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PREFACE

In revising Merriman’s Strength of Materials I have attempted
to write a basic textbook for the non-technical student and the
mechanic. I have especially kept in mind the interests, needs,
and backgrounds of the secondary-level practical arts and voca-
tional school groups, who, although having a real use for this
knowledge, will probably have but this one formal contact
with it.

In general, T have attempted to make the book more practical
and less technical than previous editions, with more explanations
in the form of simple, readily observed and easily understood
examples. Throughout the book there has been a shift of em-
phasis from the construction and civil engineering fields to the
present-day industrial fields. The more abstract discussions, of
less value to the practical mechanic, have been eliminated and
the space has been used for explanation of the more useful
aspects of the subject.

The addition of explanatory material is most evident in the
earlier chapters, where the student should form his basic concepts
as a foundation for the more complicated material and applica-
tions which follow. Chapter 1 is new, presenting general con-
siderations which should aid the student in motivating and
orienting his studies. Former Chapter 2, on the general proper-
ties of materials, has been moved to the appendix and is treated
as supplementary text. Here is up-to-date information on such
modern industrial materials as the iron alloys, plastics, and
aluminum.

All the problems have been reviewed. Some have been revised,
others dropped, and new ones have been added, changing the
total number from 378 to 402. The number of illustrations has
been increased from 60 to 71, many of the old cuts having been
replaced.

I take this opportunity to acknowledge the valuable aid of
Mr. George H. Bennett, metallographer and engineer, especially
in the ferrous metals section of Appendix A.

Epwarp K. HANKIN

September, 1942
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CHAPTER 1
GENERAL CONSIDERATIONS

1. Definition of Topic. When first we think of the topic
strength of materials, it is only natural that we expect it to deal
with strength such as we ourselves possess; that is, the power
whereby we exert or resist a force. Actually it is generally ac-
cepted that this topic includes much more than this, being the
science dealing with all the properties of structures and objects
of utility which enable them to resist the action of external and
internal forces, and the changes which take place because of
these forces.

Thus we are thinking only of the strength of a material when
we say that steel is stronger than lead, or that oak is a stronger
wood than pine. On the other hand, we refer to the broader
meaning of strength of materials when we say that one ladder
is stronger than another, or that a certain bridge will stand
heavier traffic than another bridge. In these last comparisons,
the materials used might be of equal strengths; but, because of
the sizes, shapes, and nature of construction, the strength of the
material is made more effective and useful.

Of course there are many properties of materials, such as
hardness, ductility, density, and texture, which are not included
in this topic. In this book, some general properties of the more
common industrial materials are discussed in the appendix.

QUESTIONS

1la. Give two additional comparisons involving merely the strength of a
material.

1b. What properties or factors, in addition to strength, are suggested as
being within the scope of this topic?

1c. List as many as you can of the ways in which one ladder might be
made stronger than another of the same type.

2. Basic Concept of Principles. Strength of materials deals

largely with the relations among the forces acting on a body,
1



2 GENERAL CONSIDERATIONS

the material of which the body is made, together with its size
and shape, and the changes which are brought about in the body
because of the forces in action. These relationships occur as
natural phenomena, real alterations of position, shape, and struc-
ture, which occur as a result of changes outside the object under
consideration. Thus we can see a plank, supported at its ends,
bend as a result of someone standing on it between the supports.
If the person had not stood there, the plank would not have
bent, and, when he steps off, the plank will again change its
shape. These related changes ,are typical of the phenomena
with which this topic is concerned.

It is important that one does not lose sight of this funda-
mental concept of physical phenomena as he proceeds with a
study of strength of materials. While it is not always easy to
see or determine the changes or the nature of the changes which
occur under the action of forces, the changes always occur.

We use formula and mathematics only as a convenient way
of thinking about and making use of our knowledge of the rela-
tionships among the forces, the object, and resulting changes.
The formula is merely a symbolic statement of the principle or
relationship. The letters are used to designate measurements
of the several physical properties involved, such as forces and
dimensions, and ratios of these measurements.

For convenience we separate and simplify the many physical
phenomena which usually occur in complex combinations. That
is to say, while one force acting on a body might produce a num-
ber of different though related changes, it is common practice
to consider one change at a time. Sometimes we consider only
one or two of the several related changes, because of our special
interest in that case, and our experience as to which changes are
likely to be the most critical or undesirable. Care must be
exercised in the separation and simplification of these phenom-
ena to make certain that important factors are not overlooked
or altered. For instance, it is not enough that the floors of most
buildings be merely strong enough to withstand safely the loads
on them, but they must also be sufficiently rigid to prevent the
cracking of plaster attached to their underside.
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QUESTIONS

2a. What is the fundamental basis of the study of strength of materials?

2b. List four factors the relationships of which are dealt with in strength
of materials.

2c. What are three types of changes resulting from the action of forces?

3. Mathematical Application. All about us we see structures,
machines, tools, and other objects, the size and construction of
which are the direct result of the application of the principles
of strength of materials. The modern automobile and airplane
would not be so safe and efficient were it not for the planning
and designing which are based on the principles included in this
topic. The shape and size of vital parts, as well as the material
of which they are made, were decided only after the forces were
analyzed, and all the factors which might cause failure were
considered. As reliability or minimum weight or minimum cost
becomes more important, the principles of strength of materials
are more closely applied—mathematically and graphically. A
large suspension bridge represents a huge investment, and when
it is finished it must do its job reliably. It would not be prac-
tical to proceed with construction of the bridge without having
made doubly sure that the bridge would do its job well and with-
out failing. Of course, if all the conditions were exactly the
same for the new bridge as they were for another bridge which
had already been built and was successful, it would be a simple
matter of duplication. This situation is highly improbable,
however, and so, if it were not for the application of the prin-
ciples of strength of materials, we could not be sure that such a
structure would be safe until it had been built and tested.

It should be noted that it is not unusual in the case of large
and expensive structures to prove the correctness of design based
on the principles of strength of materials by building a model
and subjecting it to a close reproduction of the working forces.
This is especially likely when the design is greatly different in
size ‘or type from any previous structures. In these cases of ex-
perimental design, the purpose is chiefly to prove the correctness
of the analysis of physical phenomena.
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QUESTIONS

8a. List three determining conditions which justify mathematical ap-
plication of the principles of strength of materials.

8b. List three additional objects which probably were designed in whole
or in part with mathematical application of these principles.

8c. What is the major purpose of experimental models in designing?

4. Traditional Design. We are surrounded by a large variety
of objects which owe their proportions and construction to little
other than tradition. Probably the best example of these ob-

(a) (b)

Fic. 1. Traditional and Modern Design of Furniture.

jects is household furniture. Through the years we have devel-
oped basic proportions and materials which enable such things
as tables and chairs to serve their purposes. We have grown
used to seeing them, and only occasionally are we shocked at
seeing some item of furnishing which has been constructed of a
new material or in an original shape. In recent years we have
witnessed the development of this “modern” design, which often
owes its original appearance to a closer regard for the most
effective use of new materials, particularly with application of
the principles of strength of materials (Fig. 1).

The traditional design is probably the net result of many
trials and failures, corrected and improved, and combined with
lines of grace and beauty to produce proportions which please
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the eye and serve the purpose. In most cases, this resulting
design is much stronger than is required by the actual forces
involved, but the relative low cost of materials and the inconse-
quence of extra weight make this feature negligible beside such
considerations as comfort and beauty.

QUESTIONS

4a. What is the usual relation between the sizes of traditionally de-
signed objects and the actual strength requirements?

4b. For what two reasons is the relationship of 4a of little consequence?

4c. What is a basic difference between traditional and “modern” design?

5. Design by Approximation. We first discussed those struc-
tures requiring close application of the principles of strength of

Position A Position B

Fic. 2.

materials, and then noted the objects whose design is a matter
of tradition, without regard for those principles. We now find
another and very large group of structures, tools, and parts
whose design is the result of only an approximate application of
strength of materials. This approximation is carried on by the
designers and craftsmen who constantly exercise their judgment
as to what materials and dimensions to use, how a given object
is to be constructed, or how a certain process is to be carried
out. The basis for these judgments is often referred to as “ex-
perience” and may be the combined result of a study of the
principles of strength of materials and of observation of these
principles in action; of failing and successful structures in actual
use. Most of us seem to “sense” unsafe or insecure construction
in familiar objects probably because we become familiar with
good design as the normal thing. Without having studied
strength of materials, many persons would know that a rectan-
gular timber placed in position 4, Fig. 2, would be stronger than
in position B. Actually this judgment is a conscious recognition
of good design, and is explained by principles of strength of
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materials. In like manner many useful applications are found
for a real understanding of the underlying principles of strength
of materials in the regular work and daily lives of craftsmen and
designers.

Figure 3 shows a floor joist with indications of four of the
possible places where an electrician might drill for the passage
of wires. He should know that a hole in position A4 would
weaken the joist least of the four, and position B would weaken
it most. Of positions C and D, the preference is not certain

Neutral Plane
A N _ __(‘_

S I

Fic. 3.

withqut making some calculations, but they are both much bet-
ter than B.
QUESTIONS

6a. What are the three types of design thus far discussed?

6b. Which two types of design are based upon the principles of strength
of materials?

5c. What is the name given to the basis of judgments, and of what does
it consist?

6d. What groups of people carry on design by approximation? What is
gained by this method? What is lost?

6. Preliminary Investigation—Organization of Data. Before
applying the principles of strength of materials a certain amount
of preliminary investigation and organization of data should be
carried out. As a beginning, it is usually good practice to make
a sketch of the arrangement under consideration, showing shape,
position, and such dimensions as are known (Fig. 4a). Then the
forces should be defined as far as possible, showing location,
direction, and degree, where known (Fig. 4b). This calls for
basic analysis with reference to direct and indirect action of
primary forces, Involving the application of principles of me-
chanics. The forces will be determined by the nature of the
structure or the functions it is to perform.

We have previously mentioned that a complex problem is
frequently merely a combination of several simple problems.
A third series of steps, then, would be the making of separate
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sketches for each of the elemental problems, with clear indica-
tion of the nature of the desired answer (Fig. 4c and d).

Most problems fall into one of two classifications, investiga-
tion or design. In the investigation problem, the sizes and
construction of the body are given or set, and it is required to
find what loads may be safely applied, or whether certain loads
are safe. In the design type problem, the loads and conditions

n "

6+eT 270 Lb
General Arrangement Force Diagram
(@)
? Pin Size. 7 Bolt Size _. 80 Lb
80 Lb
:<>
7 Web Thickness N " Thi ck
270 Lb x ? Wide
80 Lb
Fulerum
(c)
2o I‘!’270 Lb
Lever
(d)
Fie. 4.

are given and it is required to find sizes or construction. Prob-
lems 211 and 250 are of the investigation type, and Problems
21m and 25j are of the design type. Of course more complex
problems may be a combination of these two types.

It should be noted that single forces do not act alone upon a
body, except in cases where inertia is under consideration.
Bodies at rest, or under uniform motion, cannot maintain their
position or condition by their own efforts. Any force acting on
a body tends to move it or alter its motion, and if the body is
to react to the force (resist it) there must be in action other
forces opposing the acting force. As we sit on a chair, exerting
a force equal to our weight on the seat, the floor exerts a resist-
ing force on the bottom of each chair leg, the sum of which
must equal our weight. If this were not so, the chair would be
pushed into or through the floor.



8 GENERAL CONSIDERATIONS

QUESTIONS

6a. What are the two most common classifications of strength of mate-
rials problems? :

6b. In addition to those already mentioned, classify four problems in
this book under each of the two headings above.

6¢c. What determines the forces in action on a body?

6d. Of what advantage is the sketching of a problem? What things are
shown or indicated?

6e. What external forces must be applied in Fig. 5 in order that the
weight W will be suspended by the rope and pulley arrangement?

Fic. 5.



CHAPTER 2
EFFECT OF FORCES ACTING ON SOLID BODIES

7. Resisting Change in Shape. The outstanding property in
the description of solids is that they tend to resist a change in
shape. That is to say, some force must be exerted to change the
shape of a solid body, or, in tending to maintain their given
shape, the solid body will resist the action of forces. This can

+ Fia. 6.

be seen in several simple experiments. If a soft rubber eraser
is squeezed between the fingers it tends to become shorter and
fatter in shape (Fig. 6). As greater force is exerted, this change
in shape becomes more pronounced, and, as the force is released,
it tends to return to its original shape.

A rubber band held at each end will increase in length only
if some effort is made to stretch it. As the effort is increased,
the band will become longer up to the point where it breaks, or
until the force becomes inactive and the band returns to about
its original shape.

If at any time in either of the above experiments, the forces
in action remained unaltered, the shape of the body (eraser or
band) would cease to change. That is, if the rubber band had

9



10 EFFECT OF FORCES ACTING ON SOLID BODIES

stretched to 4 inches in length when a 5-pound force was exerted
on it, it would remain at that length as long as the 5-pound force
was in effect. This condition we speak of as equilibrium.

The property of the material which causes it to resist a change
from its original shape is the development of an internal force,
called stress, which resists and balances the action of the ex-
ternal force. This state of equilibrium exists in all useful strue-
tures and is a fundamental premise for further reasoning. Thus,
if we are able to determine the external forces acting on a body
we can accept the existence of internal resisting forces (stress)
which are equal and opposed to them. In the case of the

P l——P—> (a)

_P L. (b)
Fic. 7.

squeezed soft eraser, the fingers exerted forces tending to bring
them together, while the eraser exerted a force tending to. keep
the fingers apart. At any time that the distance between the
fingers became fixed, these forces were equal.

When the forees acting on a body tend to stretch or elongate
that body along the lines of the forces (Fig. 7a), the body is said
to be in tension, and the stress set up in the body is known as
tensile stress. The stretching rubber band was an example of
tension. \

When the forces acting on a body tend to shorten or compress
the body along the lines of the forces (Fig. 7b), the body is said
to be in compression and the stress is known as compressive
stress. The soft eraser mentioned above was in compression,
as are the foundations of a house and the footing upon which
any structure or body rests.

The third simple stress, not previously mentioned, is shearing
stress. 'This occurs when a body tends to keep two acting forces
from passing each other, as in the case of a piece of paper inathe
blades of a pair of scissors. The edges of the blades tend tc
move past each other, and the paper tends to resist their move-
ment. If cardboard or metal is substituted for the paper, the
maximum resistance may be greater than the force which car
be exerted, and a state of equilibrium is reached. The stres
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which then oceurs is a shear stress. At times this type of simple
stress is difficult to visualize, especially when it occurs in prac-
tical industrial situations. It should be noted that the area
resisting the shearing forces is in a plane parallel to the line of
action of the forces and represents the surface of failure were
those forces to exceed the resistance of the materials. In the
case of the paper in the scissors, the resisting area was the prod-
uct of the thickness of the paper times the short length of the
scissors blade in action at any one position.

QUESTIONS AND PROBLEMS

Ta. Name the three simple stresses and give two everyday examples of
each.

Tb. What is developed within a body to resist any tendency to change
its shape?

7c. In the experiment of Fig. 6, what is the relation between the volume
of the eraser before and after the forces are applied? Explain.

7d. If a force of 10,000 pounds is tending to stretch a steel bar, what is
the value of the stress within the bar? What kind of stress would this
be?

8. Summation of Effect, Unit Stresses. It is not difficult to
see that two ropes of a given size should hold about twice as
much load as one of them, three ropes three times as much, and
so forth. This is recognizing that the cross section area (per-
pendicular to the line of action of the force) has a direct rela-
tion to the ability to resist tensile forces.

Thus we can say that the strenth of a body under the action
of direct forces is in proportion to the area resisting the action
of those forces. In tension and compression this is the cross
section area, perpendicular to the lines of force action, and in
shear it is the area in a plane parallel to the lines of force action,
which would rupture were those forces to pass.

The strength of any given material is generally uniform; a
half-inch bar of a certain kind of steel will always hold about
the same amount of load. In order that we may conveniently
think in terms of the strength of a material, we usually state it
in reference to a unit area, like 60,000 pounds per square inch.
This means that a bar of this material one square inch in cross
section area would withstand a force of 60,000 pounds, or would
exert a stress of 60,000 pounds before breaking. If the area
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were 2 square inches, the breaking stress would be 120,000
pounds; and, if 1% square inch, 30,000 pounds. This strength
for a unit area is commonly referred to as unit strength, or unit
stress. The three direct unit stresses are: unit tensile stress, unit
compressive stress, and unit shear stress.

From the foregoing, we can see that the direct force applied
to a body is equal to the product of the cross section area and
the unit stress. For convenience we can express this relationship
as a formula, where P equals the external force, A equals the
cross section area, and S equals the unit stress. Hence:

P
P=S4 or S_Z 1]

At this time it should be noted that just as both sides of an
equation or formula must be numerically equal, so must the
units balance. In the equation P = SA, the units inserted would
read P (pounds) = S (pounds per square inch) X A (square

__pounds _ . .
square inch X square inches. We see that

square inches cancel out, leaving pounds = pounds, proving the
equation of units. This principle holds true regardless of the
complexity of the formula, and is a convenient check on the
truth of the formula and the correct substitution of values.

Example Problem: If a block of iron 315 square inches in
cross section area is subjected to a compressive load of 14,000
pounds, what is the unit stress?

inches) or pounds =

P 14,000 pounds )
=== = 4000 h
S A~ 315 square inches pounds per square inc

QUESTIONS AND PROBLEMS

8a. If the unit tensile stress in one piece were twice that in a second
piece when under the same external loads, what is the relations between
their cross section areas? If the first piece were steel and the second were
wood, how would the answer to this question be affected?

8b. What two factors control the ability of any part to resist the action
of direct forces?

8c. What is the relation between the plane of resisting area and the
lines of force action in tension? In compression? In shear?

8d. A steel bar which is to be subjected to a tensile force of 36,000
pounds is to be designed so that the unit stress shall be 11,000 pounds
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per square inch. What should be the section area in square inches? If
the bar is round, what should be its diameter?

8e. If a cast-iron bar, 134 X 214 inches in section area, breaks under a
tension of 72,000 pounds, what tension will probably break a bar 114
inches in diameter?

8f. What should be the diameter of a bar of steel to carry a load of
300,000 pounds with a unit stress of 15000 pounds per square inch? If
the bar is 114 inches thick, what should be its width?

8g. A machine weighing 8000 pounds stands on a pedestal (Fig. 8a),
the foot of which is a hollow square 12 inches outside and 8 inches inside.
What is the unit compressive stress in the floor?

Ho o —

LS”Sq.J
<-—12"sq.—J

(a) (b)
Fic. 8.

8h. A tension rod in a truss is to withstand a pull of 30,000 pounds.
What must be its diameter if the unit tensile stress is not to exceed
12,000 pounds per square inch?

8i. Figure 8b is a schematic drawing of a bolt head showing that it may
fail in shear by pulling out a pluglike cylinder ab, c¢d. The lateral area
of this cylinder resists the shearing action of the tension in the bolt and
the forces acting on the head. What unit shear stress is developed in a
l-inch bolt with a head 7% inch thick (¢) under a tensile load of 18,000
pounds?

