested in the strength of beams while trying to design pipes for supplying water to the 
palace of Versailles. His experiments with wooden and glass beams convinced him that Galileo’s load predictions were 
greatly exaggerated. His own theory incorporated linear elasticity, and he concluded that the stress distribution is linear, with 
a zero stress value at the bottom of the beam. Mariotte’s predicted values did not correlate well with experiment either, how-
ever. To explain why, he argued that beams loaded over a long time would have failure loads closer to his predicted values. 
While true, this is not the correct explanation for the discrepancy. 

As we saw in Problem 6.131, the cause lay instead in an incorrect assumption about the location of the neutral axis. This 
incorrect location hindered many pioneers, including Claude-Louis Navier (1785-1836), who also helped develop the formulas 

 Figure 6.72 Galileo Galilei.
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for fluid flow, and the mathematician Jacob Bernoulli (1654-1705). (We saw some of Navier’s contribution in Section 1.6 and 
will discuss Bernoulli’s in Chapter 7 on beam deflection.) As a result, engineers used Galileo’s theory in designing beams of 
brittle material such as stone, but Mariotte’s theory for wooden beams.

Antoine Parent (1666–1716) was the first to show that Mariotte’s stress formula does not apply to beams with circular 
cross section. Born in Paris, Parent studied law on the insistence of his parents, but he never practiced it, because he wanted to 
do mathematics. He also proved that, for a linear stress distribution across a rectangular cross section, the zero stress point is 
at the center, provided the material behavior is elastic. Unfortunately Parent published his work in a journal that he himself 
edited and published, not in the journal by the French Academy, and it was not widely read. More than half a century later, 
Charles Augustin Coulomb, whose contributions we saw in Section 5.5, independently deduced the correct location of the 
neutral axis. Coulomb showed that the stress distribution is such that the net axial force is zero (Equation (6.2)), independent 
of the material. 

Jean Claude Saint-Venant (see Chapter 5) rigorously examined kinematic Assumptions 1 through 3. He demonstrated that 
these are met exactly only for zero shear force: the beam must be subject to couples only, with no transverse force. However, 
the shear stresses in beams had still not received much attention.

As mentioned in Section 1.6, the concept of shear stress was developed in 1781, by Coulomb, who believed that shear 
was only important in short beams. Louis Vicat’s experiment in 1833 with short beams gave ample evidence of the importance 
of shear. Vicat (1786-1861), a French engineer, had earlier invented artificial cement. D. J. Jourawaski (1821-1891), a Russian 
railroad engineer, was working in 1844 on building a railroad between St. Petersburg and Moscow. A 180-ft-long bridge had 
to be built over the river Werebia, and Jourawaski had to use thick wooden beams. These thick beams were failing along the 
length of the fibers, which were in the longitudinal direction. Jourawaski realized the importance of shear in long beams and 
developed the theory that we studied in Section 6.6.

In sum, starting with Galileo, it took nearly 250 years to understand the nature of stresses in beam bending. Other histori-
cal developments related to beam theory will appear in Section 7.6.

6.8 CHAPTER CONNECTOR

In this chapter we established formulas for calculating normal and shear stresses in beams under symmetric bending. We saw
that the calculation of bending stresses requires the internal bending moment and the shear force at a section. We considered
only statically determinate beams. For these, the internal shear force and bending moment diagrams can be found by making
an imaginary cut and drawing an appropriate free-body diagram. Alternatively, we can draw a shear force–bending moment
diagram. The free-body diagram is preferred if stresses are to be found at a specified cross section. However, shear force–
moment diagrams are the better choice if maximum bending normal or shear stress is to be found in the beam. 

The shear force–bending moment diagrams can be drawn by using the graphical interpretation of the integral, as the area 
under a curve. Alternatively, internal shear force and bending moments can be found as a function of the x coordinate along 
the beam and plotted. Finding the bending moment as a function of x is important in the next chapter, where we integrate the 
moment–curvature relationship. Once we know how to find the deflection in a beam, we can solve problems of statically inde-
terminate beams.

We also saw that, to understand the character of bending stresses, we can draw the bending normal and shear stresses on 
a stress element. In many cases, the correct direction of the stresses can be obtained by inspection. Alternatively, we can fol-
low the sign convention for drawing the internal shear force and bending moment on free-body diagrams, determine the direc-
tion using the subscripts in the formula. It is important to understand both methods for determining the direction of stresses. 
Shear–moment diagrams yield the shear force and the bending moment, following our sign convention. Drawing the bending 
stresses on a stress element is also important in stress or strain transformation, as described later. 

In Chapter 8, on stress transformation, we will consider problems in which we first find bending stresses, using the stress 
formulas in this chapter. We then find stresses on inclined planes, including planes with maximum normal and shear stress. In 
Chapter 9, on strain transformation, we will find the bending strains and then consider strains in different coordinate systems, 
including coordinate systems in which the normal and shear strains are maximum. In Section 10.1 we will consider the com-
bined loading problems of axial, torsion, and bending and the design of simple structures that may be determinate or indeter-
minate. 
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POINTS AND FORMULAS TO REMEMBER

• Our Theory is limited to (1) slender beams; (2) regions away from the neighborhood of stress concentration; (3) gradual
variation in cross section and external loads; (4) loads acting in the plane of symmetry in the cross section; and (5) no
change in direction of loading during bending.

• (6.1) (6.5)

• small strain, (6.6a, b)

• where Mz is the internal bending moment that is drawn on the free-body diagram to put a point with positive y coordinate
in compression; u and v are the displacements in the x and y directions, respectively; σxx and εxx are the bending (flexure)
normal stress and strain; y is the coordinate measured from the neutral axis to the point where normal stress and normal
strain are defined, and d2v/dx2 is the curvature of the beam. 

• The normal bending strain εxx is a linear function of y.
• The normal bending strain εxx will be maximum at either the top or the bottom of the beam.
• Equations (6.1), (6.6a), and (6.6b) are independent of the material model. 
• The following formulas are valid for material that is linear, elastic, and isotropic, with no inelastic strains. 
• For homogeneous cross section:

• (6.11) (6.12)

• where y is measured from the centroid of the cross section, and Izz is the second area moment about the z axis passing
through the centroid.

• EIzz is the bending rigidity of a beam cross section.
• Normal stress σxx in bending varies linearly with y on a homogeneous cross section.
• Normal stress σxx is zero at the centroid (y = 0) and maximum at the point farthest from the centroid for a homogeneous

cross section.
• The shear force Vy will jump by the value of the applied external force as one crosses it from left to right.
• Mz will jump by the value of the applied external moment as one crosses it from left to right.

• (6.13) (6.27)

• where Qz is the first moment of the area As about the z axis passing through the centroid, t is the thickness perpendicular
to the centerline, As is the area between the free surface and the line at which the shear stress is being found, and the coor-
dinate s is measured from the free surface used in computing Qz. 

• The direction of shear flow on a cross section must be such that (1) the resultant force in the y direction is in the same
direction as Vy; (2) the resultant force in the z direction is zero; and (3) it is symmetric about the y axis. 

• Qz is zero at the top and bottom surfaces and is maximum at the neutral axis.
• Shear stress is maximum at the neutral axis of a cross section in symmetric bending of beams.
• The bending strains are

• (6.29)

Mz yσxx Ad
A∫–= u y

xd
dv  ,–= v v x( )=

εxx
y
R
---– yd2v

dx2
--------–= =

Mz EIzz
d2v
dx2
--------= σxx

Mzy
Izz

----------–=

Vy τxy Ad
A

∫= τxs
VyQz

Izzt
------------–=

εxx
σxx

E
------- εyy

νσxx

E
-----------–= ν– εxx= = εzz

νσxx

E
-----------– νεxx–= = γxy

τxy

G
------= γxz

τxz

G
------=
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CHAPTER SEVEN

DEFLECTION OF SYMMETRIC BEAMS

Learning Objective 
1. Learn to formulate and solve the boundary-value problem for the deflection of a beam at any point.

_______________________________________________

Greg Louganis, the American often considered the greatest diver of all time, has won four Olympic gold medals, one silver
medal, and five world championship gold medals. He won both the springboard and platform diving competitions in the 1984
and 1988 Olympic games. In his incredible execution, Louganis and all divers (Figure 7.1a) makes use of the behavior of the
diving board. The flexibility of the springboard, for example, depends on its thin aluminum design, with the roller support
adjusted to give just the right unsupported length. In contrast, a bridge (Figure 7.1b) must be stiff enough so that it does not
vibrate too much as the traffic goes over it. The stiffness in a bridge is obtained by using steel girders with a high area moment
of inertias and by adjusting the distance between the supports. In each case, to account for the right amount of flexibility or
stiffness in beam design, we need to determine the beam deflection, which is the topic of this chapter 

We can obtain the deflection of a beam by integrating either a second-order or a fourth-order differential equation. The
differential equation, together with all the conditions necessary to solve for the integration constants, is called a boundary-
value problem. The solution of the boundary-value problem gives the deflection at any location x along the length of the
beam.

7.1 SECOND-ORDER BOUNDARY-VALUE PROBLEM

Chapter 6 considered the symmetric bending of beams. We found that if we can find the deflection in the y direction of one
point on the cross section, then we know the deflection of all points on the cross section. In other words, the deflection at a
cross section is independent of the y and z coordinates. However, the deflection can be a function of x, as shown in Figure 7.2.
The deflected curve represented by v(x) is called the elastic curve. 

 Figure 7.1 Examples of beam: (a) flexibility of diving board; and (b) stiffness of steel girders.

(a) (b)

�

� �
dv 
dx

v(x)

p(x)

y

x

z

x
  Figure 7.2 Beam deflection.

v
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The deflection function v(x) can be found by integrating Equation (6.11) twice, provided we can find the internal moment as
a function of x, as we did in Section 6.3. Equation (6.11), this second-order differential equation is rewritten for convenience:

(7.1)

The two integration constants generated from Equation (7.12.a) are determined from boundary conditions, as discussed
next, in Section 7.1.1.

As one moves across the beam, the applied load may change, resulting in different functions of x that represent the internal
moment Mz. In such cases there are as many differential equations as there are functions representing the moment Mz. Each addi-
tional differential equation generates additional integration constants. These additional integration constants are determined
from continuity (compatibility) equations, obtained by considering the point where the functional representation of the moment
changes character. The continuity conditions will be discussed in Section 7.1.2. The mathematical statement listing all the differ-
ential equations and all the conditions necessary for solving for v(x) is called the boundary-value problem for the beam deflec-
tion.

7.1.1 Boundary Conditions

The integration of Equation (7.1) will result in v and dv/dx. Thus, we are seeking conditions on v or dv/dx. Figure 7.3 shows
three types of support and the associated boundary conditions.

Note that for a second-order differential equation we need two boundary conditions. If on one end there is only one bound-
ary condition, as in Figure 7.3b or c, then the remaining boundary condition must come from another location. Doubts about a
boundary condition at a support can often be resolved by drawing an approximate deformed shape of the beam.

7.1.2 Continuity Conditions

Suppose that because of change in the applied loading, the internal moment Mz in a beam is represented by one function to the
left of xj and another function to the right of xj. Then there are two second-order differential equations, and integration will
produce two different displacement functions, one for each side of xj, together, these will contain a total of four integration
constants. Two of these four integration constants can be determined from the boundary conditions, as discussed in Section
7.1.1. The remaining two constants will have to be determined from conditions at xj. Figure 7.4 shows that a discontinuous
displacement at xj implies a broken beam, and a discontinuous slope at xj implies that a beam is kinked at xj.

Assuming that the beam neither breaks nor kinks, then the displacement functions must satisfy the following conditions:

(7.2.a)

(7.2.b)

where v1 and v2 are the displacement functions to the left and right of xj. The conditions given by Equations (7.2) are the con-
tinuity conditions, also known as compatibility conditions or matching conditions.

Mz EIzz
d2v
dx2
--------=

x

(xA) � 0dv 
dx

v(xA) � 0

(xA) � 0dv 
dx

v(xA) � 0

(a) (b) (c)

A
A

A

v v
v

v

  Figure 7.3 Boundary conditions for second-order differential equations. (a) Built-in end. (b) Simple support. (c) Smooth slot.

v1 xj( ) v2 xj( )=

dv1

dx
-------- xj( )

dv2

dx
-------- xj( )=
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• Example 7.1 demonstrates the formulation and solution of a boundary-value problem with one second-order differential
equation and the associated boundary conditions.

• Example 7.2 demonstrates the formulation and solution of a boundary-value problem with two second-order differential
equations, the associated boundary conditions, and the continuity conditions.

• Example 7.3 demonstrates the formulation only of a boundary-value problem with multiple second-order differential
equations, the associated boundary conditions, and the continuity conditions.

• Example 7.4 demonstrates the formulation and solution of a boundary-value problem with variable area moment of
inertia, that is, Izz is a function of x.

EXAMPLE 7.1
A beam has a linearly varying distributed load, as shown in Figure 7.5. Determine: (a) The equation of the elastic curve in terms of E, I,
w, L, and x. (b) The maximum intensity of the distributed load if the maximum deflection is to be limited to 20 mm. Use E = 200 GPa,
I = 600 (106) mm4, and L = 8 m.

PLAN

(a) We can make an imaginary cut at an arbitrary location x and draw the free-body diagram. Using equilibrium equations, the moment
Mz can be written as a function of x. By integrating Equation (7.1) and using the boundary conditions that deflection and slope at x = L
are zero, we can find v(x). (b) The maximum deflection for this problem will occur at the free end and can be found by substituting x = 0
in the v(x) expression. By requiring that , we can find wmax.

SOLUTION

(a) Figure 7.6 shows the free-body diagram of the right part after making an imaginary cut at some location x. Internal moment and shear
forces are drawn according to the sign convention discussed in Section 6.2.6. The distributed force is replaced by an equivalent force,
and the internal moment is found by equilibrium of moment about point O.

 (E1)

  Figure 7.4 (a) Broken beam. (b) Kinked beam.

v(x)

x

v(x)

x

Discontinuous 
Displacement

Discontinuous
Slope

xjxj

v1(x)

v2(x)

v1(x)

v2(x)

(a) (b)

L (m)

wx�L
w(N�m)

x

y

  Figure 7.5 Beam and loading in Example 7.1.

vmax 0.02 m≤ 

x (m)x

(a)

wx�L
MzM

VyVV

1 wx2

(b)
x�3

1
2

wx2

LMzM

VyVV

  Figure 7.6 Free-body diagram in Example 7.1. (a) Imaginary cut on original beam. (b) Statically equivalent diagram.

Mz
1
2
--- wx2

L
---------

x
3
---
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We substitute Equation (E1) into Equation (7.1) and note the zero slope and deflection at the built-in end. The boundary-value problem
can then be stated as follows:

• Differential equation:

(E2)

• Boundary conditions:
(E3)

(E4)

Equation (E2) can be integrated to obtain 

(E5)

Substituting x = L in Equation (E5) and using Equation (E4) gives the constant c1:

(E6)

Substituting Equation (E6) into Equation (E5) we obtain

(E7)

Equation (E7) can be integrated to obtain 

(E8)

Substituting x = L in Equation (E8) and using Equation (E3) gives the constant c2:

(E9)

The deflection expression can be obtained by substituting Equation (E9) into Equation (E8) and simplifying.

ANS. 

Dimension check: We note that all terms in the parentheses have the dimension of length to the power of five, that is, O(L5). Thus the
answer is dimensionally homogeneous. But we can also check whether the left-hand side and any one term of the right-hand side has the
same dimension,

(b) By inspection it can be seen that the maximum deflection for this problem will occur at the free end. Substituting x = 0 in the deflec-

tion expression, we obtain  The minus sign indicates that the deflection is in the negative y direction, as expected.
Substituting the given values of the variables and requiring that the magnitude of the deflection be less than 0.02 m, we obtain 

(E10)

ANS.

COMMENTS

1. From calculus we know that the maximum of a function occurs at the point where the slope of the function is zero. But the slope at
x = L, where the deflection is maximum, is not zero. This is because v(x) is a monotonic function— that is, a continuously increasing
(or decreasing) function. For monotonic functions the maximum (or minimum) always occurs at the end of the interval. We intu-
itively recognized the function’s monotonic character when we stated that the maximum deflection occurs at the free end.

2. If the dimension check showed that some term did not have the proper dimension, then we would backtrack, check each equation for
dimensional homogeneity, and identify the error. 

EIzz
d2v
dx2
-------- 1

6
---– wx3

L
---------=

v L( ) 0=

xd
dv L( ) 0=

EIzz xd
dv 1

24
------– wx4

L
--------- c1+=

1
24
------– wL4

L
---------- c1+ 0= or c1

wL3

24
----------=

EIzz
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dx
------ 1

24
------– wx4

L
--------- wL3

24
----------+=

EIzzv
1
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---------– wx5

L
--------- wL3

24
----------x c2+ +=

1
120
---------– wL5

L
---------- wL3

24
----------L c2+ + 0= or c2 – wL4
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⎝ ⎠
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⎜ ⎟
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--------------------------------------------------------------------------------------- 0.02 m≤= = or wmax 17.58 103( )  N/m≤
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EXAMPLE 7.2
For the beam and loading shown in Figure 7.7, determine: (a) the equation of the elastic curve in terms of E, I, L, P, and x; (b) the maxi-
mum deflection in the beam.

PLAN

(a) The internal moment due to the load P at B will be represented by different functions in AB and BC, which can be found by making
imaginary cuts and drawing free-body diagrams. We can write the two differential equations using Equation (7.1), the two boundary con-
ditions of zero deflection at A and C, and the two continuity conditions at B. The boundary-value problem can be solved to obtain the
elastic curve. (b) In each section we can set the slope to zero and find the roots of the equation that will give the location of zero slope.
We can substitute the location values in the elastic curve equation derived in part (a) to determine the maximum deflection in the beam.

SOLUTION

(a) The free-body diagram of the entire beam can be drawn, and the reaction at A found as  upward, and the reaction at C

found as  downward. Figure 7.8 shows the free body diagrams after imaginary cuts have been made and then internal shear
force and bending moment drawn according to our sign convention. 

By equilibrium of moments in Figure 7.8a and b we obtain the internal moments 

(E1)

(E2)

Check: The internal moment must be continuous at B, since there is no external point moment at B. Substituting x = L in Equations (E1)
and (E2), we find M1 = M2 at x = L.
The boundary-value problem can be stated using Equation (7.1), (E1), and (E2), the zero deflection at points A and C, and the continuity
conditions at B as follows:

• Differential equations:

(E3)

(E4)

• Boundary conditions:
(E5)

(E6)

• Continuity conditions:
(E7)

(E8)

Integrating Equations (E3) and (E4) we obtain 

(E9)

(E10)

x

y P

A2PL

B
C

L L
 Figure 7.7 Beam and loading in Example 7.2.

RA 3P 2⁄=

RC P 2⁄=

A O1

M1

V1

RA � 3P�2

x

2PL

 Figure 7.8 Free body diagrams in Example 7.2 after imaginary cut in (a) AB (b) BC.
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3
2
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----------- 3

2
---Px 2PL ,–= 0 x L<≤

EIzz
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----------- 3

2
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v2 2L( ) 0=

v1 L( ) v2 L( )=

dv1

dx
-------- L( )

dv2

dx
-------- L( )=

EIzz
dv1

dx
-------- 3

4
---Px2 2PLx– c1+=

EIzz
dv2

dx
-------- 3

4
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Substituting x = L in Equations (E9) and (E10) and using Equation (E8), we obtain 

(E11)

Substituting Equation (E11) into Equation (E10) and integrating Equations (E9) and (E10), we obtain 

(E12)

(E13)

Substituting x = L in Equations (E12) and (E13) and using Equation (E7), we obtain

(E14)

Substituting x = 0 in Equation (E12) and using Equation (E5), we obtain
(E15)

From Equation (E14),
(E16)

Substituting x = 2L and Equation (E16) into Equation (E13) and using Equation (E6), we obtain 

(E17)

Substituting Equations (E15), (E16), and (E17) into Equations (E12) and (E13) and simplifying, we obtain the answer:

ANS. (E18)

ANS. (E19)

Dimension check: All terms in parentheses are dimensionally homogeneous, as all have the dimensions of length cubed. But we can also
check whether the left-hand side and any one term of the right-hand side have the same dimension:

(b) Let  be zero at x = x1. Differentiating Equation (E18), we obtain 

(E20)

The roots of the quadratic equation are  and . The admissible root is , since Equation (E18), and
hence Equation (E20), are valid only in the range from 0 to L. Substituting this root into Equation (E18), we obtain 

(E21)

To find the maximum deflection in BC, assume dv2/dx to be zero at x = x2. Differentiating Equation (E19) we obtain

(E22)

The roots of the quadratic equations in Equation (E22) are  and  Both roots are outside the range of L to 2L
and hence are inadmissible. Thus in this problem the slope is zero only at 0.756L, and the maximum deflection is given by  Equation
(E21).

ANS.

COMMENT

1. When we made the imaginary cut in BC, we took the left part for drawing the free-body diagram. Had we taken the right part, we
would have obtained the moment expression  which is the simplified form of Equation (E21). We can start with
this moment expression and obtain our results from integration and the conditions as shown. The values of the integration constants
will be different, and there will be slightly more algebra, but the final result will be the same. The form of the moment expression
used in the example made use of the observation that the continuity conditions are at x = L and the terms in powers of (x – L) will be
zero. This form results in less algebra and simplified relations for the constants, as given by Equations (E11) and (E14). 
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EXAMPLE 7.3
Write the boundary-value problem for solving the deflection at any point x of the beam shown in Figure 7.9. Do not integrate or solve.

PLAN

The moment expressions in each interval were found in Example 6.10. The differential equations can be written by substituting these
moment expressions into Equation (7.1). We can also write the zero-deflection conditions at points A and D and the continuity conditions
at points B and C to complete the boundary-value problem statement.

SOLUTION

From the free body diagram of the entire beam the reactions at A and D in Example 6.10 were found to be  and .
Figure 7.10 shows the free body diagrams used in Example 6.10 to obtain the internal moments 

(E1)

(E2)

(E3)

The boundary value problem can be written as described below. 

• Differential equations:

(E4)

(E5)

(E6)

• Boundary conditions:
(E7)

(E8)

• Continuity conditions:
(E9)

(E10)

(E11)

(E12)

12 kN�m

4 kN/m5 kN

5 kN�m

x

y

A
C

DB

2.0 m 1.0 m 3.0 m Figure 7.9 Beam and loading in Example 7.3.

RA 0= RD 7 kN=

M1
5
2
---x2

⎝ ⎠
⎛ ⎞  kN m⋅= 0 x 2 m<≤

M2 5x 12–( )  kN m⋅ 2 m x 3 m<<=

RA � 0

Vy

MzA O1

5x
x m

x
2

m

  Figure 7.10 Free body diagrams in Example 7.3 after imaginary cut in (a) AB (b) BC (c) CD.
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RD � 7 kN

Vy

Mz

(6 � x)�2 m
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(6 � x) m

(a) (c)(b)

M3 2– x2 17x 30–+( )  kN m⋅= 3 m x 6 m≤<

EIzz
d2v1

dx2
----------- 5

2
---x2

⎝ ⎠
⎛ ⎞  kN m⋅= 0 x 2 m<≤

EIzz
d2v2

dx2
----------- 5x 12–( )  kN m⋅= 2 m x 3 m<<

EIzz
x2

2

d

d v3 2– x2 17x 30–+( )  kN m⋅= 3 m x 6 m≤<

v1 0( ) 0=

v3 6( ) 0=

v1 2( ) v2 2( )=

dv1

dx
-------- 2( )

dv2

dx
-------- 2( )=

v2 3( ) v3 3( )=

dv2

dx
-------- 3( )

dv3
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-------- 3( )=
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COMMENTS

1. Equations (E4), (E5), and (E6) are three differential equations of order 2. Integrating these three differential equations would result in
six integration constants. We have two boundary conditions and four continuity conditions. A properly formulated boundary-value
problems will always have exactly the right number of conditions needed to solve a problem.

2. In Example 7.3 there were two differential equations and the resulting algebra was tedious. This example has three differential equa-
tions, which will make the algebra even more tedious. Fortunately there is a method, discussed in Section 7.4*, which reduces the
algebra. This discontinuity method introduces functions that will let us write all three differential equations as a single equation and
implicitly satisfy the continuity conditions during integration.

EXAMPLE 7.4
A cantilever beam with variable width b(x) is shown in Figure 7.11. Determine the maximum deflection in terms of P, bL, t, L, and E.

PLAN

The area moment of inertia and the bending moment can also be found of x and substituted into Equation (7.1) to obtain the differential
equation. The zero deflection and slope at x = L are the boundary conditions necessary to solve the boundary-value problem for the elas-
tic curve. The maximum deflection will be at x = 0 and can be found from the equation of the elastic curve.

SOLUTION

Noting that b(x) is a linear function of x that passes through the origin and has a value of bL at x = L, we obtain b(x) = bLx/L and the area
moment of inertia as 

(E1)

Figure 7.12 shows the free body diagram after an imaginary cut can be made at some location x. By equilibrium of moment at about O,
we obtain the internal moment, 

(E2)

The boundary-value problem can be written as follows:

• Differential equation:

(E3)

 Figure 7.11 (a) Geometry of variable-width beam in Example 7.4. (b) Top view. (c) Front view.

L

P

xt

(a) (c)

x

P

t
b(x)

L

b
L

bLb(x)x
P

(b)

Izz
b x( ) t3

12
---------------  

bLt3

12L
---------⎝ ⎠

⎛ ⎞ x==

Mz Px–=

  Figure 7.12 Free-body diagram in Example 7.4.

P
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O

d2v
dx2
--------

Mz
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• Boundary conditions:
(E4)

(E5)

Integrating Equation (E3) we obtain 

(E6)

Substituting Equation (E6) into Equation (E5), we obtain 

(E7)

Substituting Equation (E7) into Equation (E6) and integrating, we obtain 

(E8)

Substituting Equation (E8) into Equation (E4), we obtain 

(E9)

The maximum deflection will occur at the free end. Substituting x = 0 into Equation (E8) and using Equation (E9) we obtain the maxi-
mum deflection. 

ANS. (E10)

COMMENTS

1. The beam taper must be gradual given the limitation on the theory described in Section 6.2.
2. We can calculate the maximum bending normal stress in any section by substituting y = t/2 and Equations (E1) and (E2) into Equation

(6.12), to obtain

(E11)

3. Equation (E11) shows that the maximum bending normal stress is a constant throughout the beam. Such constant-strength beams are
used in many designs where reduction in weight is a serious consideration. One such design is elaborated in comment 3.

4. In a leaf spring (see page 334), each leaf is considered an independent beam that bends about its own neutral axis because there is no
restriction to sliding (see Problem 6.20). The variable-width beam is designed for constant strength, and bL is found using Equation
(E11). The width bL is then divided into n parts, as shown in Figure 7.13a. Except for the main leaf A, all other leaf dimensions are
found by taking the one-half leaf width on either side of the main leaf. In the assembled spring, the distance in each leaf from the
applied load P is the same as in the original variable-width beam shown in Figure 7.11. Hence each leaf has the same allowable
strength at all points. If b is the width of each leaf and L is the total length of the spring, so that L = L/2, Equations (E10) and (E11)
can be rewritten as 

(7.3)

5. The results can be used in design as in Example 3.6.

v L( ) 0=

xd
dv L( ) 0=

xd
dv 12PL

EbLt3
--------------– x c1+=

0 12PL
EbLt3
--------------– L c1+= or c1

12PL2

EbLt3
----------------=

v 12PL
EbLt3
--------------– x2

2
----⎝ ⎠

⎛ ⎞ 12PL2

EbLt3
----------------x c2+ +=

0 12PL
EbLt3
--------------– L2

2
-----⎝ ⎠

⎛ ⎞ 12PL2

EbLt3
----------------L c2+ += or c2

6PL3

EbLt3
--------------–=

vmax
6PL3

EbLt3
--------------–=

σmax Px– t 2⁄

bLt3 12L⁄( )x
------------------------------- 6PL

bLt2
----------==

δ 3PL 3

4nEb t3
-------------------= σmax

3PL
nb t2
-----------=

N

C
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  Figure 7.13 Explanation of leaf spring design.
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MoM In Action: Leaf Springs

When it comes to leaf springs, necessity was the mother of invention. Humans realized very early the mechanical 
advantage of a spring force from bending. For example, most early civilizations had longbows. However, thongs and ropes 
lose much of their elasticity in dampness and rain. Metals do not, and in 200 B.C.E. Philo of Byzantium proposed using 
bronze springiness as a source of power. By the early sixteenth century spring-powered clocks attained an accuracy of one 
minute a day—far better than the weight-driven clocks seen in the towers of Renaissance Italy. The discovery revolution-
ized navigation, enabling world exploration and European colonial power. 

Around the same time, overland travel drove a different kind of spring development. Wagons and carriages felt 
every bump in the road, and the solution was the first suspension system: leather straps attached to four posts of a chassis 
suspended the carriage body and isolated it from the chassis. For all its advantages, however, the system did not prevent 
forward and backward sway, and the high center of gravity left the carriage susceptible to rollover. The problems were sig-
nificantly reduced by the introduction of cart springs (Figure 7.14a) or what we call leaf springs today. Edouard Phillips 
(1821–1889) developed the theory of leaf springs (see Example 7.4) while studying the spring suspension in freight trains. 
It was one of the first applications of the mechanics of materials to engineering design problems. 

We still use the term suspension system today, although cars, trucks, and railways are all supported on springs 
rather than suspended. To increase bending rigidity, leaf springs have a curve (Figure 7.14b). When the curve is elliptical, 
the springs are referred to as semi-elliptical springs. The Ford Model T had a non-elliptical curve, but with the Corvette 
leaf spring design reached its zenith. Unlike the traditional longitudinal mounting of one spring per wheel, the spring in a 
Corvette was mounted transversely. This eliminated one leaf spring and significantly reduced the tendency to rollover. A 
double wishbone design allowed for independent articulation of each wheel. The one-piece fiberglass material practically 
eliminated fatigue failure, reducing the weight by two thirds compared to steel springs. 

With the growth of front wheel drive in the 1970s, automobiles turned instead to coil springs, which require less 
space and provide each wheel with independent suspension. However, leaf springs continue to be used in trucks and rail-
ways, to distribute their heavy loads over larger spans. 

Both coil and leaf spring systems are part of a passive suspension system, which involve a trade-off between com-
fort, control, handling, and safety. Those factors are driving newer design systems called active suspension, in which the 
amount of spring force is externally controlled. It took 400 years for leaf springs to reach their zenith, but need has no 
zenith, and necessity is still the mother of invention in suspension design. 

  Figure 7.14 Leaf springs in (a) cart; (b) conventional vehicles.

(a) 
(b)

(b)
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PROBLEM SET 7.1

Second-order boundary-value problems

7.1 For the beam shown in Figure P7.1, determine in terms of w, P, L, E, and I (a) the equation of the elastic curve; (b) the deflection of
the beam at point A.

7.2 For the beam shown in Figure P7.2, determine in terms of w, P, L, E, and I (a) the equation of the elastic curve; (b) the deflection of
the beam at point A.

7.3 For the beam shown in Figure P7.3, determine in terms of w, P, L, E, and I (a) the equation of the elastic curve; (b) the deflection of
the beam at point A.

7.4 For the beam shown in Figure P7.4, determine in terms of w, P, L, E, and I (a) the equation of the elastic curve; (b) the deflection of
the beam at point A.

7.5 For the beam shown in Figure P7.5, determine in terms of w, P, L, E, and I (a) the equation of the elastic curve; (b) the deflection of
the beam at point A.

7.6 For the beam shown in Figure P7.6, determine in terms of w, P, L, E, and I (a) the equation of the elastic curve; (b) the deflection of
the beam at point A.

7.7 The cantilever beam in Figure P7.7 is acted upon by a distributed bending moment m per unit length. Determine (a) the elastic curve
in terms of m, E, I, L, and x; (b) the deflection at x = L. 

y P

Ax

L  Figure P7.1

  Figure P7.2

A

w

L�2

y

x

L�2

A

PL

L�2 L�2

y

x

  Figure P7.3

A

L

y

x

  Figure P7.4

L
A

y

x

w

  Figure P7.5

  Figure P7.6

A

P

L

PL

  Figure P7.7

y

L

xm
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7.8 For the beam shown in Figure P7.8 determine the deflection at point A in terms of w, P, L, E, and I.

7.9 For the beam shown in Figure P7.9 determine the deflection at point A in terms of P, L, E, and I.

7.10 For the beam and loading shown in Figure P7.10, determine the deflection at point A in terms of P, L, E, and I.

7.11 For the beam shown and loading in Figure P7.11, determine the deflection at point A in terms of w, L, E, and I.

7.12 For the beam and loading shown in Figure P7.11, determine the deflection at point A in terms of w, L, E, and I.

7.13 In Table P7.13, v1 and v2 represents the deflection in segment AB and BC. For the beam shown in Figure P7.2, identify all the condi-
tions from Table P7.13 needed to solve for the deflection v(x) at any point on the beam.

7.14 In Table P7.13, v1 and v2 represents the deflection in segment AB and BC. For the beam shown in Figure P7.14, identify all the con-
ditions from Table P7.13 needed to solve for the deflection v(x) at any point on the beam. 

  Figure P7.8 A

L L�2

y

x

w

A

PL

L L

y

x

  Figure P7.9

 Figure P7.10 L

y

x

P

A

L/2

y

  Figure P7.11
x

w

A

L L/2

  Figure P7.12 L

x

y
w

A

L/2

  Figure P7.13

w

2L L

x 1A B 2 C

TABLE P7.13 Potential Boundary and Continuity Conditions

(a) (e) (i) 

(b) (f) (j) 

(c) 
(g) (k) 

(d)
(h) (l) 

v1 0( ) 0= v2 2L( ) 0= v1 L( ) v2 L( )=

v1 L( ) 0= v2 3L( ) 0= v1 2L( ) v2 2L( )=

v2 L( ) 0=

xd
dv1 0( ) 0=

xd
dv1 L( )

xd
dv2 L( )=

v1 2L( ) 0=

xd
dv2 3L( ) 0=

xd
dv1 2L( )

xd
dv2 2L( )=

  Figure P7.14

w

2L

x 21A B C

L
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7.15 In Table P7.13, v1 and v2 represents the deflection in segment AB and BC. For the beam shown in Figure P7.15, identify all the con-
ditions from Table P7.13 needed to solve for the deflection v(x) at any point on the beam. 

7.16 In Table P7.13, v1 and v2 represents the deflection in segment AB and BC. For the beam shown in Figure P7.14, identify all the con-
ditions from Table P7.13 needed to solve for the deflection v(x) at any point on the beam. 

7.17 For the beam and loading shown in Figure P7.17, determine in terms of w, L, E, and I (a) the equation of the elastic curve; (b) the
deflection at x = L.

7.18 For the beam and loading shown in Figure P7.18, determine in terms of w, L, E, and I (a) the equation of the elastic curve; (b) the
deflection at x = L.

7.19 For the beam and loading shown in Figure P7.19 determine in terms of w, L, E, and I (a) the equation of the elastic curve; (b) the
deflection at x = L .

7.20 For the beam and loading shown in Figure P7.20 determine in terms of w, L, E, and I (a) the equation of the elastic curve; (b) the
deflection at x = L.

7.21 A simply supported beam in Figure P7.21 is acted upon by a distributed bending moment m per unit length. Determine (a) the elastic
curve in terms of m, E, I, L, and x; (b) deflection at x =L. 

  Figure P7.15
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7.22 A diver weighing 200 lb stands at the edge of the diving board as shown in Figure 7.22. The diving board cross section is 16 in.x
1 in. and has a modulus of elasticity of 1500 ksi. Determine the maximum deflection in the diving board. 

7.23 For the beam and loading shown in Figure P7.23, write the boundary-value problem for determining the deflection of the beam at any
point x. Assume EI is constant. Do not integrate or solve.

7.24 For the beam shown in Figure P7.24, write the boundary-value problem for determining the deflection of the beam at any point x.
Assume EI is constant. Do not integrate or solve.

Variable area moment of inertia
7.25 A cantilever beam with variable depth h(x) and constant width b is shown in Figure P7.25. The beam is to have a constant strength
σ. In terms of b, L, E, x, and σ, determine (a) the variation of h(x); (b) the maximum deflection.

7.26 A cantilever tapered circular beam with variable radius R(x) is shown in Figure P7.26.The beam is to have a constant strength σ. In
terms of L, E, x, and σ , determine (a) the variation of R(x); (b) the maximum deflection.

7.27 For the tapered beam shown in Figure P7.27, determine the maximum bending normal stress and the maximum deflection in terms
of E, w, b, h0, and L.

  Figure P7.22
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7.28 For the tapered circular beam shown in Figure P7.28, determine the maximum bending normal stress and the maximum deflection in
terms of E, P, d0, and L.

7.29 The 2-in. × 8-in. wooden beam of rectangular cross section shown in Figure P7.29 is braced at the support using 2-in. × 1-in.
wooden pieces. The modulus of elasticity of wood is 2000 ksi. Determine the maximum bending normal stress and the maximum deflection.

7.30 A 2 in. x 8 in. wooden rectangular cross-section beam is braced the near the load point using 2 in. x 1 in. wooden pieces as shown in
Figure P7.30. The load is applied at the mid point of the beam. The modulus of elasticity of wood is 2,000 ksi. Determine the maximum
bending normal stress and the maximum deflection. (Hint: Use symmetry about mid point to reduce calculations)

Stretch Yourself

7.31 To reduce weight of a metal beam the flanges are made of steel  and the web of aluminum  as shown
in Figure P7.31. Determine the maximum deflection of the beam.

7.2 FOURTH-ORDER BOUNDARY-VALUE PROBLEM

We were able to solve for the deflection of a beam in Section 7.1 using second-order differential equations because we could
find Mz as a function of x. In statically indeterminate beams, the internal moment determined from static equilibrium will con-
tain some unknown reactions in the moment expression. Also, if the distributed load py is not uniform or linear but a more
complicated function, then finding the internal moment Mz as a function of x may be difficult. In either case it may be prefer-
able to start from an alternative equation. We can substitute Equation (7.1) into Equation (6.17), (that is, into

) and then substitute the result into Equation (E6.18), (that is, ) to obtain 

(7.4)

d02d0

P

L  Figure P7.28

  Figure P7.29 3 ft 6 ft
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  Figure P7.30
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(7.5)

If the bending rigidity EIzz is constant, then it can be taken outside the differentiation. However, if the beam is tapered, then Izz

is a function of x, and the form given in Equations (7.4) and (7.5) must be used. 

7.2.3 Boundary Conditions

The deflection v(x) can be obtained by integrating Equation (7.5), but the fourth-order differential equation will generate four
integration constants. To determine these constants, four boundary conditions are needed. The integration of Equation (7.5)
will yield Vy of Equation (7.4), which on integration would yield Mz of Equation (7.1), which on integration would in turn

yield v and  Thus boundary conditions could be imposed on any of the four quantities v,  Mz, and Vy. 
To understand how these conditions are determined, we generalize a principle discussed in statics for determining the reac-

tion force and/or moments. Recall how we determine reaction forces and moments at the supports in drawing free-body dia-
grams:

• If a point cannot move in a given direction, then a reaction force opposite to the direction acts at that support point.
• If a line cannot rotate about an axis in a given direction, then a reaction moment opposite to the direction acts at that support.

Consider the cantilever beam with an arbitrarily varying distributed load shown in Figure 7.15a. We make an imaginary cut
very close to the support at A (at an infinitesimal distance Δx) and draw the free-body diagram as shown in Figure 7.15b. The
internal shear force and the internal moment are drawn according to our sign convention. Notice that the distributed force is not
shown because as Δx goes to zero, the contribution of the distributed force will drop out from the equilibrium equations. By
equilibrium we obtain  and  Thus if a point cannot move—that is, the deflection v is zero at a

point—then the shear force is not known, because the reaction force is not known. Similarly if a line cannot rotate around an axis
passing through a point, , and the internal moment is not known because the reaction moment is not known. 

The reverse is equally true. Consider the free-body diagram constructed after making an imaginary cut at an infinitesimal
distance from end B, as shown Figure 7.15c. By equilibrium we obtain  and  However, the free end can

deflect and rotate by any amount dictated by the loading. Thus, when we specify a value of shear force, then we cannot specify
displacement. And when we specify a value of internal moment at a point, then we cannot specify rotation. We can thus place the
quantities v,  Mz, and Vy:

• Group 1: At a boundary point either the deflection v can be specified or the internal shear force Vy can be specified, but
not both.

• Group 2: At a boundary point either the slope  can be specified or the internal bending moment Mz can be spec-
ified, but not both.

Two conditions are specified at each end of the beam, generating four boundary conditions. One condition is chosen from
each group. Stated succinctly, the boundary conditions at each end of the beam are

• Group 1: v or Vy

and (7.6)

• Group 2: or Mz

x2

2

d
d EIzz 

d2v
dx2
--------⎝ ⎠

⎛ ⎞ py=

dv dx.⁄ dv dx⁄ ,

(a) (b)

y

x

p

B
A

L �x

Vy(0)

Mz(0)

MA

RA

A

(c)

Vy(L)

�xMz(L)

B

  Figure 7.15 Example demonstrating grouping of boundary conditions.

Vy 0( ) RA–= Mz 0( ) MA.–=

dv dx⁄ 0=

Vy L( ) 0= Mz L( ) 0.=

dv dx⁄ ,

dv dx⁄

dv
dx
------
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From Figure 7.15c we concluded that the shear force and the bending moment at the free end were zero. This conclusion can
be reached by inspection without drawing a free-body diagram. If at the end there were a point force or a point moment, then
clearly the magnitude of the shear force would equal the point force, and the magnitude of the internal moment would equal
the point moment. Again, we can reach this conclusion without drawing a free-body diagram. But to get the correct sign of Vy

and Mz we need a free-body diagram, with the internal quantities drawn according to our sign convention. We address the
issue in Section 7.2.5.

7.2.4 Continuity and Jump Conditions 

Suppose there is a point force or a point moment at xj, or that the distributed force is given by different functions on the left
and right of xj. Then, again, the displacement will be represented by different functions on the left and right of xj.

Thus we have two fourth-order differential equations, and their integration constants will require eight conditions: 

• Four conditions are the boundary conditions discussed in Section 7.2.3. 
• Two additional conditions are the continuity conditions at xj discussed in Section 7.1.2. 

• The remaining two conditions are the equilibrium equations on Vy and Mz at xj. 

The equilibrium conditions on Vy and Mz at xj are jump conditions due to a point force or a point moment to be discussed in
the next section.

7.2.5 Use of Template in Boundary Conditions or Jump Conditions

We discussed the concept of templates in drawing shear–moment diagrams in Section 6.4.2. Here we discuss it in determining
the boundary conditions on Vy and Mz and jumps in these internal quantities due to a point force or a point moment.

Recall that a template is a small segment of a beam on which a point moment Mj and a point force Fj are drawn (Δx tends
to zero in Figure 7.16). Fj and Mj could be applied or reactive forces and moments and their directions are arbitrary. The ends
at +Δx and –Δx represent the imaginary cut just to the left and just to the right of the point forces and point moments. The inter-
nal shear force and the internal bending moment on these imaginary cuts are drawn according to our sign convention, as dis-
cussed in Section 6.2.6. Writing the equilibrium equations for this 2Δx segment of the beam, we obtain the template equations,

(7.7.a)

 (7.7.b)

The moment equation does not contain the moment due to the forces because these moments will go to zero as Δx goes to
zero.

If the point force on the beam is in the direction of Fj shown on the template, the template equation for force is used as
given. If the point force on the beam is opposite to the direction of Fj shown on the template, then the template equation is used
by changing the sign of Fj. The template equation for the moment is used in a similar fashion.

• If xj is a left boundary point, then there is no beam left of xj. Hence V1 and M1 are zero and we obtain the boundary condi-
tions on Vy and Mz from V2 and M2. 

• If xj is a right boundary point, then there is no beam right of xj. Hence V2 and M2 are zero and we obtain the boundary
conditions on Vy and Mz from V1 and M1.

• If xj is in between the ends of the beam, then the jump in shear force and internal moment is calculated using the tem-
plate equations.

V2 xj( ) V1 xj( )– Fj–=

M2 xj( )  M1– xj( ) Mj=

xj

V2(xj)

M1(xj) M2(xj)

V1(xj) Mj

Fj

�x �x

  Figure 7.16 Template at xj.
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An alternative to the templates is to draw free-body diagrams after making imaginary cuts at an infinitesimal distance from
the point force and writing equilibrium equations. Example 7.5 demonstrates the use of the template. Examples 7.6 and 7.7 dem-
onstrate the use of free-body diagrams to determine the boundary conditions or the jump in internal quantities.

EXAMPLE 7.5
The bending rigidity of the beam shown in Figure 7.17 is 135 (106) lbs·in.2, and the displacements of the beam in segments AB (v1) and BC
(v2) are as given below. Determine (a) the reactions at the left wall at A; (b) the reaction force at B and the applied moment MB. 

PLAN

By differentiating the given displacement functions and using Equations (7.1) and (7.4), we can find the bending moment Mz and the
shear force Vy in segments AB and BC. (a) Using the template in Figure 7.16, we can find the reactions at A from the values of Vy and Mz

at x = 0. (b) Using the template in Figure 7.16, we can find the reaction force and the applied moment at B from the values of Vy and Mz

before and after x = 20 in.

SOLUTION

The shear force calculation requires the third derivative of the displacement functions. The functions v1 and v2 can be differentiated three
times:

(E1)

(E2)

(E3)

(E4)

(E5)

(E6)

From Equations (7.1), (E2), and (E5), the internal moment is

(E7)

(E8)

From Equations (7.4), (E3), and (E6), the shear force is 

(E9)

(E10)

The internal moment and shear force at A can be found by substituting x = 0 into Equations (E7) and (E9),
(E11)

The internal moment and shear force just before and after B can be found by substituting x = 20 into Equations (E7) through (E10),

x

y

A
B C D

MB

40 in20 in

Some loading

20 in
 Figure 7.17 Beam in Example 7.5.

v1 5 x3 20x2–( )10 6–  in.=

v2 10 x3 30x2– 200x+( )10 6–  in.=

0 x 20 in.≤ ≤
20 in. x 40 in.≤ ≤

dv1

dx
-------- 5 3x2 40x–( ) 10 6–( )=

d2v1

dx2
----------- 5 6x 40–( ) 10 6–( )  in. 1–=

d3v1

dx3
----------- 5( ) 6( ) 10 6–( ) 30 10 6–( )  in. 2–= =

dv2

dx
-------- 10 3x2 60x– 200+( ) 10 6–( )=

d2v2

dx2
----------- 10 6x 60–( ) 10 6–( )  in. 1–=

d3v2

dx3
----------- 10( ) 6( ) 10 6–( ) 60 10 6–( ) in. 2–= =

Mz1
EIzz

x2

2

d

d v1 135 106( )  lbs.in.2[ ] 5 6x 40–( ) 10 6–( ) in. 1–[ ] 675 6x 40–( ) in.·lbs= = =

Mz2
EIzz

x2

2

d

d v2 135 106( )  lbs.in.2[ ] 10 6x 60–( ) 10 6–( ) in. 1–[ ] 1350 6x 60–( )  in.·lbs= = =

Vy1
EIzz

d3v1

dx3
----------- 135 106( )  lbs.in.2[ ] 30 10 6–( )  in. 2–[ ] 4050 lbs= = =

Vy2
EIzz

d3v2

dx3
----------- 135 106( ) lbs.in.2[ ] 60 10 6–( )  in. 2–[ ] 8100 lbs= = =

Mz1
0( ) 675 40–( ) 27,000–  in.·lbs= = Vy1

0( ) 4050 lbs=
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(E12)

(E13)

Figure 7.18 shows the free-body diagram of the entire beam. It also shows the template of Figure 7.16 for convenience.

If we compare the reaction force at A to Fj and the reaction moment to Mj in Figure 7.16, we obtain Fj = −RA and Mj = −MA. As point A is

the left end of the beam, V1(xj) and M1(xj) are zero on the template, and  and  From the template

equation we obtain  and  Substituting Equation (E11), we obtain

ANS.
If we compare the reaction force at B to Fj and the applied moment to Mj in Figure 7.16, we obtain Fj = RB and Mj = MB. Substituting for
xj = 20 in. and using Equations (E12) through (E13), we obtain RB and MB,

(E14)

(E15)

ANS.

COMMENTS

1. An alternative to the use of the template is to draw a free-body diagram after making imaginary cuts at an infinitesimal distance from
the point forces, as shown in Figure 7.19. The internal forces and moments must be drawn according to our sign convention. By writ-
ing equilibrium equations the required quantities can be found.

2. The free-body diagram of the entire beam in Figure 7.18 is not necessary. From the template equations, the force Fj and the moment
Mj with the correct signs can be found. If Fj and Mj are positive, then RB and MB will be in the direction shown on the template. If
these quantities are negative, then the direction is opposite. 

3. This problem demonstrates how we (i) determine the conditions on shear force and bending moment and (ii) relating these internal
quantities to the reaction forces and moments. The same basic principles apply when the displacement functions have to be deter-
mined first, as we see next.

EXAMPLE 7.6
In terms of E, I, w, L, and x, determine (a) the elastic curve; (b) the reaction force at A in Figure 7.20.

METHOD 1 PLAN: FO U RT H-O R D E R D I F F E RE N T I A L E Q U A T IO N

(a) Noting that the distributed force is in the negative y direction, we can substitute py = −w in Equation (7.5) and write the fourth-order
differential equation. The two boundary conditions at A are zero deflection and zero moment, and the two boundary conditions at B are
zero deflection and zero slope. We can solve the boundary-value problem and obtain the elastic curve. (b) We can draw a free-body dia-

Mz1
20( ) 675 6( ) 20( ) 40–[ ] 54,000 in.· lbs= = Mz2

20( ) 1350 6( ) 20( ) 60–[ ] 81,000 in.·lbs= =

Vy1
20( ) 4050 lbs= Vy2

20( ) 8100 lbs=

B

RA RD

RB
MDMA

MB

Some loading

C DA xj

V2(xj)

M1(xj) M2(xj)

V1(xj) Mj

Fj

�x �x

 Figure 7.18 Free-body diagram of entire beam in Example 7.5.

V2 xj( ) Vy1
0( )= M2 xj( ) Mz1

0( ) .=

RA Vy1
0( )= MA Mz1

– 0( ) .=

RA 4050 lbs= MA 27,000 in. · lbs=

RB V1 20( )   Vy2
– 20( ) 4050 lbs 8100 lbs– 4500 lbs–= = =

MB Mz2
20( )   M– z1

20( ) 81,000 in.· lbs 54,000 in.· lbs– 27 000 in.· lbs,= = =

RB 4500 lbs–= MB 27 000 in.· lbs,=

RA � Vy1(0) 

MA � �Mz1(0)

Vy1(0)
Mz1(0)MA

RA

A

(a)

MBVy1(20) Vy2(20)
  Figure 7.19 Alternative to template.

  Vy2(20) � Vy1(20) � �RB 

Mz2(20) � Mz1(20) � MB

Mz1(20)

MB

RB

Vy1(20)

Mz2(20)

Vy2(20)

B

(b)

B
A

L

yw

x

  Figure 7.20 Beam and loading in Example 7.6.
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gram after making an imaginary cut just to the right of A and relate the reaction force to the shear force. We can find the shear force at
point A by substituting x = L in the solution obtained in part (a).

SOLUTION

(a) The boundary-value problem statement can be written below following the description in the Plan. 

• Differential equation:

(E1)

• Boundary conditions:
(E2)

(E3)

(E4)

(E5)

Integrating Equation (E1) twice,

(E6)

(E7)

Substituting Equation (E7) into Equation (E5), we obtain

(E8)

Integrating Equation (E7), we obtain

(E9)

Substituting Equation (E9) into Equation (E3), we obtain
(E10)

Substituting Equation (E10) and integrating Equation (E9), we obtain

(E11)

Substituting Equation (E11) into Equation (E2), we obtain
(E12)

Substituting Equations (E12) and (E11) into Equation (E4), we obtain

(E13)

Solving Equations (E8) and (E13) simultaneously, we obtain

(E14)

Substituting Equations (E12) and (E14) into Equation (E11) and simplifying, we obtain the elastic curve,

ANS. (E15)

Dimension check: Note that all terms in parentheses on the right-hand side of Equation (E15) have the dimension of length to the power
of 4, or O(L4). Thus Equation (E15) is dimensionally homogeneous. But we can also check whether the left-hand side and any one term
of the right-hand side have the same dimension:

x2

2

d
d EIzz

x2

2

d
d v

⎝ ⎠
⎜ ⎟
⎛ ⎞

w–=

v 0( ) 0=

xd
dv 0( ) 0=

v L( ) 0=

EIzz
d2v
dx2
-------- L( ) 0=

xd
d EIzz

x2

2

d
d v

⎝ ⎠
⎜ ⎟
⎛ ⎞

w– x c1+=

EIzz
x2

2

d
d v wx2

2
---------– c1x c2+ +=

c1L c2+ wL2

2
----------=

EIzz xd
dv wx3

6
---------– c1

x2

2
---- c2x c3+ + +=

c3 0=

EIzzv
wx4

24
---------– c1

x3

6
---- c2

x2

2
---- c4+ + +=

c4 0=

c1L3

6
-----------

c2L2

2
-----------+ wL4

24
----------=

c1
5wL

8
-----------= c2

wL2

8
----------–=

v x( ) w
48EIzz
----------------– 2x4 5Lx3– 3L2x2+( )=

w O F
L
---⎝ ⎠

⎛ ⎞ x O L( ) E O F
L2
-----⎝ ⎠

⎛ ⎞ Izz O L4( )→→→→ v O L( ) wx4

EIzz
--------- O F L⁄( )L4

F L2⁄( )O L4( )
---------------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

O L( ) checks→ → →→
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(b) We make an imaginary cut just to the right of point A (at an infinitesimal distance) and draw the free-body diagram of the left part
using the sign convention in Section 6.2.6, as shown in Figure 7.21. By force equilibrium in the y direction, we can relate the shear force
at A to the reaction force at A,

(E16)

From Equations (7.4), (E6), and (E14), the shear force is

(E17)

Substituting Equation (E17) into Equation (E16), we obtain the reaction at A.

ANS.

METHOD 2 PLAN: SE C ON D-O R D E R D IF F E REN T IA L E Q U A T I O N

We can make an imaginary cut at some arbitrary location x and use the left part to draw the free-body diagram. The moment expression
will contain the reaction force at A as an unknown. The second-order differential equation, Equation (7.1), would generate two integra-
tion constants, leading to a total of three unknowns. We need three conditions: the displacement at A is zero, and the displacement and
slope at B are both zero. Solving the boundary-value problem, we can obtain the elastic curve and the unknown reaction force at A.

SOLUTION

We make an imaginary cut at a distance x from the right wall and take the left part of length L − x to draw the free-body diagram using
the sign convention for internal quantities discussed in Section 6.2.6 as shown in Figure 7.22.

Balancing the moment at point O, we obtain the moment expression,

(E1)

Substituting  into Equation (7.1) and writing the boundary conditions, we obtain the following boundary-value problem:

• Differential equation:

(E2)

• Boundary conditions:
(E3)

(E4)

(E5)
Integrating Equation (E2), we obtain

(E6)

Substituting Equation (E6) into Equation (E4), we obtain
(E7)

Substituting Equation (E7) and integrating Equation (E6), we obtain

(E8)

Substituting Equation (E8) into Equation (E3), we obtain
(E9)

Substituting Equations (E8) and (E9) into Equation (E5), we obtain

RA VA Vy L( )= =

VA

MARA �x

A

  Figure 7.21 Infinitesimal equilibrium element at A in Example 7.6.

Vy x( )
xd

d EIzz
x2

2

d
d v

⎝ ⎠
⎜ ⎟
⎛ ⎞

– wx 5wL
8

-----------–= =

RA
3wL

8
-----------=

O

Mz

Vy

RA

L � x

w

  Figure 7.22 Free-body diagram in Example 7.6.

w(L � x)

O

RA

L � x 
2

L � x 
2

Vy

Mz
(a) (b)

Mz RA L x–( )– w L x–( )2

2
-------------------+ 0= or Mz RA L x–( ) w

2
---- L2 x2 2Lx–+( )–=

EIzz
d2v
dx2
-------- RA L x–( )  - w

2
---- L2 x2 2Lx–+( )=

v 0( ) 0=
dv
dx
------ 0( ) 0=

v L( ) 0=

EIzz xd
dv RA Lx x2

2
----–⎝ ⎠

⎛ ⎞ w
2
---- L2x x3

3
---- Lx2–+⎝ ⎠

⎛ ⎞– c1+=

c1 0=

EIzzv RA
Lx2

2
-------- x3

6
----–⎝ ⎠

⎛ ⎞ w
2
---- L2x2

2
----------- x4

12
------ Lx3

3
--------–+⎝ ⎠

⎛ ⎞– c2+=

c2 0=
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(E10)

Substituting Equations (E9) and (E10) into Equation (E8) and simplifying, we obtain v(x).

ANS. (E11)

COMMENTS

1. Method 2 has less algebra than Method 1 and should be used whenever possible.
2. Suppose that in drawing the free-body diagram for calculating the internal moment, we had taken the right-hand part. Then we would

have two unknowns rather than one—the wall reaction force and moment in the expression for moment. In such a case we would
have to eliminate one of the unknowns using the static equilibrium equation for the entire beam. In other words, in statically indeter-
minate problems, the internal moment should contain a number of unknown reactions equal to the degree of static redundancy.

3. The moment boundary condition given by  in Method 1 is implicitly satisfied. We can confirm this by substituting x = L in Equation
(E1).

EXAMPLE 7.7
A light pole is subjected to a wind pressure that varies as a quadratic function, as shown in Figure 7.23. In terms of E, I, w, L, and x,
determine (a) the deflection at the top of the pole; (b) the ground reactions. 

PLAN

(a) Finding the moment as a function of x by static equilibrium is difficult for this statically determinate problem. We can use the fourth-
order differential equation, Equation (7.5). We have four boundary conditions: the deflection and slope at A are zero, and the moment
and shear force at B are zero. We can then solve the boundary-value problem and determine the elastic curve. By substituting x = L in the
elastic curve equation, we can obtain the deflection at the top of the pole. (b) By making an imaginary cut just above point A, we can
relate the internal shear force and the internal moment at point A to the reactions at A. By substituting x = 0 in the moment and shear
force expressions, we can obtain the shear force and moment values at point A.

SOLUTION

The boundary-value problem below can be written as described in the Plan.

• Differential equation:

(E1)

• Boundary conditions:
(E2)

(E3)

(E4)

(E5)

RA
L3

2
----- L3

6
-----–⎝ ⎠

⎛ ⎞ w
2
---- L4

2
----- L4

12
------ L4

3
-----–+⎝ ⎠

⎛ ⎞– 0 or ANS. RA
3wL

8
-----------==

v x( ) w
48EIzz
----------------– 2x4 5Lx3– 3L2x2+( )=

  Figure 7.23 Beam and loading in Example 7.7.

x

y

L

w

w x2

L2
------

⎝ ⎠
⎜ ⎟
⎛ ⎞

A

B

x2

2

d
d EIzz

d2v
dx2
--------

⎝ ⎠
⎜ ⎟
⎛ ⎞

w– x2

L2
-----

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

v 0( ) 0=

xd
dv 0( ) 0=

EIzz
d2v
dx2
--------

x=L

0=

xd
d EIzz

d2v
dx2
--------

⎝ ⎠
⎜ ⎟
⎛ ⎞

x=L

0=



7 347Mechanics of Materials: Deflection of Symmetric BeamsM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

Integrating Equation (E1), we obtain

(E6)

Substituting Equation (E6) into Equation (E5), we obtain

(E7)

Substituting Equation (E7) into Equation (E6) and integrating, we obtain

(E8)

Substituting Equation (E8) into Equation (E4), we obtain

(E9)

Substituting Equation (E9) into Equation (E8) and integrating, we obtain

(E10)

Substituting Equation (E10) into Equation (E3), we obtain
(E11)

Substituting Equation (E11) into Equation (E10) and integrating, we obtain

(E12)

Substituting Equation (E12) into Equation (E2), we obtain
(E13)

Substituting Equation (E13) into Equation (E12) and simplifying, we obtain

(E14)

Dimension check: Note that all terms in parentheses on the right-hand side of Equation (E14) have the dimension of length to the power
of 6, or, O(L6). Thus Equation (E14) is dimensionally homogeneous. But we can also check whether the left-hand side and any one term
of the right-hand side have the same dimension:

(a) Substituting x = L into , we obtain the deflection at the top of the pole.

ANS.

(b) We make an imaginary cut just above point A  and take the bottom part to draw the free-body diagram shown in Figure
7.24. By equilibrium of forces and moments, we can relate the reaction force RA and the reaction moment MA to the internal shear force
and the internal bending moment at point A,

(E15)

Substituting Equations (E7) and (E6) into Equation (7.4) and Equations (E9) and (E8) into Equation (7.1), we can obtain the shear force
and bending moment expressions,

(E16)

xd
d EIzz

d2v
dx2
---------

⎝ ⎠
⎜ ⎟
⎛ ⎞

-wx3

3L2
--------- c1+=

c1
wL
3

-------=

EIzz
d2v
dx2
--------- - wx4

12L2
------------ wL

3
-------x c2+ +=

c2
wL2

4
----------–=

EIzz
dv
dx
------ - wx5

60L2
------------ wLx2

6
------------- wL2x

4
-------------– c3+ +=

c3 0=

EIzz
dv
dx
------ - wx6

360L2
--------------- wLx3

18
------------- wL2x2

8
---------------– c4+ +=

c4 0=

v x( ) w
360EIzzL

2
-------------------------– x6 20L3x3– 45L4x2+( )=

w O F
L
---⎝ ⎠

⎛ ⎞ x O L( ) E O F
L2
-----⎝ ⎠

⎛ ⎞ Izz O L4( )→→→→ v O L( ) wx6

EIzzL
2

--------------- O F L⁄( )L6

F L2⁄( )L4L2
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⎝ ⎠
⎜ ⎟
⎛ ⎞

O L( ) checks→ → →→

v L( ) 13wL4

180EIzz
-------------------–=
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  Figure 7.24  Free body diagram of an infinitesimal element at A in Example 7.7. MA
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(E17)

Substituting Equations (E16) and (E17) into Equation (E15), we obtain the reaction force and the reaction moment.

ANS.

COMMENTS

1. The directions of RA and MA can be checked by inspection, as these are the directions necessary for equilibrium of the externally dis-
tributed force.

2. The free-body diagram in Figure 7.24, the reaction force RA and the reaction moment MA can be drawn in any direction, but the inter-
nal quantities Vy and Mz must be drawn according to the sign convention in Section 6.2.6. Irrespective of the direction in which RA
and MA are drawn, the final answer will be as given. The sign in the equilibrium equations, Equation (E15), will account for the
assumed directions of the reactions.

PROBLEM SET 7.2

Fourth-order boundary-value problems

7.32 The displacement in the y direction in segment AB, shown in Figure P7.32, was found to be  If the
bending rigidity is 135 × 106 lb·in.2, determine the reaction force and the reaction moment at the wall at A.

7.33 In Figure P7.33, the displacement in the y direction in section AB, is given by  and in BC by

. If the bending rigidity is 135 × 106 lb·in.2, determine: (a) the reaction force at B and the applied
moment MB; (b) the reactions at the wall at A.

7.34 For the beam shown in Figure P7.34, determine the elastic curve and the reaction(s) at A in terms of E, I, P, w, and x.

7.35 For the beam shown in Figure P7.35, determine the elastic curve and the reaction(s) at A in terms of E, I, P, w, and x.

Vy x( ) wx3

3L2
--------- wL

3
-------–=

RA
wL
3

-------  MA
wL2

4
----------=  =

v x( ) 20x3 40x2–( )10 6– in.=

  Figure P7.32

x

y

A
B

F
60 in

Some loading

20 in

v1 x( ) 3– x4 20x3–( ) 10 6–( ) in.=

v2 x( ) 8– x2 100x 1600+–( ) 10 3–( ) in.=

  Figure P7.33

x

y

A
C B

MB

60 in

Some loading

20 in

  Figure P7.34

x

y

A

P (kN)

L (m) L (m)

  Figure P7.35
x

y

A

L (m)

w (kN/m)
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7.36 For the beam shown in Figure P7.36, determine the slope at x = L and the reaction moment at the left wall in terms of E, I, w, and L.

7.37 For the beam shown in Figure P7.37, determine the deflection and the moment reaction at x = L in terms of E, I, w, and L.

7.38 For the beam shown in Figure P7.38, determine the deflection and the slope at x = L in terms of E, I, w, and L.

7.39 For the beam and loading shown in Figure P7.39, determine the deflection and slope at x = L in terms of E, I, w, and L.

7.40 For the beam and loading shown in Figure P7.40, determine the slope at x = L and the reaction moment at the left wall in terms of E,
I, w, and L.

7.41 For the beam and loading shown in Figure P7.41, determine the maximum deflection in terms of E, I, w, and L.

7.42 For the beam and loading shown in Figure P7.42, determine the maximum deflection in terms of E, I, w, and L.

  Figure P7.36

x

y

B
A

L

w�1 � x2

L2 �

x B
A

L

w
y

 Figure P7.37

x

y

B
A

L

wL2

wL

w� �x2

L2

  Figure P7.38

  Figure P7.39

x

y

A B

L

w πx
2L
------cos

  Figure P7.40

x

y

A B

L

w πx
2L
------cos

w πx
L

------sin
y

x

L  Figure P7.41

w πx
L

------sin

  Figure P7.42

y

L

x
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7.43 A cantilever beam under uniform load has a spring with a stiffness k attached to it at point A, as shown in Figure P7.43. The spring

constant in terms of stiffness of the beam is written as , where α is a proportionality factor. Determine the compression of the
spring in terms of α, w, E, I, and L. 

7.44 A linear spring that has a spring constant K is attached at the end of a beam, as shown in Figure P7.44. In terms of w, E, I, L, and K,
write the boundary-value problem but do not integrate or solve.

Historical problems 
7.45 The beam and loading shown in Figure P7.45 was the first statically indeterminate beam for which a solution was obtained by
Navier. Verify that Navier’s solution for the reaction at A is given by the equation below.

7.46 Jacob Bernoulli incorrectly assumed that the neutral axis was tangent to the concave side of the curve in Figure P7.46 and obtained
the equation given below. In the equation R is the radius of curvature of the beam at any location x. Derive this equation based on Bernoulli’s
assumption and show that it is incorrect by a factor of 4. (Hint: Follow the process in Section 6.1 and take the moment about point B.)

7.47 Clebsch considered a beam loaded by several concentrated forces Pi placed at a location xi, as shown in Figure P7.47. He obtained
the second-order differential equation between the concentrated forces. By integration he obtained the slope and deflection as given and
concluded that all Ci’s are equal and all Di’s are equal. Show that his conclusion is correct. For , 

k αEI L3⁄=

A

L

y

x

 Figure P7.43

k

w

  Figure P7.44
F � wL

M � wL2 (ft�lb)

w (lb�ft)
w sin(� x�2L) (lb�ft)

C
B

A
D

L L L K

x

x

y

AB

P

a b

C

  Figure P7.45

RA
Pa2 3L a–( )

2L3
------------------------------= where L a b+=

C D

dx

B

P

A
R

O

x b

h

  Figure P7.46
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R
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⎛ ⎞ Px=

xi x xi+1≤ ≤

EI d2v
dx2
--------- R= x Pj x xj–( )

j=1

i

∑– EI dv
dx
------ Rx2

2
---- Pi

x xi–( )2

2
-------------------

j=1

i

∑–= Ci+ EIv Rx3

6
---- Pi

x xi–( )3

6
-------------------

j=1

i

∑–= Cix Di+ +

x
x1

x2

x0 � 0

P1

R

P2 Pi

xi
  Figure P7.47
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Stretch Yourself
7.48 A beam resting on an elastic foundation has a distributed spring force that depends on the deflections at a point acting as shown in Fig-
ure P7.48. Show that the differential equation governing the deflection of the beam is given by Equation (7.8), where k is the foundation
modulus, that is, spring constant per unit length.

7.49 To account for shear, the assumption of planes remaining perpendicular to the axis of the beam (Assumption 3 in Section 6.2) is
dropped, and it is assumed that the plane rotates by the angle ψ from the vertical. This yields the following displacement equations:

The rest of the derivation1 is as before. Show that the following equations apply:

(7.9)

where A is the cross-sectional area and G is the shear modulus of elasticity. Beams governed by these equations are called Timoshenko beams.

7.50 Figure P7.50 shows a differential element of a beam that is free to vibrate, where ρ is the material density, A is the cross-sectional

area, and  is the linear acceleration. Show that the dynamic equilibrium is given by Equation (7.10).

7.51 Show by substitution that the following solution satisfies Equation (7.10):

7.52 Show by substitution that the following deflection solution satisfies the fourth order boundary value problem of the cantilever beam
shown in Figure P7.52.

(7.11)

Computer problems
7.53 Table P7.53 shows the value of distributed load at several point along the axis of a 10 ft long rectangular beam. Determine the slope
and deflection at the free end using. Use modulus of elasticity as 2000 ksi.

1Use Equations (2.12a) and (2.12d) to get εxx and γxy. Use Hooke’s law, the static equivalency equations [Equations (6.1) and (6.13)], and the
equilibrium equations [Equations (6.17) and (6.18)].

TABLE P7.53 Data in Problem 7.53

x 
(ft)

p(x) 
(lb/ft)

x 
(ft)

p(x) 
(lb/ft)

0 275 6 377
1 348 7 316
2 398 8 233
3 426 9 128
4 432 10 0
5 416

  Figure P7.48 Elastic foundation effect.

Vy

Mz Mz � dMz

Vy � dVy

dx

(k dx)v

p

(7.8)
x2

2

d
d EIzz
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dx2
---------

⎝ ⎠
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⎛ ⎞
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u y– ψ x( )= v v x( )=

xd
d GA

xd
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⎛ ⎞ p–=
xd

d EIzz xd
dψ

⎝ ⎠
⎛ ⎞ GA

xd
dv ψ–⎝ ⎠

⎛ ⎞–=

∂2v ∂t⁄ 2

 Figure P7.50 Dynamic equilibrium.
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7.54 For the beam and loading given in Problem 7.53, determine the slope and deflection at the free end in the following manner. First

represent the distributed load by  and, using the data in Table P7.53, determine constants a, b, and c by the least-squares
method. Then using fourth-order differential equations solve the boundary-value problem. Use the modulus of elasticity as 2000 ksi.

7.55 Table P7.55 shows the measured radii of a solid tapered circular beam at several points along the axis, as shown in Figure P7.55. The
beam is made of aluminum (E = 28 GPa) and has a length of 1.5 m. Determine the slope and deflection at point B.

7.56 Let the radius of the tapered beam in Problem 7.55 be represented by the equation  Using the data in Table P7.55,
determine constants a and b by the least-squares method and then find the slope and deflection at point B by analytical integration.

p x( ) =a bx cx2+ +

R(x)
A B

P � 25 kN

x

  Figure P7.55

TABLE P7.55 Data for Problem 7.55

x 
(m)

R(x) 
(mm)

x 
(m)

R(x) 
(mm)

0.0 100.6 0.8 60.1

0.1 92.7 0.9 60.3

0.2 82.6 1.0 59.1

0.3 79.6 1.1 54.0

0.4 75.9 1.2 54.8

0.5 68.8 1.3 54.1

0.6 68.0 1.4 49.4

0.7 65.9 1.5 50.6

R x( ) a bx .+=
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MoM in Action: Skyscrapers

A skyscraper can be a monument to the builder’s pride or a literal monument, designed to attract tourists and ten-
ants to the city’s, the country’s, or the world’s tallest building. When John Roscoe, in 1930, wanted a taller building than 
Walter Chrysler’s, he pushed for his own, completed just one year after the Chrysler building More than 40 years later, his 
Empire State Building (Figure 7.25a). was still the world’s tallest building, at 1250 ft. Even today, it is surely the most 
famous skyscraper ever. New construction is also driven by the same social forces as those behind the boom in Chicago, 
New York, and London at the end of 19th century. Businesses then and now want to be near a city’s commercial center 
and emerging economies are seeing a movement of the population from villages to cities. As this edition goes to press, the 
tallest building is Taipei 101 in Taiwan (Figure 7.25b). Built in 2003, it stands 1671 feet tall. 

Social forces, then, have pushed skyscrapers higher and higher, but technological advances have made that 
possible. Early high-rise buildings had a pyramid design: the building cross-section decreased with height to avoid 
excessive stresses at the bottom. The height of these building was limited by the strength of masonry materials and by the 
difficulty of getting water to higher stories. Besides, renters did not want to climb too many stairs! With the advent of steel 
beams, reinforced concrete, glass, electric water pumps, and elevators, however, the human imagination was freed to build 
tall. If one thinks of a high-rise building as an axial column, then skyscrapers are like cantilevered beams subject to 
bending loads in the wind. A proper variation of both axial and bending rigidity with height is important in design. 
Skyscrapers must be strong enough to withstand hurricane winds in excess of 140 mph. With an increase in height, too, the 
bearing stresses at the base increase, often requiring digging deep to bedrock. 

In addition to the stresses, the deflection of a skyscraper increases with height. By welding and bolting the 
horizontal girders to steel columns, the rigidity of the joint (Figure 7.25c) is increased, which helps reduce the sway. 
Skyscraper designs often have columns on the outer perimeter, which are connected to the central core columns. The outer 
columns act like flanges to resist most of the wind load, while the inner columns carry most of the weight. In modern 
skyscrapers, computer-controlled masses of hundreds of tons, called tuned mass dampers, move to counter the building 
sway. Today skyscrapers are also designed to move with earthquakes rather then stress the building frames. 

The terrorist attack on World Trade Center (see page 525) has highlighted the need for better fireproofing of steel 
beams, and technology is once more providing the solution. But terrorist acts do not deter the human spirit, which like the 
skyscrapers themselves still soars. In the sands of United Arab Emirates, the next tallest skyscraper is rising. Called Burj 
Dubai, or the Dubai tower, it will be twice the height of the Empire State Building. 

 Figure 7.25 (a) Empire State in New York. (b) Taipei 101 in Taipei, Taiwan. (c) Joint construction.

(a) (b) (c)
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7.3* SUPERPOSITION

The assumptions and limitations that were imposed in deriving the simplest theory for beam bending ensured that we have a
linear theory. As a consequence, the differential equations governing beam deflection, Equations (7.1) and (7.5), are linear
differential equations, and hence the principle of superposition can be applied to beam deflection.

The leftmost beam in Figure 7.26 is loaded with a uniformly distributed load w and a concentrated load P1. The superposition
principle says that the deflection of a beam with uniform load w and point force P1 is equal to the sum of the deflections calculated
by considering each load separately, as shown on the right two beams in Figure 7.26. Although the example in Figure 7.26 demon-
strates the principle of superposition, there is no intrinsic gain in calculating the deflection of each load separately and adding to find
the final answer. But if the solutions to basic cases are tabulated, as in Table C.3, then the principle of superposition becomes a very
useful tool to obtain results quickly. Thus the maximum deflection of the beam on the left can be found using the results of cases 1
and 3 in Table C.3. Comparing the loading of the two beams in Figure 7.26 to those shown for cases 1 and 3, we note that P = −
P1 = −wL and p0 = −w, a = L, and b = 0. Substituting these values into vmax given in Table C.3 and adding, we obtain

(7.12.a)

Another very useful application of superposition is the deflection of statically indeterminate beams. Consider a beam built in at
one end and simply supported at the other end with a uniformly distributed load, as shown in Figure 7.27. The support at A can be
replaced by a reaction force, and once more the total loading can be shown as the sum of two individual loads, as shown at right in
Figure 7.27. Comparing the loading of the two beams in Figure 7.26 to those shown for cases 1 and 3 in Table C.3, we note that
P = RA, p0 = −w, a = L, and b = 0. vmax is at point A in both cases. Substituting these values into vmax given in Table C.3 and adding,
we obtain

(7.12.b)

But the deflection at A must be zero in the original beam. Thus we can solve for the reaction force as RA = 3wL /8EI. Now the
solution of v(x) given in Table C.3 can be superposed to obtain

(7.12.c)

Substituting for RA and simplifying, the solution for the elastic curve is

  (7.12.d)

vmax − wL( )L3

3EI
------------------ wL4

8EI
---------– 11wL4

24EI
----------------–= =

x

y
P1 � wL

L (m)

w

x

y P1 � wL

L (m)

x

y

L (m)

w

  Figure 7.26 Example of superposition principle.

vA
RAL3

3EI
------------ wL4

8EI
---------–=

x A

y

L (m)

w

x

y

RAL (m)

x

y

L (m)

w

A A

  Figure 7.27  Example of use of superposition principle in solving statically indeterminate beam deflection.

v x( )
RAx2

6EI
----------- 3L x–( ) w–( )x2

24EI
----------------- x2 4Lx– 6L2+( )+=

v x( ) wx2 2x2– 5Lx 3L2–+( )
48EI

----------------------------------------------------------=
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EXAMPLE 7.8
For the beam shown in Figure 7.28, using the principle of superposition and Table C.3, determine (a) the reactions at A; (b) the maximum
deflection.

PLAN

(a) The wall at A can be replaced by a force reaction RA and a moment reaction MA. Thus the beam would be a cantilever beam with a uni-
formly distributed load, a point force at the end, and a point moment at the end, corresponding to the first three cases in Table C.3. Superpos-
ing the slope and deflection values from Table C.3 and equating the result to zero would generate two equations in the two unknowns RA and
MA which give the reactions at A. (b) From the symmetry of the problem, we can conclude that the maximum deflection will occur at the
center. Substituting x = L/2 in the elastic curve equation of Table C.3 and adding the results, we can find the maximum deflection of the
beam.

SOLUTION

(a) The right wall at A can be replaced by a reaction force and a reaction moment, as shown at left in Figure 7.29. The total loading on
the beam can be considered as the sum of the three loadings shown at right in Figure 7.29.

Comparing the three beam loadings in Figure 7.29 to that shown for cases 1 through 3 in Table C.3, we obtain P = RA, M = –MA, and p
= –w, a = L, and b = 0. Noting that vmax and θmax shown in Table C.3 for the cantilever beam occur at point A, we can substitute the load
values and superpose to obtain the deflection vA and the slope at θA. Noting that at the wall at A the deflection vA and the slope at θA must
be zero, we obtain two simultaneous equations in RA and MA,

(E1)

(E2)

Equations (E1) and (E2) can be solved to obtain RA and MA.

ANS. (E3)

(b) The maximum deflection would occur at the center of the beam. Substituting x = L/2, P = RA = wL/2, M = –MA = –wL/12, and p
= –w in the equation of the elastic curve for cases 1 through 3 in Table C.3 and superposing the solution, we obtain

(E4)

(E5)

ANS.

COMMENTS

1. All terms in Equations (E1) and (E2) have the same dimension, as they should. If this were not the case, then we would need to exam-
ine the equations obtained using superposition and the subsequent simplifications carefully to ensure dimensional homogeneity.

2. By symmetry we know that the reaction forces at each wall must be equal. Hence the value of the reaction forces should be wL/2, as
calculated in Equation (E3).

x

y

A

L (m)

w (kN/m)

  Figure 7.28 Beam in Example 7.8.

x

y

A

L (m)

w (kN/m)

RA

MA

x

y

A

L (m)

w (kN/m)

x

y

A

L (m) RA

MA

x

y

A

L (m)

 Figure 7.29 Superposition of three loadings in Example 7.8.
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EXAMPLE 7.9
The end of one cantilever beam rests on the end of another cantilever beam, as shown in Figure 7.30. Both beams have length L and
bending rigidity EI. Determine the deflection at A and the wall reactions at B and C in terms of w, L, E, and I.

PLAN

The two beams can be separated by putting an unknown force RA that is equal but opposite in direction on each beam at point A. From case
1 in Table C.3 for beam AB, the deflection at A can be found in terms of RA. From cases 1 and 3 for beam AC, the deflection at A can be
found by superposition. By equating the deflection at A for the two beams, we can find the force RA. (a) Once RA is known, the deflection
at A is found from the equation written for beam AB. (b) The reactions at B and C can be found using equilibrium equations on each
beam’s free-body diagram.

SOLUTION

(a) The assembly of the beams shown in Figure 7.30 can be represented by two beams with a force RA that acts in equal but opposite
directions, as shown in Figure 7.31a and b. The loading on the beam in Figure 7.31b can be represented as the sum of the two loadings
shown in Figure 7.31c and d.

Comparing the beam of Figure 7.31a to that shown in case 1 in Table C.3, we obtain P = –RA, a = L, and b = 0. Noting that vmax in case 1
occurs at A, the deflection at A can be written as

(E1)

Comparing the beam in Figure 7.31c to that of case 1 in Table C.3, we obtain P = RA − wL, a = L, and b = 0. Comparing the beam in Fig-
ure 7.31d to that of case 3 in Table C.3, we obtain p0 = −w, a = L/2, and b = L/2. Since vmax for both cases occurs at A, by superposition
the deflection at A can be written as

(E2)

Equating Equations (E1) and (E2), give the reaction RA:

(E3)

Substituting Equation (E3) into Equation (E1), we obtain the deflection at A.

ANS.

(b) The reactions at the wall can be found from the free-body diagrams of each beam, as shown in Figure 7.32. By equilibrium of forces
in the y direction and the moments about B in Figure 7.32a, the reactions at B can be found,

(E4)

ANS.

C

A
L�2

L�2
L

B
w

wL

  Figure 7.30 Two cantilever beams in Example 7.9.

(a) (b) (c) (d)

RA

C

A

L�2

L�2

w

wL C

A

L�2

L�2

w

RA

C

A

L�2

L�2

wL

AL

B

RA

 Figure 7.31 Analysis of beam assembly by superposition in Example 7.9.
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24EI
---------------------------------------------------------------------+

RA wL–( )L3

3EI
------------------------------- 7wL4

384EI
----------------–=

RAL3

3EI
------------–

RA wL–( )L3

3EI
------------------------------- 7wL4

384EI
---------------- or RA

135wL
256

-----------------=–=

vA
45wL4

256EI
----------------–=

RB RA= MB RAL=
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135wL

256
-----------------= MB

135wL2
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By equilibrium of forces in the y direction and the moments about C in Figure 7.32b, the reactions at C can be found,

(E5)

(E6)

ANS.

COMMENT

1. This example demonstrates how the principle of superposition can significantly simplify the analysis and design of structures. Hand-
books now document an extensive number of cases for which beam deflections are known. These apply to a wide variety of beam
assemblies. But to develop a list of formulas (as in Table C.3) requires a knowledge of the methods described in Sections 7.1 and 7.2.

7.4* DEFLECTION BY DISCONTINUITY FUNCTIONS

Thus far, we have used different functions to represent the distributed load py, or moment Mz, for different parts of the beam.
We then had to determine the integration constants that satisfy the continuity conditions and equilibrium conditions at the
junctions xj. These tedious and algebraically intensive tasks, may be unavoidable for a complicated distributed loading func-
tion. But for many engineering problems, where the distributed loads either are constant or vary linearly, there is an alterna-
tive method that avoids the algebraic tedium. The method is based on the concept of discontinuity functions. 

7.4.1 Discontinuity Functions

Consider a distributed load p and an equivalent load P = pε, as shown in Figure 7.33. Suppose we now let the intensity of the
distributed load increase continuously to infinity. At the same time, we decrease the length over which the distributed force is
applied to zero so that the area pε remains a finite quantity. We then obtain a concentrated force P applied at x = a. Mathemat-
ically, 

Rather than write the limit operations, we can represent a concentrated force with, 

 Figure 7.32 Free-body diagrams in Example 7.9.
(a)

RB

MB

A

B

RA

L

L�4

A

C
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wL�2

wL

L�4

L
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(a) (b)

RC wL wL
2

------- RA–+ 249wL
256

-----------------= =

MC wL L( ) wL
2

------- L
4
---⎝ ⎠

⎛ ⎞ RAL+ +  153wL2

256
-------------------= =
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256
-----------------= MC

153wL2
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-------------------=
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ε 0→
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  Figure 7.33 Delta function.
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The function  is called the Dirac delta function, or delta function. The delta function is zero except in an infinites-
imal region near a. As x tends toward a, the delta function tends to infinity, but the area under the function is equal to 1. Mathe-
matically, the delta function is defined as 

(7.13)

Now consider the following integral of the delta function: 

The lower limit of minus infinity emphasizes that the point is before a. If , then in the interval of integration, the delta

function is zero at all points; hence the integral value is zero. If  then the integral can be written as the sum of three inte-
grals, 

The first and third integrals are zero because the delta function is zero at all points in the interval of integration, whereas the

second integral is equal to 1 as per Equation (7.13). Thus the integral  is zero before a and one after a. It is

called the step function as shown in Figure 7.34 and is represented by the notation .

(7.14)

Now consider the integral of the step function, 

 

If x < a, then in the interval of integration the step function is zero at all points. Hence the integral value is zero. If x > a, then
we can write the integral as the sum of two integrals, 

The first integral is zero because the step function is zero at all points in the interval of integration, whereas the second inte-

gral value is x – a. The integral  is called the ramp function. It is represented by the notation  and is

shown in Figure 7.34. Proceeding in this manner we can define an entire class of functions, which are represented mathemati-
cally as follows:

(7.15)

We can also generate the following integral formula from Equation (7.15): 

x a–〈 〉 1–

x a–〈 〉 1– 0 x a≠,
∞, x a→⎩ ⎭
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∫ 1==
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∞–

x

∫
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x a ,>

x a–〈 〉 1–  xd
∞–

a−ε

∫ x a–〈 〉 1–  xd
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a+ε

∫ x a–〈 〉 1–  xd
a+ε

x

∫+ +

  Figure 7.34 Discontinuity functions.
xa

�x � a�0

Step function

xa

�x � a�1

Ramp function

xa

�x � a�2

x a–〈 〉 1–·
 xd

∞–
x

∫
x a–〈 〉 0

x a–〈 〉 0 x a–〈 〉 1–  x
0, x a<
1, x a>⎩

⎨
⎧

=d
∞–

x

∫=

x a–〈 〉 0 xd
∞–

x

∫

x a–〈 〉 0 xd
∞–

a

∫ x a–〈 〉 0 xd
a

x

∫+

x a–〈 〉0
 

·
xd

∞–
x

∫ x a–〈 〉1

x a–〈 〉 n 0,        x a≤

x a–( )n, x a>⎩
⎨
⎧

=



7 359Mechanics of Materials: Deflection of Symmetric BeamsM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

(7.16)

We define one more function, called the doublet function. It is represented by the notation  and is defined mathe-
matically as

(7.17)

The delta function and the doublet function become infinite at x = a, that is, they are singular at x = a and

are referred to as singularity functions. The entire class of functions  for positive and negative n are called disconti-
nuity functions.

The discontinuity functions are zero if the argument is negative. By differentiating Equations (7.14), (7.16), and (7.17) we
can obtain the following formulas:

(7.18)

(7.19)

7.4.2 Use of Discontinuity Functions

Before proceeding to develop a method for solving for the elastic curve using discontinuity functions, we discuss the process
by which the internal moment Mz and the distributed force py can be written using the discontinuity functions. We will
develop the procedure using a simple example of a cantilever beam subject to different types of loading, as shown in Figure
7.35. Then we will generalize the procedure to more general loading and types of support.

  Figure 7.35 Use of discontinuity functions.

When we make an imaginary cut before x = a in the cantilever beams shown in Figure 7.35, the internal moment Mz will be
zero. If the imaginary cut is made after x = a, then the internal moment Mz will not be zero and can be determined using a free-
body diagram. Once the moment expression is known, then it can be rewritten using the discontinuity functions. This moment
expression can be used to find displacement using the second-order differential equation, Equation (7.1). However, if the
fourth-order differential equation, Equation (7.5), has to be solved, then the expression of the distributed force py is needed.
Now the distributed force can be obtained from the moment expression using the identity that is obtained by substituting

Equation (6.18) into Equation (6.17), or  By using Equation (7.19) we can obtain the distributed force expres-

sion from the moment expression, as shown in Figure 7.35.
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⎧
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If the distributed load is as shown in Figure 7.35c, then the expression for it can be obtained directly, without the free-body
diagram, and the moment expression can be obtained by integrating twice. For the concentrated force and moment also, it is not
difficult to recognize the type of discontinuity function that will be used in the representation. The difficulty lies in obtaining the
correct sign in the expression for the internal moment Mz. We shall overcome this problem by using a template to guide us. 

A template is created by making an imaginary cut beyond the applied load. On the imaginary cut the internal moment is
drawn according to the sign convention discussed in Section 6.2.6. A moment equilibrium equation is written. If the applied load
is in the assumed direction on the template, then the sign used is the sign in the moment equilibrium equation. If the direction of
the applied load is opposite to that on the template, then the sign in the equilibrium equation is changed. The beams shown in
Figure 7.35 are like templates for the given coordinate systems.

EXAMPLE 7.10
Write the moment and distributed force expressions using discontinuity functions for the three templates shown in Figure 7.36.

PLAN

For cases 1 and 2 we can make an imaginary cut after x = a and draw the shear force and bending moment according to the sign conven-
tion in Section 6.2.6. By equilibrium we can obtain the moment expression and rewrite it using discontinuity functions. By differentiat-
ing twice, we can obtain the distributed force expression. For case 3 we can write the expression for the distributed force using
discontinuity functions and integrate twice to obtain the moment expression.

SOLUTION

Case 1: We make an imaginary cut at x > a and draw the free-body diagram using the sign convention in Section 6.2.6 as shown in Fig-
ure 7.37a. By equilibrium we obtain

(E7)
is valid only after x > a. Using the step function we can write the moment expression, and by differentiating twice as per Equation (7.19)
we obtain our result.

ANS.

Case 2: We make an imaginary cut at x > a and draw the free-body diagram using the sign convention in Section 6.2.6 as shown in Fig-
ure 7.37b. By equilibrium we obtain

(E8)
is valid only after x > a. Using the ramp function we can write the moment expression, and by differentiating twice as per Equation
(7.19) we obtain our result.

ANS.
Case 3: The distributed force is in the negative y direction. Its start can be represented by the step function at x = a. The end of the dis-
tributed force can also be represented by a step function using a sign opposite to that used at the start as shown in Figure 7.37b.

ANS.  (E9)
Integrating Equation (E9) twice and using Equation (7.16), we obtain the moment expression

PCase 2 Case 3Case 1

x

y

x = a
x

y

x = a

x

y

x = ax = b

M

 Figure 7.36  Three cases of Example 7.10.

w

Mz M=

Mz M x a–〈 〉 0 py M x a–〈 〉 2–==

x

y
x = a x

y

x = a
x

y

x = ax = b

M

w

w

Mz

Vy

P

Mz

Vy

Mz

Vy

 Figure 7.37 (a) Case 1, (b) Case 2, (c) Case 3 in Example 7.10.

(a) (b) (c)

Mz P x a–( )=

Mz P x a–〈 〉 1 py P x a–〈 〉 1–==

py w– x a–〈 〉 0 w x b–〈 〉 0+=
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ANS. (E10)

COMMENTS

1. The three cases shown could be part of a beam with more complex loading. But the contribution for each of the loads would be calcu-
lated as shown in the example.

2. In obtaining Equation (E10) we did not yet write integration constants. When we integrate for displacements, we will determine these
from boundary conditions.

3. In case 3 we did not have to draw the free-body diagram. This is an advantage when the distributed load changes character over the
length of the beam. Even for statically determinate beams, it may be advantageous to start with the fourth-order, rather than the sec-
ond-order differential equation.

EXAMPLE 7.11
Using discontinuity functions, determine the equation of the elastic curve in terms of E, I, L, P, and x for the beam shown in Figure 7.38. 

PLAN 

Two templates can be created, one for an applied moment and one for the applied force. With the templates as a guide, the moment
expression in terms of discontinuity functions can be written. The second-order differential equation, Equation (7.1), can be written and
solved using the zero deflection boundary conditions at A and C to obtain the elastic curve. 

SOLUTION

Figure 7.39 shows two templates. By equilibrium, the moment expressions for the two templates can be written

(E1)

Figure 7.40 shows the free-body diagram of the beam. By equilibrium of moment at C, the reaction at A can be found as 
We can write the moment expressions using the templates in Figure 7.39 to guide us. The reaction force is in the same direction as the
force in the template. Hence the term in Equation (E2) will have the same sign as shown in the template equation. 
The applied moment at point A has an opposite direction to that shown in the template in Figure 7.39. Hence the term in the moment
expression in Equation (E2) will have a negative sign to that shown in the template equation. The force P at B has an opposite sign to that
shown on the template, and hence the term in the moment expression will have a negative sign, as shown in Equation (E2).

(E2)

Substituting Equation (E2) into Equation (7.1) and writing the zero deflection conditions at A and C, we obtain the boundary-value prob-
lem:

• Differential equation:

(E3)

Mz
w
2
----– x a–〈 〉 2 w

2
---- x b–〈 〉 2+=

x

y P

A2PL

B
C

L L Figure 7.38 Beam and loading in Example 7.11.

F

x � a

M

x

y

Vy

Mz

O x � ax

y

Vy

Mz

O

  Figure 7.39 Templates for Example 7.11.

Mz M x a–〈 〉 0 Mz F x a–〈 〉 1==

RA 3P 2.⁄=

L L

C

y

x2PL
A

P

B

RA RC
 Figure 7.40 Free-body diagram in Example 7.11.

Mz
3P
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------- x〈 〉 1 2PL x〈 〉 0– P x L–〈 〉 1–=

EIzz
d2v
dx2
-------- 3P

2
------- x〈 〉 1 2PL x〈 〉 0– P x L–〈 〉 1 0 x 2L<≤,–=
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• Boundary conditions:
(E4)
(E5)

Integrating Equation (E3) twice using Equation (7.16), we obtain

(E6)

(E7)

Substituting Equation (E7) into Equation (E4), we obtain the constant c2:

(E8)

Substituting Equation (E7) into Equation (E5), we obtain the constant c1:

(E9)

Substituting Equations (E8) and (E9) into Equation (E7), we obtain the elastic curve. 

ANS. (E10)

Dimension check: All terms in brackets are dimensionally homogeneous as all have the dimensions of length cubed. But we can also
check whether the left-hand side and any one term of the right-hand side have the same dimension, 

COMMENTS

1. Comparing the boundary-value problem in this example with that of Example 7.2, we note the following: (i) There is only one differ-
ential equation here representing the two differential equations of Example 7.2. (ii) There are no continuity equations at x = L as there
were in Example 7.2. The net impact of these two features is a significant reduction in the algebra in this example compared to the
algebra in Example 7.2.

2. Equation (E10) represents the two equations of the elastic curve in Example 7.2. We note that  for 0 ≤ x < L. Hence
Equation (E10) can be written v(x) = P(3x3 − 12Lx2 + 13L2x)/12EIzz, which is same as Equation (E18) in Example 7.2. For L ≤ x < 2L,

the term  Hence Equation (E10) can be written  which is
same as Equation (E19) in Example 7.2. 

EXAMPLE 7.12
A beam with a bending rigidity EI = 42,000 N·m2 is shown in Figure 7.41. Determine: (a) the deflection at point B; (b) the moment
and shear force just before and after B.

PLAN

The coordinate system in this example is the same as in Example 7.11, and hence we can use the templates in Figure 7.39. Differentiating
the template equations twice, we obtain the template equation for the distributed forces, and we write the distributed force expression in
terms of discontinuity functions. Using Equation (7.5) and the boundary conditions at A and D, we can write the boundary-value problem
and solve it to obtain the elastic curve. (a) Substituting x = 2 m in the elastic curve, we can obtain the deflection at B. (b) Substituting
x = 2.5 in the shear force expression, we can obtain the shear force value.

SOLUTION

(a) The templates of Example 7.11 are repeated in Figure 7.42. The moment expression is differentiated twice to obtain the template
equations for the distributed force, 

v 0( )  0=
v 2L( ) 0=

EIzz
dv
dx
------ 3P

4
------- x〈 〉 2 2PL x〈 〉 1– P

2
--- x L–〈 〉 2– c1+=

EIzzv
P
4
--- x〈 〉 3 PL x〈 〉 2– P

6
--- x L–〈 〉 3– c1x c2+ +=

P
4
--- 0〈 〉 3 PL 0〈 〉 2– P

6
--- L–〈 〉 3– c2+ 0= or c2 0=

P
4
--- 2L〈 〉 3 PL 2L〈 〉 2– P

6
--- L〈 〉 3– c1 2L( )+ 0 or c1

13
12
------PL2==

v x( ) P
12EIzz
---------------- 3 x〈 〉 3 12L x〈 〉 2– 2 x L–〈 〉 3– 13L2x+[ ]=

P O F( ) x O L( ) E O F
L2
-----⎝ ⎠

⎛ ⎞ Izz O L4( )→→→→ v O L( ) Px3

EIzz
--------- O FL3

F L2⁄( )L4
------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

O L( ) checks→ → →→

x L–〈 〉 3 0=

x L–〈 〉 3 x L–( )3.= v x( ) P 3x3 12Lx2– 13L2x 2 x L–( )3–+[ ] 12EIzz⁄ ,=

12 kN�m 4 kN/m5 kN

5 kN�m

xA C DB
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y

  Figure 7.41 Beam and loading in Example 7.12.
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(E1)

(E2)

We note that the distributed force in segment AB is positive, starts at zero, and ends at x = 2. The distributed force in segment CD is neg-
ative, starts at x = 3, and is over the rest of the beam. Using the template equations and Figure 7.42, we can write the distributed force
expression, 

 (E3)
Substituting Equation (E3) into Equation (7.5) and writing the boundary conditions, we obtain the boundary-value problem:

• Differential equation:

(E4)

• Boundary conditions: 
(E5)

(E6)

(E7)

(E8)

Integrating Equation (E4) twice, we obtain

(E9)

(E10)

Substituting Equation (E10) into Equation (E5), we obtain
(E11)

Substituting Equation (E10) into Equation (E8), we obtain

(E12)

Substituting Equations (E11) and (E12) into Equation (E10) and integrating twice, we obtain 

(E13)

(E14)

Substituting Equation (E14) into Equation (E5), we obtain 
(E15)

Substituting Equation (E14) into Equation (E6), we obtain 

(E16)

Substituting Equations (E15) and (E16) into Equation (E14) and simplifying, we obtain the elastic curve, 

(E17)

Substituting x = 2 into Equation (E17), we obtain the deflection at point B, 

(E18)

ANS. v(2) = −1.2 mm

Mz M x a–〈 〉 0 Mz F x a–〈 〉 1==

F

x � a

M

x

y

Vy

Mz

x � ax

y

Vy

Mz

 Figure 7.42 Templates for Example 7.12.
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24
------ 4〈 〉 4– 2

12
------ 3〈 〉 4– 5

6
--- 4〈 〉 3 6 4〈 〉 2– c3 6( )  0=+– or c3

323
36
---------– 8.97–= =

v 1
72EIzz
---------------- 15 x〈 〉 4 15 x 2–〈 〉 4– 12 x 3–〈 〉 4– 60 x 2–〈 〉 3 432 x 2–〈 〉 2– 646x ]––[=

v 2( ) 1
72 42( ) 103( )[ ]
----------------------------------- 15 2〈 〉 4 15 0〈 〉 4– 12 1–〈 〉 4– 60 0〈 〉 3 432 0〈 〉 2– 646 6( )– ]–[=
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(b) As stated in Equation (7.1), the moment Mz can be found from Equation (E10). And as seen in Equation (7.4), the shear force Vy is
the negative of the expression given in Equation (E11). Noting that the constants c1 and c2 are zero, we obtain the expressions for Mz and Vy:

(E19)

(E20)
Point B is at x = 2. Just after point B, that is, at x = 2–, all terms except the first term in Equations (E19) and (E20) are zero. 

ANS.

Just after point B, that is, at x = 2+, the step function  is equal to 1. Hence this term along with the first term are the nonzero
terms in Equations (E19) and (E20). 

(E21)

ANS.

COMMENT

1. We note that Mz(2+) − Mz(2−) = −12 kN · m and Vy(2+) − Vy(2−) = 5 kN · m, which are the values of the applied moment and
applied shear force. Thus the jump in the internal shear force and internal moment difference is captured by the step function. 

7.5* AREA-MOMENT METHOD

One last method is especially useful in finding the deflection or the slope of the beam is to be found at a specific point. Called
the area-moment method, it is based on graphical interpretation of the integrals that are generated by integration of Equation
(7.1). 

Equation (7.1) can be written 

 (7.20.a)

where  represents the slope of the elastic curve. Integrating the equation from any point A to any other
point x, we obtain

 or

(7.20.b)

Integrating Equation (7.20.b) between point A and any point x, we obtain 

(7.20.c)

The last integral2 can be written as

(7.20.d)

Assume EIzz is a constant for the beam. From Equations 7.20.b and 7.20.d, the slope and the deflection at point B can be writ-
ten

Mz x( ) 5
2
--- x〈 〉 2 5

2
--- x 2–〈 〉 2– 2 x 3–〈 〉 2– 5 x 2–〈 〉 1  12 x 2–〈 〉 0–

 
 

kN · m–=

Vy x( ) [ 5– x〈 〉 1 5 x 2–〈 〉 1 4 x 3–〈 〉 1 5 x 2–〈 〉 0+ 12 x 2–〈 〉 1– ] kN+ + +=

Mz 2–( ) 10 kN· m Vy 2–( ) 10–  kN==

x 2–〈 〉 0

Mz 2+( ) 10 12–( ) 2–  kN· m= = Vy 2+( ) 10 5+–( ) 5–  kN = =

Mz 2+( ) 2–  kN· m= Vy 2+( ) 5–  kN=

2By integrating by parts, it can be shown that

 

Letting f(x1) = Mz/EIzz, we can obtain Equation (7.20.d) from Equation (7.20.c).

xd
d v′ x( )

Mz

EIzz
---------=

v′ x( ) dv x( )/dx=

v′ x( )d
v ′ xA( )

v ′ x( )

∫
Mz

EIzz
--------- x1d

xA

x

∫=

v′ x( ) v′ xA( )
Mz

EIzz
--------- x1d

xA

x

∫+=

v x( ) v xA( ) v′ xA( ) x xA–( )
Mz

EIzz
--------- x1d

xA

x

∫⎝ ⎠
⎛ ⎞ xd

xA

x

∫+ +=

f x1( ) x1d
xA

x

∫ xd
xA

x

∫ x x1–( )f x1( ) x1d
xA

x

∫=

v x( ) v xA( ) v′ xA( ) x xA–( ) x x1–( )
Mz

EIzz
--------- x1d

xA

x

∫+ +=
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(7.21)

(7.22)

The integral in Equation (7.21) can be interpreted as the area under the bending moment curve, as shown in Figure 7.43. The
moment diagram can be constructed as discussed in Section 6.4. Thus, if the slope  at point A is known, then by adding

the area under the moment curve, we can obtain the slope at point B. The area AM will be considered positive if the moment
curve is in the upper plane and negative if it is in the lower plane.

From Figure 7.43a, we see that the integral in Equation (7.22) is the first moment of the area under the moment curve about
point B. This first moment of the area can be found by taking the distance of the centroid from B and multiplying by the area, 

 (7.23.a)

With this interpretation the deflection of B can be found from Equation (7.22). Table C.2 in the Appendix lists the areas and
the centroids of the areas under various curves. These values can be used in calculating the integrals in Equations 7.21 and
7.22.

Consider the cantilever beam in Figure 7.44a and the associated bending moment diagram. At point A the slope and the
deflection at A are zero. Hence  and  in Equations 7.21 and 7.22. The area AM, representing the integral in

Equation (7.21), is −PL(L)/2. Thus the slope at B is  Since distance of the centroid from B is xB – x = 2L/3,

 is the value of the integral equation, Equation (7.22). Thus the deflection at B is

Now consider the simply supported beam and the associated bending moment in Figure 7.44b. The value of the slope is not
known at any point on the beam. Thus before the deflection and slope at B can be determined, the slope at A must be found.
The deflection at A is zero. Treating the slope at A as an unknown constant, we equate the deflection at C from Equation (7.22)
to zero and obtain the slope at A,

v′ xB( ) v′ xA( ) 1
EIzz
--------- Mz xd

xA

xB

∫+=

v xB( ) v xA( ) v′ xA( ) xB xA–( ) 1
EIzz
--------- xB x–( ) Mz xd

xA

xB

∫+ +=

Mz
Mz dx

xA xB
x

xB � x

(a)

x

Mz AM � � Mz dx

xB

xA

xB
xB � xx

xA

Centroid of area AM

(b)  Figure 7.43 Graphical interpretation of integrals in area-moment method.

(a) (b)

v′ xA( )

xB x–( )Mz xd
xA

xB

∫ xB x–( )AM=

v′ xA( ) 0= v xA( ) 0=

v′ xB( ) PL2/2EI.–=

xB x–( )AM 2L/3( ) PL2/2–( )=

v xB( ) PL3– /3EI.=

x

x

y

A CB

P

L�2

L�3

x̄1 � L�3

x̄2 � L�3

L�6 L�6 L�3

L�2

Mz

AM1
 � AM2

 � 

PL
4

(b)

x

x

y

A
B

P

L

L�3 2L�3Mz

PL
AM � �

PL2

2EI

PL2

16
PL2

16

( )

  Figure 7.44 Application of area-moment method.
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 or (7.23.b)

 (7.23.c)

Using Equation (7.22) once more, we find the deflection at point B:

(7.23.d)

EXAMPLE 7.13
In terms of E, I, w, and L, determine the deflection and slope at point B for the beam and loading shown in Figure 7.45.

PLAN

The reaction forces at A and C can be found and then the shear–moment diagram can be drawn as discussed in Section 6.4. The area
under the moment curve and the location of the centroids can then be determined. Because the deflection at A is zero, the deflection at C
can be written in terms of the unknown slope at A using Equation (7.22). Equating the deflection at C to zero, then gives the slope at A.
Slope and deflection at B can now be found using Equations 7.21 and 7.22, respectively.

SOLUTION

From the free-body diagram of the entire beam, the reaction forces at the supports can be found and the shear–moment diagram drawn,
as shown in Figure 7.46. The moment curve in region BC is a quadratic, and the areas under the curves is the sum of three area. Table C.2
in the Appendix lists the formulas for the areas and centroids.

(E1)

(E2)

(E3)

(E4)

The deflection at C can be written as 

v xC( ) v xA( ) v′ xA( ) xC xA–( ) 1
EI
------ AM1

xC x1–( ) AM2
xC x2–( )+[ ]+ + 0= =

v′ xA( ) L( ) 1
EI
------ PL2

16
--------- 2L

3
------⎝ ⎠

⎛ ⎞ PL2

16
--------- L

3
---⎝ ⎠

⎛ ⎞++ 0 or v′ xA( ) PL2

16EI
------------–==

v xB( ) v xA( ) v′ xA( ) xB xA–( ) 1
EI
------ AM1

xB x1–( )[ ]+ +=

PL2

16EI
------------– L

2
---⎝ ⎠

⎛ ⎞ 1
EI
------ PL2

16
--------- L

6
---⎝ ⎠

⎛ ⎞+ PL3

48
---------–==

y

xA B C

w (kips�in)

L (in) L (in)  Figure 7.45 Beam and loading in Example 7.13.
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L
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--- wL2

4
----------⎝ ⎠

⎛ ⎞ wL3
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----------= = x1

2
3
--- L( )=

A2
L
4
--- wL2

4
----------⎝ ⎠

⎛ ⎞ wL3

16
----------= = x2 L L

8
---+ 9L

8
------= =

A3
2
3
--- L

4
---⎝ ⎠

⎛ ⎞ wL2

32
----------⎝ ⎠

⎛ ⎞ wL3
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----------= = x3 L 5

8
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---⎝ ⎠
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  Figure 7.46 Shear–moment diagram in Example 7.13.
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(E5)

The deflections at the support are zero. Substituting v(xC) = 0 and v(xA) = 0 and the values of the areas and centroids in Equation (E5),
we can find the slope at A. 

(E6)

The deflection at B can be written as 

(E7)

Substituting the calculated values we obtain the deflection at B, 

(E8)

ANS.

COMMENTS 

1. The example demonstrates uses of the area moment method for finding slopes and deflection at a point in the beam. 
2. If the elastic curve needs to be determined for an indeterminate beam, we can use the area moment method to determine the reactions

and then the second-order differential equation to solve the problem. But if this approach is to have any computational advantage over
using the fourth-order differential equations, then it must be possible to draw the moment diagram quickly by inspection.

PROBLEM SET 7.3

Superposition 
7.57 Determine the deflection at the free end of the beam shown in Figure P7.20. 

7.58 Determine the reaction force at support A in Figure P7.34. 

7.59 Determine the deflection at point A on the beam shown in Figure P7.59 in terms of w, L, E, and I. 

7.60 Determine the reaction force and the slope at A for the beam shown in Figure P7.60, using superposition. 

7.61 Two beams of length L and bending rigidity EI, shown in Figure P7.61, are simply supported at the ends and are in contact at the
center. Determine the deflection at the center in terms of P, L, E, and I. 

v xC( ) v xA( ) v ′ xA( ) xC xA–( ) 1
EI
------ A1 xC x1–( )  A2+ xC x2–( ) A3 xC x3–( ) A4 xC x4–( ) ]+ +[+ +=

v ′ xA( ) 2L( ) 1
EI
------ wL3

8
---------- 2L 2L

3
------–⎝ ⎠

⎛ ⎞ wL3

16
---------- 2L 9L

8
------–⎝ ⎠

⎛ ⎞ wL3

192
---------- 2L 37L

32
---------–⎝ ⎠

⎛ ⎞  9wL3

64
-------------+ 2L 49L

32
---------–⎝ ⎠

⎛ ⎞ 0=+ ++ or v ′ xA( ) 7wL3

48EI
-------------–=

v xB( ) v xA( ) v ′ xA( ) xB xA–( ) 1
EI
------ A1 xB x1–( )[ ]+ +=

v xB( ) 7wL3

48EI
-------------– L( ) 1

EI
------ wL3

8
----------⎝ ⎠

⎛ ⎞ L 2L
3

------–⎝ ⎠
⎛ ⎞+=

v xB( ) 5wL4

48EI
-------------–=

y

x A

w

L L

wL
wL2

  Figure P7.59

y

x A

w (kips�in)

L (in) L (in) Figure P7.60

P

A

  Figure P7.61
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7.62 Two beams of length L and bending rigidity EI, shown in Figure P7.62, are simply supported at the ends and are in contact at the
center. Determine the deflection at the center in terms of w, L, E, and I.

7.63 A cantilever beam’s end rests on the middle of a simply supported beam, as shown in Figure P7.63. Both beams have length L and
bending rigidity EI. Determine the deflection at A and the reactions at the wall at C in terms of P, L, E, and I. 

7.64 A cantilever beam’s end rests on the middle of a simply supported beam, as shown in Figure P7.64. Both beams have length L and
bending rigidity EI. Determine the deflection at A and the reactions at the wall at C in terms of w, L, E, and I.

7.65 The end of one cantilever beam rests on the end of another cantilever beam, as shown in Figure P7.65. Both beams have length L and
bending rigidity EI. Determine the deflection at A and the reactions at the wall at C in terms of w, L, E, and I.

Discontinuity functions 
7.66 A gymnast with a mass of 60 kg stands in the middle on a wooden balance beam as shown in Figure P7.66. The modulus of elastic-
ity of the wood is 12.6 GPa. To bracket the elasticity of the support, two models are to be considered: (a) the supports are simply supported;
(b) the supports are built in ends. Determine the maximum deflection of the beam for both the cases. 

A

w

A

  Figure P7.62

A

B

D

CP

  Figure P7.63

A

B

D

C

w

  Figure P7.64

  Figure P7.65

C

A

B

w

3 m 3 m Figure P7.66

A B
150 mm

120 mm

80 mm
Cross section
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7.67 Solve Problem 7.17 using discontinuity functions. 

7.68 Solve Problem 7.18 using discontinuity functions. 

7.69 Solve Problem 7.19 using discontinuity functions. 

7.70 Solve Problem 7.20 using discontinuity functions. 

7.71 (a) Solve for the elastic curve for the beam and loading shown in Figure P7.23. (b) Determine the slope and deflection at point C.

7.72 Solve Problem 7.34 using discontinuity functions.

7.73 A beam is supported and loaded as shown in Figure P7.73. The spring constant in terms of beam stiffness is written as

, where α is a proportionality factor. Determine the extension of the spring in terms of α, w, E, I, and L. 

Area-moment method 
7.74 Using the area-moment method, determine the deflection in the middle for the beam shown in Figure P7.2. 

7.75 Using the area-moment method, determine the deflection in the middle of the beam shown in Figure P7.3. 

7.76 Using the area-moment method, determine the deflection and slope at the free end of the beam shown in Figure P7.4. 

7.77 Using the area-moment method, determine the slope at x = 0 and deflection at x = L of the beam shown in Figure P7.6.

7.78 Using the area-moment method, determine the slope at x = 0 and deflection at x = L of the beam shown in Figure P7.17.

7.79 Using the area-moment method, determine slope at x = 0 and deflection at x = L of the beam shown in Figure P7.18. 

7.80 Using the area-moment method, determine the slope at the free end of the beam shown in Figure P7.20. 

Stretch Yourself
7.81 To improve the load carrying capacity of a wooden beam (EW = 2000 ksi) a steel strip (Es = 30,000 ksi) is securely fastened to it as
shown in Figure P7.81. Determine the deflection at x =L. 

*7.6 CONCEPT CONNECTOR

Compared to a theory for the deflection of beams, our understanding of the strength of beams developed more intuitively, as
described in Section 6.7. The very term elastic curve for the deflection of a beam reflects the early impact of mathematics. 

k αEI L3⁄=

k

w

 Figure P7.73

B CA

L/2 L/2

6 ft6 ft

y w

x

 Figure P7.81

20 lb/in.

Steel

Wood

0.25 in

2 in

4 in
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7.6.1 History: Beam Deflection

In the seventeenth century, procedures were in use to draw tangents (similar to differentiation) and areas swept by curves
(similar to integration). Issac Newton (1642-1727) in 1666 realized that the two procedures were inverse of each other and
developed a method called fluxional method, which he circulated among some of his friends but did not publish. Newton’s
method did not receive much attention. Nine years later in Germany, Gottfried Wilhelm Leibniz (1646-1716) developed nearly
the same method independently. Leibniz’s notation caught on, especially in Europe, and so did his name for the method, differ-
ential calculus. Members of the Bernoulli family were in the forefront of finding applications for this new mathematical tool.
One of the applications they considered was the determination of the elastic curve. 

Jacob Bernoulli (1646–1716) and John Bernoulli (1667–1748) won acclaim for their mathematical work, which the French
Academy of Science recognized by making the brothers members in 1699. Daniel Bernoulli (1700–1782), John’s son, made
important contributions to hydrodynamics, while Leonard Euler (1707–1782), John’s pupil, introduced analytic methods used
today in practically every area of mathematics. His name is also associated with buckling theory, as we shall see in Chapter 11.
Both Daniel Bernoulli and Euler were pioneers in the theory of the elastic curve.

Jacob Bernoulli had started with Mariotte’s assumption that the neutral axis is tangent to the bottom (the concave side) of
the curve in a cantilever beam. From this he obtained a relationship between the curvature of the beam at any point and the
applied load, as described in Problem 7.46. Although Mariotte’s assumption proved incorrect, Bernoulli’s result was correct—
except for the value of the bending rigidity. Euler, on the suggestion of Daniel Bernoulli, approached the same problem by min-
imizing the strain energy in a beam, which yielded the correct relationship. Euler called the constant relating moment and curva-
ture the moment of stiffness (rather than bending rigidity), but he recognized that it had to be determined experimentally. As we
saw in Section 3.12.1, much later Thomas Young made a similar observation concerning axial rigidity, and the modulus of elas-
ticity is named after him. Such are the quirks of history.

Claude-Louis Navier (1785–1836), whose work on the concept of stress we met in Section 1.5, was the first to solve for
the deflection of statically indeterminate beams. Navier carried the extra unknown reactions in the second-order differential
equation and determined these reactions from conditions on the deflection and slopes at the support (see Problem 7.45). 

Jean Claude Saint-Venant, whose work we have seen in several chapters, analyzed the deflection of a cantilever beam
due to a force at the free end. He was the first to realize that it can be found without formally integrating the differential equa-
tions. This was the beginning of the area-moment method that we studied in Section 7.5*. Alfred Clebsch (1833–1872), in his
1862 book on elasticity, considered the deflection of a beam under concentrated forces (see Problem 7.47). His approach
later evolved into the discontinuity method, discussed in Section 7.4*. The English mathematician W. H. Macaulay formally
introduced the discontinuity functions in 1919.

Each aspect of beam theory thus had its own development. The normal stress in bending was relatively intuitive; shear
stress in bending was guided by experiment; and beam deflection was guided by mathematics. Together, they highlight the
importance of intuition, experimental evidence, and mathematical formalization. Engineers need them all to understand
nature. 

  Figure 7.47 Pioneers of beam deflection theories.
Daniel Bernoulli Leonard Euler
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7.7 CHAPTER CONNECTOR

In this chapter we saw several methods for determining the deflection of beams. The preferred approach treats beam deflec-
tion as a second-order boundary-value problem. However, other approaches may be needed if the distributed loads on the
beam are complicated functions or if we have only experimentally measured values for the distributed load. With the discon-
tinuity function, a single differential equation can represent the loading on the entire beam. This method should be used if the
beam loading changes in a discrete manner across the beam. The area-moment method, a graphical technique, can yield quick
solutions for the beam deflection and slope at a point if the moment diagram can be constructed easily. The superposition
method is another versatile design tool. It can be used for determinate or indeterminate beams, provided we know the beam
deflection and slope. Handbooks supply these values for many basic cases. 

Chapter 7 concludes the second major part of this book. Table 7.1 offers a synopsis of one-dimensional structural elements,
described in Chapters 4 through 7. The table highlights the essential elements common to these theories. They allow us to obtain
deformation, strains, and stresses at any point in a one-dimensional structural element. In the next three chapters we will use this
information in many ways.

In order to determine whether a structure will break under a given load, we need failure theories, which we study in
Chapter 10. To apply failure theories, we first need to determine the maximum normal and shear stresses at a point. Chapter 8,
on stress transformation, describes how to obtain these stresses from our one-dimensional theories. Only experiment, how-
ever, can render the final verdict on designs based on the one-dimensional theory. One popular experimental technique is to
measure strains using strain gages. And this technique requires a relationship between the strains obtained from one-dimen-
sional theory and the strains in any given direction. That relationship, known as strain transformation, is the topic of Chapter
9. Chapter 10 is the culmination of the first nine chapters. Here we study stresses and strains in structural elements subject to
combined axial, torsional, and bending loads. We also address the design and failure of structures and machine elements. 
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Table 7.1 Synopsis of one-dimensional structural theories.

Axial (Rods) Torsion (Shafts) Symmetric Bending (Beams)

Displacements/
deformation

Strains

Stresses

Internal forces and 
moments

Sign convention

Stress formulas

Deformation formulas

EA = axial rigidity GJ = torsional rigidity
EIzz = bending rigidity

z(w)

x(u)

y(v)
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v 0 w 0==
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du
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σxx Eεxx Edu
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POINTS AND FORMULAS TO REMEMBER
• The deflected curve of a beam represented by v(x) is called elastic curve.

• (7.1) (7.4) (7.5)

• where v is the deflection of the beam at any x and is positive in the positive y direction; Mz is the internal bending 
moment; Vy is the internal shear force; p is the distributed force on the beam and is positive in the positive y direction; EIzz 

is the bending rigidity of the beam; and  is the curvature of the beam. 
• The mathematical statement listing all the differential equations and all the conditions necessary for solving for v(x) is 

called boundary-value problem for beam deflection.
• Boundary conditions for second-order differential equations: 

Built-in end at xA  

Simple support at xA  

Smooth slot at xA  

• Continuity conditions at xj: 

• Boundary conditions for fourth-order differential equations are determined at each boundary point by specifying: 
(7.6) 

• In fourth-order boundary-value problems, at each point xj where the differential equation changes, the continuity condi-
tions and equilibrium conditions must be specified.

• The superposition method is a versatile design tool that can be used for solving problems of determinate and indetermi-
nate beams provided the beam deflection and slope values are available for many basic cases, such as in a handbook.

• In the discontinuity function method a single differential equation and conditions on deflection and slopes at support 
describe the complete boundary-value problem.

• Discontinuity functions: 

• Differentiation formulas:

• Integration formulas: 

• The area-moment method is a graphical technique that can yield quick solutions of beam deflection and slope at a point, 
if the moment diagram can be constructed easily. 

(7.21)

(7.22)

Mz EIzz
d2v
dx2
--------= Vy xd

d EIzz
d2v
dx2
--------⎝ ⎠
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x2
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d
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xd
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xd
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CHAPTER EIGHT

STRESS TRANSFORMATION

Learning objectives
1. Learn the equations and procedures of relating stresses in different coordinate systems (on different planes) at a point.

2. Visualize planes passing through a point on which stresses are given or are being found, in particular the planes of
maximum normal and shear stress.

_______________________________________________

Figure 8.1 shows failure surfaces of aluminum and cast iron members under axial and torsional loads. Why do different mate-
rials under similar loading produce different failure surfaces? If we had a combined loading of axial and torsion, then what
would be the failure surface, and which stress component would cause the failure? The answer to this question is critical for
the successful design of structural members that are subjected to combined axial, torsional, and bending loads. In Chapter 10
we will study combined loading and failure theories that relate maximum normal and shear stresses to material strength. In
this chapter we develop procedures and equations that transform stress components from one coordinate system to another at
a given point.

Stress transformation can also be viewed as relating stresses on different planes that pass through a point. The outward 
normals of the planes form the axes of a coordinate system. Thus relating stresses on different planes is equivalent to relating 
stresses in different coordinate systems. We will use both viewpoints in this chapter of stress transformation.

P P

xxxx
x

x

T T

Cast iron

Aluminum

(b)(a)

 Figure 8.1 Failure surfaces. (a) Axial load. (b) Torsional load. (Specimens courtesy Professor J. B. Ligon.)
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8.1 PRELUDE TO THEORY: THE WEDGE METHOD 

In this chapter we will study three methods of stress transformation. The wedge method, described in this section, is used to
derive stress transformation equations in the next section. The stress transformation equations are then manipulated to gener-
ate a graphical procedure called Mohr’s circle, which is described in Section 8.3.

Two coordinate systems will be used in this chapter. First, the entire problem is described in a fixed reference coordinate 
system called the global coordinate system. We usually relate internal forces and moments to external forces and moments in 
the global coordinate system. The internal quantities are then used to obtain stresses, such as axial stress, torsional shear 
stress, and bending normal and shear stresses. And second, a local coordinate system that can be fixed at any point on the 
body. The orientation of the local coordinate system is defined with respect to the global coordinate. In all two-dimensional 
problems in this book, the local coordinate system will be the n, t, z coordinate system.

• The n direction is the direction of the outward normal to the plane on which we are finding the stresses.

• The z direction is identical to the z direction of the global coordinate system.

• The tangent t direction can be found from the right-hand rule, as shown in Figure 8.2. Just as x cross y yields z, in a

similar manner n cross t yields z. With the thumb of the right hand pointed in the known z direction, the curl of the fin-

gers is from the known n direction toward the t direction.

Alternatively, the positive t direction can be found by curling the fingers of the right hand from the z direction toward the 
n direction. The positive t direction is then given by the direction of the thumb. With the n direction as positive in the outward 
normal direction, positive shear stress τnt is in the positive tangent direction and negative τnt will be in the negative tangent 
direction.

In this section we restrict ourselves to plane stress problems (see Sections 1.3.2 and 3.6). We will consider only those 
inclined planes that can be obtained by rotation about the z axis, as shown in Figure 8.2b.

8.1.1 Wedge Method Procedure

The wedge method has five steps shown below, and elaborated by applications of Examples 8.1 and 8.2.
Step 1: A stress cube with the plane on which stresses are to be found, or are given, is constructed. 
Step 2: A wedge is constructed from the following three planes: 

1. A vertical plane that has an outward normal in the x direction. 

2. A horizontal plane that has an outward normal in the y direction.

3. The specified inclined plane on which we either seek or are given the stresses.

Establish a local n, t, z coordinate system using the outward normal of the inclined plane as the n direction. All the known and
unknown stresses are shown on the wedge. The diagram so constructed will be called a stress wedge.
Step 3: Multiply the stress components by the area of the planes on which the stress components are acting, to obtain the
forces acting on that plane. The wedge with the forces drawn will be referred to as the force wedge. 

Horizontal plane

Outward normal to 
inclined plane

Inclined plane

V
er

tic
al

 p
la

ne

x

x

n �

�

�

nt
t

y

y

z

z

(b)(a)  Figure 8.2 Local and global coordinate systems.
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Step 4: Balance forces in any two directions to determine the unknown stresses. We can write equilibrium equations on the
force wedge because the wedge represents a point on a body that is in equilibrium. 
Step 5: Check the answer intuitively by considering each stress component individually. By inspection, we decide whether
the stress component will produce tensile or compressive normal stress on the incline and whether it will produce positive or
negative shear stress on the incline.

EXAMPLE 8.1
A steel beam in a bridge was repaired by welding along a line that is 35ο to the axis of the beam. The normal stress near the bottom of the
beam is estimated using beam theory and is shown on the stress cube. Determine the normal and shear stress on the plane containing the
weld line.

PLAN
Step 1 of the procedure outlined in Section 8.1.1 is complete, as shown in Figure 8.3. We follow the remaining steps to solve the problem.

SOLUTION
Step 2: We construct a wedge from the horizontal, vertical, and inclined plane, as shown in Figure 8.4a. The outward normal to the
inclined plane is drawn, and knowing the positive z direction, we establish the positive t direction using the right-hand rule for the n, t, z
coordinates. On the inclined plane we can show the normal stress σnn and the shear stress τnt . From triangle ABC we note that
Δy = Δt sin35o. 

Step 3: We multiply the stresses σnn and τnt by the area of the incline BCDE to obtain the forces in the n and t directions, respectively.
Similarly, we multiply the stress of 150 MPa by the area of the plane ABEF to obtain the force in the x direction. These forces are shown
on the force wedge in Figure 8.4b.
Step 4: As the unknowns are in the n and t directions, we balance the forces in the n and t directions. The components of force Fx in the
n and t directions are shown on the force wedge in Figure 8.4b. Balancing forces in the n direction, we obtain

(E1)
ANS.

In a similar manner, balancing the forces in the t direction, we obtain
(E2)

ANS.

Step 5: We check the answer using intuitive arguments. The surface ABC in Figure 8.3 tends to move away from the rest of the cube.
Hence the material resistance opposing it results in a tensile stress, as seen. A more visual way is to imagine the inclined plane in Figure

z

x

y

BC

xxxx 150 MPa

xxxx

35

Weld surface

(b)(a)

y

xz

  Figure 8.3 Stress cube at a point on a bridge.

B

A

F

E

D

t

z

C

�y � �t sin 35

Fn � �nn �t �z 

Ft � �nt �t �z 

�z

(a)

n
�nn

�nt�t

�z

150 MPa

B

A

F

E

D

C

35�

(b)

Fx � 150(�t sin 35) �z

Fx sin 35

Fx cos 35

35� 35�

o

o

o

o

 Figure 8.4 Wedges in Example 8.1.
(a) Stress wedge (b) Force wedge

σnn Δt Δz 150 Δt 35° Δzsin( ) 35°sin– 0= or σnn 150 35°sin 35°sin–( ) Δt Δz = σnn 49.35–( ) Δt Δz 0=

σnn 49.35 MPa (T)=

τnt Δt Δz 150 Δt 35° Δzsin( ) 35°cos– 0= or τnt 150 35°sin 35°cos–( ) Δt Δz τnt 70.48–( ) Δt  Δz 0= =

τnt 70.48 MPa (T)=
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8.3 as a glued surface. Because of σxx, the two surfaces on either side of the glue are pulled apart; hence the glue is put into tension. Sim-
ilar σxx will cause the wedge ABC to slide upward relative to the rest of the cube; hence the material resistance (like friction) will be
downward, resulting in a positive shear stress, as seen.

COMMENTS
1. In Equations (E1) and (E2) the dimensions Δt and Δz were common factors and did not affect the final answer. In other words, the dimen-

sions of the stress cube are immaterial. This is not surprising, as the stress cube is a visualization aid symbolically representing a point.
Only the relative orientation of the plane is important.

2. The stress cube in Figure 8.2 and the stress and force wedges in Figure 8.3 can be represented in two dimensions, as shown in Figure
8.5. These are easier to draw and work with. But once more it must be emphasized that stress is a distributed force and not a vector, as
depicted in Figure 8.5b. Force equilibrium can be done only on the force wedge

3. In constructing the stress wedge we took the lower wedge. An alternative approach is to take the upper wedge, as shown in Figure 8.6.
This is possible as the dimensions of the stress cube are immaterial. Only the orientation of the planes is important.

4. Some writing could be saved by taking Δt = 1 and Δz = 1, as these terms always drop out. But the geometric visualization may
become more difficult in the process.

EXAMPLE 8.2
Fibers are oriented at 30° to the x axis in a lamina of a composite1 plate, as shown Figure 8.7. Stresses at a point in the lamina were found
by the finite-element method2 as

In order to assess the strength of the interface between the fiber and the resin, determine the normal and shear stresses on the plane con-
taining the fiber.

PLAN
In Step 1 of the procedure outlined Section 8.1.1, we can draw the stress cube with an plane inclined at 30ο and then follow the remaining
steps of the procedure.

1See Section 3.12.3 for a brief description of composite materials.
2See Section 4.8 for a brief description of the finite-element method.

  Figure 8.5 Wedge method in Example 8.1. (a) stress cube; (b) stress wedge; (c) force wedge.

(a)

35�

A

C B

150 MPa

(b)

A

BC

�y � �t sin 35

�nn

�nt

35�

150 MPa

(c)

Fn � �nn �t �z 

Ft � �nt �t �z 

A

BC

35�

Fx � 150(�t sin 35) �z

Fx sin 35

Fx cos 3535�

�t

o

o

o

o

  Figure 8.6 Alternative approach in Example 8.1. (a) stress cube; (b) stress wedge; (c) force wedge.
(c)(b)

G

35�

A

C

�y � �t sin 35

�t�nn

�nt
150 MPa

C

G

(a)

150 MPa

35�

35� A

B

G A
35�

Fn � �nn �t �z 

Ft � �nt �t �z 

C

35�

Fx � 150 (�t sin 35) �z

Fx sin 35

Fx cos 35o

o

o

o

σxx  = 30 MPa (T) σyy  = 60 MPa (C) τxy = 50 MPa

  Figure 8.7 Stresses in lamina in Example 8.2. x

y

30o



8 378Mechanics of Materials: Stress TransformationM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

SOLUTION
Step 1: We draw a stress cube in two dimensions for the given state of stress, and the plane inclined at 30° counterclockwise to the x
axis, as shown in Figure 8.8a  

Step 2: We can choose wedge ACA or wedge ABA as a stress wedge. Figure 8.8b shows the stress wedge ACA with a local n, t, z coordi-
nate system.
Step 3: We assume the length of the inclined plane to be Δt. From geometry we see that Δx = Δt cos 30o and Δy = Δt sin 30o. If we
assume that the dimension of the cube out of the paper is Δz, we get the following areas: inclined plane Δt Δz, vertical plane Δy Δz, and
horizontal plane Δx Δz. The stresses are converted into forces by multiplying by the area of the plane, and a force wedge is drawn as
shown in Figure 8.8c.
Step 4: We can balance forces in any two directions. We choose to balance forces in the n and t directions as the unknowns are in the n
and t directions. Figure 8.8d shows the resolution of the forces in the x, y coordinates to n, t coordinates.
The forces in the x and y directions in Figure 8.8c that need resolution are:

(E1)

(E2)
From Figure 8.8c and Figure 8.8d, the equilibrium of forces in the n direction yields, 

 or

 or

(E3)
ANS.

The shear stress can be similarly calculated by equilibrium in the t direction, 
 or

 or

(E4)
ANS.

Step 5: We can check the answers intuitively. Consider each stress component individually and visualize the inclined plane as a glue
line. The rectangles shown in Figure 8.9 are for purposes of explanation. One can go through the arguments mentally without drawing
these rectangles.
Figure 8.9 shows that the right surface (wedge) and the left surface will move:

• Apart due to σxx—putting the glue in tension
• Into each other due to σyy—putting the glue in compression
• Into each other due to τxy—putting the glue in compression
• Into each other due to τyx—putting the glue in compression.

Thus the normal stress in the glue (on the inclined plane) is expected to be in compression, which is consistent with our answer.
Figure 8.9 shows that the right surface (shaded wedge), with respect to the left surface, will slide:

• Upward due to σxx; therefore the shaded wedge will have a positive (downward) shear stress
• Upward due to σyy; therefore the right wedge will have a positive (downward) shear stress
• Upward due to τxy; therefore the right wedge will have a positive (downward) shear stress

 Figure 8.8  (a) Stress cube. (b) Stress wedge. (c) Force wedge (d) Resolution of force components.
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(a) (b) (c) (d)

Fx [ 30 MPa( )(Δt 30°sin )Δz 50 MPa( )(Δt 30°cos )Δz]– 28.301 MPa( ) Δt Δz( )–= =

Fy [ 60 MPa( ) Δ t 30°cos( )Δz 50 MPa( ) Δ t 30°sin( ) Δz]+ 76.961 MPa( ) Δ t Δz( )= =

σA Δt Δz( ) Fx 30°sin– Fy 30° 0=cos+

σA Δt Δz( ) 28.301 MPa( ) Δt Δz( )–[ ] 30°sin– 76.961 MPa( ) Δt Δz( )[ ] 30° 0=cos+

σA Δt Δz( ) 14.15 MPa( ) Δt Δz( ) 66.65 MPa( ) Δt Δz( ) σA 80.8MPa+[ ] Δt Δz( )=+ + 0=
σA 80.8 MPa (C)=

τA Δt  Δz( )  Fx 30°cos– Fy 30°sin– 0=

τA Δt  Δz( )  28.301 MPa( ) Δt Δz( )–[ ] 30°cos– 76.961 MPa( ) Δt Δz( )[ ] 30°sin– 0=

τA Δt  Δz( )  24.509 MPa( ) Δt  Δz( ) 38.481 MPa( ) Δt  Δz( )–+ τA 13.971MPa( )–[ ] Δt  Δz( ) 0= =
τA 14.0 MPa=

�xx only �yy only

  Figure 8.9 Intuitive check.

�xy only �yx only
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• Downward due to τyx; therefore the right wedge will have a negative (upward) shear stress.
Thus the shear stress on the incline is expected to be positive, which is consistent with our answer.

COMMENTS
1. In the intuitive check, three of the components gave one answer, whereas the fourth gave an opposite answer. What happens if two intui-

tive deductions are positive, two intuitive deductions are negative, and the stress components are nearly equal in magnitude? The ques-
tion emphasizes that intuitive reasoning is a quick and important check on results, but one must be cautious with the conclusions.

2. We could have balanced forces in the x and y directions, in which case we have to find the x and y components of the normal and tan-
gential forces on the force wedge. After removing the common factors Δt Δz we would obtain

Solving these two equations, we obtain the values of σA and τA as before. By balancing forces in the n, t directions we generated one
equation per unknown but did extra computation in finding components of forces in the n and t directions. By balancing forces in the x
and y directions, we did less work finding the components of forces, but we did extra work in solving simultaneous equations. This
shows that the important point is to balance forces in any two directions, and the direction chosen for balancing the forces is a matter of
preference.
3. Figure 8.8 is useful in reducing the algebra when forces are balanced in the n and t directions. But you may prefer to resolve compo-

nents of individual forces, as shown in Figure 8.10, and then write the equilibrium equations. The method is a little more tedious, but
has the advantage that the intuitive check can be conducted as one writes the equilibrium equations as follows.

The normal stress σA on the incline will be:
• Tensile due to σxx; Compressive due to σyy; Compressive due to τxy;Compressive due to τyx.

As σxx is the smallest stress component, it is not surprising that the total result is a compressive normal stress on the inclined plane.
The shear stress on the incline will be:

• Positive due to σxx;Positive due to σyy; Positive due to τxy;Negative due to τyx.
We expect the net result to be positive shear stress on the incline.

PROBLEM SET 8.1

Stresses by inspection
8.1 In Figure P8.1, determine by inspection (a) if the normal stress on the incline AA is in tension, compression, or cannot be determined; (b)
if the shear stress on the incline AA is positive, negative, or cannot be determined. 

8.2 In Figure P8.2 determine by inspection (a) if the normal stress on the incline AA is in tension, compression, or cannot be determined; (b)
if the shear stress on the incline AA is positive, negative, or cannot be determined. 

σA 30°sin τA 30°cos+ 50 MPa( )– 30°cos 30 MPa( ) 30° 28.30 MPa–=sin+=

σA 30°cos τA– 30°sin 50 MPa( )– 30°sin 60 MPa( ) 30°cos– 76.96 MPa–= =

  Figure 8.10 Alternative force resolution.
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8.3 In Figure P8.3, determine by inspection (a) if the normal stress on the incline AA is in tension, compression, or cannot be determined; (b)
if the shear stress on the incline AA is positive, negative, or cannot be determined.

8.4 In Figure P8.4, determine by inspection (a) if the normal stress on the incline AA is in tension, compression, or cannot be determined; (b)
if the shear stress on the incline AA is positive, negative, or cannot be determined.

8.5 In Figure P8.5, determine by inspection (a) if the normal stress on the incline AA is in tension, compression, or cannot be determined; (b)
if the shear stress on the incline AA is positive, negative, or cannot be determined.

8.6 In Figure P8.6, determine by inspection (a) if the normal stress on the incline AA is in tension, compression, or cannot be determined; (b)
if the shear stress on the incline AA is positive, negative, or cannot be determined.

8.7 In Figure P8.7, determine by inspection (a) if the normal stress on the incline AA is in tension, compression, or cannot be determined; (b)
if the shear stress on the incline AA is positive, negative, or cannot be determined.
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�

  Figure P8.2
x

y

30�

A

A

�

 Figure P8.3 x

y

�

�

60�

A

A

 Figure P8.4
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8.8 In Figure P8.8, determine by inspection (a) if the normal stress on the incline AA is in tension, compression, or cannot be determined; (b)
if the shear stress on the incline AA is positive, negative, or cannot be determined.

8.9 In Figure P8.9, determine by inspection: (a) if the normal stress on the incline AA is in tension, compression, or cannot be determined; (b)
if the shear stress on the incline AA is positive, negative, or cannot be determined.

8.10 Determine the normal and shear stresses on plane AA in Problem 8.1 for σ = 10 ksi.

8.11 Determine the normal and shear stresses on plane AA in Problem 8.4 for σ = 10 ksi.

8.12 Determine the normal and shear stresses on plane AA in Problem 8.6 for τ = 10 ksi.

8.13 Determine the normal and shear stresses on plane AA in Problem 8.7 for σ = 60 MPa.

8.14 Determine the normal and shear stresses on plane AA in Problem 8.9 for τ = 60 MPa.

8.15 A shaft is adhesively bonded along the seam as shown in Figure P8.15. By inspection determine whether the adhesive will be in tension
or in compression.

8.16 A shaft is adhesively bonded along the seam as shown in Figure P8.16. By inspection determine whether the adhesive will be in tension
or in compression .

8.17 A shaft is adhesively bonded along the seam as shown in Figure P8.17. By inspection determine whether the adhesive will be in tension
or in compression.
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8.18 A shaft is adhesively bonded along the seam as shown in Figure P8.18. By inspection determine whether the adhesive will be in tension
or in compression.

8.19 Determine the normal and shear stresses on plane AA shown in Figure P8.19.

8.20 Determine the normal and shear stresses on plane AA shown in Figure P8.20.

8.21 Determine the normal and shear stresses on plane AA shown in Figure P8.21.

8.22 The stresses at a point in plane stress are σxx = 45 MPa (T), σyy = 15 MPa (T), and τxy = −20 MPa. Determine the normal and shear
stresses on a plane passing through the point at 28° counterclockwise to the x axis.

8.23 The stresses at a point in plane stress are σxx = 45 MPa (T), σyy = 15 MPa (C), and τxy = −20 MPa. Determine the normal and shear
stresses on a plane passing through the point at 38° clockwise to the x axis.

8.24 The stresses at a point in plane stress are σxx = 10 ksi (C), σyy = 20 ksi (C), and τxy = 30 ksi. Determine the normal and shear stresses on a
plane passing through the point that is 42° counterclockwise to the x axis.

8.25 A cast-iron shaft of 25-mm diameter fractured along a surface that is 45ο to the axis of the shaft. The shear stress τ due to torsion is as shown
in Figure P8.25. If the ultimate normal stress for the brittle cast-iron material is 330 MPa (T), determine the torque that caused the fracture.

Design problems
8.26 In a wooden structure a member was adhesively bonded along a plane 40° to the horizontal plane, as shown in Figure P8.26. The
stresses at a point on the bonded plane due to a load P on the structure, were estimated as shown, where P is in lb. If the adhesive strength in

  Figure P8.18
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tension is 500 psi and its strength in shear is 200 psi, determine the maximum permissible load the structure can support without breaking the
adhesive joint.

Stretch yourself
In three dimensions, the area of the inclined plane A can be related to the areas of the surfaces of the stress cube using the direction cosines of
the outward normals, as shown in Figure P8.26.

These relationships can be used to convert the stress wedge into a force wedge. Using this information, solve Problems 8.27 and 8.28. (Hint: A
component of a vector in a given direction can be found by taking the dot [scalar] product of the vector with a unit vector in the given direction.)

8.27 The stresses at a point are σxx = 8 ksi (T), σyy = 12 ksi (T), and σzz = 8 ksi (C). Determine the normal stress on a plane that has outward
normals at 60°, −60°, and 45° to the x, y, and z directions, respectively.

8.28 The stresses at a point are τxy = 125 MPa and τxz = −150 MPa. Determine the normal stress on a plane that has outward normals at 72.54°,
120°, and 35.67° to the x, y, and z directions, respectively.

8.2 STRESS TRANSFORMATION BY METHOD OF EQUATIONS

We follow the wedge method procedure described in Section 8.1.1 with variables in place of numbers to develop equations
that relate the stresses in the Cartesian coordinate system to the stresses on an arbitrary inclined plane. We once more consider
only those planes that can be obtained by rotating about the z axis, as shown in Figure 8.2a. The outward normal to the
inclined plane makes an angle θ with the x axis. The angle θ is considered positive counterclockwise from the x axis, as shown
in Figure 8.11a.

Step 1: We draw the stress cube with all positive stress components as shown in Figure 8.11a. From triangle OAC in Figure
8.11a we deduce that the angle OAC is 90° − θ. From triangle OAB we conclude that the angle OBA is θ. 

  Figure P8.26
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Step 2: The stress wedge OAB is drawn as shown in Figure 8.11b. Positive normal σnn and shear stress τnt are drawn on the
inclined plane.
Step 3: We obtain the force wedge by multiplying the stresses by the areas of the planes on which they act as shown in Figure 8.11c.
Step 4: To write the equilibrium equations we use Figure 8.11d for resolving forces from the x and y direction to n and t direc-
tion. The forces in the x and y direction in Figure 8.11c that need resolving are:

By equilibrium of forces in the n direction on the force wedge in Figure 8.11c, we obtain
 or

Because Δt Δz is a common factor, these equations simplify to

(8.1)

Similarly by equilibrium of forces in the t direction on the force wedge in Figure 8.11c, we obtain the shear stress,
 or

, or

(8.2)

We can find σtt by substituting 90 + θ in place of θ into Equation (8.1),

(8.3)

Equations (8.1) through (8.3) transform stresses from the x and y coordinate system into n and t coordinate system that is
obtained by rotating by an angle θ in the counterclockwise direction. 

8.2.1 Maximum Normal Stress

In Section 3.1we observed that a brittle material usually ruptures when the maximum tensile normal stress exceeds the ulti-
mate tensile stress of the material. Cracks in the material propagate due to tensile stress. Adhesively bonded material debonds
due to tensile normal stress, which is called peel stress. Similarly, failure may occur due to a maximum compressive normal
stress because of the phenomenon called buckling, which is discussed in Chapter 11. In this section we develop equations for
maximum tensile and compressive normal stresses.

In Equation (8.1) the stresses σxx, σyy, and τxy are assumed known. Thus Equation (8.1) expresses σnn as a function of θ. 
From calculus we know that the maximum or minimum of a function exists where the first derivative is zero. Before perform-
ing the differentiation we rewrite Equations (8.1) and (8.2) in terms of the double angles of 2θ 3 as

(8.4)

(8.5)

Let θ = θp be the angle of the outward normal of the plane on which the maximum or minimum normal stress exists. Dif-
ferentiating Equation (8.4), we obtain

 or

(8.6)

3cos2 θ = (1 + cos 2θ)/2, sin2 θ = (1 − cos 2θ)/2, cos2 θ − sin2 θ = cos 2θ, and cos θ sin θ = (sin 2θ)/2.

Fx σ– xx θ Δcos t Δz τyx θ Δt Δzsin– σxx θcos  τyx θ  sin+( )– ΔtΔz( )= =

Fy σ– yy θ Δt Δz τxy θ cos Δt Δz–sin σyy θ  sin τxy θ cos  +( )– ΔtΔz( )= =

σnn Δt Δz( ) Fx θcos Fy θsin+ + 0=“

σnn Δt Δz( ) σxx θcos  τyx θ sin+( )– ΔtΔz( )[ ] θcos σyy θ  sin τxy θ cos+( )– ΔtΔz( )[ ] θsin+ + 0=

σnn σxx θ2cos σyy θ2sin 2τxy θ θcossin+ +=

τnt Δt Δz −Fx θsin Fy θ 0=cos+

τnt Δt Δz − σxx θcos  τyx θ sin+( )– ΔtΔz( )[ ] θsin + σyy θ  sin τxy θ cos+( )– ΔtΔz( )[ ] θ 0=cos+

τnt σxx– θ θsincos σyy θ θ + τxy θ2cos θ2sin–( )cossin+=

σtt σxx θ2sin σyy θ2cos 2τxy θ θsincos–+=

σnn
σxx σyy+

2
--------------------- σxx σyy–

2
--------------------- 2θcos τxy 2θsin+ +=

τnt
σxx σyy–

2
---------------------–  2θsin τxy 2θcos+=

dσnn

dθ
-----------

θ=θp

–2
σxx σyy–( )  2θsin

2
------------------------------------------- 2τxy 2θcos+

θ=θp

 = 0=

2θptan
2τxy

σxx σyy–
---------------------=
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We note that tan (180 + 2θp) = tan 2θp. Thus there are two angles—180° apart—that satisfy Equation (8.6), as shown in Figure
8.12: θ1 = θp and θ2 = 90 + θp. Then from Figure 8.12 we obtain the following where the plus sign is taken with subscript 1
and the minus sign with subscript 2:

Let the normal and shear stresses on planes with outward normals in the θ1 and θ2 directions be represented by σ1, τ1, and σ2,
τ2, respectively. Substituting the sines and cosines of 2θ1 and 2θ2 into Equations (8.4) and (8.5), we obtain

(8.7)

(8.8)

where σ1,2 represents the two stresses σ1 and σ2 with the plus sign to be taken with σ1 and the minus sign with σ2. Equation
(8.8) shows that the planes on which σ1 and σ2 act are planes with zero shear stress. Planes with zero shear stresses are called
principal planes. The normal direction to the principal planes is referred to as the principal direction or principal axis, and
the angles the principal directions makes with the global coordinate system are called principal angles. 

The normal stress on a principal plane is called the principal stress and the greatest principal stress is called principal 
stress 1. In defining greatest principal stress both the magnitude and the sign are considered. A stress of −2 MPa is greater 
than −10 MPa. Alternatively, if normal stresses are shown on an axis with negative values to the left of the origin and positive 
values to the right, then the rightmost normal stress is principal stress 1 denoted by σ1.

The stresses in Equation (8.7) represent the maximum or minimum normal stress at a point. This implies that principal 
stresses are the maximum and minimum normal stresses at a point. Furthermore, the plane of principal stress 1 (θ1) is 90° 
away from the plane of principal stress 2 (θ2). In other words, principal planes are orthogonal. Adding Equation (8.1), Equa-
tion (8.3), and the principal stresses in Equation (8.7), we obtain

(8.9)

Equation (8.9) shows that the sum of the normal stresses in an orthogonal coordinate system at a point does not depend on 
the orientation of the coordinate system in other words is invariant. 

In summary:
• The sum of the normal stresses is invariant with the coordinate transformation.

• Principal stresses are maximum or minimum normal stresses

• Principal planes and principal directions are orthogonal.

8.2.2 Procedure for determining principal angle and stresses

Equation (8.6) will give us either θ1 or θ2. Thus it is not clear whether the principal angle found from Equation (8.6) is 
associated with σ1 or σ2. The problem can be resolved by the following procedure:
Step 1: Find θp from Equation (8.6).
Step 2: Substitute θp in Equation (8.1) to find a principal stress.
Step 3: Find the other principal stress from Equation (8.9). 
Step 4: Decide which of the two principal stresses is principal stress 1.
Step 5: If the stress obtained from substituting θp into Equation (8.1) yields principal stress 1, then we report θp as principal
angle 1 θ1, otherwise we subtract (or add) 90° from θp and report the result as principal angle 1.

R
σxx σyy–

2
---------------------⎝ ⎠

⎛ ⎞
2

τxy
2+= 2θ1,2sin τxy R⁄±= 2θ1,2cos

σxx σyy–
2

--------------------- R⁄±=

�xy

��xy
R

R

2�p

2�p

�xx � �yy
2�

�xx � �yy
2�

 Figure 8.12 Two angles of principal planes.

σ1, 2
σxx σyy+

2
----------------------

σxx σyy–
2

---------------------⎝ ⎠
⎛ ⎞

2

τxy
2+±=

τ1, 2 0=

σnn σtt+ σxx σyy+ σ1 σ2+= =
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Step 6: Use Equation (8.7) as a check on the results.
From the definition of plane stress,4 the plane with the outward normal in the z direction has zero shear stress. Therefore this
plane is a principal plane and the normal stress σzz is a principal stress of zero value. In plane strain, the shear strain and hence
shear stresses with subscript z are also zero. Hence in plane strain too, σzz is the third principal stress, but it is not zero. Using
Figure 3.27, we can summarize as 

(8.10)

The value of the third principal stress affects the maximum shear stress at a point, as will be seen in the next two sections.

8.2.3 In-Plane Maximum Shear Stress

Ductile materials yield when the maximum shear stress exceeds the yield stress. In bonded members, such as lap joints, the
loads are transferred from one member to another through shear and are designed on the basis of the shear strength of the
adhesive. In this section we develop equations for maximum shear stress. 

In determining the maximum shear stress from Equation (8.2) we are considering only planes that can be obtained from 
rotation about the z axis, as shown in Figure 8.2. Thus we are not considering all possible planes that may pass through the 
point. The maximum shear stress on a plane that can be obtained by rotating about the z axis is called in-plane maximum 
shear stress. Let θ = θs be the plane at which the in-plane maximum shear stress exists. By differentiating Equation (8.5) we 
get

(8.11)

Once more, two angles can satisfy Equation (8.11). Letting  = θs and  = 90 + θs, then from Figure 8.13 we obtain

Let τ12 and τ21 be the shear stresses on the two planes defined by the angles  and . We can find the sines and cosines 

of 2  and 2 , as shown in Figure 8.13, and substitute these quantities into Equations (8.4) and (8.5) to obtain

(8.12)

where τp is the in-plane maximum shear stress obtained from the magnitude of the equation τ12 = −τ21 = R.
From Equations (8.6) and (8.11) we can obtain

Therefore θs = 45 + θp. In other words, maximum in-plane shear stress exists on two planes, each of which is 45° away from
the principal planes.

4See Section 1.3.2 for a definition of plane stress and Section 2.5.1 for a definition of plane strain. See Section 3.6 for the difference between
plane stress and plane strain.

σ3 σzz
0           plane stress
ν σxx σyy+( ) ν σ1 σ2+( ) plane strain=⎩

⎨
⎧

= =

dτnt

dθ
---------

θ=θs

2
σxx  σyy–( ) 2θcos

2
--------------------------------------------  2τxy 2θsin––

θ=θs

0= = or 2θstan
σxx σyy–

2τxy
---------------------–=

θ 1 θ 2

R
σxx σyy–

2
---------------------⎝ ⎠

⎛ ⎞
2

τxy
2+= 2θ 1,2sin

σxx σyy–
2

--------------------- R⁄+−= 2θ 1,2cos τxy R⁄±=

2�s � 2�̄1
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2�̄2
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��xy

R

R
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  Figure 8.13 Two angles of maximum shear stress planes.
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2
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8.2.4 Maximum Shear Stress

The maximum shear stress at a point is the absolute maximum shear stress that acts on any plane passing through the point. 
In the previous section we saw that as we rotate the coordinate system about the z axis (the third principal axis), the shear 

stress varies from a zero value, at a principal plane. It reaches a maximum value, given by Equation (8.10), on a plane that is 
45° to a principal plane. Will this observation also be true if we rotate about principal axis 1 or 2? The answer is yes, because 
there is no distinction between the three principal planes passing through a point. On a cube six possible diagonal surfaces are 
at 45° to the cube surfaces. We consider each of the three rotations and show all the possibilities of maximum shear stress on 
the stress cube in Figures 8.14 through 8.14.

Figure 8.14 shows the six possible planes that are 45° to principal planes on which the maximum shear stress may exist if 
rotation is restricted about one of the three principal axis. 

The maximum shear stress at a point is the largest in magnitude of the three values obtained from Figures 8.14. It is written
conveniently as

(8.13)

Equation (8.13) shows that the maximum shear stress value depends on principal stress 3. Equation (8.10) shows that the 
value of principal stress 3 depends on whether a plane stress or plane strain exists. In other words, the maximum shear stress 
value may be different in plane stress and in plane strain. 

EXAMPLE 8.3
Solve Example 8.2 using Equations (8.1) and (8.2). Also determine the principal stresses, principal angle 1, and the maximum shear
stress at the point. 

PLAN
(a) We can determine the angle of the outward normal to the inclined plane containing the fiber. We can then use Equations (8.1) and
(8.2) to find the normal and shear stresses on the plane. (b) Principal stress 3 is zero because the point is in plane stress. We follow the
procedure in Section 8.2.2 to determine the principal angle 1 and principal stresses 1 and 2. (c) We can find the maximum shear stress
from Equation (8.13).

SOLUTION
(a) The plane AA containing the fiber is at an angle of 30° from the x axis. Hence the direction of the outward normal is θ = 120ο, as
shown in Figure 8.15. Substituting in Equations (8.1) and (8.2), we obtain

p1

(a)

p2

p1

p3

(b)

p3

p2

Figure 8.14 Planes of maximum shear obtained by (a) rotating about principal axis 1. (b) by rotating about principal axis 2. (c) by rotat-
ing about principal axis 3.

τ23 τ32–
σ2 σ3–

2
-----------------= =

p2

(a)

p2
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p3

(b)

p1

p3

τ31 τ13–
σ3 σ1–

2
-----------------= =

p3

(a)

p2

p1

p3

(b)

p2

p1

τ21 τ12–
σ1 σ2–

2
-----------------= =

(a) (b) (c)

τmax max
σ1 σ2–

2
-----------------  

σ2 σ3–
2

-----------------  
σ3 σ1–

2
-----------------, ,⎝ ⎠

⎛ ⎞=

 Figure 8.15 Outward normal to plane in Example 8.3. 30o 120o
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(E1)

ANS.

(b) We follow procedure in Section 8.2.2.
Step 1: Find the principal angle from Equation (8.6),

(E2)

Step 2: Substitute the principal angle into Equation (8.1) to obtain one of the principal stresses,

(E3)
Step 3: Note that σxx + σyy = 30 MPa− 60 MPa= −30 MPa. From Equations (8.9) and (E3) the other principal stress is −82.26 MPa. 
Step 4: The principal stress in Equation (E3) is greater than the stress in step 3, therefore it is principal stress 1.
Step5: The angle in Equation (E2) is principal angle 1. 
Step 6: We can check our calculations of σ1 and σ2 using  as shown,

 or

We report our answers as
ANS.

(c) The maximum shear stress at the point is half the maximum difference between the principal stresses, as per Equation (8.13), which
in this problem is between σ1 and σ2,

ANS.

COMMENTS
1. If the principal stress in step 3 was greater than the stress in Equation (E3), then it would be principal stress 1 and we could either add or

subtract 90o from θp in Equation (E2) to report the principal angle one θ1. 
2. In finding normal stress σA and shear stress τA on the inclined plane, we substituted θ = 120° as the angle of the outward normal. It can

be checked that if we substituted θ = 300°, θ = −60°, or θ = −240° into Equations (8.1) and (8.2), we would obtain the same values of
σA and τA. This is illustrated in Figure 8.16. A plane passing through a point has two sides. The stresses on either side are the same,
and hence the outward normal direction to either side can be used for computing normal and shear stresses on the plane. The direction
of the outward normal can be measured by going counterclockwise (positive direction) or by going clockwise (negative direction)
from the x axis. Equations (8.1) and (8.2) reflect this observation, as substitution of (θ + 180°), (θ − 180°), (θ + 360°), or (θ − 360°) in
place of θ in Equations (8.1) and (8.2) results in the same expressions for the two equations. In other words, the values of the stresses
on a plane through a point are unique and depend on the orientation of the plane only and not on how its orientation is described or
measured.

3. If the point were in plane strain on a material with a Poisson ratio of , then the third principal stress would be σ3 = ν (σ1 + σ2) = −10
MPa. Thus in this problem σ1 > σ3 > σ2, and hence for this problem the maximum shear stress would be unaffected. But if the third
principal stress value were not in between principal stresses 1 and 2, then by Equation (8.12) the maximum stress value would be
affected.

σA 30 MPa( )  120°2cos 60 MPa–( ) 120°2 sin 2 50 MPa( ) 120° 120°cossin+ + 80.80 MPa–= =

τA 30 MPa( ) 120° 120° 60 MPa–( ) 120° 120°cossin 50MPa( ) 120°2cos 120°2sin–( )+ +cossin– 13.97 MPa= =
σA 80.8 MPa C( )= τA 14.0 MPa=

θp
1
2
---  arctan 50 MPa

30 MPa 60 MPa–( )–[ ] 2⁄
-----------------------------------------------------------------⎝ ⎠

⎛ ⎞ 1
2
---  arctan 50

45
------⎝ ⎠

⎛ ⎞ 24.01°= = =

σp 30 MPa( ) 24.01°2cos 60 MPa–( ) 24.01°2sin 2 50 MPa( ) 24.01°sin 24.01°cos+ +  52.26 MPa= =

σ1 2,
30MPa 60 MPa–( )+

2
---------------------------------------------------- 30 MPa 60 MPa–( )–

2
-----------------------------------------------------

2
50 MPa( )2+± 15 MPa– 67.26 MPa±= =

σ1 15 MPa– 67.26 MPa+ 52.26 MPa= = σ2 15 MPa– 67.26 MPa– 82.26 MPa-----Checks–= =

σ1 52.3 MPa T( )= σ2 82.3 MPa C( )= σ3 0 θ1 24.0°  ccw==

τmax
52.26 MPa 82.26 MPa–( )–

2
-------------------------------------------------------------------- 67.26 MPa= =

τmax 67.3 MPa=

n

n

A

A

A

A 120o

-60o300o -240o

Outward Normal

Outward Normal

x

  Figure 8.16 Different values of θ in Example 8.3.

1
3
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8.3 STRESS TRANSFORMATION BY MOHR’S CIRCLE

In this section we develop a graphical technique for determining stresses on different planes passing through a point. Squaring
Equations (8.4) and (8.5) and adding the result to eliminate θ, we obtain 

(8.14)

Consider the equation of a circle: (x − a)2 + y2 = R2. We thus see that Equation (8.14) represents a circle with center coordi-
nates (a, 0) and radius R, where a = (σxx + σyy)/2 and  The circle is called Mohr’s circle for stress
and the coordinates of each point on the circle are the stresses (σnn, τnt). These are the normal and shear stresses on an arbi-
trarily oriented plane that is passing through the point at which the stresses σxx, σyy, and τxy are specified. Thus:

• Each point on Mohr’s circle represents a unique plane that passes through the point at which the stresses are specified. 

• The coordinates of the point on Mohr’s circle are the normal and shear stresses on the plane represented by the point.

QUICK TEST 8.1 Time: 15 minutes/Total: 20 points

Each question is worth 2 points. Use the solutions given in Appendix E to grade yourself.
In Questions 1 through 3, what is the value of θ you would substitute in the stress transformation equations to find the normal
and shear stresses on plane AA?
1.  2.  3.

  

4. At a point in plane stress, the principal stresses from the equations were found to be 5 ksi (T) and 20 ksi (C).
What is the value of principal stress 1?

5. At a point in plane stress, the principal stresses from the equations were found to be 5 ksi (C) and 20 ksi (C).
What is the value of principal stress 1?

6. At a point in plane stress, the principal stresses from the equations were found to be 5 ksi (T) and 20 ksi (T).
What is the value of the maximum shear stress at that point? 

7. At a point in plane stress, the principal stresses from the equations were found to be 5 ksi (T) and 20 ksi (C).
What is the value of the maximum shear stress at that point?

8. At a point in plane stress, the principal stresses from the equations were found to be 5 ksi (C) and 20 ksi (C).

What is the value of the maximum shear stress at that point?

In Questions 9 and 10, the angle θp from tan  was found to be −35°. On substituting this value
into Equation (8.1), the normal stress was found to be 100 MPa (T). If the other principal stress is as given, then what is
the value of principal angle 1?
9. 125 MPa (T).
10. 125 MPa (C).

25�A

y

x

A

25�A

y

x

A 25�

A

y

x

A

2θp 2τxy σxx σ– yy( )⁄=

σnn
σxx σyy+

2
----------------------–⎝ ⎠

⎛ ⎞
2

τnt
2+

σxx σyy–
2

---------------------⎝ ⎠
⎛ ⎞

2
τxy

2+=

R = σxx σyy–( ) 2⁄[ ]2 τxy
2+ .
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8.3.1 Construction of Mohr’s Circle

We can construct Mohr’s circle in five steps:
Step 1: Show the stresses σxx, σyy, and τxy on a stress cube and label the vertical plane V and the horizontal plane H, as shown
in Figure 8.17a.

Step 2: Write the coordinates of points V and H as V(σxx, τxy ) and H(σyy, τyx ). The rotation arrow next to the shear stresses
corresponds to the rotation of the cube caused by the set of shear stresses on planes V and H.
Step 3: Draw the horizontal axis with the tensile normal stress to the right and the compressive normal stress to the left, as
shown in Figure 8.17b. Draw the vertical axis with the clockwise direction of shear stress up and the counterclockwise direc-
tion of rotation down.
Step 4: Locate points V and H and join the points by drawing a line. Label the point at which line VH intersects the horizontal
axis as C.
Step 5: With C as the center and CV or CH as the radius, draw Mohr’s circle.

To justify our construction, note the two triangles VCD and HCE in Figure 8.17b are identical, because 
• angle VCD = angle HCE

• right angle CDV = right angle CEH

• side HE = side DV from the symmetry of shear stresses.