8j. What head thickness (¢) is required for a 34-inch bolt in order that
the unit shear stress will be one-half the unit tensile stress?

9. Ultimate Strength. When the forces acting on a body in-
crease to the point where the material ruptures or fails, the
maximum stress reached is called the ultimate strength, usually
given as a unit stress. This occurs for any of the direct stresses.
Table 1, page 138, shows accepted average values for common
industrial materials. In this table we can see that the ultimate
unit tensile strength of mild carbon steel is 65,000 pounds per
square inch and of strong alloy tool steel, 120,000 pounds per
square inch.
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QUESTIONS AND PROBLEMS

9a. A bar of mild carbon steel 234 inches in diameter ruptures under a
tension of 271,000 pounds. What is its ultimate strength in pounds per
square inch?

9b. What force is required to rupture in tension a cast-iron bar 6 inches
in diameter, the ultimate tensile strength of the cast iron being 20,000
pounds per square inch?

I £+

9c. A double shear pin (Fig. 9) of mild
carbon steel is to fail under a load of 10,000
pounds. What should be its diameter?

9d. If, at the time of failure in shear,
the tension at the weakest point of mild
steel link 4, Problem 9c, is to be one-sixth

-
b

the ultimate strength, what should be the
thickness t?
9e. What force is required to punch a

FiG. 9. 1%-inch hole through %4g-inch thick mild

carbon steel?

9f. A bar of wrought iron 1 square inch in section area and 1 yard long
weighs 10 pounds. Find the length of a bar which will rupture under its
own weight when hung from its upper end. ’

9g. A brick 2 X 4 X 8 inches weighs about 414 pounds. What will be
the height of a pile of bricks so that the unit compressive stress on the
lowest brick will be one-half its ultimate strength?

9h. Two flat structural steel bars, each 1 inch thick, 2 inches wide, and
4 feet long, are riveted together with one steel rivet 14 inches in diam-
eter. What load will this jointed bar support at the instant of its failure
under a tensile load? How will it fail?

10. Elastic Limits. We have seen that the action of any force
on a body changes the shape of that body (Art. 7). This change
of shape is called deformation. In tension the deformation is
elongation and in compression, shortening.

If a piece of straight wire is bent only slightly, when the
bending forces are removed it will return to its original shape.
If the bending forces are increased, the shape of the wire may
be permanently altered or “set,” and, when the forces are re-
moved, the wire will not again become straight.

The property whereby a material tends to return to its orig-
inal shape when loads are removed is known as elasticity, and
the unit stress which occurs when the maximum temporary de-
formation is produced is known as the elastic limit. All solids
possess this property in varying degree. Table 1, page 138, gives
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average values for common industrial materials. This property
and other changes related to it are discussed in Art. 41.

In cases of direct stress the elastic limit is not readily visual-
ized. It has been found by experimentation that within the
elastic limit the deformation is in direct proportion to the stress
developed. Thus, within the 35,000 pounds per square inch
elastic limit, structural steel will elongate the same amount for
each 5000 pounds per square inch of stress developed. Beyond
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the elastic limit this direct relationship does not exist. The
amount of elongation produced with each addition of unit stress
beyond the elastic limit increases at a great rate. The elastic
limit is determined experimentally by locating the stress point
where the direct relationship between unit stress and elongation
ceases to exist. Figure 10 shows a graph of this relationship
between stress and deformation for several materials.

The elastic limit is always lower than the ultimate strength
but the relationship between these values varies greatly with
different materials. This condition greatly influences the uses
to which various materials may be put. While we shall learn
that a high elastic limit permits larger safe loads, it is also true
that a relatively low elastic limit is often of great value. One
limiting quality of cast iron is that its elastic limit is high with
respect to its ultimate strength. This is spoken of as brittleness,
generally an undesirable property. Soft steel, on the other hand,
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has a greater spread between its elastic limit and ultimate
strength, and so is readily worked and bends without breaking,.

The property of elasticity may be both of value and of detri-
ment. Springs and many devices of rubber, such as rubber
bands, are examples of the usefulness of the elastic property.
On the other hand, elasticity may cause an object to be insuffi-
ciently rigid for practical purposes unless it is made much
larger than its required strength would indicate.

QUESTIONS AND PROBLEMS

10a. In addition to those mentioned in the text, give three everyday
examples of useful application of elasticity.

10b. What are the two direct deformations?

10c. What percentage of the ultimate strength is the elastic limit of
cast iron? Of structural steel?

10d. A steel tie rod in a bridge is 114 inches in diameter. What load or
tensile force will this rod carry if the unit tensile stress is not to exceed
one-half the elastic limit?

10e. A short square stick of timber is to carry a compressive load of
91,000 pounds. What should be its size in order that the unit stress will
be one-third the elastic limit?

10f. A solid cast-iron block is 12 inches in diameter and 12 inches high.
What compressive load will it carry when stressed to its elastic limit?

11. Working Unit Stress. It is not practical to make most
articles just strong enough to do the job for which they were
designed. For one thing, the exact usage and resulting stresses
which a certain piece is to withstand cannot usually be pre-
dicted with certainty. We shall see that just the presence of
fluctuating or moving forces will cause stresses far in excess of
those same forces at rest. Then, again, we do not always ad-
here to our original plans for the use of the object, and it is
helpful if it is able to serve this added purpose. All these things
we can classify as abnormal and unpredictable use.

Another condition which must be considered is abnormal
construction. The very materials of which the object is made
may vary in strength to a great degree. The figures used for
average values of permissible stress do not indicate the wide
variance which may exist, especially in certain materials like
wood. The presence of knots or weather and shrinkage cracks
may so reduce the strength that failure will occur if there has
not, been sufficient oversize allowance. Workmanship, too, must
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be looked upon as a cause of abnormal construction and allowed
for in the design. A faulty rivet or weld, the over- or under-
tightening of a bolt, or some other point in the construction
where the human element has entered might cause an otherwise
good structure to fail if it has been “stressed up” in its design.
These variations in construction do not always act directly but
often cause unequal loading on some other part.

The common and very simple way of allowing for abnormal
usage and construction is by adjusting the stress at which the
material is used. This adjusted stress we call working stress,
being the stress at which the object “works” when the usage and
construction are as planned. In industry the selection of safe
working stresses is a matter of judgment involving experience
and research with the actual conditions concerned.

QUESTIONS AND PROBLEMS

11a. What are the two general conditions wh 'ch must be allowed for in
good design?

11b. What relationship must always exist between the working stress
and the elastic limit? Why?

11c. Cite four cases of abnormal, unpredictable use and four cases of
abnormal construction.

11d. A 3/-inch square cold-rolled steel key is to withstand a shearing
force of 45,000 pounds, with a working stress of 10,000 pounds per square
inch. What is its minimum length?

12, Factor of Safety. In determining the proper working
stress it is convenient to consider it with relation to the -:ltimate
strength and elastic limit. The ratio of the ultimate sirength
to the working stress is called factor of safety. This prime num-
ber represents the number of times the working forces may be
increased before the ultimate strength of the material is passed.
It should be borne in mind, however, that usually long before
the ultimate strength is reached the elastic limit has been passed
and the object is permanently changed in shape and probably
as much harmed as if it were broken. Hence the relation of the
working stress to the elastic limit must be considered, and the
working stress must always be made the lesser of the two.

Table 3, page 139, shows factors of safety for some common
conditions and materials. In general the relations shown should
persist. Higher factors should be used when the loads are vary-
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ing or shock, or when the quality of the materials or workman-
ship is less predictable.

Modern engineering is the art of economic construction. In
most instances the best economy will be obtained by making all
parts of a structure approximately the same strength, for, if one
part is much stronger than the rest, it will contain a useless
excess of material. At the same time it is often good design to
make some one inexpensive or easily replaced part slightly
weaker than the rest so that it will act much as a fuse in an
electric circuit. In such a case, the factor of safety for the
whole machine is identical with the factor of safety of the weak-

est part.
QUESTIONS AND PROBLEMS

12a. What ratio is called factor of safety? In what units is it expressed?
(See Art. 8.)

12b. The factors of safety for the several parts of one machine are
7,75, 6, 68, and 8. Which part will fail under an extreme load? Com-
paring this with a similar machine having factors of 6, 62, 6, 12, 11, which
do we find to be the better design?

12c. A steel strut having a section area of 507 square inches carries a
vertical load of 25 tons. What is its factor of safety if the ultimate com-
pressive strength of the steel is 65,000 pounds per square inch?

12d. What should be the diameter of a mild steel bar so as to carry a
tension of 400,000 pounds with a factor of safety of 4? If the bar is cast
iron, what should be its diameter?

12e. What should be the size of a round bar of structural steel to carry
a tension of 225,000 pounds with a factor of safety of 6?

12f. A short cast-iron post is 12 inches in outside diameter and 10 inches
in inside diameter. Compute its factor of safety when carrying a load of
180,000 pounds.

12g. What load, in tons, may be imposed on 1 square foot of sandstone
foundation, the. limiting factor of safety being 5?

12h. A mild steel bolt 154 inches in diameter has a head 13§ inches long.
When a tension of 17,500 pounds is applied to the bolt, find the tensile
unit stress and the factor of safety for tension. Also find the unit stress
tending to shear off the head of the bolt and the factor of safety against
shear.

12i, What compressive unit working stress in the cast-iron frame of a
machine is indicated by a factor of safety of 20?7 What is the correspond-
ing tensile unit working stress if the factor of safety is 10?

12j. The working tensile stress in a structural steel rod is to be 54 tons.
Find its diameter when it is to be used in a building and also when it is
to be used in a bridge.

12k. The total shear on each rivet of a lap-riveted joint is 2500 pounds.
If the rivet is 3% inch in diameter, find the factor of safety against
shearing.



CHAPTER 3
PRINCIPLES OF BEAMS

13. Theory of Moments. When we pull on the rim of an auto-
mobile steering wheel, we cause the wheel to turn; and the
harder we pull, the more it tends to turn. This tendency to
rotate is called a turning moment, and is caused by a force act-
ing on a body at some distance from a point about which the
turning might occur. Other forces acting on the body resist this
turning, and this may be called the resisting moment. When the
turning moment is greater than the resisting moment, the body
will rotate. When the two moments are equal, a state of equi-
librium exists and there is no rotation.

We have seen that if the acting force is increased, there will
be a greater tendency for rotation; the moment will be increased
directly. In like manner it can be shown that if the distance
between the acting force and the center of rotation, called lever
arm or moment arm, is increased, the moment will be increased
directly. From this relationship we can deduce that the moment
is equal to the product of the lever arm (perpendicular to the
force) and the force. Expressed as a formula this would be
M = Pp, where M is the moment, P the force, and p the lever
arm. When more than one force acts on a body to produce
rotation, the total effect is the algebraic sum of the moments of
all forces. Moments of forces in a plane about a given point
can be in one of two directions. Those moments causing rota-
tion tendency in the same direction as clock hands travel are
called positive, and those in the opposite direction, negative.

Figure 11 shows the three forces acting on a lever. C is the
point about which the lever can rotate.

If the lever is to be in equilibrium, meaning that there is no
tendency for rotation, the algebraic sum of the three moments
must be zero. We see that force P; acting on lever arm p; pro-

duces a negative moment, as does P3 acting on ps. Pj acting on
19
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p2 produces a positive moment. Therefore, P;p; 4+ Psps must
equal Pop,. It should be noted that the lever arm is always
measured from the center of rotation, perpendicular to the line
of force action.

From the foregoing it can be seen that a force acting directly
on the center of rotation has a moment arm of zero value, and
thus produces no moment. It should also
be pointed out that for the purposes of
investigation, any point may be assumed
as the center of possible rotation; and,
when the state of equilibrium exists, the
algebraic sum of all moments of forces
about that point must be equal to zero.

Every force producing a moment has a
second effect which often must be con-
sidered. If a force is applied to a lever,

Fe. 11. the center of rctation of which is not
rigidly positioned, a definite tendency for
the center to move in the direction of the force will be observed.
Figure 12 shows a piece of apparatus arranged in this fashion.
Here the rotation tendency is resisted in such a way as not to
influence the position of center A. All the force required to
hold A in position is indicated on scale B, when a force is ap-
plied through scale C.

As the illustration shows,
forces at B and C are equal,
and so far as rectilinear equi-
librium is concerned, force C
might just as well be applied
at center A. Thus we have
shown that forces produce Fre. 12.
moments and at the same
time have rectilinear effects, and, if a state of equilibrium is to
exist, both effects must be balanced by the action of other forces.

These two effects are usually investigated separately. For
the investigation of rectilinear effect, the force is considered to
act in its proper direction but directly on the center of rotation.
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QUESTIONS AND PROBLEMS

18a. What two things are necessary for the development of a moment?

13b. What are the names given to the two directions of moments of
forces acting in a plane?

13c. If a turning moment is 340 inch-pounds, what would be the value
of the resisting moment in equilibrium?

134. If, in Fig. 11, P; =60 pounds, P2 = 150 pounds, p; = 3 inches,
p2 = 6 inches, and p3 = 21% inches, what is the required value of P3 to
produce equilibrium? What moment is produced by force P;?

13e. If force C, in Fig. 12, were 120 pounds, and its lever arm were 20
inches, what would be the value of the resisting moment? What would
be the value of the moment of force B about center A?

13f. What two effects might a force have acting on a body at some
point other than its point of support?

13g. If a bicycle pedal in its lowest position is pushed towards the rear,
in what direction will the bicycle move? What direction will the pedal
move? Show how this illustrates the rectilinear effect of a force acting
on a lever arm.

13h. A lever 10 feet long is supported 3 feet from one end on a fulcrum.
What force acting on the long end is required to balance a 600-pound
weight on the short end?

13i. A yardstick is suspended at the 9-inch point. What weight is re-
quired at the left end to balance 2-pound weights hung every 3 inches
on the right-hand side, neglecting the weight of the yardstick? If the
yardstick weighs 34 pound, what additional weight would be required
to balance it?

13j. A lever is 6 feet long and the fulerum is placed 4 inches from one
end. What force will be required at the longer end to lift a load of 1200
pounds at the shorter end?

14. Forces Acting on Beams. A beam is one useful type of
body under the influence of a number of forces acting in some
direction other than parallel to its length, thereby causing it to
bend. Figure 13 shows several of the more common types of
beams and beam loadings. In actual practice, beams may take
a great variety of forms and the loading become much more
complex. Basically the principles are no different, and herein
only the simpler cases with parallel forces perpendicular to the
beam will be considered.

In general the supports have the function of holding the beam
in position by exerting the necessary forces to resist the action
of the loading. For investigation purposes, the supports are con-
sidered to be rigidly fixed as to position. The forces exerted by
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the supports are called reactions. Beam I, Fig. 13, shows a

simple beam on two supports under a single load P. The re-

actions are B; and R;. The span of a beam is the distance be-
tween the supports, L.

P The loads are the applied forces,

l the action of which the beam is to

— ], resist. One type, the concentrated

Y‘F L ? load, is shown on beam I, Fig. 13,

R, g, as P and the other type, the uniform

w P load, is shown on beam II as W.

— : I Uniform and concentrated loads
i L $ commonly occur in combination.

R, R, Figure 14 shows a simple beam

P with one concentrated load. If the

%:_: /m support at R, is taken as a center

| - of rotation, 20R; must equal 600

pounds X 15 feet, or 20R, = 9000

By taking the center of rotation at
g, the support, the rotation effect of R
Fie. 13. acting on a zero moment arm is zero,

and need not be considered.

In like manner, taking support at R, as the center of rotation,
20R, must equal 600 pounds X 5 feet, or 20R; = 3000 foot-
pounds, and R = 150 pounds. Note that R, +4 R, = 600
pounds, which is the value of the load, as it should be.

The reactions caused by the weight of a beam itself may be
found in a similar manner, the uniform load being supposed to
be concentrated at its center of gravity in stating the equations
of moments. Thus, if the weight of

E, 1 w foot
-pounds.
——
2i : IV R, then must equal 450 pounds.
R

the beam is W, the two equations of s,nmm o
moments are found to be RB; X 20 — ,f— 2 1
WX10=0 and —R: X204+ WX % oo

10 = 0, from which Ry = %W and g, Ra
R: = 1%W. Fie. 14.

The values of reactions from each
of several forces on the beam may be added together to obtain
the total reaction.



FORCES ACTING ON BEAMS 23

The reactions due to both uniform and concentrated loads on
a simple beam may also be computed in one operation. As an
example, there is a simple beam 12 feet long between the sup-
ports and weighing 35 pounds per linear foot, its total weight
being 420 pounds (Fig. 15). There are three loads of 300, 60,
and 150 pounds, placed 3, 5, and 8 feet, respectively, from the
left support. To find the left reaction, R, the center of moments
is taken at the right support and the weight of the beam re-

I 300 60 150,

’ ’ ’ ’
e R A
?R; R,T

Fie. 15.

garded as concentrated at its middle. Then the equation of
moments is

RiX12-420X 6 —-300X9—-—60X7—150%X4=0

from which B; = 520 pounds. In like manner, to find R, the
center of moments is taken at the left support; then

—Ry; X 124420 X6+4+300X3+60xX5+150X8=0

from which Es = 410 pounds. As a check, the sum of R; and
R, is found to be 930 pounds, which equals the combined weight
of the beam and the three loads.

By means of the principle of moments, other problems relat-
ing to reactions of beams may also be solved. For instance, if
a simple beam 12 feet long weighs 30 pounds per linear foot and
carries a load of 600 pounds, where should this load be put so
that the left reaction will be twice as great as the right reaction?
Here let x be the distance from the left support to the load; let
R, be the left reaction and R. the right reaction. Then, taking
the centers of moments at the right and left support in succes-
sion, we find that

R, =180 4 50 (12 — z), R. = 180 4 50z

and, placing R; equal to 2R,, we have z = 2.8 feet.
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QUESTIONS AND PROBLEMS

14a. Make a sketch of a simple beam 12 feet long with a uniform load
of 120 pounds per foot for its length and a concentrated load of 2000
pounds 3 feet from the left support. Label supports, span, loads, reac-
tions, and find value of each reaction.

14b. What is the name of the forces exerted by the total load and the
sum of the forces exerted by the supports?

14c. For what reason do we take moments about the points of support
in determining beam reactions?

14d. A beam weighing 40 pounds per linear foot rests upon two sup-
ports 18 feet apart. A weight of 400 pounds is placed 5 feet from the left
end, and one of 600 pounds is placed 8 feet from the right end. Find
the reactions due to the total loading.

14e. A wooden beam, 10 X 12 inches in section area and 18 feet between
supports, carries a uniformly distributed load of 400 pounds per linear
foot for a distance of 8 feet from the left end. The remaining 10 feet
carry a uniformly distributed load of 800 pounds per linear foot. Find
the reactions at the supports.

14f. Where on the beam of Problem 14e must a concentrated load be
placed so that the two reactions will be equal? What must be the magni-
tude of this load?