Thus side CE = side CD. In other words, C is the midpoint of DE, and the coordinates of the center point C are the mean val-
ues of the coordinates of points D and E, [(σxx + σyy)/2, 0], which represents the center of the circle, as in Equation (8.14).
Since the length of side CD is the difference between the coordinates of D and C, we obtain the radius of the circle from the
Pythagorean theorem as  which is consistent with Equation (8.14).

An important point to remember is the differentiation made in Step 2 between τxy and τyx. Equations (8.4) and (8.5) tell us 
that the stresses on different planes are related by twice the angle between the planes. The vertical plane V and the horizontal 
plane H are 90° apart on the stress cube. Thus these planes must be 180° apart on Mohr’s circle, as each point on Mohr’s circle 
represents a unique plane. This implies that if the vertical plane V is located above the σ axis, then the horizontal plane H 
should be is located below the σ axis to maintain the 180° difference on Mohr’s circle. If we use the conventional method of 
using the upper half-plane for positive values of shear stress and the lower half-plane for negative values of shear stress, then 
V and H will both be either in the upper half or in the lower half because the shear stresses τxy = τyx. By associating the clock-
wise and counterclockwise rotation, we can satisfy the requirement that the horizontal plane and the vertical plane on Mohr’s 
circle be 180° apart. In summary:

• Angles between planes on a stress cube are doubled when plotted on Mohr’s circle.

• The sign of shear stress cannot be determined directly from Mohr’s circle, as the only information from Mohr’s circle

is that the shear stress causes the plane to rotate clockwise or counterclockwise.

y �yy

�xx

�A
�A

�yy

�xx

�yx

�yx

�xy

�xy x

H

A

H

V V

 Figure 8.17 (a) Stress cube for construction of Mohr’s circle. (b) Construction of Mohr’s circle.
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8.3.2 Principal Stresses from Mohr’s Circle

Figure 8.18 shows that the shear stresses are zero at points P1 and P2, and hence these points represent planes that are the prin-
cipal planes. The normal stresses at these points are principal stresses, and these principal stresses can be found by inspection
as the average normal stress plus or minus the radius. The stress at point P1 is principal stress 1. In other words, principal
stress 1 is the rightmost normal stress on Mohr’s circle. 

The angle between lines CV and CP1 is 2θp, because all angles on Mohr’s circle are double the actual angle between 
planes. The value of angle 2θp can be found from the known dimensions of triangle VCD or triangle HCE, and we confirm the 
relationship given in Equation (8.6). 

Is θp same as θ1? In Figure 8.18 it would seem so. Figure 8.19 shows two examples in which the principal angle θp is dif-
ferent from principal angle θ1. To clarify which angle we need consider that θ1 is the angle of principal plane 1 (P1) from the x 
direction. The outward normal to the vertical plane (V) is the x direction. On the Mohr’s circle CV represents the x direction 
and CP1 represents the principle direction 1. The angle between CV and CP1 on the Mohr’s circle is 2θ1 in all cases, with 
counterclockwise rotation from CV as positive. As a final check, the value of θ1 calculated from the Mohr’s circle can be sub-
stituted into Equation (8.1), and the result should be principal stress one σ1.

Inspection of Figure 8.18 confirms that the maximum and the minimum normal stresses will be principal stresses. The 
observation that the principal planes are orthogonal is also obvious from Figure 8.18, as points P1 and P2, which represent 
principal planes, are at 180° on Mohr’s circle. The coordinates of the center of the circle are the mean value of the normal 
stresses of any two points that are on a diameter of the circle. This confirms that the sum of normal stresses on orthogonal 
planes is invariant with respect to coordinate transformation.

8.3.3 Maximum In-Plane Shear Stress

The maximum in-plane shear stress will exist on the plane represented by points S1 and S2 in Figure 8.18, and its value is the
radius of Mohr’s circle, which is consistent with Equation (8.12). Points S1 and S2 are at 90° from points P1 and P2 on Mohr’s
circle, which is consistent with the earlier observation that the maximum in-plane shear stress exists on two planes which are
at 45° to the principal planes.

�

�

H

C2�p

2�p

R

D
E (T)

P1

S2

S1

P2P3
�3

�2

�1

�21

(C)

ccw

cw

R

V

�12

  Figure 8.18 Principal stresses and in-plane maximum shear.
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  Figure 8.19 Examples of θ1 different from θp.
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8.3.4 Maximum Shear Stress

The circle in Figure 8.18 is the in-plane Mohr’s circle, as the coordinate axes n and t are always in the xy plane. The in-plane
circle represent all the planes that are obtained by rotating about principal axis 3. Let point P3 represent principal plane 3. For
plane stress problems, point P3 coincides with the origin, as shown in Figure 8.20.

We can draw two more circles, one between P1 and P3 and the second between P2 and P3, as shown in Figure 8.20. These 
two circles represent rotation about principal axis 2 and principal axis 1, respectively, and are termed out-of-plane circles. The 
three circles together represent the complete state of stress at a point. The maximum shear stress at a point is the radius of the 
biggest circle [see Equation (8.13)]. This observation is also valid for plane strain. The difference is that the value of σ3 will 
have to be found by using Equation (8.10), plotted on the horizontal axis, and labeled P3.

8.3.5 Principal Stress Element 

The principal stress element is a visualization aid used in the prediction of failure surfaces. Potential failure surfaces are the
planes on which maximum normal or maximum shear stress acts—in other words, the principal planes and the plane of maxi-
mum shear. A principal stress element shows stresses on a wedge constructed from the principal planes and the plane of
maximum shear stress.

We can describe our construction in terms of stress cubes, although they are not required once the method is understood:
Step 1: Draw a square and label the vertical side V and Horizontal side H as shown in Figure 8.21.
Step 2: Rotate the coordinate axis by an angle θ1 and the cube along with it. The vertical plane (V) rotates to principal plane 1
(P1). The horizontal plane (H) rotates to principal plane 2 (P2) as shown in Figure 8.21.
Step 3: Draw the diagonals, that is planes 45ο to the principal planes P1 and P2, representing the plane of maximum shear
stress. Label the plane S1 and S2. Plane S1 is 45ο counterclockwise from plane P1 in Figure 8.21a. On the Mohr’s circle
in Figure 8.18, if we rotate counterclockwise direction by 90ο starting from point P1, we reach point S1. The stress wedge
obtained is shown in Figure 8.21b. Similarly, starting from point P1 on the Mohr’s circle and rotating in the clockwise direc-
tion by 90ο, we reach S2 in Figure 8.18. The corresponding stress wedge is shown in Figure 8.21c.

  Figure 8.21 (a) Principal planes and planes of maximum in-plane shear stress. (b, c) Principal elements.

Step 4: Show principal stress 1 on plane P1 and principal stress 2 on plane P2. On the inclined plane show the maximum in-
plane shear stress in the clockwise (or counterclockwise) direction if the inclined plane corresponds to the point in the upper
(lower) half of Mohr’s circle. Also show the average normal stress value on the inclined plane.

Figure 8.22 shows Mohr’s circle and the principal element associated with the axial loading of a circular bar. Cast iron, a 
brittle material, fails from maximum tensile stress—that is, due to principal stress 1—and the failure surface is the principal 
plane 1. Aluminum, a ductile material, fails from maximum shear stress, and the failure surface is the plane of maximum 
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  Figure 8.20 Maximum shear stress in plane stress.
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shear S2. Local imperfections dictated that the failure surface was S2 rather than S1, which from our theory is equally likely. An 
explanation of the failure surfaces due to torsion shown in Figure 8.1 is left to Problem 8.35.

8.3.6 Stresses on an Inclined Plane

The stresses on an inclined plane are found by first locating the plane on Mohr’s circle and then determining the coordinates
of the point representing the plane. This is achieved as follows:
Step 1: Draw the inclined plane on the stress cube and label it A, as shown in Figure 8.17.
Step 2: Locate the inclined plane on Mohr’s circle as will be described later and label it A, as shown in Figure 8.23.

Step 3: Calculate the coordinates of point A.
Step 4: Determine the sign of shear stress. 

There are two alternatives in Step 2.

1. On the stress cube in Figure 8.17, the inclined plane A is at an angle θA from the horizontal plane in the clockwise
direction. Starting from line CH on Mohr’s circle in Figure 8.23, we rotate by an angle 2θA in the clockwise direction
and then draw the line CA. Point A represents plane A.

2. On the stress cube, the inclined plane A is at an angle βA from the vertical plane in the counterclockwise direction.
Starting from line CV we rotate by an angle 2βA in the counterclockwise direction and draw the line CA. Point A repre-
sents plane A. 

We note from the stress cube that θA + βA = 90°, and from Mohr’s circle we see that 2(θA + βA) = 180°. This once more con-
firms that each point on Mohr’s circle represents a unique plane, and it is immaterial how we locate that point on the circle.

Step 3 is the reverse of Step 2 in the construction of Mohr’s circle and is a simple problem in geometry. Angle FCA can 
be found from the known angles. Radius CA of the circle is known, and lengths FA and CF can be found from triangle FCA. 
The coordinates of point A are  The direction of rotation is recorded as clockwise because point A is in the upper 
plane in Figure 8.23. If point A had been in the lower plane, we would have recorded a counterclockwise rotation with the 
shear stress.

To determine the sign of shear stress, we start by drawing the shear stress such that the inclined plane A rotates in the 
same direction as was recorded with the coordinates in Step 3. A local coordinate system is established, and if the shear stress 

σ1 σxx=
P1

τmax
σxx

2
---------=S1

S2

S2P2
P1

P2

H V

σxx σxx

P
P

P1 S2
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  Figure 8.22 Using principal elements to explain failure surface.
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  Figure 8.23 Stresses on inclined plane.
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is in the positive tangent direction, then it is positive. The two possibilities are shown in Figure 8.24. In both cases the shear 
stress is negative.

EXAMPLE 8.4
For each of the two states of stress below, plot the normal stress and the shear stress on a plane versus θ—the angle of the outward nor-
mal of the plane—draw Mohr’s circle for each state of stress, on each diagram identify the planes at θA = 30°, θB = 75°, θD = 105°, and
θE = 150°.
Case I: The uniaxial stress state is σxx = σ0, and all other stress components are zero.
Case II: The state of pure shear is τxy = τ0, and all other stress components are zero.

PLAN
We can substitute the given states of stress into Equations (8.1) and (8.2) to obtain σnn and τnt as a function of θ and plot them. For each
state of stress we can draw the stress cube, write the coordinates of planes V and H, and draw Mohr’s circle. Starting from point V on
Mohr’s circle we can rotate by twice the angle in the counterclockwise direction to get the various points on the circle.

SOLUTION
Case I: Substituting the stress components for the uniaxial stress states into Equations (8.1) and (8.2), we obtain

(E1)

(E2)

Equations (E1) and (E2) can be plotted as shown in Figure 8.25a. We can also draw the stress cube showing uniaxial tension and record
the coordinates of points V and H (Figure 8.25b). With no shear stress, the two points V and H are on the horizontal axis forming the
diameter of Mohr’s circle with the center at C and radius  Starting from point V on Mohr’s circle we rotate counterclockwise
by twice the angle θ to get the inclined planes, as shown in Figure 8.25c.

Case II: Substituting the stress components for state of pure shear in Equations (8.1) and (8.2), we obtain

(E3)

(E4)

Equations (E3) and (E4) can be plotted as shown in Figure 8.26. We can also draw the stress cube showing pure shear and record the
coordinates of points V and H. With normal stress, the two points V and H are on the vertical axis forming the diameter of Mohr’s circle
with center at C and radius  Starting from point V on Mohr’s circle we rotate counterclockwise by twice the angle θ to get the
inclined planes, as shown in Figure 8.26.
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 Figure 8.24 Sign of shear stress on an incline.
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  Figure 8.25 Stresses on inclined plane in uniaxial state of stress.
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COMMENTS
1. The example shows the relationship of planes on a graph and on a Mohr’s circle, emphasizing that angles are double when plotted on a

Mohr’s circle.
2. Recall that in axial members and on top and bottom surface of beam, the only non-zero stress component is σxx. For both these cases,

Figure 8.25 shows that the plane of maximum shear is 45ο to the axis of the member and the value of maximum shear stress is half the
value the normal stress at that point. 

3. Recall that in torsion of circular shafts only non-zero stress component is τxθ. For a shaft in torsion, Figure 8.26 shows that the princi-
pal planes are 45ο to the axis of the shaft and the magnitude of the principal stresses is same as the magnitude of torsional shear stress
at that point.

4. Observations in comments 3 and 4 should be remembered as these can be used in strength based design of brittle and ductile materi-
als.

EXAMPLE 8.5
(a) Solve Example 8.2 using Mohr’s circle. Determine (b) the principal stresses, and principal angle 1; (c) the maximum shear stress at
the point. (d) Show the results on a principal element.

PLAN
We can follow the steps outlined for the construction of Mohr’s circle in Section 8.3.1 and calculate the various quantities from geome-
try.

SOLUTION
Step 1: We draw the stress cube and label the vertical and horizontal planes V and H, as shown in Figure 8.27a.

Step 2: From Figure 8.27a we note the coordinates of points V and H as

  Figure 8.26 Stresses on inclined plane in state of pure shear stress.
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  Figure 8.27 (a) Stress cube. (b) Mohr’s circle. (c) Sign of shear stress. (d) Principal element 
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Step 3: We draw the axes for Mohr’s circle, as shown in Figure 8.27b.
Step 4: We locate points V and H and join the two points. The coordinates of the center C are the mean value of the coordinates of points
A and B, that is, . The distance AC is , from which the radius as: .
The angle θp can then be calculated from triangle VCB as

(E1)

(a) Plane D is 30° counterclockwise from the horizontal plane in the stress cube in Figure 8.27a. We rotate by twice the angle (i.e., by
60°) from line CH on Mohr’s circle in Figure 8.27b and draw the line CD. The coordinates (σD, τD) of point D are calculated from geom-
etry,

(E2)
We next draw the plane and determine the sign of τD. The shear stress must cause the plane to rotate counterclockwise, because point D
on Mohr’s circle was in the lower half of the plane. We establish a local coordinate system and determine that the shear stress has a pos-
itive sign (Figure 8.27c). The results are

ANS.

(b) The principal stresses are the coordinates of points P1 and P2,
(E3)

(E4)

The principal stresses and principal angle 1 for the problem are
ANS.

(c) The circle between P1 and P3 and the one between P2 and P3 are both inscribed within the in-plane circle shown in Figure 8.27b. Thus
in this problem the in-plane maximum shear stress and the maximum shear stress at the given point are the same,

ANS.

(d) Figure 8.27d shows the principal element which is drawn following the procedure in Section 8.3.5.

COMMENTS
1. The Mohr’s circle method looks longer than the method of equations because of the explanation needed for the geometric constructions.

However, computationally the difference between the two methods is small. The advantage of the method of equations is that the equa-
tions can be programmed and solved by computer. The advantage of using Mohr’s circle is that it helps in the intuitive understanding of
stress transformation.

2. The maximum shear stress shown in Figure 8.27 is negative, as can be deduced by establishing a local n, t coordinate system.

EXAMPLE 8.6
A 30-in.-long thin cylindrical tube is to transmit a torque of 25π in.·kips. The tube is to be fabricated by butt welding a -in.-thick steel
plate (G = 12,000 ksi) along a spiral seam, as shown in Figure 8.28. Buckling considerations limit the allowable stress in steel to 10 ksi in
compression. The allowable shear stress in the weld is 12 ksi, and the allowable tensile stress in the weld is 20 ksi. Stiffness consider-
ations limit the relative rotation of the two ends to 3°. Determine the minimum outer radius of the tube to the nearest in.

PLAN
We are required to find R to satisfy four limitations. By inspection we see that the weld material would be put into compression, and
hence we can ignore the constraint on the maximum tensile stress in the weld. We can use the thin-tube approximation for computing J
in terms of R, as given in Problem 5.28. For this simple loading we can determine the internal torque by inspection as T = +25π in.·kips.
We can find  in terms of R using Equation (5.12) and find one limit on R. Since the tube is thin, we can further assume that the
torsional shear stress will not vary significantly from the inside to the outside. Hence we can evaluate it at the centerline radius. We can

V 30 50  ,( ) H 60– 50  ,( )

30 + 60–( )[ ] 2⁄ 15–= 30 - 15–( )[ ] 45= R 452 502+ 67.27= =

2θ ptan 50
45
------ 1.1111= = or 2θp 48.01°=

β 60° 2θp– 11.99°= = σD 15 R βcos+( )– 80.8–= = τD R βsin 13.97= =

σD 80.8 MPa C( )= τD 14.0 MPa=

σ1 -15 R+ 52.27= = σ2 -15 R– 82.27–= =

θp
48.02

2
------------- 24.01°= =

σ1 52.3 MPa T( )= σ2 82.3 MPa C( )= σ3 0= θ1 24.0°  ccw=

τmax 67.3 MPa=

1
16
------

1
16
------

25� in�kips

25� in�kips

B R

E

A
25�

30 in

Figure 8.28 Geometry of shaft and loading in Example 8.6.

φB φA–
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find the torsional shear stress in terms of R using Equation (5.10). We can then find the maximum compressive stress in steel and the
shear stress in the seam using either Mohr’s circle or the method of equations and find two other limits on R. We choose R that satisfies
all limits and round it upward to the nearest  in.

SOLUTION
For thin tubes, from Problem 5.28, we have 

(E1)
Substituting Equation (E1), T = 25π in.·kips, G = 12,000 ksi, , and L = 30 in. into Equation (5.12), we obtain the rotation
of the section at B with respect to the section at A, which should be less than 3o = 0.0524 rad. We thus find one limit on R,

(E2)

Substituting Equation (E1), T = 25π in. ·kips, and ρ = R into Equation (5.10),

(E3)

The direction of shear stress at point E can be determined using subscripts or intuitively, as shown in Figure 8.29. A two-dimensional rep-
resentation of the stress cube is shown in Figure 8.29c. The directions of shear stress on the other surfaces are determined using the fact
that pairs shear stresses either point toward the corner or away from the corner, as shown in Figure 8.29c

We can determine the maximum compressive stress and the shear stress on the inclined plane using either Mohr’s circle for stress or the
method of equations. 
Mohr’s circle method: We record the coordinates of point V as V(0, 200/R2 ) and the coordinates of point H as H(0, 200/R2 ) and draw
Mohr’s circle as shown in Figure 8.29d. We determine principal stress 2,

(E4)

We then locate point E on Mohr’s circle and determine the shear stress,

(E5)

Method of equations: We note from Figure 8.29c that τxy = –(200 kips)/R2 ksi, the normal stresses are zero, and the angle of the normal to
the inclined plane is 65o. Substituting this information into Equations (8.7) and (8.2), we obtain principal stress 2,

(E6)

and the shear stress on the inclined plane,

(E7)

We now consider the limitation on the compressive stress in steel and the shear stress in the weld and find two other limitations on R,

(E8)

(E9)

1
16
------

J 2πR3t=
t 1 16⁄( )  in.=

φB φA– 25π  in.· kips( ) 30 in.( )

12,000 kips/in.2( ) 2πR3 1 16⁄( )  in.[ ]
---------------------------------------------------------------------------------------- 0.5 in.3

R3
----------------- 0.0524 or R 2.12 in.≥≤= =

τxθ
25π  in.· kips( )R

2πR3 1 16⁄( )  in.[ ]
-------------------------------------------- 200 kips

R2
--------------------  = =

 Figure 8.29 Direction of shear stress (a) by subscript.(b) by inspection. (c) Stress cube. (d) Stresses on the inclined plane using Mohr’s
circle.

(b) (c)

25� in�kips

25� in�kips
A

n

H

V
E

x

y

65�
25�

200
R2

B

(a)

�

x 40�

cw

ccw

50�

H

V

E

�

��2

200
R2

�E

τ

σ2
200 kips( )

R2
-------------------------  C( )=

τE
200 kips( )

R2
------------------------- 40°sin 128.56 kips( )

R2
---------------------------------  = =

σ2 0 0 100 kips
R2

--------------------⎝ ⎠
⎛ ⎞ 2

+– 200 kips( )

R2
-------------------------   C( )= =

τE
200 kips

R2
--------------------–⎝ ⎠

⎛ ⎞ 65°2cos 65°2sin–( )= or τE
128.56 kips( )

R2
---------------------------------  =

σ2
200 kips( )

R2
------------------------- 10 kips/in.2( )≤= or R 4.472 in.≥

τE
128.56 kips( )

R2
--------------------------------- 12 kips/in.2( )≤= or R 3.273 in.≥
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Comparing Equations (E2), (E8), and (E9), we see that the minimum value of R that will satisfy all three conditions is 4.472 in., given by
Equation (E8). Rounding upward to the closest in., we obtain the value of the centerline circle radius.

ANS.

COMMENTS

1. Consider the error due to the thin-tube approximation for J. The outer radius for the tube is  and the inner

radius of the tube is . Thus the value of exact  would be 35.786 in.4. The value of approxi-

mate  for thin tubes is 35.785 in.4, a percentage difference from exact J of 0.003%, which is negligible for any engineering
calculation.

2. Consider the approximation of uniform shear stress in the tube. If we substitute  into Equation (5.10), we obtain a value

of 9.945 ksi at the outer surface. If we substitute  into Equation (5.10), we obtain a value of 9.876 ksi at the centerline, for
a difference of 0.69%, which is also negligible.

3. If we do not use the thin-tube approximation, then we have to find roots of nonlinear equations by numerical methods (see Problem
8.70). The thin-tube approximation can be used if 

4. In this problem the direction (sign of τxy) of shear stress is important only to ensure that the weld is subjected to compressive stress
and not tensile stress. The magnitude of the shear stress in the weld is unaffected by the direction (sign of τxy) of shear stress. (This
will not be true in combined loading problems.)

EXAMPLE 8.7  
A T-section beam is constructed by gluing two pieces of wood together, as shown in Figure 8.30. The maximum normal stress in the glue
joint is to be limited to 2 MPa in tension and the maximum shear stress is to be limited to 1.7 MPa. Determine the maximum value for
load w.

PLAN
We are given that the principal stress 1 in the glue cannot exceed 2 MPa, and the maximum shear stress in the glue cannot exceed
1.7 MPa. We can draw the shear force and bending moment diagrams in terms of w. We then find the bending normal stress in glue and
the bending shear stress in glue, considering in the sections where the moment Mz is maximum and the shear force Vy is maximum. We
can draw stress cubes at the various sections and find principal stress 1 and the maximum shear stress in terms of w. Using the limiting
values we can find the value of w. 

SOLUTION
We can find the reaction forces at A and B by considering the free-body diagram of the entire beam. We then draw the shear force and
bending moment diagrams, as shown in Figure 8.31a. The maximum shear force and bending moment are given by

(E1)

1
16
------

R 41
2
---  in.=

Ro R t 2⁄+ 417
32
------  in.,= =

Ri R t 2⁄– 415
32
------  in.= = J π Ro

4 Ri
4–( ) 2⁄=

J 2πR3t=

ρ 417
32
------  in.=

ρ 41
2
---  in.=

t R 10.⁄<

  Figure 8.30 Beam and loading in Example 8.7.

75 mm 50 mm

150 mm

50 mm

y

G

z

150 mm

(b)(a)

BA

2 m

w (N/m)
4w (N�m)

Vy( )max 3w–  N= Mmax 4w  N m⋅–=

Figure 8.31 (a) Shear force and bending moment diagrams. (b) Calculation of Qz.

B

2 m

w (N/m)

RA � 3w

3w

w

4w

V � �Vy

Mz

RB � w

A

4w (N�m)

75 mm 50 mm

y

s

G

z

150 mm

(a) (b)
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Since the maximum bending moment and the maximum shear force exist in the section at A, the maximum principal flexural normal
stress in glue and the maximum shear stress in glue will also exist in the section at A. The area moment of inertia of the cross section can

be calculated as Substituting yG = –25 mm and Equation (E1) into Equation (6.12), we obtain the flexural nor-
mal stress at G as

(E2)

We can draw the area A as the area between the bottom surface and point G, as shown in Figure 8.31b, and find Qz,

(E3)
Substituting Equations (E1) and (E3) into Equation (6.27), we obtain the shear stress,

(E4)

We can draw the stress cube and show on it the stresses in Equations (E2) and (E4). Note that with s positive upward, the shear stress τxs on
the surface with the outward normal in the positive x direction will be downward to reflect the negative sign in Equation (4). Alterna-
tively, the sign of the shear stress τxy is negative as the shear force Vy is negative. We can draw Mohr’s circle as shown in Figure 8.32.
The radius R is given by

 (E5)

Principal stress 1 σ1 can be found, and the limiting value on σ1 yields one limit on w, 

(E6)
The maximum shear stress τmax is the radius of the circle, and the limiting value on τmax yields the other limit on w, 

(E7)
Comparing Equations (E6) and (E7), we conclude that the maximum permissible value of w is 

ANS.

COMMENTS
1. The maximum normal stress in glue is σ2 = −941w N/m2 − 1032w N/m2 = −1973w N/m2, which in magnitude is nearly 20 times greater

than σ1. However it is not even considered, because it is compressive and so does not affect the failure of glue.
2. The maximum bending normal stress in wood is at the top of the beam at section A and its value is σxx = −9411.8w N/m2. The maxi-

mum bending shear stress is at the neutral axis and its value is τxy = −441.2w N/m2. At the top of the beam the only nonzero stress is
σxx. Thus, from Figure 8.25, the maximum shear stress is τmax = σxx /2 = −4705.9w N/m2, which is an order of magnitude greater than
the maximum bending shear stress. If we had to consider shear strength failure of wood, then we would use the maximum value of
4705.9w N/m2 in our calculation.

3. Comment 2 emphasizes the difference between maximum stresses in a material and maximum bending stresses. Comment 1 empha-
sizes that it is not the magnitude of the maximum stress but the type of stress that causes failure in a material and is important in
design.

Izz 53.125 106( )  mm4.=

σG
4w  N m⋅( )– 25 10 3–( ) m–[ ]

53.125 10 6–  m4( )
--------------------------------------------------------------------– 1882w  N/m2–= =

QG 150 mm( ) 50 mm( ) 50 mm–( ) 375 103( )  mm3–= =

τxs
3w  N–( ) 375 10 6–( ) m3–[ ]

53.125 10 6–( )  m4[ ] 50 10 3–( )  m[ ]
-------------------------------------------------------------------------------– 423.5w  N/m2–= =

R 941w  N/m2( )
2

423.5w  N/m2( )
2

+ 1032w  N/m2= =

Figure 8.32 Mohr’s circle in Example 8.7.

�nt

�nn

V

R

P1

H

941w

423.5w

1882w

(b)(a)

1882w

423.5w
H

y

xH

V V

V(�1882w, 423.5w) 

H(0, 423.5w)

τ

σ1 941– w  N/m2( ) 1032w  N/m2( )+ 91w  N/m2 2 106( ) N/m2 or w 22,000 N/m≤≤= =

τmax 1032w  N/m2 1.7( )106 N/m2 or w 1647 N/m≤= =

wmax 1647 N/m=
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QUICK TEST 8.2 Time: 20 minutes/Total: 20 points

Each question is worth 2 points. Use the solutions given in Appendix E to grade yourself.
In Questions 1 through 3, associate the stress cubes with the appropriate Mohr’s circle given: 

1. 2. 3.

In Questions 4 through 6, Mohr’s circles correspond to a plane state of stress. Determine the two possible values of
principal angle 1 θ1 in each question.

4. 5. 6. 

In Questions 7 through 9, Mohr’s circle corresponds to the state of stress shown. Associate plane A on the stress cube
with the corresponding Mohr’s circles showing plane A, which are given:

7. 8.  9. 

10. Plane E passes through a point that has the state of stress given in Question 7. The normal and shear stresses on
plane E were found to be . What are the normal stress and the shear
stress on the plane that is 90° counterclockwise from plane E?

Circle A Circle B Circle C Circle D Circle E Circle F

60 MPa

20 MPa

Cube 1

60 MPa

20 MPa

Cube 2
30 MPa

30 MPa

20 MPa

Cube 3

24�
H

V

24�
V

H

24�
H

V

Circle A

50�

H

A

V

Circle B

A

50� H

V

Circle C

50�

HA

V

Circle D

50�

H

AV

20 MPa

30 MPa

100 MPa

25�

A 20 MPa

30 MPa

100 MPa

25� A
20 MPa

30 MPa

100 MPa

25�

A

σE 90 MPa T( ) and=  τE 40–  MPa=
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MoM in Action: Sinking of Titanic

On April 14, 1912, on the fourth day of her maiden voyage, the RMS Titanic (Figure 8.33a) struck an iceberg in 
Atlantic ocean. The ship dubbed “the unsinkable” sank in less than three hours (Figure 8.33b), with a loss of 1500 people, 
but it was not the last startling catastrophic failure. On January 15, 1919, a large molasses tank burst in Boston, killing 21 
people and injuring another 150. On March 12, 1928, near Los Angeles, the St. Francis Dam failed suddenly, and the 
resulting flood killed more than 600 people. And on April 28, 1988, on Aloha flight 243 between Hilo and Honolulu in 
Hawaii, the fuselage of the aircraft blew open at 24,000 feet, killing a flight attendant and injuring another eight. The initi-
ating cause of each tragedy was different. The final mechanism of catastrophic failure, however, was the same in each 
case—brittle fracture. 

To highlight some fracture issues, consider a crack in a windshield. It can stay that way for years, grow slowly, or 
grow suddenly into a crisscross pattern. A crack must reach critical length that is material and stress dependent before it 
starts growing. The slow growth is due to ductile fracture, while the rapid growth is due to brittle fracture. 

In ductile materials, the high stresses at the crack tip causes plastic deformation, thus blunting the tip of the crack. 
Subsequent growth depends on there being sufficient energy in the deformed solid to create new crack surfaces, resulting 
in ductile fracture. On December 15, 1967, for example, Silver Bridge (Figure 8.33b), which spanned the Ohio River, col-
lapsed owing to ductile fracture of a pin, killing 46 and injuring 9 other people. National Bridge Inspection Standards 
(NBIS) were established soon after and now require periodic inspection of all bridges.

In brittle materials, once a crack reaches critical length, fracture proceeds at extremely high speeds (in the neigh-
borhood of 7000 ft/sec). The breaking in two of the tanker S.S. Schenectady (see Figure 1.1) is a vivid example. Brittle 
fracture can also occur in ductile materials. Polymer in a windshield, a ductile material, may become brittle due to sunlight 
and aging. The four days of sailing in icy cold water of Atlantic made the metal of Titanic more brittle, increasing its pro-
pensity to brittle fracture. Failure due to fatigue (see Section 3.10) always produces brittle fracture surfaces, even in duc-
tile materials. 

Tensile principal stress one (σ1) is the dominant cause of crack growth. Though brittle fracture can cause catastro-
phe, it can also be used productively. By scoring glass with a diamond cutter, or a plasterboard with a utility knife, we 
introduce a sharp tipped crack in the material. By bending the glass and plasterboard we create tensile stress at the crack 
tip and thus produce a clean surface break. Brittle coating method is an experimental technique in which a brittle material 
is spray coated onto a machine component. As the component is loaded, cracks perpendicular to principal direction one 
(θ1) start appearing in the coating. 

A good design ensures that the critical crack length in a structure is never smaller then what can be detected by 
instruments. Regular inspections can then provide the warning needed to fix the crack. Drilling a hole to blunt the crack 
tip, putting obstacles like rivets in path of crack growth, or inserting glue as in windshield cracks are some of the ways of 
arresting crack growth from becoming catastrophic. 

Brittle fracture is in itself neither good nor bad. It is, however, nature’s constant reminder of a fundamental engi-
neering lesson: to command nature we need to obey it first. 

(a) 

  Figure 8.33 (a) RMS Titanic (b) Titanic bow at bottom of ocean. (c) Sliver Bridge. 

(b)

(c) 
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PROBLEM SET 8.2

8.29 Show that Equations (8.7) and (8.8) are correct by substituting the values of sines and cosines following Figure 8.12 into Equations (8.4)
and (8.5). 

8.30 Show that Equation (8.12) is correct by substituting the appropriate sines and cosines following Figure 8.13 into Equations (8.4) and
(8.5). 

8.31 Derive Equation (8.7) by starting from Equation (8.3). 

8.32 Draw the Mohr’s circle and determine the normal and shear stresses on plane A in Figure P8.32.

8.33 Draw the Mohr’s circle and determine the normal and shear stresses on plane A in Figure P8.33.

8.34 Draw the Mohr’s circle and determine the normal and shear stresses on plane A in Figure P8.34.

8.35 Explain the failure surfaces due to torsion that are shown in Figure 8.1.

8.36 Solve Problem 8.19 by the method of equations.

8.37 Solve Problem 8.19 by Mohr’s circle.

8.38 Solve Problem 8.20 by the method of equations.

8.39 Solve Problem 8.20 by Mohr’s circle.

8.40 Solve Problem 8.21 by the method of equations.

8.41 Solve Problem 8.21 by Mohr’s circle.

8.42 In a thin body (plane stress) the stress element is as shown in Figure P8.42. Determine (a) the normal and shear stresses on plane A; (b)
the principal stresses at the point; (c) the maximum shear stress at the point. (d) Draw the principal element.

(a)

�

45�

A

 Figure P8.32 (b)

�

45�

A

(a)

�

�

45�

A

  Figure P8.33 (b)

�

�

45�

A

(a)

�

45�

A

 Figure P8.34 (b)

�

45�

A

  Figure P8.42

40 MPa
60 MPa

28�

A
30 MPa

x

y
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8.43 In a thin body (plane stress) the stress element is as shown in Figure P8.43. Determine (a) the normal and shear stresses on plane A; (b)
the principal stresses at the point; (c) the maximum shear stress at the point. (d) Draw the principal element.

8.44 In a thin body (plane stress) the stress element is as shown in Figure P8.44. Determine (a) the normal and shear stresses on plane A; (b)
the principal stresses at the point; (c) the maximum shear stress at the point. (d) Draw the principal element.

8.45 In a thick body (plane strain) the stress element is as shown in Figure P8.45. The Poisson’s ratio of the material is ν = 0.3. Determine (a)
the normal and shear stresses on plane A; (b) the principal stresses at the point; (c) the maximum shear stress at the point. (d) Draw the princi-
pal element.

8.46 In a thick body (plane strain) the stress element is as shown in Figure P8.46. The Poisson’s ratio of the material is ν = 0.3. Determine (a)
the normal and shear stresses on plane A; (b) the principal stresses at the point; (c) the maximum shear stress at the point. (d) Draw the princi-
pal element.

8.47 In a thick body (plane strain) the stress element is as shown in Figure P8.47. The Poisson’s ratio of the material is ν = 0.3. Determine (a)
the normal and shear stresses on plane A; (b) the principal stresses at the point; (c) the maximum shear stress at the point. (d) Draw the princi-
pal element.

8.48 A thin plate (E=30,000 ksi, ν = 0.25) is subjected to a uniform stress σ = 10 ksi as shown in Figure P8.48. Assuming plane stress, deter-
mine the maximum shear stress in the plate.

  Figure P8.43

45 MPa

20 MPa
15 MPa

30�

A

x

y

  Figure P8.44

10 ksi

30 ksi
20 ksi

42�

A

x

y

  Figure P8.45

20 MPa

40 MPa
40 MPa

40�
A

x

y

  Figure P8.46

35 MPa

20 MPa
25 MPa

30�A

x

y

  Figure P8.47

25 ksi

20 ksi
15 ksi

42�
A

x

y
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8.49 The strains at a point in plane stress and the material properties are as given below. Determine the principal stresses, principal angle 1,
and the maximum shear stress at the point. (See Problem 3.79.)

8.50 The strains at a point in plane stress and the material properties are as given below.Determine the principal stresses, principal angle 1,
and the maximum shear stress at the point. (See Problem 3.80.)

8.51 The strains at a point in plane stress and the material properties are as given below. Determine the principal stresses, principal angle 1,
and the maximum shear stress at the point. (See Problem 3.81.)

8.52 A rectangle inscribed on an aluminum (10,000 ksi, ν = 0.25) plate is observed to deform into the colored shape shown in Figure P8.52.
Determine the principal stresses, principal angle 1, and the maximum shear stress.

In Problems 8.53 through 8.55, the difference in the principal stresses  and the principal direction 1  from the x axis were measured
by photoelasticity (see Section 8.4.1) at several points and are given in each problem. The sum of the principal stresses  was found
from elasticity5 and is also given. Assuming plane stress, determine the stresses σxx, σyy, and τxy at the point.

8.56 A broken 2-in.× 6-in. wooden bar was glued together as shown in Figure P8.56. Determine the normal and shear stresses in the glue when
F =12 kips.

8.57 A 10-lb picture is hung using a wire of diameter of 1/8 in. as shown in Figure P8.57. What is the maximum shear stress in the wire? 

Problem σ1 − σ2 θ1 σ1 + σ2

8.53 10 ksi -15° 6 ksi
8.54 3 ksi  +25° -17 ksi.
8.55 5 ksi +35° 5 ksi.

5Equations of elasticity show that (∂2/∂x2)(σ1 + σ2) + (∂2/∂y2)(σ1 + σ2) = 0. This differential equation can be solved numerically or analyti-
cally with the appropriate boundary conditions.

10 in.

5 in.

x

y

σ

  Figure P8.48

εxx 500 μ= εyy 400 μ= γxy 300 μ–= E 200 GPa= ν 0.32=

εxx 3000 μ–= εyy 1500 μ= γxy 2000 μ= E 70 GPa= G 28 GPa=

εxx 800 μ–= εyy 1000 μ–= γxy 500 μ–= E 30,000 ksi= ν 0.3=

A
3.0 in.

1.4 in. 0.0048 in.

0.0042 in.
0.007 in.

0.0036 in.

x

y

  Figure P8.52

σ1 σ2– θ1
σ1 σ2+

60�
6 in

F F � 12 kips

  Figure P8.56

  Figure P8.57

57�
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8.58 Two rectangular bars of thickness 10 mm are loaded as shown in Figure P8.58. For a force F1 = 25 kN, determine the normal and shear
stress on planes AA and BB.

8.59 An aluminum rod (E= 70 GPa) and a steel rod (E= 210 GPa) are securely fastened to a rigid plate that does not rotate during the applica-
tion of the load P as shown in Figure P8.59. The diameter of aluminum and steel rods are 20 mm and 10 mm, respectively. If the applied force
P=25 kN, determine the maximum shear stress in aluminum and steel.

8.60 Determine the normal and shear stresses in the seam of the shaft passing through point A at an angle θ = 60o to the axis of a solid shaft
of 2-in. diameter, as shown in Figure P8.60.

8.61 Two circular steel shafts (G =12,000 ksi) of diameter 2 in. are securely connected to an aluminum shaft (G =4,000 ksi) of diameter
1.5 in. as shown in Figure P8.61. Determine (a) the maximum normal stress in the shaft; (b) the normal and shear stress on a weld running
through point E.

8.62 Two pieces of solid shafts of diameter 75 mm are securely connected to a rigid wheel as shown in Figure P8.62. The shaft material has a
modulus of rigidity G = 80 GPa. If the applied torque T = 8 kN-m, determine the maximum normal stress in the shaft. 

8.63 If the applied force in Figure P8.63 is P = 1.8 kN, determine the maximum normal and shear stress at points A, B, and C which are on the
surface of the beam.

50 kN

50 kN

F1 F3

A

A

B

B

75°

65°30 mm

10 mm

60 mm

  Figure P8.58

1 m 1.2 m

P

P

Aluminum Steel

  Figure P8.59

T � 30 in�kips

T

A�

  Figure P8.60

Figure P8.61 40 in. 15 in. 25 in.

B
steel

12 in.-kips 25 in.-kips 15 in.-kips

steelaluminum DCA E
30o

T

BPA C

2 m0.75 m
  Figure P8.62

0.4 m 0.4 m 6 mm

30 mm
15 mm

B

A

C

P

30 mm

6 mm
  Figure P8.63
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8.64 If the applied force in Figure P8.64 is P = 1.8 kN, determine the maximum normal and shear stress at points at points A, B, and C which
are on the surface of the beam.

8.65 Two pieces of lumber are glued together to form the beam shown in Figure P8.65. The intensity of the distributed load is w = 25 lb/in.
Determine (a) the maximum shear stress in the beam; (b) the maximum normal stress in the glue.

8.66 Two pieces of wood are glued together to form a beam, as shown in Figure P8.66. The applied moment Mext= 9 in.-kips. Determine (a)
the maximum shear stress in the beam; (b) the maximum normal stress in the glue.

Design problems
8.67 A broken 2 in. x 6 in. wooden bar is glued together as shown in Figure P8.56. The allowable normal and shear stress in the glue are 600
psi (T) and 400 psi, respectively. Determine the maximum force F to the nearest pound that can be transmitted by the bar.

8.68 A rigid bar ABC is supported by two aluminum cables (E = 10,000 ksi) as shown in Figure P8.68. The allowable shear stress in alumi-
num is 20 ksi. If the applied force P = 10 kips, determine the minimum diameter of cables CE and BD to the nearest 1/16 in.

8.69 A thin tube of -in. thickness has a mean diameter of 6 in. What is the maximum torque the tube can transmit if the allow-

able normal stress in compression is 10 ksi?

8.70 Solve Example 8.6 again, but without the thin-tube approximation.

8.71 An aluminum rod (Eal = 70 GPa) and a steel rod (Es = 210 GPa) are securely fastened to a rigid plate that does not rotate during the
application of load P, as shown in Figure P8.59. The diameters of the aluminum and steel rods are 20 mm and 10 mm, respectively. The allow-
able shear stresses in aluminum and steel are 120 MPa and 150 MPa. Determine the maximum force P that can be applied to the rigid plate.

8.72 A shaft is welded along the seam that makes an angle of θ = 60o to the axis of a 2 in. diameter shaft as shown in Figure P8.72. The
allowable normal and shear stresses in the weld are 15 ksi (T) and 10 ksi, respectively. Determine the maximum torque Text that can be applied. 

0.4 m 0.4 m

30 mm
15 mm

B

A

C
P

30 mm

6 mm
6 mm  Figure P8.64

  Figure P8.65 1 in

2 in
w (lb/in)

30 in 70 in

  Figure P8.66

100 in 40 in

1 in

Mext 1 in

2 in

4 in

  Figure P8.68
A

D

E

5 ft

5 ft
40o

B

C

P

1
8
---

Text

  Figure P8.72

Text θ A
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8.73 Two pieces of solid shaft of 75-mm diameter are securely connected to a rigid wheel, as shown in Figure P8.62. The shaft material has a
modulus of shear rigidity G = 80 GPa and an allowable normal stress in tension or compression of 90 MPa. Determine the maximum torque T
that can act on the wheel.

8.74 A cantilever beam is constructed by gluing three pieces of timber, as shown in Figure P8.74. The allowable shear stress in the glue is
300 psi and the allowable tensile stress is 200 psi. The allowable tensile or compressive stress in wood is 2000 psi. Determine the maximum
intensity of the distributed load w.

8.75 Two pieces of lumber are glued together to form the beam shown in Figure P8.66. The allowable shear stress in the in the wood is 600 psi
and the allowable tensile stress in the glue is 650 psi (T). Determine the maximum moment Mext that can be applied. 

8.76 Determine the thickness of a steel plate required for a thin cylindrical boiler with a centerline diameter of 2.5 m, if the maximum tensile
stress is not to exceed 100 MPa and the maximum shear stress is not to exceed 60 MPa, when the pressure in the boiler is 1800 kPa.

8.77 A thin cylindrical tank is fabricated by butt welding a -in.-thick plate, as shown in Figure P8.77. The centerline diameter of the tank is

4 ft. The maximum tensile stress of the plate cannot exceed 30 ksi. The normal and shear stresses in the weld are limited to 25 ksi and 18 ksi,
respectively. What is the maximum pressure the tank can hold?

Stretch yourself
8.78 By multiplying the matrices, show that the following matrix equation is the same as Equations (8.1), (8.2), and (8.3):

[T]T represents the transpose of the matrix [T]. The matrix [T] is the transformation matrix that relates the x and y coordinates to the n and t
coordinates.

8.79 Show that the eigenvalues of the matrix [σ] are the principal stresses given by Equation (8.7).

8.80 Using the wedge shown in Figure P8.26, show that the normal stress on an inclined plane is related to the stresses in Cartesian coordi-
nates by the equation

(8.15)

8.81 Figure P8.81 show eight (octal) planes that make equal angles with the principal planes. These planes are called octahedral planes.
Though the signs of the direction cosines change with each plane, the magnitude of the direction cosines is the same for all eight planes; that is,

  and  The normal stress and the shear stress on the octahedral planes σoct and τoct are given by equa-
tions below. Using Equation (8.15), obtain Equation (8.16).

x

w

4 ft4 ftz

y

z

4 in

2 in

2 in

6 in

y

  Figure P8.74

1
2
---

50�

  Figure P8.77

σ[ ]nt T[ ]T σ[ ] T[ ]= where σ[ ]nt
σnn τnt

τtn σtt
= T[ ]

θ θsin–cos
θ θcossin

= σ[ ]
σxx τxy

τyx σyy
=

σnn σxxnx
2 σyyny

2 σzznz
2 2τxynxny 2τyznynz 2τzxnznx+ + + + +=

nx 1/ 3= , ny 1/ 3,= nz 1/ 3.=

�2

�1

�3

  Figure P8.81

(8.16)

(8.17)

σoct
σ1 σ2 σ3+ +

3
------------------------------=

τoct = 1
3
--- σ1 σ2–( )2 σ2 σ3–( )2 σ3 σ1–( )2+ +
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Computer problems
8.82 On a machine component made of steel (E = 30,000 ksi, G = 11,600 ksi) the following strains were found: εxx = [100(2x + y) + 50] μ, εyy = −
100(2x + y) μ, and γxy = 200(x − 2y) μ. Assuming plane stress, determine the principal stresses, principal angle 1, and the maximum shear stress every
30° on a circle of radius 1 around the origin. Use a spreadsheet or write a computer program for the calculations.

8.83 The stresses in polar coordinates around a hole in a very large plate subject to a uniform stress σ (Figure P8.83) are given by equations
below. On a ship deck with a manhole having a diameter of 2 ft, it was estimated that σ = 10 ksi. Calculate the principal stresses every 15° at a
radius of 18 in. Use a spreadsheet or write a computer program for the calculations.

*8.4 CONCEPT CONNECTOR

Photoelasticity is an experimental method for deducing stress information from observing the effects on light as it passes
through a transparent material that is stressed. The analysis is complex, and you will study it in advanced courses, but the
principles behind this remarkable visual representation of stress are simpler. To explain photoelasticity, we must first under-
stand the transmission of light.

2a

r
�

�

� Figure P8.83

  (8.18a)

 (8.18b)

(8.18c)

σrr
σ
2
--- 1 a2

r2
-----–

⎝ ⎠
⎜ ⎟
⎛ ⎞

= - σ
2
--- 1 4a2

r2
-------- 3a4

r4
--------+–

⎝ ⎠
⎜ ⎟
⎛ ⎞

2θcos

σθθ
σ
2
--- 1 a2

r2
-----+

⎝ ⎠
⎜ ⎟
⎛ ⎞ σ

2
--- 1 3a4

r4
--------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

2θcos+=

τrθ
σ
2
--- 1 2a2

r2
-------- 3a4

r4
--------–+

⎝ ⎠
⎜ ⎟
⎛ ⎞

2θsin=

QUICK TEST 8.3 Time: 15 minutes/Total: 20 points

Answer true or false. If false, give the correct explanation. Each question is worth 2 points. Use the solution given in
Appendix E to grade yourself.

1. In plane stress there are two principal stresses and in plane strain there are
three principal stresses.

2. Principal planes are always orthogonal.
3. For a given state of stress at a point, the principal stresses depend on the material.
4. Depending on the coordinate system used for finding stresses at a point, the values of the stress components

differ. Hence the principal stress at that point will depend on the coordinate system in which the stresses were
found. 

5. Planes of maximum shear stress are always at 90° to principal planes.
6. The sum of the normal stresses in an orthogonal coordinate system is independent of the orientation of the

coordinate system. 
7. If principal stress 1 is tensile and principal stress 2 is compressive, then the in-plane maximum shear stress and

the maximum shear stress are the same for plane stress problems. 
8. If principal stress 1 is tensile and principal stress 2 is compressive, then the in-plane maximum shear stress and

the maximum shear stress are the same for plane strain problems.
9. Two planes passing through a point can be represented by the same point on Mohr’s circle.
10. Two points on Mohr’s circle can represent the same plane. 
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8.4.1 Photoelasticity

The color of light depends on the frequency of the wave, and it may be affected by transmission through different-colored
materials. White light is a mixture of different frequencies. However, even waves of the same frequency can travel differently
in different materials. That is because light waves may lie in different planes at a point. (In quantum mechanics, we learn to
think of light also as particles, called photons, which can then vibrate in different planes). Light of a single frequency is mono-
chromatic, and light with one plane of vibrations is polarized. 

A polarizer is a material that permits light rays to pass only if their plane of vibration lies parallel to one axis, called the 
polarizing axis. If two polarizers are used, then the second polarizer is called an analyzer. If the polarizer and the analyzer 
have polarizing axes arranged perpendicular to each other, then no light will pass through, and a dark field will be produced. 
If the polarizer and the analyzer have polarizing axes parallel to each other, then all the light that passes through the first 
polarizer will pass through the analyzer, too, and a light field will be produced.

The velocity of light depends on the material through which it is passing. Usually the velocity of light is the same in all 
directions, and the material is said to be isotropic. However, when some transparent materials are stressed, light travels 
through the material at different speeds along different planes of vibration. These materials have two polarizing axes, at right 
angles to each other. And, unlike in a polarizer, neither axis simply selects the light. Rather, the velocities of light along the 
two polarizing axes are different. This behavior of light is called birefringence, and materials in which light velocities are dif-
ferent in the two polarizing axes are called birefringent. 

When light passes through birefringent material, a ray along one axis takes longer to pass through it than a ray through 
the other axis. In other words, the ray along the slows axis reaches the same amplitude as the faster ray after a time Δt. The 
time difference Δt is called retardation time.

Figure 8.34 shows light originating from a monochromatic source. It then encounters not just a polarizer and an analyzer, 
but also a birefringent material placed between them. As light passes first through the polarizer, it emerges with its plane of 
vibration parallel to the vertical axis. Now suppose that the two axes of the birefringent material are set at an angle θ with 
respect to the vertical. Light passing through the polarizer will have components along each of these axes, and the component 
of light along the slow axis is retarded by time Δt. In other words, two rays emerge from the birefringent material. The 
observer sees only the horizontal components of these two rays, because the second polarizer will pass only light that is 
parallel to the horizontal axis. In sum, the light that the observer sees depends on two variables—the angle θ of the 
birefringent material’s fast axis with respect to the analyzer axis and the retardation time Δt. 

What makes photoelasticity possible is that birefringence is directly related to stress, as observed by James Clerk 
Maxwell, the Scottish mathematician and physicist, in 1857:

1. The principal axes of stresses in a birefringent material are the fast and slow axes, with the fast axis corresponding to
principal stress 1.

Observer

First
polarizer

A sin �t A sin �t cos � A sin �t sin �

A sin �t sin � A sin �(t � �t) cos � A sin 2�[sin �t � sin �(t � �t)]�2

Birefringe material Second polarizer
(analyzer)

Monochromatic
light source

�

 Figure 8.34 Transmission of light in photoelasticity.
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2. The retardation time is proportional to the difference of principal stresses.

Suppose we start with a light field, so that the polarizer and analyzer axes are parallel. Note that sin(nπ) is zero. We con-
clude that the observer will see dark spots where θ = nπ/2. Lines that connect these dark spots, called isoclinic lines, thus give 
us the direction of principal stress 1 at different points. If we start instead with a dark field, then the isoclinic lines join points 
of maximum transmission of light, where sin 2θ = 1. 

If we start with a light field, the observer will also not see any light if the term in brackets in Figure 8.34 equals zero. At 
these points Δt = 2nπ/ω, and lines connecting these points are called fringes. Because Δt is related to the difference in 
principal stresses, the fringes thus yield the values of σ1 − σ2. Figure 8.35 shows these fringes in a disc subjected to 
diametrically opposite compressive forces.

By choosing different orientations for the polarizing axes of the polarizer, the analyzer, and the birefringe material, we 
can obtain different isoclinic lines and different fringes. Through a succession of such combinations of axes, we can then 
obtain a visual representation of stress in a material. Photographs are taken for each isoclinic line and fringe, and a composite 
photograph that shows all isoclinic lines and fringes is made. 

Actually, to describe plane stress completely, we need three pieces of information. Photoelasticity yields only two—the 
orientation of principal axis 1 and the difference of principal stresses. However, on a free surface we know that one of the 
principal stresses is zero. Thus photoelasticity will give a complete state of stress for a point on a free surface. In the interior, 
if we know the sum of the principal stresses, then we can obtain the complete state of stress at that point. To obtain the sum of 
the principal stresses may require a mix of analytical, numerical, and other experimental methods.

8.5 CHAPTER CONNECTOR

In this chapter we studied the relationship of stresses in different coordinate systems and methods to determine the maximum
tensile normal stress, maximum compressive normal stress, and maximum shear stress. In Chapter 10 we shall study various
failure theories, including maximum-normal-stress and maximum-shear-stress theories. We also apply these theories to the
design and failure analysis of simple structures and machines.

 Figure 8.35 Photoelastic fringes showing principal stress difference. (Courtesy Professor I. Miskioglu.)
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POINTS AND FORMULAS TO REMEMBER

• Stress transformation equations relate stresses at a point in different coordinate systems:

• (8.1)

• (8.2)

• where σxx, σyy, and τxy are the stresses in x, y, z coordinate system, σnn, σtt, and τnt are the stresses in n, t, z coordinate sys-
tem and θ is measured from the x axis in the counterclockwise direction to the n direction.

• The values of stresses on a plane through a point are unique and depend on the orientation of the plane only and not on
how its orientation is described or measured.

• Planes on which the shear stresses are zero are called principal planes.
• Principal planes are orthogonal.
• The normal direction to the principal planes is referred to as the principal direction or principal axis.
• The angles the principal axis makes with the global coordinate system are called principal angles.
• Normal stress on a principal plane is called principal stress.
• The greatest principal stress is called principal stress 1.
• Principal stresses are the maximum and minimum normal stresses at a point.
• The maximum shear stress on a plane that can be obtained by rotating about the z axis is called in-plane maximum shear

stress.
• The maximum shear stress at a point is the absolute maximum shear stress that is on any plane passing through the point.
• Maximum in-plane shear stress exists on two planes which are at 45° to the principal planes.

• (8.6) (8.7)

• (8.12)

• where θp is the angle to either principal plane 1 or 2, σ1 and σ2 are the principal stresses, τp is the in-plane maximum shear
stress.

• (8.9)

• (8.10)

• (8.13)

• Each point on Mohr’s circle represents a unique plane that passes through the point at which the stresses are specified. 
• The coordinates of the point on Mohr’s circle are the normal and shear stresses on the plane represented by the point.
• Angles between planes on a stress cube are doubled when plotted on Mohr’s circle.
• The sign of shear stress cannot be determined directly from Mohr’s circle, which tells only that the shear stress causes the

plane to rotate clockwise or counterclockwise.
• The maximum shear stress at a point is the radius of the biggest circle.
• A principal stress element shows stresses on a wedge constructed from principal planes and the plane of maximum shear

stress.

σnn σxx θ2cos σyy θ2sin 2τxy θ θcossin+ +=

τnt σxx– θ θsincos σyy θ θ cossin τxy θ2cos   θ2sin–( )+ +=

 2θptan
2τxy

σxx σyy–
---------------------= σ1 2,

σxx σyy+
2

--------------------- σxx σyy–
2

---------------------⎝ ⎠
⎛ ⎞

2

τxy
2+±=

τp
σ1 σ2–

2
-----------------=

σnn σtt+ σxx σyy+ σ1 σ2+= =

σ3 σzz
0, plane stress
ν σxx σyy+( ), plane strain⎩

⎨
⎧

= =

τmax max
σ1 σ2–

2
----------------- σ2 σ3–

2
----------------- σ3 σ1–

2
-----------------, ,⎝ ⎠

⎛ ⎞=
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CHAPTER NINE

STRAIN TRANSFORMATION

Learning Objectives
1. Learn the equations and procedures of relating strains at a point in different coordinate systems.

2. Learn the analysis in using strain gages.

_______________________________________________

To minimize the likelihood of occupants being thrown from the vehicle as a result of impact, Federal Motor Vehicle Safety Stan-
dard specifies requirements for attaching of doors. Automobile companies conduct and sponsor research to understand the
stresses near bolts attaching doors to the car body. The door’s own weight subjects the bolts to bending loads. 

In the experiment shown in Figure 9.1, a composite plate is subjected to bending loads like those at the attachment points of the 
car door to a fiber glass body. Strain gages—the most popular strain-measuring devices—are used to determine the strains (and 
hence the stresses) in the critical region. In previous chapters, we obtained formulas for predicting strain. How do we relate the 
experimentally measured strains to those obtained from theory in Cartesian or polar coordinates? This chapter discusses strain 
transformation, which relates strains in different coordinate systems.

The idea of strain transformation is very similar to stress transformation. We shall rely on this similarity to develop the key 
definitions and equations for strain transformation. But there are also differences, and they are critical to a successful under-
standing of the methods. 

9.1 PRELUDE TO THEORY: THE LINE METHOD

In the wedge method of stress transformation (see Section 8.1), the key idea was to convert stresses into forces—that is, to con-
vert a second-order tensor into a vector. We adopt a similar strategy for strain transformation. By multiplying a strain component
by the length of a line, we obtain the deformation, which is a vector quantity. Using the small-strain approximation, we can then
find the component of deformation in a given direction (see Problems 2.40-2.47). Section 9.1.1 elaborates this strategy. 

We restrict ourselves to plane strain problems (see Section 2.5.1), where all strains with subscript z are zero. We further 
assume that the strains in the global Cartesian coordinate system (εxx, εyy, and γxy) at a point are known. We define a right-handed 
local coordinate system n, t, z, as shown in Figure 9.2. As in stress transformation, only those coordinate systems that can be 
obtained by rotation about the z axis are considered. Our objective is to find εnn, εtt, and γnt.

  Figure 9.1 Measurement of strains using strain gages. (Courtesy Professor I. Miskioglu.)
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Recall that normal strains are a measure of change in the length of a line, whereas shear strains are a measure of change in 
the angle between two lines. By finding the change in length and the rotation each axes we can find the strains in that coordinate 
system. This process is formally described in next section and elaborated in Example 9.1.

9.1.1 Line Method Procedure

The normal and shear strains in the local coordinate system can be found by the following steps:
Step 1: Consider each strain component one at a time and view the n and t directions as two separate lines.
Step 2: Construct a rectangle with a diagonal in the direction of the line. Relate the length of the diagonal to the lengths of the
rectangle’s sides. 
Step 3: Draw the deformed shape assuming one side is fixed and apply the deformation on the opposite side. Find the deforma-
tion and rotation of the diagonal using small-strain approximations. 
Step 4: Calculate the normal and shear strains in the n and t directions. 
Step 5: Repeat steps 2 through 4 for each strain component. Superpose the results to obtain the strains in the n and t directions. 

Because the line method is repetitive and tedious, we will consider problems with only one nonzero strain component. 
However, the same principle will be used to develop the equations of strain transformation.

EXAMPLE 9.1

At a point, the only nonzero strain component is εxx = 200 μ. Determine the strain components in the n, t coordinate system that is rotated
25° counterclockwise to the x axis. 

PLAN

We follow the procedure described in Section 9.1.1.

SOLUTION

Step 1: View the axes of the n, t coordinate system as two lines, as shown in Figure 9.3a. Due to the normal strain in the x direction, the
lines in the n and t directions deform to n1 and t1, as shown in Figure 9.3b. 
Calculations in the n direction
Step 2: We can draw a rectangle with a diagonal in the n direction, as shown in Figure 9.3a. The diagonal length be Δn can be related to
Δx as shown.

Step 3: Let point P move to point P1 due to strain εxx. The deformed shape can be drawn as shown in Figure 9.3c.

  Figure 9.2 Global and local coordinate system.
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  Figure 9.3 (a) (b) Movement of n and t lines. Deformation calculations (c) in the n direction; (d) in the t direction in Example 9.1.

(a) (b) (c) (d)
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Step 4: A perpendicular line from P1 to the n direction is drawn. The sides of the triangle PnPP1 are

(E1)

(E2)
The angle φ1 can be found from triangle PnOP1 as

(E3)

Calculations in the t direction
Step 2: We can draw a rectangle with a diagonal representing the t direction, as shown in Figure 9.3d. The diagonal length Δt can be
related to Δx as shown.
Step 3: Let point P move to point P1 due to strain εxx. The deformed shape can be drawn as shown in Figure 9.3d.
Step 4: A perpendicular line from P1 to the t direction is drawn. The sides of triangle Pt PP1 are

(E4)

(E5)
We can calculate the angle φ2 from triangle PtOP1 as

(E6)

Step 5: The normal strain in the n and t directions are

(E7)

(E8)

ANS.

COMMENTS

1. In Figure 9.3a the displacement of point P to P1 is in the positive x direction, whereas in Figure 9.3b the displacement is in the nega-
tive x direction. But notice that both rectangles show elongation to reflect positive εxx. Both rectangles represent the same point. This
emphasizes once more the difference between displacements and deformations.

2. The negative sign in Equation (E8) reflects the increase in angle between n and t as shown in Figure 9.3. 
3. We repeated the calculations for n and t directions for one strain component. For all three components we would do similar calcula-

tions six times, making the line method a repetitive, tedious process. We will develop formulas using this method to overcome the
tedium.

PROBLEM SET 9.1

Line method
In Problems 9.1 through 9.4, determine the rotation of line OP and the normal strain in the direction OP due to the strain given in each problem. 

Problem Strain Use 

9.1 Figure P9.1 Figure P9.1

9.2 Figure P9.1

9.3 Figure P9.3 Figure P9.3

9.4 Figure P9.3

PP1 εxx Δx 200 10 6–( )Δn 25°cos 181.3Δn 10 6–( )= = =

PPn PP1 25°cos 164.3Δn 10 6–( )= = PnP1 PP1 25°sin 76.6Δn 10 6–( )= =

OPn OP PPn+ Δn 1 164.3 10 6–( )+[ ] Δn≈= = φ1tan φ1≈
PnP1

OPn
------------ 76.6 10 6–( )  rad= =

PP1 εxx Δx 200 10 6–( )Δt 65°cos 84.5Δt 10 6–( )===

Pt P1 PP1 65°sin 76.58Δt 10 6–( )= = PPt PP1 65°cos 35.7Δt 10 6–( )= =

OPt OP PPt+ Δt 1 35.7 10 6–( )+[ ] Δ t≈= = φ2tan φ2≈
PtP1

OPt
----------- 76.6 10 6–( )= =

εnn
PPn

Δn
---------- 164.3Δn 10 6–( )

Δn
------------------------------------ 164.3 10 6–( )= = = εtt

PPt

Δt
--------- 35.7Δt 10 6–( )

Δt
-------------------------------- 35.7 10 6–( )= = =

γnt φ1 φ2+( )– 76.6 10 6–( ) 76.6 10 6–( )+[ ]– 153.2 10 6–( )–= = =

εnn 164.3 μ= εtt 35.7 μ= γnt 153.2 μ–=

εxx 500 μ=
y

x
O

P

50�

γxy 300 μ=

εyy 400– μ=
y

xO

P

50�

γyx 300 μ=
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In Problems 9.5 through 9.13, at a point, the nonzero strain component are as given in each problem. Determine the strain components in the
n, t coordinate system shown.

9.2 METHOD OF EQUATIONS

In this section we develop strain transformation equations using the line method.1 We assume the point is in plane strain and the
strains εxx, εyy, and γxy are known. As in stress transformation, we consider only those coordinate systems that can be obtained by
rotation about the z axis shown in Figure 9.2. Our objective is to find the strains εnn, εtt, and γnt. 

Sign Convention: The angle θ describing the orientation of the local coordinate system is positive in counterclockwise 
direction from the x axis. 

We will follow the procedure outlined in Section 9.1.1 to determine the deformation and rotation of a line in the n direction. 
By substituting 90o + θ in place of θ in the expressions obtained in the n direction, we will obtain the expressions in the t direc-
tion. 

Calculations for εxx acting alone
Step 1: View the axes of the n, t coordinate system as two lines, as shown in Figure 9.4a. Due to the normal strain in the x direction,
the lines in the n and t directions deform to n1 and t1, as shown.

Step 2: Draw a rectangle with a diagonal at an angle θ as shown in Figure 9.4b. The diagonal length Δn can be related to Δx as
shown.

Problem Strain Use 

9.5 Figure P9.5

Figure P9.5
9.6 Figure P9.5

9.7 Figure P9.5

9.8 Figure P9.8

Figure P9.89.9 Figure P9.8

9.10 Figure P9.8

9.11 Figure P9.11

Figure P9.11

9.12 Figure P9.11

9.13 Figure P9.11

εxx 400–  μ= y
t

x

n
30

εyy 600 μ=

γxy 500– μ=

εxx 600–  μ= y

t

x

n

70�

εyy 1000–  μ=

γxy 500 μ=

εxx 600 μ= y

t

x

n

40�
εyy 600 μ=

γxy 600 μ=

1See Problems 9.78 through 9.80 for an alternative derivation of the strain transformation equations.

nt

n1t1
�1�2

(a) (b)

�

�
�y

�x � �n cos 25
�xx �x

�n �1

x

y
n

P
P1

n1
Pn

O
A

  Figure 9.4 Strain transformation with εxx only.
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Step 3: Let point P move to point P1 due to strain εxx. Draw an exaggerated deformed shape as shown in Figure 9.4b. A perpen-
dicular line from P1 to the n direction is drawn. The sides of the triangle PnPP1 are

(9.1.a)

(9.1.b)

(9.1.c)

Now OPn = OP + PPn = OP(1 + PPn/OP) = OP(1 + εnn). For small strain,  and hence can be neglected, giving OPn = OP

= Δn. For small strain the tangent function can be approximated by its argument. With these two approximations, we obtain the
rotation φ1 from triangle PnOP1,

Step 4: The normal strain in the n direction can be found as 

(9.1.d)

The superscript 1 differentiates the strains calculated from εxx from those calculated from εyy and γxy. We note that the t axis is a

line like the n axis, but at an angle of 90o + θ instead of θ. We can obtain the normal strain in the t direction and the rotation  of

the t axis by substituting 90o + θ in place of θ. 

(9.1.e)

(9.1.f)

The angle between the n and t directions increases, as seen from the rectangle in Figure 9.4a. This implies that the shear strain
will be negative and is given as

(9.1.g)

Calculations for εyy acting alone
The preceding calculations can be repeated for εyy. The calculations for Steps 1–3 are shown in Figure 9.5. Based on small strain,

we once more approximate  and  to obtain

(9.2.a)

Step 4: The normal strain in the n direction can be found as

(9.2.b)

We can obtain the normal strain in the t direction and the rotation  of the t axis by substituting 90o + θ in place of θ. 

(9.2.c)

(9.2.d)

The angle between the n and t directions decreases, as seen from the rectangle in Figure 9.5a. This implies that the shear strain
will be positive:

(9.2.e)

PP1 εxx Δx εxx Δn θcos= =

PPn PP1 θcos εxx θ2cos( ) Δn( )= =

PnP1 PP1 θsin εxx θsin  θcos( ) Δn= =

εnn < 1<

φ1tan φ1≈
PnP1

OPn
------------ PnP1

OP
------------  

εxx θ  θcossin( ) Δn
Δn

------------------------------------------------=≈ εxx θsin θcos= =

εnn
1( ) PPn Δn⁄ εxx cos2θ= =

φ2

εtt
1( ) εxx 90° θ+( )2cos εxx θ2sin= =

φ2 εxx 90° θ+( )sin 90° θ+( )cos εxx θ  sin θcos= =

γnt
1( ) φ1 φ2+( )– 2εxx θsin  θcos–= =

OPn OP≅ φ1tan φ1≈

φ1tan φ1≈
PnP1

OPn
------------ PnP1

OP
------------≈ εyy θsin  θcos= =

εnn
2( ) PPn Δn⁄ εyy θ2sin= =

φ2

εtt
2( ) εyy 90° θ+( )2sin εyy θ2cos= =

φ2 εyy 90° θ+( )sin 90° θ+( )cos εyy θ  sin θcos= =

γnt
2( ) φ1 φ2+ 2εyy θsin  θcos= =
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Calculations for γxy acting alone
The preceding calculations can be repeated for γxy. The calculations for Steps 1–3 are shown in Figure 9.6. Based on small strain,

we once more approximate  and  to obtain 

(9.3.a)

Step 4: The normal strain in the n direction can be found as 

(9.3.b)

We can obtain the normal strain in the t direction and the rotation  of the t axis by substituting 90o + θ in place of θ.

(9.3.c)

(9.3.d)

From Figure 9.6a it is seen that the movement of the line in the n direction to n1 increases the initial angle, and the movement of the
line in the t direction to t1 decreases the initial angle. The final angle between the n1 and t1 directions is π/2 + φ1 − φ2. Thus from the
definition of shear strain in Chapter 2, we obtain

(9.3.e)

Total strains
Step 5: As we are working with small strains, we have a linear system, and the total strain in the n and t directions is the superpo-
sition of the strains due to the individual components. That is,

We obtain the following equations:

(9.4)

  Figure 9.5 Strain transformation with εyy only.
(a) (b)

nt
n1t1

�1�2

�x

�y � �n sin �

�yy �y

�n
�1

�

�
x

y

n

P

P1

n1

Pn

O

PPn � PP1 cos � � �yy �y sin � � (�yy sin2 �) �n

PnP1 � PP1 cos � � �yy �y cos � � (�yy cos � sin �) �n

OPn OP≅ φ1tan φ1≈

φ1tan φ1≈
PnP1

OPn
------------ PnP1

OP
------------≈ γxy θ2sin= =

εnn
3( ) PPn Δn⁄ γxy θsin θcos= =

φ2

εtt
3( ) γxy 90° θ+( )sin   90° θ+( )cos γ– xy θsin  θcos= =

φ2 γxy 90° θ+( )2cos γxy θ2cos= =

γnt
3( ) φ1 φ2– γxy θ2cos θ2sin–( )= =

  Figure 9.6 Strain transformation with γxy only.
(a) (b)

n

t n1

t1

�1�2

�x

�y � �n sin �
�xy �y

�n

�1

�

�
x

y
n

P
P1

n1

Pn

O

PPn � PP1 cos � � �xy �y cos � � (�xy sin � cos �) �n

PnP1 � PP1 sin � � �xy �y sin � � (�xy sin2 �) �n

εnn εnn
1( )= εnn

2( ) εnn
3( ) εtt εtt

1( )= εtt
2( ) εtt

3( ) γnt γnt
1( )= γnt

2( ) γnt
3( )+ ++ ++ +

εnn εxx θ2cos εyy θ2sin γxy θsin θcos+ +=
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(9.5)

(9.6)

Equations (9.4), (9.5), and (9.6) are similar to the stress transformation equations, Equations (8.1), (8.2), and (8.3). However, the
coefficient of the shear strain term is half the coefficient of the shear stress term. This is because we are using engineering strain
instead of tensor strain.2 With this difference accounted for, we can rewrite the results from stress transformation for strain trans-
formation, as described next.

9.2.1 Principal Strains

Analogous to the case of stress transformation, we have the following definitions. 

• The principal directions are the coordinate axes in which the shear strain is zero. 
• The angles the principal axes make with the global coordinate system are called principal angles. 
• Normal strains in the principal directions are called principal strains. 
• The greatest principal strain is called principal strain 1 (ε1). By greatest principal strain we refer to the magnitude and

the sign of the principal strain. Thus a strain of −600 μ is greater than one of −1000 μ

Note that the coefficient of the shear strain in strain transformation equations is half the coefficient of shear stress in the 
stress transformation equations. We therefore obtain the principal angle θp and principal strains [see Equations (8.6) and (8.7)],

(9.7)

(9.8)

Here ε1,2 represents the two strains ε1 and ε2. The plus sign is to be taken with ε1 and the minus sign with ε2. Like principal 
stresses, the principal strains correspond to the maximum and minimum normal strains at a point. 

Adding Equations (9.4) and (9.5) and the principal strains in Equation (9.8), we obtain 
(9.9)

Equation (9.9) shows that the sum of the normal strains at any point in an orthogonal coordinate system does not depend on the
orientation of the coordinate system.

The angle of principal axis 1 from the x axis is reported only in describing the principal coordinate system in two-dimen-
sional problems. Counterclockwise rotation from the x axis is defined as positive. 

Two values of θp satisfy Equation (9.7), separated by 90°. The direction θ1 corresponding to ε1 is 90° from the direction θ2 
corresponding to ε2. In other words, the principal directions are orthogonal. It is not clear whether the principal angle found 
from Equation (9.7) is associated with ε1 or ε2. We will resolve this problem as we did in stress transformation, as elaborated in 
Example 9.4. 

In plane strain, the shear strains with subscript z are zero. Therefore the z direction is a principal direction and the normal 
strain εzz is a principal strain of zero value. In plain stress the shear strains with subscript z are again zero, but εzz is not zero; as 

shown in Figure 3.27, it is equal to . If we add Equations (3.12a) and (3.12b) for plane stress problems, we obtain 

. Thus [See Equation (3.18)], 

2An alternative is to let γxy = 2εxy and γnt = 2εnt in Equations (9.4) through (9.6), where it is understood that εxy is the tensor shear strain and
γxy is the engineering shear strain. In such a case the equations of stress and strain transformation have identical forms.

εtt εxx θ2sin εyy θ2cos   γxy θsin θcos–+=

γnt 2– εxx θ sin θcos 2εyy θ sin θcos γxy θ2cos θ2sin–( )+ +=

2θptan
γxy

εxx εyy–
-------------------=

ε1,2
εxx εyy+

2
------------------- εxx εyy–

2
-------------------⎝ ⎠

⎛ ⎞
2 γxy

2
------⎝ ⎠

⎛ ⎞
2

+±=

εnn εtt+ εxx εyy+ ε1 ε2+= =

ν σxx σyy+( )

σxx σyy+ E εxx εyy+( ) 1 ν–( )⁄[ ]=

εzz
ν

1 ν–
------------– εxx εyy+( )=
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and we can write the third principal strain as

(9.10)

9.2.2 Visualizing Principal Strain Directions

A circle at a given point will deform into an ellipse with the major axis in the direction of maximum normal strain (principal
strain 1) and the minor axis in the direction of minimum normal strain (principal strain 2). We make use of this observation to
estimate the direction of the principal strains within a 45° quadrant.
Step 1: Visualize or draw a square with a circle inside.
Step 2: Visualize or draw the deformed shape of the square due to only normal strains. 

The deformed shape will be a rectangle. The circle within the square has now become an ellipse with the major axis either 
along the x direction or along the y direction, depending which normal strain is greater.
Step 3: Visualize or draw the deformed shape of the rectangle due to the shear strain. 

The rectangle will deform into a rhombus, and the ellipse inside would have rotated such that the major axis is in the direc-
tion of the longer diagonal of the rhombus. The major axis can rotate at most 45° from its orientation in Step 2. The major axis 
represents principal direction 1 and the minor axis represents principal direction 2. 
Step 4: Using the eight 45° sectors shown in Figure 9.7, report the orientation of principal direction 1. Also report principal
direction 2 as two sectors counterclockwise from the sector reported for principal direction 1.

As in stress transformation, principal directions 1, 2, and 3 form a right-handed coordinate system. The z direction is the 
third principal direction. Once principal direction 1 is determined, the right-hand rule places principal direction 2 at two sectors 
(90°) counterclockwise from it.

EXAMPLE 9.2

At a point in plane strain, the strain components are εxx = 200 μ, εyy = 500 μ, and γxy = 600 μ. Estimate the orientation of the principal
directions and report your results using the sectors shown in Figure 9.7.

PLAN

We will follow the steps outlined in section Section 9.2.2.

SOLUTION

Step 1: We draw a circle inside a square, as shown in Figure 9.8a. 

  Figure 9.8 (a) Undeformed shape. (b) Deformation due to normal strains. (c) Additional deformation due to shear strain.

ε3

0, plane strain
v

1 v–
----------- εxx εyy+( )  ν

1 ν–
------------– ε1 ε2+( ),=– plane stress

⎩
⎪
⎨
⎪
⎧

=

4

5

6 7

8

1

23

y

x

  Figure 9.7 The eight sectors in which the principal axis will lie.

y

x

y

x

Principal
direction 1

Principal
direction 2

(a) (b) (c)
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Step 2: As εyy > εxx, the extension in the y direction is greater than that in the x direction. The square becomes a rectangle and the circle
becomes an ellipse, as shown Figure 9.8b.
Step 3: As γxy is positive, the angle between the x and y axes must decrease and we obtain the rhombus shown in Figure 9.8c.
Step 4: The two solutions follow by inspection.

ANS. 

COMMENTS

1. In Figure 9.8b the major axis is along the y axis. This major axis can rotate at most 45° clockwise or counterclockwise, as dictated by
the shear strain. Thus principal axis 1 will be either in sector 2 or in sector 6, according to Figure 9.8c.

2. We will always obtain two answers for principal angle 1 as we did in stress transformation. Both answers are correct, and either can
be reported.

EXAMPLE 9.3

At a point in plane strain, the strain components are εxx = −200 μ, εyy = −400 μ, and γxy = −300 μ. Estimate the orientation of the principal
directions and report your results using the sectors shown in Figure 9.7.

PLAN

This time we will visualize but not draw any deformed shapes. 

SOLUTION

Step 1: We visualize a square with a circle.
Step 2: Due to normal strains, the contraction in the y direction is greater than that in the x direction. Hence the rectangle will have a
longer side in the x direction, that is, the major axis is along the x axis. 
Step 3: As the shear strain is negative, the angle will increase. The major axis will rotate clockwise, and it will lie either in sector 8 or in
sector 4.
Step 4: Principal axis 1 is either in sector 8 or in sector 4, giving the solution.

ANS. 

9.2.3 Maximum Shear Strain

As in stress transformation, we differentiate between in-plane maximum shear strain and maximum shear strain. The maximum
shear strain in coordinate systems that can be obtained by rotating about the z axis is called in-plane maximum shear strain. Since
the coefficient of shear strain in strain transformation equations is half the coefficient of shear stress in stress transformation equa-
tions, we obtain the in-plane maximum shear strain as 

(9.11)

The maximum shear strain at a point is the maximum shear strain in any coordinate system given by

(9.12)

Equation (9.12) shows that the value of the maximum shear strain depends on the value of principal strain 3.Equation (9.10) shows
that the value of principal strain 3 depends on the plane stress or plane strain problem. As in stress transformation, the maximum
shear strain exists in two coordinate systems that are at 45° to the principal coordinate system.

Principal axis 1 is in sector 2 and principal axis 2 is in sector 4.
or

Principal axis 1 is in sector 6 and principal axis 2 is in sector 8.

Principal axis 1 is in sector 8 and principal axis 2 is in sector 2.
or

Principal axis 1 is in sector 4 and principal axis 2 is in sector 6.

γp

2
----

ε1 ε2–
2

---------------=

γmax

2
--------- max

ε1 ε2–
2

---------------   
ε2 ε3–

2
---------------   

ε3 ε1–
2

---------------, ,⎝ ⎠
⎛ ⎞=
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EXAMPLE 9.4

At a point in plane strain, the strain components are εxx = 200 μ, εyy = 1000 μ, and γxy = –600 μ. Determine (a) the principal strains and
principal angle 1; (b) the maximum shear strain; (c) the strain components in a coordinate system that is rotated 25° counterclockwise, as
shown in Figure 9.9.

PLAN

(a) Using Equation (9.7), we can find θp. We can substitute θp into Equation (9.4) and find one of the principal strains. Using Equation
(9.9), we find the other principal strain and decide which is principal strain 1. (b) We can find the maximum shear strain using Equa-
tion (9.12). (c) We can find the strains in the n and t coordinates by substituting θ = 25° in Equations (9.4), (9.5), and (9.6). 

SOLUTION

(a) From Equation (9.7) we obtain the principal angle, 

(E1)

Substituting θp into Equation (9.4), we obtain one of the principal strains, 

(E2)
Now εxx + εyy = 1200 μ. From Equation (9.9) we obtain the other principal strain as 1200 − 100 = 1100 μ, which is greater than the prin-
cipal strain in Equation (E2). Thus 1100 μ is principal strain 1, and principal angle 1 is obtained by adding (or subtracting) 90° from
Equation (E1). As the point is in plane strain, the third principal strain is zero. We report our results as

ANS.
We can check the principal strain values using Equation (9.8), 

Intuitive check orientation of principal axis 1:  We visualize a circle in a square, as shown in Figure 9.10a. As εyy > εxx, the rectangle will
become longer in the y direction than in the x direction and the circle will become an ellipse with major axis along the y direction,
as shown in Figure 9.10b. As γxy < 0, the angle between the x and y directions will increase. The rectangle will become a rhombus and
the major axis of the ellipse will rotate counterclockwise from the y axis. Hence we expect principal axis 1 to be in either the third sector
or the seventh sector, confirming our result.

(b) We can find the maximum shear strain from Equation (9.12), that is, the maximum difference is between ε1 and ε3, thus the maximum
shear strain is 

ANS.

(c) Substituting θ = 25° in Equations (9.4), (9.5), and (9.6), we obtain 

(E3)

(E4)

(E5)

ANS.
We can use Equation (9.9) to check our results. We note that εnn + εtt = 1200 μ, which is the same value as for εxx + εyy, confirming the
accuracy of our results. 

  Figure 9.9 25�

n

x

yt

tan 2θp
600 μ–

200 μ 1000 μ–
-------------------------------------- 0.75 36.87°tan= = = or θp 18.43°ccw=

εp 200 μ( ) 18.43°2cos 1000 μ( ) 18.43°2sin 600 μ–( ) 18.43°sin 18.43° 100 μ=cos+ +=

ε1 1100 μ= ε2 100 μ= ε3 0= θ1 108.4o ccw or 71.6o cw=

ε1,2
200 μ( ) 1000 μ( )+

2
------------------------------------------------ 200 μ 1000 μ–

2
--------------------------------------⎝ ⎠

⎛ ⎞
2 600 μ–

2
------------------⎝ ⎠

⎛ ⎞
2

+± 600 μ 500 μ----Checks±= =

  Figure 9.10  (a) Undeformed shape. (b) Deformation due to normal strains. (c) Additional deformation due to shear strain.
(a)

y

x

(b) (c)

y

x

Principal
direction 2

Principal
direction 1

γmax 1100 μ=

εnn 200 μ( ) 25°2cos 1000 μ( ) 25° 600 μ–( )+2sin+ 25° 25°cossin 113.1 μ= =

εtt 200 μ( ) 25° 1000 μ( ) 25° 600 μ–( )–2cos+
2

25° 25°cossinsin 1086.9 μ= =

γnt 2 200 μ( )– 25° 25° 2 1000 μ( )  25° 25°cossin  600 μ–( )  25°  2 - 25°2sincos( )+ +cossin 227.2 μ= =

εnn 113.1 μ= εtt 1086.9 μ= γnt 227.2 μ=
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COMMENTS

1. It can be checked that if we substitute θ = 25° + 180° = 205° or θ = 25° − 180° = −155° in Equations (9.4), (9.5), and (9.6), we
will obtain the same values for εnn, εtt, and γnt as in part (c). In other words, adding or subtracting 180° from the angle θ in Equa-
tions (9.4), (9.5), and (9.6) does not affect the results. This emphasizes that the strain at a point in a given direction (coordinate
system) is unique and does not depend on how we describe or measure the orientation of the line.

2. If the point were in plane stress on a material with a Poisson’s ratio of , then the third principle strain would be ε3 = –[ν/(1 – ν)](εxx

+ εyy) = –600 μ and the maximum shear strain would be γmax = 1700 μ which is different than the value we obtained in part (b) for
plane strain. 

EXAMPLE 9.5

For the wooden cantilever beam shown in Figure 9.11 determine at point A (a) the principal strains and the angle of first principal direc-
tion θ1; (b) the maximum shear strain. Use the modulus of elasticity E = 12.6 GPa and Poisson’s ratio ν = 0.3. 

PLAN

The bending stresses σxx and τxy at point A can be found using Equations (6.12) and (6.27), respectively. Using Hooke’s law, the strains
εxx, εyy, and γxy can be found. Using Equation (9.7), θp can be found and substituted into Equation (9.4) to obtain one of the principal
strains. Using Equation (9.9), we find the other principal strain and decide which is principal strain 1. The maximum shear strain can be
found using Equation (9.12). 

SOLUTION

Bending stress calculations: Recall that As is the area between the free surface and the parallel line passing through point A, where shear
stress is to be found. The area moment of inertia Izz and the first moment Qz of the area As shown in Figure 9.12a are 

(E1)

(E2)

Figure 9.12b shows the free-body diagram of the right part of the beam after making the imaginary cut through point A in Figure 9.11.
The shear force Vy and the bending moment Mz are drawn according to our sign convention. By balancing forces and moment we obtain 

 (E3)

(E4)
Substituting Equations (E1), (E4), and yA = 0.015 m into Equation (6.12), we obtain the bending normal stress, 

(E5)

By visualizing the beam deformation, we expect σxx to be tensile consistent with the calculations above.

1
3
---

0.4 m 0.4 m 6 mm

30 mm
15 mm

A

900 Ny

z

30 mm

6 mm
  Figure 9.11 Beam and loading in Example 9.5.

Izz
12 mm( ) 60 mm( )3

12
----------------------------------------------- 0.216 106( ) mm4 0.216 10 6–( )  m4= = =

Qz 12 mm( ) 15 mm( ) 15 mm 7.5 mm+( ) 4.050 103( )  mm3 4.050 10 6–( )  m3= = =

  Figure 9.12 Calculation of geometric and internal quantities.

(a) (b)

0.4 m
Vy

Mz

900 N

12 mm

60 mm
15 mm

z

y

7.5 mm

Vy 900 N–=

Mz 0.4 m( ) 900 N( )– 360 N·m–= =

σxx
Mzy
Izz

---------– 360–  N·m( ) 0.015 m( )

0.216 10 6–( )  m4
--------------------------------------------------------– 25 106( )  N m2⁄= = =
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Substituting Equations (E1), (E2), and (E3) and t = 0.012 m into Equation (6.27), we obtain the magnitude of τxy. Noting that τxy must
have the same sign as Vy, we obtain the sign of τxy (see Section 6.6.6) as given by 

(E6)

Bending strain calculations: The shear modulus of elasticity can be found from G = E/2(1 + ν). Substituting E = 12.6 GPa and ν = 0.3,
we obtain G = 4.85 GPa. The only two nonzero stress components are given by Equations (E5) and (E6). Using the generalized Hooke’s
law [or Equation (6.29)], we obtain the bending strains,

(E7)

(E8)

(E9)

(a) Stress transformation calculations: From Equation (9.7) we obtain the principal angle,

(E10)

Substituting θp into Equation (9.4) we obtain one of the principal strains, 

(E11)
Now εxx + εyy = 1389 μ. From Equation (9.9) we obtain the other principal strain as 1389 μ – 1992 μ = –603 μ, which is less than the prin-
cipal strain in Equation (E11). Thus 1992 μ is principal strain 1, and principal angle 1 is obtained from Equation (E10). The third princi-
pal strain will be the same as the second principal strain. We report our results as 

ANS.
Check on principal strains: We can check the principal strain values using Equation (9.8),

 or

Intuitive check orientation of principal axis 1:  We visualize a circle in a square. As εxx > εyy the rectangle will become longer in the x
direction. The circle will become an ellipse with its major axis along the x direction. As the shear strain is negative, the angle will increase.
The major axis will rotate clockwise, and it will lie either in sector 8 or in sector 4, confirming our result.
(b) We can find the maximum shear strain from Equation (9.12), as the difference between ε1 and ε2 (or ε3). 

ANS.

COMMENT

1. The example demonstrates the synthesis of the theory of symmetric bending of beams and the theory of strain transformation. A sim-
ilar synthesis can be elaborated for axial and torsion members. 

9.3 MOHR’S CIRCLE

As for stress transformation, Mohr’s circle is graphical technique for solving problems in strain transformation. We eliminate θ
from Equations (9.4) and (9.6) written in terms of double angles, to obtain 

(9.13)

Comparing Equation (9.13) with the equation of a circle, (x – a)2 + y2 = R2, we see that Equation (9.13) it represents a circle with
a center that has coordinates (a, 0) and radius R, where 

 (9.14)

The circle is called Mohr’s circle for strain. Each point on Mohr’s circle represents a unique direction passing through the point at
which the strains are specified. The coordinates of each point on the circle are the strains (εnn, γnt/2). These represent the normal

τxy
VyQz

Izzt
------------ 900 N–( ) 4.050 10 6–( )  m3[ ]

0.216 10 6–( ) m4[ ] 0.012 m( )
-------------------------------------------------------------------- 1.41 106( )  N m2⁄= = = or τxy 1.41– 106( )  N m2⁄=

εxx
σxx

E
------- 25 106( )  N m2⁄

12.6 109( )  N m2⁄
----------------------------------------- 1.984 10 3–( ) 1984 μ= = = =

εyy
νσxx

E
-----------– νεxx– 0.3 1984 μ( )– 595.2 μ–= = = =

γxy
τxy

G
------ 1.41– 106( )  N m2⁄

4.85 109( ) N m2⁄
--------------------------------------------- 0.2907 10 3–( )– 290.7 μ–= = = =

2θptan 290.7 μ–
1984 μ 595.2 μ–( )–
--------------------------------------------------- 0.1124– 6.41°tan–= = = or θp 3.21°–=

εp 1984 μ( ) 3.21°–( )2cos 595.2 μ–( ) 3.21°–( )2sin 290.7 μ–( ) 3.21°–( )sin 3.21°–( )cos  1992 μ=+ +=

ε1 1992 μ= ε2 603– μ= ε3 603– μ= θ1 3.21ocw=

ε1,2
1984 μ 595.2 μ–( )+

2
--------------------------------------------------- 1984 μ 595.2 μ–( )–

2
---------------------------------------------------⎝ ⎠

⎛ ⎞
2 290.7 μ–

2
----------------------⎝ ⎠

⎛ ⎞
2

+± 694.4 μ 1297.7 μ±= =

ε1 1992.1 μ ε2 603.3 μ----checks–==

γmax 2595 μ=

εnn
εxx εyy+

2
-------------------–⎝ ⎠

⎛ ⎞
2 γnt

2
------⎝ ⎠

⎛ ⎞
2

+
εxx εyy–

2
-------------------⎝ ⎠

⎛ ⎞
2 γxy

2
------⎝ ⎠

⎛ ⎞
2

+=

a
εxx εyy+

2
-------------------= R

εxx εyy–
2

-------------------⎝ ⎠
⎛ ⎞

2 γxy

2
------⎝ ⎠

⎛ ⎞
2

+=
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strain of a line in the n direction and half the shear strain, which represents the rotation of the line passing through the point at
which strains εxx, εyy, and γxy are specified. 

9.3.1 Construction of Mohr’s Circle for Strains

The construction of Mohr’s circle for strain is very similar to that for stress. However, there are two important differences. (i) In
stress transformation we talked about planes, while here we talk about directions. The directions are the outward normals of the
planes. (ii) The vertical axis is shear strain divided by 2. All values of shear strain that are plotted on Mohr’s circle or calculated from
Mohr’s circle must take into account that the vertical coordinate is shear strain divided by 2.

The steps in the construction of Mohr’s circle for strain are as follows. 
Step 1: Draw a square with a shape deformed due to shear strain γxy. Label the intersection of the vertical plane and the x axis as V
and the intersection of the horizontal plane and the y axis as H, as shown in Figure 9.13.

Unlike in stress transformation, where V and H represented planes, here V and H refer to directions. The outward normal to 
the vertical plane is the x axis, and V is the label associated with it. Similarly, the outward normal to the horizontal plane is the 
y axis, which is represented by point H.
Step 2: Write the coordinates of points V and H,

The arrow of rotation along side the shear strains corresponds to the rotation of the line on which the point lies, as shown in Figure
9.13. 
Step 3: Draw the horizontal axis to represent the normal strain, with extensions (E) to the right and contractions (C) to the left, as
shown in Figure 9.14a. Draw the vertical axis to represent half the shear strain, with clockwise rotation of a line in the upper plane
and counterclockwise rotation of a line in the lower plane. 

As this step emphasizes, the value of shear strain read from Mohr’s circle does not tell us whether shear strain is positive or 
negative. Rather, it shows that the shear strain will cause a line in a given direction to rotate clockwise or counterclockwise. This 
point is further elaborated in Section 9.3.2.
Step 4: Locate points V and H and join the points by drawing a line. Label the point at which line VH intersects the horizontal axis
as C.
Step 5: The horizontal coordinate of point C is the average normal strain. Distance CE can be found from the coordinates of points
E and C and the radius R calculated using the Pythagorean theorem. With C as the center and CV or CH as the radius, draw Mohr’s
circle.

Step 6: Calculate the principal strains by finding the coordinates of points P1 and P2 in Figure 9.14a.

(a)

�xy � 0

y

x

H

V

  Figure 9.13 Deformed cube for construction of Mohr’s circle. (b)

�xy � 0
x

H

V

V εxx γxy 2⁄   ,( ) H εyy γxy 2  ⁄,( ) for , γxy 0>

(a) (b)

�

H

C2�p

2�p

R

E
D (E)

P1P2P3

�3

��2

�2

�1

(C)

ccw

cw

R

V

�yx

2

�xy

2�xx � �yy

2
�xx � �yy

2

��max�2 �

P1P2P3 �

(E)(C)

��max�2 �

��p�2 �

��p�2 �

��2

ccw

cw

D
E

γ/2 γ/2

  Figure 9.14 Mohr’s circle for strains.
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Step 7: Calculate principal angle θp from either triangle VCD or triangle ECH. Find the angle between lines CV and CP1 if θ1 is dif-
ferent from θp. 

In Figure 9.14a, θp and θ1 have the same value, but this may not always be the case, as elaborated in Example 9.6. θ1 is the 
angle measured from the x axis, which is represented by point V on Mohr’s circle, and principal direction 1 is represented by 
point P1. 
Step 8: Check your answer for θ1 intuitively using the visualization technique of Section 9.2.2. 
Step 9: The in-plane maximum shear strain γp/2 equals R, the radius of the in-plane circle shown in Figure 9.14a. To find the abso-
lute maximum shear strain, locate point P3 at the value of the third principal strain. Then draw two more circles between P1 and P3

and between P2 and P3, as shown in Figure 9.14b. The maximum shear strain at a point is found from the radius of the largest circle.
For plane strain P3 is at the origin, as shown in Figure 9.14b. But for plane stress, the third principal strain must be found 

from Equation (9.10) and located before drawing the remaining two circles. Notice that the radii of the circles yield half the 
value of the maximum shear strain. 

9.3.2 Strains in a Specified Coordinate System

The strains in a specified coordinate system are found by first locating the coordinate directions on Mohr’s circle and then determin-
ing the coordinates of the point representing the directions. This is achieved as follows.
Step 10: Draw the Cartesian coordinate system and the specified coordinate system along with a square in each coordinate system,
representing the undeformed state. Label points V, H, N, and T to represent the four directions, as shown in Figure 9.15a.
Step 11: Points V and H on Mohr’s circle are known. Point N on Mohr’s circle is located by starting from point V and rotating by
2θV in the same direction, as shown in Figure 9.15a. Similarly, starting from point H on Mohr’s circle, point T is located as shown in
Figure 9.15b.

It should be emphasized that we could start from point H on Mohr’s circle and reach point N by rotating 2θH, as shown in 

Figure 9.15b. In Figure 9.15a, θH + θV = 90°, and in Figure 9.15b we see that 2θH + 2θV is 180°, which once more emphasizes that 
each point on Mohr’s circle represents a unique direction, and it is immaterial how one reaches it.
Step 12: Calculate the coordinates of points N and T. 

This is the reverse of Step 2 in the construction of Mohr’s circle and is a problem in geometry. As seen in Figure 9.15b, the 
coordinates of points N and T are

The rotation of the line at point N is clockwise, as it is in the upper plane, whereas the rotation of the line at point T is coun-
terclockwise, as it is in the lower plane in Figure 9.15b. 
Step 13: Determine the sign of the shear strain. 

To draw the deformed shape we rotate the n coordinate in the direction shown for point N in Step 3. Similarly, we rotate the 
t coordinate in the direction shown for point T in Step 3, as illustrated in Figure 9.15c. The angle between the n and t directions 
increases, and hence the shear strain γnt is negative.

  Figure 9.15 Strains in specified coordinate system.
(b) (c)

n1

t1

t

T

N
n

(a)

�
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�tt

(C)
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��2
cw
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t
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N
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EXAMPLE 9.6

At a point in plane strain, the strain components are εxx = 200 μ, εyy = 1000 μ, and γxy = –600 μ. Using Mohr’s circle, determine (a) the
principal strains and principal angle 1; (b) the maximum shear strain; (c) the strain components in a coordinate system that is rotated
25° counterclockwise, as shown in Figure 9.16.

PLAN

We can follow the steps outlined for the construction of Mohr’s circle and for the calculation of the various quantities as outlined in this
section.

SOLUTION

Step 1: The shear strain is negative, and hence the angle between the x and y axes should increase. We draw the deformed shape of a
square due to shear strain γxy. We label the intersection of the vertical plane and the x axis as V and the intersection of the horizontal
plane and the y axis as H, as shown in Figure 9.17. 

Step 2: Using Figure 9.17a, we can write the coordinates of points V and H,

(E1)
Step 3: We draw the axes for Mohr’s circle as shown in Figure 9.17b.
Step 4: Locate points V and H and join the points by drawing a line. 
Step 5: Point C, the center of Mohr’s circle, is midway between points A and B—that is, at 600 μ. The distance BC can thus be found as
400 μ, as shown in Figure 9.17b. From the Pythagorean theorem we can find the radius R,

(E2)
Step 6: The principal strains are the coordinates of points P1 and P2 in Figure 9.17b. By adding the radius CP1 to the coordinate of point
C, we can obtain the principal strains, ε1 = 600 + 500 = 1100 and ε2 = 600 – 500 = 100. Note that for plane strain the third principal strain
is zero. 

ANS.
Step 7: Using triangle BCH we can find the principal angle θp,

(E3)

Principal angle 1 can be found from θp as shown in Figure 9.18.
ANS.

Step 8: Intuitive check: We visualize a circle in a square, as shown in Figure 9.18b. As εyy > εxx the rectangle will become longer in the y
direction than in the x direction, and the circle will become an ellipse with the major axis along the y direction, as shown in Figure 9.18c.
As γxy < 0, the angle between the x and y directions will increase. The rectangle will become a rhombus, and the major axis of the ellipse
will rotate counterclockwise from the y axis, as shown in Figure 9.18d. Hence we expect principal axis 1 to be either in the third sector or
in the seventh sector, confirming the result.

t y

x

n

25�  Figure 9.16

  Figure 9.17 (a) Deformed cube. (b) Mohr’s circle.

H

y

xV
C

R

2�p
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600 400

50�
B
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V
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A

N

P2P3 P1

��2
cw

ccw

γ/2
(a) (b)

V 200 300  ,( ) H 1000 300  ,( )

R CB2 BH2+ 4002 3002+ 500= = =

ε1 1100 μ ε2 100 μ ε3 0===

2θp  tan BH
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-------- 300
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---------= = or 2θp 36.87°=
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Step 9: The circles between P1 and P2 and between P2 and P3 will be inscribed in the circle between P1 and P3. Thus the maximum shear
strain at the point can be determined from the circle between P1 and P3,

(E4)

Step 10: We can draw the Cartesian coordinate system and the specified coordinate system with a square representing the undeformed
state. Label points V, H, N, and T to represent the four directions, as shown in Figure 9.19.

Step 11: Starting from point V on Mohr’s circle, we rotate by 50° counterclockwise and obtain point N on Mohr’s circle in Figure 9.17.
Similarly, by starting from point H and rotating by 50° counterclockwise, we obtain point T on Mohr’s circle in Figure 9.17. 
Step 12:  Angle ACN and angle BCT can be found as 50 – 2θp = 13.13°. From triangle ACN in Figure 9.21, the coordinates of point N are 

(E5)
From triangle BCT, the coordinates of point T are 

(E6)
Step 13: In Figure 9.19 line ON rotates in the counterclockwise direction to ON1, as seen in Equation (E5), and line OT rotates in the
clockwise direction to OT1, as seen in Equation (E6). Angle N1OT1 is less than angle NOT, and hence the shear strain in the n, t coordi-
nate system is positive.

ANS.

COMMENT 

1. Example 9.4 and this example solve the same problem. But unlike with the method of equations used in Example 9.4, this example
shows that we do not need an equation to solve the problem by Mohr’s circle. Once Mohr’s circle is constructed, the problem of strain
transformation becomes a problem of geometry.

C

R

2�p
2�1

2�1

�

H

V

P2P3 P1

��2
cw

ccw

2�1 � 180 � 2�p � 143.1�

2�1 � 180 � 2�p � 216.87�

  Figure 9.18 (a) Two values of principal angle 1. (b) Un-deformed shape. (c) Deformation due to normal strains. (d) Additional 
deformation due to shear strain.

γ/2(a)

(a)

y

x

(b) (c)

y

x

Principal
direction 2

Principal
direction 1

(b) (c)
(d)

γmax

2
---------

ε1 ε3–
2

--------------- 1100
2

------------ or ANS. γmax 1100 μ== =

H

25�

25�

y
t

T

N

N1

T1
n

x
VO

  Figure 9.19 n, t coordinate system in Example 9.6 

εnn 600 500 13.13°cos– 113.1= = γnt 2⁄ 500 13.13°sin 113.58= =

εtt 600 500  13.13°cos+ 1086.9= = γnt 2⁄ 500 13.13°sin 113.58= =

εnn 113.1 μ= εtt 1086.9 μ= γnt 227.2 μ=



9  428Mechanics of Materials: Strain TransformationM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

QUICK TEST 9.1 Time: 15 minutes/Total: 20 points

Grade yourself with the answers given in Appendix E. Each question is worth two points.
In Questions 1 through 3, associate the strain states with the appropriate Mohr’s circle given. 

1. εxx = −600 μ, εyy = 0, and γxy = −600 μ. 
2. εxx = 0, εyy = 600 μ, and γxy = 600 μ. 
3. εxx = 300 μ, εyy = −300 μ, and γxy = −600 μ.
In Questions 4 and 5, the Mohr’s circles corresponding to the states of strain εxx = −500 μ, εyy = 1100 μ, and γxy = −
1200 μ are shown. Identify the circle you would use to find the strains in the n, t coordinate system in each question.

4.  5.

In Questions 6 and 7, the Mohr’s circles for a state of strain are given. Determine the two possible values of principal
angle 1 (θ1) in each question. 

6. 7.

In Questions 8 through 10, the Mohr’s circles for points in plane strain are given. Report principal strain 1 and maximum
shear strain in each question.

8. 9.   10. 

Circle A Circle B Circle C Circle D Circle E Circle F

Circle A Circle B
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50�
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H
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y
t

T

N n

xV
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9.4 GENERALIZED HOOKE’S LAW IN PRINCIPAL COORDINATES

In Section 3.5 it was observed that the generalized Hooke’s law is valid for any orthogonal coordinate system. We have seen that the
principal coordinates for stresses and strains are orthogonal.

It has been shown mathematically and confirmed experimentally that for isotropic materials the principal directions for 
strains are the same as the principal directions for stresses. In Example 9.9, we will see that the principal directions for stresses 
and strains are different when the material is orthotropic. For isotropic materials, we can write the generalized Hooke’s law relat-
ing principal stresses to principal strains as follows:

(9.14.a)

(9.14.b)

(9.14.c)

Note that there are no equations for shear stresses and shear strains, as both these quantities are zero in the principal coordinate sys-
tem. Now that we know that, at a point, principal axis 1 for stresses and strains is the same for isotropic material, we can extend our
intuitive check to stress transformation. This can be done by viewing σxx, σyy, and τxy as analogous to εxx, εyy, and γxy in the visualiza-
tion procedure outlined in Section 9.2.2. 

EXAMPLE 9.7

The stresses σxx = 4 ksi (T), σyy = 10 ksi (C), and τxy = 4 ksi were calculated at a point on a free surface of an isotropic material. Deter-
mine (a) the orientation of principal axis 1 for stresses, using Mohr’s circle for stress; (b) the orientation of principal axis 1 for strains,
using Mohr’s circle for strain. Use the following material constants: E = 7500 ksi, G = 3000 ksi, and ν = 0.25. 

PLAN

By substituting the stresses and material constants into the generalized Hooke’s law in Cartesian coordinates, we can find the strains εxx,
εyy, and γxy. We can draw Mohr’s circle for stress to find principal direction 1 for stress, and we can draw Mohr’s circle for strain to find
principal direction 1 for strain.

SOLUTION

As the point is on a free surface, the state of stress is plane stress; hence σzz = 0. Substituting the stresses and the material constants into
Equations (3.12a), (3.12b), and (3.12d), we obtain

(E1)

(E2)

 (E3)

(a) We draw the stress cube and record the coordinates of planes V and H, 

(E4)
We then draw Mohr’s circle for stress, as shown in Figure 9.20a. The angle θp can be found from triangle BCH (or ACV) and is given by 

(E5)

For this example θ1 = θp and we obtain the result for the orientation of principal axis 1.
ANS.

(b) Since γxy is positive, the angle between the x and y coordinates decreases, as shown by the deformed shape in Figure 9.20b. Noting
that the vertical coordinate is γ/2, we record the coordinates of points V and H,

(E6)

ε1
σ1 ν σ2 σ3+( )–

E
--------------------------------------=

ε2
σ2 ν σ3 σ1+( )–

E
--------------------------------------=

ε3
σ3 ν σ1 σ2+( )–

E
--------------------------------------=

εxx
σxx

E
------- ν

E
---σyy– 4 ksi

7500 ksi
-------------------- 0.25

7500 ksi
-------------------- 10 ksi–( )– 0.867 10 3–( ) 867  μ= = = =

εyy
σyy

E
------- ν

E
---σxx– 10 ksi–

7500 ksi
-------------------- 0.25

7500 ksi
-------------------- 4 ksi( )– 1.467 10 3–( )– 1467  μ–= = = =

γxy
τxy

G
------ 4 ksi

3000 ksi
-------------------- 1.333 10 3–( ) 1333  μ= = = =

V 4 4   ,( ) H 10 4   ,–( )

 2tan θp
4
7
--- or θp 14.87°==

θ1 14.87°  ccw=

V 867 666.7  ,( ) H 1467 666.7  ,–( )
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We then draw Mohr’s circle for strain, as shown in Figure 9.20b. The angle θp can be found from triangle BCH (or ACV) and is given by

(E7)

For this example θ1 = θp and we obtain the result for the orientation of principal axis 1.
ANS.

COMMENTS

1. The example highlights that for isotropic materials the principal axes for stresses and strains are the same.
2. The principal stresses can be found from Mohr’s circle for stress as

σ1 = −3 ksi + 8.06 ksi = 5.06 ksi σ2 = −3 ksi − 8.06 ksi = −11.06 ksi
Noting that σ3 = 0 because of the plane stress state, we obtain the principal strains from Equations (9.21a) and (9.21b), 

(E8)

3. From Mohr’s circle for strain we obtain the same values,
(E9)

The preceding highlights that the sequence of using the generalized Hooke’s law and Mohr’s circle does not affect the calculation of the
principal strains.
4. We can conduct an intuitive check on the orientation of principal axis 1 for strain. We visualize a circle in a square, as shown in this

example (Figure 9.21). Since εxx > εyy, the rectangle will become longer in the x direction than in the y direction, and the circle will
become an ellipse with its major axis along the x direction. Since γxy > 0, the angle between the x and y directions will decrease. The
rectangle will become a rhombus, and the major axis of the ellipse will rotate counterclockwise from the x axis. Hence we expect
principal axis 1 to be either in the first sector or in the fifth sector of Figure 9.6. The result given in Equation (E7) puts principal axis
1 in sector 1, which is one of our intuitive answers.

(a) (b)

H

y

x
V

y

x

10 ksi
4 ksi

4 ksi4 ksi
H

H

V V

�

4

4
4

10 2�p

2�p

H

V

R
B

C A

P2 P1

�

7 3

��2

�
867

666.7

666.7

1467 2�p

2�p

H

V

R
B

C A

P2 P1

1167 300

τ γ/2

  Figure 9.20 Mohr’s circles in Example 9.7. (a) Stress. (b) Strain.

CW CW

CCW CCW

2θptan 666.7
1167
------------- or θp 14.87°==

θ1 14.87°  ccw=

ε1
5.06 ksi 0.25 11.06 ksi–( )–

7500 ksi
------------------------------------------------------------------- 1044  μ= = ε2

-11.06 ksi( ) 0.25 5.06 ksi( )–
7500 ksi

----------------------------------------------------------------------- 1644–  μ= =

ε1 300  μ– 1344  μ+ 1044  μ= = ε2 300  μ– 1344  μ– 1644  – μ= =

  Figure 9.21 Estimating principal directions in Example 9.7 (a) Undeformed shape. (b) Deformation due to normal strains. (c) Addi-
tional deformation due to shear strain.

(a)
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x

(b) (c)

y

x
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direction 2

Principal
direction 1
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EXAMPLE 9.8

For an isotropic materials show that G = E/2(1 + ν).

PLAN

We can start with a state of pure shear and find principal stresses in terms of shear stress τ and principal strains in terms of shear strain γ.
Using Equation (9.14.a) we can relate principal strain 1 to the principal stresses and then obtain a relationship between shear stress τ and
shear strain γ. This relationship will have only E and ν in it. Comparing this to the relationship τ = Gγ, we can obtain the relationship
between E, ν, and G.

SOLUTION

We start by assuming that all stress components except τxy = τ are zero in the Cartesian coordinate system. We draw the stress cube and
Mohr’s circle in Figure 9.22a and find the principal stresses in terms of τ,

(E1)

We then start with all strains except γxy = γ as zero. Using Mohr’s circle in Figure 9.22b, we find the principal strains,
(E2)

Noting that σ3 = 0, we substitute Equations (E1), (E2), and (E3) into Equation (9.14.a) to obtain

(E3)

Comparing Equation (E5) to τ = Gγ, we obtain G = E/2(1 + ν).

COMMENTS

1. Principal axes 1 in Mohr’s circles for stress and for strain are seen to be at 90° counterclockwise from plane V. This implies that for
isotropic materials the principal direction for stresses is the same as the principal direction for strains.

2. The state of pure shear can be produced by applying tensile stress in one direction (σ1) and a compressive stress of equal magnitude in
a perpendicular direction (σ2). Then on a 45° plane a state of pure shear will be seen.

EXAMPLE 9.9

The stresses σxx = 4 ksi (T), σyy = 10 ksi (C), and τxy = 4 ksi were calculated at a point on a free surface of an orthotropic composite mate-
rial. An orthotropic material has the following stress–strain relationship at a point in plane stress:

(9.15)

Determine (a) the orientation of principal axis 1 for stresses using Mohr’s circle for stress; (b) the orientation of principal axis 1 for
strains using Mohr’s circle for strain. Use the following values for the material constants: Ex = 7500 ksi, Ey = 2500 ksi, Gxy = 1250 ksi,
and νxy = 0.3.

σ1 +τ= σ2 τ–=

  Figure 9.22 Mohr’s circles for pure shear in Example 9.8. (a) Stress. (b) Strain.
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PLAN

By substituting the stresses and material constants into Equation (9.15), we can find the strains εxx, εyy, and γxy. We can draw Mohr’s cir-
cle for stress to find principal direction 1 for stress, and we can draw Mohr’s circle for strain to find principal direction 1 for strain.

SOLUTION

From νyx/Ey = νxy/Ex, we obtain

(E1)

Substituting the stresses and the material constants into Equation (9.15), we obtain

(E2)

(E3)

(E4)

(a) We draw the stress cube and record the coordinates of points V and H. We then draw Mohr’s circle for stress, as shown in Figure 9.23a, and
obtain 

(E5)

For this example θ1 = θp, and we obtain the result for the orientation of principal axis 1.
ANS.

(b) Since γxy is positive, the angle between the x and y coordinates decreases, as shown by the deformed shape in Figure 9.23b. Noting
that the vertical coordinate is γ/2, we record the coordinates of points V and H. We then draw Mohr’s circle for strain, as shown in Figure
9.23b. The angle θp can be found from triangle BCH (or ACV ):

(E6)

For this example θ1 = θp, and we obtain the result for the orientation of principal axis 1.
ANS.

COMMENTS

νyx
Eyνxy

Ex
------------- 2500 ksi( ) 0.3( )

7500 ksi( )
--------------------------------------- 0.1= = =

εxx
σxx

Ex
-------

νyx

Ey
-------σyy– 4 ksi

7500 ksi
-------------------- 0.1

2500 ksi
-------------------- 10 ksi–( )– 0.933 10 3–( ) 933 μ== = =

εyy
σyy

Ey
-------

νxy

Ex
-------σxx– 10 ksi–( )

2500 ksi
----------------------- 0.3

7500 ksi( )
------------------------- 4 ksi( )– 4.160 10 3–( )–  4160– μ== = =

γxy
τxy

Gxy
-------- 4 ksi

1250 ksi
-------------------- 3.200 10 3–( )  3200 μ== = =

2θptan 4
7
--- or θp 14.87° ccw= =

  Figure 9.23 Mohr’s circles in Example 9.9. (a) Stress. (b) Strain.
(a) (b)
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1. The stress state in this example is the same as in Example 9.7. In Example 9.7 we concluded that for isotropic materials the principal
directions for stresses and strains are the same. Equations (E5) and (E6) show that for orthotropic materials the principal directions
for stresses and strains are different. 

2. In Example 9.7, if we change the material constants for the isotropic material, then the stress values will be different, but the result for the
principal angle for stress will not change. If we change the material constants for orthotropic materials, then we not only change the stress
values but we may also change the principal angle for stress. This is because we may change the degree of orthotropicness—that is, the
degree of difference in the material constants in the x and y directions.

3. The preceding two comments highlight some of the reasons why intuition based on isotropic materials can be misleading when work-
ing with composite materials. In such cases mathematical rigor can provide answers that once confirmed by experiment, can form a
new knowledge base for the development of intuitive understanding.

PROBLEM SET 9.2

Visualization of principal axis
In Problems 9.14 through 9.18, the state of strain at a point in plane strain is as given in each problem. Estimate the orientation of the principal
directions and report your results using the sectors shown in Figure 9.7. 

Method of Equations and Mohr’s circle
9.19 Starting from Equation (9.4), show that maximum or minimum normal strain will exist in the direction of θp, as given by Equation
(9.7). (Hint: See the similar derivation in stress transformation.)

9.20 Show that the values of the maximum and minimum normal strains are given by Equation (9.8). (Hint: See the similar derivation in
stress transformation.)

9.21 Show that angle θp as given by Equation (9.7) is the principal angle, that is, shear strain is zero in a coordinate system that is at an angle θp to the
Cartesian coordinate system. (Hint: See the similar derivation in stress transformation.)

9.22 Show that the coordinate system of maximum in-plane shear strain is 45° to the principal coordinate system. (Hint: See the similar deriva-
tion in stress transformation.)

9.23 Show that the maximum in-plane shear strain is given by Equation (9.11). (Hint: See the similar derivation in stress transformation.)

9.24 Starting from Equations (9.4) and (9.6), obtain the expression of Mohr’s circle given by Equation (9.13). (Hint: See the similar deriva-
tion in stress transformation.)

9.25 Solve Problem 9.5 by the method of equations.

9.26 Solve Problem 9.5 by Mohr’s circle.

9.27 Solve Problem 9.6 by the method of equations.

9.28 Solve Problem 9.6 by Mohr’s circle.

9.29 Solve Problem 9.7 by the method of equations.

9.30 Solve Problem 9.7 by Mohr’s circle.

Problem

Strains

εxx εyy γxy 

9.14  −400 μ 600 μ −500 μ
9.15 −600 μ −800 μ 500 μ.
9.16 800 μ 600 μ −1000 μ
9.17 0 600 μ, −500 μ
9.18  −1000 μ −500μ 700 μ
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In Problems 9.31 through 9.34, at a point in plane strain, the strain components in the x, y coordinate system are as given. Using the associated
figure, determine (a) the principal strains and principal angle 1; (b) the maximum shear strain; (c) the strain components in the n, t coordi-
nate system.

In Problems 9.35 through 9.38, at a point in plane strain, the strain components in the n, t coordinate system are as given. Using the associated
figure, determine (a) the principal strains; (b) the maximum shear strain; (c) the strain components in the x, y coordinate system.

Problem

Strains

εxx εyy γxy

9.31 −400 μ 600 μ −500 μ

Figure P9.31

9.32  −600 μ −800 μ, 500 μ

Figure P9.32

9.33 250 μ 850 μ, 1600 μ

Figure P9.33

9.34  −1800μ −3600 μ  −1500 μ

Figure P9.34

Problem

Strains

εnn εtt γnt

9.35 2000 μ −800 μ 750 μ 

Figure P9.35

9.36  −2000 μ −800 μ −600 μ 

Figure P9.36

9.37  350 μ  700 μ 1400 μ 

Figure P9.37

9.38 −3600 μ 2500 μ −1000 μ

Figure P9.38
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In Problems 9.39 through 9.42, the principal strains ε1 and ε2 and the direction of principal direction 1 θ1 from the x axis are given. Determine
strains εxx, εyy, and γxy at the point.

Generalized Hooke’s law in principal coordinates 
In Problems 9.43 through 9.45, the stresses in a thin body (plane stress) in the xy plane are as shown on each stress element. The modulus of
elasticity E and Poisson’s ratio ν are given in each problem. Using the associated figure, determine (a) the principal strains and principal
angle 1 at the point; (b) the maximum shear strain at the point. 

In Problems 9.46 through 9.48, the stresses in a thick body (plane strain) in the xy plane are as shown on each stress element. The modulus of
elasticity E and Poisson’s ratio ν are given in each problem. Using the associated figure, determine (a) the principal strains and principal
angle 1 at the point; (b) The maximum shear strain at the point.

Problem

Principal Strains Principal Angle 1

ε1 ε2 θ1

9.39 1200 μ  300 μ 27.5°

9.40  900 μ −600 μ −20°
9.41 −200 μ −2000 μ 105°
9.42 1400 μ  −600 μ  −75°

Problem E ν

9.43 70 GPa ν = 0.25

Figure P9.43

9.44 70 GPa ν = 0.25

Figure P9.44

9.45 30,000 ksi 0.28 

Figure P9.45

Problem E ν

9.46 105 GPa ν = 0.35

Figure P9.46

60 MPa
40 MPa

30 MPa

15 MPa
20 MPa

45 MPa

20 ksi
30 ksi

10 ksi

40 MPa
40 MPa

20 MPa
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Orthotropic materials

In Problems 9.49 through 9.52, the properties of an orthotropic material and the stresses or strain are given at a point on a free surface. Using Equa-
tion (9.15), determine the principal direction for stresses and strains.

9.5 STRAIN GAGES

Strain gages are strain-measuring devices based on the changes in resistance in a wire with changes in its length. Since strain causes
a length change, the change in resistance can be correlated to the strain in the wire by conducting an experiment. By bonding a wire
to a stressed part, we can assume that the deformation of the wire is the same as that of the material. Hence, by measuring changes in
the resistance of a wire, we can get the strains in the material. Strain gages are a sophisticated application of this technique. 

Strain gages are usually manufactured by etching a thin foil of material, as shown in Figure 9.24. The back-and-forth pattern 
increases the sensitivity of the gage by providing a long length of wire in a very small area. Strain gages can be as small in length 

as  in., which for many engineering calculations is equivalent to measuring strain at a point.

Since we are measuring changes in the length of a wire, a strain gage measures only normal strains directly and not shear strains. In
this section it will be shown how shear strains are calculated from the measured normal strains. Because of the finite sizes of strain

9.47 70 GPa ν = 0.25

Figure P9.47

9.48 30,000 ksi 0.28 

Figure P9.48

Problem Ex Ey  Gxy νxy Stresses / Strains

9.49  7500 ksi 2500 ksi 1250 ksi 0.25 εxx = −400 μ, εyy = 600 μ, and γxy = −500 μ

9.50  7500 ksi 2500 ksi 1250 ksi 0.25 σxx = 10 ksi (T), σyy = 7 ksi (C), and τxy = 5 ksi.

9.51 50 GPa 18 GPa 9 GPa 0.25 εxx = 800 μ, εyy = 200 μ, and γxy = 300 μ.

9.52 50 GPa 18 GPa 9 GPa 0.25 σxx = 70 MPa (C), σyy = 49 MPa (C), and τxy = −30 MPa

Problem E ν

25 MPa
20 MPa

35 MPa

15 ksi
20 ksi

25 ksi

8
1000
------------

  Figure 9.24 Typical strain gage.

Tabs for 
wire
attachments 

Gage Length
used in measurement
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gages, strain gages give an average value of strain at a point. To protect the strain gage from damage, no force is applied on its top.
Hence strain gages are bonded to a free surface; that is, measurements take place in plane stress. We record the following observa-
tions: 

1. Strain gages measure only normal strains directly.

2. Strain gages are bonded to a free surface. That is, the strains are in a state of plane stress and not plane strain.

3. Strain gages measure average strain at a point

In plane stress there are three independent strain components εxx, εyy, and γxy. To determine these, we need three observations at a
point. In other words, we need to find normal strains in three directions. Figure 9.25 shows an assembly of three strain gages called
a strain rosette. The strain gage readings εa, εb, and εc can be related to εxx, εyy, and γxy by Equation (9.4) as

(9.16.a)

(9.16.b)

(9.16.c)

The three equations can be solved for the three unknowns  εxx, εyy, and γxy since θa, θb, and θc are known. 

The angles at which strain gages are attached are chosen to reduce the algebra in the calculation of εxx, εyy, and γxy. Figure 
9.26 shows two popular choices of angles in a strain rosette. Notice in Figure 9.26b that angle θc can be 120° or −60° (or 300° 
or −240°). This emphasizes that Equation (9.4) does not change if 180° is added to or subtracted from angle θ. (See Problem 
9.53.) An alternative explanation is that normal strain is a measure of the deformation of a line and deformation is the relative 
movement of two points on a line. Hence the value does not depend on whether the two points on the line have positive or nega-
tive coordinates. We can summarize our observation simply:

• A change in strain gage orientation by ±180° makes no difference in the strain values.

Once strains εxx, εyy, and γxy are found, then the principal strains can be found. The principal stresses can be found next, if 
needed, from the generalized Hooke’s law in principal coordinates. Alternatively, the stresses σxx, σyy, and τxy may be found first 
from the generalized Hooke’s law, and then the principal stresses can be found. But it is important to remember that the point 
where strains are being measured is in plane stress, and hence σzz = 0. The strain in the z direction is the third principal strain and 
can be found from Equation (9.10).

εa εxx θ2
acos εyy θ2

asin γxy θasin θacos+ +=

εb εxx θ2
bcos εyy θ2

bsin γxy θbsin θbcos+ +=

εc εxx θ2
ccos εyy θ2

csin γxy θcsin θccos+ +=

y

x

�a

�b

�c

  Figure 9.25 Strain rosette.

  Figure 9.26 Strain rosettes. (a) 45°. (b) 60°.

y

x
45�

45�

c

a

b

�a � 0� 
�b � 45� 
�c � 90�

(a)

y

x60� 60�

c

a

b

�a � 0� 
�b � 60� 
�c � 120� or �60�

(b)
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EXAMPLE 9.10

Strains εa = 900 μin./in., εb = 200 μin./in., and εc = 700 μin./in. were recorded by the three strain gages shown in Figure 9.27 at a point on
the free surface of a material that has a modulus of elasticity E = 30,000 ksi and a Poisson ratio ν = 0.3. Determine the principal stresses,
principal angle 1, and the maximum shear stress at the point. 

PLAN: METHOD 1

We note that εa = εxx. We can find strains εyy and γxy from the two equations obtained by substituting θb = +60° and θc = −60° into Equa-
tion (9.4). We can then find principal strains 1 and 2 and principal angle 1 by using either Mohr’s circle or the method of equations. Prin-
cipal strain 3 can be found from Equation (9.10), and the maximum shear strain from the radius of the biggest circle. Using the
generalized Hooke’s law in principal coordinates we can find the principal stresses.

SOLUTION

Strain gages: The strain in the x direction is given by the strain gage a reading. Thus 
(E1)

Substituting θb = +60° and θc = −60° into Equation (9.4), we obtain

(E2)

(E3)
Solving Equations (E2) and (E3), we obtain 

(E4)
Mohr’s circle for strain: We draw the deformed shape as shown in Figure 9.28a and write the coordinates of points V and H as

(E5)
We then draw Mohr’s circle for strain shown in Figure 9.28b and calculate the principal strains. From the Pythagorean theorem we can
find the radius R,

(E6)

The principal strains are the coordinates of points P1 and P2 in Figure 9.28b,
(E7)

As the point is on a free surface, the state is in plane stress. Hence the third principal strain from Equation (9.10) is

y

x60�
60�

a

c

b

  Figure 9.27 Strain rosette in Example 9.10.

εxx 900 μ=

εb 900( ) 602cos εyy 602sin γxy 60sin 60cos+ + 200= = or 0.75εyy 0.433γxy+ 25–=

εc 900( ) 60–( )2cos εyy 60–( )2sin γxy 60–( )sin 60–( )cos+ + 700= = or 0.75εyy 0.433γxy– 475=

εyy 300 μ= γxy 577.4–  μ=

V 900 288.7  ,( ) H(300, 288.7   )

R CB2 BV 2+  = 3002 288.72+  416.4==

  Figure 9.28 Mohr’s circle in Example 9.4.
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(E8)

Using triangle BCH in Figure 9.28b, we can find the principal angle θp,

(E9)

From Figure 9.28b we see that θ1 = θp, and the direction is clockwise:
(E10)

Intuitive check: We visualize a circle in a square, as in Figure 9.29a. Since εxx > εyy, the rectangle will become longer in the x direction
than in the y direction, and the circle will become an ellipse with its major axis along the x direction, as shown in Figure 9.29b. Since γxy

< 0, the angle between the x and y directions will increase. The rectangle will become a rhombus, and the major axis of the ellipse will
rotate clockwise from the x axis, as shown in Figure 9.29c. Hence we expect principal axis 1 to be either in the eighth sector or in the
fifth sector, confirming the result given in Equation (E10).

Locating point P3, which corresponds to the third principal strain in Figure 9.28b, we note that the circle between P1 and P3 will be a big-
ger circle than between P2 and P3, or between P1 and P2. Thus the maximum shear strain at the point can be determined from the circle
between P1 and P3,

(E11)

Hooke’s law: For plane stress σ3 = 0. From Equations (9.14.a) and (9.14.b) we obtain

(E12)

(E13)

Solving Equations (E12) and (E13), we obtain σ1 = 35.31 ksi and σ2 = 16.11 ksi. For isotropic materials the principal direction for
stresses and strains is the same.

ANS.
The shear modulus of elasticity is

(E14)

The maximum shear stress can be found from Hooke’s law as

i (E15)
Check: We can also find the maximum shear stress as half the maximum difference between principal stresses. That is, from Equation
(8.13), , confirming Equation (E15).

ANS.

COMMENT

This example combines three concepts: the use of strain gages to find strain components in Cartesian coordinates, the use of Mohr’s cir-
cle for finding principal strains, and the use of Hooke’s law in principal coordinates for finding principal stresses.

PLAN: METHOD 2

We can find εxx, εyy, and γxy from the values of the strains recorded by the strain gages, as we did in Method 1. We can use Hooke’s law in
Cartesian coordinates to find σxx, σyy, and τxy. Using Mohr’s circle for stress (or the method of equations), we can then find the principal
stresses, principal angle 1, and the maximum shear stress.

ε3 εzz
0.3

1 0.3–
---------------- 900 300+( )– 514.2 μ–= = =

2θpcos CB
CV
-------- 300

416.4
-------------= =

2θp 43.9° θ1 θp 21.9°  cw= = =

  Figure 9.29 Estimating principal directions in Example 9.10. (a) Un-deformed shape. (b) Deformation due to normal strains. (c) Addi-
tional deformation due to shear strain.

(a)

y

x

(b) (c)

y

x

Principal
direction 2

Principal
direction 1

γmax

2
---------

ε1 ε3–
2

--------------- 765.3 γmax 1531 μ== =

ε1
σ1 νσ2–

30,000 ksi
------------------------- 1016 10 6–( )= = or σ1 0.3σ2– 30.48  ksi=

ε2
σ2 νσ1–

30,000 ksi
------------------------- 184 10 6–( )= = or σ2 0.3σ1– 5.52  ksi=

σ1 35.3 ksi T( )= σ2 16.1 ksi T( )= σ3 0= θ1 21.9o CW=

G E
2 1 ν+( )
-------------------- 11,538 ksi= =

τmax Gγmax 11 538,( ) 1531( ) 10 6–( ) 17.65 ksi= = =

τmax 35.3 0–( ) 2⁄ 17.65 ksi= =

τmax 17.65 ksi=
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SOLUTION

Strain gages: From Equations (E1) and (E4),
(E16)

Hooke’s law: We note that for plane stress σzz = 0. Using Equations (3.12a) and (3.12b), we can write

(E17)

(E18)

Solving Equations (E17) and (E18), we obtain From Equations (3.12d) and (E14) we obtain the
shear stress as 

(E19)
Mohr’s circle for stress
We draw the stress cube as shown in Figure 9.30a and record the coordinates of points V and H as

(E20)
We then draw Mohr’s circle for stress as shown in Figure 9.30b and calculate the principal stresses. From the Pythagorean theorem we
can find the radius R,

(E21)
The principal stresses are the coordinates of points P1 and P2 in Figure 9.30b. As the point is on free surface, the state is in plane stress.
Hence the third principal stress is zero,

(E22)
Using triangle BCH in Figure 9.30b we can find the principal angle θp, From Figure 9.30b we see that θ1 = θp and the direction is clock-
wise:

(E23)

ANS.  
The biggest circle will be between P1 and P3. The maximum shear stress is the radius of this circle and can be calculated as

.

ANS.

COMMENT

1. As in Method 1, three concepts are combined, but the sequence in which the problem is solved is different. In Method 1 we used
Mohr’s circle (for strain) first and Hooke’s law (in principal coordinates) second. In Method 2 we used Hooke’s law (Cartesian coor-
dinates) first and Mohr’s circle (for stress) second. The number of calculations differs only with respect to ε3, which is not calculated
in Method 2.

εxx 900 μ= εyy 300 μ= γxy 577.4– μ=

εxx
σxx νσyy–
30,000 ksi
------------------------- 900 10 6–( ) or σxx 0.3σyy– 27 ksi= = =

εyy
σyy νσxx–
30,000 ksi
------------------------- 300 10 6–( ) or σyy 0.3σxx– 9 ksi= = =

σxx 32.63 ksi and σyy 18.79 ksi==

τxy Gγxy 11 538,( ) 577.4–( ) 10 6–( ) 6.66 ksi–= = =

V 32.63 6.66  ,( ) H(18.79, 6.66   )

R CB2 BV 2+ 6.922 6.662+ 9.60= = =

σ1 25.71 9.60+ 35.31 ksi= = σ2 25.71 9.60– 16.11 ksi= = σ3 0=

2θpcos CB
CV
-------- 6.92

9.6
----------= = or 2θp 43.9° θ1 θp 21.9°  cw= ==

  Figure 9.30 Mohr’s circle in Example 9.10.
(b)(a)

y

x

18.79
6.66

32.63
H

H

V V

�

18.79
32.63

6.9225.71

2�p
6.66

P2P3 P1

A

H

C B
�

R

V
γ/2

CW

CCW

σ1 35.3 ksi(T)= σ2 16.1 ksi(T)= σ3 0= θ1 21.9o  cw=

τmax 35.3 ksi 0–( ) 2⁄ 17.65 ksi= =

τmax 17.65 ksi=
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EXAMPLE 9.11

The strain gage at point A recorded a value of εA = −200  μ. Determine the load P that caused the strain for the three cases shown in Fig-
ure 9.31. In each case the strain gage is 30° clockwise to the longitudinal axis (x axis). Use E = 10,000 ksi, G = 4000 ksi, and ν = 0.25.

PLAN

The axial stress σxx in case 1, the bending normal stress σxx in case 2, and the bending shear stress τxy in case 3 can be found in terms of
P using Equations (4.8), (6.12), and (6.27), respectively. All other stress components are zero. Strains εxx, εyy, and γxy can be found in
terms of P for each case, using the generalized Hooke’s law. Substituting the strains and θA = −30° into Equation (9.4), the strain in the
gage can be found in terms of P and equated to the given value of −200 μ to obtain the value of P.

SOLUTION

Stress calculations: Recollect that As is the area between the free surface and point A, where shear stress is to be found. The cross-sec-
tional area A, the area moment of inertia Izz, and the first moment Qz of the area As shown in Figure 9.37a can be calculated as

(E1)

Figure 9.32b and c shows the free-body diagrams of the axial member and the beam after making the imaginary cut through point A.
Using force and moment equilibrium equations, we find the internal forces and moment,

(E2)
Substituting Equations (E1) and (E2) into Equation (4.8), we find the axial stress in case 1,

(E3)

Substituting Equations (E1), (E2), and y = 2 in into Equation (6.12), we find the bending normal stress in case 2,

(E4)

Substituting Equations (E1), (E2), and t = 1 into Equation (6.27), we find the magnitude of τxy in case 3,

(E5)

Noting that τxy must have the same sign as Vy, we obtain the sign of τxy (see Section 6.6.6),
(E6)

Strain calculations: The only two nonzero stress components are given by Equations (E3), (E4), and (E6) for each case. Using the gen-
eralized Hooke’s law [or Equations (4.13) and (6.29)], we obtain the strains for each case. Substituting the strains and θA = −30° into
Equation (9.4) and equating the result to −200 μ give the value of load P for each case:

20 in 20 in

2 in

2 in

y

PA

0.5 in

Case 1 Case 2 Case 3

0.5 in

20 in 20 in

2 in

2 in

y

P

zz z

0.5 in
0.5 in

P

A

20 in 20 in

2 in

2 in

y

A

0.5 in
0.5 in

  Figure 9.31 Three beams in Example 9.11.

A 1( ) 4( ) 4 in2= = Izz
1 in.( ) 4 in.( )3

12
---------------------------------- 5.33 in.4= = Qz  1 in.( ) 2 in.( ) 1 in.( )  2 in.3==

  Figure 9.32 Calculation of geometric and internal quantities in Example 9.11
(a)

1 in

4 in
1 in

z

y

A

(b)

20 in
N P

P

(c)

20 in

Mz

Vy

N P  kips–= Vy P kips= Mz 20P  in.· kips=

σxx
N
A
---- P  kips–

4 in.2
------------------ 0.25P  ksi–= = =

σxx
Mzy
Izz

----------– 20P in.· kips( ) 2 in.( )

5.33 in.4
----------------------------------------------------– 7.5P  ksi–= = =

τxy
VyQz

Izzt
------------ P kips( ) 2 in.3( )

5.33 in.4( ) 1 in.( )
------------------------------------------ 0.375P  ksi= = =

τxy 0.375P ksi=
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• Case 1:

(E7)

(E8)

ANS.
• Case 2:

(E9)

(E10)

ANS.
• Case 3:

(E11)

(E12)

ANS.

COMMENTS

1. This example demonstrates one of the basic principles used in the design of load transducers, also called load cells. Load transducers
are used for measuring, applying, and controlling forces and moments on a structure. This example showed how one may measure a
force by using strain gage readings and mechanics of materials formulas. The electrical signal from the strain gage can be processed
and correlated with the intensity of the force and moment. It can be used to apply and control these quantities. 

2. In this example the strain in the gage was caused by a single force. When there are multiple forces or moments acting on a structure,
then to correlate strain gage readings to the applied forces and moments we need to supplement the formulas of mechanics and mate-
rials with the formulas for the Wheatstone bridge. See Section 9.6 for additional details on the Wheatstone bridge.

3. In Examples 9.5 and 9.10 and in this example we saw the use of the generalized Hooke’s law. An alternative is to use formulas that
are derived from the generalized Hooke’s law. This is one important reason for memorizing the generalized Hooke’s law.

PROBLEM SET 9.3

Strain gages
9.53 Show that upon substituting θ ± 180° in place of θ, the strain transformation equation, Equation (9.4), is unchanged.

9.54 At a point on a free surface the strain components in the x, y coordinates are calculated as εxx = 400 μin./in., εyy = –200 μin./in., and γxy = 500
μrad. Predict the strains that the strain gages shown in Figure P9.54 would record.

9.55 At a point on a free surface the strains recorded by the three strain gages shown in Figure P9.54 are εa = 200 μin./in., εb = 100 μin./in.,
and εc = –400 μin./in. Determine strains εxx, εyy, and γxy.

9.56 At a point on a free surface of an aluminum machine component (E = 10,000 ksi and G = 4000 ksi) the stress components in the x, y
coordinates were calculated by the finite-element method as σxx = 22 ksi (T), σyy = 15 ksi (C), and τxy = −10 ksi. Predict the strains that the
strain gages shown in Figure P9.56 would show.

εxx
σxx

E
------- 0.25P ksi–

10000 ksi
-------------------------- 25P μ–= = = εyy

νσxx

E
-----------– νεxx– 6.25P μ= = = γxy 0=

εA 25P μ–( )  30°–( )2cos 6.25P μ( )  30°–( )2sin+ 17.19P μ– 200 μ–= = = or P 11.6 kips=

P 11.6 kips=

εxx
σxx

E
------- 7.5P  ksi–

10000 ksi
----------------------- 750P μ–= = = εyy

νσxx

E
-----------– νεxx– 187.5P μ= = = γxy 0=

εA 750P μ–( ) 30°–( )2cos 187.5P μ( ) 30°–( )2sin+ 515.63P μ– 200 μ–= = = or P 0.39 kips=

P 0.39 kips=

εxx 0= εyy 0= γxy
τxy

G
------ 0.375P  ksi

4000 ksi
-------------------------- 93.75P μ= = =

εA 93.75P μ( ) 30°–( )sin 30°–( )cos 40.59P μ– 200 μ–= = = or P 4.93 kips=

P 4.93 kips=

y

a

b

c

x
30�

60�

Figure P9.54
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9.57 At a point on a free surface of aluminum (E = 10,000 ksi and G = 4000 ksi) the strains recorded by the three strain gages shown in Fig-
ure P9.56 are εa = –600 μin./in., εb = 500 μin./in., and εc = 400 μin./in. Determine stresses σxx, σyy, and τxy.

9.58 At a point on a free surface of a machine component (E = 80 GPa and G = 32 GPa) the stress components in the x, y coordinates were
calculated by the finite-element method as σxx = 50 MPa (T), σyy = 20 MPa (C), and τxy = 96 MPa. Predict the strains that the strain gages
shown in Figure P9.58 would show.

9.59 At a point on a free surface of a machine component (E = 80 GPa and G = 32 GPa) the strains recorded by the three strain gages shown in Fig-
ure P9.58 are εa = 1000 μm/m, εb = 1500 μm/m, and εc = μm/m. Determine stresses σxx, σyy, and τxy.

9.60 On a free surface of steel (E = 210 GPa and ν = 0.28) the strains recorded by the three strain gages shown in Figure P9.60 are εa = –800
μm/m, εb = –300 μm/m, and εc = –700 μm/m. Determine the principal strains, principal angle 1, and the maximum shear strain

9.61 On a free surface of steel (E = 210 GPa and ν = 0.28) the strains recorded by the three strain gages shown in Figure P9.60 are εa = 200
μm/m, εb = 100 μm/m, and εc = 0. Determine the principal stresses, principal angle 1, and the maximum shear stress.

9.62 On a free surface of an aluminum machine component (E = 10,000 ksi and ν = 0.25) the strains recorded by the three strain gages
shown in Figure P9.62 are εa = −100 μin./in., εb = 200 μin./in., and εc = 300 μin./in. Determine the principal strains, principal angle 1, and the
maximum shear strain.

9.63 On a free surface of an aluminum machine component (E = 10,000 ksi and ν = 0.25) the strains recorded by the three strain gages
shown in Figure P9.62 are εa = 500 μin./in., εb = 500 μin./in., and εc = 500 μin./in. Determine the principal stresses, principal angle 1, and the
maximum shear stress.

Figure P9.56

y

a

c

x45�

b

60�

Figure P9.58

y

a

b

c

x

25�

450–

Figure P9.60

y

a

b

c

x45�

y

b

c

a

x
60�

Figure P9.62
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Strain gages on structural elements
9.64 An aluminum (E = 70 GPa, G = 28 GPa) 50-mm × 50-mm square bar is axially loaded with a force F = 100 kN as shown in shown in Fig-
ure P9.64. Determine the strain that will be recorded by the strain gage.

9.65 An aluminum (E = 70 GPa, G = 28 GPa) 50-mm × 50-mm square bar is axially loaded as shown in shown in Figure P9.64. Determine
applied force F when the gage shows a reading of 200 μ. 

9.66 A circular steel (E = 30,000 ksi, ν = 0.3) bar has a diameter of 2 in. and is axially loaded as shown in Figure P9.66. If the applied axial
force F = 100 kips, determine the strain the gage will show.

9.67 A circular steel (E = 30,000 ksi, ν = 0.3) bar has a diameter of 2 in. and is axially loaded as shown in Figure P9.66. Determine the
applied axial force F when the strain gage shows a reading of 1000 μin./in.

9.68 A circular shaft of 2-in diameter has a torque applied to it as shown in Figure P9.68.The shaft material has a modulus of elasticity of
30,000 ksi and a Poisson’s ratio of 0.3. Determine the strain that will be recorded by a strain gage. 

9.69 A circular shaft of 50-mm diameter has a torque applied to it as shown in Figure P9.69. The shaft material has a modulus of elasticity E = 70
GPa and a shear modulus G = 28 GPa. If the applied torque T = 500 N-m, determine the strain that the gage will show.

9.70 A circular shaft of 50-mm diameter has a torque applied to it as shown in Figure P9.69. The shaft material has a modulus of elasticity E = 70
GPa and a shear modulus G = 28 GPa. If the strain gage shows a reading of −600 μ, determine the applied torque T.

9.71 The steel cylindrical pressure vessel (E = 210 GPa and ν = 0.28) shown in Figure P9.71 has a mean diameter of 1000 mm. The wall of the
cylinder is 10 mm thick and the gas pressure is 200 kPa. Determine the strain recorded by the two strain gages attached on the surface of the cylinder.

9.72 An aluminum beam (E = 70 GPa and ν = 0.25) is loaded by a force P = 10 kN and moment M = 5 kN·m at the free end, as shown in
Figure P9.72. If the two strain gages shown are at an angle of 25° to the longitudinal axis, determine the strains in the gages.

F

30�

F

Figure P9.64

F F

45�Figure P9.66

60�

T � 30 in�kips

T

Figure P9.68

40�

T

T

Figure P9.69

b
a

40�
50�

Figure P9.71

0.5 m 0.5 m

y

P

z
30 mm

30 mm

10 mm
10 mm

a

b
M

Figure P9.72
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9.73 An aluminum beam (E = 70 GPa and ν = 0.25) is loaded by a force P and a moment M at the free end, as shown in Figure P9.72. Two
strain gages at 30° to the longitudinal axis recorded the following strains: εa = –386 μm/m and εb = 4092 μm/m. Determine the applied force P and
applied moment M.

9.74 A steel rod (E = 210 GPa and ν = 0.28) of 50-mm diameter is loaded by axial forces P = 100 kN, as shown in Figure P9.74. Determine
the strain that will be recorded by the strain gage.

\

9.75 The strain gage mounted on the surface of the solid axial steel rod (E = 210 GPa and ν = 0.28) illustrated in Figure P9.74 showed a
strain of −214 μm/m. If the diameter of the shaft is 50 mm, determine the applied axial force P.

9.76 A steel shaft (E = 210 GPa and ν = 0.28) of 50-mm diameter is loaded by a torque T = 10 kN·m, as shown in Figure P9.76. Determine
the strain that will be recorded by the strain gage.

9.77 The strain gage mounted on the surface of the solid steel shaft (E = 210 GPa and ν = 0.28) shown in Figure P9.76 recorded a strain of
1088 μm/m. If the diameter of the shaft is 75 mm, determine the applied torque T.

Stretch yourself
In Problems 9.78 through 9.80, Equations (9.17.a) and (9.17.b) are transformation equations relating the x, y coordinates to the n, t coordi-
nates of a point (Figure P9.77). Equations (9.17.c) and (9.17.d) are transformation equations relating displacements u and v in the x and y
directions to the displacements un and ut in the n and t directions, respectively. Solve each problem using Equations (9.24a) through (9.24d).

9.78 Starting with εnn = ∂un/∂n and using Equations (9.24a) through (9.24d) and the chain rule for differentiation, derive Equation (9.4).

9.79 Starting with εtt = ∂ut/∂t and using Equations (9.24a) through (9.24d) and the chain rule for differentiation, derive Equation (9.5).

9.80 Starting with γnt = ∂ut/∂n + ∂un/∂t and using Equations (9.24a) through (9.24d) and the chain rule for differentiation, derive Equation (9.6).

9.81 Starting from Equation (9.15), show that for isotropic materials Ex = Ey and Gxy = Ex /2(1 + ν).

Computer problems
9.82 The displacements u and v in the x and y directions are given by the equations

Assuming plane strain, determine the principal strains, principal angle 1, and the maximum shear strain every 30° on a circle of radius 1 around
the origin. Use a spreadsheet or write a computer program for the calculation.

B

P

PA C
2 m

0.75 m

20�

Figure P9.74

Figure P9.76
BA

0.75 m

T

C
2 m

20�

Figure P9.77

yt

n

x�

�

(9.17.a)

(9.17.b)

(9.17.c)

(9.17.d)

n x θcos y θsin+=

t x– θsin y θcos+=

un u θcos v θsin+=

ut u– θsin v θcos+=

u 0.5 x2 y2–( ) 0.5xy 0.25x+ +[ ]10 3–  mm= v 0.25 x2 y2–( )  xy–[ ]10 3–  mm=
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9.83 On an aluminum beam (E = 70 GPa and ν = 0.25) two strain gages were attached to monitor loads P and w, which vary slowly over time (Fig-
ure P9.83). The strain gage readings are given in Table 9.83. Determine the values of P and w at the times the strains were measured.

QUICK TEST 9.2 Time: 15 minutes/Total: 20 points

Grade yourself with the answers given in Appendix E. Each question is worth two points.
1.The strain gage recorded a strain of 800 μ. What is εyy for the two cases shown? 

In Questions 2 through 4, report the smallest positive and the smallest negative angle θ that can be substituted in the
strain transformation equation relating the strain gage reading to strains in Cartesian coordinates.

4. 3. 4.

In Questions 5 through 7, Mohr’s circles for strains for points in plane stress are as shown. The modulus of elasticity of
the material is E = 10,000 ksi and Poisson’s ratio is 0.25. What is the maximum shear strain in each question?

4. 6. 7.

In Questions 8 through 10, answer true or false. If false, then give the correct explanation.
8. In plane strain there are two principal strains, but in plane stress there are three principal strains.
9. Since strain values change with the coordinate system, the principal strains at a point depend on the coordinate

system used in finding the strains.
10. The principal coordinate axis for stresses and strains is always the same, irrespective of the stress–strain rela-

tionship. 

0.4 m 0.4 m
6 mm

30 mm
15 mm

y
w

z

30 mm

6 mm

P

y

b a

x45� 45�

Figure P9.83

TABLE P9.83 Strain values

εa
(μ)

εb
(μ)

1 1501 2368
2 1433 2276
3 1385 2193
4 1483 2336
5 1470 2331
6 1380 2191
7 1448 2282
8 1496 2366
9 1398 2223
10 1411 2228

y

x

y

x

(a) (b)

25�

x

y y

x

25�

y

x

25�

800 �
1300 �

100 �
2300 �

100 �
1300 �
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MoM in Action: Load Cells

Load cells are everywhere in our lives, even if we do not call them by their name. A load cell is a device that mea-

sures, controls, or applies a force or a moment. Bathroom scales, tire pressure gauges, hydraulic presses, and pressure pads 

are all load cells, based on variety of mechanical principles. 

Scales for weighing were the first kind of load cell. They have been in existence at least since Archimedes (Syra-

cuse, Greece, 287– 212 BCE) stated the lever principle. These mechanical load cells can measure weights with high preci-

sion (Figure 9.33a) over a large range, provided the fulcrum point is a fine knife edge. A pointer, attached at the fulcrum 

point, allows the readings to be calibrated and amplified (Figure 9.33a). In this way measurements can be made from a 

few milligrams in chemistry laboratories to thousands of kilograms on truck scales. In spring scales, it is the extension of 

a spring that is calibrated. However, the familiar pointers from bathroom scales are now being replaced by digital read-

ings.

Today most load cells are constructed using strain gages. Trucks that had to come to a stop for weighing by 

mechanical scales now simply drive over scales that have been strain gaged. The popularity of strain gages comes from 

two facts, one in the mechanics of materials and the other electrical: the formulas relating the force or moment on struc-

tural members to the strains (see Example 9.11) are very reliable; and the signal from strain gages can be processed for 

reading, storage, or control. A vast variety of load cells are manufactured ready for use; others are custom build for spe-

cific applications. Figure 9.33b shows a load cells built around axial-member.

Load cells are used to maintain proper tension in manufacturing rolls of paper or metal sheets. They are also used 

for monitoring tension in the cables and compression in the towers of a suspension bridge. Load cells embedded in 

masonry can detect cracks in structures during construction and operation. Accurate drug dosages can be delivered by cal-

ibrating the weight of fluid to load cell readings. The field of robotics and assembly-line automation also uses a vast vari-

ety of load cells, from earthbound applications to the Rovers on the Moon and Mars. 

For all their complexity and variety, from mundane applications to the cutting edge, the heart of a load cell is the 

predictable deformation of a structural member, according to the simple formulas we have studied in this book. Such is the 

breath and importance of mechanics of materials.

  Figure 9.33 Load cells: (a) weighing scale (b) tension/compression (Courtesy Celsum Technologies Ltd.).

(a) (b)
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*9.6 CONCEPT CONNECTOR

The history of strain gages is interesting in its own right. As we see in Section 9.6.1, however, it also heralds the pitfalls for mod-
ern universities in maintaining the delicate balance between pure research for knowledge and its potential commercial benefits.
Section 9.6.2 then looks ahead at how strain gage resistance is measured using a Wheatstone bridge.

9.6.1 History: Strain Gages

Two Americans invented the strain gage nearly simultaneously. In 1938 Arthur C. Ruge of the Massachusetts Institute of Tech-
nology (MIT) wanted to measure low-level strains in an elevated thin-walled water tank during an earthquake. He solved this
problem by inventing the strain gage. When Ruge sought to register his invention with the MIT patent committee in 1939, the
committee felt that the invention was unlikely to have significant commercial use and released the invention to him. Around the
same time, Edward E. Simmons, then a graduate student at the California Institute of Technology, was studying the stress–strain
characteristics of metals during impact. He invented the strain gage independently, as part of a dynamometer for measuring the
power of impact. Caltech and Simmons waged a legal battle for the rights to the patent, but Simmons won because, as a student,
he was not a salaried employee. Ruge and Simmons subsequently resolved their patent claims to each one’s satisfaction.

Today strain gages are the most popular strain-measuring devices. Strain gages are also used in applications involving mea-
surements or control of forces and moments. Pressure transducers, force transducers, torque transducers, load cells, and dyna-
mometers are all examples of industrial applications of strain gages, whereas a bathroom scale is an example of a household 
product using strain gages. The popularity of strain gages comes from their cost-effectiveness in measuring strains as small as 
1 μmm/mm to strains as large as 50,000 μmm/mm over a large range of temperatures.

The sensitivity of a strain gage is called the gage factor, which is the ratio of percentage change in resistance to percent-
age change in length (strain). Metal foil gages have gage factors of between 2 and 4. Ideally we would like a linear relation-
ship between changes in resistance to strain—in other words, a constant gage factor over the range of measurements. To keep 
the value as close as possible to a constant, strain gages are constructed with different materials for different applications. The 
most common material is constantan or Advance, an alloy of copper (55%) and nickel (45%). The thermal conductivity of the 
two metals is such that the gage does not undergo significant thermal expansion over a large range of temperatures (−75°C to 
175°C); the gage is thus said to be self-temperature-compensated. Annealed constantan is useful in large strain measurements 
(as high as 20%). For high-temperature applications, an alloy of iron (70%), chromium (20%), and aluminum (10%), called 
Armour D, is used. Strain gages using semiconductors (doped silicon wafers) have gage factors of between 50 to 200 and are 
used for small-strain measurements, but they require extreme care during installation because of the brittle nature of the sili-
con wafers.

9.6.2 Wheatstone Bridge Application to Strain Gages

Early strain gages were built by taking a very thin wire and going back and forth a number of times over a small area. This 
construction technique is based on the observation that the resistance R of a wire is related to its length L, its cross-sectional area 
A, and the material-specific resistance ρ by the expression R = ρL/A. For a given value of strain, a longer wire results in a larger 
change in L, and hence a larger change in the resistance, which can be measured more easily. At the same time, the small cross-
sectional area reduces the transverse effect of Poisson’s ratio. Winding the long wire in a small region therefore leads to a better 
average strain value. Though the idea of using a long thin conductor in a small region still dictates the design of modern strain 
gages, the manufacturing process has changed. Photoetching, in which material is removed chemically to produce a desired pat-
tern, has replaced winding a wire. 

By measuring the change in resistance and knowing the gage factor, one can find the strain from a strain gage. The most 
common means of measuring changes in resistance is the Wheatstone bridge circuit, shown in Figure 9.34. The bridge was 
invented by Samuel Hunter Christie in 1833 and made popular by Charles Wheatstone in 1843.

The voltage V0 in Figure 9.34 can be related to V as follows:

V0 V
R1R3 R2R4–

R1 R2+( ) R3 R4+( )
----------------------------------------------=
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Clearly, if R1R3 = R2R4 then the voltage V0 is be zero, and the bridge is said to be balanced. Suppose that one of the resistor is a
strain gage—say, R1. Before the material is loaded (and strained) the bridge is balanced. When the load is applied, the resistance
R1 changes. By adjusting the values of the other resistances by a known amount, we can again balance the bridge, and from R1R3

= R2R4 the resistance of R1 can again be found. The strain can then be calculated from the change in R1. A Wheatstone bridge is
so important in strain measurements because it is sensitive to very small changes in resistance. And since we need to use only
one of the resistances to balance the bridge, strains due to different causes can be separated by creative combinations of two or
more gages.

9.7 CHAPTER CONNECTOR

In this chapter we studied the relationship of strains in different coordinate systems, and we found methods to determine the
maximum normal strains and maximum shear strains. We noted that the principal axes form an orthogonal coordinate system.
Hence we can determine the principal stresses from the principal strains by using the generalized Hooke’s law. These principal
stresses will be used in Chapter 10 to determine whether a material would fail. 

We also learned about strain gages as a means of measuring strains at a point on a material. In Chapters 4 through 7 we stud-
ied one-dimensional structural elements and developed theories that let us compute the strains in an x, y, z coordinate system that 
an applied load produces. From these predicted strains, we are able to determine what a strain gage will record at any orientation. 
This same idea, of relating external loads to the reading of a strain gage, can be used in monitoring and controlling the applied 
forces and moments on a structure.

V

R1 R2

V0

R3R4

  Figure 9.34 Wheatstone bridge circuit.
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POINTS AND FORMULAS TO REMEMBER

• Strain transformation equations relate strains at a point in different coordinate systems:

(9.4)

(9.6)
• Directions of the principal coordinates are the axes in which the shear strain is zero.
• Normal strains in principal directions are called principal strains. 
• The greatest principal strain is called principal strain 1. 
• The angles the principal axis makes with the global coordinate system are called principal angles. 
• The angle of principal axis 1 from the x axis is only reported in describing the principal coordinate system in two-dimen-

sional problems. Counterclockwise rotation from the x axis is defined as positive.
• Principal directions are orthogonal.
• Maximum and minimum normal strains at a point are the principal strains.
• The maximum shear strain in coordinate systems that can be obtained by rotating about one of the three axes (usually the

z axis) is called in-plane maximum shear strain. 
• The maximum shear strain at a point is the absolute maximum shear strain that can be obtained in a coordinate system by

considering rotation about all three axes.
• Maximum shear strain exists in two coordinate systems that are 45° to the principal coordinate system.

(9.7) (9.8) (9.11)

• where θp is the angle to either principal plane 1 or 2, ε1 and ε2 are the principal stresses, γp is the in-plane maximum shear
stress.

• (9.9)

• (9.10) (9.12)

• Each point on Mohr’s circle represents a unique direction passing through the point at which the strains are specified. The
coordinates of each point on the circle are the strains (εnn, γnt /2). 

• The maximum shear strain at a point is the radius of the biggest of the three circles that can be drawn between the three
principal strains.

• The principal directions for stresses and strains are the same for isotropic materials.
• Generalized Hooke’s law in principal coordinates:

• (9.14.a) (9.14.b) (9.14.c)

• Strain gages measure only normal strains directly. 
• Strain gages are bonded to a free surface, i.e., the strains are in a state of plane stress and not plane strain. 
• Strain gages measure average strain at a point.
• The change in strain gage orientation by ±180° makes no difference to the strain values.

εnn εxx θ2cos εyy θ2sin γxy θsin  θcos+ +=

γnt −2εxx θsin  θcos 2εyy θsin   θcos γxy θ2cos θ2sin–( )+ +=

 2θptan γxy

εxx εyy–
------------------= ε1,2

εxx εyy+
2

------------------- εxx εyy–
2

------------------⎝ ⎠
⎛ ⎞

2 γxy

2
------⎝ ⎠

⎛ ⎞
2

+±= γp

2
---- ε1 ε2–

2
---------------=

εnn εtt+ εxx εyy+ ε1 ε2+= =

ε3

0,

ν
1 ν–
------------ εxx εyy+( )–

⎝
⎜
⎜
⎛

=
plane strain

plane stress

γmax

2
-------- max

ε1 ε2–
2

--------------- ε2 ε3–
2

--------------- ε3 ε1–
2

---------------, ,⎝ ⎠
⎛ ⎞=

ε1
σ1 ν σ2 σ3+( )–

E
--------------------------------------= ε2

σ2 ν σ3 σ1+( )–
E

--------------------------------------= ε3
σ3 ν σ1 σ2+( )–

E
--------------------------------------=
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CHAPTER TEN

DESIGN AND FAILURE

Learning objectives

1. Learn the computation of stresses and strains on a structural member under combined axial, torsion, and bending
loads.

2. Develop the design and analysis skills for structures constructed from one-dimensional members. 

_______________________________________________

In countless engineering applications, the structural members are subjected a combination of loads. The propeller on a boat
(Figure 10.1a) subjects the shaft to an axial force as it pushes the water backward, but also a torsional load as it turns through
the water. Gravity subjects the Washington Monument (Figure 10.1b) to a distributed axial load, while the wind pressure of a
storm subjects the monument to bending loads. In still other cases, we have to take into account that a structure is composed
of more than one member. For example, wind pressure on a highway sign (Figure 10.1c) subjects the base of the sign to both
bending and torsional loads. This chapter synthesizes and applies the concepts developed in the previous nine chapters to the
design of structures subjected to combined loading. 

10.1 COMBINED LOADING

We have developed separately the theories for axial members (Section 4.2), for the torsion of circular shafts (Section 5.2),
and for symmetric bending about the z axis (Section 6.2). All these are linear theories, which means that the superposition
principle applies. In many problems a structural member is subject simultaneously to axial, torsional, and bending loads. The
solution to the combined loading problems thus involves a superposition of stresses and strains at a point. 

Equations (10.1), (10.2), (10.3a), and (10.3b), listed here for convenience as Table 10.1 summarizes the stress formulas
derived in earlier chapters. Equations (10.4a) and (10.4b) extend of the formulas for symmetric bending about the z axis
[Equations (10.3a), and (10.3b)] to symmetric bending about the y axis as we shall see in Section 10.1.3.

(b) (a) (c)

  Figure 10.1 Examples of combined loadings.
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To understand the principal of superposition for stresses, consider a thin hollow cylinder (Figure 10.2) subjected to com-
bined axial, torsional, and bending loads. We first draw the stress cubes at four points A, B, C, and D. The stress direction on
the stress cube can then be determined by inspection or using subscripts (as in Sections 5.2.5, 6.2.5, 6.6.1, and 6.6.3). The
magnitude of the stress components follows from the formulas in Table 10.1. 

We will use the following notation for the magnitude of the stress components:

(10.5)

Because the surface of the shaft is a free surface, it is stress free. Hence, irrespective of the loading, no stresses act on this
surface at the four points A, B, C, and D in Figure 10.2. The free surfaces at points B and D have outward normals in the y

TABLE 10.1 Stresses and strains in one-dimensional structural members

Stresses Strains

Axial (10.1)

Torsion (10.2)

Symmetric bending about 
z axis (10.3a)

(10.3b)

Symmetric bending about 
y axis (10.4a)

(10.4b)

σxx
N
A
----=

σyy 0= σzz 0=
τxy 0= τyz 0= τxz 0=

εxx
σxx
E

--------= εyy
νσxx

E
-----------–= εzz

νσxx
E

-----------–=

γxy 0= γyz 0= γxz 0=

τxθ
Tρ
J

-------=

σxx 0= σyy 0= σzz 0=
τyz 0=

γxθ
τxθ
G

-------=

εxx 0= εyy 0= εzz 0=

γyz 0=

σxx
Mzy
Izz

----------–=

τxs
VyQz
Izzt

-------------–=

σyy 0= σzz 0= τyz 0=

εxx
σxx
E

--------= εyy
νσxx

E
-----------–= εzz

νσxx
E

-----------–=

γxs
τxs
G
------=

γyz 0=

σxx
Myz
Iyy

----------–=

τxs
VzQy
Iyyt

-------------–=

σyy 0= σzz 0= τyz 0=

εxx
σxx
E

--------= εyy
νσxx

E
-----------–= εzz

νσxx
E

-----------–=

γxs
τxs
G
------=

γyz 0=

• σaxial—axial normal stress.
• σbend-y—normal stress due to bending about y axis.
• σbend-z—normal stress due to bending about z axis.
• τtor—torsional shear stress.
• τbend-y—shear stress due to bending about y axis.
• τbend-z—shear stress due to bending about z axis.

 Figure 10.2 Thin hollow cylinder. Free
surface

y

z

D

AFree
surface

Free
surface

Free
surface
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direction. Recall that the first subscript in each stress component is the direction of the outward normal to the surface on
which the stress component acts. Thus τyx, which acts on this surface, has to be zero. Since τxy = τyx, it follows that τxy at points
B and D will be zero irrespective of the loading. Similarly, the free surfaces at points A and C have outward normals in the z
direction, and hence τzx = 0. Thus, τxz is also zero at these points, irrespective of the loading. 

10.1.1 Combined Axial and Torsional Loading

Figure 10.3 show the axial and torsional stresses on stress cubes at points A, B, C, and D due to individual loads. When both axial
and torsional loads are present together, we do not simply add the two stress components. Rather we superpose or add the two stress
states.