15. Perpendicular Shear Stresses in Beams. When a beam is
short and heavily loaded it may fail by shearing in a perpen-
dicular section near one of the sup-
ports. The force that produces this
shearing is the resultant of all the
perpendicular forces on one side of the
section. Thus, in the simple beam of
the first diagram (Fig. 16), this re-
¢ sultant is the reaction minus the

R weight of the beam between the re-

Fia. 16. action and the section A’A; in the

cantilever beam of the second diagram

it is the sum of the loads and the weight of the beam on the left
of the section B’B.

Perpendicular shear is the name given to the algebraic sum
of all the perpendicular forces on the left of the section which
is under consideration. Thus in the first diagram of Fig. 16, if
the reaction R, is 6000 pounds, the perpendicular shear V just
at the right of the support is 6000 pounds. If the beam weighs
100 pounds per linear foot, the perpendicular shear at a section
one foot from the support and on the left of the single load P,

‘w'\ | L;
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is 5900 pounds. Again, in the second diagram of Fig. 16, if the
beam weighs 100 pounds per linear foot and if each concentrated
load is 800 pounds, and the distance from the left end of the
beam to the section B’B is 4 feet, the perpendicular shear in that
section is 2000 pounds.

It is thus seen from these illustrations that in a simple beam
the greatest perpendicular shear is at the supports, and in a
cantilever beam it is at the wall. Only these sections, then, need
be investigated in a solid beam. For a simple beam of length I
and carrying a uniform load of w pounds per linear unit, the
greatest perpendicular shear is equal to the reaction %4wl. For
a cantilever beam of length [, the greatest perpendicular shear
due to a uniform load is tHe total weight wl.

The perpendicular shear V produces in cross section where it
occurs an equal shearing stress. If A is the section area and S
the shearing unit stress acting over that area,

V = AS, S=§,A=I—g [2]
are the equations similar to Equation 1 of Art. 8; these are used
in computations regarding shear in solid beams.

For example, consider a steel I beam weighing 250 pounds
per yard and 12 feet long, over which roll three locomotive
wheels 4 feet apart and each bear-
ing 14,000 pounds. The greatest @_@
shear will occur when one wheel is @
almost at the support as shown in | j
Fig. 17. In Art. 14 the reaction 4 F. 17,
is found to be 28,500 pounds, and
this is.equal to the greatest perpendicular shear V. The area of
the cross section being 24.5 square inches, the shearing unit
stress in the section is

S = 28,500 _ = 1160 pounds per square inch

24.5
which is a low working unit stress for steel.
As a second example, consider a wooden cantilever beam
which projects out from a bridge floor and supports a sidewalk.
Suppose it to be 6 inches wide, 8 inches deep, and 7 feet long,
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and the maximum load that comes upon it to be 7500 pounds.
The perpendicular shear at the section where it begins to project
is then 7590 pounds, or the load that it carries plus its own
weight. As the section area is 48 square inches the shearing
unit stress is a little less than 160 pounds per square inch. The
factor of safety against shearing is hence about 19 (Art. 12),

so that the security is ample.
It is indeed only in rare instances that solid beams of uni-
forin cross section are subject to dangerous stresses from shear-
ing. Beams almost universally fail

1200 Lb by tearing apart under the hori-
A zontal tensile stresses, and hence
-Jéggﬂgr the following articles will be de-
voted to the consideration of these

700 Lb 500 Lb

bending stresses.

_%ma These data of shearing forces
and shear stresses are often plot-
ted graphically in a shear diagram,
b as in Fig. 18a. This diagram is
constructed by plotting the forces
Tre. 18. vertically to a scale, with due re-
gard to the directions of the forces,
usually working from left to right. If the beam is of uniform
cross section for its entire length, the diagram of shear forces is
sufficient in most cases, for the shear stress diagram would have
the identical shape. If, however, the cross section is not uni-
form, a second diagram (Fig. 18b) showing shear stresses might
be of value. Note the difference in shapes of diagrams a and b

due to the influence of changing cross sections.

QUESTIONS AND PROBLEMS

15a. Is the shear stress in beams usually critical? Explain.

15b. What two factors control the value of shear unit stress in a beam?

15c. In computing shear on a beam what is the preferred side from
which to take the algebraic sum of forces?

15d. Explain the difference in shape between graphs a and b, Fig. 18.

15e. In moving loads such as are shown in Fig. 17, why does the maxi-
mum shear occur just before the first wheel reaches the support?

15f. What is the magnitude of the vertical shear under wheels 2 and 3
in Fig. 17?
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16g. A timber cantilever ! feet long carries a uniform load of w pounds
per linear foot together with a concentrated load of P at 14l. What is
the vertical shear at the support and at the extreme end? What is the
vertical shear under the concentrated load and at each of the quarter
points?

15h. A simple beam of cast iron is 4 XX 4 inches in section and 61 feet
long between supports. Besides its own weight, it is to carry a load of
5000 pounds at the middle and a load of 1000 pounds at 1% feet from the
left end. Find the factor of safety against shearing.

15i. On a simple beam 12 feet long there are two loads, each 800 pounds,
one at 3 feet from the left end and one at 3 feet from the right end.
Find the vertical shear due to these loads for a section near one of the
supports, and also for any section between the loads.

16. Bending Moments in Beams. We have seen that a beam
is merely a special body under the influence of several forces
tending to produce rotation. Also, that the algebraic sum of
moments of all forces acting about any point on the beam must
be equal to zero, or that the sum of the moments of all forces
on one side of any point on the beam must be equal to the sum
of moments of all forces on the other side. The function of the
beam in this case is to transmit the action of one set of forces
to the other set. In so doing the beam is put under bending
action, and the moment producing this bending is called the
bending moment. Thus the bending moment at any section of
a beam is equal to the algebraic sum of the moments of all the
forces on either side of the section in question. Which group of
forces to be used is a matter of choice, depending upon the
amount of calculation required or the data available.

If the moment of each force is given its proper sign, as pre-
viously explained, the resulting sign of the bending moment will
have real significance. In a position on a beam where a positive
bending moment exists, the beam is bent so that its upper side
is concave. If the bending moment is negative, the bending is
such that the upper side is convex (bowed up). Thus, knowing
the shape of the beam under loading, one can predict the sign
of the bending moment or, knowing the sign of the bending
moment, predict the shape of bending ot the beam.

For example, let a beam 30 feet long have three loads of 100
pounds each, situated at distances of 8, 12, and 22 feet from the
left support (Fig. 19). By the method of the previous article
the left reaction R; is 160 pounds and the right reaction R, is
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140 pounds. For a section 4 feet from the left support the bend-
ing moment is 160 X 4 = 640 pound-feet, and for a section at
8 feet from the left support the bending moment is 160 X 8 =
1280 pound-feet. For a section 10 feet from the left support
there are two vertical forces on the left of the section, 160 act-
ing up and 100 acting down, so that the bending moment is
160 X 10 — 100 X 2 = 1400 pound-feet. For a section at the
middle of the beam the bending moment is 160 X 15 — 100 X
7 — 100 X 3 = 1400 pound-feet.
P, P, P, For a section at the third load
”‘*l l l the bending moment is, in like
RT 1280 1120 manner, 1120 pound-feet, and for
y ‘ml”mmmm " “mm R: 4 section at 3 feet from the right
.:Iﬂ"""l Imlmm"m""llln. support it is 420 pound-feet. The
Tic. 19. vertical ordinates plotted in the
diagram under the beam in Fig.
19 represent the values of these bending moments, and the dia-
gram thus formed shows how the bending moments vary
throughout the length of the beam.

For a simple beam of span | and uniformly loaded with w
pounds per linear unit, each reaction is ¥%wl. For any section
distant x from the left support (Fig. 20) the bending moment is
Lowl X  — wx X Yz, where the lever arm of the reaction is z
and the lever arm of the load wz is Y4z. If w is 80 pounds per
linear foot and [l is 30 feet, the
bending moment at any section is fé_-_,x_.._,; ______ (1-x)-—— -
then 1200x — 4022. For z = 10 | i
feet, the bending moment is 8000 4 %
LY
9000 pound-feet; for x = 20 feet, nlllmlml U""l""lh
it is 8000 pound-feet; and so on. Fie. 20.

The diagram shows the distribu-

tions of moments throughout the beam, and it can be demon-
strated that the curve joining the ends of the ordinates is the
common parabola.

When a beam is loaded both uniformly and with concentrated
loads, the bending moments for all sections may be found in a
similar manner. The maximum bending moment indicates the
point where the beam is under the greatest horizontal stresses;
this will usually be found near the middle and often under one
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of the concentrated loads. For simple beams resting on two
supports at their ends all the bending moments are positive. It
may further be noted that, if the vertical forces on the right of
the section are used, the same numerical values will be found
for the bending moments.

QUESTIONS AND PROBLEMS

16a. In calculating the bending moment for a given section of a beam,
what is the basis of choice belween using the sum of moments on one
side or the other?

16b. If a beam is bent so that its upper side is concave, what is the
direction of the existing bending moment?

16c. Compare the type of line bounding the bending moment diagrams
in Figs. 19 and 20. What type of line is associated with uniform loading?
With concentrated loading? What type of line would you expect to find
bounding a bending moment diagram for a combination of concentrated
and uniform loading?

16d. A simple beam of yellow pine has a section area of 114 square feet.
Its length is 18 feet. At 6 feet from the left end there is a load of 1000
pounds. At what point on the beam must a load of 2000 pounds be
placed so that the reaction at the left support will be twice that at the
right?

16e. Two locomotive wheels, 6 feet apart, each carrying 20,000 pounds,
roll over a beam of 27-foot span. Find the greatest reaction which can
be caused by these wheels.

16f. A simple beam of 20-foot span weighs 100 pounds per linear foot
and has a load of 500 pounds at 8 fcet from the left end. Compute the
bending moments for sections distant 2, 4, 6, 8, 10 feet from the left sup-
port and construct the diagram of bending moments.

17. Resistance to Bending. In transmitting the action of one
set of forces to another set, which produces what we have called
bending moment, the beam must develop internal forces which
will tend to maintain the beam shape, resist bending. This in-
ternal resistance to bending we call resisting moment and it fol-
lows that at any point resisting moment = bending moment.

The precise nature of the resisting moment stresses must be
determined so that design and investigation can be performed.
Figure 21a shows a model beam, cut away at section A4 so that
the bending action will be concentrated and exaggerated when
under load as in Fig. 21b. The pieces removed were of the same
length, for the full depth, as shown by the shape of the cut-outs
in Fig. 21a. When a bending moment is produced, however, we
see that this gap is reduced at the top and increased at the
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bottom. The amount of change in the gap width varies between
these extremes and there is no change at the center point C.
Close examination and comparison of these two illustrations re-
veal that the change in gap width on either side of the center
point C is in direct proportion to the distance from that point.
That is, at a point 2 inches above the center, the change in gap
is twice as large as at a point 1 inch above, and half as large
as a point 4 inches above. It follows that if sufficiently elastic

(a) (b)
Fic. 21.

material were connected between the two sides of the gap it.
would be stretched (tension) or shortened (compressed) just as
the gap varied in width.

In Art. 10 we saw that within the elastic limit of a material,
the stress is in direct proportion to the deformation. Thus we
can safely say that the stress is greatest at the very top or very
bottom of the section whichever is farthest from the unchanging

or neutral axis. Figure 22 is a

P4 diagram showing the stress re-
l lationships at a line of bending
- — AA, as deduced above, arrows
AN A pointing left indicating tension
A and those pointing right indicat-
Fua. 22. ing compression.

The line passing through a
cross section at the point of zero deformation and stress we call
the neutral azis. Since in every vertical cross section of a beam
there exists a neutral axis, there is formed a neutral plane pass-
ing horizontally through the beam for its entire length.,

The horizontal stresses resist the bending by acting, in effect,
upon small lever arms which are equal in length to the distance
to the neutral plane. Thus, if in Fig. 21 there had been in effect
one area element at the top and another at the bottom, and if
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the deformation had produced a total stress of 60 pounds in each,
the resisting moment would be (60 X 5) 4+ (60 X 5) or 600
inch-pounds. The resistance of any additional area element
could be added to this sum to produce the total resisting mo-
ment. Hence we can say that in any cross section the resisting
moment is equal to the summation of each area element stress
multiplied by its distance from the neutral plane. Expressed in
an equation, this is

M,- = GISIZI + 028222 + 035323 + 043424, ete. [3]

where M, is the resisting moment, a is fiber area, S is the unit
fiber stress, and z is the distance to neutral plane from points 1,
2, 3, 4, etc. But we have seen that the stress in an individual
area element is in proportion to its distance from the neutral
plane so that, if S is the unit stress in the extreme area element
and c is half the depth of a rectangular beam,

%1 22

Sl=S—, S2=S—,etc.
[ c

Substituting these values in Equation 3, we get

212 222 232 242
M, = a;8 — + ax8— + a38 — + a4S —, ete.
c c c ¢
or
M. = S 2 2 2 2
= (@m2:° + a2ze° + aszs® + agz4’, ete.)
or

M= ?(2%2)

Here the notation Saz? is used to denote the quantity a;z:2 +
as222 + - + -. The letter 3 (sigma) is not a factor but a symbol
which indicates the process of summation, and it should be read
“summation of all the values of.”

This quantity Saz2 is called the moment of inertia of the cross
section of the beam. How its value is found is shown in Art. 19.
The moment of inertia is designated by I; hence

. SI
Resisting moment = "
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5X6% +6xX3—-11Xc=0

from which the value of ¢ is found to be 4.65 inches. For the
channel section, shown on the right of Fig. 24, the same method
is to be followed-as for the L.

The method of moments may thus be applied to areas as well
as to forces. If a is any area and z the distance of its center of
gravity from an axis, the product az is called the static moment
of the area. The algebraic sum of the static moments of all
parts of the figure is represented by Saz which is the summation
of the values a,21, a222, aszs, etc. If A is the total section area,

Zaz

A

is a general expression of the method of finding the distance c.
If the axis is taken within the section, some of the 2’s are nega-
tive; and, if the axis passes through the center of gravity of the
section, the quantity 3az is zero.

When the cross section is bounded by curved lines, as in a’
railroad rail, it is to be divided up into small rectangles and the
value of a found for each. The sum of all the a’s is A, and
then by the above method the value of ¢ is computed. For the
various rolled shapes found in the market the values of c are
thus determined by the manufacturers and published for the
information of engineers.

Triangular beams are seldom used, but it is often
convenient to remember that for any triangle whose
depth is d the value of ¢ is 2%d.

For the angle section, shown in Fig. 25, the center
of gravity usually lies outside the section; and there
are two values of ¢, called ¢; and ¢, to be deter-

Fic. 25. mined.

Let the thickness of each leg be 34 inch and the
length of the long leg G and that of the short leg 4 inches. The
area of the long leg, including the lower corner, is 6 X 3, = 4.5
square inches, and its center of gravity is 3 inches below the
axis A4 and 3%; inches to the right of the axis BB. The area
of the short leg, excluding the corner, is 314 X 3} = 2.4375
square inches, and its center of gravity is 534 inches below the
axis A4 and 15/ inches to the right of the axis BB. Then, as

o
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the total area of the section is 6.9375 square inches, the equation
of moments with respect to the axis 44 is

6.9375¢c; = 4.5 X 3 + 2.4375 X 5.625,

and then c¢; = 3.92 inches. Also the equation of moments with
respect to the axis BB is

6.9375¢c2 = 4.5 X 3.625 4+ 2.4375 X 1.625

from which cs = 2.92 inches.

QUESTIONS AND PROBLEMS

18a. Find the center of gravity of a trapezoid the upper and lower
parallel edges of which are 6 inches apart. The upper edge is 10 inches
long; the angle between the right-hand and top edges is 135 degrees, and
the angle between the top and left-hand edges is 86 degrees.

18b. For Fig. 24 let ¢ =6 and c¢: = 3 inches. If the unit stress S at
the top of the web is 6000 pounds per square inch, what is the unit
stress S; on the lower side of the flange?

18c. A deck beam used in buildings has a rectangular flange 4 X %}
inches, a rectangular web 5 X 14 inches, and an elliptical head which is
1 inch in depth and whose area is 1.6 square inches. Find the distance of
the center of gravity from the top of the head.

18d. Find the center of gravity
of a T section 12 inches deep by
5 inches wide with a vertical web

:
i

3 inches thick and flanges 1 inch

thick. Cut out paper model and N H—"

check for balance on a pin held ) ¥ [ 3
horizontally. <&

19. Moment of Inertia. In
Art. 17 it is shown that a
beam’s resistance to bending
is dependent upon the dis-
tribution of the cross section Fic. 26.
area expressing the influence
of each elemental unit of area with respect to an axis passing
through the center of gravity. The sum of the products of all
the individual elements of area multiplied by the square of
their respective distances from the neutral axis we call moment
of inertia, designated by the letter I. Expressed as an equation,
I = 3az2, where 3 is used to indicate the process of summation,

b
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a represents the elements of area, and z their distances from the
neutral axis. This equation is in a general form and must be
further developed in order to apply to any specific section.

If a rectangular section b wide by d deep is broken up into
elements of area b by dy, as in Fig. 26, an approximate value of
its moment of inertia may be obtained by other than higher
mathematics, as follows:

In the equation, I = a,2,2 + a925> + ages?, ete.,

d d d 3d
al,ag,a3,etc.=bd1,andz1=§——;,z2=§——2—1,
_d_5d _4_T7d
BT 9T g T T g

Then
— oba, (¢ .‘?1)2 (d 3dr)’
I—2bd1<2 B + 2bd,; 5~ 2\
d 5d1>2 (d 7d1>2
2bd<— TL) 4 2bd, (5 —
+2bd, 5 + 2bd, 2 2
Or

3 I = 2bd1(d2 - 8dd1 + 21d12)
But, in this case,

d d?
d1 = g and d12 = 6—4
2bd< d d2> bd  21d?
I="""\d?—8l-421—)=— X"~
8 8 + 64 4 X 64
_ 21bd®
"~ 256

If the size of the elements is reduced to the infinitesimal, and
summated by the use of calculus, an exact value for this case is
obtained, I = 14,bd?, which is slightly larger than our approxi-
mate value.

By the use of calculus, formulas for other common shapes are
obtained as follows:
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Moments of Inertia
About Gravity Axis -

b

Reot:

le 2 zd ===

Triangle I= ﬂs

- i

Circle @x I= wdt
64

By examining these formulas we see that I is in units of cross
section measure to the fourth power. If the depth and width
of a beam are expressed in inches, the moment of inertia will be
in units of inches to the fourth power.

Moments of inertia, when referred to the same axis, can be
added or subtracted like any other qualities which are of the
same kind. Thus, in a hollow rectangular section whose outside
depth and breadth are b and d, the thickness of the metal being
the same throughout (Fig. 27), the moment of inertia is found
by subtracting the moment of inertia of the inner rectangle from
that of the outer one; or

I= ‘l%bds - —1l2-b1d13
is the moment of inertia for the rectangular section whose area
is bd — bid;.