What do we mean by superposing the stress states? To answer the question, consider two stress components σxx and τxy at
point C. In axial loading, σxx = σaxial and τxy = 0; in torsional loading σxx = 0 and τxy = τtor. When we add (or subtract), we add
(or subtract) the same component in each loading. Hence, the total state of stress at point C is σxx = σaxial + 0 = σaxial and
τxy = 0 + τtor = τtor. The state of stress at point C in combined loading (Figure 10.4) is thus very different from the states of
stress in individual loadings (Figures 10.3a and b). Think how different is the Mohr’s circle associated with the state of stress
at point C in Figure 10.4 with those associated in Figures 10.3a and b. Example 10.1 further elaborates the differences in
stress states and associated Mohr circle.

y

z

PxP

D

A

�axial

�axial

�axial

�axial

T

Free
surface

D

CA

B

x

y

z

D

B

C

A

Free
surface

Free
surface

�tor
Free
surface

�tor

�tor

�tor

(a) (b) 

  Figure 10.3 Stresses due to (a) axial loading; (b) torsional loading

T

z

�tor��

�tor��

�tor��

�axial

al

�axial
PxP

�axial

Figure 10.4 Stresses in combined axial and torsional loading.
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10.1.2 Combined Axial, Torsional, and Bending Loads about z Axis

Figure 10.5a shows the thin hollow cylinder subjected to a load that bends the cylinder about the z axis. Points B and D are on
the free surface. Hence the bending shear stress is zero at these points. Points A and C are on the neutral axis, and hence the
bending normal stress is zero at these points. The nonzero stress components can be found from the formulas in Table 10.1, as
shown on the stress cubes in Figure 10.5a. If we superpose the stress states for bending at the four points shown in Figure
10.5a and the stress states for the combined axial and torsional loads at the same points shown in Figure 10.4, we obtain the
stress states shown in Figure 10.5b.

In Figure 10.5a, the bending normal stress at point D is compressive, whereas the axial stress in Figure 10.4 is tensile.
Thus, the resultant normal stress σxx is the difference between the two stress values, as shown in Figure 10.5b. At point B both
the bending normal stress and the axial stress are tensile, and thus the resultant normal stress σxx is the sum of the two stress
values. If the axial normal stress at point D is greater than the bending normal stress, then the total normal stress at point D
will be in the direction as shown in Figure 10.5b. If the bending normal stress is greater than the axial stress, then the total nor-
mal stress will be compressive and would be shown in the opposite direction in Figure 10.5b.

At point A the torsional shear stress in Figure 10.4 is downward, whereas the bending shear stress in Figure 10.5a is
upward. Thus, the resultant shear stress τxy is the difference between the two stress values, as shown in Figure 10.5b. At point
C both the torsional shear stress and the bending shear stress are upward, and thus the resultant shear stress τxy is the sum of
the two stress values. If the bending shear stress at point A is greater than the torsional shear stress, then the total shear stress
at point A will be in the direction of positive τxy, as shown in Figure 10.5b. If the torsional shear stress is greater than the bend-
ing shear stress, then the total shear stress will be negative τxy and will be in the opposite direction in Figure 10.5b.

10.1.3 Extension to Symmetric Bending about y Axis

Before we combine the stresses due to bending about the y axis, consider the extension of the formulas derived for symmetric
bending about the z axis. Assume that the xz plane is also a plane of symmetry, so that the loads lie in the plane of symmetry.
Equations (10.4a) and (10.4b) for bending about the y axis can be obtained by interchanging the subscripts y and z in Equa-
tions (10.3a) and (10.3b). The sign conventions for the internal moment My and the shear force Vz in Equations (10.4a) and
(10.4b) are then simple extensions of Mz and Vy, as shown in Figure 10.6.

y

z

D

�bend-�� z

�bend��

�bend-�� z

�bend-�� z

PyP

Free
surface

surface

Free
surface

Free
surface

T

D

CA

B

x

y

z

D

B

C

A

�bend-z � �tor

�tor

�tor

�bend-z � �tor

�axial

�axial � �bend-z

�axial Px

Py

�axial � �bend-z

 Figure 10.5 Stresses due to (a) bending about z axis; (b) Combined axial, torsional, and bending about z axis

(a) (b)

  Figure 10.6 Sign convention for internal bending moments and shear force in bending about y axis.
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Sign Convention: The positive internal moment My on a free-body diagram must be such that it puts a point in the positive 
z direction into compression.

Sign Convention: The positive internal shear force Vz on a free-body diagram is in the direction of positive shear stress τxz 
on the surface.

The direction of shear stress in Equation (10.4b) can be determined either by using the subscripts or by inspection, as we
did for symmetric bending about the z axis. To use the subscripts, recall that the s coordinate is defined from the free surface
(see Section 6.6.1) used in the calculation of Qy. The shear flow (or shear stress) due to bending about the y axis only is drawn
along the centerline of the cross section. Its direction must satisfy the following rules:

1. The resultant force in the z direction is in the same direction as Vz.
2. The resultant force in the y direction is zero.

3. It is symmetric about the z axis. This requires that shear flow change direction as one crosses the y axis on the center-
line. Sometimes this will imply that shear stress is zero at points where the centerline intersects the z axis.

10.1.4 Combined Axial, Torsional, and Bending Loads about y and z Axes

Figure 10.7a shows the thin hollow cylinder subjected to a load that bends the cylinder about the y axis. Points A and C are on
the free surface, and hence bending shear stress is zero at these points. Points B and D are on the neutral axis, and hence the
bending normal stress is zero at these points. The nonzero stress components can be found from the formulas in Table 10.1, as
shown on the stress cubes in Figure 10.7a. If we superpose the stress states for bending at the four points shown in Figure
10.5a add the stress states for the combined axial and torsional loads at the same points shown in Figure 10.5b, we obtain the
stress states shown in Figure 10.7b.

 Thus the complex stress states shown in Figure 10.7b can be obtained by first calculating the stresses due to individual
loadings. We then simply superpose the stress states at each point.

10.1.5 Stress and Strain Transformation

To obtain strains in combined loading, we can superpose the strains given in Table 10.1. Alternatively, we can superpose the
stresses, as discussed in the preceding sections and then use the generalized Hooke’s law to convert these stresses to strains.
The second approach is often preferable, because we may need to transform torsional shear stress τxθ (see Section 5.2.5) and
bending shear stress τxs (see Section 6.6.6) into the x, y, z coordinate system. (Remember that our stress and strain transforma-
tion equations were developed in the cartesian coordinates.) In Figure 10.7b, at points A and C the shear stress shown is posi-
tive τxy, at point B the shear stress shown is negative τxz, and at point D the shear stress shown is positive τxz. In general, it is
important to show the stresses on a stress element before proceeding to stress or strain transformation. 
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Figure 10.7 Stresses due to (a) bending about y axis; (b) combined axial, torsional, and bending about y and z axis.
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In studying individual loading, we often had prefixes to stresses such as maximum axial normal stress, maximum tor-
sional shear stress, maximum bending normal stress, maximum bending shear stress, or maximum in-plane shear stress. In
this chapter, however, we are considering combined loading. Hence the maximum normal stress at a point will refer to the
principal stress at the point, and the maximum shear stress will refer to the absolute maximum shear stress. This implies that
allowable normal stress refers to the principal stresses and allowable shear stress refers to the absolute maximum shear
stress. The allowable tensile normal stress refers to principal stress 1, assuming it is tensile. The allowable compressive nor-
mal stress refers to principal stress 2, assuming it is compressive.

10.1.6 Summary of Important Points in Combined Loading

We can now summarize the points to keep in mind when solving problems involving combined loading. 

1. The problem of stress under combined loading can be simplified by first determining the states of stress due to indi-
vidual loadings.

2. The superposition principle applies to stresses at a given point. That is, a stress component resulting from one loading

can be added to or subtracted from a similar stress component from another loading. Stress components at different

points cannot be added or subtracted. Neither can stress components that act on different planes or in different direc-

tions.

3. The stress formulas in Table 10.1 give the magnitude and the direction for each stress component, but only if the inter-

nal forces and moments are drawn on the free-body diagrams according to the prescribed sign conventions. If the

directions of internal forces and moments are instead drawn so as to equilibrate external forces and moments, then the

directions of the stress components must be determined by inspection. 

4. In a given structure, the structural members may have different orientations. In using subscripts to determine the direc-

tion and signs of stress components, we therefore establish a local x, y, z coordinate system for each structural member

such that the x direction is normal to the cross section. That is, the x direction is along the axis of the structural mem-

ber.

5. Table 10.1 shows that stresses σyy and σzz are zero for the four cases listed, emphasizing that the theories are for one-

dimensional structural members. Additional stress components are zero at free surfaces.

6. The state of stress in combined loading should be shown on a stress cube before applying stress or strain transfor-

mation. 

7. The strains at a point can be obtained from the superposed stress values using the generalized Hooke’s law. Since the
normal stresses σyy and σzz are always zero in our structural members, the nonzero strains εyy and εzz are due to the
Poisson effect; that is, εyy = εzz = –νεxx.

10.1.7 General Procedure for Combined Loading

A general procedure for calculating stresses in combined loading is as follows:
Step 1: Identify the equations in Table 10.1 relevant for the problem, and use the equations as a checklist for the quantities that

must be calculated. 
Step 2: Calculate the relevant geometric properties (A, Iyy, Izz, J) of the cross section containing the points where stresses have to

be found.
Step 3: At points where shear stress due to bending is to be found, draw a line perpendicular to the centerline through the point

and calculate the first moments of the area (Qy, Qz) between the free surface and the drawn line. Record the s direction
from the free surface toward the point where the stress is being calculated. 
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Step 4: Make an imaginary cut through the cross section and draw the free-body diagram. If subscripts are to be used in deter-
mining the directions of the stress components, draw the internal forces and moments according to our sign conven-
tions. Use equilibrium equations to calculate the internal forces and moments.

Step 5: Using the equations identified in Step 1, calculate the individual stress components due to each loading. Draw the tor-
sional shear stress τxθ and the bending shear stress τxs on a stress cube using subscripts or by inspection. By examining
the shear stresses in the x, y, z coordinate system, obtain τxy and τxz with proper signs. 

Step 6: Superpose the stress components to obtain the total stress components at a point.
Step 7: Show the calculated stresses on a stress cube.
Step 8: Interpret the stresses shown on the stress cube in the x, y, z coordinate system before processing these stresses for the

purpose of stress or strain transformation.

EXAMPLE 10.1 
A hollow shaft that has an outside diameter of 100 mm, and an inside diameter of 50 mm is loaded as shown in Figure 10.8. For the three
cases shown, determine the principal stresses and the maximum shear stress at point A. Point A is on the surface of the shaft.

PLAN

The axial normal stress in case 1 can be found from Equation 10.1. The torsional shear stress in case 2 can be found from Equation 10.2. The
state of stress in case 3 is the superposition of the stress states in cases 1 and 2. The calculated stresses at point A can be drawn on a stress
cube. Using Mohr’s circle or the method of equations, we can find the principal stresses and the maximum shear stress in each case. 

SOLUTION

Step 1: Equations (10.1) and (10.2) are used for calculating the axial stress and the torsional shear stress.
Step 2: The cross-sectional area A and the polar area moment J of a cross section can be found as

(E1)

Step 3: This step is not needed as there is no bending.

Step 4: We draw the free-body diagrams in Figure 10.9 after making imaginary cuts. The internal axial force and the internal torque are
drawn according to our sign convention. By equilibrium we obtain

(E2)
Step 5:
Case 1: The axial stress is uniform across the cross section and can be found from Equation 10.1,

(E3)

Case 2: The torsional shear stress varies linearly and is maximum on the surface (ρ = 0.05 m) of the shaft. It can be found from Equa-
tion 10.2,

  Figure 10.8 Hollow cylinder in Example 10.1.
Case 1 Case 2 Case 3

800 kN

A

y

z

x

A
18 kN � m

y

z

x

18 kN � m
A

y

z

x

800 kN

A π
4
--- 100 mm( )2 50 mm( )2–[ ] 5.89 103( ) mm2= = J π

32
------ 100 mm( )4 50 mm( )4–[ ]  9.20 106( )  mm4= =

  Figure 10.9 Free-body diagrams in Example 10.1. Case 1

N

Case 2

T

P � 800 kN

18 kN � m

N 800 kN–= T 18 kN·· .m–=

σxx
N
A
---- 800 103( ) N–

5.89 10 3–( )  m2
----------------------------------- 135.8 106( )  N/m2– 135.8 MPa–= = = =
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(E4)

Steps 6, 7: We draw the stress cube and show the stresses calculated in Equations (E3) and (E4).
Case 1: The axial stress is compressive, as shown Figure 10.10a.
Case 2: From Equation (E4) we note that τxθ is negative. The θ direction in positive counterclockwise with respect to the x axis, as
shown in Figure 10.10b. At point A the outward normal to the surface is in the positive x direction and the positive θ direction at A is
downward. Hence a negative τxθ will be upward at point A, as shown in Figure 10.10b.

Intuitive check: Figure 10.11 shows the hollow shaft with the applied torque on the right end and the reaction torque at the wall on the
left end. The left part of the shaft would rotate counterclockwise with respect to the right part. Thus the surface of the cube at point A
would be moving downward. The shear stress would oppose this impending motion by acting upward at point A, as shown in Figure
10.11, confirming the direction shown in Figure 10.10b.

Case 3: The state of stress is a superposition of the states of stress shown on the stress cubes for cases 1 and 2 and is illustrated in Fig-
ure 10.10c.
Step 8: We can redraw the stress cubes in two dimensions and follow the procedure for constructing Mohr’s circle for each case, as shown
in Figure 10.12. The radius of the Mohr’s circle can be found and the principal stresses and maximum shear stress calculated.

• Case 1: .
ANS.

• Case 2: .
ANS.

τxθ
Tρ
J

------- 18 103( )  N m⋅–[ ] 0.05 m( )

9.20 10 6–( )  m4
----------------------------------------------------------------- 97.83 106( )  N/m2– 97.83 MPa–= = = =

  Figure 10.10 Stresses on stress cubes in Example 10.1.

Case 2Case 1

(a)

Case 3

(b) (c)

135.8 MPa

AFree
surface

800 kN

A

y

z

x

A

y

�

18 kN�m

97.83 MPa

z

x

AFree
surface

800 kN

A

y

z

x

135.8 MPa

97.83 MPa

AFree
surface

18 kN�m

TwallTT 18 kN � m

  Figure 10.11 Direction of shear stress by inspection.

  Figure 10.12 Mohr’s circles in Example 10.1.

135.8

H

y

xH
V V

V(�135.8, 0)

H(0, 0)

135.8

67.9

V�2 �1

R H �

Case 1

H

y

xH
V V

V(0, 97.83  )

H(0, 97.83  )

97.83

V

�2 �1

R

H

�

Case 2

H

y

xH
V V

V(�135.8, 97.83  )

H(0, 97.83  )

135.8 97.83

67.9
V

�2 �1

R
H

�

Case 3

�

cw

ccw

�

cw

ccw

�

cw

ccw

R 67.9  MPa=
σ1 0= σ2 135.8 MPa C( )= σ3 0= τmax 67.9 MPa=

R 97.83  MPa=
σ1 97.8  MPa T( )= σ2 97.8 MPa C( )= σ3 0= τmax 97.8 MPa=
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• Case 3: , thus 

ANS.

COMMENTS

1. The results for the three cases show that the principal stresses and the maximum shear stress for case 3 cannot be obtained by super-
position of the principal stresses and the maximum shear stress calculated for cases 1 and 2. Figure 10.12 emphasizes this graphically.
Mohr’s circle of case 3 cannot be obtained by superposing Mohr’s circle for cases 1 and 2. The superposition principle is not applica-
ble to principal stresses because the principal planes for the three cases are different. We cannot add (or subtract) stresses on different
planes. If we had calculated the stresses for the three cases on the same plane, then we could apply the superposition principle.

2. Substituting σxx = −135.8 MPa, τxy = +97.8 MPa, and σyy = 0 into Equation (8.7), we can find σ1 and σ2 for case 3 

(E5)

Noting that σ3 = 0, we can find τmax from Equation (8.13), 

(E6)

The results of Equations (E5) and (E6) are same as those obtained from the Mohr’s circle.

EXAMPLE 10.2 
A hollow shaft has an outside diameter of 100 mm and an inside diameter of 50 mm, is shown in Figure 10.13. Strain gages are mounted
on the surface of the shaft at 30° to the axis. For each case determine the applied axial load P and the applied torque Text if the strain
gage readings are εa = −500 μ and εb = 400 μ. Use E = 200 GPa, G = 80 GPa, and ν = 0.25.

PLAN

The stresses at point A in terms of P and Text can be found as in Example 10.1. Using the generalized Hooke’s law, we can find the strains
in terms of P and Text. From the strain transformation equation, Equation (9.4), the normal strain in direction of the strain gage can be
found in terms of P and Text. The values of P and Text can be determined from the given strain gage readings.

SOLUTION

Step 1: Equations 10.1 and 10.2 will be used for calculating the axial stress and the torsional shear stress.
Step 2: From Example 10.1, the cross-sectional area A and the polar area moment J of a cross section are 

(E1)
Step 3: This step is not needed as there is no bending.

Step 4: We make an imaginary cut and draw the free-body diagrams in Figure 10.14. By equilibrium we obtain

(E2)

R 67.9  MPa( )2 97.83  MPa( )2+ 119.1= = σ1 2, -67.9  MPa 119.1  MPa±=

σ1 51.2  MPa T( )= σ2 187 MPa C( )= σ3 0= τmax 119.1 MPa=

σ1 2,
135.8  MPa–( ) 0+

2
--------------------------------------------- 135.8  MPa–

2
-------------------------------⎝ ⎠

⎛ ⎞
2

97.8  MPa( )2+± -67.9  MPa 119.1  MPa±= =

τmax max
σ1 σ2–

2
-----------------

σ2 σ3–
2

-----------------
σ3 σ1–

2
-----------------, ,⎝ ⎠

⎛ ⎞=

  Figure 10.13 Hollow cylinder in Example 10.2.
Case 1 Case 2 Case 3

a

P (kN)

30�

A

A

x

y

z

b

30�
A

A
Text (kN � m)

x

y

z
Text (kN � m)

b

a
30�

30�
A

P

A

x

y

z

A 5.89 103( )  mm2 = J 9.20 106( ) mm4=

  Figure 10.14 Free-body diagrams in Example 10.2.
Case 1

N

Case 2

T

P (kN)

Text (kN�m)

N P  kN–= T Text  kN– · .m=
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Step 5:
Case 1: The axial stress is uniform across the cross section and can be found from Equation (10.1),

(E3)

Case 2: The torsional shear stress on the surface (ρ = 0.05 m) of the shaft can be found from Equation (10.2),

(E4)

Steps 6, 7: Figure 10.15 shows the stresses on the stress elements calculated using Equations (E4) and (E5), as in Example 10.1.

Step 8:
Case 1: We note that the only nonzero stress is the axial stress given in Equation (E4). From the generalized Hooke’s law we obtain the
strains, 

(E5)

(E6)

Case 2: From Figure 10.15 we note that the shear stress τxy = +5.435Text. The normal stresses are all zero. From the generalized Hooke’s
law we obtain the strains, 

(10.6)

Case 3: The state of strain is the superposition of the state of strain for cases 1 and 2, 
(E7)

Load calculations
Case 1: Substituting θa = 150° or −30° and εxx, εyy, and γxy, into the strain transformation equation, Equation (9.4), we can find the nor-
mal strain in terms of P and equated it to the given value of εa = −500 μ. The value of P can be found as

(E8)

ANS.
Case 2: Substituting θb = 30° and εxx, εyy, and γxy, into the strain transformation equation, Equation (9.4), we can find the normal strain in
terms of Text and equate it to the given value of εb = 400 μ. The value of Text can be found as

(E9)

ANS.
Case 3: Substituting θa = −30°, θb = 30, and Equations (E12), (E13), and (E14) into the strain transformation equation, Equation (9.4),
and using the given strain values, we obtain

 or

(E10)

(E11)

σxx
N
A
---- P 103( )  N–

5.89 10 3–( ) m2
----------------------------------- 0.17P 106( )  N/m2 –= = =

τxθ
Tρ
J

-------
T– ext 103( )  N m⋅[ ] 0.05 m( )

9.20 10 6–( ) m4
-------------------------------------------------------------------- 5.435Text 106( )  N/m2–= = =

  Figure 10.15 Stresses on stress cubes in Example 10.2.

Case 2Case 1

(a)

Case 3

(b) (c)

0.17P MPaAFree
surface

0.17P MPa

5.435Text

AFree
surface

P (kN)

A

x

y

z

P (kN)

A

x

y

z
Text (kN�m)

5.435Text

AFree
surface

A

x

y

z
Text (kN�m)

�

εxx
σxx

E
------- 0.170P 106( )  N/m2–

200 109( )  N/m2
------------------------------------------------- 0.85P 10 6–( ) 0.85P  μ–=–== = εyy ν– εxx 0.25– 0.85P μ–( ) 0.213P  μ== =

γxy
τxy

G
------ 0= =

εxx 0= εyy 0= γxy
τxy

G
------

5.435Text 106( ) N/m2

80 109( )  N/m2
---------------------------------------------------  67.94= Text  μ= =

εxx 0.85– P μ= εyy 0.213P  μ= γxy 67.94Text μ=

εa 0.85P μ–( ) 30– °( )
2

cos 0.213P  μ( ) 30– °( )
2

sin+ 500 μ–= = or -0.638 μ 0.053 μ+( )P 500 μ–=

P 855 kN=

εb 67.94Text  μ( ) 30°( ) 30°( )cossin 400 μ= = or 29.42 μText 400 μ=

Text 13.6 kN· m=

εa 0.85P  μ–( )= 30°–( )2cos 0.213P  μ( ) 30°–( )+ 67.94Text  μ( ) 30°–( ) 30°–( )cossin 500μ–=2sin+

0.585– P 29.42Text– 500–=

εb 0.85P  μ–( )= 30°( )2cos 0.213P  μ( ) 30°( ) 67.94Text  μ( )  30°( ) 30°( )cossin 400 μ=+2sin+

0.585– P 29.42Text+ 400=
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Equations (E10) and (E11) can be solved simultaneously to obtain the result.
ANS.

COMMENTS

1. The values of P and Text for combined loading are different than the values obtained for individual loadings. The next comment
explains why. 

2. If we had been given P and Text and were required to predict the strains in the gages, we could have calculated strains along the strain
gage direction for individual loads and superposed to get the total strain in the gages for combined loading. But as the results in this
example demonstrate, the strains in the gages (or the total strain) for combined loading cannot be separated into strain due to axial
load and strain due to torsion. Loads P and Text affect both strain gages simultaneously, and these effects cannot be decoupled into
effects of individual loadings.

3. In this example and the previous one we solved the problem by separating axial and torsion problems and calculated internal axial
force and internal torque using separate free-body diagrams. We could have used a single free-body diagram, as shown in Figure
10.16, to calculate the internal quantities. In subsequent examples we shall construct a single free-body diagram for the calculation of
the internal quantities,

This choice is not only less tedious but may be necessary. A single force may produce axial, torsion, and bending, which cannot be sepa-
rated on a free-body diagram.

EXAMPLE 10.3 

A box column is constructed from -in.-thick sheet metal and subjected to the loads shown in Figure 10.17. (a) Determine the normal

and shear stresses in the x, y, z coordinate system at points A and B and show the results on stress cubes. (b) A surface crack at point B is
oriented as shown. Determine the normal and shear stresses on the plane containing the crack.

PLAN

(a) We can follow the procedure in Section 10.1.7. The 20-kips force is an axial force, whereas the 2-kips and 1.5-kips forces produce
bending about the z and y axes, respectively. Thus Equations 10.1, (10.3a), (10.3b), (10.4a), and (10.4b) will be used for calculating
stresses. These formulas can be used as a checklist of the quantities that must be calculated in finding the individual stress components.
By superposition the total stress at points A and B can be obtained. (b) Using the method of equations or Mohr’s circle, the normal and
shear stresses on the plane containing the crack can be found from the stresses determined at point B.

SOLUTION

Step 1: Equations 10.1, (10.3a), (10.3b), (10.4a), and (10.4b) will be used for calculating the stress components.
Step 2: The geometric properties of the cross section can be found as

(E1)

(E2)

P 85.4 kN Text 15.3 kN· m==

N P kN–= T Text kN·m–=

N

T

P (kN)

Text (kN�m)

  Figure 10.16 Single free-body diagram for combined loading.

1
4
---

  Figure 10.17 Beam and loading in Example 10.3.
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Iyy
1
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------ 3 in.( ) 4 in.( )3 1
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Step 3: At points A and B we draw a line perpendicular to the centerline of the cross section. We may then obtain the area As needed for
the calculations of Qy and Qz at points A and B as shown in Figure 10.18: 

(E3)

(E4)

 (E5)

Step 4: We can make an imaginary cut through the cross section containing points A and B and draw the free-body diagram shown in
Figure 10.19. Internal forces and moments are drawn according to our sign convention. From the equilibrium equations, the internal
forces and moments can be found,

(E6)
Step 5: The stress components due to each loading are calculated next.
Axial stress calculations: The axial stresses at points A and B can be found from Equation (10.1) as

(E7)

Stresses due to bending about the y axis: We note that zA = 0 and zB = 1.5. From Equation (10.4a), we obtain 

(E8)

From Equation (10.4b) we obtain the shear stress at A and B,

(E9)

From Figure 10.18a we note that the s direction is in the negative z direction at point A. Thus
(E10)

Stresses due to bending about the z axis: We note that yA = 2 and yB = 0. From Equation (10.3a), we obtain 

(E11)

From Equation (10.3b), we obtain the shear stresses at points A and B, 

(E12)

From Figure 10.18b we note that the s direction is in the negative y direction at point B. Thus
(E13)

Step 6: Superposition
Normal stress calculations: The normal stress at point A can be obtained by superposing the values in Equations (E7), (E8), and (E11),

tA tB 0.25 in. 0.25 in.+ 0.5 in.= = =

Qy( )A 2 1.5 in.( ) 0.25 in.( ) 0.75 in.( ) 3.5 in.( ) 0.25 in.( ) 1.5 in. 0.125 in.–( )+ 1.766 in.3= = Qz( )A 0=

Qy( )B 0= Qz( )B 2 in.( ) 2 in.( ) 0.25 in.( ) 1 in.( ) 2.5 in.( ) 0.25 in.( ) 2 in. 0.125 in.–( )+ 2.172 in.3= =

2

110.75 in 3.5 in
1.5 in

0.125 in Free surface

CAy

z

s

4 in

  Figure 10.18 Calculation of Qy and Qz at (a) point A; (b) point B in Example 10.3.

2
1

1

1 in
2 in

2.5 in0.125 in

Free surface B

Cy

zs

3 in

(a) (b) 

x

z
y

Vz
Vy

N

Mz My

40 in

20 kips
1.5 kips

2 kips

  Figure 10.19 Free-body diagram in Example 10.3.

N 20–  kips= Vy 2.0–  kips= Vz 1.5 kips= My 60 in.·kips= Mz 80 in.·kips–=

σxx( )A ,B
N
A
---- 20–  kips( )

3.25 in.2
-------------------------- 6.154 ksi–= = =

σxx( )A 0= σxx( )B
MyzB

Iyy
------------– 60 in.· kips( ) 1.5 in.( )

4.443 in.4
-----------------------------------------------------– 20.258–  ksi= = =

τxs( )A
VzQy

Iyyt
------------– 1.5 kips( ) 1.766 in.3( )

4.443 in.4( ) 0.5 in.( )
-----------------------------------------------------– 1.192–  ksi= = = τxs( )B 0= τxy( )B 0=

τxz( )A τxs( )A– 1.19 ksi= =

σxx( )A
MzyA

Izz
------------– 80 in.· kips–( ) 2 in.( )

7.068 in.4
----------------------------------------------------– 22.638 ksi= = = σxx( )B 0=

τxs( )A 0= τxz( )A 0= τxs( )B
VyQz

Izzt
------------– 2 kips–( ) 2.172 in.3( )

7.068 in.4( ) 0.5 in.( )
----------------------------------------------------– 1.229 ksi= = =

τxy( )B τxs( )B– 1.23–  ksi= =
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(E14)

ANS.
Similarly, the normal stress at point B can be obtained by superposition of Equations (E7), (E8), and (E11),

(E15)

ANS.
Intuitive check on normal stress calculations: The axial stress σaxial due to a 20-kips force will be compressive. Figure 10.20 shows the
exaggerated deformed shapes due to bending about the y and z axes. (These deformed shapes can actually be visualized without drawing
the figures.) From Figure 10.20a it can be seen that the line passing through A will be in tension. That is, the normal stress due to bending
about the z axis σbend-z will be tensile. From 10.24b it can be seen that point A is on the neutral (bending) axis. Hence the normal stress due
to bending about the y axis σbend-y = 0. Thus the total normal stress at point A is (σxx)A = σbend-z − σaxial. Substituting the magnitude of σbend-

z = 22.638 ksi and σaxial = 6.154 ksi, we obtain the result in Equation (E14).

From Figure 10.20b it can be seen that the line passing though B will be in compression. That is, the normal stress due to bending about
the y axis σbend-y will be compressive. From Figure 10.20a it can be seen that point B is on the neutral (bending) axis; hence σbens-z = 0.
Thus the total normal stress at point B can be written as (σxx)B = −σaxial − σbend-y. Substituting the magnitude of σbend-y = 20.258 ksi and
σaxial = 6.154 ksi, we obtain the result in Equation (E15).
Shear stress calculations: The shear stresses at point A can be obtained by superposing the values in Equations (E10) and (E12). The
shear stress at point B can be obtained by superposing the values in Equations (E9) and (E13). 

ANS.  
Intuitive check on shear stress calculations:  By inspection we deduce that the shear force on the bottom segment containing points A and
B is in the negative y and positive z direction, as shown in Figure 10.21. We obtain the shear stress distribution (see Section 6.6.1) as
shown. The direction of shear stress at point A and B are consistent with our results. Points A and B are on free surfaces with outward nor-
mals in y and z, respectively. Hence, (τxy)A= 0 and (τxz)B= 0. Thus the total shear stresses at A and B are (τxz)A = τbend-y and (τxy)B = −τbend-z,
consistent with our answers.

Step 7: The stresses at points A and B can now be drawn on a stress cube, as shown in Figure 10.22.

σxx( )A -6.154 ksi 0 22.638 ksi+ + 16.484 ksi= =

σxx( )A 16.5=  ksi (T)

σxx( )B -6.154 ksi 20.258 ksi– 0+ 26.412 ksi–= =

σxx( )B 26.4 ksi (C)=

  Figure 10.20 Determination of normal stress components by inspection for bending about (a)  z axis; (b) y axis.
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A B
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(a)

1.5 kips

zy

A B
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(b)
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τxz( )A 1.2 ksi= τxy( )B 1.2–  ksi=

  Figure 10.21 Direction of shear stress components by inspection for bending about (a)  z axis; (b) y axis.
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A B
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z direction

(b)

y
A
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Step 8: Figure 10.23 shows the plane containing the crack. From geometry we conclude that the angle that the outward normal makes
with the x axis is 35°. Substituting θ = 35°, (σxx)B = −26.4 ksi, (τxy)B = −1.2 ksi, and (σyy)B = 0 into Equations (8.1) and (8.2), we obtain
the normal and shear stresses on the plane containing the crack,

(E16)

(E17)

ANS.

COMMENTS

1. It may seem that the intuitive checks take as much effort as the calculation of the stresses by the procedural approach. But much of the
description and diagrams here are for purpose of explanation only. Most of the intuitive check is by inspection. In the process you will
develop an intuitive sense of the stresses under combined loading. 

2. In place of three-dimensional free-body diagram of Figure 10.19, you may prefer drawing two perspectives of the free-body diagram
shown in Figure 10.24. Figure 10.24a is constructed by looking down the y axis, whereas Figure 10.24b is the perspective looking
down the z axis. Equation (E6) can be obtained from equilibrium.

3. In calculating bending stresses by inspection, be sure to use the correct area moment of inertia in the formula for rectangular cross
sections: Iyy is not the same as Izz. The subscripts emphasize that the moment of inertia to be used is the value about the bending axis.

4. The stresses on the plane containing the crack are used to assess whether a crack will grow and break the body. 

B

xx

y
z

zy
A

A

20 kips1.5 kips

2 kips

1.2 ksi

16.5 ksi

x

y
z

B

Free
surface

Free
surface

26.4 ksi

1.2 ksi

  Figure 10.22 Stress cubes in Example 10.3.

σnn 26.4 ksi–( ) 35°2cos 2 1.2 ksi–( ) 35° 35°cossin+ 18.84 ksi –= =

τnt 26.4 ksi–( )– 35°  35°  sincos 1.2 ksi–( ) 35°2cos 35°2sin–( )+ 11.99 ksi= =

35�

x

n

y

35�

Crac
k orie

ntat
ion

  Figure 10.23 Angle of normal to plane containing crack.

σnn 18.84 ksi (C)= τnt 11.99 ksi=

 Figure 10.24 Two-dimensional free-body diagrams in Example 10.3. (a)

x

z

y

Vz

N

My

1.5 kips
20 kips

40 in

(b)

x

z

y
Vy

N
Mz

2.0 kips
20 kips

40 in
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EXAMPLE 10.4 
A thin cylinder with an outer diameter of 100 mm and a thickness of 10 mm is loaded as shown in Figure 10.25. At point A, which is on
the surface of the cylinder, determine the normal and shear stresses in the x, y, z coordinate system. Show your results on a stress cube.

PLAN

We can follow the procedure outlined in Section 10.1.7. The 100 kN is an axial force. The 20-kN force will produce bending about the z
axis. The 10-kN force will produce bending about the y axis and will also produce torque. Thus we need all the stress equations listed in
Table 10.1. We can use these equations as a checklist of the quantities to calculate. and determine the stress at point A by superposition.

SOLUTION

Step 1: All the stress equations in Table 10.1 will be used.
Step 2: The geometric properties of the cross section can be found as

(E1)

(E2)

Step 3: At points A we draw a line perpendicular to the centerline of the cross section to obtain the area As needed for the calculations of
Qy and Qz at point A, as shown in Figure 10.26a. 

(E3)

To find (Qz)A, we use the formula 4r/3π, given in Table C.2, for the location of the centroid for a half-disc of radius r. From Figure
10.26a, subtracting the first moment of the area of the inner disc of radius 40 mm from the first moment of the outer disc of radius
50 mm, we obtain 

(E4)

Step 4: We draw the free-body diagram shown in Figure 10.26b by making an imaginary cut at x = 0. The internal forces and moments
are drawn according to our sign convention and can be obtained by equilibrium, 

(E5)
Step 5: The stress components due to each loading are calculated next.
Axial stress calculations: From Equation (10.1) we obtain

 (E6)

Torsional shear stress calculations:  Noting ρA = 50 (10-3) m we obtain from Equation (10.2),

(E7)

The shear stress can be drawn on a stress cube using the subscripts, as shown in Figure 10.26c. The direction of shear stress in the x, y
coordinate system is

(E8)

y

z

A x

10 kN20 kN

100 kN
1.2 m

50
0 

m
m

Rigid

  Figure 10.25 Geometry and loading in Example 10.4.

A π 50 mm( )2 40 mm( )2–[ ] 2.827 103( ) mm2= = J π
2
--- 50 mm( )4 40 mm( )4–[ ] 5.796 106( )  mm4= =

Iyy Izz
J
2
--- 2.898 106( )  mm4= = =

tA 20 mm= Qy( )A 0=

80 mm

4 � 40�3�

4 � 50�3�

Free surface
y

z A

s

100 mm

 Figure 10.26 (a) Calculation of Qz.(b) Free-body diagram. (c) Direction of torsional shear stress in Example 10.4. 

A

Vy

My

Vz Mz

N
T

10 kN20 kN

100 kN
1.2 m

500 mm

Rigid

y

x
z

A

A
43.13 MPa

�
(a) (b) (c)

Qz( )A
π 50 mm( )2

2
---------------------------- 4 mm( ) 50 mm( )

3π
----------------------------------------- π 40 mm( )2

2
---------------------------- 4 mm( ) 40 mm( )

3π
-----------------------------------------– 40.667 103( )  mm3= =

N 100 kN= Vy 20–  kN= Vz 10–  kN= T 5 – kN·m= My 12 – kN·m= Mz 24–  kN·m=

σxx( )A
N
A
---- 100 103( ) N

2.827 10 3–( ) m2
-------------------------------------- 35.373 106( ) N/m2  35.373=  MPa= = =

τxθ( )A
TρA

J
--------- 5 103( )  N m⋅–[ ] 50 10 3–( )  m[ ]

5.796 10 6–( ) m4
------------------------------------------------------------------------- 43.133 106( )–  N/m2= = =

τxy( )A 43.133 MPa=
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Stresses due to bending about the y axis: Noting that zA = 50 × 10-3 m, we obtain from Equation (10.4a), 

(E9)

From Equation (10.4b) we obtain 
(E10)

Stresses due to bending about the z axis: Noting that yA = 0, we obtain from Equation (10.3a)
(E11)

From Equation (10.3b) we obtain

(E12)

From Figure 10.26a we note that the s direction is in the negative y direction at point A. Thus,
(E13)

Step 6: Superposition
Normal stress calculations: The normal stress at point A can be obtained by superposing the values in Equations (E6), (E9), and (E12),

(E14)

ANS.
Intuitive check on normal stress calculations: The axial stress σaxial due to a 100-kN force will be tensile. Figure 10.27 shows the exag-
gerated deformed shapes due to bending about the y and z axes. From Figure 10.27a, it can be seen that line AB and hence the normal
stress due to bending about the y axis σbend-y will be tensile at point A. Hence the normal stress due to bending about the z axis σbend-z = 0
at point A is on the neutral (bending) axis in Figure 10.27b. Thus the total normal stress at point A can be written as (σxx)A = σaxial + σbend-

y, confirming our results. 

  Figure 10.27 Determination of normal stress components by inspection from bending about (a) y axis; (b) z axis.
Shear stress calculations: The shear stress at point A can be obtained by superposing the values in Equations (E8), (E10), and (E13),

(E15)

ANS.
Intuitive check on shear stress calculations: Figure 10.28 shows the direction of shear stress due to torsion (see Section 5.2.5) and bend-
ing about y and z axis (see Section 6.6.1). We see that at point A the torsional shear stress τtor is upward, the shear stress due to bending about
the z axis τbend-z is downward, and the shear stress due to bending about y axis τbend-y is zero. Thus the total shear stress at A can be written as
(τxy)A = τtor − τbend-z, confirming our results

Step 7: Figure 10.29 shows the result of stresses on a stress cube.

σxx( )A
MyzA

Iyy
------------– 12 103( ) N m⋅–[ ] 50 10 3–( ) m[ ]

2.898 10 6–( )  m4
----------------------------------------------------------------------------– 207.04 106( )  N/m2 207.04 MPa= = = =

τxs( )A 0= or τxy( )A 0=

σxx( )A 0=

τxs( )A

Vy Qz( )A

IzztA
--------------------– 20– 103( )  N[ ] 40.667 10 6–( )  m3[ ]

2.898 10 6–( )  m4[ ] 20 10 3–( )  m[ ]
--------------------------------------------------------------------------------– 14.033 106( )  N/m2= = =

τxy( )A τxs( )A– 14.033–  MPa= =

σxx( )A 35.373 MPa 207.04 MPa 0+ + 242.412 MPa= =

σxx( )A 242.4 MPa (T)=

(a)

y

D

D
Compression

Tension

B

B
AC

(b)

Compression

Neutral

Tension

B
D

B
D

z

A
C

τxy( )A 43.133 MPa 0 14.033 MPa–+ 29.10 MPa= =

τxy( )A 29.10 MPa=

  Figure 10.28 Direction of shear stress components by inspection from (a) torsion; (b) bending about z axis; (c) bending about y axis.
(a)

A

(b)

20 kN

Resultant
shear force
in negative
y direction

Shear force
in positive
y direction

A

y

(c)

A
z 10 kN

Resultant
shear force
in negative
z direction

Shear force
in positive
z direction

  Figure 10.29 Results on stress cube in Example 10.4

y

z

A x

10 kN20 kN

100 kN

Rigid

y

z x

29.10 MPa

242.4 MPa

Free
surface
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COMMENTS

1. The stresses shown on the stress cube in Figure 10.29 can be processed further if necessary. We could find principal stresses as in
Example 10.1, stresses on a plane as in Example 10.3, or strains along the direction of a gage as in Example 10.2.

2. The advantage of the procedure outlined in Section 10.1.7 is that it is methodical. It breaks a complex problem into a sequence of sim-
ple steps, as shown in this and previous examples. The shortcoming of this procedural approach is that it does not exploit any simpli-
fication that may be intrinsic to the problem. 

3. Solving a problem by inspection has two distinct advantages: it helps build an intuitive understanding of stress behavior, and it can
reduce the computational effort significantly.

4. The possibility of error is higher when solving the problem primarily by inspection because less is worked out on paper. For example,
internal forces and moments are equal and opposite on the two surfaces created by an imaginary cut. It is easy to confuse one surface
with another if we try to visualize all in our head, particularly in calculating of shear stress. Rough sketches can help.

5. You may find it more effective to solve part of the problem by a procedural approach and part by inspection. For example, you could
solve for normal stresses but not shear stresses by inspection.

EXAMPLE 10.5 
The cylinder of 800-mm outer diameter shown in Figure 10.30 has a wall thickness of 15 mm. In addition to the axial and torsional
loads, the cylinder is pressurized to 150 kPa. Determine the normal and shear stresses at point A on the center line of the cross section,
and show them on a stress element in a cylindrical coordinate system.

PLAN

The stress state at any point is from three sources: axial stress [Equation (10.1)]; torsional shear stress [Equation (10.2)]; and axial and
hoop stresses due to pressure on the thin cylinder [Equations (4.28) and (4.29)].

SOLUTION

Step 1: Equations (10.1), (10.2), (4.28) and (4.29) will be used to find the stress components.
Step 2: The outer radius (Ro), the inner radius (Ri), the mean radius (Rm), the cross sectional area (A), and polar moment of inertia (J) can
be found as

(E1)

(E2)

(E3)

Step 3: This step is not needed as there is no bending.

Step 4: By equilibrium of free-body diagram in Figure 10.31 we obtain
(E4)

Step 5: The stress components due to each loading are calculated next.
Axial stress calculation: From Equation (10.1) we obtain

 (E5)

Consolidate your  knowledge
1. Write a procedure you would use for solving combined loading problems.

A

P � 500 kN

T � 300 kN�m

  Figure 10.30 Cylinder and loading in Example 10.5*.

Ro 0.4 m= Ri 0.385 m= Rm 0.3925 m=

A π Ro
2 Ri

2–( ) π 0.4 m( )2 0.385 m( )2–[ ] 36.99 10 3–( )  m2= = =

J π
2
--- Ro

4 Ri
4–( ) π

2
--- 0.4 m( )4 0.385 m( )4–[ ] 5.701 10 3–( )  m2= = =

500 kN

300 kN�m
TA

NA
  Figure 10.31 Free-body diagram in Example 10.5*.

NA 500 kN= TA 300 kN·m=

σxx
NA

A
------ 500 103( )  N

36.99 10 3–( )  m2
-------------------------------------- 13.52 106( )  N/m2 13.52 MPa= = = =
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Torsional shear stress: Noting ρA = 0.3925 m we obtain from Equation (10.2)

(E6)

Stresses due to pressure of thin-walled cylinders: Noting that the pressure is  and t = 0.015 m we obtain from Equations
(4.28) and (4.29) 

(E7)

(E8)

Step 6: Superposition
The normal stress at point A can be obtained by superposing the values in Equations (E5) and (E7), 

(E9)
Figure 10.32 shows the stresses in Equations (E6), (E8), and (E9) on a stress element.

COMMENTS

1. From the stress state in Figure 10.32, we could find principal stresses, or strains in any direction.
2. We could have used Equation (5.26) in place of Equation (10.2), as the shaft is thin-walled, to obtain the same results

PROBLEM SET 10.1

Combined axial and torsion forces
10.1 Determine the normal and shear stresses in the seam of the shaft passing through point A, as shown in Figure P10.1 The seam is at an
angle of 60o to the axis of a solid shaft of 2-in. diameter.

10.2 A 4-in.-diameter solid circular steel shaft is loaded as shown in Figure P10.2. Determine the shear stress and the normal stress on a plane
passing through point E. Point E is on the surface of the shaft.

τxθ
TAρA

J
------------ 300 103( )  N m⋅[ ] 0.3925 m( )

5.701 10 3–( ) m4
----------------------------------------------------------------------- 20.65 106( )  N/m2 20.65 MPa= = = =

p 150 kPa=

σxx
pRm

2t
---------- 150 103( )  N/m2[ ] 0.3925 m( )

2 0.015 m( )
---------------------------------------------------------------------- 1.96 10× 6 N/m2 1.96 MPa== = =

σθθ
pRm

t
---------- 3.92 MPa= =

σxx 13.52 MPa 1.96 MPa+ 15.48 MPa= =

15.48 MPa

20.67 MPa

3.92 MPa

3.92 MPa

15.48 MPa

 Figure 10.32 Stress element in Example 10.5*.

τ
TA

2tAE
----------- 300 103( )  N m⋅[ ]

2 0.015 m( ) π 0.3925 m( )2[ ]
------------------------------------------------------------------- 20.67 MPa= = =

P � 50 kips

T

T � 30 in�kips

P
A�

Figure P10.1

120 kips

200 in�kips

420 in�kips

50�

120 in�kips

100 in�kips

120 kips

C

B

E

A

D

Figure P10.2
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10.3 A solid shaft of 75-mm diameter is loaded as shown in Figure P10.3. The strain gage is 20o to the axis of the shaft and the shaft material
has a modulus of elasticity E = 250 GPa and a Poisson ratio ν = 0.3. If T = 20 kN·m and P = 50 kN, what strain will the strain gage show?

10.4 A solid shaft of 75-mm diameter is loaded as shown in Figure P10.3. The strain gage is 20o to the axis of the shaft and the shaft material
has a modulus of elasticity E = 250 GPa and a Poisson ratio ν = 0.3. If the strain gage shows a reading of −450 μm/m and T = 10 kN, determine
the axial load P

10.5 A solid shaft of 75-mm diameter is loaded as shown in Figure P10.3. The strain gage is 20o to the axis of the shaft and the shaft material
has a modulus of elasticity E = 250 GPa and a Poisson ratio ν = 0.3. If the strain gage shows a reading of –300 μm/m and P = 55 kN, deter-
mine the applied torque T.

10.6 A solid shaft of 2-in. diameter is loaded as shown in Figure P10.6 The shaft material has a modulus of elasticity E = 30,000 ksi and a
Poisson ratio ν = 0.3. Determine the strains the gages would show if P = 70 kips and T = 50 in.·kips. 

10.7 A solid shaft of 2-in. diameter is loaded as shown in Figure P10.6 The shaft material has a modulus of elasticity E = 30,000 ksi and a
Poisson ratio ν = 0.3. The strain gages mounted on the surface of the shaft recorded the strain values εa = 2078 μ and εb = –1410 μ. Deter-
mine the axial force P and the torque T.

10.8 Two solid circular steel (Es = 200 GPa, Gs = 80 GPa) shafts and a solid circular bronze shaft (Ebr = 100 GPa, Gbr = 40 GPa) are securely
connected and loaded as shown Figure P10.8 Determine the maximum normal and shear stresses in the shaft.

10.9 Determine the normal and shear stresses on a plane 35o to the axis of the shaft at point E in Figure P10.8. Point E is on the surface of the shaft.

Combined axial and bending forces

10.10 A 6-in. × 4-in. rectangular hollow member is constructed from a -in.-thick sheet metal and loaded as shown in Figure P10.10. Deter-
mine the normal and shear stresses at points A and B and show them on the stress cubes for P1 = 72 kips, P2 = 0, and P3 = 6 kips.

10.11 Determine the principal stresses and the maximum shear stress at points A and B in Figure P10.10 for P1 = 72 kips, P2 = 3 kips, and P3 = 0.

10.12 Determine the strain shown by the strain gages in Figure P10.12 if P1 = 3 kN, P2 = 40 kN, the modulus of elasticity is 200 GPa, and
Poisson’s ratio is 0.3. The strain gages are parallel to the axis of the beam.

P

T

20�

Figure P10.3

P

T

a
b

60�30�

Figure P10.6

Figure P10.8

A E

T � 10 kN�m

B C D

5 m

35�

F � 40 kN

Steel Steel Bronze

3 m 4 m

F � 40 kN

100 mm

1
2
---

Figure P10.10

A

y

B

P2P3

P1

60 in

4 in

6 in

z
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10.13 The strain gages shown in Figure P10.12 recorded the strain values εa = 1000 μ and εb = –750 μ. Determine loads P1 and P2. The mod-
ulus of elasticity is 200 GPa and Poisson’s ratio is 0.3.

10.14 Determine the strain shown by the strain gages in Figure P10.14 if P1 = 3 kN, P2 = 40 kN, the modulus of elasticity is 200 GPa, and
Poisson’s ratio is 0.3.

10.15 The strain gages shown in Figure P10.14 recorded the strain values εa = 133 μ and εb = 159 μ. Determine loads P1 and P2. The modulus
of elasticity is 200 GPa and Poisson’s ratio is 0.3.

10.16 Determine the strain recorded by the gages at points A and B in Figure P10.16. Both gages are at 30o to the axis of the beam. The mod-
ulus of elasticity E = 30,000 ksi and ν = 0.3.

Combined axial, torsion, and bending forces
10.17 A thin cylinder with an outer diameter of 100 mm and a thickness of 10 mm is loaded as shown in Figure P10.17. Points A and B are on
the surface of the shaft. Determine the normal and shear stresses at points A and B in the x, y, z coordinate system and show your results on
stress cubes.

10.18 Determine the principal stresses and the maximum shear stress at point B on the shaft shown in Figure P10.17.

Figure P10.12 0.4 m 0.4 m

30 mm

P1

a

b

P2

30 mm

5 mm
5 mm

Figure P10.14 0.4 m 0.4 m

30 mm

P1

P2

30 mm

5 mm
5 mm

b a

35� 35�

Figure P10.16

y

z

Px � 
40 kips

Py � 2 kips

2 in
24 in

30°

Pz � 3 kips

B

A 30°4 in

Figure P10.17

x B

A T � 2 kN�m

Px � 100 kN

Py � 15 kNPz � 12 kN

y

z
0.75 m
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In problems 10.19 through 10.27, a pipe has outer diameter 120 mm and a thickness of 10 mm. All forces except the one given are zero. (a)
Using the notation in Equation 10.5, determine by inspection the total normal and shear stresses at points A and B which are on the surface of
the pipe. (b) Calculate the stresses and show on the stress cube. 

In problems 10.28 through 10.30, a pipe has outer diameter 120 mm and a thickness of 10 mm. All forces except the one given are zero. Deter-
mine the maximum normal and shear stress at points A and B. 

10.31 A pipe with an outside diameter of 2.0 in. and a wall thickness of in. is loaded as shown in Figure P10.31. Determine the normal and
shear stresses at points A and B in the x, y, z coordinate system and show them on a stress cube. Points A and B are on the surface of the pipe.
Use a =48 in. and b = 60 in.

10.32 Determine the maximum normal stress and the maximum shear stress at point B on the pipe shown in Figure P10.31.

Problem Loads Use
10.19 Px = 9 kN Figure P10.19

a =1.2 m, b =1.5m

Figure P10.19

10.20 Py = 12 kN Figure P10.19
a =1.2 m, b =1.5m

10.21 Pz = 15 kN Figure P10.19
a =1.2 m, b =1.5m

10.22 Px = 9 kN Figure P10.22
a = 0.64 m, b = 0.5 m, c =0.3 m

Figure P10.22

10.23 Py = 12 kN Figure P10.22
a = 0.64 m, b = 0.5 m, c =0.3 m

10.24 Pz = 15 kN Figure P10.22
a = 0.64 m, b = 0.5 m, c =0.3 m

10.25 Px = 9 kN Figure P10.25
a = 0.5 m, b = 0.8 m, c =0.7 m

Figure P10.25

10.26 Py = 12 kN Figure P10.25
a = 0.5 m, b = 0.8 m, c =0.7 m

10.27 Pz = 15 kN Figure P10.25
a = 0.5 m, b = 0.8 m, c =0.7 m

Problem Loads Use
10.28 Px = 10 kN Figure P10.28

a = 0.7 m, b = 0.9 m, c =0.7 m

Figure P10.28

10.29 Py = 15 kN Figure P10.28
a = 0.7 m, b = 0.9 m, c =0.7 m

10.30 Pz = 20 kN Figure P10.28
a = 0.7 m, b = 0.9 m, c =0.7 m

Px

Py

Pz

A
x

y

z

a

b

B

Pz

Py

Px

y

z

A
x

a
B

b

c

A

Px

Py

Pz

x

y

z
B

a b

c

Pz Py

Px

y

z

A
x

0.5 m

B

a b

c

a

1
4
---

P = 200 lb

A
x

y

z

30o

Figure P10.31

B

a

b
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10.33 A pipe with an outside diameter of 40 mm and a wall thickness of 10 mm is loaded as shown in Figure P10.33. Determine the normal
and shear stresses at points A and B in the x, y, z coordinate system and show them on a stress cube. Points A and B are on the surface of the
pipe. Use a = 0.25 m, b = 0.4 m, and c = 0.1 m.

10.34 Determine the maximum normal stress and the maximum shear stress at point B on the pipe shown in Figure P10.33.

10.35 A bent pipe of 2-in. outside diameter and a wall thickness of in. is loaded as shown in Figure P10.35. If a = 16 in., b = 16 in.,and
c = 10 in., determine the stress components at point A, which is on the surface of the shaft. Show your answer on a stress cube.

10.36 Determine the normal and shear stresses on a seam through point A that is 22o to the axis of the pipe shown in Figure P10.35.

10.37 The hollow steel shaft shown in Figure P10.37 has an outside diameter of 4 in. and an inside diameter of 3 in. Two pulleys of 24-in.
diameter carry belts that have the given tensions. The shaft is supported at the walls using flexible bearings, permitting rotation in all directions.
Determine the maximum normal and shear stresses in the shaft.

10.38 A thin hollow cylinder with an outer diameter of 120 mm and a wall thickness of 15 mm is loaded as shown in Figure P10.38. In x, y, z
coordinate system, determine the normal and shear stresses at points A and B on the surface of the cylinder and show your results on stress cubes. 

10.39 A 6 in. x 1 in. rectangular structural member is loaded as shown in Figure P10.39. Determine the maximum normal and shear stress in
the member. 

A

P = 10 kN

x
z

B

a b

c

15oFigure P10.33

y

1
4
---

Pz= 800 lb

Py = 200 lb

Px = 1000 lb

y

z

x

a
A

b

c
22o

Figure P10.35

Figure P10.37
3 ft 4.5 ft

1200 lb
400 lb

400 lb
1200 lb

3 ft

10 kN

20 kN

15 kN

0.4 m

0.4 m
0.4 m

0.2 m
Figure P10.38

9 kN-m

7 kN-m

15 kN-m
x

y

z

A

B

2 kips 4 kips

2 kips

1.5 kipsp

4 kips

60 in
25 in 20 in

100 lb

250 lb

150 lb

Figure P10.39

6 in.
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10.40 A thin cylinder is subjected to a uniform pressure of 300 psi and torques as shown in Figure P10.40. The cylinder has a outer radius of
10 in. and a wall thickness of 0.25 in. Determine the normal and shear stresses at point A and show them on a stress element in cylindrical coor-
dinates.

10.2 ANALYSIS AND DESIGN OF STRUCTURES

Most real structures are composed of many members joined together. Analyzing or designing these structures requires that we
create a mathematical model to approximate the actual structure. Many decisions go into the creation of a model, including
the proper modeling of joints and supports. Approximating joints by pins simplifies the analysis significantly, because pin
joints do not transmit moments. In other words, we are neglecting the joints’ intrinsic moment-carrying ability. Thus the
model will predict higher internal forces, moments, and hence stresses than actually exist. This makes the pin joint approxi-
mation a conservative assumption.

Analyzing complex mathematical models requires numerical solutions. Here we shall consider simple structures made up
of only a few members. Some members of the structure may be subjected to one type of combined loading, whereas other
members may be subjected to another combination of loading. 

There are two major steps in the solution of problems related to the analysis and design of structures: 

1. Analysis of internal forces and moments that act on individual members.
2. Computation of stresses on members under combined loading.

For statically determinate structures, the internal forces and moments can be found using the principles of statics, as shown in
Example 10.6. For statically indeterminate structures, we will also need the deformation equations developed earlier to com-
plement the analysis skills learned in statics as we will see in Example 10.7.

10.2.1 Failure Envelope

In design, unlike analysis, the variable can assume a multitude of values. Each set of values corresponds to a different design.
Which set of values gives the best design? The word best, of course, implies an objective. In engineering the objective is gen-
erally to minimize weight or cost. Algorithms that minimize an objective function (such as weight) subject to constraints
(such as limits on stresses and displacements) are called optimization methods. Although optimization methods are beyond the
scope of this book, we can develop an appreciation of the methods using the concept of failure envelope. A failure envelope
separates the acceptable design space from the unacceptable values of the variables affecting design. More rigorous optimiza-
tion algorithms would search the design space systematically, to minimize (or maximize) the objective function. 

Consider a circular shaft that is subjected to axial loads and torsion, as shown in Figure 10.33a. Suppose the design limi-
tation is that the maximum shear stress should not exceed 15 ksi. Further suppose that calculations show that the maximum

shear stress at point A on the surface of the shaft is given by  Now τmax should be less than or

equal to 15 ksi, which gives us the following result: P2 + 4T 2 ≤ 2220. We can now make a plot of T versus P, as shown in Fig-
ure 10.33b.

The shaded area consists of all possible values of T and P for which the maximum shear stress will be less than 15 ksi and
hence represents our acceptable design space. The region beyond the shaded area represents values of T and P for which the
shear stress is greater than 15 ksi and hence represents the failure space. On the curve P2 + 4T 2 = 2220 all values of P and T

Figure P10.40

T1 � 100 in�kips

A

T2 � 300 in�kips

T3 � 50 in�kips

τmax 0.3183 P2 4T2+=  ksi.
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would result in a maximum shear stress of 15 ksi, and we are at incipient failure. This curve represents the failure envelope,
which separates the design space from the failure space.

We can generalize this approach to a design problem containing n variables, which could be geometric variables, material
constants, or loads, as in Figure 10.33. We may need to find the values of the variables to meet several design constraints. If
one took each design variable and plotted it on an axis, then one would obtain a n-dimensional space containing all possible
combinations of the n variables. Some of these combinations of the variables would result in failure. A failure envelope sepa-
rates the space of acceptable values of these variables from the unacceptable values. On the failure envelope the values of the
design variables correspond to impending failure. The sum total of all the design constraints defines the failure envelope. We
shall also use the concept of failure envelope in Section 10.3 to describe failure theories in which the variables are principal
stresses that are plotted on an axis.

Within the failure envelope we can compare different designs with respect to other criteria, such as cost, weight, and aes-
thetics. Example 10.8 elaborates the construction and use of the failure envelope.

EXAMPLE 10.6 
A hoist is to be designed for lifting a maximum weight W = 300 lb. Space considerations have established the length dimensions shown
in Figure 10.34. The hoist will be constructed using lumber and assembled using steel bolts. The dimensions of the lumber cross sec-
tions are listed in Table 10.2. The bolted joints will be modeled as pins in single shear. Same-size bolts will be used in all joints. The
allowable normal stress in the wood is 1.2 ksi and the allowable shear stress in the bolts is 6 ksi. Design the lightest hoist by choosing

the lumber from Table 10.2 and the bolt size to the nearest -in. diameter.

PLAN

We analyze the problem in two steps. First we find the forces and moments on individual members, and then we find the stresses.
1. BD is a two-force axial member that will be in compression. Members ABC and CDE are multiforce members subjected to axial and

bending loads. Free-body diagrams of members ABC and CDE will permit calculation of the forces at pin C, the axial force in BD—
forces on pins B and D are thus known, as well as the reaction forces and the reaction moment at A. 

2. We compute the maximum stresses from the forces calculated in step 1 and, using the limiting values on the maximum stresses, com-
pute the dimensions of the pin and the wooden members. From the possible set of dimensions that satisfy the limiting criteria we
choose those that will result in the lightest structure.

Figure 10.33 Failure envelope.
(b)(a)

T (in�kips)

T

P (kips)

P

A

0.00

P
 (

ki
ps

)

T (in�kips)

0.00

25.00

20.00

15.00

10.00

5.00

10.00 20.00 30.00 40.00

Failure space

Failure envelope

50.00

Design space

1
8
---

W

P � W

3 ft

3 ft

0.5 ft0.5 ft

E
DC

B

A

3 ft

3 ft

  Figure 10.34 Hoist in Example 10.6.

TABLE 10.2 Dimensions of lumbera

a. The dimensions for finished lumber are slightly smaller and must be properly 
accounted in actual design. 

Cross-Section Dimensions Cross-Section Dimensions

2 in. × 4 in. 4 in. × 8 in.
2 in. × 6 in. 6 in. × 6 in.
2 in. × 8 in. 6 in. × 8 in.
4 in. × 4 in. 8 in. × 8 in.
4 in. × 6 in.
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SOLUTION

Calculation of forces and moments on structural members: Figure 10.35 shows the free-body diagrams of members CDE and ABC.
Using the moment equilibrium at point C in Figure 10.35a, we obtain

(E1)

  Figure 10.35 (a, b) Free-body diagram of member CDE and ABC. (c, d) Shear and moment diagrams of members CDE and ABC.

By equilibrium of forces in Figure 10.35a, we obtain
(E2)

(E3)
By equilibrium of forces and moment about point A in Figure 10.35b, we obtain 

(E4)

(E5)

(E6)
Bolt size calculations: The shear force acting on each bolt can be found from the forces calculated,

(E7)
The maximum shear stress will be in bolts B and D. This maximum shear stress should be less than 6 ksi. The cross-sectional area can be
found and the diameter of the bolt calculated,

(E8)

The nearest -in. size that is greater than the numerical value in Equation (E8) is d = 0.625 in. 

ANS. -in.-size bolts should be used.

Lumber selection: The normal axial stress in member BD has to be less than 1200 psi. The cross-sectional area for member BD can be
found as

(E9)

The 2-in. × 4-in. lumber has a cross-sectional area of 8 in.2, which is the smallest cross section that meets the restriction of Equation
(E9).

ANS. For member BD use lumber with the cross-section dimensions of 2 in. × 4 in.
Shear force and bending moment diagrams for members ABC and CDE can be drawn after resolving the force NBD into components
parallel and perpendicular to the axis, as shown in Figure 10.35c, d. A local x, y, z coordinate system for each member is established to
facilitate drawing the shear and moment diagrams.
From Figure 10.35c it can be seen that the maximum axial force is 1200 lbs tensile in segment CD. The bending moment is maximum on
the cross section at D in member CDE. Due to bending, the top surface will be in tension and the bottom will be in compression. Thus
the maximum normal stress in CDE will be at the top surface just before D and will be the sum of tensile stresses due to axial and bend-
ing loads. Using an axial force of 1200 lbs and a bending moment of 1800 ft·lbs = 21,600 in. ·lbs, the maximum normal stress in CDE
can be written as

(E10)

where ACDE and SCDE are the cross-sectional area and the section modulus (with respect to the z axis) of member CDE. 

(b)(a)

300 lb

300 lb

3 ft
0.5 ft

E
D

C

3 ft

C1

C2

45�

NBD

C1

C2

NBD

RA
MA

Ax

3 ft

C

B

A

3 ft

45�

(a)

EDC

NBD sin 45 � 1200

NBD cos 45 � 1200

V � �Vy (lb)

Mz (ft�lb)

3 ft

1200

600

600

1800

600

600

3 ft

y

x

z

(b)

3 ft

C

B

A

3 ft

V � �Vy
(lb)

Mz
(ft�lb)600

3600
3600

1200

1200

1200

1200

600

x

y z

(a)

(b)
(c)

(d)

NBD 45°sin( ) 3 ft( ) 300 lbs( ) 5.5 ft( )– 300 lbs( ) 6.5 ft( )– 0 = or NBD 1697 lbs=

C1 NBD 45°cos– 0= or C1 1200  lbs=

NBD 45°sin C2 600 lbs–– 0= or C2 600  lbs=

C1 NBD 45° Ax 0=–sin– or Ax 0=

RA C2 NBD 45°cos–+ 0= or RA 600  lbs=

MA C1 6 ft( ) NBD  45°cos( ) 3 ft( )+– 0= or MA 3600 ft · lb=

VB VD NBD 1697 lbs= = = VC C1
2 C2

2+ 1342  lbs VE 600  lbs== =

τmax
1697 lbs

πd2/4
-------------------- 6000 lbs/in.2≤= or d 0.60 in.≥

1
8
---

5
8
---

σBD
NBD

ABD
---------- 1697 lbs

ABD
-------------------- 1200 lbs/in.2≤= = or ABD 1.414 in2≥

σCD
1200 lbs

ACDE
-------------------- 21,600 in.· lbs

SCDE
-----------------------------------+=
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From Figure 10.35d it can be seen that the axial force in AB is 600 lbs compressive and the axial force in BC is 600 lbs tensile. The
bending moment is a maximum of 1800 ft · lbs = 43,200 in. · lbs throughout segment AB. Owing to bending, the right side of member
ABC will be in compression and the left side will be in tension. Thus the maximum normal stress in member ABC will be on the right
surface, just before B in segment AB, and will be the sum of compressive stresses due to axial and bending loads. With an axial force of
600 lbs and a bending moment of 3600 ft · lbs = 43,200 in.·lbs, the maximum compressive normal stress in ABC can be written as

(E11)

where AABC and SABC are the cross-sectional area and the section modulus (with respect to the z axis) of member ABC.
For the available lumber given in Table 10.2, the cross-sectional area A and the section modulus S can be determined assuming that

the smaller dimension a is parallel to the z axis (bending axis or dimension out of the plane of the paper) and the larger dimension
b is in the plane of the paper. With this stipulation Izz = ab3/12 and ymax = b/2. Hence S = Izz/ymax = ab2/6 (see the local coordinates in Fig-
ure 10.35c, d). Substituting the values of A and S into Equations (E10) and (E11), we find the stress values σCD and σAB. Table 10.2 can
be created using a spreadsheet. Cross-section dimensions for which the normal stress is less than 1200 psi meet the strength limitation
and are identified in bold in Table 10.2. But for the design of the lightest hoist we choose the cross section with the smallest area among
the bold values. 

ANS. For member ABC, use lumber with the cross-section dimensions of 4 in. × 8 in.
ANS. For member CDE, use lumber with the cross-section dimensions of 2 in. × 8 in.

COMMENTS

1. Members in axial compression such as BD must be designed for strength as well as checked for buckling failure, as will be elaborated
in the next chapter. 

2. In actual design it may be preferable to use two pieces of 1-in. × 8-in. lumber for member CDE so that the pulley is in the middle of
the two members. This will change pins at C, D, and E from single shear into double shear, thus also reducing the shear stresses in the
pins.

3. Equation (E10) defines the curve of the failure envelope for member CDE. Substituting for the area and the section modulus in terms

of a and b, and solving for a in terms of b, we obtain the equation of the curve defining the failure envelope as 
Figure 10.36 shows the failure envelope. As can be seen, the three possible solutions in Table 10.2 for member CDE fall in the design
space and the remaining cross sections fall in the failure space. If we were to choose any value for a and b, then the failure envelope
would identify all possible solutions.

4. The bending shear stress was not considered in selecting the lumber cross sections for members ABC and CDE. This is based on the
consideration that the maximum bending normal stress is significantly (~10 times) greater than the maximum bending shear stress.
Thus the principal stress at the top or bottom of the member, where the bending normal stress is maximum, will be greater than the
principal shear stress at the neutral axis, where bending shear stress is maximum. We check these statements for the selected sizes of
members ABC and CDE as follows.

TABLE 10.2 Cross-section properties and stresses in Example 10.6

a
(in.)

b
(in.) (in.2) (in.3)

σCD
(psi)

σAB
(psi)

2 4 8 5.3 4200.0 8175.0
2 6 12 12.0 1900.0 3650.0
2 8 16 21.3 1087.5 2062.5
4 4 16 10.7 2100.0 4087.5
4 6 24 24.0 950.0 1825.0
4 8 32 42.7 543.8 1031.3
6 6 36 36.0 633.3 1216.7
6 8 48 64.0 362.5 687.5
8 8 64 85.3 271.9 515.6

σAB
600 lbs
AABC

----------------- 43,200 in.· lbs
SABC

-----------------------------------+=

A = ab S = ab2/6

a 0.5 b⁄ 216 b2⁄ .+=

 Figure 10.36 Failure envelope for member CDE. 0
0

10
9
8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8 9 10

a 
(i

nc
he

s)

b (inches)

8 � 8

6 � 8

4 � 8

2 � 8

2 � 6

4 � 6

6 � 6

4 � 4

2 � 4

Failure space Design space



10 477Mechanics of Materials: Design and FailureM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

For rectangular cross sections it can be shown (see comment 1 in Example 6.14) that the maximum shear stress in bending at a cross sec-
tion is  where A is the cross-sectional area. From Figure 10.35 the maximum shear force is 600 lb and 1200 lb in mem-

bers CDE and ABC, respectively. Substituting these shear force values and the values of 16 in.2 and 32 in.2 for the areas, we obtain the
maximum shear stresses of  and  in members CDE and ABC, respectively. Comparing these maxi-
mum shear stress values to the maximum normal stress values of 1087.5 psi and 1031.3 psi for members CDE and ABC, which are given
in Table 10.2, we conclude that the shear stresses can be ignored in the selection of lumber.

EXAMPLE 10.7 
A rectangular wooden beam of 60 mm × 180 mm cross section is supported at the right end by an aluminum circular rod of 8-mm diam-
eter, as shown in Figure 10.37. The allowable normal stress in the wood is 14 MPa and the allowable shear stress in aluminum is
60 MPa. The moduli of elasticity for wood and aluminum are Ew = 12.6 GPa and Eal = 70 GPa. Determine the maximum intensity w of
the distributed load that the structure can support.

PLAN

We analyze the problem in two steps. First we find the forces and moments on individual members, and then we find the stresses.
1. To solve this statically indeterminate problem, the deflection of the beam at A can be equated to the axial deformation of the alumi-

num rod. This permits the calculation of the internal axial force in the aluminum rod in terms of w.
2. The axial stress in the aluminum rod in terms of w can be found from the internal axial force calculated in step 1. Using Mohr’s circle,

we can find the maximum shear stress in the axial rod in terms of w, and one limit on w can be obtained. The maximum bending
moment at B can be found in terms of w and the maximum bending normal stress calculated in terms of w. Using the allowable value
of 14 MPa, another limit on w can be found and a decision made on the maximum value of w.

SOLUTION

Calculation of forces on structural members: The area moment of inertia of the wood and the cross-sectional area of the aluminum rod
can be calculated,

(E1)

Making an imaginary cut through the aluminum rod, we obtain the beam and loading shown in Figure 10.38a. The total loading on the
beam can be considered as the sum of the two loadings shown in Figure 10.38b and c.

Comparing the two beam loadings in Figure 10.38b and c to that shown for cases 1 and 3 in Table C.3, we obtain P = −Nal N and p = w N/
m, a = 3 m, b = 0, E = 12.6 (109) N/m2, and I = Iw = 29.16 (10-6) m4. Noting that vmax shown in Table C.3  for the cantilever beam occurs
at point A, we can substitute the load values and superpose to obtain deflection vA,

 or 

(E2)
The extension of the aluminum rod can be found using Equation (4.21),

τmax 1.5V A⁄ ,=

τCD 56.25 psi= τAB 56.25 psi=

w

B
A

C

3 m
180 mm

1.3 m

Figure 10.37 Beam in Example 10.7.

Iw
1

12
------ 60 mm( ) 180 mm( )3 29.16 106( )  mm4 29.16 10 6–( )  m4= = = Aal

π
4
--- 8 mm( )2 50.265 mm2 50.265 10 6–( )  m2= = =

  Figure 10.38 Superposition of deflection in Example 10.7.

w

y1

Nal

x1
B

A

3 m

(a)

w

y1

x1
B

A

3 m

(b)

y1

Nal

x1
B

A

3 m

(c)

vA
w  N/m( ) 3 m( )4

8 12.6 109( )  N/m2[ ] 29.16 10 6–( )  m4[ ]
------------------------------------------------------------------------------------------

N– al  N( ) 3 m( )3

3 12.6 109( )  N/m2[ ] 29.16 10 6–( )  m4[ ]
------------------------------------------------------------------------------------------+=

vA 27.56 10 6–( ) w 24.50 10 6–( ) Nal–[ ]  m=
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(E3)

The extension of the aluminum rod should equal the deflection of the beam at A. Equating Equations (E2) and (E3) gives the internal
force Nal in terms of w,

(E4)

Figure 10.39a shows the free-body diagram of the beam with the distributed force replaced by an equivalent force. By force and moment
equilibrium we obtain

(E5)

(E6)

Figure 10.39b shows the shear and moment diagrams for the beam. From the moment diagram we see that the maximum moment is at
the wall, and its value is 

(E7)

Stress in aluminum: The axial stress in aluminum in terms of w is 

(E8)

Figure 10.39c shows the Mohr’s circle for point on aluminum rod. The maximum shear stress maximum shear stress in should be less
than 60 MPa,

(E9)

Stress in wood: The bending normal stress will be maximum at the top and bottom surfaces at the wall; that is, ymax = +0.09 m. The mag-
nitude of the maximum bending normal stress from Equation (10.3a) should be less than 14 MPa, yielding another limit on w,

 (E10)

The value in Equation (E10) also satisfies the inequality in Equation (E9) giving the maximum intensity of the distributed load.
ANS.

COMMENT

1. At joint A we ensured continuity of displacement by enforcing the condition that the deformation of the axial member be the same as
the deflection of the beam. We also enforced equilibrium of forces by using the same force Nal in the axial member and acting on the
beam. These two conditions, continuity of displacement and equilibrium of forces, must be satisfied by all joints in more complex
structures.

δal
NalLal

EalAal
---------------

Nal  N( ) 1.3 m( )

70 109( ) N/m2[ ] 50.265 10 6–( ) m4[ ]
------------------------------------------------------------------------------------- 0.369 10 6–( )Nal  m= = =

27.56 10 6–( )w 24.50 10 6–( )Nal– 0.369 10 6–( )Nal= or Nal 1.11w=

RB

MB

Nal � 1.11w

B A

3 m

3w
1.5 m

 Figure 10.39 (a) Free-body diagram (b) Shear force and bending moment diagrams (c) Mohr’s circle in Example 10.7.

w

y Nal

Vy � �V

x
B

A

3 m

Mz

RB � 1.89w

MB �
1.17w

0.616w
1.11w

1.11

1.89

1.89w

1.17w

(a) 
(b)

H V
�max

�al

�

V(�al, 0)
H(0, 0)

�al
�(c)

RB 3w( ) Nal+– 0= or RB 1.89w=

MB 3w( ) 1.5( ) Nal 3( )+– 0= or MB 1.17w=

Mmax 1.17– w=

σal
Nal

Aal
-------- 1.11w

50.265 10 6–( )  m2
----------------------------------------- 22.04 103( )w  N/m2= = =

τmax
σal

2
------- 11.02 103( )w  N/m2 60 106( )  N/m2≤= = or w 5.44 103( )  N/m≤

σw
Mmaxymax

Iw
-----------------------

1.17w  N m⋅( ) 0.09 m( )

29.16 10 6–( )  m4
--------------------------------------------------------- 3.61 103( )w  N/m2 14 106( )  N/m2<= = = or w 3.88 103( )  N/m≤

wmax 3.88 kN/m=
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EXAMPLE 10.8 
A circular member was repaired by welding a crack at point A that was 30° to the axis of the shaft, as shown in Figure 10.40. The allow-
able shear stress at point A is 24 ksi and the maximum normal stress the weld material can support is 9 ksi (T). Calculations show that
the stresses at point A are σxx = 9.55P2 ksi (T) and τxy = –6.79P1 ksi. (a) Draw the failure envelope for the applied loads P1 and P2. (b)
Determine the values of loads P1 and P2. (c) If P1 = 2 kips and P2 = 1.5 kips, determine the factor of safety.

PLAN

(a) By substituting the given stresses into Equation (8.12) we obtain the maximum shear stress in the material in terms of P1 and P2. Not-
ing that the maximum shear stress is limited to 24 ksi, we obtain one equation relating P1 and P2. By substituting the given stresses into
Equation (8.1) as well as the angle of the normal to the weld, we can obtain the normal stress on the weld, which gives us another equa-
tion relating P1 and P2. We can sketch both equations and obtain the failure envelope. (b) We can find the values of P1 and P2 that satisfy
the two equations in part (a). (c) We can calculate the maximum in-plane shear stress in the material and the normal stress in the weld
from the equations obtained in part (a) and compute two factors of safety. The lower value is the factor of safety for the system.

SOLUTION

(a) Substituting the values of the given stresses into Equation (8.12), we can obtain the maximum shear stress in the material. Noting that
it should be less than 24 ksi, we obtain one equation on P1 and P2,

(E1)

The normal to the weld makes an angle of 60° to the x axis. Substituting the given stresses and θ = 60° into Equation (8.1), the normal
stress on the weld must be less than 9 ksi (T), we obtain another equation on P1 and P2,

(E2)
The maximum value of P1 that will satisfy Equation (E1) corresponds to P2 = 0. This maximum value of P1 is 3.534 kips. We consider
values of P1 between zero and 3.534 in steps of 0.3 and solve for P2 from Equation (E1). For the same values of P1 we can also find val-
ues of P2 from Equation (E2), as shown in Table 10.3, which was produced on a spreadsheet. We can plot the values in Table 10.3, as
shown in Figure 10.41. The design space is the shaded region and the failure envelope is the boundary ABCD

(b) The values of P1 and P2 correspond to the maximum values of the loads that satisfy Equations (E1) and (E2). Using the equality sign
in Equation (E2), we can solve for P2,

(E3)
We substitute Equation (E3) into Equation (E1) with the equality sign to obtain a quadratic equation in P1,

  Figure 10.40 Problem geometry in Example 10.8.
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  Figure 10.41 Failure envelope in Example 10.8.

. 
TABLE 10.3 Values of loads in Example 10.8

P1
(kips)

P2 from Eq. (E1) 
(kips)

P2 from Eq. (E2)
(kips)

0.000 5.027 3.770
0.300 5.008 4.509
0.600 4.954 5.248
0.900 4.861 5.987
1.200 4.728 6.726
1.500 4.551 7.465
1.800 4.326 8.204
2.100 4.043 8.943
2.400 3.690 9.682
2.700 3.244 10.421
3.000 2.657 11.160
3.300 1.800 11.899

P2 3.770 2.4634P1+=
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(E4)
Solving Equation (E3) we obtain two roots for P1, 0.4905 and –2.784. Only the positive root is admissible. Substituting P1 = 0.4905
into Equation (E3), we obtain P2 = 4.978. 

ANS.
(c) Substituting P1 = 2 kips and P2 = 1.5 into Equations (E1) and (E2), we obtain

(E5)
For the given loads the normal stress in the weld is compressive. Hence it won’t fail due to the specified failure in tension. The factor of
safety is thus calculated from the maximum shear stress as

(E6)

ANS.

COMMENTS

1. In this example we generated the failure envelope using analytical equations. For more complex structures, the failure envelope can
be created using numerical methods, such as the finite-element method described in Section 4.8. 

2. In Figure 10.41 line AB, representing Equation (E1), would go downward if the direction of load P1 were reversed [Substitute –P1 in
place of P1 in Equation (E1)]. If line AB went downward, it would cut the design space considerably. Thus not only is the magnitude
of the loads important in design, but the direction of the load can also be as critical. Failure envelopes can reveal such characteristics
in a very visual manner.

3. The line joining the origin to point E is called load line, on which the loads vary proportionally. It’s significance is that it can help
give a graphical interpretation of the factor of safety. Along a load line, the distance of a point from the failure envelope is the margin
of safety. In Figure 10.41 the factor of safety is the ratio of length OC to length OE. It can be verified that the coordinates of point C
are P1 = 3.1263 kips and P2 = 2.344. Thus the length OC = 3.9074, whereas the length OE is 2.5. The factor of safety therefore is
K = 3.9074/2.5 = 1.56, as before.

PROBLEM SET 10.2

Structural analysis and design
10.41 A brick chimney shown in Figure P10.41 has an outside diameter of 5 ft and a wall thickness of 6 in. The average specific weight of
the   brick and mortar is γ = 120 lb/ft3. The height of the chimney is H= 30 ft. Determine the maximum wind pressure p that the chimney could
withstand if there is to be no tensile stress. 

10.42 A brick chimney shown in Figure P10.41 has an outside diameter of 1.5 m and a wall thickness of 150 mm. The average specific den-
sity of the   brick and mortar is γ = 1800 kg/m3. The wind pressure acting on the chimney is p = 800 Pa. Determine the maximum height H of
the chimney is if there is to be no tensile stress.

10.43 A hollow shaft that has an outside diameter of 100 mm and an inside diameter of 50 mm is loaded as shown in Figure P10.43. The normal
stress and the shear stress in the shaft must be limited to 200 MPa and 115 MPa, respectively. (a) Determine the maximum value of the torque T that
can be applied to the shaft. (b) Using the result of part (a), determine the strain that will be shown by the strain gage that is mounted on the surface at
an angle of 35º to the axis of the shaft. Use E = 200 GPa, G = 80 GPa, and ν = 0.25.