For an I beam the flanges of which are equal the same method
applies. Let b be the width of the flanges and d the total depth
of the section shown on the left
of Fig. 27; also let ¢ be the
thickness of the web and t; the L~| l—_J
thickness of the flanges. The _lo
moment of inertia of the area ‘_I l—j
(b —t) (d — 2t;) is then to be
subtracted from the moment of
inertia of the area bd, or

I= Lbd® — 25 (b— t) (d —2t)3

is the moment of inertia for the I section.

)

Fic. 27.
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19c. A steel I beam weighing 80 pounds per linear foot is 24 inches
deep, its flanges being 7 inches wide and 7 inch mean thickness, and the
web 0.5 inch thick. The moment of inertia stated by the manufacturer is
2088 inchest. Compute it by the equation given in this article.

19d. Calculate the moment of inertia of a built-up section similar to
Fig. 29b, made up of two 6-inch channels and one plate 8 X %¢ inches.
The area of each channel is listed as 2.39 square inches and about its
gravity axis, = 13 inches?.

19e. Calculate the moment of inertia of a section similar to Fig. 29c¢
except that it is made solid, without the two cavities shown.

19f What would be the moment of inertia of a rectangular section
4 % 10 inches with a 21%-inch circular cavity 14 inch in from a 4-inch
edge? Use the gravity axis perpendicular to the 10-inch side.

19g. Calculate the moment of inertia of a section through hole D, Fig. 3,
if the beam were 53X 12 inches and the hole 134 inches in diameter,
located 2 inches from its center line to the bottom of the beam.

20. Section Modulus. Beams of several shapes and sizes
might be made of the same material and have a cross section
with the same moment of inertia, and yet not be equally strong.
This we can see by examining Equation 4, M = SI/c¢, which shows
that the strength varies not only with the moment of inertia, but
also inversely as the distance from the neutral axis to the ex-
treme fiber. Therefore, the actual measure of the strength of a
given cross section is the ratio I/¢, which we call section modu-
lus. This value is commonly used, and is frequently given in
tables of beam section properties, such as Table 4, page 140.

Examining the section modulus of a rectangular section
I/c = bd?/6, we see that the reason for using shapes deeper
than they are wide, as in floor joists, is that this value increases
with the square of the depth, and only directly as the width.
Thus a beam twice as wide as another is twice as strong, whereas
one twice as deep is four times as strong. A 3- X 10-inch joist,
standing on the 3-inch side has an I/c of 50 inches?, whereas
lying on its 10-inch side its I/c is only 15 inches3,

PROBLEMS

20a. Compute the section modulus of the T section of Problem 18d.
(Be sure to use the greater value of c.)

20b. Two symmetrical beams, one 10 inches deep and the other 16
inches deep, are so proportioned that they have the same moment of
inertia, 300 inches*. What is the section modulus of each; which is
stronger; and how much stronger (in percentage) is it?
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Art. 21. REVIEW PROBLEMS

21a. A plain concrete beam is 14 inches deep and 10 inches wide. What
is its section area? Locate its neutral axis. How much does it weigh
per linear foot? What is the moment of inertia of its cross section? If
the beam is laid on its side, what will the moment of inertia then be?

21b. Compare the moment of inertia of a circle 86 inches in diameter
with the moment of inertia of the circumscribing square?

21c. A piece of hemlock 2 X 4 inches in section lies flatwise and spans
an opening 6 feet wide. A man weighing 150 pounds stands at its center.
Is he in a safe place? How much safer would he be if the piece were
turned so that its 4-inch dimension would be vertical?

21d. Three men carry a stick of timber, two taking hold at a common
point and one at one of the ends. Where should the common point be
so that each man may carry one-third of the weight?

2le. Compute the bending moments under each concentrated load for
Fig. 15, assuming the beam to weigh 100 pounds per linear foot.

21f. The two bases of a trapezoid are 8 and 5 inches, and its height is
5 inches. Find the center of gravity.

21g. For a solid circular section the moment of inertia with respect to
an axis through the center is 144nrd%. Find the moment of inertia for a
hollow circular section with outside diameter di and inside diameter do.

21h. A simple beam of 20-foot span weighs 160 pounds per linear foot
and has a concentrated load of 5000 pounds at a distance of 4 feet from
the left end. Compute the bending moments for several sections through-
out the beam and construct the diagram of moments.

21i. Locate both gravity axes of a steel channel 8 inches deep, the aver-
age thickness of the web being 025 inch, average thickness of flange 0.42
inch, and width of flanges 2.32 inches.

21j. Compute the moments of inertia of the beam section given in
Problem 18¢ with respect to each of the gravity axes.

21k, Find the moment of inertia of a circle 5 inches in diameter. Also
the moment of inertia of that circle with respect to another axis in the
same plane, the shortest distance from the center of the circle to that
axis being 9 inches.

211. A timber cantilever 4 X 8 inches in section projects 5 feet out of a
wall. What load must be put upon it so that the greatest shearing stress
will be 140 pounds per square inch?

21m. Show that the moment of inertia of a rectangle with respect to
an axis passing through its base is 13bd3.

21n. A temporary grandstand is to be erected. The seats are to be of
hemlock boards 12 inches wide and 2 inches thick. What is the maximum
permissible distance between the supports under the seats if they are to
carry safely a solid row of people each weighing 150 pounds and each
occupying a longitudinal space of 14 inches?

210. What is the maximum resisting moment of the beam of Problem
21e? What are the reactions of its supports?



CHAPTER 4
APPLICATION OF BEAM PRINCIPLES

22. Investigation of Beam Strength. To determine the maxi-
mum safe load for a given beam, the following data must be
obtained:

1. Span and nature of supports.

2. Shape and dimensions of the cross section.

3. Properties of the material of which the beam is made.
4. Essential nature and location of loads.

@ Simple Beam— Uniform Load d Cantilever Beam — Concentrated Load
Y P
w
L4 R\=R,= 2 R=P
Wi
R I f‘R M= -5 J M=Rm
lr 1 1772 D 5 Wl‘ R l _ P13
D= 551
e Beam with Restrained Supports and
Uniform
2 w
Ry=Ry=
wi
g M=
E, 2 wi
D= ggi g7
f Beam with Restrained Supports and
Central Concentrated Load
7 P
P
Ri=Ry=5
% %
R, 2 P8
D= -t
192 E1

Fc. 30.

The supports may be either restrained or simple, the latter
being the more common. Beams with restrained supports, such
as shown in Fig. 30e, are stronger than equal beams with simple
supports; but secondary forces must be resisted in the supports

themselves, and this is often undesirable. The analysis of the
42
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factor relationships for beams with restrained supports involves
higher mathematics, and hence the formulas given in Fig. 30
are merely for reference. For beams with simple supports the
reactions and bending moments are calculated as shown in Arts.
14 and 16.

We have seen that the section modulus of a beam is based
upon the shape and dimensions of its cross section. For ma-
terials, such as steel, equally strong in tension and compression,
the calculations given will be correct. For materials such as cast
iron, which are not equally strong in tension and compression,
a special analysis must be made. In Art. 17, it is noted that
under a positive bending moment, the top
area elements are in compression and the
bottom area elements are in tension. In a8  Neutral
symmetrical section like an I beam, there £
would be produced equal stresses at the
top and bottom, and the comparison would S I
be with the lower strength value (ten-
sion). Frequently the beam section of
these materials is designed to take advantage of this unequal
strength, sometimes using a I shape as in Fig. 31. Here the
center of gravity and neutral axis are nearer the bottom, pro-
ducing higher stresses at the top than at the bottom because
¢y is greater than c;. In such a case, the beam must be investi-
gated for both stresses, being limited by the stress permitting
the smallest load.

In general, loads are either concentrated as in Fig. 30a or dis-
tributed as in Fig. 30b. Both kinds appear in combination as
in Fig. 30c. The way the loads are applied, such as steady
loads, or varying or shock loads, must also be considered, but
this commonly is compensated for by adjusting the working
stress value to give a higher factor of safety (Art. 12).

The position and value of the loads determine the value of
maximum bending moment and the place where it occurs. For
beams of constant cross section, only the maximum bending
moment must be considered, and its position can be determined
in several ways. In general, maximum bending moments occur
under concentrated loads, or at the supports for cantilever beams
or overhung loads. Maximum bending moments in any one di-
rection always occur at the point where the shear diagram crosses

-

Qe O—>

~

Fic. 31.
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the zero axis. This can be proved by higher mathematics and
demonstrated by experimental calculation. Figure 32 shows a
beam with more or less complex loading, together with its shear
and bending moment diagram. It can be seen that the maxi-
mum bending moment between the supports (positive) occurs at
a point, z, 6.9 feet from the left end, and another maximum mo-
ment occurs over the right support (negative). In this case the

') 1’1 N4 rn

200 e g0t 40 e 30— 507>
500/Lb 400 Lb
100Lb/ Ft
Jay
450Lb " 1210 Lb
I 1
N N\
L—as m-J\
2280 Ft-Lb
2000 Ft-Lb
Fie. 32.

positive moment is greater, but each case must be thoroughly
investigated to show which predominates.

Where more than one load is in effect, and their maximum
allowable values are to be determined, their effect must be con-
sidered in combination, along the lines of the preceding analysis
and with experimental values being used.

It should be noted that, as in all formulas, all measurements
of a given type must be expressed in the same units. Thus, S, I,
and c¢ are normally expressed in terms of inches, and so the
bending moment must also be expressed in inch-pounds, which
means that distances and spans used in calculating the bending
moment must be in inches, or its whole value converted before
substitution.
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As a final precaution, the beam should be checked for maxi-
mum shearing stress. On beams of constant cross section, this
occurs at point of maximum shear strain, determined from the
shear diagram and calculated as in Art. 15. When the beam has
cross sections of more than one size, the shear stress should be
checked at the point of maximum shear strain for each section.

QUESTIONS AND PROBLEMS

22a. What two types of supports does the text mention? Which type
is found with cantilever beams?

22b. Why would a cast-iron T section cantilever beam be made with
the flanges up (T) rather than down (IL)?

22c. How do we commonly compensate for shock or moving loads on
beams?

22d. Where, in relation to points on the shear diagram, do maximum
bending moments occur?

22e. An I beam which is 20 feet long weighs 700 pounds and the area
of its cross section is 1029 square inches. What is the kind of material?

22f. An advertising sign weighing 1500 pounds and hung from two points
6 feet apart is to be supported by a cantilever beam 8 feet long and
weighing 30 pounds per lineal foot. Sketch the arrangement and deter-
mine both the maximum shear and the maximum bending moment in
the beam. What is the stress in the suspenders?

22¢. What is the bending moment at the quarter point of a simple
beam of length ! weighing w pounds per lineal foot when it carries two
concentrated loads of two tons each at its third points?

22h. A cantilever beam has a load of 900 pounds at its end and is also
uniformly loaded with 150 pounds per linear foot; its length is 5 feet.
Compute the bending moments for five sections, one foot apart, and con-
struct the diagram of bending moments.

22i. A simple beam weighing 80 pounds per linear foot is 13 feet in
span and has a load of 2000 pounds at the middle. Compute the maxi-
mum bending moment.

22j. The wooden girders of a floor are 10 X 14 inches in cross section,
25 feet'span, and 12 feet apart. The floor carries a load of 100 pounds
per square foot. Find the maximum unit stress at the middle of the
girders.

22k. A steel pin, 8 inches long and 3 inches in diameter, is arranged like
a simple beam to carry a load of 10,000 pounds at the middle. Find the
maximum tensile and compressive unit stresses.

23. Design of Beams. The design of a beam consists in deter-
mining its size when the loads it is to carry and its length are
given. The allowable working unit stress S is first assumed
according to the principles of Art. 11. From the given loads the
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maximum bending moment M is then computed. Thus in Equa-
tion 4 everything is known except I and ¢, and

r_M

c 8
i1s an equation which must be satisfied by the dimensions to be
selected.

For a rectangular beam of breadth b and depth d the value of
¢ is Y%d, and the value of I is 1{,bd®. Thus the equation above
becomes v 6M

S
and if either b or d is assumed the other can be computed. For
example, let the requirements be to design a rectangular wooden

el wrywit 5 indupurtd

.
.
.
%
/
1
.
.

Fic. 33.

beam for a tutal uniform load of 80 pounds, the beam to be used
as a cantilever with a length of 6 feet, and the working value
of S to be 800 pounds per square inch. Here the maximum value
of M is 80 X 3 = 350 pound-feet = 2880 pound-inches. Thus
bd? = 21.6 inches®. If b is taken as 1 inch, d = 4.65 inches; if
b is 2 inches, d = 3.29 inches; if b is 3 inches, d = 2.68 inches.
With due regard to sizes readily found in the market 2 X 4
inches are perhaps good proportions to adopt.

For rolled sections, such as channels and I beams, the required
section modulus may be compared with tables of values, such
as Table 4, page 140, and a section selected which will do the
job most economically as far as strength is concerned, and at
the same time meet other existing conditions, such as space
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limitations or special manufacturing problems. These sections
are normally made of a mild steel having an ultimate strength
of about 60,000 pounds per square inch and an elastic limit of
35,000 pounds per square inch. In actual practice, reference
should be made to more complete tables as published by manu-
facturers, or by engineering societies. Various weights of a sec-
tion of given size are obtained by varying certain roll spacings
which results in a shape change like that shown in Fig. 33.

QUESTIONS AND PROBLEMS

23a. Distinguish between design and investigation of beams.

23b. A steel I beam of 25-foot span is to carry a uniformly distributed
load of 900 pounds per linear foot. In addition there is a concentrated
load of 8000 pounds at 5 feet from the left end. Find the proper size
of the beam.

23c. A steel I beam weighing 70 pounds per foot i& placed as a canti-
lever 19 feet long .to support a load of 2000 pounds at its extreme end.
What should be the value of I/c so that the maximum fiber stress will
not exceed 16,000 pounds per square inch?

23d. A simple cast-iron beam of 16-foot span carries a load of 4000
pounds at the middle. If its width is 6 inches, find its depth for a factor
of safety of 10; also find its width for a depth of 12 inches.

23e. A yellow pine beam of 18-foot span is to carry a uniformly dis-
tributed load of 600 pounds per linear foot with a factor of safety of 9.
The depth of the beam is to be 114 times the breadth. Find the dimen-
sions of the beam.

24. Modification of Beam Shapes. Thus far in our discus-
sion, we have considered beams whose section is constant for
their entire lengths. This is not necessary, for we see by exam-
ining a bending moment diagram that the strength requirements
vary greatly along the beam. Thus, if there is some need for
saving material, or for reducing the section for any reason
whatsoever, we may do so by eliminating what is surplus
material.

In the case of a simple beam, Fig. 34a, the bending moment
varies from zero at the supports to a maximum at the load. If
the section is strong enough at the load, certainly it is stronger
than necessary at every other point, more so as the supports are
approached. If shear were disregarded, a rectangular beam of
constant strength and uniform width would have a shape like

Fig. 34b, where the depth at any point would be d = v/6M /bs.
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At the supports this shape would not be sufficiently strong in
shear, for the minimum section for this consideration would be
d = P/28Sb (see Art. 15) and the beam shape would be similar
to Fig. 34c. Hence it can be seen that the surplus material is
distributed as shaded in Fig. 34c. Unless the space is needed,
or the weight or cost of the material is an unusually important
factor, such modification of shape is usually not economically
practical.

P P P

(a) ®) (c)
Fic. 34.

QUESTIONS AND PROBLEMS

24a. On the basis of the above discussion, explain why the statements
in Art. 5 concerning drilling of holes in the beam, Fig. 3, are correct.
If that beam were a 3 X 10 fir timber with a 14-foot span, and the holes
were 1 inch in diameter, determine whether or not hole C on the neutral
plane in beam center would be safer than hole D, 1 foot from the sup-
port and 3 inches below the neutral plane.

24b. A simple timber beam is 20 feet long and has a depth of 18 and
a width of 12 inches. Taking no account of the shearing stresses, indicate
how much of the depth of this beam might safely be cut away at its
quarter point. How much at a point 2 feet from the left end?

24c. A simple beam of uniform strength is to be designed to carry a
heavy load P at the middle. If dj is the depth at the middle, show that
the depths at distances 0.1, 02l, 03], and 0.4l should be 0.45d;, 0.63d;,
0.77dy, and 0.89d;.

24d. A cast-iron cantilever beam is to be 4 feet long, 3 inches wide, and
is to carry a load of 10,000 pounds at the end. Find the proper depths
for every foot of length, using 3000 pounds per square inch for the hori-
zontal unit stress and 4000 for the vertical shearing unit stress.

Art. 25, REVIEW PROBLEMS

25a. How does the strength of a simple rectangular beam vary with its
length? Its depth? Its breadth?

26b. A rectangular section area has a width of b and a depth of d.
What is the value of its moment of inertia in terms of b and d when
referred to an axis parallel to its width and one inch below its bottom?

25c. An elevator is suspended by a steel cable 114 inches in diameter.



REVIEW PROBLEMS 49

What load will it safely carry if its own weight, including the elevator, is
6000 pounds? What horsepower must the hoisting elevator develop if
this load is to be raised at the uniform rate of 400 feet per minute?

25d. Locate the neutral axis for a T section which is 3 X 3 inches and
3/ inch thick.

25e. A timber 4 X 6 inches in section projects 6 feet out of a wall. What
load must be put upon it so that the greatest shearing stress will be 100
pounds per square inch?

25f. A simple wooden beam, 8 inches wide, 10 inches deep, and 12 feet
in span, carries two equal loads, one being 2.5 feet at the left and the
other 2.5 feet at the right of the middle. Find these loads so that the
factor of safety of the beam will be 8.

26g. A simple wooden beam, 3 inches wide, 4 inches deep, and 10 feet
in span, has a load of 500 pounds at the middle. Compute its factor of
safety.

26h. A simple beam of structural steel. 4 inches deep and 16 feet in
span, is subject to a rolling load of 500 pounds. What must be its width
in order that the factor of safety may be 6?

25i. Compare the strength of a joist, 4 X 10 inches, when laid with long
side vertical with that when it is laid with short side vertical.

25j. Compare the strength of an 8-inch 18-pound steel I beam with that
of a wooden beam 9 inches wide and 13 inches deep, the span being the
same for both.

25k. Show that a beam 3 inches wide, 6 inches deep, and 4 feet long is

nine times as strong as a beam 2 inches wide, 4 inches deep, and 1023
feet long.

251. Compute the reactions for an overhanging beam where the distance
between the supports is 10 feet and the overhanging arm is 4 feet, the
beam weighing 60 pounds per linear foot.

25m. A wooden beam, 10 X 12 inches in section area, projects 6 feet
from the wall of a building. What load can be suspended from the end
of the beam so that the factor of safety will be 10?

25n. A piece of wooden scantling 214 inches square and 18 feet long is
hung horizontally by a rope at each end and a student weighing 200
pounds stands upon it. Is it safe?