46.11P1
2 22.80 4.19 2.46P1+( )2+ 576= or 184.45P1

2 423.2P1 252–+ 0=

P1 0.49 kips= P2 4.98 kips=

τmax 46.1 2× 2 22.8 1.5× 2+ 15.35 ksi= = σweld 2.387 1.5× 5.881 2×– 8.18 ksi–= =

K 24 ksi
15.35 ksi
---------------------- 1.56= =

K 1.56=

Figure P10.41

H p
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10.44 On the C clamp shown in Figure P10.44a determine the maximum clamping force P if the allowable normal stress is 160 MPa in
tension and 120 MPa in compression.

10.45 The T cross section of the beam was constructed by gluing two rectangular pieces together. A small crack was detected in the glue joint
at section AA. Determine the maximum value of the applied load P if the normal stress in the glue at section AA is to be limited to 20 MPa in
tension and 12 MPa in shear. The load P acts at the centroid of the cross section at C, as shown in Figure P10.45.

10.46 The bars in the pin connected structure shown in Figure P10.46 are circular bars of diameters that are available in increments of 5 mm. The
allowable shear stress in the bars is 90 MPa. Determine the diameters of the bars for designing the lightest structure to support a force of P = 40 kN.

10.47 Member AB has a circular cross section with a diameter of 0.75 in. as shown in Figure P10.47 Member BC has a square cross section of
2 in. × 2 in. Determine the maximum normal stress in members AB and BC.

10.48 The members of the structure shown in Figure P10.48 have rectangular cross sections and are pin connected. Cross-section dimensions
for members are 100 mm × 150 mm for ABC, 100 mm × 200 mm for CDE, and 100 mm × 50 mm for BD. The allowable normal stress in the
members is 20 MPa. Determine the maximum intensity of the distributed load w.

6 mm 18 mm 6 mm

12 mm
18 mm

6 mmC
y

z

P
P

C

54 mm
y

x

z

16.5 mm

Figure P10.44

A

C

A

P

55�

5 m

2 m 3 m

Figure P10.45 Cross section AA

50 mm

50 mm

100 mm 100 mm
250 mm

1.2 m

0.5 m
P

C

1.6 m

B

A D

Figure P10.46

1 m

60°

60 in

66
 in

80
 lb

/in

AB

CFigure P10.47

B
A

2.5 m

50 mm

150 mm

w

2.5 m

D

C

E
200 mm

3 m

Figure P10.48
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10.49 A hoist is to be designed for lifting a maximum weight W = 300 lb, as shown in Figure P10.49 The hoist will be installed at a certain
height above ground and will be constructed using lumber and assembled using steel bolts. The lumber rectangular cross-section dimensions
are listed in Table 10.2. The bolt joints will be modeled as pins in single shear. Same-size bolts will be used in all joints. The allowable normal
stress in the wood is 1.2 ksi and the allowable shear stress in the bolts is 6 ksi. Design the lightest hoist by choosing the lumber from Table 10.2
and the bolt size to the nearest -in. diameter.

10.50 A rectangular wooden beam of 4-in. × 8-in. cross section is supported at the right end by an aluminum circular rod of -in. diameter, as shown

in Figure P10.50. The allowable normal stress in the wood is 1.5 ksi and the allowable shear stress in aluminum is 8 ksi. The moduli of elasticity for
wood and aluminum are Ew = 1800 ksi and Eal = 10,000 ksi. Determine the maximum force P that the structure can support.

10.51 A steel pipe with an outside diameter of 1.5 in. and a wall thickness of in. is simply supported at D. A torque of Text = 30 in.·kips is
applied as shown in Figure P10.51. If a = 12 in., b = 48 in., and c = 60 in., determine the normal and shear stresses at points A and B in the x, y,
z coordinate system and show them on a stress cube. Points A and B are on the surface of the pipe. The modulus of elasticity is E = 30,000 ksi
and Poisson’s ratio is ν = 0.28.

10.52 A composite beam is constructed by attaching steel strips at the top and bottom of a wooden beam, as shown in Figure P10.52 The
beam is supported at the right end by an aluminum circular rod of 8-mm diameter. The allowable normal stresses in the wood and steel are 14
MPa and 140 MPa, respectively. The allowable shear stress in aluminum is 60 MPa. The moduli of elasticity for wood, steel, and aluminum are
Ew = 12.6 GPa, Es = 200 GPa, and Eal = 70 GPa, respectively. Determine the maximum intensity w of the distributed load that the structure can
support.

10.53 A park structure is modeled with pin joints at the points shown in Figure P10.53. Members BD and CE have cross-sectional dimensions of
6 in. × 6 in., whereas members AB, AC, and BC have cross-sectional dimensions of 2 in. × 8 in. Determine the maximum normal and shear
stresses in each of the members due to the estimated snow load shown on the structure.

1
8
---

W

3 ft2 ft

4 ft

3 ft

9 ft

P

Figure P10.49

1
2
---

A

8 in
P

B

C
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1
4
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A
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z

b
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10.54 A highway sign uses a 16-in. hollow pipe as a vertical post and 12-in. hollow pipes for horizontal arms, as shown in Figure P10.54.
The pipes are 1 in. thick. Assume that a uniform wind pressure of 20 lb/ft2 acts on the sign boards and the pipes. Note that the pressure on the
pipes acts on the projected area Ld, where L is the length of pipe and d is the pipe diameter. Neglecting the weight of the pipe, determine the
normal and shear stresses at points A and B and show these stresses on stress cubes.

10.55 A bicycle rack is made from thin aluminum tubes of -in. thickness and 1-in. outer diameter. The weight of the bicycles is sup-

ported by the belts from C to D and the members between C and B. Member AC carries negligible force and is neglected in the stress anal-
ysis, as shown on the model in Figure P10.55b. If the allowable normal stress in the steel tubes is 12 ksi and the allowable shear stress is
8 ksi, determine the maximum weight W to the nearest lb of each bicycle that can be put on the rack.

10.56 The hoist shown in Figure P10.56 was used to lift heavy loads in a mining operation. Member EF supported load only if the load
being lifted was asymmetric with respect to the pulley; otherwise it carried no load and can be neglected in the stress analysis. If the
allowable normal stress in steel is 18 ksi, determine the maximum load W that could be lifted using the hoist.1

Failure envelopes
10.57 A solid shaft of 50-mm diameter is made from a brittle material that has an allowable tensile stress of 100 MPa, as shown in Figure
P10.57. Draw a failure envelope representing the maximum permissible positive values of T and P.

1Though the load on section BB is not passing through the plane of symmetry, the theory of symmetric bending can still be used because of the structure symmetry.
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10.58 The shaft shown in Figure P10.57 is made from a ductile material and has an allowable shear stress of 75 MPa. Draw a failure enve-
lope representing the maximum permissible positive values of T and P.

10.59 The shaft in Problem 10.57 is 1.5 m long and has a modulus of elasticity E = 200 GPa and a modulus of rigidity G = 80 GPa. Modify
the failure envelope of Problem 10.57 to incorporate the limitation that the elongation cannot exceed 0.5 mm and the relative rotation of the
right end with respect to the left end cannot exceed 3°.

10.60 A pipe with an outside diameter of 40 mm and a wall thickness of 10 mm is loaded as shown in Figure P10.60. At section AA the
allowable shear stress is 60 MPa. Draw the failure envelope for the applied loads P1 and P2. Use a = 2.5 m, b = 0.4 m, c =0.1 m.

10.61 A bent pipe of 2-in. outside diameter and a wall thickness of -in. is loaded as shown in Figure P10.61. The maximum shear stress the

pipe material can support is 24 ksi. Draw the failure envelope for the applied loads P1 and P2. Use a = 16 in., b = 16 in., and c = 10 in.

Computer problems
10.62 A hollow aluminum shaft of 5-ft length is to carry a torque of 200 in.·kips and an axial force of 100 kips. The inner radius of the shaft
is 1 in. If the allowable shear stress in the shaft is 10 ksi, determine the outer radius of the lightest shaft. 

10.63 The hollow cylinder shown in Figure P10.63 is fabricated from a sheet metal of 15-mm thickness. Determine the minimum outer
radius to the nearest millimeter if the allowable normal stress is 150 MPa in tension or compression.

10.64 Table P10.64 shows the measured radii of the solid tapered member shown in Figure P10.64 at several points along the axis of the shaft. The
member is subjected to a torque T = 30 kN·m and an axial force P = 100 kN. Plot the maximum normal and shear stresses as a function of x.

Figure P10.57

T
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P1

P2
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z

a b

c
A

Figure P10.60

1
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---
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a
B
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c

Figure P10.61

Figure P10.63

x

T � 2 kN�m

Px � 100 kN

Py � 15 kN

y

z 1.2 m

R(x)
A B

T

P

xFigure P10.64

TABLE P10.64

x (m) R(x) (mm)
0.0 100.6
0.1 92.7
0.2 82.6
0.3 79.6
0.4 75.9
0.5 68.8
0.6 68.0
0.7 65.9

0.8 60.1
0.9 60.3
1.0 59.1
1.1 54.0
1.2 54.8
1.3 54.1
1.4 49.4
1.5 50.6

TABLE P10.64

x (m) R(x) (mm)
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MoM in Action: Biomimetics
Nature produces the simplest and most efficient design by eliminating waste and inefficiency through the process 

of natural selection. This is the story about engineering design mimicking nature—that is, Biomimetics. 
Tensegrity and adaptive, or smart, structures are just two of the latest in a long engineering history of mimicking 

nature. The flight of birds inspired the design of planes, while fish have inspired the sleek design of ship hulls. For a 
display of the technology of the Industrial Revolution, Joseph Paxton turned in 1851 to the structure of a lily pad. His 
wrought iron and glass building, the Crystal Palace, started an architectural trend. In Switzerland, George de Mestral 
invented Velcro in 1946 after observing the loops of seed-bearing burr clinging to his pants. 

Tensegrity is the concatenation of tension and integrity. Tensegrity structures stabilize their shapes by continuous 
tension, like the camping tent in Figure 10.42a. Contrast these with stone arches, which achieve stability by continuous 
compression. Our own body is a tensegrity structure, with muscles supporting continual tension and bones in compression. 
Buckminster Fuller designed the first engineering tensegrity structure (Figure 10.42b) for the Expo 67 in Montreal, 
Canada. Such geodesic domes are structurally so efficient and stable that theoretically one could enclose New York City. 
Cells and the arrangement of carbon molecules called buckyballs in Fuller’s honor are nature’s tensegrity structures at the 
molecular level. They, in turn, are being emulated in carbon nano-tubes. 

Cracked bones heal, which means that the body senses a crack and then sends the material needed to seal the crack. 
To emulate this in metallic and masonry structures, three elements are needed: a sensor to detect a crack; a controller to 
decide if the crack is a threat; and a smart material that could be activated by the controller to seal the crack. Sensors could 
be electrical (like strain gages), acoustic (ultrasound), piezoelectric (producing current when pressured), or fiber optics. 
The controller on a computer chip is a central processing unit with decision-making algorithms. Finally, smart materials 
are those whose properties can be significantly altered in a controlled fashion by external stimuli—such as changes in 
temperature, moisture, pH, stress, or electric and magnetic fields. 

With these three elements, adaptive or smart structures can adapt to the environment. Adaptive crack sealing 
would have applications to aircraft, bridges, buildings, and medical implants. Buildings that adapt to earthquake motion, 
aircraft wings that change shape during flight, pumps that dispense insulin to people with diabetes—all are possibilities on 
the research frontier of smart structures.

The healing of bones is only one example of the adaptive nature of our bodies. Bones and muscles get stronger in
response to stress, a response that is still to be understood and mimicked. The orthotropic nature of bones also have lessons for
the design of composite materials. Biomimetics is the formal acknowledgement that nature is smart and we would be smart to
mimic it. 

  Figure 10.42  Tensegrity structures: (a) a tent; (b) Montreal bio-sphere (Courtesy Mr. Philipp Hienstorfer).

(b) (a)



10 486Mechanics of Materials: Design and FailureM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

10.3 FAILURE THEORIES

In principle, the maximum strength of a material is its atomic strength. In bulk materials, however, the distribution of flaws
such as impurities, microholes, or microcracks creates a local stress concentration. As a result the bulk strength of a material
is orders of magnitude lower than its atomic strength. Failure theories assume a homogeneous material, so that effects of flaws
have been averaged2 in some manner. With this assumption we can speak of average material strength values, which are ade-
quate for most engineering design and analysis.

For a homogeneous, isotropic material, the characteristic failure stress is either the yield stress or the ultimate stress, usu-
ally obtained from the uniaxial tensile test (Section 3.1.1). However, in the uniaxial tension test there is only one nonzero
stress component. How do we relate this the stress components in two- and three-dimensions? Attempt to answer this question
are called failure theories although no one answer is applicable to all materials. A failure theory relates the stress components
to the characteristic value of material failure. 

We shall consider the four theories listed in Table 10.3. The maximum shear stress theory and the maximum octahedral
shear stress theory are generally used for ductile materials, in which failure is characterized by yield stress. The maximum
normal stress theory and Mohr’s theory are generally used for brittle material, in which failure is characterized by ultimate
stress.

10.3.1 Maximum Shear Stress Theory

Maximum shear stress theory predicts that the maximum shear stress alone accounts for failure:
A material will fail when the maximum shear stress exceeds the shear stress at the yield point obtained from a uniaxial 
tensile test.

The theory gives reasonable results for ductile materials. Figure 10.43 shows that the maximum shear stress at yield in a
tension test is half that of the normal yield stress. We obtain the following the failure criterion:

(10.7)

Equation (10.7) is also referred to as Tresca’s yield criterion. The maximum shear stress at a point is given by Equation (8.13).
If we substitute Equation (8.13) into Equation (10.7), we obtain

(10.8)

If we plot each principal stress on an axis, then Equation (10.8) gives us the failure envelope. For plane stress problems the
failure envelope is shown in Figure 10.45 seen later.

2Micromechanics tries to account for the some of the flaws and nonhomogeneity in predicting the strength of a material, but extrapolating to macro levels requires some form of
averaging.

TABLE 10.3 Synopsis of failure theories

Ductile Material Brittle Material
Characteristic failure stress Yield stress Ultimate stress

Theories 1. Maximum shear stress 1. Maximum normal stress
2. Maximum octahedral shear stress 2. Coulomb–Mohr

τmax
σyield

2
-----------≤

�yield

�yield � �yield�2

(T)

cw

ccw  Figure 10.43 Shear stress at yield in tension test.

�yield

�yield � �yield�2
cw

max σ1 σ2– σ2 σ3– σ3 σ1–, ,( ) σyield≤
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10.3.2 Maximum Octahedral Shear Stress Theory

Figure P10.44 shows eight planes that make equal angles with the principal planes. These planes are called octahedral planes
(from octal, meaning eight). The stress values on these planes are called octahedral stresses. The normal octahedral stress
(σoct) and the octahedral shear stress (τoct) are given by Equations (8.16) and (8.17), written again here for convenience:

(10.9)

(10.10)

The maximum octahedral shear stress theory for ductile materials states 
A material will fail when the maximum octahedral shear stress exceeds the octahedral shear stress at the yield point 
obtained from a uniaxial tensile test.

Mathematically the failure criterion is 

(10.11)

where  is the octahedral shear stress at yield point in a uniaxial tensile test. Substituting σ1 = σyield, σ2 = 0, and σ3 = 0 (the

stresses at yield point in a uniaxial tension test) into the expression of octahedral shear stress, we obtain .

Substituting this and Equation (10.10) into Equation (10.11), we obtain 

(10.12)

The left-hand side of Equation (10.12) is referred to as von Mises stress. Because the von Mises stress σvon is used exten-
sively in the design of structures and machines, we formally define it as follows:

(10.13)

Τhe failure criterion represented by Equation (10.12) is sometimes referred to as the von Mises yield criterion and is
stated as follows:

(10.14)

At a point in a fluid the principal stresses are all compressive and equal to the hydrostatic pressure (p); that is, σ1 = σ2 =
σ3 = -p. Substituting this into Equation (10.9), we obtain ; that is, octahedral normal stress corresponds to the hydro-

static state of stress. Thus this theory we are assumes that hydrostatic pressure has a negligible effect on the yielding of ductile
material, a conclusion that is confirmed by experimental observation for very ductile materials like aluminum. 

Equations (10.7) and (10.12) are failure envelopes3 in a space in which the axes are principal stresses. For a plane stress
(σ3 = 0) problem we can represent these failure envelopes as in Figure 10.45. Notice that the maximum octahedral shear stress

3In drawing failure envelopes, the convention that σ1 > σ2 is ignored. If the convention were enforced, then there would be no envelope in the second quadrant, and only the enve-
lope below a 45° line would be admissible in the third quadrant.A very strange looking envelope would result, rather than the symmetric envelope shown in Figure 10.45.

σoct
σ1 σ2 σ3+ +

3
------------------------------=

τoct  = 1
3
--- σ1 σ2–( )2 σ2 σ3–( )2 σ3 σ1–( )2+ +

�2

�1

�3

  Figure 10.44 Octahedral Planes

τoct τyield≤

τyield

τyield 2σyield 3⁄=

1
2

------- σ1 σ2–( )2 σ2 σ3–( )2 σ3 σ1–( )2+ + σyield≤
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envelope encompasses the maximum shear stress envelope. Experiments show that, for most ductile materials, the maximum
octahedral shear stress theory gives better results than the maximum shear stress theory. Still, the maximum shear stress the-
ory is simpler to use.

10.3.3 Maximum Normal Stress Theory

Maximum normal stress theory predicts that the maximum normal stress alone accounts for failure:
A material will fail when the maximum normal stress at a point exceeds the ultimate normal stress obtained from a uniax-
ial tension test.

The theory gives good results for brittle materials provided principal stress 1 is tensile, or if the tensile yield stress has the
same magnitude as the yield stress in compression. Thus the failure criterion is given as

(10.15)

For most materials the ultimate stress in tension is usually far less than the ultimate stress in compression because microcracks
tend to grow in tension and tend to close in compression. But the simplicity of the failure criterion makes the theory attractive,
and it can be used if principal stress 1 is tensile and is the dominant principal stress.

10.3.4 Mohr’s Failure Theory

The Mohr’s failure theory predicts failure using material strength from three separate tests in which the ultimate stress in ten-
sion, compression, and shear are determined. 

A material will fail if a stress state is on the envelope that is tangent to three Mohr’s circles—corresponding to ultimate 
stress in tension, compression, and pure shear.

By experiments, we can determine separately the ultimate stress in tension σT, the ultimate stress in compression σC, and
the ultimate shear stress in pure shear τU. Figure 10.46a shows the stress cubes and the corresponding Mohr’s circle for three
stress states. We then draw an envelope tangent to the three circles to represent the failure envelope. If Mohr’s circle corre-
sponding to a stress state just touches the envelope at any point, then the material is at incipient failure. If any part of Mohr’s
circle for a stress state is outside the envelope, then the material has failed at that point.

We can also plot the failure envelopes of Figure 10.46a using principal stresses as the coordinate axes. In plane stress this
envelope is represented by the solid line in Figure 10.46b. For most brittle materials the pure shear test is often ignored. In
such a case the tangent line to the circles of uniaxial compression and tension would be a straight line in Figure 10.46a. The
resulting simplification for plane stress is shown as dotted lines in Figure 10.46b and is called modified Mohr’s theory.

Figure 10.46b emphasizes the following:

1. If both principal stresses are tensile, then the maximum normal stress has to be less than the ultimate tensile strength. 
2. If both principal stresses are negative, then the maximum normal stress must be less than the ultimate compressive

strength.

�2

�1

Maximum
distortion energy
[Equation (10.12)]

Maximum
shear stress
[Equation (10.7)]

�yield

�yield

��yield

��yield

  Figure 10.45 Failure envelopes for ductile materials in plane stress.

Maximum octahedral
 shear stress

max σ1 σ2 σ3, ,( ) σult≤
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3. If the principal stresses are of different signs, then for the modified Mohr’s theory the failure is governed by

(10.16)

EXAMPLE 10.9 
At a critical point on a machine part made of steel, the stress components were found to be σxx = 100 MPa (T), σyy = 50 MPa (C), and
τxy =  30 MPa. Assuming that the point is in plane stress and the yield stress in tension is 220 MPa, determine the factor of safety using
(a) the maximum shear stress theory; (b) the maximum octahedral shear stress theory.

PLAN

We can find the principal stresses and maximum shear stress by Mohr’s circle or by the method of equations. (a)From Equation (10.7)
we know that failure stress for the maximum shear stress theory is half the yield stress in tension. Using Equation (3.10) we can find the
factor of safety. (b)We can find the von Mises stress from Equation (10.13), which gives us the denominator in Equation (3.10), and not-
ing that the numerator of Equation (3.10) is the yield stress in tension, we obtain the factor of safety.

SOLUTION

For plane stress: 
Mohr’s circle method: We draw the stress cube, record the coordinates of planes V and H, draw Mohr’s circle as shown in Figure
10.47a. The principal stresses and maximum shear stress are

(E1)

(E2)

(E3)

Method of equations: From Equations (8.7) and (8.13) we can obtain the principal stresses and the maximum shear stress,

(E4)

(E5)

σ2

σC
------ σ1

σT
------– 1≤

�T

�C

�S

(a)

�T

�S

��C

(C) (T)

Tangent points

Tangent points

Failure envelope

(b)

�

cw

ccw

 Figure 10.46  Failure envelopes for Mohr’s failure theory in (a) normal and shear stress space; (b) principal stress space. 
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�T

�1
� 1� �C

�2

�C

�2
� 1� �T

�1

(a) (b) 

σ3 0=

R 75 MPa( )2 30 MPa( )2+ 80.8 MPa= =

σ1 OC OP1+ 25 MPa 80.8 MPa+ 105.8 MPa= = = σ2 OC OP1– 25 MPa 80.8 MPa– 55.8 MPa–= = =

τmax R 80.8 MPa= =

  Figure 10.47 (a) Mohr’s circle in Example 10.9. (b) Failure envelopes in Example 10.9.
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(a) The failure shear stress is half the yield stress in tension, that is, 110 MPa. Following Equation (3.10), we divide this value by the
maximum shear stress [Equation (E3) or (E5)] to obtain the factor of safety .

ANS.
(b) The von-Mises stress can be found from Equation (10.13),

(E6)

The factor of safety is failure stress is 220 MPa divided by the von Mises stress, or 

ANS.

COMMENTS

1. The failure envelopes corresponding to the yield stress of 250 MPa are shown in Figure 10.47b. In comment 4 of Example 10.8 it was
shown that graphically the factor of safety could be found by taking ratios of distances from the origin along the load line. If we plot
the coordinates σ1 = 105.8 MPa and σ2 = –55.8 MPa, we obtain point S. If we join the origin O to point S and draw the line, we get the
load line for the given stress values. It may be verified by measuring (or calculating coordinates of T and V) that the following is true:
Kτ = OS/OT = 1.36 and Kσ = OS/OV = 1.55.

2. Because the failure envelope for the maximum shear stress criterion is always inscribed inside the failure envelope of maximum octa-
hedral shear stress criterion, the factor of safety based on the maximum octahedral shear stress will always be greater than the factor
of safety based on maximum shear stress.

EXAMPLE 10.10 
The stresses at a point on a free surface due to a load P were found to be σxx = 3P ksi (C), σyy = 5P ksi (T), and τxy = –2P ksi, where P is
measured in kips. The brittle material has a tensile strength of 18 ksi and a compressive strength of 36 ksi. Determine the maximum
value of load P that can be applied on the structure using the modified Mohr’s theory.

PLAN

We can determine the principal stresses in terms of P by Mohr’s circle or by the method of equations. As the given normal stresses are of
opposite signs, we can expect that the principal stresses will have opposite signs. Using Equation (10.16) we can determine the maxi-
mum value of P.

SOLUTION

For plane stress: 
Mohr’s circle method: We draw the stress cube, record the coordinates of planes V and H, draw Mohr’s circle as shown in Figure 10.48.
The principal stresses and the maximum shear stress are

(E1)

(E2)

Method of equations: From Equation (8.7) we can obtain the principal stresses as

(E3)

(E4)
Substituting the principal stresses into Equation (10.16) and noting that σT = 18 ksi and σC = 36 ksi, we can obtain the maximum value of
P,

(E5)

Kτ 110 MPa( ) 80.8 MPa( )⁄=

Kτ 1.36=

σvon
1
2

------- 105.8 MPa 55.8 MPa–( )–[ ]2 55.8 MPa–( )2 105.8 MPa( )2+ + 142.2 MPa= =

Kσ 220 MPa( ) 142.2 MPa( )⁄=

Kσ 1.55=

σ3 0=

R 4P ksi( )2 2P  ksi( )2+ 4.47P  ksi= =

σ1 OC OP1+ P  ksi 4.47P  ksi+ 5.57P  ksi= = = σ2 OC OP1– P  ksi 4.47P ksi– 3.37P ksi–= = =

 Figure 10.48 Calculation using Mohr’s circle in Example 10.10.
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ANS.

COMMENT

1. We could not have used the maximum normal stress theory for this material, since the tensile and compressive strengths are signifi-
cantly different.Here the compressive strength is the dominant strength, and not the tensile-strength.

PROBLEM SET 10.3

Failure theories
10.65 For a force P measured in kN, the stress components at a critical point that is in plane stress were found to be σxx = 10P MPa (T), σyy = 20P
MPa (C), and τxy = 5P MPa. The material has a yield stress of 160 MPa as determined in a tension test. If yielding must be avoided, predict the
maximum v force P using (a) maximum shear stress theory; (b) maximum octahedral shear stress theory.

10.66 For a force P, the stress components at a critical point that is in plane stress were found to be σxx = 4P ksi (C), σyy = 3P ksi (T),
and τxy = –5P ksi. The material has a tensile rupture strength of 18 ksi and a compressive rupture strength of 32 ksi. Determine the max-
imum force P using the modified Mohr’s theory.

10.67 A material has a tensile rupture strength of 18 ksi and a compressive rupture strength of 32 ksi. During usage a component made
from this plastic showed the following stresses on a free surface at a critical point: σxx = 9 ksi (T), σyy = 6 ksi (T), and τxy = –4 ksi. Deter-
mine the factor of safety using the modified Mohr’s theory.

10.68 On a free surface of aluminum (E =  10,000 ksi, ν = 0.25, σyield = 24 ksi) the strains recorded by the three strain gages shown in Figure
P10.68 are εa = –600 μin./in., εb = 500 μ in/in, and εc = 400 μin./in. By how much can the loads be scaled without exceeding the yield stress of
aluminum at the point? Use the maximum shear stress theory.

10.69 On a free surface of steel (E = 200 GPa, ν = 0.28, σyield = 210 MPa) the strains recorded by the three strain gages shown in Figure
P10.69 are εa = –800 μm/m, εb = –300 μm/m, and εc = –700 μm/m. By how much can the loads be scaled without exceeding the yield stress of
steel at the point? Use the maximum octahedral shear stress theory.

10.70 A thin-walled cylindrical gas vessel has a mean radius of 3 ft and a wall thickness of in. The yield stress of the material is 30 ksi.

Using the von Mises failure criterion, determine the maximum pressure of the gas inside the cylinder if yielding is to be avoided.

10.71 A thin cylindrical boiler can have a minimum mean radius of 18 in. and a maximum mean radius of 36 in. The boiler will be subjected
to a pressure of 750 psi. A sheet metal with a yield stress of 60 ksi is to be used with a factor of safety of 1.5. Construct a failure envelope with
the mean radius R and the sheet metal thickness t as axes. Use the maximum octahedral shear stress theory. 

10.72 For plane stress show that the von Mises stress of Equation (10.13) can be written as

(10.17)

Pmax 4.63 kips=

Figure P10.68

y

a

bc

x45� 60�

Figure P10.69

y
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b

c

x45�

1
2
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σvon σxx
2 σyy

2 σxxσyy– 3τxy
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Stretch Yourself
10.73 In Cartesian coordinates the von Mises stress in three dimensions is given by

(10.18)

Show that for plane strain Equation (10.18) reduces to

(10.19)

where ν is Poisson’s ratio of the material.

10.74 Fracture mechanics shows that the stresses in model in the vicinity of the crack tip shown in Figure P10.74 are given by

(10.20)

Notice that at θ = π, that is, at the crack surface, all stresses are zero. In terms of KI and r, obtain the von Mises stress at θ = 0 and θ = π/2,
assuming plane stress.

10.4 CONCEPT CONNECTOR

In our problems thus far, we have relied on fixed values for the dimensions, material properties, and loads. Design that does
not allow for variability in these parameters is called deterministic. Real structural members, however, are manufactured to
dimensions only within a certain tolerance. Similarly, material properties may vary within a range, depending on material pro-
cessing. Loads and support conditions, too, are at best an estimate, because wind pressure, snow weight, traffic loads, and
other conditions are inherently variable. 

Probabilistic design takes into account the variability in dimensions, material properties, and loads. Here we seek to
achieve not just a given factor of safety but rather a specified reliability. This section offers a peek at how engineers approach
probabilistic design. Section 10.4.1 discusses the concept of reliability, and Section 10.4.2 introduces a design methodology
that incorporates it. 

10.4.1 Reliability

Already in Section 3.3, we encountered the uncertainties regarding material properties, manufacturing processes, the control
and estimate of loads, and so on. There we defined one measure of the margins of safety, the factor of safety. But choosing a
factor of safety is always a compromise among several factors, including cost and human safety, based on experience. Such a
compromise leaves an open question: how reliable is our design? 

To understand the relationship between the factor of safety and reliability, suppose we wish to design an engine mount or
other axial member with a factor of safety of 1.3. If the material strength of the axial member is 130 MPa, we have an allow-
able stress of 100 MPa. 

The actual axial stress in the member, however, may be quite different, because of such factors as manufacturing toler-
ances, the variability of applied loads, temperature, and humidity. If we measured the axial stress in different members, we
would get a range of values. We might ask instead, then, the frequency of occurrence of a given stress level. A plot of the
number of members at that level would yield a distribution, perhaps like the left curve in Figure 10.49. Similarly, the material
strength—that is, the failure stress for different batches of material—may vary due to impurities, material processing, and so
on. The right curve in Figure 10.49 shows one possible distribution of material strengths.

In Figure 10.49, the mean axial stress in the members is 100 MPa, and the mean strength of all materials is 130 MPa. Nat-
urally some axial members with stresses greater than 100 MPa will be made from materials that have failure stresses less than

σvon
σxx

2 σyy
2 σzz

2 σxxσyy– σyyσzz– σzzσxx– 3τxy
2 3τyz

2 3τzx
2+ + + + +=

σvon
σxx

2 σyy
2+( ) 1 ν2 ν–+( ) σxxσyy 1 2ν 2ν2–+( )– 3τxy

2+=

σxx
KI

2πr
------------- θ

2
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2
--- 3θ

2
------sinsin–⎝ ⎠

⎛ ⎞= σyy
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2πr
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2
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130 MPa. Hence, those axial members are likely to fail. In the graph, these members occupy the region common to both dis-
tributions, labeled “possible failure.” If we know the two distributions, we can always determine this possible failure region.

Statistical distributions are usually described by two parameters, their mean value and standard deviation. If the predicted
reliability developed using these parameters is unacceptable, then the design can use a different factor of safety to obtain the
desired reliability.

10.4.2 Load and Resistance Factor Design (LRFD)

Load and resistance factor design (LRFD) allows civil engineers to design steel structures to a specified reliability. LRFD
incorporates ideas from two other design methodologies, allowable stress design (ASD) and plastic design (PD). 

ASD is based on elastic analysis, in which the factors of safety can vary with the primary function of the structural mem-
ber. For example, a factor of safety of 1.5 is used for beams and 1.67 for tension members. These factors of safety are speci-
fied in building codes, usually based on statistical analysis.

Building codes also specify the kinds of load on a structure, and the methodologies that we are considering takes all these
into account: the dead load (D) due to the weight of structural elements and other permanent features; live load (L) from peo-
ple, equipment, and other movable objects during occupancy; snow load (S) and rain or ice loads (R) that appear on the roof
of a structure; roof load Lr from cranes, air conditioners, and other movable objects during construction, maintenance, and
occupancy; wind load W; and earthquake load E. In ASD, the sum total of the stresses from the various loads must be less
than or equal to the allowable stress. 

PD uses a single load factor for the design load on the structure. This factor varies with a combination of loads at hand. If
only dead and live loads are considered, for example, then the load factor is 1.7 [written as 1.7 (D + L)]. If, however, the dead,
live, and wind loads are considered, then the load factor is 1.3 [written as 1.3 (D + L + W)]. A nonlinear analysis can then
determine the strength of the member at structure collapse. By nonlinear analysis, we mean that the stress values of many
members fall in the plastic region—between the yield stress and ultimate stress. The member strengths must equal or exceed
the required strengths calculated using factored loads. 

The LRFD method overcomes shortcomings in both these methods. From the standpoint of consistent reliability in
design, neither of the two methods is very accurate. In ASD the factor of safety is used to account for all variability in loads
and material strength. In PD the variability in material strength is ignored. Furthermore, all loads do not have the same degree
of variability.

In LRFD, the nominal failure strength of a member is multiplied by the appropriate resistance factor (from Table 10.4)
to obtain the design strength. (The words strength and resistance for a material are often used interchangeably in LRFD.

  Figure 10.49 Load and resistance distribution curves.
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TABLE 10.4 Some resistance factors

Tension members, failure due to yielding 0.90
Tension member, failure due to rupture 0.75
Axial compression 0.85
Beams 0.90
High-strength bolts, failure in tension 0.75

TABLE 10.5 Load factors and load combinations

1.4D
1.2D + 1.6L + 0.5 (Lr or S or R)

1.2D + 1.6 (Lr or S or R) + (0.5L or 0.8W)

1.2D + 1.3W + 0.5 + 0.5 (Lr or S or R)

12D ± 1.0E + 0.5L + 0.2S
0.9D ± (1.3W or 1.0E)
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Recall the historical evolution of the concept of strength from Section 1.6.) This accounts for variability in material strength
and inaccuracies in dimensions and modeling. 

The load factors in Table 10.7 account for the variability of the individual load components. It also takes into account the
probability of combinations of loads acting together, such as live and snow loads. Using Table 10.5, factored loads are deter-
mined for a specific load combination. These factored loads are applied to the structure, and the member strength is calcu-
lated. This computed member strength must be less than or equal to the design strength computed using the resistance factor.
Since variations of load and member strength are taken into account separately, LRFD gives a more consistent level of reli-
ability.

10.5 CHAPTER CONNECTOR

This chapter synthesized and applied the concepts of all previous chapters. The use of subscripts and formulas to determine
stress results in a systematic but slower approach to problem solving. Determining the stress directions by inspection can
reduce the algebra significantly, but it requires care, depending on the problem being solved. For a given problem, it is impor-
tant to find your own mix of these approaches. Whatever your preference, however, the importance of a systematic approach
to the problem cannot be overstated. In the design and analysis of complex structures, without a systematic approach the
chances of error rise dramatically. 

So far we have based designs on material strength and structure stiffness. Instability, however, can cause a structure to fail
at stresses far lower than the material strength. What is structure instability, and how can we incorporate it? The next chapter
considers structure instability in the design of columns.
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POINTS AND FORMULAS TO REMEMBER

• Superposition of stresses is addition or subtraction of stress components in the same direction acting on the same surface 
at a point.

(10.1) (10.2) (10.3a) (10.3b) 

(10.4a) (10.4b)

• Sign convention for internal forces and moments:

• The internal forces and moments on a free-body diagram must be drawn according to the sign conventions if subscripts
are to be used to determine the direction of stress components.

• The direction of the stress components must be determined by inspection if internal forces and moments are drawn on the
free-body diagram to equilibrate the external forces and moments.

• A local x, y, z coordinate system can be established such that the x direction is along the axis of the long structural mem-
ber.

• Stress components should be drawn on a stress cube and interpreted in the x, y, z coordinate system for use in the stress
and strain transformation equations.

• Normal stresses perpendicular to the axis of the member are zero: σyy = 0, σzz = 0, and τyz = 0.
• Normal strains perpendicular to the axis of the member can be obtained by multiplying the normal strains in the axis

direction by Poisson’s ratio.
• Superpose stresses, then use the generalized Hooke’s law to obtain strains in combined loading:

• The allowable normal and shear stresses refer to the principal stresses and absolute maximum shear stress at a point,
respectively.

• An individualized procedure that is a mix of subscripts, formulas, and inspection should be developed for analysis of
stresses under combined loading.

• There are two major steps in the analysis and design of structures: (i) analysis of internal forces and moments that act on
individual members; (ii) computation of stresses on members under combined loading.

σxx
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CHAPTER ELEVEN

STABILITY OF COLUMNS

Learning objectives
1. Develop an appreciation of the phenomenon of buckling and the various types of structure instabilities.

2. Understand the use of buckling formulas in the analysis and design of structures.

_______________________________________________

Strange as it sounds, the column behind the steering wheel in Figure 11.1a is designed to fail: it is meant to buckle during a car
crash, to prevent impaling the driver. In contrast, the columns of the building in Figure 11.1b are designed so that they do not
buckle under the weight of a building. 

Buckling is instability of columns under compression. Any axial members that support compressive axial loads, such as
the weight of the building in Figure 11.1b, are called columns—and not all structural members behave the same. If a compres-
sive axial force is applied to a long, thin wooden strip, then it bends significantly, as shown in Figure 11.1c. If the columns of
a building were to bend the same way, the building itself would collapse. And when a column buckles, the collapse is usually
sudden and catastrophic. 

Under what conditions will a compressive axial force produce only axial contraction, and when does it produce bending?
When is the bending caused by axial loads catastrophic? How do we design to prevent catastrophic failure from axial loads?
As we shall see in this chapter, we can identify members that are likely to collapse by studying structure’s equilibrium. Geom-
etry, materials, boundary conditions, and imperfections all affect the stability of columns.

11.1 BUCKLING PHENOMENON

Buckling is an instability of equilibrium in structures that occurs from compressive loads or stresses. A structure or its com-
ponents may fail due to buckling at loads that are far smaller than those that produce material strength failure. Very often
buckling is a catastrophic failure. We discuss briefly some of the approaches and types of buckling in the following sections.

11.1.1 Energy Approach

We look at the energy approach using an analogy of a marble that is in equilibrium on different types of surfaces as shown in
Figure 11.2. Left to itself, it will simply stay put. Suppose, however, that we disturb the marble to the shaded position in each

 Figure 11.1 Examples of columns.

(a) (b) (c)
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case. When the surface is concave, as in Figure 11.2a, the marble will return to its equilibrium position — and it is said to be
in stable equilibrium. When the surface is flat, as in Figure 11.2b, the marble will acquire a new equilibrium position. In this
case the marble is said to be in a neutral equilibrium. Last when the surface is convex, as in Figure 11.2c, the marble will roll
off. In this third case, a change in position also disturbs the equilibrium state and so the marble is said to be in unstable equi-
librium. 

The marble analogy in Figure 11.2 is useful in understanding one approach to the buckling problem, the energy method.
Every deformed structure has a potential energy associated with it. In Chapter 12 we will see that this potential energy
depends on the strain energy (the energy due to deformation) and on the work done by the external load. If the potential
energy function is concave at the equilibrium position, then the structure is in stable equilibrium. If the potential energy func-
tion is convex, then the structure is in unstable equilibrium. The external load at which the potential energy function changes
from concave to convex is called the critical load at which the buckling occurs. This energy method approach is beyond the
scope of this book. 

11.1.2 Eigenvalue Approach

To elaborate the eigenvalue approach in determining the load at which buckling occurs consider a rigid bar (Figure 11.3a)
with a torsional spring at one end and a compressive axial load at the other end. Figure 11.3b shows the free-body diagram of
the bar. Clearly, θ = 0 is an equilibrium position. We call it a trivial solution to the problem. But at what value of P does there
exist a nontrivial solution to the problem? This is the classical statement of an eigenvalue problem, and the critical value of P for
which the nontrivial solution exists is called the eigenvalue. At this critical value of P the rod acquires a new equilibrium.

To determine the critical value of P, we consider the equilibrium of the moment at O in Figure 11.3b.
(11.1a)

For small angles we can approximate  and rewrite Equation (11.1a) as

(11.1b)

In Equation (11.1b) θ = 0 is one solution, but if PL= Kθ then θ can have any non-zero value. Thus, the critical value of P is

(11.1c)

You may be more familiar with eigenvalue problem in context of matrices. In problems 11.7 and 11.8 there are two
unknown angles, and the problem can be cast in matrix form.

(a)
(b) (c)

  Figure 11.2 Equilibrium using marble (a) Stable. (b) Neutral. (c) Unstable.

PL θsin Kθθ=

θsin θ≈

PL Kθ–( )θ 0=

Pcr Kθ L⁄=

L

(a) (b)

P

K��

L sin �

�

R
O

P

O

  Figure 11.3  Eigenvalue problem.
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11.1.3 Bifurcation Problem

To describe the bifurcation problem, we rewrite Equation (11.1a) as
(11.1d)

Figure 11.4 shows the plot of PL /Kθ versus θ. The equilibrium line separates the unstable region from the stable region.
The bar remains in the vertical equilibrium position (θ = 0) provided the load (P) increases are below point A and it will return
to the vertical position if it is disturbed (rotated) slightly to the left or right. Any disturbance in equilibrium for load values
above point A will send the bar to either to the left branch or to the right branch of the curve, where the it acquires a new equi-
librium position. Point A is the bifurcation point, at which there are three possible solutions. The load P at the bifurcation
point is called the critical load. Thus, we again see the same problem with a different perspective because of the methodology
used in solving it. 

11.1.4 Snap Buckling

In snap buckling a structure jumps from one equilibrium configuration to a dramatically different equilibrium configura-
tion. It is most often seen in shallow thin walled curved structures. To explain this phenomenon, consider a bar that can slide
in a smooth slot. It has a spring attached to it at the right end and a force P applied to it at the left end, as shown in Figure 11.5.
As we increase the force P, the inclination of the bar at the equilibrium position moves closer to the horizontal position. But
there is an inclination at which the bar suddenly jumps across the horizontal line to a position below the horizontal line

PL Kθ⁄ θ θsin⁄=

StableStable

UnstableUnstable

  Figure 11.4 Bifurcation problem.

(a)

L
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(b)
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  Figure 11.5 Snap buckling problem. (a) Undeformed position, θ = 0. (b) 0 < θ < 45°. (c) θ > 45°. (d) Load versus θ .
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We consider the equilibrium of the bar before and after the horizontal line to understand the mathematics of snap buck-
ling. Suppose the spring is in the instructed position, as shown in Figure 11.5a. We define the inclination of the bar by the
angle θ measured from the undeformed position. Figure 11.5b and c shows the free-body diagrams of the bar before and after
the horizontal position. The spring force must reverse direction as the bar crosses the horizontal position to ensure moment
equilibrium. The deformation of the spring before the horizontal position is L cos (45o – θ) – L cos 45o. Thus the spring force
is Fs = KL[L cos(45o – θ) – L cos 45o]. By moment equilibrium we obtain

(11.2a)

In a similar manner, by considering the moment equilibrium in Figure 11.5c, we obtain

(11.2b)

Figure 11.5d shows a plot of P/KLL versus θ obtained from Equations (11.2a) and (11.2b). As we increase P, we move along
the curve until we reach point B. At B rather than following paths BC and CD, the bar jumps (snaps) from point B to point D.
It should be emphasized that each point on paths BC and CD represents an equilibrium position, but it is not a stable equilib-
rium position that can be maintained. 

11.1.5 Local Buckling

The perspectives on the buckling problem in the previous sections were about structural stability. Besides the instability
of a structure, however, we can have local instabilities. Figure 11.6a shows the crinkling of an aluminum can under compres-
sive axial loads. This crinkling is the local buckling of the thin walls of the can. Figure 11.6b shows a thin cylindrical shaft
under torsion. The stress cube at the top shows the torsional shear stresses. But if we consider a stress cube in principal coor-
dinates, then we see that principal stress 2 is compressive. This compressive principal stress can also cause local buckling,
though the orientation of the crinkles will be different than those from the crushing of the aluminum can. 

P
KLL
---------- 45° θ–( ) – cos 45°cos[ ] 45° – θ( ), 0 θ 45°< <tan=

P
KLL
---------- θ – 45°( ) – cos 45cos °[ ] tan θ – 45°( ), θ 45°>=

  Figure 11.6 Local buckling. (a) Due to axial loads. (b) Due to torsional loads.

Crinkling

Compressive 

(a)
(b)

Consolidate your  knowledge
1. Describe in your own words the various types of buckling.
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PROBLEM SET 11.1

Stability of discrete systems
11.1 A linear spring that can be in tension or compression is attached to a rigid bar as shown in Figure P11.1. In terms of the spring constant
k and the length of the rigid bar L, determine the critical load value Pcr

11.2 A linear spring that can be in tension or compression is attached to a rigid bar as shown in Figure P11.2. In terms of the spring constant
k and the length of the rigid bar L, determine the critical load value Pcr.

11.3 A linear spring that can be in tension or compression is attached to a rigid bar as shown in Figure P11.1. In terms of the spring constant
k and the length of the rigid bar L, determine the critical load value Pcr .

11.4 Linear deflection and torsional springs are attached to a rigid bar as shown Figure P11.4. The springs can act in tension or in compres-
sion and resist rotation in either direction. Determine the critical load value Pcr .

11.5 Linear deflection and torsional springs are attached to a rigid bar as shown Figure P11.5. The springs can act in tension or in compres-
sion and resist rotation in either direction. Determine the critical load value Pcr . 

  Figure P11.1

k

L

P

O

  Figure P11.2

kk

kk
L�2

P

L�2

O

kk
L�2

P

L�2

O  Figure P11.3

k � 25 kN/m

1.2 m

P

O
K � 30 kN�m/rad

  Figure P11.4
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11.6 Linear deflection and torsional springs are attached to a rigid bar as shown Figure P11.6. The springs can act in tension or in compres-
sion and resist rotation in either direction. Determine the critical load value Pcr . 

Stretch yourself
11.7 Two rigid bars are pin connected and supported as shown in Figure 11.7. The linear displacement spring constant is k = 25 kN/m and
the linear rotational spring constant is K= 30 kN/rad. Using  θ1 and θ2 as the angle of rotation of the bars AB and BC from the vertical, write the
equilibrium equations in matrix form and determine the critical load P by finding the eigenvalues of the matrix. Assume small angles of rota-
tion to simplify the calculations.

11.8 Two rigid bars are pin connected and supported as shown in Figure 11.8. The linear displacement spring constant is k = 8 lb/in. and the
linear rotational spring constant is K= 2000 in.-lb/rad. Using θ1 and θ2 as the angle of rotation of the bars AB and BC from the vertical, write the
equilibrium equations in matrix form and determine the critical load P by finding the eigenvalues of the matrix. Assume small angles of rota-
tion to simplify the calculations.

k � 8 lb/in

k � 8 lb/in

30 in

P

30 in

O
K � 2000 in�lb/rad

  Figure P11.5

k � 8 lb/in
30 in

P

30 in

O
K � 2000 in�lb/rad

  Figure P11.6

P

k

KA

1.2 m

1.2 m

  Figure P11.7

B

C

P

k

K
A

30 in.

30 in.

  Figure P11.8

k
B

C
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11.2 EULER BUCKLING

In this section we develop a theory for a straight column that is simply supported at either end. This theory was first developed
by Leonard Euler (see Section 11.4) and is named after him.

Figure 11.7a shows a simply supported column that is axially loaded with a force P. We shall initially assume that bend-
ing is about the z axis; as our equations in Chapter 7 on beam deflection were developed with just this assumption. We shall
relax this assumption at the end to generate the formula for a critical buckling load.

Let the bending deflection at any location x be given by v(x), as shown in Figure 11.7b. An imaginary cut is made at some
location x, and the internal bending moment is drawn according to our sign convention. The internal axial force N will be
equal to P. By balancing the moment at point A we obtain Mz + Pv = 0. Substituting the moment–curvature relationship of
Equation (7.1), we obtain the differential equation:

(11.3a)

If buckling can occur about any axis and not just the z axis, as we initially assumed, then the subscripts zz in the area
moment of inertia should be dropped. The boundary value problem can be written using Equation (11.3a) as

• Differential Equation 

 (11.3b)

where

(11.3c)

• Boundary Conditions
(11.4a)

(11.4b)

Clearly v = 0 would satisfy the boundary-value problem represented by Equations (11.3a), (11.4a), and (11.4b). This trivial
solution represents purely axial deformation due to compressive axial forces. Our interest is to find the value of P that would
cause bending; in other words, a nontrivial (v ≠ 0) solution to the boundary-value problem. Alternatively, at what value of P
does a nontrivial solution exist to the boundary-value problem? As observed in Section 11.1, this is the classical statement of
an eigenvalue problem. 

The solution to the differential equation, Equation (11.3b), is
(11.5)

From the boundary condition (11.4a) we obtain
(11.6a)

From boundary condition (11.4b),1 we obtain
  (11.6b)

If B = 0, then we obtain a trivial solution. For a nontrivial solution the sine function must equal zero:
(11.7)

Equation (11.7) is called the characteristic equation, or the buckling equation.
Equation (11.7) is satisfied if λL = nπ. Substituting for λ and solving for P, we obtain

  Figure 11.7 Simply supported column. 

(b)
y

x

L
AP

N = P
Mz

v(x)

AP

(a)

EIzz
d2v
dx2
-------- Pv+ 0=

d2v
dx2
-------- λ2v+ 0=

λ P
EI
------=

v 0( ) 0=

v L( ) 0=

v x( ) A λxcos B λxsin+=

v 0( ) A 0( )cos B 0( )sin+ 0 or A 0== =

v L( ) A λLcos B λLsin+ 0 or B λLsin 0== =

λLsin 0=
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(11.8)

Equation (11.8) represents the values of load P (the eigenvalues) at which buckling would occur. What is the lowest value of
P at which buckling will occur? Clearly, for the lowest value of P, n should equal 1 in Equation (11.8). Furthermore minimum
value of I should be used. The critical buckling load is

(11.9)

Pcr, the critical buckling load, is also called Euler load. Buckling will occur about the axis that has minimum area moment of
inertia. The solution for v can be written as 

(11.10)

Equation (11.10) represents the buckled mode (eigenvectors). Notice that the constant B in Equation (11.10) is undetermined.
This is typical in eigenvalue problems. The importance of each buckled mode shape can be appreciated by examining Figure
11.8. If buckled mode 1 is prevented from occurring by installing a restraint (or support), then the column would buckle at the
next higher mode at critical load values that are higher than those for the lower modes. Point I on the deflection curves
describing the mode shapes has two attributes: it is an inflection point and the magnitude of deflection at this point is zero.
Recall that the curvature d2v/dx2 at an inflection point is zero. Hence the internal moment Mz at this point is zero. If roller sup-
ports are put at any other points than the inflection points I, as predicted by Equation (11.10), then the boundary-value prob-
lem (see Problem 11.32) will have different eigenvalues (critical loads) and eigenvectors (mode shapes).

In many situations it may not be possible to put roller supports in order to change a mode to a higher critical buckling
load. But buckling modes and buckling loads can also be changed by using elastic supports. Figure 11.9 shows a water tank on
columns. The two rings are the elastic supports. Elastic supports can be modeled as springs and formulas for buckling loads
developed as shown in Example 11.3. 

1A matrix form may be more familiar for an eigenvalue problem. The boundary condition equations can be written in matrix form as

For a nontrivial solution—that is, when A and B are not both zero—the condition is that the determinant of the matrix must be zero. This yields  in
agreement with our solution.

1 0

P
EIzz
---------L⎝ ⎠

⎛ ⎞cos P
EIzz
---------L⎝ ⎠

⎛ ⎞sin
A
B⎩ ⎭

⎨ ⎬
⎧ ⎫ 0

0⎩ ⎭
⎨ ⎬
⎧ ⎫

=

P/EIzz( )L( ) 0,=sin

Pn
n2π2EI

L2
-----------------,= n 1 2 3 …, , ,=

Pcr
π2EI

L2
-----------=

v B nπ x
L
---⎝ ⎠

⎛ ⎞sin=

 Figure 11.8 Importance of buckled modes.

Mode shape 1

L
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Pcr Pcr

Pcr � 
�2EI

L2
Pcr � 

4�2EI
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L2

Mode shape 2

L�2 L�2

Pcr

Pcr PcrI

Mode shape 3

I I

L�3 L�3 L�3

Pcr
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  Figure 11.9 Elastic supports on columns of a water tank.
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11.2.1 Effects of End Conditions

Equation (11.9) is applicable only to simply supported columns. However, the process used to obtain the formula can be used for
other types of supports. Table 11.1 shows the critical elements in the derivation process and the results for three other supports.
The formula for critical loads for all cases shown in Table 11.1 can be written as

(11.11)

where Leff is the effective length of the column. The effective length for each case is given in the last row of Table 11.1. This
definition of effective length will permit us to extend results that will be derived in Section 11.3 for simply supported imper-
fect columns to imperfect columns with the supports shown in cases 2 through 4 in Table 11.1.

TABLE 11.1  Buckling of columns with different supports

Case 1

Pinned at both ends

Case 2 

One end fixed, 
other end free

Case 3 

One end fixed, other 
end pinned

Case 4a

Fixed at both ends

a. RB and MB are the force and moment reactions.

Differential 
equation

Boundary 
conditions

Characteristic 
equation

b

b. The roots of the equations have to be found iteratively. The two smallest roots of the equation are λ L=4.4934 and λ L=7.7253.

Critical load
Pcr

Effective length 
Leff

L 2L 0.7L 0.5L

Consolidate your  knowledge
1. With the book closed derive the Euler buckling formula and comment on higher buckling modes.

Pcr
π2EI
L2

eff

-----------=

L

y

B

A

P

x
L

B

P

x

A

L

y

B

A

P

x

L

B

P

x

y A

EId2v
dx2
-------- Pv+ 0= EId2v

dx2
-------- Pv+ Pv L( )= EId2v

dx2
-------- Pv+ RB L x–( )= EId2v

dx2
-------- Pv+ RB L x–( ) MB+=

v 0( ) 0=
v L( ) 0=

v 0( ) 0=

xd
dv 0( ) 0=

v 0( ) 0=

xd
dv 0( ) 0=

v L( ) 0=

v 0( ) 0=

xd
dv 0( ) 0=

v L( ) 0=

xd
dv L( ) 0=

λ P
EI
------=

λLsin 0= λLcos 0= λLtan λL= 2 1 λLcos–( )   λ– L λLsin 0=

π2EI
L2

------------ π2EI
4L2

------------ π2EI
2L( )2

-------------= 20.13EI
L2

-------------------- π2EI
0.7L( )2

------------------= 4π2EI
L2

--------------- π2EI
0.5L( )2

------------------=
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In Equation (11.9), I can be replaced by Ar2, where A is the cross-sectional area and r is the minimum radius of gyration
[see Equation (A.11)]. We obtain 

(11.12)

where Leff /r is the slenderness ratio and σcr is the compressive axial stress just before the column would buckle. 
Equation (11.12) is valid only in the elastic region—that is, if σcr < σyield. If σcr > σyield, then elastic failure will be due to

stress exceeding the material strength. Thus σcr = σyield defines the failure envelope for a column. Figure 11.10 shows the fail-
ure envelopes for steel, aluminum, and wood using the material properties given in Table D.1. As nondimensional variables
are used in the plots in Figure 11.10, these plots can also be used for metric units. Note that the slenderness ratio is defined
using effective lengths; hence these plots are applicable to columns with different supports.

The failure envelopes in Figure 11.10 show that as the slenderness ratio increases, the failure due to buckling will occur at
stress values significantly lower than the yield stress. This underscores the importance of buckling in the design of members
under compression.

The failure envelopes, as shown in Figure 11.10, depend only on the material property and are applicable to columns of
different lengths, shapes, and types of support. These failure envelopes are used for classifying columns as short or long.2

Short column design is based on using yield stress as the failure stress. Long column design is based on using critical buckling
stress as the failure stress. The slenderness ratio at point A for each material is used for separating short columns from long
columns for that material. Point A is the intersection point of the straight line representing elastic material failure and the
hyperbola curve representing buckling failure.

EXAMPLE 11.1

A hollow circular steel column (E = 30,000 ksi) is simply supported over a length of 20 ft. The inner and outer diameters of the cross
section are 3 in. and 4 in., respectively. Determine (a) the slenderness ratio; (b) the critical buckling load; (c) the axial stress at the crit-
ical buckling load. (d) If roller supports are added at the midpoint, what would be the new critical buckling load?

PLAN

(a) The area moment of inertia I for a hollow cylinder is same about all axes and can be found using the formula in Table C.2. From the
value of I the radius of gyration can be found. The ratio of the given length to the radius of gyration gives the slenderness ratio. (b)In
Equation (11.9) the given values of E and L, as well as the calculated value of I in part (a), can be substituted to obtain the critical buck-
ling load Pcr. (c) Dividing Pcr by the cross-sectional area, the critical axial stress σcr can be found. (d)The column will buckle at the next
higher buckling load, which can be found by substituting n = 2 and E, I, and L into Equation (11.8).

SOLUTION

(a) The outer diameter do = 4 in. and the inner diameter di = 3 in. From Table C.2 the area moment of inertia for the hollow cylinder, the
cross-sectional area A, and the radius of gyration r can be calculated using Equation (A.11),

(E1)

2Intermediate column is a third classification used if the critical stress is between yield stress and ultimate stress. See Equation (11.26) and Problems 11.64 and 11.65 for additional
details.

σcr
Pcr

A
------ π2E

Leff r⁄( )2
---------------------= =

  Figure 11.10 Failure envelopes for Euler columns.
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(E2)

The length L = 20 ft = 240 in. Thus the slenderness ratio is 
ANS.

(b) Substituting E = 30,000 ksi, L = 240 in., and I = 8.59 in.4 into Equation (11.9), we obtain the critical buckling load,

(E3)

ANS. Pcr = 44.15 kips
(c) The axial stress at the critical buckling load can be found as

(E4)

ANS. σcr = 8.03 ksi (C)
(d) With the support in the middle, the buckling would occur in mode 2. Substituting n = 2 and E, I, and L into Equation (11.8) we obtain
the critical buckling load,

(E5)

ANS. Pcr = 176.6 kips

COMMENTS

1. This example highlights the basic definitions of variables and equations used in buckling problems.
2. The middle support forces the column into the mode 2 buckling mode in part (d). Another perspective is to look at the column as two

simply supported columns, each with an effective length of half the column or Leff = 120 in. Substituting this into Equation (11.11),
we obtain the same value as in part (d).

EXAMPLE 11.2

The hoist shown in Figure 11.11 is constructed using two wooden bars with modulus of elasticity E = 1800 ksi and ultimate stress of
συlt =5 ksi. For a factor of safety of K = 2.5, determine the maximum permissible weight W that can be lifted using the hoist for the two
cases: (a) L = 30 in.; (b) L = 60 in.

PLAN

The axial stresses in the members can be found and compared with the calculated allowable values to determine a set of limits on W. By
inspection we see that member BC will be in compression. Internal force in BC in terms of W can be found from free body diagram of the
pulley and compared to critical buckling of BC to get another limit on W. The maximum value of W that satisfies the strength and buck-
ling criteria can now be determined.

SOLUTION

The allowable stress in wood is
(E1)

The free-body diagram of the pulley is shown in Figure 11.12 with the force in BC drawn as compressive and the force in CD as tensile. By
equilibrium the internal axial forces

(E2)

r I
A
--- 8.590 in.4

5.498 in.2
----------------------- 1.250 in.= = =

L r⁄ 240 in.( ) 1.25 in.( )⁄ .=
L r⁄ 192=

Pcr
π2EI

L2
------------ π2 30,000  ksi( ) 8.590 in.( )

240 in.( )2
----------------------------------------------------------------= =

σcr
Pcr

A
------- 44.15 kips

5.498 in.2
-------------------------= =

Pcr
n2π2EI

L2
----------------- 22π2 30,000 ksi( ) 8.590 in.( )

240 in.( )2
----------------------------------------------------------------------= =

W
P � W

30°A

B

B

A

x

y

z
B

C

L (ft)

D

  Figure 11.11 Hoist in Example 11.2.

Cross section AA

4 in

2 in

z

y

Cross section BB

5 in

2 in

σallow σult K⁄ 5 ksi( ) 2.5⁄ 2 ksi= = =

NCD 30°  sin 2W= or NCD 4W=
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(E3)

The cross-sectional areas for the two members are ABC = 8 in.2 and ACD = 10 in.2. The axial stresses in terms of W can be found, and these
should be less than the allowable stress of 2 ksi, from which we get two limits on W,

(E4)

(E5)

(a) We determine the minimum area moment of inertias for cross-section AA, 

(E6)

Substituting E = 1800 ksi, L = 30 in., and I = 2.667 in.4 into Equation (11.9), we obtain 

(E7)

NBC should be less than the critical load Pcr divided by factor of safety K ,
(E8)

The maximum value of W must satisfy Equations (E4), (E5), and (E8). 
ANS. Wmax = 4.6 kips

(b) Substituting E = 1800 ksi, L = 60 in., and I = 2.667 in.4into Equation (11.9), we obtain 

(E9)

NBC should be less than the critical load Pcr divided by factor of safety K ,
(E10)

The maximum value of W must satisfy Equations (E4), (E5), and (E10). 
ANS. Wmax = 1.5 kips

COMMENTS

1. This example highlights the importance of identifying compression members such as BC, so that buckling failure is properly
accounted for in design. 

2. The example also emphasizes that the minimum area moment of inertia that must be used is Euler buckling. Had we used Izz instead
of Iyy, we would have found Pcr = 52.7 kips and incorrectly concluded that the failure would be due to strength failure and not buck-
ling in case (b)

3. In case (a) material strength governed the design, whereas in case (b) buckling governed the design. If we had several bars of different
lengths and different cross-sectional dimensions (such as in Problems 11.18 and 11.19), then it would save a significant amount of
work to calculate the slenderness ratio that would separate long columns from short columns. Substituting σcr = σallow = 2 ksi into
Equation (11.12), we find that L/r = 94.2 is the ratio that separates long columns from short columns. It can be checked that the slen-
derness ratio in case (a) is 51.9, hence material strength governed Wmax. In case (b) the slenderness ratio is 103.9, hence buckling
governed Wmax.

W
P � W

NBC

NCD

30°

C

  Figure 11.12 Free-body diagram in Example 11.2.

NBC NCD 30°cos= or NBC 3.464W=

σCD
NCD

ACD
---------- 4W

10 in.2
---------------- 2 ksi or W 5.0 kips≤≤= =

σBC
NBC

ABC
---------- 3.463W

8 in.2
------------------- 2 ksi or W 4.62 kips≤≤= =

Iyy
1

12
------ 4 in.( ) 2 in.( )3 2.667 in.4= = Izz

1
12
------ 2 in.( ) 4 in.( )3 10.67 in.4= =

Pcr
π2EI

L2
------------= π2 1800 ksi( ) 2.667 in.4( )

30 in.( )2
------------------------------------------------------------- 52.63 kips==

NBC Pcr K⁄( ) or 3.464W 52.63 kips( ) 2.5⁄[ ]≤≤ or W 6.08 kips≤

Pcr
π2EI

L2
------------= π2 1800 ksi( ) 2.667 in.4( )

60 in.( )2
------------------------------------------------------------- 13.159 kips= =

NBC Pcr K⁄( ) or 3.464W 13.159 kips( ) 2.5⁄[ ]≤≤ or W 1.52 kips≤
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EXAMPLE 11.3

Linear springs are attached at the free end of a column, as shown in Figure 11.13. Assume that bending about the y axis is prevented. (a)
Determine the characteristic equation for this buckling problem. Show that the critical load Pcr for (b) k = 0 and (c) k = ∞ is as given in Table
11.1 for cases 2 and 3, respectively. 

PLAN

The spring exerts a spring force kvL at the upper end that must be incorporated into the moment equation, and hence into the differential
equation. The boundary conditions are that the deflection and slope at x = 0 are zero. (a) The characteristic equation will be generated
while solving the boundary-value problem. (b), (c) The roots of the characteristic equation for the two cases will give Pcr. 

SOLUTION

By equilibrium of moment about point O in Figure 11.14, we obtain an expression for moment Mz,

(E1)
Substituting into Equation (7.1), we obtain the differential equation

(E2)

(a) Using Equation (11.3c), Equation (E2) can be written as:
• Differential equation:

(E3)

The zero deflection and slope boundary condition are also written to complete the statement of the boundary-value problem,
• Boundary Conditions:

(E4)

(E5)

The homogeneous solution vH to Equation (E3) is given by Equation (11.5). The particular solution is

(E6)

Thus the total solution vH + vP can be written as 

k

L

y

P

x
  Figure 11.13 Column with elastic support in Example 11.3.

Mz P vL v–( )– kvL L x–( )+ 0= or Mz Pv+ PvL kvL L x–( )–=

EIzz
d2v
dx2
-------- Pv+ PvL kvL L x–( )–=

d2v
dx2
-------- λ2v+ λ2vL

kvL

EI
-------- L x–( )–=

P

O

kv(L)

L � x

v(L)

v(x)

Mz
Vy

N � P  Figure 11.14 Free-body diagram in Example 11.3.

vL

vL

v

v 0( ) 0=

dv
dx
------ 0( ) 0=

vP vL
kvL

λ2EI
------------ L x–( )–=
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(E7)

Substituting x = 0 into Equation (E7) and using Equation (E4), we obtain

(E8)

Differentiating Equation (E7), then substituting x = 0 and using Equation (E5), we obtain

(E9)

Substituting the values of A and B into Equation (E7), we obtain

(E10)

Substituting x = L into Equation (E7), we obtain

(E11)

Since vL is a common factor, Equation (E11) can be simplified to the following characteristic equation:

ANS.

(b) Substituting k = 0 into Equation (E11), we obtain cos λL = 0, which is the characteristic equation for case 2 in Table 11.1. Thus the
Pcr value corresponding to the smallest root will be as given in Table 11.1 for case 2.
(c) We rewrite Equation (E11) as

(E12)

As k tends to infinity, the second term tends to zero and we obtain tan λL = λL, which is the characteristic equation for case 3 in Table
11.1. Thus the Pcr value corresponding to the smallest root will be as given in Table 11.1 for case 3.

COMMENTS

1. This example shows that a spring could simulate an imperfect support that provides some restraint to deflection. The restraining effect
is more than zero (free end) but not as much as a roller support. 

2. The spring could also represent other beams that are pin connected at the top end. These pin-connected beams provide elastic restraint
to deflection but no restraint to the slope. If the beams were welded rather than pin connected, then we would have to include a tor-
sional spring also at the end.

3. The example also demonstrates that the critical buckling loads can be changed by installing some elastic restraints, such as rings, to
support the columns of the water tank in Figure 11.9.

EXAMPLE 11.4

Determine the maximum deflection of the column shown in Figure 11.15 in terms of the modulus of elasticity E, the length of the col-
umn L, the area moment of inertia I, the axial force P, and the intensity of the distributed force w. 

PLAN 

The moment from the distributed load can be added to the moment for case 1 in Table 11.1 and the differential equation written. The
boundary conditions are that the deflection at x = 0 and x = L is zero. The boundary-value problem can be solved, and the deflection at
x = L/2 evaluated to obtain the maximum deflection.

SOLUTION

The reaction force in the y direction is half the total load wL acting on the beam. An imaginary cut at some location x can be made and
the free-body diagram of the left part drawn as shown in Figure 11.16. By balancing the moment at point O, we obtain an expression for
the moment Mz,

v x( ) A λxcos B λxsin vL
kvL

λ2EI
------------ L x–( )–+ +=

v 0( ) A 0( ) B  0( ) vL
kvL

λ2EI
------------ L 0–( ) 0=–+sin+cos= or A kL

λ2EI
------------ 1–⎝ ⎠

⎛ ⎞ vL=

dv
dx
------ 0( ) λA 0( ) Bλ 0( )

kvL

λ2EI
------------+cos+sin– 0= = or B k

λ3EI
------------vL–=

v x( ) kL
λ2EI
------------ 1–⎝ ⎠

⎛ ⎞ λxcos k
λ3EI
------------– λxsin 1 k

λ2EI
------------ L x–( )–+ vL=

v L( ) kL
λ2EI
------------ 1–⎝ ⎠

⎛ ⎞ λLcos  k
λ3EI
------------– λLsin 1 0–+ vL vL= =

kL
λ2EI
------------ 1–⎝ ⎠

⎛ ⎞ λL  cos k
λ3EI
------------– λLsin 0=

λLtan λL λ3EI
k

------------–=

y

x

L

w

P A  Figure 11.15 Buckling of beam with distributed load in Example 11.4.
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(E1)

Substituting Equation (E1) into Equation (7.1), we obtain the differential equation

(E2)

Using Equation (11.3c), Equation (E2) can be written as
• Differential Equation

(E3)

The zero-deflection boundary conditions at either end are written to complete the statement of the boundary-value problem.
• Boundary Conditions

(E4)

(E5)

To find the particular solution, we substitute vP = a + bx + cx2 into Equation (E3) and simplify, 

(E6)

If Equation (E6) is to be valid for any value of x, then each of the terms in parentheses must be zero and we obtain the values of constants
a, b, and c,

 (E7)

Hence the particular solution is

(E8)

The homogeneous solution vH to Equation (E3) is given by Equation (11.5). Thus the total solution vH + vP can be written as

(E9)

Substituting x = 0 into Equation (E9) and using Equation (E4), we obtain

(E10)

Substituting x = L into Equation (E9) and using Equation (E5), we obtain

 (E11)

Since sin λL = 2 sin (λL/2) cos (λL/2) and 1 – cos λL = 2 sin2 (λL/2) the above equation can be simplified as

(E12)

By symmetry the maximum deflection will occur at midpoint. Substituting x = L/2, A and B into Equation (E9), we obtain

(E13)

Equation (E13) can be simplified by substituting the tangent function in terms of the sine and cosine functions to obtain

Mz Pv x( ) wL
2

-------x– wx2

2
---------+ + 0=

P

O

A

x

x�2
wx

v(x)

N � P

wL
2

Mz

  Figure 11.16 Free-body diagram in Example 11.4.

v

EIzz
d2v
dx2
-------- Pv+ wL

2
-------x wx2

2
---------–=

d2v
dx2
-------- λ2v+ wLx

2EI
---------- wx2

2EI
---------–=

v 0( ) 0=

v L( ) 0=

2c λ2 a bx cx2+ +( )+ wLx
2EI
---------- wx2

2EI
---------–= or 2c λ2a+( ) λ2b wL

2EI
---------–⎝ ⎠

⎛ ⎞ x λ2c w
2EI
---------+⎝ ⎠

⎛ ⎞ x2+ + 0=

c w
2λ2EI
--------------- b wL

2λ2EI
---------------= a 2c

λ2
------– w

λ4EI
------------= =–=

vP
w

λ4EI
------------ wL

2λ2EI
---------------x w

2λ2EI
---------------x2–+=

v x( ) A λxcos B λxsin w
λ4EI
------------ wL

2λ2EI
---------------x w

2λ2EI
---------------– x2+ + +=

v 0( ) A 0( ) B 0( ) w
λ4EI
------------+sin 0 0 0=–+ +cos= or A w

λ4EI
------------–=

v L( ) A λLcos B+ λLsin w
λ4EI
------------ wL2

2λ2EI
--------------- wL2

2λ2EI
---------------–+ + 0= = or w

λ4EI
------------– λLcos B+ λLsin w

λ4EI
------------+ 0=

B w
λ4EI
------------ 1  λLcos–

 λLsin
---------------------------– w

λ4EI
------------ λL

2
-------⎝ ⎠

⎛ ⎞tan–==

vmax v L
2
---⎝ ⎠

⎛ ⎞ A λL
2

-------⎝ ⎠
⎛ ⎞cos B   λL

2
-------⎝ ⎠

⎛ ⎞  w
λ4EI
------------ wL2

4λ2EI
--------------- wL2

8λ2EI
---------------–+ +sin+= = or

vmax= w
λ4EI
------------ λL

2
-------⎝ ⎠

⎛ ⎞cos– λL
2

-------⎝ ⎠
⎛ ⎞tan– λL

2
-------⎝ ⎠

⎛ ⎞sin  w
λ4EI
------------ wL2

8λ2EI
---------------+ +
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(E14)

Substituting for λ, the maximum deflection can be written as

ANS.

COMMENTS

1. In Equation (E13), as λL → π, the secant function tends to infinity and the maximum displacement becomes unbounded, which
means the column becomes unstable. λL = π corresponds to the Euler buckling load of Equation (11.9). Thus the transverse distrib-
uted load does not change the critical buckling load of a column.

2. However the failure mode can be significantly affected by the transverse distributed load. The maximum normal stress will be the
sum of axial stress and maximum bending normal stress, σmax = P/A + Mmaxymax/I. The maximum bending moment will be at x = L/2
and can be found from Equation (E1) as Mmax = wL2/8 – Pvmax. Substituting and simplifying gives the maximum normal stress:

(E15)

By equating the maximum normal stress to the yield stress, we obtain a failure envelope, which clearly depends on the value of w. 

PROBLEM SET 11.2

Euler buckling
11.9 A hollow circular steel column (E = 200 GPa) is simply supported over a length of 5 m. The inner and outer diameters of the cross sec-
tion are 75 mm and 100 mm. Determine (a) the slenderness ratio; (b) the critical buckling load; (c) the axial stress at the critical buckling load.
(d) If roller supports are added at the midpoint, what would be new critical buckling load? 

QUICK TEST 11.1 Time: 15 minutes/Total: 20 points

Answer true or false. If false, give the correct explanation. Each question is worth two points. Use the solutions given in
Appendix E to grade yourself. 

1. Column buckling can be caused by tensile axial forces.
2. Buckling occurs about an axis with minimum area moment of inertia of the cross section.
3. If buckling is avoided at the Euler buckling load by the addition of supports in the middle, then the column will

not buckle.
4. By changing the supports at the column end, the critical buckling load can be changed.
5. The addition of uniform transversely distributed forces decreases the critical buckling load on a column.
6. The addition of springs in the middle of the column decreases the critical buckling load.
7. Eccentricity in loading decreases the critical buckling load.
8. Increasing the slenderness ratio increases the critical buckling load.
9. Increasing the eccentricity ratio increases the normal stress in a column.
10. Material strength governs the failure of short columns and Euler buckling governs the failure of long columns.

vmax
w

λ4EI
------------– λL

2
-------⎝ ⎠

⎛ ⎞sec 1– wL2

8λ2EI
---------------+=

vmax
wEI
P2

----------– L
2
--- P

EI
------⎝ ⎠

⎛ ⎞sec 1– wL2

8P
----------+=

σmax
P
A
---

wEymax

P
------------------ L

2
--- P

EI
------⎝ ⎠

⎛ ⎞sec 1–+=
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11.10 A 30-ft-long hollow square steel column (E = 30,000 ksi) is built into the wall at either end. The column is constructed from

sheet metal and has outer dimensions of 4 in. × 4 in. Determine (a) the slenderness ratio; (b) the critical buckling load; (c) the axial

stress at the critical buckling load.

11.11 A 10 ft long lumber (E = 1,800 ksi) column with a rectangular cross section of 4 in. x 6 in. is pinned at both ends. (a) Determine the
critical buckling load P. (b) What is the next higher buckling load? 

11.12 A 4 m long column is constructed from a steel (E = 210 GPa) sheet of thickness 10 mm. The sheet metal is bent to form a hollow rect-
angular cross section with outer dimension of 120 mm x 80 mm. One end of the column is fixed and the other is a free end as in case 2 of Table
11.1 (a) Determine the critical buckling load P. (b) What is the next higher buckling load? 

11.13 A 12 ft long lumber (E = 1,800 ksi) column with a rectangular cross section of 6 in. x 8 in. is pinned at one end and fixed at the other
as in case 3 of Table 11.1. (a) Determine the critical buckling load P. (b) What is the next higher buckling load?

11.14 A 5 m long column is constructed from a steel (E = 210 GPa) sheet metal of thickness 15 mm. The sheet metal is bent to form a hol-
low rectangular cross section with outer dimension of 120 mm x 90 mm. The ends of the column are fixed as in case 4 of Table 11.1. Determine
the critical buckling load P.

11.15 A 20-ft-long wooden column (E = 1800 ksi) has cross-section dimensions of 8 in. × 8 in. The column is built in at one end and simply
supported at the other end. Determine (a) the slenderness ratio; (b) the critical buckling load; (c) the axial stress at the critical buckling load. 

11.16 A W12 × 35 steel section (see Appendix E) is used for a 21-ft column that is simply supported at each end. Use E = 30,000 ksi and deter-
mine (a) the slenderness ratio; (b) the critical buckling load; (c) the axial stress at the critical buckling load. (d) If roller supports are added at inter-
vals of 7 ft, what would be the critical buckling load? 

11.17 An S200 × 34 steel section (see Appendix E) is used as a 6-m column that is built in at each end. Use E = 200 GPa and determine (a)
the slenderness ratio; (b) the critical buckling load; (c) the axial stress at the critical buckling load. 

11.18 Columns made from alloy will be used in the construction of a frame. The cross section of the columns is a hollow square of 0.125-in.
thickness and outer dimensions of a in. The modulus of elasticity E = 9000 ksi and the yield stress σyield = 90 ksi. Table 11.18 lists the lengths
L and outer square dimensions a. Identify the long and short columns. Assume the ends will be simply supported.

11.19 Columns made from alloy will be used in the construction of a frame. The cross section of the columns is a hollow cylinder of 10-mm
thickness and an outer diameter of d mm. The modulus of elasticity E = 100 GPa and the yield stress σyield = 600 MPa. Table P11.19 lists the
lengths L and outer diameters d. Identify the long and short columns. Assume the ends of the column are built in. 

TABLE P11.18 Column geometric properties 

L
(ft)

a
(in.)

1.0 1.125
1.5 1.500

2.0 1.750
2.5 2.750
3.0 3.000
3.5 3.000
4.0 3.000

TABLE P11.19 Column geometric properties 

L
(m)

d
(mm)

1 60
2 80
3 100
4 150
5 200
6 225
7 250

1
2
--- -in.-thick
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11.20 Three column cross sections are shown in Figure P11.20. The area of each of the three cross sections is equal to A. Determine the
ratios of critical loads Pcr1: Pcr2: Pcr3 assuming (a) the ends are simply supported; (b) the ends are built in. (c) How do you expect the ratios to
change if the end conditions were as in cases 2 and 3 of Table 11.1? 

11.21 Figure P11.21 shows two steel (E = 30,000 ksi, σyield = 30 ksi) bars of a diameter d = in. on which a force F = 750 lb is applied.

Bars AP and BP have lengths LAP = 8 in. and LBP = 10 in. Determine the factor of safety for the assembly. 

11.22 Figure P11.22 shows two steel (E = 30,000 ksi, σyield = 30 ksi) bars of a diameter d = in. on which a force F = 600 lb is applied.

Bars AP and BP have lengths LAP = 7 in. and LBP = 10 in. Determine the factor of safety for the assembly.

11.23 Figure P11.23 shows two copper (E = 15,000 ksi, σyield = 12 ksi) bars of a diameter d = in. on which a force F = 500 lb is applied.

Bars AP and BP have lengths LAP = 7 in. and LBP = 9 in. Determine the factor of safety for the assembly.

11.24 Figure P11.24 shows two (E = 200 GPa, σyield = 200 MPa) bars of a diameter d =10 mm on which a force F = 10 kN is applied. Bars
AP and BP have lengths LAP = 200 mm and LBP = 350 mm. Determine the factor of safety for the assembly.

11.25 Figure P11.25 shows two (E = 200 GPa, σyield = 360 MPa) bars of a diameter d =10 mm on which a force F = 10 kN is applied. Bars
AP and BP have lengths LAP = 200 mm and LBP = 300 mm. Determine the factor of safety for the assembly.

1. Square 3. Equilateral
    triangle

2. Circle
  Figure P11.20

1
4
---

B

F
110° 30°

PA Figure P11.21

1
4
---

  Figure P11.22

B

F

60°

25°
P

A

1
4
---

  Figure P11.23

30�

40�

75�A

F

P

B

F

110°

P

A

B

  Figure P11.24
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11.26 Figure P11.26 shows two (E = 200 GPa, syield = 200 MPa) bars of a diameter d =10 mm on which a force F = 10 kN is applied. Bars
AP and BP have lengths LAP = 200 mm and LBP = 300 mm. Determine the factor of safety for the assembly.

Formulation and solutions 
11.27 (a) Solve the boundary-value problem for case 2 in Table 11.1 and obtain the critical load value Pcr that is given in the table. (b) If
buckling in mode 1 is prevented, then what would be the Pcr value? 

11.28 (a) Solve the boundary-value problem for case 3 in Table 11.1 and obtain the critical load value Pcr that is given in the table. (b) If
buckling in mode 1 is prevented, then what would be the Pcr value? 

11.29 (a) Solve the boundary-value problem for case 4 in Table 11.1 and obtain the critical load value Pcr that is given in the table. (b) If
buckling in mode 1 is prevented, then what would be the Pcr value?

11.30 A torsional spring with a spring constant K is attached at one end of a column, as shown in Figure P11.30. Assume that bending about
the y axis is prevented. (a) Determine the characteristic equation for this buckling problem. (b) Show that for K = 0 and K = ∞ the critical load Pcr

is as given in Table 11.1 for cases 1 and 3, respectively.

11.31 A torsional spring with a spring constant K is attached at one end of a column, as shown in Figure P11.31. Assume that bending about
the y axis is prevented. (a) Determine the characteristic equation for this buckling problem. (b) Show that for K = 0 the critical load Pcr is as given
for case 2 in Table 11.1. (c) For K = ∞ obtain the critical load Pcr.

F

60°
30° P

A

B
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11.32 Consider the column shown in Figure P11.32. (a) Determine the critical buckling in terms of E, I, L, and α. (b) Show that when
α = 0.5, the critical load corresponds to mode 2, as shown in Figure 11.8. 