250. A floor is supported by 4- X8-inch wooden joists of 16-foot span
spaced 18 inches apart center to center. When this floor carries a total
load of 250 pounds per square foot, what is the factor of safety of the
joists?

25p. What must be the depth of a wooden beam, the cross section of
which has a moment of inertia of 16 inchest when the maximum unit fiber
stress is 1900 pounds per square inch and the maximum bending moment
is 3500 pound-inches?

26q. A steel I beam 7 inches deep and weighing 22 pounds per foot
has for the moment of inertia of its cross section 52.05 inches. It is to
be used as a simple beam with a span of 18 feet. What uniform load
will it carry when the maximum unit stress S is to be 16,000 pounds per
square inch?
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26r. What uniformly distributed load can be safely--carried by an oak
beam, 4 inches wide and 6 inches deep, on a span of 18 feet, if the maxi-
mum unit stress is not to exceed 1200 pounds per square inch?

25s. If the moment of inertia of a 20-inch I beam is 1240 inchest, what
is the value of its section modulus? Do not refer to Table 4.

25t. A 20-inch steel I beam 10 feet long carries a uniform load of 1000
pounds per foot. It is to be replaced by two beams of the smallest
possible depth. How deep must these two beams be so that S will not
be greater than 16,000 pounds per square inch?

25u. What does the ratio between the section area of an I beam and
its weight signify?

25v. A 15-inch 42-pound steel I beam of simple span carries a uniform
load of 42 net tons. Find its factor of safety if the span is 7 feet; also
if the span is 10 feet.



CHAPTER 5
BODIES UNDER COMPRESSIVE FORCE

26. Short Bodies in Compression. When a body whose length
is short in relation to its weakest cross section is subjected to
opposed forces, direct compressive stresses are developed as
discussed in Art. 8: S = P/A.

27. Slender Bodies in Compression. The above becomes less
true as the relative length becomes greater, approaching the con-
dition of slenderness classed as columns
and struts. The body is thus classified P
when the length is more than about -
eight or ten times the smallest cross sec-
tion distance. Under such conditions,
failure usually occurs from stress pro-
duced by a combination of bending and k—a
direct compression. This may readily
be observed by pushing endwise on a
yardstick or steel scale. It does not take
much force acting in this manner to cause
them definitely to bow. Such “bending, Z =,
it should be noted, takes place about Fic. 35.
the axis of least moment of inertia.

These bending stresses, in all probability, would not occur
were' the column perfectly straight and the forces applied di-
rectly opposite and parallel to each other. Such ideal conditions
cannot be expected, and so the column must be made strong
enough to withstand both the above stresses. As the bending
will normally occur about the cross section axis of least moment
of inertia, it follows that an economically designed column will
have a cross section whose moments of inertia about any axis
will be almost equal. Square or round columns most nearly
meet this condition, and H columns and built-up sections should
approximate it.

51
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It can be readily demonstrated on models that the longer a
column of a given cross section, the greater its tendency to bend
under compressive loading and the smaller the load it can safely
withstand. It can also be observed, as in Fig. 35, that the mo-
ment arm a is greater for the long column even though carrying
equal loads P. This would also be true if the flexural stress de-
veloped in each column were equal, for the equal unit deflection
would produce greater total deflection from the straight line in
the longer column.

The summation of the direct compressive stress and the flex-
ural stress is algebraic. The maximum compressive stress is
P/A + F, where F represents the
flexural stress. The maximum tensile
stress is ¥ — P/A, when F is greater
than P/A. This distinction is only
of concern where the strength of the
material is not equal in tension and
compression, such as cast iron. .

There are three ways of arranging
the ends of columns (Fig. 36). Class
a includes those with “round ends” or
those having their ends hinged on pins. Class b includes those
with one end round and the other fixed; the piston rod of a steam
engine is of this type. Class ¢ includes those having fixed ends;
these are used in bridge and building constructions. The figure
here given is a symbolical representation and is not intended to
imply that the ends of the columns are necessarily enlarged in
practice. It is found by experiment that class c is stronger than b
and that b is stronger than a.

QUESTIONS AND PROBLEMS

27a. What two stresses are combined through the action of forces on
columns and struts?

27b. What is the relationship of the direction of these two stresses?

27c. What two measurements of a column can be said to indicate its
weakness or strength?

27d. Why would an H section make a better column than an I section
of the same weight per foot?

27e. An I beam 20 inches deep is used as a column. Its section area is
22.1 square inches. What is its moment of inertia with respect to an
axis through its center of gravity and parallel to its web? Should this
value of the moment be used in computations relating to columns?
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28. Radius of Gyration. The radius of gyration is the dis-
tance from the axis of a plane area to a point where the total
area might be considered as being concentrated, without chang-
ing its moment of inertia about that axis. By Art. 19, I is equal
to Saz?, so if A is the effective total area and its distance z from
the axis is the radius of gyration, r, I = Ar2 or r = \VI/A.

As will be shown, in some column theories the radius of gyra-
tion about the axis of least moment of inertia is used as one
factor in determining column strength. In general, all other
factors remaining constant, the greater the value of r, the
stronger the column. A value commonly used as a measure of
column weakness is the slenderness ratio l/r, where [ is the length
of the column in the same units as r. Thus, the greater the value
of I/r, the smaller the load the column can withstand, other con-
ditions being constant. A column is said to be “short” if its l/r
is greater than 35 but less than 150. A long column is one in
which this ratio is greater than 150.

Values of r for various standard shapes can be found in tables,
or can be found by substituting for I and 4 in the above for-
mula. For simple symmetrical sections r may be solved for
directly by the use of the following derived formula:

Solid rectangle or square r* = {'5d?

Solid circle r? = {ed?
Hollow circle r? = 5(d* + d,?)
PROBLEMS

28a. What is the value of r for an H column 16 inches deep? Is r
dependent on the material of which the beam is made? Why?

28b. What is the value of the radius of gyration for a hollow square
when d = 12 inches and the wall thickness is 134 inches?

28c. Compute the radius of gyration for a circular ring of 10 inches
outer and 8 inches inner diameter.

29, Column Formula. The phenomena of the development of
bending stresses in columns are so complex that, while the fore-
going discussion is basic and essentially true, no purely theoreti-
cal formula will fully represent all cases. The following more
commonly used formulas are presented without derivation other
than the fundamental relationships which have been discussed.
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Probably the most rational and generally most satisfactory
formula is Rankine’s, which applies to cases for which the ratio
l/r lies between 20 and about 150.

P 2 P S
=Z<1+q—2> or - = z [5]
T A l
1+QP

where g has values which depend on the kind of material and
the arrangement of the ends as shown in Table 5, page 141.
The mean values shown have been derived by consideration of
numerous experiments on the rupture of columns and struts.
The value S is the maximum compressive stress. Examining
the first form of the formula we see that it is the sum of the
direct compressive P/A and the maximum flexural stress
(P/A) - q- (I*/r%). Within the limiting conditions it is possible
that the flexural stress will be greater than the direct and thus
produce flexural tensile stresses which might be critical for cer-
tain materials such as cast iron. .
Another formula for columns is the “straight-line formula,”
because the relation between P/A and l/r is the same as that
between y and x in the equation of a straight line. This formula
is
P
A

in which S is the unit stress on the concave side of the column
and C is a quantity which varies with the material and the con-
dition of the ends. For columns with fixed ends which are used
in buildings under steady loads the following are used in cases
of design:

l
=s5-c- (6]

For cast iron L3 = 10,000 — 40-l
A r

. P l

For wrought iron i 12,000 — 60;
P l

For structural steel 1= 16,000 — 70;

These formulas apply only when P is in pounds, A in square
inches, and when the value of I/r is less than 120. They do not
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have the same degree of reliability as Rankine’s formula, since
they are wholly empirical. When a specification requires that
they should be used, this must be done, but otherwise Rankine’s
formula (Equation 5) should be employed. The ratio l/r was
defined and explained in Art. 28.

For example, find the safe load for a hollow cast-iron column
6 X 6 inches in outside dimensions and 5 X 5 inches in inside
dimensions, the length being 18 feet and the ends fixed. Here
A = 11 square inches, 72 = %4 (36 + 25) = 5.08, whence r =
2.252 inches, l/r = 95.9, and then, from the formula, P = 67,800
pounds. In this solution no use is made of the unit stress S on
the concave side of the column. By Rankine’s formula, using
S = 15,000 pounds per square inch, we find P = 58,100 pounds,
which is a more reliable value.

Again, let the requirement be to find the diameter of a solid
cast-iron strut 6 feet long to carry safely a steady load of 64,000
pounds. Here for a very short strut, where | = 0, the area re-
quired is A = 64,000/10,000 = 6.4 square inches, which corre-
sponds to d = 285 and r = 0.71 inch. Assume then d =4
inches; whence A = 12.57 square inches, r = 1 inch, and l/r =
72. Inserting these in the formula, we find that P = 89,000
pounds, which, being greater than the given value, shows that
4 inches is too large a diameter. Assume again that d = 3.5
inches; whence A = 9.62 square inches, r = 0.875, and l/r =
84.6. Inserting these in the formula, we find that P = 63,600
pounds, which is very close to the given value, so that d = 3.5
inches is a satisfactory solution of the problem by the straight-
line formula (Equation 6).

QUESTIONS AND PROBLEMS

29a. It has been shown that S = P/A 4 F. What is the value of F in
terms of the quantities in Equation 5?7 What does F represent?

29b. A steel H column with both ends fixed is to be 20 feet long and
its depth is 16.5 inches. What load will it carry if the factor of safety
is 5?

29c. If P/A = 500 pounds per square inch for a timber column with
fixed ends, find from Equation 5 the values of :S when I/r =0, l/r = 50,
and I/r = 100.

29d. When the length I becomes very small, show that Equation 5 re-
duees to Equation 1.
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30. Safe Loads for Columns. To find a safe load for a
column of given size and material the working value of S is to
be assumed from the considerations presented in Art. 11. The
value of r is determined by Art. 28, and g from the table in
Art. 29. Then from Equation 5

AS

l2
1+Qp

P =

which gives the safe load P for the column.

For example, let the requirement be to find the safe load for
a timber strut 3 X 4 inches in section and 5 feet long, having
both ends fixed, so that the greatest compressive unit stress S
will be 800 pounds per square inch. Here b = 4 inches, d =
3 inches, r? = 1/12d” = 3/4 inches?, [* = 3600 inches?, [2/r? =
4800, q¢ = 1/3000, ql3/r*> = 1.6. Then

12 X 800
P = 1516 3690 pounds

which is the safe load for the strut. If the length is only about
one foot, the safe load will be simply P = 12 X 800 = 9600
pounds. If the length is 12 feet, P will be found by the formula
to be only 940 pounds. The influence of the length on the safe
load is hence very great.

PROBLEMS

30a. As between columns of the same material, equal section areas, the
same arrangement of ends, and the same loading how does the unit com-
pressive stress vary with the length?

80b. Why is a hollow or a built-up column preferred over a solid one
of equal section area?

30c. A hollow cast-iron column to be used in a building is 6 )X 6 inches
outside dimensions and 4 X 4 inches inside dimensions, the length being
18 feet and the ends fixed. Find its safe load.

30d. Find the safe load for the piston rod of a steam engine, its diame-
ter being 178 inches and its length 36 inches, when the allowable value of
S is 6000 pounds per square inch.

31. Investigation of Columns. The investigation of a column
under a given load consists in computing the unit stress S from
Equation 5 and then comparing this with the ultimate strength
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and elastic limit of the material, having due regard to whether
the stresses are steady, variable, or sudden (Art. 12). The value

of Sis
P 12)
S-z<1+qrz

and the given data will include all the quantities in the second
member.

For example, a wrought-iron tube used as a column with fixed
ends carries a load of 38,000 pounds. Its outside diameter is
6.36 inches, its inside diameter 6.02 inches, and its length 18 feet.
It is required to find the unit stress S and the factor of safety.
Here P = 38,000 pounds, 4 = ¥»(6.362 — 6.022) = 3.31 square
inches, ¢ = 1/35,000, I = 18 X 12 = 216 inches, 72 = 144 (6.35
4+ 6.022) = 4.79 inches®. Then by the formula,

g - 38,000 + 216 X 216 )
© 331 35,000 X 4.79

or S = 14,700 pounds per square inch. The factor of safety is
thus about 4, which is a safe value if the column is used under
steady stress, but too small if sudden stresses or shocks are liable
to occur. If the length of this column is 36 feet, the unit stress
S will become about 25,000 pounds per square inch, so that its
factor of safety will be only 2.2, a value far too low for proper
security.

As a second example, let a heavy 10-inch steel I beam, 25 feet
long, be used as a strut in a bridge truss, the ends being hinged
on pins. Let the load on it be 5900 pounds. Here, from the
tabie in Art. 23, is found A = 11.8 square inches and I’ = 9.50
inchest, whence 72 = 0.80 inch?; also ¢ = 4/25,000, [ = 300
inches, P = 5900 pounds. Then, from the formula, $ is found to
be 9500 pounds per square inch, which is about one-third of the
elastic limit of the material, and hence a safe value.

PROBLEMS

31a. A circular cast-iron column 12 inches in- outside diameter and 12
feet long has a uniform thickness of one inch. What compressive unit
stress will be caused by a load P of 17.5 tons? Assume that both ends
are round.
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81b. A pine stick 4 X 4 inches and 12 feet long is used in a building as
a column with fixed ends. Find its factor of safety under a load of 3500
pounds. If its length is only one foot, what is the factor of safety?

81c. A rectangular wooden column, 12 X 12 inches in outside dimensions
and 8 X 8 inches in inside dimensions, is 12 feet long. Compute the unit
stress S when the load P is 12,000 pounds and the ends are fixed.

32. Design of Columns. When the length of a column is
known and the load to be carried by it is also given, the design
consists in selecting the proper material and then finding the
dimensions so that the unit stress S in Equation 5 will have the
proper value. This is often done by trial, dimensions being
assumed and inserted in 5; and, if these do not fit, changes are
made in them until a satisfactory agreement is found. For
example, it is required to find the size of a square wooden col-
umn with fixed ends and 24 feet long to carry a load of 100,000
pounds with a unit stress S of 800 pounds per square inch. If
the column is very short, the area A should be 100,000/800 —
125 square inches, and the side of the square about 11 inches.
The column 24 feet long must be larger than this; assume it is
16 inches. Then, from the formula of the last article, find the
value of S; this being a little larger than 800 shows that 16
inches is too small. Again, trying 17 inches, S is found to be a
little smaller than 800. Hence 161% inches is an approximate
solution of the problem.

Equations can be derived, however, for finding the size of
solid square and round columns by placing for A and 72 in
Equation 5 their values in terms of the side or diameter d. Thus,
for a solid square column, A = d? and 7% = 14,d*; then Equa-
tion 5 becomes

P P
4__d2_____ 2 2
d 3 Sl gl
and for a solid round column
4P 4P
d4—-—d2=—- 6;2
S S 1647

As an example, take the data of the last paragraph, where
P = 100,000, S = 800, ¢ = 1/3000, and l = 24 X 12. Inserting
these in the first equation, we have d* — 125d% = 41472, and,
solving, we find that d* = 275.5; whence d = 16.6 inches is the
side of the square column.
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For hollow square and round columns, equations can be de-
rived in a similar way for finding the inner side or diameter d,
when the outer side or diameter d is given. Thus for a hollow
square column ' ’

P P
di* + 3 d? =dt - 3 (d® + 12¢12)

and for a hollow round column

di* + %dlz =d* - % (d® + 1641%)
For example, it is required to find the inner diameter d for a
cast-iron hollow round column with fixed ends, which is 18 feet
long and 10 inches outer diameter, and which is to carry a steady
load of 240,000 pounds. Here the working value of S is 15,000
pounds per square inch and ¢ = 1/5000. Then the last equation
gives d;%2 = 60.7; hence d; = 7.8 inches for the inner diameter.

PROBLEMS

32a. A solid round column of cast iron, with fixed ends, is 14 feet long.
What must be its diameter if S is to be 15,000 pounds per square inch
under a load of 400 tons?

32b. Find what steel H column 12 feet long may be used to carry a
load of 100,000 pounds, taking the working value of S at 16,000 pounds
per square inch.

32¢c. A hollow square column of wood with fixed ends and 14 feet long
has outside dimensions of 14 )X 14 inches and carries a load of 5 tons.
Find the inside dimensions so that S will be 900 pounds per square inch.

33. Eccentric Loads. Thus far it has been supposed that the
load is applied to the end of a column so that its line of action
coincides with the axis of the column. In many instances, how-
ever, this is not the case. Let Fig. 37 represent a short post
where the load P is applied at a distance e from the vertical axis
passing through the center of gravity of the cross section. The
distribution of the internal compressive unit stresses in every
section is then not uniform. The mean unit stress on the area
A is P/A, but the actual stress is increased on the side nearest
P and decreased on the opposite side by that unit stress which
is due to the eccentricity of the application of the load and the
consequent bending. Let CC be the neutral axis of the cross
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section and ¢ the distance to the side; let I be the moment of

inertia and r the radius of gyration of the cross section with

respect to the axis CC; let F be the flexural

ke{P unit stress at the side of the column. Then

: from the flexure formula (Equation 4), F =

Mc/I. But the bending moment M is Pe;

hence F = Pec/I = Pec/Ar®. Adding this
B <-¢-» 4 to the mean unit stress, P/A4, there results

d P ( ce)
=—\14- 7
A + r? [7]
g > which is the compressive unit stress on that
B * [4  side of the column nearest P. On the other
G side of the column the unit stress is found by
Frc. 37 changing the + sign to —.

A small eccentricity e causes the unit stress
S to deviate much from the mean value P/A. For a rectangular
section, 7% = 14.d? and ¢ = 14d, so that

For the side 4 of the prism S; = f(l +6 EG)

For the side B of the prism S, = g (1 — 6 S)
When e = 14d, then S; = 2P/A, which is double the mean value,
and S; = 0. When ¢ = 14d, then S; = 3P/A and S: = —P/A;
hence the side B is under tension instead of compression. It is
thus seen that, in placing loads on a column, eccentricity of
application should be avoided.

Equation 7 applies to a short column or to one in which I/r
does not exceed 40. For longer columns it is eustomary to add
the quantity ce/r? to the denominator in Rankine’s formula
(Equation 5), which thus becomes

P S
LI A [7d]
a E

1+a5+3

This equation may be used for finding the safe load on a column
having an eccentric load, for investigating an- existing column,
or for designing a section for a proposed column, .
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QUESTIONS AND PROBLEMS

33a. Draw a diagram showing how the unit stress varies with the eccen-
tricity. Plot the values of S; for e =%d; e =Yd; e =Wd; e = %d;
and e = d.

33b. How are the stresses in the foundation of a short column affected
by an eccentricity in its loading?

33¢c. Using Equation 7a, find the safe load for the data given in Prob-
lem 30c, taking the eccentricity of the load as 34 inch.

33d. Using Equation 7a, find the factor of safety for the data given in
Problem 31b, taking the eccentricity of the load as 3§ inch.

Art. 34. REVIEW PROBLEMS

34a. What does 8 in Rankine’s formula represent? Solve this formula
for ¢ and for I°/r%.

34b. How much greater is the radius of gyration of a solid square steel
column having a side of d than that of a solid circular column whose
diameter is d? If d is 10 inches, what are the numerical values?

84c. If the moment of inertia of an I beam is 2400 inchest and its sec-
tion area is 30 square inches, what is the value of its radius of gyration
with respect to an axis passing through its center of gravity and perpen-
dicular to the axis of the given moment of inertia?

344d. If the square of the radius of gyration is the average of all the
values of z* for a cross section, why cannot it be computed directly from
the given dimensions of that section? If so, write the expression for r*
in the case of a solid circle.

34e. A 1-2—4 concrete pier is 6 feet high, 4 feet square at the base, and
2 feet square at the top. What steady load will it safely carry at 6
months (a) if the load is uniformly distributed over its top and (b) if
the eccentricity of the loading is 4 inches?

34f. Find the safe steady load for a hollow short cast-iron column
which is 12 inches in outside and 10 inches in inside diameter.

84g. Given q = %000 and S = 10,000 pounds per square inch for a cast-
iror column. Plot a curve for Equation 5, taking values- of I/r as ab-
scissas and values of P/A as ordinates.

34h. Determine the loading of a fixed-end timber column 6 X 4 inches
in section and 10 feet long, so that the greatest compressive unit stress
will be 900 pounds per square inch.

34i. A cylindrical wrought-iron column with fixed ends is 12 feet long,
6.46 inches in outside diameter, 6.02 inches in inside diameter, and carries
a load of 52,000 pounds. Find its factor of safety.

34j. Compute the size of a square timber column with fixed ends to
carry a load of 55 tons with a factor of safety of 10, its length being 12
feet. .

34k. A beam 20 feet long carries a uniform load of 3500 pounds per
linear foot and is supported at its ends by two round cast-iron columns
15 feet long. The columns have fixed ends and are 6 inches in outer
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diameter. Find the inner diameter of the columns so that the unit stress
S will be 10,000 pounds per square inch.

841. A 12-inch I beam weighing 30 pounds per linear foot is used as
one of the compression members in a small bridge. The column is fixed-
ended and is 20 feet long. Will it be safe under a load of 30 tons?

34m. The steel piston rod of an engine is circular in shape and its
stroke is 3 feet. The maximum load upon the piston is 20,000 pounds.
Find the proper diameter of the rod, using S as 8000 pounds per square
inch,



CHAPTER 6
BODIES IN TORSION

35. Phenomena of Torsion. Torsion is that condition of load-
ing which tends to twist a body on its axis. This twisting is a
strain which is resisted by torsional stresses set up in the ma-
terial. A shaft which transmits power is twisted by the forces
applied to the pulleys, and thus all its cross sections are brought
into stress. Torsion is somewhat akin to shear, but the forces
which induce it do not act in parallel planes.

Fic. 38.

Let one end of a horizontal bar be rigidly fixed, and to the
free end attach a lever at right angles to its axis (Fig. 38). A
weight P hung at the end of this lever will twist the shaft so
that a line ab on the bar which originally was horizontal will
assume a spiral form ad, while the radial line ¢b will move to
the position cd. It has been shown by experiment that, if the
material is not stressed beyond its elastic limit, the angles bed
and bad are proportional to the applied weight P and that on
the removal of this weight the lines c¢d and ad will return to their
original positions. If the elastic limit is exceeded, this propor-
tionality does not hold; and, if the stress induced by the load P
is great enough, the bar will be ruptured.

Let p be the lever arm of P with respect to the axis ¢. Then

experience has also shown that the amount of twist is propor-
63
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tional to p. The product Pp is the moment of P with respect to
the axis, and it is called the twisting moment. If there are sev-
eral forces P;, Ps, etc., acting on the shaft with lever arms py,
P, ete., the total twisting moment Pp is the algebraic sum of the
separate moments Pip;, Pasps, etc., those being positive which
tend to turn in the direction of the hands of a watch and those
negative which turn in the opposite direction.

For example, let the three lever arms be applied to a bar at
the points B, C, and D, whose distances from A are 5, 8, and 12
feet. Let the forces in Fig. 39 be P, = 30 pounds, P; = 60

i
&
]
(o]
R
N

Fre. 39.

pounds, and P3 = 100 pounds, their lever arms being p; = 2.5
feet, p2 = 2.0 feet, and ps = 3.5 feet. Then for all sections be-
tween D and C the twisting moment is 430 X 2.5 = +75 pound-
feet; for all sections between C and B the twisting moment is
+30 X 2.5 — 60 X 2.0 = —45 pound-feet; and for all sections
between B and A the twisting moment is 430 X 2.5 — 60 X 2.0
+ 100 X 3.5 = 4305 pound-feet. Thus the tendency to twisting
between B and C is seen to be in the opposite direction to that
in the other parts of the bar.

QUESTIONS AND PROBLEMS

36a. If a bar in torsion is of uniform section, what can be said of the
amount of deformation over any unit of its length?

385b. What is the relation between the length of such a bar and the
total deformation?

35¢c. Figure 39 shows three forces acting downwards to produce torsion
in the bar. What other kinds of stresses are developed in the bar at A?
Determine their values using data provided in the text. What torsional
resistance must be offered by the support at A?

86d. A Y%-inch bolt has been jammed into a nut which is held firmly
in a vise. A man using a 16-inch wrench applies a load of 100 pounds
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before the bolt turns. What was the twisting moment in the bolt at the
instant that it came free?

35e. If a force of 750 pounds acting at 5 inches from the axis twists the
end of a shaft 32 degrees, what force acting at 12 inches from the axis
will twist it 48 degrees?

385f. It is found by experiment that the angle bed in Fig. 38 is propor-
tional to the length of the bar when P and p are constant. If the angle
bed is 6°15” for a shaft 9.2 feet long, what will this angle be for a shaft
13.8 feet long?

36. Resistance to Torsion. If two cross sections are taken in
a shaft very near together, each section tends to twist with re-
spect to the other, and shearing stresses are thus set up in all

Fic. 40.

parts of each section. These stresses are zero at the center and
greatest at the outside or boundary of the section. They act
everywhere perpendicular to the lever arms drawn to them from
the center. If the elastic limit is not exceeded the stresses will
be proportional to their lever arms.

Let P be the force acting through the lever arm p which pro-
duces the twisting moment Pp (Fig. 40). This moment must be
equal to the resisting moment of the internal stresses. Let S be
the shearing unit stress at the remotest part of the section whose
distance from the center is ¢. Then the stress at a distance Y4¢
from the center is 148, and the stress at a distance z from the
center is Sz/c. The total stress on an elementary area a at a
distance z from the center is then aSz/c, and the moment of this
stress with respect to the center is (S/c)az® The resisting mo-
ment is the sum of all the values of (S/c)ax?, or, since S and
¢ are constants, this sum is (S/c)Sax. The value Sar* we call
polar moment of inertia, represented by the letter J. Its mathe-
matical calculation is discussed in the next article. Accordingly,
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the resisting moment of the internal shearing stresses is SJ/c,
and, equating this to the twisting moment Pp, we have

ST _ pp 8]
c
which is the fundamental equation for the torsion of shafts of
circular cross sections.

This equation is analogous to Equation 4 for beams, and is
used in a similar manner to investigate and design shafts. The
unit stress S is here always a shearing stress, and its working
values are to be determined by applying factors of safety to the
ultimate shearing strengths. Shafts which transmit power are
subject to variable loads, and often to shocks, and hence the
values of S should be conservative. Equation 8 is subject to the
same limitation as Equation 4, namely, it is true only when the
unit stress S is less than the elastic limit of the material.

QUESTIONS AND PROBLEMS

36a. What line in a body under torsion corresponds to the neutral plane
of a beam in bending?

36b. If the twisting moment in a cold-rolled steel shaft is 1500 inch-
pounds, what value of J/¢c would be required to give a factor of safety
of 10? Determine the units in which your answer is given, as explained
in Art. 8.

37. Polar Moment of Inertia. We have seen that the sum of
the products obtained by mnultiplying each elementary area by
the square of its distance from the center of gravity of a surface
is called the polar moment of in-
ertia of that surface. Stated sym-
bolically, J = Sax? where J is the

polar moment of inertia and 3
% denotes the process of summation
4 el B of all the values of az?, in which a
\/ is any elementary area and z is its
distance from the center of gravity

of the total area.
Frc. 41. In Fig. 41 let a be any elemen-
tary area and z its distance from
an axis AB passing through the center of gravity of that section;
then 3az?, or the summation of all the values of az2, is the

D
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moment of inertia with respect to the axis AB (Art. 19).
Also, if y is the distance from a to an axis CD which is normal
to AB, Zay® is the moment of inertia with respect to the axis
CD. But since z® 4 y* = 22, the product of Jaz? is equal to
Saz? + Say?; that is, the polar moment of inertia is the sum of
the moments of inertia taken with respect to any two rectangular
ares (axes at 90 degrees to each other).

By the aid of the above principle, the value of J is readily
found from the values of I given in Art. 19. Let d be the diam-
eter of a circle; then, for a solid circle,

J = ot

Also, in the case of a hollow section, let d be the outer and d,
be the inner diameter; then, for a hollow circle,

J = gor(dt — dyt)

Circular sections are most frequently used for shafts, and the
discussions of this chapter apply only to these. The theory of
torsion in square and rectangular bars is very complicated and
cannot be touched on in this book. In Equation 8,

The value J/c is constant for any given cross section, and hence
is called the polar section modulus or polar measure of a section.
Relative strengths of various cross sec-
tions can be compared on the basis of this
value, and, in design problems, the require-
ments can be expressed in these same .
terms. /

’

~

N
The polar moment of inertia of a sec- _| \
tion about a center other than its own is | H /

e

[ —
found by adding to its polar moment of \. /
\i .

inertia the product of its area times the

square of its distance from that center.

All polar moments of inertia about the Fia. 42.
same center may be added or subtracted

as the situation requires. Figure 42 shows two circular sections
whose polar moment of inertia about center O is required.



68 BODIES IN TORSION

From the foregoing we see that
rd* wd® )
J=2 (_35 tyr

QUESTIONS AND PROBLEMS

87a. Find the polar moment of inertia for a circular section 3 inches in
diameter.

87b. Find the polar moment of inertia of a hollow circular section 44
inches outside diameter having the same section area as that in 37a.
Compare the results of 37a and 37b. (Express in percentage.)

37c. Compare the polar section modulus for the sections in 37a and
37b. (Express in percentage.)

37d. Show that the polar moment of inertia of a hollow circular section
is 184 (d* + d.*), where 4 is the section area.

87e. Find the polar section modulus of five l4-inch pins on a 4-inch
diameter center line circle.

38. Application of Principles, Investigation and Design. As
in the case of previous analysis, the principles of torsion may be
applied in either of two
ways: determining what tor-
sion a given body can safely
resist or finding what body is
required to withstand safely
a given twisting moment. A
special case of the first type
of application is the checking
of stress developed when a
given twisting moment is
acting on a given body.

Fic. 43. In every application, part

of the problem is the analysis

of the acting force and its lever arm. Care must be exercised to
pair up properly the force and distance. The available data
might give these values directly, but often they must be de-
duced. Usually the body is transmitting the action of one or
more forces to the resistance of other forces, and the most con-
venient set may be used for the problem. For example, on the
windlass shown in Fig. 43, there might be some question about
the force acting on crank A to produce the moment in shaft A,
but by analyzing the effect of the 800-pound force acting on the

800 Lb.
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drum and through the gear reduction we see that the torsion in
shaft A is
800 X 3
12

Dividing this value by the allowable working stress will give the
polar section modulus of the required section.

X 13 = 300 inch-pounds = Pp

QUESTIONS AND PROBLEMS

88a. If the load in Fig. 43 were 2000 pounds, what diameter of mild
carbon steel shaft would be required, allowing a safety factor of 10?

38b. If the drum and 24-inch gear were each fastened to the shaft and
not to each other, what size mild carbon steel shaft would be required,
using the same loading and factor as in Problem 38a?

88c. What is the maximum unit shearing stress in the bolt of Problem
35d at the instant when the bolt becomes loosened?

38d. A round steel shaft is subject to a twisting moment of 3500 pound-
inches. What should be its diameter so that the greatest shear S will be
8000 pounds per square inch?

38e. A pulley 36 inches in diameter is placed on a 2%-inch mild carbon
shaft, and the effective pull of the belt on the pulley is 800 pounds.
What is the factor of safety of the shaft?

38f. What diameters of mild carbon steel shafting, with a safety factor
of 8, would be required for each of the loadings in Problem 35e?

39. Shafts to Transmit Power. Work is the product of a
force by the distance through which it is exerted. Thus, if a
weight of 10 pounds is lifted vertically a distance of 5 feet 50
foot-pounds of work are performed. If this weight is moved
horizontally, however, the force required is dependent only on
frictional and other resistances. If to overcome these a force of
3 pounds is required and is exerted through a distance of G feet,
15 foot-pounds of work are performed.

Power is work performed in a given time. One unit of power
is the horsepower, which is defined as 33,000 foot-pounds of
work performed in one minute. Thus, if 99,000 foot-pounds of
work are performed in one minute, the power exerted is 3 horse-
power; if 99,000 foot-pounds of work are performed in two min-
utes, the power exerted is 1% horsepower.

Power from a motor is usually transmitted to a shaft either
directly or by belts or gears and the shaft then transmits the
power to the places the work is to be performed. In doing this
the material of the shaft is brought under stress. Let H be the
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power transmitted through a belt to a pulley, P the tangential
force in pounds brought by the belt on the circumference of the
pulley, p the radius of the pulley in inches, and n the number of
revolutions made by the shaft and pulley in one minute. In
one revolution the force P pounds acts through 2xp inches, and
the work of P X 2xp pound-inches, or Y%xPp pound-feet, is per-
formed. In one minute the work performed is ¥%nxPp pound-
feet. The number of horsepowers exerted is found by dividing
this work by 33,000, or

_ naPp

198,000

and
» — 198,000

nmw

The twisting moment Pp may be replaced by-the resisting
moment SJ/c, and hence,

SJ . 198,000H
Cc B n

(9]

which is the formula for the design and investigation of round
shafts when the horsepower and speed are factors. It should be
noted that, other factors remaining constant, as the speed de-
creases, a larger shaft will be required to transmit a given horse-
power.

For round solid shafts of diameter d, the polar moment of
inertia is 14owd*, the value of ¢ is %d, and Equation 9 then re-
duces to

Sd? = 321,000%

in which d must be taken in inches and S in pounds per square
in¢h. From this formula S may be found for a given shaft
which transmits power, or d may be computed when it is re-
quired to design a shaft for that purpose.

For example, let the requirement be to find the factor of
safety of a round solid shaft of mild carbon steel, 214 inches in
diameter, when transmitting 25 horsepower at 100 revolutions
per minute. Here d = 2.5 inches, H = 25, n = 100, and the
formula gives
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321,000 X 25 :
S = o5 100 = 5140 pounds per square inch

so that the factor of safety is about 6.

As an example of design, let the requirement be to find the
diameter of a mild steel shaft when transmitting 90 horsepower
at 250 revolutions per minute. Here the factor of safety will be
taken at 8, or the allowable unit stress S at 4000 pounds per
square inch. Then, from the formula,

& — 321,000 X 90
4000 X 250

and hence the diameter d should be 314 inches.

Where power is to be transmitted with a minimum of shaft
weight, hollow steel shafts are used. Their polar section modu-
lus is greater than that of solid shafts of the same cross section
area, or, for the same polar section modulus, the hollow shaft is
lighter than an equal length of solid shaft.

If d is the outside and d; the inside diameter, the value of J is
Yoomw(dy — dy*) and c¢ is 14d. These inserted in Equation 9 give

a* — d*
d

which is the formula for investigation and discussion of hollow
shafts.

For example, a nickel steel shaft of 17 inches outside diameter
is to transmit 16,000 horsepower at 50 revolutions per minute.
What should be the inside diameter so that the unit stress S will
be 25,000 pounds per square inch? Here everything is given
except dy, and from the equation its value is found to be nearly
11 inches. The area of the cross section of this shaft will be
about 132 square inches, and its weight per linear foot about
449 pounds.

= 28.89

S = 321,000 a
n

QUESTIONS AND PROBLEMS

89a. In this article, what stresses obviously in the shafting have not
been considered? Explain.

89b. If the shaft in the above example were solid, what horsepower
would it transmit and how much would it weigh per linear foot?

89¢c. Compare the horsepower per pound per foot of the shaft of Prob-
lem 39b with the similar value for the shaft of 17 inches outside and 11
inches inside diameter.
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394. If a hollow shaft has the same area of cross section as the solid
one, and if the inside diameter of a hollow shaft is one-half the outside
diameter, show that the hollow shaft is 44 per cent stronger than the
solid one.

39¢. The tail shaft of a marine engine is 15 inches outside and 10 inches
inside diameter. What horsepower is being transmitted when the shaft is
making 250 revolutions per minute and the unit stress 8 is 9000 pounds
per square inch?

39f. What should be the diameter of a solid round steel shaft to trans-
mit safely 10,000 horsepower at 90 revolutions per minute?

39g. Find the horsepower that can be transmitted by a solid round
steel shaft of 714 inches diameter when making 150 revolutions per min-
ute. S being 7500 pounds per square inch.

Art. 40. REVIEW PROBLEMS

40a. A circular concrete fence post 414 inches in diameter is firmly set
in a concrete base. Four longitudinal fence wires bring to it a load of
300 pounds each applied at 214 inches from the center of the post. What
is the twisting moment at the base of the post? What is the unit shear-
ing stress?

40b. A steel gate stem is operated by a 30-inch diameter gear. If the
stem is 4 inches in diameter and the load on the gear is 600 pounds,
what is the unit shearing stress in the stem?

40c. What is the polar moment of inertia of a hollow shaft 6 inches
square with walls 2 inches thick?

40d. A twisting moment of 1200 inch-pounds produces an angle of twist
on one shaft of 3°10’ whereas on another shaft of the same diameter the
twist is only 1°27’. What inference do you draw from these results?

40e. If a force of 180 pounds, acting at 17 inches from the axis, twists
the end of a shaft through 10 degrees, what force will produce the same
result when acting at 4 feet from the axis?

40f. Compute the polar moment of inertia for a hollow shaft with out-
side diameter 17 inches and inside diameter 11 inches.

40g. Compute the shearing unit stress for the shaft of the last problem
when it is subject to a twisting moment of 250,000 pound-inches.

40h. Find the horsepower that can be transmitted by a mild carbon
steel shaft 314 inches in diameter when making 60 revolutions per min-
ute, the value of S being 8000 pounds per square inch.

40i. Find the diameter of a solid mild carbon steel shaft to transmit
90 horsepower at 250 revolutions per minute, the value of S being 7000
pounds per square inch.