11.33 For the column shown in Figure P11.33 determine (a) the deflection at x = L; (b) the critical load Pcr  in terms of the modulus of elas-
ticity E, the column length L, the area moment of inertia I, and the force P.

11.34 For the column shown in Figure P11.34 determine (a) the deflection at x = L; (b) the critical load Pcr  in terms of the modulus of elas-
ticity E, the column length L, the area moment of inertia I, and the force P.

11.35 For the column shown in Figure P11.35 determine (a) the deflection at x = L; (b) the critical load Pcr  in terms of the modulus of elas-
ticity E, the column length L, the area moment of inertia I, and the force P.

Design problems
11.36 Steel (E = 210 GPa) rectangular bars of 15 mm x 25 mm cross section form an assembly shown in Figure P11.36. Determine the max-
imum load P that can be applied without buckling of any bar. Use a = 1 m, b = 0.7 m, and c = 1 m. 

11.37 Steel (E = 210 GPa) rectangular bars of 15 mm x 25 mm cross section form an assembly shown in Figure P11.36. Determine the max-
imum load P that can be applied without buckling of any bar. Use a = 1 m, b = 0.7 m, and c = 1.4 m. 

11.38 Steel (E= 30,000 ksi) rectangular bars of 1/2 in. x 1 in. cross section form an assembly shown in Figure P11.38. Determine the maxi-
mum load P that can be applied without buckling of any bar.
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11.39 Steel (E= 30,000 ksi) rectangular bars of 1/2 in. x 1 in. cross section form an assembly shown in Figure P11.39. Determine the maxi-
mum load P that can be applied without buckling of any bar.

11.40 A hoist is constructed using two wooden bars to lift a weight of 5 kips, as shown in Figure P11.40. The modulus of elasticity for wood
E = 1800 ksi and the allowable normal stress is 3.0 ksi. Determine the maximum value of L to the nearest inch that can be used in constructing the hoist.

11.41 Two steel cylinders (E = 30,000 ksi and σyield = 30 ksi) AB and CD are loaded as shown in Figure P11.41. Determine the maximum
load P to the nearest lb, if a factor of safety of 2 is desired. Model the ends of column AB as built in

11.42 A spreader is to be made from an aluminum pipe (E = 10,000 ksi) of  thickness and an outer diameter of 2 in., as shown in Figure

P11.42. The pipe lengths available for design start from 4 ft in 6-in. steps up to 8 ft. The allowable normal stress is 40 ksi. Develop a table for
the lengths of pipe and the maximum force F the spreader can support. 

11.43 Two 200-mm × 50-mm pieces of lumber (E = 12.6 GPa) form a part of a deck that is modeled as shown in Figure P11.43. The allow-
able stress for the lumber is 18 MPa. (a) Determine the maximum intensity of the distributed load w. (b) What is the factor of safety for column
BD corresponding to the answer in part (a)? 
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11.44 Two 200-mm × 50-mm pieces of lumber (E = 12.6 GPa) form a part of a deck that is modeled as shown in Figure P11.44. The allow-
able stress for the lumber is 18 MPa. (a) Determine the maximum intensity of the distributed load w. (b) What is the factor of safety for column
BC corresponding to the answer in part (a)? 

11.45 A rigid bar hinged at point O has a force P applied to it, as shown in Figure P11.45. Bars A and B are made of steel with a modulus of
elasticity E = 30,000 ksi and an allowable stress of 25 ksi. Bars A and B have circular cross sections with areas AA = 1 in.2 and AB = 2 in.2,
respectively. Determine the maximum force P that can be applied.

Stretch yourself
11.46 Show that for a beam with a constant bending rigidity EI, the fourth-order differential equation for solving buckling problems is
given by

(11.13)

where P is a compressive axial force and py is the distributed force in the y direction.

11.47 Using Equation (11.13), solve Example 11.4.

11.48 Show that the critical change of temperature at which the beam shown in Figure P11.48 will buckle is given by the equation below.

where α is the thermal coefficient of expansion and r is the radius of gyration.

11.49 A column with a constant bending rigidity EI rests on an elastic foundation as shown in Figure P11.49. The foundation modulus is k,
which exerts a spring force per unit length of kv. Show that the governing differential equation is given by Equation (11.15). (Hint: See Prob-
lems 7.48 and 11.46.)

11.50 Show that the buckling load for the column on an elastic foundation described in Problem 11.49 is given by the eigenvalues

(11.15)

Note: For n = 1 and k = 0 Equation (11.15) gives the Euler buckling load.
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11.51 For a simply supported column with a symmetric composite cross section, show that the critical load Pcr is given by

(11.16)

where Leff = the effective length of the column, Ei is the modulus of elasticity for the ith material, Ii is the area moment of inertia about the buck-
ling axis, and n is the number of materials in the cross section. [See Equations (6.36) and (11.3a).]

11.52 A composite column has the cross section shown in Figure P11.52. The modulus of elasticity of the outside material is twice that of
the inside material. In terms of E, d, and L, determine the critical buckling load.

11.53 Two strips of material of a modulus of elasticity of 2E are attached to a material with a modulus of elasticity E to form a composite
cross section of the column shown in Figure P11.53. In terms of E, a, and L, determine the critical buckling load. The column is free to buckle
in any direction.

11.3* IMPERFECT COLUMNS

In the development of the theory for axial members and the symmetric bending of beams, we obtained that the condition for
decoupling axial deformation from bending deformation for linear, elastic, and homogeneous material: the applied loads must
pass through the centroid of the cross sections, and the centroids of all cross sections are on a straight line. However, the
requirements for decoupling the axial from the bending problem may not be met for a number of reasons, some of which are
given here:

• The column material may contain small holes, minute cracks, or other material inclusions. Hence the homogeneity
requirement or the requirement that the centroids of all cross sections be on a straight line may not be met. 

• The material processing may cause local strain hardening. Hence the condition of linear and elastic material behavior
across the entire cross section may not be met. 

• The theoretical design centroid and the actual centroid are offset due to manufacturing tolerances.
• Local conditions at the support cause the reaction force to be offset from the centroid.
• The transfer of loads from one member to another may not occur at the centroid.

This partial list can be considered as imperfections in the column, which cause the application of axial loads to be offset
from the centroid of the cross section. This offset loading is termed eccentric loading on columns. In this section we study the
impact of eccentricity in loading on buckling.

Figure 11.17a shows a simply supported column on which an eccentric compressive axial load is applied at a distance e
from the centroid of the cross section. Figure 11.17b shows the free-body diagram of the column segment. By balancing the

Pcr

π2 EiIii=1
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∑
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2
-------------------------------=

  Figure P11.52
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 Figure 11.17 Eccentrically loaded column.
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moment at point A we obtain Mz + P(v + e) = 0. Substituting the moment–curvature relationship of Equation (7.1), we obtain
the differential equation

(11.17)

where λ is given by Equation (11.3c). The boundary conditions are that displacements at x = 0 and x = L are zero, as given by
Equation (11.4a) and (11.4b). The homogeneous solution to Equation (11.17) is given by Equation (11.5), that is, vH(x) =
A cos λx + B sin λx. The particular solution to Equation (11.17) is vP(x) = –e. Thus the total solution vH + vP is

(11.18)
From boundary condition (11.4a) we obtain

(11.19a)

From boundary condition (11.4b) we obtain

(11.19b)

(11.19c)

Substituting for A and B in Equation (11.18), we obtain the deflection as

(11.20)

As λL/2 → π/2, the function tan(λL/2) → ∞ and the displacement function v(x) becomes unbounded. Thus the critical load
value can be found by substituting for λ in the equation λL/2 = π/2 to obtain the same critical value as given by Equation
(11.9). In other words, the buckling load value does not change with the eccentricity of the loading. We will make use of this
observation to extend our formulas to other types of support conditions.

In the eigenvalue approach discussed in Section 11.2, we were unable to determine the displacement function because we
had an undetermined constant B in Equation (11.10). But here the displacement function is completely determined by Equa-
tion (11.20). The maximum deflection (by symmetry) will be at the midpoint. Substituting  x = L/2 into Equation (11.20), we
obtain

(11.21a)

Using trigonometric identities, this equation can be simplified as vmax = e[sec (λL/2) – 1]. Substituting for λ from Equation
(11.3c), we obtain

(11.21b)

We can write

(11.21c)

We obtain the maximum deflection equation as

(11.22)

The maximum normal stress is the sum of compressive axial stress and maximum compressive bending stress:

(11.23a)
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The maximum bending moment will be at the midpoint of the column, and its value is Mmax = P(e + vmax). Substituting for vmax

we obtain 

(11.23b)

Equation (11.23b) was derived for simply supported columns. We can extend the results to other supports by changing the
length of the column to the effective length Leff, as given in Table 11.1. We also substitute ymax = c, where c represents the max-
imum distance from the buckling (bending) axis to a point on the cross section. Substituting I = Ar2, where A is the cross-sec-
tional area and r is the radius of gyration, we obtain

(11.24)

Equation (11.24) is called the secant formula. The quantity ec/r2 is called the eccentricity ratio. 
By equating σmax to failure stress σfail in Equation (11.24), we obtain the failure envelope for an imperfect column. The

failure envelope equation can be written in nondimensional form as

(11.25)

Equation (11.25) can be plotted for different materials, as shown in Figure 11.18. These curves can be used for metric as well
for U.S. customary units, since the variables used in creating the plots are nondimensional. The curves can be used for any
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 Figure 11.18 Failure envelopes for imperfect columns.
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material that has the same value for σyield/E. The failure stress in the cases of steel and aluminum would be the yield stress
σyield, whereas for wood it would be the ultimate stress σult. The curves can also be used for different end conditions by using
the appropriate Leff as given in Table 11.1. 

EXAMPLE 11.5

A wooden box column (E = 1800 ksi) is constructed by joining four pieces of lumber together, as shown in Figure 11.19. The load
P = 80 kips is applied at a distance of e = 0.667 in. from the centroid of the cross section. (a) If the length is L = 10 ft, what are the
maximum stress and the maximum deflection? (b) If the allowable stress is 3 ksi, what is the maximum permissible length L to the
nearest inch? 

PLAN

The cross-sectional area A, the area moment of inertia I, the radius of gyration r, and the maximum distance c from the bending (buck-
ling) axis can be found from the cross-section dimensions. The effective length is the actual length L as the column is pin held at each
end. (a) Substituting Leff = 120 in. and the values of the other variables into Equations (11.22) and (11.24), we can find the maximum
stress and the maximum deflection. (b) Equating σmax in Equation (11.24) to 3 ksi and substituting the remaining variables, we find the
length L. 

SOLUTION

From the given cross section, the cross-sectional area A, the area moment of inertia I, and the radius of gyration r can be found:

(E1)

(E2)

(a) Since the column is pinned at both ends, Leff = L = 10 ft = 120 in. Substituting Leff, I, and E = 1800 ksi into Equation (11.11) give the
critical buckling load:

(E3)

Substituting e = 0.667in., P = 80 kips, and Equation (E3) into Equation (11.22), we obtain the maximum deflection,

(E4)

ANS. vmax = 0.21 in.

Substituting c = 4 in., e = 0.667 in., r = 2.582 in., P = 80 kips, E = 1800 ksi, and A = 48 in.2 into Equation (11.24), we obtain the maxi-
mum normal stress,

(E5)

ANS. σmax = 2.5 ksi (C)

(b) Substituting σmax = 3 ksi, c = 4 in., e = 0.667 in., r = 2.582 in., P = 80 kips, E = 1800 ksi, and A = 48 in.2 into Equation (11.24), we
can find Leff = L in. can be found,

(E6)

(E7)

Rounding downward, the maximum permissible length is: thus L = 177 in.
ANS. L = 177 in.

  Figure 11.19 Eccentrically loaded box column.
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COMMENTS

1. The axial stress P/A = (80 kips)/(48 in.2) = 1.667 ksi, but the normal stress due to bending from eccentricity causes the normal stress
to be significantly higher, as seen by the value of σmax.

2. If the right end of the column shown in Figure 11.19 were built in rather than held by a pin, then from case 3 in Table 11.1, Leff = 0.7L
= 84 in. Using this value, we can find Pcr = 805.7 kips, vmax = 0.091 in., and σmax = 2.42 ksi. 

3. In Equation (E7) we rounded downward, as shorter columns will result in a stress that is less than allowable.

EXAMPLE 11.6

A wooden box column (E = 1800 ksi) is constructed by joining four pieces of lumber together, as shown in Figure 11.19. The ultimate
stress is 5 ksi. Determine the maximum load P that can be applied.

PLAN

The eccentricity ratio and the slenderness ratio can be found using the values of the geometric quantities calculated in Example 11.5.
Noting that σult/E = 0.0028, the failure envelopes for wood that are shown in Figure 11.18 can be used and (P/A)/σult can be found, from
which the maximum load P can be determined.

SOLUTION

From Equation (E2) in Example 11.5, r = 2.582 in. Thus the slenderness ratio Leff/r = (120 in.)/(2.582 in.) = 46.48. From Figure 11.19,
c = 4 in. and e = 0.667 in. Thus the eccentricity ratio ec/r2 = 0.400.

For a slenderness ratio of 46.48 and an eccentricity ratio of 0.4, we estimate the value of (P/A)/σult = 0.6 from the failure envelope
for wood in Figure 11.18. Substituting σult = 5 ksi and A = 48 in.2, we obtain the maximum load Pmax = (0.6) (5 ksi) (48in.2).

ANS. Pmax = 144 kips

COMMENT

1. If we let x represent (P/A)/σult and substitute the remaining variables in Equation (11.25), we obtain the following nonlinear equation:

 The root of the equation can be found using a numerical method such as discussed in Section B.2.2.
The value of the root to the third-place decimal is 0.593, which would yield a value of Pmax = 142.3 kips, a difference of 1.18% from
that reported in our example. The difference is small and an acceptable engineering approximation. Use of the plots in Figure 11.18
was a quick way of finding the load value with reasonable engineering approximation.

PROBLEM SET 11.3

Imperfect columns
11.54 A column built in on one end and free at the other end has a load that is eccentrically applied at a distance e from the centroid, as
shown in Figure P11.54. Show that the deflection curve is given by the equation below.

where λ is as given by Equation (11.3c). 

11.55 On the cylinder shown in Figure P11.55 the applied load P = 3 kips, the length L = 5 ft, and the modulus of elasticity
E = 30,000 ksi. What are the maximum stress and the maximum deflection? 
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  Figure P11.54
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11.56 On the cylinder shown in Figure P11.55 the applied load P = 3 kips and the modulus of elasticity E = 30,000 ksi. If the allow-
able normal stress is 8 ksi, what is the maximum permissible length L of the cylinder? 

11.57 The length of the cylinder shown in Figure P11.55 is L = 5 ft. The yield stress of steel used in the cylinder is 30 ksi, and the modulus
of elasticity E = 30,000 ksi. Determine the maximum load P that can be applied. Use the plot for steel in Figure 11.18. 

11.58 On the column shown in Figure P11.58 the applied load P = 100 kN, the length L = 2.0 m, and the modulus of elasticity
E = 70 GPa. What are the maximum stress and the maximum deflection?

11.59 On the column shown in Figure P11.58 the applied load P = 100 kN and the modulus of elasticity E = 70 GPa. If the allowable
normal stress is 250 MPa, what is the maximum permissible length L of the column? 

11.60 The length of the column shown in Figure P11.58 is L = 2.0 m. The yield stress of aluminum used in the column is 280 MPa, and the
modulus of elasticity E = 70 GPa. Determine the maximum load P that can be applied. Use the plot for aluminum in Figure 11.18. 

11.61 A wide-flange W8 × 18 member is used as a column, as shown in Figure P11.61. The applied load P = 20 kips, the length L = 9 ft,
and the modulus of elasticity E = 30,000 ksi. What are the maximum stress and the maximum deflection? 

11.62 On the column shown in Figure P11.61 the applied load P = 20 kips and the modulus of elasticity E = 30,000 ksi. If the allow-
able normal stress is 24 ksi, what is the maximum permissible length L of the column? 

11.63 The length of the column shown in Figure P11.61 is L = 9 ft. The yield stress of steel is 30 ksi, and the modulus of elasticity E =
30,000 ksi. Determine the maximum load P that can be applied. Use the plot for steel in Figure 11.18. 

Stretch yourself
In Problems 11.64 and 11.65, the critical stress in intermediate columns is between yield stress and ultimate stress. The tangent modulus theory of
buckling accounts for it by replacing the modulus of elasticity by the tangent modulus of elasticity (see Figure 3.7), that is,

(11.26)

where Et is the tangent modulus, which depends on the stress level Pcr/A. Using an iterative trial and error procedure and Equation (11.26), the
critical buckling load can be determined.

11.64 A simply supported 6-ft pipe has an outside diameter of 3 in. and a thickness of in. The pipe material has the stress–strain curve

shown in Figure P11.64. Using Equation (11.26), determine the critical buckling load.

  Figure P11.58
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11.65 A square box column is constructed from a sheet of 10-mm thickness. The outside dimensions of the square are 75 mm × 75 mm and
the column has a length of 0.75 m. The material stress–strain curve is approximated as shown in Figure P11.65. Using Equation (11.26), deter-
mine the critical buckling load.

11.66 A column that is pin held at its ends has a small initial curvature, which is approximated by the sine function shown in Figure P11.66.
Show that the elastic curve of the column is given by the equation below.

11.67 In double modulus theory, also known as reduced modulus theory for intermediate columns, it is recognized that the bending action
during buckling increases the compressive axial stress on the concave side of the beam but decreases the compressive stress on the convex side
of the beam. Thus the use of the tangent modulus of elasticity Et is appropriate on the concave side, but on the convex side of the beam it may
be better to use the original modulus of elasticity. Modeling the cross section material with the two moduli Et and E and using Equation (11.26),
show

(11.27)

where Er is the reduced modulus of elasticity, I1 and I2 are the moments of inertia of the areas on the concave and convex sides of the axis passing

through the centroid, and I is the moment of inertia of the entire cross section. 

Computer problems
11.68 A circular marble column of 2-ft diameter and 20-ft length has a load P applied to it at a distance of 2 in. from the center. The modulus
of elasticity is 8000 ksi and the allowable stress is 20 ksi. Determine the maximum load P the column can support, assuming that both ends are
(a) pinned; (b) built in.

11.69 Determine the maximum load P to the nearest newton in Problem 11.60.

11.70 Determine the maximum load P to the nearest pound in Problem 11.63.
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MoM in Action: Collapse of World Trade Center

On September 11, 2001, at 8:46 A.M, five terrorists flew a plane (Figure 11.20a) containing 10,000 gallons of fuel 
into tower 1 of the World Trade Center (WTC 1). Seventeen minutes later, five other terrorists flew a second plane con-
taining 9,100 gallons of fuel into tower 2 (WTC 2). Within an hour, the floors of WTC 2 started collapsing vertically 
downward, and WTC 1 collapsed just 29 minutes later. A total of 2749 people apart from the terrorists died that day in 
New York. It is a tragic story of how social forces affect engineering design.

The construction of WTC complex began in 1968. The twin towers were to be the symbol of world commerce and 
for years the world’s tallest buildings, at 110 stories each. Their innovative design maximized usable space by having all 
supporting columns only on the perimeter of each floor. There were 4 major structural subsystems: (i) the exterior wall 
(Figure 11.20b), with 59 columns on each side; (ii) a rectangular inner core of 47 columns; (iii) a system of bridging steel 
trusses (Figure 11.20c) on each floor, connecting the exterior wall to the inner core using angle clips. Viscoelastic dampers 
reduced the swaying motion on higher floors due to wind; and (iv) a truss system between 107th and 110th floor—further 
bridged the inner core to the exterior wall. 

The exterior wall (like flanges in beam cross section increase area moment of inertia) was designed to resist the 
force of 140-mph hurricane winds. The inner core, like an axial column, supported most of the weight of building, equip-
ment, and people. Insulation on the steel and a sprinkler system in the event of fire met building codes at that time. The 
design even planned for the impact of an airliner lost in fog, and it stood long enough so that most of the 14,500 people in 
the towers escaped that morning. But it was not designed for a Molotov cocktail of 10,000 gallons of jet fuel. 

Even so, it took several factors to initiate the collapse. First, the angle clips on the exterior wall of several floors—
at the height of plane—broke, transferring the floors’ weight as compressive loads to the inner core. Second, the breaking 
of the clips in turn removed elastic support from the core column, decreasing the critical buckling loads (see Figure 11.8). 
Third, the temperature increase from burning fuel introduced another mechanism of buckling failure (see Problem 11.48). 
Finally, the insulation of the inner core on the floors of impact broke, exposing the steel to high temperatures. This signif-
icantly decreased the modulus of elasticity, the critical buckling load, and the ultimate strength. The towers would have 
survived the first three failures. But the design did not take into account prolonged high temperature and its impact on the 
stiffness and strength of steel. No one could imagine a fuel-laden plane deliberatively flown into a building. 

The floors suffering a direct impact buckled after nearly an hour of intense fire, and the floors above started falling 
on the weakened floors below. The moving mass of the floors gathered momentum, lending their downward motion to the 
floors below.

The WTC towers were well designed for the physical forces conceivable at the time. New skyscraper designs will 
incorporate greater insulation on the steel beams and columns to counter future threats. A collapse happened, but it will hap-
pen no more.
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  Figure 11.20 (a) World Trade Center Towers; (b) Plan form; (c) Floor.
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*11.4 CONCEPT CONNECTOR

As with the deflection of beams (Chapter 7), mathematicians played a key role in developing the theory of buckling. The his-
tory of buckling also shows that original ideas are not enough if the ideas cannot be communicated to others. The importance
to engineering of oral and written skills in technical communications is a thus lesson over two hundred years old.

11.4.1 History: Buckling

Leonard Euler (1707–1782) is one of the most prolific mathematicians who ever lived (Figure 11.21). Born in Basel, he went
to the University of Basel, then renowned for its research in mathematics. After studying under John Bernoulli (see Section
7.6), he started work in 1727 at the Russian Academy at St. Petersburg, where he developed analytical methods for solving
mechanics problems. At the invitation of King Frederick II of Prussia, he moved to Berlin in 1741, where he wrote his book-
length Introduction to Calculus, Differential Calculus, and Integral Calculus, in addition to his remarkable original contribu-
tions to mathematics. In 1766, Catherine II, the empress of Russia, wooed him back to St. Petersburg. Even as he was going
blind from cataract, he continued his prolific publications with the help of assistants. In fact, with a bibliography that runs to
866 entries, one could easily miss his pioneering insight into buckling and the formula he derived [Equation (11.9)].

Even after Euler, the early development of buckling was primarily mathematical. Joseph-Louis Lagrange (1736–1813),
another pioneer in the establishment of analytical methods for mechanics (Figure 11.21), took the next step. He developed a
complete set of buckling loads and the associated buckling modes given by Equations ((11.8) and (11.10). Columns with
eccentric loads (Problem 11.54) and columns with initial curvatures (Problem 11.66) were first formulated and studied by
Thomas Young (1773–1829). Young was also the first to consider columns of variable cross section. Unfortunately, he was
neither a good teacher nor a writer, and much of his work went unappreciated. As his biographer, Lord Rayleigh, said,3

“Young.... from various causes did not succeed in gaining due attention from his contemporaries. Positions that he had already
occupied were in more than one instance reconquered by his successors at great expense of intellectual energy.”

There was another reason why in the early 1800s developments in column buckling were unappreciated by the practicing
engineer. Euler buckling did not accurately predict compression failure in the structural members then in use. The effects of
end conditions and imperfections, as well as the formula’s range of validity, were not yet understood It took the experiments
of Eaton Hodgkinson in 1840 on cast-iron columns to give new life to the Euler buckling theory. In 1845, Anatole Henri
Ernest Lamarle, a French engineer, proposed correctly that the Euler formula should be used below the proportional limit,
while experimentally determined formulas should be used for shorter columns. 

In 1889 F. Engesser, a German engineer, proposed the tangent modulus theory (see Problems 11.64 and 11.65), in which
the elastic modulus is replaced by the tangent modulus of elasticity when proportional stress is exceeded. Also in 1889, the
French engineer A. G. Considère, based on a series of tests, proposed that if buckling occurs above yield stress, then the elastic
modulus in the Euler formula should be replaced by a reduced modulus of elasticity, between the elastic modulus and the tan-
gent modulus. On learning of Considère’s work, Engesser incorporated the suggestion into his reduced modulus theory, also
known as double modulus theory (see Problem 11.66). Yet the two approaches competed for almost 50 years. In 1905 J. B.
Johnson, C. W. Bryan, and F. E. Turneaure recommended a modification of the Euler formula for steel columns, using an

3Quotation is from S. P. Timoshenko, History of Strength of Materials.

  Figure 11.21 Buckling theory pioneers.
Leonard Euler. Joseph-Louis Lagrange.
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experimentally determined constant for different supports. It was the beginning of the concept of effective length to account
for different end conditions, and their text on Theory and Practice of Modern Framed Structures remained in print for ten edi-
tions. In 1946 F. R. Shanley, an American aeronautical engineering professor, refined these theories and finally resolved “the
column paradox,” as he called it, that had separated proponents of the reduced modulus theory and the tangent modulus the-
ory. 

For all its refinements and limitations, the Euler buckling formula is still used three centuries later for column design and
is still valid for long columns with pin-supported ends. Such is the power of logical thinking. 

11.5 CHAPTER CONNECTOR

In past chapters, our analysis was based on the equilibrium of forces and moments. This chapter emphasized that not only
equilibrium, but the stability of the equilibrium is an important consideration in design. There are many types of instabilities.
We studied how coupled axial and bending deformation, for example, can produce buckling in columns. This case emphasizes
the need for caution in decoupling phenomena for ease of understanding.

All our theories have relied on an equilibrium approach. An alternative approach can be used to replace the last link in the
logic Figure 3.12. Though our theories will have the same assumptions and limitations, the energy method has a very different
perspective from equilibrium methods, as discussed in the next and last chapter of this book.
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POINTS AND FORMULAS TO REMEMBER

• Buckling is the instability in equilibrium of a structure due to compressive forces or stresses. 
• Structural members that support compressive axial loads are called columns.
• Study of buckling as a bifurcation problem requires determining the critical buckling load at the point where two or more

solutions exist for deformation.
• Study of buckling by the energy method requires determining the critical buckling load at the point the potential energy

changes from a concave to a convex function.
• Study of buckling as an eigenvalue problem requires determining the critical buckling load at the point where a nontrivial

solution exists for bending deformation due to axial loading.
• In snap buckling the structure snaps (or jumps) from one equilibrium configuration to a very different equilibrium config-

uration at the critical buckling load.
• Local buckling of thin structural members occurs due to compressive stresses.
• Buckling of columns occurs about an axis that has a minimum value of area moment of inertia.

• The Euler buckling load is (11.9)

where Pcr is the critical buckling load, E is the modulus of elasticity, L is the length of the column, and I is the minimum
area moment of inertia of the cross section.

• Equation (11.9) is valid only for elastic columns with pin-held ends.
• The effect of supports at the end can be incorporated by defining an effective length Leff for a column and calculating the

critical buckling load from

(11.11)

• The Slenderness ratio is defined as Leff/r, where r is the radius of gyration about the buckling axis.
• The slenderness ratio at which the maximum normal stress is equal to the yield stress separates the short columns from

the long columns in Euler buckling.
• The failure of short columns is governed by material strength.
• The failure of long columns is governed by Euler buckling loads.
• Eccentricity in loading does not affect the critical buckling load, but the maximum normal stress becomes significantly

larger than the axial stress due to the addition of bending normal stress,

(11.22) (11.24)

where vmax is the maximum deflection, e is the eccentricity in loading, P is the applied axial load, Pcr is the Euler buckling
load for the column, σmax is the maximum normal stress in the column, r is the radius of gyration about the buckling
(bending) axis, c is the maximum distance perpendicular to the buckling (bending) axis, A is the cross-sectional area, and
Leff is the effective length of the column.

• The eccentricity ratio is defined as ec/r2.

Pcr
π2EI

L2
-----------=

Pcr
π2EI
Leff

2
-----------=

vmax e π
2
--- P

Pcr
------⎝ ⎠

⎛ ⎞ 1–sec= σmax
P
A
--- 1 ec

r2
-----  

Leff

2r
------- P

EA
-------⎝ ⎠

⎛ ⎞sec+=



A  529Mechanics of Materials: Statics reviewM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

 APPENDIX A

STATICS REVIEW

Statics is the foundation course for mechanics of materials. This appendix briefly reviews statics from the perspective of this
course. It presupposes that you are familiar with the basic concepts so if you took a course in statics some time ago, then you
may need to review your statics textbook along with this brief review. Review exams at the end of this appendix can also be used
for self-assessment. 

A.1 TYPES OF FORCES AND MOMENTS

We classify the forces and moments into three categories: external, reaction, and internal.

A.1.1 External Forces and Moments

External forces and moments are those that are applied to the body and are often referred to as the load on the body. They are
assumed to be known in an analysis, though sometimes we carry external forces and moments as variables. In that way we may
answer questions such these: How much load can a structure support? What loads are needed to produce a given deformation? 

Surface forces and moments are external forces (moments), which act on the surface and are transmitted to the body by
contact. Surface forces (moments) applied at a point are called concentrated forces (moment or couple). Surface forces
(moments) applied along a line or over a surface are called distributed forces (moments).

Body forces are external forces that act at every point on the body. Body forces are not transmitted by contact. Gravi-
tational forces and electromagnetic forces are two examples of body forces. A body force has units of force per unit vol-
ume.

A.1.2 Reaction Forces and Moments

Other forces and moments are developed at the supports of a body to resist movement due to the external forces (moments). These
reaction forces (moments) are usually not known and must be calculated before further analysis can be conducted. Three princi-
ples are used to decide whether there is a reaction force (reaction moment) at the support:

1. If a point cannot move in a given direction, then a reaction force opposite to the direction acts at that support point. 
2. If a line cannot rotate about an axis in a given direction, then a reaction moment opposite to the direction acts at that

support. 
3. The support in isolation and not the entire body is considered in making decisions about the movement of a point or

the rotation of a line at the support. Exceptions to the rule exist in three-dimensional problems, such as bodies sup-
ported by balanced hinges or balanced bearings (rollers). These types of three-dimensional problems will not be cov-
ered in this book.

Table C.1  shows several types of support that can be replaced by reaction forces and moments using the principles
described above. 

A.1.3 Internal Forces and Moments

A body is held together by internal forces. Internal forces exist irrespective of whether or not we apply external forces. The
material resists changes due to applied forces and moments by increasing the internal forces. Our interest is in the resistance the
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material offers to the applied loads—that is, in the internal forces. Internal forces always exist in pairs that are equal and opposite
on the two surfaces produced by an imaginary cut. 

The internal forces are shown in Figure A.1. (In this book, all internal forces and moments are printed in bold italics:
N = axial force; Vy, Vz = shear force; T = torque; My, Mz = bending moment.) They are defined as follows:

• Forces that are normal to the imaginary cut surface are called normal forces. The normal force that points away from
the surface (pulls the surface) is called tensile force. The normal force that points into the surface (pushes the surface)
is called compressive force.

• The normal force acting in the direction of the axis of the body is called axial force.
• Forces that are tangent to the imaginary cut surface are called shear forces. 
• Internal moments about an axis normal to the imaginary cut surface are called torsional moments or torque. 
• Internal moments about an axis tangent to the imaginary cut are called bending moments.

A.2 FREE-BODY DIAGRAMS

Newton’s laws are applicable only to free bodies. By “free” we mean that if a body is not in equilibrium, it will move. If there are
supports, then these supports must be replaced by appropriate reaction forces and moments using the principles described in Sec-
tion A.1.2. The diagram showing all the forces acting on a free body is called the free-body diagram.

Additional free-body diagrams may be created by making imaginary cuts for the calculation of internal quantities. Each
imaginary cut will produce two additional free-body diagrams. Either of the two free-body diagrams can be used for calculat-
ing internal forces and moments.

A body is in static equilibrium if the vector sum of all forces acting on a free body and the vector sum of all moments
about any point in space are zero:

(A.1)

where  represents summation and the overbar represents a vector quantity. In a three-dimensional Cartesian coordinate sys-

tem the equilibrium equations in scalar form are 

(A.2)

Equations (A.2) imply that there are six independent equations in three dimensions. In other words, we can at most solve for six
unknowns from a free-body diagram in three dimensions.

In two dimensions the sum of the forces in the z direction and the sum of the moments about the x and y axes are auto-
matically satisfied, as all forces must lie in the x, y plane. The remaining equilibrium equations in two dimensions that have to
be satisfied are 

(A.3)

Equations (A.3) imply that there are three independent equations per free-body diagram in two dimensions. In other words, we
can at most solve for three unknowns from a free-body diagram in two dimensions.

The following can be used to reduce the computational effort:

Vz

Vy

My

Mz

N
Tx

y

z O

  Figure A.1 Internal forces and moments.

F∑ 0 M∑ 0==

 ∑

Fx∑ 0 Fy∑ 0 Fz∑ 0===

Mx∑ 0 My∑ 0 Mz∑ 0===

Fx∑ 0 Fy∑ 0 Mz∑ 0===
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• Balance the moments at a point through which the unknown forces passes. These forces do not appear in the moment
equation. 

• Balance the forces or moments perpendicular to the direction of an unknown force. These forces do not appear in the
equation.

A structure on which the number of unknown reaction forces and moments is greater than the number of equilibrium
equations (six in three dimensions and three in two dimensions) is called a statically indeterminate structure. Statically
indeterminate problems arise when more supports than needed are used to support a structure. Extra supports may be used for
safety considerations or for the purpose of increasing the stiffness of a structure. We define the following:

Degree of static redundancy = number of unknown reactions − number of equilibrium equations. (A.4)

To solve a statically indeterminate problem, we have to generate equations on the displacement or rotation at the support
points. A mistake sometimes made is to take moments at many points in order to generate enough equations for the unknowns.
A statically indeterminate problem cannot be solved from equilibrium equations alone. There are only three independent equa-
tions of static equilibrium in two dimensions and six independent equations of static equilibrium in three dimensions. Additional
equations must come from displacements or rotation conditions at the support. 

The number of equations on the displacement or rotation needed to solve a statically indeterminate problem is equal to the
degree of static redundancy. There are two exceptions: (i) With symmetric structures with symmetric loadings by using the argu-
ments of symmetry one can reduce the total number of unknown reactions. (ii) Pin connections do not transmit moments from one
part of a structure to another. Thus it is possible that a seemingly indeterminate pin structure may be a determinate structure. We will
not consider such pin-connected structures in this book.

A structural member on which there is no moment couple and forces act at two points only is called a two-force mem-
ber. Figure A.2 shows a two-force member. By balancing the moments at either point A or B we can conclude that the result-
ant forces at A and B must act along the line joining the two points. Notice that the shape of the member is immaterial.
Identifying two-force members by inspection can save significant computation effort.

A.3 TRUSSES

A truss is a structure made up of two-force members. The method of joints and the method of sections are two methods
of calculating the internal forces in truss members. 

In the method of joints, a free-body diagram is created by making imaginary cuts on all members joined at the pin. If a force
is directed away from the pin, then the two-force member is assumed to be in tension; and if it is directed into the pin, then the
member is assumed to be in compression. By conducting force balance in two (or three) dimensions two (or three) equations per
pin can be written. 

In the method of sections an imaginary cut is made through the truss to produce a free-body diagram. The imaginary cut can
be of any shape that will permit a quick calculation of the force in a member. Three equations in two dimensions or six equations
in three dimensions can be written per free-body diagram produced from a single imaginary cut. 

A zero-force member in a truss is a member that carries no internal force. Identifying zero-force members can save sig-
nificant computation time. Zero-force members can be identified by conducting the method of joints mentally. Usually if two
members are collinear at a joint and if there is no external force, then the zero-force member is the member that is inclined to
the collinear members.

A

B

(a)

FAB
  Figure A.2 Two-force member.

( )

A

FAB

FAB

B

(b)
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A.4 CENTROIDS

The y and z coordinates of the centroid of the two-dimensional body shown in A.3 are defined as 

(A.5)

The numerator in Equations (A.5) is referred to as the first moment of the area. If there is an axis of symmetry, then the area
moment about the symmetric axis from one part of the body is canceled by the moment from the symmetric part, and hence we
conclude that the centroid lies on the axis of symmetry.

Consider a coordinate system fixed to the centroid of the area. If we now consider the first moment of the area in this coor-
dinate system and it turns out to be nonzero, then it would imply that the centroid is not located at the origin, thus contradicting
our starting assumption. We therefore conclude that the first moment of the area calculated in a coordinate system fixed to the
centroid of the area is zero. 
The centroid for a composite body in which the centroids of the individual bodies are known can be calculated from Equations (A.6).

 (A.6)

where and are the known coordinates of the centroids of the area Ai. Table C.2  shows the locations of the centroids of

some common shapes that will be useful in solving problems in this book.

A.5 AREA MOMENTS OF INERTIA

The area moments of inertia, also referred to as second area moments, are defined as

 (A.7)

The polar moment of inertia is defined as in Equation (A.7) with the relation to Iyy and Izz deduced using A.3:

(A.8)

If we know the area moment of inertia in a coordinate system fixed to the centroid, then we can compute the area
moments about an axis parallel to the coordinate axis by the parallel-axis theorem illustrated in Figure A.4 and are given by 

(A.9)

where the subscript c refers to the axis fixed to the centroid of the body. The quantities y2, z2, r2, A, dy
2, dz

2, and d2 are always pos-
itive. From Equations (A.7) through (A.9) we conclude that Iyy, Izz, and J are always positive and minimum about the axis pass-
ing through the centroid of the body. However, Iyz can be positive or negative, as y, z, dy, and dz can be positive or negative in
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  Figure A.3 Area moments.
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Equation (A.7). If either y or z is an axis of symmetry, then the integral in Iyz on the positive side will cancel the integral on the
negative side in Equation (A.7), and hence Iyz will be zero. We record the observations as follows:

• Iyy, Izz, and J are always positive and minimum about the axis passing through the centroid of the body.
• If either the y or the z axis is an axis of symmetry, then Iyz will be zero.

The moment of inertia of a composite body in which we know the moments of inertia of the individual bodies about its centroid
can be calculated from Equation (A.10).

(A.10)

where and are the area moments of inertia about the axes passing through the centroid of the ith body. Table

C.2  shows the area moments of inertia about an axis passing through the centroid of some common shapes that will be useful in
solving the problems in this book.

The radius of gyration  about an axis is defined by

(A.11)

where I is the area moment of inertia about the same axis about which the radius of gyration  is being calculated. 

A.6 STATICALLY EQUIVALENT LOAD SYSTEMS

Two systems of forces that generate the same resultant force and moment are called statically equivalent load systems.
If one system satisfies the equilibrium, then the statically equivalent system also satisfies the equilibrium. The statically
equivalent systems simplifies analysis and is often used in problems with distributed loads.

A.6.1 Distributed Force on a Line

Let p(x) be a distributed force per unit length, which varies with x. We can replace this distributed force by a force and moment
acting at any point or by a single force acting at point xc, as shown in Figure A.5.

  Figure A.5 Static equivalency for (a) distributed force on a line. (b) uniform distribution. (c) linear distribution. 

For two systems in Figure A.5a to be statically equivalent, the resultant force and the resultant moment about any point (ori-
gin) must be the same.

(A.12)

The force F is equal to the area under the curve and xc represents the location of the centroid of the distribution. This is used in
replacing a uniform or a linearly varying distribution by a statically equivalent force, as shown in Figure A.5b and c. 
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Two statically equivalent systems are not identical systems. The deformation (change of shape of bodies) in two stati-
cally equivalent systems is different. The distribution of the internal forces and internal moments of two statically equivalent
systems is different. The following rule must be remembered: 

• The imaginary cut for the calculation of internal forces and moments must be made on the original body and not on the 
statically equivalent body.

A.6.2 Distributed Force on a Surface

Let σ(y, z) be a distributed force per unit area that varies in intensity with y and z. We would like to replace it by a single force,
as shown in Figure A.6. 

For the two systems shown in Figure A.6 to be statically equivalent load systems, the resultant force and the resultant
moment about the y axis and on the z axis must be the same.

(A.13)

The force F is equal to the volume under the curve. yc and zc represent the locations of the centroid of the distribution, which can
be different from the centroid of the area on which the distributed force acts. The centroid of the area depends only on the geom-
etry of that area. The centroid of the distribution depends on how the intensity of the distributed load σ(y, z) varies over the area.

Figure A.7 shows a uniform and a linearly varying distributed force, which can be replaced by a single force at the centroid of
the distribution. Notice that for the uniformly distributed force, the centroid of the distributed force is the same as the centroid of the
rectangular area, but for the linearly varying distributed force, the centroid of the distributed force is different from the centroid of
the area. If we were to place the equivalent force at the centroid of the area rather than at the centroid of distribution, then we would
also need a moment at that point.

dF � �(y, z) dA

�(y, z) force/area

F

yc

zc

  Figure A.6 Static equivalency for distributed force on a surface.
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  Figure A.7 Statically equivalent force for uniform and linearly distributed forces on a surface.
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Quick Test A.1 Time: 15 minutes/Total: 20 points

Grade yourself using the answers and points given in Appendix G.

1. Three pin-connected structures are shown: (a) How many two-force members are there in each structure? (b) Which
are the two-force member

2. Identify all the zero-force members in the truss shown.

3. Determine the degree of static redundancy in each of the following structures and identify the statically determinate
and indeterminate structures. Force P, and torques T1 and T2 are known external loads.

Structure 1

M

p

CB

A D

Structure 2

p

A

B

C D

E

Structure 3

P

A

B

C D

4 kN

2 kN

30�

3 m

30�

3 m3 m3 m

F

E
DCB

A

G

H

Structure 1 Structure 2

Structure 3

Rigid

P

P

Beam

Structure 4

P

Beam

T1 T2
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STATIC REVIEW EXAM 1

To get full credit, you must draw a free-body diagram any time you use equilibrium equations to calculate forces or moments. Grade yourself using the
solution and grading scheme given in Appendix D. Each question is worth 20 points.

1. Determine (a) the coordinates (yc, zc) of the centroid of the cross section shown in Figure R1.1; (b) the area moment of inertia about an axis passing
through the centroid of the cross section and parallel to the z axis. 

2. A linearly varying distributed load acts on a symmetric T section, as shown in Figure R1.2. Determine the force F and its location (xF, yF coordi-
nates) that is statically equivalent to the distributed load.

3. Find the internal axial force (indicate tension or compression) and the internal torque (magnitude and direction) acting on an imaginary cut through point E
in Figure R1.3. 

4. Determine the internal shear force and the internal bending moment acting at the section passing through A in Figure R1.4

5. A system of pipes is subjected to a force P, as shown in Figure P1.5 By inspection (or by drawing a free-body diagram) identify the zero and non-
zero internal forces and moments. Also indicate in the table the coordinate directions in which the internal shear forces and internal bending moments act

10 mm

z

50 mm

10 mm

60 mm

y

Figure R1.1

Figure R1.2

8 
in2.
5 

in

6 in

3 in

x

y

10 ksi

10 ksi

x

2 ft ki

3 ft�kips

3.5 kips

1 kip

1.5 kips

4 kips

4 kips

1.5 kips

1 kip

3.5 kips

4 ft

2 ft

3 ft

4 ft

D

C

B

A

E

Figure R1.3

2 ft�kips

4 ft�kips

3 ft�kips

5 ft�kips4 ft

2 ft

3 ft

4 ft

D

C

B

A

E

4 kips

1.5 kips

4 ft

Figure R1.4

27 kN�m
20 kN/m

1 m 2.0 m 2.5 m 1 m

x

y

A CB D

Figure R1.5
P

AA

BB
x

y

z

Internal Force/
Moment

Section AA
(zero/nonzero)

Section BB
(zero/nonzero)

Axial force ____________ ____________

Shear force ____________ in___ direction ____________ in___ direction

Shear force ____________ in___ direction ____________ in___ direction

Torque ____________ ____________
Bending moment ____________ in___ direction ____________ in___ direction

Bending moment ____________ in___ direction ____________in___ direction
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STATIC REVIEW EXAM 2

To get full credit, you must draw a free-body diagram any time you use equilibrium equations to calculate forces or moments. Discuss the solu-
tion to this exam with your instructor.

1. Determine (a) the coordinates (yc, zc) of the centroid of the cross section in Figure P1.6; (b) the area moment of inertia about an axis passing through
the centroid of the cross section and parallel to the z axis.

2. A distributed load acts on a symmetric C section, as shown in Figure P1.7. Determine the force F and its location (xF, yF coordinates) that is statically equiva-
lent to the distributed load.

3. Find the internal axial force (indicate tension or compression) and the internal torque (magnitude and direction) acting on an imaginary cut through
point E in Figure P1.8.

4. A simply supported beam is loaded by a uniformly distributed force of intensity 0.1 kip/in. applied at 60°, as shown in Figure P1.9. Also applied is a force
F at the centroid of the beam. Neglecting the effect of beam thickness, determine at section C the internal axial force, the internal shear force, and the
internal bending moment.

5. A system of pipes is subjected to a force P, as shown in Figure P1.10.By inspection (or by drawing a free-body diagram) identify the zero and non-
zero internal forces and moments. Also indicate in the table the coordinate directions in which the internal shear forces and internal bending moments act.

Figure R1.6

2 in 2 in

6 in
8 in

12 in
z

y

Figure R1.7
3 in

3 in

3 in

9 in

10
 in

8000 psi

x

y

70 kN�m

90 kN�m

150 kN�m

D

B
E

C

A

0.3 m

0.3 m

0.2 m
0.25 m

D

B
E

C

A 20 kN

20 kN 90 kN

90 kN

32 kN

32 kN

Figure R1.8

Figure R1.9

F � 10 kips0.1 kip/in

60�
30�

BC
A

72 in36 in

P

AA
BB

x

y

z

Figure R1.10

Internal Force/Moment
Section AA

(zero/nonzero)
Section BB

(zero/nonzero)
Axial force ____________ ____________

Shear force ____________ in___ direction ____________ in___ direction

Shear force ____________ in___ direction ____________ in___ direction

Torque ____________ ____________
Bending moment ____________ in___ direction ____________ in___ direction

Bending moment ____________ in___ direction ____________ in___ direction



A  538Mechanics of Materials: Statics reviewM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

POINTS TO REMEMBER

• If a point cannot move in a given direction, then a reaction force opposite to the direction acts at that support point.
• If a line cannot rotate about an axis in a given direction, then a reaction moment opposite to the direction acts at that sup-

port. 
• The support in isolation and not the entire body is considered in making decisions about the reaction at the support.
• Forces that are normal to the imaginary cut surface are called normal forces.
• The normal force that points away from the surface (pulls the surface) is called tensile force.
• The normal force that points into the surface (pushes the surface) is called compressive force.
• The normal force acting in the direction of the axis of the body is called axial force.
• Forces that are tangent to the imaginary cut surface are called shear forces. 
• The internal moment about an axis normal to the imaginary cut surface is called torsional moment or torque. 
• Internal moments about axes tangent to the imaginary cut are called bending moments.
• Calculation of internal forces or moments requires drawing a free-body diagram after making an imaginary cut.
• There are six independent equations in three dimensions and three independent equations in two dimensions per free-

body diagram.
• A structure on which the number of unknown reaction forces and moments is greater than the number of equilibrium

equations (6 in 3-D and 3 in 2-D) is called a statically indeterminate structure. 
• Degree of static redundancy = number of unknown reactions − number of equilibrium equations.
• The number of equations on displacement and/or rotation we need to solve a statically indeterminate problem is equal to the

degree of static redundancy.
• A structural member on which there is no moment couple and forces act at two points only is called a two-force member.
• The centroid lies on the axis of symmetry. 
• The first moment of the area calculated in a coordinate system fixed to the centroid of the area is zero. 
• Iyy, Izz, and J are always positive and minimum about the axis passing through the centroid of the body.
• Iyz can be positive or negative. 
• If either the y or the z axis is an axis of symmetry, then Iyz will be zero.
• Two systems that generate the same resultant force and moment are called statically equivalent load systems. 
• The imaginary cut for the calculation of internal forces and moments must be made on the original body and not on the

statically equivalent body.
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 APPENDIX B

ALGORITHMS FOR NUMERICAL 
METHODS

This appendix describes simple numerical techniques for evaluating the value of an integral, determining a root of a nonlinear
equation, and finding constants of a polynomial by the least-squares method. Algorithms are given that can be programmed in
any language. Also shown are methods of solving the same problems using a spreadsheet. 

B.1 NUMERICAL INTEGRATION

We seek to numerically evaluate the integral

(B.1)

where the function f(x) and the limits a and b are assumed known. 
This integral represents the area underneath the curve f(x) in the interval defined by x = a and x = b. The interval between a

and b can be subdivided into N parts, as shown in Figure A.8. In each of the subintervals the function can be approximated by a
straight-line segment. The area under the curve in each subinterval is the area of a trapezoid. Thus in the ith interval the area is

 By summing all the areas we obtain an approximate value of the total area represented by the integral

in Equation (A.1),

(B.2)

By increasing the value of N in Equation (B.2) we can improve the accuracy in our approximation of the integral. More
sophisticated numerical integration schemes such as Gauss quadrature may be needed with increased complexity of the function
f(x). For the functions that will be seen in this book, integration by the trapezoidal rule given by Equation (B.2) will give adequate
accuracy. 

B.1.1 Algorithm for Numerical Integration

Following are the steps in the algorithm for computing numerically the value of an integral of a function, assuming that the func-
tion value f(xi) is known at N + 1 points xi, where i varies from 0 to N. 

I f x( ) xd
a

b

∫=

Δxi( ) f xi( ) f xi 1–( )+[ ]/2.

I Δxi( ) 
f xi( ) f xi−1( )+

2
---------------------------------

i =1

N

∑≅

 Figure A.8 Numerical integration by trapezoidal rule

f (x)
f (xi)

f (xi�1)

x

�xi � xi � xi�1

xi�1 xix0 � a xN � bx1 
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1. Read the value of N.
2. Read the values of xi and f(xi) for i = 0 to N.
3. Initialize I = 0.
4. For i = 1 to N, calculate I = I + (xi − xi−1)[ f(xi) + f(xi−1)]/2.
5. Print the value of I.

B.1.2 Use of a Spreadsheet for Numerical Integration

Figure A.9 shows a sample spreadsheet that can be used to evaluate an integral numerically by the trapezoidal rule given by
Equation (B.2). The data xi and f (xi) can be either typed or imported into columns A and B of the spreadsheet, starting at row
2. In cells A2 and B2 are the values of x0 and f (x0), and in cells A3 and B3 are the values of x1 and f (x1). Using these values,
the first term (i = 1) of the summation in Equation (B.2) can be found, as shown in cell C2. In a similar manner the second
term of the summation in Equation (B.2) can be found and added to the result of the first term in cell C2. On copying the for-
mula of cell C3, the spreadsheet automatically updates the column and row entries. Thus in all but the last entry we add one
term of the summation at a time to the result of the previous row and obtain the final result. 

B.2 ROOT OF A FUNCTION

We seek the value of x in a function that satisfies the equation
(B.3)

We are trying to find that value of x at which f(x) crosses the x axis. Suppose we can find two values of x for which the function
f(x) has different signs. Then we know that the root of Equation (B.3) will be bracketed by these values. Let the two values of x
that bracket the root from the left and the right be represented by xL and xR. Let the corresponding function values be fL = f(xL)

  Figure A.9 Numerical integration algorithm on a spreadsheet.
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1
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3
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6

�(A3�A2)*(B3�B2)�2
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Copy formula in cell C3

7

Comment rowxi f (xi) I

f x( ) 0=
Iteration 1

f (x)
fL

xL

fN
xN

xR

fR

x

Iteration 2
f (x)

fL
xL

xR

fR

x

Iteration 3
f (x)

(c)

fL

fN

fN

xL

xN

xN

xR

fR

x

(b)

(a)

  Figure A.10 Roots of an equation by halving the interval.
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and fR = f(xR), as shown in Figure A.10a. We can find the mean value xN = (xL + xR)/2 and calculate the function value  fN = f(xN).
We compare the sign of fN to those of fL and fR and replace the one with the same sign, as elaborated below.

In iteration 1, fN has the same sign as fL; hence in iteration 2 we make the xL value as xN and the fL value as fN. In so doing we
ensure that the root of the equation is still bracketed by xL and xR, but the size of the interval bracketing the root has been halved.
On repeating the process in iteration 2, we find the mean value xN, and the corresponding value fN has the same sign as fR. Thus
for iteration 3, xR and fR are replaced by xN and fN found in iteration 2. In each iteration the root is bracketed by an interval that is
half the interval in the previous iteration. When fN reaches a small enough value, the iteration is stopped and xN is the approxi-
mate root of Equation (B.3). This iterative technique for finding the root is called half interval method or bisection method.

B.2.1 Algorithm for Finding the Root of an Equation

The steps in the algorithm for computing the root of Equation (B.3) numerically are listed here. The computation of f(x) should
be done in a subprogram, which is not shown in the algorithm. It is assumed that the xL and xR values that bracket the root are
known, but the algorithm checks to ensure that the root is bracketed by xL and xR. Note that if two functions have the same sign,
then the product will yield a positive value. 

1. Read the values of xL and xR. 
2. Calculate fL = f(xL) and fR = f(xR).
3. If the product fL fR > 0, print “root of equation not bracketed” and stop. 
4. Calculate xN = (xL + xR)/2 and fN = f(xN).
5. If the absolute value of fN is less than 0.0001 (or a user-specified small number), then go to step 8.
6. If the product fL fN > 0, then replace xL by xN, and fL by fN. Go to step 4.
7. If the product fR fN > 0, then replace xR by xN, and fR by fN. Go to step 4.
8. Print the value of xN as the root of the equation and stop.

B.2.2 Use of a Spreadsheet for Finding the Root
of a Function

Finding the roots of a function on a spreadsheet can be done without the algorithm described. The method is in essence a digital
equivalent to making a plot to find the value of x where the function f(x) crosses the x axis. 

To demonstrate the use of a spreadsheet for finding the root of a function, consider the function f(x) = x2 − 28.54x + 88.5.
We guess that the root is likely to be a value of x between 0 and 10.
Trial 1: In cell A2 of Figure A.11a we enter our starting guess as x = 0. In cell A3 we increment the value of cell A2 by 1, then
copy the formula in the next nine cells (copying into more cells will not be incorrect or cause problems). In cell B2 we write our
formula for finding f(x) and then copy it into the cells below. The results of this trial are shown in Figure A.11b. We note that the
function value changes sign between x = 3 and x = 4 in trial 1.

Trial 2: Based on our results of trial 1, we set x = 3 as our starting guess in cell D2. In cell D3 we increment the value of
cell D2 by 0.1 and then copy the formula into the cells below. We copy the formula for f (x) from cell B2 into the column start-
ing at cell E2. The results of this trial are given in Figure A.11b. The function changes sign between x = 3.5 and x = 3.6.

Trial 3: Based on our results of trial 2, we set x = 3.5 as our starting guess in cell G2. In cell G3 we increment the value
of cell G2 by 0.01 and then copy the formula into the cells below. We copy the formula for f (x) from cell B2 into the column
starting at cell H2. The results of this trial are given in Figure A.11b. The function value is nearly zero at x = 3.54, which
gives us our root of the function.

The starting value and the increments in x are all educated guesses that will not be difficult to make for the problems in
this book. If there are multiple roots, these too can be determined and, based on the problem, the correct root chosen.
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B.3 DETERMINING COEFFICIENTS OF A POLYNOMIAL

We assume that at N points xi we know the values of a function fi. Often the values of xi and fi are known from an experiment. We
would like to approximate the function by the quadratic function

(B.4)

If N = 3, then there is a unique solution to the values of a0, a1, and a2. However, if N > 3, then we are trying find the coefficients
a0, a1, and a2 such that the error of approximation is minimized. One such method of defining and minimizing the error in
approximation is the least-squares method elaborated next. 

If we substitute x = xi in Equation (B.4), the value of the function f(xi) may be different than the value fi. This difference is
the error ei, which can be written as

(B.5)

In the least-squares method an error E is defined as  This error E is then minimized with respect to the coeffi-

cients a0, a1, and a2 and to generate a set of linear algebraic equations. These equations are then solved to obtain the coef-
ficients.

Minimizing E implies setting the first derivative of E with respect to the coefficients equal to zero, as follows. In these equa-
tions all summations are performed for i = 1 to N.

(B.6)

(B.7)

  Figure A.11 Roots of an equation using spreadsheet.
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  �9.66
�29.2
�46.74
�62.28
�75.82
�87.36
�96.9

  x

3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4

   f (x)

 11.88
   9.636
   7.412
   5.208
   3.024
   0.86
�1.284
�3.408
�5.512
�7.596
�9.66

Trial 1 Trial 2

  x

3.5
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
3.6

   f (x)

   0.86
   0.6447
   0.4296
   0.2147
   2.84217E-14
�0.2145
�0.4288
�0.6429
�0.8568
�1.0705
�1.284

Trial 3

f x( ) a0 a1x a2x2+ +=

ei fi f xi( )– fi a0 a1xi a2xi
2+ +( )–= =

E ei
2.

i=1

N
∑=

∂E
∂a0
-------- 0  or 2ei

∂ei

∂a0
--------∑ 0  or = 2 fi a0 a1xi a2xi

2+ +( )–[ ] 1–[ ] 0=∑=

∂E
∂a1
-------- 0  or 2ei

∂ei

∂a1
-------- 0  or  2 fi a0 a1xi a2xi

2+ +( )–[ ] xi–[ ] 0=∑=∑=
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(B.8)

The equations on the right can be rearranged and written in matrix form,

(B.9)

The coefficients of the b matrix and the r vector can be determined by comparison to the matrix form of the equations on the left.
The coefficients a0, a1, and a2 can be determined by Cramer’s rule. Let D represent the determinant of the b matrix. By Cramer’s
rule, we replace the first column in the matrix of b’s by the right-hand side, find the determinant of the constructed matrix, and
divide by D. Thus, the coefficients a0, a1, and a2 can be written as

(B.10)

Evaluating the determinant by expanding about the r elements, we obtain the values of a0, a1, and a2

(B.11)

(B.12)

(B.13)

(B.14)

where

(B.15)

It is not difficult to extend these equations to higher order polynomials. However, a numerical method for solving the algebraic
equations will be needed as the size of the b matrix grows. For problems in this book a quadratic representation of the function is
adequate.

B.3.1 Algorithm for Finding Polynomial Coefficients 

The steps in the algorithm for computing the coefficients of a quadratic function numerically by the least-squares method are
listed here. It is assumed that xi  and fi, are known values at N points.

1. Read the value of N.
2. Read the values of xi and fi for i = 1 to N. 
3. Initialize the matrix coefficients b and r to zero.
4. Set b11 = N.
5. For i = 1 to N, execute the following computations:

6. Set b21 = b12, b22 = b13, b31 = b13, b32 = b23.
7. Determine D using Equation (B.11).
8. Determine the coefficients a0, a1, and a2 using Equations (B.12), (B.13), and (B.14).

∂E
∂a2
-------- 0  or  2ei

∂ei

∂a2
-------- 0  or  2 fi a0 a1xi a2xi

2+ +( )–[ ] xi
2–[ ] 0=∑=∑=

N xi∑ xi
2∑

xi∑ xi
2∑ xi

3 ∑
xi

2∑ xi
3∑ xi

4∑

a0

a1

a2⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

fi∑
xi fi∑
xi

2 fi∑⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

or
b11 b12 b13

b21 b22 b23

b31 b32 b33

a0

a1

a2⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫ r1

r2

r3⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

==

a0

r1 b12 b13

r2 b22 b23

r3 b32 b33
D

----------------------------------- a1

b11 r1 b13

b21 r2 b23

b31 r3 b33
D

----------------------------------- a2

b11 b12 r1

b21 b22 r2

b31 b32 r3
D

-----------------------------------===

D b11C11 b12C12 b13C13+ +=

a0 C11r1 C12r2 C13r3+ +[ ]/D=

a1 C21r1 C22r2 C23r3+ +[ ]/D=

a2 C31r1 C32r2 C33r3+ +[ ]/D=

C11  b= 22b33   b23– b32 C12  C21=  b21b33 b23b31–[ ]–=
C13  C31=  b21= b32 b22b31– C22  b= 11b33   b13– b31

C23  C32 b11b23 b13b21–[ ]–== C33  b= 11b22   b12– b21

b12 b12 xi+= b13 b13 xi
2+= b23 b23 xi

3+= b33 b33 xi
4+=

r1 r1 fi+= r2 r2 xi fi+= r3 r3 xi
2fi+=
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B.3.2 Use of a Spreadsheet for Finding
Polynomial Coefficients

Figure A.12 shows a sample spreadsheet that can be used to evaluate the coefficients in a quadratic polynomial numerically.
The data xi and f(xi) can be either typed or imported into columns A and B of the spreadsheet, starting at row 2. In cells C2
through G2, the various quantities shown in row 1 can be found and the formulas copied to the rows below. We assume that the
data fill up to row 50, that is, N = 49. In cell A51 the sum of the cells between cells A2 and A50 can be found using the summa-
tion command in the spreadsheet. By copying the formula to cells B51 through G51, the remaining sums in Equation (B.9) can
be found. The coefficients in the b matrix and the right-hand-side r vector in Equation (B.9) can be identified as shown in com-
ment row 52. The formulas in Equations (B.11) through (B.14) in terms of cell numbers can be entered in row 53, and D, a0, a1,
and a2 can be found.

  Figure A.12 Numerical evaluation of coefficients in a quadratic function on a spreadsheet.

A B C D

1

2

3

4

5

6

xi f (xi) xi f (xi) x2
i f (xi)

7

x2
i x3

i x4
i

E F G H

�A2*A2

Copy formula
from cell C2

Copy formula
from cell D2

Copy formula
from cell E2

Copy formula
from cell F2

Copy formula
from cell G2

Copy formula
from cell A51

�C2*A2 �D2*A2 �A2*B2 �C2*B2

50

51

52

53

54

55

�SUM(A2:A50)

Comment row

Comment rowb12�b21
b13�b22
     �b31

b23�b32 b33r1 r2 r3

Calculate D using
Equation (B.7) and
entries in row 52

Calculate a0 using
Equation (B.8) and
entries in row 52

Calculate a1 using
Equation (B.9) and
entries in row 52

Calculate a2 using
Equation (B.10) and
entries in row 52

49

48
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 APPENDIX C

REFERENCE INFORMATION

C.1  SUPPORT REACTIONS

TABLE  C.1  Reactions at the support

Type of Support Reactions Comments

Only downward translation is prevented. 
Hence the reaction force is upward.

Translation in the horizontal and vertical 
directions is prevented. Hence the reac-
tion forces Rx and Ry can be in the direc-
tions shown, or opposite.

Beside translation in the horizontal and 
vertical directions, rotation about the z 
axis is prevented. Hence the reactions Rx 
and Ry and Mz can be in the directions 
shown, or opposite. 

Translation perpendicular to slot is pre-
vented. The reaction force R can be in 
the direction shown, or opposite.

Translation in all directions is prevented. 
The reaction forces can be in the direc-
tions shown, or opposite.

Except for rotation about the hinge axis, 
translation and rotation are prevented in 
all directions. Hence the reaction forces 
and moments can be in the directions 
shown, or opposite.

Translation and rotation are prevented in 
all directions, except in the direction of 
the shaft axis. Hence the reaction forces 
and moments can be in the directions 
shown, or opposite.

Translation in the z direction 
and rotation about any axis are pre-
vented. Hence the reaction force Rz and 
reaction moments can be in the 
directions shown, or opposite. Transla-
tion in the x direction into the slot is pre-
vented but not out of it. Hence the 
reaction force Rx should be in the direc-
tion shown.

Roller on smooth surface
R

Smooth pin
Ry

Rx

Fixed support
RyMz

Rx

Roller in smooth slot

R

Ball and socket
RyRz

Rx

Hinge

Ry

My

Mx

Rx

Rz

Journal bearing
Ry

My

Mz

Rz

Smooth slot

Rx

My

Mz

Mx

Rz
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C.2  GEOMETRIC PROPERTIES OF COMMON SHAPES

TABLE  C.2  Areas, centroids, and second area moments of inertia

Shapesa

a. C-location of centroid. 

Areas
Second Area Moments
of Inertia

 

Cz

a�2 a�2

h�2
h�2

Rectangle A ah= Izz
1

12
------ah3=

C

r
z

Circle A πr2= Izz
1
4
---πr4 J 1

2
---πr4==

C
z

a

2h�3
h�3

Triangle A ah
2

------= Izz
1

36
------ah3=

C

rz

4r
3�

Semicircle
A πr2

2
--------= Izz

1
8
---πr4=

Cz

a

b

h(2a � b)

3(a � b)
h(a � 2b)

3(a � b)

Trapezoid

h

A h a b+( )
2

--------------------=
Izz

h3 a2 4ab b2+ +( )
36 a b+( )

----------------------------------------------=

C2
C1A2

A1

3a�4
z

3a�8 5a�8

3h�5

2h�5

3h�10

7h�10

a�4

Quadratic curve A1
ah
3

------=

A2
2ah

3
---------=

Izz( )1
1

21
------ah3=

Izz( )2
2
7
---ah3=

C2
C1A2

A1

4a�5

z

2a�5 3a�5

4h�7

3h�7

2h�7

5h�7

a�5

Cubic curve A1
ah
4

------=

A2
3ah

4
---------=

Izz( )1
1

30
------ah3=

Izz( )2
3

10
------ah3=
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C.3 FORMULAS FOR DEFLECTION AND SLOPES OF BEAMS

C.4 CHARTS OF STRESS CONCENTRATION FACTORS

The stress concentration factor charts given in this section are approximate. For more accurate values the reader should consult a
handbook. From Equation (3.25), the stress concentration factor is defined as 

(C.1)

where σmax and τmax are the maximum normal and shear stress, respectively; σnom and τnom are the nominal normal and shear
stress obtained from elementary theories.

TABLE  C.3  Deflections and slopes of beamsa

a.These equations can be used for composite beams by replacing the bending rigidity EI by the sum of bending rigidities 

Case Beam and Loading Maximum Deflection and Slope Elastic Curve

1 for 

for 

2
for 

for 

3
for 

for 

4
for 

5

6
 @ 

EiIi .∑

vmax�max

P

y

x

a b

vmax
Pa2

6EI
--------- 2a 3b+( )=

θmax
Pa2

2EI
---------=

v Px2

6EI
--------- 3a x–( )= 0 x a≤ ≤

v Pa2

6EI
--------- 3x a–( )= x a≥

vmax�max
y

x

a b
M

vmax
Ma a 2b+( )

2EI
-----------------------------=

θmax
Ma
EI
--------=

v Mx2

2EI
----------= 0 x a≤ ≤

v Ma
2EI
--------- 2x a–( )= x a≥

vmax�max

p0

y

x

a b

vmax
p0a3 3a 4b+( )

24EI
------------------------------------=

θmax
p0a3

6EI
-----------=

v
p0x2

24EI
------------ x2 4ax– 6a2+( )= 0 x a≤ ≤

v
p0a3

24EI
------------ 4x a–( )= x a≥

vmax

�maxy

x

L�2 L�2
P

vmax
PL3

48EI
------------=

θmax
PL2

16EI
------------=

v Px
48EI
------------ 3L2 4x2–( )= 0 x L

2
---≤ ≤

vmax

�maxy

x

L�2 L�2
p0

vmax
5p0L4

384EI
---------------=

θmax
p0L3

24EI
------------=

v
p0x

24EI
------------ x3 2Lx2– L3+( )=

vmax

�1y

x
L

�2

M

vmax
ML2

9 3EI
-----------------= x 0.4226L=

θ1
ML
3EI
---------=

θ2
ML
6EI
---------=

v Mx
6EIL
------------- x2 3Lx– 2L2+( )=

K
σmax

σnom
----------= or K

τmax

τnom
---------=
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C.4.1 Finite Plate with a Central Hole

Figure A.13 shows two stress concentration factors that differ because of the cross-sectional area used in the calculation of the
nominal stress. If the gross cross-sectional area Ht of the plate is used, then we obtain the nominal stress 

 (C.2a)

and the top line in Figure A.13 should be used for the stress concentration factor. If the net area at the hole (H − d)t is used, then
we obtain the nominal stress 

(C.2b)

and the bottom line in Figure A.13 should be used for the stress concentration factor. The two stress concentration factors are
related as

(C.2c)

C.4.2 Stepped axial circular bars with shoulder fillet

The maximum axial stress in a stepped circular bar with shoulder fillet will depend on the values of the diameters D and d of the
two circular bars and the radius of the fillet r. From these three variables we can create two nondimensional variables D/d and r/
d for showing the variation of the stress concentration factor, as illustrated in Figure A.14. The maximum nominal axial stress
will be in the smaller diameter bar and, from Equation (4.8), is given by

(C.3)

  Figure A.13 Stress concentration factor for plate with a central hole.

  Figure A.14 Stress concentration factor for stepped axial circular bars with shoulder fillet.

σnom( )gross
P
Ht
------=

σnom( )net
P

H d–( )t
--------------------=

Knet 1 d
H
----–⎝ ⎠

⎛ ⎞ Kgross=

H
Pt

�max

d

P
0.00
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ss
 c
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n 
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or
 K

1.00

5.00

4.00

3.00

2.00
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d�H

Knet

Kgross
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σnom
4P
πd2
--------=
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or
 K
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C.4.3 Stepped circular shafts with shoulder fillet in torsion

The maximum shear stress in a stepped circular shaft with shoulder fillet will depend on the values of the diameters D and d of
the two circular shafts and the radius of the fillet r. From these three variables we can create two nondimensional variables D/d
and r/d to show the variation of the stress concentration factor, as illustrated in Figure A.15. The maximum nominal shear stress
will be on the outer surface of the smaller diameter bar and, from Equation (5.10), is given by

(C.4)

C.4.4 Stepped circular beam with shoulder fillet in bending

The maximum bending normal stress in a stepped circular beam with shoulder fillet will depend on the values of the diameters D
and d of the two circular shafts and the radius of the fillet r. From these three variables we can create two nondimensional vari-
ables D/d and r/d to show the variation of the stress concentration factor, as illustrated in Figure A.16. The maximum nominal
bending normal stress will be on the outer surface in the smaller diameter bar and, from Equation (6.12), is given by

(C.5)

  Figure A.15 Stress concentration factor for stepped circular shaft with shoulder fillet.

  Figure A.16 Stress concentration factor for stepped circular beam with shoulder fillet.
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16T
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C.5 PROPERTIES OF SELECTED MATERIALS

Material properties depend on many variables and vary widely. The properties given here are approximate mean values. Elastic
strength may be represented by yield stress, proportional limit, or offset yield stress. Both elastic strength and ultimate strength
refer to tensile strength unless stated otherwise.

TABLE  C.4  Material properties in U.S. customary units

Material

Specific 
Weight
(lb/in.3)

Modulus of 
Elasticity

E
(ksi)

Poisson’s
Ratio

ν

Coefficient 
of Thermal 
Expansion

α
(μ/°F)

Elastic 
Strength

(ksi)

Ultimate 
Strength

(ksi)
Ductility

(% elongation)
Aluminum 0.100 10,000 0.25 12.5 40 45 17
Bronze 0.320 15,000 0.34 9.4 20 50 20
Concrete 0.087 4000 0.15 6.0 2*
Copper 0.316 15,000 0.35 9.8 12 35 35
Cast iron 0.266 25,000 0.25 6.0 25* 50*
Glass 0.095 7500 0.20 4.5 10
Plastic 0.035 400 0.4 50 9 50
Rock 0.098 8000 0.25 4 12* 78*
Rubber 0.041 0.3 0.5 90 0.5 2 300
Steel 0.284 30,000 0.28 6.6 30 90 30
Titanium 0.162 14,000 0.33 5.3 135 155 13
Wood 0.02 1800 0.30 5*

*Compressive strength.

TABLE  C.5  Material properties in metric units

Material
Density
(mg/m3)

Modulus of 
Elasticity

E
(GPa)

Poisson’s 
Ratio

ν

Coefficient of 
Thermal 

Expansion
α

(μ/°C)

Elastic 
Strength
(MPa)

Ultimate 
Strength
(MPa)

Ductility
(% elongation)

Aluminum 2.77 70 0.25 12.5 280 315 17
Bronze 8.86 105 0.34 9.4 140 350 20
Concrete 2.41 28 0.15 6.0 14*
Copper 8.75 105 0.35 9.8 84 245 35
Cast iron 7.37 175 0.25 6.0 175* 350*
Glass 2.63 52.5 0.20 4.5 70 0
Plastic 0.97 2.8 0.4 50 63 50
Rock 2.72 56 0.25 4 84* 546*
Rubber 1.14 2.1 0.5 90 3.5 14 300
Steel 7.87 210 0.28 6.6 210 630 30
Titanium 4.49 98 0.33 5.3 945 1185 13
Wood 0.55 12.6 0.30 35*

*Compressive strength.



C  551Mechanics of Materials: Reference InformationM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

C.6 GEOMETRIC PROPERTIES OF STRUCTURAL STEEL MEMBERS

 
TABLE  C.6  Wide-flange sections (FPS units)

Designation
(in. × lb/ft)

Depth
d

(in.)

Area
A

(in.2)

Web
Thickness

tW
(in.)

Flange z Axis y Axis

Width
bF

(in.)

Thickness
tF

(in.)
Izz

(in.4)
Sz

(in.3)
rz

(in.)
Iyy

(in.4)
Sy

(in.3)
ry

(in.)
W12 × 35 12.50 10.3 0.300 6.560 0.520 285.0 45.6 5.25 24.5 7.47 1.54
W12 × 30 12.34 8.79 0.260 6.520 0.440 238 38.6 5.21 20.3 6.24 1.52
W10 × 30 10.47 8.84 0.300 5.81 0.510 170 32.4 4.38 16.7 5.75 1.37
W10 × 22 10.17 6.49 0.240 5.75 0.360 118 23.2 4.27 11.4 3.97 1.33
W8 × 18 8.14 5.26 0.230 5.250 0.330 61.9 15.2 3.43 7.97 3.04 1.23
W8 × 15 8.11 4.44 0.245 4.015 0.315 48 11.8 3.29 3.41 1.70 0.876
W6 × 20 6.20 5.87 0.260 6.020 0.365 41.4 13.4 2.66 13.3 4.41 1.50
W6 × 16 6.28 4.74 0.260 4.03 0.405 32.1 10.2 2.60 4.43 2.20 0.967

TABLE  C.7  Wide-flange sections (metric units)

Designation
(mm × kg/m)

Depth
d

(mm)

Area
A

(mm2)

Web 
Thickness

tW
(mm)

Flange
z Axis y Axis

Width
bF

(mm)

Thickness
tF

(mm)
Izz

(106 mm4)
Sz

(103 mm3)
rz

(mm)
Iyy

(106 mm4)
Sy

(103 mm3)
ry

(mm)

W310 × 52 317 6650 7.6 167 13.2 118.6 748 133.4 10.20 122.2 39.1
W310 × 44.5 313 5670 6.6 166 11.2 99.1 633 132.3 8.45 101.8 38.6
W250 × 44.8 266 5700 7.6 148 13.0 70.8 532 111.3 6.95 93.9 34.8
W250 × 32.7 258 4190 6.1 146 9.1 49.1 381 108.5 4.75 65.1 33.8
W200 × 26.6 207 3390 5.8 133 8.4 25.8 249 87.1 3.32 49.9 31.2
W200 × 22.5 206 2860 6.2 102 8.0 20.0 194.2 83.6 1.419 27.8 22.3
W150 × 29.8 157 3790 6.6 153 9.3 17.23 219 67.6 5.54 72.4 28.1
W150 × 24 160 3060 6.6 102 10.3 13.36 167 66 1.844 36.2 24.6

TABLE  C.8  S shapes (FPS units)

Designation
(in. × lb/ft)

Depth
d

(in.)

Area
A

(in.2)

Web 
Thickness

tW
(in.)

Flange z Axis y Axis

Width
bF

(in.)

Thickness
tF

(in.)
Izz

(in.4)
Sz

(in.3)
rz

(in.)
Iyy

(in.4)
Sy

(in.3)
ry

(in.)

S12 × 35 12 10.3 0.428 5.078 0.544 229 38.4 4.72 9.87 3.89 0.98
S12 × 31.8 12 9.35 0.350 5.000 0.544 218 36.4 4.83 9.36 3.74 1.0
S10 × 35 10 10.3 0.594 4.944 0.491 147 29.4 3.78 8.36 3.38 0.901
S10 × 25.4 10 7.46 0.311 4.661 0.491 124 24.7 4.07 6.79 2.91 0.954
S8 × 23 8 6.77 0.411 4.171 0.426 64.9 16.2 3.10 4.31 2.07 .798
S8 × 18.4 8 5.41 0.271 4.001 0.426 57.6 14.4 3.26 3.73 1.86 0.831
S7 × 20 7 5.88 0.450 3.860 0.392 42.4 12.1 2.69 3.17 1.64 0.734
S7 × 15.3 7 4.50 0.252 3.662 0.392 36.9 10.5 2.86 2.64 1.44 0.766

y

z

tF

tW
d

bF

y

z

tF

tW
d

bF

z

tF

tW
d

bF

y
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C.7 GLOSSARY

The terms used in this book are given in alphabetic order. The third column gives the chapter number in which the term is first
introduced, with A representing Appendix A. 

TABLE  C.9  S shapes (metric units)

Designation
(mm × kg/m)

Depth
d

(mm)

Area
A

(mm2)

Web 
Thickness

tW
(mm)

Flange
z Axis y Axis

Width
bF

(mm)

Thickness
tF

(mm)
Izz

(106 mm4)
Sz

(103 mm3)
rz

(mm)
Iyy

(106 mm4)
Sy

(103 mm3)
ry

(mm)

S310 × 52 305 6640 10.9 129 13.8 95.3 625 119.9 4.11 63.7 24.9
S310 × 47.3 305 6032 8.9 127 13.8 90.7 595 122.7 3.90 61.4 25.4
S250 × 52 254 6640 15.1 126 12.5 61.2 482 96.0 3.48 55.2 22.9
S250 × 37.8 254 4806 7.9 118 12.5 51.6 406 103.4 2.83 48.0 24.2
S200 × 34 203 4368 11.2 106 10.8 27.0 266 78.7 1.794 33.8 20.3
S200 × 27.4 203 3484 6.9 102 10.8 24 236 82.8 1.553 30.4 21.1
S180 × 30 178 3794 11.4 97 10.0 17.65 198.3 68.3 1.319 27.2 18.64
S180 × 22.8 178 2890 6.4 92 10.0 15.28 171.7 72.6 1.099 23.9 19.45

z

tF

tW
d

bF

y

Term Definition Chapter

Anisotropic material: A material that has a stress-strain relationships that changes with orientation of the coor-
dinate system at a point.

3

Axial force diagram: A plot of the internal axial force N versus x. 4

Axial force: Normal force acting on a surface in the direction of the axis of the body. A

Axial member: A long straight body on which the forces are applied along the longitudinal axis. 4

Axial rigidity: The product of modulus of elasticity (E) and cross-sectional area (A). 4

Axial stress: The normal stress acting in the direction of the axis of a slender member. 1

Axial template: An infinitesimal segment of an axial bar constructed by making an imaginary cuts on 
either side of a supposed external axial force. 

4

Axisymmetric body: A body whose geometry, material properties, and loading are symmetric with respect to 
an axis. 

1

Bauschinger effect: Material breaking at stress levels smaller than the ultimate stress due to load cycle rever-
sal in the plastic region. 

3

Beam template: An infinitesimal segment of a beam constructed by making an imaginary cuts on either 
side of a supposed external force or moment.

6

Beam: A long structural member on which loads are applied perpendicular to the axis. 6

Bearing stress: The compressive normal stress that is produced when one surface presses against 
another.

1

Bending moment: Moments about an axis tangent to a surface of a body. A

Bending rigidity: The product of modulus of elasticity (E) and the second area moment of inertia (Izz) about 
the bending axis.

6

Bifurcation point: The point at which more then one equilibrium configuration may exist. 11

Body forces: External forces that act at every point on the body. A
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Boundary-value problem: The mathematical statement listing of all the differential equations and all the necessary 
conditions to solve them.

7

Brittle material: A material that exhibits little or no plastic deformation at failure. 3

Buckling load: The force (or moment) at which buckling occurs. Also called critical load. 11

Buckling modes: The deformed shape at buckling load. 11

Buckling: An instability of equilibrium in structures that occurs from compressive loads or stresses. 11

Centroid:  An imaginary point on a body about which the first area moment is zero. A

Characteristic equation: The equation whose roots are the eigenvalues of the problem. 11

Columns: Axial members that support compressive axial loads. 11

Compatibility equations: Geometric relationships between the deformations or strains. 4

Complimentary strain energy den-
sity:

Complimentary strain energy per unit volume. It is the area between the stress axis and 
the stress-strain curve at a given value of stress or strain.

3

Complimentary strain energy: Energy stored in a body due to forces acting on it. 3

Compressive stress: Normal stress that pushes the imaginary surface into the rest of the material. 1

Concentrated forces (moment). Surface forces (moments) applied at a point. A

Continuity conditions: Conditions that ensure continuity of deformations. 7

Critical load: The force (or moment) at which buckling occurs. Also called buckling load. 11

Critical slenderness ratio: The slenderness ratio at which material failure and buckling failure can occur simulta-
neously. Separates the long from the short columns. 

11

Deformation: The relative movement of a point with respect to another point on the body. 2

Degree of freedom: The minimum number of displacements / rotations that are necessary to describe the 
deformed geometry.

4

Degree of static redundancy: The number of unknown reactions minus the number of equilibrium equations. A

Delta function: A function that is zero everywhere except in a small interval where it tends to infinity in 
such a manner that the area under the curve is 1. It is also called the Dirac delta function. 

7

Discontinuity functions: A class of functions that are zero before a point and are non-zero after a point or are sin-
gular at the point. 