40j. Find the ratio of the strength of a hollow shaft to that of a solid
one, the section areas being equal and the outer diameter of the hollow
section being three times as great as the inner.

40k, The crank of an engine is 10 inches long, and the maximum tan-
gential thrust brought upon it by the connecting rod is 6000 pounds. Find
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the diameter of a steel shaft to resist safely the above twisting moment
when the allowable stress S is 6000 pounds per square inch.

401. What horsepower will be transmitted by a hollow shaft of 8 inches
outside and 5 inches inside diameter when running at 200 revolutions per
minute, the value of S being 7000 pounds per square inch? Find the
diameter of a solid steel shaft to transmit the same horsepower with the
same speed and unit stress.

40m. Express the polar moment of inertia of a rectangular steel shaft
in terms of its depth d, its breadth b, and its thickness ¢. If this shaft
is of bronze what will be its value of J?



CHAPTER 7
ELASTIC DEFORMATIONS

41. Modulus of Elasticity. It was explained in Chapter 2
that. when a bar is subjected to stresses produced by gradually
applied forees, the elongations will increase proportionately with
the stresses, provided the elastic limit is not exceeded. This law
of elasticity enables the computation of the elongations of bars
and the deflections of beams, in all cases when the stresses are
within the elastic limit of the material.

The modulus of elasticity in tension is the ratio of the unit
stress to the unit elongation. Thus, if a bar one inch long and
one square inch in cross section is under the stress S an elonga-
tion s is produced, and

S
E = . [10]
is the modulus of elasticity. If the bar has a section area A
which is acted on by the pull P, then the unit stress S is P/A;
if the bar has the length I, an elongation e is produced and the
unit elongation s is given by e/l.

For compression, E is the ratio of the unit stress to the unit
shortening accompanying that stress, and in general E is the
ratio of the unit stress to the unit deformation. Since s is an
abstract number, E is expressed in the same unit as S, that is, in
pounds per square inch or kilos per square centimeter.

Within the elastic limit S increases at the same rate as s, and
thus E is a constant; beyond the elastic limit there is no proper
modulus of elasticity. For different materials under the same
unit stress S, the value of E increases as s decreases; thus E is
a measure of the stiffness of materials. Equation 10 may be
written

»
]
TR
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and the change in one unit of length of a bar under a given unit
stress S may thus be determined when E is known.

The values of the moduli of elasticity for tension and com-
pression are practically the same, and their mean values for
different materials are given in Table 6, page 141. For shear
the moduli of elasticity are about one-third of those stated in
the table. These values show that, within the elastic limit, steel
is the stiffest of the seven materials, over twice as stiff as cast
iron and twenty times as stiff as timber. In other words, a given
stress within the elastic limit will elongate a timber bar twenty
times as much as a steel bar, and a cast-iron bar more than
twice as much.

QUESTIONS AND PROBLEMS

41a. If the modulus of elasticity of bronze is 15,000,000 pounds per
square inch, how will its elongation under a load P per square inch com-
pare with that of steel? What does this difference between these metals
signify ?

41b. Consult Arts. 53 and 77 and note the moduli of elasticity there
stated for concrete. Why is a 1:2 :4 concrete stiffer than one mixed to
1:3:6?

41c. A bar having a section area of 2 inches and 2 inches long elongates
0.0004 inch under a tension of 10,000 pounds. Compute tlie modulus of
elasticity.

41d. When a steel bar 30 feet long was subjected to a tensile unit stress
of 12,000 pounds per square inch it elongated 0.143 inch. Compute the
modulus of elasticity of the steel.

42. Deformation Accompanying Direct Stresses. Let a bar
whose section area is A and whose length is I be under the load
P, and let e be the deformation produced. The unit strcss S is
P/A and the unit deformation s is e/l. Then the modulus of
elasticity E is

Hence, if P/A is less than the elastic limit,
Pl

e = ——

AE

is the total elastic deformation of the bar due to the applied
load P. Where P is tensile, the deformation will be elongation
and, where compression, e will be shortening.
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For example, find the elongation of a wrought-iron bar 30 feet
long when stressed up to its elastic limit. Here P/A = 27,000
pounds per square inch, E = 28,000,000 pounds per square inch,
and | = 360 inches. Then, from the formula, e = 0.35 inch.
This is the elastic elongation; the ultimate elongation will be
about 72 inches. In all cases, as seen from Fig. 10, the elastic
elongations are very small as compared with the ultimate
elongations.

It should be noted that the above law of deformation cannot
be applied to columns under compressive loads, as defined in
Chapter 5, but is true in compression only for relatively short
prisms.

QUESTIONS AND PROBLEMS

42a. What four factors influence the total deformation of a bar under
direct stress? Is the relationship direct or inverse? Explain.

42b. A 1:2 :4 concrete column 6 feet long and 12 inches in diameter
carries a load of 250 tons. What is the total shortening?

42¢. A 12.5-inch H column is 9 feet long and carries a load of 300 ton@.
How much longer will it be after the load has been removed?

42d. A steel bar 18 inches long weighs 48 pounds. How much will it
shorten under a compression of 15,000 pounds?

42¢. The piston rod of a steam engine is 4 inches in diameter and 20
inches long. The piston is 24 inches in diameter. What is the change in
length of the piston rod when the steam pressure is 175 pounds per
square inch?

42f. What is the difference between elastic elongation and ultimate
elongation? Which one if exceeded may cause immediate loss of life?

42g. A steel eye bar 30 feet long has a section of 134 X 7 inches. How
much does it elongate under a pull of 120,000 pounds?

42h. What is the ultimate elongation of a steel bar 2 inches square and
18 feet long?

43. Beam Deformation. In Chapter 3 we saw that the resist-
ance offered by a beam to a bending moment resulted in the
development of tensile and compressive stresses with accom-
panying deformatien of the material. On the compressive side
of the neutral axis there was shortening, and on the tensile side
the deformation was elongation.

This shortening and elongation accompany a bending of the
beam which can be readily demonstrated with models. The gross
change in beam shape from the unloaded to the loaded condi-
tion we call deflection.
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The best method of deriving formulas for the deflections of
beams is by the help of the calculus. These methods are given
in higher works on the subject; see, for instance, Merriman’s
Mechanics of Materials.* The formulas applying to certain
cases will be stated here without proof and be accompanied by
illustrations showing their value and importance.

Cantilever Beams. When a

load P is at the end of a canti- #—————---- f=mmmm - >
lever beam whose length is [ V”;—%
(Fig. 44), a deflection desig- <.---.x-___Jy

nated by f results. This de- Fic. 44,

flection will evidently be

greater the greater the load ana the longer the length of the
beam. The formula for it is

_ PP
"~ 3EI

in which E is the modulus of elasticity of the material (Art. 41)
and I is the moment of inertia of the cross section (Art. 19).
The ordinate y at any distance z
from the free end is given by y =
T 1%f (3n —n?) in which n repre-
sents x/l.

When a uniform load is on the

beam let this be called W (Fig. 45). Then the deflection is

_we
 8EI
Tt is thus seen that the deflection varies as the cube of the length
of the beam, so that if the length is doubled the deflection will
be eight times as great. It is also seen that a uniform load pro-
duces only three-eighths as much deflection as a single load of
equal intensity applied at the end. The ordinate y at any dis-
tance z from the free end is given by y = %4f(4n — n*), where
n represents z/l.
For example, compute the deflection of a cast-iron cantilever
2 % 2 inches and 6 feet long, due to a load of 100 pounds at the
end. Here P =100 pounds, | =72 inches, E = 15,000,000
pounds per square inch, and I = %2 -2* = 174 inches*. Then,

* Pyblished by John Wiley and Sons.
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For example, find the elongation of a wrought-iron bar 30 feet
long when stressed up to its elastic limit. Here P/A = 27,000
pounds per square inch, E = 28,000,000 pounds per square inch,
and | = 360 inches. Then, from the formula, e = 0.35 inch.
This is the elastic elongation; the ultimate elongation will be
about 72 inches. In all cases, as seen from Fig. 10, the elastic
elongations are very small as compared with the ultimate
elongations.

It should be noted that the above law of deformation cannot
be applied to columns under compressive loads, as defined in
Chapter 5, but is true in compression only for relatively short

prisms.
QUESTIONS AND PROBLEMS

42a, What four factors influence the total deformation of a bar under
direct stress? Is the relationship direct or inverse? Explain.

42b. A 1:2:4 concrete column 6 feet long and 12 inches in diameter
carries a load of 250 tons. What is the total shortening?

42c. A 125-inch H column is 9 feet long and carries a load of 300 tonms. .
How much longer will it be after the load has been removed?

42d. A steel bar 18 inches long weighs 48 pounds. How much will it
shorten under a compression of 15,000 pounds?

42e. The piston rod of a steam engine is 4 inches in diameter and 20
inches long. The piston is 24 inches in diameter. What is the change in
length of the piston rod when the steam pressure is 175 pounds per
square inch?

42f. What is the difference between elastic elongation and ultimate
elongation? Which one if exceeded may cause immediate loss of life?

42g. A steel eye bar 30 feet long has a section of 134 X 7 inches. How
much does it elongate under a pull of 120,000 pounds?

42h. What is the ultimate elongation of a steel bar 2 inches square and
18 feet long?

43. Beam Deformation. In Chapter 3 we saw that the resist-
ance offered by a beam to a bending moment resulted in the
development of tensile and compressive stresses with accom-
panying deformation of the material. On the compressive side
of the neutral axis there was shortening, and on the tensile side
the deformation was elongation.

This shortening and elongation accompany a bending of the
beam which can be readily demonstrated with models. The gross
change in beam shape from the unloaded to the loaded condi-
tion we call deflection.
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The best method of deriving formulas for the deflections of
beams is by the help of the calculus. These methods are given
in higher works on the subject; see, for instance, Merriman’s
Mechanics of Materials.* The formulas applying to certain
cases will be stated here without proof and be accompanied by
illustrations showing their value and importance.

Cantilever Beams. When a
load P is at the end of a canti-
lever beam whose length is 1
(Fig. 44), a deflection desig- &= - x--—_¥
nated by f results. This de- Fig. 44,
flection will evidently be
greater the greater the load ana the longer the length of the
beam. The formula for it is

R l—————

_re
"~ 3EI

in which E is the modulus of elasticity of the material (Art. 41)
and I is the moment of inertia of the cross section (Art. 19).
The ordinate y at any distance x
from the free end is given by y =
7 ¥%f (3n — n®) in which n repre-
sents /1.

When a uniform load is on the

beam let this be called W (Fig. 45). Then the deflection is

_we
~ 8EI

Tt is thus seen that the deflection varies as the cube of the length
of the beam, so that if the length is doubled the deflection will
be eight times as great. It is also seen that a uniform load pro-
duces only three-eighths as much deflection as a single load of
equal intensity applied at the end. The ordinate y at any dis-
tance z from the free end is given by y = 14f(4n — nt), where
n represents xz/l.

For example, compute the deflection of a cast-iron cantilever
2 % 2 inches and 6 feet long, due to a ioad of 100 pounds at the
end. Here P =100 pounds, ! = 72 inches, E = 15,000,000
pounds per square inch, and I = 13, -2% = 114 inchest. Then,

* Published by John Wiley and Sons.
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from the formula, f = 0.622 inch, which is the deflection at the
end.

For a rectangular cross section of breadth b and depth d the
value of I is 14 obd®. Thus the deflections of rectangular beams
vary inversely as b and d3. As stiffness is the reverse of deflec-
tion, it is seen that the stiffness of a beam is directly as its
breadth, directly as the cube of its depth, and inversely as the
cube of its length. The laws of stiffness are hence quite different
from those of strength.

Simple Beams. When a simple beam of span [ has a load P at
the middle (Fig. 46), each reaction is %4P. Imagine this beam

to be inverted, and we see that it

(em Ty |P is equivalent to two cantilevers

Y of length 14l, each having the
load %P at the end. Hence in
the first formula for the deflec-
tion of a cantilever, given above, if [ is replaced by %!l and P by
1P, it becomes

%P
Fic. 46.

PB
48E1

f=

which gives the deflection of a simple beam due to a load at the
middle. ,

When a simple beam is loaded with w per linear unit the total
load wl is represented by W. The deflection at the middle due
to this load is
_ WP
 384EI

f

which is only five-eighths of the deflection caused by the same
load at the middle.

The formulas of this article are valid only when the greatest
horizontal stress S produced by the load is less than the elastic
limit. These formulas may be expressed in terms of S by sub-
stituting the values of P and W from Equation 4 of Art. 17.
Thus for the simple beam with load at the middle ¥4 Pl = SI/c,
and for the uniform load % WI! = SI/c. Hence

2
For the single load P f= 1511%
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For the uniform load W f = ﬁﬂ
48Ec
which show that the deflections of beams under the same unit
stresses increase directly as the squares of their lengths.
Restrained Beams. A beam is said to be restrained at one
end when that end is horizontally fixed in a wall and the other
end rests on a support (Fig. 47). In this case the reaction of
the support is less than for a simple

beam. For a uniform load of w per «--z---s| e
linear unit over the span [, it is | ! —
proved in Merriman’s Mechanics of | Illlﬂlm"l E—
Materials that the reaction at the w<IIIITMm, --uuuml
support is 3gwl, provided the elastic “H

limit is not exceeded. Fi. 47.

The bending moment at any sec-
tion distant x from the support, then, is 3gwlr — bwa?, and it
thus appears that when x = 34l there is no bending moment;
when x = 34l the greatest positive bending moment is 94 ,gwi?;
and when = = | the greatest negative bending moment is J4wi2.
The distribution of bending moments is as shown in the figure.
The maximum deflection is
_wlt WB
I = 18581 ~ 185E1

which occurs when z has the value 0.42151.
For a beam fixed at both ends and uniformly loaded (Fig. 48)
there is a negative bending moment of 1 swl® at each wall and

fr——*
= | i F;:J
- I -
“"Illll "lmm
Fic. 48.

a positive bending moment of %4wl“ at the middle. The de-
flection at the middle is

_we
I= 3451

in which W is the total uniform load wl.
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In these restrained beams the lower side is thus seen to be
partly in tension and partly in compression, since a positive
bending moment indicates the former and a negative one the
latter (Art. 22). For a simple beam the greatest bending mo-
ment is 14WI and for a beam fixed at both ends the greatest
bending moment is {2 WI; hence if both are the same size the
restrained beam will carry the greater load, or if both carry
the same load the restrained beam may be of smaller size than
the simple one. Thus if beams can be fixed horizontally at their
ends the construction may be more economically made.

QUESTIONS AND PROBLEMS

43a. Which is easier to demonstrate with stronger materials, such as
wood and metal, deformation from direct forces or beam deflection?
Why?

43b. How does the deflection of a simple beam under constant load
vary with its length?

43c. What is the effect of restraining the supports of a simple beam on -
its deflection?

43d. Compute the deflection of a steel T beam 8 inches deep and 12
feet long when it is loaded so that the flexural unit stress at the middle
equals the elastic limit of the material.

43e. Two cantilever beams of the same length, the same material, and
under the same loading show that beam A has a deflection of 22f as
compared with beam B. How is this difference to be accounted for?

43f. A steel I beam 10 inches deep and 8 feet long is used as a canti-
lever to carry a uniform load of 240,000 pounds. What will be its de-
flection?

43g. A cantilever beam 6.5 feet long and loaded at the end has a deflec-
tion of 0.50 inch at that end. What is the deflection of a point half way be-
tween that end and the wall?

43h. How much will a 24-inch I beam weighing 80 pounds per foot de-
flect on a span of 30 feet when a load of 60,000 pounds is placed at its
center?

43i. In order to find the modulus of elasticity of oak, a bar 2 X 2 inches,
and 6 feet long, was loaded at the middle with 50 pounds, and then with
100 pounds, the corresponding deflections being found to be 0.16 and 0.31
inch. Compute the modulus of elasticity E.

43j. An 8-inch I beam weighing 18 pounds per foot carries a uniform
loading of 100 pounds per lineal foot on a span of 10 feet. What is the
central deflection in feet?

43k. When a beam is fixed at one end and supported at the other, the
reaction of the supported end due to a load P at the middle is 54¢P.
Show that there is a positive bending moment of 842Pl. under the load
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and a negative bending moment of 34¢Pl at the wall. Draw the diagram
of bending moments.

431. Show that the deflection of a simple beam is five times as great as
that of a beam fixed at both ends, both beams being uniformly loaded.

44, Twist in Shafts. As in every other case where internal
stresses are developed, and as noted in Art. 35, shafts in torsion
twist for-their length under load. One end is rotated about its
axis, with respect to the other end, and in the direction indi-
cated by the applied forces.

If the torsional moment is equal to force P acting on lever
arm p, and [ is the length, F the modulus of elasticity for shear,
J the polar moment of inertia of the cross section, and all meas-
urements of length are in the same units (say inches), then the
formula for D, the angle of twist in degrees of one end of a
round shaft with respect to the other end, is

Ppl
D = 56.5 I

If the equivalent value of Pp given in Art. 39 in terms of
horsepower H transmitted at n revolutions per minute is substi-
tuted, then

Hl

D = 3,610,000 “FJ
For example, let a steel shaft 125 feet long, 17 inches outside
diameter, and 11 inches inside diameter transmit 16,000 horse-
power at 50 revolutions per minute. Here H = 16,000 horse-
power, l = 1500 inches, n = 50, F = 10,000,000 pounds per
square inch, J = 6765 inches. Then, from the formula D = 25.3
degrees, which is the angle through which a point on one end is
twisted relative to the corresponding point on the other end. If
this shaft revolves with a speed of only 25 revolutions per min-
ute while doing the same work, its angle of twist will be twice
as great and the stresses in it also twice as great as before. The
formula also shows that the angle of twist varies directly as the

length of the shaft.

PROBLEMS
44a. A solid steel shaft 110 feet long and 17 inches in diameter trans-

mits 8500 horsepower at a speed of 35 revolutions per minute. Compute
the angle of twist.
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44b. A solid steel shaft 8 feet long and 2 inches in diameter is driven
by a belt on a pulley 30 inches in diameter, the effective pull of the belt
being 200 pounds. Compute the angle of twist.

Art. 45. REVIEW PROBLEMS

46a. In Problem 43; what is the value of the maximum unit tensile
stress? What is the value of the maximum shear in that beam? What
is the sum of the two reactions?

45b. A concrete telegraph pole 6 inches in diameter at the top and 12
inches at the bottom carries a cross arm 48 inches long on which two
wires are strung, one on each side of the pole and 24 inches from it.
Each wire is stressed to a pull of 500 pounds. One of the wires breaks
on both sides of the pole, the other on one side only. What twisting
moment is set up in the pole and what is the shearing stress at the top
of the pole and at the bottom?

45c. Show for timber and wrought-iron bars stressed to their elastic
limits that the change of length of the former is double that of the
latter.

45d. Compute the tensile force required to stretch a bar of structural
steel, 134 XX 915 inches in section area and 22 feet 3% inches long, so that
its length may become 22 feet 37 inches.

46e. Show that the modulus of elasticity is that unit stress which would
stretch a bar to double its original length, provided this could be done
without impairing the elasticity of the material. -

45f. What unit stress will shorten a block of cast iron 0.03 per cent of
its length?

45g. A cast-iron bar, 2 inches wide, 4 inches deep, and 6 feet long, was
balanced upon a support and a weight of 4000 pounds hung at each end,
when the deflection of each end was found to be 0401 inch. Compute
the modulus of elasticity.

45h. Compute the elastic deflection of a light steel 12-inch beam of 40
feet span, due to its own weight, when resting on supports at the ends.

45i. Compute for the beam of the last problem the deflection when the
beam is fixed at both ends.

46j. An alloy steel shaft, 6 feet long and 214 inches in diameter, is
twisted through an angle of 0.5 degree when transmitting 4 horsepower at
120 revolutions per minute. Compute the shearing modulus of elasticity.



CHAPTER 8
MISCELLANEOUS APPLICATIONS

46. Internal Pressure. The pressure of water, steam, or other
fluids in a pipe or tank is exerted in every direction and tends to
tear the walls apart longitudinally. This strain is resisted by the
internal tensile stresses which act in the walls of the pipe, normal
to the radii.

If the wall thickness is not large compared with the pipe di-
ameter, the resisting area is 2tl, where t is wall thickness and

l the length, and the total resistance is 2¢l X S, where S is
the tensile unit stress. The total force P to be resisted is plD,
where p is the unit pressure and D the inside diameter of the
pire. Hence

plD = 28It or pD = 2S¢

is the formula for discussing thin-walled pipes and tanks under
internal fluid pressure.

The above derivation will become evident by a consideration of
Fig. 49.

Water pipes are made of cast iron, wrought iron, or steel, the
first being more common for larger diameters, whereas for steam
the latter is preferable. A water pipe liable to the shock of
water ram should have a high factor of safety, and in steam
pipes the factors should also be high. The formula above de-
duced shows that the thickness of a pipe must increase with its

83
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diameter, as also with the internal pressure to which it is to
be subjected.

For example, find the proper thickness of a wrought-iron steam
pipe 18 inches in diameter to resist a steam pressure of 250
pounds per square inch. With a factor of safety of 10 the work-
ing unit stress is 5000 pounds per square inch. Then, from the
formula,

pD 250 X 18

so that a thickness of 14 inch would probably be selected.
When the end of a pipe is closed the pressure tends to push
the end off as indicated in Fig. 50. Here P = ¥ pxD?, and this

N

AR .-

-_.__-b_____

7
///////////,7///4/////////////////////////5 —edee S
Fia. 50.

foree is resisted by the metal of the pipe body which has a sec-
tion area of txD. As S = P/A, it follows that pD/4t = S or
pD = 4S8t. It is thus evident that for the same unit pressure
p in any pipe the stress in the metal of the pipe due to a closure
of its end is one-half that induced by the radial or bursting

forces.
QUESTIONS AND PROBLEMS

46a. What is the greatest diameter to which a cast-iron water pipe may
be built with walls 1 inch thick to resist safely a pressure of 125 pounds
per square inch?

46b. A 72-inch steel pipe under a pressure of 70 pounds per square inch
has its end closed by a drum head. What longitudinal stress is set up
in the body of the pipe if ¢ is 3% inch?

46¢c. Find the factor of safety of a cast-iron water pipe 16 inches in
diameter and 14 inches thick under a pressure of 130 pounds per square
inch.

46d. What internal pressure per square inch will burst a cast-iron water
pipe 24 inches in diameter and 134 inches thick?

46e. The head of a 12-inch diameter steam engine cylinder is held on
with ten %-inch bolts. If the steam pressure in the cylinder has a maxi-
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mum pressure of 120 pounds per square inches, and the root area of each
bolt is 0.202 square inch, to what stress must the bolts be tightened to
prevent opening of the joint?

47. Fastenings. Riveted Joints. When two plates are joined
together by rivets and the plates then subjected to tension, a
shear is brought upon the rivets which tends to cut them off.

r— P

1, Shear of Rivets P= % ﬂ'd‘ Ss
’ ‘% DP
2. Tensile Failure of Plate p=( 1- % d)t S,
‘*—b—i-
I 1
~F =~
]
. Shearing of Plate _
® Bohind Rivets p="L.2bts,

S |
T
4. Compression of Metal !
Behind Rivets (Bearing) P=gdtS,
Fic. 51.

The: failure of such a joint may occur in one of several ways,
depending upon the proportions of the plate thickness ¢, rivet
diameter d, rivet pitch a, the strengths of the materials, and
the type of joint. In no case will a riveted joint be as strong
as if the plate were in one continuous piece.

In each of the types of failure of a single-row lap joint shown
in Fig. 51 the stress analysis is found by equating the total ten-
sile force P, for the length.of joint I, to the resisting area for
the same length of joint, times the unit stress S for the type
of stress and resisting material.
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A riveted lap joint is one in which one plate laps over the
other, and the two are riveted together. Figure 52 shows a
single-row lap joint. In a joint where two rows of rivets are
used they are generally staggered so that the rivets in one row

come opposite the middle of the

\\\\\\\\\\\\\\\\ \\\\\\ pitches in the other row (F{g.
v’// £ 53). It should be noted that in

any given joint the failure will

occur at the point of least re-

sistance. Type 3 failure can

be eliminated as a possibility

merely by making the rivet edge

distance great enough. Reduc-

ing the pitch and increasing the

F rivet diameter will strengthen

1G. 52. L. X X

the joint against failures 1 and

4, but will increase the likelihood of failure 2, so that a bal-

ance of values must be found which will equalize the resistance
among these three failure possibilities.

The working unit stress for shear should be about three-
fourths of that for tension, or 8, = 3S;. Equating the above
values of P under this condition gives
a joint in which the security of the _OOO;DEE
plates in tension is the same as that Wmémlwm
of the rivets in shear; thus

J‘(@j“r"
d2 2 |
a=d+059— =d+1.185it— |

|

|
|
the first being for single-lap riveting | !
and the second for double-lap rivet- ® ? :
' |
L

ing. These are approximate rules for
finding the pitch when the thickness |
of plates and diameter of rivets are _’3&#
given. In general, rivet pitch should
not be less than 3 rivet diameters, to Fio. 53
facilitate fabrication. T
When two plates butt together, cover plates are used on one
or both sides; if the covers are on both sides each is usually

somewhat greater than one-half the thickness of the main plate
(Fig. 54). The shear on each rivet is here divided between the
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upper and the lower parts of the cross section, this being called
a case of double shear. Thus if P is the tension which is trans-
mitted through one rivet, d the diameter of the rivet, a the
pitch, and ¢ the thickness of the main plate,

2.1
4xd?S,
which are the same as for two rows of lap riveting.

The efficiency of a riveted joint is the ratio of the strength
of the joint to that of the solid plate. If the joint is designed

P=t(a—d)St P =

LA
AN \\“\ A Y k\.\\\ W

&l A LIASAIIS IS IS SIS SIS,

Fic. 54.

so as to be of equal strength in both tension and shear this
efficiency is

Ha —d)S, 1 d

taS; - a

Thus if the rivets are 3} inch in diameter and the pitch is 2
inches the efficiency is 1 — 3§ = 0.625; that is, the riveted joint
has only 62.5 per cent of the strength of the solid plate. Single-
lap riveting has usually an efficiency of about 60 per cent whereas
double-lap riveting and common butt riveting have 70 to 75
per cent. By using three or more rows of rivets efficiencies of
over 80 per cent can be secured.

When a joint is not of equal strength in tension and shear
there are two efficiencies, one being the ratio of the tensile
strength of the joint to that of the solid plate and the other
the ratio of the shearing strength to that of the solid plate.
The least of these is the true efficiency.

Welding. Recent years have seen great strides in the applica-
tion of welding as a means of fabrication. Not only has it re-
placed riveting to a high degree, but it has been accepted in
industry as a means of building up parts and sections which
formerly were cast, forged, or rolled.

Welding is a process of joining two or more parts of similar
materials by local fusion at a high temperature, produced by
an electric arc or an oxyacetylene flame. Normally, at the time
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of fusion, additional metal is obtained from either the electrode,
in arc welding, or the welding rod in ozyacetylene welding.

By its nature welding is rather a permanent connection form-
ing the several pieces involved into one. Although at times this
may be a disadvantage, usu-
ally it is cited as a desirable
feature.

Because the strength of a
weld is largely determined by
the skill of the welder, and
sometimes because of the
lack of designer’s confidence
in this relatively new process, it is not at all unusual to find
welded joints many times stronger than would be indicated by
the other factors present. The strengths given below are for
average quality welds, obtainable by most operators, and may
be used without additional com-

pensation for manufacturing Throat Throgt
variation.

In general, welded joints fall
into two categories: lap joints (@) (b)
with fillet welds (Fig. 55) and Fic. 56.
butt joints with V-welds, single
(Fig. 56a) or double (Fig. 56b) according to the plate thick-
ness.
The resistance of side and end fillet welds is rated at so many
pounds per inch of weld of a given base size (Fig. 57). Butt
welds are usually rated on the unit
tensile stress of the throat area

Throat (Fig. 56), an allowable working

' stress for steel being 12,000 pounds

, per square inch, or 70 to 90 per cent

& \N of the strength of the plates being

-—>Bue|-— joined, the higher value for dou-
Fic. 57. ble-V welds.

~ For the purpose of solving prob-

iems the strengths of steel welds:at top of page 89 may be used.

Normally the stated size is the base size, and this is usually

at least equal to the thickness of the thinnest of the two plates
being joined. '
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Bolts and Machine Screws. In general, bolts and machine
screws fail in one of three ways: (1) by shearing across their
body, (2) in tension of the body, and (3) shearing of the head.

The shearing across the body occurs at the point where the
two bodies being fastened together meet.

Failure in tension normally occurs at a
point of least cross section, frequently at
the root of threads.

Shearing of the head takes place much as
shown in Fig. 58, and it should be noted
that this i1s an alternate failure to failure Fie. 58.
of the bolt body in tension. The failure
area is equal to =dt, and the total resistance is P = =dtS,. This
type of failure, it can be seen, can be prevented by making the
bolt head sufficiently thick, which is the case with bolts and
machine screws of standard proportions.

QUESTIONS AND PROBLEMS

47a. What can be said of the influence of rivet diameter on joint
strength with regard to the several possibilities of failure?

47b. Discuss similarly the effect of rivet pitch.

47c. Two plates each 34 inch thick are to be riveted together by a
single row of rivets. What is the proper pitch of the rivets? If two
rows of rivets are used what should the pitch be?

47d. Two strips of steel 114 inches wide and 3% inch thick are secured
by a single rivet 34 inch in diameter. What weight P hung on this com-
bination will cause failure? How will the failure occur?

47e. A steel water pipe 40 inches in diameter has rivets 3 inch in
diameter and plates 14 inch thick. If double riveting is used, what
should be the pitch of the rivets? What pressure will this pipe safely
carry ?

47f. Compute the factor of safety of a steel boiler 5 feet in diameter
and 3% inch thick when it is subject to a steam pressure of 300 pounds
per square inch, there being single longitudinal lap joints having rivets
34 inch in diameter with 21% inches pitch.
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47g. How would you compute a riveted butt joint in which only one
cover plate equal in thickness to the main plate was used?

47h. If the cover plates are thinner than one-half the main plate how
is the strength of the joint affected? Assume a l4-inch plate with two
covers each 1% inch thick and compute the stresses of both tension and
shear as compared with two cover plates each 14 inch thick.

47i. A butt joint with two cover plates has a main plate 3% inch thick,
the rivets 34 inch in diameter and the pitch of the rivets 27 inches.
Compute the efficiency.

47j. Show that the efficiency of a butt joint, based on the shear in the
rivets, is double that of a lap joint.

47k. If the smaller plate in Fig. 55 were 34 inch thick and 4 inches
wide and lapped the larger by 6 inches, what would be the total resist-
ance of the welds? How does this compare to the strength of the plate?

471. Two ¥-inch plates 30 inches wide are butt-welded with a double-V
weld. With a factor of safety of 6, what is the allowable pull on the
joint?

47m. If the plates of Problem 47] were lapped, with fillet welds along
each edge, what would be the allowable pull on the joint? What is
the efficiency of this joint?

47n. A steam cylinder is made by welding disks into the ends of a
12-inch inside diameter tube, using 3-inch welds. What is the allowable
steam pressure, in so far as the welds are concerned?

470. Compare the tensile strengths of 1420 and %¢-18 machine screws,
their respective root diameters being 0.196 and 0252 inch. What should
be their minimum head thicknesses?

47p. If a standard ¥4-inch bolt has a head height of 1342 inch, how does
its resistance to head shear compare to tensile strength? (Root diameter
= 0.642 inch.)

47q. What length wrench might be used to tighten the bolt in Prob-
lem 47p, considering its torsiomal strength and using a factor of safety
of 4 with a wrench pull of 60 pounds?

48. Stresses Due to Temperature. A bar which is free to
move elongates when the temperature rises and shortens when
it falls. But if the bar is under stress, or is fixed so that it can-
not elongate or contract, the change in temperature results in
producing a stress or in modifying a stress which was already
existent in the bar. The unit stress so caused is that which
would result from a change in length equal to that which would
be occasioned in the free bar by the change in temperature.

The coefficient of linear expansion is the elongation of a bar
of length unity under a rise of temperature of one degree. For
the Fahrenheit degree the average values of the coefficients of
expansion are as follows:
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For brick and stone C = 0.0000050
For concrete C = 0.0000060
For cast iron C = 0.0000062
For wrought iron C = 0.0000067
For steel C = 0.0000065

Thus a free bar of cast iron 1000 inches long will elongate
0.0062 inch for a rise of one degree, and 0.62 inch for a rise of
100 degrees.

The elongation of a bar of length unity for a change of ¢
degrees is hence s = Ct. But (Art. 41) the unit stress due to
the unit elongation s is S = sE, where E is the modulus of elas-
ticity. Therefore

S = CtE

is the unit stress produced by a change of t degrees in a bar
which is fixed. If the temperature rises, S is compression; if
the temperature falls, S is tension.

For example, consider a wrought-iron rod which is used to tie
together two walls of a building and is screwed up to a stress
of 10,000 pounds per square inch. If the temperature falls 50
degrees there is produced a tensile unit stress,

S = 0.0000067 X 50 X 25,000,000 = 8400

and hence the total stress in the rod is 18,400 pounds per square
inch. If the temperature rises 50 degrees the stress in the bar
is reduced to 1600 pounds per square inch. In all cases the
unit stresses due to temperature are independent of the length
and section area of the bar.

A hoop or tire is frequently turned with the inner diameter
slightly less than that of the cylinder or wheel upon which it is
to be placed. The hoop is then expanded by the heat and placed
upon the cylinder. Upon cooling it is held firmly in position
by the radial stresses thus produced. This radial stress is one
of compression and causes tension in the hoop.

Let D be the diameter of the cylinder upon which the hoop
is to be shrunk and d the interior diameter to which the hoop
is turned. If the thickness of the hoop is small, D will be un-
changed by the shrinkage and d will be increased to D. The
unit elongation of the hoop is then s = (D — d) /d, and hence the
unit, stress produced is
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D — dg
S =sE = 7

where E is the modulus of ¢lasticity of the material.

A common rule in steel-hoop shrinkage is to make D — d
equal to 1 500d; that is, the cylinder is turned so that its diame-
ter is Y 590th greater than the inner diameter of the hoop. Ac-
cordingly, the tangential unit stress which occurs in the hoop
after shrinkage is 30,000,000/1500 = 20,000 pounds per square
inch.

When the hoop is thick the above rule is not correct, for a
part of the stress produced by the shrinkage causes the diameter
of the cylinder to be decreased. The rules for this case are com-
plex, and cannot be developed in an elementary textbook. They
will be found in the Mechanics of Materials.

QUESTIONS AND PROBLEMS

48a. A steel column 28 feet long carries a load which produces a unit"
stress of 12,000 pounds per square inch at 40° F. How far will the load
be lifted when the temperature rises to 80° F., and what will then be
the unit stress in the column?

48b. A cast-iron bar 5 feet long and 4 X 4 inches in section is confined
between two immovable walls. What pressure is brought on the walls
by a rise of 50 degrees in temperature?

48c. When steel railroad rails are improperly laid with their ends close
together at a temperature of 30 degrees, what compressive unit stress
occurs when the temperature rises to 80 degrees?

48d. A steel tire is to be shrunk on a wooden wagon wheel. The wheel
is 5 feet in diameter. The tire is 14 inch thick and when cold has an
inner diameter of 4 feet 111% inches. Compute the total compression in
the spokes.

48e. Upon a cylinder 18 inches in diameter a thin wrought-iron hoop
is to be placed. The hoop is turned to an inner diameter of 1797 inches
and then shrunk on. Compute the tensile unit stress in the hoop.

49. Shaft Couplings. A shaft is in two parts, which are con-
nected by a flange coupling (Fig. 59). A shows the end view
and B the side view of the coupling. The flanges of the coupling

o dThk :'ﬁb
— ——

A B ¢ D
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are connected by bolts which are brought into shearing stress
in transmitting the torsion from one part of the shaft to the
other.

The shaft is solid and of diameter D. There are n bolts of
diameter d, and h is the distance from the center of the shaft
to the center of a bolt. If D and d are known, as also the dis-
tance h, the resistance of the coupling, based on the polar mo--
ment of inertia as explained in Art. 37, is

J n(Gd + trd®h?)
c 1d+n

Ss

and the resistance of the shaft is g = 11(—3 D3S,.

Equating these values, we find

D3(d + 2h) — nd*(d® + 8h?)
or
_ D¥d + 2h)
"= B(&E f 8K

which is a formula to determine the number of coupling bolts
required to equal shaft strength, provided materials of equal
strength are used. Since d is usually much smaller than b, it
may be neglected within the parentheses; then the above for-
mula becomes n = D3/4hd?, which is a simpler expression use-
ful in approximate computations.

For example, let D = 8 inches, d = 1 inch, and h = 12 inches;
then the second formula gives n = 10.7, so that eleven bolts
should be used. If D = 8 inches, d = 1% inches, and A = 12
inches, the formula gives n = 6.8 so that seven bolts should be
used.

The case shown at CD in the above figure is one that should
never occur in practice, because here the bolts are subject to a
bending stress as well as to the shearing stresses due to the
torsion. It is clear that this bending stress will increase with
the distance between the flanges and that the bolts should be
greater in diameter than for pure shearing.
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PROBLEMS

49a. Compare the strength of a shaft coupling designed as in the first
example above with the longitudinal strength of the shaft and the
coupling under a tensile force.

49b. A solid steel shaft 16 inches in diameter transmits 15,000 horse-
power at 40 revolutions per minute. Design a flange coupling for this
shaft.

Art. 50. REVIEW PROBLEMS

§0a. How many bolts 114 inches in diameter would be required to
hold a head in the end of the pipe 