7

Displacement: The total movement of a point on a body with respect to fixed reference coordinates. 2

Distributed forces (moments): Surface forces (moments) applied along a line or over a surface. A

Ductile material: A material that can undergo a large plastic deformation before fracture. 3

Eccentric loading: Compressive axial force that is applied at a point that is not on the axis of the column. 11

Elastic curve: Curve describing the deflection of the beam. 7

Elastic region: The region of the stress-strain curve in which the material returns to the undeformed state 
when applied forces are removed.

3

Elastic-plastic boundary: The set of points forming the boundary between the elastic and plastic regions. 3

Endurance limit: The highest stress level for which the material would not fail under cyclic loading. Also 
called fatigue strength.

3

Eulerian strain: Strain computed from deformation by using the final deformed geometry as the reference 
geometry.

2

Failure envelope: The surface (or curve) that separates the acceptable design space from the unacceptable 
values of the variables affecting design.

10

Term Definition Chapter
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Failure theory: A statement on the relationship of the stress components to the characteristic value of 
material failure

10

Failure: A component or a structure does not perform the function for which it was designed. 3

Fatigue strength: The highest stress level for which the material would not fail under cyclic loading. Also 
called endurance limit.

3

Fatigue: Failure due to cyclic loading at stress levels significantly lower than the static ultimate 
stress.

3

Finite element method: A numerical method used in stress analysis in which the body is divided into elements of 
finite size.

4

Flexibility coefficient: The coefficient multiplying internal forces / moments in an algebraic equation. 4

Flexibility matrix: The matrix multiplying the unknown internal forces / moments in a set of algebraic equa-
tions.

4

Fracture stress: The stress at the point where material breaks. 3

Free surface: A surface on which there are no forces. Alternatively, a surface that is stress free. 1

Free-body diagram: A diagram showing all the forces acting on a free body. A

Gage length: Length between two marks on a tension test specimen in the central region of uniform 
axial stress.

3

Generalized Hooke’s law: The equations relating stresses and strains in three dimensions. 3

Global coordinate system: A fixed reference coordinate system in which the entire problem is described. 8

Hardness: The resistance of material to indentation and scratches. 3

Homogeneous material: A material that has same the material properties at all points in the body. 3

Hooke’s law: Equation relating normal stress and strain in the linear region of a tension test. 3

In-plane maximum shear strain: The maximum shear strain in coordinate systems that can be obtained by rotating about 
the z axis. 

9

In-plane maximum shear stress: The maximum shear stress on a plane that can be obtained by rotating about the z axis. 8

Isotropic material: A material that has a stress-strain relationships independent of the orientation of the coor-
dinate system at a point.

3

Lagrangian strain: Strain computed from deformation by using the original undeformed geometry as the ref-
erence geometry. 

2

Load cells: Any device that measures, controls, or applies a force or moment. 9

Loads: External forces and moments that are applied to the body. A

Local buckling: Buckling that occurs in thin plates or shells due to compressive stresses. 11

Local coordinate system: A coordinate system that can be fixed at any point on the body and has an orientation that 
is defined with respect to the global coordinate system. 

8

Maximum normal stress theory: A material will fail when the maximum normal stress at a point exceeds the ultimate nor-
mal stress obtained from a uniaxial tension test.

10

Maximum octahedral shear stress 
theory: 

A material will fail when the maximum octahedral shear stress exceeds the octahedral 
shear stress at the yield obtained from a uniaxial tensile test.

10

Maximum shear strain: The maximum shear strain at a point in any coordinate system. 9

Maximum shear stress theory: A material will fail when the maximum shear stress exceeds the shear stress at yield that 
is obtained from a uniaxial tensile test.

10

Maximum shear stress: The maximum shear stress at a point that acts on any plane passing through the point. 8

Method of joints: Analysis is conducted by making imaginary cuts through all the members a the joint. A

Term Definition Chapter
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Method of sections: Analysis is conducted by making an imaginary cut (section) through a member or a struc-
ture. 

A

Modulus of elasticity: The slope of the normal stress-strain line in the linear region of a tension test. Also called 
Young’s modulus.

3

Modulus of resilience: Strain energy density at the yield point. 3

Modulus of rigidity: Same as shear modulus of elasticity. 3

Modulus of toughness: The strain energy density at rupture. 3

Mohr’s failure theory: A material will fail if a stress state is on the envelope that is tangent to the three Mohr’s 
circles corresponding to uniaxial ultimate stress in tension, uniaxial ultimate stress in 
compression, and pure shear.

10

Moment diagram: A plot of the internal bending moment Mz versus x. 6

Monotonic functions: Functions that either continuously increases or decreases. 7

Necking: The sudden decrease in cross-sectional area after ultimate stress. 3

Negative normal strains: Normal strains from contraction of a line. 2

Negative shear strain: Shear strain due to a increase of angle between orthogonal lines. 2

Neutral axis: The line on the cross section where the bending normal stress is zero. 6

Nominal stress: The stress predicted by theoretical models away from the regions of stress concentration. 3

Normal stress: Internal distributed forces that are normal to an imaginary cut surface. 1

Offset yield stress: Stress that would produce a plastic strain corresponding to the specified offset strain. 3

Pitch: The distance between two adjoining peaks on the threads of a bolt. It is the distance 
moved by the nut in one full rotation. 

4

Plane stress: A state of stress in which all stress components on the z-plane are zero. 1

Plastic region: The region in which the material deforms permanently. 3

Plastic strain: The permanent strain when stresses are zero. 3

Poisson’s ratio: The negative ratio of lateral normal strain to longitudinal normal strain. 3

Positive normal strains: Normal strains from elongation of a line. 2

Positive shear strain: Shear strain due to a decrease of angle between orthogonal lines. 2

Principal angle 1: Angle principal direction one makes with the global coordinate direction x. Counter-
clockwise rotation from the x axis is defined as positive.

8

Principal angles: The angles the principal directions makes with the global coordinate system. 8

Principal angles: The angles the principal axes make with the global coordinate system. 9

Principal axes for strain: The coordinate axes in which the shear strain is zero. 9

Principal axis for stress: The normal direction to the principal planes. Also referred to as the principal direction. 8

Principal direction: The normal direction to the principal planes. Also referred to as the principal axis. 8

Principal planes: Planes on which the shear stresses are zero. 8

Principal strain 1: The greatest principal strain. 9

Principal strains: Normal strains in the principal directions. 9

Principal stress 1: The greatest principal stress. 8

Principal stress element: A properly oriented wedge constructed from the principal planes and the plane of maxi-
mum shear stress showing all the stresses acting on the respective planes. 

8

Term Definition Chapter
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Principal stress: Normal stress on a principal plane. Also referred to as maximum or minimum normal 
stress at a point.

8

Proportional limit: The point up to which stress and strain are related linearly. 3

Ramp function: A function whose value is zero before a point and is a linear function after the point. 7

Reaction forces: Forces developed at the supports that resist translation in a direction. A

Reaction moment: Moments developed at the support that resist rotation about an axis. A

Rupture stress: The stress at the point where material breaks. 3

Secant modulus: The slope of the line that joins the origin to the point on the normal stress-strain curve at 
a given stress value.

3

Second order tensor: A quantity that requires two directions and obeys certain coordinate transformation prop-
erties.

1

Section modulus: The ratio of the second area moment of inertia about bending axis to the maximum dis-
tance from the neutral axis.

6

Shaft: A long structural member that transmits torque from one plane to another parallel plane. 5

Shear flow: The product of thickness and tangential shear stress along the center line of a thin cross 
section.

6

Shear force diagram: A plot of the internal shear force Vy versus x. 6

Shear force: Tangential force acting on a surface of a body. A

Shear modulus of elasticity: The slope of the shear stress-strain line in the linear region of a torsion test. Also called 
modulus of rigidity.

3

Shear stress: Internal distributed forces that are parallel to an imaginary cut surface. 1

Singularity functions: A class of functions that are zero everywhere except in a small region where they tend 
towards infinity. 

7

Slenderness Ratio: The ratio of the effective column length to the radius of gyration of the cross section 
about the buckling axis.

11

SN curve: A plot of stress versus the number of cycles to failure. 3

Snap buckling: A structure suddenly jumping (snapping) from one equilibrium position to another very 
different equilibrium position.

11

Statically equivalent load systems: Two systems of forces that generate the same resultant force and moment. A

Statically indeterminate structure: A structure on which the number of unknown reaction forces and moments is greater than 
the number of equilibrium equations.

A

Step function: A function whose value is zero before a point and equal to 1 after the point. 7

Stiffness coefficient: The coefficient multiplying displacements / rotations in an algebraic equation. 4

Stiffness matrix: The matrix multiplying the unknown displacements / rotations in a set of algebraic equa-
tions.

4

Strain energy density: Strain energy per unit volume. It is the area under the stress-strain curve at a given value 
of stress or strain.

3

Strain energy: Energy stored in a body due to deformation. 3

Strain hardening: The increase of yield point each time the stress value exceeds the yield stress. 3

Stress concentration: Large stress gradients in a small region. 3

Stress element: An imaginary object representing a point that has surfaces with outward normals in the 
coordinate directions.

1

Tangent modulus: The slope of the tangent drawn to the normal stress-strain curve at a given stress value. 3

Term Definition Chapter
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Tensile stress: Normal stress that pulls the imaginary surface away from the rest of the material. 1

Tension test: A test conducted to determine mechanical properties by applying tensile forces on a spec-
imen.

3

Thin body: The thickness of the body is an order of magnitude (factor of 10) smaller than the other 
dimensions.

1

Timoshenko beam: Beam in which shear is accounted for by dropping the assumption that planes originally 
perpendicular remain perpendicular.

6

Torque Diagram: A plot of the internal torque T versus x. 5

Torque: Moment about an axis normal to a surface of a body. A

Torsion template: An infinitesimal segment of a shaft constructed by making an imaginary cuts on either 
side of a supposed external torque.

5

Torsional rigidity: The product of shear modulus of elasticity (G) and the polar moment of inertia (J) of a 
shaft.

5

Truss: A structure made up of two-force members. A

Two-force member: A structural member on which there is no moment couple and forces act at two points 
only.

A

Ultimate stress: The largest stress in the stress-strain curve. 3

Warping: Axial deformation of shaft cross section due to torque. 5

Yield point: The point demarcating the elastic from the plastic region. 3

Yield stress: The stress at yield point. 3

Young’s modulus:  Same as modulus of elasticity. 3

Zero-force member: A two-force member that carries no internal force. A

Term Definition Chapter
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C.8 CONVERSION FACTORS BETWEEN U.S. CUSTOMARY SYSTEM (USCS) 
AND THE STANDARD INTERNATIONAL (SI) SYSTEM

C.9 SI PREFIXES

C.10 GREEK ALPHABET

Quantity USCS to SI SI to USCS
Length 1 in = 25.400 mm

1 ft = 0.3048
1 m = 39.37 in
1 m = 3.281 ft

Area 1 in2 = 645.2 mm2

1 ft2 = 0.0929 m2
1 mm2 = 1.550(10-3) in2

1 m2 = 10.76 ft2

Volume 1 in3 = 16.39(103) mm3

1 ft3 = 0.028 m3
1 mm3 = 61.02(10-6) in3

1 m3 = 35.31 ft3

Area Moment of Inertia 1 in4 = 0.4162(106) mm4 1 m4 = 2.402(10-6) in4

Mass 1 slug = 14.59 kg 1 kg = 0.06852 slugs
Force 1 lb = 4.448 N

1 kip = 4.448 kN
1 N = 0.2248 lb
1 kN = 0.2248 kip

Moment 1 in-lb = 0.1130 N-m
1 ft-lb = 1.356 N-m

1 N-m = 8.851 in-lb 
1 N-m = 0.7376 ft-lb

Force per unit length 1 lb/ft = 14.59 N/m 1 N/m = 0.06852 lb/ft
Pressure; Stress 1 psi = 6.895 kPa

1 ksi = 6.895 MPa
1 lb/ft2 = 47.88 Pa

1 kPa = 0.1450 psi
1 MPa = 0.1450 ksi
1 kPa = 20.89 lb/ft2

Work; Energy 1 lb.ft = 1.356 J 1 J = 0.7376 lb.ft
Power 1 lb.ft/s = 1.356 W

1 hp = 745.7 W
1 W = 0.7376 lb.ft/s
1 kW = 1.341 hp

Prefix Word Prefix Symbol
Multiplication 
Factor

tera T 1012

giga G 109

mega M 106

kilo k 103

milli m 10-3

micro μ 10-6

nano n 10-9

pico p 10-12

Lowercase Uppercase
Pronunciatio
n Lowercase Uppercase

Pronunciatio
n

α Α Alpha ν Ν Nu
β Β Beta ξ ξ Xi
γ Γ Gamma ο Ο Omicron
δ Δ Delta π Π Pi
ε Ε Epsilon ρ Ρ Rho
ζ Ζ Zeta σ Σ Sigma
η Η Eta τ Τ Tau
θ Θ Theta υ Υ Upsilon
ι Ι Iota φ Φ Phi
κ Κ Kappa χ Χ Chi
λ Λ Lambda ψ Ψ Psi
μ Μ Mu ω Ω Omega
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 APPENDIX D

SOLUTIONS TO STATIC 
REVIEW EXAM

D.1 REVIEW EXAM 1

1. As the y axis is the axis of symmetry, the centroid will lie on the y axis. Thus zc = 0. 1 point

Equations (A.6) and (A.9) can be used to find the y coordinate of the centroid and the area moment of inertia. Figure A.17 and
Table D.4 show the calculations. 

From Equations (A.6) and (A.9)we obtain

2. We can replace each linear loading by an equivalent force, as shown in Figure A.7, then replace it by a single force. Using Fig-
ure A.18 we obtain

TABLE D.4 Calculation of centroid and area moment of inertia.

Section

Centroids Area moment of inertia

(mm)
Ai

(mm2) (mm3) (mm) (mm4) (mm4)

1 30 60 x 10 = 600 18,000 15.9 10 x 603/12 = 180 ¥ 103 331.7 x 103

2 65 50 x 10 = 500 32,500 19.1 50 x 103/12 = 4.2 ¥ 103 186.6 x 103

Total 1100 50,500

1 point for each correct entry for a total of 7 points. 1 point for each correct entry. 2 points for each correct entry. 1 point for each correct entry.

50 mm

10 mm

10 mm

60 mm

A

yc
yc1

dy1yc2

dy2

A

2

1

  Figure A.17

yci
yci

Ai
dzi

yc yci
–= Izizi

1
12
------aibi

3= Izizi
Aidzi

2+

1 point for each correct answer with units. yc
50,500
1100

----------------  = 45.9  mm= IAA 331.7 186.6+( ) 103( ) 518.3 103( ) mm4= =

3 points/force for correct calculation. F1
10 2.5 6××

2
----------------------------- 75 kips== F2

10 8 3××
2

------------------------= 120 kips=

2 in 4 in

2 in 1 in

O

F1

F2

yF

O

F

8 
in2.
5 

in

6 in

3 in

x

y

10 ksi

10 ksi

x

  Figure A.18 For correct location of forces F1 and F2 3 points/force.
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The resultant forces for the two systems on the right in Figure A.18 must be the same. We thus obtain

The resultant moments about any point (point O) for the two systems on the right of Figure A.18 must also be the same. We
obtain

3.We make an imaginary cut at E and draw the free-body diagrams shown in Figures A.19 and A.20.
Internal axial force calculations (Figure A.19).

Internal torque calculations (Figure A.20)

4. We can draw the free-body diagram of the entire beam as shown in Figure A.21a. 

By balancing the moment at D we find the reaction at B,

We can then make an imaginary cut at A on the original beam and draw the free-body diagram in Figure A.21b.We can find
the intensity of the distributed force at A by similar triangles (Figure A.22a),

We can then replace the distributed force on the beam that is cut at A and draw the free-body diagram shown in Figure A.22b.

2 points for correct answer
1 point for correct units.

F F1 F2+ 75 120+ 195 kips= = =

2F1 8F2+ yFF=
1 point for each correct

entry in this equation

or
yF

150 960+
195

------------------------ 5.69 in= =

1 point for correct answer

1 point for correct units

3.5 kips

1 kip

1 kip

3.5 kips

B

A

E NE

or

NE

1.5 kips

1.5 kips

4 kips

4 kips

D

C

E

 Figure A.19

Either FBD is acceptable. 
For drawing: 

2 kips at B or 3 kips at C ----2 marks 
Normal force at E---2 marks

7 kip force at A or 8 kips at D--2 marks

1 point for correct equation NE 7– 2+ 0 or NE 8– 3+ 0==

1 point for correct answer
1 point for correct units
1 point for reporting tension

NE 5 kips (T)=

or
2 ft�kips

3 ft�kips

B

A

E

TE

5 ft�kips

4 ft�kips
TE

D

C

E

Either FBD is acceptable. 
For drawing: 

torque at B or at C ----2 marks 
torque at E (either direction) ---2 marks

torque at A or D--2 marks

  Figure A.20

2 points for correct equation TE 3– 2+ 0 or TE 5– 4+ 0==

1 point for correct answer
1 point for correct units

TE 1 ft·kips=

RD

B D

RB

27 kN�m

F �  � 20 � 4.5 � 45 kN1
2

3.0 m 2.5 m

(a) (b)

B A

RB

27 kN�m

VA

pA

2 m

MA

  Figure A.21

1 mark for each force
or moment and 1 mark 
for correct location of F
Total 5 marks.

1 point for each term in the equation

for a total of 3 points.
5.5RB 27– 45 2.5×– 0 or RB 25.36 kN==

pA

2
----- 20

4.5
------- or pA 8.89 kN/m==
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Balancing the forces in the y direction we obtain

Balancing moments about point A, we obtain

5. By inspection we can write the following answers.

Internal
Force/Moment

Section AA
(zero/nonzero)

Section BB
(zero/nonzero)

Axial force Nonzero Zero

Shear force Nonzero in y direction Nonzero in y direction

Shear force Zero in x direction Nonzero in z direction

Torque Zero Nonzero

Bending moment Nonzero in x direction Nonzero in y direction

Bending moment Zero in y direction Nonzero in z direction
1 point for each correct zero/non-zero entry. 

1 point for each correct direction. Total 20 points.

pA
20 kN/m

AB C
2 m

4.5 m

(a)

VA

MA

2
3

m

B A

RB

27 kN�m

FA �  � pA � 2 � 8.89 kN
1
2

2 m

(b)  Figure A.22

1 mark for correct value of FA
1 mark for correct location of FA

3 marks for correct 
calculation of pA.

2 marks for
showing VA
and MA

irrespective
of direction.

VA 25.36 8.89–+ 0=
1 point for correct equation correponding

to your direction of  VA

or VA 16.5 kN–=
1 point for correct answer

MA 27 25.36 2×– 8.89 2× 3⁄+ + 0=
2 point for correct equation correponding

to your direction of  MA

or MA 17.8 kN·m=
1 point for correct answer
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 APPENDIX E

ANSWERS TO QUICK TESTS

QUICK TEST 1.1

1. False. Stress is an internal quantity that can only be inferred but cannot be measured directly.
2. True. A surface has a unique normal, and normal stress is the internally distributed force in the direction of the

normal.
3. True. Shear stress is an internally distributed force, and internal forces are equal and opposite in direction on

the two surfaces produced by an imaginary cut.
4. False. Tension implies that the normal stress pulls the imaginary surface outward, which will result in opposite

directions for the stresses on the two surfaces produced by the imaginary cut.
5. False. kips are units of force, not stress.
6. False. The normal stress should be reported as tension.
7. False. 1 GPa equals 109 Pa.
8. False. 1 psi nearly equals 7 kPa not 7 Pa.
9. False. Failure stress values are in millions of pascals for metals.
10. False. Pressure on a surface is always normal to the surface and compressive. Stress on a surface can be normal

or tangential to it, and the normal component can be tensile or compressive. 

QUICK TEST 1.2

1. False. Stress at a point is a second-order tensor.
2. True. Each of the two subscripts can have three values, resulting in nine possible combinations.
3. True. The remaining three components can be found from the symmetry of shear stresses. 
4. True. The fourth component can be found from the symmetry of shear stresses.
5. False. A point in plane stress has four nonzero components; thus only five components are zero in general.
6. False. The sign of stress incorporates both the direction of the force and the direction of the imaginary surface.
7. True. A stress element is an imaginary object representing a point.
8. False. The normals of the surface of a stress element have to be in the direction of the coordinate system in

which the stress at a point is defined.
9. True. Stress is an internally distributed force system that is equal and in opposite directions on the two surfaces

of an imaginary cut. 
10. False. The sign of stress incorporates the direction of the force and the direction of the imaginary surface. Alter-

natively, the sign of stress at a point is independent of the orientation of the imaginary cut surface.



E  563Mechanics of Materials: Answers to Quick TestsM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

January, 2010

 

QUICK TEST 2.1

1. Displacement is the movement of a point with respect to a fixed coordinate system, whereas deformation is the
relative movement of a point with respect to another point on the body.

2. The reference geometry is the original undeformed geometry in Lagrangian strain and the deformed geometry
in Eulerian strain. 

3. The value of normal strain is 0.3/100 = 0.003.
4. The value of normal strain is 2000 × 10−6 = 0.002.
5. Positive shear strain corresponds to a decrease in the angle from right angle.
6. The strain will be positive as it corresponds to extension and is independent of the orientation of the rod. 
7. No. We have defined small strain to correspond to strains less than 1%.
8. There are nine strain nonzero components in three dimensions.
9. There are four nonzero strain components in plane strain. 
10. There are only three independent strain components in plane strain, as the fourth strain component can be deter-

mined from the symmetry of shear strains.

QUICK TEST 3.1

1. The modulus of elasticity has units of pascals or newtons per square meter. For metals it is usually gigapascals
(GPa). Poisson’s ratio has no units as it is dimensionless.

2. Offset yield stress is the stress value corresponding to a plastic strain equal to a specified offset strain.
3. Strain hardening is the increase in yield stress that occurs whenever yield stress is exceeded. 
4. Necking is the sudden decrease in cross-sectional area after the ultimate stress.
5. Proportional limit defines the end of the linear region, whereas yield point defines the end of the elastic region.
6. A brittle material exhibits little plastic deformation before rupture, whereas a ductile material can undergo large

plastic deformation before rupture. 
7. A linear material behavior implies that stress and strain be linearly related. An elastic material behavior implies

that when the loads are removed, the material returns to the undeformed state but the stress–strain relationship
can be nonlinear, such as in rubber.

8. Strain energy is the energy due to deformation in a volume of material, whereas strain energy density is the
strain energy per unit volume.

9. The modulus of resilience is a measure of recoverable energy and represents the strain energy density at yield
point. The modulus of toughness is a measure of total energy that a material can absorb through elastic as well
as plastic deformation and represents the strain energy density at ultimate stress. 

10. A strong material has a high ultimate stress, whereas a tough material may not have high ultimate stress but has
a large strain energy density at ultimate stress. 
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QUICK TEST 3.2

1. In an isotropic material the stress–strain relationship is the same in all directions but can differ at different
points. In a homogeneous material the stress–strain relationship is the same at all points provided the directions
are the same. 

or 
In an isotropic material the material constants are independent of the orientation of the coordinate system but can
change with the coordinate locations. In a homogeneous material the material constants are independent of the
locations of the coordinates but can change with the orientation of the coordinate system. 

2. There are only two independent material constants in an isotropic linear elastic material.
3. 21 material constants are needed to specify the most general linear elastic anisotropic material.
4. There are three independent stress components in plane stress problems.
5. There are three independent strain components in plane stress problems.
6. There are five nonzero strain components in plane stress problems.
7. There are three independent strain components in plane strain problems.
8. There are three independent stress components in plane strain problems.
9. There are five nonzero stress components in plane strain problems.
10. For most materials E is greater than G as Poisson’s ratio is greater than zero and G = E/2(1 + ν). In composites,

however, Poisson’s ratio can be negative; in such a case E will be less than G.

QUICK TEST 4.1

1. True. Material models do not affect the kinematic equation of a uniform strain.
2. False. Stress is uniform over each material but changes as the modulus of elasticity changes with the material in a

nonhomogeneous cross section.
3. True. In the formulas A is the value of a cross-sectional area at a given value of x. 
4. False. The formula is only valid if N, E, and A do not change between x1 and x2. For a tapered bar A is changing

with x. 
5. True. The formula does not depend on external load. External loads affect the value of N but not the relationship

of N to σxx. 
6. False. The formula is valid only if N, E, and A do not change between x1 and x2. For a segment with distributed

load, N changes with x. 
7. False. The equation represents static equivalency of N and σxx, which is independent of material models. 
8. True. The equation represents static equivalency of N and σxx over the entire cross section and is independent of

material models.
9. True. The uniform axial stress distribution for a homogeneous cross section is represented by an equivalent

internal force acting at the centroid which will be also collinear with external forces. Thus no moment will be
necessary for equilibrium. 

10. True. The equilibrium of a segment created by making an imaginary cut just to the left and just to the right of
the section where an external load is applied shows the jump in internal forces.
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QUICK TEST 5.1

1. True. Torsional shear strain for circular shafts varies linearly.
2. True. The shear strain variation is independent of material behavior across the cross section. 
3. False. If the shear modulus of a material on the inside is significantly greater than that of the material on the out-

side, then it is possible for the shear stress on the outer edge of the inside material to be higher than that at the
outermost surface. 

4. True. The shear stress value depends on the J at the section containing the point and not on the taper.
5. False. The formula is obtained assuming that J is constant between x1 and x2.
6. True. The shear stress value depends on the T at the section. The equilibrium equation relating T to external

torque is a separate equation. 
7. False. The formula is obtained assuming that T is constant between x1 and x2, but in the presence of distributed

torque, T is a function of x. 
8. False. The equation represents static equivalency and is independent of material models.
9. True. Same reasoning as in question 8.
10. True. Equilibrium equations require that the difference between internal torques on either side of the applied

torque equal the value of the applied torque.

QUICK TEST 6.1

1. True. Bending normal strain varies linearly and is zero at the centroid of the cross section. If we know the strain
at another point, the equation of a straight line can be found.

2. True. Bending normal stress varies linearly and is zero at the centroid and maximum at the point farthest from
the centroid. Knowing the stress at two points on a cross section, the equation of a straight line can be found. 

3. False. The larger moment of inertia is about the axis parallel to the 2-in. side, which requires that the bending
forces be parallel to the 4-in. side.

4. True. The stresses are smallest near the centroid. Alternatively, the loss in moment of inertia is minimum when
the hole is at the centroid.

5. False. y is measured from the centroid of the beam cross section.
6. True. The formula is valid at any cross section of the beam. Izz has to be found at the section where the stress is

being evaluated. 
7. False. The equations are independent of the material model and are obtained from static equivalency principles,

and the bending normal stress distribution is such that the net axial force on a cross section is zero. 
8. True. The equation is independent of the material model and is obtained from the static equivalency principle.
9. True. The equilibrium of forces requires that the internal shear force jump by the value of the applied transverse

force as one crosses the applied force from left to right.
10. True. The equilibrium of moments requires that the internal moment jump by the value of the applied moment

as one crosses the applied moment from left to right.
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QUICK TEST 8.1

1. θ = 115° or 295° or −65° 2.  θ = 245° or 65° or −115°
3. θ = 155° or −25° or 335° 4.  σ1 = 5 ksi (T)
5. σ1 = 5 ksi (C) 6.  τmax = 10 ksi
7. τmax = 12.5 ksi 8.  τmax = 10 ksi
9. θ1 = 55° or −125° 10.  θ1 = −35°

QUICK TEST 8.2

1. D
2. A
3. E
4. 12° ccw or 168° cw
5. 102° ccw or 78° cw 
6. 78° ccw or 102° cw
7. D
8. A
9. B
10. σ = 30 MPa (T), τ = −40 MPa

QUICK TEST 8.3

1. False. There are always three principal stresses. In two-dimensional problems the third principal stress is not inde-
pendent and can be found from the other two. 

2. True.
3. False. Material may affect the state of stress, but the principal stresses are unique for a given state of stress at a

point.
4. False. The unique value of the principal stress depends only on the state of stress at the point and not on how

these stresses are measured or described. 
5. False. Planes of maximum shear stress are always at 45° to the principal planes, and not 90°.
6. True. 
7. True. 
8. False. Depends on the value of the third principal stress. 
9. False. Each plane is represented by a single point on Mohr’s circle.
10. False. Each point on Mohr’s circle represents a single plane
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QUICK TEST 9.1

1. D
2. C
3. B
4. C
5. D
6. 108° ccw or 72° cw 
7. 18° ccw or 162° cw
8. ε1 = 1300 μ, γmax = 2000 μ
9. ε1 = 2300 μ, γmax = 2300 μ
10. ε1 = −300 μ, γmax = 2300 μ

QUICK TEST 9.2

1. (a) εyy = 800 μ; (b) εyy = 800 μ
2. θ = +115° or −65° 
3. θ = +155° or −25° 
4. θ = +25° or −155° 
5. γmax = 2100 μ
6. γmax = 3100 μ
7. γmax = 1700 μ
8. False. There are always three principal strains. In two-dimensional problems the third principal strain is not

independent and can be found from the other two. 
9. False. The unique value of principal strains depends only on the state of strain at the point and not on how these

strains are measured or described.
10. False. Only for isotropic materials are the principal coordinates for stresses and strains the same, but for any

anisotropic materials the principal coordinates for stresses and strains are different.
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QUICK TEST 11.1

1. False. Only compressive axial forces can cause column buckling.
2. True.
3. False. There are infinite buckling loads. The addition of supports changes the buckling mode to the next higher

critical buckling load.
4. True.
5. False. The critical buckling load does not change with the addition of uniform transverse distributed forces, but

the increase in normal stress may cause the column to fail at lower loads.
6. False. Springs and elastic supports in the middle increase the critical buckling load.
7. False. The critical buckling load does not change with eccentricity, but an increase in normal stress causes the

column to fail at lower loads with increasing eccentricity. 
8. False. The critical buckling load decreases with increasing slenderness ratio. 
9. True.
10. True.

QUICK TEST A.1

1. Structure 1: One; AB.
Structure 2: Three; AC, CD, CE.
Structure 3: Three; AC, BC, CD.

2. DF, CF, HB.
3. Structure 1: Two; indeterminate.

Structure 2: One; indeterminate.
Structure 3: Zero; determinate.
Structure 4: One; indeterminate.
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APPENDIX F

ANSWERS TO SELECTED PROBLEMS

CHAPTER 1

1.1  
1.3  

1.6  

1.8  
1.12 (a)   (b)  

1.15 (a)  (b)  

1.19  

1.25  

1.28  

1.31  

1.44   

1.51   
1.52 (a)     

        (b) 

1.56    

1.62  

1.67  

1.69  
1.71 (a)    

        (b)  sequence: CB, CG, CD 

1.74 
1.75  

1.77  
1.79  
1.82 (a)  (b) 

1.84  1.86 1.93 

σ 1019 psi (T)=
Wmax 125.6 lb=

dmin 1.5 mm=

σ 2.57MPa T( )=
σcol 232.8 MPa (C);= σb 20MPa C( )=

σcol 156 MPa (C);= σb 8.33 MPa (C)=

σb 3 MPa (C)=

Pmax 10.8 kips=

P τπ do di+( )t=

Wmax 125.6 lb=

σAA 3.286 ksi (T);= τAA 1.53 ksi=

σ 11.9 psi (T);= V 19 lbs=
σHA 38 MPa (C);= σHB 16 MPa (T);= σHG 22 MPa (C);= σHC 16 MPa (C)=

τH( )max 53.76 MPa=

σBD 100 MPa (T);= τmax 259 MPa=

Pmax 70.6 kN=

Pmax 5684 lb=

L 10.4 in=
dCG 30 mm;= dCD 27 mm;= dCB 23 mm=

dC 22 mm;=

τ 9947 Pa=
P 3 aLτ=

τ 3.18 MPa=
τ 226.3 MPa=

τ 8.5 psi;= T 6.7 in-lb=

y

x

100 100

75

75

75 75

85

85

y

x

27
27

18

18

18 18

85

85

25
18

25 12
12

18

12
12
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1.94  1.97 1.99 

1.101 

CHAPTER 2

2.1  
2.4  
2.7  

2.8  
2.11  
2.13  
2.15   
2.19  
2.21  
2.22  

2.29  
2.32  
2.34  
2.38  
2.48 

2.51 (a)  (b)  (c)  

2.54   
2.57   
2.61    
2.64     
2.68    
2.71   
2.74  
2.77  
2.80  
2.85  
2.87 

z

y
175

x

225

225125

150

200
200

125
100

20 x

z

y

25

2515

15

10

x

r
20

25

32

10 22

32

2225

�

r

18

20

10
18

25 25

�

�

ε 0.9294 cm/cm=
ε 0.321 in/in=
uD uA– 2.5 mm=

εA 393.3 μin/in;= εB 150–  μin/in=

εA 0.0125 in/in–=

εA 0.0108 in/in–=

εA 0.0108–  in/in;= εF 0.003 in/in–=

δB 2 mm to the left=

δB 2.5 mm to the left=

εA 416.7 μmm/mm;–= εF 400 μmm/mm=

γA 3000–  μrad=

γA 5400 μrad=

γA 1296 μrad=

γA 928–  μrad=

γA 1332–  μrad=

εAP 1174.7 μmm/mm;= εAP 1174.6 μmm/mm;= εAP 1174.6 μmm/mm=

δAP 0.0647 mm extension;= δBP 0.2165 mm extension=

δAP 0.0035 in contraction;= δBP 0.0188 in contraction=

εBC 4200 μmm/mm;= εCF 2973–  μmm/mm;= εFE 2100–  μmm/mm=

εBC 500 μmm/mm;= εCG 833–  μmm/mm;= εGB 0;= εCD 667.5 μmm/mm=

εxx 128 μmm/mm;–= εyy 666.7 μmm/mm;–= γxy 3600 μrad=

εxx 1750 μmm/mm;= εyy 1625–  μmm/mm;= γxy 1125–  μrad=

εxx 24( ) 555 μin/in=

u 20( ) 0.005 in=
u 1250( ) 1.516 mm=
ε 42.2 μmm/mm=
ε 47%=
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CHAPTER 3

3.1  (a)  (b)  (c)  (d)   (e) 

       (f)  (g) 

3.2 (a)  (b)  
3.3  
3.4    

3.5   
3.12 (a)  (b)  

(c)  (d)  (e)  (f )  

3.16  
3.18  
3.25   
3.27  0.0327% 
3.31  
3.36 (a) 300 kN-m/m3; (b) 21,960 kN-m/m3; (c) 5,340 kN-m/m3; (d) 57,623 kN-m/m3. 

3.38 (a) 1734 kN-m/m3; (b) 157 MN-m/m3; (c) 18 MN-m/m3; (d) 264 MN-m/m3 

3.41  
3.44  
3.45   
3.50   

3.53   

3.59  
3.65   

3.66 (a)    (b)   

3.68  
3.74 (a)      

        (b)     

3.78 (a) 

        (b) 

3.81      

3.83     

3.86   

3.92   
3.111    

3.115    

3.119  
3.121  
3.127  
3.130     

3.137 (a)  (b)  (c) 
3.139  
3.142 (a)  (b)  (c)  

σult 510 MPa;= σfrac 480 MPa= E 150 7.5( ) GPa;= σprop 300 MPa= σyield 300 MPa=

Et 2.5 GPa;= Es 6.5 GPa=

P 23.56 kN;= P 35.34 kN=
δ 3.25 mm=
εtotal 0.065;= εelas 0.0028;= εplas 0.0622=

P 36.9 kN=
E 300 GPa;= σprop 1022 MPa;=

σyield 1060 MPa;= Et 1.72 GPa;= Es 11.2 GPa;= εplas 0.1203=

E 25,000 ksi;= ν 0.2=
G 4000 ksi=
P 70.7 kN;= Δd 0.008mm–=

U 125 in.-lbs=

F 22.1 kN=
F 16.7 kN=
F 0.795 lb;= θ 65.96°=
P1 0;= P2 2 kN=

h 43
8
---  in;= d 11

8
---  in=

dmin 23 mm=

N 60 kips;= Mz 30 in-kips=

a 1062.1 MPa;= b 4493.3 MPa;= c 12993.1 MPa;–= ET 1.621 GPa=

P 70.1 lbs=
σzz 0;= εxx 3661 – μ;= εyy 2589 μ;= γxy 5357 μrad;= εzz 357 μ;=

εzz 0;= σzz 25 MPa (C);= εxx 3571–  μ;= εyy 2679 μ;= γxy 5357 μrad=

σzz 0;= εxx 0.06875;–= εyy 0.0875;= εzz 0.00625;–= γxy 0.125=

εzz 0;= σzz 12.50psi T( );= εxx 0.0703;–= εyy 0.08594;= γxy 0.125=

σzz 0;= σyy 40.9 ksi (C);= σxx 36.26 ksi (C);= εzz 771 μin/in;= τxy 5.77 ksi–=

σzz 0;= σyy 60 MPa (T);= σxx 60 MPa (C);= εzz 0;= τxy 18 MPa=

σxx 16 ksi (C);= σyy 4 ksi (C)=

a 50.06 mm;= b 50.1725 mm=
εxx 936 μ;–= εyy 2180 – μ;= γxy 5333 μ–=

σxx 19.07 ksi (C);= σyy 0.99 ksi (C);= τxy 0.6 ksi=

K 2.4=
σmax 45.3 ksi=

θ 0.34°=
σxx 47.4 ksi (C);= σyy 52.02 ksi (C);= εzz 1254 μ;= τxy 5.77 ksi–=

T 33.33 hours;= T 133.33 hours;= T ∞=
n 400,000 cycles=

E1 15,000 ksi;= E2 64.15 ksi;= n 0.1694;= E 56.2 ksi=
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CHAPTER 4

4.2    

4.4  
4.9  

4.13 (a)  (b)  

4.18  

4.20  
4.21 (a)  (b)  

4.24  

4.27  
4.31  

4.33    

4.41 (a)  (b) 

4.44   

4.46  
4.50  

4.51   

4.61   

4.65 (a)  (b)   

4.67   

4.70  

4.74  

4.77  

4.83  

4.85   

4.87  

4.89  

4.90   

4.94   

4.95   

4.99   

4.100   

4.104   

4.106  

CHAPTER 5

5.1  
5.2  
5.7   

5.11  

F1 108.5 kN;= F2 45.2 kN;= F3 94.3 kN=

F 11.25 kips=
uD uA– 0.175 in–=

uD uA– 0.0234 in;–= σmax 3.75 ksi (C)=

uB uA– 0.126 mm=

u 0.4621 P EK⁄=
uC uA– 0.034 in;= σmax 33.95 ksi  (T)=

uB γL2– 2E⁄=

δ 0.045 in=
Fmax 4886 lb=

dp 0.5 in;= ab 11
8
--- in;= bs 1 5

16
------ in=

Δu 0.60 mm;= σmax 62.2 MPa (T)=

a 224.40  b 23.60  c 0.40;–=;–=;= uA 0.017 in to the left=

F 46.9 kips=
δP 0.23 mm=

σA 8.0 ksi (C);= δB 0.0021 in=

δP 0.24 mm;= σA 118 MPa (C)=

δp 0.0265 in;= Δds 0.00074 in;= Δdal 0.00066 in–=

σA 22.5 ksi (C);= σB 17.2 ksi (T)=

Fmax 555 kN=

Fmax 17.2 kN=

wmax 9.4 MPa=

Pmax 106.7 kips=

ABC 1.1 in2;= d 1.3 in=

Fmax 148.6 kN=

Fmax 181.9 kN=

σA 5.2 ksi (T);= σB 3.5 ksi (T)=

σxx 0;= u L 2⁄( ) αTLL 24⁄=

σxx EαTL 3⁄  C( );= u L 2⁄( ) αTLL 8⁄–=

σA 25.70 ksi (T)=

σθθ 10 MPa (T);= τr 40 MPa=

tmin 0.05 in;= dnoz 0.206 in=

pmax 500 psi;= driv 0.85 in=

γD 2400 μrad=

T 64.8 in-kips=
φ1 0.0400 rad;= φ2 0.0243 rad;= φ3 0.0957 rad=

T 495.2–  in-kips=
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5.13  
5.23 (a)  (b)  

5.26 (a)  (b) 

5.29  
5.32   
5.35   

5.38 (a)  (b)  

5.40 

5.41  
5.43  
5.47   

5.57  
5.59   
5.60  
5.63   
5.66   
5.67  

5.71  

5.74    
5.75    
5.76   
5.95  
5.101 

CHAPTER 6

6.1  
6.3     

6.6   

6.7     

6.12 

6.14  

6.25   

6.29    

6.35   

6.38   

6.42 (a)  (b)  

6.45   

6.49  

6.51  

6.53  

T 10.9 kN-m=
τxy( )A 0;> τxy( )B 0<

τxy( )A 0;> τxy( )B 0<

φD φA– 0.00711 rads CW=

φD 0.0163 rads CW;= γmax 1094μ;–= τxθ( )E 4.4–  ksi=

φA 1676 μrads CW;= τxθ( )E 15.1 MPa=

φB 0.1819 TextL Gr4⁄( ) CCW;= τmax 0.275Text r3⁄=

φA qL2 GJ⁄( ) CW=

T 69.2 in-kips=
ri( )max 24 mm=

dmin 21 mm;= τAB 52.5 MPa=

Ro 23
8
--- in=

Δφ 0.085 rad;= τmax 172 MPa=

Δφ 0.088 rad=
φB 0.0516 rads ccw;= τmax 25.8 ksi=

φC 0.006 rads CCW;= T 200.5 in-kips=

φB 0.0438 rads CW=

φB 5.659 TL
Gd4
---------- CCW;= τmax 2.83 T

d3
-----=

Tmax 32 kN-m;= φB 0.048 rads CCW;= τmax 130.4 MPa=

dmin 89 mm;= φB 0.0487 rads CCW;= τmax 116 MPa=

dmin 108 mm;= φB 0.025 rads CCW;= τmax 58.62 MPa=

τmax 10.8 MPa=

τmax 21.65 MPa=

ψ 2.41°=
ε1 182 μm/m;= ε3 109.1 – μm/m;= ε4 654 – μm/m;= ε6 393 μm/m=

P 1454N;= Mz 123.6 N-m=

P1 14.58 kN;= M1 130.3 N-m;= P2 9.88 kN;= M2 64.0 N-m=

Mz 9.13 in-kips=

Mz 2134 kN-m–=

σT 3.73ksi T( ) ;= σC 6.93ksi C( )=

σA 1224 psi (C);= σB 735 psi (C);= σD 1714 ksi (T)=

σA is (C); σB is (T)

σA is (T); σB is (C)

σ3.0 2.96 ksi (C);= σmax 6.93 ksi (C) or (T)=

σA 4.17 ksi (C);= σmax 12.5 ksi (C) or (T)=

σA 6.68 ksi (C);= σmax 28.9 ksi (T)=

εA 1500 μ–=

εA 327–  μ=
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6.60 (a)  (b)  

6.62 (a)  (b)  

6.64   

          

6.68   

         

6.69   

          

6.74   

6.79   

6.83   

6.86   

6.92  

6.99  

6.100  
6.102  
6.107 Point A: negative τxz; Point B: positive τxy; Point C: negative τxz; Point D: positive τxz 
6.112 Point A: positive τxy; Point B: negative τxz; Point C: zero; Point D: positive τxy

6.117     

6.120   

6.124  
6.125   
6.137  
6.138   

CHAPTER 7

7.2   

7.4   

7.9  

7.17 ; 

7.19 ; 

7.25   

7.28   

7.32   

7.34   

Vy 3 72 x–( ) kips;= Mz 1.5 72 x–( )2 in-kips=

Vy 108 1
48
------x2–[ ] kips;= Mz 5184 108x– 1

144
---------x3+[ ] in-kips=

Vy wL kips–= 0 x L;<≤ Mz wLx wL2–( ) in-kips= 0 x L;<≤

Vy w x L–( ) wL–[ ] kips= L x 2L;≤< Mz wLx w
2
---- x L–( )2– wL2–[ ] in-kips= L x 2L≤<

Vy 76 12x–( ) kN= 5 m x 9 m;< < Mz 6x2 76x– 154+( ) kN-m= 5 m x 9 m;< <

Vy 20–  kN= 9 m x 12 m;< < Mz 20x 240–( ) kN-m= 9 m x 12 m< <

Vy 6x–  kN= 0 x 3 m;<≤ Mz 3x2 kN-m= 0 x 3 m;<≤

Vy 8–  kN= 3 m x 5 m;< < Mz 8x 7–( ) kN-m= 3 m x 5 m< <

Vy( )max 7.5 kN;±= Mz( )max 5.625 kN-m=

Vy( )max 36 kN;= Mz( )max 86.67 kN-m–=

Vy( )max 9 kN;= Mz( )max 23.625–  kN-m=

Vy( )max 6±  kips;= Mz( )max 16–  in-kips=

wmax 154.3 lb in⁄=

ai 117
8
--- in=

r 3.75 mm=
P 165.7 N=

σmax 348.4 MPa;= τmax 6.84 MPa;= σxx( )A 48 MPa (C);= τxy( )A 3.2 MPa–=

VAB 614.4 lbs;= VBC 921.6 lbs=

Mext 8333.33 in-lbs=

Pmax 202 N;= Δs 16 cm=

RO 2 3
16
------ in=

σmax 9185 psi;= τmax 295 psi=

v x( ) wx 24EI( )⁄[ ]– x3 2Lx2– L3+( );= v L 2⁄( ) 5wL4 384EI( )⁄[ ]–=

v x( ) wx2 24EI( )⁄[ ]– x2 4Lx– 6L2+( );= v L( ) wL4 8EI( )⁄[ ]–=

vA PL3 3EI( )⁄=

x( )
wLx 9EI( )⁄[ ] x2 5L2–( )  0 x L≤ ≤

wLx 9EI( )⁄[ ] x2 5L2–( ) wL 6EI( )⁄[ ] x L–( )3– L x 3≤ ≤⎩
⎨
⎧

= v L( ) 4wL4 9EI⁄( )–=

v x( )
wLx 48EI⁄( ) 2x2 7L2–( )    0 x L≤ ≤

w EI⁄( ) 2Lx3  7– L3x( ) 48⁄ w 24EI⁄( ) x L–( )4– L x 2L≤ ≤⎩
⎨
⎧

= v L( ) 5wL4 48EI( )⁄[ ]–=

h x( ) 6Px bσ( )⁄ ;= vmax 8bσ3L3 27PE2( )⁄–=

σmax 128PL 27πd0
3( )⁄ ;= vmax 8PL3 3Eπd0

4( )⁄–=

RA 16.2 kips up;= MA 10.8 in-kips CCW=

RA 5P/2;= v x( )
P 12EI⁄( ) 2 x 2L–( )3 5 x L–( )3– 9L2x– 11L3+[ ] 0 x L≤ ≤

P 12EI⁄( ) 2 x 2L–( )3 9L2x– 11L3+[ ]    L x 2L≤ ≤⎩
⎨
⎧

=
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7.36    

7.57  
7.61 
7.64    
7.67   

7.71  

7.72   
7.76    

CHAPTER 8

8.1   

8.6  τnt can’t say 

8.12   
8.15 Compression
8.19   

8.24   

8.26 

8.33 (a)   (b)   
8.42       

         

8.44        

        

8.47       

        

8.50      

8.54    

8.60   
8.71 Pmax = 30.6 kN

CHAPTER 9

9.3   

9.6    

9.8    

9.13    
9.16 Sectors 8 and 2 or Sectors 4 and 6 
9.31      

                  

9.37     

dv
dx
------ L( ) wL3

80EI
------------;= RA

61wL
120

-------------- up;= MA 11wL2 120⁄  CW=

vA 41– wL4 24EI⁄=

vA P– L3 96EI⁄=

vA w– L4 136EI;⁄= RC 11wL 17⁄ ;= MC 5wL2 34⁄=

v x( ) w 18EI⁄( ) 2Lx3 3L x L–〈 〉3– 10L3x–[ ];= v L( ) 4wL4– 9EI⁄=

v x( ) w 24EI⁄( ) x4 x L–〈 〉4– 4L x 2L–〈 〉3– 12L2 x 2L–〈 〉2– 40L3x– 71L4+[ ];= v 2L( ) wL4( ) 4EI( )⁄=

v x( ) P 12EI⁄( ) 3Lx2 3x3– 5 x L–〈 〉3+[ ];= RA 5P 2⁄=

v′ xA( ) wL3 6EI⁄( );–= v xA( ) wL4 8EI⁄( )–=

σnn is C( ); τnt is positive

σnn is C( );

σnn 8.66 ksi C( )= τnt 5.0 ksi=

σnn 50 MPa C( );= τnt 40 MPa=

σnn 45.36 ksi C( );= τnt 1.84 ksi=

Pmax 84.9 lb=

σnn σ T( );= τnt 0;= σnn 0;= τnt σ–=

σnn 7 MPa T( );= τnt 59.7–  MPa;= σ1 75.2 MPa (T);= σ2 45.2 MPa C( );= σ3 0;= θ1 69.2°;=

τmax 60.2 MPa  =

σnn 45.4 ksi C( );= τnt 1.84 ksi;= σ1 15.4 ksi T( );= σ2 45.4 ksi C( );= σ3 0;= θ1 40.3°;=

τmax 30.4 ksi=

σnn 0.63 ksi C( );= τnt 7.06–  ksi;= σ1 0.62 ksi T( );= σ2 40.62 ksi C( );= σ3 12 ksi C( )= θ1 128°;=

τmax 20.62 ksi=

σ1 67.9 MPa T( );= σ2 207.9 MPa C( );= σ3 0;= θ1 78°;= τmax 137.9 MPa=

σxx 7.54 ksi C( );= σyy 9.46 ksi C( );= τxy 1.15 ksi=

σnn 16.5 ksi C( );= τnt 9.55 ksi–=

εnn 234.7 μ;–= φ 196.96 μrad CW=

εnn 150 μ;= εtt 450 μ;= γnt 519.6 μ–=

εnn 70.2–  μ;= εtt 529.8 μ;–= γnt 385.67 μ=

εnn 295.4 μ;–= εtt 295.4 μ;= γnt 104.2 μ–=

ε1 659 μ;= ε2 459–  μ;= ε3 0;= γmax 1118 μ;= θ1 103.3°;=

εnn 643.7 μ;= εtt 443.7–  μ;= γnt 259.8 μ–=

ε1 1246.5 μ;= ε2 196.5–  μ;= ε3 0;= γmax 1443 μ;=
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9.42    

9.44      

9.46      

9.49       

9.54    
9.58    

9.62      
9.64  
9.68  
9.74 

CHAPTER 10 

10.1   
10.4  
10.6  

10.12  

10.24    
        
10.27     
10.30             

          

10.35   
10.36   
10.44  
10.48  
10.53    
10.55  
10.62  
10.65 (a)  (b)  

10.66  
10.69 

CHAPTER 11

11.2  
11.6  
11.15   

11.21  
11.25 

εxx 1027 μ;= εyy 23 μ;= γxy 1037 μ–=

εxx 466–  μ;= εyy 1266 μ;= γxy 1000 μ–=

ε1 767.9 μ;= ε2 125 μ;–= ε3 214.3 μ;–= γmax 982.2 μ;= θ1 26.57– o=

ε1 681.4 μ;= ε2 604.3–  μ;= ε3 0;= γmax 642.9 μ;= θ1 26.57o=

θ1( )strain 103.3o;= θ1( )stress 98.8°=

εa 33.49 μ;= εb 400 μ;= εc 166.5 μ=

εa 687.5 μ;= εb 406.3–  μ;= εc 656.9 – μ=

ε1 685.9 μ;= ε2 185.9–  μ;= ε3 166.7;–= γmax 871.8 μ;= θ1 48.3°=

ε 392.9 μ=
ε 716.7 μ=
ε 112.5 – μ=

σnn 4.6 ksi (C);= τnt 16.4 ksi–=

P 60.76 kN=
εa 1696 μ;= εb 1176 μ–=

εa 1333 μ;= εb 666.66–  μ=

σxx( )A 0;= σxx( )B σ– bend-y 85.39MPa C( );= = τxz( )A τtor τbend-y=42.89MPa;+=

τxy( )B τ– tor 25.62MPa–= =

σxx( )A 0;= σxx( )B σ– bend-y 222MPa C( );= = τxz( )A τbend-y 17.27MPa;= = τxy( )B 0=

σmax( )A 102.7MPa T( ) or C( );= σmax( )B 137.33MPa C( );= τmax( )A 51.35MPa;=

τmax( )B 91.79MPa;=

σxx( )A 23.1 ksi (C);= τxy( )A 7.2 ksi–=

σnn 8219 psi (C);= τnt 13180 psi=

Pmax 4.3 kN=

w 791.2 N/m=
σBD σCE 5.13 psi (C);= = σBC 10 psi (T);= σAB 167.4 psi (C)=

Wmax 67 lb=

Ro 2.405 in=

Pmax 5 kN;= Pmax 5.75 kN=

Pmax 9.5 kips=

K 1.22=

Pcr 5/4 kL=

Pcr 153.3 lb=

L r⁄ 72.7;= Pcr 215.4 kip;= σcr 3.36 ksi (C)=

K 1.106=
K 3.633=
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11.40  
11.43   
11.55   
11.59 

11.63  
11.64 

Lmax 42 in=

wmax 12 kN/m;= KBD 2.3=

σmax 2.68 ksi (C);= vmax 0.0458 in=

Lmax 2.09 m=

Pmax 39.45 kip=

Pcr 17.0 kip=
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σav N A⁄= τav V A⁄= σij
ΔFj

ΔAi
---------⎝ ⎠
⎛ ⎞

ΔAi 0→
lim=

ε
Lf Lo–

Lo
---------------= ε δ

Lo
-----= ε

uB uA–
xB xA–
-----------------= γ π 2⁄ α–= εxx

du x( )
dx

--------------=

εxx σxx ν σyy σzz+( )–[ ] E⁄= γxy τxy G⁄= G E
2 1 ν+( )
--------------------=

σxx εxx νεyy+[ ] E
1 ν2–( )

-------------------= εzz
ν

1 ν–
------------⎝ ⎠
⎛ ⎞– εxx εyy+( )=

xd
du N

EA
-------= u2 u1–

N x2 x1–( )
EA

--------------------------= δ NL
EA
--------= σxx

N
A
----=

xd
dφ T

GJ
-------= φ2 φ1–

T x2 x1–( )
GJ

-------------------------= τxθ
Tρ
J

-------=

Mz EIzz
d2v
dx2
--------= σxx

Mzy
Izz

----------–= τxs
VyQz
Izzt

-------------–=

σxx
Myz
Iyy

----------–= τxs
VzQy
Iyyt

-------------–=

Vy V–=
xd

dV p=
dMz
dx

----------- V= V2 V1 p xd
x1

x2

∫+= M2 M1 V xd
x1

x2

∫+=

σnn σxx θ2cos σyy θ2sin 2τxy θ θcossin+ += τnt σxx–  θ θsincos σyy  θ θcossin τxy θ2cos θ2sin–( )+ +=

2θptan
2τxy

σxx σyy–( )
--------------------------= σ1 2,

σxx σyy+( )
2

---------------------------
σxx σyy–

2
----------------------⎝ ⎠
⎛ ⎞

2
τxy

2+±= τmax max
σ1 σ2–

2
------------------

σ2 σ3–
2

------------------
σ3 σ1–

2
------------------, ,⎝ ⎠

⎛ ⎞=

εnn εxx θ2cos εyy θ2sin γxy θsin θcos+ += γnt 2– εxx θsin θcos 2εyy θsin θcos γxy θ2cos θ2sin–( )+ +=

2θptan
γxy

εxx εyy–( )
------------------------= ε1 2,

εxx εyy+( )
2

-------------------------
εxx εyy–

2
--------------------⎝ ⎠
⎛ ⎞

2 γxy
2

------⎝ ⎠
⎛ ⎞

2
+±=

γmax
2

---------- max
ε1 ε2–

2
----------------

ε2 ε3–
2

----------------
ε3 ε1–

2
----------------, ,⎝ ⎠

⎛ ⎞=

Pcr
π2EI

L2
------------=

ηC
4r
3π
------= I 1

12
------ab3= I 1

4
---πr4= J 1

2
---πr4=
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	PR - 1.6 An 8-kg light shown in Figure P1.5 is hanging from the ceiling by wires. If the tensile stress in the wires cannot exceed 50 MPa, determine the minimum diameter of the wire, to the nearest tenth of a millimeter.
	PR - 1.7 Wires of 0.5-mm diameter are to be used for hanging lights such as the one shown in Figure P1.5. If the tensile stress in the wires cannot exceed 80 MPa, determine the maximum mass of the light that can be hung using these wires.
	PR - 1.8 A 3 kg picture is hung using a wire of 3 mm diameter, as shown in Figure P1.8. What is the average normal stress in the wires?

	figure_problem - Figure P1.8
	PR - 1.9 A 5 kg picture is hung using a wire, as shown in Figure P1.8. If the tensile stress in the wires cannot exceed 10MPa, determine the minimum required diameter of the wire to the nearest millimeter.
	PR - 1.10 Wires of 16-mil diameter are used for hanging a picture, as shown in Figure P1.8. If the tensile stress in the wire cannot exceed 750 psi, determine the maximum weight of the picture that can be hung using these wires. 1 mil =
	PR - 1.11 A board is raised to lean against the left wall using a cable and pulley, as shown in Figure P1.11. Determine the axial str...

	figure_problem - Figure P1.11

	Heading3 - Compressive and bearing stresses
	PR - 1.12 A hollow circular column supporting a building is attached to a metal plate and bolted into the concrete foundation, as sho...
	figure_problem - Figure P1.12
	PR - 1.13 A hollow circular column supporting a building is attached to a metal plate and bolted into the concrete foundation, as sho...
	PR - 1.14 A hollow square column supporting a building is attached to a metal plate and bolted into the concrete foundation, as shown...

	figure_problem - Figure P1.14
	PR - 1.15 A column with the cross section shown in Figure P1.15 supports a building. The column is attached to a metal plate and bolt...

	figure_problem - Figure P1.15
	PR - 1.16 A 70-kg person is standing on a bathroom scale that has dimensions of 150 mm ° 100 mm ° 40 mm (Figures P1.16). Determine the bearing stress between the scale and the floor. Assume the weight of the scale is negligible.

	figure_problem - Figure P1.16
	PR - 1.17 A 30-ft-tall brick chimney has an outside diameter of 3 ft and a wall thickness of 4 in. (Figure P1.17). If the specific weight of the bricks is 80 lb/ft3, determine the average bearing stress at the base of the chimney.

	figure_problem - Figure P1.17
	PR - 1.18 Determine the average bearing stress at the bottom of the block shown in Figure P1.18 in terms of the specific weight g and the length dimensions a and h.

	figure_problem - Figure P1.18
	PR - 1.19 The Washington Monument is an obelisk with a hollow rectangular cross section that tapers along its length. An approximatio...

	figure_problem - Figure P1.19
	PR - 1.20 Show that the average compressive stress due to weight on a cross section at a distance x from the top of the wall in Figur...

	figure_problem - Figure P1.20 (a) Straight wall (b) Inward sloping tapered wall.
	PR - 1.21 The Great pyramid of Giza shown in Figure 1.14c has a base of 757.7 ft x 757.7 ft and a height of 480.9 ft. Assume an avera...
	PR - 1.22 The Bent pyramid shown in Figure 1.14b has a base of 188 m x 188 m. The initial slopes of the sides is 54o27’44”. After a c...
	PR - 1.23 A steel bolt of 25 mm diameter passes through an aluminum sleeve of thickness 4 mm and outside diameter of 48 mm as shown i...

	figure_problem - Figure P1.23

	Heading3 - Shear stress
	PR - 1.24 The device shown in Figure P1.24 is used for determining the shear strength of the wood. The dimensions of the wood block a...
	figure_problem - Figure P1.24
	PR - 1.25 The dimensions of the wood block in Figure P1.24 are 6 in. ° 8 in. ° 1.5 in. Estimate the force P that should be applied to break the block if the average shear strength of the wood is 1.2 ksi.
	PR - 1.26 The punch and die arrangement shown schematically in Figure P1.26 is used to punch out thin plate objects of different shap...

	figure_problem - Figure P1.26
	PR - 1.27 The cross section of the punch and die shown in Figure P1.26 is a square of 10 mm ° 10 mm. The plate shown has a thickness ...
	PR - 1.28 The schematic of a punch and die for punching washers is shown in Figure P1.28. Determine the force P needed to punch out w...

	figure_problem - Figure P1.28
	PR - 1.29 The magnified view of a pin joint in a truss are shown in Figure P1.29. The diameter of the pin is 25 mm. Determine the maximum transverse shear stress in the pin.

	figure_problem - Figure P1.29

	Heading3 - Normal and shear stresses
	PR - 1.30 A weight W = 200 lb. is being raised using a cable and a pulley, as shown in Figure P1.30. The cable effective diameter is ...
	figure_problem - Figure P1.30
	PR - 1.31 The cable in Figure P1.30 has a diameter of and the pin in the pulley has a diameter of If the maximum normal stress in the...
	PR - 1.32 The manufacturer of the plastic carrier for drywall panels shown in Figure P1.32 prescribes a maximum load P of 200 lb. If ...

	figure_problem - Figure P1.32
	PR - 1.33 A bolt passing through a piece of wood is shown in Figure P1.33. Determine: (a) the axial stress in the bolt; (b) the avera...

	figure_problem - Figure P1.33
	PR - 1.34 A load of P = 10 kips is transferred by the riveted joint shown in Figure P1.34. Determine (a) the average shear stress in ...

	figure_problem - Figure P1.34
	PR - 1.35 A joint in a wooden structure is shown in Figure P1.35. The dimension and Determine the average normal stress on plane BEF and average shear stress on plane BCD. Assume plane BEF and the horizontal plane at AB are a smooth surfaces.

	figure_problem - Figure P1.35
	PR - 1.36 A metal plate welded to an I-beam is securely fastened to the foundation wall using four bolts of 1/2 in. diameter as shown...

	figure_problem - Figure P1.36
	PR - 1.37 A metal plate welded to an I-beam is securely fastened to the foundation wall using four bolts as shown Figure P1.36. The a...
	PR - 1.38 A metal plate welded to an I-beam is securely fastened to the foundation wall using four bolts of 1/2 in. diameter as shown...
	PR - 1.39 An adhesively bonded joint in wood is fabricated as shown in Figure P1.39. The length of the overlap is L= 4 in. and the thickness of the wood is 3/8 in. Determine the average shear stress in the adhesive..

	figure_problem - Figure P1.39
	PR - 1.40 A double lap joint adhesively bonds three pieces of wood as shown in Figure P1.40. The joints transmits a force of P= 20 ki...

	figure_problem - Figure P1.40
	PR - 1.41 The wood in the double lap joint of Figure P1.40 has a strength of 15 MPa in tension and the strength of the adhesive in sh...
	PR - 1.42 A wooden dowel of diameter d = 20 mm is used for constructing the double lap joint in Figure P1.42. The wooden members have...

	figure_problem - Figure P1.42
	PR - 1.43 A couple is using the chair lift shown in Figure P1.43 to see the Fall colors in Michigan’s Upper Peninsula. The pipes of t...

	figure_problem - Figure P1.43
	PR - 1.44 The axial force P = 12 kips acts on a rectangular member, as shown in Figure P1.44. Determine the average normal and shear stresses on the inclined plane AA.

	figure_problem - Figure P1.44
	PR - 1.45 A wooden axial member has a cross section of 2 in.° 4 in. The member was glued along line AA and transmits a force of P = ,80 kips as shown in Figure P1.45. Determine the average normal and shear stress on plane AA.

	figure_problem - Figure P1.45
	PR - 1.46 Two rectangular bars of 10-mm thickness are loaded as shown in Figure P1.46. If the normal stress on plane AA is 180 MPa (C), determine the force F1 and the normal and shear stresses on plane BB.

	figure_problem - Figure P1.46
	PR - 1.47 A butt joint is created by welding two plates to transmits a force of P = 250 kN as shown in Figure P1.47. Determine the average normal and shear stress on the plane AA of the weld.

	figure_problem - Figure P1.47
	PR - 1.48 A square tube of 1/4 in thickness is welded along the seam and used for transmitting a force of P = 20 kips as shown in Figure P1.48. Determine average normal and shear stress on the plane AA of the weld.

	figure_problem - Figure P1.48
	PR - 1.49 (a) In terms of P, a, b, and q determine the average normal and shear stresses on the inclined plane AA shown in Figure P1....

	figure_problem - Figure P1.49
	PR - 1.50 An axial load is applied to a 1-in-diameter circular rod (Figure P1.50). The shear stress on section AA was found to be 20 ...

	figure_problem - Figure P1.50
	PR - 1.51 A simplified model of a child’s arm lifting a weight is shown in Figure P1.51. The cross-sectional area of the biceps muscl...

	figure_problem - Figure P1.51
	PR - 1.52 Figure P1.52 shows a truss and the sequence of assembly of members at pins H, G, and F. All members of the truss have cross...

	figure_problem - Figure P1.52
	PR - 1.53 Figure P1.52 shows a truss and the sequence of assembly of members at pins H, G, and F. All members of the truss have cross...
	PR - 1.54 Figure P1.52 shows a truss and the sequence of assembly of members at pins H, G, and F. All members of the truss have cross...
	PR - 1.55 The pin at C in Figure P1.55 is has a diameter of in. and is in double shear. The cross-sectional areas of members AB and BC are 2 in.2 and 2.5 in.2, respectively. Determine the axial stress in member AB and the shear stress in pin C.

	figure_problem - Figure P1.55
	PR - 1.56 All pins shown in Figure P1.56 are in single shear and have diameters of 40 mm. All members have square cross sections and the surface at E is smooth. Determine the maximum shear stresses in the pins and the axial stress in member BD.

	figure_problem - Figure P1.56
	PR - 1.57 A student athlete is lifting weight W = 36 lbs as shown in Figure P1.57a. The weight of the athlete is WA = 140 lb. A model...

	figure_problem - Figure P1.57
	PR - 1.58 A student is exercising his shoulder muscles using a W = 15 lb dumbbell as shown in Figure P1.58a. The model of the student...

	figure_problem - Figure P1.58

	Heading3 - Design problems
	PR - 1.59 The bottom screw in the hook shown in Figure P1.59 supports 60% of the load P while the remaining 40% of P is carried by th...
	figure_problem - Figure P1.59
	PR - 1.60 Determine the maximum force P that can be transferred by the riveted joint shown in Figure P1.34 if the limits apply: maxim...
	PR - 1.61 A tire swing is suspended using three chains, as shown in Figure P1.61. Each chain makes an angle of 12o with the vertical....

	figure_problem - Figure P1.61
	PR - 1.62 Two cast-iron pipes are held together by a bolt, as shown in Figure P1.62. The outer diameters of the two pipes are 50 mm a...

	figure_problem - Figure P1.62
	PR - 1.63 A normal stress of 20 ksi is to be transferred from one plate to another by riveting a plate on top, as shown in Figure P1....

	figure_problem - Figure P1.63
	PR - 1.64 Two possible joining configurations are to be evaluated. The forces on joint in a truss were calculated and a magnified vie...

	figure_problem - Figure P1.64
	PR - 1.65 Truss analysis showed the forces at joint A given in Figure P1.65. Determine the sequence in which the three members at joint A should be assembled so that the shear stress in the pin is minimum.

	figure_problem - Figure P1.65
	PR - 1.66 An 8 in ° 8 in reinforced concrete bar needs to be designed to carry a compressive axial force of 235 kips. The reinforceme...
	PR - 1.67 A wooden axial member has a cross section of 2 in. ° 4 in. The member was glued along line AA, as shown in Figure P1.45. De...
	PR - 1.68 An adhesively bonded joint in wood is fabricated as shown in Figure P1.68. The length of the bonded region L = 5 in. Determ...

	figure_problem - Figure P1.68
	PR - 1.69 The joint in Figure P1.68 is to support a force P = 25 kips. What should be the length L of the bonded region if the adhesive strength in shear is 300 psi?
	PR - 1.70 The normal stress in the members of the truss shown in Figure P1.70 is to be limited to 160 MPa in tension or compression. ...

	figure_problem - Figure P1.70
	PR - 1.71 The normal stress in the members of the truss shown in Figure P1.70 is to be limited to 160 MPa in tension or compression. ...


	Heading3 - Stretch yourself
	PR - 1.72 Truss analysis showed the forces at joint A given in Figure P1.72. Determine the sequence in which the four members at joint A should be assembled to minimize the shear stress in the pin.
	figure_problem - Figure P1.72


	MoM in Action: Pyramids
	figure - Figure 1.14 Pyramids of Egypt (a) Mastaba (b) Step pyramid (c) Bent pyramid (d) Great pyramid of Giza.
	Heading2 - 1.1.4 Internally Distributed Force Systems
	figure - Figure 1.15 Internal forces between particles on two sides of an imaginary cut. (a) Forces between particles in a body, shown on particle A. (b) Resultant force on each particle.
	figure - Figure 1.16 Static equivalency.


	EX-1 - Example 1.4
	figure - Figure 1.17 Fiber pull-out test.
	EX-EQ_first - (E1)
	figure - Figure 1.18 Free body diagrams of the fiber in Example 1.4 (a) with shear stresses, (b) with equivalent internal shear force.

	EX-EQ_mid - (E2)
	EX-EQ_mid - (E3)
	EX-C-NL-first - 1. First, we replaced an internal distributed force system (shear stress) by an equivalent shear force. Second, we related the internal shear force to external force by equilibrium.
	EX-C-NL-mid - 2. In the preceding test it is implicitly assumed that the strength of the fiber is greater than the interface strength. Otherwise the fiber would break before it gets pulled out.
	EX-C-NL-mid - 3. In a test the force P is increased slowly until the fiber is pulled out. The pull-out force is recorded, and the shear strength can be calculated.
	EX-C-NL-last - 4. Suppose we have determined the shear strength from our formula for specific dimensions D and L of the fiber. Now we should be...


	EX-1 - Example 1.5
	figure - Figure 1.19 Adhesive shear strength test.
	figure - Figure 1.20 Free-body diagrams in Example 1.5 (a) with shear stress, (b) with equivalent internal torque.
	EX-EQ_first - (E1)
	EX-EQ_mid - (E2)
	EX-C-NL-first - 1. By recording the value of the torque at which the top half of the cylinder separates from the bottom half, we can calculate the shear strength of the adhesive.
	EX-C-NL-mid - 2. The assumption of uniform shear stress can only be justified for thin cylinders. In Chapter 5 we will see that shear stress for thicker cylinders varies linearly in the radial direction.
	EX-C-NL-last - 3. First, we replaced an internal distributed force system (shear stress) by an equivalent internal torque. Second, we related the internal torque to external torque by equilibrium.


	EX-1 - Example 1.6
	figure - Figure 1.21 Torque on a drill.
	figure - Figure 1.22 Free body diagram of drill bit in Example 1.6 (a) with shear stress, (b) with equivalent internal torque.
	Center - or
	EX-EQ_first - (E1)
	EX-EQ_mid - (E2)
	EX-C-NL-first - 1. In this example and in Example 1.4 shear stress acted on the outside cylindrical surface. In Example 1.4 we replaced the shea...
	EX-C-NL-mid - 2. In Example 1.5 and in this example the surfaces on which the shear stresses are acting are different. Yet in both examples we replaced the shear stresses by the equivalent internal torque.
	EX-C-NL-last - 3. The two preceding comments emphasize that before we can define which internal force or which internal moment is statically eq...

	CYK - Consolidate your knowledge
	NL-first - 1. In your own words describe stress on a surface.
	Quick-NL-first - 1. You can measure stress directly with an instrument the way you measure temperature with a thermometer.
	Quick-NL-mid - 2. There can be only one normal stress component acting on the surface of an imaginary cut.
	Quick-NL-mid - 3. If a shear stress component on the left surface of an imaginary cut is upward, then on the right surface it will be downward.
	Quick-NL-mid - 4. If a normal stress component puts the left surface of an imaginary cut in tension, then the right surface will be in compression.
	Quick-NL-mid - 5. The correct way of reporting shear stress is t = 70 kips.
	Quick-NL-mid - 6. The correct way of reporting positive axial stress is s = +15 MPa.
	Quick-NL-mid - 7. 1 GPa equals 106 Pa.
	Quick-NL-mid - 8. 1 psi is approximately equal to 7 Pa.
	Quick-NL-mid - 9. A common failure stress value for metals is 10,000 Pa.

	PR-1 - Problem Set 1.2
	Heading3 - Internally Distributed Force Systems
	PR - 1.73 The post shown in Figure P1.73 has a rectangular cross section of 2 in. ° 4 in. The length L of the post buried in the grou...
	figure_problem - Figure P1.73
	PR - 1.74 The post shown in Figure P1.73 has a circular cross section of 100-mm diameter. The length L of the post buried in the grou...
	PR - 1.75 The cross section of the post shown in Figure P1.73 is an equilateral triangle with each side of dimension a. If the averag...
	PR - 1.76 A force P = 10 lb is applied to the handle of a hammer in an effort to pull a nail out of the wood, as shown in Figure P1.7...

	figure_problem - Figure P1.76
	PR - 1.77 Two cast-iron pipes are adhesively bonded together over a length of 200 mm as shown in Figure P1.77. The outer diameters of...

	figure_problem - Figure P1.77
	PR - 1.78 Two cast-iron pipes are adhesively bonded together over a length of 200 mm (Figure P1.78). The outer diameters of the two p...

	figure_problem - Figure P1.78
	PR - 1.79 Two cast-iron pipes are held together by a bolt, as shown in Figure P1.79. The outer diameters of the two pipes are 50 mm a...

	figure_problem - Figure P1.79
	PR - 1.80 The can lid in Figure P1.80a gets punched on two sides AB and AC of an equilateral triangle ABC. Figure P1.80b is the top v...

	figure_problem - Figure P1.80
	PR - 1.81 It is proposed to use diameter bolts in a 10-in.-diameter coupling for transferring a torque of 100 in. · kips from one 4-i...

	figure_problem - Figure P1.81
	PR - 1.82 A human hand can comfortably apply a torsional moment of 15 in.·lb (Figure P1.82). (a) What should be the breaking shear st...

	figure_problem - Figure P1.82
	PR - 1.83 The hand exerts a force F on the handle of a bottle opener shown in Figure P1.83. Assume the average shear strength of the ...

	figure_problem - Figure P1.83


	Heading1 - 1.2 Stress at a Point
	EQ - (1.3)
	figure - Figure 1.23 Stress at a point.

	EQ - (1.4)
	TableTitle - Table 1.3 Comparison of number of components

	Heading2 - 1.2.1 Sign convention

	Heading1 - 1.3 Stress Elements
	Heading2 - 1.3.1 Construction of a Stress Element for Axial Stress
	figure - Figure 1.24 (a) Axial bar. (b) Stress element for axial stress.
	figure - Figure 1.25 Stress components are distributed forces on a surface.

	Heading2 - 1.3.2 Construction of a Stress Element for Plane Stress
	EQ - (1.5)
	figure - Figure 1.26 Plane stress: (a) 3-dimensional element (b) 2-dimensional element.



	Heading1 - 1.4 Symmetric Shear Stresses
	figure - Figure 1.27 Force diagram for plane stress.
	EQ - (1.6)
	EQ_A1 - (1.7a)
	EQ_A - (1.7b)
	EQ_A - (1.7c)



	EX-1 - Example 1.7
	figure - Figure 1.28 Cubes in different coordinate systems in Example 1.7.
	figure - Figure 1.29 Solution of Example 1.7.(a) Cube 1. (b) Cube 2.
	EX-C-NL-first - 1. Figure 1.30 shows the two-dimensional representations of stress cubes shown in Figure 1.29. These two-dimensional representat...
	figure - Figure 1.30 Two-dimensional depiction of the solution of Example 1.7.(a) Cube 1. (b) Cube 2.

	EX-C-NL-mid - 2. We note that sxx pulls the surfaces outwards and syy pushes the surfaces inwards in Figures 1.29 and 1.30 as these are tensil...
	EX-C-NL-last - 3. The shear stress txx and tyx either point towards the corner or away from the corner as seen in Figures 1.29 and 1.30. Using ...
	Heading1 - 1.5* Construction of a Stress Element in 3-dimension
	figure - Figure 1.31 Stress cube showing all positive stress components in three dimensions.


	EX-1 - Example 1.8
	figure - Figure 1.32 Cubes in different coordinate systems.
	figure - Figure 1.33 Solution of Example 1.8.
	EX-C-NL-first - 1. In drawing the normal stresses we could have made use of the fact that sxx is tensile and hence pulls the surface outward. sz...
	EX-C-NL-mid - 2. Once we have drawn txy and txz using the subscripts, we could draw tyx and tzx using the observation that the pair of symmetr...

	EX-1 - Example 1.9
	figure - Figure 1.34 Stresses in spherical coordinates.
	figure - Figure 1.35 Stress element in spherical coordinates.
	EX-C-NL-first - 1. This example demonstrates that use of subscripts in determining the direction of stress components follows the same procedure as in cartesian coordinates even though the stress element is a fragment of a sphere.
	CYK - Consolidate your knowledge
	NL-first - 1. In your own words describe stress at a point and how it differs from stress on a surface
	Quick-NL-first - 1. Stress at a point is a vector like stress on a surface.
	Quick-NL-mid - 2. In three dimensions stress has nine components.
	Quick-NL-mid - 3. In three dimensions stress has six independent components.
	Quick-NL-mid - 4. At a point in plane stress there are three independent stress components.
	Quick-NL-mid - 5. At a point in plane stress there are always six zero stress components.
	Quick-NL-mid - 6. If the shear stress on the left surface of an imaginary cut is upward and defined as positive, then on the right surface of the imaginary cut it is downward and negative.
	Quick-NL-mid - 7. A stress element can be drawn to any scale.
	Quick-NL-mid - 8. A stress element can be drawn at any orientation.
	Quick-NL-mid - 9. Stress components are opposite in direction on the two surfaces of an imaginary cut.

	PR-1 - Problem Set 1.3
	Heading3 - Plane Stress: Cartesian Coordinates
	PR - 1.84 Show the stress components of a point in plane stress on the square in Figure P1.84.
	figure_problem - Figure P1.84
	PR - 1.85 Show the stress components of a point in plane stress on the square in Figure P1.85.

	figure_problem - Figure P1.85
	PR - 1.86 Show the stress components of a point in plane stress on the square in Figure P1.86.

	figure_problem - Figure P1.86
	PR - 1.87 Show the stress components of a point in plane stress on the square in Figure P1.87.

	figure_problem - Figure P1.87
	PR - 1.88 Show the nonzero stress components on the A, B, and C faces of the cube in Figure P1.88.

	figure_problem - Figure P1.88
	PR - 1.89 Show the nonzero stress components on the A, B, and C faces of the cube in Figure P1.89.

	figure_problem - Figure P1.89

	Heading3 - Plane Stress: Polar Coordinates
	PR - 1.90 Show the stress components of a point in plane stress on the stress element in polar coordinates in Figure P1.90.
	figure_problem - Figure P1.90
	PR - 1.91 Show the stress components of a point in plane stress on the stress element in polar coordinates in Figure P1.91.

	figure_problem - Figure P1.91
	PR - 1.92 Show the stress components of a point in plane stress on the stress element in polar coordinates in Figure P1.92.

	figure_problem - Figure P1.92
	PR - 1.93 Show the stress components of a point in plane stress on the stress element in polar coordinates in Figure P1.93.

	figure_problem - Figure P1.93

	Heading3 - Stress Element in 3-dimensions
	PR - 1.94 Show the nonzero stress components on the A, B, and C faces of the cube in Figure P1.94.
	figure_problem - Figure P1.94
	PR - 1.95 Show the nonzero stress components on the A, B, and C faces of the cube in Figure P1.95.

	figure_problem - Figure P1.95
	PR - 1.96 Show the nonzero stress components on the A, B, and C faces of the cube in Figure P1.96.

	figure_problem - Figure P1.96
	PR - 1.97 Show the nonzero stress components on the A, B, and C faces of the cube in Figure P1.97.

	figure_problem - Figure P1.97
	PR - 1.98 Show the nonzero stress components in the r, q, and x cylindrical coordinate system on the A, B, and C faces of the stress elements shown in Figures P1.98.

	figure_problem - Figure P1.98
	PR - 1.99 Show the nonzero stress components in the r, q, and x cylindrical coordinate system on the A, B, and C faces of the stress elements shown in P1.99.

	figure_problem - Figure P1.99
	PR - 1.100 Show the nonzero stress components in the r, q, and f spherical coordinate system on the A, B, and C faces of the stress elements shown in Figure P1.100.

	figure_problem - Figure P1.100
	PR - 1.101 Show the nonzero stress components in the r, q, and f spherical coordinate system on the A, B, and C faces of the stress elements shown in P1.101.

	figure_problem - Figure P1.101

	Heading3 - Stretch yourself
	PR - 1.102 Show that the normal stress sxx on a surface can be replaced by the equivalent internal normal force N and internal bending moments My and Mz as shown in Figure P1.102 and given by the equations (1.8a) through (1.8c).
	figure_problem - Figure P1.102
	PR - 1.103 The normal stress on a cross section is given by sxx = a + by, where y is measured from the centroid of the cross section....

	EQ - (1.8)
	PR - 1.104 The normal stress on a cross section is given by sxx = a + by + cz, where y and z are measured from the centroid of the cross section. Using Equations (1.8a), (1.8b), and (1.8c) prove the result of Equation (1.9).

	EQ - (1.9)
	PR - 1.105 An infinitesimal element in plane stress is shown in Figure P1.105. Fx and Fy are the body forces acting at the point and ...
	figure_problem - Figure P1.105


	Heading1 - 1.6* Concept Connector
	Heading2 - 1.6.1 History: The Concept of Stress
	figure - Figure 1.36 Pioneers of stress concept.
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